

The AC Screen Grid Diamond of the Air, shown for use with a separate B supply. See article on page 3.

m

00

RADIO WORLD, 'owned and published by Hennessy Radio Publications Corporation, 145 West 45th Street, New York, N. Y. Roland Burke Hennessy, President and Treasurer, 145 West 45th Street, New York, N. Y.; Herman Bernard, Secretary, 145 West 45th Street, New York, N. Y. RADIO WORLD

June 8, 1929

LL acoustical and radio engineers agree that the balanced armature type of loudspeaker the balanced armature type of loudspeaker unit is the best, the most sensitive and the most faithful of all magnetic units. But it is only in the HBH unit that superior designing skill, scrupulous care in the selection of the best materials, and extreme accuracy of manu-facture have been combined and co-ordinated so as to bring out all the possibilities of the principle of the balanced type unit. Any magnetic speaker requires a strong permanent magnet for its operation. The strength of the HBH unit is assured by the use of a long magnet of large cross-section, made of specially selected, high coercive-force steel, forged under the lowest heat possible, scientifically compared in oil and aged. The making of a permanent magnet requires a highly specialized

compared in oil and aged. The making of a permanent magnet requires a highly specialized skill. It must be forged, cut and tempered with as few heatings as possible, and no heating must exceed a certain temperature if the magnet is to retain its strength and permanence. Another important feature of the magnet which enhances its strength and permanence is that NO HOLES ARE CUT IN IT. The magnet is one solid piece of steel and the pole pieces are clamped firmly to the steel by screws in the die cast harness holding the pole pieces and the armature. The sensitivity and efficiency of the unit are enhanced by the use of laminated, properly tapered silicon steel pole pieces. Eddy current bases are thus reduced to a vanishing minimum and all the force is concentrated on the ends of the armature.

concentrated on the ends of the armature. The armature itself is made of carefully annealed soft iron, thus eliminating any residual magnetization and reducing eddy currents and hystoresis losses to a very small percentage of the energy involved in the operation of the unit. The armature is made short and heavy to enhance its effectiveness in translating electro-magnetic energy into sound.

Nobody ever returned an HBH unit because of dissatisfaction with its performance! It stands up and delivers and continues to deliver. You can put 150 volts right through the magnet coils, steadily, without danger of the coil breaking. You don't need any extra power to operate this unit—as you do with dynamics—but get full efficiency at lowest cost and greatest economy. economy.

Put this unit in your cone or cloth speaker in place of the unit now there and marvel at the difference! You will then recognize the technical superiority of this unit in terms of tone value and volume. It produces so much more volume than most other units that it makes distant stations sound like locals. Order a unit today! Send \$4.00. Try the unit ten days. If not overjoyed, return it for full refund. Otherwise take 90 days to pay the extra \$1.95.

> 10-day money back guaranty! 90 days to pay in full!

Recent Issues of RADIO WORLD, 15 cents each. Any number published in 1928 available for a short while. Six issues 75 cents, 10 issues \$1.00. Send stamps, coin or money order NOW, before the issues are sold. RADIO WORLD, 145 West 45th Street, New York City.

AGENTS AND SALESMEN WANTED Sell \$5.00 Men's Daily Necessity for 50c. Cost quantities 20c. Sample postpaid 30c. Catalog hundreds household articles free. Mills Sales Co., 901 Broadway, New York.

The HBH Unit, representing the most skillful and sturdiest magnetic unit design. Mfgd. under BBL License. Price ...

\$5.95 Moulded bracket (extra) 45c

145	anty Radio Goods Co., Wost 45th St., Y. City (Just East of Breadway)
10-da down unles	ease ship one HBH Unit only on ay money-back guaranty; at \$4.00 , balance of \$1.95 in 90 days, s I return the unit in 10 days for refund of \$4.00.
□ Pl 65c.	lease ship moulded bracket also at
Nam	۰ ۹
Addı	
City	
State	8

DYNAMIC BAFFLE

Completely built up, for any type dy-namis chassis. State what make dynamics 2.00 yeu want it for. Cane eides, epen bask. 2.00 De luxe finish. Size, 24x24 inches..... GUARANTY RADIO GOODS CO. 145 West 45th Street, New York City

Cash in on This Offer Now!

ONE full year's subscription for any TWO of the following magazines given to you-RADIO NEWS or SCIENCE AND INVENTION or RADIO (San Francisco) or BOYS' LIFE or CITIZENS RADIO CALL BOOK AND SCIENTIFIC DIGEST or RADIO ENGINEERING.

Select any TWO of these four publications, each of which will be sent to you (at only one address, however) each month for twelve months— in other words, 24 issues—if you will send in now your subscription for RADIO WORLD for two years (104 numbers) at \$10.00. RADIO WORLD'S subscription price for one year is \$6.00, so you gain the extra 2 dollars by taking advantage of the liberal offer for two-year subscriptions; and, besides, you get a sub-scription for each of the TWO other magazines selected from the enumerated list, making a total of 128 numbers for \$10.00.

If you want to select only one from among the four other magazines, you may obtain this one for TWO years, so that you will be subscribing for RADIO WORLD for two years and for the other magazine for TWO years, all for only \$10.00 (both mailed to one address only). These offers are rightly regarded as among the most liberal ever made, but as they are limited as to expiration date (see notice below) you must act now.

Please use the attached coupon.

SPECIAL TWO-FOR-PRICE-OF-ONE COUPON

RADIO WORLD, 145 West 45th Street, New York City (just East of Broadway): Enclosed please find \$10.00, for which send me RADIO WORLD each week for two years (104 numbers), and also send me, without extra cost, each month for one year each of the following TWO magazines—total, 24 issues—grand total, 128 numbers;

at abdet grand total, 120 humber	••				
C C RADIO NEWS			RADIO (Sam	Franelseo)	
SCIENCE AND	INVENTION				
🗆 🗆 CITIZENS RAD	IO CALL BOOK, ETC.		RADIO ENG	INEERING	
If you want one of each, put a If you want a two-year subscriptic RADIO WORLD (same grand total If you prefer to pay \$6.00 for one of the other magazines for one of one magazine.	of 128 numbers), put two of 128 numbers), put two only one year's subscription	magazines crosses b	efore the name	wo-year subscription ne of ene magazine. (52 numbers) and	for
Present RADIO WORLD subseribers may renew under this effer. If renewing, put s eress here [].	Name				- 3
	Street Address				÷••

THIS OFFER EXPIRES AT NOON ON JULY 15TH, 1929

Citv

Fourteen Circuits

Each Shown in Colored Picture Diagram Colored Schematic Diagram and Front Panel Layout

Get This FREE Book!

Complete AC electric receivers, with B elimin-ators included, also AC receivers without B eliminators, also battery operated models, all easy-to-build circuits, using your own parts.

RADIO WORLD, 145 W. 45th St., N. Y. City. (Just East of Broadway)

(Just East of Broadway) Gentiemen: Enclosed please find \$1.00 for which please send me Radio World each week for eight weeks (regular price, \$1.20) and besides send me a FREE copy of the 1929 edition of The Redio Blueprint Library of AC and Battery Hookups.

Name		
		· .
Addres	·	

City..... State.....

Note: Present mail subscribers may take advantage of this offer by putting a cross in this square. Your sub-scription will be extended eight weeks.

Push out control lever with knob (as at left) and put wrench on nut. Push down on handle only (at right), then turn nut left or right.

ONE of the handiest tools for a custom set

O'NE of the handlest tools for a custom set builder, service man or home constructor is a BERNARD socket wrench. It consists of a 6½" long metal tubing in which is a plunger, controlled by a knob. The plunger has a gripping terminal (called s socket, hence the name "socket wrench") that may be expanded or contracted to fit 6/32, 8/32 and 10/32 nuts, the most popular sized nuts in radio.

Use the knob to push out the plunger, press down on the handle to grip the nut, then turn the nut to left for removal or to right for fast-ening down. Total length, distended, including stained wooden handle, 10". Gets nicely into tight places. Send \$1 for 8 weeks' mail sub-scription for RADIO WORLD and get this wrench FREE.

No other premium with this offer. Present subscriber may extend subscription by stating he is one, and entitle himself to this FREE premium, making \$1 remittance.

RADIO WORLD 145 WEST 45TH ST., N. Y. CITY

.

State

Vol. XV, No. 12 Whole No. 376 June 8th, 1929 15c per Copy, \$6.00 per Year [Entered as second-class matter, March, 1922, at the Post O..ce at New York, N. Y., under Act of March, 1879.]

Technical Accuracy Second to None Latest Circuits and News EIGHTH YEAR

A Weekly Paper published by Hennessy Radio Publication Corporation, from Publication O..ee, 145 West 45th Street, New York, N. Y. Phone BRYant 0558 and 0559 (Just East of Broadway)

Lush-1amond

AC Model with Power Detector and with 245s in Output

By Herman Bernard

Managing Editor

RL5 (2. (AP- (1) (3) Τl T2 C10 00000 00000 64 Chl SPEAKER L3 С5 **AAAA** (7 -01-69 HR C3 R2 R4 CG 0000 **3000** Ch2 Ch3 RES C15 CH C13 000 000 000 000 0000000 C14 T3SW T 110 v.AC

TWO 245 TUBES IN PUSH-PULL CONSTITUTE THE OUTPUT OF THE 5-TUBE AC DIAMOND OF THE AIR.

TWO 245s have become the most popu-lar pair for push-pull. The Diamond of the Air is shown in a five-tube AC model so as to embody this push-pull output. The design in Fig. 1 is for a com-

- L1, L2-One antenna coil (Cat. AC5).
- L3, L4, L5-One screen grid three-circuit tuner (Cat. SGT5).
- C1—One Hammarlund equalizer, 70 mmfd. C2, C4—One Hammarlund 2 gang con-denser, each section .0005 mfd. (Cat. MLD23).
- CG, C3, C5, C6, C8, C9-Six Aerovox .02 mfd. fixed condensers.
- C7-One Aerovox .0005 mfd. fixed condenser.
- C10-One Aerovox 4 mfd. bypass condenser.
- C11, C12, C13, C14-Mershon 8-18-18-8.

plete table model on a 12x20" baseboard or metal subpanel. If you have a B supply that provides

300 volts maximum you may construct the receiver (include the filament trans-

LIST OF PARTS

- R1-One Electrad Royalty variable resistor, 5,000 ohms, with 110 volt AC switch. R2, R3-One 20,000 ohm Electrad resistor
- type B (with 3 terminals). R4-One 1,000 ohm Electrad resistance
- strip. R5-One 800 ohm Electrad resistor type
- В. R -- One Aerovox Pyrohm, type A.
- T1-One National A100 audio trans-
- former. T2-One National push-pull input trans-
- former.
- T3—One power transformer (Guaranty Radio Goods Co.).

former), and obtain the B voltages from your present supply. The front cover illustration shows such a model. The inclusion of push-pull is not for increasing the volume, as this remains

Ch1—One push-pull output choke (Guar-anty Radio Goods Co.). Ch2, Ch3—One Silver-Marshall Unichoke

331.

- Ant., Speaker—Three binding posts. (1)—One 224 tube; (2), (3), two 227 tubes; (4), (5), two 245 tubes; (6), one 280 tube.
- One 7x21" front panel.
- One 12x20" baseboard with three UY sockets and three UX sockets; or one metal subpanel with sockets affixed.
- One flat type dial. Two knobs.
- One roll Corwico Braidite.
- One pilot light, with bracket (optional)

Pointers on Push-Pull

Biasing Analyzed, Impedance Output Explained

DIMENSIONS FOR THE 7 X 21" FRONT PANEL USED FOR THE PUSH-PULL DIAMOND OF THE AIR. THE VOLUME CONTROL R1 AND SWITCH SW, CONSISTING OF A SINGLE COMPOSITE INSTRUMENT, ARE MOUNTED AT LEFT. THE TUNING CONDENSER IS AT CENTER, 3½" UP. THE PILOT LIGHT, IF USED, IS ABOVE THE CONDENSER. AT RIGHT THE THREE CIRCUIT TUNER IS MOUNTED UPSIDE DOWN, THAT IS, WITH TICKLER COIL TOWARD THE SUBPANEL. THREE HOLES EQUIDISTANT AT BOTTOM MAY BE USED FOR ANCHORAGE TO THE SUBPANEL.

(Continued from preceding page) about the same, but for improving the quality, since push-pull tends to reduce or eliminate extraneous noises by stifling the even order of harmonics.

Power Detection

The tuner is approximately the same as heretofore, except that the volume control is put in the grid biasing circuit of the 224 RF tube, and the power detector's effectiveness is heightened by passing some extra plate current through a lower biasing resistor. The bleeder and the biaser are one resistor, with three terminals, so that one extreme terminal goes to B plus 180 volts, the next one to the cathode and the other extreme terminal to B minus. The third slider is placed near the B minus end. An Electrad wirewound resistor, type B, 20,000 ohms, is used, and about 2,000 ohms are used for bias and 18,000 ohms for bleeding.

Then the current drawn by the bleeder is passed through the biasing part of the resistor, avoiding the necessity of high reduction of precious plate current in the detector by use of a high value of biasing resistor, which would have to be on the order of 50,000 ohms otherwise.

No ground need be provided externally, as the filament transformer (or, in the case of the complete table model, the power transformer) has a self-grounding effect, and in addition the B minus lead is grounded to the one side of the AC line through a .02 mfd. fixed condenser, CG. The grounding effect through this condenser may not be material unless the plug is inserted in the convenience outlet in the right way. Reverse the plug to determine which connection provides louder signals, then adopt this connection permanently.

Output Impedance

The remaining novelty of the circuit is the push-pull output impedance. This is used instead of an output transformer, because it is more nearly suitable to various types of speakers, whether dynamic or magnetic. The speaker is connected to the two plates, and no current should flow through the speaker, because the flow is through the impedance in opposite directions from its center-tap. The direct current being equal and opposite, it flows only through a circuit embodying half of the impedance, while none flows across the extreme terminals to which the speaker is connected.

Since magnetic speakers have a relatively high impedance, this output is suitable indeed for them. Also, dynamic speakers have output transformers built in, and these have a high impedance primary but a low impedance secondary, therefore the output serves this purpose well, also.

The biasing resistor in the last stage should be half the resistance of one used for a single-sided output because the plate current passed through it is twice as great. A value of 800 ohms fully takes care of the maximum required bias. But it must be a resistor easily capable of carrying 64 milliamperes. A 5-watt resistor provides an ample margin of safety.

The B Voltages

The B voltages are about 300 maximum, 180 for all plates save the last, and about 75 volts for the screen grid of the 224 tube. This screen grid voltage may be reduced if oscillation trouble arises.

Not all of the 300 volts is effective on the plate of the push-pull output tubes, on account of the effect that the voltage drop in the biasing resistor has on the regulation. As a separate biasing resistor is used for the last stage, the reduction in voltage from the total is not absolute, but relative. However, the voltage actually obtained is never more than a little more than the 250 volts recommended, and any slight excess is tolerable, and is taken care of automatically, by biasing for the higher voltage, since the current is increased through the biasing resistor.

Large capacity condensers of the electrolytic type are used in the B supply. The capacities are, from left to right, 8 mfd., 18 mfd. and 18 mfd., with another 8 mfd. going from the 180-volt tap to B minus. The mica condenser from screen grid to cathode of the 224 tube takes care of the bypassing for the screen grid current. On the other hand, the plate current of three tubes is obtained from the 180-volt post, hence the second 8 mfd. condenser is connected there. The four condensers are in one small copper can. The smaller capacity (8 and 8) are farther from the periphery than the 18 and 18.

