How To Get On The SWL Bandwagon

EXPERIMENTER

FEBRUARY-MARCH 75\$

WHY FLEA-POWER HAMS HAVE MORE FUN

Get into the act by building MINI-MITTER!

QRP Transmitter is

- Peanut-Sized
- Band-Switched
- Crystal-Controlled

AND NOW-
A TAPELESS
TV RECORDER!

COMPLETE PLANS!

TWO GREAT SCOPE ACCESSORIES!

- Dual-Trace Signal Switcher

EICO Makes It Possible

Uncompromising engineering-for value does it! You save up to 50\% with Eico Kits and Wired Equipment.

Two years shead! Model 7923 All Solid-State 23-Channel 5 W Transceiver. 4 exclusives: dual-crystal lattice filter tor razor-sharp selectivity; efficient up-converter frequency synthesizer for advanced stability; precision series-mode fundamental crystals: Small: only $3^{3} \mathrm{H}, 8 \mathrm{~W}, 81 / 4{ }^{\circ} \mathrm{D}$. $\$ 189.95$ wired only. The best buy in tube-type CB-"Sentinel.Ppo" 23 -channel dual conversion 5W Transceiver $\$ 169.95$ wired only.

EICO Trans/Match (Model 715) is a professional test set
designed for complete checking of ham and CB equipment

Tiry 0)

Professional Portable Multimeters by EICO The industry's greatest V-O.M values. Designed, made to Eico's high standards of professionalism. Each complete with batteries \& test leads. Backed 100% by famous EICO warranty Model 100A4, $100,000 \Omega / \mathrm{V}, \$ 34.95$. Model 30A4, 30,000 N/V, $\$ 19.95$ Model 30A3, 30,000』/V, \$15.95 Model 20A3, $20,000 \mathrm{n} / \mathrm{V}, \$ 12.95$ Model 4A3, 4000n/V, $\$ 8.95$ Model IA1, $1000 \mathrm{n} / \mathrm{V}, \$ 5.95$.
 Kit $\$ 34.95$; Wired $\$ 49.95$.

Automotive

EICO 888-Car/Boat Engine Analyzer.
For all $6 \mathrm{~V} / 12 \mathrm{~V}$ systems; 4, 6, 8-cyl. engines.
Now you can keep

your car or boat
engine in tip-top shape
with this solid-state, portable, self-powered universal engine analyzer. Completely tests your total ignition/electrical system.
Complete with a Tune up \& Trouble-shooting Manual. Model 888; $\$ 44.95$ kit, $\$ 69.95$ wired.

Test Equipment साज
 100 best buys to choose from.

"The Professionals'

- laboratory precision at lowest cost Model 460 Wideband Direct-Coupled 5" Oscilloscope. DC. 4.5 mc for color and B\&W TV service and lab use. Push-pull DC vertical amp., bal. or unbal. input. Automatic sync limiter and amp. $\$ 109.95 \mathrm{kit}, \$ 149.95$ wired.
Model 232 Peak-to-Peak VTVM. A must for color or B\&W TV and industrial use. 7 non-skip ranges on all 4 functions. With exclusive Uni-Probe. $\$ 29.95$ kit, $\$ 49.95$ wired

FREE 1968 CATALOG
 RTVE-2

EICO Electronic Instrument Co., Inc.
131-01 39th Ave., Flushing, N. Y. 11352
Pend me FREE catalog describing the full EICO line of 200 best buys, and name of nearest dealer. Name

Address
City
State

NEW!
 MASTER COURSE IN COLOR TV

WITH NTS COLOR KITS

Big 25" Color TV kits included in new Master Color TV Home Study program. Learn Color TV; keep the new $25^{\prime \prime}$ color TV receiver you build with exciting kits we send you. 10 million homes in this country will have color TV by the end of 1967. This industry needs technicians as never before, and NTS-trained men can move quickly into the big money.

COLOR TV SERVICING BRINGS HIGH PROFITS

New color sets need careful installation, precision tuning and skilled servicing. NTS home training can put you in this profit picture-prepare you for big pay, security, or start a business of your own.

LIFT OFF...TO A"SPACE AGE" CAREER IN ELECTRONICS

This is the "space age". It offers new op. portunities in communications, industrial electronics, computer technology, and many others. Automation has increased the need for skilled electronics technicians in thousands of manufacturing plants. Only the well trained man makes it big. Industry wants and demands this kind of man ... the NTS man. Pick your field. Let an NTS Project Method Program help you toward a well-paid career in Electronics wherever you travel.

NEW CAREER KIT ... FAST, EASY START TO NTS HOME TRAINING

The exclusive Project Method Career Kit helps you move quickly into your training program. Earn while you learn as you progress with your shop-tested Project Method lessons and kits.
Send for the New illustrated NTS Color Catalog. It shows the equipment and kits you work with and keep. Describes in detail the advantages of NTS Project Method Home Training. Tells you everything you need to know about starting your career in electronics.

SPECIAL SECTION ON QRP HAMS

47 Peanut Whistles Spell Progress
-the lives and loves of flea-power hams
51 Build The Mini-Mitter -your open-sesame to pipsqueak hamming

SPECIAL CONSTRUCTION FEATURES

61 Dual-Trace Signal Switcher-traces by the twos
75 Dynamic Duo Q-Checker -you use it with a scope
79 CB Rock Rater x 3
-xtal checker with the mostest
82 Load Box Deluxe - what the test bench ordered
85 S9er for SWLs-six-huck soup-up for SW sets
91 Mini-Jector-cheapie signal injector in a probe
94 Decibel Decimator-bye-bye io TV commercials

ELECTRONICS FEATURES

65 First Full Report on CBS's Tapeless TV Recorder
78 Mood Monitoring Electronically
93 Imagineering Design Tips
97 Hot Line To The Weatherman
100 Lab Check-A Amphenol 680 FET Voltmeter
COMMUNICATIONS: CB and SWL
28 CB Rigs \& Rigmarole
55 Shortwave For Non-SWLs -getting on the bandwagon
60 CB Moonshine-oh, that hillbilly Mona Lisa
72 Propagation Forecast
73 Lucky 13 For Bored DXers

FEATURETTES

45 What A Way To Earn A Buck-cartoon page
64 Tiny As A Tack, Dazzling As A Dodo Bird
59 Three Weirdos We Wonder At
96 Bigger Antenna Feeds There Aren't

REGULAR DEPARTMENTS

21 Positive Feedback
32 Ask Me Another
38 New Products
42 Bookmark-by Bookworm
89 Ham Traffic-Picon, what's with you?
106 Literature Library
WHITE'S RADIO LOG, Vol. 49, No. 1-page 109
Cover photo by Leonard Heicklen

SPECIAL 16-PAGE SECTION

RADIO SHACK CATALOG '68 PREVUE

Get the one electronics catalog that isn't "me too"

See the very latest in CB, audio, tape reels and cartridges and cassettes, communications, PA, radios, intercoms, antennas, electronic parts and kits, test equipment, transistors, Life-time-Guaranteed tubes, mikes, speakers, walkie talkies. See what nobody but NOBODY but Radio Shack has. See why "The Shack" is the biggest chain of its kind in the country! See it in colorgravure - the kind of bargains shown on the next 15 pages. Exciting! New! Different! Get the book that isn't "me too" today!

Just Published! FREE! USE COUPON ON PAGE 20

Get Radio Shack's Holiday Special!

RADIO SHACK

Fresnel Lens 4x Magnifier
\# $64-444$
Amazing new optical miracle with genuine fresnel lens! This wafer-thin magnifier measures just $37 / 8^{\prime \prime} \times 11 / 4^{\prime \prime} \times$ $1 / 32^{\prime \prime}$ thick and slips easily into any pocket or wallet. Though the lens itself is no thicker than a credit card, its Fresnel-principle engraved surface actually enlarges 4 times with good linearity. Get yours FREE today with any mail order or store purchase of any item in this ad! Offer limited to supply available, so act promptly to avoid disappointment. Limit: one free per customer.

EXTRA 4X FRESNEL MAGNIFIERS (cat. No. 64-444)
 50°

Store Addresses, Order Form, See Page 20

RADIO SHACK SPECAL PURCHASEI
 4and8-TRACK AUTO TAPE CARTRIDGES

FOR AUTO AND HOME PLAYERS / \$2 TO \$4 BELOW MARKET!

February-March, 1968

HUGE ASSORTMENT! PRERECORDED

ATTENTION MAIL BUYERS: Space prohibits listing separate titles. Please specify quantity - we will send an assortment of all different titles.

DEDUCT 10\% IN LOTS OF 5 OR OVER

Now you can buy full length 4 -track and 8 -track auto stereo tape cartridges for $\$ 2$ to $\$ 3$ less per reel than ever before! Radio Shack cleaned out a famous U.S. tape cartridge manufacturer of thousands of popular auto stereo cartridges, and we're passing the savings to you! A vast assortment of over 50 titles: shows, jazz, counery, folk, pop, western, classical. Buy now while our supply lasts! (NOTE: See recent Radio Shack catalogues for 4 and 8 -track tape players at our low, low prices!)

Store Addresses, Order Form, See Page 20

What's your project for our "Build \ln " radio?

Here's a wired transistor radio in 3 pieces. Dextrous do-it-yourselfers should have a field-day with this one.
You carpenters, metal-workers and gift designers will really appreciate Radio Shack's novel "Build In" -a 6 -transistor superhet that's really a kit that isn't a kit. Confused? Part one is the radio, 100% wired, installed in a crystalline $21 / 4 \times 1 \times 31 / 8^{\prime \prime}$ case with the tuning knob sticking out of one end, and 8 wires out of the other. Part two is a separate volume control with built-in switch, knob, and soldered leads. Part three is a $21 / 4^{\prime \prime}$ PM speaker installed in a plastic case, with soldered leads.

The three parts (plus a flat 9V battery, not included) can be installed in, on, or under anything, in just about any desired angle or position. And you don't have to be an engineer - Radio Shack's geniuses have provided a simple, idiot-proof lashup pictorial. Now all you need is the price (just $\$ 6.98$, Cat No. 12-1150) and some Yankee ingenuity! Whether you hide "Build In" in a jug of corn likker, junior's wagon or Tillie's sewing box, the result is sure to please.

The basic radio itself looks like a little jewel, a real work of art - our photo doesn't do ir justice. And the "kit that isn't a kit" is another of Radio Shacks's exciting exclusive products that can't be bought elsewhere. Get a "Build In" at your nearest Radio Shack store ... and start your Christmas project early!

PM SPEAKER IN CASE

RADIO SHACK PROJECT BOOKS (4c A PROJECT)

"50 EASY TO BUILD SOLID STATE PROJECTS"

Build your own transistor radios, electronic organs, amplifiers, code oscillators, megaphones, generators, etc. Ideal for hobbyists. 62 -1050 \qquad Net 2.00

"A MODERN TRANSISTOR WORKBOOK"

Build your own wireless microphone, AM broadcast tuner, audio preamp, P.A system, experimenter's power supply, etc. 50 schematics.

MIKES, SPEAKERS, HEADSETS, TOOLS FOR THE ELECTRONICS EXPERIMENTER

BUILD "El'S" MIGHTY SUB-MINI SPEAKER
 MINIATURE PM SPEAKERS FOR TRANSISTOR PROJECTS, RADIOS

4" Acoustic Suspension
 FE. 103 Speaker Systeml

The fabulous Realis. tic FE-103, complete with cabiner construc. tion details as pub. lished in Electronics Illustrated! 30-17,000 cps; 15 watts; 8Ω 40.1197, FE-103, Wt. 5 lbs. Net 7.95 CONTOUR NETWORK KIT. With instructions. 40-808, coll, eapacitor, ete., Net 3.95

8 Ohm Impedance
Small in size but big in sound! Three sizes to choose from: $21 / 2$ ", $21 / 4^{\prime \prime}$, or $2^{\prime \prime}$. All for the same bargain price! 40-247, 21/2", 40.246. $21 / 4$ 40-245, 2°,

$01 / 2$
20°
$E A C H$

FABULOUS THERMO-ELECTRIC GLUE GUN
 WORKS!

STEREO HEADSET

Perfect for use with re ceivers, tuners, amplifiers, kits and recorders! 8 ohms, 33-1008, Net 2.79

CRYSTAL MIKE CARTRIDGE

Precision made crystals! Response up to 7000 cy . 270.095, 8 oz. Net .89

LAVALIER DYNAMIC MIKE
Neck/Hand/Desk Use!
Pencil-slim hi.Z for use at home, studio, of in PA and guitar systems! With cord, stand, 50 K . 33-928, Ship. wt. 2 lbs......Net 6.95

LOW COST 25.W SOLDERING IRON

1
Comes complere With UL Cord and Plus. Uses 117 V AC/DC
$64-2182$.
1 Ib Nef 1.89 64-2178, Extra cop. per Tip Nel 25

Feer:ary-March, 1968

STEEL CATCH-ALL STORAGE BOX

4 draws with adjustable compartments.
64-2050, 3 lbs.
For Stor Addresses, Order Form, See Page 20

POWERFUL CERAMIC MAGNETS

1,000's of Home, Office, Auto Usasl	10°	15°	25°
64-1835	Each For 10	Each Singly	Per Pair
64-1875	10	OR	100

ASSORTED ELECTRIC

Over 600 pieces! Something here for everyone! All brand new - no sweepings! One full pound. Comparable value: $\$ 4.50$! 64-2890, W1. I Jb. Net . 99

THESE ELECTRONIC PROJECTS HAVE EARNED CASH AWARDS FOR RADIO SHACK CUSTOMERS Build Yourself - or Win Cash by Sending Us Your Own Ideas! W. R. SQUARE WAVE GENERATOR

Check Out the Frequency Response of $\mathrm{Hi}-\mathrm{Fi}$ Amplifiers - Tape Recorders - Preamplifiers

Use this square wave generator, together with an oscilloscope, to analyze the frequency characteristics of any audio amplifier. The unit is adjustable over a broad range of audio frequencies.

F. R. F.
 Chatsworth H.S.
 ELIMINATOR/CHARGER

 California
Use Either in Place of a 9-Volt Battery or to Charge. Batteries to Full Power. Save \$\$\$

	PROJECT PARTS LIST	
Stock No.	Item	N
270.325	9 volt battery connectors (kit of. 5)	. 69
273-050	6.3V@1.2A Filament Transformer	1.19
$274-687$	Terminal strips (kit of 5) 40
276.1135 275002	Rectifier epoxy (kit of 2) SPST Swith	.29 .30
272.986	Copacitor 500 af (1)	. 72
70.0195	$10 \mathrm{K!} 1 / 2 \mathrm{~W}$ Resistor (1)	.12
278-1253	6 Ft. Line cord (1)	. 39
276-1390	Prepunched breadboard (i)	. 55
275-602	SPST Toggle Switch	. 30

Now you can run electronic kits and experiments that use 9V DC power without buying new batteries! Simply plug into any 117 VAC outlet; delivers up to 250 ma at 9 VDC.

\$\$ FOR YOUR ELECTRONIC IDEAS!
 Turn Ingenuity and Hobby into Spare-Time Profits!

We are looking for experiments built around Radio Shack or other electronic parts. These will be published regularly in our catalogs. If published by us

WE WILL PAY YOU AN AUTHOR'S FEE and reimburse you for parts bought from us - maximum $\$ 50$ cost. By submitring it, you state it's original with you. If we accept it, it is understood we can publish it for use by our catalog, flyer, book and magazine readers. Submissions cannor be returned. Send description, parts list, stock numbers, and schematic. DO NOT SEND ACTUAL SAMPLE as we will build it here to see if and how it works. Write today!

> SEND TO: Radio Shack, Atin: Lewis Kornfeld, Vice-President 730 Commonwealth Avenue, Boston, Mass. 02215

RADIO SHACK EXCLUSIVE! ADD A SLAVE "WALKIE" TO YOUR BASE, MOBILE, OR WALKIE TALKIES!

 Crystal-controlled superhet receiver ONLY! Add as many ears to your network as you want. Fits in a shirt pocket - an excellent paging op guided tour device!

This unusual Radio Shack product, called the Realistic Microsonic 27MC Receiver, comes complete with a Ch .11 CB crystal - and because it's a plug-in, it can be changed to any of the 23 channels. It's a teeny $31 / 2 \times 21 / 2 \times 13 / 8^{\prime \prime}$. It includes an earphone with clip, and the phone's lead acts as the antenna. So if you want to hide it away as a pager, there's nothing showing. For DX we've included a $16^{\prime \prime}$ telescopic whip to be used only if necessary. Let your imagination run wild with this novel device! 21-109 Microsonic 27MC Receiver

Only 7.95
NEW IDEA \# 2 - as a companion to the above, or a wireless $C B$ microphone (!), there's also the Realistic Microsonic $C B$ transmitter. Same size, color, everything. But transmit only, 100 mw of course, with plug-in crystal for Ch. 11. Uses? For example: one of these plus x-number of receivers and you have a guided tour technique thar'll never quir!
21-110 Microsonic CB Transmittar
Only 7.95

FREE ACCESSORIES:

- Receiver - earphone and whip antenna - Transmitter - $35^{\prime \prime}$ telescopic antenna Note: both units include crystals but require a 9 V transistor battery to operafe. 23-464, 29 each.

RADIO SHACK'S FABULOUS SPACE PATROL TWOSOME
 STANDARD FULL SIZE
 =ARCHERSPACE PATROL ${ }^{\circ}$
 --ARCHER \rightarrow MICRO SPACE PATROL

Talk up so $1 / 4$ mile with our perennial favorite in the 100 MW no-license class. Over 100,000 of these transceivers now in use! "Lock on" ralk switch for continuous transmission when needed. Excra-long 43" telescopic antenna! Chan. nel 14 crystal \& battery included.

11^{95}
 PER PAIR

Double eransformer talkpower in the world's smallest (3-5/6 x. 2-7/16 x $11 / 4^{\prime \prime}$) case. Fits casily in your shire pocker (and your budget). Handsomely sryled hi-impact, custom-chromed case. Easy to operate with a hideaway "push-ro-talk" button. 9 -section relescoping antenna. With channel 14 crystal and battery.

PER PAIR

23-CHANNEL CRYSTAL-CONTROLLED TRANSCEIVER

13995

- 18 Transisfors; 4 Diodes!
- Antenna ChangeOver Relay!
- Low Battery Drain!
- Synthesizer Circuitry!

- Illuminated "S'" Meter E Channel Selector!
- Wood Grain E Chrome Front Panel!

Obsoleres all other 23 -chanael crystal-controlled uansceivers! High-efficiency - up to 3.5 wates output with 5 watts input. Dual conversion, with 10.62 Mhz and 455 Khz IF's for sharp selectivity, Seasitivity: $0.25 \mu v$ at $10 \mathrm{db} \mathrm{S} / \mathrm{N}$. Adjustable squelch control and automatic series gate noise limiter, 12 VDC neg. ground. Plug-in ceramic mike and recractable coil cord, fusable DC power cable, bracket, instructions'and hardware.
21.124, TRC.24, Ship. Wf. 6 lbs.
 Single Crystal Operation for Receive and Transmit 99^{95}

- Solid State Circuitry!
- Dual Conversion 6.2 MHZ and 455 for Greater Sensitivity \& Selectivity! - Mechanical 455 KC Filter! - Push-fo-falk Dynamic Mike!

A truly versatile communications package. Incorporates advanced frequency synthesis rechnique used on higher priced models, the TRC-18 transmits and receives with only one crystal per chanoel. Up to 3 -watts ourpur with a full 5 watts of RF input. Low battery drain in any 12 VDC nef. ground
vehicle. Adjustable squelch control: automatic noise limiter; illuminared channel selector and meter. Sensitivity: $0.5 \mu \mathrm{v}$ for $10 \mathrm{db} \mathrm{S}+\mathrm{S} / \mathrm{N}$. With cords, brackers, crystal for channel $11.71 / 2^{\prime \prime} \times 63 / 8^{\prime \prime} \times 21 / 8^{\prime \prime}$ 21-120, ship. Wt. 8 lbs.

Fealishic SOLID STATE MOBILE 2-WAY RADIO

- 8.Crystal Controlled
79^{95}
Economy priced. Model TRC-14 features full 5 -watts inpur, adjustable squelch control and advanced electronic antenna switching. Sensitivity: 1 av for 10 db SN/N. 12 VDC neg. ground. Set of crystals for channel 11, push-roralk ceramic mike, mounting bracket, DC cable and instructions. $81 / 4 \times 55 / 8 \times 21 / 3^{\prime \prime}$
21-032, Ship. Wt. 5 ibs.
TRC-15 - Same as above bur for 12 channel operation, illuminated channel selector, die cast panel, extruded trim and coil cable push-to-calk.
21-033. Wt. 5 lbs. ... 89.95

EASY-TO-USE =mLCzanta TEST EQUIPMENT!

1,000 OHMS/VOLT MULTITESTER

495

- Convenient Thumb-Set Zero Adjusfmentl
- Reads AC/DC Volts in 3 Ranges: 0-5, 150, 1000!

20,000 OHMS/VOLT MULTITESTER

Single-knob range selector with separate ohms adjustment. Spec.: DC Volts 0-3/15/60/300/600/ 1200@ 20,000 ohmsivolt. AC Volts 0-6/30/120/ 600/1200@10,000 ohms/volt. DC Current 0-60 , $\mathrm{a} / 3 \mathrm{ma}, 30 \mathrm{ma}, 300 \mathrm{ma}$. Resistance range 0.12 K , $120 \mathrm{~K}, 1.2 \mathrm{meg}$ and 12 meg (at center scale 60,600 , $6 K \& 60 \mathrm{~K}$). Decibels: -20 to +63 db (5 ranges). 22.022, Ship. Wt. 2 lbs.

Not 14.95

Only $35 / 8 \times 5-3 / 16 \times 11 / 4$ "I

Great for home or workshop! Pin jacks for all 5 ranges; 2 -colot $13 / 4^{\prime \prime}$ meter scale. DC Current $0-150$ ma. Resistance: $0-100,000$ ohms. Accuracy is $\pm 3 \%$ of full scale value on DC ranges, $\pm 4 \%$ of full scale on AC ranges. A rugged black bakelite case. Comes with pair of color-coded rest leads, instructions, battery.
22-4027, Ship. W'f. I lb.
Net 5.95

Great for technicians, mechanics and hobbyists. Specs: DC volts: 0-0.5-2.5-10-50-250-500-1000V (e) $50,000 \Omega /$ volts. AC volts: $0-2.5-10-50-250-$ 1000 V @ $12,500 \Omega /$ volts. DC current: $0-25 \mathrm{ma}$ $2.5 \mathrm{ma}-250 \mathrm{ma}-1 \mathrm{amp}-10 \mathrm{amps}$. DC Resistance: 0 10,000/100,000/1 meg. $/ 10$ meg-ohms. Center scale: $90 / 905 / 9000 / 900,000$ ohms. Decibels: -20 to +62 (5 Fanges). $22-150$, Ship. Wt. ${ }^{1 / 2}$ libs.

Net 27.95
-تAICRANTA 61/2" VTVM METER

- Easy-to-Read 2-Color Full View Mirrored Scalel

Features a zero-center scale for alignment of FMTV detector circuits. Specs: AC volts: RMS 0.1 to 1500 V . (7 ranges); DC volts: 0.1 to 1500 V . (7 ranges). Peak-to-peak $4-4000$ V. (7 ranges). Output -20 db to +65 db (7 ranges). Resistance: 0.2Ω to 1000 meg-ohms (7 ranges). Tubes: 12AU7, 6 ACS and SR1A. Power: 117 VAC, $50 / 60$ cycles. 22-025, Ship. Wt. 7 lbs.

Net 39.95

EXCITING ELECTRONIC PARTS VALUES

10 Germanium Diodes
 Similar to 1N34, IN34A, 1N60

 Equivalent in use to silicon diodes with lower forward voltage drop
 276-82I, Wt. $1 / 4 \mathrm{lb}$
 JUMPER LEAD CLIPS

 Set of 10
 Ten $14^{\prime \prime}$ jumper lead wires with maniature alligator clips on each end. Leads are color coded for testing!
 278-1156, Ship. Wt. 6 oz.
 Nt $\dagger .99$

JUMBO 100 PC.

 RESISTOR PAK

STANDARD $1 / 4^{\prime \prime}$ PHONE PLUG

 99،Plugs into standard $1 / 4$-inch phon jack. Screw terminal connections. 274-1536, W4. 4 oz.

Kit of 4

500' HOOK UP WIRE

2^{98}

Marnmoth bargain. 5.100 ft coils in popular colors. Sizes \# 18 thru \# 22 , suitable for most wiring jobs. Stranded and solid types. 278.1484, Sh. wt. 2 lbs. Net 2.98

60-PC. TRANSISTOR SURPRISE PAK

Includes NPN's, PNP's, 10W, 20W and 50 W transistors, as well as subminiature rypes, 60 in all! 276-034, Sh. wt. 2 lbs.Net 2.98

MINIATURE PUSHBUTTON SPST SWITCHES

Pkg of 5

Momentary pushbutton switches, Nor mally open circuit. Solder lug termi. nals. Panel mounting, Red button and black phenolic housing. $2 \times 3 / 81$. 275-1547, Ship.wt. 1/4 Jb........Net . 99

INSULATED CLIP SET

5" VERNIER DIAL

99

- 6:1 Drive Ratiol
- 5 Blank Scales!

Large face is ideal for test equipment calibration, erc. $0-180$ logging scale Hairline pointer $1 / 4$ " dial shaft in rear can be coupled with anorher shaft. Plastic seerhrough window, plus large easy-togrip knob. 274-388, Ship. Wf. I Ib. Net 3.99

1" MATCHED KNOB KIT 0 OCC $\begin{aligned} & \text { Set } \\ & \text { of } 5\end{aligned}$

Black knurled knobs w/polished aluminum inlay. Brass inserts for $1 / 4$ " shafr. Ser screw. $1 \times 3 / /^{\prime \prime}$. 2741552, Ship. Wi. 4 oz. Nat . 99
$1 / 2 \mathrm{lb}$. Jumbo Pack of Disc Capacitors 2 49
Per Pak
OVER 300
PIECES! All pop.
ular values and volrages. Most are
marked with capacity and voltages. 272-987, Ship. Wf. $1 / 2 \mathrm{lb}$.............Net 2.49

NEON PILOT LIGHTS

Builtin neon lamps. Jewet front; 2 red, 1 yellow. For 117 VAC use. With 3 drop ping resistors.
272.338, 1/4 Ib

Net 99
Infra-Red Detector Transducer Kit

Parabolic reflecror, $3^{\prime \prime}$ filter, and detector complete with pictorial diagram. Wonderful experimenters kit! 276-035, Ship. W4. $1 / 2 \mathrm{lb}$.......... Nef 1.98

SEMI-CONDUCTORS FOR THE HOBBYIST

\rightarrow-archer \rightarrow Replacement Transistors

PNP TYPES

For high frequency. RF-IF, and converter circuits. Replaces: $\begin{array}{llll}2 N 247 . & 2 N 248, & 2 N 252 . \\ \text { 2N267, } & 2 N 274, & 2 N 308 .\end{array}$ 2N309, 2N310. 276-412, Wt. 3 os.
1.29 For mixes ooscillator converser circuits. Replaces: 2 N 112. 2N136, 2N137. 2N140. 2N175, erc 276-401, Wt. 3 or.
.99
For universal $1 F$ circuits. Re. places: 2N111. 2N112. 2N139. 2N218. 2N219. 2N315. $2 N 366, \quad 2 N 406$. 276. 276 Wt. Wi. 3 or, 99 For 6 vole audio circuirs, Replaces: 2N77. 2N104, 2N105. 2N107. 2N109. $\begin{array}{ll}2 \mathrm{~N} \text { 2 30, } \\ 276-403, & \text { Wt. } 3 \text { or. }\end{array}$ For 12 volr audio circuirs. Replaces: 2N36, 2N37, 2N38 2N41, 2N43, 2N44, 2N45 2N46, erc. 276-404, Wł. 3 or. 99 For 9 vols audio circuirs. Replaces: 2N188. 2N189 $\begin{array}{lll}\text { 2N190, } & 2 N 191 . & 2 N 192 \\ \text { 2N195, } & 2 N 196, & 2 N 197\end{array}$ erc. 276.405 Wt. 3 oz. 99 For auto radio AF amplifier circuits. Replaces: 2N176. 2N178. $2 N 179, \quad 2 N 234$ 2N235 2N35B, 2N236 2N242. erc. 216-406. Wt. 3 or \qquad
For high power AF circuits in auto radios. Replaces: 2N173. $2 N 174, \quad 2 N 277, \quad 2 N 278$ 2N44, $2 N 442^{\prime}, \quad 2 N 443$, 2N1515, etc 276-407, Wf. 3 oz.

Silicon Epory high gain Re places: 2N940-2N946. 2N2333-2N2337, 2N3548 2N3550.
276-420, Wt. 3 ot. Nef 1.09
Silicon Epuxy nedium gain Replaces: 2N1132. 2N9232N928. 2N2372. 2N859. 2N865. we 0
276-421, Wt. 3 or. Net .99

NPN TYPES

For mixer/oscillator converter circuirs. Replaces: 2N193. 2N194/A, 2N211, 2N2-12. 2N233. 2N234, 2N357. 2N358.
276.408, W4. 3 cr .
1.09

For universal IF amplifier cir cuirs. Replaces: 2N98, 2N99, 2N100, $2 \mathrm{~N}_{1} 15$, 2N146. 2N147, 2N148, 2N149, ec. 278-409, Wt. 3 or. 1.15

$$
\text { For } 9 \text { vole } A F \text { amplifier cir. }
$$

$$
\begin{aligned}
& \text { cuivs. Replaces: 2N3S. } \\
& \text { 2N160A }
\end{aligned}
$$

$$
2 N 169 A, \quad 2 N 213, \quad 2 N 214 .
$$

$$
\begin{array}{lll}
2 N 228, & 2 N 306, \quad \text { 2N312, } \\
2 N 212,
\end{array}
$$

2N313. em.
276.410 , Wt. 3 oz. 99

For 12 volt AF amplifier cir. cuirs. Replaces: 2N306A, 2N445A, 2N446A, 2N447A. 2N556, 2N557. 2N587. 2N649, erc. 276-411, Wt. 3 or
Silicon Epory nigh gain. Replaces: $2 N 3704-2 N 3709$ 2N3415-2N3417, 2N3877. 276-422. Wt. 3 se. ... Net 1.09 Silicon Epoxy Medium gain. Replaces: 2N706TPP 2N3663, 2N3E43A, 2N3900. 2N3901, erc
2.29 276.423, Wt. 3 or. Net 99

Integrated Circuit Specials!

- Ideal for the Hobbyist, Builder, Experimenter!
- Fantastic Savings!

New from Radio Shack! Resistor-Transistor Logic type ICs are ideal for builders hobbyists, labs, industry etc. Guaranteed to be 100% perfect electronically and mechanically. Each comes complete with diagram and lead locations. Power requirements: 3 volts. Flat Pak rype. Size $3 / 4 \times 5 / 16 \times 1 / 16^{\prime \prime}$.

DUAL 3 INPUT GATE. Can be used as a 6 inpur microphone mizer. Contains up to 6 cransistors $\$ 8$ resistors in pak. Elements can be used parallel to increase curient capabilities.
276-430, Wt. 3 of.
Net 1.98
DUAL JK FLIP-FLOP. Construct your own binary computers, digital adding machines, etc. Coneains up to 26 transistors \& 50 resistors per pak 276-431, Wf. 3 oz.

Net 2.49

Silicon Field-Effect Transistors

1000's of applications where pentode tubes are used in low level circuits: field strength meters, "gate dippers," receivers, flea power transmitters, etc. TO. 5 case. Includes specifications. 276-664, 5h. wt. 2 or.Net 1.98

IBM Component Boards

All quality American made parts. Each board contains at least two transistors. plus loads of other components: resistors, capacitors, coils diodes, modules, chokes, and heat sinks. Size: $29 / 8 \times 37 / 8^{\prime \prime}$.
276-6i6, Sh. wt. $1 / 4 \mathrm{lb}$.
Net 29

3 Amp SiliconControlled Rectifiers

Designed to deliver loads up to 3 amps. Ideal for use in speed control operation, power converters.

100-Pc. Jumbo Pak Assorted Transistors

NPN \& PNP in TO-5 case: power ransistors, too! Ideal in RF \& IF driver. outpur, switching. general audio purposes.
$276-544$, 5h. wf. I Ib.
Net 3.98

mosmes Ingenious New Radio Shack PERFBOX ${ }^{\text {'" }}$ "Professionalizes" Project Building!

The bloody-knuckle brigade will appreciate
 Radio Shack's effort to eliminate chassis cutting and drilling, and make things prettier!

Somebody at "The Shack"-thank heaven! - must hate metal chassis and the generally sloppy look of breadboard projects. Now they've come up with a bakelite chassis box into which they've installed (4 screws) a $31 / 2^{\prime \prime} \times 6^{\prime \prime}$ perfboard top. But that's not all-the back of the box is pre-drilled for a 21/4" or other PM speaker, and there's a pre-drilled $1 / 4^{\prime \prime}$ outlet hole on one side! This much-needed item is called the Radio Shack Experimenter's PERFBOX ${ }^{\text {T31 }}$ (Cat. No. 270.097, price \$1.69) and should sell like film at Expo 67. As an added fillip, there's a companion deal they call Radio Shack Experimenter's 5.Piece Panel Set, consisting of 3 perfboards and 1 aluminum and 1 bakelite panel board, all $31 / 4^{\prime \prime} \times 6^{\prime \prime}$ predrilled to fit the PERFBOXX ${ }^{\text {TH }}$. The latter two boards are un-perfed (to coin a word), and the 5 -piece set (Cat. No. 270-100, price \$1.69) should answer just about any need for extending the usefulness of the PERFBOX short of filling it with champagne!

RECOMMENDED PARTS FOR USE IN PERFBOX PROJÍCTS

DESIGN, CONSTRUCT YOUR OWN CIRCUITS . . . using these time-saving phenolic boards, breadboard or permanent type. weight I lb.

UNCLAD PERF-BOARD

- Accepts Miniature Componentsl
- Easy-In, Easy-Out Mounting!
- Ideal for Modular Constructionl
276.1582, 3.65×6.87x1/14"
$276.1583,6.87 \times 9.8 \times 1 / 16^{\prime \prime}$
Net .59
COPPER-CLAD SOLID
Not 1.15
- Make Your Own Printed Cireuitsl
- Quality-Manufactured Board
- Bonded with Copperl

Net 1.5

COPPER-CLAD PERF-BOARD

- For Printed Circuit Design and Circuit Checkoutl
- Easily Etched and Worked!

276-1594, $3.65 \times 6.87 \times 1 / 16^{\prime \prime}$
Not. 89
276-1585, $6.87 \times 9.8 \times 1 / 16^{\prime \prime}$
For Store Addresses, Order Form, See Page 20

ALliga

SOLDERLESS TERMINALS

Set of 15
Use with 093 diameter holes. Takes up to 7 leads without soldeting. USA made. Spring ac tion,
$270-1395,4$ or. Net 994 270-1395. 4 or. Ne中 994

SPRING BANANA PLUGS

Ideal for $3 / 32^{\prime \prime}$ hole perforated boards. Overall length 1 "' 270-1543, 2 or. Net 99\%
Use with prepunched perf boards. 062 diam. erer holes ($1 / 16^{\prime \prime}$). Serrated slots, Easy multi. ple connections. 270-1394, $1 / 4 \mathrm{lb}$. 270-1394. $1 / 4 \mathrm{lb}$. Nef 1.49

PUSH-IN TERMINAL KIT

Kit of

Set of 10

ALLIGATOR CLIP SET

10 brass plated $13 / 8{ }^{\prime \prime}$ long with insulated phe. nolic barrels. Strong spring. 5 red, 5 black. 270-1540, 2 oz. Net 99:

20 Power Resisfors

Package consists of high. quality vitreous, cand.ohm and wire-wound types. In. cludes 5 to 25 .Watt power resistors; individual catalog ner - $\$ 10$! 271-1202, 2 lbs. . . Net 1.00

4 Subminiafure $\mathbf{4 5 5 K C}$ IF Transformers

SIug tuned, made for printed circuitry mig.,
 x $1 / 2$ ".
273-515, 1/4 bb. Not 1.00

40 Coils and Chokes

Shop assortment consisting of RF, OSC, IF, para. sitic, peaking and many more types. Individually purchased, this would cost you \$15!
273-1569. I lb
b. ..
....
Net 1.00

Special! 50 Capacitors

Assortment of many rypes including disc, ceramic, mylar, temperature coeff. cient, molded, paper, oil, Vit-Q. You save $\$ 9$ over industrial net catalog prices!
272.1199, 1 Ib. Nof 1.00

48 Terminal Strips

You get a wide variety of screw and solder lug type terminal strips with 1 to G luss. Outstanding value at this low price! 101 uses for the buidder and experimenter. 274.1555, 1 lb.

Net 1.00
40 One-Wat Resistors

Here are resistors for hundreds of uses! Assortment has Allen Bredley and IRC carbons, with 5% values included. This pack is regular $\$ 8.00$ catalog net! 271-1576. I Ib.

Net 1.00

50 Plugs and Sockets ldeal bench assortment for servicemen, hams, etc. Subminiature and printed circuit types included! This assorment saves you $\$ 10$ over individual cat. alog prices! 274-1542, I Ib. Nef 1.00

Large assortment of pop. ulat $1 / 2,1$ and 2 -watt values; includes encapsu. lated, bobbin, carbon film, etc. Made by Aerovox. Shellcross, IRC, and other famous names. 271.1196, | lb. .. Net 1.00

8 Sets-RCA Plugs \& Jacks

Quality items, ideal for use in phono amplifiers. tuners. recorders, etc. Take advaniage of this Radio Shack Special low price!
274.1575, 1/2 lb. Nef 1.00

45 Mica Capacifors

Famous narae micas Aerovox, Sangamo, C.D., etc. This assortment in cludes popular values 100 mmf to .01 mf , as well as silver type condensers. A $\$ 10$ caralog ner value 272-1573, I lb.1...... Nof 1.00

60 Half-Watt Resistors

 Made by Allen Bradley and IRC. Many 5% and 10% rolerance. Color chart. All most popular values. An absolute "musr" for hobbyists and kit-builders.271-1612, 1 16. Net 1.00

35 Disc Type Capacitors

A varied assortment of types, including NPO's, Hi-Q, N-750's, mylar and ceramic. 10 mmf to .01 mf to 6 KV . A $\$ 10$ cat. alog net value!
272-1567, $1 / 4$ lb. . Nof 1.00
4 Transistor Transformers

Made by UTC and Remington Rand. Famoue min. iatures. Iricludes sub. ouncer, mike, input types. Color coded leads. 273-1501, I lb. .. Net 1.00

30 2-Watt Resistors

These quality 2 -watt re. sistors are non-inductive, magnetic film, carbon types. Many with 5% values. Made by famousname manufacturers. 271.1211, $1 / 2 \mathrm{lb}$. Net 1.00

50 Tubular Capacitors

An assortment of quality tubular capacitors, 100 mmf to . mf to 600 WVDC. Includes molded. paper and porcelain rypes. $\$ 10$ if purchased individually from catalog! 272-1568, | lb. ... Net 1.00

35 Miniafure Resistors

World's smallest $1 / 4$-watt carbon type resistors! All have axial teads; built for transistor and subminiature circuitry: Assorted values, with resistor color code chart.
271.1566, $1 / 2$ lb. Nef 1.00

8 Volume Controls

Most Popular Values Contains 8 assorted values including long and short shaft types. A tremendous bargain for servicemen!
271-127, 1 lb.
Net 1.00

50 Ceramic Capacitors

	Wide variety of popular values by Centralab and other famous-name mak. ers. 10 mmf to .04 mf to KV. Assortment includes tubulars, discs, NPO's. temp. coefficient, etc. 272.15 66. I lb. Nef 1.00
150^{\prime} of Hook-Up WireAssortment consists of 6 V rolls of 25° each solid and stranded wire. \# 18 through \#22. Necessary for multitude of jobs and always useful! 278-025, $1 / 2 \mathrm{lb}$. ... Net 1.00	
	SURPRISE PACKAGE!

Loaded with Parts!

The biggest surprise package yet! Enough elecrronics components to make your eyes pop! Resistors, capacitors, condeasers, diodes... your guess diodes. is good as ours. The famous-make parts are worth as least $\$ 25.00$!
270-1251, I lb., Net 1.00

BRILLIANT NEW KIT LINE!

Science

 Fair ${ }^{\prime \prime}$Pert-board electronic
projects make soldering optional, let builder re-use parts or change circuit!

At last! - electronic kits that let you work the same way engineers do - by "breadboarding". Designed by Radio Shack's engineers and produced by its new Science Fair Electronics division, the kit line features step-numbered construction data, pictorial, schematic and add-on instructions.

AC/DC POWER SUPPLY KIT $\measuredangle 95_{\substack{\mathrm{NO} \\ 28-104}}$
 Converts 117 VAC
 "OTL" AUDIO AMPLIFIER KIT 4^{95} NO.
 28-106

 (house current) to either 6 or 9 volts DC. Play battery operated equipment on house line! Also ideal for use with Science Fair ${ }^{\mathrm{Tst}}$ kits \& other projects.Ideal for use with tuners, mikes, phonograph systems. OTL ourpur. Frequency response up to 15,000 cycles. Rated up to 2 watts peak.

TRANSISTOR RADIO KIT 39
 N.

28-102
Tunes the standard AM broadcast band; can also be used as a tuner. Battery-operated. Comes complete with earphone. Perfboard construction.

TRANSISTOR ORGAN KIT 595
 NO.

Each note on the sev-en-note scale is separately tone variable. Unit is battery-operated and features perf-board construction. Fun to build \& operate!

WIRELESS AM MIKE KIT 3^{95}

Transmit through any radio up to 20 feet away! Battery-operated microphone is a real broadcaster! Constructed of sturdy perf-board.

1-TUBE DC RADIO KIT 395

NO.
28-100
Battery-operated! Learn tube theory and build a real working radio. Equipped with sturdy perf-board construction. Kit comes complete with ear. phone.

Now Everyone Can Own a Second Telephone!

Standard Desk Telephone

 Ready to Install 795Enjoy the extra convenience of an extra phone! Out most popular style; it's modern, low-cost, and easy to install. Each phone is factory reconditioned to give troublefree scrvice. Bakelite body and handset; meral base. Dial, bell and coil included. (Note: use of telephone equipment mot installed by a telephone company may be subject to local tarif.)
279-37I, Sh. wt. 10 lbs
Net 7.95

Fot Private Phone and Intercom Systems.

30 Ft. Telephone Extension Cord

Move gour phone from room to room? Highest-quality 4 -conductor fexible cord plus standard telephone jack and plug. Ideal for intercom. Use 2 or more for extralength.
279-1261, Sh. wf. 11/4 lbs.
Net 2.98

Telephone Plugs \& Jacks

Ideal for making extensions, these plugs and jacks each weigh approximately $1 / 4$ pound.
279.366, plug 1.25
279.367. lack

Coiled Phone Cords

Shipping weight: $1 / 4$ pound
27-361
Nef 1.19
Four conductor extends up to fifteen feet.
Shipping weight: $1 / 2$ pound.
272-1389
Shoulder Rest
Frees both hands! Spring mechanism enables arm to be folded out of sight when not in use. Easy to atrach to atry phone. Long lasting meral construction. Manufactured in the United Stares. Weight: 1 pound.

Net 1.49

Telephone Wall Jack

For 2. 3. 4-wire systems. Fits standard wall conduir boxes. 1 lb . 279-1507

Not 5.95

279-606

$$
5-10=
$$

Store Addresses. Order Form, See Page 20

Carbon Type Handset

For Mobile and Replacement Use!
Great for use with mobiles \& intercoms. or as outdoor mike for camps and construction aites. Withstands extreme remperatures. High output mike can be used with low gain circuits. Adapt to your CB transceiver or radio. Includes earpiece and 3 -conductor cord. 279-1351, sh. wf. I lb. Net 2.99

Sound-Powered Elements

Kir of rwo! Talk without electricity your voice powers these devices. Hook them up and talk up to 300 feet. Shipping weight: $1 / 2$ pound.
279.1353

Net .99

100 Ft. 3-Conductor Tellephone Wire

Multi-use 100' 3- conductor wire for relephone work. Ideal for liaking temporary phones for field uses.
278.370, St. wt. 2 lbs.

Nel 3.49

Handset Hanger

Hang up your phone withour curring off party on other end. Ideal for wall telephones. Anodized black aluminum. 279.152日. Sh. wt. $1 / 4 \mathrm{lb}$. Net 1.25

Telephone Dials

Standard Western Electric unit, Can be used with auromatic control circuits, \& electronic combination lock circuits.

