STATIONS BY FREQUENCY AND WAVE

REG. U.S.PAT. OFF.

The First and Only National Radio Weekly 387th Consecutive Issue-EIGHTH YEAR

How to Compute Voltage Divider Resistance

An Audio Meter
Your Ingenuity Tested in Volume Control Poser

Tables of Tube Characteristics

HB COMPACT, Battery Model

Rear View of Exceptional 4-Tube Set Using Two 222 Tubes, One 240 and One 112A. See pages 3, 4 and 5.

A NEW IDEA IN COILS!

The Bernard Tuner Works Screen Grid Tubes Up to the Hilt!
 amplification level that theory long promised but prac tice long denied.
The secret lies in tuning the plate circuit of the screen grid tube, and still covering the entire broadcast band. Herman bernard, noted radio engineer, invented the solutionseries, the moving coil turned by the same dial that turns the tuning condenser. An insulated link physically unites condenser shaft and moving coil. thus when the condenser plates are entirely in mesh the moving coil is set for maximum in ductance, that is, it aids the other part of the tuned winding. As the condenser is turned to lower capacity setting the moy acts as if fixed. From then on the moving coil bucks the fixed winding, greatly reducing the total effective inductance,
 Bernard Tuner for antenna coupling, the This coll is used as input to the first screen grid radlo frequency tube. The double-action turing method incented by Herman Bernard is employed. Adjust an equalizing condenser across the tuning condenser so that exactly
the same dial settings prevail through all the same
circuits. This equalizer, 90 mmid . onee set, Cat. No. BT3A for, 00035 mfd $\$ 2.55$
and thus nullifying the effect of the high starting capacity. The Bernard Tuner is a two-winding coil for interstage
coupling, working out of a screen grid tube, 222 or 224 , and coupling, working out of a screen grid tube, 222 or 224 , and into any type tube. The tuned primary has coupled to it a sthus greatly increasing an already enormons amplification! thus greatly increasing an already enormous amplification!
This is Cat. No. BT5B for .0005 mfd , BT3B for, 00035 mfd . Use BT5A or BT3A for antenna coupler, tuning the secondary, with an equalizing condenser across the antenna tuning condenser, so that the high minimum capacity of the tube's output will be duplicated at the input

FOR Cat. No. BT5B- $\mathbf{~} \mathbf{2 0 0 5}$ MFD FOR . 0005 MFD. CONDENSERS Bernard Tuner tor working out of a sereen witha a fixed coil, the two constituting a tuned primary for tuning the combined rotary and fized windings to exceed the braadesst band
of wavelengths. The condenser shaft and roof warelengths. The condenser shaft and ro-
tary coil shaft are physically coupled so one
motion turns both. Derelops motion turns both. Develops the highest pos-
sible amplification from the sereen sible amplification from the sereen grid tube
Cat. BT3A for . 00035 med.

The Diamond Pair

Since 1925 the Diamond of the Air has been an outstanding circuit. It has undergone few changes. When power tubes and screen grid tubes appeared these were included. When AC operation became practical, the model was described for such use. Whether battery-operated or AC-operated, the Diamond of the Air is a dependable and satisfactory circuit. It uses a screen grid RF stage, tickled detector and two stages of transformer coupled audio. The same coils are used for both models, battery or AC. The secondaries are tuned. They are matched with fine precision, to permit ganged tuning.

SG TRANSFORMER

Cat. No. SGS5-\$0.75
FOR . 0005 MFD. CONDENSER Interstage
work out of a fo frequency
transformer, to
screen grid tube, where the generous-sized primary is in the untuncd plate eirceitit
Cat. No. SG3 for .00035 mfd

The Diamond Pair of coils for .0005 mfd . tuning are Cat.
 Nos. RF5 and SG5. A circuit of excellent stability, extremely high selectivity and good sensitivity, the Diamond of the Air should be built with coils that permit full capitalization of the virtues of the circuit. Not only is the number of turns correct for this circuit on each coil, but the spacing between aperiodic primary and tuned secondary is exactly right. Note that the 3-circuit coil SGT5 (or SGT3) has a high impedance primary. This means good amplification from the screen grid tube, obtained in a manner that guarantees selectivity attainment.

STANDARD TUNER

FOR \quad Cat No. T5- $\mathbf{~ S 1 . 2 5}$
Standan three-circui. CONDENSER stage, or interstage coupling wher antenna is in the plate eircuit of any tube exceent and geree grid. Provides abundant selectivity

ANTENNA COUPLER

 Moving primary and fired beconakry, for antenana couping, adjustabio froom $\frac{\text { and }}{\text { knob }}$ at

[^0]Just Eass of Broadway
Enelosed
lpease find

name
ADDRESS

A fiexible Insulated Link independent $1 / 4$ shafing device to unite two operation of a tuning condenser single dal a rotruding iner. If the condenser has shats denser may from the rear, then the conshaft coupled by the link
shand shaft coupled by the link
either extension shaft denser hass no shaft protruding at rear, mount the Berpanel. It has shaft protrudthe link to the coupling by insulated protection sure of fores the receptacles of the link together when mounting.

Data on Construction The colls are wound by machine on a windings have identical inductance for a
 band is assured. The wire is the wave ated. All coils with o moving coil have single hole panel mounting fxture. All others should be used with connection lugs at
botiom, to shorten lead botiom, to shorten leads.
Only the Bernard extending from rear. This have a ehaft cary se that physical coupling to tuning condenser shaft may be accomplished by
the insulated link. the insulated link.
[Note: Those equalizing condenser for use with mond. tanaz model Bernard use with the an-
BT3A, should order EQ90 at $\$ 0.35$.] SCREEN GRID COIL COMPANY

\qquad
Vol. XV, No. 23
Whol
15 c per Copy, $\$ 6.00$ per Yea
[Entered as second-class matter, March,
1922, at the Post Office at New York,
N. Y., under Act of March, 1879.]

Technical Accuracy Second to None
Latest Circuits and News
EIGHTHYEAR

A Weckly Paper published by Hennessy Radio Publications Corporation, from Publication Office, 145 West 45 th Street New York, N. Y. (Just East of Broadway)

The HB Compact

Four Tubes Do a Great Deal Indeed

By Herman Bernard

Managing Editor

FIGS. 1 AND 2
TWO SEPARATE DIALS ARE USED TO TUNE THE HB COMPACT, FOR GREATER SENSITIVITY. THE REAR VIEW SHOWS THE TUNING CONDENSERS MOUNTED BEHIND THE COILS, WHICH ARE ON THE FRONT PANEL.
[Publication of some preliminary articles, giving advance information about the HB Compact, in battery and AC-operated forms, brought such an avalanche of demands that publication of the constructional data begin at once, that the battery model is described, beginning this week. The AC model will be discussed constructionally as soon as the present battery-model series is completed. The two circuits have been tested with exceptional thoroughness by disinterested laboratories and pronounced most remarkable. In this

OPPORTUNITY is now presented to home-builders of receivers, custom-set builders and the like, to construct the truly amazing HB Compact, a four-tube circuit that scales new heights.

The first outline of the circuit was published in Radio World, issue of July 27 th, on the theory that readers would appreciate some preliminary information. As a new system of tuning was to be introduced, it was supposed that readers would like that fully explained to then in advance. Some idea of the performance of the receiver was given, too.

The August 3d issue contained more information along the same lines. Both of these discussions concerned the batteryoperated model, which uses a screen grid radio frequency amplifier, a 240 tube as negative bias detector, a screen grid tube as first audio amplifier, and a 112A as the output tube, the audio channel being resistance-coupled.

The day after the July 27th issue appeared on the newsstands I received 142 letters, inquiring about various aspects of the circuit, many of the writers asking point-blank whether the circuit was all that I said it was, or whether I said it was
encomium Rabio World's editor wholeheartedly joins, and considers it a privilege to be able to serve Ramo Worin's large family of readers by presenting Herman Bernard's masterpicces in economical circuits. The fact there are only two tuned circuits, and only four tubes all told, in the battery model, need deter nobody, as it is scarcely possible that greater gain ever has bcen established in a stable circuit than is provided by the $H B$ Compact, in battery or AC form.-Editor.]
all that it wasn't. Stung in previous adventures in circuitsnot my circuits, thank goodness-these doubters certainly had good reason to be cautious.

More and More Inquiries

The second day 167 more letters arrived, and before the end of that week the total mail on the subject of the Bernard Tuner and the HB Compact had passed 500 , and at this writing 1,068 letters require an answer, and as it is impossible to send an individual reply to each inquirer, the alternative is to start publishing the constructional article on the battery model HB Compact three weeks in advance of the date of issue for which it was intended.

To accomplish that happy result it was necessary for the editor of Radro World to send me a telegram, which reached me while I was canocing on a lake in upper New York State, in the midst of a blissful vacation, which perforce had to be thus coldly interrupted, so that decent attention might be paid (Contimued on next page)

Dubious Answered Some Wondered if Circuit Worked at All

FIG. 3
THE CIRCUIT DIAGRAM IN SCHEMATIC FORM. IF A 6-VOLT PILOT LIGHT IS USED, CONNECT IT DIRECTLY ACROSS A+ AND A-, USING THE SET SIDE OF THE SWITCH AS A+. NOTE THE SCREEN GRID TUBE'S PRIMARY IS TUNED. THERE IS A STEP-UP RATIO TO THE DETECTOR INPUT
to the 1,068 who sent in encouraging or other letters, and the untabulated majority who did not write in on the subject, but whose interest was awakened nevertheless.
I was all for going ahead with the good vacation, I may as well confess, as the fishing was excellent, the breezes cool by day and by night, and a friendly moon winked me to sleep under tall pines each frigid evening, while I knew from reports of recent arrivals at that glorious lake that New York Citv was sweltering day and night. A second telegram was not only more persuasive, but I might say more persistent, and after I had no choice left I decided that it wasn't doing the right thing by one's constituency to be sunning one's self on a placid lake or mooning away the cool night hours under skies blinking with stars, when the vote was apparently 1,069 to 1 against it.

Much Stepping on Gas

So I got busy anew with the circuit, which needed just a touch or two here and there, and started writing this piece of literature, so that there might be no delay in the confirmation of every assertion I made concerning this most remarkable circuit.
Sizzling activity was not confined to my own immediate case. The National Company at that time had in its laboratory, for final engineering detail work, their models of Bernard Ttners, both for antenna coil and interstage coupling, and they had to be convinced that speed was necessary. The National Company is, as you know, a high-class engineering concern, and it will not sacrifice quality to expediency, so the production models of these coils, as made by National Company, can not be expected to be available simultaneously with the publication of this first article of the series, although the time between such publication and delivery of National coils need not be expected to be long.
The other company working on Bernard tuners, of lower price, and which work well and are also heartily recommended by me, although they are not in the de luxe class of the National coils, was the Screen Grid Coil Company. This concern had started earlier and was therefore able to get into production, under the impetus given by several coaxing conferences and a few telegrams, hence the Screen Grid Coil Company's products are now available.

Use the Steel Cabinet

The aluminum subpanels had to be expedited, special brackets provided for mounting the condensers behind the coils, and other physical problems solved, but those worries are over and it is now possible to capitalize on this fine circuit by building the receiver, and at a very low cost, indeed.

It is suggested that the circuit be built into the special steel
cabinet, which comes already drilled, including the holes for the condensers, rheostat and pilot light, and which is provided likewise with an insulating device, so that no matter what make of coil is used, including home-made coils, the tuned primary circuit of the screen grid tube will not be shorted by the grounded steel cabinet. This grounding arises from the fact that a grounded aluminum subpanel is used, and the subpanel is fastened by machine screws and nuts to the flange on inside of the steel cabinet. Both the subpanel and the cabinet are drilled consonantly, so that affixing the screws and nuts is the only work necessary to perfect the attachment of one to the other.
Tuning the primary circuit is certainly a wonderful, asset, because it enables obtaining highest amplification from the screen grid tube. As is well known, the screen grid tube's plate circuit should have a high impedance load. As radio frequencies the best solution is to tune that circuit, for at resonance the impedance is infinite. Then couple to the next stage, in

[^1]
Cons

 Explained
Moving Segment Must Be Rightly Placed

this instance the detector, by a step-up ratio of secondary to primary, and you increase the gain at least four times. Thus is an already enormous gain converted into something that is so utterly astonishing in volume and sensitivity that nobody except a person who had actually tuned this circuit himself would ever suspect that such accomplishment with such few tubes was at all possible.

Theory has always led us on, for the screen grid tube could produce more thrilling arithmetic and algebra than any other tube on the market, regardless of price. When amplification was under consideration the number ran into so many figures that not all the digits could be confined to a single line of the usual width of writing paper, $81 / 2^{\prime \prime}$, no matter if you wrote small and crowded the digits. But how to accomplish in practice what was luringly promised by $\bar{t} h e o r y$ was another matter. Of course, tune the primary. This was done last year in the Screen Grid Universal, a very sensitive receiver, but in the second tuned circuit some of the wavelengths in the broadcast spectrum were wiped out of the frequency tuning range, because of the high minimum capacity, if a step-up ratio to the detector were used. The only solution then was to reduce the number of turns on the secondary until the minimum capacity was low enough not to deprive the tuning condenser of its requisite effective ratio of minimum to maximum capacity.
The minimum capacity, developed elsewhere in the same tuned circuit, acted purely as a parallel capacity across the second tuning condenser. If turns were removed from the coil to reach lowest wavelengths, otherwise missed, then high wavelengths could not be tuned in, if the step-up ratio was mainained. The circuit aroused great interest, for its sensitivity brought admiring comment from multitudes of builders, and they did not worry about missing out on low wavelengths that they were not particularly interested in, anyway

Uses New Tuning System

The present circuit covers the entire broadcast spectram even though a step-up ratio is maintained from tuned primarv in the screen grid plate circuit, to the grid circuit of the detec tor tube. This is done by using a tuning system that I invented whereby a moving coil and a fixed coil are connected in series, and the tuning condenser connected across the extreme ends The shaft of the tuning condenser is united with the shaft of the moving coil by a flexible insulated coupler or link, and the turning of the dial actuates both coil and condenser simultaneously
When two coils are mutually coupled they may be aiding or opposing each other. If aiding, the effective inductance increases; if opposing, it decreases. Therefore the moving coils in this system of tuning must be placed so that when the plates of the tuning condensers are completely in mesh the moving coil aides the fixed coil with which it is in series
The rest of the action is automatic. As the dial is turned to the middle of its scale the condenser plates become more and more unmeshed, and automatically the moving coil adds less and less inductance. When the middle of the scale is reached the moving coil is at right angles to the fixed coil. This is zero coupling between the two. The effect is little different at this moment than if the moving coil were a fixed one Now, as the condenser is turned toward minimum capacity setting the moving coil starts to buck the fixed winding. The nearer to minimum capacity the condenser is turned the greater the bucking effect. This bucking rises to considerable height, so that, were it not for the high minimum capacity the circuit arrangement affords, the lowest broadcast wavelength, or highest frequency, would be tuned in at 35 on the dial, and at 5 on the dial 150 meters would be tuned in. However, this feature of sub-broadcast range can not be used in the present circuit, as the object of introducing the Bernard tuners here is to guarantee coverage of the broadcast spectrum, which requires something to overcome the effect of the high starting capacity.

Doubly Effective Tuning

The variometer tuning effect added to the condenser tuning effect, whereby both effects are in the same direction, amply extend the tuning ratio, so that ever with 100 mmfd . start ing capacity, the full wave band may be tuned in nevertheless. This is due to lowered effective inductance at low capacity settings and raised effective inductance at higher capacity set tings, with the middle of the dial as the reference point
It is respectfully submitted that this system of tuning never

FIG. 4
TEMPLATE FOR DRILLING A $7 \times 14^{\prime \prime}$ FRONT PANEL IN THE EVENT THE PRESCRIBED STEEL CABINET, OF WHICH THE FRONT PANEL IS A PART, IS NOT USED. HOLES FOR AFFIXING THE FRONT PANEL TO THE SUBPANEL AND FOR INSERTING DIAL POINTERS WOULD HAVE TO BE PROVIDED.
tribution to the methods of tuning, but is one fraught with diverse possibilities of use. The bucking at higher frequencies, in respect to the refcrence point, introduces a resistance that varies with frequency, and in the right direction, so that a self-stabilizing tendency is developed. This advantage is actually utilized in the HB Compact, hence the absence of any grid suppressor or other quieting device, even though the entire circuit is confined in probably the smallest practical space.

Intimate Details on Coils

Since the system of tuning is such a distinct noveity, and as the coils made by the two companies differ somewhat, it is well to go more deeply into the coil features.
A great deal of trouble will be encountered if the moving coils are not properly connected in circuit. Naturally, if at maximum capacity setting of the tuning condensers a bucking conditon exists, then an aiding condition will accompany the dial settings for higher frequencies than the reference point (middle of the dial). This is exactly the opposite of what is intended.
The situation becomes exasperating if both coils are reversed, that is, are working in the wrong direction, unless one is advised as to the remedy. If both are working wrong, then the consistency of the error will no doubt pall upon those doubters who wrote me wondering whether there was anything at all to the system of tuning. But the solution is easy. Simply reverse the connections of the moving coil, so that the end that previously went to the condenser goes instead to the same terminal of the fixed part of the tuned winding, and the free end now goes to the condenser, or, simpler yet, loosen the moving coil's setscrew, and turn the moving coil 180 degrees around. Now if you compare the correct position of the moving coil in one circuit with the incorrect position in the other circuit you will find that the dial readings have changed considerably. Now 500 meters will come in around 80 on the dial, the right way, instead of 'way up around 95 or more. Also the low waves will be received higher up on the dial. Only the correct position of the moving coil will tune in 545 meters.

Some Pointers

Here are some pointers:
(1) Place the moving coil randomly parallel to the fixed winding when the condenser plates are totally in mesh. Tune in a high wavelength station, preferably over 450 meters, and a ow wavelength station, preferably under 250 meters. Then with plates again fully in mesh, reverse the moving coil, either by a turn of 180 degrees or by physical reversal of leads, and compare the dial settings for the two stations. The correct connection or position is the one that gives the higher capacity setting for the low wavelength station and the lower capacity setting for the high wavelength station.
(2) By visual inspection, the correct connection may be obained by noting the direction of the windings of the moving

Both Dials Track

That Makes DX Easier to Bring In

FIG. 5
TEMPLATE FOR MOUNTING THE TUNING CONDENSERS TO THE SUBPANEL BY MEANS OF BRACKETS. THE TWO IOWER HOLES ARE USED. THE SINGLE HOLE MOUNT MAY BE BRACKETED FOR GREATER RIGIDITY.
coil and fixed coil in series with it, and seeing that the windings are in the same direction when the condenser plates are fully enmeshed, or in the opposite direction when the condenser plates are fully "out," and that corresponding terminals of fixed and moving coils are connected, either top to top or bottom to bottom.