Filament Windings

The filament windings are three: $2\frac{1}{2}$ volts upper, which will stand 9 amperes and to which the tuner tubes and first audio are connected; 5 volts at center for the filament of the 280 rectifier, and $2\frac{1}{2}$ volts, bottom, for the two 245 tubes used in push-pull stage. All windings are center tapped. The top winding's center may be connected to B minus (not shown), to maintain the heater negative in respect to the cathode, and thus prevent the heater from acting as a fifth element.

A separate winding is used for the push-pull tubes' filaments, although the voltage is $2\frac{1}{2}$ also, because a common winding would make the heaters of the three preceding tubes positive in respect to the cathodes, to the extent of the negative bias on the last push-pull pair. Thus the heater might become an electron-attracter, and function as a sort of adventitious plate, which would be objectionable. Hum and instability might arise, also, particularly in respect to the screen grid tube, short life would result.

Absence of Shielding

No shielding is used in the tuner, because only one screen grid stage is incorporated, and the amplification obtained from the tube is maintained within workable limits.

The primary of the three-circuit tuner, nevertheless, has a fairly large number of turns, thus offering a higher impedance than the primary of tuners used with general purpose tubes. It is not possible to obtain the results of high sensitivity unless this primary impedance is larger than the ordinary.

than the ordinary. The antenna coil has a small primary, to maintain high selectivity. On a $2\frac{1}{2}$ " diameter tubing, $2\frac{1}{2}$ " high, wind 6 to 8 turns for L1, and 48 turns for L2, separating the windings by $\frac{1}{4}$ ". For L3 wind 24 turns, leave $\frac{1}{4}$ ", then for L4 wind 48 turns. The diameter is again $2\frac{1}{2}$ ", but the coil form may be a little higher, around 3". All wire is No. 24 single or double silk covered. The tickler L5 consists of 30 turns on a $1\frac{3}{4}$ " diameter, using No. 24 wire or smaller, half the number of turns being placed to one side, half to the other, so that the rotor shaft may penetrate the tickler coil far enough to hold it, and not be obstructed by any of the turns.

Equalized Tuning

The circuits may not tune exactly alike unless a trimmer is placed across the first tuning condenser. Tune in a low wavelength station, say, around 250 meters, with the trimmer set at minimum capacity. This little condenser is of the book type and is adjustable by a screwdriver, but you'd better use a wooden dowel fashioned at the end in screwdriver style, to avoid capacity effects obtained from a metal 'screwdriver making the adjustment difficult. Turn the trimmer until the station comes in loudest. A slight readjustment of the tuning dial may be necessary. If so, try the trimmer again, always striving for maximum volume. When that it attained, the circuit is set permanently, and resonance will result throughout.

[Other illustrations on front cover] (Part II next week, issue of June 15th)

olume Sensitivity and

How Both May Be Well Controlled at the Same Time By Bruce Deeming

FIG. 1 RECEIVERS CONTAINING HEATER TYPE TUBES CAN BEST BE CONTROLLED AS TO SENSITIVITY AND VOLUME BY MEANS OF VARIABLE GRID BIAS RESISTORS, PLACED IN THE POSITIONS R1 AND R4. THIS IS A LITTLE BETTER THAN THE AERIAL RESISTOR METHOD SHOWN AS R.

S TABILIZATION of radio frequency amplifiers and control of sensitivity are two questions which are continually in the mind of radio fans. These questions do no longer present a prob-lem in battery sets, for the filament cur-rent in the radio frequency tubes can be changed over any desired range with instantaneous response.

When heater type tubes are used they are problems because the filament current cannot be changed readily, and if it is changed the response is not immediate. For example, suppose the volume is too great so that it becomes necessary to reduce it, that is, to reduce the sensitivity of the received. The filament current is reduced by a certain amount. It makes no difference by what means it is reduced —reduction in the primary voltage supplying the heating transformer, or reducing the secondary voltage by means of a resistor. Whatever be the method used, the response is slow. It may take three-quarters of a minute before any change is noticed is noticed.

Overshooting the Mark

The amount by which the filament cur-rent is changed is pure guess. When a certain change has been made, say downward, the volume will gradually reduce. When a stable state has been reached, the volume may be entirely too low. The guess was a poor one. So it becomes nec-essary to increase the volume. There is another wait and then the relevant another wait and then the volume may be too loud. Even if the correct guess is made the second time, the signal strength may have changed during the process of adjustment, so that it becomes necessary to start all over-again.

Changing the filament current in a set embodying heater tubes is obviously not a satisfactory method of controlling the volume.

One method of controlling the volume, one which responds instantly, is to use a variable resistor in the antenna circuit, as illustrated in Fig. 1. R is a variable resistor which can be changed over a range of from 0 to 5,000 ohms. If the required sensitivity range of the required sensitivity range of the receiver

is not wide, this method is quite satisfactory, and it is convenient.

Insufficient Range

But if the set is very sensitive when adjusted to maximum sensitivity, this method is not quite sufficient. Even method is not quite sufficient. when all the resistance is inserted in the antenna circuit there remains a good deal of pick-up. Some of this is through the antenna and some through the coils in A more effective method of the set. controlling the volume is necessary when the radio frequency amplification is high. In nearly all AC sets the grid bias is provided by means of a bias resistor, often a separate resistor for each tube. Fig. 1 illustrates this case. In this cir-R5 and R6. The first two of these, R1 and R4, are in the grid circuits of the radio frequency amplifiers, and for that reason they can be manipulated without effecting the amplifier of the current effecting the quality of the output. As is well known, the amplification of

the tube depends on the value of the grid bias. If the bias is increased the amplification decreases, if the bias is decreased, up to a certain point, the amplification increases.

Now the bias given to a tube by a resistor is directly proportional to the value of the resistance, the current through it remaining constant. Hence the sensitiv-ity of the receiver can be changed by merely increasing the value of the bias resistor. The effect is instantaneous no matter what the type of tube that is used.

Decrease in Plate Current

But the current through the resistor does not remain constant. It decreases as the resistance is increased. It would seem that this would defeat the purpose of the increase of the resistor, but that is not so. As the bias is increased by the resistor method, the plate voltage de-creases in direct proportion. Hence the need for a high bias is lessened. The two need for a high bias is lessened. The two effects work together so that the effect on the sensitivity is about the same as if the grid bias actually increased in pro-porion to the resistance value. This method of controlling the sensi-tivity of a receiver, and hence its amplifi-

cation and output volume, is one of the best yet devised, at least for circuits in-

5

corporating heater type tubes. While it should not be necessary to vary more than one of the grid bias revary more than one of the grid bias re-sistors, in some instances it may be de-sirable to vary both R1 and R4. The sensitivity can be varied over a much wider range if both are made variable. R1 and R4 may even be combined into one resistor in some instances. This is possible when the plate voltage applied to the two tubes involved is the some as

to the two tubes involved is the same, as it is in the circuit represented by Fig. 1. When this is done the maximum value of the resistor should be one half as great as the value of a resistor used for a single tube. A suitable value for the re-sistor for one tube is 20,000 ohms and for one used for two tubes 10,000 ohms.

By-pass Condensers Indispensable

The by-pass condensers C and C4 across the grid bias resistors are indis-pensable, for without them the maximum sensitivity of the receiver will be very low and there will be feedback from one tube to the preceding tube to the preceding.

By-pass condensers C5 and C6 in the detector and audio stages are even more important, for if they are not used there will not only be a reduction in the ampliwill not only be a reduction in the ampli-fication but also frequency distortion, the bass notes being suppressed. And these condensers must be as large as practical. Condensers of 1 mfd. will be much more ef-fective. The radio frequency condensers fective. The radio frequency condensers C and C4 need not be so large, values larger than .1 mfd. being unnecessary.

Stabilizers Employed

In radio frequency amplifiers designed for high gain, or high sensitivity, there is usually oscillation on the higher frequen-cies in the broadcast band. To stop this oscillation without at the same time reducing the sensitivity greatly, grid re-sistors R2 and R3 are inserted in the leads to the grids. The value of these required in any circuit is not a definite quantity, depending on the tubes as well as on the circuit associated with these as on the circuit associated with them. About 900 ohms has been found to be a good average value.

RADIO WORLD

FIG. 1 A TYPICAL RESPONSE CURVE OF A STAGE OF TRANS-FORMER-COUPLED AMPLIFICATION WITH FREQUEN-CIES LAID OUT ON THE FAMILIAR LOGARITHMIC BASIS.

IN plotting response curves it has been customary to plot either frequency or octaves against the amplification. The resulting curves are familiar to most readers of radio articles. Fig. 1 gives the typical form of such a curve. In this the ordinates give the amplification and the abscissas the frequency in octaves, or a scale which amounts to the same thing as octaves. The gradual slope of this curve from 10 cycles to 100, the level region between 100 cycles to a little over 1,000, the rise to a maximum at about 5,000 cycles, and the sudden drop beyond that point are familiar characteristics of amplifiers containing audio transformers.

Plotting in Terms of Decibels

In recent articles the term decibel has appeared as a measure of relative amplification. This is not yet universally known, nor are the amplification curves plotted on this basis familiar.

The term decibel, named in honor of Alexander Graham Bell, the inventor of the telephone, has been adopted the world over in place of the unit formerly known as the transmission unit. It is defined in terms of the common logarithm of the ratio between two similar quantities which it is desired to compare. Stated mathematically, if D expresses the number of decibels by which two quantities V0 and V1 differ, then D = 10 log (V₀/V₁), the common logarithm being understood. If V0 is larger than V1, D is positive, and conversely, if V1 is larger than V0, D is negative. One of the quantities compared for

One of the quantities compared, for example, V0, is taken as the zero level, which means simply the basis of comparison. When D is negative, V1 is "down" with respect to V0, or the zero level, and when D is positive, V1 is "up" with respect to the zero level. The amount by which V1 is "up" or "down" is expressed by the number of decibels.

Decibel Measures Ratio Only

The decibel tells nothing about the absolute values of the quantities involved, only relative values. Two quantities measured in kilovolts may differ by the same number of decibels as two quantities measured in microvolts. Often the absolute values of the quantities are of little importance, but the relative values may be of prime importance. This is true especially when response curves are involved. For example, it is of practically no importance what the absolute values of the signal voltages on a certain grid of an amplifier are at two different frequencies, but it is of first importance what the relative values are. The quality of the output with respect to frequency distortion depends on he relative values

distortion depends on he relative values. In order to familiarize the reader with the two types of curves plotted in the old way and according to the decibel system, the characteristic shown in Fig. 1 has been replotted in Fig. 2. The same data were used in plotting both. But the curves differ widely in shape. The zero level was selected as the amplification at 400 cycles, because this is

The zero level was selected as the amplification at 400 cycles, because this is usually employed as a standard for comparison. The amplification at any other frequency is then given as the number of decibels above or below the amplification at 400 cycles.

Level Region

Naturally, the level region in the two curves coincides as far as the frequency axis is concerned, but on the decibel curve this level region coincides with the zero level line, while in the other it falls on the 25 amplification line.

Below 100 cycles the curve in Fig. 2 falls below the zero level line, meaning that the amplification for frequencies below 100 cycles is less than that at 400 cycles. At about 5,000 cycles there is a peak in the curve, and for a certain region about this peak the curve lies above the zero level. That means that the amplification in this region is higher than that at 400 cycles. Above 5,000 cycles the curve drops rapidly so that at 10,000 cycles it is again far below the zero level. The amplification is therefore much less in this region than it is in the middle register.

It has been found experimentally that

THE SAME RESPONSE CURVE ON THE SAME FRE-QUENCY BASIS BUT PLOTTED VERTICALLY ACCORD-ING TO THE NUMBER OF DECIBELS UP OR DOWN, COMPARED WITH THE AMPLIFICATION AT 400 CYCLES.

> the ear appreciates intensity differences according to a logarithmic law, that is, according to the number of decibels by which they differ. It makes little difference what the absolute intensities may be, as long as they lie within the limits of hearing. It is for this reason, mainly, that the logarithmic definition has been laid down.

One Decibel Is Minimum

It so happens that the smallest intensity difference that the human ear can detect is that represented by one decibel, and this is one reason why the decibel, rather than the bel, was chosen as the practical unit. The bel is ten times as large as the decibel, and is too large to be made a practical unit. A response curve plotted in terms of the

A response curve plotted in terms of the decibel is very convenient in judging the quality of an amplifier or of a complete receiver. If the curve does not deviate more than one decibel from the zero level in the essential frequency band, it is known that the quality will be practically perfect, for at no frequency will it rise or fall by an appreciable amount. Whereever it rises more than one decibel the response will be noticeably high, and the result may be an unpleasant blast. If it falls more than one decibel in any region, the response will be appreciably weak in that region. If it is in the bass, the quality will be thin and lacking in body. If it is in the treble and above, the quality will be boomy and lacking in crispness and articulation.

Comparing Powers

When comparing power outputs and different frequencies, or at the same frequency on different sets, the definition of the decibel is changed slightly, but only when using voltages and currents for the comparison of the powers. Suppose two voltage intensities V0 and V1 are compared and it is desired to compare also the corresponding power outputs. The definition then becomes 20 log (V0/V1). The reason for doubling the constant associated with the logarithm is that the

(Continued on next page)

hy the MB-29 is OK

Each Stage Carefully Shielded and Filtered, Preventing Feedback

By J. E. Anderson Technical Editor

EACH STAGE OF THE MB-29 IS SEPARATELY SHIELDED. THE CYLINDRICAL CON-TAINERS ARE THE SHIELDS. THEY ARE ALU-MINUM. INSIDE EACH SHIELD ARE THE FILTERS FOR EACH STAGE. NOTE THE NEW NATIONAL MOD-ERNISTIC DIAL IN THE ILLUSTRATION AT LEFT. THE REAR VIEW OF THE MB-29 IS SHOWN AT RIGHT.

[In the issue of May 18th were published the first details of the MB-29 to be pre-sented anywhere. This is a 5-tube tuner, using four of the new AC tubes (224) and a power detector (227). In the May 25th and June 1st issues the intimate technical discussion was carried forward with ex-treme thoroughness. This week the reasons for the soundness of the circuit-despite for the soundness. This week the reasons for the soundness of the circuit—despite some contrary dictum—are set forth. Next week other features of this circuit will be published in the June 15th issue. This is the circuit that brought in nine coast-tocoast stations in one evening on the speaker. -EDITOR.]

S OME manufacturers of AC screen grid tubes have issued specific rec-ommendations that no more than three of these tubes be used in the same receiver in the same frequency level. On the strength of these recommendations, we have been requested to correct the de-sign of the MB-29, or to explain the discrepancy.

What's To Be Corrected

It would indeed be presumptious on our part to correct the design of two such eminent engineers as James Millen and Glenn H. Browning, especially a design which these two engineers have worked out with utmost care and precision, a design based not only on theoretic sound-ness, but on unchallengeable laboratory results. It is not the circuit that needs to be corrected, rather the idea entertained by some that all knowledge of the application of tubes is concentrated in

(Continued from preceding page) power is proportional to the square of the voltage. Hence the ratio of voltages must be squared before the logarithm is taken. The logarithm of the square of the quantity is equal to twice the loga-rithm of the quantity itself. Hence the factor 20 is used instead the factor 10. If two powers are compared directly, of course, the factor 10 is used, for the factor 2 was used in deriving the powers. We might illustrate the comparison of powers. Suppose one, amplifier will de-

We might illustrate the comparison of powers. Suppose one, amplifier will de-velop a voltage of 100 across a loud-speaker and another amplifier only a voltage of 50 across the same speaker and at the same frequency. The ratio of these voltages is 2, the common loga-rithm of which is .301. The voltage out-put of one speaker is then up 3.01 decibels as compared with the other. But the

the minds of engineers of some tube manufacturers.

