$\begin{aligned} & \text { SCIENCE And } \\ & \text { MECHANICS }\end{aligned}$
33 Construction Projects•SWL $R 1$ D/O-7 EXPERIMENTER
$75 C_{\text {No. } 576}$

VHF RECEIVER

TRANSISTOR TESTER
VOLT-OHMMETER
MULTI-LAB
TELEPHONE SENTRY
OPINION METER
MAKING TRANSFORMERS
PARABOLIC MIKE
BATTERY RECHARGER
FIELD STRENGTH INDICATOR

CODE PRACTKE EQUIPMENT
and
WHITESS
RADIO
(2) $10 G$ 500 Changes New, Up-ro-Dal AM-FM-TV STATIC WAVE
ORLD-WIDE SHORT W WORLD-WIDE SHO

Amplifier Input / Outpus Comparison with 'Scope Atrachment, poge 47

RADMO:TY Expel

 Spring 1961 Edition

 Spring 1961 Edition

Now Amateurs Are Working Meteor Tralis 14 Amplifier that Drives Speaker Directly. 83
Needles Ald Communication 18
Acey-Deucey VHF Receiver 23
Transistor Tester 27
Printed Circuit Phone Amplifier 29
Transistor Circuit Designer 32
The Little Cub Receiver. 35
Beginner's Volt-Ohmmeter. 37
What is it ? 38
Field-Strength Indicator 39
Multi-Testing Lab 41What to Listen for on Short Wave45
'Scope Electronic Switch and Voltage Calibrator 47
Battery Eliminator52
Five Transistor Audio Amplifier. 54
AC Line Voltage Regulator57
Amateur Radio Numbersgram 59
Sound Searching Parabolic Mike 60
Opinion Meter63
Dual Capacitor Substitution Box65
Antenna Switchboard67
Telephone Sentry68
Electrical Right-Wrong Game73
Low-Voltage Power Supply75Adopting Mopers for Test Equipment77
WInd-lt-Yourself Brightener. 86
Ham Radio Anagram 88
Nerve Tester 89
Trouble-Shooting Interference 97
Curing Tape Recorder NoIse. 94
Fishing Thermometer 95
Portable Record Player. 99
Add a Speaker System to Your TV 104
Versatile Code Practice Equipment. 107
Quintuplet Duty for Radio. 111
The DX Strip 113
Transistorized Audio Amplifier 115
Analog Computer Theory 118
Plug-in TV Antennas. 121
Electronles-Father and Son Hobby 125
Using Positive Feedback 127
Code Practice Oscillator 131
Transistorized Electronic Megaphone 133
Grandpappies of the Call Books. 139
Transistor Hybrid Parameters. 142
Recharger for Dry Batteries. 143
Door Bell Silencer 147
Noise Filter for Record Playing 148
Shot Wave Receiver 149
153Radio Hobbyist Anagram80 Remote TV-Radio Sound Silencer.
162Variable DC Power Supply81 White's Radio log
163

Cover by Harold R. Stluka

B. G. DAVIS
 Publisher
 > JOEL DAVIS > Assistant Publisher

 JOEL DAVIS

 JOEL DAVIS

 Assistant Publisher

 Assistant Publisher
 Published and Copyrighted 1961 by SCIENCE AND MECHANICS PUBLISHING COMPANY A Subsidiary of Davis Publications, Inc.

Chicago 11. Illinois

The Radio-TV Experimenter contains a selected few of the most popular electronics projects and radio and TV maintenance articles that have appeared in Science and Mechanics Magazine. plus a number of projects and helpful articles on the same subjects appearing for the first time.

Science and Mechanics Handbook Annual No. 5, 191 -No. 576

HERB SIEGE
 Editor

LYELL A. JOHNSON

Assistant Editor

LEROY R. KIETZMAN

Editorial Assistant

BILL WADKINS

Art Director

RAY FORSEERG

Advertising Manager

Advertising offices: Chicago: 450 E. Ohio st. WH 4.033N: New York: 527 Madison Ave. PL 3-9377; Los Angeles: 560 N. I-archmunt Blvd. HO B-2854; Detroit: 2755
Woodstock. UN 3.5267 .

COMPLETE SERVICE TRAINING

 . . . wriften so you can understand it!

Fix any TV or Radio Ever Made
 EASIER-BETTER-FASTER!

No complicated theory or mathematics! These famous Ghirardi hooks get right down to brass tacks in showing you how to hamde all types of AM, FM and TV service work by approved professional methods, Almost 1500 pages and over 800 clear illustralions show how to handie every phase of troubleshooting and survicing. Each book is co-authored by A. A. Ghirardi whose numuals have helped train more servicemen than any other books of courses of their kind!

1-Radio and Television Receiver TROUBLESHOOTING AND REPAIR
A complete guide to profitable professional methods. For the brginner, it is comprehensive training course. For the experi"nced kerviceman, it is a quick way to "brush up on specific johs. fo develop improved techniques or to find fast answers to puzzling service prohlems* Includes invaluable "step-by-step" iroubleslooting charts that show what to look for and where. $\times 20$ prges, 417 illustrations, price $\$ 10.00$ separately.

2-Radio and Television Receiver CIRCUITRY AND OPERATION

This 669 -page volume is the ideal guide for servicemen who realize it pays to know what really makes modern radio-TV receivers "tick" and why. Gives a complete understanding of basic circuits and circuit variations; how to recognize them at a glance; how to eliminate guesswork and useless testing in servicing them. 417 illus. Price separately $\$ 9.00$.
Special low price ... you save $\$ 2.00$ If broken into lessons and sent to you as a "course." you'd regand
 lessons to walt for. You learn fast-and rightl
 !

Dept. MH-31, HOLT, RINEHART \& WINSTON, Ine.
Technical Div. 383 Madison Ave.,
New York $17 . \mathrm{Y}$,
New York 17, N. Y
Send bokn below for 10 -day FREE EXAMINATION. In 10 days 1 whll efther remit price Indieated (plus pustage) or return books postpaid and owe you nothing.
[Hadio \& TV Ruretver TROUBLESHOOTING \& REPAIR (Irire s 10.00 separatery
O Radio \& TV CIRCUITRY \& OPERATION (Price \$9.00)
A Herk thr H HI MONEY-SAVING COMBINA,IUN OFFER price of only $\$ 17.00$ ror the two. (Regular price $\$ 19.00$ " yrice of only $\$ 17$
SAVE! Send cash with order and we pay postage. Same leturn privilege wleh money promptly relunded.

Name .
Address \qquad

City, Zone, State
Ontside U.S.A. $\$ 10.50$ for TROUBLESHOOTING \& RLPAIR: $\$ 9.50$ for CIRCUITRY \& OPERATION: $\$ 18.00$ for bath, Cash Nu,

ROCKHOUNDS! Gem Hunter's Guide!

- Russ MacFall's new and completely revised guide to North American gem locations, the Gem Hunfer's Guide, in addition to its comprehensive listing of locations, contains 81 maps pinpointing rich and secluded native gem. stone sites . . Plus full-color, natural-size photos of 53 different gems shown as they occur in nature . Plus a detailed text explaining hunting methods, field testing and identification techniques and special chapters devoted to the most valuable gems. To get your copy, send $\$ 3.95$ to Dept. 126, SCIENCE AND MECHANICS, 450 East Ohio Street, Chicago $\|_{\text {I, }}$ llinois. Money-back guarantee. No C.O.D.'s or stamps, please.

53 Natural Color Gem Photos!
81 Detailed Maps!
1034 Gem Mineral Locations!

VERY LIMITED QUANTITY, 6 FOR $\$ 1.00$
We're been housecleaning. And what do you think we've found? A rare treasure-lode of back issues of SCIENCE AND MECHANICS. Hundredts and hundreds ff copies in good condition, all issules from 1 a.o. and 1960 . Would you yhe to share this tind with in. . Rend us $\$ 1.00$. Well send you for (yes. six assorled back issues.
supply is exhausted.
SCIENCE and MECHANICS Magazine 450 East Ohio Street, Dept. 733. Chicago 11, Illinois

HOW TO BREAK INTO RADIO-TV-ELECTRONICS

A good paying career in Radio-TV-Electronics may be closer than you think - regardless of your age, education or present job experience.

You know about the tremendous demand for radioTV and electronics technicians. But something perhaps you didn't know is how easy it is to get the training that will qualify you for this vital work, and how quickly you can advance.

From the very beginning you will find that your I.C.S. course is preparing you thoroughly-at your own pace-for an exciting new career. I.C.S. Radio-TV-Electronics courses make electronic fundamentals clear, easy to follow. You get personalized guidance from people who know-and can tell you-what it takes to succeed along every step of the way.

The I.C.S. method makes it possible to learn while you earn. You study at home - in your spare time. Everything you learn is practical, usable. Your mastery of Radio.TV. Electronics assures you of top
pay and real job security in one of today's fastest growing fields.

So if you would like to break into Radio.TV.Elec. tronics - your first step is to send for your FREE I.C.S. Career Kit. There's no obligation . . . and there's a whole new future to gain.

Send coupon below for your free I.C.S. Career Kit!

"How to Succeed" career guide
"Career Catalog" of job opportunities in your field of interest

"Sample Lesson" (math) to demonstrate the famous I.C.S. method

1.C.S., Scranton 15, Penna.

Acteredited Member. Nattonal Home Study Council

INTERNATIOMAL CORRESPONDENGE SCHOOLS

BOX 45115 B, SCRANTON 15. PENNA.
In Hawaii reply P.O. Box 418, Honolulu
(Partial list of courses) Without cost or obligation, send me "How to Succeed" and the opportunity bookjet about the field BEFORE which I have marked X (plus samplo lesson):

 "Elements of Radio" makes amazing offer!

TRY MY $\underset{\substack{\text { Nataid } \\ \text { Ratod } \\ \text { COURSE FREE }}}{ }$ REPAIR

"If you haven't earned at least $\$ 100$ in spare time during that period you pay not a cent."

Multi-set couplers, multi-antenna couplers and every accessory for an A-1 installation for TV or FM.

TECHNICAL APPLIANCE CORPORATION SHERBURNE, N. Y.

What you get in these

3 GIANT VOLUMES

ELEMENTS OF TELEVISION SERVICING. Analyzes and llustrates more TV defects than any other book, and provides complete
 step-by-step procedure for corract-
ing each. You can actually SEE what to do by looking at the pictures. Reveals for the first time all details, theory and servicing procedures for the RCA e8-tube color television receiver, the CBS-Columbia Model 205 color set, and the Motorola 19-inch color receiver.
RADIO PROJECTS. Build your own receivers: Gives rou 10 easy-to-follow projects, including crystal detector receiver -diode detector receiver-regenerative receiver-audio-frequency amplifier-tuned radio-frequency tuner- AC-I户C superheterodyne receiver-etc.
RADIO SERVICING Theory and Practice. Here is everything you need to know about radio repair, replacement, and readjustment. Easy-to-umderstand, step-by-step self-training handhook shows you how to locate and remedy defects quickly. Covers 'TRF receivers; superlieterodyne receivers, short-wave, portable, automobile receivers, etc. Explains how to use testing instruments, such as meter, vacuum-tube roltmeters, tuhe checkers, etc., etc.

INVENTIONS WANTED

140 Wealthy Manufacturers Ready to Pay Top Prices

Do you have an iden for a new produrt or a way to improve a product already in use-patented or un-patented-you would like to sell for cash or lease on royalty? If so, send your name and arldress on a post eard-NOW-for FREW details rxplaining how you ran turn your "Bigg ldeas" into big money. SCIENCEANDMECHANICSMAGAZINE 450 East Ohio Street - Dept 432 - Chicago 11, Illinols

new! 7-Band SWL/DX Dipole Kit for 11-13.16.19.25.31.49 mefers

Here's a low cost 7 -band receiving dipole antenna kit that will pick up those hard-to-get DX stations. Everything included . . . just attach the wires and you're on the air! Weatherproof traps enclosed in Poly-Chem for stable all-weather performance. Overall length of antenna - 40 feet.

Complete with
8 Trap Assemblies
Transmission Line Cannector Insulatars
45 fr. No. 16 Tinned Copper Wire 100 ft . of 75 ohm twin lead

WRITE FOR NAME OF NEAREST DISTRIBUTOR
$1-1$ Electronics. Onc.
4610 N. Lindbergh . Bridgeton, Missouri

COYNE olfers
 Low cost 5 H\& 1 THBTHOR $\mathrm{RAD})^{-6} \quad$ Training in Spare Time AT HOME

The future is YOURS in TELEVISION! A fabulous field-good pay-fascinating work-a prosperous future in a good job, or independence in your own business:

Coyne brings you MODERN-QUALITY Television Home Training; training designed to neet Coyne standards at truly lowest cost - you pay for training anly - no costly "put logether kits." Not an old Radio Course with Television "tacked on." Here is MODERN TELEVISION TRAINING including Radio, UHF and Color TV. No Radio background or previous experience needed. Personal guidance by Coyne Staff. Practical Job Guides to show you how to do actual servicing jobs-moke money early in course. Free Lifetime Enployment Service to Graduates.

C. W. COOKE, Jt, Prowiong

Coune-the Institulion behind this trsinresidential sehool of ita kind. Founded isgs

Send Coupon or write to address below for Free Book

and full details, including easy Payment Plan. No obligotion, no salesman will call.

COYNE Television

Home Training Division

Dept. 31.H7, New Coyne Building 1501 W. Congress Pkwy., Chicago 7, III.
Send Free Book and details on how I can get Coyne Quality Television Home Training at low cost and easy terms.
Name
Address
City \qquad

ammidan basic sclinct cive Sensational LOW COST

These Kits Developed with Warld Famous
SOUTHWEST RESEARCH INSTITUTE
and are a
TRUE BASIC SCIENCE COURSE

NO EXPERIENCE NECESSARY

- The 8 instruction manuals are expertly written, clearly illustrated - exciting, interesting.
- Without previous experience you can complete every project and gain a comprehensive science background.
CHALLENGING - STIMULATING - REWARDING

Trouble shooting with the SIGNAL TRACER

PHOTOMICROGRAPH of ofly's Wing made with Mieroseope and Photo Lab (Actuol Size 5" diameter)

SCIENCELAB

NOW over 110 fascinating projects with

COMPLETE LABORATORY COMES IN 8 KIIS. . . ONE A MONTH supplies ALL the equipment for AlL the following:

ELECTRICA. EXPERIMENTS	O RECEIVER	OS PONER SUPPK
Educotionas fon with flectro Manmeh, Pronatormer, Gorronometer. Wheo stat, Reloy, Yephamer, Wheatsioma bindje, and otket olactric equpmonl.	Three Tube Short Wave (80 Melet) and Siandard Broadcost Receiver. Sensilive Regeneralive Circuit urev regular 115 voll AC. Complete with Heod Sel.	Pawer Fronslarmer, Vacuun Pube Retetier ond 2020 mid Caposione fileer Ctrevir Convarls home $A C$ to The DC reacered lar Eleckate Cireulse.
PHOTOELECTRIC EYE	MICROPHONE	ELECTRONIC EXPERIMENTS
Pholoelectric Cell. Excilet lamp and Electronic Relay. Everylhing you need to control motors, bells, olerms. and do other light beam experiments.	A sensifive satbon,bytion mispe. phoniv that greath amplitios unius. pected noive. Also adophable for use with rowt sadio sromemitter.	Explare functions of vacuum tubes ond other electronic components. Build on Electronis Switch-Ampliffief, and other experimental circuits.
E PRACT	STROBE LIGHT	BROADCAST TRANSMITTEE
Efaned Oicaltolon, Key ond Flomer va.the complate ourfit so tegen is suceive and tremmal the Morst Cade 3., 场 first syep to a Mom ticence.	A vorioble pulse noon lomp. "Freezer" motion of rapidly vibroting of rotating obiects for close study and checking liequancies. WPM	Sonds efear mentemelstions of beth code ond voise to neprby encion Con be used with yout microgitiones. rocerd player. or code oncilloted
RADIO SERVICE EQUIPMENT	SOUND EXPERIMENTS	TELESCOPE
All the ports to build youe own	baborotory demonitration of cound	A mounted aslronamical Telescope.
Rodio Signal Trocar and a Probe Light Continulty Tester. Both pleces ore invaluoble in radio servicing.	weous, sosononce and pirth, inelustor Vartoble frequency Oscilator, Sonometer ond fipplo loak.	Migh quality ground lens anablan you to ecomint deloils of the moon's surfoce and distont objects.
PHOTOGRAPHY LAB	SLIDE PROJECTOR	MICROSCOPE
Canplete dact roan equipmanl) - Sole bight - Devalaping troks and rupply of soper ond shemieots.	Tokes 16 mm and 35 mm slidal, thorp focviing, convection cooled. G.E. Projection lamp included. Also odaploble as a Projection Microscope.	Higk end tow powar, precision grous lent. Jubtore tight and Polobizer, Adesploble for pharomereres. aphy in cometction whit Phato leb
SPECTROSCOPE	ATOMIC RADIATION EXPM.	ATOMIC CLOUD CHAMBER
Forcinating aptical instrument ured to idenlify ond anolyze subsifances by observing the spectrum of their flame. Spectrum chorts ore included.	A vactaty of propecis using spin shanscope, ord senitive Electoscope. sampla sources of cadspactive Uranium Ore ond lowium ore metuded.	See illuminoted trochs of speeding nuclear particlet emanoting from to dioactive Alpha source and mysteeious cosmis cays from outer space.
ULTRAVIOLEY LAMP	HEAT EXPERIMENTS	WEATHER STATION
Praduse dazafing coter offoct with inthifie "olact Fighr". Used enfensive${ }^{4} 7$ for cime dolotion, minecatogy and ximent, flworetcent Int, trayeo and inecor Powder ave inciuded.	Study the Moleculor Theory of heot uting 2 Thermomalers, Thermostot, 3 loot Gas Thermometer and ipecial Microscope arcongement that shows the elfect of Moleculor Movement.	Anarald lloremetor, Kup Anownmetor these elextronicath meabucti wiad speed. \$irag \$eycarometer, Mumbtily Goyge, Cloud Smeed bidieptor, Cloud (norl ond Woosher Map

All the squipment for $A l l$ the above-only $\left\{29^{\circ 0}\right.$

ONIY COUPON ONIY 5 IONE A MONTH FOR B MONTHSI SOLDERING IRON
Your Satisfaction or Your Money Back... AND
you may cancel at any time without obligation.
These "no risk" assurances because we know you will be...

a valuable science lab

8 Versotlle Kits Confaining Parts by RCA, MALLORY, G.E., PYRAMID ${ }_{n}$ STACKPOLE, TRIM and other rellable manufacpurers.
Refall Volue of Pafts Alone is

amerigan basic science clud. Inc. Son Antonio, Texas

to help You learn

NOW . . . at home in your spare time you can get the very kind of training and subsequent Employment Service you need to get started toward real earnings in one of todars brightest opportunity fields -TELEVISION-RADIO-ELECTRONICS. Now that Electronics is entering so many new fields, here is a chance of a lifetime to prepare to cash in on its remarkable growth.
DeVry Tech's amazingly practical home method enables you to set up your own HOME LABORAYORY. You spend minimum time to get maxi. mum knowledge from over 300 practical projects, using the same type of basic equilpment used in our modern Chicago and Toronte Train. ing Centers!

DeVry Tech Provides EVERYThing you need . . .

- to help you master TV.ELECTRONICS. In addition to the home laborafory and easy-to-read lessons, you even use HOME MOVIES - an exclusive DeVry Tech advantage. You watch hidden actions... see electrons on the march. Movies help you to learn faster . . . easier . . . better.

LAB JRATORY TRAINING

Full time day and evening training programs in our modern Chicago and Toronto Laboratories are abo avaiable. MAIL COUPON TODAY for forts

BUILD and KEEP Valuable TEST EQUIPMENT

As part of your training, you build and keep a inine Jewel-Bearing Vacuum Tube VOLTMETER and a 5 -inch COLOR OSCIL. LOSCOPE - bath high quality, needed test instruments.

EPFECTIVE

EMPIOYMENT SERVICE

Gel the same Employment Service that hes holped so many DoVry Tech graduates get started in this fast-growing field.
"One of North America's Foremost Electronics Training Centers"

Accredited Member of National Mame Study Council

\qquad

EARN WHILE YOU LEARN DeVry Tech's practical Irain. ing helps you toward spare time income servicialg Radio and Television sets.

Surply Gnaw! 1 knight-kits

 A PLEASURE TO BUILD and YOU OWN THEBEST
featured in the big 444-page 1961
ALLIED
ELECTRONICS CATALOG free

BIGGEST SAVINGS

Know the thrill of building your own money-saving electronic equipment. Make your selection from the complete KNIGHT-KIT line-available only from allied. Lowest in cost, conven-ience-engineered for easiest assembly, best for performance; satisfaction guaranteed or your money back. Send today for the 1961 allied Catalog-select exciting knight-kits-and...

SAVE ON EVERYTHING IN ELECTRONICS

Gef more for your money in: Slereo hi-fi systems and components : Recorders and tape. Citizen's 2 -way radio - Amateur station equipment - TV tubes, antennas, accessories - Test instruments . Electronic parts, fubes, fransistors, fools. Send foday for your FREE 444-page Allied Catalogl

TECHNICAL APPLIANCE CORPORATION SHERBURNE, N. Y.

Inventars!

IS YOUR SALES PITCH MISSING SOMETHING?

lf you want to SELI. your invention to the next manufacturer you contact, use our NEW INVENTION FOR SALE form, designed to assist you in presenting ALL the pertinent. selling fact:- A packet of six forms for $\$ 1.00$.
SCIENCE and MECHANICS MAGAZINE, Dept. 734 450 Ept Ohio Street, Chicago 11, Illinols

I SCIENCE and MECHANICS, Dept. 127
1450 East Ohio St., Chicago 11, Illinois

 and where to find gems. Unless cumpletels satustied with book 1 may return it int 5 days and owe nothing. Utherwise 1 will keep it and send you $\$ 3.95$, plus 50c to cover postage and handing.
| NAME
ADDRESS ..
CITY ZONE..........
STATE . \square SAVE Money! Enclose only $\$ 3.95$ WITHI this coupon. privilege for full refund applies if not satistied.

This is all you need to know, to TEST FOR REPAIR, ALL ELECTRICAL APPLIANCES, AUTOMOBILES, TV TUBES

This simple outlet is typical of 2 points of contact on all electrical appliances

All electricity is measured by (1) voltage, (2) current, (3) resistance. You con test either, any or oll by merely touching 2 points of contact on any electrical device with our prod ond clip. Results ore indicoted on the meter of our new Modet 70 Utility Tester. Repair procedure is outlined in our Tester Use Baok.
Even if you don't know a male plug from a female socket, you should be able to test household appliances within 10 minutes. You can repoir electricol oppliances yourself, do it for athers (os o favar ar spare time business) or merely protect yourself by knowing what needs fixing, which TV tubes hove open ar burned out filaments. In this respect olone you can save yourself mony times the small cost of this Utility Tester.

A.A.A. REPORTS BATTERY AND ELECTRICAL FAILURES MAJOR CAUSE OF HIGHWAY FAILURES AND BREAKDOWNS

Model $=70$ tests appliances, motors, car batteries and circuits. TV tubes. Measures A.C. and D.C. voltages, current, resistance, leakage, etc. Tests: Toasters - Irons - Broilers - Heating Pads - Clocks • Fans • Vacuum Clean. ers - Refrigerators - Lamp; - Fluores. cents - Switches - Thermostats and other items. Tests all TV tubes for open or burned out filaments.

Tests both 6. \& 12 -volt Storage batteries - Generators - Starters - Distributors - Ignition Coils - Regulators - Relays - Circuit Breakers - Cigarette Lighters • Stop Lights - Condensers. Lamps \& Bulbs - Directional Signal Systems - Fuses - Horns - Heating Systems. Also locates Poor Grounds, Breaks in wiring, Poor connections, etc.

JUST TOUCH TO TEST! It's as simple and easy and fool. proof as this.

Condensed Course in Electricity

Along with your Utility Tester, you receive a FREE 64 -page, fully illustrated course of facts, tests, instructions and electrical re. pairs. It has been proven that this course simplifies the subject of electricity, and is in fact superior to most comparable courses, texts, volumes or ency. clopedia on the subject. In 10 minutes, you will be testing household appliances of every kind (and you learn how to repair them). In one hour, you will know more about electricity in its relation to your personal living, than many folks learn in a fuli course. This book is included at no extra charge with your Model \#70 Utility Tester. Complete with Condensed Course in Electricity and Tests Leads.

PAY NOTHING NOW

SHIPPED ON APPROVAL

 NO MONEY WITH ORDER - NO C.O.D.Try it for 10 days before you buy. If completely satisfied then send $\$ 3.85$ and pay balance at rate of $\$ 4.00$ per month for 3 months-No Interest or Finance Charges Added! If not completely satisfied, return to us, no explanation necessary.
moss electronics, inc.
| Dept. D.862, 3849 Tenth Avenue, New York 34, N. Y. Please rush me one Model \#70. If satisfactory, 1 agree to 1 pay $\$ 3.85$ within 10 days, and balance at rate of $\$ 4.00$ monthly until total price of $\$ 15.85$ plus postage is paid. If 1 mot satisfactory, I may return for cancellation of account. I Include my Free course.

Address ..

New＂Mechanical Educator＂to NMPROVE－MEMORY

Inability to recall names，places，facts quickly is a common．often costly，shortcoming that can now be casily overcome with the aid of a new device for mental training．This versatile new educational tool can also be used etfectively in language leaming，speech correction and improvement，in mastering tables，formulae－anything to be memorized－faster than ever while you sleep．

DORMIPHONE Memory Trainer

Works for you－You Learn While You Sleep
－Speeds up learning processes
－Aids concentration
－Provides entertainment
Using a new recording prin－ ciple，the Memory Tratner records．Instantly plays back，
and automatically repeats and nutomatically repeats
speech，music，or any speech，music，or any by clock control．No reels of tape to snarl or rewind． Completely portable．Ideal aid for home．school，in－ dustrial safety training use． So simple to use，children benefit－so helpful and prac－ tical，it is used by educa－ tors，psychologists，people of all ages and proressions．

SELF．
CONTAINEO
RECORDING CARTRIDGES
from 30 seconds to 55
can be stored or rerased i
instantly and re－used re： play－back and listen！FREF，folder
Write TODAY for FRE

Write TODAY for FREF．folde
modernophone，Inc．
396－021 Radio City，New York 20，N．Y．

MODERNOPHONE，INC

Circle 7.0830
396－022 Radio City．New York 20，N．Y．
Gentlemen：Please send me your FREE Booklet．I am interested in finding out all sbout Scientife Sleep Learning and what the Dormiphone Memory Trainer can do for ine．No obligation－no salesman wlll call．
Name
Addres
city
Zone．．．State
My maln interest in the Memory Trainer is for：
Language Learning
Memorization
Sleep Iearning
－Speech Improvement
－ーーーーーーーーーーーーーーーーーーーー

Now．．．Build 35 EIECTRONIC

 PROJICTS with these amazing kis！

Mode！LAB． 18

18 ELECTRONIC PROJECPS

 FOf ALt MOBEYISTsI Build useful equipment．．．work with SOLAR ENERGY－SPACE COM－ MUNICAIIONS－RADIOS－ TRANSISTORS－OSCILLATORS this fascinating kit will amaze you．．．start you on your way you．．．start you on your way reei．Kit comes complete with reer．Kit comes complete with all parts and simple picture ginner can follow！A fabulous buy at only $\$ 12.95$ ppd．Model LAD－35 35 EXCITING SCIENTIFIC prodectsi Contains all parts 8 simple illust．instruct to build useful projects as PHOTO ELEC． Useful projects as PHOTO ELEC．
TRIC RELAYS－SIGNAL GENERATOR TRIC RELAKS－SIGNAL GENERAYOR －STEREO PREAMP－BROADCAST STATION－SOLAR POWERED RADI－ OS－RAIN ALARM－INTERCOM－ COMMERCIAL KILLER－CAPACITY RELAY－BURGLAR ALARM－FIRE ALARM－FUSSER－WIREIESS CODE TRANSMITTER－TIMER \＆ many more．A virtual electronles tressure chest．only $\$ 10.95 \mathrm{ppd}$ ．

ORDER TODAY！And we will rush your kit to you by return mail！Send check or money order（no C．O．D．）．
TV SALES CO．，Dept．RE．P．O．Box 44，Yonkers，N．Y．

SO EASY IT＇S SHOCKING，IF YOU USE ENLARGED PLANS

to build electronic projects．Enlarged slze，step－by－ step craft print plans－complete with detalled mate－ rlals lists－are avallable for the following：

191．TESLA COIL．Produces 70,000 volts at 500,000 cps． Spectacular but safe．． 81.00 227．REPULSION COIL．Defies law of gravity－electromag－ 243．DEMO ELECTRIC MOTORS．Plans for both windmill and engine types．．$\$ 1.50$ 251．SOLAR BATTERY AND MOTOR．Battery＇s volt at 180 258．SUN－POWERED RELAY．Light－activated control with a variety of practical applications．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1.00$ 264．HI－FI FM RECORD PLAYER．Phono osclllator，arm and turntable for hi－f reproduction．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 81.00 265．ELECTRICAL COIL．WINDING MACHINE．Motor－pow－ ered with foot－controlled reactor．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1.00$ 279．WIMSHURST STATIC MACHINE．Constant source of static electricity．．．$\$ 1.50$ 283．VAN DE GRAAFF GENERATOR．Costs $\$ 30$ to bulld． Produces up to 250,000 volts．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 1.50$ 301．VAN DE GRAAFF GENERATOR．Produces up to 400.000 volts．This is the apparatus that can stand your hair on end

SAVE MONEY！If you order two or more craft － regular price of each print．Thus，for two prints．deduct 504 ： three prints， 75% ，etc．Use handy coupon below．Satisfaction guaranteed or money back．

SCIENCE and MECHANICS，Dept． 298
450 East Ohio St．，Chicago 11，Illinols
Enclosed is $\$$ \qquad Please send me the circled plans．
These plans are $\$ 1.00$ each

191	227	258	264	265
These plans are $\$ 1.50$ each 243 251	279	283	301	

NAME
ADDRESS
CITY \＆ZONE \qquad
STATE
Here＇s 20c．Please send me your illustrated catalog of 196 craft print plans．

START NOW! Break through the Earning Barrier that stops half-trained men. N.T.S. "All-Phase" training prepares youat home in spare fime - for a high-paying CAREER in Electronics - TV - Radio as a MASTER TECHNICIAN. One Master Course at One Low Tuition trains you for unlimited opportunities in All Phases: Servicing, Communications, Preparation F.C.C. License, Broadcasting, Manufacturing, Automation, Radar and Micro-Waves, Missile and Rocket Projects.
A more rewarding iob a secure future... a richer, fuller life can be yours! As on N.T.S.MASTER TECHNICIAN you can go straight to the top in industry... or in your own profitable business.

SUCCEED IM MANY HIGB-PAYING JOES LIXE THESE...

19 BIG KIIS

 YOURS 70 KEEP- TV-Radio Sales, Service and Repair
- Profitable Business of Your Own
- Communications Technician - F.C.C. Lićense
- Mi-Fi. Stereo \& Sound Recording Specialist
- IV-Radio Broadcasting Operator
- Technician in Computers \& Missites
- Electronics Field Engineer
- Specialist in Microwaves \& Servo nechanisms
- Expert Trouble Shooter
- All-Phase Master Technician

NATIONAL Gimes SCHOOLS

4000 so. figution st. los amallis 82 (alit. U. s. Write Dept. RKk-31

ACCRIDIPLD MEMER the only natimally
iecognised occresiting opency for privote
N.T.S. Shop-Tested hDME TRAIN ING is Better, More Complete, Lower Cost ... and is is your key to the most fascinating, opportu-nity-filled industry today!

YOU LEARN QUICKIY AND EASILY

YHE N.T.S. SHOP-YESYED WAY

You get lessons, manuals, job projects, unlimited consultation, gradu. ate advisory service.
You build a Short Wave-Long Wave Superhet Receiver, plus a large. screen TV set from the ground up, with parts we send you at no addi-
tional cost. You olso get a Profes. sional Multitester for your practical job projects.

EARN AS YOU LEARN... WE SHOW YOU HOW!

Many students pay for entire tuition - and earn much more - with spare time work they perform while training. Yau can do the same... we show you how.

SEND FOR INFORMAYION NOW... rODAY! IY COSYS YOU NOYHING yo investigate.

FARM TELEPHONE CABINETS

Slightly used crank style CABINETS (once used everywhere) for liome Hobby Shops. Complete with transmitter, receiver, bells, crank and shelf (Less Generator). Has atl of the outside parts. Make beautiful, unique Radlo Cabinets, Liquor Chests, Spice Cablnets, Flower Planters, etc. Immediate deliveries assured. $\$ 10.00$, F.O.B. Chicago.

TELEPHONE

Use as inter-house phone, talk house to garage, as loud speaker system, etc. You recelve transmitter, recelver, 3 conductor cord and simplified, Illustrated installation diagrams. Handsets are guaranteed to be the same as used in our great National Telephone System. Price dellvered $\$ 2.95$. Two for $\$ 5.00$!
TELEPHONE REPAIR AND SUPPLY CO.
Dept. 日B- 6
1760 Lunt Ave., Chicago 20

INVENTORS

PROTECT YOUR PATENT

WIth NEW PATENT SALES AGREEMENT

Now you can sell your patent and be SURE you are protecting your interests 100 percent. Prepared by the Dean of a leading law school, this S\&M Patent Sales Contract will help you protect yourself and make sure you or your attomey overlooks no detail. Not a blank, but a true, TESTED Sales Contract that will protect your earnlngs and interests. Send today
for a copy of our Patent Sales Agreement.

SOLD EXCLUSIVELY BY
SCIENCE \& MECHANICS MAGAZINE 450 East Ohio Street, Dept. 433, Chicago 11, Illinois

Short Supply Sale of

CRAFTPRINTS

Very
Simited Stock

PLANS for ${ }^{\$ 100}$

We've been housecleaning. And what do you think we've found? A rare treasure-lode of en-larged-size Craftprints for building wall shelves, tie racks, model trains, planes and cars, shoe racks, toys, smoking stands, etc., etc. Of some we have only 10 in stock, of none have we more than 150. These plans do not appear in our latest Craftprint catalog; we are not going to print them again. To run them out, we offer them to you pre-packaged, our assortment, six (6) for $\$ 1.00$. First come, first served-offer good until supply is exhausted. Send your $\$ 1.00$ for six assorted Craftprints to:
SCIENCE AND MECHANICS, Dept. 299 450 East Ohio Street

Chicago 11, Illinois

BUILD 20 RADIO CIRCUITS AT HOME
 with the New Deluxe
 PROGRESSIVE RADIO "EDU.KIT" ${ }^{\text {® }}$
 A Practical Home Radio Course
 Now Includes
 + 12 RECEIVERS
 + 3 TRANSMITTERS
 SQ. WAVE GENERATOR
 + SIGNAL TRACER
 A AMPLIFIER
 - SIGNAL INJECTOR
 \star No Knowledge of Radio Necessary
 * No Adeitional Parts or Tools Needed
 * EXCELLENT BACKGROUND FOR TV
 * School Inquiries Invited
 * Sold in 79 Countries

 YOU DON'T HAVE TO SPEND

 YOU DON'T HAVE TO SPEND HUNDREDS OF DOLLARS FOR A RADIO COURSE
 The "Edu-Kit" otfers you an outstanding PRACTICAL HOME RADIO COURSE at a rock bottom price. Our Kit is designed to train Radio uke of the mostronics Technicians, making Use of the most modern methods of home training. You will learn radio theory, construc- tion practice and servicing. THIS IS A complete RADIO counse in EveRy DETAIL in You wili learn how to buald radios, using regular chematicsif how to wire and solder punched metal chassis as wowl to service radios. You will work with the standard type of punched metal chassis as well at the latest development of Printed Circuit chasis RF and AF amplifiers and oncillators, detectors, rectifiers, test equipment. You will learn and practice code, using the Progrespive code Osciliator. You will learn and practice trouble-shooting, using the Progresive Signal Tracer, Progresive Signal injector, Progres sive Dynamic Radio 2 Electronics Teater, Square Wave Generator and the accompanying instructional material.

 ONLY

 ONLY 26^{6}

 26^{6}}

You will recenve trauning for the Novice, Technician and General Classes of F.c.C. Aadio Amateur Licenses. You will build 20 Receiver, Transmitter, Square Wave Generator, Code
 product of many years of teaching and engineering experience. The "Edu-Kit" will provide you with a basic education in Electronics and Radio, worth many times the eomplete
In You do not meed the slightest background
In radio or seience. Whether you are inter-
ested in Radio finclectronics because you
want an intereating hobby, a well paying
the "Edu-kit" a worth-wh.le investment.
ages and backgrounds have sucressiully
triea of the world. The "Edu-Kit" has been
carefully designed, step by step, so that
allows you to teach yourself at your own

PROGRESSIVE TEACHING METHOD

 Jearn schematics, study theory, practice trouble-shooting-all in a clotely integrated pro-
gram designed to provide an easily-learned, thorough and interesting background in radio. You begin by examining the various radio parts of the "Edu-Kit. " You then learn the function, theory and wiring of these parts. Then you suild simple radio. With this first set you will enjoy listeming to regular broadcast stations, learn theory, practice teating and trouble-shooting. Then you build a more advanced radio, learn more advanced theory find yourself constructing more advanced multi-tube radio circuits, and doing work fike a profepsingal Radio Technician.
Included in the "Edu-Kit'" course are twenty Receiver, Transmitter, Code Oscillator,
signal Tracer, square Wave Generator and signal injecior circuits. Thes are not unprofes. signal "rbreadboard" experiments, but genuine radio circuits, constructed by unprofes professional wiring and soldering on metal chasesis, plus the new method of radio construc.
tion known as "Printed circuitry." These circuits operate on your regular Ac or Dc houst
current.

THE "EDU-KIT" IS COMPLETE

You will recelve all partz and instructions necessary to build 20 different radio and elec
tronics carcuits, each guaranteed to operate, Our Kits contain tubes, tube sochets, vari able, electrolytic, mica, ceramic and paper dielectric condensers, resistors, tie trips, colis, hardware, tubing, punched metal chassis, instruction Manuals, hook-up wire, solder, In addition, you receive Printed circuit materiali, including Printed circuit chassis, professional electric, soldernng iron, and a self-powered oynamic Aadio and Eectronics Tester. The "Edu-Kit' also includes Code instructions and the Progressive Code Oscillator,
in addition to F.C.C.-type Questions and Answers for Radio Amateur License training. You will also receve lessont for servicing with the Progressive Signal Tester and the ProgresSive signal Injector, High Fidelity Guide and a Quiz Book. You receive Membership in

PRINTED CIRCUITRY

At no increase In price, the "Edu-Kit" now includes Printed Circuitry You
bulld Printed Circuit Signal Injector, a unique servicing instrument that can detect many Radio and TV troubles, This revolutionary new technique of radio construction is now becoming popular in commercial radio and TV sets. lated chased on which hes been de. lated chassis on which has been deposked a conducting material which takes the place of wiring. The various to terminals. Printed Cir
ern Automation Electronics A of mod. ede of this subject is necest a knowl for anyone interested in Electronics.

ORDER DIRECT FROM AD-RECEIVE FREE BONUS RESISTOR AND CONDENSER KITS WORTH 97

[^0]

Here Walter Bain demonstrates the equipment needed to get into meteor trail work: A) transmitter; B) transmitter power supply; C) frequency marker; D) communications receiver; E) crystal contralled converter; F) slock with sweep second hand; G) tape recorder (optional).

By S. DAVID PURSGLOVE

RADIO amateurs have joined communications engineers and military planners in looking at meteors with a new interest. These tiny fragments burning as they whiz through the atmosphere make possible communication over longer distances and at lower power than can normally be achieved by conventional radio techniques.

A transmitter constantly directs a radio signal at a portion of the sky known to exhibit good meteor activity for that time of day. A receiver up to 1,400 miles away listens for a reflected signal from that part of the sky.

When a meteor trail crosses the transmitted signal and reflects the signal to the intended receiver, the receiving station's own transmitter notifies the sending station.

As soon as the station wanting to send a message receives cenfirmation that its signal is being received, it releases a high-speed taped message in a rapid burst (hence the name often applied to the technique-"meteor burst").

The use of meteor trail communication on VHF bands means there will be more channels available. This is especially important in the near future, since we are in the fifth year of an 11 year sun spot cycle. Six years from now there will be only about $1 / 2$ to $2 / 3$ as many high frequency channels available.

Walter F. Bain operates W4LTV on 144 mc from his home in Springfield, Va. Like most meteor trail amateurs, he usually has ar-
quencies at both ends of the system must be accurate-there is no way to search for the sender.
3. Switch. Each rig should be equipped to switch easily and rapidly from transmitting to sending and vice versa since each station's function will alternate usually four times per minute.
4. Antenna. The antenna must have at least 10 db actual gain. It can always be simple, such as Bain's four sets of 12 element Yagis, each mounted on an 18 ft . boom. W2NLY set the 144 mc distance record with eight 12 -element Yagi stacked four high and two wide. It does not have to be a Yagi antenna. Another good configuration is a 16 element broadside colinear antenna. Any of these will give a 13 db gain or better.
5. Clock. An accurate clock-the larger the face the better-with a sweep second hand so you can accurately time the alternating 15 seconds transmitting and listening periods.
6. Key. Any standard or semi-automatic key will suffice, just so it permits the highest keying speed that can be copied conveniently.
7. Optional Equipment. The only major equipment you may want to use beyond the essentials would be some automatic aid to message transmitting and copying since the message period of a meteor reflection is so brief and since you will be repeating messages over and over every 15 seconds. An automatic key or a toothed wheel coded with a standard message helps. Probably best is a tape recorder that rapidly plays a message that was recorded slowly and that can record

MAKE MONEY

Through
 HOME STUDY

Grartham training is the easy way to learn more quickly - to prepare more thoroughly - for F.C.C. examinations. And your first class license is the quick, easy way to prove to your employer that you are worth more money.

This correspondence course is directed toward two major objectives - (1) to teach you a great deal about electrorics, and (2) to prepare you to pass all of the F.C.C. examinations required for a first class commercial operator's license. We teach you step by step and have you practice with FCC-type tests which you send to the school for grading and comment. You prepare for your F.C.C.examinations under the watchful direction of an instructor who is especially qualified in this field.

ELECTRONICS

In
 RESIDENT CLASSES

Grantham resident schools are located in four major cities-Hollywood, Seattle, Kansas City, and Washington, D.C. Regularly scheduled classes in F.C.C. license preparation are offered at all locations. New day classes begin every three months, and new evening classes begin four times a year. The day classes meet 5 days a week and prepare you for a first class F.C.C. license in 12 weeks. The evening classes meet 3 nigh.ts a week and prepare you for a first class license in 20 weeks. For more information about the Grantham residert schools, indicate in the coupon the city of your choice and then mail the coupon to the School's home office in Hollywood, Calif. Free details will be mailed to you promptly.

GET your flrst class commercial F.C.C. LICENSE

To get ahead in electronics - first, you need the proper training; then, you need "proof" of your knowledge. Your first class commercial F.C.C. license is a "diploma" in communications electronics, awarded by the U.S. Government when you pass certain examinations. This diploma is recognized by employers. Grantham School of Electronics specializes in preparing you to earn this diploma.

Grantham training is offered in resident classes or by corresponjence. Our free booklet gives complete details. If you are interested in preparing for your F.C.C. license, mail the coupon below to the School's home office at 1505 N . Western Ave., Follywood 27, California - the address given in the coupon -and our free booklet will be mailed to you promptly. No charge - no obligation.

Get your First Class Commercial F.C.C. License by training at

GRANTHAM SCHOOL OF ELECTRONICS

for FREE Booklet CIIP COUPON and mail in envelope or paste on postal card.

To: grantham school of electronics
1505 N. Western Ave., Hollywood 27, Calif.
Please send me your free booklet telling how I can get my commercial F.C.C. license quickly. I understand there is no obligation and no salesman will call.
Nome
Age \qquad
Address
City _ am interested in: \square Home Study, \square Kansas City classes, E-IC
\square Hollywood classes, \square Seattie classes, \square Washıngton classes
the other party's messages' for slower playback and copying later.