Commercial Coil Features

The coils made by the National Company have the moving coil terminate, for connection to the rotor of the second tuning condenser, C 2 , at a fixture used in conjunction with the support of the tickler. The outlet is through a long lug. Therefore the connection between moving coil and fixed coil in series with it is made as a part of the manufacture of the coil. In this instance the physical reversal of windings can not be made, but the moving coil may be turned around 180 degrees to get it right if it is wrong at first.
The coils made by the Screen Grid Coil Company may be turned around, as suggested, or the leads may be reversed, as explained, since the constructor has to make the connection between the moving and fixed parts of the winding, at the binding posts.
While considerable details have been given about this feature of possible mixup of position. there is no real problem, as a mere statement of what the dial settings should be with given condensers will be a complete guide to success. The condensers used in the laboratory model were of the dust-proof type, with a front and back shield, and worked excellently. The dial settings will be given in a subsequent instalment of this series. But construction of the receiver may be confidently begun without these dial settings, particularly as builders may use various makes of condensers, and it will not be possible to give the settings for all makes.

Analysis of RF Side

The radio frequency side of the circuit is seen to consist of an antenna coil, with a fixed winding for the aerial-ground connection, and a combination fixed-variable winding for the tuned secondary. Notice that the secondary is tuned in this instance, not the primary.
The high minimum capacity across the subsequent tuned
circuit, C2, L4L5L6, is not present in the first tuned circuit, C1, L1L2L3, because the parallel minimum distributed capacities of two large coils are not present nor is the high-amplification condition that helps produce high minimum capacity. To make the tuning equal, so that dials will track absolutely the high starting capacity of the second circuit must be improvised in the first circuit. This is done by connecting an equalizing condenser of 90 mmfd . or higher capacity across the first tuning condenser, C 1 , and setting it so that its capacity equals that of the distributed capacity of the next tuned circuit. Once the adjustment is made, preferably at a wavelength under 300 meters, it need not be changed thereafter.
The equalizing condenser is not a trimmer, in the sense of being used for control from the panel of any tuning inequalities, for each stage here is separately tuned, and if any inequalities cropped up, a slight adjustment of the first tuning condenser dial would apply the remedy.

Why Tracking Is Valuable

It is advantageous to have the dials track nicely, because then you have a great help to reception of distant stations. If you know that the dial setting of one condenser is necessarily the dial setting of the other condenser, when you \log one dial you've logged both dials. Otherwise one circuit will develop freak dial settings, wholly unmatched by the other circuit, and distant reception becomes indeed elusive. However, in the present instance dial tracking is assured, particularly as there is a high starting capacity in both circuits, and any slight capacity variation due to freakish effects is a negligible percentage of total capacity in the circuit, no matter how little capacity is contributed by the tuning condenser. Assume 50 mmfd. as a minimum, due to setting the equalizer at that capacity. Then the different capacity effects due to use of aerials of different lengths and heights, and of grounds of equally different effects, is of no importance, because representing only a minor percentage of the minimum capacity in the circuit.

The capacity effect of different sized aerials is reflected in the secondary only on a reduced scale, and even at worst does not nearly equal the actual capacity difference between antenna and ground.

The coils made by both çompanies make possible the attainment of splendid results. The National Company's coils are BTS5 for antenna coil for .0005 mfd . tuning, BTP5 for the interstage coil for the same tuning capacity. The Screen Grid Coil Company's pair for .0005 mfd . are BT5A for antenna coil and BT5B for the interstage coil.
The main differences between the two makes of coils have been set forth. There are two other points of variance. The National Company's coils are on a $2^{\prime \prime}$ outside diameter, with tickler about an inch down, while the Screen Grid Coil Company's inductances are on a $21 / 2^{\prime \prime}$ diameter, with tickler so near the top that when the moving coil turns around part of its form extends beyond the level of the fixed form's rim.

The other point of difference is that the National Company's coils, if fastened to the front panel, without insulation, cause the "low" end of the tuned winding to be at the same potential as that of the steel cabinet, which is ground. The other company's coils are not metallically or other than merely physically connected to the front panel, because the tickler shaft is independent of the electrical circuit. For the National coil for interstage coupling an insulating device is needed, so that the ground potential does not reach the high B voltage on the coil.

Of course if a bakelite or hard rubber front panel is used these points have no bearing, as the front panel is the insulator.
If the tuning condenser is placed on the front panel, instead of the coil, the Screen Grid Company's model and the National Company's model both require insulating the shaft and mounting holes, because otherwise the condernser rotor puts the high B voltage at ground potential, thus shorts the B supply. This is true even though flexible insulated links be used to unite condenser shaft and coil shaft. The front cover illustration aids a visualization of these conditions.
Details for constructing the coils were published in the July 27 th, August 3d and August 10th issues, except that it is advisable to use a step-up ratio, say $1 \frac{1}{2}$ to 1 , no matter which type coil is followed. Conversion of existing three-circuit coils was explained also.
Next week fresh details on construction of the circuit will be published.
[Other illustration on front cover]

Why Shielding? Multi-Stage RF Channels Squeal Otherwise
 By James H. Carroll
 Contributing Editor

SHIELDING is not a new principle. It was known to the ancients also, the knights of the Middle Ages used to shieid their bodies in battle for much the same reason that we shield receivers, viz., to preserve from dissipation the flow of life currents. Some radio genius, therefore, probably got the idea from a suit of armor hanging on his ancestral walls. However, the idea is a sound one.
When radio shielding started, a comparatively short time ago, it began, more or less as a fad. It was crudely performed in some instances and wrongly in others.

With the screen-grid tube in multi-stage amplification shielding has become doubly necessary.

Shielding is not an intricate operation by any means and any fan will find it easy to shield his circuit and will obtain great pleasure and thrill in building the new shielded circuits. Making cans and shields has become a necessary complement of the parts business, and cans for tubes, and shielding compartments for coils and condensers, are now readily available for fan use. An enterprising New York dealer, Blan the radio man, went so far as to establish recently a department for this special purpose, making aluminum compartments and boxes to order in any wanted size, as well as carrying a large stock of standard sizes.
A striking example of a beautifully and most scientifically shielded job is the new MB29, designed by James Millen and Prof. Glen H. Browning.

Cans Barriers to Magnetic Forces

Shielding has become a most important part of the modern receiver so as to prevent feedback. The passage of an electric current through a conductor, such as a wire, causes the setting up of magnetic lines of force, thus creating a magnetic field. In the case of a wire-wound coil, the magnetic field is large. The field thus set up is not confined to the coil area, but forms a circle of infinite diameter.

In coils of the solenoid type, the field is most intense along the axis of the coil.

In coils of the doughnut type, really of toroidal form, which is a solenoid bent in ring form, the stray flux line are more confined, as the coil has no free ends. It will readily be apparent that if any of these coils are placed in the receiver and are not spaced sufficiently apart, the free fields will interlink so that the radio frequency currents in one coil will set up interfering currents in another coil, producing stray coupling. The set becomes unstable.

Shielding, to be effective, must be thorough. Even a small opening or crack will upset the effect.
The high gain and fine results of the Hammarlund-Roberts Master Hi-Q 29 are due largely to effective shielding. It is well to bear this in mind for faultily constructed shields of poor materials are worse than no shielding at all, because introducing a loss without any compensating gain.
Fans who desire to shield a receiver not designed in the modern way for shielding will find it a difficult, ineffectual task, and the most practical thing to do is to tear down the receiver and redesign it for the protective shielding, as the proper layout of parts is most important. For instance, in the old-style radio frequency sets the tubes were not placed directly behind their coils and condesers, as in today's practice. Instead they were placed beside the condenser inductance unit, being staggered with the audio the condenser inductance unit, being staggered walves, making it practically impossible properly to place a shielding can.

Most Efficient Methods of Shielding

Aluminum, tin and copper are used for shielding, aluminum being most commonly used on account of lightness. It is a much better shield than tin.

Theoretically. shielding would not be necessary if the inductances could be so widely spaced so that their fields could not substantially interlink.
In laying out the shielded receiver, the units should be considered in turn and the cans should be made to fit them, but not too closely. There should be 1 inch or 2 inches between can and coil.
It will be generally found that the set will wire easiest if the jacks used are mounted on the panel, under the sub-panel so that they project into the sub-panel box. It should be remembered that every tube should have a can or compartment of its own, especially the screen-grid and detector tubes. These tube cans are on the market in sizes and shapes to suit every taste and every need. Shielding should invariably be connected to the ground binding
post of the set. All parts should be insulated, wherever necessary, with bushings, radio tape, spaghetti or blocks of hard rubber.

If practical, the rotors of all the condensers should be grounded on the boxes and this may be accomplished in the case of a leakcondenser detector circuit by returning the grid coil to A+ but having the tuning condenser go to A minus, with a 1 mfd . condenser from A+ to A-.

Wires that have to be drawn through shielding walls should be covered with a good grade of spaghetti or other insulating tubing and the hole in the shield must be clean-cut, with no burs.
Complete shields may be bought, that is, cans, built up as well as cans in knockdown form.
In soldering on copper shields, the copper surface should be clean and bright before the solder is applied, the iron well tinned and very hot, as the large copper surface dissipates heat rapidly. Very little flux should be used and the remaining traces should be carefully removed with alcohol after the soldering is completed. You can not solder to aluminum, so fasten lugs to insulated bushings.

Right or Wrong?

(1)-The hum in the output of a tube operated with AC on the filament varies with the plate current flowing.
(2)-An unbalance of the grid return with respect to the midpoint of the filament does not change the hum component in the plate circuit of a tube operated with AC directly on the filament.
(3)-There is no advantage in connecting the mid-point of the heater in a 227 type tube to the cathode or to a negative voltage.
(4) - A screen grid tube cannot oscillate because its grid-to-plate capacity is negligible.
(5)-The amplification factor of a tube is a constant independent of the voltages applied.
(6)-The amplification factor can be measured with a voltmeter and a milliammeter.
(7) - A vacuum tube voltmeter cannot be constructed without the use of very sensitive instruments.
(8)-The highest power output from a tube is obtained when the plate load resistance is equal to the internal resistance of the tube.
(9) - The amplification factor of a tube decreases as the plate coupling resistance is increased, the voltage in the plate circuit remaining constant.
(10)-The power required to operate a complete radio receiver installation can be estimated closely by summing up the AC and DC power dissipations in the receiver and the voltage supply circuits.
(1)-Right. The hum component increases as the plate current decreases. However, there is a current for which the hum is a minimum.
(2)-Wrong. The grid return must be made accurately to the electrical center of the filament, or there will be a considerable hum component, in many instances much greater than the signal hum itself.
(3) -Wrong. Sometimes a disagreeable hum can be entirely eliminated by connecting the mid-point of the heater to the cathode, or to a point of lower potential.
(4) -Wrong. It is true that the grid-to-plate capacity is negligible at audio frequencies, and even at broadcast frequencies, but it is not at higher radio frequencies. And the tube oscillates readily due to feedback from one circuit element to another.
(5)-Wrong. While it is true that the factor is practically constant over the usual operating range, it decreases rapidly for low effective plate voltages.
(6)-Right. It can be done very easily and with only a few readings. It is only necessary to observe how much change is required in the grid voltage to offset a given change in the plate voltage, keeping the plate current constant.
(7)-Wrong. Good results can be obtained with any ordinary instruments used for testing receivers.
(8)-Right. The greatest power is obtained from any electric source when the load resistance is equal to the internal resistance of that device. However, the greatest undistorted output is obtained from a tube when the load resistance is twice the internal resistance.
(9) - Right. In some instances at least, judging from the course of the grid voltage, plate current curve, the amplification factor decreases to zero.
(10)-Right. No more power is taken from the line than is used by the radio set, so that if all the power dissipation in the receiver and its voltage supply are summed up the result is the power taken from the line.

ATube in an A Single $227 \mathrm{~S}_{\mathrm{Ervi}}$ Same Valve Is Automatic Volume Contro and Grid of Next, and Is V
 By Herbe

FIG. 1
A 224 DETECTOR, WITH A 227 AS AUTOMATIC VOLUME CONTROL RESISTOR, PLATE LOAD ON DETECTOR AND GRID LOAD ON OUTPUT TUBE, AS WELL AS VARYING BIASER OF THE POWER TUBE

WHILE radio frequencies of considerable intensity are deemed advisable if the automatic volume control is to be actuated from the RF current, no special regard need be paid to signal level if the control is located in the audio frequency amplifier. The intensity will be sufficient in the first audio stage; and indeed this may be the only audio stage, since circuits of such design are becoming popular. Considerable radio frequency amplification is necessary to render practical the single stage of audio.
In Fig. 1 is shown an experimental design originated by Uimar Umph in which a vacuum tube is used as an automatic volume control, with the assistance of an external biasing resistor. This circuit shows the detector as a 224 tube, with a biasing resistor for the 227 connected to the detector plate, and the load on the plate circuit consisting of the plate-to-cathode resistance of the 227.
The grid of the 227 is returned to the plate of the detector so that the negative bias on the load tube is the voltage drop in the external resistor. This drop changes with changing values of plate current, hence changes the bias. The more plate current flowing, the greater the voltage drop across the external resistor and the greater the bias and consequent plate load. Increased bias increases the plate-to-filament resistance of any tube. In the case of the 227 the plate-to-cathode resistance is affected.

Serves Another Purpose

Another novelty in this circuit is that the plate-to-cathode resistance is not only the load on the plate circuit of the detector, but is also the grid load on the output tube, a 245 . This double use is made possible by proper arrangement of the voltages. If 200 volts are to be applied to the last tube then a total of 300 volts would be necessary, so that 200 would be dropped in the output tube, about 50 in the common grid-plate circuits of the volume control tube and the output tube, and about 50 in the detector tube. This 50 -volt external drop is used not only for the purposes of the detector plate but also for negative bias of the power tube.
If the position (1) on the voltage divider is taken as the reference point, then point (2) will be higher by a few volts, enough to bias the detector tube negatively for detection purposes at an
applied voltage of 100 , and this normally would be about 5 volts, if the screen voltage is around $221 / 2$, represented by point (3). Assuming 1 milliampere plate current in the volume control tube, the external resistor next to the detector plate would be 5,000 ohms to produce a negative bias of 5 volts at that current. The plate of the volume control tube goes directly to the voltage divider, to point (4), which is 100 volts higher than the reference point. The 10 volts used for the two previously mentioned biases need not be considered now in the computation.

The cathode-to-plate resistance of the volume control tube is assumed to be about the same as the resistance of the plate circuit of the detector tube, to make the statement of the voltage distribution simpler.

Now, the power tube has its filament midtap connected to plus 100 volts and its plate to plus 300 volts, so its plate voltage is 200, while the grid return is to plus 50 volts, so the grid bias is 50 volts negative. This is not the rated bias for 200 plate volts, but for 250 plate volts, as the voltages are illustrative only.

Third Use

Not only is the plate-to-cathode resistance of the volume control tube used twice at the same time, as plate load and grid load, but the voltage drop in that resistance is used three times, becatise it furnishes the negative bias for the last audio tube.

So the external resistor that biases the volume control tube, increasing the bias with increased signal level, tends to level out the volume where it is above the required amount, since higher bias produces lower amplification. The corresponding change in the plate resistance of the volume control tube, as affected by bias, is made to change the bias on the last audio tube as well. This is apparent when one considers that the cathode-to-plate

G. E. and Westinghou

In the March, 1929, issue of "Proceedings of Radio Engineers" G. L. Beers, Westinghouse Electric and Manufacturing Company Pittsburgh, and W. L. Carlson, General Electric Company, Schenectady, published a paper on "Recent Developments in SuperHeterodyne Receivers," in which they disclosed a simple automatic volume control. In this control a single tube, associated with the second detector, was used for controlling the grid on the intermediate frequency amplifiers. The range of the control was approximately tip to 100,000 microvolts per meter. Other features in the receiver were band selectors in the intermediate frequency level,
obtained by means of tuned windings inductively coupled obtained by means of tuned windings inductively coupled, and a high intermediate frequency.
In a discussion of this paper in the August, 1929, issue of "Proceedings," Dr. Frederick Kap. Vreeland asserts that it is preferable to obtain the selectivity in the radio frequency channel by means of band pass filters of the directly coupled type, such as he described in an earlier paper in "Proceedings," claiming that it is difficult to obtain a flat top characteristic over a 20 kc . band when the width of the band is 11 percent. of the cartier, and that it is relatively easier to obtain the desired square-top transmission band at radio frequency where the 20 kc . band is only 3.3 percent. of the
carrier.

Mr . Beers, one of the authors of the article discussed by Dr. Vreeland, answers by claiming a decided superiority in obtaining the selection in the intermediate frequency on the ground that if the
selection is done at the constant intermediate frequency the response

ROIT New Use:
 Coupling Resistor in Plate of One Circuit ying Biasing Resistor of 245

E. Hayden
resistance of the 227 is the biasing resistor for the output tube. Again, higher volume is trimmed down for the same reasons, and besides the safety factor of increased bias accompanying increased volume tends to prevent overload in this second position.
As for the aspects of detection by the grid bias method, the modulation is upward, as contrasted with downward modulation of the leak-condenser method of detection. With the negative grid bias or so-called power detector, any increase in volume increases the plate current. In a leak-condenser detector the plate current drops as the volume goes up. Hence the external biasing resistor in the present circuit is able to function in the right direction.

Two Points to Consider

There are two points well worthy of investigation: first, whether the impossibility of using a bypass condenser across the power tube's biasing resistor causes tone value to suffer, and second, whether the increased plate resistance of the volume control tube causes the amplification to increase at a faster pace than the increased bias tends to make the amplification decrease.
Why not bypass condenser can be used across the biasing resistor of the power tube circuit is obvious when one recalls that that very resistor is the only coupling and is across the line. It alone unites the detector stage to the output tube, and a condenser of the usual capacity for bypassing, say, 4 mfd ., would bypass a nearly all of the signal!
As for the effect of the increased resistance increasing the amplification faster than the increase in bias decreases the amplification, this could happen, if the volume control tube were a high mu tube, such as the 224 for instance, but when it is a 227 it is not likely that the amplification will go up in any degree that would

Engineers Again Clash

will be uniform throughout the broadcast band. But if the selection is done at radio frequency, the response will vary throughout the broadcast band. At $1,500 \mathrm{kc}$. the tuning will be three times as broad as at 550 kc . He further states that it is desirable that the responsive curve be slightly rounded at top, rather than flat or hollow, so broadcast listeners will be able to tune the receiver accurately without the aid of instruments. If the response curve has a hollow at the top, with peaks at the sides, the broadcast listener will tune to one of the peaks, and thus lose the higher frequencies in the side bands which the system was designed to preserve.

