Eminti 25 Electronic Propeds RADOD EXPERTMEMER 75 c spring 63

## WHITEXS RADIO业 LOG

Centralized Home Intercom Needs No Warmup or Switch

OVER 14,000 LISTINGS WITH 600 CHANGES AM-FM-TV STATIONS WORLD-WIDE SHORTWAVE How to-

Throw TV Sound To Remote Radio

Build a Iransistor Tester for $\$ 4$ Mrke Phominhods Out of light Bulhs

Read AC Current On a Volimeter

thovile shootimg with the sigmal thacer

## yOU GET A Yaluadle GLECTRONICS LAB

Containing perst by mea, MALLORY, PYRAMID, GE, CENTRALAB, STACKPOLE, TRIM and other reliente manufecturers. Retell velue of ports olone is mowe than 25 DOLLARS

## plus a complete ELECTRONICS COURSE

You REALLY LEARN ELECIRONICS. The progressige "learn by doing" American Bosic sciences flubl systom is the easiesk most thorough and mosp exciting way tox a solid borkground in electronjics. Bosifs eniough for béginners rowarding enough for experts. Nowhere else is acourse of this srope ovailable at this LOW PRICE!

## ENTHUSIASTIC MEMBERS WRITE:

"basic princlples unforgellably
loarned"
If th unly after having emmpieted the eximert. weats In your kita that I 'ash say 1 have tguls Find unforkettably learned the hath erfinejulen
 Ara.. Yuntiers 5. ※. y
"yous kits are inferesting and
rewarding"
If ant ath electronlus atuitent in the ats fourre


 Miss.

## "for ahoed of friond rating <br> another courne.

A friend of mulue is laking a cotrobpunterier pourse in olectrwiter, and 1 thase learbrad gete


"The number of consepts presented
is omoring"
Youg klis affer a panke of experíment, usually performed amby in the thetter Mik' Throah and collese laburatisiex. The nuthure
 concregenest of zehelp developaient is alisasine,

## Available in One Complete Shipment or Divided into 4 Monthly Kits as Shown

KIT 1 - DC AND AC CIRCUITS
Equip. Por 26 Projects Including:

- Electroscope - Electro Magnet
- Galvanometer - AC Buzzer Demagnetizer - Reloy - Solenoid Coin Tosser - Solety AC Power Supply with Isolation Transformer

Subjects Covered Include:

- Magnetle Fields - Electron Theory - Electris Charge - Direct Current - Electro.Chemistry Alternating Current - Inductance - Transformer Principles FREE with kit 1 - Surprise "Mystery Box"
KIT 2 - RESISTANCE, CAPACITAVCE AND RECTIFICATION

Equip. for 18 Projects Including:

- Strobe Light - Thermocouple
- Wheatstone Bridge - Volimete:
- AC Rectifier - DC Power Supply

Subjects Covered Include:

- Ohm's Low - Power formulas
- Rectification - Resisponce Neon Glow Tubes - Capacitance - Filter Circuits

FREE with kit 2 - Electric Soldering Iron KIT 3 - AMPLIFIERS AND OSCILLATORS
Equip. for 14 Projects Ineluding: - Two Slage Ampllfier - Capacltance Burglar Alarm - Prox. Imily Detector - High Speed Strobe Light - Ripple Tank Wave Generator - Code Practice Oscillator

FREE with kit 3 - "Steps to a Ham License" Manual KIT 4 - AUDIO AMPLIFICATION AND RADIO
Equip. for 7 Projects Including:

- Microphone and Audio Ampllfier
- Broadeasf Radio - Short Wave
Radio - Signal Tracer - Con.
linuity Tester - Transmitter
Sublects Covered Include:
- Audlo Amplifiers - Amplitude Modulation - Radio Theory * Regenerative Circuits • Tuning Circuits
FREE with kit 4 - Radio-TV Service Manual


## ALL FOUR KITS IN ONE SHIPMENT ONLY $\$ 780$

 OR-YOU CAN GET THE FOUR KITS. ONE A MONTH seno $\$ 001$ with par $\$ 95$ plus cod postage ONLY COUPON ONLY ON RECEIPT OF EACH KIT
## ALL SHIPMENTS ON 10 DAY APPROVAL <br> YOUR SATISFACTION OR YOUR MONEY BACK. WE KNOW YOU WILL BE AMAZED AND DELIGHIED.

 USE THIS "NO RISK" COUPON FOR EITWER PAID IN FULL OR MONTHIY PLAN - AMERICAN BASIC SCIENCE CIUB, Inc., 501 E. Crockelf, Son Antonio 6, Texat-

 I may callel unshimpeal khts at any time

 10 day auppoval with full acfolled guarabteed

NAME
ADOHESS
CITY and STATE

Subjects Covered Include:

- Voruum Amplifier Tubes - Voltage Amplification - Oscillator Circuits - Prequency and Wave length sound Waves, Pitch and length sound Waves, Pitch a
Resonance


## PICK YOUR OWN SUCEESS STORY FROM THIS PAGE

These are the true stories of people who seemed trapped in routine, low-pay shaky jobs. Handicapped by lack of proper training, they couldn't get the things they wanted out of life-more money, a job they liked, security and happiness.

They are a small sample of the thousands of men and women-young and old-who turn to I. C. S. for help. Their will-to-learn plus I. C. S. training have changed the course of their lives.

Are you discouraged with your job and pay and feel you can't improve yourself because of lack of specialized education? Well, these men and women were in the same boat. With I. C. S. training, one of these success stories could be about you.
I. C. 5. Is the oldest and largest correspondence school. 250 courses. Business, industrial. engineering, academic, higlı school. One for you. Direct, jobrelated. Bedrock facts and theory plus practical application. Complete lesson and answer service. No skimping. Diplona to graduates.


Wins $\$ 3000$ contest-"After my I. C. S. courses I secured a bew position." snys Mr. Cecil Rhodes. My income has more than doubled and I reeently won a $\$ 3000$ sales contest.

"As a college gratuate, I found I.C.\$. very valuable." Robert liee took the 1. C. S. Course in Advertising, is now Promotion Manager for a large corporation. "I. C. S. got me started on the way up," be says.


From clerk to Assistant Estimator, thanks to I.C.S. "A ny way you lonk at it." writes Mrs. Edna James. "the time and money one spend. for I. C. S. Courses will be repaid a thousandiold."


Reparts $20 \%$ increase in salary! Gregory C. Johns says, "I. C. S. training gave me unlimited opportunity! I have completed one course, and amon nowrolled in Practical Plumbing."

## 3 FREE BOOKLETS

a 36-page pocket-size guide to advancement, a gold mine of tips on "How to Succeed." Also a big catalog outlining opportunities in your field of interest and a sample I. C.S. lesson.

Clip coupon here-and take your first big step to real success!
I.C.S., Scranton 15, Penna.

Fully Accredited Member
National Home Study Council

## IITERNATIONAL GORRESPONDENGE SGHOOLS I

Box J3781A, Scranton 15, Penna.
(In Hawail: P. O. Box 418, Honolutu. In Cinada: I. C. S. Canadian, Led., Montreal.)
Without cost or obligation, rush me FREE Success Kit, with 3 valuable booklets: (1) How to Succeed; (2) opportunity booklet
about the fleld I've checked below; (3) Sample I.C.S. Lesson.

ARCHITECTURE 2HA
BUILDING TRADES
$\square$ Air Conditioning
$\square$ Archliecture
Arch. Drawing
Building Contracting and Estimating
Carpentry \& Millwork
Heating
House Planning

1. Painting

ART and OESION
ART and OESION
$\square$ Fashion lllustrating
Fashion lliustrating Magazine Illustrating Show Card z Sign painting
$\square$ Sketching and Painting AUTOMOTIVE
C Auto Body Rebuilding
$\square$ Aulo Etectric
Technician

- Automobile Mechanic - Engine (Gas \& Diesel) - Engine Tune.Up Name

- indusirial Telemetering - Practical Eleshnician - Practlcal Lineman


## Electronics

## $\square$ Automation

Basic Elecironics

- Electronic Conmuters 7 Electronics Techniclan Hi.Fi Stereo an-1 Sound Systems A Industrial Electironics Duttrasonics
ENGINEERINO
(Prolessienal)
FChemical
${ }^{5}$ CivII
E Electrical
Mechanical
ENGLISH and WRITINO
- Gefter Business

Writing
$\square$ Introductory
$\square$ Short Story Wriling
-Practical English HIGH SCHOOL (Diploma) R High School General 5 High School Math High School - High School Vacalional $\square$ College Preparatory MECHANICAL and SHDP $\square$ Gas and Electric Welling
$\square$ Industrial Engineering
Industrial
Machine Design

- Machine Shop Pract

E Mechanical.
Engineericg
Reading Shop
Blueptints
$\square$ Tool Design
Salety Engineering
SECAETARIAL
C Clerh-Typis!
$\square$ Professional Secretary
$\square$ Shorthand
$\square$ Stenographio
STEAM and
oIESEL POWER
Boller Inspector
Power Plant Engineering - Stationary Dlesef Englneering [] Steam Entineering SUPERVISIOM

- Foremanship-Supiv'n CPersonnel-Lab. Rel'as TV.RAOIO
Radio and TV Servicing Radio-Telephone License
PTV Techniclan Practical Radio-TV Englneering MISCELLANEOUS $\square$ Rallroad
Textile
D Other (please specify)

Age_Sex
$\qquad$ Sex
Home Address
Cily
State
occupatlon
Employed by
Working Howrs
Special low rates to members of U. S. Armed Forces!

# RADIO-TV EXPERIMENTER 




## COYNE offers <br> Low cost ThSON <br> THELCOSTV <br> RADIO- C Training in Spare Time AT HOME

The future is YOURS in TELEVISION: A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business!

Coyne brings you MODERN-QUALITY Television Home Training; training desigued to meet Coyne standards at truly lowest cost - you pay for training only - no costly "put together kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No IRadio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-make money sarly in course. Free Lifetime Employment Service to Graduates.

## CELECTRICAL SCHOOL

CHARTERED AS AN EOUCATIOMAL INSTITUTION NOT FOR PROFIT
1501 W. Congress Parkway - Chicago 7. Depl. 13-H9

E. W. coower, H., Promiteat

Coyne - the Pnatitution bekind thit Praine residem Eial mehool of ithelisid. Fow nded 1 des.


## Send Coupon or write to sddress below

 for Free Bookand full detnils, including easy Payment I'lan. No obligation, no salesman will call.


COYNE Television
Home Trainina Division
Dept. 13 -H9, Naw Coyna Bullding
I 1501 W Congress Parky., Chicago 7, III.
Send Free Book and details on how I can get Coyne Quality Television Home Training at low cost and easy terms.
Name.
Address
City
$\qquad$

## CONTENTS



## COVER STORY

Centralized Home Intercom

fEATURE STORIES
Electronic Piano; if Never Needs Tuning ..... 44
College Radio Stations - How They Operate ..... 48
Selecting the Right Short Wave Receiver ..... 62 ..... 62
WHITE'S RADIO LOG (New Listing Incl. Over 400 Changes)
All U.S. and Canadian AM, FM, and TV Staplons;Mexico, Cuba, Worldwide Shortwave.159
FOR THE HAM AND DXER
Power Distribution Center ..... 30
Puzzled by Cryptic CB Messages? ..... 43 ..... 43
DX America ..... 60
3-Way Llstening Dynamite
75
75
Two Tube Long Wave Receiver ..... 81
Versatile Code Practice Equipment ..... 121
EXPERIMENTING, TEST EQUIPMENT, AND THE ..... SHOP ..... 36
Space Station Super Workbench
Space Station Super Workbench $\$ 4$ Transistor Tester Uses Your VOM ..... 52
Read AC Current with Your Voltmeter ..... 55
Experimenter's Transistor Breadboard ..... 66
AC Experiments with Series Clircuits. ..... 70
Determining the Velocity of Sound ..... 86
Voltage Calibrator and Switch ..... 89
Moters and Multimeters. ..... 94
Using Positive Feedback ..... 99
Troubleshooting Interference ..... 130
Home Appliance Tester ..... 138
SPECIAL PROJECTS
Low Cost Photo Lights ..... 26
Stereo Music Center.
114
114
Early American TV Cabinot ..... 117
A Musical Annunciator ..... 122
Underwater Metal Locator
133
133
Wireless Remote TV Sound.............. ..... 142
The Torpedo: Alicker Lamp. ..... 145
Thermistor Thermometer. ..... 147
DEPARTMENTS AND PUZZLES85
Electronics Numbergram
137
137
Ham Radio Anagram Puzzle ..... 150


# RCA training at home can be the smartest investment you ever made 

Look what you get in the Course in Radio and Electronic Fundamentals



## PLUS ALL THIS AT NO EXTRA COST.

15 KITS
to build a Multimeter, AM Receiver and Signal Generator. Kits contain new parts for experiments, integrated so as to demonstrate what you learn in the lessons and to help you develop technical skills. Each kit is fun to put together!


Also, comprehensive, fully-integrated home study courses in - Television Servicing - Colar Television . Automation Electronics - Transistors - Communications Electronics - Computer Programming - Electronic Drafting. Stake out your future in electronics
with any one of this wide variety of courses. Practical work with the very first lesson! Pay-only-as-you-learn! No long-term contracts to sign! No monthly installmens required. P'ay only for one study group at a time, if and when you order it!

SEND FOR FREE HOME STUDY CATALOG TODAY!

| RESIDENT SCHOOL COURSES in Loa Angeles and Now York City offer comprohonsive training in Television and Electronice. Day and Evening classes. Free Placement Service. Catalog.free on request. | RCA INSTITUTES, INC. Home Study school, Dept. RX-1.3 <br> A Service of Radio Corporation of America 3.50 West Fourth Street, New York 14, N.'Y. <br> Without obligation, rush me the FREE 6A.page illustrated booklet ${ }^{-}$Your Career in Elestroaics" describing your electronic home study training program. No salesman will call. |
| :---: | :---: |
| RCA INSTITUTES, INC. <br> A Service of Radio Corporation of America - 350 W .4 th St., New York 14. N. Y. 610 S. Main St., Los Angeles 14, Calif. | will call. <br> Name. $\qquad$ <br> Address |
|  | City. .... ......- ............ ........... ... ..... ..... .. .. Zune . . State . ........ ........ ...... |
| The Most Truste | Veterans: Emer discharge date... ............... .................... .... ................................ |
| Name in Electronics | CANADIANS-Take advantage of these same RCA coursea at to additional cont. No postage, no customs, no delay. Send cJupon to: RCA Victor Company, Led. 5581 Royalmount Ave., Montreal 9, Quebec. |

# BECOMIE A RADIO 

## Build 10-20 Radio and Electronic

 Circuits at Home
## ALL GUARANTEED TO WORK!

 THE KIT FOR EVERYONE

You do not need the slightest background in red in or ecience. Whether you are interwant in interesting hobby, well paying want an interesting hobby, well will find business or ajob with a future, you with ind
ges and backgrounds have successfully Wed the "Edu-kit" in more than, 79 coun-
tries of the world. The "Edu-kit" has been carefully desiqned, step by step: 30 that you cannot make a mistake. The your own allow you to teach yourself at

## PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu-Kit" is the foremost educational radio kit in the world, and 's unlversally accepted as the stendard in the field of electronica training. The "ede Kisirn sehematics, tudy theory, practice trouble-shooting ill in a clotely integrated program designed to provide an easily-iearnedi thoroug of the "Edu-kit, You then learn the function, eheory and wiring of these parts. Then you build a simple radio. With this frat function, woull enjoy listening to repular broadcast stationti, learn theory, practice theory and trouble-shooting. Then you bulidon morve manner, and at your own rate, you will professional Radio Technicoan. ", couret are 位eceiver. Transmitter, Code Oscillator. profescluded in the "Edu-Kit", courat are ieceiver. Transmiter, These are not unprofesSignal Tracer, Square Wave Generator and signal injector circuits. These are by meanse of shofal suonal wiring and soldering on metal chassis, plus, the new method of radio constructon kno
current.

## THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necesgary to build different radio and elecronies circuite, each guaranteed to operate. Our kits contain subef, tube socket, colls, hardware, tubing, punched meral chassis, lnteruction selenium rectifieri, volume controle and switches, etc. including. Printed circuit chasent: In addition. You receive Printed inatructions. You also receve a useful set of tools, a
 profess. The "Edu-Kit' also includet Code instructions and the Progresive Coot insing. You
Tester. in tdition to F.C.C.-type questions and th the Progressive Signal Tracer and the progres: will also receive iesson Migh Fidelity Guide and a Quiz Book. You receive membershe Discount privileges. Redio-TV club, Free Consultation service, Certificate of Merit and Dise. <br> \section*{\title{
Now! train at home <br> \section*{\title{
Now! train at home IN RADIO AND ELECTRONCS IN RADIO AND ELECTRONCS <br> <br> <br> \#20A: 20 Circuits (includes Printed Cir <br> <br> <br> \#20A: 20 Circuits (includes Printed Circuitry and 4 Advanced Circults) $\$ 26.95$
}}cuitry and 4 Advanced Circults) $\$ 26.95$
}}

You will learn troublerbhooting and servicing in a progressive manner. You will practice repsift on the sets that you construct. You will learn eymptom and causes of troll learn home, portabl the profestional signal Tracer, the unique signal Injector and the dynamic Fadio \& Electronies Tester. While you ar. learning in this practical way, you will be able to do many a repair job for your friends and neighbors, and charge fees which will far exceed the price of the Eduekit. with any aultation service will help you
J. Stataitis of $\mathbf{2 5}$ Poplar PI., Waterbury Conn., writes: "I have repaired several sett Cor my friends, and made money, paid for itself, was ready to spend $\$ 240$ for a Course, but Ifound your ad and sent for your Kit."

## FROM OUR MAIL BAG

Een Valerio, P. O. Box 21, Magna, Utah The Edu-kits are wonderful. Here I am ending you the questions and also the for the lag even years, but like to work with Redio Kits, and like to build Radio Testing Equipment. I enjoyed every minute worked with the different kits: the signal Tracer worke fine. Also like to let you know that eel proud Radio-TV Club."
Robert L, Shuff, 1534 Monroe Ave., Muntington. W. Va.: "'Thought I would drop you and was really amazed that ouch a bargain can he had at such a low price. I have already atarted reparring radios and phonographs. My friend were really surprised to see me get into the swing of it so quickly. The Troubleshooting Tester that comes with the Kit it really swell, and finds the trouble, if there eny to be found."

Choose From These Popular "Edu-Kit" Models
\#10A: 10 Circuits $\$ 14.95$
\#15A: 15 Circuits $\$ 19.95$
\#16A: 16 Circuits (includes Printed Circuitry) \$22.95

ORDER DIRECT FROM AD . . . . USE COUPON ON NEXT PAGE


# TECHNICIAN for orly ${ }^{5} 14$ Ai si 

 THE NEW IMPROVED DELUXE Progressive Radio "Edu-Kit""
## is now ready

## NOW INCLUDES

$\star 12$ RECEIVERS
$\star \quad 3$ TRANSMITTERS
† SQ. WAVE GENERATOR - AMPLIFIER

* SIGNAL TRACER
* SIGNAL INJECTOR
$\star$ COde oscillator


SCHOOL INQUIRIES INVITED

## Unconditional Money-Back Guarantee

The Progressive Radio "Edu-Kit" has been sold to many thousands of individuals, schools and organizations, public and private, throughout the world. It is recognized internationally as the ideal radio course.
By popular demand, the Progressive Radio "Edu-Kit" Is now available in Spanish as well as English.
It la understood and agreed that should the Progressive Radio "Edu-Kit" be returned to Progressive "EAu. Kits" Inc. for any ra. son whatever, the purchase price will be refunded in full, without The or question, and without delay.
The high recognition which Progressive "Edu.Kits" Inc. has earned through its many years of ser rice to the public is due to it unconditional insistence upon the maintenance of perfect ongineering, the highest instructional standards, and $100 \%$ adherence to its Unconditional Money-Back Guarantee. As result, we do not


TRAINING ELECTRONICS
TECHNICIANS SINCE 1946

## FREE

 EXTRAS- SET Of tools
- soldering iron
- ELECTRONICS TESTER
- pliers -cutters
- ALIaNMENT TOOL
- wrench Set
- valuable discount card
- certificate of merit
- tester instruction manual
- high floelity guide - quizzes
- television book - radio TRCUBLE-SHOOTING BOOK
- membership in radio-tV clubs CONSULTATION SERVICE FCC amateur license training
- printed circuitry


## You Will Find That The Progressive Radio "Edu-Kit" $\eta_{1}$ Perfect

FOR anyone who wishes to learn more about radio construction, theory and servicing.
FOR anyone who is looking for an interesting hobby.
FOR anyone who would like to learn radio but does not have time to attend regular school hours.

-     - FOR anyone who wants to start studying for a high-paying radio job.
-     - FOR anyone who wishes to start in Television.

```
Pleage &USH my Progresive Radio "Edu-Kit"' to mo.
EE SURE TO INCLUDE all the FREE EXTRAS andi BONUS TESISTOM and CON.
        MODEL deaïred.
    \square Send "Edu-kit" postpaid. Senclose remmttance in full.
    G Send "Edu-Kif" C.O.D. I will pay postage.
    [ Send me FREE adfltional information describing "Edu*Kits."
Name. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . 
```

```
Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
```

```
Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
```


# COURSE FREE <br> FOR 1 MONTH 

"If you haven't earned at least $\$ 100$ in spare
time during that period you pay not a cent."

Here It Is! The most amazing guarantee ever offered on any radio-TV course anywhere? We'll send you Abraham Mareus course to use FREE for one fuli month! If in that time you haven't actually made
 Why do we make this sensational offer? Firat, because thene books are
 copy best-seller, Second, because these books get right to the point thell you what to do in $1 \cdot 2 \cdot 3$ fashion. For example, once you masier the Arat few chanters of the the delia-jobs that account for over $80 \%$ of all service chlf. yisk nothing when you send the coupon below. DoN'T WAIt: You risk nothink when you send the coupon beidic: Youk extra money fixing radios and TV sets. Even when you decide to feep them, you pay on easy terma, Mall the coupon now.


## WHAT YOU GET IN THESE 3 GIANT VOLUMES

ELEMENTS OF TELEVISION SERVICING. Analyzes and lllustrates more TV defects than any other book, and provides complete step-by-step procedure for correcting each. You can actually SEE what to do by looking at the plctures. Reveals for the first time all details, theory and servicing procedures por the RCA 28-tube color teleFision receiver, the CBS-Columbia Model 205 color set, and the Motorola 19 -inch color receiver.
RADIO PROJECTS. Bulld your own receivers I Gives you 10 easy-to-follow projects, including crystal detector receiver -diode detector receiver-regenerative recelver-audio-frequency amplifier-tuned radio-frequency tuner-AC-DC superheterodyne receiver-etc.
RADIO SERVICING Theory and Practice. Here ts everything you need to know about radio repair, replacament, and regdjustment. Easy-to-understand, step-by-step self-training handbook shows you how to locate and remedy defects quickly. Covers TRE receivers; superheterodyne receivets, short-wave, portable, automobile receivers, etc, Explains how to use testing Instruments, such as meter, vacuum-tube voltmeters, tube checkers, etc., etc.

## TRANSISTOR IGNITION <br>  <br> now available as a 2 TRANSISTOR DIODE

## Why pay more for less?

YOU can have ALL the FUTURISTIC ADVANTAGES of TRAN SISTOR ELECTRONIC IGNITION NOW at LOWEST COST by assembling this TESTED KIT yourself. COMPLETE set of parta to build WARD circuit in February Science and Mechanics. Includes 2 POWER TRANSISTORS, $2^{1}{ }^{1}$-watt ZENER DIODES, FINNED aluminum HEAT SINK. High-ratio COIL, TRANSFIRE DECAL, ballaat, leads, and all hardware. EVERYTHING needed for a PROFESSIONAL JOB! Makes a $\$ 70$ Conversion at HALF the cost.

TKX-2 with 250 : 1 coil. 30 kv output. . . . . . . . $\$ 34.95$
TSKX-2 with $400: 1$ coil. 40 kv output. . . . . . . $\$ 39.95$
TKX. 11 transistor with $400: 1$ coil 30 kv
Above kits wired and plastic potted-add $\$ 15$.
Negative-ground only. Point insulation kit for positive-ground- $\$ 2.50 \mathrm{pp}$.

TX250 heavy duty Coil 250:1 (3 lbs.)........ $\$ 9.95$
T400 High-efficiency Coil $400: 1$ ( 3 ibs.)...... $\$ 14.95$

## Ready-to-install Conversions

You can also get TOP MLLEAGE, HIGHEST PERFORMANCE, You can also get POUG LIFE, IMPROVED STARTING with LONG POINT AND TRANSFIRE, systems. These include HEROne of our wired TRANAMPLIFIER, 400:1 COLL, and BALLAST.

Model T 6 or 12 v . Negative-ground 30 kv . . $\$ 39.95$
Model T2 Two-transistor model T............ $\$ 44.95$
Model TS Two-transistor mogetive.ground. ...... $\$ 59.95$
Model TS TS2 Twecial 4okv Negative-grandiztor Model TS. ......... $\mathbf{\$ 4 9 . 9 5}$

Model TPS AOkv \{DRECT INSTALLATION. $\$ 89.95$ Marine and other models available too. Custom Designe.
Fuli line of parts at LOWEST PRICES. Free lists. Dealer Opportunities.
Specify car, voltage, and grounding when ordering. Cash orders over $\$ 30$ prepaid. $\$ 5$ deposit COD's.

PALMER ELEGTRONIGS LABORATORIES, ING.
CARLISLE 29, MASS.
AL 6-2826 JOB OPPORTUNITIES IN ELECTRONICS Faster - with

1. METER - Transistorized, Portable, aloc Multimeter
2. SCOPE - 5 inch New Streamlined Commercial Type Oscilloscope
3. ELECTRO-LAB* - For 3 -Dimensiun Cirruit Builiding

To help you get ready F-A.S.T.E.R , . and THOROUSHLY . . . for good paying job opportunities in the fast growing Ejectronics field, DeVry Technical Institute now presents the newest and finest training advantages in its over 30 years of experience. Now . . AT HOME. in your spare time, you prepare with "industry-type" home laboratory equipment. To provide real PRACTICAL EXPERIENCE, you build a quality Transistorized Meter and a 5 -inch industrial-type Oscilloscope . . . work with small, 3 -dimensional circuits on DeVry's new Design Console . . . use highly instructive home training movies . . . and follow up-to-date lessons with many time-saving fold-out diagram sheets.
Little wonder DeVry men qualify for such fine opportunities in Space-Missiie Electronics, Automation, Computer Work, Radio-TV, Industrial Controls, and other fields.
You learn PRACTICAL techniques important in today's Space Age îndustry, because you build many compoct circuits with the streamlined Electro-Lab, using exelusive solderless "modular connectors." You perfiorm over 300 construction and test procedures in all! Your self-built test equipment has function-grouped controis, meter scales color-keyed to the panel markings - much like instrumerits used on today's jobs. What's so infportant, the home laboratory and the test equipment are YOURS TO KEEP!

## MNOUSTRY NEEDS <br> TRAINED MEN

Through this remarkalle 3-way method, Devry Tech has helped thousands of am. bitious men prepare for good jobs or their own profitable full-time or part-time service shops. It is the newest in a long series of practical training aids that we have pionetred and developed in more than three decades of experience. Sound interesting? Then see how Devry Tech interesting then see how oevry rech

From RADIO to SPACE. MISSILE ELECTRONICS DeVry's training coes all the way from radio repair . . . 10 space-missile electronics. That's the range of sulijects corered in its programs AT HOME or in its well-equipped training centers in Chicago and Toronto. You learn up-to-date techniques, working with new equipment, modern texts, movies-one of today's finest combinations of training equipment . . . geared for RESULTS!


When you cumplete the program, Devry's etficient Employment Service is ready to help you get started. There is no extra charge-ever-for this aid.

ACCREDITED MEMBER, NATIONAL HOME STUDY COUNCIL

- Trademark


## MAIL COUPON FOR FREE FACTS

[^0]
## Ueler Heavy Duty Soldering Kit

Features a professional DUAL HEAT gun. Two trigger positions let you switch instantly to low 240 -watt or high 325 -watt heat to suit the job. By using high heat only when necessary, you prolong tip life. Heat and spotlight come on instantly when trigger is pulled. Included: Soldering tip. Smoothing tip. Cutting tip. Tip-changing arench. Solder. Instructions. Plus break-proof plastic case which can be used as a lunch, fishing tackle or tool box. Model D-550PK.


For quick, easy soldering and scores of household repairs

WELLER ELECTRIC CORP. EASTON, PA.

## ETECTROTC SURTIUS BARGAIIS SAVE UP 10 90\%

RCA 6032 IMAGE.CONVERTER TUBE Combined with suitable optical systems, this 3 -electrode tube permits viewing of scene with infrared radia-
tion. Scene to be viewed is imaged by optical objective upon semi-transparent photocathode. Spectral resp., S-1; good response up to about 1200A. Max. ratings, absolute, grid \#2, $20,000 \mathrm{VDC}$ or peak AC, grid \#1,2700. $\$ 9.95 \mathrm{ppd}$.
 Rated 2.4 amp hr . Approx. dimensions: $31 / 2^{\prime \prime} 1 . \times 136^{\prime \prime}$ w. $x$ 21/6" h. Weight : 1 tb. 3 oz (plastic case) Dry-charged.
$\$ 2.50$
POTTER \& BRUMFIELO RELAY \#SM5LS SPD'T 8,000 olim $11 / 16^{\prime \prime}$ diang. Approx 1ong. Appro. He weight 1 oz. Hermetically seated. Standard 7 -pin miniature base. $\$ 2.00$

## MINOR SWITCH

 10-position, 3-pole with stopper coll and reset coil $6-12$ volts D.C. off-normal non-bridging wiper approx. dimensions: $4^{\prime \prime}$ long x $44 / 2^{\prime \prime}$ ligh x $1 \%{ }^{\prime \prime}$ wide. welght: 1 ib .

NICKEL CAOMIUM BATTERY 1.2 VOLTS
 Rechargeable thousands of fta times. Alkaline storage battery sintered-plate. Flat voltage curve during discharge. WIll hold charge for long period of time. HIgh discharge rate up to 50 amps. Spill-proof, may be used in any position. Approx 6-ampere-hour capacity. Dimensions $6^{\prime \prime}$ high; $2^{\prime \prime}$ wide; $1 / 2^{\prime \prime}$ thick. Approx. wt.: 6 oz . Uses potasslum hydroxide ( $30 \%$ Electrolite).
$\$ 1.95$
Extremely precise, rugged DC general-purpose sensitive relay. Balanced armature, single-pole, double-throw. Suitable for wide range of adjustments. Dimensions $1{ }^{3} \mathrm{~K}^{\prime \prime} \times 15 / 10^{\prime \prime} \times 111 / h^{\prime \prime}$ high. Welght: $41 / 4 \mathrm{oz}$. $5 \mathrm{~F}-10,000 \mathrm{~S}$ : 10,000 coll olims. Operates 1.0 ma DC

0 coll ohms 5F-16, 000-S : 16,000
$\$ 4.95$ Operates 0.5 ma DC


POWER TRANSFORMER Output: 12, 24, 36 volts. Input: 100 volts, 60 cycles, single-phase. Will handle $21 / 2$ amps. Steel case is hermetically sealed. $31 / 2^{\prime \prime} \times 23 / 4^{\prime \prime} \times 41 / 6^{\prime \prime}$ $\frac{\$ 5.95}{8}$

## DIRECT-READING MAGNETIC COMPASS

Full-floatlag card. compensating magnets. and dinl light avall. In
6. or $12-v$. bulh. luminous dial. Mrgd. by Bendia. Plomeer $32 /{ }^{\prime \prime}$ $311^{\prime \prime} \times 31 / y^{\prime \prime \prime} .1 \pi 4 \mathrm{lbs} . \$ 8.50$ post.
paid.

SILICON RECTIFIERS

$1 \mathbb{N} 1446$


110
$1 \times 1$
iN 1$1 \times 1467$
IN1468

X-bAND POWER LEVEL TEST SET, TS-36/AP
 Brand new, in original
packing, with accesso-
ries. Measures 10 to 30
dbm. $8700-9500$ mic.
$\$ 14.95$
All prices FOB Pasadena unless otherwise moted. No COD's
CR I SALGS CO. MUrray 1.7393

## New Model 161 UTILITY TESTER ${ }^{\oplus}$



## As an electrical trouble shooter the Model 161：

－Will test Toasters，Irons，Broilers， Heating Pads，Clocks，Fans，Vac－ uum Cleaners，Refrigerators， Lamps，Fluorescents，Switches， Thermostats，etc．
－Will test all TV fubes（including picture tubes）for open filaments． and burned out tubes．
－Measures A．C．and D．C．Voltages，
（Both 110 Volt and 220 Volt lines）．
－Will measure current consump－ tion（amperes）while the appli－ ance under test is in operation．
－Incorporates a sensitive direct－ reading resistance range which will measure all resistances com－ morly used in electrical appli－ ances，motors，otc．

## As an Automotive Tester the Model 161 will test：

－Both 6 Volt and 12 Volt Storage Batteries．Generators © Starters－ Distributors－Ignition Coils－Regulators－Relays－Circuit Breakers －Cigarette Lighters－Stop Lights－Condensers－Directional Signal Sys－ tems－All Lamps and Bulbs－Fuses－Heating Systems－Horns－Also will locate poor grounds，breaks in wiring，poor connections，etc．


Control circulte of most furnaces use 24 volts obtalned from step．
down trensformer Here＇s how down trensformer Here＇s how wo

simply insert tube in appropriate socket then follow procedure as oul． ifned in our manuel．


5 Small electric fon motor Indicates

## INCLUDED FREE！！

This 56－pago－book－practically a condonsed courso in electricity． Learn by doing．
Just read the following partial list of contents：
－What is electricity？Bimplified vertion of Ohms Lew．What is wattage？Simplified wattage charts chow to measure volt－
age．current．resistance and leakuge－How to test ail electricil appliances and motors using $\mathbb{A}$ simplifed trouble－shootins technique．
－How to test all TV tubes：also stomple procedure for determining which spectic tube（or tubes）is causing the trouble．
－How to trace tsouble in the electricel circuite and parts in eutomobiles end trucks．

Model 161 corres complete ．
wilh above book ond rest
leads．Only．．．．．．．．．．．．．．．

Test Circuit Breakers READ THIS！

 ase，current．ressistance and
amined it in the privacy of your homel


Try is for 10 days before you buy．If completely satisfied then send $\$ 5.00$ and pay the balance af the rate of $\$ 5.00$ per month until the total price of $\$ \mathbf{2 2 . 5 0}$ （plus small P．P．and budget charge）is paid．If not completely satisfied，return to us，no ex－ planation necessary．

ACCURATE INSTRUMENT CO．，INC．
Dept．D－230， 911 Faile St．，New York 59，N．Y．
Please rush me one Model 161．If satisfoctory I agree to pay $\$ 5.00$ within 10 days and balance at rate of $\$ 5$ per month until total price of $\$ 22.50$ （plus small P．P．and budget charge）is paid．If not sotisfactory，I may refurn for cancellation of account．

$$
\begin{aligned}
& \text { Nome__ } \\
& \text { Address_________________ State_ }
\end{aligned}
$$


$\qquad$
City
State

## 12 WATT TRANSISTOR AMPLIFIER s995 <br> Each Plus <br> Postage

A beautifully engineered 12 watt Transistor Amplifier for music systems, public address, paging, and many other usas. Complete with husky A.C. power supply. Uses two power transistors with thermister bias protection. Input impedance -16 ohms, ouput impedance -200 ohms. Line to feed any desired number of speakers at remote points if desired. Two volts across 16 ohm input drives to full 12 watt output. Room for additional stoges if desired to increase gain These amplifiers built to run continuous duty. Chassis $914^{\prime \prime} \mathrm{L} \times 23 / 4^{\prime \prime} \mathrm{W} \times 47 / 8^{\prime \prime}$ high. New, original manufacturer packing. Shipping weight, 12 lbs .

## TRANSISTOR BROADCASTER

A unique 2 Transistor Phono Oscillator which plays thru any broadcost bond. Radio will operate mike or phono pickup. Originally designed to add Stereo to reguar monaural system and pried of $\$ 16.75$ eaht Spectial clost-Out $\$ 2.50$
PRRC ONIY I. . . occh $\$ 2.50$


## FREE CATALOG

WRITE FOR YOUR COPY OF BIG ELECTRONIC PARTS BARGAINS. MAILED ANYWHERE IN U.S.A.

CAPITOL COMMODITIES CO. INC.
4757 N. Ravenswood Ave., Chicago 40, Illinois PHONES: LO 1-3355
 and travel trailers-colorful "camera tours" through America's most exciting parks-expert articles for your more enjoyable and profitable mobile home living. For new subscribers, mail the coupon below.

## $\checkmark$ THE NEXT 10 ISSUES $\$ 2.69$

[^1]

START NOW! Break through the Earning Barrier that slops half-trained men. N.T.S. "All-Phase"t training prepares you at home in spare time - for a high-paying CAREER in Electronics - TV - Radio as a MASTER TECHNICIAN. One Master Course at One low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation F.C.C. License, Broadcasting, Manufacturing, Aufomations Radar and Micro-Waves, Missile and Rocket Projects.
A more rewarding job. .. a secure fufure... a richer, fuller life can be yours! As an M.T.S. MASTER TECHNICIAN you con go straight to the top in industry... or in your own profitoble business.

## SUCCEED IN MANY NICH-PAYING JOBS LIKE THESE...

## I9 BIG KIIS

YOURS 10 KEEP

- TV-Radio Sales, Service and Repair
- Prolitable Business of Your Own
- Communications Technician - F.C.C. License
- HIFfi, Sterco \& Sound Recording Specialist
- TV-Radio Broadcasting Dperator
- Technician in Computers \& Missiles
- Electronics field Englneer
- Specialist in Microwaves t Servomechanisms
- Expert Trouble Shooter
- All-Phase Master Technician
N.T.S. Shop.Tested HOME TRAIN. ING is Befter, More Complete, Lower Cast .. . and it is your key to the most fascinating, apportu-nity-filled industry foday!
YOU LEARM QUICKLY AHD EASILY THE N.T.S. SHOP-TESTED WAY
You get lessons, manuals, job prajects, unlimited censultation, gradu. ate advisory service.
You build a Short Wave Long Wave Superhet Receiver, plus o lorgescreen TV set from the ground up, with parts we send you of no addi-

You work on actual job projects

Free book gives you all the facts

## NATIONAL Thimes SCH00LS <br> and

 Write Dept. RKK-13N.T.S. HOME TRAINING is

- Classroom Developed
- Lab-Studio Planned - Shop.Tested
- Industry-Approved
- Specifically Designed for Nome Study




NO OBLIGATION!
NO SALESMAN WILL CALL
tional cost. You also get a Professional Multitester for your practical job projects.

## EARN AS YOU LEARN... WE SHOW YOU HOW!

Many students pay for entire tuition -and earn mueh more - with spare time work they perform while training. Yau can do the same... we show you haw.

SEMD FOR INFORMATION NOW... TODAY! IT COSTS YOU MOTHING TO INVESTIGATE.

## latist SAMS BOOKS ${ }_{\text {roR }}$ EVERYONE IU ELECTRONICS



## USE THIS HANDY ORDER FORM

Servicing Electronic Organs. Describes typical circuits for each section of the organ. Includes special chapters on tuning, adjustment and accessories. Full troubleshooting details. Order ORG-1, only . . \$4.95
Having Fun with Transistors. Thirteen fun-filled, useful construction projects using simple transistor circuits. Easy to build-wonderful variety of practical projects and games. Order THF-1, only ..... \$2.50 Air Conditioning Installation \& Maintenance. Describes theory and operation of all types of air conditioners; central, room, auto-tells how to install, repair and maintain. Order ACM-1, only
sams PHOTOFACT Guide to TV Troubles. Causes of more than $90 \%$ of TV troubles can be isolated in minutes by following the procedures described in this book; shows symptoms, analysis checks and where to look for troubles. Order PFG-1, only . $\$ 2.50$Transistor Substitution Handbook. Shows over 13,600 direct substitutions; includes hasing diagrams, polarity indications and manufacturers for over 4000 transistor types. Order $5 \mathbf{S H}-3$, only
$\$ 1.50$
Computer Basirs: Solid-State Computer Circuits. Followup to the famous Sams "Computer Hasics" 5 -volume work. Describes latest use of semiconductors in today's computers. Order Css.6, only . . . . . . \$4.95 All 6 "Computer Basics" Volumes $\$ 27.00$ Amateur Fadio Antenna Handbook. Tells how to select the best antenna system for optimum performance. Details theory, antenna design. construction and application. Order AMA.1, only.... $\$ 2.95$
[] How to Read Schematic Dlagrams. RSD. 1

- Basic Electronics Series: Transistor Circuits. BET-1
-1962 Test Equipment Annual. TEA-2
$\square$ Modern Dictionary of Electronics. DIC-1 6.95
$\square$ ABC's of Radiotelephony. ABT-1
$\square A B C$ s of Electronic Organs, ECO.
ABC's of Synchros \& Servos. ASE-1
$\square$ Radio Receiver Servicing. RS-2 1.95
- Tube Substitution Handbook. TUB-4 2.95

101 Ways to Use Your Oscilloscope. TEM-2

FREF!Ask for the Sams Booklist, describing over 200 important books.

FREE! Index to Photofact. world's linest cir
HOWARD W. SAMS \& CO., INC.
Order from any Electronic Parts Distributor. or mail to Howard W. Sams \& Co., Inc., Dept. A-143 4300 W. 62nd St., Indianapolis 6, Ind.

Send books checked above. $\$$ $\qquad$ enclosed.
$\square$ Send FREF Booklist.Send Photofact Index
Name
Address

City $\qquad$ Zone State IN CAMADA: A. C. Simmonds \& Sons, Lto T, Toronto 7

NEW-the SCIEHCEand
uECHATICS 10 foot King Size Push-Pull Steel Tape \$2.75
Developed for making difficult upright and horizontal measurements. Wide blade can be extended for easier, more accurate work. Chrome plated die cast case. $3 / 4$ inch tempered steel blade has bonderized white enamel finish on both sides. Blade marked in eighths and sixteenths in large easy-to-read jet black. "Quickconversion" foot and inch markings on blade. Self-adjusting end hook assures accurate inside and outside measurements. EXTRA: free tape holster complete with belt clip included. Only $\$ 2.75$ each.

FULLY GUARANTEED


## Science and Mechanics PRODUCTS DIVISION

## 505 PARK AVE./NEW YORK 22, N. Y.

 Please send me King Size Push-Pull SCIENCE and MECHAN. ICS Tapes at $\$ 2.75$ each. I am en. closing full payment.Name $\qquad$
Address
(please print)

City $\qquad$ Zone $\qquad$ State

[^2]
## Pick the course for your career...

Electronics Technology


A comprehensive program cover ing Automation, Communications, Computers, Industrial Controls, Television, Transistors, and preparation for a lst Class FCC License.

First Class FCC License


If you want a 1st Class FCC ticket quickly, this streamlined program will do the trick and enable you to maintain and serv. ice all types of transmitling equipḿtent.

## Electronic Communications



Mobile Radio, Microwave and 2nd Class FCC Prep. aration are just a few of the topics covered in this "compact" program.
Carrier Telephony too, if you so desire.

Broadcast Engineering


Here's an excellent studio engineering program which will get you a 1st Class FCC License and teach you all about Program Transmission and Broadcast Transmitters.

# Get A Commercial FCC License ...Or Your Money Back! 

A Commercial FCC License is proof of electronics skill and knowledge. Many top jobs require it . . . every employer understands its significance. In your possession, an FCC Commercial Ticket stamps you as a man who knows and understands electronics theory . . . a man who's ready for the high-paid, more challenging positions.
Cleveland Institute home study is far and away the quickest, most economical way to prepare for the FCC License examination. And that's why we can make this exclusive statement:

The training programs described above will prepare you for the FCC License specified. Should you fail to pass the FCC examination after completing the course, we will refund all tuition payments. You get an FCC License . . . or your money back!
Before you turn this page, select the program that fits your career objective. Then, mark your selection on the

## Cleveland Institute of Electronics <br> 1776 E. 17th Street, Dept. EX-1 <br> Cleveland 14, Ohio <br> 

Aecredited Member
coupon below and mail it to us today. We'll send you . . . without obligation...complete details on our effective Cleveland Institute home study. Act NOW .... and insure your future in electronics.

## Mail Coupon TODAY For FREE Catalog

## Cleveland Institute of Electronics 1776 E. 17th St., Dept. EX-1

Clevelaud 14, Ohio
Please send FREE Career Information prepared to help me get ahead in Electronics, without further obligation. CHECK AREA OF MOST INTEREST -


[^3]Firat Class FCC License - Electronic Communications $\square$
other

## Your present occupation




## ELECTRONIC KITS

- STEREO \& MONO HI-FI $\square$ TEST INSTRUMENTS
- ham gear a citizens transceivers
$\square$ WALKIE-TALKIES
$\square$
transistor radio
- All easy-to-build - with complete, step-by-step, beginner-tested pictorial instructions
- All tremendously economical cost $50 \%$ less than comparable wired units
- All professional quality uncompromisingly engineered


EICO Electronic Instrument Co., Inc. 3300 Northern Blvd., L.I.C. 1, N.Y.
Please send FREE catalog and name of neighborhood dealer.

Name $\qquad$
Address $\qquad$


City Zone State $\qquad$ RTE:63a


## DC SUPPLIES

Operate from 115 volts bol cich: are complete with Tramsturmer. Rextiser. Capacitor, Switch, Lime Com, I'tof lipht, lime vise, efe Imficated ratimes are for loall condilfons.
Dual output $12 / 11$ or $\because 1 / \pm 8$

 umbis

 *arts . . . \$14.00- Wirad romblat". . \$18.95


 $\$ 10.00$-Wired 1 nilmian . $\$ 14.95^{\circ}$ MAJL COUPON Address Dept. 20-Prices F.O.B.. Lima, FOR CATALOG!

##  2133 ELIDA RD. - Box 1105 - LIMA, OHIO

[^4]
## GET YOUR First Cluss Commerial f.c.c. LCEYSE IH 12 WEEKS!

## Is the course proven?

A high percentage of our fulltime resident students get their Ist class licenses within 12 weeks from the time they start the course. Intensive FCC license training is our specialty - not just a sideline.

## Is the course complete?

The Grantham course covers all the required subject matter completely. Even though it is planned primarily to lead directly to a first class FCC license, it does this by TEACHING you electronics.

## Is the course "padded"?

The streamlined Grantham course is designed specifically to prepare you to pass certain FCC examinations. All of the instruction is presented with the FCC examinations in mind. If your main objective is an FCC license and a thorough understanding of basic electronics, you want a course that is right to the point - not a course which is "padded" to extend the length of time you're in school. The study of higher mathematics or receiver repair work is fine if your plans for the future include them, but they are not necessary to obtain an FCC license.

## Is it a "coaching service"?

Some schools and individuals offer a 'coaching service" in FCC license preparation. The weakness of the "coaching service" method is that it presumes the student already has a knowledge of technical radio. On the other hand, the Grantham course "begins at the beginning" and progresses in logical order from one point to another. Every subject is covered simply and in detail. The emphasis is on making the subject easy to understand. With each lesson, you receive an FCC type test so you can discover daily just which points you do not understand and clear them up as you go along.


## Is the school accredited?

Accreditation by the National Home Study Council is your assurance of quality and high standards. Grantham is accredited.

## Is it a "memory course"?

No doubt you've heard rumors about "memory courses" and "cram courses". offering "all the exact FCC questions." Ask anyone who has an FCC license if the necessary material can be memorized. Even if you had the exact exam questions and answers, it would be much more difficult to memorize this "meaningless" material than to learn to understand the subject. Choose the school that teaches you to thoroughly understand - choose Grantham School of Electronics.

For further details concerning F C. C. licenses and our training, send for our FREE booklet

## Wy Fins <br> Grantham Schools

1505 m. Westopn ave Les Angeles 27, Callif. (Phone: H0 7.7727)

408 Marion Streat Seattie 4, Wash.
(Phone: MA 2.7227)

3123 Gulham foad Kamsas city
(Phone JE 1-6320)
 Washingten 6, D. C.
(Phone: ST 3-3614)

FIRST CLASS F.C.C. LICENSE IN 12 WEEKS
Grantham resident schools aro located in four major cities - classes in F. C. C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year.

## MAIL COUPON NOW - NO SALESMAN WILL CALL

THE GRANTHAM FCC License Course in Communications Electranics is available by CORRESPONDENCE or in RESIDENT classes.

## CITIZENS BAND SALE!!!

UTICA TRANSCEIVERS(TOWN and COUNTRY MC-27) Reg. $\$ 179.50$
-RLE
FANON-MASCO "WALKIE TALKIES" g-transistor Deluxe Units with all ae-
cessories. 2 for $\$ 56.99$
SALE 28.99

|  | GIANT BASE STATION VALUE ! ! ! COMMAND 3-ELEMENT BEAM (Super III) PLUS CDR ANTENNA ROTATOR PLUS 100 ft . ROTOR CABLE <br> $\$ 50.00$ Value. |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| JAMES KNIGHTS CB CRYSTALS <br> (Speeify make. model and channel)............SALE |  |  |  |  |  |  |  |
| COMMAND GP-1 GROUND PLANE ANTENNA. Solid Alum. radials, heavy duty. Reg. \$16...SALE |  |  |  |  |  |  |  |
| COMMAND CB SILENCER KIT-Model SN. 3 ( $15-\mathrm{pe}$. mobile noise suppression kit: contains tuneable generator suppressor, spark plug and distributorsuppressors, gen. cond. feed-thrus)..........SALE |  |  |  |  |  |  |  |
| COMMAND 3 X LIMITER KIT <br> 3 FILTERS (HI-PASS, LO.PASS, LINE)..SALE |  |  |  |  |  |  |  |
| COMMAND CONTACT II Reg. $\$ 12$ <br> 102" Whip + Spring + Body Mount.........8ALE |  |  |  |  |  |  |  |
| SAVE ON ULTRA-LO-LOSS FOAM COAX CABLEIII |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

COMMAND 3-ELEMENT BEAM (Super III)
PLUS CDR ANTENNA ROTATOR LUS 100 ft . ROTOR CABL
sale 34.98
$\$ 1.99$ COMMAND GP- 1 GROUND PLANE ANTENNA.隹 ( 15 - pe, mohilo naise supprestion kit: contains tuneable generator suppressor, spark plug and distributor suppressors, gen. cond. teed-thrus)
COMMAND 3X LIMITER KIT
3 FILTERS (HI-PASS, LO.PASS, LINE) SALE $\$ 3.99$
02" Whip + Spring + Body

Check iteme wanted. Return ad or order with check or money order. Include postige, excess refunded. Soc service charge on


- CE DEALERS: Write for Quantity Prices!

GROVE ELECTRONIC SUPPLY COMPANY
4109 W. Belmont Avenue, Chicaro 41, Illinols
Ph. AV 3 .6160

- Rush Items chacked

O Send FREE catalog of giant CB Value
Name
. . . . . . . . . . . . . . . . . . . . . . . . .
Adarese $\qquad$
$\qquad$
City . . . . . . . . . . . . . . . . . . . . 2 zone. . . . . . State .


Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS' Fantastic Bargain Packed Catalog - Unheard of LOW, LOW, WHOLESALE PRICES on Brand Name Speakers. Changers, Tubes, Tools, Hi-Fi's, Stereo Amps, Tuners, and other Bargains.

NAME.
ADDRESS
CITY $\qquad$ ZONE STATE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS INCORPORATED

528 S. Forge Streat
Akron 8, Ohio

## ON SALE NOW! at most newsstands



## Woodworkers Encyclopedia-618

A must guide for every handyman working with wood. Over 42 heavily illustrated and detailed articles show you how to work with various kinds of woods to achieve professional results, with special sections devoted to the use of many types of tools as they apply to specific projects. Accurate and easy to follow how-to-do-it instructions for scores of different operations in the workshop. A few of the informative articles you'll enjoy reading and actually doing are:

- Radial-Arm Saw Savy
- Safety Sticks for Your Circular Saw
- Clamping Irregular Work
- Modern Multi-Purpose Workbench
- Tricky Methads of Decorating Plywood
- Glues for Homecrafters
- Carving Wood Kitchenware
- Mint-Turning on the Lathe
- Sewing Machine Jigsaw Projects
- Do Your Picture Framine at Home


## Home Built Power Tools-619

A real money saving how to handbook that gives the home craftsman step-by-step instructions for making power tools from salvage, surplus and/or inexpensive items found around his workshop or in the supply store. Each project is illus trated with complete and accurate diagrams. A materials list is also provided to help you reduce building time and en sure a finished tool that will meet with all your requirements. A few of the power tool projects featured in this handbook are:

- Making Shaped Cutters from Steel
- Shop Bench Spot Welder
- Handy Cement Mixer
- Power Filing and Saber Sawing Machine
- Switches to Lock Power Tools
- Portable Air Compressor
- Speed Reducer for Bigger Boring
Slitting Saw Arbor
- Portable Drill Doubles as Multi-Purpose Tool
- 8uild Your Own Belt Sander

Pick up a copy at your newsstand or send $\$ 1.00$ to include postage and handling with coupon below


## The Same School That Originated The RIS BUSINESS PLAN

 Up Of The Following: - 35 lessons covering basic and intermediate electronics - 9 EQUIPMENT KITS COMPLETE with tubes and batteries

- SOLDERING IRON
- 25 LeSSOHS COVERING THESE advanced electronic subjects:

Thyratron Tubes • Semiconductors Electronic Symbols and Drawings -Voltage-Regulators. ElectronicTimers - Control Systems - X-Rays * Photoelectric Devices - Dielectric Heating - Geiger Counters - Pulse Circuitry - Clippers and Limiters. Multivibrators - Electronic Counters Radar - Magnetic Amplifiers. Analog. Computers - DC Amplifiers - Digital Computers - Storage Systems - Input and Output Devices. Servomechanisms Telemetering

- 60 EXAMINATIONS
- unlimited consultation service
- KIT MANUALS

This is MODERN training for the MODERN man. You'll find no "herse and buggy" methods here. Every page of this streamlined course is dewtec to important Eteczronics principles and practical projects. Yuu'll be amazed how fast you grasp Basic Electronics the RTS way. RIS has combined modern THEORY and PRACTICE to make this the finest training program of its kind availabie!
SATISFIES NOVICE, TECHNICIAN OR HOBBYIST
Whether you're new to Electonics or an Ild "pro," chances are you'th find this to be the ideal course for you. The novice will appreciate the completeness of the training. It starts with the most basic considarations. covering each important point thoroughly, yet concisely. The texhnician will enjoy the practical review of fundamentals and profit fror the 25 advanced subjects covered.
RTS GIVES YOU "TOP MILEAEE" FOR YOUR TRAINING DOLLAR
The price quoted below buys EVERYTHING - there are no extras to pay for. RTS has gone "all out" to give you the best training val se in America. Why pay hundreds of dollars for training such as we offer when ia's avail. able for this LOW PRICE! If you can find a better training bagain. . BUY IT!
CAN BE COMPLETED IN MONTHS INSTEAD OF YEARS
Some students will complete this course with "Jet-Like" speed but we allow up to two years if your circumstances require it. You study at your own rate. You are ENCOURAGED but not pushed. You'll find the lessons prolessionaliy written LET US SEND YOU ONE OF THESE IESSONS ALONG WITH YOUR CAREER BOOKLET SO YOU CAN SEE FCR YOUREELF.

- diploma upon graduation NO OBLIGATION!

* TERMS ALSO AVALABLE

AS LITILE AS $\$ 500$ DOWN 9500 PER MOHTH SAVE TME - SEND $\$ 5.00$ WITH COUPON your first lessons mo KIT WILL BE RUSHED TO YOJ the same day they are recened!


ETS ELECTRONICS DIVISION Deft RTE 3 e15 E. roseccans avenue Los angeles 39, caiformia
Rush me full information by return mail. (Plaase Print)

Name Age $\qquad$

Address

## New Ram Jet Engine Burns Gasoline!

Puwerful continuous thrist for mundels: No moving parts. Fiasy to start. Kun plete. Only.

$\$ 1.50$

## Powerful Electric Generator

Cost U. S. Gov't $\mathbf{\$ 2 0 . 0 0 1}$ While They Last $\mathbf{\$ 3 . 9 5 - B r a n d ~ N e w l ~}$ Generatez Up To 100 Voits. to ring bells, light up lights as a medical battery. delive territic electric shock as joke
classroom uses, etc. Hand rank or gear wheel Irive. Mide by leading electral companies. lowerful almen macnets alane Postpaid \$3.95.

Underwater Electronic Detector Gov't surplus. Cost $\$ 200.00$; Special $\$ 7.95$. Use as detector or use marth for Detruit. Only
POWERFUL NEW INVENTION, UNLY $2^{\prime \prime}$ LONG SHOOTS THRU 100 PAGES-THISBOOK! 'B.B SHOT'


MAKE THIS TEST
Load your 'BB Shot' and thre against this magazine. Notice that it drives BB's through more than 100 pages. Though only $2^{\prime \prime}$ long $x 1^{\prime \prime}$ In diameter, this pocket-size device has amazing power and accuracy. Use it for targets, pests and hunting. Scientifically designed for high power, operating ease and safety.
FPFF| Get the 'BB Shot' now-we'll Include an extra Velocity - Cone and FREE Target, BB's and Automatic BE Dispenser . all for only $\$ 1.98$ ppd. 3 for $\$ 5.00$ ppd. Money Guarantee. Not sold to N. Y. C. residents or minors. GRAYSON PROD., INC., Dept. D-19, 210 Fifth Ave., N.Y. 10, N.Y.

## MONEY-BACK GUARANTE



arand new. Save $300 \%$
Fenulne
ctrie cell.
Camous brand 116 en elf.gelprathig elctric ceriment onverts ligh prate ricctic curront. ing, amuserment id devices, open doors counting $k$ timU: e lindividually or for series for added power. Special offer to NEW CUSTOMEMS. 2 Photocelle \& new rafalug of 2 500 novelties, gadguti, funmakers for oniy $\$ 3.00$. Johnson Smith \& Co. Dept. 230 Detroit 7, Michigan

## Hypnotize Fast with Hypno-Matic



Amazing Hypnormatic invention only $\$ 2.00$. Byecatihink hyphotic device operates on rotating tom for quick MYPNOTIC TRANCE, Eastly cun cealed in trocket or hand. Controt people durlage smelt \& afterwards, ion! With 2 books on hypnolism: uses \& dangers. post-hypnotic control, telf hypnotism for correcting bad habits G asier if nut jouce pleased. Complete Only $\$ 2.00$ postpaid.

Johnson Smlth 8 Co., Dept. 230
Detrolt 7. Michigan

## SIX TRANSISTOR RECEIVER KIT

Critical resistors, condensers and transistors are pre-mounted. Oscillator and IF cans come factory aligned so no equipment is needed for alignment. Powerful $1 \frac{1}{4}$ watt output. Circuit is designed for long-life battery operation. Comes complete with 9 volt battery. earphone and leather carrying case. Schematic and parts layout diagram included. Only $\$ 18.95$ postpaid. Send check or money order. NIPPON OVERSEAS A16S EROAOWAY

## TV REPAIR BOOKLET-FREE

To Prospective Customers for Tubes and Parts
"Professional TV-Radio Servicing for Everyone" Reveals tricks of the trade. Shows how anyone can quickly diagnose any trouble-professionally, easily, accurately. No hit or miss, no guess work. Booklet is yours for the asking. No strings at tached, no gimmicks.

CENTURY ELECTRONICS, Dept. RT-I
P. O. Box 327

Hicksville, L. I., N. Y.


## TEN

delightfal, exciting MOVIES
FANTASTIC OFFER ALL TEN MOVIES IN 8 mm FOR ONLY (16mm-\$4)
The movie buy of a lifetimel Ten subjects, all different brand new and thrilling, and all yours for only 20 c eoch. You must be delighted or your money backl Rush $\$ 2$ (cash, check or money order) to: SENSATIONAL MOVIE OFFER

Box 69856, Dept. G-13
West Hollywood 69, Calif.

## EXPERIMENTERS • AMATEURS • HOBBYISTS

for big free catalog of government surplus electronlc materials, many items priced at $90 \%$ below Ilst. All are new unless otherwise indicated. Here's a sample:

$\$ 12.95$
fob sacramento

SEND FOR CATALOG TODAY
P.O. BOX 6188 CCC

SACRAMENTO, CALIFORNIA

POWER SUPPLY FOR RECEIVERS, AMPLIFIERS ETC.
RA. 42 rectifier power supply designad for use with the BC. 639 . Mere's yout chancy to pick yp obeourful rack. mounting power sup. ply for o song We've soen these odvertised as high as 839 s0; look at our iow price. Line ond plate cirevits ore huse and in the plote motroge is obour 230 ot betiter than 100 mils with on ounaliary 3 amps
 2 sect. hermeticolly seoted capacitor. Rectifier is SV4. This ane comes complete with dust cover ond is used but looks iust lite new inside; oursides may be al ghrly blemished. We have o lowe units thot ore dirfy ond marred fron hondling without proper pocking; white these last mey ore priced at iust 1993 . Overall herght is $7{ }^{7 \prime \prime}$; depth behnd ponel is only $6-1 / 4$ ser over dust cover. All connections ore on reor chossis oppon. Shipping weight 35 pounds. Buy three for a hundrod pound shmpment at \$34.95. (L.14)

VACUUMTUBE VOLT METER KIT (6.1NCH METER)RMS and p. to p. scale. Input imped. 12.2 megs. Professional performance and appearformance Kit: $\$ 31.95$ ance.
Asoembled: $\$ 44.95$

"CUSTOM 70" TV SETKIT-Excellent sensitivity. 'lransformer power supply; 3 stages of $1 F$. $\ln$ 3 stages of cabicludes simine cabi-
net, 19 inch picture tuleweverything. NO'1 a portable. Kit l'rice: \$135.00

TRANSISTOR RA. DIOKIT-Superb tone and sensitivity. No deland aensitivity. circuits. Attractive, durable case. All U.S. made parts. Kit: $\$ 25.50$


5-INCH WIDE BAND OSCILLOSCOPE KIT-For black-white, color, AM-FM and electronic applications. High intonsity trace Fxtremely stable sync Advanced design.

Kit: $\$ 89.50$
Assembled: $\$ 139.50$


## from $\mathbb{C} O \mathbb{N} A R$

Get your FREE 1963 CATALOG

It's full of exciting new electronic kits of highest quality. Many items available in both kit or assembled form. Home entertainment items that make perfect family gifts or test instruments for the technician who appreciates quality and high performance. Tools, too, to make your work easier, faster. And you'll like the reasonable prices and convenient payment plans which make CONAR Kits easy to own. Mail coupon for new 1963 Catalog now.

guarantee Parts and performance guaranteed by NRInearly 50 years of pioneering in Electronics.

division of NATIONAL RADIO INSTITUTE

## Mail this Coupon

3939 Wisconsin Ave., N.W.
A1 3C Washington 16, D.C.

Send me your new 1963 CONAR KIT CATALOG
Name
Address
City $\qquad$ Zone $\qquad$ State $\qquad$

## ELECTRONIC SURPLUS BARGAINS



Solar Bank Kit five cells With Instructions...... $\$ 1.50$
All material $F O B$ Lynn, Mass. (you pay shipping). Minimum order $\$ 5.00$. These are a few selected bar. gains from our giant 60 page catalog of Covernment Surplus Material. Send 10r coin or stamps for your illustrated catalog.

> JOHN MESHNA, JR.

15 Allerton St. Lynn, Mass.100 Disc Ceramic Cond. Asstd6/1.00
Silicon Diodes 500 ma. 400PIV11.00
Germ. Rect. 5 amp 200 PIV6.50
SNIPERSCOPE M3 SEE IN DARK ..... 150.00
Infra Red filter $51 / 2$ inch ..... 1.00
Camera, Govt. cost $\$ 1200$1.00
IBM Memory plane, 200 bit. ..... 5.00

- ..... 75
Miniature Mike Buttons95
Philco SB-100 Type Osc. Transistor ..... 3/2.00
Periscope Prism45.00
bly. ..... 50
Solar bank kil ive celis win listuctions.g)


## JOHN Merton St.



POLY PAKS so So. Lynnfield, Mass.


To guide you to a successful future in

## ELECTRONICS <br> RADIO-TV COMPUTERS ELECTRICAL ENGINEERING

This interesting pictorial booklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:
MISSILES - AVIONICS • AUTOMATION SALES - DEVELOPMENT

## ELECTRICAL POWER - ROCKETRY RADAR - RESEARCH

Get all the facts about job opportunities, length of study, courses offered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwaukee School of Engineering's educational and recreational facilities. No obligation - it's yours free.

## MILWAUKEE SCHOOL OF ENGINEERING

## MAIL GOUPON TODAY!

```
Milwaukee School of Engineering
Dept. RTX-163 1025 N. Milwaukee St., Milwaukee, Wis.
Please send FREE "Your Career'' booklet
I'm}\mathrm{ interested in
\square \text { Electronics } \square \text { Radio-TV } \square \text { Computers}
 Electrical Engineering \ Mechanical Engineering
Name.
```

$\qquad$

```
                                    Age
                                    CEASE PRINT
Address
```

$\qquad$

```
City
```

$\qquad$

```Zone........ State.
\(\square\) I'm eligible for veterans education benefits. Discharge date.
```



## Citizen Band Class "D" Crystals

3rd overtone - . $005 \%$ toleranca to $\$$ mealed HCG/U holders. 050 i .050 pins. (Add 15 c per crystal for .093 pins).
ALL 23 CHANNELS IN STOCK: $26.965,26.975,26.985$, $27.005 ; 27.015,27.025,27.035,27.055,27.065,27.075,27.085$, $27.105,27.115,27.125,27.135,27.155,27.165,27.175,27.185$, $27.205,27.215,27.225,27.255$.
Matched crystal sets for ALL CB units (Specify equipment: make and model numbers) ................................................. 5.90 per tet

## RADIO CONTROL CRYSTALS

## In HCS/U HOLDERS—SIX FREQUENCIES

In atoek for immediate delivery (frequencies liated in mene.
 .093 pins avallable. add 154 per cryatal.i specify frequency.
26.995. 27.045. 27.095. 27.145.
$27.195 .27 .255 \ldots \ldots \ldots \ldots$
$4 \rightarrow 2$ (add se per crystal for postage and handilma)
ENGINEERING SAMPLES and small quantities for prototypes now made at either Chicago or Fort Myers plants with 24 hour service. IN CHICAGO, PHONE GLadstone $3-3555$
IF YOUR PARTS DEALER DOESN'T STOCK Texas Crystals, order direct and send us his name.
HTEEXAS CRYSTALSII
Div. of Whitehall Electronics Corp.

1000 Crystal Drive, Fort Myers, Florida Dept. P. 102 Phone WE 6.2100
FOR SHIPMENT VIA FIRST CLASS MAIL AT NO EXTRA COST ATTACH THIS ADVT. TO YOUR ORDERI

## 212 DO-IT-YOURSELF 254

## ILLUSTRATED CATALOG



Now you can get simple easy-to-understand plans for building boats, electrical equipment, models of gas and steam engines, famous firearms, antique automobiles, toys, games, cabin trailers, many other projects. In all, 212 useful things you can build. It's easy! It's fun! And you can save money! Send now for this brand new catalog.
| SCIENCE AND mechanics craftrprint division
505 Park Avenue, New York 29, N. X.
Enclosed is 256 which I understand will be refunded to
| me with my first order. Please send me the new 1962 edition of the Science and Mechanics Craftprint Catalog.

NAME

ADDRESS ................................
CITY ...............................ZONE.....STATE

## A MUST TOOL FOR EVERY HOME CRAFTSWAN

## SCIENCE and MECHANICS IOB TESTED

This specially designed S\&M Transfer Tool is a "must" for every home craftsman. Now, you can trace your fullsize Craft Prints directly onto the wood-faster, easier, and more accurately, too.

The toothed wheel perforates the Craft Print and outlines your cutting edge in a series of pin-point marks. The S\&M Transfer Tool is easily guided along any line-straight or curved.
No craftsman can afford to be without a Transfer Tool. You shouldn't be without it another day. Order your S\&M Transfer Tool now-use the coupon below. Only $\$ 2$ each, postpaid.



## You Can PREPARE NOW For ELECTRONICS TECHNICIAN

## TELEVISION BROADCASTING <br> F. C. C. LICENSE

No previous technical experience or advanced education needed!

Now is the time to learn a skill that can put you ahead. In either civilian or military life, the trained technician is in demand for the better jobs-the higher ratings.
Opportunities are great in many Electronic fields.
Our up-to-the-minute training prepares you at home, in your spare time. Covers basic and advanced electronics, and trains you for FCC license exam. Modern electronic project kits for home assembly are provided.
FREE SAMPLE LESSONS: We will send you Lessons 1 and 2, without cost or obligation. See for yourself how quickly you grasp elec. tranic principles.
You can get all the facts on our training program, and information about age and requirements necessary for employment as an Electrenics Technician. Mail the coupon or write to ELECTRONICS DIVISION, Northwest Schools, Dept. NX-1E, 1221 N. W. 21st Ave., Partland 9, Oregon.

## Send today for your FREE LESSON

ELECTRONICS DIVISION-Northwest Schools DEPT. NX-1E, 1221 N. W. 21 st Ave., Portland 9, Ore. Please send me, without obligation, your FREE LES. SONS and all the facts on the training checked below:

Electronics
Television
Technician $\square$ Broascasting $\square$ F.C.C. Lic. Prep.
Name
Address
City
State. $\qquad$
Nearest Phone
Age


## Coming in the Feb, Issue



## What Happened to the Atomic Cannon?

"The monthly magazine for craftsmen"

## Do-it-yourselfers will also be interested in:

- Knowing what adjustments and repairs to make when your power steering starts giving you trouble so you can save by not having to pay a big repair bill.
- An informative article that gives you tips and graphic illustrations on how to make bevel cuts for turning corners.
- Techniques used to plane lumber to size in your own workshop so you can always be assured of the right size.


## Fact or Fiction...

Robots have proven they are better than humans in exploring space and duplicating man's physical actions in research and industry. Therefore, it's only logical he become part of man's family and help raise his children.

## Atomic Artillery...

These technically "obsolete" atomic cannons facing East out of West Germany may be the reason why we are having a war of words, not armament. Each cannon, as you can see in the article, is precision built to deliver optimum devastation with bullseye accuracy.

## Weapons Againsf Crime...

Is it possible that our police departments are using outdated, antiquated weapons against a modern crime arsenal? 'Is the Police Revolver Outmoded?" gives the hardhitting facts.

For Information on Classified ads-to be included in our next RADIO-TV EXPERIMENTER HANDBOOK and other Handbooks-write C. D. Wilson, Mgr., Classified Advertising, SCIENCE and MECHANICS HANDEOOK DEPT,, 505 Park Ave., New York 22, N. Y.,

## ADDITIONAL INCOME

MAKE 25-50 week, cllpping newspaper tems for publishers. Some clippings worth 5.00 each. Particulars free. National. 81 Knickerbocker Station. New York 2 .

CENTRRAL Nevada 10 acres including minerals. $\$ 30.00$ down. $\$ 10.00$ monthly. $\$ 300.00$ full price. Owner, Box 2372. Van Nuys. Cally.
$\$ 100$ WEERLY possible. Complle mailing 1 ists and address envelopes for advertisers. Home-spare time. Particulars free National Service. 81. Enickerbocker Sta. New York Clty 2.

## ATHLETIC EQUIPMENT \& BODY BUILDING EQUIPMENT

WEIGRT Exercising Equlpment. Free WEIGRT Exercising Equipment. Free
uterature. Ed Jubinville, Holyoke, Mass.

## AUTHOR'S SERVICE

LOORING FOR A Publisher? Learn how we publish. promote, distribute your book. Free Bublish. promote. distribute your book. Free Booklet H-1. Vanta
West 315 t . New York 1 .

PUBLISH your book! Join our successful authors: publicity advertising promotion, beautiful books. All subjects invited. Send for iree appralsal and detalled booklet. Carlton Press. Dept. SMA. 84 Fifth Avenue. New Yort City 11.

## AUTOMOBILES \& MIDGET CARS

AUTOMOBILE Catalogs. photos. Antique. modern. Hobby Club. Information Free. Enthuslasts, Box $451 \mathrm{G}, \mathrm{Mt}$. Clemens. Michisan.

## BUSINESS OPPORTUNITIES

ASSEMBLE Artificial Lures at home for stores. Materials supplled Free. Proftable! Write: Lures. Ft. Walton Beach, Fla.

PAWNBROKER. Be one. I'll teach you.
Amazing profts. Pawnbroker Thayer. Bath. Maine.

MAKE Mall Order pay. Get "How To Write a Classiffed Ad That Pulls." This handbook tells how, with examples: includes certincate worth 82.00 toward classifted ad in $S$ \& $M$. Send $\$ 1.00$ to C. D Ave., New York 22, N. Y.

## BUY IT WHOLESALE

"FREE Merchandise!" 350.000 Items "Wholesale!" Goldmine. 240-S. Planetarium Station. New Yori City 24

## CAMERA \& PHOTO SUPPLIES

[^5]
## DO IT YOURSELF

FIREPLACE in your home-stmply and conomically done. Install it yourself with plans in our Home Modernization Handbook $\pm 615$. 35 Do-It-yourself improve ments. A real help in keeping house and Rarage in top shape. Send $\$ 1.00$ to Hand book Dlv.. Science and Mechanics, 505 Park Ave.. New York 22. N. Y.

## EARTHWORMS

BIG Money Raising Fishworms and Crickets. Free Literature. Carter Farm-O. Plains. Georia.

ELECTRICAL EQUIPMENT \& SUPPLIES
COMPLETE Kit with easy to follow instructions for building a high precision all purpose tachometer. 3 ranges. Meas ures speeds on tape recorders, lathes. cutting tools, auto engines. model plane ensines, many more uses. Only 816.95 . If not completely satisfled, kits may be returned within ten days for a complete reiund. Kit Division. Science and Me-

## EMPLOYMENT INFORMATION

OVERSEAS Jobs. List \$1.00. Eniversal. P. O. Box 682. (A), Kenosha. Wisc.

## FOR INVENTORS

PATENT Searches-48 hour alrmall service. $\$ 6.00$. Including neareat patent coples. More than 200 registered patent attorneys have used my service. For Free atorneys have used my service. ard sample patent application. Write Miss A an Hastings, P.O. Box 176, Washington 4, D. C.

THOUSANDS of expert answers to your patent questions. 160 pages covering marketing, attorney's fee. clinics, searches, many ather subjects., send $\$ 1.00$ ror Inventor's Handbook $\# 600$ to hand book Div.. Sclence and Mechanics, 505 Park Ave., New York 22
PATENT Searches. including eopies of related U. S. patents. 36.00 . Inventors, attorneys, manusacturers use my "WorldFilde" allmall service. "Invention Record" form ard Information Every Inventor Needs, tent iree. Miss Raywa.d. 102 Vermont Ave., N. W., Washingtor 5, D. C

## HOME WORKSHOP SUPPLIES

ANSWERS to your woodworking problem? We've got them in Woodworker's Encyclopedia No. 618. How the $3 r o s$ use tools. A must book. Send $\$ 1$ to Sclence and Mechanics. 505 Park Ave., New Yort 22. New York.

## HYPNOTISM

NEW concept teaches you self-hypnosis quickly! Free itterature. Smith-Mikinley. Box 3038, San Bernardino. Calif

## MATHEMATICS

FUTURE System of Mathematics. Guar anteed. $\$ 1.00$. Knowledge. 2900-\$th St., Rock Islend 19. 111.

## MISCELLANEOUS

CATALOG of all Science and Mechanics Craftprints. Send 25 to cover postage and Handiling to Craftprint Div. Science and Mechanica. 505 Park Ave., New Yort 22.

## MONEYMAXING OPPORTUNITIES

INCOME From Oil Can End Your Toll! Free Book, Maps! Natjonal Petroleum, Pan-American Building-SM, Miami 38, Florida.

## MUSIC \& MUSICAL INSTRUMENTS

PIANO Technic Simplifed. \$1.25. Walter Kazaks. 234 East 58 th Strett. New York 22. STEREO Music Center-beautifully made from complete step-by-step plans in Furniture Handbook $\# 616 \mathrm{~A} .40$ Useful projects for attractive additions in every room in the house. Send 1.00 ho 505 book Div.' bclence and $N$. Yancs. 505 Park Ave.. New York 22. N. Y.

## PATENT SERVICE

PATENT Searches-48 hour alrmall service. $\$ 6.00$. Including nearest patent copies. More than 200 Registered patent attorneys have used my service. For Free invention protection forms and sample patent application. write Miss Ann Hastings. PO. Box 176. Washington 4. Distriet of Columbla.
NO Letter to write! Special "Invention For Sale" form presents your idea to buyers. 6 for 51.00 . Science and Mechanics. 22. New York.

PETS-COGS, BIRDS, RABBITS,
HAMSTERS, ETC.
MAKE big money ralsing rabbits for us. Information 25\&. Keeney Brothers. New Freedom, Penna.

## PHOTO-FINISHING, ETC.

A Free Roll of Kodak Film with each developing and printins. Guaranteed Quality send 10 free mallers. Economy Photo Service, Dept. S. P. O. Box 111 . Albany, New York.

## POWER TOOLS

HOME-BUILT Power Tools No. 619 shows you how to make 23 practleal atResal challence to sil craftimen. Send si to Science and Mechanics, 505 Part Ave New York 2a. N. Y.

## PRINTING, MIMEOGRAPHING:

 MULTIGRAPHINGsCONOMICAL Printing. Business, Personal. Free Catalog. Golden Glades. Box $64-18 \mathrm{R}$. Miami 64. Fla

## RADIO \& TELEVISION

GOVERNMENT surplus recelvers. transmitters. snooperscopes. Catalog 10 c Meshna, Maiden 48. Mass.
CONVERT any Television to Supersensitive, Big-Screen Oscilloscope. No electronic experiance necessary. Only minor changes requrred. Illustrated plans $\$ 2.00$. Relco, Dept. TV. Box 10563. Houston 18. Texas.

## START YOUR OWN BUSINESS

SERVICE Businesg-Everyone likes to refnish iurniture but hates removini old finishes. We have ploneered the stripping busuness and helped over 60 men become independent using our exclusive process. For brochure write Bix. Box 8719. Kantig City 14. Mo,


# Low Cost PHOTO LIGHTS 

Voltage booster operates common lamps as photofloods for color

By BRICE WARD

THE common household light bulb is designed to run on 120 volts, but feed it higher voltage and you've got a lamp that burns like an expensive photolamp at a fraction of the cost.

If you live where the power company supplies free exchange bulbs, you can save enough to pay for a booster in a few months,

Cameraman shoots color portrait using studio booster. A combination of 50 , 100 and 150 watt house lamps gives him well balanced main light, side lights and background lights.
and best of all, you'll never be unable to shoot just because you burnt out your last photoflood. You can always get common houselamps at the corner drugstore, but you may not be able to get floods.
Of course, lamp life is reduced. A household bulb is designed to last several thousand hours at ordinary voltage. At the higher voltages used in this booster, the same lamp will last as long as a photoflood, three or four hours. By using the warmup circuit every time, and being careful not to jar the lamps while they are burning, you can extend lamp life considerably. Also, the booster enables you to use a variety of lamp sizes, shapes, and colors not available in photofloods to create special effects for color portraits, or special illustrative shots.

Two circuits are shown (Figs. 7 and 8). The portable booster will drive a 100 watt lamp (or two 50 watt lamps) to provide the equivalent of 300 watts of photoflood power. It has a $50 \%$ duty cycle and can be run up to half an hour, provided that you allow equal time for cooling, or add vents and a fan. Cost of parts as shown is less than $\$ 15.00$. The studio unit will handle a load of 500 watts, to produce lighting equal to four \#2 photofloods. Parts should cost no more than $\$ 29.00$.
The Portable Booster fits into a $3 \times 4 \times 5$ in. aluminum minibox. Use a sharp scriber

The studio unit, shown without metal grill sover hos a main switch, ond two slide switches. To use the unit, you warm the lomps a fow moments, swith to OPERATE, and then to the 3200 or 3250 K settings. Outlets ore on the rear.
to lay out the panel. Drill inside your layout lines making a line of holes as close together as possible. Break out the center and file the edges of the holes smooth. Then use the outlets and switches as templates to drill the mounting holes. A Keystone \#139 battery holder acts as a heat sink for the rectifiers, and makes them easy to hook up. Enlarge the battery holder mounting holes to $3 / 16$-in. Then mount the rectifiers. Make sure the battery clip fits snugly around the rectifier body, and that the rectifier shoulders are tight against the edge of the clip.
One rectifier, the MR-326 has a cathode-to-


2

## MATERIALS LISTPORTABLE BOOSTER

| Amt. | Size and Description |
| :---: | :---: |
| 2 | $20 \mathrm{mfd}, 500$ volt capacitors, Mallory type 83, Allied \#17L246 |
| 4 | $10 \mathrm{mfd}, 500$ volt capacitors. Mallory type 81, Allied \#17L245 |
| 1 | rectifier. Motorola MR-326, 18 amp . |
| 1 | rectifier, Motorola MR.326R, 18 amp. |
| 3 | DPST switches, type SW325, Allied \#35B920 |
| 1 h | heat sink (battery box) Keystane \#139, Allied \#54J042 |
| 8 | \#6 fiber washers, Allied \#42N771 |
| 1 | line cord, Belden 17126S. Allied \#49T211 |
| 2 | chassis mounting sockets, Cinch-Jones \#2R2. Allied \#40H830 |
| 1 | aluminum minibox, Bud CU-2105-A, Allied \#80P 397 |
| \# | Allied No.'s refer to catalog of Allied Radio Corporation, 100 N. Western Avenue, Chicago 80, III. |

## MATERIALS LISTSTUDIO BOOSTER

| Amt. | Size and Description |
| :---: | :---: |
| 4 | $\begin{aligned} & 200 \text { mid. } 150 \text { volt eapacitors, Mallory type 496, Allied } \\ & \pm 17 \mathrm{~L} 519 \end{aligned}$ |
| 2 | rectifiers. Motorola MR326 |
| 3 | 250 ohm. 200 watt resistor, Ohmite Dividohm, Allied \#1MM830 |
| 6 | extra sliders for above. Allied $=75$ M 882 |
| 2 | 3 PDT switches. Continental-Wirt SW369. Allied \#358922 |
| 1 | SPST toggle switch, Arrow•Hart and Hegeman 82601, 15 amp, Allied $\$ 338837$ |
| 3 | chassis mounting as sockets. Cinch-Jones, 282. Allied \#40H830 |
| 1 | double fuse clip, Littelfuse 357002. Allied $=52 \mathrm{~B} 297$ |
| 1 | Orake Postlite neon indicator, Allied \$78E062 |
| 2 | 8 amp 3 AG fuses, Allied \#52B248 |
| 1 | $12 \times 7 \times 4^{\prime \prime}$ Bud Minibox case, \#CU-2111.A. Allied \#80P353 |
| 1 | line cord, 6 foot, Beiden 17125S, Allied \#49T211 |

Allied numbers refer to stock numbers in Allied Catalag \#210A
case connection, while the MR-326R has anode connected to case. These connections are made at the clip and through the clip to the battery box frame. Since this clip is electrically hot, the battery box must be insulated from the case by mounting on spacers and washers.