ORDER BY MAIL FROM YOUR NEAREST RADIO SHACK STORE

Moomixt 390s!
Unle Rack: Univanstity
calipolnia
Anchein: 507 Eas Katelle Ave.
cotersfiald: Valloy Squere Shop. Ctr.
Cevine: 1065 West badillo
Gardey: Gionewood Shopping Center
Olemdale: Broadway Garden Grove Ilvery Chase Dr.
Ingleweed: 4736 West Century Blyd.
La Mabra: 1511 West Whitlier Blvd.
Leng Beach: 4684 Long Beach Blvd.
Los Angelan:
830 W . Olympic Blvd.
Ladera Shop. Ctr. 5305 Centinela Ave
Mission Mills, $109: 9$ Sepulvedo Bivd.
West L.A., 10450 W , Pico 19389 Vinpe
West L.A., 10650 W . Pico Atd. at Overland
Mo. Mollywoed; Lourel Plaro Shop. Ctr.
Oakland (San Leandro): Bay Foir Shop, Cir.
Posodena: 1715 East Colorodo Blvd.
Pompne: 1335 Holt Ave.
Serremente: 600 fulton Ave.
San Bermardino: North O St.
San Diego: Grossmont Shoppina
an Diego: Gross mont Shopping Center
College Grove Shop. Cfr.
San Froncisce: 36 Geary Strest
Sanse Ane:
Aristol Plozo Shop. Ctr.
2713 South Main St.
Santa Manice: 772 Sonto Monica Blvd.
Terrance: 22519 Howthorne Blvd
Weat Cevina: 2516 Enst Workmon Ave.
COLORADO
Denver:
798 South Sonto fo Dr.
Wesflond Shopping Center
North Valloy Shop. Ctr. CONNECTICUT
ridgoport: Lofoyette Plage
Hemden: Henden Mart Shopping Conler
Menchester: Monchester Shopping Parkode
Now Britain: Nowbrite Plaro
New Haven: 230 Crown 51 .
Now Londen: New London Shop. Cir.
Oramge: Whitecore Shop. Cir.
Stamford: 29 Migh midge Rd.
Wett Hortiord: 19 so Main St
FLORIDA

Jocktonville: Rogency Square Shop. Cir.
W. Polm Beach: Pal Polm, Weoch Lake Blvd,
cronola

Atlanta:
917 Peachiree $5 t$.
Greanbriar Shopping Center
No. DeKalb Shop. Cir., Decetur

ILLNOIS

devillo: Bellevue Plazo Shoe, Ctr
Chicege: Evergreen Plaza of $95^{\text {th }} \mathbf{\$ t}$.
Igin: 526 Dundee Ave.
Marvey: Dixie Square Shop. Ctr.
Waukegon: Belvidera Mal
INDIANA

Richmend: 753 Richmond Sq. Shop. Ctr. KANSAS
Kansas City: Ranch Mart So. (Leowood) Wichita: Parklane Shop. Ctr.
KENTUCKY

Bowling Green: Bowling Green Mall Newport: Newport Plozo, 70 Corothers Rd. LOUISIANA
Grelna: Ookwood Shop. Cir.
Monree: lower Drive Plozo
Now Orleans: 3112 Paris Ave.
Shreveport: 1297 Shreve Cify MAINE
意anepr: 20.24 8rood 5 t.
Portland: Pine Tree Shop. Cir. MARYLAND
Baltimare: Perring Pkwy. Shop. Ctr
Langley Park: Mompshire Longley Shop. Ctr.
Rectille: 1600 Roctvill. Pik. MASSACMUSETTS
Besten:
167 Washington St
594 Washington St
Eraintree: South Shere Plazo
Erockpen; Westroote Moll
Broskline: 730 Commanwealth Avo.
Cambridge: Fresh Pond Shopping Cenlor
Dedham: Dedham Mail, 300 VFW Pkwy.
Dorchester: Bayside Shep. Mall
Framinghem: Shoppers' World
Leominster: Whiteocre Shop. Cir
Lowell: Central Shop. Ploza
Modford: 3505 Mystic Valley Pkwy. (Durral Div.) Ouiney: 221 Quincy Ave. (Durrell Div)
Seugus:
N. E. Shop. Cir.
704 Broodway (Durrell Div.)
pringheld: Springfield Plaza
Wehhem: 922 Main 5 . (Durrall Div.)
West Springheld: Century Shop, Ctr.
Worcenter: Lincoln Plozo
MICHIGAN
Detreit:
Macomb Mall ((t)oseville)
lineseln Part: is Sears Lincoln Pik, Shop. Ctr.
MJNNESOTA
Ouluth: 29-31 Eest Superior 5t.

Minneapolis:
1121 Nicollet Ave.
Hub Shopping Ct
s1. Peul: 471 No, Smelling Ave.
Mississippl
Jacksen: 3017 North Stote St. M1ssount
Kaneas Ciry:
1234 Grand Ave.
3t. Joseph: Eosi Hitls Shop. Crr
St. Loseph: EOst Hifls Shep. Crr.
St. Louls:
I125 Pine St. (Walter Ashe Div.)
South County Shopping Center
Northland Shopping Center
Northland \$hopping Conter
10483 St . Chorles Rock Rd., St. Ann
Omahe: 3002 Dodge 5 .
NEW HAMPSHIERE
Manchestor: 1247 Elm St
NEW JERSEY
Pennsauk on: R. 130 ond Trowning Rd
Trenton: 1461 Hamilton Ave.
NEW MEXICO
6315 igue:
4th and Copper N.W. N.
NEW YORK
Abbeny: Colonie Shop. Cr., Colonio
Binghompten: Vestal Shopping Plaza
Buftele:
725 Main Steset
Transitown Cir. (Willioms ville)
Now York: 1123 Ave. of the Americes
Schenectedy: Shoporama Cit., Rotterdam
3057 Erio Blvd. East
Foirmount foir Cir., 3675 W . Genesee 5 t.
NORTH CAROLINA
Charlefte: 1010 Central Ave.
Cincinnati: 740 OH1O
Cleveland:
Seuthpate Cir. (Maple Hts.) Village Shope
Richmend Moll (Richmond His.)
Lima: Limo Moll
Willowick: Shoregape Shop. Cir.
OKLLAMOMA
Ohlehome City:
Mayfair Shop. Ctr.
Tulsa: 2730 South Horverd
OUEGON
Portland: 1928 N.E. 42 nd St.
-ENMSYIVANIA
Graensbure: Greengote Mall
Philodelphie:
2377 Coftman Ave., Lloosovelt Mali
Pittlorenimut St.

109 So. Hilli Village Ctr.
East Hills Shop. Cir.
Plymouth meefing: Piymouth Meeting Moll
(HODE ISLAND
Providence: 355 Resorvoir Ave.
Eobt Providence: Shoperrs' Town TENNESSEE
momphis:
1208 Southland Mall, Whiteheven
96 North Avalon
Eastgate Shopping Cte.
froyser Plazo Shop. Ctr.
1azs South 3rd St.
Noshville: 100 Oaks
Abllene. 2910 TKA5
Ablent: 2910 North first St.
Ausington: Callins at Park Row
Brown: hancock Shopping Conter 847 S.E. Elizabeth S° 。
Corpus Christi: 520 Everhort Rd.
Dellas:
Madallion Center
125 Wynnewood Village
Ilymouth Pork Shop. Crr
156 Marsh Inane Plaza
156 Inwood Villoge
507 Gasa Linda Piaza
1424 South Budener Slud
El Pase: B5 Bossett Center
Forth Worth:
3524 Denton Highway
2615 West 7th 5 s.
6301 Camp Sowie Blvd.
Meuston:
Mouston:
7949 Katy Freoway
8485 Gulf Preoway
322 Northline Mall
Allolife, 4759 Eiasonnet
9417 Jensen ${ }^{2}{ }^{2}$ d.
1407 Spencer Hgy. (So. Houston)
Lubbock: B-10 Ceprock Shop. Ctr.
Midland: Seuth "'S" Mata Drive
Sen Antenio:
150 Wonderland 5 hop. Crr.
$6845 . W$. Military Drive
$71071 / 2$ Son Pedro Highway 75 Nopth
Shormen: 1620 Mighway 75 North
Tyler: 100 Troup Howy.
Wace: K-Mart Shop. C
Saly Lake City: Coftonwood Mell
vileginia
Arlington: Parkington Shop, Ctr,
Homplen: Mercury Ploza
Norfollt: 4016 Gronbr $\$ 1$.
Fartrmouth: 3109 South St.
Virginia each: Pembroke Mall Shop. Ctr. WASHMNOTON
Seanlea
202 A Thlod Ave.
110 SW . $14 \mathrm{e}_{\text {th }} \mathrm{St}$.

Julian M. Sienkiewicz, EditorBritain's Stone Age Mt. Palomar-Stonehenge -was built so that ancient sun worshippers could predict when their god would be eclipsed.

Stonehenge is a circular pattern of large stones in southern England that includes 56 in the outer ring. The stones are laid out in a scheme that obviously has meaning but there is no agreement as to what that is. The theory that Stonehenge served as astronomical observatory has been advanced by astronomers since early in this century, but archaeologists have not found
\end{abstract} the astronomical thinking convincing.

Now, however, Dr. Fred Hoyle, director of England's new Institute for Theoretical Astronomy at the University of Cambridge, has built a bridge between the two sciences, presenting evidence that eliminated many of the archaeologists' reasons for disagreement.

Archaeologists have generally attacked such theories on the grounds that Stone Age man lacked the sophistication to figure out the theoretical basis of such a complex observatory. Dr. Hoyle suggests that they didn't start with a theory, but with a pragmatic wooden model that they could change as its defects became obvious. Only when the observatory evolved and actually worked did they make it permanent.

Dr. Hoyle believes that the outer part of Stonehenge (the 56 circular markers) was built a little after 3000 B.C., and that the center structure for predicting solar and lunar eclipses was built several hundred years later. The great stone monoliths at the center of Stonehenge were put in place after a long. painstaking test by trial and error using wooden posts. The first wooden model tested could have resulted from the insight of a Stone Age genius equivalent to this century's Albert Einstein.
One of the most recent and ardent exponents of Stonehenge as an astronomical observatory is Dr. Gerald Hawkins of the Smithsonian Astrophysical Observatory in Cambridge, Mass. He also suggested that the large stone markers

wilh Locknul/Screw adijusing lealure

Speeds, simplifies setting of combination lock-nut/slotted screw adjustments on rheostats and similar controls used in a wide variety of electrical and electronic equipment.

Handte is drilled so you can run an $8^{\prime \prime}$ screwdriver blade right through its center and down through the hollow nutdriver shaft.

Ideal for all-round production, maintenance, and service work, this new HSC-1 Set contains eight interchangeable hollow nutdriver shafts in the most popular hex opening sizes from $3_{6}{ }^{\prime \prime}$ thru $\%_{6}{ }^{\prime \prime}$

Really compact! Set is small enough, light enough to carry in your hip pocket, Sturdy, seethru, plastic carrying case doubles as a bench stand.

POSITIVE FEEDBACK

were placed in a pattern for predicting solar and lunar eclipses, but thought the ancient men had worked out the proper positions theoretically. Dr. Hoylc suggested, rather, that the pattern of Stonehenge was worked out as a field experiment by very observant men who noted that every year the sun's positon in the sky was the same at the same time, such as mid-summer or mid-winter.

To measure such positions accurately, they would have had to use relatively long distances for sighting, such as a circle about 100 yards in diameter, which is the size of Stonehenge. Many of the stones, however, seem to be slightly out of place for accurate measurements of solar and lunar positions.
Dr. Hoyle has found that 19 of the 23 positions that seem to be out of line would be correct if they were lined up for observing not the actual date of mid-summer, but for two other observations: one during the week the sun approached its solstice and one as it moved back again. The average of these two observations would give a more accurate astronomical position than a single sighting at the time of solstice.

After several years of such observations the Einstein-of-his-time would have noticed that solar eclipses occurred only when the sun, earth and moon were lined up. The group then added the markers necessary to predict solar eclipses, first using wooden posts and then replacing them with the immovable stones so that later generations could not move them out of line.
What amazes this editor is the enormous energies expended by scientists using complex electronic computers and carbon dating techniques to discover what our illiterate forefathers were up to at Stonehenge 5000 years ago.

Hal, the Mooch. Just the other day my friend Hal popped into the house. I say popped because doors are to keep out flies, not people to his way of thinking. Or should I say, "not to keep Hal out." Anyway, I wasn't too concerned. I had only a few coins in my pocket and the refrigerator was locked. After I exchanged a pleasantry with him, like "whatta you want?", we got down to business. Hal had to travel to the library and he was short the round trip carfare. Naturally, 1 posed my solution to the problem-walk! And he countered with his solution which would separate the coins I had from me.

Hal complained that he took the subway train several days ago and the round trip traveling time was only a half hour. Just yesterday he went to the library by train, but had to return on foot because some candy machine overpowered him. Riding away from and walking back home took an hour and a half for the trip. Therefore, I just couldn't ask him to walk both ways-it

A selection of products available by mail for readers of Radio-TV Experimenter All mershondise sold an a maney-back guarantee. Order Direst by Slock No. Send sheck or M.O

3* ASTRONOMICAL TELESCOPE
See stors, moon, phases of Venus, planets. dose up, 60 to 180 power-fomous Mr, Polomar reflecting type. Aluminized t aver. rooted 3^{*} diomoter $\mathrm{f} / 10$ primary mifrer, ventilated cell. Equipped with sox eyeplese and mounted $3 X$ Ander seope, hardwoad tripod. FREE, "STAR CHART"; 272-page "HANDBOOK OF HEAVENS": "HOW TO USE YOUR TELESCOPE
Stock No, 85,050HP
\$29.95 Ppd.

ASTRONOMICAL TELESCOPE XITS
Grind your own mirror for powerfut ile scope. Kif contains fine annealed pyrax mirror blont, tool, abrasives, diogonal mirror, ond eyepiece iensen. You build instruments valued from $\$ 75.00$ up.

Stock No.	Dia	J	
70,003HP	$41 / 4$	$3 / 4$	\$8.00 Ppal.
70,004HP	6	1	12.95 Ppd.
70,003 HP	$8{ }^{\circ}$	13"	21.00 Ppd
70,006HP	10"	$13 / 4$	34.25
70,007 HP	121/2"	21/6	65.85

GIANT WEATHER BALLOONS
"Balls of fun" for kids, troffic stoppers for stores. terrific for amateur meteorologists. Create a neighbortrood sensation. Great backyard fun. Exciting beach altrastion. Amateur meteoralogists use to measur cloud heights, wind speed, and temp. Made of heavy duty meoprene. Inflot with vacuum cieaner or auto air hose, or lacally availoble helium for high rise.
Stock No. $60,568 \mathrm{MP}$... 8^{\prime}.... $\$ 2.00 \mathrm{Ppd}$

"FISH" WITH A MAGMET
Go treosure hunting on the bottamt fas cinoting fun \& sometimes proftablel Tio a line to our $5-1 \mathrm{~b}$. Magnet-drop it overboard in boy, river, lake or oseon. Iroll it along bottor-your "rreasura" hawl can be out. board motors, anchors, other metal valuables. 5-lb. Magnet is wor surplus-Alnico \checkmark Type-Gov't cost $\$ 50$. Lifts over 150 lbs . on land-much greater weights under water. Stact No. $70,571 \mathrm{HP}$. . $\$ 12.50 \mathrm{Ppd}$

NICKEL-CADMIUM BATTERY BARGAINS Torritte value-used covernment surplus. Qulck-charge. Hyhtweight 6 -volt nickel-cadmuluin battery. ot-smp. hour caracles. A hoss unlimised lite. Charges in 1 hr. w/Edmund Chsreer Kit. Hundreds of uses. Few drops of *itet yearls for full maintenarre. Minimum of electrolyte-sealed to prevent lose. Dellivers neariy 100% outgout $4 t$ below rreozing. Fivo vented 1.2 volt cells. $33^{1 / 415} 2^{\prime \prime} x^{3}{ }^{\prime \prime}$
Stock No. 70.942 MP (battery) $\$ 15.00 \mathrm{Ppd}$. Sloek No. 40.798 HP (1.2 V . Celi) $\$ 3.95 \mathrm{Pqo}$. Sloek No. $70,807 \mathrm{HP}$
(Charger KIt) 8.00 Ppd .

GIANT FREE CATALOG
Completely now 1968 Catalog. 148 pags packed with nearly 4,000 unusval bargains. Exclling now cotegories. Many now llems. 100^{\prime} of chorts, illustrations. Many hard-la-g of war surplus bargains. Enarmous selastion of iolescopes, microscopes, binoculars. magnits, magnifiers, prisms, phota components, etc. for hobbyisks, experimenters. workshops, factorias. Shop by mail. No solesmon will call. Simply check coupon or write for Cotolog "MP" to Edmund Scientific Co., Barrington, N. J. 08007

WORKING MODEL DIGITAL COMPUTER Solve problems, teach logic, play games with miniature versian of giant electronic brains! Adds, subtracts, multiplies, shifts, complements, carries, memorizes. Colored plastic parts easily assembled. $12^{\prime \prime} \times 31 / 2^{\prime \prime}$ $x 43 / 4^{\prime \prime}$. Inel. step by-step assembly diagrams, 32-p. instruction book covering op. eration, computer languago (binary sys tem) programming, problems \& 15 experi
Stack No. $70,683 \mathrm{HP}$
. 55.98 Ppd.

IT'S HERE-8IG, NEW DIGICOMP III If you think DIGICOMP 1 was somethingWatt "thl you use DIGICOMP III Loads of funt Territte challenget Actually works like electronic distial computor bert needs no power. Adds, subtracts, multipltes, divides, memorizes. Ist mechanical computer w/auto. awitch action. Ist model designed for programming. Speed reduced by factor of mill loon to f-you can see what's happening. Stock No. 70.946 HP
(Intre. price)
$\$ 16.00$ Ppo

MONEY BACK GUARANTEE

EDMUND SCIENTIFIC CO.
300 Edscorp Bldg.,
Borrington, N. J. 08007
\square Please send free Catalog "HP"

IName
|Address

Cliy_ - State
was unkind. Not meaning to be tricked by Hal I asked. "How long would it take you to walk both ways?"
To which Hal replied, "Come on Dad, you should be able to solve this one in your head using rate times time equals distance equations. But I bet you the cost of the carfare plus a ham sandwich for lunch you can't solve the problem using addition and subtraction only!"

Well now, this was a challenge which I took up. After all, with pencil and paper plus the free use of addition and subtraction processes. I am a match for the best Hal has to offer, or am I? So, if you want to discover how bright your editor really is, start loitering near your favorite newsstand, or better still, bivouac next to your

Last Issue's Puzzler

Come on now-do you really need an answer to the Who's for Dinner puzzler friend Hal posed last issue? OK, let's figure it out together. Draw a long table and place nine seats all on one side, numbering them in order from one through nine. Now, starting with seat one, begin counting to seven. At the seventh counted seat (which happens to be seat seven), draw an " X " through this seat, indicating the diner left for the kitchen (never to return!). Beginning with the next seat (seat eight), continue to count till you get to the end of the table. Now return to the first available seat at the low end of the table and continue the count until seven seats have been counted. Put an " X " on this seat. Keep this up, counting only those seats that are not "X"ed out until only one seat is left. This will be seat two. As you can guess by now, my friend Hal was in this seat. And what seat was I sitting in? Obviously, it turned out to be the seat that received the dinner check (there is always one loser in a crowd!).
mailbox and wait for your subscription copy the mailman brings. That's right, the solution is in the next issue.

Mare Ahoy! Just about everyone is swinging to electronics and to prove my point I am including a pic of Captain Whosit aboard the Good Ship Whatsit. A close inspection of the Captain reveals she is equipped with a Ray Jeff Marine Radio Telephone, Model 490 and Ray Jeff Depthfinder, Model 400. Priced at $\$ 299.95$ and $\$ 117.95$, respectively, one can readily recognize the low cost of these electronic safety accessories every boating bug should have on board before he takes to the

Careful investigation of the photo indicates enormous inroads have been made by electronics in to the marine field-look again!
water. Our hats are off to the Ray Jefferson, Division of Jetronics Industries, Inc., Main and Cotton Streets. Philadelphia, Pa. 19127 for keeping us informed and three cheers for the Ray Jeff company photographer. Just dig those polkie-dots!

Boy, Oh Boyt Well, it happened again. We goofed. In our October/November 1967 issue of Radio-TV Experimenter we made reference to a company whose initials were IRC. Naturally, perhaps, we assumed that the " R " stood for "Rectifier." But, alas, it stood for "Resistance."

The error appeared in the Ask Me Another column on page 40 . We have reprinted the entire question and answer below to straighten out the mess we created and we have also included some other useful information to show our hearts are really where they're supposed to be.

I have a bunch of transistors I salvaged from various radios. Where can If find out about their characteristics?

-E. M. L., Andalusia. Ala.
Write to IRC, Incorporated, Consumer and Distributor Products Division, 414 N . 13th Street. Philadelphia. Pa. 19108 and order a copy of their Transistor Reference Book ($\$ 3.95$). They also publish General Purpose/Signal Diode Reference Book ($\$ 3.95$) that's a good buy, too! Get both copies.

Now... 18 different professional-quality amplifiers, tuners \& preamps completely assembled... solid state, printed circuits... - priced lower than kits.

There are so many ways you will use these easy-to-install, printedcircuit assemblies; in hi•fl equipment, ham gear, P.A. and intercom systems, or as guitar and organ amplifiers. Employing the most advanced Complementary. Symmetry transistorized designs,
these assemblies pravide the ultimate in economical circultry
for reliable audio applications from one watt to twenty. They have already become the deslgn standard for a large group of audio equipment manufacturers, as well as a basic teaching tool in many educational institutions.

TYPE	DESCRIPTION SUGGESTED
PCA-1.9	IW, 9V D.C. 4 Transistor Amplifier $\$ 7.20$
PCA-1-14	2W, 14V D.C. 4 Transistor Amplifier 7.00
PCA-2.9	3/4W, 9V 0.C. 3 Transistor Amplifler 5.90
PCA-2.14	1W, 14V D.C. 3 Transistor Ampliflef 5.90
PCA-38.18-1	4W/Channel Stereo Amplifier with Bass, Treble, Volume and Balance Controls
PCA.4.9	IW, 9V D.C. High Gain, 4 Transistor Amplffler for Radio, Ceramic or Crystal Phono Cartrldge, etc. 8.30
PCA.4-9A	Same is PCA-4-9 with Tone Control Circuit 9.20
PCA-4-14	2W, 14V D.C. High Gain 4 Transistor Amplifier for Radlo, Ceramic or Crystal Phono Cartridge, etc. 8.30
PCA-4-14A	Same is PCA-4-14 with Tone Control CIrcuit 9820
PCA.4-18A	3W. High Sensitivity, 4 Transistor Amplifier with Volume and Tone Controls for use as Guitar, Radio or Phono Amplifier
PC	2W/Channel I4V D.C. Stereo Ampllfier with Balance. Tone and Volume Controls
P	8.10W/Channel Stereo Amplifier with Preamp for Ceramic Phono Cartridge and Bass. Treble. Balance, and Volume Controls
PCA-6A.25SC	Same as PCA.6A-25 with Separale Control Assembly 31.80
PCA. 78.18	Tape Cartridge Stereo Preamp with Level Set Controls. . 12.00
PCA.7C. 18	Same \&s PCA-7B-18 without Level Sets; 4 Transistor . . . 9.50
PCA.8.36	20W Mono Basic Amplifier 18.85
PCA.9.18	3W/Channel, 10 Transistor Stereo Tape Playback Amplifier with Volume, Tone and Balance Controls 25.30
	AM

For brochure containing complete technical data on all 18 assemblies and for name of distributor nearest you, write: Amperex Electronic Corporation, Distributor Sales Dept.. Hicksville, New York 11802.

I2 KIT-GIVING IDEAS FROM HEATH...

For The Whole Family
 New Deluxe "227" Color TV

Exclusive Heathkit Self-Servicing Features. Like the famous Heathkit " 295 " and " 180 " color TV's, the new Heathkit " 227 " features a built-in dot generator plus full color photos and simple instructions so you can set-up, converge and maintain the best color pictures at all times. Add to this the detailed trouble-shooting charts in the manumb, and you put an end to costly TV service calls for periodic picture convergence and minor repairs. No other brand of color TV has this money-saving selfservicing feature.
Advanced Features. Boasts new RCA Perma-Chrome picture tube for $\mathbf{3 8 \%}$ brighter pictures . . . 227 sq . in. rectangular viewing area . . . 24,000 v. regulated picture power . . . improved phosphors for brilliant, livelier colors ... new improved low voltage power supply with boosted $\mathrm{B}+$ for best operation ..., automatic degaussing . . . exclusive Heath Magna-Shield to protect against stray magnetic fields and matutain color purity . . . ACC and AGC to reduce color fade and insure steady, flutter-free pictures under all conditions ... preassembled \& aligned IF with 3 stages instead of the usual $2 \ldots$ preassembled \& aligned 2 -speed iransistor UHF uner . . . deluxe VHF turret tuner with "memory" fine tuning ... 300 \& 95 ohm VHF antenna inputs. . . two hi-fi sound outputs .. . 4" $\times 6^{\prime \prime} 8$ ohm speaker . . . choice of installation - wall, custom or optoonal Heath factory assembled cabinets. Build in 25 hours.

Kit GR-227, (everything except cabinet). . $\$ 42 \mathrm{dn}$., as low as \$25 mo. . . 114 lbs. 8419.95 GRA-227-1, Walnut cabinet. . . no money dn., $\$ 6$ mo......... . . . 59.95 GRA-227-2, Mediterranean Oak cabinet (shown above) ... no money dn., $\$ 10$ mo... 894.50

Kit GR- 295
$\$ 479.95$
(140,42
542 mo.

Deluxe Heathkit *295" Color TV

Color TV's largest picture . . . 295 sq. in. viewing area. Sarne features and built-in servicing facilities as new GR-227. Universal main control panel for versatile in-wall installation. $6^{\circ} \times 9^{\prime \prime}$ speaker.
Kit GR-295, (everything except cabinet). 131 lbs. $\$ 48 \mathrm{dn}$., $\$ 42 \mathrm{mo}$.
$\$ 479.95$
GRA-295-1, Walnut cabinet (shown above), 35 lbs ..
no money dn., \$7 mo.
\$62.95
Other cabinets from $\$ 94.50$

New Remote Control
For Heathkit Color TV Now change channels and turn your Heathkit color TV off and on from the comfort of your armchair with this new remote control kit. Use with Heathkit GR-227, GR-295 and GR-180 color TV's. Includes 20° cable.

Deluxe Heathkit "180" Color TV

Same high performance features and exclusive self-servicing facilities as new GR-227 (above) except for 180 sq. in. viewing area.
Kit GR-180, (everything except cabinet), 102 lbs. . .
\$35 dn., $\$ 30$ mo.. $\$ 349.95$
GRS-180-5, table model cabinet \& mobile cart (shown
above), 57 lbs...no money do $\$ 5$ mo .
Other cabinets from $\$ 24.95$

Kit TO-67 $\$ 995$
(inctuding bench) $\$ 200 \mathrm{dr}$.. as low as $\$ 29$ mo.

Heathkit"/Thomas

"Paramount" Theatre Organ
Save Up To $\$ 500$! Build in 80 - 100 hours. All Thomas factory-made parts ... 15 manual, 4 pedal voices: instant-play Color-Glo; all-transistor circuit; 200 watts peak power; 2 -speed rotating Leslie plus main speaker system with two 12" speakers; 44-note keyboards; horseshoe console with stop tablets: 28 -note chimes; 13 -note bass pedals; repeat \& attack percussion; reverb; headset oullet; assembled walnut finish hardwood cabinet \& bench; and more. $265 \mathrm{lbs} .7^{\prime \prime}, 331 / 3 \mathrm{rpm}$ demonstration record 50c.

America's Lowest Cost Solid-State Organ

Kit GD-3258 $\$ 394.90$ 340 dn . 334 mo .

Save Up To 5205: Instantplay Color-Glo; 10 voices; 13 -note bass pedals; repeat percussion; 37-note keyboards; 75 -watt peak power; vibrato: assembled walnut cabinet \& bench. 172 lbs. 7", $331 / 2 \mathrm{rpm}$ demonstration record 50 c .

Exclusive Band Box Percussion
Autumatically or manually adds 10 percussion voices to any Heathkit/ Thomas organ. Build \& install in 12 hours.
Kit TOA-67-1, no money dn., $\$ 14 \mathrm{mo}$.
... $\$ 145.00$
Exclusive Playmate Rhythm Maker
Adds 15 fascinating rhythms to an) Heathkit/Thomas Oryan. Requires Band Box percussion (above) for operation.
Kit TOA-67-5, no money on., $\$ 18 \mathrm{mo}$. \$189.90

USE COUPON TO ORDER NOW!

NEW! VOX "Jaguar"
Transistor Combo Organ By Heathkit
Save Up To $\$ 150$ on the world's most popular combo organ with this new Heathkit version. Features the most distinctive sound of any combo organ. Has a special bass output that gives a brilliant stereo bass effect when played through a separate or multi-channel amplifier, 4 complete octaves, vibrato, percussive effects and reversible bass keys. Includes hand crafted orange and black cabinet, fully plated heavy-duty stand, expression pedal and waterproof cdrrying cover and case for stand. Requires a bass or combo amplifier like Heathkit TA- 17 fopposite page).
Kit TO-68, 80 lbs.... 535 dn., $\$ 30$ mo.................. . . $\$ 349.95$

NEW! Deluxe Solid-State Combo
Amplifier \& Speaker System...
Choose Kit Or Factory Assembled
amplifier
Kit TA-17
$\$ 775$
$\$ 17 \mathrm{mo}$.
(Assembled TAW-17 3275)

Speeker Sysiom
$\$ 120$
811 mo
(Assembled
TAW.17.1 8150)

Combenation Offer
Amplifier \& Two Speamer Systens Save $\$ 20$
Kit TAS-17-2
$\$ 395$
340 dm . 334 mo. Aseembled
TAW-17-2 8585)

Alt the "big sound" features every combo wants ... tremolo, built-in "fuzz", brighmess, reverb, separate bass and treble boost and more. Delivers \& shattering 120 watts E1A music power (240 watts peak power) through ino TA-17.1 speakers... or 90 watts through one TA-17-1 speaker. Features 3 independent input channels, each with two inputs. Handles lead or bass guitars, combo organ, accordion, singer's rrike, or even a record changer. All front panel controls keep you in ful command of all the action.
Speaker system features two $12^{\prime \prime}$ woofers, special horn driver and matching black vinyl-covered wood cabinet with casters \& handles for easy mothitity.

Kit $1 \mathrm{M}-17$
$\$ 19.95$
Kit AR-17
$\$ 72.95$
(lass cabinet)
mo.
NEW!

Lovest Cost Solid-State Stereo Recelver

 Features wide $18-60,000 \mathrm{~Hz}$ response $a \pm 1 \mathrm{db}$ at full 5 watis $R M S$ power per channel . . 14 watts music power ... inpu's for fhono and auxiliary... utomatic stereo indicator ... outputs for thru 16 ohm speakers. . . adjustable phase for best stereo . . . तyw heel tuning . . . and compact $9 y^{*}$ D. $\times 2 \%^{\prime \prime}$ H. $\times 11 \%^{\prime \prime}$ W. size. 12 Ibs . Optipnal factory assembled cabinets (walnut 57.95 , theige metal $\$ 3.50$).Kit AR-17, (less cab.) 12 lbs no money dn., $\$ 8$ mo. $\$ 72.95$ Kit AR-27, 7. Wati FM Mono Only Recerver (less cab.) 9 lbs. . . . no money dn., $\$ 5$ mo.
. 49.95

Now OFF PRESS better than ever Over 500 Pages

Stereo HI-Fi e Citizens Band Ham Gear Tape Recorders Test Equio. ment TV and Radio Tubes and parts Cameras Auto Accessories Musical Instruments - Tools Books

Featuring Everything in Electronics for - HOME - INDUSTRY - LABORATORY from the "World's Hi-Fi \& Electronics Center" LAFAYETTE Radio ELECTRONICS
Dept. BA-8, P.O. Box 10
Syosset, L.I., N.Y. 11791
Send me the FREE 1968 LAFAYETTE Catalog 680 EXB- 8
Name

Address

\qquad
City \qquad State
zip (Please Give Your Zip Code No.)

WORLD'SMOST POPULAR5-I AmP SOO PIV EPOXYS,

CB
RIGS \& RIGMAROLE

- Cape Kennedy Rides Again. We recently saw a new CB rig which is just about guaranteed to bring a lump to CBers' throats. Fine business with your super-miniaturized rigs which can place so much talk power in a pint-sized cabinet -that's a popular trend in CB gear of late. What about Tram Corporation's (Lower Bay Road, Box 187, Winnisquam, N.H. 03289) new Tram Titan II?

Going their very own way. Tram has brought out a really BIG piece of CB ecstasy. Nothing miniature for this baby, it's a large, impressive, solid, massive, heavy, and sharp hunk of communications equipment intended for base station use. There's not a whisper of doubt as to what this thing is sitting there on your desk-you're either one of the world's most "in" CBers

One thing about the folks at Tram, they know how to show off their Titan II CB rig.

NOWA low cost Crystal for the Experimenter

International

- LOW COST
- MINIMUM DELIVERY TIME
$3,000 \mathrm{KHz}$ to $60,000 \mathrm{KHz}$

SPECIFICATIONS: International Type "EX" Crystal is available from 3,000 KHz to $60,000 \mathrm{KHz}$. The "EX" Crystal is supplied only in the HC-6/U holder. Calibration is $\pm .02 \%$ when operated in International OX circuit or equivalent.
CONDITIONS OF SALE: All "EX" Crystals are sold on a cash basis, $\$ 3.75$ each. Shipping and postage (inside U.S. and Canada only) will be prepaid by International. Crystals are guaranteed to operate only in the OX circuit or its equivalent.

COMPLETE OX OSCILLATOR KITS
Everything you need to build your own oscillator. Two kits available. "OX-L" kit 3,000 to $19,999 \mathrm{KHz}$. "OX-H" kit 20,000 to $60,000 \mathrm{KHz}$. Specify "OX-L" or "OX$H^{\prime \prime}$ when ordering.

Postage Paid

MINIMUM CELIVERY TIME We guaran. tee last processing of your order. Use special EX order card to speed delivery. You may order direct from ad. We will send you a supply of cards for future orders.

ORDERING INSTRUCTIONS
(1) Use one order card for each fre. quency. Fill out both sides of card.
(2) Enclose money order with order.
(3) Sold only under the conditions specified herein.

CAYETAL MFG. CO. INC. 10 NO. LEE OKLA. CITY OKLA. 73102

809 S. Forge Street Akron, Ohio 44308

FIRST WITH
 * Digital Integrated Circuits
 * 4 Crystal-Controlled Oscillators
 \star Battery \& AC Operation Standard

The Now Pace-setting CONAR Modef 680 COLOR GENERATOR KIT \$83.50

WIRED \$114.50
Until now, no commerciatly available color generator has offered so many quality features in a single instrument at such a low price. Only the CONAR SIGNAL GENERATOR has all these features at any price: exclusive digital integrated circuits; exclusive 4 crystal-controlled oacillators; exclusive AC or battery operation standard; completely solid state; color amplitude control; color phase adjustment; regulated power supply; stability control; '1'V station sync and blanking pulses; nine patterns; red, hlue and green gun killers; compact; lightweight; portable.
For details write Dept, BP8C

CONAR instruments

DIVISION OF NATIONAL RADIO INSTITUTE 3939 Wisconsin Ave., Washington, D.C. 20016

WRITE FOR FREE CONAR CATALOG

CB RIGS \& RIGMAROLE

or you're a Cape Kennedy missile control center.
The Tram Titan II is actually 2 complete transceivers in one cabinet, a standard amplitude modulated rig plus a rig which offers double-sideband suppressed carrier unit. The receiver can inhale amplitude modulated signals, single or double sideband (reduced or suppressed carrier).

Switching back and forth from one form of modulation to another means the flick of a switch. Sideband transmission offers greatly extended transmission range over amplitude modulation, in addition to also insuring some degree of privacy in your communications (the only people who can copy sideband signals are those equipped with receiving gear intended for this mode of Transmission).

The receiver features a mechanical filter which cuts interfering signals down to virtually nothing. A meter on the front panel measures both the transmitter and antenna systems, showing forward power into the self-contained dummy load, the power to the antenna, and also the SWR

TV interference is clipped out by a built-in filter. The chassis is designed for easy probing around inside (take a picnic lunch, it's a big place). As you can see, it's really spectacular!

Getting down to the nitly-gritty, the Tram Titan II will cost you $\$ 482$ (you expected maybe $\$ 19.95 ?$). It comes ready to go on all 23 CB channels and if it doesn't make you the most popular guy on the band in your area then maybe you've got a personality problem.

- Shure is Neatl Pardon the pun. but we just couldn't resist it. In fact, Shure Brothers. Inc. (222 Hartrey Avenue, Evanston. Ill.) did resist it-their new Model 444 T variable output mike, we mean.

They incorporated into the design of this base station mike a 2-transistor mike preamp which

CB RIGS \& RIGMAROLE

will boost the modulation output of any CB rig which is slightly anemic in this department. The preamp runs from a self-contained battery with 300 hours of life. The height of the mike may also be adjusted to take into account the height of your operating desk and the length of your neck (no Charlie, it doesn't limit the length of your transmissions too).

So if you are being "shouted down" by others on your channel with newer and flashier rigs having more "talk power" than your old warhorse, try a Shure 444 T and snarl back with a voice as loud as any on the band.

- More Walkie, More Talkie. How about a 3 -channel walkie-talkie running a hefty $1 / 2$ watt for, would you believe, $\$ 32.95$? Well we aren't joshin' hecause Lafayette Radio, 111 Jericho Turnpike. Syosset, L.I., N.Y. 11791 , really has one. It's their HA- 305 and includes among its features: 14 transistors. 1 diode, 1 varistor, selective superhet receiver, variable squelch, 1

uV sensitivity, range hoost modulation, provisions for tone call alert and 117-VAC operation with optional battery eliminator.

Now you will say that it is not enough for your investment? They've also included a battery condition meter, a set of batteries, a carrying case, a set of channel 9 crystals, and a CB license form (whew!). Looks like the only thing you don't get with this is shares of Lafayette stock! (You can also ask for their all-rew 1968 catalog that's packed with great CB buys and many other goodies.)

HERE'S YOUR ONE-SOURCE FOR CERAMIC CAPACITORS AND SEMICONDUCTORS

NOW AT YOUR FAVORITE DISTRIBUTOR

> YOUR COMPONENTS ARE NEATIY PACKAGED WITH COMPLETE DESCRIPTION for EASY USE!

112 Popular Components . . .

56 CERAMIC CAPACITORS
28 SEMICONDUCTORS
18 VARIABLE CAPACITORS 10 MYLAR CAPACITORS
*On purchase of only $\$ 2.50$

FOR FREE $\$.50$ Coupon and 6-Page Components Catalog Send to:
ERIE TECHNOLOGICAL PRODUCTS, INC. Erie Distributor Sales 644 West 12th Street * Erie, Pa. 16501
PIEASE SEND CATALOG AND PRICE DATA... TODAY
NAME
COMPANY
ADDRESS
CITY
STATE \qquad

SEND FOR OUR 1968 CATALOG OF

PRECISION QUARTZ CRYSTALS AND ELECTRONICS

SENTRY MANUFACTURING COMPANY 1634 Linwood Boulevard-oklahoma City, Oklahoma 73108
PMONE: 405-232-1431-TELEX: 071-361-7wX: 910-831-3178

WOLTE JOR JCE E EV SENT FREE 1001 BARGAINS IN SPEAKERS-PARTS-TUBES-HIGH FIDELITY COMPONENTS-RECORD CHANGERSTAPE RECORDERS-KITSEVERYTHING IN ELECTRONICS
MeGEE RADIO CO.. 1901 Me Gee Sp. (RT̈E) Kansas Clity, Missourl 64108 SEND 196 McGEE CATALOG
NAME
ADDRESS.
CITY...-............. STATEZIP

Amateur Juvenile

I am not old enough to have a CB license. But I have heard that it does not matter what your age is for ham license. Is this true?
-D. L. S., Brookfield, Mo.
Wish 1 had your problem. Yes, it's true. If you can pass the test. Start studying.

Great Mind's Quick-Think

After reading the tornado article in your June. July issue of Radio-TV ExpERIMENTER, I thought up a tornado warning device. Why not use a fluid type barometer with a photo-cell to detect the sharp drop in barometric pressure which occurs when a tornado approaches? The photo-cell can switch on a siren, huzzer or other alarm to warn people of the approach of a tornado.
-B. O., Bronx, N. Y.
A call to the U.S. Weather Bureau reveals that the drop in barometric pressure occurs seconds before a tornado hits so don't bother patenting the idea.

Attention Megawatt CBers

I would like to know if the power of a CB walkie-talkie transmitter can be boosted from 0.2 watts to 1.0 watt. If not, why not?
-H. M., Northampton, Pa.
'Cause I'll bet you won't spend a couple of hundred hucks having a lab certify that the modification meets FCC specs.

Get With It You Guys

I enjoy your magazine and eagerly await its arrival here. I find it of much greater interest than its English coumterpurts. My problem is that I have trouble getting components. I have
written to both Allied and Lafayette asking for their catalogs hut have received no reply. Could you possibly give me the name and address of a distrihutor in the United States who would take the trouble to ship parts outside of the United States? I am ahle to send dollars.
-I. McK., Kitwe, Zambia
Allied, Lafayette, Radio Shack and anybody else interested in selling equipment to this gentleman, send your catalogs to Mr. I. McKenzie, 173 Philip St., Nkana East, Kitwe, Zambia.

Match a Mis

I have a transistorized amplifier and l'm plagued with a minimum impedance problem common to these units. Is there any way to connect more than two speakers to the unit, without dropping the impedance below 4 ohms?
-P. P., Castro Vallcy, Calif.
Sure,iconnect the speakers in series or seriesparallel as shown.

3 In SERIES

4 In Series - parallel

Searching, Ever Searching

I sent you a question over four years ago and I still haven't seen the answer.
-J. R. A., Big Sirr, Calif.
Sorry about that-what's the question?

For the Price of a Penlight Cell

I have a flash camera that uses $A G-1(B)$ flashbulbs and two penlight cells. I would like to build an AC adaptor so I can take flash pictures with the unit using house current.
-R. T., Daytona Beach, Fla.
Cheapskate! The diagram shows an AC adaptor that could be used with your flash unit. It'll even recharge the batteries if they're left in the circuit, but at the cost of penlight cells, is it worth it?

Watch Those High-Powered Cartridges

In my hi-fi system, l have two turntables feeding into one input of my amplifier. I have been told that I am overloading the input and this will

VHF RECEIVER-
 AM/FM—MULTI-BAND
 HIGH SENSITIVITY—SELF CONTAINED

Hear police, fire, aircraft, amateur CB, etc. signals. Covers 26 to 54 and 88 to 174 mc in eight calibrated bands. Plus a ninth adjust. able band for 15 or 20 meter SW BC listening. Five tubes AC power supply with silicon rectifier.

Write for catalonue of comolete Iine of converters. recelvers and Gudio equipment for resording.

KUHN ELECTRONICS,
LRONICS, INC.
Norwood, Ohio 45212

World Famed Brevettata TEAR GAS PISTOL
 Appoarmene of this fine toar gas weason is similar to real

 gas woajon is similar to real warti in in las for paoplo who ond in lonaly, dark locations ive this protoction. Men deushter for niaht seenelty. Many Industrial apalications. Shooting of aun stops a pors. tor witheut parmanently inlur.In him Moithar permit nor $1 t$
hit it is Nother permit nor license is needed. tidees not sold to minors. It fires six carwith six toar gas sholls and six blanks for practice and is shipped prapaid Gun unit prices include, 12 sholls and all shepping costs.

Extra boxes of ton tear gas shells at $\$ 1.50$ per box (prepaid with eun ordert). Extra boxes of blanks at $\$ 1.25$ par box.

UNITED SAFETY SUPPLY CO.
310 West gtr Street
Kansas City 12RT, Missouri 64105
When Amsucering Adrerlinpments Say Voи Sau It In
HAMID-TE EXPEEITMENTEIL

SNOOPERSCOPE IR TUBE

Used by the Military for night viewing, Permits observation in the da-k of night. Unused British IR Image Converter Tube with plans for construction os night viewer only $\$ 4.50$ postpaid.
84 page catalog of hundreds of unusual opti-electronic
surplus equipment. Send 25 e stamps or coin for catalog.