Dr. Vreeland also said that an automatic volume control operating by changing the plate voltage is superior to one in which the grid voltage is varied because there is less wave form distortion. In answer Mr . Beers says that wave form distortion occurs both when the control operates on the grid voltage and on the plate voltage.

Dr. Vreeland also states that his automatic volume control maintains a constant audio output level regardless of the degree of modulation of the incoming signal, and yet variations in the sound intensity of the music or speech which are produced by changes in the percent. modulation are rendered with their true relative strength. Mr. Beers challenges this assertion in view of Dr. Vreeland's cluim that his automatic control has quick response and slow recovery. Mr. Beers asserts that faithful response is impossible if the volume control has these characteristics.

FIG. 2
SIMPLIFIED GENERAL PLAN OF THE CIRCUIT.
noticeably offset the decrease occasioned by the higher bias.

Aids Amplification

One danger that exists in the use of a volume control tube, especially in a circuit such as the one now under discussion, is that it might turn out to be anti-regenerative, so that it is an amplification killer at every signal volume, including weak signals as well as strong ones. The present design has no effect on weak signals, but is reduces strong ones to the steady desired volume level. The volume control tube does not produce negative feedback or other damping effects, but tends to aid the amplification.

Fig. 2 shows the same general circuit, with a simple resistor representing the volume control tube, but with the external biasing resistor omitted. In Fig 2 the usual action of a resistor is embodied, and no volume control results. But a tube is not a usual type of resistor. It is a highly special one, whereby its resistance varies with variations of operation. Thus an increase in plate voltage decreases the plate resistance, while an increase in negative bias, with unchanged plate voltage, increases the plate resistance.

The circuit in Fig. 1 shows the use of a vacuum tube's property of being a resistor of varying resistance values through automatic change of the bias applied to the volume control-coupling tube. While the 227 is hooked up in amplifier fashion, it is neither an amplifier nor a detector, but a resistor of instantaneous sensitivity, that changes its resistance in a manner that the hookup capitalizes.
[The circuit operation as described in the foregoing article, and several of the conclusions stated in the text, are utterly fallacious. While more than an elementary knozeledge of radio may be necessary to determine the mistakes, many of our readers possess the required technical background. Letters discussing the circuit and the article, and pointing out the mistakes, are invited. Address Technical Editor, Radio World, 145 West 45th Street, New York, N. Y.-Editor.]

How то

FIG. 71
A FAMILY OF PLATE VOLTAGE, PLATE CURRENT CURVES FOR THE 220 LOW POWER OUTPUT TUBE WITH THREE LOAD LINES, ONE FOR A RESISTANCE EQUAL TO THE PLATE RESISTANCE AND TWO FOR A RESISTANCE TWICE THE PLATE RESISTANCE.
[The following article is one of the series on "Power Amplifiers," begun in the June 1st issue, and published each week since then. Next week another interesting instalment will be published.Editor.]

With these limitations in mind we can determine from the curves the voltage amplification, the maximum output voltage, and the necessary bias for any given plate load resistance.
The load line for the .3 meghom resistance crosses the - .5 volt curve at 73 volts on the plate, and it crosses the current limiting line at 165 volts on the plate. The difference between these two plate voltages, namely, 92 volts, is twice the amplitude of the signal voltage drop across the resistor when the tube is loaded up to the limit under the conditions stated. Thus the amplitude of the voltage drop is 46 volts, and the effective value is 32.5 volts.
This change in the output voltage was produced by a change in the grid voltage from - .5 to - 5 volts. The difference, 4.5 volts, is twice the signal amplitude impressed on the grid. The amplitude is therefore 2.25 volts. Since this grid voltage change produced an output voltage amplitude of 46 , the amplification is $46 / 2.25$, or 20.4 .
The necessary bias is half way between the two extreme grid yoltages, or it is -.5 plus -2.25 , that is, -2.75 volts. In practice it would be made -3 volts, but this would limit the signal amplitude to 2 volts, which in turn would limit the output voltage amplitude to 40.8 volts. Even this voltage is sufficient to load up a 171 A power tube.
Some improvement may be effected by increasing the plate load resistance, without increasing the plate battery voltage. When this is done, it is permissible to allow a lower minimum plate current. By increasing the load resistance the amplitude of the input voltage can be increased a little, and at the same time the amplification will be increased. When the higher plate load resistance is used, the wave form distortion will be less, but the frequency distortion will be slightly greater. The high audio notes will not be amplified so much due to the greater effect of the plate to grid capacity of the tube when the load resistance is high.

FIG. 72
A FAMILY OF PLATE VOLTAGE, PLATE CURRENT CURVES FOR THE 301A TUBE, WITH TWO LOAD LINES, ONE FOR RESISTANCE COUPLING AND ONE FOR POWER AMPLIFICATION.

or Plate

Missing Quantity

Degree of

By J. E. Anderson

If it is desired to obtain a greater output voltage, enough, for example, to load up a 250 power tube, or to minimize the wave form distortion, a much higher plate battery voltage can be used. If the higher plate battery voltage be combined with a higher load resistance, both a very high amplification and a high output can be obtained. Consider the longer dotted line, for example. The battery voltage is 300 volts and the plate load resistance is one-half megohm. This line crosses the -.5 volt bias line at 80 volts and the plate and it crosses the minimum current line at 275 volts. Thus the amplitude of the maximum signal voltage in the plate resistance is 97.5 volts, more than sufficient to load up a 250 power tube.

The grid voltage when the current is minimum is about -8.5 volts, obtained by extending the family of curves. Hence the maximum grid swing is 8 volts, and the amplification is $195 / 8$, or 24.4 times. The necessary grid bias is the signal amplitude on the grid plus the minimum of - 5 volts. That is, the bias should be - 4.5 volts. As will be observed from the curves, when the plate battery voltage is 300 volts, the resistance of the plate load is half megohm and the grid bias is 4.5 volts, the effective plate voltage at the operating point is slightly over 180 . volts, and the plate current is slightly more than 2 milliampere. Thus it is perfectly safe to operate the tube under these conditions.
While it is not often necessary to operate a resistance coupled amplifier at such high plate voltages, it is sometimes convenient to do so in order to simplify the wiring of the receiver.
While the 220 tube is not capable of delivering much energy to the loudspeaker, it is usually regarded as a power tube because it has been designed for use as the last tube in a receiver employing tubes of the 99 type in the stages ahead.
For those wishing to compute the power output and the amplification a family of plate voltage, plate current curves is reproduced in Fig. 71. Three load lines are drawn across the curves, one for a load resistance of 6,500 ohms, which is approximately equal to the internal plate resistance of the tube, and two load lines for 13,000 ohms, which is about twice the value of the internal resistance.
The 6,500 -ohm load line assumes that the plate battery voltage is 180 volts, and the two 13,000 -ohm lines assume plate battery voltages of 150 and 205 volts. The minimum permissible plate carrent is taken as one milliampere, indicated by the dotted line parallet
to the plate voltage axis. During to the plate voltage axis. During operation the grid voltage should not be so great as to force the plate current below this line, and it should at no time approach the line for zero bias closer than onehalf volt.
13,000 ohms, the plate current reaches the the load resistance is 13,000 ohms, the plate current reaches the permissible minimum when the voltage on the plate is 136 volts, at a grid voltage of 36.5 volts. The grid voltage swing is therefore 36 volts, which will produce a swing in the plate load of 74 volts. The corresponding amplitudes are 18 and 37 volts. The amplification is therefore 2.0 . The grid bias should be 18.5 volts. The steady plate current at this bias is nearly 4 milliamperes. It should be noted that this is the current whien the load is a pure resistance. When the plate current flows through a choke coil of low resistance, the current will be considerably higher. The power output, however, must be calculated on the basis of pure resistance load.
Consider the 180 -volt, 6,500 -ohm line. It reaches the minimum current line at a grid voltage of -47.5 volts, where the plate voltage is 174 volts. The double amplitude of the grid voltage is therefore 47 volts, while the corresponding plate voltage amplitude is 77 volts. The voltage amplification is 1.64 . Thus the amplification is considerably lower with lower plate load resistance.
The grid bias should be one-half 47 -plus the .5 allowance made to prevent current, or 24 volts. At this bias the steady plate current is alout 6.3 milliamperes. As before, this is the current when the load is a pure resistance, and not when the plate is fed through a choke coil.

$G_{\text {rid }} B_{\text {ias }} V_{\text {alue }}$

Voltage

plied with Good

ccuracy
Herman Bernard
The 205 volt, 13,000 -ohm line crosses the line of minimum current at a grid voltage of - 52.5 . This, then, allows a double amplitude grid voltage of 52 volts. The required bias would be 26.5 volts, at which the plate current, under resistance load conditions, is 5.2 milliamperes and the effective plate voltage is 135 volts. This is nearly the conditions on which the tube is rated as a power amplifier. But if such high plate battery voltage is used, the steady plate current will be considerably higher than that indicated by the load line.

And if this high voltage is not used, the power output will be considerably less than the rated power.

When the grid voltage varies from -. 5 to -52.5 on the third load line considered, the plate voltage varies from 78 to 192 volts. The double amplitudes, therefore, are 52 and 114 volts, making the voltage amplification 2.2. This compares with 2 for the same load and 150 volts in the plate circuit. Thus the higher plate voltage results in a slightly greater amplification as well as greater output.

The computation of output power from these curves, or from those of any other tube, is easily done. The power is the product of the effective values of plate voltage and the corresponding effective value of the plate current. The peak value of the plate current is one-half the value of the difference between the plate currents at the two grid voltage extremes, and the peak value of the voltage is one half the difference between the corresponding plate voltages. The power is one half of the product of these two peak values.

Let us take the 205 -volt, 13,000 -ohm line in Fig. 71 as an example. We found that the plate voltage varied between 78 and 192 volts. One half the difference is 57 volts. We also note that the current at - . 5 grid is 9.8 milliamperes and that it is 1 milliampere at -52.5 volts on the grid. One half the difference is 4.4 milliamperes. The product of the peak values of current and voltage is 4.4×57, one half of which is 125.4 , which is the power output in milliwatts. The rated value is 110 milliwatts. To get an output of 125.4 milliwatts the amplitude of the signal voltage on the grid must be 23.5 volts.
The 301 A tube is used frequently as an output tube, and quite often as a voltage amplifier in resistance coupled circuits. Hence a family of plate voltage, plate current curves for this tube is reproduced in Fig. 72. Two load lines are drawn across the family of curves, corresponding to the two functions of the tube. One is for a pure resistance load of 100,000 ohms and a plate battery voltage of 250 volts and the other for a pure resistance load of 20,000 ohms and a plate battery voltage of 180 volts.

We shall assume as before that the signal voltage never approaches the zero bias line closer than one half volt and that the minimum plate current is one half milliampere. For resistance coupling this minimum may be larger than necessary and for loudspeaker load it may be lower than it should. However, it is a good average for illustrative purposes.

The 100,000 -ohm line crosses the minimum current line at 208 volts on the plate and a grid bias of 21 volts. It reaches the -. 5 -volt bias line, not drawn, at a current of 1.9 milliamperes and a plate voltage of 53 volts. Hence a grid voltage change of 20.5 volts produces a change in the voltage across the plate resistor of $208-53=155$ volts, making the voltage amplification 7.6. This is very close to the amplification factor of the tube, which is 8 .
The power output in this case is of no interest. The grid bias required is one half of 20.5 plus .5 , or 10.75 volts. It is seldom necessary to use such high plate battery and grid bias voltages on the tube, for only the 250 tube, when operated at full capacity, needs as great a signal amplitude as the voltage across the plate resistance in this instance, that is, 77.5 volts. That tube requires 84 volts. So if the tube is to be used for feeding this power tube directly the high voltage in the plate circuit of the 301 A is needed and at the same time the bias should be about 11 volts. The plate coupling resistance could also be doubled to good effect.

FIG. 73
A FAMILY OF PLATE VOLTAGE, PLATE CURRENT CURVES FOR THE 112A POWER TUBE WITH TWO LOAD LINES 10,000 OHMS, ONE FOR 180 VOLTS IN THE PLATE CIRCUIT AND THE OTHER FOR 225 VOLTS.
Refer now to the 180 -volt, 20,000 -ohm load line. It crosses the line of minimum current at 170 volts where the grid voltage is - 17 volts. The possible voltage swing is $16: 5$ volts, requiring a bias of 8.75 volts. The maximum çurrent is 4.8 milliamperes and the corresponding minimum plate voltage is 84 volts. Hence we have the power output $1 / 8(170-84)(4.8-5)=46.2$ milliwatts. The tube is rated at 55 milliwatts when the plate voltage is 135 volts. The voltage amplification of the tube is obtained by dividing the double voltage swing, 86 volts in this case, by the double grid voltage amplitude which produces it. This was found to be 16.5 volts. Hence the voltage amplification is 5.2 .
The first in the series of tubes which could really be called a power tube was the 112 A , for that tube had a maximum undistorted output sufficiently large to operate a loudspeaker with good volume and enjoyable quality, provided the other parts of the circuit did not spoil the quality.

A family of plate voltage, plate current curves for this tube is given in Fig. 73. Two load lines are drawn across the curves, both for 10,000 ohms, which is approximately twice the internal resistance of the tube One of the lines assumes that the voltage in the plate circuit is 180 volts and the other that it is 225 . The minimum current is assumed to be 1 milliampere, indicated as before by a dotted line parallel to the plate voltage axis.
Referring to the 180 -volt line in Fig. 73 we note that it crosses the minimum current line at 170 volts, where the grid voltage is -17.5 volts. Now for the sake of simplicity let us assume that the grid voltage may go to just zero, neglecting the effect of the grid current. The line crosses the curve for zero bias at 70 volts on plate, where the plate current is 10.25 milliamperes. We have then for the power $1 / 8(170-70)(10.25-1)$, or 116 milliwatts. The needed bias would be one half of 17.5 , or 8.75 volts.

FIG. 74
A FAMILY OF PLATE VOLTAGE, PLATE CURRENT CURVES FOR A 171A POWER TUBES WITH TWO LOAD LINES FOR 4,000 OHMS, ONE WHEN THE VOLTAGE IN THE PLATE CIRCUIT IS 180 VOLTS AND THE OTHER THE PLATE CIRCUIT IS 180 VOLTS AN
WHEN IT IS 255 VOLTS.

$W_{\text {HAT }}$

$\mathrm{R}_{\text {ESISTAN }}$ Voltage Dis

FIG. 1
CIRCUIT ILLUSTRATING THE METHOD OF SOLVING A SIMPLE VOLTAGE DIVIDER PROBLEM.

HARDLY a day passes without some radio fan writing tor information on the values of resistors in voltage dividers. A typical question asked is: "I wish to build a B battery eliminator which will give voltages of $45,90,135$ and 180 volts at the taps. I plan to use this eliminator on different receivers. What should the values of the resistors in the voltage divider be?"
The only answer that can be given to questions of this type is that the resistors should have any values whatever. In answer to a question of this type it is only possible to give the value of one of the resistors, and that value is entirely arbitrary. If a thousand different resistors be placed in a grab bag and a blindfolded persons picks out one of them at random, that will be a correct resistor to use. It may not be the very best value that could be chosen for any particular job, but it is the best value that can be chosen in the light of the information supplied in the question. Moreover, this particular resistance picked out at random can be placed in any desired position in the voltage divider. This position, too, can be selected by the grab bag method.

There is as much definiteness in the question as there is in the following: How fast should an automobile travel to get from somewhere to somewhere else in some time or other. Nobody would think of asking such a question of an automotive engineer and expect to get an answer, but many radio fans don't hesitate to ask indefinite questions and expect definite answers.

FIG. 2
THE SOLUTION OF A VOLTAGE DIVIDER PROBLEM SIMILAR TO THAT IN FIG. 1.

Solution of Common So Any One Can By J. 1

It is not sufficient to know the voltage between any two taps on the voltage divider. It is also necessary to know the current flowing in the resistance between the two taps. Since this current will not be the same for any two sets, or for any two different adjustments of the various voltages in the same set, it is obviously impossible to determine the value of any one resistor, for the value will not be the same under different conditions.
Any one of the resistances in the voltage divider can be chosen at random, for it is perfectly arbitrary. But when that resistance has been chosen, the values of the others must bear certain relationships to this one, and this relationship depends on the current distribution in the voltage divider network as well as on the voltage distribution.
In any case the product of the resistance between two voltage taps and the current flowing in that resistance is equal to the voltage between the two taps, the current being expressed in amperes and the resistance in ohms. This is simply Ohm's law, which is general.

Factors Governing the Choice

The choice of the arbitrary resistance in the voltage divider depends on the desired value of the bleeder current. If this current is made large, that is, if the arbitrary resistance is made small, the problem is much simplified, for approximate solutions may be given which are correct for all practical purposes. For example, if the bleeder current is of the order of 50 milliamperes and the currents taken from some of the taps is of the order of one milliampere, no great error can be committed if the small currents are neglected entirely and the assumption made that the bleeder current alone flows through certain sections of the voltage divider.
Of course the bleeder current cannot be chosen too large, for if it is the output voltage will be low, a heavy drain will be imposed on the rectifier tube and the filter chokes and the operation of the receiver will be unsatisfactory.
We shall solve a few typical voltage divider problems to illustrate the method of procedure in arriving at reasonable resistance values.
Fig. 1 is a simple case. It is assumed that the maximum current which can be drawn from the rectifier without overloading the filter chokes is 80 milliamperes. The rectifier tube imposes no additional limitations, for any one of the common rectifiers will handle more than 80 milliamperes.
It is also assumed that a single 250 power tube is connected to the highest voltage tap and that this tube is operated at the maximum plate and grid voltages. Further, it is assumed that two AC screen grid tubes are operated in resistance coupled circuits with 300 volts in the plate circuits and 30 volts on the screens, the resistances in the plate circuits being 250,000 ohms. The grid bias values for all the tubes are supposed to be provided for by drops in individual resistances.
Under these conditions the current distribution is approximately as follows: 55 milliamperes to tap $\mathrm{B} 1, .5$ milliampere to tap B2, 2 milliamperes to tap B3. Therefore the total current taken by the amplifier is 57.5 milliamperes. Since the current drawn from the filter cannot exceed 80 milliamperes, the bleeder current may be 22.5 milliamperes, and that value is selected. Ordinarily this would be a very small bleeder current, but it is large compared with the currents taken from the two taps B2 and B3. Hence it is large enough.