Bain believes an ingenious amateur who is able to buy items from surplus stocks or make much of his own equipment can get well into VHF meteor trail work for under $\$ 500$. The largest single expense will be $\$ 200$ or more for a good receiver. Bain's antenna cost only $\$ 120$: $\$ 50$ for aluminum pipes and rods, $\$ 80$ for a tower for which other operators might find a substitute.

The time of day, the season and the latitude dictate the number of meteors that will pass through a portion of the atmosphere per minute. In the Northern hemisphere, Fall is the most active time, while Spring is the least active. Meteoric bombardment is 20 times as high at sunrise as it is at sunset.

Meteors are far more common during several annual meteor showers. It is during these widely publicized showers that amateurs have their greatest success. Table A lists the major showers, their dates, the times during which they are faced by North America, and the times during which an operator should transmit to get the best results in various directions. The shower in August which appears to come from the constellation Perseids is the best shower for ham operation. Nearly as good, though, is the December

Date and Shower	table a-the Neteor showers				
	Time visible	Best Times for Transmission Over Various Paths			
		E.W	NW.SE	SW-NE	N.S
January 1.4 Quadrantide	11am-6pm	8.9pm	3-8am	9am-2pm	-
${ }^{\text {April }}$ Lyrids	9pm•1lam	-	11:30pm-1am	7.8:30am	2:30-5:30am
May Aquarids	3am-12noon	6:30-8:30am	8:30-10am	5-6:30am	-
July 26.31 Aquarids	10pm•6am	1.3am	3-5am	mid-lam	-
August $10 \cdot 14$ Perseids	at all times	3-8am	11:30pm-3am	6-11:30am	-
October 9	6am-3am	4.5 pm	$11 \mathrm{am} \cdot 4 \mathrm{pm}$	5-10pm	-
Giacobinids 18-2? Orionids	11:30pm-9:30am	3:30-4:30am		2.3:30am	mid-8am
November $14-18$ Leonids	mid-12:30pm	-	-	-	$\begin{aligned} & 3 \cdot 5 \mathrm{am} \text { and } \\ & 8-10 \mathrm{am} \end{aligned}$
December $10 \cdot 14$ Geminids	7pm-9am	-	9:30-11pm	5-6:30am	mid-3:30am

DAYLIGHT METEOR SHOWERS

May 19.21 Cetids	5:30am-2:30pm	9-11am	11am-2.30pm	7:30.9am	-
June					
4.6	5am.5:30pm	-	-	-	8-10am and
Perseids 8	3:30am-3:30pm	-	-	-	1.3 pm 6.8 am and
Arietids	330am-3 30 pm				11am-1pm
June 30. July 2 Taurids	5am-5pm	10:30-11:30am	11:30am-1pm	9-10:30am	$\begin{aligned} & \text { 7.9am and } \\ & 1.3 \mathrm{pm} \end{aligned}$

shower that appears to come from the Geminids. The Perseids offer about 100 meteors per hour. When meteors collide with molecules of the atmosphere, they leave a trail of metallic ions and free electrons. Radio signals can be reflected from these ionized trails just as they reflect from ionized layers of the atmosphere.

The direction from which a meteor or shower of meteors seems to be coming is called the radiant. For the Perseids shower, the constellation Perseids is the radiant since the shower appears to be coming from that direction. The large meteors will scatter a radio signal in all directions and the operator need only transmit during a good shower to be sure of hitting a few large meteors. However, the small meteors call for a special meteor trail geometry to be applied for communications. Stated most simply, the geometric rule is this: Work on a path at a right angle to the radiant.

This rule has been taken into account by Walter Bain who prepared Table A. For example, if you wish to contact a station Northwest of you during the October Orionids shower, consult the table and you will see that the earth will be so located between 4:30 and 6:00 a.m. that your SE-NW transmission direction will be at right angle to the shower's apparent direction.

Here is another example. You are in New York and wish to contact Chicago late in July. This is during the Aquarids shower. Your path is East-West, so the information in column 3 is applicable. The best activity is between 1:00 and 3:00 a.m., local standard time. Remember that there is a one-hour time difference between New York and Chicago. If the peak of activity is 2:00 local time (this is not necessarily true) this means that so far as you in New York are concerned, the peak for New York is 2:00 a.m., New York time, but, also in New York time the peak for Chicago is 3:00 (2:00 Chicago time).

Once you have selected the day and time for communication, arrange for one station to transmit the first and third 15 seconds of each minute while the other listens. The second station transmits the second and fourth 15 second period while the first station listens.

Amazing new discoveries and inventions in electricity, electronics and heat are utilizing the facts and theories set forth by James Roe, long-time Chicago scientific investigator. One of the most unusual applications is the obtaining of electricity from gases (Oxygen and Hydrogen) via fuel cells. The improvement of storage batteries, the development of maximum thrust rocket fuels, and many other knotty problems can find a basis for thelr solution in Mr. Roe's works. After reading and studying these works you will understand why and how the fuel cells work, why and how batteries can be improved, why and how heat can be converted directly into electricity. It may well be that through the information you gain from Mr. Roe's writings you may find yourself sparked to a point of originating new ideas and achievements that will benefit all mankind.

Fabulous riches may be yours if ycur ideas spark a new invention, and this is truly very possible for the field for new ideas is very extensive, and is wide open to all. Every day brings reports of new advancements in the sciences of electricity, electronics and heat. LET MR. ROE'S WRITINGS HELP YOU HAVE A PART IN THESE ADVANCES. Before turning the page fill in the order below for your copy of these works.

Partial Contents

"WHAT ELECTRICITY IS"
 "WHAT HEAT IS"

WHERE ELECTRICITY COMES FRON WHERE ELECTRICITY GOES
WHAT ELECTRICITY IS-IROE'S DEFINI. TION AND PROOFS)
USE, AND ACTION OF ELECTRONS LIGHTNING-WHAT IT IS
ROE'S LAWS OF ELECTRICITY
THE LODESTONE (OR MAGNETITE)
THE KENETIC THEORY
WHAT HEAT IS- (ROE'S DEFINITION AND PROOFS)
TEMPERATURE, WEIGHT, VOLUME, MASS COMBUSTION, FLAME, FIRE. ROE'S EXPLANATIONS. ELECTROLYTES-OZONE, ETC.

ROE'S RULES FOR ELECTRONS AND MEAT
COMPARISON OF CONDUCTIVITY OF ELEC. TRICITY AND HEAT, ETC.

ONLY AVAILABLE BY MAIL. SEND COUPON TODAY

J A R PUBLICATIONS, 2122 E. 75th St.: Chicago 49. III. Enclosed in (check or M.O.) for $\$$
Please send by return mail, postpaid, the following:
\square "What Electricity Is" \quad (a) "What Heat Is" @ $\$ 1.9 \mathrm{~s}$
\square Both Books for $\$ 3.7 \mathrm{~s}$
NAME
ADDRESS
ciry
ZONE . . STATE
(Please print)

Study Programs in...

APPLIED SCIENCE AND ENGINEERING

Associate in Applied Science degrees -2 years Electronics Conmunications Technology Electrical Power Technology Computer Technology Air Conditioning Technology Industrial Technology Metallurgical Technology
Bachelor of Science degrees - 4 years
Electrical Engineering

- Communications option
- Electrical power option Mechanical Engineering
At MSOE, new classes begin quarterly.
 Pre-technology program, scholarships, financial aid, and placement service available.

New! FREE "Your Career" booklet. Send coupon today.

MILWAUKEE SCHOOL OF ENGINEERING 1025 N. MILWAUKEE STREET • MILWAUKEE 1, WIS.

MILWAUKEE SCHOOL OF ENGINEERING
Dept. RTV-62, 1025 N. Milwaukee St., Mllwaukee 1, Wis.
Name
Age
Address.
City
Stata
Course Interest.

ORBITING NEEDLES To Aid Communication

Two orbital scatter belts placed eastwest over the equator and north-south over the poles will relay world-wide long-distance radio messages under a new communication system that will replace the presently used ionized layer of atmosphere.
time reliable, high-quality and low-cost, television, voice radio and teletype communication between any two points on Earth.
Unlike the natural ionosphere, the bands will stay at the same distance from Earth, have a constant density and the same radioreflecting qualities undisturbed by storms and sunspots. The system has been developed by the Massachusetts Institute of Technology and the Air Force Air Research and Development Command.

The metal fibers are about $1 / 2$ in. long and $1 / 3$ the thickness of a human hair. They will work in space much as conventional dipole antennas.
When "Project Needles" goes operational the dipole needles will be made of copper and will last for two to three years before they have to be replaced. However, the needles orbited in a test early in 1961 probably will be made of white tin so they will disintegrate within a year. This is to meet the

AMAN-MADE ionosphere-composed of millions of tiny metal needles-soon may replace the ionized layer of atmosphere presently used in radio communication.

The artificial ionosphere, actually two narrow bands of needles, 3,000 to 6,000 miles from Earth, will make possible for the first

Fine metallic fibers like these at the right of the pastage stamp will be placed in orbit around the earth to relay radio messages. Two of these fibers will reflect as much radio energy as a flat surface the size of the stamp.
objections of some astronomers who believe the artificial ionosphere bands will hamper optical and radio telescopes.

The system's developers though, W. E. Morrow, Jr., of MIT and Harold Meyer of Thomp-son-Ramo-Wooldridge Corp., say there will be no interference. The tiny particles will be hundreds of feet apart in orbit. The bands will be only five miles wide and 20 miles thick. They will reduce the light from stars (in the few instances when the band lies between a star and the telescope) by only one ten-billionth. Radio telescope reception will be reduced by only a millionth.

Orbital scatter has several additional advantages over other long distance communications techniques being tried. Two small rockets can orbit the cannisters that will dispense the dipole needles.

Also, just 9 oz . of the metallic fluff has the same radio wave reflection quality as the $100-$ ft. dia. Echo balloon. Moreover, communications satellites have to be tracked steadily by special rotating transmitters and receivers; orbital scatter calls for just a few degrees of predictable shift each day. And a single belt of dipole needles can handle many more channels than can a communications satellite.-S. David Pursglove.

MAGNAVOX AUDIO AMPLIFIER

mig. for

the Nary for intercommunleation and ganuli-
 former for cartion microphone, and l:eeci ier input-output transformer las variable control for headset or speaker. Also monnting for 12. Volt Dsnamotor. and instric-
tion book. Voltage retuired for oneration 19 VDC and 250 YDC 60 MA. Can be used for mobile or home
 witli 3/12A6 Tubes (1 $\$ \mathbf{2 . 9 5}$ spare). less Dy'n

MAIL COUPON FOR CATALOG!

FAIR RADIO SALDS 2133 ELIDA RD. • BOX 1105 - LIMA, OHIO

Here's a bargain you don't want to miss! 5 Big handsooks jam packed with plans and instructions for building hundreds of nrojects-75c each. or less if you buy two or more, Order copies NOW for your library.
573 NEW CARS 1961
In the market for a new car? Then here's a handlook you can't aftoris you mes. SEN CADS 1961 tills you ererstining yon'll want to know horsepower, fuel capacity, and dozens of specilteations. Specifleslons of all cars are placed side by side for quick comparison. Every American car and wagon is pic572 WOODWORKER'S ENCYC'PEDIA Everything the home craftsman needs to know about woodworking can be found in this comprehen-
sire volume
Over a thousand il. sive volume fier a thousand it histrations heip explath every operathonds ay wood fixplains hov and how to buy mold bevel dowel and chaper plus dozens of woodworkíng prof. ects. $75 ¢$
571 SCIENCE EXPERIMENTER
Wonders of sclence now explained with 37 fascinating projects you can build-a model hydroelectric plant, a vacuum chamber for maklag experiments on sound and electricily, a transistor thernometer, a radiation measurer, a logic circuit board. a pure fllid amplilier, a sonic shake table and a 570 HOME WORKSHOP HANDBOOK More than 50 shop projects are inciuded In the 1961 edition of this handbook. I'rojects for the shop include a spot welder, saber saw, edge planer and drill press sanding table. 75
569 RADIO-TV EXPERIMENTER
Includes 37 electronic projects. among them-a complete two meter han station. a transistor analyzer, two tube long wave receirer isu. sical annunclator a ypacode and a wireless interconi. All of these plus the latest revision of White's Radio Iog 75 che

SAVE MONEY!

Price of first handbook, 756: each additional handbook ordered at same time only 50 c each. Rush

RUSH THIS ORDER FORM Science and Mechanics Magazine, Dept. 3005 450 Fast Ohin Street. Chicago 11. Illinois					
Enclosed is $\$ \ldots$. Please send the books wh numbers I have circled below:					
569	570	571	572		
Same					
Address					
City, Zone \& State					
Satisfaction guaranteed or your money back					

 SCIENCE EXPERIMENTERS

557 Plans fur 40 projects including Van de Grast generator, Tesila coll. Wimshurst static machine. cloud chambers, lleht ray tracer, satellite ecope, solar
nace. Single cupy. 50 .

Enclosed is $\mathrm{q} . \mathrm{C} . \ldots . .$. . Plezse send ma:

$$
\text { © All FIVE of the Fiperimentert for } \$ 2.50 \text {. }
$$

$$
551 \quad 559 \quad 562
$$

- Both SClence Experimenters for $\$ 1.00$.
\square The circled lasues at single-copy prices:
$\begin{array}{llll}551 & 559 & 562 & 557 \\ 563\end{array}$

```
NAME
```

ADORESS
city.. zonB
sTaTE …...
563 contains orei 50 sclence projucts Includin repulsion coll satellite camera. tone generator. stmos pherle voltmeter, infrared RUSH COUPON TODAY Satisfaction guaranteed
\square
-

save more with
酗
,

TYPE PRICE		TYPE PRICE	
6SL7GT	. 50	1207	. 45
6SN7C	. 40	12SA7	. 44
6507	. 40	12SG7	. 48
6SS 7	. 62	12517	. 48
674	. 62	12SK7	. 44
618	. 61	12\$N7C	GT. 46
608	. 66	12507	. 44
6V6	. 44	12V6GT	T . 40
W4GT	. 39	12W6GT	T . 40
6W6GT	. 43	12X4	. 46
5×4	. 37	1223	. 46
6x5	. 40	14A7/12	12B7

$1486 \quad .48$
19
19AU4GT. 49
$\begin{array}{ll}1916 & .48 \\ 1978 & .58\end{array}$
$24 A$
25B06 $\quad .79$
$\begin{array}{lr}\text { 250N6 } & .99 \\ \text { 25L6GT } & .40\end{array}$
$25 W 4 G T$
2525

$$
2526
$$

26
35A5
35.85
$35 \mathrm{C5}$
35 GT
35
35
3
$\begin{array}{ll}3525 G T & .47 \\ 37 & .48\end{array}$
7X7/XXFM

I 6.12 VIBRATORS
.
$\begin{array}{r}.40 \\ \hline\end{array}$
894 each

All advertised tubetnot postage paid. Include zse manelectrically perfect factory clude 25% deposit on c.o.o.". seconds or used tubhif Each send approx. postage on cana-

SONAR

ELECTRONICTUBECO. 112 MARTIN ST., PATERSON 3, N. J.

Acey-Deucey, A VHF Receiver

BY C. F. ROCKEY, W9SCH/W9EDC

THE ordinary SW frequencies below 30 mc . are becoming more crowded with routine operalions every day, so these are now largely old hat. The VHF's the thing today, and this little receiver will introduce you to an interesting slice of the VHF at modest cost. With it you can eavesdrop upon aircraft communications, taxicab dispatchers, police-calls, industrial communications, and that great source of interest to all experimenters, the $144-\mathrm{mc}$, 2 -meter amateur band.
While it can hardly compare with a good VHF superheterodyne, you will be pleasantly surprised with its performance, especially as you grow more proficient in tuning. And you can build it for only about $\$ 20$. The RF amplifier minimizes interfering radiation to other sets.
Begin construction by bending-up the aluminum chassis (Fig. 3) from a flat cookiesheet or sheet aluminum. Or you can buy a 5×7-in. chassis. Punch the socket hole in the chassis with a $3 / 4-\mathrm{in}$. socket punch, and drill the holes for the potentiometer, 'phone jack and tuning capacitor shaft with a $1 / 8-\mathrm{in}$. drill, and ream to $3 / 8 \mathrm{in}$. with the tang of a mill file or a taper-reamer. Drill the jack and pot holes in the front panel, then use the panel as a template to drill the chassis. This will assure proper matching. Do not mount the panel upon the chassis until the very last; it will get in the way of wiring and assembly.
Mount the power transformer under the chassis (Fig. 5) using the transformer as template for drilling holes to take the 6-32 screws. Then mount the 4 -terminal Cinch-Jones strip. Deburr the holes for the power line leads. Now, mount the tube (AF) socket with 4-36 screws and nuts using the socket as guide for drilling. Put a lug under one of the screws to be used as a ground.

Now mount the selenium rectifier by its mounting screw in the position shown in Fig. 5. Also mount the 100 K regeneration control potentiometer temporarily in its hole, as you'll need to make connections to its switch

This super-regenerative VHF receiver brings in many types of utility calls and the 2 -meter amateur band.

ALL RESISTORS IN OHMS
ALL CAPACITORS IN MMF, UNLESS OTHERWISE STATED
SCHEMATIC

right away. Next, wire the power supply, using the schematic (Fig. 2) as a guide. Start with the power leads associated with the primary (black) leads of the power transformer. Connect these through the potentiometer switch to the power line terminals on the terminal strip. Don't forget the 5000 mmfd capacitor (filters line hum) from one side of the line to ground. Use insulated tie-lugs to hold the wiring in place.

Next, connect in the sclenium rectifier and the electrolytic filter capacitors. Be extremely careful to observe polarity of both the rectifier and of the electrolytics. Hold the filter capacitors in place by their brackets and by fastening their hot leads to an insulated tie lug. When the power supply is wired, with an ohmmeter measure the resistance from the hot terminals of each electrolytic to chassis ground. Readings of at least 10,000 ohms indicates no shorts.

Connect the line cord to the line terminals upon the terminal strip. Plug the cord into a power outlet and turn on the pot switch. A voltmeter connected from the hot side of the output (farthest from rectifier) filter capacitor should indicate a dc voltage of 100-200 v., usually about 150 .

Now, wire the audio amplifier. Temporarily install the 'phone jack, and wire the output audio amplifier stage.

Tie lugs 4 and 5 together and connect to ground. Connect the ungrounded green (6.3 v.) lead from the transformer to pin 9 (the heater connection). Then wire in the grid, plate and cathode circuits. Use insulated tie lugs as needed.
Plug in a good 12AT7 tube. Connect the power cord to the line, turn on the switch, and plug a pair of headphones inte the 'phone jack. Holding onto the blade, touch a screwdriver tip to pin No. 7. A buzzy click indicates that the stage is OK.

Now complete wiring the first stage of the audio amplifier. Use insulated tie lugs as needed.

When done and checked, insert tube, 'phone plug and line cord. When tube is warm, touch screwdriver blade to pin Number 2. A much louder clicky buzz should come from the 'phones, indicating success.

Next, wire in the connections to the potentiometer, the 100 K detector load resistor and the coupling capacitor (5000 mmfd) to the grid of the first audio amplifier.

The rf-detector unit is built upon a $11 / 2 \times 3$ in. aluminum angle piece, cut, bent and drilled according to Fig. 4. The $3 / 8-\mathrm{in}$. hole is for the tuning capacitor, the $3 / 4$ - in. hole is for the 12AT7 socket. Fasten a double insulated tie lug under each socket mounting screw to serve as terminals for the leads to the rest of the circuitry and to hold small parts firmly in place. Mount the tuning capacitor last.

Wire the rf-detector unit. All of the circuitry enclosed within the dotted enclosure on the schematic is on the rf-detector unit.

Remove one rotor plate from the variable capacitor by grasping it firmly with long-nose pliers, leaving only one rotary plate in the unit. Check carefully to see that this plate does not touch the stator plates at any point of its rotation, and then mount it and wire it into the unit.

Complete the unit by winding and installing the coil (Fig. 7) between the rotor and stator connection lugs of the variable capacitor. This coil consists of three turns of \#14 wire. Wind the turns around a $3 / 8$-in. twist drill shank or a fountain pen. Keeping the leads as short as possible, connect this coil directly across the tuning capacitor.

Fasten the rf unit to the chassis with 6-32 screws. Then complete the connections to the power supply and audio amplifier. Bring these leads through a $1 / 2-\mathrm{in}$. grommeted hole. Loosely twist two pieces of hookup wire together and connect this twisted pair to the antenna terminals. One side of the other end of this pair goes to the 47 mmfd capacitor, the other to ground, as close by the input circuit as possible. This completes the wiring.

Insert the tubes, connect power, and plug

The RF detector unit is in the center in this top-chassis view. This unit is wired in late in construction.

3 TURNS " 14 WIRE
3/8" INSIDE DIAME TER
7 COIL:
in phones. As the regeneration control potentiometer is advanced, the circuit breaks into superregeneration, as indicated by a smooth, strong hiss. As the regeneration control is adjusted throughout its range, it is possible to vary the strength of this hiss from inaudible through medium level to strong.
Drill the mounting holes in the front panel

No. Req'd.	MATERIALS LIST-_VHF RECEIVER Size and Description
1 pc	16 ga. $\times 7 \times 9^{\prime \prime}$ aluminum for chassis
1 pc	16 ga. $\times 5 \times 7^{\prime \prime}$ aluminum for panel
1 pc	16 ga. $\times 11 / 2 \times 3^{\prime \prime}$ aluminum for rf unit
1	venier dial (National type BM)
1	bar knob
1	100K linear taper potentiometer with switch (IRC)
1	single-circuit 'phone jack (Mallory)
1	shaft coupling, $1 / 4^{\prime \prime}$ to $1 / 4^{\prime \prime}$
1 pc	plastic, rad. $1 / 4^{\prime \prime}$ dia. $\times 21 / 2^{\prime \prime}$ long
2	9-pin miniature sockets (Amphenal)
1	Cinch-Jones 4 -terminal barrier strip, about $1^{\prime \prime}$ wide
1	variable capacitor (Hammarlund type HF.15)
1	power transformer (Stancor No. PS.8415)
1	seleniunt rectifier (Sarkes-Tarzian Model 50)
2	electrolytic capacitors, 20 mfd., 150 W.V. (Mallory type TC-45)
1	0.1 mfd., 200 W.V. paper capacitor (Mallory)
1	line cord and plug
1	pair headphones (Trimm 'Dependable")
1	phone plug
2	12AT7 vacuum tubes
2	Miller type 4605, 2.5 microhenry. RF chokes (or can use Ohmite Z-144 1.8 microhenry)
4	2.2K ohm, l-w. capbon resistor
1 100	47 K ohm, l-w, carbon resistor
4	100K ohm, l-w. carbon resistor
2	220K ohm, l-w. carbon resistor
2	$47 \mathrm{ohm}, 1$-w. carbon resistor
2	47 mmfd disc ceramic capacitor
1	4.7 monfd disc ceramic capacitor
1	1000 mmfd disc ceramic capacitor
4	5000 mmfd disc ceramic capacitor
	$300-\mathrm{hm}$ twin-lead for antenna, if needed
	hook-up wire, rosin-core solder. screws and nuts,
	No. 14 tinned wire, 3 and 4 -point insulated tie lugs, soldering lugs, rubber grommet.

Approximate calibration curve of author's receiver.
for the tuning dial using the template supplied by the manufacturer. Then, install the panel. It is held firmly in place by clamping iightly under the potentiometer and 'phone jack binding nuts.

Place the shaft coupler upon the capacitor shaft, then pass a length of plastic or fiber rod through the hole in the dial and into the coupler. Tighten down all setscrews firmly, setting the dial so that the indicator points to 100 when the tuning capacitor plates are fully unmeshed (all the way out) then saw off the plastic rod flush with the end of the dial bushing and insert the bushing cover.
If your present TV antenna is high and pointed in the right direction, you will probably have fairly good results when used with this receiver. Or, you may make a suitable antenna by following Fig. 8. Be sure that your antenna is high, as your receiving range depends directly upon its height.

As in the case with all simple receivers, the number of and distance of signals you hear will depend directly upon the skill with which you use this little set.

Correct use of the regeneration control is often a key to good results. Always adjust the regeneration to the lowest possible level consistent with signal clarity. This is particularly true when receiving the narrow-
band FM transmitters, widely used by police and industrial services. If the regeneration control is advanced too far, all you'll hear is an unmodulated, blank carrier.

If you particularly wish to hear 2 -meter amateur signals, you may spread-out the number of dial divisions occupied by the amateur band, if you remove all but one rotary and one stationary plate from the variable capacitor. This will demand some readjustment of the coil. In this case, make final tuning-range adjustments with a grid-dip meter.

Figure 9 represents the frequency calibration of the author's receiver. Yours will be somewhat near, but probably not exactly the same, due to minor construction differences. You may calibrate your receiver by use of the grid dip meter.

You may alter the tuning range of this receiver by soldering-in coils of either more or less turns than those specified. Due to differences in lead length, etc., it is impractical to predict just how many turns would be required to tune over a specified range with your layout; a grid dip meter will enable you to make these determinations in your own individual case. By such coil changes it should be possible to cover from about 100 to about 200 mc . Do not try to incorporate coil switching into this circuit; the increased capacity and inductance introduced by the switch will probably completely spoil the set's operation, particularly at higher frequencies.

Eraser Cleans Terminals

- If the terminals or lugs in a radio circuit are scoured clean of dirt and oxidation before wires are soldered to them, there's less likeli-

hood of obtaining a troublesome cold solder joint. To clean terminals deep down among wiring where sandpaper cannot reach, use a pencil-shaped eraser.-Jонn A. Сомstock.

Transistor Tester

Compact unit indicates leakage current and beta

By FORREST H. FRANTZ, Sr.

|F you experiment with electronics you have or you will get into transistor circuit experimentation and construction. The condition of the transistor which you use in your circuits will determine the quality of the operation of your circuits. It's heartbreaking to search for circuit troubles only to find a bad transistor after a considerable expenditure of time. Many difficulties can be avoided by testing transistors before you place them in circuits. This transistor tester will do the job.

Not all transistor testers are alike. There are desirable features which transistor testers should possess to be most useful. One important feature is provision for universal connection of any type of transistor. Testing under collector carrent conditions approximating those under which transistor characteristics are compiled (most often 1 ma .) is another desirable feature. The tester should be off unless the on-off switch is depressed. Other desirable features (most transistor testers have these) are npn-pnp selector switch, range-leakage switch, and direct reading beta scale.

Front view of the tester with a transistor connected for test.

This compact transistor tester has these features, and in addition is small enough to fit in your pocket (case is only $15 / 8 \times 21 / 8 \times 4$ in.). The case is a rugged aluminum box that can stand rough handling. And the batteries are penlite cells-easy to obtain anywhere.

The hole layout for the case is shown in Fig. 5. All holes except the meter and switch hole are made with a $1 / 8-\mathrm{in}$. drill. A taper reamer may be used to enlarge holes where greater diameters are required. The large meter hole may be made with a hole punch, a fly cutter or by drilling a series of holes with a small drill and smoothing to size with a small file. The rectangular hole for the npnpnp switch can be made by drilling several $1 / 8-\mathrm{in}$. holes and smoothing to size with a small file. It's a good idea to fasten the back to the case for extra support before drilling holes.
Mount the switches, terminal posts and meter on the front of the case, following Figs. 3 and 4. Mount the battery holder on the case back. Turn the battery holder lugs over till they touch, and solder for series connection. Fill the battery holder eyelets with solder to assure good connection to the batteries. Then

This inside panel view shows parts mounting and wiring.

MATERIALS LIST-COMPACT TRANSISTOR TESTERDescriptionDesig.R4	

REAR VIEW OF FRONT PANEL
5
REAR VIEW OF BACK PANEL
proceed with the wiring of the tester according to the schematic (Fig. 2) and Fig. 4.

Note that a 3.3 megohm and a 2.7 meg . resistor are connected in parallel to produce a resistance of 1.5 megs. (R1). A 680 K and 4.7 meg . resistor are connected in parallel to obtain a resistance of 600 K (R2). If you com-
pute the actual values of these parallel combinations, you'll find that they differ slightly from the values cited, but they're sufficiently close for all practical purposes.

Markings may be made on the front of the transistor tester case with India ink. Cement four small rubber grommets to the back of the case to serve as feet for the tester.

Operation. To use the transistor tester align the transistor leads and insert them in the terminal posts. The red (top) terminal post is the collector terminal. The base connects to the middle terminal, and the emitter connects to the lower terminal.

Set the npn-pnp switch for the type of transistor to be tested. Set the range switch to the leakage (L) position. Depress the onoff switch. The meter reading is the leakage current for the common emitter configuration.

Next, rotate the range switch to the range which gives the fullest scale reading when the on-off switch is depressed without deflecting the meter off scale. The beta of the transistor is the meter reading the range switch multiplier.

Example 1: A GE 2N107 transistor was tested. Leakage current was .1 ma . (100 microamperes). On the 100 range, the meter read .35 . Beta was $.35 \times 100$ or 35 . The beta was relatively low in this case.

Example 2: A GE 2N508 transistor was tested. Leakage was .15 ma . The meter read .5 on the 250 scale. Beta was $.5 \times 250$ or 125 . Beta was relatively high in this case, a good argument for using the better entertainment grade transistors in preference to experimenter grade transistors.

Your compact transistor tester will help you to get the most out of your transistor work. It will emphasize transistor qualities that make transistor circuits perform well or otherwise. This tester will save you time and trouble.

The figure of merit of a transistor that is most commonly recognized is Beta. Beta is collector current divided by base current in the common emitter circuit configuration. Resistors R1, R2 and R3 provide base currents of 40,10 and 4 microamps respectively for full meter deflection on the 25,100 and 250 beta ranges. The base is left open for the leakage measurement. Leakage current for the common base configuration, frequently referred to as Ico, may be computed by dividing leakage current by beta. Thus, Ico in example 1 was $100 / 35$ or approximately 3 microamps. In example 2, Ico was 150/125 or approximately 1 microamp.
The 2.2 K resistor in series with the collector terminal limits meter current to a safe value if a short circuited transistor is placed in the tester. The double-pole double-throw switch reverses battery polarity to provide proper biases for npn or pnp transistors.

PRUNTED CIBCUTT Phono Amplifier

You can play your crystal-cartridge record player through this printed circuit pnono amplifier. Or, with a crystal mike it makes a dandy PA system.

WANT to try your hand at making a printed circuit? Here's an easy one to start out with. Figure 3 shows the phono amplifier etched circuit pattern actual size. Try your parts on the pattern to make sure they will fit. The parts will be on top of the board and the pattern under the board.

You will need pencil carbon (not typewriter carbon) to trace the circuit. This paper is coated on both sides and feels soft. Place the circuit board, copper side up, under the carbon paper, the drawing over the carbon and Scotch-tape all together:

Use a 4 H pencil with a sharp point. Outline all the dark areas of Fig. 3. For the long, straight lines, place a ruler along the line as a guide for the pencil. Use plenty of pressure on the pencil. First trace all horizontal marks using a straightedge as a guide. Next trace the vertical lines and then all lines that are at an angle. The circles are traced last. The small circles centered throughout the drawing are hole centers. These may be waced or a small prick punch may be used to mark through the paper and into the copper. In either case, the centers must be accurately located so that the tube socket pins will line up properly.

After all lines have been traced and the hole centers marked, loosen the drawing and carbon paper at one end so you can check
and make sure you have not left out any connections. The board is now ready for inking with acid resistant. Apply it to the copper with a pen or small brush. Completely cover all copper that is to be preserved (the dark areas of Fig. 3). The sharpness of the finished pattern will be determined by the sharpness of the ink work, so use care in getting smooth lines. Should you make an error, wait until the ink dries and then erase the line with a hard eraser. For small patterns, ordinary wax crayon can be used instead of acid resistant ink. If this method is used, the pattern can be made like a stencil and the crayon rubbed over the openings. It is advisable to warm the board slightly if you use crayon as an acid resist.

If you have punched the hole locations (white dots) be sure that the punch marks are filled with ink. Otherwise, the acid will work there.
The unwanted copper is removed with etchant. Wear rubber gloves and old clothes when working with this acid. Place the etching solution in a glass or enamel pan which is slightly larger than the circuit board.

Etching can be speeded by holding the board in the gloved hand and rocking it so that the acid runs back and forth over the board.

Remove the board from the acid and rinse it in cold running water. Then remove the ink with scouring powder.

The holes for tube socket pins and wire leads are drilled with a \#40 drill. Use the centering holes as starting marks for the drill.

The only larger hole is for the center connection of the phono jack. Use a $1 / 8-\mathrm{in}$. bit after first drilling a pilot hole with the small drill.

The slots for the switch contacts, the volume control and the phono jack ground connection are made by first drilling \#40 holes at the ends of the slots and then drilling as many holes as possible between the end holes. Finish the slots with a rat-tail file.

Figure 1 shows all parts except the .01 mfd ceramic coupling capacitor. This part is between the 50 C 5 tube and the 12BA6 tube. Note that all parts are on the side of the board opposite the pattern. Start by mounting the tube sockets. To mount the socket, line up the holes and pins and push the pins through the holes from the top of the board. Solder the pins to the pattern using a light iron, preferably 25 watts, and rosin core solder. Work carefully because too much heat will loosen the foil from the board.

Push filter capacitor leads through, observing polarity, and solder leads to pattern. The mounting flaps of the on-off switch may be cut off with a hack saw and the rough edges removed with a file before mounting the switch. Push switch lugs through the slots in the board. Bend the lugs down against the copper and solder.

Mount the phono jack next. After pushing the terminals through the board, flow solder around the flat part of the center connection but leave the angled sides of this terminal free to expand so that the plug can be inserted later. Now, mount the volume control.

Mount the resistors. The $50,000 \mathrm{ohm}$ plate load resistor for the 12BA6 tube should be mounted in the holes marked X-X.

The .01 mfd disc ceramic capacitor is mounted in holes A-A standing on edge.
The output transformer is mounted or the speaker. The voice coil leads are connected to the secondary of the transformer and the transformer primary is connected, by a pair of stranded wires, to the holes marked SPK on the drawing.

The power cord is connected last. Push the bare ends of the leads through the holes in the board until the rubber insulation is tight against the board. Solder the leads to the pattern and cut off the excess length.

The mounting of parts is now completed and the tubes can be placed in their sockets. The 12BE6 tube is used solely as a filament dropping resistor. It costs no more than a high wattage resistor and generates less foilloosening heat.

Before applying power to the circuit, block the board up so that the circuit cannot come in contact with something on the work bench. After plugging the cord into an outlet, turn the switch ON. All tubes should light up. The volume control should then be advanced about half way and the center terminal of the phono jack touched with the finger. You should hear a loud buzz when this is done.
If the amplifier checks out this far, you are
ready to connect a crystal type record player to the input. It is also possible to connect a crystal microphone to the input and use the amplifier as a small PA system.

The amplifier may be mounted in any convenient manner provided there is enough ventilation to carry away the heat generated by the tubes. Any mounting can be used for the speaker. A 5 -in. speaker mounted in a scaled down Carlson enclosure and this amplifier will provide surprisingly good quality.

Wire Soldering Technique

- When joining electrical wires or wires in electronic circuits, it is frequently difficult to hold two wires and the soldering iron or gun in position for a good solder joint. This problem can be considerably eased by tinning both wires before placing in contact. This then becomes a sweating rather than a soldering technique, which takes less heat for less time because the work does not have to be brought up to soldering temperature. Touch the wires lightly and apply the iron for just an instant to melt the solder and complete the joint. The joint will have sufficient mechanical strength and, if the resin core type of solder is used, it will carry current efficiently.

[^1]The circuit designer with a test amplifier on the board. The voltmeter aids voltage setting. A headphone is the amplifier load.

Transistor Circuit Designer

This unit ends de-bugging with its waste of parts and time and permits use of low cost experimenter grade transistors

By FORREST H. FRANTZ, Sr.

THIS instrument permits the design of one and two stage transistor amplifiers and facilitates rapid measurement of their characteristics. The unit, costing $\$ 10$ to build, is also useful as an auxiliary power supply and amplifier for other transistor equipment.

The unit is enclosed in a $2 \times 33 / 4 \times 61 / 4$-in. Bakelite case. The circuit is constructed on the perforated Bakelite board front panel.
The power supply is a 6.3 v . filament transformer, two diodes in a voltage doubler cir-

BROKEN LINES BETWEEN LUGS (LARGE OOTS) SHOW CONNECIIONS FOR 2 SIAGE NPN AUDIO AMPLIFIER.

Under-panel viaw, showing parts and wiring.

INPUT - OUTPUT
CIRCUIT INSTRUMENTATION FOR HIGH GAIN AMPLIFIER DESIGN ANO FREQUENCY RESPONSE MEASUREMENTS

Top-panel view. Experimental component connecfions are marked.
cuit, a voltage output control and filters.
On the top of the front panel are the two test circuit transistor sockets and leads from two electrolytics for the test circuit and two resistors to determine input impedance. The six potentiometers adjust collector load, emitter bias and base bias for the test transistors.

The transistor sockets are connected for the common emitter configuration, but other configurations may be readily investigated by switching transistor leads in the sockets. The power supply may be connected for either pnp or npn transistors. Connections between experimental components are made with mini-gator clip leads.
The front panel is cut and drilled as in Fig. 2. Mount power transformer and pots first. Then wire the power supply according to schematic (Fig. 3) and Fig. 4. Push leads through board holes and solder. Some lead ends will serve as lugs for attachment of test clips and are shown in schematic. Splice on \#18 wire if leads aren't long enough.
Attach transistor sockets to panel with Duco cement. Solder leads to the transistor sockets and pass them through the panel and wire in.
Operation. We will use a grounded emitter circuit. Resistor RS in the power supply
is shorted with a jumper wire, except when control of voltages of less than a volt is required. When this resistor is shorted, the power supply provides about 10 v . for a load drawing 20 ma . and about 5 v . for a 50 ma . load. The voltage may be monitored with a voltmeter.
This power supply may be used with npn transistors by connecting the - power supply lug to the adjacent ground lug and the + lug to the adjacent B lug. Reverse the connections for pnp transistors. The power supply may also be used as a power supply for other transistor equipment.
The circuit to be designed is wired up on the designer with clip heads, and best bias and load resistance values are found by adjusting the dials. In the schematic (Fig. 3) a two-transistor stage audio amplifier is on the designer.

The emitter bias pots which stabilize the transistor dc operating points also introduce negative feedback. This flattens the amplifier frequency response, but also decreases amplifier gain. If frequency response is unimportant, the emitter bias pots (R1E and R2E)

[^2]
may be bypassed with electrolytic capacitors (about 10 mfd) for increased gain. The desired de stabilization will be retained.

Note that the actual load, say a headphone or a loudspeaker and output transformer, may be connected to lugs O and B for the design adjustments. Furthermore, the device which is to drive the amplifier, a broadcast tuner for example, may be connected to the input terminals for performance checks.

For more critical circuit design where highest gain is desired, the input-output circuit arrangement of Fig. 6 should be used. With a 1000 -cycle signal input, adjust the designer pots for maximum output indication on the audio voltmeter.

This circuit is also used for obtaining the desired frequency response if this characteristic is of importance to you. Frequency response is improved by increasing the emitter resistances R1E and R2E. Simply record the output for various frequencies as you vary the audio signal generator frequency-then plot the frequency response. If you want to do a fast design job, though, you can check the output only at the lowest and the highest frequency to which the amplifier is to be flat against the output at 1,000 cycles.

The resistors RM1 and RM2 were provided for determining input impedance of an amplifier under design or for designing an amplifier with a given input impedance. Figure 7 shows the circuit and calculations. Input impedance may be increased by increasing emitter bias resistance of the first transistor.

The designer may also be used for designing RF, IF, and reflex circuits. The instrument shown in the photographs does not have this provision. This instrument was designed primarily for evaluating audio amplifiers and does not contain all of the connection lugs shown in the schematic (Fig, 3). But, if

∇ input impedance measuring circuit and calculations
you'll provide all of the lugs shown in Fig 3 , you can evaluate RF, IF and reflex circuits. The circuit arrangement for a typical reflex receiver is shown in Fig. 8. External coils and capacitance must be used, and the arrangement becomes quite crowded.

One note of caution: The miniature potentiometers that I used in the circuit designer are of the audio taper type. To obtain bias and load resistance values for the equipment which is to be constructed, measure resistance values of all controls after optimum settings have been made. Linear resistance scales for these controls would be misleading, but you can provide these pots with scalcs by calibrating with an ohmmeter.

The

Little Cub

 ReceiverBy HOMER L. DAVIDSON

THE circuit of this small receiver is very simple; technically it is nothing more than a tuned grid and tuned plate feedback circuit, and youngsters will have a lot of enjoyment building it and using it. The antenna is capacitycoupled to a tuned tank circuit with a 50 -turn secondary wound over a commercial ferrite coil. This output is coupled through a tuning capacitor to the base terminal of the first transistor (TR 1). Feedback is also obtained through this capacitor and transistor, and a second tuned circuit is found in the collector circuit of TR 1. A small audio transistor (TR 2) stage adds volume to the receiver's operation, and a phone jack enables record playing through it. Both emitter terminals of the transistors are tied to the positive terminals of the battery (See Figs. 2 and 3).

Construction. The front panel is constructed from a $6 \times 10-\mathrm{in}$. print-ed-circuit board. First, roughly lay out the lines and hole dimensions on the copper plate. Make sure that the plate is clean. If not, wash it with soap and water. All straight lines were made with the black resist tape and joined with liquid paint resist. The PRLT pens (see materials list) are of the ball-pen type. Simply hold the pen in the hand and push down on the ball of the pen and liquid will start to flow. You can use any color of resist you wish, although black shows up the best. Let circuits dry for several hours before placing in the etching solution.

Transistorized printed circuitry combined with simple construction makes the Little Cub receiver an ideal project for boys, individually or in groups.

As an etching container, use a large flat glass baking dish. Place the copper board in the bottom of the dish and pour just enough liquid etchant solution over it to cover. (If the solution gets on your hands, wash it off with soap and water. Clothing will be

MATERIALS LIST-LITTLE CUB	
Desig. Cl C2, C3	Description
	. 01 capacitor. 200 V
	365 mfd variable capacitor, two-gang TRF (Lafayette MS142)
C4	365 mfd, variable capacitor (Lafayette MS215)
C5	$10 \mathrm{mfd}, 50 \mathrm{~V}$ elect. capacitor
R1	12,000 ohm carbon fixed resistor
R2	220,000 ohm carbon fixed resistor
R3	10,000 ohm variable resistor with S.P.S.T. switch (SWI)
TR1	2N414A Raytheon transistor
TR2	2N107 GE transistor
D1	1N64 fixed diode
L1, L2	Superex $7^{\prime \prime}$ loopstick with 50 turns of $28 E N$ wire over original winding
2	phono jacks
2	penlite cells
	Printed Circuit Materials
	Technicians Kit \#5002P. or
1	PCA copper-laminated board $9 \times 12 \mathrm{in}$.
1 pt.	PE5 etchant liquid
1 roll	tape resist PRT-1
1	liquid ball-point pen PRLT
There left ov construct laminat	will be a quantity of tape. etchant liquid and pen resist er from this experiment so all that would be needed to ct other experiments would be to purchase extra coppered boards.
Prin Liberty Inc.,	ted circuit material available from Lafayette Radio, 165.08 Ave., Jamaica 33, New York, or direct from Techniques, ept. C, P. O. Box 85, Hackensack, N. J.

soiled with a brownish color if the solution comes in contact with it, but this solution is not dangerous in any form.)

To help the solution etch the copper plate more rapidly, rock the container. The etching process takes about 45 minutes. Pull the board up every few minutes and view the etching process. All of the copper will be gone when the process is complete. The only remaining copper will be under the paint resist.

When etching is complete, wash the board in clear water, pour the etchant liquid back into its bottle (it can be used over and over again) and wash the glass container in soap and water. Pull off the resist tape and, with any kind of cleaning solution such as carbontet, or by scraping, remove the resist paint. Be extremely careful that you do not injure the copper circuit lines. Now, drill all of the holes required (See Fig. 4).