MESHNA - 19 ALLERTON STREET - LYNN, MASS. OISOI

THOUSANDS OF BARGAINS TOP VALUES IN ELECTRONIC
Transistors, Medules, C. B. Speaker, Stereo, HirFi, Photo Cells and Thousends of Other Efectronic Parts. Bend for FREE Catalogue

ELECTRONIC DISTRIEUTORS INC.

EDI

Dept. TA.2, 4900 Eiston Chicago, III. 60630
O RUSH CATALOGUE
Name
Address
city
state.
ip code
damage the amplificr. Please tell me if this is so. -J. G. R., Quaker Hill, Conn.
Only if the cartridges are 100 -watt jobs.

Divide and Conquer

What is the trick used by organ manufacturers to get different notes.' They surely don't have 88 different oscillators. Could you publish a simplified schematic.'
-O. B., Council Grove, Kan.
Those tricky organ manufacturers use a bank of 12 tone oscillators followed by frequency dividers. The diagram will give you a quick idea of how it's done.
 outdoor antenna.
way, unless you're a TV expert, keep your cotton picking fingers out of that set. There are high voltages present and you might misadjust things. To improve your TV reception, use an

Technicolor Hope

I thought that your article on how to convert black and white TV to color w'as very interesting. However. I would like to know' if there's any way to get color in front of the CRT withollt using the color wheel and still using the monochrome CRT.
-B. র., Cedar Falls, lowa 2 Do it and you won't have to depend on Social Security.

BCB Blues

When I tune past 20 kHz on my shortwave set, all I get is AM band signals-distorted. I get no

Come Again?

You sure have a horing column.
-W . K., Southhampton, U. K.
Thanks.

Immovable Audio

Can you give me a circuit for a very stable fixed frequency audio oscillator? $-N . G .$, Washington, $D: C$.
Be glad to. The schematic shows an oscillator employing a Twintron electro-mechanical resonator and a Darlington amplifier. You can get a fixed-tuned or tunable Twintron $(300-3000 \mathrm{~Hz}$, $100-700 \mathrm{~Hz}$ or $700-7000 \mathrm{~Hz}$); they are available from H B Engineering Corp., 1101 Ripley Street, Silver Spring, Maryland. The transistor should be available at any GE transistor distributor.

Sure Is Interesting

Will I get improved TV reception if I place the TV signal booster between my portable TV's huilt-in antenna and the TVV set's input circuit? Yon sure have an intercsting magazine.
$--V:$. I. . Andalusta, dla.
Ii's sure interesting that you think so. By the
sign of life in the 10,11 and 15 meter bands except these $B C B$ stations. What can 1 do?
-G. C., Fords, N. J. Punt!

Glutton for Punishment

For fun and games I built a double-conversion FM tuner using tubes. It has a cascode front end, four IF stages, a second convertor, one RC low IF stage and two limiters. The lF's are 10.7 MHz and 200 kHz . Can you give me a circuit for a cycle coumting FM detector?
$-R . F$., Victoria, B. C.
Boy, will you need a wideband IF amp. Since the FM signal deviates $\pm 75 \mathrm{kHZ}$, the low IF will swing from 125 to 275 kHz . You might try the detector circuit shown in the diagram. Ex-
(Continued on page 37)

FitE

AILIED

 ELECTRONICS FOR EVERYONE 1968

FILL THIS CARD OUT-MAIL IT NOW!

WORLD'S LARGEST SEAECIIONS
SATISFACION 'GUARANTEED OR YOQUß MONEX BACK

NAME-PIEASE FRINT

New 1968 Allied Catalog

Hete tie not The frand new 1968
edition ot the woridis most fammuls
catalog of electronis e e puip rioént
518 pages including the sipmp ete
Knight-Kit atalog - pietcring de
seribing and prighng thousands of
fems-the thoot complete fintantory
ever adetratilled of hi li, ratiog ofy
mecolifers- B , electronicuequipments.
parts ank trotsuall at monay saying
Yould want your own persunal
copy of the Allied Catalog. tre's feeq
So tear off, fill outg, and mail a card. NO MONET DOZWN- 24 MONTHS' TO゙PPAY!

DO A FRIEND A FAVOR-sive him this card to send tor his FREE ALIED CATALOG

ALLIED RADIO P.O. BOX 4398 CHICAGO, ILINOIS 60680

Why Buy by Mail from

 Allien?Ezch year Allied fills more than a million orders by mail. Only the complete facilities of the world's largest electronics supp y house can satisfy all the needs of hi-fi enthusiasts, CB users, enginerrs, "Hams" and experimenters.

WORLD'S LARGEST SELECTIONS

Imagine shopping for hi-fi where you can select from every model of 15 major manufacturers of receivers, tuners and amplifiers, 14 brands of tape recorders, 7 makes of turntables, nearly 100 speakers from a de zen manufacturers. Plus similar choices in every area of electronics-CB. Ham. test equipment, Lits (including Knight-Kits). parts, supplies ... almost anything you want.
MANY PRODUCTS MOT AVAILABLE ANYWHERE ELSE As the world's lergest supplier of electronics, Allied can afford to stock thousands of items not available elsewhere. In addition, many products are specially-built to our specifications.

YOUR SATIS:FACTION GUARANTEED OR YOUR MONEY BACK!

RUSH THIS CARD TODAY!

FIRST WITH THE LATEST FOR 47 YEARS
We have always bsen the first to offer the latest developments in elect ronics, as you will see when you get our new free catalog.
WE QUALITY-TEST WHAT WE SELL
Among all electronics supply houses, only Allied has a continuous progran of quality-testing to assure you that everything you buy neets the highest standards.

COUNT YOUR SAVINGS AT ALLIED
You alwavs get the lowest prices at Allied. Check Allied prices and compare. Look for special values-available conly in the Allied catalog
IMMEDIATE SHIPMENT
There's no delay when you deal with the world's largest elect ronics supply house. Orders are filled promptly-usually the day they're received.
NO MONEY DOWN - UP TO TWO YEARS TO PAY You don't need cash at Allied. Up) to 2 vears to pay. Make "add-on" purchases - even though you are already raying for something else. It's easy to be a credit customer at Allied.
SATISFACTION GUARANTEED OR YOUR MONEY BACK Buy with confiderce from Allied. We guarantee satisfaction or money back

ENJOY "EASY-CHA R" SHOPPING Shopping's easvar Allied. More accurate. too! You always know exaclly what you get. And what a choice! A selection of merchandise so vast rio store could ever assemble and stock it all.

Continued from page 34
periment with various values of resistors and capacitors until you get the best results. Good luck Charlie.

cyCle counting detector

Tape's Here to Stay

Could you supply me with the name of a company or companies which manufacture and sell home record cutters?
-G. J. D., Toledo, Ohio
Nope. Unly pro jobs available nowadays.

Unseen Commercials?

How can I recive just the sound from TV stations?
-S. S., South Bend. Ind.
Get a hold of a TV tuner somewhere and connect its output to the antenna terminals of a 30 50 MHz tunable FM communications receiver. Apply filament and $B+$ power to the tuner and set the receiver to the output IF of the tuner (around 45 MHz). Hook an antenna to the tuner. switch it to an active channel and you should be in husiness-but why boiher?

Fringe FM

What can I do to improve the reception of my $F M$ auto radio? I am using a 31 -inch fiberglass antenna. I don't live in a fringe area.
-K. C., Leechburg, Pa.
Judging from an atlas, you are in a fringe area for picking up Pittsburgh FM stations with a car antenna. There are intervening hills and vegetation which have an adverse effect on VHF (FM-band) reception.

Canned Ham?

What company puts ont a recorded general class amateur radio operator license course?
-J. C., Pea, Mo.
Don't know of any. Sounds like a great idea. Someone should do it. There are several code courses listed in electronics mail order catalogs. Pick up a headset at the same time and spare the family from de-dah noises.

Shocking!

Do you have any information on methods to combat excessive static electricity for an operator of buffing and polishing machines where the product is cleaned in gasoline? Is static electricity conducrible by "wiring" the operator back to the press? Is this safe-in the event something should happen to the machine?
—M. M. A., Fayetteville, Ark.

In plants where static is a problem, special conductive shoes are worn by personnel who stand on grounded metal plates. For considerable information on static, write to National Fire Protection Association, 60 Battery March St., Boston 10, Mass. They have a publication, identified as $77-\mathrm{M}$, which is supposed to cover the subject quite well.

Lots a Space?

I have a National 188 receiver and would like to put an antenna in my window instead of putting out 100 feet of wire outside.
-P. T., Fargo, N. D.
You'll get much better results with an outside antenna. You should have plenty of room for one out there in North Dakota. Window antennas are what a New York cliff-dweller must put up with. But why you?

Shape Up, Men!

You can save heaps of time and money with the Wireformer. It bends, it straightens, it cuts -with this simple tool you can make your own. peg-board hooks, shelfhangers, shelves, clamps, handles, etc. Wireformer works with any size wire up to $5 / 32$-in. diameter in any metal, including coat hangers. 'Twill bend in any shape, from a closed eye $3 / 16$-in. in diameter to a large perfect circle as large as the length of the wire permits. All parts are case-hardened, coldrolled steel and the handle is plastic. Fits in your pocket. You can get the Wireformer, complete with illustrated instructions for precision forming and a special adapter for small size wire, direct from the manufacturer-Vinkemulder Mfg. Co., 917 Princeton Blvd., Grand Rapids, Mich. 49506-for a mere $\$ 3.98$.

Vinkemulder Wireformer

Rechargeable Human Toaster

The Porto-Warmer from Esdee Industries will keep you snug and warm by means of a pocketsize power pack connected to thin warming pads. Back from the game or the hunt, you simply connect the power pack to the 117 VAC recharger. The 6 -volt power supply pro-

Esdee Industries Porto-Warmer
duced over 1200 total hours of heating. at 6 hours use per charge. The heating pads are waterproof. The Porto-Warmer, complete with power pack, recharger, heating pads, and shoulder strap is available for $\$ 39.95$ postpaid from Esdee Industries, 9219 W. Pico Blvd., Los Angeles, Calif. 90035.

Bingo Bango Bongos

New kit in the EICOCRAFT line is the Model EC- 1600 Solid-State Bongos, $\$ 7.95$, consisting of battery-operated, transistorized oscillators plus preamplifier. When touch plates are tapped the percussive sounds of bongos, tomtoms, etc., are electronically reproduced (can attach to any guitar amplifier, hi-fi system). Two other new EICOCRAFT kits are the

EICO's Eicocraft TruKits

Model EC-1400 FM Radio. $\$ 9.95$, and Model EC-1500 AM Radio. \$7.95. Both operate on respective broadcast bands, are battery-operated and tunable. and are employable as personal radios (earphones supplied), tuners, of wireless intercoms. No teohnical knowledge is needed. Step-by-step instructions are in each package and only a soldering iron and diagonal cutters are necessary for assembly. At distritutors or write to EICO. 283 Malta St., Brooklyn, N.Y. 11207.

Set Your Head for Hi-Fi

Pioneer Electronics has brought out an im-pressive-looking headset in an elegant black Scotch-grain, satin-lined box for the low tab of $\$ 29.95$. Model SE-30 is stereo, and has washable, comfortably thick ear cushions. Highly-styled in black, white, and chrome, the set has a frequency response of 20 to 20,000 Hz . Obtainable from local Pioneer dealers, or write: Pioneer Flectronics, 140 Smith St., Farmingdale, N.Y. 11735.

Pioneer Model SE-30 Stereo Headset

The State? Solid! The Sound? Stereo!

The 1968 Knight-Kit Model KG-980 50watt stereo-FM receiver is designed to include top features in the state of the art at a massmarket price, $\$ 149.95$. The KG-980 uses allsilicon transistors and has transformerless driver and output circuits, so there is virtually no hum

Knight-kit Model KG-980 Stereo-FM Receiver

NAVY Marine

operated on any one chamnel in freq. range 2.3 to 4.3 MC. Volce (A3) communteation only; output of Trans. is 0.2 watte \& sathafactory communication hetwpens. unita mer average terrain thould be rraintained approx.

 $13.5 \mathrm{VDC} 19 \mathrm{MA}: 1.5$ VDC 225 Mt 46 VDC 31 MA f Trank. In waterproof plantic case w space for hatt. or power supply. Telescoplik antenun s ff. Has apec. Inasing coil. Complete w/tubes, an-enna. 2 erystals phone fonvas cover mionual stze: sxex $21 \mathrm{~m}=$. W't: 8 lbs............................... 95 "OAV" MBDEL-Same as above, hut with direction Anding 19.95 VIBRATOR Power Supply I/MAB \& DAV. Operates irom is VDC A A
 Dry Charge eattery N-T-6 f/above porer aupply. © VDC \& A. . .s3.95 Prices F.n R. Lima, $0-25 \%$ Depmett on COD's-AAdress pept. 3s

BIC FREE CATALOQ-Wrle for your FREE copy now!

 1016 E. EUREKA • Box 1105 • LIMA, OHIO • 45802

How to Write a

Classified Ad That Pulls

Deluxe 48 page booklet-only $\$ 1$ per copy. And, with the booklet, you get a $\$ 2$ credit towards your payment of your classified ad in Radio-TV Expertmentfa. Send $\$ 1$ now to Radio-TV Fyperimenter, 505 Paik Avenue. New York, New York 10022.

TRANSISTORIZED CONVERTER KITS $\$ 5.00$ EACH

Three kits available. Marine 2.3 mc , police \& fire, high band $100-200 \mathrm{mc}$, low hand $26-60 \mathrm{mc}$. 1 mc tuning on car radio. Full instructions.

Science \& Mechanicsthe only magazine that keeps you right up to date on developments in space technology, weaprins, automobiles, medicine. boats. planes, tools, new products, and exciting world events.
Keep up to date. Make sure of your nome dellvered capy by returning the coupon today.
| SCIENCE \& MECHANICS
RTVE-268
505 Park Ave., N, Y., N. Y. 10022
12 issues $\$ 4: 24$ issues $\$ 8 ; 36$ issues $\$ 12$. (Foreign: Add \$1 a year.)
| Please enter my__year(s) subscription.
$\square 1$ enclose \$
Name.
\qquad Bill me.

> (Please Print)
Address
City
State \& Zip
or distortion. Frequency response is within 1 dB from 18 to $30,000 \mathrm{~Hz}$. The FM tuner has a 4 -stage front end, including two RF stages. Circuit automatically switches to stereo and an indicator light goes on when a stereo station is tuned. The critical FM front end and IF sections are factory-assembled and aligned. Other features: precision tuning meter, speaker muting switch, tape monitor, front-panel stereo headphone jack, and positive-action rocker-type switches. Inputs include magnetic phono, tape monitor, and auxiliary (ceraniic phono). At all Allied distributors, or you may request Cata\log No. 270 for more dope on the KG-980. Allied Radio Corp., 100 N . Western Ave., Chicago, Ill. 60680.

Be Scotch With Your Stickum

"Scotch" brand electrical tape now comes in a fully-enclosed plastic tape dispenser. Designed for electrical, household and marine applications, the rigid plastic dispenser is reusable and gives permanent dust and edge protection to the enclosed roll of tape. The dispenser has a flat bottom so it won't roll and a recessed sharptooth cutting bar. Each dispenser holds 60 feet of $3 / 4$-in. "Scotch" black vinyl plastic electrical tape No. 33. At dealers everywhere for $\$ 1.49$; quantity lots available in 12 -roll displays and in 24 and 48 display units. For further info write Dept. E17-39, 3M Co., 3M Center, St. Paul, Minn. 55101.

"Scotch" No. 33 Electrical Tape

Thrown for a Looper

A very handy tool for the hobbyist is the LID L' LOOPER, which forms a loop on jar lids, allowing them to be hung on a wall. Large enough to slide onto a pegboard hook or 8-penny finishing nail, the loop is easily formed by placing the lid between the handles of the LOOPER and squeezing. Such a loop is capable of supporting 50 pounds. At the quite low price of $\$ 2.50$, you get the LID L' LOOPER by writing to Dahl Enterprises, Box 708, Hawthorne, Calif. 90250 .

Dahl's L' Looper in action (left) Results are shown at right!

Be a Square and Make Waves

At the very reasonable price of $\$ 75.00$, the Knight-kit Model KG-688 Sine/Square Wave Generator will provide a signal source for all kinds of electronic equipment: audio amplifiers, transducers, sonar and supersonic apparatus, servos, video frequency circuits and low radiofrequency equipment. Sine wave frequency range from 20 Hz to 20 MHz includes the entire AM broadcast band. The square wave fre-

Knight-kit Model KG-688 Sine/Square Wave Generator quency range is from 20 Hz to 200 kHz . The KG-688 uses all silicon semiconductors with an FET (field effect transistor) in the Sulzer oscillator circuit. Operators will like the 6:1 ratio planetary-ball, antibacklash vernier drive and the convenience of a detachable line cord which
can be stored when not in use. The cool-running instrument measures a mere $73 / 8 \times 73 / 4 \times 101 / 4$ in. Power requirements: 100) $130 \mathrm{~V}, 50-60 \mathrm{~Hz}$ AC. Availahle from Allied Radio Corp., 100 N. Western Ave., Chicago, 1ll. 6068C.

Mini-Priced Maximus

Do you have champagne ears and a beer pockethook? UTC Sound has a new line of compact and bookshelf speaker systems under their Maximus lahel with most attractive prices. Pictured is the Maximus 22, a two-way system for $\$ 39.95$. Maximus 33 and 44 are $\$ 56.00$ and $\$ 76.00$, respectively. Maximus 55, at $\$ 99.50$, is

UTC Sound Maximus 22 Speaker System
a full three-way system which may be used horizontally on bookhelves. or free-standing in a vertical position. All units have the acoustic suspension principle. But the manufacturer claims higher effectiveness than is usual with this type. and says their design permits the use of these speakers with amplifiers of relatively low power. All units have removahle grilles and oiled walnut cabinetry. At most stores, or contact UTC Sound, Div. of TRW, 899 Stewart Ave., Garden City, N. Y. Il530.

POPULLAR SAMS BOOKS

RECENTLY PUBLIBHEDI TIMELYI

Modern Dietionary of Electronics. New 3rd Ed. Now defines more than 16,500 terms; includes special pronunciatinn guide, most widely used symbols and abbreviations, new terms in latest apecialized fields. The most complete authoritative electronics dictionary a vailable. Order 20600, anty$\$ 9.95$101 Questions \& Answers Absut CB 0 perations. Complete answers to the most frequently asked questions about ('B radio, including permissible uses, licensing, FCC rules, operating procedures, tips on selecting ('R equipment. Order 20504, only $\$ 2.50$Pracical Problems in Numbar Systams, Logic and Boolasm Agebra. A 62-lesson introduction to the mathematice of digital computers. No special background ir mathematics is required for understanding. Order 20609, only.
Exparimental Earth Sciences. This fascinating book enables youl to learn about the earth and its atmosphere through 60 simple experiments in the subjects of metennolngy, astronomy, geology, and oceanography. Order 20601 , only.How To Read Schematic Diagrams. Not only showe you how to read and interpiet diagrams, hut analyzea each enmponent, its construction, and its circuit purpose and use. Order 20568, only..
. $\$ 2.95$
TY Servicing Guide. Tells you how to apply proper trouble shooting procedures based on analysie of symptoms, illuatrated hy picture tuhe photos. Packed with troubleshooting and servicing hints. (order 20361, only
. $\$ 2.50$
Color-TV Servicing Made Easy. Vol. 1. Full explanation of color principles, circuitry, setup adjust ments, and parviring of all color-TV zets. 'Takes the mystery out of gervicing color-TV. Order 20133
$\$ 3.25$ABC's of Cilizens Band Radio. newly revised \& upeated. All you need to know about planning and setting up a CH 2-way radio system. Explains functions, principles, netup and operation, latest rules and regulations. Order 20019.......... . \$2.25

- Transistor Iomition Systems Hand hook, 20238.

TV Tube Symptome \& Troubles. 20071 1.05
Understanding Talemetry Circults. 2051t.
O 2nd-Class Radiotelephone Lie ense Handbook. $203 i 6$
Modern Dietionary of Electronies. 20151 7.93

B Handbook of Electronic Tablee \& Formulas. 2030 3.95

C Color TV Trouble Clues. 20120. 3.25

FAMOUS ABC'S BOOKS

Q Layers \& Masers. 20262. .. 32.25 D Comouters 20012 Tape Recpriding 20395 1.50 Q Boohan Aizebri. 20055 OTransistors. 2040. 2.23 Q Modern Rsdio. 20047. 1.95

- - HOWARD W. SAMS \& CO., INC. $=-$

Order from any Electronic Parts Distributor, or mail to Howard W. Sams \& Co., Inc.. Dept. $\mathfrak{K} \Gamma$ I'-1 4300 W .62 nd St., Indianafolis, Ind. 46268
Send hooks checked ahove. \$ \qquad enclosed
\square Send FREE Sama Book Catalog.
Name

Addreas
(Xity \qquad State \qquad Zis

BOOKMARK bY воокWÓRM

एँचस सैद 5

D This ol' Bookworm is working hard. So many good books are being published that the Editor said, "Okay, give some extra coverage." But then he has to be nice to me, because he goofed in the last issue. Get all the facts from his editorial "Positive Feedback" on page 21.
D. Amps Amplified. Many audio fans and experimenters want to enjoy the pleasure of designing and building their own audio amplifiers from the ground up, and the ol Bookworm is no exception. To do this, we need more than an explanation of how an audio amplifier works. We need a practical understanding of audio equip-

ment design and a simplified method of arriving at the numerical values of the various components. Audio Amplifier Design, by Farl J. Waters, fulfills these needs in a "one-book design course" showing how to design amplifiers from a single stage to a complete, multi-stage stereo system.

Each stage of an audio amplifier is first discussed in theory; then design methods are illustrated by working an example to show how component values may be determined. Finally, a design problem is tackled and solved. A feature that will appeal to those who find mathematics distasteful is the generous use of nomographs throughout the book. With these, problems can be solved merely by laying a straight edge across appropriate values and reading off the answers.

Copies of Audio Amplifier Design are available from electronics parts distributors and bookstores throughout the country, or from the publisher, Howard W. Sams \& Co., Inc., 4300 W. 62nd St., Indianapolis, Ind. 46206.

D Not New, but Greatl When a book comes up for its Seventh Edition, this ol' Bookworm looks upon it as an old friend that's found the Fountain of Youth. Practical Electrical Wiring by H. P. Richter has been completely revised and updated to conform to the latest National Electrical Code. The text, designed as an in-

struction manual, enables the reader to learn electrical wiring in a practical fashion, for homes and farms, as well as for industrial and commercial structures, schools, and churches. Using a logical step-by-step procedure, from principle to method to execution, the author tells not only how to do things, but also clearly explains why.

Practical Electrical Wiring consists of three parts: Fundamentals of electrical work, terminology, basic principles, theory; wiring of residential buildings and farms; wiring of non-residential buildings. Major topics covered include theory, basic principles, measurements, power factor, transformers, circuits, overcurrent devices, wire sizes, connections, joints, grounding, switches, wiring methods, lighting. motors, appliances, power plants, and factories.

Most book stores will carry this valuable text and reference book. If you can't find it, write to McGraw-Hill Book Company, 330 W. 42nd St., New York, N. Y. 10036.
D. Zeners Again. A completely new Zener Diode Handbook has just been published by Motorola Semiconductor Products Inc. This handbook supplies applications information for the widespread product advances in zener di-

odes and zener-like devices. It covers applications for temperature compensated zeners. reference standards. current regulator diodes. and zener transient suppressors as well as the latest types of zener diodes.

The handbook is organized to give the circuit designer all the data necessary for the efficient use of zener components with the maior emphasis on circuit design. Proven, basic circuits are also provided as take-off points for the designer's own requirements. You may find your next proiect diagrammed in this text.

Chapters important to the experimenter include information on zener diode theory, zener characteristics. applications, and a cross refer-ence-selector guide for zeners.
The Zener Diode Handhook is available from franchised Motorola distributors or the Technical Information Center. Motorola Semiconductor Products Inc., Box 13408. Phoenix. Arizona 85002.
© By the Numbers. Mathematical Quickies, a diverse and intriguing collection of problems. offers a double challenge to the math puzzle enthusiast. The author, Charles W. Trigg. Dean Emeritus. Los Angeles City College, has for over thirty-five years heen familiar to the readers of the problem section of various mathematical magazines. He has published over 600 articles and problem solutions and has proposed over 300 challenge problems in domestic and foreign mathematical periodicals From his collection of over 16.000 problems he has selected 250 for the inclusion in his book. Although the problems are interesting in their own right, the emphasis is on the method of solution. thereby challenging the reader not only to solve the problems, but also to devise neater. quicker, more elegant solutions than those provided.

The problems involve elementary concepts in

TAKE A BREAK...AND PICK UP THE 1968 CB YEARBOOK NOW!

Just \$1 at your local newsstand or ask us to send you a copy!

505 Park Avenue
New York, N. Y. 10022
RTVE-268

Yeah! Send me a copy of the 1968 CB Yearbook and make it snappy. Enciosed tind $\$ 1.25$ to keep the mallroom boy in fish-n-chips.

Name.
Address \qquad
City . State. . Zip.........

Now you can reserve the newest, most exciting magazine for those whose interest in electronics is on the hobby level. The ELECTRONICS HOBBYIST contains easy to build, tested and proven construction projects of every description.
FOOLPROOF DESIGN: EASY CONSTRUCTION! Each construction project has been carefully reseatched and tested by experts. Each article is complete with theory, construction tips, parts lists, diagrams and photos.

RESERVE YOUR COPY NOW!

Can't find the key to

 electronics?

 electronics?}

- then get your electronics cool with this introductory offer to the two leading electronics magazines! Use coupon:

- Now, both of these fine magazines will be delivered to you at the special subscription rate of just $\$ 7.00$. . . save $\$ 2$ from newsstand price.

ELEMENTARY ELECTRONICS

The nlagazine that serves up electronics theory in pleasant spoonfuls and reinforces the knowledge you gain with exciting and useful projects.

RADIO-TV EXPERIMENTER

The magazine dedicated to the hobbyist-the man who wants to obtain a fuller and broader knowledge of electronics through the applications of his hobby.

the fields of arithmetic, algebra. plane and solid geometry. trigonometry, number theory, and general recreational mathematics. such as dissections. cryptarithms, and magic squares. A variety of methods of solution are employedsome conventional, some unorthodox though

mathematically sound-but the same special technique is seldom used in more than one solution. Since part of the challenge in solving problems is to identify the most appropriate mathematical discipline to use, the problems have not been segregated by field. The order of difficulty varies from the very simple to some that will challenge the graduate student. Difficult problems are interspersed with easier ones throughout. Approximately one third of the solutions and many of the problems are new.

Mathematical Quickies is divided into two sections: The first consists of challenge problems consecutively numbered; the second contains the quickie solutions correspondingly numbered. Passage from problem to solution and vice versa is facilitated by the problem titles and the dictionary style page headings. The problems are clearly and concisely stated and illustrated where this will facilitate understanding.

Check your local bookstore for this book or write to McGraw-Hill Book Company, 330 W. 42nd St., New York, N. Y. 10036.

By Gene Lyons

"Well, with a list that long, your TV needs a mortician, not a technician!"

"Look, lady, when I work on this model, I always bring my lunch!"

"Now!"

"Enough is enough! Will you please get that new technician a tube caddy?"

"Oh yeah, l've got to replace that shorted electrolytic capacitor."

Grantham School of Electronics 2-68-RT
1505 N. Western Ave., Hollywood, Colif. 90027
Please mail me your free catalog, which explains how Grantham training can prepare me for my FCC License and Associate Degree in electronics. I understand no salesman will call.
Name_Age
Address
City

Grantham School of Electronics

has conieried on
John Doe
the degree of
Associate in Science in Electronics Engincering

 Finat dy of Octet.Ce, 195:-

Success in Electronics Comes as Naturally as

1-2-3

through Education

There they are - three big steps - three deliberate steps which lead directly to success in electronics. Your future is shaped by the moves you make - by the steps you take. Begin now with Step $=1$.
STEP $\# 1$ is a simple request for full information on the Grantham Associate Degree Program in Electronics. You take this step by filling out and mailing the coupon. We mail our catalog to you; we do not send a salesman.
$\mathbf{S T E P}=\mathbf{2}$ is earning your FCC first class radiotelephone LICENSE and radar endorsement. You complete this step in the first two semesters of the Grantham educational program (by correspondence or in residence). Train with the school which gives associ-ate-degree credits for your license training, offering you the opportunity to advance beyond the FCC license level to a college degree in electronics.
STEP $=3$ is earning your ASEE DEGREE. This degree is conferred when you have earned credit for all five semesters of the Grantham curriculum.

Semesters 1 and 2, as mentioned above, are offered by correspondence or in residence.

Semester 3 is offered in residence, or students who have extensive practical experience in electronics may receive credit for this semester - credit based on that experience.

Semester 4 is offered by correspondence or in residence.

Semester 5 is offered in residence.

Accreditation, and G.I. Bill Approval

Grantham School of Electronics is accredited by the Accrediting Commission of the National Home Study Council, and is approved for both correspondence and resident training under the G.I. Bill. Just mail the coupon, or write or telephone us for full information without obligation.

Grantham School of Electronics

1505 N. Western Ave.
Hollywood, Colif. 90027
818 18th Street, N.W.
or Woshington, D.C. 20006

Telephone:
(213) 469-7878

Telephone:
(202) 298-7460
"Down with California kilowatts!'" squeak the QRPers. Their argument:

Peanut Whistles Spell Progress

By Robert M. Brown, K2ZSQ

What's that? Talk halfway around the world with a peanut-whistle rig? Preposterous as this may seem, hundreds of low-power ham addicts are doing it every day-and to the confoundment of their kilowatt counterparts. Using in most instances only a single transistor or tube in the final of a home-brew transmitter, these chaps are racking up contacts all over the U.S., not to mention Britain, Germany, Czechoslovakia, and even Australia.

Key to this organized underground is challenge. In a world where just about everything is hell-bent on high power, these fellowsmany of them in their teens-pride themselves on their operational skill and knowledge of propagational techniques. Kilowatts? Who needs them!
"If you're a polished operator who knows how to pull signals out of the noise level, you're halfway there," argues famed low-power addict W3RZL.

Up With QRP! Known in ham circles as "that crazy QRP crowd," the scattered group of die-hard anti-power enthusiasts insists that Federal Communications Commission is responsible for the whole thing. And well it may be. For hidden amongst paragraphs of regulations pertaining to amateur radio in the U.S. is a clause which states that "only so much power as is necessary to establish contact shall
(Continued overleaf.)

Peanut Whistles

be used by participating stations." Of course, everyone knows that this clause runs unenforced, but the flea-power boys have formally adopted it as their motto. "Down With California Kilowatts" and "Switch To QRP" are more than mere slogans to the peanutwhistlers!

Another argument is the very definition of QRP itself. One of a series of Q-signals, this three-letter combo is used as an abbreviation for "Decrease Power" or "Must I Decrease Power?", depending on whether it is followed by a question mark. Like the other Q-signals used extensively in CW work, it makes for quick transmission of conmonplace messages; it also eases communicating with a foreign counterpart who might not understand if everything were spelled out. But the fact that QRP is included at all in the official International Q -Signal List convinces the low-power crowd that Hea-power is more than an integral part of hammingit's a worldwide movement!

In With The Best. To add insult to injury, the low-power enthusiasts are constantly chalking up real names for themselves. News spread like wildfire when a certain 5-watter in Mozambique managed to work all Continents on 20 meters during one ten-hour stint. Others have embarrassed technicians time and again by shifting to the bands above 50 MHz and piling up rare states and counties using a bare minimum of RF output.

Even more incriminating (so far as the rest of hanidom is concerned) are the staggering totals these fellows rack up during on-the-air Sweepstakes and VHF Contests. In recent years, nearly every coveted ham award (Worked All Continents, Worked All States, Worked All Counties, etc.) has been picked up by at least a few very-low-power hams bent on "destroying the myth that you need 500 watts to call yourself a radio amateur."

Actually, under a kind of unwritten inter-

1 -Check, check, and recheck again! Fleapower mobileers, a rapidly growing group, delight in constantly retuning their trunkmounted rigs for maximum signal output. 2-Typical QRP enthusiast uses minimum of equipment. The secret? Operational skill. 3-Basically a phone setup, this is shack of QRPer Ken Bourne, K9GHR, Lombard, III.

1

2

3

4

national agreement among hams, anything under 100 watts to the final of a transmitter can technically be referred to as QRP. And indeed when QRPism was in its infancy it abounded with 90 -watters and the like who delighted in setting themselves off from the rest of the hobby by proclaiming "Up With QRP!" This, however, was short-lived. Today, top-eschelon flea-power addicts pride themselves in the latest state-of-the-art gear -much of it involving not mere transistors, but such devices as field effect transistors (FETs) and linear integrated circuits (ICs). Power levels generally run under one watt to the antenna. And while the $75-$ and $90-$ watters are still around, QRPdom's undisputed leaders are the semiconductor experimenters and propagational experts.

Flea Heroes. To the uninitiated, the "bible" of flea-power hamming is something called Antennas, a thick book written by John Kraus which deals exclusively with the problems of antennas and related subjects. Hard-core QRPers quote Kraus as frequently as today's in-crowd talk about Marshall McLuhan, devoting every waking hour to still another interpretation of what Kraus really means about low angles of radiation, 11degree Yagi tilts, and the like.

To understand this devotion to a hero, you must first realize that a flea-power ham relies almost entirely upon his transmitting/receiving antenna for his success. The antenna is his mark upon the world (to say nothing of his neighborhood). His ham shack abounds with feedline indicators, neon bulbs, scratch paper with such jottings as " 34 wavelengths $=10,645$ feet," and the almighty SWR meter.

To compare Kraus with standing waves would be like talking about Henry Ford and gas mileage all in one breath. But the plain fact is that achieving a perfect $1: 1$ SWR is to a QRPer what getting 32 miles per gallon is to a Volkswagen owner. Maximum efficiency and energy transfer to the antenna are bywords that are all-important to the lowpower boys, and the less wattage that is generated, the more crucial these factors become. If you're willing to settle for a 1.5:1

4-Believe if or not, you're looking at WA2FSQ/WB2DIE's 22-furn helical array, a formidable circularly-polarized radiator that would make the most devoted VHF fleapower addict's mouth water with envy. With 20 dB of gain, who needs a kilowatt? 5-What those Europeans won't Iry! The rig: a 1-watter. The site: the Austrian Alps.

Peanut Whistles

SWR or couldn't care less about multiplewavelength feedlines, you'll never cut it with this crowd.

Second only to Kraus and his fervent group of rooftop followers is the Ultimate Reception Society, an informal group of QRPers who insist that "you can't work 'em if you can't hear 'em." These devotees will spend $\$ 3000$ on the latest in a solid-state communications receiver with product detectors, automatic noise cancellers, and panoramic adaptors, yet invest perhaps $\$ 13$ in their transmitter. Unlike the antenna people. this group has no permanent leader, though it tends to adopt certain favorites as the state-of-the-art advances.

Recently, for example, the URS boys are turning to Allen Katz, K2UYH, for guidance and direction. Katz, who innocently inter-
preted and publicized the wonders of a sophisticated receiving technique known as synchronous derection, presently finds himself receiving piles of mail from low-power hams who want to know how they can improve their receiving setups.

Unfortunately, Katz tends to talk in graphs and formulas, spouts such things as "equalization techniques" and "opposite pulsing," and generally requires interpretation by learned persons adept at translating engineering advances into ham-type practicalities. Understandably, then, anyone who can authoritatively quote Katz will most certainly be invited as a guest speaker at the next club meeting. In interviewing K2UYH for this article, however, we found the man personable and enthusiastic about his work and eager to pass on his findings to QRPers.
"What everyone seems to be forgetting," he states emphatically, "is that ultimate receiving equipment is still no substitute for a truly skilled operator." How many hams
(Continued on page 127)

TWO SIMPLE RIGS FOR QRPing

PARTS LIST

```
81-9-valt battery
Cl-30-pF trimmer capacitor -
O1-2N416 transistor
R1-91,000-ohm, 1/2-walt resistor
R2-2,000,000-ohm potentiomeler
RFC1-2.5-mH RF choke
1-key
```

One of smallest rigs going (above, right), this simple 80 -meter job works with any standard crystal cut for $3.5-$ to $3.8-\mathrm{MHz}$ CW band. Below, flea-power $21-\mathrm{MHz}$ DX rig is equipped for both phone and CW; crystal can be any 15 -meter, third-overtone type.

By HOWARD S. PYLE, W7OE

QRP? An expression rapidly becoming popular in the dedicated Ham circles of low-power transmitter enthusiasts to describe flea-powered rigs . . . less than 10 watts input. And along with mini-cars, mini-skirts and the general trend to "mini" this and "mini" that, QRP Ham rigs. are taking their place in the field of "Now you see it-now you don't."

Our little Mini-Mite really takes the cake with 15-, 20-, 40 -, and 80 -meter amateur CW bands instantly switchable from the front panel. The rig is adaptable to any type of antenna with no external matching units or similar gimmicks to fool with, and it provides instant choice of internal power source or external supply! In other words, muchum en parvo, or something like that, which, in the Italian language is supposed to mean "much in little." And all in an enclosure only $4 \times 4 \times 6 \mathrm{in}$. Want to hop on the QRP wagon?

Mini-Mite Autopsy. Let's play surgeon and start with the internal organs: they are as vital to Mini-Mite as the heart and lungs in a human. Unlike the human, however, this little jewel has four hearts; each a complete transmitter in its own right.

Basically, these "hearts" are the recently introduced of-

MINI-MITE QRP

ferings of the International Crystal Manufacturing Co., and are known as the OX Oscillator Kit. Each is a self-contained transistor oscillator mounted on a neatly lettered printed circuit board only $11 / 2$-in. square! These are available for any frequency you want within a range of 300 to $60,000 \mathrm{kHz}$.

Fundamental crystals are used on all fre-quencies-you can use your own crystal or International's EX type-the choice is yours. Each complete oscillator kit costs but $\$ 2.35$, which includes the transistor, printed circuit board and all components except the crystal. We stole a march on International as ap.
parently these were designed solely for test oscillators with no thought of their communications possibilities.

But with an input power of 1.2 watts using a 6 -volt DC power source, and up to 1.8 watts with a 9 -volt supply, the author has confirmed contacts of 1100 miles on 15 meters, 600 on $20 \mathrm{M}, 300$ on 40 M and 200 miles on 80 M . That's bad?

Making Mini-Mite. It will take you about twenty to thirty minutes to assemble and solder each kit from the simple instructions supplied. The four little units are then mounted on an aluminum sub-panel as shown in the photos. For those who want to duplicate the mechanical essentials of Mini-Mite, included is a dimensioned drawing of the sub-panel. This is really all the mechanical

A glance af schematic (above, far right) reveals that Mini-Mife actually consists of four separafe oscillator assemblies (OSC1 through OSC4) powered by a single baftery (B1). As photos show, oscillators and battery are mounted on sub-panel, balance of components on chassis box itself. Detail of aluminum sub-panel appears in drawing.
detail needed as any type of enclosure can be used and any parts of the non-critical type, such as switches, connectors, etc., that your junk-box may produce can be substituted. For these, you can easily work out your own component placement and drilling templates to match. Mounting screws and metal spacers are furnished with the oscillator kits, so no problem there.

By using a sub-panel, wiring is perfectly straightforward and there's little of it as the schematic indicates. Make all the internal connections you can before securing the subpanel to the enclosure. In the prototype, the sub-panel is mounted with four $11 / 2-\mathrm{in}$. lengths of $8 / 32$ threaded brass rod (most any hardware or Ham supply house carries it).

The sub-panel is spaced from the front
panel with 1 -in. spacers cut from $1 / 4-i n$. copper tubing. An acorn nut on each end of the threaded rod holds the whole assembly firmly in place. The little 9 -volt transistor battery, which serves as the internal power supply, is mounted on the sub-panel between the two pairs of oscillator boards. Incidentally, these batteries will last quite a while since current drain is only 20 mA and this, of course, is only in the "key down" condition.

The battery supply lets you take Mini-Mitc with you on hunting, fishing and camping trips to keep contact with home base. Taking a couple of extra batteries along just to play it safe is a good idea if you're making an extended stay.

QRP Power. When using Mini-Mite at the home base, a conventional rectified AC

Schematic of Mini-Mite. Switch 51 selects any of four amateur bands$15,20,40$, or 80 meters.

PARTS LIST

B1—9-VDC transistor battery (Eveready 216 or equiv.)
Cl-100-uF variable capacitor ILafayette 40C2885 or equiv.)
C2-.001-uF, 600-VDC capacitor
DI-IN34 diode
J1. J2—RCA-type phono jack, insulated mounting
J3-Feed-through connector, insulated ILafayette 33C3201 or equiv.l
J4, J5, J6, J7-75-ohm coax connector, 50-239 (Radio Shack 278-201 or equiv.)
L1—Loading coil, 72 tuins \#28 enameled wire on $3 / 4-\mathrm{in}$. form
M1-Field-strength meter IShurite 89032 or equiv.l lavailable from Shurite Meters, Box 1818 , New Maven, Conn. 06508 at $\$ 4.50$ postpaid)
Osc. 1, 2, 3, 4-OX ascillator kit, 3 OX-LO, 1 OX-HI lavailable from International Crystal, 10 N. Lee, Oklahoma City, Okla. 73102 of $\$ 2.35$ ea. postpaid]
S1-3-pole, 4-throw single deck rotary switch
S2-5-position, 1-pole rotary switch ILafayette $30 C 4013$ or equiv.l
53, 55-D.p.d.t. rolary or toggle switch
S4-S.p.s.t. rocker or toggle switch
S6-S.p.s.t. normally open pushbution switch (Radio Shack 275-008 or equiv.)
Misc.-Wire, solder, $4 \times 6 \times 4-i n$. sloping-panel chassis box, decals, etc.

MINI-MITE QRP

supply can be used to conserve the battery. Rather than build a little power box, the author used a Radio Shack $22-023$ regulated, variable-voltage transistorized DC power supply. This makes a perfect companion unit for Mini-Mite and will serve equally well as a power supply source for experimental transistorized equipment. This supply provides up to 20 VDC at 200 mA with exceptionally smooth control, and is more than adequate for most transistorized gear. Equipped with a meter that reads both volts and milliamperes, it makes a convenient way to check your power input instantly. Selection of either the internal battery power or the external AC source is accomplished by a d.p.d.t. rocker switch on the rear panel.

Note that Mini-Mite is equipped with four coax connectors and a feed-through insulator for antenna connections, all in line on the rear panel. This you can take or leave. It happens the author has four dipoles (one for each band) and preferred to leave Mini-Mite semi-permanently connected at the home station, hence the four coax connectors.

Any Old Antenna. The feed-through insulator provides for connection to any random length antenna for portable operation. The s.p.d.t. rotary switch in the top center of the rear panel, labelled $C O A X$ and $R A N$ $D O M$, permits switching any oscillator output to the feed-through insulator or to the series of coax connectors. The band selector switch on the front panel has one section which selects the appropriate coax connector for the band selected.

A second section on the band selector switch connects the positive lead from the power source to the oscillator assembly used for that band. The negative voltage is applied only when the hand key or test button is pressed; the power source, of course, remains idle at all other times. The third section on the band selector switch selects the RF output terminal on the desired oscillator and connects it to the radiating circuit.

While the oscillator functions on the fundamental of the crystal with no tuning adjustments, it does not necessarily mean that the most effective loading of the antenna will automatically result. This is particularly true when a random-length wire antenna is used in portable operation. Therefore, a means of resonating the antenna to the load will assist in getting maximum radiation
characteristics. Accordingly, incorporated right in the Mini-Mite cabinet is an all-band L/C loading network that has proven most effective.

Not only has this L/C combination permitted resonating a random wire of reasonable length but has also proven to be of noticeable value when used with a frequencyconscious dipole or other conventional antenna.

Robust Radiation. Provision is also made for switching the antenna tuning capacitor in series with the loading inductance or in parallel across it, by means of a d.p.d.t. toggle switch. The inductance is adjustable in four steps by tapping the coil and connecting the taps to a 5 -point rotary switch (single pole). By choosing the proper amount of coil inductance in combination with the variable capacitor in either series or shunt connection, proper loading of the antenna circuit is easily obtained.