IS ECESSARY IN

oblem Is Expounded

mpute the Values

nderson

to

Through the lowest resistance R 3 the bleeder current alone flows. Through R2 the current is 24.5 milliamperes, since the current diverted into Tap B3 also flows in this section. In the upper resistance R 1 the current is 25 milliamperes, since that resistor carries the current in R2 plus the current diverted by tap B2. We now have sufficient information for solving the problem completely.
The voltage drop in R1 is 534 less 300 volts, or 234 volts Since the current in this section is 25 milliamperes, the value of R1 must be $234 / .025$ ohms, or 9,360 ohms. The voltage drop in R2 is 300 less 30 , or 270 volts, and since the current is 24.5 milliamperes, the resistance of R2 must be $270 / .0245$, or 11,020 ohms. The drop in R3 is 30 volts and the current is 22.5 milliamperes. Hence the value of R 3 is $30 / .0225$, or 1,333 ohms. It is the resistance of R3 which was selected arbitrarily in this case and it was done when the bleeder current was selected as 22.5 milliamperes. The values of the other two followed as a consequence of this selection and of the current and voltage distributions.
Fig. 2 illustrates a similar problem. To the B1 tap plate return leads of two 171 A tubes and those of other tubes drawing a total of 50 milliamperes. Tap B2 draws only 3 milliamperes and B3 only half as much as that. B2 supplies one tube at a voltage of 135 and B 3 serves a detector and a radio frequency amplifier at 45 volts.

As in the preceding example, it is assumed that the maximum current that can be drawn from the filter and rectifier is 80 milliamperes. Since the total current drawn by the tubes is 54.5 milliamperes, 25.5 milliamperes can be used for bleeder current.

Grid bias voltages are supposed to be taken from voltage drops in the individual stages. Since the power tubes require a bias of 40 volts and a plate voltage of 180 , the total voltage drop across the voltage divider must be 220 volts. Hence we have the three voltages 45,90 and 85 volts across the resistors $\mathrm{R} 3, \mathrm{R} 2$ and R 1 , respectively.
Both the voltage drop and the current in each resistance section are now known and to find the resistance values it is only necessary to apply Ohm's law. The resistances are: R1. 2,833 ohms; $\mathrm{R} 2,3,333$ ohms, and $\mathrm{R} 3,1,765$ ohms.

More Complex Case

In Fig. 3 is a slightly more complex example, in which the bias is derived from voltage drops in the voltage divider. K is the return from the cathodes, ordinarily labeled B minus. The cntire current drawn by the set returns to the voltage divider throngh this lead, and this current amounts to 47 milliampes. The distribution of this current is 32 milliamperes to B1, to which the plate return of a 245 tube is connected, 10 milliamperes to B2, to which the plate returns of two 224 screen grid tubes and the plate return of a detector tube are connected. B3 takes 5 milliamperes, the screen grid current of the two 224 tubes and the plate current of an audio amplifier operated at a plate voltage of 75 volts.

The total drop across the voltage divider is 300 volts, divided by K so that 250 volts are on the plate of the lower tube and 50 volts on the grid. A bias of 1.5 volts is allowed for the screen grid tubes and the audio amplifier. The detector grid is returned to K so that no extra voltage tap is required for this. The voltage drops in the various resistance sections are as indicated.

FIG. 3
WHEN DETERMINING THE RESISTORS TO BE USED IN A VOLTAGE DIVIDER 'IT IS NECESSARY TO REMEMBER THAT THE PLATE CURRENTS RETURN TO THE VOLTAGE DIVIDER WHERE THE CATHODES ARE CONNECTED.

As in the two previous cases it is assumed that the total current delivered by the rectifier-filter is 80 milliamperes. Since the set draws a total of 47 milliamperes, the bleeder current is 33 milliamperes. This value is consistent with the currents drawn by the voltage taps B2 and B3. It is large enough so that small changes in the currents drawn by these two taps will not change the voltage distribution appreciably.
The value of R 3 is fixed by the assumption that the bleeder current is 33 milliamperes and by the condition that the voltage drop in it is 75 volts. We have R3 equals $75 / .033$, or 2,273 ohms. R2 draws 5 milliamperes more than R3, since B3 diverts this amount, and as the voltage drop between B2 and B3 is 105 volts, R 2 equals $105 / .0438$, or 2,763 ohms.
The drop in R1 is 70 volts and the current through it is 48 milliamperes. Therefore R1 equals $70 / .048$, or 1,458 ohms.
(Continued on next page)

FIG. 4
THIS ILLUSTRATES THE SOLUTION OF A VOLTAGE DIVIDER PROBLEM IN WHICH THE CATHODES ARE CONNECTED TO TWO DIFFERENT POINTS.

An Audio Meter

Monochord Measures Useful Frequencies

THE August issue of "Proceedings of the Institute of Radio Engineers" is replete with papers of technical and general interest.
Carl R. Englund and Arthur B. Crawford, of the Bell Laboratories, contribute a, paper on "The Mutual Impedance Between Adjacent Antennas." The simple theory for the computation of reflecting or multibranch antenna systems is sketched, which is followed by a thorough discussion of the experimental procedure for measuring the mutual impedance between two antennas.
K. Kruger and H. Plendl, Division for Radio and Electrical Engineering, German Experimental Institute for Aeronautics, Berlin, Germany, contribute a paper on "The Propagation of Low Power Short Waves in the 1000 -Kilometer Range." The paper is a report of a series of experiments carried out between two ground stations, and between an airplane and a ground station, to determine whether it is possible to obtain with relatively low power reliable short wave communication over distances of 500 kilometers or more. It contains a complete list of the equipment used, a description of the procedure of the experiments and an account of the results obtained.
J. C. Schelleng, Bell Telephone Laboratories, New York, contributes "Further Note on the Ionization in the Upper Atmosphere." It is mathematical in nature.
"An Electromagnetic Monochord for the Measurement of Audio Frequencies" is the title of a short paper contributed by J. H. Owen Harries, Frinton-on-Sea, Essex, England. The monochord is a steel wire stretched between two rigid supports, like a piano string, and set into vibration by an electromagnet, or loudspeaker unit. If the string is excited by a current of a frequency corresponding to one of the harmonics of natural vibration of the string, then the string will vibrate vigorously. A standing wave-pattern will appear on the string with one more node than the number of harmonics of vibration, counting the ends of the string as nodes. The monochord can be calibrated at its fundamental against a known frequency, such as that of a standard tuning form. Harmonic frequencies are then known by counting the nodes.

The principle of the method and the instrument will be appreciated by students of physics who have performed Melde's experi-
ment in sound. The steel wire vibrates in the same way as the string in this classic experiment.

Mr. Harries gives complete instructions on how to make the instrument, as well as how to use it. The cost of the instrument is negligible, and any radio experimenter can make it for himself after having read the article.

A steel wire 5 feet long and $1 / 16$ inch in diameter, suitably stretched, gives a fundamental of approximately 32 cycles, and it can be used to measure the first eight harmonics, that is, up to a frequency of middle. C. A wire 16 inches in length and $1 / 32$ inch in diameter, when suitably stretched, has a fundamental of 261 cycles, and this wire can be used for measuring the first 18 harmonics, or up to 4,698 cycles.

Sylvan Harris, Engineering Laboratory, Kolster Radio Corporation, Newark N. J:, shows in a brief paper how to get an empirical equation for the grid current, grid voltage characteristic of a detector tube, and how, by differentiation, to obtain the detection coefficient. The equation yields results which agree closely with experimental data for small values of grid current. The equation is of the form $(i g-i o)=a(e g)^{\mathrm{m}}$, where $i g$ is the grid current, $e g$ the grid voltage, and $i o, m$, and a are constants to be determined from three different values of grid current and the equation.

Dr. John H. Dellinger, formerly chief engineer for the Federal Radio Commission and now again chief of the radio laboratory of the Bureau of Standards, discusses "Engineering Aspects of the Work of the Federal Radio Commission." He recounts the many technical difficulties confronting the Commission, both in the broadcast band of frequencies and in the higher frequency bands.
Dr. Lewis M. Hull, Radio Frequency Laboratories, Inc., Boonton, N. J., deals with "Some Characteristics of Modern Radio Receivers and Their Relation to Broadcast Regulation." These characteristics are divided into five classes, as follows: (1) discrimination between channels; (2) discrimination within channels; (3) uniformity of reception in all channels; (4) uniformity of reception within a channel; (5) range of reception. The conclusions are based on experimental studies of a large number of broadcast receivers which have been sold commercially, and others which will be sold during the present year.

VOLTAGE DIVIDER PROBLEM SOLVED

(Continued from preceding page)
The total drop in R4 is 50 volts, the required bias on the power tube. The current in this resistor is the total current drawn by the circuit because the current that had been diverted bv the tubes retirns to the voltage divider at the junction of R3 and R4 and thus joins to bleeder current. Hence the current in R4 is 80 milliamperes. Therefore R4 equals $50 / .08$, or 625 ohms.
No current flows in the lead to C 1 . Hence the position of P, the slider, is put at 1.5 volts below K as determined by the fact that the current is 80 milliamperes. Since the drop is to be 1.5 volts the position of P is $1.5 / .08$, or 18.75 ohms down from K. This completes the solution of this problem. If it is desirable to add another grid voltage tap on $R 4$, its position can be determined in the same way as that of P. The current will not change except as the altered bias will change the plate current. This change is negligible.
Fig. 4 illustrates a still more complex case, arising in certain AC operated receivers. In this all the cathodes are not returned to the same point but to two different places on the voltage divider. One cathode return, K1, is at the same point as one of the plate returns, namely, B4. The current and voltage distributions in this case were taken from an actual example. A point of interest in this case is that 2 milliamperes flow from the voltage divider to B4 and that 32.1 milliamperes flow from K1 in the opposite direction. The algebraic sum of these two currents is 30.2 milliamperes in the direction of the voltage divider. The 32.2 milliamperes returned to the voltage divider at K 1 are the plate currents diverted at B 1 and B 2 . The 2 milliamperes flowing to B 4 ultimately appear at K 2 , where also the current diverted by B3 returns to the voltage divider.
While this voltage divider appears to be very complex, it was adopted in order to simplify the receiver design, as well as to stabilize the receiver served by the B supply.
The resistors in Fig. 4 have the following values: R1, 1,461 ohms; R2, 983 ohms; R3, 3,342 ohms; R4, 286 ohms; R5, 386 ohms, and R6; 37.5 ohms.

The procedure to follow in solving any voltage divider problem is as follows:
Determine the total current that the receiver or amplifier will require when operating normally. Select a rectifier and filter which will handle considerably more than this current so that there will be sufficient current for the bleeder. Determine the total voltage drop across the voltage divider. Draw a schematic of the voltage divider providing taps for all the different plate and grid voltages as well as one or more for cathode returns. Determine the voltage drops required across the resistor sections to provide the necessary plate and grid voltages for all the tubes. The plate voltages are measured from the cathode connection, K, for the tube or tubes in question.
Next determine what the current drawn by each plate tap is. This is done by taking the normal plate currents for the plate and grid voltages in question and adding up the currents required by all the tubes on any tap. Where there is only one K connection as much current should flow to the voltage divider through this connection as is diverted by all the plate taps. When there are two or more cathode taps the sum of the currents flowing to the voltage divider through the K connections should equal the sum of all the currents diverted by the plate connections.
When the bleeder current is known, and its value may be selected almost at will, and when the currents fowing in all the taps are known, the current in each sectoin of the voltage divider can be computed by simple addition or subtraction. Similarly the voltage drop in each section can be determined. And when both the current and the voltage drop in any resistor is known, the value of the resistance can be determined by the application of Ohm's law. The voltage drop in volts is simply divided by the current expressed in amperes.
There is no voltage divider problem so complex that it cannot be solved in a few minutes, in this manner. There is no voltage divider problem so simple that it can be solved at all unless the current flowing is known.

A Question and Anawor A Question and Anawor Radio World's Technical Staff: Only Questions sent in by University Club Members are answerod. The reply is mailed to the member. Join now!

Annual subscriptions ara accepted at $\$ 6$ for 52 numbers, with the privilege of obtaining answers to radio questions for the period of the subscription, but not if any other premium is obtained with the subscription.

Space Charge Detector

WHAT is the purpose of using a screen grid tube as a space charge detector?.-I. H.

The object is to reduce the space charge, increase the electron flow from filament to plate, and to increase the mutual conductance. It is useful only in specially-designed circuits.

The Isolating Condenser

IS the value of the coupling condenser in a resistance-coupled audio amplifier critical?-H. G.
The condenser is not a coupling condenser, but an isolating condenser, to make possible the use of the circuit. With the condenser out, the grid of the succeeding tube would have the positive plate potential of the preceding tube applied to it. The grid of course should be negative. The condenser isolates the grid from the direct current and voltage in the preceding plate circuit. The value of the condenser is not critical. It is well to have the product of the condenser in microfarads and the leak in megohms equal the number .02 as a minimum. Thus with a .01 mfd . condenser a leak of 2 meg. would be suitable. Higher values of leak may be used, or higher values of capacity, if instability does not result.

Key to Negative Bias

IS the negative grid bias determined on the basis of the voltage effective on the plate, or the applied plate voltage? The drop in the plate load equals the difference, of course, but in some forms of coupling, as resistance and impedance, this drop may be high.-O. H. T.
The total voltage in the plate circuit is the determining factor This is applied voltage. The DC resistance of the load on the plate circuit may be considered merely as an increase in the plate resistance, just as if the tube were geometrically constructed with a higher plate resistance at a given negative bias and positive plate voltage. In transformer-coupled audio circuits, and in transformer-coupled radio frequency circuits particularly, there is little to be gained in considering the difference between applied and effective voltages, as the drop is small. But in resistance coupling it is not at all unusual to drop half the applied voltage in the plate load, the other half in the plate resistance. This equal drop takes place when the plate resistance and the load resistance are equal. The DC resistance is meant in the foregoing discussion. The drop due to signal voltage, which is an impedance factor, is the same for equal impedances, whether the impedance is a coil or a "pure" resistor There are controversies surrounding both of foregoing statements (regarding bias and effect of the plate load), but the replies made herein are deemed uncontrovertible. For the equaldrop theory, see the August 10th issue of Radro World, page 7 , where J. E. Anderson answered a critic. Mr. Anderson had stated that Prof. John H. Morecroft, in his book for novices, "Elements of Radio Communication," had fallen into a traditional error in rating the AC drops as being different in different types of loads, and Mr. Anderson's critic sided with the Professor.

Electrons Not Everything

ARE electrons the basis of all electricity? -H. F.

Pointers on Volume Controls

IS there any particular preference for a volume control? I should like some pointers on volume controls for batteryoperated and AC circuits.-T. D. S.
The volume control should give adequate controf of volume without incurring any sacrifice that the receiver is not able to stand. For instance, a variable resistor in the series with the loudspeaker would not be the best volume control by any means, as it affords no method of correcting overload in any of the stages. The general practice therefore is to put the volume control ahead of the detector. It may be an adjustable antenna coil, if the receiver will not oscillate at loose coupling of the coil. There will be a slight detuning effect; so this method is serviceable only in circuits that have the antenna coil sepa-
rately tuned from the others, or, if ganged in the

Where a trimmer on the front panel is additional to the volume control. By the adjustable antenna coil method the selectivity is increased as the volume is decreased, a good plan, because the most trouble with poor selectivity arises where strong signals conflict with weak ones of some other station. A variable resistor is the plate lead of radio frequency tubes is a method that decreases selectivity a little. So does the variable resistor across an antenna fixed primary, or a resistor antenna input. A radio frequency choke coil with a small condenser in series, as an input to a so-called dummy tube, is another good method. About .0001 mfd . is usually sufficient. There should be at least three tuned stages following. For screen grid tubes, a potentiometer across screen B voltage, with a condenser of at least .01 mfd . from screen grid to ground or A plus, and with the slider to screen grid, constitutes a good volume control. This, like the others, is for battery or AC operation. For battery receivers alone a variable resistor in series with a filament leg of the first RF tube, or the first two RF tubes, is good. But in $A C$ sets the filament or heater voltazes should not be changed for volume control. Where grid bias detection is use, d with high value of bias and, high plate voltage, a potentiometer across the secondary of the first audio transformer is sometimes a good makeshift volume control. Varying the grid bias, by using a potentiometer in the common plate and grid return circuit of AC tubes, is another good method but a bypass condenser is necessary here, too.

ABC Compact for Push-Pull

REGARDING the compact ABC supply, described in the tubes (227 and 224) and 245 audio output heater type used with the push-pull last-stage audio? What voltage will be obtained? -J. I.
Yes, it can be used that way. A 1,500 -ohm 10 -watt resistor should be placed across the biasing section, from point (4) to ground. No other changes are necessary. The voltage is 300 volts DC at 80 milliamperes, apportioned approximately as follows: 250 volts for the last audio, 50 volts for the maximum bias. The intermediate biases are obtained from taps in the biasing section. See page 5, column 2, of the August 10th issue, for a discussion of the $1,500-\mathrm{hm}$ resistor. The obtainable voltages were fully discussed in the two issues, August 10 th and August 17th.

Battery Set Can Equal AC

CAN a wholly satisfactory receiver, battery-powered, be constructed so that it will give performance on a par
with AC receivers? -H. J. F. with AC receivers?-H. J. F.
Certainly. The general rule is that the same results are obtainable more economically, from an operating viewpoint, from an AC receiver, but that the results can be duplicated in any instance by use of batteries. A fine combination is a two-stage screen grid radio amplifier, with grid biased detector, and two stages of transformer-coupled audio, the last stage push-pull. This makes six tubes. The output may be two 171 As, for a dynamic speaker, or, if a magnetic speaker is used, two for a will do nicely, and will draw much less plate current, as B battery wattage consumption is the principal economic con-
sideration.

Would Switch to AC Now

MY A battery is about all shot and I am therefore considering building an AC receiver. I would like to use few tubes, but obtain good results, unless by using many tubes most exceptional results absolutely can be obtained.G. F.