After the front panel has been etched, mount components. The large parts, such as the variable capacitor and volume control,
are mounted first. TRI is wired directly to the feedback capacitor and then On-Off switch. Mount coil L1 at the top of the panel with the grounded side soldered to the ground lug of the volume control. The collector tank coil (L2) is mounted at the bottom of the chassis with its grounded side soldered to one side of the phone jack. A twolug insulator is screwed to the plywood base, for antenna and ground connections, as is the battery holder. Finally solder small components in place.

The coils are the 7 -in. superex ferrite type with an extra winding of 50 turns of No. 28 enameled wire added over the original winding.

Operation. To test, plug in phones and record player. Turn set on and with recording on turntable, it should be heard. (The volume can be raised or lowered with the volume control.) Unplug record player and hook up the long-wire antenna system. Tune for a station in the middle of the band. When a station is located, turn up the feedback control and a loud squeal will result. Lower this control's setting until the station is audible. Now tune L1 by pushing its core in and out. The station will get louder-and oscillation may occur. If it does, turn the feedback control down. Next, adjust L2 for maximum signal. (This adjustment is not as critical as L1.) Go over adjustments again until the best signal is heard and stations can be received at both ends of the band. Feedback should occur over all of the band.

D. Vietor

Beginner's Volt-Ohmmeter

By FORREST H. FRANTZ, SR.

This inexpensive volt-ohmmeter employs machine serews as terminals for Mini-Gator clips on test leads.

THIS DC volt-ohmmeter costs about $\$ 3.50$ to make. It will serve to introduce the beginner to the use of volt-ohmmeters. All parts are mounted on a panel made of a scrap piece of Masonite $31 / 2 \times 51 / 2$ in. or larger.

The panel layout is shown in Fig. 2. Cut the $21 / 16$-in. meter hole with a coping saw or hacksaw after drilling starting holes. Smooth with a round file. Give the panel a coat of gray enamel.

Mount the meter, first removing the U shaped panel clamp fastened to the back of the meter. Push the meter through the hole on the panel and replace the U-clamp on the back of the meter. Before you tighten it all the way against the back of the panel, be sure you have the meter lined up properly on the front of the panel. Next, mount the five machine screws on the panel. Place soldering lugs under the screws.

Wire according to Fig. 3 and the schematic, Fig. 4.

The connections to the meter are not sol-

Parts mounting. Piece of \#18 wire (arrow) supports battery holder.

2
PANEL LAYOUT


```
MATERIALS LIST—VOLT-OHMMETER
No. Req'd Description
ohms-volts meter (Shurite 8701)
3 cell battery holder (Lafayette MS169) pen lite cells (Burgess \#7 or equivalent) \(2.7 \mathrm{~K}, 1 / 2 \mathrm{~W}\) carbon resistor ( \(\pm 10 \%\) )
\(33 \mathrm{~K}, 1 / 2 \mathrm{~W}\) carbon resistor ( \(\pm 10 \%\) ) machine screws, hook up wire, rosin core solder
```

dered. Be careful not to let your soldering iron touch the plastic meter case accidently while you're working.
Mark the front panel with india ink. Or you may type labels and fasten them to the panel with Scotch tape.
To wind up the job, insert the batteries in the holder observing the polarities shown in Fig. 3. The batteries are connected in series-
plus to minus. Therefore, the three 1.5 v . batteries will deliver 4.5 v . This is the full scale deflection voltage of the basic meter and the lowest voltage range of your instrument.

To use the meter, clip a lead to the common terminal and connect the other lead to the terminal which identifies the range you want to use. Mueller Mini-Gator clips work nicely for this purpose. Make a set of leads $6-\mathrm{in}$. long and another set $24-\mathrm{in}$. long. To measure volts with the meter, connect lead from common (+) to high (+) side of voltage to be measured. Connect negative lead to the highest range first, and move progressively down until you're on the proper range.

Measure ohms only when there is no electrical energy being applied to the resistance being measured. When you measure volts, do not touch terminals or uninsulated leads with your body, at risk of a bad shock.

Don't lay the meter on a metal object when you make measurements, because the back terminals are exposed. It would be a good idea to place the meter in a wood case or a small cardboard box.

And a final precaution: The volt ranges are dc voltage ranges. Don't attempt to measure ac volts with this meter.

What-Is-It?

By JOHN A. COMSTOCK

Do you think you can correctly identify the objects in the photos? Try your luck, and then check your answers with those on page 53.
1.
2.

4

5

6. \qquad

3

Hams: convert that rabbit-ears into a Field Strength Indicator

By C. F. ROCKEY, W9SCH

1

You can easily check the radiation of your station with this field-strength indicator.

EVERY amateur knows how convenient it is to tune a transmitter for maximum radiated output with a field strength indicator. And one cannot make significant adjustments upon a directional, "beam" antenna without one.

If you have an old rabbit-ears indoor TV antenna, you can convert it for field-intensity indications for a dollar or two. Furthermore, at the flick of a switch, you have the rabbitears available for its original use.

We used a Radion indoor TV receiving antenna for our model. Any similar antenna will work as well, as long as it is a true rabbit-ears, that is, not one of those fancy things sometimes sold with tuning stubs or other similar gimmicks attached.

First, disassemble the unit by removing the long machine screw which passes horizontally through the support. Then remove the felt from the base with a razor blade. Remove the ceramic weight within the base by running the razor blade around the weight. The two halves of the base will then come apart, freeing the two antenna rods.

One of the halves has two cast recesses in it to receive the antenna support rods. Mount the DPDT knife switch upon the "forehead" of the piece with two $6-32 \times 3 / 4-\mathrm{in}$. machine screws, first drilling two $1 / 8-\mathrm{in}$. holes $3 / 4-\mathrm{in}$. apart (each $3 / 8 \mathrm{in}$. from center) and $7 / 8 \mathrm{in}$. down from the antenna rod slot. Then drill
three $1 / 3-\mathrm{in}$. holes, two near the ends of the rod slots, and one near the base (Fig. 3).

Complete wiring, leaving connections to dipole elements till last (Fig. 2). Pass the coax cable through the hole near bottom of base.

Insert the antenna element support rods into their recesses and make connections by soldering directly to these rods. Be sure to make the leads to these rods flexible enough to allow easy adjustment of the antenna rod angle after assembly.

Reassemble the two base halves, insert the ceramic weight and replace screw and nut. Fasten clips on far end of coax cable.

DRILLING DIAGRAM

MATERIALS LIST-FIELD STRENGTH INDICATOR No. Reqd.
1 Radion or similar indoor rabbit-ears TV antenna
10 ft RG 58-U or RG 58-AU coax cable
12.5 millihenry RF choke (National Type R-100)

DPDT, plastic base, knife switch
1N34 crystal diode
Mueller spring clips
machine screws and nuts. rosin core solder, hookup wire, microammeter or Vom (see text)

Throw the switch into "antenna" position and connect to your TV set as a test. Now throw the switch into "field strength" position and connect the coax to a microammeter or low-range milliammeter. Set the unit near your transmitting antenna, and bring the coax and meter away so that you do not get into the RF field, and put the transmitter into operation. You should get a definite reading on the micro- or milliammeter. For lowfrequency operation (below 50 mc) extend the antenna rods as long as possible; for 50 mc or 144 mc use, adjust the two rods to give
maximum indication, keeping both rods equal in length. If you have a vertical transmitting antenna, put one rod as nearly vertical and the other as nearly horizontal as possible. If your transmitting antenna is horizontal, put both rods as near horizontal as possible. If meter swings backward, reverse leads.
The amount of indication you will get depends upon the power output of your transmitter and the distance between the transmitting antenna and the ears. With a low power 144-mc transmitter connected to a directional antenna, the author was able to get a deflection of over 100 microamperes at a distance of over 100 ft . from the antenna. Of course, at this frequency it is necessary to elevate the ears above ground (for instance, on top of a $6-\mathrm{ft}$. stepladder) to get a representative indication.

Such technique would be proper for the adjustment of a directional beam antenna. Use a $0-200$, or smaller, microammeter; set the rabbit-ears on the stepladder, placed at least 100 ft . from the antenna, and run the coax down and away so the observer's presence does not affect the field distribution appreciably. Station an observer at the meter and, with transmitter running at low power (50 watts input or less), adjust the beam antenna to produce maximum deflection on the meter. When this deflection is a maximum, you can be reasonably sure that your beam antenna is operating at or near optimum effectiveness.

If you do not have a microammeter you can use the fundamental movement of your VOM. Most VOMs have a pair of terminals or a switch position which will make this movement directly usable in this manner.

You can use this device to determine the radiation pattern of your directive antenna system by setting up as described above. Then, keeping the power input to your transmitter constant, rotate your antenna through 360° and have the observer write down the meter reading each 15 or 20° as you go around. Then, using polar-coordinate graph paper (available at draftsmen's supply stores), plot the meter reading at each angle as a distance outward from the center. Choose a reasonable scale, of course. Then connect the points with a smooth curve and you have the radiation pattern of your antenna. This will prove handy in correctly aiming it at that distant station you wish to work. A directional pattern, drawn for the author's antenna, appears as Fig. 4.

Removing Radio Knobs

- To remove obstinate radio knobs of the "pull-off" variety, hook a handkerchief back of the knob and rest your fore-finger against the cabinet as a fulcrum. Pull on remainder of handkerchief, held firmly in youi: hand.

With the wiring completed, check operation with a Polaris photocell. The circuitry also doubles duty as a burglar alarm and electronic counter.

All-Purpose Multi-Testing Lab HOUGH designed by inventor Gus Wes-

Tenfeld primarily as a science lab, the Multi-Lab is also a workhorse around the home, shop, garage and photo-darkroom. For instance, after we describe construction of the Multi-Lab, we explain how to use thermistors to read temperatures from 0 to $600^{\circ} \mathrm{F}$. Or with a photocell and lamp attachment, you can set up a smoke monitor on your chimney that tells you how to set the controls of your furnace for best combustion.

With Multi-Lab, you can read the condition of each cell of your car battery separately under actual load conditions. An optional relay circuit with Multi-Lab's built-in power supply and sensitivity control gives you a dependable light beam annunciator, an emergency fire alarm, or burglar alarm. The experimenter can read electrical resistance down to 1%, and use the bridge circuit to check impedance of loudspeakers, and test radio and TV tubes.

The chassis is a core unit to which you can add attachments. You use the terminal strips at the top of the panel to connect photocells, temperature detectors, strain gages, etc.
While Multi-Lab is a measuring device, unlike a scale or micrometer, it does not indicate a direct reading in units. Rather, it compares. The null meter tells you whether the electrical input is more, less, or equal to a
predetermined "standard."
Use a combination square to lay out the hole centers (Fig. 2) and then drill all the holes except those behind the terminal strips. Your only tough steps are the large holes for the meter and the vernier dial. If you are working without a drill press and hole saw, just outline the circles with a compass. Then drill starting holes and finish the job with a coping saw and file.

Temporarily mount the terminal strips with 4-40 screws and nuts. Then remove the terminal screws (those to which inside wiring feeds) and use the terminal strip's holes as a template to drill $3 / 32-\mathrm{in}$. pilot holes through the steel box. Remove the terminal strips and re-drill the holes to enlarge them up to $3 / 16$ in. Clean up any remaining burrs and then mount all parts and terminal strips. The National Co. type MCN vernier dial comes packed with a mounting template. Follow this pattern exactly except for drilling the top two holes $1 / 18$ in. instead of $1 / 8 \mathrm{in}$. Then, using sheet metal screws in place of the machine screws ordinarily used, you'll be able to easily interchange the cardboard dials.

Assemble the Power Supply and amplifier circuit on the perforated Vectorboard (Fig. 3B). A few of the Vectorboard holes will need enlarging with a $1 / 8-\mathrm{in}$. drill. Use the parts to be mounted themselves as templates.

electrical tape. Use a VOM to take a reading between terminals E (-) and $\mathrm{F}(+)$. A 20,000 ohms/v. VOM should show about 150 v. while a 1,000 ohms/ v. meter would read about 140. Across terminals B and C, you should get a 6.3 v . ac reading. Terminals A and B should deliver about 9 v . dc.

Now finish the test by connecting a $0-10$ milliammeter across terminals G and I. Touch terminals D and H with a metal screwdriver. On each touch, the milliammeter should move showing the voltmeter circuit is operating. If any one of these checkouts fails to agree, go over your wiring to find the mistake. Then run the test again.

Mount the chassis in the bottom of the cabinet using the wooden spacer blocks (Fig. $3 C$) and then proceed with the cabinet wiring. Use bus wire, solid push back wire, or common hook-up wire. The bus wire is tougher to use... you have to clean the ends with a fine file and pre-tin before solderingbut it does make it easier to trace your circuit. Wires that run up to the terminal strips must not short against the holes in the face of the cabinet. Run these leads through, trim, and solder from the front of the terminal strip discarding the unused terminal screws. The tube's grid leads must be shielded with metal braid to prevent stray current pickup. Solder this braid (Fig. 3A) to terminal 2 at one end and to H on the sub chassis.

A battery pack is shown on Fig. 3A but need not be installed immediately. It supplies 2.8 volts for a reflection densitometer attachment (a future article).

RLYI (optional) is a Sigma type SF 2500 ohm SPDT sensitive relay (Fig. 3E). Insulate it by mounting on a $2-\mathrm{in}$. square piece of plastic. Be sure the relay frame is isolated. External ac feeding through the frame to MultiLab's case would be dangerous. Run wire leads from the coil and contact solder lugs up to the 7 -terminal Jones barrier strip on the top edge of the case (Fig. 3A). You'll be using this relay to operate external circuits for fire alarms, annunciators, counters, etc. A less expensive relay can be used.

TUBE TESTING PROCEDURE

1. Turn sensitivity to full right position. (This also turns Multi-Lab power on)
2. Clip lead to pin \#2 of tube.
3. Touch test prod to pin \#7. If filament is nood, NE2 will glow brightly.
4. With clip lead attached to pin \#2, touch test prod to pin \#8. NE-2 might plow softly. If NE2 glows bright, tube has heater-cathode short.
5. Move clip lead to pin \#8. Touch pin \#5. If NE2 glows, tube is either shorted or gassy.
6. With clip lead on pin \#8, touch pin \#3. If NE2 glows, tube is either shorted or gassy.
As you wire, you'll note that the toggle switch beneath the meter is arranged to cut the meter off for safety during setting up and standby. The tube filament stays on since it is controlled by the switch mounted on the sensitivity control pot, R2. The 100 K potentiometer R2 is used as a voltage divider and provides a $0-150$ variable DC voltage to \#23 and $\# 24$ on the external terminal strip. Pot R6 acts (zero adjust) as a balance control between the two cathodes of tube 12BH7. Pot R3 delivers 0 to 8.5 volts DC to the bridge. R8, is the "slide wire" of the Wheatstone bridge and is operated by the vernier dial.

Check Your Completed Chassis as follows:

R1-200 ohm, 1 watt 5% resistor
1 (Lafayette*) SWl-ayette ${ }^{\text {F }}$)
3 R3, R7, R8-10K 2 vatt wirewound pot, Mallary type R10 ML, linear (Lafayette*)
2 R4, R5-5.1 meg, $1 / 2$ watt 1% carbon precision resistors Aerovox type CPLI/2 (Lafayette*)
1 R6-1K, 2 watt wirewound pot, linear Mallary type R1000L (Latayette*)
1 Cl-250 mfd/ 12 wy Sprapue dry electrolytic type TVA or equal (Lafayette \#Z70)
C2-20-20 mf, 150 we tubular electrolytic
1 Rect 1-50 ma. Silicon rectifier, Sarkes Tarzian M-150
1 Rect 2-65 ma. 130 VAC selenium rectifier (Lafayette \#RE12)
SW2-SPST Toople Switch (Lafayette \#SW21)
T1—125 Vct. 15 ma. Stancor type PS 8415 (Lalayette*) PLl—Neon lamp, Drahe Type 105 Postlite (Lafayette*) M1- $0-1$ DC milliammeter, Shurite panel type (Lafayette \#MT-100)
Vernier dial- 5 to 1 drive for $1 / 4^{\prime \prime}$ shaft, with removable scales National type MCN (Lafayette*)
1 Perforated board chassis, $21 / 16 \times 81 / 2^{\prime \prime}$, Vector type 32AA9
(Newark \#38F420)
1 Term strip, 6 screw type (Newark \#28F664)
1 Term strip, 3 screw type (Newark \#28F661)
2 Term strips, 12 double terminals ea. Jones Barrier type 12 140 (Newark \#28F710)
$1 \quad 7 \times 12 \times 3^{\prime \prime}$ Black wrinke steel chassis, Bud No. CB 792 (Lafayette*)
1 Bottom cover plate, steel, for above Bud No. BP. 539 (Lafayette*)
(Note: Order aluminum chassis, same size as above if working without electric drill, etc.)

No.
Req'd

Size and Description

19 pin miniature tube socket
1 Vl-12BH7 tube
4 Knobs, black plastic, $1 / 4^{m}$ (Lafayette KN-37)
Misc. AC power cord, hardware, scrap aluminum bracket, bus bar, or hookup wire, alligator clips, test prod wire, $1 / 2 \times 11^{\prime \prime}$ elec. conduit handle, shielded cable for prid leads.

AUXILIARY METER

R9- $120 \mathrm{ohm} / 1$ W 10\% Carbon (Lafayette* RS11*)
SW3-Push button, N.C. Grayhill type 4002 (Lafayette*)
SWH-Togole switch, SPST (Lafayette \#SW21)
S01—Socket, Cinch Jones type P. 302-AB (Newark \#39F220)
S02—Plug, Cinch Jones type S.302-CCT (Newark \#39F200) Pl—Phone plug (Newark \#39F792)
Meter case, Bud type CM-1935 with center hole knockout (Newark \#91F598)
1 M2—0.S0 D.C. Microammeter (Lafayette \#TM70)

STANDARDS AND ATTACHMENTS

1 Photocell, Polaris "Maji" cadmium sulphide resistor type (Allied \#78E711)
1 TH1 2000 ohm Probe style Thermistor Fenwal \#GB32P2 (Allied \#9E927)
1 ea. $1 \mathrm{~K}, 2 \mathrm{~K}, 4 \mathrm{~K}, 8 \mathrm{~K}, 100 \mathrm{~K} 1 \%$ precision resistors IRC type DCC or equiv. (Allied \#lMM493)
2 ea. 10K 1% precision resistors, as above.

SOURCES*

(Lafayette") Order using Mfrs. numbers listed. Lafayette Radio, 165-08 Liberty Ave., Jamaica 33, N. Y.
(Newark) Use Newark nos. Newark Electronics Corp., 223 W. Madison, Chicaso 6, III.
(Allied) Allied Radio, 100 N. Western Ave., Chicago 80, III.
close switch SW2 to put the meter switch in the circuit, and then turn on the power. As the amplifier warms up, turn calibration control R7 clockwise up to full, and slowly rock the zero adjust control back and forth. You should get a meter deflection. If not, turn switch SW2 on and off to make sure the meter circuit is operative. Then turn R7 to the other extreme. If there still is no reading on the meter, turn power off and recheck your wiring.

All controls, with the exception of vernier R8 are "polarized." This means that you turn a knob to the right, the attached control either causes an increase in voltage or current, or the meter increases its reading.

Now take part R8 and fasten it tightly to the sheet metal bracket with the mounting nuts (Fig. 3D). Set your vernier dial exactly to \#50 on the dial, and then center the pot's slider electrically. You can do it with a VOM set to a 10 K range. Read the resistance from center tap to one side, and then to the other side. If necessary, turn the shaft slightly to equalize the resistance legs, and then bolt the bracket into the case, and tighten the shaft setscrews.

Testing Multi-Lab with Photocell. With wiring and construction completed, you're ready to test operating controls. Connect a resistive type photocell (not the sun battery type) such as the Polaris cell in the Materials List, across terminals 1 and 23 as in Fig. 6. Arrange a light as in Fig. 1. Turn the sensitivity control R2 to its minimum setting, and then cut the meter into the circuit with switch SW2. If the needle swings off scale, turn the zero adjust until the needle centers. Now slowly turn R2 until it's about three-quarters up, continuing to center the meter needle with the zero adjust.

Now block the light from the photocell. The meter should swing down scale. If it swings up scale, switch the lead from terminal 1 to terminal 3. Remember, whenever you are making changes or adjustments, switch your meter to prevent a burn out.

This photocell setup not only demonstrates the basic Multi-Lab adjustments, but you can easily use it as a temporary burglar alarm or light-beam annunciator as in Fig. 6. A bell or light will serve as a signaling device, and sensitive relay RLY 1 instead of your meter does the work.

The Smoke Monitor (Fig. 7) is a timesaver when you want to adjust your draft or stoker controls to save fuel, prevent smog, etc. All you need is a lamp housing made of scrap metal, and a holder for the photocell. When the best furnace adjustment is obtained, disconnect the cell from your stack and insert a metal cover in its place.

Now The Bridge Unit. Set it up with two 10 K resistors as in Fig. 8. With the vernier dial on $0, R 7$ full up and $R 2$ three-quarters
up, switch in the meter and center the needle with the zero adjust. These steps are basic to the operation of Multi-Lab. Practice until you can do them fast. From here on, remember that you'll be working only with the vernier. Don't touch the calibration control or the sensitivity control.

Then turn off the meter switch, and replace the 10 K resistor across terminals 13 and 17 with a smaller resistor, say 560 ohms. Switch the meter back on briefly. Now readjust the vernier until the meter is again exactly centered. Your reading on the vernier now represents the value of the unknown resistor. If you get no meter response as you adjust the vernier, check the bridge and setup to find your mistake.

The Resistance Measuring Method detailed under Fig. 8 is typical of most operations that you will want to do later on with Multi-Lab. Following the instructions, program the bridge, connect in your standard resistors, center the meter, and mark the dial. Repeat the procedure to get a series of calibration points on the dial. By connecting your resistor standards in series-parallel combinations you can obtain more intermediate points. This bridge performs best in the 200 ohm 2 M range; however, any calibration range will cover only a 1 to 10 resistance ratio. Remember not to upset any of the controls while calibrating or measuring-work only with the vernier.

The 0-1 ma. meter on the Multi-Lab panel is sensitive enough for most preliminary experiments. For example, it gives you about 4% accuracy with the bridge. The auxiliary meter (Fig. 3F) is a $0-50$ microamp meter that can increase your accuracy within $1 / 2$ of 1%. Of course, your readings are always only as accurate as your standards. You can use any precise microammeter with the MultiLab. But until you are completely familiar with operation, it's best to protect expensive instruments by starting the experiment with the panel meter.

With a Thermistor, (Fig. 9) you can read outdoor temperatures from 20 below up to $100^{\circ} \mathrm{F}$. Calibrate your dial by immersing the thermistor-it must be waterproofed with varnish-in ice water. Set the vernier at 32 and balance the bridge with the zero adjust. Then place the thermistor outdoors next to an accurate thermometer. A range of readings will establish the scale on your dial. You can also use thermistors to read oven temperatures up to $700^{\circ} \mathrm{F}$, provided that you use asbestos wire leads.

The Tube Checking Circuit, (Fig. 10), takes advantage of Multi-Lab's built-in power supply to give you a high voltage-through-resistance check for filament continuity, interelement shorts and gas. Manufacturer's tube manuals will give you pin connections for all tube types.

What To Listen For On Short Wave Spring and Summer 1961
 By C. M. STANBURY II

July 12, 1960. The Belgian Congo has just gained its independence, the army mutinies and attacks the formerly elite European. In the States, an SWL tunes to 9835 kc for Leopoldville. Instead he hears a jammer and a quick check of reference lists reveals that it could only be intended for the Congo transmitter. Obvious question, who and why?
It could have come from the secessionist Katanga province but this was a real jammer and the rebel Elizabethville government did not have time to set up such equipment. Which left the Russians and a tipoff that Mr. K was going to jump into the mess with both feet. And this SWL's guess was right. First premier Lumumba requested American troops, the Soviets opened fire propagandawise, and Washington discreetly turned down the request. Then the Congo government switched to the Soviet side of the fence and what do you think happened? That's right, the jamming disappeared.

The above illustrates the most effective method of SWLing. With the help of a good reference \log such as White's, tune to the world's hot spots and interpret what you hear via comparison and logic rather than be hand-fed propaganda.

Of course, not every international broadcast is pure propaganda, in fact most propaganda is mixed with truth, and a few stations come close to painting an unbiased picture. Such a station is Radio Brazzaville, operated by the French government in the Congo Republic (formerly French Equatorial Africa). The Congo Republic which should not be confused with the Republic of the Congo, is an independent state but within the French community. Possibly this dual control is responsible for its almost objective approach to the news. During the Congo emergency, this station just across the river from Leopoldville appeared to provide complete, often first hand information.

This policy contrasts sharply with the propaganda blasts coming from Brussels on 11855 kc and other frequencies. While the Belgian attitude may have its merits, propaganda is propaganda and of little use to the SWL.

Radio Brazzavilie illustrates another important point. Its signal on 11970 kc consistently topped those of Radio Moscow, which used the same channel. Both transmitters were beamed to North America, so what's the difference? Answer, the Auroral Zone. Signal from Russia must pass near the North

QSL eard from Radio Brazzaville. In French and Belgian both Congo Republic and Republic of the Congo are written Republique du Congo.
pole and Northern lights (Aurora Borealis) before reaching us. Tropical stations do not. The Aurora Borealis increases absorption, weakening signals, even under normal reception conditions. During ionospheric disturbances (magnetic storms) the signal drop becomes severe. Thus Brazzaville's advantage over Moscow.

But is this polar block always advantageous? No, it is frequently a major short

wave problem. Since 1958 the number of tropical transmitters on 25 and 31 meters has at least doubled, making pleasant listening from Europe increasingly difficult with many broadcasts to North America blocked or seriously impaired. To mention just a few, Radio Ankara and Radio Denmark.

What does seriously impaired mean? Well, that's up to you as a listener-how much interference will you

Pennont from RAE (Argentina). tolerate? Apparently the average SWL won't stand for much because even with an advantageous location, Radio Brazzaville still found it necessary to switch back to 11725 kc , clear of Moscow. To sum this technical dilemma up, either there will have to be better use of channels in these key night-time bands, or SWLs will have to become better DXers.

But let's look and see what, band by band, the listener can expect this spring and summer. First, 16 and 19 meters will be open to Europe and Africa during daylight hours on the east coast, and to Asia in the morning and early evening. Out west these bands will be open to all continents around 9 am PST, to Asia and the Pacific from late afternoon until
past midnight. In every part of the U.S. there will be a scattering of Latin American signals anytime these bands are open except after 1 am EST when such stations have gone to bed.

Twenty-five and 31 meters are primarily night-time bands, open to every part of the world and subject to that tremendous interference we mentioned. Europe and Africa will be clearest late afternoons and early evenings with Asia and the Pacific gradually taking over after midnight.

Forty-one meters, not used for broadcasting in the Americas, will provide limited European reception evenings, equally limited Oriental DX toward dawn. Forty-nine meters will provide good Latin American reception during the hours of darkness until such stations sign off.

As you've undoubtedly gathered from this rundown, there is no single peak period for transmission to North America from either Eurafrica or the Orient. Usually two broadcasts are required, one for our east coast, a second for the Pacific and Rocky Mountain areas. Here, the Westerner has an advantage. Most Europeans have dual broadcasts, Asians only one, and shortly after 9 pm PST, a much better time for the West than the East. A major exception is Radio Japan (see Table A) and even this powerful station's signals are often weak in the Eastern U.S. There is not too much the Asiatic broadcaster can do about this because ideal conditions over such a path only prevail between 3 and 6 am EST and the SWL can't do much listening while asleep.

TABLE B-STATIONS TO START WITH			
COUNTRY	FREQUENCY IN KC/S	TIME (EST)*	PROG RAM
CONGO REPUBLIC	11725	2015-2100	African news (see text), World news from a French viewpoint, French language lessons and once a week, Congolese music.
UNITED ARAB REPUBLIC	15475	Daylight hours until 1830	This listing is an experiment. No English is transmitted here, and if there were any, it would be propaganda. But you will hear a fine selection of Near East music, probably reflecting the mood of this area quite accurately.
MOZAMBIQUE	11760	2230 until fadeout	This is a semi-local broadcaster on an international frequency. Take a listen and see what the Dutch, English-speaking inhabitants of Southern Africa consider entertainment.
SWITZERLAND	11865,9535	$\begin{aligned} & \text { 2030-2215, } \\ & 2315.2400 \end{aligned}$	News (governmental) and newspaper editorials from the world's one neutralist nation.
GREAT BRITAIN	Many frequencies	$1600 \cdot 2200$	This is the best of conservative Western thought and programming.
NETHERLANDS	$\begin{aligned} & 15220 \\ & 11855,9715 \end{aligned}$	$\begin{aligned} & 1615-1705 \\ & 2130-2210 \end{aligned}$	International news and topical talks, from a leading West European Nation.
WINDWARD ISLANDS	$\begin{aligned} & 15395 \\ & 11715 \end{aligned}$	$\begin{aligned} & 1600-1745 \\ & 1800.2115 \end{aligned}$	A chance to observe programming in the West Indies which blend Carib. bean, British and American.
ARGENTINA	9690	$\begin{aligned} & 2200 \cdot 2300 \\ & 0000 \cdot 0100 \end{aligned}$	South American news from at least a different viewpoint. Also covers Argentine literature.
JAPAN	$\begin{aligned} & 11800,15235, \\ & 17825 \end{aligned}$	$1930 \cdot 2015$	News and commentary from Asia's number one democracy. Limited amount of Japanese music.
AUSTRALIA	$\begin{aligned} & 11710 \\ & 11810 \end{aligned}$	$\begin{aligned} & 0714.0845 \\ & 1014.1145 \end{aligned}$	This is the only station in the Pacific actually beamed to North America. Best here is news. Remainder of program is primarily entertainment.
* Time is given on the 24 -hour clock. 1200 is 12 noon, 1300 is $1 \mathrm{pm}, 2400$ is midnight, and so on. In other words, for times past noon subtract 1200 to get Eastern Standard Time.			

Sine and square wave seen simultaneously with aird of electronic switch unit.

Single unit multiplies oscillastope usage

By W. F. GEPHART

THE unit shown in Fig. 2 combines two useful 'scope accessories: 1) an electronic switch which permits viewing of two signal patterns simultaneously (Fig. 1), and 2) a voltage calibrator, allowing the 'scope to be used for ac voltage measurements. The first accessory, the switch, permits both the input and output of an amplifier to be viewed together to check fidelity, for example. The second accessory, the voltage calibrator, gives the magnitude of a signal as the wave form is viewed.

Our unit has a special switching system that permits the calibrated voltage signal to be one of the signals seen simultaneously.

An electronic switch switches signals so fast that both images appear on the oscilloscope together, due to the persistence of the cathode ray tube. A multivibrator type oscillator switches amplifier tubes "on" and "off" so they conduct alternately. Separate signals are fed into each amplifier tube, whose output is common. This output is actually both signals, presented alternately.

Figure 3 shows the schematic, in which V1 is a twin triode multivibrator. It generates square waves, with frequencies between about 20 and 2000 cycles, as set by SW1 and R15, the frequency controls. The multivibrator drives the grids of a second twin triode (V2), which acts as a switching tube. The two plates of the multivibrator are connected to the two grids of the switching tube. Since the signals on the plates of V1 are 180° out of phase, the two halves of V2 conduct alternately. The output of the multivibrator is a square wave and quite high. Thus, when the
plate of V1a is positive, the grid of V2a is positive and V'a conducts. At the same time, the plate of V1b and grid of V2b are negative,

Frent view of the completed unit.

Back-of-panel view shows miniature pots mounted by stiff wire leads.
which prevents V2b from conducting. At the half-cycle point, the situation instantly reverses (since the multivibrator is a square wave generator), and V2b conducts and V2a cuts off.

As the two halves of V2 alternately conduct, the current they draw flows through the cathode resistors (R28 and R29) of V3a and V3b. The twin triode amplifier (V3) is two ordinary amplifiers, biased at a normal op-

Under-chassis view shows shielded lead attached to common negative lead of binding posts.
erating point by cathode bias. If the cathodes of the switching tube were not connected to their cathodes, both halves of V3 would amplify equally. However, as the two halves of V2 draw current, this current flowing through the related cathode resistor of V3a or V3b biases that half of the amplifier tube (V3) to cut-off. In this way, the two halves of the amplifier tube (V3a and V3b) are alternately switched on and off at a rate equal to the multivibrator frequency. Therefore, the two input signals take turns appearing at the out-

put terminals. But, due to the persistence of the fluorescence of the CR tube and the rapid switching rate, both signals appear on the CRT at the same time.
By adjusting the dc potential of the grid of the amplifier tubes, the position on the CRT screen of each signal can be changed. This is done by having a dc voltage from twin voltage dividers R19-R21 and R20-R22 across potentiometer R26 (Position). Adjusting this control varies the voltage on each grid by changing the grounding point.
The voltage calibrator section uses a neon bulb to get square waves at line voltage frequency. Neon bulbs ignite at a certain voltage, and if a resistor is connected in series with the bulb, the voltage drop across the bulb will be constant. The ignition voltage of the NE32 bulb used is approximately 60 v ., and gives square waves of 60 v . in this circuit. On the positive half of the cycle, the voltage increases until the ignition point (about 60 v .) is reached. The tube then fires, and starts drawing current. As the voltage increases, more current is drawn, but the voltage drop across the resistor in series with the tube (R38) holds the voltage across the tube constant. As the voltage passes the peak and decreases below the ignition point, the bulb goes out, and current stops flowing through the resistor. The voltage drop across the tube then follows the pattern of the cycle, and the process is repeated on the negative half of the cycle. In this way, fairly good square waves are obtained.
The ignition voltage is reduced to a reference level by R37, and subsequently divided

for other ranges by R31 through R35. For oscilloscope use, these levels are usually set at peak-to-peak values rather than the RMS values shown on meters.

Switch S3 and potentiometers R25 and R27 permit the output of the calibrator to be used as one of the electronic switch inputs. The usual method of using a calibrator is to note the height of the calibrator pattern, remove it and connect the signal to the 'scope, and compare the heights of the patterns. By switching the calibrator output into the electronic switch, the calibrator voltage pattern remains on the screen to be compared directly with the signal pattern.

Potentiometers R25 and R27 are required to keep conditions constant when using the calibrator through the electronic switch. If the calibrator were fed directly into Input-B terminals, the output of V3b would vary with the setting of B-gain and the amplification of V3b. Potentiometer R27 is set so the output of V 3 b is equal to the input.
Since the magnitude of the signal to be measured must not be altered in this case, potentiometer R25 is set so that the output of V3a is equal to the input, making it a $1: 1$ amplifier. This prevents the electronic switch from affecting the magnitude of the signal whose voltage is to be measured by comparing it with the calibrator signal.
The unit is built on a vertical arrangement to minimize bench space required, as shown in Figs. 4 and 5. The panel and chassis layouts are shown in Figs. 6 and 7, with pictorial wiring shown in Figs. 8 and 9. Notice that R25 and R27 are miniature units, supported

by stiff (\#16) wire leads.
The power supply and filaments are wired first, followed by the neon bulb circuit. In mounting resistors on the voltage switch (S2), be sure they will clear the neon bulb. No particular care is required in wiring, except that certain leads (as shown on the schematic) should be shielded, and care used that the grounded shield does not short out any terminals.

After wiring, output of the calibrator must be set. Connect a vacuum tube voltmeter be-

tween R37 and ground, and set the voltage switch S2 on 50 . Calibration should be for peak-to-peak voltages, so the reading on the VTVM should be .3535 of the values shown on S2. Turn the unit on, and adjust R37 so the voltmeter reads 17.7 v ., which is .3535 of the 50 v . indicated on S2. Due to the divider, other readings will be appropriate.

Next, potentiometer R27 should be set. With Calibrator Output S3 on External, set Voltage S2 on 5, and connect the Voltage terminals to the vertical input of the 'scope.

MATERIALS LIST-'SCOPE CALIBRATOR AND SWITCH
(All resistors $1 / 2$ watt and 10% unless shown)

Desig.	Description	Desig.	Description
R1, R2	51K, 5\%	C1, C2	. 001 mfd., 200 v.
R3, R4	12K	C3, C4	. $047 \mathrm{mifd}$.200 v .
R5, R6	. 22 meg.	C5, C6	25 mfd , 25 v . electrolytic
R7, R8	1 meg.	C7, C8, 69	. 5 mfd., 200 r .
R9, R10	3.3 meg.	Cl0	$40-40 \mathrm{mfd}$, 150 v , electrolytic (Mallory FP. 221 or
R11, R12	$4.3 \mathrm{meg}, 5 \%$		equiv.)
R13, R14		\$1	2-pole, 5-pos. rotary switch (Coarse Freq.) Mallory
R15	. 1 meg, potentiometer (${ }^{\text {m ine }}$ Frequenty)	S2	3226J
R17, R18	, 1 meg.	\$3	4-pole, 2-pos. rotary switch (Calibrator Output)
R19, R20	. 33 meg.		Mallory 3242J
R21, R22	15K	S4	DPST toggle switch (Power)
R23, R24	. 1 meg. potentiometer (Input A and Input B)	PL	6.3 v., . 15 amp. pilot light (\#40 or \#47)
R25, R27	1 meg miniature potentiometer (Clarostat Series 48)	SR	65 ma. selenium rectifier
R26 R28, R29	50K potentiometer (Position)	T	power transformer, 120 v. @ 50 ma., 6.3 v. @ 1 amp.
R28, R29	1000 ohm		(Merit P-3045)
R30	33K, 1 watt	NE	NE 32 neon bulh
R31	68K, 1\%	V1, V2, V3	6CG7 vacuum tubes
R32	12K, 1\%		$5 \times 6 \times 9$ " utility cabinet (Bud CU-1099)
R33	10K, 1\%		three 9-pin miniature sockets
R34, R35	4K, 1\%		neon bulb socket
R36, R39	1K, 1\%		pilot light holder
$R 37$	50 K potentiometer		8 binding posts
R38	10K		7 knobs
R40	250 ohm, 10 watt, wirewound		miscellaneous hardware

Turn both units on, and adjust the vertical gain control on the 'scope to give a pattern of convenient height, and note the height of the image on the CRT. Do not touch the vertical gain control on the 'scope after this.

Move the leads from the 'scope to the Output terminals, set Frequency controls S1 and R15 to mid-position, and adjust Position R26 so a single trace appears on the CRT. Switch Calibrator Outpat to Input-B and adjust R27 so that the trace height on the CRT is the same as the voltage trace height found above. Seal R27 shaft with nail polish.

To set R25, feed a low gain signal from an AF oscillator or other unit into the vertical input of the 'scope, adjust the vertical gain for a convenient height, and note the trace height. Then connect the 'scope to the Output Terminals instead of the signal source and adjust the Position control to get a single trace on the CRT.

Remove the neon bulb and set S3 to InputB. Connect the AF oscillator to Input-A terminals, and adjust R25 to give the same trace height as given when the signal was connected directly to the 'scope. Seal R25 shaft with nail polish and replace the neon bulb.

It will be found that adjustment of the position control will affect signal magnitudes somewhat, so the voltage calibrator section

Improved Razor-Blade Detector

- Here is a more rugged version of the familiar foxhole razor-blade "crystal" detector. The original was a piece of pencillead bridged across the edges of two razor-blades and sometimes used by G.I's in fox-
 holes to pick up local broadcasting stations. This was fairly sensitive, but it was very difficult to hold an adjustment, as the least vibration or jar caused the lead to rock and roll on the blade edges, resulting in erratic and noisy reception. For the arrangement shown, blue steel single edge or double edge blades (such as Pal razors) seem to be the most sensitive, but many other blades also have sensitive spots on them. Use with a conventional circuit and a good antenna and ground.-Arthur Trauffer.

Removing Enamel Wire Insulation

- To remove enamel insulation on magnet and hook-up wire quickly and cleanly, wrap a piece of sandpaper around the wire and give a twisting, rotary motion.-E. L. Buhner.
should be used through the electronic switch section only when approximate results are sufficient. When using the unit in this manner, the Position control should be set so the signal pattern is superimposed over the voltage calibrator pattern, and ready comparison can be made. Also, most accurate results can be obtained when the two signals are superimposed. For more precise work, the electronic switch section is not used. Output from the Voltage terminals is connected to the 'scope, the vertical gain set, and trace height noted. The leads from the Voltage terminals are removed, and the signal is then connected directly to the 'scope. A comparison of the trace height produced by the signal, with the noted height of the voltage calibrator trace will then give a precise peak-to-peak voltage measurement.
In using the electronic switch, the two signals to be viewed are connected to Input A and Input B, and the Output is connected to the vertical input of the 'scope. The frequency controls of both the 'scope and the electronic switch are adjusted for proper frequency, and the gain controls on the switch adjust the individual trace heights. By use of the Position control on the switch, the two patterns can be shown separately or superimposed (as in Fig. 1).

Pointed-End for Radio Ground Pipe

- A simple pointed end makes it easier to drive a radio ground pipe. Insert the lathe-turned point into the bottom end of the pipe to keep dirt from plugging the pipe. Holes drilled through the pipe for soil wetting reduce electrical resistance between ground pipe and soil.-Arthur Trauffer.

- When soldering on top side of radio or TV chassis, dropping solder in an open tube socket can cause trouble. Eliminate this possibility by placing a strip of wide adhesive tape over the open socket.-H. Leeper.

House-current is converted by this unit to power transistor radios. If battery is left in radio, unit will charge it while powering the radio.

0NE hour of your spare time, a few inexpensive components, and you will have not only a reliable transistor power supply capable of operating a $6-8$ transistor receiver from house-current, but a means of recharging batteries for extra hours service. The set may be off while recharging.
There is no chance of damage to the radio from too much voltage because of these design features: low current rectifiers, a low operating voltage filter capacitor, and a resistor voltage dividing network at the input to the rectifiers.
Necessarily this means a 20 -watt resistor must be used (R1, 3500 ohms) in the top leg

By GEORGE D. PHILPOTT

of the divider. During operation this resistor gets warm and should be mounted slightly apart from other components in the plastic case (as from the case itself) and several small holes for ventilation should be drilled in the case near this component.

Resistor R2, electrically connected as the bottom half of the input voltage divider, operates coolly. Current flows here only on the half-cycle when rectifier D2 is not conducting. By changing the value of this resistor a few hundred ohms the voltage output of the power supply can be varied sufficiently to meet most $9-\mathrm{v}$. receiver current-voltage demands.

The rectifiers must be capable of supplying at least a 5 -ma continuous load. International 1V1 diodes are satisfactory, but larger capacity units such as the GE 1N91, or Sylvania SR 200 silicons will give better voltage regulation under most class A loads.

The 500 mmfd electrolytic provides filtering action at the output, limiting ac ripple to approximately 0.1%, more than adequate for transistor usage. Its low (15 V.) operating voltage is a form of insurance to prevent damage to the radio in case of resistor or rectifier failure in the voltage divider network. The battery is a definite load across the output line until the power supply output is equal to, or slightly above, battery voltage (the latter condition that of recharging the battery) thus keeping the load current to an approximate constant value, preventing possible damaging surges.

As shown by the schematic, a DPST switch disconnects the output of the power supply from the receiver as well as the input voltage, preventing unnecessary battery drain by the relatively high internal resistance of the filter

capacitor and diode rectifiers when the receiver is not operating.

Locate parts to fit the plastic box that you have. Wiring is shown in Fig. 3. A typical box layout is shown in Fig. 1.

The battery-receiver snap-ons (Fig. 4) which fasten to the battery inside of the receiver must be marked to avoid placing the wrong voltage potential from the power supply across the receiver and battery effectively canceling the voltage output.

If it is necessary to operate the receiver without a battery across the load, thus stabilizing the current output of the power supply, a 2200 -ohm, 1 -watt resistor (as shown by the dotted lines in the schematic) must be inserted across the " B " eliminator output. However, for a 2- or 4-transistor radio use a 1200 -ohm resistor in this position at all times, even when using while batteries are in the radio.