The coil consists of a total of 72 turns of \#28 enameled wire wound on two $3 / 8$-in. diameter forms (wooden dowels), 36 turns. on each. Splitting the coil makes it possible to fit it comfortably into the available space. Since the halves of the coil are connected in series, it is in effect a single inductance. Taps were taken at approximately equal distances along the length of the winding.

The meter is a desirable asset in tuning the antenna network and a resonant condition is indicated by the highest reading. This peak will be fairly broad but will vary from about quarter to half full scale reading on the meter selected, depending on the input voltage from the power source.

The meter used is a special field strength meter made by Shurite. If not available from local supply sources, it can be ordered directly from the manufacturer (see Parts List).

From the foregoing description, it should be simple to work up a reasonable facsimile of our Mini-Mite and enjoy a heretofore relatively unexplored and exciting field. There's a great deal of excitement in trying for the amazing results possible with an input power considerably less than that required for a conventional radio dial lamp! We suggest that in your initial efforts in the QRP field, first establish local contacts to get the feel of mini-power. Once you've mastered the simple QRP techniques, you're ready to demonstrate what the QRP Amateur Radio Club International often use as an unofficial slogan . . . "POWER is no substitute for SKILL!'' Go to it, and good DX!

Short Wave for Non-SWL's

By Thomas R. Sundstrom

- Today, one problem of the beginning shortwave listener (SWL) is that he's confronted with a confusing mass of information concerning equipment and stations to be heard. Also, though these beginners express a serious interest in SWLing, many soon fall by the wayside when their results fail to match the seemingly tremendous reports turned in by some of the old pros.

The beginning listener shouldn't be discouraged, since many of these top DXers have spent many years accumulating knowledge and experience of what to look for and when.

Another problem is that many listeners start SWLing with relatively inexpensive receivers, mostly those selling for less than $\$ 75$. They often fail to realize that a 4 -tube general coverage receiver that lacks an RF stage, selectivity provisions, a regulated power supply and other DX boosting circuitry just will not, under any circumstances, perform as well as an 18 -tube giant that retails for $\$ 450$.

Of course, when conditions are right, a small receiver can do wonders. For example, the author heard the Radio Nacional de Espana outlet on 684 kHz in Madrid. Spain one winter morning when 680 and 690 kHz were quiet. This was on the standard AM band and the receiver was a 4 -tube clock radio!

DX Dollars. Of course, if the new listener is willing to invest just a little more money, he will find an excellent selection of receivers in a price range of $\$ 100$ to $\$ 250$. Both
new and used receivers are available, and almost anything is better than the 4 -tube job.

Older receivers can be an excellent buy since the previous owner may have traded one in just because he wanted a new model. Watching the classified ads in the local newspaper may turn up a used receiver faster than waiting for one in the local radio store; check out all the possible sources.

If you do purchase a used receiver, contact the local radio amateur club to determine who services communications equipment (or look in the telepbone book). Normally, it is not a good idea to trust service work to the average local radio-TV repair shop, as most are not equipped to solve the problems pe-

One way to get started SWLing is with a homebrew regen receiver like this one. These sets often produce surprisingly good results.

Shortwave for Non-SWLs

culiar to these communications receivers.
You may find that a used receiver could use minor realignment and calibration before you start using it. The service man should be willing to discuss your prospective purchase and give you an estimate of cost involved.

Launching An SWL. To get the novice headed in the right direction, there are some preliminary items that ought to be mentioned. First, the receiver must have some degree of accuracy in spotting specific frequencies in order to be much good at locating desired stations.

If the receiver does not have a crystal calibrator built into the set, it would be very
familiar with your receiver and you can use the crystal calibrator accurately, you are ready to go to work on locating some real DX.

Beginning listeners often just tune the shortwave bands at random and increase their total stations and countries heard by chance. But, if you plan your listening, much more can be accomplished. The organized ap. proach requires some basic SW information as well as some means of updating the material.

For those who prefer to tune the SWBC bands, the SWL bible is the World Radio-TV Handbook, published annually in Denmark. This volume contains a complete listing of all broadcasting stations in the world, including schedules, addresses and reams of other helpful information. It does not cover U. S. and Canadian stations broadcasting on domestic

useful to purchase a separate unit. These can be had either in kit form or assembled; check the receiver manual to see if your rig has provisions for one inside the set before getting an outboard unit. Virtually all crystal calibrators are $100-\mathrm{kHz}$ units, but the crystal can easily be changed to a $500-\mathrm{kHz}$ unit if your receiver cannot separate the closely spaced $100-\mathrm{kHz}$ signals.

With A Calibrator. By setting the main dial to the same point (one for each band) determined by the calibrator's marker signal appearing every 100 or 500 kHz , depending on the crystal used, the same frequencies will appear at the same bandspread dial settings each time you tune. Calibration graphs or tables can be prepared for receivers having a $0-10-100$ bandspread dial. Once you are
(AM, FM and TV) frequencies, but these can be found in White's Radio Log. The World Radio-TV Handbook costs $\$ 5.95$ from Gilfer Associates, Box 239, Park Ridge, N. J. 07656; ask about the Summer Supplement, too.

Ham Band Listening. If you are interested in the amateur bands, pick up one or both Radio Amateur Callbooks. Both are published quarterly, and may be obtained in almost any electronic supply house selling amateur radio equipment. The first callbook lists all the amateurs in the United States ($\$ 5.95$) and the second lists amateurs elsewhere in the world (\$3.95).

To up-date SW listings and other information, White's Radio Log and SWL club bulletins are the best sources available. There are

The over-a-hundred dollar receiver will provide additional features, depending on price, that ensures the maximum in Hertz-snatching DX.
several fine SW clubs in the United States, and they have members from all over the world reporting each month. The Association of North American Radio Clubs (ANARC) is an organization of clubs: club representatives work together to better the lot of the SWL. Those clubs in the ANARC that have bulletins covering the SW field are the Newark News Radio Club, the American Short Wave Listeners Club, and the North American Short Wave Assuciation, among others.

Clubs For SWLs. The Newark News Radio Club is the oldest SWI club in North America, having been established in 1927. Its monthly hulletin covers both SWBC and amateur DXing, as well as broadcast band. utilities, FM and TV. A sample bulletin may he obtained for 25¢ from the Newark News Radio Club, 215 Market St., Newark, N. J. 07101.

Incidentally. LeRoy Waite, NNRC amateur editor, works with Rod Newkirk of QST's column "How's DX?" Almost any amateur will have this magazine-perhaps you can borrow a copy to check the latest amateur news.

Many avenues are open to the SWL with a limited budget, such as this listening post equipped with vintage receivers obtained for next to nothing.

The North American Short Wave Association (NASWA) has a very fine SWBC-only bulletin. This club bas grown rapidly in the last few years after changing from an allband format. News is current and well-

detailed. Write for a sample bulletin (256) to William P. Eddings, NASWA, Box 989, Altoona, Pa. 16601.

Another good club is the American Short Wave Listeners Cluh (ASWLC) that began operations in 1959 . It. too, at one time dealt with all aspects of DXing, hut in recent years the ASWIC has specialized in SWBC and utility band IDX. For a sample bulletin

Another possibility for a low-cost/highperformance purchase for the beginning SWL is an ancient communications receiver like this old Hammarlund HQ-129-X.

Shortwave for Non-SWLs

(25¢), write to The Publisher, ASWLC, 16182 Ballad La., Huntington Beach, Calif. 92647. C. M. Stanbury II, whose articles frequently appear in Radio-TV Experimenter, is an editor of this bulletin.

How can the beginning listener use all this information? It's really quite simple. The secret of a good session at the dials is organization.

Planning Your Catches. Examine the schedules of the stations in the countries you would like to add to your log. In the World Radio-TV Handbook you will find this information, as well as the stations' frequencies and slogans. Note anything peculiar about stations you want to bag. Compile another list from recent club bulletins, and check conflicts with the notes made from the WRTVH. Unless the reporter made a mistake, the bulletin's information can usually be depended on.

Arrange your listening notes by time. Having this information, you can tune your receiver to the best frequency-determined by Propagation Forecast in this issue-ahead of time, then just fine-tune the receiver when the interval signal opening the program begins. If the frequency you chose is not yielding a good signal, refer to your notes and select another frequency.

If reception conditions are such that it is

Some of those great old multi-band consoles are still around and can be had for a song. Look at the QSLs bagged with this one.
impossible to hear the station you want, skip it for that day and go on to the next station on your list. If you check each day, you are bound to find conditions ripe to bag that elusive one.

When tuning the amateur bands, you have a slightly different problem. Obviously, Hams do not adhere to schedules and wander in transmitting frequency. However, there are various expeditions to remote areas or countries of the world that may have a Ham or two along and they sometimes announce preplanned transmission schedules and frequencies. Check QST for these; later, other ama-
(Continued on page 130)

Commercial shortwave broadcasters all over the world are more than anxious 10 send the SWL a QSL card verifying reception; here are a few samples of what to expect.

WEIRDOS WE WONDER AT

FOR SPACE \downarrow

Oversized tinker-toy makes mock up moon-jaunt for earth-bound spacemen
Lovely to behold, this clever device will give our spacemen lots of much-needed practice in the noble art of space-walking, which is somewhat different from other kinds. The setup here is a sort of simulator that approximates the conditions of weightlessness. If after carefully looking over this gadget, you're still a bit dubious about its value, don't be. At $\$ 280,000$ it's a steal!

< FOR INDUSTRY

How five million little data-bits went to Marlboro Country
Some sneaky scientists went and put five million bits of computer data on a piece of film in a container much like a pack of smokes. But caution: it may still be hazardous to your . . .

FOR HOME [\rangle

Brotherhood, fraternity, and summer tang in winter fruit
If you thought that bread in every basket and copper-tone appliances in every kitchen were the standard bearers of the really Great Society, think again. It turns out that the mark of technological progress actually comes to us under the unassuming name of Gro-Lux. This end-all solution to everyone's problems puts cheer in your soul as it puts a healthy summertine glow on pale winter fruits placed in the bowl. How 'bout that!

CBMoonshine.

Abstract

It takes all kinds of people to make up the 11-meter band and I had to go tangle with the pea picker whose QSL card was as choice as his daughter!

"This is the Mountaineer calling. Mountaineer calling CQ. Anybody hear me out there?"

He pinned my S-meter as I snaked along West Virginia 17 on the East bank of the Kanawka River. Several times I'd worked him from California on skip, but now, here I was, right in the old nan's back yard.

Mountaineer came back, and completely swamped channel 2. "I hear you New York. If you hear this old mountaineer, send him a QSL card." Like the FCC didn't exist. "Just send it to the Mountaineer. Seven Creek, West Virginia."

There were actually four guys from New York trying to work him.
I passed through a spot called Piny, which is right across the river from Buffalo. It was his QSI that brought me. I had sent hin three of mine, one after each of our QSOs, but the mails had brought nothing back from Seven Creek.

He was on again. "Reason you hear the
old mountaineer so good is because of my compressed modulation. Watch what happens when I spread it out to normal."

My needle dipped. A road sign ahead said Seven Creek. I swung off the highway hard-top onto a gravel one laner which led up out of the valley. Rumor had it that the old boy's QSL was something special, like solid gold maybe, or even some kind of a hillbilly Mona Lisa.

He returned my needle to the pin. "You see what I mean. And I build these little gadgets myself. They're my own invention." Paused for breath. "Sell em, postpaid, for 35 dollars cash." Big deep laugh. "Course I'll take a money order, too."

His "compressor" was an obvious fraud. All the old man did was push his power up a couple of hundred watts. Otherwise, it wouldn't show on an S-meter. Of course, there's another rumor that says unless you buy one of his "compressors," you don't
(Continued on page 131)

Everyone agrees that the oscilloscope is by far the most useful and versatile instrument available for use by engineers, scientists, technicians, or hobbyists. With an oscilloscope, one can measure voltage, frequency, phase relationships, time, etc. You may not think that such an all purpose device could easily be improved on. However, for the electronics hobbyist the oscilloscope is not all that it could be.

High-class oscilloscopes used by electronics personnel in such places as calibration laboratories, repair shops, radar installations, etc., are equipped with a special feature that almost doubles their usefulness. These instruments have a dual-trace function that permits simultaneous observation of two different signals with different amplitudes and frequencies.

You can equip your own modest singletrace oscilloscope with this same unique function for a few bucks and half a dozen hours of construction time, and almost double its usefulness. Our Two-Timer described here is easy to construct, and no fancy adjustments are necessary.

The Circuit. Two-Timer's circuitry consists of a multivibrator (V1), two keyer stages (V2A and V3A), two signal amplifiers (V2B and V3B), and a full-wave solid-state power supply. The entire unit is contained within a $3 \times 5 \times 7-\mathrm{in}$. chassis box, which requires little area on your workbench, and uses only three vacuum tubes.

The operation of Two-Timer is straightforward. Referring to the schematic diagram, the initial stage (V1) is a twin-triode vacuum tube used as a balanced free-running multivibrator with a frequency of approximately $15,000 \mathrm{~Hz}$. The two multivibrator square-wave outputs (taken from the plates of V1) are 180 degrees out of phase; i.e. when one output is + (positive) the other is - (negative), and vice versa. These two out-of-phase outputs are coupled to the keying stages (V2A and V3A) via C3 and C4, and are applied to the grids.

The keyer stages are the triode sections of triode-pentode vacuum tubes V2 and V3, and are used as cathode followers. The outputs of the two keyer slages are directcoupled to the cathodes of the signal amplifiers (V2B and V3B), and maintain the phase relationship of the multivibrator outputs.

The keyer stages outputs alternately turn the signal amplifiers on and off at the multivibrator frequency ($15,000 \mathrm{~Hz}$), and in accordance with the multivibrator output's phase relationship; i.e., when V2B is turned on by V2A, and is passing its input signal on to the electronic switch output (J3), V3B is turned off by V3A, and is not passing its input signal on to the output. This condition is reversed 15,000 times a second. This means that the signals applied to the control grids of V2B and V3B are sampled 15,000 times each second, and alternately

Two-Timer'll Get You Traces By the Two's

applied to the electronic switch output from jack J3.

Electronic Switch. The signal amplifier input signals are applied to the control grids (pins 7), and come from the electronic switch INPUT A and INPUT B gain controls (R16 and R17), which control the
amount of signal applied to each amplifier and, therefore, the amplitude of the output signals. R13 controls the DC levels of the two traces provided by the electronic switch by controlling the relative amounts of screen grid voltage applied to V2B and V3B. Without R13, the two output signals would be

Schematic of Two-Timer shows straightforward approach to obtaining dual traces on a conventional single-trace scope. Unit is basically a high-speed electronic switch.

PARTS LIST FOR TWO-TIMER

C1, C2—27-pF, $1000-V D C$ capacitor
C3. C4-0.05-uF, 200-VDC capacitor
C5-10-uF, 450-VDC electrolytic capacitor C6-20-uF, 450-VDC electrolytic capacitor C7, C8-. 001 -uF, 1000-VDC capacitor Di-400-PIV, 50-mA full-wave bridge rectifler Ji, $\mathbf{~ 5}$-Binding posts, 3 red, 2 black (Radio Shack 274-736 or equiv.l
Ll-7-H, 50-mA choke lAllied 54B140B or equiv.)
R1, R2-47,000-ohm, $1 / 2$-watt resistor
R3, R4-470,000-ohm, $1 / 2$-watt resistor
RS, R8-33,000-ohm, $1 / 2$-waft resisfor
R6, R9-6800-ohm, $1 / 2$-watl resistor
R7-47,000-ohm, 2-watl resistor
R10, R1 1-100,000-ohm, $1 / 2$-wall resistor

R12-25,000-ohm, 10-watt resistor
R13-250,000-ohm, 1-watt potentiometer with s.p.s.t. switch 51

R14-10,000-ohm, 2-watt resistor
R15-22,000-ohm, 2-watt resistor
51-S.p.s.t. switch (part of R13)
T1-_Power transformer, 117-VAC pri.; 250-
VAC, 25-mA and 6.3-VAC, 1-A sec. (Allied 54B2008 or equiv.)
V1-12AX7 tube
V2, V3-6AW8A tube
1 -Chossis box, $7 \times 5 \times 3$ in. (Radio Shack 77 . 0685 or equiv.
3-9-pin miniature tube socket
Misc.-Wire, solder, knobs, rubber feet, line cord and plug, etc.

superimposed at the electronic switch output. By adjusting the DC levels of the signal amplifiers outputs, any desired amount of trace separation on the oscilloscope screen can be obtained.

The DC level of each signal amplifier output is modulated in accordance with the applicable input signal during the time that that particular amplifier is turned on for that "bit" of the signal output. Therefore, each time a signal amplifier is turned on the DC level of its output will have changed slightly as determined by the character of the input signal applied to the control grid. The DC level changes, or lack of them, will be displayed by the oscilloscope as a representation of the input signal, and is composed of 15,000 "bits" per second. This chopping of the signal into "bits" is the main limitation as to the highest frequencies that can be viewed using the electronic switch. As the frequency increases, the signal will be composed of fewer "bits" of DC level changes, and the display will not be an accurate representation of the signal applied to the input of the electronic switch. For example, a signal with a frequency of 500 Hz is composed of about 30 "bits" of information; at a frequency of 1000 Hz , this drops to about 15 "bits," and at a frequency of 5000 Hz , about 3 "bits." Since most hobbyist activities are at relatively low frequencies, the electronic switch should prove to be quite adequate.

Construction. In constructing the TwoTimer electronic switch, the positioning of the components is not critical. While the author chose to enclose all parts of the electronic switch within a box, an open chassis could be used at the discretion of the builder. The best procedure to follow is to determine the physical location of each part first. Then drill the applicable holes and mount the tube sockets, transformers, potentiometers, etc. Finally, wire the circuit. This procedure precludes damage to the electrical components when working the chassis.

Operation. When the electronic switch is assembled, it is ready to use. No adjustments are needed. But be careful since the output terminal J3 always has a potential of approximately 270 VDC when the unit is energized. Therefore, the output terminal must never be shorted to ground, and don't grab hold of it cither.

When using Two-Timer for the first time, and to perform a preliminary test of operation, set the SEPARATION control fully counterclockwise until the integral switch "clicks" and turns the unit off. Then connect the electronic switch outpul J3 and J4 to the input of the oscilloscope. Adjust the oscilloscope controls to obtain an AC coupled input, and a slow-speed trace.

Connect the line cord to the wall socket, and adjust the SEPARATION control clockwise to midrange. Allou the electronic

Two-Timer'll Get You Traces By the Two's

switch to warm up for about a minute, and then adjust the SEPARATION control to obtain two traces about one inch apart on the oscilloscope screen. It may be necessary to decrease the oscilloscope vertical sensitivity to keep both traces on the screen at the same time. Now connect an input signal to each of the electronic switch inputs (the

same signal can be connected to both inputs for testing purposes).

A good voltage source for the preliminary test is the filament voltage of the electronic switch tubes. Adjust the electronic switch GAIN A and GAIN B controls to obtain approximately the same signal amplitude on both traces. It may be necessary to adjust the oscilloscope sweep controls to obtain a stable display of the desired number of cycles of the signals. This verifies correct operation of Two-Timer. It is now ready for use.

Familiarity Breeds Usefulness. Once you have twisted the knobs of the oscilloscope and Two-Timer sufficiently to become familiar with the interaction of the combination, your imagination is the only liniting factor to usefulness of the dual-trace combination.

You can observe the phase relationship between a reference signal (the input to a hi-fi amplifier, for example) and'signals at any other point in the circuit, measure amplifier gain, compare frequencies of signals (using the $60-\mathrm{Hz}$ house current as a reference, your oscilloscope is a very accurate frequency meter), etc. Because of the amplification of the input signals-approximately seven times with the gain controls fully clockwise-you can observe signals with less amplitude than your oscilloscope could "see" before. With no signals applied to the inputs, Two-Timer provides a very good square wave output, with variable amplitude (controlled by adjusting the SEPARATION control). for amplifier testing. Two-timer will permit viewing of signal frequencies up to 5000 Hz , but works best if the signal frequency is 1000 Hz or less. Here's Two to you!

Tiny as a Thumbtack, Dazzling as a Dodo Bird
 A lamp said to be ideally

suited for photocell and indicator applications also happens to be a lamp quite unlike the kind most of us are used to. Reason is the new lamp is all solid-state, which means its filament is nowhere to be seen. One of the growing family of lightemitting diodes, the device was developed by General Electric and answers to the name of SSL-6.

carss TIAPEEESS TV RECOROER

Surprise of the decade, it's a play-only device using neither magnetic tape, motion picture film, nor even thermoplastics!

By Jorma Hyypia

The day may come when you will slip a can of Sophia Loren, Charlie Chaplin, or even Hamlet into your supermarket shopping cart. When you get home, you will dump the can into a "breadbox" near yout TV set, settle down with a TV dinner, and enjoy an orgy of re-runs that you can now savor only during the summer TV doldrums. Moreover, you will view re-runs of your own choice rather than be captive to selections made by broadcast programmers.

Columbia Broadcasting System's new Electronic Video Recording (EVR) system brings the era of canned video a step closer, though it is by no means certain whether EVR will be the system that eventually becomes standard for home use. At first, EVR will be used for educational purposes; the earliest full-scale application will be in England. Video cartridges and players won't be available world-wide until late 1969, perhaps 1970.

EVR is not a magnetic video tape system. And it can not be used for self-recording of broadcast or other material, only for play-

CBS's ELECTRONIC VIDEO RECORDING SYSTEM

EVR electron beam recorder takes program from TV camera, magnetic tape, or film and generates a master which can be in either color or black and white.

High-speed multiple printer produces multiple copies from EVR master. One twenty-minute film can be reproduced in approximately thirty seconds.
back of films already containing program material.

Operating the unit is deceptively simple. The user simply places the special film cartridge into a "breadbox"-size playback unit coupled to a TV set's antenna terminals. The cartridge automatically threads itself, plays the recorded material through the TV system, rewinds, and is ejected.

Initially, the films will contain educational material suitable for classroom and related purposes. But at least one Hollywood film studio is already exploring the possibility of making EVR films from old motion pictures. This could eventually lead to home as well as classroom playback of motion pictures.

EVR is unique in that the playback can be stopped at any time for prolonged viewing of
a single scene-a feat that isn't possible with present magnetic video systems. The educational advantages of this feature are obvious. A teacher can hold a single scene as long as necessary to add his own comments. A golfer can pass slowly from one frame to the next to study the swing of a pro's golf club in detail. And the viewer of ordinary story-telling motion pictures will surely find many a scene that, for one reason or other, he would like to linger over and observe at length.

Electro-optics System. Both the preparation of the film and its playback involve the use of optics and sophisticated electron physics. In the factory, an optics-electronic process is used to transfer program material from a motion picture film or video tape to

STANDARD HOME TELEVISION RECEIVERS
Electro-optical transducer-probably some sort of flying dot scanner--reads cartridge to produce video and sound, which are then reproduced on one or more TV sets.
a special unperforated film, 8.75 millimeters wide. This master film is used to run off copies for purchase of EVR customers. Such copies are packaged in cartridges 7 in . in diameter and $1 / 2$ in. thick-about the size of a standard reel of magnetic tape.

EVR film has two separate tracks. If both are used, a single cartridge can hold up to one hour of black-and-white programming. Both tracks must be used simultaneously to produce color pictures; one track contains luminance, the other chrominance information. Unlike ordinary color motion picture film, EVR color film appears wholly black-and-white to the eye; however, this ostensibly monochromatic information can be translated into full-color images by the playback unit.

Secret Process. CBS officials and technicians are sitting on their EVR breadbox, jealously guarding their hard-earned secrets from competing companies Still, it is a virtual cerlainty that any astute electro-optics expert can make pretty shrewd guesses about the workings of EVR. But even they aren't talking, for sound competitive reasons.

So far, CBS has mainly revealed what EVR is not, rather than what it is. EVR is not a magnetic tape system. For though the film has visible images preduced by some sort of photographic process, they are not created by such orthodox photographic methods as the use of light-sensitive silver compounds. Nor are the images produced by the action of laser light or infrared light on heat-sensitive plastic, though this would

TAPEEESSTV RECORDER

theoretically be a workable possibility CBS isn't passing out samples of film for analysis, but it is probable that the images on the film are not recognizable as specific objects. In other words, if the film were placed into a movie or slide projector, no recognizable images would be seen on the projection screen-only coded patterns (perhaps in the form of micro-dots) that might

Next, consider the extremely rapid reproduction of playback films from the master tape. CBS says that one 20 -minute program can be printed in approximately 30 seconds by a high-speed multiple printer working from an EVR master film. On playback, the EVR film noves at a speed of 5 inches per second, hence the 20 -minute film must be about 500 feet long.

But to be printed in 30 seconds, this film must zip through the processing system at a speed of over 16 feet per second. Moreover, the printing time is expected to be cut down to 13 seconds within a year or two! No

> Man behind new CBS tapeless TV system is also the man responsible for launching of first $331 / 3-\mathrm{rpm}$ microgroove disc way back in 1948. President and Director of Research for CBS Laboratories, he is Dr. Peter C. Goldmark, shown here examining a bit of the super-secret EVR film that makes the new video playback system possible. Either black-and-white or color program material can be packed into extremely narrow film.
represent a cat, a house, or Suphia Loren.
The electro-optical transducer in the playback unit is able to decode this audio and video information into an electronic signal to produce recognizable images on a TV screen. Amplitude-modulated light, produced from the film by a flying spot scanner, is amplified by a photomultiplier. This signal is converted to a video waveform that is used to modulate a TV carrier frequency.

Jiggling the Breadbox. If we shake the EVR breadbox-or rather, the limited information available about it-we can begin to hear some meaningful rattlings that just might give a hint about the nature of EVR film.

Attention is most profitably focused on the nature of EVR film and how it is made. First bear in mind that the images are probably coded data bits representing video and audio information. It is easier to cram this kind of information into small film space than to aceurately record the same data in the form of continuous tone photographs as in the case of urdinary motion picture film.
ordinary photographic process involving development and fixing can yet do that.

What seems to be used, then, is some system that quickly produces an image on the film by optic (not mechanical) means and then desensitizes the film to prevent further image formation.

Photochromic Process? It is conceivable that CBS may be using photochromic techniques which have been actively researched by many companies in recent years. A large number of colorless organic chemicals (such as spiropyrans) become intensely colured when exposed to light waves in or near the ultraviolet region of the spectrum. These chemical dyes can also be treated to make them insensitive to light.

Thus it would seem possible that the EVR printing process may make use of phutochromic dyes supported on the plastic film. The light patterns projected from the master film may create the coded images on the film by causing the dye to darken wherever the light strikes it. The unchanged dye remain-
(Continued on page 132)

10 Reasons why RCA Home Training is your best investment for a rewarding career in electronics!

Leader in electronics training

RCA stands for dependability, integrity and pioneering scientific advances. For over a half century, RCA Institutes, Inc., has been a leader in technical training.

2 RCA AUTOTEXT TEACHES ELECTRONICS FASTER, EASIER

Beginner or refresher - AUTOTEXT, RCA Institutes' own method of Home Training will help you learn electronics faster, easier, almost automatically.

3 thousands of well paid

JOBS ARE OPEN NOW
RCA Institutes can help you qualify for a rewarding career if you have an interest in electronics. Every year, thousands of well paid electronics jobs go unfilled just because not enough men take the opportunity to train themselves for these openings.

4 WIDE CHOICE OF CAREER PROQRAMS

Start today on the electronics career of your choice. On the attached card is a list of "Career Programs", each of which starts with the amazing AUTOTEXT method. Look the list over, pick

the one best for you and check it off on the card.

\sum specialized advanced TAAINING

For those working in electronics or with previous training, RCA Institutes offers advanced courses. Start on a higher level. No wasted time on material you already know.

6 personal supervision THROUGHOUT

All during your program of home study, your training is supervised by RCA Institutes experts who become personally involved in your efforts and help you over any "rough spots" that may develop.
7 VARIETY OF KITS, YOURS TO KEEP
At no extra cost, a variety of valuable specially engineered kits come with your program-yours to keep and use on the job.

FROM RCA INSTITUTES, inc. transistorized tv kit and valuable oscilloscope

 All students receive a valuable oscilloscope. Those enrolled in the TV program or courses receive the all-new Transistorized TV Receiver-both at no extra cost and only from RCA
UNIQUE TUITION PLAN

You progress at your own pace. You only pay for lessons as you order them. There's no long-term contract or large down-payment to lose. Even if you decide to interrupt your training. you don't lose a single cent.

rca graduates get top REEOGNITION

Thousands of graduates of RCA Institutes are now working for leaders in the electronics field: many others have their own proficable businesses . . . proof of the high quality of RCA Institutes training.
send atiached card today for FREE DESCRIPTIVE BOOK

> All courses and programs approved for veterans under new G.I. Bill.

CLASSROOM TRAINING ALSO AVAIL.
ABLE. FAEE CATALOG ON REQUEST. no salesman will call.
RCA INSTITUTES, Inc. Dept. px. 28
320 West 31st Street
New York, N.Y. 10001

accredited member national home study council.

The Most Trusted Name In Electronics

Construction of Oscilloscope.

Zonstruction of Multameter.

- With the approach of the Spring equinox, DXers can look forward to a steady improvement in Southern hemisphere signals on appropriate bands. During the early evenings, watch for Brazilians on 60 and 90 meters as well as Argentine and Chilean regionals on 49. After midnight, R. Altiplano at La Paz, Bolivia, will often be good on 5045 kHz where they seem to operate all night. Incidentally, if you should hear another station on 5044 (just 1 kHz below R. Altiplano), and can make out what they're saying. it will probably turn out to be rare R. Cook Islands. Unfortunately, the latter signs off around 0300 EST.

We have listed 41 and 49 meters as the best bands for DX reception from the South

By C. M. Stanbury II

February/March, 1968

Pacific during the early a.m. hours. But in this department, listeners on the West Coast have a decided advantage over the rest of us. Until the noise level begins to rise, they can expect regular reception from S. Pacific islands during the early a.m. period down on 60 and 90 meters. Generally, the lower the band an SWL can work from a given area, the more the DX counts. Pacific Coast DXers will also be in a good position for Asian reception.

And in conclusion, now is the time to watch for 60,49 and 41 meter stations in such places as Mozambique, Rhodesia and the now famous Botswana (BBC 4845 kHz , S/On 2300 EST).

RADIO-TV EXPERIMENTER PROPAGATION FORECAST					
Feb./Mar. 1968 LISTENER'S STANDARD TIME	ASIA (except Near East)	EUROPE, NEAR EAST \& AFRICA (N . of the Sahara)	AFRICA (S. of the Sahara)	SOUTH PACIFIC	LATIN AMERICA
0000-0300	25	$31(41,49)$	41,60 (49)	25, 31 (41)	49, 60, 90
0300-0600	$25(41,60)$	31	31 (poor)	41,49	49,60, 90
0600-0900	16,19	$19(25,16)$	19	31	31,49
0900-1200	16,19	16, 19 (13)	19	25 (poor)	31
1200-1500	19 (poor)	16, 19 (13)	16, 19 (25)	25 (poor)	25 (19)
1500-1800	19, 31	25,31 (49)	25, 31, 60	19,16	31
1800-2100	19,25	25,31	31	16,19	49,60,90
2100-2400	19,25	25,31	41,60 (49)	19, 25	49, 60, 30

To use the table put your finger on the region you want to hear and log, move your finger down until it is alongside the local standard time at which you will be listening and lift your finger. Underneath your pointing digit will be the shortwave bond or bands that will give the best DX results. The time in the above propagation prediction table is given in standard time at the listener's location which effectively compensates for differences in propagation characteristics between the East and West coasts of North America. However. Asia and the South Pacific stations will generally be received stronger in the West while Europe and Africa will be easier to tune on the East coast. The shortwave bands in brackets are given as second choices. Refer to White's Radio Log for World-Wide Shortwave Broadcast Stations list.

By Michael Wilson

Lucky
 for Bored DXers

- If you're looking for new DX territory to conquer on that SW receiver, here is an introduction to what's probably the hottest utility DX band under the present sunspot conditions: the 13 MHz marine band.

Here one can find dozens of countries waiting to be logged, and the renowned ability of CW to bite through the noise where phone fails is indeed evident.

Recently, the author connected his old S-38B SW receiver to a pair of TV rabbit ears and went for a quickie tour of the band. which stretches from about 12.5 to 13.2 MHz . The result? Thirty countries in one evening! Now add a good dipole and a preselector for the band and imagine how the countries scored will mount up!

The only trick necessary is to be able to copy code. And since most of the signals here are taped marker signals, giving the stations' call letters repeatedly to ships at sea, code should not pose as much of a problem as might he imagined. Here is a sample of the marker signal used by many of the stations: CQ CQ CQ DE JOU JOU JOU QSX 8 MC K.

This roughly translates as "Calling all stations, from (DE) JOU (the coast station at

Nagasaki, Japan). We are listening for calls (QSX) on the 8 MHz hand. Out." Some stations will use a series of Vs, or dots, or just the letters "DE". derived from the French word for "from."

Markers By The Hour. The marker signals are sent repeatedly, often for hours on end, with breaks for traffic (messages) from ships calling the station. Most coastal stations sport three-letter callsigns (ships usually have four), and sometimes a number follows the call letters.

QSI.s from these stations are a little harder to collect than those of shortwave broadcasters. First, you must not repeat any message broadcast in actual traffic with another station (e.g. ship-to-shore). Marker signals can be repeated, for they contain no information other than the advertisement of facilaties as they compete for traffic from ships.

Second, you must usually prepare a QSL card yourself which the station operator can quickly fill out and return.

Tnird, always include return postage. If you don't know the exact location of the station, other than its country of registry, address it C/O Ministry of Posts, Tele-

Everyone is fomilar with that speediest of passenger liners, the U.S.S. United States, yet many is the SWL who has never logged her or her sister ships. Most readily picked up by DXers along the Eastern Seaboard, the United States can be heard most anywhere. Shown here is her radioroom.

Lucky 4 (1)

Coastal Station WMH in Baltimore is one of a series of stations operated by the Radiomarine Corp. (see table below). WMH transmits on 12885 kHz and can be readily logged, given a litfle persistence and patience.

phones and Telegraphs in the country concerned. If this fails, try writing in care of that country's Navy.

Pep-Up Chart. With these pointers in mind, check the chart for a list of some of the stations in the 13 MHz band. Some frequencies are approximate and are marked by an X.

This can be your start in the fascinating world of marine station DXing. After you gain familiarity with the $12-13 \mathrm{MHz}$ band,
there are other bands to try, too, with more of the same and perhaps some other new countries. If your receiver has an RF stage, give the 17 MHz band a try, or even the 22 MHz band. Otherwise, tune down between 8.5 and 9 MHz , or even lower to $6.2-6.5$ MHz .

The thing to remember is that if you ever get bored with standard SWBC DXing, there is fantastic and almost endless variety on these marine utility bands.

COASTAL STATION FREQUENCY CHART					
Frequency (KHz_{2})	Call	Operator \& Location	Frequency (KH_{2})	Call	Operator \& Location
13123.5	WLO	Mobileradio Mobile, Ala.	$13015 \times$	WAX	Tropical Radio Tel. Hialeah, Fla.
13114.5	KFS	Mackay Radio Palo Alto, Calif.	13002.5	KPH	Radiomarine Corp. Bolinas, Calif.
$13110 x$	GYR	Royal Navy Lascaris, Malta	12993	KOK	Mackay Radio Artesia Calif
$13110 x$	NST	U.S. Navy Londonderry, N Ireland	12980 x	CFH	Dept. of Transport Gander, Nfld.
13101	DHS	Government		WIS5	Radiomarine Corp. Lantana, Fla.
13095 x	HKA	Rugen, E. Germany Government Barranquilla, Colombia	12952.5	VIS5	Overseas Telecomm. Commission Sydney, Australia
13092	J0U	Government Nagasaki, Japan	12948	WSC	Radiomarine Corp. Tuckerton, N.J.
13075 x	CLA	Government Havana, Cuba	12943.5	ZLP5	N.Z. Navy Wellington, N.Z.
13069.5	TFA	Gufunes Communications Centre Reykjavik, Iceland	12930 x 12925 x	VHP CKN	Australian Navy Canberra, Australia Canadian Navy
13038	KLC	Mackay Radio Galveston, Texas	12898.5	DAN	Aldergrove, B.C. Funkamt Hamburg
13033.5	WCC	Radiomarine Corp. Chatham, N.J.			Norddeich, W. Germany
13024.5	WSL.	Mackay Radio Amagansett, N.Y.	12894	6WW (ex-FUW)	Navy Dakar, Senegal
13015 x	IAR	Government	*-Ships ca	g coastal sta	s x-Frequency approximate

(Continued on page 129)

- Dynamic Duo is a perfect name for our dual-trace transistor characteristic curve tracer. With this simple tester you can adjust and observe two $I_{c} / V_{c e}$ curves of the same transistor on a scope simultaneously. And from this dual trace you can deternine AC current gain $\left(H_{f_{c}}\right)$. ideal base current for linear operation, and leakage current ($I_{\text {ren }}$). You can even match transistors for amplifier applications. Sound complicated? Not at all.

The techniques employed to obtain the two curves are not difficult to understand, as we'll see shortly. What's more, switching from pnp to npn transistor types is accomplished simply by interchanging two program plugs.

Circuit Description. The simplified circuit diagram in Fig. 1 shows the unit in the $p m p$ test position. With the power switch on. a negative voltage at the cathode of diodes DI. D5, D6, and D8 will produce a negative voltage at the collector and base of the transistor under test. The enitter-to-collector voltage follows a sine-wave variation fone half-cycle of 60 Hz); at the same time, the hase voltage is limited early in the cycle to a fixed value determined by the forward voltage drop of diodes D5, D6, and D8.

I he collector current is limited by R4, and the base current is adjustable with potentiometer R8 and limited by R6. Assuming both S2 and S3 are closed, diodes D9 and D10 isolate the base of the transistor from the positive voltage at the cathode of D3. Under these conditions the curve tracer will produce one $\mathrm{I}_{\mathrm{e}} / \mathrm{V}_{\mathrm{ce}}$ trace on an attached scope.

The second trace, as shown in the photos, is produced in the same way but during the remaining half-cycle of the $60-\mathrm{Hz}$ current. The base current during the second $I_{c} / V_{\text {co }}$ curve is adjustable by potentiometer R7. Pushbutton switches are provided so that the base currents can be set and read individually. Since each base current is monitored on meter MI for a half-cycle, the actual meter reading is douhled for a correct basecurrent reading.

Construction. The transistor tester is housed in a two-piece aluminum case measuring $31 / 2 \times 6 \times 8 \mathrm{in}$. The front of the tester can be arranged to suit the builder, but the author's layout worked well and can easily be followed from the photos. The 33-terminal female socket (J7) provides most of the tie points required for component mounting (see Fig. 3).

Base-bias potentiometer K 7 is connected

Cymaniellio

in series with switch S3, and S3 is located directly over R7. Similarly, base-bias potentiometer R8 is connected in series with switch S2, and S2 is located directly over R8. Both R7 and R8 are wired so that a-clockwise rotation lowers the resistance. The two program plugs (PL1 and PL2) are wired using spaghetti-covered \#20 or 22 buss wire as shown in Fig. 2.

Scope Calibration. To set up your scope for use with our Dynamic Duo, the vertical gain should be calibrated by applying a 1 -volt peak-to-peak AC signal to the scope's vertical input, then adjusting the vertical gain for a 1 -in.-high pattern. The vertical gain is now set so a transistor base current of 10 milliamperes will result in a 1 -inch deflection. If the same procedure is followed, but the AC input reduced to 0.1 -volt peak-topeak and the vertical gain readjusted for a 1 -in.-high pattern, the scope is now calibrated so one milliampere of transistor base current causes a 1 -inch deflection.

The horizontal gain is adjusted by applying a 3 -volt peak-to-peak AC signal to the scope's horizontal input and adjusting the horizontal amplifier gain for a 1 -in.-long trace. The scope is now set for a sensitivity of 3 volts per inch.

Using Dynamic Duo. Connect the tester to a scope calibrated as described, turn the base-bias potentiometers counterclockwise,

and insert the appropriate program plug to match the types of transistors to be checked.

With three clip leads or a test socket, connect the transistor to the tester, press both pushbutton switches (S2 and S3) simultaneously, and observe the scope's trace. The horizontal component represents the AC voltage between the collector and emitter of the transistor, and the vertical component represents the transistor's leakage current ($I_{\text {coon }}$).
To adjust the tester for a dual trace, press the pushbutton switch located above the bias potentiometer labeled IB2 (R7 on schematic in Fig. 3). With this switch pressed, adjust the base-bias potentiometer labeled IBI (R8) for the desired base current (multiply M1's reading by 2 for actual current value) or until the desired trace is obtained. This sets up one. $I_{c} / V_{c e}$ curve.

Next, press the pushbutton switch located above the bias potentiometer labeled IBI. With this switch pressed, adjust the base-bias potentiometer labeled IB2 for the desired base current (multiply Ml's reading by 2 for actual current value) or until the desired trace is obtained. This sets up the second $\mathrm{I}_{\mathrm{c}} / \mathrm{V}_{\mathrm{c}}$. trace. With both pushbutton switches simultaneously. A typical pnp dual characteristic curve is shown in the photo. The beta, or AC, gain and linear
(Continued on page 132)

Fig. 3. Schematic diagram of Dynamic Duo transistor characteristic curve tracer.

DYNAMIC-DUO PARTS LIST

11, 12-\#47 lamp and socket assembly (Radio Shack 272-1535 or equiv.)
J1, 」2, J3, 」4, J5, J6-5-way binding posts (Radio Shack 274-736 or equiv.)
J7-Jones 33-contact socket for chassis mount MI-100-microampere, $21 / 2$-in. sq. meter -contaet plug R3—22-ohm, $1 / 2$-watf resisfor

R5, f6-5600-ohm, $1 / 2$-watl resistor
R7, R8-100,000-ohm, linear-faper polentiometer
S1-S.p.s.l. toggle swilch
S2, S3—Pushbutton switch, normally closed contacts (Lafayette 34C3402 or equiv.)
T1-Transformer: 117-VAC pri.; 12-VAC, 1.2-A cenfer-fapped sec, (Radio Shack 273-1505 or ecuiv.l
1-3 $1 / 2 \times 6 \times 8$-in. aluminum chassis box Misc —Line cord, wire, solder, screws, efe.

Internal layout of parts in Dynamic Duo isn't critical and can be modified to suit. Terminals on socket J7 provide majority of required tiepoints.

Mood Nonitoring Electronicicaly

By K. C. Kirkbride

- Electronics will soon be able to tell whether you are a happy and gay soul or a mean old grouch. Because, as a result of a revolutionary three-year research program, a group of Honeywell Corp. space scientists have related brain waves to states of mind. In their' experiments, they have monitored volunteer subjects who were asleep, awake, alert or drowsy. Extension of this research promises to allow almost any mood to be monitored.

It all started when Honeywell scientists at the Military Products Division in Minneapolis faced the fact that as our space projects became more complicated, the success of a mission could hinge on the frame of mind of our astronauts. And unfortunately, to date, we've had only inadequate means of determining human awareness. Neither verbal nor visual reports are dependable.

As any knowledgeable employer will tell you, a man can be asleep with his eyes wide open and alert with his eyes closed. So Honeywell men decided that if we don't find accurate checks on alertness of future astronauts as they venture out in space, we may find ourselves minus some astronauts as well as some pretty nifty Tiffany-priced outerspace hardware.

It's All In The Mind. As we all know, the human brain consists of billions of cells wherein each action or reaction sets up bursts of waves in response to definite stimuli. Honeywell men, looking for a working premise, projected a series of electrical stimuli into the brain and watched the reaction. Could monitoring these induced brain-wave changes measure fluctuations of alertness? That was the multi-million dollar question.

To find out, they chose twenty-three subjects and placed them in a closet-type steel chatmber, four feet wide, eight long and eight high; the chamber being used to screen out electrical interferences, movements, sounds, or smells that might distract or set up conflicting brain waves in the subjects. Silverdisc electrodes were then attached to the scalps of each volunteer.

A pattern of clicks were beamed at the subjects through a speaker mounted in each chamber. Reactions were then recorded over 48 -hour periods as the subjects slept, ate, were alert or drowsy. During this time, their reactions were monitored by both electrodes and a closed-circuit television camera.

Clicking Brain Potential. Brain potentials picked up by the electrodes were ampli-
(Continued on page 130)

What can our CB Rock Rater do for you? Plenty! For one thing, it'll measure the relative activity of your CB crystals. What does this mean to you? It means that you can quickly determine if a crystal isn't up to par. And this is important because with a low activity crystal in your rig's transmitter, it just can't put out for you like it should, and the net result is decreased operating range!

