GEandem: 27 Procog iou Cun Bufld (1) 1 D 0 M EPPENMEMER

75c Fall '62

BIGGEST

Whille's R RADIO

OVER 14,000 LISTINGS
AM-FM-TV STATIONS
ORLD-WIDE SHORT WAVE AM-FM-TV STATIONS WORLD-WIDE SHORT WAVE
 233 [$\int \square$

Free-Standing Electronic Wall

Containing parts by RCA, MALLORY, PY台AMAD. celiable manufocturess. Derail volue of porti wlene is MORE THAN 25 OOLIARS

plus a complete

ELEGIRONICS COURSE

You REALLY LEARN ELECTRONICS. The progressive "learn by doing" American Bosic Science Club systom is the easiest, most tharough and most exciting way to a solid background in electronics. Bosis enough for beginners
rewarding enough for experts. Nowhere else is a course of this scope ávaitable of this LOW PRICE!

ENTHUSIASTIC MEMBERS WRITE:

"bask principles ynforgetrably
 learned"

It In ouly after hating rompleted the expert. ments in your kits hias i ran say \& dowe truly and uafurgetiabls learned the basie princidies of electrmithe. $10 \mathrm{H}^{\top} \mathrm{N}$ R, KAN/A. : Herkele) Arp.. Yunmers 3. N. $:$
"your kils are interesting on'd rewording"
 andertind jouk kis interentink and rewgrdins.
 G. Dill Kiester All Fortg Hase, Blloxd. Ifss",

'foy ahoad of friond raking

 onother coun.A friend of manie to taktos a currepondence
 (weltop lessums. RAy P BiLOOEFAU, $13!$ Eishange Stso Leoralnater, Man
"The nuimberly blecoricepris presented

is amasing

Your ukis aifler a pange nfo exueplments usually performed only in the better hisht ochool ond roblexe laburaturies. The nutniter if conrept apresented, anch tije clarity and
cencretenens, of their dexelopmeht di amazing cencretenenso of their developmeht do amazingt
R. M. HELM. I'rufensur uf J'Hynict, Hiast

Available in One Complete Shipment or Divided into 4 Monthly Kits as Shown

KIT 1 - DC AND AC CIRCUITS

Equip. for 26 Projects Including:

- Electroscope - Electro Magnef
- Galvanometer - AC Buzzer Demognetizer - Reloy - Solenoid Coin Tosser - Safety AC Power Supply with Isolation Transformer

Subpects Covered Include:

- Magneflc Fields - Electron Theory Electric Charge - Direct Current - Electro-Chemistry * Alternating Current - Inductance - Transformer Principles
urprise "Mystery Box"
KIT 2 - RESISTANCE, CAPACITANCE AND RECTIFICATION
Equip. for 18 Prolects Including:
- Strobe Lighi - Thermocouple
- Wheatstone Bridge - Volfmeter
- AC Rectifier - DC Power Supply

Subjects Covered Include:

- Ohm's Law - Power Formulas
- Rectification - Resistance Neon Glow Tubes - Copactiance - Fllter Circuits

FREE with kit 2 - Electric Soldering Iron KIT 3 - AMPLIFIERS AND OSCIL:ATORS

ALL FOUR KITS IN ONE SHIPMENT ONLY ${ }^{5} 78$

 OR - YOU CAN GET THE FOUR KITS, ONE A MONTH seno $\$ 000$ with pay $\$ 95$ pius cod postage ONLY COUPON ONLY S ON RECEIPT OF EACH KIT
ALL SHIPMENTS ON 100 DAY APPROVAL. YOUR SATISFACTION OR YOUR MONEY BACK. WE, KNOW YOU WILL BE AMAZED AND DELIGHTED

 USE THIS "NO RISK" COUPON FOR EITMER PAID IN FULL OR MONTHLY PLAN - AMERICAN BASIC SCIENCE CIUB, Inc., 501 E. Crockeft, Son Antonio 6, Texos\square Fend the Absclub's Ellectruliks lails ta four kits - one a month. I enclase \$2.00 all kits will be in 10 day approval ajth full refund guapanted and also that I may cancel unshfpped kits at any the.
\square send me Ansi'lub's tiectronies Iall (all four kits) in one shipment. I enclose $\$ 17.80$ full bayment. Lustage pafo to me. I understand that this will bo on a | IU day approval with full refund guar miteed.
Namp
ADDRESS
CITY and STATE

Let I.C.S. equip you for success in radio-TV- electronicswith professional equipment!

Brand-new "Electronic Laboratory," now being offered for the first time, can help you land in this big money-making field-FAST!
Here's an opportunity for you to turn spare time into cold cash, or begin a whole new career - in a field where the rewards have never been greater. And you don't need previous experience to do it!

International Correspondence Scliools has just developed a new I. C. S. Electronic Laboratory you can construct in your own home. Includes series of training kits, plus the new I.C.S. VrVM - the professional quality vacuum tube voltmeter shown here. With it comes complete course instruction combining all the fundamentals with practical knowledge you can apply at once. And best of all, you build your own professional test instrument ${ }^{\text {l }}$

I.C.S. instruction gets you going

with equipment you can really use!
A famous manufacturer of nationally known electronic testing equipment worked closely with I. C.S. to develop the Electronic Laboratory and the VTVM itself. Everything you get is geared to increase your skill and knowledge step by step. Until finally, you've completed a precision testing

unit you can use for practically any kind of experimentation. design or servicing work.

Here's how 1. C. S. instruction works. You begin witlı basic study lessons. "Texts are clearly worded and easy to follow. At the same time, you "act out" what you learn with simple experiments. Then, in 3 easy stages, you assemble your own precision testing unit. Theroughont, your instructor gives you expert, professional help. You learn at home, in spare time, as fast as ability permits.

Coupon brings full details on your

 future in this fast-growing field!Make up your mind right now to find out how I. C.S. training in Radio-TV-Electronics can pay off for you. See how it can help you cash in on the tremendous demand for men skilled in installation, maintenance and servicing of radios, TV sets, hi-fis, computers, atutomation systems and a host of other space-age devices. Clip and mail the coupon below. 'ou'll receive 3 valuable free booklets-including sample lesson. They'll show how you can land in this big money-making field fast!
Coupon brings 3 valuable FREE booklets. Mail it today!

INTERNATIONAL GORRESPONDENGE SCHOOLS

BOX K9448J, SCRANTON 15, PENNA. In Hawaii reply P. O. Box 000, Honolulu. In Canada, I.C.S. Canadian, Ltd., Montreal Please rush me "How to Succeed," sample study lesson and opportunity booklet in the field I've chocked below.

RADIO-TV-ELECTRONICS

- Electronic Fundamentala \square Electronic Technician - F.C.C. License \square General Electronics \square Industrial Electronics
\square Instrumentation, Servos, Automation Electronics \square Radio-TV Servicing

ELECTRICAL

\square Electrical Drafting
\square Electrical Engrg.
\square Elec. Engrg. Techniciar
\square Electric Light \& Power
\square Practical Electrician
\square Professional Elec. Engr.

OTHER FIELDS
\square Architecture-Building
\square Art
\square Automotive
\square Business
\square Engineering
\square High School
IF NOT LISTED, PLEASE SPECIFY

Name
Age \qquad Homo Address

City
Zone \qquad Stato \qquad Working houra \qquad A.M. to \qquad P.M.

Employed by
Special low rates to members of U. S. Armed Forces

RADIO-TV $=$ EXPERIMENTER

COVER STORIES
The Lowdown on Hi-Fi Speakers. 67
Modular Home Entertainment Center 70
FEATURE STORIES
Puddle Jumper: A 2-Meter Transceiver 41
Convert your Old Radio-Phono to Hi -Fi61
WHITE'S RADIO LOG (New Listing Includes Over 1,300 Changes) All U.5. and Canadian AM, FM, and TV Stations; Mexico, Cuba, World-Wide Shortwave 159
TEST EQUIPMENT AND THE SHOP
The Complete Electronics Shop 28
Powar Supplies for Transistors. 36
AC-DC Voltage Standard 53
Build a Better Third Hand 99
Low Cost Decade Box. 110
Universal Adopters 116
Citizens Band Watimeter. 124
Dry Boffery Tester-Charger. 134
Iron Core Choke ond Tronsformer Meter 140
Get a Third More from your Meter 145
In-Circuit Testing of R-C Bridges. 148
OF SPECIAL INTEREST TO HAMS
Dual Jacks for Earphones 27
Improved Crystal Control 50
What Is this Thing Called Wavelength?. 58
The Growing Hobby of Short Wave 87
Breaking the Short Wave Longuage Barrier 92
Remote Volume Control. 97
Mobile Mike Mounts Anywhere. 130
PROJECTS FOR THE EXPERIMENTER
Miniature Patch Cord.
Sound for your 8 mm Projecior. 32
little Screamer: Portable Burglar74
84Salt Water Powers RadioPutting the Right Radio in Your Car.... 100Switch Tuning for AM Receiver....... 106100Electronic Toy Telephones.114
Pocket Size Heoring Aid 117
The Companion: A Ono-Tube Radio 121
Three Transistor Superhet Portable 126
Piggy-Back Metal Locator. 137
Neon Flicker Lamp 153
DEPARTMENTS AND PUZZLESRoundword Puzzle66Looking Over New Products.151
Cover by Bill Wadkins
B. G. DAVIS Publisher
JOEL DAVISAssistant Publisher
Published and Copyrighted 1962 by

SCIENCE AND MECHANICS PUBLISHING COMPANY

A Subsidiary of Davis Publications, Inc.

Ediforial Office: 459 E. Ohio St., Chicago 11, III. Eusiness Olfice, Subscriptions: 505 Park Ave., New York 22, N. Y.

RADIO.TV EXPERIMENTER No. 609 presents a selection of the most popular plectronics articles that have appeared in SCIENCE and MECHANICS magazine, plus many new projects covering AM-FM rodio, television, and dollar-saving test equipment of interest to all experimenters, amateurs, and DX fans. A newly revised White's Radio Log is also included.

ART YOUNGQUIST
Editorial Director BarRy WINTER Editor HENRY C. HOLCOMB

Managing Editor LYNELL A. JOHNSON Assistant Editor DON A. TORGERSEN Assistant Editor LEROY R. KIETZMAN Production Editor BILL WADKINS

Art Director BILL McHUGH

Electronics Edifor. S8M

[^0]

COYNE offers LOW cost
 TELEMCORTV RADIO - CTraining in

BECOMIE A RADIO

Build 10-20 Radio and Electronic

Circuits at Home

ALL GUARANTEED TO WORK!

Abstract

YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE

The "Edu-kit" offers you an outetanding PRACTICAL HOME MADIO COURSE at a rock-bottom price. Our Kit is designed to train Radio \&Eiectronics Technicians, making use of the most modern methods of home training, You will learn padio theory tion practice and servicing. THIS is A CUMPLETE RADIO COURS PEdio theory, conetrucin You will learn how to build radios, using regular sehematicsi how to wire and solder in onprofessional manner: how to service radios. You will work with the atandard type of You will tearn the basic principles of radio. You wifi construct, circuit chasis. trouble-shooting, using the Progrestive Signal Tracer, Progressive signal Injector, practice sive Dynamie Midio. D. Electronics Tester, Square Wave wenerator and the aecompaliying You wilt receive training for the Novice, Technician and General clases of F.c.C. Radio Amateur Licenses. You will build Rheever, Transmitter, Square Wave Gemerator, Code will receive an excellent background for television. Hi-Fi and klectronics rate them. You Absolutely no previous knowiedge of redio or science is reguired. The "Edu-Kit" is the product of many years of teaching and engineering experience. The "'Edu-Kit" witi" proprice of spe.gs. The signal Tracer alone is worth more thanth many timee the complete

THE KIT FOR EVERYONE

in rou do not need the slighteat background osted in hadio 6 Electronics because you want an interesting hobby, well paying business or a job with a fułure, you will find
mges and backgrounds have wuccessfully tries of the world. The "tEdu-Kit" has bern carefully designed, step by step, so that you cannot make a mistake. The "Edu. Kit':
allows you to teach yourself at your own allows Nou to teach yourself at your own

PROGRESSIVE TEACHING METHOD

The Progreseive hadio "Edu-Kit" ie the foremot oducational radio kut in the world and 's universally accepted as the standard in the field of electronlcs training. The "Kdu: learn schematics, study theory, practice trouble-shooting-all in a closely integrated pro: You begin by examining the various rad to tparts of the "Ede.kit., background in radio. function, theory and wiring of these parts. Then you build a simple radio. With this first and trouble-shooting, Then you buida mondcaat atations, learn theory, ppactice testing and tochniques. Gradually, in a progressive manner, and at your own rate, you will find yourself constructing more advanced mulsi-tube radio circuits, and doing wopk like a Profluded in the "AEdu, Kit's course are neceiver. Tranamitter, Code Oecillator, sional "breadboard" experiments, but genuine radio circuits, constructed by means of professional wiring and soldering on metal chassie, plus, the new method of padio construcflon known as "Printed Circurtry," these circuite operite on your regular AC or DC house
current.

THE "EDU-KIT" IS COMPLETE

tronow wilf receive all parts and intructions necessary to build different radio and elec: able. lectrolytic, mica, ceramic and paper dielectric condensers, resistors, tie itrips, coils, hardware, tubing, punched metal chassis, Instruction Manuais, hook-up wire, solder, In sddition. you receive Printed circuit materials, including Printed circuit chaseis special tube soeket, hardware and instructionsiryou also receive arinted useful set of tools, is professional electric soldering iron, and a self-powered oymamic Rasio and of toolsia Teater, The "Fidu-kit"t also includes code Instructions and the Progressive Code Oscillator, in oddition to F.C.C.otype questiont and Answers for Radio Amateur License training, You aive Signal Injector, a High Fidelity Guide and Gogulz Book. You receive Membership in Gadio-TV Crub, Free Consultation Gervice, Certificate of witit and Discount Privileges.

NOW! train at home IN RADIO AND ELECTroNics

ORDER DIRECT FROM AD USE COUPON ON NEXT PAGE RECEIVE FREE BOUUS RESSTOR AND CONDENSER KITS

 THE NEW IMPROVED DELUXE Progressive Radio "Edu-Kit" is now ready
NOW INCLUDES

* 12 RECEIVERS
t 3 TRANSMITTERS
* SQ. WAVE GENERATOR * AMPLIFIER * SIGNAL TRACER * SIGNAL INJECTOR \star CODE oscillator

SCHOOL INQUIRIES INVITED

Unconditional Money-Back Guarantee

The Progressive Radio "Edu-kit" has been cold to many thou= sands of Individuals, schools and organizations, public and private, throughout the world. It Is recognized Internationally a the ides radio course.
By popular demand, the Progressive Padio "Edu-Kit" is now available in Spanish as well as English.

It Is understood end agreed that should the Progressive Radio "Edu-Kit" be returned to Progressive "Edu-Kits" Inc. for any reston whatever, the purchase price will be refunded in full, without quibble or question, and without delay.
The high recognition which Pro\&ressive "Edu-Kits"" Inc. has earned through its many years of service to the public is due to its unconditional insistence upon the maintenance of perfect engnewring, the highest instructional standards, and 100% adherence to ifs Unconditional Money-Back Guarantee. As a result, we do not Sis, Reg. U.S. have single dissatisfied customer throughout the entire world.

TRAINING ELECTRONICS TECHNICIANS SINCE 1946
 FREE EXTRAS

- SET OF TOOLS
- soldering iron'
- ELECTRONICS TESTER
- PLIERS-CUTTERS
- ALIGNMENT TOOL
- WRENCh SET
- valuable discount card
- CERTIFICATE OF MERIT
- tester instruction manual
- HIGH FIDELITY GUIDE - QUIZZES
- television book - radio TROUBLESHOOTING BOOK
- MEMBERSHIP IN RADIO-TV CLUB: CONSULTATION SERVICE FCC AMATEUR LICENSE TRAINING PRINTED CIRCUITRY

You Will Find That The Progressive Radio "Edu-Kit" II Perfect

-. FOR anyone who wishes to learn more about radio construction, theory and servicing.

- - FOR anyone who is looking for an interesting hobby.
FOR anyone who would like to learn radio but does not have time to attend regular school hours.
- - FOR anyone who wants to start studying for a high-paying radio job.
- - FOR anyone who wishes to start in Television.

```
Please RUSM my Progreserve Radio "EEdu.Kit' to me
OENSEREKTO, NCLLUOE AM, FREE EXTRAS and BONUS RESISTOR and CON.
OENSER KITS WORTH $$7.00.
        MODEL desired. . . . . . . . . . Price. . . ..............
    O Send *Edu.Kit"* rostpard. " enclose remittance in full.
    D Send "Edu.Kit" C.O.D. I will pay postage.
    G send me FREE additional information describing "Edu.Kits."
```

Name. .
Address. .
\qquad

 special Sun Battery \& Photocell s.1.00
 spand new. Save 300% Genulne famous branct into electrite current. Use for experiments. frieks. op
 Unge amusement \& toy tems, traftic control, alarms, etc. ofer to NEW CUSTOMERS. 2 Photocetis \& neiv catalor
of 2500 novelties, gadigets. funnuakers for only $\$ 1.00$. Hy円notizeFastwith Hynmo-Matic

Amaing Hypno-matic invention only $\$ 1.00$. Eye. catching hypnotic device operates on rotating
abiral vortex principle that kains o holda atten. tion for QuIck HYPNOTIC TRANCE. Easily eoncealed in bocket or hand. Control people during spell \& afterwards, tool With g bouks on hyphothmni uses \& dangers post-hypnotic control sell.
hypnotism for correcting bad mablts $\&$ easier hypnotism for correcting bad habits e easiek if not ioo\% pleased. Complete Only $\$ 1.00$ postpald.

Sohnson Smith \& Co., Dept, 192
Detroit 7, Michigan

78 Toys and Games You Can Make

0UR 192-page book TOYS AND GAMES YOU CAN MAKE gives detailed plans for making 78 action toys, thrilling games and fascinating playthings (15 of the projects can be completed in just one evening). Only ordinary hand tools are needed, and our simple, casy-to-follow plans show you exactly HOW to proceed. The detailed drawings, photographs, materials lists and step-by-step instructions make it easy as A-B-C.

ORDER YOUR COPY—NOW!

- SCIENCE and MECHANICS MAGAZINE,
- 505 Park Avenue, New York 22, N. Y.

Enclosed is $\$ 1.95$, for which send me, all charges - prepaid. a copy of the deluxe edifion of your

192-page handbook. TOYS AND GAMES YOU

- CAN MAKE. If I am not completely satisfied, I

I may refurn the handbook within 5 days for full
1 refund. I take no risk.
NAME _ _
! PLEASE PRINT
ADDRESS
CITY ZONE STATE

- mammemberame

Save 50% on KITCHEN CABINETS

Now you can huild your own Eltchen cabinets and save more than 50% of the cost of comparable commercial cabinets. These new enlarged plans make making and installing new natural wood finish kitch. en cabinets so easy that even
 with no experience in wood. -bineta Gve different types of wall cabinet are possible. Plans for included to tht or wall and base or counter cabinets are may be easily altered for individual requirements. No detail is overlooked. Send $\$ 2.00$ for cralt print 240 today to

SCIENCE AND MECHANICS.
Craft Print Division, 505 Park Ave.. New York 22. N. Y.

New Ram Jet Engine Burns Gasoline! Powerful continuous
thrust for models:
boats, ears, planes.
No moving purts,
Easy to start. Runs on gas. About $6-\mathrm{in}$. long. Com.
plete. Only.

Powerful Electric Generator

Cost U. S. Gov't $\$ 20.001$ While They Last $\$ 3.95$-Brand Nowl Generates Up To 100 Volts. Use to generate electricity, to ring bells, light up light: as a medical battery, deliver many electrical experimernta, claseroom uses, etc. Hiand wheel drive. Made by leadinge or gear worth more than total cost). Ready for fone Postpaid $\$ 3.95$.

Underwater Electronlc Detector

 Statlons. Short Wave, Police Calle, Ham, Marine, Commercial, Etc. Sensitive tuning. good volume control. Uses standard cells. $6 \times 4 \times 4^{\prime \prime \prime}$. 1-lb. With operating inHearing id Completely wired, Dnly \$9.98 Hearing-aid type Earphone, \$1.50. World's Biggest Novelty Catalog 700 gadgets. tricks, Jokes. gify. guns. hohbles. coin or radea, experintenter, lems. Send 10 C Johnson Smith Co. Dept. 192, Detrolt 7, Miclilgan

Thrill to Warld-Wide Broadcastel 3-BAND 8-TRANSISTOR PORTABLE RADIO

Listen to Rome, Moscow, Tokyo or Tune to Local Stations AM-SHORT WAVE-MARINE BANDS

Tuning Range:AM535. 1605 kc ; SW6. 16 mc ; MB 1.6 .4 mc

* 8 Transistors, 3-Band Superheterodyne
* Powerful Telescopic Antenna
conceals in carrying handle
* Powerful 4" Anico Spaaker

BIG CONSOLE HI-FIDELITY SOUND
Tamey Back Guarantee

WORLD FAMOUS

Bring world-wide adventure to your home. Listen to 250,000 amateurs in America alone! Switch from Moscow

 to Berlin . . from outer space to ships at sea . . . even standard AM broadcasts. Features: Broadcast $550-1600 \mathrm{kc}$, three S / W bands 1600 kc 30 MC . (3 short wave bands plus AM) adjustable BFO-Beat Frequency Oscillator for code. "Bandspread" control for razor sharp tuning. 5" speaker. Headphone jack. Slide-rule dial with imprinted guide to foreign, government, aviation, etc. Grey steel cabinet with chrome trim- $13 \mathrm{k} / \mathrm{m}_{\mathrm{x}} \mathrm{x}$ $5 \% /{ }^{\prime \prime} \times 8 \%_{4}^{\prime \prime}$ high. $105-125 \mathrm{~V}$. Three antenna systems. AC/DC. 4 tubes plus selenium rectifier. UL Approved. Included FREE: 64-page Guide to Short Wave Listening. (No charge for shipping or credit on this Radio!)

Krieginis

KLEIN'S-Dept. 217 227 W. Washington St Chlcago 6, lbilnois
PLEASE RUSH FOR 30 OAVS FREE TRIAL

- \$39.95 3. Band Radio FP90.T.9727
- $\$ 69.95$ Hallleraflers SW/AM Radio FP90.T9720

```
ENCLOSEO IS MY NAME
s.
[. Check
\(\square\) Money Order
``` ADORESS
\(\square\)
\(\square\)
\(\qquad\)
YOURS FOR 30 DAYS FREE TRIAL MONEY BACK GUARANTEE-CASH OR CREDITI DON'T WAIT! ORDER BY MAIL TODAY! CREDIT CUSTOMERS: To speed your order. send name e address of your employer and name and address of 2 or more companies with whom you have (or have had) credit accounts. Also your age. oecupation. no. of dopendents, date present job began. and your weokly salary. THIS IN. FORMATION IS REQUIREO ONLY ON YOUR FIRST CREOIT OROER.
SAVE MORE! Send your check in full and we pay shipping and handling charges. Same FREE

\section*{Abraham Marcus, co-author of famous best-seller "Elements of Radio" makes amazin,g offer!}

\section*{TRY MY TV and
RADIO
COITSE PRE REPAIR}
"If you haven't earned at least \(\$ 100\) in spare
time during that period you pay not a cent."
Here it ds: The most amazing guatantee ever otfered on any radio-TV Course anywhere! We'll end you Abraham mou haven't actually made \(\leqslant 100\) fixing radion and TV eets, just return the booke to us and pay not a penny:
Why do we make this sensatlonal offer? Flrat, because these books are language that made the author's "Elements of Radlo" a \(1.000 .000-\) copy beet-geller. Second, because these books tet rivht to the naint -tell you what to do in \(1 \cdot 2.3\) ramhion. For example, once you mass the first few chapters of the TV thook you are ready for businessDoN'T WAIT! You risk nothing when you send the eoupon thelow, You don't have to keep the books and pay for them unless you actually make extra money fixing radlos and TV bets, Even when you declde
to keep them. you pay on casy terms. Alatil the coupon now.

\section*{MAIL THIS COUPON}

\section*{WHAT YOU VET IN THESE 3 GIANT VOLUMES}

ELEMENTS OF TELEVISION SERVICING. Analyzes and fllustrates more TV defects than any other book, and provides complete
 step-by-step procedure for correcting each. You can actually SEE what to do by looking at the pictures. Keveals for the first lime all details, theory and servicing procedures for the RCA 28-tube color television recelver, the CBS-Columbia Model 205 color set, and the Motorola 19 -inch color receiver.
RADIO PROJECTS. Hulld your own receivers! Glres you 10 easy-to-follow projects, includlng crystal detector receiver -diode detector receiver-regenerative recelver-audio-frequency amplifier-tuned radio-frequency tuner-AC-DC superheterodyne recelver-etc.
RADIO SERVICING Theory and Practice. Here Is everythlng you need to know about radlo repair, replacement, and readjustment, Easy-to-understand, step-by-step self-training handbook shows you how to locate and remedy defects quickly. Covers TRF recelvers; superineterodyne recelvers, short-ware, portable, autonobile recelvers, etc. Explains how to use testing listruments, such as meter, vacuum-tube voltmeters, tube checkers. etc., etc.

\section*{HLECTROTC SURPIUS BARGAITS} sAVIUP \(10.90 \%\)

RCA 6032 IMAGE-CONVERTER TUBE Combined with suitable optical systerns, this \(3-e l e c-\) trode tube permits vieving of scene with infrared radiation. Scene 10 be vlewed is imaged by optical objective upon semi-t ransparent photocathode. Spectral resp., \$-1; rood response up to about 1200 A . Max. ratings, absoJute, grid \#2, \(20,000 \mathrm{VDC}\) or peak AC, grid \#1,2700. \(\$ 9.95\) ppd.
NT-6 WILLARD 6.VOLT STORAGE BATTERY Rated 2.4 amp hr . Approx dimenslons: \(31 / 2 \prime\).
\(21 / 8{ }^{\prime \prime}\) h. Weight: 1 21/8" 3 oz. (plastic case) Dry-charged. \(\$ 2.50\)

POTTER \& BRUMFIELD RELAY \#SM5LS EГ1)T 8.000 ohm \(11 / 16^{\prime \prime}\) dia. \(x \quad 11 / 16^{\prime \prime}\)
long. Approx.
 weight 1 oz . Ilermetically sealed. Standard 7-pin miniature base. \$2.00

\section*{MINOR SWITCH}

10-position, 3-pole with stopper coil and reset coil 6-12 violts D.C. off-normal non-bridging wiper approx. diatensions: \(4^{\prime \prime}\) long \(\times 41 / 2^{\prime \prime}\) high x \(15 / 8^{\prime \prime}\) wide. weight: 1 lb .

NICKEL CADMIUM BATTERY 1.2 VOLTS
rya Rechargeable thousands of AiP innes. Alkaline storage battery sintered-plate. Flat voltage curve during discharge. Will hold charge for long period of time. High discharge rate up to 50 ainps. Splll-proof, may be used in any position. Approx. 10-ampere-hour capacity. Dimensions: \(6^{\prime \prime} \mathrm{hlgh}: 2^{\prime \prime}\) wide ; \(1 / 2^{\prime \prime}\) thick. Approx. wt. : 6 oz. Uses potassium hydroxide (\(30 \%\) Electrolite). Extremely precise, rugged DC general-purpose sensitive relay. Balanced armature, single-pole. doubie-throw, Sultable for wide range of adjustinents. Wimensions. \(1 / 4 " x 15 / 1 n^{\prime \prime} x \mid 11 / 10^{\prime \prime}\) hlgh. Welght: \(4^{1 / 4} \mathrm{oz}\). \(5 F-5,000-\mathrm{S}: 5,000\) coll ohms. Operates 1.0 ma DC ,5F-16. 000-S: 16,000 coll ohms Operates 0.5 ma 1)C POWER TRANSFORMER Omput: 12, 2., 36 volis. In put: 100 volts, 60 cycles, single-phase. Will handle \(21 / 2\) amps. Steel case is hermeti cally sealed. \(31 / 2^{\prime \prime} \times 23 / /^{\prime \prime} x+1 / ⿷^{\prime \prime}\)

OIRECT-REAOIMG MAGMETIC COMPASS
Full-floating card, compensating magnets, and dial light arall, in
b- or 12 -v. bulb. Laminous dial. B- or \(12-\mathrm{v}\). bulb. luminous dial.
Mifg. by Bendix-I'loneer. \(3 \%^{\prime \prime} \times\)

SILICON RECTIFIERS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{All reetifiens listed verse soltaze rat Inge: approximate forward voltage drop. 1.5 volts.} \\
\hline 1.15140 & 5 & amp. & 100 volts & 00 \\
\hline \(1 \times 1451\) & 5 & amp. & 200 volts & 1.25 \\
\hline 1 1 145\% & 5 & amp. & 300 volts & 1.50 \\
\hline 1 11453 & 5 & amp. & 400 tolts & 2.00 \\
\hline 1N1454 & 25 & amp. & 100 voles & 3.00 \\
\hline 1. 1 1 1 45 & 25 & amp. & 200 polts & 3.50 \\
\hline 1N1456 & 25 & nmp. & 300 volts & 4.50 \\
\hline \(1 \times 1458\) & 35 & amp. & 100 volts & 3.50 \\
\hline 1,11459 & 35 & amp. & 200 volts & 4.00 \\
\hline \(1 \times 0517\) & 50 & - 1 mp . & 50 volis & 6.00 \\
\hline \(1 \times 1462\) & :0 & amp. & 100 volts & 7.00 \\
\hline \(1 \times 1466\) & 75 & amp. & 100 volts & 10.00 \\
\hline 1N1467 & 75 & amp. & 200 rolts & 11.00 \\
\hline 1N1468 & 15 & amp. & 300 volts & 12.50 \\
\hline 1N05V7 & 150 & amp. & 50 volts & 16.50 \\
\hline 1N1474 & 150 & amp. & 100 solts & 17.00 \\
\hline
\end{tabular}

K-BAMO POWER LEVEL TEST SET, TS- 6/AP 253. Brand new, in original packing. with accessorles. Measures 10 io 30 dbus. \(87010-9500\) me.
\(\$ 14.95\)

All prices FOB Pasadena unless othervise noted. No COD's. send 25c for World Science Center Catalogue.

\section*{A special subscription to}

\section*{RADIO-TV \\ EXPERIMENTER}

\section*{brings you more} make-lt-yourself projects

4 ISSUE SUBSCRIPTION-\$3
\(\left[\begin{array}{c}-\overline{\text { SCIENCE and MECHANICS / Radio-TV Experimenter }} \\ 505 \text { Park Avenue / New York 22, N.Y. }\end{array}\right.\)
PLEASE Enter my special 4 issue subscription to \(\square\) I enclose \(\$ 3\) RADIO-TV EXPERIMENTER, starting with No. \(595.63 \square\) Bill me later

NAME
(PLEASE PRINT)
H609
addaEss

CITY \(\qquad\)
\(\qquad\) sTATE \(\qquad\)

\section*{Oeller Heary Duty Soldering Kit}

Features a professional 275 -watt Weller gun that makes soldering a cinch. Pull the trigger - tip heats instantly and twin spotlights illuminate work. Includes: Soldering tip. Cutting tip that cuts plastic materials and tile. Smoothing tip that heat-seals thermoplastics. Tip wrench. Solder. Instructions. Plus break-proof plastic carrying case that can be used as a lunch, tool or fishing tackle box. Available wherever quality tools \(\$ 1495\) are sold. Model 8250AK. \(\qquad\)

For quick, easy soldering and scores of household repairs weller electric corp. easton, pa.

\section*{master} higher mathematics at home

\section*{exclusive with Britannica (V) Schools}

NOW, for the first time, you can complete these courses in higher mathematics in your own homethrough Programmed Learning:

These six courses-developed by a group of skilled, carefully trained specialists in the fields of home study and mathematics - are offered by Britannica Schools in Programmed Learning format together with individualized, home-study guidance.
What is Programmed Learning? Considered by many educators as the finest way to teach mathematics that has been discovered, Programmed Learning is the technique used in teaching machines. Programmed Learning course material is presented in small, sequential segments, or "frames," each containing 1) a single piece of information closely related to the information preceding it; 2) a question to test your understanding of the information; and 3) a masked, correct answer. When you are ready to check your

\author{
ALGEBRA I • THE LANGUAGE OF ALGEBRA ALGEBRA II • PLANE GEOMETRY \\ TRIGONOMETRY. CALCULUS I and II
}
response to a frame, you simply move the mask. Thus, you proceed systematically through the course, frame by frame, at the pace best suited to yourself.
What is Britannica Schools? A division of world•famous Encyc opaedia Britannica Films Inc., Britannica Schools is the first new approach to learning at home in 50 years, because it is the first, and, to date, the only home study institution that offers courses utilizing Programmed Learning techniques. As a Eritannica Schools enrollee, you also have your own, individual instructor who-through phased examinations and correspondence-reviews your progress, checks your grasp and retention of sections of the course material, and insures your complete mastery of the subject.

\section*{212 Do-IT-YOURSELF 25 .}

\section*{ILLUSTRATED CATALOG}

Now you can get simple easy-to-understand plans for building boats, electrical equipment, models of gas and steam engines, famous firearms, antique automobiles, toys, games, cabin trailers, many other projects. In all, 212 useful things you can build. It's easy! It's fun! And you can save money! Send now for this brand new catalog.

High quality Stereo Phono Amplifier with specially designed Output Transformers to provide exceptional Base Response plus a sensitive AM Tuner. Output matches 4 or 8 ohm Speakers. Input gain for any medium level (. 7 Voli) ceramic or crystal cartridges. Designed for cabinet installations, complete with knobs, escutcheon, 5 tubes and tested. Chassis size: \(111 / 4^{\prime \prime}\) long by \(5^{\prime \prime}\) deep by \(17 / 8^{\prime \prime}\) high. Also available as an Amplifier only less tuner at \(\$ 14.95\).
TRANSISTOR BROADCASTER
A unique 2 Transistor Phono Oscillator which plays thru any broadcast band. Radio will operate mike or phono pickup. Originally designed to add Stereo to regular monaural system and priced at \(\$ 16.75\) each. SPECIAL CLOSE-OUT
PRICE ONLYeach \(\$ 2.50\)

\section*{FREE CATALOG}

WRITE FOR YOUR COPY OF BIG ELECTRONIC PARTS BARGAINS. MAILED ANYWHERE IN U.S.A.

CAPITOL COMMODITIES CO. INC. 4757 N. Ravenswood Ave., Chicago 40, Illinois PHONES: LO 1.3355

\section*{This S \& M "Job-Tested" Electric Polishing Kit will add renewed beauty and long life to your - Leather Goods - Furniture - Automobile • Housewares}

Now, you can do all your polishing chores in less than half the time! The S \& M "Job-Tested" All Purpose Polishing Kit, complete with attachments is all new. Saves time because it's automatic. Saves money because it gives you longer shoe life, or keeps a protective coating of polish on your furniture and car. It's easy to use! Just touch the brush in the polish-the polisher does the rest.

No more stained hands-no more hand polishing-no more mess to clean up afterwards. It's perfect for brushing suede shoes or handbags or jackets.
The S \& M "Job-Tested" Polishing Kit features two 2" pure bristle brushes, two \(41 / 2^{\prime \prime}\) lambswool polishing bonnets, rubber backing pad and adapter set. Equipped with six foot cord, gleaming mirror finish. U/L approved. Perfect speed of 900 rpm , no load. Silent operation thanks to nylon gears that require no lubrication. Powered by rugged 115 volt, AC 25 to 60 cycle motor.
Order yours today.

\section*{Science and Mechanics PRODUCTS DIVISION} 505 PARK AVE./NEW YORK 22, N. Y. YES..
Send \(\qquad\) No. 104 S\&M "Job-Tested" Polishing Kits. I am enclosing \(\$ 14.95\) for each. (Price in Canada is \(\$ 16.45\)). No shipments outside U.S.A. and Canada. Name.
(please print)
Address
city \(\qquad\) Zone \(\qquad\) State

\section*{New Model 161 UTILITY TESTER \({ }^{\oplus}\)}

As an electrical trouble shooter the Model 161:
- Will test Toasters, Irons, Broilers, Heating Pads, Clocks, Fans, Vacuum Cleaners, Refrigerators, Lamps, Fluorescents, Switches, Thermostats, etc.
- Will fest all TV tubes (including picture fubes) for open filaments and burned out tubes.
- Measures A.C. and D.C. Voltages,
(Both 110 Volt and 220 Volt lines).
- Will measure current consumption (amperes) while the appliance under test is in operation.
- Incorporates a sensitive directreading resistance range which will measure all resistances commonly used in electrical oppliances, motors, etc.

As an Automotive Tester the Model 161 will test: - Both 6 Volt and 12 Volt Storage Batteries - Generators - Starters Distributors - Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters - Stop Lights - Condensers - Directional Signal Systems - All Lamps and Bulbs - Fuses - Heating Systems - Horns - Also will locate poor grounds, breaks in wiring, poar connections, etc.

\section*{INCLUDED FREE!!}

This 56-page-book-practically a condensed coupse in electricity. Learn by doing.
Just read the following partial list of contents:
- What is electricity? simplifed version of Ohmat Law What is Wattige? simplined watcige charts. How to measure valtleakage. How to teat ail electrical appliances and motors using a simplifed srouble-shooting technique.
- How to test all TV tubes; also simple procedure for determining which specific tube (or tubes) is causing
the trouble, the trouble.
- How to trace trouble in the electrical circuits and parts in sutomobiles and trucks.

Model 161 cemes'complete with above book and test leads. Only

\section*{SEND NOW! For Complete Kif}
- Any Resistance in One OHM Steps 0 to l,111,110 OHMS
- Accurate within \(1 \%\)
- Fast Switching Action

\section*{- Long Life-Durable}
- First Quality Precision Components
- Can Be Assembled With Ordinary Hand Tools in Less Than 2 Hours
Less Than Retail Cost of Resistors Alone
This is a real surplus buy that we're anxious to share with you. The components of this kit if purchased individually cost over \(\$ 25.00\). Yet, because of a surplus windfall we're able to send complete kit to you for only \(\$ 14.95\).
This is an \(\mathrm{S} \& \mathrm{M}\) kit project and carries an unconditional guarantee of performance and accuracy. If for any reason you are unsatisfied with the performance of this unit, it may be returned within 10 days and your money will be refunded.

TV-CAMERA BUILT AT LOW COST 50¢ DENSON ELECTRONICS CORP

\section*{40 SCIENCE PROJECTS}

Wonders of aclence now explained with 40 fuscinating projects you can build- Van de Graafi Genera75 c machine, solar furnace, chemical balance, cloud chambers, satellite 'scope, traveling are and 32 other easy-to-make projects demonstrating scientific theory. All included In our big 192-page Price ibr. Order your coby now T SCIENCE AND MECHANICS.

\section*{Want a Trailer?}
 plan eives blil of matertals, expl
tion detall, Sutiafaction kuaran.

Craft Print Division, 505 Park Ave., New York 22, N. Y.

Fastest growing hobby of the space age - Heathkits!
Explore this most rewarding of "do-it-yourself" ideas. Heath combines fine components and latest engineering techniques with complete check-by-step instructions to provide quality electronic kits with guaranteed performance specifications. Choose stereo/hi-fi, marine gear, ham radio, test \& lab instruments, educational courses, home, hobby \& auto items. It's fun, it's easy, and you save up to \(50 \%\). . . by buying direct and by assembling your own Heathkit.

Please send my FREE copy of the 100 page 1963 Heathkit catalog describing over 250 electronic kits.

Name

Address \(\qquad\)

City
Zone
State \(\qquad\)

HEATH COMPANY Benton Harbor 18, Michigan

\section*{OLSON ELECTRONICS ingorporated}

527 S. Forge Streat
Akron 8, Ohio
Plans Antique Guns \(\$ 200\)

Now you can carve authentic reproductions of four early pioneer guns! Wur simple linstructhun and full-size drawings expluin every
step! All guns are actual gize. No spectal step! Anguns are actual size. No spectal
tools needed. Fhushed models make beautiful decorations for den or recreaHun ruow.
No. 166-Winchester 73 Carbine \(\$ 2.00\) No. 173-Colt .44 Sin-Shooter 2.00 No. 187-Kentucky Pistol. No. 184-1705 Spanish Mortar... 2.00
\(S P E C A L S \begin{aligned} & \text { Order all four at the speclal price of only } \\ & \$ 5.00-\text { a faving of } 40 \% \text {. }\end{aligned}\)

\section*{SCIENCE AND MECHANICS}

505 PARK AVENUE, CRAFTPRINT DIV.. NEW YORK 22, N. Y.

\section*{TEN delightful, exciting MOVIES}

FANTASTIC OFFER ALL TEN MOVIES IN 8 mm FOR ONLY (\(16 \mathrm{~mm}-\$ 4\))
 e movie buy of a lifetimal Ten subiects, all different. brand now and thrilling, and all yours for only 20c each. You must be delighted or your money back! Rush \(\$ 2\) (cash, check or money order) 10: SENSATIONAL MOVIE OFFER Box 69856, Dapt. G-9 West Hollywood 69, Callf.

\section*{ON SAIE NOUT!at most newsstands}

\section*{Do It Yourself}

\section*{Plumbing-605A} In one volume-complete plumbing instructions and information in an easy to follow format for the home handyman. Big 144 page handbook presents 28 ract Alled articles on home plumbing. Included are-How to instail Plumbing. Make a Water Soft ener. Fertilizer Injector for Sprinkler, Driving a Shallow Well, Build a Sewer Disposa System, Building a Basement Bathroom, Clear Those Clossed Drains, Fixing the Flush Tank Freeze-Proofing Water Systems, Fix that Leaky Faucet, Care and Repair of Well Pumps. Special feature section gives complete advice for the care and repair of the home swimming pool. \(\$ 1.00\).

\section*{Surplus and Salvage Projects-606}

Twenty-one complete projects using surplus and salvage equipment. Powercycle, microscope Llluminator, transistor tester, tilt-table sander, cement mixer. are welder, low-range ohmmeter, slide reproducer, twin lens magnlfier and many more. Plus fully illustrated section on the 37 best buys in surplus for 1962, a complete guide to buying government surplus and an up to date surplus dealers directory showing where and how to buy on the surplus market. \$1.00.

\section*{Boatbuilders}

\section*{Handbook-607}

Gives plans and instructions for bullding 10 action tested boats. including a speedy 8 ft . hydroplane, a catamaran skl boat, a convertlble tug, a livery scooter, a duck boat, a salling crulser, a dinghy, a cabln cruiser, s 15 ft . runabout and a 16 ft . fisher. Also includes projects of spectal interest to the boat oun. er such as Rubber Keeps Your Boat Dry and Tuning with a Tachometer. Special boating features include What's Really New in Boating-Starlite Saga, a Mississipul Cruise-The Sea Gem: 100 mph Alr-Cushion Ship, \$1.00.

Pick up a copy at your newsstand or send \(\$ 1.00\) for each handbook ordered to include postage and handling with coupon below.

START NOW! Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase"' training prepares you at home in spare time - for a high-paying CAREER in Electronics - TV - Radio as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparatian F.C.C. bicense, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.
A more rewarding job ... a secure future ... a rither, fuller life can be yours! As on N.T.S. MASTER TECHNICIAM you can go straight to the top in industry... or in your own profitable business.

\section*{SUCCEED IN MAMY HIGM-PAYING JOBS LIKE THESE...}
- TV-Radio Syes, Service and fepair
- Prolitable Eusiness of Your Own
- Communiczions Tecthnician - F.C.C. License
- Mrfi, Steres a Sound Recordage Speciallist
- Tv.Ratlic Beoadcasting Operator
- Technician in Computers 2 Missiles
- Etectronics Field Engineer
- Specialist in Microwaves e Servomechanisms
- Expert Troable shooter
- All.Phase Master Technician

\section*{19 BIG KIIS} YOURS TO KEEP

\section*{NATIONAL Rgime SCH00LS}

Wite Depl. RKK-72

\section*{ACCREDITAD mimern} .. the orly notionally ogenst lot pilvate

BOX 69856, DEPT D. 11 LOS ANGELES 69, CALIFORNIA

\section*{NEW-the} SCIENCE and mechanics 10 foot King Size Push-Pull Steel Tape \(\$ 2.75\)
Developed for making difficult upright and horizontal measurements. Wide blade can be extended for easier, more accurate work. Chrome plated die cast case. \(3 / 4\) inch tempered steel blade has bonderized white enamel finish on both sides. Blade marked in eighths and sixteenths in large easy-to-read jet black. "Quickconversion" foot and inch markings on blade. Self-adjusting end hook assures accurate inside and outside measurements. EXTRA: free tape holster complete with belt clip included. Only \(\$ 2.75\) each.

FULLY GUARANTEED

\section*{Science and Mechanics PRODUCTS DIVISION}

505 PARK AVE./NEW YORK 22, N. Y. PLEASE send me \(\qquad\) King Size Push-Pull SCIENCE and MECHAN. ICS Tapes at \(\$ 2.75\) each. I am en. closing full payment.

Name
Address
City \(\qquad\) Zone State
Add \(10 \%\) for Canadian and Foreign orders

\title{
What Does F.C.C. Mean To You?
}

\section*{What is the F.C.C.?}
F. C. C. stands for Federal Communications Commission. This is an "gency of the Federal Covernment, created by Congress to repulate all wire and radio communication and radio and

What is an F. C. C. Operater License?
Tho F.C. C. requires that only qualiBed perzons be allowed to install, maintain, and operate electronic communications equipment, inctuding radio and television broadcast transmiters, re seterminifity the F.C. C. gives technical examinations. Operator licenses are awarded to those who pass these examinations. There are differen types and clastee of operator licenses, based on

What are the Differsent Types of Operator Licenses?
The F.C.C. grants three different types (or groups) of operator licenses-commercial radiotele
COMMERCIAL RADIOTELEPHONE operator licenses are those required of technician and engineers responsible for the proper opera tion of electronic equlpment involved in the transmission of voice, music, or pictures. For example esprron who installs or maintains swoway mobile radio syitems or radio and tevevio broadcast equipment mut hold aradiotelePHOT required to obtain such a limense)
COMMERCIAL RADIOTELEGRAPH operator licenses are those required of the operator tor honset are mose requrin with communichtions equipment which Lnvolves the use of Morse code. For example, a radio operator on board merchant ship must hold adioteleGRAPH license. (The ability to zend and receive Morse is required to obtain such a license.)
AMATEUR operator licenses are those required of radio "hams"-people who are radio hobbyists and experimenters. (A. knowledge of Morse code is necetsary to be a Mam".)

\section*{What are the Difforent Classes of iadiatelePHONE licenses?}

Each type (or group) of license is divided into diferent classet. There are three classes of radiolephone incenses, as follows:
(1) Third Class Radiotelephone Lleente. No previous license or on-the-ion rxperience or this quicense. The examination consists of F.C.C. Eilements \(I\) and 11 covering radio laws. F.C.C. regulations, and basic operating practices.
(2) Second Class Radiotelephione License. No on-the-job experienoe is required for this examination. However, the aplicant must have
Already passed examination Elrments I And II.
The second class radiotelephone examination The seccond class radiotelephone examination consists of F. C. C. Element III. It is mostly technical and covers basic rediotelephone theory, Including electucel calcuitions, power supplies, amplitude modulation frequency modulation. mensuring instruments, transmitters, receiveri. measurins and transmission lines, ete.
(3) First Class Radictelephone Licente. No on-the-job experience is required to qualify for this examination. However, the applicant must have already passed examination Elements I. 1I. and III. If the applicant wisher, he may take all four elements at the same sitting, but thil is
not the general practice.) The firt clase radiotelephone examination consists of F.C.C. Ele men: IV. It is mostly technical covering ad vanced radiatelephone theory and basic tele: vision theory. This examination covers emerally the same syble the questions are mare difficult and involve more mathematics.

Which License Qualifies for Which Jobs?
The THIRD CLASS radiotelephone licease is of value primarily in that it qualifies you to take the second ellas by. third clase license of authority covere
The SECOND CLASS radioteiephone licence qualies you to install, maintaie, and operate most all radiotelephone equipment encept commercial broadcast station equipreent.

The FIRST CLASS radiotelephone license quailifes you to install, maintain, and operate every type of radiotelephone equipment (except amateup, of course) including all radio and television stations in the United Statest, and in its Territories and Possessions. This if the highest class of radiotelephone license available.

\section*{How Lang Dass it Take to Preplare}
for F.C.C. Exams?
The time required to prepare for FCC examlnations naturally varies with the individual, depending on his beckground and aptitude. Grantham training prepares the studeot to pass FCC exams in a minimum of time.
In the Grantham correspondence courte, the average beginner shoukd prepare for his second clast radiotelephone. icense amter from should then prepare for his frat class license in approximately is edditional hours of study.

In the Crantham resident course, the time normaly required to complet
In the M thru F DAY course, you should get your first class radiotelephone license at the end of the 12 th week of classes.

In the M-W-F EVENING course, you should et your first class radiotelephone license at the gend of the 20th week of classet.

In the Tu-Th EVENING course, you should e. your first class radiotelephone license at the end of the 30th week of classer.

The Grantham course is designed apecifically to prepsire you to pass the instruction in mestenter lin every lespon test and pre-
examinatien you are given conslant prectice in exswering FCC -type questions.

Why Chosse Grantham Training?
The Grantham Communications Electronics Course is planned primarily to lend to an F.C.C license, but it does this by TEACHINC elecpronics. This course can prepare you quickly to pass F.C.C. examinations because it presents the necessary principles of electronics in simple in wasy to grasp manner. Etiar ides. Each new principle is tied in whi farmiar ideas. Each ew prouple is prenensed first in simple, everyday panguege: of oprtin principle, you are taught the tech. nical linguage associated with that principle. You lears more electronics in less time, because we make the subject easy and interesting.

\section*{Is the Granthan Ceurse a "Memery Course"?}

No doube you've heard rumors about "'memory cour-es" or "cram courses" offering "sill the Eract FC:C questions". Ask anyone who has on memorized. Even if you had the exact exam mestions ind enswers, it would be much more guestiont and answers, this "meaningless"" matefial that to keam to understand the subject. Choose the school that teaches you to thoroughly understand-choose Grantham School of Electronics.

\section*{Is the Grantham Course Merely a \\ "Ceaching Service"?}

Some schools and individuals offer a "coaching service"' in FCC license preparation. The weakness of the "conchins service "method is that it presumes the student aiready hasches the ledge of technical radion anpproches on the ofher hand, the Grantham course "begint at the other hand, the Grantham coirse begical order from one point to another. Every subject is forvered simply and in detail. The emphasis is on making the subject easy to understand. With mach leson, you receive an FCC-type test so you each diseover dally just which points you do not undersund and clear them up as you go alons.

\section*{Advancted hesident Training}

The Granthem F.C.C. Licente Course is Section 1 of our Electronics Series, Surcessful completion of this course is prerequisite for enrollment in Section II which deals with more advanced material. However, it is not necessary for the student to take Section il unless he wishes to advance beyond the level of alint class F.C.C. License.

\section*{Accredited by the National Home Study Council}

\section*{What NHSC Mambership Masns:}

Over the years, people have come to respect membership in the National Home Study Council as a hallmark of quality. No echool can the a member of the Council unless it hat met the rigid standards sel up. by the Council's Accrediting Commiasion. This means that al schools, such as Grantham Schools, Inc.0 which display the seal os ane National Home Study Council have demonstrated their integriy and adherence 10 high ethical sandards. It means that they orer quat instruction at reasonable tuition heterm in, and are specialist2 in, the home study method of instruction.

For further details concerning F.C.C. licenses and our training, send for our FREE booklet, "Grantham Training". Clip the coupon. below and mail it to the School nearest you.

Get your First Class Commercial F C.C. License Quickly
 by training at

\section*{GRANTHAM} SCHOOL OF ELECTRONICS
(Phome: HO 7.7727)

400 Marlen Street seatile 4, wash.
(Phone: MA 2-7227)

3823 Gillham noal Kanses City E, Me.
(Phone IE 1-6320)
e2t-1 1th streat. W.W. Washiogten B, 0.6 .
(Phone: ST 3-3514)

MAIL COUPON NOW - NO SALESMAN WILL CALL \(\rightarrow\)

\section*{MAIL TO SCHOOL NEAREST YOU}

TO: GRANTHAY SCHOOL OF ELECTRONICS

Pleose send me your tree booktep relling how I can get my commercial F.C.C. licerse quickly. I understand thare is ne obligation and no solesmen will cell.

\section*{ELECTRONIC KITS... \\ HI.FI \\ TEST INSTRUMENTS \\ HAM GEAR \\ CITIZENS RADIO TRANSISTOR RADIO}
- All easy-to-build - with complete, step.by. step, beginner-tested pictorial instructions
- All tremendously economical - cost \(50 \%\) less than comparable wired units
- All fully guaranteed - lifetime service and calibration at small cost

\section*{When Answering Advertisements Say You Saw it in RADIO-TV EXPERIMENTER}

\section*{EARN}

Electronics
Engineering

\section*{DEGREE}

You can earn un A.S.F.E. degree at bome. College level HOME STUDY courses taught so you can understand them. Contlnue your educallon, earn more in the highly paid electronles industry. Mils. silles, combuters, trunsistors, automation, complete electronics. Over
27.000 graduates now employed Resident ser 27,000 graduates now employed. Resident school arajlable at our Chicago campus-Founded 1934. Send for free catalog.
american institute of engineering \& technology
11 a3 West Fullerton Parkway, Chicigo 14, III.

\section*{PORT ARTHUR COLLEGE ELECTRONICS COMMUNICATIONS}

AM FM Television Broadcast Engineering Industrial Electronics-Automation CHECK THESE FEATURES; Tuition \(\$ 40\) per mo. room \(\&\) board \(\$ 60\) per mo, in dorm on campus College operates 5 KW broadcast station. Students get on-the-job training at studios on campus. FCC license training with all courses. Well equipped classrooms \& lab., am fm transmitters, radar \& marine eqmit., television camera chain, experiment lab test eqmit. \& other training aids. Our graduates in demand at good salaries. Free placement service. Have truined men from all 50 states. Approved for GI. Write to Dept. RT-1 for Free Booklet.

 BARGAINS! FIVE FOR ONLY \$2.50

These back issues of the
RADIO-TV EXPERIMENTER are still available:

551 Includes sun-cell TRF receiver, plans for experimenter's test bench, decade ohm box, electronic tic-tactoe, spit-powered oscillator. photoelectric controls. signai tracer, portable hl-f record player, single-tube organ. Single copy.

562 Contains 53 make-it yourself projects: transistorized Intercom, Citizens lland 2 -way radio, 7 -tube FM tuner, 6 -meter ham rig, suncelled motor, stereo music center. slingle Copy.

569 37 Electronic projectsamong them a complete twometer ham station-a transistor analyzer, an economy frequency standard, a two-tube long wave recelver, a musical annunciator, a typacode, and a wireless intercom.

576 Includes VHF receiver, transistor tester, volt ohm. meter, multi lab, telephone sentry, opinion meter, making transformers, parabolic nifke. battery recharger, field strength Indicator-33 different projects.

> 582 Contains over 35 electronic projects including 5 way \(\$ 5\) radio; transistor tuner; 2 transistor amplifier: underwater metal flnder; home hi-s reverb system plus the lanest expanded edition of Whlte's ladio Log.

RUSH COUPON TODAY
Satisfacticn guaranteed

\title{
KLEIN'S EXCLUSIVE! GASH OR CREDIT! Lasalle "CITIZEN'S BAND" TRANSWITTER/REGEIVER Like your own private Telephone System
}

\section*{UNLIMITED USES}
\begin{tabular}{l}
For Dellvery, \\
Service Contractors, \\
Trucks and \\
Similar Operations.
\end{tabular}
\begin{tabular}{l}
For Use Between \\
Your Car and \\
Your Place of \\
Business or Home.
\end{tabular}
\begin{tabular}{l}
For Marine Use \\
In-Ship to Shore \\
Contact \\
Ion on Weather, \\
Emergency Service, \\
Position and \\
Operations.
\end{tabular}
\begin{tabular}{l}
Civll Defense and \\
Emergency Equip. \\
ment, Doctors, Fire, \\
Police and Am- \\
bulance Service.
\end{tabular}

Farmers, Ranchers,
Orshard Owners and Dairies.
Taxi Cabs, Newspapers, Service Stations and Utility Emergency Trucks.
Industrial Plant
Security and Mainfenance.
Performs Exceptionally Well With Aircraft.

MAL TODAY! TMMEDIATE OELIVERY!
Sole \begin{tabular}{c}
Our \(771 h\) \\
Year of \\
Suality
\end{tabular} position on a table or desk. The LaSalle can be operated on ANY 5 channels selected from the 23 Citizen's Band channels (CB operates on the 27 megacycle band) and is completely crystal controlled. You simply pick up the "inike" press the button and talk. then release to listen. YOUR CALLS COST yOU NOTHING.
The LaSalle outperforms units costing almost double. Operating range \(7-40\) miles or further depending on location. Each unit comes complete with one set of crystals and bracket for desk or under the dash mounting. Join the thousands of already satisfied customers with this sensational new form of communications today.

\section*{CREDIT BUYERS, PLEASE NOIE . . . 2 Gredit Plans!}

KLEIN'S-Dept. 218
227 W. Washington St., Chicago 6, III. Enclosed is s.

\section*{- Cheek \\ - Mones Order} 1 smi T) for 30 Days Firee Trial, If the Clizen's Band radlos and you"ll Immedlately refund my money.
(quantity) Antenna at \(\$ 11.05\) ea. CASE (LISTOMEHE: Send check or moner oriler in full. \(\$ 164.95\) fur one ; \(\$ 319.30\) for two. Cash Orders shlpped posp paid.
Pay 10\% Cown. Choose either of these plans for payment of the balance . . .
\[
\begin{aligned}
& \text { Plan i-Pay } \$ 16.50 \text { down, } \$ 29.70 \\
& \text { a month for hive months. You pay } \\
& \text { only price of merchandise pius } \\
& \text { postage-you pay no Credil Service }
\end{aligned}
\] Charge.

\section*{LEARN ELECTRONICS with a TEACHING MACHINE}

You leam easily and quickly, step by atep, at home, nt your own pace. Teaching Machines and Programed Lengming are the most important advances in educational teclaniques for 50 years or more. Said to be: "The most signiflcant aid to learning since the invention of movable type.
A.I. F.T. established over a quarter-century ayo, has more than 25.000 successful graduates. Now, A.1.F.T. is the first technical institute to offer home training through Teachimg Machines and Programed Learning.

LABORATORY KITS. Practical. learn-by-doing iraining projects include teat equipment useful after gradaation

EXCELLENT CAREERS IN THE ELECTRONICS INDUSTRY AWAIT TRAINED MEN, Qunlify for a career in electronics in the Best, Fastest Most Efficient way possible, at home in your spare time. Write now for full detalls.

> TUTORMATIC DIVISION
american institute of engineering \& technology 1135.45 W. Fullerton Pkwy, - Chieago 14, Illinois

\section*{Toys and Games You Can Make}
- If the high cost of giving is getting you down, get a copy of Toys and Games You Can Make, a book containing detailed plans and bullding in. structions for over 80 diHerent toys, games and playthings. Ideal for gifts to children-children from two to twenty-the construction projects in this book will save you money while you enloy yoursalf making them. Toys and Games You Can Make (No. 556) is available in a deluxe, rugged, special hardbound edition for your shop reference library from Dept. 529, SCIENCE AND MECHANICS, 505 Park Avenue., Book Div., New York 22. N.Y. S1.95.
INVENTORS

> IS YOUR SALES PITCH MISSING SOMETHING?

If you want to SELL your invention to the next manufacturer you contact. use our NEW INVENTION FOK SALE form designed to assist you in presenting. ALI, the pertinent, selling facts. A packet of six forms for \(\$ 1.00\).

\section*{PROTECT YOUR PATENT}

With NEW PATENT SALES AGREEMENT
Now you can sell your patent and be SURE you are protecting your interests 100 percent. Prepared by the Dean of a leading Iaw school, this SaM Patent Sales Contract will help you protect yourself and make sure you or your attomey overlooks no detail. Not a blank, but a true, TESTED Sales Contract that will protect your earnings and interests. Send today for a copy of our Patent Sales Agreement.

\section*{SOLD EXCLUSIVELY BY}

SCIENCE \& MECHANICS MAGAZINE 505 Park Ave., Craftprint Div., New York 22, N. Y.

\section*{NEW-the SCIENCE and MECHANICS 100 toot Steed Tape Only \(\$ 7.50\)}

Ideal tape for all types of measurement work. Zinc plated steel case is covered with grained vinyl fabric. \(3 / 8\) inch white finish steel blade is marked in inches and eighths. Foot marked at each inch; 16 inch center stud markings. Case has double throat rollers and flush folding blade, opened by push pin. All metal parts heavily nickel plated. Individual plastic carrying case. Only \(\$ 7.50\) each. FULLY GUARANTEED

> Science and Mechanics PRODUCTS DIVISION

505 PARK AVE./NEW YORK 22, N. Y. YES
.. send me \(\qquad\) 100 foot tapes. 1 am enclosing \(\$ 7.50\) for each one ordered.

Name \(\qquad\)
Address \(\qquad\)
City \(\qquad\) Add \(10 \%\) for Canadian and Forelon orders

\section*{Firstin fillout latengse Direct Reading
Radiation Meter}

\section*{complete Kit 53495}

\section*{Compare these features}
- Direct instant reading in milliroentgens per hour
- High-low range switch
- Fully transistorized circuit
- No warm up time
- Printed circuit for long life with little maintenance
- Completely portable-weighs only 19 ozs.
- Mercury battery power provides months of operating life and years of shelf life
This unit comes to you as a complete kit with fully illustrated instructions and all necessary parts. It can easily be assembled in one evening with ordinary hand tools.

\footnotetext{
Science and Mechanics, Dept. 844, Kits Division 505 Park Avenue, New York 22, New Yark

Please send me.............Complete Kits and plans for assembling the S\&M Radiation Meter @ \(\$ 34.95\) each. I understand that if I am not completely satisfied I may return the kit within 10 days for a complete refund, Add \(10 \%\) for Canadian and Foreign orders.
\(\square\) Check or money order enclosed, ship postpaid.

Enclosid \(\$ 5.00 \mathrm{de}-\) posit, ship balance C.O.D. plus postage and C.O.D. charges.

NAME (qieáse printi

ADDRESS

\section*{\({ }^{1}{ }^{\prime}\)}

ZONE. . STATE...........
Rodiation Meter is also available fully assembled and tested af \(\$ 39.95\).
}

To guide you to a successful future in

\section*{ELECTRONICS RADIO-TV COMPUTERS ELECTRICAL ENGINEERING}

This interesting pictorial bosoklet tells you how you can prepare for a dynamic career as an Electrical Engineer or Engineering Technician in many exciting, growing fields:
MISSILES AVIONICS AUTOMATION SALES - DEVELOPMENT
ELECTRICAL POWER - ROCKETRY RADAR - RESEARCH
Get all the facts about jot opportunities; length of study, courses cifered, degrees you can earn, scholarships, part-time work - as well as pictures of the Milwaukee School of Engineering's educational and recreational facilities. No cbligation - it's yours free.
MILWAUKEE SCHOOL OF ENGINEERING

\section*{MAIL COUPON TODAY!}

\section*{Milwaukee School of Engineering}

Dept. RTX. \(962 \quad 1025\) N. Milwaukee St., Milwaukee, Wis. Please send FREE, "Your Career" booklet
I'm interested in
\(\square\) Electronics
\(\square\) Radio-TV
\(\square\) Computers
\(\square\) Electrical Engineering \(\square\) Meduanical Engineering
Name
PLEASE PRINT
Address \(\qquad\)
\(\square\)

City \(\qquad\)
I'm eligible for veterans educetion benefits Discharge date
-

\section*{AUTHOR'S SERVICE} LOOKING For A Publisher? Learn how
we publish, promote, distribute your book. Fre publish, promote, distribute your book. Free Booklet H-1.
318t, New York 1. ul authors; publicity advertising promotlon, beautiful books. All subjects invited. Send for free appraisal and detalled booklet. Cariton Press, Dept. SMI, 84 Fifth Avenue, New York City il.

\section*{AUTO PARTS \& ACCESSORIES}

TIRED of paying excessive auto maintenance costs? Repalr it yourself. Easier than you think in "Car Repair Handbook \# 596 . Stop oll leaks, make brakes safe fix nolsy mumer, avold stalls. Special in sert: gas mileage and speed computer. 162 pase car blble yours for only \(\$ 1.00\). Handbook Dlv., Science and Mechanics, 505 Park Ave., New York 22, N. Y.

\section*{BUSINESS OPPORTUNITIES}

SHARPEN Saws and Lawnmowers the proftable way. Send for Free literature Max Manufacturing Company, 138 Stockton Avenue, San Jose 26, Calif.
ASSEMBLE Artinclal Lures at home for thotes, Materlals supplied Free. Profit1F you send me 10c, I'll send you "A Sio.00 for \(\$ 1.00\) Opportunlty Offer.' King, 10 Catherine Ave., Waterbury 4 , Conn.
OPERATE Own Investigation Agency. Make extra cash: Sateliltes. Box 172-S, Manhattanville Sta., New York 27, N. Y.

MAKE Mall Order pay. Get "How To Write a Classified Ad That Pulls." This handbook tells how, with examples: includes certificate worth \(\$ 2.00\) toward classified ad in S \& M. Send \(\$ 1.00\) to C. D. Wilson. Sclence and Mechanics. 505 Park Ave., New York 22, N. Y.

\section*{CAMERAS \& PHOTO SUPPLIES}

AT last! Build your own supersensitive light meter from complete kit with easy to follow Instructions. Uses newest cadmium sulide light cell, shows ASA speeds .3 to 25,000 , F stops .7 to 90 measures accurately moonlight to bright sunlight. Send \(\$ 19.95\) to KIt Division, Sclence and Mechanics, 505 Park Ave., New York 22. N . Y. Money completely refunded if Kit returned within ten days for any reason.

\section*{COINS, CURRENCY \& TOKENS}

GLITTERING Lucite Space-Age Paper Weight; Set Proof Colns seemingly floats In air \(\$ 8.95\). Beautiful large Bronze Medals Alaska, Hawall. President Kennedy's Inaugural-each \$3.95. "Red"-Guldebook \(\$ 1.75\). Bebee's, 4514 North 30th, Omaha 11, Nebraska.

\section*{DETECTIVES}

DETECTIVE Training - Spare Time Study Learn Fascinating Profession. Men Women. Big Money. Become Private Detective. We Help. Lawis For 50 States On File. Barnes Detective. Box \(490-\mathrm{S}\) Thmes Square Station, New York 36, N. Y.

\section*{DO IT YOURSELF}

WHITE Polyester Foam Tape \({ }^{3}\). \(\times 1\), 20 Ft. lengths. Thousands sold. Hundreds of Household uses. Only \(\$ 1.00\) Postpald.
Little Falls Import Company, P.O. Box 202, Little Falls, New Jersoy.

CATALOG of all Sclence and Mechanics Crartprints. Send 25 to cover postage and Handing to Craftprint Div., Sclence and Mechanics, 505 Part Ave., New York 22.
entrusirpuct
For Information on-Classified ads-to be included in our next RADIO-TV EXPERIMENTER HANDBOOK and other Handbooks-writo C. D. Wilson, Mgr., Classified Advertising, SCIENCE and MECHANICS HANDBOOK DEPT., 505 Park Ave., Now York 22, N. Y.

\section*{EDUCATION \& INSTRUCTION}

LEARN While Asleep with your recorder, phonograph or amazing new "Electronic Educator" endless tape recorder. Detalls free. Research Assoclation, Box \(24-\mathrm{HB}\), Olympla, Washington.

\section*{ELECTRICAL EQUIPMENT \& SUPPLIES}

ELECTRIC Motor repairing simplified Free Detalls. Modern. Box 8715, Kansas City 14, Mo.
COMPLETE kit with easy to follow instructions for bullding a high precision all purpose tachometer. 3 ranges. Measures speeds on tape recorders. lathes, cutting tools, auto engines, model plane engines, many more uses. Only \(\$ 16.95\). If not completely satisfed, klts may be returned within ten days for a complete refund. Kit Divislon, Science and Mechanlcs, 505 Park Ave., New York 22.

\section*{EMPLOYMENT INFORMATION}

OPERATE Own collection agency. Spare time extra cash: Satellites, Box 172-S, Manhattanv
New York.

\section*{FOR INVENTORS}

PATENT Searches, including coples of nearest patents, \(\$ 6.00\). Reports airmailed within 48 hours. More than 200 registered patent attorneys have used my servlce. Free Invention protection forms. Write Miss Ann Hastings, P. O. Box 176 . Washington 4, D. C.
BĀVE High fees! Prepare your patent application yourself! New "Do-It-Yourself"' Patent Kit now, makes it easy! Free "Reglstration Form." Mas Blaine. 306 Carry BuIlding, Washington 5 , D. C.
PATENT Searches, Including coples of related U. S. patents, \(\$ 6.00\). Inventors attorneys, manufacturers use my "Worldfide airmall service "Invention Record" Needs, sent free. Miss Hayward 1029 Needs, sent Iree. Miss Hayward, 1029
THOUSANDS of expert answiers to your patent questions. 160 pages covering marketing, attorney's fees, cllnics. searches. many other subjects. Send only \(\$ 1.00\) for Inventor's Handbook \(\pm 600\) to Sclence and Mechanics, Handbook Div., 505 Park Ave., New York 22.

\section*{FOR SALE-MISCELLANEOUS}

COMMUNICATIONS. Teletype, Unusual Surplus. Free Flyer. MDC, 923 W. Schiller, Philadelphia 40.

\section*{GOVERNMENT SURPLUS}

TECH Manuals. Your surplus electronic items are more valuable if you understand them completely. Over 1000 different original manuals in stock. all with scliematics. Complete usts of titles plus booklet How to Buy Gov't Surplus" 50e. Products Co., P. O. Box 242, Jacksonville 1. Florlda.

\section*{HI-FI EQUIPMENT}

HI FI Optics. Cameras, Tools. Fishing Tackle. Free Catalog. GM Photo electronlcs, 623 Gay, Knoxville 2. Tenn.

\section*{HYPNOTISM} HYPNOTIZE Self. Otherg while asleep
with amazing hypnotic phonograph recwith amazing hypnotic phonograph recAssoclation, Box 24-HB, Olympla, Wash.

\section*{MONEYMAKING OPPORTUNITIES}

SECOND Income From Oll Can End Your Tolll Free Book and Ollfield Mapsi National Petroleum, Pan-American Bulld ing-SM. Miami 38, Fla.

\section*{PATENT SERVICE}

PATENT Searches, including copies of nearest patents, \(\$ 6.00\). Reports airmalled within 48 hours. More than 200 registered patent attorneys have used my service. Free invention protection forms. Write Miss Ann Hastings, P. O. Box 176, Washington 4, D. C.
SAVE High fees 1 Prepare your patent application yourself! New "Do-It-Yourself" Patent Kit now makes it easy! Free "Registration Form." Miss Blalne, 306 Carry Bulding, Washington 5, D. C.

\section*{PERSONAL}

ADULTS! Unusual Books. Catalog \(25 \%\). Venus, 562 San Jose, San Francleco 10.

PETS-DOGS, BIRDS, RABBITS, HAMSTERS, ETC.
MAKE ble money ralaing rabbits for us. Information 25\%. Keeney Brothers, New Freedom, Penna.

\section*{PHOTO FINISHING, ETC.}

A Free Roll of Kodak Film with each developlng and printing. Guaranteed Qual lty send for free mallers. Economy Photo Service, Dept. S, P. O. Box \(1111_{1}\) Albany New York.

PRINTING, MIMEOGRAPHING \& MULTIGRAPHING
LABELS, Business Cards, Rubber Stamps, Envelopes, Free \({ }^{2}\), Rubber Heights Industries, Capltol Helghts 27,
Maryland.

\section*{SALESMEN WANTED}
sELL Chenille Bedspreads, Russ on Liberal COD plan. Free Detalls National Chenilles, 705 Burchfield, Dalton 5, Georgla.

\section*{SCIENCE EXPERIMENTS}

SATELLITE computer plapoints positions. Easily explained in Sclence Fair Projects \#594. 25 top-rated plans designed to help you win. Challenging, illustrated plans for super lightmeter: motorized orrery. Send \(\$ 1\) to Science and Mechanics. Handbook Div., 505 Park Avenue. New York 22.

\section*{STAMP COLLECTING}

100 DIFFERENT U. S. commemoratives 25\%. Approvals. Gordon Davison, Hennlker 7, New Hampshlre.
50 DIFFERENT 104. With approvals. U.S. Comm, Toplicals, Others. Carpenter, Box 310, Claremont, Calif

\section*{TOYS, GAMES ENTERTAINMENT}

192 Page Hard Cover Book detalling plans for 78 action toys, thrilling gamed and fascinating playthings, Special postpald price \$1.95. Order Toys \& Games Book from Science and Mechanles, Book
DIv., 505 Park Ave., New York 22 .

\section*{WANTED TO BUY}

RETAIL metal or plestic telescoping tubes. J. Cronwell, 1007 North Cass St.. Mawauree 2. Wis.

\section*{EARN WHILE}

YOU LEARN IN SPARE TIME If you are mechanically inclined (like-to fix things and work with lools) we can teach you this fascinating, big money field.

EVERYTHING SENT TO YOU
Illustrated lesson manuals, testing equipment, business bullding alds. where to buy parts wholesale, what to charge all sent to you.

\subsection*{5.00-56.00 AN HOUR}

Often charged by service technicians for making ordinary repairs. We show you how to rewind motors, repair refrigerators. vacuum cleaners, washer-dryers, etc.

\section*{GET A BIG PAYING JOB}

Christy training enables you to mpply as a first class electrical service techniclan at good wages. The need for trained men is great ... the supply is limited

MAIL THIS COUPON TODAY

Send
for
FRES
BOOK
and
PAY LATER
PLAN

CHRISTY TRADES SCHOOL, Dept. A.711 3214 W. Lawrence Ave., Chicago 25
Please send me your FREE Book on Electrical Equipment Servicing and full focts about how I EARN AS I LEARN.
Name.
Age......
Addres:
City . Zone State

\section*{TV-RADIO Servicemen or Beginners.}

\section*{Send for Coynés} 7-Volume Job-Training Set on 7-Day FREE TRIAL!

Answers ALL Servicing Problems QUICKLY Makes You Worth More On The Job! Put money-mnking, time-saying TV-RADIO-ELLCTRONICS know-how at TRONICS Reference Set for 7 days at our expense! Shows you the was to eanier TV-Radio repair-time saving, practical working knowledge that helps you get the BIG money! How to install, service and align ALL radio and TV sets, even color-TV, UlFF, F'M and transistorized equipment. New photo-Instruction shows you what makes equipment "tick." No complicated math or theory- \(\begin{aligned} & \text { mediately right in the shop, or for ready reference at home. Over } 3000\end{aligned}\) mediately right in the shop, or for read

SEND NO MONEYI Just mail coupon for 7 - Volume TV-Radio Set on 7 -Day FRFit TRIALI We'll include the FREF, BOOK below, 18 you keep the set pay only \(\$ 3\) in days and \(\$ 3\) per month until \(\$ 27.25\) plus postags is paid. Cash price ony \(\$ 24.96\). Or return set at sur expense in 7 days tand owe nothing. Either way, the FREF BOOK is yours to keep. Ufier IImlled. so act NOW!

\section*{LEARNED MORE FROM THEM} THAN FROM 5 YEARS WORK!" tearned more from your lirst two -Guy Bliss, New York Swell set for eilher the serviceman or the beginner. Every senvice bench should have one. "-Melvin
oyne

\section*{FAEE DIAGPAM BOOKI}

Hedio-Television pleture pratcein " 150 Llagrams i:xplaneli A ABSOLUTELY
 TRIAL Shows now to cut servicing time by reading pheture-patuernsy plus
nehemintic dinkrans for many TV and pehcmintic dingramls for many TV and
radio sets. Yours FREF, whether you keep the 7.Vol
Educetional Book Publiahing Division ELECTRICAL SCHOO 455 W . Congrass Parkway Depts 22 -nH

\section*{RAD-TEL SAVS: \\ For Making RAD-TEL Tube Company AMERICA'S LEADING "DIRECT BY MAIL" TUBE COMPANY \\ RAD-TEL'S QUALITY BPAMD NEM IDPS 1 MAR GJABAME5 TUBES FOR TV, RADIO, AND HI-FI \\ \\ RAD-TEL TUBE CO. NOT AFFILIATED WITH ANY}

OTHER MAIL ORDER TUEE COMPANY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 354 & . 61 & 6BY6 & 54 & \(8 \mathrm{CM7}\) & . 68 & 12\$L7 & 80 \\
\hline \(3 \times 4\) & . 58 & 6BYB & . 66 & -8CN7 & . 97 & -12SN7 & . 67 \\
\hline 4807 & 1.01 & -6826 & . 55 & \(8 \mathrm{C57}\) & . 74 & -12S07 & . 78 \\
\hline 4827 & . 96 & 6827 & 1.01 & \(8 \mathrm{CX8}\) & . 93 & -1207 & . 62 \\
\hline - 4828 & 1.10 & \(6 \mathrm{B28}\) & 1.09 & 8 858 & . 94 & -12V6 & . 53 \\
\hline -4C56 & . 61 & 6 C 4 & . 43 & 8SN7 & . 66 & -12W6 & . 69 \\
\hline -4016 & 55 & 6C86 & . 55 & 9 CL 8 & . 79 & -12X4 & . 38 \\
\hline 5 AM8 & 79 & 6 606 & 1.42 & -11CY7 & . 75 & -17Ax4 & . 67 \\
\hline 5AN8 & 86 & 6CE5 & . 57 & 12 A & . 60 & 17806 & 1.09 \\
\hline 5 A05 & . 52 & 6 CF 6 & . 64 & -12AB5 & . 55 & 17006 & 1.06 \\
\hline 5AS8 & . 86 & 6CG7 & . 61 & 12AC6 & . 49 & 17W6 & . 70 \\
\hline 5 578 & . 80 & 6CGB & . 77 & 12A06 & . 57 & 18FW6 & . 49 \\
\hline 5AVB & 1.01 & 6CK4 & . 70 & _ 12AE6 & 43 & \(185 Y 6\) & . 50 \\
\hline 58CB & . 79 & 6CL8 & . 79 & -12AE7 & 94 & \(185 \times 6\) & . 53 \\
\hline 58.8 & . 83 & 6CM6 & . 64 & 12AF3 & 73 & -19AU4 & . 83 \\
\hline \(58 \mathrm{K7}\) & . 82 & 6CM7 & . 66 & 12AF6 & . 49 & 19866 & 1.39 \\
\hline 5807 & . 97 & 6CM8 & . 90 & 12A16 & . 46 & 1968 & 1.14 \\
\hline 58R8 & .79 & 6 CN 7 & 65 & 12AL5 & . 45 & 1918 & 80 \\
\hline 5878 & . 83 & 6 CO 8 & 84 & 12AL8 & . 95 & 21Ex6 & 1.49 \\
\hline 5C68 & . 76 & 6CR6 & 51 & -12105 & . 60 & 25AV5 & . 83 \\
\hline 5 CL 8 & . 76 & -6C56 & . 57 & -12A76 & . 43 & 25 AX4 & 70 \\
\hline \(5 \mathrm{CM8}\) & . 90 & 6C57 & 69 & _12AT7 & . 76 & 258 K 5 & . 91 \\
\hline \(5 \mathrm{CO8}\) & . 84 & 6CU5 & . 58 & -12AU6 & . 51 & 25806 & 1.11 \\
\hline 5 C 25 & .72 & -6CU6 & 1.08 & - 12aUJ & . 60 & 25 C 5 & . 53 \\
\hline SEAB & . 80 & -6CY5 & 70 & 12AV6 & . 41 & -25CA5 & . 59 \\
\hline 5EU8 & . 80 & 6 CY 7 & 71 & - 12av7 & . 75 & -25C06 & 1.44 \\
\hline 516 & . 68 & 60.4 & 68 & - 12ax4 & . 67 & 25 CU 6 & 1.11 \\
\hline 518 & . 81 & 6085 & 69 & -12ax7 & .63 & 250 N 6 & 1.42 \\
\hline 504 & . 60 & 6086 & 51 & -12AY7 & 1.44 & 25EH5 & . 55 \\
\hline 508 & .81 & 60E6 & . 58 & -12A27 & . 86 & 2516 & . 57 \\
\hline 5 V 3 & . 90 & -60G6 & . 59 & \(\bigcirc 1284\) & .63 & 25W4 & . 68 \\
\hline - 5V6 & . 56 & -6016 & . 59 & 128a7 & . 84 & 32ET5 & . 55 \\
\hline \(5 \times 8\) & . 78 & 60N6 & 1.55 & -12806 & . 50 & 3217 & . 90 \\
\hline 5 Y 3 & . 46 & .6006 & 1.10 & -128E6 & . 53 & 3585 & . 60 \\
\hline 6ABG & 1.20 & 6076 & . 53 & -12BF6 & . 44 & - 35C5 & . 51 \\
\hline 6AB4 & 46 & 6078 & . 79 & - \(12 \mathrm{BH7}\) & .77 & -35L6 & . 57 \\
\hline -6AC7 & . 96 & 6EA8 & . 79 & - 128K5 & 1.00 & -35w4 & . 42 \\
\hline 6AF3 & . 73 & 6EB5 & . 72 & - 12816 & . 56 & - 3525 & . 50 \\
\hline -6AF4 & . 97 & 6E88 & . 94 & - 12806 & 1.06 & -36AM3 & . 36 \\
\hline -6AG5 & 68 & -6EM5 & .76 & - 128R7 & 74 & 5085 & . 60 \\
\hline -6AH4 & . 81 & 6EM7 & . 82 & .128V7 & . 78 & \(50 \mathrm{C5}\) & . 53 \\
\hline -6AH6 & 99 & 6EU8 & . 79 & 128Y7 & 77 & 50EH5 & . 55 \\
\hline -6AK5 & . 95 & 6EW6 & . 57 & 12827 & . 75 & - 5016 & . 61 \\
\hline 6AL5 & . 47 & -6EYG & .75 & 12C5 & . 56 & - 7027 & . 97 \\
\hline -6AM8 & 78 & _6F5GT & . 39 & -12CN5 & . 56 & 7025 & . 69 \\
\hline -6a05 & 53 & 6FE8 & . 75 & 12 CR 6 & . 54 & 807 & .70 \\
\hline -6AR5 & . 55 & -6GH8 & . 80 & - 12CU5 & . 58 & -11723 & .61 \\
\hline -6A55 & . 60 & -6606 & . 79 & -12CU6 & 1.06 & & \\
\hline -6AS6 & . 80 & 6GN8 & . 94 & \multicolumn{4}{|l|}{\multirow[t]{3}{*}{Send for free catalog "RED HOT," Summer Specials}} \\
\hline - 6 6A76 & .43 & \(6 \mathrm{CH}_{6}\) & . 58 & & & & \\
\hline 6ATB & . 79 & 61567 & . 51 & & & & \\
\hline
\end{tabular}

\section*{Dual Jacks for Earphones}

Twin installation of jacks gives you instant choice of phones or speaker without the need to remove plugs.