The rest of the wiring is easy-just make sure that the capacitor

The portoble booster drives two 50 watt lamps. The circuit works well an movie light bars. Because the capacitors corry a heovy load, duty cycle is 50 percent.



Inside the portable case, arrow shows power rectifiers mounted in battery clip used as heat sink. Capacitors are taped in place after assembly.
plus leads connect to the MR-326R center lead.
Operation. On low setting, run your lamps only a few minutes. The lowest-light output settings put the greatest load on the capacitors. The best way to get maximum lamp life, and to prevent blowing a capacitor is to use 5 to 10 secold pauses at the low positions, just enough time to warm the lamps before applying the full voltage. The portable unit uses an unusual circuit principle, that of overloading a voltage doubler to obtain voltage control. Since doubler circuits usually have very poor regulation characteristics, voltage control can be obtained by reducing the capacitance below a certain critical value.

Capacitance of 20 mfd . in each leg with the 100 watt load effectively holds voltage down to about 120 volts. Throwing in the additional 10 mfd . per leg raises the voltage to 165 volts. Add another 10 mfd . capacitor per leg, and you have 185 volts for the $3450^{\circ} \mathrm{K}$ light output. Because these capacitors are just right for the rated load of 100 watts, no attempt should be made to change lamp size. This would affect the output voltages.

The Studio Unit, unlike the portable boost-



Studio unit is easy to wire. Arrow shows rectifiers mounted on aluminum heat sink bracket. Capacitor polarity is important and must be correct. For heavy duty use, add a small fan and ventilating holes.

er can be used with various combinations of bulbs, because it is a more standard voltage doubler circuit and is designed for optimum operation with no excess load on the capacitors. Three large bleeder resistors (Fig. 2) control the output voltages and kill un-needed power. During the operation, these bleeders will get hot enough to burn the hands. They should be covered at all times with screening on a metal frame. The entire unit should be cooled with a fan (see Materials List) if you plan to use the booster for long shooting sessions. Construction is similar to the small unit. Mount the parts on a $12 \times 7 \times 4$-in. Minibox. Instead of the battery clip
mounting, press fit the rectifiers into an aluminum plate (Fig. 6) to get better heat dissipation. In this circuit, the rectifiers carry almost half the full-rated current, and thus must have more adequate cooling unless the booster is always used on very short duty cycles.

With all wiring complete
and checked, set the taps on the resistors in the approximate positions as shown in Fig. 2. Connect your lamps, the same total wattage that will normally be used, and measure the voltage at each tap with a voltmeter.
Tap \#1 on each resistor should read 120 volts with the switch in the warm-up position. Tap \#2 on each resistor should read 160 volts with the first switch in the operate position and the second switch set on 3200 K . Tap \#3 on each resistor should read 185 volts in the operate and 3450 position. These voltage settings are approximate. Advanced professional photographers will want to
check light output with an accurate color temperature meter.

Whenever you adjust these taps, be sure that all power is off including the wall plug, and that the capacitors are discharged. Use a pair of test leads and a resistor to discharge the capacitors. Then loosen the screw on the resistor's tap ring until it is completely free and move in the desired direction. Retighten and check voltage, repeating this procedure until the voltages are correct.

Usually, satin finished aluminum produces the best light for color. The reflecting surface should be smooth, and neutral in color.

Paint Phone Plug Prongs


- When an ear-plug type transistor radio earphone operates intermittently, check the plug contacts that fit into the earphone. The tiny prongs may not be making contact inside the phone. A small amount of printed circuit silver paint daubed on them tightens and improves electrical contact. Solder tinning the prongs is almost impossible without melting the plastic plug insulator.-Joнn A. Сомsтоск.

Flexible Prod Finger Guards


- There's no radio-electronics technician who hasn't at one time or another let his fingers get too close to test-prod tips. You can forget the dangers of such shocking experiences by punching holes in small rubber suction cups and slipping them over your test-prod tips as shown. Because these guards are flexible, you will have no trouble putting the prods down in cramped wiring and touching test points.-John A. Сомstock.


## Build Power Distribution Center

and put your entire ham shack to bed with one flip of a switch

By HOWARD S. PYLE, W70E



HOW many times have you groped for this and that switch at the end of a long evening of ham activity, dragged your weary bones to your pallet and, the next day, found that you had turned off the transmitter the night before, but left your Conelrad unit and receiver merrily drawing juice to heat your shack? Too many times, we'll bet!

Why don't you spend a couple of hours to
fix yourself up with a power distribution center, which will assure you at bedtime that the mere flick of one switch puts you in the clear for an undisturbed night's sleep?

This is not a major project, but it does provide you with a convenience which you'll wonder how you did without. At the same time, it gives you a central unit into which you can plug all of your ham gear, knowing


Rear view of power distribution center. If additional outlets are desired, slight relocation of the clock fuse and ac cord entrance will provide space for them.


## (A) (B) (C) and (D) REPRESENT Wiring extensions FOR ADOITIONAL CONTROL CIRCUITS

## 3 schematic

that at the end of a session, the mere flip of a switch takes you "off the air" completely. It also eliminates the monkey-business of a number of straggling ac cords running to the most convenient outlet plus maybe a few 'cube-taps' to provide the additional ac combinations which you need.

You can accomplish all of this easily and simply by providing a central point to which your ac can run from every single piece of equipment in your shack. Just one main switch will kill every individual circuit in connection with your ham activities except, perhaps, your electric clock.
Simplicity of Construction. If you have been able to pass an examination for a ham license, you should be able to figure this project out by examining the schematic diagram. Actually, all that you have to keep in mind is that you want individual switching and fusing of each piece of equipment which you propose to use, plus the ability to switch them all off by means of one switch. If you use an electric clock, as the author did, you will naturally want to eliminate the clock from main switch control so that it will continue running all day. Aside from that, you
are faced with a most simple and conventional design problem followed by a bit of mechanical work and some elementary wiring.

The unit illustrated here represents that which the author felt was adequate for his requirements. They were simple, involving only control of the ac supply to a receiver, transmitter, and a Conelrad monitor.

Some readers may even question the necessity for switching the Conelrad unit, using the argument that such an item is a necessity only when the ham statior is in a position to transmit signals on the air. This, then, would

MATERIALS LIST-POWER DISTRIBUTION CENTER Desiq.

## Descrintion

PL1, PL2, PL3, PL4
S1, \$2, S3, S4
F1. F2, F3, F4, F5
$T 1$
OAC1, OAC2. OAC3
ACP 6 ft .
Mise.
pilot light holder (Allied 52E545)
hat handled toggle switch (Allied 348647) insert fuse holder, Buss HKP (Allied 53B475)
transformer, Triad F-14X (Allied 64G954)
2-pole female oullet, Amphenol 61F (Allied 40H677)
at cord and olug (Allied 49T230)
clock
rubher feet, rubber grommet for ac cord, decals for lettering. LBM chassis box \#144 or equivalent
The above materials can be purchased from Allied Radio Corp., 100 N. Western. Chicago 80. III.

lead to the natural assumption that the Conelrad monitor could well be wired in parallel with the transmitter ac supply source, thereby eliminating one switch, the ac outlet, and the pilot light combination from the circuit.
To be sure, this is perfectly acceptable. But in the author's case it was desirable to have the Conelrad monitor merely as a broadcast receiver with which to listen to news and entertainment while working around the shack or on the adjacent work bench, without the transmitter, receiver, or other accessories being activated. The choice is yours. Determine what your own individual requirements are, and then design around them. For example, you may already have an adequate clock (remember, FCC insists that you keep an accurately timed $\log$ ). If so, you need not consider such as part of your distribution center. Instead, use the space intended for a clock for extra switches, fuses, and pilot lights for additional equipment.
We are attempting to supply here, both
from the standpoint of mechanical drilling dimensions and schematic wiring, what the author chose for his own modest ham station. You may need several additional circuits, both 117 -volt and 6.3 -volt ac, with their related pilot lights, switches and fuses, if your station equipment embraces other apparatus such as an external modulator, a self-powered VFO, maybe a coaxial relay or two. That is where the design problem rests entirely with you. What you do with it in the way of expansion, and what have you, is "your baby."
We might mention, too, that you are by no means limited to the parts specified in the materials list. They happen to be those chosen by the author, and proved to be entirely adequate and satisfactory. Maybe your own "junk-box" or some other available source of supply can produce equivalent items which you can well use. If so, use them. The real measure of a good ham is the extent to which he can bring his imagination, ingenuity, and resourcefulness into play.
The World's Largest Electronic Supply House
SEND FOR YOUR COPY TODAY!
ALLIED RADIO, Dept. 71-33-A
100 N . Western Ave., Chicago 80, III.
口 Send FREE 1963 ALLIED Catalog
Name.
Address
City_

## Add parts until you've built

## Space Station <br> -Super Workbench

for Your Shop

By JAMES JOSEPH

SPACE engineers have come down to Earth to hand the home craftsman an out-of-this-world workbench.
Dubbed Space Station by its designers, space-minded (and space-saving) engineers at Hughes Aircraft Co., this compact, first-of-itskind workbench begins with a basic work table, adds more than 30 bolt-on bins, shelves, jigs, and fixtures that put hundreds of parts and scores of tools within finger's reach, and converts in a jiffy to such specialized homecrafts as electronics, model-making, gemmology, or wookworking.

Electronics. Fitted for the hobbyist or professional repairman, Space Station racks an array of miniature parts-bins and swivel cups (small, removable plastic "pigeon-holes") that hold upwards of 350 different parts. There's also a 110 -volt outlet for your soldering iron, plus special reel fixtures that hold spooled wire or solder. Built into the bench are a compartmented "wire" box that holds various sizes of most-used wire and a viselike jig designed to support at convenient work level a single electronic circuit board or an entire chassis.

Model-Making. To quick-switch from electronics to modeling, simply substitute a slip-in formica work surface for the electronic holding-jig and clip a bottle rack to the basic bench's angle-iron superstructure. Result: Neatly stacked and ready to use are your liquid essentials-lacquer, solvents, plastic
cement, and dope
Gemmology. Gem-craftsmen need light, and you get it from a quickly attached, nonglare, overhead fluorescent fixture that bathes the bench's work surface with 160 footcandles of illumination.

General Fix-lt Bench. For the household handyman "specialized" to handle all home fix-it chores, Space Station's slide-out plastic drawers, tool holders, and revolving bins segregate upwards of 350 different repair parts-from electric motors to tiny washers -yet hold them within quick reach.
A 10-Year Job. Hughes spent 10 years and some half a million dollars developing Space Station. It was designed for the kind of day-to-day bench versatility required of Hughes's own missile-component and electronic production. More than a thousand of the benches -some specialized for complex electronic assembly, some for mechanics, some for routine maintenance-are currently in use at Hughes' far-flung plants.
Says Harold W. Emmons, of Hughes's Ground System Group, Fullerton, Calif., which is marketing Space Station:
our own designed the workbenches strictly for our own needs. But so many other industries


Power arm mounted on a dally conveyor lets you angle and position work for convenience. You cover track with a formica top when nol in use. "Swiss cheese" fixture that holds circuit boord here costs obout $\$ 19$.


This is the bosic bench, costing about $\$ 100$.
wanted them that we decided to make them available-to individuals, as well as to industry."

Fitted with every available rack, bin, accessory, and add-on, a Space Station carries a $\$ 350-\$ 400$ price tag. It's doubtful, however, that any home craftsman would need every accessory. Actually, $\$ 100$ buys you the basic bench shown above (fitted with a $4 \times 5-\mathrm{ft}$. formica top, three $22 \times 7 \times 5$-in. slide-out plastic
drawers, built-in waste container tool and accessory holder, and a two drawer-and-locker storage section). Dnce you've set up the basic unit-which comes ready to bolt-assemble-you can add accessories as you need them.

Rundown on Add-On's. Bench lights (a $5-\mathrm{ft}$. fluorescent fixture with two tubes) bolt on and cost $\$ 32$. You can add an ash tray and coffee-cup holder for just 90 . For electronics, you'd want a revolving small-parts holder (swivelmounted metal frame with space for 40 clip on plastic cups, 20 on each side of the revolving benchtop unit). The swivel frame runs $\$ 5$; plastic cups cost 25 or $50 ¢$ each, depending on whether they're 4 or 8 in . wide. Invest another $8 \$$-for a divider to separate each cup into two parts-and you can double their utility. Special cup-fitting name clips (on which you can write a part's name or number) cost just 8 ( each.
"Everything on this bench," said one Hughes shopman, "has its special place. And everything fits -clips-on, bolts-on, or slips-in. Together, they make super-bench about the most versatile work station ever."

Take "Power Arm," one of the optional fixtures. Substituting for the usual bench vise, it resembles the pan-head atop your camera tripod. "Power-arm swivels and turns whatever you're working on.

Fix an electronic chassis to power arm's "Swiss cheese" jig clamp, and you can tilt and turn it in any direction, through a full circle $\left(360^{\circ}\right)$ horizontally, or $180^{\circ}$ vertically. The smallest of the four available power arms can hold and swivel projects weighing up to 15 lbs. and is priced at $\$ 9.50$. The strongest can swing 70 lbs . and costs $\$ 30$.

For the experimenter or modelmaker who wants to sit down, there are four special bench chairs, 21-27 in. high. There's also a unique four-wheel "dolly" (\$9.90) -a kind of in-thebench conveyor (upper photo).

Hughes engineers call the Space Station "a new tool." Home craftsmen who've bought the basic unit and are building toward a shopman's dream call it an out-of-this-world workbench. And that description should do until something better comes along, which is improbable.


# Centralized Home Intercom 

## Single amplifier permits all-master system

By W. F. GEPHART

THE requirements for home intercoms are somewhat different than those designed for businesses. If you have ever thought of installing an intercom system in your own home, you should have considered the following points.

1. The majority of the stations should be masters. Due to movement in the house, calls may have to be originated from any station.
2. It should be instant-operating. Due to limited usage, it should require no warmup time, so it can normally be turned off, minimizing operating and maintenance costs.
3. Called stations should be able to talk without using a switch. Since householders don't sit at desks, they should be able to answer without going to the unit and operating a switch.
4. Individual stations should not require ac power. This gives greater station location flexibility and simplifies wiring.
5. Cost should be reasonable. Home needs should not require excessive expense.
6. System should be ac powered. This reduces operating costs and avoids having to remember battery replacement.
The unit described in this article meets all of the above requirements, and was designed specifically for home use. Since it is a "single channel" system, it is not entirely adaptable for businesses, and can handle only one call at a time. This unit has four masters and one substation, but the basic plan can handle anywhere from two to 23 stations in any combination of masters and substations.
The total cost of the unit shown, using surplus relays, was about $\$ 80$. To duplicate it as nearly as possible in commercial units would run from $\$ 125$ up, depending on the manufacturer and features desired. The savings in the centralized system can be realized in the cost of the amplifier and power supply parts-about $\$ 40$. If a separate amplifier were provided for each master station, (which would eliminate the need for relay switching), each master station would cost about \$50.

The centrally-located amplifier power sup-


Since stations do not require ac power, they can be mounted almost anywhere. This one was mounted above the phone.
ply control unit (Fig. 1B) can be placed in an attic, basement, or closet. The location should be selected for minimum length cable runs to each master station. The amplifier is turned off and on, and switched to various stations by relays, which are controlled at the master stations.
Operation. Since the system can be adapted to accommodate a number of stations, let's review the operation and switching system by referring to the schematic, Fig. ?. Notice that the power transformer (T1) primary is connected to the ac line at all times, so that positive dc voltage ( 24 volts) is connected to pin 8 of Ryl and pin 6 of Ry2 thru Ry6 at all times.
Now, assume that station 1 wants to call station 3. First, the amplifier is turned on by closing S2 on station 1. Cable lead 3 is ground (or minus 24 volts), and closing S2 grounds the arm of S3. Since we have set this to station 3, cable lead 8, which goes to pin 5 of Ry4, is grounded, and Ry4 closes. Positive voltage, on contact 1 of the relay, goes through contact 2 and R2, applying voltage to the amplifier.
One side of the speaker in station 1 (LS1) is grounded to cable lead 3, and the other side has two paths. One goes through cable lead 1 to contact 7 of Ry2, but since this relay is open, this path is useless. The other path goes through the lower half of S2 to cable lead 6, and to contacts 8,13 and 4 of Ry2.

Since Ry2 is open, the path continues through contact 14 to contacts 2 and 4 of Ry1, and then to the output transformer, so station 1 is on LISTEN.

Now let's see how the sound gets from station 3 to station 1. The station 3 speaker (LS3) has one side grounded, and two paths for the other side. One path goes to S 8 , which is open, and the other goes to cable lead 1 at slation 3, and then to contact 7 of Ry4, which is now closed. This connects to contacts 8,13 and 4 . Contact 8 goes back through the cable to S 8 , which is open. Contact 13 is floating, since the relay is closed, but contact 4 connects with contact 3 which goes to contacts 7 and 5 on Ry1, and from there to the amplifier input transformer. Therefore, any sound in the room where station 3 is located will get to the amplifier input through this path, and from the amplifier output to the speaker at station 1 as outlined above.

For station 1 to talk to station 3, the PRESS TO TALK switch ( S 1 ) is pressed. This places ground on pin 1 of Ry1, closing it, which reverses the speaker connections to the amplifier, so LS1 is then connected to the input, and LS3 to the output. Releasing the switch opens Ryl, restoring the original condition, so station 1 can listen. No switch manipulation is required at the called station, so the person being called does not have ts be near the station. The system is sensitive enough that a normal speaking voice can be picked up anywhere in the average room.

A Pilot Light Circuir, consisting of R1, L2 and C 3 , is included, although it is not vital. It helps prevent leaving a station on inadvertently, which would immobilize the system for others. Since pilot light current flows in the cable with voice circuits, well-filtered dc must be used, and a separate filter system (L2 and C3) is used to avoid exceeding the current capacity of the main choke (L1). The pilot light in the master station making the call goes on when one side is grounded by closing the ON-OFF switch (S2, S5, S8, etc.).

Substations, such as station 5, work on a simpler -procedure. Setting the selector switch ( $\mathrm{S} 3, \mathrm{~S} 6, \mathrm{~S} 9$, etc.) closes Ry6 when set on station 5 and master is turned on. The upper contacts of this relay supply amplifier voltage, and the lower contacts connect the substation speaker (LS5) directly to contact 7 of Ry1, and from there to the input or output of the amplifier, depending on the position of Ryl.

Stations within the house should usually be master stations, and those at outside doors should always be substations. In some cases, it may be desirable to put substations in nurseries or children's rooms, so that calls cannot be initiated or adult conversations in other rooms overheard.

Privacy Switches. Station 4 includes a PRIVACY switch (S12). Normally, as soon

(A) Top view of surplus power transformer and plug in capacitors. Note the shield between the power supply and the amplifier and relays. (B) Bottom view showing shielding between power supply and amplifier and relays.
as you turn the unit on, you are in LISTEN condition to the station selected. To permit privacy in bedrooms, this switch (in the position shown) cuts the speaker in the station out of the circuit, and connects a buzzer ( Z ) into the circuit. One side of the buzzer is connected to the positive pilot light voltage through the top contacts of S13, and the other side is connected to one side of the coil of Ry5 through cable lead 4.

When this station is called, the Ry5 closes by having one side of its coil grounded. This ground also appears on one side of the buzzer, and it goes on. When the person in the room wants to answer, he throws S13 to the other position, which stops the buzzer and connects the speaker in the circuit. Operation is then normal. Upon completion of the conversation, S13 can be returned to the position shown, putting the buzzer back in the circuit for a future call, and cutting the speaker out.

The output transistor (Q4) will draw a high current without a speaker across the output transformer. If a PRIVACY switch is to be used often, or included in many units, it might be well to connect a load resistor (R18) as shown by dotted lines, to reduce this current.

With this understanding of the system, it can be seen that one multi-contact relay (Ry2 through Ry5) and one 10 -contact terminal board (TB1 through TB4) are required for each master station, and one DPST relay (Ry6) and one 2-contact terminal board (TB5) are required for each substation. The limit of 23 stations is imposed by the maximum size selector switch (S3, S6, etc.) available.

DC Relays should be utilized, since ac actuating voltage in the cable would create excessive hum. Low power relays should be used to minimize the energizing current required, and should be sealed, since attics and basements are usually dusty. If sealed relays are not used, they should be placed under the chassis or homemade dust covers should be
made for them.
The master station relays must have two A contacts (single pole, normally open), and one C contact (single pole, double throw). The substation relay must have two A contacts, and the talk relay must have two C contacts.

The relays used in the unit shown are surplus $24-28$-volt dc relays, with a 300 -ohm coil, and draw about 80 ma . The master relays have three A and one B (single pole, normally closed) contacts, but one A and the B contact were wired together to make a C contact. The contact numbers are shown solely for explanatory purposes. Since this coil voltage is an aircraft standard, many suitable relays are available on the surplus market.

Installation Suggestions. No specific dimensions or layouts are shown, since the exact extent of the unit will depend on the number of stations to be used. Provide adequate ventilation for the power transformer (T1) and rectifier (SR1), since they have voltage on them at all times. When the system is on standby (all masters OFF), it draws about 6 watts.

Use two fuses in the power supply. One (F1) is for the ac line and will blow if the transformer or rectifier shorts out; and the other ( F 2 ) protects the transformer and rectifier if a capacitor or other compunent shorts out.
Place the amplifier section away from the power supply to minimize hum induction. Keep the AF transformers well apart, and mounted at right angles to each other, to minimize AF feedback. Mount the power transistor (Q4) on a heat sink made of a $3 \times 4-\mathrm{in}$. piece of aluminum, insulated from the chassis.
The exact size of capacitor C 7 will depend on the length and routing of the cables, as to hum pick-up. In the unit shown, the value of C7 is 10 mfd , which greatly reduces hum pick-up from the line yet doesn't seem to affect appreciably gain or tone.


MATERIALS LIST-HOME INTERCOM
All resistors are $1 / 2 \cdot w, 10 \%$, catalog number 13 F 050 , except where noted. Catalog numbers are for Newark Electronics Corp., 223 W. Madison St., Chicago 6, III.

| Desig. | Description |
| :---: | :---: |
| R1 | $500.0 h \mathrm{~m}, 10 . \mathrm{w}$ adjustable resistor (Newark 13F518) |
| R2 | 100.ohm, 5-w resistor (Newark 13F150) |
| R3 | .33-meg, resistor |
| R4 | 15,000-0hm resistor |
| R5 | 3600.ohm resistor |
| R6 | .1-meg. resistor |
| R7 | . 39 -meg. resistor |
| R8 | . 68 -meg. resistor |
| R9 | $10.000 \cdot$ ohm potentiometer. Mallory U. 20 (Newark 9F104) |
| R10 | $3300 \cdot \mathrm{ohm}$ resistor |
| Rll | 4700-ohm resistor |
| R12 | $10,000-\mathrm{hm}$ resistor |
| R13 | 270-0hm resistor |
| R14 | $330-$ ohm resistor |
| R15 | 1500 -ohm 2-w w.w. pot., Clarostat 43.1500 (Newark 9F776) |

## 39.0 hm resistor

R17 1.ohm. 2-w resistor (Newark 13F060)
R18 $3.3-\mathrm{ohm}, 2-\mathrm{w}$ resistor (Newark 13F060)
C1. C2, C3, C13
C4, C5
$500 \cdot \mathrm{mf}, 50-v$ capacitor Sprague TVA- 1315
(Newark 18F975)
$100-\mathrm{mmf}$, capacitor Cornell-Dublier 15F5T1 (Newark 15F1226)
2000 -mf. 15.v, capacitor Cornell-Dublier BR-20001 (Newark 15F 166) See text
10-mf, 25-v. capacitor Spraque TVA. 1204 (Newark 18F154)
$50 . \mathrm{mf}, 25-v$, capacitor Sprague TVA- 1206 (Newark 18F156)
18-13-0.13-18-v, 9A transistor power trans. former, Stancor TP-1 (Newark 1F441)
2K to VC output transformer, Stancor A. 3332 (Newark 1F276)

100 -ohm to 1 K interstage transformer, Stancor TA. 3 (Newark 1F429)
48-ohm to VC output transformer, Thordarson TR-61 (Newark 2F524)
2.8-hy, $\quad 300-\mathrm{ma}$. choke, Stancor C. 2334 (Newark 1F177)
13-hy, $65 \cdot \mathrm{ma}$, choke, Stancor C-1708 (New. ark 1F 158)
1/4-amp 3AG fuse (Newark 27F652)
$3 / 4$-amp 3AG fuse (Newark 27F655)
$2.4-\mathrm{mh}$. choke, Miller 4666 (Newark 59F304)
2N169 (Newark 21F348)
2N214 (Newark 21F4506)
2N307 (Newark 21FX6159)
36 VAC, 1.5A rectifier, Int. Rect. J2981 (Newark 21 F810)
DPDT Contacts, 24 volt dc coil (See Text)
*Ry2, Ry3, Ry4, Ry5 2A \& 1C contacts, 24-v de coil (See Text)
@Ry6
*S1, S4, S7, \$10
DPST contacts, 24v de coil (See Text)
SPST push button switch, C-H $8411 \mathrm{K4}$ (Newark 23F260) or SPST spring-return tougle. H\&H 81045.FB (Newark 23F002)

* $\$ 2$, S5, S8, S11
* $\$ 3, \$ 6, \$ 9, \$ 12$
\#\$13 DPST topgle switch, H\&H 20902-CX (New. ark 23F012)
1 -pole, 5 -nos, rotary switch, Mallory 3215 J (Newark 22F052)
DPDT toggle switch, H\&H 20905-FR (New ark 23F015)
*PL1, PL2, P13, P14 \#48 pilot light (Newark 25F107)
\#2 High frequency buzzer (Newark 46FX002)
LS1. LS2, LS3. LS4 $4^{\prime \prime} 3.2$-ohm speaker (Newark 56F252)
*TB1, TB2, TB3, TB4 10-contact term. strip, Cinch 17-10 (New@TB5
Misc. $\quad$ 年 jeweled pilot light holders (Newark $25 F$.
2 -contact terminal strip, Cinch 17.2 (New. ark 29F $\times 552$ ) 350)

Fuse Holders, Surface Type (Newark 27F. 754), chassis type (Newark 27F752) Notes

* one required for each master station
@ one required for each substation
\# one required for each master station with PRIVACY switch
In addition to the above, a chassis and cover, such as an amplifier
foundation kit, will be required for the main unit, and suitable cabinets required for stations.
Relays may be secured from Universal Relay Corp., 42 White St., N. Y. 13, N. Y. An unsealed relay for Ry2 through Ry5 (2A, IC contact, 24-y coil) is their ARC type 55342, Cat. \#R171 @
$\$ 1.50$ each. Many others are available.

Three adjustments are required when the unit is wired. After the amplifier is wired and checked, connect speakers to the input and output, and insert a milliammeter in the power lead (going to R2). Place the speakers in separate rooms so there can be no acoustic feedback between them. Connect one relay coil to the power supply so it will draw current, and connect the amplifier power lead. Adjust R15 so the amplifier draws about 170 $m a$, being sure that you are not also measuring the relay coil current. This will give an output of better than 1 watt, and will mean that about 250 ma flow through choke L1 on LISTEN and about 330 ma on TALK. The latter is in excess of the choke rating, but will not hurt for short periods.

A second adjustment is the pilot light supply resistor R1. Set the tap on R1 at full resistance; and, with the set-up outlined above, connect a \#48 pilot light between the R1 tap and ground. Using a high resistance voltmeter, adjust this tap until there is about 1.8 volts across the pilot light. This lower-thanrated value is suggested to minimize burnouts due to the surge when the unit is turned on.
The last adjustment is the volume control R9. With the connections outlined above, gradually turn R 9 so the arm approaches the Q2 collector lead. If the speakers are properly separated, you should be able to turn it all the way up without getting a feedback howl. If you can't, there is feedback within the amplifier. To correct this, first try increasing the size of R7, then try additional shielding. If the howl persists, and wiring is correct, the feedback is probably due to parts placement.

Later, when the unit is placed at its centralized location and all cables are connected, R9 can be adjusted for desired volume.

Stations can either be built into small radio cabinets available from suppliers or, homemade cabinets can be used. Since ac power is not required at the stations, they may be either wall-mounted, or placed on tables, whichever is more convenient.

Since only low voltage is carried in the cables, regular multiple-conductor intercom cable can be used, such as Belden 8443 through 8449, 8456, and 8457. This is available in 3 through 10 -conductor, and in 12 -conductor.

For master stations without the PRIVACY switch, you will need cable with 5 conductors plus 1 for each station to be called. The PRIVACY switch requires one more conductor, and all substations require 2 -conductor cables.
Shielding is not required unless it is expected that you will have runs in excess of 75 ft . between a station and the control unit. In such cases, it might be necessary to have conductors 1 and 6 shielded.

## Puzzled By Cryptic Citizens Band Messages? Here's what they mean



F YOU happen to eavesdrop on a citizens band radio some evening, you might hear cryptic messages that sound something like this:
"Advise 10-20."
"Cicero near Cermak."
"10-15 Raid at Polly's."
"10-4."
"10-16 three bombs."
"10-19 stake out, 10-12 heat's on."
"10-4."
What you're hearing isn't really a dramatic police episode, nor is it the audio portion of an old TV show. Deciphered by Jack Catterall, technical services manager for Raytheon Co.'s Distributor Products Division, the conversation reported above is translated as:
"Where are you now?"
"I'm on Cicero Avenue near Cermak."
"Will you please pick up a can of Raid at Polly's store?"
"OK."
"I went to the store as you requested and picked up three insecticide bombs."
"Hurry home, we're having a steak cookout. The guests are here and the fire is started."
"OK."
Businessmen, taxi drivers, wives with grocery lists, and people with car pool problems all seem to be talking like policemen, Catterall observes. With almost a half million citizens band users throughout the nation,
many have adopted the police radiotelephone abbreviations to shorten their conversations.

The "hamsters," as citizens band operators sometimes call themselves, have generally agreed on the following more commonly used signals.

[^6]

Steel reeds and transistors replace strings.
Piano never needs tuning

By BILL McHUGH

FIG. 1: This is the poriable model Wurlitzer electronic piano. Amplifier and speakers are built-in. Foot pedal controls the sustain while keyboard knobs contral volume and vibrato rheostats. Heart of electronic piano (left) is Swedish steel Sandvik reed ... this one for a middle tone is about $2 \frac{1}{2}$ inches long. It bolts to the reed bar, hole at right for that purpose. Tip weight is ground or filed in reed pitch adjustment at factory.
piano, so we can hardly hope for concert hall touch-but we're amazed! This piano is agile! Your fingers fly over keys that feel even and nimble. It certainly is not a sluggish keyboard.

Opening the top lid (Fig. 3) we find something unlike anything we've ever seen in a piano. Maybe this is the "piano of the future." It is one of the few breakthroughs in piano design in a long time.

The piano has no strings! Sound comes from steel reeds and they never need tuning.

So what? Well, ask any concert pianist, or recording artist, and he'll tell you that when you want to play fine music, you have to tune a grand piano before every performance. Traditional pianos have one or more metal strings for every note. The strings are arranged like a harp, on a heavy massive iron casting with a tension that can run into tons of pull. Tune the piano, and it is only a matter of time until the tension on the strings, plus changes in temperature, pressure and humidity cause it to slip out of tune.

If you live where the temperature is even year around, tuning every 6 months may be enough. But a piano on the stage of a night club, a theatre, a music school, in the tropics, the arctic . . . any place where the instrument gets lots of use, is an engineering problem now solved by the new Wurlitzer reed principle.

A fringe benefit of interest to any entertainer is a spectacular reduction in weight. The average small home-size piano weighs 400 to 600 pounds. Only experienced

SIT down at the keyboard, play a few chords and you are pleasantly surprised. Usually a small piano implies a sacrifice in tone quality, but this one sounds very close to what you hear from a good spinet.

Let's try the action. It's not an expensive
movers can lug such a weight from place to place. The new electronic piano is not exactly a lightweight at 80 pounds, but a man and a boy can put it in a station wagon and move it. There is nothing fragile about the portable model . . . it is a tough piece of machinery,
and we saw proof of the fact that it can take a lot of moving.

The real news is for parents, landlords, and neighbors. Since the piano is electronic, and its sound emits from a loudspeaker, all you have to do for quiet operation is plug in the earphone jack. Then junior can practice all night if he wants, while the rest of the world sleeps. Probably every composer, musician, and pianist has tried one time or another to muffle, baffle, soft pedal , or otherwise kill the sound of a practice piano. But nothing seems to work, because if you dampen the strings of the conventional piano, you also change the response (bounce-back) of the hammers and the keyboard feel can be so different that practice is a waste of time.

Another factor in practice is a psychological one. What music student likes to broadcast practice boners to the whole neighborhood? The ribbing that every young pianist takes from family and frierds is enough to cause many potentially fine musicians to stop taking lessons and start watching TV as a life-long hobby. To develop skills as a pianist takes hundreds of hours of concentrated study and practice. The electronic circuits and earphone attachments now make this possible in crowded apartments, in college practice rooms, and in the ordinary home. Professional musicians report that they can rehearse new numbers anywhere-in hotels, and even on stage with curtain up. Flip the switch and the sound is completely private.

The heart of the new invention is a Sandvik Swedish steel reed (Fig. 1). When the pianist strikes the key, the felt hammer hits the reed causing it to vibrate as in Fig. 4. The touch closely resembles that of a conventional grand piano because the "action", (hammer mechanism) is mechanically and functionally similar.

The reed vibrates at a pre-set pitch. One reed can produce only one pitch, for example middle C is a standard 261.626 cycles per second. The tip of the reed is weighted with

FIG. 4: Photo shot af $1 / 10$ th secand shows the are of the hammer striking steel reed and bouncing away. Engineers used high speed cameras to perfect this new piano action which duplicates grand piano respanse.


FIG. 3: Looking inside top of electronic piono you can see how the dampar lever (lified away) controls sound. Like a standard piano, os long os you press key, domper remains up. When key is released felt damper drops down to stop vibration af reed below.


a lead mass. By filing or grinding away tiny amounts of this weight factory technicians working with precise frequency measuring equipment establish the pitch. Once set, it stays right on the note. Should the reed ever break, a rare happening, you will be able to buy a replacement for less than 50 cents.

Electronic Function. All the reeds, one for each key of the piano, are bolted securely at one end to the cast aluminum reed bar

FIG. 5: Console home style elecironic piano costs less than $\$ 500$, yet has complete 64 -note standard keyboard and pedals. At keyboard side are volume and vibrato control knobs. Electronic amplifier (inset) operates on 9 transistors, delivers over 10 watts audio.
(Fig. 3). When they are at rest, the reeds are centered slightly below the slotted cavities of the pickup plate. This pickup plate is charged at a plus 270 volts dc while the reeds are at zero or at ground voltage.
The piano in effect is a big capacitor. It is similar to the variable capacitors (condensers) used to tune a radio. When the piano is not playing, the reeds are in a neutral position and capacity is very low. The hammer strikes a reed and as it starts to vibrate, the tip swings upward. Capacity increases until the reed travels through the slot and slightly beyond. At that point the capacity starts to decrease until the reed reaches the end of its upward swing. Now as it starts to travel downward back through the pickup plate capacity again increases. This action repeats itself for every cycle . . . from 50 to


FIG. 6: Eighty-pound portable piano (left) can be used outdoors, on boats, in army camps without ac power. Entertainer Marian MePartland (above) uses Wurlitzer electronic transistor piano at Savoy Hilton, New York. Battery power pack will be available in early 1963.


FIG. 7: Electronic piano installation at Ball State Teachers College, Muncie, Indiana, equals 13 spparate practice roams. Students hear private com-

2093 times per second depending on which note of the piano you are playing.

The varying voltage feeds through a load resistor, is then amplified through a transistor amplifier (a less expensive tube amplifier is also available) and fed to the loudspeaker. Pianos are equipped with the standard sustain pedals, and volume controls. In the portable model, the volume control is on the keyboard; in the home model, a pedal controls volume. But there is also a second rheostat control which controls the vibrato section of the amplifier. By adjusting this


FIG. 8: Electronic piano design (right) shows reduction in weight and cost. Wood framing which supports heavy cast iron plate and soundboard of con-

ments and only their own piano on phones. Instructor can demonstrate on main unit, conneeting individually to any student, or to entire class by means of control.
control, you can obtain effects from Hawaiian guitar to vibraphone.
The amplifier puts out enough sock to fill a small auditorium. Wide open, the electronic piano will deliver considerably more sound volume than a standard spinet. External speaker jacks, and a jack for input permit a wide variety of electronic hookups. For example, a musician can rig his electronic piano so pre-recorded music plays through the piano speaker system along with what he plays. A musician could easily play duets with himself!

ventional piano (left) is eliminated. New piano is 1/6th the weight. Electronic amplifier delivers more sound than standard piano, produce special effects.

# College Radio Stations 

Over 250 of these stations broadcast unlicensed in the AM band

By DON A. TORGERSEN



WPGU at the University of Illinois dedicates its broadeasting to the "best in music, news, and sports."

ALTHOUGH seldom publicized as a broadcasting medium, the college radio station has become an important function in more than 250 college and university communities. These stations not only provide a reliable source of news and entertainment to the community, but also supply the broadcasting industry with a number of highly trained personnel, most of whom are acquiring degrees in radio and television, journalism, advertising, and engineering.

College radio stations broadcast on the AM band, and can usually be heard on any AM radio in the vicinity-even car radios and portables. By means of a special engineering principle called "carrier current," the college station is able to deliver a powerful, high quality signal to the community without being heard much beyond the boundaries of the campus itself.

Carrier current is a technique whereby transmitters, instead of being coupled to antennas, are coupled directly to the power lines of dormitories and resident halls. This same engineering technique completely solves the noisy reception problems which reduce the listenability of other stations in many of the new, steel-and-concrete, fluorescentlighted dormitories now being constructed. Very often, the college station may supply the only strong signal going into these build-

(A) Usually, an engineer and an announcer work as a team lo produce a show.
ings. One student engineer described carrier current in this way: "You might say that what a person hears on his radio is 'controlled interference' in the power lines."
Unlicensed Broadcasting. What is peculiar about these stations is that they operate unlicensed. This is due to a provision in part 15 of the Rules and Regulations of the Federal Communications Commission, which states that a transmitting device may operate in the broadcast band with a signal strength of 15 microvolts per meter, at a distance of one wavelength divided by two pi (157,000 feet/frequency in kilocycles) from any radiating source. Any such transmitter may operate unlicensed so long as it does not interfere with regularly licensed stations. Citizens band communication is another type of transmission governed by this provision.

Two such stations are WPGU (University of Illinois, 610 kc , Champaign-Urbana) and WRCT (Radio Carnegie Tech, 900 kc , Pittsburgh). These stations are staffed, managed, and operated entirely by undergraduate students as an extracurricular activity independent of formal school administration. WRCT has a staff of over 125 students, while over 200 students run the affairs of WPGU.

Most of the equipment has been designed and constructed by the students themselves.

(B) But some announcers do their own engineering.

By keeping abreast of the latest developments in the electronics industry, the students have been able to design high fidelity units with a frequency response higher than that allowed for other AM stations in the same


An announcer gathers the latest news from a UPI teletype network.
area, since the commercially licensed stations are required to suppress their high frequencies. WRCT uses seven transmitters conveniently located that broadcast flat within 2 db up to $15,000 \mathrm{cps}$, and range in power from 10 to 75 watts output with a total output of about 150 watts.

Other facilities at WRCT include four studios, two of which are audio participation studios; remote equipment for live or recorded programs; and audio equipment to handle stereo recordings at 33 and 45 rpm , monophonic recordings and electrical transcriptions (lateral to 16 in .) at 33,45 , and 78 $r p m$. Their tape recording equipment consists of half track at $71 / 2$ and 15 ips , full or half track tape playback at $71 / 2$ and 15 ips , and cartridge tape machines. To round out their studios, they employ United Press International radio news service, NBC radio network, citizens band transceivers, and beep telephones.

WIIT (Illinois Institute of Technology, 610 AM, 91.9 FM, Chicago) has experimented with dual broadcasting of AM and FM channels, and has even tried multiplex. An engineer describing the power of their two transmitters boasted, "We load 'em up with 20,000 milliwatts."

Programming at these stations often covers as much as 133 hours per week. It includes classical, popular, folk, and show music, news, press conferences, drama, and play by play broadcasts of football and basketball games.

In times of emergency, the college radio station will often serve as an auxiliary to national networks. In May of 1962, when a tornado struck Rantoul, Ill., after a severe wind and rainstorm, the news staff of WPGU sent dispatches, both taped and telephoned, for use by UPI and ABC.

Financing these stations, since they are not for profit, is not much of a problem. Some of them are supported in part by grants from the student body, and in part, since they are not classified as educational stations, by the sale of commercial time to local merchants as well as many national advertisers. WPGU, which is financially self-sufficient, solicits a certain amount of its advertising through a New York agency, and actually realizes a small profit at the end of the year. This profit is turned back into the Illini Publishing Co. for use in other campus information activities.

Training. Although these stations are not required to have licensed technicians on their staffs, WRCT has imposed its own requirements, and 12 staff members hold first class radio telephone licenses. WRCT conducts regular classes in order to prepare their technicians and announcers for FCC examinations.

At WPGU, before a prospective announcer
is even placed on probationary status, he is given an audition to see if his voice is suitable for radio work, and to make sure that he will not tense up or freeze in front of a mike. To become a staff announcer, he must pass a written test and a simulated-broadcast examination under stress. One of the favorite techniques of the practical test is to tell the announcer that something has gone wrong


Making a spot check on the taping of a news broadeast.


The record library af WPGU contains almost 20,000 records.
with the record deck after he has introduced a record, and force him to ad lib for several minutes.

In testing engineers, it is better to face them with actual engineering predicaments. Tape decks can be bumped to the wrong speed, or transmitters in certain buildings can be mysteriously shut off. The hardest test for an engineer is known as the "flip-segue." This antic requires him to turn a record over after a number has been played, and im-


Station personnel design and maintain most of the equipment. These technicians are checking out a malfunctioning transmitter with an cseilloscope.


After 19 hours of continuous daiky bioadeasting, a weary engineer puts the station to bed at the master control panel.
mediately play a number in the middle of the opposite side. Whereas the standard time for this maneuver is 15 seconds, one ambitious engineer at WPGU has got it down to a split lightning four seconds.

Not all staff members are males. At least one-fourth of the staff at WPGU is composed of coeds. Besides being valuable as copywriters and production managers ${ }_{\text {r }}$ several coeds have joined the engineering staff so that they can engineer the shows that their boyfriends announce.

WPGU actually owns the largest record library in the state of Illincis south of the Chicago area. There are almost 20,000 records locked up in the record library. With several bands to each record, this adds up to over 125,000 selections.

To give the station a touch of personality famous stars such as Tennessee Ernie Ford, Pat Boone, the Four Lads, Shelley Berman, and Connie Francis send short taped spot promotions to the station. In summing things up, Pat Boone said, "This is Pat Boone. I don't know a whole lot abarat WPGU, but they do have good taste in mrusic. They play my records."


By ROBERT E. KELLAND

THIS neat looking transistor tester costs $\$ 4$ or less, going by current catalog prices, and you can probably build it for half that much by using scrap parts.

The unit checks transistors either on the bench or in the circuit, and results are adequate for most service and experimental needs. The advanced electronics expert needs a complete range of tests to pin down the detailed performances of any semiconductor, and so might find this tester wanting. But it is surprising to see what can be done by using this simple tester along with manufacturer's transistor spec books.

The tester will work with any VOM or VTVM that has $R \times 1$ and $R \times 100$ ohmage scales. The ohmmeter provides the indicating meter, and also eliminates the need for a separate power supply for the tester.

Build the Tester in a $51 / 4 \times 3 \times 21 / 2$-in. gray hammertone aluminum utility box. Photos show a transistor socket mounted on the top panel for testing out-of-circuit transistors. If you want to add a power transistor socket, there is plenty of room, but you will have to rearrange the available space. The pin jacks on the end of the box are for testing
transistors in circuits, and you will need three color coded alligator clip test leads. For transistor work, the small size clips are the best.

Follow the chassis layout (Fig. 3), as you cut the holes for the sockets, switches, and jacks. Ready-painted chassis should be protected with cloth when clamped in your vise. Exact measurements are not given for the tube sockets since various brands will differ in size. Less expensive wafer sockets salvaged from old radio sets will also fit.

The chassis has two pin jacks for the prods of the ohmmeter. If your meter has banana or alligator clips as prods, substitute the proper jacks to fit. Two 5 -way binding posts would also serve this purpose.

Use \#22 solid insulated wire to hookup the connections on the chassis, and then connect the tube sockets with flexible stranded insulated wire.

How It Works. A transistor consists basically of two diodes; the collector-base diode and the emitter-base diode. By measuring the forward and back resistance of these two diodes and comparing the results you get an indication of transistor condition. Checking resistance between the emitter and the collector will indicate leakage or "break down" of the transistor base. When checking the diodes, a high ratio between the forward and back resistance will indicate a good


## Your VOM

diode. Many technicians and experimenters rely on their ohmmeter to make these measurements, but connecting the ohmmeter leads to the transistor and reversing them at least half a dozen times is time consuming and often leads to incorrect results. The simple switching circuit used in this tester makes these measurements easy.

Using the Tester. Zero adjust your ohmmeter on the $\mathrm{R} \times 100$ scale and plug the prods in the tester. Polarity of the prods is not important since the DPDT slide switch reverses meter polarity. Now you can set the rotary

## No. or

 Ant. Req.MATERIALS LIST-TRANSISTOR TESTER

1000 ohm $1 / 2$ watt carbon resistor ( $\# 1 \mathrm{M}$ H000)*
DPDT slide switch ( $\# 368148$ )
DP 3 Pos. non-shorting rotary switch ( $\$ 35 \mathrm{~B} 235$, knob supplied)
insulated tip jacks ( $=41 \mathrm{H} 115$ )
alligator clips (\#45H171)
tip pluos ( $\# 41 \mathrm{H} 200$ )
transistor socket, 3 pin $(\# 40 \mathrm{H} 294)$
8 pin octal tube socket, retainer ring mount $1 \# 40 \mathrm{H} 058$ )
9 pin miniature tube socket ( $\# 22 \mathrm{H} 594$ )
7 pin miniature tube socket ( $\# 22 \mathrm{H} 567$ )
chassis, aluminum minitox $51 / 4 \times 3 \times 21 / \mathrm{s}^{\prime \prime}$ gray hammer. tone finish ( $\ddagger 80$ P348)
Misc. $\quad 22$ solid insulated hookup wire. Stranded insulated wire. Screws, nuts, solder

* All numbers from Allied Radio, 1963 Cat. 220. Address 100 N Western Ave., Chicago 80, III.

Fig. 1-1A: 5 \& M consultant Mort Friedman (far left) checks tester plugged info inexpensive Monarch VOM. Monufacturers transistor manual provides reference. Tronsistors can be inspected in seconds and graded for relative performance. Use short probe leads (leff) with minialure alligator clips for checking transistors in wired circuit. This setup has been used for production inspection and proves fast and practical. An otherwise lime-consuming test is accomplished without using expensive laboratory gear. Delicate low power transistors are protected from burnoul by 1 K resistor in tester.


Fig. 2: Tube filament checking sockets are optional. Wire your chassis cannections with solid hookup wire, and use flexible wire for the tube socker connections.



POS. 1 ROTARY SW. (CB) POS. 2 ROTARY SW. (EB) POS. 3 ROTARY SW. (EC)

EMITTER-COLLECTOR LEAKAGE*

| Transistor | Meter Scale | Minimum Readings |
| :--- | :---: | ---: |
| RF-IF-Conv. | $R \times 100$ | 6000 Ohms |
| Low Power Audio | $R \times 100$ | 15000 hms |
| High Power | $R \times 1$ | 10500 hms |

Transistors Removed from Circuit-Tested Room Temp.
NOTE: Readings Are 1000 Ohms Higher than Actual Transistor Resistance Because of R1

* Cut out and cement to meter case.
(Courtesy of Delco, Div. G. M.)


Fig. 6: Tube checking circuits on side of box are handy extra feature for radio and TV servicemen working on sets in homes. Binding posts for other kinds of tests can be added to this handsome case.
switch to position CB (Collector Base) and insert a transistor in the socket. Your ohmmeter should indicate either a very high resistance between 200 K and 1 megohm or a very low resistance, 1500 ohms or less. All readings are 1,000 ohms higher than the actual transistor resistance because of current limiting resistor R 1 . Changing the polarity with switch S1 should immediately give you a different resistance, lower or higher. A high ratio in the two readings indicates a good collector diode.

The second position of the rotary switch EB (Emitter Base) measures resistance of the emitter to base diode. The pair of readings should be similar to the collector base diode.

Position EC of the rotary switch tests the emitter-collector leakage. Readings lower than those indicated in Table A indicate breakdown or shorting of the base. This seldom happens with low power transistors running on normal voltages. Changing the polarity reverse switch should give you a different reading, but both readings should be higher. than those listed. For permanent reference, cut out Table $A$ and cement it to the underside of the Tester Case for quick reference.

Both PNP and NPN transistors are tested in the same way. In the circuit testing will produce different sets of readings on the meter, but your low resistance readings should be about the same or slightly lower. High end readings will decrease to 2 K to 100 K depending on the shunt resistance present in the circuit being tested. A ratio of 5 to 1 indicates a good transistor. For example, a reading of 1200 and 2000 ohms is actually a 5 to 1 ratio, because you must subtract the 1,000 ohm value of R1 from each. If a transistor shows bad in the circuit, remove and confirm your test out of the circuit. The leakage test cannot be taken with the transistor in circuit.

A Caution. Some ohmmeters can deliver enough current to ruin transistors, and for this reason R1 is included in the circuit as a current limiting device. Except for power transistors on which you can use any ohmmeter scale, always use the $R \times 100$ meter scale. High impedance ohmmeters are best suited as the current supply is generally much lower, and the accuracy of the meter itself is better. Resistor R1 also limits current when testing low-volt tube filaments. This test is simple continuity, and a reading indicates a good filament. Check a tube manual for proper filament connections.

# Read AC Current with Your 



Authar Lucas demonstrates how "Mini-Amp" and sensitive VTVM can be used to observe smoll chonges in power cansumed by rodia. Unsteady reading indicates defective parts.

# Pickup coil converts VOM to AC current reading instrument 

By ALfRED R. LUCAS

amps ac. The voltage induced in the transformer winding is proportional to the current, so you simply connect the transformer to your ac voltmeter, and read on a calibrated scale (Fig. 2). A more sensitive ac current meter can be built (Fig. 1) for less than $\$ 5.00$. Calibrated properly, it will perform as well as instruments costing $\$ 100$ or more. Depending on the quality of your VOM, sensitivity can extend down as far as the microamp range and up to heavy appliance currents as high as 25 amperes and more.
Altering the Transformer is your first step. No specific transformer is

AN OLD transformer that may be kicking around your scrap box is all you need to read ac amperage. The ordinary VOM (volt-ohmmeter) or VTVM (vacuum tube voltmeter) usually has a dozen or so scales ranging in ohms, volts, and dc amps, but it won't read ac current! This is a measurement most meters can't handle, and yet it is very important in many radio or appliance service jobs and on the electronic design bench.

The "Mini-Amp" pickup coil, made of a transformer (Fig. 8) is similar in principle to the clamp-on ammeters commonly used by electricians. The measuring head couples to the line by induction, so you can read the ac amperage consumed by a motor or appliance without having to cut into the power wire! Any ordinary ammeter has to be wired right into the circuit in series with the appliance every time you want to take a reading.

There are two ways to build the probe head. The split core magnet can be used directly to read large currents from 1 to 25
listed since you can use any audio output transformer that has E-type core construction similar to the one shown in Fig. 8. Such transformers are common in radios and amplifiers. Dismantle by bending back the transformer cover tabs as in Fig. 8. Next remove the two retainers with long nose pliers. Remove the coil and place it over one of the side legs of the transformer core (Fig. 8).

Replace the frame by bending one of the mounting tabs straight and pushing it over the core and through the transformer coil. Finally, remove the primary leads of the transformer (usually heavier solid wires). The transformer modification is now complete.

If you are building the simplified model (Fig. 2) solder two test cord leads to the secondary windings and solder the plugs, PLI and PL2, to the other ends. This finishes the construction of version one.

The more sensitive version of the pickup coil uses the same transformer and a printed circuit amplifier. Mount the transformer so


S\&M consultant, Erving Edell checked out this method of reading power consumed in home circuits. It was easy to trace circuits, in any part of the building. The VOM is far more sensitive than the usual electrician's instrument and even a 25 watt test lamp added to an existing amperage on the dial was clearly seen on the meter's calibrated scale.
that the core piece fits snugly against the side of the case. If necessary shim the fit with thin strips of wood. Mount all other parts (Fig. 9) except the amplifier chassis. Wire in the wall receptacle, splitting the two-conductor line core, and running only one of the wires through the gap in the transformer core. Then wire the circuitboard amplifier according to Fig. 3.

Insulate circuit board with electrical tape and wire it into the circuit under the switch as in Fig. 9. Complete construction by using the grounded side of R3 as a common terminal.

Calibration. Before using either unit, a conversion table or tape-on scale must be made for the VOM or VTVM. There are two ways to make this calibration. Several known currents must be sent through Mini-Amp
and the output voltages recorded. These currents can be obtained by placing known resistors in series with the line. Knowing the line voltage, the current is given by Ohm's Law as the voltage divided by the resistance. In using this method be sure to use a resistor with a high power rating. If you have a variable transformer, the entire process can be done with one resistor. Simply change the voltage by step-wise amounts and calculate the current at each point. Different size light bulbs can also be used with slightly less accuracy. The current through them is found by dividing their power rating by the line voltage. Current ratings appear in catalogs available from the lamp manufacturers.


This method of calibrating ammeters should be used only if you have no power resistor and variable transformer. Lamp wattages in various combinations will give you an accurate enough reading to plot a scale. Accuracy will be within 5 percent, provided that you keap your incoming line voltage steady.



The completed pickup fits in the palm of the hand. To read amperes, you pass the conducting wire through the open side of the transformer. Top lefi is iransformer (common in radios) before alteration.

Calibrate the high scale first. Put the selector switch in the "HI" position and set the VTVM or VOM to the lowest ac voltage range. Send increasing known currents through Mini-Amp and record the position on the voltmeter scale for each one. If a higher current scale is desired, turn the VTVM or VOM to the next higher ac voltage range and calibrate it in a similar manner.
To calibrate the low range, select a value


Inside view shows Mini-Amp chassis. Device to be tested plugs directly into receptacle on top. Power line (arrow) feads through opening in transformer. Transformer secondary winding outpul is amplified and feeds to test leads. R3 is common terminal.

|  | MATERIALS LIST-MINI.AMP |
| :---: | :---: |
| Amt. Req. | Si |
|  | Simplified model |
| 1 | modified audio output transformer of your choice (see text) |
| 1 or 2 | plug(s) to fit voltmeter <br> Amplifier model for any current range |
| 1 | 5 mfd .15 volt minialure capacitor, Cornell Dubilier 405 (Allied \#18L159) C2 |
| 1 | 9 volt battery (Burgess 206 or equiv.) |
| 1 | 5 mfd. 6 volt miniature capacitor, Mallory TT6X5 (Allied \#18L769) Cl |
| 1 | $680 \mathrm{~K} 1 / 2$ watt resistor |
| 1 | $10 \mathrm{~K} 1 / 2$ watt resistor |
| 1 | 10K carbon potentiometer linear taper. IRC Q11-116 <br> (Allied \#30M306) |
| 1 | 4 pole, 3 position, non-shorting rotary switch, Mallory 3243J (Allied \#34B357) |
| 1 | CK722 transistor |
| 1 | aluminum case, Bud Minibox CU-3003A (Allied \#80P363) |
| 1 | modified audio output tiansformer of your choice (see text) |
| 1 | battery connector, Cinch-Jones Type 50 (Allied \#54J037) |
| 1 or 2 | plug(s) to fit voltmeter |
| 1 | wall power receptacle (baseboard mounting type) |

of full scale current from 50 milliamps to 10 amps. With the VTVM or VOM set on the lowest scale, Mini-Amp in the "LO" position, and the selected current flowing through Mini-Amp, adjust the calibration control until the voltmeter reads full scale. Mark this setting of the calibration control with a piece of tape. Calibrate the remainder of the scale in exactly the same manner as the high scale.
The simplified Mini-Amp is also calibrated in the same manner as the high scale of version one, only in this case one lead of the load must be placed in the opening of the core, and the core piece placed over it to close the gap. A more permanent arrangement can be made if an extension cord is split, and one of the wires is run through the core with the core piece fastened permanently in place. Then the device to be tested can be simply plugged into the extension cord. You can calibrate as many different scales as you need by simply employing a different setting of the calibration control for each one.

## Suction Fastener for Soldering Pencil



- A rubber suction cup attached to your soldering pencil's handle by means of a cable clamp comes in mighty handy at times. For example the pencil can be suction-fastened to any smooth tool or toolbox or other object for difficult jobs requiring more than two hands. Or it could be fastened to the side of a chassis when standing idle while building or servicing.-John A. Comstock.


## DX America

## Maybe you've monitored five continents, logged 100 countries, verified stations on the other side of the world, but what about our own United States?

## By C. M. STANBURY II

ONE of the best things about DXing America is that you can start right in, using any ordinary AM radio you may have around the house. At night, find a place where you will disturb other members of the household the least, plug in, and get set to listen.
Tune away from local stations, push the volume up, and look for a weak signal: you will soon have your first "logging." With just a simple receiver, especially after midnight, you will be able to $\log 50-k w$ clear channel stations (see White's Radio Loc, page 159) up to 1000 miles away. The better your receiver, of course, the more you will hear.
One improvement you should make, if you can, is the addition of an outdoor antenna, as long and as high as possible. Most receivers are provided with means for attaching such an addition: if yours is not, simply connect the antenna to the terminal of the built-in loop with a $.05-\mathrm{mfd}$. capacitor. If the terminal is difficult to locate, any competent repairman can help you. Make sure the bare antenna wire is not grounded against a metal window frame or tree limbs.
If you live in an apartment and cannot erect an outdoor antenna, the copper pipes of a heating system make an excellent substitute. Even a piece of copper screening in a window helps.
When and What. At sunset, and again around sunrise, numerous daytime stations can be heard as they sign off and on again. This type of listening is not easy, as two or three stations are often heard simultaneously, but careful monitoring can produce a bagful of calls logged. It just takes practice.
During the evening, distant U. S. reception is usually limited to clear channel broadcasters and a few regional outlets. (A regional station is one that operates with 1 or 5 kw at night.) The clear channel powerhouses are excellent targets for the beginner, as almost all verify, and they are good sources of news.
From midnight until 5 a.m., DX is possible on almost any channel, even the "graveyard" spots-1230, 1240, 1340, 1400, 1450, and 1490 kc -where a number of low-powered stations transmit. DX will not be possible, of course, on frequencies where local and semi-local stations operate all night. In recent years allnight stations have become the broadcast band DXer's primary problem; coast-to-coast
reception is still possible, however, and includes daytime stations that are permitted to test during the night.
Targets. Broadcast band DXers have many different goals. Some try to verify all 50 states (or often just the 48, due to the great distances involved in shooting for Alaska and Hawaii); Eastern listeners wanting to log the Pacific coast, by the way, should start with KFI, Los Angeles, on 640 kc.
Other DXers' are more interested in logging and obtaining QSL's from $500-$, 1000 -, or $1500-$ watt stations-and on up the ladder. Maybe you'll want to try for at least one station on each frequency.
Another interesting target is on-the-spot news coverage. This includes such things as state primaries of national interest, like Gen. Edwin A. Walker's try for the governorship of Texas. The Dallas-Fort Worth clear channel transmitter on 820 kc (shared by WBAP and WFAA) carried a Walker speech live, then later the vote count as returns came in.
During local emergencies stations that normally sign off around midnight may operate all night; WCOV, Montgomery, Ala., on 1170 kc , was widely received during the Ku Klux Klan integration riot. If the emergency is serious enough, such as flood or hurricane, even daytime stations broadcast continuously.

On the lighter side, distance listening is a boon to the sports fan. Clear channel stations often carry baseball, foutball, and basketball games of national interest.
The procedure for BCB news hunting is quite direct. Get to know what locations can be heard when, and which channels are clearest during the early morning hours. Then, when something is up, determine from White's Radio Log what stations are in the area, and look for those most likely to be heard.
QSL Hunting. While broadcast band stations do not answer reception reports quite as readily as their short wave cousins, at least $75 \%$ do verify in one way or another.
It is important to remember that AM stations, with the exception of some clear channel broadcasters, derive no revenue from the distant listener, and therefore verify only out of courtesy. Never demand a QSL: politely request it, and be sure your report is accompanied by return postage.

Although reports are usually answered by

WNOP's 1000 Watts at $740^{2 n o s}$
REACHES and SELLS THESE MARKETS


- arpom onio
- aloonar pa
- hoer wayneg ino
- monroro il


## COMBINED

'rotal 207.050

I.
catre (incinmat!
wrom onosos nont al Gusore con

 where Noum liond mas.


 Nomen xen wore noo 10
II. trostates plus!

WNOP': fonimmer Conem

 buer corver the incustrol moento ol Dover, Homiton, Musdilewas., snd

111. OHIO VALIEY cold!
 Contioustrge orse of its WNO

 aroe ol our Monimetter .... Loun.
 chatening programmang to arooter

## Dear Sir

We thank you for your letter reporting the reception of W-I.N.D on chescies. Such reports are very ustful in checking owr coverage and operating efficizney.

The program details you gave have been compared and lound to agree with our program log



I was thp onty suet syypm in ike कndille kees of hat time
W-H.N.D
howns of do
knoe 19 al
W-1.N.D
main menvmitors forth grem mednen and crimpictopicar
 poeet fromithed an regional phomerif

Yours very truly,
sonvele \&onat
KENAGTM ( SHRKK, Cherl Enynoen


DAL 560 : CHICAGO


The majority of AM broadcasters verify in one way or another, and some QSL's are very elaborate, like these maps from WNOP, 740 kc , Newport, Ky, and WFIN, 1330 kc , Findlay, Ohio. The posteard from WIND, 560 kc , Chicago, measures $7 \times 10$ in.
the chief engineer of the station, and it is a good idea to address them to him, write in plain English, so that anyone at the station can understand and answer it. Do not use QRM to indicate interference or QRN instead of static.

Describe the program heard, and try to in-
clude the names of a few advertisers and the times of their spots (impossible, of course, when a test is logged). Describe your equipment and pinpoint your location-unless you live in a large city whose location is well known. The more distant the reception, the better your chance for a reply.

# Three-Way Listening Dynamite 

Tune in on the most controversial of all foreign broadcasters

By C. M. STANBURY II



Rodio Portugol's monthly progrom guide, sent free to those who report.

AMONG the most outspoken short wave stations on the air today are Radio Cairo, the Voice of the West from Lisbon, and Radio Katanga. SWL's in the U. S. cannot agree as to whether each is ally or enemy, hero or villain. The reasons for the confusion are easily come by.

Radio Cairo. A few years ago this one followed the Communist line very closely; since then, however, the English language broadcasts at least have shifted strongly toward the neutral center. On June 22, 1962, for example, during Radio Cairo's English news beamed to West Africa (on 17690 kc at 1420 EST), there were numerous quotes from Secretary of State Dean Rusk, plus a long item
on British fears over a Chinese Communist arms build-up.
On July 12, the English news to Europe (11915 kc, 1645 EST) played up the withdrawal of U. S. troops from Thailand. Needless to say. Moscow and company did everything possible to minimize this.

On the other side of the coin, every day at 1200 EST Cairo switches a transmitter from 17920 to 17895 kc and calls itself Radio Free Africa, a simulated clandestine station. Its broadcasts on this frequency are designed to stir up rebellion in such places as Kenya and Rhodesia-a legitimate cause, perhapsas well as the Congo: and for the last named, Cairo's chief selling point is Patrice Lumumba, a communist martyr seldom mentioned by moderates and rightists in Africa. Maybe Radio Cairo hasn't reformed after all!

Before you jump to that conclusion, however, note that Radio Moscow is on the same channel, also beaming to Africa, throughout the entire period of Radio Free Africa operation (in English until 1230 EST). In effect, Moscow is jamming RFA: you figure it out.
The Voice of the West is a special English language transmission for North America by the Portuguese National Radio (Emissora Nacional). EN, as it is known in SWL circles, probably uses more names than any other station: for English to Africa and Asia it becomes Radio Lisbon, and its monthly program guide bears the title Radio Portugal (Fig. 1).

On March 7, 1962, shortly after inauguration of this North American service, the Voice of the West signed on with a musical " V " for victory, launched an attack against the new Italian government, and then turned its guns on President Kennedy, finishing up with this: "There are some people who believe Kennedy is holding off nuclear tests until his family-Jackie, Robert, and Ted-are safely at home."

The above is a typical sample. Even the use of the "V" for victory is controversial: this was the rallying call transmitted by Allied stations during World War II. Although Portugal did lease bases in the Azores to the U. S.-a year and a half before the end of the war-she remained neutral throughout the conflict.

Claims are made on VOW for Lisbon's nonracialism, which is supposed to set it apart from other fascist nations-such as South Africa. On March 5, however, Africa was described as a "racial hodgepodge" which, if
given independence, would return to its "hazy origins."

Such sentiments have made the Voice popular with some American right wing groups, and its stock is boosted with them by statements like "Democratic governments have been proven incapable of upholding the might of great empires," and that there are Communist advisors around the American Secretary of Defense. However, on May 25, in answer to a listener's question, VOW described Portugal's all-encompassing system of state medicine, considered by these same rightists to be the mark of a socialist society.

Broadcasts are beamed to North America every night at 2100 and 2245 EST on 6025 and 6185 kc ; if neither frequency is heard, try 9740, an alternate channel. Of the three stations discussed here, Lisbon is by far the most easily received.

The Voice of the West is anxious for reports, and any listener who submits one is likely to have a song dedicated to him; this is partly to give the impression that the broadcasts have a large number of supporters in the U. S.

One veteran SWL describes it this way: "They send me two or three program schedules every month, enclosing reception report forms which I do send back once a month as a matter of courtesy ... don't listen toc much to them, not in love with their comments." This listener had a selection dedicated to him on June 6, after being thanked over the air for his "letter."

Radio Katanga. During the first week of July, 1962, the Elisabethville government's powerful international transmitter returned to the air, after a silence of more than six months-it had been destroyed by the UN force on December 6, 1961. Radio Katanga is the station which on May 7, 1961, while supposedly representing a legitimate African government, emphasized that white South African troops were being employed against colored UN forces: five days later, it was


[^7]
quoting in detail UN charges against the racial policies of South Africa and Portugal.

The resurrected RK -which still quotes the South African government-is even less predictable. On July 19,1962 , it quoted a long statement by the UN representative in Elisabethville which concluded with an accusation against Radio Katanga itself, charging it with following one line on its European broadcasts and another-against integrat on into the Congo-on its African service. RK made no attempt to deny the charge: either it is the most honest broadcasting organization in the world-or is trying to convince its listeners of this-or there is a civil war going on right inside the station.

Without a doubt, Radio Katanga offers the most surprising listening within our torrid triangle. It can be heard on 11870 kc , with news in English at 130 and 1520 EST.


## Selecting the Right

# Short Wave Receiver 

By JERRY SKELLY

When you buy that communications receiver, be sure to get a set of head phones for it. By excluding outside noises, they make for better listening. They also make wee-hour DXing more accepiable to the other members of your family.

Photos courtesy Allied Radio Corp., Chicogo

SHORT wave listening can be one of the most enjoyable and informative of hobbies, but only if you have adequate equipment-a receiver that covers the right bands, has the sensitivity to pull in weak signals, and can separate stations that are close together on the dial.
By learning what makes a receiver a top

performer, you can compare the sets on the market and select the one you want. Keep in mind that the purchase of a communications receiver is something of an investment. A good one depreciates slowly and after four or five years may still be worth half its cost. So resist any temptation to buy off-brands or marginal-performance sets merely because they are low-cost. Stick with widely known names such as those in the table on page 64.
In the table we've listed 12 already-assembled and four kit-type receivers that together, account for most of the communications receivers sold today. All of them are superheterodynes and use a time-proved circuit that converts the signal frequency to an "intermediate frequency" where large amounts of stable amplification can be applied.

To determine how many r.f. stages a set has, look inside and count the gangs on the tuning capacitor. Set shown here has three gangs (arrows), which means there is one r.f. stage. Just two gangs means no r.f. stage, while a four-gang capacitor indicates two r.f. stages.

We'll explain each of the performance features listed in the table, so that you can see how each contribuies to the set's performance. And you can use the same information to judge sets that aren't in the table, such as models that are no longer built but may still be found in some stores.
Many of the performance features are given in manufacturers' brochures or mail order catalogs, which means you can get a good idea as to a set's quality even before going to a store and trying it out.
How Many Tubes? The first thing to check is the number of tubes. In general, the more tubes, the better the receiver-and the higher the cost. The number of tubes reflects the number of amplifying stages and is a rough index of how much "guts" a set has.

Get the Right Bands. If you want to use your set for all types of listening-news broadcasts from foreign countries, music, radio amateurs or "hams", police calls, aircraft, or Russian satellites-you should steer clear of receivers that cover only the radio amateur bands. Instead you will want a set that, like the sets in the table, has general coverage and will bring in all the bands (Fig. 3, 4).

An R.F. Stage? At least one radio frequency stage is desirable, because it gives the received signal some preamplification before it is subjected to the relatively noisy process of conversion to the intermediate frequency of the superhet. This contributes to the set's sensitivity by helping boost the signal over the noise.

An r.f stage also reduces annoying image response. (A strong signal may be received at two different points on the dial, one of them the correct frequency and the other, the "image", incorrect. Receivers with good image rejection attenuate the image below hearing level. You can easily determine how many r.f. stages a receiver has, even when it doesn't tell you in the catalog, by counting the numer of gangs, or sections, on the tuning capacitors (Fig. 2).

At Least Two I.F. Stages? Intermediate frequency amplifier stages (don't confuse them with the r.f. stages) provide most of a superhet's sensitivity and much of its selectivityor the ability to separate stations.

The i.f. amplifiers operate at a lower fre-
quency than the signal (usually at 455 kc ), and at that frequency tubes and transformers can be designed to give tremendous amounts of stable amplification.

The receiver you buy should have at least two i.f. stages. One stage is barely adequate, and will mean low sensitivity. You can determine how many i.f. stages a set has by checking the set's specifications in a catalog or by looking at its schematic dragram (Fig. 5).

Sensitivity. A sensitive receiver pulls in the weaker signals clearly and is a great help in DXing-trying to pick up distant signals.

Receiver manufacturers do nót publish sensitivity ratings, and you would have to be an electronics engineer to figure them out yourself, but the number of i.f. and r.f. stages a set has will give you a rough idea of sensitivity. You'll note from the table that we have evaluated the sets for sensitivity and rated each as either Fair, Good or Excellent.

Selectivity is also difficult to determine unless you're a radio expert. Besides separating close-together stations, it aids the reception of weak signals close to strong ones and improves the ratio of signal to noise. As with sensitivity, look for i.f. stages; we have rated each set in the table as Fair, Good or Excellent in selectivity.

BFO for Code and Satellites. If you want to listen for Morse code (CW) or signals from satellites, your set should have a beat frequency oscillator (BFO). Normally, code signals are poorly audible. The BFO is a special circuit which-when you turn it on"beats" with the code to give an easy-to-read musical pitch to the dots and dashes.

Receivers with BFO will have markings on the front panels such as "Code," "CW," "Pitch Control" or "BFO Pitch."

Other Valuable Features include an " $S$ " meter, a noise limiter, an antenna trimmer, a crystal calibrator and a phono input:

| Performance Guide to Communicapions Receivers |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Manufacturer Model No. | Price | Number of Tubes (5) | Frequency Range in. Mics. | R. $F$. Stages | $\begin{gathered} \text { I. F. } \\ \text { Stages } \end{gathered}$ | Sensitivity | Selectivity | $\underset{\text { Meter }}{\mathbf{S}}$ | Antenna Trimmer | Internal Cryatal Calibrator |
|  | 59.95 | - | . 540 -30 | 0 | 1 | $F$ | F | No | No | No |
| $\begin{aligned} & \text { National } \\ & \text { NC60 } \end{aligned}$ | 59.95 | 5 | $\begin{array}{r}.5 \\ \hline 540-34\end{array}$ | 1 | 2 | G |  | No | No | No |
| Hallicrafter: S108 | 139.95 | 8 | . $540-34$ | 1 | 2 | G | F | Yes | Yos | No |
| Hallicrafters SX110 | 169.95 $+12.95 ~ s p k r$ | 8 | . $540-34$ | 1 | 2 | G | E | Yes | Yes | No |
| Hammarlund HQ100AC | $\begin{array}{r} 199.00 \\ +\quad 14.95 \text { spkr } \end{array}$ | 10 | . $540-30$ | 1 | 2 | E | E | Yes | Yes | 15.95 extra |
| HQ100AC | $395.00$ | 16 |  | 2 | 3 | E | E | No | No | No |
| $\begin{gathered} \text { Hallicrafters (4) } \\ \text { SX62A } \end{gathered}$ | $\begin{array}{r} 395.00 \\ +\quad 19.95 \mathrm{spkr} \end{array}$ | 16 5 | $.540-108$ $.550-30$ | 0 | 1 | F | $F$ | No | Yes | No |
| Heath-Kit AR-3 | $\begin{aligned} & 29.95 \\ & \text { (1) } \end{aligned}$ | 5 | . $550-30$ | 0 | 1 | G | $F$ | No | Yes | No |
| $\underset{\text { R-55 }}{\substack{\text { Knight-Kit }}}$ | 59.95 | 6 | .540-36 | 0 | 2 | G | F | 12.95 | Yes | No |
| - $\begin{gathered}\text { Knight-Kit } \\ \text { R-100 }\end{gathered}$ | 99.95 | 8 | . $540-30$ | 1 | 3 | E | E-E | extra Yes | Yes | No |
| Heath-Kit GC-1A | $109.85$ <br> (2) | 10 Tr . <br> (3) | .550-32 | 1 | 3 | E | G-E | Yes | Yes | No No |
| Lafayette HE-30 | $\begin{array}{r} \text { wired }-99.95 \\ \text { kit }-79.95 \end{array}$ | 9 |  | 1 | 2 |  |  | Yes Yes | Yes | No No |
| Lafayette HE-10 | $\begin{array}{r} \text { wired }-79.95 \\ \text { kit }-64.50 \\ \hline \end{array}$ | 9 |  |  | 2 |  |  | Yes | No |  |
| Note (1):Cabinet $\$ 4.95$ extra. <br> Note (2): Supplied with batteries. A.C power supply is $\$ 9.95$ extra. <br> Note (3): Uses 10 transistors and 6 semiconductor diodes. <br> Note (4): The SX62A hos a hi-fl audio system. Also covers the standard FM band. <br> Note (5): Includes rectifiers and valtage regulator tubes. |  |  |  | All models have BFO's, and all have noise limiters except NC60. All models are current, made by standard brand manufacfurers with national distribution. Price is subject to change. Excise tax is included; but shipping charges and sales tox, if any, must be added. |  |  |  |  |  |  |

- The " S " meter occupies a distinctive place on the front panel (if the set has such a meter) and is calibrated from 1 to 9 ; in some cases, the meter will be marked "Carrier Level." The calibrations indicate the strength of the received signal and are helpful for on-the-nose tuning, since signal strength is greatest when tuning is correct. Not an absolute necessity for average listening, this feature is found on only the more expensive receivers.
- Noise limiter. This circuit minimizes the effect of extraneous electrical noises. If the receiver has one, a front panel switch will be marked "Noise Limiter" or "ANL" (for Automatic Noise Limiter).
- Antenna trimmer. This is another front panel control which almost always is marked either "Antenna" or "Antenna Trimmer." Important to top performance, it tunes the antenna and the receiver input circuit together for better signal energy transfer. (You will have difficulty getting clear reception on distant stations without a good out-door antenna. Weaker signals may represent an energy of less than a few millionths of a millionth of a watt. Give your receiver a break by collecting as much as possible of this energy in a good antenna before asking the receiver to go to work on it.)
- Crystal calibrator. Inevitable variations in mass-produced parts, together with changes in temperatures, humidity and line voltage, produce inaccuracies in the tuning dial scale. A good way to overcome this is by use of a
precision frequency source and its harmonics as dial calibration reference points. The receiver can then be adjusted to bring in stations at the correct spot on the dial. Receivers that provide internally for a crystal calibrator have a "Calibrate" marking on a front panel switch.
- Phono input. This is an unessential extra that permits the use of the receiver's amplifier and speaker with accessory record changers, FM tuners and such (Fig. 6).

Finding the Right Dealer. You can check out a receiver for the preceding features merely by looking at a catalog or brochure.
But you should also put it through its paces to see how it performs. This can be done only by going to a dealer (or by purchasing a set through a mail order house with a moneyback guarantee if you're not satisfied).
It's important to select your dealer carefully. Check your classified telephone directory for names of radio parts jobbers or ask a local radio amateur where he shops.

Be wary of department stores and jobbers who serve radio-TV servicemen exclusively, because your dealer should have a service department to back up a new set's guarantee. He should also have a wide selection of sets.
Through the Paces. Once you are ready to give a receiver its on-the-air test, turn it to short wave broadcast and amateur signals. These should be heard on one band or another at any time of the day or night. If you can't hear any signals, try another set.

Next, rotate the band selector switch. Some


Here's how you can easily tell if a set has general coverage, will pick up all the bands shown in Fig. 3. In 4A, finger points to 4.5 megacycles, which is at extreme left of the second band on the dial. In 4B, finger points to 4.6 megacycles, which is on extreme right of the third band; thus there is no gap between the bands. In 4C, though, note that the top band runs from 3.5 to 4.0 , while the band below it picks up at 7.0 . This receiver covers only the ham bands.


It's easy to tell how many i.f. stages a communications receiver has. Just take a close look at its schematic diagram. The stages (arrows) will be clearly labeled as shown in this section of a typical schematic. This set has two i.f. stages.
signals or noise should be heard on all bands. No band should be $100 \%$ dead.

Now, after tuning in a station, rotate all the controls and throw all the switches-one by one-listening carefully as you do so. Each control or switch should have some audible effect on what you hear.
Potentiometer controls should not give scratchy sounds when they are turned. If one does, it probably is worn or defective.

Last, turn the tuning dials over their entire range. They should move easily with no noticeable slack motion or backlash.
What About Portables? If you don't need the portability that comes with a transistorized receiver, you probably would do well to avoid it and buy a regular tube set. The less expensive of the transistor models-those costing up to about $\$ 90$ - do not have the sensitivity of a comparable tube set.

The more expensive transistor portables charge a high premium for the combination of portability and good performance-yet may lack many features desired by DXers.
Buy a Used Set? A used receiver may be a good buy, but only if it comes with the standard 90 -day new set guarantee-in writ-


Receivers with a phonograph inpul will have the word "Phono" on a front panel switch position, but the jack will be on back of the sel as showa here. Don't confuse the "Phono" jack with "Phenes"which designates the headphone jack as shewn in Fig. 1.
ing-covering parts and labor. Used sets should be purchased only from those jobbers who have service facilities and will give you an additional guarantee in writingstating that you can get a full refund within 10 days if you are not satisfied with the set.

If you plan on buying a used receiver, you should look for the same features listed in the table, but be sure to give it a real wring-out during the on-the-air check If possible, take an experienced radio amateur along when you go to buy the set. He'll probably be able to assess it for you pretty well.

# Experimenter's Transistor Breadboard 

By ART TRAUFFER

TRANSISTORS and small diodes are fragile and easily ruined by excessive handling. With this miniature breadboard you can instantly test circuits in any combination without soldering and unsoldering leads.

The power transistor is mounted on a copper bracket which doubles as a heat sink, and the clips are marked so you can't make a mistake in your connections. Size and placement of the parts are not critical. For the base use a $6 x$ $2 \times 1 / 2$-in. piece of wood. Mount the clips with $3 / 8-\mathrm{in}$. rh wood screws. Solder a general purpose diode (Sylvania 1N34A or equal) directly to a pair of the clips. Solder three short wire leads to the terminals of a three transistor socket, and run these leads to the three Fahnestock clips.

Bend the power-transistor bracket from $1 / 32-\mathrm{in}$. sheet copper. The " C " clip goes over the long ear of the bracket. Mount the power transistor (Motorola 2N555, RCA 2N301 etc.) directly to the copper surface, using two $\% / 32$ $\mathrm{x} 3 / 8$-in. rh machine screws and nuts. Do not



Front view shows breadboard set up as erystal detector with one stage of audio. Rear view shows power transistor bolted directly to copper heat sink mount. Engrave the symbols with a ball point pen.


2


It's New - It's Big - It's Better Than Ever It's From the "World's Hi-Fi \& Electronics Shopping Center"

The exciting, all-new 1963 Lafayette Catalog features thousands of items for the audiophile, experimenter, technician, hobbyist, serviceman
. . Citizens Band, Tape Recorders, Stereo Hi-Fi, Ham and Amateur Equipment, and much more. No Money Down on Lafayette's Budget Plan

ONLY LAFAYETTE OFFERS THESE OUTSTANDING EXTRAS: VSATISFACTION GUARANTEED OR MONEY REFUNDED VLOWEST PRICES EXCLUSIVE LAFAYETTE KITS VLARGEST STOCK SELECTION VBUY THE EASY-WAY WITH EASY-PAY...


# AC Experiments with Series Circuits 

Why voltage, unlike that in de, can often be much greater than the amount applied- 10 tests you can make with simple, safe, and inexpensive equipment


These basic passive components plus a 6.3 -valt transformer and an ac voltmeter are all that's needed for some challenging ac experiments.

By FORREST H. FRANTZ SR.

ALTERNATING current (ac) circuits are excitingly different from direct current ( dc ) circuits. The de circuit situation with a steady voltage applied at a relatively long time after any switching has occurred, is influenced only by the circuit resistance. But in a circuit operated from an ac power source, capacitance and inductance also influence steady state conditions.

The sum of voltages across the elements in series ac circuits add up to a voltage greater than the applied voltage if inductance and/or capacitance are present. And that voltage can be many times the applied voltage if inductance and capacitance with proper value relationships exist in the circuit.

Equipment Used. You can conduct the experiments that follow with capacitance and resistance substitution boxes (available at most radio shops) or, if preferred, you can just as readily use loose capacitors and resistors.

For the inductance, we used an inexpensive
universal output transformer with the secondary left open (no connections).

In addition to these components forming the passive elements of the series ac circuit (Fig. 1), you'll need a power source and ac voltmeter. Any 6.3-volt filament transformer can provide the power. It provides an exact frequency of 60 cycles since the power line frequency is well regulated.

The low voltage is preferable because it keeps the larger voltages which you'll encounter at resonance down to about 35 volts. If you were to use a 25 -volt power supply, the voltage across the capacitor at resonance would be close to 150 volts! A transformer has the additional safety feature of isolating the circuit from the ac line and preventing accidental shock if you should become grounded in any way.
Many experimenters have their own voltmeter. I used a Heathkit MM-1. If you wish to buy one, you might check the catalogs of the mail order houses and kit companies for a meter to fit your needs and pocketbook. You should select a vacuum-tube voltmeter (VTVM) or a multimeter with an ac sensitivity of 5000 ohms per volt or better. You'll

have considerable error if you use a meter with only 1000 -ohm per volt sensitivity.