This nifty little package can also check your crystals for other defects, such as jumping frequency, which, in extreme cases can put you far enough off frequency to throw you right out of the CB band!

Now about your receiver alignment. Are all the channels receiving dead on frequency where they should be? If not, our Rock Rater and a few CB transmit crystals lets you align the receiver yourself-and save the service fee.

Our multi-purpose CB test instrument is compact, measuring only $4 \times 21 / 8 \times 15 / 8 \mathrm{in}$., and it won't clutter your operating area. Being inexpensive to build, it won't put a crimp in a tight budget either. And last but no means least, simple circuitry makes it a snap to build, even for the beginner.

How Rock Rater Works. The heart of the operation of this device is a crystal controlled Colpitts oscillator. This oscillator, formed by transistor Q1 and its associated components, generates an RF signal output when an external CB crystal is inserted into the crystal socket. The frequency of the output signal is determined by the crystal frequency.

The amount of RF generated is, to a large extent. determined by the activity of the crystal under test. A weak crystal, one whose
activity is low, will net permit the oscillator to generate as much output as another higher activity crystal.

The output from the oscillator is applied to the center arm of selector switch S2 (see schematic). When the switch is placed in the lower position, the RF is rectified by the action of diode D1. It is then filtered by capacitors C4, C5 and calibration potentiometer R3. The resulting DC, which is proportional to the original RF , is then read on meter M1.

When the switch is in the upper position, the RF oscillator output is applied to the antenna jack through capacitor C6. This is the position used when the Rock Rater is used as a channel spotter or an alignment generator.

Mechanically Speaking. Although the exact layout of the Rock Rater is not critical, best results will be obtained, especially for the beginner, if the layout presented is followed. The more advanced builder should feel free to modify details to suit his needs. In any case, good high-frequency construction practices should be followed.

Start work on the case by drilling the proper size holes as shown in the drawings. The use of a T-square will aid in obtaining acsurate placement of the various holes.

The cut-out for meter M1 can easily be made with the use of a chassis punch of the proper size. If one is not available, a hand nibbler will do the jcb.

The mounting clif for the battery is made from the center spring clip from a size "AA" cell holder. This clip is easily removed from the battery holder by drilling out the retaining eyelets with a $.125-\mathrm{in}$. drill.

CB Rock Rater $\times 3$

Finishing The Case. A strikingly professional appearance can be achieved, even by the beginner, by simply spray painting and lettering the case. The little additional time and effort involved will prove to be well worth the results. To prepare the case for painting, first remove all traces of dirt and oil from it. Any remaining dirt or oil will prevent the paint from adhering properly. The easiest way to clean it is to wash the case well with soap and water. After the case has dried, be sure to protect it from your own fingerprints.

When painting the case, remember to use very thin, light coats. The key to a good finish is to use a light touch. Allow each coat of paint to dry thoroughly before applying the next. For a really first-rate job, apply a primer coat to the bare metal first.

After the paint has dried hard, preferably overnight, it's time to apply the lettering. Whichever you use, whether dri-transfers or decals, be sure to follow the manufacturer's

To insure easy construction, lay out chassis box holes as dimensioned above. Then remove burrs and apply several coats of spray paint for a professional appearance.
directions exactly. A final coat or two of a clear plastic acrylic spray may then be applied to protect the lettering.

Electrical Construction. Most of the electrical components are mounted on a $13 / 4 \mathrm{X}$ $13 / 4-\mathrm{in}$. piece of perforated board. This board is mounted on the meter terminals as shown.

Begin the electrical construction by wiring

Schematic diagram of Rock Rater shows Colpitts oscillator whose output is fed to either meter MI for rock-rating or to antenna jack Jl for channel spotting.

ROCK RATER PARTS LIST

B1—9-valt transistor baltery (Burgess 2U6)
C1-0.05-uF, 12-VDC capacitor
C2-22-pF, 1000-VDC capacitor
C3, C6-68-pF, 1000-VDC capacitor
C4, C5-.01-uF, 200-VDC capacitor
D1-1N270 diode
J1-RCA phono jack, single whole mounting (Lafoyette 99C6234 or equiv.)
L1-\#28 enameled wire, 7 -furns close-wound on $1 / 4$-in. ferrite-funed coil form
L2-\#28 enomeled wire, 3 -turns close-wound over ground end of $L 1$
M1-l-mA miniature panel meter (LafayeHte
$99 C 5052$ or equiv.)
Q1-2N3827 silicon transistor
R1—22,000-ohm, $1 / 2$-watl resistor
R2— $330-0 h m, 1 / 2$-watt resistor
R3-1000-ohm, miniature potentiomeler (Lafoyette 99C6142 or equiv.)
S1, \$2—Miniature d.p.d.t. switch Kafayette 99C6126 or equiv.l
1-Crystal socket (Lafayette 42C0901 or equiv.) $1-4 \times 21 / 6 \times 15 / 6-i n$. aluminum chassis box
Misc.-Wire, solder, nuts, screws, plastic tubing, perforated board, flea clips, lettering, spray paint, efc.
the board according to the schematic diagram. The general parts layout can be easily determined from the photos. Although transistor Q1 is a silicon transistor and is not easily damaged by heat, care should still be taken while soldering it into the circuit. This same care should be applied to diode D1, which is also easily damaged by excessive heat and mechanical actions that might

Majority of Rock Rater components are mounted on perf-board and wired following the schematic. Completed board assembly is then wired to chassis-mounted components and installed in chassis.
break its glass case.
Note that for proper operation, coil L2 should be wound over the "cold" end of coil L1. In this case we mean the end connected to the junction of capacitor C3 and coil L1.

Particular care should be taken when wiring to observe polarity of components as indicated on the schematic. This is especially true for transistor Q1 and battery B1.

After the circuitry on the perforated board bas been wired, carefully check it over for errors against the schematic.

CRYSTAL SOCKET
Completed perf-board assembly is mounted in chassis by attaching it to the meter terminal screws. After wiring has been checked for errors and the baftery installed, Rock Rater is ready for a trial run and calibration.

Completed Rock Rater has a professional appearance that lets it keep company with the snazziest of CB rigs. Here, it's befriending an all-channel Lafayette HB-525 $C B$ rig. Don't they make a lovely couple?

Temporarily set the perforated board aside and install meter M1. switches SI, S2, the battery clip, and the crystal socket. Wire as you go along. Then mount the perforated board on the back of the meter terminals. Finish up the last of the interconnecting wiring between the board and the remainder of the components.

Testing and Calibration. Place selector switch S2 in the meter position. Adjust calibration potentiometer R3 to its minimum resistance position. Place a known good channel 9 transmit crystal, or other known good transmit crystal whose frequency is near the center of the band, in the crystal socket.

Turn Rock Rater on and tune coil L1 for a peak reading on the meter. Readjust the calibration potentiometer R3 as necessary to keep the meter from reading off scale as coil 1.1 is being peaked.

Once the coil has been peaked, adjust the calibration potentiometer for a $3 / 4$-scale reading (0.75 mA) on the meter. If you are not able to peak the coil, or to obtain an upscale meter reading, carefully recheck your work for possible errors. If the meter reads down-scale, reverse the meter's terminal connections.

When Rock Rater has been adjusted to read about $3 / 4$-scale with a known good crystal, this becomes your "average" good reading. Any crystal that fails to produce at least a $1 / 2$-scale $(0.5 \mathrm{~mA})$ reading is suspect. Likewise, a crystal that exhibits an erratic or unstable meter reading should be considered defective.

WWWMWMN

> What to do when the junk box is packed with high-wattage resistors. Build the . . .

LOAD BOX

By J. R. Squuires

- Rare is the man who can lay claim to enough power resistors for his workbench or shop. For given sufficient power-handling capacity, such resistors come in handy for any number of uses-from dummy loads to power-supply bleeders to plain old voltage dividers.

Typically, the experimenter dips into the junk box for power resistors, and jumpers them together as needed. But all too often, the values aren't ideal and the resistors, running hot, end up charring the bench, test
leads, or a screwdriver handle or table top.
The Load Box presented here is the author's answer to power resistor problems. And though expensive to build if all new parts are used, variations on this design to suit individual requirements can be built using surplus or junk-box parts. The actual number of resistors and jacks used should be determined by individual requirements, since the unit presented here is what the author determined he wanted to fill his needs.

The prototype provides resistances from a

This is the schematic of the author's version of the load box; the string of power resistors, potentiometers, and series switches providing the ultimate in flexibility. At right, is the hookup employed in the knife-switch and monitoring meter circuits.

fraction of an ohm to more than 3700 ohms, with a power rating throughout in excess of 25 watts. Other features include built-in current-monitoring meter, fuses, and sufficient banana plug tie-points in the string of power resistors to provide a variety of series, series/parallel, and parallel connections.

As the schematic indicates, the number of interconnection possibilities is almost endless. What's more, the addition of four potentiometers in the series string makes the unit an
extremely versatile tool wherever power handling is needed.

Load Box Put-Together. The prototype has a three-pole double-throw knife switch mounted on the front panel. It was chosen because of its simplicity, current carrying capacity, reliability, and low contact resistance. Of course, a double-pole switch could be substituted if deemed adequate or the switch and associated circuit could be deleted altogether.

Nine binding posts are positioned on the

PARTS LIST

Fl-1 -amp fuse and holder
F2, F3-10-omp fuse end holder
d1.d22—Binding post (Radio Shack 274-736 or equiv.)
J23-J51—Banana jack
Ml-1-A meter
R1-1-ohm, 25-wat potentiomeler
R2, R3-1-ohm, 25-waH resistor
R4, R7, R10-25-ohm, 25-walt potentiometer
R5, R6-5-ohm, 25-watt resistor
R8, R9-25-ohm, 25-watt resistor
R11, R12-50-ohm, 25-wati resistor
R13, R14, R15, R16, R17-1000-ohm, 25-waH resistor
51-2 $1 / 4$-in. sq., 1 deck, 15° shorling between position, 24-pole, 10 -amp rotary switch (Daven 121-DM-24A or equiv.l
S2, S3, 54, 55-5.p.s.t. 10-amp toggle switch (Radio Shack 275-1533 or equiv.)
56-Triple-pole, douशt throw, 10 -amp knife switch
$1-8 \times 8 \times 10$-in. steel or aluminum cabinet
Mise.-Wire, solder, knobs, hardware, ete.
front panel in direct relation to the screw terminals on the knife switch. These binding posts are wired directly to their respective knife-switch screw terminals with the exception of two, as shown in the schematic. These two binding posts have a fuse holder in series with their knife-switch terminals. This arrangement makes it possible to fuse the line being switched.

The main frame chassis is grounded at the top mounting screw holding the knife switch. All other taps and terminals are isolated from ground. The three vertical terminals at the far left of the front panel are both ends of the 21-tap series of resistors and the center tap. The four toggle switches, $\mathbf{S} 2$ through $\mathbf{S 5}$, are also connected to the banana jacks on the rear panel as shown. This convenience enables the addition of any four external resistors which can be inserted into the circuit to modify total resistance. These plug-in resistors have the added feature that they can be quickly shorted out by their associated switch when no longer needed in the circuit.

The tap switch SI was mounted away from the front panel with four polystyrene rods in the author's model. The photographs illustrate the positioning and wiring of the components, though this will vary depending on the type of switch used. The rear panel is laid out as shown or can be modified or deleted as required. Bear in mind that the power resistors can be expected to get hot so don't dress wiring along, or in contact with, the resistor bodies.

Handy Meter. A 0 to 1000 milliamp

Internal layout requires planning and careful construction to obtain good results.

Neither of the two voltmeter ranges described here are spectacular but they will serve in many applications. In addition, the 0 to 1000 meter can be shunted between the marked termipals J16 and J18 on the front panel to increase its range to 0 to 10 Amps . The shunt is made from a piece of \#21 enameled copper wire $7 / 18$-in. long strung between two single banana plugs. With the shunt plugged in, the ammeter scale reads 0 to $10 \mathrm{Amps} \pm 2$ Amps.

Again, many variations in construction are possible. For example, if the builder doesn't require a built-in meter, provisions for an external VOM could be installed or the entire circuit eliminated. meter is used in the Load Box to conveniently monitor current. Since the meter has an internal resistance of 0.1 ohm , using a 100 -ohm multiplier resistor (the resistance between taps 14 and 16), a 100 -ohm-per-volt meter with 100 -volt full-scale reading can be constructed. Using a 1000 -ohm multiplier (the resistance between taps 18 and 19) provides a 1000 -ohm-per-volt meter having 1000 -volt full-scale indication.

All controls and major resistor string connections are accessible on front panel of author's version. Rear panel holds jacks J21 through J51.

By W. Krag Brotby, Technical Editor

SWLs
Low in cost, budget shortwave sets are also low in the one thing SWLs need most-gain. This six-buck soupup solves that problem.

- There's no doubt that the inexpensive four- and five-tube superhet all-band receivers have made SWLing one of the country's most popular hobbies. Still, the inherent limits of one IF stage and no RF amplification can also prove one great big frustration. To solve this dilemma, some SWLs have gone the 0 -multiplier route, while others have added a crystal or mechanical filter. Still others have put together a preselector or two, and the very well-heeled have turned to rigs in the $\$ 500$ category.

Addition of a O-multiplier or a filter will improve selectivity but only at the expense of sorely needed gain. A preselector will provide more sensitivity and reduce image response but it won't improve selectivity much. A $\$ 500$ rig would take care of matters, but it would also claim more clams than most SWLs have around.

But there is a way out. And if you feel six bucks is a worthwhile investment in bringing home some rare ones (QSLs, that is), here's an answer just looking for your problem.

What we need is both more sensitivity and better selectivity-in other words, more plain old zonk. Unfortunately, zonk is just the thing the single IF stage found in most budget receivers simply can't provide. One tube can't provide enough gain, and there aren't enough tuned circuits (IF transformers) to deliver decent selectivity.

Given the problems of a typical, inexpensive SWL rig, the answer comes in a little module sold by Lafayette Radio. It's an aluminum box measuring only $1 / 2 \times 1 / 2 \times 1$ in. but cram-packed with exciting stuff. It consists of two complete transistor IF stages, plus a crystal filter. Add the filter (not to mention two additional stages of IF

S9er for SWLs

Lafayefte supplies its CFIF module complete with input transformer (above, left); unit requires only a 6-VDC power source and it's rarin' to go.
Cover-off view at leff reveals relative complexity of module's internal circuitry.
gain and three additional tuned circuits) to your receiver's IF strip, and you'll get lots of DX-making zonk. On the author's hookup to an EICO "Space Ranger," the little goody added 55 dB gain and knocked bandwidth down to about 3.5 kHz -an appreciable improvement.

The module can be used with any radio with a $455-\mathrm{kHz} \mathrm{IF}$, whether for SWL or BCB DXing. Its small size makes it simple to install and the power requirements of 6 VDC at about 2 mA are easily fulfilled.

Construction. The first step is to determine where to mount the IF module. It should preferably be as close as possible to the receiver's last IF transformer in order to keep leads short. The module can be mounted in any position and either on top or bottom of the chassis.

The author placed the unit on the bottom edge of the chassis skirt. as shown in the photos, for easy access to the module's connecting pins. The module can be rearlily
attached with epoxy or other cement. The separate input transformer can be attached to the module or mounted separately. For ease of assembly, the author attached the input transformer to the module by carefully bending the connecting pins of both the transformer and the module so they could be soldered directly togethér. But bear in mind that the input transformer has a slug that can be reached only from the top and that must be accessible for final alignment. (In the author's case, this was accomplished through a hole drilled in the chassis.)

If the module cannot be conveniently located near the receiver's final IF transformer, use shielded cable to connect the input transformer. Otherwise, the receiver may actually go into oscillation.

Wiring The Module. The input transformer is wired to the receiver's last IF transformer. If you have a schematic of your rig it's easy to find. In any case, it's the transformer closest to the audio section. This

[^0]

transformer feeds the detector, which. in budget receivers is usually a 6 - or 12 AV 6 .

As shown in the hookup schematic, the circuit is broken at the output of the final IF transformer. One side of the module's input transformer is then wired to the secondary of the receiver's IF transformer; the other side is grounded.

The output of the module bypasses the receiver's detector and is wired directly to the audio section, since the module already contains a detector. The most convenient place is to tap into the hot side of the receiver's volume control.

The partial schematic of a typical budget receiver shows where to connect the module, this hookup being virtually identical in all receivers. You can also locate the point by touching your finger to each of the three volume control taps in turn: the outside tap with the loud hum is the one you want.

If the distance between the module and the volume control isn't too great, just hook the module output (pin 7) to the hot side of the volume control. If it's a long run, better use shielded cable to prevent hum pickup. Add the .05 bypass capacitor to the input transformer as shown, then connect pins 8 and 9 of the module to ground.

Power Supply. The module requires 6 VDC at about 2 mA for best operation. If
your receiver has a 5 -volt heater supply (check on your schematic or with a voltmeter), construct the supply shown in power supply schematic A on a 4-lug terminal strip and mount where there's room. The negative side is grounded and the positive side is hooked to pins 6 and 10 of the module.

If your receiver uses 12 -volt tubes, construct the alternate supply (B) using an input voltage divider consisting of two 220 -ohm resistors in series, the 6 volts being taken from between them, as shown.
The AC/DC series-filament type radio requires a little more care and a scbematic. The series-filament string usually has a 12AV6 at the "cold" end of the string-confirm this by checking the schematic (The cold end means one side of the filament is grounded and the other goes to the next filament in the series string.)

If this is so on your rig, simply attach the voltage divider consisting of two 220 -ohm resistors across the 12A.V6 filament connections and take 6 volts from between them, as shown in the third power supply schematic (C). If your set uses some other 12 -volt tube in this position, connections remain the same. Of course, if a tube with another filament rating is used here, another ratio for the divider resistors will have to be used.

Operation. Recheck all wiring and make

S9 for SOLs

A
6.3VAC FILAMENT SUPPLY

B

12.6 VAC FILAMENT SUPPLY

C SERIES FILAMENT SUPPLY
Required 6-VDC to power module can be provided by 6-V battery or one of three supplies shown above (see Parts List on preceding page for component values.)
sure the polarity of the power supply diode and filter capacitor are correct. If everything checks out, you are ready for a trial run.

Turning on the receiver, probably the first thing you'll notice is a hissing sound-that's from the convertor. You get so much gain that internal noise of the mixer tube will come through if no signal is present.

Tuning in a few stations will quickly show the tremendous increase in gain and the added selectivity. If you find that strong stations have a tendency to overload the IF strip and cause blocking or distortion, add the optonal RF gain control shown in the pictorial. Again, either keep the leads quite short or use shielded cable for interconnecion. Mount the control in any convenient location, preferably on the front panel where it's easy to reach.

Final Alignment. While odds are that the receiver will work pretty well right off, it should be aligned to get maximum benefit from the modification. Alignment can be accomplished with or without a signal genaerator.

With a generator, set the frequency to about 455 kHz and keep the RF output level quite low. Hook the generator's output to the module input transformer and hook a VOM (AC scale) to the speaker leads of the receiver. Tune the signal generator around 455 kHz until maximum signal gets through the module. This is the crystal filter's ferequency, which isn't adjustable. Being careful not to detune the generator, transfer its output lead to the input of the receiver's first IF transformer. Reducing the signal generator's output level as needed, peak up all the IF transformers including the top slug of the module input transformer for maximum reading on the VOM.
If a generator isn't available, simply tune in a weak station whose signal is steady and free from fading. Using the VU meter (if your receiver has one) or a VOM (AC scale) hooked to the speaker leads of the receiver, peak all the IF transformers for maximum meter indication. Repeat the peaking procedure several times to make sure you're getting everything you can.

With the modification finished, a little furthe use of the receiver will soon convince you that the addition of this little crystal-filter-plus-IF module will give you more DXmaking zonk per buck than anything else going.

Another view of author's receiver, showing placement of module and power supply. Since no two receivers are alike, location of module will depend on chassis layout.

PICON, PICON, WHEREFORE ART THOU, PICON?

How long has it been since you helped a litte old lady across a busy street?

The Boy Scouts used to be noted for this kind of sincere, unselfish helpfulness (remember when one of Scouting's watcbwords was "Do a good turn every day?"). This used to be a key function of ham radio, too, but a lot of hams have forgotten it. Some may never have learned it in the first place.

Iust the other day I had lunch with a young fellow who works in an engineering lab of a leading electronics company. He's been an active ham for several years, but he never heard of this public-service function of ham radio! And he may be moze typical than some of us realize.

For example, ask a dozen hams for the meaning of "PICON" and most of them probably won't even recognize that you're talking about ham radio. PICON, which used
to be on the lips of thousands of active hams across the nation, stands for Public Interest, Convenience Or Necessity. Those are the key words that describe the intended operation of the Amateur Radio Service. (I emphasize the word service. hecause that's the correct name and it's also what we're supposed to provide, when needed.)

When we stop operating in the public interest, convenience, or necessity, we may stop being hams-hy government decree. This doesn't mean every one of us must devote all our operating time every day to handling traffic, rescuing drowning victims. or dispatching fire trucks. It does mean. however, that enough of us must provide public-service communications, when there is a genuine need for such activity, to help justify use of our frequencies by all hams.

Puklic-service communications probably

A police car with a Ham rig in it? Sure is! Officer John Annis, WA6PCY, of the California Highway Patrol, monitors 7255 kHz while performing his regular duties; this is the frequency used by the West Coast Amateur Radio Service nef.
will not do this all by itself. But it will help demonstrate to others that we hams have a sense of responsibility and are worth having around.

Service With A Smile. Fortunately, there still are some hams who take our responsibilities seriously. For example, a gang on the west coast, appropriately called the West Coast Amateur Radio Service, is doing its bit to perform some genuine public service. A friendly note from Ed Gribi, WB6IZF, offers the following rundown on this group's activities.

Members operate a net on 7255 kHz from 0800 to 1730 Pacific local time daily to provide "service to the public and other amateurs by assisting in emergencies, handling traffic, and facilitating contacts," Ed explained in his letter.

The net has been operating for four years now. In its ranks are some 370 regular members scattered from the state of Washington down into Mexico, and from Utah to maritime mobiles in the Pacific. There's a formal net session and roll call at noon daily to train members how to operate with efficiency, effectiveness, and discipline in the event of an emergency or disaster. Informal net operation is maintained the rest of the day, with base and mobile stations monitoring the frequency.

Ed says on a typical recent weekday, some 225 stations- 135 of them net membersused the frequency. Two priority and 14 routine messages were handled, 15 phone patches were arranged, and at least 100 in formal communications were completed, either on or off the net frequency.

Among members is the California Highway Patrol, whose headquarters amateur station, W6CDY, is a charter member of the West Coast Amateur Radio Service. The patrol has three SSB transceivers for coordinating official Patrol work with amateur communicators in emergencies. What's more, at least three members of the Patrol are hams involved in the net activities. They are Harold Samson, W6JBA, supervisor of the Patrol's electronic data processing section, and officers Jim Clark, WA6NSK, and John Annis, WA6PCY.

Samson recently received an outstanding performance award from the Patrol for helping set up a MARS (Military Affiliated Radio Service) operation for the Patiol. As for

Annis, he has another claim to fame--he has one of the Patrol's amateur SSB transceivers in his police cruiser! In fact, the next cop car you see with a 40 -meter whip just might be Officer John on patrol.

Direct Coupling. The 21st and 19th centuries have now been direct coupled, electronically speaking, by a new machine designed to train radio operators for the U.S. Army. For though Uncle Sam's boys have the latest in single sideband and Teletype gear to handle much of their traffic, at least some of them must be able to work Morse Code if necessary. Sometimes fancier gear breaks down or can't get through noise or interference. Then it's CW to the rescue.
Thing is, the crew-cut boys on the drawing boards have decided the stern-faced code instructor in the radio classroom is no longer needed. Some lads at Sylvania have replaced him with an automatic machine for teaching Morse. There are two dozen training consoles in the setup, each wired to give individual instructions in how to handle the dots and dashes.
Needless to say, the whole ball of wax is controlled by an electronic computer!

Novice News . . . The Friendly Chirp Checkers, otherwise known as the FCC, have added nine new questions to the Novice class exam study material.

At the risk of being called a nasty old man, I'm going to give just the questions here. If you're studying for the Novice exam, you should be able to determine in a jiffy whether or not you know the answers. If you don't, back to the books, lad.

1. When is one-way communication permissible?
2. What is a Hertz? kiloHertz? megaHertz?
3. What are some correct ways to call and answer other amateurs stations via telegraphy?
4. What are some common Q signals and what purposes do they serve? What do QRA, QRM, QRN, QRS and QRT mean when transmitted as questions via telegraphy?
5. What important functions do diodes perform?
6. What units are used to measure capacitance?
7. How are transistors made, used, and diagrammed? What are some common transistor parameters?

8 . Why is impedance matching necessaly?

[^1]Make like a pro and troubleshoot the simple way with our easy to build self-contained solid-state signal injector.

- Almost anyone, with a little training. can become a troubleshooting expert if he's given a yard or two of test gear. But for those not fortunate to be blessed with several hundred (or thousand) dollars worth of test equipinent, troubleshooting becomes a matter of brainwork.

Thing is, even the brain can't function if it has no information to go by. But feed

MINI-

 the best "computer" of all just a wee bit of information, such as which circuits are go and which are no-go, and the JECTOR brain can almost instantly point the way to the defective circuit.How to tell which circuit in a dead receiver, recorder, or amplifier is go or no-go? Simplest way is with our multipurpose signal injector.

A signal injector is a rather simple device-a squarewave - producing multi-vibrator with a fundamental output frequency somewhere in the audio range. Because the waveform is complex, either square or sawtooth, harmonics are produced well into the shortwave regions-as high as 30 MHz .
Place the output of the signal injector on the grid (or base) of an audio tube (or transistor), and you'll hear a somewhat distorted tone. Move the signal injector back to the IF amplifier and you'll still hear a tone because the injector is also producing output in the IF range. Move the injector further back to the RF input and again you'll hear the tone because the injector also has output in the RF spectrum.

Fault Finder. If somewhere along the line you fail to push the tone through the set, you have isolated the defective stage. As a result, you now have something to feed into the human computer to solve the problem.

Our ultra-handy Mini-jector shown in the photo is complete within a standard test probe: the multi-vibrator, battery, and power switch are all self-contained. Flip the power switch on, and you'll get a signal output in the audio band up to approxi-

MINI-JECTOR

mately 12 mHz . Unlike some commercial signal injectors, this one doesn't produce a growl that can be confused with radio noise or interference; the multi-purpose signal injector's output is a crisp tone with a fundamental frequency between 1 and 2 kHz .

Making Mini-jector. The injector is assembled in a Keystone type 1810 test probe kit. The kit comes complete with an outer plastic handle with a ${ }^{13 / 32}$-in. hole drilled at

The test probe kit contains all mechanical parts required for Mini-jector including probe, brass shield, matching perf-board section and bag of push-in terminals.

Circuit diagram of Mini-jector.

PARTS LIST

B1-1.5-volt size AAA battery 1 Eveready 912 or equiv. 1
C1, C2, C3-0.01-uF, 6-VDC capacitor
O1, O2-2N404 Iransistor (see (ext)
R1, R3- 100,000 -ohm, $1 / 10$-watt resistor
R2- 10,000 -ohm, $1 / 10$-watt resistor
R4—3300-ohm, $1 / 10$-watt resistor
S1-Miniature switch (see text)
1-Alligator ground clip
1-Cell holder for AAA battery (Koystone 137 or equiv.)
1-Test probe kit (Keystone 1810 or equiv.) Misc-Wire, Solder, etc.
The Keystone test probe kit is available for $\$ 1.98$ (postage and handling included) from Tridac Electronics Corp., Box 313, Alden Manor Branch, Elmont, N.Y. 11003. Now Yark State residents add appropriate sales tax.

one end. The other end is open to receive the screw-mounted cap and test prod. Also supplied is a section of perf-board, a bag of push-in terminals and a brass shield. The shield is not used for this project. (If your local Keystone dealer doesn't stock the 1810 test probe kit, see the Parts List for a source of supply.)

The entire signal injector is assembled on the perf-board. Note that one end of the perf-board has a staked terminal; this is the forward (test prod) end, and the terminal is used for the output connection to the test prod. Cut $1 / 4 \mathrm{in}$. off the back of the perfboard and mount a Keystone type 137 miniature cell holder (for AAA battery) in such a manner that the frame of the holder is exactly flush with the back of the perfboard.

Push-in Tiepoints. Except for the common battery negative-connection and the ground cable which use push-in terminals for tie points, all components are connected by simply passing their leads through holes in the perf-board, twisting, and soldering. Take care not to use excess heat when soldering the transistor leads.

Transistors Q1 and Q2 are the 2 N 404 type, but the low-cost Lafayette Radio type $19-4215$ will work just as well. Space is at a premium so use $1 / 10-$ or $1 / 4$-watl resistors and miniature 75- or 100-VDC capacitors. Position Q2 as close as possible to the staked terminal and Q1 as close as possible to the battery (cell) holder.

When the perf-board assembly is completed, install power switch S1. This can be either a low-cost pushbutton switch, in which case you will have to hold the button
(Continued on page 129)

OUTPUT TRANSISTOR STOP.A-SHORT

- When building your own transistorized power amplifiers, like this one using a cake pan for heat sink and =hassis, take a tip from manufacturers and mount a barrier terminal strip for the speaker connections. This will help prevent shorts which can damage or destroy the output transistors. The response time of transistors is faster than that of fuses, and this is one good way to take care of the problem.
-J.M. McKeenan

NO-COST VOLUME GETTER

- At parties, dances, or other get-togethers, more volume can be had from that little transistor radio without resorting to complicated solutions. Simply attach a cheer-leader type megaphone to the radio with rubber bands or tape as shown, with the megaphone's mouthpiece centered over the radio's speaker. The end result is double or triple the volume.
—Art Trauffer

SPEAKER PHASE REVERSER

- Here's a quick and easy way to flip the connections to the speakers in a stereo set-up. The photo shows two types of connectors that can be used in the speaker wiring; one is a standard AC plug and socket, the other is an automotive type. Both types are un-polarized so that reversing speaker phase can be accomplished by simply reversing one of the plugs.-J. Hancock

BASS-REFLEX REAR-SEAT AUTO SPEAKER

- When installing that rear-seat speaker in your car, mount the speaker on bushings as shown in the drawing. The bushings should be about $1 / 2$-in. long. This creates a port for the speaker's backwave, thereby reinforcing the bass. Another advantage is that the fragile speaker cone is less subject to damage from excessive air pressure created when the trunk lid is slammed shut.
-Albert E. Hart

[^2]

Two controls on side of Duo-Remote extension speaker allow adjustment of both the TV and remote speaker volume.

Do loud TV commercials take the pleasure out of your evening idiot-box viewing? Do you find extended lectures on sweaty armpits cause nausea? How about that rock singer with the booming voice who turns out to have a flea's whisper on TV, requiring a walk to the box to crank up the sound, and another walk to turn the sound level down when the M.C. comes back? Whatever the annoyance, it can be overcome with a remote TV speaker and remote volume controls placed next to your favorite armehair.

Adding a remote speaker and remote volume control for both the main TV speaker and the remote unit is an easy installation since virtually everything is supplied prewired in Lafayette Radio's Duo-Remote TV Speaker. As shown in the schematic, the Duo-Remote Speaker consists of all components inside the dotted line-and these are supplied pre-assembled in an attractive walnut-finished cabinet.

Control By The Twos. Note that two controls are provided: R1, which controls the level of the main TV speaker, and R2, which determines the remote speaker's sound level. R1 is a specially constructed potentiometer with a full off position-the sche-
matic, in fact, shows the wiper in the off position. When installed, R1 completely disconnects the TV speaker, substituting R1 and R2 as the load for the TV receiver's output transformer. Since R2 and its associated remote speaker are connected across RI, the TV sound output appears across R2, with the remote speaker level determined by the position of R2's wiper.

The Duo-Remote Speaker requires a 3 wire connection to the TV receiver's speaker circuit in order to obtain control over both the main and remote speaker level. For convenience and maximum flexibility-like allowing the TV receiver to be "pulled" for servicing-a plug and jack arrangement such as shown in the schematic is suggested.
Note that Jl is a special version of the standard 3-circuit phone jack, having a through connection on the tip terminal. When connected as shown, removing the plug (thereby disconnecting the remote speaker) automatically restores the original TV speaker circuit. A further refinement as shown in the photos, is the use of a telephone type

First step is to remove one of the leads going to the speaker in the set.

Remote speaker jack can be mounted in one of the ventilation holes in back of set, or $3 / 8-\mathrm{in}$. hole can be drilled to suit.
jack and wall plug at the remote speaker location, allowing the remote speaker to be unhooked at its location during housecleaning, etc.

Doin' It. The first step is to pull the TV power plug and remove the back of the cabinet. Locate the two wires leading from the audio output transformer to the speaker and

Telephone extension jack is mounfed on baseboard near desired location of remote unit.
disconnect one of them at the speaker terminal. Now install J1 on the back of the television receiver. Generally, the back cover has a series of $3 / 8-\mathrm{in}$. ventilation holes and Jl can be installed directly in a handy one, with no drilling required.

If there are no ventilation holes, you will, of course, have to drill a $3 / 8-\mathrm{in}$. hole for J1 in any convenient location. If the back is metal, J1 should be insulated for safety by using a set of fiber shoulder washers between J 1 and the metal cover. After J1 is mounted, wire it up as shown in the schematic. Try to use the shortest possible leads and route them away from IF and RF circuits.

Now put the TV cover back and apply

Matching felephone plug connected to DuoRemote allows unit to be readily disconnected for housecleaning.
power. After the set warms up you should hear the program sound if no plug is in JI. If you don't hear the TV', better check for an errer in wiring. If the sound is coming through, insert an unwired 3 -wire phone plug in J 1 ; the sound should be cut out. If it doesn't, check again for a wiring error.

Final linstallation. If you want a quick-and-dirty finish, simply connect Pl to the existing Duo-Remote wiring as shown. Insert P1 to J1 and the installation is complete. However, since the wire supplied with the Duo-Remote unit is wery thin and easily broken, a more permanent installation can

Decibel Decimator

be made by using standard \#18 or \#20 three-wire cable stapled to the moulding with an outlet plug at the speaker location.

Determine where the remote unit goes, then staple the 3 -wire cable to the moulding with a round-staple stapler (the type used by electricians or telephone installers). If you have a tackless wall-to-wall carpet installation, the wire can often be pressed into the space between the carpet and the moulding.

Plug in P1 at the TV end of the cable and install a telephone-type jack (four connections) at the seating area. Connect the three wires of the cable to three of the four telephone jack terminals and connect the match-

Wire up the jack on the back of the set according to the schematic. The extension speaker, in the dotted lines, is pre-wired.

PARTS LIST

J1-3-conductor jack (Switcheraft type 13B or equiv.)
P1-3-conductor phone plug (5witcheraft type 267 or equiv.l
I—RC-TV Dua-Remote Speaker (Latayette 99H4596)
1-4-contact wall-mount telephone plug and sockef (see text)
Misc.-Wire, solder, staples, etc.

Decibel Decimator all hooked up and ready to go. With a little use, you'll find this inexpensive job's quite a step-saver.
ing plug to the cable from the Duo-Remote Speaker.

Usin' Ir. With PI plugged into J1 and the telephone plug into the telephone jack, set the main speaker control on the DuoRemote to maximum volume (full clockwise) and the remote speaker control to off (counterclockwise). Turn on the TV receiver and set the TV sound slightly louder than normal-the volume can then be set to a comfortable level with the main speaker control on the Duo-Remote. To kill the main speaker from the Duo-Remote, simply rotate the main speaker control counterclockwise. The level at the remote speaker can be adjusted at any time-either with the main speaker on or off-to any desired volume with the remote speaker control. Now when your ears are assaulted by unwanted TV sounds, you can fight back with but a flick of the wrist.

Bigger Antenna Feeds There Aren't

 \square Designed and built by Radiation Inc., the world's largest antenna feed is hig as a two-story house and weighs in at $14,000 \mathrm{lbs}$. The feed is constructed with four outer VHF error horns located around a VHF sum horn, and it even sports a UHF sum horn in the center of the VHF job. Because of its multiple horns, the feed can provide four different types of polarization-vertical, horizontal, left and right, and circular. Its purpose is to gather maximum target information from a radar echo.Intended for use with a 150 -ft. detection and tracking antenna that is part of the nation's anti-missile defense program, the feed will be shipped to the South Pacific for permanent installation.

BY' LEO G. SANDS, KOD1939

valuable, up to the minute weather information is being broadcast by the 'U. S. Weather Bureau, and, it's available to anyone free of charge. The U. S. Weather Bureau has in operation 19 weather bureau stations operating on 162.55 MHz . Approximately 150 more are scheduled to be added in the near future to cover all coastal areas and cities of over 100,000 population. These FM radio stations broadcast weather information for mariners, motorists, aviators, boatmen, etc.

The Weather Bureau's radar and radio station (KWO-35) in New York City is atop the RCA Building. Meteorologists watch the radar and give cloud-by-cloud reports. The station's broadcasts can be heard at least 60 miles away and one yachtsman said he could pick up the broadcasis when 140 miles out to sea.

Where? Weather broadcasts are transmitted on a channel adjacent to the VHF

Marine Public Correspondence Channels, within the $150-174 \mathrm{MHz}$ mobile band. These are FM signals with $\pm 15 \mathrm{kHz}$ deviation as used by VHF/FM marine radiotelephones, instead of $\pm 5 \mathrm{kHz}$ used by the land mobile radio services.

You can't tune in these broadcasts with an FM broadcast receiver. In order to receive them, you must either have a fixedtuned VHF/FM monitor receiver, or pocket paging receiver that can be tuned to 162.55 MHz , or, you can use a converter with an AM BCB auto or home radio which then employs "slope detection" to demodulate the FM signals. Here is a breakdown of the various means that can be used to receive these Weather Bureau broadcasts.

VHF/FM Monitor Receivers. There are numerous VHF/FM receivers available on the market that can tune the $150-174 \mathrm{MHz}$ band. Some are available in kit form for less than $\$ 50$ or you can pay as much as

Weather Broadcast Receivers

$\$ 200$ for one completely assembled and ready to use.

Receivers are available which operate from $117 \mathrm{VAC}, 12 \mathrm{VDC}$, or either one. There are also portable receivers that operate from self-contained batteries and somie operate from AC as well as batteries. The advantage of a tunable receiver is that it can not only monitor weather broadcasts, but police, fire, railroad, mobile telephone, business and various other radio services as well.

Fixed-tuned VHF/FM receivers are also available which operate from 117 VAC or 12 VDC , or both. In some cases only one channel is used. In others, a frontpanel switch enables selection of from two to six channels. These receivers are crystal controlled and a separate crystal (162.55 MHz for the weather bureau), is required for each channel you want to monitor.

Fixed-tuned receivers cost from approximately $\$ 75$ to about $\$ 250$. Realize that the more expensive receiver has additional fea-
tures, such as better sensitivity and higher stability. All fixed frequency monitor receivers are crystal controlled and some have an RF stage to provide increased sensitivity and a squelch circuit to cut out noise when not receiving signals.

There are also combination type monitor receivers. These receivers can use a crystal for a specific channel, such as the Weather Bureau hroadcasts, and a tuning dial for tuning in other channels. A switch is provided to change from fixed frequency mode to tunable mode. Prices for these units start at less than $\$ 100$.

Portable Receivers. Until a short time ago, a pocket size VHF/FM portable receiver was very expensive. There is one now on the market for only $\$ 39.95$ which makes it inexpensive and easy to receive weather hroadcasts.

There are expensive types of pocket paging receivers, similar to the type IBM service technicans use to receive their orders. These paging receivers contain a decoding

Unimetrics FM Minivox

Allied 2671 AM/FM Portable Communications Receiver

Radio Shack Realistic Patrolman MW/VHF Receiver
A variety of receivers capable of picking up the $\mathbf{1 6 2 . 5 5 - \mathrm { MHz } \text { weather }}$ broadcasts are available within a price range to suit every budget. A sampling of these receivers is shown here.
device which prevents the receiver from operating until a special coding signal activates it. This decoding device is not included in receivers for listening to Weather Bureau broadcasts or other communications channels.

These little paging receivers are characteristically very sensitive and selective, have no external antenna protruding and have a built-in squelch circuit that keeps the receiver quiet until a signal activates it. A crystal, of course, is used to control frequency and self-contained batteries are utilized for power.

Available Pocket Portable. One of the newest pocket portable receivers that can be used for tuning in weather bureau broadcasts is the Sonar Sentry. It's a dual purpose radio, operable on the AM broadcast band or, as a fixed-frequency single- or dualchannel VHF receiver. In the VHF mode, two crystals can be installed, one for receiving the Weather Bureau and the other for some additional channel.

U.S. Weather bureau stations

Location	Call Letters	Operational
Atlantic City	KHB38	During 1968
Boston	KHB35	By January, 1968
Charleston	KHB29	By January, 1968
Chicago	KWO39	Now
Corpus Christi	KHB41	By January, 1968
Galveston	KHB40	By January, 1968
Hartford	KHB47	During 1968
Honolulu	KHA99	Now
Jacksonville	KHB39	By January, 1968
Kansas City	KIB77	Now
Lake Charles	KHB42	By January, 1968
Los Angeles	KW037	By January, 1968
Miami	KHB34	Now
New Orleans	KHB43	By January, 1968
New York	KWO35	Now
Norfolk	KHB37	During 1968
San Francisco	KHB49	Now
Suitland IMd.)	KHB36	By January, 1968
Tampa	KHB32	By January, 1968

The Sentry uses a telescoping whip as an antenna which extends to about 18 inches. Though it is not a true FM receiver and has
(Continued on page 128)

> AMPHENOL MODEL 870
> Field Effect Transistor Portable Voltohmmeter

- The service grade VTVM has two out. standing defects. First, it is not portableeven with a hattery power supply the relatively heavy current drain of tube circuits will result in run-down batteries just when you need the meter most. Second, the VTVM's lowest range is about 1 -volt full scale-perhaps 0.5 volt if you have a late model. Therefore, the average experimenter and technician has always needed an ACVTVM with sensitivity down to 1 millivolt to round out the test bench.

But with the advent of the FET (field effect transistor), it became possible to design around the hasic VTVM faults, and a modern FETVM, such as the Amplienol 870 Field Effect Transistor Voltohmmeter, combines the best advantages of the VTVM with portability and low-voltage sensitivity. In fact, the Amphenol FETVM provides the performance of two meters-the VTVM and the AC-VTVM-in one instrument.

Fixed Input Z. Unlike transistorized VOMs with input impedances which, though high, still vary depending on the particular range in use, the Amphenol 870 has a fixed input impedance regardless of the range in use. For DC measurements, the input impedance is 10.6 megohms. For AC ranges from 10 mV to 1 V , the input impedance is 10) megohms shunted by 31 pF . For AC ranges from 3 V to 300 V , the input inpe-
dance is still 10 megohms but the shunt capacity is only 20 pF .

Similar to the VTVM, the FETVM provides for measuring DC volts, AC volts, and resistance. Nine DC ranges provide fullscale measurement for 0.1 to 1000 volts using $1-3$ decading ($0.1,0.3,1$. etc.) Nine AC ranges provide full-scale measurement from .01 (10 millivolts) to 300 volts.
Six ranges from Rxl to Rxl-megohnı provide resistance measurements from 10 ohms to 10 megohms center-scale.

Of particular interest to the audio experimenter and technician is the decibel range calibrated to the AC voltage ranges, with 1 $V A C$ equal to 0 dB . The dB ranges decade down to $-40 \mathrm{~dB}(.01 \mathrm{~V})$ and up to +50 dB $(300 \mathrm{~V})$. The associated dB meter scale conforms to the standard of 1 mW in 600 ohms .

Not including the dB scale. the meter face has but three highly legible scales. The ohms scale is a very bright, almost three-dimensional, red. Two linear hlack scales are all that's used for all AC and DC ranges. There is also a center-scale mark for zero-center pointer positioning though there is no calibrated zero-center scalc.

Just as with the latest VTVMs, the FETVM utilizes a single probe for all func-tions-the AC-ohms/DC switch is built into the probe. The standard zero-adjust and ohms-adjust controls are also provided.
Testing . . . Testing . . . As far as accuracy is concerned, the Amphenol 870 checked out its rated specifications of 2 percent of full-scale DC, 3 percent of full-scale AC . For DC measurements, the zero-set adjustment held within $1 / 4$ of a scale division

With cover removed, Amphenol FETVM can be used conveniently in either vertical or horizontal positions.
(negligible) for all DC voltage ranges. The AC zero set is automatic (there is no front panel adjustment) and, it too, is held on zero for all AC ranges.