But the discrepancy can be explained. When two or more screen grid tubes are used in hastily assembled receivers there used in hastily assembled receivers there is likely to be a great deal of feedback that will produce oscillation. This is diffi-cult to control. To stop the feedback, and thus to stop the oscillation, it is nec-essary to shield the separate stages indi-vidually and to insert filters in the voltage supply leads. If this is not done, and done well, even a circuit embodying two of the tubes is almost uncontrollable. One having three of the tubes is then cuite having three of the tubes is then quite unmanageable, and one having more than three of the tubes is then hopeless.

MB-29 Is Stable

But this applies only to circuits in which utmost precautions against feed-back have not been taken. It does not apply to the MB-29, for shielding and filtering in that circuit have been done with thoroughness. Each tube in that circuit feeds only the one following, and

Naturally, the amplification in a circuit containing four AC screen grid tubes is exceedingly high. There will be some sta-tions which will overload even the second tube, provided the circuit is adjusted to tions which will overload even the second tube, provided the circuit is adjusted to maximum sensitivity. If it did not, it would not bring in distant stations with such good volume, Every circuit designed for very high sensitivity and distance getting ability must necessarily be such as to overload on local stations, when it is ad-justed to maximum sensitivity. That is axiomatic.

louder speaker is up 6.02 decibels when the powers are compared.

the powers are compared. That this gives the same results as if the powers directly were compared, using the factor 10, can be demonstrated with actual values. Suppose that the resistance of the speaker is 4,000 ohms. Since the voltage in one instance is 100 volts, the current is .025 milliamperes. And the power, being the product of the voltage and the current, is 2.5 watts. Using the 50 volts, the current is .0125 milliamperes and the power is .625 watt. The ratio of 2.5 and .625 is 4, the common logarithm of which is .602. Hence the power in one instance is up 6.02 decibels as compared with the power in the other instance. **Obtaining the Common Logarithm**

Obtaining the Common Logarithm

The common logrithm can be obtained in almost any book on trigonometry or

Hence every super-sensitive receiver must have an effective sensitivity control by means of which it can be adjusted to suit the requirements. When the re-ceiver is tuned to a local, high powered station, the sensitivity control is set so that each tube contributes only a small fraction of its possible amplication power. When the circuit is tuned to a weak distant station the control is set so that each tube contributes maximum amplification. Without such a sensitivity control the best receiver is useless.

The Sensitivity Control

As is well known, the amplification given by a screen grid tube depends largely on the voltage applied to the screen grids. By varying this voltage over a certain range, the amplification of the tube can be changed from zero to maximum possible with the particular circuit arrangement used. This fact has been made use of in the MB-29 circuit. The voltage applied to the screen grids has been made variable from zero to 67 volts, or to a higher value if desired. The variation of the screen grid volt-

The variation of the screen grid voltage is effected by means of the potenti-ometer R5, which has a value of 50,000 ohms. The range of voltage variation de-pends only on the voltage that is impressed across this potentiometer.

Since all the screen grids are connected to the same sliding point on the potentiometer, the screen grid voltage on all the tubes is the same at all times, and the amplification by each tube is varied in the same manner. It is thus apparent that the control is exceptionally effective.

in books especially devoted to mathe-matical tables. It can also be obtained from any slide rule. Most computations for plotting curves of the character in Fig. 2 are made on slide rules, and the logarithm of the number desired is ob-tained as quickly as the number itself. Indeed, it is not necessary to read off the number at all, only the logarithm of it. Tables or the rule give only the frac-tional part of the logarithm. The whole number, if any, is obtained by counting the number of figures on the left of the decimal point of the number of which the logarithm is desired, and by subtract-ing one from the number of figures. For the logarithm is desired, and by subtract-ing one from the number of figures. For example, for the number 25.6 the table or the rule gives .408. Since there are two figures to the left of the decimal point, the logarithm is 1.408. -J. E. ANDERSON.

Impedance Audio Gives Good Reproduction with Little Tendency Toward Trouble By Malcolm Maxim T ANT. 0000000 0000000 Ca C10 ١ CIS O B + 180 0 8+90 0 84 45 GND. 0 8-Cia ZRS Gio

Fig. 1

A QUALITY RECEIVER IN WHICH IMPEDANCE-RESISTANCE COUPLING IS USED IN TWO STAGES AND TRANS-FORMER FOR THE PUSH-PULL STAGE

THE impedance coupled amplifier has not been received by the radio fans as well as its virtues merit. It has many distinct advantages over other forms of coupling which are not appreciated. First it has an amplification characteristic practically as flat as that of resistance coupling, and it has a perstage amplification, with the same tubes, which is slightly greater. It does not motorboat as readily as the resistance coupled circuit, and if it does, it oscillates at a frequency at which the oscillation may be stopped easily with condensers across the plate voltage supply. It does not amplify effectively the subaudible frequencies and therefore motorboating at these frequencies will not occur in it. It is these frequencies which give the greatest trouble in direct coupled amplifiers.

8

One reason why the impedance coupled circuit is relatively stable is that the coupling impedances introduce a lag in each of the plate signal currents so that it cannot produce oscillation-inducing feed back as readily as when there is no phase displacement of the currents.

Point in Its Favor

One point in favor of the impedance coupled circuit is that fine quality can be obtained with relatively inexpensive parts. For example, the secondary of a transformer which is unsuited for use in a transformer coupled circuit can be used with the assurance that the quality will be much better than the quality of the average set at the present time, and it must be admitted that the quality of the average set of today is pretty good.

average set of today is pretty good. One of the objections against the impedance coupled amplifier is that it cannot be used in push-pull, and since transformers have to be used for push-pull anyway, they might as well be used throughout the set. That is not a good reason. If first rate quality can be obtained with impedance coupling inexpensively, it seems good practice, not only from an engineering point of view but also from an economical point of view, to use impedance coupling in the first stages and push-pull transformer coupling for the final stage, if push-pull output is desired.

A combination impedance and push-pull transformer coupled receiver is shown in Fig. 1. This circuit contains heater type tubes' throughout with the exception of the last stage, which contains a couple of filament type power tubes. They may be of any type provided that the various voltages applied are suited to the tubes used. It will be assumed here that the tubes are of the 171A type, because these tubes are admirable output tubes in a push-pull amplifier for home use. More volume can be obtained from them than will ever be tolerable in a home, even if a rather insensitive loudspeaker is used.

Adequate By-Passing Necessary

In order to get the best quality out of any receiver, regardless of coupling, it is necessary to by-pass adequately all the plate and grid leads. The circuit in Fig. 1 exemplifies a case of thorough by-passing. Let us analyze the by-passing both in

Let us analyze the by-passing both in the radio and audio frequency portions of the circuit. First there is C3 which serves the grid bias resistor of the first tube. It aids greatly both to increase the sensitivity and the stability of the receiver. The value of this condenser might be .1 mfd., although a somewhat lower value can be used with satisfactory results. Then there is C4, which bypasses the plate circuit of the first tube. The value of this condenser may be the same as that of C3 because it operates at radio frequency. Note that both these condensers are connected to the cathode of the tube. It is always a good policy to by-pass direct to the cathode rather than to lead the signal currents to that point by a round-about route. This method of by-passing is used in all the succeeding tubes, changed only as local conditions may demand.

Plate Circuit By-Pass

No condenser is necessary in the grid circuit of the detector because the grid return is connected to the cathode. There can be no more direct route than that. But we do find a couple of by-pass condensers in the plate circuit of the detector. C6 is connected across the line so that its value must not be larger than is absolutely necessary. Neither is it necessary to use a large condenser here for it works at radio frequency, and also there is some distributed capacity in the coupling choke Chl, which adds to the value of C6. The circuit will not oscillate well if the total by-pass capacity is small, neither will it detect well. It has been found by experiment that .0005 mfd. is a very satisfactory compromise. Actually it may not be necessary to use more than .00025 mfd. because of the effect of the distributed capacity in the choke coil.

C7 works mainly at audio frequency and therefore this condenser should be large. This condenser is also in a critical position because if it permits any feedback, this is amplified by all the succeeding tubes and the effect of this feed back may be very great, causing distortion or actual oscillation at some frequency. A value of 2 mfd. has a very beneficent influence on the stability, but one of 4 mfd. is proportionately more effective. Since this condenser need not be rated at a high voltage there is no good reason why a large value condenser should not be used. One microfarad of prevention here is as good as 10 microfarads placed later in the circuit.

In the next two stages there are two grid by-pass condensers C8 and C9. They serve the same purpose as C3, except that they are functioning at audio frequency, and for that reason must have large values. The lowest value for each of these that will help much is 1 mfd., while 2 mfd. should be the lowest that should be used. These operate at very low voltage so that the cheapest condensers made may be used.

Plate By-passing

In the plate circuits of these two tubes are two condensers C10 and C13. These work at a slightly higher voltage than the grid condensers, but even so, the lowest voltage-rated condensers regularly manufactured can be used with safety. The size of either of these condensers is the same as the corresponding grid condenser.

There is no imperative reason why bypass condensers should be used in the grid and plate circuits of a push-pull amplifier stage, provided the circuit is balanced. But perfect balance is very rare. Hence it is advisable to use the condensers. The connections are exactly the same as those for the single tube stages, except that allowance has been made for the fact that now the midtap of the filament transformer takes the place of the cathodes in the heated tubes.

Better Reception Looms

Synchronization Successful in Isolated Cases and Promises Much

By Dr. John H. Dellinger

CHIEF OF RADIO LABORATORY, BUREAU OF STANDARDS

The following is an excerpt from an address delivered by Dr. Dellinger before the recent convention of the Institute of Radio Engineers, at Washington, D. C.

HE broadcasting band, which has hitherto occupied the chief attention of the Federal Radio Commission, exhibits a number of very special en-gineering problems. Here the width of each channel in 10 kilocycles, which is necessary for satisfactory musical recep-tion. Even this is not sufficient for musical reproduction of the highest quality. With only 90 such channels, and more than 600 stations on them, there was naturally, very great interference prior to the November, 1928, allocation. To remedy this the Commission had to choose among various alternatives.

It decided as a matter of policy not to reduce radically the total number of stations. It was then necessary to (a) limit the simultaneous operation of an excessive number of stations by making many of them divide time; (b) assign fre-quencies carefully selected with regard to geographical separation of stations, to reduce inter-channel interferences (i. e., disturbance of reception of a station on one frequency by other stations on adja-cent frequencies); and (c) limit the power of stations so they would not cause interferences to other stations on the same frequency.

Calls Results Accomplished

The accomplishing of this constituted the allocation of proadcasting stations which the Commission put into effect on November 11th, 1928.

The most striking of the problems in-volved in the allocation was the carry-ing out of requirement (c), which de-termines power limitations. Stations assigned to the same frequency have not, up to the present, been able to maintain their frequencies with sufficient accuracy to prevent the existence of a slight differ-ence (or beat) frequency, producing what is commonly known as heterodyne interference, or whistles.

Unfortunately the heterodyne interference reaches out to enormously greater distances from a station than the pro-gram. Consequently the operation of two or more stations on a channel results in an area of destructive interference far in excess of the area, in which program

service is provided. For instance, the program of a 5-kw station can be heard with fair intensity under good conditions at 100 miles, while the heterodyne interference from two such stations is heard at 3,000 miles. Two stations of 5 kw or more therefore cannot be assigned the same frequency in the United States.

the United States. It is possible, on the average, to put two or more 1-kw stations on the same frequency if they are at least 1,800 miles apart, and two or more ½-kw stations if they are at least 1,200 miles apart. All stations subject to these restric-tions have only a small service area, and give no service to remote tural areas

give no service to remote rural areas. Such distant service is given only by stations having exclusive use of the chan-nels to which they are assigned. In order to provide rural service, 40

channels are each used by one station exclusively. The stations on the exclu-

sive channels not only serve very great areas, but deliver a more satisfactory intensity at every point within those areas.

Their service is better for all concerned, the greater the power they use. This fact is not commonly understood by others than radio engineers. It is clear when the distinction between the exclusive and the other channels is comprehended. Service on the non-exclusive channels would be utterly ruined if the power limits fixed by the facts of heterodyne interference should be exceeded, and in consequence such stations cannot in general use more than 1 kw. But on the exclusive channels the service is better the higher the power level, and indeed such stations will not be serving the public most effectively until the level reaches hundreds of kilowatts.

Increased Service Area

There is some hope that the limitation of power and service on the non-exclusive or power and service on the non-exclusive channels may be overcome. If the fre-quencies of stations on the same chan-nel are maintained to a certain high accu-racy, the heterodyne or whistle becomes inaudible. The technique of frequency control is fast approaching this goal, and success has been attained in isolated instances.

The satisfactory service area of such "synchonized" stations is not yet known. It is likely that some additional fading and interference effects will be introduced but it is believed that the net service area will be substantially greater than when heterodyne interference exists.

when neterodyne interference exists. The significance of this is that the present power limits for stations, on shared channels can be raised, better service given, and wider areas served. Synchronization is therefore looked for as the next great advance in broadcasting.

Different in Day Time

This discussion of broadcasting has been largely with reference to night con-ditions. Broadcast transmission is en-tirely different in the daytime. Transmission distances are much less, and somewhat greater power can be allowed the stations. Furthermore, additional problems are not as acute as are those of night-time transmission, they are being handled with care so that day-time broadcasting may be developed as a valuable service.

The difference between day and night transmission conditions raised one tech-nical problem of considerable moment, viz., determination of the time when day ends and night begins, and thus at what hour daytime stations should close.

Investigation had revealed that the change from day to night radio conditions extends over a period of something more than an hour and a half, beginning about a half hour before sunset and closing a half hour after sunset.

The most reasonable time to chose as the transition point is the moment of sunset, and this was done in the Com-mission's General Order No. 41.

Most of the regulations of the Com-

mission involve engineering problems. Examples include the General Orders on chain program limitation, visual broad-casting (television), increased power in daytime, and prohibition of damped waves.

The Broadcasting Committee of the In-stitute of Radio Engineers has been of great assistance to the Commission by the studies it has made of certain sub-

the studies it has made of certain sub-jects leading to new regulations. These are on such subjects as: The requirement of an artificial antenna in broadcasting stations for use during warming-up periods, etc.; the location of high-power stations with respect to populous areas; requirement of highly accu-rate frequency control; allowable ratio of day to night power; permissible in-tensity of harmonics; per centage modu-lation; and fidelity of transmission.

Complex Situation

All of the engineering work involved in Federal radio regulation has the pecu-liar difficulty that the facts dealt with are extremely complex. They are in-deed rapidly shifting. Not only must al-lowance be constantly made for the flux of changes inherent in a rapidly develop-ing art, but radio waves themselves ex-hibit extraordinary vagaries. hibit extraordinary vagaries.

Orderly radio regulation must proceed on a consideration of the distances at which the waves are received. But dis-tances vary enormously between day and night, from season to season, even from night to night, and are different over different kinds of terrain.

Knowing this is not counsel despair. These vagaries have, after all, certain discernible laws, becoming more and more calculable as the results of scientifice investigations accumulate.

It is not necessary to throw up our hands and say that the whole situation is chaotic. In spite of their vagaries, radio phenomena are subject to known engineering principles. An engineering principle is nothing but an organized body of facts affecting a practical situa-tion. Violation of such engineering prin-ciples in radio regulation would sooner or later reduce the service of radio to the public.

Summarizing, the Federal regulation of radio involves extensive and difficult en-gineering problems. These are characterized by certain outstanding facts or prin-

ciples. First, radio waves spread out every-where and potentially interfere with one another.

Secondly, at any given stage of radio technique, the available number of communication channels is definitely limited.