## Series Resistance:

## Inductance (R-L) Circuit

First connect the resistance substitution box and the inductance in series, using brown and blue leads, then connect the leads to the transformer 6.3 -volt secondary as in Fig. 2A. Measure the voltage across the coll (IXlcurrent times reactance) and the voltage across the resistor (IR-current times resistance) for $R$ values of $1000,2200,4700,6800$, and 10,000 ohms. Record IXl and IR.

You'll note that IXL plus IR is greater than V (measure V) for most values of R . Why is this so? Can you deduce anything about ac circuits from your data?

## PROJECT 1

Vector Diagrams. Here's a partial explanation: Current lags the induced voltage in an inductive circuit. The amount of lag is defined by a phase angle $(\Theta)$ and is $90^{\circ}$ for a pure inductance. The phase angle in a resistance is $0^{\circ}$, so resistor current and voltage are in phase.

These relationships show up in a vector diagram, as in Fig. 2B. IR and IXl are drawn to scale for a typical set of $R$ and $L$ values, with IXL leading IR by $90^{\circ}$. Now the value of IXL is the magnitude of the reactive voltage only and should be symbolized more properly as $V_{L}$. If the vector diagram is completed, the voltage V is the resultant. The angle between $V$ and IR is the phase angle ( $\ominus$ ).

Now, draw the vector diagrams for the data
you took previously, ignoring the measured value of V. You might, for example, let 1 in . equal one measured volt. Complete the diagrams to solve for $V$, then compare the values thus obtained with that of the measured V. You'll note that there's a difference. Why is this so? Write a short explanation as to why you may have obtained these seemingly erroneous answers, then put it aside for comparison with the explanation which will be given later.

## PROJECT 2

Understanding Circuit Computations. The preceding project has probably alerted you to some of the possible computations for this circuit. First, the vector addition of Vı (which is IXL) and $\mathrm{V}_{\mathrm{R}}$ (which is IR) to obtain the resultant V (which is IZ as will be seen shortly), can be solved analytically. Units used are V. volts; $\Theta$, degrees; I, amperes; XL, ohms: R, ohms, and L, henries:
(1) $V=V \overline{V R}^{2}+V_{L}{ }^{2}$
(2) $\tan \theta=V_{L} / V_{R}$

The fact is that
(3) $\mathrm{V}_{\mathrm{L}}=\mathrm{IXL}$ and
(4) $\quad \mathrm{V}_{\mathrm{R}}=\mathrm{IR}$
have already been mentioned.
From this,
(5) $I=V R / R$
(6) $\mathrm{X}_{\mathrm{L}}=\mathrm{VL}_{\mathrm{L}} / \mathrm{I}$

Now, what is XL ? It is the inductive reactance of the coil. The inductive reactance is a function of the inductance of the coil and the frequency of the applied voltage.
(7) $\mathrm{XL}=2 \pi \mathrm{fL}$


Series R-C arrangement.
For our experiment, the frequency f is 60 cycles. Therefore $2 \pi \mathrm{f}$ is 377 for our problems. I'll use 377 wherever $2 \pi \mathrm{f}$ is involved in most subsequent formulas and calculations and leave substitution of $2 \pi \mathrm{f}$ when a different frequency is to be used as a student responsibility. Then, for our case
(8) $\mathrm{XL}_{\mathrm{L}}=377 \mathrm{~L}$, and
(9) $\mathrm{L}=\mathrm{XL} / 377$

Now what about this " $Z$ " bit? Z is the impedance of the circuit in ohms. It is the vector sum of the resistance and the reactance. Hence,
(10) $Z=\sqrt{\bar{R}^{2}+X L^{2}}$, and
(11) $\tan \theta=X_{L} / R$

Note that equations 1 and 2 are equations 10 and 11 with all terms multiplied by I. Hence,
(12) $\mathrm{V}=\mathrm{IZ}$, and
(13) $Z=V / I$

Has any of this explanation given you a clue as to why you got erroneous results in Project 1?

PROJECT 3
Examples of Circuit Computation. At this point, let's try an example. Take the data for the series circuit where $R=4700$ ohms. I got values of $V_{R}=4.2$, and $V_{L}=3$. Applying the formulas presented in Project 2, and round-
ing off to two significant figures:
from
(1) $\mathrm{V}=\sqrt{ } 4.2^{2}+\overline{3^{2}}=5.2$ volts
from
(2) $\tan \theta=3 / 4.2, \ominus=35.6^{\circ}$
from
(5) $\mathrm{I}=4.2 / 4700=.0009 \mathrm{amp}$
from
(6) $\mathrm{XL}=3 / .0009=3300 \mathrm{ohms}$
from
(9) $\mathrm{L}=3300 / 377=8.8$ henries
from
check
(13) $\mathrm{Z}=5.2 / .0009=5800$ ohms
(10) $\mathrm{Z}=\sqrt{(4700)^{2}+(3300)^{2}}$

The latter check, equals 5700 ohms, which is adequate since we've been rounding off numbers. Why equations 10 and 13 check while measured V and computed V don't check will be explained in the next project.

At this point, perform the computations, using your data for $R=2200 \mathrm{ohms}$.

## PROJECT 4

The Fallacy. Use the ohmmeter function of your multimeter to measure the resistance of $L$, while $L$ is disconnected from the circuit. You'll find the resistance is roughly 200 ohms. This should give you the first clue to the difference between the computed V and the calculated V. In calculating V, we assumed that L was a pure inductance. In practice, however, this is impossible because a length of wire exhibits resistance.

Furthermore, when a length of wire is wound into a coil, there is capacitance between turns. In the case of our experiment, the capacitance between turns introduces more error than the resistance of the coil.
There is an additional error due to the loading of the circuit by the meter during the measuring process. This error plus others mentioned above introduces an error of about $8 \%$ to $15 \%$ in the measured and calculated values of V .

## Series Resistance:

## Capacitance (R-C) Circuit

If the facts of practicality in the preceding projects are puzzling you may relax and smile for what comes next. The inductance and resistance associated with practical capacitors is negligible at 60 cycles. Consequently, a practical capacitor looks like an ideal capaci-


Connect the circuit as shown in Fig. 3. Set R at 6800 ohms on the resistance bcx. Record Vc and Vr for $\mathrm{C}=.1, .22, .5$, and 72 microfarad ( $m f d$ ). Note that the capacitance box is disconnected and the external .5 mfd capacitor is used for the .5 mfd measurements. The .5 mfd capacitor is connected across the capacitance box (set to .22 ) to make the .72 mfd measurements. Measure V and record the value.

## PROJECT 5

Vector Diagram for R-C Circuit is shown in Fig. 3B. Note that the Vc vector is directed downward. Current leads in a capacitive circuit.

Draw vector diagrams for this data as you did for the data in Project 1. Then determine V from the vector diagrams. The error between the measured V and the calculated V is much smaller.

PROJECT 6
Understanding Circuit Computations. The applicable formulas are:

| (14) | $V=V \mathrm{R}^{2}+\mathrm{Vc}^{2}$ |  |
| :---: | :---: | :---: |
| (15) | $\tan \theta=\mathrm{Vc} / \mathrm{Vr}$ |  |
| (16) | $\mathrm{Vc}=\mathrm{IXc}$ |  |
| (17) | $V_{R}=1 R$ |  |
| (18) | $\mathrm{I}=\mathrm{VR} / \mathrm{R}$ |  |
| (19) | $\mathrm{Xc}=\mathrm{Vc} / \mathrm{I}$ |  |
| (20) | $\mathrm{Xc}=1 /(2 \pi \mathrm{fC})$ |  |
| (21) | $\begin{aligned} & \mathrm{Xc}=1 /(377 \mathrm{C}) \\ & \text { cycles) } \end{aligned}$ | ( $\mathrm{for} \mathrm{f}=60$ |
| (22) | $\begin{aligned} & \mathrm{C}=1 /(377 \mathrm{XC}) \\ & \text { cycles) } \end{aligned}$ | ( for $\mathrm{f}=60$ |

These units are V, volts; I, amperes; R, ohms; Xc, ohms, C, farads, and Z, ohms.

The matter of making most of the computations is pretty much in line with the examples of Project 3. The generation of a group of examples corresponding to the set for the R-L circuit given in Project 3 is a good exercise for the student. There is considerable similarity in most cases.

## PROJECT 7

Another Experiment. Adjust circuit capacity to .72 mfd . Then record VR and Vc for $\mathrm{R}=2.2 \mathrm{~K}, 4.7 \mathrm{~K}$, and 6.3 K .

Now you can draw vector diagrams for this data. Compare the values of V obtained from the vector diagrams with the measured values of V.

If you wish additional practice, you may perform the computations for all sets of data. The more problems you do, the better you get to understand the subject. With this experimental set-up, you can get a large amount of dage for practice problems.

## Series Resistance-Inductance- <br> Capacitance (R-L-C) Circuit

Hook up the series R-L-C circuit as in Fig. 4 and 4 A . Set $\mathrm{R}=2200$ ohms and record VL, Vc, and Vr for $\mathrm{C}=.1, .22,15$, and .72 mfd . Measure and record V.
In the vector diagram (Fig. 4B), you can see that VL and Vc are $180^{\circ}$ out of phase and hence can assume large values. What is happening here? The capacitor and inductor al-

ternately store and dump energy on each other. A special relationship exists between Vc and VL at resonance, a phenomena that we'll discuss later.

## PROJECT 8

Draw the vector diagrams for the series R-L-C circuit.

## PROJECT 9

New Formulas and Practice. The formulas presented earlier apply for the most part. However, there are new formulas for $\mathrm{V}, \ominus$, and Z :

## MATERIALS LIST-AC EXPERIMENTS

## Desig.

capacitance, 1 to .7 mfd (Lafayefte TE- 16 capacitance substitution box, $\$ 2.95$, and a Sprajue 2EP. P50 .5 mfd. 200-v. capacitor. 36\%).
L inductance (Use the brown and red leads on Lafayette TR-12 output transformer, \$1.19). Tape or keep the red lead out of the wiring. Leave the secondary opent. resistance, 1 K to 10 K (Lafayette TE-17 resistance substiIution box, \$3.95).
$6.3-\mathrm{v}$, filament transformer (Lafayette TR-11, 89@)
AC voltmeter, 5000 ohms per volt or better sensitivity. (Heathkit MM-1, \$33.95). Least expensive suitable unit is Lafayelte TK-10, \$11.95.
Sources: Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.

Heath Co., Benton Harbor, Mich.
(27) $\mathrm{V}=\mathrm{V} \mathrm{VR}^{2}+(\mathrm{V} \mathrm{L}-\mathrm{Vc})^{3}$
(28) $\tan \theta=\left(V_{L}-V c\right) / V_{r}$
(29) $\mathrm{Z}=\sqrt{\mathrm{R}^{2}+(\mathrm{XL}-\mathrm{Xc})^{3}}$

Now you can perform a complete group of computations for one set of your data.

## PROJECT 10

Resonance. Removing R from the circuit will change the circuit to that shown in Figs. 5 and 6. Then adjust C till Vc reaches a maximum value. Note that Vc will be somewhere between 30 and 40 volts. On measuring VL , you will find it is nearly equal to Vc.

When $\mathrm{VL}=\mathrm{Vc}$, the circuit is in resonance. This occurs when XL = Xc. A relationship of interest at the resonant frequency fo is:
(30) $\quad$ fo $=1 /(2 \pi \sqrt{\mathrm{LC}})$

The manipulation of this formula to solve for $L$ and for $C$ is left as an experimenter exercise.
We haven't used an ideal inductance, so you'll notice some errors (seeming contradictions) in some of the voltages computed. But since we went into that subject in relative detail earlier, you're prepared for it at this point and know why it occurs.


This compact ac-dc receiver features good sensitivity, better than average selectivity, and simplified construction. It has an adjustable tuning range of 85 to 550 kc . and is easily modified for broadcast-band reception

By JOE A. ROLF, K5JOK

THE circuit of this economical receiver (see Fig. 4) employs two miniature high-gain TV tubes. The 6AN8 is a regenerative detector; the pentode section of the 6AU8 is an audio amplifier. The triode of the 6AU8 serves as an ac-dc type rectifier.
The heart of the circuit is the detector, a regenerative cathode-follower type commonly known as the "Regenode." If you're not familiar with this hybrid circuit, here's how it works: The pentode section of the 6AN8 is a conventional grid-leak detector, with the exception of the signal grid which is separated from the tuned antenna circuit by the cathode-follower connected triode section of the tube. This arrangement permits a degree of selectivity not possible with the detector
grid connected directly to the antenna circuit, since the signal-grid loads the tuned circuit and reduces its $Q$, or selectivity ability. The cathode-follower isolates the detector from its input circuit and allows a great improvement in selectivity. The circuit operates smoothly, is easily adjusted, and eliminates hand-capacity effects common to most regenerators. These advantages are particularly desirable in a $L W$ receiver.
Since hand capacity does not affect operation, an all-wood chassis constructed with simple hand tools can be used. Chassis details are shown in Fig. 5. Large holes (for tube sockets and controls) can be made with a coping saw; fastener holes can be made with a hot ice-pick in the absence of a drill. A


YOU'LL be pleasantly surprised at the number of interesting signals to be heard below the standard broadcast band, though at first they may sound like nothing but jumbled dots and dashes intermixed with weird howls and squeals. Careful listening, however, will reveal this apparent bedlam to be important communication services which make unusual listening and challenging DX.

The main divisions of the 10 Kc . to 535 Kc. band are shown in Table A. It is occupied mainly by aeronautical and marine services, although $150-535 \mathrm{Kc}$. is part of the standard BC band in Europe and Asia. However, without discounting the possibility of logging some of these BC stations, the marine and aeronautical stations are of prime interest to most LW listeners.

## What to Listen To on LW

The long waves provide up-to-the-minute
reports on weather and flying conditions,
code practice and some good DX

The most popular are the navigational aids, or radiobeacons, heard between 200 Kc . and 405 Kc . Some are marine beacons, others aeronautical. Both employ very slow amplitude modulated code and are easily distinguished from one another by their signals.

Marine beacons usually transmit their call signs continuously in an omni-directional pattern. In some cases the call, consisting of from two to four letters or numerals, is separated by a number of dashes. Many marine beacons can be heard constantly over a considerable range, while the less powerful can be logged at great distances under favorable conditions.

Aeronautical range stations transmit a combination A-N signal in a four-leaf pattern like that of Fig. 1. They identify themselves every thirty seconds and employ two pairs of antennas to obtain the four-leaf radiation pattern. The transmitter is operated continuously and is alternately switched between the two antenna systems so that an $A$ (dit dah) is radiated in the directions marked $A$ in Fig. 2, and an $N$ (dah dit) in the directions marked $N$. Midway between the $A$ and $N$ patterns, the signals merge as a steady tone which aircraft follow to or from the station. If the pilot leaves this course, he will hear either the $A$ or the $N$.

These radiobeacons offer an unlimited
metal chassis will afford more compact construction, but a wooden panel and cabinet should be used to avoid accidental grounding of the chassis.

Construction is not critical and will pose no difficulty if the general layout shown in Figs. 2, 3, and 5 is followed. Keep RF and AF leads separated and away from ac leads. This is best accomplished by wiring the filaments and power supply first, then the AF and detector stages.

Ground connections are made to solder lugs mounted to the socket and tuning capacitor fasteners. Components R4, R6, R9 and R10 mount on a 7 -lug terminal strip at the rear underside of the chassis (see Figs. 3 and 4). The filter capacitor, C11, can be wedged between the 6AU8 socket and chassis leg, or secured with a mounting clip. Two sections of this capacitor are used in the power supply
filter, the third is used as a cathode bypass for the audio stage.

Other components under the chassis, except $R 3, C 7$ and $C 9$, mount to respective tube sockets. Capacitor C9 is connected from J2 to the grounded terminal on R5. Resistors R3 and C7 connect to a machine screw and solder lug placed between L1 and C2. One lead of L2 connects to a solder lug on the same screw on the chassis top.

The antenna trimmer, C 1 , is secured by the antenna terminal mounting screw as shown in Fig. 3. This component requires only infrequent adjustment, but it can be mounted on the front panel for easier access, if desired.
Inductance L1, a standard TV replacement coil, is mounted last. Before inserting the core, as explained in the manufacturer's instruction leaflet, thread on the $\overline{7} / 16$-in. mounting clip and remove $1 / 2 \mathrm{in}$. from the slotted
table a-long wave allocations
Frequency (Kc.) Communications Service Sunset Skip Night DX

| $10-14$ | Radionavigation <br> $14-200$ | Fixed Public Services <br> and Coastal-Marine CW | none |
| :---: | :--- | :---: | :---: |

Note: Frequencies between 150 Kc . and 535 Kc . also used by foreign BC stations.
source of unusual DX. At first sight, these stations seem to offer poor DX since most are relatively low powered and have a daytime range of less than 200 miles. However, their range is greatly increased at night-best times for night DX are given in Fig. 1. These hours will vary somewhat with the seasons, with the choicest DX being heard from early fall to late spring.
Above 325 Kc . sunset skip is often heard for a half-hour during early darkness. Notable examples are PJG. 343 Kc . in the Netherlands Antilles; ASN, 350 Kc . on Ascension Island; and SWA, 406 Kc . from Swan Island.

Since beacons identify continuously or every thirty seconds, less than a minute is required to $\log$ a station. However, in order to determine the locations of the stations you

## TABLE B-STATION LISTS

Th: Airman's Guide Superintendent of Documents, Washington 25,
O. C. 254 per copy. A bi-weekly publication listing all U. S. aeronautical radio beacons.

Location Identifiers Superintendent of Documents, Washington 25, 0. C. $\$ 1.50$ for copy and one-year supplement service. Jeneral listing of all domestic beacons.

BrcadcastingStations Superintendent of Documents, Washington 25, of The World, Part O.C. $\$ 2.00$. Includes European LW broad. II, According to casting stations. Frequency

Air Navigation
Radio Aids
Department of Transport, Air Service Branch, Ottawa, Ontario, Canada. Complete list of Cana: dian Radio Beacons, published every two months.

Radıo Facility Charts ACIC. USAF, 2nd \& Arsenal Streets, St. Louis -Caribbean \& South America 18. Mo. One year subscription $\$ 3.50$. Listing

Radio Navigational of Caribbean \& South American beacons.

Aids
Hydrographic Office, U. S. Navy. An annual publication listing worldwide marine beacons.
List of Coast Stations Secretary General. International Telecommuni(4.10 Swiss francs) cations Urion, Geneva, Switzerland. Very comList of Ship Stations plete listings of worldwide stations.
(12.30 Swiss francs)

List of Call Signs
(21 Swiss francs)
hear, you need a reference log listing the stations you are interested in. Such listings can be purchased (see Table B).

Range stations also transmit verbal weather reports for air fields in their area 15 minutes before and 15 minutes after the hour.

In addition to radiobeacons, many CW stations operate on long waves for maritime, aeronautical, and public service communication. For the CW enthusiast, these are interesting to copy and the slower stations, sometimes sending as slow as eight words a minuite, provide plenty of code practice. Many good DX signals can be heard between 415 Kc. and 500 Kc., particularly on the 500 Kc . international calling and distress frequency. The frequencies below 200 Kc . are also widely used by public service and maritime CW stations.
end of the core adjustment screw, otherwise it will protrude below the chassis when the coil is mounted. Clamp the section to be removed in a vise and cut it off with a hacksaw, then cut a new screwdriver slot. Take care not to break or fracture the fragile ferrite coil.

Inductance L2 consists of 35 turns of \#26 (or smaller) enameled wire scramble-wound over a $1 / 1 / 16$ in. ID tube which slides freely over L1. If not available, this form can be made by winding four or five layers of moist gummed tape, sticky side out, over L1. When dry, slip the tube off and trim to proper length with a razor blade. With L2 in place, secure L1 to the chassis with a bead of Duco cement.

For maximum sensitivity, the position of L2 on L1 should be adjusted for the individual receiver. This simple adjustment is well
worth the effort and can be made with a long antenna, 455 Kc signal generator, or a BCB receiver with a 455 Kc intermediate frequency. If possible, use a signal generator or BCB receiver, since this will permit adjustment of L2 and the core of L1 at the same time.

Short out L2 temporarily by connecting a short piece of wire from the R3-C7 solder lug to pin No. 7 of the 6A.N8 socket. Turn the core adjustment screw full counterclockwise and connect the antenna, signal generator, or BCB receiver to the antenna terminal.

If a $\operatorname{BCB}$ set is used, tune to a strong BCB station and turn the set's volume down. Connect a short piece of insulated wire to your LW receiver antenna terminal and place it near the underside of the BCB set's IF tube socket or IF transformer to hear the 455 Kc IF signal of the BCB receiver.


Topside of the receiver's Masonite chassis. The antenno coil, $\mathbf{L I}$, is mounted so that its slug is adjusted from below the chassis.

MATERIALS LIST-LONG WAVE RECEIVER

| Desig. | Description | Desig. | Description |
| :---: | :---: | :---: | :---: |
| C1 | 9 to 180 mmf trimmer capacitor | R10 | $2.2 \mathrm{~K}, 1$ watt |
| C2 | 10 to 365 mmf variable capacitor, standard single-gang TRF type | $\begin{aligned} & \mathrm{j} 1 \\ & \mathrm{~J} \end{aligned}$ | antenna terminal post, or Fahnestock clip standard phone jack |
| C3 | . 01 mfd dise ceramic | L1 | Long Wave: Merit MWG-9 Width or Linearity coil, 3 to |
| C4 | 100 mmf mica |  | 12 ma., tapped (see text) |
| C5 | . 001 immf disc ceramic |  | Broadeasf: Ferri-loopstick BCB antenna coil (see text) |
| C6 | 500 mmf mica | L2 | Long Wave: 35 turns \#26, or smaller, enameled wire |
| C7 | . 01 mid disc ceramic |  | scramble wound on $9 / 10^{\prime \prime} 10 \times 3 /{ }^{\prime \prime}$ form (see text) |
| C8 | . 01 mfd dise ceramic |  | Broadcast: 3 turns \#26, or smaller, enameled wire on ad. |
| C9 | . 0047 mid disc ceramic |  | justable form (see text) |
| C10 | . 01 infd disc ceramic | RFCl | 2.5 mh. RF choke (National R-100, or equivalent) |
| C11 | 40-40-40 mid. 150 wr capacitor, 3-section electrolytic filter capacitor (Cormell-Dubilier BBRT 44415, or equivalent) | $\begin{aligned} & \text { SWl } \\ & \mathrm{Tl} \end{aligned}$ | on R7 <br> filament transformer, $6.3 \mathrm{vct}, 1.2 \mathrm{amp}$ (Stancor P. 6134 or |
| R1 | $6.8 \mathrm{~K} .1 / 2$ watt resistor |  | equivalent) |
| R2 | $1 \mathrm{meg}, 1 / 2$ watt | T2 | optional-for speaker use only; 5000/3.2 ohm, 3 watt, 40 |
| R3 | $33 \mathrm{~K}, 1 / 4$ walt |  | ma, output transformer. (Merit A-3026, or equivalent) |
| R4 | $68 \mathrm{~K}, 1$ watt | V1 | 6AN8 |
| R5 | $1 \mathrm{meg}, 1 / 4$ watt volume control with SPST switch (Mallory | V2 | 6 AU8 |
|  | U. 53 Miduetrol with US. 26 switch, or equivalent) | 1 pe | $1 / 8 \times 41 / 2 \times 6^{\prime \prime}$ Masonite (panel) |
| R6 | $100 \mathrm{~K}, 1 / 2$ watt | 1 DC | $1 / 8 \times 4 \times 6^{\prime \prime}$ Masonite (chassis top) |
| R7 | $100 \mathrm{~K}, 1 / 4$ watt, volume control (Mallory U. 41 Midgetrol, or equivalent) | 2 pcs | pine strip. $3 / 4 \times 1 / 8 \times 4^{\prime \prime \prime}$ (chassis sides) <br> two miniature 9 -pin tube sockets |
| R8 | 82 chm, $1 / 2$ watt |  | one 7-luy terminal strip |
| R9 | $5.6 \mathrm{~K}, 1$ watt |  | hardware, power cord, dial, knobs, etc. |

With the volume control at maximum and the regeneration control set at half-scale, place the tuning capacitor about $85 \%$ open and turn Li's core clockwise until the 455 Kc signal is heard. Adjust the regeneration control for maximum volume and mark its position. This is the detector's most sensitive
point and will determine the position of L2. Remove the jumper across L2 and slide the coil up or down over L1 until regeneration (signal distortion) occurs just above the point previously marked on the regeneration control. If the detector fails to regenerate, reverse the leads on L2.


Under-chossis view, showing plocement of components.


This receiver's tuning range, from 85 to 550 Kc , is covered in two adjustments of the core on L1. When set to receive 550 Kc at C2's minimum capacity, the receiver will tune down to about 200 Kc . The range from 85 to 20 JKc is tuned when the slug is almost fully inserted into L1. Overlap on both bands will
permit easy bandchanging once the operator is familiar with the stations heard around 200 Kc. On the lower band, L2 may require slight readjustment for best reception of weak signals.

For BCB reception, a ferri-loopstick is used for L1. Inductance L2 consists of three turns


C OPTIONAL CHASSIS COVER
and adjustment is similar to that of LW operation. The lead from C1 should be connected to the grid end of the loopstick.

A high, long-wire antenna will give best all-'round LW reception, though a short length of wire will give satisfactory local reception. Capacitor C 1 should be adjusted for best reception on each band and the receiver should not be grounded.

In some localities, interference from strong BCB stations may be bothersome, a trouble commonly encountered with LW receivers having only a single tuned circuit. Such in-

terference can be minimized by reducing the antenna coupling or, in severe cases, by the use of the simple Pi antenna tuner (shown in Fig. 6). The tuner can be built on a small pine block. Adjust C 1 and C 2 for minimum BCB interference.

Four or five feet of hookup wire is sufficient antenna for BCB reception. The receiver will give good loudspeaker volume on the BC band and on the stronger LW stations. Due to the low power used by most LW stations, however, headphones are recommended for serious LW listening. For speaker operation plug a $5000-3.5$ ohm, 3 -watt, output transformer into J 2.

## Inverted Brush Cleans Gun's Tip

- To keep the tip of your soldering gun clean of scale, woodscrew-fasten a brass-bristle suede shoe brush to one end of your workbench. Wipe the soldering-gun tip across the brush occasionally to keep it clean for efficient soldering--J.A.C.



## Why Inside Gun-Tip Care?

- To receive maximum soldering efficiency and long-tip life, be sure that cleaning, and tinning operations of your soldering gun's tip also include the inside surfaces of the tip. A gun's tip that is maintained on the outside, but allowed to deteriorate on the inside, is sure to give lowered soldering efficiency and it will shorten tip life.


# Versatile Code Practice Equipment <br> \section*{By} 

 HOWARD S. PYLETHEteaching of code to a group of students is made easy with this control unit. The control unit (Fig. 1) with connections to a key and an ac supply line, is a keyed audio oscillator of variable tone and volume, with the resultant tone reproduced in a loud speaker with sufficient audibility to handle a group of up to thirty students.
The control unit is housed in a Hamcab \#12. Layout the front pancl, chassis and the rear panel according to Fig. 2 and cut the holes for the components. Several holes in the sides of the cabinet are also required. Mount the 1 coniponents (see Materials List). Wire the
 This control panel is o versatile aid in group code instructions.
unit according to the schematic, Fig. 3. The isolation transformer is mounted inside the cabinet.
When you have completed the control unit and have selected a space for the students' table (Fig. 4), make the table of plywood, suitably supported. Wire the table in accordance with schematic (Fig. 5) and Fig. 6.
Through the plug P-1, provided on the table cord, connect the table wiring to the instructor's control unit through the multi-terminal jack, J-2. With the instructor's switch S-2 in the LOCAL position, the audio oscillator is keyed and the reproduction emanates from the loud speaker. All of the table circuits are now connected to the control unit through the cord and plug. Any student whose toggle switch SX is placed in the A position, now has his key in parallel with the instructor's and he, too, may then key the oscillator.

One or all students may be so switched in through their SX switches and have keying control of the oscillator, with loud speaker reproduction. The instructor may then send to all students or work with any one or more students two-way, with the rest of the class monitoring.

Any two or more students may work each other, simulating on-the-air operation and, as the reproduction is still from the loud speaker, the remainder of the class may still monitor all sending and, if desired, may break in on the communication as can the instructor
Now let's throw the instructor's switch S-2, to the REMOTE p.sit on. This immediately disconnects the loud spaker from the circuit and at the same time shorts the instructor's key, thereby producing a continuous, steady aucio tone which is fed through J-2 and P-1 to the tables and made available to all students through their keys and head telephone receivers, provided each student has thrown his toggle switch SX to the B pasition. The second switch S at each student position, if all thrown to the ON position, will parallel all positions, and the same conditions existing when the instructor's switch S-2 was in the LOCAL positıon will appear except that reproduction will now be in the head telephone receivers rather than through the loud speaker.

Suppose now that we leave the instructor's switch, S-2, in the Remote position and that


Parts layout and wiring of instructor's control panel

two-way with student \#3 at the same time that all of the others are engaged in independent individual sending practice. Student \#2 need merely throw his switch S to the ON position which will parallel him with student \#3 and they may then work together without causing or receiving interference from any of the others! Perhaps student \#4 wants to join this group (\#2 and \#3). He merely asks student \#3 to close his S switch to the ON position and he, too, is in!

Student \#l may come in also, if desired, merely by closing his
all student switches $S$ are placed in the open position. Each student may then practice sending by himself with reproduction in only his own headphones and without interfering with any other student who may be engaged the same way. In other words, each and every student may conduct sending practice and listen to himself in his headphones while all other students are doing likewise simultaneously and with no inter-position interference.

Now, suppose student \#2 wants to work
$S$ switch to ON.
And the instructor may listen to any individual student, any pair or more who may be working together and may break in on any position or any group of paralleled positions by merely placing his monitor position selector switch S4 on the single position he wishes to monitor or work, or to any of the positions which are paralleled.
The speed timer is a standard electric clock movement and motor-in this case a new Telechron from one of the mail order
electronic supply houses (cost \$1.95) without hands or face. The octagon shaped dial shown in the photos is made by removing the clear plastic cover from a box of dressmaker's pins purchased at the local variety store. Give it a coat of black enamel and fit small white decals, procurable at any amateur radio supply store, to indicate the $15,30,45$ and 60 second points. A light strip of aluminum is cut and fitted to the central shaft of the clock driving mechanism or a standard sweep hand may be procured from a local watchmaker. This makes one revolution every 60 seconds; five times around equals five minutes and enables the instructor to time code speed.

The audio oscillator is an Ameco or other brand purchased in kit form and the cabinet discarded after removing the speaker. Unfortunately these oscillators are of the ac-dc type and require installation of a small $1 / 1$ ratio isolation transformer on the inside of the contiol cabinet, feeding the oscillator, clock motor and an ac outlet from the secondary side and with the primary connected externally to the 115 ac line through the power switch and fuse on the control panel. The ac outlet AC-2, of conventional chassis mounting type, is installed on the side of the cabinet to provide a convenient point at which to plug in the ac supply to an automatic tape transmitter, if one is used. If you use a tape transmitter (such as Instructograph) the contacts of the tape transmitter are paralleled across the instructor's key through a two conductor cord and plug with a matching socket mounted on one side of the control cabinet.

For the indicator lamp (I) use an NE-51 neon bulb connected through a 47 K resistor


Complete equipment as set up in the author's home class-room. This arrangement uses a four position table hinged to wall and with folding plywood wing legs.


Wiring of the students' table.
in each leg, to pin 1 of the 50 C 5 tube and to pin 7 of the 35 W 4 . The NE-51 element will not fire until the neon gas has become sufficiently heated, which will take a few seconds. Conversely, the bulb will also require a few seconds to extinguish after the ac switch is placed in the off position. This is an added safety factor in that the false indication that the unit is still hot allows any stray high voltage in the oscillator to bleed off before you touch exposed terminals.

If, due to use of high impedance headphones ( 2000 ohms ) with the oscillator, there is an annuying undertone of audio feed-back when unkeyed, place a $670-$ ohm (not critical value) $1 / 2$ watt resistor across each headphone jack.

MATERIALS LIST-GROUP CODE EQUIPMENT INSTRUCTOR'S CONTROL UNIT

110 V. AC chassis type receptable (Amphenol 61.F) $115 / 115 \mathrm{~V}$. isolation transformer (Triad N.51X) panel mounted fuse holder, insert type (Buss HKP) SPST bat-handled toggle sws. (Cutler-Hammer 8098) recessed 115 V. AC plug (Cinch-Jones 2RP)
$4^{\prime \prime \prime}$ PM dynamic speaker (incld, in Ameco oscil. kit) code practice oscillator (Ameco CPS.KL Deluxe) locking type lever switch (5witchcraft 60012-L) open circuit phone jacks (Mallory LA.1 Midget) terminal jack (Amphenol Military type AN 12 for up to 8 students or Cinch-Jones Series 300) single contact, male microphone receptacle. Insulate from cabinet with extruded fibre washers. (Walsco 1882 or equivalent)
rotary switch (Mallory 3215J for 4 students, 32112J for 8 students)
jewel light assembly with NE-51 neon bulb (Drake 10) $47 \mathrm{~K} \cdot$ ohm rasistors, $1 / 2$-watt
cabinet with chassis-mount chassis upside down in cabinet to form rigid base plate. (Hameab 12, L. M. Bender Co., 2528 W. 9th 5t., L. A. 6, Calif. or supplier)
SPEEDTIMER Telechron electric clock motor with sweep hand PRACTICE TABLE EQUIPMENT (FOR 4 5TUDENT5)
$\begin{array}{ll}\text { P-1 } & \text { plug to match J-2 on Instructor's control unit. } \\ \mathrm{S} & \text { SPST toople switches-1 for each student (Cutler- } \\ & \text { Hammer } 8098 \text { ) }\end{array}$ Sx SPDT Hmer 8098 )

SP tognle switches-1 for each student (Cutler-
KEYS
military surplus or builder's choice
J.5, J.6, etc. midget open-circuit phone jacks (Mallory LA-1)

R
$670-0 \mathrm{hm}, 1 / 2$ watt swamping resistors, one for each student
12 -conductor (for up to 8 students) Nexible cable to reach from table to J.2. Conductors may be unshielded. (Belden 8747 intercom cable)

R-1 PLUGS INTO J-2 ON INSTRUCTOR'S CONTROL UNIT


Wiring for one four-position table; additional tables are wired identically.

## Fast Turn for Large Knobs



- When the turning ratio of a large knob on a receiver is too slow, a rubber suction cup will solve the problem. Place the cup directly in the center of the knob and use it as an additional knob for fast tuning. A bottle-cap force-fitted into the cup (or over the cup) will make turning easier and improve ap-pearance.-J. A. C.


## Stickers Solve Tape Troubles



- Need a good pair of recording tape spool locks for your tape recorder? A pair that isn't easily misplaced when not in use? Two medium-size rubber suction cups-the type with open tops-are ideal for this purpose. The cups are easy to slip over the spindles to hold the spools, or they may be used as wedges to hold tape on the spools. When they aren't in use, you can store them neatly on the tape deck by means of suction. They might be used this way as holders for your regular spool locks.-J. A. C.


# ELECTRONIC NUMBERGRAM 

By JOHN A. COMSTOCK

TTHIS puzzle is especially for those electronics hobbyists who are fascinated by numbers and caleulations. This should keep you busy the rest of the day!

## ACROSS

1. Year Hertz proved radio possible.
2. Frequency in Citizens Band set aside for radio-tolephone.
3. Maximum efficiency commonly obtained in actual practice when an amplifier is operated class B.
4. Last TV channel in UHF group.
5. Wir left on 1000 -ft. spool after You have run a line 300 fi. long.
6. Frequency of a parallel tuned circuit tuned to 3600 kc after inductance has been reduced by half and capac. itance doubled.
7. Lowest usetul tre. quency in radio spectrum for accurate and reliable communications (in kilocycles).
8. Second harmonic of a 400 -meter wavelength signal, $0 x$ pressed in kilocycles.
9. Voltage across a capacitor that has been connected to a source of 100 volis. then removed and connected in parallol with another capacitor of the same value.
10. Largest AWG wire gauge.
11. $2.71 \times 10^{-6}$ henries expressed in microhenries.
12. Image frequency of a superhet when tuned to 1450 kc and IF is 465 kc .
13. Total capacitance of three capacitors4, 6, and 12 microfarads - connected in parallel.
14. Third harmonic of 5 kc .
15. Voltage drop across series resonant circuit when capacitive reactance and inductive reactance are 175 okms each, resistance is 65 ohms, and applied voltage is 248 volts.
16. Width of commercial FM broadcast channel in kilocycles.


When you have worked out the problems presented by the clues, and filled in the right numbers, turn to page 158 for the solution.
27. Inductive reactance of a 2-henry choke at a frequency of 3000 cps .
29. Amount of resistance in ohms when a voltage of 100 volts will maintain a current of 10 amps.
30. . 000005 amp converted to milliamps.
34. The number of years required for radium to lose onehalf its energy.
35. Decimal multiplier used when you have the peak value of a sine wave, but want to find the average value.
36. Velocity in kilometers of a $20-\mathrm{mc}$ signal having a wavelength of 15 meters.

## DOWN

1. Received signal trequency of a super* het when IF is fxed at 176 kc and mixer oscillator is cperating at 1586 kc.
2. Dah-dah-dah-dit-dit, dah-dah-dit-dit-dit, dah-dah-dah-dah. dah.
3. Second harmonic of 300 kc .
4. Xe of a . 01 -mid capacitor at a fre. quency of 3000 cps .
5. 080 millihenries expressed in micro. henries.
6. Cutput frequency of a 5 -mc transmitter expressed in kilocycles.
7. Lower limit of medi-um-frequency band is. kilocycles.
8. . 0006 microfarads converted to micromicrolarade.
9. Total resistance of 15 ohms, 30 ohms, and 5 ohms, connected in series.
10. Color burat frequency in megacycles.
11. Oscillator frequency in kilocycles of a transmitter having an output signal of 16880 kc and three doubler stages.
12. Number of equalizing pulses transmitted per field in monochrome TV.
13. Wattaqe reference level in watts of 0 decibels.
14. Number of joules in 24-watt seconds.
15. Radiated output in watts of a station when transmitter output is 1 kilowatt, line loss is 50 watts. and antenna power gain is 3.
16. Theoretical field strength in me per mile at 200 miles when 100 mc per mile is measured at 100 miles.
17. Applied vollage when two resistors are connected in sories, the value of one 50 ohms, the other with a voltage drop of 50 voltn: current flow is 3 amps.
18. Value of negative bias on a tube when grid resistor is 2000 ohms, grid current 10 milliamps.
19. Upper limit in meg* acycles of UHF band.
20. Wavelength in me. ters of a 4 -mc transmitter signal.
21. Year radar was first used to make contact with moon.
22. Current flow in amperes when a resistor drops a vollage of 10 volts and the power dis. sipated is 270 watts.
23. Total number of electrical degrees that plate current flows in a class "A" amplifier.
24. $7 \times 10^{2}$ micromicrofarads in ordinary notation.
25. Value of a resistor color-coded brown, blue, black.

# Experimentally Determining the Velocity of Sound 

This experiment may be performed with equipment available to physics students, or by the home experimenter with a preamp, AC voltmeter and audio signal generator

By frank woods, Jr.

SOUND is propagated by longitudinal waves consisting of alternate compressions and rarefactions of air as shown in Fig. 1b. If a sine wave of voltage (solid line Fig. 1c) is applied to the terminals of a loudspeaker (an electrical to sound transducer), the air in front of the speaker will have the pressure distribution shown in 1 b at a given instant of time. The pressure at a given point will of course vary with time, and a microphone or speaker placed at that point will react to these changes in pressure. This reaction to the pressure will produce a waveform of electrical voltage at the terminals of the microphone or second speaker that is a copy of the solid line of Fig. 1c, except that it will be smaller in magnitude and will be displaced in time, as shown by the dotted line in Fig. 1c.
If a source speaker and receiver speaker are a whole multiple of one wavelength apart, the receiver waveform will be in time with the source speaker signal. The measurement of this distance would be difficult to perform accurately. A wavelength - the distance

(c)

The normal positions of particles of air (a) are changed upon becoming the carrier of a sound wave-they are alternately compressed and rarified (b). If the sound source is a speaker producing a wave represented by the solid line in (c), a recaiver speaker would receive a copy of this
wave slightly later (dotted line).
Lissajous figures for iwo voltages of same frequency. The angles given refer to the differences in phase between the vertical and horizontal input voltages where ? cycle time is considered equal to $360^{\circ}$.
Oscilloseope method for determining the velocity of sound. Transformer cores are connected to common connection to min imize hum pick-up.

through which a cycle of sound is distributed at a given instant of time-may be determined more accurately in another way. A cycle corresponds to a complete excursion from nominal to maximum to nominal to minimum to nominal air pressure. Suppose the position of the receiver speaker relative to the source speaker is adjusted for a given time relationship between source and receiver voltage. If the receiver speaker is moved away from the source speaker the time relationship will change, till at some new position the voltage waveforms of source and receiver voltage bear the original time relationship. The distance that the receiver must be moved to attain the original time relationship is a wavelength.

The relationship between the velocity of sound ( v ), the frequency (f), and the wavelength ( $w$ ) is $v$ equals fw. Thus, if wavelength and frequency are known, the velocity of sound in air may be computed. An audio signal generator may be used as a sinusoidal voltage source speaker driver. The frequency may be read from the signal generator dial. Wavelength may be determined by the method described in the previous paragraph.

All that remains is to find the time relationship between source and receiver signals.

There are two good methods of determining the time or phase relationships between two voltages of the same frequency. One of these methods requires an oscilloscope and employs Lissajous figures. The other employs an ac voltmeter in a comparison circuit. Since the receiver voltage is small, an audio millivoltmeter such as the Heathkit AV-3 or an amplifier driving an ac voltmeter should be employed if the latter method is used. (The "HiQual Preamp," ideal for this experiment, appeared in Radio-TV Experimenter \#569 available from Science and Mechanics, 505 Park Ave., New York 22, for \$1 including postage and handling.

Oscilloscope Method. The experiment is diagrammed in Fig. 2 and shown visually in Fig. 4. The loudspeakers may be inexpensive ones such as the $4-\mathrm{in}$. Lafayette SK-25. The transformer secondaries should match the speaker voice coils and the primaries may have any impedance value from 2 K to 25 K . A high impedance is preferable for the receiver circuit since the transformer is reverse connected and a voltage step-up results. The Stancor A3327 ( 25 K to 4 ohms) is an excellent choice. If an audio signal generator which does not have sufficient power output to drive the speaker audibly is used, connect an audio amplifier between the signal generator and the source drive transformer. Connect the receiver transformer input to the vertical input of the oscilloscope, and the source signal to the horizontal input.
Fasten the speakers in hand vises and support them at the same height. Set the signal


Oscilloscope satoup for determining velecity of sound.


In the meter methed, V1 and V2 in phase result in minimum voltmeter reading (a), while $V$ and $V 2180^{\circ}$ oul of phasa (b) give raximum voltmeter reading.
generator for 500 cycles and adjust the output till an audible signal comes from the source speaker. Adjust the oscilloscope controls to display the Lissajous figure. Move one of the speakers relative to the other till the $0^{\circ}$ waveform of Fig. 3 is observed. Measure and record the distance between the speakers, in ft . Now increase the distance till the $360^{\circ}$ waveform of Fig. 3 appears Measure this distance, and subtract from it the first distance, which gives the wavelength of the sigral. The velocity of sound in $\mathrm{ft} . / \mathrm{sec}$. may then be computed from $\mathrm{v}=\mathrm{fw}$.

The velocity of sound is known to be 1,054 ft ./sec. plus $1.1 \times$ the temperature in degrees F . Thus, in a room at $70^{\circ} \mathrm{F}$, the velocity of sound is $1,131 \mathrm{ft} . / \mathrm{sec}$. The accuracy of the experimental results may then be computed:

$$
\% \text { error }=\frac{\mathrm{v}-\mathrm{v}^{\prime}}{\mathrm{v}^{\prime}} \times 100 \%
$$

where v is the experimental value and $v^{\prime}$ is the known value.

The author's experiment produced fairly accurate results. The wavelength at 1000 cycles was 1.167 ft . Thus $v$ was $1,167 \mathrm{ft} . / \mathrm{sec}$. The ronm temperature was $80^{\circ} \mathrm{F}$. The value of $\mathrm{v}^{\prime}$ therefore was 1,142 $\mathrm{ft} . / \mathrm{sec}$. The error was $+2.2 \%$. The experiment was repeated with the signal generator set at 500 cycles. The measured wavelength was 2.29 ft . The slide rule computed value of $v$ was $1145 \mathrm{ft} . / \mathrm{sec}$. The error was $0.26 \%$. Note that the accuracy improved considerably when a longer wavelength was involved.

Meter Method. The difference of two sine waves of equal amplitude and frequency for $0^{\circ}$ and $180^{\circ}$ phase relationships is shown in Fig. 5, and this leads to a method of finding sound wavelength with more common equipment. Either an audio millivoltmeter or an ac voltmeter is needed, the latter requiring an amplifier such as the "Hi-Qual Preamp," referred to earlier, as a driver. The value of voltage which an ac meter will read does not give an indication of phase relationships. But, since the value which the meter will indicate is a function of peak value, the differencing principle may be employed to determine phase relationships. The schematic is shown in Fig. 6 and the set-up in Fig. 7.

The signal generator drives the source loudspeaker. A 1 K potentiometer ( K ), in the original apparatus a Clarostat $58 \mathrm{C} 1-1000$, is connected across the signal generator output. Its purpose is to allow the adjustment of the voltage between the slider and the common connection to the receiver to be approximately equal to the voltage at the output of the preamp. This is accomplished by measuring the voltage across the preamp output with the voltmeter and then connecting the voltmeter across the potentiometer to make the adjustment of R. The two sets of connection terminals for this adjustment are designated M1 and M2 in Fig. 6. After this adjustment has been made the meter is connected in the circuit as shown.

With the meter connected as shown in Fig. 6 , receiver and source voltage buck each other (subtract). This process causes the meter to read minimum voltage when both voltages are in phase (5a) and maximum voltage when both voltages are $180^{\circ}$ out of phase (5b). Thus, the receiver speaker is moved through


Schematic for determining velocity of sound with an ac volimeter. (If audio millivalimeter used, preamp not needed.)


Set-up for voltmeter method of finding speed of sound.
one wavelength when the meter indication goes from min to max to min or from max to min to max. The distance measurements, frequency used and the computations are the same as those required with the oscilloscope method.

## Shockproof Switch Covers



- To avoid any possible shock from the bathandles of toggle switches, place plastic testclip insulators over them. These insulators are also good dust covers to prevent particles of metal and other foreign materials from entering the switch mechanism.

The covers enable one to throw the switch safely and easily, and to distinguish from tilt, whether the switch is on or off.-J. A. C.

# Combined Voltage Calibrator And Electronic Switch 

Sine and square wave sean simultaneously with aid of ellectronic switch unit.

## Single unit multiplies oscilloscope usage

By W. F. GEPHART

THE unit shown in Fig. 2 combines two useful 'scope accessories: 1) an electronic switch which permits viewing of two signal patterns simultaneously (Fig. 1), and 2) a voltage calibrator, allowing the 'scope to be used for ac voltage measurements. The first accessory, the switch, permits both the input and output of an amplifier to be viewed together to check fidelity, for example. The second accessory, the voltage calibrator, gives the magnitude of a signal as the wave form is viewed.

Our unit has a special switching system that permits the calibrated voltage signal to be one of the signals seen simultaneously.

An electronic switch switches signals so fast that both images appear on the oscilloscope together, due to the persistence of the cathode ray tube. A multivibrator type oscillator switches amplifier tubes "on" and "off" so they conduct alternately. Separate signals are fed into each amplifier tube, whose output is common. This output is actually both signals, presented alternately.

Figure 3 shows the schematic, in which V1 is a twin triode multivibrator. It generates square waves, with frequencies between about 20 and 2000 cycles, as set by SW 1 and R15, the frequency controls. The multivibrator drives the grids of a second twin triode (V2), which acts as a switching tube. The two plates of the multivibrator are connected to the two grids of the switching tube. Since the signals on the plates of V1 are $180^{\circ}$ out of phase, the two halves of V2 conduct alternately. The output of the multivibrator is a square wave and quite high. Thus, when the
plate of V1a is positive, the grid of V?a is positive and V2a conducts. At the same time, the plate of V 1 b and grid of V 2 b are negative,

front vizw of the completed unit.



Back-of-panel view shows miniature pots mounted by stiff wire leads.
which prevents V2b from conducting. At the half-cycle point, the situation instantly reverses (since the multivibrator is a square wave generator), and V2b conducts and V2a cuts off.

As the two halves of V2 alternately conduct, the current they draw flows through the cathode resistors (R28 and R29) of V3a and V3b. The twin triode amplifier (V3) is two ordinary amplifiers, biased at a normal op-


Under-chassis view shows shielded lead attached to common negative lead of binding posts.
erating point by cathode bias. If the cathodes of the switching tube were not connected to their cathodes, both halves of V3 would amplify equally. However, as the two halves of V2 draw current, this current flowing through the related cathode resistor of V3a or V3b biases that half of the amplifier tube (V3) to cut-off. In this way, the two halves of the amplifier tube (V3a and V3b) are alternately switched on and off at a rate equal to the multivibrator frequency. Therefore, the two input signals take turns appearing at the out-

put terminals. But, due to the persistence of the fluorescence of the CR tube and the rapid switching rate, both signals appear on the CRT at the same time.

By adjusting the dc potential of the grid of the amplifier tubes, the position on the CRT screen of each signal can be changed. This is done by having a dc voltage from twin voltage dividers R19-R21 and R20-R22 across potentiometer R26 (Position). Adjusting this control varies the voltage on each grid by changing the grounding point.

The voltage calibrator section uses a neon bulb to get square waves at line voltage frequency. Neon bulbs ignite at a certain voltage, and if a resistor is connected in series with the bulb, the voltage drop across the bulb will be constant. The ignition voltage of the NE32 bulb used is approximately 60 v., and gives square waves of 60 v . in this circuit. On the positive half of the cycle, the voltage increases until the ignition point (about 60 v .) is reached. The tube then fires, and starts drawing current. As the voltage increases, more current is drawn, but the voltage drop across the resistor in series with the tube (R38) holds the voltage across the tube constant. As the voltage passes the peak and decreases below the ignition point, the bulb goes out, and current stops flowing through the resistor. The voltage drop across the tube then follows the pattern of the cycle, and the process is repeated on the negative half of the cycle. In this way, fairly good square waves are obtained.

The ignition voltage is reduced to a reference level by R37, and subsequently divided

for other ranges by R31 through R35. For oscilloscope use, these levels are usually set at peak-to-peak values rather than the RMS values shown on meters.

Switch S3 and potentiometers R25 and R27 permit the output of the calibrator to be used as one of the electronic switch inputs. The usual method of using a calibrator is to note the height of the calibrator pattern, remove it and connect the signal to the 'scope, and compare the heights of the patterns. By switching the calibrator output into the electronic switch, the calibrator voltage pattern remains on the screen to be compared directly with the signal pattern.

Potentiometers R25 and R27 are required to keep conditions constant when using the calibrator through the electronic switch. If the calibrator were fed directly into Input-B terminals, the output of V3b would vary with the setting of B-gain and the amplification of V3b. Potentiometer R27 is set so the output of V3b is equal to the input.

Since the magnitude of the signal to be measured must not be altered in this case, potentiometer R25 is set so that the output of V3a is equal to the input, making it a $1: 1$ amplifier. This prevents the electronic switch from affecting the magnitude of the signal whose voltage is to be measured by comparing it with the calibrator signal.

The unit is built on a vertical arrangement to minimize bench space required, as shown in Figs. 4 and 5. The panel and chassis layouts are shown in Figs. 6 and 7, with pictorial wiring shown in Figs. 8 and 9. Notice that R25 and R27 are miniature units, supported

panel wiring
by stiff (\#16) wire leads.
The power supply and filaments are wired first, followed by the neon bulb circuit. In mounting resistors on the voltage switch (S2), be sure they will clear the neon bulb. No particular care is required in wiring, except that certain leads (as shown on the schematic) should be shielded, and care used that the grounded shield does not short out any terminals.

After wiring, output of the calibrator must be set. Connect a vacuum tube voltmeter be-

tween R37 and ground, and set the voltage switch S2 on 50 . Calibration should be for peak-to-peak voltages, so the reading on the VTVM should be .3535 of the values shown on S2. Turn the unit on, and adjust R37 so the voltmeter reads 17.7 v ., which is .3535 of the 50 v . indicated on $\mathbf{S} 2$. Due to the divider, other readings will be appropriate.

Next, potentiometer R27 should be set. With Calibrator Output S3 on External, set Voltage S2 on 5, and connect the Voltage terminals to the vertical input of the 'scope.

| MATERIALS LIST-SCOPE CALIBRATOR AND SWITCH (All resistors $1 / 2$ watt and $10 \%$ unless shown) |  |  |  |
| :---: | :---: | :---: | :---: |
| Desig. | Description | Desig. | Destription |
| R1. R2 | 51K. 5\% | C1, C2 | . 001 mfd. |
| R3. R4 | 12K | C3. C 4 | . $047 \mathrm{mfd}$.200 v. |
| R5. R6 | . 22 mey. | C5. C6 | 25 mfd., 25 v. electrolytic |
| R7. R8 | 1 mieg. | C7. C8, 69 | . 5 mfd., 200 v . |
| R9, R10 | 3.3 meg. | C10 | $40-40 \mathrm{mfd} ., 150$ v. electrolytic (Mallory FP-221 or |
| R11, R12 | 4.3 meg. 5\% |  | equiv.) |
| R13. R14 | 5.1 meg.. 5\% | S1 | 2-pole, 5-pos. rotary switch (Coarse Freq.) Malicry |
| R15 | . 1 meg. potentiometer (Fine Frequency) |  | 3226 J , |
| R16 | .15 meg. | \$2 | 1-pole, 5-pos. rotary switch (Voltage) Mallory 3215J |
| R17. R18 | .1 meg. | S3 | 4-pole, 2-pos. rotary switch (Calibrator Output) |
| R19. R20 | .33 meg , |  | Mallory 3242 J |
| R21, R22 | 15K | S4 | DPST toggle switch (Power) |
| R23. R24 | . 1 meg. potentiometer (Input A and Input B) | PL | 6.3 v., . 15 amp . pilot light ( $\pm 40$ or \$ $\$ 47$ ) |
| R25. R27 | 1 meg . miniature potentiometer (Clarostat Series 48) | SR | 65 ma , selenium rectifier |
| R26 | 50 K potentiometer (Position) | T | power transformer, 120 v. @ 50 ma.. 6.3 v. \& 1 amp. |
| R28. R29 | 1000 ohm |  | (Merit P.3045) |
| R30 | 33 K .1 watt | NE | NE 32 neon bulb |
| R31 | $68 \mathrm{~K}, 1 \%$ | V1, V2, V3 | $6 \mathrm{CG7} 7$ vacuum tubes |
| R32 | 12K. $1 \%$ |  | $5 \times 6 \times 9^{\prime \prime}$ utility cabinet (Bud CU-1099) |
| R33 | 10K. $1 \%$ |  | three 9 -pin miniature sockets |
| R34, R35 | 4K. $1 \%$ |  | nean bulb socket |
| R36, R39 | 1K. $1 \%$ |  | pilot light holder |
| R37 | 50 K potentiometer |  | 8 binding posts |
| R340 | $250 \mathrm{ohm}, 10$ watt, wirewound |  | 7 knobs miscellaneous hardware |

Turn both units on, and adjust the vertical gain control on the 'scope to give a pattern of convenient height, and note the height of the image on the CRT. Do not touch the vertical gain control on the 'scope after this.

Move the leads from the 'scope to the Output terminals, set Frequency controls Sl and R15 to mid-position, and adjust Position R26 so a single trace appears on the CRT. Switch Calibrator Output to Input-B and adjust R27 so that the trace height on the CRT is the same as the voltage trace height found above. Seal R27 shaft with nail polish.

To set R25, feed a low gain signal from an AF oscillator or other unit into the vertical input of the 'scope, adjust the vertical gain for a convenient height, and note the trace height. Then connect the 'scope to the Output Terminals instead of the signal source and adjust the Position control to get a single trace on the CRT.

Remove the neon bulb and set S3 to InputB. Connect the AF oscillator to Input-A terminals, and adjust R25 to give the same trace height as given when the signal was connected directly to the 'scope. Seal R25 shaft with nail polish and replace the neon bulb.

It will be found that adjustment of the position control will affect signal magnitudes somewhat, so the voltage calibrator section

## Improved Razor-Blade Detector

- Here is a more rugged version of the familiar foxhole razor-blade "crystal" detector. The original was a piece of pencillead bridged across the edges of two razor-blades and sometimes used by G.I's in fox-
holes to pick up local broadcasting stations. This was fairly sensitive, but it was very difficult to hold an adjustment, as the least vibration or jar caused the lead to rock and roll on the blade edges, resulting in erratic and noisy reception. For the arrangement shown, blue steel single edge or double edge blades (such as Pal razors) seem to be the most sensitive, but many other blades also have sensitive spots on them. Use with a conventional circuit and a good antenna and ground.-Arthur Trauffer.


## Removing Enamel Wire Insulation

- To remove enamel insulation on magnet and hook-up wire quickly and cleanly, wrap a piece of sandpaper around the wire and give a twisting, rotary motion.-E. L. Burner.
should be used through the electronic switch section only when approximate results are sufficient. When using the unit in this manner, the Position control should be set so the signal pattern is superimposed over the voltage calibrator pattern, and ready comparison can be made. Also, most accurate results can be obtained when the two signals are superimposed. For more precise work, the electronic switch section is not used. Output from the Voltage terminals is connected to the 'scope, the vertical gain set, and trace height noted. The leads from the Voltage terminals are removed, and the signal is then connected directly to the 'scope. A comparison of the trace height produced by the signal, with the noted height of the voltage calibrator trace will then give a precise peak-to-peak voltage measurement.

In using the electronic switch, the two signals to be viewed are connected to Input A and Input B, and the Output is connected to the vertical input of the 'scope. The frequency controls of both the 'scope and the electronic switch are adjusted for proper frequency and the gain controls on the switch adjust the individual trace heights. By use of the Position control on the switch, the two patterns can be shown separately or superimposed (as in Fig. 1).

## Pointed-End for Radio Ground Pipe

- A simple pointed end makes it easier to drive a radio ground pipe. Insert the lathe-turned point into the bottom end of the pipe to keep dirt from plugging the pipe. Holes drilled through the pipe for soil wetting reduce electrical resistance between ground pipe and soil.-Arthur Trauffer.

- When soldering on top side of radio or TV chassis, dropping solder in an open tube socket can cause trouble. Eliminate this possibility by placing a strip of wide adhesive tape over the open socket.-H. Leeper.


By FORREST H. FRANTZ, SR.

THE type of meter we are concerned with has an electromagnetic mechanism known as a d'Arsonval movement. From it I'll show you how to make voltmeters and ammeters and ohmmeters.

How Meters Work. The d'Arsonval meter (Fig. 1) contains a permanent magnet, a coil that is free to rotate about its pivot axis, a needle attached to the coil and a spring that resists displacement of the coil from zero and tends to restore the coil to zero.

The torque that causes the coil to turn is developed when a current passes through the meter coil. The amount is proportional to the current passing through the meter coil. The coil and needle are supported by low friction bearings so that mechanical resistance is low. The pole pieces conduct the flux from the magnet poles and the circular iron core over which the coil rotates. This core and the curved pole piece faces assure that the magnet's flux is always cutting the coil windings at right angles.
The most common basic d'Arsonval meter movement is the 0 -to- 1 milliampere dc meter.
Designing Your Own Meter Instruments. Assume for simplicity in the examples, that all of the work is being done with a 0-1 ma. meter. The resistance of the meter, if not
known, can be determined by the circuit of Fig. 2. Adjust pot $R$, which is connected as a high resistance rheostat, for full scale meter deflection. Connect shunt RS across the meter terminals, and adjust it until the meter deflection is reduced to half scale. The resistance to which RS is adjusted is the resistance of the meter movement. The resistance of RS may be measured with an ohmmeter or Wheatstone bridge.
Once you know the basic movement ( $I_{m}$ ) and the resistance ( $R_{m}$ ) of the meter, you can increase the current range with a shunt resistance ( $R$, in Fig. 3.). The value of the shunt resistance for a new range is determined using these formulas:
(a) $I_{a}=I-I_{m}$
(b) $R_{s}=R_{m i}\left(\frac{I_{m}}{I_{n}}\right)$

You can buy a $1 \%$ shunt resistor, or you can make the shunt by winding insulated resistance or magnet wire on a form, such as a matchstick or a Bakelite bobbin. Or you can use a rheostat, adjust it to the proper resistance, and lock it with a cement seal between the shaft and bushing. Most shunt resistance values will be so low, though, that it's best to wind your own.

In designing an extended-range meter

2 Circuit for meosuring meter resistance. With RS out of the circuit adjust $R$ far full-scale meter deflection. Then cannect RS ocross the meter as shown and adjust it till the meter reads half scale. The meter resistonce is equal to the volue to which $R$ is adjusted.

Extending the range of a current meter with o shunt resistance.

4
Canverting a milliammeter to a valtmeter with o series resistance.

using a basic meter movement, try to select a range that is a convenient multiple of the meter scale range. Multiples of 10 are best since you can read the meter directly, and have to supply only the decimal point. Two and five are the next best choices for scale number multipliers, and of course, multiples of 10 can be used with these also. (Same applies to voltmeters.)

The circuit for converting a milliammeter to a voltmeter is given in Figure 4. These formulas are used:
(a) $\mathrm{R}^{\prime}=\left(\frac{\mathrm{V}}{\mathrm{I}_{\mathrm{m}}}\right)$
(b) $R=R^{\prime}-R_{m}$

By connecting a switch (Fig. 5) you can make a multi-range voltmeter.

These current range extensions and voltmeter conversions are solved by applying Ohm's law. In the ammeter application of Fig. 3 , the meter and shunt are in parallel. Thus, the voltage across the meter equals the voltage across the shunt. Therefore, the current through the meter times the meter resistance equals current through the shunt times the shunt resistance. And the current into the combination equals shunt plus meter current. The voltmeter arrangement o: the second problem (Fig. 4) was based on the idea that the current through the shunt must equal the current through the meter, and the sum of the voltage drops across the meter and the series resistor equals the voltage drop across the combination.
What about measuring resistance with a meter? There are several approaches. The first (Fig. 6) utilizes an ammeter and a voltmeter to measure the current through, and the voltage across, an unknown resistance $R_{x}$. Then $R_{x}$ is calculated from Ohm's law. For
example, if $V$ is 4.5 v and I is .005 amp ( 5 ma.), using:


This method is cumbersome, so let's see if we can get around it. If we know the voltage E of the battery, do we need to measure V? No, if $R_{x}$ is much greater than the resistance of the meter measuring the current I. This leads us to the circuit of Fig. 7, where a pot P is employed to adjust the voltage V to a value around which we'll design our ohmmeter. Assuming that we'll use a $1-\mathrm{ma}, 27$ ohm meter movement, as before, we'll want the resistance of P to be about 500 ohms. This choice is made on the assumption that the current from the battery should be 10 or more times the current through the meter, for accurate results. The resistance across $A$ and B is zero, if we short these terminals. Therefore the resistance of $R$ and the meter should be $5 v$ (the design voltage) divided by the meter current, .001 amp . Resistance R , therefore, is 5000 ohms, minus the meter resistance of 27 ohms , or 4973 ohms . Since 5000 and 4973 ohms differ by only about $1 / 2 \%$, you can let $R$ equal 5000 ohms without noticeable error. The ohms scale may be calculated in terms of the I scale on the meter by assuming different values of $R_{x}$ using this formula:

| $I=\frac{V}{R+R_{x}}$ |  |
| :--- | :--- |
| Thus, $R_{x}$ in ohms | $I$ in ma. |
| 0 | 1.000 |
| 500 | 0.909 |
| 1000 | 0.832 |
| 200 | 0.715 |
| 3000 | 0.625 |
| 4000 | 0.555 |
| 5000 | $0.5 c 0$ |




| 8000 | 0.384 |
| ---: | ---: |
| 10,000 | 0.333 |
| 15,000 | 0.250 |
| 20,000 | 0.200 |
| 30,000 | 0.143 |
| 50,000 | 0.091 |
| 100,000 | 0.048 |
| 200,000 | 0.024 |

You can compute additional values yourself. Note that the half-scale meter deflection is equal to $R$ for any meter combination which uses this arrangement. That's a handy piece of information for estimates, before you begin design. The ohm readings may be obtained using a table such as that above, or an ohms scale may be pasted on the meter glass. The switch $S$ is turned on only when the ohmmeter is being used.

The potentiometer P may be made up of a 100 -ohm pot in series with a 400 -ohm, fixed resistance. This arrangement makes the zero resistance adjustment less critical. You can double battery life by doubling the value of P (use a $200-$ ohm pot and an 800 -ohm resistance) with a decrease in accuracy that's negligible.
To convert a basic de meter movement for ac measurements, rectifiers are used. Their difference in forward and back resistance is so great that we generally assume a rectifier acts as a switch. The rectifier circuit of Fig. 8 A , not often used with meters, conducts during only half the ac input cycle. The fullwave half bridge of 8 B passes current during all of the input cycle. A 2.7 K resistor for each $R$ works well with most germanium diodes. The output current is about 0.72 times the input current. The full bridge of Fig. 8 C passes current during the entire input cycle also, but presents a greater output for a given input current. The output current is 0.9 times the input current.

The rectifiers may be germanium diodes or copper oxide types. Germanium diodes are more readily available and cover a broader range of frequencies. The GE 1N64, Sylvania

A simple 3-range valtmeter. Resistance values were obtained by the methad of Fig. 4 and rounded off ta practical values.

6
Determining resistance by the valt-current (Ohm's law) methad.

A simple ohmmeter circuit. In the example in the text, $P$ is 500 ohms. For less critical zero adiustment, substitute (for P) a 100 -ahm pat in series with a 400 -ohm resistor.

IN34A and the Raytheon IN66 are suitable.
The shunt resistances for current meters and the series resistances for voltmeters of the ac variety may be determined in the same way as they were determined for dc instruments, but bear in mind that the transfer factor of the rectifier arrangement alters the value of the ac voltage required for full scale deflection, and that the apparent meter resistance is changed, too. Use the circuit of Fig. 2 for experimentation, considering the rectifier input terminals as the meter terminals and an ac voltage source instead of a battery to determine the apparent meter resistance. The current through the meter is the voltage across $R$ divided by the resistance of R. Then, the formulas of Fig. 3 and 4 can be applied.
Multimeters. There are many meter kits available at low prices. They're called VOM (volt-ohm-milliammeter) or multimeter kits and are good for measuring ac and dc current and voltage, and for measuring resistance. Although many factors enter into the choice of a meter kit, the primary consideration is meter sensitivity: the number of ohms resistance that the meter movement and the series resistance present between the input terminals of the meter, divided by the corresponding voltage range. This is expressed in ohms/volt. This number is a function of meter movement current for full scale deflection. A 1 -ma meter has a sensitivity of 1000 -ohms/volt; a 200 microamp. meter has a sensitivity of $5000 \mathrm{ohms} /$ volt; and a 50 microamp. meter has a sensitivity of $20,000-$ ohms/volt.

The sensitiviy is important, because when you connect a voltmeter into a circuit to make a measurement, you're connecting a resistance across the circuit. If you connect too low a resistance across the circuit, you'll draw enough current from the circuit to get a wrong voltage reading. Figure 9 illustrates what can happen. When you connect the meter across AB, its resistance is in parallel


Mater restifier circuits.
with an audio amplifier to produce an audio millivoltmeter, a sound survey meter or an applause meter (Fig. 11A). Figure 11B shows resistance-capacitance meter coupling, and 11C shows transformer coupling to the meter. You can rig up a calibration template for the amplifier volume control so you can use it as you'd use a range switch. You can use the meter's decibel or voltage scales.

The ac voltmeter ranges may be used to measure capacitance of paper, oil or mica dielectric capacitors. Use the circuit arrangement of Fig. 12. Adjust the pot till the voltages at A and B are equal Then disconnect the pot and measure its resistance $R$. For the capacitance in microfarads, substitute the value of $R$ in this formula:

$$
\mathrm{C}=\frac{1,000,000}{377 \mathrm{R}}
$$

This circuit works best with higher ac volt $د$ ages, but 30 v is the top, safe limit. (The voltages across $C$ and $R$ won't add up to the applied voltage.) Get the 60 -cycle ac voltage from a transformer-either a filament transformer or a train trar.sformer will do. And, don't use this arrangement to measure low-voltage electrolytic capacitors, or you may ruin them! You can use a 6.3 -v transformer in the circuit to test electrolytic capacitors rated 100 v or more, without damage.

Beginness can use a meter to get a good understanding of electricity. Use it to find out: V/hat happens when you connect batteries in series and parallel; what happens to the battery voltage when you decrease the resistance connected to it; what happens to the voltage and current when resistors are connected in series or parallel; how to apply


Ohm's law; the difference in the resistance of a light bulb before it's turned on and after it has been on a while. Incidentally, never use the ohms scales to measure resistance in a circuit under power. Always disconnect the voltage from the circuit before you measure resistance.
The resistance ranges may be used to check light bulbs and lamp wiring. If the ohmmeter needle deflects at all on the low ohm range, the bulb (or lamp wiring with a good bulb in the lamp and the switch on) isn't open and if the meter needle doesn't hit zero, the bulb or lamp isn't shorted. In the case of a table or floor lamp, if you get this kind of indication, everything's good, except that you're not sure that the switch will work. When you turn the switch off, the meter needle will return to its normal rest position if the switch is operating properly. This is the technique for trouble-shooting radios, electrical appliances and home and car electrical wiring.

Another example of the continuity check just outlined is locating tubes with open heaters in a radio or TV. If none of the tubes in an ac-dc (transformerless) radio light up when the radio is on, the probable cause of trouble is an open tube heater. An open tube heater will also cause a TV set to be inoperative, but won't necessarily prevent all tubes from lighting up. To check tube filaments for

Using an amplifior with an os voltmeter as an oudio millivoltmeter, sound survey meter or an applause moter (a); R-C coupling meter to amplifier (b); and mater-cannected amplifier output transformer (c).

9 lllustrating how a low sensitivity voltmeter upsets low current circuil operation and gives false readings (see text).
A toy motor used as a generator in this simple circuir has many practical uses. Determine $R$ experimentally.
opens, use the ohmmeter test leads across the heater pins (power disconnected). The pin numbers may be obtained from tube manuals.

An ac voltmeter is useful in checking ac line voltages, transformers, circuit wiring, oscillator output, model railroad and toy circuits and for numerous other applications. The dc voltmeter is useful in checking batteries (check them for voltage with the normal load connected), checking dc power supplies, trouble-shooting in radios and car wiring, and for numerous other applications. You should have little difficulty in voltage measurement.

Current measurements are not used as commonly in routine trouble-shooting and experimenting, but are becoming more important with the advent of the transistor. The important thing to remember in making dc current measurements is that the meter is connected in series with source and load. That is, one of the leads connects to the source of voltage and the corresponding connecting point on the device that is receiving power. You might look at it as simply cutting one of the leads in the circuit and connecting the current meter to the lead ends that you've created. The microampere range on the meter is also useful as a current detector in Wheatstone bridge circuits.


# Using Positive Feedback 

By C. F. ROCKEY



DIAGRAM OF AMPLIFIER EMPLOYING FEEDBACK

ONE of the truly valuable techniques available to the small-receiver designer is positive feedback, or regeneration. Most small receiver projects utilize it; in fact, all truly sensitive receivers using less than five tubes or transistors probably apply this principle.

Positive feedback owes its effectiveness to the reduction of circuit losses which it accomplishes. All apparatus contributes some loss of energy to a radio signal as it passes through; even one inch of hookup wire has measurable resistance. This unavoidable extraction of signal energy reduces both the available amplification and the selectivity of a receiver. Positive feedback takes a little of the relatively strong signal appearing in the output of an amplifier and transfers it around to the input, overcoming some of the losses in the circuit (Fig. 1).

Thus the losses of the circuit are reduced, and in effect the resistance of the tuning circuit or other circuit is reduced. In the case of the tuning circuit, since selectivity is an inverse function of its resistance, the tuning curve will be sharpened considerably (Fig. 2).

By "positive" feedback is meant that the feedback path and coupling network are arranged to make the feed-back voltage add to the original signal voltage at any instant. Such a connection enhances the gain and reduces the bandwidth of the circuit involved.

The additional gain is expressed in this formula:


| Gain with |
| :--- |
| Positive Feedback |$=\frac{\text { Normal gain }}{1-\text { Normal gain }}$

The feedback ratio is the ratio of the voltage fed back over the output voltage. It is always a number smaller than one.
Even though you've let your algebra slip, you can still see that as the feedback ratio (amount of voltage fed-back, in effect) is increased the denominator of the fraction grows smaller. And as the denominator grows smaller, you will recall, the whole quantity becomes larger, since the numerator remains constant. This means that a comparatively small amount of feedback will give a large increase in gain.
Suppose we have an amplifier with a normal, nor-feedback gain of five. Now, let us arrange that $1 / 10$ of the amplifier's output voltage will be additively (positively) fedback into the input. Substituting these values into our equation we see that:

$$
\underset{\text { Gain with }}{\text { Feedback }}=\frac{5}{1-(5 \times 1 / 10)}=\frac{5}{510}=10
$$

Thus we see that even this comparatively small amount of feedback has doubled the actual amplification of our system. Some calculated gain values obtained from this same hypothetical amplifier with various values of feedback are tabulated below:

$$
\begin{array}{cc}
\text { Ratio }\left(\frac{\text { Feedback Voltage }}{\text { Output Voltage }}\right) & \begin{array}{c}
\text { Effective } \\
\text { Circuit } \\
\text { Amplification }
\end{array} \\
\text { Without Feedback } & 5.0 \\
0.05 & 6.7 \\
0.10 & 10.0 \\
0.125 & 13.7 \\
0.150 & 20.0 \\
0.175 & 40.0 \\
0.195 & 200.0
\end{array}
$$

The value of feedback is limited by the fact that when the product of the normal gain times the feedback ratio becomes equal to one, the system breaks into oscillation. As the feedback is increased toward the maximum value, the circuit adjustment becomes exceedingly critical. But positive feedback makes it possible to obtain as much amplification from one tube or transistor as would be gotten from two or three without it, so it is well worth the drawbacks.

Positive feedback is always employed in the

higher frequency circuitry of a receiver, since the bandwidth-limiting action makes its use in the audio section inadvisable. While most often employed in the detector circuit, regeneration often also improves the operation of if or rf amplifiers; here it increases both sensitivity and sharpness of tuning to a marked degree.

In any case, the requirements for successful application of positive feedback may be summarized as follows:

1. The feedback must add to the signal input voltage at all times. This means the phasing or polarity of the coupling circuit must be correct.
2. The magnitude of the feedback's effect must be under perfect control and smooth at all times.
3. Normal control of feedback must have a minimum effect upon the frequency to which the circuit is tuned.
Most often, an inductive feedback system is used wherein the energy is transferred via a magnetic field.-

The first method of inductive feedback employs a tickler coil, connected in series with the output circuit and coupled magnetically to the tuned input coil. If the two coils, tickler and input coil are wound in the same direction and on the same form, they must be connected according to Fig. 3 and Table A.

The tickler coil should be spaced as closely to the input coil as possible, and should contain the fewest possible turns, determined by experiment.

Another commonly-used arrangement for providing positive feedback is by the use of a tapped input coil. This is shown in Fig. 4, connections in Table B.

Again, exact placement of the tap along the coil must be determined experimentally in new designs; in most cases, however, the

| Type of Circuit | Connection Numbers |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 4 |
| Vacuum Tube Grounded Cathode | Plate | B+ | Ground | Grid |
| Vacuum Tube <br> "Hot" Cathode | Ground | Cathode | Ground | Grid |
| Grounded Emitter Transistor | Emitter | Battery | Ground | Base |
| Grounded Base Transistor | Battery | Collector | Ground | Emitter |

TABLE B-TAPPED INPUT COIL CONNECTIONS

| Type of <br> Circuit | Connection Numbers |  |  |
| :--- | :--- | :--- | :--- |
| Vaccuum Tube <br> Grounded Cathode | Plate | Cathode | Grid |
| Vacuum Tube <br> "Hot" Cathode | Grid | Cathode | Ground |
| Grounded Emitter <br> Transistor | Collector | Emitter | Base |
| Grounded Base <br> Transistor | Collector | Emitter | Base |

number of turns between connections one and two will be appreciably greater than between two and three.

Although physical arrangements may vary, other taps may be used in certain applications, particularly with transistors, but the identical principles apply in coil connections.

Control of the effects of feedback is most often accomplished by controlling the gain of the circuit rather than by varying the feedback coupling. This is because most feedback variations tend to influence the tuning of the circuit at the same time.

The most widely-used method for controling the effect of feedback involves varying of either the dc plate voltage (with triodes) or the screen-grid voltage (with pentode tubes). With transistors, current practice involves variation of the dc base bias in most instances. This is practically done with a well-bypassed volume control potentiometer. When set up properly, these means provide absolutely smooth and reproducible control of the effects of feedback with a minimum of influence upon circuit tuning. This, along with a little circuit savvy and shielding, suffices for requirement three that we stated earlier.
From the operational standpoint, these two rules should be observed:

1. For maximum gain, adjust the effective feedback as closely to the oscillation point as possible. The oscillation-point is manifested by a click or plunk, followed by evidences of instability or reduction or gain as the feedback is advanced.
2. If for any reason it is desirable to operate the circuit in an oscillating condition; as for CW radiotelegraph reception with the simple receiver, for instance, again always operate as close to the oscillation-point as expedient.


# STERRO MUSIC CRENTR 

> Complement your electronic finery by matching ifs beautiful sound with a handsome hardwood cabinet far below cost of its manufactured counterparts

By CHILTON E. PARKER

TRUE stereo-two high fidelity units operating together-is a wonderful experience, especially when you have purchased quality equipment in kit form at substantial savings and successfully wired the project. But you're really only halfway along the road to complete enjoyment of your achievement until you house all of the components in a lastingly-beautiful hardwood cabinet.
A cabinetmaker will custom-build such an elaborate enclosure for you at a price to match its handsomeness. For somewhat less, you may be able to "pick up" a fine cabinet of adequate dimensions at a large furniture store or radio shop. And, you can realize still more savings by building the $71 / 4$ - ft .-long cabinet shown in Figs. 1 and 12, if your home shop is equipped with good hand tools and a few power tools. Its clean, simple styling will allow placement with practically any type of home furnishings, save the most extreme contemporary pieces.

Though solid and veneer cherry was selected as the primary wood, you can easily substitute any other hardwood that suits your taste or is more available in your area. Inner
frames and base pieces are of pine. All details have been worked out so that only a minimum of shop equipment is required. Power tools used include a table saw, $1 / 2-\mathrm{in}$. drill press, a borrowed or rented router, and portable drill. Special tools used were a Stanley doweling jig and a set of Sears screw pilot drills.

Before ordering materials give special consideration to your speaker enclosures, as size will govern the dimensions of the cabinet. The speaker units in Fig. 2 have an overall height of 30 in . and can accommodate enclosures with a maximum height of 24 in. plus padding. A great many kits on the market will fit these dimensions comfortably.
The Cabinet Base, constructed in two distinct operations, consists of a sub-assembly and final surface assembly. Lay out pieces of pine for the sub-base as in Fig. 3A. For the long end pieces, rip a $10-\mathrm{ft}$. $1 \times 8$ into two boards, $31 / 2$ and $33 / 8$ in. wide. Put the boards together to be sure they will be cut square and trim them to $863 / 4 \mathrm{in}$. long. From the remaining parts of this $3 / 4-\mathrm{in}$. stock, cut out four $31 / 2 \times 15-\mathrm{in}$. pieces; also cut three $2 \times 4$


Minimum acteptable distance for placement of speakers is 6 ft ., which provides a stereo zone 11 to 17 ft . from front of cabinat. Low- and mid-range speakers are spaced on $6-f t$. centers. Tweeters are placed further out to extend the stereo listening orea.
pieces to the same length. A simple way to ensure squareness is to cut the pieces slightly oversize and clamp together, trimming all seven ends at the same time.

Drill for two \#8 x $11 / 2-\mathrm{in}$. flathead ( fh ) screws on the ends of the long pieces as in Fig. 3A. A wood screw pilot bit will do a faster, more efficient job than ordinary drill bits. Glue and screw the $3 / 4-\mathrm{in}$. side pieces to the ends, then line up the three $2 \times 4$ pieces and repeat the operation. Before the glue dries, make sure all corners are perfectly square. After glue has set, assemble the two remaining inner pieces.
The Inner Frames are next (Fig. 4A). Cut two $48-\mathrm{in}$. pieces each out of two $8-\mathrm{ft}$. $1 \times 8$ pine boards, then rip these 3 in . wide. Now cut out an $18-\mathrm{in}$. and a $28-\mathrm{in}$. length out of each of the four $3 \times 48-\mathrm{in}$. lengths. Measure $53 / 32$ in. from the center of each of the shorter pieces and, with the saw blade set at half the thickness of the wood, rabbet the ends for
a half-lap miter joint. Measure $97 / 8 \mathrm{in}$. from center of the longer pieces and rabbet these ends. If no other means, line up the edges on the edge of your saw table to check that corners are square.

Now you can glue and clamp the frames together then drill for and install two \#8 x $3 / 4$-in. fh screws at each joint. Unclamp the frames, now slightly oversize, and let dry.

Use of Plywood. We cut our principal wood sections out of a $4 \times 8-\mathrm{ft}$. sheet of $3 / 4-\mathrm{in}$. sliced lumber core cherry plywood available through cabinet shops and lumber dealers nationally. Ask your source to rip your sheet into two pieces, one being $181 / 4 \times 96 \mathrm{in}$. It will then be easier to handle when you finish sawing it at home. This piece should be cut from the side and edge having the most beautiful grain.

Put your best hollow ground or planer blade on your table saw and set the rip fence at $17^{11 / 16} \mathrm{in}$. These blades give amazingly

Note: After assembling right and left speaker frames and end pieces, fit and glue $1 / 16$-in. veneer strip as shown in detail B, Fig. 7.


bottom and top edges will be covered, drive a \# $8 \times 11 / 2$-in. $f$ h screw from the bottom pulling the corners together. This produces a "professionally" tight joint without special clamps.

Join another $201 / 4-$ in. piece in the same manner and when glue has dried, take one of the $21 / 2-\mathrm{in}$. $\times 253 / 4-\mathrm{in}$. pieces and complete the frame, again screwing from top and bottom. Using the other pieces of end stock, assemble your second frame.