A word of caution before closing: Necessarily, such an economy power supply is not electrically isolated from the ac line. A lethal shock hazard is thus present at any point

MATERIALS LIST-TRANSISTOR "B" ELIMINATOR Desig. Description
R1 $3500-0 \mathrm{hm}, 20$-w. wire-wound resistor-IRC 2D (DG)
R2 $7500-0 h m, 2-w$. metalized resistor (IRC BTB-2)
C1 500 mmfd., 15-v. capacitor (Spraque "Atom" TVA 1162, or equiv.)
D1, D2 silicon. selenium or germanium rectifiers (GE 1N91, Syl vania silicon SR 200, or International type 1 V1 selenium)
SW DPST slide switch (Wirt SW725, Allied Radio Co.) one 3-terminal tie-point
two battery snap-on's (salvaged from used batteries)
plastic case (Sprague Difilm .5-600 v. cap. 4 unit package
container. or equiv.)
at line cord and plug
where the hand might contact either side of the line. Do not connect any mounting bolts extending through the case to the internal circuitry. One last word. Transistor radios are usually small and light-easily toppled from a chair or table. Tuck your extending earphone and power supply wires well away from the reaches of small feet. A trip through the air may take the pep out of your pet receiver.

Marking Your Radio for CD Bands

- In the event of an enemy attack on the U. S., the only radio broadcasts will be made by Civil Defense on a frequency of 640 or 1240 kc . To mark your radio now for pinpoint emergency tuning, first remove the knobs and chassisholding screws and slide chassis out of cabinet, being careful not
 to ground an ac-dc chassis. Using a signal generator (your radio serviceman can do this) mark the exact 640 and 1240 kc spots on the dial with a sharp-pointed pencil. Pull the line plug for safety, and draw the lines across the face of the dial with black India ink, or white ink if dial is black, or you can stretch threads secured at each end with Duco cement across dial. Type the letters "CD" on white paper, cut out and cement on top of lines, or post a typed notice such as "Civil Defense, 640 $\mathrm{kc}, 1240 \mathrm{kc}$ " on cabinet.-Arthur Trauffer.

Solution to What-Is-It? Photo Quiz on Page 38

[^3]

5.Transisitor Auluio Amplifier

T weighs only 18 ounces complete, and yet this tiny amplifier delivers loudspeaker volume and has inputs for both low and high impedance pickups.

You can bend the $51 / 8 \times 4 \times 1$-in. chassis from a $51 / 8 \times 6-\mathrm{in}$. of sheet aluminum, or use a Bud miniature chassis (see Materials List). A 3×4-in. aluminum panel supports a tiny $21 / 2$ in. PM speaker (Fig. 1). Omit this panel if you intend to use the amp with larger speakers.

Drill all chassis holes according to the layout (Fig. 2). Mount the driver and audio output transformers on top of the chassis with $4-40 \times 1 / 4$-in. machine screws and nuts. Then fasten the three 8-lug tie strips to the inside of the chassis. These strips support the resistors, capacitors and wiring in a neat un-
crowded way. Color code the tie lugs, and you'll have a chassis that is ideal for class or lab demonstration.
Mount the 5 K tone control at the left side of the chassis, and the 10 K volume control at the right. Fit the two RCA type phono jacks to the rear of the chassis. The shells of these jacks are self-grounding, so they require only one connection to the center pin.

Next complete all of the lead connections as shown in Fig. 3. Lugs \#2 and \#7 on each strip are your terminals for all grounded leads. Then, wire in the capacitors and resistors (Fig. 4). You can use either the rectangular type of 9 -volt battery shown in Fig. 1A with connector clips at one end, or the round type with a connector snap at each end. Fasten the battery to the chassis with a strip of aluminum.

Operation. The low impedance input jack is intended for use with magnetic mikes or phono pickups. As shown in Fig. 5, TR1

MAKE ALL CONNECTIONS SHOWN HERE FIRST. THEN

MATERIALS LIST-AUDIO AMP.

Amt. Req'd. Size and Description
$151 / 8 \times 4 \times 1^{\prime \prime}$ aluminum chassis (Bud \#CB-1619) *
$13 \times 4^{\prime \prime}$ aluminum plate for speaker
1 21/2" dia. 3.2 ohm PM speaker (Argonne \#SK.65)*
1 Tl audio driver transformer, 5 K primary impedance, $3 \mathrm{~K} C T \mathrm{sec}$. impedance (Argonne \#AR 173)*
1 T2 audio output transformer, 125 ohm C.T. pri 3.2 ohm sec. (Argonne \#AR 174)*
3 TR1, TR2, TR3-GE 2 N190 transistors (or equiv, type 2N189) *
2 TR4, TR5-GE 2N188A transistors (or equiv. types 2N186A or 2N187A)*

Capacitors
$2 \quad 2 \mathrm{mfd} . / 15 \mathrm{~V}$ midget electrofytics
$26 \mathrm{mfd} . / 15 \mathrm{~V}$ midget electrolytics
$3 \quad 50 \mathrm{mfd} . / 15 \mathrm{~V}$ miduet electrolytics
$1 \quad 100 \mathrm{mfd} . / 15 \mathrm{~V}$ midget electrolytic
1.003 mfd . ceramic capacitor

1 . $25 \mathrm{mfd} . / 200 \mathrm{~V}$ miniature paper capacitor Aerovox type P82Z or equal*

Resistors
1 R1—10K pot, linear (for vol. control)
1 R2-5K pot, linear with switch (for tone control)
210 ohm $/ 1 / 2$ watt carbon resistors

Amt. Req'd. Size and Description
68 ohm $/ 1 / 2$ watt carbon resistor $220 \mathrm{ohm} 1 / 2$ watt carbon resistor $470 \mathrm{ohm} / 1 / 2$ watt carbon resistors $4.7 \mathrm{~K} / 1 / 2$ watt carbon resistors $10 \mathrm{~K} / 1 / 2$ watt carbon resistor $15 \mathrm{~K} / 1 / 2$ watt carbon resistor $33 \mathrm{~K} / 1 / 2$ watt carbon resistor 220K/1/2 watt carbon resistor $330 \mathrm{~K} / 1 / 2$ watt carbon resistor Miscellaneous
8.Iug tie strips

2-screw terminal strip
RCA type phono jacks
1 Burgess 2N6 (or equal) 9 V battery
1 pr. snap connectors for above
1 battery mto. clip
5 retainer mty. ring transformer sockets
2 push-on knobs for $1 / 4^{\prime \prime}$ shaft
1 rubber grommet

* These parts are listed in the mail-order catalog of Lafayette Radio, 165-08 Liberty Ave., Jamaica 33, N. Y.
acts as a pre-amp. When you plug high impedance reproducers such as crystal type phono pickups into the high impedance jack, they feed directly into the TR2 amplifier stage.
Transistor TR3 acts as a driver, with transistors TR4 and TR5 operating as a push-pull power amp. All of the transistors are low-
priced types, and your circuit will perform equally well with the substituted transistors shown in the materials list.

Any PM speaker with a 3.2 ohm voice-coil can be connected to the amplifier output terminals. To use speakers with 8 ohm voice coils, substitute an Argonne \#176 output transformer for the \#174 shown.

Reserve Your Copy NOW! RADIO-TV EXPERIMENTER

ON SALE SEPTEMBER 1, 1961
SPECIAL BONUS OFFER-Send in coupon now and receive at no additional charge a special set of enlarged blueprint plans for the exclusively designed battery powered transistorized portable tape recorder.

Here is your chance to make sure that you don't miss the next exciting edition of the RADIO-TV EXPERIMENTER. Our editors have already begun work on this edition and it promises to be one of our very best. There's more new electronic projects, more new challenging electronic experi-ments-more of everything that has made the RADIO-TV EXPERIMENTER the outstanding do-it-yourself book in the electronics field. Mail this handy coupon in now. We'll reserve your copy for you and send it to you as soon as it is off the press.

RUSH COUPON TODAY

AC Line Voltage Regulator

By FORREST H. FRANTZ, Sr.

THE experimenter faces a difficult challenge in attempting to provide a constant ac line voltage for critical experiments. The line voltage varies considerably due to variations in load with time, variation in loads over small segments of the power distribution system, and the voltage drop in the wiring from the line service cornection. Variations from 110 to 120 v . are common, and variations from 105 to 130 v . sometimes occur during the course of a day.

This situation is not healthy because it causes you to lose control of your test and experiment procedures. A regulated line voltage is essential for certain work. I developed an inexpensive scheme for first approximation regulation that will work beautifully and meet the requirements of most experimenters.

The regulating heart of the device is an Amperite ballast regulating tube. This tube is a non-linear resistor that maintains current constant over a considerable range of input voltage regulation. It may be thought of as a rheostat that automatically adjusts itself to a high resistance value when input voltage increases and to a lower resistance value when voltage decreases.

The use of the ballast tube, with the attendant voltage drop and the fact that for low voltage a greater output voltage is required, necessitates the employment of a step-up device. A $25-\mathrm{v}$. filament transformer connected series aiding is employed for this purpose. The internal parallel resistance loading network allows the total load to be adjusted to

OUTPUT VS. INPUT VOLTAGE FOR REGULATOR

This line voliage regulator assures constant voltage for experiments.
the proper ballast regulator tube operating current. Fig. 2 shows the voltage output vs. input curve of the regulator for the circuit shown in Fig. 3.

The circuit of Fig. 3 employs an Amperite 9A10 ballast and can handle loads rated from 30 to 100 watts. If loads no greater than 45 watts are to be handled, an Amperite 5 H 10 ballast regulator tube should be used, and the 400 -ohm, $50-\mathrm{W}$ resistor and associated switch may be eliminated.

Follow Figs. 1, 3 and 4 in constructing the 100 -watt regulator. Any available chassis may be used. The tube socket hole may be cut with a hole punch, fly cutter, or by drilling a series of small holes and completing the job with a file. The switch holes are $1 / 2$-in. dia., the outlet wire and transformer lead holes are $3 / 8$-in. dia., and all other holes are $1 / 8$-in. dia.
Make firm mechanical connections and use a large soldering iron and rosin core solder.

The internal loading system provides loads of $5,10,20$ and 40 watts controlled by individual switches so that internal loading may be varied from 5 to 75 watts in 5 -watt incre-

ments. The potentiometer provides a small continuously variable increment. This potentiometer and the associated 3 K resistor may be omitted for reasons of economy on the 100 watt version without serious limitations. The loading system is used in this way: if a $55-$ watt device is connected to the regulator, an internal load of $100-55$ watts must be provided. This value is 45 watts. The photo (Fig. 1) shows the switch settings for this condition.

The regulator is used in the following way: Observe the power rating marked on the device to be operated, and add enough internal load to bring the total load to 100 watts. Plug the regulator in, and measure the line input voltage. If it is 115 v ., adjust the internal load until the 9A10 ballast regulator has a slight glow. If the input line voltage is greater than 115 v ., the load should be adjusted for a brighter regulator tube glow. If the input line voltage is less than 115 v ., internal load should be increased until the ballast tube just starts to glow, and then decreased a small amount. This procedure is simple, and the adjustment need only be made once for a given load. The purpose of this adjustment is to establish the current at a value that will be maintained constant through the input line voltage variation range.

It should be noted that there is a small time lag in the operation of the regulator. A large change in line voltage, for example, an instantaneous jump from 110 v . to 125 v . will not be regulated instantaneously. The output voltage may rise from 115 v . to 120 v . and re-
quire a second or two to settle to the regulated value. Since most line voltage changes are not this large in a given instant, the small time lag is not detrimental to regulation.
The 100 -watt regulator may be built for about $\$ 10$, the 45 -watt for $\$ 8$. With surplus parts, the cost may be cut in half. This is the lowest cost line voltage regulator scheme available at this time. To increase the capacity of the unit to handle television sets, several tubes may be used in parallel in conjunction with a transformer capable of supplying a greater current demand.

A disadvantage is apparent in this scheme. The regulation, although it is automatic, requires an initial regulator setting for the load to be handled. And if the load demand changes substantially with time, regulation may not be too good. To overcome this objection, a saturable transformer may be employed in the regulator.

One commercial unit, the Microtran LVS153 employs this idea. This unit is capable of maintaining the voltage within $\pm 3 \%$ for line voltage variations from 100 to 125 v . ar.d within $\pm 5 \%$ for line voltages of 95 to 130 v . This regulator will handle loads up to 300 watts. The circuit is shown in Fig. 5. There are no preliminary adjustments for loads required except that one of the regulator tubes must be removed for loads of less than 200 watts. The cut out relay shown in the circuit automatically turns the regulator off when there is no load.

materials list-line voltage regulator
No, Req"d. Description

1	68-ohm resistor, $1 / 2 \mathrm{~W} ., 10 \%$
1	27K resistor, $1 / 2 \mathrm{~W}, \mathrm{l}$ 10\%
2	3 K resistors, 5 W ., wirewound
1	1250-ohm resistor, 10 w., wirewound
1	$650 \cdot 0 \mathrm{hm}$ resistor, 20 W. , wir ewound
1	450 -ohm adjustable resistor, 50 w ., wirewound (adjusted to 330 ohms)
1	2 K potentiometer, 3 w .
4	SPST switches
1.	octal socket
1	25-v, filament transformer (Stancor P-6469)
1	9A10 ballast regulator tube (Amperite)
1	triple outlet (Monowatt 1240)
1	$11 / 2 \times 43 / 4 \times 53 / 4^{\prime \prime}$ chassis
	Parts available from Allied Radio Co. or Lafayette Radio Co.

Another scheme (Fig. 6), uses two gasfilled VR tubes such as the OC3 (VR105). The tubes are wired in parallel in opposite conduction directions. The OC3 fires at 133 v . and extinguishes at 105 v . An rms line voltage of 110 v . has a peak value of 156 v . The effect of the voltage regulator tubes on the ac line voltage is shown. The output voltage is reduced, and a step-up transformer is needed. Since the ac waveform is distorted with a gaseous discharge regulator tube, this arrangement cannot be used where observation of the sine waveform is essential. A further disadvantage is that regulation is limited to a small range.

AC REGULATOR SCHEME EMPLOYING GASEOUS VR TUBES. R IS DETERMINED BY LOAD OUTPUT IS APPROXIMATELY 95 VOLTS

Amateur
 Radio

ACROSS:

1) The amateur band between 1.8 and 2 mc .
2) Total voltage of eight $11 / 2-\mathrm{v}$. batteries in series.
3) To find the average value of an ac current or voltage, we multiply the effective value by this decimal.
4) Amateur band between 7 and 7.3 mc .
5) Inductive rectance of a . 1 henry inductor at 15 kc .
6) The peak value of a sine wave is equal to - - - limes the average value.
7) Unmodulated carrier (letter and number).
8) The number of zeros represented by " k " in desig. nating resistor vaiues.
9) To obtain a General License you have te transmit code of this WPM.
10) Lower limit of the FM broadcast band in mc.
11) Ham band between 14 and 14.35 mc .
12) One dit-tour dahe, two dits-three dchs, five dahs.
13) The filament voltage of a $50 L 6$.
14) The number of digits represented by red in the resistor color code.
15) The resistance of a circuit when applied voltage is 475 v., current flow 1 amp.
16) Total resistance of two 25 -ohm resistors on series.
17) The ham band which has an upper limit of 3.8 mc .
18) The frequency of a 750 -meter signal.
19) Decimal multiplies used when convert.ng from cycles to kc.
20) One-kilowatt in watts.
21) Upper limit of VHF band.
22) A common am superhet if frequency.
23) Maximum wattage output permitted the holder of a Novice License.
24) Total capacitance of 20 mid and 30 mfd in parallel.
25) The current flowing in an ac circuit when applied voltage is 450 v., impedance 10 ohms.
26) $245,000 \mathrm{cps}$ converted to kc.
27) Upper limit in mc. of the SHF band.
28) Upper limit of the 20 -meter ham band.

DOWN:

1) Upper frequency limit of the 2 -meter ham band.
2) Ripple frequency output of a $1 / 2$-wave single phase rectifier.
3) Lower frequency limit of the 20 -meter amateur band.
4) The voltage dropped when 1 amp. Elows through $230 \cdot 0 h m s$ resistance.
5) The wavelength in meters of a 500-kc signal.
6) The total resistance of 10 -ohms in parallel with 12 ohms, in series with 66 ohms.
7) The wavelength of a $800-\mathrm{kc}$ transmitter.
8) The number of electrical degrees in $1 / 4$ cycle of an ac signal.
9) Am radiotelephony.
10) To convert ke to me, we must multiply by this decimal.
11) The number of electrical degrees that plate current tlow: in a clase B cmplifier.
12) The effective to peak value of a sine wave.
13) International distress frequency used by ships and aircraft.
14) The difference frequency produced when a 1,000 ke signal is mixed with a 50 -ke signal.
15) The output frequency of a transmitter having a basic frequency of 2017.5 and two frequency doubler stages.
16) The ouput ripple trequency of a full-wave 2-phase rectifier.
17) The total voltage dropped acrose a series circuit when applied voltage is 250 v., current flow 1 amp.
18) The upper limit of the 6-meter ham band.
19) The value of a resistor color-coded gray-brownbrown.
2915 milliamps converted to amps.
301 The maximum modulation permitted in am trans. mission.
20) The frequency in kc of a 375 -meter transmitter.
$33130,000 \mathrm{mmid}$ converted to mid.
21) The impedance of an ac circuit when applied voltage is 450 v., current tlow 1 amp .
22) The voltage applied to an ac circuit when total impedance is 65 ohms, current flow 10 amps.
23) The total inductance of 60 and 80 microhenries in parallel (no mutual coupling).
24) The conductance of a circuit when current flow is 0.86 amps , applied voltage 2 v .
25) The total wattage dissipated by two 20 -ohm, 20 . watt resistors in series.
26) The amount of voltage that will gend a current of 1 amp through 50 -ohms resistance.
27) Two dozen decibels.
28) . 055 millihenries converted to microhenries.

Solution on Page 62.

Whispers 100 -feet away, bird calls 150 feet away-these are only two of many fascinating experiments you can try with this unit

By JACK B. THORNTON

APARABOLIC reflector made of a $\$ 4$ disc sled performs like equipment used in broadcast and detective work to pick up sounds hundreds of feet away.

With a VM tape recorder and an Astatic JT-30 mike this parabolic mike detected whispers at 100 feet and normal speech at 150 feet. Bird calls were recorded at 150 feet,
tests run by Electro-Voice indicated that a good $3-\mathrm{ft}$. parabola gave a 10 DB gain, or a voltage gain of 3.16 times; and a 10 times boost in power output.

The Reflector is Made of a "Flying Disc" fiberglass sled manufactured by Kalamazoo Sled Company. You can order one through Sears Roebuck for under \$4. Remove the

handles, and locate the center of the $26-\mathrm{in}$. dish by laying a yardstick across at the widest point and drawing a line. Then lay the yardstick across again, at a right angle to the first line and mark an X at the disc's center. Drill a $1 / 4-\mathrm{in}$. hole for the threaded microphone support rod.

Make the U-shaped yoke by bending a $4-\mathrm{ft}$. length of $1 / 2$-in. electrical conduit (Fig. 2). An electrician's conduit bender makes the job easy. (You can also make the yoke of three lengths of $1 \times 2-\mathrm{in}$. llumber, Fig. 2A) Flatten the bottom center part of the U and tap a $1 / 4-20$ thread

EDITOR'S NOTE: Testing the 26 -in. dish in our backyard (Fig. 1) we found the author's claims ultra-conservative. We picked up a neighbor's whisper four houses away, and a baby crying a block and a half away. With our setup out in the back alley, our helper pased out a hundred yards counting each pace in a normal tone of vaice. At first the sound level decreased rapidly. Then from 20 paces out to about 100, there was very little change. At 110 paces out, his voice started to fade until he giot to about 130. Then strangely, he came in loud and zlear all the way out to 220 yards.

We found we could vary the performance by making minor adjustments on the mike mounting screw, and also that we could beam sound out almost 150 yards by playing the tape recorder through a small 3-in. loudspeaker substituted for the mike.
for camera tripod mounting. Also flatten the top ends of the U and drill the $3 / 18+\mathrm{in}$. holes for the swivel screws. Attach the yoke to the disc by drilling ${ }^{3} / 10-\mathrm{in}$. holes on each side for $3 / 15^{-14}$ thread x $11 / 2-\mathrm{in}$. bolts and wingnuts. Tighten these nuts just enough so that the assembly is free enough to swivel.

Your Microphone and Amplifier should have as much gain as possible. Most tape recorders will work, and allow recording while you monitor with earphones plugged into the output jack or the monitor jack. A PA amplifier will work if it has

[^4]provision for earphones instead of a loudspeaker. Your regular recorder mike can be used unless it is unusually large or heavy, Lapel mikes (see Materials List) will also do the job.

If you decide to order a mike, be sure to specify the proper impedance for your tape recorder or amplifier. Most tape recorders are high impedance, and if the figure is not mentioned in your instruction book, take the unit to an expert, or to your dealer for matching.

Make the mike support rod (Fig. 2) of a 12in. length of threaded rod obtainable at hardware stores. Solder two $8-\mathrm{in}$. lengths of $\# 12$ or \#14 bare copper wire in an X across the end of the rod. Bend the wires forward and tape them to four points around the edge of the mike, keeping the mike's face an inch or two from the end of the rod with the live side facing the disc. Then you can bend the copper wires to center the mike on the rod.
Mount the yoke on a photographer's tripod, or improvise a pipe stand and you're ready for a test. Set up the gear in a quiet location outdoors. Remember to take safety precautions in using no equipment that has a hot chassis that can be connected to either side of the 120 volt supply cord. Also avoid working on damp ground.

Screw a wingnut on the mike support rod to about 4 in . from the mike. Place a washer on the rod, and push it through the hole in the disc. Mount another washer and nut on the back side. Set up your amplifier and listen on earphones as you point to a constant sound source about 50 feet away, such as a code oscillator or someone counting in a normal voice. Slowly adjust the threaded rod in and out until you find the point at which the sound is clearest.

You'll find that the sound is more brilliant at the focus, becoming slightly "bassy" on either side of the focal point. When you find it, lock the rod assembly. No further adjustment is needed unless you change microptones. Many mikes can be improved a bit in some locations by adding a 6 - or $7-\mathrm{in}$. disc of felt or fiberglass to the dead side to block out unwanted sound (Fig. 2).

The Principle of the Sound Detecting mike is that the curved surface reflects sound waves from directly in front to a focal point (Fig. 3). Unwanted noise from angles to the side is bounced back out. The dead side of the microphone is toward the source of sound, so what you record is only by reflection.

Parabolic microphones have been also made from surplus radar reflectors which use a similar principle. Also, small pickups can be made from old style automobile headlight reflectors as well as from electric heater reflec-tors-the old type that had a bowl at least a foot in diameter.

Invert Aerial to Speed Installation

- The neighbors may think you're crazy if you start the installation of a TV or radio aerial upside down, but doing this will help you to quickly and easily align a bracket on the edge of your house. By having the mast parallel a corner of the building, one of the windows, or some other vertical part, it is easy to sight the alignment while adjusting the mounting bracket. Then you need only reverse the mast to finish the job.

Solution to Amateur Radio Numbersgram, Page 59

Opinion Meter

By C. F. ROCKEY

in favor or against, without fear of offending a friend, a co-worker, or a boss.

We suggest that you build a Thinkometer and try it at a club meeting, or in a class discussion. You may find that it gives you a much more accurate reflection of what people
 think about controversial issues. Someday perhaps, legislatures may vote electronically, with equipment much like the Thinkometer.

Construction can be completed in an evening if you use the Premier metal case (Fig. 2). It comes predrilled with a 2 -in. hole that needs only a little filing to fit the body of the meter. Drill $\overline{/} / 4-$ in. holes for mounting the meter and outside terminal strips, using these parts themselves as drilling templates.

Now take two of the five-point tie strips and make a 5 -rung ladder, using 10,000 -ohm resistors as each rung (Fig. 3). Solder each resistor lead carefully at each end. At one side of the ladder, tie all of the resistors together and bring out one

CALLED the Group Thinkometer by its inventors, this electronic device registers your opinion. You can vote against the boss, and nobody will be the wiser.

Let's say that around a conference table are gathered engineers, scientists, test pilots and designers. The project leader points to a chart and says, "All those in favor of this nozzle design vote Yes by pressing the button." Instantly, the total vote in favor is indicated on a dial.

This idea was developed and experimentally marketed by the Harwald Company of Evanston, Ill., and it was found that the "Thinkometer" does more than just speed up a voting procedure. The chairman can instantly determine the group opinicn at any moment during a discussion. And of course, the vote is completely secret, as long as each person conceals the button in his hand. The "personality factor" in voting is eliminated, and each person is free to express his opinion,
lead. At the other side solder a $6-\mathrm{in}$. lead to each resistor.
Next make another ladder assembly just like the first one, so that you have two assemblies of five resistors each. Fasten these assemblies to the inside rear of the case using $6-32 \times 1 / 2-\mathrm{in}$. machine screws and nuts. Lace the 10 individual resistor leads together into a cable and pass it out through the $3 / 8-\mathrm{in}$. grommeted hole on the right side of the case.

On the front of the case, you will find two pre-stamped knockouts for the switch and pot. Pry the holes out with a screwdriver and mount the SPDT switch with the two-lug end downwards. Then assemble the on-off switch on the pot following manufacturer's directions, and mount it on the right. Next fasten the two 10 terminal strips on the right side of the case. Mount the battery clip inside with the positive end facing the switches. Temporarily insert the meter so you can arrange enough clearance while you complete

TABLE A

Dial Marking	Scale Reading in. ma.
0	0
1	0.13
2	0.27
3	0.39
4	0.50
5	0.60
6	0.69
7	0.77
8	0.86
9	1.0
10	

wiring (Fig. 4). Since all of the resistors are 10,000 ohms, there is no need to connect them in order on the terminal strips. When all the wiring is complete, check each connection carefully. Then temporarily connect the meter, and test the operation.

How It Works. As you press more buttons, more current flows through the milliammeter, but not quite in direct proportion, since there is a constant resistance of about 500 ohms in series with the meter at all times. To test the meter, you connect the cables to the terminal strips and insert a fresh battery (polarity must be correct).

With the power switch on, throw the toggle switch to Calibrate, its down position.

MATERIALS LIST-OPINION METER

Amt. Req. Size and Description

1 meter case. Premier No. SPC. 23 (NE \#91F861)
10.1 ma. milliammeter, Triplett \#221.T, $2^{\prime \prime}$ round (NE - 55F1691)

1 1,000 ohm pot with switch, Mallory type U-4 Midgetrol (NE \#9F134 and 9F194)
battery clip, 1 cell, Keystone \#175 (NE \#28F858) togole switch SPDT. AH\&H (NE \#23F024)
10 position Jones Type 10.140 barrier terminal strips (NE \#28F708)
$10 \quad 10,000$ ohm, 1 watt, 5% resistors
$1,000 \mathrm{ohm}, 1$ watt, 5% resistor
45 lug insulated Jones \#2000 Terminals (NE \#28F683)
1 knob, bar type, bakelite Davies \#2300 (NE \#26F100)
$50 \mathrm{ft} \# 24$ double strand speaker extension wire, Belden \#8782 (NE \#36F105B)
10 push buttons Eagle Electric Type 185B. Available local electric dealers or mail order from Contact Electric Supply Inc., 2030 N. Milwaukee Are., Chicago 47, III. Cost postpaid, \$6.50.
Misc. 1 tloz. $6.32 \times 1 / 2^{\prime \prime}$ machine strews and nuts, 10^{\prime} hookup wire, solder, rubher grommet, battery
*NE nos. refer to catalog items, Newark Electronics, 223 W. Madison, Chicago 6, III., and 4747 W. Century Blyd., Inglewood, Calif.

Now turn the pot clockwise until the meter reads exactly full scale. Then throw the switch to the Use position. The meter should now indicate the number of buttons pressed as in Table A. If there is serious error, recheck your wiring. If you used parts other than those in the Materials List, you may have to do your own calibration.

After testing the opinion meter, you are ready to add the scale markings to the meter face. Working in a clean dry room, remove the meter from its housing by taking out the three tiny screws near the back and pulling the movement straight back. Remove the two screws which hold the meter dial in place, and taking care not to damage the needle, remove the dial and add the markings (Table A). You can use pencil, or India Ink and a fine lettering pen. Then reassemble. If you used the parts in the Materials List, especially the 5% tolerance resistors, your calibration will remain accurate as long as the battery is reasonably fresh.

Dual Capacitor Substitution Box

Simple unit provides over 600 values with only 36 capacitors

By W. F. GEPHART

|N SERVICING work, it is often necessary to replace a capacitor whose markings are illegible, and unless manufacturer's data is available, replacement must be made by trial and error until the correct value is found. In experimental and design work, various size capacitances must be tried for optimum results, and often matched pairs are required for multivibrator and bridge circuits. The capacitor substitution box shown in Fig. 1 will provide virtually all values needed and provides matched pairs for the most common values.
Two sets of 18 bypass capacitors are used, with separate switches, providing 18 values in matched pairs for multivibrator and bridge work. By the use of a switch, however, any two capacitors can be connected in series or in parallel, which gives a total of over 600 different capacity values that can be obtained with the 36 capacitors. Table A shows how 76 normally-needed capacity values are secured. In addition to the bypass values, the box also includes two sets of electrolytics, of voltage rating and capacity most often needed, for power supply substitution or experimentation.
As can be seen by the schematic (Fig. 2), the box consists of two 23 -position switches, which select the capacitor required. Normally, capacitors for each rotary switch are connected to a separate set of binding posts, so two isolated values can be used simultaneously. If desired, the negative side of the two values may be made common by switch S 4 . When a value other than that included in the unit is needed, the two sections are connected together, either in series or parallel, by S1, which is a 3 -position switch. When this switch is used, S4 must be in the "Separate" position, and the top and bottom binding pcsts must be used.
If at all possible, similar capacitor values for each switch assembly should be matched, so they can be used in matched pairs. High tolerance capacitors are quite expensive, but reasonably well-matched values can be secured in two ways. If you have access to a capacity bridge, capacitors from your junk box (or dealer's stock) can be checked for

A must for the service man, the capacitor substitution box tells the value when markings are illegible.
matching. Another means is to order the capacitors together, specifying manufacturer and type. While the values furnished may not be the exact value labeled, they will tend to be equally high or low, and therefore fairly well matched.
Unless special precautions are taken, and a low capacity bridge is available for checking, the lower values (below 100 mmf) should be omitted, or it should be recognized that such values will not be wholly accurate. Any instrument has certain inherent capacity, and a box such as this could have an internal capacity up to 60 or 70 mmf , which precludes a setting below that. To minimize internal capacity, special precautions, such as using porcelain insulators for the binding posts, use of a special switch in the series-parallel circuit, and careful wiring techniques must be taken. All leads should be as short as possible, and the low-capacity capacitors should not touch each other.
Even with special precautions, the minimum internal capacity of the box will be somewhere from 3 to 10 mmf per section, primarily due to the capacity of the rotary switches. If a low-capacity capacitance bridge is available, the intermal capacity of each section can be checked, and allowances made in selecting capacitors for the low values. In the unit shown, undersize or odd values had to be used for the 10,15 and 22 mmf capaci-

PANEL LAYOUT

Back-of-panel view of the capacitor substitution box.

TABLE A-SECURING VALUES

Value MMF	Series Conn.	Parallel Conn.	Value MFD	Series Conn. Parallel Conn.
5	10 \& 10		. 001	Included in Unit
10	Included in		. 0011	. 0022 \& . 0022
12	15 \& 100		. 0015	. 500 \& . 001
15	Included in		. 0018	. 0022 \& . 01 (0100
20		10 \& 10	. 002	. 0022 \& . 025
22	Included in		. 0022	Included in Unit
25	50 \& 50	10 \& 15	. 0025	. 005 \& . 005
30 33		15 \& 15	. 0027	. 0022 \& 500
33 37	50 \& 100		. 0033	. 005 \& . 01
37 40		15 \& 22	. 005	Included in Unit
40	50 \& 250		. 0051	. 005 \& 100
47 50	50 \& 0001		. 0055	. 005 \& 500
50	Included in		. 006	. 005 \& . 001
60		50 \& 10	. 0082	.01 \& . 05
65		50 \& 15	. 01	Included in Unit
70	100 \& 250		. 015	. 005 \& . 01
83	100 \& 500		. 02	. 01 \& . 01
91	100 \& 001		. 025	Included in Unit
100	Included in	Unit	. 035	. 01 \& . 025
110 125		100 \& 10	. 05	Included in Unit
125 150	250 \& 250		. 068	.1 \& . 27
150 160		50 \& 100	. 1	Included in Unit
160 200	250 \& 500		. 15	. 05 \& .1
200	250 \& . 001		. 2	.188 .1
220	250 \& . 0022		. 25	. 5 \& . 5
240	250 \& . 005		. 27	Included in Unit
250	Included in		. 33	. 5 \& 1.0
272		250 \& 22	. 5	Included in Unit
300		250 \& 50	. 68	1.0 \& 2.0
330	500 \& . 001		1.0	I.0 Included in Unit
350		250 \& 100	1.5	U 51.0
400	500 \& . 0022		2.0	Included in Unit
470	500 \& . 01		2.5	. 5 \& 2.0
500	Included in	Unit	3.0	1.0 \& 2.0
510		500 \& 10	4.0	2.0 \& 2.0
522		500 \& 22		
550		500 \& 50		
600		500 \& 100		
680	. 001 \& . 0022			
750		500 \& 250		
820	. 001 \& . 005			

MATERIALS LIST-CAPACITOR SUBSTITUTION BOX
DESIG.
DESIG.
C1, C2 $\quad 10 \mathrm{mmf}$ ceramic or disc
C3, c4 $\quad 15 \mathrm{mmf}$ ceramic or disc
C5, C6 22 mmf ceramic or disc
C7, c8 $\quad 50 \mathrm{mmf}$ ceramic or disc
C9, Cl0 $\quad 100 \mathrm{mmf}$ mica
C11, C12 250 mmf mica
C13, C14 500 mmf mica
C15, C16 . 001 mfd mica
C17, C18 . 0022 mfd mica
C19, C20 . 005 mfd rica
C21, C22 . 01 mfd mica
c23, c24 . 025 mfd metallized
C25. C26 . 05 mfd "bathtub"
C27. C28 . 1 mfd "bathtub".
C29, C30 .27 mfd metallized
C31, C32 . 5 mfd "bathtub"
C33, C34 1.0 mfd "trathtub"
C35, C36 $\quad 2.0 \mathrm{mfd}$ "trathtub"
C $37, \mathrm{C} 3810 \mathrm{mfd} 50 \mathrm{v}$. electrolytic
C39, c40 $\quad 50 \mathrm{mfd} 150 \mathrm{v}$. electrolytic
C41, C42 10 mfd 450 v . electrolytic
C43. C44 1000 mfd 15 v . electrolytic
\$1
$54 \quad 32117 \mathrm{~J}$) single pole rotary switch (see text)
S4

NOTE: This list specifies capacitors actualiy used. Similar values in paper capacitors will also work. All ratinas should be 400 v. or higher.
SPST topgle switch
$31 / 2 \times 6 \times 10 \mathrm{in}$. Minibox (Bud CU-2110). 2 knobs, 4 binding posts, porcelain insulators for binding posts (see text), rubber feet, miscellaneous hardware as required.
tors to offset the internal capacity of the section. If this cannot be done, it is best to eliminate the values of "Open," $10,15,22,50$ and 100 mmf , and use the 17 position switches al-
ternately specified in the Materials List.
In the box shown, a number of "bathtub" capacitors were used because they were available in surplus stocks. Paper capacitors will work satisfactorily, and are easier to mount. In wiring, a heavy negative bus wire should circle the area for each switch section, to permit short leads and to support the capacitors. This negative bus cannot touch the chassis, since all wiring must be isolated from the chassis to allow switching the negative leads as required. Any metal can capacitor (where the can is negative) must be insulated from the chassis also.

Figure 3 shows the drilling diagram for the front panel, using the anti-capacity lever switch for $S 1$. If low values are not used, an ordinary DPDT center-off switch may be used, and a ${ }^{15} / 22$-in. hole drilled on the left side of the panel to match the one on the right side. Also, mounting holes for the bathtub capacitors used in this unit are not shown, since the capacitors actually used may vary in individual cases.

To save bench space, the unit is designed vertically, and has four rubber feet on the bottom. A small-scale copy of Table A is pasted on the back to give the intermediate values usually required.

Low-Loss Uniform-Impedance Antenna Switchboard

tors, AM-FM receivers and transmitters may be plugged in or out of various dipole antennas for highest efficiency. Mount sockets on a hardwood baseboard and label sockets as shown. Place the switchboard for shortest leads to apparatus. Use 300 -ohm ribbon twinlead for all connections shown.
Low-Loss Uniform-Im. pedance Antenna Connectors for TV Sets

When connecting outdoor antennas to TV

DX radio hobbyists, hams and experimenters can solve the problem of antenna switching and booster in-and-out switching by the use of Mosley polystyrene 300 -ohm twin-lead male plugs, and female base-sockets (Fig. 1). This switchboard does away with the common haywire switching arrangements using knifeswitches or toggle switches, which often result in UHF losses and impedance changes due to poor insulation and capacitances in the switches. By this method, many different combinations are possible whereby boosters, ham-band preselec-
sets, insert a pair of Mosley 300 -ohm transmission line connectors in the twin-lead between window and set. Mount a 311 socket on window frame or floor baseboard, and connect a 301 plug to lead going to receiver (Fig. 2). Thus, the set may be quickly disconnected when the housewife wants to move the receiver for cleaning, or a twin-lead extension may be added easily when you want to move the receiver to another place in the room. In the latter case, connect a female socket to one end of extension, and a male plug to other (Fig. 3).-A. T.

Telephone Sentry

Transistorized telephone sentry lights with each ring of the bell and ignores other line disturbances if pick-up coil is properly located.

Now you can "see" the rings, if you can't hear them. And baby doesn't need to be awakened by the bell

By Harold P. STRAND

FF faulty hearing or noisy quarters cause you to miss incoming phone calls, a telephone sentry installed wherever you're most likely to see it will eliminate much of the difficulty.

The compact unit in Fig. 1 flashes brightly for the duration of each ring of your phone and is always ready to signal you since there is no battery to run down. When the bell rings, an inductive pick-up unit placed under the phone base receives a low energy current and passes it along to a special transistorized amplifier. This activates a relay to operate a $71 / 2$-watt, 125 -volt lamp which produces a strong light signal when installed in an automobile backup light.

For increased versatility, the unit has a side outlet. You may expect a call while working in your yard or relaxing on your terrace some distance from the phone. An ex-

MATERIALS LIST-TELEPHONE SENTRY				
No. Req'd Size and Description		No. Req'd Size and Description		
1	$4 \times 5 \times 6^{\prime \prime}$ gray hammertone aluminurn cabinet	1		m $1 / 2$-watt resistor (Ohmite)
	(Bud AU-1029.HG)	1		$1 / 2$ watt resistor (Ohmite)
1	flush power outlet receptacle with mwunting plate (Amphenol 61-F1)	3		$5 \cdot v o l t$ miniature electrolytic capacitors (CF-142)
1	3-amp, SPST toggle switch	1		c capacitor (CF-141)
1	miniature plug and jack set (MS370)			00-volt midget capacitor (Sprague 68.F17 or Dubilier MP2P1)
1	flat rubber or plastic-covered line cord with attached plug	1		pick-up coil (MS.16)
1	angle bracket-type pilot lamp assembly for miniature screw base lamp, with $1 / 2^{\prime \prime}$ red jewel (Dialco series 510.121)			above are available from Lafayette Electronics, berty Ave., Jamaica 33, N. Y.
1	6.8 -volt miniature base pilot lamp ($\ddagger 46$)	1		up light (auto supply store-see photos for type
1	120 -volt primary and 6.3 volts at 1 amp secondary filament transformer (Thordarson 21F08)	1		receptacle for lamp ($\mathrm{H} \& \mathrm{H}$ \#9154, Leviton
1	$8,000-\mathrm{hm}$ sensitive relay (Sigma 4-F)			or similar-electrical supply store)
4	diodes (CBS IN34-A or equivalent)	1 pc		16 $\times 67 / 16^{\prime \prime}$ sheet aluminum $1 / 4$ or $1 / 2$ hard for
2	transistors (RCA 2N-109)			(Try for scrap piece at sheet metal or metalwork.
2	transistor sockets (MS-275)			
2	2+terminal barrier strips (Cinch.Jones 2-140)	Misc.		125 -volt lamp, $1 / 2^{\prime \prime}$ wood stock for base, $1 / 16^{\prime \prime}$ felt
1	8-terminal chassis strip (Cinch-Jones 56.C)			-up base and recess, small piece $1 / 4^{\prime \prime}$ Bakelite,
1	3-terminal chassis strip (Cinch-Jones 53-E)			metal tubing for 23/8" collars, 8^{\prime} plastic-covered
2	2-terminal chassis strip (Cinch-Jones 51-A, 52)			tranded hookup wire (small size for transistor wiring), grommets for six $1 / 4^{\prime \prime}$ holes and two $3 /{ }^{\prime \prime}$
12 pc	$1 / 16^{\prime \prime}$ perforated Bakelite board cut to $13 / 4 \times 3^{\prime \prime}$ (MS.304)			$41 / 2^{\prime \prime}$-dia. rubber mounting feet, miscellaneous
12	flea clips for above board (1 pkg. MS-263)			and nuts

TO TRANSFORMER SECONDARY VOLTAGE TRIPLER BOARD

Compact terminal board is mounted $3 / 8 \mathrm{in}$. above chassis. It changes a-c to d-c and triples the transformer voltage to do the work of a battery constantly and without need for frequent replacement.
otherwise damage the diodes. Note that plus terminals are so marked on the capacitors and indicated by a line on the diodes.

A 10,000 -ohm resistor across the output terminals will stabilize the circuit, which has an actual load from the two transistors of only about 4 milliamperes maximum.

On the back of the board, wire soldered connections to flea clips (dotted lines in Fig. 2), using \#26 insulated wire.

Form the chassis from sheet aluminum as in Fig. 3A and drill holes. Make rectangular openings for transistors by drilling holes within marked-off areas and filing to size.

Mount chassis components with 4-40 screws (Fig. 4). Use metal tubing for spacers as in Fig. 3B to keep terminal board wiring clear and a small Bakelite block (Fig. 3C) to insulate the relay. Bend transistor socket terminals apart slightly to give more room for connections and be sure to position the diode and 6 mfd 25 -volt capacitor underneath chassis for correct polarity.
Solder all chassis wiring connections (Fig. 5) and check against the schematic drawing (Fig. 6). One mistake could ruin the transistors when power is applied. Note that mounting feet of the long terminal strip ground two terminals to the chassis. Run a short wire jumper (Fig. 5) from one end of the 100,000 -ohm resis-

SEE FIG. 9 FOR
5 PICTORIAL - CHASSIS UNDERSIDE TERMINATION OF KEYED LEADS

tor to negative terminal on the strip, making the junction on a vacant terminal.

Use \#26 hookup wire, leaving long leads for connections to points on cabinet or top of the chassis as in Fig. 4. Twist pairs of leads together for easy identification. If each wire in a pair must be identified, such as the leads to the input jack, mark one with a narrow tape band (Fig. 4).

Cabinet Assembly. Drill all box holes as in Fig. 7, modifying top center to mount a sign-type receptacle with body inside and practically flush on top, as in Fig. 8. Install pilot lamp assembly in other top hole.

Cabinet with side panels removed, showing endmounted transformer with barrier terminal strip each side and miniature jack just below. Top receptacle for Jamp is wired in parallel with outlet on right side.

On one side, fasten the transformer so that each clamping screw also holds a barrier-type terminal strip as in Figs. 8 and 9. The miniature jack goes in directly below the transformer. On the opposite side, install toggle switch in the $1 / 2$-in.-dia. hole and a rubber grommet in the small opening.

Connect the transformer primary leads (black) to barrier strip adjoining. Attach the 6.3 -volt leads to opposite strip (Fig. 9) and run \#26 hookup wires from the same posts to pilot lamp assembly. Cut off and tape up the unused transformer center tap.