Another controlling principle, as the art stands today, is that heterodyne inter-ference sharply limits the power that may

be permitted any two or more broadcast-ing stations on the same channel. Finally, radio wave transmission is char-acterized by extreme vagaries. The facts and implications of each of these principles are subject to constant revision as radio progresses. Such facts constitute the natural limitations of radio. They are inescapable condition's of its Govern-ment regulation.

The 250 Universal

Complete AC Receiver on 8 1-2x20 Baseboard

By Capt. Peter V. O'Rourke

[The second and final instalment of this article on a compact receiver using six tubes, including rectifier, is published herewith. Part I was published last week, June 1.]

S grid voltage changes produce corresponding plate current changes, the plate current must accommodate this pulsation, otherwise tube distortion arises, as evidenced by the wobbling needle of a microammeter placed in series with the plate circuit. Without such precaution power detection would be more of a name than an achievement.

RF Channel

The radio part of the installation is sufficiently sensitive for most modern needs, with the aid of regeneration provided by the small condenser C3 connected from plate of the detector tube to midtap of the interstage coupler's primary. The regeneration will fail unless the connections of respective terminals of the primary of L2 are reversed in comparison with the connections of the terminals of the secondary of L2. But if regeneration fails, remove the plate and B plus connections of the primary of L2 and replace them to the opposite points to the one to which they formerly were connected. Volume control is achieved by one of

Volume control is achieved by one of the best methods for AC receivers, by varying the bias on the radio frequency amplifier. This tube is the new 224 screen grid AC tube. The biasing resistor R1 is 0-5,000 ohms, but the zero position is never used, as that would stop the plate current in the tube. The bias may be varied from a volt or so negative to 25 volts negative, which brings the RF tube even beyond the best detecting point. Any preliminary detection is lost, as the succeeding coil will pass only radio frequencies, and these would be merely stray components when detection takes place, and would constitute a feeble input to the detector. Hence the volume is variable from the conventional shout to the still more conventional whisper. The resistor is bypassed to sustain the high amplification of which the tube is capable.

Source of Voltages

The voltages at the radio frequency side are derived as follows:

The RF tube and the detector both get their heater voltage from the same winding of the transformer, 2.5 volts (actually 2.15 volts). This is not the filament, because both the 224 screen grid AC tube and the 227 AC tube are of the heater type. The heater is connected to the power transformer and gets hot. This heat is communicated by the heater to the cathode, or functioning filament, by thermal radiation. The cathode emits the electrons.

The sum of the plate and grid voltages is 180 to 190, obtained by connecting to the midtap of a 9,000 ohm resistor that also bleeds current from the rectifier output. Besides this stabilizing bleeder curent through all of R12 there is the plate current of all tubes save the last, through the midtap-to-B-minus half of R12.

ent through all of R12 there is the plate current of all tubes save the last, through the midtap-to-B-minus half of R12. The 224 tube takes the voltage from this midtap for its plate. Then another resistor, R2, which is .1 meg., drops the 180 to 75 to 80 volts, which voltage is applied to the screen grid or G post of the 224 tube. C4 bypasses RF currents to B minus, while C13 bypasses plate the lower half of the midtapped resistor R12 to the same point. C13 also serves to complete the circuit for C2 to the end of the plate winding or primary of L2.

The same plate voltage is applied to the detector as to the RF tube, but of course the current flow is much less, due to the drop in the load resistor R8 in the plate circuit.

As for the audio plate voltages, the first

stage (tube 3) gets 180 ahead of the load resistor, but actually this is dropped to around 60 volts at the plate, whereas the same 180 volts applied through the prin'ary of the transformer T1 affords about 120 volts on the plate.

Facts on Power Transformer

The power transformer has provisions for grounding the center taps of all the filament windings, except the power rectifier tubes. Thus the tuned circuits are grounded through the biasing resistors, the bypass condensers across these resistors, and the extra bypass condensor C13. The two fuse clips are marked 110 volts and 120 volts, and the fuse is to be put in the correct clip, as determined by your AC line voltage, or, you have no meter that reads that high, you may put the clip in the fuse in the clip that affords 1.4 volts for the 226 tubes or 2.15 volts or less for the heater tubes. The transformer is purposely designed to keep the heater voltages well under 2.25 volts even if the line is 120 volts and no means of reading any voltages is at hand. In this transformer

In this transformer is the choke Ch, a husky one, so that only one choke is necessary for the filter circuit. The filter condensers are C14, C15 and C16, which are 2 mfd. each, the first being of 1,000 volts AC test, the two others of 800 volts AC test. These three, and C11, C12 and C13 are in the capacity bank. All other condensers are external.

condensers are external. The circuit diagram shows no output transformer, as it is assumed a dynamic speaker will be used. However, room is left on the baseboard for the inclusion of such a transformer, or of a condenserchoke output filter, should one use a magnetic speaker. Be sure that the output transformer or filter is of the 250 type. An ordinary one will not stand the 50 milliamperes.

RADIO WORLD

Washington. The order of the Federal Radio Commission, prohibiting stations, 300 miles or less apart, from broadcasting the same chain program, which rule was never put into effect, is due to be abrogated en-tirely. It was meant to apply only to stations in cleared channels, but the effective date was advanced three times, due to serious objections from stations and some listeners.

It would finally become effective June 1st, but a prior abrogation order is expected. At least another postponement is promised.,

Users Find Ce-Lec-Tor, **Excellent Filter Trap**

Commendations upon the working effi-ciency of the Ce-Lec-Tor, the new bandpass filter trap, are being received from all over the United States, according to Julien J. Proskauer, head of the Trutone Radio Sales Co., 114 Worth Street, New York City.

A fan from San Francisco wrote that he had no trouble cutting out such powerful stations as KGO and receiving dis-tant stations from the middle Western and the Eastern states. The Ce-Lec-Tor is sturdily built and compact. It is cased in black bakelite basing the interior condenance and color

having the interior condensers and coils immersed in a special insulating wax which renders them impervious to mois-ture. Full information and details may be had by addressing this concern. Men-tion RADIO WORLD.-J. H. C.

World Wave Parley Needed, Says Craven

Washington. T. A. M. Lieutenant Commander Lieutenant Commander T. A. M. Craven, naval radio specialist, before the Senate Committee on Interstate Com-merce recently predicted that it would be necessary soon to call an international conference to adjust the world radio situation, because the demands of nations for radio channels are conflicting. The naval officer testified in connection with the Couzens Bill for creating a Federal communications commission with jurisdiction wire and radio services. full

Emphasizing that the number of channels in the spectrum is definitely limited, he said that "engineers are having some difficulty in finding out how to use the channels in the most effective manner." He recommended that the Federal li-censing authority should safeguard radio communication by assigning particular blocks of channels to particular services. Stations of different character and function, he said, cannot operate effectively on the same or adjacent channels if the channels are to be employed to their fullest extent.

A THOUGHT FOR THE WEEK

C ENSORSHIP is un-American, undemo-cratic, non-republican, anti-a-lot-of-things, and a confounded nuisance generally. Careless broadcasters should remember that and forego sending over the air those things which will give the enemy an ex-cuse for insisting on the opportunity of a radio censor. An ounce of commonsense is worth a ton of protest that's too late.

Right or Wrong?

(Answers below)

1. The shielding effect of a sheet of metal is greater the lower the specific resistance of that metal. It is also greater the higher the permeability of the metal.

2. Shielding is due to a reflection of the radio wave and the action of the shield is similar to the action of a mirror to light.

3. The value of a dry cell used as a grid battery is truly indicated by a volt-meter, even if the dry cell is practically exhausted.

4. There are only two ways of pro-ducing an electrical difference of potential, or an emf, namely, by a generator and by chemical means.

5. It is not possible to get a higher amplification per stage than the ampli-fication constant of the tube.

6. A wire-wound resistor cannot be used in resistance coupled amplifiers be-cause it has a high inductance which would introduce frequency distortion.

7. The only possible arrangement of two inductance coils which will result in no mutual inductance, or coupling, is that which makes the axes of the two coils at right angles.

8. More than three inductance coils can be placed so that there is no mutual inductance between any two.

9. Mutual inductance is a purely fictitious quantity. Two inductance coils placed close together have no inductance in common but they merely act as if they had.

10. Inductance of an air-core coil depends only on the geometry of it.

Answers

1. Right. Silver is the best shield ma-terial of the non-magnetic metals because it has a lower specific resistance than any

other. Copper comes next, being only slightly inferior. Iron is the best of all due to its very high permeability. 2. Right. The waves cannot penetrate because eddy currents are induced in the metal, and these send out waves in the opposite direction to the incident waves. A light wave is of the same nature as a radio wave and responds essentially the

same way. 3. Wrong. The value of the cell for bias is determined by the emf of the cell. A voltmeter of the ordinary type always reads less than the true emf. 4. Wrong. An emf can also be pro-

duced by heat, as in the thermo-couple. 5. Wrong. The statement holds true for resistance and impedance coupled circuits, but not for transformer coupled amplifiers. The limiting amplification with transformer coupling is the amplifi-cation factor of the tube times the step-

up ratio of the transformer. 6. Wrong. The inductance of the coil is very small and does not affect the amplification adversely. A resistor may be wound so that its inductance is negligible.

7. Wrong. It is possible to place them in any angular relationship and still have the coupling zero provided that one coil is not inside the other.

15 not inside the other.
8. Wrong. There are only three dimensions and therefore only three coils can be placed mutually at right angles.
9. Wrong. Mutual inductance is as real as self-inductance. When two coils are placed together, either lies in the induction field of the other, and the magnetic flux from one threads the other coil coil

10. Right. In the electromagnetic system of measuring inductance is a length and is measured in linear units. The unit is the centimeter.

Hotel Wins Suit **Over** Copyright

Kansas City, Mo.

In a suit filed here by the American Society of Composers, Authors and Publishers against the La Salle Hotel of this city, Federal Judge Merrill E. Otis upheld the right of hotels to receive and transmit to guest room's copyright music broadcast by radio stations. The decision is said to be the first of its kind.

Judge Otis held that in receiving the radio programs and transmitting them to the rooms the hotel owners did not "per-form" the compositions, but merely "pro-vided the means" for hearing the music.

The decision differentiated between radio programs and the playing of phonograph records and awarded the plaintiffs \$250 damages for alleged playing of a record by the hotel. The playing of a record was held to be a "performance," as the music was permanently recorded and the rendition was made at a time that suited the hotel's purpose and convenience

Chain of Radio

Schools Planned

Plans for a nationwide radio chain to broadcast educational programs to all sections of the country were announced by Headmaster Ellsworth Tompkins of the WODA Free Grammar and High School of the Air, Paterson, N. J.

A high frequency relay system, transmitting complete courses in six academic subjects, will be used by the station to link together the stations of the chain. Application for the short wave length is now before the Federal Radio Commission. Tentative plans call for two stations in the South and several stations throughout the Middle West.

A complete grammar and high school course will be available to every radio listener when the chain begins operation. According to Commissioner of Education Richard E. O'Dea of Paterson, owner of WODA, the courses will be broadcast as good will programs, free from commer-

good will programs, free from commer-cialism. None of the chain stations will be allowed to commercialize the school. "The success of the WODA Free Gram-mar and High School, now in its second year with an enrollment of 1,000 pupils," said Commissioner O'Dea, "proves con-clusively that there is a need for complete academic courses on the radio. It was academic courses on the radio. It was with this thought in mind that the school alumni, composed of prominent educators in New Jersey, arranged courses so they are equally valuable to listener-students all over the country."

Broadcasting of the school will begin on an experimental basis during the sum-mer. Several walks will be mer. Several weeks will be given to preliminary tests to enable engineers of the station to work out signal strength charts and gather other important tech-nical data. A 250-watt transmitter, similar to transmitters used for transcontinental and transoceanic work, has al-ready been completed by engineers of WODA.

4

n il

à a e

20

at the

The second

The school's curriculum would include English, grammar, arithmetic, algebra, history, Americanization, general science, social science, nature study and home economics.

POWER AMPLIFIE

By J. E. Anderson and Herman Bernard

[Here is the second instalment of the noteworthy contribution of Anderson and Bernard to the all-too-scarce literature of power amplifiers. The series began last week, issue of June 1st. There will be an instalment each week for several months. Don't miss a single one.-Editor.]

Loudspeaker Coupling Devices

There are three principal methods of coupling the loudspeaker to the power amplifier: direct, output filter, and transformer. The direct method of couping, shown in Fig. 9A, is used when the power tube delivers only a small plate current, or when the loudspeaker winding is such as to withstand the heat-ing caused by considerable current. Ordinarily, this method of ing caused by considerable current. Ordinarily, this method of coupling is not used with tubes larger than the 112A. It has one advantage not possessed by any other, and that is it avoids the addition of all reactive devices which always introduce some frequency distortion. If the loudspeaker is wound to match the tube used, and if the plate current is small so that the current will not damage the winding, the connection gives the best quality.

Unfortunately, it is not practical to make speakers so as to Unfortunately, it is not practical to make speakers so as to carry heavy direct current, so that when larger tubes are used some output device is necessary. One of the most popular is the output filter, shown in Fig. 9B. The plate current flows through a high inductance choke Ch and the signal current through a stopping condenser C2 and the speaker, SP. This method of coupling requires that the speaker impedance be matched to that of the tube, because for AC this connection is essentially the same as that in Fig. 9A. The matching of impedances does not mean they should be made equal, The choke coil Ch must have a high inductance and a low direct current resistance, and condenser C2 must have a large capacity. If the inductance is not high, part of the signal cur-

capacity. If the inductance is not high, part of the signal cur-rent will flow through the coil, especially the low frequencies, and if the condenser C2 is not large the low frequencies can-not flow through the speaker circuit. Hence the conditions imposed on the choke coil and the condenser are mainly for the purpose of allowing the low notes to reach the speaker. The DC resistance of the choke should be low so that the voltage drop in the coil be as low as possible. Another popular output device the transformer is shown in

Another popular output device, the transformer, is shown in Fig. 9C. This has the advantage, in common with the out-put filter, of preventing the direct current from reaching the **speaker**. Another point in favor of the transformer is that it can be used to match the tube and speaker impedances so as to get the maximum undistorted output. An output trans-former is built into all dynamic speakers. The output transformer used with push oull amplifiers shown

The output transformer used with push-pull amplifiers, shown in Fig. 9 D, shows an alternative connection. The loudspeaker

E, F, and G in Fig 9 show the connections when AC tubes' are used. In E and F the output filter has been used for il-lustration. If the connection A is desired the speaker is con-nected where Ch is and the condenser C2 is omitted. If the condenser in C is desired the primary of the transformer is connected where the choke is, the condenser C2 again being omitted omitted.

It should be noted that in each of the circuits B, E and F the loudspeaker returns to filament or cathode. In B it re-turns to minus A, in E it goes to the cathode, and in F, to the mid-tap of the filament transformer. These are the best returns possible for the different types of tubes. The object of the direct filament or cathode return is to minimize feedof the direct filament, or cathode, return is to minimize feed-back through the plate voltage supply.

It should also be observed that in each of the circuits in Fig. 9 there is a condenser C connected from B plus to the filament or cathode. While this condenser is not absolutely required in every instance, it always serves a good purpose. The object of this condenser is also to eliminate feedback. If the condenser is used at all it should be at least 1 microfarad the condenser is used at all it should be at least 1 microfarad. The larger it is the more effectively will it prevent feedback,

Battery Operated Amplifiers

Although battery operated amplifiers can be called power amplifiers only by courtesy since the undistorted power output is not considerable, they fall, within the bare technical classi-fication, and formed the basis for the early lore of audio ampliafiction.

Three types will be described, namely, two-stage transformer coupled, three-stage resistance coupled, and two-stage trans-former coupled with the output stage to push-pull.