Draw a light guide line $11 / 10$ in. from the edge across the front of the base (front edge has the $1 / 4-\mathrm{in}$. strip of cherry glued in) and $1 / 4 \mathrm{in}$. in from the edge of each end. Set the ends and speaker frames on the guide lines. Then carefully measure, cut, and trim the inner frames. Tack the frames together, trimming both at the same time. While they are tacked, cut a notch $3 / 4 \mathrm{in}$. deep by $31 / 2 \mathrm{in}$. wide (Fig. 4C). Use a thread or light string stretched across the end pieces at the front and back corner to check that all four: the two inner frames and end pieces, are the same height and in line.
Cut eight pieces of $3 / 4$-in.-square white pine glue strips. Attach them to top and bottom of each end panel and inner frame as in Figs. 4 D and 6 B , using glue and $\# 8 \times 11 / 2-\mathrm{in}$. fh screws. Check that edges are flush.

Just before gluing end panels in place, mark and cut dadoes for knife hinges on each end as in Fig. 6C. Replace in position, drill four pilot screw holes in both the lower glue strips of the end piece and inner frame. Glue and screw in place as in \#2 of Fig. 6B, and wipe off any excess glue immediately.

Through the bottom of the speaker platform, drill three screw pilot holes and drive three screws to pull the bottom member of the speaker frame down to the base (\#3 of Fig. 6B). Drill and screw the inner and speaker frames together after squaring up. Repeat these operations to assemble and glue the remaining end.

Control Center Construction. Cut a 71/2 $\times 48-\mathrm{in}$. piece of $3 / 4-\mathrm{in}$. cherry plywood for the control center back piece. Notch ends and cut dadoes as in Fig. 6D and observe the $453 / 4$-in. dimension, which is critical. Trial fit back piece into the inner frame notches, and check that the edge should be $3 / 32 \mathrm{in}$. lower than the top of the inner frames (critical). Glue and screw the back piece in place.

Cut and dado both sides of the control center as in Fig. 6E, using a router or saw and chisels. Carefully position these sides; glue and clamp. Drill holes for and drive \#8 $\times 11 / 4$ in. fh screws. Dadoes must match those in the back piece as in Figs. 8 and 9. Properly mounted, side pieces will be $1 / 10 \mathrm{in}$. below the top of the inner frames.

The previously cut control center base and front (Fig. 6A) can now be installed. Slide the base in place into the side piece dadoes as


Lap-jointed inner frame is supported by heavy member of sub-base. Pine components are concealed by solid and veneer cherry in finished cabinet.
in Figs. 10 and 11 so that mitered front edge is flush with front of the sides. At this point, front and side dadoes were marked as in Fig. 6 F to fit our tuner and preamp case. Check yours and modify the panel as needed.

Remove the base, make the marked dado and other cuts. Also cut out the record player mounting hole on the other side according to a template supplied by the manufacturer. In addition, lay out and cut any holes you may need for control switches and meters (Fig. 6G). While doing this, be careful not to dent or scar the mitered edge.

Now trial fit the previously cut front piece (Fig. 6A) to the base. Once satisfied, apply glue carefully to the side panel dadoes and slide the base in position. You've no doubt noticed that the dadoes are slightly wider than the $3 / 4-\mathrm{in}$. base thickness. After checking that dadoes for tuner and preamp case line up drive wedges in from the underside to push the base up tight. Allow to dry.

Apply glue to mitered edge of the installed control center base and its front piece, place latter in position, and secure with two \#8x $11 / 4-\mathrm{in}$. fh screws on each end. Use wood clamps to draw into position, then screw wood strips to base and front inside. Allow to dry.

Record Compartment. A number of remnant pieces were splined together here to reduce waste or scrap to a minimum. Spline cuts were made the same way as other dadoes, with a saw blade making as many runs as needed for proper width.
Cut the floor for the record storage compartment from $3 / 4-\mathrm{in}$. plywood as in Fig. 7A, dadoing and rabbeting the underside to receive the cross members of the base and cut-
ting $3 / 8$-in. wide dadoes with a router bit for partitions and back.

Partitions are shaped from $3 / 8$-in. birch plywood and finished with cherry strips splined and glued to the front as in Fig. 7C. If you wish, partitions can be left square so dadoes can be cut with a table saw and hand chisel.
dado to fit over compartment back.
The Tuner-Preamp Case is cut from solid cherry stock, except for the front and top which are $1 / 4-\mathrm{in}$. cherry veneer. Dimensions given in Fig. 14A are about $3 / 16-\mathrm{in}$. longer than the $1 / 4-\mathrm{in}$. dadoes on the control panel base. This allows them to be easily inserted in


Cut two $16^{11 / 16} \times 181 / 8$-in. pieces from the $3 / 4-\mathrm{in}$. plywood sheet for end panels, then dado and notch as in Fig. 7D. Cut and dado the solid cherry front and rear top pieces and the birch plywood back as in Fig. 7E.

Glue and screw the record compartment to the frame (Fig. 14). Cut a $3 / 4 \times 3 / 4 \times 3$-in. guide block for the top of the record compartment and install it with glue and screws to the inside of control panel front piece as in Fig. 11. Now you can apply glue to bottom dado on left side of record compartment, slide it into position as in Fig. 14 and attach to base of compartment and guide block.

Cut a $3 / 4 \times 3 / 4 \times 333 / 4-\mathrm{in}$. spacer strip from scrap pine and secure it flush with the bottom of control panel front piece and butting against left side of the compartment.

Glue the vertical dado on the left side of compartment, the dado in the rear of bottom piece, and both dadoes in the right side. Position compartment back and assemble the right side similar to the left. In order, glue compartment dadoes and place them in position; glue and screw front partition, holding bar in forward notches cut in sides; glue and screw rear bar in rear notches in sides, and
place. Rout or drill and chisel the end piece to receive the lid support. No dimensions are given for the preamplifier or tuner cutouts as there are many slight variations and manufacturers supply their awn mounting instructions. Also, the position of the tuner's cooling panel may change in order to improve ventilation or for easier tube replacement.
We found the following method easiest for setting and gluing the finished blanks in place. First glue and slide the top in position, then the side. Depth of side is cut approximately $1 / 18 \mathrm{in}$. short of total height. After the side is in place, slip in a filler strip to bring it to proper height so the miter edge of top and side meet. The strip should be about 1 in . shorter than total length of the dado.

Glue and slip in the front. A number of small clamps are a real asset here. Since this is a focal point of the finished cabinet, be sure to lift all glue that may ooze from the joints. Edges around the tuner vent and preamp are optional. These are $1 / 4 \mathrm{in}$. square and are glued and screwed to the top after the selected preamp and other equipment were set in for fitting.
Panel Door Building. There are 13 nar-

row doors attached accordion style by concealed hinges. All wood is $3 / 4-\mathrm{in}$. solid cherry except for the $1 / 4$-in. inner frames. To simplify the job, cut all similar parts at the same time. Set up a cutoff gauge on your saw, clamp strips to cut six at a time, making sure the cross feed is perfectly square.

Cut 26 pieces $11 / 4 \times 253 / 4 \mathrm{in}$. for the sides, 26 pieces $11 / 4 \times 41 / 4 \mathrm{in}$. for the ends, 13 pieces $1 \times$ $41 / 4$ in. for the centers, and 26 pieces $315 / 16 \times$ $103 / 4 \mathrm{in}$. for the insert panels, all from $3 / 4-\mathrm{in}$.
solid cherry. Run off 85 ft . of $1 / 4$-in. stock to be machined in two basic operations. Set the saw blade $1 / 8 \mathrm{in}$. high and dado the strips $1 / 4$ in. wide as in detail A of Fig 15.

You'll need a molding head cutter to round both edges of the $1 / 4-\mathrm{in}$. stock, such as Sears \#9H-2352.

Make a jig by taking a strip of scrap wood about $3 / 4 \mathrm{in}$. thick and 4 in . wide. Saw a dado $1 / 2 \mathrm{in}$. deep on it with the width just enough to allow the $1 / 4-\mathrm{in}$. stock to slide through

## materials List-STEREO MUSIC CENTEH

| No. Req. | Size and Description | No. Req. | Size and Description |
| :---: | :---: | :---: | :---: |
| $1 \text { pc. }$ | $3 / 4 \times 71 / 2^{\prime \prime} \times 10^{\prime}$ pine (sub-base framing) | 200 | $3 / 8{ }^{\prime \prime}$ D. $\times 1 / 2^{\text {" }}$ Iong spiral hardwood dowel pins (Crattsman, 92द) |
| 1 рc. | 15/6 $\times 38 / 8 \times 48^{\prime \prime}$ pine (sub-base framing) | 9 prs. | $3 / 8 \times 1^{\prime \prime}$ Soss invisible hinges for doors (Crattsman |
| 2 pes. | $3 / 4 \times 71 / 2 \times 96^{\prime \prime}$ pine (inner frames) | 9 pr | \#0100, $\$ 2.39$ with screws. For this quantity, it is |
| 1 pc. | $3 / 4 \times 51 / 2 \times 60^{\prime \prime}$ pine (glue strips) |  | cheaper to order 12 pairs of hinges at \$21.50.) |
| 1 pc . | $3 / 4 \times 48 \times 96^{\prime \prime}$ Jumber core cherry plywood (top, ends, control center back piece, record compariment floor) | 2 prs. | $5 / 16 \times 18 / 8^{\prime \prime}$ reversible knife hinges (Craftsman \#1595, 54¢) |
| 1 DC. | $3 / 4 \times 48 \times 48^{\prime \prime}$ Iumber core cherry plywood (control center base and front piece, record compartment end panels) | 1 | $48^{\prime \prime}$ long piano (continuous) hinge $11 / 16^{\prime \prime}$ wide when opened, with screws (lid hinge) |
| 1 pc . | $1 / 4 \times 24 \times 36^{\prime \prime}$ cherry plywood (speaker platforms) | 1 | lid support (\#9379J, left hand style, used in project available from Lussky. White \& Coolidge, 216 W. |
| 1 pc. | $1 / 4 \times 16 \times 20^{\prime \prime}$ cherry plywood (tuner.preamp control hox top, front) |  | Monroe St., Chicago 6, III. Price \$2.68. Cheaper type is new type of adjustable friction brass plated |
| 2 pcs. | $3 / 8 \times 24 \times 36^{\prime \prime}$ birch plywood (record compartment partitions, back) |  | support with nylon roller to hold lid at any height. Available as \#7074 from Craftsman, 42द) |
|  | All wood listed below is solid cherry | 3 | $1 / 4^{\prime \prime}$ D. $\times 1 / 2^{\prime \prime}$ long magnets with $1 / 2^{\prime \prime}$ D. steel disk contacts (door closers-available for $\$ 1.90$ from J. F. |
| 2 pcs. | $3 / 4 \times 5 \times 96^{\prime \prime}$ (finished base, lond pieces) |  | Simpson Co., 4754 W. Washington St., Chicago 44, |
| 2 pcs. | $3 / 4 \times 31 / 2 \times 39^{\prime \prime}$ (finished base, end pieces) |  | III.) |
| 4 pcs. | $3 / 4 \times 21 / 2 \times 30^{\prime \prime}$ (speaker frame strips) | 1 lb. | casein stainless glue (Craftsman \#524C, 85¢) |
| 1 pc. | $3 / 4 \times 31 / 2 \times 18^{\prime \prime}$ (side of tuner-preamp box) | 1 pt . | contact bond cement (Craftsman \#CBP10, \$1.49) |
| 7 pcs. | $3 / 4 \times 51 / 2 \times 36^{\prime \prime}$ (door sides, ends, centers) | 1 at. | pigmented wlping stain, french provincial (Craftsman \#202, \$1.77) |
| 7 pcs. | $3 / 4 \times 315 / 16 \times 35^{\prime \prime}$ (door insert panels) | 1 at. | wiping stain reducer (Craftsman \#205, 94¢) |
| 2 pcs. | $3 / 4 \times 788 \times 167 / 10^{\prime \prime}$ (control center sides) | 1 doz. | \#10 $\times 1 / 1 / 2^{\prime \prime}$ flathead (th) screws |
| 13 pcs. | $1 / 4 \times 1 / 2 \times 72^{\prime \prime}$ (door inner panels) | 1 pross | \#8 $\times 11 / 2^{\prime \prime}$ th screws |
|  | Note: Solid cherry available at Craftsman Wood | 1 gross | \#8 $\times 11 / 4^{\prime \prime}$ th screws |
|  | the $96^{\prime \prime}$ lengths and the $1 / 4 \times 1 / 2 \times 72^{\prime \prime}$ strips sepa- | 16 | \#8 $\times 3 / 4^{\prime \prime}$ th screws |
|  | rately. An order for 18 sp.ft. of $3 / 4^{\prime \prime}$ cherry dimen. sion stock in $42^{\prime \prime}$ lengths and random widths ( $4^{\prime \prime}$ to $8^{\prime \prime}$ ) should be sufficient to cut all other solid pieces. Latest catalog (1962, \#28) price is 55f per sq.ft. | 2 pes. Misc. | $24 \times 29^{\prime \prime}$ grille cloth (speaker sections) <br> cherry veneer edging $13 / 1 b^{\prime \prime}$ wide, 1 pt . linseed oil, 1 pt. turpentine, insulation for speaker cabinets, 1 box $3 / 8^{\prime \prime}$ brads, 1 box $1 / 4^{\prime \prime}$ tacks |

Views of left and right sides of control center back piece, offer fitting side pieces. Note perfect match of dadoes at each end. Right side piece is cul about 1 in. naprower than recommended in Fig. 6E.

easily. Now change the saw blade for molding cutters and measure carefully so that when the cutters are raised, one of the beads will be exactly centered in the dado on the guide board. Raise cutters enough to place a rounded edge on stock and run both sides.

To shape the insert panels, change to a molding cutter shape such as that of Sears \#9H-3202 (Fig. 15). Since there is a lot of wood to remove, take three passes to do it.

As you will be cutting against the grain on the ends and there will be slight splintering on the edge, cut the ends first and sides last. This will leave a smooth-finished edge as the splintered portion will be cut away.

Clamping Jig for Dowel Work. Now construct a clamping jig-flat, and with a surface at least $28 \times 36 \mathrm{in}$. Cut two $3 \times 28-\mathrm{in}$. pieces of scrap pine and attach them to the base. leaving $281 / 2 \mathrm{in}$. between the inside edges. Cut a $18 / 18-\mathrm{in}$. wide strip into two wedges. Lay the pieces for four doors in position: two $11 / 4 \mathrm{x}$ $41 / 4-\mathrm{in}$. pieces for ends, one $1 \times 41 / 4-\mathrm{in}$. piece for the middle.

With the pieces in alignment, lightly drive the wedges into position and mark the dowel guide lines: two for each side top and bottom, and one each side for the center. A Stanley dowel jig and the complete directions that
come with it make easy work of this. To cut dowel holes, we used a Delta $3 / 8$-in. spur drill bit with $1 / 2$-in. shank.

Mark all door sides and cross members as in Fig. 15 and then drill. Place glue in one side of each door only and tap in dowel pins (the prepared kind, $3 / 8-\mathrm{in}$. diameter and $11 / 2$ in. long). Place dry dowels on the other side and carefully tap together:

Again, lift excess glue. Complete four doors in this manner and place in press, driving wedges in fairly snug. As the wedge pressure will tend to raise the doors in the middle, place a board on top, and weights, such as old barbells. Allow to dry. Complete the other doors the same way.

Sand the surfaces flush with medium production paper and finish off with a fine grade. A slight surface variation is possible.

The frames (still with one side not glued) are now ready for fitting with inner frames. For a perfect fit, miter these individually for each opening. Cut all inner frames, then label and bind each set of four separately. We suggest this individual-fit method since it is quite unlikely that each door will have precisely the same measurement.

With the frames intact, apply glue and position inner frames, then secure each end piece


View of control center base during trial fit to check all cuts with equipment selected. Changes should be made and checked again before securing this panel in place. Front panel of base is removed here, exposing gluing strips at joint with bevel of base, also the small guide block for top of the record compartment.
with two $3 / 8-\mathrm{in}$. brads and each side piece with three brads. Use a small counterpunch to set the brads. Be sure not to glue the miter of the inner frame of the loose side on the door frame-let it dry thoroughly.

Now tap the loose side out and trial-fit completed panels in their respective positions. They should go in freely, not sloppily. Trim any panel edges that need it and, working in groups of four, apply glue carefully to the inner frame dado. When the two panels are in place, glue the loose side and tap into position. Remove dowels, glue these holes, and put the dowels back in place, tapping slowly and with care.

Considerable pressure builds up in the dowel holes and the wood will split unless the glue is allowed to pass by the sides of the dowels. You will be wise to have a partner ready to lift any glue that may ooze out. This type of glue sets rapidly and you cannot
handle both operations on four doors alone.
Now lay the four doors in the wedge vise, set weights on top, and drive home the wedges. This will bring on more oozing of glue, so be ready for it. Use strips of aluminum foil on the bottom and under weights. Finish the remaining doors in like fashion.

Multiple Door Assembly. Lay out the 13 doors across the floor, arrange them for most pleasing appearance, then number them. Rabbet doors numbered 2, 3, 6, 7, 11, and 12 as in the three details in Fig 16A. Install a $1 / 4 \times 3 / 4$-in tongue in the rabbets of doors numbered 3,6 , and 11 to lock the sections closed.

Doors 1 and 13 are routed or chiseled out at top and bottom for knife hinges, while the others are hung on Soss invisible hinges. The dowel jig makes installation of this type hinge extremely simple.

When closed, these hinges have $3 / 64$-in. spacing between their faces, so take this into ac-


Withous cabinet, the equipment looks like this: preamp over one speaker enclosure, amplifiers (to be remotely installed as in Fig. 2) over the other, record player. Tuner and iweeters not shown.
count when trimming the sides of all doors. When the doors are laid out, the outside edge of end doors should be flush with the respective end panels of the cabinet. The $3 / 4-\mathrm{in}$. spacing is also carried into the rabbeted edges to allow freedom of opening. Trim ends of doors to $255 / 8 \mathrm{in}$., which will allow $1 / 18 \mathrm{in}$.
clearance at top and bottom.
Working with two adjoining doors at a time, measure and mark a line an each one $31 / 4$ in. from the top and bottom. Then, measuring toward the middle, mark at $1 / 2,3 / 4$, and $11 / 4 \mathrm{in}$. Drill at these points with a $1 / 2$-in. drill following instructions furnished with the


Note: Dimensions given for top panels are finished measurements. Ba sure to allow for thickness of $1 / 16-\mathrm{in}$. veneer strip to be added on front and side edges of all three pieces.
hinges for depth and cleanout. Tap hinges in place, drill pilot holes and secure with screws. Finish the hinge installation for the four sets of doors and lay aside.

Check a radial saw to be sure its cut is perfectly square, then take the piece of cherry plywood blank previously earmarked for the top and cut it into three pieces: two $215 / 8 \mathrm{in}$. long and the other 44 in . long.

Final Assembly. Overall length of the cabinet should be $873 / 4 \mathrm{in}$. If any variance, allow for it in the center panel before gluing any veneer strips. Using a scrap 8 -ft. piece from the base as a straightedge, cut three pieces of cherry veneer $1 / 16$ in. thick and $13 / 16$ in. wide. Attach the veneer to all exposed plywood edges on front and sides, using contact cement. Sand edges flush.
Glue and screw gluing blocks in place on the inside top (flush) edges of outer panels and inner frames. After they are dry, apply glue to the two top end panels, clamp them in position, drill pilot holes from underneath through the blocks and secure with $\# 8 \times 11 / 4$ in. fh screws.

Screw a $44-\mathrm{in}$. length of piano hinge in position on the control compartment back panel. Rabbet the inside rear edge of the center top panel, previously cut and adjusted for length, to accept a flush mounting of the piano hinge. Set the panel in place, mark and screw to hinge, using only a few screws until you get it properly centered.

Place the lid support in position in the routed-out side of the preamp-tuner cabinet (Fig. 14A) to locate and drill an adjusting hole through the back panel. Adjust the tension; install support with screws.




ASSEMBLY PROVICES FOR $1 / 166^{\prime \prime}$ SPACE BETWEEN TOP AND SIDE SUPPORTS. FELT OOOTS, $1 / 16$ " THICK, ALLOW TOP TO REST FLUSH WITH TOP OF ENDS

DOOR ASSEMBLIES SECURED TO FRAMEH $10 \times 1$ V/2 F.H. SCREWS

OPENING DIMENSIONS COMFLE TELY OPTIONAL AND WILL DEPEND ON PARTICULAR UNITS INSTALLED- MOST PREAMPS CAN BE IHSTALLEDIN ANY POSITION BUT SOME TUNERS CANNOT. IT IS BEST TO CAREFULLY CHECK THIS GEFORE CUTTING WOOD IT MAY BE POSSIBLE ANO YOU MAY CHCOSE TO MOUNT THE TUNER VERTICALLY IN WHICH GASE THE FRONT OF THE CONTROL SECTION WOULD BE BLANK.


PLASTIC ACOUSTICAL PIECE $24^{\prime \prime} \times 20$ SESSOLS PIECE 24 " $x$ 20." FOLD
EDGES TO TRIPLE THICKNESS, 1/2" MEM SECURE TO CHERRY. FRAMES WITHERTH TACKS-SPACED

Opening dimensions depend on style and make of units to be installed. Most preamps can be installed in any position but some tuners cannot. Check units before cutting woad. You may, if possible, choose to mount the tuner vertically, in which case the control section would be blank.


Completed control section and record compartment. Note tiny magnet recessed in frant panel. Strang enough to hold doors closed, it releases with a slight pull.


Tuner-preamp case in place. Note ventilator panel and single dial at left which controls tweeter mounted in top outside corner of speaker sabinet adjoining. Tension of bracket can be set to hold lid open as desired.

Using knife hinges, secure both sets of end doors in position. Lay a $1 / 16-\mathrm{in}$. spacer on the base and set the remaining doors in place, using $1 / 18$-in. shims behind doors 4 and 10 . Wedge lightly in position and drill six pilot holes on each side from the rear of the cabinet (doors 4 and 10). Insert \# $10 \times 1^{1 / 2}$-in. fh screws (Fig. 16B), check alignment, and drive them home tightly.

Apply a cap strip of veneer in front of the exposed edge of the piano hinge, using contact cement.
Small magnets only of $1 / 4 \mathrm{in}$. diameter, and $1 / 2$ in. long can be imbedded in $1 / 4-\mathrm{in}$. holes in the cabinet as in Fig. 17 to keep the free doors closed. Small metal plates can be cut into the doors to make contact. Only a $21 / 2-\mathrm{lb}$. pull will open the doors.
Finishing the Cabinet is a pleasure-there's no long and drawn-out painting or pumice polishing. Remove two center door sections for staining and oiling, then replace.
To complete the cherry finish, we used French provincial pigmented oil stain, cutting it well with the reducer recommended for it. Test it first on scrap pieces to be sure of the correct degree of color depth.

Apply the stain ( $1 / 2 \mathrm{pt}$. of stain plus 1 pt . of reducer) by dipping a soft, lintless cloth in the can and wiping it over the surface. Remove any excess left standing on the wood and use only the stain immediately absorbed. After a 24 -hour wait for drying, apply a liberal coating of linseed oil and turpentine (2:1) with a clean, soft rag. Wait five minutes, then rub briskly to remove any excess oil. This will give a very rich, non-glossy appearance.

Remember not to start with a too-dark finish. With each subsequent oiling (every three or four months), the finish has darkened slightly. No polishes are needed since the oil application cleanses the wood and continues to protect it.

After the finish, select your grille cloth for the speaker sections and purchase enough to cut two $24 \times 29-\mathrm{in}$. pieces. Turn the edges over $3 / 4 \mathrm{in}$. and stitch the edges to triple thickness. Fasten in place with $1 / 4$ - or $3 / 8$-in. tacks. Start at top and bottom centers, stretching the cloth as you tack toward the edges.

Since vibration from the speaker cabinets can be transmitted to both tuner and record player, the least you should do is insulate the bottom. We used $40-\mathrm{oz}$. rug wafile padding


Completed right side of contral panel includes two meters and switch as well as another tweeter control.


Medium and low-range speakers come with this enclosure. Tweeter, control and crossover on top will be mounted in cabinet outside this enclosure.
tacked all around except for the front (Fig. 16D).

If you're using tweeters as we did, install them first, then slide in woofer enclosures. Install the other components, re-balance your record player, and you're in business.

## Soldering with Immersion Heater

In a pinch, the occasional electronic builder, serviceman, or experimenter can solder wire connections with an immersion heaterlike the one shown. Simply wedge the
 wires between the heater coil turns and plug the heater in intermittently until the joint gets hot enough. Use the heater to aid heating large work when your iron or gun isn't large enough to handle the job.-John A. Comstock.


This Early American styled cabinet combines modern living with an old design to give you a piece of furniture that is both decorative and functional. Any portable or table TV set becomes a
handsome console model when installed
in this Early American styled cabinet

By RAY AYERS

ENJOY the beauty of a console TV without paying the high cabinet price by customizing a cabinet that sheathes your present portable or table model set. Even an old TV chassis can be brought up-to-date by installing it in this Early American styled cabinet.

This particular cabinet was designed to house a table model Motorola, but with a few dimensional changes any model can be adapted to it. If the controls of your set are mounted on the side, an access panel can be made
(Fig. 2A) to permit convenient operation.

First Measure the TV you are going to enclose; then make the necessary dimensional changes directly on Fig. 2 so you won't have to double check every measurement when cutting the materials.

Next, cut the birch (see Materials List) for the front framework and rails to size (Fig. 2). Then shape the $3 / 4$ x $3 / 4-\mathrm{in}$. hardwood corner support blocks for the top shelf. Duplicate the scrolled designs used on the lower part of the front framework and sides, and top rails (Fig. 4) on cardboard, so the design can later be transferred to the wood. The design can be fashioned with a saber or coping saw.
Use blind dowel joints (Fig. 2B) to assemble the front framework. Dowel centers are preferable when spotting the holes in the frame pieces. For greater accuracy in matching the $5 / 10 \times 3 / 4-\mathrm{in}$. holes, bore them in the horizontal members first. Groove all dowels to allow trapped air and Blue-Bird white glue to escape. Remove the squeezed-out adhesive


## 2. CABINET CONSTRUCTION

immediately with a moist cloth. Be sure the framework is squared when you set it aside to dry.

Cut the Top Shelf so it overhangs the cabinet by $1 / 4 \mathrm{in}$. on the sides and $1 / 8$ in. on the front and back. This is the only piece of plywood that will have exposed edges; but these edges will later be covered with veneer. Other components that have to be cut from the $3 / 4-\mathrm{in}$. birch veneer plywood are the sides, TV shelf and mounting rails, and the speaker mounting board. The two stringers used for added support in the back (Fig. 2) can be cut from plywood or $1 \times 21 / 2-\mathrm{in}$. hardwood.

Disconnect the speaker and use it as a template to locate the center cut-out and mounting holes in the speaker mounting board. Grille cloth can be made from dyed burlap or can be bought in $12 \times 36-\mathrm{in}$. lengths from many radio and TV supply outlets.

Grille material used in Fig. 1 is described as "Tan with Bronze Threads," pattern 811, and was purchased from Allied Radio, 100 N . Western Ave., Chicago 80. After stretching the cloth across the mounting board, use thumb tacks to hold it in place. When attaching the speaker to the board with wood screws, be sure you don't damage the paper cone.


After cutting the scrolled design on the sides (Fig. 4), and, if necessary, the side access opening (Fig. 2A), attach the TV shelf mounting rails to the sides with $11 / 4-\mathrm{in}$. flathead ( $f h$ ) wood screws. Use $11 / 2-\mathrm{in}$. finishing nails to fasten the sides to the top, and countersink these fasteners when attaching the stringers to the sides so the nails can be covered with wood filler. The nails used to attach the top to the sides are covered by the scrolled side rails.
Molding used to mask the old TV cabinet should not interfere with the viewing area. It should also fit flush against the installed set, which should be back far enough so the standard size louvered doors can close.
The $1 / 2 \times 2$-in. cove molding used in Fig. 1 was shaped from solid stock, with all corners mitered. Attach it to the front framework by first drilling $1 / 8-\mathrm{in}$. pilot holes, then fasten with glue and woodscrews.

Use furniture clamps to hold the frame against the assembled sides and top when you drill the $11 / 2 \times 5 / 18-\mathrm{in}$. dowel holes. Attach the top to the front with a dowel in front of each side rail (Fig. 2), and with two blind dowel


|  | MATERIALS LIST- |  |  |
| :--- | :--- | :--- | :---: |
|  | EARLY AMERICAN TV CABINET |  |  |

joints that are positioned $83 / 4 \mathrm{in}$. from the sides of the top. Drill the holes for the blind dowel joint $1 / 2 \mathrm{in}$. into the plywood top and 1 in. into the birch frame.

Make the cabinet mobile by attaching casters (Fig. 2C). The $3 / 4-\mathrm{in}$. plywood caster blocks should be large enough so the casters clear the cabinet when it turns.
The type of flooring you have will determine how far the casters should extend below the cabinet. A $1 / 4-\mathrm{in}$. clearance between cabinet and caster is enough on tiled floors or on carpeting not backed with a thick pad. Use $11 / 2$-in. dowels to hold the caster mounting blocks in place.
While the cabinet is still resting on the top, glue the $3 / 4 \times 3 / 4-\mathrm{in}$. corner blocks in the angles formed where the top meets the front, and the back stringer.

Final Step is to install the TV shelf and the top rails. Position the shelf and drill two pilot holes on each side so $11 / 2-\mathrm{in}$. fh wood screws can be driven in to add further support to the cabinet.
Cut the scrolled design on the side rails (Fig. 4), then attach them to the top with $5 / 10 \times 2$-in. dowels. The back rail fits between the side rails, and is held in place with three dowels.

The Weldwood veneer strip used to cover the exposed edges of the top can be applied with glue and pressed in place with a small block (Fig. 3). An excellent bond can be assured if a hot iron is run over the strip immediately after it is positioned. After the glue sets, trim any surplus veneer edge with a razor blade and sand smooth. Since the veneer strip is so thin, no mitering is required, only a light sanding and rounding of the edges.
Lightly sand the cabinet with a fine abrasive paper and slightly round off the edges. After thoroughly cleaning the wood surfaces, apply a light coat of Miniwax Early American stain. Brush on two coats of clear lacquer. Rub on several coats of paste wax.

## A Musical Annunciator



With this device hooked into your front door-bell circuit, you substitute the soft, tinkling tones of a music box for the jangle of bell, rasp of buzzer or raucous cling-clang of chimes

By HARTLAND B.
SMITH, W8VVD

An electranically amplified Swiss musical mavement (at left frant) makes a pleasant daar annunciatar.

T'HE heart of this annunciator is its Swiss musical movement. Powered by a miniature $110-\mathrm{v}$, shaded-pole motor, this movement will play a 20 -second excerpt from one of your favorite melodies. (The available tunes range from Adeste Fideles to the Third Man Theme, so you should have little difficulty in finding a composition to suit your taste.)
If this tiny music maker is to be heard throughout your home, however, some form of amplification must be employed-and the amplifier must be ready to operate the instant the front door button is pressed.

For economy's sake, no power should be drawn by the unit during standby periods. Consequently, heater-type vacuum tubes cannot be used. The choice, therefore, lies between battery tubes and transistors. Despite continued transistor price reductions, the capacitors, transformers, etc. needed for transistor circuitry are still relatively expensive. In contrast, the parts required for a vacuumtube amplifier are quite reasonable and, in addition, many are likely to be found in the average experimenter's junk box. For this reason, the unit shown in Fig. 1 utilizes fila-ment-type tubes rather than transistors.

An inexpensive high-output crystal lapel mike converts the sound produced by the musical movement into electrical impulses. These impulses are fed to the control grid of vacuum tube V1 (see Fig. 2). A dynamic mike cannot be employed at this point, be-

cause it would be sensitive to the hum resulting from the magnetic field that surrounds the motor. A vibration pickup mike, as used for electric guitars and similar musical instruments is also impractical, because of its sensitivity to the mechanical noises generated as the motor and its associated gearing operates.

Because of this mechanically generated noise, a relatively shockproof bracket (see Fig. 6) must be used to mount the mike. This bracket makes use of a small section of plastic sponge to deaden vibrations which would otherwise travel up the mount and excite the mike.
In most respects, the four-tube amplifier is of conventional design. Since the power capability of a single 3 Q5GT is rather limited, two of these tubes are operated in parallel. The extra 3Q5GT provides a very useful increase in power output. Parallel, instead of push-pull operation was chosen because no phase inverter tube is needed and an inexpensive output transformer can be employed. Preliminary tests of the completed amplifier showed that its overall gain was so high that there was a tendency toward self-oscillation when the volume control was well advanced, but the addition of resistor R9 (see Fig. 2) provided sufficient inverse feedback to lower the gain and completely eliminate the oscillation problem. The use of inverse feedback also improved the frequency response and minimized distortion in the output stage.

When the annunciator is first plugged into the line, no power can be drawn because relay RL2 is open. However, as soon as the pushbutton is pressed current from the $9-\mathrm{v}$ battery will flow through the coils of RL1, RL2, and RL3. Relay RL2 closes and applies 110 volts to the primary of T2, to the heater of delay relay (RL4), and to the motor of the musical movement. Relay RL1 closes and applies filament power to the tubes. The amplifier becomes operative at once and the tones of the musical movement are heard via loudspeakers placed in convenient spots throughout the home.

Relay RL3 also closes at the instant the button is pressed. The contacts of RL3-as long as RL4 or S1 remain closed-act as a short across the pushbutton. Thus, current continues to be supplied to the coils of RL1, RL2 and RL3 via the contacts of RL3, even


Top-chassis (above) and battom-chassis (below) views of annunciator circuitry.


cam must be so positioned that it actuates the lever of S1 when the tune on the barrel has been completed.

The power transformer T2 in Fig. 3A happens to be a surplus unit designed to provide 125 v at 25 ma and 6.3 v at 1 amp . A suitable substitute would be a Knight 62G008 which furnishes 125 volts each side of center-tap,


SHOCK PROOF MOUNT
FOR MICROPHONE
plus 6.3 v . Only half of the high-voltage secondary on the 62G008 should be employed with the center-tap coing to R12 and one end of the high-voltage winding going to R10. Since the other end of the secondary and the $6.3-v$ leads are not required, clip them short and insulate with electrical tape.

The two small batteries B1 and B2 are subjected to so little use in this particular device that they can be expected to have almost shelf life. Consequently, the battery cost per month will be insignificant.

Constructed on a $11 / 2 \times 51 / 2 \times 9$-in. aluminum chassis, the amplifier is easy to wire since there is plenty of room between the components for the tip of a soldering iron. The armatures of the three small relays are directly connected to the frames. Therefore, RL2 and RL3 should be insulated from the chassis. Figure 3 B shows how these relays are mounted on a thin sheet of Bakelite. Any easily worked plastic can be substituted for the Bakelite.

No knob is needed on the shaft of R4. Once the volume has been set to the desired level, no further adjustment is necessary. Battery B1 is kept in place with a home-made battery holder (or use a commercially built holder, such as a Keystone type 175). Two L-shaped brackets bent from small pieces of aluminum clamp battery B2 in position. Since the No. 5

MATERIALS LIST-MUSICAL ANNUNCIATOR
Description
2.2 megohm, $1 / 2$ watt (Allied 1 MMOOO)

1 megohm, $1 / 2$ watt (Allied 1 MMOOO )
$220,000 \mathrm{ohm}, 1 / 2$ watt (Allied 1 MMOOO)
330,000 ohm, $1 / 2$ watt (Allied $1 \mathrm{M} M 000$ )
$75 \mathrm{ohm}, 1 / 2$ watt (Allied 1MMOOO)
$560 \mathrm{ohm}, 1 / 2$ watt (Allied 1MM000)
330 ohm, $1 / 2$ watt (Allied 1M M000)
500,000 ohm volume control (Allied 29M773)
$33.000 \mathrm{ohm}, 1$ watt (Allied 1 M M O20)
.01 mfd . disc ceramic capacitors (Allied 11L437)
12 mf ., $150-$ - electrolytic capacitor (Allied 15L194)
$\mathbf{2 0 . 2 0} \mathbf{m f}$. 150 velectrolytic capacitor (Allied 15L247)
$100 \mathrm{mf} ., 15 \mathrm{v}$. electrolytic capacitor (Allied 16L236)
Sigma 1 IF-1000G-SIL SPDT Relay (Allied 75 P068)
Amperite 115 C 10 T miniature delay relay (Allied 75PP296)
Stancor A. 38224 watt universal output transformer (Allied 64G005)
Knight power transformer $125-0-125 \mathrm{v}, 25 \mathrm{ma}$; $6.3 \mathrm{v}, 1 \mathrm{amp}$ (Allied 62G008)
$11 / 2$ v size D A battery (Allied 80J903)
9 \% battery VS. 305 (Allied 80J838)
Federal 1002A, 65 ma., rectifier (Allied 4A606)
Unimax USML SPOT Subminiature leaf switch (Allied 34B848)
2 screw terminal strip (Allied 41 H505)
Crystal lapel Mike (Lafayette PA.9)
for 1 size $D$ cell (Lafayette MS.175)
3AG $1 / 2$ amp (Allied $52 \mathrm{B232}$ )
105 tube
305GT tube
Reuge ELR $1.18110 \mathrm{v}, 60 \mathrm{cps}$ with extended shaft. From Novelties of Oistinction, 131 West 42nd St., New York 36, N. Y., or direct from the manufacturer, Reuge S.A., 26, Rue des Rasses, Ste. Croix, Switzerland.
two octal tube sockets (Allied 40 H 058 )
one 9 -prong miniature socket for RL4 (Allied 41H534)
two 7 -prang tube sockets with shield (Allied 40 H 194 )
two $13 / 4^{n}$ tube shields (Allied 40 H 198 )
open-end chassis $11 / 2 \times 51 / 2 \times 9^{\prime \prime}$ (Allied 80P440)
fuse clip (Allied 52:292)
three terminal tie-point strip (Allied 41H501)
$5^{\prime \prime}$ loudspeaker, 3.2 -ohm voice coil (Allied 81D617)
wall bathe for $5^{\prime \prime}$ speaker
wire, power plug, assorted 4.36 and 6.32 screws and nuts
Components available from Allied Radio Corp., 100 N . Western Ave., Chicago 80, Illinois, and Lafayette Radio 111 Jericho Tarnpike, Syosset, L. I., N. Y.
pin on a $1 U 5$ and the No. 1 and 6 pins of a 3Q5GT are not connected to elements within the tubes, those terminals on the sockets can be used as convenient tie points to support resistors and capacitors. Grid bias for the 3Q5GT's is obtained from the voltage drop across R12. Capacitor C7, the bias filter capacitor, must be wired with its positive terminal grounded.
Locate the amplifier where output from the speakers cannot get back into the microphone to produce acoustical feedback-put it in the basement or, if you have no basement, in a utility room. Wherever you put the amplifier, make certain that it is out of reach of your youngsters. With the exception of the terminals on the motor of the musical movement, which ought to be insulated with electrical tape, all high voltages appear only on the under side of the chassis. A fuse has been included as a protection against overheating which might result from a shorted component.
Once it has been permanently installed, plug the amplifier into the power line and run a pair of wires from TS2 to a pushbutton near the front door. Run a second pair of wires from TS1 to the main speaker which may be a $4-\mathrm{in}$. or $5-\mathrm{in}$. unit with an impedance of 3.2 ohms. Mounted in a wooden baffle, this speaker can be placed at a convenient point in the most lived-in section of your
home.
Overall volume in any one part of the house need not be high, since additional speakers can be placed in those areas where the sound of the main speaker does not penetrate adequately. These extra speakers can be wired in parallel with the main speaker as shown in Fig. 2. Since the desired volume level at remote locations will normally be less than that of the main speaker, intercom replacement units with $45-\mathrm{ohm}$ voice coils will work effectively in these spots. Each intercom speaker will give adequate acoustical output to cover a room or two, but because of the relatively high impedances involved, even when several are connected in parallel, they will not seriously shunt the $3.2-\mathrm{ohm}$ main speaker.

The electronically amplified music box, as a replacement for an ordinary door bell or chime has a number of important features, in addition to its basic one of providing pleasant music. Unlike the ordinary bell or solenoidoperated chime, it plays for a period of 20 seconds, whether or not the pushbutton is held down. The sound of a doorbell is usually of rather short duration and is often masked by noises around the house. On the other hand, the continued output from the music box tends to get through such distractions as children's voices, loud hi-fi's, clacking typewriters, and pounding hammers.


## Door Bell Silencer

HERE'S a simple way of silencing that door bell so that it won't wake babies taking afternoon naps.

Obtain a small twist switch with threaded shaft and nut for mounting from your hardware store. Remove the cover or housing from your door bell and drill a hole through it large enough to pass the threaded shaft on the switch (Fig. 2). Make sure the switch parts inside the housing won't interfere with the bell mechanism.
Remove the wire coming from the bell

transformer from its terminal and connect one of the pigtail wires on the switch to the transformer terminal. Then connect the transformer wire to the other pigtail wire on the switch by twisting them together and taping.
You don't have to turn off the house current for this job-house bell circuits carry only 6 volts.
Replace bell housing, and have someone press door bell button so you will know if the switch is in the "on" or "off" position.

## SHORTY:

the Compact 3-Band Anfenna

By JOE A. ROLF, K5JOK



LIMITED in antenna space? Here is an inexpensive three-band system that will fit the average backyard and is ideal for the novice amateur operator since it's designed for 80,40 , and 15 meters.

The system is constructed with $300-\mathrm{ohm}$ television twin lead and consists of a 40- and

80 -meter dipole with the same feed line at the center. The entire system is "shrunk" to 100 ft . by bending the 80 -meter section back 12 ft . at each end. There is no noticeable sacrifice in performance.

Ccnstruct the antenna to the dimensions of Fig. 2, using a grade of TV twin lead such as Belden 8230 that is strong enough to stand the stress. Start by cutting two $50-\mathrm{ft}$. lengths of twin lead and attaching an egg insulator to one end of each piece. Tie the other ends to a single insulator to form the center feed point as in Fig. 1.

From each outer end, measure back 12 ft . toward the center, then remove a $5-\mathrm{ft}$. section of conductor from one side of the twin lead. Attach the feed line and the system is ready to go on the air.

Either 72 -ohm coax or twin lead may be used for feeding the system. A 72 -ohm twin lead reduces the weight which the antenna must support and keeps the system electrically balanced. There's an advantage to coax, however, in that it reduces feed line radiation and will prove easiest to connect to most transmitters. If neither is available, a good grade of plastic lamp cord can be used.

You should obtain adequate results with this antenna system of 80,40 , and 15 , and it will also work fairly well on 20 and 10 meters. But for the best overall performance, use an antenna tuner, if available.

Patch Up Test Clips


- When small, bare uninsulated test clips are used on 'hot' wires connected to live circuits, insulate the clips with rubber-tire patching. When ordinary clip insulators aren't available, tire-patching covers come in mighty handy. Simply sandwich the clip between two of the patches and bring the outer edges together and squeeze. The adhesive on the patching is sufficient so you won't need to use rubber cement.-J. A. C.


## Rubber-Mount Treble Speaker

- Rubber suction cups are ideal shockmounts for treble loudspeakers. They make good mechanical mounts and acoustically isolate the speaker frame from cabinet panels
which tend to accentuate the bass frequencies. Attach the cups to the speaker frame with screws (get the kind of cups having threaded inserts or screws) and to the cabinet panel with rubber or service cement.-Joнn A. Ссмstock.


## Easy Color Coding



- Perhaps the easiest way to color-code test clips used for marking circuit wires or parts to aid servicing is to attach a colored dressmaker s pin to each clip. The colored head of the pin sticks out like a sore thumb against wiring. What's more the pins are inexpensive and available in dozens of colors.-J. A. C.


S\&M Boat Designer Bill Jackson demonstrates search method. A $26-\mathrm{in}$. loop is wired into a $100-\mathrm{ft}$. cable made of lamp cordl. When the coil approaches the metal object, a change in tone is heard.

# Underwater Mełal Locator Pinpoints Submerged Treasure 



This small coil locates pipes buried in walls, floors, and concrete and can also be used to search for buried metal objects.

By JAMES E. PUGH JR.

## Craft Print Project No. 341

WHETHER you are searching for a lost outboard motor or sunken loot, this easy-to-build underwater metal locator can make an otherwise impossible job both productive and interesting.

Just drop your search coil overboard, make a few easy tuning adjustments, then start searching. As the submerged coil nears a metal object, a tone is heard in the earphones. Since the detector responds to both ferrous and non-ferrous metals it is possible to locate nearly any metal object at the bottom of bays, rivers, lakes, and streams.

A low-frequency inductance bridge circuit minimizes the effect of water and cable length on sensitivity. This makes it possible to use an inexpensive unshielded cable, a $100-\mathrm{ft}$. length of rubber covered lamp cord between control box and search coil. If your treasure lies in deeper water this cable can be lengthened to 500 or 600 ft . with only a minor circuit adjustment. Similarly, it can be shortened to as
little as desired if you plan to work in shallow water or on dry land.

Besides the many possible underwater applications, this metal detector with a smaller coil can be used by landlubbers for finding buried pipes and tanks, shell fragments in old battlefields, ore deposits near the surface of the ground, and metal in lumber, logs, and livestock feed.

Transistorized circuitry is used for minimum weight, maximum battery life, and greatest resistance to mechanical shock. The inexpensive penlight size cells, easy to obtain, last about 100 hours in the oscillator and 200 hours in the amplifier section.
Detection range depends on size of the object, skill of the operator, and type of metal. Iron, steel, lead, and aluminum can be detected at a greater range than brass and copper. A small camera can be found at about 1 foot from the coil and a large outboard motor at about 4 feet. Maximum range is about 5 feet.

Drill the Case as shown in Fig. 3. Holes are the same on the front and back, for mounting of controls and jacks. Wire the battery clips in series, and solder each lug to its eyelet to avoid a possible source of trouble later. Bend each end of the battery clips inward to obtain a firm connection with each battery as a high resistance contact can cause noisy and erratic operation. Put a dab of red paint near the positive terminal of each clip and fasten the battery holders in the case. Mount the other parts in the case and wire the negative battery terminals to the two switch sections.
Start construction of the two plastic chassis (Figs. 5 \& 6) by drilling all holes and mounting the terminal lugs. Mark C, B, E, +, and - near the transistor and battery connections. Identify the lugs on both sides to help avoid wiring errors and to make circuit tracing easy. Position the larger parts and wire. Solder resistors, capacitors, and interconnecting wires next and the $1 \%$ resistors


## MATERIALS LIST-ELECTRONIC METAL LOCATOR

Size and Description
2N217 PNP transistor, RCA (Newark 21F7004)
2N647 NPN transistor, RCA (Newark 21FX7105)
2N270 PNP transistor, RCA (Newark 21F7010)
2N649 NPN transistor, RCA (Newark 21 FX7106)
2N408 PNP transistor, RCA (Newark 21F7019)
20,000 to 1000 omm transistor transformer, Argonne AR. 104 (Lafayette AR-104)
500 et to 500 ohm et transistor transformer, Argonne AR-162 (Lafayette AR-162)
5.4 Hy variable inductor, UTC VIC-15 (Newark 3F414)
search coil (info. for 3 sizes of search coils in Sept. 62 S\&M))

. 1 MF, 100-r., ElMenco 1DP-2-104 (Newark 14F1017)
. 01 MF, 100-v. ElMenco 1DP-1-103 (Newary 14F1004)
1400 to 3055 MMF mica paddler, ElMenco 315 (Newark 14F817)
.0075MF, 100-\%., ElMenco 1DP.1.752 (Newark 14F1003)
$.05 \mathrm{MF}, 100-\mathrm{Y}$., ' El Menco 1DP-2-503 (Newark 14F1013)
$1.2 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon (Lafayette RS-10)
$2.7 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon (Lafayette RS-10)
2K potentiometer, linear taper, Mallory U.6 (Lafayette VC.419)
$5 \quad 2 \mathrm{~K}$ potentiometer, linear taper, Mallory U-6 (Lafa
$2.2 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon resistor (Lafayette RS-10)
$3.9 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon resistor (Lafayette RS-10)
$20,23,26.82 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon resistor (Lafayette RS-10)
$56 \mathrm{ohm}, 1 / 2 \mathrm{w} .10 \%$ carbon resistor (Lafayette RS-10)
$18 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon resistor (Lafayette RS-10)
$3.3 \mathrm{~K}, 1 / 2 \mathrm{w}, 10 \%$ carbon resistor (Lafayette FS-10)
$330 \mathrm{ohm}, 1 / 2 \mathrm{w}, 100_{3}$ carhon resistor (Lafayette RS.10)
330 ohm, $1 / 2 \mathrm{w}, 10 \%$ carhon resistor (Lafayette RS-10)
500 ohm, $1 / 2 \mathrm{w}, 1 \%$ deposited carbon. Aerovox CPI $1 / 2$ (Lafayette CP-1/2)
about 1.5 megohm, $1 / 2 \mathrm{w}, 10 \%$ carbon (see text) (Lafayette RS-10)
$91 \mathrm{~K} .1 / 2 \mathrm{w}, 1 \%$ deposited car bon, Aerovox CP1/2 (Lafayette CP.1/2)
$11 \mathrm{~K}, 1 / 2 \mathrm{w}, 1 \%$ deposited carbon, Aerovox CPI,2 (Lafayette CP-1/2)
20K potentiometer, linear taper, IRC Q 11.119 (Lafayette VC.940)
250 ohm , potentiometer, linear taper, IRC Q 11 -201 (Lafayette VC-961)
21, 24, $25 \quad 4.7 K, 1 / 2 \cdot w, 10 \%$ carbon (Lafayette RS-10)
R22 $21,24,5 \mathrm{~K}$ potentiometer, audio taper, Mallory U-12 (Lafayette VC.423)
S1, 2 DPST switch, mounted on R22, Mallory US-27 (Lafayette VC-524)
B1. 2
6 - $\gamma$ batteries $) 8$ - $11 / 2$-volt Burgess 930 cells) (Lafayette BA-174)
battery holders for 4 type $Z$ cells (Lafayette MS-182)
$6 \times 5 \times 4^{\prime \prime}$ gray hammertone aluminum box, Buj AUl029hG (Newark 91F718)
rubber headphone cushions (Lafayette MS-34)
$1 / 4^{\prime \prime}$ dia. $x 3 / 4^{\prime \prime}$ threaded bushings, 6.32 thread (Vewark 31 F973)
$11 / 2^{n}$ skirted knobs. Davies 4104 (Newark 26F021)
$5 / 8 /$ dia. rubber feet (Lafayette P-252)
shoulder strap and mounting hardware (at camerz store)
$31 / 2 \times 33 / 4 \times 1 / 22^{\prime \prime}$ Bakelite sheet
Turret terminal luos. USECO 1350C for $1 / 32^{\prime \prime}$ chassis (Radio Shack 16J432)
female receptacle. Amphenol 61-MIP-61F (Newark 39F116)
phone jack, Switchcraft 11 (Newark 39F782)
male plug, rubber coveted (Newark 36F864)
phone plug, Switchcraft 220 (Newark 39F768)
5000 ohm magnetic headphones. Cannon AM-15-5 (Lafayette ME-32)
Note: Standard 2 K phones will also work
Misc. wire screws, nuts, washers, solder lugs, paskets, rosin core solder

and transistors last. Hold these smaller parts with long nosed pliers to avoid damage from heat, being especially careful with the transistor and the $1 \%$ resistors.

Solder the wires connecting these two chassis to the jacks, batteries, switches, and controls to the chassis leaving adequate length to connect to the desired points. Trim and tin the ends, then when the chassis are mounted in place they can be soldered to the various parts in the case without risking damage to the small parts.

After all chassis wiring is completed, but
before mounting in the case, clean the rosin off with alcohol. Then spray thoroughly with CRC 2-26 waterproofing solution. Allow excess to drip off and carefully wipe with a clean, dry cloth. Be careful that you don't wipe the color code off the resistors. Spray the various controls (protect openings with tape) wipe off the excess, and then mount the chassis in the case and solder all interconnecting wires. Remove the headphone covers and diaphragms and spray the inside and cords. Wipe dry and reassemble.

Make gaskets for both control box covers

from rubber electrical tape or a thick gasket material. Fasten to the covers, and if you use the rubber tape, apply talcum powder to the upper surface to prevent its sticking to the case.

Principle of Operation. Transistor V1 (Fig. 4) is a stable, low distortion audıo oscillator operating at approximately 1000 cps . Transformer T1 provides feedback as well as coupling from V1 to V2. R3 controls the oscillator feedback, thus the signal level and purity.

A voltage divider consisting of R5 and R6 reduces the input to V2 to a suitable level so as to help keep the waveform free from dis-
stability during temperature change at the least cost.

When the bridge is balanced, the signal transferred through it from the oscillator to the amplifier is minimum. When the search coil is brought near a metal object its inductance changes. This unbalances the bridge and permits some of the signal available across the secondary of T3 to be transferred to the amplifier where its level is increased and fed to the headphones. Therefore, as metal is approached a 1000 -cycle note will be heard in the headphones-the closer and larger the metal the louder the signal will be.

tortion. Transistor V2 amplifies the signal and isolates the oscillator from the output stage. This isolation improves oscillator stability since it prevents any change in the bridge circuit from reflecting back to the oscillator.

The output stage increases the voltage level to the bridge circuit for maximum detection sensitivity at the lowest harmonic distortion.

The bridge is a conventional Maxwell inductance bridge with the search coil L1 used as its inductive arm. Balance is obtained by comparing C5, C6, R14, R15, and R17 with L1. C6 is a trimmer capacitor used to compensate for manufacturer's variation in C5. It makes it possible to balance R18 at any convenient point of its range. Deposited carbon resistors at R13, R15, and R16 give maximum bridge

An adjustable filter consisting of C9 and L2 is tuned to 1000 cycles. It helps to increase the sensitivity by reducing the harmonics of the 1000 cycle note, thus makes small changes in the signal level more easily noticed. It also helps reduce 60 -cycle pickup when operating the search loop near ac lines.
Capacitors C4 and C11 resonate with T3 and the headphones, respectively, to further improve the sensitivity by increasing the signal to harmonic ratio.
Separate batteries are used for the oscillator and amplifier sections to avoid coupling the signal from oscillator to amplifier through any circuit external to the bridge. This gives a better null when the bridge is balanced and maintains optimum sensitivity.

Now we shall describe the construction and use of three search coils that operate with the electronic detecting circuit. The largest coil (Fig. 7A) is designed for underwater use, while the 7 -in. coil is intended for use on land in finding buried pipes and cables. The small, $23 / 4-\mathrm{in}$. coil will locate nails and even large tacks buried under plaster, or in auto tires.
Let's Start with the $171 / 2 \times 261 / 2-\mathrm{in}$. oval search coil. Steam and bend the wood loop to shape (Fig. 8). Butt the ends together
a small rod through its hub so it will unwind easily without kinking. The rod can be held in a vise or with a cardboard box to keep it from shifting.

Pull about 1 ft . of the wire through one of the $1 / 116-\mathrm{in}$. holes in the frame and anchor by looping around the edge of the frame and back through the hole. Tape this end of the wire down to the inner face of the coil frame to keep it out of the way until the coil is wound.

Wind one turn about $1 / 8 \mathrm{in}$. from the edge


Working from a boat or dock the large loop finds lost outboard motors, cameras and even keys. A small loop wound on a plastic tumbler detects nails and pipes in the wall.
and glue the $5-\mathrm{in}$. strip of wood on the inner surface of the frame. Clamp tightly to dry. When dry, sand and drill a $1 / 16$-in. hole about
 5 -in. joint is fastened.

If you prefer an easier way, the inner hoop from an $18 \times 27-\mathrm{in}$. quilting frame (available at Sears, Roebuck) can be used instead. Trim the wood brace on the inner surface down to $1 / 4 \mathrm{in}$., drill the $1 / 18$-in. holes, and it's ready.

Winding the Coil. Find a clean, comfortable place to work, perhaps over a rug or heavy canvas to avoid scraping the insulation off the wire. Arrange the spool of wire with
of the frame and tape in place at 5 -in. intervals. With the frame supported across the knees, rotate the frame with one hand and lay the wire on with the other hand. Press the wire in place with the thumb of the hand rotating the frame. Wind 10 turns and place strips of masking tape across these turns at 10 -in. intervals. Every 10 to 15 turns, temporarily fasten the winding end down with masking tape and move these strips over to prevent wires from slipping off. Halfway through, and at the end of each layer, check that all wires are pressed together firmly, but do not push the outer turns off the frame.

Put 50 turns on the first layer. After adjusting the winding evenly on the frame, tape it down firmly with masking tape at 5 -in. intervals. Remove the temporary strips of tape and save them for the next layer.

Start the First Turn of the second layer in slightly from the last turn of the first layer and tape. Wind 47 turns for the second layer, keeping it taped down as you go as with the first layer. Tape firmly in place at $5-\mathrm{in}$. intervals between the strips holding the first layer.
Repeat this procedure for a third layer of 44, a fourth of 41 , and a fifth of 38 turns. The five layers total 220 turns. Loop the end of the last turn through the second $1 / 16-\mathrm{in}$. hole, tape the entire wind-ing-down firmly, and the winding is done.

Next, assemble the search coil terminal strip up to the first nut (Fig. 8A). Tighten these nuts securely and tape this section of the terminal strip to the coil frame. Cut the coil wires, leaving 3 to 4 in . of slack, and carefully solder to the lugs. Fasten securely to the terminal strip with the second lock washer and nut, and tape the wires down, making sure there are no sharp bends or kinks.

Fiber Glass Tape and Resin coating waterproofs the coil. Add white coloring to the resin to make the coil visible in the water and to help avoid the chance of damaging it when not in use.

Follow the manufacturer's mixing instructions exactly. Work in a clean, warm, dry place $\left(75-80^{\circ}\right)$, but not in the sun. After mixing the activator with the resin, you will have to work fast, because the mix jells in 30 minutes. Until then, the resin is fluid and easy to work, but as it starts to set it stiffens rapidly.
Roll the fiber glass tape into a small roll for easy handling. Keep hands away from the eyes, and keep children away. Fiber glass is safe and easy to use if you are careful, but

the tiny glass particles can irritate eyes and skin.

Open the resin and pour into a pint jar that can be sealed. With everything ready, pour 4 oz . of the resin into a small can, mix in about 1 teaspoonful of the white coloring, add the exact amount of activator, and stir thoroughly.

Using a 1-in. Paint Brush, generously coat the area around the wood brace and terminal strip, and about 1 ft . beyond with resin. Hook the fiber glass tape end over the terminal strips as an anchor and spiral-wind the tape to the end of the resin-coated section. Wrap snugly and overlap the windings about 2 in. Coat another 10 in . of the coil and frame with resin and wind on more tape to cover. Repeat until the entire coil has been covered. Overlap the start of the winding with one or two turns and tie the end down with a long strand of fiber glass taken from one edge of the tape.


Seven inch coil detects pipes in walls, beams in concrete and small matal objects such os keys, and watches. Assembly steps ore as follows:

1. Make $7^{\prime \prime}$ O.D., $61 / 4^{\prime \prime}$ I.D. $x 11 / 2^{\prime \prime}$ cylindrical coil form by iig sawing out of solid wood, or of glued up sheefs of plywood.
2. Drill holes for terminal strip as for large coil.
3. Install $1 / 2 \times 61 / 4^{\prime \prime}$ wood handle.
4. Wind $1 / 2 \mathrm{lb}$. \#28 Nyciad wire, 473 turns total, some way as lorge coil. Only first turn each loyer.
5. Check balance with bridge circuit at least 3 feet from any metal object.
6. Ta use with other coils, add about 10 turns and trim for balance of same control settings.

Now press the tape down around the terminals so that none is on or above the top surface of the $8-32$ nuts. Clip off all loose threads from the tape edges and apply a heavy coat of resin to the entire surface of the tape. Work it in thoroughly with the brush, making sure all holes and seams are filled. If there are any large holes, fill with small threads of fiber glass mixed with resin. Wipe the threads of the 8-32 screws and the upper face of the nuts with a wet cloth to remove excess resin. Hang the coil in a warm dry place, and wash tools and hands with hot water and soap.

The Resin Will Harden in 24 hours. File all rough spots and connect the cable and strain relief plate. Now mix about 2 oz . of resin with the required amount of activator and stir in about $1 / 2$ teaspoonful of white coloring for the second coat. Dry 24 hours and apply a third coat consisting of 1 oz . of resin, the specified amount of activator, and $1 / 2$ teaspoonful of color.

Use a small amount of the resin to fill in all slots in the corners of the aluminum case for waterproofing. After drying, file smooth and cover with grey paint.

Fasten the Completed Search Coil to the lamp cord cable with four $15-\mathrm{in}$. supporting cords (Fig. 8B), allowing slack to avoid strain

## MATERIALS LIST METAL LOCATER COILS

 LARGE COILSize and Description
$1 / 4 \times 11 / 8 \times 70^{\prime \prime}$ wood strip or $18 \times 27^{\prime \prime}$ wood quilting hoop (Sears Roebuck Cat. No. 25K5510)
$1 / 4 \times 11 / 8 \times 5^{\prime \prime}$ wood strip
Bakelite, $1 / 16 \times 11 / 8 \times 2^{m}$
Bakelite, $3 / 4 \times 3^{\prime \prime}$
Fiberglass tape kit (Sears Roebuck Cat. No. 6K5787)
White resin color (Sears Roebuck Cat. No. 6K5764)
Wire footage markers, 1-33; 34-66; 67-99. (Newark \#30F200. \#30F201 and \#30F202)
\#26 Nyclad magnet wire, Belden HNC 8079 (1260 ft.) Allied \#48T092
\# 18 lamp cord, Consolidated type POSJ (Allied \#48T760)
16.0z. can CRC-2.26 (Northern Mining Equipment Co., Box 836. Hibbing, Minn.) For waterproofing headphones and control box.

7-IN. COIL
circular wooden or plastic coil form approx. $7^{\prime \prime}$ O.D., $61 / 4^{\prime \prime} 1.0 ., \times 11 / 2^{\prime \prime}$
$1 / 2 \times 61 / 4^{\prime \prime}$ wood dowel to fit above as handle.
\#28 Nyclad magnet wire. Belden type HNC, 995', (Allied Radio \#48 T0 43)
Rubber covered lamp cord
Bakelite strip, $5 / 8 \times 11 / 2^{\prime \prime}$
Bakelite strip $7 / 8 \times 17 / \mathbf{8}^{\prime \prime}$
$6.32 \times 3 / 4^{\prime \prime}$ fh machine screws, nuts and washers for terminals
Masking tape, plastic electrical tape, wood screws, appliance plug.

## SMALL COIL

8 oz. plastic tumbler, $2^{1 / 1 / 32^{\prime \prime}}$ at top, $2^{11 / 32^{\prime \prime}} 0 . \mathrm{D}$. at base. Konite \#209. Plastics Manufacturing Co., 2700 S. Westmoreland. Dallas 33. Tex. Avalable

$$
\begin{aligned}
& \text { restaurant supply houses. } \\
& \text { Ennt }
\end{aligned}
$$

\#29 Formvar Magnet Wire (Allied Radio \#48T144) male appliance plug, lamp cord for cable, plastic electrical tape
on the terminal strip. Apply markers to the cable every foot for measuring depth. The reel on which the cord is supplied can be used in the boat, provided you add a grommet to a hole near the hub and feed about 4 ft . of the inner end of the cable through.

Operating Adjustments. With the search coil and headphones connected, set R3 for minimum output. Then balance the bridge for least signal. This balance adjustment is a step-by-step process. Alternately adjust the two balance controls for minimum output until the 1000 -cycle note can not be heard. Practice until you can balance in five steps or less.

Then adjust R3 slowly until you hear a distinct high-pitched note. This is a harmonic of the 1000 -cycle note. Back R3 down until this note is barely noticeable. When you are approaching balance, the harmonic becomes predominant; when balance is reached, the 1000 -cycle note will not be heard-only the harmonic will come through. Control R3 should now be near its mid-point.

If you have an oscilloscope, check for a 5 -volt peak-to-peak signal across the bridge input. Then unbalance the bridge by rotating one of the balance controls off toward one end. The core of L2 is now adjusted for maximum output.

With the search coil in water and no metal nearby, adjust C 6 until the balance point on R18 falls near the center of rotation. Also
check that the second balance control (R17) is near center. When the search coil is removed from the water, the balance controls will need to be readjusted, but the balance points should not be too near one end of their rotation. If R17 is too far off, trim by changing the value of R14. Normally this resistor will be near $11 / 2$ megohms. If you plan to use the metal locator on dry land, balance adjustments must be made with the coil in air and no metal nearby.

Check the adjustments again, then lock L2 adjustment screw with a dab of cement.

Operation in Water. For best results with any metal locator, it is necessary to practice adjustment and search procedure. Improper use can cut your range in half.

This metal locator was designed to be used in boats. Or a diver can manipulate the search coil; while a helper operates the control box above. The large oval loop produces a field that combines the advantages of larger and smaller diameter loops. It will detect objects ranging from a camera to an outboard motor and-at close range-coins and keys. If there are strong water currents, tie small bags of sand to the loop frame for additional weight.

With the control box on a shoulder strap, one hand is free to manipulate the search coil while the other adjusts the controls. Lower the coil into the water, and while well away from all metal objects, adjust the two balance controls for minimum earphone signal. Then set your sensitivity control so the harmonic and amplifier noise are clearly but not loudly heard. If the sound is too loud, your car will not readily detect the 1000 -cycle note when you approach metal.

Lower the search coil to the bottom, then raise it slightly, the distance depending on the size of the lost object. For example, if you are seeking a small camera, the search coil should be about 1 ft . from bottom. For outboard motors, about 3 ft . would be right. As you search, frequently drop the coil until it hits bottom, taking note of your cable depth markers, since there may be deep drop-offs on the bottom.

If there is a considerable difference between air and water temperature, you will have to readjust your balance controls (mostly R17) during the first few minutes, because temperature changes affect the search coil resistance. When the coil stabilizes at water temperature, only an occasional re-balance will be needed.

As soon as you suddenly hear the 1000 cycle note, it is likely the search coil is near metal. Move the coil back and forth over that spot to get an idea of how large the object is, and where the signal is maximum. Raise the coil, and mark the find with an anchor and marker float to guide diving or grappling. Many small ferrous objects can be pulled up


Small coil locates nails and tacks in walls and tires. A $1 / 4^{\prime \prime}$ brad can be defected af 2 inches.

1. Wind coil on $8-a z$ plastic tumblar availoble of hardwore stores. Diameter is approx. 2 19/32".
2. Drill lateral holes through tumbler and feed stiff wires through as guides for winding.
3. Wind about 950 turns \# 29 Formvar Magnef wire, and frim for balance setting to motch other coils.
4. Cover with plastic electrical tape.
with high powered magnets.
The detector will also indicate the kind of metal. Small ferrous objects will cause the bridge to unbalance in one direction, while non-ferrous objects will cause an opposite unbalance. A difficulty arises because objects the size of the coil and larger cause just the opposite effect. By first estimating size of the object, you can judge the type of metal.

After locating a metal object, readjust R17 for an approximate null. Then adjust R18 for null, noting which way it has to be rotated from its original setting. It is labeled to show the direction of rotation for small items; for large objects, this indication will be reversed.

> Craft Print No. 341 in enlarged size for building the underwater metal locator is available at $\$ 3$. Order by print number. To avoid possible loss of coin or currency in the mail. we suggest you remit by check or money order (no CoDs or stamps) to Craft Print Div. Scrence and Mecurants, SOS Park Ave., New York 22 , N. Y. Please allow three to four weeks for delivery. Special quantity discount! If you order two or more craft prints (this or any other print). you may deduct $25 t$ from the regular price of each print.

## Shield Simplifies Soldering

Soldering in crowded wiring of a circuit is simplified if the upper portion of a waxed milk carton is used as
 a shield. This helps avoid touching adjacent parts with the hot soldering iron or gun tip, helps you concentrate on tie work, and often catches excess drops of solder.-JOHN A. Сомsтоск.

# Trouble-Shooting Interference 



How to discover the source and eliminate noise in a radio or amplifier

By FORREST H. FRANTZ, Sr.

PUT a new LP on the phono and slump into the easy chair. The music is fine, but what's that d-_hum? The disturbing sizzle of a TV, the gasping of a hoarse, distorted radio or TV and the whine of a humming radio are other manifestations of interference. Fortunately, most of these troubles are easily recognized and fixed.

We usually differentiate interference as either hum, buzz, squeal, noise, distortion or station interference. Sometimes these are due to faults in the gear, sometimes to external sources. Frequent internal causes are: open, shorted or leaky capacitors, intermittent connections, intermittent short circuits, defective tubes and dampness. The antenna-ground system is also a frequent trouble spot. Externally caused disturbance is often traced to switches, thermostats, advertising signs, motors, radio stations and high voltage lines.
Let us look, first, at hi-fi audio amplifiers, remembering that this discussion is applicable also to the AF section of radios. Then we will cover radios specifically.


Hum introduced in first stage is amplified more than hum introduced in subsequent stages.

Audio Amplifers. Amplifiers may exhibit interference in the form of hum, buzz, squeal, noise or distortion.

Hum in an amplifier is usually caused by insufficient shielding of the amplifier input circuit. The various stages of an amplifier have individual gains, which multiply as shown in Figure 1. The first stage usually has the highest gain. Thus, the gain from the first stage to the loudspeaker is much greater than the gain from any succeeding stage to the loudspeaker. If even a small portion of an amplifier input lead is unshielded, it acts as a capacitor to the ac line though it may be many feet away. A small amount of alternat-
ing current can therefore feed into the amplifier. The high gain of the amplifier multiplies this minute voltage into a sizeable signal at the loudspeaker.
Hum due to poor input shielding is easily recognized, since the loudness of the hum will decrease as the volume control setting is decreased. There are several steps to pinpointing and curing this. First, dress the input lead close to the chassis. The input lead can be traced from the input connector and usually goes to the high volume control terminal (possibly through a capacitor) as shown in Figure 2. The center terminal of the volume control goes to the grid of the input tube (possibly through a capacitor). In some amplifiers, a preamp stage precedes the volume control. If the input tube is glass, a shield may cure hum. Next, check the shell to chassis ground connection of the input connector. Then check the connection from the external input plug to the braided shield which encircles the unit's input lead (Figure 3). An open can cause hum.

Sometimes, in cheap construction, unshielded leads are used, and should be replaced. An open circuit from shield to ground or at the chassis connector results in loss of gain because the shield is frequently the chassis ground return conductor. Finally, check the ground connection at the remote input device and look for short lengths of


Leads likely to pick up hum. Remedy is to substitute shielded cable, dressed close to chassis.

3. A broken shield or disconnection from plug ground or a faulty or open input jack can cause hum pickup. 4. Filter capacitor (C1), which if open, causes hum in amplifier power supply. Leaky power supply output filter capacitor (C2) will cause hum or squeal.
input lead which may be unshielded.
Hum which occurs at all volume settings is often due to defective filter capacitors in the amplifier power supply, as shown in Figure 4. (The rectifier tube is connected to the power transformer and the high voltage electrolytic capacitors.) To test the filtering, bridge a 10 mfd . electrolytic (watch the polarity) across C 1 . The voltage rating should be equal to or greater than that of C1. If hum decreases, you're on the right track. Disconnect C1, and connect a replacement capacitor of the same or greater voltage and the same capacity in the circuit. If the hum is substantially reduced, replace C1 permanently. Otherwise, connect the original Cl back into the circuit, and bolster the filtering action with the 10 mfd . capacitor that scored the original improvement. If this isn't enough, try a 40 mfd . capacitor of adequate voltage rating across C2.

Caution! Don't work on an amplifier that has been used in the last few minutes-wait until capacitors discharge.

If you still haven't cured the hum, check for cathode to heater leakage in tubes, poor connections to chassis ground within the amplifier, and open or partially open capacitors elsewhere in the circuit (can usually be found by bridging with another capacitor).

Squeal in amplifiers may be due to open filter or bypass capacitors, which can be traced by employing the capacitor bridging technique described previously. Another cause of squeal is feedback caused by a high level signal lead being too close to an early amplifier stage lead-shorten the lead and dress it close to the chassis.

Noise may be due to a bad volume control, a microphonic, shorted or intermittent tube (which can often be located by tapping with a pencil eraser) or a rubbing loudspeaker voice coil (most readily checked by substitution of another speaker). Noise can also be caused by an intermittent capacitor (thump and jiggle the suspect), by poor connections which may be loose or intermittently shorted,
by irtermittently shorting output or interstage transformer windings or by arcs across rectifier or output tube sockets (usually indicated by a charred section of tube socket or a visible arc during operation).
Distortion in amplifiers is usually caused by leaky coupling capacitors (C4 in Figure 5). Coupling capacitors may be checked by substitution, but this requires disconnecting one end of the original capacitor. Other sources


Plate bypass capacitors (C3 and C5) or coupling capacitor (C4) if leaky con cause distortion.
of distortion are leaky power supply output filter capacitors (C2 in Figure 4) and leaky bypass capacitors. Plate bypass capacitors (C3 and C5 in Figure 5) are likely offenders. In each of these cases, one end of the original capacitor must be disconnected before substitution of a similar capacitor is attempted. Another frequent cause of distortion in amplifiers is a gassy tube. Output tubes are the usual offenders.
Rodios. Radios are subject to all the amplifier disturbances described, and the same solutions apply. In addition to amplifier troubles there are other possibilities.
Hum caused by some strong local radio station can usually be cured by connecting a 0.05 mfd ., 600 v . capacitor from one side of the ac line to chassis grourd as shown in Figure 6A. If the set is ac-dc (no power transformer), the capacitor should be connected from the set side of the switch to the opposite side of the line as shown in Figure 6B.

Buzzing is due to external sources such as neon signs, motors, or high voltage lines.

Squeals may be caused by any of the things already discussed under audio amplifiers or may be due to open bypass capacitors, long unshielded RF or IF leads or other causes. Long leads on IF transformers are frequent causes of squealing.

Noise may be due to internal or external trouble. If the set uses an external antenna,


Suppressing a strong local station by connecting . 05 mfd capacitor from one side of line to chassis ground for ac radio (a) and from set side of the switch to opposite side of line for AC-DC radio (b).


Suppressing an unwanted station with a wave trap, a funed circuit ocross the antenna ground terminals (a) or in series with the antenna terminal (b).
disconnect it, and short the antenna terminal to ground. If the noise persists, it's in the receiver. Arc in the power supply, intermittent connections almost anywhere in the set or defective tubes are possibilities. Next, check the antenna by disconnecting it and connecting 20 ft . of wire to the antenna terminal. Noise in an antenna may be due to poor or corroded connections at the antenna, lightning arrestor, feed-in to the building, a break in the lead-in under the insulation or to the antenna or lead-in contacting metal such as the storm gutter.

Assuming noise to be external to the receiver, a capacitor connected as shown in Figure 6A or 6B may be helpful if your receiver doesn't already have one. If this doesn't help, try tracking down the external causes
which were mentioned early in this article. For example, if noise occurs around meal times, it may be an electric stove or other appliance. Or, say the noise occurs only in winter-could be the thermostat.

The type of noise your receiver picks up is also a clue to its origin. Switches, relays, thermostats and poor electrical connections cause intermittent noise. Motors and industrial and medical electronic equipment produce a buzz or whine in nearby radios. High voltage lines produce a hum or buzz with a super-imposed crackle in radios. High voltage line noise is continuous, and the crackling is worse in damp weather.

A battery receiver, that has automatic volume control (which you must disconnect for th is purpose) and a directional loop antenna, is helpful in tracking down noise.

When the source of noise is located, a commercial filter installed at the source of the noise will usually cure the trouble. These filters usually consist of capacitors or capacitors and inductors.

Distortion is usually due to AF section trouble. Refer to the previous discussion of distortion in connection with audio amplifiers.
An interfering radio station can be eliminated by a wave trap, a tuned circuit across the antenna-ground terminals (Figure 7A) or in series with the antenna terminal (Figure 7B) tuned to the frequency of the interfering station.


## Wireless Remote TV Sound

Easily constructed unit permits private listening

By W. F. GEPHART



With TV speaker silent, the sound is picked up remotely by an earphone-equipped transistor radio.

EVER wish the TV set had earphones when the kids were watching a Western, or when someone is trying to sleep in the next room? It can be done, but usually requires a long cord stretching across the room to the earphones or a small speaker. It also requires an earphone, or extra speaker, and limits the movement of the listener.

With this little transistorized oscillator, the main TV speaker can be cut off, and the sound picked up anywhere in the room with an ordinary radio. If a transistor radio is used, the earphone can be used for complete privacy or the speaker used for listening in a small area. Even with an ac-dc radio, the sound can be cut down so that it doesn't bother others.

The unit, similar to a wireless phono oscillator, is mounted on the back of the TV set, and is turned on by a switch accessible at the top of the back of the cabinet. This switch also connects the TV sound to the unit, and
cuts the TV speaker out.
The circuit (Fig. 4) consists of a transistor oscillator (TR1), operating in the broadcast band, which can be tuned to a blank spot on the radio dial. It also has an AF transistor modulator (TR2), and an optional power supply. It can be built for less than $\$ 10$ without the power supply, and for about $\$ 15$ with the power supply.
Through the use of an adapter for the TV audio tube, connections to the TV set can be made without modifying the TV set wiring. In some cases power from the TV set can be picked up for the unit, and in other cases, the standard 9 -volt transistor battery is used. Since only $5 m a$ is drawn by the unit, a battery will last from several months to a year, depending on usage.

Circuitry. There are two general types of circuitry used in TV audio output stages, as explained in Fig. 3. The unit will work with any of these circuits, but battery power must
be used if the TV set uses a circuit similar to 3 C , or if the cathode voltage in circuits 3 A or 3B is less than 13.5 volts. To determine the circuitry used and the cathode voltage, secure the adapter mentioned in the materials list, and solder the leads together.

Plug the adapter into the audio tube socket, and the audio tube into the adapter. (Typical audio tubes in TV sets are 5BQ5, 6AQ5, $6 \mathrm{BQ} 5,6 \mathrm{~V} 6$, etc. Usually the tube location guide pasted on the back or inside the set will tell which is the audio output tube).
With the set on, measure the voltage between the cathode pin on the adapter and the set chassis. If it is relatively low ( 25 volts or less), the circuitry is probably similar to Fig. 3A or 3B and a self-powered oscillator can be used. If the voltage is relatively high ( 90 volts or more), the circuitry is probably similar to Fig. 3C, and a battery supply must be used for the oscillator. Even if Fig. 3A or 3B circuitry is used, a battery supply must be used if the cathode voltage is less than 13.5 volts.
Construction. Most of the parts are mounted on a $2 \times 2-\mathrm{in}$. piece of Bakelite. The author used a surplus terminal board, but a similar mounting can be made as shown in Fig. 7. This board is wired first, and then mounted in the box with either a battery or power supply, as shown in Fig. 8.

Since this unit must work with various TV sets, some modifications may have to be made. The volume control (R1) can be eliminated in most cases, and in some cases it loads the oscillator enough to reduce the output depending on the size of the grid resistor in the TV set. Obviously, R4 is not needed



The audio tube is plugged into adapter from which cable leads to unit attached at top of TV cabinet.


This type is also found as half of a push-pull output circuit. Cathode voltages $\left(E_{k}\right)$ vary from about 7 to 172 volts, depending on tube and manufacturer. Cathode resistors ( $\mathrm{R}_{\mathrm{E}}$ ) vary from about 200 to 560 ohms, depending on fube and manufacturer.
This is essentially the same as type $A$, except that the volume cantral ( $R_{g}$ ) is in this stage. Cathode valtages ( $E_{\mathrm{k}}$ ) vary fram about 5 to 16.5 valts, depending on tube and manufacturer. Cathode resistars ( $R_{k}$ ) vary from about 82 to 680 ohms, depending on tube and manufacturer. Grid voltages ( $E_{5}$ ) run from 120 ta 135 valis (pasitive), depending on tube and manufacturer. Cathade valtages $\left(E_{k}\right)$ run from 135 ta 150 valis (positive), depending an tube and manufacturer. (These combinatians give a negative grid bias of about 15 volts.)
Typical Audio Output Tubes 5AQ5 6BQ5 12C5 6AQ5 6DG6 12CU5 6V6

Types of Oulput Circuits

when battery power is used.
A small loopstick is used for L1, but larger units give better range. The one shown was later replaced with a larger one, and C5 changed to a $280-\mathrm{mmf}$ trimmer. Small loopsticks, such as the Superex "Ferri-loopstick" (shown in the pictures), "Vari-Loopstick," and Miller \#2002 or \#2007 are compact and adjustable, but have limited range. Larger units, such as the Superex " 7 -in. Loopstick," and Miller \#705 and \#2000 take more room and will require an adjustable trimmer for C5, but will give greater range. These units will also permit the addition of a lergth of wire for an antenna without appreciably al-
tering the oscillator frequency. Where space is available, the larger units are recommended.

Adjustments. When the box is in place and connected, the only adjustment required is the frequency setting. Turn the TV set on, and set to a channel. When it has warmed up and the sound is good, switch to a vacant channel.

Place a small radio on the TV set, and turn the knob on the unit to the REMOTE position. Gradually tune the radio through the broadcast band until you hear a whistle. Tune the radio to the center of the whistle, and then switch the unit to LOCAL to verify


Interior view of unit showing power supply, cord, and adapter. When battery is used, it is placed where choke and copacitors are located. Close-up of terminal board showing resistort and capacitors.

that the whistle is from the unit, as indicated by the whistle stopping.
If the output seems weak, and appears above 1100 kc on the radio dial, retune for half the frequency shown. This is to make sure that you are not picking up the 2nd harmonic of the oscillator. If, with a weak signal, the radio is tuned below 1100 kc , raise the oscillator frequency by moving the slug farther out of the coil or loosening the trimmer condenser, and make the test to be sure you are tuned to the fundamental frequency.
Once the proper frequency is found, turn the unit to LOCAL, and turn the radio volume all the way up without moving the dial setting. Make sure there are no stations on the frequency that will interfere with operation. This test should be made at night when reception is best.
If the oscillator is not tuned to a blank spot on the dial, its frequency can be changed by adjusting the slug in the coil (L1) on small units, or adjusting the trimmer (C5) on large coils. Moving the slug farther in the coil (or closing the trimmer) decreases frequency, and the reverse increases it.

Once the oscillator has been set to a blank spot on the dial, turn the TV set to a channel, adjust the sound to the desired level, and turn

the unit on REMOTE. You should then pick up the TV sound on the radio, and can adjust the radio volume as desired. If, even at low radio volume and proper tuning, the sound is distorted, potentiometer R1 will have to be included, so that the sound input to the unit can be reduced.
You will find that, as you move the radio away from the TV set, the signal weakens. This can be minimized by attaching a 6- or 8 -ft. piece of wire to the loopstick antenna post. If a small loopstick is used, this will change the frequency, so the radio or oscillator will have to be retuned. With transistor radios, position of the radio will also have an effect on signal strength as you move away from the TV set.
By eliminating C 1 , and using a high-gain radio, this unit can sometimes be of help to those with impaired hearing. It is often necessary for them to turn the TV sound up to a point uncomfortable for others. In some cases (where C1 is omitted) the TV sound can be adjusted to a comfortable level for all, the unit turned on, and the hard-of-hearing person can listen on an earphone-equipped radio set to the desired volume. With C1 omitted, the TV speaker remains in operation, even with the unit set on REMOTE.

## HAM RADIO ANAGRAM

IF AMATEUR radio is your hobby, you will have loads of fun working this puzzle. Those in other branches of electronics will have almost as much fun trying to figure
out the lingo that isn't so familiar to them.
After you think you have all the correct answers, turn to page 158 for the solution.