You may reconstruct your present receiver, or you may build for excellent results, vou may build the to use only a few tubes, mond of the Air, AC model mond of the Air, AC model. This requires the use of a B supply, and the National Velvet-B, type 3580 , is suggested. This works the receiver, with a 171 or 171 A output tube. In addition a filament transformer will be required, to heat the 224, two 227 tubes, and power tube. For superlative sensitivity you could build a multi-tube receiver, such as the MB29, which has four tuned circuits, using four 224 tubes, and a 227 , which detector. You would have to provide filament and plate voltages as well as audio channel additionally, for the MB29, but

List of Stations by Frequency With Wavelength Conversion

[REVISED AND CORRECTED FROM THE RECORDS OF THE FEDERAL RADIO C

S.Louisville, Ky.
830 KC, 361.2 METERS
WHDH.Gloucester, Mass.
** $840 \mathrm{KC}, 356.9 \mathrm{METERS}$
$850 \mathrm{KC}, 352.7 \mathrm{METERS}$
KWKH-Kennonwood, La.
WWL-New Orleans, La.
860 KC, 348.6 METERS
$860 \mathrm{KC}, 348.6$ METERS
WABC.WBOQ-N. Y. Cit
KFQZ-Hollywood, Calif.
$870 \mathrm{KC}, 344.6 \mathrm{METERS}$ S-Chicago, Ill.
WENR-WBCN-Chicago
${ }^{* 880} \mathrm{KC}, 340.7$ METERS *880 KC, 340.7 METERS
WQAN-Scranton, Pa.
WGBI-Scranton, Pa.
WCOC-Columbus, Miss. KLX-Oakland, Calif. KFKA-Greeley, Colo.
*890 KC, 336.9 METERS WJAR-Providence, R. I.
WKAQ-San Juan, P. R.
WMMN-Fairmont, W. Va. WMAZ-Macon, Ga

$$
\begin{aligned}
& \text { KGJF-Little Rock, Ark } \\
& \text { WILL-Urbana, III. }
\end{aligned}
$$

KUSD-Vermillion, S. D. $900 \mathrm{KC}, 331.1 \mathrm{METERS}$
WFBL-Syracuse, N. Y WMAK-Martinsville, N.
WKY-Buffalo N. Ykla. City, Okla. WKY-Okla. City, Okla Clearwater, Fla.
WLBL-Stevens Point, Wis.
KHJ-Los Angeles, Calif. is. $\frac{K}{K}$ KGBU-Ketchikan, Alaska WHDI-Minneapolis, Minn. $910 \mathrm{KC}, 329.5$ METERS
920 KC, 325.9 METERS WWJ-Detroit, Mich.
KPRC-Houston, Tex.
WAAF-Chicago, Ill. WAAF-Chicago, 11. W30 KC,
WIBG-
Wikins Park, PR WBRC-Birmingham, Ala
KGBZ-York, Nebr. KMA-Sheriandoth, Iowa KFWI-San Francisco WCSH-Portland, Maine WFIW-Hopkinsville,
WHA-Madison, Wis. . KGU-Honolulu, T. ${ }^{\text {H. }}$. KFEL-Denver, Colo.
KFXF-Denver, Calo.
950 KC 315.6 METERS WRC-Washington, D. C. KMBC-Independence, Mo.
WHB-Kansas City, Mo. WHB-Kansas City, Mo.
KFWB-Hollywood, Calif.
KPSN-Pasadena, Calif. KGHL-Billings, Mont. 970 KC, 309.1 METERS KJR-Seattle, Wash.
980 KC, 305.9 METERS
KDKA-Wilkins Township. S-Pittsburgh, Pa.
990 KC, 302.8 METERS
WBZ-E.Spring field, Mass WBZA-Boston, Mass $1000 \mathrm{KC}, 299.8$ METERS WOC-Davenport, Iowa KPLA-Los Angeles, Calif WQAO-WPAP-
Cliffside, N. J. S-New York, N. Y.
WHN-New York, N.
WRNY-Coytesville, N. J. KGGF-Picher, Okla.
WNAD-Norman, Okla KQW-San Jose, Calif.
$1020 \mathrm{KC}, 293.9$ METERS WRAX-Philadelphia.
KYW A-Chicago.
$* * 1030$ KC, 291.2 METERS
1040 KC 288.3 METERS $1040 \mathrm{KC}, 288.3$ METERS WKAR-E. Lansing, Mich.
WFAA-Dallas, Tex.
E RECORDS OF TH
KNX-Los Angeles, Calif.
S-Hollywood, Calif.
1060 KC, 282. METERS
WBAL-Glen Morris, Md.
WT-Baltimore, Md.
WJC.Avon, Conn.
WJAG-Norfolk, Nebr.
KWJJ.Portland, Ore.
1070 KC, 280.2 METERS
WAAT-Jersey City, N. J.
WTAM-Cleveland, Ohio
WEAR-Cleveland, Ohio
WCAZ-Carthage, Ill.
WDZ-Tuscola, Ill.
KJBS-San Francisco

KDLR-Devils Lake, N. D.
KGCR-Watertown, S. D.
KFOR-Lincoln, Neb.
W
$1080 \mathrm{KC}, 277.6$ METERS
WBT-Charlotte, N. C.
WCBD-Zion, In.
WM BI-Chicago, Ill.
1090 KC 257.1 METERS
KMOX-K FOA-Kirkwood
KMOX-KFOA-Kirkwood 1180 KC 254.1 METERS

KEX-Portland, Ore. KOB-State College, N. M 1190 KC, 252 METERS

 WOAT-Bridgeport, Conn. ${ }^{\text {W }} 1200$ KC, 249.9 METERS WABI-Bangor, Maine. WEPS-Gloucester, Mass. WORC-Auburn, Mass.WIBX-Utica, N. Y. WGW-Stockton, Calif. W

WNBG-Washington, Pa. WPRC-Harrisburg, Pa.

WKJC-Lancaster, Pa. WABZ-New Orleans, La. WBBZ-Charleston, Sity, Okla. WFBC-Knoxville, Tenn. WRBL-Columbusy, Ga.
KGCU-Mandan, N.
WJBC-LaSalle,

$$
\begin{aligned}
& \text { WJBL-Decatur, Ill. } \\
& \text { WWAE-Hammond, Ind. }
\end{aligned}
$$

WRAF-Laporte, Ind.

 WGCP-Newark, N. J.WODA-Paterson,
N. J. WAAM-Newark, N. J.
WLB-WGMS.Minneapolis WRHM-Fridley, Minn.
KFMX-Northfield, Minn.

$$
\begin{aligned}
& \text { WCAL-Northfield, Minn. } \\
& \text { KFOX-Long Beach, Calif. } \\
& \text { KXL-Portland. Ore. }
\end{aligned}
$$

$1260 \mathrm{KC}, 238$ METERS

 WJAX-Jacksonville, Fla. KWWG-Brownsville, Tex.KRGV-Harlingen, Tex. KOIL-Council Bluffs, Ia. WJDX-Jackson, Miss.
WEAI-Ithaca, N. Y Y WFBR-Baltimore, Md.
WASH-Grand Rapids, WOOD-Furnwood, Mich.
S-Grand Rapids, Mich. WDSU-New Orleans, La. KWLC-Decorah, Iowa
KGCA-Decorah, Iowa
KTW-Seattle, Wash. KTW-Seattle, Wash.
KOL-Seattle, Wash.

$1280 \mathrm{KC}, 234.2$ METERS WCAM-Camden,

 WCAP-Asbury Park, N.J.WOAX-Trenton, N. J. WDOD-Chattanooga, Tenn.
WRR
WDA
WEB
S-Duluth, Minn.
1290 KC, 232.4 METERS WJAS-Pittsburgh, Pa.
KTSA-San Antonio, Te
KFUL-Galveston, Tex.
KLCN-Blytheville, Ark. KLCN-Blytheville, Ark.
KDYL-Salt Lake City
1300 KC, 230.6 METERS $1300 \mathrm{KC}, 230.6 \mathrm{ME}$
WBBR-Rossville WHAP-Carlstadt, N. J.
S. New York, N.

WCLO-Kenosha, Wis. WHBY.West DePere, W

 WHBC-Ontario, Derlif.K
KXO-E 1 Centro, Calif.
KMJ-Fresno, Calif.
KSMR-Santa Maria, Calif,
KGEK-Yuma, Colo.
KGEW-Ft. Morgan, Colo.
KFHA-Gunnison, Colo.
KVOS-Beltingham, Wash.
KFHA-Gunnison, Colo.
KVOS-Belkingham, Wash
KGY-Lacey, Wash.
"1210 KC, 247.8 METERS
WJBI-Red Bank, N. J.
WGBB-Freeport,
WINR-Bayshore, ${ }^{\text {W. }}$. Y
WCOH-Greenville, N. Y. Y.
WOCL- Yomers,
W.
WOCL-Jamestown, N .
WLCI-Ithaca, N. Y.
WDWF.WLSI
WFH-Wichit, N. Y.
KGEF-Loseka, Kan.
KFJR-Portland, Ore
KTBR-Portland, Ore.
1310 KC, 228.3 METERS
WKAV-Laconia, N. H.
WEBR-Buffalo, N. Y.
WNBH-New Bedford, wor Mass.
WGL-Washington, D. C.
WRK-Hamport News, Va. WRK-Hamilton, Ohio
WAGM-Royal Oak, Mich. WNAT-Phit, Mich. WNAT-Philadedphia, $P a$
WFKD-Frankford WFR-Philadelphia.

680 KC, 440.9 METERS
NPTF-Raleigh, N. C
 WLW KC, 422.3 METERS S-Newark, N. J.
KFVD-Culver City, Calif ${ }^{720} \mathrm{KC}$, ${ }^{413}$ METETER
S-Chicago, Ill.
**730 KC, 413 METERS
$740 \mathrm{KC}, 405.2 \mathrm{METERS}$ KSB-Atlanta, Center, Nebr
KMJ-Clay
750 KC, 399.8 METERS WJR-Silver Lake, Mich. S-Detroit, Mich.
760 KC, 394.5 METERS
WJZ-Boundbrook, N. J. Yow, N. Y. WEW-St. Louis, Mo.
770 K-Tacoma 389.4 METERS KFAB-Lincoln
WBBM-WIBT-Gebriew,
${ }^{7} 780$ K. Chicag., METERS

WFBG-Altoona, WRAW-Reading,
WGAL-Lancaster,

COMMISSION, TO N
WRBI-Tifton, Ga.
WSAJ-Grove City, Pa. WBRE-Wikes-Barre, Pa WKBC-Birmingham, Ala. KGHG-McGehee, Ark.
WOBT-Union City, Tenn. KNBJ-Knoxville,
KRMD-Shreveport,
KTSL-Cedar Grove KFPM-Greenville, Tex. WDAH-El Paso, Tex.
KGFI-Corpus Christi, Tex.
KFPL-Dublin, Tex. KFXR-Okla. City, Okl
WKBS-Galesburg,

W
WC
WK
WH
KW
KFJ
KFG
WB
WJ
WL
WIB
KFB
KGE
KFU
$K F X$
$K M$
WJD
1320
W
WHFC-Cicero, Ill.
KWCR-Cedar Rapids, Ia.
KFJY-Ft. Dodge, Ia. KFGQ-Boone, Ia.
WBOW-Terre Haute, Ind. WJAK-Marion, Ind. WIBBU-Poynette, Wis. KGEZ-Kalispell, Mont.
KFUP-Denver, Calo.
KFXJ-Edgewater, Colo. MED-Medford, Ore.
$1320 \mathrm{KC}, 227.1$ METERS
WADC-Akron, Ohio
KGIO-Idaho Falls, Idaho
KGHF-Pueblo, Colo
KID-Idaho Falls, Idaho 1330 KC
WDRC-New Haven, CRS
WSAI. WTA-Cincinnati
WTAQ-Washington, Wis KSCJ-Sioux City, Iowa
1340 KC, 223.7 METERS WSPD-Toledo, Ohio

KMO-Tacoma, Wash.

1350KC, 221.1 METERS WBNY-New York, N.

 WCDA-New York, N. Y. KWK-S.t. Louis, Mo.1360 KC,
220.4
METERS WLEX-Lexington, Mass.

WQBC-Utica, Miss.

WJKS-Gary, Ind.
WGES-Chicago, Ill.
KFBB-Great Falls KFBB-Great Falls, Mont.
KGB-San Diego Calif.
1370 KC, 218.8 METERS
WMBO-Auburn
WSVS-Buffalo, N. Y.
WCBM-Baltimore, Md.
WCBM-Baltimore, Md.
WHBD-Bellefontaine, O.
WHDF-Calumet, Mich.
WJBK-Ypsilanti, Mich.
WJDW-Emory, Va.
WIDM-Jackson, Mich.
WRELK-Philadelphia. WHBQ-Memphis, Tenn.
WRBT-Wilmington, N. C KGFG-Okla. City, Okla.
KGRC-Enid, Okla.
KGCI-San Antonio, Tex.
KGRC-San Antonio, Tex
KFLX-Galveston, Tex.
WFBJ.Collegeville, Minn.
WGL-Ft. Wayne, Ind. KGDA-Dell Rapıds, S. D.
KFJM-Grand Forks, N. D.
KWKC-Kansas City Mo.
KGBX-St. Joseph Mo.

.

WLTH WBTH-Brooklyn, N. Y.
KOCW-Chickasha,
KO. KOCW-Chickasha, Okla.
WCMA-Culver, Ind. WKBF-Indianapolis, Ind. $1410 \mathrm{KC}, 212.6 \mathrm{METERS}$
WBCM-Hampton, SBCM-Bay City, Mich. KGRS-Amarillo, Tex. KFLV-Rockford, IIl. WHBL-Sheboygan, W
WSGP-Savannah, Ga. $1420 \mathrm{KC}, 211.1$ METERS
WHDL-Tupper Lake, N.Y WHIS-Bluefield, W.'Va.
WLBH-Patchogue, N. WMRJ-Jamaica, WLEY-Lexington, Mass WPOE-Patchogue, N. Y. WILM-Wilmington, Del WEDH-Erie, Pa.
WMBC-Detroit, Mich. WKBP-Battle Creck, Mioh.
WQBZ-Weirton, W. Va. KTAP-San Antonio, Tex. KFYO-Abilene, Tex. WIAS-Ottumwa, Iowa
WLBF.Kansas City, Kan WMBH-Joplin, Mo, Neb.
KGFW-Ravenna, Neb. Wis, KGIZ-Fond du Lac, Wis,
KFXY-Flagstaff, Ariz.
KGFJ-Los Angoles, Cay
KFQU-Holy City, Calif. KGGC-San Francisco. KFXD-Jerome, Idaho KGCX-Vida, Mont. KORE-Eugene, Ore. KFQW-Seattle, Wash.
KXRO-Aberdeen, Wash. KGKG-Minot,
1430 KC, 209.7
METERS WBRL-Manchester, N. H WHP-Harrisburg, WBAK-Harrisburg, Pa.
WCAH-Columbus, Ohio WGBC-Memphis, Tens.
WNBR-Memphis, Tenn 1440 KC 208.2 METERS WOKO-Mt. Beacon, N. Y WCBA-Allentown ${ }^{\text {S }}$ - $\mathrm{N} . \mathrm{Y}$ WSAN-Allentown, Pa.
WNRC-Greensboro, N. C. WMBD-Peoria Hts., $1450 \mathrm{KC}, 206.8$ METERS WBMS-Fort Lee, N. J. WNJ-Newark, N. J. J.
WIBS-Elizabeth, N. J. WKBO-Jersey City, N. J.
WSAR-Fall River, Mass. WFJC-Akron, Ohio $1460 \mathrm{KC}, 205.4$ METERS KSTP-Westcott, Minn. 1470 KC, 204 METERS KFJF-Okla. City, Okla.
WRUF-Gainesville, Fla KG WI80 KC, ${ }^{202.6}$ METERS WSOA-Deerfield, Ill WORD-Chicago, Ill. WCKY-Villa Madonna, Ky
S-Covington, Ky. 1490 KC 201.2 METERS
WBAW.Nashville, Tenn. WLAC-Nashville, Tenn. 1500 KC, 199.9 METERS WMBA-Newport, R. I.
WLOE-Chelsea, Mass. WMES-Boston, Mass.
WNBF-Binghamton, WMBQ-Brooklyn, N. \mathbf{N}.
WLBX-L. I. City,
WCBB-L. WWRL-Woodside, N. \mathbf{N} Y WKBZ-Ludington, Mich
WMPC-Lapeer, Mich
WMBT. Wilkinsburg, Pa KGGM-Albuquerque, N.M
$1380 \mathrm{KC}, 217.3 \mathrm{METERS}$ WCSO-Springfield, Ohio KQV-Pittsburgh
WKBH-LaCrosse, Wis. WHK-Cleveland, O. KLRA-Little Rock, Ark.
KOY-Phoenix, Ariz. KUOA-Fayetteville, Ark. KWSC-Pullman, Wash. K FPY-Sullman, Wash.

WOPI-Bristol, Tenn.
WPEN-Philadelphia, Pa. KGHI-Little Rock, Ark.
WRBT-Hattiesburg, Miss. WRBJ-Hattiesburg, Miss. KGDR-San Antonio, Tex. WKRV-Brookville, Ind.
KPJM-Prescott, Ariz

Aluminum Subpanel

The best áppearance of the New Diamond of the Air results from using the official alaminum anbpane, 10 y 20 inches, with the four sockets bufit in, and with solf-bracketing front. Handware and inaulating washors aupplied with each ub-panel. The alaminam sub-panel is exactly the same as the one used in the laboratory models of the battery operated and the AC Screen Grid Diamonds. Boles are-driled for mountins parts, bxt drill any holes you want
| RADIO WORLD, 145 W. asth St., N. Y. City. (Just East of Broadway)
1
| Enclosed please find $\$ 3.00$ for which please send one eluminum subpanel $10 x 20^{\prime \prime}$ for the pew battery | model 4-tube SG Diamond of the Atr, with sockets rear aupports; aiso bend hardwere and insulating washers.
| D.Epratosed please tind 82.35 for which please sond 7xay drillod Baisolite front panel for the new battors model Dlamond.
C Fhnclosed pleage and $\$ 3.25$ for the $10 \times 20^{\prime \prime}$ aluminum
O Fnelosed plesse And $\mathbf{5 2 . 3 5}$ for the $7 \times 21^{\prime \prime}$ drilled Bakelite froat panel for the new AC Screen Grid Dremond.
D Fnclosed ploase ind $\$ 5.00$ for both the sluminum Eubpanel, otco. end the drilled Bakelite front panel of the battery model.
\square Bnclosed please and 85.25 for both the sluminum subpanel,
of the $A C$ etc. and medel. the drilled Belcelite front pepel of the $A C$ model.

Name
Addrons

FREE!

> Send $\$ 6$ for year's Radio World Subscription And Obtain Unit FREE!

Radio World for one year (52 numbers, one each week) will keep you abreast of latest circuits and news. Act now. Offer revocable without notice.
\square If renewal put cross here.
Radio World, 145 West 45 th St, N. Y. City.

Enclosed please find $\$ 6$ for one year's subscription for Radio "superb unit" free.