Run the line cord through grommets in cabinet and chassis and knot cord to forestall an accidental tug which might break the connection. Attach cord to $53-E$ terminal strip under chassis as in Fig. 5.

Locate and attach the chassis in cabinet (Fig. 10), using \#4 self-tapping screws. Connect A, B, C, D, E, and F leads from chassis (Fig. 5) to cabinet mountings according to similar designations in Fig. 9.

Enlarge the hole in base of an automobile backup light to clear lamp socket as in Fig. 11. Insert $71 / 2$-watt lamp, locate glass dome and fasten with screws furnished. If short, use longer \#8-32 screws and enlarge chrome top holes a bit for firm assembly.

Install a $6-8$-volt pilot lamp and insert transistors. Fasten $1 / 2$-in.-dia. rubber feet underneath cabinet as in Figs. 7 and 8. Attach side panels.

Caution: Before attempting operation, give the wiring a thorough check against the schematic (Fig. 6).

Do not exceed the $71 / 2$-watt size. Most larger bulbs will not fit within the dome but, more important, the sensitive relay contacts have limited capacity. Contacts may burn and stick if overloaded. However, a second $71 / 2$-watt bulb can be used satisfactorily in an extension plugged into the side outlet.

Permanent Base for Phone Pick-Up. The telephone sentry will signal your incoming calls when the pick-up coil is placed almost any-

GLASS DOME (AUTO BACK UP LIGHT)

m ALL SCREWS AND NUTS \#8-32 DETAIL OF LAMP FIXTURE

Finish top and edge of base to blend with unit or phone, after first masking bottom of recess to keep paint out. We used a ham-

looking toward outlet end with chassis in place and all leads aftached to components. Transistors are in front of terminal board at left.
where along the telephone line or instrument case. But unless the coil is located at one particular point, the voice as well as dial calls made from your phone will also cause the light to flash.

To eliminate this problem, you can make an attractive, permanent pick-up base of $1 / 2$-in. hardwood plywood as in Fig. 1. If your phone is the new type shown, cut plywood to size, round corners and dress smooth as in Fig. 12. Cut recess with a sharp chisel to fit coil as in Fig. 13 and place pick-up under the bell magnets for least interference.

If your phone is an older type with a shorter rectangular base, shorten length to $75 / 8$ in. and start recess cut exactly 4 in . back from front. Also shape corners to a $1 / 4$-in. radius. If your phone is a wall type, tape pickup to right side of the case, near the bottom. mertone variety of gray enamel from a spray can. When dry, remove masking tape and glue felt to bottom of base and in recess.

Attach the miniature plug to pick-up coil leads as in Fig. 14. Ream a hole through head of the removable plastic cap large enough to accommodate cord, using a small rat-tail file or, with extreme care, a twist drill. Thread cord through hole. Bare wire ends but 1/10

14
MINIATURE PLUG CONNECTION
in., then solder insulated center wire to short terminal connected to end of plug. Solder metallic braid to the longer terminal, which is grounded. Snip off any stray ends to prevent touching the wrong terminal and screw cap in place over connections.

Tuning Up the Completed Sentry. When unit is turned on and line cord plugged in, the pilot lamp should light and remain on. Remove pick-up coil from base and hold it near transformer as in Fig. 15. If unit is working correctly, the field surrounding the transformer will energize the coil and light the lamp. Move coil away and the light should go out.
For more positive action, some adjustment of the relay may be desirable, but pull the line cord out before making any changes. You can receive a severe shock working around 115-volt current, especially on a grounded floor such as in a basement. Adjust side contact terminal screws to allow sufficient motion for relay armature. Allow about $1 / 2$ in. between armature and fixed contacts when moving the armature with your fingers.

If you want the relay to pull in with less current, reduce tension by turning adjustment on top of the relay in a counterclockwise direction. Retain just enough tension so that the armature will pull away positively when coil is drawn away from transformer. After a little experimentation, the relay should operate perfectly.

If the unit does not operate, you may have a defective component. A leaking capacitor across the relay would short out the relay coil and make it inoperative.
A high resistance multimeter such as a Simpson Model 260 is a handy trouble shooter. Using its 50 -volt d-c range, a test across output terminals on power supply board should read a little over 20 volts. The a-c reading at input should be about 6.5 volts. If you don't get such readings, one or more diodes and capacitors are either misplaced, wrongly wired or defective.

Move the relay armature with cord plugged in, using a thin piece of $d r y$ wood. If lamp turns on and off, the 115 -volt circuit checks OK.

Once the light appears to flash normally,

To test sentry, magnetic field around transformer will operate light upon approach of pick-up coil.

you are ready for the final test. Place the pick-up baseboard in position, telephone a friend and ask him to call you back. Then stand aside and see your first call come in. If light does not operate properly, experiment by moving pick-up coil baseboard a bit.

Signals Door Chimes Too. The sentry works equally well on door chimes whereas signaling attempts through direct wiring from chimes to a nearby lamp socket are largely unsuccessful because of the low current output of transformer. The lamp either robs the chimes of current or vice versa, depending on size of the lamp used.

The sentry light, however, flashes brightly when the inductance pick-up unit is fitted into the hollow base of the chime fixture as in Fig. 16 immediately behind and slightly below the solenoid.

Electrical Right-Wrong Game

A homemade computer with planned decisions that is simple to make and fun to use

By FORREST H. FRANTZ, Sr.

A project that youngsters will want to undertakeand simple enough so that they can-the Electrical Right-Wrong Game is both entertaining and educational.

THIS game can be constructed and assembled, complete with a number of question-answer sheets in a single evening. The only tools required are a pair of diagonal pliers, a soldering iron and a screwdriver. But before more is said about the construction of this interesting game, a few illustrations will help to bring out the principle of operation and the idea behind it.

Figure 2 is the circuit for a battery and flashlight bulb short circuit tester. If the banana plugs are touched together, the bulb lights. In effect you turn on a switch when you allow the plugs to touch. If you allow both plugs to touch a copper wire (or any other good conductor of electricity): the bulb will also light. The conductor becomes a part of a switch which controls the light bulb.

Now, visualize a board with six jacks connected as shown in Fig. 3. Suppose each jack is labelled on the left with a problem and each jack on the right with the corresponding answer. If you insert one plug of the short tester of Fig. 2 in the 2-plus-1 jack and the other plug in the 3 jack, the bulb will light. But, if you insert the second plug in the 7 or the 12 jack, the bulb will not light Similar observations apply to the two pairs of jacks.

Going a step further, and changing the wir-
ing sequence of the jacks to that shown in Fig. 4, you have a simple three-question Right-Wrong Game.
Eut we want to make it possible to vary the questions. This is done by preparing removable sheets with a varied menu of problems and questions. To change the questions, you simply
 change the problem sheet. Still, the game would become dulleven for a child-with only three problems, because he would soon memorize the board arrangement. This means that there should be at least 12 questions instead of the original three. This would require 24 jacks, and construction of the game could become expensive as well as time consuming. Here's where perforated Masonite board comes in. It has holes spaced 1 in . apart that are just the right size for 1 adio banana plugs.

To prepare the board, rule it off with nine holes to each square. Then choose a wiring sequence that uses the upper left hand hole in each square for the connection. Use \#28 dec magnet wire for the wiring, pushing the insulation back so that about $11 / 2-\mathrm{in}$. of wire is bared at each end. Double the wire back over itself and insert through the appropriate holes. Bend the wire over in back to hold it

Short checker (indicator of right answers) mounts on the back of the board with bulb visible from front.

$4+7$	$7 \longdiv { 1 4 0 }$	31-26		30	13	$\frac{39}{4}$
12×3	9×8	$\frac{7}{2}+\frac{3}{4}$		$\frac{17}{4}$	36	20
$6+2$	$3+4+6$	$12+\frac{2}{3}$		//	8	$\frac{38}{3}$
6×2	$(9+6) \times 2$	$9+\frac{3}{4}$	6	72	12	57

SAMPLE O-A SHEET
in place. It is important to have bare copper wire against the side of the hole so that the banana plug will make contact with it.

Next, bolt another perforated Masonite to the first to form a double thickness. This holds the wiring in place and conceals the wiring sequences. Be sure that holes are clear of cross wiring before you tighten the bolts. Now the switch circuit is in order, and the mounting of the short checker of Fig. 2 will complete the electrical work for the game. Figure 5 shows the short checker

mounted on the back of the board with its bulb extending far enough above to be visible from the front. The bulb's brass threading is soldered to the terminal of the battery holder, a wire lead is soldered to the center contact of the bulb. Note that the leads pass through perforations to emerge at the top of the board. The knots in the wire leads prevent strain on the soldered connections.

Make problem sheets by fastening a sheet of paper to the front of the board with cellophane tape. Use a pencil to punch the paper from the rear of the board where the active holes are apparent from the wire ends (see Fig. 5). After the holes are punched, rule off the sheet. Then enter the questions and correctly placed answers on the sheet (see Fig. 6). If you want to make a 30 -question game, use two sets of perforated boards.

"I always go to sleep with music."

Low Voltage Power Supply

This low voltage power supply is useful for testing transistor circuits, small motors and relays

By FORREST H. FRANTZ, SR.

THE experimenter's instrument inventory is incomplete without a variable low voltage power supply. This unit will supply 0 to 8 v . dc or 6 v . ac. The cost of parts is less than $\$ 10$, and the unit may be constructed in a few hours. The saving in battery costs and the versatility afforded by a variable control readily compensate for the cost and effort involved in the construction.

Converting ac line voltage to dc voltage involves two basic tasks: rectification and filtering. These are done after the transformer has set the voltage level.

In Fig. 2, A is ac from the transformer (represented by the sinusoidal wave), B is the polarized, but pulsating do after rectification and C is the ron-pulsating de after filtering.

The filter in Fig. 2 consists of an inductance and a capacitance. The inductance is series connected in one of the power supply legs and introduces inertia into the circuit to smooth the voltage just as a flywheel smoothes energy impulses f:om an engine to a rotating shaft. The capacitor (C1) action is similar to that of a spring in that it alternately stores and releases energy. The capacitor charges when voltage is increasing and discharges when voltage is decreasing or zero. Although the filtered voltage may not appear a straight line scope trace after filtering, it will be smoothed considerably (C in Fig. 2). The

The low voltage power supply being used to determine operating voltage of a relay.
output voltage would be a straight line if filtering action were perfect.

It was previously noted that the transformer sets a basic level. If the output level of the power supply is to be varied, the variable voltage divider scheme shown in Fig. 2 can do the job. The capacitor C2 provides additional filtering.
These features are apparent in the experimenter's inexpensive power supply, although some novel features have been incorporated in the circuit (Fig. 3). A 6.3 v . filament transformer (TRANS) sets the basic voltage level. A Sylvania 2N307 power transistor (T1) is employed as a rectifier by connecting the base and collector terminals together. This arrangement provides an efficient low voltage, high current rectifier. The heavy, expensive choke of Fig. 2 is eliminated, and a large but relatively inexpensive filter capacitor C 1 performs the first filter action. R1, R2 and C2 provide additional filter action for the voltage applied to the base of T2.

T 2 is connected in an emitter follower cir-

5
Top view of the low voltage power supply.
cuit. The voltage on the emitter follows and is almost equal to the voltage on the base. But the current required by the base of T2 is a small fraction of the current delivered to a load by the emitter. Thus R1 and R2 may be inexpensive low power resistances; varying the setting of R2 varies the power supply voltage.

A terminal connected to the transformer makes the ac voltage of the transformer (not variable) available from the power supply.

Under-chassis view shows parts layout and wiring.

The chassis can be bent up from a $61 / 4 \mathrm{x}$ 7 -in. sheet of aluminum or a chassis can be bought. Chassis dimensions and drilling layout are shown in Fig. 4. If you don't have drills for the larger holes, use a taper reamer or a round file to enlarge smaller holes.

Mount the transformer, switch, transistorT1, tie down strip, dial plate and control R2. Saw the shaft of R2 to $1 / 2$-in.

Mount the binding posts, A, B and C on the chassis. Insulate A and C from the chassis with fiber washers; terminal B is mounted directly to and makes electrical connection with the chassis. Enlarge the holes for A and C slightly if necessary to prevent the binding posts from shorting to the chassis. Transistor T2 must be insulated from the chassis. This is accomplished by supporting it on the base and emitter leads which should be connected to the center of $R 2$ and terminal A respectively. A machine screw and nut should be fastened in one of the transistor shell holes. The shell connects to the collector.
Wire the circuit according to Figs. 3, 5 and 6. Avoid heat damage to transistors when soldering. Connect the power supply and try it out. The dc voltage between terminals A and C should vary between 0 to 8 v . as R2 is varied, and the voltage between terminals B and C should be about 6 v . ac.

To use the power supply, simply connect the load to the appropriate terminals, and adjust R2 for the desired voltage. The dialknob relationship for $R 2$ can be chosen so that the pointer knobs give a rough idea of the voltage furnished to the load. There is some variation in the voltage for a given knob setting as the load is increased. For most accurate results, a voltmeter should be connected across the output terminals of the power supply.

The 6 v . ac output may be used for small ac operated devices or to supply heater voltage for electronic equipment using vacuum tubes. Devices requiring more than 500 ma . should not be connected to the ac terminals.

[^5]Trans 6.3 v. filament transformer (Lafayette TR-11)
S SPST switch (Cutler-Hammer 8280 K 16)
binding posts (H. H. Smith 220 Red and 220 Black)
dial plate (Mallory type 380)
small pointer knob (Lafayette KN-43)
chassis- $61 / 4 \times 7$-in. sheet aluminum or ready-made
line cord and plug
3 terminal tie-down strips

Adapting Meters for Test Equipment

How to provide built-in volt-milliammeters

in test equipment

By W. F. GEPHART

|N BUIL.DING test equipment, such as power supplies, oscillators, and so on, it is often desirable to include a built-in meter to measure output voltages and currents. This usually involves providing the correct shunt and multiplier resistances and re-calibrating the meter dial.
The minimum current that will give full-scale deflection on a meter is referred to as the basic movement. For most purposes, a $0-1 \mathrm{ma}$. basic movement is satisfactory, although higher or lower values can be used. The lower values are more expensive, and the higher values will draw more current from the circuit. Since any directly-connected meter draws current, there may be a slight variation in the output voltage of a circuit when a meter is connected or disconnected. For that reason, meters should be left in the circuit at all times when critical work is involved.

Many surplus meters are available that can be used for test equipment. If the basic meter movement is not known, it can be determined accurately with a precision resistor, vacuum tube voltmeter and a variable voltage source, as shown in Figure 2A. The voltage is adjusted to give full-scale deflection on the meter, and the voltage drop across the resistor is measured. By knowing the value of the resistor and the voltage drop across it, the current through it (hence, through the meter) can be determined by:

> (Formula 1)
full scale $\left(I_{d}\right)$
current
To determine proper voltage multiplier and current shunt resistances, the internal resistance of the meter must be known. This data is usually not furnished with meters, but can
be determined as shown in Fig. 2B. With the switch open, the voltage is adjusted to give full-scale deflection on the meter. (Unless extremely small voltages are available, a dropping resistor will probably be required.) Then the switch is closed, and the resistance adjusted to give exactly half-scale reading (without altering the input voltage). The value of the resistance in the circuit is then equal to the internal resistance of the meter, which will be referred to as R_{1}. By knowing the full-scale deflection (I_{1}) and the internal resistance (R_{1}), the voltage rating of the basic meter can be determined by:
(Formula 2) meter voltage rating ($\left.\mathrm{F}_{\mathrm{\prime}} \mathrm{~m}\right)=\mathrm{I}_{\mathrm{d}} \times \mathrm{R}_{\mathrm{i}}$
The meter voltage rating is always very small, and to provide for measurement of the voltages normally used, a voltage multiplier resistor (R_{m}) must be connected in series with the meter (Fig. 2C). The voltage drop across this resistor must be the difference between the meter voltage rating (E_{m}) and the total voltage to be measured $\left(\mathrm{E}_{\mathrm{t}}\right)$:
(Formula , 3) multiplier resistor $\left(R_{m}\right)=\frac{E_{s}-E_{m}}{I_{d}}$

Schematics (A) for determining the basic meter movement, if unknown, (B) for determining internal resistance of a meter, (C) for determining a meter's voltage rating, (D) showing connection of meter shunt, (E) showing how to increase meter voltage rating by using a multiplier and current shunt, and (F and G) circuits for determining the amount of resistance wire to use in making meter shunts.

Since the meter voltage rating is very small, it can be ignored for higher voltage readings. When E_{t} is greater than 1000 times E_{m}, use this formula:
(Formula 4) $R_{m}=\frac{E_{s}}{I_{d}}$
Current shunts are resistors that bypass all current in excess of the basic meter's range, to permit measurement of higher currents, and are connected as shown in Figure 2D. The value of a current shunt (R_{n}) to read a maximum current of I_{t} is:
(Formula 5) shunt resistor $\left(R_{\mathrm{s}}\right)=\frac{\mathrm{E}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{t}}-\mathrm{I}_{\mathrm{d}}}$
Where the value of I_{2} is greater than 100 times I_{d} :
(Formula 6)

$$
\mathrm{R}_{\mathrm{t}}=\frac{\mathrm{E}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{t}}}
$$

In applying these formulas for high current values, quite often the shunt resistor will be a small fraction of an ohm. It is sometimes easier to increase the meter voltage rating (E_{m}) by the addition of a multiplier, and then connect a current shunt across both the multiplier and meter, as shown in Fig. 2E. Using Formula 3 to determine a suitable multiplier resistor, and to establish an E_{1}, the value of the shunt for the combination resistor and meter can be determined by using Formula 5 or Formula 6, substituting the new E_{t} for the E_{m} in these formulas.
It will be found that voltage multiplier resistors will usually be values that are readily obtainable in 1% precision resistors, but that current shunts are often low, odd values. Sometimes it is desirable to wind your own
low-value current shunts, using resistance wire, and a small rod or miniature coil form. The exact length of resistance wire can be obtained by either of the circuits shown in Figures 2F and 2G. Solder one end of the wire to one end of the form, and fasten this end to one meter terminal. Run the wire through a screw-type binding post which is connected to the other side of the circuit (the switch in 2 F or the other side of the meter in 2G). Have only a short section of wire at the start, and adjust the voltage to set up the desired current in the circuit, as determined by the accurate meter in 2 F (with switch "down") or by the voltage drop across the resistor in 2G. Then, by adjusting the length of the wire (turning the voltage off and tightening the binding post screw each time), the exact resistance required to give full-scale reading with the desired current can be found. The wire can then be wound around the form and soldered at the other end to give the proper low-resistance shunt.

To illustrate the use of these formulas, assume we have a meter with a basic movement of 0-1 ma., and we have determined the internal resistance to be 50 ohms. With $I_{d} .001$ amp. and $R_{1} 50$ ohms, we find, substituting in Formula 2,

$$
\begin{gathered}
\mathrm{E}_{\mathrm{m}}=\mathrm{I}_{\mathrm{d}} \times \mathrm{R}_{\mathrm{i}} \\
\mathrm{E}_{\mathrm{s} \mathrm{n}}=.001 \times 50=.05 \mathrm{v} .
\end{gathered}
$$

Assume we want to make this meter read

Means of switching various multipliers and shunts into meter circuits: (A) when only multipliers and shunts are used, (B) for extending the voltage rating by using special multipliers, and (C) for extending voltage by using the voltage multipliers themselves.

B
ESTABLISHING NEW NEEDLE CENTER POINT

How the radius arid length of the meter scale can be transferred to the card stock pasted on the back of the dial plate.

0 to $10 \mathrm{v} ., 0$ to $150 \mathrm{v} ., 0$ to 50 ma ., and 0 to 150 ma. To get the multiplier for the 10 -volt scale, applying Formula 3 :

$$
\begin{aligned}
& R_{m}=\frac{E_{t}-E_{m}}{1_{d}} \\
& R_{m}=\frac{10-.05}{.001}=\frac{9.95}{.001}=9950 \mathrm{ohms}
\end{aligned}
$$

Since 150 v . is more than 1000 times the E_{m} of .05 v ., Formula 4 is used for the 150 v . multiplier:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{tr}}=\frac{\mathrm{E}_{\mathrm{t}}}{\mathrm{I}_{\mathrm{d}}} \\
& \mathrm{R}_{\mathrm{tw}}=\frac{150}{.001}=150,000 \mathrm{ohms}
\end{aligned}
$$

For the 50 ma. shunt, applying Formula 5:

$$
\mathrm{R}_{\mathrm{s}}=\frac{.05}{.050-.001}=\frac{.05}{.049}=1.02 \mathrm{ohms}
$$

This is an odd value, but the use of 1 ohm would only give a 2% error, so it could be used.

Since 150 ma . is more than 100 times the I_{d} of 1 ma., Formula 6 can be used for the 150 ma. shunt:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}}=\frac{\mathrm{E}_{\mathrm{m}}}{\mathrm{I}_{\mathrm{d}}} \\
& \mathrm{R}_{\mathrm{s}}=\frac{.05}{.150}=.33 \mathrm{ohm}
\end{aligned}
$$

Since this is a fractional value (that could be wound or secured by connecting three 1 ohm resistors in parallel), it might be well to see what value would be obtained in combination with the multiplier resistors we have calculated for the two voltage ranges. Applying Formula 6 again, using E_{d} 's (total voltages) of 10 and 150 v . instead of E_{m} (meter voltage ratings), we substitute as follows:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{s}}=\frac{10}{.15}=66.07 \text { ohms } \\
& \mathrm{R}_{\mathrm{v}}=\frac{150}{.15}=1000 \text { ohms }
\end{aligned}
$$

shunts on the right. In 3 B , the voltage rating of the meter is extended by special multipliers ($R_{x 1}$ and $R_{x 2}$) to get more reasonable values for shunt resistances. In 3C, the voltage multipliers themselves are used for the same purpose, similar to the case above, where it was possible to use the 150 v . multiplier in conjunction with a reasonable value 150 ma . shunt.

After determining the resistance values and switching circuit to be used, there remains only the matter of recalibrating the meter dial. The primary problem here is transferring the length and radius of the original scale to a new face. The new face may be made on a piece of light card stock glued to the back of the metal dial plate of the meter, mounted on the meter, reversed. Figure 4 shows how the radius and length of the meter scale can be transferred to the card stock pasted on the back of the dial plate.

Before removing the dial plate from the meter body, make three marks on the front of the dial, as shown in Figure 4A. The mark "A," at the top of the plate, should be in line with the center of the existing scale and the needle pivot point. The other marks (" B ") should be on either side of the pivot point, making an imaginary line through the pivot point, at right angles to the line to mark A. The distance from the needle pivot to the outer line of the scale is measured, and a pair of dividers set to the distance between major markings (usually tenths) of the existing scale. The dial plate is then removed from the base, and a white index card is glued to its back.
When the glue has dried, carefully punch a small needle hole through the card at points A and B, right up against the plate. Turn the card over and draw a line between the two B needle holes, and another line at right angles to the first line, from the A needle hole, as shown in Fig. 4B. The intersection of these
lines will be the needle pivot point. Using the distance measured, an arc can be swung from this point, giving a new scale. The center of the new scale will be where it crosses the line from needle hole A, and from this point the limits of the scale can be determined by stepping off the proper number of spaces with the preset dividers. Once the scale length and radius has been established, it can be divided into any convenient divisions, according to the value represented.

In the finished meter shown in Figure 1, the main scale is divided into ten parts, and each tenth is divided into thirds. This scale
is used for 150 v . and 150 ma . ranges, and can be used for the 50 v . range by dividing readings by 3. A secondary scale is set below, divided into tenths, for the 10 v . range. Between each tenth mark, there is a small mark down from the major scale, so this scale for the 10 v . range can be read to .5 v .

The resistor board shown beside the finished meter in Figure 1 is a convenient means of mounting multiplier and shunts. It fastens to the back of the meter, the two large holes fitting over the meter terminals. The bottom resistor is a .33 ohm , wound on a uhf coil form.

Radio Hobbyist Anagram

How good is your radio-electronics word vocabulary? This anagram puzzle will put your radio lingo to the test. Many of the words, ferms, and abbreviations
have something to do with radio parts; others with circuits or tools used for making repairs or building circuits. Solution on page 142.

By JOHN A. COMSTOCK

ACROSS

1) Wire wound on an insulator form.
2) This type circuit can, and often does, blow fuses.
3) Captures passing radio waves from the atmosphere. Also, may transmit radio waves into the atmosphere.
4) Electronic switch controlled by cur. rent.
5) A group of radio frequencies.
6) Amateur radio op* erator.
7) Electron coupled oscillator (abbr).
8) Used for soldering
9) Most radio parts give off - - -
10) Meaning to cut the top off a radio wave as done in a noiselimiter circuit.
11) The organization that regulates radio transmission in the United States.
12) Device used to measure current. voltage, power, etc.
13) Electromotive force (abbs).
14) Automatic volume control (abbr).
15) Voltage regulator (abbr).
16) The effect of capacitance to ground at the end of an antenna.
17) The - - - on which all radio parts are mounted is called the chassis.
18) Broadcast (abbr.)
19) A conductor used
to carry electric current from point to point.
20) Continuous wave (abbr).
21) Television interference (abbr).
22) Pole on which an antenna or aerial is mounted.
23) Movable iron core of a coil.
24) Unit of length equal to 1.000 th of an inch.
25) A bulb.
26) A twoelement vac. unm tube.
27) A vacuum tube or
ransistor and all other parts neces. sary to make up a circuit having one input and output.

DOWN

1) Something that flows in electronic circuits and wires.
2) A length of wire.
3) Switch (abbr).
4) A circuit that is not continuous.
5) Connection to a coil or resistor.
6) Electrical discharge through the cair.
7) Unit of capacitance.

8) Alternating current (abbr).
9) Used to select sta. tions.
10) Metal used in wires.
11) Unit of resistance or opposition to current flow.
12) Often used to in sulate bare wire splices.
13) The Edison - - -- - is the flow of negative particles of electricity (electrons) between the cathode and plate in a vacuum tube.
14) Direct current (abbr).
15) Some part used in a crystal radio set.
16) Part of an antenna array.
17) Megacycle (abbr).
18) In the year 1904, Alexander Fleming invented the diode vacuum
19) Circuit protector.
20) Wire - - - on a suitable insu. lated form is called a coil.
21) Radio frequency (abbr).
22) Center tap (abbr.)
23) The control grid is the - - - - element of a vacuum tube.
24) Short for microphone.
25) A type of wire connector.
26) Power output (abbr).
27) Vacuum tube (abbr).

Variable DC Power Supply

By ART TRAUFFER

TRANSISTOR "bugs" and other experimenters can "dial" the voltage they want merely by rotating the switch in this novel and economical DC power supply.
A small wood panel holds eight "AA" flashlight cells wired in series and mounted "bottoms up" in a circle. You select the desired voltage from $11 / 2$ to 12 in $11 / 2 v$ stages by turning a rotary switch blade which contacts the battery negative ends.
If you prefer a smaller supply such as $11 / 2$ to $6 v$, simply install four cells and leave the other four holes blank for future use. If you want an 18-v supply, bore 12 holes and put them closer together, or arrange in a larger diameter circle. In any case, be sure that space between cell ends is greater than the width of the switch blade end. The blade must never touch two cells at once as this will cause shorts which reduce the life of the cells.

The wood switch panel shown in Fig. 1 is $1 / 2 \times 4 \times 41 / 2$-in. white pine, but hardwood might be better. Center the point of a pencil compass 2 in . from the panel top and lightly draw a $21 / 2-\mathrm{in}$. diameter circle (Fig. 2). Divide this circle into eight equal parts and mark each place with a center-punch. Using a sharp $1 / 2$-in. bit, bore the eight battery holes through the panel.
Carefully ream each hole to about $17 / 32 \mathrm{in}$. or until a flashlight cell (with its leakproof plastic or paper jacket scraped off the bottom

Bottoms of small flashlight cells act as rotary switchpoints in simplified power supply designed especially for transistor experimenters.
end) presses snugly into the holes. Fine-grit sandpaper wrapped around a $3 / 8-\mathrm{in}$. wood dowel will do an adequate reaming job.

Drill a $3 / 8$-in. diameter hole for the rotaryswitch bearing, and the four $\bar{z} / 2$ in. diameter holes for the binding posts and panel-mounting wood screws. Before installing parts, label your panel with the numerals and "plus" and "minus" signs. The writer used an cld ballpoint pen.

Flexible pigtail lead to end of switch assures reliable contact. A more rigid wire soldered to bearing might deliver unstable voltage due to corrosion between bearing and shaft.

	MATERIALS LIST-DC POWER SUPPLY
No. Req.	Size and Destription
1 pt	$1 / 2 \times 4 \times 41 / 2^{\prime \prime}$ hardwood for panel
1 pm	$1 / 2 \times 3 \times 4{ }^{\prime \prime}$ hardwood for base
8	AA flashlight cells
2	
1	brass $1 / 8$-pipe nipple 1 long. able at electrical parts dealers)
2	
1	$1 / 4 \times 21 / 2^{\prime \prime}$ brass rod, threaded one end with $1 / 4$-20 N.C. ${ }^{\prime \prime}$
1	radio knob with $1 / 4^{\prime \prime}$ socket (2 setscrews preierred)
1 pc	$1 / 32 \times 1 \times 2^{\prime \prime}$ brass or hard aluminum
1	
1	compression spring about $3 / 4^{\prime \prime}$ long, to fit $1 / 4$ " shaft
1	collar with setscrew, to fit $1 / 4^{\prime \prime}$ shaft (see text
1	$5 / 8^{\prime \prime} 0$. D. washer to fit $1 / 4^{\prime \prime}$ shaft
2	washers to fit binding post screws
2	soldering lugs to fit binding post serews
2	flathead or ovalhead wood screws about $11 / 4^{\prime \prime}$ long
	$24^{\prime \prime}$ hook-up wire (insulated), solder, soldering paste

The Rotary Switch. Assembly shown in Fig. 3 includes a 1 -in.-long bearing of biass $1 / 8$-pipe nipple having a bore of slightly over $1 / 4$ in. Mount the nipple securely in the $3 / 8$-in. hole, using two brass hexagon nuts.

Cut the metal rotary-switch blade from brass or hard aluminum about $1 / 32$-in. thick, then bend and drill as shown in Fig. 4. Make the right-angle bend on the end of the blade with a slant; this gives the blade a wider sweep which prevents the contact edge from wearing a groove in the soft metal ends of the cells.

Clamp the blade on threaded end of $1 / 4 \times$ $21 / 2$-in. brass shaft, securing it between a brass hexagon nut and a radio knob (Fig. 3), then slip the shaft into the bearing. Over the free end of the shaft, slip a $5 / 8$-in. O.D. metal washer having a hole slightly over $1 / 4 \mathrm{in}$; a $3 / 4$ in.-long compression spring and a collar with setscrew. Adjust the collar against the spring for proper tension on the switch blade.

If you have difficulty in obtaining the collar, you can buy a brass coupling made for joining two $1 / 4$-in. shafts for about $15 ¢$ at radio parts houses; then saw it in half. Or, as a sub-

stitute, simply thread the end of the shaft with a $1 / 4^{\prime \prime}-20$ N.C. die and tighten two hexagon nuts against each other.

Paper labels do not have to be removed from the cells as shown in Fig. 5. You need only scrape off enough around the bottoms to push the batteries into the holes and leave some of the metal jacket exposed for direct soldering of wire leads. If labels are the "leakproof" type with plastic top, foil and waxpaper tube and metal disc bottom, remove bottom half with a sharp penknife blade.
Wiring Up. Figures 5 and 6 show how cells, switch, and binding posts are wired together with soldered leads. Mount the two binding posts in their $\frac{\pi}{3} 22-\mathrm{in}$. holes, using soldering lugs and washers under the screw heads, as shown. If screws that come with the binding posts are too short for the $1 / 2-\mathrm{in}$. wood panel, replace with longer brass screws.

Looking at the panel from the back, connect the left-hand ("minus") binding post directly to the end of the $1 / 4-\mathrm{in}$. brass shaft of the rotary switch (Figs. 3 and 5), using a very flexible pigtail lead. Then connect the right-hand ("plus") binding post to the center electrode of the cell nearest to the corner of the panel, using most any insulated or spaghetti-covered wire.
Solder all the cells in series, doing the job as quickly as possible because it doesn't do the cells any good to overheat them in spots. To speed the work cut the wire leads to right length and then "tin" the ends with solder. Scrape cells clean at places where you are going to solder and apply a little soldering paste to the spots. The paste makes the solder "hold" quickly, without overheating.

For the base, use a $3 \times 4-\mathrm{in}$. piece of the same kind of wood used for the panel. Attach panel to base with two flathead or ovalhead wood screws.
When the batteries wear out, you will have to unsolder the wire leads and hook up a new set of cells. However, transistors put such a small drain on the cells that they should last nearly as long as their shelf life.
The soldered juints and the wiping action of the switch blade, which cleans the cell bottoms, assure steady voltages.

Amplifier that Drives Speaker Directly

Front (top) and rear of amplifier. Weight saved by omission of output transformer makes unit easily portable.

By FORREST H. FRANTZ, Sr.

THIS transistorized amplifier drives a speaker without an intervening transformer. It may be used as a phonograph or microphone amplifier, with a tuner as the audio end of a receiver. The input may be high impedance or medium impedance. This amplifier uses only 3 transistors and costs under $\$ 15$.
The secret of direct speaker drive from a
single low cost power transistor is this: An intercom speaker is used, which has an impedance of 45 ohms -close to the 48 ohm output transformer impedance of the transistor. Thus steady dc flows through the speaker voice coil. The amplified output is a superimposed ac signal. The de through the speaker voice coil displaces the speaker slightly from its normal center rest position. But this displacement is small.

The output is $50-75$ milliwatts. You can get 150 milliwatts by using a 48 ohm to 3.2 ohm transformer such as the AR-503 and a speaker with a 3.2 ohm voice coil.

This heavier (by 3 lbs.) set-up requires mounting the transformer on the back of the panel. The transformer primary leads connect to 2 N 255 collector and -6 v .; the secondary leads connect to the speaker terminals. Otherwise construction is as outlined below for the direct speaker drive amplifier.
The preamplifier transistor is a high gain pnp GE 2N508 in a common emitter circuit. C2 bypasses ac to keep the emitter at ac ground without affecting the dc stabilization. The preamp output is fed to the driver, a GE 2 N 107 in a common collector circuit, through C3. This stage keeps the low input impedance

of the 2 N 255 from overloading the preamp. The driver output from the emitter of the 2 N 107 is directly coupled to the 2 N 255 . R8 provides de stabilization and a considerable amount of audio feedback.

As for the amplifier input circuit, the value of R1 depends on the application: If the amplifier is to be used with a crystal mike (Lafayette PA-9) R1 is 27 K . For a crystal phono pickup, R1 should be between 27 K and 68K.

If the amplifier is to be used with a vacuum tube tuner, R 1 should be 27 K to 68 K and a capacitor of $.1 \mathrm{mfd}, 600 \mathrm{v}$. should be provided in series with the jack and R1 if there's dc across the tuner output terminals. R1 is omitted when the amplifier is used with a

Panel-mounted components in place and wiring done, awaiting speaker and amplifier mounting.
transistorized tuner, and no capacitor is needed if the tuner has a decoupling capacitor in the output circuit. Otherwise, provide a

[^6]

Amplifier parts are mounted on Ba'kelite piece.

6
Underside view of amplifer chassis shows wiring.
series coupling capacitor of 10 to 30 mfd with a voltage rating equal to at least 6 v . if the tuner battery is less than 6 v . If the tuner battery voltage is greater than 6 v ., select a capacitor with a voltage rating crual to or greater than the tuner battery voltage.
Cut a piece of stiff cardboard according to the layout in Fig. 3. Glue it to the back of the perforated Masonite board (shortened to $103 / 4 \mathrm{in}$.). The perforations in the Masonite are centers for all of the required holes except 2 speaker holes. Locate these by fastening the speaker on the panel through the two existing holes. The input jack and volume control holes must be enlarged to $1 / 4 \mathrm{in}$. dia. Use the front panel view of the amplifier (Fig. 1) as a guide for your layout. After the panel drilling has been completed, fasten the

SPEAKER TRANSFORMER MOUNTING BRACKET BENT PARALLEL TO FRONT OF SPEAKER

8 MICROPHONE MADE OF LOUDSPEAKER
AND OUTPUT TRANSFORMER
battery holders, volume control (with shaft length cut to $1 / 4 \mathrm{in}$.) and jack on the panel and wire as shown in Fig. 4.

The transistor amplifier circuit is constructed on a miniature perforated Bakelite board (Fig. 5). Drill three $3 / 2 \mathrm{in}$. dia. holesT3 mounting holes and holes to mount the board on the speaker (one hole does doubleduty). The components are wired on the board by pushing the component pigtails
through the perforations and soldering.
Bend the transformer mounting bracket on the speaker parallel to the front of the speaker. Fasten a $6-32 \times 3 / 4-\mathrm{in}$. machine screw with a nut in each of the two holes on the transformer mounting bracket. Set another nut on each of these screws so that the circuit board will be supported about $1 / 4 \mathrm{in}$. above the bracket (Fig. 7). Make the final connections between the circuit board, front panel wiring and the loudspeaker.
If you want good volume with microphone, use one with an impedance of 1 K to 2 K . The Shure MC11 (about \$7) is ideal. Or a microphone can be made of a loudspeaker connected through an output transformer (Fig. 9). If either of these microphones is used with the amplifier, omit R1.

Quick Wire Connections

- Almost any wire can be quickly plugged into a pin jack in radio and electronics test and experimental work by altering binding post as shown below. Us-
 ing a binding post with non-removable tops and molded-in screw-shanks (such as made by Eby), simply file the screw-shank to the same diameter as a phone cord tip.-A. Trauffer.

Answers ALL Servicing Problems QUICKLY Makes You Worth More On The Job!
Put money-making, time-saying TV-RADIO-ELECTRONICS know-how at your fingertips-examine Coyne's all-new 7 -Volume TV-RADIO-ELECto easier TV-Rhadio repair time saving, practical working knowledge that helns you get the BIG fnoney: How to install, service and align ALL radio and TV sets, even color-TV, LHF, FM and transistorized equipment. New photo-instruction show's you what makes equipment "tick." No com. mediately math or theory-just practical facts you zan put to use immages; 1200 diagrams: 10,000 facts!
SEND NO MONEYI Just mail coupon for T-Volume TV.Radio Set on 7 -Day phy only $\$ 3$ in 7 days and $5: 3$ per month uritil $\$ 272 y^{5}$ plus pustage is paid. Cush price only $\$ 24.9 \frac{5}{3}$. Or return set at our expernse in 7 days limited, no aet fow!
*LEARNED mORE FROM THEM THAN FROM 5 YEARS WORK?" -Learned more from your first two volumes than from 5 years work." -Guy Bliss, New York
Swall set for either the serviceGonech should have one Every service - Mo. Should have one" "-Melvin

 CHIAL! Shuws huw to cut servicing time by reading pleture-pretternox plus
zinhemase diakrams for many Tv and adto sects, woums fror many TV and coupon TobAy!
Educätional Eook Publishing Divizion
ELECTRICAL SCHOOL

Chisente 2. IHlinois YOL. I-EVERYTHING ON TV. VOL. 5-EVERYTHING ON TY RADIO PRINCIPLESI 300 pager TROUBLESHOOTMM! Covers all of practical explenations; hun- types of ents. 437 pages; Itlos dreds of illustrations.
YOL. 2-EVERYIHING OM TY.
RAOIO-FM RECEIYERS: pages; fully iflustrated.
YOL. 3-EYEAYTHING ON TY. PADIO CIRCUITS! 336 pages: hundreds of illustrations, circult diagrams.
VOL. 4 -EYERYTHIMG ON SERY. ICIMG INSTRUMENTS! How they work, how to use them. 368 pagea; Illutroted. trations, diagrans.
YOL. 6-TV CYCLOPEDJA: Quieh ond concise enswers to TV probtems in otphabetical order, in. cluding UHF, Color TV and Transistors; 868 peges.
YOL. 7-TRANSISTOR CITCUIT HANDBOON! Practica! Referemet covering Transister Applentions; 410 over 200 Ciralt Diagrams: 410 pages.
BOOKS HAVE BRAGITT, VInY CLOTH WRSHABLE COVEDS

Wind-li-Yourself Brightener

You can make this picture tube brightener in an hour, install it and have plenty of time left to enjoy those late shows on a brighter TV

By GEORGE D. PHILPOTT

The CR tube brightener usually cures dimness, when the dimness is caused by low cathode emission.
effects as trap is moved slowly.

Many series-string TV's use a thermistor (Glo-Bar) component to prevent filament burn-out from warmup surges. Failing in its thermal function, this protective device may be the cause of sub-normal filament voltages throughout the receiver, resulting in dimness. If possible, check filament voltages when this part is suspected.

If you've ruled out the foregoing causes of dimness, low emission may be the cause of dimness and you can try a brightener.

First, find out whether your TV is a series-string job, or has parallel-wired

THIS autotransformer-type brightener is made by winding a few hundred turns of magnet wire on the core-form from a small, audio output transformer. After a tube has 1000 or more hours service, cathode emission drops, and the required number of electrons fail to reach the phosphorous screen. Emission from a spent cathode can be increased by raising the filament temperature of the tube. The brightener does this by raising the CRT filament voltage f:om 6.3 v . to 8 v .
There is a risk, depending on the applied voltage increase, age of the tube, gas content (leakage), and the condition of the tungsten filament wire. Many tubes give a year of highly satisfactory service after a brightener has been installed. One tube out of twenty, will give a disappointing few hours or days of brightness. The brightener should be used only when causes of failure other than lowered emission are ruled out.
For example, troubles originating in the high-voltage section, such as an open currentlimiting resistor in the anode lead, often are responsible for dimness. A weak rectifier will cause dimness and can be verified by advancing brightness control-if picture enlarges, rectifier is bad. Another cause of dimness is a gassy picture tube, which can be discovered by adjusting ion trap and checking picture for distortion and defocusing
tube filaments. The coil specifications of the brightener depend on the filament arrangement. If in doubt, check the tube-chart pasted on the back or inside panel of the receiver, and compare tube prefix numbers. The first number designates tube filament voltage. $6 \mathrm{~W} 4,6 \mathrm{BG} 6,6 \mathrm{~K} 6,6 \mathrm{BC} 5,6 \mathrm{AL} 5$ are tubes with 6.3 v . filaments. If set uses mostly

SERIES - STRING WIRING

5 SERIES - STRING SCHEMATIC

these types, it probably is a parallel type receiver. TV's with mixed filament-voltage pre-fixes-3AU6, 5U8, $25 \mathrm{~W} 6,17 \mathrm{BQ} 6$-are seriesstring. Receivers with a power transformer are always parallel connected.

Next, locate a small audio output transformer that has been salvaged (preferably $11 / 4 \times 1 \times 5 / 18 \mathrm{in}$. lamination size) and begin. First, remove the core from its housing and slip the coil from the iron. Strip, or unwind coil down to the inside form. With this insulated sleeve fastened over a small tapered stick (winding handle), secure a 5 -in. \#28

TRANSFORMER THEORY

An autotransformer is basically the simplest type of transformer. Primary and secondary windings are combined and form a single, tapped coil. By reversing two leads, an auto-iransformer may be used either as a step-up voliage device or a step-down transformer. One disadvantage is that it will not provide complete isolation belween the primary and secondary circuils, because of the single winding. In Fig. 6, parallel operation, the 300 furn coil section is the primary. As voltage is applied to this winding, a magnetic flux builds in the primary and induces a voltage into the secondary, in direal proportion to the number of turns of the secondary. Because the single winding is, in effect, two coils coupled together and seriesaiding insofar as voltage is concerned at the secondary ferminals, this induced voltage adds to the input voltage of 6.3 v . and, being approximately half of 6.3 v . (less fransformer losses which run comparatively high for this type unil) we get about 8 v . outpul.