## ACROSS:

1. Radio-frequency - Hect
2. 8 kc . is the second
......... ol 4 kc.
3. No
4. Same as \#2 down
5. Positive terminal of grid bias voltage source
6. Famed manufacturer of electronics gear (abbr.)
7. Changeable current (abbr.)
8. Positive grid of a vacuum tube (abbr.)
9. Wire tiedown point
10. The maximum input .... - permitted for operating a transmitter with a novice class license is 75 watts
11. Short for crystal
12. Voltage (abbr.)
13. Capacitance (abbr.)
14. Power output (abbr.)
15. Are you troubled by atmospherics?
16. Tube and associated components
17. Many beginners learn to send code with on
18. Current used
19. Federal radio communications regulating agency (abbr.)
20. Transmitter stage (abbr.)
21. You are QRMing
22. Not a regular wire circuit (abbr.)
23. Wife
24. Type of national defense (abbr.)
25. Abbreviction for \#51 down
26. Quadrature-phase subcarrier signal (abbr.)
27. Current that is not undecided which way to flow (abbr.)
28. Going out of the network
29. . . . hame should join the ABRL
30. Bunch of inter. connected relay stations
31. Letter symbol for power
32. The strength of your signal is .....
33. Intentional losa
34. Send your information "QNC"
35. Type of magnet (abbr.)
S9. - . . . directional antennas radiate equally well in all directions
36. Cathode resistor (abbr.)
37. Radiotelephone
38. Class of amateur radio license

## DOWN:

1. Wave reflection phenomenon from ionosphere
2. One thousand watt (abbr.)
3. Broken or open circuit connection (abbr.)
4. Volume compensating circuit (abbr.)
5. Antenna support
6. Not far away
7. Current in vacuum tube cathode circuit (abbr.)
8. What's your .... sign?
9. Switch (abbr.)
10. Deck awitch
11. Type of earthly radio wave
12. Oferator

13. Resistor voltage drop (abbr.)
14. Short for something that generates and -mits
15. Means network isn't busy
16. Major broadeasting network (abbr.)
17. Odor associated with electrical discharge in air
18. Short for says
19. Magnetically induced circulating current
20. K-King, L-Lewis, M-...
21. Could
22. Modulated continuous waves (abbr.)
23. Signal conceraing network communications
24. Circuit etched on wafer (abby.)
25. Series-tuned Colpitte oscillator
26. Stop transmitting
27. Not a distant oscillator (abbr.)
28. Ham's lair
29. Received
30. Type of transistor (abbr.)
31. Light source
32. Inert gas
33. It is a - - to say amateur operators aren't of great holp in time of $a$ national emergencv
S6. Shall I send a series of VVV ...........?
34. How many telegrams have you received?
35. Objective case of pronoun 1, or the one who wrote this puzzle!

# A Handy Home Appliance Tester 

## $\$ 6.50$ electronic box will check out electrical units up to 15 amps at 125 VAC

## By James robert squires

APPLIANCE testing can be as simple as you make it. The little unit shown in Fig. 1, simplicity itself, can be used as the basic tool for a lot of tests that locate many appliance faults.
Most modern appliances provide a product name plate giving either total current drawn by the unit or total power consumed in its normal operation. New appliances will draw current in the general range of the same plate value. Older appliances usually draw less current as the heating elements age. Older appliances that require longer heating times or in general do not do the job in the time allotted are wasting electricity. The location and repair of these faulty units will soon pay for the slight expense of making this tester.

It will cost approximately $\$ 6.50$ to build this unit. With it you can test all electrical appliances up to 15 amps at 125 vac with safety. As you know, these little boxes can attract all kinds of little gimmicks such as test points, and extra switches, in a hurry. Since these add to cost and construction time, they were not included.
Construction of the appliance tester is straightforward (Fig. 2) and it can be done in a few evenings. Close the aluminum minibox and fold a piece of white paper tightly over the flanged cover. Anchor the paper with cellulose tape. Also allow the paper to cover one end of the box. Now draw a center line on the paper as shown in Fig. 3, then locate the five cross points on the paper as indicated.
The SPDT switch requires a ${ }^{15 / 32}$-in. hole, the neon light grommet one of $5 /{ }_{18}-\mathrm{in}$. diameter. The 2 -in. circular opening for the $0-15$ ammeter is best cut with a chassis punch. Other useful ways to cut the hole are satisfactory, providing they leave a clean hole and

[^8]

Just plug your appliance into the tester. An 8-ampere reading on the dial indicates normal operation of the iron, but on intermittent movement of the needle would indicate a faulty contact in the cord connector.
do not mar the shiny aluminum face.
You will need two rectangular holes for the Cinch-Jones ac sockets. The simplest way I have found to start the rectangular hole is to drill the two $1 / 4$-in. holes in two places as indicated in Fig. 3. Then, using the socket as a pattern, lay out the rectangle on the paper. Now, with a small square file and the socket as a fitting template, file the rectangle to size. Again with the socket as pattern, lay out the mounting holes and drill them. These mounting holes were not laid out before, so that any error made in drilling or filing the rectangular holes would not be added to the position of the predrilled mounting holes. Drill a $1 / 2-\mathrm{in}$. hole for the power cord grommet.

Wrap one of the neon lamp pigtails around the pigtail of the 56 K resistor and solder the joint. Wrap the other neon pigtail around one end of a $5-\mathrm{in}$. piece of No. 22 shielded wire-then solder. Slip a 2 -in. piece of sleeving over the joint and butt up against the glass of the NE2E bulb.
Remove any of the white layout paper and


Interior view of tester showing parts placement.

cellulose tape left on the chassis. Insert the $3 / 8-\mathrm{in}$. neon grommet in its hole, moisten the neon tube glass with water, and slip into the grommet. Allow about $1 / 4-\mathrm{in}$. of neon tube to project above the chassis.

Mount the Shurite meter, taking care to square and center the meter face with the Minibox sides. Now mount the SPDT switch and the two Cinch-Jones sockets. Strip 6 in . of outer rubber protective insulation from the power cord. Dampen the outer rubber of the power cord, insert the power grommet in its hole, then slip the power cord about $3 / 4-\mathrm{in}$. into the grommet. A tight fit here assures a firm hold of the power cord at the grommet.

Disassemble the double-fused plug and, with a small round file, file the edges to permit the plug cover to close over the power cord. Strip, solder, and attach the wires to the plug. Reassemble the plug and insert two Buss ABC15 (3AB) fuses into the plug.

Wiring the Tester. It is always good practice to tin stranded wires before using the solderless connector crimp tool. Be certain to use internal lock-tight washers under every screw and nut used in the circuit. With exception of the neon circuit, work with \#16 stranded wire throughout. The long length
of power cord wire inside the box will allow servicing of the instrument.

Attach a solderless connector to one wire of the power cord pair and connect it to the center screw terminal of the SPDT switch, as in Figs. 2 and 4. Connect the other wire of the power cord pair to the left terminal, as viewed from the rear of the appliance jack. Also connect the wire from the neon pigtail to this terminal and solder. Connect a length of wire from the right screw terminal of the switch to the right terminal of the meter.

Using solderless terminals or solder where necessary, connect a wire from the left side of the test jack to the left side of the ammeter. On this same terminal of the meter, connect a wire to the left screw terminal of the SPDT switch. Also connect the pigtail of the 56 K resistor to this switch terminal. Complete wiring of the tester with the connection of the right terminal of the test jack to the right terminal of the appliance jack. Using a small piece of \#16 wire, short the two male pins of the ac plug together at the terminals to form the shorting plug.

A word of caution before continuing. This tester might well be constructed from assorted parts lying around the work bench.


## 4 SCHEMATIC

However, operating ratings for all components used in the model are 15 amps at 125 vac. Any random bench parts used should equal or exceed this rating. As an example, table lamp zip cord should not be used. For your own safety, be very sure to use the components that meet the ratings given above.

Using the Appliance Tester. It is only necessary to assume or measure the approximate value of the ac line voltage applied to the tester. That is, you must decide that input voltage is nearest to 100 volt, 113 volt, or 125 volt. When the appliance is turned on, the 0-15 ac ammeter will indicate a current flow.

Chart No. 1 shows the power consumed for a choice of one of the three approximate line voltages. This chart plots meter current in amperes versus power consumed at the appliance jack in watts.

As an example, assume you have selected the 113-vac house voltage as being the closest to your own voltage. With the appliance plugged into the tester, you then read 10 amps on the meter. By sliding your finger up to the $10-\mathrm{amp}$ line on the chart to the point where it crosses the 113 -vac curve, you have found the power consumed by the appliance. It is indicated to the left of the chart on the horizontal line which also crosses the 113 -vac
curve. The Shurite ammeter movement is accurate to within $5 \%$ and is close enough for all measurements used here.

Plug the appliance to be tested into the ac receptacle marked appliance jack. Be certain that a shorted ac plug is plugged into the receptacle marked test jack. The SPDT switch mounted under the meter is the on-off meter selector switch. In meter bypass position, the meter is not in the ac circuit. In the meter position, all appliance current will flow through the meter. The meter bypass is used to prevent damage to the meter when appliances that may have a short are tested. It has another use to be mentioned in a moment.

Safety Features. Additional trust may be placed in the tester because of many safety features built into the unit. Both sides of the ac line are fused. This prevents excessive current in the event one side of the line is shorted to a good ground such as a water pipe. The fuses are 3 AB medium time lag, steatite-case, heavy-duty fuses. They offer more protection in the event of direct shorts to fuse holders in the ac plug. Fuses are removed from the double fuse plug by pushing them out through a small hole to the rear of the plug.

With the meter selector switch in either


METER CURRENT IN AC AMPERES
meter bypass or meter in position, the NE2E glows brightly. The Shurite model 850 plastic meter case enables the operator to see the neon glow from many angles. When working in dark corners, the neon provides enough light to illuminate the meter face. The test jack shorting plug need not be in its socket for the neon power on light to warn of ac voltage on. The tester can be used either horizontally or vertically as it is convenient. The power cord is No. 16 heavy duty 15 amp . 125 -volt cord, so it should not heat under these maximum load conditions.

To measure appliance currents less than 3 ac amps with more accuracy than possible with the 0-15 amp meter movement, the test jack is used. Simply throw the meter selector switch to meter bypass, remove the male shorting plug, and plug an ac ammeter of your choice in the test jack. With an 0 to 3 ac ammeter plugged in, all appliances drawing more than 350 watts should not be checked. Line voltages supplied by the power company vary during the day and night. Often the complaint that an appliance does not get hot enough for the evening meal, a fry pan for example, may be traced to a lower ac line voltage to the appliance during this peak

load time. The tester has provisions to test appliances under these reduced voltage conditions. Again, the shorting plug is removed and an ordinary table lamp plugged in the test jack.

Chart No. 2 gives the reduced voltage at the appliance jack when using the various wattage bulbs in the lamp socket. The values given are approximate and are only for reference. The range of possible loads is wide and actual ac rms. voltage at the appliance jack should be found by experimentation. The chart shows that the reduced-voltage feature is most useful for small loads in the 50- to 150watt range. This includes radios, hi fi's, amplifiers, small industrial systems, and P.A. systems.

Chart No. 2 also shows that for very large loads, 400 watts or greater, the ac voltage at the appliance jack will be very small, on the order of 20 volts or less. Electrical devices using timers such as toasters require careful checks to assure that all components are working.
In conclusion, it cannot be stated too often: Currents and voltages used in this appliance tester are lethal, and caution is the byword at all times.

## The Torpedo



A young experimenter listens intently to the World Series on his newly built Torpedo radio.

## By HOMER L. DAVIDSON

THE Torpedo consists of just 10 small components soldered together and sealed in plastic. Local broadcast stations are heard across the band with plenty of volume. A phono male and female plug combination forms a simple on-off switch. Simply clip the capsule radio to a metal object and you're in business. The cost is less than $\$ 5$, including the earphone.

The antenna coil is a ferrite-core type with a .000330 mfd fixed capacitor to tune the broadcast band. By removing the threads

A portable capsule radio the young experimenter can build


The battery and plug fit together and comprise the switch that energizes the radio.
from the core shaft, the coil can be pushed in and out, selecting your favorite station.

A fixed crystal rectifies the RF signal and also couples the signal to the base of the first transistor. The emitter terminal of TR1 is grounded. Capacitor C2 couples the audio signal to the base of TR2 for greater amplification. R1 serves as the plate load for the collector circuit of TR1. Any $1000-$ to $3000-$ ohm earphone can be used in the collector circuit of TR2. SW1 is a female phone socket with the male jack fastened to the small battery.

Construction. Take a solid piece of No. 14

## TO EARPHONE




Be careful not to let the heat of the soldering iron damage a transistor.


A section of plastic tubing acts as the shell that encases the radio elements.
"buss" wire and cut it to 4 in . in length. This wire serves as a common ground and can be picked up from a local supplier. First scrape off the rubber insulation and clean for good bonding. Run the solid wire to one side of the connecting lug on L1. Place L1 parallel to the ground wire, Fasten the silver mica capacitor to the grounded side and also to the antenna side of L1. All of these components are mounted in a straight and narrow line so they will go inside a $3 / 4-\mathrm{in}$. plastic tube. Use of a pencil soldering iron is suggested, as the small components are mounted very close together:

Solder the crystal detector to the antenna lug on L1 and to the base of the first transistor. Use longnose pliers to dissipate the heat when soldering the crystal and transistors into the circuit. It is best to start at the front of the circuit. mounting and then soldering each component into place. Solder C2 and R1 together first before soldering them to the collector terminal of TR1. A good soldering joint is made and less heat applied to the
transistor all at once. Connect the other end of the coupling capacitor to the base of TR2. Ground the emitter terminal to the base wire. Remove the plug from the earphone and solder one wire to the R1 and SW1 junction. Refer to pictorial diag:am, Fig. 2, for ease in wirir.g. Use spaghetti and plastic tape where needed.

The battery is a 4.5 -volt Eveready miniature type with a male phono plug soldered

| Desig. | MATERIALS LIST-THE TORPEDO Description |
| :---: | :---: |
| L1 | ferrite antenna coil, micrometer adjustment (Lafayelte MS299) |
| C1 | . $000330 . \mathrm{mfd}$ silver mica capacitor |
| C2 | 2.mfd, 6.v. electrolytic miniature capacitor (Lafayelte CF100) |
| R1 | 4700.ohm, 1/2.w, res.stor (Lafayelte RS10) |
| TR1, TR2 | 2N 108 transistor, RCA or equivalent |
| XTAL | 1N64 diode |
| 1 | 1000. to 3000.ohm earphone (Lafayette AR50) |
| 1 | switch, male and female phono jack, and plug (Lafayette MS167, MS163) |
| 1 | 4.5-v. Eveready battery |
| Mise. | plastic tubing, wire, and Epoxy Cement bonding kit (G. C. Electronics Cc., Rockford, III.) <br> Above parts available from Lafayette Radio, 111 Jericho Turnpike, Syosset, N. Y. |



SEE FIG 2 FOR PHONO PLUG-BATTERY ADAPTATION
to one end. File a V-notch in the wire end of the male plug, run a small flexible wire to the prong end, and solder into place. Place a piece of spaghetti over the wire where it comes out of the V-notch so the wire will not short out. Solder a small washer to the male plug and in turn solder to the negative terminal of the battery. Take the wire lead and solder to the positive terminal of the 4.5 -volt battery.

Slip the metal clip off the coil end, and the ferrite rod will come out with it. Unscrew the threaded slug and file or grind off threads.

This will let the slug move in and out of the coil, tuning in the broadcast stations. Solder a metal washer to the rod after placing it in the coil assembly. This washer will serve as a tuning knob.

Testing Your Torpedo. Clip the antenna wire to an outside antenna or metal object and plug in the battery. Move the ferrite rod in or out until a station is heard. When the slug is pushed all the way in, you are selecting the lower part of the broadcast band. When it is pulled all the way out, you are selecting the higher end of the band.
In case the receiver does not work, first check the wiring carefully to be sure that no soldering mistakes were made. If a milliammeter is handy, insert the meter in series with one lead of the battery and check the circuit drain. The capsule radio pulls only $1 m a$ of current. Place the soldering iron tip on the base of TR2 when the iron is plugged in, and a 60 -cycle hum should be heard. Go to the base of TR1 and do the same thing. A louder hum should be heard.
Check to see if the connection from the crystal diode cathode is made to the base of TR1. Most of these crystal diodes are marked either with a line or a K at the cathode end. Also, a loud click or scratchy noise should be heard when the antenna lead is hooked to a
metal object.
Final Assembly and Sealing. The radio is now ready to be mounted in the plastic container. Cut a piece of $3 / 4-\mathrm{in}$. plastic tubing about 5 in. long. File the ends down smooth. Slip the small chassis into the tube from the ferrite coil end. Let the coil stick out about $1 / 2 \mathrm{in}$. and the female phono plug about $1 / 4 \mathrm{in}$. Now wrap two layers of masking tape around the coil end and let the tape stick up from the plastic tube about $1 / 2 \mathrm{in}$.

The unit is now ready to be sealed with fiber glass plastic which comes in two separate tubes. Mix a small amount at a time on a piece of board. Take a knife blade or a screw-driver blade and place the mixture inside the masking tape. Push it down tight so that a good solid bond is made. Do not let the fiber glass get in the hole in the female phono plug or the antenna coil. When the plastic sets and becomes hard, the components will not pull apart. Do one end at a time. Let the mixture set overnight or for at least eight hours. Follow the directions for correct method of mixing. They will be found on the tube container.

There are several types of fiber glass plastic available. They can be purchased at hardware stores, boat supply stores, or radio wholesale houses. After the plastic sets, pull off the masking tape. If there are a few drips or dents in it, run a small amount into the crevices and let that set. Plastic fiber glass does not need heating to harden. Both ends of The Torpedo are sealed in the same way.

After the ends are sealed and formed, use a file to smooth them. Round off the rough corners. To make the plastic capsule look like a professional job, place several rings of masking tape around the container. Then from a spray can apply the desired color of paint. Remove the masking tape when dry, and The Torpedo is ready for hard use.

# Neon Flicker 

 LampHere's a decorative night light that doubles as a conversation piece

THIS flickering neon lamp can be an assuring nighttime companion in your child's bedroom, a gift for the man who has everything, or a piece for milady's dressing table. It costs only a few dollars to build, requires very little power, and will operate for a few cents a year.
The novelty of this lamp is its flicker. As rectifier D1 (see Fig. 2) converts ac line voltage into pulsating direct current, capacitor C1 charges to a steady de value approaching peak voltage. This is the dc voltage required for the operation of the neon glow lamp multivibrator, which consists of resistors R1 and R2, capacitor C2, and neon lamps X1 and X2.

When dc voltage is applied to the glow lamp multivibrator, one of the lamps fires the one with the lowest starting potential. Since the terminal of capacitor C2, which is connected to the glowing lamp, has a lower potential than the other capacitor terminal, the capacitor will charge up until the vol:age on its terminal reaches the firing potential of the non-conducting neon lamp. At that point, the second lamp fires and the other lamp extinguishes. Now the process repeats itself with C2 charging in the opposite direction, and the operation is repetitive.
Construction Details. The housing for the lamp, a miniature kerosene lamp, can be

Young Jock contemplotes the Aickering condlestick he intends to jump over.
bought at five-and-dime stores or at variety import stores. I obtained mine at an import store for $47 \%$.

Punch a small hole in the bottom of lamp's fuel reservoir with an ice pick, and enlarge it to about $3 / 8-\mathrm{in}$. with a taper reamer or by using successively larger drills. Insert a rubber grommet in this hole.

Fass the line cord through the grommet, and bring it out through the filling hole at the top of the reservoir. Strip the insulation from the ends of the cord, and expose about $3 / 8-\mathrm{in}$. of bare copper wire.

Use the sequence of pictures in Fig. 3 to guide you with the wiring. Keep the leads of the capacitors and resistors as short as possible to minimize the possibility of short circuits, and be sure to use rosin core solder and a clean, well-tinned iron.

Remove the wick from its holder by removing the wick screw. Then assemble the two neon lamps and insert the insulated hookup wires through the wick holder. Connect these to the base circuit.


SChematic

## Wiring and Construction Sequence.



Wire base circuit.


B
Assemble the two neon lamps.


Replace the wick with the neon lamps.


Connect lamps to base circuit.


Put base circuit in reservoir and wick holder on top.


Replace the chimney and it's ready to flicker.

Desig. C1, C2 R1 R 2
$\mathrm{X} 1, \times 2$ Mise.

## MATERIALS LIST-NEON FLICKER LAMP <br> Description

1 mfr, 200.volt metalized paper capacitors (Lafayette 3CG-804)
selenium rectifier (Lafayette MS.887)
1 meo. $1 / 2$-watt carbon resistor
$2.2 \mathrm{meg}, 1 / 2$-watt carbon resistor
NE-2 neon lamps (GE)
ac line cord and plug, miniature kerosene lamp (available at variety steres)
The above parts, except for the kerosene lamp. can be obtained from Lafayette Radio, 111 Jericho Turnuike, Syosset, N. Y.

Plug the unit into ac line voltage to check operation. If the circuit has been wired properly, the glow will shift from one lamp to the other continuously. In order to alter the speed of the flicker, you will have to change the value of capacitor C2. By making C2 smaller, the lamp will flicker faster. Make C2 larger, and the lamp will flicker slower. After you have checked out the operation, unplug the circuit. Then fasten the lamp leads to the wick holder with Duco cement.

Insulate all exposed metal parts of the base circuit with electrical tape, and cram the base circuit into the lamp reservoir. Put two turns of reverse twist in the lamp leads to the base, and screw the wick holder on the reservoir base.
Finally, adjust the lamp positions, put the chimney in place, and you've completed the job.-Frank Woods, Jr.

## Fire Extinguisher Chases Radio Bugs

- The chilling effect of a carbon dioxide fire extinguisher will help you locate a defective part in a radio circuit that plays erratically. Often a set works fine for a few minutes after you turn it on, and then suddenly misbe-

haves or goes dead. The trouble may be a part that expands with heat after current has been flowing through for a few moments. Spray suspicious parts with $\mathrm{CO}_{2}$ gas one at a time. The intense cold will contract a defective component so it can work normally.

You can also use Charg-A-Can Freon \#12 with a suitable adapter (sold by refrigeration supply houses). However do not use carbon tetrachloride fire extinguishers since the fumes are highly toxic.-T. A. Blanchard.

## Thermistor Thermometer

## Conduct experiments in changing temper-

 ature with a compact lab instrument you can build for less than $\$ 10$By FORREST H. FRANTZ Sr.

TRANSDUCERS are devices that sense energy in one form and convert it to another form. The thermistor senses changes in temperature and responds with changes in resistance. The changes in resistance can be converted to changes in electrical current in a circuit.

The unit described in this article demonstrates the operation of a thermistor; change in temperature is indicated by a change in electrical meter reading. It was originally designed a.s a demonstration unit and a conversation piece, but some simple experiments are described here, as well as a method of calibration, which will suit it for use as a laboratory thermometer.

The circuit is shown in Fig. 3. R3, the thermistor, is one of the arms of a Wheatstone bridge; R1 in parallel with R2 is another arm, and R4 and R5 are the other arms. The 50 microamp meter $M$ is the bridge null and small temperature change indicator.

The thermistor's resistance is a function of temperature. When temperature increases, the thermistor resistance decreases, and vice


Energy changes are clearly indicafed $c=$ the meter.
versa. A bridge circuit with a sensitive meter will detect smaller temperalure changes than a less sensitive one, as the change in resistance for each degree of change in temperature is small.

Construction. Drill the metal case as shown in the layout (Fig. 4). Saw the shaft of R1 to


a length of $3 / 8 \mathrm{in}$. Mount the switch S 1 , the potentiometer R1, the terminals T1 and T2, and the meter $M$ on the front panel of the case (see Fig. 5A). T1 and T2 must be insulated from the panel.

Mount the battery holder on the back panel (see Fig. 5B). Wire the instrument with the help of Figs. 3 and 5.

Use. Fasten the thermistor R3 in the terminals T1 and T2. Turn the instrument on and adjust R1 for mid-scale meter deflection.
Now, touch the thermistor: the meter reading should increase. If the meter reading decreases, reverse the meter connections. In other words, the meter deflection should be in the direction of temperature change.

The terminals T1 and T2 have been provided so the thermistor can be used for remote temperature reading. Attach wire leads of the required lengths for the desired application.
One experimental demonstration is to show the change in meter reading when the thermometer is touched with the hand or an ice cube; another is to place a drop of cigarette lighter fluid on the thermistor, and note the cooling effect as the fluid evaporates. If the thermistor is placed at the focus of a parabolic reflector, the instrument may be used as an infrared detector. The sensitivity is limited, however.

If you care to calibrate the thermometer,


Interior view showing components and wiring.

## Description

1 K miniature potentiometer (Lafayette VC.32)
$2.7 \mathrm{~K}, 1 / 2 \cdot \mathrm{w}$. carbon resistor. $10 \%$
400 ohm thermistor (VECO 23E3) of
500 ohm thermistor (Glennite 25TD2)
100 ohm. $1 / 2-w$. carbon resistor, $10 \%$
0.50 microamp. square meter (Lafayette TM-200)

SPST togule switch (Lafayette SW-21)
5 -way binding posts (Lafayette MS.566. kit of 10)
2 1.5.v. penlite cells conrected in series (Eveready 915) 2.cell battery holder (Lafayette MS-181)
$21 / 4 \times 21 / 4 \times 5^{\prime \prime}$ aluminum minibox (Premier MC-379) miniature knoh (Lafayette MS-185)
Parts for this project are available from Lafayette Radio, 111 Jericho Turnpike, Syosset, L. I., N. Y.
you can use it as an experimental quantitative instrument.

Calibrafion. This requires calibration of R1. With a triangular file, make a groove in the edge of the knob. Fill the groove with contrasting India ink to provide an index. Prepare a paper scale with a 1 -in. diameter circle marked on it, and fasten it to the case with Carter's rubber cement.

Place the thermistor (equipped with extension leads connected to T1 and T2) in ice water (Fig. 6). Adjust R1 for zero meter


Mount batteries on the back of the case.


6
reading, and place a calibration mark on the paper scale and mark it 0 (for zero degrees Centigrade).

Heat the water gradually, stirring constantly, until the meter deflects full scale. Adjust K 1 for zero meter reading, note the calibration thermometer reading, and enter it beside the calibration mark for the new R1 setting. Repeat this process up to boiling point of the water, and R1 will be calibrated in steps.

Reading the R1 setting plus the interpolated value of the meter reading to the next higher R1 calibration will give you the temperature. The precision of the instrument will approach that of the calibration thermometer used.

## Earphone Volume Reducer



- To reduce the volume of an earphone of the "earplug" type when using the phone in conjunction with a set that has insufficient volume reduction at its lowest setting (this happens often near stations) slip a soft rubber grommet over the phone. This keeps it from fitting into your ear so far, yet still allows it to fit firmly. The lengthened distance between phone diaphragm and car drum lowers the volume several db's.-John A. Сомstоск.


[^9]
## LOOKING OVER NEW PRODUCTS



人

## C-B Walkie Talkie

A super het transceiver with exact crystal control for both receive and transmit channels on the $27-\mathrm{mg}$ citizens band. Using four transistors and a diode, we feed 80 milliwatts of power to the 10 -section telescoping antenna.

No license is required and the unit can be operated by anybody. The range is one mile under normal conditions, increased when conditions are optimum, such as over water. The finger tip push to talk switch provides high speed break-in operation. Comes complete with blue and black metal case with leather carrying case, crystals, and six penlight cells. Priced at $\$ 19.95$ each or two for $\$ 38.95$ from Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.

## Tube Tester Kit

Called the Grid Circuit Analyser Tube Tester, this kit will test 10 - and 9 -pin miniatures, 12 -pin compactrons, 7 - and 5 -pin nuvistors, 9 -pin novals, novars, octals and loctals, plus many industrial and European types. It checks for inter element shorts, cathode emission at optimum pre-selected plate loads, gas content and grid emission, as well as picture tubes by means of cathode emission. The new kit sells for $\$ 49.95$, or wired and tested, for $\$ 67.95$. Paco Electronics, Dept. RTE, 70-31 84th St., Glendale 27, N. Y.


## Tiny Transceiver

Designed for use by missile refueling teams, fire fighting crews or warehouse operations, this unit provides hands-free communications for people working in noisy or hazardous areas.

The radio consists of a single package, no larger than a package of cigarettes. It contains a crystal controlled transmitter and a receiver, powered by two rechargeable batteries. The unit is attached to the user by a clip, light belt or nylon cord. A voice operated switch turns the unit to transmit only when the user talks. It operates in the $25-50-\mathrm{mg}$ range. ITT Kellogg, Dept. RTE, 320 Park Ave., New York 22, N. Y.

## LOOKING OVER NEW PRODUCTS



## 15-In. Speaker

This three-way hi-fi speaker features a 5 lb . ceramic magnet. It is custom built in England. The three elements are axially mounted and the woofer section is vacuum constructed. It is plastic terminated with free edge cone suspension to eliminate standing waves and surround resonances. The woofer cone resonance is 25 cycles.

The overall frequency response is 20 to $20,000 \mathrm{cps}$ with a power capacity of 50 watts. The impedance is 16 ohms. $\$ 64.50$ from Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.

## Amateur Receiver

The frequencies from 550 kilocycles to 30 megacycles are covered in four bands by this new communications receiver. Front panel controls consist of on/off volume, main tuning, band selector and phone-CW switch. A front panel headphone jack permits quiet listening. Plugging in the low impedance phones automatically disconnects the built-in 4 -in. speaker. The unit uses three tubes and a silicon diode for five-tube performance. The slide rule dial and wrinkle finish cabinet make for a professional appearing receiver. Operates on 105-125 volts, $50 / 60$ cycles. $\$ 39.95$. Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.


## Sound Spectrometer

This acoustical device helps isolate sounds and their levels. It not only tells you how loud sounds are, measured in decibels, but also in what frequency range they fall. The new model has been modified to meet ASA specifications which require a low frequency cutoff at 45 cycles. It was originally designed with conventional octave bands, the first band having a cut-off sharply at 37.5 cycles.

The unit is finding great acceptance in industry because of its convenient weight, size and simplicity of operation. Industrial Acoustics Co., Dept. RTE, 341 Jackson Ave., New York 54, N. Y.

## LOOKING OVER NEW PRODUCTS

## Stereo Amplifier

A headphone output on the front panel of this new amplifier permits constant monitoring of all program sources. A tape monitor switch and special inputs and outputs are included for the tape recording enthusiast. A derived third channel output is provided to drive a power amplifier for extension speakers.

Amplifier provides 15 watts per channel, hum and noise are 70 db down. Intermodulation distortion is $0.5 \%$, harmonic distortion is $0.8 \%$. Unit measures $151 / 2$ wide, $51 / 4$ high, $131 / 4$ deep. Accessory case available in walnut, mahogany or leatherette covered metal. Model 200 stereo amplifier is available from H. H. Scott, Inc., Dept. RTE, 111 Powder Mill Rd., Maynard, Mass.


## Page-Reply And Music

In addition to providing music as a background for employees, this unit also permits selective paging and reply facilities. The music can be programmed to start and stop at the time sequences chosen by the user. Music sources are available either from tapes or FM tuners.

An additional feature of the system is a tone generator which signals various increments in the working day, such as coffee breaks and lunch periods. Fisher Berkeley Corp., Dept. RTE, 1475 Powell St., Emeryville 8, Calif.

## Pegboard Kit

The secret of this kit is the peg itself which may be inserted wherever two leads are to be connected. When a project is in development, the leads are inserted between the brass peg and the flexible sleeve surrounding it. Also the design becomes more firm, temporary connections are replaced by soldering the leads to the brass tips. Virtually no components are lost as no soldering is done until the design is well organized.

The kits are ideally suited to classroom instruction, as well as electronic development laboratories. The kits are available in three standard sizes, $5 \times 8,81 / 2 \times 11$, and $11 \times 14 \mathrm{in}$. Accessories include buss strips and anchor inserts for holding sockets and bulky components. Priced from $\$ 2.50$ to $\$ 9$. Laguna Labs, Dept. RTE, 2319 S. Coast Blvd., Laguna Beach, Calif.



## Build Better Boats with S\&M FULL-SIZE Patterns



Insure Accuracy-Full-size patterns on the "Minimax" duplicate the originals used by the designer when he built the first "Minimax". Each component can be cut to exact size for a perfect fit in final assembly.

Convenient-With full-size patterns on the Moth Class "Sun Fun Sailer" you don't incur the extra expense and time that is spent acquiring the necessary drawing tools and making the drawing on extra large sheets of paper.


Complete plans for each
one of these popular
boats are available af:

Save Time-Ready to use when you are ready to begin. Full-size patterns on critical parts in the "Sea Flea" enable you to use time generally spent on drawing full-size patterns in hours of enjoy. ment on this hair-trigger action surfboard that provides you with the utmost in sailing sport.


## ORDER YOUR 1963 S \& M HANDBOOKS



Use the coupon below to insure yourself that you will receive each issue of the S\&M Handbooks you want-direct to your mail box. No chance of missing a single copy, if you order by mail.
Here's the complete 1963 line-up. Your copies will be mailed to you, postpaid, as they are published during the months shown below. Allow four weeks for delivery of 1962 editions.

| 1962 Edition 609 596 | JANUARY <br> 620-Radio-TV Experimenter <br> 621-Car Repair Handbook <br> 622-Income Opportunities <br> 623-Gun Handbook | 7962 Edition 611 592 594 597 | FEBRUARY <br> 624-Home Workshop Handbook <br> 625-1001 How-To Ideas <br> 626-Science Experimenter <br> 627-Garden Handbook | 1962 Edition 593 613 | MARCH <br> 628-Boat Builder's Handbook 629-Electrical Handbook 630-Fisherman's Manual 631-How To Buy Or Sell Your House |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 612 \\ & 678 \\ & 599 \end{aligned}$ | APRIL <br> 632-Radio-TV Experimenter 633-Car Repair Handbook <br> 634-Woodworker's <br> Encyclopedia <br> 635-Camping Handbook |  | MAY <br> 636-Home Workshop Handbook <br> 637-1001 How-To Ideas . <br> 638-Home Repair Handbook <br> 639-Careers and Jobs | $\begin{aligned} & 607 \\ & 600 \\ & 601 \end{aligned}$ | JUNE <br> 640-Boat Builder's Handbook 641-Inventor's Handbook 642-Water Sports Handbook 643-Auto Racing Handbook |
|  | JULY <br> 644-Radio-TV Experimenter 645-Car Repair Handbook 646-Woodworker's Encyclopedia 647-Home Appliance Repairs 648-Kitchen \& Bath Improvements | $\begin{aligned} & 608 \\ & 606 \end{aligned}$ | AUGUST <br> 649-Home Workshop Handbook <br> 650-1001 How-To Ideas <br> 651-Science Experimenter <br> 652-Do-It Yourself Plumbing <br> 653-Surplus and Sàlvage <br> Projects | 610 | SEPTEMBER <br> 654-Boat Builder's Handbook 655-Electrical Handbook 656-Junior Mechanics Handbook <br> 657-Elementary Electronics <br> 658-Christmas Suggestions. |
|  | OCTOBER <br> 659-Radio-TV Experimenter 660-Car Repair Handbook 661-Woodworker's Encyclopedia 662-Radio-TV Repairs <br> 663-Photography Guide | 675 | NOVEMBER <br> 664-Home Workshop Handbook 665-1001 How-To Ideas 666-Furniture Handbook 667-Crafts \& Hobbies 668-Home Modernization Handbook | $\begin{aligned} & 619 \\ & 602 \end{aligned}$ | DECEMBER <br> 669-Boat Builder's Handbook 670-Home-Built Power Toois 671-Engine Handbook 672-Small Investor's Guide 673-Small Home Plans |

) am enclosing \$ $\qquad$ I have written the numbers of the S\&M.

## SCIENCE and mechanlcs

 HANDBOOKS505 PARK AVENUE NEW YORK 22, N.Y.

Handbooks ordered below. The Handbooks are to be shipped to me as they are published. $\qquad$
$\square$ -
$\qquad$

Name $\qquad$
(Please priṇt)
Address $\qquad$
$\qquad$ Zone $\qquad$ State $\qquad$

## To EASN EXTRA MONEY

No inventory-no investment on your part
RADIO-TV EXPERIMENTER is opening an entirely new world for direct sales representatives... a world in which you can achieve your favorite goals. Here is a world where you will earn extra money to tuy the things you want and need. A world where your earnings are obtained in a dignified, pleasant and self-satisfying manner.
And your selling is made easy for you, too! Your friends, and neighbors, pecple you work or study with-all of these people-and more are your prospects for additional income.
Do you want more information . . . it's yours for the asking. Please fill out all the blanks on the coupon below It's your first step to making all those extra dollars.

Pete Reynolds • Davis Publications, Inc. - 505 Park Avenue - New York 22, N. Y.
I want to get started making those extra dollars. Please send me details.

NAME $\qquad$
(Please Print)
ADDRESS $\qquad$

CITV $\qquad$ ZONE $\qquad$ STATE $\qquad$
BANK REFERENCE $\qquad$
$\qquad$ AGE

## Your Best Newsstand Investment

Proven money-making enterprises are featured in this volume of INCOME OPPORTUNITIES. Advantages, responsibilities and rewards of working with a franchise are compared to the responsibilities of "going it alone." You can get first-hand information through the success stories that show the growth of ideas that have resulted in high profit ventures by handling an exclusive line yourself or having others work for you on a full- or part-time basis. This volume is really an investment because it will show you where solid profits can be obtained. Buy it now and read about the high returns available in:

## Electrical Repairs

- Auto Seat Covering
- Lapidary Retailing
- Writing for Trade Magazines
- Travel Agenting
- Tool Rental

Odd-Jobbing
Marketing Food Specialties

- Position Placing for Profit
- Selling by Mail-Order


SCIENCE AND MECHANICS MAGAZINE Handbook Division, 505 Park Avenue
New York 22, New York
Enclosed is $\$ 1$ to include postage and handling for Income Opportunities \#622. Please allow four weeks for delivery. For special handling, including | first closs mail delivery, add 50 c to your order.
(PLEASE PRINT)

## ON SALE NOW! newsstends



## \#622 Income Opportunities

Dozens of successful ways to be your own boss on a full-time basis or to conduct a small business profitably on a part-time arrangement. This money-making guide reveals how many franchise operations work and the opportunities available in business ventures that require little capital investment. These articles explain how to get started in business and how to keep it operating on a profitable basis. You'll read about what is required to make money in such business opportunities as:

- Position Placing for Profit
- Selling by Mailorder
- Travel Agenting
- Auto Seat Covering
- Electrical Repairs
- Writing for Trade Magazines
- Lapidary Retailing
- Odd-Jobbing
- Marketing Food Specialties
- Tool Rental


## \#621 Car Repair Handbook

A must guide for every weekend mechanic who wants to keep his car in like-new condition and in peak running order. You'll find many applications for the more than 20 servicing articles that give complete how-to instructions so you can use tools you already own. These articles are fully illustrated with photographs and drawings to make servicing that much easier. A partial listing of the contents includes:

- Save Your Upholstery
- Installing a Throttle Control
- How to Get More MPG
- Fire Up Your Heater
- Beat Winter No-Start
- 26 Emergency Roadside Repairs
- Take the Tap Out of Tappets
- Longer Life for Tires
- Rust Stopping Tips
- What's Wrong with Imports




## \#623 Gun Handbook

A fact-flled reference for targeteer, hunter and collector. Fully-illustrated volume provides you with money-saving ideas on loading your own ammo, tips on gun care and customizing. Handgun enthusiastsboth beginner and advanced-will find advice from champions and top coaches very beneficial, Rifte and shotgun buffs are briefed on latest developments in their areas and will be interested in a new weapon that fires four different sizes of ammunition. Buy it and read about:

- New Loads Make News
- Knock.Down: Fact or Fiction?
- How to be a Handgunner
- Build a Clay Pigeon Catapult
- Kitchen-Table Handloading
- Variable Power Scopes
- Artistry in Metal
- Sighting-In Your Rifle
- All Around Gun
- New Light on Old Kentuckys

Pick up your copies of these comprehensive volumes at your newsstand or send $\$ 1$ to include postage and handling for each guide ordered to:

## SCIENCE AND MECHANICS

HANDBOOK DIVISION

## 505 PARK AVENUE

NEW YORK 22, NEW YORK

[^10]
## Build Yourself <br> A One-Man Modern Biplane

Completely modern in design but based on the traditional one-man flying machine of yes. teryear is the EAA sport biplane that is adaptable to home construction, easy to maintain, and costs under $\$ 1600$ (with a used engine). She is capable of carrying a $230-\mathrm{Ib}$. pilat at a rate of climb of $400 \mathrm{ft} . / \mathrm{min}$. to a ceiling of 7000 ft . With on 85 hp Continental engine up front her top speed was about 130 , and cruising speed around 110. The biplane design permits a larger engine-up to 125 hp . Positive response and orthodox spinning behavior are the final traits that mark her as an ideal one-man build-it-yourself flying machine.

Crafi Print No. 334, comprising 8 sheels of draw. ings and full building in structions are available af:

SCIENCE and MECHANICS, Craft Print Division.
505 Park Avenue, New York 22, N. Y.
Enclosed is $\$ 10.00$ for complete plans of the EAA Biplane that include full building instructions. To avoid possible loss of coin or currency in mails, remit by check or money order (no C.O.D.'s or stamps). Please allow four weeks for delivery. For special handling, including first class mail delivery. add 504 per item ordered.
$\qquad$


Name
Street
City
CIn City, Zone, State. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . add $\mathbf{1 0 \%}$ for Canadian and Foreign orders.


## If You've Enjoyed <br> LO OK <br> IN G

 Through This SCIENCE and MECHANICS Handbook
## Yau should subscribe to

## SCIENCE and MECHANICS

## New Subscribers: Use This Money-Saving Coupon

[^11]
## SOLUTIONS

Electronic Numbergram, page 85


Ham Radio Anagram, page 137


# WHITE'S RADIO LOG 

An up-to-date broadeasting directory
AM, FM, TV and Short Wave Stations
Vol. 40
No. 1
Every effort has been made to ensure occuracy of the information listed in this publication, but absolute accuracy is not guaraniesd and, of course, oniy information avallable up to press-time could be included. Copyright 1963 by Science and Mechanics Publishing Co., a subsidiary of Davis Publications, Inc., 450 Easi Ohio St., Chicago 11, III.

QUICK REFERENCE INDEX
U.S. and Canadian AM Stations
by Frequency. $\qquad$U.S. and Canadian AM Stationsby Location.

$\qquad$159U.S. AM Stations by Call Letters168
177 ..... 186Canadian AM Stations by Call Letters.
Mexican and Cuban AM Stations. ..... 86
World-Wide Short-Wave Stations
World-Wide Short-Wave Stations ..... 195
U.S. FM Stations by States ..... 187
U.S. FM Stations by Call Letters. ..... 190
Canadian FM Stations by Location. ..... 192
Canadian FM Stations by Call Letters. ..... 193
U.S. Television Stations. ..... 193
Canadian Television Stations ..... 194
Canadian Shori-Wave-Domestic and Infernational. ..... 196
U. S. and Canadian AM Stations by FrequencyU.S. stations listed alphabetically by states within groups, Canadian stations precede U.S.Abbreviations: Ke., frequency in kilocycles; W.P., walt pawer; d-operates daytime anly. Wave length is given in metersKe. Wove Length W.P. |Ke. Wave Length W.P.|Kc. Wove Length W.P.|Kc. Wave Length w.p.
$540-555.5$
CBT Grand Falls, N.F. CBK Regina, Sask. KFMB San oiono. Callif. WGTO Cypross Girdens. WDAK Columbus, Garida KBRV Soda Springs, Idaho KWMT Ft, Dodge, fowa WEIC islip. N.Y WETC Wendell-Zebulon, $\mathrm{N}, \mathrm{C}$. WARO Canonsburg. Pa, WDXN Clarksvilie, Tenn. WRIC Richlands, Va.
$550-545.1$
CFNB Frederleton, N.B. CFBR Sudbury, Ont. CHLN Thrse Rivers, Que. CKPG Prince George, B.C. KENI Anehora Ae, Alaska KAFY Bakersitid. KRAY Bakersfield, Calif. WAYR Orange Parik WGGA Galnesville, Ge, KMVA Ganesville, Ga KFRM Concordia, Kansas wCBI Columbus Mlos. KSD St. Louis. Mo. KOPR Butte, Mont. WGR Bumalo. N.Y. WDBM Statesville, N.C KFYR Bismarck. N.Dak. KOAC Corvallis Opo WHLM Bloomsburg, Pa. WPAB Ponce. P.R. WXTR Pawtucket, R.I, KCRS Midland, Tox. KTSA San Antonio. Tex
WOEV Watorbury, vt. WSEV Watorbury, KARI Blaine, Wash. WSAU Wausau, Wis.
560-535.4
CJDC Dawson Creek, B.C. CHCN Marystown. Nid., Can CFOL Kirkland Lake. Ont. CKCN Soven lles que WOOF Dothan, Ala KYuF Dothan, Ala. KSFO San Fran.; Callf. KLZ Donver, Colo WaAM Mlaml. Fia. WIND Chicaco, III. WMIK Middlesboro, Ky. WGAN Portland. Maine WFRB Frastburg. Md, WH YN Springfold, Mass. $\begin{aligned} & 1000 \mathrm{~d} \\ & 1000\end{aligned}$

WQTE Monroe, Mich.
10000 KWTO Springheld, $\begin{aligned} & \text { KW } \\ & \text { KW }\end{aligned}$ 50000 KMON Great Falls, Mhont 50000 WGAI Elizabeth City. N.C.
 Wis Columbla, S.C. WHBQ Memphis, Tenn. KFDM Beaumont. Tox. KPG Wenatehes, wish. WJLS Beekley. W.Ve.
$570-526.0$
CKEK Cranbrook, B.C. CKCQ Quesnel, B.C. CFCB Corner Brook, N F.
CJEM Edmundston, N.B. CJEW Edmundston, N.B. CFWH Whitehorse, Y.
WAAX Gadsden, Ala. WAAX Gadsden, Ala.
KCNO Alfuras, Callif, KCNO Alturas, Calif, Callf. WGMS Washington. D.C WACL Waycross, Ga. WKYB Paducah, Ky. KGRT Las Cruces, N.Mox. WMCA Now York. N.Y WWNC Ayhevilis N. WLLE Ralel WKBN Youngstown, ohlo WNAX Yankton, S.Dak. WFAA Dallas, Tox. WBAP Ft. Worth. Tan. KLUB Salt Lake City, Utah 5000 KVI Seattlo, Wash. WMAM Marlnatte, Wis.

## $580-516.9$

CIFX Antigonish. N.S. CFRA Ottaws, Ont. CKEY Toronto, Ont. CKPR Ft. Willam, Ont CKUA Edmanton. Alta.
CKY Winnipeg. Man. WABT Tuskeges, Alm, KTAN Tuesen. Ariz. KMJ Fresno, Callif. KUBC Montrose. Colo. WOBO Orlando, Fla. KGAC Augusta, Ga. KFXD Nampa, Idaho KILL Urbana, 11. WIBW Manhattan, Kans, KABW Topeka, Kans. WTAG Worcestor Mass WELO Tupelo Milss KANA Anaconda Mont WAGR Lumberton, N.C KWIN Ashland, Ores. WHP Harrisburg. Pa. WKAQ San Juan, P'R KOBH Hot SprInis, S. Disk. WRKM Rockwood Tenn. KDAV Lubbock, †ox.

## W.P. 500 d

500d WLES Lawroneavill Va WLES Lawroneovillo, Va. WKTY LaCrosse. Wis. 590-508.2 CFAR FlinFion, Man. CKRS Jonquiere, Que
VOCN St. Johns, N. F. KHAR An. Johors, N.F. Alaske WRAG Carrollton, Ala. WRAG Carroliton, Ala. KBHS Hot Sorings, Ark. 1000 d
KFXM San Barnardino, KFXM San Bernardino, Cal. 1000 KCSJ Pueblo, Colo. WDLP Pana, City, Fla. WPLO Atlants. Ga. KGMB Henolulu, Hawail KID Idaho Falls, Idaho WBBY Wood RIver, Ill. WVLK Lexington, Ky. WEEI Boston, Mass WKZ0 Kalamizoo, Mich. KGLE Glondive, Ment. wow Omehat. Nebr. WROW Albany, N.Y. WGTM Wilsen. N.C. KUGN EUFena, Oron. WARM Seranton. Pa. WMBS Union*own, Pa
KTBC Austin Tax, KSUB Codar city, Utah WLVA Lynchburg. Va. KMO Spokenc, Wash. 400-499.7 CFCF Montreal, Que, CFCH North Bay, Ont. CFOC Saskatomn, Sask. CKCL Truro. N.S. WIRB Enterprise, Ala, KCLS Flagstan, Ariz.
KVCV Redding. Calif KVCV Reddint. Calific KZIX Ft Collins. Colo. WICC Bridrepert Conn. WPDO Jecksonvilis FI* WMT Cedar Ranids low WWOM Now Orloans, Ls WFST Caribou. Maine WCAO Baltimore. Md. WLST Escanaba Mich. WTAC Flint, Hich KGEZ Kalispall, Mont. WSJS Winston-Salem, N.C KSJB Jamestown. N.D. WFRM Coudersport, Pan. WAEL Mayagurz, P,R. WREC Memphis, Tonn KROD EI Paso, Tex. KERB Kermit, Tex. KTBB Tyler, Tex. $610-491.5$ CHML Mont Lauriar, Que。 CHNC New Carlisle, Que.


5000 CKKL Trail, B.C. Man 1000 5000 CKTB St. Catharines, Ont. 10000 WSGN Birminghams, Ont. 10000 KFAR Birmingham, Ala. 5000 KAYL Fairbanks, Alaska 5000 1000 KFYL Lancaster, Calif. 1000 10000 WCKR Mismi FIse. Calif, 5000 5000 WOEB Ponsacola, Fla, 500 d WCEH Hawkinsville. Ga. 500d WRJ8 Russellville, Ky. 500 d KDAL Duluth, Minn. 5000 WDAF Kansas City, Mo, 5000
KOJM Mavre. KOJN Havre, Ment. M, 1000 WGIR Manehester, N.H, 5000 KGGM Abuquerque, N.Max. 5000
WAYS Charlotte, $4 . C$. WTYN Charlotto, .C. 5000 $\begin{array}{ll}\text { WTYN Columbus, Ohio } \\ \text { WiP Philadalphia, Pa. } & 5000 \\ \text { Kil }\end{array}$ KILT Houston Tex. KVNU Logan, Utah WSLS Roanoke. Va. KEPR Kennewick. Wash. 620-483.6
CFCL Timmins, Ont. 10000 5000 CKCK Repina, Sask. $\quad 5000$ 1000 KTAR Phoonix, Ariz. 5000 KNG8 Hanford, Callf. 1000 KWSD Wt. Shasta, Calli, 1000 d KSTR Grand Junction. Colo, 5000d WSUN St. Potersburi. Fla. 5000

WTRP LaGrange, Ga. 1000 d KWAL Wallace. Idaho 1000 5000 KMNS Sioux City. lowa 1000 | 10000 | WTMT Louisvillo, Ky. | 500 d |
| ---: | :--- | :--- |
| 5000 | WLBZ Bantor, Mallo | 5000 | 0 WJDK Jackson, Wiss. 5000 $\begin{array}{ll}\text { WVN Nowark, N.d.Y. } & 5000 \\ \text { WHEN Syracuse. N.Y. } & 5000 \\ \text { WDNC Durham, N.C. } & 5000\end{array}$ $\begin{array}{ll}\text { WDNC Durham. N.C. } & 5000 \\ \text { KGW Portiand, Ora. } & 5000\end{array}$ WHJB Greansbury. Pa. 1000 WCATE Cayco. S.C. 500 D KWFJ Wichita Falle. Tex. 5000 WWFJ Wichita Falle. Tex. WCAX Burlington, Vt. WWNR Beckley, W,Va. 1000

## $630-475.9$

$\qquad$
lo00d CKAR Huntsvilis, Ont. 1000 5000 CHLT Sharbrooke, Qut. 5000 5000
CFCY Charlottetown, P.E.I. 5000
1000 CJET Smith Falls. Ont. 1000 CKRC Winnipen. Man. 5000 $\begin{array}{llll}5000 & \text { CKOV Kelownt, B,C. } & 1000 \\ 5000 & \text { CKYL Peace River, Alta, } & 1000\end{array}$ 5000
1000 d
WAV WA Albertville. Ala. Altar, 1000 d 1000 CHED Edmonton. Alta, 10000 $\begin{array}{ll}\text { WJDB Thomasvilis, Ala. } & 10004 \\ \text { KJNO Juneau, Alasker } & 1000\end{array}$

Re．Wave Length KVMA Magnolla，Ark． K100 Monterey，Calif． KHOW Oenver，Colo． WMAL Washington，D．C． WNEG Tocena WNEG Toesen，Ga． KIDO Boise．Idaho WTAP Lexington，Ky． KTIB Thibodaux，La， WJMS Ironwood，Mich， KOWB So．8t．Paul．
KXOK St．Louls，Mo． KXOK St．Louls，Mo． ${ }^{K} \mathrm{KOHW}^{2}$ Belgrade， KOH Reno Nov． KLEA Lovington，N．Mex WIRC Hickory，N．C． WMFD WIIminato．N．C． KWRO Coguille，Ores． WEJL Scranton．Pa． WKYN San Juan，P．R． WPRO Providenco．R．： KMAC San Antonio Tox KGON Edmunds．Wah．Utal 640－468．5

CBN St．John＇s．N．F． KFI Los Angeles，Callif． WH Amas．Iowa WNAD Norman，Okla． 650－－461．3

KORL Honolulu，Hewall WSM Nashville，Tonh． 660－454．3
KMEO Omaha，Nobr． WESC Greanville，N．Y KSKY Oallas．Tox．
670－447．5
WMAQ Chieage．III． 680－440．9
CHFA Edmonton，Alta． CHLO 8t．Thomes，Ont． CJOB Winnipeg，Man CKGB Timmins，Ont．
KNBC San Fran．，Calli WPIN St．Potersburg，Fia． WCTT Corbin，Ky． WCBM Baltimore．Md WNAC Boston，Mass． KFEO St．Joseph．Mo WINR BInghamton，N．Y WPTF Raleigh．N．C． WISR Butler，Pa WAPA Sen Juan．P．Rice． KENS Som Antor Tex KOMW Omak．Wash WCAW Charleston，W，Va． 690－434．5

CBU Vancouver．B．C． WVOK Birmingham，Al KVNA Fiagstaft．Ariz KEVT Tueson，Ariz． KBBA Benton，Ark． KAPI Pubbio，Colo． WADS Ansonia．Conn． KAPA Jacksonvilio，Fia． KBLI Blackfoot．Idaho KGGF Coffoyville．Kans TCR Mimnerpolls．Mino STL 8t．Louls，Mo． KEYR Terrytown．Nebr KRCO Prinevilie．O red XUR Media，Pa
KUSD Vermillion，S．Dak． KHEY EI Pass．Tox． Lamesa．Tox． wCYB Bristol，Va WNNT Warsaw Va．

700－428．3
WLW Cineinnatl，Ohio
710－422．3
CJSP Leamington，Ont． KKVM Ville Marls．Gus NKRG Mobllo Ala KMPC Los Angeles．Calif． KBTR Danver．Colo． WGBS Mlaml，Fla Wnom Rome．Ga
KEEL Shroveport，La． WOR New York．Mo． 50000


10000
50000
5000
1000
1000d

0000
50000
$250 d$
$\stackrel{500 d}{50000}$
50090
10000 d 1000

50000

50000

1000 d
5000 d
10000

8
1000d
10000
50000

Ke．Wave Length
DZRH Manils，P．I． WKJB Mayaguez，P．Rice WTPR Paris．Tenn． KGNC Amarillo．Tox KURV Edinburi，Tax． KIRO Seattle，Wash．
WDSM Superior．Wis． 720－416．4
WGN Chiesgo，III．

## 730－410．7

 CKAC Bind Rlver，Ont． CKAC montreal．Que． CKLG No．Vancouver，B．C． WJMW Athens，Ala． KFOD Anchorage，Alas KFQD Anchorage，AlaskaKSUD W．Memphis，Ark． WKTG Thomasville．Ga． KLOE Goodland，Kans． WFMW Madisonvills．Ky WTRY Bastrop．La． KTRY Bastrop，La．
WARB Covinglon．La WMRB Covinglon．La． wMMS Bath．Maino KWRE Warrenton，Mo
 WFWC Goldsboro，N．C WOHS Sholby．N．C． WMG8 Bowling Green．Ohio WNAK Nanticoke．Pa． WPIT Plttsburgh．Pa． WPAL Charioston，S．C WLIL Lenoir，Tenn． KSVN Oedan Utaito，Tox． WPIK Aloxandria， WMNA Gretna，Va． KULE Ephrata，Wash． $740-405.2$
CBXA Edmonton，Alta
CBL．Toronto，Ont． CBL Toronto，Ont．
WBAM Montgomery，Ala． KUEQ Phoenix．Ariz． KCBS San Franelsco，Callf． 50000 KCBS San Franelseo，Calif． 50000 KVFC Cortoz，Colo．Colo． KYME Oriando idaho WVLN OInoy，III． KBOE Oshaliosa，Iowe WNOP Newport，Ky KTAO Cambridge，Mass． WGSM Carisbad．N．Mox． WGSM Huntington．N．Y． WPAQ Mount Alry，N．C． KRMG Tulsa．Okla． WVCH Chester $P$ ． WIAC San Juan，P．Rlee WBAW Barnwall，8．C． wilG Humboit．Tenn． KTRH Houston．Tox． KTRH Houston．Tox．
KCMC Toxarkana．Tox 750－399．8
WSB Atlanta，Ga． KMMD Baltimore．Md． WHEB Portsmouth N H KSEO Durant．Okla KXL Portland，Ored WPDX clarksburg．W．Va． 1000 d 760－394．5
KGU Honolulu．Hawail 10000 WJR Detrolt．Mich． WCPS Tarboro，N．C． $770-389.4$ KUOM Minneapolis，minn． WCAL Narthnaid．Minn． WEW St．Louls，Ho KDB Albuquerque，N．Mex． WABC Now York．N．Y
KXA Seatte，Wash．
780－384．4
WBBM Chieate．Ill． 50000 WJAG Norfolk．Nob． WBKB Dunn．N．C． KEPI Stillwater．Okla． WAVA Arlington，Va．

## 790－379．5

CKMR Noweatle．N．B． CHB Hallfax，N．S． WTUG Tuscaloosa．Ala KCEE Tueson，Ariz．50000
1000 d
1000 d
10000 d1000d
250 d000
象宽
1000 d
50000

160 WHITE＇S RADIO LOC

W．P．

 LBE Loesburg．Fía WPFA Pensacola，Fis，Fla． WGXI Atlanta，Ga． WRMS Beardstown，III， KXXX Colby，Kans． WAKY Loulsville，Ky．
WRUM Rumford．Me． WSGW Saginaw．Mie
WSJC Mapos．Miss． WSJC Magoe，Miss． KGHL Blllings，Mont．

$$
<
$$

##  <br> $\mathbf{W}$ $K$ $K$

\section*{| K |
| :--- |
| W | <br> w}

WPIC Sharon，Pa，

$$
\begin{aligned}
& \text { WPIC Sharon, Pa. R.I. } \\
& \text { WEAN Providenee. R.I. } \\
& \text { WWED Bambere. 8.C. } \\
& \text { WTB Joh nson City. Tenn, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WEAN Providenee. R.I. } \\
& \text { WWBO Bamberg. S.C. } \\
& \text { WETB Johnson City. Tonn, I } \\
& \text { WMC Momphis. Tonn. }
\end{aligned}
$$



$$
\begin{aligned}
& \text { WETB Johnsen City. Tenn, } 1000 \mathrm{~d} \\
& \text { WMC Momphis. Tonn. } \\
& \text { KTHT Houston. Tox. } \\
& \text { K000 } \\
& \text { KTH }
\end{aligned}
$$

WAMO Pittsbur，Ory．Pa，
WTEL Philadelphia．Pa．
WLEG Laurens，S．C．WLBG Laurens，S．C．WMTS Murfreesboro，Tienn．
KFST Ft．Stockton．Tox．KPAN Horeford．Tox．KSFA Nacogdoches．Tox．
KONO San Antonlo．Tox．KWHO Salt Lako City．
WEVA Emparia，Va． Utah WOAY 0ak Hill．W．Va．
WFOX milwaukee．Wis．
870-344.6

| KIEV Glendale． | 250 d |
| :---: | :---: |
| KAIM Kaimuki，Hawall | 5000 |
| WWL Now Orieans，La， | 50000 |
| WKAR E．Lansing，Mich． | 5000 d |
| WHCU Ithaea，N． | 1000 d |
| WGTL Kannapolis，N．C． | 1000d |
| WHOA San Juan，P，R． | 5000 |
| KJM Ft．Worth，Tex． | 250d |
| WFLO Farmvillo，Va． | 1000 d |

$880-340.7$
$\begin{array}{ll}\text { WCBS Now York，N．Y．} & 50000 \\ \text { WRRZ Clinton，N．C．} & 1000 \mathrm{~d}\end{array}$WRRE Clinton，N．C．ohio 1000 d
890－336．9
WHNC Hendorson．N．C．900－333．1
CKTS Sherbrooke，Que．CHNO Sudbury，Ont．CJBR Rimousk，Que．CJVI Victoria Be Que．CKBI Prince Alhert，Sask．WATV Birmingham．A820－365．6
WAIT Chicago．Ill．WDSU Evansville，Ind．WDSU Columbus．OhioWFAA Dallas，Tex．
830－361．2KIKI Honolulu，HawaliKBOA Kennett，Mo
840－356．9
WRYM Now Britain，Conn． 1000 d
1000 dWHA Now Brilla，Ky．$\quad 50000$CJC Langley Prairie，B．C．WYOE Birmingham．Ala．
1000
1000
10000 10000
10000
WRUF Galnesville．FIa．
50000
50000000 WEAT W，Palm Beaeh，Fla． 1000
5000 d WHOH Bostan．Mass． 50000
KUTA Blanding, Utah
WSIG Mount Jackson. Va
WTAR Norfolk. Va.
KGMi Boling
KGME Boilingham, Wash
KNEW Spokane Wash.
WEAQ Eau Claire. Wis.
800-374.8
CHAB Moose Jaw, Sask.
CKOK Pontleton. B.C.
CFOB Ft. Franees, Ont.
CILX Ft. William. Ont.
CJBQ Bellevilio. Ont.
CKLW Windsor, Ont.
CHRC Quebes, Que.
CJAD Montraal, Qua,
VOWR St: Johns, N,F
WHOS Decatur. Ala.
WMGY Montgomery, Ala
KINY Junaau. Alaska
KAGH Crossett. Ark.
KVOM Morrilton Ark.
KUZZ Bakersfield, Calif.
KOAD Wead Calif.
KBRN Brighton, Colo.
WLAD Danbury, Conn.
WSUZ Palatka, Fla.
WJAT Swainsboro, Ga.
KXIC Iowa CIty,
WBOK Now Orleans, La
WCCM Lawrence. Mass.
KREI Farminpton, Mo.
KDBM Dillon, Mont.
WKON Camden. N.J,
KJEM Okla City, Okla
KPDQ Portland, 0 reg.
WCHA Chambersburg. Pa. 1000 d
WDSC Dillon. S.C.
WDEB Sweetwater. Tenn.
KBUH Brisham City, Utah
W8VB Crowe, Va.
WKEE Huntington, w.Va.
WKEE Huntington, w.
wDUX Waupaea, wis.
$810-370.2$
KGO San Franelseo, Callif. 50000
WABW Annapolis. Md. 250 d
KCMO Kansas City, Mo, 50000
WGY Seheneetady, N.Y.
WKBC N.W ilkesbore. N.C.
WCEC Rocky Mount, N.C.
WEDO Me Keesport.' Pa.
WGOK Mobilo, Ala.
KPRB Fairbanks. Alaska
KHOZ Harrison. Ark.
KBRE Wost Covina, Callf.
KJWL Gergetown. Del.
WSWN Belle Glade, Fia.
WMOP Ocala, Fla.
WCGA Calhoun. Ga.
WCRY Macon, Ga.
WEAS Savannah, Ga.
KTEE Idaho Falis, Ida.
KTEE Idaho Falis, Ida
WKYW Louisvillo. Ky.

Ke. Wove Lengt KMCO Conroe. Tex. KFLD Floydada. Tox KCLW Hamilton. Te WODY Bassett, Va. WAFC Staunton, Va. WATK Antigo, Wis.
910-329.5
CJDV Drumheller, Alta. CKLY Lindsay, On CBO Ottawa, Ont. CFJC Kamloops, B.C. CHRL Roberval, Que. KPHO Phoonix, Aflz. KLCN Blytheville. Ark KAmO Camdon, Arki. KOEO EI Cajon, Calif. KEWB Oakland, Calli. KPOF nr. Denver, Colo. WHAY Now Britain, Co WPLA Plant City, Fla WGAF Valdosta, Ga. KGGN Caldwall, Ida. WSUI lowa City, lowa WLCS Baton Roune, La. WABD Banior, Main wror Fint. mieh. WCOC Merldan, Miss. KY8S missoula, Mont. KBIm Roswell, N.Mox. WLAS Jaeksonville, N.C. WPFB MIddetotown, oni KGLC Mlami OkJ. KURY Brookin es. Ore KISN Partland, Oro. WAVL Apollo. Pro WGBI Scranton, Pa WPBA York. Pa. WNGC North ${ }^{\text {Wher }}$. WORD Spartanburtston, S.C. 5000 d WJCW Johnson city Tann 5000 WEPG S. Pittshurgh, Tonn. 300d KNAF Frederieksburg. Tex. 1000 d KRRV Shermat Tax KALL Salt Lake Citiy, Utan
WRNL Rlehmond, Va WHYE Roanoke. Va. KUOY Soattio. Wash WH8M Hayward, Wis. 920-325.9
CFRY Portage La Prairio. CJCH Hallfax, N.S. CKCY Sault St. Marie, Ont. 10000 KCX Wingham, Ont WWWR Russellville. Als 1000 KOES Palm Surings, Cailf. 10000 KVEC San Luls Obispo, Cal. 1000 KREX Grd, Junction, Colo. 5000 KLMR Lamar, Colo. WGST Atlanta, Ga.
WVOH Hazolnurst, Ga. WGNU Granite Clity, III. WMOK metropolis, ill. WBAA W. Lafayette, Ind. KFNF Shenandoah, lowa WBOX Bogelusa. Le. KTOC Jonesboro, La. WPTX Lexington Pk., Md.
KDHL Faribault, Miñ.
KWAD Wadena, Minn.
KOLO Reno Ney,
KOEO Albuquarque, N.M WKRT Cortland,
WIRD Lake Plaid. M $_{\text {M }}$
WBBE Burlington, $N$. $\mathbf{C}$.
KGAL Columbus ohio
WKVA Lewlistown, Pa.
WTAD Providonee P.
KEZU Rapld city, S. Oik. WLIV Llvingston. Tonn. KELP EI Paso, Tox. KECK Odessa, Tox. KTLW Texas City. Tax KITN DIympia, Wanh. WMMN Falrmont. W, Ve

930-322.4
CFBC Salnt John, N.B.
W.P.
500 d
250 d
250 d
500 d
1000 d
1000 d
250 d
1000 d
500
5000


W.P. .P.|Kc. Wave Length CHNS Halifax, N.S. | 10000 | CKWS Kingston. Ont. |
| :--- | :--- |
| 1000 d | WBRC Birmingham. Ala, | 1000 d WBRC Birmingham.

1000 WOZ Mobile. Ala.
10000
1000
5000 5000
500 d d KAVP Apenix, Aley Calle. W.A.
10000
5000
5000
100
250
500


Re. Weve Length
KUPI Idaho Falls, Idatho
KSGM Chester, ill.
KITY Dhyila
W.P. 1000d $\begin{array}{ll}\text { KITY Danvilla } \\ \text { KREB Shrevepor. Lil. } & 1000 \\ \text { La } & 5000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { WCAP Lowell, Mass, } & 1000 \mathrm{~d} \\ \text { WDMC Otse po, Mileh. } & 500\end{array}$ WPBC Minneapolis. Minn. 1000 d
WAPF MeComb. Miss.
1000 d KMBC Kanasa City, Mo. 5000
 KABL Oakland, Calif. WGRO Lake City, Fla. 5000 s KICA Clovis,' N. Mox. KMIN Grants. N. N. Mox. WKLM Wilmington. N.C. 500 wONE Dayton, Ohio WILK WIlkes Barre. Pa. K KDSJ Deadwood. S. Dak.
wsix Nashville, Tonn. KFRD Rosenter Ti Tox. KSVC Richfold, Utah
WFHG Bristol. Va.
WHE WHEK Chase city, v KUTI Yakima, Wasn WHAW Weston, W.Va.
WSUB Manitowec, Wis
WPRE PralrioduChion

$\qquad$ 1000 d 990-302.8 | CBW WInnipen, Man. |
| :--- | :--- |
| CEY Corner Braok, Nind. |
| 10000 |
| WE | WEIS Contor, Ala.


| WWW Frayste. Ala. | 1000 d |
| :--- | ---: |
| WTCB Flomaton. Ala. | 500 d |
| KTKT Tuessn, Ariz. | 10000 |
| KEIS Pitsburn. Callf. | 5000 | KENY Bollingham. Farndalo.

## wSAZ Huntingten, W.Va.

 KROE Sheridan, Wyo.940-319.0
CBM Montral CJIB Yorkton, Sask. KOBY Tueson, Ariz. KFRE Fresno, Calif. WINZ Miami. Fla. WM1X Wt. Vornon, III. KIOA Des Moines, lowa W JOR South Haven, mieh.
KSWM Aurora. Mo. KSWM Aurora. Mo. WFNC Fayettoville, N.C. WGRL Bond. Ores. WGRP Greenvilio. Pa. WIPR San Juan. P.R. KTON Belton. Tex KATQ Texarkana, Tox. 950-315.6 CKNB Campbellton, N.B. WRMA Montiomery. KXIK Foprent city, Ala KFSA Ft smith. Ark. KAHI Auburn, Calif. KIMN Donver Calo. WNUE Fi. Waiton Sen. Fis. WLOF Orlando. FIa. WGTA Summorvillo. G WGOV Valdosta. Ga. KBOI Bolse. Idisho KLER Oronno, Idaho WAAF Chicago, Ill. KOEL Oalwoin, lowe WBY Newton, Kans. WBYL Barbourville, Ky. WORL Boston, Mass, WW) Detroit, Mieh. KRSI St. Louis Park. Minn
WBKH Hattiesburg, KLIK Jefferson City, Mo. WBER Moncks Corner, N.C. KLHS Lordsburg. N. Max WBBF Rochester. N.Y. WIBX Utics, N. Y WPET Greensboro, N.C. KYES Roseburg, Orea, WNCC Barnesboro, Pa WPEN Philadelphla, Pa.
WSPA Spartanbur WSPA Spartanbure. S.C. WAGG Franklin, Tonn. KOSX Oenison, Tex. KPRC Houston. Tex. KXEL R iehmand, Va. WXGI Richmond. Va. KJR Soattio Wash. WKTS sheboygen, wis. 960-312.3

\section*{5000

1000
1000
50
50
50
5000

10000}

## 00 CK <br> 000

## KNBF Troy, Ala.

## 000 KBIS Bakersfold, Calif.

## KCHV Conehelis, Cali KBEE Modesto. Calip KFEL Pues

 KFEL Pueblo. Colo. WIIN Atlanta, Ga. WVOP Vidalla, Ga. KAYT RuDort, Hawho WMAY Springfold, Jll. KSYE Alouisvillo, Ky WC 0 WAMD Abordeon, Maine550000$\begin{array}{r}5000 \\ 1000 \mathrm{~d} \\ 1000 \\ \hline\end{array}$
5000
1000
wWH00 orlando, Fla. 100
KTRG Honolulu, HawallWITZ Jasper. Ind.KAYL Storm Laie, IowWIMR Row Orloans.KAIH Raywillo, La,WCRM Clare. Mich.
WABO Waynes bero, mlss.
KAMO Monett, Mo.KSVP Artesia, N.Mex. 1000W JEH Gallipolls, Ohio N.C. 1000WTIG Massillon, Ohio
KRKT Albany, Oreg.owa


0000
0000
RFA
RSRA
KDIWR
SRA
W DL
SBWSBT South Bend. IndWPRT Prestonsburg, Ky.KROF Abbeville, La.
WBOC SBlisbury,WFGM Fitenburg. Mass.-WHAK Ropers Ciiy, Mieh.
KLTF Littlo Falls, Minn.
WABG Groenwood, Miss.KFVS Cape Girardeau. Mo.KW YK Farmington, N.Mex.1000
1000 dWEAY Plattsbura.WFTC KInston. N.C.
WWST Woostor, Onio
KGWA Enid, okla.is, oren0 KLAD Klamath Falls, Ores. 5000100
100
100500
100
100
23
WWIBG Philadolphia, Pa.
WLSC Somerset, Pa,
WFRA Mayaguez, P.R.
WLKW Providonce, R.I.
WAKN Aiken, S.C.
d
WNOX Knoxvllis. Tenn.
KWAM Memphis, Tenn.
KYAM Kond$\begin{array}{ll} & 1000 \\ \text { KWAM Memphis, Tenn. } & 1000 \\ \text { KTRM Beaumont. Tex. } & 1000\end{array}$
KNIN Wiehlta Falls, Tex. KNIN Wlehlta Falls, T

KOYL Tooale, UtahWNRV Narrows, Ve| WNRV Narrows, Va. | 1000 |
| :--- | :--- |
| WANT Riehmond. Va. | 1000 |WKLJ Sparta. Wis1000-299.8

10000 WCFL Chieaso II,
KTOK Okla. City, okla.
KSTA Coleman, fex. 10000
5000
5000
2500 ..... 250 d
1000 dKGHB R Rutland, Vt.
WH WB
WB Charlotte Amalio.
KORO Seattle. Wash. ..... 50000
1010-296.9
CFAB Toronto. Alta. $\begin{array}{lrr}\text { KVFC } & & 500 \mathrm{~d} \\ \text { Kinsilow, Ariz. } & & 1000 \\ \text { KLARA Little Roek. Ark. } & 10000 \\ \text { KCHJ Delano. Calif. } & 5000\end{array}$  KCind Palm Sprasic, Gallf. 10000 KSAY San Fran.. Calif. 10000 d
WCAU Grestview, Fla.
1000dWZFO Jacksonvillo Beath.2500 d
50000 d$\begin{array}{ll}\text { WINA Tampa, Fla. } \\ \text { WGUN Docatur, Ga. } & 50000 \mathrm{~d} \\ \text { WATN }\end{array}$$\begin{array}{ll}\text { WGUN Doentur, Ga. } & 50000 \mathrm{~d} \\ \text { KATN Boise, Idahe } & 1000 \mathrm{~d} \\ \text { WGS Columbus, Ind. } & 500 \mathrm{~d}\end{array}$KSMN Mason City, Iowa 1000 dKINO Independence, Kans. 250 d
KDLA DoRidder. La.
WSIO Baltimero. Md$\begin{array}{ll}\text { WSIO Baltimere. Md. } & 1000 \\ \text { WMRT Lansins, Mleh. } & 500 \mathrm{~d}\end{array}$WMOX Morldian, Miss. 10000

KCHI Chilijcthe. Mo. 250 d| 50000 | K FWB Los Angeles, Calli. |
| :--- | :--- |
| 5000 | KGLN GlenwoodSprgs., Colo. |
| $\mathbf{5 0 0 0}$ |  |

0010000KVG No. Platt, No, Nobr,
I000d WJRZ Nowark, N., Nev.

W000d| 10000 | WEBR Burfalo, |
| :--- | :--- |
| 1000 |  |
| 1000 W | WH |e. 100

진
500
100
5000
5000 d
50001000 d
5000 d

| 500 d |
| :--- |
|  |
|  |
| 000 d |1000

5000
0d
000
000 000 C

| 000 |  |
| :---: | :---: |
| 000 |  |00 KC

CFAC Calgary, Alto.
10000 CKNL Fart St, John, B.C5000
$500 d$
W
10000
1000
WLOD Pompano Baach,
WKLY Hartwell, Ga.
WKGA Pory, Ga.
WR.
Fle.500d
5000
000 d
1000 d
1000 d
1000 d
1000 d
500 dミスᄌ

| 500 d |
| :--- |
| 500 d |

161

WABZ Albermarle, N.C. N.c. 10000 d WELS KInston, N.C. KBEV Portland, Ores. WUNS Lewisburg, Pa. WORM Savannah. Tenn, KBUY Amarillo. Tex.
KODA Houston, Tox
KAWA Waco, Tex.
WELK Charlottesville, Va. WMEV Marion, Va.
WCST Borkeley Spris. W. Va. 2500 d
WSPT Stevens Pt., Wis. 1000 d
1020-293.9
KGB8 Los Angales, Callif.
WCIL Carbondale. III.
WPEO Peoria, Ill. KDKA Pittsburgh. Pa.
1030-291.1

| WBZ Boston, Mass, |
| :--- |
| WBZA Springfold, $\quad 50000$ |
| 1000 |

KCTA Corpus Christi, Tex. 50000 d
1040-288.3
KHVH Honolulu, Hawall
KIXL Dallas. Tox.
1050-285.5
GFGP Grande Prairio, Alta. 10000 CKSB St. Boniface, Man. 10000 CHUM Toronto, Ont WRFS Aloxander WCRI Seottsboro, Ala. KYWM Show Low, Ariz. KOFY San Mateo, Calif: KWSO Waseo. Calif KLMO Lonsmont, Colo. KJSB Crastuiow, Colo. WiVY Jaeksonville, Fia. WHBO Tampa, Fla. WRMF Titusville, Fla. WBIE Marietta. Ga W MNZ Monteruma, Ga WDZ Decatur, II. KNCO Garden City, Kans. WNES Contral city, Ky. KLPL Lake Providence KCIJ Shroveport. La. WGMR Silyer 8prg.o Md. WPAG Ann Arbor, Mieh. KLOH Pipestone, MInn. KLOH Pipestons, Minn. KM18 Portagavilio, Mo KSIS Sedalia, Mo KLVC Las Vegas, Nev. WBNC Conway. N.H. WSEN Baldwinsville, N,Y. WSTS Massena, $\mathrm{N}_{\mathrm{H}} \mathrm{Y}$ WF N Now York. N.Y. WLON Lincolnton. N.C WWGP Sanford. N.C KCCO Lawton. Okla. KFMJ Tulsa, okia. KUBE Pendiston, Ores. KEED Springnold, Oreg. WEUT Butler, Pa.
WLYC Williamsport, Pa WSMT Sparta, Tonn. KLEN Killeen, Tex. KPLA Plainviow, Tox. KCAS Slaton, Tox. WGAT Gate city. Va. WBRG Lynehburg, Va. WCMS Norfolk. Va. KNBX Kirkland, Wash. WCEF Parkersburt. Wi.V WECL Eau Clairg, W WWIV Douglas, wyo
1060-282.8

## CFCN Calasry, Alta. YUPD Tuabee, Que.

 KPAY Chico. Calif. KPAY Chico, Callf.WNOE Now Orleans, La.
WHFB Benton Harbor, Mleh.
W wAP Monroo, N.C. WRCV Philadolphia, Pa. 1070-280.2

| CFAX Vletoria, B.C. | 10000 |
| :---: | :---: |
| CBA Saekville, N.B. | 50000 |
| CHOK Sarnia. Ont. | 5000 |
| WAPI Birmingham, | 50000 |
| KNX Los Angeles, Call | 50000 |
| ral Gabl | 1000d |
| WIBC In | 50000 |
| KFDI Wiehita. Ka | 10000 |

162 WHITE'S RADIO LOGIWCOP Boston, Mass. Wich. 1000  ,
KFAX San Francisco, Calif. 50000WLBB Carrollton, Ga. 250 dKYW Clevoland, ohio $\$ 0000$WGPA Bethichem, Pa. 250d
$1110-270.1$
CFML Cornwall, Ont.
CFTJ Galt, Ont.
KIPA Hampa, Fla.
KIPA Hllo. Hawaii
KFAB Omaha, Nebr.
KBND Band Ores.
KBN B Bond ores.
$\begin{array}{ll}\text { WNAR Norristown, Pa, } & 500 \mathrm{~d} \\ \text { WVJP Caguas, P.R. } & 250\end{array}$
WHIM Providenes. R.I. 1000 d
$1120-267.7$
WUST Bethesda, Md. $\quad 250 \mathrm{~d}$
$\begin{array}{ll}\text { KMOX St, Louis. Mo, } & 50000 \\ \text { WWOL Bunalo, N.Y. } & 1000 \mathrm{~d}\end{array}$
KCLE Cleburne, Tex. 250d
$1130-265.3$
CKWX Vancouver, B.C.
KROU Dinuba, Calf.
KSDO San DIopo, Callf.
KSDO San Dlopo, Cali
KWKH Shrevinert
KWKH Shreveport, Le
WCAR Detroit, Mich.
WDGY Minneapolis. Minn. 50000
WNEW New York, N, $\mathrm{Y}^{2} \quad \begin{array}{ll}50000\end{array}$
$1140-263.0$
CFTK Terrace, B.C.
CKXL Calgary, Alta.
CBI Sydney, N.S.
KRAK Sacramento, Callf.
KRAK Saeramento, C
WMIE Miami, FIa.
KGEM Bolso,
KGEM Boiso, Idah
WSIV Pokin. III.
WSIV Pokin. III. City 0kle 10000 d
KLPR Oklahoma City. Okla, 1000 d
WITA San Juan, P.R.
500
WITA San Juan, P.R.
KSOO Sioux Fals. S.Dak. 10000
Kin
Kson Sioux Falls. S. Dak. 1000
KORC Mineral Weils, Tex. 250 d
WRVA Richmond, Va. 50000
1150-260.7
CKSA Lloydminister. Alta. 10000
CKOC Samilton. N.B. $\quad 10000$
CKOC Hamilton Ont.
CKXR Three fivers, que.
WBCA Bay minette, Ala. 1000 d
WGEA Gusaloss. Ala 1000 d
10000
10000
50000
KCKY Coolidge, Ariz. Art 1000
KFSG Los Angeles, Calif. 2500
KRKD Los Anyales, Calif. 5000
KJAX Santa Rosa, Calif. 1000 d
KGMC Englewood, Colo.
250d250 d
1000 d

        od
    00Od
WCEN Mt

Kc. Wave Length
KASM Albany, Minn WXTN Lexington, Miss KRMS Osage Beach. Mo.
KSEN Shelby. Mont. KDEF Albuquerque, N.Mex. WBAG Burlington, N.C.
WGBR Goldsboro. N.C. WCUE GuyahogaFalis, óhio WIMA Lima. OhioLehighton, Pa.WKPA New Kensington, Pa.ina 1000 dKIMM Rapid City, S. Dak.5000
1000WGRK Morristown. Tenn.
WTAW Bryan. TeX.
KCCT Corpus Christi, Tox,. 1000dKCCT Corpus Christi, Tax,
KIZZ El Paso.Tex.KVIL Highland Park, Tex. 1000 d
KJBC Midand, Tex.
KPNG Port Neches, Tex.
KPNod
S00d
K0LJ Quanah. Tex.

$$
\begin{aligned}
& \text { KBER San Antonio, Tex. } \\
& \text { KOFE Pullman, Wash. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KOFE Pulman, Wash. } \\
& \text { KAYO Soattle. Wash. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { KAYO Soafte. Wash. } \\
& \text { KKEY. Vancouver. Wash. }
\end{aligned}
$$WABH Dearneld, Va.