While both the zero- and infinite-ohms adjustment hold with reasonable accuracy for all resistance ranges, there is no correlation between the ohms and DC zero-set control, and the user must readjust the control when switching between the DC and resistance functions.

The Amphenol 870 FETVM comes complete in a vinyl-covered wood case. The front panel, which contains a storage compartment for the test probe, swings up when the meter is in a horizontal position, or it can be re-

Rear apron of FETVM contains 10 batteries and coarse zero adjust control accessible through hole in rear cover.

Simplified circuit of Amphenol FETVM DC circuit. Note use of low-pass filter to remove AC from DC measurements.
moved for both vertical and horizontal viewing. A small swing-out bracket on the bottom of the case permits the meter to be tilted at a slight angle.

How It Works. The heart of the instrument is the FET, which is the input amplifier for both the AC and DC functions. Unlike the usual transistor, which has a relatively low impedance even when connected in the Darlington configuration, the FET has an input impedance equal to that of vacuum tubes -up around 100 megohms.

If the input voltage divider totals 10 megohms, the connection of the FET's 100megohm parallel load will obviously have no effect on the input impedance as the load represented by the FET is at least 10 times greater than that of the voltage divider. (When two resistors are connected in parallel and one is ten times the value of the other,
the larger resistor has no effective relation to the total resistance.)

The sutput of the FET amplifier is then fed to a transistor booster amplifier/impedance invertor or a meter amplifier.

The Circuit. Have a look the simplified schematic of the DC circuit. A minute voltage is tapped off the input voltage divider and fed to a low pass filter which removes most of any AC component which might be present in the DC circuit being measured. This allows $D C$ to be measured in the presence of a $60-\mathrm{Hz}$ voltage 40 dB greater than the full scale value of the DC range. The low pass filter output is then passed to the FET amplifier and on to the meter amplifier.

The AC circuit is somewhat different from the DC circuit as can be seen in the second schematic. Here, instead of the applied volt-
(Continued on page 108)

EXPERIENCE IS SIILL YOUR BEST TEACHER

That is why NRI has invested more in Professional Lab Equipment than all other home-study schools combined. It makes training at home in Electronics fast and fascinating. Your hands are trained as well as your head.

You get more for your money from NRI -more value, more sotid experience

 so essential to careers in Electronics. NRI's pioneering "discovery"' method is the result of more than half a century of simplifying, organizing, dramatizing subject matter. In each of NRI's major courses you learn by doing. You demonstrate theory you read in "bite-size" texts programmed with NRI designed-for-learning professional lab equipment. Electronics comes alive in a unique, fascinating way. You'll take pleasure in evidence you can feel and touch of increasing skills in Electronics, as you introduce defects into circuits you build, perform experiments, discover the "why" of circuitry and equipment operation.Almost without reallzing it, the NRI discovery method gives you the professional's most valuable tool-practical experience. You learn maintenance, installation, construction and trouble-shooting of Electronic circuits of any description. Whether your chosen field is Indus. trial Electronics, Communications or TV-Radio Servicing, NRI prepares you quickly to be employable in this booming field or to earn extra money in your spare time or have your own full-time business. And you start out with training equivalent to months-even years -of on-the-job training.

NRI Has Trained More Men for Electronics Than Any Other School - By actual count, the number of individ-

 uals who have enrolled for Electronics with NRI could easily populate a city the size of New Orleans or Indiana. polis. Over three-quarters of a million have enrolled with NRI since 1914. How well NRI training has proved its value is evident from the thousands of letters we receive from graduates. Letters like those excerpted below. Take the first step to a rewarding new career today. Mail the postage-free card. No obligation. No salesman will call. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.
L. V. Lynch Louisville, Ky., was a factory worker with American Tobacco Co.. now he's an Elec. tronics Technician with the same firm. "I don't see how the NRI way of teaching could be improved.'

Don House. Lubbock, Tex. went into his own Servicing business six months after completing NRI training. This former clothes salesman just bought a new house and re ports, "I look forward to mak. Ing twice as much money as I would have in my former work."
approved UNDER NEW GI.8ILL. If you served since January 31, 1955, or are In service, check GI line on postage-free card.

COLOR TV CIRCUITRY COMES ALIVE

as you tuild, stage•by-stage, the only custom Colar-TV engineered for training. You grasp a professlonal understanding of all color circuits through logical demonstrations never before presented. The TV-Radio Servicing course includes your choice of black and white of color training equipment.

COMMUNICATIONS EXPERIENCE

comparable to many months on the job is yours as you build and use a VTVM with solid-state power supply, perform experiments on transmission line and antenna systems and build and work with an operating, phone.cw, 30-watt transmitter sultable for use on the 80 -meter amateur band. Again, no other home-study school offers this equipment. You pass your FCC exams-or get your money back.

COMPETENT TECHNICAL ABILITY

can be instantly demonstrated by you on completing the NRI course in Industrial Electronics. As you learn, you actually build and use your own motor control circuits, telemetering devices and even digital eomputer circuits which you program to solve simple problems. All major NRI courses include use of transis. tors, solid-state cevices, printed circuits.

CQ—AMATEUR RADIOSHORTWAVE RADIO

130. Bone up on CB with the latest Sams books. Titles range from "ABC's of CB Radio" to "99 Ways to Improve your CB Radio." So Circle 130 and get the facts from Sams. *101. If it's a CB product, chances are International Crystal has it listed in their colorful catalog. Whether kit or wired, accessory or test gear, this CB-oriented company can be relied on to fill the bill.
131. If a rugged low-cost business/ industrial two-way radio is what you've been looking for, be sure to eend for the brochure on E.F.Johnson Co.'s brand new Messenger "202."
132. Squires-Sanders would like you to know about their CB transceivers. the " 23 'er" and the new "S5S." Also, CB accessories that add versatility to their 5 -watters.
133. A long-timo builder of ham equipment, Hallicrafiers will send you lots of info on ham, CB and commercial radio equipment.
*129. Boy, oh boy-if you want to read about a flock of CB winners, get your hands on Lafayerfe's new 1968 cutalog. Lafayette has CB sets for all pocketbooks.
134. Discover the most inexpensive CB mobile, Citi-Fone II by MultiElmac Company. Get the facts plus other CB product data before you buy.
135. Get your copy of Amphenol's "User's Guide to CB Radio"-18 pages packed with CB know-how and chit-chat. Also, Amphenol will let you know what's new on their produat line.
136. Going CB? Then go CB Center of America. Get their catalog and discover the big bonus offered with each major product-serves all 50 states.
137. Want a deluxe CB base station? Then get the specs on Tram's all new Titan II-it's the SSB/AM rig you've been waiting forl

- 116. Pep-up your CB rig's performance with Turner's $\mathrm{M}+2$ mobile microphone. Get complete spec sheet: and data on other Turner mikes.

48. Hy-Gain's new CB antenna catalog is packed full of useful informa. tion and product data that every CBer should know. Get a copy.
49. Get the scoop on Versa. Tronics Versa-Tenna with instant magnetic mounting. Antenna models available for CBers, hams and mobile units from 27 MHz to 1000 MHz .
50. Hams, CBers, experimenters! World Radio labs 1968 catalog is a bargain hunter's delight. Get your copy-it's free.
51. Get the full story on Poly tronics Laboratories' latest CB entry Carry-Comm. Full 5 -watts, great for mobile, base or portable use. Works on 12 VDC or 117 VAC.
52. You can get increased CB range and clarity using the "Cobra" transceiver with speech compressor-roceiver sensitivity is excellent. Catalog sheet will be mailed by $B \& K$ Division of Dynascan Corporation.
53. A catalog for CBers, hams and experimenters, with outstanding values. Terrific buys on Grove Electronfcs' antennas, mikes and accessories.

ELECTRONIC PARTS

*1. Allied's catalog is so widely used as a reference book, that it's regarded as a standard by people in the electronics industry. Don't you have the 1968 Allied Radio catalog? The surprising thing is that it's free!
t2. The new 1968 Edition of Lafayerte's catalog features sections on stereo hj-fi, CB, ham gear, test equipment, cameras, optics, tools and much more. Get your copy today.
-102. Before you buy your next xtal, get ahold of Sentry's 1968 catalog. Sentry lists the best in precision quartz crystals and communications goodies. Check off 102 now!
*8. Get it now! John Meshna, Jr.'s new 46-page catalog is jam packed with surplus buys-surplus radios, new parts, computer parts, etc.
23. No electronics bargain hunter should be caught without the 1968 copy of Radio Shack's catalog. Some equipment and kit offers are so low, they look like misprints, Buying is believing.
5. Edmund Scienific's new cata\log contains over 4000 products that embrace many interests and fields. It's a 148-page buyers' guide for Science Fair fans.
106. With 70 million TV and 240 million radios somebody somewhere will need a vacuum tube replacement at the rate of one a second! Get Universal Tube Co.'s Troubleshooting Chart and facts on their $\$ 1$ flat rate per tube.
*4. Olson's catalog is a multicolored newspaper that's packed with more bargains than a phone book has names. Don't believe us? Get a copy. *7. Before you build from scratch check the Fair Radio Sales latest catalog for electronic gear that can be modified to your needs. Falr way to save cash.
t b. Bargains galore, that's what's in store! Poly-Paks Co. will send you their latest eight-page flyer listing the latest in available merchandise, including a giant \$1 special sale.
10. Burstein-Applebee offers a new giant catalog containing 100 s of big pages crammed with savings including hundreds of bargains on hi-fi kits, power tools, tubes, and parts.
*11. Now available from EDI (Electronic Distributors, Inc.): a catalog containing hundreds of electronic items. EDI will be happy to place you on their mailing list.
120. Tab's new electronics parts catalog is now off the press and you're welcome to have a copy. Some of Tab's bargains and odd-ball items aro unbelievable offers.
117. Harried by the high cost of parts for projects? Examine Bigelow's 13th Anniversary catalog packed with "Lucky 13" specials.

ELECTRONIC PRODUCTS

128. If you can hammer a nail and miss your thumb, you can agsemble a Schober organ. To prove the point, Schober will send you their catalog and a $7-\mathrm{in}$. disc recording.
129. Delia Products new capacitive discharge ignition system in kit form will pep up your car. Designed to cut gas costs and reduce point and plug wear. Get Delta's details in full. color literature.
130. Here's a colorful 108-page catalog containing a wide assortment of electronic kits. You'll find something for any interest, any budget. And Heath Co, will bappily send you a copy.
*44. Get your copy of EICO's colorful 36-page catalog on 200 "best buys" products. Mam radio, CB, hifi , test gear, both wired and kit, are illustrated.
*125. Need TV camera kit, touch control lamp, hi-fi component, test unit or shop gear? Then you need Conar's latest catalog. Born from NRI, Conar has become a major supplier of electronics hobbyist parts.
131. Try instant lettering to mark control panels and component parts. Datak's booklets and sample show this easy dry transfer method.
132. Seco offers a line of special. ized and standard test equipment that's ideal for the home experimenter and pro. Get specs and prices today.

SCHOOLS AND EDUCATIONAL

*61. ICS (International Correspondence Schools) wants to send you a 64-page booklet on the most often asked questions on preparing for an electronics career. You also get "How to Succeed" and a sample ICS lesson.
－74．A 40－page illustrated book on ＂How To Succeed In Electronics＂ and a 24－page book on＂How to Get a Commercial FCC License＂are yours for the asking from Cleveland Institute of Electronics．

114．Prepare for tomorrow by studying at home with Technical Training International．Get the facts today on how you can step up in your present job．

59．For a complete rundown on curriculum，lesson outlines，and full details from a leading electronic echool，ask for this brochure from tho Indiana Home Study Instituts．

105．Get the low－down on the latest In educational electronic kits from Trans－Tek．Build light dimmers， amplifiers，metronomes，and many more．Trans－Tek helps you to learn while building
＋3．Get all the facts on Progressive Edu－Kits Home Radio Course．Build 20 radios and electronic circuits； parts，tools and instructions come with course．

HI－FI／AUDIO

124．Now，Sonotone offers you young ideas in microphone use in their new catalog．Mikes for talk ses－ sions，swinging combos，home record ing，PA systems and many more uses．
26．Always a leader，H．H．Scort Introduces a new concept in stereo console catalogs．The information－ packed 1968 Stereo Guide and catalos are required reading for audio fans．

85．Write the specs for an ideal preamp and amp，and you＇ve spelled out Dynaco＇s sterco 120 amp and PAS－3X preamp．So why not get all the facts from Dynaco！
119．Kenwood puts it right on the line．The all－new Kenwood stereo－FM receivers are described in a colorful 16－page booklet complete with easy－ to－read－and－compare spec data．Get your copy today！
15．Acoustic Research would like to send you literature on their speaker systems and turntable．It＇s＂must have＂literature before you buy．

131．Let Elpa send you＂The Rec－ ord Omibook．＂It＇s a great buy and Elpa wants you to have it free．Your records will thank you when the mail－ man delivers it．

16．Garrard＇s Comparator Guide clues vou in on the new Synchro－Lah turntable／changer series．Discover how Garrard locks on to the correct disc speed

17．Mikes，speakers，amps，re－ ceivers－you name it，Electro－Voice makes it and makes it good．Get the straight poop from $E-V$ today．
19．Emplre has made exceptional advances in speaker cabine design you should read about．Also，Em pire＇s successes in the turntable and cartrisge fields are worth discovering．

27． 12 pages of Sherwood receivers， tuners，amplifiers，speaker systems and sabinetry make up colorfu bookkt every hi－fi bug should see．

95．Confused about stereo？Want to beat the bigh cost of hi－fi without compromising on the results？Then you reed the new 24 －page catalog by Jenser Manufacturing．

99．Get the inside info on why Telex／Acoustech＇s solid－state ampli fiers are the rage of the experts．Col－ orful brochure answers all your ques－ tions．

TAPE RECORDERS AND TAPE

123．Yours for the asking－Elpa＇s new＂The Tape Recording Omni－ book．＂ 16 jam－packed pages on facts and tips you should know about be－ fore you buy a tape recorder．

31．All the facts about Concord Electronics Corp，tape recorders are yours for the asking in a free book． let．Portable，battery operated to four－ track，fully transistorized stereos cov． er every recording need．

32．＂Everybody＇s Tape Recordine Handbook＂is the title of booklet that Sarkes－Tarzian will eend you， It＇s 24－pages jam－packed with info for the home recording enthusiast．In－ cludes a valuable table of recording times for various tapes．

34．＂All the Best from Sony＂is an 8 －page booklet describing Sony－Super－ scope products－lape recorders，mi crophones，tape and accessories．Get a copy before you buy！

35．If you are a serious tape audlo phile，you will be interested in the all new Viking／Telex line of quality tape recorders．

HI－FI ACCESSORIES

112．Telex would like you to know about their improved Serenata Head－ set－and their entire line of quality stereo headsets．
بt．Swinging to hi－f stereo nead－ sets？Then get your copy of Superex Electronics＇i6－page catalog featurins a large selection of quality headsets．
104．You can＇t hear FM stereo un－ less your $\mathbf{F M}$ antenna can pull＇em in． Learn more and discover what＇s avail－ able from Finco＇s 6－pager＂＇I hurd or mensional Scund．＂

100Ls

t78．Need pliers to hold．bend of cut fine wires？Check Xcelite＇s new line of miniatures shown in Catalog 166 along with a complete selection of regular pliers and snips．

118．Secure coax cables，speaker wires，phone wires，etc．，with Arrow staple gun tackers． 3 models for wires and cables from $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$ dia Get fact－ful！Arrow hiterature．

TELEVISION

＊70．Need a new TV set？Then as－ semble a Heath TV kit．Heath has all sizes．B\＆W and color，portable and fixed．Why not build the next TV you watch？

127．National Schools will help you learn all gbout color TV as you assemble their $25-\mathrm{in}$ ．color TV kit． Just one of National＇s many exciting and rewarding courses．
97．interesting，heipfui brochures describing the TV antenna discovery of the decade－the log periodic an－ tenna for VHF and UHF－TV，and FM－stereo．Get it from JFD Elec． tronics Cordoration．

RADIO－TV EXPERIMENTER Dept． 268

505 Park Avenue

New York，N．Y． 10022
Please arrange to have the lit－ erature whose numbers I have circled sent to me as soon as possible．I am enclosing 25¢ for 1 to 10 items；50¢ for 11 to 20 items to cover handling．No stamps，please．

maximum number of items $=\mathbf{2 0}$
Indicate total number of tooklets requested

LABCHECK

Continued from page 101

FETVM AC circuitry employs only two voltage divisions for input voltage to keep signal level to FET high.
age appearing across the normal voltage divider, the input voltage is divided only twice for a high and low range. One reason for this is to provide a high-level signal to the FET in order to prevent internal noise from interfering with very low voltage measurements.

The output of the two-step divider is then fed to the impedance invertor which consists of the FET and its associated transistor amplifier. The relatively high level output of the impedance invertor is now fed to a voltage divider where the voltage is tapped off for the meter amplifier. While at first glance this might appear to be the hard way of doing
things, this method provides for the very low .01 V range and 3 percent accuracy between 50 and $50,000 \mathrm{~Hz}$. And it's this range that effectively makes the Amphenol 870 a combined FETVM and an AC.FETVM.

Summing Up. Within the limitation of the 300 V maximum AC range, the Amphenol 870 FETVM can be considered as a substitute for both a standard VTVM and an AC-VTVM, realizing the advantages of portability and price since the cost of the 870 is less than that of the two instruments it replaces. Also, while the low-voltage AC ranges

Resistance measuring circuit of FETVM is conventional providing six ranges to read from 10 ohms to 10 megohms center scale.
are particularly useful in audio service work, the very-low-voltage DC range of 0.1 V fullscale makes the instrument exceptionally useful for transistor servicing where voltages in the range of 0.1 to 0.5 volt are the rule rather than the exception.

The Amphenol 870 FETVM is priced at $\$ 99.95$ including the case, probe and batteries. For more information write to the Amphenol Distributor Div., Amphenol Corp., Dept. DF, 2875 S. 25th Ave., Broadview, Ill. 60153.

As substitute for both VTVM and AC-VTVM, the Amphenol FETVM provides the user with a substantial number of useful features at a reasonable cost.

An up-to-date Broadcasting Directory of North
 American AM, FM and TV Stations, including a

Special Section on World-Wide Shortwave Stations

rn this issue of White's Radio Log we have included the following listings: U.S. AM Stations by Frequency, Canadian AM Stations by. Frequency. U.S. Television Stations by States, Canadian Television Stations by Cities, and World-Wide Shortwave Stations.

In Our Next Issue, April-May. 1968, the Log will contain the following listings: U.S. AM Stations by Location, U.S. FM Stations by States, Canadian AM Stations by Location, Canadian FM Stations by Location, and an expanded Shortwave Section. The shortwave listings are always completely revised in each issue of Log to insure 100 percent up-to-date and accurate information.

In the June-July, 1968 issue of Radio-TV Experimenter, the Log will contain the
following listings: U.S. AM Stations by Call Letters. U.S. FM Stations by Call Letters, Canadian AM Stations bỳ Call Letters. Canadian FM Stations by Call I.etters. and an expanded World-Wide Shortwave Section.

Therefore, in any three consecutive 1968 issues of Radio-TV Experimenter magazine, you will have a complete cross-reference listings of White's Radio Log that is always up-to-date. The three consecutive issues are a complete volume of White's Radio Log that offers up to the minute listings that are not to be found in any other magazine or book. If you are a broadcast band DX'er, FM station logger, like to photograph distant TV test patterns, or tune the shortwave bands, you will find the new W'hite's Radio Log Eormat an unbeatable reference.

QUICK REFERENCE INDEX

$$
\text { U.S. AM Stations by Frequency } 110
$$

Canadian AM Stations by Frequency 120
U.S. Television Stations by States 121
Canadian Television Stations by Cities 124
World-Wide Shortwave Stations 125

WHITE'S

U.S. AM Stations by Frequency

U. S. stations listed alphabotleally by states within oroups. Abbreviations: $k \mathbf{H z}$, frequeney in kiloeyeles: W.P., power in watts: d, operates daytime only: n. operates nightime only. Wave length is given in meters. Listine indicales statiuns un the air on Oefubar 1, 1967

ave Length	W.P.	ve Length	ve	W.P.\|	ave Length
KULE Ep	1000d	KINY Ju		8000d	Dhlo
WXMT Merrill, Wis.	1000d	KAGH Crossett, Ark. 250 d	w	1000 d	K
40-405.2		KVOM Morrilton, Ark. ${ }^{\text {K }}$ K 250 d	W	10000 d	KURY
		KU2Z Bakersfield, Calif. 250 d		$1000 d$	
Ar	$30000 d$	KRRN Brighton Colo 500 d		250 d	WSBA York, Pa. 5000
MEO Phoonix, Ar	100	KBRN Brighton, Colo. Soud	KPAN	$250 \mathrm{~d}$	WF.RP Porke PR. P. $\quad 5000$
BIG	10000 d	WRKV Rockvilit, Coni.	KONO 8an	5000	WRCG North Charleston, 8, C. 500d
		WSUZ Pala			WORD Spartanburg, S.C. 5000 d
		WJAT Swalnsboro, Ge. 100		100	WJCW Johnson City, Tonn. 5000
KVFC Cortez, Colo.	100	WKZI Casey, lli. 250 d	WEVA	100	WEPG S. Pittsburgh, Tenn. 500d
WS8A Boca Raton, F	1000	KXIC lowa city, lowa 1000 d	WOAY Oak Hill, W. Ve.	10000d	KMAF Frederieksburg. Tex.
WKMK Biountston, Fla.	1000	WCCM Lawrence, Mass. 1000 d	WFOX mllwaukee, Wis.	250d	KRIO MeAllen. Tex.
WKIS Orlando, Fla,	5000	WVAL Sauk Rapids. Minn. 250	8		K
KYME Boise, ldaho	$500 d$	WRE1 Farminiton. Mo. 5000 d			
VLN Olnay,	1000d	Cama. City, Oita. 250	KIEV	$500 \mathrm{~d}$	
CAS Cambridge	25	KPDA Portiand. Ore. 5000d	WWL New Or	50000	WRNL Richmond, Va,
KPBM Carlshad	1000d	WCHA Chambersburs, Pa. 1000	WKAR E. Lansing. M	10000 d	WPXI Ro
WGSM Huntington,	500	WDSC Dlllon, S.C. 1000 d	WHCU Ithaes,	5000	KDRD Paseo, Wash. 100
WWBL Moreh	,	WEAB Graer, S.C. 250 d	WGTL Kannapolis, N.	1000 d	KIXI Sea
PAQ Mount Alry. N,C.	10000	WDEH Sweotwater, Tenn. 100	WHOA San Jua	5000	
KRMCH Tulsa, Okla.	5000	KBUH Brigham City, Utah 250 d	K	10000	WDOR Sturgeen Bay. Wis. 1000 d
IAC San Juan, P.R	1000	W8V8 Crewe. Va. w sols			
WBAW Barnwell, S.C.	1000	WKEE Huntington. W.Va, 500			8
WIRJ Humbolt, Tenn.	25	WDUX Waupmea. Wis. 5000 d	8 New Yort	0	daiusia, Als. $\quad 3000$
WJIG Tullaho		810-370.2	WRRZ Clinton, N.C.		WWWR Russellivily. Ala, 1000 d
KTRH KCMC Toust		San Frame	WRFD Worthinston,	5000d	Litte Poek Ark 5000
寺	5000	KWSR R	890-336.9		
WB00 Baraboo, Wic.		w	WL8 Chisa 0 , III.	50	KDES Palm Springs, Cal. 5000
750-399.8			WHNC Henderson, N.C.	100	KYEC San Luis Obispo, Cal. 1000
		W Rockiord, wieh. 5000	KBYE Okis. City, Okla.	100	KREX Grd, Junctio
FOD Anehorage, Alasks	10000	WSJC Magee. Mlss. 50000			
B Atiant	500	KCMO Kansas City, mo. 50000	900-333.1		G Eau Gall
W日mo Baltimor.	1000 d		WATV Birmingham, Ala.	1000d	
KMMJ Grand Island	10000 d	WGY Sehoneetady, N.Y. $\quad 30000$	WGOK Mobile. Ala.	1000 d	VVOH Hazelhu
WHEB Portsmouth	100	WKBC N.W.1kesbora. N.C. 1000 d	W02K Ozar		WGNU Gramito
SEO Durant	250 d	WCEC Rocky Mount. N.C. 1000 d	KPRB Fair	10000	WMOK Metropalis, ili. 1000 d
KXL Portiand, Ores.	50000	WEDO Mekeesport, Pa. lood	KHOZ Har		WBAA W. Lafayotte, Ind
WPDX Clarkshurg. W	1000d	WKVM San Juan, P.R. 50000	KBIF Fres	100	RFNF Counell Blufi
WHA Madison.	5000d	WOIZ St. George, S.C. 5000 d	KGRB Wes		UFNF Shenand
			WJWL Geore	100	TCW Whitesburg, Ky. 5000d
760-394.5		T8 Murireesboro. Tenn, 5000d	WSWN Belle Glad	$1000 d$	WBDX Bogalusn, La, 1000d
KFMB San Diego, Cal.	5000		WMOP Oeala, Fia.	100	KTOC Jonesbero, La. 10004
-	10000	820	WCGA Calhoun, Ga.	1000d	X Lexinston Pk., Md, 500d
W1R Dotrolt, Miel	500	WAIT Chieage. III. - 5000d	WCAY Mac	250 d	WMPL Haneotk. Mieh. 1000 d
PS T	1000d	WIKY Evansville. Ind. 250d	WEAS Sava	500	L Fairbault, Minn.
WORA Mayaguez.	5000	WOSU Columbus, Ohio 5000d	KTEE Idahe Falls.	$1000 d$	WAD Wadena, Minn.
770-389.4		WFAA Dalias, Tox. 50000	KEYN Wi	250d	S W. Yellowsto
	5000 d	th, Tox.	W		KOLO Reno,
		830-361.2		250 d	KQEO Albuquerque, N.Mex. 1000
EW St. Louls	1000 d	10000	WCME Brunswiek, M	$1000 d$	WTTM Tronton. N.J. 1000
KOB Albuqueraue. N	50000		WLMD Laure	1000d	WKRT Cort
WABC Now Yark, N.Y.	50000		WATC Gaylord, Mle	$1000 d$	WIRD Late Plagid NY 1000
-	1000	Kalispell, Mont. 1000	KTIS Minnaa		WRED Lake Plasid. N.Y. 5000
780-384.4		KBOA Kennett. Ma. 1000 d	WDDT Gree	10	1 Col
		WNYC New York, N.Y. 1000	K		L Lebanon. Oreg. 10
3BM CMiea90. AQ Norfolt.		840-356.9		10	WKVA Lewistown, Pa.
WCKB Dun	100		WBRV Bod	1000d	WIAR Providenes, R.I. 5000
30 Forest City. N.C.	100	WTUF Wobile, Ala, 10000			WTND Orangeburg. S.C. 1000 d
111	250d				000d
WAVA Ar	1000d	PO stroudsturs Ps	ra		WLIV Livingston. Tenn. 1000d
		O Stroudsburs. Pa. 250d	WAYN Rockingha	100	1000
0-379.5					
TUG	1000d				
KCAM Giennallen. A	500	WICY Nome. Alaska, Ala. 5000	WFRO Fremont, Ohio	$\begin{gathered} 5000 \mathrm{~d} \\ 500 \mathrm{~d} \end{gathered}$	00
CEE Tueson, Ari	5000	KGKO Benton. Ark. 1000 d	WCPA Clearnold, Pa	1000 d	WMMN Fairmont. W.Va
SY Toxarkana.	5000d	KDA Denver, Cole. 50000	WFLN Philadelphis, Pe.	1000d	WOKY Milwaukes,
KABC Los Anneies, Calif.	5000	WRUF Gainesvills. Fla. 5000	WKXV Knoxville, Tont	000d	930-322.4
LBE Leesburg. Fia.	5000	WIEAT W. Palm Erach. Fla. 1000	WCOR Lebanon. Tens.	500 d	322.4
FUN S. Mlami.	5000	WCLR Crystal Lake, III. 5000			WETO Gadsden, Ala, 1000d
WYNR Brunswick	500 d	WCLR Crystal Lake, II. 5000	KMco co	500d	KTKN Ketchikan, Alaske 5000
WGAA Cairo. Ga.	1000d	WKBZ Buskegon, Mich 1000	Krlo F		KAPR Douglas. APiz. lo00d
KONA Kealakekua, Hawail	1000	WKBZ Muskegon, mien. 5000	KCLW Ha		KAFF Flagstaf, Ariz. 5000d
KEST Boise, idaho	1000 d	WKIX Raleinio N.C. 10000	WAFC Stau	1000 d	KHJ Los Angoles. Calir. 5000
MV Soda	5000 d	WIW Cleveland, Ofile 10000	KUEN Wonatehee, Wash	1000 d	KEWQ Paradise. Cai.
		WJAC Johnstown, Pa. 10000	WATK Antigo, Wis.	250d	
AKY Loui	5000	WEEU Rading. Fa, 1000			WHAN Haines city, fla, 1000
RUM Rumford.	1000d	WABA Aquadila, P.R. 50000 d			W JAX Jacksonville. Fla
WSGW Sagin	5000	W RAP Norfolk, Va. 5000	WDVC Da	s000d	Sar
L Billin	5000	KTAC Tacoma, Wash. 10000	KPHO Ph	5000	WSEI Pbeatello. Idaha 5000
W	1000 d		KAMD C	5000	WTAD Quiney, III. 50
TNC Themasville,	1000 d	860-348.6	KDEO EI Calo	1000	WHON Centerville. Ind. 500d
FGO Fargo, N.D.	5000	WHRT Hartselle, Ala. 250 d	KNEW Oakland. C	5000	WKCT Bowling Grsen, Ky. 1000
WIL Albany	1000	WAMI OpD. Ala. 1000 d	KOXR Oxnard, Cal,	5000	WFMD Frederlek, Md.
EB Allentown, P	1000	KIFN Phoenix, Ariz. 1000 d	KPOF Denver, Colo.	5000 d	W FEB Holyoke. Mas
IC Sharan.	1000d	KDSE Dscedla. Ark. 1000 d	WRCH New Britain. Conn.	5000	WBCK Battle Croek, Mieh. 5000
AN Providente. R.I,	50	KWRF Warron. Ark. 250d	WPLA Plant city. FI	1000d	KKIN Altkin, Minn. lo00d
BD Bamberg-Denmark.		KTRB Modesto. Callif. 10000	WGAF Valdost	5000	WSLI Jaekson, Miss.
	1000d	WAZE Clearwater, Fla. 500d	KBGN Caldwill, Id	1000 d	Kwoc Poplar Blufi, Mo. 5000
TB Johnson City. T	100	WKKO Cocos. Fla. 1000	WAKO Lawrencevilie, Il	500d	KOFI Kalispeli, Mont. 5000d
C Memphis, Ter		WERD Atlanta, Ga. $\quad 1000$	WSUI lowa City, lewa	000	KOGA O
THT Houston. Tex		WDMG Douglas. Ga. 5000d	KISI Salina, Kan.	500d	KCCC Carlstad, N,M.
FYO Lubboek, Tox		WMRI Marion, Ind. 250 d	WLCS Baton Roupe, La	1000	WSOC Charlotte. N.C. 5000
TA Blandine, Utah	1000d	KWPC Musestine. Iowa 250 d	WABI Banger. Maine	5000	WITN Washintton. N.C
G Mount Jackson,	10000	KOAM Pittsburg, Kan. 10000d	WFDF Flint. Wleh	5000	WWNH Rochestor. N.H. $\quad 5000$
Nortolk.	50	WSON Henderson. Ky. 500d	WCOC Meridian. Miss.	5000	WPAT Paterson, N.J. $\quad 3000$
B Belilntham, Wash.	${ }^{5}$	WAYE Baltimore. Md. 1000	KOYN Billings.	1000 d	
B Spokane, Wash AQ Eau Claire. Wis.	5000 5000	WSBS Gt. Barrington. Mass. 250 d	KYSS Missoula.		
Aa Eau Claire. Wis.		1000 d	M	5000d	
800-374.8		500d	WLAS J	5000d	KAGI Grants Pass, Orel. 5000
whos Decatur, Ala.	1000d	WFMO Fairmont. N.C. ${ }_{\text {WSTH }}$ 1000d	KCJB Minot. N.Dak. WBRJ Marietta, 0 .	$\begin{aligned} & 1000 \\ & 50001 \end{aligned}$	SWB Seaside. Ore. CNR Bloomsburg.

WHITE'S
 L(B)
$\mathbf{k H z}$ Wave Length W.P
KSDN Aberdeen, S.D. WSEV Seviervilio. Tenn KITE San Antonlo, Tex. KENY Bellingham-Ferndale KQOT Yakima, Wash. KROE Sheridan, Wyo. WLBL Auburndate, wis
940-319.0
KHOS Tueson. Arlz.
KFRE Fresno, Calir. WINE Brookford
WINZ Mlami. Fia.
WMAZ Macon, Ga.
KAHU Waipahu, Hawali WMIX Mt. Vernon, III. WCND Shelbyville. Ky. WYLD New Orleans, La WJOR South Haven, Mich. WCPC Houston, Miss. KSMW Aurora, Mo. WFNC Fayetteville. N. C WCNO Shelbyville, N,Y. KGRL Bend. Oreo KWRC Woodburn, Ore. WESA Charleroi, Pa. WIPR San Juan. P.R. KIXZ Amarillo. Tex. KTON Belton, Tox. KNRG Gexarkana, Tex WFAW Ft. Atkinson, Wis.
$950-315.6$
WRMA Montgomery, Ala KIBH Seward, Alaska
KXJK Forrest City, Arl KXJK Forrest City, Ark
KFSA Ft. Smith, Ark. KAHI Auburn, Callf. KiMN Denver, Colo. WLOF Orlando, Fla. WGOV Valdosta, Gia. KATN Boise. Ida. KLER Orofino, Idaho WGRT Chicago, 111 . WXLW Indianapolis. Ind. KOEL Oblwein, Ia, KJRG Newton, Kans WYWY Barbourville, Ky. WXLN Potomac-Cabin John,

WRYT Boston, Mass.

 WWJ Detroit. Mich. 5000 d $\begin{array}{lr}\text { WWd Detroit. Mich. } & 5000 \\ \text { KRSI St. Louis Park, Minn. } 1000\end{array}$ WBIKH Hattiesburg, Miss. 5000d KLIK Jefferson CIty, Mo. WHVW Hyde Park, N.YWBBF Rochester. N. Y. WIBX Utlea. N.Y. KYES Roseburg, Ored. WNCC Barnesboro. Pa. WPEN Philadelphia, Pa,
WBER Moncks Corner, S WSPA Spartanburg. S.C. WWAT Watertown, S.Dak. KDSX Denlson-Sherman, Tex. 500
KPRC Houston, Tex.
5000
5000 KSEL Lubbock, Tex. WXGI Richmond, $V a$.
KJR Seattlo. Wash, WKAZ Charleston, W. Va. WKTS Sheboygan, wis.
960-312.3
WBRC Birmingham, Ala. WMOZ Moblle, Ala.
KAVR Apple Valley Callf 50000 KNEZ Lompoc, Callf. KABZ Lompoc. Calif.
WELI New Haven, Conn WGRO Lake Clty. Fla. WJCM Sebrlng Fla WJAZ Albany, Gai WRFC Athens, Ga KSRA Salmon, Idaho
1000
5000 d
1000 d
5000
5000 d
1000 d
1000 d
50000
1000 d
5000 d

250
0000 50000 1000 d
50000

50000
10000
000d
10000
1000 d
10000
10000
5000 $1000 d$
$50000 d$ 50000 d
500 d 500 d 5000 d
10000 10000
250 d 250 d
250 d 250 d
1000 d $1000 d$
$250 d$
250 d
250 d $250 d$
1000 d
10000 0000
5000 5000
000 d $1000 d$
$1000 d$ $1000 d$
$5000 d$ 500d 1000 d 1000 1000 5000 d 5000
5000 5000 5000 d 5000 d 1000 d 5000d 5000
500 d 500 d

5000

 1000 d 5000d 500 500 d1000 5000 5000 d 1000 d 500 d 5000 5000 00 5000
5000 d 5000 d
5000 5000
1000 d 5000 d 1000d

5000

 10005000 5000 5000
5000 5000
500 d 500 d
1000 d 5000
5000

WHITE RADO LOG

$k H z$ Wave Length W.P.
KRNS Burns, Ore. KOOS Coos Bay, Ore. KYJC Medford, Oreg. Kalk Lakeview, Ore. NBYP Beaver Ore WEEX Easton, Palls, Pa, W K80 Harrisbure WCRO Johnstown. Pa. WBPZ Lock Haven. Pa. WTIV Titusville. Pa WNIK Arecibo. P. R. WERI Westerly, R.I. WNOK Columbla, S.C. WOLS Florence, S.C. KISD Sioux Falls. S. Dak. KSIX Corpus Christi, Ter. KDLK Del Rio. Tex. KERY Kerrvitie Tex KLVT Levelland. Tex KEEE Nacopdoches. Tex. KOSA Odessa, Tex. KSEY Seymour, Tex. WTx Sulpher Sprgs.. Tex. KMOR Murray. Uta KOAL Price, Utah WJOY Burlingtan, $V t$. WODI Brookneal, Va. WFV Clifton Forge, Va. WNOR Norfolk. Va. SPO Everett, Wash KREW Sunnyside. Wash WLOG Logan. W.Va. WTAP Parkersburg, W WCLO Aanesville. Wis wxCO Wausau, Wis. 1240-241.8
WEBJ Brewton. Ala. WULA Eufaula, Ala WOWL Florence, Ala. YRF Jasper, Ala KZOW So. of Globe Ariz. KVRC Arkndelphla. Ariz KTLO Mountain Home, Ar KWAK Stuttgart. Ark. KPLY Crescent City, Calif. KOAD Lemoore, Cal
KBY Monterey, Callf. KPPC Pasadena, Calif. KROY Sacramento, Calif. Califor KSON San Diego, Calif. SMA Santa Maria. Call KRDO Colo. Springs, Colo KUGO Uurango. Colo. KSLV Monte Vista, Co CRT Trinidad. Colo. ww Co Waterbury, Conn. WBGC Chiploy. Fía. it WMMB Melbourne. FI WFOY St. Augustine, Fla. WBHB Fitzqerald, Ga. WLAG LaGranoe, Ga WBML Macon, Ga. WWNS Statesboro, Ga. NTWA Thomson. Ga. VVNI Coeur d"Alene, Idaho KMCL McCall, Ida KWIK Pocatello, Idaho WCRW Chicago, Il! WSBC Chicago. III. WEBG Harrisburg, II. WSDR Sterling, III. VHBU Anderson, ind.
KWLC Decorah, lowa

ve Length	W.P.	e	W.P.	kHz Wove Length	W.P.
	1000	KDHI			
KICD Spencer, lowa	1000		1000d		1000 d
KIUL Garden City, Kan	1000	KMSL Uklah, Calli.	500 d	KTAE Taylor. Tex.	
KAKE Wichita, Kans.	250	KICM Golden, C	$1000 d$	\checkmark Charlottesville, va.	00
WINN Louisvilie. Ky.	1000	WNER Live Oak. Fla	$1000 d$	WJJJ Christiansturg, Va.	5000
WFTM Maysville, Ky. WPKE Pikeville, Ky.	1000 10008	WDAE Tampa, FIa	S00	M	1000 d
WSFC Somerset. Ky.	1000	WYTH Madison, Ga.	$1000 d$		-
KASO Minden,	1000	W122 Streator, III.	500 d		
KANE Now theria, La,	1000	WGLFt. Wayne Ind.	1000	WEKZ Monroe, Wis.	
WCOU Lewiston, Maine	1000	WRay princeton ind.	1000d	woco Ocanto. Wis.	
CEM Cambridge, Md.	1000	KCFI Cedar Falls,	$500 d$	KPOw Poweli. Wyo.	5000
JEJ Hagerstown, Md.	1000	WREN Topeka,	$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	1	
HAI Greenfield, Mass.	250	WNVL Nicholasvili	00		
CB W, Yarmouth, Al	1000	WLCK Seottsville, K	d	M	1000d
ATT Cadillac, Mich.	1000	WGUY Bangor. Maine	5000 d	WZAM Prichard, Ala.	1000d
CBY Cheboygan, Mie	1000	WARE Ware, nt	1000	KBYR Anchorage. Ala	00
- lshpeming, mich.	1000	wxox ${ }^{\text {bay }}$	1000	KDJ Hoibrook, Arlz.	
FG Hlbbing,	1000 d	KOTE Fergu	1000	KADL P	
RM Park Rapids.	1000		$1000 d$ 5000	KGOL	
Jon St. Cloud, Minn.	1000	KFMO Flat River.	1000	ксок тulare.	000d
MPA Aberdeen, Miss.	1000	KBTC Houston.	1000 d	WNOG Naples, Fla.	500 d
GCM Greenwood	250	WKBR Manchester, N.H.	5000	Whir orla	0 d
Gitiport.	1000	R Morristown, $\mathrm{N} . \mathrm{J}$,	5000 d	WTNT Tallahassee, F	5000
MIS Natchez. Miss.	250	WIPS Ticonde	1000d	Ca	d
ODE Jopllison city.	1000 d	G Farmvil	500 d	Columbus. Ga	0d
EM Nevada,	250		1000 d		10000 5000
MY Billings, Mont	1000	WCHO Washingto		KTFI Twin Falls. Ida	-
Glasgow, Mon	1000	House, Ohio	d	WEIC Charle	d
LL Helena, Mont	1000	WLEM Emporlum, Pi.	1000 d	WH8F Rock	
OR Lineoln, N	1000	WPEL Montros	1000 d	WCMR EIkha	5000
K North Platte, N	1000	AE Pittsb	5000	WWCA Gary.	
FTN Franklin, N.H.	250	WNOW York.	5000 d	WORX Madison, Ind	000d
NJ Bridgeton, N. J.	1000	WCKM Charieston. S.C.	5000		1000
VE Carlsbad. N.Mex.	1000		$500 d$		
LV Clovis.	1000			K	
BB Freep	1000	WNTT Tazewell.	d	WKYR Cumbe	5000
VA Genes	$000 d$	KFTV Paris. Tex.		Springft	-
ames		KPAC Port Aex.		D ${ }^{\text {coit }}$	
OS Liberty, N.	1000	KUKA San Antonio,	1000 d	KWEB Rachester	
B2 Saranae Lake.	1000	KTFO Seminole. Tex.	1000d	WVOM loka, Mi	d
TN Watertow	10000	KANN Ogden.	1000d	WLSM Loulsvi	5000 d
NF Wratiow	1000	V	5000 d	KUSN St. Jos	1000d
T Charlot	1000	WDVA Da	5000	KBUB Spark	$1000{ }^{\text {d }}$
			0d		
JNC Jacksonville.	1000	WEER Warrenton. Va	1000 d	WOVE VIn	
WRNC Ralsigh. N.C.	1000		5000		
KDLR Devils Lake.	250	WEMP Milwauk	000	WDLA Walt	1000 d
W8BW Youngstown Ohlo	1000			WCGC Belm	00
HIz Zanesville, Ohio	1000	1260-238.0		PM Smi	5000 d
Ardmore Okls.	250			KBOM Mandan. N.Dak	
KBEK Elk City, Okla.	250	KCCB Cornina Ark		E Cambridge. Ohio	1000d
EL Idabel. Okla	250			K WPR Claremor	d
KOKL Okmuloee.	1000		5000	Grants Pass, 0	
KFLY Corvallis, Dreo	1000 d	KGIL San Furnando, Calif. KYA San Francisco, Callf.		R Lebanon. Pa.	0
KTIX Pendleton, Ore	1000			C Hampton,	000d
B Redmond,	250			KNWC Sloux Fall	00
	1000		$3000 d$	Newro	5000d
	1000		1000 d	P	
UM Readin:	1000	WW00	500d	KHEM Bio Spring, Tex	d
WSEW Sellnsgro		WFTW Washington.	5000	KEPS Eag	000d
WBAX Wilkes.B	10				5000
WALO Huma	1000			WTID Newport News	1000d
WWON Woonsorkot	1000			WHEO Stua	1000d
WKDK New	1000	WWPF Palatka,	1000	KCVL Colvi	1000 d
Kr Sum	1000			Lond	5000 d
CCR Plerre	1000		$1000 d$ 5000 d	Maus	
BEJ Elizabethton.	1000	KTEE Idaho	$5000 d$	Superior, Wis	000d
KR Faye	1000	KWEI Weiser. Ida.	1000 d	KIML Gilletto, Wyo.	
WKDA Nash	1000	WIBV Belleville, lil.	5000 d		
NK Union City, Tonn	100	WF BM Indlanapolis, Ind.	5000		
LF Alpine, Tex.	1000	Boone, lowa	1000 d	iedmon	
KEAN Brownwood, Tex.	1000	W WHK Hutehinson.	1000	WNPP Tuscaloosa,	
KORA Bryan. Tex.	1000	WEZE Baston Rouge,	10000		
KOCA Kilgort. Tex.	1000	WELE	50	KOAG Arroyo G	
K SOX Raymondville, Tex. KCKG Sonora. Tex	250	wfel Holland, Mich	5000	KIXF Fortuna, Cal.	1000 d
DX Sweetwater.		KROX Crookston. At	1000	KFOX Long Beach.	
SKI Montpelier.	1000	KDUZ Hutchinson. Min	$1000 d$	KCJH San Luis Oblspo.	
SV Petersburo.	1000	WGVM Greenville, M	5000 d	KJOY Stockton. Calif.	1000
ROV Roanoke, Va.	1000	WNSL Laurel, Miss.	5000 d	KTLN Denver. Colo	5000
ON Staunton, Va.	10	WCSA Ripley, Mlss.	500	WSUX Seaford, Dal.	1000 d
KXLE Ellensburg. W	1000	KGBX Springfeld, M	5000	Sri	
GY olymp	1000		1000 d		
Bluefield.	1000	K	5000	Lake Wales, F	50000
Charleston. W.V	1000 d	WBNR Beacon, ${ }^{\text {N }}$. ${ }^{\text {Y }}$	${ }^{10000}$		5000 d
T Man	1000		5000		
MT Manitowoe,		WGWR Ashe	5000	WGBF Evansville, In	5000
BT Poy	1000 d	WCOJ Edenton, N.C.	1000 d	KCOB Newton. lowa	1000d
JMC Rice Lake	1000	WIXY Cleveland. 0.	5000	KSOK Arkansas Cit	1000
KFBC Cheyenne, wyo	10	WNXT Portsmouth. Ohlo	5000	WCPM Cumberland,	1000 d
KEVA Evanston, Wyo.	1000	Oklahom		WIXI Lanca	500d
KASL Newcastie, Wyo.	250	Oklahom	1000	KWCL Oakgrove, La	1000 d
KRAL Rawlins, Wyo.	1000	WWYN	1000	WEIM Fltehburg. M1	5000
KTHE Thermopolis, wyo.	1000	WWYN Erie	5000	WFYC Alma,	5000 d
		WISO Pance, P. R.	50000	WWTC	
9.9		WMUU Greenville. S.C.	5000d	KOKD Cllnton, Mo.	1000 d
0 Fit . Payne, A	1000d	WJOT Lake Cit	1000d	KYRO Potosl. Mio.	500 d
WETU Wetumpka,	5000d	KWYR Winner, S.Dak	5000d	KCNI Broken ${ }^{\text {Bo }}$	1000d
KAKA W/ckentury,	500 d	WNOO Chattanoga, Tenn.	1000d	KTOO Hender	5000d
KHIL Willcox. Ariz.	5000d	WMCH Church Hill, Tenn.	1000d	KRZE Farmincton, N.M	5000 d
KFAY Fayetteville, Ark.	1000d	WDKN Diekson, Tenn.	1000d	WADO New York, N.Y.	5000
KALO Little Rock, Ark.	1000	WCLC Jamestown. Tenn.	1000d	WROC Rochester, N.Y.	5000 d
OT Madera, Calif.		KSPL DI	10	WSAT Salisuury, N.C.	