WHEN building a radio, or any other electronic gear where phones may be desirable, it's a good idea to install a pair of phone tip jacks as well as the regular phone jack, or a phone jack besides the regular phone tip jacks.

With the simple installation in Fig. 1, you can quickly connect various phones without adding or removing phone plugs, and without need for any adapters.

You can locate phone tip jacks immediately above the phone jack or alongside of it, whichever makes the best appearance. The closer the jacks, the easier it is to wire them in parallel as in Fig. 2.

This trick also lets you use two pairs of phones connected in parallel.-Art Trauffer.

Have fun . . save monev . . . build the best! Now you can get world-lamous Scott stereo components in kit form. Think of it . . you can bulld the fabulous new LT-110 FM Multiplex Stereo Tuner . . . your choice of two complete stereo amplifiers, or a przamp and separate power amp . . . all from H. H. Scott!
Write today. Find out about these exciting Scott kits.
Choice of 3 Booklets FREE

\section*{H H.H.SCOTT}
H. H. Scott, Inc. 111 Powdermill Road, Maynard, Mass. Dept. 565-62 Send me the booklets checked below:
- 20-page "Guide to Custom Stereo" Complete technical information on xits \(\square 16\)-page booklet explaining FM Stereo
Name
Address
cily \(\qquad\)
City__ Export: Mortan Expoting Coip., 458 Broadway, N.Y.C.
\(\qquad\) State

\section*{RADIO-TV EXPERIMENTER}

U-shaped shop the authop built up over several yearsincludes more than a dozen pieces of test equipment featured in this and previous issues of RADIO-TV EXPERIMENTER, Leff side of shop (Fig. 1), reading from left to right, includes: (top row) resonance meter, RC bridge, transistor power supply, low voltage supply iron-tore inductance meter, electronic resistive load, 1000 -ohm/volt VOM, VTVM; (center) very high valtage supply, os power panel, ac-dc voltage standard, wire rack; (bottom) utility power supply, impedancebridge, tool board.

\title{
The Complete Electronic Shop
}

\section*{Your guide to the most needed test equipment for the five major fields of work}

\author{
By W. F. GEPHART
}

WHAT pieces of test equipment are most important? How much equipment is needed?
There are no simple answers. While some equipment is important and nearly essential in all electronic work, some is "specialist" equipment required primarily for one particular type of work. And some items are not absolutely necessary even for specialty work if you are willing to build temporary test circuits.

Table 1 lists some of the test equipment desirable for each of the five major fields of electronic work. They appear in general order of importance.

Some of the items must be homemade, some are available in kits, and a few are available only in commercial units. All of the equipment listed in the "experimental work" column of Table 1 is shown in Figs. 1 and 2. While the experimental shop pictured is well equipped for experimental work and radio servicing, and fairly well for hi-fi and citizen's band-amateur work, it does not include several essential items for television servicing.

Arrangement of equipment in the shop should be organized. Place measuring units such as VTVMs and VOMs directly in front of the work area for easy reading. Group signal generators (both RF and AF), oscillo-
scope and the electronic switch together since they are often used together. Group power supplies if you use more than one, but keep them away from the oscilloscope and signal generators to prevent possible hum induction. You can place some seldom-used items which do not require ac power to one side on shelves and bring them to the work area when needed.

Each piece of equipment shown in Figs. 1 and 2 is identified and its use described in the following paragraphs. Some of the items are seldom used, but are extremely handy when needed. In the case of home-built equipment, the numbers following many of the descriptions represent the handbook numbers of this or other issues of Radio-TV ExperiMENTER in which the complete construction article for the particular unit appeared (see note below).

These units include five featured in projects elsewhere in this issue. Numbers in parentheses refer to previous issues contain-

\footnotetext{
NOTE: You can order any of the back issues of Radio-TV Experimenter to obtain the complete "how-to" information for building the testing units designated, except No. 595, which is out of print. Order by handbook number from Science and Mechanics, 505 Park Ave., New York 22, and enclose \(\$ 1\) for each copy desired to cover handling and mailing costs.
}

Fig. 2. Right side of shop, left to right: (top) signol trocer, RF generator, AF generotor, tube tester, \(10 \%\) resistance decode, copacity substitution box, \(1 \%\) resistance decode; (bottom) small ports cabinet, resistor cabinet, oscilloscope, electronic switch and voltage calibrator, transistor tester, bottery tester-recharger.

ing construction articles of similar equipment.
Resonance Meter: Used with a VTVM and an RF or AF signal generator to measure resonant frequency of coil-and-condenser combinations. Also measures crystal frequencies and activity, as well as unknown frequencies by the "beat-note" method. \#595.

Resistance-Capacity Bridge: Measures resistance and capacity at \(10 \%\) accuracy. Checks capacitors for leakage, shorts, and power factor. Permits ratio measurement between known and unknown capacity, resistance, or inductance. A commercial kit, it has been modified to include an in-circuit capacity checker. A full description begins on p. 148.
Transistor Power Supply: Furnishes two separate sources of well-filtered dc voltage, \(0-30\) volts, for powering experimental transistor circuits or servicing transistorized equipment. Dual meters and switching circuits permit separate or simultaneous measurement of voltage and current. For the complete construction story, turn to p. 36.

Very High Voltage Power Supply: Furnishes variable high voltage (1,000 to 5000 volts) at low currents for work with CR tubes, Geiger tubes, photo-multipliers, etc.
AC Power Panel: Furnishes variable line voltage (\(0-140\) volts) at 7.5 amperes for testing purposes. Voltmeter and ammeter permit measurement of load drawn. \#569.
AC-DC Voltage Standard: Provides \(99 \%\) accurate ac and dc voltages and currents for calibrating other test equipment The accurate voltages can also be used in precise testing and experimental work. See p. 53 for complete details on building this project.

Utility Power Supply: Furnishes two
sources of filtered, adjustable de voltage (each \(0-400\) volts at 150 ma), adjustable bias voltage (\(0-25\) volts), four dc and five ac filament voltages. Current and/or voltage of either of both HV sources, and bias voltage can be read on dual meters. Used as voltage source on experimental circuits, or as substitute supply in servicing work. \#551.

Low Voltage Supply: Provides adjustable, filtered dc voltage (\(0-48\) volts) at high current (to 8 amperes), for work with auto and aircraft radios, relay circuits, etc.
Iron-Core Inductance Meter: Used with a VTVM, this unit measures inductance of ironcore chokes with the desired dc current flowing through them. Also measures the impedance ratios of audio transformers and determines output and saturation points of ironcore components. Primarily used in design work and in utilization of unmarked components. Construction of this meter is fully described in the article beginning on p. 140.

Electronic Resistive Load: Determines power supply output under various loads. Can also be used to determine optimum value of bleeder or dropping resistors.
20,000-ohm/volt Volt-Ohm-Milliammeter: The familiar VOM, a medium-input impedance meter to measure ac or dc current and resistance. Commercial kit.

1000-ohm/volt Volt-Ohm-Milliammeter: Another VOM, a low-input impedance meter to measure ac or dc current and resistance. While this is a commercial kit meter, you will find the construction of a similar unit in \#576.

Vacuum-Tube Voltmeter: The VTVM. a most important instrument, which measures ac and dc voltages with high input impedance

Wall rack holds all types of test leads which can be removed and replaced with minimum effort.

and resistance to 1000 megs. Commercial kit.
Signal Tracer: Provides audible and metered means of tracing a signal through equipment to determine troublesome stage. Can also be used as utility amplifier, test, speaker, or speaker tester. Includes an ac-dc VTVM that can be used separately. \#551.

RF Signal Generator: Provides AM radio frequency signals for alignment and testing, or for experimental radio control work. Commercial kit.

AF Signal Generator: Provides sine and square wave audio frequency signals for amplifier testing and experimentation. Commercial kit.

Impedance Bridge: Measures inductance, resistance, and capacity over wide range at
high accuracy. Also measures dissipation factor and storage factor. Used in design work and for accurate checking of component values. Commercial kit.

Tube Tester: Checks tubes for emission, shorts and leakage. Commercial kit.

10\% Resistance Decade: Provides any \(10^{\prime}\); resistance value from 10 ohms to 10 megohms in 10 -ohm steps. Can be used as a substitute resistance in servicing work or test resistance in experimentation. Switches separate decades for multiple usage. \#562.

1\% Resistance Decade: Provides any \(1{ }^{\%}\) resistance from .1 ohm to 10,000 ohms in .1ohm steps. Used in measuring resistances, designing meter shunts and multipliers. Construction of this type of decade box is featured in a project beginning on p. 110.

Capacitor Substitution Box: Provides two sets of 18 different bypass and four different electrolytic condensers to be used as substitute condensers in servicing or as test condensers in experimentation. Switching two sets in series or parallel provides choice of several hundred capacitance values. \#576.

Oscilloscope: Required in TV servicing and vital to hi-fidelity work, this unit provides a means of viewing AF and RF signals. Can also be used to measure voltages, phase relationships, frequencies, etc., in experimental work. Commercial kit, but you can build a similar unit with the aid of the project article, "Large Screen Scopes from Discarded TV Sets," featured in \#551.
Electronic Switch, Voltage Calibrator: Used with an oscilloscope, it provides for viewing two separate signals (such as input and output) simultaneously to check equipment performance. Also provides accurate voltages to calibrate a 'scope for voltage measurements. \#576 (\#582).
Transistor Tester: Measures ac and dc current gain of transistors under various inputs and supply voltages. Also checks leakage. \#595 (\#569, \#576).
Battery Tester-Charger: Tests batteries under load and charges or rejuvenates wet or dry batteries used in test equipment and transistor radios. Construction of this unit is revealed in article starting on p. 134.
Test Leads. In addition to having proper equipment and an organized layout, test leads are a shop problem. Generally, they are not needed until the equipment is actually used, so they can be stored out of the way. For the regularly-used VTVM and/or VOM, however, leads should be plugged into the equipment. After wrestling with leads for years, I solved my problem as in Fig. 6. In this shop, leads can be plugged into either or both units at all times, but be out of the way when not being used.
After buying the required number of retractile test leads, attach a flat box to the
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TABLE I-ELESTRONIC TEST EQUIPMENT DESIRABLE FOR:} \\
\hline Experimental & Radio & Television & Hi-Fidelity Work & Citizens' Dind and Amater \\
\hline & & VTVM & VTVM & VTVM \\
\hline Utility Power Supply & Signal Tracer & Sweep Generalor & AF Generator & Field Streng:h Mefar \\
\hline 10\% Res. Decade & Tube Tester & Oscilloscope & Oscilloscope & vom \\
\hline Cap. Subs. Box & RF Generator & Bar 8 Dot Gen. & vom & Oscilloscope \\
\hline vom & Vom & Tube Tester (1) & AF Anolyzer (2) & Low Valtage Sply (3) \\
\hline Ostilloscope & R-C Bridge & vom & Electronic Swith & RF Generator \\
\hline Trans. Power Supply & Urility Power Supply & R-C Bridge & Tube Tesler & Dummy lood \\
\hline Voltage Standard & Trans. Power Supply & 10\% Res. Decade & R-C Bridge & Tube Tester \\
\hline RF Generator & 10\% Res. Decade & Cap. Subs. Bax & Utility Supply (4) & Usility Supply (5) \\
\hline AF Generator & Cap. Subs. Box & Power Panel & 10\% Res. Decade (4) & 10\% Res. Decade (5) \\
\hline Tube Tester & Transistor Tester & Field Strength Meter & Cop. Subs. Box (4) & Cap. Subs. Box (5) \\
\hline Transistor Tester & Low Voltage Supply & & Transisfor Tester (6) & Resonance Meter (5) \\
\hline Impedance Bridge & Oscilloscope & & Trans Power Supply (6) & Impedance Bridge (5) \\
\hline Electronic Swith & AF Generutar & & Iran-Care Inductance & Iron-Core Induatamea \\
\hline Power Panel & Power Ponel & & Meler (4) & Meler '5) \\
\hline Resonance Meler & \multicolumn{4}{|c|}{\multirow[b]{2}{*}{NOTES}} \\
\hline Resistive Load & & & & \\
\hline Iron-Core inductance & \multicolumn{4}{|c|}{(1)-Mutual conductance type lester.} \\
\hline Meter & \multicolumn{4}{|r|}{(2)-To measure distortion, inter-modulation, walts, efc.} \\
\hline 1\% Res. Decade & \multicolumn{4}{|c|}{(3)-Required if mobile equipment involved.} \\
\hline Low Valtage Supply & \multicolumn{4}{|c|}{(4)-Required if experimental omplifer work is done.} \\
\hline Very HV Supply & \multicolumn{4}{|c|}{(5)-Required il circuit development work is dane.} \\
\hline Signal Tracer & \multicolumn{4}{|c|}{(6)-Required if transisforized equipment is used.} \\
\hline
\end{tabular}

Test leads (top) are quickly accessible when stored in flat box built-in under equipment shelf.

Wire rack holds assorted spools and cails.
bottom of the shelf under the equipment as in Fig. 6. Even when plugged into the equipment, the body of the retractile leads can be stuffed in the box with the prod points sticking out. When ready to take readings, they slip out easily when the prods are pulled.

The simple hanger shown in Figs 3 and 4A will store other leads on a nearby wall. You can slot a piece of hardboard to fit the leads and fasten it to the wall at an angle. The leads will slip in and out of place quickly, without tangling or kinking.

Keeping Wire Straight. If you urc many different kinds of wire, especially the colorcoded kind, the wire rack in Fig. 5 will be extremely handy. You can build it to dimensions shown in Fig. \(4 B\) to handle the usual round or square roll, after determining the proper length to suit your needs and available space.

Tool Accessibility. To keep your tools handy, you can easily build a tool board as in Fig. 6. Common utility clips sold in hardware stores hold the tools to the board, which has a painted image for each tool to reveal instantly where to put it instead of dropping it on the bench to get lost in. a maze of other loose tools. Such a board should be located within easy reach of your work area.

All equipment shown in Table 1 and described here is obviously not required, but it is all useful and helpful in the various phases of electronic work.

\title{
Miniature Patch Cord
}

For portable recording with transistor equipment

The patch cord connects your portable radio to your portable recorder and allows you to hear what is being recorded.
F YOU own a portable transistor radio and a portable transistor recorder, you'll have much use for this miniaturized patch cord. Requiring practically no storage space, it permits quick and easy connection for recording. Furthermore, you can monitor what you're recording by making a small modification to the portable radio phone jack.
The patch cord circuit is shown in Fig. 3.

3 PATCH CORD CIRCUIT

\begin{tabular}{lc}
& MATERIALS LIST-MINIATURE PATCH CORD \\
Desig. & \\
R1 & \\
Description
\end{tabular}

The resistor R1 acts as part of a voltage divider in the phone jack circuit of Fig. 4B. Part of the signal energy actually gets to the radio speaker to give you sound monitoring of the material you're recording. There is a small signal voltage drop across the resistor which is connected in series with the speaker voice coil. The radio output to the recorder input appears across the resistor.
The resistor, although small, is still too large to permit the shell of the phone plug to be screwed onto the plug. Push the shell in as close to the plug as you can, and tape it in place. Use several layers of tape to make the neat and rugged assembly shown in Fig. 2. It doesn't matter which plug you use with the radio or the recorder.

Most transistor portable radios have the phone jack connected as shown in Fig. 4A. You can use the patch cord with this circuit, but you won't be able to hear what you're recording unless you change the phone jack circuit on the radio to conform to Fig. 4B. This feature is important since you can tell when you want to start and stop your recorder. The phone jack will operate as it did before the modification, except that some signal will leak to the loudspeaker voice coil when the headphone plug is inserted.-FORrest H. Frantz Sr.

\title{
RCA training at home can be the smartest investment you ever made
}

> Look what you get in the Course in Radio and Electronic Fundamentals

\section*{PLUS ALL THIS AT NO EXTRA COST...}

LET RCA TRAIN YOU AT HONE RCA Institutes, one of the leading technical institutes in the United States devoted exclusively to electronics, offers you the finest training-at-home. The very name "RCA" means dependability, integrity, and scientific advance. Practical work with your very first basic lesson. You build and keep prime quality equipment. Pay as you learn. No installment payments necessary. You pay for your next study group only when you order it. And remember, in electronics the more you know the higher you go. Licensed by the University of the State of New York.

CLASSROOM TRAINING
Classroom training in New York City and Los Angeles. Day and Evening classes start four times a year. In addition, Radio Corporation of America offers a limited number of basic courses in Chicago, Philadelphia, and Cherry Hill, N. J. (near Camden). Indicate your preference on attached card.

\section*{SEND POSTCARD FOR FREE ILLUSTRATED BOOK TODAY!}

Check Home Study or Resident School Box

RCA INSTITUTES, INC. A service of radio corporation of america,
350 WEST 4TH ST., NEW YORK 14, N. Y. 610 S. MAIN ST., LOS ANGELSS 14, CALIF.
The Most Trusted Name in Electronics

\section*{Power Supplies for Crransistors}

\author{
By W. F. GEPHART
}

THE design of a variable power supply for conventional (pre-transistor) radio work is relatively simple: Usually, a veltage range of \(50-\) 500 v (1:10 ratio) and a current range to 200 ma

To eliminate the expense (and bother) of using batteries when you are experimenting with transistors, build this ac-supplied variable power supply

Front and back panel views of dual power supply schematicized in Figs. 6 and 7.
Note in back panel view the meter resistor mounting and the "heat sink"-mounting
Front and back panel views of dual power supply schematicized in Figs. 6 and 7.
Note in back panel view the meter resistor mounting and the "heat sink"-mounting of power transistor (center of photo).

(1:200 ratio) will do. A versatile transistor power supply, however, need only furnish between 1.5 and \(30 v\) (1:20 ratio)but with currents up to nearly 1 amp (1:1000 ratio), and with an extremely low ripple in order to simulate battery operation. Due to the wider variations required, the high currents involved in power transistors, and the need for good filtering, then, several problems arise.
Figure 4A shows a simple power supply for transistor equipment. While it is fairly suitable for powering low-powered devices, it is not satisfactory for bench or experimental work. Even if \(R_{3}\) were made variable, the voltage output would still be dependent upon the current being drawn, which causes a voltage drop across \(R_{1}\) and \(R_{2}\). This type supply is also unsatisfactory because one side of the line voltage is connected to the output.

Figure 4B shows a simple bench-type supply. The danger of contact with line voltage is eliminated in this unit by using a transformer, and the lower resistance within the circuit permits greater control of the output voltage with variable resistor \(\mathrm{R}_{\mathrm{z}}\). Using a choke (L) instead of a resistance (as in 4A) provides better filtering, but again presents the problem of a varying voltage drop as the current drawn varies. Furthermore, the amount of current that can be drawn is limited by the
choke. While chokes capable of handling up to 300 or 400 ma are readily available, chokes capable of handling higher currents are bulky, heavy and quite expensive. Also, to minimize bleeder current (and thus minimize voltage drop across the choke with no lead), the resistance \(R\) : has to be relatively high, yet must be capable of handling full load current, thus presenting problems at high currents. With a value of 2500 ohms, for example, and a full load current of 750 ma , \(R_{z}\) would have to be rated in excess of 1000 watts. This type of bench variable voltage supply can be used, however, up to about 50 ma if the components are chosen properly.

Figure 4C shows the circuit to be used for a high-current, well-filtered variable supply. The output is isolated from the line by transformer \(\mathrm{T}_{:}\)and variation in voltage is secured by varying the primary voltage of \(T\), with an auto-transformer (\(T_{1}\)). This permits variation on the highvoltage, low-current side, enabling the use of a small auto-transformer. The current-limiting problem introduced by the choke is eliminated by using a power transistor (or two). providing excellent filtering with a small, but relatively constant voltage drop.

Transistors, like pentode tubes, "saturate" beyond certain bias points. That is, beyond these points, variation in input signal will have no effect on the output. If a transistor is biased beyond a certain point, ripple variations included in the \(d c\) input will not be included in the \(d c\) output. The same could be done with an ordinary pentode tube, except that ordinary pentodes are not capable of handling the high currents involved. The bias on the transistor is furnished through the resistor-capacitor network of \(\mathrm{R}_{1}, \mathrm{C}\) : and \(R_{:}\)which provides sufficient filtering for bias purposes. The output current flows through the collector-emitter circuit, and with final filter capacitor \(\mathrm{C}_{\mathrm{i}}\), ripple is less than \(.01 \%\), equal to battery supply for virtually any application.

As pointed out, the transistor-filter circuit is only required when current requirements are fairly high, and the circuit in Figure 4B is satisfactory for most low-current applications. If very pure dc is required, the filter section of Fig. 4C (consisting of \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{R}_{1}, \mathrm{R}_{2}\), and V) can be used with the circuit of Fig. 4B, substituting it for the choke-capacitor filter (\(\mathrm{L}, \mathrm{C}_{1}\) and \(\mathrm{C}_{2}\)), and still use an output resistance for voltage variation. Filtering action is even better, since the transistor bias is constant in this case.

In designing a bench supply, voltage requirements, as well as current requirements, should be considered. Even some low-current circuits use a fairly high (\(221 / 2\) to 30) voltage. Several of the components will involve a voltage drop, and allowance for this should be made when planning the output voltage. In low-current supplies (50 \(m a\) or less) germanium diodes make excellent rectifiers and have less voltage drop than selenium units. When using chokes, select a happy medium between inductance and resistance, to minimize voltage drop.

Front and back panel views of powwe supply selkematicized in Fig. 4B, is shown abore and below. Under-chassis wiring is shown in Fig. 3

4B. This supply, using the parts listed, will furnish voltage and current as follows:
\(0-26.5 v\) at no load
\(0-16.5 v\) at \(15 m a\)
\(0-14.5 v\) at 20 ma
\(0-10.0 v\) at 30 ma
\(0-5.5 v\) at 50 ma
Since even the larger transistor radios draw only 15-20 ma at 6-9 v this supply will meet most requirements.
The unit shown was placed in a small metal cabinet and equipped with a pilot light, neither of which is necessary, but both of which are recommended (chassis

Figures 2, 3, and 5 show the details of a lowcurrent supply using the circuit shown in Fig. 4 B . Component values are included in the Materials List, using the nomenclature shown on Fig.

identical with that in Fig. 4 B , and one circuit similar to that in Fig. 4C, and has built-in meters and switching circuits. The twin meters can measure voltage or current for either supply, or can be switched so that the meters measure voltage and current of either supply, keeping both circuits isolated from each other.

The schematic for this dual supply is shown in Fig. 6. Meter jacks, instead of meters and related switches, are shown, since the elimi-
 nation of meters, shunts
and switches greatly reduces the cost of the unit. If it is desired to build the complete unit on a "progressive" basis, holes for the meters and switches should be drilled in the panel at the time of construction, the switch holes plugged with hole plugs, and the meter jacks mounted in plastic or Bakelite plates mounted in the meter holes. (In any event, the jacks must be insulated from the chassis.) Then later, if it is desired to add the meter circuits, it can be done without drilling into a panel on which components are mounted and wiring completed.

In Fig. 6, a second transistor (Vx) is shown in dotted lines, parallel with V.. This is required only if the desired output current is to exceed 700 ma and if used, should be mounted on a "heat sink" (as is \(\mathrm{V}_{1}\)). This "heat sink" (which is common to the collector) should be insulated from the chassis, to keep the chassis and cabinet isolated. Also, if \(V x\) is used, the value of \(R_{\text {s }}\) should be reduced to approximately half of the value given in the Materials List.

In the high-current supply, an auto-transformer, two filament transformers, and a germanium rectifier provide the \(d c\) voltage. While a high-current selenium rectifier would be somewhat cheaper, the voltage drop would require another filament transformer, and stability would not be as good at low voltages and current.

The high-current supply, using the parts specified, furnishes in excess of \(30 v\) (transistor limit) with no load, and slightly over \(19 v\) at 700 ma (full load). If current in excess of 700 ma is desired, the larger rectifier mentioned in the Materials List, as well as the second transistor Vx, should be used. Under those conditions, loads to about 1.1 amperes would be permissible.

In Fig. 6, S., switches the transformer output to a set of binding posts, since it was felt that there would sometimes be a need
for variable ac between 0 and \(56 v\). Fig. 7 shows the dual meter circuits used. The input leads of these circuits are connected to points " \(A\) ", " \(B\) ", "C" \& "D" in Fig. 6, and the jacks cut out at the points marked " \(X\) ". The values of the shunt resistors used are not furnished, since they will depend on the meters used. In the unit shown, the meters were surplus 0-500 microammeters, although 0-1 ma meters would do just as well.

\section*{MATERIALS LIST-TRANSISTOR POWER SUPPLIES}

\section*{Shown in Figures 2, 3, 4B, and 5}
\(\begin{array}{ll}\text { R1 } & 56,000 \text { ohms, } 1 / 2 \text { watt } \\ \text { R2 } & 10,000 \text { ohm potentiometer }\end{array}\)
C1,C2 \(100-100 \mathrm{mf}\). 50 volt (Cornell-Dublier B0085 or Mallory WP202.5)
T 25 volt filament transformer (Merit P.2962)
L \(\quad 4.5 \mathrm{hy}, 50 \mathrm{ma}\)., 200 hm choke (Merit C-2977)
Rect. Four 1N48 diades, bridye-connected
PL NE-51 neon bulb
Small cabinet with chassis (Bud C-1796), pilot light holder, binding posts, knob, miscellaneous hardware

Components shown in Fios. 1 and 6
R1 56,000 ohm, \(1 / 2\) watt*
R2 470 ohms, 1 watt
R3 1200 ohms, 1 watt
R4 10,000 ohm potentiometer
\(\mathrm{Cl} \quad 500 \mathrm{mf} .50\) volt (Cornell-Dublier 5005)
C2 250 mf . 50 volt (Cornell-Dublier 2505, Sprague TVA-1312, Mallory TC-50025)
C3 \(\quad 50 \mathrm{mf} .50\) volt
T1 Auto-transformer, 0.130 volts @ 1.25 amp . (Superior Type 10, Standard Electric 100BU)
T2, T4 25 volt filament transformer (Merit P-2962)
T3 12.6 volt filament transformer (Merit P-2959)
L \(\quad 4.5\) hy, 50 ma., 200 ohm choke (Merit C-2977)
Rect. 170 volt, 7 amp. Germanium Bridge (General Electric 4AJ211AB1AC1) Note: If higher current desired, use 70 VAC 1.4 amp. (General Electric 4AJ211AB1AC2)
Rect. 2 Four 1N48 diodes, bridge-connected
S1 DPST toogle
S2 DPDT toggle
PL NE-51 neon bulb
J1, J3 Open circuit jacks
J2, J4 Closed circuit jacks
Cabinet (Bud CC-1092), aluminum for chassis, binding posts, knobs, miscellaneous hardware
* Not required if included in pilot light holder such as Dialco series 952208 or 95408x.

Components shown in Fip. 7
R1 through R12 See text
M1, M2 See text
S1, S4 3 pole. 6 pos. rotary switch (Centralab 1421, Mallory 1335L) Note: Mallory 3236 J tan be used if \(20^{\circ}\) spacing is acceptable
S2, S3 4 pole, 2 position rotary switch (Mallory 3242d)

The most accurate means of determining shunt and dropping resistor values is to use an accurate resistance decade, a variable voltage source, and an accurate voltmeter and milliammeter. In this method, voltage-dropping resistances are selected by taking a known voltage, feeding it into the proposed meter through the decade, and adjusting the decade for the desired reading. Current shunts are determined in a similar manner, by establishing a known current through a load, placing the proposed meter in the circuit (with the decade connected across its terminals), and adjusting the decade for the desired reading.

If equipment is not available, required resistances can be determined by calculations, using the following formulas:

For voltages series resistance:
\[
R_{s}=\frac{E_{\mathrm{g}}}{\mathrm{I}_{\mathrm{m}}}-\mathrm{R}_{\mathrm{m}}
\]
\(\mathrm{R}_{3}\)-Series resistance required (ohms)
\(\mathrm{E}_{\mathrm{r}}\)-Desired full-scale range (volts)
\(I_{m}\)-Full scale range of meter (amperes)
\(\mathbf{R}_{\mathrm{m}}\)-Internal resistance of meter (ohms)
For current shunt resistances:
\[
R_{0}=\frac{I_{m} R_{m}}{I_{r}-I_{m}}
\]
R.-Shunt resistance required (ohms)
\(I_{m}\)-Full scale range of meter (amperes)
\(\mathrm{R}_{\mathrm{m}}\)-Internal resistance of meter (ohms)
\(\mathrm{I}_{\mathrm{r}}\)-Desired full scale range (amperes)
In the latter formula, at high current values, \(I_{m}\) may be disregarded in the formula as being insignificant.

The meter ranges on the low-current supply (No. 2) need not have as high current ranges as the No. 1 meter. The meter selector switches (\(\mathrm{S}_{2}\) and \(\mathrm{S}_{\mathrm{a}}\) in Fig. 7) permit voltage reading from either output, but current readings only on the associated circuit. For example, with both \(S_{s}\) and \(\mathrm{S}_{\mathrm{s}}\) on Position 1, meter \(\mathrm{M}_{1}\) will read either the voltage or current of output 1 , and meter \(\mathrm{M}_{2}\) will only read voltage of output 1 .

In the unit shown in Fig. 1, the meter resistors were mounted on terminal boards fastened to the meter terminals, saving space and wiring. (A few of the components pictured in Fig. 1 are not exactly those specified in the Materials List.)

\section*{Emergency Lite}

AN investment of about a quarter and five minutes of your time converts a small plastic bottle into a pocket-size emergency light. The bottle doesn't cost you a cent. If you're a transistor experimenter, you can use one of the bottles in which General Electric transistors are packaged (this same kind of bottle is frequently used by pharmacists as a pill box). In addition to the bottle you need only a flashlight bulb and a small pen-lite battery.

To make the emergency lite, ream a hole in the bottle top just large enough to allow the bulb to be screwed into it. Solder a piece of thin insulated wire to the shell of the bulb. I used \#28, silk-covered magnet wire. Solder the other end of the wire to the center terminal of the battery. Insert the battery and bottle top, with bulb, into the bottle with the center battery terminal down.
To turn the light On, push the bottle top on tight. To turn it Off, loosen the top slightly.Forrest H. Frantz.

Students at work on their transceivers. They have nick-named it "Puddle Jumper" because of their success in contacting stations across the puddle of Lake Michigan.

\section*{Puddle Jumper}

\section*{A Two-Meter Amateur Transceiver}

Compact and portable, it provides both voice and modulated code communications with a 6 - to 15 -watt power input and can be built for half the cost of a commercial rig

\author{
By WILLIAM BUSHNELL and \\ C. F. ROCKEY, W9SCH/W9EDC
}

TWO years ago we presented a two-meter amateur station which was designed to be used as an introduction to the construction of serious electronics equipment, and to serve as a practical communications unit as well.

Since this transceiver is a laboratory project in an amateur radio course at New Trier, a Chicago suburban high school, increased

The Puddle Jumper introduces you to advanced electronics and can be built simply by following the schematics.
experimentation has resulted in a number of modifications which have produced a vastly improved version of the original station. The students have nicknamed it "Puddle Jumper," and many sets are currently in operation.

Puddle Jumper operates in the 144-148 megacycle band, and can be used by the holder of any class amateur license, but the user must be licensed. It makes a fine beginner's station as well as a handy standby set for the old-timer. Although the set is not suited for citizens band use, it can be an excellent facility for civil defense.

Start Construction by drilling and punching the major holes in the front panel and chassis (Fig. 3 and 3A). Fasten the panel to

the chassis and drill the holes for potentiometers and switches. Mount the power transformer, 5 U 4 GB rectifier tube socket, and Jones barrier terminal strip. Fasten the regeneration control pot with its on-off power line switch to the panel.

Power Supply Wiring. Connect the transformer leads to the rectifier, then wire-in the 120 -volt leads (Fig. 4). The electrolytic filter capacitors are held in place by their integral mounting lugs, and their positive leads terminate on insulated tie lugs.

Install and connect the filter choke coil. Ground one side of the 6.3 -volt heater winding, and bring the other side out to one of the unused lugs on the rectifier tube socket. This will facilitate connection to the heaters of the other tubes.

After you've wired and carefully checked the power supply, measure the resistance between the positive connection to the last filter capacitor and ground. There should be more than 10,000 ohms of resistance between these two points. Less resistance indicates a wrong connection cr short-circuit. When this condition has been met, connect the line cord to its terminals on the terminal strip, and insert the 5 U 4 GB rectifier tube in its socket. With plug in socket, and power switch on, the rectifier tube filaments should glow dull red, and a dc voltage of at least 300 volts (more won't hurt) should be observed from the positive terminal of the last filter capacitor to ground.

Audio Frequency Section. When the power supply is operational, remove the rectifier tube and line cord and attach the AF sockets. This section includes one and one-half 12AT7s and the 6V6. The 12AT7 sockets are mounted with \(4-40 \times 1 / 4-\mathrm{in}\). round head (\(r h\)) machine screws and hex nuts. Be sure to put a soldering lug under one of the mounting

screws for each socket to provide a ground-ing-point for the circuitry associated with it. Pin No. 9 on each 12AT7 socket, and pin No. 7 on the 6V6 are connected to the ungrounded side of the 6.3 -volt heater winding. Ground pins No. 4 and 5 on each 12AT7 socket, as well as the metal tube in the center. On the 6V6 socket, ground pins 1 and 2.

Work backwards from the 6V6 (Fig. 5). Mount the output transformer with 6-32 machine screws and nuts. Ground the common terminal on the output transformer secondary, and leave the other secondary terminal free.

When the 6V6 stage has been wired, connect the loudspeaker from ground through the send-receive switch to the free secondary terminal of the output transformer. Insert the 6 V 6 and the rectifier tube, plug in the line cord, and turn on the power. Set the sendreceive switch to receive position. Both tubes should light or, if the 6V6 is metal, it should get slightly warm. A screwdriver tip touched to the control grid (pin \#5) of the 6 V 6 should produce a characteristic clicky buzz in the loudspeaker.

When the 6V6 stage is operating, disconnect external wiring, remove tubes, and wire the 12AT7 stage that feeds the grid of the 6V6. Use 2 - and 4 -point insulated tie lugs as needed to support small parts firmly in place. After you've wired and checked this stage, put in tubes, reconnect speaker, and plug into the line. When all tubes are warm, carefully touch a screwdriver tip to the control grid lug (\(\mathrm{pin} \# 7\)) of the 12AT7. A much louder clicky buzz should be heard.

Install the non-shorting type send-receive switch (Fig. 6A and B), the MCW-voice switch, and the volume control potentiometer.

Continue wiring by completing the 12AT7 amplifier stage that serves the receiver.
To Test this Stage, set up as previously described, throw the send-receive switch to receive, and check for the characteristic buzz at the grid. Advance the volume control. Because of the relatively high amplification here, it should be possible to hear a faint hiss of tube noise when the volume control is fully advanced.
Finish the audio section by wiring the 12AT7 grounded-grid microphone amplifier stage. This stage contains the MCW-voice switch, a SPST toggle switch, that converts the AF amplifier into an oscillating multivibrator for modulated CW radiotelegraphy. When the switch is copen, the circuit acts as a tone generator. When the switch is closed, it becomes the microphone input stage.
Make external connections as previously described, and insert tubes. Connect a wire jumper across the mike-key terminals on the ungrounded secondary terminal of the output transformer to the ungrounded side of the loudspeaker. With the send-receive switch in send position and the toggle switch open, a loud, musical tone should issue from the loudspeaker. The volume control, since it is associated with the receiver only, has no effect upon the intensity of this tone.
Throw the toggle switch into the closed position. The tone should immediately cease. Now remove the jumper from the mike-key terminals and connect a good, single-button, telephone-type microphone in its place (see Materials List). Upon speaking into the microphone, the system should behave as a good, low-power public-address system. Note: A crystal or dynamic mike will not work in this circuit.

Top view showing physical layout of components.

The audio system so far constructed may serve as a good, code-practice oscillator for group instruction. Just connect a telegraph key to the mike-key terminals. If the signal is too loud for you, you can soften it by connecting a 100 K volume control from pin \#7 of the second 12AT7 to ground. Be sure the toggle switch is in the open position, and the send-receive switch is in the send position.
Disconnect temporary jumper lead, and wire speaker permanently into circuit before proceeding with receiver wiring.

The Receiver Section. Connect the 100 K regeneration control potentiometer and 47 K

\section*{Selecting a Crystal Frequency}

The crystal used in this iransmitter is of the "overtone" yype and oscillates at a frequency of approximately 36 mic. We have found adequate the crystals manufactured by Texas Crystal Corp., River Grove, III., which sell for about \$5.

The crystal frequency in this transmitter is one quarter that of the output frequency, but you must choose your operating frequency in terms of the class license you hold. If you have a novice or technician class license, yout have to confine your operations between 145 and 147 mc , and choose a crystal frequency between 36.25 and 36.75 mc . If you hold a general or extra class license, you can operate anywhere from 144 to 148 mc , and choose a crystal frequency from 36.00 to 37.00 mc .
voltage-dropping resistor, along with the 100 K detector plate load resistor (see Fig. 7) These parts are installed beneath the chassis, and secured by means of tie lugs.
Drill and assemble the receiver sub-unit (Figs. 8 and 9). Since this receiver operates at the extremely high frequency of about 145 million cps, short and direct leads are very important. This applies directly to grid, plate and bypass-capacitor leads. It is also important wherever possible, to return all cathode and bypass capacitor leads to the same ground point for each stage.
The 15 mmfd variable tuning capacitor is too large to provide suitable bandspread for convenient operation. It is therefore advisable to carefully remove all but one stationary and one rotary plate. Be careful, when reassembling the variable capacitor, to see that the rotor and stator plates do not scrape or short-circuit against each other. After the receiver is in operation, you can often further improve the bandspread by spreading the capacitor plates cautiously apart and simultaneously readjusting the spacing of the coil.

Wind and install coil L1 (see Fig. 7) carefully and complete as much of the sub-unit wiring as possible before mounting it on the

Bottom view of component layout.

68
BACK VIEW OF SEND-RECEIVE SWITCH
amateur activity, you should be able to hear two-meter amateurs on the air almost any evening by using a good antenna. In addition, police, taxicab dispatchers, and aircraft operating adjacent the amateur band may also often be heard. If you have not as yet installed a good two-meter antenna, a high, clear outdoor TV receiving antenna can be used to test the receiver. Install a knob temporarily on the receiver tuning capacitor shaft to aid in these preliminary tests. To

DETECTOR - RF AMPLIFIER ASSEMBLY
use your TV antenna, connect one side of the ribbon line to the antenna input tie point on the sub-unit, the other side to chassis.

The Transmitter. With the receiver in satisfactory working condition, begin the transmitter by wiring the crystal oscillator, and work forward (see Fig. 10). The clystal, which should have an operating frequency of approximately 36 mc , plugs into any two alternate pins of the 8 -prong crystal socket. Other unused pins of the crystal socket make handy tie-points for various components. The

\section*{Chaosing an Antenna System}

A suitable antenna system is very important to the effectiveness of any amateur station, and this is especially true in the V'HF bands. Whereas a simple halfwave dipole in the attic will provide many contacts for the Puddle Jumper, a good, directional "beam" antenna, such as one of those suggested in the Materials List, will vastly improve it.

The height to which you raise your antenna will determine your range of VHF communcations, and you should put your antenna just as high above the ground as your pocketbook and local building codes will allow. By using a rotator, you will be able to point the antenna exactly at the station you want to contact. Any of the good TV rotors, will do, since the 2-meter beam is smatler than most IV antennas.
If your physical setup requires a feedline longer than 20 ft ., be sure to use the larger RG-8/AU coaxial cable rather than the smaller RG-58/AU. The energy losses in the smaller cable are too great when used for long runs, most of the transmitter power is burned up before it gets to the antenna, and the receiving losses are equally great.
The following table compares the height of the antenna with the range of communications you can expect during day-to-day conditions. Occasionally, during especially , fine propagation conditions called "band openings," it is possible to exceed these ranges from five to ten times.
Antenna Height in Feet Normal Kange in Miles
\begin{tabular}{cc}
ght in Feet & Normal Ra \\
10 & 6 \\
20 & 9 \\
30 & 11 \\
50 & 14 \\
70 & 17 \\
100 & 20
\end{tabular}
crystal oscillator tube is the triode section of the 6AW8 tube. The only critical portion of this circuit is the coil, and this will cause no trouble if it is wound exactly as described in Fig. 10.

After wiring and checking the crystal oscillator stage, proceed with the frequency doubler, the pentode section of the GAW8, paying careful attention to the coil. Be especially careful to avoid poor connections and solder-blob shorts between tube socket lugs and chassis. Support all small parts firmly by means of a liberal use of insulated tie lugs, and allow no parts to swing free or trouble is certain to follow. Keep all grid and plate leads short and direct, and return all grounds to the same point on the chassis, insofar as is possible.

With the 6AW8 circuitry complete and checked, wire in the 6CL6 driver stage, following the same precautions as outlined above. Remember, these circuits operate at a high frequency. Long, sloppy leads, or poorly-organized wiring cannot be tolerated. Wind the coil as described in Fig. 10, being careful to get the tap squarely in the electrical center of the coil. Make the RF choke, which connects from \(B+\) to the coil tap by winding 100 turns of No. 26 cotton-covered magnet wire around the body of a 100 K (or larger) 1-watt carbon resistor. "Scramblewind" it, if you like, then dip in clean, clear lacquer to hold the turns in place.

When the 6CL6 driver stage is complete, wire the 12 BH 7 final amplifier stage. Similar precautions should be followed. Keep the leads in the plate circuit especially short and direct. This is vital. Wind the RF choke coil for this stage also around a 100 K (or larger) 1-watt carbon resistor. However, only 25 turns of No. 26 cotton-covered wire are required. Wind these in a smooth layer, then
"dope" with clear lacquer to hold in place.
Do not connect the RF choke to the B+ connection (point E on send-receive switch) at this time. Otherwise, complete and check the wiring of all the transmitter RF stages, and insert all tubes in these stages. Do not apply power yet. Instead, get your grid-dip meter and, with this device in the oscillating condition, carefully adjust each of the coils as closely as possible to its proper resonant frequency. These frequencies are:

Crystal oscillator coil, about 40 mc .
Doubler coil, 72 mc .
Driver coil, 72 mc .
Final amplifier tank circuit, 145 mc .
with capacitor about half-enmeshed.
The coil specifications given in Fig. 10 were found satisfactory in the writer's model. However, it may be necessary to add or subtract a turn or two from any coil. This is because stray circuit capacitances are unpre-

\section*{No. Req.}

\section*{MATERIALS LIST-2-METER STATION}

5U4GB vatuum tube
6AW8A vacuum tube
6CL6 vacuum tube
\(6 E 5\) vacuum tube
6 V6 vacuum tube
12AT7 vacuum tube
12 BH 7 vacuum tube
47 ohm, 1 watt resistor
\(47 \mathrm{~K}, 1\) watt resistors
220K. I watt resistors
2.2 K . I watt resistors

100K, I watt resistors
470K. I watt resistor
390 ohm. 1 watt resistor
\(22 \mathrm{~K}, 1\) watt resistors
22K, 2 watt resistors
\(1 \mathrm{~K}, 1\) watt resistors
\(.5 \mathrm{mfd}, 200\) WVDC paper capacitor
\(5000 \mathrm{mmfd}, 600 \mathrm{WV}\) ceramic disk capacitors
\(1000 \mathrm{mmfd}, 600 \mathrm{WV}\) ceramic disk capacitors
50 mmfd , WV ceramic disk capacitors
\(4.7 \mathrm{mmid}, 600\) WV ceramic disk capacitor
10 mmfd .600 WV ceramic disk capacitor
\(10 \mathrm{mfd}, 450\) WV electrolytic filter capaciter
15 mmfd variable capacitors (Bud M-C 1850)
100 K linear taper potentiometers (one with switch)
\(21 / 2 \times 7 \times 11^{\prime \prime}\) chassis (18 ga . aluminum)
\(73 / 8 \times 113 / 8^{\prime \prime}\) front panei (18 ga . aluminum)
\(21 / 2 \times 33 / 4^{\text {² }}\) subassembly (18 ga . aluminum)
National type 8M dial
tuning eye assemble for 6E5 tube (Amphenol 58 MEA 6) \(4^{\prime \prime}\) PM loudspeaker
plastic octal tube sockets
9 -pin miniature sockets. high frequency plastic insulation
6-terminal harrier terminal strip (Cinch-Jones)

\section*{SPST tognle switch}

4PDT non-shorting wafer switch (Centralab 1409)
power transformer (Chicago-Standard PW.8408)
filter chake (Chicago-Standard C-1708)
output transformer (Chicago-Standard A.3823)
National XR- 50 coil forms with iron slugs
\(1 / 4\) to \(1 / 4^{\prime \prime}\) brass coupling
\#48 lamp (for tuning)
1N34 crystal diode
"Overtone'" crystal \(36.25-36.75 \mathrm{mc}\), available from Texas Crystal Co., River Grove, III. (see box copy) line cord and plug

\section*{\(1 / 4 \times 3^{\text {n }}\) plastic rod}
type F-I carbon microphone (Telephone Engineering Co., Simpson, Pa.)
telegraph Key (Johnson 114-100)
144 me directional antenna (see box capy)
(Hy-Gain, type 210, ten element 144 mc antenna,
Newark Electronics \#92-F.482)
(Telrex, six element 144 mc beam antenna, Allied Radio \#92-CZ-273)
knobs for \(1 / 4^{\prime \prime}\) shaft
screws, nuts, tie points, \#20 plastic insulated hookup wire, rosin core solder

dictable, and are bound to vary in individual cases. Be sure that the tubes are inserted at the time of these tests, as it is the capacitance of the tubes themselves which makes up the primary tuning capacitance of these circuits.

When all circuits have been thus approximately set to resonance, insert the crystal and rectifier tube, set send-receive switch to transmit, and apply power. Using the griddip meter in its wavemeter function, tune it

Datector-RF amplifier

to 36 mc , and bring it near the crystal oscillator coil. Immediately adjust the crystal oscillator coil slug to maximum output, then back-off by unscrewing the slug upwards for about three whole turns. This is for stability. Then tune the grid-dip meter to 72 mc , and adjust the doubler coil slug to maximum output. Connect the negative side of a 10 -volt de voltmeter to point B (Fig. 10), and ground the positive side to chassis. Adjust the doubler coil slug to give maximum voltage reading. The voltage here should be at least 1 volt, but more is desirable.
Then connect the voltmeter to point C and adjust the doubler coil slug until maximum reading is obtained. Again, readings between 1 and 3 volts are acceptable, the higher the better. It is also a good idea to make sure by means of the grid-dip meter that this stage is producing its output on 72 mc .
When you are satisfied that this is indeed the case, shut off the power temporarily, and complete the connection between the RF choke coil in the 12BH7 final amplifier plate and point E on the send-receive switch. Then

\section*{The Superregenerative Receiver}

Perhaps no other type of receiver provides as much VHF reception per tuhe and dollar invested as the superregenerative. Even though simple to construct, it enables you to realize as much sensitivity with one or two tubes as is ordinarily obtained with seven or more. But such sensitivity is obtained at a price. You must tune carefully for the signals, particularly the weaker ones; they do not roll in at the touch of the dial. In addition, the superregenerative receiver is somewhat susceptible to overloading by strong, local signals, and is not as selective as a good superheterodyne.
We have employed a superregenerative receiver in this unit simply because a superheterodyne of comparable performance would raise the cost and building complexity beyond that which is reasonable for the purposes of this project. This is a good little receiver, and we have no apologies to offer for its performance.
tune the grid-dip meter to 145 mc , and reapply power to the transmitter. A definite indication of strong RF power output on this frequency should be evidenced when the final amplifier tuning capacitor is readjusted. If it is not, shut off power immediately and reexamine wiring. When a definite sign of \(R F\) output at 145 mc is obtained from the 12BH7 plate circuit, a "soup-loop" (a \#48 or \#49 pink bead pilot lamp bulb connected to a loop of wire 1 in . in diameter as in Fig. 11) should glow very brightly when coupled to the final amplifier plate coil. If it does, then the RF circuitry is probably in good shape.

Make a final check for stability and freedom from self-oscillation as follows: Hang the soup-loop in the final amplifier plate coil. Adjust all coils and the tuning capacitor for maximum output. Then very briefly pull out the crystal. All output should cease. (Immediately reinsert crystal to avoid damage to tubes or circuitry.) If output does not cease when the crystal is removed, then you will probably have to redress wiring and move parts around until this condition occurs, or trouble with the F.C.C. is imminent.
To check the transmitter for modulation, connect a carbon mike to the appropriate terminals, apply power, and switch to transmit position. Hang the soup-loop around the final amplifier plate coil and tune for maximum output. Then talk into the microphone. As you speak, the soup-loop bulb should flicker noticeably. If you have another 2meter receiver handy, tune in the signal. The speech quality should be clear, crisp, and strong.
Finishing Touches. With both the receiver and transmitter operating satisfactorily, it is time to apply the finishing touches. Pull out all tubes and remove all external connections

to prevent damage. Wire the tuning-eye rectifier circuit, keeping the lead to the final amplifier coil tap short, less than 1 in. long. Connect all coaxial cables from the receiver and transmitter to the send-receive switch, and from the switch to the appropriate terminals upon the Jones terminal strip using type \(\mathrm{RG}-58 / \mathrm{AU}\) coaxial cable, and grounding the outer shield. Mount the tuning-eye tube bracket upon the panel, and connect the socket leads appropriately (Figs. 6 and 12). These leads should be brought through a grommeted hole in the chassis floor.

The output from the transmitter is taken from a tap on the final amplifier output coil. This tap should be made one turn from the ground end of the coil. The tuning-eye rectifier circuit also connects to this point. If the tuning-eye tries to open instead of close, when the transmitter is energized, reverse the 1 N34 crystal diode.

Mount the National vernier dial on the panel, and couple it to the receiver tuning capacitor through a length of \(1 / 4-\mathrm{in}\). dia. plastic rod and a \(1 / 4-\mathrm{in}\). to \(1 / 4-\mathrm{in}\). shaft coupling. The dial should read zero when the plates of the receiver capacitor are completely enmeshed. Tighten all set screws firmly. Then put knobs on both potentiometer shafts (cutting these to proper length if necessary) and on the send-receive switch shaft. This should complete the assembly.

Connect the power cord and microphone to the proper terminals. Then connect a 2 -watt 47 -ohm carbon resistor to the antenna ter-
minals. Apply power, and switch into transmit position. Adjust the final amplifier tuning capacitor until the tuning-eye closes. Then speak into the microphone. The shadow within the tuning-eye should flicker noticeably, indicating satisfactory modulation, and a check with a local receiver should reveal good, clean speech quality. Also, after a few minutes, the 47 -ohm resistor across the antenna terminals should get noticeably warm, indicating satisfactory power output.

Now, remove the 47 -ohm resistor, and connect a \(144-m \mathrm{c}\) anter.na system, preferably a good, high directional "beam" antenna as recommended. Make sure that the outer shield of the coax cable goes to the grounded terminal on the strip. Throw the send-receive switch to receive, and adjust the regeneration control for a smooth hiss. If there are any 2 -meter stations operating within your vicinity, you should have no difficulty in hearing them. Throw the switch to transmit, adjust the final amplifier tuning capacitor for maximum closing of the eye, and you're tuned-up and ready to go.

Novice amateurs, learning the code, may wish to operate in the modulated code, MCW mode, which is legal on the 2 -meter band. To do this, replace the microphone with a telegraph key and snap the toggle switch to the MCW (open) position. Otherwise, operation is identical to that on voice. The smooth, tone-modulated code signal radiated can be read by any other 2 -meter amateur, regardless of the kind of receiver employed.

\title{
Improved Crystal Control for Amateur Communications
}

\section*{By EDWIN E. STEINBERG, W9QJO}

PORTABLE transmitters, net operation, and broadband receiver converters are just a few of the many circuit applications best filled by a crystal-controlled oscillator. This unit and a variable-frequency oscillator (VFO) team harmoniously for use in hetero-dyne-type transmitter exciters and singlesideband (SSB) generators.

Most crystal oscillator circuits in common use have a somewhat restricted application in choice of tube type and/or mode of operation. The oscillator applications shown in Figs. 1 and 2 feature both excellence of performance and versatility of application.

Circuit Details. The Tri-Tet and modified Pierce circuits are typical of those commonly used. The Tri-Tet (Fig. 3) was originally designed for use with tetrode tubes. While it will work with pentode tube types, it does not use them to their full advantage. Those pentode types with an internal connection between suppressor and cathode are not suitable for the Tri-Tet circuit. In addition, the cathode circuit impedance (L 1 and C 1) of a Tri-Tet oscillator is common to both the oscillator and amplifier sections of the circuit and prevents good load isolation.

New 6AG7 oscillator in modified BC-625 transmitter.

VHF receiver converter using the improved oscillator.
The modified Pierce oscillator circuit (Fig. 4) was designed for pentode tube applications. Since the cathode is grounded, any pentode tube-type or pentode-tube section can conceivably be used in an electron-coupled Pierce oscillator. Reasonably good load isolation will be achieved. However, the circuit is not suitable for overtone operation. As in the Tri-Tet applications, both crystal terminals are above ground. This is an added complication if crystal switching is required.

What Circuit Can Best Be Used? While the modified Miller circuit in Fig. 5 was designed for use in a crystal-controlled receiver converter, its basic design can be applied to a wide variety of circuit applications. Tube type and component values need only be chosen for the specific application.

The circuit is an electron-coupled form of Miller oscillator: Similar to the Tri-Tet, it differs in that a grounded-cathode form of Miller oscillator was used rather than a grounded-plate arrangement. It is intended strictly for modern \(p \in\) ntode tube types or pentode tube sections. Since the suppressor and cathode are both grounded, many tube types are suitable for this circuit which are not satisfactory for the Tri-Tet.

Its basic crystal oscillator section can be employed for either fundamental or overtone

TRI-TET OSCILLATOR

6AG7 transmitter-oscillator construction.
mode of operation. The electron-coupled plate section can be used as an amplifier or multiplier. The grounded-cathode circuit, plus shielding provided by the suppressor-grid, ensures excellent load selection. Drift caused by temperature effects is reduced by the use of the minimum required crystal drive for adequate output.

The circuit is currently in use as a fifthovertone oscillator and doubler, and provides 130 mc oscillator injection for a 2-meter broadband receiver converter, as featured in "VHF Converter for Short Wave or Communications Receivers" (Fig. 1), cover story in Radio-TV Experimenter No. 595 (available for \$1, including mailing and handling charges, Science and Mechanics, 505 Park Ave., New York 22).

The circuit is also in use as a third-overtone oscillator (Fig. 2), and doubler using a 6AG7 tube to replace the 12A6 multiplier in a BC-625 transmitter (part of the SCR-522).

Receiver-converter ascillator construction.
All the original plate circuit components are used. The tube socket must be completely rewired (Fig. 7). Note that the original 6G6G oscillator circuit is entirely removed.

Construction Suggestions. The usual precautions for layout and lead dress must be observed in the construction of this or any other oscillator (Fig. 8).

Mechanical stability is required as in Fig. 8 in order to achieve optimum frequency stability. Use of a crystal for frequency control is not a cure-all and cannot replace good design and careful construction.

Adjustment and Operation. This oscillator requires no new tricks of adjustment or operation. The screen is tuned somewhat above the desired crystal (fundamental or overtone) frequency. (Crystal drive increases as exact screen circuit resonance is approached.) Tune the plate tank like you would any amplifier or multiplier and let the circuit do the rest.

\title{
AC-DC Voltage Standard
}

\section*{Simply built unit provides highly accurate ac or de voltages or currents for the calibration of test equipment}

\author{
By W. F. GEPHART
}

Calibrating a VTVM in home-built test equipment with the voltage standard.

AMAJOR problem in the building of certain test equipment resides in the calibration of the finished unit, and the ac-dc voltage standard in Fig. 2 is designed to supply a calibration source with \(99 \%\) accuracy.

Notice an the front panel the peak and rms dual calibrations of the ac voltages.

The unit consists of a simple, regulated dc source of five convenient voltages. It can be built for about \(\$ 35\) using standard parts, and for less than \(\$ 30\) if surplus parts are used.

Calibration Unit Difficulties. In many such units, voltages are furnished by a resistor network as shown in Fig. 3A. The standing current in the network is 10 ma , and the voltages are accurate only if virtually no external current is drawn.
Suppose, for example, a device drawing 1 ma were connected to the 50 -volt tap. This would increase the current being drawn through R1 and R2 to \(11 m a\), causing a voltage drop of 60.5 volts across them. Since the supply voltage is held constant at 105 volts, the voltage at the 50 -volt tap would then be 105 minus 60.5 (the drop across R1 and R2), or 44.5 volts.

This problem could be solved by using a variable resistor, instead of the network, as shown in Fig. 3B. Then the resistance could be varied to maintain the desired voltage as the load changed. But some means would have to be devised to know where to set the resistance.

This could be done as shown in Fig. 3C. An accurate unit (under no load conditions), such as in Fig. 3A, would be connected to one side of a meter, and the variable voltage con-
nected to the other side. When the two voltages are equal, no culrent would flow through the meter, which would then indicate the proper setting of the variable resistance. But this would be expensive.

Mercury batteries could be substituted for the fixed voltage. They are excellent voltage standards since their output voltage does not change appreciably during their useful life. However, getting enough mercury batteries to give the variety and range of voltages desired would also'be expensive.

The Solution to the Problem is shown in Fig. 3D. Here, a single mercury battery, with a voltage of Vb is used, and two resistors (Rx and Ry) are connected across the variable voltage. The ratio of these resistors is such that, when one of the desired voltages (such as 100 volts) is placed across them, the voltage drop across Ry is exactly equal to the battery voltage. When Ra is then set at 100 volts, for example, the meter will read zero since the voltages on each side of it are equal.

It can be seen that, by using several sets of such proportioned resistors, the voltage across the bottom one could always be equal to the battery voltage, even with different supply voltages.
In the actual circuit (Fig. 2), two variable resistances (R 5 and \(\mathrm{R6}\)) and several fixed resistors (R 7 through R11) are used in place of Ra shown in Fig. 3D. This gives more precise control for the various voltages within the external current capacity of 6 ma than a single resistor would. Separate resistors (R12 through R16) are used for \(R \times\) for each range,

each proportioned to a single resistor (R17), which acts as Ry for all ranges.
The OB2 regulator tube was selected because ratings show this tube output to be within one volt of rating, which is better than \(99 \%\) accuracy. Accuracy is also maintained with at least \(1 \%\) resistors for R12 through R19.

While a zero-center meter was used in this unit, a regular meter can be used if the needle

AC test valtages are optional, invalving the

front panel layout
is set above the zero mark (with the zero adjustment), and this point marked as the "no-current" or null point. A zero-center meter is preferred, however, because of the off-null voltages involved.

The sensitivity of the meter is of little importance. The average \(0-1\) ma meter will indicate an unbalance of .002 volt. Because of the maximum unbalanced voltages, a "coarsefine" switch (S2) places a voltage-dropping resistor (R4) in the meter circuit in the

MATERIALS LIST-AC.DC VOLTAGE STANDARD

Desig.
RX
R1, R2
\(R 3\)
\(R 4\)

R5

R6
R7
R8
R9
R10
R11
R12
R14
R15
R16
R17
C1 C2
\(\$ 1\)
\(\$ 2\)
\(\$ 3\)
\(S 4\)
T 1
L
SR1, SR2
M1
\(\stackrel{B}{\mathrm{~V}} \mathrm{I}\)
PL
Misc.

R18, R19
\(\$ 5\)
Ch
56.000 ohm, \(1 / 2\) watt, \(10 \%\) carbon resistor (if not included in PL)
\(27 \mathrm{hm}, 1 / 2\) watt, \(10 \%\) carbon resistor
5000 ohm, 5 watt carbon resistor
120,000 ohr. \(1 / 2\) watt, \(1 \%\) (Aerovox Carbofilm, see text)
15.000 ohm, 4 watt, wirewound potentiometer (IRC-WPK-15000)
500 ohm, 4 watt, wire wound rear section (IRC. WM-500)
10,000 ohm, 1 watt. \(5 \%\) carbon resistor
9100 ohm, 1 watt. \(10 \%\) carbon resistor
5600 ohm, 1 watt. \(5 \%\) carbon resistor
3900 ohm, l/́2 watt. \(5 \%\) carbon resistor
1200 ohm., 2 watt. \(5 \%\) carbon resistor
\(200 \mathrm{ohm}, 1 / 2\) watt, \(1 \%\) (Aerovox Carbofilm)
\(1450 \mathrm{ohm}, 1 / 2\) watt, \(1 \%\) (200 plus 1250 ohm Aero. vox Carborilm)
5200 ohm, l'2 watt, 1\% (200 plus 5000 ohm Aerovox Carbotilm)
\(11.450 \mathrm{ohm} .1 / 2\) watt, \(1 \%\) (450 plus 11k Aerovox Carbotilm)
\(24.000 \mathrm{ohm} 1 / 2\) watt, \(1 \%\) (Aerovox Carbofilm)
1050 ohm, \(\frac{1}{2}\) watt, \(1 \%\) (500 plus 550 ohm Aerovox Carbefilm)
\(30 \mathrm{mfd}, 150\) volt electrolytic capacitors (Sprague 1412)

DPST toogle switch
DP 3 position lever switch (Switchcraft 3037L)
2 ckt. push outton (H\&H 3392A or Spemto 1158)
4P 5 position rotary switch (Centralab PA.1013)
250 volt, CT 25 ma, power transformer (Stancor PS.8416)
12 h .30 ma choke (Stancor C-2318)
65 ma selenium rectifiers
1 ma or less meter (see text)*
4.2 volt me cury battery (Mallory TR.133)

082 regulator tube
neon 51 bulb and holder
\(6 \times 6 \times 6\)-in aluminum cabinet (Bud AU-1039HG),
2 knobs. 2 or 4 binding posts, hardware
Additional Parts Required if AC Used
50.000 ohm, \(1 / 2\) watt, \(1 \%\) resistors (Aerovox Car. bofilm)
SPST togole switch
chopper (see text: typical units are Collins Electronic model IC.252, or Airpax 175)
* miniature tuning meter, \(0.20-0\) mitroamp, \# R94. L108, amilable from Radio Shack Corp., 730 Commonwealth Ave., Boston 17, could be used
Surplus precision resistors available from "TAB," 111 Liberty St.. New York 6, or Rock Distributing Co., 902 Crown Rd., Rochester 10, N. Y.
"coarse" position. With the meter shown, a Calrad (Japanese) 50-0-50 microamp, R4 is 120,000 ohms, which permits a full-scale deflection of 6 volts.

A push-button (S3) connects the battery across the meter through R4 to check battery condition. If the meter does not indicate proper value (36 in this case; representing 4.2 volts on the 6 -volt f.s. deflection), the battery should be replaced.

AC Voltages are obtained by changing the precise dc voltages to ac with a chopper. This is a vibrator-like device which reverses the polarity of the dc by coil-energized contacts. Many such units are available in surplus stocks, or may be ordered by parts distributors. Any type with a 6 -volt, 60 -cycle coil and reasonable contact rating will do. The one used here has a contact rating of 1 ma at 1 volt, but works adequately up to about 25 volts. For this reason, only the four lowest voltages are available in ac.
The DC Voltage is split by R18 and R19, giving full-wave ac voltage which is half of the dc. The output is a square wave, which means

that the peak, average, and rms (root mean square) values are identical. Since most voltmeters are calibrated for rms values, the ac scale is calibrated for two values for each position. One is the peak (or actual) voltage, and the other is the \(r m s\) value, which is .707 of peak. In calibrating most meters, refer to the \(r m s\) value of the calibration. Also keep in mind that the peak values are half of the peak-to-peak values used on some meters and oscilloscopes.

Cabinet and Construction. Since regulator: tubes are affected by light, the unit should be enclosed in a cabinet for greatest accuracy. If a minature meter is used, the \(6 \times 6 \times 6-\mathrm{in}\). cabinet will suffice. If a larger meter is used, additional panel space will be required, although the chassis can be the same size.

Fasten the chassis to the front panel by the binding posts (and S5 is ac is used). Wire the power supply first. Due to the close spacing on the chassis, care should be taken in substituting for the parts shown. The knob on switch 54 has been made "double-ended" (when ac is used) by scratching a line at the back of the knob, opposite the regular line, and filling it with white paint.

To Use the Unit, first turn the "Calibration" control (R5-R6) fully counter-clockwise. Connect the device to be checked to the binding posts (ac or de), and set switch S5 accordingly. Set the "Output" control (S4) to the desired voltage, and turn the unit on. Set "Balance" switch to "Coarse" and adjust "Calibration" control to zero current on the meter. Then reset the "Balance" control to "Fine," and readjust the "Calibration" control. When the meter again indicates zero current, the exact voltage is at the output terminals.

The unit can also be used as a current standard with a few precision resistors. By

Ohm's law, exactly \(1 m a\) of current will flow through exactly 100,000 ohms when it is conrected across exactly 100 volts. By connecting a 0-1 ma meter in series with this resistor, you can check the accuracy of the meter, since essentially 1 ma of current will flow"essentially," because the internal resistance of the meter is added to the circuit. But since such meters usually have a resistance of 100 ohms or less, the error is \(.001 \%\) or less.

The chart below shows currents available with various voltages and two accurate, precision resistors.

CURRENT WITH EXTERNAL RESISTANCE OF
\begin{tabular}{c}
Voltage \\
\hline 100 \\
50 \\
25 \\
10 \\
5
\end{tabular}
\(\frac{100,000 \text { ohms }}{1 \text { milliamp }}\)

500 microamp 250 microamp
100 microamp 50 microamp
\(\frac{20,000 \mathrm{ohms}}{5 \text { milliamp }}\) 2.5 milliamp 1.25 milliamp 500 microamp 250 microamp

With these two resistors, accurate currents from 5 microamps to \(5 m a\) can be obtained, all within the \(6 m a\) current limit of the unit.

Determining Meter Movement. This source of accurate current also permits making current shunts for meters, or determining the basic movement of meters.

Assume, for example, that you wanted to make a 0-5 ma meter out of a 0-1 ma basic movement. Connect the meter in series with the 100,000 -ohm precision resistor, and set the unit to 100 -volt output. Cut a very short length of resistance wire across the meter terminals, turn the unit on (balancing it to the null), and adjust the length of the wire until the external meter reads \(20 \%\) full scale. For final accuracy, change to the 20,000 -ohm resistor, and make final adjustment of wire length until the external meter reads full scale, or exactly 5 ma .

\section*{What is This Thing Called Wavelength?}

\author{
By C. F. ROCKEY
}

THE idea of the invariable unit of length is a very handy one and applies widely throughout the physical world. Yet its use often brings problems. A mouse can leap 10 times his length with ease; one quarter of an elephant's length is a prodigious jump for Jumbo. Yet both distances are about the same number of inches!

And so it is in radio. Miles of antenna wire are required to radiate the 16 -kilocycle signal from one of the U. S. Navy's superpowered stations, while a taxicab transmitter of 160 megacycles gets out well with slightly over a foot of antenna. Most standard broadcast signals radiate from a tower several hundred feet high, while a \(1-\mathrm{in}\). nub of wire radiates equally well on the microwaves.

Why do new radio amateurs often find to their amazement that a given antenna can be too long to radiate well at one frequency, yet be too short to do a good job on another? In other words, a simple measurement in feet or inches seems inadequate in itself when discussing electromagnetic effects. Why is it a fact that a given antenna " 100 ft . long" conveys little information in itself to a radio engineer. What measurement of length is significant in this case?

The amount of time for the generator to generate one cycle is easily found by dividing the generator frequency into one, that is \(1 / \mathrm{f}\) secs. And the distance which the elec-: tromagnetic wave generated by this generator will travel during the time of one cycle has been given the special name of one wavelength.

For example, a radio transmitter operating in the center of the standard AM broadcast band at a frequency of one megacycle per second will require one microsecond to complete one cycle. During this time, the wave radiated into space by this transmitter will have moved about 1000 ft ., or, to be exact, 982 ft . Thus we say that the wavelength of this transmitter is 982 ft . On the other hand,

Two extremes in transmitting ontennos, each designed for best results at different wavelengths. Towering mast above is that of WBBM, Columbia Broadcasting System radio station in Chicago. At left, above, is sketch of roof-mounted Andrew ontenna designed for microwave transmission.
an FM broadcast station, operating on 100 megacycles would have a wavelength of 9.82 , or about 10 ft .
Thus, wavelength is inversely proportional to frequency. The higher the frequency, the

GOMPARATIVE HEIGHT OF VERTICAL ANTENNAS AT VARIOUS FREQUENCIES (NOT TO SCALE)

shorter the wavelength (see Fig. 2).
Why Bother to Specify Wavelength? Simply because the wavelength is the only valid unit of size comparison for electromagnetic systems operating at different frequencies that is, antennas, transmission lines, or connecting leads in radio apparatus. An electro-
magnetic system a certain number of wavelengths in extent behaves in the same manner, regardless of the frequency.

To understand this, we should first recall that it requires time for an electrical disturbance to move through any system. Brief as this interval may be, it is nevertheless both finite and significant. In moving through free space, an electromagnetic wave requires a bit more than five microseconds (millionths of a second) to traverse one mile. This means that such a wave travels slightly less than 1000 ft . during one microsecond. When moving on conducting systems such as antennas and transmission lines, an electrical disturbance may travel somewhat, but not a great deal, less rapidly.

Thus, if a high-frequency ac generator is connected to one end of a conducting system, the instantaneous voltage at the far end of the system may be greatly different from the instantaneous generator voltage at that same instant (Fig. 3). This effect is entirely different from, and in addition to, any "normal" voltage-drop caused by resistance-losses in the conductor.
What is the magnitude of this instantaneous

TABLE A
APPROXIMATE LENGTH OF HALF-WAVE ANTENNAS AT DIFFERENT FREQUENCIES
\begin{tabular}{cc}
Frequency (mc) & \(1 / 2\) Wavelength (ft.) \\
1.8 & 260 \\
3.75 & 125 \\
6.0 & 78 \\
7.0 & 67 \\
10 & 47 \\
14 & 33.5 \\
21 & 22 \\
27 & 17.3 \\
29 & 16 \\
52 & 9 \\
\(100^{\circ}\) & 3.25 \\
145 & \\
Formula: & \\
Half wavelength (ft.) \(=\) & 468 \\
& \\
& Frequency (mc)
\end{tabular}
voltage difference? That depends on the relationship between the time of transmission along the system and the time required for the ac generator to generate one complete cycle (Fig. 3).

Antenna Variations. For instance, a \(1-\mathrm{ft}\). antenna "looks" entirely different to a transmitter at one megacycle from what it would look to one operating at 100 mc . Or, a \(1-\mathrm{ft}\). connecting lead, in a standard broadcast transmitter is considered short while a \(1-\mathrm{in}\). lead may well be too long at the FM frequencies. But an antenna, or lead, one wavelength long will appear the same at all frequencies, because the time required for an electrical signal to travel over its length will occupy the time of just one cycle, in every case. Thus the wavelength is the only true electromagnetic unit of length, valid in principle for all frequencies from gamma rays through the lowest power fiequencies.

A few examples will further reveal the immense practical value of the wavelength concept. Experiment discloses that an antenna, to radiate at all well, should be at least onetenth wavelength long at the operating frequency. On the other hand, no connecting lead should probably be more than \(1 / 100\) th wavelength long. In the standard broadcast band, then, antenna towers may be several hundred feet high as in Fig. 1, while internal
transmitter leads may be as long as 10 ft ., if necessary, without undue bad effects due to length alone. In the FM broadcast band however, an effective antenna need only be a few feet long. But any leads, in the high frequency circuitry, must be not much over 1 in. long, or trouble will inevitably follow.
We can now see why a completely new set of techniques had to be developed before the microwaves above 1000 megacycles could be put to practical use. These techniques do not use connecting leads of the ordinary sort since they would have to be about \(1 / 100 \mathrm{in}\). long, in order not to cause trouble by virtue of their length.

Now to explode that old fallacy that "high frequencies currents radiate, while low frequencies do not." This false idea arises primarily from the difficulty of arranging practical antennas at the low end of the radio frequency band, rather than from any inherent difference in high and low frequency electrical energy.

A 60 -cycle power plant generator will radiate electromagnetic waves quite effectively if it is connected to a suitable antenna system. Such an antenna might consist of a tower at least 300 miles high!

A piece of wire of this length, strung on telephone poles would not radiate well, because the electromagnetic field would be largely destroyed by close proximity to the earth. Long power lines do not radiate appreciably because of the cancelling effect of the two or three wires carrying current in opposing directions.

On the other hand, it is within the bounds of engineering expediency to build antennas for frequencies from a few kilocycles on up to almost the infrared. Thus the fallacy arose that "low frequencies do not radiate." For the higher frequencies, we now know that an antenna of world-wide radiating range can be installed within the attic of a cottage.

While we have expressed wavelengths in feet, international scientific usage favors the meter as a unit of wavelength. This need not disturb us if we remember that a meter is equal to just slightly over 3 ft .
It has become common to employ antennas one-half wavelength long, for practical high frequency radio communication. Such antennas are long enough to radiate well, yet often short enough to install on a reasonablysized piece of real estate.

But they are of particular interest because such an antenna is self-tuned, that is, it often requires no additional coils or capacitors to make it absorb and radiate maximum power. The wave set-up on such an antenna has a chance to exactly "run down to the end and back" just in time to meet and reinforce the oncoming new pulse. Thus, at the proper frequency, the wave "just fits" the antenna.

\title{
Revive That Old Radio-Phono Combo
}

> Five hours' work and \(\$ 40\) worth of parts will transform it into a quality hi-fi system

\author{
By FORREST H. FRANTZ Sr.
}

MANY floor model radio-phonograph combinations between 7 and 17 years old are still knocking around homes, garages, attics, and basements. Whether currently in use or kept in a corner for some imagined future use, they could turn out to be electronic gold mines.

The radios, most of which have AM and FM bands, are usually in fair shape and will be found to be working. The record changers, however, may be on the blink, and reproduction of the entire unit generally poor. If you don't have one of these old models among your possessions, there's a good chance that you can pick one up for \(\$ 10\) to \(\$ 20\) in a used furniture store.

Don't worry about the condition of the record changer, the loudspeaker, or the tone. If the set works, has a power transformer, AM and FM bands, and a cabinet that can be

Most of these old sets had both AM and FM tuners that are probably still in good shape.

The radio phono herein modified was a 14 -year-old Stromberg Carlson that originally cost \(\$ 200\).
touched up with a reasonable amount of work, you have a great hi-fi bargain in the making.

What's Wrong with the Old Models? They were heralded as having "wonderful tone" and cost about \(\$ 175\) to \(\$ 500\). But they had relatively poor amplifier frequency response, and speakers that lacked the frequency response of even less expensive present-day wide-response speakers. Also, the record changers employed certainly don't meet current standards.

You can nonetheless take advantage of the quality, workmanship, and basic material in these older combinations to make an excellent up-to-date combination. The approximate costs are:
new record changer. \(\$ 25\) to \(\$ 35\)
new loudspeaker \(\$ 12\)
parts.......................... . \(\$ 2\) to \(\$ 10\)
Total cost of the modification should run between \(\$ 39\) and \(\$ 57\), depending on the age and condition of your combination and your choice of record changer. If you are satisfied with the old record changer, the modification may cost as little as \(\$ 14\) !
The modified combination in Fig. 1 is a \(14-\) year-old Stromberg Carlson that sold originally for about \(\$ 200\). It had AM and FM tuners, but the record changer was shot, frequency response of the amplifier was poor, and the speaker wasn't up to present day standards. I plotted frequency response
curves, made computations, did some design comparison, and engaged in extensive experimentation to arrive at a general approach to the modification of any older combination which would produce greatly improved performance.

NOTE: If you have an audio signal generator and an audio VTVM available, you might run a frequency response curve before you proceed with modifications. Then you can observe the effect of each improvement as you make it.

Chassis Modifications. First, be sure the tubes are in good shape. Although the set plays (and seems to play well), it may contain weak tubes that detract from the performance that can be had. If you don't have your own tube tester, use one of the many "do-it-yourself" testers that can be found in most neighborhood shopping centers, and replace any marginal tubes.

Next, remove the bypass capacitors in the plate circuits of the audio amplifier stages (see Fig. 3). The audio output tube or tubes connect to the output transformer. The plate bypasses may be connected from plate to ground, or across the output transformer primary. There may be a resistor in series with the bypass capacitors. If so, disconnect and remove it, too. The bypass in the first audio stage (or driver stage, if the first audio doesn't drive the output stage directly) is usually connected from plate to ground, and will probably be a mica or ceramic capacitor of relatively small capacity-about .0001 to .001 mfd . The bypass in the output plate circuit will usually be between .002 and .01 mfd . In a push-pull output stage you'll sometimes find a bypass across each side of the output transformer.

Next, temporarily disconnect one side of any bypass capacitor that may be connected across the volume control, the AM tuner output, the FM tuner output, and the record
changer input. Then turn the set on and try each of these functions. The tone will seem poor, but that's OK. The reason for this trial is to assure yourself that you haven't disconnected a capacitor that makes any function of the set subject to squeal or to non-operation.

As a final move in this series of bypass disconnections to restore high frequency response, disconnect the tone control capacitor if the capacitor is greater than .002 mfd .

Remove the Audio Coupling Capacitors and replace them with \(1-\mathrm{mfd}, 600\)-volt capacitors from driver plate to output stage grids, 1 -mfd, 400 -volt capacitors between input and driver stages (if the audio amplifier has three stages), and \(.1-\mathrm{mfd}, 400\)-volt capacitors between the volume control and input tube grid. Replace any other audio coupling capacitors that appear in series with an audio signal coupling path with capacitors of about 10 times the capacity of those previously employed. The old coupling capacitors may be leaky and cause distortion.

By increasing the capacity of the audio coupling capacitors we have extended the low frequency response range, and by removing capacitors which shunted the audio signal path we have extended the high frequency response. Two things may possibly happen as a result of this work:
1. The improved high frequency response may cause the set to "squeal." One remedy for this is to shorten leads from output stage plates to output transformer and dress them away from leads and components of the "earlier" stages. If this doesn't do the jobbut it usually will-shield leads to and from the volume control.
2. Sixty-cycle hum, which the amplifier may not have responded to previously because of its limited frequency response, may be audible in the output. This may be due to loss of capacity or leakage in electrolytic filter capacitors, or it may be due to inadequate

original filtering. Bridge a \(20-\mathrm{mfd}, 450\)-volt electrolytic capacitor across each of the filters in the power supply to test for open filter capacitors or inadequate power supply filtering. The original capacitors will have to be disconnected before substitution to locate leaky filter capacitors. Finally, the value of capacitors in decoupling filters in the audio circuit can be increased. The \(8-\mathrm{mfd}\) capacitor in the plate decoupling circuit of V1 in Fig. 4, for example, replaced a \(.1-\mathrm{mfd}\) capacitor.

Before we talk about the loudspeaker, the output transformer, and the feedback circuit, there's one more circuit response improveinent measure. The low frequency response will be improved by increasing the capacitance of the cathode bypass capacitor in the output stage. Thus, the bypass in the cathode circuit of V2 in Fig. 4 was increased to 160 mfd, 25 volts.

The Output Circuit and Speaker. If the output transformer couples to a 6 - or 8 -ohm speaker, it will not have to be replaced. Many of the better old radio-phono combinations already have 6 - or 8 -ohm speakers, but some of them do not.
The extended range speaker which we shall install is an 8 -ohm speaker, so the output transformer will have to match it If the loudspeaker is not marked and you don't have the circuit schematic available, you can get a rough estimate of the loudspeaker voice coil impedance by disconnecting the speaker and checking it with an ohmmeter. If the resistance is greater than 4 ohms, the impedance is probably \(6-8\) ohms and the existing output transformer can be used.
If you have to change transformers, Lafayette TR-13, which costs only \(\$ 1.45\), will work well with a single output tube or a pair
of smaller output tubes such as 6 V 6 s in pushpull. If your output tubes are 6L6s, you'll want to use a larger output transformer. Lafayette TR-117 will handle 20 watts (\(\pm 1\) db from 15 to \(100,000 \mathrm{cps}\)), and sells for \(\$ 8.95\). This transformer will allow you to use a much better speaker system than we're discussing in this article.