Ke. Wave Lengfh W.P.Ke. Wove Length WHSY Hattlesbure. Miss. WSSO Starkvilie. Miss. WAZF Yazoo City. Mlss. KODE Jonlln. Mo. KLWT Lebanon, Mo. KBCM Moberiy, Mo. KBMN Bozoman, Mont, KLCB Libby, Mont. KTNC Falls City. Nebr KHAS Hastings,
KELY Ely. Nov. KELY Ely. Nov. KDOT Reno, Nev WTSV Claremont, N.H. WCMC Wildwood. N,d. KOTS Doming. N.MOX KFUN Las Vegas. N.Mex. KRSY Roswell, N.MeX WNIA Cheoktowaga, N. Y WENY EImira, N.Y. WLFH LIttle Falls, N.Y. SkY Asheville N. © N. Y WFAI Fayetteville. N.C. WiSP Kinston, N.C. WNNC Newton, N.C. WCBT Roanoke Rap., N.C. KOIX Diekinson. N.Dak. WCPO CIncinnati, Ohio WCOL Columbus. Ohio WIRO Ironton. Ohlo WTOL Toledo, Ohio KAOA N, of Ada, Okla. KIAL Astoria, Orag. KRNS Burns, Orog.
KOOS Coos Bay, Ores. KGRO Grosham, Oreg. KQIK Lakeviow. Oreg. KTDO Toledo. Oreg. WBVP Beaver Falls, Pa. WEEX Easton. Pa WKBO Harrisburg, Pa, WCRO Johnstown, Pa, WTIV Titusville, Pa. WNIK Arecibo, P.R. WERI Westerly, R.I. WNOK Columbia, S.C WOLS Florence, S.C. KSIX Corpus Christi. Tex KOLK Ool R10. Tex. KERV Kerrvilia, Tex. KLVT Levelland, Tex. KOSA Odessa, Tex. Pampa, Tex SSST Sulphur Spros., Tex KWTX Waco, Tox. OOAL Prics, Utah W joY Burlington, $V$ V.
WBBI Abingdon, WCFV Cllifton Forge, Va. WFVA Fredericksburg, Va WNOR Nortoik. Ya. KLYK Everett, Wash. KLYK Spokane. Wash. KREW Sunnyside, W. WTAP Parkorsburg, w.Va WHBY Anpleton. W/s WHVF Wausau Wis. K VOC Casper, $\mathbf{W}$ yo.

1240-241.8
CFLM La Tuque. Que. Northwest Terr. 100 CFPR Prinee Rupert. B. JCS Stratford, Ont. CJRW Summerside. P.E.I. CKBS St. Hyacinthe, Que. CKLS LaSarre, Que. WEBJ Brewton. Ala. WOWL Elorence. Ala, WARF Jasper, Ala KVRD Cottonwood, Ariz. KZOW So. of Globe, Ariz. KRC Arkadilohla. KWAK Arkadolphla. Ark KPLY Crescont City. Callif. KMBY Monterey, Calif. KPPC Pasadena, Calif. KLOA Ridoecrest Calli KROY Sacramento. Callif. KRNO San Bernardino.

Californla 1000
KSON San Diego. Callf. KSUE Susanville, Calli.

1000 KRDO Colo. Sprgs. Colo 250 KDGO Durango, Coío. Colo. 1000 KCRT Trinidad, Colo 250 WWCO Waterbury, Conn. 1000 WBGC Chipley, Fia. 0000 1000
250 250 WMN Fort M yors. FIa. 00 WFOY St. Augustine, Fla. WBHB Fitzoerald, Ga. WOUN Gainesvilie. Ga.
WLAG LaGrange, Ga. WLAGL Macon, Ga,
WWNS Stateshoro,
WWNS Statesboro, Ga
WPAX Thomasvillo, G3. WTWA Thomson, Ga, KLEI Kailua, Nawail
KVNI Coeur d'Alene, Idaho
KFLT Mountaln Home, Idaho KFLT Mountaln Home, Idaho WCRW Chicago. III. WEDC Chicago, III WEBQ Harrisburg. II WTAX Sprinofield, ill.
WSDR Sterling, ill. WHBU Anderson, Ind KDEC Decorah, lowa KBIZ Ottumwa, lowa KICO Spencer, lowa KAKE Wichita, Kíns. WINN Loulisvilie. Ky. WFTM Maysville, Ky. 250
000 d WPKE Pikeville, Ky. KASO Minden, La. KANE New lberla. WCOU Lowistor, Maln
WCEM Cambridgo, Ma. WJE Hagerstown. Md. WHAI Green fold, Masi.
WOCB W. Yarmouth, Hass. WATT Cadillac. Mich.
WCBY Choboygan. Mict WJPD ishpeming, Mict WJIM Lansing. MICh. WMFG Hibbing, Minn.
WJON St. Cloud, Minn WMPA Aberdeen, Niliss. WGRM Greenwood. Mliss.
WGCM Gulfoort. Miss. WGCM Gulfport. Miss. WMIS Natchez, M iss. KFMO Flat River. M
KWOS Jefferson City KODE Joplin. Mo.
KBMY Billings, Mont.

## KLTZ Glasoow. Mont. KBLL Helenm. Mont.

 KBLL Helena, Mont.KFOR LIncoln, Nobr. KOOY North Platte, Nebr. KELK EJkO, Ner.

## KAVE Carlsbad. N.Me

## KCLV Clovis, WGBB Frieport.

## WGTA Genova, N.Y. Y. WITM Jamestown. N.Y. WVS Liberty, N . $Y$.

## W NBZ Saranac Lake, N. $Y$

WSNY Sehenectady. N. WATN Batertord. N.C.
WIST Charlotto. N.C.

## 

## 000

000
000
250

## 250

1000
250
W.P.
 1250-239.9 CHWO Oakville. Ont.
CKBL Matane. Quue.
CKOM Saskatoon. Sask. CKOM Saskatoon, Sask,
WZOB
Ft, Payne, Ala. WETU Wetumpka, Ala. KAKA Wickenburg. Ariz KFAY Fayetteville, Ark.
KAJI Littio Rock. Ark. K
1000 K KTMS Santa Barbara, Calif.
 KMSL Ukiah. Calit, WNER Live Oak, Fla.
WRIM Pahokes. Fla. WDAE Tampa, Fla WYYH Madlson, Ga. WIZZ Streator, Ill.
WGL Ft. Wayne. , Ind. WRAY Princeton, Ind,
KCFI Codar Falls, Iowa
KFKU Lawrence, Kans. WREN Topeka, Kans. W NVL Nieholasville, Ky, WLCK Scottsville, Ky. WGUY Bangor, Main
WARE Ware, Mass.
W WC Bay City WWBC Bay City, Mieh. KOTE Fergus Falls, Minn
KCUE Red Wing. Minn. WHNY MeComb. MISs.
KHTN Hen WKBR Manchester, N.H WMTR Morristown, N.J.
WIPS Tlionderona. N.Y.
WFAG Farmville N.C. WFAG Farmville. N.C.
WBRM Marion, N.C. WBRM Marion, N.C.
WCHO Washington Court House, 0
rg, Oreg. KQEN Rosoburg, Oreo.
WLEM Emporlum, Pa.
WPEL Montrose, ho 500 d
5000 d WLEM Emporium, Pa.
WPEL Montrose, Pa.
WRYT Pittsburah, Pa. WRYT Pittsburgh.
WNOW York. Pa.
WN
WNOW York, Pa,
WTMA Charieston, S.C.
WCKM Winnsboro,
WCKM Winnsboro, s.C.
WKBL Covington. Tenn. WKBL Covington, Tenn KFTV Parls. Tox. KPAC Port Arthur, Tox.
KUKA San Antonlo, Tox. KTFO Seminole: Tox. KANN Oodon, Utah KVEL Vernal, Utah WYSR Franklin, Va. WNRG Grundy, Va. KWSC Pullman Wash

## 1260-238.0

CFRN Edmonton, Alta.
DYBU Cebu. P.I.
WCRT Birmingham. Ala.
KPIN Casa Grando. Ariz. KCCB Corning. Ark. KBHC Nashrilte. Ark KGIL San Fornando, Callf. KYA San Francisto.
KSNO Aspen, Colo. WMMM Wesiport, Con
WNRK Newark. Dol. WWOC Washington, D.C.
WFTW Fort Walton Beach WFTW Fort Walton Beach. WAME Miaml, Fla.
WWPF Palatha. Fla.
WHAB WWPF Palatha. Fla.
WHAB Baxley, GA.
WBBK Blakely, Ga. WBBK Blakely, Ga.
WTJH East Point, Ga. WTJH East point, Ga.
KIFI idano Falls, Idaho
KWEI Weiserild, KWEI Weiser. Ids.
WIBV Belleville, IH, WFBM Indianapolls. Ind. KFGQ Boone, lowa KWHK Hutchinson, Kans WXOK Baton Rouge. La WEZE Baston. Mass. WALM Alblon. Mleh KROX Crookston, Minn. KDUZ Hutchinson, Minn. WGVM Greenville. Mis WGSL Laurel, Miss. KIMB Kprintall. Nebr. WBUO Trenton. N.J. KVSF Santa Fe, N. Mex
WBNR Beacon, N.
WN. WNDR Syracuse. N. Y.
WGWR Ashoboro. N.C. WGW A Ashehoro. N. .C.
WCDJ Edenton, N.C.
W.P.

Ke. Wave Langth W.P. $\begin{array}{ll}\text { WDOK Cleveland, Ohto } & 5000 \\ \text { WNXT Portsnouth, Ohio } & 5000\end{array}$ $\begin{array}{ll}\text { WNXT } & \text { Portsniouth, ohio } \\ \text { KWSH } & \text { Wewoka-Seminote. } \\ \text { Oklahoma } 1000\end{array}$ KMCM MeMInnvilla, Orea. $\quad 1000$ WPHB Phlifipsturg, Pa, 5000 d W N UU Greonville, s.c. 5000 $\begin{array}{lll}\text { WN } \\ \text { WJOT Lake Clity, S.C. } & 5000 \mathrm{~d} \\ \text { KWYR Winner, S. } & 1000 \mathrm{~d} \\ \text { WWO }\end{array}$ WNOO Chattannoga, Tonn. 1000 d WNCH Chureh H11i, Tenn. 1000 d $\begin{array}{ll}\text { WOKN Dickson, Tenn. } & 10000 \\ \text { WCLC Jamestown, Tenn. } & 1000 \mathrm{~d}\end{array}$ KSPL DIboll, Tex $\quad 1000 \mathrm{~d}$ KWFR San Anpolo. Tex. 1000 d KTUE Tulia, Tex. 10000 WCHV Chartottesvilto, Va. 5000 WBCR Christiansburg. Va. 1000 d WWVW Grafton. W.Va. 500 d WWIS Black River Falls, $\begin{array}{ll}\text { WEKZ Monroe, Wis. } & 1000 \mathrm{~d} \\ \text { KPOW Powell. Wyo. } & 5000\end{array}$ 1270-236.1 $\begin{array}{ll}\text { CHAT Medicine Hat, Alta, } & 10000 \\ \text { CHWK Chlliwack. B.C. } & 10000\end{array}$ CJCB Sydnoy. N.S. $\qquad$ qua, $\begin{array}{ll}\text { WGSV Guntersville, Alab bee } \quad 1000 \\ \text { WSIM Prichard Ais. } \\ & 1000 \mathrm{~d}\end{array}$ KB R Anchorage, Alaska 1000
Kind $\begin{array}{ll}\text { KDJI Holbrook Ariz. } & 1000 \mathrm{~d} \\ \text { KADL Pine Bluffin Ark. } & 5000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { KCCK Tulare, Calif. } & 5000 \mathrm{~d} \\ \text { WNOG Naples, Fla. } & 500 \mathrm{~d} \\ \text { WHiY Drlando Fia. } & 5000 \mathrm{~d}\end{array}$ WHiY Orlando, Fia. $\quad \begin{aligned} & 5000 \mathrm{~d} \\ & \text { WTA. } \\ & \text { W }\end{aligned}$ WKRW Cartersvilio. Ga. $\quad 500 \mathrm{~d}$ $\begin{array}{ll}\text { WGBA Columbus, Ga, } & 5000 \mathrm{~d} \\ \text { WJJC Commerce, Ga, } & 1000 \mathrm{~d}\end{array}$ $\begin{array}{lrr}\text { KNDI Honolutu, Hawali } & 5000 \\ \text { KTFI Twin Falis, Idaha } & 5000 \\ \text { KEIC Charteston, } & 110 & 1000 \mathrm{~d}\end{array}$ WHBF Rock Island. 111. 5000
WCMR Elkhart, Ifd. 5000
WHM WWCA Gary, Ind. $\quad 1000$
WORX Madison, Ind. 1000 d KSCB Liberal, Kans. $\quad 1000$
WAIN Columbl Ky. 1000 d $\begin{array}{ll}\text { WAIN Columbia, Ky. } \quad 1000 \mathrm{~d} \\ \text { WFUL Fulton, Ky. } & 1000 \mathrm{~d} \\ \text { WVL Winnfield }\end{array}$ $\begin{array}{lll}\text { KFVL } & \text { WInnfield La. } & 1000 \mathrm{~d} \\ \text { WSPR } & \text { Springfield, Mass. } & 5000\end{array}$
 WVOM loka, Mlss. 1000 d
1000 d $\begin{array}{lll}\text { WLEM Louisvilie. Miss. } & 1000 \mathrm{~d} \\ \text { KUSN St. Joseph. Mo. } & 1000 \mathrm{~d} \\ \text { KR }\end{array}$ $\begin{array}{lr}\text { KBLB Sparks. Nov. } & 1000 \mathrm{~d} \\ \text { WTEN Oover. H. H. } & 5000\end{array}$ $\begin{array}{ll}\text { WTEN Dover, N.H. } & 5000 \\ \text { WDVL Vineland, N.J. } & 500 \mathrm{~d}\end{array}$ KRAC Alsmogordo. N.Mox. 1000 d
WHLD Nagara Falls, N.Y. 5000 d WHLD Nlagara Falls, N.Y. 5000 d
WDLA Waton. N.Y.
W000d WCGC Boimont. N.C. $\quad 1000$
WMPM Smithneld, N.C. 5000 d $\begin{array}{lr}\text { KBOM Mandan, N.Dakio } & 1000 \\ \text { WILE Cambridge, Onio } & 1000 \mathrm{~d}\end{array}$ KWPR Granti Pasi, Ores. 5000 d WLER Lebanon, Pa, 1000 d
WBHC Hampton S. KNWiC Sioux Falls, S. Dak. $\quad 1000$
WLIK Newport. Tenn.
5000 d
 KHEM Blolspras. Tax. 1000 d KEPS Eaple Pass, Tox.
KFII Fort Worth, TeX.
WTID Nown WTIO Nowport Nows, Va. 1000 d
WHEO Stuart, Va. KCVL Colvillo. Wash 1000 d
5000 d KCVL Colvilo, Wash. 5000 d
KBAM Longliow, Wash.
WKYR Koyser, W.Va.


## 1280-234.2








## U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co.; C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadeasting Co., Inc.

| Lecotlon | C.L. Ke. N.A. | Locafion | C.L. Ke. N.A. | Location | C.L. Kc. N.A. | Locafion | C.L. Ke. N.A. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Abbevillo, Ala | WARI 1480 |  | $\text { KSDN } 930 \text { A }$ | Adel, Ga. | WAAG 1470 WABI 1490 |  | WADC 1350 WCUE 1150 |
| Abbevillo, La, | KROF 960 | A berdeen, Wash. | KBKW 1450 | Adrian. Mich. <br> Aguadilia, P.R. |  |  | $\text { ILO } 640$ |
| Aberdeen, Md. | WAMO 970 | Abilene, Tox. | KREC 1470 A |  | WGRF 1340 | Alamomordo. N.M. | KALG 1230 |
| Aberdeen. Miss. | WMPA 1240 |  | KCAD 1560 | Ahoskie. N.C. | WRCS 970 |  | KRAC 1270 |
| Aberdeen, 8.Dak. | KABR 1420 |  | $\begin{aligned} & \text { KNIT } 1280 \\ & \text { KWKC } 1340 \mathrm{~m} \end{aligned}$ | Alken, S.C. | $\begin{aligned} & \text { WAKN } 990 \\ & \text { WLOW I330 D } \end{aligned}$ | Alamosa, Colo. |  |
|  |  | Abingdon, Ve. | WBBI 1230 | Altkin, Minn. | KKIN 1000 D |  | LYB 12 |




| n | C.L. Ke. N. | Locofion C.L. Ke. M.A. | Lecoflon C.L.Kc. | Kc. N. |
| :---: | :---: | :---: | :---: | :---: |
| polls, Ala. | WXAL 1400 M WIWT 1350 | $\begin{gathered} \text { CJCA } 930 \\ \text { CKUA } 580 \end{gathered}$ | Faribault. MInn. KDHL 920 Farmington. Me. WKTJ 1360 | ck. Md. WFMO 980 C |
| Denham Ser | WLBI 1220 | Edmundston, N.C. C)EM 570 | Farminiton. Mo. KREI 800 | Fraderiekis okia. KTAT 1570 |
| Denlson, $T$ | K08N | Eimaghm. III. WCAA 1090 | Farmington, N.M. KENN 1390 |  |
| Denton, Tar. | KDNT 1440 | Elborton, Ga. WESB 1350 | KWYK ${ }^{\text {KRE }}$ (280 | a. WFVA 1280 A |
| Denver, Celo. | KDEN 1840 | El Cajon, Callf. KDEO 910 A | Farmville, N.C. WFAG 1250 | Frodericton, N,B, CFNB 550 |
|  | KFML ${ }_{\text {KHOW }} 1390$ | El Campo, Tax. KULP 1390 | Farmvilla, Va. WFLO 870 | Fredericktown, Mo. |
|  | KIMN 950 A | KAMP 1430 | Farrolili, Pa. WFAR 1470 | 70 |
|  | KLIR 990 | El Dorade, Ark, KDMS 1290 | Fayette. Ala. WWWF 990 | esoport, Ill. WFMRL 1570 |
|  | KGLR 360 C | Eldorade Kase KELD 1400 A | Fayot toville, Ark. KHOG 144 | Fessport, N.Y. WGBE 1240 |
|  | K0A 850 N | Eldorade 8erings. | WFAY 1250 C | Frosport, Tox. KBR2 1460 |
|  | KPOF 910 | ( KESM 1580 |  | Fromont, Mich. WBFC 1490 |
|  | KFSC 1220 <br> KTLN 1280 | Elgin. LII. WRMM 1410 | 1490 A | KHUB 1340 |
| Denver CIt | KKAL 1580 | 1240 | Fayettovills, Tonn. | Fromont, Ohic WFRD 900 Fresno. Callif. KARM 1430 A |
| De Queen, Ark. DeRidder. La. | KDON 1390 | Elizabethtan Tenn WGAI 560 M |  |  |
| as Maines, lowa | KCBC 1390 A | Elizabothtown. Ky. WIEL 1400 |  | 1510 |
|  | A 940 M | Elizabe | . | KEAP 980 |
|  | KRNT 1350 C |  | P 1570 | KFAE 940 C |
|  | KWKY ${ }^{\text {K }} 50 \mathrm{~m}$ | Elk City, Ofic. KBEK 1240 A | Fertus. We. K KNCF 1400 | KGST 1600 |
|  | 1040 N | Elthart, Ind, WTRC isto N | 010 | $\text { MAKK } 1340$ |
|  |  | 1270 |  | Front Reyat Y KYND 800 |
|  | WJLB 1400 | 1240 | $\begin{array}{r} 690 \mathrm{~A} \\ 12800 \mathrm{~m} \end{array}$ |  |
|  | W1A 760 | Elke. Nev. KELK 1240 M | WFGM 960 |  |
|  |  |  | Flizerald, G\%. WBHB 1240 M | Fulton, Mo. KFAL 900 |
| rolt Lakes, |  |  |  | Fulton, N.Y. WOSC 1300 |
| t | DLM 1340 | Elmira, N.Y. WELM 1410 A.C | KJKJ 1400 | Fuquay Spres.. |
| L |  | 1280 N | KYNA 690 A | Gadsdon, Als. WGAD 13 |
| extor, me. | DEX 1590 |  | River. Mo. KFMO 1240 m | ETO |
| boil, To lekinson | KSPL 1260 |  | n Flon. Man. CFAR 590 | Gaftney, 8.C. WFGN 157 |
| Dickson. | KDIX 1230 | El Paso. Tax. KROO 600 C | Flint. Mleb. WFDF 910 N | Gainesville, Fis. WOVH 98 |
| dillon. | KDBM 800 |  | 330 A | WGGG 1230 M |
| llion. | WDSC 800 a | 690 | $\begin{aligned} & 1420 \\ & 1570 \end{aligned}$ |  |
| Dinuba, Callf, | KRDU 1130 | 900 | 1470 M |  |
| Dod jo Clity, Kan | WIXNO 1360 m | 150 |  | WLBA 1500 |
|  | KEDD 1550 |  |  |  |
| , Ala. | 320 | Ef Rene, Okle KELR 1460 | $\text { OLS } 1230$ | Gaithorsburs. MC. WHMC 1150 m |
|  | WDIG 1450 m | Ely, MInn. WELY 1450 M | WDWL 1240 A | Galax ${ }^{\text {Galesburs: }}$ III. WGOB 1360 m |
| Douglas, Arlm | $60$ | KELY 1330 | Florenee. 8.v. WJmX 970 A | 90 |
|  | KAPA 930 |  | $540$ | WHIN 1010 |
| Dougles, Ge. | MG 860 | Emperla, Kans, KVOE 1400 | WHEP 1510 | (lug. N: Mox. KGAK 1330 |
|  | WOKA 1310 | Emporit, Va. WEVA 860 | Fond du Les. W/is. KFI2 1450 m | , Mo. Wix. KYYA l230 |
| Dover, | WWOV 1410 m | Endicott, | Fordyee, Ark. K日ST 1570 | CKGR 1110 |
|  | WKEN 1600 A | Englowood, Colo. KGME 1430 A |  | KILE 1400 |
| Dov | WTSN 1270 | Enslowood, Fla, WENG 1530 | WAGY 1320 | Gander, NAd. KGBC ${ }^{\text {CBG }} 1430$ |
|  | WFAN 1510 | Enid. Dkla. KCRC 1390 A | Forest Grove, Ores. KGGG 1570 | Gardon Clity. Kans. KNGO 1050 |
| Dov | WJER 1450 | KGWA KTRB 9600 | Forrest City, Ark. KXIK 950 |  |
| Doylestow | WBUX 1570 | Enterorise, Or9.i. KWVA 1340 | Fi. Braitit callo Kolo. KCOL 1410 | 40 |
| Orumhell | CJOY 910 | Ephrata. Pe. WGSA Isiu |  |  |
|  |  | Ephrata, Wash. KULF 730 | Ft. Dodes, lowa KVFD 1400 m | Gestonla, N.C. WGMC 1450 A |
| Dublin, Ge, | $40$ |  | A |  |
|  | WXLI 1230 | WIET 1400 M | Ff. Knox, Ky. WSAC 1470 | Gaylord, Mleh. WATC 900 |
| Du Bo | WCED 1420 C | 1450 | .WFTL 1400 | Geneve. Ale WGEA 1150 |
|  | WOBQ 1490 M | Escanabe, Mith. WEBC 680 m |  | Geneva, III. WG8B 1480 |
| Duluth, MInn. | KOAL 610 C | Ecanabe. wieh. WLST 800 A | KFTH 1400 | Goveve. N.Y. WGVA 1240 A <br> Georgstown. Del. WJWL 900 |
|  | WEBC 560 | Escondido. Callf. KDWN 1450 | Ft. Wyars, Fla. WINK 1240 C | Gearsetown, Ky. WAXU 1580 |
|  | KADH ${ }^{\text {K }}$ | Estovan, Sask. CJ8L 1280 | WMYR 1410 | Geerjotown. S.C. WGTN 1400 M |
| Dumes | KODD ${ }_{\text {KRHD }}{ }^{800}$ (350 m |  | Ft. Payne, Als. WFPA 1400 | Gettryburg: Pa, WGET 1320 M |
| Dundalh, Md. | WAYE $860{ }^{\text {m }}$ | Eufauld, Ala. WULA 1240 m | Ft. Plorse |  |
|  | WEBE 1360 | Eusone. Oris. KDRE 1450 M | WIRA 1400 | Giadewater, Tox KEES 1430 |
| Dundee. | WFLR 1570 | 1 A 1500 | Ft. Salnt John, B.C. ${ }^{\text {ckn }}$ g70 | Glasgow. Ky. WKAY 1490 |
| Dunn. | WCKB 780 | KATR 1320 | KMDD 1800 |  |
| Du quoin. Ill. | WDON 1580 | KERG 1280 C |  | dile, Arla KRUX 1860 |
| Duranse, Colo, | 980 | KUGN 590 N | CFMA 1490 | Glondslo, Calif. KIEY 870 |
| Durant. 0 |  | Eunlee, Leit KEUN 1490 M | Ft. 8 mith, Art. KFPW 1230 C | Glendive, mont. KXGN 1400 |
| Durham, N.C. | WDNC 620 C |  |  |  |
|  | 1410 | m | 20 |  |
|  | W888 1490 WTIK 1310 |  | Ft. Stoekton, Tox. KFST Ft. Valloy Ge. WFPM 860 | Glenvllie, Gs. WKIG 1580 |
| Dyersburt, Tona. | W086 1450 | Evaston, II. WEAMP |  | ., Golo. |
|  |  | Evanston, Wre. KLUK 1240 |  | $1{ }^{\text {A }}$ |
| Easle Pass, Toz. Eagle RIver, Wis. | KEPS 1270 | Evansvillo, 1nd. WRDZ 1400 C | TW 1260 | WDDY 1420 |
| Easloy, 8.C: Wh. | WELP 1360 | WGBF 1280 N <br> WIKY 820 | ${ }_{1190} 120^{\text {a }}$ |  |
| E. Grand Forks, |  | Eveleth WIR WSS 1930 A | WANE 1450 C | Gold Beach, Oras. KBLY 1220 |
| Eastiand, Tox | $\begin{aligned} & 1590 \\ & 1590 \end{aligned}$ | Evoleth, WInn. WEVE 1340 m | WKJG 1880 N | den, Colo. KICM 1250 |
| Lan | WKAR 870 | KWYZ 1230 | CJPA ${ }^{580}$ | KEVE 1440 |
| Liverpool, Ohio | WOHI 1490 A | Eversroen, Ala, WBLO 1470 | Ft. Werth, Tex, KJIM 870 | KUXL 1570 |
|  |  |  | KCUL 1540 | Geldsboro, N.C. WFMC 730 |
| Eastman | WPFE 1500 |  | KMOK 970 | WG8R |
| E. Mollne, | WDLM 960 | Falrbury, Nebr. KGMT 1310 | WBAP 370 A | Gorrales, Tex. KCTI 1450 |
| E. st mids ill | WTJH 1260 | Fairfax, Va, WEEL 1310 | WBAP 820 N | Goodiand, Kani. KLOE 730 |
| E. St. Louls, II. | WBBR 1490 A | Fairfidd, Ill. WFIW 1390 | KXOL 1360 | Geose Bay, Nfd. CFGB 1340 |
| Esaston, Md. | WEMD 1460 | Fairfold, lowa KMCD 1570 | Fostoria, Ohla WFDB 1430 | Geshen. Ind. WKAM 1460 |
| E | WEEX 1230 | Falrhope, Ala, WABF 1220 | Fountaln Clity, Tenn. | Gratton, N.D. KGPC 1340 |
| Eatontown. N.J. | WHTG 1410 N | Fairmont. Minn. KSUM 1370 | WFCT 1430 | Gralton. W.Va. WVVW 1260 |
| Eau Clairs, Wis. | WEAQ 790 N |  | Fountaln Inn. 8.C. WFFIS 160 | Graham. Tex, KSWA 1330 |
|  | WB12 1400 m | Farmon, W.Va, WTCS 1490 A | Fowler, Callf. ${ }^{\text {che }}$ KLIP 1220 |  |
|  | MEL | Fajardo. P.R. WMDD 1480 | Framingham. Mass, wKOX 1190 | Alta. CFGP 1050 |
| Esu Gallle. Fla. | WMEG 920 | Falfurplas, Tax. KPSO 1260 | Frankfort, Ind. WILO 1570 | Grand Falls. Nnd. CBT 540 |
| Edento | WEND 1580 | Fall River, Mass. WALE 1400 M | Frankfort, Ks. WFKY 1490 | Grand Forks, N.D. KFJM 1370 |
| Edin | WCD 1260 | Falls Cruret Y WSAR 1480 A | Frankiln, Ky. WFKN 1220 | C |
| Edmonds, Wexh. | KGDN 710 | Falls Churehp Ya. WFAX 220 | Franklin, La. KFRA 1390 | Grat Manox 1310 m |
| Edmonton, Alta. | CBXA ${ }^{740}$ |  | Franklin. N.C. WFSC 1050 | Grand Haven, Miehighn is70 |
|  | CFRN 1260 | 00, N.Oak. W0AY 870 N | Franklin, Pa. WFRA 1430 |  |
|  | CHED 630 | 1350 | Franklin, Tent WAGG 950 |  |
|  | CHFA 680 | KFGO 790 | Franklln, Va. WY8R 1250 | 8 RADIO LOG 171 |


| Lecotion C | C．L．Ke．N．A． | Location C．L．Ke．N．A． | Location C．L．Ke．N．A． | ecatlon C．L．Ke．N． |
| :---: | :---: | :---: | :---: | :---: |
| Grand Island，Nebr． | KMMJ 750 A | Harrisburs，III．WEBQ 1240 Harrisburt．PA．WHGB 1400 A | Houghton Lake．Mleht WHigR 1290 | Jatper，Ala．WWWB 1360 |
|  | $1430{ }^{\text {A }}$ | Harrisouris Pa，WCMB 1460 m | Houlton，Malne WHOU 1340 | Jaspor，Ind．W／T2 990 |
| Grand Junetion． | olo． | WHP 580 | Houme，Le KCIL 1490 N | Jasper，Tox，KTXJ 1350 |
|  | $\begin{array}{ll} \text { KREX } \\ \text { KEXO } & 920 \\ \text { KE } \\ \hline \end{array}$ | Harrison．Ark．WKBO 1230 | Houston，Miss．WCPC Houston， Mo． KHTN | ion City．Mo．KLIK ${ }^{\text {KWWOS }} 1240$ |
|  | $\text { KSTR } 620$ | Harrisonburg，Va，WHBG 1360 | Houston，Tex．KCOH 1430 | Jefferson City，Tenn． |
|  | KWSL 1340 | WSVA 550 N | KILT 610 | $\begin{aligned} & \text { wx } \times C \text { 1480 } \\ & w \times 250 \end{aligned}$ |
| Grand $\mathbf{P}$ |  | Harrodsburg．Ky．WHBN 1320 C Hartford．Conn．WORC 1360 C | KNUZ 1230 | Jena，La．KCKW 1480 |
| Gr | K． 730 | 1290 M | KPRC 950 N |  |
| （ Raplds， | WIEF 1230 C | OP $1410 \mathrm{M}-\mathrm{A}$ | KTHT 790 | Jerome Idaho KART 1400 |
|  | WFUR 1570 | N | KTRH 740 C | Jerseyvills，III．WJBM 1480 |
|  | WGRD 1340 |  | KXYZ 1320 A |  |
|  | WMAX 1480 m | Hartsviliio，S．C．WHSC 1450 m | Howall，Mieh．WHMI 1350 | ， |
|  | WOOD 1300 N | Hartweil，Ga，WKLY 980 | Hudson．N．Y．WHUC 1230 | 90 |
| Grand Raplds． |  | Harvard，III．WMCW 1600 | Hugo，Okis．KIHN 1340 | 250 |
|  |  | Harvoy，III，WBEE ${ }^{\text {W }}$（220 | Hull，Que．CRCH 970 | Johnstown，N．Y．WI2R 930 |
| Granpeville，Idaho | KORT 1230 | Hastings，Mieh．WBCH 220 | Humacal P，R．WALO 1240 Humboldit | Johnstown，Pa，WJAC 850 |
| Grants N．Mex． | WGNU 920 | Hattiosburg，Miss．WBKH 950 | Humboldi，Tenn．WHUN 1150 |  |
| Grants Pass，Oreg． | KAGI 930 m | Water WFOR 1400 N | Huntington，Ind．WHLT 1300 | Jollet，Jll．WjOL 1340 |
|  | KAJO 1270 | 230 A | Huntington，N．Y．WGSM 740 | Jollet，WJ．WIRC 1510 |
| k． | CFGR 1230 |  |  | Joilette，Que．CJLM 1950 |
|  | CFRG 710 | Havaloek，N．C．WUSM 1330 | WKEE $800 \mathrm{M} \cdot \mathrm{A}$ | Jonesboro，Ark，KBTM 1230 |
| Grayson．Ky． | WGOH 1370 | Haverhill，Mabs，WHAV 1490 |  |  |
| Gt．Barrlagton，Mi | ${ }^{4} 88$. WSBS | Havre，Mont． Havre de Grace．Md． | Huntsyllis．Als．WWHY 1470 M | Jonesboro，La． KTOC  <br> Jonesboro， 920  <br> Jenn． WJSO 1590 |
| Gt．Bend，Kans | KVGB 1590 N | 1330 | 1600 | Jonesvillo，La．KANV 1480 |
| Gt．Falls，Mont． | KFBE 1310 C | Hawkinsyllle，Ga．WCEH 610 | WFIX 1450 | jonquiare，Que．CKRS 590 |
|  | 150 | Haynesvilio．La，KLUYS 1400 |  | Jopl |
|  | KMON 560 N | Hays．Kans．WAYSM 910 | Huntsville，Ont．CKAR 630 |  |
| Greoley，Colo， | KFKA 1310 | Hazard，KY．WKIC 1990 m | Huntsvilis．Tex．KSAM 1490 | KODE 1230 |
|  | KYOU 1450 | Hazelhurst，Ga WVOH 920 O | Huthinson，Kans．KWBW 1450 N | Junetlon．Tex．KMBL 1450 |
| Green Bay，Wls． | W Bay 1360 C | Hazlehurst，Miss．WMDC 1220 |  | June．City．Kans． |
|  | WJPG 1440 M | Hazloton．Pa．WAZL 1490 N－ | Hutchinson．MInn．KDUZ 1260 | Juneau，Alaska KINY 800 C－A |
| n． | WGRV 1340 | Helena，Ark．KFFA 1360 m |  | Kailua．Hawall KLEI 1130 |
|  | WSMG 1450 | Helena，Mont．KCAP 1340 m | KIFI 1260 | Kaimuki．Hawall KAIM 870 |
| G | 1240 M |  | KT | Kalamaziob，Mleh．WKPR 1420 |
| Greonshord，N．C． | WBIG 1470 C | Hemet．Calli．N，Y．WHLI 1100 | Independenee，la．KUPI 980 | WK20 590 C |
|  | WGBG 1400 A |  |  |  |
|  | WPET 950 | Henderson，Nev．KBM1 1400 |  |  |
| Gree | WHJB 620 | KTOO 2880 | Independence，Mo．KANS 1510 | KOFI 930 |
| Greanyl | WGYY 1380 | Henderson，N．C．WHNC 890 m | Indiana，Pa．WDAD 1450 C | Kamloops，B．C．CFJC 910 |
| Greenvillo， | WPLB 1380 |  | Indlenapolls，Ind． | Kane．Pa．WADP 960 |
|  | WODT 900 | 1470 | $\begin{aligned} & \text { WFBM } \\ & \text { WGEE } \\ & 1590 \end{aligned}$ | Kankakee．III．W．C．WGTL 870 |
|  | WGVM 1260 | Hendersonville，N．C． |  | WRKE 1460 |
| Greanvilie，PA | WGRP 940 |  | WIRE 1430 N | Kans．City，Kans．KCKN 1340 |
| cenvilie，N．C． | $\begin{aligned} & \text { WGTC } 1590 \\ & \text { WOOW } 1340 \end{aligned}$ | Henroford，Tex．KPAN 860 | $\begin{aligned} & 1310 \mathrm{c} \\ & 950 \mathrm{~m} \end{aligned}$ |  |
| c． | 0 | Herkimer，N．Y．WALY 1420 | lanola，Miss．WDLT 1380 | KPRS 15 |
|  |  | Hermiston，Ores．KOHU 1570 | an Roeks Bareh．Fla． | 13 |
|  | MRB 1490 C － M | Herrin，lii．WSP 1940 m | GNP 1520 | 0 |
|  | WMUU 1260 | Hettinger．N．Dak．KNOC 1490 | Indio，Callf．KREO 1400 A | 710 |
|  | $1440 \mathrm{C}$ | Hiblory，N．C．WHKY 1290 A | inglowood，Callf．KTYM 1480 | Kearney． |
| Greenwood，mls． | G 960 | C 630 | ernational Falls，Min | KKNE 1290 N |
|  | N | Highland Park，WNSH 1430 | KGH |  |
|  | 50 | Highland Park．Tex．KVIL 1150 |  | Kolowna．B．C．CKOV 630 Kelso．Wash． |
| Greer．S．C． | WEAB 800 | w | WION 1430 | Kondallville，Ind．WAWK 1570 |
|  | WCKI 1300 A | WMFR2 1230 a | lown city，lowa KXIC 800 | Kenedy，Tex．KAML 990 |
| Gremada，Mlss． <br> Gresham．Oree | $\begin{gathered} \text { WNAG } 1400 \\ \text { KGRO } 1230 \end{gathered}$ | WNOS 1590 | WSUI 910 | Konnett．Mo．KBOA ${ }^{\text {M }}$ |
| Gretna，Va． | WMNA 730 | WHPE 1070 | lowa Falls，Lowa kFig 1450 A | W／ash．－${ }_{\text {Kaseo－R }}$ KEPR 610 |
| Grimm Ge | WKEU 1450 M | Hilisboro，Ohio WSRW 1590 | Iron Rlver．Mleh．WIKB 1230 m | Konora．Ont．CJRL 1220 |
| Crom． | WHIE 1320 | Hilsboro，Ores．KUIK 1360 | Irondalo，Ala．W｜XI 1480 | Kenosha．Wis．WLIP 1050 |
|  | WRIX 1410 | Hilsboro，Tex．KHBR 360 | Ironton，Ohlo WIRO 1230 M | Kentville，N．S．CKEN 1350 |
| Oton | WGRN 1480 | Hilssville，Va．WHHY 1400 | Ironwood，Mleh．WJMS 630 M | Keokuk，lowa KOKX 1310 |
| Groton．Conn． | WSAJ 1940 | Hilo．Hawall KHBC 970 C | Irvine，Ky．WIRV 1550 | Kermit，Tex．KERE 600 |
| Grundy，Ve． | WNRG 1250 | KIPA 1110 | Isabella，P．R． WISA 1390 |  |
| Guayama． | WXRF 1590 | KIMO 850 M | ishpomine．mien．WJPA 970 | Ketehikan．Alaske KTKN 930 C －A |
| Guelph，Ont． Gulfpert，Miss． | CJOY 1460 | Hinesville，GA．KGML Hobart，OkJa． KTJS 1420 | 1slip，N．Y．y WBIC 540 | Kewanee．III，WKEI 1450 M |
|  | WGCM 1240 A | Hobbs，N．Mox．KWEW 1480 M | aca，N．Y．WHCU 870 C |  |
| Gunnlso | KGUC 1490 | KHOB 1990 | luke Miss．WVOM 1270 |  |
| Guntersville．Ala． | WGSV 1270 | Helbroak．Arlz KDJ 1270 | Jatkson，Ala，WTHG 1290 M | Kilpors，Tex，KOCA 1240 |
| Guthrie．Okla． | KWRW 14900 |  | Jackson，Mleh．WIBM 1450 A | Kilien，Tox，KLEN 1050 M |
| Guymon， | WGAKK 14900 | WJBL 1260 | WKHM 970 m | Kimbali，Nobr，K1MB 1260 |
|  |  | Hallister，Calif．KGHT 1520 | Jackson，Miss．WJOX 620 N | Kingman，Aril．KAAA 1230 A |
| as Ci | WHAN 930 |  | WJas 1400 m | Kings |
| Halfway． $\mathrm{Md}$. |  |  | 1450 | Kit WKMT 1220 |
| Hallfax，N．S． |  | Homer，La．KHAL 1320 | ORK 1590 | －nn．WKIN 1320 N |
|  | CHNS 960 | Homestead，Fla．WSOE 1430 | WRBC ${ }^{\text {Ws }}$ | WBAZ 1550 w |
|  | － 920 | Homewood，Ala，WJLD 1400 | Jackson，Ohlo WLWd 1280 | WGH3 920 |
| amden | WERH 970 | Honolulu．Hawail K200 1210 | Jackion，Tenn，WDXI 1310 | Kingen Ont WKNY 1490 C |
| amiliton，Mont． | KYLQ 980 | KHA1 1090 |  | Kingston，Ont．CFRC 1490 |
| Hamilton，Ohio | WMOH 1450 | KPOI 1380 | Jacksonville，Fla，WJAX 930 N | CKWS 960 |
|  | CHML 900 | KGU 760 N |  | Kingatret，8．C．WOKD 1310 |
|  | CKOC 1150 | 040 |  |  |
| Haml | KCLW 900 | 350 m | WMBR 1460 | K⿴囗木．W．C． 96 |
| Hemmond ind | WKDX 1400 |  | OBS 1360 |  |
| Hammond，ind． | 1230 | $\text { KTRG } 1890$ | WPDG 600 | Kirkland，Wash，KCD1 1460 |
| mmond，La． | WFPR 1580 |  | Walk 1280 |  |
| Hammonton，8．C． | WBHC 1270 | $1340{ }^{\text {a }}$ | WRHC 1400 | Kirkland Lake，Ont．CJKL 560 |
| Hampton， | WVEC 1490 | Hopewell $\mathrm{V}^{2}$ WHAP 1340 | WLDS 1180 | Kissimmee，Fla，WKBX $1220{ }^{\text {a }}$ |
| Haneoek． | WMPL 920 | Hopewell Hopkinsille，Ky，WHAP ${ }^{\text {W }}$ WOP 1230 C | Jeeksonville，N．C．WJNC 1240 m | Kitchener，Ont．CKCR 1490 |
| anford．Calif． | KNGS ${ }^{620}$ | WKOA 1480 | E 100 | W 1320 |
| Hanover， $\mathrm{N} . \mathrm{H}$ ． | TSL 1400 | Hoquiam．Wash．KHOK 1560 |  |  |
|  | CR 1340 | W．Y．WWHG 1320 M | W2RO 10 | KAGO 1150 m |
|  | WHLA 1410 | B 1340 A | Jamestown．N．Dak．KEYj 1400 |  |
| Harilingen．Tex． | KGET 1530 | $\begin{aligned} & \text { is } 590 \mathrm{M} \\ & \text { NG } \\ & \hline \end{aligned}$ | Jamestown，N．Y．WITN 1240 | Knoxvllle．lowa KNiA 320 |
|  |  |  | Y1 1940 | Knoxvills，Tann．WB1R 1240 A |
| 72 WHITE＇S | S RADIO LOG | S．Dak．KOBH 580 | anesvillo，Wlis．WCLO 1230 |  |


| otion | C.L. Re. N.A | Loeatlon C.L. Ke. N.A. | Lecation | C.L. Re. N | lon | Ke. N.A. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | WKGN 1340 M WKXV 900 M | Leonardtown, Md. WKIK 1970 Lelhbridge, Alta. CJOC 1220 |  | $\begin{aligned} & Y O \quad 790 \mathrm{C} \\ & \mathrm{LL} 1460 \mathrm{~m} \end{aligned}$ |  | $\text { IA } 990$ |
|  | WNOX 990 C | EC 1090 |  | L 950 A | Maynield, Ky. | O 1320 |
| diak, Alaska | Q 960 | Leveliand, Tex. KLVT 1230 | Lucedale, Miss. | WHHT 1440 | Mayodan, N.C. | N 1420 |
| Kokomo | Wiou 1350 C | Levittown, Pa. WBCB 1490 | Ludington. Mieh. | WKLA 1450 A | - | M 1240 M |
| Koseiusko. Laconia, | WKOZ 1950 A | Lewisbura. Pa. WUNS 1010 | Lufkin, Tex |  | MeAlester, Okla. | 1400 |
|  | $\text { WEMJ } 1490$ | $\begin{aligned} & 1490 \\ & 1350 \end{aligned}$ | Lumberten, N.C. | 580 |  | KRIO 910 |
| LaCrosse, Wis. | WKBH 1410 N | 300 |  | TSE 1340 m |  | KAMY 1450 |
|  | $1490$ | Lewiston, Maino WCOU 1240 m | Luray | RLA 1590 |  | 125 |
| ys | LOY 1340 | $\begin{aligned} & \text { KLAM } 1470 \text { A } \\ & \text { KXLD } 1230 \end{aligned}$ | Lynchburs. Va. | $\text { WLVA } 590 \text { A }$ | MeCook, Nebr | KBRL 1300 |
| fayette | WLFA 1590 | $\text { town, Pa. WKVA } 920 \text { A }$ |  | - 1320 |  | RV 1360 |
| fayotte, Ind. | $\begin{gathered} \text { WASK i450 M } \\ \text { WAZY } 1410 \end{gathered}$ | WMRF 1490 N |  | WOO 1390 m |  | 20 |
|  | WBAA 920 | KY, WBLG 1300 A | Lynn. | $\text { WLYN } 136$ |  | $\text { \& } 1960 \text { m }$ |
| Lafayette, La. | EL 1420 A | WVLK 590 C |  | WBET 13 |  | WHDM $1440{ }^{\text {m }}$ |
|  | 330 N | Lexington, miss. WXTN 1150 |  | WKAI 151 |  | KMAE 180 |
|  | KW 1520 | Lexington, Mo. ${ }^{\text {KLEX }} 1570$ | Macon, Ga, | WBML 1240 | McMinnvi | KMCM 125 |
| nn. | WEEN 1460 | Lexington, Nebr. KRVN 1010 | Waco, Ga, | WCRY 900 | MeMinnvi | W BMC 960 |
| LaFollette, Tenn | WLAF 1450 | Lexington, N.C. WBUY 1440 |  | 1 B 1280 |  | WAKI 1230 |
| LaGrande, Oreg. | KLBM 1450 | Lexington, Tenn. WDXL 1490 |  | WMAZ 940 C | McPherson, Ka | KNEX 1540 |
| G | WLAG 1240 M | Lexington, Va. WREL 1450 N |  | M |  |  |
|  | WTRP 620 | Lexington Pli., Md, WPTX 920 | Macon, Mlss. | W |  | 10 |
| Grange Tex. | WTAQ 1300 | Libby, Ment. KLCB 1230 M |  | KHOT 125 |  | 90 |
| Grange, Tex. Junta. Colo. | KVLG 1570 <br> KBZZ 1400 m | Liberal Kans KLIE $1470{ }^{\circ}$ | Madill, Okla. | KMAD 1550 |  |  |
| ke Charles, La. | K |  |  | W |  |  |
|  | 左 | Liberty. Tex. KWLD 1050 | M | WORX 1270 |  | 1300 |
|  | 400 m | Litue, Hawall KTOH 1490 |  | KJAM 1390 |  | K |
| Lake City. | WDSR 1340 | Lima, ohio WIMAliso a | Madis | WENO 1430 |  | YJC |
|  | GRO 960 | Lineoln, III. WPRC 1370 | Madison. W is. | WHA 970 |  |  |
| Lake City, <br> Lakeland, Fl |  | Lincoln, Nebr. KFOR 1240 A |  | WIBA 1310 N |  | CHAT 1270 |
|  | $\text { NN } 1230 \mathrm{M}$ |  |  |  |  |  |
|  | WYSE 1330 |  |  | 730 |  |  |
| Lake | 920 | Lineointon, N.C. WLON 1050 |  |  |  | WHER 1430 |
| Lake Provi | KLPL 1050 | Linton. Ind. WBTO 1600 | Magees. | WSJC 790 |  |  |
| Lake Tahoe | KOWL 1490 | Litehfield. III. WSM1 1540 | Magno |  |  | WIA 1070 |
| Lakeviow, Dres. | KQIK 1230 | Litenfleld, Minn. KLFD 1410 | Makawao, Hawaii | KNU1 1310 |  | MPs 680 |
| Lake Wales, Fla. | W WIPC 1280 | Little Falls, Minn. KLTF 960 | Malden, Mo. | KTCB 1470 |  | HHM 1340 |
| kew | KFAK 1480 | Little Falls, N.Y. WLFH 1280 | Mal | WICY 1490 m |  |  |
| Lake Worth, Fla. | WLIZ 1380 | KZZN 1490 | M | K BOK 1310 |  | WWEC 600 C |
| Lamar, Colo. | KLMR 920 M | Litie Roek, Art. KARK 920 N |  |  |  | K |
|  | ET 690 | 1250 m |  |  |  | A |
| Lampasas, Tox, | L 1450 | MA 1010 A |  | $\mathbf{w}$ |  | M |
|  | L 610 |  |  | WWXL 1450 | M | M |
|  | KBYM 1380 | KVLC 1050 | Manchester, N.H. | WFEA 1370 m |  |  |
|  |  | Littleton, Colo. KMO |  |  |  |  |
|  | + | Live Oak, Fla. WNER 1250 |  |  |  | \% |
|  |  | Liriniston, Mont. KPRK 1340 M | Manhattan, Kans. | K |  | MOX 1010 |
| Lander, | OVE 1330 m | Livingston. Tonn. WLIV 920 |  | KMAN 135 |  | $1450$ |
| nett. | LD 1490 | $\begin{aligned} & \text { KETX } 1440 \\ & \text { KVLL } 1220 \end{aligned}$ |  | WMTE I34 |  | $\begin{array}{r} 1390 \\ 730 \end{array}$ |
|  | 0 | Lloydminster, Alta. CKSA 1150 |  |  |  | KBUZ 1310 |
| L |  | WBPZ 1230 M <br> WUS 1340 | Menitowoe |  |  | 10 |
| Lansfo | WLSH 1410 | Lodi, Cailf. K. KCVR 1570 |  | WOMT 1240 m | Metropolis, III. |  |
|  |  | Logan, Utah KVNU 610 m | Mankato, Minn. |  |  |  |
|  |  | 1300 |  |  |  |  |
| La | 230 | $\begin{array}{r} 1390 \\ 1230 \end{array}$ |  | $1360$ |  | WIUN 1220 |
|  | 530 540 | $\begin{array}{r} 1230 \\ 1290 \end{array}$ | M | WMAN 1400 A |  | $\text { Kiko } 1340$ |
|  | ME 1490 | Logansport, ind. WSAL 1230 m |  |  |  | CKA 610 N |
|  | KOWE 1290 m | Lompoc, Calif. KKOK 1410 |  |  |  | N |
| Laredo. Tex. | NS 1300 | $60$ | Marian | KZOT 1460 |  | WABME 1220 |
| LaSal | W LPO 1220 | London, KY. WFTG 1400 | Marianna, Fia. | 1340 m |  |  |
| Lasa | $\text { CKLS } 1240$ | London, Ont. CFPL 980 |  | $\begin{array}{r} 980 \\ 1230 \end{array}$ |  |  |
| LasCruees, N.Mex. | KOBE 1450 | Lons Beach, Cailf. KFOX ${ }^{2980}$ |  |  |  | $\begin{array}{r} 1450 \\ 940 \\ 940 \end{array}$ |
|  | KENT 1460 A | KGER 1390 |  | $\begin{aligned} & 1490 \\ & 1590 \end{aligned}$ | Miami. Okla | KGLC 910 |
| , | KL ${ }^{\text {c }}$ | KLMD 1050 |  |  |  |  |
|  | 4 | Long Prairio, Minn, KEYL 1400 |  | $\text { WSAM } 1310$ |  |  |
|  | KRAM 920 | Longriew. Tex. KFRD 1370 A |  | $\text { WGGH } 1150$ |  | KAT 1360 C |
|  | KVEG 970 | angyiew, | Marion, ind. | WBAT 1400 A |  |  |
| Las | KFUN 1230 | 270 |  |  |  |  |
| La | 1370 M | Lookout Mtn., Tonn. WFLI 1070 |  | 1290 |  | WMPD 1390 |
|  | 480 |  | Marion, 8.C. | WATP 1450 |  | WMIK 560 |
| Laurol. Miss. | WAML 1340 N | Loris, S.C. W.Wex WLSC 1570 | Marion, V | WMEV 1010 A | Middietown, N.Y. | WCNX 150 |
|  | WLAU 1600 A | Los Alamos, N.Mex. K RSN 1490 A | Marion. | WOLD 133 | iddie | WPFB 910 |
|  | WNSL 1260 | Los Angoles, Calli. KABC 790 A |  |  | idlan | WMDN 1490 |
| Laurent, 8.C. ${ }_{\text {che }}$ | WLBG 860 | FI 640 N | Mariborou | . WSRO 1470 | Midiand. Ont. | CKMP 1230 |
| Laurinburg, N.C. | WEWO 1080 |  | Ma | WDMd 1320 M | Midland, Tex. | KCRS 550 |
| Lawrence. Kans. | WLCW ${ }^{1300}$ | KFWB 980 | Marshall, MIn | A |  |  |
|  | KLWN IS20 | 1230 |  |  |  |  |
| Lawren | WCCM 8000 m | KFAC 1330 | Marshall, Tox, | KMHT 1450 | Hos | KATL 1340 |
| Lawreneeburs. Te | WXE 1370 | KLAC 570 | warshall, Tox | 41 | Milfor | WKSB 930 |
| Lawrenseville. Ga | W LAW 1360 | KMPC 710 |  | 4 | Milford. Mass. | WMRC 1490 |
| Lawreneaville, 11. | WAK0 910 | NXX 1070 C | Marshnield, Wis | WDLB 1450 | Milledgevillo. Ga. | WMVG 1450 |
| Lawrencevilio, | WLES 580 | KPOL 1540 |  | WCMT 1410 |  | $\begin{aligned} & \text { A } 1570 \\ & Y \\ & \hline \end{aligned}$ |
| Lawton, Okla. | KSWO 1380 A | KGBS 1020 | Martinsburs. W.Va | 1340 | Millington. Tenn. | WHEY 1220 |
| advili | CCO 1050 | Los Banos, Calit. KRKD 1150 | Martinsville, Va. | 70 |  | O |
| Leaksville, N.C. | WLOE 1490 m | Louisburg. N.C. WYRN 1480 |  | Can. |  | ERA 1430 |
| Leamington, Ont. | CJSP 710 | Louisville, Ga. WPEH 1420 |  |  |  | 10 |
| Leavenworth, Kans, | . KCLO 1410 | Louisvillo, Ky. WAVE 970 N | Marysuille. Cai | KMYC 1410 m | milton, Pa | 70 |
| Lebanon, Ky. | WLBN 1590 | KK 790 m | Mary |  |  |  |
| Lebanon, Mo. | KLWT 1230 | HA8 840 C | Mar | KNIM 1580 | Milwaukee, Wis. |  |
| Lebanon, Ores. | KGAL 920 |  | Maryvilie ${ }^{\text {l }}$ \%nn. |  |  | WRIT 1340 |
| Lebanan, Pa. | WL8R 1270 | INN 1240 | Mason city, lowa | KGLO 1300 |  | WISN 1150 |
| Lebanon, Tenn. | WCOR 900 M |  |  |  |  | WMIL 1290 |
| Leesburs, Fla, | WLBE 790 | M | Massena, N.Y. | MSA 1340 |  | WOKY 920 |
|  | WAGE 1290 |  |  |  |  | WTM ${ }^{620} \mathrm{~N}$ |
| 䢒 | KLLA 1570 | Loveland, Colo, KLOV 1570 |  | WIIG 99 |  |  |
| ighton. | NS 1150 | Loves Park. $111 . \mathrm{WLUV} 1520$ | Matas | CKBL |  | WFYI 1520 D |
| Leitchn | 1580 | Lovington, N.Mex. KLEA 630 | Matawan, Mi.V |  | minneapolis, Minn. |  |
| Leland. | $\mathbf{Y}$ 1580 <br>  1410 | Lowell, Mass. WCAP 980 | Ma | WLBH 1170 | minneapolis. Minn. | WLOL ${ }^{330}$ |
| cait. | EM 1410 | Lubbeek, Tex. KCBD 1590 | Mauston. Wis. | WRIC 270 |  | WMIN 1400 |
| noir. N.C. | RI 1340 | $\text { BK } 580$ |  |  |  |  |

C.L. Kc. N.A. WOGY 1180 WPBC 980 WTCN 1280 KTCR 690 KUOS 9700

## Minot, N. Dak.

Mistion, Kans. Missien, Tas.

Mitahell, 8. Dak. Moab, Utah
Meblle, Als.

$\square$


obridge, 8.0ak, Mocksville, N.C

Molave, Calif.
Moline, Ill. Monahans, Tex. Moncks Corner, N.C.

## Monetom, N. B. Monroe. Ga Monroe. La


$\qquad$

Lecatlon C.
Mt. Vernon. Ind. Mt. Vermon, Ky. Mt. Vernon, Wash. Mt. Vernon, Wash. Mullins, S.C. Mullins, S.C.M Munfordville, Ky.
Munising, Mieh.
.L. Kc. N.A.
WPCO 1590 WRYK 1460 WRYK 1460
WMVO 1300 KAPS 1470 KAPS 1470
KBRC 1430

Murphysboro, III. Murray, Ky. Museatine, Jowa Muskoben, Mich. WKAY 1450
 Nacogdoches. Tox. KEEE 1230 A
KARC 1380
WJAY 1280
WLBC 1340
50 A
WMTS 860
KRK
WIS
WIN
WR 420

Location C.L. Kc. N.A. New Rochelle, N.Y. WVoX 1460 New 8myrne Beach. FIs.
W8BB 1250 m

Lecatlon C.L. Ke. N.A.
KFAB Il10 N
KOIL 1290
KOOO 1420
$\begin{array}{ll}\text { KOOO } \\ \text { KMEO } \\ \text { WOW } & 680 \\ \text { M }\end{array}$
Newton, lowa Nampa, Idahe KSFA 860 $\begin{array}{ll}\text { Nanaimo, B.C. KWLW } 1840 \\ \text { Nanticoke, PA. } & \text { WHUB } 1570 \\ \text { WNAK } 730\end{array}$ A

CWER 950
CBAF 1830 Menres, Mish. Monros, W.C. Monroeville, Ala. Mont Laurier, Que

Mentevideo, Minn. Monte Vista, Colo. Montazumat, Gat.

WMRRE 1480 A-N KNOE 1390
WOTE 560 WEAP 1060 WMFC 1360

Montjomery, Ala. WMAZ 1050


Montletle WMON 1340 Montle⿻)flo. Ark. KHBM 1430 montreany, que. CKBM 1490 Wontpolier-Berre, $V$
Montras. Que. WSKI 1240 A CBM 940 N CKEM 1570 N CFCF 600 A $\begin{array}{rrr}\text { CHLP } & 1410 \\ \text { CJAD } & 800\end{array}$ CJMS 1280 CKAC 730 Montrose. Colo. Montrose. Pa. Moeresvilie, N.C. Meerhead, Minn. Moosejaw, Sask. Merahead, Ky. KUGM 980 WHIP 1350 Werehted City, N.C. WHAB 800 Morgan Clty, La. KMBL 740 Moreantiald. KY. WMRC 1430 M Morianton, N.C.

Morrilton. Ark, Morristovin. N. Morristown, Ten.

Morton, Taz.
Moseow, Idahe
Moultrie, Ga WWIO 1260
Moundeville, W.V. WMOO 1370
Meuntain Grove, Me. KLRS 1360 Mountain Hors, Ark. KTLO 1490 Mt. Airy, N.C. WPAQ 740 Mt. Carmel, III. WYMC 1360 Mt. Clamens, Mich. Mt. Dora, Fla. WBRB 1480 Mt. Jaeksen, Va. WSIG 790 Mt. Kiseo. N.Y. WYIP 1310 Mt. Plesenat. Mt. Pleasant, Tex. KIMP 150 Mt. Shasta, Calif. MWM 600 Mt. Sterling, Ky. WMST 1150

$$
0
$$ Nebraska City, Nebr.Needitat, Callf.

Neenah. Wis.
Neilisville, wis.

Nelson. B.C.$\begin{array}{ll}\text { Nean, KY. WNK } 1390 \\ \text { Neosho. Mo. } & \text { KBT } 1480 \\ \text { Nover }\end{array}$Novada, Mo. KBEN 1220New Albany, Ind. WOWI I570New Albany, Miss. WNAU 1470Newark, Osi. WWRK 1260$\begin{array}{ll}\text { WNJR } 1430 \\ \text { Wewark. N.Y. WNJ } 620 \\ \text { WV. } & \text { WACK } 1420\end{array}$Newark. N.Y WACK 1420Naw Bedford, Mats. WBSM 1420Naw Berm, N.C. WNBH 1340 MMNew Boaton. Ohie WKO WIOI 1010Now Braunfels. Tex. KGNB 1420| New Britaln, Conn. WHAY 810 |
| ---: | :--- |
| WRYM |
| 40 |

New Brunswick, N.J. WCTC 1450
Nemburith, N.Y. WGNY 1220
Newburypert. Mast. WNBP 1470
Now Castle. Ind. WCTW 1550
Newcastle. N.B. CKMR 790
$\begin{array}{lll}\text { Newcastic. N.B. CKMR } 790 \\ \text { New Castio. Pa, WKBT } & 1280 \text { a }\end{array}$
New Giss 0 Now H.8. CKEC
Naven, Cona. WAY 1300
WELI 960
New iberla, La. KNHC 1340
New Kensinfton, Pa. WKPA 1150

New Oriekns. La
$\rightarrow$
KSFE 1340
KSFE 1340
WNAM 1280
WCCN 1370

5
WJMR 990
WBOK 800
WNOE 1060
50 A
$\gg$
-
A

$$
5 \geq 2
$$

Ne

Na

80
6
N
H
M$\begin{array}{lll}\text { Natchez, Miss. WSM } & \text { WMIS } 1240 \text { N } \\ \text { Natehiteches, Las. } & \text { WNOT } 1450 & \text { M } \\ \text { WOC } 1450 ~ M\end{array}$Naugafuck, Conn. WOWW 860
Navasota, TBK. KWBC 1550


Northtiald, Minn,
Northampton, Mass.
Northtiald, Minn. WCAL 770
Northampton, Mass. WHMP 1400 M
N. LIttio Rosk, Ark. KOXE 1380 A
North Platte Mobr KXLR 1150
No Sypatuse M, KOOY 1240 N
No. Syracute. N.Y. W80Q 1220 M
No. Vansouyar, B.C. CKLG ${ }^{730}$
N. Varnon. Ind. WOCH 1460
N. Vernon, Ind. WOCH 1460
Norton, Va. WNYA is50 M
Norwalk, Conn. WNLK is50
Normish Y Y , WICHIS10
Oakdale, La. KREH 900
Oakes, N.Oak.
WWCL 1280
Oakland, Calif. KEWB 910
KABL 960
KOIA 1310
Oakland Park, Fis. Wix 1520
Oak Park, III. WOPA 1490
Oak Ridje, Tenn. WATO 1290 M
Oakville, Ont. CHWO 1250
WTMC 1290 N
Ocan city, Md.
Oceaniake, Orag.
Ocilla, Ga.
Odessa, Tor.
North Plette. Nobr. KJLT 970
KNOP 1240










Panama Clty Beach
Fla.
Paradlse, Calif. KMET 980
Parasould, Ark. KDAS 1490











A



$\begin{array}{lll} & \text { KCOB } & 1280 \\ & \text { KJRG } 950\end{array}$

Wion, Kiss. KJRG 950














Orilla, Ont. Oreg. KGON 1520

| Newton, N. J. | WNNJ 1360 |
| :--- | :--- |
| Newton, N.C. | WNC 1230 |
| New Ulm, Minn. |  |
| New Westminster, 8 , C. | 860 |
|  | CKNW |

    WEKN 1410
    WNNJ 1360
WNNC 1230
Newton, N.J. WNNJ 1360
M P
Onvein, lewa KOEL 950
Onallala, Nobr. KOGA 950
Oeden, Utah KLO 1430 m
C
808
KSVN 730
"
Paradlse, Callf.
Paragould, Ark.
Paragould, Ark. KDAS 1490
Paris, Ark, KCCL 1460

WTHR 1480
190 M

1520 M
570
580 c
1 3
New Yerk, N.Y.
Yerk, N.Y. WKNW 980
Werk, N.Y. CKNW 980
厄
ewton, N.J.
ewton, N.C.
alm, Minn.
Westminstor, B






Onford, Mlen. WOAP 1080
OSSH 1420Oxford, N.C. WOXF 1340


Padueah. Ky.
oze
A
$\begin{array}{ll}\text { Paris, Ark, } & \text { KCCL } 1460 \\ \text { Parls, Ill, } & \text { WPR } 1440 \\ \text { Paris, Ky. } & \text { WKLX } 1440 \\ \text { Paris }\end{array}$
$\begin{array}{ll}\text { Paris, KY. } & \text { WKLX } 1440 \\ \text { Paris, Tann. } & \text { WTPR } 710\end{array}$
KUOE 1320


| Locotion C | C.L, Kc. N.A. | Location C.L. Kc. N.A. | Location C.L. Kc. N | , | L. Ke. N.A |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{lll} \text { KBZY } & 1490 & \mathrm{~N} \\ \text { KGAY } & 1430 \end{array}$ | $\begin{gathered} A F \\ \hline \text { A } 1220 \\ \text { B } 1450 \end{gathered}$ | SItka, Alaska Kifw 1230 C -A | Sunnyside, Wash. Sun Valley, Ide. | $\text { KREW } 1230$ |
| Salom, Va | WBLU 1480 | 1280 | STKa, Alabk KSEW 1400 | Superior, Nebr. | KRFS 1600 |
| Sallda, Coil | KVRH 1840 m | Saratoga Springs, N.Y | Skowheran, Malne WGHM 1150 | Superior, Wls. | M 710 |
| Galinab, Calif | KDON 1460 | Sarnla, Ont. CHOK 1070 | Smithiold ${ }^{\text {a }}$ N.C. WMPM 1270 |  | L ${ }^{970}$ |
|  | 1380 M | Saskatoon, Sask. CFaC 600 | Smiths Falls, Ont. CJET 630 | Susanville, Calif. | K8UE 1240 |
| 8 | 1290 | CFNS 1170 | 8 8yrna, Ga, W8MA 1550 | Swainsboro, Ga | WJAT 800 |
|  | $860$ | Saut ste Marie CKOM 1250 | Enyder, Tex, KSNY 1450 M | Sweotwator. | WOEH 800 |
|  | $\begin{aligned} & \text { Wico } 1320 \text { A } \\ & \text { wior } 1470 \end{aligned}$ | Sault Sto. Marie, | Socorro, N. M ox. KSRC 1290 Soda Sores. Idahe KBRY 540 | Sweotwate | KXOX 1240 |
| Salisbury, N.C. | WSTP 1490 m | Sault 8te. Marie. | Solvay, N, $\mathrm{Y}^{\text {r }}$. WASR 1320 | Sy | CKSWI 1400 |
|  | WSAT 1280 A | 10 CJIC 1050 | Somersat, Ky, WSFC 1240 M |  | 270 |
| Saimon, Ida | KSRA 960 |  | 1480 | Sylacausa, Ala | 81340 |
|  | KALL 910 A | Savamen, WEAS 900 | 145 |  |  |
|  | 320 N | AV 630 N | Sonora, Tex. KCKG 1240 |  | WSYL |
|  | UB 570 M | 1400 | Soral, P.a. cJso 1320 | Syraeuse, M.Y. | WHEN 620 C |
|  | NAK 1280 | TOC 1290 C | South Beloit, III. WBEL 1380 | Syraeuse, N.Y. | WFBL 1390 M |
|  | SL 1160 C | 8avannah, Tonn. WORK 1230 A | 80. Bend, Ind, WNOU 1480 A |  | NOR 1260 |
|  | KSXX 830 |  |  |  | WOLF 1490 |
|  | KWHO 860 | Seheffervile, Que. CFKL 1230 | 8 |  | $\begin{aligned} & \text { R } \quad 570 \\ & \text { B } 1770 \end{aligned}$ |
|  | C 1570 | Sehenectady, N.Y. WGY 810 N | So. Beston, Va. WHLF 1400 A | Tacoma | O 1380 |
| Sas Angelo, Tex. | KTEO 1340 KGKL 960 A | WSNY 1240 <br> Seotland Noek, N.C. WYAL 1280 | Southera Pines, N.C.WEEB 990 8outh Daytona Beach, |  | KTAC 850 KTNT 1400 |
|  | 1420 | Seottsblufi, Nabr, | lorida W ELE 15 |  | ${ }^{1} 570$ |
|  | KWFR 1280 | NEB 960 A.M | So. Gastonia, N.C. WGA8 1420 | Taft. Call | TKR 1310 |
| San Antorle, T08 |  | $\begin{gathered} \text { KOLT } 1320 \text { C } \\ \text { WCRI } 1050 \end{gathered}$ | So. Haven, Mieh. WJOR So. Knoxville, Tenn, WSKT S80 |  | -1350 |
|  | 680 C | 1330 | So. Paris, Me. WKTG 1450 |  | KTHO 590 |
|  | 1150 | Seottsdalo. Ariz. KWBY 1440 | So. Pittsbure; Tenn. WEPG 910 | Talladega, Ale | WEYY 1580 |
|  | $\begin{aligned} & \text { K1TE } 930 \\ & \text { KUKA } 1250 \end{aligned}$ | Seattsville, Ky. WLCK Seranton, 1250 WAR SM | bo. 8t. Paul, Minn. KDWB 630 M |  | WNUZ 1230 M WMEN 1330 |
|  | KUBO 1310 | ¢crantong WEJL 630 | So. Wllliamsport, Pa. | Sses | WRFEB 1410 |
|  | KMAC 680 A | WGBI 910 C |  |  | T |
|  |  |  | Spanlsh Fork, Utah KONI 1480 |  | 1450 |
|  | WOAI 1200 N | Seaferd, Dal. WSUX 1280 | Sparks, NeV. KBCO | Taliassee, Alat | WTLS 1300 |
| ali | alii. | 8earey Ark. KWCB 1300 | Sparta, Tenn, WSMT 1050 | Tampa, Fla. | WALT 1110 |
|  | KCKC 1350 | Seaslde. Oraf. KSRG 730 m | Sparta, Wis. WKL. 990 |  | WDAE 1250 |
|  | KRNO 1240 | KUDY 910 |  |  | YOU 1550 |
|  | 290 M | KING 1090 A | wo |  | WHBO 1050 M |
| 8andersvilte | W8NT 1490 | KIRO 710 C | WSPA 950 C |  |  |
|  |  | 950 | Spencer, lowa KICD 1240 |  | WTMP 1150 |
|  | KOGO 600 N | OMO 1000 N |  |  |  |
|  | 360 A | ETO 1590 | ODOKan. Wame KLYK $1230{ }^{\text {a }}$ |  | CP8 760 |
|  | KSON 1240 | KTW 1250 | 1380 | Tarpen Sprgs., Fla. | WRBB 1470 |
|  | O 1130 | V1 570 | KHa 590 N | Tasloy Y |  |
| Sandpol <br> Gand 80 |  | Sebring Fla WKXA 770 | KNEW 790 M | Taunton, Ma | WPEP 1570 |
| Sandusky, Ohio | WLEC 1450 m | Sebrins, Fla WSEB 1960 | $\begin{array}{lll} \text { KREM } & 970 \\ \text { KXLY } & 920 \end{array}$ | Tawas City, Mieh, | WIOS 1480 |
| gan Furnando, Calif. | f. KGIL 1260 | Sedalia, Me. KDRO 1490 | KCFA $1330{ }^{\text {K }}$ | Taylori | WTAE 1260 |
|  | WTRR 1400 | SIS 1050 | Springdale, Ark. KBR8 1940 A |  | WTIM 1410 |
|  | WSFR 1360 |  | Sorinsfold, III. WCVS 1450 A-M |  | 250 |
| Sanford, Me. Sanford. N.C. | W8ME 1220 |  | WMAY ${ }^{\text {W70 }} 1240 \mathrm{C}$ | Toll city ind, | CJ 1230 |
|  | WWGP 1050 |  | ingfold, Mase, WBZA 1030 | mpo, Ariz. | $880$ |
| $F$ |  | Seminale, Tex, KTFO 125 | $\begin{aligned} & 560 \\ & 1450 \end{aligned}$ | Tamplo. Tex. | 11400 |
|  | $740$ | 1150 | 1270 |  | 230 N |
|  | KFAX 1100 |  | Sprinsfold, Mo. KGgX 1260 N | Torre Haut, Iad. | 1300 A |
|  | 810 A |  |  |  |  |
|  | KKHI 1550 |  | 560 |  |  |
|  | K8AY 1010 |  | Surinafidd, Ohlo WIZE 1340 A |  | KOSY 790 |
|  | KSAN 1450 |  | 8prineteld Ores KE | exarkana, Tex | 40 |
|  | K8FO 560 | Sharon, Pa. WPIC 790 | 8prinifield. Ores. |  | 940 |
| San German, P.R. | WRJS 1090 | Shawane, Wis. WTCH 960 | Sprinsfield, Vt. WCFR 1480 |  |  |
| San Jose, Calif. | KLOK 1170 | Shawinigan. Que. CKSM 1220 | Springhili, La. KBSF 1460 |  |  |
|  | KLIV 1590 m | Shawnes, Okla. KGFF 1450 M | Sprues Pine, N.C. WTOE 1470 | The Dalles, Oret. |  |
|  | KEEN 1370 | 1330 A |  |  | RMW 1300 |
|  | 680 M | Shemeld. Als. WSHF 1290 | Stanford, Ky. WRSL 1520 | ermopolls, Wyo. | $\begin{aligned} & \text { R } 1490 \\ & \text { E } 1240 \end{aligned}$ |
|  | WHOA 870 | 8 | Starke, Fla. WRGR 1490 | R1 |  |
|  | WIAC 740 |  |  |  | KTRF 1230 |
|  | WIPR 940 | Shelbyville, Ind. WSVL 1520 | WRSC 1390 |  |  |
|  | \% 810 | Shelbyville, Tena. WHAL 1400 | Statesboro, GE. WWNS 1240 | Thioda | WSFT 1220 |
|  | WKYN 630 |  | Statesville, N.C. WSIC 1400 |  | WTGA 1590 |
|  | WITA 1140 | KMA ${ }^{\text {M }}$ (1) A | WTON 1240 A | Thomasvilio. Ala. | $\begin{aligned} & \text { WJOB } 630 \\ & \text { WPAX } 1240 \end{aligned}$ |
| , | KATY 1340 | ue CHLT 630 | WAFC 900 |  | KTG 730 |
|  | KCJH 1280 | $\begin{aligned} & S .900 \mathrm{~m} \\ & 01410 \mathrm{~m} \end{aligned}$ | Stephanville, Tax. KSTV 1510 | homasville, N, | WTNC 790 |
|  | KSLY 1400 <br> KVEC 920 M | $\text { KROE } 930$ | Sterina. Colo. KOLR 1490 |  | WTWA 1240 |
| 8an Martos. Tex. | KCNY $1470{ }^{\text {m }}$ | KRRV 910 m | Sterling, lil WSDR 1240 |  | WLKM 1510 |
| San Mateo, Callif | KOFY 1050 | Shiopensburs, Pa, WSHP 1480 | Steubonvilio, Ohio WSTV ${ }^{\text {Stevens Point. Wis, WSP } 1010}$ | Thres Rivers, | CHLN 550 |
| San Rafagl, Calli. | KTIM 1510 | Show Low, Arl2. KVWM 1050 | Stilwator, Minn. WAVN 1220 |  | WIPS 1250 |
| Santa Ana. Cailit. | KWIZ 1480 | Shrovepert, La. KANB 1300 | Stilimatar, OKk. KSPI 780 | mn, 0 | WTF 1600 |
| Santa Barbara, Cal. | I. KDB 1490 | KBCL 1220 | Stockton, Callf. KJOY 1280 | Tifton, Ga. | 1340 |
| Sala Burberat Cold | KGUD 990 | $\begin{array}{ll} 50 \mathrm{c} \\ 10 \end{array}$ | KSTM 1420 |  | 1430 |
|  | KIST 1340 N |  | 8torm Lake, lewa KAYL 990 | THlamook, Or | 1590 |
|  | KACL 1290 | 1480 | 8trafford, Ont. CJCS 1240 | , | 1510 |
| nta Cruz, Calif. | C 1080 | KREB 980 | streator, Ill. W/z2 1250 | Timmins, Ont. | 8880 |
| anta Fs, N. Wex. | KTRC 1400 A | 1340 | Stroudsburg. Pa. WVPO 840 |  |  |
|  | 1400 |  | Stuart, Fla. WHEO 1270 |  | WTIV 1230 |
| anta Marla, Cal. | KCOY 1400 | Sidney, Nobr. KSID 1340 A | Sturgeen Bay, WIs. WDOR 910 | Toeeon, Ga. | WLET 1420 |
|  | K | Eierra Vista, Ariz. KHFH 1420 A | Sturgis, Mieh. WSTR 1230 |  | WNES 630 |
|  | 480 | Sikeston, Mo. KSIM 1400 | Stuttgart, Ark. KWAK 1240 M | Toledo. Ohle |  |
| Senta Monlea, Cal. | I. KDAY 1580 | Sller Cily. N.C. WNCA 1570 | Sudbury. Ont. CKSO 790 |  |  |
| anta Paula, callif. | f. KSPA 1400 | Siloam Spres., Ark. KUOA 1290 m | 8R 550 |  | 1230 |
| Santa Rosa, Calif. | -KSRO 1350 | Silishees, Tex. M KMAS |  |  |  |
|  | 90 | Silver Clity, N, Mox. KSIL 1340 C | 8ufolk, Va, WLPM 1460 A | Toll | KZON 190 |
|  | 1460 | Silvar 8prgs., Md. WamR 1050 | Sulphur, La, Kiks 1310 |  | TMB 1460 |
|  | 50 | Simeor. Ont. CFRS 1560 | Sulphur Spras, Tox. KSST 1230 | Tompkinsvilio, K | WTKY 1370 |
| anta Rosa, N. Mox. | x. K8YX 1420 |  |  | Togele, Utah | KDYL 990 |
|  | KREK 1550 | Sloux City, lowa KMSC 1380 A | Summervilic, Ga. WGA 930 | Topeka, Kans. |  |
| anae Lake, N.Y. | Y. W NBZ 1240 A |  | Summervilie, 8.C. WALs 980 | Topoka, Kan. | $\text { EWI } 1440$ |
| Sarasote, Fia. | WKXY 930 | k. KTAD 1230 | umter, S.C. <br> WDXY 1240 |  | 1250 |
| 66 WHITE'S | S RADIO LOG | $\begin{gathered} \text { KELO I320 } \\ \text { KNWC } 1270 \end{gathered}$ | Sunbury, Pa. WKOK 1240 | Toppealish, Wank | $\begin{aligned} & \text { KTOP } 1490 \\ & \text { KENE } 1490 \end{aligned}$ |


C.L. Lecation

KAAA KIngman, Ariz. KAAY Littlo Rook, Ark KABC Les Anpales, Calif. KABL Oakland, Calif. KABQ Albuquarque, N,M.
KABR Abordeen, 8.Dak.