If tronsformer is connected to a series-string receiver, Fig. 5, a different induction arrangement becomes apparent. Effectively in series only with the resistance of the picture lube flament, our small, 150 -iurn coil section now becomes the iransformer primary. The larger, higher impedance winding (but hoving considerably less inductive reactance because of this flament resistance) now becomes the secondary. Induction from the primary adds to the voltage flowing through the 300 turns and thereby supplies the tube with a required voltage increase.

If possible, test the applied AC Alament voltage from the brightener. It should not exeeed 8.5 v . AC. The possibility of winding error or high line voltage makes it imporiant to tube life that you lower too-high valtage by removing furns from the 150 turn coil section. Usually, 20 or $\mathbf{3 0}$ turns is sufficient. If voltage seems lower than expected, a fow furns may be added to the same winding.

If you care to check the de resistance of the coil sections before connecting to receiver, the parallel-type winding (${ }^{\prime} 27$) measures approximately .8 ohm; primary, 3.5 ohms. The series-string coils are: primary, 2.5 ohms, secondary 3.5 ohms.
or \#29 enamel-covered magnet wire lead to the form with Scotch tape and start the winding. Scramble-wind 300 turns neatly without actually layer-winding, then make a loop-tap 5 in . long (C lead, Fig. 3). At this point, if brightener is to be used on a series-string type receiver, continue and wind another 150 turns and bring out the end lead. However, if unit is for a parallel filament hook-up, the wire size is changed at the tap to the slightly larger \#26 or \#27, insuring adequate cur-rent-carrying capacity of the coil. Depending on the actual wire-sizes involved, coil-form width, and neatness of turns, you may have to secure the winding bulk with cement to

	MATERIALS LIST-CRT BRIGHTENER
No. Req. Description	
1	Used audio output transformer. Lamination size, approx. $11 / 4 \times 1 \times 5 / 16^{\prime \prime}$ (50L6GT type)
100 ft .	For Series Brightener: \#28 or \#29 enameled copper magnet wire
75 ft . 50 ft .	For Paraliel Brightener: \#28 or \#29 enameied copper magnet wire \#26 or \#27 enameled copper magnet wire Scotch tape, coil dope, speaker cement, etc.

overcome a tendency of underneath turns of slipping loose at the sides. After completing the required number of turns (450 total, tapped at 300), tape end lead to winding body and apply insulating varnish, coil dope or speaker cement.

Figure 2 shows a completed coil ready for insertion on the center-leg core laminations. The assembled transformer should be inspected to make sure that the outside housing clamps the I laminations securely to the E core pieces. A few additional drops of cement between the coil and laminations will prevent vibration-hum during operation.

A satisfactory method of mounting the brightener is shown in Fig. 3. When convenient, the brightener may be taped to the picture tube base by wrapping several turns around each. Figs. 4 and 5 show brightener wiring details and schematic for series-string operation. Sets with a power transformer are connected according to the schematic, Fig. 6.

Ham Radio Anagram

Calling all hams, SWL's and everyone interested in amateur radio. Think you can chop through the QRM and work this anagram puzzle? Read each
clue very carefully-some are sure to give you some static! The empty blocks are to be filled with words, abbreviations or Q-signals.

Solution on Page 120

By JOHN A. COMSTOCK

ACROSS:

1) Something every ham must learn to send before he can obtain his ticket.
2) A type of antenna commonly used by amateurs.
3) A type of CW key.
4) Capacitive reactance.
5) A combination of antennc elements.
6) A type of transmitter circuit often used in ham rigs.
7) A tap in the center.
8) Opposite of high. voltage.
9) \boldsymbol{A} directly excited antenna element.
10) CW that is interrupted.
11) A grid that's floating.
12) It flows in a vac-uum-tube's plate circuit.
13) The oscillator found in a superhet.
14) Entries are made in it.
15) Plate load resistor.
16) "From."
17) Phase modulation.
18) Not an old lady.
19) Calling all stations.
20) A rig moved about by cutomobile.
21) The letter "A" in code is dit- - (supply missing letters).
22) A type of modulation.
23) A point of minimum voltage or current.
24) An international time standard.
25) Break.
26) Sent three-times,
it's the CW salety signal.
27) A national defense organization.
28) A type of oscillator.
29) An interference which modulates a signal undesirably.
30) Grid potential.
31) Part of an antenna array.
32) Not desirable in the output signal of a transmitter.
33) Three times, dah dit dit dah.

DOWN:

1) A type of transmission line.
2) A current that flows in only one direction.
3) Abbreviation for the kind of current described in No. 2 down.
4) Some hams work - - - $\overline{C W}$ 一,
5) The power that a

transmitter delivers to its antenna.
6) An antenna with high - - - is better for DXing than one with low
A $\overline{\text { ham's wife }}$
7) A ham's wife.
8) Interference to standard broadcasts.
9) Interference to television.
10) When you want to work several bands easily, a - - is a must.
11) Amateur radio gear.
12) Plate potential.
13) Part of an antenna.
14) What you are doing when you pound a bug.
15) Wires used to measure short wavelengths.
16) Not a young man (but could be).
17) A pure waveform.
18) A low voltage lamp the size of a certain green vegetable.
19) What a dot (*) sounds like.
20) A type of oscillator.
21) Hams talk into one.
22) A type of switch.
23) A definite length of time.
24) Tube with a break. able envelope.
25) A broadcast lis. tener.
26) Often it is used as a volume or tone control.
27) Transmitting only one sideband.
28) An amplifier that boosts power.
29) Thank you.
30) Long distance communication.

Nerve Tester

 Here's a gadget that'll find who's got the

 Here's a gadget that'll find who's got the steady nerves in your crowd

 steady nerves in your crowd}By FORREST H. FRANTZ, Sr.

THE principle of operation of the nerve tester is extremely simple. The circuit is shown in Fig. 2. A weight is suspended on a short length of bare wire, forming a pendulum. The wire passes through a hole in a small metal bracket. This bracket and the wire which hold the weight form the two terminals of a switch. The pendulum will make contact with the bracket if the person holding the case is the least bit unsteady.

The pendulum switch is connected in series with a battery and a light bulb. The battery consists of two penlite cells connected in series so that the bulb will light brilliantly whenever the pendulum makes contact. The pendulum is skewed away from the case sides (Fig. 3) to make the correct orientation of the case more challenging. The lower bracket may be turned to decrease the effective size of the hole through which the pendulum passes and thus increase the sensitivity of the tester. The switch CS is a clip-switch consisting of a Mueller Minigator clip which is fastened to the positive battery holder terminal when the tester is not in use. Thee stiffness of the hook-up wire is sufficient to keep the clip from touching the battery when it is disconnected even under severe jostling.

The unit can be constructed from parts costing about 75 c. The cost can be cut to about 25 if only one penlite cell is used and no battery holder. This may be done if the connections to the penlite cell are soldered. In this event, the minigator clip lead is soldered to the battery, and the clip connects and disconnects on the lower bracket.

Place the battery holder in the case in the approximate position indicated in Fig. 4, and make mounting holes by passing a heated ice pick through the case. The holes for the pendulum supporting bracket and the lower contact bracket are made the same way. (Drilling may crack case.) The positions for the bracket holes are not critical, but try to place them $11 / 2$ to $13 / 4 \mathrm{in}$. apart. After the plastic around the case holes has hardened, trim the edges with a pocket knife.

Next, fasten the battery holder and the brackets to the case The heads of the mounting screws can be placed on the inside of the case to prevent screws' interference with the pendulum. The brackets are available at hardware or radio stores, or you can make your own. They should be $1 / 4$ - to $1 / 2$-in. wide with each side of the angle $1 / 2$ - to $3 / 4-\mathrm{in}$. long.

The nerve tester-challenge to the young in heart.

The weight is suspended on the bare wire, which passes through the hole in the lower bracket. If wire touches bracket, bulb lights.

The holes should be $1 / 8$-in. dia. or smaller, for
best results.
Now, solder a piece of wire about $11 / 2$-in. long to one of bulb's terminals and a similar length to the other terminal. Connect one of these leads to the battery holder; connect the other to the pendulum support bracket. Turn the battery holder connection lugs at the other end of the battery holder toward each other and solder them together. Solder a 2 -in. length of hookup wire to the Minigator clip

Back view shows mounting details.

```
                MATERIALS LIST-NERVE TESTER
Desig. Description
Desig. * flashlight bulb (GE ##14)
L * flashlight bulb (GE #14)
    2-cell battery holder (Lafayette MS-138)
    plastic case 35/8 \times25/8\times1 in. (Lafayette MS-159)
    minigator clip (Mueller 30)
    2 brackets and hardware (see text)
    Get a bulb with a brass base. Some bulbs have aluminum
        bases and cannot be soldered readily.
```

and fasten the other end under the lower contact bracket mounting screw.

The pendulum wire should be sufficiently stiff and rugged to allow easy fastening and to assure long trouble-free operation-\#28 is a good gauge. Solder a $31 / 2-\mathrm{in}$. length to the suspending bracket, but go easy on the heat, or you'll melt the plastic case. Pass the wire through the lower contact bracket, and fasten the weight. This weight could be a nut, a washer or a fishing sinker. Insert the batteries in the holder and adjust the lower bracket for the desired sensitivity. Shut the case and you're ready to test your nerve.

Which Bulb Burns Brighter?

- Connect two ordinary cleattype lamp sockets in series as shown in diagram, then screw a 100 -watt bulb into one, a 25 watt bulb into
 the other. Now, before you connect the setup to a 115 volt $a-c$ outlet, which of the bulbs do you think will burn brighter?

Most people instinctively choose the larger lamp, but the experiment proves otherwise. A bit of thought reveals the reason. In a series circuit, the identical stream of current flows through all parts. Thus, whether the current is large or small, it will be the same through both bulbs. However, the voltage across each lamp will be proportional to its resistance. The 25 -watt bulb must have the higher resistance, since normally it consumes less current than the 100 -watter when supplied by the same line voltage. Therefore, in a series circuit, the lowest-rated lamp burns more brightly since it receives the greater voltage--C. F. Rockey.

Kink for Soldered Joints

- When soldering wires and cables in a radio receiver, immediately after the iron is removed from the soldered joint, paint the joint with lacquer-thinner, using a small brush. The rosin flux will evaporate immediately, leaving a clean joint. Using this kink, a coldsoldered joint will immediately show up, preventing future trouble.

Trouble-Shooting Interference

How to discover the source and eliminate noise in a radio or amplifier
By forrest h. frantz, Sr.

PUT a new LP on the phono and slump into the easy chair. The music is fine, but what's that d-_ hum? The disturbing sizzle of a TV, the gasping of a hoarse, distorted radio or TV and the whine of a humming radio are cther manifestations of interference. Fortunately, most of these troubles are easily recogrized and fixed.

We usually differentiate interference as either hum, buzz, squeal, noise, distortion or station interference. Sometimes these are due to faults in the gear, sometimes to external sources. Frequent internal causes are: open, shorted or leaky capacitors, intermittent connections, intermittent short circuits, defective tubes and dampness. The antenna-ground system is also a frequent trouble spot. Externally caused disturbance is often traced to switches, thermostats, advertising signs, motors, radio stations and high voltage lines.

Let us look, first, at hi-fi audio amplifiers, remembering that this discussion is applicable also to the AF section of radios. Then we will cover radios specifically.

Hum introduced in first stage is amplified more than hum intraduced in subsequent stages.

Audio Amplifiers. Amplifiers may exhibit interference in the form of hum, buzz, squeal, noise or distortion.

Hum in an amplifier is usually caused by insufficient shielding of the amplifier input circuit. The various stages of an amplifier have individual gains, which multiply as shown in Figure 1. The first stage usually has the highest gain. Thus, the gain from the first stage to the loudspeaker is much greater than the gain from any succeeding stage to the loudspeaker. If even a small portion of an amplifier input lead is unshielded, it acts as a capacitor to the ac line though it may be many feet away. A small amount of alternat-
ing current can therefore feed into the amplifier. The high gain of the amplifier multiplies this minute voltage into a sizeable signal at the loudspeaker.

Hum due to poor input shielding is easily recognized, since the loudness of the hum will decrease as the volume control setting is decreased. There are several steps to pinpointing and curing this. First, dress the input lead close to the chassis. The input lead can be traced from the input connector and usually goes to the high volume control terminal (possibly through a capacitor) as shown in Figure 2. The center terminal of the volume control goes to the grid of the input tube (possibly through a capacitor). In some amplifiers, a preamp stage precedes the volume control. If the input tube is glass, a shield may cure hum. Next, check the shell to chassis ground connection of the input connector. Then check the connection from the external input plug to the braided shield which encircles the unit's input lead (Figure 3). An open can cause hum.
Sornetimes, in cheap construction, unshielded leads are used, and should be replaced. An open from shield to ground or at the chassis connector will result in loss of gain, because the shield is frequently the chassis ground return conductor. Finally, check the ground connection at the remote input device and look for short lengths of

Leads likely to pick up hum. Remedy is to substitute shielded coble, dressed clase to chassis.

3. A broken shield or disconnection from plug ground or a faulty or open input jack can cause hum pickup. 4. Filter capacitor (C1), which if open, causes hum in amplifier power supply. Leaky power supply output filter capacitor (C2) will cause hum or squeal.
input lead which may be unshielded.
Hum which occurs at all volume settings is often due to defective filter capacitors in the amplifier power supply, as shown in Figure 4. (The rectifier tube is connected to the power transformer and the high voltage electrolytic capacitors.) To test the filtering, bridge a 10 mfd . electrolytic (watch the polarity) across C . The voltage rating should be equal to or greater than that of C 1 . If hum decreases, you're on the right track. Disconnect C 1 , and connect a replacement capacitor of the same or greater voltage and the same capacity in the circuit. If the hum is substantially reduced, replace Cl permanently. Otherwise, connect the original C 1 back into the circuit, and bolster the filtering action with the 10 mfd . capacitor that scored the original improvement. If this isn't enough, try a 40 mfd . capacitor of adequate voltage rating across C2.
Caution! Don't work on an amplifier that has been used in the last few minutes-wait until capacitors discharge.
If you still haven't cured the hum, check for cathode to heater leakage in tubes, poor connections to chassis ground within the amplifier, and open or partially open capacitors elsewhere in the circuit (can usually be found by bridging with another capacitor).

Squeal in amplifiers may be due to open filter or bypass capacitors, which can be traced by employing the capacitor bridging technique described previously. Another cause of squeal is feedback caused by a high level signal lead being too close to an early amplifier stage lead-shorten the lead and dress it close to the chassis.

Noise may be due to a bad volume control, a microphonic, shorted or intermittent tube (which can often be located by tapping with a pencil eraser) or a rubbing loudspeaker voice coil (most readily checked by substitution of another speaker). Noise can also be caused by an intermittent capacitor (thump and jiggle the suspect), by poor connections which may be loose or intermittently shorted,
by intermittently shorting output or interstage transformer windings or by arcs across rectifier or output tube sockets (usually indicated by a charred section of tube socket or a visible arc during operation).

Distortion in amplifiers is usually caused by leaky coupling capacitors (C4 in Figure 5). Coupling cápacitors may be checked by substitution, but this requires disconnecting one end of the original capacitor. Other sources

Plate bypass capacitors (C3 and C5) or coupling capacitor (C4) if leaky can cause distortion.
of distortion are leaky power supply output filter capacitors (C2 in Figure 4) and leaky bypass capacitors. Plate bypass capacitors (C3 and C5 in Figure 5) are likely offenders. In each of these cases, one end of the original capacitor must be disconnected before substitution of a similar capacitor is attempted. Another frequent cause of distortion in amplifiers is a gassy tube. Output tubes are the usual offenders.

Rodios. Radios are subject to all the amplifier disturbances described, and the same solutions apply. In addition to amplifier troubles there are other possibilities.

Hum caused by some strong local radio station can usually be cured by connecting a $0.05 \mathrm{mfd} ., 600 \mathrm{v}$. capacitor from one side of the ac line to chassis ground as shown in Figure 6A. If the set is ac-dc (no power transformer), the capacitor should be connected from the set side of the switch to the opposite side of the line as shown in Figure 6B.

Buzzing is due to external sources such as neon signs, motors, or high voltage lines.
Squeals may be caused by any of the things already discussed under audio amplifiers or may be due to open bypass capacitors, long unshielded RF or IF leads or other causes. Long leads on IF transformers are frequent causes of squealing.

Noise may be due to internal or external trouble. If the set uses an external antenna,

Suppressing a strong local station by connecting .05 m fd capacitor from one side of line to chassis ground for ac radio (a) and from set side of the switch to opposite side of line for AC-DC radio (b).

Suppressing an unwanted station with a wave trap, a tuned circuit across the antenna greund terminals (a) or in series with the antenna ferminal (b).
disconnect it, and short the antenna terminal to ground. If the noise persists, it's in the receiver. Arc in the power supply, intermittent connections almost anywhere in the set or defective tubes are possibilities. Next, check the antenna by disconnecting it and connecting 20 ft . of wire to the antenna terminal. Noise in an antenna may be due to poor or corroded connections at the antenna, lightning arrestor, feed-in to the building, a break in the lead-in under the insulation or to the antenna or lead-in contacting metal such as the storm gutter.

Assuming noise to be external to the receiver, a capacitor connected as shown in Figure 6A or 6B may be helpful if your receiver doesn't already have one. If this doesn't help, try tracking down the external causes
which were mentioned early in this article. For example, if noise occurs around meal trmes, it may be an electric stove or other appliance. Or, say the noise occurs only in winter-could be the thermostat.

The type of noise your receiver picks up is also a clue to its origin. Switches, relays, thermostats and poor electrical connections cause intermittent noise. Motors and industrial and medical electronic equipment produce a buzz or whine in nearby radios. High voltage lines produce a hum or buzz with a super-imposed crackle in radios. High voltage line noise is continuous, and the crackling is worse in damp weather.
A battery receiver, that has automatic volume control (which you must disconnect for this purpose) and a directional loop antenna, is helpful in tracking down noise.
When the source of noise is located, a commercial filter installed at the source of the noise will usually cure the trouble. These filters usually consist of capacitors or capacitors and inductors.

Distortion is usually due to AF section trouble. Refer to the previous discussion of distortion in connection with audio amplifiers.

An interfering radio station can be eliminated by a wave trap, a tuned circuit across the antenna-ground terminals (Figure 7A) or in series with the antenna terminal (Figure $7 \mathrm{~B})$ tuned to the frequency of the interfering station.

Curing Tape Recorder Noise

cHATTER, squeals, hum and fading are the symptoms of minor mechanical ills that you can cure without taking your tape recorder in for repairs.

Mystery Chatter. Here's an example of trouble that had both the owner and a service technician stumped. Whenever the tape was running they heard a mysterious chatter, but when the machine ran without tape on the reels the noise ceased. Finally, with an improvised "stethoscope" made of a cardboard mailing tube, they pinpointed the sound in the counter. Even though the moving parts were plastic, they rattled and chattered until the steel counter shaft was smeared with a bit of Vaseline petroleum jelly.

Poor Tape Gums Head. Sometimes the trouble may not even be in your recorder. The culprit may be poor tape, hard to spot when spliced in between lengths of superior quality tape. Some bargain tapes shed their red-colored coating, and gradually your recording heads gum up with a deposit. The effect is a gradual drop in recorded volume until you may not be able to record at all. The same tape coating residue deposited on the pressure pads and roller may cause squeaks. If the dirt won't come off with a clean, moist cloth, use alcohol or tape-head cleaning liquid (Fig. 1).

Pad Squeak. Dry pressure pads, even if they are clean, can cause squeaks. Isolate your noise by gently lifting the pad away from the tape as it passes the recording head. If the pad was causing it, touch it lightly with a tiny bit of petroleum jelly.

Ratio Flutter. Sometimes the difference in ratio between the O.D. and hub diameter of a 7 -in. reel may cause a speed variation as you wind from a full reel down to an almost empty one. The effect is flutter and wow, and the answer is either to use a lot of leader ahead of your recording, or the new "flutterfree" reels that have larger hubs.

Rubbing, Stalling, Spilling. Bits of broken tape, dust and dirt will collect around the head and top mechanism to cause soft rubbing noises. A remedy is to cautiously take off the top cover plate and remove dust and tape chips with a small brush.

Most machines are permanently lubricated at the factory. But after a lot of heavy duty use, you may find dry bearings on the motor, flywheel, pressure roller or idler assemblies. These bearings can take an additional drop of \#10 motor oil once a year if your machine is used a lot. But don't over oil. Oil that transfers to rubber belts, wheels and your flywheel can cause all kinds of braking, rewind, and fast forward troubles. Tape spill and a stall-

Every so often, clean your recording head, rollers and pads with a cotton medical swab. Use alcohol or tape-head cleaner to dissolve deposits of tape oxide.
ing of the take-up reel when it's almost full are common symptoms. Remove oil on belts and wheels with an alcohol dampened cloth.
If your recorder is stored away for months at a time, don't worry about noise problems or adjustments until after you run it a few hours. Rubber drive wheels, belts, etc., particularly if the recorder is accidentally left in forward or rewind for a long time, will develop bumps or flat spots which will disappear after a good warmup. Even your plastic spools will warp if stored improperly, and tape wound too tightly will "set."

If internal noises persist, remove bottom covers and look for loose set screws, scraping motor fan blades and rubbing shafts on the inside. Tie your tape reels in place with paper clips and run the recorder at various angles to spot vibration trouble. More advanced servicing steps are covered in service sheets usually supplied free on request from recorder manufacturers.-Glen F. Stillwell.

With the reels clipped in place, you can run the recorder tipped at various angles to pin down the source of rattles and vibrations.

Fig 1. Lower the probe into the water, flip the switch, and the meter instantly reads the temperature.
Fig. 2. The meter scale is labeled to read directly in degrees F. Left-handed fishermen will want to mount the wire reel on the opposite side.

Remote Reading

 Electronic Fishing Thermometer> Because the fish play it cool, this will help you locate the spots where they bite

By JAMES E. PUGH

THE sensitive thermistor in the probe of this $\$ 11$ instrument will give you temperature readings down to 50 or more feet below the surface of your favorite fishing waters. That is why you can use it to answer the question, "Where are they biting today?"

Fishing experts know that fish prefer waters within a certain temperature range; the exact range depending on the species (Table A). When the fish are in a level of water at the temperature they prefer, they are lively and will take lures readily. In warmer zones, they are more listless, often
refusing bait altogether. The principle behind this fishy behavior is that any one kind of fish will seek water with the certain oxygen content that is most comfortable for him, Since the amount of absorbed oxygen in water depends largely on the water temperature (warm water holds less oxygen than cold water), the electronic remote thermometer will guide you to where your favorite fish are most likely to be found.

Preparing the Case. First lay out the hole locations on the black plastic case (Fig. 3). The arrangement of the wire reel shown in Fig, 2 is for right-handed fishermen. Southpaws should simply change the reel to the left side and the battery to the right. When you drill the holes, back up the underside of the case with a wooden block to prevent chipping. Use a circle cutter on a drill press to make the $25 / 8-\mathrm{in}$. hole for the meter. Without a circle cutter, scribe the hole and drill a :3/16-in, hole just inside the circle. Then cut this section with a fine coping saw, and trim the hole with a fine half round file to fit the meter case exactly.
Next solder the junction of rivets and lugs on the battery holder (Fig. 4) to avoid possible trouble with a high resistance joint in the future. Also coat the inside surface of
the rivet with solder where it contacts the battery, to avoid corrosion from battery leakage. Then mount the other parts and solder all connections (Fig. 5).

Be sure that your soldering iron is hot and clean, and use only rosin core solder. Apply the hot iron and a very small bit of solder to the joint at the same time. The layer of solder provides heat contact with the joint. After a moment when the joint is hot apply more solder. Remove the meter lugs when soldering to prevent damage to the meter, and use heat sinks to keep the small resistors cool.

Although our model is shown with 50 feet of cable you can use any length to suit local needs. Tie one end of the cable to one of the reel spacers (Fig. 5A) allowing about 1 -ft., to pass through the grommet into the case. Solder the connections and wind up the length of cable on the reel.
Testing Meter Wiring. To check the work so far, strip about $1 / 4-\mathrm{in}$. of insulation from the probe end of the cable. Place the battery in its holder and with the bare ends of the probe wire well separated, immerse them in a glass of water. The meter pointer should move upward on the scale, the amount of movement depending on the impurity of the water. If the meter reads backward, your battery is reversed in the holder. Remember that the positive terminal of this battery is not the same as that of a flashlight cell. Mercury cells have a positive shell and a negative center. Mark the positive terminal lug of the battery holder with a dab of nail polish, or red paint.

Making the Probe. With a fine coping saw,

[^7]cut the threaded end off the lower half of a plastic ball point pen casing. Drill eight $1 / 16$ in. holes around the pointed end (Fig. 6). Then shape a $21 / 8-\mathrm{in}$. length of wood dowel so it fits snugly into the casing with about $1 / 2$ in. projecting. You can turn a dowel down to the diameter needed by chucking it in an electric drill and removing excess wood with sandpaper. Carefully drill a $1 / 8$-in. hole through the dowel, working from both ends to keep the hole centered. Notch the tapered end of the dowel (Fig. 6) to seat the plastic probe cable. Push the cable through, tie a single knot and dress the ends, tinning them with solder.

Handle Thermistor Carefully. Remove the thermistor from its shipping box and place it on a clean white paper so it can be seen. It is so small it can easily be lost. With the thermistor laying on the paper, hold one of the cable ends against one of the tiny leads. Use a small tweezer as a heat sink to keep soldering heat from damaging the thermistor, carefully touching your clean soldering iron tip to the wire until the solder melts.

Fig. 4. Solder the terminal rivets and also coap the conpacts to prevent corrosion. Mark the positive terminal to insure correct battery polarity.

Fig. 5. Because the ohmage of thermistors varies in manufacture, you may need to alter the values of R1 and R2. See text.

After the joint is cool, with a needle or small probe gently bend the other thermistor lead until it lays parallel to the first one. Solder as before. Then carefully ease the bead end of the thermistor into a point about $1 / 8-\mathrm{in}$. across, so it projects straight forward from the section of wire feeding into the wood dowel.

Testing the Thermistor. Now with the battery in the holder and the switch on, the meter should read about $3 / 4$ full scale. If the pointer
doesn't move, one of your leads is not perfectly soldered. Resolder, noting that the meter should deflect when a good joint is obtained. Blow lightly on the thermistor and the reading should change.

Weterproofing Probe. Coat about 3 inches of the probe cable with polystyrene coil dope, or model cement. Pull the cable, wet with the cement, back into the dowel until the knot rests firmly against the notched end and allow to dry for several hours. Then dip the thermistor and connections in the cement and dry for at least an hour. Apply additional coats and dry overnight. Then rub paraffin or beeswax on the wood dowel and insert gently into the plastic casing, so that the thermistor tip is slightly below the upper four holes in the tapered end. Now apply the adhesive wire markers to indicate each foot of depth on the cable.
Calibrating the Meter. Take the meter out of the plastic case, and remove the four tiny screws from the rear of the front flange. Working in a clean dust-free place, carefully take the cover off and apply numbers left over from the wire marker set, to the dial, so that your meter reads from 0 to 100 . Then letter "degrees F." on a narrow strip of white adhesive tape and place it over the MA label on the meter face. Replace meter in case and reinstall using the waterproofing gasket (Fig. 3).
Remove the plastic probe cover and gently lay the tip of the probe against an ice cube. The meter should read 32. Now heat some water to $90^{\circ} \mathrm{F}$, immerse the probe in it, and note the meter reading. Cool the water to 80° and check the meter reading. Repeat at each 10° step down to 40 . The meter should indicate the correct water temperature within $\pm 2^{\circ}$ from 32 to 80°. Above 80° the error becomes slightly higher.
If the meter reading is more than 1° off at 32 and 70° it can be corrected by changing the value of R1 and R2. To do this, simply change R 2 to cause the reading to be correct at 32° and R1 to give a correct reading at 70°. Use a smaller value R 2 to decrease the reading near 32° and a larger value R 1 to decrease the reading near 70°.

Since these two resistors interact it may be necessary to change them alternately until the correct readings are obtained. If you

table A.
Typical feeding temperatures.

wish, these two fixed resistors can be replaced with variable controls. Replace R1 with a Mallory Type U-2, 500 ohm control, and R2 with a Mallory Type U-4, 1000 ohm control-both available at Lafayette Radio.

Seal the rear surface of the meter flange and the bottom cover of the case with plastic tape. Cement the meter movement adjustment screw on the front and the instrument is completed.

How Circuit Works. The temperature sensing probe is a special kind of resistor known as a thermistor. When this fast-acting thermistor is heated its resistance goes down, and when it is cooled its resistance goes up. Wired in series with the meter and battery it will cause the meter to read lower as the temperature becomes lower, and higher as the temperature becomes higher. The meter reading therefore shows the temperature at the probe.

Resistors R1 and R2 proportion the current so as to give a convenient meter reading, and switch S 1 , in the Off position, damps the meter movement to prevent damage to the pointer while the unit is being carried.

Fishing Hints. Tie several fishing sinkers to the cable just above the probe. Allow enough string so they hang below the probe to prevent damaging it. Lower the probe into the water and turn the switch on. Almost immediately the meter will indicate temperature. As the probe sinks down, temperature will normally decrease gradually for the first 10 to 15 feet. Then, you'll go through a second
thermocline layer where the temperature drops more rapidly, followed by a third layer which reaches to the bottom and again decreases slowly in temperature (Fig. 7). This is the normal pattern for quiet lakes, ponds and rivers. Near currents, springs and disturbed water, the pattern will take another form.

Now you can make a plot of your fishing spot, being on the lookout for cool springs that can easily be tracked down to their point of entry by following colder than normal areas back to their origin. Near such cool springs, many fish such as muskie gather on hot days. Drop your line in such a spot and they'll bite often.

Other places to check are river openings and spots where deep depressions have been formed on the bottom by currents (Fig. 8). Such deeper water will be cooler and thus more attractive to fish on hot days. After you plot your spots, noting the temperature where fish bite the best, you'll be able to go back any day, hot or cool, and get results after spot checking the temperature.

The exact temperature range preferred by various species will vary from Table A when local conditions are unusual. For example, rushing water will contain more oxygen than still water, and therefore, the fish will seek a warmer temperature. Also, when barometric pressure is high, the water will absorb more oxygen. When the barometer is high, the fish will seek a warmer range and when the pressure is heavy and depressing, they will prefer a cooler temperature.
Clip the chart from the page, and fasten it to the back of your thermometer case with tape and a few coats of varnish. The tiny mercury battery should last for over 800 hours, and since its output is constant at 1.34 volts, your readings should remain accurate throughout the season. But at season's end remove the battery to avoid damage due to battery leakage.

Battery-Powered Portable Record Player

By FORREST H. FRANTZ, Sr.

APORTABLE record player adds zest to picnics, barbecues, beach trips and other outdoor activities. With the younger set, a portable record player has always been symbolic of good times. But, till the mighty miniature electronic marvel-the transistor-came along, the outdoor record playing crowd squeaked along with low volume, nonelectronic amplifiers or went broke buying B batteries. And, generally, you cranked a spring type motor by hand.

Today, however, you can get plenty of volume with reasonable fidelity from a transistor amplifier, and low current $6-v$. motors are available to relieve the strain on your cranking arm. The record player described in this article can be built for approximately $\$ 25$. (You can cut the cost to about $\$ 20$ by making some compromises that I'll describe.) Construction time is six to 20 hours depending on your skill and the tools you work with. Operating energy for the record player is supplied by four inexpensive regular size D (\#2) flashlight batteries. You can expect a set of batteries to last for roughly 40 hours of playing under ordinary interrupted usage.

There are five major electrical and electronic components in a record player system (Fig. 2). The turntable imparts the "timing" and the mechanical forcing of the record grooves for transfer to the pick-up. This me-

This record player will provide many hours of outdoor entertainment.

RECORD PLAYER SYSTEM
chanical energy is changed to electrical voltage by the crystal. The voltage is applied to the amplifier (powered by the power supply) which supplies amounts of this power to the speaker in proportion to the pick-up voltage.

In this record player, the turntable speeds are $16,331 / 3$, and 45 rpm. The turntable is operated by a small $6-\mathrm{v}$. de motor. The motor and turntable assembly are obtained as a single complete unit.
The pick-up should contain a high output crystal cartridge (1 v . or more) and it should be of the turnover variety, which contains a large needle for 78 rpm records, a smaller needle for slower speed records. A pick-up of this type can be obtained more readily and at a lower cost than a slow speed pick-up, and in addition the cartridge may be turned to the 78 rpm position to prevent damage to the slow-speed needle while transporting the record player.

The first transistor in the amplifier (see schematic, Fig. 3) is the driver stage for a pair of transistors in the output stage. The output stage is designed so that the power that the batteries must supply is approximately proportional to the signal. This feature conserves battery power.
I used a 3 -in. speaker, but left enough room on the panel for a larger speaker if desired.

Panel and Mounting Base. The panel layout is shown in Fig. 6. The panel material is $1 / 8$-in. tempered Masonite, both surfaces smooth. Lay out the dimensions on the panel before you start drilling and sawing. When you drill the holes, place a piece of scrap Masonite or hardwood under the panel so that the back edges of the holes come out clean without burring or flaking. Use a $5 / 32$-in. drill for all the holes and enlarge these to other dimensions where required with a taper reamer.

Cut the turntable opening by drilling several starter holes and sawing with a hacksaw blade. If you have a jig saw or a band saw, you can save some time by using it to cut this hole. The edges of the turntable hole may be dressed down with a file.

The mounting base is made from $1-\mathrm{in}$. pine which has a dressed thickness of $3 / 4-\mathrm{in}$. It is ripped to a width of $21 / 4 \mathrm{in}$. Two pieces are cut to a length of 14 in . and two pieces are cut to a length of $71 / 4 \mathrm{in}$. They are nailed together as in Fig. 7 to form the base.
The Amplifier. The circuit diagram is shown in Fig. 3. Pictorial views of the wiring are shown in Fig. 8 (top of wiring board) and 9 (bottom of wiring board). The wiring board is the right size as purchased. Two holes must be drilled in this perforated board. One is for mounting the volume control and the other two are to mount the wiring board on the record player panel. These holes are $1 / 4$ - in. in dia. and may be located from Fig. 8. The centers of these holes coincide with perfora-

Top view of the record ployer panel.
tions on the wiring board.
You may also want holes to mount the two transformers instead of the slots shown in Fig. 4. The choice will depend on whether you obtain transformers with tabs designed for mounting in slots or with holes for fastening with small screws and bolts. My output transformer was equipped with tabs. But, you'll note that the driver transformer which I used was equipped for screw mounting, and I bent mounting lugs down so that it could be tab mounted. If you tab mount the transformer, cut the slots with a hacksaw blade.

Mount the volume control (R2) and the transformers (TR1 and TR2) first. Next, mount capacitors $\mathrm{C} 1, \mathrm{C} 2$, and C 3 and resistors R1, R3, R4, R5, R6, R7, R8 and R9. These components are mounted by pushing the pigtails through the wiring board perforations. The same applies to transistors T1, T2 and T3. Now wire the amplifier. The only additional part which will have to be mounted on the wiring board is C5. Mount it when you get to it in the wiring. Some of the connections were made by passing the component pigtails through the same perforation. Other connections were made by twisting pigtails together. The leads were soldered together to complete the connection work. Protect transistors with heat sinks.

The lead to the - battery terminal is about

PANEL LAYOUT (TOP)

$61 / 2$ in. The lead from the ground terminal on the switch to the motor is about 9 in ., and the lead from the switch to the + terminal of the battery is about $41 / 2 \mathrm{in}$. The lead from the ground terminal on the switch to the speaker is about 3 in ., and the lead from C5 to the speaker is about $41 / 2 \mathrm{in}$. These leads should be fastened to the wiring board before it's mounted on the record player panel.

Panel Mounting. Mount the speaker on the panel first. Be sure there aren't any burs on the sound perforations on the underside of the panel. The speaker terminals should be oriented as in Fig. 4. Note that the pick-up arm rest fastens under one of the speaker mounting screws. Then, mount the battery holders. The machine screws which are used to mount the battery holders should be not over $3 / 8-\mathrm{in}$. long, or you may have some difficulty with short circuits between the battery holder frames and the batteries.

Now, mount the turntable assembly. The turntable must be removed from the assembly for mounting. Pull the retaining pin (Fig. 10) on the bottom of the turntable assembly. The turntable may then be removed from the assembly by lifting it up out of the bushing. Mount the turntable with $6-32 \times 3 / 4-\mathrm{in}$. machine screws and nuts. Place a washer under the screw head and another betweer the bottom side of the panel and the nut on each of the three mounting holes. Don't pull these screws too tight because the turntable should float on the rubber shock mounts.

Check for places where the turntable frame may be touching the panel, and push the speed positions to be sure that none of this
mechanism hits the panel in any position. If you find any contact between the turntable assembly frame and the panel, dress the edges of the hole till this contact is eliminated. Replace the turntable on the assembly and fasten it in place with the retaining pin.

Next, mount the pick-up arm on the panel, and orient the pick-up arm rest so that the arm will fit in it properly. Turn the cartridge to position needles horizontally for now.

The last component to be mounted is the amplifier. Place grommets, washers or layers of cardboard $1 / 4-\mathrm{in}$. thick between the perforated wiring board and the panel for mounting. Use $6-32 \times 3 / 4-\mathrm{in}$. machine screws and place washers under the screw heads and hex nuts. Fasten the knob on the volume control. Turn the volume control to the left till the switch is off.

Connect the leads from the amplifier to the loudspeaker. Solder together the lugs on the inner sides of the two battery holders. Connect the two outer battery holder lugs on the holder nearest the speaker. Connect the single lead from the switch to + terminal of the battery holder assembly, and connect the - battery lead from the amplifier to the battery holder - terminal. Run a lead from this - battery holder terminal to the motor, and connect the long ground lead to the other motor terminal and the motor case. Connect C4 observing the polarity shown in Fig. 3. Then connect the black lead from the pick-up arm to the ground terminal on the switch and connect the red lead from the pick-up arm to R1.
Fasten the panel to the wooden base with wood screws and place the batteries in the holders. Place the speed control lever on the

\footnotetext{
MATERIALS LIST-RECORD PLAYER

R8	47-0hm 1/2-w carbon resistor, 10%
$\begin{aligned} & \text { R8 } \\ & \text { R6 } \end{aligned}$	470-ohill, $1 / 2$-w. carbon resistor. 10%
R5	1K-ohm, 1/2.w. carbon resistor, 10\%
R7	$2.2 \mathrm{~K}-0 \mathrm{hm}, 1 / 2-\mathrm{w}$. carbon resistor, 10%
R9	$4.7 \mathrm{~K}-\mathrm{hhm} 1 / 2-$,w . carbon resistor, 10%
R3	10K-ohm, 1/2-w. carbon resistor, 10\%
R4	68 K -ohm, $1 / 2-$ w. carbon resistor, 10%
R1	100K-ohm, $1 / 2$-w. carbon resistor, 10%
R2	25K volume control witl switch (Lafayette VC-25)
C5	. $01 \mathrm{mfd} ., 75$ v. capacitor (Lafayette C-612)
Cl	$30 \mathrm{mfd}$. . 6 v. capacitor (Lafayette CF-104)
C3	$100 \mathrm{mfd} ., 6 \mathrm{v}$. capacitor (Lafayette CF-106)
C4	$100 \mathrm{mfd},. 15 \mathrm{v} . \mathrm{callacitor} \mathrm{(Lafayette} \mathrm{CF-126)}$
C 2	$160 \mathrm{mfd} . .15$ v. capacitor (Lafayette CF-127)
TR1	driver transformer- 10,000 ohm pri to 2.000 olmm sec (Lafayette TR-96)
TR2	output transformer- 500 ohms to 3.2 ohms (Lafayette TR-95)
SPKR	3-in. loudspeaker (Jensen 3J6)
	Phono pick-up (Lafayette PK-88)
M	3-speed 6 v. turntable (Lafayette ML-9)
	perforated wiring board (Lafayette MS-304)
	two double \#2 battery holders (Lafayette MS-382) knob (Lafayette MS-185)
T1	transistor (GE 2N192)
T2, T3	transistors (GE 2N241A)
B	four $=2$ flashlight batteries in series
	$9 \times 14-\mathrm{in}$. piece of Masonite
	Components for this project may be obtained from La-
	fayette Radio, 165-08 Liberty Avenue, Jamaica 33, N. Y.

turntable in the 45 rpm position and raise the 45 rpm center adapter by turning it counterclockwise.

Place the record player with the end containing the amplifier protruding out over the edge of a table. Place your fingers on T2 and T3 and turn the switch on. The turntable should rotate and T2 and T3 should not get hot. Then feel T1. If any of these 3 transistors gets hot, turn the switch off, and look for trouble in the wiring. If the transistors don't get hot, turn the cartridge to the $33-45$ position in the tone arm and place the tone arm on the record. If you did everything right, there should be music.

To play $331 / 3$ rpm records, change the speed lever to $331 / 3$ rpm. Let the turntable get up speed before you place the arm on the record. The $331 / 3 \mathrm{rpm}$ records are heavy by comparison to the 45 rpm records. And because of the larger diameter of the $331 / 3 \mathrm{rpm}$ records, there's more torque on the turntable bushing due to the tone arm pressure.

If the 45 rpm record sounds slow or seems to play at variable speed, check the speed change lever to be sure that it's in the correct position. If this isn't the cause of the difficulty, remove the turntable retaining pin and turntable, and put a few drops of household oil on the turntable spindle. Also check the vertical position of the rubber turntable rim drive wheel with respect to the plastic drive on the motor (see Fig. 10). This should clear up any difficulty that you might have.

Bear in mind however, that as the batteries go down, some reduction in speed will occur. It may be noticeable at $331 / 3$ rpm while it may not be noticeable at 45 rpm because of the difference in record size and weight.

You can economize on the parts cost of the record player. GE 2N107 or RCA 2N109 transistors may be used in place of those specified. C3 may be eliminated if R6 is changed to 100 ohms and R1 is decreased to 47 K . Almost any crystal pick-up may be used in place of the 2-v. unit specified, as long as it has an output of 1 v . or more. For lower output units, you may have to decrease the value of R 1 . The really ambitious economyminded builder might want to make his own turntable unit. You can buy the required motor for a dollar or two. I didn't have such

Top view of amplifier shows parts mounting and wiring.

extremes in mind of course, when I suggested that you could cut the cost to $\$ 20$. If you go that far, you can probably get down close to $\$ 10$!

On the luxury improvement side, you can add a tone control by replacing $R 9$ with a 10 K volume control. Use one of the end and the center terminals. Another improvement would be a larger speaker.

To make the record player look its best, the base may be painted or upholstered with cloth or plastic. Do this before you mount the parts. Or, you can staple the material on corrugated cardboard panels and cut them to fit over the panel and sides. This way, the screws will be hidden. The panels can be fastened with a sparing amount of glue so that they can be removed and replaced as

TO REMOVE JURNTABLE, pULL RETAINING PIN

required for maintenance.
To make the record player truly portable, you need a case. I found an old beat-up overnight case in the attic that was just right. Note that the base is fastened to th:e original lid of the case. This allows freedom to play larger records; you couldn't play them if you mounted the base on the actual bottom of the case which has high sides.
If the case does not come down against the pick-up when it is closed, add a piece of wood in the top of the case that will come down snugly on the arm when the case is closed. This will prevent the arm from swinging off of the rest and being damaged when the record player gets rough treatment en route to your favorite picnic spot.

Emergency Battery Clip

- If you run out of battery clips while doing an electrical project, make a substitute clip by wrapping aluminum foil around the tips of a spring-type clothespin. Wrap wire around foil.-J. Harvey.

Insulation Scraping Tool

- This simple and long-lasting tool is practical for scraping and cleaning insulated wire to make firm solder connections. To make it, simply drive several corrugated fasteners into the end of a hardwood block.-G.
 E. Hendrickson.

Miniałure Plugs and Jacks

- Those tiny snap-fasteners used on clothing make good miniature plugs and jacks for pocket radios, hearing aids, and the like. You can mount either the plug or jack on the set's case with plastic cement or you can fuse the connector in place by heating it with a soldering iron. The connectors can be used for either external headphone or antenna lead connections.