My radio-phono had an 8 -ohm speaker, so I utilized the existing output transformer. However, the output transformer was mounted on the loudspeaker. If your transformer is mounted on the loudspeaker, remove it. In most cases there won't be room for the output transformer on the chassis if it isn't located there already. In this case, find a suitable place to mount the output transformer on the chassis platform in the cabinet. If you mount the transformer off the chassis, the interconnections will not be as clean looking, but this is no problem. You may need extra holes or jacks available on the back of the chassis to accommodate the output transformer to the feedback-base boost circuit. I used the cabinet lamp jack (Fig. 6) on my set for the voice coil interconnection.

Connect the new loudspeaker, a 12 -in. Lafayette SK-183 (frequency response 35\(17,500 \mathrm{cps}, \$ 11.95\)) to the output transformer secondary.

Feedback and Bass Boost. The feedback and bass boost circuit mounts on the chassis. The simple circuitry flattens and extends the frequency response of the amplifier and permits you to obtain a large amount of bass boost.
If your set has a bypass capacitor on the first audio stage cathode, remove it. In most cases, however, the cathode of the first audio stage will be cornected directly to the

Bolfom view of chassis. The larger capacitors required for modification may present some installation problems.
ground. Break this connection and install a 100 -ohm, \(1 / 2\)-watt carbon cathode bias resistor as shown in Fig. 4.
Next, connect the feedback and bass boost circuit consisting of a \(1 \mathrm{~K}, 1 / 2\)-watt resistor shunting a \(.001-\mathrm{mfd}\) capacitor in series with \(\approx 50 \mathrm{~K}\) control shunted by a \(.1-\mathrm{mfd}\) capacitor. The capacitor voltage rating is not critical, and a rating of 50 volts or more is satisfactory.

Note that one side of the output transform-er-loudspeaker connection is grounded. To determine the ground and cathode feedback return connections, turn the set on and tune to a station. Connect the cathode feedback path and ground path to the loudspeaker as shown in Fig. 4. Volume should decrease and tone should improve. If not, reverse the ground and cathode feedback connections to the speaker-output transformer lines.

The 50 K bass boost control may be mounted off chassis (Fig. 7A) on an improvised sheet metal bracket. If the set already has a tone control with a resistance of 50 to 100 K , use it. I used the original set tone control (2 M in Fig. 4) for trebie boost. If the set originally had two tone controls, you won't have to provide an extra tone control mounting position. Otherwise you'll have to improvise. I used a miniature control (Lafayette VC-36) so that I could have an inconspicuous knob to the left of the original knob group (Fig. 1).

Record Changer. You can choose any record changer that will fit in your available space. I've listed two possibilities in the materials list. I recommend a new record changer for several reasons. First of all, old record changers usually are victims of wear and poor care. Second, some of the much older record changers have only one speed-

78 rpm -which is obsolete. Third, the cartridge on these changers is also inadequate for \(331 / 3\)-rpm records. Finally, older changers will not play stereo records.
When you buy your record changer, buy the required mounting board with it. Remove the old mounting board from the record changer platform. Lay the new mounting board on the platform and lay the record changer on it ars shown in Fig. 8. Use a ruler to determine the amount of trim required on the front of the new mounting board. You can also determine the required side trim at this point. Be sure to consider all possibile interferences with record changer operation before you start trimming the base. The back may not have to be trimmed because there's usually extra space in the back of the cabinet.
After you've trimmed the new base to fit on the platform, stain it to match the cabinet finish. Install the base.
Next, connect the pick-up leads from the stereo pick-up in parallel by installing the two shunt wires. This permits you to play monaural or stereo records through the amplifier. Finally, if the shields on the pick-up leads are not grounded to the metal record changer frame, provide a connection for this purpose.

Installation in Cabinet. Drill an extra hole in the front of the cabinet for the bass boost control if you need it.
If the combination originally had a speaker smaller than 12 in ., the speaker mounting board will have to be removed and the speaker hole enlarged. Remove the grill cloth if it is attached to the speaker mounting board be-

\section*{6}

No changes were required with respeat to connectors, except that the cabinet lamp jack was disconnected from the filament supply and was used for the feedback connection from the output transformer. This provision is unnecessary if the transformer mounts on the chassis.

Front view showing bass boost control mounting.
MATERIALS LIST—RADIO.PHONO MODIFICATION
Record changer (Lafayette PK.605W, \$22.35)
Mounting buard (Lafayette PK-608W, \$1.05)
Loudspeaker (Lafayette SK-183, \$11.95)
available at Lafayette Radio, ILI Jericho Turnpike,
Syosset, Syosset, W. Y.
Record changer (Webcor type 1041-51, Allled 89RX. 712, \$30.83)
Mounting board (Webcor type A-1938T, Allied 89RX640, \$1.96)
available at Allied Radio Corp., 100 N. Western Ave., Chicapo 80, III.
Remaining parts, capacitors, and resistors as required for your specific modifications are available from either Lavaiette or Allied.
fore starting the enlargement process. A \(10-\) in. dia. hole is required to mount a \(12-\mathrm{in}\). speaker.

Install the chassis, record changer drawer, and loudspeaker in the cabinet, and replace the knobs. The chassis and record changer mounting arrangements are the same as be-

Arrangement for defermining record' changer mounting board frim.

Back view of bass boost control with conmections
fore, but the speaker mounting arrangements may be inadequate. Use round head wood screws long enough to bite into the speaker mounting board, but short enough not to go all the way through.

The output transformer, if you must resort to off-chassis mounting, can be mounted behind the chassis as shown in Fig. 9, and fastened with wood screws. The frame of the output transformer should be grounded with a jumper to the chassis. Or, if you used a shielded lead for the feedback circuit as I did, connect a lead from the shield to the transformer frame.

If you notice hum, you may be able to reduce it by reversing the record changer power plug to the chassis with gain up and the turntable running.

Use either one of the record player plugs and leave the other disconnected (Fig. 10).

Interconnection wiring. Output transfarmer is mounted in the cabinet adjacent the chassis.

The modified chossis, new loudspeaker, ond new record chonger. Only one of the record chonger plugs is used (see text).

It's a good idea to tape up the unused plug.
Variations. The more elaborate older sets may contain more than two audio stages. In this case, the feedback may be too great. Simply insert a series resistor in the feedback circuit. The resistance value will have to be determined experimentally. A \(1 / 2\)-watt carbon resistor of the required resistance is adequate.

Some of the older sets have complicated
tone and equalizing circuits. Generally speaking, they do not contribute much after incorporation of the modifications described. Proceed with caution if you don't fully understand these circuits and what they do.
In a few rare cases, you may encounter a volume control after the first audio stage. If so, place the feedback on the cathode of the tube immediately following the volume control. The volume control should not be within the feedback loop.

If the volume control has a compensation tap on it, simply disconnect the components which are connected to the tap. A resistor and capacitor are usually involved.

A few of the older sets had direct coupled output stages. In most cases, it is easier to leave these stages as they are. The same applies to transformer coupled output stages. A better interstage coupling transformer may be desirable. Because of the special nature of this consideration, it's one that you should take up with your parts supplier.

General Information. In some cases you'll find the schematic or more so a tube placement diagram fastened to the back of the cabinet. You'll find these very helpful.

Schematics, tube placement, and alignment information can be found in serviceman circuit manuals such as those published by Howard W. Sams and John F. Rider. I proceeded without this kind of information, but original circuit data will generally prove helpful.

\section*{Roundword Puzzle}

The words in this puzzle are all tied together in succes-sion-that is, the last letter of one word is the first letter of the next-so some of them read from right to left. (Solution on p. 196, but don't peek unless you have to!)

By JOHN A. COMSTOCK
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline 1 & & & & & & 2 & & & & & 3 \\
\hline 10 & & & & & & & 11 & & & 12 & \\
\hline & 18 & & & & & & & & 19 & & \\
\hline & & 26 & & & & & & 27 & & & \\
\hline & & 25 & 31 & & & & 32 & & & & + \\
\hline 7 & & & & 36 & & 36 & & & 20 & & \\
\hline & & & & & & 37 & & 28 & & 13 & \\
\hline & 17 & & & 34 & & & 33 & & 21 & & \\
\hline & & & 30 & & & & & 29 & & & 5 \\
\hline & & 24 & & 23 & & & & & 22 & & \\
\hline 16 & & 15 & & & & & & & 14 & \\
\hline
\end{tabular}

\section*{CLUES}
1. Typ of indicator with doubled windings.
2. Circuit which amplifies before and affer detection.
3. Rare gas used in discharge tubes.
4. Gas group of which number 3 is a momber.
5. Induced current.
6. CRT coil component.
7. Changes frequency response.
8. Superhet alignment technique.
9. Electromagnetic radiation rays.
10. Unit of light wave meanure.
11. Single cloned eircuit or cell in a nelwork.
12. Type of circuit found in aulo radios.
13. Unit of elastance-reciprocal of capacitance.
14. Tank circuit offect.
15. Connector.
16. Square-wave voltage.
17. Famed American electronics inventor.
18. Used in electronic math.
19. Atom with temporary loze of electron.
20. Ham operator's 30.
21. Meter needle sometimes makes one.
22. Action employed in speakers.
23. Type of triode transistor.
24. Type of band associated with FM.
25. Watt-hour (abbr.)
26. Antenna tuning bar.
27. Minimum signal or current.
28. Effective radiated power (abbr.).
29. Time required for a cycle.
30. Type of connection.
31. Screw lound in some knobs.
32. Word following.
33. Sticky insulation.
34. Unit sounding like Indian exprestion.
35. Electrical opening.
36. Amplifier used at gatherings (abbr.)
37. Type of crystal cut for use between 500 kc and 10 mc .

Modern stereo installation uses Allied Radio Knight Kit 40 -watl amplifier (center) to drive two KN-800A coox speakers in extreme upper corners. Plans for this low-cost installation appear in the orticle beginning on p. 70.

\section*{Lowdown on HI-FI SPEAKERS}

TO DESERVE the label "hi-fi" your sound installation must be capable of reproducing music with the closest possible resemblance (or fidelity) to the original sound.

To hear music properly, we need to listen at a higher volume than what we might use for background music or for ordinary radio listening. Without this volume, the ear cannot hear the balance of sound as it was originally played. Thus, the weakest link in the home hi-fi is usually the speaker system. To get true quality results, you must choose the right speakers and make sure they are properly installed.

Let's talk about three general kinds of loud-speakers-radio, public address, and hi-fi. Radio speakers usually are inexpensive and small, \(6-\mathrm{in}\). diameter or less; you find them in car radios, table radios, and most TV sets. Though the speaker may sound fairly good, frequency response is usually poor, and it gets worse when you feed it with increased volume. Efficiency is good, but power handling capacity is low. The radio speaker should never be used as a main source in the true hi-fi system.

Public Address Speakers are distinctly different. Larger in size, they are built to handle considerable amounts of sound power,

> Straight talk from an expert obout choosing the right speaker, frequency response, impedance matching, connecting extension speakers, stereo phasing

\author{
By LOU DEZETTEL
}

\author{
Engineer, Allied Radia Carp.
}
but at a sacrifice of hi-fi frequency response. Designed for halls and auditoriums, quality is usually poor at low (bass) frequencies.

The true hi-fi loudspeaker is a separate breed. It is built bigger and huskier to do a better job on the bass notes. If you have plenty of space, the \(15-\mathrm{in}\). size is best. If your space is limited, \(8-\mathrm{in}\). speakers can be used. The \(12-\mathrm{in}\). size is most popular and comes in many price brackets. Remember that increasing speaker size improves the response of only the low end of the musical scale.

A hi-fi speaker must have a wide frequency response. It must reproduce all musical notes from 15 cycles up to about 15,000 cycles per second (c.p.s.) with about equal efficiency. Because a single speaker cone can't handle the job a good speaker has two or more sound generating parts. The hornlike speaker mounted in the center (Fig. 3) is called a tweeter and reproduces the higher frequencies. Around the tweeter is another cone that helps to reproduce the mid-range tones. Inside the back cover of the speaker is an electrical circuit called a crossover network, that divides the incoming frequencies into two ranges. Thus single speakers may be called two-way or three-way coaxial speakers. You can also select and install separate woofers (large single-cone speakers) and tweeters in almost limitless combinations.

About Baffles. A speaker is only as good as its baffle. The bulky floor-type baffle usually is best, if you have the room. With about 5 cu . ft . of inside space. the baffle includes a port opening in front besides the regular speaker opening. This permits lower frequencies to come out in phase with the main sound and reinforces the bass notes. That's why the trade calls this enclosure the "reflex" baffle.

If you lack room space, the next best answer is a smaller baffle (Fig. 5) installed on a shelf. Generally these units have no reflex feature and are airtight on all sides and back. Hence they are called infinite baffles. The smaller baffle can do a good job on low frequencies, provided that you install a high

Knight KN-800A 12-in. speaker illustrates coaxial construction. The center funnel shape is the iweeter, surrounded by a mid-range cone. (Photo by Allied Radio, Chicago)

S\&M consuliant Erving Edell uses comparison method to judge by ear whether speakers are in phase. Switch in his hand permils instant reverse of one pair of speaker connections. When base sound oppears to come from center of room, speakers are in phase.
compliance speaker; a speaker designed so that the cone moves back and forth a greater distance. High compliance construction results in lower power handling efficiency, so this kind of a speaker must be driven by a higher power amplifier; not less than 20 watts perspeaker or 40 watts on stereo should be considered.

Wiring Speakers. Two basic rules are important. First, the output tap on youramplifier must match the speaker \({ }^{\circ}\) impedance: second, when two speakers are used, they must be in phase.

Impedance matching is easy. The impedance in ohms is usually marked on the speaker frame. Connect directly to the amplifier tap marked for that impedance. All good hi-fi amplifiers have taps for 4 -, 8 -, and 16 -ohm speakers. Generally you can use any good two-conductor cord for wiring speaker connections. Common lamp cord, usually 18 -gauge wire, is adequate for runs of up to 50 ft . For shorter runs, smaller 20gauge wire may be suitable and more decorative. Expensive shielded cable of the type used for microphones offers no advantage in wiring speakers. Because the speaker wire carries very low voltages, there is absolutely no fire hazard.

You can run your speaker lines along baseboard and through walls just like telephone wire. Just connect the two wires at one end of the speaker cord to the speaker terminals. At the other end connect one wire to the terminal marked "C" (Common) and the other to the screw marked 8 - or 16 -ohm depending on the rating of your speaker.

Ohm's Law Applies. The 4 -ohm terminal

4
L-pad assembly for controlling volume of remote speakers can be mounted in standard wall box.

RCA Phase Checker gives technician overall reading on complete installation. Sound-powered reseptor units in front of each speaker feed output 10 VOM which indicates volume on 50 -microomp or \({ }^{1} 4\)-volt de scale.
screw is intended for connecting more than one speaker to the same amplifier channel. A little arithmetic is required. According to Ohm's Law, two 8 -ohm resistors connected in parallel are cqual to one 4 -ohm resistor. Thus you can connect two 8 -ohm speakers in parallel to the 4 -ohm screw, or two 16 -ohm speakers in parallel to the 8 -ohm terminal. Just rememher that a parallel connection is like plugging two lamps into one cube tap.

Speakers connected in parallel can be spread out with a single channel system to give your sound sort of a spatial effect, or one could be used as an extension in another room. Though it adds a feeling of depth, parallel connection is inferior to double spcaker operation from a stereo amplifier where you have two separate output channels with speakers connected independently to each.

Impedance matching is a much-confused question. A hi-fi system is similar to an automobile. When you are cruising at low speed, you may be using only 20 hp . But if you want to get maximum performance on a race track, you have to use the right combination of gears, transmission, and engine to get top power. The same reasoning applies to amplificrs. Running extension speakers at low volume, you can connect a 16 -ohm speaker to the terminals of a 4 -ohm speaker and probably will not be able to hear a loss of quality. You can even wire quite a number of extension speakers in parallel without regard to impedance match and they will operate fairly well at low volume. Lower impedance speakers in such a system will draw more current and produce more volume; higher impedance speakers will produce less sound. These sound levels can be adjusted by L-pads. But turn the volume up, and the amplifier will be called on to put out more power. Unless the speaker system impedance matches that of the output line, your system distortion will increase.

Phasing. Whenever two speakers are operated together in the same room, whether used for monophonic or stereo, they must
work in phase. This means that the cones of the speakers are pushing or pulling in the same direction at the same instant. If the speakers are out of phase, you lose power and bass tones. The remedy is to reverse connections to the terminals of one of the two speakers.

How can you tell when speakers are in phase? The hi-fi technician uses an instrument such as the RC.A phase checker (Fig. 5), which feeds into a sensitive voltmeter. You can also phase by ear. You will need to install a DPDT switch (Fig. 2) in one of the speaker lines. Then turn on your tuner or put a monophonic record on your player. Run the volume up high, stand hall way between the two speakers, anci throw the switch back and forth. If the low notes seem to come from the space between the two speakers, they are in phase. If sound seems to come from each of the speakers separately. they are nut of phase.

Hi-Fi Extensions. Fis long as you've spent the money for a hi-fi system, why not pipe some of that good music to other rooms. Connect your extension speakers from a monophonic system in parallel. On a stereo system. connect to the center channel output terminals. Most modern amplifiers have this built-in circuit, which mixes some of the signal from both stereo channels. Generally, it is used to fill the "hole in the middle" when left and right stereo speakers are far apart.

If your sterco amp lacks a center channel, you can install an extension speaker either. by tapping one of the speakers or by connecting a second monophonic amplifier through two isolating resistors so it picks off some of cach of the channels.

Frequently it is necessary to control the extension speaker at a remote point. Controls called l-pads are manufactured by Switcheraft, Vidaire, and Audiotex. Select one with an impedance rating matching that of your speaker. Usually the lowest wattage ratings listed in the electronic catalogs are ample for home hi-fi use.

Stereo speakers are mounted in the two baffles at the top left and right. Installation has extra space for future additions, is easy to move, and does not mar walls, ceiling or rug. Room divider (A) is alternate design.

\section*{Modular Home} Entertainment Center

With pre-cut material, an apartment dweller can assemble this ultra-modern hi-fi wall, using only a drill, 6 -ft. rule, and screwdriver

\author{
By BOB SRODON
}

\author{
Designer, Masonite Corporation
}

THE trouble with most hi-fi cabinet designs has been that you had to have a complete power workshop to build the project. And, though it has been done, it sometimes is hard to fit a full size table saw, sander, and jointer into a modern apartment or ranch house.

This up-to-the-minute design that has the styling and eye appeal of \(\$ 500\) custom installations has been worked out jointly by hi-fi experts of Allied Radio Corp. and Masonite Corp. You can put the unit together with common hand tools, and it is a beautiful addition to any home or apartment. To ease the strain on the pocketbook, you can start out with one section and add the rest later.

Every part of the entertainment center has been tested and proven in working installations. Working only with the plans, a \(6-\mathrm{ft}\). rule, a \(1 / 4\)-in. electric drill, and screwdriver,
the author and a helper were able to erect the unit shown (Fig. 1) in one busy 5 -hour work spree. Wood and Masonite parts can be ordered from local lumber yards cut to exact size or, if you prefer to do your cwn, can be sawn on a new portable power takle saw that was also tested on the project (Fig. 5).

This is a modular design; parts are interchangeable and dimensions are proportional to one another. The basic \(1 \times 3-\mathrm{ft}\). module is a rectangular shape that pleases the eye and fits well with not only contemporary modern, but with most other styles of furniture, too. The complete four-section stereo unit (Fig. 1) fits in a \(12 \times 15 \mathrm{ft}\). living room. In a smaller room, the end sections can be used separately on opposite walls. In long rectangular rooms, or duplex living rooms, the room divider design (Fig. 1A) makes an effective separation of living areas.

The basic design (Fig. 1) houses a tape deck, pre-amp, amplifier, tuner. turntable, TV set, stereo speakers, plus 200 LP records and a tape library. There is ample room for at least a hundred books and a tool-work desk gives you a space for light hobby work and for assembly and testing of electronic kits.
Start Your Installation by making a list of all your hi-fi equipment. Use a soft peneil and wrapping paper to draw up full size front view patterns of the equipment enclosures. Check to be sure that you have ample space for all control knobs, wiring, and connections. The next step is to order the aluminum poles. Manufactured especially for this project
by Midland Metal Froducts. the 10 -ft.-lono 1-in.-square aluminum poles are treated with a scratch and stain resistant brass satin finish that will not oxidize The poles can be purchased (see Materials List) in the standard \(10-\mathrm{ft}\). lengths, or in 7 - and \(8-\mathrm{ft}\). lengths. The ceiling adjuster will take care of a \(2-\mathrm{in}\). ceiling slope, so if your ceiling happens to be 9 ft . 3 in. high, plan to saw 10 in . off the \(10-\mathrm{ft}\). pole. Be sure to measure at each point on the ceiling where the poles will be installed. There is no need to allow for a carpet coaster if you have a soft nap rug. The installation shown in Fig. 1 was moved several times after initial setip, and though the poles had been in place for months, the hollow square pole section dick not damage the rug. On wood, hard rugs, or linoleum floors, use rubber or felt pads

Author Srodon instolled work center cabinet 29 inches obove floor for convenience in ossembling kits and servieing equipment. Ham station could be enclosed in similor module.

Peg board shelf brackets support tuner and amplifier. Bracket spring action cushions tubes against vibration. Hi-fi components shown are Allied Radio Knight-Kits.
plated wood screws and chrome plated countersunk washers located on \(6-\mathrm{in}\). centers as in Fig. 4. It would be best to use clamps and square wood blocks to guarantee square accurate corners. Next fasten the peg board to the cabinet backs with the same size screws and washers. Rather than risk poor fitting holes, it is best to buy the right size of screwhole drill.

Next add the speaker face, drop lid doors, and sliding doors. Detailed information on these steps is provided in Masonite Project Plan AE-382 (see Materials List).

As soon as one cabinet is finished, you can start the pole assembly. It is important to locate the poles dead vertical to the floor: Use a large carpenter's square or the edge of a square carton to check. Now for an example, let's install the storage section on the far left side (Fig. 1). The cabinet fastens to the four poles from the inside with self-tapping sheet netal screws. Measuring carefully, drill holes in each pole exactly the same height up from the floor. Use a center punch or sharp
under each pole.
Obtain the \(1 / 8\)-in. Masonite tempered Duolux and Pegboard at your local lumber yard. You can order the panels cut to exact size, if your dealer is equipped with panelcutting equipment. Be sure to explain that you want dead square, clean cut pieces. If the lumber yard is not set up with the proper equipment, order the pieces \(1 / 8 \mathrm{in}\). oversize to allow for edging with a sanding block.

For the tops and bottoms of each cabinet (Fig. 4), you will need \(3 / 4-\) in. wood. Finished pine will serve the purpose, or you may be able to purchase the stock in veneered hardwood grains. Another source would be salvaged hardwood from discarded furniture, often available in used turniture shops.

Assemble the Cabinets by screwing the side panels to the top and bottom pieces with \# \(6 \times 1^{1 / 2 / 2}\)-in. chrome

pointed tool to mark the hole and drill dead center on the \(1-\mathrm{in}\). aluminum. Now install metal corners (see Materials List) on the inside of the cabinet, feeding the \(1-\mathrm{in}\). \#8 size sheet metal screws through the corners and Masonite and into the aluminum. The screws will cut their own thread, and provided that you stick to the right size drill, will hold cabinet weight up to a hundred pounds or more.

To make installation casier, especially if you are working alone, you may want to make temporary cabinet holding spacers of scrap \(1 \times 2\)-in. stock. Cut to exact length, they will help you locate the cabinets in the right spot while you install the screws.

Finish colors are a matter of individual choice and matching to decor and furniture already in your room. You can finish the Masonite door panels in bright accent colors, using enamel or lacquer and proper primer or undercoat. Follow your paint dealer's recommendations. To prevent warpage from uneven moisture absorption, always finish both sides of a Masonite panel with the same kind of paint or lacquer. Speaker extension lines and connections between the hi-fi units can be run through the aluminum poles. Power
lines should not be installed in the poles unless you pay particular attention to shorting hazards such as sharp corners and tight bends. If you wire your ac lines within the poles, use the best grade of cable, with grommets and strain reliefs at point of entry.

Manufocturer of new 8 -in. portable table saw is American Mochine and Tool Co., and price including motor is under \(\$ 50\). Saw

Once you see-and hear-a sound movie with commentary, music, or lip syne vaices of your family and friends, silents forever after seem dull.

\title{
s \\ o \\ UNDMOVIES
}

NOW you can convert your \(8-\mathrm{mm}\) silent movies to sound, right at home, with an easy-to-use \(\$ 75\) attachment that provides all the features of sound projectors costing \(\$ 250\) or more.

The sound is recorded on a stripe of magnetic oxide along the edge of the \(8-\mathrm{mm}\) film. The system works in the same way as a tape recorder; the film passes over a recording head that converts speech or music to a magnetic recording. You can shoot your movies with pre-striped film, or the stripe can be added to movies already developed and edited, making sound movies out of your old silents. And best of all, the cost is only one quarter that of \(16-\mathrm{mm}\) sound.

The sound attachment (Fig. 1) has been tested on dozens of different projectors, some of them over 20 years old, and will produce quality results with all but a few very early makes. The chassis bracket is designed so that it can be used equally well with both basic styles of projectors-those with reel arms at the front (Fig. 2) and those with
arms arranged overhead front and back (Fig. 3).
No Sync Problems. Because the sound track is right on the film, there is no problem in synchronization. You can record and play back at any projection speed that gives you the right screen action. All of the mechanical parts usually built into an expensive \(8-\mathrm{mm}\) sound projector are mounted on the chassis bracket (Fig. 5). The film passes through the projector aperture gate, then feeds downward past a roller and over the record-playback head. Next it is pulled between a capstan and pressure roller. The purpose is to pull the film through at uniform speed and to isolate the recording-playback section from the normal intermittent action of the movie projector.

Next, the film passes over a tension roller; feeds back up to the projector's takeup sprocket, then goes on to the takeup reel. Threading is easy-no more difficult than the threading of any sound projector. A youngster can do it rapidly after trying it a few times.

2
The S\&M Cine-Syns attachment fits both basic types of projectors, whether reels are above the projector (left) or are placed in front of the lens (right). No mechanical alteration of your projector is required to use the kit.

\section*{from your silent projector}

\section*{Astounding attachment fits any 8 -mm projector, records and plays full-sync sound on magnetic stripe}

\author{
By LOWELL WILKINS \\ Invantor of the Fairchild Sound Camera \\ and LEO O'ROURKE
}

Electronics Engineer

The record head is connected to the amplifier case and all controls and jacks are conveniently located on the top panel. For storage, the chassis bracket can be unscrewed from the side of the amplifier case and placed within the cover (Fig. 6). Inside the case is a 5 -watt printed circuit amplifier, and a 4 -in. speaker. Jacks feed out to the microphone, record head, phono input, and external speaker.

You can build the complete unit, machining the parts and wiring your own amplifier, or you can buy a Cine-Sync kit (\$74.95, S\&M Kit Division-see Materials List). To machine your own parts, you will need a metal-working lathe capable of good accuracies. The most critical parts are the recording head, which must be properly aligned with the film track, and the flywheel assembly, which must be mounted in bearings to permit free turning.

The Assembly Instructions that follow apply whether you make your own parts or use the kit. To simplify assembly, lay all parts out on a table and use masking tape or tags to identify each item according to Figs. 4, 5. The record-playback head is pre-aligned; its magnetic gap is precisely lined up with the film track. Do not tamper with the head other than to mount it to the main chassis bracket (Part \#M1) with \(4-40 \times 1 / 8-\mathrm{in}\). round head (\(r\) h) machine screws, feeding through from the rear. Mount the flywheel bearing retainer (Part \#M2) with three \(6-32 \times 3 / 8-\mathrm{in}\). \(r h\) machine screws.

Insert \(5 / 8-\mathrm{in}\). od internal retaining ring M2A in groove of flywheel bearing retainer M2. Insert two ball bearings (M2B, M2C) in the flywheel bearing retainer: Place retaining ring M2D on capstan shaft M2E in groove provided. Insert capstan shaft through the bearings from the front of the chassis panel and slide the flywheel (M2F) onto the shaft from the rear. Place grommet M2G on capstan shaft back of the flywheel, and secure in place with \(8-32 \times 3 / 8-\mathrm{in}\). machine screw. Purpose of the grommet is to act as a slip clutch, which allows the capstan to turn before the flywheel builds up to full operating speed.

Place Steel Washer M4D on the shaft of pressure roller shaft and arm M4. Next, oil
the bearing of the pressure roller assembly M3 lightly and place on M4. Press the retaining ring, M 4 A , into the ring groove that keeps the roller in place.

Place washer M4C over a \(6-32 \times 3 / 8\)-in. pan head screw. Pass the screw through the hole in the pressure roller arm, then through pressure roller spacer M4B, with small end of spacer up, and screw into the tapped holes in the chassis panel. Attach spring M4E to the pressure roller arm and let it hang.

Mount the dampening arm mounting stud M5A to the chassis with a \(6-32 \times 1 / 4-\mathrm{in}\). pan head screw from the rear. The brass bushing of the sound dampening arm assembly must be lightly oiled. Then lower it over the mounting stud, add nylon dampening guide roller M5C, and press on retaining ring M5B to fasten the assembly. Insert spring M5D in the hole in the bottom of the dampening arm from the rear of the chassis, feeding through the \(3 / 8-\mathrm{in}\). chassis hole.

Lock the Spring in place with a \(6-32 \mathrm{x}\) \(1 / 8\)-in. pan head machine screw. The dampening arm guide roller and shaft are supplied as preassembled kit parts.

Install three guide rollers (M6) and guide roller shafts (M6A) as shown in Fig. 5. Install each roller by fastening the shaft from the back of the panel with a \(4-40 \times 3 / 8-\mathrm{in}\). pan head machine screw. No washer is required,

Parts List, Chassis Bracket Assembly

Part No. Size and Description
\begin{tabular}{ll}
M1 & \begin{tabular}{l}
chassis bracket \\
fly wheel bearing retainer \\
internal retaining ring \\
M2
\end{tabular} \\
M2A
\end{tabular}

M7

The chassis bracket unscrews from the side of the case and the \(L\)-shaped bose ongle drops into the slot in the top of the panel plate. The entire mechanical chossis assembly firs inside corrying case cover.
because these nylon rollers create no surface friction.

A fourth M6 and M6A roller assembly will be needed at point A (Fig. 4) if your projector (Fig. 2) has the takeup arm at the upper rear. Projectors with both reel arms in front require an atuxiliary belt-driven takeup shaft at point B (Fig. 3). Fit takeup shaft stud M7 to chassis panel with a \(4-40 \times 1 / 4-\mathrm{in}\). pan head machine serew. Oil the takeup pulley shaft M7A, place it over the stud, and retain with at \(4-40 \times{ }^{16}\) inin. pan head machine screw.

Attach erase magnet mounting stud M8 to chassis with a \(4-40 \times 1 / 4 \mathrm{in}\). pan head machine screw. Place the non-magnetic pressure arm M8A over the mounting stud and put the spring M8B over the stud. Then put the magnetic erase M8C (erase head magnet with red stripe) over the spring. Retain with
a \(4-40 \times 1 / 8-\mathrm{in}\). pan-head machine screw.
Install a 6-32 machine screw in hole C in the chassis bracket to hold the other end of the pressure roller spring. The pressure roller arm spring should not be fastened in place until you are ready to use the unit and should be detached when not in use to keep the rubber roller from flattening.
Wiring the Amplifier. The 5 -watt recordplayback and PA amplifier is designed to be wired on a \(4 \times 81 / 2-\mathrm{in}\). printed circuit board that fastens to the top panel of the amplifier case (Fig. 6). You can obtain the amplifier completely wired or order a ready-to-wire kit complete with pre-punched panel, printed circuit board, and all parts. If desired, the advanced electronic hobbyist can order such parts as the circuit board, recording head, function switch, oscillator coil, and transformers separately. All other parts are stock electronic items.

Start construction by laying out all parts on your work table. Identify each resistor by color code value. You will need a small pencil-type soldering iron, a diagonal pliers, and a long nose pliers. Wire the bottom deck function switch connections first, including two \(6-\mathrm{in}\). leads which feed out to the mike jack. These mike leads must be shielded single-strand cable. Also connect the head lead. This must be stranded twin conductor shielded cable, the kind used for stereo pickup cartridges. For forward arm projectors, you will need a head lead 16 in . long; upward arm projectors require an \(8-\mathrm{in}\). lead cable.

Mount the function switch on the printed circuit chassis. Then mount the output transformer, electrolytic capacitors, tube sockets, volume control, and oscillator coil.

EDITOR'S NOTE . . . about the author

Lowell Wilkins, president of Cinemagnetics, Inc., has been working in the fisld of photogrophy and sound recording for 25 years. After 10 years of reseorch he announced in 1950 the first self-contained magnetic recording \(16-\mathrm{mm}\) camera, the Cinefonic. Priced of \(\$ 2000\), the camera was widely accepted by newsreel comeramen and TV stations. Compact assembly made iruly condid newsreel coverage possible for the first time.

In 1958, Wilkins developed the revolutionary Fairchild \(8-\mathrm{mm}\) sound camera (\$249). Thousands of these units are now used by amateur movie makers, and in audio visual sales and training programs.

Since \(16-\mathrm{mm}\) movies require four times the film area, \(8-\mathrm{mm}\) sound movies can now be made for
one-fourth the former cost. Wilkins prediets further cost reduction. He has perfected \(8-\mathrm{mm}\) and \(16-\mathrm{mm}\) combination camera-projector units thot use o common mechanism and lens for shooting and projection.

The project described in this article was developed speciolly for the Kits Division of SCIENCE and MECHANICS. Dimensions of the film stripe and the film gote-to-head distance are according to SMPTE standard; thus, films recorded with this attachment are interchangeable with those made with commercial \(8-\mathrm{mm}\) magnetic comeras and sound recording projectors.

Author Wilkins also hos invented a process for applying magnetic sound striping to Kodachrome and Kodochrome II film before processing. His laboratory is the only one in the United States currently offering this service.

Wilkins Cinemagnetics laboratory offers other services: pre-striping of any unexposed 8 - or \(16-\mathrm{mm}\) film; striping of customer's film after exposure; reduction printing (16 mm to 8 mm); striping of existing sound films, and the re-recording of duplicate films. His lab also supplies rental 8 -mm sound films-educational, sport, entertainment and cortoon.
. . Bill McHugh

Parts supplied in the kit are printed circuit components designed to fit marked holes in the circuit board. Next, mount'all resistors and capacitors. The technique is easy. Use a long nose pliers to grip the lead of the part; bend it to fit into the proper holes and feed through. Then bend the leads over at a right angle. Cut so a bend about \(1 / 18\) in. long remains on the circiuit side of the board.

After all parts are mounted, solder each lead to the printed circuit board. Avoid overheating the joints . . . too much heat can cause the \(\mathrm{p}-\mathrm{c}\) wiring to strip from the base. Then fasten the board to the panel by means of the nuts on the volume control shank and with two \(6-32 x\) \(1 / 4\)-in. pan-head screws and nuts. Mount the power transformer on the panel; insert grommets for line cord and record head cable and to hold the neon indicator lamp. Mount the phono jack, mike jack, external speaker output jack, and the ac outlet for the projector. The record head cable terminates in two miniature clips that connect to the head. Solder cautiously to avoid flowing solder into the spring contacts. Tie in the speaker, and wiring of the amplifier is complete.

Amplifier Test. After checking your wiring, test the amplifier with ac power. Turn volume control wide open with your switch in playback position. A plain hiss should be heard. If you hear a loud hum or no sound at all, recheck connections.

Inside view shows all electronis parts mounted on the printed circuit board except the transformer and ac receptacle. Pasts shown are as follows: (A) case: (B) 4ohin speaker; (C) panel plate; (D) circult board; (E) mode switch: (F) volume control; (G) oscillator coil; (H) 6BM8 tube; (J) output transformer; (K) filter capacitor; (L) power transformer; (M) ac outlet, and (\(N\)) head lead.

Looking down at top side of printed circuit board. Wire the function switch first, then all other parts. The board is fastened to the panel plate at the last.

Bollom view of printed circuit board shows how this design makes wiring easy. Connestions to the bsard are as follows: (\(A\)) mike input; (\(B\)) phono input; (\(C\)) volume indicating lamp: (D) internal soeaker; (E) external speaker, and (F) power transformer.

Part No.
T.1
\(\mathrm{T}-2\)
T .3
SW-2
D1. D 2
1 ea.
1 ea.
1 ea.

Here's how you thread the film for normal playback (top). The magnetic stripe passes right over the record head gap. To erase (bottom), you feed the film under the mag. netic erase arm.

MATERIALS LIST-CINE-SYNC SOUNO ADAPTER
oscillator coil Cinemaynetics \(=\mathrm{COl}\)
power transformer. Cinemagnetics PT \(2=6.3\) fil, 115 v output transformer, Cinemagnetics OT3
3 position. 4 pole rotary switch Cinemagnetics \#SW-2
silicon rectifier, 400 PIV

\section*{Resistors}

I/2 watt carbon resistors R1 10 meg; R2 270K; R4 10 meg: R5 560K; R6 1 meg: R7 150K: R8 20K; R9 470K; R10 330; R13 470; R14 270K; R15 1 mev: R16 27K; R17 100K; R18 1 meg; R19 27K; R20 27K; R21 27K; R22 27K
2 watt carbon resistors R11, 500 ohms; R12 500 ohms
R3 1 meg audio taper volume control with printed circuit connections with as power switch and support lugs

\section*{Capacitors}

4 section electrolytic 35 mfd 350 ; C18 30 mfd 350 v ; C19 20 mfd 250 v ; C20 20 mfd 200v
350 infd 200y
single section electrolytic- 50 mfd 25 v
disc type ceramic capacitors, C1 . \(2 \mathrm{mfd}-10\) v; C2 . \(01 \mathrm{mfd} ; \mathrm{C} 3.01 \mathrm{mfd} ; \mathrm{C} 4.01 \mathrm{mfd}\); C6 . 01 mfd C 7.01 mfd ; C9 1000 mmf ; (Cl0 omit) Cll 68 mmf C12 .005 mf ; C13 . \(005 \mathrm{mfd} ; \mathrm{Cl} 4.002 \mathrm{mf} ; \mathrm{C} 15500 \mathrm{mmf} ; \mathrm{Cl} 6.02 \mathrm{mfd}\)
Ne 2 neon lamp or equal
12AX7A tube
6BM8 Amperex ECL-82
phono jack for phone input Switcheraft \(\# 3501\) FP
midget phone jacks, single circuit for mike input and speaker output
Cinch Jones \#2R2 a-c power outlet
Ll Cinemagnetics record-playback head 700 ohm impedance at 1000 cycles 85,000 ohms at 85 kc
printed circuit panel, Cinemagnetics \#PC-1 \$2.00
top panel, \(10^{11 / 16 \times 121 / 16 \times 1 / 16^{11} \text { CRS }}\)
9 pin printed circuit tube sockets, above chassis type
two conduct or twin shielded stereo phono cable
tube shields for 12AX7, ac power cord, grommets, hook up wire, single shielded microphone cable, high impedance crystal mike

Next plug in the record head and touch the "hot" lead of the head with your finger. You should immediately hear a loud hum. Plug in the mike. The unit should operate as a PA system. You should be able to hear your own voice loud and clear. But keep the mike away from the speaker or a feedback squeal will result. The neon indicator should glow on speech with volume up and record switch on.

Mount the Chassis Bracket on the side of the amplifier case following Fig. 2 or Fig. 3, depending on which type of projector you have. Projectors with reels in front above and below (Fig. 3) generally are built higher and will require that you mount the adapter plate near the top of the amplifier case.

With your projector on top of the amplifier case, hold the chassis bracket so that radius X (Fig. 4-M1) is over the lower reel arm of the

Above, a gadget borrowed from Mollywood, is the clap board. Made of scrap lumber, it is used to establish the starting point of tape and sound.

Right, Ed Oswald, Cinemagnetics methods engineer, records travelogue description while he watches the movie. Projector is in sound blimp.

way up. Immediately you should hear sound coming from the speaker. Try recording with a piece of striped film. Turn the switch to record, and thread under the roller. To get quality sound, it is important that you use just enough volume and not so much that you over-drive the record head. Talk into the mikie and turn volure control until the neon indicator just starts to flash on sharp peaks it should not glow continuously. Practice recording with several voices until you master the technique ... later on you will be able to add sound effects and music.

Striping Your Film. The magnetic stripe can be applied to \(8-\mathrm{mm}\) color or black and wh:te film at any step in the movie-making process: before shooting, after development. or after splicing. Usually the most economical approach is to order film pre-striped, which you can do at most large cameraequipment stores.

If you shoot vacation trips or family events with your \(8-\mathrm{mm}\) camera, you may find that you discard a lot of footage when you edit your final movie. If your ratio of cuttings to finsthed film is 3 to 1 or more, you'll save by editing first, then taking your film to a photo dealer for striping.

Splicing Technique. If your edited \(8-\mathrm{mm}\) film is spliced with ordinary overkap splices (Figs. 14 A and B), you'll find that every time the splice passes under the playback head you get a "wow." If music is recorded at that place, the sound is objectionable. If the track is blank at the splice. there is no effect. If the leading edge feeds into the head (Fig. 14A). the effect is worse than if the overlap is underneath (\(B\)). The answer is to splice without overlap (Fig. 14C). Quick Splice tapes,

available in camera stores, are the answer, not only for sound film, but silent as well. As you edit, there is no delay in waiting for cement to dry: the splices consist of perforated tabs of Mylar plastic. The material is only 0.0015 in. thick, and as it passes through the projector, there is no effect on picture or sound, provided that you trim away the edge along the sound track.
Sound Recording is a well-refined technique in Hollywood studios. About \(75^{\prime}\) '; of the sound you hear in a professional movie has been added after the scenes were photographed. About \(10^{\prime \prime} \%\) is prepared before photography, with only \(15 \%\) sync-recorded on the actual set. This consists mostly of closeup scenes where you see the movement of the actor's lips and hear what he is saying at the same instant.
Lip-Sync Recording. The easiest way is to record sound at the same time the scene is taken. This can be done with a Fairchild \(8-\mathrm{mm}\) sound camera. These cameras are available for sale or rental (\(\$ 5\) to \(\$ 10\) per day) from the larger photo dealers. The second method is to use a tape recorder. You can record what was said while the scene was shot, then re-record the lines from a script, or you can add the taped sound in sync with the movie.

The length of film beiween sound head and film gate must be exactly \(83 / \mathrm{in}\). (A). Cut a strip of leader spock exactly this length and use it as a gauge to check the spacing between projector and adapter (B). Whenever you thread your projector, check this spacing and the amount of slack in the film (C).

A clap-board (Fig. 12) is essential. Make it by hinging two 8 -in. pieces of \(1 \times 2\) lumber and fastening them to a piece of Masonite. Write the scene and take numbers on the board with chalk or grease pencil. Then, when you are all set to shoot, start the camera and the tape recorder: Have a helper hold the board in front of the camera, slap the boards together sharply, and say, "Scene 1, Take 1."
After the film is developed, it will be easy to recognize the single frame at which the boards came together. Then, by spotting that frame of film in the projector gate and placing the sound "clap" over the sound head in the tape recorder, you will be able to start projector and recorder simultaneously. If you have reasonably good equipment, the two units should stay in sync long enough for a short scene. If the two mechanisms do not accelerate at the same rate, simply note whether sound or picture is leading and make adjustments in the starting position of the tape over the record head until the sound is in sync.
If your projector has a variable speed control, you can "ride" this control to maintain sync. Or if not, you can slow down either the tape recorder or the projector by applying pressure to the tape capstan, or drive sprocket. A rheostat can be added to some \(8-\mathrm{mm}\) projectors to give you variable speed.

Non-Sync Recording. Often we watch a movie and hardly realize that the sound is not lip-synchronized.
Take a scene where a cowboy is galloping down the road and yelling, "Hi-O Silver:"
It would be impossible to record clear voice over the sound of the horse. The sound cameraman may make a cueing record at the time of the take. The star, back in the sound
studio, watches the scene on a projector and records the words at the right place. The sound of the horse might be simulated by pounding small wooden blocks in a box of gravel. Thus, the realism of your movie is limited only by your imagination. Use your tape recorder to experiment with sound effects. Keep a notebook on how you get the best results for certain sounds.

Narrative Recording. Another type of non-sync recording is typical of most travel movies. Recording is limited to vocal description and musical background. All you need is the adapter microphone and cither a disk record player or tape recorder. Splice your film into the desired sequences first. Then prepare a script. Jot down the number of each scene, what it is, and roughly what you want to say. Also indicate the places where music will be added.

Be sure to preview your music before recording. Choose fairly fast passages, because they record well. Feed the output of the record player or tape recorder into the phonoinput of the Cine-Sync amplifier. Set the Cine-Sync volume control at the proper setting for the mike. Then play a bit of the music and turn the volume of the record player up until the neon tube begins to flash. Then back off the record player volume until the neon indicator no longer flashes. Volume (and also fade-in and fadeout effects) must be controlled at the record player or tape recorder, because the adapter has only one control.

In shooting scenes to which sound will be added later, allow enough footage for sound track to describe them. In most cases, you'll find this time is longer than what you might shoot for a silent movie. Narration can eliminate the need for some scenes.
"Blimping" Your Projector. Since most \(8-\mathrm{mm}\) projector motors are noisy, the amateur producer may need a sound "blimp" to keep projector noise from being recorded.
A blimp (Fig. 13) can be easily made by obtaining a cardboard carton large enough to cover projector, adapter, and reels. Line the inside of the carton with foam plastic, rubber, or insulating material. On a line with the projection lens, cut a hole large enough for the light beam. Cement or tape two picces of \(110-\) in. Plexiglas on each side of the hole. To use the blimp, set all your projector and adapter controls beforehand. Use a \(10-\mathrm{ft}\). length of lamp cord to run out a control switch so you can turn the projector on and off independently of the amplifier unit. The amplifier cord in the adapter is plugged directly into the wall so the tubes will not cool down while the projector is turned off.

Mike Notes. When recording with the Cine-Sync adapter, keep the mike as far away from the projector as possible. You can add up to 25 ft . of extension cable to the mike

Three kinds of splices. When the edge of an overlap splice leads into the record head (A) you'll get a "wow" if sound is recorded at that point. An overlap splice with ioint trailing is better (B), but a butt joint made with Mylar tape splices (\(C\)) is best. This type of splice requises that you trim the splicing plastic so it does not cover the sound track.
lead. When recording, avoid holding the mike so close to your lips that you pick up the sharp hissing ard popping sounds found in some words. Move the mike out too far, and you pick up unwanted sounds. Do not record close to sound-reflective walls or windows.

Remote Speakers. Did you ever notice that the sound in most movie theaters comes frem behind the screen? A 4 -ohm extension speaker placed under your projection screen will aid realism and quality to any sound recording. More than one remote speaker can be added. Two or more will give your movies a feeling of depth.

\section*{MATERIALS LIST-CINE-SYNC SOUND ADAPTER}

Amf. Req. Size and Description
1 Cine-Sync 8.11 m sound adapter kit. (A.8) including complete parts for chassis bracket; 5 -watt ready-to. wire amplifier; record-play head; microphone; carryino case. and instructions. Postpaid. \$69.95
1 Cine.Sync 8-min sound adapter kit (A-8W). including complete parts for chassis bracket: 5-watt, pre. wired amplifier: vecord-play head: carrying case; microphone, and instructions. Postpaid, \(\$ 74.95\)
Send all orders to: Kits Div, SCIENCE and MECHANICS, Dept. 871. 505 Park Ave.. New York 22, N. Y. Add \(\$ 2\) postage for all orders outside the U.S.A.

\author{
By TOMMY THOMAS
}

THE moment a thief starts to pick up a valuable suitcase, an inexpensive mercury switch triggers a battery-operated alarm and makes him let go in a hurry!

The idea could be adapted to dozens of unusual applications. You could install the switch and alarm to protect the contents of an automobile compartment that has no lock. Or it could protect surveyor's equipment and tools or contractor's material that often is left unwatched. It could guard merchandise on public display, be the basis of a novel party gadget, or protect your clothes and wallet while you go swimming at the beach.

The alarm requires no ac power, so it can be quickly rigged with a hinge and string to keep intruders out of summer cottages, tents, trailers, and boats.

It is essential that you keep the alarm installation a secret. In the photo case (Fig. 2A) a piece of thin board covers the entire assembly. Cemented above the board are a number of film boxes so there is no inside evidence of anything unusual. To complete the camouflage, paint both the keyhole assembly and sound vent cover to match the case covering. A screened vent lets out maximum sound.

A second design (Fig. 3) requires that the fire alarm buzzer be reversed in its original case. Chisel a hole and solder the alarm in place. This also makes a necessary electrical connection. For peace of mind with this alarm idea, get in the habit of glancing at your switch before you yourself pick up the case. Even if you are the owner it could be embarrassing if the alarm went off.

Assembled as in Fig. 2B, the unit occupies less than \(21 / 2 \times 8 \times 2-i n\). of space. Length of

Turn the key and the alarm is activated. The perforated metal insert is an electronic vent plug.
the wires is not critical, so you could scattermount the parts to make the installation even more space-saving.

Key parts (see Materials List) are often available locally, with one exception, the Merlite fire alarm buzzer: A number of other low voltage bells and buzzers were tested, but they just aren't loud enough to be heard on a crowded train or on a busy street. The Merlite alarm really screams enough to scare any thief.

Start planning your installation by taking note of the operating position of the mercury switch. This switch is gravity sensitive, so its mounting angle will depend on the style of case. It must be located so that it will be off when the case is flat. When the case is picked up, the switch angle will change, causing the mercury to flow in the switch to the contacts and turn the circuit on. In most mercury

\section*{MATERIALS LIST-LITTLE SCREAMER}

Ant. Req.
Size and Description
1 Merlite fire alarm unit (\$4.95. Merlite Industries, 114 E 32nd St., New York 16. N. Y.)
1 micro-miniature mercury switth (Burstein. Applebee. 1012 Magee St., Kansas City 6, Missouri, \$17A994) trigger
1 heavy duty lock switch with two keys (LaFayette, 111 Jericho Turnuike. Syosset, L. I., N. Y. \#SW.75) shut-off switeh 4.position slide switch (Lafayette \(\# S W\)-74) optional switch battery holder, Keystone \#140
penlight batteries, Size AA
vent plug, punched holes, snap-in for \(1^{\prime \prime}\) holes (General Cement \#H334F) sound vent
1 ea. \(1 / 8\)-in.-thick Masonite, \(21 / 4 \times 8^{\prime \prime}\) rectanule and \(11 / 2^{\prime \prime}\) circle (exact size not important)
Misc. epoxy adhesive (heavy-consistency type), screws, nuts and washers, hookup wire, black electrical tape

This camera case installation is under a lid that looks like a film box. 2B shows complete installation seen from inside of case. \(2 C\) shows e aoxy adnesive holding mercury to switch and leads. Also use it to fasten buzzer to masomite.

For a larger case, you can use the entire Merlite fire alarm case. Cut a hale in the case and solder the buzzer in backwards so it faces out.

switches, the contact wires are of different lengths. For greatest sensitivity of mercury movement, plan to mount the switch with the shorter wire on the down side.

Mount the mercury switch on a \(11 / 2\)-in. disc of Masonite. One good method is to imbed it in a gob of epoxy cement. Wiring can also be anchored down in the same way (Fig. 2C). Then fasten the disc to the case or panel with a wood screw or machine screw and nut. By rotating the disc, you can set the alarm for any trip angle desired.

Action of the brief case alarm (Fig. 1) depends on the fact that normally the thief will grab the case by the handle. If the case was picked up upside-down, the alarm would be rendered useless. This probably would never happen, but on other types of cases, you could beat this problem by installing more than one mercury switch in the circuit. Mount them in facing angles and wire in parallel, so the equipment will be protected no matter how the case is picked up.
The lock switch (Fig. 1) is unusual in that the key can be removed in both on and off positions. Any SPST switch will serve as well. but it must be quiet acting and inconspicuous. You might conceal a slide or miniature switch somewhere on the outside of the case where it isn't likely to be seen. On a tape recorder, the ideal place would be underneath when the tape unit is laid flat. Protecting feet usually keep such cases from touching ground so there would be plenty of room beneath for a switch handle. Four position slide switches are available (see Materials List) that would make it very hard for someone to discover the safe setting even if they know about the switch.

\section*{Color-Code Transistor Leads}
- Accidentally connecting the leads of a transistor to the wrong terminals in a circuit may ruin it. Prevent this costly mistake by colorcoding each wire lead with a small tab of colored plastic gift-wrapping tape. Use red (hot) tape for the emitter, blue for the base, and green (cold) for the collector.- EMITtER J. A. C.

\section*{Salvaging Worn Radio-TV Control}
- When a volume, tone, or other radioTV variable resistance control becomes worn and gives spotty operation that can't be eliminated with control cleaner, try reversing the two outer wire connections
 (see sketch). This will put the operating range of the control on the least-used portion that is still serviceable and salvage the control for further satisfactory use. -John A. Сомsтоск.

\section*{Electrician's Screwdriver}
- Rework that spare screwdriver to make a more versatile tool that will still do a passable job of driving screws. Drill a small hole in it to use when shaping wire or forming termi-

nal loops on electrical installations. Then file a " \(V\) " in the blade edge to pull small nails and brads as when removing weather stripping, etc. The " V " is also a big help when stripping wire.-Bil Toman.

This Hallicrafters \(\$-120\) world-range receiver is a good example of the kind of equipment a DXer enjoys using.

\section*{SHORT WAVE Electronics' Fastest-Growing Hobby}

\author{
By C.M. STANBURY II
}

WITHIN 10 years, short wave has progressed from a second-rate communications medium into a versatile and popular pastime. Before, 1950 , SW receivers were a novelty item, usually stocked only by dealers in amateur radio equipment; today they can loe found in any large appliance store, and most smaller ones, as well.

Why? First, short wave is, or can be, far more than a hobby. It represents a firsthand carrier of news from almost any part of the Earth-not to mention outer space, which is just now opening up for the listener. With the American public becoming more and more international-minded, SW is a gold mine of information.

Competition is another important feature, in digging for rare signals like those of Vos-
tok II (DX) or, perhaps, the folk music of every nationality. If you are interested in a foreign language, this is your chance to hear it and practice your understanding of it.

The possibilities are virtually endless. But in order to take advantage of them, you must know exactly what short wave is, and how it sounds and behaves: so let's start from there.

Technically, Shori Wave simply refers to those frequencies between 3000 and \(20,000 \mathrm{kc}\) (3-30 mc). To understand where this lies in the radio spectrum, remember that the standard AM broadcast band runs from 535 to 1605 kc , the lower edge of TV channel 2 is 54 \(m e\), and the FM broadcast band covers 88-108 me.

SW signals often circle the globe, because of the ionosphere-a region of gases ionized by ultraviolet radiation from the Sun and extending from 50 to 200 miles up. The iono-

Most SW programs are taped in advance, but
sphere reflects (or, more precisely, refracts) radio signals; but the lower layers also absorb (and thus weaken) radio signals. Most distant signals below SW are completely absorbed, while signals above it usually pass right through into outer space: maybe they watch U.S. TV on Mars!
When someone mentions short wave, what do you think of-Voice of America, BBC, or Radio Moscow? Well, international broadcasters are the primary interest of many SWLs (short wave listeners), but there are literally thousands of other stations between 3 and 30 mc . Some, like radioteletype (resembling high speed Morse code), telephoto, and telemetering (except when it comes from outer space), represent just so much noise to the average listener. Other non-broadcast stations, however, including aeronautical, marine, and amateur, can provide many hours of fascinating listening.
International Broadcasters, ubiquitous and super-powered, are likely to be the first SW stations you will find. In addition to those mentioned above, they include such names as Radio Brazzaville in the French Congo, Portugal's Voice of the West, Radio Habana Cuba, Radio Peking, and many others listed in White's Radio Log (p. 194). All of these transmit programs in English beamed to North America, and because they use many frequencies at once they can nearly always be heard even on the simplest of receivers.
While many such stations operate solely for the pulpose of propaganda or to promote a particular nation's tourist trade, they do present another source of news-a way to find out what other peoples or governments are thinking and saying about us. Then, too, much of the world's popular and folk music-the African drum beat, chants of the Near East, Oriental rhythms-can be heard via these powerful transmitters.

DX Refers to distant, difficult, and/or rare reception. It is an exciting sport and the key

\$1 nomer
... the BBC does have occasional live news coverage.
to successful short wave listening, for when the station that is "impossible" to hear is heard, stations that were previously difficult turn into easy and enjoyable listening. SWLs who DX are no longer limited to those superpowered jobs.

There are a number of factors which may make a particular SW station difficult to hear. First, absorption does not always stop at 3000 \(k c\), but during the day affects frequencies up to 9 mc , and at night to about 6 mc . Upper short wave channels are also subject to "skipping": that is, they sometimes pass through the ionosphere like TV and FM signals using channels above 30 mc .

A final major factor is interference (QRM). Most short wave broadcast stations operate within nine narrow bands (sce Table A), and \(75^{\prime}\), of all international activity is limited at present to four of these: \(19,25,31\), and 49 meters. This means that several stations must use the same frequency; for example, to \(\log\) VTN2, Tarawa, Gilbert, and Ellis Islands, on 6050 kc during the early morning (EST) hours when absorption drops to a minimum is almost impossible, because HCJB, Quito, Ecuador, also uses the channel at that time,
Other less important considerations are low power, short schedules (on the air only a few hours each day), static on lower frequencies during warm, humid summer months, and ignition noise on the upper frequencies from passing autos, trucks, and buses.
If You Decide to DX, you are not limited to short wave by any means. You may try for DX on any frequency range: the AM broadcast band, FM, or even on TV channels. Those interested in DX as a game often prefer non-SW stations, because of the greater challenge: imagine hearing Lendon or Nicaragua right next to a local station!

You should keep a log containing the date, time, frequency, program description, and an account of reception conditions, for each new station heard. Most DXers then try to verify

QSL card from Fiii; best heard at present on 4755 kc (VRH5).
what they have logged. This is done by sending a report consisting of the data fiom your log book to the station, along with a request for confirmation-a QSL, as it's called by SWLs (Fig. 4).

Broadcasters can usually be addressed simply by name (Radio Centro, Radio Australia), city, and country. Always include return postage; if stamps of the particular country are not available. International Reply Coupons can be purchased for 15 c at any post office. In addition to proving DX feats, QSLs provide the souvenirs that every world traveler likes to have to show the fclks back home.

Equipment. It is possible, of course, to DX on any receiver and to listen to short wave on any radio that tunes between 3 and 30 me, but once the listener really knows he's interested he'll want equipment that will give the best return for his efforts. Following is a list of features, approximately in the order of their importance, by which you should judge a receiver:
- COVERAGE. The receiver should tune all frequencies between 535 kc and 30 mc . It will do this by means of a band switch and at least one tuning knob. The dial should be divided into at least four bands: otherwise you will probably lose

The British Broadcasting Corp. on the air. BBC is one of the mosp widely heard short wave broadcasters.
selectivity and/or good calibration.
- SELECTIVITY. This is the ability to separate stations on frequencies in close proximity; with bands so crowded today, this is extremely important. A top receiver will separate stations of equal strength only 5 kc apart.
- CALIBRATION. Good calibration means the ability to find exactly any desired frequency. This is best accomplished by the use of two dials. One, for main tuning, is placed at the top of a small desired segment of the spectrum, say 31 meters: the other is a fine scale known as bandspread, adjusted carefully until the right spot is hit.
- SENSITIVITY. How well a receiver pulls in those weak signals deperds upon its amplification circuits. A quality superheterodyne receiver will apply at least one stage of amplification to the original frequency, convert it to an intermediate frequency (IF), and follow this up with two stages of IF amplification.
After these there are some useful, non-essential features:
- NOISE LIMITER. This is primarily effective against ignition noise.
- BFO. This is needed for most Morse code signals.

TABLE A-SWBC FREQUENCY-TIME CHART
\begin{tabular}{|c|c|c|c|c|c|}
\hline Maters & Freq. (kc) & Latin America & Europe-Africa & Asio & So. Pacific \\
\hline 90 & 3200-3400 & Evaning, 0600 & Sunsel, 2400-0200 (Africa only) & 0500-sunrise & 0400-sunrise \\
\hline 60 & 4750-5060 & Evening, 0600 & Sunsel, 2400-0200 (Africa only) & 0500-sunris. & 0400-sunrise \\
\hline 49 & 5950-6200 & Evening, 0600 & Late afternoen-0200 & 0330-sunris* & 0230-sumris* \\
\hline 41 & \(7100-7300\) & None & Late afferncon-0200 & 0330-sunrise & None \\
\hline 31 & 9500-9750 & Evening & 1400-0200 & Night & 0100-1000 \\
\hline 25 & 11700-11975 & Late afternoon, evening & 1400-0200 & Night & 100-1100 \\
\hline 19 & 15100-15450 & 0800-2400 & 1200-2000 & Night if open & Night if open \\
\hline 16 & 17700-17900 & Day & Day & Day & Day \\
\hline 13 & 21450-21750 & Day & Day & & Day \\
\hline 11 & 25600-26100 & & & & \\
\hline
\end{tabular}

Stations may be heard at hours other than thase listed. Times are EST, except sunrise and sunset, which refar to listener's area.

SWLs occasionally log signols from space.

\section*{- AUTOMATIC VOLUME CONTROL.}

This saves wear and tear on the ears, keeps the neighbors happy.
How many of these features you wind up with, even of the major ones, depends on your budget. Assuming you buy a nationally known brand, you will get exactly what you pay for. One thing is sure: No amount of fancy gear can help a lazy or disinterested listener, while an eager and skillful operator can go a long way on comparatively little.
Certain accessories can be added to your receiver at any time. The most important of these include:
- Q MULTIPLIER. This increases selec-
tivity via the IF circuits.
- CRYSTAL CALIBRATOR. If fitted with a \(100-k c\) crystal, this will place a strong, steady reference signal every 100 \(k c\). A crystal of any value may be substituted if other reference frequencies are desired.
Finally, you must have an antenna. It doesn't have to be elaborate: just make it as long and as high as possible.

How to Listen. Now you know what short
wave is, what DX means, and what equipment is available. How do you make use of your information?

When a listener first discovers SW and/or DX, he should tune all the frequencies he can, and learn which parts of the world can be received on each band, and when. After this basic training, he is likely to become interested in specific projects-monitoring an unusual propaganda campaign, logging and QSLing a certain country, or bagging a particularly rare station. To tackle these challenges, a regular procedure must be followed.
First, find the right frequency. This can be done by using as guides stations heard regularly and whose frequencies are known. For example, if your target had been Radio Katanga, which used 11875 kc before its destruction on December 6, 1961, you would have checked White's Radio Log and found powerful XEHH in Mexico City, operating just 5 kc higher at 11880 . Knowing that the best time for Africa on 25 meters starts at 1400 EST (see Table A), you would have checked the channel and kept checking it until all other African signals were gone.
Did You Hear It? The answer to that depends on you, your receiver, and how long you stayed at it-days, weeks, or even months. If you were fortunate enough to be using a first-class receiver, the channel was clear at least part of the time. With a less expensive model, you might have expected severe "sideband" QRM from XEHH, which you would have to listen through, using the following method:

Listen for the slightest trace of a signal beneath XEHH: then concentrate on it. After a while, what XEHH is saying will go in one ear and out the other-a real advantage when DXing. At the same time, you will be able to understand portions of the buried station's programming, and pick out its identification. In this case, maybe it turned out to be "Radio Katanga," an announcement which sounds about the same in Flemish, French, or English. (Fortunately, this is true of most identifications, especially after a little practice listening to the appropriate language. The article which follows this one, "Breaking the Short Wave Language Barrier," deals with this subject in detail.)
Utilities. Between short wave broadcast bands are the utilities, including aeronautical and marine services. Monitoring these requires a different approach. Unlike broadcasters, whose very existence depends upon a large number of listeners, utilities are not interested in being heard by the general public. and information on frequencies and schedules is much harder to come by: it is almost never announced over the air.
Identification of land stations is by location only, and you will have to listen a while to
determine which service is which. There are many military stations with only tactical calls (Kilroy, Streamer, Creampuff One), and these are virtually impossible to identify.
Despite such obstacles, the utilities offer exciting, firsthand radio. Some SWLs were able to monitor John Glenn as he circled the Earth (15016 kc); many have heard rescue operations on the high seas.
In addition, numerous countries and islands not represented on the \(S W\) broadcast bands have either a marine or aeronautical station for you to \(\log\) and verify. Utilities will often QSL, provided a prepared card is enclosed with your report for the operator to sign and mail back to you. Such locations are likely to be sparsely populated, and a report simply addressed, for example, to Officer in Charge, Seawell Aeradio, Bridgetown, Barbados, would probably be delivered.
The 20 Best Utility Channels are listed in Table B, along with some details on each. They can be found by trial and error, but are much more easily located with the aid of a crystal calibrator. Unlike broadcasting stations, utilities will often work together on the same frequency, and if conditions are right you should have no trouble making 20 or more loggings in one hour.

On these same channels you can hear the mobile stations-ships or aircraft, whichever the particular spot on the dial serves. Aircraft identify by airline and flight number, such as "Eastern 101" (Pan American flights, however, identify as "Clipper") ; reports can be addressed to the most convenient office on the plane's route. American addresses are best, as U. S. stamps can then be used for return postage.

TABLE B-THE 20 TOP UTILITY CHANNELS
\begin{tabular}{ll}
Freq. (kc) & \multicolumn{1}{c}{ Use } \\
1755 & Royal Canadian Mounted Police \\
2009 & Marine telephone, Colif, south to Golapogos \\
\(20341 / 2\) & Marine telephone, Caribbean and Bahamas \\
2182 & Marine, international calling ane distress \\
2670 & Coast Guard calling and distress frequency \\
2716 & U. S. Navy \\
2760 & Cuban navy \\
2966 & Aeronautical, Coribbean \\
\(88791 / 2\) & Aeronautical, South Allantic \\
\(88871 / 2\) & Aeronautical, South Pacifc (no aircraft) \\
8888 & Aeronautical, North Allantic \\
\(89131 / 2\) & Aeronautical, fringes of North Allantic \\
\(89301 / 2\) & Aeronautical, Near East \\
8956 & Aeronaulical, East Africa \\
9018 & Cuban air force \\
10021 & Aeronautical, Central America \\
\(132841 / 2\) & Aeronaulical, North Allontic \\
\(133041 / 2\) & Aeronautical, Far East \\
\(133141 / 2\) & Aeronautical, wastern South America \\
15016 & U. S. Air Force \\
19995 & Soviet space vehicles \\
\hline
\end{tabular}

Unfortunately, addresses for ships must be obtained from expensive reference volumes whicn become out-of-date all too quickly. Even when the address is known, the percentage of return on ships is very low.
One word of caution: Do not repeat contents of messages. To prove your reception (as program description does for broadcast reception), include the station called or contacted and, for a mobile, its position.

Ncw, to get you started, we've provided a pair of SWL/DX projects, neither too hard nor too easy, designed to test your qualifications as a listener.
Project No. 1: Iran, historically better known as Persia, the world's second oldest country. Today, because of its wealth of black gold. Iran is under threat of Communist subversion. In fact, Russia operates a clandestine, revolutionary radio station (approximately 11695 kc at 1200-1250 and 1330-1420 EST) just north of Iran's border, possibly at Tast.kent.

Meanwhile, Radio Iran uses 7100 (give or take a couple \(k c\)) from approximately 2040 EST on for programs in Persian, and is readily spotted by the cry of a jackal transmitted before sign-off. Despite amateur QRM, Radio Iran is often heard at this time in the U. S.
Even rarer Persian DX is Radio Tabriz, a regional station not far from the Russian border, using 6175 kc (where there's plenty of QRM) starting around 2055. Radio Tabriz can be distinguished by its long periods of uninterrupted Near East music, and identifications which seldom come on the hour or half-hour. East coast broadcast band DXers fortunate enough to awn top grade receivers should also watch for this one on 638 kc .
Project No. 2: 4VGM, Haiti's Magloire Broadcasting Circuit. When Paul Magloire was dictator of this Caribbean republic (from 1949 through 1956), M.B.C. was a top international broadcaster, with transmitters on 31, 49, and 60 meters, plus the broadcast band.
Today the giant has been laid low, and only operates on 1475 kc . The fact that many U. S. stations are using 1470 and 1480 , and that two Central American transmitters-YNAG Radio Cosiguina, Chimendega, Nicaragua, and TIHCJ Radio Regional, San Carlos, Costa Rica-are on 1475 itself, makes this a tough one. But fortunately 4VGM appears on 295) kc imultiple of the intended frequency). During the hours of darkness it can be heard throughout North America until sign-ofl at 2301.
M.B.C. programs are entirely in French, and consist mostly of Haitian music, which is quite distinctive. Reports should be addressed to M. Franck Cl. Magloire, who now owns 4VGM, and the address in Port-auPrince is 38 , Rue Americaine.

Good hunting.

\section*{Bothered by Foreign Lingo?}

\title{
Here's How to Break the Short Wave Language Barrier
}

\author{
By DONALD N. JENSEN
}

PERHAPS the most frustrating problem encountered by the radio listener when he begins tuning the short wave bands is that presented by the language barrier.
While a number of the large international broadcasters devote a portion of their transmissions to English language programs, countless other radio voices seldom or never use the King's English. Since many of these stations behind the linguistic curtain are lowpowered local outfits, they are tempting game for the DX listener. For the average person who speaks no "foreign language," however, logging these stations may seem to present insurmountable difficulties.

But this need not be the case. A very little study time and a few "tricks of the trade" can soon have you logging and verifying non-English-speaking stations. The two problems involved are (1) identifying the station you are listening to, and (2) obtaining sufficient
data on the programs you hear so that you can write a reception report to the station and get that rare \(Q S L\) card.

Identifying the Station. Let's say you are listening to a station in the 60 -meter band. It is difficult to know the exact frequency, but you believe your dial is tuned to about 4940 kilocycles. You have been listening to a program of enjoyable music for 10 minutes or so, when a man begins to announce. He could be speaking Martian for all you know . . . it's all "Greek" to you.

After a few minutes of careful listening to this garble of sounds you begin to pick out an occasional word if you can call it that, for these words are meaningless to you. The announcer pauses and then continues. What was that? You catch what sounds like, "eesee ahbeedjohn." Ah, you begin to see a bit of light through a chink in the language barrier. You remember that "eesee" is actually

6-LANGUAGE TRANSLATION CHART
\begin{tabular}{|c|c|c|}
\hline English & French & German \\
\hline This is . . . & \[
\begin{aligned}
& \overline{l c i} \\
& \text { (ee-see) }
\end{aligned}
\] & Hier ist (heer ist) \\
\hline Radio station & \[
\begin{aligned}
& \text { Radiodiffusion } \\
& \text { (rahdyo-deefeez-yohn) }
\end{aligned}
\] & Rundfunk (roond-foonk) Kurtzwellensender (kurts-welen-zendair) \\
\hline Transmitter & \[
\begin{aligned}
& \text { Emetteur } \\
& \text { (aim-et-four) }
\end{aligned}
\] & Sender (zend-air) \\
\hline Short wave & Onde courte (a wnd-koor) & Kurzwelle (kurls-vel-ah) \\
\hline Kilocycle & Kilocycle (keelo-seekl) & Kiloherz
(keelo-hairtz) \\
\hline Frequency & Frequence (Fray-kawns) & Frequenz (fray-kwents) \\
\hline Wave length & Longueur d'onde (lawn-gyour dond) & Wellen lange (velen-lahn-gah) \\
\hline Frequency band & Bande de frequence (bahnd d-fray-kawns) & Frequenzband (fray-kwents-bahnd) \\
\hline Program & Programme (praw-grahm) & Programm (pro-grahm) \\
\hline Listener & Auditeur (oh-dit-four) & Horer (huhr-air) \\
\hline
\end{tabular}
the French word ici, meaning "this is."
"This is ahbeedjohn," the man said. That must be the French pronunciation of the word Abidjan, the capital city of the Ivory Coast, a French-speaking country on the tropical west coast of Africa. A quick check of your reference \(\log\) shows that the short wave station at Abidjan does indeed transmit on 4940 kilocycles at this time. By golly, you've logged a new station and never once was an English word spoken.

Logging Data for Reports. Late in the evening, you've just tuned in a station that announces as "rahdyo-defuze-ora Venezucla." That's easy! It is YVKB, Radiodifusora Venezuela broadcasting in Spanish from Caracas. This business of careful listening and learning key words in several languages seems to be the ticket. You understand they have a fine QSL card, so you get pencil and paper to make some notes about program content for a reception report.

But what is the program about? You only know a few key words in Spanish. How can you get enough data on the program to convince the station's officials that you actually heard them?

Well, just listen again, carefully. What did he say? It sounded like "Khrushchev." You'd recognize that in any language! Then he mentioned "Kennedy," and now, "Katanga" and "Castro." He must be reading a news report. Names in the news sound much the same in many languages and stand out like a beacon in a foreign broadcast.

The announcer continues talking. He says something like "prograhm-ah day mew-sikah day ahmerika lah-tina." Latin American music, eh? Sure enough, the orchestra is beginning to play a cha-cha. Make a note of that for your report. It is followed by a tango; "El Choclo," you believe, is its title. Now they are playirg that old favorite, "La Paloma." Note that, too. You seem to be getting quite a lot of detailed information for your reception report.

Thus, the fact that you speak only English need not be a handicap when you tune the shor't wave dial. But you don't have to stop here. Perhaps your interest is only whetted. You may make the plunge and actually try to learn one or more foreign language. Night school courses, books, and records are all available. Many short wave stations, themselves, offer language courses by radio from English to Hungarian, Russian to Spanish.

If you don't have the time or inclination to study, you may spend several sessions just listening to foreign broadcasts of the Voice of America or the British Broadcasting Corp. (B.B.C.). Before long you'll find you will begin to recognize the various languages by sound even though you cannot actually understand them. In time you will be able to recognize "by ear" the difference between such similarly soundirg languages as Spanish and Portuguese, Arabic, and German, and many others.

So, listen carefully and you, too, can break through the language barrier.

\section*{(Pronounce as Given in Parentheses)}
\begin{tabular}{|c|c|c|}
\hline Portuguese & Russian & Spanish \\
\hline Aqui (ah-key) & Goverit (go-vuh-reet) & Aqui (ah-key) \\
\hline Radiodifusao (roh-dyoh-defuze-sow) & Racjyo (stantsiya) (rahdyo-stahn-tsee-yah) & Radiodifusora (rah-dyoh-d efuze-ora) Estacion (ehs-tah-thyon) \\
\hline Transmisora (Irans-mees-ora) & Peredacik (pear-eh-dah-chek) & Transmisora (trans-mees-ora) \\
\hline Onda curta (on-dah kur-tah) & Koiotkaja volna (kah-rohi-ka-yah wolna) & Onda corta. (on-dah kor-tah) \\
\hline Kilociclo (keelo-seek-lo) & Kilogercov (kealo-gair-k of) & Kilociclo (keelo-seek-lo) \\
\hline Frequencia (free-kwen-seeah) & Castota (kahs-foe-fah) & Frecuencia (free-kwen-seeah) \\
\hline Longura de onda (loan-gyour-ah day on-dah) & \begin{tabular}{l}
Dlina volni \\
(dleen-ah wohl-nee)
\end{tabular} & Longifud de onda (loan-jeet-youd day on-dah) \\
\hline Banda de frequencia (bahndah day free-k wen-seeah) & Dicpazon castoti (deah-pa-shown kans-foe-fee) & Banda de frecuencia (bahndah day free-kwen-seeah \\
\hline Programa (pro-grahm-ah) & Programa (pruh-grah-muh) & Programa (pro-grahm-ah) \\
\hline Radio ouvinte (rahdyo aw-veen-foy) & Prijomnij liubiteli (pree-yohm-nee lyoub-bit-elyee) & Radio Oyente (rahdyo aw-yen-foy) \\
\hline
\end{tabular}

\section*{Salt Water Powers Radio}

THE salt-water cell powering this transistor radio has all the advantages of a dry cell, costs only pennies to make, and lasts for months. The complete radio receiver, with battery but less earphones, can be built for \(\$ 3\) or less.

As shown in the photos, the battery delivers about three-tenths of a volt. The radio consumes only 12 microamps while running, and in actual tests ran three days continuously without any detectable dip in volume. Originally designed as an emergency receiver for Civil Defense use, the battery-radio combination offers reliability and unlimited use, because very little of the metal electrodes is consumed. As the battery ages, the plates corrode slightly, but all you need to do is clean them and replace the salt water.

Start Building the Battery by cutting the copper and aluminum electrodes from 24 gauge sheet metal. The \(7 / 1 ; \times 11 / 2-\mathrm{in}\). size is recommended for the 4 -dram vial shown (Fig. 4), but plate size has no bearing on voltage produced. Larger electrodes would produce more amperage, and experimenters may
want to try metallic foils. Make the binding posts from two \(8-32 \times 3 / 4-\mathrm{in}\). brass screws. Use a vise and fine hacksaw to cut off the heads of the screws, then saw slots about \(1 / 4 \mathrm{in}\). deep. Insert the electrodes in these slots. If the fit is loose, pinch the slots together in a vise and force the electrode in.

The glass vial is available at any drug store for a few cents. Get the type that has a close fitting plastic top. A plastic vial could be used as well, but the glass has a cleaner appearance. Drill two \(9 / 4-j n\). holes in the cap spaced about \(1 / 2 \mathrm{in}\). apart on a diameter line. In the center of the cap. you can drill or pin-punch a tiny hole to allow gas generated by the chemical action of the cell to escape. The vent hole should be very small so that the surface tension of the wate: will prevent leakage. If you use a power drill, make the holes as quickly as possible to avoid melting the plastic.

Now screw the two electrodes into the underside of the cap until the screws extend through about \(1 / 4 \mathrm{in}\). and add washers and binding nuts. The fit should be tight and

S\&M lab staff connected radio to outhor Art Trauffer's battery-operated transistor amplifier (Radio-TV Experimenter \#576). Music on AM stations in Chicago area came through with crystal clear tone and very liftle static.
earphone jacks and music came through surprising clear and free of background roise.

Drill the holes for the tuning capacitor, antenna coil, and headphone jacks and mount as in Fig. 4. The miniature capacitors must be kept clean and handled carefully to avoid damaging the plates. You can use a socket for the transistor or simply solder it into the circuit as shown. Make sure you use a heat sink to dissipate soldering heat. Hold the iron to the joints only long enough to make a good connection, otherwise the parts may be ruined.
waterproof. To test the battery, fill the vial about three-quarters full with clean water and add a pinch of salt. Check output with a VOM. Though it may not seem like a large current, you'll find it adequate to operate may low current projects. Provided that resistance of the circuit is kept high, the battery will be suprisingly constant.

The Transistor Radio uses a minimum of parts and can be assembled in half an hour. The author used a 2N1265 transistor and an IN64 diode, but you can substitute other general purpose units (See Materials List). Editor's Note: The assembly shown in the photos was tested in a basement lab, with the antenna lead clipped to the reflector of a lamp. After tuning the ferrite coil, reception was crisp on all Chicagoarea stations. The radio ran constantly for 85 hours. Anamplifier was connected to the

\section*{MATERIALS LIST-SALT WATER POWERED RADIO SALT WATER battery}
\begin{tabular}{|c|c|}
\hline Amt. Req. & Size and Description: \\
\hline 1 & glass vial with light fitting cover. \(1^{\prime \prime}\) dia. \(\times 2!a^{\prime \prime}\) high (available drug stores) \\
\hline 2 & \(8.32 \times 3 \mathrm{a}^{\prime \prime}\) brass screws for binding nosts \\
\hline 1 pc . & \(7 / 16 \times 11 / 2^{\prime \prime} 24 \mathrm{ga}\). copper \\
\hline 1 pc . & \(7 / 16 \times 11 / 2^{\prime \prime} 24 \mathrm{ga}\). aluminum \\
\hline 2 & 8.32 knurled binding post knuts (salvage from old bat. tery) \\
\hline & TRANSISTOR RADIO \\
\hline 1 & PNP transistor. any general purpose type such as \(2 N 1265\), CK 722 etc. Lafayette \(=\) SP-171 (\$.49)* \\
\hline 1 & diode, general purnose type such as IN 34A. IN64 etc. Lafayette \(\#\) ST- 148 (\$.19) \\
\hline 1 & ```
antemna coil. Superex Vari-Loopstick or equal, Lafayette
 #MS 287 ($.88)
``` \\
\hline 1 & miniature variable capacitor, 365 mmf with dial Lafay. ette MS 445 (\$.59) \\
\hline 1 & plastic box, utility type or Gillette Razor case. Lafayette MS 160 ( \(\$ .20\) ) \\
\hline 1 & high impedance earphone, 2000 ohn or more Lafayette
\[
\text { \#AR. } 50 \quad \text { (\$1.39) }
\] \\
\hline Misc. & small alligator clip, phone jacks. hookup wire \\
\hline * Lafayett Jericho Tu & \begin{tabular}{l}
s. refer to cataloy of Lafayette Radio Electronits, 111 \\
ke, Syosset L. I., New York.
\end{tabular} \\
\hline
\end{tabular}

Feed the battery and antenna wires through holes in the top of the back of the box. Color code the battery leads red, positive (to copper) ; and black, negative (to aluminum), and attach a small alligator clip to the antenna lead wire so it can easily be hooked to various antennas you may want to try.

Test the radio by connecting the battery
and plugging in a high-impedance ( 2000 olms or more) carphone or headsct. Be sure battery polarity is correct. If you connect backwards, you won't harm the transistor, and may actually get reception, but it will be far lower in volume. Clip the antenna lead to any suitable ungrounded metal object such as a bare spot on a telephone dial, a bed spring or a metal clothesline and tune for a station. If your connections are correct and all components working properly, you should be getting plenty of earphone volume on one salt-water cell. Adjust the antenna coil by setting the tuning condenser to a known station. then turn the knob on the ferrite core until the volume is at a peak.

Once the ferrite core is set for a certain antenna, the set should require no further adjustment. An on-off switch is not provided because the battery circuit breaks when you pull one of the phone plugs. Leaving the radio on will run the battery down after a few days, but the effect is not permanent. Clean the metal plates, replace the salt water and the battery is as good as new.

\section*{Solder Spool Carries Flux Can}
- Attach a cork to the lid of your can of soldering paste and set your spool of solder down over the plug as a means for keeping the can of flux handy. It will always go wherever the spool of solder goes and will also serve as a base to keep the spool from tipping over and rolling off the bench.-J. A. C.


This contral enables you to contral oulput volume from the microphone position. For the photo, cables were shortened for sake of clarity. In practice, this control could be used on \(50-\mathrm{ff}\). P.A. system lines in an auditorium.