| C．L． | Locatlon | Ke． | C．L．Location |  | C．L．Lecation |  | C．L． | Locaplon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| K | Redding， | 1330 | KBix Musk | 1490 | KCLU Rolla，Mo． | 0 |  | Sioux Falls，S．Dak． | 0 |
|  | Kaim | 14 | K ${ }^{\text {KIz }}$ Ottumwa，low | 1240 | KCLV Clovis． | $1240$ | KELP | El Paso，Tox． | 20 |
| $A \mid R$ | Tueson，Ariz． | 1490 | KBJT Fordyce，Ark． | 1570 | KCLW Hamilton．Tex | $900$ | KELR | El Reno． | 0 |
| AJI | Little Rock．Ark． | 1250 | KBKR Baker，Ore | 149 | KCLX Colfax，Wash． | 450 | KELY | Rono， | 1230 |
| KAJO | Grants Pass，Or | 1270 | KBKW Aberdeen． | 1450 | KCMC Texarkana． | 30 | KENA | Mena，As | 1450 |
| KAKA | Wickenburg， | 1250 | KBLA Burbank，Calif | 1490 | KCMJ Palm Spros．，Cailif． | 1010 | KENE | Toppenish，Wash． | 1490 |
|  | Tulsa．Okla． | 970 | K日LF Red Bluff，Cali | 149 | KCMO Kansas City | 10 |  | Anchorage | 550 |
| KAKE | Wichita，Kan． | 1240 | KBLI Blackfoot．Ida | 690 | KCMS Manitou Spres．，Colo． | 490 | KENL | Areta | 40 |
| KALB | Alexandria，La， | 580 | KBLR Bolivar，Mo． | 1550 | KCNI Broken Bow，Nob | 1280 | K ENM | x． | 0 |
| $\begin{aligned} & \text { KALE } \\ & \text { KALE } \end{aligned}$ | Richland，Wash． | 960 | KBLT Big Lake，T | 1290 | KCNO Alturas，Calit． | 570 | KENN | Farmington，N．M． | 90 |
|  | Mesa，Arlz． Alamogerdo | 1510 |  | 1920 | KCNY San Marcos，Tex | 1470 |  | Las Ve | 60 |
| KALI | Pasadena，Calit | $\begin{aligned} & 1230 \\ & 1430 \end{aligned}$ | KBM1 Henderson， | $\begin{aligned} & 1220 \\ & 1400 \end{aligned}$ | KCOB Ne | 1280 |  | San | \％ |
| KALL | Salt Lake City，Utan | 910 | KBMN Bozeman，Mont． | 1230 | KCOH Houston， $\mathrm{T}^{\text {K }}$ |  |  |  |  |
| KALM | Thayor，Mo． | 1290 | KBMO Benson，Min | 1290 | KCOK Tulare，Calif． | 1270 |  |  | 1450 |
| KALN | lola，Ka | 1370 | K日M w Breckinrdg．，Minn． | 1450 | KCOL Ft．Collins， | 1410 | K EOS | Flagstaff，Ariz． | $1290$ |
| KALT | Allanta，${ }^{\text {T }}$ | 900 | K日MX Coalinga，Calis． | 1470 | KCON Conway， | 1230 |  | Konnowic | 610 |
| KALV | Alva，Okl3． | 1430 | K日MY Blllings．Mont． | 1240 | KCOR San Antonio， | 1350 |  | Eagle Pass， | 270 |
| KAMD | Camdon，Ark． | 91 | KBND Bend，Oreg． | 1110 | KCOW Allianc | 400 |  | Easla | 00 |
| KAML | Kenedy，Tex． |  | K BOA Kennett，Mo． | 890 | KCOY Santa Maria | 1400 |  | Eastland，Tex． | 0 |
| KAMO KAMP | Rogers，Ark． | 1390 | K ${ }^{\text {KOE }}$ Oskaloosa， | 740 | KCPX Salt Lake City，Utah | 1320 | KERG | Euge | 280 |
| KAMY | McCamey，Te | $\begin{aligned} & 1430 \\ & 1450 \end{aligned}$ | KBOK Malvern，Ark． | 1310 | KCRB Chan | 1320 |  | Kake | 1410 |
| KANA | Anaconda，Mont | 580 | K BOL Boulder，Colo． | 1490 | KCRC Enid， | 1390 | KESM | Eldorad |  |
| KANB | Shreveport， | 1300 |  |  | KCRG Cedar Rapids，Iowa | 0 |  | Boise，ldaho | 790 |
| KAND | Corsicana | 13 |  | 1270 | KCRM Crane，Tex． |  | KE | Sea | 90 |
| KANE | New lberia， | 1240 | KBON Omaha，Nebr． | 1490 | KCRS Midia | 550 |  | Livingston，Tex | 440 |
| KANI | harton | 1500 | KBOP Pleasanton，Tox． | 1380 | KCRT Trinidad，Colo． | 1240 | KEUN | Eunice， | 1490 |
| KANN | Ogden．Utah | 1250 | KBOR Brownsvilie，Tex． | 1600 | KCRV Caruthersville， | 370 | KEVE | Minneapolis，Minn． | 40 |
| KANO | Anoka，Minn， | 1470 | KBOW Butto，Mont． | 1490 | KCSJ Pueblo，Colo | 590 | KEVL | White Castle，La． |  |
| KANS | Independente， | 1510 | KBox Dallas，Tex． | 1480 | KCSR Chadr | 1450 |  |  | 90 |
| KAOH | Duluth．Min | 139 | KBOY Medford．O | 780 | KCTA Corpus Christi，Tex． | 1030 |  | Oakland，Calif． | 10 |
| KAOK | Lake Charles， | 140 | K日PS Portland， | 1450 | KCTL Conzales，Tex． | 145 | K | opeka，Kans． |  |
| KAOL | Carroliton， | 1430 | KBRC MA．Yernon． | 1430 | KCTX Childress，Tex． | 1510 |  | Portiand | 90 |
| $K A P B$ | ond， |  | K日RK Eroot | 1570 |  | 1290 |  | Grand | 3 |
| KAPE | ， | 1480 | KBRL McCo | 1300 |  | 1250 |  |  | 20 |
| API | Pueblo， |  | KBRN Brigl | 800 | KCVL Co | 1270 |  | Pames |  |
| KAPR | Douolas， | 930 | KBRO Br | 1490 |  |  |  |  |  |
| KAPS | Ml Vernon， | 1470 | KBRR Leadville，Colo． | 1230 | KCYL Lam | 1450 | K | Ter |  |
| KAPT | Salem， | 1220 | K日RS Springdate，Ar | 1340 | KDAB Arva | 1550 | K | corpus | 40 |
| KAPY | Port Angoles， | 129 | KBRV Soda Spros． | 540 | KDAC Ft． | 1230 | KE | Provo，Uta | 1450 |
| KARA | Albuquer | 1310 | KBRX O＇Noill，Neb | 135 | KDAD Weed，Cal | 800 | KEYZ | Whlliston， | 60 |
| KARE | Atchlson． | 1470 | KBRZ Freeport，Toxas | 14 | KDAK Carrington，N．D | 1600 |  | Rapid C | 920 |
|  | Blaine．Was |  |  | 1460 | KDAL D | 0 | K | Anaheim． | － |
| KARK | Littie Rock | 920 | K BST Big Spring．Te | 1490 | KDAN Eureka．Ca | 90 |  |  | 1110 |
|  | Fresno， | 1430 | K日TA Batesvilie，Ark． | 1340 | KDAV Lubbock．Tex | 580 | KF | Los Angeles， | 1330 |
| KARS |  | 1400 |  | 1290 | K0AY santa monica，Calif． |  |  | Fuiton，Mo． | 00 |
| KART | Jerome，Idaho | 1400 | K BTO EI Dorade，K | 1360 | $\begin{aligned} & K \\ & K \end{aligned}$ | 1360 |  |  | 50 |
| KARY | Pros | 1310 | KBTR Denver，Colo． | 710 | KDEM Dill | 800 | KFAX |  |  |
| KASE | Austi | 970 | K日UC Corona，Calif． | 1970 | KDBS Alexandria． | 1410 | KFA | Fay | 50 |
| KASH | Eugene，Or | 1600 | K日UD Athens，Tox． | 1410 | KDDD Dumas，Tex． | 800 | KFBB | Gro | 10 |
| KASI | Amos．lowa | 1430 | K日U B Brigham City，Utah | 800 | KDEC Docorah，lowa | 1240 | KFBC | Cheye | 40 |
| KASK | Ontario．Calif． | 15 | KBUN Bemidji，Minn． | 14 | KDEF Albuquerque，N．Mex． | 1150 | KFBK | Sacramento，Cali | 3 |
| KASL | Neweastie．Wy | 1240 | KBUR Burlington，lowa | 1490 | KDEN Di | 1340 | K FCB | Redfleld，S．Dat | 1380 |
| KASM | Albany，Mi | 1150 | KBuS Mext | 1590 | KDEO EI Ca | 910 |  | Amarillo，Tex． | 440 |
| KASO | Minden，La． | 1240 | KBUY Amarillo．Tex． | 1010 | KDES Palm Spras．，Calit． | 920 | KF | Van Buren，Ar | 1580 |
| KAST | Astoria． | 1370 | KBUZ Mosa，Ariz． | 1310 | KDET Center，Tex． | 930 | KFOI | Wilchita，Kansa | 070 |
| KASY <br> KATE | ub | 1220 | KBYM Lancaster | 1380 | KDEX Dexter，M | 1590 | KFD | Beaumont．Tox |  |
|  | Alber | 50 | KBYO | 1540 | KDEY | 1960 | KF | Grand Coulee，Wash． | 0 |
|  |  | 1400 |  | $\begin{array}{r} 1380 \\ 890 \end{array}$ | KDGO Durana，Co | 40 |  | Pueblo，Colo | 70 |
| KATN | Bolso，Idaho | 1010 | K日YG Blo Spring．Tex | $1400$ | － |  | $\begin{aligned} & \text { KFE } \\ & \text { KF } \end{aligned}$ | Helena，Ar |  |
| KATO | Safiord，Ariz． | 1230 | KBYP Shamrock，Tex． | 1580 | KOHL Farlbault，MI | 920 | KFGQ | Fargo，N．O． | 790 |
| KATa | Texarkana，Tex | 940 | KBYR Anchorage，Alaska | 1270 | KDIA Oakland，Calif． | 1310 | KFGQ | Boone，low | 1260 |
| KATA | Eugene，Ore |  | KB2Y Salem， 0 | 1490 | KDIO Ortonvilie．Min | 1950 | KFH | dehi | 1930 |
| KATY | San Luis Obispo，Cal． | 1340 | K Bzz LaJunta，Colo． | 1400 | KDIX Dickinson，N．D | 1230 |  |  |  |
|  | St．Louls． | 1600 | KCAC Phoenik．Ariz． | 1010 | KDJI Holbrook，Ariz． | 1270 | KFIF | Tues | 1550 |
| KAUS | Austion，M | 148 | KCAD Abilene． | 560 | KDKA Pittsburgh．Pa | 1020 | KFIG | lowa falls，low | 1510 |
| KAVE | Carlsbad．N．M | 12 | KCAL Redlands，Calif | 1410 | KDKD Clinton，Mo． | 1280 | KFI | Modesto， | 60 |
| KAVI | Rocky Ford， | 1320 | KCAP Helena，Mo | 1340 | KOLA DeR | 1010 | KFIZ | Fond du Lac | 1450 |
| KAVR | Apple |  | KCAR Clarksvillo， |  | KOLK Dol Rio．Tex | 1230 | KF | Mar | 1230 |
| KAVA | Apple Valley，Calif． |  | KCAS Slaton | 10 | KDLM Dotroir Lakes，Minn． | 1340 | KFJM | Grand Forks，N．Dak | 1370 |
|  |  | $\begin{array}{r} 1010 \\ 1370 \end{array}$ | KCBC Des Molnes， KCBD Lubbock． | $\begin{array}{r} 1390 \\ 1590 \end{array}$ | KOLR Devils Lake，N．Dak． | 12 |  | Ft．Worth | 1270 |
| KAWT | Douglas，Áriz | 1450 | KCBa San diogo，Calit． | 1170 | KDMA Montevideo，m | 1450 | KFKF | Grealey．${ }^{\text {colo }}$ |  |
| KAYC | Beaumont．Te | 1450 | KCBS San Fran．．Callif． | 740 | KDMO Carthage．Mo． | 1490 | KFKU | Lawrence，Kans | 1250 |
|  |  | 145 | KCCL Paris，Ark． | 1400 | KDMS El Dorado．Ark | 1290 | KFLO | Floydada，T | 900 |
| KAYG | Lakewood．Wash． | 148 | KCCO Lawton，okla， | 1050 | KDNT Denton．Tex． | 1440 | KFL」 | Walsenburg， |  |
| KAYO | Storm La |  | KCCR Pierru．S．Dak． | 1590 | KDOK Tyler，Tex |  | KFL | Mountaln Ho |  |
| KAYS | Seatile ${ }^{\text {Hay }}$ |  | KCCT Corpus Christi，Tex． | 1150 | KDOL Mojave，Ca | 1340 | KFL | Klamath Falls，Oros． | 1450 |
| KAYT | Raysort．Idahe | 1470 | KCEE TH | 790 | KDON Sal | 1580 1460 | KF | 迷 | 0 |
| KBAL | San Saba，To | 1410 | KCEY Tunlock，Calif． | 1390 | KDOT Ro | 1290 | KFMJ | Tulsa，Okl | 1050 |
| KBAM | Long | 1270 | KCFA Spok | 1390 | K DOV Mediford，Oreg． | 1300 | KFML |  |  |
| KBAN | Bowie．Tex． | 1410 | KCFH Cuero，Tex | 1600 | KDQN Dequeen，Ark． | 1390 | KFMO | Flat River． |  |
| K ${ }^{\text {BAR }}$ | Burley．Idaho | 1230 | KCFI Cedar Falls，Iowa | 1250 | KDRO | 1490 | KFNF | Shenandoah，lowa | 20 |
| K日日A | Benton，Ark． | 690 | KCGM Columbia，Mo． | 1580 | KDRS Paragould，Airk | 1490 | KFNV | Ferriday．La． | 1600 |
| K日8日 | Borger，Tex． | 600 | KCHA Charles City，lowa | 580 | KDSJ Deadwood，S．Da | 980 | KFNW | Fargo，N．Dak |  |
| K日8C | Centerville | 1600 | KCHE Cherokes，lowa | 1440 | KDSN Denison，lowa | 1580 | KFOR | Lincoln．Neb | 1240 |
| K880 | Yakima，Wash． | 13 | KCHI Chilicothe，Mo． | 1010 | KDSX Denison，Tex． | 950 | KFOX | Long Beach．Cal | 1280 |
| K日BR | North Bend，Oreg． | 1340 | KCHJ Delano，Calit | 1010 | KDTA Delta，Colo | 1400 | KFPW | Ft．Smith，A | 1230 |
| KBBS KBCH | Buffalo，Wyo． | 1450 | KCHR Charleston，Mo， | 135 | KDTH Dubuque．low | 1370 | KFQO | Anchorage，Al | 730 |
| K ${ }^{\text {K BCH }}$ | Oeeaniake，Oreg． Shroveport，La． | 1380 1220 | KCHS Truth or Conseque |  | KDUZ Hutchinson．M | 1260 |  | Fra | 390 |
| K日EA | Mission，Kans． | $\begin{aligned} & 1220 \\ & 1480 \end{aligned}$ | KCHY Coachella， |  | KDW ${ }^{\text {K }}$ St． |  | KF K | Fairbanks，Alask | 900 |
| KBEC | Waxahachio．T | 1390 | KCHY Cheyenne，wyo | 1590 | KDXE No．Little Rock，Ark． | 1380 | KFRO | Rosenb | 8 |
| K日EE | Modesto．Callf． | 970 | KC1D Caldwell，Ida | 1490 | KDXU St．George，Utan | 1450 | KFRE | Fresno，calif． |  |
| K KEEK | Elk City 0 ki | 1240 | KCll Washington．lowa | 1380 | KDYL Tooele，Utah | 990 | KFRM | Kansas Cily，Mo． | 550 |
| K日EL | Idabel，Okla | 1240 | KCIJ Shreveport，La， | 1050 | KDZA Pueblo，Colo． | 1230 | KFRO | Longviow，Tex． | 1970 |
| KEEN | Carrizo Spros．，Tex． | 14 | KCIL Houma，La． | 149 | KEAN Brownwood．Tex | 1240 | KFRU | Columbia，Mio． | 400 |
| K日EER | San Antonio，Tox． | 11 | KCIM Carroil， 10 wa | 1980 | KEAP Fresno，Calif | 980 | KFSA | Ft，Smith，Ari | 950 |
| KBEEY | Rono． Portiand， | 1340 1010 | KCJB minot．N．Dak | 1590 910 | KECE Jachsonville，Tex | 1400 920 | K | Jop | 1310 1220 |
| K日FS | Bolle Fourche．S．Dak． | 1450 | KCJH San Luls obispo，Cal． | 1280 | KEDD Dodse City，Kan | 1550 | KFSO | San ${ }^{\text {der }}$ |  |
| KBGN | Caldwell，Idaho | 910 | KCKC San Bernardino，Cal． | 1350 | KEOO Longview．Wash． | 1400 | KFSG | Los Angeles．Calif． | 1150 |
| K日GO K日HC | Waco，${ }^{\text {Nashillex }}$ ，A | 1580 1260 | KCKG Sonora，Tex，Kans | 1240 | KEED Springiteld，Oreo | 1050 | KFST ${ }^{\text {KF }}$ | Ft．Stockton，Tex． | 860 |
| KBHM | Nashvilie，A Branson． | $\begin{aligned} & 1260 \\ & 1220 \end{aligned}$ | KCKW Jena，La． | 1340 1480 | KEEE | 1230 | KFTM | ${ }^{\text {M }}$ | 1250 |
| K日Hs | Hot Springs．Ark． | 590 | KCKY Coolidge．Arlz． | 1150 | KEEN San lose，Calif． | 1370 | KFTw | ederic | 1250 |
| KBIF | Fresno，Calif． | 900 | KCLA Pine Bluti，Ark． | 1400 | KEEP Twin Fails，Idan | 1450 |  |  |  |
| KBIG | Avalon．Call | 740 | KCLE Cleburne，Tex | 1120 |  | 1430 |  |  | 850 |
| KBIM | Rosweil．N．M | 910 | KCLF Cllifton，Ariz． | 1400 | KEKO Kallua，Hawail | 1190 | KFVS | Cape Girardeau，Mo． |  |
| KBIS | Bakersfild，Calli． | 970 | KCLN Clinton，lowa | 1390 | KELA Centralia，Wash． | 1470 | K | ， | 9880 |
|  |  |  | LO Leavenworth，K |  | KELD El Dorado，Ark． |  | KFXD | Nampa，Idaho |  |
| 178 | WHITE＇S RADIO |  | KCLS Flagstant．Ariz． | $\begin{array}{r} 1530 \\ 600 \end{array}$ | KELI Tulsa，Okla． KELK Eiko，Nov． | $\begin{array}{r} 1430 \\ 1240 \end{array}$ | $\begin{aligned} & K F X M \\ & K F Y N \end{aligned}$ | San Bernardino，Ca Bonham．Jex． |  |





C．L．Locaflon
WCER Charlotte，MICh． WCFR Soringofield． WCFV Ciffton Forge，Va WCGA Calhoun．Ga． WCGO Chicago Hohts．III． WCHA Chambersburg．Pa． WCHB Inkster．Mich WCHI Chillicothe．Ohio WCHJ Brookhaven．Miss． WCHO Washington Court House，Ohio 12 WCHL Chapel Hill N．C． WCHN Norwich，N．Y WCHV Charlottesville，Va． WCIL Carbondale，III． WCJU Columbia，Mlss． WCKB Dunn，N．C．
WCKI Greer，S．C． WCKR Miami，Fia WCKY Cincinnati，Ohio WCLA Claxton，Ga， WCLC Jamestown，Tenn． WCLE Cleveland，Tenn． WCLG Morgantown．W．Va． WCLO Janesvilie，Wis． WCLS Columbus，Ga． WCLT Nowark．Ohio WCLW Mansfield，Ohio WCMA Corinth，Miss．
WCMB Harrisburg，Pa． WCMC Wildwood，N．J． WCME Brunswiek，Malno WCM Ashland，Ky． WCMP Pine City，Minn． WCMR Elkhart，Ind．
WCMS Norfolk，Va． WCMT Martin，Tenr
WCNB Connersville，Ind． WCNC Elizabeth City，N．C．
WCNF Weldon，N．C
WCNH Quincy，Fla．
WCNR Blooms burg．Pa
WCNT Centralla，III．
WCNX Middiotown，Conn．
COA Pesacola
WCOG Greensboro，N．C． WCOH Nownan，Ga． wCOL Columbus，Ohl WCON Cornelia，Ga． WCOP Boston，Mas WCOR Levanon，Tonn． WCOU Lewiston，Maine WCOV Montgomery，Ala wCow Sparta，Wis． WCOY Columbia，Pa， WCPA Clearfeld，Pa． WCPC Houston，Miss．
WCPM Cumberland，Ky
WCPO Cincinnati，ohlo WCPS Tarboro．
WCRA Effingham，III． WCRB Waltham．Mass． WCRE Cheraw，S．C． WCR Scottsboro．Ala． WCRK Morristown，Tenn．
WCRL Oneonta，Ala，
WCRM Clare，Mich．
WCRO Johnstown WCRR Corinth，Miss． WCRS Greenwood，S．C．
WCRT Birmingham，Ala WRY Washington，N．J．
WCRW Chicago Ill．
WCRY Macon， 6 a
WCRY Macon，Ga．
WCSC Charleston，S．C．
WCSH Portland．Maine
WCSI Columbus，Ind．
WCSM Celina，Ohlo
WCSR Hillsdale，Mich．
WCSS Amsterdam，N．Y．
wCTA Andalusla，Ala
$\begin{array}{ll}\text { WCTA Andalusla，Ala．} & \mathbf{9 2 0} \\ \text { WCTC New Brunswick } & \mathbf{9 2 0}\end{array}$
WCTT Corbln，KY．
WCUE Manitowoc．Wis． 980 WCUM Cumberland．M，
WCVA Culpeper Va，${ }^{\text {W．}}$
WCVP Murphy．N．C．
WCVQ Kodiak，Alaska
WCWC Springfeld．III．
WCYB Bristoi．Wa．
WCYN Cynthiana，Ky．
Ke．
1390
1000

580
1260
1020

1250
1230
134
18


1010
930

## W

DAD Indiana
WDAE Tampa，Fla． WDAF Kansas clity，Mo WDAL Meridian．Gas WDAN Danville，Ill． WDAR Darlington，S．C． WDAS Phlladelohla． WDAY Fargo，N．Dak WDBC Escanaba，Mich，
WDBF Delray geach，Fia．
WD

$$
\begin{aligned}
& \text { Horseheads. N. Y. } \\
& \text { WEIC Charleston, MII. } \\
& \text { WEIM Fitchburg, Mlass. }
\end{aligned}
$$ WDBJ Roanoke，Va．

$$
\begin{aligned}
& \text { M Fitchburg, Mass. } \\
& \text { R Weirton. W.Va. } \\
& \text { S Center. Ala. }
\end{aligned}
$$ WDBM Statesville，N．C． WDBO Oriando．FIa．

WDBQ Dubuque，lowa
1020 WDDT Hanover．N．H．
1480 WODW Hreenvilie，Ml
1480 WDDY Gloucester，$V$ ．
1380
610 WDEC Americus，Ga．
530 WDEE Hamden，Conn．
1470 WDEH Sweefwater，Tenn．
1220 WDEL Wilmington，Del．
1490 WDEW Westheld，Mass． 300 WDGY Minneapolis，Minn． 450 WDiG Domohls．Ten 290 WDI Dothan，Ala． 580 WDJS Mt．Olive N． 430 WDKD Kingstroe，S．C． 570 WDKN Dickson．Tenn． 1230 W 1460 W

WDLC Port Jervis，N．Y．
340
280
WDLM E．Moline，III．
 1410 WDMF Buford，Ga． 1430 W WDMV Ponchburg．Va，
400
WDM Pocomoke City，Md．
230 WDNE Durham．N．C． WDOW Dowaglac，Mieh
WDON DuO WDGN Duquoin．Ill．
WDRC Hartford，Conn， WDSC Dllion，S．C．
LA Frankfort. K
Tampa, Fia.
B ayetteville,

$$
\begin{aligned}
& \text { WEHH EJmira Hel Horseheads. N. Y. } \\
& \text { WEIC Charlpston }
\end{aligned}
$$

Fisher，W．Va．
S．Daytona，Fla，

EMB Erwin．Tenn．
EMD Easton，Md．

WENC Whitevilie，P．N．
WEND Edensturg，Pa． WEND Edensburg，P WENK Union Clity，Tenn．

G Atlantic City，N．J．
GM Fort Valiey．Ga．

$$
\begin{aligned}
& \text { WEPG S. Pittsburgh. Tenn, } \\
& \text { WEPM Martinsburg. W.Va. }
\end{aligned}
$$

$\begin{array}{ll}930 & \text { WD } \\ 210 & \text { WD } \\ 010 & \text { WD }\end{array}$
910 WDOE Dunkirk，N．Y，
920 WOG Marine Cily，Mich．
20 WDOK Cleveland，Ohio
400 WDOL Athens．GO．
30 WDOR Sheaton，Md， WOOS Oneonta，N．Y．
WDOT Burlington，Ya WOOV Dover Del． WDSG Dyersburg，Tenn．
WDSK Cleveland，Miss．
WDSM Superior，Wis． r
$\rightarrow 1$

긍 1450
1250
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1250
1250
1
1
1590
1550
1
1

## $c$ $w$ $w$

 C．E．LocotionWEER Warrenton，Va，
WEET Richmond，Va，
WEEU Reading，Pa．
WEEW Washington．N．C．
WEEX Easton．Pa．
WEEZ Chestor．Pa．
WEGO Concord．N．C．
－
$-$

．
Locafion
Ohio $P$
On
Kc． 1570 WFIL Philadeluhia，Pa．$\quad 560$
1320 WFIN Findlay，Ohio $\begin{array}{lll}0 & \text { WFIN Findlay，Ohio } & 1330 \\ 0 & \text { WFIS Fountain Inn．S．C．} & 1600 \\ 0 & \text { WFIW Falrfield．IIi．} & 1390\end{array}$ 1390 Franklin．

《y． 1490
WEGP Presque isle, Maine 970
1490 S Center，Ala．
WEK Scranton，Pa．
WEKR Fayetteville，Tenn．
WEKY Richmond，Ky．
Monroe．Wis．
Elba，Ala．
Welch．W
Fisher．W．Y
Charlottesville，Va．
Battle Creek，Mleh．
Elmira．N．Y．
Tuplo．Miss．
Easiey，S．C．
Kinston，Ala． Ely，Minn．

WEMJ Laconia，N．H．
WEMP Milwaukee，Wis．
WENA Bayamon，P．R． WENO Madison．Tenn WENT Gloversville．N．Y WENY EImIra，N．Y．

$$
\begin{aligned}
& \text { WEOK EOQnkeepsie, } \\
& \text { WEOL Elyria, Ohio } \\
& \text { WEPG S Pittshurno }
\end{aligned}
$$

## 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## $W$ $W$

W．Walton Beach．
WFWL Camden，Tenn．
WFYC Alma，Mich．
$\begin{array}{lr}\text { WGAA Cedartown. Ga. } & 1520 \\ \text { WGAC Augusta, Ga. } & 580 \\ & \end{array}$
$\begin{array}{ll}\text { WGAC Aupusta, Ga. } & 1340 \\ \text { WGAD Gadsden. Ala. } & 1350 \\ \text { WGF }\end{array}$
WGAF Valdosta, Ga, Elizabeth City, N.C.
WGAL Elizabeth City, N.C
WGAN Portland, Maine
WGAP Maryville, Tenn.
WGAR Claveland, Ohin.
WGAS S. Gastonia, N.C. 1220
WGAT Gale City, Va. $\quad 105$
WGAW Gariner, Mass. 1340
WGBA Columbus, Ga.
1330 WGBG Greensboro, N.C.
560
1990
560
c
ミミ

182 WHITE＇S RADIO LOG WDSR Lake Clty，Fla，
WDSU New Orleans，La．
WDUN Gainesvile，Ga．
WDUX Waupaca，Wis．
WDUZ Green Bay．Wis
WDA Danville，
WDVA Danville，Va．
WDVH Gainesvilie，Fla．
WDVL Vineland．N．J． WDVL Vineland，N．J，
WDWD Dawson，Ga． WDWS Champaign，III．
WDXB Chattanooga，Ten WDXE Lawronceburg．Tenn． WDXI Jackson，Tenn．
WDXN Clarksville，Tenn．
WDXR Paducah．Ky．
WDXR Paducah，Ky，
WDXY Surnter，S．C．
WDXY Sunter， S ．
WEAB Greer，S．C．
WEAG Alcoa．Tenn

```
n．
```



Cloveland．Ohio
Hamilton．Ala． ERH Hamilon，Ala，
ERt Westerly，R．I．
ERL Eagle River，WIs．
ERT Van Wert，Ohlo
0. I
N
R
$R$
$S$
W
MC
MD
MH
MJ
MO
MW Phi
Far
Du
Fred
Mi
Go
Fr
Cu
Yo
Fa
W $\mathbf{M}$
ladelphia，Tenn．

dee $\mathrm{N}, \mathrm{Y}$ ．
Va ．1350
1360
730
$\qquad$

OR Hattiesburg．Miss．
R Hammond, La,
RA Franklin, Pa,
RB
Frostburg. Mid.
RC Reidsyllie. M.C.
RL Freeport, IlI.
$\begin{array}{llr}\text { RO Fremont, Ohio } & 900 \\ \text { RX West Frankiort. Ili. } & \$ 300 \\ \text { SC Franklin, N.C. } & 1050 \\ \text { SR Bath. N.Y. } & 1380\end{array}$
380
600
$\begin{array}{lr}\text { ST Caribou, Maine } & 600 \\ \text { TC Kinston. N.C. } & 960 \\ \text { TG London. Ky. } & 1400 \\ \text { TL Ft Latiderdale Fla } & 1400\end{array}$
$\begin{array}{ll}\text { TL Ft. Lauderdale, Fla. } & 1400 \\ \text { TM Maysville, Ky. } & 1240 \\ \text { TR Front Royal, Va, } & 1450\end{array}$
WERT Van Wert, Ohlo
WESA Charleroi, Pa.
WESC Gradford, Pa,
Wreenville, S.C.
350
910


60


GEZ Beloit. Wis.
1360
1430
550

WEAS Colloge Park, Ga.
WEAT W. Palm Beach. Fla.
WE
WEAV Plattsburg, N.Y.
WEAW Evanston. IlI.
290 WG
1600
1250
$\begin{array}{lll}390 & \text { WGL Fort Wayne, Ind. } & 1250 \\ \text { WGLC Centrevilie. Miss. } & 1580\end{array}$
WEBB Baltimore, Md.
WEBC Duluth. Minn.
WEBC Duluth, Minn.
WEBJ Brewton, Als

$$
\cos _{\dot{\infty}}
$$


$\qquad$

1330
1050
WFFF Columbla．Miss．
WFG Marathon，Fla． －

## $W F$ $W F$ $W F$



| C.L. | Location | Ke. | C.L. Locaflon | Ke. | C.L. Loeaflon | . | C.L. Loeatlon |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WKTY | LaCrosse, Wis. | 580 | WLUV Loves Park, III. | 1520 | WMRP Flint, | 1570 | wOKA Douglas, Ga. |  |
|  | Cullman, Al | 1340 920 | WLVA Lynchburg. V | 590 | WMSA Mas | 1340 | WOKB Winter Garden, Fla | 10 |
| KV | San | ${ }_{810} 920$ | WLW Cincinnati, O |  | WMSS M Morganfeid, Ky. | (1480 | WOKE | 1340 |
| WKVT | Brattieboro, Vt. | $\begin{array}{r} 810 \\ 1490 \end{array}$ | WLYB Albany, | 1250 | WMSL Decatur, Ala |  | w | 1450 |
| WKWF | Key West | 1600 | WLYN Lynn. Ma | 1360 | WMSE Man | 1320 | wo | 1590 |
|  | Whe | 1400 | WLYO New Orleans | 940 | WMST ML. | 1150 | Woks Columbus, | 4460 |
| WKws | Rocky | 1290 | WLYC Williamspor | 1050 | WMT Codz |  | WDKW Brockton | 1410 |
| WKXL | Co | 1450 | WMAB Munising. | 1400 | WMTA C | 1380 | Brockron. mass. | $1{ }^{20}$ |
| wkxy | Knox |  | WMAC Nelter | 1360 |  |  | w, | 20 |
|  | Sara | 930 | WMAF Madison | 1230 |  |  |  | 50 |
|  | klahoma City, Okla. | 930 | WMAG For | 860 | WMit Letie | 1580 |  | 30 |
| KYN | Rlo Piodras. ${ }^{\text {a }}$ | 530 | WMAK Nashvilio, To |  | WMTM Moultr | 13900 | WOLF Syracuse, | 1490 |
|  | K | 1270 | WMAL Wash! | 630 | W M TR Morristown |  |  | 230 |
| WK20 | Lou | 900 | WMAM Ma | 570 | WMITS Murfreesboro, Tenm. | 860 | womp Ben | 90 |
| WK20 | Kala | 590 | WMAN Manstie | 1400 | WMUS Muskeod | 1090 | womt |  |
| WLAC | Nasht | 1510 | WMAP Monrob. N. | 1060 | wnuU Gr | 1260 | WONA | 70 |
| WLAF | Danburyt Conn. | 800 1450 | WMAQ Chi | 670 1450 | WMVA Ma |  | WOND Pleasantville; N.J. | 00 |
| WLAG | La Grange, | 1240 | WMAT Lansing. | 1010 | WMYB Millvili | 14450 |  |  |
| WLAK | Lakeland, Fla. | 143 | WMAX Grand Rapids, Mich. |  | WMVO Mt |  | w |  |
| WLAM | Lowiston, Main | 1470 | WMAY Sprindield, ill. | 970 | WMYB My | 1450 | wood Gr |  |
| WLAN | Lanca | 13 | WMAZ Ma | 940 | WMYN Ma |  |  | 56 |
| WLAP | Lexinoton, |  | Wmba Ambridge, Pa. | 146 | WMYR Ft |  | - | 340 |
| WLAQ | Rome | 1410 | WMBC Macon. | 1400 | WNA |  |  |  |
| WLAR | Ath | 1450 | WMBD Peo | 1470 | WNAC Boston, | 80 | W00w Greenville, N.C. | 340 |
| WLAS | Jasi | 910 1330 | WMEG Ric | 13380 | WNAD Norm | 0 | WOPA Oak Park, Iii. | 490 |
| WLAU |  | 1600 |  | 1450 | WNAE W | 0 | W |  |
| wLay | Grand | 13 | WMBL Morehead City N C | 740 |  |  |  |  |
|  | Lawrence | 13 | WMBM Mia | 90 | WNAK Nashitioke. | ${ }_{730}$ |  | 10 |
|  |  |  |  |  | WNAM Neenah. | 80 |  |  |
| ba | - |  | WMBO Aub | 1340 | WNAR Norristo | 1110 | WORG Oran | 1580 |
| WLBE | Carro | 110 | WMBR Jacks | 1460 | WNAT Na |  |  | 50 |
| WLBC | Munci | 1340 790 |  | 590 | WNAU N |  |  | 50 |
|  | Lees |  |  |  | WNAV Annapolis, Md. | 530 |  |  |
|  | ens, |  |  |  |  |  |  |  |
|  |  | 178 |  |  |  |  |  |  |
| WLBJ | onnam Sprinos | 1410 | WMCR On |  |  | 1290 |  |  |
|  | 80wng Gr | 1360 | w | 1600 | WNEH Nowbeytiord. Mass. | $1 \begin{aligned} & 1340 \\ & 1470\end{aligned}$ |  |  |
| WLBL | Stevens Point, | 930 | WMDC Hazlehurst. M | 1220 | WNBS Murray | 1340 | wo |  |
|  | eban | 1590 |  | 1480 |  | 1490 |  |  |
|  | ebanon, | 1270 | WMDN Midland, Mich. | 1490 |  | 12 | N.Y. | 1410 |
|  | Bang | 520 | WMEG Eau Galio. Fla. | 92 | CA |  |  |  |
|  |  | 1250 | se City. |  |  |  |  | 40 |
|  | Lancaster, S.C. | 360 | N Tallahassee. Fia. | 30 |  | 910 | WOVE Welch, W.Va. | 340 |
|  | rensburg. N | 300 | n, | 10 |  | 1340 |  |  |
|  | ustis, | 1240 |  | 510 | WNDB Daytona Be |  |  |  |
| cs | ton | 910 | roeville | 360 |  | 1260 | wowi Now Albany, In |  |
| LCX | Cr | 1490 | mington | ${ }^{630}$ | WNDU | 1490 | WOWL Fl | 0 |
| WLCr | St. Petorsbur | 1380 1490 | WMFG Hiboing, Minn, |  | W WEE | 1230 630 | Wow ${ }^{\text {Wow }}$ Ft. |  |
| WLos | facksonville, ill. | 1180 | WMFR High Point, N.C. | 1230 | WNER Live | 1250 | Wow Y Clew | d |
| WLDY | Ladysml | 1340 | erre Haute, I | 300 | WNES Central | 1050 | xio |  |
|  | rne |  | GA Moultrie. Ge. | 1400 | W Now Y | 0 |  |  |
| C | Sandusky. |  |  |  | X Mac |  |  |  |
|  |  |  | G |  | A Nashville, Ga | 1600 |  |  |
|  |  |  |  | 1490 |  |  |  |  |
| WLEO | Ponc | 1170 | Montgo |  | W | 1340 |  | 1050 |
| WLGS | Lawrenceville, | 1420 | WMID Atlant | 1340 | WNA Cheektowaga, | 1230 <br> 1230 |  |  |
| + | Toccoa. | 1420 | WM1K ${ }^{\text {W }}$ | ${ }_{560}$ | Arecibo P.R. |  |  |  |
| WLEW | ${ }_{\text {Eriog }}{ }^{\text {Pada }}$ | 1450 | WMIL MH | 90 | Hammont |  |  |  |
| A | Lafayette, | 1590 | WMiN Mpls. St. Paul, | 1440 | WNJR Newark, N.J. | 30 |  | 40 |
| H | Little | 1230 | WMIQ Iron Mountain, mic | 1450 | WNKY Neon | 1480 |  | 4450 |
|  | New Y | 11 | IS Natchez | 1240 | W NLC New London, Con | 10 |  |  |
| WLIJ | Shelbyvil | 15 | WMIX M. Vernon, lii, | 940 | WNLK Norwalk, Con | 1350 | WPAX Thomas | 1240 |
|  | Newpor | 1270 | WMJM Cordele. | 1490 | W NMP Evanston, III. | 90 |  | 0 |
| WLIL L | Lon | 730 | WMLF Pineville, Ky . | 550 | WNNC Newton, N.C. | 30 | WPAZ Pottstown, Pa. | 70 |
| WLIP |  | 1050 | WMLO Beveriy. Ma | 1570 | WNNJ Nowton, N.J. | 1360 | nne | 80 |
| WLIS 0 | Mobils, Ala, | 1420 | WMLT Dublin. | 1330 | WNOE New Orieans. La. | 1060 | WPCF Panama city, |  |
| wLIV | Livingston, T | 920 | WMMB Melbourne, Fla. | 1240 | WNOG Na | 1270 | W Pbo | 1590 |
|  | ake | 1380 | WMMH Marshall. | 1460 | WNOK Columbi | 1230 | WPDM Potsda | 0 |
|  |  |  |  | 1260 | WNOO Ch | 1260 |  |  |
| WLKW | Pro Rale | 990 570 | WMMN Fairmont, | 730 | W | 740 1230 | WPDR Porta |  |
|  | Lowell. | 1400 | WMMW Miriden. Con | 1470 | WNOS Hlgh Point, ${ }^{\text {W }}$. . |  | WPEG Winston.Salem. |  |
| WLL | Ilson, N | 1350 | WMNA Gr | 730 | WNOW York | 1250 | WPEH Loulsville, Ga. |  |
| LMJ | Jackso | 1280 | WMNB No. Adams, M | 1230 | WNOX Knoxvi | 1450 |  | 0 |
| WLNA | Poekskill, N.Y. | 1420 1600 | WMNE Menamonle, ${ }^{\text {W }}$ | $1 \begin{aligned} & 1430 \\ & 1360\end{aligned}$ | WNPT Tus |  | WPEN Phila |  |
| WLNH | Lasonla. N.H. | 1350 | WMNI Columb | 920 | WNPV Lansu | 1440 | WPEP Taunton. | 1570 |
| wLOA | Braddoc | 1550 | WMNS Olea | 1360 | WNRG Gr | 1250 |  | 0 |
| WLO8 | Munt | 1310 1150 | WMNZ Montazuma, Ga. | 1050 | WNRIC Newark, Del. | 1260 | WPFB ${ }^{\text {WPI }}$ |  |
| WLOD | Pompano Beach, Fla. | 50 | WMOA Marietta. Onlo | 1490 | WNRY Na | 990 | WPFE Eastr |  |
| WLOE | Leaksvililo. N.C. | 1490 | WMMOC Chatlanooga, Tenn. | 1450 | WNSH Highland | 1430 | WPFP Park Fails, W | 0 |
| LOF | Orlan | 950 1230 | WMOE MOunde, Ala, W.Va. | ${ }_{1550} 137$ | WNSM Valparalso-Ntcoville, | 1260 | WPGA Perry, Ga. |  |
| LOH | Prin | 1490 | WMOG Brunswick, Ga. | 1490 |  |  |  | 1440 |
| WLOI | Lapo | 1540 | WMOH Hamilton, Ohio | 1450 920 | WNUE Ft. Walton Beach, |  | W | 1260 790 |
| WLOL | Minneapolis, Mi | 1480 1330 | WMON Montgomery, w, V a. | 1340 | WNUZ Talladega, A | 230 | WPPID P | ${ }_{280}$ |
| WLON | Lincolnton, N.C. | 1050 | WMOP Oca | 900 | WNVA Norton. ${ }_{\text {Wa }}$ W | 1350 | WP | 730 |
| WLOS | Ash | 1380 | WMOR Mor | 1330 <br> 1230 | WNVY Pensacola, fla. |  | WP |  |
| w | Loui | 1350 1300 | WMMOV Be | ${ }_{1360}^{1230}$ | WNXT Portsm |  |  | 730 1240 |
| WLOX | Biken, Sils | 1490 | WMOX Merldian. Miss | 1240 | WNYC New | 8330 | WPKO Waverly, ohio |  |
| WLPM | Suffoik. | 1460 | WMOZ Mo | 1290 | WOAP San | 1200 |  | 0 |
| WLPS | Lasalle, ${ }^{\text {LII }}$ | 1220 1150 | WMPC Laperr, M1 | 1240 | WOAY Oak H | 860 | WPLA Plant city, fi | ${ }_{380} 910$ |
| WLS ${ }^{\text {ch }}$ | hicaso. | 890 | WMPL | 920 | W0BS Jac | 1360 | WPLK Rockmart, Ga. | 1220 |
| WLSB | - | 1400 |  | 1270 | WOC Dave | 1240 | WPLM Pli | 1390 |
| WLSC |  | 1220 | WMPO midotoport | 1390 | wOCB w. Ya |  |  | 590 1420 |
| WLSE |  | 1400 | WMPP Chicago Heiohts, III. | 1470 680 | WOCK $\begin{aligned} & \text { Worth } \\ & \text { OKech }\end{aligned}$ |  |  |  |
| W LSi | Pikerille, | 1410 | WMPT ${ }^{\text {Wom. Whilliamsport, }}$ Pa. | ${ }_{1}^{680}$ | WODY Ba | 990 | ${ }_{W}^{W}$ |  |
| WLSM |  | 12 | WMRB Greenville. S.C. | 1490 | WOHI E. Liverpool. Ohi | 1490 |  |  |
| ST | Escanaba. Mi |  | WMRC Milford, | 1490 | WOHP Belleto onio |  |  | 0 |
| WLTC | Gastonia. ${ }^{\text {N.C.C. }}$ | 1370 | WMRE Monroe, ${ }_{\text {W }}$ W | 1490 1490 | WOHS Shelby. N.C. | 1390 730 | W |  |
|  |  |  | WMRI M | 860 | WO1 Ames, Lowa | 640 | WPOM Pompano Beach, |  |
|  |  |  | WMRN Marion, Ohio |  | WOIA Salline, Mith. |  | WPOP Hartiord, Conn. |  |
| 184 | White's Rad |  | HRO Aurora, lii. | 128 | woic Columbia, s.c. | 132 | WPOR Portland, Main | 149 |



| c.L. | Lecoflon | $k$ | C.L. | Locotlon | Ke. | C.L. | Lecotion | Ke. | C.L. | Locotion | Kc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Wwow | Conneaut, Ohio | 1360 | WWYO | Pinevillo, W.Va. | 970 | WYAM | Bessemer, Ala, | 1450 | WYSH | cinnon, Tomn. | 1380 |
| WWPA | Williamsport, Pa. | 1340 | WXAL | Demopolis, Alia. | 1400 | WYCL | York. S.C. | 1580 | WYSI | psilanti, Mich | 1480 |
| WWPF | Palatka, Fla. | 1260 | WXGI | Richmond, Ya, | 950 | WYDE | Birmingham, Ala. | 850 | WYS | Bufalo, $\mathbf{N} . \mathrm{Y}^{\text {. }}$ | 1400 |
| WWR! | W. Warwick, R.I. | 1450 | WXIG | Windemere, Fla. | 1489 | WYGO | Corbin, Ky, | 1330 | WYSR | Franklin. Va. | 1250 |
| WWRJ | White River Junc., | Vt. 910 | WXLJ | Dublin, Ga. | 1230 | WYHE | Bristol, Tenn. | 1550 | WYTH | Madisen, Ga. | 1250 |
| WWRL | Woodsids. N.Y. | 1600 | WXLL | Big Dolta, Alaska | 980 | WYLD | New Orieans, La, | 940 | wrTi | Rocky Mount, Va. | 1570 |
| WWRO | Caro, Mich. | 1360 | WXLW | Indianapolis, Ind. | 950 | WYMB | Manning, S.C. | 1410 | WYVE | Wytheville, Va. | 1280 |
|  | Glens Falls, N. Y. | 1450 1420 | $W \times M T$ $W \times O K$ | Merrill, Wis, | 730 1260 | WYND | Sarssota, Fla. | 1280 | WYZE | Allanta. Ga. | 1480 |
| $\begin{aligned} & \text { WWSR } \\ & \text { WWST } \end{aligned}$ | St. Albans. Vt. Wooster, Ohio | 1420 960 | WXOK $W \times R F$ | Baton Rouge, La, | 1260 1590 | WYNG | Warwick-East |  | WZEP | DeFuniak Spris., Fla, | 1460 |
| WWSW | Pittsburah, Pa. | 970 | WXTN | Lexington, Miss. | 11150 | WYNK | Gaton Rounot La. R.I. | 1590 1860 | WZKY | Albemarle. N.C. | 1580 1250 |
| WWVA | Wheeling, W.Va. | 1170 | WXTR | Pawtucket, R.I. | 550 | WYNN | Florence, S.C. | 540 | WZOE | Prineeton, III. | 1250 |
| WWB | Jasper. Ala. | 1360 | WXVA | Charleston, W. Va. | 1550 | WYNR | Chicago, III. | 1390 | W20K | Jacksonvilie. Fla. | 1320 |
|  | Fayotto. Ala. Russellvillo, Ala. | 990 920 | WXYW $w X X X$ | Jaftorsonvillo, Ind, | 1450 | WYOU | Tampa, Fla. | 1550 | $w 200$ | Spartan burg, 8.C. | 1400 |
|  | Russellvillo, Ala. Rlo Pledras. P. | 920 1520 | $\begin{aligned} & W X X X \\ & W X Y J \end{aligned}$ | Hattiesburg. Miss. | 1310 1340 | WYPR | Danvilia, Va. | 970 1080 | WZRH | Zephyr Hills, Fla, | 1400 |
| WWXL | Manchester, Ky. | 1520 1450 | WXYZ | Detroit. | 1340 1270 | WYRE | Lou | 1080 1480 | WZRO | Jaeksonville Beach. |  |
| WWYN | Eric. Pa. | 1260 | WYAL | Scotland Neek, N.C. | 1280 | WYSE | Lakoland, Fia. | 1380 | WZYX | Cowan. Tenn. | $1010$ |

## Canadian AM Stations By Call Letters

## C.L. Locotion

 CBA 8ackrille. N.B. CBAF Moncton, N,B CBE Windsor. Ont. CBF Montreal, que. CBH Hander, Nfd. CBI Sydney. N.S. CBJ Chicoutimi, Que. CBK Regina, Sask. CBL Toronto, Ont. CBM Montras, Que. CBN St. John's. Nfid. CBO Ottawa, Ont.CBT Grand Falls, Nifd. CBU Vaneouver, B.C CBY Quebee, Que.
CBW Winnipeg, Man
CBX Edmonton, Alta. CBY Gerner Brook, Nfid. CFAB Windsor, N.S. CFAC Calgary, Alta. CFAM Altona Man. CFAR Flim Fion. Man. CFBC Saint John. N. B CFBM Broehot, than. CFBR Sudbury, Ont. CFCB Corner Book. Nfld. CFCF Montraal, Que. CFCH North Bay, Ont. CFCL Timmins, ont. CFCN Calgary. Alta. CFCO Chatham, Ont. CFCP Courtenay, B.C. CFCW Camrose, Alta.
CFDA Vietoriavilio, que, CFGB Goose Bay. Nfid. CFGM Rishmond Hill, Ont. CFGR Gravelbourg, Sask.
CFGT St. Josaph
CFJR Brockyilis B.
CFKL Sehofitrville, Que. CFLM Lehoriarvilie, Que. CFML Cornwali, Ont.
CFNB Froderieton, N. B.
CFNO Saskatoon. Sask.
CFOB Northwest Territory
CFOB Fort Frances, Ont.
CFOS Owen Sound, Ont.
CFOX Poirte Claire, Que.
CFPA Porrto Ciairs, que.
CFPA Part Arthur, on
CFPR Prines Rupert, B.C. CF QC saskatoan, Sask.
CFRA Ottawa, Ont.

| Ke | C.L. Locotion |
| :---: | :---: |
| 1070 | CFRB Toronto, On |
| 1300 | CFRC Kingston, 0 |
| 1550 | CFRG Gravelb |
| 690 1450 | CFRN Edmenton, Alta. |
| $\begin{gathered} 1450 \\ 790 \end{gathered}$ | CFRY Portago |
| 1140 |  |
| 1580 | CFSL Weyburn. |
| 540 | CFTK T |
| 740 | CFUN Vancouver. |
| 940 | CFWH Whitehorse. Yukon |
| 640 | CFYK Yellowknife, N, W. |
| 910 | CFYT Dawson, Yukon T. |
| 990 | CHAB Moose Jaw. |
| 690 | CHAD Amos, Que. |
| 980 | CHAT Mediclne Hat, Alt |
| 990 | CHCM, Marystown Nid. |
| 1010 | CHEC Lethbridge. Alta. |
| 740 | CHED Edmonton, Alta. |
| 990 | CHEF Granby, Que. |
| 1450 | CHEX Paterborough, Ont. |
| 1290 | CHFA Edmonton, Alta. |
| 1290 | CHFC Churehill, Man. |
| $\begin{aligned} & 590 \\ & 870 \end{aligned}$ | CHFI Toronto, On |
| 930 | CHGB 8t. Anno de la |
| 1450 | CHIC Brampton, Ont. |
| 550 570 | CHIQ Hamilton, Ont. |
| 600 | CHLN Throse Rivers, Que. |
| 600 | CHLP montreal, Que. |
| 620 | CHLT Sherbrooke, Que. |
| 1060 | CHML Hamilten, 0 |
| 630 | CHNC New Carlisie, Que. |
| 1440 | CHNO Sudbury, ont. |
| 1230 | CHNS Hallfax. N.S. |
| 630 | CHOK Sarnia, Ont. |
| 1380 | CHOV Pembroke, Ont. |
| 1340 | chow Welland, ontario |
| 1310 | CHOM Vancouver, BC. |
| 1050 | CHRC Quebee, Que. |
| 1230 | CHRD Drummondvillo, Que. |
| 1270 | CHRL Roberval, Que. |
| 910 | CHRS St. Jean, Que. |
| 1450 | CH8J Saint John, N.B. |
| 1230 | CHUB Nanalmo, B.C. |
| 1240 | CHUC Port Hope, Ont. |
| 1110 | CHUM Toronto, Ont. |
|  | CHVC Niagara Falls, Ont. |
| 1170 | CHWK Chilliwack. E.C. |
| 1240 | CHWO Oakvile, Ont, |
| 800 | CJAF Cabano, que. |
| 1570 | CJAT Trall, B.C. |
| 560 | CJAV Port Alberni, B.C. |
| 1470 | CJBC Toronto. Ont. |
| 1230 | CJBQ Ballevilia, Ont. |
| 980 | CJBR RImouskl, Qua. |
| 1240 | CJCA Edmonton, Alta. |
| 600 | CJCB Sydney, N.S. |
| 560 | CJCH Halifax, N.S. |


C.L. Location CJCJ Woodstock, N.B. CJCS Stratford, Ont.
CJDC Dawsen Creek, CJEM Edmundston, N.B. CJET Smiths Falls, Ont. CJFP Riviere du Loun, Qu
CJF
Antigonish. N.S. CJFX Antigonish, N.S.
CJGX Yorkton. Sask. CJ18 vornon, B.C. CJIC Sault Ste. Marle, ont. CJJC Langley Prairio. B.C. CJLM Jolistte, Que. CJR quebee, Qu CJLX Ft. Williams. Ont. CJME Regina, Sask, CJMS Montreal, Que. CJNB N. Battieford, Sask. CJNR Bilnd River, Ont. CJOB Winnipeg, Man. CJON St. John's. Nifd. CJOY Vaneouver, B.C. CJQC Quebee, CJRH Riehmond Hill, Ont. CJRL Kenora, Ont. CJRW Summerside, P.E.I. CISO Sorel, Que. CJSP Leamington, Ont CISS Cornwall, Ont. CJVI Vietoria, B.C. CKAC Montreal, Que. CKAR-I Parry Sound, Ont. CKBB Barrie, Ont. CKBI Prince Albert. Sask. CKBL Matane, Que. CKBS St. Hyacinthe Qua. CKBW Bridgewater, N.S. CKCH Hull, Que. CKCK Regina, Sask. CKCL Truro, N.s. CKCQ Seven lles, Que CKCQ-1 Williams Lake, B.C. 1240

\section*{CKCV Kitehener, Ont.} | CKCV Quebee, Que. | 1280 |
| :--- | :--- | | CKCW Moneton, N.B. |  |
| :--- | :--- |
| CKCY Saut 8 8, | 1220 | CKCY Sault 8te, Marle, Ont. CKDA Vietoria. B.C. CKOH Amherst, N.S. CKDM Dauphin, Man. CKEC Now Glasgow, N.S. CKEK Cranbroak. B.C. CKEN Kentvillo. N.S. 920 CKFH Toronto, Ont.


|  | C.L. Locetion | K. |
| :---: | :---: | :---: |
| 920 | CKGB Timmins, Ont, | 680 |
| 1240 | CKGM Montreal, Que. | 980 |
| 560 | CKGR Galt, Ont, | 1110 |
| 570 | CKJL St, Jerome, Que. | 900 |
| 630 | CKKW Kitchener, Ont. | 1320 |
| 1400 | CKLB 0shawa, Ont. | 1350 |
| 580 | CKLC Kingston. Ont. | 1880 |
| 940 | CKLD Thetford Mines, Que | 1230 |
| 940 | CKLG N. Vaneouver. B.C. | 730 |
| 1050 | CKLM Montreal, Que. | 1570 |
| 850 | CKLN Nelson, B.C. | 1390 |
| 560 | CKLS LaSarre, Que | 1240 |
| 1350 | CKLW Windser, Ont | 800 |
| 1060 | CKLY Lindsay, Ont. | 910 |
| 1340 | CKML Mont Laurier, Que | 610 |
| 800 | CKMP Midland, Ont. | 1230 |
| 1300 | CKMR Neweastio, N, B, | 790 |
| 1280 | CKNB Campbellton, N . | 950 |
| 1420 | CKNL Ft. St. John, B.C | 970 |
| 1460 | CKNW New Westminster, |  |
| 730 | British Columbia | 980 |
| 680 | CKNX Wingham, Ont, | 920 |
| 1220 | CKOC Hamilton, Ont. | 1150 |
| 830 | CKOK Penticton, B.C. | 800 |
| 600 | CKOM Saskatoon, Sask. | 1250 |
| 1460 | CKOT Tilsonburg. Ont. | 1510 |
| 1340 | CKOV Kelowne, B.C. | 630 |
| 1810 | CKOX Woodstoek, Ont | 1340 |
| 1220 | CKOY Ottawa, Ont. | 1810 |
| 1240 | CKPC Brantford, Ont. | 1880 |
| 1320 | CKPG Prince George, 8. | 550 |
| 710 | CKPR Fort William. | 580 |
| 1220 | CKPT Poterborough, Ont | 1420 |
| 800 | CKRE Ville 8t. Georges, Que. | 146 |
| 730 | CKRC Winmipeg. Man. | 630 |
| 590 | CKRD Red Deer, Alte. | 850 |
| 1340 | CKRM Regina, Sask. | 980 |
| 950 | CKRN Rouyn, Que. | 1400 |
| 900 | CKRS Jonquiera, Qu | 590 |
| 1250 | CKSA Lloydminster, Alta. | 1150 |
| 1490 | CKSB St. Boniface, Man. | 1050 |
| 1240 | CKSL London. Ont. | 1290 |
| 1000 | CKSM Shawinigan, Quebet | 1220 |
| 970 | CKSO Sudbury, Ont. | 790 |
| 620 | CKSW Swift Current, Sask. | 1400 |
| 600 | CKTE St. Catharines, Ont. | 610 |
| 560 | CKTR Three Rivers, Que. | 1150 |
| 570 | CKTS Sherbrooke, Que. | 900 |
| 1240 | CKUA Edmonton, Alta. | 580 |
| 1490 | CKVD Val d'Or, Que. | 1290 |
| 1280 | CKVL Verdun, Que. | 850 |
| 1220 | CKYM Ville Maric, Que. | 710 |
| 920 | CKWS Kingston, Ont. | 960 |
| 1220 | CKWX Vancouvar. B,C. | 1130 |
| 1400 | CKX Brandon, Man. | 1150 |
| 730 | CKXL Calgary, Alta, | 1140 |
| 1320 | CKY WInnipen, Man. | 580 |
| 570 | CKYL Peate River Alta. | 630 |
| 1850 | VOAR St. John's, Nifd. | 1230 |
| 580 | VOCM St. John's, Nfid. | 590 |
| 1430 | VOWR St. John's, Nild. | 800 |

## Mexican and Cuban AM Stations

Mexican stations audible in the Southwest; the more powerful Cuban stations

Location

## Mexico

BAJA CALIFORNIA
Cuervos
El Saugal
Moxicall

TiJuana

CHIHUAHUA
chihuahua

## W.P.

| Location |  | Ke. W.P. |  | Location | C.L. | Kc. | W.P. | Location | c.l. | Kc. | W.P. | Locatlon Neuvitas | c.L.CMJO |  | W.P. <br> 1000 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 15 PO | Tos |  |  | XEMS | 1490 | 250 |  | CMJT | 700 | 1000 |  |  | 1300 |  |
| San Luls Potos |  |  |  | Nuevo Larado | XEM | 1340 1410 | 250 |  | CMJV | 800 900 | 1000 | Pinar dej Rio | CMAF | 680 | 5000 1000 |
|  | X EW | 540 | 50000 |  | XEBK | 1940 | 100 | Clanfuegos | CMHN | 680 | 1000 |  | CMAN | 840 | 1000 |
|  |  |  |  |  |  | XEOF | 790 | 1000 | Consulacion | Dol Sur | 880 | 1000 |  | C | 920 | 1000 |
|  |  |  |  |  |  | XEFE | 790 | 1000 | Cruces | CMAK | 1210 | 1000 | Sagua La Gran |  |  |  |
|  | NORA |  |  |  | XEK | 900 | 5000 | Guantanaro | CMKS | 1070 | 1000 | S | CMHA | 1280 | 1000 |
| Agua Priata $X$ | XEAQ | 1490 | 250 |  | XEXO | 1970 | 50000 | Habana | CMCY | 550 | 15000 | Santa Clara | CMHG | 670 | 1000 |
|  | XEFH | 1310 980 | 1000 500 | Reynosa | XEOR | 1390 | 1000 |  | CMa | 630 | 25000 |  | CMHC | 1410 | 1000 |
| Cananea Cludad Dbregon | XEFQ | 980 | 500 | Reynoa | XERI | 810 | 500 |  | CMCU | 660 | 1000 |  | CMHQ | 640 | 15000 |
|  | XEDX | 1430 | 1000 |  | XERT | 590 | 5000 |  | CMBC | 690 | 50000 |  | CMHW | 810 | 1000 |
| Hermesille | XEGH | 920 | 5000 | Rio Bravo | XEFD | 1170 | 1000 |  | CMCD | 760 | 10000 |  | CMHD | 1310 | 1000 |
|  | XEDL | 1250 | 500 | Rio Brava | XEDQ | 1110 | 1000 |  | CMCH | 790 | 10000 | Saneti 8piritus CMHM 11301000 |  |  |  |
|  | XEDM | 1580 | 50000 | Tampieo | XEFW | 810 | 50000 |  | CMB2 | 830 | 5000 |  |  |  |  |  |  |
|  | XEHQ | 590 | 500 | Valle Hermess | XEVI | 1450 | 1000 |  | CMEL | 860 | 13000 |  | CMHT | 990 | 1000 |
| Magdalena | XEDS | 1450 | 100 |  |  |  |  |  | CMCF | 910 | 10000 | Santiano | CMDA | 1320 | 1000 |
| Nato | XETM | 1350 | 1000 |  | cuba |  |  |  | CMBF | 950 | 5000 5000 |  | CMKC | 770 | 1000 |
| Nagales | XEHF | 1370 | 5000 |  |  |  |  |  | CMBQ | 1010 | 5000 |  | CMDE | 680 | 1000 |
| San Luls ${ }^{\text {Santa }}$ | XECB | 1450 | 250 | Camaguey | CMJB | 880 | 1000 |  | cmcx | 1060 | 10000 |  | CMKL | 800 | 2000 |
| Santa Ana $\quad$ d | XEAB |  | 250 | Camaguay | CMJL | 920 | 5000 |  | CMCA | 730 | 10000 |  | CMKW | 1000 | 2000 |
| TAMAULIPAS |  |  |  |  | CMJN | 960 | 1000 |  | CMCB | 1330 | 1000 |  | CMKR | 1090 | 1000 |
|  |  |  |  |  | CMJE | 680 | 1000 | Helsuin | CMKJ | 730 | 5000 |  | CMKU | 630 | 2000 |
|  |  |  |  |  | CMFA | 1110 | 1000 |  | CMKP | 670 | 1000 |  | CMDL | 1150 | 1000 |
| Culdad Miquei $X$ | $\begin{aligned} & \text { XEHI } \\ & \text { XEWD } \end{aligned}$ | 70 | ${ }_{2}^{500}$ |  | CM.R | 1030 | 1000 | Holguin Drte | CMKM | 560 | 5000 |  | CMKN | 930 | 1000 |
| Aloman |  |  | 2000 |  | CMJC | 1000 | 1000 | Holdurn Drso | CMKV | 600 | 1000 |  | CMKB | 1170 | 1000 |
| , ${ }^{\text {a }}$ | XEZD |  | 250 |  | CMIF | 1340 | 1000 |  | CMKD | 970 | 1000 | Vietoria de las | Tunas |  |  |
| Matamoros | X EO | 970 | 1000 | Camajuand | CMHO | 890 | 1000 |  | CMDC | 770 | 1000 |  | CMDQ | 840 | 1000 |
| X | XEAM | 1310 | 250 | Ciege de Avila | CMJY | 760 | 1000 | Marianao | CM 2 | 1560 | 5000 |  | CMKT | 1520 | 1000 |

## U. S. FM Stations by States

Abbreviatians: Mc., megacycles; asterisk (*) indicates educatianal station


| Locetios | C.L. Me | Locoth | C.L | Locatlon | C.L | Location | C.L. Me, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | OHF 95.5 | 10wa city | KSUI •91.7 |  | WNBH.FM 98.1 | NEY | VADA |
|  | WEBH ${ }_{\text {WEFM }} 9.95$ | Muscatine | $\begin{array}{cc}\text { KWPC.FM } & 99.7 \\ \text { KDVR } & 97.9\end{array}$ | Plymouth <br> 8. Hadloy | WPLM.FM $\quad .99 .1$ | Las Vegas | KN.FM 97.1 |
|  | WEESS WENR.FM 94.9 | Storm Lake | KAYL.FM ${ }_{\text {KWAR }} 101.58$ | 8prinsfold | WH YN.FM 9 9. ${ }^{\text {a }}$ |  |  |
|  |  |  |  |  | WESCB | NE | AMPSHIRE |
|  | WFMF 1075 | KAN | NSAS |  | WMAS.FM 94.7 | Berlin | MOU-FM 10 |
|  | 98.7 1035 | Emporia | E -88.7 | Waltham | WCAB-FM 102.5 |  | WKBR.FM ${ }^{\text {W5.7 }}$ |
|  | WMAR.FM 103.5 | Kansas | C ${ }^{\text {cigi }}$ | Williamst | WOCB.FM ${ }^{\text {WGFM }}$ - 90.1 | Ml. Washin | 94.9 |
|  | WMBIFM "90. | Lawrene | KSOBANM ${ }_{\text {K }}$ K8.1 |  | WHS日FM 91.9 | Nashua | WOTW.FM 106.3 |
|  | WSN1B 97.1 |  | KJRG.FM 92.1 |  | WAAB 107.3 | NEW | JERSEY |
|  | WSBC.FM WJJO-FM 104.3 |  | TJOFM :88.1 |  | - 96.1 | Asbury Park | WJLK.FM 94.3 |
| Deeatur | WSOY.FM 102.9 |  | KAFM ${ }^{\text {S/ }}$ | MICH | GAN | Bridge | . 7 |
| DeKalb | WNIC 91.1 |  | KTOP.FW 100.3 | Ann Ar | WBCM-FM -91.7 | Cave | OHA.FM 105.5 |
| E. St. Louis | W8BR <br> WSEI <br> WE1. <br> 5.7 |  |  | Bay City | WBEM.FM 102.5 | E. Orange | WFMU 90.1 |
|  | WELG 103.9 |  | KCBM-FM 107.3 | Ben | FB-FM 99.9 | Eatontown | TG-FM 105.3 |
|  | M -FM 94.3 |  |  |  | 4. 7 |  |  |
| Elgin Pa | WEPS *981 | ENTU | UCKY |  | 98.3 | MIIVville | WMYB.FM 99.3 |
| Evantion | 105.9 | Ashland | WCMI-FM |  | 100.3 | Nowark | WJRZ.FM 94.7 |
| Evan3ion | WEUR ${ }^{\text {W }}$ W9.3 | Centrai city | W NES.FM 101.9 |  | BFGGFI 98.7 |  | - |
| Galest | WYKC-FM -88.1 | Fulton | WFUL.FM 104.9 |  | WCHD 105.9 |  | WBGO -88.3 |
| Gion | WELF.FM 107.1 | Glaspow | WGGC 95.1 |  | WDTM 106.7 | Now Brunswk. | CrC.FM 98.3 |
| Harrisb | WEBQ.FM 90.9 | $\underset{\substack{\text { Haza } \\ \text { Hend }}}{ }$ | KIC-FM 96.5 <br> SON.FM  <br> 9.5  |  | WABX 99.5 | Prierson |  |
| $\underset{\text { Hachand }}{\text { Heckonvil }}$ | WNSH-FM 103.1 | Honkinsvilio | WRLX 98.7 |  | WGPR ${ }^{\text {WGPM }}$ 107.5 | Red Bank | HA.FM 106.3 |
|  |  |  | WKOF 100.3 |  | WJBK.FM 93.1 | South Ora | wSou *89.5 |
|  | WJOL.FM 96.7 | Lexington | waky 91.3 |  | 103.5 |  | 97.5 |
| Kankakee | WKAKKMM ${ }^{\text {W }}$ W9.9 | Louisvillo | AP.FM ${ }_{\text {WFPK }}$ |  | WM.  <br> WIR.FM 97.9 <br> 96.3  | Warsphath | WAWZ.FM 100.7 |
| Kowanee | wSMK.FM 106.1 | Lousvin. | WFPL *89.3 |  | WOMC.FM 104.3 |  |  |
| Macomb | WWKS -91.3 | Madi Lonville W | WFMW-FM 93.9 |  | WQRS.FM 105.1 | NEW | ExICO |
| Mattoon | WLBH.FM 96.9 | Owensboro | NGO-FM 9 94.7 |  | WRMK.FM 98.7 | Al | 1 |
| Morris | WRM1-FM 104.7 | Owensboro | WVIS.FM 96.1 |  |  | (3) Aztes | NDE.FM 96.9 |
|  | WVMC-FM 101.1 | Padueah | PAD-FM 96.9 | E. Lansidg | WKAR-FM ${ }^{\text {O }} 90.5$ |  | SNN-FM 98.5 |
| Me. Verno | WMIX-FM 94.1 |  | WKYB-FM 93.3 |  | WSWM 99.1 | Mountain Park | $\begin{array}{llll}\text { KMFM.FM } & 98.9\end{array}$ |
| Oak | 102.7 <br> 9.9 | LOUIS | SIANA |  |  |  | KBIM-FM 97. |
|  | $\begin{array}{lll}\text { LN.F. } & \mathbf{M 2 . 9} \\ \text { RS.FM } & 98.3\end{array}$ |  |  |  | ${ }_{93,7}$ | NEW | ORK |
| Park |  |  | WJB0-FM 968.9 |  | ${ }_{96.9}$ | A | . 3 |
| Park |  |  | LE-FM 104.1 |  | WMAX.F. 10.7 |  |  |
| Pooria ${ }^{\text {Quiney }}$ | WMBD.FM 92.5 | Now Orieans | WBEH 89.3 , |  | WV-FM 105.7 (s) | Babylon | B.FM 102.3 |
| Quiney | WTAD.FM ${ }^{\text {Wa }}$ |  | WDSU.FM ${ }_{\text {WRCM }} \mathbf{1 0 5 . 3}$ |  | WXTO.FM 97.9 | Binghamton | NBF-FM 98.1 |
| Roekford |  |  | WMmT 95.7 |  | WKLW.FM 95.7 |  |  |
| Roek isi |  | Shrevepo |  |  | , | ${ }_{\text {Brafalo }}^{\substack{\text { Braokly } \\ \text { Bufalo }}}$ | BENFM 106.5 |
| Taylorilil | 95.0 |  | KWKH-FM 94.5 | Highland Pk. | WHPR ${ }^{88.1}$ |  | WBFO *88.7 |
| Urbana | WETN-FM -98.i | AI | INE | Hought | WJ WGG 98.5 |  | GR.FM 96.9 |
| nnatka | WNTH *8.1 |  |  |  | WGYA -103.1 |  | . 9 |
|  |  | Aupusta | WFAU.FM 101.3 | Jael | . 1 |  |  |
|  | A |  | WB0R 91.1 | Kal | WMCR - 102.1 |  |  |
| Anders | WAFM. 97.9 | Carib | WFST-FM 97.7 |  | WMRT-FM 100.7 | Cherry Valloy | 101.9 |
| Bloom in | WFIU*103.2 | Lev | WCOU.FM 93.9 |  | WODC.FM 99.7 |  | wCLII- |
|  | WTTV-FM WCSI.FM 98.3 |  | WMTWRFR 91.5 |  | WBRB-FM 102.7 |  | WKRT-FM 99.9 |
| Conne | WCNE.FM 100.3 | Portland | WLOB-F.M 97.9 |  | WOAK ${ }^{\text {L }}$ 89.5 3 |  | WECW :88.1 |
| Crawfor | WBBES-FM 106.3 | Y | YLAND |  | WOMC 104.3 |  | ${ }^{90.3}$ |
| Elikhart | WCMR-FM 95. | ¢ | HLAND |  | WSAM-FM 98.1 | Garden city | WLIR 92.7 |
| Eva | WT | Annapolis | 9.1 | sturals | WSTR.FM 103.1 | Hempstoad | LI.FM 98.93 |
|  | WEVC 9.9 |  | 107.9 | MINN | ESOTA | ell |  |
|  |  |  | WAQE.FM 101.9 | Brainerd | KLIZ.FM 95.7 | thaca |  |
| Franklin |  | Baltimore | ${ }^{88} 1$ | Mankato |  |  | 7 |
| Gary | WGVE *8.1 |  | WCAO-FM 102.7 | minnea po |  |  | BE-FM 101.7 |
| Goshen | WGCS 91.1 |  | W FMM.FM 93.1 |  | WLOL.FW 99.5 | Jamesto | YTN-FM 93.3 |
| Greeneastio | WGRE ${ }^{\text {WHCA }} 9$ |  | WR8S ${ }_{\text {WSID }} 9.1$ |  | WPEBCFM 10.5 | Konmor | WRNW 107.1 |
| Hartiord city | WHCI 91.9 |  | WBAL.FM 929.9 | St. Cloud | KFAM-FM 104.7 | New Roche | Wrox-FM 99.5 |
|  |  |  | WITH.FM 109.3 | St. Paul | KWONOF 95.3 | Now York | ABC-FMA  <br> WBAI 95.5 <br> 9.5  |
|  | WISH.FM 107.9 | Bothesda | W810.FM ${ }_{\text {WJM }}{ }^{\text {P2, }}$ | Worthington | KWOA-Fm 94.9 |  | WBFM 101.9 |
|  | WFBM-FM ${ }^{\text {Wel }}$ | Bolnosda | WHFS-FM 102.5 | MISSI | SSIPPI |  | WCBS-FM $\begin{aligned} & 101.1 \\ & \text { WEVD.FM } \\ & 97.9\end{aligned}$ |
|  | WFBWFMS ${ }^{\text {WFM }}$ | Bradbury ${ }^{\text {Hela }}$ (euts |  | Jaekson | WJIOX.FM ${ }_{\text {W }}{ }^{102.9}$ |  | WEVFUV -90.7 |
|  | WCIAN 90.1 | Fred | WFMD.FM 99.9 | Moridian | WNSL-FMI ${ }^{\text {Wen }}$ |  | HOM-FM  <br> KCB-F .92 .3 <br> 89.9  |
|  | WITZ.FM 104.7 | Hagerstown | WJEJ-FM 104 |  |  |  | WNC |
| Madiso | WORX-FM 96.7 |  | WASK.FM 106.9 |  | OFRI |  | WNEW-FW 102.7 |
|  |  | Oakland | WBuz 95.5 | loplin | WMBH.FM 96. |  | WWYE 91.5 |
| Mun | WMUN 104.1 |  | WGT8.FM ${ }_{\text {WSMD }}$ |  | KSYN 92.5 |  | WOR-FM 98.7 |
|  | WWHI 91.5 | Westminster | WTTR-FM 100.7 | Kansar city | CMEEEY 90.3 |  | NXRC-FW 96.3 |
| Now Castlo | WW.FM 102.5 | MASSAC | CHUSETTS |  | 100.1 |  | WRFM 105 |
|  |  |  |  |  | KCmK 93.3 |  |  |
| hmo | WGLM 96.1 |  | 88.5 |  | $\begin{array}{ll}\text { CuF.FM } & 89.3\end{array}$ | Oloan | WHOL.FM 95.7 |
| Salem Soyma | LM.FM 98.9 |  | WMUA ${ }^{\text {W }}$-91. 9.9 |  |  | ${ }_{\text {Plattsburgh }}^{\text {Patchogue }}$ |  |
| South Bend | WETL 9 91.9 | Boston | WBCN 104.1 |  | KWOC.FM 94.5 |  | PAC-FM 06.1 |
| Terre Haute | 9 |  | Bz-FM 106.7 | St. Louls | CFM 93.7 | Poek | LNA.FM 100.7 |
|  | SKS ${ }^{\text {a }}$ 91.3 |  | WCOP-FM 100.7 |  | WAMVADM 101.1 | Poughkeepsio | WEOK.FW 101.5 |
| Warsaw | WRSW-FM 107.3 |  | WERS ${ }^{88.9}$ |  | WIL.FM 92.3 | Riverhead W | WAPC.FM 103.9(5) |
| ashington | WFMML 108.5 |  | WHDH.FM 994.5 |  | KsTLSL * ${ }^{* 91.5}$ | Rochester |  |
| West Lafayetto | BAA.FM 99.1 |  | WRKOFFM 988 |  |  |  | BEFFMF ${ }_{\text {WCMF }}$ |
|  | WA |  | ET-FM 97.7 |  | KRFD 106.9 |  | C- ${ }^{\text {H }}$ |
| Ames | WOI.FM -90 | 兂 | WBOS.FM 92.9 | Springneld | KTTS.F. ${ }_{\text {KTP }} \mathbf{9 4 . 7}$ |  | WROC.FM 97.9 |
| Boone | KFGO *99.3 | Cambrids |  | Weat Plalns | KWPM-FM ${ }_{93.9}$ |  | WMIV 95.1 |
| dar Falls | KTCF *88.1 |  | WHatses 88.1 |  |  |  |  |
| dar Rapids | KHAK-FM 98.1 | $F$ Fite | GM-FM 104.7 | NEBR | RASKA | Syracuso | WAER *88.1 |
| venpo |  | Framin | WKOX-FM 105.7 | Kearney - Hold |  |  | $\begin{array}{cc}\text { OS.FM } \\ \text { WONO } & \text { 100.9 }\end{array}$ |
| Des Molnas | KDPS ${ }^{\text {g8. }} 1$ | Greenfold | WHALFM 98.3 |  |  |  | SYR.FM 94.5 |
|  | KDM1 97.3 | Lawren | WHAVFHJ 93.5 | Lineoln Draha | ${ }_{\text {AL.F.FM }}{ }^{\text {K4.3 }}$ | Troy | SYR.FM |
|  | Ks0 98.5 <br> $0 . \mathrm{FM}$ 100.3 |  | WLLH-FM 99.5 |  | AB.FM 99.9 |  |  |
|  | H0.F\% 100.3 |  | ${ }^{3}$ |  | OW-FM 992.3 | Wt | (un.FM ${ }_{\text {Weiv }} 105.7$ |
| 188 WHI |  | Now Bedford | WBSM-FM 97.3 | Seotablur | KNEW-FW 9\%.1 | White Plains | WFAS.FM 103.9 |


| Location | C.L. Me. | Locotion | C.L. Me. | Locertion | C.L. Me. | Locatlon | C.L. Me. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NORTH | CAROLINA | Middlotown | WPFB-FM 105.9 WMVO-FM 93.7 |  | WYRE.FM 107.9 WILY 105.9 |  | 1084.5 ST 100.3 |
| Albemarle | WABZ-FM 100.9 | New Concord | WMCO-FM 9.91 .9 |  | A8.FM 99.7 |  | KQUE 102.9 |
| Asheboro | WGWR-FM 92.3 | Nowark | CLT.FM 100.3 |  | WKJF 93.7 |  | KRBE 104.i |
| Asheville | WLOS.FW 104.3 | Oxford | WMUB ${ }^{888.5}$ |  | T-FM 101.5 |  | KXYZ-Fm 98.5 |
| Burlington | WBBE-FM 101.1 |  | 97.7 |  | WWSW-FM 94.5 |  | KTRH-FM 101.1 |
|  | WFNS-FM 93.9 | Piqua | WPTW-FM 95.7 | Pottsvills | WPPA.FM 101.9 |  |  |
| Burlington-Gra | raham | Por | WRWR.FM 94.5 | Red Lion | WGCB.FM 96.1 | Hilloen | KLEN.FM 93.3 |
| Chapal Hill | WBAG-FM ${ }_{\text {WUNC }} \mathbf{9 2 . 9}$ | Portsmout | WPAY-FM 104.1 | Seranton | WGB1-FM 101.3 | Lubbock | SCL.FM 93 |
| Charlotte | WSOC.FM 103.5 |  | 102.7 | Sharon | WPIC.FM 102.9 |  | M 49.9 |
|  | WYFM 104.7 | Springto | LY-FW 103.9 | State College | -91.1 | Marshall | KMHT-FM 97.3 |
| lingman's Pk. | k. WMIT 106.9 |  | WEEC-FM 100.7 | Sunb | KOK.FM 94.1 | Midiand | KNFM 92.3 |
| Concord, N.C. | WEGO-FM 97.9 | Steubenville | WSTV-FM 103.5 | Towanda | WTTC.FM 92.7 | Mt. Pleasant | KIMP.FM 96.1 |
| Durham | WONC.FM 105.1 | Toledo | WSPD-FM 101.5 | Tyrone | WGMR.FM 101.1 | Odessa | KQIP 96.7 |
| Elkin | WIFM-FM 100.9 |  | WMHE 92.5 | Warren | WRRN 92.3 |  | WMO 99.1 |
| Fayotteville | WFNC-FM 88.1 |  | WTDS ${ }^{\text {a }} 91.3$ | Washington | WJPA.FM 104.3 | Pampa | KBMF-FM 100.3 |
| Forest City | WBBO-FM ${ }^{\mathbf{9 3 . 3}}$ |  | TOL-FM 104.7 | Waynosbaro | WAYZ-FM 101.5 | Pasaden | KLVL-FM 92.5 |
|  | WAGY-FM WGNG.FM 105.3 101.9 |  | WTRT 99.9 | Wilkes-Earro | WBREFM 98.5 | Plainvie | KHBL ${ }^{38.1}$ |
| Gastonla Goldsboro |  | Westerville | WWOBN 91.5 |  | 103.3 | Port Arthur | 93.3 |
| Goldsboro | WEOR 96.9 | Wooster | WWST-FM 104.5 | Wllliamsport | 105.1 | San Antonio | 99 |
| O | QWG-FM 97.1 |  | mbus <br> WRFD.FM $\quad 97.9$ | York | WRAK.FM 100.3 WNOW-FM 105.7 |  |  |
| Green | Www8 -91.3 | Xenia | $4 \mathrm{BM}-\mathrm{FM} 103.9$ |  |  |  | Y 92.9 |
| Hende | HNC.FM 92.5 | Yellow 8 prines | WYSO 91.5 | RHODE | ISLAND | Sinton | OD.FM 101.3 |
| nder | HKP-FM <br> HKP.FM <br> 102.5 <br> 102.5 | Youngstown | KBN-FM 96.9 | Cranzton | WLOV 99.9 | Tex | KTAL.FM 98.1 |
| Hiskory | HKY.FM 102.9 |  | WRED 101.1 | Providente |  |  |  |
| High Point | WHPE-FM 95.5 | Zanesville | WHIZ.FM 102.5 |  | CE.FM 107.7 |  | C ${ }^{\text {c }}$ 95.5(8) 98.9 |
|  | WHPS ${ }^{89} 9$ | Zanesulio | Whiz.Fm |  | 95.5 |  | CO 99.9 |
|  |  | OKLA | AHOMA |  | WO-FM  <br> WXCN 92.3 <br> 01.5  |  | TAH |
| Laurinbur | WEWO-FM 96.5 | Durant | SEO-FM 107.3 | Woonsocket | WWON-FM 106.3 | Ephrai | KEPH -88.9 |
| Leaksvilie | WLOE-FM 94.5 | Norman | NAD.FM 90.9 |  |  | Logan | KUSU.FM -88.i |
| Lexington | WBUY-FM 94.3 | Oklatioma city | KOKH <br> K 100 <br> 100.9 <br> 108 | SOUTH | AROLIN |  | K ${ }^{\text {KYU.FM }}$-88.9 |
| Ralelon | KIX-FM 96.1 |  | KEFM 94.7 | Anderson | C 101.1 | salt Lake City | . 1 |
|  | WPTF.FM 94.7 |  | KYFM 98.9 | Charieston | WCSC-FM 96.9 |  | KSL-FM 100.3 |
| Reidsvill | WRAL-FM <br> WREV-FM <br> 1021.5 | Stillwater | KOSU.FM 9\% ${ }^{\text {a }}$ | Clem | WSBF-FM 88.1 |  |  |
| Rocky Mount | WEED-FM 92.1 |  | KSPI-FM 93.9 | Columb | WCOS-FM 97.9 | VIR | GINIA |
|  | WRXO.FM ${ }_{\text {W }} \mathbf{1 0 0 . 7}$ | T | KIHI 95.5 |  | WUSC-FM ${ }^{\text {W }}$ W9.9 | Arlington | WAVA-FM 105.1 |
| Salis bury | WSTP.FM 106.5 |  | KOCW 97.5 | Dition | WDSC.FM 92.9 |  | 97.5 |
| Sanford | WWGP.FM 105.5 |  | KOGM.FM 92,9 | Greanville | 92.5 |  | WA-FM 95.3 |
| Shelby | WOHS.FM WFMX Wer 96.7 |  | GON |  | WFBC.FM 93.7 | Crewe | SVS.FM 104.7 |
| Tarboro | WCPS-FM 104.3 |  |  | Laurens-Crinton | WLBG.FM 100.5 | Framulle | WFLO.FM 95,7 |
| Thomasville | WTNC.FM 98.3 | Eusens | KEEDVM *91.9 | Rock Hill | WAHI-FM 98.3 | Frederieksburg | WFVA-Fw 101.5 |
| Wilmington | WWPRY 93.9 |  | KFMY 97 | Seneea | WSNW.FM 98.1 |  | WVEC.FM 101.3 |
| Wilson ${ }_{\text {Winston }}$ Salem | WVOT-FM 106.1 |  | KUGN.FM 99.1 | Spartanbury Sumter | $\begin{array}{ll} \text { WSPA-FM } & 98.9 \\ \text { WFIG-FM } & 101.3 \end{array}$ | Farrisonburg | WEMC 91.7 |
| Winston-Salem | m WAIR.FM 93.1 |  | KWAX •91.। | Sumter | WFIG.FM 101, 3 |  | 100.7 |
|  | WFDD-FM -88.1 | Grants Pass | KGPO 96.9 | EN | ESSEE | Lynehburg | WOD-FM 100.1 |
|  | WSJs-FM 104.1 | Medford Oroteeh | K KOY-FM  <br> KTEC 85.3 <br> 1  | Br | WOPI.FM 96.9 | Manassat | $\begin{array}{cc}\text { WPRW-FM } & 106.7 \\ \text { WMEV-FM } & 93.9\end{array}$ |
|  |  | Portland | KOAP-FM 92.3 | Bristol <br> Chattanooga |  | Martinsville | WMVA.FM 96.3 |
|  | 410 |  | KGMG 95.5 |  | WLON 106.5 | Nowport Nows | WGH-FM 97.3 |
| Akron | AKR-FM 97.5 |  | $\begin{array}{ll}\text { KGIN-FM } & 101.1 \\ \text { KPOO-FM } \\ 105.3\end{array}$ | Cleve | WCLEFM 100.7 | Norfolk | WRVC 102.5 |
|  | WAPS -89.1 |  | KPF ${ }^{\text {m }}$ 97.1 |  | W8MC-FM ${ }^{88.1}$ |  | R.FM 95.7 |
|  | WCUE.FM 96.5 |  | KFOJ-FM 98.7 | Franklin | LT-FM 100.1 |  | - 99.7 |
| Allianee | WFAH-FM 101.7 |  | KQFM 100.3 | Gailatin |  | Portamouth | AVY.FM 96.9 |
| Ashland | WNCO-FM 101.3 |  | KRRC -89.3 | Greeneville <br> Jackson | WTISEFM 104.1 | Riehmond | WCOD 0.9 |
| Athens | WOUB-FM 91.5 | PENN | YVANIA | Johnson Clity | WJCW.FM 100.7 |  |  |
| Barberton | WDBN 94.9 | PENN | LVANIA | Kingsport | WKPT-FM 98.5 |  | WVA-FM 94.5 |
| Bellairs | WOMP.FM 100.5 | Allentown | 2100.7 | Knoxvilio | BIR.FM 93.3 | Raanoke |  |
| Beroh Gron | WBWC ${ }^{88.3}$ |  | WAEB-FM 104.1 |  | W UCS 91.1 | ผ | W(R) 92.3 |
| ( Bowling Groen | WHBC.FM ${ }^{\text {W }}$ 98.1 | Altoona | -FM $\mathrm{FH}^{100.1}$ | Memphis | WMC.FM 99.9 |  | ROV.FM 103.7 |
|  | WCNO 106.9 | Beavor Falls | WBYP-FM 106.7 | , | MPS-FM 97.1 |  | $\begin{array}{r} 99.1 \\ 97.5 \end{array}$ |
|  | WTOF-FM 98.1 | Bethlehem | WGPA-FM 95.1 |  | 1A-FM 102.7 | South Norfoik |  |
| lima | WMER.FM 94.3 | Blooms burs | WHLM-FM 106.5 | Nashvillo |  | Staunton | WSGM-FM 93.5 |
| Cincinnati | WBEX-FM 93.3 | Bryer | WLOA-FM 96.9 | Sovlervill. | WSEV-FM 102.1 | w | M 89 |
|  | WAEF.FM 104.3 | Butler | W BUT-FM 97.7 |  |  |  | 92.5 |
|  | WGUC '90.9 | Carlisio | 102.3 |  | XAS | Weodbridge | 105.9 |
|  | WAKW-FM 93.3 | Chambersburg | WCHA.FM 95.1 (8) |  |  | NA | NGT |
|  | WKRC-FM 101.9 | Dubois | 102.1 | Abllens | KFMN 99.1 |  |  |
| Cloveland | KYW.FM 105.7 |  | 99.9 | Alvin | KAJC.FM 102.1 | Bellingham | KGMP-FM 92.9 |
|  | WXEN.FM 106.6 | Erlo | WWYN.FM 99.9 | Amarillo | KGNC-FM 93.1 | Cheney | KEWC-FM -89.9 |
|  | WBOE 90.3 | Gettysburg | WGET-FM 107.7 | Austin | KHFI 98.3 | Edmunds | KLYN.FM ${ }_{\text {KGF }} 105.3$ |
|  | WCRF 103.3 <br> WDGO  <br> 5.5  | Gle | WIFI 92.5 |  | KTBC-FM ${ }^{\text {g3, }}$ | opoortunity | K2UN-FM 96.1 |
|  | WDOK-FM 102.1 |  | WMSP 94.9 |  | KUT.FM -90.7 | Seatil: | KING.FM 98.1 |
|  | WERE.FW 98.5 | Havertown | WHHS '89.3 | Beaumon | KHCB-FM 105.7 |  | KGM ${ }^{\text {KGM }}$ |
|  | WGAR.FM 99.5 | Hazleton | WAZL-FM 97.9 |  | $\begin{array}{ll}\text { KAYD.FM } & 97.5 \\ \text { KFNE.FM } & 95.3\end{array}$ |  | KIRO-FM 100.7 |
|  | HK.FM 100.7 | Jonkintown | WIBF 103.9 | Bif Sp Brownw | NEFPM ${ }^{\text {KHPC }}$ 88.1 |  | KIRKISW ${ }^{\text {99.9 }}$ |
|  | WNOB 107.9 |  | WARD.FW WJAC.F. 92. W | Cleburne | KCLEFM 84.9 |  | KLSN 96.5 |
| Clovoland Hts , | WCUY-FM 92.5 | Laneastor | WGAL.FM 101.3 | Corpus ChristI | KMFM 95.5 |  | KOLTCS ${ }^{\text {KMA.9 }}$ |
| Columbus | WCBE 90.5 |  | WDAC 94.5 | Dallas | XL-F M 104.5 |  | KOLFW ${ }_{\text {KUSW }} 94.1$ |
|  | COL-FM 92.3 |  | LBA.FM 100.1 |  | KRLD-FM 92.5 | Spokana | KREM.FM 92.9 |
|  | W08U-FM -89.7 | Meadville | WMGW.FM 100.3 |  | KLIF-FM 98.7 |  | KXLY-FM 98.9 |
|  | WTYN-FM 96.3 | Montrose | PEL-FM 96.5 |  | WFAA-FM 97.9 | Tateme | $\begin{array}{cc}\text { KHQ-FM } \\ \text { KCPS } & 98.1\end{array}$ |
| Dayton | WVKO <br> HiO.FM <br> 10.7 | Oil city | $\begin{array}{ll}\text { WDJR } & 98.5 \\ \text { WJWR } & 92.1\end{array}$ |  | WRR-FM 101.1 | Tacome | KLAY.FM ${ }^{\text {P06.3 }}$ |
| Dayton | WH WONE 104.7 | Philadelohla | CAU.FM 98.1 |  | KQRO 102.9 |  | KTNT.FM 97.3 |
| Delamare | WSLN 91.1 | Phua | WPB8-FM 105.3 | Denton | KDNT-FM <br> KSPL-FM <br> 106.3 <br> 85 |  | $\begin{array}{cc}\text { KTOY } & 981.7 \\ \text { KWR } & 103.9\end{array}$ |
| East Liverpool | OHI-FM 104.3 |  | WDAS-FM 105.3 | Diboll |  |  |  |
| Eaton | WEOCTM 92.9 |  | FIL-FM 102.1 | Dumas | KDDD-FM ${ }_{\text {KYOF, }}$ | Yakima | KNDX-FM 106.3 |
| Elyria | WEOL.FM 107.3 |  | WFLN 95.7 | El Paso | YSM.FM ${ }^{\text {P98.5 }}$ | WEST | VIRGINIA |
| Findlay | WFIN-FM 100.5 |  |  |  | KHMS 94.7 |  | ORGINIA |
| Fremont - | WFRO-FM 99.3 |  | WIFI 92.5 | Ft. Worth | BAP-FM 96.3 | Beekley | WBKW 99.5 |
| Gailipolis | WJEH-FM 101.5 |  | WPBG-FM 94.1 |  | KXFM 99.5 | Charleston | KAZ.FM 97.5 |
| Granville | WDUB-FM 91.3 |  | WIP-FM 93.3 |  | KFIZ-FM 97.1 |  | WKEKNA 98.5 |
| Greenville | WDRK-FM 106.5 |  | PEN.FM 102.9 |  |  | Huntinston | WKEEFFM 100.5 |
| Mamilion | WQMS 96.7 <br> WHOH 109. |  | WPWT -91.7 WOAL 108.1 | Gainesville Harlingen | KGAF-FM 94.5 <br> KELT $\mathbf{9 4 . 5}$ |  | WEPM.FM '88.1 <br> 4.3  |
| Hamil | WFDL.FM 94.9(s) |  | RTI.FM $=90.1$ | Highland Pk. | KUIL.FM 103.7 | Morsantown | WAJR.FM 99.3 |
| Kent | WK8U.FM :88.1 |  | WXPN -88.9 | Hilisboro | KHBR-FM 102.3 | Dak Hill | WOAY-FM 94.1 |
| Lancester | WHOK-FM 95,5 | Plttsburgh | KDKA-FM 92.9 | Houston | KHGM 102.9 | Wheeling | WKWK.Fm 97.3 |
| Lima | WIMA-FM 102.1 |  | WAMO 105.9 |  | KHCB.FM 105.7 |  | WWVA.FM 88.7 |
| ariotta | WCMO ${ }^{\text {89,3 }}$ |  | WRYT-FM 96.1 |  | 95.7 |  |  |
| Mlamlaburg | $\begin{array}{cc}\text { WMRN.FM } & 106.9 \\ \text { WFCJ } & 98.9\end{array}$ |  |  |  | $\begin{array}{cc} \text { KFMK } & 97.9 \\ \text { KODA-FW } & 99.1 \end{array}$ | WHITE'S R | O LOG 189 |


| Location WIS | C.L. NSIN | Me. | Location Highland Two. | C.L. MC. WHSA ${ }^{69.9}$ | Locallon | C.L. ISN.FM |  | Watertown |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applaton | WL |  |  | WCLOEFM ${ }^{\text {WHLA }}$ 990.9 |  |  | 10.3 102.9 | Waukesh | $u x . F$ |  |
| Chilton | WH |  | Madison | A.FM ${ }^{\text {Bra }}$ |  | WOFM | 102.1 93.3 | Vau | Wham | 91.9 103.7 |
| Delant |  | -90.7 |  | 8M.F.M 98.1 |  | MJ.FM | 94.1 | West | wbk | 103.7 92.5 |
|  |  | , |  | MFM | Manros | WEKZ.FM | ${ }^{93.7}$ | Wisc. Rapids | , | . 5 |
| For | wf AW | 107.3 |  | WVB.FM io2.5 |  | WRJN.FM | 100.7 |  |  |  |
| Groen Bay | WBAY. | 101.1 | Me | $100$ | Rice Sparta Lake | wJmc. | ${ }^{96.3}$ |  | MINC |  |
| hl | WH | ${ }_{91.3}$ |  | IL | Stevens Po | SPT |  | Cheyonno | 㱓. |  |