Name
Address
City

Hin

New Diamond

PARTS FOR BATTERY MODEL DIAMOND
C1-A Aorovox 0005 mouldod axed....
C2-Hammarlund .0005 mpd Mldaiino...................... .90
 C6-Acrovar . 00025 moulded fired with C7-Anrovax .0005 moulded ined...
A1- 822 Amporito mith mount
 R1 ${ }^{(00-0 h m}$ Tront rhoostat R2-5-meg. Loneh metallized loak T1, T2-Two National A100 audios @i. $\$ 1.70$ ox.... 11.40
 Sw- Yexioy No......................... battery
 bracketing, with four sockets affixed; subpanel hardware, insulated buahings, washeri............... Front panal and zubpanel together....
Two diale with pointern
One roll stranded Braldite
Hammarlund 70 mmid. Equalize
Four Kelly tubes: une 222, two 201 A , one 112 A or
GUARANTY RADIO GOODS CO.
143 WEST 45th STREET
uat Eant of Broadway)
NEW YORK CITY

AERIL TUNER

Improves Summer Reception

Remove aerial lead from set. Connect aerial instead to one of the binding posts of the Aerial Tuner. Connect the other binding post of the Aerial Tuner to antenna post of your set. Then move the lever of the Aerial Tuner until any weak station comes in loudest. The lever need not be moved for every different frequency tuned in. The Aerial Tuner acts as an antenna loading coil and puts the antenna's frequency at any frequency in the broadcast band that you desire to build up. It makes high wavelengths come in loud as low wavelengths. It helps separate stations and clear up reception. Makes great im provement in Summer reception. Price, $\$ 1.00$.

GUARANTY RADIO GOODS CO.

$$
\begin{aligned}
& 143 \text { West 45th Street } \\
& \text { New York City }
\end{aligned}
$$

(Just East of Broadway)

ARISTOCRAT FLOOR SPEAKER

The "speaker cahinot is walnut finish, 33" Hyh, Gividen wide, $171 /{ }^{\prime \prime}$. deep, with. carved. Ing Golden cloth grille covers fromt opening. Lise inside is No. ssp molded wood horn with hat and No. 203 drivita motor finit that atande volts without filtration. Horn and mebor romovable. Table alone is worth price aled
Remit with order and wo pay carta ge Arfatecrat floor Speaker.
Acoustical Engineering Associates
143 WEST 45th STREET
NEW YORK CITY
(Just East of Broudway)

All Parts for PUSH-PULL DIAMOND

Mershon Electrolytic

Condensers, four in one Copper Container

8-8-18-18 mfd.
List price, $\$ 9.60$
$\$ 5.76$
10-10-10-10 mfd.
List price, $\$ 7.75$
Not
 Power Transformer, 2\%/2, 5, 24/, 300 ,10.en M Unichoke 331, net.................. . 4.84
Guaranty Radio Goods Co.
143 West 45th Street
New York City
(Just East of Broadway)

FILL OUT AND MAIL NOW

SUBSCRIPTION BLANK

RADIO

RADIO WORLD

WORLD
145 West 45th Street, New York City (Just East of Broadway)

Please send me RADIO WORLD for \qquad months, for which SUBSCRIPTION RATES:
please find enclosed

Single Copy.:.
Three Months \qquad
One Year, 52 İ.............. 6.00
Add $\$ 1.00$ a Year for Foreign Postage; 50c for Canadian Post. age.

POLO

Transformer Block

2.5 v . at 3 amps o, 2.5 v . at 12 amps ., 5 v. at 2 amps., 724 v., CT; two chokes, all in one casing

HERE is a compact transformer block, enabling you to build an ABC supply of finest design, to furnish the required voltages to operate screen grid AC tubes, 227 AC tubes, and 245 power tubes in single or push-pull circuit. This transformer block is expertly engineered and properly voltaged. The high voltage secondary, for instance, is fully high enough, so that when the voltage drops in the choke coils, tube and other apparatus in the B supply are taken into consideration, the direct current output across the voltage divider is 300 volts when the maximum current flowing through a section of the divider is 80 milliamperes. This enables correct [Center taps on all wid
proportion of 250 volts for the plate of the 245 and 50 volts for negative bias for the last audio tube or tubes, total 300 volts.
Notice particularly that the filament winding for the radio frequency and first audio frequency amplifier tubes and detector tube is rated conservatively at TWELVE amperes. Look around for a transformer that has such a high current rating. Twelve amperes mean that you can operate six tubes from this winding without any danger of overload, while the overload in operating seven such tubes would be less than 5 per cent. The power tube filament winding enables the heating of single or push-pull 245 tubes, as the 3 amperes will easily satisfy requirements.
This transformer block is housed in a shielded, cadmium-plated metal casing, with mounting feet and a top projection, so that upright or horizontal mounting may be used. The total height of the casing is only $61 \mathrm{~s}^{\prime \prime}$ ", so even that if a $3 / 4^{\prime \prime}$ thick baseboard is used, the casing fits upright into a receiver that has the usual $7^{\prime \prime}$ high front panel.
The voltage leads emerge from a clearly marked plate, with center taps in red. You can make no mistake. Everything is plain and clear.
Notice that even the choke coils are included inside this same casing, so all you need are the resistors, tube and condensers, and you have the $A B C$ supply that you've been craving for.

PEERLESS

12" AC Dynamic Speaker in

SONORA

ait $\$ 37.50$

LIST PRICE, $\$ 155.00$

The famous Peerless AC dynamic speaker, with Kuprox rectifier and 1,500 mid hum-killing condenser built in, all housed in this $40^{\prime \prime}$ high Sonora cabinet of fascinating ply-wainut. The cabinet is all one plece-carved leg marqueterie panel and grine pan Thars
Sliding back is made of cane. This
imposing floor model speaker, exactly
as illustrated, in original factory
packing case, shipping weight 100 pack
lbs.

Amazing Buy!

Never in your life did you hear of such an mazing bargain-highest class, perfect, guaran eed merchandise at more than 75% off list price Look at that beautiful highboy cabinet, its graceful legs, with archer's bow tiepiece; its rosetted side panels at front, its shapely grille pillars, all in two-tone effect, with high-polish u-face of walnut. The speaker sets against golden grille, with ample baffle board concealed.

Money-Back Guarantee!

Every precaution has been taken to produce the finest possible tone. The speaker to the genuine famous Peer
less, operating directly from the 110 -volt $50-60$ cvele $A C$ ine. The cane back leaves the cabinet acoustically open to avold box resonance. The entire outfit-speaker, recti fier, 1,500 mif. condenser, $A C$ cable, speaker cords and AC switch, all built up and wired-is sold only in this Order yours TODAY on a 5-day money-back guaranteo
basis No C.O.D. orders filled. ACOUSTICAL ENGINEERING ASSOCIATES, 143 West 45th Street, New York, N. Y.
Gentlemen: Enclosed please find $\$ 37.50$ for which please ship by express at once one $12^{\prime \prime}$ diameter gonulne Poesless AC dynamie speaker, with built-in Kuprox dry rec tifier, 1,500 mfd. hum-killing condenser, AC cable, speaker org-walnut highboy cablinet, with cane removable back the cabinet consisting of one plece, ply-walnut, $40^{\prime \prime}$ high, 19, wide, $16^{\prime \prime}$ front to back; all in original factory
carton. No C.O.D.

[^2]Name

New Junior Model POLOUNIT \$4

The famous twin magnet principle for double sensitivity, large magnets for great flux, permanently adjusted armature, all are in the new junior model Polo Unit. Weight, $23 / 4 \mathrm{lbs}$. Stands 150 volts unfiltered. Stands up to 250 push-pull filtered. Works any output tube, power or otherwise. Supplied with 10 -ft. cord. Order unit now. Five-day money-back guarantee.

Acoustical Engineering

 Associates143 West 45th Street New York City
(Just East of Broadway)

Component Parts for
Herman Bernard's

HB Compact

(BATTERY MODEL)
The Circuit of Circuits!
Only Four Tubes

Bernard Antenna Tuner BT5A	2.50
Bernard Interstage BT5B...	
Two Dustproof . 0005 cond. pair with brackets	
One 90 mmfd. equalizer	
Three .01 mfd . at 40 c each	
One . 25 meg.	
One 5.0 meg .	
One $.75 \mathrm{meg} . .$.	
One 75.0 mm rheo. with switch.	
One 1.3 ohm .	
One 6.5 ohm .	
4 binding posts at .10	
Drilled steel cabinet $7 \times 91 / 2 \times 15^{\prime \prime}$	4.00
Satin aluminum subpanel, socke insulators, 4 resistor clips.	2.00
Two dials at .70 ea...	. 40
Two dial pointers at 10	
7-lead cable	
Two links at 35	
	23.00

GUARANTY RADIO GOODS CO. 143 West 45th Street, New York, N. Y. Just East of Broadway

Okayo gozaimazu, "Good day" Japanese

Get BOTH
Short Waves and Broadcasts

Write us today
for full details.

The words may sound strange but the cheery voice and lively music, all the way from Japan, talk a universal language.
Words and music from 20 different countries in a dozen different languages, may be heard with the NATIONAL Screen-Grid THRILL BOX. This new Radio bristles with new and ingenious features for your convenience and pleasure.

4 Tube THRILL BOX SW-4
NATIONAL CO. INC., Malden. Mass.
Est. (1) 1914

RADIOTONIC

When it comes to making sick radios well, or good radios better, just remember-

CLAROSTAT

the name of a line of products dedicated to better radia results.
Clarostat Mfg. Co., 291 N. 6th St., B'klyn, N. Y.

 15

40

00

Blueprint FREE!

Get a free blueprint of either elreult listed on
the coupon below, by sending $\$ 1.00$ for oight the coupon below, by sending $\$ 1.00$ for oight
weaks' subseription for RADIO WORLD or $\$ 1.50$ for 13 weeks' (quarter of a year) and get both blueprints free!
RAD 10 WORLD. 145 W. 45th St., N. Y. Clty
\qquad SI for which send RADIO WORLD for
8 weeks and send free blueprint of the battery model 4-tube Screen Grid Diamond
of the Alr.
\square of the Alr. which send RADIO WORLD for 8 for which send RADIO work for
4-tube ACA send free blueprint of the
Scren Grid Diamond of the Altube AC Scren Grid Diamond of the
$\square 1.50$ for whieh send RADIO WORLD for 13 weeks and send both blueprints free. (If renewing a subscription put cross hero ;

NAME

ADDRESS
CITY.

Put Your Voltage Control Problems up to Electrad. Write Dept.RW9, for useful data
 175 Varick St., New York, N.Y.

ALUMINUM

BOXES

SHIELDS

Beautiful Satin, Silver Dip Finish. Made to 24 Hours. Satisfaction. Any Special Size in $3_{3^{\prime} \times 5^{\prime \prime} \times 6}$................. In stock $4^{\prime \prime} \times 7{ }^{\prime \prime} /^{\prime \prime} \times 6$
$5^{\prime \prime} \times 9^{\prime \prime} \times 6^{\prime \prime}$
$9^{\prime \prime} \times 18^{\prime \prime} \times 6^{\prime \prime}$
plus postage.
plus postage.
East. Send for free sampla of our best hook-up wire BLAN, The RADIO MAN, Inc.

89 Cortlandt Street, New York City

POLO Transformer Block

 2.5 v . at $3 \mathrm{amps} ., 2.5 \mathrm{v}$. at 12 amps ., 5 v. at 2 amps., 724 v., CT; two chokes, all in one casing

HERE is a compact transformer block, enabling you to build an ABC supply of finest design, to furnish the required voltages to operate screen grid AC tubes, 227 AC tubes, and 245 power tubes in single or push-pull circuit. This transformer block is expertly engineered and properly voltaged. The high voltage secondary, for instance, is fully high enough, so that when the voltage drops in the choke coils, tube and other apparatus in the B supply are taken into consideration, the direct current output across the voltage divider is 300 volts when the maximum current flowing through a section of the divider is 80 milliamperes. This enables correct
proportion of 250 volts for the plate of the 245 and 50 volts for negative bias for the last audio tube or tubes, total 300 volts.
Notice particularly that the filament winding for the radio frequency and first audio frequency amplifier tubes and detector tube is rated conservatively at TWELVE amperes. Look around for a transformer that has such a high current rating. Twelve amperes mean that you can operate six tubes from this winding without any danger of overload, while the overload in operating seven such tubes would be less than 5 per cent. The power tube filament winding enables the heating of single or push-pull 245 tubes, as the 3 amperes will easily satisfy requirements.
This transformer block is housed in a shielded, cadmium-plated metal casing, with mounting feet and a top projection, so that upright or horizontal mounting may be used. The total height of the casing is only $618^{\prime \prime}$., so even that if a $34^{\prime \prime}$ thick baseboard is used, the casing fits upright into a receiver that has the usual $7^{\prime \prime}$ high front panel.
The voltage leads emerge from a clearly marked plate, with center taps in red. You can make no mistake. Everything is plain and clear.
Notice that even the choke coils are included inside this same casing, so all you need are the resistors, tube and condensers, and you have the ABC supply that you've been craving for.

PEERLESS

12" AC Dynamic Speaker in

SONORA Hiflithoy

\#.4. $\$ 37.50$
LIST PRICE, $\$ 155.00$

 rectifier and 1,500 mfd. hum-killing condenser bullt in,
all housed in this $40^{\prime \prime}$ high Sonora cabinet of fascinating all housed in this $40^{\prime \prime}$ high Sonora cabinet of tascinating
ply-walnut. The cabinet is all ons plece-carved legs, marqueterie panel and grille all one pleco-carved lega
maras Sliding back is made of cane. This
imposing floor model speaker, exactly
as illustrated, in original factory

Amazing Buy!

Never in your life did you hear of such an amazing bargain-highest class, perfect, guaran-
teed merchandise at more than 75% off list price! Look at that beautiful highboy cabinet, its graceful legs, with archer's bow tiepiece; its rosetted side panels at front, its shapely grille pillars, all in two-tone effect, with high-polish su-face of walnut. The speaker sets against a
golden grille, with ample baffle board concealed.

Money-Back Guarantee!

Every precaution has been taken to produce the finest possible tone. The speaker is the genuine famous Peor-
less, operating directly from the 110 -volt $50-60$ cycle $\mathbf{A C}$ line. The cane back leaves the cabinet acoustically open, to avold box resonance. The entire outfl--speaker, rectifor, $1,500 \mathrm{mfd}$ condenser, AC cable, speaker cords and handsome cabinet.
Order yours TODAY on a 5-day money-back guaranteo
basis. No C.O.D. orders filled.
ACOUSTICAL ENGINEERING ASSOCIATES,
143 West 45th Street, New York, N. Y.
Gentlemen: Enclosed please find, $\$ 37.50$ for which plasse ship by exvress at once one $12^{\prime \prime}$ diameter genuine Peer-
less AC dynamic speaker, with built-in Kuprox dry rectifer, $1,500 \mathrm{mfd}$ hum-kiling condenser, AC cable, speaker ord, and AC switch builit in, all contained in the Sonora ply-wainut highboy cabinet, with cane removable back; $19^{\prime \prime}$ wide, $16^{\prime \prime}$ front to back; all in original factory carton. No C.O.D.

[^3]
New Junior Model POLOUNIT $\$ 4$

The famous twin magnet principle for double sensitivity, large magnets for great flux, permanently adjusted armature, all are in the new junior model Polo Unit. Weight, $23 / 4 \mathrm{lbs}$. Stands 150 volts unfiltered. Stands up to 250 push-pull filtered. Works any output tube, power or otherwise. Supplied with $10-\mathrm{ft}$. cord. Order unit now. Five-day money-back guarantee.

Acoustical Engineering Associates

143 West 45th Street New York City (Just East of Broadway)

Component Parts for
Herman Bernard's

HB Compact

(BATTERY MODEL)
The Circuit of Circuits!
Only Four Tubes

GUARANTY RADIO GOODS CO. 143 West 45th Street, New York, N. Y. Just East of Broadway

Get BOTH
Short Waves and Broadcasts

Write us today
for full details.

The words may sound strange but the cheery voice and lively music, all the way from Japan, talk a universal language.
Words and music from 20 different countries in a dozen different languages, may be heard with the NATIONAL Screen-Grid THRILL BOX. This new Radio bristles with new and ingenious features for your convenience and pleasure.

> NATIONAL 4 Tube THRILL BOX SW-4 NATIONAL CO. INC., Malden. Mass. Est. 《1 1914

RADIDIGITLC

When it comes to making sick radios well, or good radios better, just remember-

CLAROSTAT

the name of a line of products dedicated to better radio results.
Clarostat Mfg. Co., 291 N. 6th St., B'klyn, N. Y.

Blueprint FREE!

Get a free blueprint of either circuit listed on
the coupon below, by sending $\$ 1.00$ for elght the coupon below, by sending $\$ 1.00$ for elght
weeks' subscription for RADIO WORLD or send Weeks subseription, for RAD 10 WORLD, or send
$\$ 1.50$ for 13 weeks (quarter of a year) and get both blueprints free! RADIO WORLD, 145 . 45th St., N. Y. City
\$1 for which send RADIO WORLD for 8 weeks and send free bluegrint of tho oftery model 4-tube Screen Grid Diamond
of the Alr.
\square Si for which send RADIO WORLD for
 4-tube AG Scren Grid Diamond of the
Air. \square Air. (If renewing a subscription put cross here ;

NAME
ADDRESS
cITY.

SHIELDS

Beautiful Satin, Silver Dip Finish. Made to Order. Lowest Prices. Any Special Size in 24 Hours. Satisfaction Guaranteed. In stock: $4^{\prime \prime} \times 5^{\prime \prime} \times 2^{\prime \prime} \times 6$
$5^{\prime \prime} \times 9^{\prime \prime} \times 6^{\prime \prime}$
$9^{\prime \prime} \times 18^{\prime \prime} \times 6^{\prime \prime}$
plus postage.
HEADQUARTERS for old time radio parts in the
East. Send for free sample of our best hook-up wire. BLAN, The RADIO MAN, Inc. 89 Cortlandt Street, New York City

New Style DeLuxe Leatherette Carrying Case FREE with each Jiffy Tester!
 This combination of meters tests all standard tubes, including the new AC screen grid tubes and the

 new 245 tube, making thirteén tosts in $41 / 2$ minutes ! Instruction sheet gives these tests in detail,

A PORTABLE testing laboratory is your Tester, for you possess a combination Jiffy plate voltages of can measure the flament and tubes, and all standard battery-operated or AC screen grid tubes; also piate voltages up to 500 volts on a high reristance meter that is 99% accurate; also plate current.

The Jiffy Tester consists of a $0-20,0-100$ milliammeter, with change both), with two sockets, one for and DC voltmeter (same meter read both), with two sockets, one for 5 -prong, the other for 4 -prong tubes the cords of the high resistance voltmeter; also built-in are attached prong plug and 4 -prong adapter, so that connections in a receiver are transferred to the Tester automatically. Not only can you test tuben, but slso opens or shorts in a receiver, continuity, bias, oscillation, etc. The instruction sheet tells all about these tests.