Add A Speaker System to Your TV

Hi-fi reception from your TV or radio! It's yours by adding a speaker system and inverse feedback

By FORREST H. FRANTZ, Sr.

MOST of the TV sets selling for $\$ 300$ or less contain a small 4-6 in. loudspeaker. You can't expect good quality sound from such a small speaker. Even if you have a larger speaker it may not sound good on high frequencies. Also, few low-price TVs and radios have speaker enclosures designed for best fidelity.

You can buy a speaker system kit that will put you in the hi-fi business. One of the least expensive ($\$ 29.50$) ducted port bass reflex speaker systems available is the handsome Windhaven System (Windhaven Radio Co., Box 74, Baroda, Michigan). This has an impedance of 3-4 ohms which matches most inexpensive radio and TV set output transformers. The frequency response is $\pm 5 \mathrm{db}$ from 60 to 8000 cycles.

For better frequency response you have to pay more in dollars and time. The Heathkit SS-3 at $\$ 34.95$ is within $\pm 5 \mathrm{db}$ from 50 to 12,000 cycles. This speaker system contains an 8 -in. woofer and a tweeter. A little work on the cabinet and fifty cents worth of grille cloth and trim will produce a neat piece of equipment.

The SS-3 is intended for hi-fi systems and has 16 ohms impedance, so you will have to replace the $3-4 \mathrm{ohm}$ impedance output transformer on a low-price TV. At the same time you can improve the quality of the amplifier

on your TV set or radio by incorporating inverse feedback into it.

Figure 2 shows a typical TV or radio audio amplifier stage. The amplifier is resistancecapacitance coupled. Capacitor Cl transfers the signal from the detector tube (usually a diode, and frequently within the same envelope as tube Q1) to the volume control R1. The setting of R1 determines the amount of signal voltage that is applied to the grid of Q1. Q1 is a high gain amplifier tube which usually has a voltage gain of about 50 . The signal, amplified about 50 times, appears at the plate of Q1.

This signal is fed to Q2 thru capacitor C3 which passes only the audio signal but iso-

Mounting details of the substitution of a higher impedance output transformer to match the 16 -ohm impedance of the hi-fi speakers.
lates the de grid bias voltage for Q 2 from the high plate voltage of Q1. Q2 amplifies the signal voltage about 30 times. Eut, the load impedance of Q2 is much less than the input impedance, and there is therefore a large current gain in this stage too. Power gain is voltage \times current gain, and this stage is therefore usually referred to as the power output stage.
The impedance of dynamic loudspeakers is very low in contrast to the load impedance required for a vacuum tube, so the speaker is coupled to the output stage through an output transformer (T2).

A good speaker and output transformer are expensive, so most inexpensive TV's and radios don't have good ones. To get good fidelity you have to replace both.
Then only the fidelity of the amplifier limits the fidelity of the system. The coupling capacitors C1 and C3 and the cathode by-pass capacitors C2 and C4 (usually electrolytics) limit the low frequency response. Capacitors that are in parallel with the signal (such as C5) limit the high frequency response. The capacitance of C1, C2, C3 and C4 should be increased to improve the low frequency response, and C 5 should be decreased or removed entirely to increase the high frequency response.
But you can improve fidelity more than this by incorporating inverse feedback. In most cases you can get away with merely increasing Cl and C 3 by a factor of 10 and

by removing C5 if you incorporate inverse feedback.

Inverse feedback is graphed in Fig. 3. Curve A is a typical response curve for a low quality amplifier. If a part of the output signal is fed back to the input of the amplifier in opposition to the input signal, it will flatten the curve out to curve B. More signal feeds back at the mid-frequency range than at the high or low frequency ends of the curve where gain drops off. This flattening action gives better frequency response. Also, distortion which occurs during the amplification process is cancelled.

How do you incorporate inverse feedback in your amplifier? The dotted lines in Fig. 2 show a simple scheme for incorporating inverse feedback in an amplifier that does not aleeady have it. One side of the output transformer secondary is grounded. The other side of the secondary is connected via C6 and R6 to the grid of Q1. The value of C 6 should be about 0.1 mfd . at 600 v . The value of $R 6$ and the value and setting of R1 determine the

Shewing the lamp cord used to connect the substifute output transformer to the crossover network of the hi-fi speaker cabinet.
amount of feedback that will be obtained.
Choose $R 6$ so that you can get sufficient volume to meet your requirements on the weakest station when R1 is set to full volume.

The matter of which side of the speaker to connect to ground and which side to use for feedback doesn't present a problem. If you connect it the wrong way, you'll have positive feedback and the result will be an increase in volume or squealing. When the proper connections are made, volume with feedback is lower than volume without feedback.

It is desirable to have inverse feedback independent of the volume control setting. In Fig. 4 two fixed 1 meg . resistors (R7 and R8) have been added to the input circuit. R7 reduces the variations in input resistance from the grid of Q1 to ground. R8 performs as part of the feedback voltage divider which includes R6.

Typical Installation. Figure 5 shows a typi-
cal set of changes made in a TV set to incorporate inverse feedback and permit the connection of a 16 -ohm speaker system to the set. The transformer that was added in the set in this case was a relatively inexpensive Lafayette TR-12 universal replacement transformer.

A piece of lamp cord connects from the secondary to the external speaker (Fig. 7). The feedback resistor is connected to one of the transformer secondary taps. The other end of the feedback resistor connects through capacitor C 6 to the grid of the output stage. Feedback in this case is only around one tube since the detector output drives the single audio stage in this set.

The transformer primary can be connected to the same points where the original output transformer leads were connected. The original transformer primary leads should be disconnected in this event.

However, you'll be able to change from the external to the internal speaker without having to remove the back of the set if you use the arrangement of Fig. 6. A lead from the plate of the output tube and the plate end of each transformer is brought out through the rear cover. The plate lead and the new trans1 former lead are twisted together and taped. The original transformer plate lead is taped.

If at any time you wish to disconnect the external speakers and use the internal speaker, you simply disconnect the plate lead of
the new transformer from the TV set output tube plate lead, and connect the output tube plate lead to the other transformer lead. The leads should of course be taped.

When you install the new output transformer you'll have to select secondary taps that meet the impedance matching requirements between the output stage and the speaker. If you don't know the load impedance that the output stage has been designed for, assume it to be 2000 ohms. Then select the transformer connections that match 2000 ohms to the impedance of the new speaker according to the connection sheet furnished with the transformer. This will generally do the trick. You can do some experimenting then to see if another connection arrangement affords any improvements.

Eliminating Power Hum

- An extra $10-\mathrm{mfd}$., $450-\mathrm{v}$. electrolytic capacitor connected in parallel with the input filter capacitor of a radio receiver will often reduce or eliminate an annoying power hum. Capacitor values add when in parallel, so you are adding 10 mfd . to whatever capacity value is already in the set. Be sure to observe correct polarity of connections-plus to plus, and minus to minus. The black lead is usually minus.

"If's not ofren a soap-box orator can hold a crowd like that."

Versatile Code Practice Equipment

By

HOWARD S. PYLE

THEteaching of code to a group of students is made casy with this control unit. The control unit (Fig. 1) with connections to a key and an ac supply line, is a keyed audio oscillator of variable tone and volume, with the resultant tone reproduced in a loud speaker with sufficient audibility to handle a group of up to thirty students.

The control unit is housed in a Hamcab \#12. Layout the front panel, chassis and the rear panel according to Fig. 2 and cut the : holes for the components. Several holes in the sides of the cabinet are also required. Mount the 1 components (see Materials List). Wire the

This control panel is a versatile aid in group code instructions.
unit according to the schematic, Fig. 3. The isolation transformer is mounted inside the cabinet.
When you have completed the control unit and have selected a space for the students' table (Fig. 4), make the table of plywood, suitably supported. Wire the table in accordance with schematic (Fig. 5) and Fig. 6.
Through the plug P-1, provided on the table cord, connect the table wiring to the instructor's control unit through the multi-terminal jack, J-2. With the instructor's switch S-2 in the LOCAL position, the audio oscillator is keyed and the reproduction emanates from the loud speaker. All of the table circuits are now connected to the control unit through the cord and plug. Any student whose toggle switch SX is placed in the A position, now has his key in parallel with the instructor's and he, too, may then key the oscillator.

One or all students may be so switched in through their SX switches and have keying control of the oscillator, with loud speaker reproduction. The instructor may then send to all students or work with any one or more students two-way, with the rest of the class monitoring.

Any two or more students may work each other, simulating on-the-air operation and, as the reproduction is still from the loud speaker, the remainder of the class may still monitor all sending and, if desired, may break in on the communication as can the instructor.

Now let's throw the instructor's switch S-2, to the REMOTE position. This immediately disconnects the loud speaker from the circuit and at the same time shorts the instructor's key, thereby producing a continuous, steady audio tone which is fed through J-2 and P-1 to the tables and made available to all students through their keys and head telephone receivers, provided each student has thrown his toggle switch SX to the B position. The second switch S at each student position, if all thrown to the ON position, will parallel all positions, and the same conditions existing when the instructor's switch S-2 was in the LOCAL position will appear except that reproduction will now be in the head telephone receivers rather than through the loud speaker.
Suppose now that we leave the instructor's switch, S-2, in the Remote position and that

Parts layout and wiring of instructor's control panel

two-way with student \#3 at the same time that all of the others are engaged in independent individual sending practice. Student \#2 need merely throw his switch S to the ON position which will parallel him with student \#3 and they may then work together without causing or receiving interference from any of the others! Perhaps student \#4 wants to join this group (\#2 and \#3). He merely asks student \#3 to close his S switch to the $O N$ position and he, too, is in!

Student \#1 may come in also, if desired, merely by closing his
all student switches S are placed in the open position. Each student may then practice sending by himself with reproduction in only his own headphones and without interfering with any other student who may be engaged the same way. In other words, each and every student may conduct sending practice and listen to himself in his headphones while all other students are doing likewise simultaneously and with no inter-position interference.

Now, suppose student \#2 wants to work

S switch to ON.
And the instructor may listen to any individual student, any pair or more who may be working together and may break in on any position or any group of paralleled positions by merely placing his monitor position selector switch S4 on the single position he wishes to monitor or work, or to any of the positions which are paralleled.

The speed timer is a standard electric clock movement and motor-in this case a new Telechron from one of the mail order
electronic supply houses (cost \$1.95) without hands or face. The octagon shaped dial shown in the photos is made by removing the clear plastic cover from a box oi dressmaker's pins purchased at the local variety store. Give it a coat of black enamel and fit small white decals, procurable at any amateur radio supply store, to indicate the $15,30,45$ and 60 second points. A light strip of aluminum is cut and fitted to the central shaft of the clock dr reving mechanism or a standard sweep hand may be procured from a local watchmaker. This makes one revolution every 60 seconds; five times around equals five minutes and enables the instructor to time code speed.

The audio oscillator is an Ameco or other brand purchased in kit form and the cabinet discarded after removing the speaker. Unfortunately these oscillators are of the ac-dc type and require installation of a small 1/1 ratio isolation transformer on the inside of the control cabinet, feeding the oscillator, clock motor and an ac outlet from the secondary side and with the primary connected externally to the 115 ac line through the power sritch and fuse on the control pane!. The ac outlet AC-2, of conventional chassis mounting type, is installed on the side of the cabinet to provide a convenient point at which to plug in the ac supply to an automatic tape transmitter, if one is used. If you use a tape transmitter (such as Instructograph) the contacts of the tape transmitter are paralleled across the instructor's key through a two conductor cord and plug with a matching socket mounted on one side of the control cabinet.
For the indicator lamp (I) use an NE-51 neon bulb connected through a 47 K resistor

Complete equipment as set up in the author's home class-room. This arrangement uses a four position table hinged to wall and with folding plywood wing legs.

Wiring of the students' table.
in each leg, to pin 1 of the 50 C 5 tube and to pin 7 of the 35W4. The NE-51 element will not fire until the neon gas has become sufficiently heated, which will take a few seconds. Conversely, the bulb will also require a few seconds to extinguish after the ac switch is placed in the off position. This is an added safety factor in that the false indication that the unit is still hot allows any stray high voltage in the oscillator to bleed off before you touch exposed terminals.

If, due to use of high impedance heac.phones (2000 ohms) with the oscillator, there is an annoying undertone of audio feed-back when unkeyed, place a 670 -ohm (not critical value) $1 / 2$ watt resistor across each headphone jack.

MATERIALS LIST-GROUP CODE EQUIPMENT INSTRUCTOR'S CONTROL UNIT

Desion.
AC-2
$\underset{F}{T}-1$
S-1/\$-3
AC-I
SPK
OSC
S-2
J.3/J-4
J. 2
J. 1
$\$.4$
R.R1 Description
110 V . AC chassis type receptable (Amphenol 61-F) $115 / 115 \mathrm{~V}$. isolation transformer (Triad N-51X)
panel mounted fuse holder, insert type (Buss HKP) SPST bat-handled toggle sws. (Cutler-Hammer 8098) recessed 115 V. AC plug (Cinch-Jones 2RP) $4^{\prime \prime}$ PM dynamic speaker (incld, in Ameco oscil. kit) $4^{\prime \prime}$ PM dynamic speaker (incid. in Ameco
code practice oscillator (Ameco CPS-KL Deluxe) locking type lever switch (Switchcraft 60012-L) open circuit phone jacks (Mallory LA-1 Midget) terminal jack (Amphenol Military type AN 12 for up to 8 students or Cinch-Jones Series 300)
single contact, male microphone receptacle. Insulate from cabinet with extruded fibre washers. (Walsco 1882 or equivalent)
rotary switch (Mallory 3215J for 4 students, 32112J for 8 students)
jewel light assembly with NE-51 neon bulb (Drake 10) 47 K -ohm resistors, $1 / 2$-watt
cabinet with chassis-mount chassis upside down in cabinet to form rigid base plate. (Hamcab 12, L. M. Bender Co., 2528 W. 9th St., L. A. 6, Calif. or supplier)
SPEEDTIMER Telechron electric clock motor with sweep hand PRACTICE TABLE EQUIPMENT (FOR 4 STUDENTS)

KEYS
J.5, J.6, etc.

R
CABLE plug to match J-2 on Instructor's control unit.
SPST toggle switches-1 for each student (Cutler. Hammer 8098)
SPDT toggle switches-1 for each student (Cutler. Hammer 7140)
military surplus or builder's choice
midget open-circuit phone jacks (Mallory LA-1)
$670.0 \mathrm{hm}, 1 / 2$-watt swamping resistors, one for each student
to reach from table to J -2. Conductors may be
unshielded. (Belden 8747 intercom cable)

P-1 PLUGS INTO J-2

Wiring for one four-position table; additional tables are wired identically.

"I feel sure that your circuit has not been already patented!"

Quintuplet Duty For Your Radio

How to modify your a-c radio for 20c to produce a crystal set amp, earphone radio, AM/FM funer, record amp, or signal tracer

By ART TRAUFFER

Ahalf hour's work, a $20 ¢$ terminal strip, and the changing of a few connections make it possible for your radio to take on any one of five different jobs.
Run two leads from your volume control out to the terminal strip (Fig. 1) and in effect, you cut your radio in half so you can use either the tuner section or the amplifierspeaker as separate usefu! devices.
You will need a 3 -terminal strip, (Fig. 2) and can get it at any racio supply store or mail order house. Mount it in an uncrowded place on the back of your radio chassis. Protect the chassis wiring with paper taped in place, and cut the slot away with a hand nibbler, or tin snips. You can simply cut narrow strips of the chassis metal, and break them away with pliers. Then drill two holes for the mounting screws. Letter or type the paper terminal label, and cement to the chassis.
Wire the Terminal Strip into the volume control circuit (Fig. 3). These instructions apply mainly to the better-built type of a-c

CUT CHASSIS TO FIT TERMINAL STRIP
radios-that have power transformers instead of the line resistors and "hot chassis" type of construction. But more about this later.

Unsolder the r -f lead from the high side lug of the volume control (Fig. 3) and solder it to the lug on the "tuner output terminal." Then solder one end of a length of insulated hook-up wire to the audio input terminal lug and the other end of the wire to the high side lug of the volume control.

Solder the chassis terminal lug to a second soldering lug placed under the nut of the terminal strip mounting screw. This completes the wiring, except for a jumper. Make it by soldering a short wire to two spade lugs. Connected across the Audio and Tuner terminals, it puts the radio back into normal operation.
 DETECTOR SECTION
of RADIO
3

Radio Now Works as Phono Amp. Connect the leads of a crystal or ceramic phono pickup to the Audio and Ground terminals (Fig. 4); if your radio has a good a-f section and a respectable speaker, you'll get quality music. If your amp section is low gain, use a high output crystal, or ceramic phono cartridge. Otherwise, if your amp section has plenty of gain, you can use the higher quality low voltage crystals, or ceramic cartridges as are made by Ronette, Electro-Voice and Sonotone.

Record Player. Since the radio already has a volume control, none is needed on the record player. If you get a-c hum pickup, use
shielded phono cable to make the connections, with the shield running to the chassis terminal. Caution. If you use an a-c/d-c type table radio with a hot chassis, connect a 05 $m f d$. 600 -volt blocking capacitor at X (Fig. 4) in series with the chassis lead. This will isolate the phono pickup from the a-c line voltage.

Tuner Section Can Feed Hi-Fi. With the jumper removed and the connections in Fig. 5 , you can route the radio's output into your hi-fi amp and speaker for real volume. If the radio has an FM band, you'll have fine staticfree music. Connect the chassis terminal to the chassis terminal on the hi-fi amplifier, and the tuner output to your amplifier's tuner input. If you get hum, use shielded cable, grounded to the chassis terminals of both units.

Crystal Input for AM Fidelity. Run the output of a crystal radio through the audio amplifier and speaker (Fig. 6) and you'll get better quality sound because the detector tube element noises has been eliminated. Also a crystal radio has a wider bandpass and less distortion than a superhet radio. If your amp section has high gain, a short antenna on the crystal set will do the job. No ground connection is needed, because the crystal set is automatically grounded by capacitance when connected to an $a-c$ type radio. With an $a-c / d-c$ type radio, use a .05600 -volt blocking capacitor to get line isolation.

Tuner Is Right for Earphones. Late listening will be a pleasure because you'll get less hum and distortion than with the common across-the-speaker method of connecting phones. Use a pair of high impedance magnetic or dynamic earphones. Of course, the radio volume control will not function because the connection is ahead of it in the circuit. Don't try this on an $a-c / d$-c type radio be-

cause a shock hazard would be involved unless you observe precautions noted later.

Radio as Signal Tracer. Less than $\$ 2$ worth of parts that you may have in the scrap box will give you an rf/af signal tracer (Fig. 8). You can mount the parts on a block of wood, or in a small plastic case. Use insulated flexible wire for the probe and clip. When tracing af, open the switch to take the diode out of the circuit. Close the switch for tracing rf. Your radio volume control will regulate the speaker volume to a comfortable level. If your radio is an ac-dc model, note precautions given in next paragraphs.

Using AC-DC Type Radios. The reason for avoiding the use of a-c/d-c radios for these applications is the danger of shock hazard. If you are not sure of your connections,
ask a radio expert. The $a-c$ radio has a transformer which completely isolates the chassis from the line voltage, and so it is safe. But the $a-c / d-c$ set usually is wired with the tube filaments in series, and thus when the plug is one way in the wall, the metal chassis is connected directly to the "hot" line voltage. You can test by connecting a voltmeter, or lamp between the chassis and any grounded water pipe. Correct this situation by reversing the plug so the chassis is on the ground side of the power line. Plug and outlet can be marked, or you could use a polarized plug and outlet so it will always be correct. Another remedy is to isolate the hot ac-dc chassis from the power line with an isolation transformer. (A 50-watt size is available from radio dealers for about \$6.)

The DX Strip

The Bahaman waterways offer exciting listening

By C. M. STANBURY II

APRIL 24, 1960 and the 42 -ft cabin cruiser "White Star" is grounded on Elbow Cay. Signaling with a mirror, it attracts the attention of the "Muriel III" who comes to the rescue. Only this script wasn't written that way because when it arrives the White Star's one man crew seizes her, disposes of the captain and sails away in the plundered vessel. Who said piracy is dead?
Where did it happen? The China Sea or maybe the Indian Ocean? No, right next door in the Bahamas, in the DX strip extending from Little Bimini (less than 50 miles east of Fort Lauderdale, Florida) to Inagua, approximately 50 miles from Haiti and Cuba. While such locals as Nassau and Bimini are well civilized, much of this territory consists of rocky uninhabited islets accessible only by boat. Elbow Cay is such a place.

Have you heard this first class DX target yet? Chances are, unless you happen to be an eastern BCB DXer, these fine loggings have escaped you.
The only broadcasting station in the Bahamas is ZNS at Nassau (Z is pronounced Zed outside of the U.S.). It operates on 1540 kc and according to international treaty (the North American Radio Broadcasting Agreement) is supposed to use only 5000 watts. Instead ZNS has boosted power to 20,000 watts. The increase has been protested via the State Department by U.S. stations which share this channel at night. Indications are that ZNS is getting out, certainly good news

for DXers.

The best way to log this station is via "Sunset skip," that mysterious process by which signals, particularly those from Latin America, appear with unusual signal strength for a brief period, either at sunset or during the three hours following, depending upon frequency and conditions. ZNS is usually best between 6 and 7 at this time of year in the east and a little earlier (local time) in the Midwest.

Reports should go to the Chief Engineer and at last report he was verifying by letter. Return postage which must always be enclosed, may be sent via International Reply Coupon obtainable at any post office for $15 \grave{\text {. }}$

Above the Broadcast Band. Now if you live out west, for some reason don't like $B C B$ DXing or just plain want to stick to shortwave, the frequencies for you are those used by aeronautical services in the Bahamas. Daytime this means 13344.5 and 8871 kc., during the first couple hours past sunrise, the hour before sunset and early evening period, you should monitor 6537 and 5566.5. The night channel is 2966 , a fine medium-wave DX spot except during the static laden summer.

Call letters for Nassau Aeradio are ZQA but it identifies simply as Nassau. At last report, the station, which is government owned and operated, verified by letter and reports should go to Officer in Charge, Nassau Aeradio, International Aerodrome, Nassau.

But there is no reason to limit your aero-
nautical DXing to Nassau. Numerous planes pass over the Bahamas every day. On the Miami-San Juan route, one of the Caribbean's busiest, Great Exuma Island is a reporting point, that is, an aircraft passing over reports it's position on one of the frequencies listed below. Number one airline here is Pan American World Airways, whose flights identify as "Clipper." Reports should go to the Assistant Division Communications Supt., PAA, International Airport, Miami 48, along with a prepared card. We'll discuss these in a moment.
Similarly, Little Abaco Island is a reporting point between Nassau and New York City Reports for airlines using this route should be addressed to the respective communications superintendents in New York. This office is preferable to Nassau because U.S. stamps may be enclosed as return postage.

While we're on the subject of communications stations, there is even more interesting Bahaman DX to be heard but on mediumwave frequencies, 2118 and 2031.5 kc ., thus more difficult to bag. These channels are used by ships contacting the Miami Marine Telephone facility and over half the vessels you'll log here will be yachts in the Bahamas, in many cases the only means of communication on tiny islets. Examples of this would be the "Walker's Baby" transmitting from Walker's Cay or WJ7710, yacht "Grand Cay" from the key of the same name.

Prospects for fascinating listening are unlimited. In fact at one time you might have received signals from the now notorious "White Star." But remember, all transmissions are confidential. You are absolutely free to listen but may repeat or put in a reception report only the name of vessel, call letters, date and time, frequency, station called, location, signal strength, interference and other reception conditions.

Best time to tune these channels is around sunset (our western readers should listen a
little earlier), that's right, sunset skip again. However, finding a proper address will be even more of a problem than favorable DX conditions. Merchant Vessels of the United States contains most and you can write to the Supt. of Documents, GPO, Washington 25, D. C. for the date and price of latest edition, but we warn you right now, it's expensive. Yachts in the Bahamas can be addressed directly for example: Master, Yacht Grand Cay, Grand Cay, Bahamas.

In order to verify, most marine radio operators require that you enclose a returnable card with reception data with your report. They can be made either by purchasing a toy printing set or via the method described in Madge Roemer's book "Fun with Your Typewriter," published by Fleetwing Press. For American ships, they can be made on U. S. post cards.
Below the Broadcast Band. About 125 miles southwest of Grand Cay lies Port Royal on South Bimini. Port Royal is a Fort Lauderdale real estate development and, more important to DXers, home of powerful beacon ZBB. This station which originally came on the air as VSC2, can be heard most evenings on 396 kc throughout the East, Midwest and South. Of course you will have to acquire a Long Wave set to hear it but if you live in one of the above areas, ZBB is an excellent excuse for doing just that. The best buy in LW receivers can be found in war surplus but for the beginner inexpensive sets manufactured by Admiral and RCA and Philips (Canada) will do.

To verify a beacon, note the length of time it takes to transmit the identifier, in this instance ZBB (- -.. -... -...) and the period of silence following. These measurements should be accurate to the half second. Reports should be addressed to Officer in Charge, Radio Facility ZBB, Federal Aviation Agency, Port Royal, Little Bimini, Bahamas.

Transistorized Audio Amplifier HIS two-pound bat-

Ttery - operzted amp will add loudspeaker volume to a phono pickup or portable tape recorder (Radio-TV \#569). Or it will put more "reach" into earphone radio reception. It can be built for about $\$ 13$.

While the $1 / 4$-watt output would never win a hi-fi volume contest, with a good crystal phono pickup (Fig. 2) and an efficient speaker, youget enough volume to fill a room. Frequency response is excellent and the transformerless design means that money saved can be spent on high quality entertain-ment-type transistors.

How It's Built. First bend a $7 \times 7^{1 / 2}-\mathrm{in}$. piece of 20 -gage aluminum for the chassis (Fig. 3). For a "pro" look, have your local tinsmith make the bend on a brake. You can also use anodized store front aluminum, available from window glass dealers. Its smooth matte surface is ideal for panels provided that you remember to scrape off the surface at every point where the parts must connect electrically to the chassis.

The location of the mounting holes (Fig. 3A) is not critical, but be sure to allow enough room on the edges for the wood cabinet fit. Make the opening for the slide switch by drilling two "he-in. holes and filing the opening with a small square file.

Make the wooden case (Fig. 4), using small wire brads and cabinet glue to fasten the parts together. File and sand the edges of the case and chassis round and drill holes for the $r h$ wood screws which hold the chassis and cabinet together. Three rubber feet in triangular arrangement will permit the amplifier to rest solidly on uneven surfaces. Drill small holes in the chassis, and use three rubber tack bumpers fastened with Duco cement.

Mount the panel parts, using lock washers under nuts and screw heads. Scrape away the aluminum coating at each connection to chassis. Make the transistor socket bracket

Lightweight batfery-operafed amp delivers loudspeaker volume

 By ART TRAUFF̈FER

Plug in the tronsistorized amplifier and you boost the tape recorder output up to loudspeaker volume.

With a crystal pickup and an extended range 8 or 12 -in. speaker, reproduction is crisp and clear with volume to fill a room.
(Fig. 5) of thin aluminum. File each slot for a tight clamp fit around the transistor socket, and fasten with cement. Mount the 2N301 power transistor to the chassis with a layer of thin mica (Fig. 6). The mica and the insulating washers which are cemented to the inside of the panel serve to insulate the mounting screws and the transistor case (collector). Yet the thin mica permits the chassis to act as a heat sink to keep the transistor

cool.
Make the clip terminals for the 2N301 base and emitter pins by breaking apart an old 7 or 9 -pin tube socket and removing the smallest terminal clips.

Wiring. Solder all of the connections according to Figs. 7 and 8. Make connections with \#22 solid hook-up wire with push back insulation and use small spaghetti on every resistor and capacitor lead where there is danger of shorting. The 2N217 transistors are easily damaged by heat, or improper connection. Mark their sockets with a spot of red paint on the collector side to prevent wrong insertion.

How It Works. The crystal phono pickup
feeds into a high-Beta 2 N 217 transistor using a grounded emitter circuit. Potentiometer R2 serves as volume control as well as part of the voltage divider network supplying bias to the transistor.
The 100 K input resistor, R 1 , tends to reduce the high frequency response which is exaggerated in most transistor circuits, and flattens the response of the crystal pickup. The resistor presents high impedance to the higher frequencies.

The driver transistor, T 2 , is direct coupled to the RCA 2N301 power transistor. Since output impedance of the 2 N301 is very low, about 16 -ohms in this circuit, no output transformer is needed. Thus there is less distor-

MATERIALS LIST-TRANSISTORIZED AUDIO AMPLIFIER

No. Req'd	Size and Description
2-R1, R3	$100 \mathrm{~K} 1 / 2$-watt 10% carbon resistor (see text)
	10 K midget volume control
	$2.2 \mathrm{~K} \mathrm{1/2} \mathrm{watt} 10 \%$ carbon resistor
1 R5	6.8K $1 / 2$ watt 10% carbon resistor
1 R6	39 K 1/2 watt 10% carbon resistor
1 R7	240-0hm 1/2 watt 5\% carbon resistor
1 R8	. $82-\mathrm{hmm} 1 / 2$ watt 10% carbon resistor
1 R9	$560.0 \mathrm{hm} 1 / 2$ watt 10% carbon resistor
2 C1, C2	20-mfd 15-volt midget electrolytic capacitors, Cornell-Dubilier \#746
2 T1, T2	RCA 2N217 transistors
1 T3	RCA $2 N 301$ power transistor
	HARDWARE
1	Switcheraft single hele mounting phono-pin jack
2	Johnson nylon-insulated tip jacks
1	SPST slide switch, miniature
2	sockets for 2N217 transistors
1	knob to fit $1 / 8^{\prime \prime}$ volume control shaft
2	$1 / 2^{\prime \prime} 0 . \mathrm{D}$. insulatiny washers for power transistor
4	battery holders for size D flashlight cells,
	Lafayette Catalog \#MS.175.
5	$6.32 \times 38^{\prime \prime}$ mach, screws and hex nuts
8	$4.36 \times 1 / 4^{\prime \prime}$ rh mach. screws and nuts
2	clips for power transistor terminals (see text)
3	$1 / 2^{\prime \prime} \times \# 5$ plated rh wood screws
4	Eveready \#950 D size flashlight cells, or 16 -volt block to fit space
Misc.	soldering lugs, hookup wire, spaghetti, scrap aluminum: "PHONO. GRAPH," "VOLUME" and "SPEAKER" nameplates; small piece $1 / 32$ "
	fiber or mica, for 2N301 mitg.
1	$7 \times 71 / 2 \times .040^{\prime \prime}$ sheet aluminum chassis (see text)
	CABINET (Use hardwood or pine covered with plastic veneer)
1	$7 \times 415 / 16 \times 3{ }^{3 \prime \prime}$ (top)
2	$415 / 16 \times 21 / 8 \times 7 / 16^{\prime \prime}$ (sides)
1	$61 / 8 \times 21 / 8 \times 7 / 10^{\prime \prime}$ (back)

tion, improved frequency response, and less cost in the circuit.

A 16 -ohm speaker will give the best results with your amplifier. A second choice would be a Jensen P12RX (\$12.40) 12-inch extended range speaker. Otherwise any 8ohm speaker also will work well, and you will get fair results with even a 4 -ohm speaker. The 560 -ohm resistor (R9) across the speaker terminals protects the transistors in case power is turned on with speaker disconnected.

Any good crystal or ceramic phono cartridge mounted on a free-moving arm can be used. The cartridge shown in Fig. 2 is a Ronette TO-284-P mounted on a Renette
 12-in. arm. This kind of pickup has relatively low output, with very low intermodulation distortion. Turntable selection depends on how much quality you want to buy. For a low budget system, 3speed turntables such as Alliance Model JPT8 and General Industries Model-SS are offered in the $\$ 6$ bracket.

The amplifier was designed to use the high quality entertainment transistors specified. If you use the lower-priced experimental transistors, performance will suffer. You may

HOW TO MOUNT POWER TRANSISTOR TO METAL CHASSIS

Four D-size flashlight batteries wired in series give you 6 volts of power. Battery life is 100 to 200 hours.
want to experiment with the size of input resistor R1. The higher its resistance, the more it attenuates the high frequency response. You can try values between 10 K and I megohm. A 10 K resistor worked best with the S\&M portable tape recorder.

When the amplifier is used to boost the output of a crystal set or a single transistor radio, you will get bell-like clarity from local AM stations. It works well with good FM tuners, and you could also use two of the units for stereo.

A CONSTANTMULTIPLIER

$e_{0}=\frac{-1}{R_{i} C_{f}} \int e_{i} d t$
\int MEANS INTEGRAL OF
C Integrator
1

> KEY
> $R_{f}=$ FEEDBACK RESISTOR
> $C_{i}=$ FEEDBACK CAPACITOR
> $R_{i}-$ INPUT RESISTOR

THE "K" REFERS TO THE VOLTAGE GAIN
MINUS SIGN INDICATES AN INVERTED SIGNAL

By FORREST H. FRANTZ, SR.

ELECTRONIC analog computers are valuable tools in product research and development. Scientists and engineers use them to study the mathematics and behavior of physical phenomena and physical systems. The analog computer is favored over the digital computer for programming simplicity and for the ease with which results may be interpreted.

Digital computers are used when extreme accuracy is required or exceedingly complex problems are to be solved. Several manufacturers offer small desk top electronic analog computers that cost in the vicinity of a thousand dollars. One of these computers, properly used, can pay for itself in a month in many industries.

The main components of an analog computer are operational amplifiers, coefficient potentiometers, reference and initial conditions power supplies, function generators, and computing resistors and capacitors.

The operational amplifier is the basic analog computer building block. In the Heathkit ES-400 it is a high gain $(50,000)$ direct coupled (dc) amplifier. This amplifier must be able to amplify very small signals, and at the same time must be able to handle large signals without overloading. The amplifier must have very low drift. Drift is a problem in dc amplifiers because a very small voltage change in the input tube is amplified and appears as a signal voltage at the output tube.

The input impedance must be high, the

MINUS SICNINDICATES AN INVERTO SIGNAL
output impedance low. And the operational amplifier must be linear over its operating range.

The principal difference between this type of amplifier and an audio amplifier is the direct coupling, the more elaborate precision voltage dividers, and the output arrangement to allow negative as well as positive dc outputs.

Operational amplifiers are used with feedback resistors and capacitors and input resistors. Appropriate combinations form con-

Finding the curve of a non-linear function. If more poinis were known, an even curve would result.

An integrator can generate sweep voltage for CRO display.
stant multipliers (Fig. 1a), adders (1b), and integrators (1c). Note that the ratio of the feedback and input components can be chosen to reduce the overall gain to 1 or less. The operation and use of the constant multipliers, adders, and integrators will be discussed later.

The coefficient potentiometers are used to set constant multipliers into problems and to keep signal levels within the operational amplifier linearity limits.
The coefficient potentiometers, amplifier inputs and outputs, reference and initial condition voltages, relays, diodes and function generator are terminated on a patch board.

When initial condition is zero, the integrator capacitor is shorted by a relay until computation begins.
sistors are designated as R1, R2, R3, etc., for convenient identification. If any of the inputs is to be subtracted, it is introduced in the negative form. Thus the adder is also a subtractor. Note that the choices of R1, R2, R3 etc. allows multiplication of each of the adder inputs by a different constant. Or, the same result may be accomplished by setting all of input resistors equal and using a coefficient pot to adjust the constant multiplier at each of the inputs.

Integration warrants some explanation. Figure 4a shows the plot of a voltage that is constant with respect to time. If a constant voltage is applied to an integrator input, the output plotted against time is the sloped straight line of Fig. 4b. A simplified way of explaining an integrator is to say that the input is multiplied by small segments of time, and the resulting products are added to all others (Figs. 5a and b). The analog integrator is continuous of course, and the small time segments or increments approach zero. If you didn't study calculus in college, don't be too alarmed if you find integration hard to understand.

If the integrator output of Fig. 4 b is the input to a second integrator, a second integration is performed. The integral of the ramp voltage of Fig. 4b is shown in Fig. 4c. Figure 5 c shows the incremental representation.

Integration is begun by opening a relay which has the integrator initial condition set on the feedback capacitor and by applying the input voltage to the integrator. If the initial condition is zero, the capacitor is shorted till integration is to begin as shown in Fig. 6. If the initial condition is some value other than zero, this voltage is connected across the capacitor till integration is to begin.

Problem Solving. Electronic analog computers solve differential equations. Differential equations describe the behavior of many physical systems. Figure 7 shows the electrical LCR circuit, a mechanical translational, and a mechanical rotational system. All of these systems are described by the same differential equation describing that input $=$ reactions + losses:

$$
\text { Input }=A \frac{d^{2} x}{d t^{2}}+B \frac{d x}{d t}+C x
$$

The computer hook-up is the same for all three systems. The constants A, B, and C are not the same but there are simple different coefficient potentiometer settings or different

mechanical
7

ratios of input and feedback resistors and capacitors in the hook-up. The computer hook-up for solving this differential equation is shown in Fig. 8. The initial conditions are assumed to be zero at the beginning of the problem in this case, and A equals 1.
To set up any problem for computer solution, you begin by assuming you have the highest derivative term, $\mathrm{d}^{2} \times / \mathrm{dt} t^{2}$ in this case or this term and its coefficient $A\left(d^{2} \times / d^{2}\right)$ in this case. Isolate this term, i.e., find out what it's equal to. Then integrate this term to form the lower derivatives. Thus the integral of $d^{\prime \prime} \times / \mathrm{dt}^{2}$ is $\mathrm{dx} / \mathrm{dt}$; the integral of $\mathrm{dx} / \mathrm{dt}$ is x . Again, this is college level math. If you have trouble understanding it, try to get help from an engineer or math teacher.

Space limitations do not permit a thorough treatment of dc electronic analog computers in this article. Many books and papers have been written on the subject. For those who are interested in learning more about analog computers, a bibliography is presented (Table A).

Solution to
Ham Radio
Anagram,
Page 88

Installing

Plug-In TV Antenna and Booster

 Systems

You can install TV line outlets in any kind of wall, or along the baseboard. No soldering is required.

Abstract

This type of antenna system lets you move your TV from room to room; it also banishes signal traps and improves pitture quality

By ELMER A. WOLFORD

|NSTALL a wired-in-the-wall type of antenna line system, and you'll get rid of TV signal traps, improve picture quality, and be able to use your portable TV and FM receivers in any room. Also, you'll eliminate unsightly indoor antennas and dust collecting coils of wire that have been plaguing your wife.

Cost of the system depends on the number of outlets (also called taps or plates) that you decide to use. These outlets range in price from $\$ 1.50$ to $\$ 2 .-$ 81 each. The typical layout (Fig. 2) cost $\$ 8.20$ for parts (available any electronic supply house) and took a few hours to install.
First, sketch exactly where you want your outlets. The 2 - or 4 -set couplers (Fig 2) will allow you to use all of the outlets at the same time with no interference. An FM radio in your den will not dis-

EDITORS NOTE: The plug-in antenna systems described in this article are not to be confused with the plug-in "antenna eliminators" which are claimed to turn your house wiring into a giant antenna system. Such TV "antenna eliminators" do not always provide consistently strong signals for good viewing on all channels, though some people living close to transmitter have installed the units and effected an improvement, often particularly on sets that previously were running with no antenna, or with standard antennas in poor repair.

Antenna eliminators can also become a shock hazard, in those instances where they include a capacitor circuit that isolates the TV set from the line. In such cases, if one of the eapacitors shorts out while the antenna circuit of your TV is plugged into one leg of the house a-c line, it may make all metal chassis and cabinet parts, "hot."
turb the TV sets in the living room and recreation room, or the FM-AM hi-fi combination.

You can choose one of three ways to bring an antenna lead into your house: (1) through the basement to all locations, (2) into the attic and down the walls, or (3) through the outside wall to the antenna wire coming down the side of the building. Pick the route that requires the shortest leads. For example, if you have a tri-level, bring the wires in through the basement.
Let's run through a typical basement installation. Start by drilling a $1 / 2-\mathrm{in}$. hole through the wall. Slant the hole upward as you drill from the outside to keep water from running in. Use a masonry drill on brick, stone, or cement walls. Either use an extralong electrician's type bit, or have a welding shop add a $12-\mathrm{in}$. extension to your drill bit.

Next bring the wires through a feed-in tube and connect them to your antenna coupler. At no point should the

trical outlets for neat appearance. Tap sharply on the wall to be sure you won't hit a stud, and then drill a starting hole and cut the wallboard or plaster with a keyhole saw (Fig. 4). Mount the brackets (Fig. 5), spacing them to match the holes in the outlet plate.
To spot the holes feeding into the basement, use electrical conduits or heating ducts as guides to find your partition centers. Drill a $1 / 2-\mathrm{in}$. hole directly beneath your outlet opening. Or temporarily remove the baseboard (Fig. 7) and drill through.

Trim the wire end (Fig. 3) and connect to terminals marked SET 1 , on the coupler. Follow the most direct route possible between the coupler and the outlet holes, tacking the wire to the joists with wall stand-off insulators. When the wire is up to your hole

TV transmission line run through pipe, metal conduit, or jacket, since metal around the line will cause a loss in signal strength.

If you follow the Fig. 2 layout, but live in a fringe area where you use two antennas, you will need two 4 -set couplers and two line outlet plates. Pick a spot in the basement where the wires from the coupler will be as nearly equal in length as possible. Trim the incoming antenna lead as in Fig. 3. Connect to the coupler terminals marked ANT, and fasten the coupler to the floor joist with wood screws.

Making the Wall Openings is next. In the living room, mark a $13 / 4 \times 4-\mathrm{in}$. rectangle for each outlet, at the same height as your elec-
under the outlet, clip it off with about 4 feet extra remaining. Straighten a metal coat hanger, tape the wire to it, and have your helper pull the line up through the outlet hole in the wall. Again trim the wire end as in Fig. 3 , and connect to the terminals on back of the outlet plate. Follow the same procedure installing the outlets in the other rooms.

For a Double Antenna System, locate the second coupler near the first, and run all four outlet lines as before, bringing them up to your two-line outlet plates. Whenever more than one line is connected to an antenna, there is some loss of signal due to stub effect. If you do not need the convenience of using two or more outlets at the same time,
you can save moncy by using polarized plugs (Fig. 8) with which you can quickiy connect any desired outlet.

When a TV set is connected into any outlet other than the last of several outlets wired in series, the antenna wire beyond that outlet produces a signal loss. A new kind of switching outlet (Mosley) automatically disconnects the system beyond the outlet in use.

Where TV Signal Strength Is Low, multiple outlets may weaken reception to the extent that pictures are snowy and dull, with poor sound at the receiver. One home system kit (Jerrold \$43.98) provides for five TV or FM outlets, and includes an amplifier (Fig. 9). Another system (Blon-der-Tongue Co. $\$ 57.33$) which includes an amplifier and provides for up to eight TV sets, is the answer for apartment buildings, motels and rooming houses. Even larger systems providing for up to 500 outlets are available, but require experienced installers.

Through the Attic Installation is the answer if you have no basement. Drill a $1 / 2-\mathrm{in}$. hole through the roof for each wire and push
 the wires inside. Mosely RoofThru or Javex Tenna-Shingles permit feeding the antenna wire directly through the roof for short direct connections with less signal loss. Copper flashing inserts (Fig. 10) under the roof shingles prevent water from running into the attic. Black plastic roof cement can also be used to seal these fittings and guarantee no leaks.
For through-the-attic installation, connect your antenna lighting arrestors near the entrance holes and run a ground wire as in Fig. 10. An important advantage of plug-in TV antenna systems is that you can disconnect your TV sets during electrical storms. Lightning has been known to split open the finest arrestors and then the TV set. While you are away on vacation, you can be worry-free knowing that your TV is completely disconnected.

Select the locations for your outlets and drill $1 / 2-\mathrm{in}$. holes above each (Fig. 11). Tie a string to a nut and drop it through the hole to check for obstructions in the walls. If the nut hits bottom, there is no problem, but if there is an obstruction, try another location. Or run the wire through a closet on the other side of the wall, and then out the wall opening. Complete the outlet installations as described before.