```

Amt. Reg. MATERIALS LIST-REMOTE VOLUME CONTROL
Amt. Rea.
or equal
standard microphone thassis units Amphenol 75.PC1M or
equal
standard single-open-circuit phone jacks. Switchcraft 11, or equal
single-hole phono-pin jacks. Switchcralt 3501FP or equal
knob with pointer to fit volume control shaft
round panel-mounting dial plate
aluminum or tin cun about 23/4" in diameter
4\times4\times1/2" plywood
roundhead woodstrews 1/4" Iong
Misc. copper hook-up wire, spaghetti

```

The author used a \(23 / 4 \mathrm{in}\).-diameter round aluminum cup trimmed off to a depth of \(13 / 4\) in. You may be able to find a suitable metal can with a friction lid, which would climinate the plywood disk shown in Fig. 3. Cement a disk of felt or "non-skid" carpet base rubber to the back of the cup.

\section*{Color-Coding Wires}
- When you need some color-coded wires for a circuit and only plaincolored wires are on hand, color-code your own. To do this, wrap lengths of the wire
 around a mailing tube. broom handle or other suitable form, and paint diagonal lines aeross the coil with dif-ferent-colored paints. Apply the paint sparingly with a cotton swab or picce of cotton on the end of a match. Use tape to hold the coil in place until the paint dries.-John A. Comstock.

\section*{Tape Recorder Improvement}
- To improve the frequency response of your tape recorder and eliminate medium and high frequency reverberations, tack or cement sound-absorbing material to the inside of the case. Use regular fiber-glass insulation or thin strips of sponge rubber. The acoustic insulation damps out the speaker's back wave and also absorbs motor rumble noise.-Joнn A. Comstock.


The easiest way to make the holes in the aluminum case is to start with the point of a sharp knife blade and then enlarge up to size with a rat tail file. Use lock washers, usually supplied with the parts, to prevent the volume control and jacks from turning in their holes. Bend the ground lug on the volume control around the solder to a large lug that fits over the shaft of the control. This automatically connects the ground lug of the control to the metal cup and to the chassis side of the jacks (Fig. 3). Be sure to use insulated wire on the mike chassis leads to prevent shorts.

When wiring is complete, cement a piece of aluminum foil over the wood disk. Just as a microphone line must be shielded, the entire assembly of volume control and plugs must also be shielded to prevent ac hum pickup. -Art Trauffer.

\section*{Kitchenware for UHF Experimentation}
- Plastic food containers make gond lonking lowloss chassis and cabinets for various tultra-high-frequency assemblies. Many of these containers are made of Styron, a member of the polystyrene family and a very good insulator. Containers are cheaper than sheet polystyrene, and
 come already formed. Photo shows two styles which are especially handy. The round one is an cxperimental FM crystal set using a germanium diode, which slope-detects close-by FM sta-tions.-A. T.

\section*{Solder Silences Noisy Tube}
- When a tube in a radio, TV, audio amplifier or other electronic device becomes microphonic and produces an undesirable howl or 1 inging sound from the speaker, don't throw the tube
 away. Wrap the glass envelope with several turns of wire solder or heavy uninsulated copper wire. The added weight and support will often damp out the vibrations that set the tube elements oscillating.-Joнn A. Comstock.

\section*{Build a Beffer THIRD HAND}

In operations such as soldering transistors to tie points, the clips not only replace long-nosed pliers to hold the leads but also will divert heat from the iron away from the transistors.


OUT of wood and wire scrap and some inexpensive clips, you can fashion a helping hand far superior to the usual stunt of nailing two spring-type wooden clothespins to a board or your workbench.

It's more convenient, useful, and versatile and has a far more workmanlike appearance, Especially good for soldering applications (Fig. 1), you can move it at will to work with very light or heavy gauge wire, then fold it flat for quick storage when the job is finished.

To build my "third hand," I began by cutting a piece of \(3 / 4-\mathrm{in}\). scrap stock to the dimensions in Fig. 2, beveling all edges and then sanding the piece smooth. This became a base for two different pairs of clips.

I installed two Mueller \#2i battery clips on the base, attaching one near each end as in Fig. 2 with the help of a \#6-32 machine screw countersunk from below: These serve to hold
splices in larger wire or to tin the ends of stranded wire.

Next, I formed a U-shaped bracket as in Fig. 2A from a scrap of \#4 wire, but you can just as easily cut it out of a wire coat hanger. Solder a Mueller series 60 alligator clip on each end of the bracket, then center the bracket between the battery clips and well to the front of the base as in Fig. 2A. Secure it in place with two small wiring clamps of the single-hole, hookover type and tighten the clamps just enough for the bracket to be moved up and down and remain in any desired position.

The alligator clips are ideal when working with small wire or for holding small parts which persist in jumping all over the bench.

All four clips are available at mail order electronic houses for about 40 \(\hat{6}\) and the wiring clamps can be had at hardware or variety stores for a few pennies.-Howard S. Pyle.


\title{
Putting the RICHI \\ Redtio in Your Car
}
|T DOESN'T matter whether you drive a new sports car with a small dash panel or a \(10-\) year-old family sedan.

You can do a radio installation job yourself that will turn out like a professional job. You'll save money by choosing the best buy in a radio that fits your need exactly. And by following a few simple tips from "pros," you'll enjoy clear, noisefree reception with repair bills kept to a minimum.
The radio makers offer you a choice of two basically different kinds of car radios, the custom type (Fig. 2) made specially to fit dash cutouts of a certain make and year of car, and the universal type (Fig. 3), a radio so dimensioned that it can be used on any car, new or old.
Custom Radios are easiest to install because all the holes and cutouts are already in the car. All you do is follow the detailed instructions packed with the radio. They even tell you which cables may have to be disconnected to get into the radio compartment. If your car is less than three years old, you'll have no problem in finding a custom set in radio stores, automobile accessory stores, or in mail order catalogs. But if your car is less youthful, you may have trouble buying the radio, since most makers stop production as soon as the hardware is outdated by new dashboard designs. Still, there's no need to rule out custom fitted-in-the-dash installations.

Several radio manufacturers make univer-
sal receivers with dimensions to fit practically any car, while other firms market special trim-plate kits to adapt universal receivers to various dashboards. Chances are that if your car is new enough to deserve a good radio. there's either a custom model or a universal type with a trim-plate kit (Fig. 3).

Sports Car and Import "bug" owners may not have enough room on the dash for instruments, let alone a radio. If that's your problem, you'll probably settle for an under-dash installation (Fig. 4). This isn't apologetic. The under-dash installation has a lot to recommend it on any car, and it should even be
considered for cars where custom radios are readily obtainable.

When you trade in a car, the radio adds little resale value. With dash variations so widely prevalent, it would be pure luck if a custom radio for one car fitted the dash of another. With a custom radio you have to resign yourself to the loss of your radio investment when you get around to upgrading your transportation. But with the under-dash installation. you can quickly install the radio rig without mutilating the dash. And you can


Above, Typical eustom rodio designed to fit dosh cutouts of 1961 Chevrolet.

Right, Universol-type rodios along with odopter kits (Cortrol shown) can be used to moke good looking in-dash instollotions in recent model cars.

Below, right, A compact transistor set mounted under dash is the answer for small import and sports cars where spoce is limited.


With the universal radios, you'll have to check to see whether you have 6 or 12 volt. negative or positive ground wiring in the car: Remember this if you plan to salvage a radio and switch it over to another car.
Station pushbuttons are important for safety, especially if you drive expressways and need traffic forecasts. Manual tuning is mot only annoying, but can cause an accident in crowded traffic. The added cost of \(\$ 10\) to \(\$ 15\) for buttons is well wo"th it unless you are mainly a rural driver.

The Tube vs. Transistor argument wouldn"t have come up five years ago. Up to that time the vacuum tube was the only amplifying device available, and a mechanical vibrator was necessary to deliver the stepped up d-c power to the tubes. When transistors became practical, you had the first big improvement in cas radios in 20 years, and the vibrator's death note was souncled. Consisting of a set of metal contacts opening and closing fast, much like an ignition distributor, the vibrator had a higher rate of failure than any other part in the radio.
Other transistor advantages: no heat producing power-wasting filaments, more circuit efficiency, and better reliability. But they are more expensive than tubes, though the extra cost is offset by reduced battery drain and longer life. This year, most car radios use transistors to replace the audio driver and output tubes, while using tubes for the r.f. and i.f. sections.
Several manufacturors are even offering rompletely transistorwed car radios, and though they cost more than the hybrid sets, they do give you instant warmup, low current drain, compactness, and high reliability. It's likely these
remove it just as fast and reuse it in any other car you buy.

Another good reason for under-dash radios is that service costs on the radio itself are a lot lower. It takes much less time to get the chassis out of the car and onto the radio service bench. And if you like to tiaker with radios yourself, you'll appreciate that pull-out feature.

Operating Features. Fundamenzal to the radio hookup is your car's battery voltage. When you buy a custom receiver, it automatically is right for your car's electrical system.


sets will run for many years with no repair expenses.

Loudspeakers are easy to install in all recent-vintage American cars, since dash cutouts covered with metal grille are built in. Most custom and universal radios come with separate speakers that either fit the dash cutouts directly, or with an adapter board.

Many import cars have no dash provision for mounting speakers, so some universal-type radios come with builtin speakers. Such receivers can be used with any kind of car, but audio quality usually suffers. With a dash mounted speaker, the dash acts as a baffle to improve sound quality and distribution.

The difference can easily be heard by listening to both kinds of installations. If your radio has a built-in speaker, an additional extension speaker mounted on the dash or rear deck will make a big improvement.


Yau can order your onteina with any one of mony beses that fit the curves of a wide voriety of cowls and fenders.

If a strop connects from the negotive battery pole to the car frame, your wiring system is negotive ground. If it connects from the positive pole, the cor is wired positive ground.

The Antenna is a vital part of the receiving circuit in your car. Physically, there are few obvious differences among various brands. Unless you confine your driving to large cities where maximum range is not needed, avoid the so-called "economy" antennas which may be considerably shorter than the 54-58-in. fully extended length required for full signal pickup. Mechanical strength, rain proofing, and installation ease are factors you can check in the manufacturer's literature. Your antenna need not be identical in appearance to the kind used by the car manufacturer. But if you have a late model car, you could request that your dealer order an antenna duplicating the appearance of fac-tory-installed equipment. It's a matter of style and does not affect the radio performance.

Installation Instruetions. Start with the antenna. It's the most painful part of the job because you'll be drilling a hole in the car body. With a little caution there's no real chance of an error.

Most car antennas mount in a single 1-in. hole in the fender or top cowl of the car. Buy the right antenna and the entire job shouldn't take more than a half hour. Even if the hole you cut (Fig. 7) isn't perfect,

With the special hole sowing attachment, it lakes only seconds to drill the antenna hole through the fender.
it won't matter because the antenna mount will cover many sins.

Take a look at fac-tory-installed antennas on cars of the same vintage to determine just where to mount the antenna. That's to make sure you won't run into trouble drilling the hole. Use a \(1 / 4\) in. electric drill with a 1-in. step up bit designed for metal. Or start with small drills and enlarge the hole with a metal reamer. Even better if you don't mind spending a few dollars or borrowing the tool is to use a circular hole saw (Fig. 7). For any method, be sure to centerpunch the hole before starting the drill.

On some cars, the antenna connecting lead feeds in through the engine compartment. Others are arranged so the lead-in enters the car on the dash side of the firewall between the fender and the side kick pad. This means you temporarily remove the kick pad, and fish the lead through under the floor mat to the radio location.

\section*{The Radio Installa-} fion requires that you consider the layout of other accessories in the car. Custom radio installations are simplified by step-by-step instructions. If you are a timid do-it-yourselfer and a preliminary look at the dash indicates difficulties, then write the manufacturer for a manual before you


A unique feature of one make of universal receiver permits shifting the control shaft locations to match most existing panel cutouts.

buy the radio. Usually these instructions are sent free and help you to appraise the job.

Some domestic cars have speaker wells designed for a certain size speaker frame. If you select a certain radio, the speaker may be the wrong size. However, this won't be a problem since the dealer can supply an adapter board, or he may be willing to exchange the speaker for one that fits.

Whether in-dash or under-dash installation is easiest depends on the make of your car. On domestic cars with straight dash panels, universal radios often can be used without any modification. Some receivers are supplied with an optional matching trim-plate to fit most cars. One set (Fig. 8) has adjustable shaft centers which permit shifting controls to left or right for an exact match of the control cutouts on the dash. The head of the
radio fits most openings and the trim plate lends a custom appearance. A typical installation (Fig. 9) shows how the radio is held in place by control mounting nuts in front, and a strap (included in kit) fastened to the firewall. Before you drill any holes through your firewall, check the opposite side to prevent damage to parts mounted there.

On some domestic cars, the dash panel is curved so much that the rectangular trim plate of the radio does not fit. Or the radio cover plate may cover a large gaping cutout rather than individual holes for radio controls and dial. Either way, the universal radio will require a custom-type trim kit made by such companies as Cartrol, Porter Dietsch or Metra, if an under-dash installation is desired.

To save expense use the simpler underdash installation (Fig. 4). You'll have to drill two small holes in the lip of the dashboard and another one in the firewall of the car. The radio shown is one of several makes that will

fit a large percentage of sport and import model cars.

Only Three Electrical Connections are required. The antenna has a pin plug already connected to the end of the lead-in wire. Simply plug it into the receptacle on the receiver. Push the two speaker wire leads into the lugs on the speaker. Then fasten the radio's " \(A\) " lead to the accessory side of the ignition switch or to any other line from the battery.

Radio adjustment is simple, but often overlooked even in commercially installed sets. Every car radio has an adjustment screw labeled Antenna Trimmer. The trimmer tunes the antenna to match the receiver input so that you get maximum signal transfer.

On some receivers such as the 500 XA (Motorola), a knurled knob extends through the receiver housing. On others, a hole in the housing permits screwdriver access. Extend the antenna to its full length, tune the receiver off-station near the high end of the band, 1400 KC on the dial, and adjust the trimmer for maximum noise volume. Failure to make this adjustment causes weak reception, increased interference, and poor performance.

Solving Interference Problems. Because most cars on the road are equipped with radios, the manufacturers now take measures to reduce interference. Despite built-in interference suppressors in the distributor cap, special resistor spark plugs, and resistance wire or by-pass capacitors at various critical points, interference often mars performance of even the best radios. Proper counter measures will reduce or completely eliminate the trouble.



Radio interference is caused mostly hy arcing or sparking within the car's electrical system. Distributor rotors and voltage regulators are the worst offenders. The problem is to track the trouble and neutralize it. Some of the interference that plagues any AM radio is caused by atmospheric conditions, power lines, or other external sources. For these there is no remedy. Only the increase in noise when the engine is running over what you hear with motor dead can be reduced.

One simple remedy, if the manufacturer has not already used resistance wire leading to the clistributor, is to cut the lead and add a distributor resistor (Fig. 11). Or you can replace the entire distributor lead and replace it with one made of resistance wire.

If the interference persists, give the spark plugs the same treatment. If you need new plugs anyhow, replace them with special type resistor spark plugs.

If these remedies are not entircly effective, sleuthing is in order. You'll need to find out whether the trouble is actually caused within the car or if it is coming in through the antenna. Unplug the antenna and replace it with a homemade dummy antenna consisting of a 75 mmfd mica or ceramic capacitor wired to an antenna plug (Fig. 12).

If interference drops, you know it is radiated from an outside source, and your wiring is not at fault. But if it remains the same, try wiring in .5 or 1.0 mfd . by-pass capacitors at one or more points (Fig. 11). Often a single capacitor will do the trick.

First try mounting the capacitor at the accessory terminal of the ignition switch. Then try the accessory terminal battery of the ignition coil. If neither location reduces the noise, move the capacitor to the voltage regulator's battery terminal and finally to the armature terminal of the generator. Generator noise is usually a high-pitched whine varying with engine speed. If a capacitor at one place reduces the noise partially, it should be left in place and others added elsewhere.
Noise entering the radio through the ignition wiring usually can be identified since it does not change in volume when the vol-


Metallic straps are available in various lengths for grounding parts in the engine compartment.
ume control of the radio is varied. For this, use a 100 mfd . capacitor at the battery terminal of the ignition coil.

More Countermeasures. In rare cases, one or more faulty grounds on the car will cause trouble. For example an antenna may be mounted on a fender which does not have perfect electrical contact with the body. Or the engine itself may not be well grounded to the frame. Special copper-braid grounding straps are available (Fig. 12). Best locations are found by trial and error.
Other accessories can produce noise. Most radios require little if any interference reduction. But in some cases, you'll have a real headache. It may take hours to :ind the trouble, but take comfort in the fact that it will probably take an experienced technician just as long to do the job, and you are saving money.

Fuel Gage Problems. Some fuel gage sending units produce noise whenever the car bounces causing the float mechanism to change position. Check by pushing up and down on the rear bumper to move the mechanism. Remedy is installing a 0.5 mfd capacitor on the sending mechanism usually located on the floor of the car trunk. This will also cure certain noise heard when the engine is off but your key is turned in the ignition switch.

If you get noise by jarring the dash panel, the trouble may be arcing in the fuel gage regulator contacts. Again, use a 0.5 mfd capacitor from the regulator's battery connection to ground.

The temperature gage can be a noisemaker too. The sending unit is on the engine block. Disconnect for a moment to confirm your suspicion, and remedy with the 0.5 mfd capacitor connected from the wire to ground. Any set of electrical contacts including those in your stop and turn signals can produce noise, usually a popping sound. The capacitor is the remedy.
Sparking of electrical contacts is certainly a common cause of intermittent popping noise. But in older cars, you can sometimes apply the capacitor remedies and the noise may not be cured. Check electrical connections that are supposed to be solid and are not. Loose or corroded lugs and terminal screws, and even worn lamp sockets can cause the noise.

pliers and surplus dealers, these mechanisms are bulky and will require a special housing. The modification in Fig. 1 is small enough to fit in the existing cabinet of most small receivers. Extra controls are shown on the rear so as not to affect the styling of the radio itself. You may prefer to mount the controls in a more convenient location, consistent with mechanical and electronic considerations.
The most expensive part you will need is a four-pole three-position rotary switch. If you want to add more stations, buy a switch with more positions. Alsq, you will need trimmer capacitors and an assortment of fixed capacitors in values up to 300 mmf in \(20-30 \mathrm{mmf}\) steps, several pots, and hardware. Mount the switch and level controls on an aluminum bracket attached to the rear of the chassis with 6-32 screws and nuts. Exact dimensions are not given because they will vary with the individual set.
Locate the rotary switch as close as possible to the converter oscillator coil, and variable capacitor. It is very important to keep leads between the antenna and oscillator circuits, converter, and rotary switch as short as you can to minimize RF losses and oscillator detuning. If leads are too long, you may find it impossible to tune stations above 1450 kc .

The accessory tuning circuits are designed around pairs of trimmer capacitors mounted on a board for convenience. You may mount some spares for adding more tuned stations later on. With this particular set, a 3-25 mmf trimmer worked out well for the oscillator circuit with an \(8-50 \mathrm{mmf}\) trimmer for the antenna section. These values are not critical, but have given good results.

Install Two Pairs of Fahnestock clips on the board. Wire one set across the oscillator trimmer and


Top, Rear view shows components maunted on perforated metal bracker. Center, Right side of chassis shows level controls wired parallel with volume control. Bottom, Note that rotary switch must be located as close as possible to converter and varicble capacitor.


TRIMMER MOUNTING DETAIL


6
SWITCH-TUNING SCHEMATIC
the other set parallel to the corresponding antenna trimmer. These clips are used in the test setups to determine the values of shunting fixed capacitors. A schematic diagram

(Fig. 6) represents the RF circuitry up through the converter in a typical AM receiver: You may need to make a few alterations to adapt the arrangement to your set. Essentially, two additional sets of capacitors are set up in parallel with the antenna section of the original variable capacitor, and two capacitors are in parallel with the oscillator section. Two circuits have to be switched for the antenna section, and a single for the oscillator.
Wire the level controls in parallel. The circuit between the tap and pin 1 of the detector is switched simultaneously with the corresponding RF circuit. Two \(1 / 2\)-megohm pots in parallel with a 1 -meg control in the receiver produced satisfactory results on the model shown. Input loading of the detector was not adversely affected by any combination of pots with values varying from \(1 / 2\) to 1 megohm. The ends of the shafts may be slotted for screwdriver adjustment, or you can install knobs.

Finishing Up. To determine the fixed capacitor values for shunting the trimmers, use the test setups shown in Fig. 4 and Fig. 5. It is best to select the value of the oscillator capacitor first. Simply disable the oscillator section of the variable and connect the antenna section to the circuit you are testing. Rotate the dial to the station you want to tune, insert a test capacitor in the Fahnestock


Top left, First test step is to disable one section of variable capacitor, and substitute one of the trimmers. Bottom left, insert test capacitor in Fahnestock slip. Above, Tune station by adjusting trimmer.
clips, and adjust the trimmer for maximum response. The trimmers listed had enough range to tune between 1450 and 1600 kc without adding fixed shunting capacity. As examples of other points on the dial, a 27 mmf capacitor in parallel with the \(3-25 \mathrm{mmf}\) trimmer for the local oscillator, combined with the \(8-50 \mathrm{mmf}\) trimmer for the antenna section tuned in a local station at 890 kc . The bottom of the dial required a \(300-\mathrm{mmf}\) capacitor in parallel with the \(3-25 \mathrm{mmf}\) trimmer to pull in a station at 600 kc . To tune a station at 890 kc the antenna circuit in the model resonated above the oscillator circuit, which is opposite to the usual condition. As long as the IF is 455 kc ., it seems to make little difference which circuit resonates above the other

After selecting the oscillator capacitor values, reconnect the oscillator section of the variable, disable the antenna section, and follow the same method to determine the values of antenna capacitance.

With wiring and alignment completed, drill holes in the rear of the cabinet for the controls. A plate with markings adds a final touch. One feature of this design is that in addition to semi-automatic tuning for three stations at all times, one switch position is still continuously variable. You have not interfered with the basic design of the receiver
but have extended its usefulness. You can change the pre-selected stations at any time, and in the event of a CD emergency, the instant tuning feature would prove very useful.

\section*{Improving Crystal Performance}
- Crystals that are sluggish in operation or fail to oscillate at all, can often be restored to duty by careful cleaning. First remove the crystal slab from the case, gently wash it in water and household detergent, then rinse. Hold the clean, dry crystal on the end of a strip of paper when replacing it in the case to prevent leaving oily deposits on the slab by handling it with your fingers.-Len Buckwalter.



\title{
Low Cost DECADE BOX
}


At the flip of a finger, you get any value of resistance you want af \(1 \%\) accuracy. Service of TV sets, radios and audis equipment is simplified . . . because you know the exact value of the part needed to get the circuil working.

\section*{New design uses \(10 \$\) slide switches and performs like its \(\$ 80\) cousins-but is handier and has an extra decade}

\section*{By BRICE WARD}

NOW you can own a precision decade box for little more than the price of a good substitution box. Cost has been pared to the bone by using a novel switching arrangement that allows the number of precision resistors to be reduced and eliminates high cost rotary switches. The box gives resistance values from 0 to \(1,111,110\) ohms in 1 -ohm steps, at \(1 \%\) accuracy, with a
switching layout that's fast to use.

Construction is easy. First lay out the switch mounting holes, Fig. 6. Carefully disassemble one slide switch if you are working from scratch, and-using the shell as a templatelay out the thumb-button holes. Drill the mounting holes for 4 40 screws and drill a starter hole in the corner of each thumb-button cut-out. Cut these holes out with a coping saw or jigsaw and smooth up with a file. Lay out and drill the binding post holes. (Kits are supplied with pre-drilled panels).

The switches should be checked with an ohmmeter to insure that they are in the off position (open), then mounted with the thumb-buttons at the IN position. Mount the switches, allowing the tabs to overlap, and secure them with screws and nuts.

Connect the resistors directly across each switch starting with the 1-ohm resistor at the top right of Fig. 4. Conneet a piece of wire from the red binding post to the top contac't of \(\mathrm{S}_{1}\) and solder it to

You can also use the box with a standard VOM. The VOM acts as a comparapor telling you whether the unknown resistor is more or less than the value set on the box.


Using the decade box as the known "leg" of a home-made Wheatstone bridge, you can check resistors for exact value.

\section*{MATERIALS LIST-DECADE BOX}
\begin{tabular}{|c|c|}
\hline Ant. Req. & Size and Description \\
\hline 1 & p astic case. Davies type \(260.613 / 16 \times 59,32 \times 5 / 32^{\prime \prime}\) or equivalent \\
\hline 1 & cover for above \(612 \times 5^{\prime \prime}\). Allied \(=86 \mathrm{P} 289\) \\
\hline 24 & SPST slide switches. Carling 560A. Allied \(=348422\) \\
\hline 4 & resistors, 10, 20, 30.1 and 40.2 ohms ' 2 watt. \(10_{0}\), IRC Type DCC, milied \#1MM492 \\
\hline 16 & resistors. 100. 200. 301. 202. 1000. 2000 3010. 4020, 10K. 20k \(30.1 \mathrm{~K}, 40.2 \mathrm{~K}\). \(130 \mathrm{~K}, 200 \mathrm{~K}, 301 \mathrm{~K}\) and 402 K ohms, \(1 / 2\) watt, \(1^{\circ}\) 。IRC Type DCC, All \(\mathrm{od}=1 \mathrm{MM493}\), or equal \\
\hline 5 & \(r\) sistors. 1, 1. 2, 3, and 3 ohms ( 1 and 3 in series for 4 ohms), 1 ratt, \(1 \%\) Dalohm FS-1B, or equal. Allied \(=2\) MM904 \\
\hline 1 & red binding post. H. H. Smith Type 220R, Allied \(\# 41 \mathrm{H} 330\) \\
\hline 1 & talack binding post. Allied \(=41 \mathrm{H} 335\) \\
\hline
\end{tabular}

NOTE: By srecial arrangement with manufacturers all of the above items are availinle as a complete kit with instructions. Send \(\$ 14.95\) for Kit A- 11 to Kits Div., SCIENCE and W ECHANICS. Dept. 872. 505 Park Ave. New York 22, N. Y. This unit may als be purchased completely assembled and tested for \(\$ 18.95\). Resistors supplied in kits will be \(1^{\circ}\) on military or equa' spec. types.



Above, Parts shown on this test model of the box are stondord \(10 \%\) commercial resistors. S\&M Kits ore supplied with \(1 \%\) military type resistors. Below, How the assembly goes together. Be sure to use high quality solder and a clean hot iron. Cold joints can cause error.


6
DECADE BOX PANEL LAYOUT FROM BENEATH


Wheatstone bridge circuit can be built for \(\$ 5\), and has dozens of uses in the electronic lob. Principle is thot when surrents in each arm of the "diomond" ore equol, the zero center golvonometer in the middle will read zero. R1 and R2 must be of equal value ond for occu. racy should be in the some ronge as unknown resistor \(R x\).
one resistor (1-ohm) lead. Put a jumper between the bottom contact of \(S_{1}\) and the top contact of \(S_{\text {: }}\) and solder both of these with proper resistor leads. Continue in this way to the bottom, then run a jumper from the bottom contact of \(S\), to the top contact of \(S_{\text {.. }}\) Wire the remainder of the decades in the same way. The bottom of \(S_{*,}\) is connected back to the black binding post.

Counting with the box is simple. First place all switches in the OUT position. An ohmmeter should read zero when placed across the terminals. Now placing switch 1 to IN gives 1 ohm. Switching 1 OUT and 2 IN, gives 2 ohms. Two OUT and 3 IN gives 3 ohms and so forth. When 4 is reached, leave it in and put 1 back IN to get 5 ohms. Following this procedure makes it possible to switch swiftly in 1 -ohm steps.

The same counting method is used on all decades, and counting down can be done by simply reversing this procedure.

To use the decade as one leg of a Wheatstone bridge (Fig. 7), get a rough determination of the resistance by switching the top switch of each decade in and out. If the meter deflects to one side of zero with 10 K in and to the other side with 100 K in, you can be sure the unknown resistance is between the two. Start at 10 K then and count up. When the
needle moves to the opposite side of zero, reduce the resistance by 10 K and move to the 1 K decade and repeat the procedure. This way you can determine the resistance of the unknown to within 1 ohm. Using the reactance formulas and a 1000 -cycle oscillator in place of the battery, you can also determine capacity and inductance values. Charts will be needed here. Also, by computing the values and using a high sensitivity null detector for which several circuits have been published, you can determine capacitor and inductor values with 1 to 2 "\% accuracy.

Setting a desired amount of resistance when using the decade as a substitution box is no problem. For example, to set 571.1 K ohms, first throw all switches to the OUT position. Then set 400 and 100 K in the 100 K row to IN . On the 10 K decade set 40 K and 30 K . Set 1 K on the 1 K row, and 100 on the 100 ohm row. After a little practice, you'll find this method beats using a potentiometer in bread-boarding circuits. Without measuring with an ohmmeter, you know immedi-


8

\section*{DECADE 8OX SCHEMATIC VIEW FROM BENEATH}
ately what your best resistance value is for the circuit under tes*.


\title{
Electronic Toy Telephones
}

\section*{For youngsters who can't afford to pay monthly rates}

\author{
By HOMER L. DAVIDSON
}

SINCE the volume on most toy telephones is quite low, youngsters have to talk exceptionally loud in order to use them. This is not one of the best ways to keep peace in the household. By making a set of these transistor telephones, however, your ordinarily quiet and understanding children will not have to yell anywhere near as hard, and the household sound level will be much more comfortable-theoretically.
These handsets are built from regular receiver units which can be purchased for less than \(\$ 1\) a pair (see Materials List). The remaining parts are readily available, and two complete units can be quickly built for less than \(\$ 7\).
One receiving unit is used as a mike and the other as a receiver (Fig. 2). The mike receiver is capacity-coupled to the base of a low-priced audio transistor such as a 2 N 107 , CK722, or ET3.

Resistor R1 furnishes the bias voltage for transistor T1, and two penlight cells supply


The mike and receiver mount on one side of the Masonite board, and the amplification box mounts on the other side.


Internal assembly of parts.


Children will be able ic talk for hours on these toy telephones without rurning up your monthly bill.
the collector voltage These cells are wired in series to a flat, 3 -wire cable which, when connected by means of plug and jack to the other unit, turns the units on. If the volume is too loud, it can be decreased by increasing the resistance of R2 and R3 (see Fig. 7).
House the Components in a small plastic box as in Fig. 3. Tape the two penlight cells together. and place them in one end of the box. Solder transistor '191. capacitor Cl , and resistors R1. R2 together, and place them in the remaining area of the box.
Use spaghetti and plastic tape to insulate the parts from shorting against one another. Also, in order to mount the plastic box to the handle, you will have to make some mounting holes in the box with the tip of your soldering iron. Complete the wiring by soldering the transistor circuit in series with the penlight cells.

Mount Each Mike and Receiver on a tempered piece of Masonite \(2 \times 6\) in., which can usually be found in a serap pile. In back of


The amplification box should be bolted to the board, and the external wires taped. None of the parts or sizes is critical.


Three-wire rotator cable and male and female connectors join the handsets together to activate them.
each receiving unit, you'll find two hookup screws with which to fasten the receiving unit to the Masonite handle. If they are not long enough, select a pair of longer screws and hold them in place by means of wire eyelets and washers.
Bolt the plastic box to the opposite side of the receiving units, and be sure to place the flat heads inside the box so that the batteries will fit snugly on top of them. Complete the wiring by connecting the amplification box to the receiver units, and then recheck the wiring with the schematic in Fig. 7. There

\section*{MATERIALS LIST-TOY TELEPHONES}

Description
Desig.
C1
C2
R1
R2
R3
R1
T1
\(T 2\)
4
2
M1s
4
2 mfd . 6-volt miniature electrolytic capacitor
2 mfd. 6 -volt miniature electrolytic capacitor
\(10 \mathrm{~K}, 1 / 2\) watt carbon resistor
\(47 \mathrm{~K}, 1 / 2\) watt carhon resistor (see schematic)
47 K .12 watt carbon resistor (see schematic)
10K. I \({ }_{2}\) watt carbon resistor
2 N107. CK722 or ET3 transistor
2N107. CK722, or ET3 transistor
penlight cells iEveready 1015
plastic cases (Lafayette MS157)
\({ }_{3}\) prong male and female connectors. scrap pieces of Masonite for handles. nuts and bolts. 30 ft . or more of 3 .wire rotator cable.
The above parts can be purchased from Lafayette Radio, 111 Jericho Turnpike. Syosset, N. Y.
reiver phono units (AS568) available from Olson Electronics. 260 S . Forge St.. Akron 8, Ohio: or Burstein-ApJlebee Co., 1012 McGee St., Kansas City, Mo.
is nothing more discouraging than to try out a newly built unit that does not work the hirst time.
Since there is no on-and-off switch, or a talk-and-receive switch like that found on an intercom unit, simply plug the female and male connectors :ogether, and the electronic telephones are ready to use. The current drain is very low, and the batteries will last for a long time. Even though the phones are primarily designed for kiddies, they can be used by anyone who wants to talk room to room, thour to thons, or house to house.




Typical 256 binding post designed to take the five types of connectors shown below it. Connectors are (left to right): wire lead, phone-cord-tip, spade lug. alligator clip, and banana plug.

\section*{Universal Adapters for Quick Connections}

WITH these simple adapters, various types of leads and connectors can be instantly connected to phone-tip-jacks and banana jacks.

The adapters are made of five-way binding posts with their threaded shanks altered to fit the jacks. The binding posts plug into the jacks and various types of leads and connectors are then fastened to the posts. It's wise to make two of each type of adapter because the jacks are almost always used in pairs.-Art Trauffer.

> Two of several passible connections using these adapters: (A) An adapter cllows a banana plug to be connected to a standard phone-tip-jaci.. (B) An adapter allows a phone-cord-tip to be connected to a standard banana jack. Wires, spade lugs, and a!ligator clips also may be connected to either jack.


How to make two types of adapters by making simple alterations on the brass threaded shanks of the posts For post A, remove the loase hardware that comes with it and file the end of the threaded shank to the same diameter as the end of a phone-cord-tip. This allows the five-way post to be plugged into a standard phone-tip-jack. For post B, saw a lengthwise slot in the threaded shank of the post with a narrow. blade, fine-tooth hacksaw. Then file off a few threads so the shank makes a snug fit in a standard banana jack.

\section*{Test for Capacitor Ground Lead}
- To determine which lead of an unmarked paper capacitor is the "ground" or outer-foil lead, try this kink. Connect the capacitor across the input of an operating audio amplifier, touch your finger to the lead connected to chassis-ground and note the hum output of the amplifier. Reverse the capacitor and again touch the lead connected to the chassisground, and note the hum from the speaker. The lead giving the least hum output is the ground lead of the capacitor.

\section*{Keeping Tube Numbers Readable}
- After tubes used in experimental circuits have been handled for some time, the type numbers on the glass envelope wear away and are almost impossible to read. To prevent this and keep numbers readable indefinitely, apply clear fingernail polish to the numerals when tubes are new. If the numbers on older tubes are illegible, apply ammonia with a piece of cotton and let it dry to bring numbers out clearly.-John A. Сомstock.


1
Weighing only three ounces, the hearing aid fits comfortably in a shiri pocket. Amplification is 42 db or more, adequate for \(75 \%\) of all sases of partial deafness.

\section*{Pocket-Size Hearing Aid}

\section*{A low-cost answer for 15 million Americans who are hard of hearing}

\author{
By MORT FRIEDMAN
}

Sidco Elcetronics

THREE transistor's mounted on a printed circuit board provide a minimum of 42 decibels of gain in this new hearing aid design, yet the case is smaller than a kingsize cigarette pack.

Based on 8 hours of use per clay, the circuit, powered by a \(10 ¢\) pen light flashlight cell will operate for three days or more-a cost of only a third of a cent per hour. The hearing aid case has a switch for turning power off when not in use and a control that lets you adjust the volume to a comfortable sound level.

The mierophone fits inside the case and has a frequency response of 300 to 4,000 cycles. providing satisfactory tone lesponse for all but the most discriminating music lover. Such persons, if they are afflicted with poor hearing, are advised to use recently intro-


Z
duced stereo earphones coupled directly into hi-fi output lines.

The Tiny Amplifier has uses other than the remedy of partial deafness. With the microphone mounted on a probe, the unit will do a fine job as a doctor's or mechanic's electronic stethoscope. You can hear the local sounds of defective parts within an engine or even pinpoint a water leak in a wall. Hunters have
used hearing aids of similar amplification to detect the faint sounds of game at a distance, and a similar technique (mike in waterproof bag) has been used by fishermen to locate distant sounds of fish splashes.
The hearing aid can be built with stock electronic parts or by ordering a special Science and Mechanics Kit (see Materials List). The case supplied with the kit is a high-

\section*{The Use of Hearing Aids}


Many doctors use this kind of funing
fork to compore the sensitivity to sound of each ear.


If you normally listen to the telephone with your
leff eor, use the hearing aid on the right side.

T

\author{
By MARVIN B. WOLF, M. D. \\ and MILTON J. SNEIDER, M. D.
} IIE human ear is a complex organ. From the outer ear to the auditory nerve, every section of the ear must he in goud condition, or a loss of hearing may result. Thus, there are many causes of total or partial deafness.

Injury or infection of any part of the outer, middle, or innel ear can cause deafness. Damage to the onter ear, usually from accidents or insect and animal bites, will reduce the ability of the outer ear to catch the sound waves. Damage or perforation of the ear drum by accident or infection will affect the vibratory movements of the drum and thus reduce hearing. Injury to the three small bones in the middle ear will interfere with the transmission of vibratory movements of the ear drum to the inner fluid in the cochlea and thus cause a lass of hearing. Injury to the auditory nerve, or danage to the nerve by poisons or toxins, as well as inflammation by germ infection, will reduce the iransmis. sion of nerve impulses to the hearing center of the brain.

Physicians use an electronic instrument called an audiometer to measure the exact amount of hearing loss in both ears. As a general rule anyone with a hearing loss of \(35 \mathrm{~d} / 6\) or more istandard unit expressing relative power of sound in the speech frequency in both ears is a suitable subject for a hearitg aid. If hearing loss in the speech frequencies (cps) is 80 db or more, the patient usually will not bencfit from artificial aid.

When impairment is moderate and the per-on is able to satisfactorily use an ordinary telephone, the hearing aid should be preseribed for the ear not used in telephoning. The aid should always be fitted to the better hearing ear,

Air-conduction hearing aids fof the type shown in this articlel should always be used in preferance to bone-conduction aid-, even in cases where tests show learing for hone is better than air. The air-type aid is normally more efficient, especially in amplifying the higher frequencies. Thus, the sound is more natural, and the amplifier reguires less power.

Bone-conduction aids are used in cases with perforation of the ear drunns and suppuration. provided loss does not exceed 60 db in the speech frequency range.


R5 (See Toxt)
transistor seen FROM ABOVE

3 A printed circuit board table A

Part No.
R1 (15K brown, green, orange)
R2 ( 3.3 K orange, orange, red)
R3 (2.7K red, pupple, red)
R4 ( \(6 \mathrm{~K} \mathrm{pot)}\)
R5 ( 100.300 K ) see text Cl 1 -mfd, 3 -volt

TRI

TR2

TR3

Mike Leads
Earphone jack tip lead
Earphone jack outer lead
Switch leads
+ Battery lead

PC Hole No.
8. 21
3. 16
5. 19

24 to center luy
23. 20. See Fig. 2

12, 22
plus to 27
ned ta 26
C to 2
B to 9
E to 13
C to 1
\(\begin{array}{lll}8 & \text { to } & 10 \\ E & \\ \text { lo }\end{array}\)
E to 14
\(C\)
8
8
Eto 15
1. 25

7
18
17. Neg Bat. Clip

28
impact colored plastic and comes pre-drilled. If you decide to use your own parts, the first step is to drill the holes (Fig. 5). The microphone requires only one \(1 / 4-\mathrm{in}\). hole, but it is very essential that you mount it on a small piece of sponge rubber so that the mike does not press directly against the case at any point. The reason for this is that it would cause the mike to pick up surface noise.
Strip \(1 / 4-\mathrm{in}\). insulation from nine \(31 / 2\)-in. lengths of insulated 24 - or 26 -gauge light,

B PRINTEO CIRCUIT (BOTTOM)


C PRINTED CIRCUIT (TOP VIEW)

flexible, plastic-covered hook-up wire. Be sure to use a high quality printed circuit solder and a low watage (25-40 watt) soldering iron to avoid overheating parts and printed circuit board. Solder two wires to the mike lugs; solder two lead wires to the earphone jack, three leads to the volume control lugs, and two leads to the switch on the back of the volume control.

MATERIALS LIST-MINIATURE HEARING AID
\begin{tabular}{|c|c|c|}
\hline Amt. or No. & Size and Description & Amt. or No. Size and Description \\
\hline R1 & 15K. 2 watt \(10 \%\) carbon resistor & 1 Eveready \(=915\) penlight flashlight cell, or equal \\
\hline R2 & \(3.3 \mathrm{~K}, 1 / 2\) watt \(10 \%\) carbon resistor & \(1 \quad 11 / 2 \times 23 / 10^{\prime \prime}\) printed circuit board, HR3 (*\$1.95) \\
\hline R3 & 2.7K. \(1 / 2\) watt \(10 \%\) carbon resistor & 1 miniature earphone jack \\
\hline R4 & 6 K ininiature volume control, audio taper CTS \(=\mathrm{KX1214}\) or equal (\$\$.95) with on-off switch & \begin{tabular}{ll}
1 & plastic case. \({ }_{8} \times 21,8 \times 3 \mathrm{in}\). \\
Misc. & 3.4 .40 mtg. \\
strews and bolts, microphone cable (op.
\end{tabular} \\
\hline R5 & 100 to \(300 \mathrm{~K} 1 / 2\) watt \(10 \%\) carbon resistor (Select value for best volume and tone. See text) & tional, see (ext) printed circuit solder, knob \\
\hline Cl & 1.mfd. 3 -volt sub minature electrolytic capacitor & Nore: By special arrangemert with manufaturers all of the above \\
\hline TR1. TR2. TR3 & transistors. PNP audio type, Sylvania \(\# 2 N 1265\) or equal ( \(\$\) \$1.77) & for Kit A9 to Kits Div., SCIENCE and MECHANICS, Dept. 873, 505 \\
\hline 1 & 4000 -ohm miniature hearing aid microphone Knowles =1321 (\$11.95) & Park Ave., New York 22, N. Y. This unit may also be purchased cormpletely assembled and tested for \(\$ 34.95\). \\
\hline 1 & 15-0hnm single midget earset; response 500-4000 cps & * The above parts are availabie separately from Sidco Sales, 4749 \\
\hline 2 & Keystone \(\$ 99\) Space Saver Battery holders & N. Rockwell, Chicago 25, III., post paid. \\
\hline
\end{tabular}


Now install the miniature volume control and the earphone jack in the case. Cut a \(1 / 2 \times\) \(5 / 8\)-in. piece of \(1 / 8\)-in.-thick sponge rubber. Use a sharp knife or razor to cut a \(3 / 16\)-in.-diameter hole in the center. Use rubber cement to glue the sponge rubber washer to the microphone and the other side of the case. Mount the battery holders (Fig. 2) with two \(4-40 \times 3 / 16-\mathrm{in}\). pan head machine screws.

Optional Note: If you want to use the mike at a remote point, run a shielded cable out through a hole in case instead of the installation shown.

Assemble and Wire the printed circuit board in the sequence of Table A. The final steps are connections of mike, earphone,
switch, and battery. Install the battery. Polarity must be correct; if you accidentally install the battery backward, though, no damage will result. The unit will just not work. Plug in the earphone, turn on the volume control, and you should hear good amplification of sounds in the room. If there is no sound, check all connections and soldered joints to find the mistake. Too hot a soldering iron can cause cracking or a rise of the thin layer of copper on the printed circuit board. The effect is the same as a broken wire. Find the break and overlay with a thin layer of solder.

Resistor R5, due to sensitivity variation in transistors, is not specified in the circuit. Kit parts are delivered tested and matched. If you are building your own, use a \(1 / 2\)-meg volume control and a \(0-50\) milliameter to run this test. Complete all wiring except R5. Insert the volume control across terminals 12 and 22 and wire milliameter in series with battery. Adjust for maximum volume and clarity, at a current of 15 to 20 mils on the meter with the built-in volume control R6 set on full. The lower the reading on the milliameter, the longer the battery life. Read the setting on the volume control with an ohmmeter and use this value for resistor R 5 .
Kir \#A9 which includes all parts necessary to
build the S\&M Pocket Hearing Aid is available at
\(\$ 24.95\). Send check or money order to Kirs Div.,
Dept. 873 , SCIENCE and MECHANICS, 505 Park
Ave., New York 22, N. Y. All S\&M kits are uncon-
ditionally guaranteed and may be returned for
full refund if unsatisfactory within 10 days.


\section*{The Companion}

A number of old \(45-\mathrm{rpm}\) records can be used to house a small radio that serves as a mate to the record changer of a young rock ' \(n\) ' roller

By HOMER L. DAVIDSON


DESIGNED for the young teenager who wants to hear all of those up-to-theminute records is this little one-tube radio, the Companion. It combines good performance with a snappy-looking cabinet built up from a stack of last year's worn out and overplayed records. Of course, it can also serve as an extra radio in order not to tie up Mother's kitchen radio and her favorite programs. Who knows-maybe Dad needs an extra radio to hear the ball games.
The Companion will pull in your local stations with just a small insulated wire strung around the room. By hooking a large outdoor antenna to it, you will be able to hear stations within a radius of 1000 miles.

How It Works. The circuit of the small radio is very simple to follow. The 12AT7 tube employs one triode section as a regenerative detector and the second triode as an audio amplifier stage. A forrite antenna coil in the grid circuit tunes with a \(365-\mathrm{mfd}\) variable ca-


Station letters rother thon numbers can be pasted on for dial convenience.
pacitor, and a . \(0015-\mathrm{mfd}\) capacitor couples the antenna to the antenna coil. This capacitor is very important for two reasons. It isolates the 117 -vac line from a grounded antema wire, providing the ac plug is plugged in the socket right. Also, if the antemna wire is hooked directly to the antenna coil, it will


Bottom view showing mounting of speaker.


Interior view showing placement of parts and wiring.
load down the circuit and only local stations will be available for selection.

The antenna coil is modified by adding a small tickler winding L2. Close wind approximately 30 turns of \(\# 28\) enameled wire on the middle of the antenna coil. First place a layer of cellulose tape over L1 winding, looping the end to hold the beginning of coil L2. Leave the L2 coil ends about 3 in . long so they can be wired directly to the circuit. The size of the wire is not too critical. After the second winding is wound on the antenna coil, fasten it securely with cellulose tape.

Regenerative detection takes place between C2 and R1 and the first triode section of the 12AT7 tube. The tickler winding hooks di-
rectly to the plate of pin \#1. Feedback is controlled by R2, and this was found to be the smoothest type of regeneration control. A \(.01-m f d\) audio capacitor couples the rectified signal to the second grid of the tube. R5 and capacitor C6 biases and filters the cathode voltage for the output stage. The plate circuit, pin \(\# 6\), has an output transformer in the circuit to match the plate impedance of the audio stage. A 3 -in, speaker is used here because of its small size and good volume.

The de power supply consists of a small \(65-m a\) selenium rectifier and resistor-capacitor network, and no 60 -cycle hum is noted in the output of the small speaker. A small 6.3volt power transformer is used as a step-down filament voltage source. In some cases a \(10-\) watt resistor could be used here but, with a few more cents, better voltage regulation, less heat disintegration, and longer tube life can be had with a step-down transformer.

Wiring and Parts Mounting. Before wiring the parts into the circuit, mount them on the small metal chassis. For the speaker, I used a small 3 -in. Quam permanent magnet type, since two small-tapped screw holes are provided in the rear of the PM assembly. Of course, another type of speaker could be used if the small chassis were made to bend down over the two speaker mounting holes. Make the small chassis out of aluminum and bend in an L shape as shown in Fig. 5. Drill all the holes, including those for the tube and variable capacitor, which can be reamed to suit their type mounting. A small drill can be employed, drilling a lot of small holes in

\begin{tabular}{|c|c|}
\hline & MATERIALS LIST-THE COMPANION \\
\hline Desig. & Description \\
\hline Cl & 365 mfd variable tuning capacitor (Lafayette MS-214) \\
\hline C2 & . 0001 mid ceramic capacitor \\
\hline C3 & . 0015 mfd ceramic capacitor \\
\hline C4 & . 0033 mfd ceramic capacitor \\
\hline C5 & . 01 midd ceramic capacitor \\
\hline C6 & \(20 \mathrm{mfd}, 25\) WVDC electrolytic capacitor \\
\hline C7 & 40 mid .150 WVOC electrolytic capacitor \\
\hline C8 & 50 mld .150 WVDC electrolytic capacitor \\
\hline R1 & 10 mell. \(1 / \mathrm{s}\) watt carbon resistor \\
\hline R2 & 25K pot. linear taper (IRC Q11-120) with SPST switch (IRC 76-1) \\
\hline \(R 3\) & 100K. \(1 / 2\) watt carbon resistor \\
\hline R4 & 470K. \(1 / 2\) watt carbon resistor \\
\hline R5 & \(150 \mathrm{ohm} .1 / 2\) watt carbon resistor \\
\hline R6 & 2200 ohm. \(1 / 2\) watt carbon resistor \\
\hline 11 & ferrite antenna coil (Lafayette MS-11) \\
\hline L2 & 30 turns of \(=28\) enamel wire wound over Ll \\
\hline 11 & 6.3 -volt step down ac transformer (Stancor P6134) \\
\hline T2 & outnut transformer. 5000 ohms primary impedance, 3.2 ohms secondary impedance (Stancor A3877) \\
\hline V1 & 12AT7 electron tube \\
\hline 1 & 3.in. PM speaker (Quam) \\
\hline Mise. & old 45 rpm records. metallic strip. cardboard, chassis, nuts and bolts, hookup wire, grille cloth \\
\hline
\end{tabular}
a circle and punching out the small disk. Then take a round file or rattail file and smooth the edges.
Don't mount the antenna coil until last, as it is very easily broken off. Wire small capacitors and resistors into the circuit underneath the chassis, using the schematic (Fig. 6) as a guide. The antenna tuning condenser should have long leads soldered to them and wired to coil L1. Do this before mounting the antenna coil. Place insulator spaghetti on all bare wires. After the chassis has been wired. place it into position upon the speaker assembly and fasten securely with two small bolts.
Tuning Up. It is always advisable to check over the wiring three times before the unit is fired up. If an ohmmeter is handy, check the resistance between C7 and ground to make certain that there is no short in the small power supply. The resistance should be above 5000 ohms. Visably inspect the wiring around the speaker terminals to see that they are not pushed down against the metal frame.
At this point the small record radio is ready to be tried out. Simply plug the ac cord into the socket and turn on the switch. A small rush should be heard from the small speaker. Fasten a \(20-\mathrm{ft}\). piece of wire to the antenna terminal and turn the tuning concenser. You should be able to hear local stations. Advance the regeneration control and a squeal should be heard about halfway through its rotation. If not, reverse the two tickler coil leads. This will create correct feedback to coil L1 from the plate circuit. When the squeal is heard, turn the regeneration control down a small amount. The station should now be audible. A few tries will make one an expert in operating the regeneration control. It is surprising how many stations will come in with loud speaker volume. Adjust the ferrite coil for complete band coverage by pushing it up and down.

Cabinet Construction. The cabinet for the
small radio is very unique since the major part of it is constructed from old \(45-\mathrm{rpm}\) records. Drill holes around the center hole of the record so that the sound from the speaker will pass through (Fig. 4).

Fasten a Masonite board here to hold the four small legs. Four long bolts with aluminum spacers hold the records and cardboard spacers together. The cardboard spacers are the same size as the aluminum tape or binding material. This material can be bought at most hardware and dime stores. The aluminum spacers should also be of the same width as cardboard spacers. The records that are mounted in the center will have to have their centers cut out so the radio will set down inside.

Before you assemble the records to the cab.net, they should be cleaned and then finished with a clear spray or varnish, such as Krylon. Attach the small radio chassis to the bottom assembly before mounting the records and cardboard spacers. Mount the top record last, and attach the two small knobs.

Station letters were applied to the tuning dial instead of numbers. These can be taken from the daily newspaper and glued on the dial. Spray on a coat of Krylon or varnish, and the radio is ready to use.

\section*{Fire Extinguisher Chases Radio Bugs}
- The chilling effect of a carbon dioxide fire extinguisher will help you locate a defective part in a radio circuit that plays erratically. Often a set works fine for a few minutes after you turn it on, and then suddenly misbe-

haves or goes dead. The trouble may be a part that expands with heat after current has been flowing through for a few moments. Spray suspicious parts with CO, gas one at a time. The intense cold will contract a defective component so it can work normally.

You can also use Charg-A-Can Freon \#12 with a suitable adapter (sold by refrigeration supply houses). However do not use carbon tetrachloride fire extinguishers since the fumes are highly toxic.-T. A. Blanchard.


This compact wattmeter gives a direct reading of transmitter output when connected in plase of the onfenna.


Interior view of wattmeter showing placement of components.

\section*{A Citizens Band Wattmeter}

\section*{To determine the efficiency and performance of low power transmitters}

\author{
By JOE A. ROLF, K5JOK
}

|F YOU have ever wanted to know how efficiently your low power transmitter is operating, this handy Citizens Band wattmeter will prove a valuable accessory. It is easily constructed at a cost of less than \(\$ 15\).

By connecting the wattmeter in place of the antenna, your transmitter can be adjusted for maximum output into an impedance of the correct value.

Briefly, let's discuss the advantage of using


3
SCHEMATIC
a wattmeter. Class D service presently is limited to an input of 5 watts to the transmitter's final stage of amplification, and it is extremely important that the transmitter be as efficient as possible in converting this power into RF energy. For consistent range, it is equally important that this efficiency be maintained.

Commercially built vacuum tube transceivers are designed to operate at about \(50 \%\) to \(80 \%\) efficiency. This means that only 2.5 to 4 watts of \(R F\) power is available at the antenna terminals. While there is not much you can do about improving the efficiency that a manufacturer has designed into his

> MATERIALS LIST-CB WATTMETER
> \(.001 \mathrm{mfd}, 600\)-volt ceramic disk capacitor \(.001 \mathrm{mfd}, 600\) volt ceramic disk capacitor 1N34 diode
> coax chassis jack (Amphenol 83-1R) or equivalent \(0-1\) ma meter (Calrad CM0-32-2) or equivalent 100 ohm .2 watt, \(5 \%\) composition resistor
> \(100 \mathrm{ohm}, 2\) watt, \(5 \%\) composition resistor
> \(1200 \mathrm{ohm} .1 / 2\) watt. \(5 \%\) composition resistor \(13000 \mathrm{ohm}, 1 / 2\) watt, \(5 \%\) composition resistor Note: R3 and R4 may be any combination of values which equals 14200 ohms
> \(11 / 2 \times 21 / 4 \times 41 / 4^{\prime \prime}\) Minibox (Bud CU-2116A), 1 single terminal tie strip. 2 small soldering lugs, 4 mounting screws, wire, and 1 connector to transmitter output consisting of short length of RG 58/U coaxial cable. 1 Amphenol 83-1SP connector or equivalent, and plug to match transmitter output
unit, you can periodically make checks on this efficiency to ensure that it is maintained.

For instance, if you establish with a wattmeter that your transmitter is capable of 4 watts output, and a subsequent check reveals an output of only 3 watts, you know immediately that something has happened. Perhaps tubes are beginning to age, or the unit is no longer tuned properly. Reduction in efficiency, nonetheless, can be quickly determined with the use of a wattmeter, and without removing the transceiver from its cabinet.

The circuit shown in Fig. 3 is basically a dummy load 50 -ohm antenna (resistors R1 and R2), and a simple RF voltmeter. When power from the output of the transmitter is applied to the \(50-\mathrm{ohm}\) load, the meter indi-
\begin{tabular}{|cc|}
\hline \multicolumn{2}{|c|}{ CALIBRATION CHART } \\
Watts Output & Meter Reading \\
4.0 & 1.0 ma \\
3.5 & .93 \\
3.0 & .86 \\
2.5 & .79 \\
2.0 & .72 \\
1.5 & .61 \\
1.0 & .50 \\
.5 & .35 \\
\hline
\end{tabular}
cates the developed voltage. Since the power and resultant voltage are directly related, the meter can be calibrated in watts to show the transmitter output.

Construct the Wattmeter from Figs. 1 and 2. Mount the components in a \(11 / 2 \times 21 / 4\) x \(4 L_{4}\)-in. Minibox. It is important to keep the leads of the load resistors, R1 and R2, and the diode, CR, as short as possible.

For accuracy, all resistors should be at least \(5 \%\) tolerance. R3 and R4 are \(1 / 2\)-watt \(5^{0}\) 管 resistors with a total resistance of 14200 ohms. Any combination of available values totaling 14200 ohms can be substituted here. If available, 1 , resistors will greatly improve the accuracy of \(5 \%\) to \(7 \%\) that can be expected from \(5 \%\) values. Connect the wattmeter to the transmitter by means of a short piece of RG-58/U ccaaxial cable and proper fittings.

Calibrate the Meter with the aid of the calibration chart. If you wish, clip the chart out and paste it to the back of the Minibox. If you do this, it is a good idea to give the chart a coat of clear fingernail polish or other clear plastic coating for protection.

\section*{Tracing Radio Interference}
- Radio interference can often be traced to motor-driven electrical apparatus. Determine which one through a systematic method of elimination; that is, pull the switch on one appliance at a time and note whether the disturbing radio noise disappears. When the source has been located, you can decide upon the method of silencing. If the interference is a steady buzzing sound, a noise filter should be installed in the circuit. An intermittent noise would indicate the presence of static electrically caused by the movements or rotation of some part of the machine, within or against another. This type of interference can be silenced by grounding the machine frame to motor frame with a length of copper wire. Be sure to scrape clean the spaces where the wire will make contact at each end and fasten securely with bolts.-KEN Hadenfeldt.

Here's the transistor portable you've been waiting for. It operates on ordinary pen-lite cells, drives a loudspeaker with plenty of volume, has phone jack output for private listening, automatic volume control for smooth volume, and plenty of sensitivity. No outside antenna is required-and it can also be used as a tuner for a larger amplifier

Small, but powerful, that's the transistor. ized superhet for which step-by-step building instructions are given in this article.

THE circuit diagram of this three-transistor superhet is shown in Fig. 2. The transistor TR1, RCA 2N412, does triple duty. The RF signal ( 550 to 1500 kc ) which it receives from the antenna loop L 1 and antenna tuning capacitor C1A is amplified and mixed with the oscillator signal. The oscillator signal, also generated by TR1, is always 455 kc above the received RF signal.

The oscillator tuning capacitor C1B is ganged to the antenna tuning capacitor so that oscillator and antenna tuning track. The signal through L3 is amplified by the IF amplifier transistor TR2. This transistor is a high-gain, high-frequency GE 2N168A. Diode D detects the signal after it passes through L4. Capacitor C6 filters out the RF signal components so that the signal across volume control R7 is audio frequency (AF). The signal is then passed through R6 and the audio is filtered out so that a dc bias proportional to the strength of the received signal is provided to control the gain of the IF amplifier TR2. The stronger the signal, the lower the gain of TR2. Thus, fading is minimized for reasonably strong signals. This is the automatic volume control (AVC).

The slider on volume control R7 picks off the audio signal for audio amplification. Transistor TR1 performs its third job as the first audio amplifier. It's possible to use the same transistor for the mixing oscillator and audio amplifier functions, since the frequencies are widely separated. The amplified audio output of TR1 appears across transformer L5 and is transferred to the audio output


\title{
Three-Transistor Superhet Portable
}

\author{
By FORREST H. FRANTZ, SR.
}
stage TR3 which amplifies the audio signal for speaker or headphone output.

This receiver has several outstanding features that make exceptional performance possible with only three transistors. The advantage of making TR1 do several jobs, for instance, is apparent. Further, the antenna loop L1 is the Miller 2003 high- \(Q\) loop which has a \(Q\) of 500 and this
unusually high \(Q\) builds up the signal and allows the tuning capacitor to select the desired station with considerable discrimination against interfering signals before the transistors even begin to go to work.

The audio output stage TR3 is transformer coupled to TR1-and two transformer-coupled audio stages have almost as much gain as three! Actually, a considerable amount of the available audio gain of TR1 is not exploited since the emitter bias resistor R3 of TR1 is not bypassed by a large capacitor. A large capacitor would increase the gain but would degrade the fidelity and create a tendency for the receiver to go into regeneration.

Preparing Parts for Assembly. First, cut out and prepare the front panel and the circuit board (Fig. 3). Cut the tuning capacitor (C1) shaft to a length of \(1 / 2\) in., the volume control (R7) shaft to a length of \(1 / 4 \mathrm{in}\). Remove the antenna loop from its mounting by cutting off the ends of the fiber retainer with tin snips; fasten the output transformer (L6) on the loudspeaker (see Fig. 5) by bending the transformer mounting lugs to fit around the magnet frame. A few drops of Pliobond or a similar cement placed under the transformer prior to mounting will steady it against the magnet frame.

Next, solder the connection lugs of the battery holder for series connection as shown in Fig. 4. Use rosin core solder only! Mark the battery end polarities to avoid making mistakes in connections or inserting batteries. Rotate the battery lugs with a pair of pliers and simply solder them together to make connections, and then fill with solder the surfaces of the eyelets which will contact the batteries.

Figure 5 shows the parts and wiring on the back of the front panel. Mount the loudspeaker (SPKR), volume control (R7) and the phone jack ( \(J\) ), and complete wiring as shown. Be cautious in soldering; too much heat can damage the volume control. The same precaution applies to the other components, especially transistors, in subsequent soldering.
The Wiring Board. Top and bottom views of the assembled wiring board are shown in Fig. 6. Fasten L3 and L4 by inserting them in the holes and bending the mounting lugs against the back of the board.

Next, you will mount C1, L1 and L2. (Be careful not to let the screws which hold C1 pass


ALL UNMARKEO HOLES \(\frac{3^{\circ}}{16}\) DIA.

through far enough to touch the plates of the capacitor; use washers or spacers if necessary.) Fasten L1 and L2 with Duco cement, give the cement time to set, then fasten L5 and T1 to the board.

The next step is to solder B of TR1 to terminal 1 on L2, \(C\) to terminal 5 of L3, pass \(E\) through the circuit board, and fasten TR1 against the case of L3 with a rubber band.

The remaining components are fastened to the circuit board as the wiring progresses. Be sure to connect the frame of C 1 and the cases of L 3 and L4 to the common plus battery return (designated by the "ground" symbol in Fig. 2). When circuit board wiring is completed, connect a lead 6 in . long to the common return for later connection to the plus terminal of the \(9-2\) battery. The other lead from the circuit board is a 6 to 8 in . length of wire connected to C1A. The other end of this lead hangs free inside of the case after final assembly. This lead is essentially a short antenna which gives the set additional pick-up.

Final Assembly. There are five lead ends extending from the front panel (Fig. 5). The lead from the switch will connect to the minus terminal of the battery. The other four leads connect to the circuit board. The circuit board is joined to


Battery-holder mountirg in case, and connections.
the front panel by the tuning capacitor's (C1) three mounting screws. Place fiber washers or cardboard spacers \(1 / 16-\mathrm{in}\). thick between Cl and the front panel when you join panel and circuit board.

Check for clearance between the circuit board components and the panel components. Particular items to watch are interference of TR2 with J, C9 with S on F.7 and L6 with SPKR. Place the assembly in the cabinet to check fit and make any necessary adjustments in parts placement.

The leads from the front panel connect as follows: 1) The lead from the junction of R7, \(S\) and \(J\) connects to the circuit board minus line. 2) The lead from \(J\) connects to \(C\) of T3. 3) The lead from the "hi" terminal of R7 connects to the junction of \(D, C 6\), and R6. 4) The center
terminal lead of \(R 7\) connects to the minus terminal of C 7 .
With these connections completed. adjust the slug of L2 flush with or just slightly below the coil form viewed from the back of the assembly. There are two trimmers on C1 which were intentionally eliminated from Fig. 2 to avoid confusion. These trimmers in parallel with C1A and C1B are provided to align the antenna and oscillator circuits respectively for proper high-frequency tracking. Open the antenna trimmer till the trimmer tension is nearly released (minimum trimmer capacity). Turn the oscillator trimmer full closed (maximum trimmer capacity), and then back the screw off \(1 / 2\) turn. Place the knobs on C1 and R7. (You can provide a calibrated dial made of paper and covered with plastic for C1 later if you wish). With S off, connect the leads from the assembly to the battery to complete wiring and assembly. These leads should be about 6 in . long to allow easy removal of the assembly from the case. To prevent the screws which hold the battery holders in place from scratching furniture, fasten rubber grommets to the back of the case with Pliobond cement.
Tune-Up. If you have a milliammeter, connect it across the terminals of switch S . The meter should read between 6 and \(15 m a\) if all is well. Don't worry if the set motorboats when you make this measurement. If the current exceeds 15 ma , look for a short or an incorrect connection. If the current is less than 6 ma , the trouble is probably low battery voltage or an incorrect connection.

Assuming all is well at this point-or that you don't have a meter to make this measurement-

turn the set on and turn the volume control about 7/8ths up (clockwise). Maximum volume does not occur at the full clockwise position of the volume control. This is a normal characteristic of the reflex circuit. (The term reflex is applied to a receiver which uses one transistor or tube to amplify both RF or IF and AF signals). With the volume control turned approximately \(7 / 8\) ths full clockwise, rotate the tuning dial slowly. If you're in a metropolitan area or within about 10 or 15 miles of a large station, you'll probably pick up a signal even though the set is not accurately aligned. But if you don't pick a station up, there's no cause for alarm because the IF transformers (L3 and L4) may be way out of adjustment. If you pick up a station you can feel reasonably sure the wiring is correct. If you can't pick up a station, the presence of noise of any kind from the speaker indicates that at least part of the audio is working properly. In either case; you're ready to try alignment.



The steps in the alignment procedure are: 1) Adjust the IF transformers. 2) Adjust the tuning capacitor trimmers at the high frequency end of the broadcast band. 3) Adjust the oscillator coil slug at the low frequency end of the band. 4) Repeat step 2. A signal source is required to carry out the alignment procedure. This source may be an RF signal generator or it may be an ordinary broadcast receiver if you don't have, or can't borrow a signal generator.

To adjust the IF transformers, connect the high side of the signal source through a .01 mfd capacitor to the stator of ClA (the antenna terminal), and the low side to set ground. With the signal source tuned to 455 kc ., adjust the slugs of L3 and L4 for maximum output. Keep the signal from the source so weak that you can barely hear it (to minimize AVC action). Adjust the volume control to the point where the signal is loudest. The slugs of L3 and L4 are accessible through the holes in their bottoms. Use a small screwdriver, preferably one with very little metal in it such as a radio-TV serviceman's alignment tool.

After IF alignment is completed, disconnect the signal source.

You should easily be able to complete the remainder of the alignment procerlure with broadcast station signals. Tune in a weak station between 1300 and 1450 kc . Increase the antenna trimmer capacity. If this increases the speaker output, adjust this trimmer for maximum speaker out put. If the volume decreases, repeat the procedure.

Next, tune the receiver to a station between 550 and 650 kc . Detune C 1 slightly to one side and adjust the slug of L2 for maximum output. If this output is greater than the previous output, repeat the process till the most sensitive point is found.

If the output is less than the previous output, detune Cl in the other direction and adjust L2 till the point of maximum output is found.

Finally, repeat the alignment procedure at the high-frequency end of the band. This is necessary since the adjustment of L2 has some influence on the high frequency end of the band, too. Capacitor C1 may be tracked across the broadcast band by bending the outer plates of C1A, but the process is tedious and not always worth the effort.

You may experience oscillation at high volume control settings, but this oscillation will occur beyond the actual maximum volume point and is therefore harmless. But if you wish to eliminate \(i t\), add a resistor and .01 mfd capacitor in the volume control circuit as shown in Fig. 7. The