The most common in battery receivers is the two-stage transformer coupled, one form of which is shown in Fig. 10. This former coupled, one form of which is shown in Fig. 10. This circuit comprises two audio transformers, T1 and T2, two amplifier tubes, (1), and (2), and output filter ChC1. In addition to the main elements it contains two Amperites (fila-ment ballast resistors), R1 and R2, and a filament switch Sw. Filament, plate and grid batteries are supposed to be used with it

The requirements of the audio transformers are the same as those of transformers used in any other similar circuit, regardless of the power supply, provided similar tubes are used. Since nearly all general purpose tubes are designed to have nearly the same output characteristics, most audio transformers designed for condition are witched. Both nearly the same output characteristics, most audio transformers designed for quality reception are suitable. Both transformers may be of the same design, but if one of two available trans-formers has a higher primary impedance, which usually means a lower step-up ratio, that should be used in the first stage, assuming the amplifier is to be connected to a detector tube,

FIG. 9. THE THREE TYPES OF COUPLING BETWEEN THE POWER TUBE AND THE LOUDSPEAKER AS AP-PLIED TO DC AND AC TUBES. A—SPEAKER CONNECTED DIRECTLY IN THE PLATE CIRCUIT; B—THE OUT-PUT FILTER WITH DC TUBE; C—OUTPUT TRANSFORMER WITH DC TUBE; D—PUSH-PULL OUTPUT TRANS-FORMER WITH AC TUBES, AND THE PLATE-TO-PLATE CONNECTION; E—OUTPUT FILTER WITH HEATER TUBE; F—OUTPUT FILTER WITH AC FILAMENT TUBE; G—PUSH-PULL WITH AC FILAMENT TUBES.

FIG. 10

TWO-STAGE, TRANSFORMER COUPLED, BATTERY **OPERATED AUDIO FREQUENCY AMPLIFIER.**

since the impedance of the detector tube to audio frequencies is very high.

The choice of tubes for this amplifier depends on the purpose for which the circuit is to be used. If it is to be a portable amplifier, the first tube might be a 199. In that case the last tube should be a 120, the plate voltage being 135 volts instead of 180 volts, and the negative grid bias $22\frac{1}{2}$ volts instead of 40.5 volts. The filament voltages must be adjusted to suit the tubes. Also, if the 120 tube is used it is not necessary to use an output filter, but the loudspeaker, or earphones, may be connected directly in the plate circuit of the second tube.

For broadcast reception in a home a better choice of tubes is a 201A for the first tube and a 171A for the second. An output filter is necessary with this combination of tubes, for the 171A requires a high plate current. The plate and grid voltage values given in Fig 10 assume that this combination of tubes is used. The plate voltage on the first tube is 90 volts and that on the second is 180 volts. The bias on the grid of the first tube is 4.5 volts and that on the second is 40.5 volts. These are standard values and easily obtainable are standard values and easily obtainable.

The filament voltage source, of course, is six volts, obtained from a storage battery. The filament voltage is cut down to 5 volts, at .25 ampere, by means of 1A Amperites. The choke Ch should be preferably a 100 henry coil, measured

with no DC in the winding, and it should be large enough in physical dimensions to avoid undue drop in the inductance with the flow of direct current. Certainly it should not be less than 40 henries when 20 milliamperes are flowing.

The stopping condenser Cl should be not less than 4 mfd. The value depends somewhat on the speaker, but the capacity could not be too large in any case.

Since the amplifier is supposed to be used with plate and grid batteries, by-pass condensers have not been included in the circuit. If the plate battery is of the storage variety no bypass condensers will be required at any time, but if dry cell plate batteries are used, the familiar B batteries, and if they are allowed to become exhausted, distortion or even oscillation might result without condensers. However, when distortion due to the battery resistance becomes appreciable, there is so little life left in the battery that it is not worth while to employ condensers to attempt to prolong it. Noticeable distortion of this enlarging type is one warning to replace the battery. The grid battery usually will last a year or more without replacement, no current is drawn from it, and its life without replacement, no current is drawn from it, and its life in such use is about equal to its shelf life. Even if a volt-meter indicates a 50 per cent reduction in the voltage, the grid bias value of the batteries is practically the same as that of a new battery. This does not apply to all circuits.

It is of utnost importance to keep the filament storage bat-tery fully charged. The amplifier will not work well when the voltage is below six volts. If the battery is permitted to dis-charge completely periodically, it will not last long. A hydro-meter should be kept handy at all times for testing the charge.

Resistance Coupled Amplifier

A resistance coupled amplifier such as that shown in Fig. 11 is particularly suited to battery operation. Indeed, only in a is particularly operated circuit can this type of amplifier be used in its simple form. If any other source of plate voltage is used it is necessary to take utmost precautions against audio fre-quency oscillation. With batteries it gives little trouble, ex-cept when the batteries are old and nearly exhausted. When the circuit starts to misbehave, just as in the case of the trans-former coupled circuit, it is time to replace the battery.

former coupled circuit, it is time to replace the battery. If a storage battery is used to supply the plate voltage there will be no trouble as long as the battery is good. The first two tubes in this circuit may well be of the high gain type. A special purpose tube, the 240, with an ampli-fication factor of 30 has been especially designed for the circuit. With two such tubes a total voltage step-up of 500 can be obtained between the grid of the first and the grid of the third tube. General purpose tubes also may be used, but with a lower gain. Tubes like 201A with an amplification fac-

FIG. 11

EE-STAGE, RESISTANCE COUPLED, BATT OPERATED AUDIO FREQUENCY AMPLIFIER. THREE-STAGE, BATTERY

tor of 8 might yield a gain of between 50 and 60, depending on the values of the coupling impedances. The higher the coupling impedances the higher will be the

amplification. The lowest values for the resistors R4, R6, and R8 should be 100,000 ohms. If they are increased to 250,000 ohms the amplification will be considerably greater. For higher values the increase in the amplification will not be great.

But it is of no value to increase the coupling resistors if the grid bias resistors R5, R7 and R9 do not remain considerably larger than their corresponding plate resistors. The first two, larger than their corresponding plate resistors. The first two, R5 and R7, should be at least 2 megohms. The last, R9, should be equal to this if the circuit will operate without audio oscil-lation when such a value is used. If it must be lowered it should be kept as large as it can be without losing stability.

The values of the stopping condensers, in general, should be as large as practicable, but it is of doubtful value to increase the as large as practicable, but it is of doubtuit value to increase the size if that requires using condensers with paper dielectric. The best condensers to use are those with mica dielectric, standard values of which come as high as .02 mfd. This is large enough provided the grid leak associated with any con-denser is not less than 1 meg. A high grid leak resistance and a large capacity condenser will permit full amplification of all the low frequencies. A low value leak and a low value stopping condenser will suppress

value leak and a low value stopping condenser will suppress the amplification of the low notes. The product of the capac-ity of the condenser in microfarads and the resistance of the leak in megohms should not be smaller than .02, unless, for any reason, it is desirable to suppress the low notes. This product of .02 holds no matter what is the capacity of the stopping condenser.

Satisfactory operation of battery amplifiers of this type have been obtained, with two high mu tubes, with 250,000 ohms for the plate resistors, .02 mfd. for the stopping condensers, and 2 megohms for the grid leaks. In some instances R9 has to be reduced to as low as 250,000 ohms.

There is another reason besides instability for reducing the value of the last grid leak. Leakage through and over the insulation of the grid often makes the grid positive notwith-standing the high value of applied grid bias. A low value of grid leak will maintain the potential of the grid at the correct operating value.

The amplifier shown in Fig. 11 is more stable than one con-taining only two tubes, in resistance coupling, provided that from the same source. The use of high values of plate voltage sistors increases the stability, and the return of the speaker to the A battery increases it still further.

to the A battery increases it still turther. There are two frequency regions in which instability might occur when the plate battery has a high resistance, at very low frequencies and at very high. The high frequency in-stability can be remedied by connecting a condenser, about 1 mfd., across the battery. The low frequency instability can be remedied by reducing R9, or by replacing a deflated B battery with a fresh one battery with a fresh one.

When this amplifier is connected to a detector tube the three terminals at the left should be connected to a detector tube the three terminals at the left should be connected to the tube as in-dicated. If the same storage battery is used for both the de-tector and the amplifier, the F connection should be omitted, for it is made automatically through the B battery. The B plus terminal may be connected to the 180 volt tap on the plate battery, or to any lower tap.

When the amplifier is connected to a phonograph pick-up

When the amplifier is connected to a phonograph pick-up unit, the P and the F terminals should be used. B plus detector then should not be connected to anything. The pick-up unit may also be connected across R5, or in place of R5. The final tube in this amplifier is supposed to be a 171A, and for that reason the output filter ChC4 is employed. The specifications for this filter are the same as those given for the transformer coupled receiver in Fig. 10. Since all the tubes specified are five volt tubes, the source of filament current should be a six volt storage battery. The three ballast resistors R1, R2, and R3 should be 1A Amperites. The resistance coupled amplifier is capable of excellent qual-ity provided that the plate voltage battery has a negligible internal resistance, or provided that special precautions be taken

internal resistance, or provided that special precautions be taken to nullify the feedback through any resistance that may exist.

13

[Part III of "Power Amplifiers" next week]

QUESTION and **Answer Department** conducted by RADIO WORLD, by its staff of experts, for University members only.

When writing for information give your Radio University subscription number.

Radio University

IS IT REALLY necessary to use a baffle board with a dynamic speaker to get the low notes? I have such a speaker and I can hear the low notes very well. (2)—If it is necessary to use a baffle

board with a dynamic, why is it not equally necessary to use one with magit not netic speakers having a similar cone structure?

(3)—Can you suggest a simple way of demonstrating the effect of a baffle board, one which shows the difference convincingly?

(4)—If you recommend baffle boards,, what do you consider the best size and best material for them?

DON McLEOD, Toronto, Canada. (1)—It is not necessary, but it is highly desirable to use a baffle with speakers having small cones or any small sound radiating surface. The low frequency cut-off due to the absence of a baffle board is not very sharp. The low notes come through, but with greatly reduced volume.

(2)-It is even more desirable to use a large baffle with a magnetic speaker having a small cone.

(3)—Get a baffle board of fairly large dimensions. Put the cone up against the aperture. Note the quality of the sound. Then tilt the speaker away from the aperture and note the striking difference. This is the simplest and the most convincing demonstration of the effect of the baffle board.

(4)—The larger the baffle board the better. A compromise is often struck on 24 in. or 36 in. square. There is no one material that is best. The material must be rigid so that it will not vibrate.

I RECENTLY got a severe shock from my power pack after I had turned off the power. Where did the voltage come from?

(2)-What precautions would you recommend to prevent such shocks in the future?

(3)-Can static-like noises be introduced by the ground used with the re-ceiver? I have a set which I can use both with a loop and an antenna-ground, and there is not nearly so much noise in the output when I use the loop as when I use the antenna.

BORIS LENSKY,

Toledo, Ohio. (1)--It came from the condensers in the filter.

(2)-Keep your fingers away from the power pack until the charges on the con-

densers have had a chance to leak off. (3)—The ground is often a prolific cause of noise. But the loop does not necessarily demonstrate the fact, for the loop always picks up less noise than an antenna and ground. Install a good coun-terpoise and switch from the ground to the counterpoise, using the same antenna, and then compare the noise.

IS IT POSSIBLE to improvise high resistance voltmeter by using a 0-1 milli-ammeter in series with a high resistance?

* *

(2)—If it is, please tell how to figure the resistance to be connected in series. (3)—Is it also possible to use an am-

meter to improvise a voltmeter? WILLIAM H. FRANCIS, Jefferson City, Mo. (1)—That is how every 1,000-ohms-pervolt voltmeter is made.

(2)-Figure on 1,000 ohms for every olt you want to measure, full scale. the range of the voltmeter is to be 0-1

volt, use 1,000 ohms. If you want the range to be 0-100 volts, use 100,000 ohms. If you want to make the scale 0-500 volts, use half megohm. Readings below the full scale are proportional to the scale. Use accurate resistors, for the accuracy of the readings will depend on this.

(3)—Not possible, except, perhaps, to measure the voltage of a storage A battery. *

I FREQUENTLY read in technical articles and books that the time constant of the grid leak and grid condenser in a direct coupled circuit should be small to get full response on the high notes, but I have also seen statements in Radio World that it should be as large as possible. Which is correct?

(2)—Under what conditions should the time constant be small in order that the circuit respond quickly to rapidly chang-ing voltages such as those occuring in high frequency signals? (3)—How is the time constant meas-

ured and what is its meaning? CHARLES H. BURT, Baltimore, Md. (1)—Somebody once made a mistake by

saying the time constant should be small and some writers have carried on the

error. The time constant should be large. (2)—If the condenser and the resistance are in parallel and so placed in the circuit that the condenser must be charged up before the full voltage is attained, then the time constant should be small. The stopping condenser in a resistance or impedance coupled circuit is in series with the grid leak, and the only condition is that it be large so that it does not offer any impedance to the low frequencies.

(3)—The time constant is measured by the product of the resistance and the capacity, ohms and farads being the units. The results is measured in seconds. The meaning of the time constant might be explained as follows: Suppose a con-denser of capacity C be charged to a voltage V and that a resistance of R ohms be connected across the charged condenser, then the time constant RC is the number of seconds that will elapse before the voltage across the condenser has been reduced to 1/2.718 of its original

value. The number 2.718 is the base of natural logarithms.

THERE IS a terrific hum in my Screen Grid Universal receiver, which is operated by A and B battery eliminators. What is the cause of this hum?

(2)-The volume of this set is terrific and it cannot be controlled with the rheostat in the filament circuit of the screen grid tube, which has a resistance of 20 ohms. What would you suggest for con-trolling the volume?

(3)—Is it possible to use a 171A power tube in the last stage? SIGWALD ORRE,

St. Paul, Minn.

(1)—The hum is due to a combination of two things, regeneration and residual hum in the eliminators. Control the re-generation and the hum will disappear, unless the eliminators are hopelessly overloaded.

(2)--Use the rheostat recommended-50 ohms.

(3)—Yes, it is possible if you apply the proper plate and grid potentials to the power tube. You should also use an out-put filter or transformer to protect the loudspeaker.

WHAT IS THE OBJECT of decreasing the filament voltage on AC tubes as compared with DC tubes? I refer especially to the reduction in the filament voltage in the design of the 245 tube.

(2)-Is it practical to heat the filaments of a 245 and one or more 227s by the same 2.5 volt winding?

(3)—Is there any marked advantage of using a 250 tube over a 245 in a regular home receiver? If so, what? LOUIS G. WILLIAMS, Paterson, N. J. (1)—There are two objects. One is that if the filmment voltage is the two

if the filament voltage is low the hum produced in the tube due to the AC will be less the lower the filament voltage. The other is that it simplifies the filament transformer that may be used. (2)—It is practical in most instances.

There are circuit arrangements in which it is not advisable to use the same winding but in most circuits there is no reason why the same winding should not be used.

(3)—The 245 tube in conjunction with a good speaker will give enough undistorted volume for any home. The 250 will give much more but it is not needed. Of course, for a given output that from the 250 will contain less harmonic distortion than that from the 245, but the distortion cannot be detected by the ear until the volume is so loud as to be unpleasant.

Join RADIO WORLD'S University Club

And Get Free Question and Answer Service for the Coming 52 Weeks This Service for Yearly Subscribers Only

Have your name entered on our subscription and University lists by special number. Put this number on the outside of the forwarding envelope (not the enclosed return envelope) and also put at the head of your queries. If already a subscriber, send \$6 for renewal from close of present subscription and your name will be entered in Radio University. No other premium given with this offer.