In addition you can test screen grid tubes by connecting a specia cable, with clip to control grid (cap of tube) and other end of special cable to the clip in the set that went to the cap before the tube was transforred to the tester.
$T \mathrm{fu}$ new carrying case, whick $\frac{1}{\mathrm{H}}$ for a Cornished FREE with each order the entire outfit, including the three meters, cable and plug, and three adapters (one for 4lock. The $73 / 4 \times 3 y^{\prime \prime}$ and has nickel corner pieces and protective in 195 tubs lock. The case is made of strong wood, with black leatherective anap

To operate, remove a tube from the receiver, place the cable plus in the vacant receiver socket, put the receiver, place the cable plug the Tester, connect the high resistance meter to the two binding ponts and you're all set to make the thirteen vital tests in $41 / 2$ minutes!

The Combination Jiffy Tester is just the thing for service men, cus tom set builders, experimenters, students, teachers and factories. Order "Jiffy 500." The price is only $\$ 14.50$.

If a 0.600 AC and DC high resistance meter (99% accurate) is desired, so bouse electricity hine voltage and power transformer voltage can be measured, as well as plate voltage, instead of the $0-500 \mathrm{DC}$
voltmeter, order "Jiffy 600 " at $\$ 15.50$.

GUARANTY RADIO GOODS CO., 145 W. 45 St., N. Y. Clty. (Just East of Broadway), (1) Please ship at once on 5-day money-back guaranty one "Jiffy 500," at $\$ 14.50$, consisting of (2) eapecially legible at $11 / 2$ to $71 / 2$ volts. This meter and DC. Same meter reads bots. (2) One DOUBLE reading DC milliammeter, 0 to 20 and 0 to 100 milliamperes, with change over switch. This reads plate current.
(3) One $0-500$ volts high resistance voltmeter, 99% accurate; with tipped $30^{\prime \prime}$ cord to measure (4) B voltages.
(4) One 5 -prong plug with $30^{\prime \prime}$ cord for AC detector tubes, etc., and one 4-prong adapter for (5) Oner tubes.
(5) One grid switch to change bias.
(7) One 5 -prong socket.
(8) Two binding posts.
(9) One handsome moire metal case.

If $0-300$ DC DC posts.
(11) One instruction sheet.

Price is DC high resistance 99% accurate (12) One screen grid special cable.
\square Same as abov, $\$ 14.50$.
voltmeter (same meter reads both) for the 0.500 . DC and DC high resistance 99% accurate

NAME
ADDRESS

CITY
$0-600 v$, AC \& DC
High Resistance Meter ACCURATE TO 1% !

MOST USEFUL!

Here is a meter that serves an abundance of uses, because it has a wide voltage range, 0 to 600 volts, and
mensures voltage of alternating current and direct current,
 counts.
 legible readings of 20 volts per division of the scalle with wide divisions between
you can easily see to win
seo
5 measure the AC doltage across nign-voltage Dower transformer secondaries. If full-wave rectification is used, you measure each of the two sections of the transforner
secondary and add the voltages. Thus up to 1,200 total volts across the secondary may be read. For half-ware rectification, A secondary up to 60 volts is read across
the total wind the total whding. You find out at oncs whether tuis
winding is open or shorted, since no reading then would be obtained, or find ut whether no the roltage is right, or too high or too Iow. In all instances the $A C$ voltage
across the secondary should read higher than the deacross the secondary should read higher than the de-
sired DC output, due to the voltage drop in the tube sired to the current in the entire voltage divider and its sections. The normal deduction from the AC voltage, to

A REQUISITE FOR SERVICING!

Often service men, experimenters and students must whether the AC line voltage iner high voltage, his meter tells you, Connect it across the 110 -volt line. By reading this voltage and the voltage of the high-voltage dividing the smaller reading into the larger.
Becauss this is a high-resistance meter you can rely Ony a
the DC voltage of a \mathcal{B} ellminator, on andecurately measure much current that the reading may be 50 volts less than what it should be, or still more inaccurate, and you could almost guess the voltage more accurately than
a low-resistance meter would read.

MONEY-BACK GUARANTY!

This meter is sold on a δ-day money-back guaranty. Buy one, try it, test it thoroughly, compare it with other satisfled. send it back and your money will be promptly

The meter is full nickel plated, highest possible polish. has green cords, with red (positive) and bossible
(negative) moulded bakelite tip-holders, and sturdy tips (negative) moulded bakelite tip-holders, and sturdy tips.
The positive ana negative indications are for DC measureThe positive and negative indications are for DC measure-
ments. For AC the meter may be conneced at random. This meter, which is of the moving vane type, is Cat, M600 AC-DC.
.$\$ 7.50$

SEND NO MONEY

GUARANTY RADIO GOODS COMPANY
143 West 45 th Street, New York, N. Y
(Just East of Broadway)
Please ship at once C.O.D one $0-600$ voltmeter, read-
both $A C$ and DC, on 5 -day money This meter must be exactly as advertised in Radio World.

NAME

ADDRESS

5-DAY MONEX-BACK GUARANTY

DO YOU LIKE
Dust in Your Eye?

HERE is a . 0005 mfd . tuning condenser carefully encased in a housing consisting of metal front and back with transparent celluloid cross-piece sealed in between, all the way around, to keep out dust. The accumulation of dust on the stator and rotor plates of a condenser and about the bearings tends to build up a high resistance to radio frequencies. Keep out the $d u s t$ and you keep the selectivity and sensitivity high, because of unimpaired efficiency.

Do you like dust in your eye? The condenser is the eye of the receiver, just as the tube is the heart.

Easw Tumping Rotor

N ADE to last, and to work at highest efficiency from first to last, this condenser is sturdily constructed. The plates are accurately soldered in place to make best contact and perThe back and front metal housing pieces are contact is positive.
the condenser itself, metal housing pieces are connected to the rotor as a part of the construction The only dielectric insulation mate from outside disturbances. a fine minimum, and it consists of the preces of specially selected hard rubber, $13 / 8^{\prime \prime} \mathbf{x} 5 / 8^{\prime \prime}$. This Connection to stator plates is made from the receiver
the insulators. At rear another tinned Single hole panel mounting is provided with $1 / 4^{\prime \prime}$ shan connection.
Sub-panel mounting, by means of brackets, is shaft projecting. Two-hole mounting is optional. tapped holes of the front and rear shields
to is adjustable at rear. easily that you'll be delighted at the result. Moreover, the tension of the

Helps You Get DX

NTOT only is the dust-protected condenser sturdy and dependable, but it is handsome as well. Those who want excellenice surely can obtain it from this condenser. Because of the retained efficiency, you will find this condenser helps you to bring in distant stations.

Equip your set now with dust-protected condensers. Order Cat. No. DUP5 at $\$ 2.50$.

GUARANTY RADIO GOODS CO.,
i43 West 45th Street, N. Y. Gity
(Just East of Broadway)
Gentlemen: Please ship at once.
dust-protected .0005 mid. condensers
dust-protected . 0005 mid. condensers, Cat. DUPY, at $\$ 2.50$
\square Enclosed please find remittance. You are to
\square Shy cartage. I will pay cartage.
NAME
ADDRESS
CITY............................... STATE
5-DAY MONEY-BACK GUARANTY

SUBSCRIBERS!

Look at the Expiration Date on Your Wrapper
Please look at the subscription date stamped on your last wrapper, and if that date indicates that your subscription is about to expire, please send remittance to cover your renewal.

In this way you will get your copies without interruption and keep your file complete.

SUBSCRIPTION DEPARTMENT RADIO WORLD
145 WEST 45TH ST., N. Y. CITY

MORECROFT

New second edition, of" "Principles of
Radio Communication", by Prof. John H. Morecroft, of the Electrical Engineering Department of Columbia University and past president of the Institute of Electrical authoritative book on the subject
This large book on radio principles and practice is something that you must not be every engineer, every service man, simply must have this book. Ready reference to all intricate problems makes this volume invaluable. Set builders, experimenters, distributors, dealers, salesmen and teachers, students and operators, all find Morecroft their standby, and now the new second edition awaits you. 1,001 pages and 831 llustrations in this cloth-hound volume. Price $\$ 7.50$
RADIO WORLD
145 West 45th Street
New York City
(Just East of Broadway)

New Style DeLuxe Leatherette Carrying Case FREE with each Jiffy Tester!
 This combination of meters tests all standard tubes, including the new AC screen grid tubes and the

 now 245 tube, nusking thirteen tests in $41 / 2$ minutes! Instruction sheet gives these tests in detail,

A PORTABLE testing laboratory is yours 2 when you possess a combination Jiffy Tester, for then you can measure the filament and plate voltages of all standard tubes, including AC tubes, and all standard battery-operated or AC screen frid tubes; also piate voltages up to 500 volts on a high reaistance meter that is 99% ap tourate; also plate current.

The Jiffy Tester consists of a $0.20,0.100$ milliammeter, with change over switch and a $0-10$ volt AC and DC voltmeter (same meter read both, with two sockets, one for 5 -prong, the other for 4 -prong tubes; the cords of the high resistance voltmeter; also built-in cable with 5 . prong plug and 4 -prong adapter, so that connections in a receiver are transferred to the Tester automatically. Not only can you test tubes, but also opens or shorts in a receiver, continuity, bias, oscillation, etc. The instruction sheet tells all about these tests.

In addition you can test screen grid tubes by connecting a specia cable, with clip to control grid (cap of tube) and other end of special cabe to the clip in the set that went to the cap before the tube was transforred to the tester.

THE new carrying case, which it for a Combination FREE with each order for a Combination Jiffy Tester, contain cable and plug, and three adapters (one for 4 : prong tubes, two for 199 tubes). This case is for 4lock. The $734 \times 31 / 2$ ", and has nickel corner pieces and protective anap. lock. The case is made of strong wood, with black leatherette onerlap

To operate, remove a tube from the receiver, place the cable plug in the vacant receiver socket, put the tube in the proper socket of the Tester, connect the high resistance meter to the two binding posta, and you're all set to make the thirteen vital tests in $41 / 2$ minutes!

The Combination Jiffy Tester is just the thing for service men, cus tom set builders, experimenters, students, teachers and factories. Order (500 ." The price is only $\$ 14.50$
If a 0.600 AC and DC high resistance meter (99% accurate) is desired, so house electricity line voltage and power transformer voltagen can be measured, as well as plate voltage, instead of the $0-500$ DC
voltmeter, order "Jiffy 600 " at $\$ 15.50$.

GUARANTY RADIO GOODS CO., 145 W. 45 St., N. Y. Clty. (Just East of Broadway). (1) Please ship at once on 5-day money-back guaranty one "Jiffy 500 ," at $\$ 14.50$, consisting of especially legible at $11 / 2$ to $75 / 2$ volts. This meter reads the AC and DC filament. Scale (2) One DOUUBLE reading DC milliammeter, 0 to 20 and 0 to 100 milliamperes, with voltages over switch. This reads plate current.
(3) One 0.500 volts high resistance voltmeter, 99% accurate; with tipped $30^{\prime \prime}$ cord to measure (4) B voltages.
(4) One 5 -prang plug with $30^{\prime \prime}$ cord for AC detector tubes, etc., and one 4-prong adapter for (5) One Othbes.
(8) One grid switch to change bias
(7) One 5-prong socket.
(8) Two binding posts.
(9) One handsome moire metal case.
(8) If $0-300 \mathrm{DC}$ bing posts.
(10) One instruction sheet.

Price 0 DC high resistance 99% accurate (12) One screen grid special cable.
\square Same as above, except substitute 0600 , check herc.
voltmeter (same meter reads both) for the 0.500 DC meter DC high resistance 99% accurate

NAME
ADDRESS

The new de luxe leathersta carryng case is compact and handy. Sise $101 / 2^{\prime \prime}$ lomg. $7 \% /$
$0-600 v, A C \& D C$
High Resistance Meter
ACCURATE TO 1\%!

MOST USEFUL!

Here is a meter that serves an abundance of uses, because it ha a wide voitage range, oto to 600 volts, and mad is accurate to 1%. In a metor it's accuracy that
 logible readings of 20 volts per batision of the scale, With wide divisions betiveen 100 and, 400 volts, yo that
ou can easily see to within 5 polts, pur you can also measure the AC voltage across hign-voltage power transformer secondarles. If full-wave rectification is used, you measure eath of the two sections of the transfornier
secondary and add the poltages. Thus up to 1,200 total volts across the secondary may be read. For half-wave rectification, a secondary up to 600 volts is read aeross the total winding. You find out at oncs whether this
winding is open or shorted, since no reading then would winding is open or shorted, since no reading then would
be obtained, or find out whether the voltage is right, or too high, or too low. In all instances the $A C$ roltage
across the secondary should read higher than the doacross the secondary should read higher than the do-
sired DC output, due to the voltare drop in the tube sired to output, due to the voltage drop in the tube
and to the current in the entire voltage divider and its sections. The normal deduction from the $\triangle C$ voltage, to
obtain the

A REQUISITE FOR SERVICING!

Often service men, experimenters and students must know not only the transformer high voltage, but also Whether the AC line volage ine the rated 110 rolts or ont. By reading this voltage and the voltage of the high-voltage By reading this voitage and the voltage of the high-roltage
secondary ou can also determme the step-up ratio, by
dividin dividing the smaller reading into the larger.
Because this is a high-resistance meter you can rely
Our
The Only a high-resistance meter can accurately measure much current that the eliminator. other meters draw so
than what it hhould be or sing be 50 volts less than what it should be, or still more inaccurate, and you could almost guess the voltage more accurately than

MONEY-BACK GUARANTY!

This meter is sold on a 5 -day money-back guaranty. Buy one, try it test it thoroughly, compare it with other satisfied, send it back and your money will be promptly refunded
poilsh, mas meter is full nickel plated, highest possible (negative) moulded breen cords, with red (Dosititive) and black
balkelt tip-holders, and sturdy
tips The positive and negative indications are for $D C$ measure-
ments. ane meter may de connected at random. This meter, which is of the moving vane type, is Cat. M600 AC-DC.
.$\$ 7.50$
SEND NO MONEY!
gUARANTY RADIO goods company,
143 West 45th Street, New York, N. Y
(Just East of Broadway).
Please ship at once $\mathrm{C} .0 . \mathrm{D}$, one $0-600$ voltmeter, readThis meter must be exactly as advertised in Radio World.
name
ADDRESS
City
Stute.
5-DAY MONEY-BACK GUARANTY

DO YOU LIKE
Dust in Your Eye?

HERE is a .0005 mfd . tuning condenser carefully encased in a housing consisting of metal front and back with transparent celluloid cross-piece sealed in between, all the way around, to keep out dust. The accumulation of dust on the stator and rotor plates of a condenser and about the bearings tends to build up a high resistance to radio frequencies. Keep out the dust and you keep the selectivity and sensitivity high, because of unimpaired efficiency.

Do you like dust in your eye? The condenser is the eye of the receiver, just as the tube is the heart.

Easy=Trurninge Rotore

MADE to last, and to work at highest efficiency from first to last, this condenser is sturdily constructed. The plates are accurately soldered in place to make best contact and permanent, lasting, accurate alignment. The contact is positive.
of the condenser itself, and these metal pieces are connected to the rotor as a part of the construction The only dielectric insulation are two pieces of specially selected hard rubber, $13 / 8^{\prime \prime} \times 58^{\prime \prime}$. This a fine minimum, and it consists of the best insulator.
the insulators insulators. At rear another tinned lug is for rotor connection.
Single hole panel mounting is provided with r/4 shaft
Single hole panel mounting is provided with $1 / 4^{\prime \prime}$ " shaft projecting. Two-hole mounting is optional. tapped holes of the front and means of brackets, is optional, the screws for this purpose being in The rotor turns sa easily ear shielas you'll be delighted at the result. Moreover, the tension of the

Helps Yot Get DX

NTOT only is the dust-protected condenser sturdy and dependable, but it is handsome as well. Those who want excellence surely can obtain it from this condenser. Because of the retained efficiency, you will find this condenser helps you to bring in distant stations.

Equip your set now with dust-protected condensers. Order Cat. No. DUP5 at $\$ 2.50$.

GUARANTY RADIO GOODS CO.

143 West 45 th Street, N. Y. Gity
Just East of Broadway)
Gentlemen: Please ship at once,

\square Enclosed ploase find remittance. You are to
\square Ship cartage. \quad I will pay cartage.
NAME
ADDRESS
CITY
5-DAY MONEY-BACK GUARANTY

SUBSCRIBERS!

Look at the Expiration Date on Your Wrapper
Please look at the subscription date stamped on your last wrapa per, and if that date indicates that your subscription is about to expire, please send remittance to cover your renewal.

In this way you will get your copies without interruption and keep your file complete.

SUBSCRIPTION DEPARTMENT RADIO WORLD
145 WEST 45TH ST., N. Y. CITY

MORECROFT

New second edition, of' "Principles of Radio Communication," by Prof. John H. Morecroft, of the Electrical Engineering Department of Columbia University and Engineers. This is an outstanding authoritative book on the subject This large book on radio principles and practice is something that you must not be every engineer, every service man, simply must have this book. Ready reference to all intricate problems makes this volume invaluable. Set builders, experimenters, distributors, dealers, salesmen and teachers, students and operators, all find Morecroft their standby, and now the new second edition awaits you. 1,001 pages and 831 illustrations in this cloth-hound volume.
Price
$\$ 7.50$
RADIO WORLD
145 West 45th Street
New York City
(Just East of Broadway)

What These Marvelous Tubes Do

"Look for the Green Box"

224 AC-SG Tube, $\$ 3.00$
The 245 has a low filament voltage, 2.5 volts, at a relatively high current, 1.25 ampere. This eliminates the objectionable hum. The tube requires only 250 volts on the plate to be able to handle about as great undistorted power as the 210 does at 350 volts. A single 245 output tube will handle, without overload, the largest input to a last stage as would be required in any home. It works well into a dynamic speaker, or, by filtering the output, into a magnetic speaker. In pushpull two 245s give superb tone at doubled power handling capacity. The 250 requires 50 volts negative bias at 250 volts on the plate and draws 32 milliamperes under those conditions. The direct filament heating method is used. Type of socket, UX (four-prong).
There never was a power tube so excellently
suited to home use one that handlea such larce suited to bome use one that handlea such larse
input without strain, yet which operates on a plate voltage now regarded as in the "medium" class. Use this power tube and know supreme performance.

Kelly Tube Co., 8718 Ridgo Boulevard, Brooklyn, N. Y. Gentlemen: Please send me the following tubes:					
Quantity	$\begin{aligned} & \text { Type } \\ & 224 \end{aligned}$	Quantity	$\begin{aligned} & \text { Type } \\ & 222 \end{aligned}$	Quantity	$\begin{gathered} \text { Type } \\ 280 \end{gathered}$
\square	245	\square	201A	\square	281
\square	226	\square	240	\square	250
\square	227	\square	199	\square	210
\square	112A	\square	171A	\square	MP.
If ord	ring	put a	ross he		
If en	osing	ance with	order	cross	here [
On pr	patd	we pay	cartage.	c. $0 . \mathrm{D}$.	orders
you pay	cartag	post of	ce mon	r fee.	
Name					
Address					
City			..		