Parts available from Lafayette Radio, 165-08 Liberty Ave., Jamaica 33. New York.
resistance value should be determined experimentally. It will be belween 500 ohms and 1 K in most cases.
This three-transistor portable may be used as an amplifier tuner by connecting a 10 K resistor from C of TR3 to the negative voltage line. This resistor provides dc return for the collector of TR1 when a plug is inserted in the jack. If the amplifier to be used with the tuner does not have a capacitor in series with the input, provide one of about 0.1 mfd capacity. The connection of the 10 K resistance will have negligible effect on the loudspeaker or headphore performance of the set. The Lafayette MS-281 plug fits the jack and should be used in making the amplifier connection cable.

The receiver may be equipped with a calibrated dial to simplify station finding. The calibrations may be painted on the panel face or many be placed on paper with India ink. A sheet of celluloid or clear plastic placed over the dial scale will protect it.

Both the scale and its plastic protector can be held in place by the three screws which fasten the variable capacitor.

The tone and volume of the set can be improved by placing a thin sheet of cardboard between the back of the panel and the components.


Use a layer of thin tape over the magnet surfaces to keep from marring metal surfaces. Location of the mike improves CB transmission.


The mobile ash trays (left) come in various colors. Shock mount the mike (center) with four small pieces of powder puff plastic foam. Completed unit (right) shows slat cut in rear of base to clear cable.


To mount the mike on a table or floor stand, remove the magnets and install a \(5_{8}{ }^{\prime \prime}-27\) inside threaded cable connector coupling ring.

\section*{MATERIALS LIST-MOBILE MIKE}

Amt. Req.

\section*{Size and Description}

1 mobile magnetic ash tray (Sears, Roebuck Stores. 98¢)
\(1 \quad 2^{\prime \prime}\) diameter crystal mike element or phono cable (Lafayette Radio PA-27. \$1.49)
lengths of light.weight mike cable (Belden \(\# 8411\) )
1 Amphenol \(75-\mathrm{MClF}\) mike cable connector. or equal
\(4^{\prime \prime} \quad 22\) or 24 ga. flexible, insulated wire (for connecting mike element to cable)
\({\frac{1}{} 2^{\prime \prime}}_{1 / 18^{\prime \prime}} 0.0\). spring (cut from dime store curtain spring)
\(2^{\prime \prime}\) square of fine-mesh screen. or perforated metal
Opt. coupling-ring having \(58^{\prime \prime} \cdot 27\) inside threads, removed from mike cable connector

\title{
Mobile Mike Mounts Anywhere
}

\section*{A 98c magnetic ash tray makes the base}

\author{
By ART TRAUFFER
}

THE unusual feature of this mike is that you can instantly mount it at any point on a metal surface. If you are on the air with a mobile ham station or a Citizens Band transceiver, the mobile mike will free your hands for driving and be located at optimum distance for good transmission.

If you use a tape recorder in car, office, or shop, you'll find you can hang your mike on any nearby steel object. The magnets will adhere to a cabinet, a pipe, a drafting lamp, or to the steel variety of venetian blind.

If you should be in the rare place where there is no iron or steel, you can still hang the mike by using a keeper plate made of a small scrap of sheet iron or steel. The plate can be taped, nailed, or cemented to a wall, or can be concealed behind thin paper, glass, or vencer.


Solder the mike to the cable first. Then slip the spring over the cable and feed through the hole in bock of the bowl from the inside. Use sponge rubber or foam to shock mount the mike. Wire the cable connector last.


\section*{Dry Battery \\ Tester-Charger}

\section*{A single unit to test and charge flash-}

\section*{light, transistor radio and other small}

\author{
batteries
}

\author{
By W. F. GEPHART
}

RECHARGING or boosting small dry batteries can be worthwhile if you have several flashlights, battery radios or other battery-powered equipment. Properly used, a charger can triple or quadruple the lift of batteries, making the investment in a charger worthwhile. The unit shown in Fig. 1 also includes a tester to show when "recharging" is desirable. (Since dry batteries are essentially primary cells in which a chemical reaction takes place, true recharging is not possible. However, rejuvenation, which will extend the life of the cells, is possible. We'll call this recharging.)

Recharging must be done before the battery is completely exhausted. New batteries usually read about \(1.5 v\) per cell (without load) on the average meter. Under normal load (about 25 ma for a battery made up of penlight cells, and about 150 ma for the larger flashlight batteries) the voltage of a fresh cell should not drop more than \(10 \%\). Thus, a type "D" flashlight battery in top condition ought to test at \(1.5 v\) or better without load, and not less than \(1.35 v\) with a 150


Overall view of charger. Battery clip arrangement may be varied to meet individual needs.


ma load. When it drops below these levels, it should be recharged. Recharging is not too effective when the voltage (with or without load) is below twothirds of the new-condition voltage.

Bear in mind, too, that the battery must be placed in service promptly after recharging. The shelf life of recharged batteries is short (probably due to the limited chemical action that takes


Inside view of unit. All parts are mounted on back of front panel.
place). Even so, the drop in valtage after charging is the greatest in the first 24 hours.

No one seems quite sure what actually happens in dry battery recharging, and some experimenters claim the best results with ac charging voltages, some with dc, and some with a combination. This unit uses unfiltered, fluctuating dc, which seems to give the best results in the shortest time. Filtered dc (secured by placing a large capacitor across rectifier output) seems to give about the same results, but requires a charging time of 12-20 hours.

Here are some results with unfiltered dc and an hour's charging time:
\begin{tabular}{|c|c|c|c|c|}
\hline Type Battery \& Service & & Before Charge & Immediat:ly After Chatge & \[
\begin{aligned}
& \text { 2.5 Days } \\
& \text { Later** }
\end{aligned}
\] \\
\hline Two "D' Cells & No Load & \(\overline{1.35 v}\) & 1.52 r & 1.40 V \\
\hline (Flashlight) & Load & 1.20 V & 1.37 v & 1.35 y \\
\hline Three "D' Cells & No Load & \(1.33 \%\) & 1.40 r & 1.35 y \\
\hline (Strobelight) & Load & 1.15 v & 1.33 r & 1.30 y \\
\hline Two "C" Cells & No Load & 1.35 v & 1.60 v & 1.45 y \\
\hline (Flashlight) & Load & 1.15 \% & 1.50 y & 1.35 v \\
\hline \(9 \vee\) Transistor & No Load & 7.5 & 8.7 r & 8.0 v \\
\hline (Radio) & Load & 2.0 V & 7.2 v & 6.0 v \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
* shelf life time; not in servite \\
\# charged at 9 ma ; all others charged at 100 ma
\end{tabular}} \\
\hline
\end{tabular}

We see that particularly in the case of the transistor battery, recharging is not too effective when the battery nears exhaustion. The charging rate must be fairly low, with a range of 5-30 ma recommended for batteries made up of penlight cells, and a range of \(50-200 \mathrm{ma}\) for the larger cells, such as " C ", "D", and "A" cells.

Schematic Fig. 2 shows that switch \(\mathrm{S}_{3}\) controls the function of the unit. On Positions 1 and 2, used for testing, proper meter multipliers are switched into the circuit for reading the battery voltages, and load resistors are cut in by pressing switch \(\mathrm{S}_{3}\). When switch \(S_{3}\) is on Positions 3 and 4, ac power is on, and the dc output is fed through the meter (with proper current shunts) to the

MATERIALS LIST-BATTERY CHARGER Description
\begin{tabular}{|c|c|}
\hline Desig. & Description \\
\hline Rx & \(56 \mathrm{~K} .1 / 2\) watt (required only if not included in PL) \\
\hline R1 & 20 ohm, 1 watt \\
\hline R2 & 200 ohm, 4 watt potentiometer (Mallory M200PK) \\
\hline R3 & \(1500 \mathrm{ohm} 1 \%\) precision (see text) \\
\hline R4 & 15K 1\% precision (see text) \\
\hline R5 & 10 ohm, 1/2 watt. \\
\hline R6 & 330 ohm, \(1 / 2\) watt \\
\hline R7 & . 66 ohm 1\% precision (see text) \\
\hline R8 & 7.14 ohm 1\% precision (see text) \\
\hline S1 & two-pole. 4-position rotary switch (Mallory 3226J) \\
\hline S2 & SPST push button, normally open \\
\hline S3 & five-pole. 4-position rotary switch (Mallory 1335L) \\
\hline T1 & 6.3v CT 1 amp filament transformer (Merit P.2944) \\
\hline T2 & \(6.3 \mathrm{v} 1 / 2\) amp filament transformer (Merit P-2964) \\
\hline Rect. & bridge-connected seleniam rectifier: a.c input-15 v maximum, at 200 ma (Federal 1016) \\
\hline PL & pilot light holder for NE-5l lamp (Dialco Series 95408X and 942208 have built-in resistor Rx) \\
\hline M & 0-1 milliammeter \\
\hline & Steel cabinet. \(6 \frac{1}{2} \times 71 / 4 \times 9^{\prime \prime}\) (Bud C.1585), NE-51 lamp, 3 knobs, 2 binding posts, battery holders as desired, line cord, miscellaneous hardware \\
\hline
\end{tabular}
battery, with terminal polarity reversed. The proper charging voltage and current is selected by switch \(S_{1}\) and rheostat \(R_{2}\). Two filament transformers, with their secondaries wired in series through \(S_{1}\), provide ac input voltages to the rectifier of \(3.15,6.3,9.45\), and 12.6, which are sufficient for all batteries up to 9 volts. Resistor \(R_{1}\) is a limiting resistor to prevent the current from reaching excessive levels.

All parts (except battery holders and terminals) are mounted on the front panel of a small sloping-front cabinet, as shown in


Figs. 4 and 5. The layout for the panel is shown in Fig. 3, except for the meter mounting screw holes, which should be drilled to fit the meter being used.
The values shown for resistors \(R_{3}, R_{4}, R_{7}\) and \(R_{8}\) are applicable only to a \(0-1\) ma meter with an internal resistance of 100 ohms. This is a standard 1000 ohms/volt movement, but values for other meter movements can be calculated with the formulas at top of the next page for the ranges shown on Fig. 2:


Im is the full scale deflection of meter in amperes, Rm is the internal resistance of meter in ohms.
Wire the primaries of the transformers and pilot light first. Then check polarity of the
secondary leads of the transformers so that series wiring will give 12.6 v . If the polarity is incorrect, the two secondaries will buck each other, and give no output voltage when wired in series. Complete the wiring.

The selection of the number and types of battery holders mounted on the cabinet will depend on individual needs. Two binding posts, wired in parallel with the battery holders, are also provided. Several sets of leads, using the most often needed battery plugs can then be used with the binding posts for those batteries that do not fit in the holders.

To use the unit, plug it in, turn \(S_{1}\) to "Low", \(R_{2}\) to full counterclockwise position, and S3 to " 15 V Test." Put the batteries in the proper holder (or attach to leads), and switch \(S_{3}\) to the appropriate scale and read the no-load voltage. Then press \(\mathrm{S}_{2}\) to read the voltage under load. Resistor Ris provides a 150 ma load with \(1.5 v\), and \(\mathrm{R}_{6}\) provides a load of about \(14 m a\) at \(4.5 v, 18 m a\) at \(6 v\), and \(27 m a\) at \(9 v\). Next, switch \(S_{s}\) to the desired charging current range, and set the charging rate by adjusting \(S_{1}\) and \(R_{3}\).

Generally, charging for an hour or two at the rates mentioned above will be effective. The rate may be increased, but under no conditions should the battery be permitted to get warm. Longer charging times can be used, with varying effectiveness, depending on the charging rate and battery condition, but the unit should be watched. Sometimes excessive charging, either in current rate or time, seems to break the cell down, and the current rises. increasing the damage.

\title{
Flash! RADIO-TV EXPERIMENTER Goes Quarferly in '63
}

\author{
Watch for the Big Spring Edition
}

On Sale January 7, 1963

\title{
Piggy-Back Metal Locator
}

\section*{A one-transistor project for finding loose gold and other buried treasures}

\author{
By JOE A. ROLF, K5JOK
}


A simple generator and probe combine with a portable transistor radio to make this locator.

EVEN the novice builder should be able to complete this simple transistorized metal locator in a few hours, yet it is sensitive enough to detect metal objects buried under6 in . of earth-coupled with any inexpensive transistorized portable radio. The cost of the entire project will be less than \(\$ 8\).

Basically, all metal locators consist of three elements: an RF generator with a sensing


The entire generator fits into a handy Bud Minibox.
probe, a reference oscillator, and a detectoramplifier system. In operation, the frequency of the generator is changed when the probe is brought near a metal object and moves away from the frequency of the reference oscillator. This change in frequency between the two signal sources is detected and indicated by the detection-amplifier portion of the circuit.
From this explanation, it can be seen that even a simple metal locator stands a good chance of becoming an awesome piece of circuitry-that is, until you stop and realize that a transistorized radio already contains most of what you need. If a local radio station is used as the reference oscillator, and the receiver as the detector-amplifier section, the generator and probe is all that you need in order to build a fairly good metal locator.
Construct the Probe Assembly First. This poition, which consists of L2 and a connecting cable, will determine the overall sensitivity of the completed unit. In fact, you may want to experiment by designing your own probe.

Wrap a layer of wax paper around a 7 -in. cylinder and tape in place at the edges. Next, cut a strip of heavy cardboard, or poster pa-


Wind the sensing coil of the probe on a cardboard form and place it in a 9-in cake pan,
per into a \(11 / 4\)-in strip and tape over the wax paper to make a 7 -in dia. coil form for L2. When secured, close-wind 40 turns of \(\# 26\) enameled wire on the form, starting about \(1 / 4\) in from one edge. As turns are added, secure them with small pieces of tape. Tape the beginning and end leads in place, leaving them about 6 in . long, and give the completed coil several coats of \(Q\)-dope. When the coil has dried sufficiently, the wax paper will allow the form to be slipped off the cylinder easily. Glue the completed coil to a \(73 / 4-\mathrm{in}\). cardboard disk as shown in Fig. 3.
Mount the disk inside a \(9-\mathrm{in}\). aluminum cake pan, and secure it by means of the washer and screw which mount the handle bracket shown in Fig. 4. Next, attach a \(4-\mathrm{ft}\). broom or other handle to the probe.

The Cable, which connects the probe to the RF generator, is a \(31 / 2-\mathrm{ft}\). piece of \(\mathrm{RG}-59 / \mathrm{U}\) 72-ohm coax. It connects to the leads of L2 at one end, and plugs into the generator at the other by means of a phono plug. This cable forms part of the capacity of the probe and should not be longer than 4 ft . at the maximum. Tape the cable to the handle of the probe to prevent it from becoming tangled


Make a bracket for the handle and attach it to the cake pan.
in operation.
Construct the Generator with the help of Figs. 5 and 6. Mount the transistor, L1, R1, and C2 on a Bakelite terminal board as shown in Fig. 5. Then bolt the board to the bottom of the box. The terminals are \(2-56 \times 1 / 4-\mathrm{in}\). screws secured to the board.

Mount the tuning capacitor C2 and the on-off switch S1 side by side, and J1 to the end plate of the box. Note particularly the pin jack next to J1. This jack can be omitted, but was included as a possible means of coupling to the receiver when needed. It is not necessary to make a direct circuit connection to this jack, as sufficient coupling will be obtained by placing the lead from J1 nearby. The battery B1 fits snugly at the opposite end of the Minibox.

Testing the Unit. When wiring is completed, plug the probe into J1 and turn the unit on. The circuit can be checked by tuning the transistor radio to a moderately strong station at the low end of the broadcast band and rotating C1 slowly back and forth. A whistle will be heard when the oscillator is tuned across the station, indicating that the unit is functioning properly.


Mount the parts on the Bakelite board before putting it into the cabinet.


Internal view showing components and wiring.


MATERIALS LIST-METAL LOCATOR
Desig.
B1 9-v. transistor battery (Eveready \(\# 216\) ) or equivalent
Cl \(\quad 220 . \mathrm{mmf}\) mita or ceramic tapacitor
C2 \(\quad 365 \cdot \mathrm{mmf}\) variable capacitor, miniature transistor type (Argonne) or equivalent
female ohono chassis jack (Switcheraft 3501.FP) or equivalent
male phono plug (Switcheraft 3502) or equivalent 1.mh RF choke (National R. 501 mh ) or equivalent 40 turns \#26 enamel wire closewound on 7-in. form as described in text
\(1000 \mathrm{ohm}, 1 / 2\) watt carbon resistor
SPST slide switch
2N412 RCA transistor, or equivalent
RG-59/U coaxial cable
phone tip jack
CU- 2116 Bud Minihox, or equivalent
bakelite board, \(1 / 8 \times 15_{8} \times 2!/ 4\) in.
\(2 / 56 \times 1 / 4\)-in. screws, scrap aluminum, knob, 9 -in. cake pan, small battery clip with leads

The generator can be attached piggy-back to the transistorized receiver by means of two heavy rubber-bands. Tune the receiver to a station at the low end of the broadcast band, as when testing, and rotate C1 back and forth until the generator signal is zeroed
with the station's frequency. This will be evident when the whistle disappears, but reappears when C 1 is moved either way.

Next, slowly move the probe back and forth over a fairly large metal object. You will note that the whistle will reappear as the probe approaches the metal. A little practice in tuning the oscillator and moving the probe will be necessary for the best results. In some cases, sensitivity will be improved if the antenna jack of the receiver is connected to the pin jack with a short piece of insulated wire.

The depth at which objects can be detected with this locator is determined by the type of earth and the size of the object. Large metal objects can be detected at greater depths than smaller objects. Greater depths will be possible in dry sandy earth than in heavy moist earth. With practice, however, it is actually possible to get an idea of how deep and how large the object is that you've located-a good thing to know in case you care to dig it up!

\section*{Iron-Core Choke and Transformer Meter}

Home-built unit will measure inductance, saturation currents, and impedance ratios accurately


Front view of unit which, with VTVM, will make various iron core component measurements.

\author{
By W. F. GEPHART
}

|RON core chokes and transformers, used in practically all types of electronic equipment, present some real problems to the designer and serviceman, which can be solved by the meter in Fig. 2. When current is flowing through a choke or a transformer, inductance and impedance are somewhat difficult to measure. Furthermore, manufacturing tolerances are broad in most cases, and actual values are often appreciably different than labeled values.

In power supply filter design, it is impor-
tant to know the inductance of filter chokes at the current to be drawn, and also to know the exact inductance of chokes and reactors when designing low frequency resonant circuits. One circuit in the unit will permit the measurement of inductance at various currents.
Another problem frequently encountered is the measurement of AF transformer impedances. The primary impedance depends on the load impedance across the secondary; and printed ratings, when available, usually refer to a specific primary or secondary impedance. Junk box or unlabeled transformers can be


4
T2 AND R8 MOUNTING DETAIL
used for various purposes if their impedance ratio can be determined. A second circuit in the unit permits this measurement.

The unit also provides a circuit for testing power transformers and other transformers that might be used as power transformers. In transistor circuits for instance, small audio or surplus transformers are often used as power transformers.

Although the transformer meter is designed to be used with an external VTVM, an inter-
nal VTVM can be wired-in easily enough. The unit in Fig. 2 includes internal milliammeters, but can be built to use external ones. The extra functions are by-products of the components required for the inductancemeasuring circuit, and require few additional parts.

Construction. The most expensive part of the unit is the variable autotransformer, which is used for all its functions. Most of the remaining parts can be found in a junk box. Meters used in this model are surplus, but low-cost moving vane meters can be used, since a high degree of meter accuracy is not required.

Build the unit according to the panel layouts (Figs. 3 and 4), the schematic (Fig. 5), and the pictorial wiring diagrams (Figs. 6, 7, and 8). The power transformer mounts on studs behind the panel. This eliminates the need for a chassis and related wire holes and grommets. All other parts are panel-mounted or connected between tie points.

NOTE: In making tests, the unit being tested should be isolated from other equipment, since the voltage on the power transformer binding posts is connected directly to the ac line.

Inductance-Measuring. The simplified in-ductance-measuring circuit, with the actual circuit as related to the unit (Fig. 9), consists of a variable, unfiltered dc voltage source, a milliammeter, and a load resistor. The choke being measured is connected across the voltage output in series with the resistor and milliammeter. The exact voltage available is unimportant; any amount sufficient to cause readable current to flow through the resistance of the choke and resistor will do. Any power transformer furnishing around \(250-350\) volts dc at the maximum current to be tested will work.

To make the test, measure the ac voltages across the choke and across the resistor with an ac VTVM. (This voltage is the ac component of the fluctuating, unfiltered dc from the power supply.) The inductance of the choke at the particular dc current indicated can then be calculated by the following formula:
\[
L=\frac{\mathrm{E}_{\mathrm{L}} \times \mathrm{R}}{\mathrm{E}_{\mathrm{R}} \times 2 \pi-\mathrm{f}}
\]
\(\mathrm{E}_{\mathrm{L}}\)-voltage across choke
\(\mathrm{E}_{\mathrm{R}}\)-voltage across resistance
R-resistor ohms
f-120 cycles
\(\pi-3.1416\)
The accuracy of this formula requires that the resistor have a resistance 3-6 times the dc resistance of the choke. It must also be large enough in ohms to provide easily-readable voltage drops, and large enough in wattage to carry the maximum current to be used in the test. For these reasons, two resistors were provided, as shown in Figs. 5 and 9.


The high current range (up to 200 ma ) uses a 1000 -ohm resistor, and is primarily used for filter chokes where the dc resistance is usually 350 ohms or less. The low current range (up to 20 ma ) has a \(30,000-\mathrm{ohm}\) resistor, for use with audio reactors, whose resistance may go as high as 1000 ohms. While this ratio is in excess of that mentioned above, the high value is needed to get readable voltage readings at low currents.

With these two ranges, meter M1 and related shunts, R5 and R6, were chosen to give full scale readings at 20 and 200 ma . Other ranges ( \(0-15\) and \(0-150 \mathrm{ma}, 0-25\) and \(0-250 \mathrm{ma}\), etc.) may be used if other meters or shunts are available.

Since the resistance values are fixed, and the value of \(2 \pi \mathrm{f}\) (for 120 cycles) is 753.98 , the formula can be simplified to:
\[
\mathrm{L}=\frac{\mathrm{E}_{\mathrm{L}}}{\mathrm{E}_{\mathrm{K}}} \times \mathrm{K} \quad \mathrm{~K}=\frac{\text { Resistance of } \mathrm{R}}{753.98}
\]

To determine the value for K for each range, use the actual measured value of the resistor instead of the marked value. Final results will depend on:
1. The accuracy of the resistance measurement used in determining \(K\).
2. The linearity of the VTVM used, particularly when switching from one range to another.

3. The accuracy of the readings taken and the calculations made.
The results of these tests may be substan-

tially different than the values marked on chokes. Figure 12 shows the results of a test on a standard production run filter choke, showing the measured inductance (at rated current) about \(10 \%\) under the rated value. However, in view of manufacturing tolerances, stated by one company to be "from \(-15 \%\) to \(+50 \%\)," these results seem to be in line, and are probably more accurate than marked value.

Impedance-Measuring. The simplified im-pedance-measuring circuit and actual circuit, is shown in Fig. 11. Connect 1 volt ac across the secondary, which is set by T1, and read on the VTVM when S 4 is on "Sec" ("1v STD" on panel). Throw the switch to "Pri" and read the voltage across the primary. The square of this voltage reading is the impedance ratio of the transformer, and the impedance required across one winding to match a certain impedance in the other winding may be determined by the following formula.
\[
\mathrm{Z}_{\mathrm{p}}=(\mathrm{V})^{2} \times \mathrm{Z}_{\mathrm{s}} \text { or } \mathrm{Z}_{\mathrm{s}}=\frac{\mathrm{Z}_{\mathrm{p}}}{(\mathrm{~V})^{2}}
\]
\(Z_{\mathrm{y}}\),-primary impedance
\(\mathrm{Z}_{n}\)-secondary impedance
V -voltage reading across primary with 1.0 volt ac across secondary
For example, with 1 volt across the secondary of an unmarked output transformer, suppose you get a reading of 38 volts across the primary. This squared equals 1444 . If this transformer uses a 3.5 -ohm speaker, use the formula for \(Z_{v}\) above, and multiply 1444 times 3.5. This equals 5054 , which would indicate a proper primary impedance around 5000 ohms. Readings made this way may not equal


Back-of-panal view showing chassis-less construction.
marked values, since manufacturing tolerances, except for some hi-fidelity transformers, are high.

Variable AC Voltages. The third circuit in the unit is shown in simplified form in Fig. 10. This merely supplies a metered, variable ac voltage for transfarmer checks, which can be used in several ways.

Often audio transformers can be used as power transformers for low current transistorized devices. For example, take an output transformer with a 5000 -ohm, \(50-\mathrm{ma}\) primary and several secondary taps, such as \(4,8,16\), and 500 ohms. By rather involved calculations, the standing primary current could be determined if connected across the ac line, and the output voltage from the secondary taps.
It is much easier, however, to connect the primary to the ac line through the variable transformer, connect the VTVM to the secondary, and read the output voltage. As the input voltage is increased toward the line voltage, you can also read the no-load primary current to make sure that it does not exceed rated value.

In this test, the scale on the autotransformer dial shows the approximate input voltage as it is increased. In hybrid equipment, you can sometimes secure transistor power voltages by connecting an audio transformer to filament windings of the regular power transformer in order to get odd ac voltages.
The surplus market includes many 400cycle transformers that overheat if used at rated voltage on 60 -cycle current. However, they may be used at lower voltages when the iron core does not become saturated. To determine the permissible input voltages for these units, connect one winding to the variable input voltage terminals, and gradually increase the voltage, watching the current


being drawn. When the current levels off and stops increasing (as the voltage is increased) the core is saturated, and the maximum 60 -cycle voltage is being applied.

In this test (and in the choke test), where current ratings are unknown, watch for heating of the unit being checked. Generally speaking, an iron-core unit can be operated at any current that does not cause excessive heating. If the windings, after five minutes' operation, are only warm (as opposed to hot)

to the touch, the current is probably within operating range. In cased units, remove the cover, and feel the actual windings for this "touch" test.

A dual-range ac milliammeter is best for this latter test, and the unit shown uses a \(0-50\) ac milliammeter M2 with a shunt R2 to give a 0-100 ma scale. If both low ( \(0-20 \mathrm{ma}\) ) and high ( \(0-100 \mathrm{ma}\) ) currents are to be read, two ranges are desirable because of the nonlinearity of ac scales, and the crowding at the lower end.

\section*{Get a Third More from Your Meter for \$ 1.50}

Experimenter's most commonly used checking instrument, the vacuum-tube voltmeter, is even more useful when used with on RF crystol probe.

\author{
By JOE A. ROLF, K5JOK
}


FEW experimenters would be without a VOM or VTVM for long, yet how many ever use these instruments to full advantage? The accessory probe in Fig. 2 costing as little as \(\$ 1.50\) will add a third range to your meter and enable it to do some rather amazing things.

This time-proven RF crystal probe can be easily constructed or purchased at your local supply house. Here is a brief description of its circuit, as well as information on how to build your own probe:

The two most widely used circuits are shown in Fig. 3. In Fig 3A, the .01 mfd capacitor is a de isolating capacitor that permits only ac to appear across the IN34 diode which rectifies the signal so that only positive peaks are present at the resistor. The \(5-\mathrm{meg}\) ohm resistor in series with the 10 -megohm internal resistance of the VTVM forms a voltage divider and .707 of the peak voltage (RMS value) appears across the VTVM input. Distributed capacity of the cable and filtering action of the resistor provide pulse


Two crystal probes constructed by the euthor. They will meosure impedance, resononce, and stage gain, as well as troubleshoat receivers and transmitters.
smoothing and the RMS voltage from the probe can be read on the VTVM dc scales.

This circuit, designed for use with a VTVM, is the most practical and useful of the two shown. RF voltages of up to 20 volts at frequencies up to 200 mrc can be measured with \(10 e_{r}^{m}\) accuracy. This probe features low input capacity ( 3.5 mmfd ), plus high ac input resistance. Input resistances will range from .25 megohm at 500 kc to about 25,000 ohms at : 00 mc . This means that when used in RF circuits, there is a minimum of loading or detuning.

The circuit in Fig. 3B is used with VOMs of 5,000 to 20,000 ohms-per-volt sensitivity. As in the preceding description, the 500 mmfd capacitor is for dc blocking, but the 1N34 diode in this probe allows positive peaks to charge the .005 mfd capacitor, which in turn discharges through the VOM to give a current reading.

The circuit has two serious disadvantages. It must be calibrated to read voltage and its input resistance is quite low as compared to the VTVM probe. 1t is still a very handy VOM probe, however, since it will indicate the presence of an irregular voltage of almost any waveshape and will show changes in the amplitude of such a voltage.

Housing for the Probes. Each unit in Fig. 2 was built for less than \(\$ 1.50\) each. One was constructed and slipped inside a piece of \(1 / 2-\mathrm{in}\). ID bakelite tubing: the other, using the circuit in Fig. 3A, was housed in an empty plastic "Bioket" throat lozenge bottle. Interior of this probe is shown in Fig. 4. Either circuit can be housed in a metal container to



Home-built probe as it oppears with housing removed.
simplify shielding, but there is increased danger of shorting the components when used in tight places.

The main construction considerations are insulation of components from one another and shielding. With the smaller probe, the author slipped a large piece of insulated tubing over the probe components, then inserted everything into a length of shielding from RG/8U coax. Components of the larger probe were insulated and wrapped in a piece of tinfoil as in Fig. 4. With careful construction, a home-built probe will be as effective as the commercial version at a fraction of the cost.

Now let us examine a few applications in which the RF crystal probe can be used. In the following examples, the procedures outlined are for use with a VTVM and probe, or with the VTVM ac probe at audio frequencies. Where a relative reading is required, or where small ratios or differences in percentage are involved, a VOM with probe can be used with fair accuracy. Remember, however, that the low input resistance of the VOM will result in circuit loading which must be taken into account.

Measuring Impedance. Figure 5 shows a simple, but very useful method of measuring impedance. The impedance to be determined is shown as a "black box," since it can be any type of circuit having impedance . . . an antenna, transformer, choke, or even the input of an amplifier. A resistor, usually 1 K , 10 K , or 100 K , is connected in series with the unknown impedance across an ac source capable of delivering \(1-20\) volts.

Assume that the ac input is a 1 mc signal and that voltage measured between points A

and \(B\) with the probe is 12 volts. Next measure the voltage between points C and B . It will be 2 volts. These readings indicate a 2 volt drop across the unknown impedance, and 10 -volt drop across the 1000 -ohm series resistor. Voltage drop across the resistor is five times the voltage drop across the unknown impedance. Therefore, the unknown impedance must be one-fifth the resistance of the 1,000 -ohm resistor, or 200 ohms, at 1 mc . To vary this circuit, you can insert a variable resistor in place of \(R\) and adjust it for an equal voltage drop with the "black box." The resistance of \(R\) is then equal to the impedance of the box.

Resonance, Capacity, Inductance. By measuring the voltage across a tuned circuit, you can determine the resonant frequency of the circuit, since voltage is greatest at resonance. In Fig. 6A a variable RF source with from 1-20 volts output is coupled to the circuit by a small link. When the generator is tuned to the resonant frequency of the circuit, there will be a large increase in voltage.

Assume, though, you have a tuned circuit which is resonant somewhere near 50 mc , but an RF generator that will tune only to 30 \(m c\). The resonant frequency of the circuit can still be determined by tuning the generator from 20 to 30 mc . The generator's second harmonic ( 40 to 60 mc ) will give sufficient indication when resonance is reached.

With the above method, it follows that unknown capacity and inductance can also be determined. If a \(10-\mathrm{mmfd}\) capacitor and an unknown inductance resonate at 50 mc , it is

a simple matter to calculate the unknown inductance, or vice versa.
A modification of this particular circuit is the field strength meter. If the tuned circuit is shielded and a short antenna is attached at point A , the circuit plus the probe and meter compromise a simple but effective field strength meter for antenna measurements and transmitter adjustment.

Determining " \(\mathbf{Q}\) ". An RF probe and RF generator can be used as in Fig. 6B to determine the " \(Q\) " of a coil or tuned circuit. This method is not as accurate as could be desired, but is quick and easy, and will give a good approximation. Couple a 1 - to 20 -volt RF source to the coil under test, with the probe measuring voltage across the inductance. Tune the generator until maximum voltage reading indicates the resonant frequency of the inductance with distributed capacity. Then tune the generator down in frequency until the voltage drops to \(71 \%\) of its maximum value.

Note the difference in frequency and tune the generator above the resonant point until the voltage again is \(71 \%\) of the maximum value. Add this frequency difference to the one previously noted and divide the sum into the resonant frequency. The resulting quotient is the " \(Q\) " of the coil.

Measuring Amplifier Gain. The actual gain of an amplifier, a valuable piece of information for design and service work, can be determined with an RF crystal probe. Figure 7 shows a simple RC coupled amplifier. Suppose that the probe shows .5 volt RF
present across the grid input resistor R2, and 10 volts RF across the load resistor R5. Output of this particular amplifier is 20 times the input, meaning that the stage has a voltage gain of 20 .

In service work, this figure can be compared with the manufacturer's service information to determine how well the amplifier is functioning. In design, this figure can be used for comparison with other circuits, or to determine overall gain of several stages.
Troubleshooting. Condition of the bypass capacitors in Fig. 7 can be checked by measuring the RF voltage across them with the RF probe. If you place the probe across C3, and find that RF is present between R3 and ground, there is evidence that C3 is either open or too small, since the purpose of this capacitor is to bypass all RF to ground. You can similarly check \(\mathrm{C} 1, \mathrm{C} 2, \mathrm{C} 4, \mathrm{C} 5\), and C 6 .

Measurement of RF voltages in receiver converter stages, or in the oscillator-driver stages of transmitters, can be helpful both in troubleshooting and tuning. To determine if an oscillator is functioning, connect the ground lead of the probe to the chassis and bring the tip near the oscillator circuit. The probe will detect any RF present, and the stage can be tuned for maximum performance without circuit detuning.

Only the most common applications of the RF crystal probe have been covered. In any case, you can see that addition of such a probe to your meter is a good investment in that it extends the meter's usefulness far beyond its normal range.

\section*{In-the-Circuit Testing for RC Bridges}

\section*{A simple modification to increase the versatility of your condenser checker}

\section*{By W. F. GEPHART}


Only visible change on a modified Eico 950 RC checker is the small aluminum plate and switch at upper lefi on panel.

MANY shops and experimenters have tuning-eye condenser checkers which can have greatly increased utility with a few simple changes in their circuits (Figs. 1 and 2).

Such units as the Heathkit C-3 and Eico 950 provide an accurate means of measuring capacitance, leakage, and shorted condensers out of the circuit. Due to resistance that may be in paralle! with the condenser, however, other units such as the Heathkit CT-1 or Eico 955 are required to check condensers in the circuit.

Changes you can make will enable the regular checkers to do the in-circuit testing and still retain their original advantages of ver-
satility and accuracy for the out-of-circuit measurements
Short and Open Tests. The in-circuit test principles are shown in Fig. 3.
In the short test, the grid of the eye tube is connected to a voltage divider with high voltage across it, while the condenser under test is connected between grid and ground. If the condenser is good, there will be a voltage drop between grid and ground (across the condenser), causing the eye to close. If it's shorted, the grid is at ground potential and the eye will open.
In the open test, connect a high frequency signal to the grid through the condenser under test. If the condenser is good, it will


A look behind the panel of same checker discloses that most parts required for the modification are mounted on an aluminum angle in upper right corner.
pass the signal and place an RF voltage on the grid, causing the eye to close. If it's open, the signal will not pass, there will be no voltage on the grid and the eye will open.

Resistance in parallel with the condenser will have little effect on these tests, as long as it has an appreciable value of 25 ohms or more. In the short test, the resistance is merely in parallel with the grid resistors, while in the open test, the reactance of a good condenser to the high frequency signal would be much less than any appieciable resistance.

Requirements of the Modification include a tube, coil, rotary switch, choke, and a few condensers and resistors. In addition, the Heathkit C-3 needs a small transformer to


OPEN TEST
provide filament voltage without overloading the existing transformer windings.

The schematic in Fig. 4 indicates connections for both the Heathkit C-3 and Eico 950. The same circuit may also be used with such testers as the Knight 503, Cornell-Dubilier BF-60, Pace C-20, etc., by referring to points of connection of the three-position switch. Essentially, these switch connections are:

Arm of A section: common capacity birding post.
Terminal 1 of A section: wires that went to the above.
Arm of B section: positive capacity binding post.
Terminal 1 of B section: wires that went to the above.
Arm of C section: grid pin of eye tube.
Terminal 1 of \(C\) section: wires that went to the above.
Mounting the New Parts. In the Eico 950, the switch was mounted in the upper left corner of the panel, as in Fig. 1. You can make an aluminum plate to cover the lettering on the panel, and place decals on the plate for the new lettering. A small aluminum chassis mounts on the back of the panel as in Fig. 2 to hold the tube and coil. The switch holds it in place.

Modifying the Heathkit C-3 is more difficult in that drilling must be done on the original chassis. You can mount the switch between the eye tube and the power factor control. Mount the tube and coil on the original chas-


MATERIALS LIST-IN-CIRCUIT MODIFICATION
Size and Description
Desig.
R1
R2

C1. C2 \(20 \mathrm{mfd}, 150\)-volt electrolytic capacitors
C3 \(\quad 7.5 \cdot \mathrm{mmfd}\) ceramic disk capacitor
C4 \(\quad 200 \cdot \mathrm{mmfd}\) ceramic disk capacitor
C5 \(\quad .01 \cdot \mathrm{mfd}, 200\)-volt capacitor
L1 21.8-mc converter IF transformer (Milier \#6185)
RFC 2.5.mh RF choke
SR1 \(\quad 65 \cdot \mathrm{ma}\). selenium rectifier
S1 3-pole, 3-position rotary switch (Mallory 3234J)
V1 6C4 tube
Part below required for Heathkit C. 3 and other units where original transformer filament winding is insufficient for additional tube:
Tx \(\quad 6.3\)-voit, .5-amp filament transformer (Merit P-2964)
sis in a front-to-back line between the eye tube and main control. The small filament transformer can be installed in a vacant space under the chassis, in back.

Operation. Hold the test prods across the condenser being tested, by plugging them into the regular CAP terminals. Set the new switch to "short," and then to "open." If the eye tube shadow opens in either case, the condenser is bad-either shorted or open, depending on the position of the switch.

To measure capacity, leakage, or resistance as originally provided for by the bridge, set the new switch at "bridge." When making this test, the condenser being checked should be disconnected from the equipment.


\section*{Parts Holder}
- A work bench can become a cluttered mess during the course of a construction project. As a result small parts become misplaced and frequently become hidden under schematics and tools. To avoid lost time, stick resistors, capacitors, and other small parts in plastic foam. This precaution will also prevent small parts from being pushed off the bench accidentally during the conduct of a construction effort. Plastic foam is also useful for parts storage.-F. H. Frantz.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{Superhet CB Transceiver}

An improved version of the HE-15 series citizens band transceivers is the Model HE15B with eight crystal-controlled transmitting channels accessible by removing a small front plate. Unit has 5 watts input, 3 -way function switch, planetary vernier tuning, variable noise limiter, indicators for power "on" and RF power, connections for 115 -volt ac line and 6- or 12 -volt dc external power supply.

Receiver is tunable over entire 23 -channel band. The transceiver measures \(101 / 4 \times 51 / 2 \times\) \(63 / 8 \mathrm{in}\). and tubes include 2 6AUBA/6E8A, \(6 A L 5,6 \mathrm{~V} 6,12 \mathrm{AX7}\), and 6AW8. Priced at \$59.50.--Lafayette Radio Electronics Corp.,


Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.


\section*{CB Crystal Switcher}

This new crystal switcher increases available transmitting channels on citizens band transceivers. The Model CS-6 switcher has quick pushbutton selection, with a plastic "channel identification" plate above the buttons so that user can identify each channel by marking in the number with a crayon. Plate can be wiped clean and remarked if crystal is changed.

Unit attaches to either fixed or mobile Regency transceiver, includes case with satin nickel-plate finish and measures \(61 / 4 \mathrm{in}\). wide, 3 in . deep and \(11 / 4 \mathrm{in}\). high. Priced at \(\$ 19.95\) net, without crystals.-Regency Electronics Inc., Dept. RTE, 7900 Pendleton Pike, Indianapolis 26, Ind.

\section*{FM Range Extender}

Primary reception area of FM tiners and FM radios is said to be doubled by this new FM antenna amplifier, to improve the new multiplex reception and add characteristics of high fidelity sound to inexpensive tuners. Offering a high gain of 20 db minimum over the entire FM band, the Model FMX onetube antenna amplifier eliminates background noise and signal drift.

The unit is intended for home installation anywhere between antenna and tuner-in attic, closet, or on any wall or flat surface where a 117 -volt 60 -cycle outlet is available. It is designed for all-day continuous operation on current similar to that used by a clock.

Weighing slightly more than 2 lbs ., the amplifier uses the new 6DJ8 frame grid tube

and has a shut-off switch for disconnection when not in use for a long period. Priced at \(\$ 29.95\).-Jerrold Electranics Corp., Dept. RTE, 15th and Lehigh Ave., Philadelphia 32, Pa.

\section*{LOOKING OVER NEW PRODUCTS}


\section*{Portable FM-AM Radio}

Powered by four C-type cells, this ninetransistor, portable FM-AM radio features pushbutton controls for "off," FM, and AM, a high-ratio slide rule dial, \(3 \times 5\)-in. speaker, earphone, and built-in handle. Two \(22-\mathrm{in}\). collapsible telescopic antennas are used for FM, built-in ferrite loop for AM.

In addition to the nine transistors, the circuit includes four diodes and a varistor. Unit is sized at \(97 / 8 \times 53 / 4 \times 21 / 2\) in., and priced at \$49.95.-Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.

\section*{No-License 2-Way Radio}

New desk model Miniphone 600 makes it possible to transmit and receive messages between your office or switchboard and any number of men carrying Miniphone 400 shirt pocket walkie-talkies up to three miles away, and without FCC licenses.

Fully transistorized units operate on single low-cost battery, have crystal-control transmitter and superhet receiver, automatic noise limiters, and unbreakable metal cases.

The " 600 " uses a plug-in antenna which can be placed inside to obtain greater range. The " 400 " may be used with a snap-on flexible antenna for pocket paging or with a built-


\section*{Epoxy Compound Cold Solder}

A silver conductive epoxy compound solder that cures in four hours has been developed for use at low temperature on components which are sensitive to heat. Anchor Shurbond 102 bonds firmly to metallic or non-metallic surfaces, has claimed shear strength of 3200 psi and volume resistivity approaching that of metals.
Since no flux is used, there is no contamination or residue problem. A vailable in paste form with liquid hardener, it offers new bonding possibilities with dissimilar metals in applications where conventional soldering or brazing have proved ineffective.-Anchor Alloys. Dept. RTE, 968 Meeker Ave., Brooklyn 22, N. Y.

in telescoping antenna for longer range. The units are priced at \(\$ 99.50\) for the " 600 " and \(\$ 89.75\) for the " 400 ," which is only 1 in. thick and weighs but 10 oz.-Electra International Co., Dept. RTE, 1346 Foothill Blvd., La Canada, Calif.


\section*{20-Tip Soldering Iron}

Originally developed for electronic equipment manufacturers, the versatile Penline120 is now available to home craftsmen through major dealers. Its 40 -watt heater assembly is featured as ready for use with 20 different, interchangeable tips.-General Electric Co., Dept. RTE, Schenectady 5, N. Y.

\section*{LOOKING OVER NEW PRODUCTS}

\section*{Transistor Wireless Intercom}

Completely transistorized and portable, this wireless intercom draws no more electric power per station than an electric clock. Operating from any ac outlet or de power source, it serves as a two-way communicator in home, factory, office, or between nearby buildings on the same power line. It can also be used as an electronic baby sitter by setting the press-to-talk button on "lock." To prevent missed calls, the volume control cannot be turned below an audible level.

Due to the low power and a "squelch" circuit, this new Knight-Kit needs no on-off switch, has no hum, and is virtually heat-free. Each unit is a "master," housed in an eggshell white or oxford gray moulded plastic case, \(3 \times 81 / 4 \times 53 / 4 \mathrm{in}\). Additional units may be added to the system.

The two-unit kit (\#83Y991) is priced at \(\$ 45.90\), including all parts, construction man-

ual, wire, and solder. Single-unit kits (\#83Y992), to expand the system, are offered at \$22.95-Alhed Radio Corp., Dept. RTE, 100 N . Western Ave., Chicago 80, Ill.


\section*{Noise Eliminator}

Planned as a noise eliminator for all superhet transceivers or receivers, the "Squelcher" effectively reduces noise from ignition systems and other sources, and quiets the receiver when no signal is being received. The Madel HE-55 is especially designed to inerease sensitivity of mobile transceivers when operating in traffic. Circuit is considered hum-free and uses two tubes: 6AL5 and 12AX7.

The blue-gray perforated case has a satin aluminum faceplate and weighs \(11 / 4 \mathrm{lbs}\). Unit is furnished with instructions for installation and operation, plus cable, for \(\$ 10.95\).-Lafayette Radio Electronics Corp., Dept. RTE, 111 Jericho Turnpike, Syosset, N. Y.

\section*{TV-FM Antenna Splitter}

Simultaneous reception for teievision and an FM receiver from a common antenna, without interference or loss of signal to either set, is offered by the Model TX-FM antenna splitter.

This small band pass filter in an unbreakable housing, separates FM from television frequencies, and filters the FM frequencies ( 88 to 108 mc ) through to the FM set. The unit is intended for use with an ordinary broad band VHF television antenna and designed to provide a high degree of signal isolation. Price \$5.95.-Jerrold Electronics Corp., Dept. RTE, 15th and Lehigh Ave., Philadelphia 32, Pa.


\section*{Coming in the Oct. Issue}

17 Proven SGEINGE FARR PROJEGTS

\section*{SCIENCE and}

The P-51
Ooes Civilian
Surplus BOEING TURBINE

Turbo-Powered Hot Rod Ford

\section*{All-Purpose}

\section*{Car, Boat Tachometer}
\(\qquad\)
Soft-Landing Rocket System

Checking out the VOLVO P-1800
"The monthly magazine for craftsmen"
Building a

\section*{MOTH SAILBOAT}

\section*{Power Paint Your House}

Servicing Auto Chokes

\title{
On Sole
} AUGUST 28th

AT AIL NEWSSTANDS

ALL TYPES

\$27 PER 100

NATION-WIDE RADIO \& TV
ELECTRON TUBES 1-YEAR GUARANTEE ON ALL TUBES!

\section*{ALL TYPE8} 30
\(\$ 27\) PER 100 - BRAND-NEW - FACTORY SECONDS • USED TUBES

 HEST BOR LESS! TRY THE No substitutw Fur Experlence:
NATION.WIDE ia dasion uf NAMOH BlRANO FI.ECTRI 1 has MA.IOH HILASI EM.ECTRIC has
"DO-IT-YOURSELF"' At \(1 / 5\) The Origimal cont! \$36.95 shipped Ralway PAYS FOR ITSELF IN ONEMONTH OR LESS: Ideal For cuper-Marketn \& Druk Stores.
Completely Heconaltioned. Completely Heconditioned:
These Machinem Have Up-To-
Date ("harts, Date 'harts. IAghted Back \& Stores Up To 300 Tubes.
- Complete CONSOLES KNOD TO - Complete cover - No Eurned Out Picture Tubes Or Transformer Southaction oukranteed or Shurpon hailwiy Expresis,
F.o.f. \(5^{10^{\prime \prime}-12^{\prime \prime}-14^{\prime \prime}}\) \(6^{\prime \prime}-17^{\prime \prime}-19^{\prime \prime}-20^{n}-28^{\prime \prime}\) \(26^{\prime \prime}-17^{\prime \prime}-19^{\prime \prime}-20^{\prime \prime}-21{ }^{\prime \prime}\)
515.95 (18)

ONE YEAR GUARANTEED Priced As Low As 4 Ge Per inch

ALL PICTURE TUEES Send tor NATION-WIOE's Com. plete Picture Tube List.

\section*{AII Puppose SHOP TACHOMETER}


Motor Speeds


Drilling Speeds


Lathe Culting Speeds

Here is a real surplus scoop that we're anxicus to share with you. The components of this kit if purchased individually cost over \(\$ 50.00\). Yet because of a surplus windfall we're able to send it complete to you postpaid for only \(\$ 16.95\). Once more this tachometer is guaranceed to outperform any \(\$ 50\) tachometer available today or your money will be refunded.

\section*{MEASURES 0-15,000 RPM IN 3 RANGES}

\section*{Use it to measure speeds on:} - tape recorders - lathes - cutting TOOLS - KART ENGINES - MODEL PLANE ENGINES - HIGH SPEED DRILLS - APPLI. ANCE MOTORS - PULLEY BELTS - AUTO ENGINES - MANY OTHER USES


SCIENCE and MECHANICS, Kit Division Dopt. 883, sos Park Avenue, New York 22, N. Y. Add \(10 \%\) for Camadiar and Foreion ordors.
Enelosed is \(\$ 16.95\). Ploase send me your complate kit and plans for assembling the SaM all purpose tachometer. I understand that if I am not eompletoly satisfied, I may | return the kit within io days for a eomploto refund.

NAME \(\qquad\)
ADDRESS \(\qquad\)

\footnotetext{
I
}

\section*{OU SALE - Sepd 4 h}

\section*{at most newsstands}


\section*{Complete How-To-Do-lt Instruction For Over 31 JUNIOR Mechanic Projects}

Pick up a copy at your newsstand or send \(\$ 1.00\) to include postage and handling with coupon below
\begin{tabular}{|c|}
\hline SCIENCE AND MECHANICS MAGAZINE Handbook Division, 505 Park Avenue New York 22. New York \\
\hline Enclosed is \(\$ 1.00\) to include postage and handling. Please send me my copy of Jr. Mechanics- 610 \\
\hline Name. . . . . . . . \({ }^{\text {PLEASE PRINT) }}\) \\
\hline Address. \\
\hline City . . . . . . . . . . . . . . . Zone. . State \\
\hline
\end{tabular}

\section*{Telescope With Clock Drive}

\section*{Making and Solving Puzzles}

\section*{Sidewalk Size Stutz Bearcat}

\section*{CONTAINS:}

Pint-Size Excavator for Smalt-Fry Diggers Build Yourself a Trophy-Taker Racing Kart Model Road Racing in Your Recrention Room Coney Island Duck Shoot Family-Size Pogo Stick Dingbat: An 8-foot Water-Going Motorscooter HO-4 Train Control
Practical One-Tube Set
Experimenter's Motor-Rheostat Rig
Learn Planetary Motions With an Orrery
Simple Satellite-Tracking Computer
Basement Ballistics
Having Fun With "Talking Coils"
Repairing Toy Electric Trains
Portable Drafting Machine
Modelmaker's Arbor Press
Five-Way \(\$ 5\) Radio
Fun With Bullets of Light
Pedal Cal
Pull-Apart Bicycle for Super Portability
Tricycle Tractor
Electric Darl Game
Sky Train-Miniature Monorail
Building a Safe Rocket-Powered Model of the Missile Snark
Opercting Principles of D.C. Motors
Toy Electric Motors
Junior Cadet Space Helmet
Merry Jump-Around
Beheading Bottles

\title{
ov GAIE Sept 47 h
} at most newsstands

BLIELICD: 30 BLUE-RIBBON PROIFCTS


How Judges Pick Winners

\section*{SATELLITE TRACKING \\ 'SCOPE}

Step-by-Step Plans for
\(\$ 15\) Milli-Microamp Detector \$5 Optical Bench-Collimator \(\$ 10\) Misro-Camera Viewer \(\$ 35\) Fallout Counter 60,000 -Volt Tesla Coil 400,000 -Voll Van De Graalf

\section*{30 Winning Science Fair Projects}

Pick up a copy at your newsstand or send \(\$ 1.00\) to include postage and handling with coupon below

\footnotetext{
SCIENCE AND MECHANICS MAGAZINE
Handbook Division, 505 Park Avenue New York 22, New York
Enclosed is \(\$ 1.00\) to include postage and handling. Please send me my copy of Science Experimenter -608

Name
(PLEASE PRINT)
Address
City. . . . . . . . . . . . . . . . . . . . . Zone. . . State
}

\section*{Repulsion Coil}

\section*{Experiments in Genetics}

\section*{Reaction Timer}

\section*{Photographic Dosimetry}

\section*{CONTAINS:}

Homebulit Fallout Counter
Simple Rain Gauge
How the Weather House Works
Measuring Hidden Dlstances
Solar Furnace
Centrifugal-Centripetal Force
Accelerometer
Reconstructing Hero's Aeolipile
Yardstick for the Wind
Testing Talk
Optical Bench and Collimator
Micro-Camera Viewer
Simpla Lenses
Diffraction Grating Spectroscope Collecting Fossils
AC Experiments with Series Circuits
Arc-Welding Thermocouples
Thermistor Thermometer
Van de Graoff Generator
Electric Slide Rule
Stunts with Dry Cells
Tesla Coll
Milli-Microampere Detector
Telethermoscope
Sun Battery Power Motor
Electronic Stethoscope
Anti-Matter
Sense and Non-Sense with Senses
Understanding Laws of Science
Power from the Gates of Hades
Springs of Quartz
Sotellite TrackIng Scope
Survey of Science Studies
How the Judges View a Science Fair Prolect

\title{
NOW: ORDER THESE S\&M HANDBOOKS
}

\section*{- Handbooks you don't want to miss • Handbooks you may have missed}

\(\frac{1961 \text { \& Prior Issues }}{\text { Allow } 4 \text { weeks for delivery. }}\)

Not available Not available 575
574
Not available
576
560
Not available 577
Not available 583
580 586
582
Not available 584 578 585
Not available
Not available 587
Not available 589 588
Not available 581 579

Current 1962 Issues
Handbooks will be shipped during the month indicated below. Where no month appears, the Handbook is available immediately; allow 4 weeks for delivery.
590
591
592
593
594
595
596
597
598
599
600
601
602
603
\(604 a\)

605a-August 606-August 607-August 608-September 609-September 610-September 611-October 612-October 613-October 614a-November 615-November Not available 616a-November 617-December 618-December 619-December Not available Not available

Future 196.3 Issues
Orders for these Handbooks will be shipped as they are published during 1963.
\(590 \cdot 63\)
\(591 \cdot 63\)
592-63
593-63
594.63

595-63
596.63
597.63

598-63
599.63
600.63
601.63
\(602 \cdot 63\)
603.63

604-63
605-63
606-63
607-63
608-63
609-63
610-63
611.63

612-63
\(613-63\)
614-63
615-63
Not available
616.63
617.63

618-63
619.63

Not available Not available

\section*{SCIENGE AND MECHANICS HANDBOOKS / 505 PARK AVENUE / NEW YORK 22, n. Y.}

Please send the Handbooks
listed below.

I am enclosing \$ \(\qquad\) I have written in the numbers of the Handbooks ordered on the left side of this coupon.
\(\qquad\)
Address

City \(\qquad\) Zone \(\qquad\) State \(\qquad\)

\title{
Cavilitive rado Loc \\ Every effort has been made to ensure accuracy of the information listed in this publicalion, but absolute accuracy is not guaranteed and, of course, only information evailable up to press-fime could be included Copyright 1962 by Science and Mechanics Publishing Co., a subsidiary of Davis Publicalions, Inc., 450 East Ohio St., Chicago 11, III, \\ QUICK REFERENCE INDEX \\ U.S. and Canadian AM Stations \\ by Frequency. \\ 159 \\ U.S. and Canadian AM Stations by Location. 168 \\ U.S. AM Stations by Call Letters............ 177 \\ Canadian AM Stations by Call Letters...... 185 \\ Mexican and Cuban AM Stations. \\ Canadion Short-Wave-Domestic and International. ...... 196
}

\section*{U. S. and Canadian AM Stations by Frequency}
U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters Kc. Wave Length 540-555.5
CBT Grand Falls, N.F. CBK Regina, Sask. KVIP Redding, Cailf. KFMB San Diego, Gallf. WGTD Cypress Gardons. WDAK Columbus, Glor KBRV Soda Sprines, Idaho KWMT FR. Dodge, lowa wBic Islip. N. Y WETC Wendeli-Zebulon, N.C. WARD Canonsburg. Pa . WYNN Florence, S.C. WDXN Clarksvillo, Tenn

550-545.1
CFNB Frodericton, N.B. CFBR Sudbury, Dit. CKPG Prine Gearge Que. KKNG Arinee George, B.C KENI Aneherage, Alaska KAFY Bakerifield, Calit KAAY Craig, Colo. WAYR Drange Park, Fla KMVA Gainesville. Gat. KFRM Concordia, Kansas WCBI Columbus, MIss. KSD St. Loule. Mo. KOPR Butte. Mont. WGR Buffalio. N.Y. WOBM Statesvilie. N.C. KFYR Bismarck. N.Dak. WKRC CImeinnati, Ohio KOAC Corvallis. Dres. WPAB Pones, P.R WXTR Pawtucket, R.I KCRS Midland. Tox. KTSA San Antonio. Tex WDEV Waterbury. \({ }^{\text {V }}\). WSVA Harrisonburg. Va WSAU Wausau, WIs.

560-535.4
CJDC Dawson Creek, B.C. CFOL Kirkland Lake. Dnt CFOS Owen Sound, Ont KYOF Dothan, Ala. KSFO san Fran Calle KLZ San Fran. Callf. WOAM Miaml. Fia. WINO Chiami. Fia. W MIK Middlesboro \(K y\) WGAN Portland, Maine WHAN Portiand, Maine WQTE soringiteld, Mass. WEBC Duluth. Ming.
W.P.

10000
\(5000{ }^{5}\)
5000
50000 d
5000 500 d 5000 d 250d c. 250 d 250d 250d 1000 d

\section*{50000 \\ 50000
1000 d 10000} 250
5000 5000 1000
1000 10000 5000 1000
5000 d
\[
\begin{array}{r}
5000 \mathrm{~d} \\
1000
\end{array}
\]

1000
5000 1000
5000 5000
\(500 d\)
5

\section*{5000}
\[
\begin{aligned}
& 5000 \\
& 5000
\end{aligned}
\]
\[
\begin{aligned}
& 5000 \\
& 5000
\end{aligned}
\]
1000

5000
1000
\[
5000 \mid
\]

1000
5000
5000

> 5000 5000
\[
\begin{aligned}
& 5000 \\
& 5000
\end{aligned}
\]

5000
5000
\[
\begin{aligned}
& 5000 \\
& 500 \mathrm{~d} \\
& 5000
\end{aligned}
\]
5000
1000
5000
5000
5000 d
\(5000 d\)
1000
5000
5000
5000 5000
5000
8000
5000
5000
\(500 d\)
\(500 d\)
50005000
1000
5004
5004
5000 Ke. Ke. Ware Length KWTD Springfitd, Mo. 5000 WGAN Great Falls. Mont. 3000 \begin{tabular}{ll} 
WGAL Elizabeth City. N.C. & 1000 \\
WFIL Philadelphla. Pa. & 5000 \\
\hline
\end{tabular} wis Columbia. S.C. WHBQ Memphis, enn. KFDM Beaumont. Tex. KPQ Womatchen, Wash. WJLS Beckioy. W Va.

570-526.0
CKEK Cranbrook. B.C. CFCB Corner Brook, N.F CJEM Edmundston N.B. KCND Alturas. Calli. KLAC Los Angelos, Callf. WGAC Los Angelos, Calf. WACL Waycross. Ga. WKYB Paducah. Ky. KGRT Las Cruces, N.Mex. WMCA New York. N.Y. WSYR Syracuse. W. \({ }^{\text {W. }}\). WLLE Raldigh, N.C.C. WKBN Youngstown. ohlo WNAX Yankton. S.Dak. WFAA Dallas. Tex. Wex. KLUB Sait Lako City. Utah KVI Seattle. Wash.

580-516.9
CJFX Antigonish. N.S. CFRA Dttawa, Ont CKPR Ft, william. ont. CKY Edmonton. Alta. CKY WITnipeg, man. WABT Tuskegoe. Ala. KMJ Fresno. Calit. KUBC Montrose. Colo. WDBD Orlando. Fla. KFXD Augusta, Ga. KFXD Nampa. Idaho KSAC Manhattan, Kans. WIBW Topeka. Kans. KIBW Topeka. Kans. WTAG Woreestor, Mas. WELD Tupelo. Miss. KWGR Lumberton. N.C WHP Harrisburs. Pa. WKAQ San Juan. P. KOBH Hot 8 prinis, S.Dak. WRKH Roekwood Tonn. WLES Labremeville \(V\) WCHS Charleston w. Wa . WKTY LaCresse, \(\mathbf{w}\) Is.

\section*{8000}

8000
5000
5000
5000

\section*{10000 d}

10000d
50000
\(500 d\)

Ke. Wave Length W.P. 590-508.2
        WFST Caribou Maing
        WFST Caribou. Maine
        WCAO Bantimore. Md,
        WTAC Flint, Mich.
        KGEZ Kalispell, Mont
        WSjs winston-Salem, N.C.
        KSJB Jamestown. N.D.
        WFRM Coudersport. Pa
        WAEL Mayapuez. P.R,
        WREC Memphis. Tenn.
        KRDD EI Paso, Tex.
        KERB Kermit, Tex.
        КТВB Tyler, Tex,
        \(610-491.5\)
        CHNC Now Carlisio, Que.
        CJAT Trail, B.C.
        1000 CKKL Thompsion Man
        CKTE st Catharl man.
        WSGN Birmingham. Als.
        KFAR Eairbinham, Alas.
        \begin{tabular}{l|l}
5000 & KFAR Fairbanks, Alaska \\
5000 & KAVL Lancaster, Callf.
\end{tabular}


Kc. Wave Length W.P. KFRC San Francisco. Gallf. 5000 WCKR Miami. Fla. GIT. 5000 WDEB Ponsacols, Fia. 500 d WCEH Hawkinsville. Ga. 5000 WRUS Russellville, Ky. \(\quad 5000\) KDAL Duluth, Minn. WDAF Kansas City. Mo. \(\begin{array}{lll}\text { WDAF Kansas CIty, Mo. } 5000 \\ \text { KDJM Havre, Mont. } & 1000 \\ \text { WGIR Manehester. N.H. } & 5000\end{array}\) 5000 KGGM Albuquarque, N. Mex 5000 WAYS Charlotte W. C. Mex. 500 WTVN Columbus N.C. \(\quad \mathbf{5 0 0 0}\) WIP Phliadoliphia. Pa. \(\quad 5000\) KILT Housteria. Pa. KILT Houston. Tox. KVNU Lonan, U tah WSLS Roanoke. Va. WHPL Winchestor, Va.
KEPR Kennewick, Wash. 620-483.6
\begin{tabular}{|c|c|}
\hline FCL TImmins, Ont. & 100 \\
\hline CKCK Repina, Sask. & 5000 \\
\hline KTAR Phoenix. Ariz. & \\
\hline NGS Hanford, Calif. & 000 \\
\hline W80 Mt. 8hasta, Ca & \\
\hline KSTR Grand Junetion. Colo. & 5000d \\
\hline SUN St. Petersburs. Fia & 5000 \\
\hline WTRP LaGrange. G & 1000 d \\
\hline KWAL Wailaee. Idaho & 1000 \\
\hline KMNS Sloux City, lowa & \\
\hline WTMT Louisville, Ky. & \\
\hline WLBZ Bangor, Malne & 5000 \\
\hline WJOX Jackson. Mis. & \\
\hline WVNJ Nowark. N.J. & 5000 \\
\hline WHEN Syracuse. N.Y. & 000 \\
\hline WDNC Durham, N.C. & \\
\hline KGW Portland. Dreg. & 00 \\
\hline WHJB Greensburs, & 1000 \\
\hline WCAY Cayee, 8.C. & \\
\hline WATE Knoxville & \\
\hline KWFT Wichita Falls. & \\
\hline CAX Burlington & \\
\hline WWNR Becklay. W.Va. & 0 \\
\hline WTMJ Milwauket, Wis. & \\
\hline
\end{tabular} WWNR Biekley. W. Wa.
WTMJ Milwaukeo. Wis.
630-475.9
CFCO Chatham, Ont. 1000
CKAR Huntsville. Ont. CHLT Sherbrooke, Que. CFCY Charlottetown, P.E.I 5000 CJET Smith Falls, Dit. CKRC Winnipay. Man. 1000 CKOV K elowne. B,C. CKYL Peace River, Alta. 1000 WAVU Albertville, Ala. 1000 d WJDB Thomasville, Ala. 1000 d KJND Juneau. Alaska 1000 KVMA Maphollia, Ark. 1000 d
KIDD Monterey, Callif. 1000 KIDD Monterey. Calif. \(\quad 1000\)
KHDW Denver, Colo. KHDW Denver, Colo. D.C 5000 \(\begin{array}{ll}\text { WMAL Washinfton. D.C. } & 5000 \\ \text { WSAV Savannalh. Ga. } & 5000\end{array}\) WSAV Savanmah. Ga. WNEG Toct CI ,


Kc．Wave Length kmCO Confoe，Tex． KFLO Floydada，Tox． WOOY Bassett，Va． WAFC Staunton，Va KUEN Wenatehes，wash WATK Antigo，Wis．
910－329．5
CJDV Drumheller，Alta． CKLY LIndsay，Ont． CFJC Kamloops，B．C． CHRL Roberval，Que． WOVC Dadevilie，Ala． KPHO Phoenix．Ariz． KLCN Blythevilie．Ark KAMD Camden，Ark KEWB Oakland，Calif． KEXB Oaknand．Calif KPOF nr．Denver．Colo． WHAY New Britain，Conn． WPLA Plant City．Fla WGAF Valdosta，Ga． WAKO Lawrenceville，II WSUI lowa Clty，lowa WLCS Baton Rouge，La WABI Bangor，Main WCOC Morldian．Miss KOYN Billings，Mont． KYSS Missoula，Mont． WBIM Roswefl，N．M． W ． WLAS Jacksonvile，N
KCPB Minot．N．Dak． WPFB Middietown，Ohio KGLC Miaml．Okla． KURY Brookings，Ore WGBI Seranton．Pa． WGBA York．Pa WPRP Ponee，P，R WNCG North Charleston．S．C WJCW Johnson Clity．Tonn． WEPG S．Pittsburgh，Tenn．
KNAF Fredericksturg．Tex． KRIO McAllen，Tex． KALL Salt Lake City，Utah WRNL Richmond \(V_{8}\) ont 10000 WHYE Ronoke \(V\) a WHYE Roanoke，Va． KORD Pasco，Wash， KISN Vancouver，Wash．
WHSM Hayward，Wis． WOOR Stroen，Wis．\(\quad 1000\)

\section*{920－325．9}

CJCH Hallfax，N．S．
CJCJ Woodstoek．N．B．\(\quad 10000\)
CKCY Sault St．Marie，Ont． 10000
CKNX Wingham，Ont．
WWW R Russellyille．
WWH Russeliville．Ala． 1000 d
KARK Little Rock．Ark． 5000
KDES Palm Springs，Calif．1000d
KVEC San Luis Obispo．Cal． 1000 KVEC San Luis Obisno．Cal． 1000
KREX Grd．Junction，Colo． 5000 \begin{tabular}{l} 
KREX Grd．Junction，Colo． \\
KLMR Lamar．Colo． \\
1000 \\
\hline
\end{tabular} WMEG Eau Gallie．

\section*{WGST Atlanta．Ga．}

KAHU Walphau，Hawall WGNU Granite Clty，III WBAA W．Lalayette．Ind． KFNF
WTCW
Whenandoah，lowa
Whitesburg，Ky， WTCW Whttesburg，
W Box
Bogalusa，La． WBOX Bogalusa，La．
KTOC Jonesboro，La． WPTX Lexington PK．，Nd． WMPL Hancock，Mich． KOHL Faribault．Minn． KWAD Wadena，MInn， KRAM Las Vegas，
KOLO Reno，Nev．
KQEO Albuquerque，N．Mex WTTM Trenton．N．J． WKRT Cortland，N．Y．
WGHQ KIngston，N．Y WIRO Lake Placid，N．Y． WBBB Burington．N．C． WMNI Columbus，Ohio WKVA Lewistown，Pa． WJAR Providence．R．I． WTND Orangeburg，S．C．
KEZU Ranid City，S．Dat KEZU Ranid City，S．Dak
WLIV Livingston，Tenn． KELP EI Paso．Tex． KECK Odessa，Tex． KTLW Texas City，Tex． KITN Olympla，wash． KXLY Snokang，Wash． WMMN Fairmont，W，Y
\(930-322.4\)
CFBC Saint John，N．B．
CJCA Edmonton，Alta． WETO Gadsden，Ala，

W．P．
500 d
2500
250
500
1000
100
25

500
100
500
\begin{tabular}{l|l}
000 & \(W\) \\
000 & \(W\)
\end{tabular}

\section*{000 W}
\begin{tabular}{l}
5000 \\
W \\
\hline
\end{tabular}

5000
\(000 d\)
5000
5000
1000 d
000 d
5000

\section*{1000 d
500 d}

\section*{\(500 d\)
5000}

5000
1000
5000
5000
5000

\section*{1000 d W}

\section*{5000 d W \\ 5000 d} 1000
1000
10000 1000d 1000 d
1000 d Md． 500 d
1000 d 1000 1000
5000 d 5000 d 1000
5000 d 5000 d
500
500
1000
1000
1000 5000
10001 \(1000 d\)

\section*{1000 d \\ 1000} \(\begin{array}{r}1000 \\ 1000 \\ \hline\end{array}\) 1000 d
1000 d 1000 d
5000

5000

10000
10000
10000
10000
10000
\(1000 d\)

\section*{0000 \\ \section*{000 d
1000 d}}
\(\begin{aligned} 5000 \mathrm{~d} & \text { WREB Holyoke．Mass．} \\ 1000 & \text { WBCK Battle Creek．Mich．} \\ 1000 & \text { KKIN Aitkin，Minn．}\end{aligned}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{Wave Length} \\
\hline KTKN & Ketchikan，Alaska \\
\hline KAPR & Douglas．Ariz． \\
\hline KFGT & Flagstaff，Ar \\
\hline \multicolumn{2}{|l|}{KHJ Los Angeles．\({ }_{\text {K }}\) K} \\
\hline KMET & Paradise，Cali \\
\hline \multicolumn{2}{|l|}{KIUP Durango，C} \\
\hline W1／SB & Milford，DeL \\
\hline \multicolumn{2}{|l|}{WHAN Haines City} \\
\hline \multicolumn{2}{|l|}{WJAX Jacksonville，Fla．} \\
\hline \multicolumn{2}{|l|}{WKXY Sarasota，Fla．} \\
\hline \multicolumn{2}{|l|}{WMGR Bainbridge，Ga．} \\
\hline \multicolumn{2}{|l|}{WGTA Summerville．Ga，} \\
\hline \multicolumn{2}{|l|}{KSEI Pocatello，Idaho} \\
\hline \multicolumn{2}{|l|}{WTAD Quincy．Ill．} \\
\hline WKCT & Bowling Green，Ky \\
\hline \multicolumn{2}{|l|}{WFMD} \\
\hline \multicolumn{2}{|l|}{WREB Ho} \\
\hline \multicolumn{2}{|l|}{WBCK Batte Creek} \\
\hline \multicolumn{2}{|l|}{KKIN Aitkin，Minn．} \\
\hline \multicolumn{2}{|l|}{WSLI Jackson．Mlss．} \\
\hline \multicolumn{2}{|l|}{KWOC Poplar Bluff．M} \\
\hline & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|}
\hline K．Wave Length & W．P＇ \\
\hline KOKA Shreveport，La， & 5000d \\
\hline WCAP Lowell，Mass． & 1000 d \\
\hline WOMC Disego．Mich． & 500 \\
\hline WPBC Minneatuolis，Minn． & 1000d \\
\hline WAPF AicComb．Miss． & 1000 d \\
\hline KMBC ICansas City，Mo． & 5000 \\
\hline KLYQ Mamilton，Mont． & 1000 d \\
\hline is VLV Fallon，Nev． & 5000 d \\
\hline KVER Clovis，N．Mex． & 1000 \\
\hline KMIN Grants，N．Mex． & 1000 d \\
\hline VTRY Troy，N，Y． & 5000 \\
\hline WKLM Wilmington，N．C． & 5000 d \\
\hline WAAA Win．．Salem．N．C． & 1000 d \\
\hline VONE Dayton，Ohio & 5000 \\
\hline WILK Wilkes－Barre，Pa． & 5000 \\
\hline WREI Winnsboro，S．C． & 500 d \\
\hline KDSJ Deadwood，S．Dak． & 1000 \\
\hline WSIX Nashyille．Tenn． & 5000 \\
\hline IGFRD Rosenberg，Tex． & 1000 d \\
\hline ISSVC Rlehfield．Utah & 5000 \\
\hline VFHG Bristol，Va． & 5000 \\
\hline VMEK Chase City．Va， & 500d \\
\hline KUTI Yakima，Wasin． & 5000 d \\
\hline WHAW Weston，W．Va． & 1000 d \\
\hline WCUB Manitowoc，Wis． & 1000 d \\
\hline WPRE Prairiedu Chien，Wis． & 5． 1000 \\
\hline 990－302．8 & \\
\hline
\end{tabular} 50000 OGA Ogallala，Nebr． WWNH Rochester，N．H． WPAT Paterson，N．J．
WBEN Buffalo．N．Y． WIZR Johnstown．N．Y． WSOC Charlotte，N．S． WEOL Elyria，Ohio KAGI Grants Pass．Oreg． WCNR Bloomsburg．Pa．
SDN Aberdeen．S． SEV Aberdeen，S．D KDE Sevierville，T
DET Center，Tex．
ITE San Antonio．T KENY Bellingham－Ferndale WSAZ Huntington，W．Va． 1000 d WLBL Auburndale，Wis．

\section*{940－319．0}

CBM Montroal，Que．
CJGX Yorkion，Sash
KOBY Tucson，Arlz． KFRE Fresno，Calif． WINZ Miami，Fla． Whix mt．Vernon，Ill KIOA Des Molnes，Iowa WMEW Baltimore，Md． WJOR South Haven，
KSWM Aurora，Mo． KVSH Valentine N． WFNC Fayetteville，N．C． KGRL Bend Oreg．
WESA Charleroi WGRP Greenville，P WIPR San Juan，P． KIXZ Am Arillo．Tex．
KITON Balton．Tex． KTON Bolton．Tex．
KATQ Texarkana，Tex．

\section*{950－315．6}

CKNB Campbeliton．N．B． CKBB Barrie，Ont． WXMA Montgomery，Ala， KFSA Ft Smlth．Ark． KAHI Auburn．Callf KIMN Denver，Colo
WNUE Ft．Waiton Sch．，Fla． WLOF Orlando，Fla．
e，Ga． WGOV Valdosta，Ga
KBOI Boise，Idaho KLER Orofino，Idaho WAAF Chlcago， 111 ．


\section*{970－309．1}

WXLW Indianamolis，ind．
KJRG Newton．Kans． WBVL Barbourville，Ky．
WAGM Presque Isle，Maine WORL Boston．Mass． WWJ Oetrolt，Mich．
KRSI St．Louls Park， WBKH Hattiesburg，Miss KLIK Jefferson City．Mo． 5000 d

\section*{ジンェンズ}

000 WKTS Charleston．W．Va．
960－312．3

Kc. Wave Length WITT Lewliburg, Pa. WORM Sovannah. Tenn. KBUY Amarillo, Tex. KODA Houston. Tex. KAWA Marlin. Tex. WELK Charlottesville, Va WPMH Marion, Va. WCST Berkeley Spriss., W. WSPT. Stevens Pr.s.w.w.Va. 250 d

\section*{1020-293.9}

KGBS Los Angeles. Calif. WCIL Carbondale, III WPEO Peoria, III. KDKA Pittbburgh, Pa.
1030-291.1
WBZ Boston. Mass. \(\begin{array}{lr}\text { WBZ Boston. Mass. } & 50000 \\ \text { WBZA Springheld. Mass, } & 1000\end{array}\)

1040-288.3
KHVH Honolulu, Hawall WHO Das Moines,
KIXL Dallas. Tox.
1050-285.5
CFGP Grande Prairie, Alta, 10000 CKSB 8t. Boniface. Man. 10000 CJC Saulif 8te, Marle, Ont, 10000 WRFS Aeronto, Ont. WRFS Alexander City. Ala. 1000 d KVWI Seottsboro, Ala. KV LC Little Rock, Ark. KOFY San Mateo, Calit. KWSO Waseo, Callf. KLMO Longmont, Colo. Wivy Cresiviowifla. WHBO Tampa, FIt. WRMF Titusville. Fla. WAUG Augusta. Ga. WBIE Mariotta. Ga. WMNZ Montezuma. G* WDZ Decatur. 111. KNCO Garden City. Kans. 1000 d WNES Central City, Ky. KLPL Lake Providenee, La. 250 d KCIJ Shrevoport, La. KVPI Vilia Platte, L WQMR Silver \$prg., Md. WPAG Ann Arbor. Mich KLOH Pipestone, Minn WACR Columbus, Miss KMIS Portageville, Mo KSIS Sedalia. Mo WBNC Conway H Hev. WSEN Baldwinsville. N,Y. WSTS Massena, N.Y. WBTL Farmville, N.C. WLON Lincolnton. N.C. WWGP Sanford, N.C. KCCO Lawton, OKla. KFAS Tulsa, Okla. KUBE Pendieton, Oref. KEED Springhtid. Oré. WBUT Butlor. Pa. WLYC Williamspert. Pa. KLEN Killeen, Tenr KLEN Kilieen. Tox. KPLA Plainview, Tex. KCAS Slaton. T8x. WGAT Gate City, Va WBRG Lynehburi, V KNBX Korfolk. Va, WCEF Parkersbury. W.V. WCEF Parkersburn, W.V., Ioood WLIP Kenosha, WIs. 1000 d KWIV Dounlas, Wyo.
1060-282.8
CFCN Calsary, Alta KUPD Tempe Ariz
KPAY Chieo, Callf.
WNOE New Orleans, La
WMAP Monroe. N.C. Mien. 1000 d
WHOF Canton, Ohlo.
WRCV Philadolahia.
1070-280.2
CBA Sackville. N.B.
CHOK Sarnia. Ont.
CHOK Sarnia. Ont.
\(K N X\) Los Angelas, Calif
wVCG Coral Gables. Fla.
WIBC Indlanapolis, ind.
KIRL Wichlta. Kans.
KHMO Hannlbal. Mo.
WMIA Aroclbo, P.R.

5000
W.P. 250 d
1000 d
250 d
5000
1000 d
1000 d
1000 d
1000 d
5000 d
250 d
1000 d

50000
1000 d
1000 d
50000

0

000
1000d

5000
a. 1000 d
250 d
250 d
1000 d
1000 d
1000 d
lo00d
\(250 d\)
250d 000d 1000 d

5000 d
500d
0d

50d

\section*{1000d \\ 000d}

000d
000d
250d
000d
500 d 000d 250d 2500d 50000

10004
000d 1000d
250d
000d 000d 000d 000d 000d 000d WSIV Pekin, Ill. 10000 WITA San Juan. P,R. 500 KSOO Sioux Falis, S.Dak. 10000 WRVA Richmond, Ve. 50000

CKSA Lloudministor Alta 10000 CHS Saint lohn. N. Alta. 10000 CKOC Hamilton. Ont. CKX Brandon. Man. WBCA Bay Minette, Que. WGEA Geneve Als. Ala, 1000 d WIRD Tuscaloosa. Ala
10000
K
10000
10000
50000

250 d
1000 d
50000
0

50000
5000 50000
50000 \(1000 d\)
50000
10000
5000
1000 d
500



\section*{WAZF Yazoo City, Mis} KODE Joplin, ho. KLWT Lebanon, Mo, KANA Anaconda, Mont. BMN Bozeman, Mont. KXLO Lewlston, Mon LCB Libby, Mont. KTNC Falls Clty, Nebr. KHELY Ely, Nev. KELY Ely, Nev. KDOT Reno, Nev. WMOU Beriin, N.H. WCMC Wildwood. N.J.
KALG Alansogordo, N.M KOTS Deming. N,Mex. YVA Gallup. N. Mex. KFUN Las Vegas, N.Mex. KRSY Roswell, N.Mex. W ENY EImira, N.Y. WHUC Hudson, N,Y, WLFH Little Falls, N. Y. WSKY Ashevills, N.C WMFR High Polnt, N.C. WNNC Kinston, N.C. WNNC Newton, N.C.
WCBT Roanoke Rap. WCBT Roanoke Rap.. N.C.
KDIX DickInson. N.Dak. WCPO Cincinnati, Ohlo WCOL Columbur, Onlo KADA N. of Ada, Okla WBBZ Ponca City, Okla KRNS Burns Ore KRNS Burns, Oreg,
KOOS Coos Bay, Oreg. KGRO KYJC Medford, Oreg. KBYP Beaver Frolls. WEEX Easton. Pa. WKBO Harrislurg. Pa, WBPZ Lock Haven, Pa. WNIK Arecibo,'P.R. WERI Westerly, R.l. WNOK Columbia, S.C WULD Florence, S.C. KISD Sloux Falls, S. Dak. KSix Corpus Christi. Tex. KDLK Del Rio. Tex Houston. KERV Kerrville, Tex. KLVE Levelland, Tex. KOSA Odessa. Tox. KHHH Pampa, Tex. KSST Sulphur Spros.. Tex. KMUR Murray Uiah KOAL Price Utah WJoy Burlington, \(V t\). WBBI Abingdon, \(V\) a. WCFV Clifton Forge, Va. WNOR Norfolk. Va
KWYZ Everett, Wash,
KREW Sunnyside, was
WLOG Logan, W, Va.
WTAP Parkersburg. W. Va.
WHBY Appleton, Wis.
WHVF Wausau. Wis,
KVOC Casper, Wyo.

\section*{1240-241.8}

CFLM La Tuque, Que
CFPR Prince Rupert Terr
CFWH Whitehorse, \(\mathbf{Y} . \mathbf{T}\).
CJAV Port Alberni. B.
CJCS Stratiord, Ont
CJRW Summerslae, P.E.I.
CKBS. St. Hyacinthe, Que.
CKLS LaSarre, Que.
WEB1 Brewfon, Ala
WULA Eufaula, Ala.
WOWL Florence, Ala
WARF Jasper. Ala.
KZOW So. of Globe, Ariz.
KOFA Yuma. Ariz.
KVRC Arkadelphia, Ar
KPLY Crescent City, Calif.
KMBY Monterey, Callf.
KPPC Pasadenn, Calli.
KROY Sacramento, Calif.
Callfornia 1000 d
KSON San Diego, Callf.
JSUE Susanville, Callf.

\section*{250
1000} 1000 250
1000 \(\begin{array}{r}1000 \\ 250 \\ \hline\end{array}\) 000 d 1000

\section*{10}
1000
10001000
1000
250
250
100
250250
1000
1000N్ 25
KSUE Susanville, Callf
W.P

Ke. Wave Length
W.P. Ke. Wave Length W.P
K. Wave Length W.P

WLCO Eustis, Fla. WMMB Rlelbourne, Fla, WBHB Fitzgerald, Ga. WDUN Gainesvilie, Ga.
WLAG LaGrange. Ga. WBML Macon Gá WWNS Statesboro, Ga.
WPAX Thomasvile. Ga. WTWA Thomson, Ga. KLEI Kailua, Hawail
KVNI Coeur d'Alene, Idaho KFLT Mountain Home, Idaho KWIK Pocatello, Idaho
WCRW Chicago, III. WCRW Chicago, III,
WEDC Chicago, III WEDC Chicago, III
WSBC Chicago, III. WEBQ Harrisburg. III,
WTAX Springfold, II. WSDR Sterlíng. Ill. WHBU Anderson, Ind,
KDEC Decorah, Jowa KWLC Decorah, Iowa KB1Z Otlumwa, lowa KIUL Garden City, Kans, WAKE Wichita, Kans. WINN Loulsville, Ky. WFTM Maysville, Ky. WPKE Pikeville, Ky.
WSFC Somerset, Ky. KASO Minden, La, IKANE New Iberia, La.
WCOU Lowiston, Malne WCEM Cambridee, Md.
WJEJ Hagerstown, Md. WJE」 Hagerstown, Md.
WHAI Grreenfeld, Mass. WOCB W. Yarmouth, Mass
WATT Cadllac. Mich. WATT Cadllac, Mich.