[In sending in your queries to the University Department please paragraph them so that the reply can be written under or alongside of each query. Write on one side of sheet only. Always give your university number.]

RADIO WORLD, 145 West 45th Street, New York City.

Enclosed find \$6.00 for RADIO WORLD for one year (52 nos.) and also enter my name on the list of members of RADIO WORLD'S University Club, which gives me free information in your Radio University Department for 52 ensuing weeks, and send me my number indicating membership.

Name		 		••••••	 	•••••		
Street	•••••	 		•••••	 		•••••	
City an	d State	 •••••	•••••					

W. G. Ford, 5615 Edgerly St., Oakland, Cal. Arnold Shultz, 302 E. 5th St., Cincinnati, O.
C. B. Connell, Digby, N. S., Canada.
Murray Sternberg, 110 Crown St., Meriden, Conn.
Paul Garren, 134 N. 13th St., Easton, Pa.
C. E. Dearston, P. O. Box 186, Umatilla, Fla.
George Raab, 1737 Catalpa Ave., Brooklyn, N. Y.
Wm. Hughes, Jr., 745 Grape St., Vineland, N. J.
E. V. Shaw, Merchants Nat'l Bank Bldg., Sauk Center, Minn.
A. Kammert, 211-6th St., S. E., Little Falls, Minn.
Harry Mier, 311 Polo. Bldg., Denver, Colo.
P. D. Henson, Romé, Pa.
Elroy H. Kramer, 3244 N. 20th St., St. Louis, Mo.
V. R. Roig, Baxley, Ga.
William E. Woodrow, 8 St. Angle St., Quebee City, Can.
C. Interest Classical St. Construction of the state of the sta

V. R. KOIG, BALLER, Woodrow, 8 St. Angre C., City, Can. O. Ingmar Oleson, Box 175, Ambrose, N. Dak. Louis Minoli, 38 Autumn St., Lodi, N. J. W. R. Stradling, Clementon, N. J. Robt. N. Martinson, 3805 So. Alaska St., Tacoma, Wash.

W. N. Martinson, 3803 50. Wash. C. A. Sullivan, c. o. Rm. 2, Union Sta. Tacoma,

A. Sullivan, c. o. Rm. ..., Wesh hu Hartl, c. o. Rm. 2, Union Sta., Tacoma,

Wesh
John Hartl, c. o. Rm. 2, Union Sta., Tacoma, Wash.
Sal-Scuddere Apt. 36, 516 E. 117th St., New York, N. Y.
Arthur Mickel, 2640 N. 11th St., Phila., Pa.
Sam. Miller, 931 Willow Ave., Hoboken, N. J.
Arnol J. Hillock, 435 Morris Ave., Rockville Certre, N. Y.
W. J. Gerhart, 1719 Realty Ave., Beechview, Pittsburg, Pa.
L. E. Smart, 807 Linwood Ave., La Porte, Ind. A. J. Rick, Ottertail, Minn.
J. W. Hamer, 514 St. Johns Rd., West Toronto, 7, Ont., Can.
W. H. Hayward, Care Hotel Crockett, Crockett, Calif.
Ralph D. Hoover, 85 E. Northampton St., Wilkes-

W. H. Hayward, Care Hotel Crockett, Crockett, Calif.
Ralph D. Hoover, 85 E. Northampton St., Wilkes-Barre, Pa.
Ralph N. Chambers, 619 Fifth St., Albion, Nebr. E. J. Burget, 539 Oak St., Tyrone, Pa.
L. L. Melcher, 1525 Market St., Denver, Colo.
U-Flex Mfg. Co., 1So. 39th St., Philadelphia, Pa. Eugene W. Throop, 1163 3rd St., N. E., Washington, D. C
G E. Grimm, 2537 Portsmouth Ave., Toledo, Ohio. Geo. Simpson, 1654 Albert St., Vancouver, B. C., Can.
Stewart B. Beatty, 154 W. 104th St., Los Angeles, Calif.
Gerrit De Weerd, 336 W. 14th St., Holland, Mich. Geo. Guerand, 1351 Springfield Ave., Irvington, N. J.
W. A. Rickey, 73 Ridgedale Ave., Madison, N. J.
L. K. Adams, 135 Victory Ave., Lexington, Ky.
W. H. Anderson, Malahat Farm, R. R. No. 2, Victoria, B C, Can.
Wm J. Coquelin, R. 29, Box 816, St. Louis, Mo.
Herman Mick, 1309 Feazel St., Harrisburg, Ill.
Tom Curley, 903 Selkirk Ave., No. Judson, Ind.
C. Chandler, 2141 Point St, Chicago, Ill.
John Pulokas, 3127 So. Union Ave., Chicago, Ill.
H. R. Stevens, 223 Peniston St., New Orleans, La.
H. T. Wagner, 517 Home Park Bivd., Waterloo, Iowa.
R. C. Smalldon, Wright & Wilhelmy Co., 10th

H. T. Wagner, 51/ House - ----Iowa. R. C. Smalldon, Wright & Wilhelmy Co., 10th and Jackson Sts., Omaha, Nebr. W. W. Dennis, 79 Perthshire Rd., Brighton, Mass. B. E. James, P. O. Box 1064, Vancouver, B. C.

B. E. James, P. O. Box 1064, Vancouver, B. C., Can.
John Blum, 2656 N. Dorgenais St., New Orleans, Le.
H. H. Humphrey, P. O. Box 96, Orlando, Fla.
Geo. Evans, Peebles, Ohio.
A T. Swanson, R-1, Box 13, Russell, Minn.
H.nshel Johnson, Plainview, Nebr.
Gilman Maltrud, Epping, N. D.
Jos. N. Henry, 143 W. White St., Summit Hill, Pa.
Robt. Middlekauff, 204 E. Center St., Mt. Morris, III. ĨĨ

Haley, Ladysmith, Wis. Ed. Havley, Ladysmith, Wis. Haley Gruble, Box 32, Waterview, N. Y. Melville Supply Co., 1 Oxford Place, Glen Rock N r N

Melville Supply Co., 1 Oxford Flace, Ofen Act-N. J. John E. Loop, Sta. "A," Chattanooga, Tenn. Jas. C. Somers, 1265 Broadway, Somerville, Mass. Sr. Ing. Ernesto Marty, Calle Patagonés No 701, Buenos Aires, Rep. Argentina, S. A. J. B. Whidby, 103 St. John, Macon, Ga. H. Lawrence, 417 Cumberton, Little Rock, Ark. Jack M. Wynn, c/o Parchment Drug Store, Kalamazoo, Mich. Tom Harrington, 4816 S. Western Ave., Los Angeles, Calif. Wm. I. Winslow, 311 Center St., Douglas, Wyo. J. M. Sewell, 700 N. Ridgewood, Daytona Beach, Fla.

J. M. Sewen, J. D. Box 1497, Denver, Colo. T. M. Smith, P. O. Box 1497, Denver, Colo. A. E. Baum, 108 Hopson St., Utica, N. Y. B. S. Hatpe, 233 Davenport Rd., Toronto, Ont.

Can. C. J. Valdrow, 1516 Henry St., Baltimore, Md. John Self. 3017 N. 13th Ave., Birmingham, Ala. A. E. Gasselen, 403 Stearns Bldg., Springfield,

Mass.

Mass.
Ravmond D. Sherman, 5 Hubbard St., Saratoga Springs, N. Y.
Mich.
G. M. Mann, 26 Hemans St., Worcester, Mass.
A. E. Averett, 16 Bedford Rd., Schenectady, N. Y.
Arthur H. Pullon, 17 Forest Ave., Ansonia, Conn.
W. J. Lyons, Blauser's Elec. Co., 25 Main St., Oil City, Pa.
Harry L. Evans, Binghamton, N. Y.
Oliver Brothers, Inc., 71 Murray St., New York City.

Oliver Brothers, Inc., 71 Hunty, S., Citv.
Dr. C. L. Zimmerman, 412 Cumberland St., Leb-anon, Pa.
Ernest E. Palmer, Box 122. No. Stonington, Conn.
W. J. Kulabonish, 809 Washington St., Martins Ferry, Ohio.
John T. Hosey, M.D., Palatka, Fla.
L. S. Forsyth, 515 5th St., Portsmouth, Va.
G. F. Schaaf, 430 W. Grand Ave., Lima, Ohio.

RADIO WORLD

W. C. Wells, P. O. Box 230, Brantford, N. Dak. E. Stead, 138 Eastwood Ave., Toronto, 13, Ont., Can.

Can.
Can.
Edward Morrill, 16 Harding St., Worcester, Mass.
Edward Morrill, 16 Harding St., Worcester, Mass.
Robert L. Potter, care Yale & Towne Míg. Co.,
Stamford, Conn.
Geo. Anglim, P. O. Box 13, Duncan, B. C., Can.
John Howard, 5 Willow Ave., Towson, Md.
Wm. R. Scott, Box 125, Rt. 2, Holmes Rd.,
Pittsfield, Mass.
H. de Long, 41 R. St., N. E., Washington, D. C.
A. J. McNally, N. E. Cor 40th & Woodland Ave.,
Philadelphia, Pa.
Avery Macklem, 1700 Atkinson Ave., Detroit,
Mich.
Robt. I. Orr. 3503-A Nat Bridge St Louis Mo.

Avery Macklem, 1700 Atkinson Ave., Detroit, Mich.
Robt. J. Orr, 3503-A Nat. Bridge, St. Louis, Mo. Community Garage, 388 Believille Ave., Bloomfeld, N. J.
Andrew Feilsch, Sr., 2720 Van St., Cincinnati, O. George Weller, 5233 Warnock St., Phila., Pa. L. E. Funk, 637 Linden St., Bethlehem, Pá. M. J. Loir, 72 Walden St., No. Cambridge, Mass. Edgar Van Gilder, 2407 W. 32d Ave., Denver, Col. Wm. T. Brooks, P. O. Box 246, Herkimer, N. Y. Oliver A. Ayers, Mohawk Lake, N. Y.
Joseph Turner, 3104 No. Hancock St., Phila., Pa. G. W. Hill, 925 Whitney Bldg., New Orleans, La. Geo. E. Barbour, 342 Pearl St., Cambridge, Mass. Peter L. Czajkowski, 202 E. Pine St., Olean, N.Y. Johnston's Radio Shop, Mr. K. S. Johnston, 9008 Jamaica Ave., Woodhaven, N. Y.
Frank Idner, 309 Okeechobee Road, West Palm Beach, Fla.
E. Langworth, Box 104, Matteson, Ill. N. A. Sell, City Produce Co., Union St. & B. & O. R. R., Cumberland, Md.
James Brennan, 73 Poulton Ave., Toronto, Ont., Can.
C. J. Werlla, 622 W. Gandy St., Denison, Tex.

James Brennan, 73 Poulton Ave., 1010110, Can.
Can.
C. J. Werlla, 622 W. Gandy St., Denison, Tex.
W. E. Barnes, 4119 N. Broad St., Phila., Pa.
Grant Irwin, Sulphur, Akla.
M. A. Wesling, 1901 Denver St., Covington, Ky.
Dr. Frank C. Kinsey, 315 Powers Theatre Bldg., Grand Rapids, Mich.
Chas. A. Winsor, Evansville, Wis.
Geo. G. Mitchell, Jr., P. O. Box 55, Hacketts-town, N. J.
C. F. Sleeman, Dixie, Ont., Can.
F. L. Pittman, 108 W. Patent Office, Washing-ton, D. C.
John G. Rieger, Radio Editor, Buffalo Evening

F. L. Pittman, 108 W. Patent Office, Washington, D. C.
John G. Rieger, Radio Editor, Buffalo Evening News, 216-218 Main St., Buffalo, N. Y.
S. J. Ceranski, 6043 Harrell Ave., Detroit, Mich. Geo. E. Grosvenor, R. F. D. No. 1, Olyphant, Pa. T. A. Jennings, 209 W. 12th St., Cincinnati, Ohio. John R. Purcell, Port Jervis Radio Co., Port Jervis, N. Y.
Gordon W. Brown, 38 Elgin St., Lindsay, Ont., Can.

Can. Harry M. Wise, 122 E. Poplar Ave., Wildwood, N. I.

N. J. Fred Breidenbach, 411 N. Bancroft St., Indian

Fred Breidenbach, 411 N. Bancrott St., Indianapolis, Ind.
H. Holbrook, 19 4th St., Lakewood, N. J.
W. A. Spangler, 41 Burns Ave., Lokland, Ohio.
Alired Barcklow, 270 W. 2nd St., Moorestown, N. J.
Ernest G. Kelner 351 E. Lincoln Ave., McDonald, Pa.

Pa. Pa. Lincoln Ave., McDonald, Pa. Diamond Ave., Hazleton, Pa.

W. A. Elmore, 113 Fairley St., Laurinburg, N. C. M. B. Tizzard, "Press Telegrams," Long Beach,

M. E. Tizzard, "Press Telegrams," Long Beach, Calif. Mrs. W. E. Paine, Zealandia, Sask., Can. Geo. H. Keller, 1048 Lorena St., Los Angeles, Cal. J. W. Newson, Medina, Tenn. Robt. C. Hopkins, 5205 14th Ave., Brooklyn, N. Y.

Geo. G. Steele, 8113 Maple St., New Orleans,

La. M. H. Kennedy, Art Dept., "The Sun-Tele-graph," Pittsburgh, Pa. Stanley Glein, Perry, Mich. Bert P. Hanavan, 1658 Farwell Ave., Chicago,

III.
Waechter Lumber Co., Harper, Iowa.
John C. Hoffmann, 511 Lexington Ave., Brooklyn, N. Y.
S. A. Vatter. Directory Section, Main P. O.,
Grand Ranids, Mich.
James Chapman, 2847 N. Marvine St., Phila.,
Pa.

15

Jos. D. McGrath, 302 W. Jefferson St., Ft. Wayne, Ind. F. K. Hodges, Clark Hotel, Roanoke, Va. Fred F. Norris, 604 S. Spring St., Nevada, Mo. C. B. Smith, The Park Club, Pittsfield, Mass. Harry A. Strong, 2520 10th St., N. E., Wash-ington, D. C. Fred L. Cutler, 720 Tonawanda St., Buffalo, N. Y.

N.W N. Y. W. H. Collins, Jr., Bowen High School, 8860 Manistee Ave., Chicago, Ill. A. S. Bailey, The Radio Shop; 2114 Gentry St., Houston, Tex. Albert Stone, 1444 E. 10th St., Brooklyn, N. Y. Clarence A. Brodt, Columbine, Ohio. E. B. Carpenter, 106 Poultney Ave., Buffalo, N. Y. W. J. Deane, 13th Floor, Cosden Bidg., Tulsa, Okla.

Okla Adolph F. Fey, 4443 No. Chauwick S., Pa. Pa. Clement Preller, 2025 T St., N. E., Washing-ton, D. C. F. H. Merriam, M. D., 1000 Washington St., So. Braintree, Mass. Archie Pinkley, 5161 Holcomb, Detroit, Mich. F. C. Rogers, Alton, Wayne Co., N. Y. A. P. Seidel, 2208 Pasadena Ave., Los Angeles, Calif. W. G. Yarrow, 1908 W. 15th St., Davenport, Iawo. Adolph F. Fey, 4443 No. Chadwick St., Phila.,

Georges Payen, Ste-Theole, co. Champlain, P.