PANEL AO VOLTMETERS (Pazel moteri take 2-5/84" hole)						
No. 851-For reading e-15 volts AO.........						
PANEL VOLTMETERs						
No. 316 -For reading DC voltages, i-10 volte, 1.00						
No. 887-For reading DC voltages, - -50 volts, 1.00						
No. 844-Fror reading DC volteges, $0-150$ volts, 2.25						
Na 840-For reading DC voltaget, double reading, $1-8$ volts, $0-100$ volte \qquad						
QUARANTY RADIO GOODS CO. 148 Wost 45th 8troet, Now Yerk oltb.						

All Parts

 forNATIONAL MB-29
as described and specified by J. E. Anderson- $\$ 40$.

245 PP Power Amplifier, built up, $\$ 55.00$
Thrill Box, Complete Parts, all 6 coils,
GUARANTY RADIO GOODS CO.

800 Volts DC 550 Volts AC

The Working Voltages of New Filter Condensers
at Economical Net Prices

Actual size of new 2 mfd . non inductive filter condenser for power supplies. $21 / 2^{\prime \prime}$ high including lugs, $13 / 16^{\prime \prime}$ wide, $13 / 16^{\prime \prime}$ front to back. Mounting holes $11 / 2^{\prime \prime}$ apart.

These compact high voltage (VH) condensers are obtainable in the popular capacities @ 85 c per mfd. Their superiority as filter condensers, of course, fits them for the lesser voltage strain of by-pass condensers. Think of all the space you save! Condensers of such high voltage rating are usually $6^{\prime \prime}$ square for a block of three. You could get 16 of the compact HV type in that space!
Rated at 800 volts D.C. and 550 volts rms. A.C., guaranteed working voltages, these compact condensers have a breakdown voltage of 2,600 volts D.C., power factor (loss) of less than 1%, D.C. resistance of more than 600 ,000,000 ohms per mid., are non-inductive, accurate to 5% and have mounting flaps, a part of the shielded metal case. Finished in maroon.

These filter condensers are just the thing for power supplies, even including four 250 tubes in parallel-push pull! And, of course, for 210 type packs, 245,171 and any other pack using 550 volts or less.
1 mfd., Cat. HV1 @.
. . $\mathbf{\$ 0 . 8 5}$
2 mfd , Cat. HV2 @.
.. $\$ 1.70$
4 mfd., Cat. HV4 @................................ $\$ 3.40$
[NOTE: To use capacities higher than 4 mfd . connect individual HV condensers in parallel, thus adding capacities directly.]

GUARANTY RADIO GOODS CO.,
143 West 45th St., New York, N. Y.
(Just East of Broadway)
Enclosed please find $\$ \ldots .$. ... for whlch please send me
Quantity

[] Cat, HV2 (2 mfd.)................... © $\$ 1.70$
ㅁ Cat. HV4 (4 mfd.).................. $\$ 3.40$
All rated at 800 volts D.C., 550 volts A.C. (root
mean square). NAME . ..
ADDRESS
CITY \qquad
5-DAY MONEY-BACK GUARANTY

Socket Wrench FREE!

One of the handiest tools-for euntome builder, service man or home conatructor is a BERNARD socket, wrench. It consists of 6h" long metal tubing in which is a plunge ping terminal (called a socket, hence the name ping termal wrenct') that may be expanded on contracted to fit $6 / 32,8 / 32$ and $10 / 32$ nuts, the most popular sized nuti in radio. Use the knob to push out the plunger, press down an the handle to grip the nut, then turn the nut to left for removal or to right for fastenins down. Total length, distended, including etained wooden handle, $10^{\circ}{ }^{\circ}$. Gete, nicely into tight places. Send $\$ 1$ for 8 woelks maii subscription for RADIO WORLD and get thi wrench FREE. No other premium with thia ofter. Preaent subscriber one.
tion by stating he is one

lacaults
 Book

"Supar-Hoterodyne Construivtion and ODeration, sling the miasterp mimot mpystrul exposition this fascinating tope of circuit is a pecesity to every perlouve radio experifont, Mora than

 for Radio World Present subseribers insy accept thif ofier. Subscription will be extended.

Center Accurately!

Get Rid of Hum!
In AC circuits accuracy of the electrical center, partubes, is easily obtained through a fxed resistor with adjustable center tap. Then hum due to un balance in the filament circuit is dispelled. Use the $30 \cdot o h m$ Humdinger, adjustable with knife or screw driver. Connect extreme ends across
filament winding, biasing resistor to center lug. Then adjust. Also useful as 30 -ohm filament reistor in battery sets, using extreme terminals, extreme terminal. Special!'

Guaranty Radio Goods Co.
143 West 45th Street, New York, N. Y.
Please look at the subscription date stamped on your subscription is about to expire, please senc remittance to cover your renewal
In this way you will get your copies withou intorruption and keep your file complete. Subscription Department, Radio World, 145 Wesi 45th Straet, Now York, N. Y
RADIO WORLD, a weekly paper, published by Hennessy Radio Publications Corporation, from Publication Office, 145 West 45th Street, New
York, N. Y. Phone: BRYant 0558 and 0559 York, N. Y. Phone: BRYant 0558 and 0559 $15 c$ per copy, $\$ 6$ per year. This issue is dated
August 24 th, 1929 and is Vol. XV, No. 23 Whgole No. 387. Entered as second-class matter March, 1922, at the post o..ce at New York

Equip Yourself Now

 With Necessary Meters!To do sut rato mort proent pou poed moterio Heri it

 Sill

 ${ }^{2}$

RADIO WORLD

Horn Unit 52.25

This unit is predeminent for horn-type speakers, such as the exponential horns or other long toneing tenor's. or the tumultuous shout of the crowd or highest crescendo of the band is brought out learly distinctly. Stands up to 450 volts with. out filtering. Works right out of your set' power tube, requiring no extra voltage source Standard size nozzle and cap are die-cast aluminum, one piece, with milled platinom-like inish. The casing is full nickel, of highest possible polish. Works great from AC et, battery

For Portable Use

This unit can be used in a portable without any horn attached and will give loud reproduction. Order Cat. 225, with 41/2 ft. cord attached . $\$ 2.25$
(Shipping weight, 2 lbs.) $\$ 2$.

Air-Column Horn

f-ft. tone travel molded wood horn (less unit No. 225) is obtainable already mounted in a baffle box. Outside overall dimensions of baffe box, 2114° high, 18° wide, $15^{\prime \prime}$ front to back Shipping weight, 27 lbs . Order Cat. 596 \$8.00. The 225 unit and 596 horn built into a pis-wainut table $33^{\prime \prime}$ high, $24 \%^{\prime \prime}$ wide, $1713^{\prime \prime}$ froat to back Shipping weight, 50 lbs. Cat. No. 597 . $\$ 20.00$

Name
Address
Clty
FIVE-DAY MONEY-BACK GUARANTEE

Quick Action Classified Ads

 Radio World's Speedy Medium for Enterprise and Sales10 cents a word - 10 words minimum - Cash with Order

LEADING CIRCUITS

DIAMOND OF THE AIR, SCREEN GRID MODEL, battery operation, four tubes, described in February 9th, 16th, 23d and March 2d issues, 1929. Send 50 c for these four coples. Blueprint free
with 8 weeks with $\$ 8$
AC DIAMOND, screen grid, 4 tubes, sublished in March 23d and 30th isoues. Send 25c for these two numbers. Blueprist free with 8 weeks sub. scription for RADIO WORLD at $\$ 1$.
If you are renewing a present subscription please so stato
RADIO WORLD, 145 W. 45th St., N. Y. City

[^4]
PATENT YOUR IDEAS. Easy terms. Booklet Free. Established 25 years. H. Sandera, Rand McNally Building, Chicago, Ill.

Filament transformers, $5,21 / 2$, and $11 / 2$ volt wind ings center tapped $\$ 4.00$. ${ }^{21 / 2,}$, and $11 / 2$ Voit wind McLarty,' 926 Ardmore St., Jacksonville, Fla.

HEIP WANTED

WANTED a radio engineer to assist an inventor Must be a good mechanic, capable of designing and doing his own machine work and with inventive ability and vision to develop the idea. Address P..O. Box 530, New Haven, Conn.
LOUDSPEAKERS TESTED and guaranteed, $24^{\prime \prime}$ diameter, contain powerful unit. \$21.75. Lemsers Shop, 6326 Frontenac, Detroit, Mich.

Il PRILL BOX of National Co., Cat. SW4C and cabinet, $\$ 33$. Wired coils, 15 to 570 meters, $\$ 6$ extra. P. Cohen, Room 1214.145 W .45 th St.,
N . Y. City. Come in and see it.

TRANSFORMERS, all kinds, filter condensers, resistance and Rectifiers for AB Eliminators; television, power amplification, screen grid A.C Power Laboratories, Indianapolis, Ind.

LET US PUT YOUR SPEAKER OR
 YOUR SET IN SHAPE!

If your receiver or amplifier, no matter of what kind, is not giving proper results, send it to us prepaid. wrong, telling yous cost and let you know charges are very reasonable. Six years' experience. Loudspeakers and unite repaired. Burnt. coils replaced. Jaynxon Laboratories, 57 Dey Street, New York City.

RADIO INTERFERENCE-Six ways to eliminate
RADIO INTERFERENCE-Six Ways to eliminate
it. Instructions $\$ 1.00$ Address, The Experimenter, 67 Mosher Street, Holyoke, Mase.

RADIO-Fastest growing business in the world.
Are you sharing the prowing business in the world how. No selling. Free booklet. Radio Doctors

Rider Lifts a BIG Load Off

 the Service Man's Chest!In New Book Noted Radio Engineer Devotes 240 Pages to Trouble Shooting in All Receivers and Gives the Wiring Diagrams of Factory-Made Sets in 200 Illustrations-You Can Carry This Book Around With You-No More Torture Tracing Out Circuits.

${ }^{6}$ Trouble Shooter's Manual" By John F. Rider Just Out!

The first comprehensive volume devoted exchusively to the topic uppormost in every service man's mind is "Trouble Shooter's Manual,' how to overcome their most serious problems, and fully telling them the solations, but it is a course in how to become a service man. It gives all the details of servicing as they have never been given before. Finding the right mode of attack, applying the remedy promptly and obtaining the actual factory-drawn diagrams of receivors always have been a load on the service man's chest. But no more. Rider, expert on trouble shooting, has produced the outstanding volume on servicing, and has taken the load of the service man's chest.

This book is worth hundreds of dollars to any one who shoots trouble in recewvers.whether they be factory-made, custom-built or kome-made rectivers. The home experimenter, the radio engineer, the custom setbrildar, the teacher, the student, all will find this new book immensely
informative and absolstely authoritative.

Wiring Diagrams of

Bosides 22 chapters covering thoroughly the feld of treuble thoeting, this valume contalins the wiring diagrams of models, an obtained direet from the factory. Woalth of bitharto confidential wiring information relazsed for the firat time in the lntereat R. G A. A. $_{60}$ E4, 30 ZENITH
 FEDERAL
Type
type
Berles
Beries flament.
type R series Alament, sype D series flament.
Model K , Model H .

CROSLEY
XJ, Trirdyn 3R3, 601,

Here are the 22
Here are the 22 c
SERVIGE PROCEDURE
PRACTICAL APPLICATION OF
ANALYSIS
vacuum tubes
OPERATING SYSTEMS
AERIAL SYSTEMS
"A" BATTERY ELIMINATORS
TROUBLES IN "A" ELIMINATORS TROUBLE SHOOTING IN "A"
"B" BATTERY E
ELIMINATORS
TROUBLES IN "'B" BATTERY
ELIMINATORS
RADID WORLD, 145 . West
Enclosed please find:
Glose for which pleaso send me postpaid "Trouble Shooter's Manual," by John
F. R1der, being Part

ab advortbed, Liltation leather cover, gold lettering.

NAME
ADDRESS
CITY

Trounit

SPEAKERS AND TYPES
AUDIO AMPLIFIERS
TROUBLE SHOOTING IN AUDIO
TROUBLES IN DETECTOR SYSTEMS RADIO FREQUENCY AMPLIFIERS TROUBLE SHOOTING IN RF SERIES FILAMENT RECEIVERS TESTING, AND TESTING J,EVICES TROUBLES IN DC SETS TROUBLES IN AC SETS
MAJESTIC

FRESHMAN
Masterpiece, equaphsso
$\underset{\text { supply. }}{\mathrm{K}} \mathrm{K}-60-\mathrm{S} \quad$ DS. ${ }_{\text {Dower }}^{\text {and }}$
FREED-EISEMANN NRE, FE18, NR70,
470, NRS'
NR11, NR80 ${ }^{457,}$

All These Receivers!
worth the price of the book. The wiring diagrams are of new and old modela, of recelvers and accessories, and as to come of the set manufacturara, oll the modell
they ever produced are shown in wiring diagramal Here as the list of recoivora, ste, they ever produced are shown in wiring diagramai Here is the list of recoivora, shat
diagrams of which are publishod in this most important and valuable book: STEWART-WARNER \quad STROMBERG.
$300,305,310, ~ 315, ~ C A R L S O N ~$
 GREBE
MU1, MU2 phase ©, Eynchrophase ${ }^{\text {AC7, }}$, Deluxe 428 .

PHILCO

 KOLSTER$$
\begin{aligned}
& 4 \text { tube ehassis used in } \\
& \begin{array}{l}
\text { chassis for } 7 \text { tube tuning } \\
\text { power amplifter. } 7 \text { subs } \\
\text { tubs }
\end{array} \\
& \begin{array}{l}
\text { power amplifler. } 7 \text { tube } \\
\text { power pack and ampli- }
\end{array}
\end{aligned}
$$ rectifer unit K 23 .

Some of the Questions Settled in Book

system of repairs, circuits and operating oonner, ist of questions, practical chart tion, recognizing symptoms, examples of practical application procesa of eliminacircuits, grid circuits, methods of securing tests; neutrailizing systems, flamen short serials, selectivity, imperfect contact, drid bias, plato clicuits; long aerials,

 gaseous rectitier, dry disc rectifer, wiring, parts used design poitant reatiace plate voltage eliminators, AC and for perfect operation, combination flament and and voltage, excessive hum, dead eliminator B battery oliminstor output current of filter system, punctured condensers, shorted chokes, roltage rogulator tubes, function condensers, voltages in the voltages, voltage divider systems, filter condenseri, by-pan voltage drop, effeot of shorted filter system, defective rectin B eliminators. AC, DC, defective chokes, defective by-pass condenser, design of filter system, dofective port,
age divider network, relation external filters, nolse filters: cone den and output roltage, isolation of troubles quency filt, distorted output, ratile, continuity testing, spanding, troubles, dead, transformer, resistange, chokes, condensers, hum ellmination; a audio amplifior tyoos perfect operation, operating limitationato-transformer, combinations, requirements for analysis of trouble, plate current, grid current. voltege reducing resistances, noises,

"The Mathematics of Radio"

Man's Manual." The fider wot was "Manthematies of Rapediender the title "Serrice Dossession the the books is more than doubled by the gap between the novice and the college profersor. 128 It 11 , 119 Illustrations, bridger the 80 necessary for a proper understanding of radio and audio elreuita and their
servicing. See advertisement of "The Mathematies of Radio" on page 20.
 power plant,
power plant. 404 RA

COLONIAL 26 . 11 D.C. WORKRITE
8 taho chasis. G tub. ciane.
AMRAD SPARTON
MISCELLANEOUS DeFtorett Fuper Zonith D17, Supar
Magnapox dial, Ther myodyne, Grimes 4DL inverse duplex, Garo
neatrodyno, Garod EA
 $\begin{array}{ll}\text { special, Federal } & \text { Fo } \\ \text { Kernedy } & 220, \text { Operadi } \\ \text { portable, } & \text { Sleeder RXI }\end{array}$ portable
Armad
inductrol. LLL-AMERICAN
 so, 8 and 8 tube A.C.

DAY FAN
OLSM7, tube, 5-5 Fan
suply
A. A.C.,
for A.C. B power supply
5584 and 5625, motor
generator snd fiter, 6 generator sand fiter, ${ }^{6}$
tube motor generator tube 110 vott

[^0]: SCREE GR1D COIL C

[^1]: LIST OF PARTS
 L1L2L3-One Bernard Tuner for antenna circuit, for .0005 mfd . tuning (BTS5 of National Co., or BT5A of Screen Grid Coil Co.).
 L4L5L6-One Bernard Tuner for screen grid interstage coupling, for .0005 mfd tuning (BTP5 of National Co., or BT5B of Screen Grid Coil Co.).
 $\mathrm{C} 1, \mathrm{C} 2-\mathrm{T}$ wo .0005 mfd . tuning condensers.
 CT-One Hammarlund 90 mmfd. equalizing condenser.
 C3, C4, C5-Tbree .01 mfd . mica fixed condensers.
 R1-One Lynch .25 meg. metallized resistor.
 R2, R4-Two Lynch 5.0 meg. metallized resistors.
 R3-One Lynch . 75 meg. metallized resistor.
 R5, SW-One 75-ohm rheostat with switch attached.
 R6-Two resistors, one 1.3 ohms, the other 6.5 ohms.
 Ant., Grid., Sp.-, Sp. + . Four binding posts.
 One drilled steel cabinet $7^{\prime \prime}$ high, $91 / 2^{\prime \prime}$ front to back, $15^{\prime \prime}$ wide.
 Two dials with pointers.
 One pilot light bracket with lamp.
 One 7-lead battery cable.
 One $916 \times 15^{\prime \prime}$ satin finish aluminum subpanel with sockets affixed, and supplied with insulated bushings supporting bracket, and four resistor clips.
 Two insulated links (flexible couplers).
 Four brackets to support tuning condensers.
 Three 45 -volt B batteries.
 Two $41 / 2$-volt C batteries.
 One 6-volt A battery.
 Four Kelly tubes: two 222, one 240, one 112A.

[^2]: If you have missed any copies of Radio World for the summer of 1929 and want to complete your file, let us know what issues you are short and we will mail them to you at 15 c a copy, or any seven issues for $\$ 1.00$, mailed postpaid.

[^3]: If you have missed any copies of Radio World for the summer of 1929 and want to complete your file, let us know what issues you are short and we will mail them to you at 15 c a copy, or any seven issues for $\$ 1.00$, mailed postpaid.

 Circulation Dept., Radio World, 145 W. 45th St., N. Y. City.

[^4]: RADIO RBCEIVING TUBES, by Moyer and Wostrol, frat alliee just off the press. No radio cerviec maan, eaparimeator ar student of radio ahould we Whacut anis suthoritstive book on the answer all your queotion ralating to receiving amplifying and rectiyling tubas. Price postpaid,