WCBY Cheboyoan, Mich. WJPD Ishpeming, Mich.
WJim Lansing, Ailich, WMFG HIbbing, Minn. WJON St. Cloud, MInn, WMPA Aberdeen, Miss.
WGRM Greenwood, Miss. GCM Gulfport. Miss. MIS Natchez, Miss,
KFMO Flat River. Mo KFMO Flat River. Mo.
KWOS Jefferson City, MQ KODE Joplln. Mo. EM Nevada, Mo 50 KBMY Rillings, Mont. 50 KLTZ Glasgow, Mont. 50 KBLL Helena, Mont. 50 KFOR LIncoln, Nebr. KELK Elko, Nev.
WSNJ Bridocton. WSNJ Brldgeton, N.J.
KAVE Carlsbad. N. Mex. KA
KC
WC WGBB Freeport, N.Y.
WGVA Geneva, N, Y.
WJT Jamestown. N.Y. WVOS Liberty. N. Y. WNBZ Saranac Lake, N. Y.
WSNY Schenectady. N. Y.
旫
250
\(\mathbf{W}\)
\(\mathbf{W}\)
1000 WALO Hulkes-Barre. Pa
WWON Woonsocket, R.I.
WKDK Newberry, S.C. WKDK Newberry. S.
WDXY Sumter, S.C.WBEJ Elizabethton, TennWERR Fayertevilie. TennWBIR Knoxville, Tenn.1000 WKDA Nashville, Tenn.000 WENK Union Clity, Tenn.250 KVLF Alpine, Tex,KEAN Brownwood, ToxKORA Bryan. Tex.
250 KSA Rymor
\(\stackrel{-1}{8}\)
KCKG Snora, Tex.
1000 KXOX Sweetwater, TWSKI Montpelier, \(V t\),WSKV Moterstiurg, \(V\) V.WROV Roanoke. Va.WTON Staunton, Va.KXLE Ellensburgh. WKGYO Bluefold. W.1000 WTIP Charleston, W.V. V .
100
100 WCN
WJN
WRA
KDL
WB
WH
KVS
KBE
KB CNC Elizabeth City, N,C.
JNC Jacksonvilie. N.C.
RAL Raleigh, N.C.


\begin{tabular}{r|r}
1000 & \(K\) \\
250 & \(K\) \\
250 & \(K\) \\
1000 & \(W\) \\
1000 & \(W\) \\
1000 & \(W\) \\
250 & \(W\) \\
1000 & K \\
1000 & \(W\) \\
& \(W\) \\
1000 & \(W\)
\end{tabular}
5000 K
\begin{tabular}{|c|c|}
\hline KWSH Wowoka-Seminole, Oklahoma & 1000 \\
\hline KMCM McMinnville, Oreg. & 1000 \\
\hline WWYN Erie, Pa. & 5000 \\
\hline WPHB Phllips burg. Pa, & 5000d \\
\hline WISO Ponce, P.R. & 1000 \\
\hline WMUU Greenville. S.C. & 5000d \\
\hline WJOT Lake City, S.C. & 1000 d \\
\hline IS WYR Winner, S.Dak. & 5000d \\
\hline WN00 Chattanooga, Tenn. & 1000d \\
\hline WMCH Church Hill, Tenn. & 1000 d \\
\hline WDKN Dickson, Tenn. & 1000 d \\
\hline WCLC Jamestown, Tenn. & 1000 d \\
\hline KSPL Diboll. Tex. & 1000d \\
\hline KPSO Falfurrias, Tox. & 500 d \\
\hline KWFA San Angelo, Tex. & 1000 d \\
\hline KTUE Tulla, Tex. & 1000d \\
\hline KTAE Taylor, Tex. & 1000 d \\
\hline WCHV Charlottesville, Va. & 5000 \\
\hline WBCR Christiansburg, Va. & 1000 d \\
\hline KWIQ Moses Lake, Wash. & 1000 d \\
\hline WVVW Grafton, W.Va. & 500 d \\
\hline \begin{tabular}{l}
WW IS Black River Falts. \\
wis.
\end{tabular} & 1000 d \\
\hline WEKZ Monrot, Wls. & 1000d \\
\hline KPOW Powelt, Wyo. & 5000 \\
\hline
\end{tabular}
KICM Goldon, Colo,
WNER Live Oak. F
WRIM Pahokee. Fla
WRIM Pahokee. Fla.
WOAE Tampa. Fla.
WYTH Madison, Ga
WIZZ Streator, III.
WIIZ Streator, ill,
WGL Ft. Wayne, Ind.
WRAY Princeton. Ind.
WRAY Princeton. Ind.
KCFI Cedar Falis. Iowa
KFKU Lawrence, Kans
KFKU Lawrence, Kans
WREN Topeka, Kans.
WNVL Nicholasville, Ky.
WLCK Scoftsville, Ky.
WLCK Seottsville, Ky,
WGUY Bangor. Maine
WARE Wart.
WARE Warer. Mass.
WARE Ware, Mass.
WWBC Bay City, MIeh.
00 KOTE Ferg us Falls. MIIn.
10000 d
5000 d
500 d
1000 d
1000 d
1000
500 d
1000
1000 d
500 d
1000 d
100 KICM Golden Colo.
KCUE Red Wing, Minn,
WHNY McComb. HI
KHTN Houston, Mo.
WKBR Manchester, N.H.
WMTR Morristown, N.J.
WIPS Miconderoga, N. \(\mathbf{Y}\).
    1000
1000 d
WMTR Marristown, N.J.
WIPS Tliconderoga, N.Y.
WFAG Farmvilie, N.C.
WFAG Farmvili, N. \(\dot{C}\).
WBRM Marion, N.C.
WBRM Marion. N.C.
WCHO Washington Court
House, Ohi
House, Ohi
KQEN Roseburg, Oreg.
WLEM Emporium, Pa.
hio
\(1000 d\)
\(500 d\)
5000

1000 KWSH Wowoka-Seminole, \(\qquad\) KMCM MCMinnville, Ores. \(\quad 1000\) WWYN Eria, Pa.
WPHB Phllipsburg. Pa, 5000
W \(\begin{array}{lr}\text { WISO Ponce, P.R. } & 1000 \\ \text { WhUU Greenville, S.C. } & 5000 \mathrm{~d} \\ \text { WJOT Lake City, S.C. } & 1000 \mathrm{~d}\end{array}\) \(\begin{array}{ll}\text { WJOT Lake City, S.C. } & 1000 \mathrm{~d} \\ \text { ISWYR Winner, S.Dak. } & 5000 \mathrm{~d}\end{array}\) WNOO Chattanooga, Tenn. 1000 d
WMCH Church Hill, Tenn. 1000 d WDKN Dickson, Tenn. \(\quad 1000 \mathrm{~d}\)
WCLC Jamestown. Tenn. 1000 d \(\begin{array}{ll}\text { KPSO Falfurrias, Tex, } & 1000 \mathrm{~d} \\ \text { KWE, } & 500 \mathrm{~d}\end{array}\) KWFA San Angelo, Tex. \(\begin{array}{lr}\text { KTAE Taylor, Tex. } & 1000 \mathrm{~d} \\ \text { WCHV Charlotiesville, va. } & 5000\end{array}\) WBCR Christiansburg. Va. 1000 d
KWIQ Moses Lake, Wash. 1000 d WVVW Grafton, W. Va. 500 d
WWIS Black River Falts,
Wis, 1000 d \(\begin{array}{ll}\text { WEKZ Monroe, Whs. } & 1000 \mathrm{~d} \\ \text { KPOW Powell, Wyo. } & 5000\end{array}\)

\section*{1270-236.1}
\begin{tabular}{lr} 
CHAT Medicine Hat, Alta. & 10000 \\
CHWK Chilliwack. B.C. & 10000 \\
CJCB Sydney, N.S. & 5000
\end{tabular} CJCB Sydnay, N. S.
 KBYR Anchorage. Alaska 1000 \(\begin{array}{ll}\text { KDJ Holbrook. Arlz. } & 1000 \mathrm{~d} \\ \text { KADL Pine Bluff. Ark. } & 5000 \mathrm{~d}\end{array}\) KCOK Tulare, Catif. WNOG Naples, Fla, WHIY Orlando, Fla,
WTAL Tallahassee, Fla.
WKRW Cartersvilla. Ga,
WGBA Columbus, Ga. WGBA Columbut, GA. \(\begin{array}{lr}\text { WNCI Homolule, Hawall } & \text { S000d } \\ \text { KNDI Honolud } \\ \text { KTFI Twin Falls, }\end{array}\) \(\begin{array}{llr}\text { KNFI Twin Falls, Idaho } & 5000 \\ \text { WEIC Charleston, III, } & 5000 \\ \text { WE }\end{array}\) \(\begin{array}{llr}\text { WEIC Charleston, III. } & 1000 \mathrm{~d} \\ \text { WHB Rock Island, III. } & 5000 \\ \text { WCMR EIkhart. Ind. } & 5000\end{array}\) \(\begin{array}{lr}\text { WWCA Gary, ind, } & 1000 \\ \text { WORX Madison, Ind. } & 1000 \mathrm{~d}\end{array}\) \(\begin{array}{lr}\text { WORX Madison, Ind. } & 1000 d \\ \text { KSCB Liberal, Kans. } & 1000 \\ \text { WAIN Columbia, Ky. } & 1000 \mathrm{~d}\end{array}\) KLEN Roseburg, Oreg.
WLEM Emporium, Pa. WPEL Montrose, Pa.
WRYT Pittsuurgh, Pa. WNOW York. Pa. WTMA Charleston, S.C.
WCKA Winnsboro, S.C. WCKA Winnsboro, S.C.
WKBL Covington. Tenn. WKBL Covington, Tonn,
WNTT Tazewell, Tenn. KFTV Paris, Tex. KPAC Port Arthur. Tex.
KUKA San Antonio. Tex. KUKA San Antonio, Tex
KTFO Seminole. Tex. KTFO Seminale. Tex. KANN Ogden, Utah KVEL Vernal, Utah WDVA Danvilie, Va. WYSR Franklln, Va. WNRG Grundy. Va. KWSC Pullman, Wash.
KTW Seattle, Wash. KTW Seattle, Wa
WEMP Milwaukee
\(1260-2380\) CFRN Edmonton, At
DYBU Cobu. P.I. DYBU Cobu, P.I.
WCRT Birmingham, Ala. KPIN Casa Grande, Ariz. 5000 d KPIN Casa Grande, Ariz. 1000 d
KCCB Corning. Ark. KBHC Nashvilie, Ark. Calif.
KGIL San Fernando. Call. KYA San Francisco. Calif.
WAMA Westport, Conn.
WNRK Newark. Dol. WNRK Newark. Del,
WWDC Washington, D 1000 d
1000 1000 \(\begin{array}{r}250 \\ 250 \\ \hline\end{array}\) 250
1000 1000
250 WFTW Fnrt Walton Beach,
WAME iniami, Fla Florida WAME Mrami, Fla. WHAB Baxley, Ga.
WBBK Blakely Ga WBBK Blakely, Ga.
WTJH East Point, Ga WIJH East Point, Ga.
KIFI Idaho Falls, Idaho KWEI Welser. Ida,
KWIBY Belleville WIBV Belleville, III.
WFBM Indlanapolis, Ind. WFBM Indianapolis
KFGQ Boone, lowa KWHK Hutchinson, Kans, WXOK Baton Rouge, La. WEZE Boston. Mass. WALM Alblon, Mich.
WJBL Holland, Mieh. KROX Crookston. Biinn. KDUZ Crookston, Minn. WGVA Greenville, hliss. WNSL La ural, Hiss, KGBX Springfiold. Mo WBUD Trenton, N.J. WBUD Trenton, N.J.
KVSF Santa Fe, N.Max. WBNR Beacon, N.Y.
WNDR Syracuse. N. Y WGWR Asheboro. N.C.
WCDJ Edenton. N.C. WCDJ Edenton. N.C.
WDOK Cleveland. Oh 1000

Kc. Wave Length W.P.|Kc. Wave Length W.P. KWCL Oak Grove, La. WFYC Alma. Mich WTCN MInneapolis, Minn. KVOX Moorhead, MI
KDKO CIInten. Mo. KDKO Cllinten. Mo.
KYRO Potosi, Mo. (CNI Broken Bow. Nebr. KTOO Hendersort. Nev.
wHBI Newark. N.J. WHBI Newark. N.J.
KRZE Farmington, N. Mex. WADO New York. N.Y. WROC Rochester, N. Y. WSAT Salisbury. N.C. WONW Deflance, Onio WLMJ Jackson. Ohlo KERG Eugenc. Oreg. WBRX Berwick, Pa.
WHVR Hallover, Pa WKST New Castle, Pa. WCMN Arecibo. P.R.
WANS Anderson. S.C. WJAY Mullins. S.C. WDNT Dayfon, Tenn. KNIT Abilene. Tex. KWHI Brenham. Tex. KRAN Morton. Tex. KNAK Salt Lake City, Utah WYOE WYAVIta, KUDY Spokane, Wash. KIT Yakima, Wash. WNAAt Neenah. WI

\section*{1290-232.4}

CFAM Altona, Man. WTHG Lonks, Ont. WSHF Sheffield Ala WMLS Sylacauga, Ala KEOS Flagsiaff. Ariz.
KCUB Tucson, Ariz. KDMS El Dorado, Ark KUOA Slloam Sprgs., Ark, 5000 d KHSL Chico, Callif,
KPER Gilroy, Callf,
dino,
Calliornia 5000 KACL Santa Barbara, Callf. 5000 d WTUX Wilminoton, Del. lo00d WTMC Ocala. Fla WSCM Panama City Beach, WiRls W, Palm Bch., Fla WDEC Americus, G wTOC Canton, Ga KSNN Pocatello, Idaho WIRL Peoria, III. WCBL Benton, Ky. WHGR Houphton Laks, M1I 1000 d WNIL Niles, Mich WOIA Salline, Mleh, WBLE Batesville, Miss, KALM Thayer, MO, KGVO Missoula, Mont. I<OIL Omaha, Nebr.
WKNE Keene. N.H. KSRC Socorro. N. M. WGLI Babylon, N,Y WNBF Binghamton, N.Y. WHKY Hickory, N.C. WOME Sanford, N.C. WHIO Dayton, Ohio KUMA Pendleton. Orea. KLIG Portland, Oree.
WFBG Altoona, Ps. WiCE Providence, R.I WFIG Sumter, S.C. KIVY Crockett. Tex. <RGV Weslaco. Tex. KTRN Wichlta Falls. Tex. WAGE Leesburg. Va. 1000 d WKWS Rocky Mount, Va, 1000 d
WVOW Logan. W.V. WVOW Logan, W. Va. WMIL Milwaukee, Wis.
WCOW Sparta, Wis. KOWB Laramie, Wyo.

\section*{1300-230.6}

\section*{CBAF Moncton. N.B.} CJME Repina, Sask WTLS Tallassee. Ala. KWCB Searcy, Ark.
KROP Brawley, Call KYNO Fresno, Calif. KWKW Pasadena. Callf. KKCN Ukiah. Callf. K VOR Colo. Spros., Colo.

500 d 500 d
5000

1 1000 d \(00{ }^{0} \stackrel{W}{w}\)
5000 500 d
500 d
500 d
500 d500 d
1000 d
1000 d
5000
5000
5000
1000 d
1000 d
1000
1000
5000
5000
5000
1000 d 1000 d
1000 d
000 d
50005000
5000 d5000
5000000
1000
1000
1000 d
500 d500 d
50005000 d
1000 d
5000
1000 d1000 d
5000 d5000
C-등
1000 d
1000 d10000
5000
50

500d WAVZ New Havon. Conn. 5000 WRKT Cocoa Beach, Fia. 1000 1000 d
5000
WFSGL Marathon. FIa. 5000 WSOL Tampa, FIa.
1000 W MTM Moulirle. Ga, 1000d WNEA Newman, Ga.
500d WIMO Winder, Ga. 500d WIMO Winder, Ga.
1000 d KOZE Lewiston, Idaho 5000 d WTAQ LiGrange. III. 2500 WFRX W. Frankfort, III. WHLT Huntington. Ind, WMFT Terre Haute, Ind. KGLO Mason Cliy. Jow
WBLG Lexington, WBLG Lexington, Ky.
WIBR Baton Rouge. KANB Shreveport, La,
WFBR Baltimore, Md. VJDA Qulncy, Mass. 5000 WOOD Grand Ranids. Mlich. 500 d
500 d
5000 d
5000 d
500
1000 d
5000
1000
1000 d
500
500 d
500
100
100
1000
500
1000
 ISO Soral Pa
W.P. 1 Re, Wave Length W.P. 1340-223.7
CFGB Goose Bay, N
CJAF Caliano, Que.

Nfld. ..... 1000
250 CJAF Cabano, Que. (195k, N.W.T. 1000
250
250 CFYK Yollow Knife, N.W.T. 250
CHAD Amos. Que.
250 CHAD Amos. Que.
\(\qquad\) CKQC Quebec. Que. CKAR. 1 Parry Sound, Ont.
CKOX woodstock. Ont. CKOX Woods tock, Ont.
WKUL Cullman. Ala. WKUL Cultman. Ala.
WJOI Florence. Ala. W JOL Florence. Ala
WGWC Selma, Ala. WFEB Sylacauga. Ala. KIBH Seward, Alask
KIKO Miami, Arlz. KKKO Miami, Ariz.
KNOG Nogales, Ariz. KNOG Nogalies, A
KPGE Page, Ariz KENT Prescott. Arlz. KBTA Batesville, Ark.
KAAB Hot Springs, Ark. KBRS Springdalo. Ark
KENL Arcata, Calif. KENL Arcata, Calif. KMAK Fresno, Calif. KDOL Mojave, Calif.
KSFE Needles, Calif. lif. 100 KATY San Luis Obisno. Californis 1000
1000 \(\begin{array}{lll}\text { K1ST Santa Barlara, Calif. } & 1000 \\ \text { KONY Wa'sonville, Calif. } & 1000\end{array}\) KOMY Watsonville, Calif.
KDEN Denver. Colo. KWSL Grand Junction. Colo. KVRH Salida, Colo.
WNHC New Haven. WNHC New Haven. Conn.
WOOK Washington, D.C. 250
250
1000 WOOK Washington, D.C. 25
WSLG Clermont, Fia. WTAN Clearwater. Fla.
WROD Daytona Bi, Fla,
WOSR Lake Clly. FIa. WOSR Lake CIIy. Fla WQXT Palm Beach, Fla.
WSEB Sebring. Fla. WNSM Valparaiso. Nicovillo. 

\(w\)
\(w\)
\(w\)
\(w\)
\(w\)
\(w\)
\(w\)
W
\(K\)
\(K\)
\(K\)
\(w\)
\(W\)
\(W\)

Wis, 5000

\section*{0d}

\title{
C
} C
CF
W
C CKOY Dttawa, Ont.

50000
10000 HEP Richmond H Hill, Ont. CHGB St. Annode-l
wJAM Marion, Ala, Quebec 5000 d BUZ Mosa, Arlz. 5000
000 d
\(500 d\) 00d 1 \begin{tabular}{l} 
KPOD Crescent City, Callf, 1000 d \\
KDIA Oakland, Calif. \\
KIA \\
\hline
\end{tabular}

\section*{\(\underset{~}{\mathbf{k}} \underset{\sim}{\mathbf{w}}\)}1000 KARY Prosser. Wash.
000

Kc. Wove Length WOXF Oxford. N.C. WOOW Greonville, N.C. WGNI Wilmington. N.C. WAIR Winston-Salem.
KGPC Grafton. N.Dak. WNCO Ashland. Ohio WOUB Athens. Ohio WiZE Springfeld, Ohio WSTV Steubanvillo.
KIHN Hupo, Okla. KOCY Okla, Cify. okle. KTOW Sand Springs, Okla KWVA Enterprise, Ores, KIHR Hood River, Oreg.
KFIR North Bend, Ores, KFIR North Bend, Oreg.
WCVI Connellsville. Pa. WCVI Connellsville. Pa
WSAJ Grove City. Pa. WKAJ Grove City. Pa WHAT Philadolphin. Pa. WRAW Reading. Pa WBRE Wilkes-Barre, Pa. WWPA Williamsport, Pa. WGRF Aquadilla. P,R. WOKE Charleston, S.C. WRHI Rock Hill, S.C WSSC Sumier. S.C KIJV Huron. S.D. KRSD Rapid City. S. Dak WBAC Cleveland, Tenn WGRV Greeneville. Tenn WKGN Knoxville. Tenn. WHHM Memphis. Tenn. WCDT Winchester, Tenn. KWKC Abilene. Tex.
(AND Corsieana. Tex
KSET EI Paso. Tex.
KRBA Lufkin. Tex.
KPDN Pampa, Tex.
KOLE Port Arthur. Tex.
WTWN St. Johnsbury, Vt. WSTA Charlotto Amalie, V.I. WKEY Covington, \(V\) a. WHAP Hopewell, V KAGT Anacortes. Wash. KPKW Pasee. Wash.
KAPA Raymond. Wash. KMEL Wenatchee. Wash. WEPM Martinsbure. W.Va. WMON Montemery, W.Va. WOVE Weleh. W.V. LRIT Ladysmith. Wis. KGC Whwaukee. Wis. KWOR Worland, Wyo.
1350-222.1
CHOV Pembroke. Ont
CKLM Jolietto. Que.
CKEN Kentville, N.S. WELB Elba, Ala.
KLYD Bakerstild, Calif. \(\quad 5000\) KSRC San Bernardino. Calif. 500 KGHF Pueble, Colo.
NLK Norwalk. Conn. WEZY Cotos, FIs
WDCF Dade City, Fla. WBSG Blackshear. Ga. WRWH Cloveland, Ga,
WRPB Warnor Robins. WRPB Warner Robins. Ga 5000 d
KRLC Lewiston, Idaho WJBD Salam, Ill
WIDU Kokomo. Ind.
KRNT Des Moines, Iowa
KMAN Manhattan. Kans
wSM Louisvilie. Ky.
WDEA Ellsworth. Me.
WHMI Howell. Mieh. KDIO Ortonvilie, Minn. WCMP Pine City, Minn. WKOZ Kosciusko, Miss. CHR Charleston. Mo. KBRX O'Neill Nobr MBNX O'Noll, Nobr. WHWH Princeton, N.J. KABQ Albuquerque. N.M. WCBA Corninerque. N. WBMT Black Mountain, N.C 500 d WHIP Mooresville. N.C. KODI Wismare. N.C. WADC Bismarek. N.D. WCHI Chillicothe. Ohio KRHO Dunean. Okla. KTLQ Tahlequah, Okia. KRVC Ashland, Ores. KLoo Cervallis, Ore. WORK York. Pa.
WDAR Darlimaton, S.C. WGSW Greenwood, S.C. WRKM Carthafo, Tenn. KTX」 Iasper. Tex.
KCOR San Antenio. Tex. 1000 1000 \begin{tabular}{c}
1000 \\
C. 250 \\
\hline
\end{tabular}1000d
W.P.|Ne. Wove Length WBLT Bedford. Va. WFLS Fredericksbure, Va. WNVA Norton, Va.
WAVY Portsmouth. WPDR Portage, wis. 1360-220.4 WWWB Jasper, Ala. WLIA Mobile. Ala.
WMFC Monroeville, Ala. WELR Roanoke. Ala. KRUX Glendale Ariz. KLYR Clarksvilio, Ark.
KFFA Helena, Ark. KFIV Modesto. Calif.
KRCK Ridecerest. Calif KRCK RIdgecfest. Calif
KGB San Diego, Calif. WDRC Hartford. Conn. WOBS Jacksonville, Fla.
WKAT Miami Beach, FIa WSFR Sanford. Fla. WINT Winter Haven. F
WAZA Bainbridge, Ga. WLAW Lawronceville, Ga. WMAC Metter, Ga.
WLBK DeKalb, 111. WVMC Mt. Carmel, II
WGFA Wataka, III. KXGA Ft. Madison, Iowa KSCJ Sloux City, lowa WFLW Monticello, Ky. WFLW Monticello, Ky
KDBC Mansfleld, La. KVIM New Tallulah, La, WEBB Dundalk, Md,
WLYN Lynn. Mass. WLYN Lynn. Mass.
WWRO Caro, Mich. WKMI Kalamazoo. Mith.
KLRS Mountain Grove. Mo. KLRS Mountain Grove.
KWRV MeCotk. Nebr. WNNJ Newton. N.J. WWBZ Vineland, N.J. WKOP Binghamton. N.Y, WCHL Chapef Hill. N.C.
KEYZ Williston. N.D. WSAI Cintinnti N. O. WWOW Conneaut. Ohio KUIK Hillsbore, Oreg. WPQR Mekoesport, Pa.
WPPA Pottsville. Pa. WPPA Pottsville. P
WELP Easley, S.C. WLCM Laneaster. S.C. KRAY Amarillo. Tex. KACT Andrews. Tex.
KWBA Baytown KWBA Baytown. Tex.
KRYS Carpus Christi. KRYS Carpus Christi, Tex.
KXOL FI. Worth. Tex. 50 WBOB Galax, Va. WHBG Harrisonhurg, Va.
KFDR Grand Coules, Wash KFOR Grand Coules, Wash
KMOTacoma, Wash.
WHJC Matawan. W.Va.
WMOV Ravenswood. W.Va,
WBAY Green Bay. Wis. WBAY Green Bay. Wis. WISV Virouqua, Wis.
WMNE Menomonie, Wis KVRS Roek Springs, Wyo. 1370—218.8 WBYE Calera, Ala.
CFLV Valleyfeld, \(P\). KFLPA Prescolt. Ark. KBUC Corona. Calli. KEEN San Jose. Callt WKMK Blountstown. WKOS Oeala, Fla, WCOA Pensacola, Fla, WBGR Jesup Gat. WFDR Manchestor. WKLE Washington, Ga. WPRC Lineoln. III. Ga. WTTS Bloomington WGRY Gary, Ind. KGNO Dodue City, Kans.1000d5000 d5000d1000 d5000 d
50005000100081000d
容 웅응
50001000 d1000 d
\(1000 d\)
5000
5000
\(000 d\)1000 d\(1000 d\)
\(500 d\)
\(500 d\)\begin{tabular}{l}
\(500 d\) \\
500 d \\
\hline
\end{tabular}\begin{tabular}{l}
500 d \\
1000 d \\
\hline
\end{tabular} KALN Iola, Kans.
WGOH Grayson. Ky. WTKY Tompkinsville, Ky. KAPB Marksville. La, WAPB Marksvilie. La. WKIK Leonaratown. Md Md WGHN Grand Haven. Mieh. KSUM Fairmont, Minn. WDOB Canton, Miss. KWRT Boonville, Mo. KCRV Caruthersville, Mo. KXLF Bulte, Mont. WFEA Manchester, N. H WALK Patehegue. N.Y. WLTC Gastonia. N.C. WTAB Taber City, N.C.
KFJM Grand Forks, N.O. WSPO Taledo. Ohbo KAST Astoria Oren WOTR Corry, Pa. WKMC Roariny Spres., Pa. 900 WKFD Wiekford R.
W.P

1000
500
5000
500
1000 \(\substack{108 \\ 1 \\ 180 \\ 10 \\ \hline}\) We. Wave Length W.P. WDXE Chattanooga, Tenn. 5000

Kc. Wave Length W.P.
 1400—214.2
\(\begin{array}{ll}\text { CKBC Bathurst. N.B. } & 250 \\ \text { CKDH Amhersf. N.S. } & 250\end{array}\) CJFP Riviert-du-Loup. Que. 100 CKRN Rouyn Que. CKSW Swift Current, Sask. WMSL Decatur. Ala. WXAL Oemopoils. Ala. wJLD Homawood. Als WJHO Opalika, Ala. KSEW Sitka, Alaska
KCLF Clifton, Arlz. KXIV Phoenix. Ariz.
KTUC Tueson, Ariz. KTUC Tucson, Ariz.
KVOY Yuma. Ariz. KELD Ei Derado. Ark.
KCLA Pine Blufi. Ark. KWYN Wynne, Ark.
KRE Berkaley, Calif KREO Indio. Calif. KQM8 Redding, Calif. KSLY San Luis Obispo, Gal. 250 KSPA Santa Paula. Calif. 25 KHOE Truckee, Calif. KUKI UKiah, Calif. KONG Visalia, Callf. KRLN Canon City.
KDTA Delta, Colo. KFTA Ft. M organ. Colo KB2Z La Junta. Coilo. WILI Willimantie. Con WFTL Ft. Lauderdala.
WIRA Ft. Pierce, Fla. WRHC Jacksonville, FIa WPRY Perry. Fla.
WTRR Sanford, Fia. WTRR Sanford, Fla,
WZRH Zephyr Hills, FI WCQS Alma, Ga.

\section*{WSGC Elberton. Ga.}

\section*{WNEX Macon. Ga.} WMGA Moultrie, Ga. WCOH Nownan, Ga.
WGSA Savannah. Ga. WGSA Savannah, Ga.
KART Jerome, Idaho KART Jerome, Idano
KRPL Moscew. Idaho KRPL Noscew, Idaho
K8PT Sandpoint, Idaho WDWS Champalen. III WGIL Galesburt: III. WBAT Marion, Ind. KCOG Centerville. Iowa KVFD Fort Dodog, Iowa
KVOE Emporia, Kans. KVOE Emporia, Ka
KAYS Hays. Kans. WCYN Cynthiana, Ky. WIEL Elizabethtown

100 n
5000
5000
5004 KADK Lammand, La. WRDO Autusta Maine WIDE Biddeford, Maine WWIN Baltimore, Md. WLLH Lowell. Mass. WHMP Nerthampton. Mass. 500 WHMP Northampton, Mass. 1000 \(\begin{array}{ll}\text { WELL Battle Croek, With. } 250 \\ \text { WJLB Detreit. Mieh. } & 250\end{array}\) WHDF Houghton. Mieh. WMAB Munising. Mith WSAM Saginaw. Mieh WSJM St. Joseph. Mieh. WTCM Traverse City. Mleh. 250 KEYL Long Prairie, Mİn. 250 KMHL Marshall. Minn. 250 WHLB Virginia, Minn. Minn. 1000 WBIP Boonerille Mise WNAG Grenada, Miss. WFOR Hattiesburp. Miss 250 \(\begin{array}{ll}\text { WJQR Hattiesburg. Miss. } & 250 \\ \text { WJaS Jatkson. Miss. } & 250\end{array}\) WMBC Macon. Miss. KFRU Columbia, Mo. KJCF Festus, Mo. KSIM Sikesten. Mo.
KTTS Sprimatiold, Mo. KXGN Glendive. Mont. KARR Great Fills. Men KCOW Alliante, Nobr.
KLIN Lineoln. Nebr.

Kc. Wave Length W.P.|Kc. Wove Length

KBMI Henderson. Nov. KWNA Winnemueea, N WTSL Hanover, N.H. KTRC Sante Fe, N. Mex.
KCHS Truth or Consequen KCH Juth or Consequences. KTNM Tueumeari, N. Mex.
WOND PI WOND Plensentyille, N.S. WABY Albany, N.Y. WYSL Buflaio, N.Y. WSLB Ogdensburg, N.Y. WBMA Beaufort. N.C. WGBG Greansboro, N.C. WSIC Statesville, N.C WLSE Wallate, N.C. WHCC Waynesville, N.C. WCNF Weldon, N.C KEY」 Jamestown. N. Dak WMAN Mansheid, Ohio WPAY Portsmauth, Ohi KWON Bartlesville, Okla KTMC McAlester, Okla. KNOR Norman. Okla KNND Cottage Grove, Oreg. WEST Easton. Pa. WJET Eris. Pa. WKGB Harrisburg. Pa. WKEI st. Marys, Pa. WICK Seranton. Pa. WRAK Williamsport, WCOS Columbia. S.C WGTN Georgetown. S.C.
WZOO Spartanburg S. wod Spartanburg. S.C. WJZM Clarksville, Tenn. WHUB Caokeville, Tenn. WLSB Copper Hill. Tenn WGAP Marywilio. Tenn. WHAL Shelbyville. Tenn. KRUN Ballinger, Tex.
KBYG BI Spring. Tex KUNO Corpus Christl, Tex KILE nr, Galveston, Tox. KGVL Groenville, Tex. KEBE Packsonvilio
KEYE Perryton. Tex
KVOP Plalnviow. Tox
KTEM Temple, To
KTES Toxarkana, Tex
KYOU Uvaldo Tex
WDOT Burlington. Vt. WINA Charlottesvilte, Va, WHHV Hillsville, Va. WHiF sormouth, Va. WINC winchestor. Va. KEDO Longviaw. Wash. KRSC othello, Wash KTNT Tacoma. Wash. W . VA WRON Ronceverto, W.V. \({ }^{\text {W. }}\) WROZ Sonceverte. W. WKWK Wheeling. W, Va ATW Ashland w. W.V wi? Cou laire wis wDUZ Green Bay. Wis. WRDB Recdsburg. WIs WRIG Wausau. Wis. KODI Cody, Wyo.

\section*{1410-212.6}

CFUN Vancouver, B.C CHLP Montreal, Que WRCK Tuscumbia, Ala.
TTCS Fort Smith. Ark.
KERN Bakersfold, Cali
KKOK Carmer. Caili
KMYC Marysville, Calif.
KCAL Redlands, Calif.
KCOL Ft. Collins, Cole
WPOP Hartford, Conn
WDOV Dover, Del
WMYR Fort Myers, Fla WBIL Leesburg. Fia. WRFB Tallahassee, FIa WRIX Gritinn, Ge SNE Cummings, Ge WLAQ Rome, Ga WRMN EIgin. ili.
WTIM Taylorville, III. AzY Lafayette, Ind. KLEM LeMars. lowa KCLO Leavenworth, Kans KWBB Wichita, Kins. WLBJ Bowling Groen, Ky. WHLN Harlan, Ky. KDBS Alexandria, La WOKW Broektor. Md. WGRD Grand Rap, Mich. KLFD Litehtotd Aitinn WDSK Clevaland Mise. WBKN Newton, Miss. WHTG Eatontown N. WDOE Dunkirk. N. N.
-

1000
1000
500
500
500
1000
1000

250
1000 250 \(\begin{array}{r}250 \\ 250 \\ \hline\end{array}\) 1000 1000
2 1000
1000
250 5. WOTT Watertown, N.Y
WEGO Coneord. N.C. WEGO Coneard. N.C.
WSRC Durham, N.C. WING Dayton, Ohio KPAM Portland, Oreg.
WLSH Lansford, Pe KQV Pittsburgh. Pa.
WPCC Clinton. S . WPCC Clinton. S.C.
WYMB Manning. S.C WCMT Martin. Tenn.
KBUD Athens. Tex. KBUD Athens, Tex
KBAN Bowie, Tex. KVLB Cleveland, Tex.
KXIT Dalhart. Tex. KXIT Dalhart. Tex.
KADO Marshall, Tex. KRIG Odessa, Tox. KBAL San Saba, Tex.
KNAL Vietoria, Tex. KNAL Vietorla. Tex.
WRIS Roanoke, Va. WKBH LaCresse. Wls.
KWYO Sheridan. Wyo. KWYO Sherlidan
\(1420-211.1\) CKPT Poterborough, Ont. WACT Tusealoosa, Ala. KHFN Sierra Vista, Arlz.
KPOC Pocahontas, Ark. KPOC Pocahontas, Ark
KSTN Stockton, Callf. WLIS Old Saybrook, Con
WBRD Eradenton, Fla. WDBF Delray Beach, Fla.
WETM St. Augustine, Fla.
WRFB Tallahasse Fis WEFB Tallahassee, Fia, WRBL Columbus, Ga. WLET Toccoa, Ga. WIMS Miehigan City. Ind. KJCK Junction City, Kan WTCR Ashland, Ky. WHBN Harrodsburg, Ky.
WVJS Owenshoro. Ky.
KPEL Lafayotte. KPEL Lafayotto, La,
WOKW Brockton. Mass. WBSM Now Bedford, Mass WAMM Flint. Mich. WKPR Kalamazoo, Mich. WSUH Oxford. Miss. WQBC Vicksburg. Miss K000 Dmaha, Nebr KSYX Santa Rosa, N. Mex. WACK Nevark i N. Y WLNA Peekskili, N WMYN Mayodan, N.C. WVOT Wilson. N,C. WHK Cleveland. Ohi KTJS Hobart, OkIa. KYNG Coos Bay, Oreg.
WCOJ Coatesvillo, Pa WCED DuBols, Pa. WEUC Ponee, P.R. KABR Aberdeen, S.D.  WKSR Pulaskl, Tenn.
KFYN Bonham, Tex. 10000
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Ke. & Wove Length W.P. & ve Length & W.P & ve Length & W.P. & ve & W.P. \\
\hline  & St. George, Utah & WNAU New A & 500 d & Kтов Potalum & 5 & \[
\mathbf{L}
\] & 0 \\
\hline WSNO & Barra, Vt. 1000 & KGHM Brookneld, Mo. & & KBLF Red Bluf, Cal & 00 & KSAM Huntsvilile. Tex & \\
\hline TSA & Brattleboro, Vt. 1000 & K TCB Malden, Mo. & 1000 d & KDB Santa Barbara, Calif. & 250 & KVOZ Laredo. Tex. & 50 \\
\hline TR & Front Royal, Va. 250 & WTKO Ithaca & 1000 d & KSYC Yreka. & 1000 & K22N Littlefteld, \({ }^{\text {T }}\) & 50 \\
\hline ENZ & Highland Sorings, Va. 250 & WPDM Potsdam, N . & 1000 d & KBOL Boulder, & 1000 & KPLT Paris. Tox. & 50 \\
\hline &  & WBIG Greem & 5000 & KGUC Gunnison, Colo. & 250 & KGKB Tyler, Tex. & 250 \\
\hline \[
\begin{aligned}
& \text { WMVA } \\
& \text { KBKW }
\end{aligned}
\] & \(\begin{array}{lll}\text { Martinsvillic, Va, } & 1000 \\ \text { Aberdeen, Wash. } & 1000\end{array}\) & & 1000 d
1000 d & KCMS Manitou Spras,
KOLR Stole. & - \(\begin{array}{r}100 \\ 250 \\ \hline\end{array}\) & KVWC Vernon, Tox. KVOG Opden, Utah & 50 \\
\hline clx & Colfax, Wash. 1000 & W & 1000 & WTOR Torrington, Conn. & 250 & WKVT Bratilebor & 0 \\
\hline ONP & Port Anfeles, Wash. 250 & KVLH Pauls Valley, Okla. & \(250 d\) & WTRL Br & 0 & WIKE & \\
\hline YE & Puyallup, Wash. 1000 & KVIN Vinita. & 500 d & & 250 & WCVA Culpeper, Va & 0 \\
\hline WPAR & Parkersbur & KRAF Reedaport, Oreg. & 5000d & WMBM Mlami Beach, Fla. & 250 & WVEC & \\
\hline KFIZF & ond du Lae. Wis. 250 & WSAN Alle & 5000 & WSRA Milton, Fla. & 25 & WAYB Waynesboro. & - \\
\hline OLB & Marshfield, Wis. 1000 & & 1000d & WRGR St & 250 & KBRO Bremerto & \\
\hline PFP & Park Falls, Wis. wiot & & 500 d & W & 250 & KLDG Kelso, & 250 \\
\hline CO & Richland Center, Wis. 1000 & w & 5000 d & WSIR Winter Hav & 250 & KENE Toppenish, Wash. & \\
\hline & Buffalo, Wyo, 250 & WEAG Ale & 1000d & WMOG Brunswiek & 50 & KTEL W & \\
\hline & Riverton, Wyo. 250 & W YOL Berry Hill, \({ }^{\text {K }}\) & 5000 & WMJM Cordole, Ga & \[
\begin{array}{r}
1000 \\
250
\end{array}
\] & & \\
\hline 1460 & 205.4 & KRBC Abilene. & 500 d & & 50 & H & \\
\hline & 10000 & KCNY San Mar & 250 d & WSYL & 50, & W & \\
\hline & - & KELA Centrali & & & 250 & WLCX LaCrosse, Wis. & 1000 \\
\hline & Quebeo 10000 & KSEM Moses & 5000d & KCID Caldwel & \[
1000
\] & WOSH 0shkosh. Wis & 250 \\
\hline N8 & Battloford, Sask. 10000 & WWHY Hunt & 5000 d & WKRO Cairo. & 250 & KIML GI & \\
\hline Mr & Cullman, Ala. 5000 d & W IBT Wheeling, & \(500 d\) & WDAN D & 1000 & K & \\
\hline WPNX & Phenix City, Ala. 5000 & & \(1000 d\)
5000 & WBBR Ea & 500 & KRTR Thermopolis. & \\
\hline KZOT & Marianna, Ark. 500 & KTWO Casper, wyo. & 5000 & WOPA Oak Park, III. & 000 & KGOS Torringto & \\
\hline KcCL & Paris. Ark. calif 5000 d & 1480-202.6 & & & & 1500-199.9 & \\
\hline \[
\begin{aligned}
& \text { TYM } \\
& \text { DOO }
\end{aligned}
\] & \(\begin{array}{ll}\text { inglewood, Calif. } & 50000 \\ \text { Salinas. Callf. }\end{array}\) & WARI Abbeville, Ala. & 1000 & WKBV Richm & 1000 & 9 & \\
\hline & Santa Rosa, Calif. 1000 d & W BTS Bridgeport, A & 1000 d & WNOU South Bend, In & \[
\begin{array}{r}
250 \\
1000
\end{array}
\] & C Port Hope, Ont. & \[
\begin{aligned}
& 1000 \\
& 5000
\end{aligned}
\] \\
\hline KYSN & Colo. Spres., Colo. 1000 & WIXI Irondale, Ala. & 5000 d & WDBQ Dubuque, Jowa & 230 & Wash & \\
\hline BAR & Bartow, Fla. 1000 d & WABB Mobile, Ala. & 5000 & & & & \\
\hline & Sp & KHAT Phoenix. Ariz & & KKAN Philli & 250 & & \\
\hline & 1000d & KGLU Safford, Arlz. & 1000 & & & & \\
\hline WMBR & Jaeksonville. & KTCN Berr & & WFKY Frank & 250 & & \\
\hline DMF & Buford, Ga. 100 & KWUN Concord, Calif. & 5000 & WKAY Glas & 1000 & WMNT Ma & \\
\hline ROY & Carmi, 111. 1000d & KRED Euraka, Calli. & 5000 & WOMI Owens & 1000 & & \\
\hline WIXN & Dixon, Ill. 1000 & KYOS Morced. Calif & 5000 & intsv & 1000 & & \\
\hline AM & Goshen. Ind. l000d & KW1Z Santa Ana, Calif & & & & & \\
\hline H & North Vernon, ind. 1000 d & KSEE Santa Maria, Cal & 1000 & K & 250 & 199.1 & \\
\hline - & es Moines, lowa 500 & KTUX Puebio, Colo. & 10000 & K & 1000 & & \\
\hline CRB & Chanute, Kans. 1000 & WSOR Windsor, Conn. & 500 d & & 250 & KASK Ontario. Ca & \\
\hline Vk & Mi. Vernon, Ky. 500 d & WAPG Arcadia. Fla. & 100 & & 1000 & KIRV Frosno. Cali & \\
\hline St & Baton Rouge, La. 500 & WTHR Panama Beach, Fia. & & WTVL Waterville, Maine & & KTIM San Rafael, Gal & \\
\hline SF & Springhill. La. 1000 & WYZE Atlanta & \[
\begin{aligned}
& 1000 \\
& 5000
\end{aligned}
\] & & & OR Lit & \\
\hline Mo & \begin{tabular}{ll} 
Easton, Md. & 500 d \\
Brockton, Mass. & 5000
\end{tabular} & \begin{tabular}{l}
WYZE Atlanta. Ga. \\
WRDW Aunusta Ga
\end{tabular} & \[
\begin{array}{r}
5000 \mathrm{~d} \\
5000
\end{array}
\] & & & N & \\
\hline BRN & Brockton, Mass. 1000 d & WGSB Geneva, & & & & WKAI Macomb, 111. & \\
\hline PON & Pontlac, Mich. 1000 & WJBM Jerseyville. Ill. & 500d & & 1000 & EX Baston, Mast, & \\
\hline OM & Montevideo, Minn. 1000 & WTHI Terre Haute, I & 10 & WBFC Frem & & Rivers & \\
\hline ELZ & Izoni, Miss. 10 & WRSW Warsaw, Ind. & & idl & 1000 & WRAN & \\
\hline ADY & St. Charles, Mo. 5000d & KLEE Ottumwa, lowa & 500d & wCBQ Whiteh & 1000 & & \\
\hline RNY & Kearney, Nebr. 5000d & KBEA Mission, Kans. & 10000 & & 250 & Ch & \\
\hline ENO & Las Vegas. Nev. 1000 & KLEO Wheh & & K0ZY Grand Rapids, Minn. & 250 & Ch & \\
\hline & 50 & WNKA Nookn Ky. & 1000 & KLGR Redwd. & 000 & & \\
\hline & Now Rocholit. N.Y. 500d & WTLO Somerset, & 1000 d &  & \[
\begin{array}{r}
1000 \\
250
\end{array}
\] & Waukesha, Wis. & \\
\hline & Fuquay Sprgs., N.C. 100 & KANV Jonesville, La, & & WHOC Philadelahi & 250 & & \\
\hline WRKB & Kannapolis. & KJOE Shrevedort. La. & 1000 d & WTUP Tupelo, Mis & 250 & & \\
\hline M & Marshall, N.C. 500d & WSAR Fall Rive & 0 & WVIM Vieksburs. & 250 & HT Hollister, & \\
\hline NS & Columbus, Ohio 5000 & WMAX Grand Rapid & & KDMO Carth & 250 & KACY Port Huen & \\
\hline & Painesville, Ohio 500 d & & 10008 & KTTR Rol & 1000 & & \\
\hline & & & & & & & \\
\hline ROw & Dallas, Oreg. 5000 & KaUS Ausin. & 1000 & K80W Butte, & 1000 & KSi \({ }^{\text {a }}\) & \\
\hline MBA & Ambridge, Pa. \(\quad 500\) & KıM Lineoln. & 5000 & KBON Omaha, Neb & 1000 & & \\
\hline CMB & Haprisburt, Pa
Union S
S & KWEW Hobbs. N, Mex & 5000 & WEDS Aac & \[
\begin{array}{r}
1000 \\
250
\end{array}
\] & & \\
\hline WBCU & Wnion. S.C. \(\quad 1000\) & WLEA Horneli. N.Y.Y. & 1000 d & KRSN Los Alamos. \({ }^{\text {Wen }}\), & \[
\begin{aligned}
& 50 \\
& 50
\end{aligned}
\] & WFYI Mi & \\
\hline WJAK & Jackson, Tenn. 5000d & WHOM New York. & 5000 & KRTN Raton. & 250 & 1 & \\
\hline & Lafayette, Tenm. 10 & WREM Remsen & 500 & WCSS Amstord & 0 & - & \\
\hline KBRZ & Freeport, Tex. 500d & WWOK Charlotte. N.C. & 1000 d & & 250 & WWWW Rio Pledras, & \\
\hline & Lubbeek. Tex. 1000 d & Coulsbur & 500 & & 1000 & \(1530-196\). & \\
\hline & Waco. Tex. 100 & WHSJ Syiva, N.C & 50000 & Malo & 1000 & 1 & \\
\hline PRW & Manassas. Va. 500 d & WHEC CE & & WOLC Port & 50 & cramento. & \\
\hline & Radf & W & 500 d & WOLF Syracuse & 250 & & \\
\hline & Sufik. Va. \(\quad 1000\) & WDAS Philadelohia, P & 5000 & WFLB F aye & 250 & & 000 \\
\hline & Yakima, Wash. 5000 & WISL Shamokin. Pa. & 100 & WLoE Leaksill & \(5 \pi\) &  & \\
\hline BUC & Buekhannon, W.Va. Io00d & WSHP Shlpoens bu & 50 & WRNB New B & 1000 & WQVA Quantico, Va. & \\
\hline WRAC & Racine. Wis. 500d & KSOR Waterton. S. & 1000d & Rocky Moun & & & \\
\hline WTMB & Tomah, Wis, 1000d & W JFC Jofferson City, T & 500 & W & 0 & 1540-195.0 & \\
\hline & & WLOK men & & WSVM V & & ZNS Nassau. B.W.I. & 1000 \\
\hline 1470 & 204.0 & & & KNOC He & 250 & & \\
\hline chow & Wolland, ontario 1000 & Kape San & 50 & WBEX Chillicoth & 1000 & WBNL & \\
\hline OX & Pointe Claire. Que. & KONI Spanish & 1000d & WJmo Clevela & &  & \\
\hline BLO & Evergreen, Ala. \(\quad 1000 \mathrm{~d}\) & WCFR Soringteld, Vt. & 1000d & WOHI E. Llverdool. 0 & 250 & KXEL Wate & soor \\
\hline ZNG & Hot Springs, Ark, 1000d & WBEL Richmond, VE. & 5000 & WMOA Marlotta, Ohio & 1000 & KNEX WePh & \\
\hline KBMX & Coalinga, Calif. 500 d & WLEE Riehmond. & 5000 & WWRN Marion, Ohio & 1000 & KLKC Parsons, Kans, & \\
\hline KUTY
\(\mathrm{K} \times \mathrm{O}\) & Palmale, Cal & WBLU Salem. & 5000d & KWRW Guthrio, Okla. & 0 & WDON Wheaten, Md. & \\
\hline \[
\text { K } \times 0 \mathrm{~A}
\] & Sacramonto, Calif. 500 & KFHA Lakwood & 1000 d & KBIX Muskogee, okla & 25 C & WPTR Alb & 5000 \\
\hline MOM & Pompano Beach, Fla. 5000 & KVAN Vancouver WISM Madison. & \(1000 d\)
5000 & KBKR Bal & \[
\begin{aligned}
& 25 * \\
& 25 \%
\end{aligned}
\] & WIFM El & 250 d \\
\hline RBB & Tarpon Sprg3., Fla. 5000 & KRAE Cheyenne, Wyo. & 1000d & KBZY Salem & 1000 & WABQ Cleveland, Ohio & 1000 d \\
\hline \({ }^{\text {a AG }}\) & Adel, Ga. 1000 d & & & WESE Branford, Pa. & 250 & WPTS Plitston, Pa, Pa. & \\
\hline DOL & Athens. Ga. 1000 d & & & WAZL Hazleton, Pa. & 1000 & & \\
\hline CLA & Claxton, Ga. 1000 & CFMR Fort Simason NWT. & 250 & WARD Johnstown, Pa. & 250 & WADK Newport. R.I. & 10 mod \\
\hline WMGA & Rome, Ga. \({ }^{3000}\) & CFRC Kingston, Ont. & 00 & WGAL Lancaster, Pa. & 1000 & KCUL Ft worth. Tox & \\
\hline MPP & Chicago Heights, III. 10000 & CKCR Kitehener, Oni. & 1000 & WBCB Levittown, Pa. & 1000 & & \\
\hline MBD & Peoria, lill 5000 & CKBM Montmagny, Qu & 1000 & WMRF Lewiston, Pa. & 1000 & KGBC Galv & \\
\hline U & Anderson, Ind. 1000 d & WANA Anniston, Ala & 250 & Pa. & 250 & KBVU Bellevue. Wash. & 000 \\
\hline R1 & Sloux Clity, lowa 5000 & WAJF Decatur. Ala. & 1000 & WNBT Well & 250 & WTKM Hartford. Wis. & 500 \\
\hline KWVY & Waverly. lowa 1000 d & WRLD Lanett, Ala. & 250 & WMOD Fala & 250 & 1550-193. & \\
\hline KARE & Atehison. Kans. 1000 & WHBB Selma. & 250 & WSIB Beaufort. S.C. & 104 & 1550-193. & \\
\hline & Liberal. Kans. \(\quad 500\) & KYCA Proseott, Ariz & 1000 & WGCD Che & 250 & CBE Windsor, Ont. & 10000 \\
\hline KPLC & \begin{tabular}{ll} 
Fort Knox, Ky \\
Lake Charies. & 50000 \\
\hline
\end{tabular} & KAIR Tueson, Ariz & 250 & WMRE Greenvillo, S.C. & 1000 & WAHM Birmingham, Ala. & \\
\hline  & \begin{tabular}{l}
Lake Charles. \\
Lewiston. Ma
\end{tabular} & & 250 & KORN M & 250 & WMA & 5 mon \\
\hline + & Salisbury. Md. 5000d & KDRS Paragoulo. Ar & 250 & WDXB Chattaneona. & 1000 & & \\
\hline TTR & WestmInster, Md. 1000 d & Kotn pine bluf, Ari & 250 & WROL Fountain Clity, Tenn. & 250 & KKHI San Fran.. Call & 10000 \\
\hline - & Marlborough. Mass, 1000 & KXRJ Russ & 250 & WIJM Lewlsburg. Tenn. & 1000 & KDAB Arvada, & \\
\hline BP & Newburyport, Mass. 500d & KWAC Bakerstiold, Ca & 250 & WDXL Lexington. Ten & 1000 & & \\
\hline & Kalam Ten. & KBAS Bannin, Calit. & 250 & KNOW Austin. Tax. & 250 & Beh., F & a. 25 \\
\hline WKLZ & Kalamazoo, Mich. 500 d & KBLA Burbank, Calif. & 250 & KIBL Beeville. Te & 250 & & \\
\hline NO & Anoka, minn. & & & Bid Spring, To & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Ke. Weve Length & W.P. & Kc. Wave Length & W.P. & & ve & P. & & ce Length & W.P. \\
\hline WZST Tampa, Fla. & 10000d & WKKS Vanceburg. KY. & \[
250 \mathrm{~d}
\] & WPMP & Paseagoula-Moss & & &  & \[
5000 \mathrm{~d}
\] \\
\hline WSMA Smyrna, Ga. & 10000 d & WABL Amite. La. & \(500 d\) & & Point, Mississippi & 1000d & WDBL & Springhold. Tenn. & 1000 d \\
\hline WJIL Jacksonville, III. & 1000 d & KLLA Leesville, La & 1000 & & Columbia. & 250 d & KGAS & Carthage, Tex. & 1000 d \\
\hline WCTW New Castle, Ind. & 250 & KMAR Winnsbort, La. & 1000 & KESM & Eldorado Springs, & . 250 d & KERC & Eastland. Tex. & 500d \\
\hline KEDD Dodre City, Kans. & 1000 d & WAQE Towson, Md. & 5000d & KNIM & Maryville. Mo. & \(250 d\) & KINT & El Paso, Tex. & 1000 d \\
\hline WIRV Irvine, Ky. & 1000 d & WPEP Taunton, Mass. & 1000d & WNJH & Hammonton, N.J. & 250d & KYOK & Houston, Tex. & 5000 \\
\hline WMSK Morganfleld, Ky. & \(250 d\) & WMLO Beverly, Mass. & 500 d & WCRV & Washington, N.J. & 500 d & KCBD & Lubbock, Tox. & 1000 \\
\hline WYNE Baton Rouge, La, & 5000 d & WOEW Westficld. Mass. & \(1000 d\) & KRAZ & Albuquerque, N.N & 1000d & KBUS & Mexia, Tex. & 500 d \\
\hline KREB Shreveport, La, & 10000 & WMRP Flint. Mich. & 1000d & WPAC & Patehonue, N.Y. & 10000d & KTOD & Sinton. Tex. & 000 \\
\hline WSHN Fremont, Mieh. & 1000 d & WFUR Grand Rapids. & & WZKY & Albemarie, N.C. & 250 d & WRLA & Luray, Va. & 500 d \\
\hline KBLR Bolivar, Mo. & 250 & & 1000 d & WPYB & Benson, N.C. & 300d & WRGM & Riehmond, Va. & 5000 d \\
\hline KGMO Cape Girardeau, Mo. & 5000 d & KUXL Golden Valley, MI & 500d & WVKO & Columbus, Ohio & 1000d & KETO & Seattie, Wash. & 5000d \\
\hline KKJO St. loseph, Mo. & 5000 & WONA Winona, Miss. & 1000 d & KLTR & Blackwell, Okla. & 250d & WIXK & New Richrend, Wis. & 5000d \\
\hline WCGR Canadainua, N.Y & 250 & KLEX Lexington. & \(250 d\) & & Columbia, Pa. & 500 d & WSWW & Platteville, Wis. & 5000 \\
\hline WBAZ Kingston, N,Y. & \(500 d\) & WAFS An & 1000 & WEND & Ebensburg, Pa. & 1000d & WTRW & Two Rivers. Wis. & 1000d \\
\hline WBVM Utica. N.Y. & 1000 & WFLR D & \(1000 d\) & WANB & Waynes burg, Pa. & 250 d & WAWA & West Allis, Wis. & 1000 d \\
\hline WTYN Tryon, N.C. & 1000 d & WBUZ Fradonia, & \(250 d\) & WORG & Orangeburg, S.C. & 1000 d & KCHY & Cheyenne, Wyo. & 1000d \\
\hline WPEG Winston-Salem, N.C. & \(1000 d\) & WAPC Riverhead, N.Y. & \(1000 d\) & WYCL & York \({ }^{\text {ces }}\), & 250 d & & & \\
\hline KUTT Fargo, N. & 5000 d & WTLK Taylorsville. N.C & 500 & & & 250 d & 1 & . 5 & \\
\hline . & & W NCA SUer City. N.C. & 1000 d & & Shel byville, Tenn. & 1000 d & & & \\
\hline Braddock, Pa. & & WCLW Mansfield, Ohio & 1000 & WSKT & 8outh Knoxville, T & n. 250 & & Nagara Fails, Ont. & 0000 \\
\hline  & 1000 d & WPTW Piqua. Ohio & 250 d & KGAF & Gainesvite, Tex. & 250d & WEUP & Huntsvilie. Ala. & 5000d \\
\hline WKFE Yaued, P.R. & & KTAT Frederiek. Okla. & 250 d & KIRT & Mlstion. Tex. & 1000d & & gomery, Ala. & 000 \\
\hline WBSC Bennetsville. & \$0000 & yor. Okla. & & & & & & & 1000d \\
\hline WTHB N. Aususta, 8 & 1000 d & KGGG Forest Grove, Orog. & 1000 d & K & x. & 1000 d & & Pomona, Calif & \\
\hline KVPH Canyon, Tex. & 1000 & W8UX Doylastown. Pa. & d & & O. & 0 & KHER & Santa Marla. Ca & 500 d \\
\hline KWBC Navasota, Tex. & \(250 d\) & WBUX Doylestown. Pa. & loo0d & WILA & Danville, \(V\) a & 1000 d & KUBA & Yuba City, Calif & 500 \\
\hline WTPI Cookville, Tenn. & \(250 d\) & WSHH Latrobe, Pa. & 1000d & WPUV & - & 5000 d & KLAK & Lakewood, Cole. & 500 \\
\hline WKPT Kingsport, Tenn. & \(10000 d\) & WFGN Gaftney. S.C. & 250 d & w & & 1000 d & WKEN & Dover, Del. & 500d \\
\hline WKBA Vinton, Va. & 1000 d & WJES Johnston, S.C. & 250 & & Watertown, Wis. & & WKTX & Atlantic Beac & \\
\hline WBOF Virginia Beach. Va. & 5000 d & WLSC Lorit, S.C. & \(1000 d\) & & & & WKWF & Key West. Fla. & 500 \\
\hline WXVA Charlestown, W.Va. & \(500 d\) & WHLP Centerville, Tenn. & 1000d & & & & WHE & Riviera Beach. & 1000 \\
\hline KOQT Bellingham, Wash. & 1000 d & WCLE Cleveland. Tenn. & 000d & WATM & Atrero, Al & 5000 d & WOKB & W inter Garden, Fla. & \(1000 d\) \\
\hline 3 & & & \[
250
\] & WVNA & Tuscumbia. Als. & 5000 d & WGKA & Atlanta, Ga. & 1000d \\
\hline & & KVLG La Grante. Tex. & 250 d & KPBA & Pine Bluf. Ark. & 1000d & WNG & Nashyille, Ga, & 000 \\
\hline Simeoe, Dnt. & 250 &  & & KLIV & San Jose, Calif. & 5000 & WCGO & Chicago Hets., Ill. & 1000d \\
\hline KPMC Bakerstiold. Calif. & 10000 & Clty, & & KUDU & Ventura, Callf. & 1000 & W MCW & Harvard. 111. & 500 d \\
\hline KIQS Willows. Callf. & \(250{ }^{\text {d }}\) &  & & KCIN & Victorville, Calif. & 500 d & WBTO & Linton. Ind. & 500d \\
\hline WBYS Canton, Ill. & 250d &  & 1000d & WBRY & Waterbury, Con & 5000 & WARU & Peru. Ind. & 1000d \\
\hline KSWI Counell Blunts. Lowa & 1000d & & 500 d & WOWY & Clewiston, Fla. & 500 d & KLGA & Algona, lowa & 5000d \\
\hline WDXR Paducah. Ky. & 1000 & & & & t. Potersbure Ben & & KCRG & Cedar Raplds, fowa & 5000 \\
\hline KQYX Joplin. Mo. & 50 & & & & - Florid & 1000 d & KMDO & Ft. Scott, Kans. & 500 d \\
\hline WQXR New Yark. N.Y. & 50000 & & & E & S, Daytona Beh. & & WSTL & Eminance, KY. & 500 d \\
\hline WTNS Coshocton. Ohlo & 1000d & & & & & 1000d & KFNV & Ferriday, La. & 1000 d \\
\hline WTOD Toledo, Ohio & 5000d & CB」ChicoutlmI, Que. & 10000 & & & 1000 & KL & Vivian, La. & 500 d \\
\hline KWCO Chickasha. Okla & 1000 & WJHE Talladega & 1000 d & WLFA & Lafayette. Ga. & 5000 d & WINX & Roekville, Md. & 1000 \\
\hline WRSJ Bayamon. P.R. & 5000 & KYND Tempe, Ariz. & 10000 d & WTGA & Thomaston, Ga, & 500 d & wB0S & Brookline, Mass. & 5000 \\
\hline KCAD Abilene, Tex. & \(500 d\) & KPCA Marked Tree. Ark. & 250 d & WNPP & Evanston, \(11 \%\) & 1000 d & WTYM & East Longmeadow & \\
\hline KHBR Hillsbore, Tex. & 2504 & KFDF Van Buren. Art & 1000 d & WAIK & Galesburg, IIf. & 5000d & & 55. & 5000d \\
\hline KGUL Port Lavaca, Tex. & 500d & KPON Anderson, Ca & 1000 d & WGEE & Indianapolis, Ind. & 5000d & WHAV & Ann Arber, Mleh. & 1000 \\
\hline KHOK Hoquiam, Wash. & \(1000 d\) & KWIP Merce & 500 d & WPCO & Mt. Vernon. Ind. & 500d & WTRU & Muskegon, Mleh. & 5000 \\
\hline & & KDAY S & 000d & KW8G & Boone, lowa & 1000 & WKDL & Clarksdale. Miss. & 1000d \\
\hline 1 & & KHUM Santa Rosa, Callf. & & KVGB & Great Bend, Kans. & 5000 & WFFF & Columbia, Miss. & \(500 d\) \\
\hline & & & & WLBN & Lebanen, Ky. & 1000 d & KATZ & St. Leuls. Mo. & 5000 \\
\hline CHUB Nanaimo, B,C. & 10000 & Wwil Ft. Lauderdale, Fia. & 0000 & & White Castle. La. & 1000d & KTTN & Trenton, Mo. & 500d \\
\hline CFRY Portage la Prairio, & & WGRC Green Cove Sprinos. & 0000 & & ocean City, Md. & 1000 & KNCY & Nebraska City. & 500 \\
\hline & 250 d & WGRC Green Cove Sprin & & WTVB & Coldwatar, Mie & 3000 & & Super & 500 d \\
\hline CFOR Orillia, Ont. & 10000 & Flor & & WDOG & Marine City. Mit & 1000d & WMCR & Onoida, & \(1000 d\) \\
\hline WCRL Oneonta, Ala. & 2500 & WMDF Mount Dora, Fla. & 1000 d & WMIC & t. Helen, Mich. & 500 d & WLNG & Sag Harbor, N . & 00 \\
\hline WRWJ Selma, A & 1000 d & WCLS Columbus. Ga. & 1000 d & & , Forks & \(\checkmark\) & & & \\
\hline KBRI Brinkley, Ark. & 250 d & WPFE Eastman, Ga. & 500 d & & Forks & 1000d & WW & Woodside, N. & \[
50000
\] \\
\hline KBJT Fordyee. Ark. & \(250 d\) & WLBA Gainesville. Ga. & \(5000 d\) & & & 5000 d & W & & 1000 \\
\hline KRKC King City, Callf. & \(250 d\) & WKIG Glenville, Ga. & \(1000 d\) & KDEX & Dexter, Mo. & 1000 d & WIDU & Fayettevllio, N.C. & 1000 d \\
\hline KCVR Lodi, Callf. & \(1000 d\) & WKKD Aurora, III. & \(250 d\) & KPAS & Kansas City, Mo. & 1000 d & WFRC & Reldsville, N.C. & 1000 \\
\hline KACE Riverside, Callf. & 1000d & WOQN Duguoin. III. & \(250 d\) & & Ralla, Mo. & 1000 d & WKSK & W. Jefferson. N.C. & 1000d \\
\hline KLOV Loveland. Colo. & 250 d & WBBA Pittsfleld. III. & \(250 d\) & & & 5000 & KDAK & Carrington, N.Dal & 500 d \\
\hline WTWB Auburndale, Fla. & 5000 d & WKID Urbana, ! 11. & 50 d & WERA & Plainfield. N.J. & 500d & WBLY & Springheld, Ohio & 1000 d \\
\hline WPAP Fernandina Beach. & & WCNB Connersville, Ind. & 25 & WAUB & Auburn. N.Y. & 500d & WTTF & Tifin, Ohio & 500d \\
\hline Florida & 1000 d & WJVA South Bend. Ind. & 1000 d & WEHH & Elmira Hoights & & KUSH & Cushing, Okla & 1000 d \\
\hline WOKC Okeechobee, Fla. & 1000 & WAMW Washington, Ind. & 250d & & & 500d & KASH & Eupene, Oreg & 100 \\
\hline W10E Ward Ridge, Fla. & 250 & KCHA Charles City, Iowa & 500 d & & Salamanea, N, Y. & 5000 d & & St Melens. & 1000 d \\
\hline WMES Ashburn, Ga. & 1000d & KWNT Davenpert, Iowa & 500 d & WVOE & Chadburn. N.C. & 1000 & WHO & Allentown. Pi & 500 \\
\hline WGHC Clayton, Ga. & 1000 d & KDSN Denison. Jowa & 500 d & WGTC & Greenville, N.C. & s000d & WEZN & Elizabothtown. Pa. & 00 \\
\hline WEAD College Park, Ga. & 1000 d & WAXU Georgetown, Ky. & 10000 d & WNOS & High Point. N.C. & 1000 d & WF18 & Fountain Inn. S.C. & 000 \\
\hline WGSR Millen, Ga. & 250d & WMTL Leitchficld, KY. & 250d & WAKR & Akron, Ohio & 5000 & & Harriman, Tenn. & 5000 d \\
\hline WOKZ Alton, III. & 1000d & WPKY Princeton. KY. & \(250 d\) & WSRW & Hilisboro, Ohie & 500d & WKB & & 1000d \\
\hline WFRL Freaport, III. & 5000 d & KLUV Haynesville, La. & 250d & KHEN & Henryetta. Okla. & \(500 d\) & KBEB & Borger, Tex. & 500 \\
\hline WBEE Harvey. III. & 1000d & OU Lake Charles, L & 1000 & KTIL & Tillamook. Oreg. & 1000 & KBOR & Brownsville, Tex. & 1000 \\
\hline WTAY Robinsan. 111. & 250 d & Bradbury Hots., Md, & 10000 & WZUM & Carneplo, Pa. & \(1000 d\) & KWEL & Midland, Tox. & 00 \\
\hline WILO Frankfort. Ind. & 250 d & WOWE Allegan, Mich. & \(250 d\) & WCBG & Chambersburt, Pa & \(5000 d\) & KCFH & Cuero. Tex. & \\
\hline WAWK Kendallville. Ind. & 250 d & WOWE Allegan, Mich. & 1000d & WEEZ & Chamber, Par. & 1000 & KCFH & Cuero. Tex. Tex & 1000 d \\
\hline WOWI New Albany, Ind. & 1000 d & WJUD St. Johns, Mich. & 1000d & & G & 1000 & KMAE & Mekinney. Tex. & 1000 d \\
\hline KMOD Fairfleld. Iowa & 250 d & KDOW WIndom, Minn. & & WYNG & Warwick, & \(1000 d\) & K06 & Orange. Tox. & 00 \\
\hline JFJ Webster City, Iowa & 250d & WA MY Amory, Miss. & \(5000 d\) & WABV & Abbeville. S.C. & 1000 d & KBBC & Centerville, Utah & 000 \\
\hline NDY Marysville. Kans. & 250 d & WGLC Centreville, Miss. & 250d & WACA & Camden, S.C. & \(1000 d\) & WHL & Wheeline. W.Va, & 5000 \\
\hline & 250 d & d, & 10 & Waca & Plerre, S.Dak. & 10 & WCWC & RIpon, Wls. & 50004 \\
\hline
\end{tabular}

\section*{U. S. and Canadian AM Stations by Location}

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co.; C: Columbia Broadcasting System, Inc.; M: Mutual Broadcasting System; N: National Broadcasting Co., Inc.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Lecatlon & C.L. Ke. N.A. & Locotion & C.L. Ke. N.A. & - & C.L. Ke. N.A. & on & C.L. Ke. \\
\hline Abheville. Ala. & \[
\begin{array}{ll}
\text { WARI } & 480 \\
\text { KROF } & 960
\end{array}
\] & A & \[
\begin{array}{cc}
\text { WGRF } & 1340 \\
\text { WRCS } & 970
\end{array}
\] & N.C. & \[
\begin{array}{ll}
\text { KABY } 990 \\
\text { WABZ } 1010
\end{array}
\] & Alexandria, Minn. Alexandria, Va. & RA 1490 A IK 730 m \\
\hline Abbevilie. La, & WREF \({ }^{960}\) & Aiken. S.C. & WAKN 990 & N. & WZKY 1580 & & GA 1600 \\
\hline Aberdeen. Md. & WAMD 970 & Altkin, Min & KKIN 1000 D & Albert Lea, & KATE 1450 A & Allee & KOPY 1070 \\
\hline Aberdeen, Mis & WMPA 1240 & Akron, Ohio & WAKR 1590 A & Albertville. Ala. & WAVU 630 & Alleg & WOWE 1580 \\
\hline Aberdeon, S. Dai & KABR 1420 & & 1350 C & Alb & WALM 1260 & Allentown, Pa & WHOL 6600 \\
\hline & KSDN 930 A & & CUE 1150 M & & KABO 1350 & & AEB 790 \\
\hline A berdeen, Wash. & KBKW 1450 & & WHLO 640 M & & KDEF 1150 A & & KAP 1320 \\
\hline & KXRO 1320 & Alamogordo, N.M. & LG 1230 m & & KGGM 610 C & & \\
\hline Abllene, Tex. &  & & \[
1270 \mathrm{~m}
\] & & QEO 920 W & Aliance. & \[
\text { WFAH } 1400
\] \\
\hline & \[
\begin{aligned}
& \text { KCAD } 1560 \\
& \text { KNIT } 1280
\end{aligned}
\] & & 1590 A & & AA 1310 & lma. Ga. & wcas 1400 \\
\hline & KWKC 1340 M & & 1450 C & & YOD 730 & Alma, Mict & WFYC 1280 \\
\hline A blingdon. & WBBI 1230 & & AZ 960 & & LOS 1450 & Alpena Township. & \\
\hline Ada. Okia. & KADA 1230 A & Albany. K & WANY 1380 & & WEAG 1470 A & & \\
\hline Adel, G & WAAG 1470 A & Albany, Minn. & WASM 1150 & Ateo & & & WKDE 1280 \\
\hline Adrian, Aluadilia & ABJ 1490 A & A ibany, N.Y. & & & w & & vokz 1570 \\
\hline Apuadilia, & & & - 1540 m & Alexandria, La. & LB 580 & & CFAM 1290 \\
\hline & & &  & &  & Itoona, Pa. &  \\
\hline
\end{tabular}



Locotion Drumheller, Alta. Drummondv Du Bols, Pa. Dubuaue. Iowa
Duluth, Minn

Dumas. Ton.
Duncan. Okia.
Dundalk, Md.
WAYE 860
WEBB 1860
Dunn. N.C
Du Quoin.
WOGN 1580
Durant, okla
Durham. N.C.

Dyertburi. Tenn.
Eade Pass. Tex. Eafle River, Wis. W E, Grand Forks, Minm Enstland. Tax, KRAD 1590 E. Lansing, Mlch. WKAR 1590 E. Liverpasl. Ohio
Eist Longmeadow. M

Location
Gresham. Ores. Grotna, Ve.

\section*{Grinnell. lowa} Groton, Conn. Grove City, P Grundy. Vo. Gueiph, Ont. Gulfport, Mi.

Gunnison, Colo. Guntersville, A Guthris, Okla. Hererstown. Mid

\author{
Haines City, Fla.
} Halnyville. Ala Hallfax, N.S.

Hamden, Conn. Hamiton, Ala. Hamilten. Ohio Hamilton. Ont

Hamilton. Tex. Hamiot, N.C. Hammond. La. Hammont on. N.J. Hampton. S.C. Hampton. Va Hancoek. Mieh. Hanford, Callf. Hannlbal. Mo.
Hanover. N.H.

Hanover, Pa Harlan. Ky. Harlinien, Tex Harriman. Tann Harrigburg. III.
Harrisburg. Pa.

KG
\(W\)
\(W\)
\(W\)
\(W\)
\(W\)
\(K\)
\(W\)
\(W\)
\(W\)

Harrison. Ark. Harrodsbure. Ky.
Hartford, Conn.

\section*{Hartierd, Wls.} Hartevili Als. Hartwoll. Ga. Harvard, III. Harvey. Ill. Hastlnes, Nebr Hattiesburt. Miss

HaverhllI, Mass. Hayrs, Mont. Havre, de Graee. Md Hawklnsville. Ga. Haynesy Kans. Hays. Kans. Hayward. WI Hazard, Ky Hazleton. Pals.

\section*{Helenn, Ark.}

Hemet, Calif. Hempstead. N.Y. Hendersen, KY. was

Hendersen. N.C. WHNO 1280 W Hendersen. Tex. KGRI 1000 Hendersenville. N.C Henryetia. Dkie. KHEN i590 Herchord, KPAN 860 Herkimer, N.Y. WALY 1420 Mermiston, Oreg. Herrin. Ill. Hettinger. N.Dak Hibbing. Minn. Hlekory: N.C Hiphland Park. Tex, K Highland Springs, Vex. KVIL IIS0 High Point, N.c. WENZ 1450 Hillsbore, Ohis WHPE 1070 HItisbero, Ores. KUIK I 360 KWRO
. Lecation
C.L. Ke. N.A. KHBR 1560 WCSR 1940 WHHV 1400 M \(\underset{\text { Hil }}{\text { Hil }}\)

Locatlon
C.L. Ke. N.A.
\begin{tabular}{|c|c|}
\hline & WKIZ 500 \\
\hline Kilgere, Tex. & KOCA 1240 \\
\hline Kilfeen, Tay. & KLEN 1050 \\
\hline Kimbalf, Nebr. & KIMB 1260 \\
\hline King City, Calif. & KRKC 1570 \\
\hline Kingman, Ariz. & KAAA 1230 A \\
\hline \multicolumn{2}{|l|}{Kings Mountain.} \\
\hline Kingsport. & WKMT \({ }^{\text {W }}\) (220 \\
\hline & WKPT 1550 \\
\hline \multirow[t]{2}{*}{Kingston, \(\mathrm{N}_{*} \mathrm{Y}_{\mathbf{*}}\)} & WBAZ 1550 \\
\hline & WGHQ 920 \\
\hline \multirow[t]{3}{*}{Kingston, Ont.} & CFRC 1490 \\
\hline & CKLC 1380 \\
\hline & CKWS 960 \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Kingstree, S.C. } \\
& \text { Kingsvilis. Tex. } \\
& \text { Kinston. N.C. }
\end{aligned}
\]} & WDKD 1310 \\
\hline & KINE 1330 \\
\hline & WELS 1010 \\
\hline & WFTC 960 \\
\hline & WISP 1230 \\
\hline \multirow[t]{2}{*}{KIrkiand, Wash.} & KCDI 1460 \\
\hline & KNBX 1050 \\
\hline \multirow[t]{2}{*}{Kirkland Lake, Ont
Kirksvillo. Mo.} & t. CJKL 580 \\
\hline & KIRX 1450 \\
\hline Kissimmee, Fla. & WKBX 1220 \\
\hline \multirow[t]{2}{*}{Kitehener, Ont.} & CKCR 1490 \\
\hline & CKKW 1320 \\
\hline \multirow[t]{2}{*}{Kltanning. P告.} & WACB 1380 \\
\hline & \\
\hline
\end{tabular}
Klamath Falls. Orog.
KAGO II50 M
KFLW 1450 A.C
KLAD 960

Hops, Ark. Ores.
Hopewall. Va.

\section*{Hogulam, Wash. \\ Hornelt, N.Y.
Hot Springs, Ark.}

\section*{Hot Springs.}

Houghton, S. Dak. KOBH 580 Houghton Lake. Mieh.
Houlton. Malne WHGR 1290 Houma, La, KCIL 1490 N Houston. Mlss. .
Houston. Mo.
Houston. Tex. \(N\)
\(C\) WPOP 1410 M -A WTIC 1080 N WHRT 860 WHSC 860 WKLY 980 M WMCW 1600 WBEE 1570 WBKH 950 WFOR 1400 N \(W \times \times \times 1810^{\circ}\) KOJM 810 N ACSA 1330 \begin{tabular}{l} 
KLEH \\
\hline 1580
\end{tabular} KAYS 1400 WH8M 810 WK1C 1390 WTHT 1300 KFFA 1960 KCAP ISAN KBLL 1240 N WHLI IIno WSON 860 KBMI 1400 Huntsvile. Ala.
Muntsville. Ont.
Huntsville. Tex.
Huron. S.Dak.
Hutchinson. Kans. KW
Hutehinson. Minn. KW
Idabel. OlKa.
Idaho Falls. Idaho Independence, fa. Independence, \(K\) ans Independenee Indlanapols.
\begin{tabular}{c} 
A \\
A \\
A \\
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Location & C.L. Kc. N.A. & \begin{tabular}{l}
Location \\
C.L. Ke, N.A.
\end{tabular} & Location C.L. Kc. N.A. & socaflon & L. Kc. N. KWEL 1600 \\
\hline & WLAU 1600 A WNEL 1260 & Los Angales, Callf. KABC 790 A & Marlborough. Mass. WSRO 1470 Marlin Tax, KAWA 1010 & Milan, Tenn. & \[
\text { EL } 160
\] \\
\hline & WLBG 860 & J 930 m & Marquette, Mich. WDMJ 1320 m & M llas City, Mont. & M \\
\hline & WEWO 1080 & SG 1150 & Marshall, Minn. KMHL 1400 A & Milford, Del. & WKSB 930 \\
\hline & WLCW 1300 & KFW8 980 & Marshall, Mo. KMMO 1300 &  & WMVG 1450 M \\
\hline Lawrence, Kans. & KFKU 1250 & KGF」 \(\mathbf{1 2 3 0}\) & Marshall, N.C. WMMH: 460 & Milledgeville, Ga. & \[
\begin{gathered}
\text { WMVG } 1450 \\
\text { WGER } 1570
\end{gathered}
\] \\
\hline & \begin{tabular}{l} 
KLWN \\
WCCM \\
\hline
\end{tabular} & \[
\begin{aligned}
& \text { KFAC } 1330 \\
& \text { KLAC } 570
\end{aligned}
\] & Marshall, Tox. KMAD 1410 & ington, Te &  \\
\hline Lawrenceburg, Tenn. & n. WDXE 1370 & KMPC 710 & Marshalltown, lowa KFJB 1230 & & WGMM \\
\hline Lawrenceville, Ga. & WLAW 1360 & ¢ 1070 C & Marshneld, Wis. WDLB 1450 &  & Y 1330 \\
\hline Lawrenceville. III. & WAKO 910 & KPOL 1540 &  & & A 1490 \\
\hline Lawrencevilie, Va. & WLES 580 & KGBS 1020
\(\times E T R A 690\) & Martinsburg, W.Va. WEPM 1340
Martinsville, Va. WHEE 1370 & Milton, Pa. & P 1570 \\
\hline & \[
\operatorname{cco} 1050
\] & \[
50
\] & N & & WARC 1380 \\
\hline dvill & KERR 1230 & Los Banos, Calif. KLBS 1330 &  & Mil & \\
\hline Leaksville & WLOE 1490 M & Louisburg. N.C. WYRN 1480 &  & & 1340 \\
\hline Leamington, Ont. & CJSP 710 & Louisville, Ga. WPE & Maryvillm. Tenn. WGAP 1400 & & 1150 \\
\hline Leavenworth, Kans. & - KCLO 1410 & Loulsville, Ky. WAVE 970 N & Mason Clity. Jowa KGLO 1300 C & & 0 \\
\hline Lebanan, Mo. & KLWT 1230 & 840 C & \[
490
\] & & \\
\hline banon, & KGAL 920 & \(180{ }^{81}\) & Massena, N.Y. WMSA 1340 A & \(\cdots\) & KASO 1240 \\
\hline Lebanon, Pa. & WL8R 1270 & 240 & W8TS 1050 & Mineral Wells & KORC 1140 \\
\hline non, Tenn. & WCOR 900 m & \[
\begin{aligned}
& \text { KYW } 900 \mathrm{C} \\
& \text { LOU } 1950
\end{aligned}
\] & Massillon, ohio WTiG 990 & & WFYI 1520 \\
\hline & L 1410 & T & Matane. Que. CKEL 1250 & & W \\
\hline Leosburs, Va. & WAGE 1290 & Loulsville, Mlss. WLSM 2270 & Mattoon, III. WLEH 1170 & & WMIN 140 \\
\hline Leosvill & 1570 & Loveland, Coio. KLOV 1570 & Mauston, Wis. WRJC 1270 & & \\
\hline Lehighto & WYNS 1150 & Lovington, N.Mex. KLEA 630 & Mayaguez, P.R. WAEL 600 & & WPBC 980 \\
\hline Leitchfetd, Ky. & & Loweli, Mass. WCAP 980 & & & WTCN 1280 A \\
\hline Leland. Miss. & WESY 1580 & LLH 1400 & 1150 & & 690 \\
\hline Lemoars & KLAN 1320 & & & & \\
\hline & WJRI 1340 M & 340 & & ak & LPM 1390 \\
\hline noir & WLIL 730 & 790 C &  & Mrot, N.Dak. & \\
\hline Leonardtown & WKIK 1370 & 1460 M & Maysvilio, Ky. WFTM 1240 M & & KCJB 910 C \\
\hline Lethbridge, Alse. & CJOC 1220 &  & MeAlester & &  \\
\hline Levelland. & LVT & WKLA 1450 A & & & \\
\hline & WBCB 1490 & Lufkin, Tex. KRBA 1340 A &  & m (ssoula, mon & \\
\hline Lewisburs, Pa. & WITT 1010 & We. KTRE 1420 M &  & & \\
\hline wisburg. Tenn. & WJJM 1490 m KRLC 1350 & Lumberton, N.C. WAGA 580 m & & & KSS 91 \\
\hline & KOZE 1300 & & MeCook & & \[
\text { KUAA } 1450
\] \\
\hline Lew & WCOU 1240 M & 330 & & & KNCM 12 \\
\hline & WLAM 1470 A & Lynehburi, Va. WLVA 590 A & & - & WALA 1410 \\
\hline Lowistown, Mont. & KXLO 1230 & \[
\begin{aligned}
& \text { WDMS } 1320 \\
& \text { WWOD } 1390 \mathrm{~m}
\end{aligned}
\] & 1360 m & &  \\
\hline &  &  & HDM 1440 & & \\
\hline Lexington, & WLAP 630 m & Lynn. Mass. WLYN 1360 & KMAE 1600 & & WTUF 840 \\
\hline & & & n. W & & KRG 710 \\
\hline & WVLK 590 C & Macomb, III. WKAI 1510 &  & & \\
\hline Lexington, Miss. & WXTN 1150 & Macon, Ga, WBML 1240 & 540 & & \\
\hline Lexington & KLEX 1570 & & & & \\
\hline Lexington, Nebr. & KRVN 1010 & 80 & Meadville. Pa. WMGW 1490 & Modesto, Calif. & BEE 970 \\
\hline Lexington. N.C. & W8UY 1440 & \[
\mathrm{c}
\] & Medford. Mass. WHIL 1430 & & \\
\hline nn & WREL 1450 N & Macon, miss. WNE & Medford, Oreg. KMED 1440 A & Mojave, Ca & KDOL 1340 \\
\hline Lexington Pk., Md. & d. WPTX 920 & Madera. Calif. KHOT 1250 & KDOV 1300 & & WQUA 1230 \\
\hline Libby, & C8 1230 M & Madill, Okla. KMAD. 1550 & KBOY 730 & & \[
\begin{gathered}
\text { KVKM } 1330 \\
\text { CBAF } 1330
\end{gathered}
\] \\
\hline & 770 & & & & \\
\hline \begin{tabular}{l}
Liberal. \\
Liberty.
\end{tabular} & \[
\begin{gathered}
\text { KSCB } 1270 \\
\text { w VOS } 1240
\end{gathered}
\] & Madison, Ga, WORX 1270 & WIGM 1490 m & Man & 990 \\
\hline Libert & KWLD 1050 & Madison, S.D. KJAM 1390 & Media, Pa. Ala, WXUR 690 & Mont & \[
\begin{aligned}
& \text { WRAM } 1330 \\
& \text { WMRE } 1490
\end{aligned}
\] \\
\hline hue & H 1490 & Madison, Tenn. WENO 1430 & & & \\
\hline Lima, & WIMA 1150 A & Madison, Wis. WHA 970 & Memphis, Tenn. WHBQ 560 m & Monroe. & \[
\mathbf{N}
\] \\
\hline & WPRC 1970 & & \[
1430
\] & & \\
\hline & 240 &  &  & Monroe, MI & \\
\hline & 1480 & WFMW 730 & 1070 & & 080 \\
\hline & ON 1050 & WFMW \({ }^{730}\) & 0 A & Monro & 1260 \\
\hline & CKLY 910 & 790 & Lok 1480 & Monraevilde, Ala. & 1360
630 \\
\hline Linton, In & WBTO 1600 & Magnolia, Ark. KVMA 630 m & WREC 600 C & & KWBY 1240 \\
\hline & WSMI 1540 & 470 & KWAM 990 & & \\
\hline Litehfield. & KLFD 1410 & Malene, N.Y. WICY 1490 m & Mena. Ark, KENA 1450 &  & KSLV 1240 \\
\hline Llitte Fals, Minn. & . KLTF 980 & Malvern, Ark. KBOK 1310 & Menomines, Mleh. WAGN 1340 A & & WMNZ 1050 \\
\hline Little Fallis, N.Y. & WLFH 1230 & \(\begin{array}{lll}\text { Manasses, Va. } & \text { WPRW } 1460 \\ \text { Manati, P. R. } & \text { WMNT } & 500\end{array}\) & Menomonis, Wis. WMNE 1360 & Montgomery. Ais. & WBAM 740 \\
\hline 俍tio Aock. Ark. & & Manehester, Conn, WINF 1230 C & . & & WCOV 1170 \\
\hline & \[
\text { KANJI } 1250 \mathrm{~m}
\] & & Meriden, Conn, wMMW 1470 & & \[
\begin{aligned}
& \text { NAPX } 1600 \mathrm{~N} \\
& \hline \text { NHY } \\
& \hline
\end{aligned} 440
\] \\
\hline & 1010 A & Manchester, KY, WWXL 1450 & eridian. Mise. WCOC 910 C & & \\
\hline & & & & & WRMA 950 \\
\hline & & & & & \\
\hline Littioton & KMOR 1510 & Manchoster. Topn. WMSR 1320 & Werill Wis Waic 1390 & Monticello. Ar & KHBM 1430 \\
\hline Oak. & W NER 1250 & Manhattan, Kars. KSAC 580 & Merrill, Wis. WXMT 730 & micoir. & WFLW 1360 \\
\hline vingston, Mont. & KPRK 1340 M & w & Mesa, Ariz. \({ }^{\text {Mer }}\) W8UZ 1910 & ontmag & CKE \\
\hline vingston, Tenn. vingston, Tex. & WLIV 920 & Manlatoe, Mieh WM &  & & \[
\begin{aligned}
& \text { W. SKI } 1240 \\
& \text { Wr }
\end{aligned}
\] \\
\hline & K Y LL 1220 & & BUS 1590 m & Mentraal, Que. & CBF 690 \\
\hline inster, Alta. & CKSA 1150 & - & Mexico, Mo. KXEO 1340 M
Mexico, Pa. WJUN 1220 & & BM 940 N \\
\hline Haveni Y . & WBPZ \({ }^{\text {W }}\) (230 M & Mankato, Minn WOMT 1240 M &  & & 600 A \\
\hline \begin{tabular}{l}
Dort, N.Y. \\
Calif.
\end{tabular} & \[
\begin{aligned}
& \text { WUSJ } 1340 \\
& \text { KCVR } 1570
\end{aligned}
\] & Mankato, Minh. KYSME1230 N & Miami, fla. WGBS 710 C & & \[
\begin{array}{r}
1410 \\
800
\end{array}
\] \\
\hline an, Utah & KVNU 610 m & 10 & N & & - \\
\hline & KSTU 1300 & Mansfeld Onio & & & KAC 79 \\
\hline & KLGN 1390 & Mansfield. Ohio WMAN 1400 A &  & & KGM 980 \\
\hline Logan, W.Va. & LOG 1230 M & & WMIE II 40 & Montr & UBC 560 \\
\hline ans & WSAL 1230 m & Marathon, fla. WEFG 300 & & esv & \\
\hline Lompoc. Cali. & KKOK 1410 & Marianna, Ark. KZOT 1460 & 40 M & Moorhead, Min. & KVOX 1280 \\
\hline & KNEZ 960 & Marianna, Fla. WTYS 1340 M &  & oosejaw, Sask & CHAB 800 \\
\hline London, Ky. & WFTG 1400 & W, Ga. WFOT 980 & Miami Beach, Fia. & & \\
\hline London, Ont. & CFPL \({ }^{\text {CKSL }}\) & E 1230 &  & &  \\
\hline ng Boach, Calif. & . KFOX 1200 & 1490 & 380 C & & \\
\hline . & - KGER 1390 &  & WFUN 790 & & WMNC 1430 \\
\hline onsmont. & KLMO 1050 & Marinette. Wis. WMAM 570 N & Miehigan City, Ind. WIMS 1420 & or & WAJR 140 \\
\hline Loni Pralirio, Minn. & n. KEYL 1400 & Marion, Ala. WJAM 310 & Midd & & 300 \\
\hline sview, & KFRO 1370 A & Marion, Ill
Marion, Ind. WGGH
WGAT 1400 & w & & 800
280 \\
\hline & KLUE 1280 & & Middletown, Conin. WCNX 1150 & & \[
\begin{aligned}
& 1250 \\
& 1250
\end{aligned}
\] \\
\hline & KEDO 1400 A & Marion, N.C. WBRM 1250 & Mlddetown, N.Y. WALL 1340 & & \\
\hline & 1070 & Marton. Ohic WMRN 1490 A & MIddietown, Ohie WPFE 910 & & \\
\hline N, Mer & WW12 1380 A & Marion. Va. WMEV 1010 A &  & Morton, Tex. & K \\
\hline , N. Mox. & . & & Midiand, Tox. KCRS 550 A & & \\
\hline , Mo & N I & Marksille, Le. KAPB 1370 & Maland Tox. KJBC IISO & WHITE'S RADIO & LOG 173 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline cotion C.L. Ke. N.A. & tion C.L.Ke.N.A & Hion C.L. Ke. N.A. & .L. Kc. N. \\
\hline  & Ga. WETZ 1330 M &  & \begin{tabular}{ll} 
Parsons. Kans. \\
Pasadona, Calif. & KLKC \\
KALI & 1430 \\
P43
\end{tabular} \\
\hline G, KW1Q 1260 & WNEA 1300 & 730 & \\
\hline Moultrie, Ga, WMGA \({ }_{\text {WMTM }}\) (300 A & La. WOSU \({ }_{\text {WJBw }}^{1280}\) & Opdensbura, N.Y, KVOG \({ }_{\text {WSL }} 14900\) & Pasadena, Tex. \\
\hline ndsvill & MR 990 m &  & . \\
\hline ntain Grove, Mo. KL & K 800 & O & Pascagoula-Moss \\
\hline Mt, Alry, N.C. \({ }^{\text {M }}\) WPAQ 740 & \[
\begin{aligned}
& \text { OE } 1060 \\
& \hline 1850 \\
& \hline 1350
\end{aligned}
\] & KBLPE \(1140{ }^{\text {K }}\) &  \\
\hline & & & \\
\hline Clomens. Mich. & WWW \({ }^{\text {WW }}\) W70 & \begin{tabular}{l}
KOMA 1520 \\
TOK 1000 A.M
\end{tabular} & \begin{tabular}{l}
Paso Robles, Callf. KPRL 1 \\
Patehogue, L.I., N.Y.
\end{tabular} \\
\hline M & \[
\begin{aligned}
& \text { WWOM } \\
& \text { WYLD } \\
& 940
\end{aligned}
\] & KJEM \({ }^{800}\) & \\
\hline M. Jatkson, Va. WSiG 790 & Newport, Ark, KNBY 1280 & Okmulgee. Okla. KOKL 1240 & 30 \\
\hline M1. Kisee. N.Y. WVIP 1310 & Newport, Ky. WNOP 740 & Old Saybrook, Conn. Whis 1420 & Pauls Valley, Okla, KY LH 1470 \\
\hline Mt. Olive, N.C. WDJS 1430 & Newport. N.H. WCNL 1010 & WMNS 1360 & Pawtucket, R.I. WXTR 550 A \\
\hline Mt. Pleasant. Mich. WCEN 1150 & Newport, Oreg. KNPT 1310 & & \\
\hline Mt. Pleasant, Tex. KIMP 960 & Newport, A.1. WADK 1540 & & eace River. Alta. \\
\hline M1. Shasta, Calif. KWSO \({ }_{\text {Mt. }} \mathbf{6 2 0}\) & Newport. Tenn. WLIK 1270
Newport. Vt. WIKE 1490 & \({ }_{920}^{1240} \mathrm{M}\) & Pecos. Tox. M KIUN 1400 \\
\hline Mi. Vernon, ili. WMix 940 & Newport News, Va. WGH 1310 A & omaha, Nebr. KBON 1490 & IV 1140 \\
\hline M. Vernon, ind. WPCO 1590 & WTID 1270 & Omaka, Netr. KFAB 1110 & K 1430 \\
\hline Mi. Vernon, Ky. Wernon, Ohio WMVO 1300 & New Richmond. Wis.w & KOIL \({ }^{1290}\) & Pembroke, ont. CHOV 1330 \\
\hline Mt. Vernon. Wash. KBRC 1430 & New Rochelis, N.Y. WYOX 1460 & KMEO 660 & \begin{tabular}{l} 
K K10 \\
KUBE 1240 \\
\hline 1050
\end{tabular} \\
\hline  & w & & \\
\hline WIS, Sic. 1340 & W0RT \({ }^{\text {S50 }}\) & Omak. Wash.
Oneida, N.Y. & Penninoton Gap, Va, wswv 1570 \\
\hline LOC 1150 & Nowton, lowa KCOB 1280 & WBNT 1310 & Pensacola, Fla. \\
\hline n.WGAS 1450 & \begin{tabular}{l} 
Newton, Kans. KJRG \\
Newton, Miss. WKK \\
\hline 1410
\end{tabular} &  & WDEB 610 C \\
\hline phy, N.C. WC & & & WNVY 1230 A \\
\hline - &  & & \\
\hline boro, III. WINI 1420 & N & WPHO 1400 M & Penlicton, B.C. CKOK 800 \\
\hline Ky. WNBS \({ }_{\text {Ktain }}{ }^{340}\) & & Opelousas, La. KSLO 1230 A & Peoria. III, WAAP 1350 \\
\hline Katine, lowa KWPC 860 & A & & \\
\hline muscle Shoals city. & & Opportunity, Wash. KZUN 680 & \\
\hline Muskegon, mich WKBZ 850 A & WEVD 1330 & Oranje, Tex. K0GT 1600 & M \\
\hline Muskegon, Mich. \begin{tabular}{l} 
WKB2 \\
\(\mathbf{W T R U} 1650\) \\
\hline 1800
\end{tabular} & WHOM 1480 & & \\
\hline WMUS 1090 & & W & \\
\hline 80, okla. KBIX 1490 & WMCA 570 & WTND 920 & 400 m \\
\hline WMYB 1450 & HN 1050 & range Park, Fla. WAYA 550 & Petaiuma. Calif. KTOB 1490 \\
\hline KEEE 1230 & WNEW 1130 & City, Ores. KGON 520 m & Peterborough, Ont. \\
\hline Nampa, Idaho KFXD & WOR 710 & Orlando, Fla. WOBO 580 C & Petersburg. Va. WSSV 1240 m \\
\hline KWLW 1340 & WADO 1280 & & Petoskey. Mieh. WMBN 1340 \\
\hline almo, B.C. CHUB 1570 & WPOW \({ }_{\text {WOXP }} 1360\) & W Lof \({ }^{\text {c }}\) & Phentix city, Ala. WPNX \({ }^{4600}\) A \\
\hline tleoke Pa. WNAK 7300 & WNBC 660 N & WKIS 740 & \\
\hline Napa, Callo WNOG 1270 & WHLD 1270 & Or & w \\
\hline arrows. Va. WNRV 990 & & & \\
\hline WOTW 900 & Niagara Falls. Ont. CHVC 1600 Nitholasville, Ky. WNVL 1250 & ortonville, Minn. KD10 1350 & \[
00
\] \\
\hline & Nilas, Mich. WNIL 1290 & Osceola, Ark. KOSE 860 & \\
\hline \[
\text { WNGA } 1600
\] & Nogales. Ariz. KNOG 1340 A & Oshawa, Ont. CKLE 1350 & \\
\hline Nashyllie, Ga. WNG
Nashville, Tenn. WKOA 1240 & &  & - \\
\hline Nashville, Tenn. WKDA 1240 C &  &  & m \\
\hline MAK 1300 & Nortok, V. WCMS 1050 & 00 & O \\
\hline  & WNOR 1230 & Otsega, Mieh. WOMC 980 & hilipsbure. Pa. WPHE 1260 \\
\hline WSM 650 N & Normal, IIt & Ottawa, lill & \\
\hline chez, Mlss. WMIS 1240 & Norman, Okila. WN & Ottawa, Ont. CB0 910 & XIV 1400 \\
\hline WNAT 1450 M & Noma, KNO & & \\
\hline  & Norman Wells, North- & 0turwa lowe CKOY 1310 & \\
\hline KWBC \({ }^{5650}\) & CFNW 1240 &  & Y 550 \\
\hline Nebraska, City, Nebr \({ }^{\text {K }}\), & Norristown, Pa. WNAR 110 & Owatonna, Minn. KRFO 1390 & K00L 960 C \\
\hline edies, Calit. KSFE 1340 & N. Augusta, s.c. WGUS \({ }_{W}^{1380}\) & WEBO 1330
WOMI 1490 & \\
\hline Snah. Wis WNAM 1280 & N. Batleford, Sask. CJNB 1460 & WVIS 1420 A & \\
\hline Hens WCCN 3730 & th Bay Ont. CFCH 600 &  & \[
20
\] \\
\hline S, Ky. WNKY 1480 & FIR 1340 &  & \\
\hline KBTN 1420 & & Oxford. N.C. W0xF 1340 & 3 \\
\hline vada, Mo. KNEM 1240 & rthnold.Minn. WCAL 770 & Oxnard. Calit, K0xF 910 & 590 \\
\hline New Albany. Ind. WOWI \({ }^{1570}\) &  &  & WPLSE \({ }^{\text {900 }}\) \\
\hline Newark, Dei. WWRK 1260 & & WOXR 1560 N & Pine Bluf, Ark. KCLA 1400 \\
\hline wark, N.J. WJRZ 970 & & & KADL 1270 \\
\hline & North Platte, Nebr. KJLT 970 & & \\
\hline WVNJ 620 & & & Pine city. Minn. WCMP 1350 \\
\hline WACK 1420 & KLG \(730{ }^{\text {m }}\) & Paintsville. Ky. WSIP 1490 M & Pineville: Ky, WM WMLF \({ }^{1230}\) \\
\hline W & N. Vernon, Ind. WOCH 1460 & Pal & \\
\hline W NBH 1340 M & No. \({ }^{\text {Noren }}\) & Palestine. Tex. KNET 1450 & qua. Ohio WPTW 1570 \\
\hline W Bern, N.C. WHIT 1450 M & Norwalk. Conn. WNLK 1350 & Waxt 134 &  \\
\hline WKDK 1240 &  & - KDES 920 & KSEK 1340 \\
\hline Bostor. Ohio W101 1010 & Oakdale. La. KREH 900 & Paimde Calit KPAL 1450 & Pittsburgh, Pa. KOKA \({ }^{\text {KQV }}\) \\
\hline (eraunels, Tex. KGNB & Oakes. N. Dak. KEYD 1220 & & \\
\hline Britain, Conn. WAYM \({ }_{840}\) & Oak Grove. La. KWCL 1280 &  & \\
\hline New Brunswick, N.J. WCTC 1450 & Oak Hill WiVa, WOAY
Oakland, Calif.
OEW & KHHH 1230 & 730 \\
\hline Wburgh. N.Y. W. WGNY 1220 & Oakland, Calif. KEWB \({ }^{\text {KABL }} 960\) & la. WPLP 590 & 250 \\
\hline New Carisite, Que. CHNC 610 & KDIA 1310 & & 970 \\
\hline New Castle. Ind. WCTW \({ }^{\text {1 }} 500\) & n. WAPA 1290 m & Fla. \({ }^{\text {W }}\) WTHR & Pittstield, III. WBBA 1580 \\
\hline  & Oakville, Ont, CHWO 1250 & & Pitsneta, Mass. WBEK 1340 M \\
\hline weastle, Wyo. KASL \(1240{ }^{\text {a }}\) & Ocala, Fla. WWMOP \({ }^{\text {WTMC }} 1290\) & Paraciso. Caill \({ }^{\text {Paragould. Ark. }}\) KORS 1490 & WPIS 1540 \\
\hline Glasgow. N.S. CKEC 1320 & WKOS 1370 & Parls, Ark. KCCL 1460 & Plainfield.
Plainview,
Nex.
Wex \\
\hline Haven, Conn. & ETT 1590 & Paris, III. WPRS 1440 & Plainview, tex. KPLe \\
\hline WNHC \({ }^{\text {1840 }}\) & Oceanlake, Ored. KBCH 1380 & Paris & WPLA 910 \\
\hline 1240 & Oeeanside, Calif. KUDE \({ }^{\text {O }}\) (320 & Paris, Tex. Kex & Platteville, WIS. WSWW 1590 \\
\hline K Kensington. Pa, WKPA \({ }^{\text {KVIM }} 11560\) & Odessi, Tox. KECK 920 & KFTV 1250 & \\
\hline W Kensington, Pa. WKPA 1150 &  & Parkersburg. W.Va. WCEF \({ }^{\text {WPAR }} 1450\) & KBOP 1380 \\
\hline New Martinsville, w. & R1G1410 m & & - \({ }_{\text {l }} 1300\) \\
\hline & & Park Falls. Wis. WPFP 1450 & \\
\hline 74 & OGA 930 & KAR-1 1340 & Plymouth, Wis. WPLY 1420 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|}
\hline Nc. N.A. & Location & L. Ke. N.A. \\
\hline KKEY II50 & Washington. Ga. & WKLE 1370 \\
\hline KVAN 1480 & Washington. Ind. & WAMW 1580 \\
\hline KISN 910 & Washington, lowa & KCII 1380 \\
\hline WA \({ }^{\text {W }}\) R 1320 & Washington, N.J. & WCRV 1580 \\
\hline KVEN 1450 M & & WITN 930 \\
\hline KUDU 1590 & Washington, N.C. & WEEW 1320 \\
\hline CKVL 850 & Washington. Pa. & WJPA 1450 M \\
\hline KUSD 690 & Washington Court & \\
\hline KVEL 1250 & House, Ohio & WCHO 1250 \\
\hline CJIB 940 & Waterbury, Conn. & WATR 1320 \\
\hline KVWC 1490 & & WRRY 1590 \\
\hline WAXE 1370 & & -WCO 1240 \\
\hline WTTB 1490 A & Waterbury, Vt. & WDEV 550 \\
\hline WGBC 1420 m & Waterloe. Iowa & KXEL 1540 \\
\hline WVIM 1490 & & KNWS 1090 \\
\hline CJVI 900 & & KWWL 1330 \\
\hline CFAX 810 & Watertown, N.Y. & WATN 1240 \\
\hline CKDA 1220 & & WOTT 1410 \\
\hline KNAL 1410 & & WWNY 790 \\
\hline KVIC 1340 m & Watertown, S.Dak. & KSDR 1480 \\
\hline CFDA 1380 & & KWAT 950 \\
\hline KCIN 1590 & Watertown. Wis. & WTTN 1580 \\
\hline WVOP 970 & Waterville. Me. & WTVL 1490 A \\
\hline WIVV 1370 & Watseka, III. & WGFA 1360 \\
\hline CKVM 710 & Watsonville, Calif. & KOMY 1340 \\
\hline KVPI 1050 & Wauchula, Fla. & WAUC 1810 \\
\hline Que. & Waukegan, III. & WKRS 1220 \\
\hline CKRB 1460 & Waukesha, Wis, & WAUX 1510 \\
\hline WAOV 1450 m & Waupaea, Wis. & WDUX 800 A \\
\hline WWE2 1360 & Wausau, Wis. & WRIG 1400 N \\
\hline WOVL 1270 & & WSAU 550 A \\
\hline KVIN 1470 & & WHVF 1230 \\
\hline WKBA 1550 & Waverly, Jowa & KWVY 1470 \\
\hline WHLE 1400 N & Waverly. Ohio & WPKO 1380 \\
\hline WBOF 1550 & Waxahachle. Tex. & K EEC 1390 \\
\hline WISV 1360 & Waycross, Ga. & WACL 570 \\
\hline KONG 1400 & & WAYX 1230 M \\
\hline KLVI 1600 & Waynesboro, Ga. & WBRO 1310 \\
\hline WACO 1580 A & Waynesboro. Miss. & WABO 990 \\
\hline KWTX 1230 M & Waynes bero. Pa. & WAYZ 1380 \\
\hline KWAD 920 M & Waynes boro, Va. & WAYB 1490 \\
\hline WADE 1210 & & WRWV 970 \\
\hline KMVI 550 N & Waymesburf. Pa. & WANB 1580 \\
\hline KAHU 920 & Waynesville, Mo. & KJPW 1390 \\
\hline WGOG 1460 & Waynesville, N.C. & WHCC 1400 \\
\hline KWAL 620 M & Weatherford, Tex. & KZEE 1220 \\
\hline WL8E 1400 & Webster City. Iowa & -KJFJ 1570 \\
\hline h. & Weod, Calif. & KDAD 800 \\
\hline KHIT 1320 & Weirton, W. Va. & WEIR 1430 N \\
\hline KUJ 1420 M & Weiser, Idaho & KWEI 1260 \\
\hline KTEL 1490 A & Welch, W.Va. & WELC 1150 \\
\hline KRLW 1320 & & WOVE 1340 M \\
\hline KFLJ 1380 & Weldon, N.C. & WCNF 1400 \\
\hline WALD 1220 A & Welland, Ontario & CHOW 1470 \\
\hline WCRB 1330 & Wellsboro. Pa. & WNBT 1490 M \\
\hline WDLA 1270 & Wellston, Ohio & WKOV 1330 \\
\hline WJOE 1570 & Wellsville. N.Y. & WLSV 790 \\
\hline WARE 1250 M & Wenatchee, Wash. & - KPQ 560 A \\
\hline Ga. & & \(\begin{array}{ll}\text { KUEN } & 900 \\ \text { KMEL } & 840\end{array}\) \\
\hline KWRF 860 & & \\
\hline WHHH 1440 & & WETC 540 \\
\hline WNAE 1310 & Weslace. Tex. & KRGV 1290 N \\
\hline KOKO 1450 & West Allis, Wis. & WAWA 1590 \\
\hline KWRE 730 & W, Bend. Wis. & WBKV 1470 \\
\hline WEER 1570 & Westbrook. He. & WJAB 1440 \\
\hline WKCW 1420 & West Covina, Calif. & . KGRB 900 \\
\hline WRSW 1480 & W. Frankfort. III. & WFRX 1300 \\
\hline WNNT 690 & West Jefterson, N.C & \\
\hline leh, R.I. & & WKSK 1600 \\
\hline WYNG 1590 & W. Hemphis, Ark. & . KSUD 730 \\
\hline KWSO 1050 & W. Monroc. La. & KUZN 1310 \\
\hline WGMS 570 & W. Palm Eeach. & \\
\hline WMAL 630 A & & WEAT 850 M \\
\hline WOL 1450 m & & WJNO 1230 C \\
\hline W00K 1340 & & WIRK 1290 m \\
\hline WWDC 1260 & West Plains. Ma & KWPM 1450 \\
\hline WRC 980 N & West Point. Ga. & WBMK 1310 \\
\hline & & \\
\hline
\end{tabular}


\section*{U. S. AM Stations by Call Letters}
\begin{tabular}{|c|c|}
\hline & tor \\
\hline \multicolumn{2}{|l|}{\multirow[t]{34}{*}{}} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Kc. & C.L. Lecation \\
\hline 1230 & KALE Rlehland. Wash. \\
\hline 1340 & KALG Alamoserdo. N. Mex. \\
\hline 790 & KALI Pasadena, Callf. \\
\hline 960 & KALL Salt Lake City, Utah \\
\hline 1350 & KALM Thayer, Mo. \\
\hline 1420 & KALN tola, Kan. \\
\hline 890 & KALT Atianta. Tex. \\
\hline 1570 & KALV Alva, 0kia. \\
\hline 1300 & KAMD Camden, Ark. \\
\hline 1360 & KAML Konedy, Tex. \\
\hline 1520 & KAMO Rogers, Ark. \\
\hline 1230 & KAMP El Centro. Callf. \\
\hline 1270 & KAMY MeCamey, Tex. \\
\hline 1410 & KANA Anatonda, Mont. \\
\hline 1460 & KANB Shreveport, La. \\
\hline 1490 & KAND Corsicanm, Tax. \\
\hline 550 & KANE New Iberla, La. \\
\hline 1380 & KANI Wharton, Tex. \\
\hline 800 & KANN Ogden, Utah \\
\hline 930 & KANO Anoka, MInn. \\
\hline 1150 & KANS Independence, Mo. \\
\hline 1450 & KAOH Duluth. Minn. \\
\hline 1340 & KAOK Lake Charles, La. \\
\hline 950 & KAOL Carrollton, Mo, \\
\hline 820 & KAPA Raymond, Wash. \\
\hline 1330 & KAPB Marksville, Le \\
\hline 870 & KAPE San Antonio, Tex. \\
\hline 1490 & KAPI Pueblo, Cole. \\
\hline 1250 & KAPR Douglas, Ariz. \\
\hline 1270 & KAPT Salem, Ore. \\
\hline 1250 & KAPY Port Angelet, Wash. \\
\hline 970 & KARA Albuquarque, N, M. \\
\hline 1240 & KARE Atehlean, Kan. \\
\hline 580 & KARI Blaine, Wesh. \\
\hline
\end{tabular}
Ke.
960
1230
1430
910
1290
1370
900
1430
910
990
1390
1430
1450
1230
1300
1340
1240
1500
1250
1470
1510
1390
1400
1430
1340
1370
1480
690
930
1220
1290
1310
1470
550
\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{34}{*}{}} \\
\hline & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Ke. & C.L. Location & Ke \\
\hline 920 & KAYL Storm Lake. Iowa & 99 \\
\hline 1430 & KAYO Seattle. Wash. & 115 \\
\hline 400 & KAYS Hays. Kans, & 140 \\
\hline 860 & KAYT Rupert, idaho & 97 \\
\hline 1400 & KBAL San Saba, Tox, & 4 \\
\hline 1310 & KBAM Longview. Wash. & 127 \\
\hline 970 & KBAN Bowie. Tox. & 41 \\
\hline 1603 & KBAR Burloy, Idaho & 12. \\
\hline 1430 & KBBA Benten. Ark. & 69 \\
\hline 514 & KB8B Borger. Tex. & 160 \\
\hline 1249 & KBBC Centerville. Utah & 160 \\
\hline 150 & KBBR North Bend, Oreg. & 3 \\
\hline 240 & KBBS Buffalo, W yo. & 145 \\
\hline 1370 & KBCH Oeeanlake, Orag. & 1380 \\
\hline 220 & KBCL Shreveport, La. & 122 \\
\hline 1459 & KBEA \(\begin{aligned} & \text { Hisslon, Kans. }\end{aligned}\) & 148 \\
\hline 1400 & KBEC Waxahaehle. Tex. & 139 \\
\hline 345 & KBEE Modesto, Callf. & 97 \\
\hline 010 & KBEK Elk City Okla. & 124 \\
\hline 230 & KBEL Idabel, Okla. & 12 \\
\hline 940 & KBEN Carrizo Spros., Tex. & 145 \\
\hline 1320 & KBER San Antonio, Tox. & 115 \\
\hline 1340 & KBET Rene, Nev. & 134 \\
\hline 1600 & KBEV Poriland, Ores. & 101 \\
\hline 1480 & KBFS Belle Fourthe. \$. Dalk. & 4 \\
\hline 1240 & KBGN Caldwell, Idaho & 91 \\
\hline 1320 & KBHC Nashville. Ark. & 126 \\
\hline 610 & KBHM Branson. Mo. & 122 \\
\hline 960 & KBHS Hot Sprines, Ark. & 59 \\
\hline 1010 & KBIF Fresno, Calli. & 90 \\
\hline 1380 & KBIG Avalon. Calli. & 74 \\
\hline
\end{tabular}
Clich

C.L. Location

KROF Abbevllie, La.
KROP Brawley, Calif.
KROS Clinton, lowe
KROX Dallas, Ore.
KROX Crookston, Minn.
KRPL Moseow. Idaho KRRR Ruldoso, N. Mex KRSC Othello. Wash KRSO Rapid City, S.Dak,
KRSI St. Louis Park, Mínn. KRSL Russoll. Kans
KRSN Los Alamos, N, Mex KRTN Raton. N. Mex
KRTR Thermopolis, wyo KRUN Ballinger, Tex. KRUS Ruston, La. KRUX Giendale, Ariz. KRVC Ashland, Oreg. KRXK Rexburg, idebr KRYS Corgus Christi. KRZE Farminoton \({ }^{\text {K }}\) Tex. KRZY Grand Prairie, Tex. KSAC Mranhattan, Kans. KSAL Salina, Kans KSAM Huntsville Tex KSAN San Franeisco. Calif. KSAY San Franeisco KSCB Liberal, Kans. KSCJ Sioux City, low a KSCO Santa Cruz, Calif KSO St. Louis, Mo KSON Aberdeen. S. Dak KSOO San Diego, Catip. KSEE Santa Marla, Calir. KSEI Pocatello, Idaho
KSEK Pittsburg, Kans.
KSEL Lubbock, Tex.
KSEM Moses Lake, Wash KSEN Sherby. Mont
KSET EI Paso Tex
KSET EIPaso. Tex.
\[
\begin{aligned}
& \text { KTNC Falls City. Nebr. } \\
& \text { KTNM Tucumeari, N.Mox. } \\
& \text { KTNT Tacoma, Wish. }
\end{aligned}
\] KSEY Seymour, Tex. KSFA Nacogdoches. Tex. KSFO San Francisco, Calif. KSGM Chester, III. KSio Sidney, Nebr KSID Sidney, Nebr
KSIG Crowley, La. KSIG Crowley, Lita. KSIM Sikeston, Mo.
KSIR Wichita, Ka
KSIS Sedalla, Mo.
KSIS Sedalla, Mo.
KSIX Corpus Christi, Tex.
KSJB Jamestown, N.Oak.
KSKt Sun Valley,
KSKY Dallas. Tex.
KSL Salt Lake CIty, Utah
KSLM Salem, Oreg
KSLV Monte Vista, Coio.
KSMA Senta Maria, Calif. KSMN Mason City,
KSMO Salem, Mo.
KSMO Salem, Mo.
KSNN Pocatello, Ida.
KSNY Snyder, Tex.
KSOK Arkansas City, Kans.
Kson San Diego, Calif.
KSOO Sioux Falts, S. Dak.
KSOP Salt Lake Clity. Utah
KSOX Raymondville. Tox.
KSOX Raymondville, Tex
KSPI Stillwater, okla
KSPL Diboll. Tex.
KSPT Sandpoint. Idaho
KSRA Salmon, Idaho
KSRC Soeorro, N. Mex.
KSRV Ontario, Oreg.
KSSS Colorado Springs, Coto
KSTA Coleman, Tex.
KSTB Breckenridge,
KSTL St. Louls, Mo.
KSTN Stockton, Calif
KSTP St. Paul, Minn.
KSTT Davendort. lowa
KSUB Cedar City, Utah
KSUO W. Memphis, Ark.
KSUE Susanville. Calit,
KSUN Bisbee. Ariz.
KSVC Richneld. Utah
KSVP Artesia, N.Mex
KSWA Graham, Tex.
KSWI Council Bluffs, lowa
KSWO Lawtor Mo.
KSXX Salt Lake City, Utah
KSYC Yreka, Callf. 1
19
13
19
14
12
12
14
13
19
14
13
9
9
14
12
14
14
14
14
13
13
10
12
13
12
7 KSYL Alexandria, La. KTAC Tacoma, Wash. KTAE Taylor, Tox. KTAR Phoenix, Arlz. KTAT Frederick, Okla. KTBB Tyler. Tex.
KTBC Austin Tex KTCB Malden, Mo. KTCI Terrytown. Nebr.
KTCN Berryville Ark KTCR Minneapolis, Minn KTCS Fort Smith. Ar KTEE Idaho Falls, Idaho KTEL Walla Walia.
KTEM Temple, Tex. KTEM Temple, Tex. KTER Terrell, Tex. KTFO Twin Falls, Idah
KTFS Seminole, Tenn. KTFS Texafkana, Tex.
KTFY Brownfleld, Tex KTHE Thermopolis, Wyo. KTHS Little Rock. Ark. KTHE Houston, Tex. KTIL Tillamook، Ore KTIL Tillamook, Orep. KTiS Minneapolis, Minn KTJS Hobart, Okla.

\section*{KTKR Taft. Calif.}

KTKT Tucson, Ariz.
KTLD Tullulah, La.
KTLO Mtn. Home, Ark. KTLQ Tahlequah, 0
KTLU Rusk, Tex.
\[
\begin{aligned}
& \text { KTLW Texas City, Tex. } \\
& \text { KTMC McAlester, Okla. }
\end{aligned}
\]
50 KTMC McAlester, Okla.
KTOC Jonesboro, La
    KTOO Sinton. Tex.
    KTOE Mankato, Minn.

    KTON Belton, Tex.
KTOO Henderson. Nev.
    KTOO Henderson, Nev
KTOP Topeka, Kans.
    KTOP Topeka, Kans,
KTOW Sand Spring, Okta,
    KTPA Prescott. Ark,
    KTRB Modesto, Callf.
    KTRC Santa Fe. N. Mex.
KTRE Lufkin, Tex.
    KTRG Monolulu. Hawali Mi
    KTRH Houston. Tex
    KTRI Sioux Cliy. lowa
    KTRN WIchita Falls. Tex.
    KTRY Bastrop. La.
    KTSA San Antonio. Tex.
    KTSM EI Pet, Tox.
    KTTN Trenton, Fex.
    KTTR Rolla Mo
        .
    TR Trenton,
    KTTS Springfield, Mo.
    KTUC Tueson, Ariz.
    KTUE Pulia. Tex.
    KTW Seattle, Wash
    KTWO Casper, Wyo.
    KTXJ Jasper, Tex.
KTXO Sherman,
        KTXO Sherman, Tox.
KTYM Ingiewood, Calif.
        Spin,
        KUAM Agana, Guam
KUBA Yubs City.
        KUBA Yuba City, Calif.
KUBC Montrose, Colo.
        KUBC Montrose, Colo.
KUBE Pendleton, Oreg.
        KUDE Oceanside, Calit.
KUOI Great Falls, Mont.
        KUOI Great Falls, Mont.
KUOL Kansas City, Mo.
        KUOU Ventura. Calli.
        KUEN Wenatchoe, Wash
        KUEN Wenatchoe, Wash
KUEQ Phoenis. Ariz.
        KUEQ Phoenix. Ariz.
KUGN Eupene, Oreg.
        KUGN Eugene, Ored.
        KUJ Walla Walla, Wash.
        KUKA San Antonio, Tex.
        KUKI Ukiah, Calif.
        KUKO Post. Tox.
        KUKU Willow Springs, Ao. 1330
        KULA Honoluiu. Hawaif
        KULE Ephrata, Wash.
KULP EI Campo. Tex.
        \(\begin{array}{ll}\text { KUMA Pendleton, Orea. } & 1290 \\ \text { KUNO Corpus Christi. Tex. }\end{array}\)