Georges rayen, ote rates, in Q., Can. Clarence D. Bussurs, 104 17th St., S. E., Washington, D. C. A. J. Anderson, Angola, N. Y. G. E. Helbeit, 6761 4th Ave., Los Angeles,

Caiff. Robert H. Roth, Sidney, Ohio. L. A. Morrow, care The Dow Drug Co., Springfield, Ohio. J. E. Tracy, 220 Victoria St., Jacksonville, Fla. R. L. Watson, 2050 John Ave., Butte, Mont. Wm. A. Harding, 2013 No. 29th St., Phila., Pa. Geo. Angus, Esq., 115 Hillsdale Ave., W. Toronto, Ont., Can. B. C. Co. eman, Box 1742, Yardley, Wash. A. B. Erickson, 7935 Kimbark Ave., Chicago, Ill.

Ernest F. Wright, P. O. Box 273, Lansford, Pa. Arthur Vinton, P. O. Box 83, Southbridge,

Chas. M. Ross, 403 King St., E., Hamilton,

Chas. M. Ross, 403 King St., E., Hamilton, Can. Bob Stutz, 1128 Mackow Dr., Toledo, Ohio. L. Varela, Calle San Juan, Guayama, P. R. J. C. Doss, 1026 Hanover Ave., Roanoke, Va. Arthur Walker, 155 Abbott St., Lawrence, Mass. Joe Rouh, R. F. D. No. 1, Kent, Iowa. W. Baker, 611 Galt Ave., Verdun, Montreal, P. Q., Canada. Edwin Anderson, 1068 71st St., Brooklyn, N. Y. C. Wills, 132 Queen St. (East), (T2), Toronto, Can.

Can. John McKenzie, 54 12th St., Norwich, Conn. Fred J. Policky, Dwight. Nebr. Howard B. Stevens, 49 High Street, Waltham,

Mass. H. E. Beavens, 216 10th St., S. E., Washing-ton, D. C. Robt. J. Craker, 703 Lassen St., Susanville, Calif.

Calif. J. Channel, E. C. McMullin, 2610 Lillian, Shreveport, La. Harry Haskell, 10823 Magnolia Dr., Cleveland, Chie

Harry Haskell, 10823 Magnolia Dr., Cleveland, Ohio. Ellis G. Grover, 805 Clay St., LaPorte, Ind. H. C. Lamming, 630 Beimont Rd., Grand Forks, N. Dak. Ralph Ellis, 604 Hancock St., Peoria, Ill. A. M. Chamer, 2109 1st Ave., No., Birming-ham, Ala. Ellwood W. Etchells, 25 Gray Terrace, Tren-ton. N. J. Benj. B. Sheldon, Owosso, Mich. Don La Faucette, 3935 4th Ave., So., Min-neapolis, Minn. Frank Cage, 3180 Almond St., Phila. Pa. Orrin B. Nelson, Box 12, Osseo, Wisc. Jacob E. Hagmayer, P. O. Box 121, Milford, Conn.

Conn. Chas. A. Winsor, Evansville, Wis. E. Lord. 730 Albert St., Montreal, P. Q., Can. John Meshnick, 150 Dan Lowe Terrace, St. George, N. Y. C. R. Gober, Prospect St., R. F. D. No. 1, Allendale, N. J.

Allendale, N. J.
Ian McMillan, 144 12th St. E., North Vancouver,
B. C., Can.
W. L. Forsythe, R. F. D. No. 2, Raleigh, N. C.
J. M. Doyle, Doyle Mfg. Co., 308 E. 3rd St.,
Cincinnati. Ohio.
Frank E. McHugh, 1811 Columbia Ave., Phila,
Pa.

Pa. Harold G. Vandewort, P. O. Box 339, Morgan-town, W. Va. H. M. Vardon, 232 W. Hazeltine Ave., Ken-more, N. Y. J. D. Robinson, 1303 Tennessee St., Dallas, Tevas

Texas. L. C. Cover. 170 E. 2nd St., Peru, Ind. Wm. C. MacKay, 781 Washington St., Newton-ville, Mass. Sam H. Dooley, 217 Glenn St., Cumberland, Md. P. J. Kuprion, 600 Barbee Ave., Louisville, Ky. Robert E. Beaupre. 15 Allen St., Burlington, Vt. Television Radio Shop, 115 Winter St., Haver-hill, Mass. Theodore C. Janes, 36 So. Union St., Burling-ton, Vt. James Watkins, P. O. Box 72 Purceall, Ka

James Watkins, P. O. Box 72, Russell, Ky. D. M. LeBlanc, 65 Richmond Hill Ave., Stam-ford, Conn. J. E. Bures, P. O. Box 7117, Mexico, D. F., Mex.

Ray Hoffman, 364 Williams Ave., Hackensack,

N. J. Ivan F. Pierson, 736 Evergreen, Bremerton, Wash. R. Hutchison, 120 Patterson Ave., Briller,

Mass. H.

Texas

N

Penna.

LABOR STATION LOSES ITS PLEA FOR FULL TIME

Washington.

The application made by the Chicago Federation of Labor for full time and 50,000 watts on a cleared channel for its station, WCFL, has been denied by the Federal Radio Commission. The station's

frequency is 770 kc. After the application was filed the Commission notified the station that it was not satisfied that public interest, convenience, or necessity would be served by the grant, and the station was notified that it would be given a hearing on its application. Such hearing was held. The applicant was permitted to offer testimony to show that public interest would be served by the granting of the license requested. WBBM, Glenview, Ill., and KFAB, Lin-

coln, Nebr., were made respondents because they operate on the same frequency with WCFL. The two stations were rep-resented at the hearing by speakers who opposed the application and offered testimony to show that the granting of the application would not be in the public interest.

Super Power Clarostat Rated at 250 Watts

The newest addition to the Clarostat line is the Super-Power Clarostat, a heavy-duty adjustable resistor. It is a Clarostat compression device for obtaining stepless and noiseless resistance that remains set at any value desired. The Super-Power Clarostat is furnished in three resistance ranges.

proper air circulation, or, again, for mounting on thick slate panel. It is intended as a heavy-duty line control, vari-able speed motor control, plate voltage control for transmitters, field control for shunt type generators, etc. Full informa-tion may be had from the Clarostat Manufacturing Co., Inc., 291 North Sixth Street, Brooklyn, N. Y. Mention Radio World.

Crosley Sends Programs via W8XAL on 49.5 m.

Broadcasting the programs of WLW, the Crosley Radio Corporation's short-wave transmitter, W8XAL, is on the air once more after several months of silence dur-ing which it has been completely rebuilt and moved from the old WLW site at Harri-son O to the new Crocley transmitter Cincinnati

moved from the old wLw site at Harri-son, O., to the new Crosley transmitter building at Mason, O. W8XAL is licensed to operate with 250 watts power on a frequency of 6060 kilo-cycles (49.5 meters). One hundred per cent modulation is claimed.

The short-wave broadcasts are from 6:15 A. M. until 11:00 A. M.; from 1:30 P. M. until 2:30 P. M., and from 6:00 P. M. until the long-wave station signs off at night.

Chain Limitation Again Deferred

Washington.

Another postponement of the order of the Federal Radio Commission, adopted last November, proposing to limit duplica-tion of chain broadcasting programs on cleared channels to stations separated by more than 300 miles, was announced by the Federal Radio Commission.

In a new general order (No. 63), the Commission announced that General Order No. 43, which provided for the restriction, has been deferred from June 1st to October 1st. This is the fourth time the order has been deferred, it having been originally promulgated to become effective with the reallocation of broad-casting stations of November 11th. It was explained at the Commission that

following the issuance of the order, a number of broadcasting stations complained vigorously, and the order was de-ferred pending further investigation.

Kolster Plans to Sue Nineteen Set Makers

Nineteen set manufacturers have been notified by Kolster Radio Corporation, through a subsidiary, the Federal Telegraph Company of California, of claims for in-fringement of four patents on gang con-densers and vertical drum dials. Suit is threatened.

A test case is to be made and large dam-A test case is to be made and large dam-ages demanded. Among the companies noti-fied are Grigsby-Grunow Company, manu-facturers of Majestic sets; National Carbon Company, makers of Everready sets; Cros-ley, Zenith, Sparks-Withington, makers of Sparton sets; Steinite, A. C. Dayton, Stew-art-Warner, Silver-Marshall, Philco, All American Mohawk, Gilfillan and Sonora.

CeCo Licensed Under **RCA Tube Patents**

The CeCo Manufacturing Company, Inc., of Providence, R. I., third largest tube manufacturer, with a capacity of 45,000 tubes daily, has taken out a license from the Radio Corporation of America to manufacture under RCA tube licenses. CeCo is the second independent to obtain a license. The first was the Raytheon Manufacturing Company, the sale of whose tubes has since passed to exclusive control of the National Carbon Company, which is backed by General Electric.

RCA and Cunningham, the latter owned by RCA up to 51% of the stock, are first and second in tube production and sales.

Schnell Heads Staff Of Aero Engineers

Lt. Commander F. H. Schnell, U. S. Naval Reserves, for six years traffic man-ager of the American Radio Relay League, and more recently with the engineering and research laboratory of the Burgess Battery Co., has become chief radio engineer of Aero Products, Inc. of Chicago, specialists and manufacturers of short-wave radio equipment.

Commander Schnell is now working on some new developments in short-wave, which will shortly be announced from the Aero Products laboratories. Commander Schnell's experience in short-wave radio development covers a wide mere development covers a wide range of activities.

LAW IS ASKED FOR LIGHTS ON STATION MASTS

Washington

17

The Federal, Radio Commission is without authority to require radio stations to paint and illuminate their towers near commercial airways as a safeguard for aviation, nor has the Secretary of Commerce the power under the Air Com-merce Act to make such a requirement, according to the opinion of the general counsel for the Commission, Bethuel M. Webster, Jr. Mr. Webster's opinion has been ploced in the record of the hereiner been placed in the record of the hearings of the Senate Committee on Interstate Commerce on the Couzens bill (S. 6) to establish a Commission on Communications.

The matter was brought up at the hear-Ine matter was brought up at the hear-ings of the committee by the statement of Ira E. Robinson, a member of the Radio Commission, that the Assistant Secretary of Commerce, William P. MacCracken, Jr., had called the attention of the Commission to the failure of the Radio Corporation of America to light towers in Brunswick Meadows, N. J., and the tak-ing off of the lights on the towers at Cleveland, Ohio. The opinion of Mr. Webster suggested additional legislation to cope with the situation.

Intelligence Confined

to Earth, Says Maxim

According to Hiram Percy Maxim, the inventor, all intelligence is confined to the earth. Speaking at a dinner concluding the convention of the Hudson Division of the American Radio Relay League, a national organization of radio amateurs, he said: "We have received nearly every frequency in the spectrum from the lowest relation to the highest, which is known as the Mil.

to the highest, which is known as the Mil-liken Cosmic Ray. "Is it not odd that of all these radiations

from inter-stellar space there is not a scintilla of evidence that any of these radiations were sent out by an intelligent being. So may we not judge from that that on this little earth of ours resides the only intelli-gence of all cosmos?"

Transformer Leads for "Universal 250"

The connections for the power trans-former used in the Universal 250, begun in last week's issue, and concluded in the present issue, are: red, to plate of 281 rectifier; brown, midtap of 7.5 volt power tube filament winding; blue, midtop of 1.5 volt power 1½ volts that are next to the 450-volt post; yellow, B—; green pair, 7.5 volts-for filament of rectifier; black, to ground.

BID ON LEAGUE STATION

Geneva

1

Two important European radio companies, the Compagnie Generale de Telegraphie of Paris and the Telefunken Company of Berlin, have made a joint proposal to build the radio station which the League of Nations is considering erecting.

A THOUGHT FOR THE WEEK

A COMMERCIAL check-up of different businesses shows that there are nearly five hundred radio stores in Greater New York—and that a few of them are not in the Cortlandt street district.

RADIO WORLD

June 8, 1929

In this way you will get your copies without interruption and keep your file complete.

> SUBSCRIPTION DEPARTMENT **RADIO WORLD** 145 WEST 45TH ST., N. Y. CITY

Your Choice of Any One of **These Nine Meters FREE!**
 0.6
 Voltmeter
 D.C.

 0.50
 Voltmeter
 D.C.

 0.50
 Voltmeter
 D.C.

 0.10
 Amperes
 D.C.

 0.25
 Milliamperes
 D.C.

 0.50
 Milliamperes
 D.C.

 0.50
 Milliamperes
 D.C.

 0.400
 Milliamperes
 D.C.

 0.300
 Milliamperes
 D.C.

 0.400
 Milliamperes
 D.C.
 . No. 326 . No. 337 No. 337 No. 338 No. 325 No. 350 No. 390

No. 399

RADIO WORLD 145 W. 45th St., N. Y. City-Published Weekly. All Newsstands, 150 per copy-\$3, six months-\$6 a year

Alphabetical List of Stations by Call Letters; Location and Frequency [FROM LIST REVISED AND CORRECTED BY FEDERAL RADIO COMMISSION AND RELEASED ON MAY 28TH.]

 Partial Control of the section of the secti

WOAI-San Antonio, Tex., 1190 WOAX-Lawrenceburg, Tenn. 600 WOAX-Trenton, N. J., 1280 WOBT-Union City, Tenn., 1310 WOBU-Charlestown, W. Va., 580 WOC-Davenpert, Ia., 1000 WOCL-Jamestown, N. Y., 1210 WODD-Paterson, N. J., 1250 WOI.-Ames, Iowa, 550 WOK-WMBB-See WMBB WOKO-Poughkeepsie, NY., 1440 WOID-Manitowoc, Wis., 1210 WOOD-Gd. Rapids, Mich., 1270 WOOD-Gd. Rapids, Mich., 1270 WOOD-Kansas City, Mo., 610 WORD-Chicago, III., 1480 WOK-Newark, N. J., 710 WORD-Chicago, III., 1480 WOW-Omaha, Nebr., 590 WOW-New York, N.Y., 1130 WOW-Omaha, Nebr., 590 WOWO-Ft. Wayne, Ind., 1160 WPAP-WQAO-See WQAO WPAW-Pawtucket, R.I., 1210 WPCC-Chicago, III., 570 WPCH-New York, N.Y., 810 WPCC-Atlantic City. No., 630 WPOR-WTAR-See WTAR WPCC-Harrisburg, Pa., 1200 WPSC-State College, Pa., 1230 WPSC-State College, Pa., 1230 WPSC-Harrisburg, Pa., 1200 WPSC-State College, Pa., 1230 WPSC-Utica, Miss., 1360 WDFZ-Weirton, W.V., 1420 WPCF-Valparaiso, Ind., 1240 WOAD-Miami, Fia., 1240 WOAD-Miami, Fia., 1240 WOAD-Miami, Fia., 1240 WPSC-State College, Pa., 1310 WPST-Philadelphia, Pa., 1500 WPTF-Raleigh, N. C., 630 WOAM-Miami, Fia., 1240 WRAK-Erie, Pa., 1370 WRAW-Reading, Pa., 1310 WRAX-Philadelphia, Pa., 1020 WRAK-Erie, Pa., 1370 WRAW-Reading, Pa., 1310 WRAX-Philadelphia, Pa., 1200 WRAK-Erie, Pa., 1370 WRAW-Reading, N. C., 1370 WRAW-Reading, N. C., 1370 WRAM-Reading, N. C., 1370 WRAM-Reading, N. C., 1200 WRAM-Marken, N. C., 1370 WRAM-Reading, N. C., 1370 WRAM-Reading, N. C., 1370 WRAM-Reading, N. C., 1370 WRAM-Reading, N. C., 1370 WRAM-Allentown, Pa., 1440 WKAJ-Gincinnati, O, 1330 WSAJ-Grove City, Pa., 1310 WSAA-Allentown, Pa., 1440 WSAA-Beyro Orleans, Ia., 1320 WSMA-Dayton, Ohio, 570 WSMA-Dayton, Masa, 580 WSUN-WFLA-See WFLA WSUM-WSAA-See WFLA WSUM-Machina,