## U. S. FM Stations by Call Letters

Abbreviation: (s)-broadcasts stereo

## C.L. Location

 KAAR Oxnard, Callf. KABC.FM Los Angeles, Callf. KACE.FM Riverside, Callif. KAOI St LOUIS, Mo.KAFE Oakland, Calif.
KAFM Salina, Kans.
KAIM-FM Honolulu, Hawall KAJC.FM Alvin, Tex. KAIS Newport Beach, Calif. KAKC Tulsa, Okia
KAKI San Antonio, Tex. KALB-FM Alexandria. La KALH Oenver, Colo.
KALW San Francisco, Calif. KAMS Mammoth Spring, Ark.
KANG 8t. Louls. W0. KANT-FM Lancastbr, Calif. KANU Lawrence, Kans. (8) KANW Albuquerque, N. M ox KAPP Redondo Beach, Calif. KARK Little Rock, Ark. KARM-FM Fresno, Calif. KARO Houston, Tex.
KASK-FM Ontario, Calif. KASU Jonesboro, Ark. KATY-FM San Luis Obispo, Callf KAYY F Beaumont, Tox. KAZ2 Austin, Tex.
BAY San Franciseo, Callt. KBBI Los Antoles, Calif. KBBE Withita, Kans. KbBW San Olego, Calif. KBCA Les Angeles, Calif. KBCL.FM Shreveport, La: KBCO San Franeiseo, Calif. KBCE.FM Modesto, Callf, KBEY Kansas City, Mo. KBFI Boise, Idaho KBF M Boise, daho KBIM-FM Roswell, N.Mex. KBia Los Angeles, Calif. KBMF Pampa, Tex.
KBMS Los An, KBOA-FM Konnett, Mo BOY.FM Medford, Ore KBTM-FM Jonosbore, Ark KBUZ-FM Mesa, Ariz. KBYA-FM Anchorago, Alaska (s) KBYU-FM Provo, Utah KCAL-FM Rediands, Calif, KGBH Bovarly Hills, Calif. (s) KCBS.FM san Francisco, Cailif. KCFM 8t. Louls, Mo.(s) KCHO.FM Amarilio. Tex, (s) KCHQ-FM Coneholla, Calit. (s) KCIB-FM Fresno, Callp. KCJC Kansas City, Kans. KCLE.FM Cleburna, Tex. KCMB.FM Wlehita, Kans. KCMI Los Anjoles, Calif, KCMO-FM Kansas City, Mo. (s) KCMS.FM Manitou 8prings, Colo KCOM Omaha, Nebr.
KCPS Tatoma, Wash. city, Utah KCPX*FM Salt Lako city, Uta KCRA-FM Saeramento, Calif.
KCRW Santa Monica, Calif. KCSM San Mateo, Calif. KCUI Pella, la.
CUR-FM Kansas City, Mo. KCVN Stockton, Calif
KCVR.FM Lodi, Calif.
KOB.FM Santa'Barbara, Calif. KDOD-FM Dumas. Tox. KDEF.FM Albuquerque, N.Mex. KOEN-FM Denver, Colo. KDFC San Franeiseo, Callif KOMC Corpus Christi, Tox. KOMI Dos Molnes, lowa(s) CDMT Des Moines, towa(s) KDNT + FM Denton, Tox. KDPS Oes molnes, lowa KOVR Sieux City, la. KDWC West Covina, Callif. KEAR San Franeisco, Galif. KEAR San rrancisco, Galif. KEBJ Phoenix. Ariz. KEBR Saeramento, Callf. KEBS San Olego, Calif. KEED.FM Springhold.EUgene,

## C.L. Location

KEEN-FM San Joso, Calif
KEEZ San Antonio, Tex. (s)
KEFM Oklahoma City, okla. KEFW Honolulu Hawa॥ KELE Phoanix, A Riz. KELT Harlingen, Tox. KERN-FM Bakersfiold, Calit. KETO. FM 8oattle, Wash.(s) KEYM Santa Maria, Calif. (s) KEZE Anaheim, Calif. KFAB-FM Omaha, Nébr. KFAC-FM Los Angoles, Calif. KFAM-FM 8t. Cloud, Minn. KFBK-FM Sacramento, Calif. KFCA Phoonix, Ariz. KFGQ-FM Boons, lowa KFH-FM Wiehita, Kans, KFJC Mountainview, Calif. KFJ2 Fort Worth, Tox, KFMB-FM San Diego, Calif. KFMC Portland, Oreg. KFMH Colorado Springs, Colo. KFMK Houston, Tex. (8) KFML-FM O envar. Colo. KFMM Tueson, Ariz. KFMN Ablieno, Tax, KFMP Port Arthur, Tax. (s) KFMQ Lincoln, Nebr. KFMU Los Anfeles, Calif.(s) KFMV Minneapolls, Minn KFMX San Diego, Calif KFMY Eugano, Oreg. (s)
KFNB Oklahoma City, KFNE Bi Springs. Tox. KFRC+FM San Francisco, Callf. KF UO.FM Clayten, Mo. KGAF-FM Gay nesil KGB-FM San Oiage, Callf. (s) KGBN-FM Caldwelf, Idaho KGFM Edmonds, KGLA Los Anjeles, Calif. KGMG Portland, Orag. (s) KGMI Bollingham, Wash. KGO.FM san Franclsco. Calif. KGPO Grants Pass, Ori. KGUO.FM Santa Barbara, Calif. KHAK.FM Cedar Rapids, lowa KHEL Plalnviow. Tox. KHER-FM Hilisboro, Tox. KHGB Houston, Tox.
KHFI Austin, Tox.
KHFM Albuquerque, N.Mex. (s) KHFR.FM Monterey, Calif. KHGM Boaumont, Tex (s) KHIP San Franeiseo, Calif. KHIQ. Sacramento, Calif. (s) KHJ-FM Los Angeles, Calif. KHMS EI Paso, Tex.
KHOF Los Angoles, Calif. KHOM-FM Turlaek, Cali KHPC Brownwoed, TeX. KHQ.FM Spokane, Wa: KHUL Houston. Tex.
KHVR Bijou, Calif.
KHY1 Fremont, Calif.
KICN Omaha, Nobr.
KIEM Euroka, Calif.
KIHI Tulsa, okla.
KIMP-FM Mt. Pieasant. Tex. KING.FM Seattle, Wash. K100 Oklahoma, Okla. K1RO-FM Seattlo, Wash. KISA Kansas City, Mo. Kisw Seattle, Wash. (s) KiTH Phoenix, Ariz. KITT San Diego, Calif. KIXL.FW Oallas, Tex.(s) KJAZ Alameda, Callf. (8) KJEM-FM Okla, City, Okle, KJM Ft. Wort, Tox KJML San Oieramento, Callif. KJPO Fresno, Calif. KJRG Nowton, Kans. KJSB Houston, Tex. KLAC.FM Los Angeles, Calif. KLAY-FM Tacoma, Wash. KLCN.FM Blythevillo, Ark. KLEN-FM Killean. Tex.
C.L.

KLIR.FM Denver
KLIZ-FM Brainerd, Minn KLOA-FM Ridgeerest, Calif. KLON Lonp Beach, Calif. KLRO San Oiego, Calif. KLSN Seattlo, Wash. (s) KLUB-FM Salt Lake City, Utan KLVL Pasadena, Tex. KLYO.FM Bakersfeld, Calif. KLYN-FM Lynden, wash. KMAX Siorra Madrs, Callo. KMCP Portland Oroi. KMCS Seattla, wash.
KMER Frasno, Calif.
KMFM Tularosa, N. Mox. KMHT Marshall. Tex. KMLA Los Angoles, Callf. (s) KMLB-FM Monroo, La. KMOX-FM St. Louis, Mo. KMUW Wichita, Kans. KMYC-FM Marysvilio, Calif. KMUZ Santa Barbara, Callf. (s) KNBC-FM San Franciseo, Caiif. KNOE.FM Aztec, N, Mox KNOX Yakima, Wash. KNEB-FM Scottsbluñ. Nebr. KNER Oallas. Tox.
KNEV Rene, NeV.
KNEW-FM Scottsbluf, Nebr. KNFM Midland, TeX. KNIK-FM Anchorage, Alaska KNOB Long Beach, Calif. KNOF St. Paul, Minn. KNX.FM Las Ángeles, Callf KOA.FM Oonver, Colo. KOAP.FM Portland, Ore, KOCW Tulsa, Okla,
KOOA.FM Houston. Tex
KOGM-FM Tulsa, Okla KOGO San Diego, Calif, KOKH Oklahoma City, Okla. KOL.FM Seattle, Wash. KONG.FM Visaliz. Calif. (s) KOOL-FM Phoonix, Ariz KOSK.FM Oegas, Nov. KOSE-FM Oseeola,
KOST Oallas. Tox.
KOSU-FM Stillwater, Okla.
KOSU.FM Stilwator, Okla.
KOY.FM Phoenix, Ariz.
KOZE.FM Lowiston, Idaho KPAT Albuquerquo. N, Mex. KPCS Pasadena, Callf. KPOQ.FM Portiand, óre KPEN Atherton, Calif. (s) KPFA Berkoley. Calif. KPFA Berkeley, Calif KPFK Los Angeles, Calif. KPFM Portiand, Ored (s) KPGM Los Altos, Calif. KPLR-FM St. Louls, Mo.
KPOI-FM Honolulu, Hawai KPOJ-FM Portland, Oreg. KPOL-FM Lus Anjoles, Cali KPPS.FM Parsons, Kans. KPRI San Dloge Galit. (s) KPAN Seattle, Wah.
KPSD Oallas, Tex.
KQAL-FM 0maha, Nebr. (s) KQBY-FM San Francisco, Callf. KGFM Portland, Oreg.
KQIP Odessa, Tox.
KaRO Dalias, Tex.
KQV.F M Pittsburgh. Pa. $K Q X A$ Bakersfeld, Calif. KRAK-FM Stockton, Calif. KRAM-FM Las Vagas, Nev. KRBE Houston, Tox.(s) KRCC Colorado Springs, Colo KRCW Santa Barbara, Calif. KRE-FM Berkeley, Calif. KREM-FM Spokana, Wash. KREX-FM Grand Junction, Colo. KRHM Frosno, Galir. KRHM Los Angeles, Calif. (s) KRKD-FM Los Anpoles, Calif. KRKY-FM Luboek, TOX KRLO FM Dalla. KRMO-FM Shrevener. KRNW Boulder, Colo.
KRNW. Boulder, Colo.
KRON-FM San Franelaeo, Callf.

## C.L. Locafion

KROW Santa Barbara, Callf. KROY- FM Sacramento, Callif. KRPM San Jose, Callif.
KRSI Minneapolis, Minn. (s)
KRSN.FM Les Alames, N. Mex KRSN. FM Les Alames, N.Mox KSCO Sante Cruz. Calif. KSBW - FM Salinas, Calif. KSOA La Slerra, Calif KSOB-FM Manhattan, Kans. KSOS San Olege, Galif. KSEA San Olomo, Callif. KSFM Dalias, Tex. (s) KSF S San Franeiseo, Callf. KSFX San Franeisco, Calli. KSHE Crestwood, Mo. KSHS Colorado Springs, Colo. KSJO-FM San Jose, Calif. (s) KSL.FM Salt Lake City, Utah (s)
KSLA Soattlo, Wash. (s)
KSLH St, Louis, Mo
KSLT Tyler, Tex.
KSMA-F M Santa Marla, Callf.
KSO-FM Oes Moines, lowa
KSPC Claremont. Calif.
KSPI-FM Stiliwater, Okla,
KSPL-FM Oiboll, Tox.
KSRF Santa Monict, Calif.
KSTE Emporia, Kans.
KSTL-FM St. Louis, Moif.
KSTN-FM Stockton, Calif. KSUI lowa City, lowa
KSWI-FM Omaha, Nebr, KSYN Joplin, Mo. (s) KTAL Texarkana, Tox KTAR-FMPhoenix KTBC.FM Austin, Arlz. KTBC-FM Aust, Tox. (s) KTEC Orateeh, Ori. KTGM Denver, Oraf. KTIM San Rafael, Callf KTI8-FM Minneapolis, imInn. KTJO-FM Ottawa, Kans. KTNT.FM Tacoma. Wash. KTOO Mt Ploasant Tex KTOP.FM Topeka, Kans KTOY Tacoma, Wash KTAB-FM Médesto, Calif. KTRH-FM Houston, Tox. KTSA Kansas City, Mo. KTTS-FM Springnold, MO. KTWR Tacoma, Wash. KTXR-FM Sprinyneld, Mo, KTXT-FM Lubbock, Tax KTYM-FM inglowood, Calif.
KUDE.FM
Oceanside,
Calif: KUOU.FM Ventura-Oxnard, Calif. KUEA Salt Lake City, Utah KUFM EI Cajon. Cali KUFY Redwood Clity, Callf. KUGN-FM Eusene, Oras. KURF Houston, Tex. KUMD-FM Ouluth, Minn. KUOA.FM Siloam Sprin is, Ark. KUOH Honolulu. Hawail KUOW Soltio, Wash. KUPO-FM Tempe, Ariz. KUSC Los Angoles, Callf. KUT-FM Austin, Tox. KUTE Giandale, Calif. KVCA SAM Bernardino, Call, KVEN-FM Yontura, Call KVIM HiAh Mr , Calis. KVIL Highland Pk., Tox. KVOF Ho lulus, rex KYOP.FM Plainviow. Tox KYOR-FM Colorado Śprinins, Colo. KY8C Loqan, Utah KWA Wavorly KWAX Eugene. Ore KWFM Minneapelis, MInn, (s) KWG-FM Stockton, Calif. KWGS Tulsa, Okla. KWIX St. Louls, Mo. KWIZ-FM Santa Ana, Callit. KWIB.FM Globe, Ariz. KWKH-FM Shreveport, Le KWME Walnut Crook, Calif.(s) KWMO Odessa, Tex. KWOA.FM Worthington, Minn. KWOC.FM Poplar Bluft, Mo KWPC-F $\begin{gathered}\text { M } \\ \text { Mseatino, lowa }\end{gathered}$
C.L. Location KWPM-FM West Plains, Mo. KXFM Fort Worth. Tex. KXLK. FM Forrest Clity, Ark. KXOA Saeramento Calit. KXOA Frame cail (al KXRO Frosna. Cair. (s)
KXTR Kanams City, Mo.(s) KXYZ. F Hourton, Tex. KYA.FM San Franciseo, Callis. KYEW Phoenix, Ariz
CYSM Okiahoma City okla. KYW.FM Cleveland Ohio KZAM Soattlo, Wash
KZFM Cortez, Colo.
KZOM Oklahoma city Okla. WAAB.FM Worester, Mas WAAM.FM Parkersbirg, W.Va WABC-FM Now York, N. $Y$. WABE Atlanta, Ga.
WABI-FM Bangor, Maine WABQ Cleveland. Ohio WABZ-FM Albomarlo, N.C. WACO Wato, Tex. WAEB.FM Cineinnatl, Ohio WAEF Syracuso. N.Y.
WAER Syracuse, N.Y.
WAEZ Miamil Boach, FIa. WAHA-FM Miami Boach, Fla. WAIC San Juan, P. R.
WAIR-FM Winston-Salem, N.C.
WAIV Indianapolis. Ind.
WAJC Indianapolis, Ind.
WAAM Montaomery, Ala.
WAJP Joliot, III.
WAJR-FM Morpantown, W.Va, WAKR-FM Akran. Ohio
WALK.FM Patchosue, N. Y. WAMC Albany. N.Y.
WAMF Amherit, Mais.
WAMO Pittsburgh. Pa.
WAMU.FM Washington, D.C. WAPG-FM Riverhead, N.Y. WAPS Akron, Ohio WAQE.FM TOWSO
WARD.FM Towson, Md. (s)
WARK-FM Hasprstown. Md.
WARL-FM Arlington, Va,
WARN-FM Fort Plerce, Fla
WASA-FM Hayre Do Graee, Md.
WASH Washington, D.C.(B)
WATR-FM Waterbury, Conn
WAUG-FM Augusta, Ga WAUX-FM Waukesha, Wis. WAVI-FM Dayton, Ohio WAVO Allanta. Ga
WAVU.FM Albertville, Ala. WAVY-FM Portsmouth, Va. WAWZ-FM Zarophath, N.J.
 WAZL-FM Hazolton, PL WBAA-FM W. Latayette. Ind. WBAB-FM Babylon. N. WBAI New York. N.Y.
WBAP-FM Ft, Worth, Tox. WBAB-FM Gratn Bay, Wis. WBBC Jaekson. Mieh.
WBBEM-FM Rochestor, N.Y.
WBBO-FM Forest City. N.C. WBBR-FM E. St Louis. III. WBBW-FM Youngstown. Ohlo WBCB.FM Levittown-Firle
WBCI.FM WIIlamsbure ve, Pa.
WBCM-FM Bay City, Mich.
WBCN Boston, Mass.
WBEN-FM Buymalo. N.Y.
WBET.FM Broekton, Mass.
WBEX.FM Chillicotho, ohio
WBEZ Chieafo. Ill
WBFG Dotroit, Mich.
WBFM New York, N.Y.
WBFO Buffalo, N.Y.
WBGM Tallahassice Fla.
w BGU bowling Gircen, ohio
WBIE-FM Marietta. Ga.
WBIR-FM K noxvillo, Tenn. WBIV Wathersineld N.Y.
WBIC Balti more. Md.
WBKV-FM Wesi Bond, Wis. WBKW Beekloy, W. Va.
WBLY-Fm Sgringield, ohio WBNS.FMridan, Conn. (s) WBNS.FM Golumbus, ohlo ( s ) WBOE Cloveland, Ohio WBOR Brunzwiek, maine WBOS-FM Brookilno, Mass, WBRC BIrminiham. Ala WBRE Birminham, Ala,
WBEE-FM Wilkea. Barre,
WBSM.FM WBSM-FM New Bodiord, Mass. WBT-FM Charlott
WBUF Buffalo, N.Y.
WBUR Boston. Mass.
WBUT-FM Butler. Pa.
C.L. Locafion WBVA Woodbridge, Va. WBVP.FM Beaver, Falis, Pa, WBWC Breas, Ohio WBZ.F M Boston. Mass. WCAC Anderson, s.C. WCAO.FM Baltimori. Md. WCAU.FM Philadet phin, Pa WCBC.FM Andersoo, Ind. WCBE Columbus Onio WCBB.FM Baitlmare, Md. WCBS.FM Now Yorti. N.Y. WCCV.FM Chariottesvillia, $v a$ WCED-FM Dubois. Pa. WCFM WMiliamstown, Mask WCHA.FM Chambersburg. Pa. (s) WCKA-FM Mími Fil WCLE.FM Clevoland. Tenn. WCLI.FM Corning. N. Y. WCLM Chieago. III.
WCLO-FM Janesvilto, Wis, WCLT.FM Nowark. Dhio WCMC.FM Wildwoos, N.J. WCME-FM Brunswisk, Maino WCMF-FM Roehester, $N, Y,(s)$ WCMI-FM Ashland, Ky, WCMO Marietta, Ohro WCNB-FM Connersville, Ind WCNO Canton, Ohions) WCOO Richmond, Va. WCOH FM Newnan, Ga WCOL-FM Columbus, Oh WCOS. FM Columbia, S.C. WCOU-FM Lowiston. Maine WCOW-FM Sparta, wis. WCPO-FM Cincinnati, Ohio WCPS-FM Tarbor, N.C. WCRB-FM Waltham, Mass. (s) WCRF-FM Cloveland. Ohic WCRT-FM Birmingham, Ala. (s) WCSC-FM Charteston, 8.C WCSI-FM Columbus, Ind. WCSA Contral Square. N.Y. WCTA-FM Andalusiz. Ala. WCTM Eaton. Ohio
WCTW-FM Now Castle, Ind.
WCUM FM Cumberland M WCUY.FM Cleveland Hts., Ohl wCuM wlliarsbur: Vs.. Ohl WDAC Laneaster P. WDAC Laneastor, Pa, WDAF-FM Kansas City, Mo WDAS-FM Philadelplila, Pa. WDBJ-FM Roanoke, Ya. WDBQ.FM Dubuque, Iow WDDE Hamden, Conn WDDS-FM Syracuse, WDEL.FM Wilmington. Dil. WDET-FM Detrolt, Mieh. WDFM Stato Colloge, Pa. WDHA-FM Dover, N.J.(s) WDHF Chicago, II WDIA-FM Memphis, Tenn. WDJK Atlanta, Ga.
WDJR oil City, Pa WDMB-FM Stitesvilla N.C. WDNC-FM Durham, N.C. WDOC.FM Prestonsburg, Ky. WDOD-FM Chattaneoge, Tenn. WDOK-FM Cleveland, Ohio WDOV-FM Dover, Del WORC-FM Hartiord, Conn. WDRK-FM Graanvilla, Ohio wDSC-FM Diflon, S.C WDTM-FM Now Orleans, La. WDTM Detrait, Mich.(s) WDUB Granvilita Ohio WDUN-FM Gainesvilfo, Ga, WDUQ Pittsburgh, Pa. WDUZ-FM Green Bay, Wis. WOWS.FM Champaign. III. WEAV-FM Plattsburgh N.Y. WEAW-FM Evanston. III. WEBH Chieago, III. WEBQ-FM Harrisburt, Ilt
WEBR-FM Bufio, N. ${ }^{2}$. WECW Elmira, N. Y WEDK Springhold, Map. WEED.FM Rocky Mount, N.C. WEEI-FM Boston, Mass. WEEP.FM Pittsburgh. Pa
WEEX.FM Egston, Pa. WEEX-FM Esaston, Pa.
WEFA Waukegan, III. WEFA Waukegan, III,
WEFM Chicago, liI. (s) WEGO-FM Coneord, N.G. WEHS Chicago, III. WEKZ-FM Monroe. WIs. WELF Glen Ellyn. III. WE Elgin. III.
WEMC Harrisonburg, Vs. WENR-FW Chiseme iil $W$ WEOK.FM Pouthke Mi. WEOK-FM Pouthkeepsie. $N, Y$. WEPM-FM Elyria, Ohio WEPS Elgin 111 Insourg. W.Va WEPS EIgin, III.
WERR Goldsbero. N.C. WERE-FM Clevaliand, Ohie
C.L. Locotion WERI-FM Westorly, R.I. WERS Bot ton, Mass. WESC-FM Groenvilie. S.C. WEST-FM Easton, Pa. WETL South Bend, Ind. WETN Wheaton III. WEVC Evansvilio Ind WEVD-FW New York, N. Y. WFAA-FM Dallas. Tox. WFAH-FN Alliance, Ohic WFAS. FM White Plains, N.Y. WFAU-FM Augusta, Maine WFAW Fort Atkinson, Wis. WFBE Flist. Mich.
WFBG.FM Altoon. Pa WFBM.FM Indianamolis, Ind WFBS-FM Winston-Salom, N.C. WFCI Franklin, Ind. WFCR Amherst Mass WFDS. FM Balilmore, Md WFGM-FM Fitchburg. Mass. WFHA-FM Red Bank, N.J. WFHR-FM Wiseonsin'Rapids, wis WFID Rio Piodras, P.R WFIG Sumier, S.C WFIL-FM Philadelphia, Pa WFIU Bjoomington, Ind. WFLA-FM Tampa, FIa. WFLM Ft. Lauderdalo, Fla, (s) WFLO Farnvilie, Va. WFLT.FM Franklin, Tenn. WFLY Troy. N.Y. WFMA Rocky Mount, N.C. WFMB. Nasnyilied Frent. WFME Dotroit, Mieh. WFMF Chicago, III. WFMG Gallatin, Tonn
WFMH-FM Culiman, WFMI Montgomery, Ale. WFML Washington, Ind,
WFMM-FM Baltimore, in WFMM-FM Baltimore, WFMS Indisnapolis, Ind WFMU East Orange, N . WFMW East Orange, N.J. Ky Madisonvilie, Ky. WFMX Statesville, N.C. WFMX Statesvilio, N.C WFNC-FM Fayottevillo, N.C WFNS.FM Burlington. N.C. WFOB.FM Fostoria, Ohio WFOS South Norfolk Ve WFPK Loulsville, Ky. WFPL Louls rille. Ky. WFQM San Juan, P. R $_{0}$ WFRO-FM Fremont, Ohio WFSU.FM Tallahassee. FIa WFUL.FM Fulton, Ky. WFUR-FM Grand Rapids, Mleh. WFUV New York, N,Y. WFVA.FM Fredericksburg, Va. WGAL-FM Laneastor. Pa, WGAR-FM Cleveland. Ohi WGAY Silver Spring. Md. WGBH-FM Cambridge, Mass, WGBI-FM Saranton. Pa. WGBS-FM Mlami, Fla. WGCB Goshee, Ind. WGCS Gohhee, Ind. WGEM.FM Quiney, III. (s) WGFM Sehencetady, N.Y. (3) WGGC Glas cw, Ky. WGH-FM Newport Naws, Va. WGHF Newton. Conn.(s) WGHJ Lawrence, Mass. WGKA-FM Allanta, Ga. WGLM Richmend, Ind. WGMR Tyrone. Pa WGMB Whington, D,C WGNB St. Patersburg, Fla WGPC-FM GAstonia, N.C. WGPM Detroit, Mieh. WGPS Groensboro, N.C. WGRE Greoncastio. ind WGRV.FM Greenvilie, Tonn, WGTB-FM Washington, D.C. wGUC Cineinrati, Ohio WGVE Gary. Ind. WGWR-FM Asheboro, N.C WGYA Interlothen, mich. WHA-FM Madison. Wis. WHAD Delafieid. WIB. WHAI-FM Greonfeld, Mass. WHAT FM Philadelphia, Pe(s) WHAV-FM Havarhlil, Mas WHBC-FM Calton, Ohio WHBF-FM Rotk Island, Ill.(s) WHCI Hartford City, Ind WHCN Hartiord, Conn. WHCU.FM Ithata, N.Y.

## C.L. Lecaflen

 WHEN-FM Syracuso, N.Y. Wleh WHFI Wost Patorson, $N$, J. WHFM Rochester, N.Y. WHFS Bethesda. Md. (s) WHHI Highland, Wis. WHHS Havertown, Pa WHIM.FM Providenee, R WHIO-FM Dayten, Ohio WHIZ-FM Zanesville, Ohio WHKP.FM Hendersonville, N.C WHKW Chitton, Wis, WHKY-FM Hiskory, N.C. WhLA Holmen. Wis. WHLD-FM Niagara. Falls, N. Y. WHLI-FM Hempstead, N. Y. WHLM-FM Bloomsburgips WHMA-FM Anniston. Ala. WHOH Hamilten, Ohio whok.FM Lancaster, WHOO.FM Orandork N. Y WHOO-FM Oriando, Fla. (s) WHP-FM Harishr, Ala. WHPE.FM High Point, N. WHPR Hightand Park. Mich. WHPS High Point. N.C. WHRB.FM Cambridge, Mass. WHRM Wausau, wis. WHSA Hightand Two., wis. WHSR-FM Winchester, Mase WHTG.FM Eatontown, N.J. WHUS storrs, Conn.

## colfax, Wis.

 WHYL.FM Carliste, Pa. WhYN.FM Springfield, Mass. WHYY Philadolphia, Pa. WIAL Eau Claire, Wis. WIBA.FM Madison, Wis WIBC-FM Indianapolis, Ind WICB Ithaca, N.Y. WIFE Buffalo, N.Y. W IFM-FM Elkin, N.C. WIKY-FM Evansvilio, Ind. WIL-FM St. Louls, Mo. WIMA-FM Lima ohio W INA-FM Chariottesville, Va. W NE-FW Kenmore, N.Y. WWF-FM Manehester, Conn. WINZ-FM Miami, FIa, WIP-FMPhiladelphia, Pa. WIRA-FM Ft. Plerce. Fli. WIRA-FM Ft. Piere. WISH-FM Indlanapolis, Ind, (s) WISN.FM Mil was. WISZ.FM Madisan wis. WIIA-FM 8an luan, P.R WirH-FM Baitimoro, Md WIIZ-FM Jasper, ind WJaC. FM Johnatown. Pà. (s) WJAS.FM Pittsburgh. Pa. WJAX-FM Jacksonvillo, Fla WJBC-FM Blogmington. III. WJBK-FM Detroit, Mieh. WJBL-FM Holland, Mieh. WIBR WIImington, Dol.'(s) WJED-FM Seymour, Ind. WJEF.FM Grand RDds., Mich. (s) WJEH-FM Gallipelis, Ohio WJEJ-FM Hagerstown, md. WJCG Houghton, Mieh. WJHL.FM Johnson clity, Tenn, WJM.FM Lansing. Wieh. Wllv Charry Valley, N.Y. WJJD.FM Chieaso. ill WfK.FM Asbury Park, N.J. WJLN Birmingham, Ala. WIMC-FM Rice Lako. WI WJOF Athens Ala wjor. FM joliot, in. W」R-FM Detrolt, Mish. WJRZ Nowark, N.J. WITN-FM Jamestown, N.K. WIW-FM Cleveland. Ohio| C．L．Lecotlon | C．L．Lecotion |
| :---: | :---: |
| FM Poushkeepsis．N．Y． | W NAS Now Alban |
| K18．FM Orlando， | WNAV－FM Annap |
|  | W NBC．FM．Now Hork，N．Y． |
| KLF．FM Cianton，Ala． | W NBH．FM Ne |
| WKL8 Mariotta，Ga． | W NCN New York，N． |
| KLW．FM Grand Rapids，Wich． KMH．FM Dearborn，Mieh． | WNCO．FM Ashland，Ohio WNDA Huntsville，Ala．（s） |
| KNA Charleston，W．Va．（s） | WNBD－FM Daytona Boach，Fle |
| KOF Hopkinsy | WNEM－FM Bay City，Mieh．（s） |
| KOK－FM Sunbury | WNES．FM Cen |
| KOP．FM Binghamton，N．Y． | W NEW－FM Now |
| KOX－FM Framingham．Mass | WNEX－FM |
| FM Kingsport，Temn | WNGO．FM Maynoid |
| Cineinnati，Ohis | WNHC．FM New Ha |
| Mob | 8 Chieago， 11. |
| FM Cortlan | WNIC Dekalb．III． |
| SD Kowanes，Il | WNNJ－FM Newton，N．J． |
| Kent，Ohio | WNOB Clovelan |
| TM－FM Maybild，K | WNOK．FM High Point，N．C． |
| Wheoli | OS．FM High Point．N．C． |
| Padueah． | w |
| LAO．FM Danbury，Conm． | WNSH Highland Park，III． |
| AG．FM Lagrange，Ga． | WNSL．FM La |
| FM Laneastor，Pa． | Winnat |
| AP－FM Lexington，Ky． | WNTI Hackett |
| WLAV．FM Grand Rapids，Miel | WNUR Evanstan |
| WLBG－FM Laurens－Clinton，S．C． | WNWC．FM Arlington His，III． |
| LBH－FM Mattoon．III． | W AYC．FM Now York，N．Y． |
| WLBR－FM Lebanon．Pa， | WNYE Now Yar |
|  | WOAY Royal |
| Sandusky． | W08n Westarvill |
| ET－FM Toceoa，Ga． | WOC．FM Davenport，lowa |
| －Amplaton Wis． | WOCB－FM W，Yarmouth，Mass， |
|  | WOHS－FM Shelby |
| P Hieksville，N．Y．（s） | WOI－FM Ames． |
| LM－FM Lowell，Mass． | wolo Cineinnatl，Dhio |
| － | WOIV De Ruyter，N．Y． |
| WLOA．FM Braddoek，Pa，（s） | WOKZ．FM Alton，III． |
| WLOB．FM Portland，Malne | WOL－FM Washington，D．C |
| WLOE－FM Loaksville，N．C． | WOMC Royal Oak，Mich．（s） |
| LOL．FM Minneapolis，M | WOMI－FM Owams bore，Ky． |
| Chattanoega，Tenn． | WOMP．FM Bollaire，Ohio |
| 15．N．C． | WONO Syrseuse |
| ov Cranston．R．I． | WOOD．FM Grand Rapids，Miet |
| WLRJ Ro | WOPA．FM Oak Par |
| WLVL Loulsville，KY．${ }_{\text {W }}$ | WOPI－FM Bristol |
| LYC－FM Willamsport，Pa． | WOR．FM New |
|  | WORA．FM Mayan |
|  | wosc－FM Fulton |
| S．FM Springheld，Mass | W08j．FM Atlantic Clity， N ． |
| MAX．FM Grand Raplds，Mieh． | WOSU．FM Columbus， |
| WMAZ－FM Mace | WOTW－FM Nash |
| BD．FM Peoria，Ini | WOUB－FM Athe |
| B1．FM Chicato Ill． | WOW．FM Oma |
| BM Miaml Boach．Fita． | WOXR Oxford，Ohto |
| WMBO－FM Auburn，N． | WPAC．FM Patehoque，N．Y．（s） |
| WMBR－FM Jacksonvilie，Fla． | WPAD－FM Padueah．Ky， |
| WMCF Momphis，Tonn． | WPAT－FM Patersen． |
| WMCO Naw Coneard，Ohis | WPAY－FM Portsmouth，Onio（ |
| WMCA Kalamazoo．Mie | WPBC－FM Minneapolis，Minn． |
| WMDE Greansboro，N．C．（s） | WPCA PM Phiphia |
| WMER Colina．Ohio | WPCA．FM Philadolphia，Pa． |
| WMEV－FM Marion．Va． | WPEL．FM Montrose |
| MFM Madison．wis．（s） | WPEN．FM Philadelohia，Pa． |
| MFP Ft．Lauderdalo．FIs． MFR．FM High Point，N．C | WPEX．FM Pensacola，Fla．（s） WPFB．FM Middetown．Ohio（ |
| WWGW－FM Meadville，Ps． | WPFM Providenes，R．i．（s） |
| HC 8outh Hadley，Mass， | WPGO－FM Bradbury His．，Md． |
| MHE Toledo，Ohio | G1 Pittsbur |
| MIL－FM Milwaukeo， |  |
| Wwiv S．Bristol，N．Y | WPJB．FM Prev |
| 号 | Tampe |
| LS．FM sylacausa，Ala． | WPLB Greanvilis，MI |
| WMLW Mllwaukee，Wis． | LM－FM Plymouth，Ma |
| NA．FM Gratna．Vs． | WPLO－FM Atlanta，Ga． |
| PS．FM Momphis．Ten RI－FM Marion Ind． | WPPA－FM Pottsville，Pa |
| FM Marion，Ohio |  |
| RO－FM Aurora，ili． | WPRM San Juan，P．R． |
| RT Lansing，Mieh． | R⿴囗－FM Providence，R．I |
| 8P Harrisburs．Pı． | WPRS－FM Parls，III， |
| MTK Park Ridge，Ill． | WPRW－FM Manassas，Va． |
|  | WPSR Evansv |
| UA A Amherst，Mass． | WPTF．FM Ralsigh |
|  |  |
|  |  |
| UN Munelo．Ind．Wive． | Phindelo |
|  |  |
| Greanyin．s．c． | C．Fm midiand．mie |
|  |  |
| B．FM Marlville，M．J．${ }^{\text {a }}$ | G Gr |
|  |  |
|  | Woxi－FM Ditrot，$M$ |
| NAD．FM Norman，Okle． | WQXR－FM New York，N，Y，（s） |

## C．L．Lecofion

WOXT．FM Palm Baeh，Fla． WRAJ．FM Anna，III． WRAK．FM Williamsport，Pa， WRAL－FM Ralsiom．N．C． WRAY－FM Prineeton，Ind． WRBL－FM Columbus，（ia． WRBS Baltimors，Md． WRC．FW Washington．D．C． WRCM New Orleans，La． WRED Youngstown，Ohio WREO．FM Ashtabula，Ohio
WREV．FM Reldsville，N．C． WREV．FM Reldaville，N．C．
WRFD．FM Worthington：

Columbus，Ohio
WRFK Richmond，VA．
WRFL Winchaster，Va．
WRFS．FMMAloxandor Cilty，Als．
WRHS Park Forast，III．
WRJN．FM Racine Wis．
WRJN．FM Racine，Wis．
WRKO．FM Boston．Mass． WRLB Long Braneh．N．J．（s） WRLX Hopkinsville．Ky． WRLD．FM Lantt，Ala． WRMI．FM Morris，Ill． WRNJ Atlantie city，N．J． WRNL．FM R Rehmond，Va， WROC．FM Rochester N． $\mathbf{Y}$ WROK．FW Rockford．III． WROW．FM Albany， $\mathbf{N} . \mathbf{Y}^{\mathbf{Y}}$ ． WROY－FM Carmi，ill． WRPI Troy．N．Y．
WRPN．FM RIpan，Wis． WRR－F M Oallas，Tox． WRSW－FM Warsaw，Ind． WRTC－FM Hartiord，Conn． WRTI－FM Philadolohia Pa． WRUF－FM Gainesvilie，Fla WRUN．FM Utiea，N．Y． WRVA．FM Richmond，Va． WRVB．FM Madison，Wis． WRVC Norfolk，Va， WRYP New York，N．Y．
WRWR Pert Clinton，Ohie（s） WRXO．FM Raxboro，N．C． WRYT Pittsburgh．Pa． WSAI．FM Cineinnat！，oh WSAI．FM Cineinnatl．Ohlo WSB．FM Atlanta，Ga． WSBC－FM Chicajo，III．（s） WSCB Sprinefeld M． WSCB Springheld，${ }^{\text {ans }}$ WSEI Emn ham．III． WSEV．FM Seviervilio．Tenn． W8FM Birmingham．Ala．（s） WSHS Floral Park．N．Y． WSID Baltimore，Md． WSiU Carbondale，III． WSJB．FM Winston－Salam，N．G WSK8 Wabash，Ind． WSIX．FM Nashvilie．Tenn． WSLM－FM Salem，Ind． WSLN Delaware，Ohio WSLS．FM Roanoke＇ WSMD－FM Waldort．Md． WSMI－FM Litehneld． 111 ． WSNW－FM Sencea，S．C． WSOC－FM Charlotte，N．C． WSOM Salem，Ohio WSON－FM Henderson，Ky WSOU S，Orange，N．J． WSPA．FM 8ecatur，ili． WSPA－FM Spartanburi；S．C．（s） WSPD－FM Taledo，Ohio WSPE Soringvilio．N．Y．FM Stevens Polnt．Wis． WSRW－FM Hillsboro．Ohio WSTC．FM Stamford，Conn． WTR．FM Salsbury，N．C WSTV．FM Stoubenvilite，Ohlo WSVA．FM Harrisonburg，Va． WSV8．FM Grewe，Va． WSWM East LansIng．Mleh．（s） W8YR．FM Syracuse，$N$ ．Y．（B） WTAD．FM Quiney，ill． WTAG－FM Woresster，Mass． WTAR Norfolk．Vm．（s） WTAX．FM Springheld．III．

## C．L．Lecation

 WTBO－FM Cumberland，Md． WTBS Gambridge，Mass． WTDS Tolado，OhioWTFM Babylan，N．Y
WTHI－FM Terre Hacite，Ind． wTHS Miami，Fla． WTIC－FM Hartford，Conn． WTIS．FM Jackson，Tonn． WTJU Charlottesville，Va． WTMA－FM Charleston．S．C． WTMJ．FM Mheaukec，Wis． WTOA Tronton，N．J． WTOC．FM Savannih，Ga． WTOF Canton，Ohlo WTOL．FM Toledo，ohio WTOP．FM Washington，D．C． WTRC．FM Elkhart，Ind． WTRT Toledo，Ohio WTSB－FM Lumberton，N．C． WTSV－FM Claromont，N． WTTR．FM Westminster WTTV．FM Bloomington，Ind． WTUNTampa，Fla． WTYB．FM Coldwater，Mieh WTVN－FM Columbus Ohio WUFM Uties NY（s） WULX－FM RIehmond，Ind． WUOA Tusealoosa，Ala． WUOM Ann Arbor，Mieh． WUOT Knoxville．Tonn． WUPI Lynn．Mass． WUSC－FM Columbie，S．C WUST－FM Bethesda，Md． WUSV Seranton．Pa WVAM－FM Altoona Pa， WVGG．FM Coral Gables，Fla WVGR－FM Grand Raplds，MIth WVHC Homostoad．N．Y． WVJS－FM Owansbors，Ky， WVKO－FM Calumbus，ohlo WYLN－FM Olney，III． WYMC．FM Mt．Carmel， 111 ． WVNA－FM Tuseumbis，Ala． WVNJ．FM NGwark，N．J． WVOX－FM Now Roehelie，N．Y． WYSH Huntington，Ind WVST St．Potorsburs．Fle WVTS Terpe Haute ind．（s） WWCO Grenhad．Wis． wwOC．FM Washinatom．Conn． WWCP FM W WWHG－FM Herneli N． WWHI Muncie，Ind． WWIL．FM Ft．Lauderdals，Fla WWI－FM Datrolt．Mish． WWKS Macomb，II． WWMT New Orleans，La WWOD．FM Lynehburg，Ve WWON．FM Woonseckot，R．I． WWPE Minmi，Fla．（s） WWST．FM Woester，Ohlo WWSW－FM Plttsburyh．Pa． WWTV－FM Cadilae，Mleh． WWVA－FM Wheeling．W．Va WWWS Greenville，N．C． WWYN Eris，Pa．
WXCN Providonce，R．I． WXFM EImwosd Park，III． WXHR Cambrides，Mas， WXPN PhHadolohia Pa WXTC Annapolis，Md． WXUR－FM Media，Paith． WYAK Sarasota，Fla．（s） WYBC．FM New Haven，Conn． WYCA Aammand．Ind． WYCE Warwiek．A．I． WYCR Yark．Hanaver，Pa． WYFI Norfolk．Va．（s） WYFM Charlotte，N．C WYFS Winston－Selon，N．C． WYRE－FM Plttsburgh．Pn． WYSO Yellaw Springs，Ohlo WYZ2 Wilkes－Barre，Pa

Canadian FM Stations by Location

| Locotion | C．L． | Mc． | Location | C．1． | Mc． | Locatio | C．L． | Mc． | Lecation | C．L． | Me． |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Brampton，Ont． | CHIC－FM | 102. | Halliax，N．8． | CHNS．FM | 96.1 |  | CFCF．FM | 106.5 | Teronte，Ont． | M | 99.1 |
| Brantiord，Ont． |  | 192.1 | KInsston，Ont． | CFRC．F | 91.9 | Oshawe，Ont． Ottawa，Ont． | CKLB.FM | 93.5 103.3 |  |  | 99.8 |
| Edmenton，Alta． | C | 100.3 |  | CKLC－FM | 99.5 |  | CFm | 93.9 |  |  | 91.1 |
|  |  | 99.5 | K | CKCR．FM | 96.7 | Qu | CH | 98.1 | Vaneouvar，B，C． | CB | 105．7 |
|  |  | 98.1 | Lothbridse，Alta． | CHEC．FM | 100.9 |  |  | 5 |  |  | 103.5 |
| Ont． | CKPR－FM | 94.3 | don，Ont． | CFPL．FM | 95.9 | St．Catharlnes， |  |  |  |  | 98.9 |
|  |  |  | Montrial，Que． | CBF．FM | 95.1 | Sherbr | CHLT | 102.7 |  | KL |  |
| 192 | RRD |  |  | CBM．FI | 100.7 | Timmins，Ont． | CKGB．F | 94 | WInnipeg，Ma | cJOB．F | 97. |

C.L. Lecation

CBC.FM Toronto, Ont. CBF-FM Montreal, Que. CBM-FM Mentrial, Que. CBO-FM Ottawa, ont. CBU-FM Vaneouvar, B.C. CFCF-FM Mentreal, Que. CFPL-FM London, Ont. CFRA-FM Ottawn, Ont.
c.L.

Location CFRB-FM Toronto, Ont. CFRC-FM Kingston, Ont. CFRN-FM Edmonton, Alta. CHEC-FM Lathbridge, Alta. CHFI.FM Toronto, Ont. CHLT-FM Sherbroaka, Que CHNS.FM Hallfax, N.S. CJBR.FM RImauski, Que,
C.L.

CJCA-FM Edmonton. Alta. CJCB-FM Sydney, N.S. CJOB-FM Winnipeg, Man. CJRT-FM Toronto, Ont. CJSS.FM Corwall, Ont. CKCR-FM Kitehoner, Ont. CKDA-FM Vietoria, B.C.
CKGB.FM TImmins, Ont. CKLB-FM Oshawa, Ont.
C.L. Locotion CKLC.FM Kingston, Ont. CKLW.FM Windsar, Ont. CKPR-FM Ft. Wlllam. Ont CKSF.FM Cornmall, Ont. CKTB-FM St. Catharines, Ont. CKUA-FM Edmonton, Alta, CKVL-FM Verdun, Quo. CKWS.FM KIngston, Ont.

## U. S. Television Stations

Territories and possessions follow states. Chan., channel number; asterisk ( ${ }^{*}$ ) indicates educational station.



Canadian Television Stations



## World-Wide Short-Wave Stations

Most international broadcasting is done within trequency limits agreed upon at international conventions. These frequency ranges are listed here, at the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60, 49 and 41 meter bands is best at night djring the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the $19,16,13$ and 11 M . bands is best during the day, also af night during the summer in the 16 and 19 M . bands. This listing includes only SWBC often heard in the U.S. and Canada, exclusive of those in the continental U.S.

Abbr.: AIR—All India Radio; RAI—Radiotelevisione Italiana; RTF—Radiodiffusion Television Francaise; VOA-Voice of America; RFE—Radio Free Europe. © denotes stations beaming evening (U.S. time) broadcasts to the U.S., tmorning of aftep. noon broadcasts, $V$-varies.
Kes. Call and Location 3245 YVKT, Caraeas, Von. 3255 ELBC, Monrovia, Liberla 3265 ZFY Georgetown. Br.

3280 W.I.B.S." Grenada. Windward Is. 3285 H17T, Santo Do Colombin 3290 HJCa, Bogota, Colomb 3300 B.H.B.s., Bellizo. Br. 3305 YVKX, Caracme, Von. 3315 Fort dé Franee. Martinique 3316 Freatown. Siorra Leone 3325 HISU, Santo Domineo, D.R. 3326 Kaduna. Nigeria 3355 YVLC, Valencia, Ven. 3366 Aeera, Ghana
3375 H15B, Santiago D.R. 3395 YVOA, Merida, Von. 4630 HCGBI, Qulto, EeU. 4725 Rangoon, Burma 4765 HJEF, Call, Col. 4770 ELWA. Monrovia, LIb. 4770 YVMW, Punto Fijl, Von. 4780 YYLA, Valencia, Von.
4790 YYON, Puarto Le 4790 YVaN, Puerto La Cruz,
4605 ZY88, Manaus, Braz. 4810 YVMG, Maracalibo, Ven. 4850 YYDA, San Cristobal,

4895 HIKE, Bogata, Col. 4840 L Lourenco Marques, Moz. 4840 YVOI, Vaiera, Von. 4845 HJGF, Buearamanga, Col. 4850 YYM8, Barquisimeto. 4870 Cotonou, Dahomey Rep. 4895 YVKF, Caracas. Ven. 8895 Daker. Sanega
4895 ZYR22, Manaus, Braz. 4900 Y HJAC, Caracas, Valla, Cof. 4905 HRQNS, Puerto Cortes,
4910 HCIMI, Quito, Eeua. Hon. 4915 Aoera Ghana 4920 YLM4, Brisbane, Aus. 4920 YVKR, Caracas, Von. 4940 HCXZI, Guayaquil. Ecu, 4940 Abidjań, Ivory Coast 4940 Y VMO. Barquisimeto,
4945 HJCW, Bogota, Col Ven. 4945 Paradys, So. Afr, 4950 Dakar. Senegal 4960 Y VQA, Cumana. Vin 4970 Y VLK', Caracas, Ven. 4972 Yaounde, Cameroon 4985 Radio La Cruz del Sur, La
4990 Layos, NIgoria 4890 YVMA, Barquisimoto. 4995 Ch6R2, Luanda, Angola

|  |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Kes. Call and Locofion 6150 BBC, London, Ens. 6155 Wlen, Austria
6155 FEN, Tokyo, Japan 6180 HJKJ, Bogote, Col. ${ }_{6160}^{6160}$ Alplers, Al grla 6160 gaigor, 8, Vlotnam 6165 HER8, Bern, 8 witz.
6170 BBC, 6170 singipore, Sing. 6170 VOA, Tanslers, Maroeeo 8175 RTF, Allouls, Frante 6175 Cayenne, Fr. Gulana 6185 Lisben, Port. 6185 H ICT, Bogota, Col. 6195 HJEZ. Call, Col. 6195 BBC, London, Emb. 6195 Pyonoyane, N. Korea
6195 Andorra, Andorra 6200 4VHW, Port-zu-Prinee, Haltl
6305 Andorra, Andorra
7095 V Tehran, Iran
7105 Madric, $8 p a i n$
7110 VOA, Colombo, Caylon
7110 BBC, London, Eniland
7115 Rabat, Moroceo
7120 BBC, London, England
7125 Warsam, Poland
7135 Talpoh, Taiwa
7145 Bamaloo. Mali
$\begin{array}{ll}7150 \\ 7155 & \text { Moscow, U.8.8. R. }\end{array}$
7155 VOA, Tanglers, Mor.
7160 RTF, Paris Frace
7160 RTF, Paris, France
765 RFE, Germ.
7170 Alslors, Als.
7180 Baghdad, 1 ran
7180 Moseow, U.8.8.R.
7185 BBC, London. Enn.
7185 BBC, London. Eni.
7185 Parady, So, Africa.
7193 Bucharest, Roumania
7200 R. Mmaya, Sing.
7210 OOA, 8alonike, Gr.
7215 Trans World Radio, Monace
7220 VLD7. Maibourne, Aus,
7220 Budapest, Hung.
7230 BBC, London. Ens.
7240 ATF. Paris, Franeo
7250 BBC, London. Eng.
7255 8ofa, Bul.
7265 8aiger, Vietnam
7270 Motola, Swedon
7285 Ankara. Turk
7290 Aingapore
7290 Mascow, U.8.8.R.
7290 RAI, Rome it.
7295 Makisssar, Celebes
7295 RFE, Ger.
7340 Moseov, U.8.8.R.
7398y Damaseus, U.A.R.
7480 Paking, China
7650 YNME, Leon, NID.
8016 Belrut, Lebanen
9009 Tol Aily Israe
9360 COBC. Habana, Cuba
9360 v Madrid, Spain
9380 M Madrid, Spain
9410 BBC, London, En,
$9440 \mathrm{CP} 3 \mathrm{~L}_{\text {, }} \mathrm{La}$ Paz, Bol.

METER BANDS
4750 to $5060 \mathrm{ke} / \mathrm{s}(60$ meter Band) 5950 to $6200 \mathrm{kc} / \mathrm{s}(49$ mefer band) 7100 to $7300 \mathrm{kc} / \mathrm{s}(41$ meter band) 9500 to $9775 \mathrm{kc} / \mathrm{s}$ (3 1 meter band) 11700 to $11975 \mathrm{kc} / \mathrm{s}(25$ meter band) 15100 to $15450 \mathrm{kc} / \mathrm{s}$ ( 19 mefer band) 17700 to $17900 \mathrm{kc} / \mathrm{s}$ ( 16 mefer band) 21450 to $21750 \mathrm{kc} / \mathrm{s}$ ( 13 mefer band) 25600 to $26100 \mathrm{kc} / \mathrm{s}$ ( 11 meter band)

Res. Call and Location 9640 Acera, Ghana
6640 HIFC, Seoul, Korea
645 HYE, Yan jose, C.
9645 HVJ . Vatican City
0650 Moseow. Us. R
950 Amman. J.S.s.
655 Amman: Jordan
655 Radio Free Europo, Ger,
680 LAX. Buenos Aires. Arg.
9660 VLO9, Brisbane. Aus
9680 Moscow. US.S.
9667 Moscow, U.S.S.
8667 TGNB, Guatemala, Guat.
9670 coca. Havana, Cuba
9675 BBC, London, Ene.
665 NHK. Toky, Japa
680 XEOD Mexico Cit Aus,
9680 xEQQ. Mexiec City, Mex.
9885 Havan. Cub.
9690 LRA32; Buenos Alres.
9690 BBC, London, Eng.
8690 BBC, Singapore
9700 Lonapoidville, Congo Rep.
9700 Leppoldvilie. Conso Rep
9705 Kabul, Alghan.
9710 BBC. London. Eng
9710 RAI, Rome, it.
9720 моseow, U.S.s. R.
9725 Europe
9725 BBC, London, England
9730 Brazzaville, Congo Reg.
9730 Lelpzil. E, Ger.
9730 DZH7. 'Manila, P.
9735 Cologne, Gormany
9735 HI2T, Santo Domingo, D.B
9740 Lisbon. Port.
9740 Khabarovsk, U.S.s.
9740 y LR57. Buenos Aires, Arg.
9745 Brustels, Belg.
9745 HCJB, Quito, Eeua. -
9755 ZYW23, Goianis. Braz.
9755 RTF, Paris, France
9760 Habina, Cuba
9760 BBC , London, Eng
9770 Brazzavilio, Congo Rop.
9770 4VEH, Cap Haitlon, Halt
9772 Oario. Egypt
9785 Poking, China
9795 Cairo, U.A.R.
9815 St, Georges Windward IsI.
9825 BBC, London, Eng.
9833 Budapest, Hung.
8840 Hanei. N. Vietnam
8865 Djakarta, Indonesia
Q915 BBC. London, Eng.
9920 Pokinl. China
8940 Poking, China
9973 Peking, China
10550 Alma Ata, U.S.8.R.
10910 Ulan Bator, Outer Mongolia
1290 Peking. China
11600 Poking, China
1672 Karachi, Pakistan
11695 V Tashkent, U.S.S.R.
1700 TGQB, Quotzatenaneo, Gua.
11705 NHK. Tokyo, Japan
11705 Herby, Sweden
11710 VLB $1 i_{\text {. Melbeurne, Aus, } \dagger}$
11710 AlR. Delhi, India
11710 Djakarta, Indonasia
11720 BBC, Li massol, Cyprus
11720 Brusels, Belgium
11725 Brazzeville, Conjo Rep,
11725 VOA, Colombo, Coylon
11725 Praque, Czecho.
11730 Hilversum, Neth.

Kcs. Call and Location 11730 LRA35, Buenos Aries, Ars. 1175 M
1740 Khabarovsk, U.S.S.R.
11740 YLCII. Mel bourne, Aus.
11740 CEli74, Santiago, Chile
11740 Peking, China
11745 RFE, Europe
11755 Cziro Egypt
1750 BBC, London, Eng.
11750 BBC, Singapars
11750 FEN, Tokyo. Japan
1175 FEN, Tokyo.
11755 RFE, Europe
11755 Hilvarsum, Neth.
1755 Leopoldvilis, Conso Rep.
11760 VLBII, Meibourne, Aus.
11760 Loureneo Marques, Moz.
11765 ZYB8. Sao Paulo, Braz.
11765 CP39, La Paz, Bolivi
11770 Baven, E. Germany
11770 BBC. London, Eng.
11770 VoA, Munich, Germany
11775 zYZ28, Rio do Jan., Braz.
11780 NHK, Tokyo Japan.
1780 NHK, Tokyo, Japa
11785 Djakarta, Indon.
11795 Gologna, Ger, P.
11795 O jakarta, Indon.
11800 Acera Ghana
11800 H Wars Gha
${ }_{11805 y} 1800$ HAI Raw. Poland
11810 VLCII, Meibourne, Aus, f
11810 Bucharest Roment Aus, $\mid$
1810 Bucharast, Rom.
11815 Paradys. S. Afries
11820 Pekine China
11820 Pekinf China
11820 XEBR, Hermosillo. Mex.
11820 Abidin lyory Coast $\begin{aligned} \\ \text { ex. }\end{aligned}$
11825 ELWA, Monrovia, Lib
11825 ElWA, Monrovia, Lib.
11830 apoeto. Tahiti
11830 VOA. Colombo, Ceylon
lisso Montevideo. Uru
ligso Poking, China
11840 VOA, Tangler, Mor.
11840 Llsbon. Port.
11840 Hanai, N. Vietnam
11845 Karaehi, Pak.
I 1850 Sofla, Bulg.
11850 Brussels, Belglum
11850 Khabarovsk. U.S.8. R.
11850 2PAS, Asuneion, Paraguay
11855 Radio Free Europo, Ger.
11855 DZH8, Manila, P.i.
$11855 y$ Omdurman, Sudan
11860 BBC. London. Eng.
11860 Moseow, U.S.S.R.
11865 PRA8, Reelfe, Braz.
11865 HER5. Bern. Switz.
11870 Moscow, U.S.S.R.
11875 Habana, Cuba
11875 NHK, Tokyo, Japan
11875 ZYN32, Salvador, Braz.
11880 XEHH, Mexico Clty, Mex,
11885 Karachi, Pak.
11885 Radio Frea Europe. Ger.
11890 BBC, London, England
11895 Dakar, Mall Fod.
11895 Radio Free Europe
11895 VOA, Pore, phll.
I 1900 CEliso, Váparaiso, Chlle
11905 RAI, Rome, Italy -
11910 Budapest, Hung.
11910 Bangkok. Thal.
11915 HCJB, Quito Eeua. -
11915 Calro, Egypt
11920 DXF2, Manila, P.I.
11920 AlR. Delhi, India
|l925 ZYR78, Sao Paulo, Braz.

Kcs. Call and Locotlon 11925 HLK6, seoul. Karea † 11925 Warsaw, Pol
11935 B BBC
11930 BBC. London. Ena.
il 940 2PA5 Liberty, Ger.
1940 2PAS, Enearnation, Par,
11940 AFRTS, Munieh,
II940 AFRTS, Munieh, Ger.

11945 BBC, Landan. Eng.
11945 Cologne, Germany.
11950 Jidda, Saud Arab.
11950 Hilvarsum, Noth.
11950 galgon. S. Vietnam
11935 BBC, Londan, EnI.
11960 CEII96, Santiago, Ch.
11960 Conakry, Guinea,
11965 Radio Liborly, Ger.
11975 Peking. China
1975 ELWA. Monrovia, Llberla
11980 Moscow, U.S.S.R.
11990 Prasue, Czecho.
12030 Moseow, U.S.S.R.
12030 Moseaw, Chins.
12080 Lising. China
12095 BBC. London, Eng,
15080 Peklng. China
15070 BBC, London. Ens.
15085 8t, Geore wh whit
15085 Peradye So Atrla BWI
15085 Paradys, So. Aiflea
15095 Peking. China
15110 XERB. Mi. India
IS115 HCJB, Quito, Eeu, F., Mex
1515 HCJB, Quito, Eeuador -
15120 Colombo, Ceylon
15120 RAI. Rome., Italy
15120 Warse Rome, Italy
15120 HVJ. Vitican City
15125 Beoui. Kores city
15125 8eoul, Korea
15125 Lisban. Portus
15130 RTF Allouls France
 15135 PRB2s, Sao Paulo, Braz. 15135 NHK, Tokyo, Japan
15135 Radio Free Europe, Port. 15140 Peking. China
15140 BBC, London, Eng.
151452 YKiss, Reclifo, Brazll
15145 Radio Free Eurodes, Port.
15150 Poklna, China
15153 DAX4T, Lima, Peru
151552 YB9, Sao Paulo, Brazll
15155 ELWA, Manrovia, Libe.
15155 Horby, Swoden
15160 RTF, Milouls, $P$. $I$. 15160 XEWW, Mexico Clty, Mox. 15160 Ankara, Turkay 15165 ZYN7. Fortaloza, Braz. 15165 Copenhagen, Denmark 15165 Oammaseus, Syria 15170 Tromso, Norway
15170 Radio Froo Europe, Port. 15175 Luxembourg. Lux. 15175 Dsle. Nerway 15185 VOA, Poro, P. 1. 15165 Radio Froe Euroge, Port. 15190 Brazzavills, Congo Rep. 15190 Helsinkl, Finiand $\dagger$ 15190 Moseow, URSR
15195 Radio Free Europe, Gor, 15205 XESC, Mexlep City, Mex. 15205 XESC, Mexien City.
I 5210 VOA, Melolas, P.
15210 VOA, Melolos, P. .,
15210 2PA7, Asuncion, Paraguay
15215 Radlo Frea Europe, Port. 15215 VOA, Okinawa

Kes. Call and Location
15220 Hilversum, Neth. 1
15225 Taipel, Talwan, China 15230 VOA, Colombo, Coylon
15230 BBC, London. Ens.
15235 Beirut. Lebanon
15235 NHK, Tokyo, Japan
15240 VLBi5, Malbourno, Aus,
15240 Horby, Sweden
1540 Moscow. USSR
15240 Beigrade, Yugoslavia
15245 2YE21. Bolem, Brazil
15245 Leopoldville, Contio Rop.
15250 VOA, Melolos, P. I.
15250 Bueharest, Rumania
15255 Radio Free Europs, Port.
15255 Radio Froe Europs, Port.
15260 F EN, Tolkyo, Japan
15265 Colombo, Coylon
15265 VOA, Munteh. Ger.
15275 Cologne. Germany
15275 Wartaw Poland © ${ }^{\dagger}{ }^{\dagger}$.
15280 2L4, Wollington,
15285 Prague, Czecho.
15290 VoA, Tangiars, Mor.
$15290 v$ Habana, Cuba
15295 Beirut, $\quad 15295$ PRL8, io do Jan., Brast||
15295 NH K, Tokyo, Japan
15295 Cologine, Germany
15300 BBC, London. Ent. $\dagger$
15300 D2H9; Manila, P.I
15300 Bueharest, Roumania
is300v Loursineo. Marques, Moz
15500 L Louranec. Marques, Moz
15310 AlR Dolhi Gir.
I5310 AIR, Delhl, Indis
15815 VLCIS, Molbourne, Aus.
15315 HEUB,
I5315 HEU6, Born, Swlitz. -
15325 ZYR228, Sa0 Paulo, Braz.
15330 VDA, Munieh, Germany
15530 VOA, Tanglers, Mor.
15335 VDA, Poro, P, I.
15340 Radio Liberty. Germany
$15340 y$ Habsna, Cuba
i5345 Rabat, morocen, ChI
15550 Luxembourg, Lux
15355 Radle Froe Europe. Port
1535 Rado Froo Europe. Port,
15370 ZYC9, R10 do Jan., Braz
15370 Radio Liberty, Germany
15375 BBC, London, Ens.
I5385 DZF3. Manila, P.I.
15385 CXA 60 , Montevideo. Urue.
15385 Lisbon, Port.
15885 VOA, Tanglers, Mor.
15890 NHK, Tokyo. Japan.
15895 Radié Liberty, Germany
I5400 RAI. Reme. I taly
15405 Golagne, Germany
15425 Hilversum. Neth.
15440 VOA. Munich. Germeny
15460 y PZC, Paramariob.
55465 Paramaribo, Surlnam
15475 Galro. UAR
15555 Poking, Chinal
17725 ZYR232, San Jose Dos
17740 Poking, China
17745 Acera, Ghana
17780 BBC. London, En liland
17790 BBC, London, Enf
17845 Brussals, Belgium
17885 Brussels, Belglum
17875 Habana, Cuba
17880 Lisban, Partueal
17890 HCIB, Quito, Ecuador
17895 Lisbon, Port.
17900 Calro, Eaypt
21820 Habana, Cuba

## Canadian Short-Wave-Domestic and International

*Transmitter at Sackville, New Brunswick

Kc. C.L. Locetion
5970 CBNX St. John's. NAd. 5970 CKNA Montreal, Que." 5990 CHAY Montraal, Que. 6005 CFCX Montraal, Que. 6010 CJCX sydney, N.S. 6030 CFVP Cal gary, Aita. 6060 CKR2 Montrial, Que." 6070 CFRX Torento, Ont. 6080 CKFX Vancorver, B.C. 6090 CBFW Montreal, Que. 6090 CKOB Montreal, Que.

Kc. C.L. Locetion
6130 CHNX Halifax, N.s. 6160 CBUX Vancouver. B.C. 6160 CHAC Montreal, Que.* 9520 CBFR Montreal, Que.
9585
CKLP Montreal, Que. 9585 CKLP Montraal, Que. 9810 CBFX Montreal, Que.
9610 CHLS Montral, Que. 9610 CHLS Montreal, Que:
9630 CBFO Montreal, Que. 9630 CBFO Montreal, Que. 9710 CHLR Montreal, Que. 9740 CHFO montreal, Que.

## Ke. C.L. Location

11705 CBFY Montreal, Que. 11705 CKXA Montreal, Que. 11720 CBFL Montreal, Que.
11720 CHOL Montreal, Que. 11720 CHOL Montroal, Que. 11760 CBFA Montreal, Que. 11760 CKRA Montreal, Que: 11900 CKEX Montreal. Que. 11945 CKEX Montreal, Que: 15090 CKLX Montreal, Que.:
15105 CKUS Montreal, Que." 15105 CKUS Montreal, Que.
15190 CBF Montreal, Que

Ke. C.L. Lecation
15190 CKCX Montreal, Que. 15255 CK8R Montreal, Que. 15275 CKBR Montreal, Que. ${ }^{*}$ 15320 CKCS Montreal, Que.* 17710 CHSB Montreal, Que." 17735 CHRX Montraal, Qus,* 17820 CKNC Montreal, Que. 17865 CHYS Montreal, Que。" 17865 CHYS Montreal, Que.*
21600 CKRP Montreal, Que. 21600 CKRP Montreal, Que.*
21710 CHLA Montreal, Quo.

## PICK THE CAREER YOU WANT

## IN THE WONDERFUL FIELD OF ELECTRONICS TRAIN AT HOME WITH THE LEADER

INDUSTRIAL ELECTRONICS
Prepares you to be an Dilectranic Technician in industry, business. government, military Computers, telemerr) atutomation. missiles. rockens are changing our world. Course includes illustrated lessorts, special training erpuipment sent at no cxtra cost.

## TV-RADIO CCMMUNICATIONS



Get actual expericuce as NEI prepares you for a choice of Communications fields and an FCC License. Broadcasting, microwave radar mobile and marine tadio, navigation devices are some subjects covered. Special raining equip ment.

TELEVISION-RADIO SERVICING (HNCLUDES COLOR TV)
 Learn to fix radios, TV sets, hiffi, cetc. Farn sparctime money starting soon after enrolling. Train for money-making opportunities in your own spare-time or fulltime business or working for somerne clse. Special training equipment itıcluded.

## FCC COMMERCIAL LICENSE



For men who want to operate or service transmitting cquipment used in communications or 10 work on C-Band From Simple Circuits 10 Broadcası Operation. this new NRI course trains you quickly for your Gorernment exams.

## Job Counselors Advise Electronics

A carcer in F.lectronics offers unlimited spportunis 10 men who qualify: When you tain at home throigh NRI, there's no need to give up your job or go away is school. And there are no special requirements of prevous Ilectronics experience or cducation. Train with ha laader Your VRI traming is backed loy neally 50 years al success Mail the postage-free card. National Radio Institute, W'ashington 16, D. C.

## Cut Out and Mail-No Stamp Needed  Washmuton 1ta. D. C

Ilvase send me you Plectronic. Radin-I'V cataloe withont cost or obligation. I am interested in course checked below. (No satesman vill call. PILESS: PRIN゙1.
$\square$ Industrial Electronics
$\square$ Radio-TV Servicing
$\square$ FCC License
$\square$ Communications
$\qquad$ $\wedge_{g i}$

## To assure ADVANCEMENT or to

 turn your hobby into a new and PROFITABLE CAREER in the fas growing field of ELECTRONICS you should investigate the NRI Home-Study Courses in Industrial Electronics, Radio-TV Servicing, Radio-TV CommunicationsThere is an immediate and growing need for trained Technicians in many branches of Flectronics. Better-than-atherage jobs await you. Join the thousands of NRI graduates who have benefited from new careers in this Electuonic . Ige. Mail postage-free card.

## Turn Page for More Facts

You mast be trained to qualify for higher earnings and advancement. Whicheser branch of Clectronics jou select. you'll find that NR1 traming is the time-proved way to get atead in this interesting, growing industry.


Training Equipment Included Iedrn Electronics through "learn-bypractice" methods. At no extra cost, NRI sends special equipment that gives actual experience, makes theory easy-to-grasp. interesting. All eqquipment is yours to keep.

FIRST CLASS PERMIT NO. 20-R (Sec. 34.9, P.L.\&R.) Washington, D.C.

BUSINESS REPLY MAIL no postage stamp necessary if maileo in the united states
postage will be paid by

## NRI ${ }^{8}$

3939 Wisconsin Avenue Washington 16, D.C.


Oldest and Largest Sct ool As the oldest and largest homestudy school of its kind, NRI can supply training at reasonable cost. Monthly payment plans. Mail postage-free card for NRI CAllionc National Radio Institute Washington 16, D. C.
( Mail Postage-Free Card


[^0]:    DEYRY TECHNICAL INSTITUTE
    4141 Beimont Ave., Chicago 41, Ill., Depi. RTE-1-T
    Please give me your two free booklets, "Pechet Guide to Real Earnings" and "Electronics in Space Travo P ", als includ details on how to prepare for a career in Electronci. I am interested in the following opportunity fields $\square$ Space \& Missile Electronics - Television and Radio - Microwaves

    - Radar
    - Radar
    Carrmanication
    c-mputers
    - Industrial Electronics

    Name. $\qquad$ Age.
    Aderess
    PLEASE PRINT
    city
    -_ Zone_Silale
    Check here if you face military service.
    Canadian residents: Writie Devry Teith of Canadz, Lid. 970 Lawrence Avenue West, Torento 18, Omtario

[^1]:    

[^2]:    Add $10 \%$ for Canadian and Fureign orders

[^3]:    $\square$ Electronics Technology
    Industrial Electroxica
    Broadcast Eogineering

[^4]:    FAIR RADIO SALES
    Dept, 20-P. O. Box 1105 -Lima, Ohio-U.S.A.

    ```
    NAME: \(\qquad\)
    \(\qquad\)
    CITY ST.ITE ..... -

    1
    ```

[^5]:    AT lastl Bulld you own supersensitive 11 hit meter from complete kit with easy to follow instructions. Uses newest cadmium sulfide light cell, shows ASA speeds ${ }_{.} 3$ to 25,000 . F stops .7 to 90 measures .3 to 25.000 . F stops .7 to 90 measures accurately moonlight to bright sunlight. Mechanics. 505 Part Ave., New York 22 , N. Y. Money completely refunded if Kit returned within ten days for any reason.

[^6]:    10-1 Reception poor; can't understand you (pronounced ten one)
    10-2 Reception good
    10-3 Affirmative, will do
    10-4 OK or yes
    10-5 Need your assistence to relay a message, or I am relaying a message
    10-6 Busy, can't talk now
    10-7 Going off the air
    10-8 Coming on the air, station is manned
    10-9 Repeat your last message
    10-10 Finished transmitting
    10-12 Officials or visitors are present
    10-13 Give me road and weather inf ormation
    10-15 Make a pick up ol. . ...... at. ....... .
    10-16 I have picked up. . . . . . . . . . . . . . . . . . . .
    10-18 Do you have a message for $m \geqslant$
    10-19 Return to station
    10-20 Position report
    10-21 Call me by telephone
    10-23 Arrived at scene
    10-24 Finished with last assignment
    10-33 I have an emergency message
    10-37 What is your call sign and narre
    10-70 Fire

[^7]:    QSL card from Emissora Nacional (alias Radio Portugal, Radio Lisbon, and the Voice of the West).

[^8]:    MATERIALS LIST-HOME APPLIANCE TESTER Description
    0.15 amp ammeter (Shurite 8508; Burstein-Applebee 198289)
    double fuse plug (Elmenco; Allied 52N648) aluminum Minibox (Bud CU3006A; Allied 80P366) $15-\mathrm{amp}$ fuse (Buss ABC15; Allied 53B571) $56 \mathrm{~K}, 1 / 2-\mathrm{w}$. resistor (Allied 1 MMO 00 ) SPDT switch (Cutler-Hammer 7502 K 13 ; Allied 34B796)
    $1 / 15-w$. neon lamp (GE NE2E; Newark 25F027)
    socket (Cinch-Jones 2R2: Allied 40H830) ac plug (Allied 52N641)
    2-conductor power cord (Belden 8472; 47T406)
    The above parts can be purchased from BursteinApplebee, 1012-14 McGee St., Kansas City 6, Mo.: Allied Radio Corp., 100 N. Western Ave., Chicago 80, III., and Newark Electronics Corp., 223 W. Madison St., Chicago 6, III.

[^9]:    "Clara, you've been shopping again!"

[^10]:    SCIENCE AND MECHANICS MAGAZINE
    Handbook Division, 505 Park Avenue, New York 22, New York Finclosed is $\$ . . . . .$. to include postage and handling for the do-it-yourself volumes circled below, at $\$ 1$ each. Please allow four weeks for delivery, For special handling, including first class mail delivery, add inc per item ordered.

    $$
    \# 620 \quad \# 621 \quad \# 622
    $$

    NAME $\qquad$
    ADDRESS
    CITY $\qquad$ ZONE $\qquad$ STATE $\qquad$

[^11]:    SCIENCE and MECHANICS
    505 PARK AVENUE, NEW YORK 22, N. Y.
    Please enter my subscription to
    SCIENCE and MECHANICS10 issues for $\$ 2.98$By enclosing paymant you may double this offer and receive 20 issues for $\$ 5.96$
    (PLEASE PRINT)
    Address
    -
    City
    Zone___State