        \(\begin{array}{ll}\text { KUNO Corpus Christi, Tex. } & 1400 \\ \text { KUOA SHoam Springs. Ark. } & 1290 \\ \text { KUOM }\end{array}\)
        KUOA Slloam Springs, Ark.
KUOM Alinneapolls, MInn.
KUPD Tempe Aris,
        KUPM Tompe, Aris,
KUPD Idaho Falls
KUPI

Hc.
 \(\begin{array}{r}1 \\ \\ \\ \\ \\ \hline\end{array}\) Kc.
1550
1470
380
 Oklahoma 1260 KWSK Pratt, Kans.
KWSL Grand Junetion, Colo. KWSO Wasco, Calif.
KWTC Barstow, Calif.
KWTO Springfield, Mto. KWTX Waco, Tex.
KWVN Concord, Cal KWVR Enterprise, Oreg. KWVY Waverly, lowa KWWL Waterloo, lowa KWYN Wynne, Ark. KWYO Sheridan, Wyo.
KWYR Winner, S.Dak. \(K W Y R\) Winner, S.Dak.
KWYZ Evereft, Wash. KXA Seattle, Wash.
\[
\begin{aligned}
& \text { Tex. } \\
& \text { okla, } \\
& \text { ral }
\end{aligned}
\] KXAR HoDe. Ark. \(\begin{array}{ll}\text { KXEL } & \text { Waterloo. Iowa } \\ \text { KXEN } & \text { St. Louls, Mo. }\end{array}\) KXEO Mexico, Mo, KXEW Tueson, Ariz.
KXGI Fi. Madison, Iowa KXGN Giendlve, Mont. KXIC Jowa City, low
KXIT Dathart. Tex. KXIT Dathart. Tex.
KXIV Phoenix, Ariz. KXJK Forrest City, Ark. \(K \times K W\) Lafayotte, La. KXL Portland, Oree.
KXLE Ellensuurg. Wash. KXLF Butte, Mont. KXLJ Helena, Mont.
KXLL Missoule. Mont. KXLO Lewiston. Mont. KXLR Little Rock, Ar
KXLW Clavton, Mo. KXLY Clavton, Mo. KXO EI Centro, Calli.
\(K \times O A\) Sacramento, Cali KXOA Sacramento, Calit.
KXOK St. Louls, Mo.
\(K X O L ~ F t . ~ W o r t h . ~ T e s . ~\) KXOL Fi. Worth, Tex, KXOX Swoetwater, Tex.
KXRA Alexandria, Minn. KXRJ Russellville, Ark. KXRO Aberdeen, Wash.
KXRX San Jose, Calif. \(K \times X L\) Bozeman, Mont. \(K X X X\) Colby, Kans.
\(K X Y Z\) Houston, Tex. \(\begin{array}{lr}\text { KYA San Franeiseo, Callf, } & 1320 \\ \text { KYCA } & 1390\end{array}\) \(\begin{array}{ll}\text { KYCA Prescott, Ariz. } & 1490 \\ \text { KY, } & 1390\end{array}\) \(\begin{array}{lr}\text { KYCN Wheatland, Wyo. } \quad 1340 \\ \text { KYES Roseburg, Oreg. } & 950\end{array}\) KYJC Medford. Oreg. KYME Boise, Idaho KYNO Tompe, Ariz.
KYNG Coos Bay, Oreg. KYNG Coos Bay, Or
KYNO Fresno. Calit \(\begin{array}{ll}1420 \\ \text { KYNT Yankton, S.Dak. } & 1300 \\ \text { KYOK Hauston, Tex } & 1590\end{array}\) \(\begin{array}{ll}\text { KYOK Houston. Tex. } & 1450 \\ \text { KYOR Blythe }\end{array}\) \(\begin{array}{ll}\text { KYOR Blythe, Callf. } & 1450 \\ \text { KYOS Merced, Calif. } & 1480\end{array}\) \(\begin{array}{ll}\text { KYOU Greeley, Colo. } & 1450 \\ \text { KYRO Potosi, Mo. } & 1280\end{array}\) \(\begin{array}{ll}\text { KYSM Mankato, MInn. } & 1280 \\ \text { KYSN Colorado Spros. } & 1230\end{array}\) KYSN Colorado Spros., Colo, 1460
KYSS Missoula, Mont. 910 KYUM Yuma, Aris. KYVA Gallup, N. Mex. KYW Cleveland, Ohio 1100 \(\begin{array}{ll}\text { KZEE Weatherford, Tex. } 1220 \\ \text { KZEY Tyler, Tex. } & 690\end{array}\) K2IP Amarillo. KZiX Fort Collins. Colo. 600 K2NG Hot Springs, Ark. 1470 K20K Prescott. Ariz. 1340
K20L Farwell. Tex. K20L Farwell. Tex. K20N Tolieson. Ariz KZOT Marianna, Ark \(\begin{array}{ll}\text { K20 Marianna, Ark. } & 1460 \\ \text { KZOW Globe, Ariz. Wash. } & 1240 \\ \text { KZUN Opportunity. Wash. } & 630\end{array}\) KZZN Littlefield, Tex. \(\quad 1490\) \(\begin{array}{ll}\text { WAAA Winsten-Salem, N.C. } & 980 \\ \text { WAAB Worcester, Mass. } & 1440\end{array}\) WAAF Chicago, III. WAAG Adel, Ga WAAK Dallas, N.C. WAAP Peoria, III. WAAX Gadsden, Ala, WAAY Huntiville, Ala,
WABA Aguadilla, P.RIc
WABA Aguadilla. P.Ric
WABB Moblle. Ala.
WABE Moblle, Ala,

Ke.

\section*{860}
\[
50
\] 1570
1190
a, Calif.
\[
\begin{aligned}
& 1040 \\
& 1010 \\
& 1340
\end{aligned}
\]
\[
\begin{aligned}
& 1340 \\
& 1600 \\
& 1900
\end{aligned}
\]


        Minn. 1230
        KWJJ Portland, Oreg.
        ash.
        KVWC Vernon, Tex.
KVWM Show Low, Ariz.
KVWO Cheyenne wyo.
        KVRS Rock SprIngs, Wyo.
KVSA MeGehee. Ark.
KVSF Santa Fei N.Mex.
        KVRH Salida, Colo,
KVRS Rock Sprlngs,
KVSA
        KVSH Santa Fe. N. Mex
        KVSO Ardmore Okla.
        KWAC Bakersfield, Calif.
KWAO Wadena. Minn.
        KWAO Wadena, Mirn.
        KWAK Stuttgart, Ark.
        KWAL Wallace, Idaho
        KWAM Memphis, Tenn.
KWAT Watertown, S.Dak
        KWBA Baytown, Tex.
        S.O.
X.
        KWBB Wiehita, Kans
        KWBC Navasota, Tex.
        KWBE Beatrice, Nebr,
KWBG B
KWBG Boone, Iowa
KWBW Hutchinson, Kans.
KWCB Searcy, Ark.
KWCL Oak Grove, La,
KWCO Chickasha.
            Ark.
KVOP Plas nview. Tex.
K VOR Colo. Springs, Colo.
        1410
1400
950
KVOW Rvalde. Tex.
KVOW Riverton, Wyo.
        950
520
KVOX Moorhead, Minn. 1280 KXLE Ellensuurg. Wash.
            1520
750
1240
KVOY Yuma, Ariz.
        1240
1370
IS Voz Laredo. Tiex.
KVPH Canyon, Tex.
KVPI Ville Piatte, La,
KVRC Arkidelohia, Ark.
KVRC Arkadelphia, Ark.
1150
1320
920
1320
920
1230
KVRD Cottonwood, Ariz.
KVRE Santa Rosa, Calff.
920
1230
1470
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline C．L． & Lecatlon & Ke． & c． & Locaflon & Ke． & C．L． & Location & Ke． & 10 & Ke． \\
\hline WABF & Fairh & 1220 & WATP & Marion & 1430 & & meminnville，Tenn． & & WCKI Greer，s．c． & 1300 \\
\hline WABg & Green & 960 & WATR & Waterbury，Conn． & 1320 & WBMD & Ealtimor & 0 & M Winnsboro，S．C． & 1250 \\
\hline WABH & Deern & 1150 & WATS & Sayr & 960 & WBMK & West Point，G & 1310 & WCKR Mlami．Fla． & \(1 \theta\) \\
\hline & Bangor，Maine & 910 & & Cadillac．Mich & 1240 & & & 1240 & WCKY Cineinnali，Onio & 30 \\
\hline WABJ & Adrlan，Mich． & 1490 & WATV & Birmingham，Al & 900 & WBmT & Elack & & WCLA Claxton & 0 \\
\hline ABL & Amite．La． & 1570 & WATW & Ashiand． & 1400 & & Charlotte Am & & wCLB Ca & 20 \\
\hline AB0 & Waynesboro，M & 990 & WATZ & Alpena，Mich & 1450 & & Virain ls & 1000 & WCLC Jamestown，Ten & 1260 \\
\hline ABQ & Cleveland & 1540 & WAUB & Auburn，N．Y． & 1590 & WBNC & Conway，N．H． & 1050 & WCLD Cleveland． & 90 \\
\hline ABA & Winter Park，F & 144 & WA & Wauchula，Fla． & 1310 & WBNL & Boonville，In & 1540 & WCLE Cleveland，Tenn & 70 \\
\hline ABT & Tusket & 580 & wavo & Auburn，Ala， & 1230 & WBNR & Esacon，N．Y． & 1260 & WCLG Morgantown．W & 1300 \\
\hline ABV & Abbevi & 1590 & WAUG & Augusta， Ga ． & 1050 & W日NS & Columbus．Oni & 1460 & WGLI Corning，N． & 0 \\
\hline ABW & Annapo & 810 & waux & Waukesha，W & 1510 & WBNT & Onoida．Tenn． & 1310 & WCLO Janesville，Wis． & 1230 \\
\hline AB & Albany． & 1400 & & Louisville， & 970
1210 &  & Mew York， N & 1380
1360 & WCLS Columbus，Ga & 30 \\
\hline ABZ & Albemar & 1010 & WAYI & Dayton．Oh & 12 & W808 & Galax，V： & 1360 & WCLT Newark，Ohio & 70 \\
\hline AC & Kıma & 1590
1380 & W & Stil & 1220 & WBOF & Virainia Bea & \[
\begin{array}{r}
960 \\
1550
\end{array}
\] & WCMA C & 70 \\
\hline & Chie & 730 & WA & Avondaie Estates， & 1420 & W80k & New Orleans & 800 & WCMB Harri & 1460 \\
\hline AC & Newark， & 1420 & WA & Avon Park，F & 1390 & WB0P & Pensacola， & 980 & WCMC Wildwood． & 1230 \\
\hline ACL & Waycross， & 570 & WAYU & Albertville．Ala． & 630 & WB0S & Erookline．Mas & 1600 & WCME Br & 900 \\
\hline AC & Waco． & 1460 & & Portsmouth， Va & 1350 & w Bow & Terre Haute． & 1230 & WCMI Ashland & － \\
\hline AC & Columbus， & 105 & WA & Now Haven，Con & 1300 & w Boy & Clarksburg，W．Va． & 1400 & WCMN Ar & \\
\hline AC & Tusealoosa，A & 1420 & WAWA & West Allis．Wi & 1590 & WBPZ & Lock Haven．P & 1230 & WCMP Pine city． & 50 \\
\hline & Shelby．N．C & 1390 & W & Kendallvi & 15 & WBRB & mi，Clemens，Mich & 1430 & WCMR Elkhart，Ind． & 0 \\
\hline AD & Akro & 1350 & WA & 2 arephat & 1380 & WBRC & Birmingham， & 960 & WCMS Norfolk & 1050 \\
\hline AD & W adesboro， & 1210 & WA & Vero Beach．Fla． & 1370 & WBRD & Bradenton & 1420 & WCMT Martin，Tenn & 1410 \\
\hline AD & Newp & 158 & WAXU & Georgetown，Ky． & 1580 & WBRE & wilkes－Barre． & 1340 & WCMY Ottawa．III． & \\
\hline AD & New Yo & 1280 & WAXX & Chippewa Falls． & 11 & WBRG & cynenb & 1050 & WCNB Connersville & \\
\hline AD & & 960 & WAYB & Waynesboro，\(V\) & 149 & WBRK & Pittsfield．Mas & 1340 & WCAC Ellizabeth & \\
\hline AD & Ansoni & & WarE & Dundalk．Md． & 860 & WBRM & Marion，N．C． & 1250 & WCNF Weldon， & \\
\hline A & Allentown． & 790 & WAYN & Rockingham，N．C． & 900 & WBRN & Big Rapids．Mich． & 1460 & WCNH Quin & \\
\hline AEL & Mayaguer． & 600 & & Ora & 550 & WBRD & Waynesboro，Ga． & 1310 & WCNL Newport．N．H． & 010 \\
\hline AFC & Staunton． & & W & Charlotte， & 610 & & Bard & 1320 & WCNR Bloomsturg． & 930 \\
\hline AF & Amsterd & 157 & WAYX & Waycross．Ga． & 1230 & WBRV & Boonvi & & WCNT Centralia．Ill． & 10 \\
\hline WAGE & Leesturi & 129 & & Waynestofo．Pa． & 1380 & WBRX & Berwic & 12 & WCNU Crestriew．Fla & 10 \\
\hline AG & Doth & 132 & WAZA & Baintridse．Ga． & 1360 & & Waterbury．C & 1590 & WCNX Middletown． & \\
\hline AG & Fran & & & Clearwater，Fla & 860 & WBSA & 30az，Al & 1300 & wCOA Pensacola． & 0 \\
\hline AGM & Presque & 95 & & Yazoo Clty． & \[
1230
\] &  & Bennets & \[
1550
\] & WCOC Aloridian，Miss． & 10 \\
\hline AGN & Menom & 1340 & & Hazelton，Pa Lafayette，Ind & \[
1490
\] &  & Blackshear，Ga． New Bedford，Mass & 1950 & WCOG Greensboro．N． & 20 \\
\hline AGR & Lumbert & 580 & & Lafayotte，I & 1410 & WBSM & New Bedford，Mass． & 1420 & \({ }^{W} \mathrm{COH}\) & \\
\hline WAGS & Bishop & 138 & WBAA & West Lafayelte， & \({ }^{920}\) & WBT & Marlotte．N & 1110 & OJ Coat & \\
\hline WAGY & Forest C & 1320 & WBAB & Babylon， & 1440 & WBT & Batavia，N． & 1490 & WCOL Columbus，on & 0 \\
\hline WAIK & Galesburg．III． & 1590 & WBAC & Cleveland．Tenn． & 1340 & WBTM & Williamson．w & 1400 & WCON Cornella，Ga． & \\
\hline WAIL & Baton Roup & 146 & WBAG & Burlington，N．C． & 1150 & WBTL & Farmville，N．C． & 1050 & WCOP B0st & 0 \\
\hline Al & Anderson，S． & 123 & WBAL & Batimore & 1090 & WBTM & Danville & 1330 & \(R\) Lebanon． & \\
\hline & Columbia & 12 & WBAM & Montsomery．Ala & 740 & WBTN & Bennington， & 1970 & WCOS Columbia，S． & \\
\hline 相 & Pricha & 1270 & WBAP & Ft．Worth．Tex． & ． 820 & & Linton． 1 nd & 1600 & WCOU Lewiston，Maine & 0 \\
\hline Al & Winston－Salem，N．C． & 1340 & W B & Barlow & 1460 & & Brid & 1480 & WCOV Montgomery，Al & \\
\hline Alt & Chica & 820 & W & arion & 1400 & WBUC & Buckhannon． & 1460 & \(w\) Spar & 0 \\
\hline Alf & Decatur．Ala， & 1490 & \({ }^{W}\) BA & Barnweil．S．C & 740 & w B & Trent & 1260 & WCOY Columbla，Pa． & \\
\hline & Morgantown， & 1 & WBAX & Wikes－Barre． & 1240 & WBUT & Butie & 1050 & WCPA Clearneld，Pa． & 0 \\
\hline & Atlanta，Ga． & 13 & & Green Bay & 1360 & wBux & Doylestown， & 1570 & WCPC Houston，M is & 0 \\
\hline AKI & Mcminnville，\({ }^{\text {T }}\) & 1230 & & Kinaston & 1550 & WBUY & Lexin & 1440 & WCPH Etow & 1220 \\
\hline WAKN & Aiken， & & WBBA & Pitts field．III． & 580 & wBUZ & Fredon & 1570 & WCPM Cumberland，Ky & 0 \\
\hline AKO & Lawrenceville， & 910 & WB8B & Burlington，N．C． & 920 & WBVL & Barbourville． & 950 & wCPO Cine & 30 \\
\hline & Akro & 15 & ＊ & oches & 950 &  & Utlea，N．Y． & 155 & WCPS Tarb & 60 \\
\hline & Loui & 79 & W & ing & 1230 & WBYP & Beaver Falls．Pa． & 1238 & WCOS Alma & 00 \\
\hline Ala & & 1410 & &  & & & Calera．Ala． & &  & \\
\hline ALD & Walterboro， & 1220 & & Richmond，Va． & 1480
780 & WBYG & Savannah，G & 1454
1560 & WCRB Walth WCRE Cheraw & 1330
1420 \\
\hline ALE & Fall River， & 1400 & & Forest City， N & 780
780 & & & 1560
1030 & WCRE \({ }^{\text {Wer }}\) & \\
\hline & any，Ge． & 1590 & WBBa & Augusta．Ga & 340 & WBZ & Springfield & 103．4 & WCRK Mort & \\
\hline WALL & middletown． & 1340 & WBBR & E．St．Louis， & 1490 & WBZY & Torrínston，Co & 993 & WCRL & 70 \\
\hline ALM & Albion． & 1260 & WBBT & Lyons，Ga， & 1340 & WCAL & Northfield，Mi & 779 & WCRM Cla & 0 \\
\hline AL & Humaci & 1240 & WBBW & Youngstown，Ohio & 1240 & WCAM & Camden，N．J & 1315 & WCRO Johnstow & 30 \\
\hline & & & w \({ }^{\text {dex }}\) & Portsmouth，N．H． & 1380 & WCAO & Baltimore．Md． & 600 & WCRR Corinth． & 0 \\
\hline WAL & Herkimer． & 1420 & WBBY & ood River， 111. & 590 & WCAP & Lowell，Mass． & 980 & WCRS Gree & 0 \\
\hline & Aberdeen， & 970 & & Ponea City & 1290 & WCAR & Detroit．Mic & 1130 & WCRT BIrmin & 60 \\
\hline WAME & lam & 1260 & & & 1490 & & & 1390 & & 80 \\
\hline & ， & 860 & &  & 1490 & & Charl & 1210 & WCRW Ch & \\
\hline & Laural，M & 1340 & & & 1220 & WCAY & Charleston，W． & & WCRY Maco & \\
\hline & Home & 142 & ＋ & Williamsburg， & 740 & & & 20 & WCSC Charleston． & 90 \\
\hline & Homestead，P & & & Battle Cree & &  & Cayce，S．C & 0 & WCSH Portland． & 70 \\
\hline WAMA & （ & 1320 & & Bay city． & & WCAZ & Carthage， 111 & & WCSI Columbus，In & 1010 \\
\hline WAMS & Wilmington， & 138 & WBC & Christiansbura & 1260 & WCBA & Corning，N，Y & 1350 & WCSR Millsdale， & \\
\hline WAMW & ashlngton， & 158 & W日C & Union，S．C． & & WCBG & Chambersbura，\({ }^{\text {P }}\) & & WCSS Amsterdam， & \\
\hline & Amo & 158 & &  & 1420 &  & Columbus．Mis & \[
\begin{array}{r}
550 \\
1290
\end{array}
\] &  & \\
\hline N & Anniston．Ala & 1490 & & Marvey，III． & 1570 & WCBL & Benton，Ky． & \[
1290
\] &  & \\
\hline AN & Waynesburg，P & 1580 & & Elizabethton．\({ }^{\text {South Belolit }}\) & & & & & WCTA Andalu & \\
\hline & Canton，Ohio & 90 & W & Bu & 1380
930 &  & New York，\({ }^{\text {R }}\) & &  & \\
\hline A & Ft．Wayne，Ind． & 1450 & W & Broc & &  & Roanoke Rad & & WCTw New & \\
\hline WA & Anderso & 1 & WBEU & Beaufort．S．c． & 960 & WCCC & Hartord，Co & 1290 & w & \\
\hline & Rienmond， V a． & 990 & W & Beaver Oam & 1430 & WCCN & Lawrence． & 800 & WCUE Cuyahooa falls，On & \\
\hline & Albany，K & 199 & W & Chillicothe，oh & 1490 & WCCN & Nellisville，w & 1370 & WCUM Cumberland，M & 1230 \\
\hline AO & Atlanta，G & 1380 & W & Fremont．Mich． & 1490 & wCCO & Minneapolis．\(M\) & 830 & CVA Culpeper \({ }^{\text {Va }}\) & 1490 \\
\hline WAOV & Vinc & 1450 & w & Bedford，Pa． & 1310 & wCCw & Traverse City，Mich． & 13 & wCvp Muriy & 1340 \\
\hline & San & 680 & W & Chipley．Fla & 1240 & WCOL & Carbondal & 1440 & WCVP Murp & \\
\hline WAPC & Riverhend， N ． & 1570 & & Bowing Green， & & WCDJ & Winchest & 1260 & Sprinoteld & \\
\hline & Jaeksonville & 690 & W & Josub，Gan． & \[
\begin{aligned}
& 1370 \\
& 1740
\end{aligned}
\] & WCOT & Winchesto & \[
\begin{array}{r}
1340 \\
810
\end{array}
\] & CwC Ringneld & 50 \\
\hline & Ar & 1480 & WB & Ha & 1270 & WCED & Du & 1420 & WCYB Bristo & \\
\hline & Birmingham． & 1070 & WBH & Cartersville．Ga & 1450 & WCEF & Parksburg，W．Va & 1050 & WCYN Cynthiana．Ky & 1400 \\
\hline & Appleton，wis． & 1570 & WBH & Birmingham，Ala & 1550 & WCEH & Hawkinsvili & 610 & WOAD Indiana，Pa． & 1450 \\
\hline WAPO & Chattanoosa．Tenno & 11 & & Huntsville．Ala & 1230 & WCEM & Cambridge，M & 1240 & WOAE Tampa， & 1250 \\
\hline A & Montgomery．Ala． & 1600 & & Augusta， & 10 & WCEN & Mt．Pleasant．Mich & 1150 & WDAF Kansas Clity，M & 0 \\
\hline AOE & Towson，Md． & 1570 & & Islio．N．Y． & & WCEA & Charlotte．Mic & 1390 & WDAK Columbus．Ga． & \\
\hline WARA & Atlleboro．Mass． & 1320 & WBic & & 1470 & & Chicaso． 11. & 1480 & WDAN Meridian．Mis & 1350 \\
\hline AR & Covington．La． & 730 & W日IG & Greensboro．N．C． & 1470
1410 & WCFF & Springfeld， & 1480 & WDAN Danvilie，III． & 90 \\
\hline WARD & Johnstown，Pa． & 1490 & W812 & Leesbura．Fla， & 1410 & WCF & Clifton forge． & 1230 & WDAR Darlington．S．C． & 50 \\
\hline WARE & Ware．Mas & 1250 & WBIP & Booneville，Miss， & 1400 & WCGA & Calhoun，Ga & 900 & WDAS Philadelohia，Pa & 80 \\
\hline & Jasper．Al & 1240 & WBiA & Knoxville．\({ }^{\text {T }}\) & 1240 & WCGC & Betmont，N．C． & 170 & WDAX Mierae & 10 \\
\hline & Abbevilie，A & 1480 & & & & & & & & \\
\hline & Haterstown，M & 1490 & & Bedford， & 1340
1400 & WCGA
WCHA & Canandalgua，N．Y． & 1550 & WDBC Escanaba，Mic & 680
1420 \\
\hline M & Arlington，Va． & 780 & & Eau Claire， & 1400 & WCHA & Chambersburg．Pa． & 800 & WDBF Delray Beach． & \\
\hline M & Seranton．Pa & 590 & ＊ & Hattiesturg，Mis & & WCHB & Inkster．Mic & 1440 & W08」 Roan & \\
\hline ARO & Ft．Plerce，Fla． & 1330 & W & Nemton & 1470 & WCHI & Chilliteothe，Onl & 1350 & WOBL Sorinofidd，Tenn． & \\
\hline ARO & Canonsburs．Pa & 540 & & Elizabethtow & 1440 & WCHK & Brookhaven，Miss． & 1290 & WOBO Orlando Fia．C． & \\
\hline AS & Peru，Ind， & 600 & WBLE & Batesville，Miss． & 1290 & & & & WOBO Dubuque，lowa & 580
490 \\
\hline AS & Lafayotte．ind． & 1450 & WBLF & Bellefonte，Pa． & 1330 & & & 1650 & WDCF Dade city，Fin & \\
\hline AT & Boon & 1450 & WBLG & Lexinston，Ky． & 1300 & WCH & Chapel Hil & 1960 & WDCA Han & 1340 \\
\hline ATC & Gaylord．Mie & 900 & & Oalton． & 230 & & & ¢90 & WDOT Gr & \\
\hline WATE & Knoxville，Ter & 620 & WBL0 & Evergreen．Ala． & 1470 & WCHS & Charleston， & 80 & WDDW Halfway，Md． & 1410 \\
\hline AT & Athens，Onio & ， & & Bates bur \({ }^{\text {S }}\) S．C． & 1430 & & Charlottesville，Va． & 1260 & WDDY Gloucester，Va． & 1420 \\
\hline at & Antiso．Wis． & 900 & & Bedford，Va． & 50 & & It， & 1020 & WOEA Ellsworth．Mo & 350
610 \\
\hline & Atmore，Aia． & & WBLU & & 480 & WCIN & Cincinnati．Ohio & 1480 & WOEB Pensacola，FI & \\
\hline & k Riono，Tonn． & & & & & & unn, N.C. & & & \\
\hline
\end{tabular}

C.L. Location WHTG Eatontown, N.J. WHUC Hudson, N.Y WHUM Reading, Pa. WHUN Nuntington, Pa. WHVF Wausay, WHVH Menderson. N,C. WHVR Hanover. Pa. WHWB Rutland. Vt. WHYE Roanoke, Va, WHYL Carlisle. Pa, WHYN 8pringfeld, Mass, WIAM Williamston. N.C WIBA Madison. Wis WIBB Macon. Ga. WIBC Indianapolis, Ind. WIBG Philadelphia, P WIBR Baton Roupe, La. WIBU Poynotte. Wis WIBY Belloville, III, WIBX Utica, N.Y. WICC Bridgeport. Conn. WICE Providence, R.I. WICH Norwich. Conn. WICK Seranton, Pa. WICU Erie, Pa
WiCY Malone, N.Y. WIDE Biddeford, Malne WIEL Elizabsthtown, Ky WIFM Elkin. N.C. WiGL Superior, Wis. WIIN Atlanta Ga WikB Iron River, Mieh, WIKC Bogalusa, La. wike Newport. Vt. wIL St. Louls. Mo. WILA Danville, Va. WILE Cambridge, Ohio wILI Willimantic, Conn. WILK Wilkes-Barre. Pa WILL Urbana, III. WiLo Frankfort. ind WiLS Lansing, Mich. WILZ St. Petersbury Beach.
WIMA Lima. Ohio WIMO Winder, Ga. wIMS Michigan City, Ind. WINA Charlottesville. Va. WINC WInshester. V WIND Chicago, III. WING Dayton. Ohie WINK Murphysboro. Ill. WINN Louisville. Ky WINQ Tampa, Fla. WINR Binchamten. N.Y
WINS New York, N.Y. WINT Winter Haven. Fla. WINX Rockville, Md.
WINY Putnam, Conn. WINY Putnam, Cor Wiol New Boston, Ohie WIOK Nermal. IIf. WIOS Tawas City. Wich. wiOU Kokomo, Ind WIP Philadelphia, Pa. WIPC Lake Wales, Fla WIP8 Tieonderega, N.Y. WIRA Fort Pierce, Fla. WIRB Enterprise, Ala. WIRC Hiekery. N.C. WIRD Lake Placid, N.Y.
WIRE Indianapolis. Ind. WIRE Indianapolis. Ind
WIRJ Humboldt. Tenn. WIRK W. Palm Beach, Fla. WIRL Peoria, Ill. WIRO Ironton. Ohio WIRV Irvine. Ky. wis Columbla. S.C. WISA Isabella, P.R WISE Asherille, N.C. WISH Indianapolis. Ind. WiSL Shamokin. Pa. Wism Madison. Wis. WISN Milwaukee.
WISO Ponce. P.R wisp Kinston. N.C. WISR Butler. Pa. Wisy Charlotte. N.C. WITA San Juan, P,R. wITE Brazil, Ind. WITH Baltimore. Md witw Washington. N.C. WITY Danville, lii. Yive Jasper, ind. WIVI Christiansted, V.I. WIVK Knoxville, Tenn. WIVY Jackeonville. Fit
 1a.
\(\begin{array}{r}1400 \\ 1230 \\ \hline\end{array}\)
240
0 WIZR Johnstown, N,Y
WIZZ Streator, III. WJAB Wostbrook. M
WJAC Johnstown. P WJAG Norfolk, Nobr. WJAM Marion. Ala. WJAN Ishpeming. Mich. WJAR Providenee, R. WJAT Swainsboro, Ga. WJAY Mullins, S.C
WJAZ Albany, Ga WJAZ Albany, Ga.
WJBB Haleyville. WJBC Bloomington, Ill. wJBO Salom, III. WJBK Detroit, Mieh.
wJBL Holland Mieh. WJBL Holland Mieh.
WIBM Jerseyville, III. WJBO Baton Rouge, WJBS Deland. Fla.
wJBT Wheeling, W. WJBW Now Orleans, La. WJCD Soymour, Ind WJCW Johnson City, Tenn. wJoA quiney, Mass. WJDB Thomasville, Ala
wJDX Jackson. Miss. wJoY Salisbury. Md. WJEF Grand Rapids. Mich. WJEJ Hagerstown. Md. WJEM Valdosta, Ga. WJES Johnston, S.C. WJET Erie. Pa. wJHE Talladen City, Tenn. WJHO Opolika. Ala. WJiG Tullahoma, Tonn. WJim Lansine. Mieh. WJiv Savannah, Ga. WJJC Commere, Ga
wJJD Chicago, III WJJL Nianara Falis, N.Y. WJJM Lowisbura. Tonn
WJLB Detroit. Mich. WJLD Homewood, Ala.
\(\square\)
\(\square\) 560
1230

1010 WJNO W. Palm Beach. Fla.
\begin{tabular}{r|r}
1010 & WJOB Hammend, Ind.
\end{tabular}
680 WJOE Ward Ridge, Fla 1360 WJOL Joliot, III, 1360
1600
1350 1350 WJOR South Haven. Mich. 940
1010 940
1010
1440 1010
1440
1430 1430
1480
1350 1480 1350
610
1200 1280
940 940
1250
1400 1450 1400
600 600
630 630
920 920
1430
740 ํํㄴํํ 1230
1550
1340 560
1390
1310 1390
1310 1310
1480
1480 1480
1480
1150 1150
1260
125 \(\begin{array}{r}1260 \\ 1230 \\ \hline 60\end{array}\) 680
1240 1240
1360 1140 WKAR East Lansing. Mith. 140 WKAT Mlami Beach. Fla. 12300 WKAY Giasyow, Ky.1230 W1010
930
\begin{tabular}{l}
980 \\
990 \\
\hline \(\mathbf{W K B I}\) \\
WK St, Mery's, Pa.
\end{tabular}
 WKBH La Crosse, w
WKBI St, Mery's, Pa
WKBJ Milan, Tonn.
WKBK Keens.Mie wJoT Lake City, S,C. wjor Burlington. WJPD Ishpeming. Wieh. WJPF Herrin. III. WJPG Green Bay. Wis. WJPS Evansuille. In wJas Jackson. Miss. WJR Detroit. Mith. WJRI Lenoir. N.C. WJRL Rockford, III. WIRM Troy. N.C. WJRZ Newark, N.J. WJSO Crostviow. Fla. WJTN Jamestown. N,Y. WJUD St. Johns, Mi
WJUN Mexico. Pa. WJUN Mexieo, Pa.
WJVA South Bend. wJW Cleveland, Ohio WJWL Georgetown. Del. WJXN Jeckson, Miss. WJZM Clarksville, T WKA Matemb, III. WKAM Comb. N.Y. WKAN Goshen. Ind. WKAN Kankakee, II WKAP Allentown, Pa. WKAZ Glasdow, KY. WKBL Covington, Tenn. WKBN Youngstown, Ohie
WKBD Harrisburg. Pa.
WKBR Mamehaster, N.

Wis.
WJLK Asbury Park, N.J.
WjLS Beekloy, W.Va.
        .J.
.io
\begin{tabular}{|c|}
\hline Kc. \\
1590
\end{tabular} C.L. Location
WKBY Riehmond. Ind.
WKBW Bufialo. N. Y
WKBX Kissimmes, Fla.
WKBZ Muskegon, Mieh.
WKCT Bowling Green, Ky.
WKCW Warrenten, Va.
WKDA Nashville. Tenn.
WKDE AItavista, Va.
KC. C.L.

LLAW Lawrencovilie, Ga. Musele Shoals, Ala
Gainosvillo, Ga. Ga. a.
\(1220{ }^{\prime}\) WLBA Gainosvillo, Ga,
850 , WBB Carrollton. Ga. LBC Munele, Ind.
LBE Leesburg. Fla.
LBG Laurens, S.C.
\(\qquad\) as. La. WKDK Newberry, S.C.
WKDL Ctarksdale, Miss. WKDN Camden, N.J. WKEE Huntington. W, Va. WKEI Kowanea, Ilt.
WKEN Dover, Dol.
WKEU Grimi, Ga.
WKEY Covington, Va
WKEY Covington. Va
WKGN Knoxville, Tenn
WKHM Jaekson. Mieh.
WKIC Hazard, Ky,
WKIC Urbana, Ky,
WKIG Glenvilie, Ga
WKIK Leonardtown, md.
WKIN Kingsport. Tonn.
WKIN Kingsport, Tenn.
WKIP Poughkeopsie. N.Y.
WKIP Poughkeensie.
WKIS Drlande, Fla.
WKIX Raleinh NC.
WKIZ Kaleigh, N.C.
WKJB Mayaguez, P.R.
WKKG Fort Wayne. I
WKKD Aurora, Ill.
WKKO Cocoa, Fla.
WKKS Vocoa, FIa.
WKKA Ludington. My.
WKLC St. Albans, w.Va.
WKLE Washinoton, Ga
WKLL Clanton, Al
WKLJ Sparta, Wis.
WKLK Cloquet, Minn.
WKLO Louisville, Ky.
WKLV Blatkstono. Va.
WKLX Paris, Ky.
WKLY Hartwell, Ga
WKLY Hartwell, Ga.
WKLZ Kalamazoe, Mleh.
WKMC Roaring Spros., Pa
WKMC Roarint Spros
WKMF Flint Mich.
WKMH Dearborn. Mich.
WKM1 Kalamazoo. Mieh.
WKMI Kings Mtn., N.C.
WKNE Keene, N.H
WKNX Saginaw, Mieh.
WKNY Kingston. N.Y.
WKOA Kopkinsville.
WKOK Sunbury. Pa,
WKOS Ocala, Fia
WKOS Oeala, Fla,
WKOV Wallston, Onie
        N.Y.
N.
WKOW Madison, Wis.
WKOX Framingham. Mass.
WKOY Blushlid. W.V.,
WKOZ Koseiusko, Miss.
3.
WKOZ Kostiusko, Miss.
WKPA Naw Kansinoton. Pa.
WKPR Kalamazoo, Mich.
WKPR Kalamazoo, Mieh.
WKPT Kingsport, Tenn.
WKRC Cincinnati Ohis.
I
WKRC Cineinnati, On
WKRK Murphy, N.C.
WKRM Columbia. Tinn.
WKRO Caliro, Ill.
WKRS Waukegan.
WKRT Cortand. N.Y.
WKRW Cartersville, Ga.
WKRZ Oil city. Pa.
WKSB Milford, Del.
WKSB Milford, Del
WKSK W. Jeñerson, N
WKSR Pulaski. Tenn.
        .. N.C.


WLBH Mattoon, Ill.
WLBI Denham Springs, La,12401240 WLBI Denham Sprines La,7901170
1220800
1400 WLBK DeKalb. III. WL Stevens Point. Wis.\(\begin{array}{r}1360 \\ \\ \\ \hline 130\end{array}\)1400
800800
1450
1600
14501590
1800
14540
1370
1800
14540
1370 \begin{tabular}{l|ll}
1340 & WLCK & Seottsville. Ky.
\end{tabular}
1370 WLCN Lancester, S.C. 1 ..... 620
1250 ..... 360
300
970 WLCO Eustis. Fla. ..... 1240
1210
1390 WLCX Baton Rouge, L1480
1580 WLCY St. Petersburg. Fla. ..... 1380
1380
1580 WLOB Atiantie City, N.J.370 WLDB Atiantic City, N.J. 1490
\(\begin{array}{lll}1370 & \text { WLDS Jaeksonvilie. ill, } & 1180 \\ 1320 & \text { WLDY Ladysmith. Wis. } & 1340 \\ 1450 & \text { WLEA Hornell. N.Y. } & 1480\end{array}\)
\(\begin{array}{rll}1450 & \text { WLEA Horneli, N.Y. } & 1480 \\ 740 & \text { WLEC Sandusky, Ohie } & 1450 \\ 850 & \text { WLEE Richmond. Ys. } & 1480\end{array}\)
\begin{tabular}{r|rl}
740 & WLEC Sandusky, Onie \\
850 & WLEE Richmond. Va. & 145 \\
1500 & WLER Emporium. Pa. & 1240
\end{tabular}

86"
57 WLEU Erie. Pa.
WLEW Bad Axt, Mleh.
1420
1450
1340
864
157.
\(145 t\)
    운WKLC St Albans W. \(\mathrm{V}_{\text {a }}\)\(157 \%\)
1450
1301
1
WLFH Little Falls N.Y.1340
1590981 WL1230
1190
1580
9811
994
1234
128
\begin{tabular}{r|l}
1288 \\
1086 & WLIP Kenoir, Tenn, \\
WLiQ Mobilis, Wis.
\end{tabular}1270
73043 WLis Moblie, Ala, 1050140 WLIS Old Saybrook. Cenn. 1420100 WLIV Livingston. Tenn. 920



\section*{Canadian AM Stations By Call Letters}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline C.L. Lecation & K & C.L. Location & c. & C.L & cotion & c. & Location & (c. \\
\hline CFYT Dawsen, Yukon T. & 1230 & CJBC Bellevilie, Ont. & 800 & CKBC & Hurs. N . & 1400 & CKOC Hamilton, Ont. & 1150 \\
\hline CHAB Moose Jaw, Sask. & 800 & CJBR Rimouski, Que. & 900 & CKBI & Prince Albert, Sask. & 900 & CKOK Penticton, B.C. & 800 \\
\hline CHAD Amos, Que. & 1846 & CJCA Edmonten. Alta. & 930 & CKBL & Matane, Que. & 1250 & CKOM Saskatoon, Sask. & 1250 \\
\hline CHAT Medicine Hat. Alta. & 1270 & CJCB Sydney, N.S. & 1270 & CKBM & Montmagny, Que. & 1490 & CKOT Tillsenburg, Ont. & 1510 \\
\hline CHEC Lethbridge, Alta. & 1090 & CJCH Malifax. N.S. & 920 & CKBS & St. Hyacinthe, Que. & 1240 & CKOV Kolowna, B.C. & 630 \\
\hline CHED Edmonten. Alta. & 1080 & CJCJ Woodstock, N.B. & 920 & CKBW & Bridgewater, N.S. & 1000 & CKOX Woedstock. Ont. & 1340 \\
\hline CHEF Granby. Que. & 1450 & CJCS Stratford. Ont. & 1240 & CKCH & Hul!, Que. & 970 & CKOY Ottawa, Ont. & 1310 \\
\hline CHEX Peterborough, Ont. & 980 & CJDC Dawson Creek, B.C. & 560 & CKCK & Regina, Sask. & 620 & CKPC Brantford, Ont. & 1380 \\
\hline CHFA Edmonton, Alta. & 680 & CJEM Edmundston, N.B. & 570 & CKCL & Truro, N.S. & 600 & CKPG Prince Gearse, B.C. & 550 \\
\hline CHFC Churchill, Man. & 1230 & CJET Smiths Falls, Ont. & \(\begin{array}{r}630 \\ \hline 400\end{array}\) & CKCO & Quasnel, B.C. \({ }^{\text {W }}\) & 570 & CKPR Fort William, Ont. & 580 \\
\hline CHGB St. Anne de is & & CJFP Riviers du Loup, Que. & 1400 & CKCQ- & I Williams Lake, B.C. & 1240 & CKPT Peterborough, Ont. & 1420 \\
\hline Pocatiere, Que. & 1350 & CJFX Antigonish, N.S. & 580 & CKCR & Kitchener, Ont. & 1490 & CKRB Ville St, Georges, Que. & 1460 \\
\hline CHIC Brampton, Ont. & 1090 & CJGX Yorkton, Sask. & 940 & CKCV & Quebec, Que. & 1280 & CKRC Winnipeg, Man. & 630 \\
\hline CHIQ Mamilton, Ont. & 1280 & CJIB Vernon, B.C & 940 & CKCW & Moncton, N.B. & 1220 & CKRD Red Deer, Alta. & 850 \\
\hline CHLN Three Rivers, Que. & 550 & CJIC Sault Sto. Marie, Ont. & 1050 & CKCY & Sault Sto. Marie, Ont. & 920 & CKRM Regina, Sask. & 980 \\
\hline CHLO St. Thomas, Ont. & 680 & CJKL Kirkland Lake, Ont. & 560 & CKDA & Victoria. B.C. & 1220 & CKRN Reuyn, Que. & 1400 \\
\hline CHLP Montras, Que. & 1410 & CJLM joliotte, Que. & 1350 & CKDH & Amherst, N.S. & 1400 & CKRS Jonquiere, Que. & 590 \\
\hline CHLT Sherbrooke, Que. & 630 & CJLR Quebee, Que & 1060 & CKDM & Dauphin, Man. & 730 & CKSA Lloydminster. Alta. & 1150 \\
\hline CHML Hamilton, Ont. & 900 & CJLS Yarmouth. N. S. & 1340 & CKEC & New Glasgow, N.S. & 1320 & CKSB St. Boniface, Man. & 1 \\
\hline CHNC Now Carlisle, Que. & 610 & CJLX Ft. Williams, Ont. & 800 & CKEK & Cranbrook, B.C. & 570 & & 050 \\
\hline CHNO Sudbury, Ont. & 900 & CJME Regina, Sask. & 1300 & CKEN & Kentville, N.S. & 1350 & CKSL London, Ont. & 1290
1220 \\
\hline CHNS Halifax, N.S. & 960 & CJMS Montreal, Que. & 1280 & CKEY & Toronto, Ont. & 580 & CKSM Shawinigan, Quebee & 1220 \\
\hline CHOK Sarnia. Ont. & 1070 & CJMT Chicoutimi, Que. & 1420 & CKFH & Toronto, Ont. & 1430 & CKSO Sudbury. Ont. & 790 \\
\hline CHOV Pembroke, Ont. & 1350 & CJNB N. Battieford, Sask. & 1460 & CK & Timmins. Ont. & 680 & CKSW Swift Current, Sask. & 1400 \\
\hline CHOW Welland. Ontario & 1470 & CJNR Blind River, Ont. & 730 & CKGM & Montreal, Que. & 980 & CKTB St. Catharines. Ont. & 610 \\
\hline CHOM Vancouver, BC. & 1320 & CJOB Winnipeg, Man. & 680 & CKGR & Galt, Ont. & 1110 & CKTR Three Rlvers. Que. & 1150 \\
\hline CHRC Quebec, Que. & 800 & CJOC Lethbridge, Alta. & 1220 & CK & , Jerome, Que. & 900 & CKTS Sherbrooke, Que. & 900 \\
\hline CHRD Drummondville, Que. & 1340 & CJON St, John's, Nfld. & 930 & CKKW & Kitehoner, Ont. & 1320 & CKUA Edmonton, Alta. & \\
\hline CHRL Roberval. Que. & 910 & CJOR Vancouver, B,C. & 600 & CKLB & Oshawa. Ont. & 1350 & CKUA Edmonton, Alta. & \\
\hline CHRS St. Jean. Que. & 1090 & CJOY Guelph, Ont. & 1460 & CKLC & Kingston, Ont. & 1380 & CKVO Val d'Or, Que. & 1230 \\
\hline CH8J Saint John, N, B. & 1150 & CJQC Quebee, Que. & 1340 & CKLO & Thetford Mines, Que. & 1230 & CKVL Verdun, Que. & 50 \\
\hline CHUB Nanaimo. B.C. & 1570 & CJRH Richmond Hill. Ont. & 1310 & CKLG & N. Vancouver, B.C. & 730 & CKVM Ville Marie. Que. & 710 \\
\hline CHUC Port Hope, Ont. & 1500 & CJRL Konora, Ont. & 1220 & CKLN & Nelson. B.C. & 1390 & CKWS Kingston, Ont. & 960 \\
\hline CHUM Toronto. Ont. & 1050 & CJRW Summerside, P.E.I. & 1240 & CK & LaSarre, Que. & 1240 & CKWX Vancouver, B,C. & 1130 \\
\hline CHVC Niagara Falls. Ont. & 1600 & CJSO Sorel, Que. & 1320 & CKLW & Windsor, Ont. & 800 & CKX Brandon, Man. & 150 \\
\hline CHWK Chlliwack. B.C. & 1270 & CJSP Leamington. Ont. & 710 & CKLY & Lindsay, Ont. & 910 & CKXL Calgary, Altin. & 1140 \\
\hline CHWO Oakville, Ont. & 1250 & CJSS Cornwali, Ont. & 1220 & CKMP & Midand, Ont. & 1230 & CKY Winnipeg. Man. & 580 \\
\hline CJAD Montreal, Que. & 800 & CJVI Vietoria, B.C. & 900 & CKMR & Neweastle. N.B. & 790 & & 630 \\
\hline CJAF Cabano. Que. & 1340 & CKAC Montreal. Que. & 730 & CKNB & Campoellton, N.B. & 950 & VOAR St & \\
\hline CJAT Trail, B,C. & 610 & CKAR Huntsville. Ont. & 590 & CKNW & New Westminster, & & VOAR St. John's, Nild. & 590 \\
\hline CJAV Port Albermi, B.C. & 1240 & CKAR.I Parry Sound, Ont. & 1340 & & British Columbia & 980 & VOCM St. John's, Nfld. & 590 \\
\hline CJBC Toronto. Ont. & 860 & CKBB Barrie, Ont. & 950 & CKNX & Wingham, Ont. & 920 & VOWR St. John's, Nfld. & 800 \\
\hline
\end{tabular}

\section*{Mexican and Cuban AM Stations}

Mexican stations audible in the Southwest; the more powerful Cuban stations

Location c.l. Kc. W
Mexico
BAJA CALIFORNIA
Cuervos XEDY 1460 \(\begin{array}{llll}\text { Cuarvas } & \text { XEDY } & 1460 \\ \text { EI Saunal } & \text { XEDX } & 1010 \\ \text { Ensenada } & \text { XEPF } & 1400\end{array}\) \begin{tabular}{lr} 
Ensenada & XEPF 1400 \\
Mexicall & \(X X X K\) \\
& \(\times E E D\) \\
& \(\times E A 0\) \\
\hline
\end{tabular} XED 1050
XEAA 1340
XEAO \(\begin{array}{cr}\text { XEAA } & 1340 \\ \text { XEAO } & 910 \\ \text { XECL } & 990 \\ \text { XEGE } & 150 \\ \text { XEC } & 1310\end{array}\) \(\begin{array}{rr}\text { XEG } & 1310 \\ \times \text { XETRA } & 690\end{array}\) \begin{tabular}{l} 
XEA \\
XEAU \\
XEAZ \\
\hline
\end{tabular} 1270 \(\begin{array}{cr}\text { XEAZ } & 1270 \\ \text { XEGG } & 550 \\ \text { XEGM } & 950\end{array}\) \(\begin{array}{ll} & \\ \text { XEBG } & 1550 \\ \text { XEGM } & 950 \\ \text { XEMO } & 860\end{array}\) XEXX
XEN
XER


Cludad Delicias

\section*{Cludad Juarez}

XEBN 1240
\begin{tabular}{rrrr} 
& XEJ & 970 & 5000 \\
& XEP & 1300 & 500 \\
& XEFV & 1240 & 250 \\
& XELO & 800 & 150000 \\
& XEWG & 1490 & 250 \\
& XEVC & 1460 & 1000 \\
Hidalgo & 1150 & 500 \\
N. Casas Grandes
\end{tabular} XETX 1010

COAHUILA
Ciudad Acuna XEKD 1010
Menelova XEMF 1260
Piedras Nearas XEMS 920 \(\begin{array}{ll}\text { XEMU } & 580 \\ \end{array}\)
\begin{tabular}{|l|l} 
Location \\
Sabinas \\
Saltillo \\
Torreon \\
Villa Acuna
\end{tabular}
C.L. Kc. W.P. Lecation C.
XE
X
X
X
X

DISTRITO FEDERAL
Mexies CityCananea
C.L. Ke. W.P. \(\left.\right|_{\text {Location }} ^{\text {Len }}\)
SONORA
XEAO\(\begin{array}{ll}\text { XEAQ } & 1490 \\ \text { XEFH } & 1310\end{array}\)Obresen
\begin{tabular}{r|r}
5000 \\
20000 & \\
150000 & N \\
250000 & N \\
500000 & N \\
5000 & S
\end{tabular}
W.P.

250
1000

location
Habana
C.L. Kc. W.P. CMW 5902500 \(\begin{array}{lll}\text { CMCY } & 550 & 15000 \\ \text { CMO } & 630 & 25000\end{array}\) \(\begin{array}{lrr}\text { CMG } & 630 & 25000 \\ \text { CMCU } & 660 & 1000 \\ \text { CMBC } & 690 & 50000\end{array}\)
 CMCH 760100000

 \begin{tabular}{cc} 
CMCF \\
CMBF & 910 \\
950 \\
\hline 10000
\end{tabular} \(\begin{array}{ccc}\text { CMBF } & 950 \\ \text { CMCK } & 980 \\ 98000\end{array}\) CMBR 1080 CMCX 1060


c.L. Kc.





\section*{U. S. FM Stations by Call Letters}

Abbreviation: (s)-broadcasts stereo
C.L. Location KAAR Oxnard, Calif. KABC.FM Los Angeles. Calif. KACE-FM Riverside, Calif. KAOI St, Louis. Mo.
KAFI Auburn, Calif.
KAFM Salina, Kans.
KAIM-FM Honolulu, Hawall KAJC-FM Alvin, Tox. KAJ\& Newport Beach, Callf KAKC Tulsa. Okla.
KAKI San Antonio. Tex.
KALB.FM Alexandria. La,
KALW Denver. Colo.
KAW San raneiseo, Calif.
KANS Mammoth Spring. Ark
KANG St. Louis. Mo.
KANT-FW Laneaster. Calif
KANW Albuquerque. N. Me KAPP Redondo Beach, Calif. KARK Little Roek. Ark. KARM-FM Fresno, Calif. KARO Houston, Tex. KASK-FM Ontario. Callf. KASU Jonesboro, Ark. KATT Woodland. Calif. KATY-FM San Luis Dbispo, Calif. KAZZ Austin, Tax
C.L.

KBBI Los Angeles, Calif. KBBL Wichita, Kans. KBBM Hayward, Galif. KBBW San Diego. Calif. KBCA Los Angoles, Calif. KBCO San Franciseo. Calif. KBCO San Francisco, Calif
KBEE.FM Modesto, Calif. KBEE Kansas City, Mo. KBEY Kansas City. KBFM Lubbiock. Tex KBIM-FM Roswell. N. Mex. KBiQ Los Anpeles, Calif. KB1Q Los Andelos.
KBMS Los Angeles. Calif. KBOA-FM Kennett, KBO . KBOY.FM Bolse. Idaho KBTM-FM Jonesbore. Ark. KBUZ-FM Mesm. Aris. KBYR.FM Anchorag\%. Alaska (s) KBYU.FM Provo, Utah KCAL.FM Redlands. Calif KCBH Beverly Hills, Calif. (s) KCBS.FM San Franisisco, Calif. KCFM St. Louis. Mo. (s) KCIB.FM F Resne Cilip KCJC Kanses city, Kans. KCLE.FM Cleburne, Tex.
C.L. KCMB-FM Wiehita. Kans. KCMI Los Anpeles. Calif. KCMK Kansas City, Mo. KCMO-FM Kansas City. Mo. (s) KCMS.FM Manitou Springs, Colo KCOM Omaha, Nebr. KCPA. FM Dallas, Tex. KCPX.FM Salt Lake city, Utah KCRA.FM 8aeramento, Calit KCRW Santa Monica. Calif. KCUI Pella, la.
KCURPEMA.Kansas City, Mo. KCVN Stoekton. Calif. KDB.FM Santa'Barbara, Calif. KDDD.FM Dumas, Tex. KDEF.FM Albuquerque. N. Mex. KDEN.FM Denver, Colo. KDEN-F M Denver, colo KDKA.FM Pittsburit Pa KDMC Corpus Christi, Tex KDMC Dosp Moines, Jowa(s) KDMI Des Moines, Jowa(s) KDNT-FM Denton. Tex.
KDPS Des moines, lowa KDUO Rivarside. Calif. (s) KDU0 Rivarside, Cali
KDVR 8ioue Clity, KDWC West Covina. Callf.
C.L. Location

KEAX National City. Calif.
KEB) Phoeniz. Ariz.
KEBR Sacramento. Calif.
KEBS San Diego. Calif.
KEED.FM Springheld.Eugene,
KEEN. FM San Jose, Calif Orapon KEEZ San Antonio. Tex. KEFC Waco. Tex.
KEFM Oklahoma City, Okla.
KEFW Honolulu. Hawail
KELE Phoenix. Ariz.
KELMO St Louis. Tex.
KERN-FM Bakersfield. Calif. KERN.FM Bakersield. Calif. KEYM Santa Maria. Calif. (s) KEZE Anaheim. Calif. KFAB. FM Omaha. Nebr. KFAC.FM Los Angeles. Calif. KFAM.FM St. Cloud, Minn KFBK.FM Sacramento, Calif. K FCA Phoenix. Ariz. KFGQ-FM Boone, lowa KFH.FM Wiehita, Kans. KFIL Santa Ana, Calif. KFJC Mountainview, Calif.
C.L. Location

KFIZ Fort Worth, Tex,
KFMB-FM San Diego, Calif. KFMC Portland, Oreg
KFMH Colorado Springs, Colo,
KFMK Houston, Tex. (s)
KFML.FM Oenver. Co
KFMN Tueson. Ariz.
KFMP Port Arthur. Tex. (s)
KFMQ Lincoln, Nebr.
KFMU Lalif. (s)
KFMV Migeles, Cos
KFMW San Bernardino, Calif.
KFMX San diego. Calif.
KFMY Eugene, Oreg. (s)
KFNB Oklahoma Clity. Okla.
KFOX.FM Long Beach, Calif.
KFRC.FM Son Francisco, Galif.
KFUO.FM Clayton. Mo.
KGAF.FM Gainesvillo. Tex.
KGB.FM San Diego, Calif. (s)
KGBN.FM Caldwell; Idaho
KGFM. Edmonds. Wash.
KGGK Garden Grove, Calif. (s)
KGLA Los Angeles, Calif.
KGMG Portland, Oreg. (s)
KGMI Bellingham, Wash.
KGO.FM San Franeiseo, Calif
KGO.F M San Franeiseo, Ca
KGUD.FM Santa Barbara, Calif.
KHAK.FM Cedar Rapids, lowa
KHBL Plalnview. Tex
KHBR.FM Hillsboro, Tex.
KHCB Houston. Tox.
KHFI Austin, Tex.
KHFM Albuquerque, N.Mex
KHFR-FM Monterey, Calif.
KHGM Beaumont. Tex. (s)
KHIP San Francisco. Calif
KHIQ Sacramento. Calif.
KHJ.FM Los Angeles, Calif.
KHMS EI Paso, Tex.
KHOF Los Angeles. Calif
HPC Brownwood, Tex
KHQ.FM Spokanc. Wash.
KHSC Arcata, Calif.
KHUL Houston, Tex.
KHVR Bijou. Calit
KHY Fremont, Cair.
KICN Omaha, Nebr.
KIEM Eureka, Cali
KIMP-FM Mt. Pleasant. Tex KiNG.FM Seattle, Wash,
100 oklahoma. Okla.
KRO.FM Seattie, wash.
KISA Kansas City, Mo.
KISS San Antonlo, Tex.
KISW Seatlle. Wash. (s)
KISW Seattle. Wash.
KITt San Diego, Calif.
KITY San Antonio, Tex.
KIXL.FM Dallas, Tex.(s) KJAZ Alameda, Calif. KJEM-FM Okla. City, Okla. KJLM San Dlego, Calif. KJML Sacramento. Callif KJPO Frosno. Calif.
KJRG Newton. Kans.
KJSB Houston, Tex.
KLAC.FM Los Angeles. Calif. KLAY-FM Tacoma, Wash. KLCN-FM Blytheville, Ark KLFM Boverly Hills. Callf KLIR-FM Denver, Colo. KI2.FM Bravierd, Minn. LOA.FM Ridgecrest. Calif, KLON Long Beach. Calif. KLSN Seattle. Wash. (s) KLUB.FM Salt Lake City, Utah KLYN.FM Bakersieid, Calif KLYN.FM Lynden, Wash. KMAX Slorra Madre, Cailif. KMCP Portland. Oreg. KMCS Seattlo. Wash.
KMFM Tularosa, N. Mex KMHT Marshall, Tex. KMJ.F M Fresno. Calif.
KMLA Los Angeles. Calir. (s) KMLB. FM MOnroe, La. KMMK Little Rock, Ark. KMOX-FM St. Louis, M KMUW Wichita. Kans.
KMYC. FM Marysville, Calif. KMUZ Santa Barbara, Callf. (s) KNOE.FM Aztee. N.Mex
KNDX Yakima. Wash.
KNEB-FM Scotisbluff, Nebr KNER Dallas. Tex.
KNEV Reno. Ney
KNEW-FM Seottsbluff. Nebr
KNFM Midland, Tex.
KNIK-FM Anehorage. Alaska KNOB Long Beach, Callf. KNOF St. Paul. Minn.
KNX-FM Los Angeles, Calif. KNX-FM Los Angeles, Cali
KOA-FM Denyer, Colo KOAP.FM Portland, Ore. KOCW Tulsa, Okla.
C.L. Locotion KODA.FM Houston, Tex. KOGM.FM Tulsa, Okla. Kogo San Diego, Calif KOIN.FM Portland, Oreg KOKH Oklahoma City, Okia, KOL.FM Seattle, Wash. KONG.FM Visalia, Calif. (3) KONG-FM Visalai. Cariz.
KOOL.FM Phoenix. Ariz. KORK Las Vegas, Ney. KOSE.FM Osceola, Ark. KOST Dallas. Tex. KOSU. FM Stillwater, Okla. KOTN.FM Pine Blufi, Ark. KOY.FM Phoenix. Aris. KOZE.FM Lewiston, Idaho KPAT Albuguerque, N MEx, KPAS Pasadena. Calif. KPDQ.FM Portiand, or KPEN Atherton. Calif. (s) KPFA Berkeley, Calif, KPFA Borkeley, Caif: KPFK Los Angeles, Calif, KPFM Portland, Oreap (s) KPGM Los Altos, Calis. KPOI.FM Honolulu. Hawail KPOJ.FM Portland, Oreg. KPOL.FM Lus Anjelos, Calif. KPPS-FM Parsons, Kans. KPRI San Dlego, Calif. (s) KPRRN Seattle, Wesh
KPSD
KPSD Dallas. Tex.
KPSR Palm Springs, Calif. KQAL. FM Omaha, Nebr. (s) KQBY.FM San Francisco, Calif. KQFM Portland. Ores. KQIP Odessa, Tex. KQRO Oallas. Tex.
KQUE Houston. Tex. KQXR Bakersfield, Calif KRAK.FM Stockton, Calif. KRAM-FM Las Vagas, Nev. KRBE Houston. Tex. (s) KRCC Colorado Springs. Colo. KRCW Santa Barbara, Calit KRE-FM Berkeloy, Calif. KREM-FM Spokane, Wash. KREX.FM Grand Junction, Colo. KRFM Fresno. Calif. KRHM Los Angeles, Calif. (3) KRIC.FM Beaumont. Tex KRKD.FM Los Angoles, Calif. KRKH-FM Lubbock, Tex. KRKY Denver, Colo. KRLD.FM Oallas. Tex KRMD.FM Shreveport. La. KRNW Boulder, Colo KRNY-FM Kearney-Holdrege. Ne braska KRON.FM San Franeiseo. Callf. KROS.FM Clinton, lowa KROW Santa Barbara, Calif. KROY-FM Sacramento, Cailf KRPM San Jose, Calif. KRRC San Jose. Calif. KRSN-FM Los Alamos, N. Mex KRVM Eupene. Oreg. KSBW.FM Salinas, Calif. KSBW-FM Salinas. Cali
KSOA La Sierra, Calif. KSDA La Sierra, Callit.
KSDB. FM M Manhattan. Kans KSDS San Diego. Calif. KSEA San Diego. Call.
KSEO.FM Durant, Okla. KSFM Oallas, Tex. (s) KSFR San Francisco, Calif. KSFV San Fernando, Calif. KSFX San Franeiseo, C KSHE Crestwood, Mo KSHS Colorado Springs, Colo. KSJO.FM San Jose, Calif. (3) KSL.FM Salt Lake City, Utah KSLH St. Louis. Mo. KSLT Tyier. Tox.
KSMA.FM Santa Maria, Calif. KSO.FM Des Moines. lowa KSPC Claremont, Calif. KSPI-FM Stillwater, 0kla KSPL-FM Diboll, Tex. KSRF Santa Monica, Calif. KSTE Emporia. Kans. KSTL-FM St. Louis, Mo, KSTN-FM Stockton, Calif. KSUI lowa City, Nowa KSYN Joplin, Mo. KTAL Texarkana. Tex. KTAP Tueson, Ariz. KTAR-FM Phoenix, Ariz. KTCF Cedar Falls, lowa KTEC Oreteeh, Oreg. KTGM Oenver, Colo. KTIM San Rafael. Calif. KTIS.FM Minneapolis, Minn. KTJO-FM Ottawa, Kans. KTNT-FM Tafoma, Wash,
KTOD Mt. PIfasant. Tex. KTOD Wt. Pleasan, Kax.
KTOP.FM Topeka, Kans. KTOY Tacoma, Wash. KTRB.FM Modesto, Calif. KTRH-FM Houston, Tex. KTTS.FM Springfeld. Mo. KTWR Taeoma. Wash KTYM.FM Inglewood, Cali KTYM-FM Inglewood, Calif.
KUDE-FM Oceanside, Calif.
C.L. Location KUDU.FM Ventura-Oxnard, Calif. KUER Salt Lake City, Utah KUFY Redweod City, Calif. KUGN.FM Eugene, Oreg. KUGN. FM Eugene,
KUHF Houston. Tex. KUMD-FM Duluth, Minn. KUOA.FM Siloam Springs, Ark. KUOH Honolulu. Hawaii KUOW Soattle, wash. KUPD.FM Tempe, Ariz. KUSC Los Angeles, Calif. KUTE GIendan. Cax. KVCR Slendale, Calif. KVEC. FM San Luis Obispo, Calif. KVEN.FM Yontura, Calif, KVEM San Hernando, Caii KVIL Highland Pk.. Tex. KVOF.FM EI Paso, Tex. KVOK Honolulu. Hawail
KVOR.FM Colorado Springs, Colo. KVSC Logan, Utah
KVTT Dallas, Tex.
KWAR Waverly, lowa
KWAX Eugene, Ores.
KWFM Minneapolis, Minn.(s)
K WGGFM Stoekton, Callf.
KWGS Tulsa. Okla.
KWIX St. Louis, Mo.
KWJB.FM Globe, Ariz.
KWKH.FM Shrevoport, L
KWME Walnut Creek, Calif. (s)
KWMO Odessa, Tex.
KWOA.FM Worthington, Minn,
KWOC.FM Poplar Blufi. Mo.
KWPC.FM Museatine, lowa
KW.PM-FM West Plains, Mo.
KXFM Fort Worth, Tex
KXJK.FM Forrest City, Ark. KXLU Los Angeles, Calif. KXOA Sacramento Calif. KXQR Frosno, Calif. (s) KXRQ Saeramento. Calif.
KXTR Kansas City. Mo.
KXYZ.FM Mouston. Tox
KYA.FM San Franciseo. Calif. KYEW Phoenlx, Ariz. KYFM Oklahoma city, okla, K YSM. FM Mankato, Minn. KYW-FM Cloveland, Ohio KZAM Seattle, Wash. KZFM Cortoz, Colo.
KZOM Oklahoma City. Okla. KZUN. FM Opportunity, Wash WAAB-FM Woreester, Mass. WAAM.FM Parkersburg. W,Va WABC-FM Now York, N.Y. WABE Atlanta, Ga, WABI-FM Bangor, Maine WABQ Cleveland, Ohle WABX Detroit, Mich. WABZ-FM Albemarle, N.C. WACO Waco, Tex.
WAEB-FM Cincinnati, Ohio WAEF Syracuse, N.Y.
WAER Syracusa, N.Y.
WAHR.FM Miami Beach, Fla. WAIC San Juan, P. R. WAlR-FM Winston-Salem, N.C. WAIV Indianapolis, Ind. WAJC Indianapolis, Ind WAJP Joliet, III.
WAJR.FM Morgantown, A JR-FM Morgantown, W.Va. WAKW.FM Cincinnati, on WALK.FM Patchoguo, N.Y, WAMC Albany, N, Y,
WAMU.FM Washington, D.C WAPI.FM BIrmingham, Ala. WAPS Akron, Ohio
WAQE.FM Towson, Md. (3) WARK.FM Hapstown. Pa. WARL.FM Arlington. V WARN.FM Fort Pierce. FIa WASA.FM Havre De Grace. Md. WASH Washington, D.C. (s) WATR-FM Waterbury, Conn. WAUG.FM Augusta, Ga. WAUX.FM Waukesha, W WAVQ Atlanta, Ga.
WAVU-FM Albertville, Ala. WAVY-FM Portsmouth. Va. WAYL Minneapolis. Winn.(s) WAYZ-FM Waynesboro, Pa. WAZL-FM Hazelton. Pa WBAA.FM W. Lafayette. ind. WBAB-FM Babylon. N.Y. WBAI New York. N.Y.
WBAP-FM Fi. Worth, Tex. WBAY-F Gretn Bay, Wis. WBBC Jackson, Mieh.
WBBF.FM Roehester, N.Y. WBBM.FM Chleago. ill.' WBBO.FM Forest City, N.C. WBBR-FM E. St. Louis, III
C.L. Location

WDUN.FM Gainesville, Ga. WOUQ Pittsburgh. Pa. WOWS.FM Champaion, ill. WEAV.FM Plattsburgh, N. WEAW-FM Evanston, III. WEBH Chicago. III WEBR-FM Harrisburs, III WEBR.FM Buffalo. N'Y WECW EImira, N. Y
WEDK Springfield, Mass WEEC Springtiold Ohio WEED-FM Roeky Mount, N.C. WEEEP-FM Boston, Mass. WEEP-FM Pittsburgh, Pa
WEFAFM Easton.
WEFM Chicago. III. (s) WEGO-FM Concord, N.C WEHS Chicago, III.
WEIV Ithaca. N. Y
WEKZ-FM Monroo, Wis
WELF GIen Ellyn,
WELG Elgin, 111
WEMC Harrisonburg. Va. WEMP-FM Milwaukee. Wis. WENR-FM Chicago. III. WEOK-FM Poughkeepsio. N.Y. WEOL-FM Elyria, Ohio WEPM-FM Martinsburg, W.Va. WEPS Elgin, III.
WEQR Goldsboro, N.C
WERC-FM Erie. Pa.
WERE.FM Cleveland. ohio WERI-FM Westerly, R.I WERS Boston, wass. WESC.FM Greenvilie, S.C. WEST-FM Easton, Pa. WETL South Bend, Ind. WETN Wheaton, III. WEVD.FM New York, N. Y. WEWO-FM Laurinburg. N.C WFAA.FM Dallas, Tex. WFAH-FM Alliance, Ohio WFAN Washington, D.C. WFAS.FM White Plains, N.Y. WFAU.FM Augusta. Maine WFAW Fort Atkinson, W is. WFBC-FM Greenvillo. S.C. WFBE Flint, Mich.
WFBG.FM Altoona, Pa. WFBM-FM Indianapolis, Ind. WFBS-FM Winston-Salem, N.C. WFCI Franklin, Ind.
WFCJ Miamisburg, Ohio WFDSS. FM Baltimore. Md WFGM Cincinnal. WFGM-FM Fitehburg, Mass. WFHA.FM Red Bank. N.J. WFHR-FM Wisconsin Rapids, wis. WFIG Rio Piodras.
WFIL.FM Philadelohia. Pa WFIN.FM Findlay, Ohio(s) WFIU Bloomington. Ind. WFLM Ft. Lauderdale, Fla. (s) WFLN.FM Philadelphia, Pa.(s) WFLO.Farmville, Va. WFLT. Farmvile, Franklin. Tenn. WFLY Troy, N.Y. WF MA Roeky Mount, N.C. WF MB. FM Frederick. WF MD.FM Frederick. Md WFME Detroit, Mich.
WFMG Gallatin. Tenm
WFMH.FM Culiman. Ala.
WFMI Montgomery, Ala.
WFMM.FM Baltimere. Md
WFMQ Chieago, lli. (s)
WFMS Indianapolis. Ind.
WFMT Chieago. Ill. (s)
WFMU East Orange. N.J. WFMX Statesville, N.C. WFMZ Allentown, Pa.
WFNC.FM Fayettevilio, N.C. WFNQ Martiord, Conn. WFNS-FM Burlington, N.C. WFOB-FM Fostoria, Ohi WFOL Mamilton. Ohio WFOS South Norfolk, \(\mathrm{V}_{2}\) WFPK Louisville, Ky. WFPL Louisville. Ky. WFGM San Juan, P. R. WFRO-FM Fremont, Ohio WFST. FM Caribou, Maine WFSU-FM Tallahassee, Fla. WFUL.FM Fulton. Ky. WFUR-FM Grand Rapids, Mich. WF UV New York. N.Y. WGAL.FM Frederieksburg, Va. WGAL-FM Lancaster, Pa. WGAR-FM Cleveland, O. WGAU-FM Athens. Ga. WGBH-FM Cambrid ge, Mass, WGBI-FM Seranton. Pa.
WGCB.FM Red Lion, \(P\) a WGCS Goshen. Ind.
WGEM-FM Quiney. III. (s) WGEM-FM Quincy. III.(s) WGGC Glas \(0 w\). Ky.

\section*{C.L. Locotion} WGH.FM Newport Nows, Va, WGHF Newton, Conn. WGHJ Lawrence, Mass. WGLM Richmond, Ind WGMR TYrone Po WGMS.FM Washington, D.C WGNB St. Petersburg, Fla. WGPA.FM Bethlehem, Ga WGPM Detroit, Mich. WGPM Detroit. Mich. WGR -F M Buffalo, N.C. WGRE Greencastle. Ind. WGRV-FM Graenville, Tonn. WGTB-FM Washington, D.C. WGUC Cincinnati, Ohio WGVE Gary, Ind.
WGWR-FM Asheboro. N.C. WGYA Interlochen. Mieh WHA.FM Madison, Wis. WHAD Delanteld, Wis. WHAD-FM Greonfeld, Mass. WHAT-FM Philadelohia, Pa. WHAV-FM Haverhill, Mass WHBC.FM Canton. Ohio WHBF.FM Rock Island, III.(s) WHCI Hartford City, Ind. WHCN Hartford, Conn. WHCU.FM Ithaca, N.Y. WHDH.FM Boston, Mass. WHDL=FM Allegheny, N.Y. WHFB. FM Benton Harhor. WHFI West Paterson. N. J. WHFM Rochester, N.Y. WHFS Bothesda, Md. (s) WHMI Highland, Wis. WHHS Havertown, Pa. WHIM-FM Providenee, WHIO.FM Daytonillo, ohio WHK.FM Cleveland. Ohic WHKP.FM Hendersonvilie, N.C. WHKW Chilton, Wis. WHKY-FM Hickory. N.C WHLA Holmen, Wis WHLD-FM Niajara Falls, N. Y. WHLM-FM Bloomsburg. Pa WHMA.FM Anniston. Ala. WHNC.FM Henderson, N.C WHD-FM Des Moines. lowa WHOH Mamilton, Ohio WHOK-FM Laneaster, Ohio WHOO-FM Orlando, Fla. (s) WHOS-FM Decatur, Ala. WHP.FM Harris burg. Pa. WHPE.FM High Point, N.C. WHPR Highland Park. Mich. WHPS High Point: N.C. WHRB-FM Cambridge, Mass. WHRM Wausau, Wis. WHSA Highland Twp., Wis.
WHSR.FM Winchester, Mass. WHSR-FM Winchester, Mass. WHUS Storrs, Conn. WHWC Colfax, Wis.
WHYL.FM Carlisle. Pa. WHYN.FM Springfield. Mass. WHYY Philadelphia. Pa, WIAL Eau Claire, Wis. WIAN Indianadolis. Ind. WIBA.FM Madison, Wis. WIBC.FM Indianapolis, Ind WIBG.FM Philadelphia, Pa. WICB Ithaea, N.Y. WIFE Bufalo, N.Y WIFM.FM EIKin, N.C WIKY-FM Evansville, Ind. WIL-FM St. Louis, Mo. WILL.FM Urbana, III. WINA.FM Charlottesville, Va. WINE.FM Kenmore. N.Y. WiNZ.FM Manchester. WIP-FM Philadelphia, Pa WIPR-FM San duan, P.R. WIRA-FM Ft. Pierce, Fla WIRQ Rochester, N.Y WISH-FM Indianapolis, Ind. (s) WISK Mediord, Mass WISN.FM Milwaukes, Wis. WISZ-FM Madison, Wis. WITA-FM San Juan. P.R. WITH-FM Baltimore, Md. WITZ-FM Jasper, Ind. WIUS Christiansted. V.I WIAC.FM Johnstown, Pa. (s) WJAS. FM Pittsburgh. Pa. WJBC.FM Bloomington, III. WJBC-FM Bloomington, WJBK-FM Detroit. Mich. WJBO-FM Baton Rouge, La WIBR Wilmington. Del. (s) WJCD.FM Seymour, ind. WJOF-FM Jackson, Miss. WIEM FM Gallimiso \({ }^{\text {O }}\) Mich. (s) WJEJ.FM Ganipolis. Ohio WIGG.FM Hagerstown. Mo W IML Hou hon. WJHL-FM Johnson City. Tenn. w Jiv chorry Valley. N.Y.
C.L. Locotion

WJJD.FM Chieago, III. WJLK.FM Asbury Park, N.J. WJMC-FM Rice Lake, Wis. WJDF Athens, Ala. WJOL-FM Joliet, III. WJRZ Newark. N.J. WJTN-FM Jamestown, N.K. WJW.FM Cleveland, Ohio WJZZ Bridgeport, Conn WKAK Kankakee, III. WKAQ.FM San Juan, P. WKAQ-FM San Juan, P.R.
WKAR-FM E. Lansing, Mieh. WKAR-FM E. Lansing,
WKAT.FM Miami. FIa. WKAY-FM Glasgow, Ky. WKBC.FM Winston. Sal. WKBC.FM Yinston-Salem, WKBR.FM Moungstown, OH WKBV.FM Richmond, ind. WKBV-FM Richmond, Ind. WKCR-FM Now Yor WKCS Knoxville, Tenn. N.Y. WKDN.FM Camden N.J WKEE.FM Muntington, \(\mathbf{W} . V_{a}\) WKFM Chicago, III, (s) WKIC.FM Hazard, Ky WKiP.FM Poughkeepsio, N.Y. WKis-FM Orlando. Fla. WKIX.FM Raleigh, N.C. WJKF Pittsburgh. Pa. ( s ) WKLF-FM Clanton, Ala. WKLS Marietta, Ga. WKLW.FM Grand Rapids. Mieh. WKMH.FM Dearborn, Mich. WKNA Charleston W. Va. (s) WKOF Hopkinsville, KY. WKOK.FM Sunbury, Pa. WKOP.FM Binghamton. N.Y. WKOX-FM Framingham. Mass WKPT.FM Kingsport. Tenn WKRC-FM Cincinnati, Ohio WKRG.FM Mobile, Ala. WKRT-FM Cortland. N.Y. WKSD Kewanee, III.
WKSU.FM Kent. Ohio
WKTM.FM Mayneld, Ky. WKWK-FM Wheeling, W.Va. WKYB.FM Paducah. Ky. WLAD.FM Danbury. Conn. WLAG-FM LaGrange. Ga. WLAN.FM Lancaster, Pa. WLAP.FM Lexington. Ky WLAV-FM Grand Rapids, Mich. WLBG.FM Laurens-Clint WLBR-FM Lebanon. Pa WLOM Oak Park, Mich. (s) WLDS-FM Jacksonvillo. 111 WLET-FM Toccoa. Ga. WLFM Appleton, \(W\) is. WLIN Merrill. Wis. WLIR Hicksville. N.Y. (s) WLNA.FM Peekskill, N.Y. WLOA.FM Braddoek, Pa. (s) WLOB.FM Porliand. Maine WLOEFFM Leaksville, N.C. WLOM Chattanooga. Tenn. WLOS.FM Ashevills, N.C WLOV Cranston, R.I. WLVL Roanoke, Va. WLYC.FM Williamsport, Pa. WMAL-FM Washinpton. D.C. WMAM-FM Marinette, Wis WMAQ-FM Chicago. III WMAX-FM Grand Rapids, Mich. WMAZ-FM Macon, Ga. WMBD.FM Peoria. III. WMBM Miami Beach, Fla. WMBO-FM Auburn, N.Y. WMBR-FM Jacksonvilie, Fla. WMCF Memphis, Tenn. W MCO New Coneord, Ohio WMCR Kalamazoo. Wieh. WMDE Greensboro. N.C. (s) WMER Colina, Ohio WMEV.FM Marion, Va. WMFM Madison. Wis. WMFP Ft. Lauderdale, Fla. WMGW.FM Migh Pille, N.C WMHC South Hadley, Mass. WMHE Toledo Ohio WMIL-FM Milwaukee, Wis. WMIT Marion. N.C. WMIX.FM Mt. Vernon. III. WMLS. FM Sylacauga, Ala. WMLW Milwaukee, Wis. WMNA-FM Gretna, Va. WMPS.FM Memphis, Tenn. WMRI.FM Marion, Ind. WMRN-FM Marion. Ohio WMRO-FM Aurera, III.
WMRT Lansing. mith. WMSP Harrisburg. Pa WMTK Park Ridge, 111. WMTI Norfolk. Va.
WMTW-FM Mt. Washlngton, N.H.
C.L. Location

WMUL Huntington, W.Va WMUN Muncio, Ind.
WMUU-FM Greenvile, S.C. WMVA.FM Martinsil WMVA-FM Martinsville, Va.(s) WMVB-FM Millville, N.J. WMZF-FM Mount Vernan, Ohio WMZK Detroit, Mith. WNAS New Albay, okla. WNAS New Albany, ind. WNAV.FM Annapolis, Md WNBF.FM Binghamton. N.Y. WNBH.FM New Bedford, Wass. WNCN New York. N.Y. WNDA Huntsville. Ala. WNBD.FM Daytona Beach, Fla WNES-FM Bay City, WNES-FM Central City. KY. WNEX-FM Mewon. Ga. WNGO.FM Maynild. Ky WNHC-FM New Haven, Conn. WNIB Chitato. III.
WNNJ.FM Newton. N.J
WNOB Cleveland, onio (s) WNOK.FM High Point, N.C. WNOS.FM High Point, N.C. WNOW.FM York. Pa. WNSH Highland Park. III. WMTH Winnetka, III. WNTI Hackettstown, N, J W NUR Evanston III. WNWC.FM. Arlington His., III. WNYEE New York. N. Y. WOAK Royat Oak, Mich. WOAY-FM Oak Hill, W.Va. WOBN Westorville, ohio WOCB-FM W. Yarmouth, Mass. WOHS-FM Shelby. N.C. WOI.FM Ames. Iowa Wolo Cincinnati, Ohio Woil De Ruyter, N.Y. WDKZ.FM Alton. lil. WOL.FM Washington, D.C. WOMI.FM Owensboro, Ky. WOMP.FM Bellaire, Dhio. WONO Syracuse, N.Y. W000.FM Grand Rapids, Mich. WOPA.FM Oak Park. III WOPI-FM Bristol, Tenn. WOR.FM New York. N.Y. WORA-FM Mayaguez, P.R WORX.FM Madison. ind WOS. FM Allantie City, N.J. WOSU.FM Columbus. Ohio WOTW.FM Nashua. N.H WOW.FM Omaha. Nebr. WOXR Oxford, Ohio WPAC-FM Patehogue, N.Y. WPAD-FM Pad ucah, Ky. WPAY-FM Portsmouth, Ohio (s) WPBC-FM Ninneapolis, Minn. WPBS Philadelphia, Pa. WPCA.FM Philadelphia, Pa. WPEL-FM Montrose. Pa. WPEN.FM Philadelphia, Pa.
WPEX.FM Pensacola, Fla. (s) WPFB-FM Middletown. Ohio (s) WPFM Providence, R.I. (s) WPGO-FM Bradbury His.. Md. WPIC.FM Sharon. Pa. WPIC.FM Sharon. Pa.
C.L. Location WREO-FM Ashtabula, Ohlo WRED.FM Reidsvilie, N.

Columbus, Ohio
WRFK Richmond. Va. WRFL winchester, Va, WRFM Woodside. N.Y. WRFS.FM Alexander City, Ala. WRHS Park Forest, Ill. WRIT.FM MIlwaukee, Wi WRJN.FM Ratino, Wis WRJR Lewiston. Maine WRKO-FM Boston Mass. WRLB Long Branch. N,J.(s) WRLX Hopkinsville Ky WRLD.FM Lanett, Ala. WRMMI-FM Morris, Ala. WRNJ Atlantic City N WRNJ Atlantic City, N.J. WRNL-FM Richmond. Va. WRNW Mount Kisco. N.Y. WROK.FM Rockford, III. WROK-FM Rackford, III WROW-FM Albany, N. WROY-FM Carmi,
WRPI Troy. N.Y. WRPI Troy. N.Y. WRPN-FM Ripon, Wis WRRRN W arron, Pa WRSW.FM Warsaw, Ind WRTC.FM Hartford, Conn. WRTC-FM Rartford, Conn. WRUF-FM Gainesville, Fla. WRUN-FM Utiea, N.Y. WRUVA-FM Richmond, Va. WRVB.FM Madison, Wis. WRVC Norfolk, Ya. WRVP New York, N.Y WRWR Port Clinton. Ohlo WRXO. FM Roxbaro. N C WRYT Pittsburgh. Pa WRYT Pittsburgh. Pa. WSAI-FM Cincinnati, Ohle WSAM-FM Saginaw. Mich WSA, FM Atlanta, Ga. WSBBC.FM Chicapo. it WSBF-FM Clemson. S.C. WSCB Springfleld, Mass.
C.L. Location

WSEI Enngham. II WSEV.FM Sevierville. Tenn. WSFM Birmingham, Ala.(s) WSHS Floral Park, N.Y. WSID Baltimore, Md. W SIU Carbondalo. III. WSJG Hallandale. Fla WSJS.FM Winston-Salom, N.C. WSKS Wabash. Ind WSIX.FM Nashville. Tonn. WSLM-FM Salem. Ind. WSLN Delaware. Ohio WSLS.FM Roanoke, Va WSMC.FM Colleqedale. Tenn WSMD-FM Waldorf. Md. WSMI.FM Litchtield, III. WSNJ.FM Brigeton. N.J. WSNW.FM Seneca, S.C. w Soc-Fm charlotfo, N.C WSOM Salem. Ohio WSON.FM Henderson, Ky WSOU S. Orange. N. J. WSPA-FM Spartanbure. S.C.(s) WSPD.FM Toledo, Ohio WSPE Sprlneville, N Y WSPT-FM Stevens Point, Wis. WSRW.FM Hillsboro, Ohio WSTC.FM stamford, Conn WSTP.FM Salisbury N.C. WSTR.FM Sturgis, Mich. WSTV.FM Steubenvllle, ohio WSVA-FM Harrisonburs Va WSVS.FM Crewe, Va. WSWM East Lansing, Mieh. (s) WSYR-FM Syratuse, N.Y.(s) WTAO.FM Quincy, III. WTAG-FM Worcester, Mass. WTAR Norfolk. Va,(s) WTAX-FM Springtheld, III. WTBC.FM Tuscaloosa, Ale WTBO-FM Cumberland, Md, WTBS Cambridge, Mass. WTCX St. Petersburg. FIa. WTOS Toledo, Ohio
TFM Babylon, N.Y
C.L

Lecetton WTHI-FM Terre Haute, Ind. WTHS Miami, Fia. WTIC.FM Hartford, Conn. WTJS.FM Jackson, Tenn. WTJU Charlottesville, Va. WTMA.FM Charleston, S.C. WTMJ.FM Milwaukee, Wis. WTNC.FM Thomasvilie. N.C. WTOA Trenton. N.J. WTOC-FM Savannah, Ga. WTOF Canton, Ohlo WTOL-FM Toledo, Ohio WTOP-FM Washington. D.C. WTOS Wauwatosa, Wis. WTRT Tolede. Ohio WTSB-FM Lumberton, N.C. WTSV-FM Claremont. N.H. WTTC-FM Towanda. Pa. WTTR.FM Westminster. Md. WTTV.FM Bloomington, Ind. WTUN Tampa, Fla WTVB.FM Coldwater, Mich. WTVN-FM Columbus, Ohio WUCB-FM Chieago, ill. WULX.FM Richmend. ind. WUNC Chapel HIII. N.C. WUOA Tusesloosa. Ala. WUOM Ann Arbor, Mich. WUOT Knoxville, Tenn. WUPI Lynn, Mass. WUSC-FM Columbla. S, C WUST.FM Bethosda, m WUSV Seranton. Pa. WVAM-FM Altoona. Pa WVCG-FM Coral Gables. Fla. WVEC.FM Hampton. Va. WVGR-FM Grand Rapids, Mich. WVHC Hempstead, N.Y. WVJS.FM Owensboro, Ky WVKC.FM Galesburg, III. WVKO.FM Columbus, Ohio WVLN-FM Olney. III. WVMC.FM Mt. Carmel. IIt. WVNA-FM Tuseumbia. Ala.
C.L.

Locafion
WVNJ-FM Newark, N.J, WVOT-FM Wilson. N.C. WVOX-FM New Rochelle, N.Y. WVSH Huntington, Ind. WVST St. Potersburg, Fla. WVTS Terre Hate. Ind. WWCF Greenfidd. Wis. WWCO.FM Waterbury, Conn. WWDC-FM Washington. D.C. WWGP-FM Sanford, N.C. WWHG.FM Hornell, N.Y. WWHI Muncie, Ind. WWIL-FM Ft. Lauderdalo, Fla WWJ-FM Detroit, Mich. WWKS Macomb, III.
WWMT New Orleans, La.
WWOD.FM Lynchburg. Va.
WWOL.FM Buffalo, N,Y. WWON-FM Woonsotket, R.I. WWPB Miami, Fla
WWST-FM Wooster, Ohio WWSW-FM Pittsburgh. Pa. WWTV-FM Cadillac, Mich. WWVA.FM Wheeling. W.Va. WWWS Greenville. N.C. WWYN Erie. Pa.
\(W \times C N\) Providence, R.I. WXFM Elmwood Park, III. WXHR Cambridge, Mass. WXPN Philadelphia. Pa. WXTC Annapolis. Md. WXTO-FM Grand Rapids, Mich. WXUR-FM Media, Pa. WXYZ-FM Detroit. Mich. WYAK Sarasota, Fla.(s) WYBC.FM New Haven, Conn. WYCA Hammond, Ind. WYCE Warwick. R.I. WYCR York-Hanover. Pa WYFI Norfolk, Va. (s) WYFM Chariotte, N.C. WYFS Winston-Salem. N.C. WYSO Yellow Springs, Ohio WY2Z Wilkes-Barre. Pa. WZFM Jacksonville, Fla. WZIP.FM Cincinnati, Ohio

\section*{Canadian FM Stations by Location}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Location & & Mc. & Location & C.L. & Mc. & Location & C.L. & Mc. & Locotion & C.L. & Mc. \\
\hline Brampton, 0nt. & CHIC.FM & \(102 . i\) & & CKLC.FM & 99.5 & Ottawa, Ont. & CBO.FM & 103.3 & & CFRB.FM & 99.9 \\
\hline Brantford, Ont. & CKPC-FM & 92.1 & & CKWS-FM & 96.3 & & CFMO.FM & 93.9 & & CHFI.FM & 98.1 \\
\hline Cornwall. Ont. & CJSS.FM & 104.5 & Kitehener, Ont. & CKCR-FM & 96.7 & Quebec, Que. & CHRC.FM & 98.1 & & CJRT-FM & 91.1 \\
\hline Edmonton, Alta. & CFRN.FM & 100.3 & Lethbridge. Alta. & CHEC.FM & 100.9 & Rimouski, Que & CJBR.FM & 101.5 & Vancouver, B.C. & CBU-FM & 105.7 \\
\hline & CJCA.FM & 99.5 & London, Ont. & CFPL.FM & 95.9 & St. Catharines. & & & & CHQM-FM & 109.5 \\
\hline & CKUA.FM & 98.1 & Montreal, Que. & CBF.FM & 95.1 & Ont. & CKTB-FM & 97.7 & Verdun, Que. & CKVL.FM & 96.9 \\
\hline \[
0
\] & & & & CBM-FM & 100.7 & Sherbrooke. Que. & CHLT-FM & 102.7 & Vietoria. B.C. & CKDA-FM & 98.5 \\
\hline Hallfax & CHNS-FM & 96.1 & & CFCF-FM & 106.5 & Timmins, Ont. & CKGB-FM & 94.5 & Windsor. Ont. & CKLW.FM & 93.9 \\
\hline Kingston, Ont. & CFRC-FM & 91.9 & Oshawa. Ont. & CKLB.FM & 93.5 & Toronto, Ont. & CBC.Fm & 99.1 & Winnipas, Man. & CJOB-FM & 97.5 \\
\hline
\end{tabular}

\section*{Canadian FM Stations by Call Letters}
C.L. Location CBC.FM Toranto. Ont. CBF.FM Montreal, Que. CBM.FM Montreal, Que. CBO-FM Ottawa, Ont. CBU.FM Vancouver, B.C. CFCF-FM Montreal. Que. CFPL.FM London, Ont. CFRA.FM Ottawa, ont.
C.L. Location

CFRB-FM Toronto, Ont. CFRC.FM Kingston, Ont. CFRN-FM Edmonton. Alta. CHEC.FM Lethbridge, Alt CHFI.FM Toronto, Ont. CHLT-FM Sherbrooke, Que. CHNS. FM Halifax, N.S.
CHRC.FM Qubbec. Que.
C.L. Locafion

CJCA.FM Edmonton, Alta. CJCB-FM Sydney, N.S. CJOB-FM Winnipeg, Man. CJRT.FM Toronto, Ont. CJSS. FM Cornwall. Ont. CKDA.FM Vietoria, B.C.
CKGB.FM Timmins. Ont.
C.L.

Location CKLC.FM Kingston. Ont. CKLW-FM Windsor, Ont. CKPC.FM Brantford, Ont. CKPR-FM Ft. William. Ont. CKSF-FM Cornwall, Ont. CKTB-FM St. Catharines, Ont. CKUA-FM Edmonton. Alta. CKVL.FM Verdun, Que. CKWS-FM Kingston, Ont.

\section*{U. S. Television Stations}

Territories and possessions follow states. Chan., channel number; asterisk (*) indicates educational station.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Locotion} & c.l. Chon. & Location & C.L. Ch & & Location & C.L. Cho & & \multirow[t]{3}{*}{\begin{tabular}{l}
Location \\
Parkersburg Wheeling
\end{tabular}} & \multicolumn{2}{|l|}{C,L. Chan.} \\
\hline & WHTVK 26 & Luikin & KTRE.TV & & Hampton & wVEC.TV WSVA.TV & & & WTAP.TV WTRF.TV & 15 \\
\hline Memphis & \[
\begin{array}{ccc}
\text { WHBO.TV } & 13 \\
\text { WKNO } & 10
\end{array}
\] & Midiand & \[
\begin{aligned}
& \text { KMID.TV } \\
& \text { KOCD.TV }
\end{aligned}
\] & \[
\begin{aligned}
& 2 \\
& 18
\end{aligned}
\] & Harrisonburg Lynchburg & WSVA.TV & \[
13
\] & & & \\
\hline & T & Monahan & KVKM.TV & 9 & Norfolk & WHROTV & 15 & & NSIN & \\
\hline & WREC-TV 3 & Odessa & KOS & 7 & & WTAR-TV WXEX.TV & & & & 13 \\
\hline Nashville & \(\begin{array}{ll}\text { LAC-TV } & 5 \\ \text { SIX-TV } & 8\end{array}\) & Port & ont
\[
K P
\] & 4 & & WXEX.TV WAVY-TV & 8 & \[
\begin{aligned}
& \text { Eau Claire } \\
& \text { Green Bay }
\end{aligned}
\] & WBAY:TV & 2 \\
\hline & WSM-TV 4 & Richardson & RET.TV & & Riehmend & WRVA.TV & & & WLUFRV & 5
11 \\
\hline \multicolumn{2}{|r|}{TEXAS} & San Angelo & \[
\begin{aligned}
& \text { KCTV } \\
& \text { ACB.TV }
\end{aligned}
\] & 8
3 & Roanok: & J-TV & 7 & La Crosse & WKBT & 8 \\
\hline & & \multirow[t]{4}{*}{San An} & UAL.T & 41 & & WSLS-TV & 10 & & WHA.TV & \\
\hline Abilene & \[
\begin{array}{cc}
\text { KRBC.TV } & 9 \\
\text { KULF:TV } & 12
\end{array}
\] & & ENS.T & 5 & \multicolumn{3}{|c|}{\multirow[b]{2}{*}{WASHINGTON}} & & Kow & 27 \\
\hline \multirow[t]{3}{*}{Amarillo} & \[
\begin{array}{ll}
\text { KULF.TV } & 12 \\
\text { KFDA.TV } & 10
\end{array}
\] & & KL & \(\stackrel{.9}{12}\) & & & & & WMTV & 3 \\
\hline & KGNC-TV 4 & & & 4 & Bellingham & KVos.TV & 12 & Marinette & WMBV.TV & 12 \\
\hline & KVII ? & Swactwater & R-T & 12 & & KEPR.T & & & WISN-TV & 5 \\
\hline Austin & KTBC-TV & \multirow[t]{2}{*}{Temple} & CEN-T & & Richland & KNDD.TV & & & & \\
\hline \multirow[t]{2}{*}{Beaumont
Big Sprine} & KFDM-TV & & TAL-T & 6 & Scattlo & KCTS.TV & & &  & -10 \\
\hline & \[
\begin{aligned}
& \text { KEDY.TV } \\
& \text { KBTX.TY }
\end{aligned}
\] & Tyler & KLTV & 7 & & KING.TV KIRO.TY & 5
7 & & \[
\begin{gathered}
\text { M/XIX } \\
\hline x i x
\end{gathered}
\] & 18 \\
\hline \multirow[t]{2}{*}{Corpus Chrlsti} &  & \multirow[t]{3}{*}{Waec Weslaco wiehita Falls} & & 10 & & KOMO-TV & 4 & Wausau & WSAU-T & 7 \\
\hline & K2TV 10 & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{KSYD.}} & \multirow[t]{2}{*}{Spakane} & \multicolumn{2}{|l|}{KHQ.TV} & & & \\
\hline \multirow[t]{2}{*}{Dallas} & \[
\begin{aligned}
& \text { KREDRTV } \\
& \text { KERATV } \\
& \hline
\end{aligned}
\] & & & & & KREM.TV & 2 & \multicolumn{3}{|c|}{WYOMING} \\
\hline & ERA.TV & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{UTAH}} & \multirow[t]{3}{*}{Tacoma} & KTNT-TV & 11 & \multirow[t]{3}{*}{Casper Cheyenne Riverton} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { KTWO.TV } \\
& \text { KFBC.TV } \\
& \text { KWRB-TV }
\end{aligned}
\]} & \multirow[t]{3}{*}{2
5
10} \\
\hline \multirow[t]{2}{*}{\(E 1\) Paso} & LP.TV 13 & & & & & EC.T & * 56 & & & \\
\hline & ROD-TV & Ogden & \multicolumn{2}{|l|}{} & & KTPS & & & & \\
\hline \multirow[t]{2}{*}{(Ciudad Juarez,} & & \multirow[t]{4}{*}{\begin{tabular}{l}
Provo \\
Salt Lake Clty
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{array}{rr}
\text { KLOR.TV } & 11 \\
\text { KCPSLTV } & 5 \\
\text { KUED } & 7 \\
\text { KUTV } & 2
\end{array}
\]}} & \multirow[t]{2}{*}{Yakima} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{ccc}
\text { KTVW } & 13 \\
\text { KIMA.TV } & 29 \\
\text { KNDO.TV } & 23
\end{array}
\]}} & \multicolumn{2}{|c|}{PUERTO} & \\
\hline & XEJ-TV 5 & & & & & & & & WOLETV & \\
\hline Worth & \[
\begin{array}{ll}
V T & 11 \\
T V & 5
\end{array}
\] & & & & \multirow[t]{2}{*}{WEST} & VIRGINIA & & Caguas & WKBM.TV & 11 \\
\hline Harlingen & 2 & & & & & & & Mayaguez & WORA.TV & \\
\hline \multirow[t]{3}{*}{Houston} & C-TV \({ }^{2}\) & \multicolumn{3}{|c|}{VERMONT} & Bluefte & IS.TV & & & WIPM.TV & \\
\hline & KHOU.TV İ & \multirow[t]{3}{*}{Burlington} & & & Clarksbur & WBOY.TV & 8 & \multirow[t]{2}{*}{Ponce} & WRIK.TV & \\
\hline & KTRKUHT * & & CAX.TV & 3 & Fairment & WJPB.TV & 5 & & WSUR.TV & \\
\hline arod & & & NIA & & Huntington & & 3 & San Juan & WAPA-TV & \\
\hline ubboek & KCBD-TV & & wCYB.t & & Oak Hil & WOAY-TV & 4 & & WKAQ-TV & \\
\hline
\end{tabular}

\section*{Canadian Television Stations}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Lecation AL & C.L. Chan. RTA & Location LABR & C.L. Chon DOR & & \begin{tabular}{l}
Location \\
Sydney \\
Yarmouth
\end{tabular} & C.L. Chan cJCB.TV CBHT. 3 & & \multicolumn{3}{|c|}{QUEBEC} \\
\hline Burmis Calyary & \[
\begin{array}{cc}
\text { CJLH-TV-3 } & 3 \\
\text { CHCT.TV } & 2
\end{array}
\] & Goose Bay & LA.TV & 8 & ONTAR & R10 & & Carleton & \begin{tabular}{l}
CHAU.TV \\
JAO.TV.I
\end{tabular} & 5
80 \\
\hline he & CFCN-TV
CN.TV-1 & MANIT & OBA & & Barrio ONTA & CKVR & & & CHSM-TV & 7 \\
\hline Orumhelior & CBXT.TV & Baldy Mountain & CKOS.TV. 1 & 8 & Barrio & CJSS.TV & 8 & Clermont & CFCV.TV-1
CJES.TV-1 & 75 \\
\hline mo & FRN-TV & Brandon & CKX-TV & 5 & Elk Lake & FCL-TV-2 & 2 & Jonguíe & CKRS-TV & 12 \\
\hline Lethbrides & CJLH-TV 7 & Winnipes & BWT & 3 & Elliot Lake & CKSO-TV. 1 & & Matane & CKBL.TV & 8 \\
\hline Lloydminstor & V 2 & & T & \({ }_{8} 8\) & Hamilton & CHCH-TV & 11 & Montreal & CBFT & 2 \\
\hline Plvot & CHAT-TV 4 & & & & Kenora & CBWAT & 8 & & CFTM.TV & 10 \\
\hline Red Deep & TV 6 & EW & ISWICK & & Kingsto & CKWS.TV & & & C \({ }^{\text {N }}\) & 6 \\
\hline BRITI & OLUMBIA & Campbellton & CRCD.T & 7 & Lond & & 10 & Now Carlisle & H & 5 \\
\hline Asheroft & CFCR.TV. 210 & M & AM.TV & 2 & North & & 10 & & CFCM-T & 4 \\
\hline Burnaby & CHAN.TV 8 & & HSJ-TV & 4 & Pembroko & CHOV.TV & 5 & Rimauski & , & 3 \\
\hline Crescent & MS.TV & Upsalquiteh Lake & CKAM & 12 & Poterherou & - & 2 & Riviera du-Loup & KRT.T & 7 \\
\hline Dawson Creek & BC.TV. 8 & & & & Ptawa & & & Rouyn & CKRN-TV & 4 \\
\hline Enderby & BC.TV-8 & NEWFO & IDLAND & & & CBO & & Sherbrooke & CHLT.TV & 7 \\
\hline downa & HBC-TV 2 & Argentia & \(V\) & & Pert Arthur & CKPR.TV.I & & Three Rivers & CKTM.TV & \\
\hline & CH GP.TV-1 72 & Corner Brook & & & Sault Ste. Marie & CJC.TV & & & & \\
\hline rem & CHBC.TV-9 & Grand Falls & JCN.TV & 4 & Sturge & ST & & & & \\
\hline Lumby & CHBC.TV-4 & St. John's & CJON-TV & & Sud & SSO.TV & & ast End & & 2 \\
\hline Nalson & CBUAT.TV. 7 & Stephenville & CFSN.TV & 8 & Timmins & CL.TV & & Moose Jaw & . & 4 \\
\hline Oliver & CHBC.TV-3 & & & & Toronto & CBLT & & Nipawin & CKBI.TV. & \\
\hline Ponti & CHBC.TV-2 IS & & -fxu & & & W.TV & & Prinee Albert & CKBI.TV. & 2 \\
\hline Prince George & KPG.TV & Antigon & U.TV & & Wingham & CKNX-TV & 8 & Regina & CKCK.TV & 2 \\
\hline Saddle Mountaln & CHHC.TV-1 & Hallfax & & 5 & & & & Saskatoon & CFQC.TV & 8 \\
\hline Trail & CBUAT 11 & & cJCB-TV-1 & 6 & & NARD & & wift Cur & FJB.TV & 5 \\
\hline ancouve & TV & Li & CBHT & 12 & IS & & & ganui & CKBI.TV. 2 & 7 \\
\hline Vernon & CHBC.TV-3 & New Glasg
Shelburne & CBHT-2 & & Charlottetown & CFCY-TV & & Yorkton & CKOS.TV &  \\
\hline
\end{tabular}

\section*{World-Wide Short-Wave Stations}

Most international broadcasting is done within frequency limits agreed upon at international conventions. These frequency ranges are listed here, at the right, expressed both in frequency and by meter bands (wave-length).

Reception in the various bands varies according to the time of day and season of the year. Reception in the 60,49 and 41 meter bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the \(19,16,13\) and 11 M . bands is best during the day, also at night during the summer in the 16 and 19 M . bands. This listing includes only SWBC often heard in the U.S. and Canada, exclusive of those in the continental U.S.

Abbr.: AIR—Al! India Radio; RAl—Radiotelevisione Italiana; RTF—Radiodifusion Television Francaise; VOA-Voice of America; RFE—Radio Free Europe. - denotes stations beaming evening IU.S. timel broadcasts to the U.S., †morning or afternoon broadcasts, V-varies.

METER BANDS
4750 to \(5060 \mathrm{kc} / \mathrm{s}(60\) meter band) 5950 to \(6200 \mathrm{kc} / \mathrm{s}\) ( 49 meter band) 7100 to \(7300 \mathrm{kc} / \mathrm{s}\) (4 1 meter band) 9500 to \(9775 \mathrm{kc} / \mathrm{s}\) ( 31 meter band) 11700 to \(11975 \mathrm{kc} / \mathrm{s}(25\) meter band) 15100 to \(15450 \mathrm{ke} / \mathrm{s}\) ( 19 meter band) 17700 to \(17900 \mathrm{kc} / \mathrm{s}\) ( 16 meter band) 21450 to \(21750 \mathrm{kc} / \mathrm{s}\) ( 13 mefer band) 25600 to \(26100 \mathrm{kc} / \mathrm{s}\) (1) meter band.

Kcs. Call and Locotion 4630 HCGBI, Quito, Eeu.
4725 Rangoon. Burma
4785 HJEF, Call, Col
4770 ELWA, Monrovia. Lib. 4770 YVMW, Punto FiJi. Ven. 4780 Y VLA, 'Valeneia, Ven.

Kes. Call and Location 4845 HJGF, Bucaramanga, Col. 4850 YVMS', Barquisimeto
4870 Cotonou. Dahomey Rep. 4880 YVKF. Caraeas. Ven. 4895 Daker. Senegal
4895 ZYR22, Manaus, Braz.
4900 YUKE, Caraeas, Ven.
4900v HJAC, Barranquilla, Col.

\section*{Kes. Call and Location} 4905 HRQN3, Puerto Cortes, 9910 HCIMI Quito Hon.
4910 HCIMI, Quito. Eeua. 4910 Conakry, Guinea
4920 VLM4, Brisbane. Aus,
4920 YVKR, Caratas, Ven.
4920 YVKR, Caratas, Ven.
4940 HCXŻ, Guayaquili, Eev.

Kes. Call and Locatlon
4940 Abldjan, Ivory Coast 4940 YVMO, Barquisimeto.
4945 HJCW, Bogota, Col.
4950 Dakar. Senegal
4950 Y YMM, Coro, Von.
4960 Y YoA, Cumana, Ven.
4970 Y VLK, Caraeas, Ven.
4990 Lapos, Nit Coria
4990 YVMQ, Barquisimeto,
4995 CRGRZ Luand Angen 5010 HCRCX, Quito, Eeu. 5010 St . Georges, Windward 5020 HJFW, Manizales, Col. 5020 Nlamoy. Niger Rep. 5030 YVKM, Caracas, Ven. 5040 YVMA., Maracalibo. Ven. 5050 Y YKD', Caracas. Ven. 5075 HJGC' Bogota. Col. 5875 Teguel gal na, Hond. 5952 TGNA. Guatomala, Guat. 5954 TIQ, Puarto Llmon, C. R. 5960 HJCF, Bogota, Col. 9980 \({ }^{2}\) GA 7 , Guatemala, Guat. 5980 4VB7, Port au Prince, Halti 5990 TGJA, Guatemala 5990 Habana, Cuba
990 Habana, Cuba
5995 Fort.de. France, Mart. 6000 Radio Americas
6005 RIAS, Borlin, Ger.
6010 XEOL, Mexico City, Mexico
\(6015 v\) Habana, Cuba Braz.
6015 V Habana, Cuba,
6020 Hilversum, Neth.
6025 Kuala Lumpur, Malaya
6025 Lisbon, Port.
6030 Baghdad, Iraa
6035 Rangoon, Burm
6035 HRTL, Tequelgal
035 HRTL, Tepurigalpa, Hond.
6037 TIFC, San Jose, C. R.
6040 HJLB, Jbaque, Col.
6040 VOA, Munith, Germany
045 HOUsI. David, Pan.
6050 HCIB, Quito, Eeva.
6050 B BC, London. Ens.
6055 HJEX, Calf, COI.
6055 1022, Tokyo, Japan
6060 RAI, Caltanissetta, It,
6060 YDF. Djakarta. Indonesian
6060 YDF. Djakarta. Indonesia
6065 XEXG, Lean, Mex,
6070 Sona, Sweden
6070 BBC. London, Eng.
6075 Osterloog, Ger,
6080 ZL7. Wailington, N.Z.
Oen Tras Worid Radio, Monaeo
6082 OAX4Z, LIma, Peru
6085 Munich, Ger.
6090 VLI6, Sydney, Aus.
6090 XECMT, C. EI Mu.
Mex.
\(0, \mathrm{D}, \mathrm{R}\).
6090 H 12 U, Santo Domingo, D,
\(6095 \mathrm{ZYB7}\), Sao Paulo, Braz.
6095 2YB7, Sao Paul
6100 Bel rade Yugo.
6100 Belfrade, Yugo.
6105 XEQM, Merida, Mex.
6105 Cologne, Ger,
Gil 10 BBC, London. Eng.
Gils ZYC7, Rio do Jan., Braz.
615 ZYC7, Rio de Jan., Braz
6120 LRXI, Buenos Alras
6120 LVEH, Can
6120 UVEH, Cad Haitlen, Haitl
6120 BBC. Limassol, Cyprus
6130 Port Moresby, Naw Guinea
6135 HRMF, La Coiba, Hond.
6135 Papeete, Tahiti
6140 VLW6, Perth. Aus.
6145 RTF. Alloulis, Franee
\(6145 v\) PAL9, Rio de Janc., Braz.
6150 BBC, London. Eng.
6155 Wien, Austria
6155 FEN, Tokyo, Japan
6160 HIK, Bopot Col
6160 H/Kj, Bogota. Col.
\({ }_{6160} 61\) Aliors, Algerla
6160 Saidon, S . Vietnam
6165 HERS, Bern, Switz.
6170 BBC, LImassol, Cyprus
6170 Singapore, Sing
6170 VOA. Tandiers. Moroce
6175 RTF' Allouis
6175 RTF, Allouis, France
6175 Cayonne, Fr. Guiana
6185 Lishon, Port.
6185 HJCT, Boqota, Col.
6195
6195
BBEC, Condon, Ein
6195 BBC, Londan, Eng.
6195 Pyongyang. N. Kore
6195 Anderra, Andorra
6305 Andorra. Haiti
6305 Andorfa. Anderra
7095 y Tehran, Iran
7105 Madrid, Spain
710 VOA, Colombo, Ceylon 7110 BBC, London, Engiand 715 Rabat, Moroee
7120 BBC, London, Endland
7125 Warsaw, Polind
7135 Talpeh, Talwa
7150 Mamako, Manís
7155 voseow, Tanglers. Mor
7135 VOA, Tanelers. Mor
7160 RTF. Parls, Fpance
7165 RFE. Germ.

Kes. Call and Location 7170 Algiers. Ald.
7180 Baghdad, Irag
7180 Mascow, U.8.S.R.
7185 BBC, London, Eng.
7193 Bucharest, Arrica
7200 R. Malaya, Sing. \({ }_{7205}^{7200}\) ROA, Salaya, SIng. \({ }_{7210} 7205\) Dakar, Mali Fid.
7215 Trans World Radio, Monaco
7215 Trans, World Radio, Mo
7220 VLD7, Melbourne, Aus. 7220 VLD7, Meibourn
7220 Budapest, Hung.
7230 BBC, London. En
7230 BBC, London, Eng.
7240 RTF, Paris, France
7250 BBC, London, Eng.
725 8ofla, Bule.
7265 Salgon. Vietnam
7270 Motola. Sweden
7275
7285 AAI, Rome, At
Ankare. Turk.
7285 Ankara. T
7290 Мозеош, U.S.S.R.
7290 RAI, Rome, It.
7295 Makassar, Celobes
7295 RFE. Ger.
7340 Moscom, U.8.S.R
73980 Damaseus, U.A.R.
7480 Peking, China
7650 YNMS, Leon, Nic.
8016 Beirut, Lebanon
9009 Tel Aviv. Israe
9360 COBC, Habana, Cuba
9360 y Madrid, Syain
9360v Madrid, Spain -
9380y Madrid, 8pain
9380 v Madrid, 8pain
9410 BBC, London. Eng.
\({ }_{9480}\) Peking, China
9480 Peking, China
9485 HI3U, Santo Domingo, D.R.
8500 XEWW, Mexico City.
9500 Magadan, U.S.S.R
\({ }_{9500}\) Moseaw, U.S.S.R.
9505 PRB22. Sao Paulo, Braz.
9505 Rabat, Mor.
9505 HOLA, Colon, Pan.
9505 NHK, Tokyo, Japan
9505 Belgrade, Yugoslavia
9510 London, England
9515 RA1, Caltanissetta. It. 9515 XEWW, Mexico. DF, Mex 9520 VOA, Tangier, Mor.
9520 Copenhagen, Den. -
9520 Port Moresby, New Gulnea
9520 OAX8E, Iquitos, Peru
9525 NHK, Tokyo, Japan
9525 Warsaw, Poland
9530 AIR, Deihi, India
9530 VOA, Courier, Rhodes
9530 YVMZ. Maracalibo, Ven.
9535 VOA, Manila, P.I:
9535 HER4, Bern, Switz.
9540 ZL2, Wellington, N.Z.
\(9540 \mathrm{ZL2}, \mathrm{Wellington}\),
9540
Warsaw, Poland
9540 Khabarovsk, U.S.S.R.
9545 ZYS43, Curitiba, Braz,
9545 HED5, Bern, Switz.
9550 Prague. Czecho.
9555 BBC, London. Eng.
9555 YS8, san Salvedor, E. S.
9555 XET'T, Mexico City, Wex.
9560 RTF, Paris, France
9560 Colombo, Ceylon
9563 OAX4R. Lima, Peru
9565 ZYK3, Reeife, Braz.
9565 Radio Llberty, Ger
9570 RAI, Rome, litaly
9575 Z YZ27, R10 de Jan., Braz.
8580 VLA9. Melbourne, Aus.
9580 BEC, London, Eng
9585 ZYR56. Sao Paulo, Braz.
9585 RTF, Allouis. Frane
9585 DJakarta, Indonesia
9590 Hilversum, Noth.
9590 ELWA, Monrovia, LIberie
9395 J023. Tokyo, Japan
9600 Tashkent, U.S.S.R.
9600 BBC. London, En:
9600 XEYU, Mexico. DF, Mexieo
9600 CE960v. Santlago, Chile
9605 Cologne. Ger.
9605 V Athens, Groece
9610 VLX9, Perth, Aus.
9610 ZYCB, Rio do Jan., Braz.
9610 Osto. Norway
9610 OAX8C, Iquitos, Peru
9615 VOA Tangier. Moroees
9620 ZYR96, Sap Paulo, Braz.
9620 Moseow. U.S.S.R.
9620 Saigon. Vietnam
9625 BBC, London. Eng.
9625 OAX8K, Iquitos. Peru
9630 v CR6RL, Luanda, Ang
9635 ZYR83. Aparecida, Braz.
9640 BBC . London. Eng.
9640 Cologne. Germany.
9640 Acera, Ghana
9640 HOK5, Seoul, Korea
9645 TIFC, San Jose, C.R
9645 HVJ, Vatiean City
9650 BBC, Limassol, Cypru
9650 Мовеош, U.8.8. R.
9650 Amman, Jordan
9655 Radlo Froe Europo, Ger.
LRX, Buenos Aires, Arg.
VLa9, Brisbane. Aus.
Radlo Liberty. Ge
Mosow, U.8.8. R.

Kes. Call and Locatlon
9667 Hargeisa, Somalia
9667 TGNA, Guatemala. Guat. -
9670 COCQ. Havana, Cub
9675 BBC. London, Eng.
9675 NHK, Tokyo, Japan
9680 VLH9, Melbourne. Aus.
9680 XEQQ, Maxico Clty, Mex,
9680 Lisbon, Port,
9685 Havana, Cuba
8690 LRA32, Buenos Alres,
9690 BBC. London, Eng.
9690 BBC, Singapore
9700 Sofla, Bulgaria -
9700 Leopoldville, Congo Rep.
9700 CE970, Santiago, Chilo
9705 Kabul, Afghan.
9710 BBC, London. Eng.
9710 RAI. Rome. It.
9720 Moscow. U.S.S.
9720 M Oscow
9725 Europ
9725 Europe
9725 BBC , London. England
9730 Brazzavilio, Congo Rep.
9730 Leiprid. E. Ger.
9730 DZH7, Manila, P.I,
9735 Cologne, Germany
9735 H12T. Santo Domingo, D.R 9740 Lisbon, Port
9740 Khabarovsk, U.S.S.R
\(9740 v\) LR57, Buenos Alres, Arg,
9745 Brussels, Bels.
9745 HCJB, Quito, Ecua.
9755 ZYW 23. Goiania, Braz.
9755 RTF, Parlis. Franes
9760 Habana, Cuba
9760 BBC. London. Eng.
9770 Brazzaville, Congo Red.
9770 4VEH, Cap Haitien. Halt
9772 Dario, Egypt
9785 Peking, China
9795 Cairo, U.A.R.
9800 Peking, China
98158 t . Georges, Windward Isd
9825 BBC, Lenden, End. -
9833 Budapest, Hung. -
9840 Hanoi. N. Vietnam
9865 D jakarta, Indonesia
9915 BBC, London, Eng.
9920 Peking, China
9940 Peking, China
9973 Poking, China
0910 Ulan Bator, Outer Mongoll
1290 Peking, China
1600 Peking, China
11672 Karach, Pakistan
\(11695 v\) Tashkent, U.S.S.R.
11700 TGQB, Quetzatenango, Gus 11705 NHK, Tokyo, Japan
11705 Horby. Sweden
11710 VLBII, Melbourne, Aus. \(\dagger\)
11710 AlR. Delhi. India
11710 Djakarta, Indonesla
1720 88C, Limassol, Cyprus
11720 Brusseis, Belgium
1725 Brazzaville, Congo Rep. 1725 VOA, Colombo, Ceyton
11725 Prapue, Czeeho.
1730 Hilversum, Neth.
11730 LRO35, Buenos Aries, Arg. 11735 Rabat. Moroeeo
1735 Khabarovsk, U.S.S, R.
1740 VLCil. Melbourne, Aus.
1740 HV), Vatican State
11740 CEII74, Santiaso, Chile
11740 Peking, China
11745 Calro, Eurpp
11750 BBC, London. Eng,
1750 BBC. Singapore
1750 FEN. Tokyo, Japan
11755 RFE, Eurode
11755 Leopoldvilio, Conso Rep.
11760 VLBII, Moibourme, Aus.
11760 Lourenco Marques, Moz.
11765 ZYB8, Sas Paulo, Braz,
11765 CP39, La Pas, Bolivia
11765 Naven, E. Gormany
11770 BBC, London. Eng.
11770 VOA, Munich, Germany 11775 zY228. Rio de Jan., Braz. 11780 ZL3. Wellington. N. 2.
11780 NHK, Tokyo, Japan
11785 Djakarta, Indon.
11785 YOA, Melolos, P.l.
II795 Cologne, Ger
11795 Diakarta. Indo
11800 Acera, Ghana
II800y Warsay, Poland
II805y RAI, Rome. It.
11810 VLCII, Melbourne, Aus. \(t\)
11810 Bucharest. Rem.
11815 Paradys, S. Arrica
11820 Peking. China
1820 BBC. London. Eng.
11820 XEBR. Hermosillo, Mex.
11820 Abidjan, Ivery Coast
II825 ELWA, Monrovia, Lib.
IIE25 Papeote, Tahiti
11890 VOA Colombo Cayloe
11890 Wontevideo, Uru.
il8s0 Poking, Chima
II840 VoA, T andier, Mor
ils40 Ligben, Port.
11840 Lisben, Pert. Mor
I 1840 Hanol, N, Vieinam

Kes. Call and Location
I1845 RFT, Allouls, Franee
11845 KarachI. Pik
11850 Sofla, Buls.
11850 Brussals. B.
11850 Brussels. Bolglum
1850 Khabarovsk, U.8.S.R.
11850 ZPA, Asuncion, Parapuly
11855 Radie Free Europe, Ger.
11855 DZH8,
II855 DZH8, Manila, P.I.
II855v 0 mudurman, \(8 u d{ }^{2}\)
I 1860 BBC, Lendon, Ene.
11860 Moseow U.8.S.R.
II865 PRA8, Recife, Braz.
11865 HERS, Bern, Switz,
11870 Moscow,
11870 Mascow, U.S.8.R.
11875 Habana, Cuba
11875 NHK, Tokyo, Japan
11875 ZYN32, Salvador, Braz.
11880 XEHH, Mezie City, Mex,
1885 Karachi, Pak.
11885 Radio Free Europo, Ger.
I 1890 BBC, London, England
11895 Dakar, Mall Fed,
I 1895 Radio Free Europe
11895 Radio Frie Europe
I 1895 VoA, Pore, Phil.
II900 CEligo, valparaiso, chlle
11905 RAI, Rome, Italy
11910 Budapost. Huns.
11910 Budapost, Hung.
11910 Bangkok, Thai.
I 1915 HCJB, Quito Ecua. -
11915 Calro. Enypt
11920 DXF2 Manil.
II920 DXF2, Manlla. P,I,
I 1920 AIR, Delhi. India
II925 ZYR78, Sao Paulo, Braz.
11925 HLK6, Seoul, Kores t
I1925 Warsaw,Pol.
11925 Tashkent, U, 8.S.R.
11930 BBC, London. Enj.
II935 Radio Liberty, Ger.
11940 2PA5, Emearnation. Par.
II940 AFRTS, Munleh, Ger.
11945 Pokine. China
11945 BBC, Lendon, Enc,
11950 Jdda, 8 audi Arab.
11950 Hilversum. Neth.
II850 8aigon, 8. Vietnam
11955 BBC, Londen. Ent.
11955 BBC, Singapore
II960 CElis6, Santiago, Ch.
11860 Conakry, Gulnea
d 1985 Radio Liberty, Gor.
11975 Peking. China
1975 ELWA, Monrovla, Liberla
11880 Moseaw, U,S.8.R.
12050 Moscow, U.S.S.R.
12055 Poking, China
12095 BBC, Londen, Eng.
15060 Peking. China
15070 BBC, London, Eng.
| 5080 Melbourne, Austraila
0085 St. Georges, Windward Is/,
15085 Paradys, 80. Afriea
3095 Peking. China
15105 AlR, Dahll, india


\section*{Surplus Bargain Meter!}
```