Station Location Frequency KGHL-Billings, Mont., 950 KGHX-Richmond, Tex., 1500 KGIX-Trinidad, Colo., 1420 KGIR-Butte, Mont., 1360 KGIF-Little Rock, Ark., 630 KGKB-Brownwood, Tex., 1300 KGKD-San Angelo, Tex., 1370 KGKO-Wichita, Falls, Tex. 577 KGKO-San Angelo, Tex., 1370 KGKO-San Angelo, Tex., 1370 KGKO-San Angelo, Tex., 1370 KGGC-San Antonio, Tex., 1370 KGU-Honolulu, Hawaii, 940 KGW-Portland, Ore., 620 KHD-Jackov, Wash., 1200 KHD-Spokane, Wash., 1500 KHD-Jaho Falls, Idaho, 1320 KHD-Jaho Falls, Idaho, 1320 KHD-Jaho Falls, Idaho, 1320 KHD-Jakima, Wash., 1370 KJRS-San Francisco, Cal., 1070 KJRS-Senandoa, Jowa, 930 KMEC-Independence, Mo., 950 KMED-Independence, Mo., 950 KMMC-Holtywood, Calif., 1000 KMJ-Fresno, Calif., 1200 KMM,-Fresno, Calif., 1200 KMM,-Fresno, Calif., 1000 KMM,-Fresno, Calif., 1000 KMM,-Fresno, Calif., 1000 KMO-Tacoma, Wash., 1340 KOCK-Chickasha, Okla., 1400 KOCK-Chickasha, Okla., 1200 KOCS-Marahfield, Ore., 1370 KOGL-Seattle, Wash., 1210 KPCB-Saattle, Wash., 1200 KOCS-Marahfield, Ore., 1370 KOCS-Marahfield, Ore., 1370 KGV-Phoenix, Ariz., 1390 KFCB-Chaston, Calif., 950 KDPD-Saa Francisco, Cal., 680 KPPC-Pasadena, Calif., 1300 KFCB-Chaston, Angeles, Calif., 1010 KRSC-Manhatan, Kans., 580 KSCJ-Sioux City, Ia., 1330 KSSC-Soattle, Wash., 1200 KSMC-Shereport, La., 1310 KFCS-Dakalad, Iowa, 1380 KSCG-Sioux City, Ia., 1330 KSSC-Soattle, Wash., 1200 KSWC-Paland, Ore., 1300 KSMC-Charana, Kans., 580 KXA-Barber, Ia., 1200 KWCA-Shereport, La., 1300 KSMC-Charana, Wash

The speaker cabinet is walnut finish, 33" high, 24½". wide. 17½". deep. with. carved. legs. Golden cloth grille covers front opening. Built inside is No. 595 molded wood horn with baffle and No. 203 driving motor unit that stands 250 volts without filtration. Horn and motor re-movable. Table alone is worth price asked. Remit with order and we pay cartage on Aristo-crat Floor Speaker.

Acoustical Engineering Associates 143 WEST 45th STREET NEW YORK CITY (Just East of Broadway)

The heater type tube draws 1.75 ampere at 2.5 volts. If several such tubes are used a heavy-duty filament transformer is necessary. The top 2.5-volt winding of this filament transformer easily carries NINE AMPERES, or enough cur-rent for five heater type tubes. The bottom 2.5-volt winding stands four amperes, or enough current to heat TWO MORE such tubes, a total of SEVEN TUBES! The power tube, if of the 5-volt type, may be heated from the 5-volt cen-tral winding. 5-volt power tubes in push-pull may be heated from this winding. All three windings are tapped at the exact electrical center. This precision location, made with the aid of an impedance bridge, accounts for absence of hum otherwise caused by the last tube when heated directly with AC. The heater type tubes are *indirectly* heated by AC, since the filament that glows is fed by AC but communi-cates heat to the cathode or electron emitter. The heater type tube is represented by the 227,

The heater type tube is represented by the 227, excellent as radio amplifier and audio amplifier, and the exclusive type of AC detector tube. Also the new AC screen grid tubes, with the same filament voltage and current, are of the heater

The transformer is beautifully finished in crackled glossy black, with bakelite front, and comes equipped with 52-inch AC cable with plug. Six riveted mounting holes for baseboard or subpanel. Size, 3% in. high, 2% in. wide, 3 in. deep. Shipping weight, 6 lbs. i in and

Cat. F226A, for 50-to-60 cycles, 105-to-120 volts AC, Net Price\$6.00

Guaranty Radio Goods Co. 145 West 45th St. N. Y. City

BLUEPRINT of the New, Highly Selective Screen Grid DIAMOND (AC MODEL) \$1.00

RADIO WORLD 145 West 45th Street New York City Few Doors East of Broadway

AERIAL TUNER Improves Summer Reception

Remove aerial lead from set. Connect aerial instead to one of the binding posts of the Aerial Tuner. Connect the other binding post of the Aerial Tuner to antenna post of your set. Then move the lever of the Aerial Tuner until any weak station comes in loudest. The lever need not be moved for every different frequency tuned in. The Aerial Tuner acts as an antenna loading coil and puts the antenna's frequency at any frequency in the broadcast band that you desire to build up. It makes high wavelengths come in loud as low wavelengths. It helps separate sta-tions and clear up reception. Makes great im-provement in Summer reception. Price, \$1.00.

GUARANTY RADIO GOODS CO. 145 West 45th Street New York City (Just East of Broadway)

SUBSCRIBERS!

Please look at the subscription date stamped on your last wrapper, and if that date indicates that your subscription is about to expire, please send remittance to cover your renewal.

In this way you will get your copies without interruption and keep your file complete.

> **RADIO WORLD** 145 WEST 45TH ST., N. Y. CITY

Quick Action Classified Radio World's Speedy Medium for Enterprise and Sales 10 cents a word - 10 words minimum - Cash with Order

RADIO INFORMATION Reliable, prompt, accurate, in every day language, 25c per question. Radio Information Bureau, 1426 South Clifton Park, Chicago.

REDUCE STATIC: The Phantom increases selec-tivity, chokes out static. No lightning danger, no aerial, no holes to dig. Completely shielded. Hook up in three minutes. Guaranteed fifteen years. Price \$7.50 postpaid. Brighton Radio Lab., Brighton, Iowa.

ELIMINATE AERIAL. Greater distance, volume, selectivity with "Little Black Box." Rosens Shop, 616 Plant St., Utica, N. Y.

RADIO RECEIVING TUBES, by Moyer and Wostrel, first edition just off the press. No radio service man, experimenter or student of radio should be without this authoritative book on the principles and applications of vacuum tubes. It answers all your questions relating to receiving, amplifying and rectifying tubes. Price postpaid, \$2.50 Radio World, 145 W. 45th St., New York.

DYNAMIC SPEAKER

Build your own with our castings. Set of machined castings, \$8.00; not machined, \$5.00. Full set blue prints and instructions included. Prices of complete parts on request.

IMPERIAL RADIO SPEAKER CO. 1453 East 174th St., Cleveland, Ohio

20

SEO

ADIO

RADIO WORLD

000

145 W. 45th St., New York, N. Y. (just E. ef B'way) Gentlemen: Pleese mail me at once the new (sec-ond) edition of "Drake's Radio Cyclopedia," by Harold P. Mazly, just published, with all the latest technical information in it. I will pay the postman \$6.00 plus a few cents extra for postage. If I am not delighted, I may return the book in five days and you will promptly refund my purchase money.

Name Address

City..... State.....

New Style DeLuxe Leatherette Carrying Case FREE with each Jiffy Tester!

This combination of meters tests all standard tubes, including the new AC screen grid tubes and the new 245 tube, making thirteen tests in 41/2 minutes ! Instruction sheet gives these tests in detail.

A PORTABLE testing laboratory is yours when you possess a combination Jiffy Tester, for then you can measure the filament and plate voltages of all standard tubes, including AC tubes, and all standard battery-operated or AC screen grid tubes; also plate voltages up to 500 volts on a high re-sistance meter that is 99% accurate; also plate current.

The Jiffy Tester consists of a 0-20, 0-100 milliammeter, with change-over switch and a 0-10 volt AC and DC voltmeter (same meter reads both), with two sockets, one for 5-prong, the other for 4-prong tubes; a grid bias switch and two binding posts to which are attached the cords of the high resistance voltmeter; also built-in cable with 5-prong plug and 4-prong adapter, so that connections in a receiver are transferred to the Tester automatically. Not only can you test tubes, but also opens or shorts in a receiver, continuity, bias, oscillation, etc. The instruction sheet tells all about these tests.

In addition you can test screen grid tubes by connecting a special cable, with clip to control grid (cap of tube) and other end of special cable to the clip in the set that went to the cap before the tube was transferred to the tester.

THE new carrying case, which is furnished FREE with each order for a Combination Jiffy Tester, contains the entire outfit, including the three meters, cable and plug, and three adapters (one for 4-734x33/2" and has nickel corner pieces and protective snap-lock. The case is made of strong wood, with black leatherette overlay.

To operate, remove a tube from the receiver, place the cable plug in the vacant receiver socket, put the tube in the proper socket of the Tester, connect the high resistance meter to the two binding posts, and you're all set to make the thirteen vital tests in 4½ minutes!

The Combination Jiffy Tester is just the thing for service men cus-tom set builders, experimenters, students, teachers and factories. Order "Jiffy 500." The price is only \$14.50.

If a 0-600 AC and DC high resistance meter (99% accurate) is desired, so house electricity line voltage and power transformer voltages can be measured, as well as plate voltage, instead of the 0-500 DC voltmeter, order "Jiffy 600" at \$15.50.

 GUARANTY RADIO GOODS CO., 145 W. 45 St., N. Y. City. (Just East of Broadway). □ Please ship at once on 5-day money-back guaranty one "Jiffy 500," at \$14.50, consisting of (1) One Two-in-One 0 to 10 voltmeter for AC and DC. Same meter reads both. Scale especially legible at 1½ to 7½ volts. This meter reads the AC and DC filament voltages. (2) One DOUBLE reading DC milliammeter, 0 to 20 and 0 to 100 milliamperes, with change-over switch. This reads plate current. 	
(3) One 0.500 volts high resistance voltmeter, 99% accurate; with tipped 30" cord to measure B voltages.	
(4) One 5-prong plug with 30" cord for AC detector tubes, etc., and one 4-prong adapter for other tubes.	
 (5) One grid switch to change bias. (6) One 5-prong socket. (7) One 4-prong socket. (8) Two binding posts. (12) One screen grid special cable. (13) One screen grid special cable. (14) One de luxe carrying case. (15) One screen grid special cable. (15) One screen grid special cable. (16) One screen grid special cable. (17) One screen grid special cable. (18) One screen grid special cable. (19) One handsome moire metal case. (19) One handsome moire metal case. (10) One instruction sheet. (11) One de luxe carrying case. (12) One screen grid special cable. (12) One screen grid special cable. (13) One screen grid special cable. (14) One screen grid special cable. (15) One screen grid special cable. (16) One screen grid special cable. (17) One screen grid special cable. (18) One screen grid special cable. (19) One screen grid special cable. (19) One screen grid special cable. (19) One screen grid special cable. (10) One screen grid special cable. (11) One de luxe carrying case. (12) One screen grid special cable. (13) One screen grid special cable. (14) One de luxe carrying case. (15) One screen grid special cable. (15) One screen grid special cable. (10) One screen grid special cable. (11) One de luxe carrying case. (12) One screen grid special cable. (13) One screen grid special cab	
NAME	
ADDRESS	
CITYSTATE	
FIVE-DAY MONEY-BACK GUARANTY	5

The new de luxe leatherette carrying case is ompact and handy. Size 1055" long, 736" uide; 345" deep.

1. 6 1. 6

RF5 . . . \$1.50

... . \$1.75 . Tradel Line for JUGOS Harden Sil. N. Y. City

RADIO WORLD

Battery or AC Model (specify which)

SG

June 8, 1929

PARTS FOR THE AC DIAMOND

Battery or AC Model (specify which) The best appearance of the New Diamond of the Air results from using the official aluminum sub-panel, 10 x 20 inches, with the four sockets built in, and with self-bracketing front. Hardware and insulating washers supplied with each sub-panel. The aluminum sub-panel is exactly the same as the one used in the laboratory models of the battery operated and the AC Screen Grid Dis-monds. Holes are drilled for mounting parts, but as this aluminum drills like bakelite you can drill any holes you want.

Diamona

RADIO WORLD, 145 W. 45th St., N. Y. City. (Just East of Broadway)

□ Enclosed please find \$3.00 for which please send one aluminum subpanel 10x20" for the new battery model 4-tube SG Diamond of the Air, with sockets built in, and with self-bracketing front and side and rear supports; also send hardware and insulating washers.

Enclosed please and \$2.35 for which please send 7x21" drilled Bakelite front panel for the new bat-tery model Diamond.

Enclosed please find \$3.25 for the 10x20" aluminum subpanel, etc., for the new AC Screen Grid Diamond.

Enclosed please find \$2.35 for the 7x21" drilled Bakelite front panel for the new AC Screen Grid Diamond.

Enclosed please find \$5.00 for both the aluminum subpanel, etc., and the drilled Bakelite front panel of the battery model.

DEnclosed please find \$5.25 for both the aluminum subpanel, etc., and the drilled Bakelite front panel of the AC model.

Name

Address City...... State.....

Put Your Voltage Control Problems up to Electrad. Write Dept. RW3. for useful data 175 Varick St., New York, N.Y. CJ 3

7 00 GUARANTY RADIO GOODS CO. 145 WEST 45th STREET (Just East of Broadway)

NEW YORK CITY

Blueprint of the AC Diamond

B UILD this 4-tube receiver, using one 222 tube, two 227 and one 112A (or 171A), and enjoy tone quality, selectivity and ease of control. The official blueprint gives the picture diagram life size, both top and bottom views; also schematic diagram and list of parts. You can use your present B eliminator externally, but the filament trasformer is a part of the

Enjoy the convenience of AC operation, and still have just as selective and sensitive receiver, by building the AC Diamond. If you have 110-volt, 50 to 60 cycle AC house current, then this is the circuit for you. Fine per-formance. No hum.

Radio World, 145 W. 45 St., N. Y. City (Just East of Broadway) ☐ Inclosed please find \$1.00 for which send at once official blue-print of the 4-tube AC Diamond. □ 30c for the March 23d and 30th issues (1929) describing this circuit. □ \$3.00 for 6 months subscription for Radio World. Send blue-print and two AC Diamond issues FREE.

1 NAME ADDRESS.....

CITY..... STATE.....

Most Selective Diamond Follow Blueprint

THIS'IS THE BATTERY MODEL

Here is the circuit of circuits- the design that makes a neighboring cleared-channel, high-power broadcaster snap out of audibility at a slight turn of the dial.

No need to worry about the selectivity requirements imposed on receivers by the reallocation.

Wolume "to fill the Bouse"-even on distance. Tone quality excellent. Get the official blueprint of the laboratory model of the new SG 4 mbe Diamond, exactly as built by Herman Bernard; the designer.

19 . 2 . 2

-

RADIO WORLD 145 W. 45th St., N. Y. City (Just E. of B'way) Enclosed please find \$1.00 for which please send at once the official flueprint of the new, highly selective 4-tube scream grid Diamond of the Air battery model. Ge cents extra for the Fobruary Sth. 16th. 28rd and March 3nd (1929) issues of Radio World, containing Bernard's articles on the construction of this receiver. 33.00 for 6 months (36 numbers) subseris-tion for Radio World. Send Diamond bine print and four Diamond bissues FRHE, b addition to 26 current issues.

Address