WHITES RADIO BOG
kHz Wave Length

W.P.

WHTC Holland, Mich.

 WMIQ Iron Mtn.. Mich WKLA Ludington, Mich. WNBY Newberry, Mich. WHLS Port Huron, Mich, KATE Albert Lea, MinnKBUN Bemidli, Mlinn KBMW Wahneton. N. O WELY EIy. Minn.
WFAM St. Cloud, Minn. WCJU Cotumbia, Miss WJXN Jackson. Miss. WOKK Meridian. Mliss WNAT Nafchez, Miss. WROB West Polnt, MIss. WMBH Joplin. Alo.
KIRX Kirksville, Mo
KWP Warrensburg, mo KXXL Bozeman. Mont
KUDI Great Fails, Mont.
KGBN Missouta, Mont.
KVBC Red Lodge, Mont.
KWRE Boif Point, Mont.
KONE Beatrice. Nebr.
KONE Aeno. Nev.
WFPG Atlantie City, N. J.
KRZY Albuquerque, N, M.
KLMX Clayton. N Mex
KOBE Las Cruces. N. Mex.
KENM Portales, N. Mex.
WGLI Cornlng. N. \mathbf{Y}.
WWSC Glen Falls.
WHDL Olean. N.
WKAL Pominesio. N. Y WKAL Rome, N.Y
WGNC Gastonla, N.C.
WHKP Menders. N.C WHKP Hendersonvilie. N.C. WFBS Spring Lake, N. KGCA Rugby, N.Da WMOH Hamilton WLEC Sandusky. Ohin KWHW Allus OKI Ohl KGFF Shawnee, Okla. KSIW Woodward, OkIa KFLW Klamath Fe. KLBM Klamath Falls. Ore KBPS Portland, Ore KBPS Portand, Or
WWG Erle, Pa, WWGO Erle, Pa,
WFRA Franklin, Pa,
WOAD Indiana, WPAM Pottsville, Pa WMPT So. Williamsuort, Pa, WJPA Washinglon. Pa, WCPR Coamo, P.R.
WQRI W. Warwlek, R.I W OSN Charleston, S.C. WMYB Ayrtle Beach. S.C. WHSC Hartsville. S.C. KYNT Yankton, S. \mathbf{O} S. Oak WLAR Athans. Tenn.
W MOC Chattannona. Tenn. WSMG Greenoura, Tenn WLAF LaFollette Tenn. WGNS Murfraeshoro. Tenn. KAYC Peanimnnt. Tex. KCTI Gonzales Tex. KCYL Limpasas. Tex KMHT Marshall, Tex KAMY MrCamey, Tex KNET Palestine, Tox
KSNY Snyder, Tex.
KURA Moah. Utah
KDXU St. George, Utah
W SNO Barre, VI.
WTSA Brattieboro, Vt,
WEN2 Highland Sprino
WREL Lexington, Va,
WLPM Suffolk. Va.

Canadian AM Stations by Frequency

Canadlan stations listed alphabetically by eall lettors withln groups, Abbreviations: $k H z$, frepuency In klloeyeles; w.P.. power in watts:

Hz Wave Length	W.P.	h Hz Wave Length	.	kHz Wave Length		kHz Wave Length	W.P.
40-555.5		90-508.2		640-468.5			
CBK Regina, Sask. CBT Grand Fails, Nind.	$\begin{aligned} & 50.000 \\ & 10,000 \end{aligned}$	CFAR Flin Flon, Man.	$\begin{aligned} & 10.000 \mathrm{~d} \\ & 1,000 \mathrm{n} \end{aligned}$	CBN St. John's. Nfld.	10,000	CFOB Fort Fra	00d
50-545.1 .		CKEY Toronte. Dit.	10.000 d 5.000 n	680-440.9		AB M	500n $0,000 \mathrm{~d}$
CFBR 8udbury. Ont. CFNB Fredericton. N.B. CH LN Trots-Rivieres, Que.		CKRS Jonquie	1,000	CHFI Teronto Ont	5.000		5,000n
	1,000d	CFTK Terraee ${ }^{\text {B }}$	10.000	CHFI Toronto, Ont.	1.000 d 10.000 n	AD Montreal, Que,	50000 .000 d
	10.000 d 5.000 n	60	10.000		$\begin{array}{r} 10,000 \mathrm{n} \\ 1,000 \end{array}$	89 Bellevilia, Ont.	10.000 n 1.000
CKPG Prince George, B.C.	c. 10,000	CFCF Montreal, que.	5.000	CJOB Winnipef.	10.000 $10,000 \mathrm{~d}$	CJLX Fort William, on	10.000 d
560-525.4		CFCH Callander, Ont.	10.000 d	GGB Timmin	$2,500 \mathrm{n}$	CKOK Penticton, B.C.	5,000n $0,000 \mathrm{~d}$
CFDS Owen Sound, Ont. CHCM Marystown, Nifd.	$\begin{aligned} & 1,000 \\ & 1,000 \mathrm{~d} \end{aligned}$	CFQC Saskatoon, Sask. CJOR Vancouver, B.C. CKCL Trurd, N.S.	$\begin{array}{r} 5.000 \\ 10.000 \end{array}$	690- 434.5		$\begin{aligned} & \text { KLW W } \\ & \text { OW } \end{aligned}$	500 n 50,000 1,000
CHTK Prince Rupert, B.C.	500n 1.000 d	uro,	1,000	CBF Montreal, Qu CBU Vancouver. B	50,000 10.000	810-3	
CJKL Kirkland Lake, Ont. CKCN Sept-lles, que.	$250 n$			710-422		CHAR Calgary,	10,000
	10,000d	CHTM Thompson	5,000n	CJSP Leamington.	1000 d	850-352.7	
	5,000n	CJAT Trail, B.C, Man.	1.000	CFRG Gravolbourg. Sask.	5.000 d	JJC Langiey, B.C.	
CKNL Fort st. John, B.C.	1.000	CKML Mont	1,000	CKVM Ville-Marie, Que.	10.000 d	KRD Red Oeer, Alta,	10.000 d
570-526.0		CKTB St. Catharines,	10,000d	csox Grand Bank. Nfid.	1,000	cKVL Verdun,	1.000 n $0,000 \mathrm{~d}$
CFCB Corner Breok	00	CKYL Peace River, Alta,	10,000	730-410.7			10,000n
CJEM Edmundston.	5.000 d		1.000 n	CINR Blind River, On		860-348.6	
CKCQ quesnel. B.C. CKEK Granbrook. B.C. CFWH Whiteharse, Y.T.	$1,000 n$ 1,000	620-483.6		CKAC Montreal. Que.	50,000	CBH Halifax, N.s.	10.000
	1.000	CFCL Timmins, Ont.	10,000d	m Dauphin, мa	10.000 d	CFPR Prince Rupert, B.C.	10.000
	1.000		$5.000 n$ 5.000	CKLG Nort		CJBC Toronto. 0	1,000 50,000
580-516.9		CKCM Grand Falls, Nfd.	10,000		10,000	900-333.1	
CFRA Ottawa, Ont. 5	50,000d	630-475.		740-405.2		CHML Hamilten, On	5,000
	10.000 n	CFCO Chatham, Ont	10.000 d	CBL Toronto, Ont.	50.000	CHNO Sudbury, Ont.	10.000 d
CHLC Hauterive, Que.	5.000d		$E^{1.000 n}$	CBX Edmonton. Alta.	50,000	CJBR Ri	10,000
CJFX Antigonish. N. S. CKAP Kapuskasing, Ont. CK PR Port Arthur, Ont.	2,5000			790-379.5		CJVI Vietoria, e.C.	10,000
	1.000	CHED Edmonton. Alta.	10.000	CFDR Da		CKB1 Prinee Albert, Sask.	10.000
	5.000 d	CHLT Sherbrooke, Que.	10,000d	CFCW Camrose. Alta	10,000	CKOR Oryden, On	1.000d
UA Edm	10	CJET Smiths Falls. On	5,000n	CKMR Neweastie, N.	1.000	CKDH Amherst, N. 8	1.000
CKWW Windser, Ont. 500		CKAR Hunteville, Ont.	1.000	CKSO Sudbury. Ont.	10,000d	-	1,000
CKXR Salmon Arm,CKY Winnipen. Man.		CKOV Kelowna. B.C.	1.000		5.000 n	CKTS Sherbrooke, Que.	1,000
		CKRC Winnipeg, Man.	10.000	CWIC Brampton.	$\begin{array}{r} 1.000 \mathrm{~d} \\ 500 \mathrm{n} \end{array}$	CKVo val D'Or, Que.	$10.000 \mathrm{~d}$

kHz Wave Length W.P.|kHz Wave Length W.P.|kHz Wave Length W.P.|kHz Wave Length W.P.

910-329.5
CBO Ottawa. Ont.
CFJC Kamloops, B.c.
CFSX Stephenville. Nild. CHRL Roberval, Queit CKLY Lindsay, ont.

920-329.9
CFRY Portage La Prairie.
CJCH Hallfax, N.S. Man. $10,000 \mathrm{~d}$
CJCJ Woodstock, N.B. $\quad \mathbf{1 , 0 0 0}$
CKCY Sault ste. Marie, Ont
$10,000 \mathrm{~d}$
$5,000 \mathrm{n}$
$2,500 \mathrm{~d}$
2.500 d
1.000 n

CKNX Wingham. Ont.
930-322.4
CFBC Saint John. N.B.
CICA Edmonton, Alberta
CJDN St. John's, Nfid.
940-319.0
CBM Montreal, Que.
CJGX Yorkton, Sask.
cमe vernon, B. C.
950-315.6
CHER Sydney. N.S.
CKBE Barrio, Ont.

960-312.3
CFAC Calgary, Alta.
CHNS Hallfax. N. 8 .
CKWS Kingston, Ont.
970 - 309.1
ckch hull. que.
CBZ Fredericton, N.B.
980-305.9
CBY Quabee. Que. CFPL London, Ontario CHEX Peterborough, ont.

CKGM Montreal, Que. CKNW Now Wostminster.
CKRM Resina, sask. ${ }^{\text {B. }}$
990-302.8
cew winnipes. Man. CBY Cornar Brook, Nfid.
1000-299.8
CKBW Bridsowater, N.S. 10,000
1010-296.9
CBR Calaary, Alta.
1050-285.5
CFGP Grande Prairie. Alta. CHUM Teronto. Ont.
CJIC Sault Ste. Marle, Ont
CINB North Battleford, sask
CKSB St, Bonitace, Men
1060-282.8
CFCN Calgary, Alta.
CJLR Quebee. Que.
1070-280.2
CBA Saekville. N. ${ }^{\text {B. }}$
CFAX vietoria, B.c.
CHOK Sarnia, Ont.

5,000 $10,000 \mathrm{~d}$

 C

 C
 1
 $$
c_{1}^{0}
$$

1
c
c
C

10.0000
5.000

10.000 d
50.000
10.000

10,000
$10,000 \mathrm{~d}$

10,000 10.000 d

10.000 d
1.000n

10,000
10,000 10,000
10000 d $5000 n$

5,000
10,000

10,000	CF
	CF
5,000	CFF
CF	

10,0000 5.000 m
10000 d 50,000
$10,000 \mathrm{~d}$ 5,000n

n

10,000

00

50.000

000

000

 }1080-277.6
cKSA Lloydmin
$1090-275.1$

11

CKWL Williams Lake, B.C.
CKBS S1. Hyat intio, Que.
CKLS 12 sarre. auo.
ско0 О
1250-239.9
CBOF Ottawa, Ont.
CHWO Oakiville. Ont.
CKBL Matane, Que.
Cкоm Saskatoon, Sask.
1260-238.0
CFRN Edmonton, Alta,

1270—263.1
CFGT Alma. Que.
CHAT Medieine Hat, Alta. 10,000 CHWK Chilfiwack. B.C. $\quad \begin{aligned} & 10.000 \\ & 10,000\end{aligned}$ CJCB Sydmey. N.S.
1280-234.2
CHIQ Hamilton, Ont.
CHOB Powell River, b.c.
CJMS Montroal, Quie.
CJMS Mortroal. Que.
CJSL Es ckcv Qurbee, aue.

1290-232.4
CFAM Allona, Man.

1

CBAF Moneton, N.B.
cjme Resina, Sask.
1310—228.9

O

od

00n

1
 \section*{\begin{tabular}{c}
C

C.

\hline

 \section*{

C

C.

\hline
\end{tabular}
 $C J$

$C K$}

CKEC New Glasgow. N.
CKKW Kitchener, Ont.
$1330-225.4$
CKKR Resetown, Sask. $\quad 10,000$
1340-223.7
CFGB Goose Bay. NAd.
CFLH Hearst. Ont.
$1,000 \mathrm{~d}$ CFSL Weyburn, Sask.
$1,000 \mathrm{~d}$
250 n
250 n
$250 n$
$250 n$
100

$1.000 d$ 250 n

250 n CFO Yarmeuth, N.S.

250	CKAR.I Parry Sound. Ont.
1000 C	CKCR Revelstoke. B. C.

CKCR Revelstoke. B. C.
CKNR Ellioft Lake, Ont. CKOX Woodstock, Ont.

1350—222.1
CHOV Pembroke. Ont.
CJDC Damson Creek, B.C.
CJEN Kiltte, Que.
CKEN Kentvilit, N. 8
CKLB Oshawa, Ont.
1360-220.4
CKBC Bathurat, N.B.
1370—218.8
CFLV Valleyneld, Que. $\quad 1.000$
1380-217.3
CFDA Victoriaville. Que.
CKLC K.ngston, Ont.
CKPC Brantford. Ont.
1390—215.7
CKLN Nelson. b.c.
1400—214.2
CFLD Burns Lake, B. C. CIFP Riviltredu Loup, que. 10.000 d

CKCB Collingwood, ont.	
CKRN	
Rouyn, Que.	250

CKSW gwift Current. Sask. 1.000 D

1410-212.6

CFMB Montreal, Que. CFUN Vancouver, B.C. CKSL London, Ont.	$\begin{aligned} & 10,000 \\ & 10,000 \\ & 10,000 \end{aligned}$
1420-211.1	
CJMT Chicoutimi, Que. CJVR Melfort, Sask.	1.000 10.000
1430-209.7	
CKFH Tofonto, Ont. 1440-208.2	10000
CF CP Courtenay. B.C. CKPM Ottawa, Ont.	1,000 10,000
1450-206.8	
CBG Gander. NAd.	250 250
CFJR Brockville, Ont.	1.0
CHEF Granby, Que.	1.000
UC Cobourg. Ont.	1.000
CJBm Causamseal, Que.	${ }^{1.0000}$

1460—205.4

| C.JOY Guelph, Ont. $\quad 10,000 \mathrm{~d}$ |
| :--- | ---: |

CKRB Ville 8t. Georges, Que. $\begin{array}{r}10,000 \mathrm{~d}\end{array}$
$5,000 \mathrm{n}$
1470-204.0
CFOX Pointe Claire, Que. $10,000 d$
CFRW Winnipeg. Man. $\quad 5,000$

CHOW Welland, ont. | 1.000 g |
| :--- |
| 500 m |

7480-202.6
CHRD Drummondvilit. Que. 10000
7490—201.2
CFMR Fort Simpson. N.w.T.
CFRC Kingston, Ont

25
OOOC
OOO

CHYM Kitchener, Ont. $\quad 10.000 \mathrm{~d}$

CJSN Shaunavon, Sask, \quad| 5.000 d |
| :--- |
| .000 d |

CKAD Middleten. N.S. $\begin{aligned} & 1.000 \mathrm{~d} \\ & 2509\end{aligned}$
CKBM Montmasny, Que. $\begin{array}{r}1.000 \mathrm{~d} \\ \mathbf{2 5 0} \\ \hline 250\end{array}$
CFWB Campbell River, B.c.
$1500-199.9$
ckay Ducan, B.C. $\quad 1,000$
1510-199.1
$\begin{array}{lll}\text { こKOT Tillsonburg. Ont. } & 1,000 \\ 1540-195.0 & \\ \text { CHIN Teronto, Ont. } & 50.000\end{array}$
$\begin{array}{ll}1550-193.5 & \\ \text { CBE Windsor ont. } & 10.000\end{array}$
CBE Windsor, Ont. $\quad 10.000$
$1560-192.3$
CFRS Simeoe. Ont. $\quad 250 \mathrm{~d}$
$1570-191.1$
$\begin{array}{lr}\text { CFOR Orillia, Ont. } & 10,000 \mathrm{~d} \\ \text { CHUB Nanaimo. B.C. } & 1000 \mathrm{Nan} \\ \text { CKLM Montreal, Que. } & 50,000\end{array}$
1580—189.2
CBI Chieautimi. Que.
10,000
1600-187.5

Are your home-town AM stations listed correctly in White's Radio Log? If you believe there is a correction to White's listings, please check first with your local station. For each callsign obtain the correct city location, frequency, and power. (Remember, even though your local paper may list a station as a "home-town" station, it may be officially licensed by the FCC for operation in the next city.) Get all the facts on a piece of paper (be very brief), include your name and address, and mail to White's Radio Log. Radio-TV Experimenter, 505 Park Ave., New York, N. Y. 10022. Your help in contributing to the accuracy and completeness of White's Kadio L.og will be sincerely appreciated.

U. S. Television Stations by States

U. 8. stations listed aldobetieaily by eities within atate aroups, Taritories and posiessions follow, states. Chan., channol: C.L., eall letters.

Canadian Television Stations by Cities

Lecation C.L. Chan.	Location C.L. Chon.	Location C.L. Chen.	Locotion C.L. Chan.
Adams Hill, B.C. CFCR-TV-8 II		London, Ont. CFPL-TV 10	
	Colgate, Saskatchowan	London, Ont. Lookout Ridge, Near \qquad	Passmore, B.C. CHMS-TV-2 Peace River, Alta, CBXAT-1
Amherst, N.8. CJCH-TV-3 8	$\begin{array}{cc}\text { CKCK.TV-1 } & 12 \\ \text { CBUBT } & \end{array}$		Paachland, B.C. CHPT-TV-I
Areentia, Nind. CJox-TV 3	Crescent Valley, B.C. CBUBT 10	Lumby, B.C. Mabel Lake, B.c. CHID.TV.I 5 CHPP.TV.I 8	Pambroke, ont. Penticton, B,C CHOV.TY 5 CHBC-TV-I 13
Asheroft. B.C. CFCR-TV-2 10		Magdalen Islands, Que.	$\begin{array}{lll}\text { Penticton. B.C. CHBC.TV. } & \text { IS } \\ \text { Perte, Que. } & \text { CHAU.TV- } 5 & 2\end{array}$
Athabasta, Alta. CFRN-TV-4 ${ }^{\text {A }}$	Oawson Creek, B.C. CJDC.TV 5 Oeer Lake, Nfid.		Perrys, B.C. CHMS-TV.3
Attkokan, Ont. CBWCT-1 7	Orumholler, Alta. CFCN-TV-1 12	Malartic, Que, CFCL.TV. 5	Potertorough, Ont. CHEX.TV 12 Pivot. Alta.
Avola, B.C. CFCR-TV-I3	Drumheller, Alta, CHCT-TV-1 8	Manleouagan, Que.cKHQ:TV-1 10^{5}	Placentia. Nild. CHAT-TV-1 14
CKSS-TV	Dryden, Ontario CBWAT-1 9	Marquis, 8ask. CKMJ.TV 7	Port Albornie. B.C. CBUT-3
Ckss-TV	Edmonton. Alta, CJFB.TV-1 2	Marystown, Nfid. CKBENT-3 Matagami, Que. CKRN-TV-4 7	Port Alfred, Que. CKRS.TV-1
Bancroft Ont	Edmonton, Alta. CFRN-TV 3	Matane, Que. CKBL-TV 9	Port Arthur, Ont.
Ganfi, Altat CKRD-TV-2 10	Edmundston, N.B. CJBR.TV-1 13		Port Daniol, Que. CHAU-TV-3 10
CFCN-TV-2 2			Port Hardy, B.C. CFKB-TV-3 3
CHCT.TV- 213	Enderby, B.C. CHBC-TV-5 72		Port Rex
Barrio, Ont. CKVR-TV s	Falkland, B.C. CFWS.TV.1 5		Prince
Bayview. N.S. CJCH.TV-2 6	Fisher Branch, Man. CBWT-1 10		Prines G
Bin River, Sask. CKBI.TV-5	Flin Flon. Man. CBWBT 10		Prineeton. B.C. CHGP.TV. 1
Bon Actord, N.B. CHSJ-TV-1 6	Fort Franeis, Dint. CBWCT 5		Prince Rupert CFTK.TV.
Bonavista, Nfid. CJON-TV-2 10	Fort Fraser, B.C. CKPG-TV-3 6	Midway, B.C.	
Boss Mountain, B.C. ${ }^{\text {BSA-TV-2 }} 9$	Foxwarren, Man. CKX-TV-1 11	Minden, Ont. CHEX-TV-2 10	Quabee, Que.
	Gaspe, Que. CHAU-TV-6 10	Moneton, N.B. CBAFT II	Que CFCM-TV 4
Boston Bar, B.C. CFCR-TV-9			CKMI.TV 5
Bowen liand, B.C. CBUT-4 is			Quesnel, B.C. CFCR-T
			Quesnel, B.C. CKCQ.TV-1 13
lo	Grand Falls, Nfd. CJCN.TV 4	111	$\begin{array}{ll}\text { Red Lake. Ont. CBWAT-3 } 10 \\ \text { Regina, Sask. } & \text { CHRE.TV } 9\end{array}$
andon, Man. CKX.TV	Grande Pralrie, Alta. CBXAT 10		Regina, Sask.
rooks, Alta. CFCN-TV.3	Grande Vallee CKBL-TV-3 11		Red Deer, Alta, CK
Bullhead Mt., B.C. CJDC.TV-2 8			Istoke, B.C. CFZO-TV-1
Burmis, Alta. CJLH-TV.3 3	Haliburton, Ont. CKVR		Rimouski, Qua. CJBR.TV
Burnaby, B.C. CHAN.TV	Halifax, N.S. CK CBHT ${ }^{\text {a }}$	Wontreal, Que. Que CBFT 2	Riverhurst, 8ask. CJFB.TV-3 10
Burns Lake, B.C. CFTK.TV-3	Halifax, N.8. CJCH.TV 5	Montreal, Que. CBMT ${ }^{\text {a }}$	Rivitre-au-Renard CH
	Hamilton, Ont. CHCH-TV 11	Montreal, Que. CFCF.TV 12	
Calgary, Alta. CHCT-TV 2	Hearst, Ont. CBFOT-2 7	Montreal, Que. CFTM-TV 10	
Callander, Ont. CFCH.TV 10		moose Jaw	
Campbellton, N.B. CKCD.TV 7			Roberval, Que. CKRS-TV-3
Camp Woss, B.C. CFNV-TV-1 3			Rouyn, Que. CKRN-TV
Camning, N.8. CJCH-TV-1 10			Saint John. N.B. CH8J.T
Canoe. B.C. CHBC-TV-8 3			Salmon Arm, B.C. CHBC-TV-4
Canne	Huntsville, Dnt. CKVR.TV-2 8		Saskatoon, 8ask. CF
Valemont, B.C. CFCR-TV. 14	Invermers, B.C. CFWL.TV.1 6		C
Carloton, Que. CHAU-TV	Inverness, N.S. CJCB.TV.I 6	c	Savona, B.C. CFCR-TV-7 8
Carlyte Lake, Sask. CFSS-TV	Jonquiere, Que. CKRS-TV 12		C. CFKL-TV II
Castlefar, B.C. CBUAT-2		, B.C. CJNP.TV.I	CKRN-TV-1
usapseal, Que. CKBL-TV-5 6		, 8.C. CJNP.TV.1	Sheot Harbour. N,8. CBHT-4 II
	Juskatla, B.C. CFTK.TV. 72		Shalburne, N.S. CBHT-2 8
listia, B.C. CHBC-TV-6 6	Kamloops, B.C. CFCR-TV 4		Sharbrooke, Que. CHLT.TV 7
Chandler, Que. CHAU-TV.4 7	Kapuskasing, Ont. CBFOT-1 12		Sioux Lookout, Ont. CBWAT-2
plaau, Ont. CFCL-TV-6 7	Kapuskasing, Dnt. CFCL-TV.3 3	Neweastle, N.B. $\text { CKAM-TV.1 } 7$	
	Kearns, Ont. CFCL-TV-2 2	Newesstle Ridge, B.C.	
Cherrywille, B.C. CJWR.TV-I 10	Kemano, B.C. CFTK.TV-5 2		Sointula, B.C. CFKB.TV.4
Chicoutimi, P.Q. CJPM-TV 6			Spences Bridge, B.C.
Chilliwaek, B.C. CHAN-TV-1 11	Keromeos, B.C. CHKC.TV.I ${ }^{\text {a }}$		CJNA.T
Chatleamp, N.S. CBFCT 10	Kildala, B.C. CFTK.TV. 4		Squamish, B.C. CHAR-TV
Chitoutimi, Que. CKR8-TV-2 2	Kingstom, Ont. CKWS-TV 11		Squamish, B.C. CBUT-5 II
urehill, man. CHGH.TV	Kitehener, Ont. CKCO.TV is		St. John's, Nind. CBNT 8
darwater, B.C. CFCR-TV-10	Kokish, B.C. CFKB.TV-2 9	Olalla CHKC.TV-2 II	gte Marguerite Mario CJon-TV 6
inton, B.C. CFCR.TV-4	Labrador City, Nfid. CJCL.TV 13		- marie Que.
Que. CHAU.TV.8	L'Anse a Valleau, Que.	Ottawa, Ont. CBOFT	
	CHAU.TV.9 7	CBOT	CHAU.TV- 210
ner Brook, Nfld.	Lethbridge, Alta. CJLH.TV 7	OR.TV	园
CJON-TV-1 10	Lillooet, B.C. CFCR-TV.I II	Outardes, Que. CKHQ-TV-2 12	Stephenville, Nfid. CFSN-TV
Cornwall, Ont. CJSS-TV 8	Liverpool, N.8. CBHT=1 12	CKHQ-TV. 4	Stranraer, Sask. CFQC.TV.I
renation, Alta. CKRD.TV 10	Lloydminster, Alta. CKSA-TV	Parry 8ound, Ont. CKVR.TV-I II	Sturieon Falls. Ont. CBF8T

Lecation	C.b. Chan.	Location	C.L. Ch		Location	$\text { b. } c$		Locotion		-1. C	
Sudbury, Ont.	CBFST. 13			9	Waterton P'ark,			Winalpen. Man.		CBWFT	3
Sudbury. Ont.	CKSO.TV 5	Trall. B.C.	CBUAT	$!!$							7
Swift Current, Sask.	CIFB.TV 5 CJCB.TV	Trois-Rivileres, Que Upsalquitch Lake.	CKTM-TV .B.	13	Wastwold. B.C. Whitocourt. Alta.	CBXT-2	9	Vynyard, Sask.		CKOS.TV.S	6
Sydnay, N.S.	$\begin{array}{ll} \text { CJCB-TV } \\ \text { CBFST-2 } 12 \end{array}$	Upsalquiteh Lake.	.B. CKAM-TV	12		GFRN-TV-S	12	Yellowknito. N.		KUS.TV-	
	CJTK-TV-1 3	Val D'Or, Que.	CKRN-TV-2	${ }^{8}$	WIIliams Lake,					CFYK-TV	8
Terrace, B.C.	CFTK-TV 3	Val Maris. Sask.	CJFB-TV-2	2				Yorkton. Sask.		CKOS.TV	3
The Pas, Man.	CBWBT-I 7	Vanceuver. B.C.	CHBC-TV-2	$\stackrel{2}{7}$		CKCK-TV-2	6	Yarmauth. N.S.		CBHT	
Timmins, Ont.	$\begin{array}{cc} \text { CFCL.TV } & 6 \\ \text { CBFOT } & 9 \end{array}$	Vernon. B.C. Vieteria. B.C.	CHEK-TV	6	Windsor, Ont.	$\mathbf{C K L W}-T V$	9	Yuill Mountain.		four, B.C. KBF.TV.I	5
Teronto, Ont.	CALT 6	Ville Maris, Que.	CKPN-TV-3	6	Wingham. Ont.	CKNX				(${ }^{\text {ar }}$	5

World-Wide Shortwave Stations

- Once again we take off on our big DX contest-the one without the prizes-but also the one that separates the novices from the know-it-alls. Take a whack at these and see how you do:

1. Hooray! Several DX'ers have reported hearing the Voice of the U.N. Command at Deragawa, Okinawa-long an elusive exclusive DX catch. Look for it on 9845 kHz around 1130 GMT .
2. How about a rather hard-to-hear country: Spanish Sahara? They're on the standard broadcast band just to make things more difficult, but they're running a shiny new 50.000 -watt rig to help you along. Schedule is 0900 to 1300 and 2000 to 2400 GMT.
3. How many ship stations can you log in a 30 -minute period on 2738 kHz ? That's an intership channel.
4. New country? Try on Biafra, a breakaway state in Western Africa-might be a short-lived one too. As of this writing. they're on the air as the Voice of Biafra from Enugu. Watch for them on 4855 kHz (also 4775 kHz) at 1830 to 2230 GMT.
5. You'll adore Andorra if you hear their

shortwave transmitter on 6065 kHz and 6190 to 6200 kHz . Would you believe 1300 to 1600 GMT ?

Now for the scoring. each item (except number 3) earns you 20 points. For number 3, score 1 point for each station logged.

If you score 20 you're in sad shape, 40 you show promise, 60-means you're on the ball, 80-fantastique! 100-we don't believe you!

,	This Issue's Contributors Wilfred Adams, New Hope, Pa. Bennie Martino, Brooklyn, N. Y. Al Schwartz, Olympia, Wash. Fred Nottingham, Ardmore, Okla. James Gibson, Kew Gardens, N. Y. Richard Curtis, Ft. Valley, Ga. Kerry Matthews, Miami Beach, Fla. N. LaRosa, New York, N. Y. Phil Ohman, Vancouver, B. C. Martin Kortlander, Buffalo, N. Y. Ted Arndt, Cleveland, 0. William Crosby, Chicago, III. Donald Brownson, Alliance, 0 . Tom Kneitel, New York, N. Y. Sy Reynolds, Atlanta, Ga. Barry 0'Brien, Salt Lake City, Utah Steve Francisco, El Paso, Tex. Irwin Morton, Montreal, Que. Greg Hobart, Fargo. N. D. Charles Cotton, Augusta, Ga. Russel Cook, Ottawa, Ont. Thor Nordstrom, Minneapolis. Minn.

kHz	Coll	Name	Location	GMT
5990	TGJA	R. Nuevo Mundo	Guatamala City. Gual.	0045
6000	PRK5	R. Inconfidencia	Belo Horizonte	0015
6005	CFCX		Montreal, P.Q.	2000
6016	YSS	R. Nacional	San Salvator, El Sal.	0505
6035	-	R. Globo	Rio de Janeiro	2345
6046	HJCB	V. del Tolima	Ibaque, Colombia	0350
6065	PRL8	R. Nacional	Rio de Janeiro. Braz.	0625
6070	CFRX	-	Toronto, Ont.	0920
6075	-	R. RSA	Johannesbura, S. Africa	0500
6082	OAX6Z	R. Nacional	Lima. Peru	0300
6085	ZYK2	R. Jornal	Recife, Brazil	2340
6090	HISD	R.TV Dominicana	Santo Domingo, D.R.	1045
	VLI6	Australian BC	Sydney, Austral,	1025
6103	DMQ6	Deutsche Welle	Cologne, W. Germanv	0005
6120	-	Swiss BC	Berne, Switz,	0545
6130	CHNX		Halifax, N.S.	0900
6135		R. Habana	Havana. Cuba	0415
6150	VL.R6	R. Australia	Melbourne. Austral.	1035
6180	-	BBC	London, Enqland	0400
6215	TIHBG	R. Reloi	San Jose, C.R.	0130
$62 ¢ 7$	T	R. Centinela	Loja. Ecuador	0235

41-Meter Band-7100-7300 kHz

$\begin{aligned} & 7105 \\ & 7120 \\ & 7130 \\ & 7135 \end{aligned}$	-	R. Free Europe 88C V. Free China R. Monte Carlo	Munich, Germany Tebrau, Singapore Taipei, Formosa Monte Carlo. Monaco	$\begin{aligned} & 0400 \\ & 1130 \\ & 1113 \end{aligned}$
	-			
	-			
	-			0500
$\begin{aligned} & 7150 \\ & 7185 \end{aligned}$	-	R. Moscow R. RSA	Moscow, USSR Johannes burg, S. Afr.	0200
	-			
				0515
7190	-	R. Australia	Melbourne. Austral.	
				0340
7210	-	R. SenegalR.TV Marocainne	Dakar, Senegal Rabat. Morocco	0700
7225	-			0600
$\begin{aligned} & 7265 \\ & 7270 \end{aligned}$	-	R. Tirana	Tirana, Albania	2005
	-	R. RSA	Johannesburq.	
$\begin{aligned} & 9360 \\ & 9491 \end{aligned}$		R. Nacional R. Tacna	S. Afr.	0500 2320
	OAX6H		Lima, Peru	0250

31-Meter Band-9500-9775 kHz

$\begin{aligned} & 9500 \\ & 9505 \end{aligned}$	CE950 PR822	R. Corporacion NHK R. Record	Santiago, Chile Tokyo, Japan Sao Poulo, Brazil	$\begin{aligned} & 0345 \\ & 0900 \\ & 0935 \end{aligned}$
9510	YVXJ	R. Barquisimeto	8arquisimeto. Braz.	1120
9515	XEWW	V. America Latina	Mexico City, Mex.	0115
9520	ZLI8	V. New Zealand	Wellington, N.Z.	0730
	-	V. America	Tangier, Morocco	2235
9525	\cdots	R. RSA	Johannesburg.	
9530	VUD	All India R.	Delhi, India	2135 2330
9535		Swiss 8C	Berne, Switz.	2310
9540	ZL2	R. New Zealand	Wellington, N.Z.	1115
9580	-	R. Australia	Melbourne, Austral.	1000
9590	-	R. Nederland	Bonaire, Neth. Ant.	0200
9595	JOZ3	Nihon 8C	Tokyo, Japan	1045
9600	CE960	R. Presidente	Santiago, Chile	2320
9605	DMO9	Deutsche Welle	Cologne, W. Germ.	0250
9610	VLX9	Australian 8C	Perth, Austral.	1120
9615	VUD	All India R.	Delhi, India	1130
	-	V America	Tangier, Morocco	0530
9625	\cdots	B8C	London, Enzland	0545
	4×851	Kol Yisrael	Tel Aviv. Israel	2020
9640	-	V. Free Korea	Seoul, S. Korea	1035
9645	HC. 88	V. of Andes	Quito, Eeuador	0835
9655	-	R. Habana	Havana, Cuba	0630
9660	-	Australian BC	Brisbane, Austral.	0720
9665	HEU3	Swiss 8C	Berne, Switz.	2015
9667	-	R. Colombo	Colombo, Ceyton	1240
9675	-	R. Habana	Havana, Cuba	0630
		R. Japan	Tokyo, Japan	1020
9680	$\overline{7}$	R. Nacional	Lisbon, Portugal	0305
9685	ZYR227	R. Gazeta	Sao Paulo, Braz.	2340
9690	LRA32	RAE	8uenos Aires, Arg.	0605
9695	-	Swiss 8C	Berne, Switz.	0510
9700		R. Sofia	Sofia, 8ulgaria	2330
9705	\cdots	R. RSA	Johannesburg. S. Afp.	1010
9710	-	RAI	Rome, Italy	2030
9715	-	R. Tirana	Tirana, Albania	2000
9725	-	Kol Yisrael	Tel Aviv. Israel	2115
9730	$\bar{\square}$	R. Berlin Int'\|	Berlin, E. Germ.	0230
9735	DMO9	Deutsche Welle	Cologne. W. Germ.	0515
9755	\cdots	R.TV Francaise	Paris, France	0000
9760	-	R. Ghana	Accra, Ghana	2030
		R. Nacional Espana	Madrid, Spain	0305
9770	-	Viennese R.	Vienna, Austria	2300
9833		R. 8udapest	8udapest. Hungary	0340
9865	YDF6	RRI	Diakarta. Indonesia	1100
9883	-	R. Peking	Peking, China	0345
9915	VUD	All India R.	Delhi, India	2145
9920	-	R. Pekina	Peking, China	2225
11672	-	R. Pakistan	Karachi, Pakistan	2015
11705	-	R. Vatiean	Vatican City	1930
	-	R. Sweden	Stockholm, Sweden	0400
11710	-	R. Moscow	Moscow, USSR	0400
11715	PJB	PJ8	Bonaire, Neth.	
	-	R. Canada R. 8 razzaville R. Nederland	Montilles ${ }^{\text {Montreal, }}$ Que.	0410
$\begin{aligned} & 11720 \\ & 11725 \\ & 11730 \end{aligned}$				2200
	-		Brazzaville, Congo	0515
	-		Hilversum,	
			Netherlands	. 0645
		R. Moseow	Moscow, USSR	0330
11740	CEII74	R. Nuevo Mundo	Santiago, Chile	1110

Hz Call Nome
25-Meter Band-II750-11975 kHz

11750	-	R. Kiev	Kiev, USSR	0410
11760	-	Vatican R.	-Vatican City	0110
11775	-	Swiss BC	8erne, Switz.	0715
11780	-	R. Japan	Tokyo, Japan	1130
11785	-	Radio 8erlin Inf'I	Berlin, E. Germ,	2200
11795	-	R. Nacioral	Rio de Janeiro. 8raz.	0000
11800	\cdots	R. Nacional Espana	Tenerife, Canary I.	2230
11805	-	R. Sweden	Stockholm, Sweden	0200
11810	-	R. Australia	Melbourne, Australia	0950
$\begin{aligned} & 11815 \\ & 11820 \end{aligned}$	PJB	NHK PJB	Tokyo, Japan 8onait Neth.	1000
			Antilles	1105
11855	-	Far East BC	Manila.	
11860			4 Philippines	0935
1800	-	8. Accra	Accra, Ghana	2020
11875	-	R. Berlin \|nt'l	Berlin, E. Germ.	1045
11895	-	R. Seneqal	Dakar, Senegal	2330
11900	-	R, RSA	Johannes burg.	
			S. Afr.	2100
11910	$\begin{aligned} & \text { HSK9 } \\ & \text { HCلIB } \end{aligned}$	R. Thailand V. of Andes	8 angkok. Thailand Ouito, Ecuador	$\begin{aligned} & 1115 \\ & 0230 \end{aligned}$
11940	-	R, 8ucharest	Bucharest.	0150
11945	-	R. Canada	Montreal, Que.	2300
11950	ELWA	R. Village	Monrovia, Liberia	0710
11970	-	R. Tunis	Tunis, Tunisia	0145
11990	-	R. Praque	Prague, Czech.	0000
12095	\cdots	88C	London, England	0300
15030	-	R. Peking	Peking, China	1255
15050	-	R. Liberdod	(clandestine)	0005
15056	-	R. Euzkadi	(clandestine)	1530
15060	-.	R. Peking	Peking, China	0000

19-Meter Band- 15100.15450 kHz

16-Meter Band-17700-17900 kHz

17720 8ED39	V. Free China	Taipei, Formosa	0245	
$17740-$	R. Moscow	Moscow, USSR	2030	
$17765-$	Deutsche Welle	Kigali, Rwanda	1745	
$17770-$	R. Liberty	Munich, W.		
$17775-$	R. Nederland	Germ.	Hilversum, Neth.	2310

13-Meter Band-21450-21750 kHz

$\begin{aligned} & 21485 \\ & 21535 \end{aligned}$	二	R. Vatican Springbrook R.	Vatican City Johannesburg, S. Afr.	1050 1400
21545	\cdots	R. Ghana	Accra, Ghana	1500
21630	-	88C	London, England	1630
21710	-	88 C	Londan, England	2100
21735		R. Prague	Prague, Czech.	1500
25650	-	B8C	London, England	1610

Peanut-Whistle Hams

Continued from puge 50
really know how to use their present shortwave receivers to best advantage? "Perhaps 1 in 500 ," declares Katz.

Trade Secrets. Skilled operators are indeed few and far between. Unlike the receiving and antenna sub-categories, there is no loyal following nor guidelines which a new flea-power enthusiast can look to for direction. No leader exists who will acknowledge that he is any more than an "average" operator, and few reports have ever been published which reveal the secret techniques those sacred few employ to achieve 12.000 mile DX contacts with about $\$ 45$ worth of equipment. Two things are clear, however. Nearly all record-breaking QRP contacts have been scheduled well ahead of time, and most seem to have taken place in the wee hours of the morning. But aside from this, the boys just arn't talking.

Closer examination, however, reveals that the tricks the truly skilled use are nothing more than exemplifications of the Ultimate Receiver and Kraus theories: (1) The more gain and efficiency you have in your antenna, the less power you need to make contact: (2) the more "trained" your ear is the better your chances of interpreting what an average ham would call an "unreadable signal." Add to this the fact that nearly 85 percent of the hard-core QRPers use code transmissions (CW) for DX work, and you begin to see the light.