_- Uses newest cadmium sulfide light cell

- ASA speeds 3 to 25,000
__ F stops . }7\mathrm{ to 90
__ Exposure time 1/15,000 sec. to }8\mathrm{ hrs.
- Measures moonlight to bright sunlighi
-4 Range selection
_ Use with still or movie camero
__ EV-EVS-LV settings
_- Use as densitometer
- Practical dark room meter
_- Use with mieroscope and telescope
__ Weighs only }10\mathrm{ ozs.

```

And yet, this all inclusive kit con be assembled with hand tools in less than two hours. Our step by step instructions make it easy.
Here is a real surplus scoop that we're anxious to share with you. The components of this kit if purchosed individually cosp \(\$ 34.00\). Yel, because of a surplus windfall we're able to send it complefe to you postpaid for only \(\$ 19.95\). Once more, this meter is uncondifionally guaranteed to outperform any \(\$ 75\) meter available today or your money will be refunded.

SCIENCE and MECHANICS, Dept, 879, Kits Division 505 Pork Ave., New York 22, N. Y.

Add \(10 \%\) for Canadian and Foreign orders
Enclosed is \(\$ 19.95\). Please send me your complete kit and plans for assembling the 58 M super sensitive light meter. I 1 understand that if I am not complefely satisfied. I may return the kit within 10 days for a complete refund.

NAME \(\qquad\)
ADDRESS
(PLEASE PRINT)
CITY, ZONE, STATE

Kes. Call and Location
15230 VOA. Colombo. Coylon
15230 BBC , London. Ens.
15235 NHK. Tokyo. Japan
15240 VLBis, Molbourne, Aus.
15240 Horby, Sweden
15240 Morbeow, USSR
15240 Belgrade. Yugoslavia
15245 ZYE2t, Belem, Brazil
15245 Leopold́villo. Convo Red.
15250 VOA, Melolos, P, I.
15250 Bueharest Rumania.
15255 Radio Free Europe, Port.
15255 Radio Free Europe, Port.
15265 Colombo Caylon
15265 Coi mbo, Gaylon
15265 VOA, wunith, Ger.
15275 Cologne, Germany
15270 warsa, Poland - \(\dagger\)
15280 ZL4. Wellington, N.Z.
15285 Prague Czecho.
15290 VOA, Tanglers, Mor.
15295 PRL8, Ric
15295 PRL8, Rio de Jan., Brazil
15295 NHK, Tokyo, Japan
15295 Coloune. Germany
\(\dagger 5300\) BBC, London, Eng. \(\dagger\)
I5300 DZ H9, Manila, P.i.
15300 Bueharest. Roumania
\$5300v Louranea, Marques, Moz.
15305 Radio Liberty, Ger.
15310 AlR. Delhi, Indie
15315 VLCis, Melbourne, Aus.
15315 HEU6, Bern, Switz.
15325 ZYR228, Sao Paulo, Braz.
15330 VOA, Munich, Germany
15530 VOA. Tandiors, Mor.
15335 VOA, Poro, P. I.
15340 Radio Liberty, Germany

Kes. Call and Location
i5340v Habana, Cuba
15345 Taipet, Taiwan, China
15345 Rabat, Morocto.
I5S50 Luxembours, Lux.
is355 Radio Froe Eurode, Port.
| \(5370 \mathrm{ZYC9}\) R Rio de Jan., Braz.
i5\$70 Radio Liberty, Germany
15770 Radio Liberty, Germany
15375 BBC, London. Ens.
15385 CXAG0, Montevideo. Urus.
15385 Lisbon, Port.
15385 VOA, Tanpliers, mor.
15385 VOA, Tanpiers, Mor.
15390 NRK. Tokyo, Japan
15400 RAI, Rome, Italy
15405 Colopne. Germany
IS405 Cologne, Germany
15440 VOA Mm. No
15440 VOA, Munich, Germany
15460v PZC. Paramariob.
Surinam
15465 Paramaribo. Surinam
15475 Calro. UAR
15555 Poking, China
17705 Luanda, Ansola
17725 ZYR232, San jose Dos Campos, Brazll
17740 PekIne, China
17745 Aeera, Ghana
17780 BBC, London, England
17790 EBC, London, Ens.
17845 Brussels. Belolum
17865 Brussels, Belglum
17875 Habana, Cuba
17880 Lisbon. Portugal
17890 HCJB, Quito. Eeuador
17895 Lisbon. Port.
17900 Calro, Espt
17900 Calro. Eaypt
21620 Habana, Cuba

\title{
Canadian Short-WaveDomestic and International
}

\author{
*Transmitter at Sackville, New Brunswick
}

Kc. C.L. Lecation
5970 CBNX St. John's. Nfid.
5970 CKNA Montreal. Que.:
5990 CHAY Montreal, Que.
6005 CFCX Mantrial. Que.
6010 CJCX Sydney. in.S.
6030 CFVP Cal ary, Alta,
6060 CKRZ Mantroal, Que.
6070 CFRX Toronto. Ont.
6080 CKFX Vancauver. B.C.
6090 CBFW Montreal. Que.
6090 CKOB Montreal, Que.
6130 CHNX Halifax. N.S.
6160 CBUX Vaneouver, B.C. 6160 CBUX Maneouver, B.C.
6160 Montreal, Que. 6160 CHAC Montreal, Que:
9520 CBFR Montreal, Que. 9585 CKLP Montreal. Que. 9610 CBFX Montreal, Que. 9610 CHLS Montreal, Que. 9630 CBFO Montreal, Que. 9630 CKLO Montreal. Que.* 9710 CHLR Montraal, Que.

\section*{Kc. C.L. Locotion}

9740 CHFO Mentreal, Que.
1705 CBFY Montreat Que 11705 CKXA Montreal, Que. 11720 CBFL Montreal, Que. 11720 CBFL Montreal, Que. 11720 CBOL Montreal, Que. 11760 CBFA Montreal, Que, 11760 CKRA Montreal, Que: 11900 GKEX Montrsal. Que: 15090 CKEX Montreal, Que.: 15090 CKLX Montrea, Que. 15105 CKUS Montrcal, Que. 15190 CBFZ Montreal, Que. 15190 CKCX Montreal. Que. 15255 GK8R Montreal, Que." 15275 CKBR Montreal, Que, 15320 CKCS Montreal. Que.* 17710 CH8B Montreal, Que. 17735 CHRX Montreal, Que," 17820 CKNC Montreal, Que. 17865 CH Y8 Montroal, Que." 21600 CKRP Montreal. Que:
21710 CHLA Montreal, Que.

\section*{Solution to Roundword Puzzle on page 66}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline B & 1 & \(F\) & & L & A & R & E & \(F\) & L & E & \\
\hline A & N & G & S & T & & 0 & W & E & & H & \\
\hline N & N & 0 & M & 0 & & R & A & P & & & \\
\hline \(\cdots\) & 0 & H & A & & R & P & & N & 0 & B & 0 \\
\hline A & 5 & W & A & \(L\) & L & E & N & 0 & L & ద & \\
\hline C & 1 & 0 & T & G & A & P & E & D & E & 1 & \\
\hline N & D & R & L & R & T & A & X & E & & D & \\
\hline I & E & R & E & E & \(P\) & A & T & R & D & A & \\
\hline K & \(\boldsymbol{T}\) & A & D & 0 & 1 & R & E & \(P\) & & R & \\
\hline c & A & N & P & N & 0 & T & S & 1 & \(P\) & A & D \\
\hline 0 & G & U & \(L\) & E & E & H & W & Y & \(L\) & F & D \\
\hline & E & 2 & 1 & \(L\) & A & U & Q & E & K & D & Y \\
\hline
\end{tabular}


\title{
Leam Rild lo, TELEVISION
} 110 ELECURONICS by Practicing at Home in Your Spare Time
At No Extro Cost you gel specially developed Electronic Training Klls for praclical experience. Shop and laboratory practice at home moke learning easier, interesting, faster. You do not need a high school diploma or previous experience.
Increasing Demand for Trained Men
This is the Flectronics age. Men with Electronic know-how are in demand They enjoy high pay and growing opportunities for ad vancerment. Satellites, Radar, Automation in Industry: Missiles, loockets. Planes. Sterio.
 TV, Radio. Two Way Communications for trans-

\section*{NRI Has Trained Thousands for Success}


High Pay, Prestige, Bright Future What branch of Electronics interests you? Thousands of successful NRI graduates prove that NRI's tearn-by-practice method is the way to success. You start in your chosen career why ahead of the man who only learns from books. You do not need to give up vour job. You do not need to go away to school. You learn at home, get practical knowledge from training kits NIR] provides. portation are a few of the fantas-
tic developments in the fast growing Filectronics industry. If you are not completuly ratisfied with your work: if you are doubtful about your future, investigate Electronics.

NATIONAL RADIO INSTITUTE
WASHINGTON 16, D.C.
\(2\lrcorner 83\)
Send me your Electronic, Radio-'TV catalog without cost or obligation. I am interested in the course checked below: (No representative will call. Please PRIN'T.)
\(\square\) Industrial Electronics
1 FCC License
\(\square\) Communications
\(\square\) Servicing

Name
Age

\section*{Address}


National Radio Instinute Insinu

City
malary 1 made lefore enrolling. NIII training \& a vermea thoroukh underatand. ink." 夫, ATKINSON Austin. 'Tex.

"N Jw in charge of soind effects for CH=. NiRI opened domer to preater oppor.unity for me," . TUDOR, Torunto. Onlario.


NEW Counsen```


[^0]:    Advertising Owices: Chicago:
    Advertising Owices: Chicago:
    450 E Ohio Si. Wh 4-0330: New York: 50, Wh Park Ave. PLI-6585: Los Antelen: R30.3 Wilsh!
    5037.