The fact that power limitations overseas are far more stringent than in the U.S. may help explain why peanut-whistles tend to be the in Hgs abroad. Particularly in the U.S.S.S., Germany, and Australia, transistorized transmitters are the vogue and QRPers talk not in terms of watts, but milliwatts.

In the U.S. and Canada, enthusiasts generally build transmitters that are simpler in design. Yet they conduct themselves in the same manner on the air. Once a contact has been established-regardless of the distance involved-power is cranked down to the barest minimum and then measured. This provides for follow-up QSL cards that read: "Transmitter-1/isth watt input to an RCA 2N247."

Three Thousand Strong. For Novices
(who under the recently-adopted Incentive Licensing Regulations now get a 2 -year license term) probably one of the most gungho organizations to join is the QRP Amateur Radio Club-International. This is a group of some 3000 amateurs scattered throughout the world who are dedicated to low-power operation as their contribution toward relieving the tremendous QRM and congestion now running rampant on all popular ham frequencies. With the built-in 75 -watt restriction on Novices, the QRP Amateur Radio Club is practically tailor-made for these newcomers (though it by no means is restricted to Novice operators alone). Qualifications: You must run under 100 watts input (200 watts p.e.p on sideband) to be eligible. Hitch: If you're ever caught manning a transmitter which exceeds this limitation, you're drummed out permanently.

With supporters the world over, the QRP A.R.C. sponsors contests for its members, presents awards for best performances with the least power, and publishes a quarterly newsletter chock full of interesting accounts of organizational news and individual case histories. Cost for lifetime membership is only $\$ 2.00$, easily within reach of the average low-power enthusiast. Send your fee along with a request for membership to QRP A.R.C. secretary John E. Huetter, K8DZR, 2146 Chesterland Ave., Lakewood, Ohio 44107.

What can you expect if you join the fleapower community? Heterodynes, swishing VFOs, pileups. clobbering, and plenty of QRM-to say nothing of a gradually increasing feeling of insecurity and inferiority. If you're willing to weather the disadvantages, however, you may be as lucky as New Zealand's I.es Earnshaw, ZLIAAX. who managed a fine QSO with Kentucky running only 20 milliwatts input! Or maybe W6TNS who received his Worked All Continents award back in 1959 using only 80 milliwatts with a homebrew transmitter designed for Novice band operation. Or maybe even the author, who managed 40 states (confirmed through QSLs) simultanicously on both 80 meters (with 3 watts) and 6 meters (with 5 watts).

But if you become a true dyed-in-the-wool QRPer, look out. Just exceed 100 watts once, and you'll have all of hamdom's low-power addicts to contend with-to say nothing of a formal QRP International drumming-out ceremony!

Hot Line To Weatherman
Continued from page 99

no squelch, it works remarkably well. It makes use of the AM receiver and a crystal controlled convertor to receive VHF, and employs the slope detection method to demodulate the FM signal.

Convertors. There are numerous manufacturers that offer VHF convertors that are used in conjunction with AM receivers. The receiver can be either an auto radio, home $B C B$ radio. shortwave receiver, $B C B$ transistor portable, etc. This type convertor has to be wired into the receiver and instructions outlining how to do it are supplied.

Some types, such as the Metrotek "Listenin" portable convertor, doesn't have to be wired into the receiver. Just place it alongside.

Ameco offers a selection of models which can be used for various receivers. One of the Ameco convertors can be connected to an AM marine radiotelephone and used to receive weather broadcasts by setting the radiotelephone on an unused channel. Of the types available are a selection utilizing tubes or transistors. Some are tunable through several bands.

VHF Marine Radio. If you have VHF/FM marine radiotelephone, it is easy to provide for reception of weather broadcasts. Just install a $162.55-\mathrm{MHz}$ crystal in an unused marine channel setting and that is all it takes. If you have a VHF/FM marine band walkie-talkie, you can do the same thing, that is, if you have an unused channel available.

Used Equipment. A two-way VHF/FM mobile radio will operate beautifully as a weather broadcast receiver. These units can be picked up from two-way radio equipment dealers who take them in on trade when new units are sold.

Much of this equipment is obsolete wide hand FM that cannot be used commercially, so can be gotten cheaply. Realize that you won't use the transmitter portion, so install a crystal in the receiver section for 162.55 MHz and you have an excellent weather receiver. Removing the tubes from the transmitter section will cut down considerably on power drain. You should be able to get one for about $\$ 75$.

There are also lots of obsolete wideband VHF/FM walkie-talkies around that can be
equipped with a crystal for 162.55 MHz and then used as a portable weather receiver.

Construction. You might try your hand at constructing a receiver to get the weather broadcasts. A very sensitive and easily made receiver is the superregenerative type. These receivers work well at 162.55 MHz and are quite sensitive. They present few construction problems and a number of articles have been published on building them.

Reception. As is well known, the distance that you can receive VHF frequencies well depends to a great degree on the height of your antenna as well as the height of the antenna at the transmitter. Hills and valleys between the two antennas can cause dead spots, or poor reception. It is recommended that a good antenna, mounted high and in the clear, be installed. This will result in more consistently good reception.

A proper VHF antenna is needed for fixed, tunable and combination receivers as well as two-way mobile radios for best results when used as weather receivers. When close to the Weather Bureau station, an 18 -in.-length of copper wire can be used as an antenna. It is positioned vertically and then connected to the receiver "ANT" terminal. In a car, an 18 -in. whip can be installed in the center of the roof. As mentioned before, better results can be obtained when an external antenna is used, mounted as high (in the clear) as possible. The use of coaxial cable between the antenna and receiver is recommended.

Shipboard. On boats, where space is at a premium, the antenna can be one of several varieties. All of them are verticals or variations thereof and should be mounted as high as practical. Coaxial cable is required between the antenna and receiver.

Noise in the VHF band is usually much lower than in the AM broadcast and MF marine band. Also, a true FM receiver discriminates against noise impulses.

An FM receiver will give the clearest and most noise free reception. When a VHF convertor is used with an AM receiver, speech will not sound as clear because the detector is not as efficient as an FM demodulator, which uses a discriminator, ratio detector or gated beam circuit.

Whether you use a true FM receiver, or an AM receiver/VHF convertor combination, there are benefits derived from hearing up-to-date weather broadcasts from United States Weather Bureau stations, a government service for the public.

Mini-Jector
 Continued /rom page 92

down when using Mini-jector, or a miniature toggle switch. Solder the connecting leads 10 the switch before installation. The wires should be long enough to allow the board to be removed for battery replacement.

After the switch is installed, position the board so it is just ready to enter the probe handle, then cut the leads from S1 to the exact length and solder. Since the leads must fold under the perf-board when the assembly is inserted in the tube, Sl 's con-

Completed Mini-jector is ready to go to work tracking down the culprit in just about any piece of electronic gear, from hi-fi tuners to public address systems.
necting leads should be \#24 stranded hookup wire or thinner.

The commion test lead (ground) will be
connected to the common push-in terminal. On the front of the probe body, directly opposite the common push-in terminal, cut a slot with cutters: then solder about 6 in . of insulated stranded wire to the common terminal. Solder about 2 in . of \#20 or \#22 solid wire to the staked terminal (the output), slide the wire into the test prod tip, and mount the front of the lest probe. Two screws hold the front assembly in place. Now Mini-jector is ready for use.

Using Mini-jector. As a general rule, the injector's ground lead must be connected to the equipment under test, even for RF signal injection. The injector's output has been deliberately limited to about 0.1 volt, so you need not be afraid to apply the injector's output to a transistor base--you won't damage the transistor.

Should you check Mini-jector's output with a scope, you will note that the signal at Q1's collector is essentially a square wave, while the output at Q2's collector is not square-it is more like a sawtooth. This is normal. The component values for Q 2 have been selected for a sawtooth output, which has a higher harmonic content than a square wave.

The total battery current drain is approximately 0.25 to 0.5 mA , and the battery, under normal usage should rival sheif life. If you don't use the unit for a considerable length of time, remove the battery-to avoid damage in case the battery corrodes and leaks on the circuitry.

Lucky 13 for Bored DXers Continued from page 74			$\frac{\begin{array}{c}\text { Frequency } \\ (\mathrm{kHz})\end{array}}{12825 x}$	Call FFP7	Operator \& Location	
			Government			
Frequency (kHz)	Call	$\begin{aligned} & \text { Operator \& \& } \\ & \text { Location } \end{aligned}$		12808	KPH	Martinique Radiomarine Corp. Bolinas, Calif.
12890 x	VCS	Dept. of Transport Camperdown, N.S., Canada	12781.5 $12770 \times$	OST NOT	Government Brussells, Belgium U.S. Navy	
12885	WMH	Radiomarine Corp. Baltimore, Nd.	12768	PCH5	Tokosuka, Japan Government	
$12885 \times$	SAG	Government Goteburg, Sweden			Scheveningen, Netherlands	
12883	NBA	U.S. Navy Balboa, Canal Zone	12765 x	HJQ	Government Cartagena, Colombia	
12878	ICU	Government Choshi, Japan	12763.5	DAM	Funkamt Hamburg Norddeich,	
12875 x	NPG/NLK	U.S. Navy Vallejo, Calif.	$12760 \times$	0×2	W. Germany Government	
12840	WPA	Radiomarine Corp. Pt. Arthur, Texas	12760x		Lyngby, Denmark	
12826.5	WNU	Tropical Radio Tel. Slidell, La.	12750	PJK	Dutch Navy Suffisant, Curacao	
12826.5	JCS	,Government Tokyo, Japan	$\begin{aligned} & 12534 \\ & 12558 \end{aligned}$		Ships at Sea * Ships at Sea *	

Shortwave For Non-SWLS

Continued from page 58
teur news media will pick up the information and pass it around.

Overseas Hams. Some foreign amateurs tend to stay on one or two frequencies and have approximate hours and/or days of operation. Such information can be gleaned from examination of the NRRC's amateur section. Again, notes can be arranged by time.

One DXer prepares a 3×5 card on each amateur representing a new country, listing information mentioned above, then tacks the cards to a bulletin board. Thus, he can quickly refer to any item at a glance.

Another method of picking up informa-

Some special types of receivers can be used for SWLing. For example, above is a deluxe table model set featuring several SW bands; below is portable transistor all-band job.

Mood Monitoring

Continued from page 78
fied and average responses were computed with a Mneumotron Computer. The computer is triggered by the output of the same waveform generator producing the clicks. Therefore, the brain potentials in response to the clicks are treated as signals by the computer. Other brain potentials, not in response to the computer stimuli. are treated as noise and effectively cancelled out.

Output is recorded on an $\mathrm{X}-\mathrm{Y}$ plotter and on punched paper tape. The tape is then fed
tion is just by listening. American amateurs tend to concentrate in the low end of the phone band when calling foreign Hams and you can quickly spot band openings by listening for DX hounds calling "CQ DX."

Regardless of what set of frequencies you like to tune, your organization and preparation is the key to logging good DX. After you are familiar with the bands and can almost identify a station by its modulation characteristics and transmitting frequency, random tuning can yield good results.

By knowing the characteristics of the band or bands, and knowing the stations that are normally present, a stranger will stand out.

One of the keys to being a good SW DXer is keeping your equipment in good shape. Install the best antenna you can-a wire as high and as long as your space limitations permit. And arranging your listening post for convenience will make those dial-twiddling hours more fun and productive.

When making logs, put your notes in one book and, when full, file it away.

Happy SWLing. Shortwave listening can be an interesting hobby. You can be Johnny-on-the-spot rather than waiting for the six o'clock evening news on television. And, you can get first-hand experience at comparing political points of view.

The basics of joyful SWLing is to acquire some of the above-mentioned reference materials and at least one club butletin, and then plan your listening. Sce how other listeners do it, use the best of their ideas, and compare notes. Ask questions and do some reading. You'll be surprised at the results of a little diligence and perseverance when you go back to those dials, and put your "ear to the world," as it were.
into a Honeywell H-800 computer for analysis.

This revolutionary threc-year experiment proved to the Honeywell scientists that they could definitely monitor brain waves in response to defined stimuli. These patterns correlated very closely with conventional patterns of sleep and awareness, and were confirmed by the TV monitoring of the subject's behavior. As Honeywell scientist Donald I. Tepas summed up: "We can now effectively monifor human behavior."

He concludes that we will one day be able to tell whether or not a soldier on the battlefield is weary, a pilot in the air alert. an astronatut far out in space awake or asleep.

CB Moonshine
Continued from page 60

latch onto that legendary QSL. So, coming East and passing this close anyway, figured I might as well give it a good personal try.

Climbed slowly to the top of a ridge, and there just below and beyond was Seven Creek-three unpainted houses, general store, church and a one room school-just like I pictured it. I parked in front of the general store which doubled as a post office. A bunch of kids gathered round to stare at my '68 Buick. I took my keys out of the ignition, moved out the car and into post office past a blonde Daisy-May type in the doorway who was also admiring the Buick.

I walked kind of tall up to the old fellow behind the cash register. "Where can I find the Mountaineer?"

He looked me over a few seconds then gave out with a long hillbilly type laugh. "We're all mountaineers, boy."
"I mean the fellow that gets his mail under that name. The one that talks on the radio."
"Never heard of him."
There were a couple others seated in the far corner. They shook their heads in unison then all three decided to ignore me. But as I left, the gal in the doorway followed me to my car. "What do you want with the Mountaineer?"

Lying smoothly. "I'm interested in his CB compressor."

She got in the car without being asked. "You can get one of those by mail." She ran her hand along the upholstery.
"I'm in the wholesale business." Decided to meet con with con. "Thought maybe we could work out a deal." Once I got that QSL, yours truly would be long gone.
"You're one of them engineer fellows."
I nodded. It was the truth.
"Papa's been working on some refinements for his compressor." She considered it. "Maybe you could help him."
"He's your father?"
"That's right." She produced a packet of CB mail all addressed to the Mountaineer. "You start this thing and I'll direct you."
"Okay." We headed West, out of town and over another ridge. "What's your name?"
"Mary June, an' when you get to the next fork turn left." She began opening mail. Those letters containing money Mary June
put in her shirt pocket. Everything else she pitched out the window.

At that fork, the road turned to clay.
"Take it easy now, or you'll skid right off the road." Mary June scanned an FCC complaint. It wellt out the window, tuo!

I laughed. "What happens then?"
"We'll have to walk the next four miles."
"Nice day for a walk." like I said, once I got the QSL Seven Creek and I would permanently part.
"Wouldn't bother me none. I do it every day. But don't figure you're in shape."

Decided I wasn't so we crawled along at 10 miles per hour.

Mary June put my rig on the air. "Mountaineer, this is daughter. I'll be there directly. I'm bringing somebedy with me you'll want to meet."

He came back. "I'll be waiting, girl."
Mary June shut the CB off entirely and a funny feeling began around the back of my neck. Five minutes later the road came to a dead end in front of their cabin.
"Come on, papa'll be waiting inside." She moved on out of the car and up the path.

I took a long deep breath, followed. Just as soon as I was well clear of the car, Mountaineer stepped from behind a big pine tree with shotgun pointed squarely at my middle. He stood silent for a few seconds, looked me over. "Who is he, girl?"
"He's an engineer and he says he wants to help you sell your compressor." Mary June brought forth the batch of orders from her pocket.
"Don't need no selling help."
"But being an engineer he can help you with that technical problem." A gleam in her eye. "You know, the meter."

The .old man grinned. "And besides, being kind of a pretty man. you'd like to keep him a while."

Mary June blushed. "Well, he is a man."
Mountaineer motioned toward the cabin and we all started walking that way. "Yeah, boy, maybe you can help me. You've seen how the S-meter on your rig tends to jump when I use the compressor?"

I nodded and Mary June opened the door for us.
"Well, that don't look so good?" He put himself down in a rocking chair. "And to keep Mary June happy, I figure you can just be my guest until you figure out a way to keep it from jumping."

So it seems I'll latch onto that rare QSI. for sure, but how do 1 get home with it?

Dynamic Duo

Continued from page 77
operation range can be determined from the curves by using the following formula:

$$
\begin{gathered}
\text { Beta }=\frac{I_{c}}{I_{b}} \text { or Beta }=\frac{\Delta I_{c}}{\Delta I_{b}} \\
\Delta I_{c}=I_{c z}-I_{c 1} \text { and } \Delta I_{b}=I_{b, 2}-I_{b 1}
\end{gathered}
$$

Following this formula and using the values given on the curves. we can determine beta and see if the transistor is operating within its linear range.

$$
\begin{aligned}
& \text { Beta for curve 1: } \\
& \frac{\operatorname{lmA}}{.02 \mathrm{~mA}}=50
\end{aligned}
$$

Typical curves that finished Dynamic Duo will display on your scope let you check vital transistor statistics.

$$
\begin{aligned}
& \text { Beta for curve 2: } \\
& \frac{2 m A}{.04 m A}=50
\end{aligned}
$$

If the two values of beta are equal or very close in value, the transistor in both curves is operating within its linear region. 'As a check, figure the beta using the delta currents.

$$
\begin{aligned}
& \Delta I_{c}=2 m A-1 m A \text { or } 1 m A \\
& \Delta I_{b}=40 u A-20 u A \text { or } 20 u A \\
& \text { Beta }=\frac{1 \mathrm{~mA}}{.02 m A} \text { or } 50
\end{aligned}
$$

To match transistors for any applications. pick a desired transistor and connect it to the tracer. Adjust the curve tracer for the desired curves and grease-pencil the two curves on the scope's screen. Now, without disturbing the tracer or scope controls, connect similar transistors to the tracer until you find one that has approximately the same curves.

Tapeless TV Recorder

Continued from page 68
ing could then be made insensitive to the action of light. This may he what CBS says is a "sort of development process."

The basic characteristics of the photochromic dyes would fit the needs of EVR admirably, since they can provide images of extremely high resolution. (In actual fact. a square inch of film treated with such a dye can record the contents of a large book!) This is in keeping with CBS's claims that the EVR film can store much more information than can magnetic tape, and that the EVR system could be coupled with such devices as the firm's Linotron electronic typesetter.

The idea that a photochromic process such as this. or something akin to it, underlies the EVR process gains credence when it is noted that one collaborating company is a major manufacturer of dyes. Ciba Ltd. (a Swiss manufacturer of dyes) and Imperial Chemical Industries (England) jointly own Ilford Ltd., a well-known manufacturer of photographic materials. All three are involved with CBS in the EVR project.

It is only a guess on our part that CBS might be using a photochronic process, and CBS isn't ready to either confirm or deny the idea at this time. But until CBS actually reveals the techniques used, this guess is as good as any other.

EVR Vs. VTR. Manufacturers of EVR equipment, and those making magnetic video tape recording (VTR) systems, will undoubtedly battle hard for future educational and home consumer markets. For video equipment customers this spells better equipment at lower prices.

As things stand now, EVR may have a significant price advantage over VTR. EVR playback units are tentatively pegged at \$280, but even this relatively low price may drop as demand for the equipment increases. In comparison, most VTR equipment now costs upward of $\$ 1000$, but prices are going down steadily and may drop nore because of technologic advances and the pressure of immintent rough competition from EVR.

In fact, one California company (Newell Associates) reports that it has devised a new magnetic video tape deck that can bring color video into homes at prices approximating the cost of an ordinary TV set. The company has also developed a very compact
tape reel (less than 2 in. in diameter) that can pack about 45 minutes of program mate. rial into channels on standard $1 / 4 \mathrm{in}$. tape. A full-length color movie can reportedly by put on this magnetic tape for only $\$ 20$.

The anticipated cost of EVR film is from $\$ 7$ to $\$ 14$ per 20 minutes of black-and-white material. This figures out to $\$ 21$ to $\$ 42$ per hour. The cost of color hasn't been estimated as yet, but it would undoubtedly be substantially more inasmuch as double the amount of film is needed. The magnetic tape and EVR film costs already appear to be competitive.

Premium For Flexibility? Price is not the only factor involved when a customer attempts to choose between a magnetic video system and the EVR system. Flexibility of operation can be a deciding factor for many. And in this respect EVR has to take a back seat.

EVR can only be used to play films that have been factory-programmed; it cannot be used to record video programs directly off the air. On the other hand, VTR can play purchased tapes, record programs from TV broadcasts, or tape live action by the use of video cameras. Moreover, magnetic tapes can be erased and used to record new program material; this is not possible with EVR film.

You can bet a silver dollar against a burned-out resistor that video experts in many companies are working feverishly to develop other systems they aren't breathing a word about. There is no telling what may be up their electronic sleeves. Whatever it is, it will be shaken out as quickly as possible to prevent EVR from getting too much of a head start in what promises to be a revolution in TV use.

No one system is ever likely to monopolize the video recording business. There will undoubtedly be a demand for both EVR-type systems as well as for magnetic tape systems. The situation is analogous to the present healthy demand for both magnetic tape recorders and LP records. Not everyone cares about recording his own material; to these people playback alone is sufficient, and they will go on buying ready-made LP records and pre-recorded tapes. Similarly, some will want flexible equipment that can do all things in the video field; others will be quite happy with only playback equipment such as EVR, especially if the cost is lower.

Intrepid Inventor. The EVR system created by CBS came into being under the
guidance of Dr. Peter C. Goldmark, President and Director of Research of the CBS Laboratories in Stamford, Connecticut.

Twenty years ago Goldmark turned a groovy technological trick by inventing the $331 / 3-\mathrm{rpm}$ record which was to revolutionize the recording industry. But the flip side of Goldmark's success story came out more than a little scratchy. The color-TV system he also invented lost out to the now standard system developed by RCA, the arch rival of CBS.

Has Goldmark avenged his loss by beating out RCA and others in the educational and perhaps home video recording field? It's much too early to tally the final score. But if RCA or anyone else has anything to show, they will show it at first opportunity. Dr. Goldmark has already amply demonstrated that he is not given to twiddling his thumbs after one or two successes-or failures. If EVR can be improved in any way, he is surely trying to find out how.

But that's a battle the technological giants will have to wage on their own. The rest of us can only sit at ringside and make our bets about the final outcome. One way or the other, we can't lose. It is bound to be a good show in more ways than one.

The only real problem for us is this: when friend husband stops his new EVR film to contemplate the virtues of a contemporary Gina Lollobrigida for twenty minutes, does his wife have the right to demand equal ogle time with male cinematic idols?

Beer and pretzels, anyone?

Ham Traffic
Continued from page 90

9. What is chirp and how can it be remedied in a CW transmitter?
Don't let number 7 scare you. It sounds like they want a description of the manufacturing process for making transistors, which could take an engineer all day to explain. Actually, they merely want you to understand that transistors are made of layers of n - and p-types of semiconductor material. Then they want to know which layer is the emitter, which is the base, and which is the collector. You're supposed to be able to identify each on a schematic diagram of a transistor and know the difference between a $p n p$ and $n p n$ transistor. Then they want you to know the key characteristics such as alpha, beta, and cutoff frequency. That's all.
. . And Not So News. Due to a slip of the typewriter, the table of new FCC amateur frequency assignments on page 108 of the Janurary 1968 Radio-TV Experimenter carried an error that may have inadvertently discouraged some Novice operators.

A footnote to the table said Novices would not be allowed on two meters after November 22, 1968. This is not correct, since the word "phone" was accidentally left out of the copy. The new rules prohibit Novice phone operation on two meters after the date given, but still allow Novice CW operation on two meters. Present Novice operation on 80,40 , and 15 meters is unaffected by the new rules.

Sorry if my sloppy typewriter scared any of you fellows intending to work CW on two meters. There's very little brass-pounding up there in most areas, but it's a good place to gain valuable experience if you can find someone to talk to you.

Another item that will encourage prospective Novices is that they will get the first benefits of the new incentive rules. While the rest of the rules don't go into effect until November, the part about two-year license terms for Novices is now in effect! I don't know how Frank Charlie Charlie decided to be so generous, but his hig computer is now spitting out these two-year Novice tickets.

So, if you really want to be a ham, this is your golden opportunity. The added year will give all you fellows more time to practice the code on the air as you prepare for
that General test. This should be ample time for anyone with a real desire for a higher ticket to get it.

Oscar Again. Project Oscar, forgotten by many hams since its spectacular appearance in the headlines a few years ago when the first ham radio satellite was orbited, is still in business and growing.

It's now a permanent organization, based at Foothill College. Los Altos, Calif., coordinating world-wide amateur interests in satellite projects. The staff is an outgrowth of the Oscar I crew.

Though many of us don't have the equipment or the know-how to actively participate in future Oscar experiments. we'd still like to keep up to date on what the space bunch is doing. A good way to do this-and just about the only way for the casual ham-is to monitor Oscar bulletins, which are transmitted on 40 - and 20 -meter CW frequencies whenever there's Oscar news to report.

To get the latest from Oscar, look for W6ASH on 14.030 MHz at 0200 GMT and on 7.015 MHz at 5055 GMT on Fridays. Remember your GMT conversion, fellows. Those transmissions both occur on Thursday evenings, local USA time.

FOR BIGGER PROFITS! NEW CAREER OPPORTUNITIES! READ AND REPLY TO THESE CLASSIFIED ADS

Classiffed Ads 654 per word, each insertion, minimum 10 words, payable in advance. To be includad in the next ovailable issue of RADIO-TV EXPERIMENTER, copy must be in our Now York Office by Fob. 10th. Address orders to C. D. Wilson, Manager, Classified Advertising, RADIO-TV EXPERIMENTER, 505 Park Ave., Now York, N. Y. 10022.

ADDITIONAL INCOME

TURN your Mallboz into a coldmine. Catalos 254. La Dera, 1104 San Antonio Drive. Long Beach. Callf. 90807.
MAKE Your Classified Ad Pay. Get "How., To Write a Classified Ad That Pulls., Includes certificate worth $\$ 2.00$ towards classinited ad in 5 \& M. Send $\$ 1.00$ 505 Park Ave., New York. N. Y. 10022.

AUTO PARTS \& ACCESSORIES
MAKE Hot Coffee, Cocos, Boup. Tob in your own car. Complete detalis. S. A. Wtmberly Co., 119 Willow Street. Dept. D-11, Redwood City, Calif. 94063.

AUTO TRAILERS \& SUPPLIES
MOR/RYDE Rubber Suspension, No Maintenance. Deluxe Ride. Mor/Ryde. Box 579. Eikhart. Indians 46514.

BOOKS \& PERIODICALS

FREE Illustrated Catalog! Unusual Adult Books! Sondreal, 225 Granby Bt., Norfolk, Ve. 23510.

BUSINESS OPPORTUNITIES
1 MADE $\$ 0.000 .00$ a year by Mailorder! Helped others make money! Start with 810.00-Free Proof! Torrey, Box 318-T. Ypsilanth, Michisan 48197.

PREE BOOK "990 Succeessful LittleKnown Businesses." Fascinating! Work home! Plymouth 211-R, Brooklyn, N. Y. 11216.

EARTHWORMS

BIG Money Ralstng Fishworms and Crickets. Free Literature. Carter Farm-O, Plains, Oeorgia 31780.

EDUCATION \& INSTRUCTION

PCC License and Associate Degree correspoadence/residence courats. School bulletín free. Grantham Institute of Electronics, 1505 N . Western Ave., Hollywood, Callfornie 90027 .

EARN Your Degree in Electronics Engineering. Highly Effective Home Study Courses In Electronics Engineering Technology And Electronics Engineering Mathematics. Free Literature. Cook's Institute Of Electronics Engineering. P. O. Box 36185. Houston. Texas 77036. (Estabilshed 1945.)

EMPLOYMENT INFORMATION

"HOW To Get A Better Job." Errective, easy to follow instructions. Full refund if not satisfied. $\$ 2.00$. Career Alds, Box 415. Dunellen, N. J. 08812.

GIFTS THAT PLEASE

FREE, Beautiful Gift Catalos. Henry's Gifts, 1500 Joliet, Plainview. Texas 79072.

FREE GIfts With Order! Send for color catalog now! Jerome Assoclates, 11 Gothic, SM-1. Novato. Calif. 94947.

HOBBIES \& COLLECTIONS
NEW! Groovey Psychedellc Color, Post-er-of-the-month-club, $\$ 3.00$ Membership gets, two posters Freet Tide Lines. 1632 Mitton Road, Napa, Calif. 94558 .

HYPNOTISM

SELF-Hypnosis-let's you use amazing, proven power for learning, working, feeling. Hving better. Free literature. BmithMcKinley, Box 3038, San Bernardino, Calif. 92404.

INVENTIONS WANTED

WE either sell your invention or pay cash bonus. Write for detalls. Universal Inventions, 298-5, Marion, Ohto 4330%.

MISCELLANEOUS

WINEMAKERS Catalog - Samples -Reclpes-25c. Kraus. Box 451-U, Nevada, Mlssourl 64772.

THERE is no charge for the 21p Code. Please use it in your Classified Ad.

MONEYMAKING OPPORTUNITIES

YOU are important! Amaze familly, irlends. five ways to develop profitable leisure time, $\$ 4.95$. Tide Lines
Milton Road, Napa, Callf. 94558.

PERSONAL

BILL Problems? Poor credit no trouble. Not a loan company. Send for tree apNot a loan company. Send for iree ap-
plication. Automatic Acceptance, 318DC pllcation. Automatic Acceptance, ${ }^{\text {Broadway }}$ Blvd., Reno. Nev. 89502 or 307DC Pocasset Ave., Providence, R. I. 307 DC
02909.

IT's easy to stop smoking with our Swedish Formula. Thousands aiready have, Send $\$ 1.25$ today! Antaramlan, Box 2389, San Dlego, Callf, 92112.

PETS-DOGS, BIRDS, RABBITS, ETC.
REGISTERED Bloodhound Pups Black and Tan or Tawney Red. Write for detalls. Fred Crandall, Kingman, Kansas 67068.

PROFITABLE OCCUPATIONS
$\$ 25.00$ AN Hoar Possible Learn Furniture Touch-up. Illustrated Gulde $\$ 4.98$. Pegg Enterprisex, Box 243. So. Holland. P11. 60473 .

RADIO \& TELEVISION
CANADIANB-Olent Electronic Catalogs, H1-FH. Sho twave, Ham, CB. Rush \$1.00. ETCO, Dept. EX, Box 741, Montreal. Canada.

RECORDERS, SOUND EQUIPMENT

 \& SUPPLIESCHALLENGE Your Sound System with the most demanding music ever put on record and tape. Write: Concert Recordlng. Lynwood. Calif. 90262.

SEEDS, PLANTS \& NURSERY STOCK

1,000 NURSERY Items: Many unusual Items-Grafts, Seedlings, Trees, Shrubs, items-Graits, Seedings, Trees, Shrubs, Evergreens, Hedzing, Vines, Tree and Evergreen seeds. Propagation supplies, Mellinger's. 2322 West South Range Rd. North Limin, Ohio 44452.

SONGWRITERS

POEMS Wanted for musical setting and recording. Send poems. Free examination, Crown Music, $49-$ SC. West 32 , New York 10001

STAMP COLLECTING

FREE 50 Stamps including Cayman Islands. Southern Rhodesta. San Marino, Aslands. Southern Rhodesta, Moumblow. 3000 MC Maple, Approvals. Moumblow.
Costa Mesa, Calif. 92627 .

START YOUR OWN BUSINESS

UP To 904 Profit On Each 1.00 Sale. Detalls 25 . Carpenter. 2907 -C West 39th Place, Chicago, 114. 60832.

TREASURE FINDERS-PROSPECTING EOUIPMENT

TREASURE Hurters! Prospectors! Relco's new instruments detect buried kold. silver, colns. K:ts. assemhled models. Transistorized. Welghs 3 pounds. $\$ 19.95$ up. Free catalog. Relco-A30. Box 10839.
Houston. Texas 77018.

For Greater Classified Profits

why not try the new combination classified ad medium

Your classified ad will appear in SCIENCE \& MECHANICS MAGAZINE as well as in a minimum of four other SCIENCE \& MECHANICS PUBLICATIONS. Write now for information to C. D. Wilson, Managor, Classified Advertising, SCIENCE \& MECHANICS, 505 Park Ave., New York, N. Y. 10022.

You can earn more money if you get an FCC License

... and here's our famous CIE warranty that you will get your license if you study with us at home

N°OT SATISFIED with your present income? The most practical thing you can do about it is "bone up" on your electronics, pass the FCC exam, and get your Government license.
The demand for licensed men is enormous. Ten years ago there were about 100,000 licensed conmmunications stations, including those for police and fire departments, airlines, the merchant marine, pipelines, telephone companies, taxicabs, railroads, trucking firms, delivery services, and so on.
Today there are over a million such stations on the air, and the number is growing constantly. And according to Federal law, no one is permitted to operate or service such equipment without a Commercial FCC License or without being under the direct supervision of a licensed operator.

This has resulted in a gold mine of new business for licensed service technicians. A typical mobile radio service contract pays an average of about $\$ 100$ a month. It's possible for one trained technician to maintain eight to ten such mobile systems. Some men cover as many as fifteen systems, each with perhaps a dozen units.

Coming Impact of UHF

This demand for licensed operators and service technicians will be boosted again in the next 5 years by the mushrooming of UHF television. To the 500 or so VHF television stations now in operation, several times that many UHF stations may be added by the licensing of UHF channels and the sale of 10 million all-channel sets per year.

Opportunities in Plants

And there are other exciting opportunities in aerospace industries, electronics manufacturers, telephone companies, and plants operated by electronic automation. Inside industrial plants like these, it's the licensed technician who is always considered first for promotion and in-plant training programs. The reason is simple. Passing the Federal government's FCC exam and get-
ting your license is widely accepted proof that you know the fundanentals of electronics.
So why doesn't cverybody who "tinkers" with electronic components get an FCC License and start cleaning up?

The answer: it's not that simple. The government's licensing exam is tough. In fact, an average of two out of every three men who take the FCC exam fail.

There is one way, however, of being pretty certain that you will pass the FCC exam. And that is to take one of the FCC home study courses offered by the Cleveland Institute of Electronics.

CIE courses are so effective that better than 9 out of every 10 CIE-trained men who take the exam pass it....on their very first try! That's why we can afford to back our courses with the iron-clad Warranty shown on the facing page: you get your FCC License or your money back.

There's a reason for this remarkable record. From the beginning, CIF has specialized in electronics courses designed for home study. We have developed techniques that make learning at home easy, cven if you've had trouble studying before.

In a Class by Yourself
Your CIE instructor gives his undivided personal attention to the lessons and questions you send in. It's like being the only student in his "class." He not only grades your work, he analyzes it. And he mails back his corrections and comments the same day he receives your assignment, so you can read his notations while everything is still fresh in your mind.

Mail Card for Two Free Books

Want to know more? The postpaid reply card bound-in here will bring you free copies of our school catalog describing opportunities in electronics, our teaching methods, and our courses, together with our special booklet, "How to Get a Commercial FCC License." If card has been removed, just send your name and address to us.

Matt Stuczynski, Senior Transmilfer Operator, Radio
Station W'BOE
"I give Cleveland Institute credit for myFirstClass Commercial FCC
 License. Even though I had only six weeks of high school algebra, CIE's AUTO-PROGRAMMED ${ }^{\text {T1 }}$ lessons make electronics theory and fundamentals easy. I now have a good job in studio operation, transmitting, proof of performance, equipment servicing. Believe me, CIE lives up to its promises."

Chuck Hawkins, Chief Radio Technican, Divislon 12, Ohio Dept. of Highways
"My CIE Course enabled me to pass both the 2nd and 1 st Class License Exams on my first attempt...I had no prior electronics training either. I'm now in charge of Division Communications. We service 119 mobile units and six base stations. It's an interesting, challenging and rewarding job. And incidentally, I got it through CLE's Job PIacement Service."

Glenn Horning, Local Fquipment Supervisor, Western Reserve Telephone Company
"There's no doubt about it. I owe my 2nd Class FCC License to Cleveland Institute. Their FCC
 License Course really teaches you theory and fundamentals and is particularly strong on transistors, mobile radio, troubleshooting and math. Do I use this knowledse? You bet. We're installing more sophisticated elec tronic gear all the time and what I learned from CIE sure helps."

ENROLL UNDER G.I. BILL

All CIE courses are avallable under the new G.I. Bill. If you served on active duty since January 31, 1855, or are in service now, check box on reply card for G.I. Bill information.

Cleveland Institute of Electronics

1776 E. 17th St., Dept. EX-24, Cleveland. Ohio 44114
Accredited by the Accrediting Commisslon of the National Home Study Councll, and the only bome study school to provide complete-coverage of electronics fundamentals plus such up-fo-date applications as: Mificrominiaturization - Laser Theory and Application - Suppressed Carrier Modulation - Single Sideband Techniques - Logical Troubleshooting * Boolean Algebra * Pulse Tteory - Timebase Generators....and many mors.

Cleveland Institute of Electronics WARPIRANTTYY

of success in obtaining a Government FCC License

The Cleveland Institue of Electronics hereby warrants that upon completion of the Electronics Technology, Broadcast Engineering, or First-Class FCC License course. you will be able to pass the FCC examination for a First Class Conmercial Radio Telephor e License (with Radar Endorsement ;

OR unon completion of the Electroric Communications course you will be able to pass the FCC examination for a Second Class Commercial Radio Telephone License:
$A N D$ in the event trat you are unable o pass the FCC te it for the course you selact. on the very fi st try you will receive a FULL REFUSD of all tuition payments.

This warrants is valid for the entire period of the completion time allowed for the course selected.

> G. O. Allen
> President

BUILD 20 RADIO CIRCUITS AT HOME
 \author{ ```* 12 RECEIVERS \\ \\ * TRANSMITTERS \\ \\ &Q. WAVE GENERATOR \\ \\ * SiGNAL TRACER \\ \\ - AMPLIFIER \\ \\ * SIGNAL INJECTOR \\ \\ & CODE OSCILLATOR```

 with the New Improved PROGRESSIVE RADIO "EDU-KIT"®
 A Practical; Home; Radio Course
 Now Includes
 \star No Knowledge of Radio Necessary \star No Additional Parts or Tools Needed \star EXCELLENT BACKGROUND FOR TV \star SCHOOL MNQUIVES INVITED
 \& Sold In 79 Counlries
 YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE
 The "Edu-kIt" ofters you an outstanding PRACTICAL HOME RAOIO COURSE at a use of the most modern methodes of home frainink. You Eilictronics Techmicians. makink Yopracilce and servicink. THis IS A COMPLETE RAOIO COURSE IN EVEHY DETALL. In a prolessional mantrer; how to service radios. You whematics; wow to wire and solden HF and whil learn the basic princibses of radio. You Will consintived circuit chassis. study and work with and practice code, using the Progressive code Oescillator, You will iearn and practice女ressive Dynamic hadio \& Electrontcs Tester, Syuare wave Generator alitial injector, Proing instructional material, for the Novice. Technician and Generat ciath the accompany. Amateur Licenses. You wlll build Receiver, Transmliter, Gquare Classes of F.c.C. Radio will recelve an excellent background for television, Hisfland and toctronics.
 Troining Electronies Technicions Since 1946
 FREE EXTRAS
 - SIt OF TOOLS
 - SOldERING IRON
 - Electronics tester
 valuable oish
 CEATIFICATE OF MNT CARD
 TESTER INSTRUCTION MANUA TELEVISIOLITYGUIDE QUIZZES TROUBLE.SHOOTING RADIO MEMBERSHIP IN RADIOTV CLUR AMATEURLICENSETRAININGC} the product of many years of teaching and engineering is required. The "Edu. Kit' is the product of many yedrs of teaching and engincering experience. The "Edu.kit" willprovide you withan basic education in Electronics and Radn, worth many times the jow
price you pay. The Simenal Tracer alone is worth more than the price or

THE KIT FOR EVERYONE

You do not need the slightest hack iround
In radio or science. Wheilier you are interested in Rantio $\&$ Electronics because you wamt an interesting nobby, a well paying business or a fot with a tuture, you whll hind Me many tnousanas of individuals of at
used the '. Edu. krounds have successtulty used the "Edu. Hlt" in more than 79 coun careluny designed. sted by step, has theen you cannot make a mistahe. The Pe Edu. wlitat allows you to teach yoursell at your own

PROGRESSIVE TEAGHING METHOD WRFFD

and is universally accepted as the standard foremost educational radio hit In the world, Kit' uses the modern rducatlonal principle of "Mearn by ooinki, Therefore you construct uram desphaed to provide an easuly-iearned. thorough ang interestime bachground in radio. You beitn by examining the various radio parts of the "Edu-kit,." rou then learit the set you will enioy listening to regular troadeast stations. learnith cadio. With this first and trouble-shooting. Then you huitar more advanced radio. learn more aractice testing Alld techneques. Gradually, in a progressive manner, and at your own rate, you will find yourself constructing more advariced muitl-tube padlo circulis. and doing work like at Tracer. Square wave Generator and Signal Recelver. Transmitter, Code oscillator, Signal Tracer. Square wave Generator and Signal injector circuits. These are not unproicasional wiring and soldering on metal chassis, plus the new method of by means of professional

THE "EDU-KIT" IS COMPLETE

ectronus circults, cach guaranteed to operate. Our kits contain tube dikerent radio arrd able, electrolytic, mica, ceramic and paper dielectric condensers, resistors, tio taplati hardwaro, tubing, punched metal chassis, Instruction Manmals, hook-up wire, solder, In addition, you receive Printed circuit materials, including Printed circuit chassis, prolessional electric hardware and instructions. You also receive a userul sef of tools. a in addition to E.C.C. Radio Ampludes Code Instruetions and the Progressive Code Oscflator scrvicing with the Prngressive Signith tracer and the progressive silso receive lessons for Fidelity Guide aind Quiz Book. You recuive membershlo in Radio. TV Club. Free consulta hon Service, Certificate of Merit and Discount Privileges. You receive all parts. torls,

Progresslve "Edu-Kits" Inc. 1186 Eroadway. Dept. 523 DJ . Hewlete, N Y 11557

Please rush my Progressive Radio "Edu-Kit" to me, as indicated below:
Check one box to indicate choice of model

- Regular model \$26.95.

Deluxe model $\$ 31.95$ (same as regular model, except with superior parts and
tools plus Radio \& TV Parts Jackpot worth \$15.)
Check one box to indicate manner of payment
\square I enclose iull payment. Ship "Edu-Kit" post paid.
Ship "Edu-kit" C.0.D. I will pay postage.
Send me FREE additional information describing "Edu-Kit."
Name
Acldrese

PROGRESSIVE "EDU-KITS" INC.
1186 Broadway, Dept. 523DJ, Hewlett, N. Y. 11557

SERVICING LESSONS servicing in e progresslve manner. You you construct. repairs will the sets that and caluses of trouble to home. portable use the protesisional wiknal tearn tracer the uniguse shorat infector and the dynamic are learnink in this practical while you your be abiends to do many a repair iot you ees which will meightors, and eharge thes "Edu-kut." Our excesed the price of FROM OUR MAIL BAG
bury, Stataitis. of 25 Pophar Pl.. Water. several sets' for my friends. and made money. The "Edu-kit." pald for iself. I bas ready to spend $\$ 240$ for a course, Qth: Valerio, Pi O. Box 21, Magna, Utah: "The Edu-kits are wonderful. Here the answers for the questlons and atso Ridio lor the last seven years. but lite bulld Padio Testing Equipment. like to joyed every minute , worked whth the ine. Also like to liet you kricer works eef prowt of becominc member of your Rohert L.
Huntinstor. W. Va, Thought would drop you few lines to say that freHat such a batgain can be had at such palifing rice.ios have already started re. pairing radios alld phonographs. My get Into the swink of it so quichly. The the kil is realiy swelt, and finds the trouble, il there is any, to die found.

PRINTED CIRCUITRY

At no increase in price, the "Edu-Kit" a Printed Circuit Sinted Cireuitry. You build a Printed Circuit Signal Injector, a unique servicing instrument that call detect many new technique of radies. This revolutionary hecomechnique of radio construction is now becoming vopular in commercial radio and TV sets. A Printed Circuit is a special insulated ducting material which been deposited a conwurting material which takes the place of in and soldered to terminals. merely plugged frinted Circuitry is the
Automation Electronics the basis of moderin subject is a necesslics. A knowledge of this ferested in Electronics.

[^0]: Author managed to tuck module, input transformer, and capacitor Cl along rear apron of his EICO Space Ranger; associated power supply (D1, C2, R2, R3) along one side. Module is ideally mounted as close as possible to receiver's last IF transformer.

[^1]: (Continued on page 134)

[^2]: - Send your Imagineering Design Tips with full details and a photo or drawing to Radio-TV Experimenter, 505 Park Ave., New York, N. Y. 10022. The top ideas selectec by the editors will win $\$ 10.00$ each. Entries become the property of Radio-TV Experimenter and can't be returned.