The Magic Carpet antenna (Jerrold Electronics Corp.) is a $21 / 2 \times 6-\mathrm{ft}$. flat flexible
printed circuit (Fig. 12). You can staple it to the attic floor or joists, to the ceiling of a utility room or closet, or even slip it under a rug. But remember that metal will shield an antenna. If there are large areas of your roof or walls covered with aluminum insulation, particularly along a line between your antenna and the TV station, your signal strength will suffer.

Through the Wall Installation may be the only answer in some homes. Drill a $3 / 4-\mathrm{in}$.

hole through the wall all the way. Insert the Wall-Thru fitting (Mosley Electronics, Inc.) mark it for length, and cut off the excess. A socket mounts directly to the fitting on the inside wall. Re-insert the wall-thru, run the wire through and trim as in Fig. 3. Connect the wires to the socket, and then mount the socket to plate of the wall-thru fitting. Connect to your outlet plug.

Multiple Family Dwellings can be spared the "forest" of many antennas littering the roof top, if multi-set arrangements are used. All-weather TV set couplers can be mounted on the antenna mast or at the eaves. If your area has both low band (channels 2-6) and high band (channels 7-13) stations transmit-

Performance of this printed circuit antenna is comparable to outdoor antennas up to 35 miles from the TV station.

ting, you can couple the two lines together and run one line only by using a high-band, low-band VHF coupler (Fig. 13). This requires that you bring in only one wire to the 2 -set or 4 -set couplers in various apartments. Cost per outlet will be less. Also, couplers are available for connecting separate VHF and UHF antennas to a single line. These couplers are also excellent for homes.

Use either double or single stand-off insulators as you run the wire down the antenna mast, across the roof and down the sides to the apartments. Insert the insulators about every 10 feet. Apply a dab of black plastic roof cement around the stem of each to prevent leaks. Also, install a lightning arrestor on each wire at the point where it enters the building, and run a line down to a ground rod as close as possible to the building.

Custom TV Wiring. New home builders can save money by installing custom TV wiring while the house is under construction. By planning ahead, you can also install your telephone wires and terminate the lines in wall sockets. Install a plaster ring for each outlet location so it will be flush with the plaster board or plaster. In some areas, the code may require a plastic wall box. Also, wall plates are available which provide for both power and antenna connections. A metal barrier plate in the box separates the antenna socket from house wiring to comply with the code, and the plugs are polarized to prevent improper insertion.

Antenna Rotor Controls can also be fed to TV outlet plates. You'll find either four, five or eight wires in the rotor cable. Connections must be correct or you'll burn up the control box, so sketch the hookup and note the color of wire at each terminal before you disconnect anything. Connect the sockets and plugs so that each wire mates color to color.

Chromed outlet plates are also available but are not recommended for fringe area installations. Instead use low-loss polystyrene wall plates. Always, the wire between outlet plates and the TV set should be as short as possible, preferably under 4 -ft. in length, for optimum reception.

Electronics Father and Son Hobby

By FORREST H. FRANTZ, SR.

SOME people tell us that modern family life has been torn to shreds. Too many cars, too many television sets, too many widely scattered activities and hobbies shoot the members of a family in different directions, they say.

Bunk! In our family, we benefit from these activities and find them a mutual basis for enjoyment. The hobby? Well, that's one of the best friendship cemenis there is. And I don't know of any hobby that tends to keep a father and son as close to each other as electronics.

Why electronics? While he certainly can profit from your wisdom in matters of sportsmanship, your son probably can do fine on his own from the standpoint of athletic skill. When it comes to electronics and other scientific-engineering hobbies, however, he will need your help. And activities such as these can lead your son to a career in which he can one day support his family very comfortably. More important, an interest in electronics stimulates an understanding of science that is essential in our technological age.

There's another important angle to electronics as a father and son hobby: it will keep you interested, too. If your son \in ngages exclusively in activities that don't appeal to you, it's hard for you to be the kind of buddy you should be. You've got to be an enthused participant rather than a tolerating one.

Incidentally, Junior, if you're reading this, there's a good reason for getting Dad in on your electronics hobby, in addition to the obvious one that you like the guy and want to do things with him. Although you can do a lot in electronics with a limited budget, you can do a great deal more if the purse strings aren't too tight. Get Dad interested in electronics, and he'll soon realize this.

As a matter of fact, you can show him how he can make some big savings by letting you build home intercoms, hi-fi amplifiers, receivers, battery chargers, and other modern living essentials from kits. Chances are he'll be wrestling with you for the soldering iron when the kits arrive. If that's the case, give him a chance because it's your opportunity to get him into electronics in a solid way.

Ar electronic lab type kit which features a number of construction projects is a good investment for beginners.

Assuming we want to get started on a father and son basis, what are the ground rules? In the first place, you can't cram a hobby down someone's throat. Create interest by exciting curiosity and enthusiasm. A boy who can show his father a clever electronic device that he built for a few dollars will usually find his father's interest and pocketbook available. A father who can show his son a very compact radio or other elec-

Short wave converters and radios are excellent projects after the beginner has acquired some know-how.

Learning how to build test equipment for use in trouble shooting radios and construction projects is important.
tronic device usually has a ready and willing partner for the next construction project.

Where do you start? Age and "do-it-yourself" know-how have considerable bearing on this question. A boy under ten years of age might well start on a crystal set such as the Allied-Knight 83 Y261 ($\$ 2.50$) and then progress to a code practice set such as the Lafayette KT-72 (\$2.99) or the Knight 83 Y239 ($\$ 3.95$), which provide an opportunity to learn code. After this he may progress to the point where an older boy might start-the experimental stage. An experimental kit may be a home-rolled job or a professional one such as the Allied-Knight 83 Y299 Transistor Lab Kit (\$15.75).

A project that is usually best reserved till after the Lab Kit is a short wave converter kit such as the Lafayette KT-123 (\$9.80). This converter brings in short wave on a broadcast receiver without any receiver changes. In lieu of the converter a simple short wave receiver such as the Knight 83YX259 "Space Spanner" (\$19.95) might go well. The short wave converter or receiver approach is a good one because it creates an extracurricular electronics interest that is broadening and doesn't eat up additional kit or parts dollars.

At this stage of the game, you're ready to go on to test equipment. A multimeter is a must for the serious electronics hobbyist. The Lafayette TK-10 Kit (\$11.95) or the Heathkit MM-1 (\$29.95) are representative kits. A signal generator such as the Knight 83Y145 RF Signal Generator ($\$ 19.75$) is also an important instrument to acquire.

If the kit prices seem to amount to a lot of money when you add them up, bear in mind that this number might represent a year's investment.

In some cases, of course, the father and son team will want to move faster. Regardless of the rate at which you pursue your electronics hobby, remember that every dollar you spend
for kits or construction parts is buying knowhow, skill and experience, as well as equipment for future use.

At this point in the father-son electronics pursuit, you're ready to tackle magazine construction projects. Generally speaking, this kind of construction is more educational than kit construction. But kits are recommended for earliest projects because construction success comes easily with a minimum amount of know-how and time.

One word of caution. Don't get so wrapped up in turning out construction projects that you neglect to learn electronic principles. To get the most out of your hobby, back the construction with reading in electronic theory. Some good books on the fundamentals will help considerably. Try to understand how circuits work. This will give you a fuller understanding of your hobby and a better basis for a future in electronics.

Good luck to both of you on your electronic hobby. And by the way-maybe mother and sister would like to get in on the fun, too.

Protect Instruments with Polyethylene Film

- Dust and other air pollution poses a threat to instruments. This pollution readily enters ventilation openings and can eventually cause trouble. But the more visible effects on the exterior of instruments are likely to become annoying in a much shorter time. Greasy particles tend to make dirt stick to instruments and cause a film to form. In a short time the once shiny instrument has lost its luster. This dirt film is not easy to remove, and sometimes the required cleaning will damage the instrument finish.

A sheet of polyethylene film fastened to the front of your instrument shelf will protect your instruments and minimize the effects of pollution in the air. The polyethylene film protects the instruments and yet allows you to see them. Simply throw it back to use the instruments.

The polyethylene film may be obtained from Sears-Roebuck or it may be salvaged by splitting a polyethylene clothing bag.

Using Positive Feedback

ONE of the truly valuable techniques available to the small-receiver designer is positive feedback, or regeneration. Most small receiver projects utilize it; in fact, all truly sensitive receivers using less than five tubes or transistors probably apply this principle.

Positive feedback owes its effectiveness to the reduction of circuit losses which it accomplishes. All apparatus contributes some loss of energy to a radio signal as it passes through; even one inch of hookup wire has measurable resistance. This unavoidable extraction of signal energy reduces both the available amplification and the selectivity of a receiver. Positive feedback takes a little of the relatively strong signal appearing in the output of an amplifier and transfers it around to the input, overcoming some of the losses in the circuit (Fig. 1).

Thus the losses of the circuit are reduced, and in effect the resistance of the tuning circuit or other circuit is reduced. In the case of the tuning circuit, since selectivity is an inverse function of its resistance, the tuning curve will be sharpened considerably (Fig. 2).

By "positive" feedback is meant that the feedback path and coupling network are arranged to make the feed-back voltage add to the original signal voltage at any instant. Such a connection enhances the gain and reduces the bandwidth of the circuit involved.

The additional gain is expressed in this formula:

$\underset{\text { Gositive Feedback }}{\text { Gain with }}=\frac{\text { Normal gain }}{1-\text { Normal gain }}$

The feedback ratio is the ratio of the voltage fed back over the output voltage. It is always a number smaller than one.
Even though you've let your algebra slip, you can still see that as the feedback ratio (amount of voltage fed-back, in effect) is increased the denominator of the fraction grows smaller. And as the denominator grows smaller, you will recall, the whole quantity becomes larger, since the numerator remains constant. This means that a comparatively small amount of feedback will give a large increase in gain.

Suppose we have an amplifier with a normal, non-feedback gain of five. Now, let us arrange that $1 / 11$ of the amplifier's output voltage will be additively (positively) fedback into the input. Substituting these values into our equation we see that:

$$
\begin{aligned}
& \text { Gain with } \\
& \text { Feedback }
\end{aligned}=\frac{5}{1-(5 \times 1 / 10)}=\frac{5}{5 / 10}=10
$$

Thus we see that even this comparatively small amount of feedback has doubled the actual amplification of our system. Some calculated gain values obtained from this same hypothetical amplifier with various values of feedback are tabulated below:

Ratio $\binom{$ Feedback Voltage }{ Output Voltage }	Effective Circuit Amplification
Without Feedback	5.0
0.05	6.7
0.10	10.0
0.125	13.7
0.150	20.0
0.175	40.0
0.195	200.0

The value of feedback is limited by the fact that when the product of the normal gain times the feedback ratio becomes equal to one the system breaks into oscillation. As the feedback is increased toward the maximurn value, the circuit adjustment becomes exceedingly critical. But positive feedback makes it possible to obtain as much amplification from one tube or transistor as would be gotten from two or three without it, so it is well worth the drawbacks.

Positive feedback is always employed in the

higher frequency circuitry of a receiver, since the bandwidth-limiting action makes its use in the audio section inadvisable. While most often employed in the detector circuit, regeneration often also improves the operation of if or rf amplifiers; here it increases both sensitivity and sharpness of tuning to a marked degree.

In any case, the requirements for successful application of positive feedback may be summarized as follows:

1. The feedback must add to the signal input voltage at all times. This means the phasing or polarity of the coupling circuit must be correct.
2. The magnitude of the feedback's effect must be under perfect control and smooth at all times.
3. Normal control of feedback must have a minimum effect upon the frequency to which the circuit is tuned.
Most often, an inductive feedback system is used wherein the energy is transferred via a magnetic field.

The first method of inductive feedback employs a tickler coil, connected in series with the output circuit and coupled magnetically to the tuned input coil. If the two coils, tickler and input coil are wound in the same direction and on the same form, they must be connected according to Fig. 3 and Table A.

The tickler coil should be spaced as closely to the input coil as possible, and should contain the fewest possible turns, determined by experiment.

Another commonly-used arrangement for providing positive feedback is by the use of a tapped input coil. This is shown in Fig. 4, connections in Table B.

Again, exact placement of the tap along the coil must be determined experimentally in new designs; in most cases, however, the

TABLE A-TICKLER COIL CONNECTIONS				
Type of Circuit	Connection Numbers			
	1	2	3	4
Vacuum Tube Grounded Cathode	Plate	B+	Ground	Grid
Vacuum Tube "H ot" Cathode	Ground	Cathode	Ground	Grid
Grounded Emitter Transistor	Emitter	Battery	Ground	Base
Grounded Base Transistor	Battery	Collector	Ground	Emitter

TABLE B-TAPPED INPUT COIL CONNECTIONS

Type of Circuit	Connection Numbers		
Vacuum Tube Grounded Cathode	Plate	Cathode	Grid
Vacuum Tube "Hot"Cathode	Grid	Cathode	Ground
Grounded Emitter Transistor	Collector	Emitter	Base
Grounded Base Transistor	Collector	Emitter	Base

number of turns between connections one and two will be appreciably greater than between two and three.

Although physical arrangements may vary, other taps may be used in certain applications, particularly with transistors, but the identical principles apply in coil connections.

Control of the effects of feedback is most often accomplished by controlling the gain of the circuit rather than by varying the feedback coupling. This is because most feedback variations tend to influence the tuning of the circuit at the same time.

The most widely-used method for controling the effect of feedback involves varying of either the de plate voltage (with triodes) or the screen-grid voltage (with pentode tubes). With transistors, current practice involves variation of the de base bias in most instances. This is practically done with a well-bypassed volume control potentiometer. When set up properly, these means provide absolutely smooth and reproducible control of the effects of feedback with a minimum of influence upon circuit tuning. This, along with a little circuit savvy and shielding, suffices for requirement three that we stated earlier.

From the operational standpoint, these two rules should be observed:

1. For maximum gain, adjust the effective feedback as closely to the oscillation point as possible. The oscillation-point is manifested by a click or plunk, followed by evidences of instability or reduction or gain as the feedback is advanced.
2. If for any reason it is desirable to operate the circuit in an oscillating condition; as for CW radiotelegraph reception with the simple receiver, for instance, again always operate as close to the oscillation-point as expedient.

RCA training at home can be the smartest investment you ever made

Look what you get in the Course in Ratio and Electronic Fundamentals

PLUS ALL THIS AT NO EXTRA COST...

15 KITS

to build a Multimeter, AM Receiver and Signal Generator. Kits contain new parts for experiments, integrated so as to demonstrate what you learn in the lessons and to help you develop technical skills. Each kit is fun to put together!

Practical work with the very first lesson! Pay-only-as-you-learn! No long-term contracts to sign! No monthly installment payments. Pav only for one study group at a time if and when you order it!

Stake out your future in electronics now!

SEND FOR OUR
FREE HOME
STUDY CATALOG
TODAY!

Just fill out this card and drop it in
the mail-no postage needed.
RCA INSTITUTES, INC.
A Service of Radio Corporation of America - 350 W .4 th St. New York 14, N. Y. 610 S. Main St., Los Angeles 14, Calif.

The Most Trusted Name in Electronics

RCA INSTITUTES INC. Home Study School, Dept. RX-21
A Service of Radio Corporation of America
350 West Fourth Street, New York 14, N. Y.
Without obligation, rush me the FREE 64-page illustrated book describing your electronic training program (check one). No salesman will call.
Home Study \square Los Angeles Resident School \square New York Resident School \square
Name
(Please Print)
Address \qquad
City
Zone.........State
Veterans: Enter discharge date

CANADIANS-Take advantage of these same RCA courses at no additional cost. No postage, no customs, no delay. Enclose this card in envelope and mail to: RCA Victor Company, Ltd., 5581 Royalmount Ave., Montreal 9, Quebec.

RCA TRAINING CAN BE THE SMARTEST INVEST. MENT YOU EVER MAKE

With RCA Institutes Home Study training you set your own pace in keeping with your own ability, finances and time. You get prime quality equipment as a regular part of the course. and you never have to take apart one piece to build another Perhaps most important, RCA's liberal Pay-As-You-Learn Plan is the most economical home study method because you pay only for lessons as you order them... one study group at a time! If you drop out at any time, for any reason, you do not owe RCA one penny! No other obligaticns! No installment payments required! Licensed by New York State Education Department.

Choose YOUR FUTURE from this list of courses:

- Radio and Electronic Fundamentals (see reverse side)
- Television Servicing
- Color Television
- Electronics for Automation
- Transistors

START YOUR CAREER IN ELECTRONICS NOW AT RCA INSTITUTES in Los Angeles-New YorkCity

CHOOSE FROM THIS LIST.

	Course	Qualifications	Length of Cours:
A	Advanced Electronic Technology (T-3)	High School grad, with Algebra, Physics or Science	Day $2^{1 / 4}$ yrs. Eve. $6 \frac{1}{4}$ yrs.
B	TV and Genera Electronlcs (V.7)	2 yrs. High School, with Algebra, Physics or Sclence	Day $11 / 2$ yrs. Eve. $41 / 2$ yrs
C	Radio : TV Servicing (V.3)	2 yrs. High School with Algebra, Physics or Science	Day 9 mos Eve. $21 / 4 \mathrm{yrs}$.
D	Transistors	V-3 or equivalent	Eve 3 mos.
E	Electronic Drafting (V.9)	2 yrs. High School, with Algebra, Physics or Sclence	Eve. Basic 1 yr Advanced: 2 yrs.
F	Color TV	V. 3 or equivalent	Day 3 mos. Eve 3 mos.
G	Audio. HI Fidelity	V. 3 or equivalent	Eve. 3 mos.
H	Video Tape	V-3 or equivalent	Eve 3 mos.
1	Technical Writing (V -10)	V. 3 or equivalent	Eve. 3.18 mos
J	Computer Programming	High School grad	Day 6 weeks Eve. 24 weeks Sat 30 weeks
K	Radio Code V-4)	8th Grade	Eve as desired
L	Preparatory Math 8 Physics (P.C)	1 yr. High School	Day 3 mos.
M	Preparatory Mathematics (P-OA)	1 yr . High School	Eve. 3 mos.

FIRST CLASS
PERMIT NO.
10662
NEW YORK, N. Y.

> B USINESS REPLY MAIL
> No Postage Stamp Necossary if mailod in U. S.

Postage will be paid by -

RCA Institutes is one of the largest technical institutes in the United States devoted exclusively to electronics. Co-educational Day and Evening classes. Free Placement Service. Applications now being accepted.
SEND FOR THIS FREE ILLUSTRATED BOOK TODAY

Fill in the other side of the postage-free card and check
Resident School.

RCA INSTITUTES, INC.

A Service of Radio Corporation of America - 350 W. 4th St.. New York 14, N. Y. - 610 S. Main St., Los Angeles 14, Calif.

Code Practice Oscillator

By C. F. ROCKEY

AYE, LADDIE, if you've got a bit of the Scots in you-or even if you haven'tyou'll ken this thrifty little oscillator. Its source of power is tap water-or spit-and it's just the thing for code practice, for circuit continuity testing, for capacitor checking, and for use as a signal source when adjusting hi-fi or public address amplifiers.

To build it, first saw, sand smooth and shellac a $3 / 4-\mathrm{in}$. piece of soft pine or plywood to a 4×4 in. block. This is your oscillator's chassis. Next, physically modify the driver transformer by bending the bottom fastening lugs away from the core and removing the mounting frame, finding the dividing point between the " E " and the "I" sections of the core (see Fig. 3) and-care-fully-prying up and removing the "I" section. Set the "I" section aside, re-insert the modified core in the transformer's frame and bend the fastening lugs in place.

We used a Thordarson 14-D-93 interstage audio coupling transformer (4:1) that we had on hand, but this type has been discontinued by the manufacturer. Its closest present Thordarson equivalent is the 20-A-16 interstage transformer. This -or any similar transformer made by any other manufacturer-will work just as well in the oscillator's ultra-simple circuit.

When transformer is modified, mcunt it and all other circuit components except the angle brackets on the wood-block chassis (see Fig. 4), with $1 / 2$-in. \#6 r.h. wood screws. Before mounting the two angle brackets, clean their facing surfaces carefully with sandpaper or steel wool. Mount them with faces about $3_{10} \mathrm{in}$. apart.

Make all connections to the transistor connecting lugs before mounting the transistor to avoid

A quick dip of the blotting paper, place it between the brackets, and you've set the set to buzzing, ready to key off for code practice.
any possibility of damaging the transistor with soldering heat. When all wiring is complete (see Fig. 2) and checked, put the transistor into the circuit by clamping its leads under the appropriate soldering lugs and screwing them tight. (The transistor lead adjacent to the red dot is the Collector, the center lead is the Base, the remaining lead is the Emitter.)
Spit Power. Strictly speaking, the source of power for this oscillator is not spit or water. Water is simply the electrolyte of a simple voltage generating cell whose plates are the dissimilar metal faces of the iron and brass brackets. Immerse a piece of blotting paper (about $1 / 2 \times 11 / 2$ in.) in tap water, or moisten the paper with saliva, insert it between the bracket faces and you will have a source of power for your oscillator. What you're doing, is duplicating one of the first steps taken by Alessandro Volta (17551837) in developing the world's first battery (or pila, as Volta called it). Volta found that if two dissimilar metal plates (he used copper and zinc) were separated by moist paper, a current would

don't hear such a tone, check the wiring and transistor connections for correctness and if these are as they should be insert a $11 / 2 v$. dry cell temporarily across the brackets (plus side of cell to the brass bracket). This will give you a check on the transistor's condition. If it's good, oscillation will certainly occur. If not, substitute a new transistor in the circuit. (CK722's have proved unusually reliable in this simple circuit, but any other good PNP transistor may also be used.) Also, if you have used a transformer other than those specified in the Materials List, see if reversing its primary connections helps the tone.
With the unit operating, it can be used as a code-practice oscillator (see Fig. 5A); as a con-tinuity-resistance checker to locate open circuits (Fig. 5B)-in circuits up to 10 -megohms resistance if you use sensitive phones; as a capacitor checker (Fig. 5C); and as a signal source for audio amplifier testing (Fig. 5D). If too much hum is present for best audio amplifier testing, put the oscillator in a grounded coffee can and bring the shielded cable out through a hole in the can's top cover.

In capacitor testing, a good paper or mica capacitor in the capacity range of .001 mfd to .1 mfd will slightly weaken the signal and noticeably change its frequency. An open capacitor will have no effect on the signal, a shorted capacitor will kill it. (It is not recommended that you test electrolytic capacitors with the oscillator.)

Heavy Current Relay

- This little relay will handle as much as two amps. without trouble. Remove stationary contact of an electric bell or buzzer and turn it around. When current flows through coil, armature is pulled in and it makes contact with stationary member.-R.F.Y.

Better Soldering

- When using non-corrosive soldering paste flux for radio work, first warm the joint slightly with the soldering iron, then apply the paste with a piece of wire. The small amount of flux which melts on the joint is entirely adequate. Excessive flux spreads to adjacent insulation, causing leakage.

Transistorized Electronic Megaphone
 Highly portable, self-contained

 P.A. with a $500-\mathrm{ft}$. plus range

By HAROLD P. STRAND

Fig. 2A (Left) Cover removed to show housing components (detailed in Figs. 3 and 4). Note small microphone mounted in cover plate at left, with its leads plugged into amplitier chassis. Fig. 2 B (Right) Front of megaphone, showing how grille clotb mounted over wooden ring bolding speaker presents neatly finished appearance.

WHETHER you skipper your own cabin cruiser, or are active in local civic groups which hold or sponsor sports events, public meetings or rallies, you'll find this highly portable, self-contained "public address" system mighty handy for long distance hollering. Come to think of it, this megaphone might be just what your wife would like to have for summoning the children for supper. It will "broadcast" intelligible speech from 500 to 600 feet, depending on weather conditions.
This unit is designed for medium level voice

amplification. Transistors employed in an amplifier circuit allow the use of small, light batteries contained in an attached housing back of the horn (Fig. 2). It has a volume control, although raising or lowering the voice level usually serves to control the output volume. A push-button switch on the pistol grip handle is controlled by the forefinger. Holding the switch closed turns the power on from the $221 / 2$ volt battery and the 3 volt bias battery. Releasing the switch eliminates power drain when megaphone is not in use.

Since the in-use maximum current drain at the loudest volume level is about 4050 milliamperes from the $221 / 2$ volt battery, and about 2.5 from the 3 volt battery (used as

MATERIALS LIST-ELECTRONIC MEGAPHONE

lectronic parts listed below were supplied by Lafayette Radio, 165-08 Liberty Ave., Jamaica 33, N. Y.
$16^{\prime \prime}$ P.M. speaker. 2:15 oz., magnet. Oxford 6EVS 3.2 ohm voice coil or Utah equivalent, with 4.6 watts rating
1 Shure microphone, MC-11 controlled reluctance type, $1^{\prime \prime}$ di ameter
3 transistor sockets MS-275
3 G. E. 2N44 transistors
1 RCA type phono jack and plup
$10^{\prime \prime}$ shielded cable, small diameter (about $1 / 8^{\prime \prime} 0 . D$.)
1 10,000 ohm miniature volume control VC. 34
1 Burgess XX15 B battery, $221 / 2$ volt
2 Burgess \#Z penlight cells
1 three-prong plug to fit XX15 hattery
1 AR-109 driver transformer
1 AR-138 output transformer
1 Argonne 8 mfd 15 volt capacitor, 15 v
$47 \mathrm{ohm} 1 / 2$ watt resistor.
$122,000 \mathrm{ohm} 1 / 2$ watt resistor
11200 ohm $1 / 2$ watt resistor
1 \#6 solder lug or more if needed for ground conn. (see below)
1 Bakelite terminal strip 7 terminals, two orounded, Jones 55-C
2 Bakelite terminal strips 2 terminals, one grounded, dones 51-A (Note: You can use 5 terminals on first and 1 terminal on second strip mentioned above, all lugs to be insulated and use solder lugs under chassis screws for ground connections?
1 miniature knob for $1 / 8^{\prime \prime}$ shaft MS- 185
$\frac{1}{1}$ piece plastic prille cloth about $7 \times 7^{\prime \prime}$
1 D.P.S.T. push leaf switch, Switchcraft 1004 or Mallory 1014
1 speaker cone made of half-hard . 032 sheet alum., riveted or with lock seam, front end rolled bead, $123 / 4^{\prime \prime}$ long, $91 / 2^{\prime \prime} 0 . D$. large end, $4^{\prime \prime}$ O.D. small end. Robert Towne, 49 Abbott Avenue, Everett, Mass., will make them for our readers for $\$ 7.25$ P.P. in U.S., express or money order

BAKELITE—supplied by Forest Products Co., 131 Portland Street, Cambridge, Mass., for $\$ 3.00$ P.P. in U.S., express or money order.
1 pc black paper base $1 / 4 \times 5 \times 5^{\prime \prime}$. Cut and dress to tightly fit inside housing
1 DC black paper base $1 / 8 \times 5 \times 5^{m}$. Cut and dress to fit on outside front of housing
2 pcs linen base natural finish $1 / 8 \times 5 \times 21 / 4^{\prime \prime}$ (handle sides)
1 pc paper base natural finish tubing $11 / 2^{\prime \prime} 0 . D ., 1 / 16^{\prime \prime}$ wall, $17 / 8^{\prime \prime}$ long (mouthpiece)
MISCELLANEOUS METAL AND WOOD STOCK (Try local metalworking and cabinet shops)
1 pe aluminum about . $050 \times 3 \times 53 / 4^{\prime \prime}$ (chassis)
1 pc aluminum half-hard alloy or material that can be bent but has reasonable rigidity, $1 / 8^{\prime \prime} \times 13 / 18^{\prime \prime} \times$ about $113 / 4^{\prime \prime}$ (handle frame)
1 pc aluminum half-hard alloy about $.040 \cdot .045 \times 3 \% / 16 \times 181 / 2^{\prime \prime}$ (housing) can also use soft sheet steel about $.034^{\prime \prime}$
1 pc aluminum half-hard alloy $3 / 32$ or $1 / 8^{\prime \prime} \times 5 / 8^{\prime \prime} \times$ about $17^{\prime \prime}$. Bend to form speaker U bracket support
1 pc hard brass or phosphor bronze about $.010 \times 23 / 8 \times 7 / 8^{10}$ (clip for bias battery)
1 pe dry maple or birch $3 / 4 \times 41 / 2 \times 41 / 2^{\prime \prime}$. Turn to tapered disc to fit tiohtly in small end of cone
1 pC hardwood plywood such as birch $1 / 4 \times 7 \times 7^{\prime \prime}$. Cut-out ring to holr speaker in cone
Misc. hook-up wire, screws, nuts, paint. Pliobond cement, etc. Note-Pure aluminum bends too easily for our purpose. What is commonly called half-hard can be formed or bent but is strong and rioid. Some trade numbers are 3003 H 14 half-hard, 11 H 14 halfhard and 5052 H 34 quarter-hard. Any similar type could be used where a test shows it workable for bending but as rigid as soft steel. Lightness of aluminum makes it ideal for keeping mepaphone light. Usually supply houses do not sell small quantities so it has to be picked up in shops using this stock.

NSULATED UG

MOUNTING FOOT TO CHASSIS
Terminal strips 55-C and 51-A have grounded lugs as shown above for connection of leads going to ground. If strips with all lugs insulated are used, simply use solder lugs under chassis screws for ground connections, as at AR-109 transformer feet.
bias in the emitter of the driver stage), battery life should be quite high.

The Shure controlledreluctance type microphone has an output level of -71 db below

one volt per microbar, and an impedance of 1000 ohms. It is only one inch in diameter. It is mounted in a Bakelite tube, which also serves as the mouthpiece (Fig. 2).

The 6 in. permanent magnet type speaker with its 2.15 ounce Alnico magnet is fixed part way down in the cone as in Fig. 2. The three G.E. 2N44 transistors in a push-pull circuit which power
the unit, have much higher collector power dissipation than ordinary transistor radio types, such as the 2N107. In addition, the AR-138 output transformer, used can handle more power than the AR-119 or 120 as usually used in radios. Thus you get a surprising volume from this miniature equipment.

7

Test-mounting three ardio transistors in thei: sockets. Leads from these transistors will need to be cut off to about $7 / 16$-in. length with diagonal pliers, but transistors should not be permanently placed in sockets until megaphone assembly is complete, ready for cover plate to be put on (Fig. 2A). Wire leads to batteries, switch and speaker are identified with marked tabs of white tape to assure correct connections. Plus battery lead is also marked to avoid error.

Underside of amplifier chassis, with parts mounted and wied according to Figs. 4 and 5.

Parts for this megaphone should cost you from $\$ 35$ to $\$ 40$, which is only about two-thirds the cost of a typical commercial unit.

Building the Amplifier. Bend up the chassis from sheet aluminum and drill openings for components as in Fig. 3. Figs. 6 and 7 show both sides of this chassis with all parts mounted. Note terminal strip at one end (Fig. 6) for leads to battery, speaker and switch. The input from the mike is at a phono jack in the top of the chassis and the volume control is placed in a side opening, where its shaft will project through the housing for an outside control with a knob.

Use a short piece of shielded wire from volume control to base of first transistor, since this is a sensitive input lead and grounding the shield prevents or minimizes possible hum. Place two small terminal strips in the chassis as in Fig. 5, to provide tie points for soldering leads.

You won't need much hook-up wire in this circuit as the transformers come equipped with leads that are carried to the proper points and soldered. Use only rosin-core solder and apply enough heat from a small iron or soldering gun to fully flow the solder. In making connections to terminal strips, make sure the lugs grounded to the chassis are used for ground connections only, as indicated in Fig. 5. If you use other types of terminals by the way, where all lugs are insulated, provide small solder lugs under chassis screws for ground connections.

Next lay out pattern for the amplifier housing (Fig. 8) on sheet aluminum or soft sheet steel (about . 034 in.). Housing can be bent over a piece of angle iron in the vise (Fig. 9). Make sure the box is square.

After bending up the housing, bring its two edges together and rivet a piece of $1 / 8 \mathrm{in}$. thick aluminum placed inside over the joint (Fig. 10). Drill holes for the short $3 / 32 \mathrm{in}$. brass

Forming the ampli. fler's itheot metal housing, using the rounded edge of a plece of angle iron held in the vise.

Edges of shaped hous ing are brought together and riveted to an aluminum plate.
rivets, and head the rivets over on the inside in countersunk holes so that the rivets will come flush.

To form the frame for the pistol grip handle

After fastening switch through its hole in handle with locinnuts, attach handle frame to amplifier hous. ing. Note that housing has been finished with primer, then black enamel lightly rubbed with ateel wool.
which is of aluminum stock about $3 / 32$ to $1 / 8$ in. thick and soft enough to be bent, lay out the pattern (Fig. 11A) on paper with $1 / 2 \mathrm{in}$. squares. Then, carefully bend the aluminum stock to its proper shape over various forming pieces held in the vise.

Install the switch in its hole with locknuts and attach the handle frame to the housing, using two 8-32 machine screws in holes drilled and tapped into the housing and inside plate (Fig. 12).

Because the aluminum cone could be difficult for an amateur to make we recommend you purchase one as indicated in the materials list, or have your local tinsmith make one up for you (Fig. 1). These commercial ones have a neat rolled bead at the front end which helps to stiffen the cone.

To assemble the speaker, you'll need a hardwood disc which fits tightly in the 4 in . end of the cone (Fig. 14). Turn this from maple in any woodturning lathe, giving it a taper to properly fit and come flush with the end. Insert it from the large end of the cone, tapping it down into place. Fasten it with four $3 / 8$ or $1 / 2$ in. \#7 flathead brass wood screws, inserted through the aluminum and into the wood disc in holes spaced and drilled equally around the circumference.

Pliobond cement on the disc edges will further insure its remaining in place.

Figure 14 shows how a piece of $1 / 4$ in. thick black Bakelite, which was carefully cut and fitted to the inside dimensions of the housing as in Fig. 8E, is attached to the maple disc in the end of the cone, using four $3 / 4 \mathrm{in}$. \# 9 roundhead wood screws. Holes for these screws must also be drilled in the maple block so you won't split the wood. Next fit the Bakelite panel into the amplifier housing until it is flush with the edge, and use 4-40 machine screws in drilled and tapped holes to secure it.

Make sure when doing this fitting the switch button is on side of housing nearest speaker cone, and tabs on housing are on the end of housing away from cone. When drilling and tapping Bakelite in its edge, by the way, clamp the Bakelite in a vise so the tap will not tend to split the material, since it splits rather easily in end grain. You can drill the required holes in the metal with

Soldering connections to switch terminals in handle of megaphone-see Fig. 5.

Bakelite in place, but only allow drill enough of a depression in the Bakelite to mark where to drill for tapping. Use a \#33 drill through the metal and then change to a \#43 drill for making the holes in the piece of Bakelite. Then use a 4-40 tap in each drilled hole.

Before fitting the amplifier to the Bakelite piece you have already attached to the cone, first drill a \#29 drill hole through the Bakelite and also the wood disc in the cone just off the center (Fig. 8E), for the speaker wires. Pass the speaker leads through this hole and then fit the amplifier chassis against the Bakelite piece and secure it (Figs. 2A and 3), making sure the control knob shaft is allowed to project through the hole for it drilled in the side of the housing. The chassis should also be so located in the housing so that the $221 / 2$ volt XX15 battery will fit between the chassis and the housing (Fig. 2A) when wedged with a folded piece of cardboard.

The switch contact wires are brought through their hole (Fig. 8C) in bottom of the case, and connected as shown in Fig. 5 and Fig. 15. Solder a plug to the two leads that go to the battery and make a knot in one of them which will easily identify the plus lead for you. Examination of the way the three-prong plug fits in the battery quickly shows which terminal of the plug is plus.

Mounting the Speaker. Figure 14 shows how the speaker is held part way down in the cone by mounting it to a support that is bent up from any light metal, as in Fig. 14A. Since the size of the cone and the speaker size may vary a little, the exact length of the bracket is not given.

Insialling $221 / 2$ volt B-battery in amplifier housing. See Fig. 2A for battery position in housing.

Pressing plywood ring, coated with Pliobond cement, down firmly onto square of grille cloth.

CLIP HOLOER FOR BIAS BATTERY MATERIALOIO" HARD BRASS OR PHOSPHOR BRONZE

You can now connect the $221 / 2$ volt battery and place it between the chassis and the housing (Fig. 18) using folded cardboard to wedge it tightly in place. You can also place the transistors in their sockets now.

Mounting the Mike. The microphone mounts in a rubber strip which in turn is cemented into a $11 / 2 \mathrm{in}$. diameter Bakelite tubing mouthpiece (Fig. 2A, 14A and C, and 19). The mouthpiece then fits tightly in a hole made in the front Bakelite housing cover, using a fly cutter in the drill press. Before installing mike in the mouthpiece tube, connect a 6 in . length of shielded flexible wire to the terminals and a phonoplug to the other end (Fig. 2A and 14C). Make up the strip into which the mike will mount from the type of sponge rubber used to seal car trunks and doors; it is sold in auto supply stores. This rubber should be about $1 / 4 \mathrm{in}$. thick, $1 / 2 \mathrm{in}$. wide and long enough to be formed around the mike and have its ends meet. Apply Pliobond cement to outside edge of mike and one surface of the rubber. Then, after a few seconds wrap the piece around the mike, tie with string and let dry for about an hour. Then untie string, apply cement to outside surface of rubber, and press the assembly of mike and rubber in mouthpiece tube until about flush with the end (Fig. 20).

Attach the 3 -volt bias battery, consisting of two penlight cells in series, to the chassis under a spring clip bent up from thin hard brass or phosphor bronze (Fig. 18A). The leads were soldered to the battery terminals (Fig. 5). To enclose the megaphone handle, make up Bakelite sides as shown in Fig. 11C, and attach to handle frame with screws and Pliobond cement.

Using the Megaphone. If you test the megaphone indoors in a small room, you may find a whistle will develop when you press the pushbutton and try to talk. This is because sound bounces from walls and enters the microphone to

Microphone mounted in insulating rubber ring, which in turn is fitted into Bakelite tubing mouthpiece.

Mouthpiece with mike and its rubber ring inserted, mounted to Bakelite panel.
set up a series of oscillations-a common occurrence where a high-gain amplifier, a mike and a speaker are in close proximity to each other. When used outdoors or in large areas, however, this sound has less chance to rebound and there should be little tendency to whistle.
You can use the volume control setting to keep the gain down enough to eliminate whistle when testing indoors. Or, if you want to cut down any tendencies to whistle, line the space inside the cone back of the speaker, and the interior of the box housing the amplifier, with felt. Also cement a piece of felt to the inside surface of the cover. I used a standard dress goods or fabric store type of felt and Permatite Liquid Adhesive R-6229 (from Sears).
For longer battery life, you can place a second XX15 battery in the housing and connect it in parallel with the other one. Simply splice on two leads from the original two battery wires and connect a plug to them, making connections so that the batteries will be plus to plus and minus to minus or parallel. You'll get the same $221 / 2$ volts but double the current capacity. The second battery can be taped in place where convenient in the roomy housing.

When using the megaphone, talk close to the mike, even placing the lips directly up to the mouthpiece. This will give maximum volume and also help to prevent stray sounds from entering to cause undesirable oscillations. Avoid taking deep breaths through the mouth while it is close to the mike but rather breathe through the nose. With a little practice, you'll be able to transmit intelligible speech under good atmospheric conditions for distances of 500 to 600 feet, depending on the direction and force of the wind.

Draftsman's Tape Holds Tight

- Draftsman's tape makes an excellent "third hand" to hold electronic components together during assembly or soldering. Due to its high insulation, the tape can be left on permanently, or can be peeled off easily.-J. A. McRoberts.

Grandpappies of the Call Books

By HOWARD S. PYLE

One of the eorliest official lists of coll letters of merchant vessels and shore stations of the world, as well os navol and other government vessels of the United Stotes.

|MAGINE, if you can, a telephone in your home but no directory-aside from the numbers which you have memorized or jotted down, your phone would be of little value to you. Yet not too long ago this situation existed.
About the time the Spanish-American War ended, Bell's "magic box" was a thrilling novelty. Two hand-cranked long rings brought almost instant response from the widow Sprightly. A short and a long put you in touch with gruff Doc Grouch. The thing caught on.
But it wasn't long before even the keenest memories became confused in attempting to recall what ring for who(m). Scribbled lists were soon replaced by printed pages. And to-
day? Today in any metropolitan center it almost calls for two hands to lift the telephone directory.

When Guglielmo Marconi popularized the use of "wireless" telegraphy, the same problem soon arose. Ships were being rapidly equipped with this new marvel; wireless telegraph stations were being established ashore to provide a link with land.

Early wireless operators kept pencilled notes of the names of various vessels equipped with Marconi's apparatus and the locations of stations ashore. It immediately became evident that the slow and laborious process of calling a ship or land station by spelling out its name in the characters of the Morse code was inadequate; such calls must be shortened. Vessels and wireless stations ashore followed the pattern of the older Morse telegraph lines and adopted two and three letter designations for calling each other.

On the surface it appeared that the problem had been satisfactorily solved, but soon chaos developed. Wireless operating companies discovered that much duplication of these "call letters," as they became known, had developed between the various companies as well as between independent operators. It became immediately apparent that some orderly selection of non-duplicating calls must be adopted and that published lists, similar to telephone directories, must be arranged for.

But individual operating companies were reluctant to absorb the expense of listing call letters and other identifying characteristics of competing interests. Consequently, each operating company published printed lists which included only the ships and shore stations using their system and under their control. A United Wireless Telegraph Co. operator aboard a sea-going vessel could identify only the stations on shore which were also under UWT control. Out of range of a United station, the United operator had no communication with land except perhaps, by the then laborious method of "relaying" through other United equipped ships, if available.

Wireless telegraphy, during its inception and early development years, was primarily a marine communication system. It not only made the sea-lanes safer by enabling a vessel in distress to call for assistance, but it gave the ship-owner an economic advantage in that he had contact with the vessels of his fleet while they were at sea and could divert them to his economic advantage. Very early in the development of wireless signalling it also be-

This 1913 list contained the call letters and names of ships and shore stations under United States contral, as well as the Japanese and Canadian stations bath afloat and ashore.
came increasingly apparent to the navies of the world that a strategic military advantage was evident in this method of communication with war vessels. The United States Navy was one of the first to recognize what a tremendous advantage this would be to naval strategy.

With this in mind, the U. S. Navy Department decided to publish a consolidated list of naval vessels and their associated wireless call letters. They felt that the wireless call letters together with the names of merchant vessels which plied the high seas should be included as well, as such ships would probably become auxiliary naval vessels in the event of hostilities. The final result was a complete listing of the wireless communication facilities not only of the U.S. Navy, afloat and ashore, but of all of the sea-going vessels of United States as well as foreign registry, and their companion stations ashore (see Fig. 1).

Such a listing proved of immeasurable benefit not only to U. S. naval vessels and shore stations and the U. S. merchant marine, but to other countries of the world as well whose merchant vessels frequently entered U. S. ports. Other countries rapidly made their publications available to U. S. ship-owners without regard to the particular system of wireless telegraphy employed.

And now, how about the "amateurs" . . . the several hundred experimenters who were enjoying daily the thrill of communication through space without a visible connecting medium? It had become necessary for them too to adopt some brief identification for their equipment. Many of them simply used the initials of their name. Again, "who is who and where are you located?" became an immediate problem. Again a publication of some kind was dictated which contained the answer to both questions.

Recognizing this, Hugo Gernsback, then publisher of Modern Electrics, the world's first wireless magazine, published his Wireless Blue Book as an adjunct to his Wireless Association of America. In this booklet were included the self-chosen call letters of amateur stations.

From the author's records and information from other sources, it appears that Hugo Gernsback's Blue Books were the first listing of amateur radio stations to appear in printed form (see Fig. 3).

With the passage of the Radio Act of 1912, control of radio communication in the United States, both amateur and commercial, passed from the Navy Department to the Department of Commerce. As a result, naval and military call letters, although chosen by the Army and Navy, were of necessity co-ordinated with the Commerce Department to insure that they were non-conflicting with other services.

With transfer of jurisdiction over radio services from the Navy Department to the Department of Commerce, it became the responsibility of the Department of Commerce to publish radio call books. These new call books confined the commercial and military listings to United States vessels and shore stations only, and in place of foreign ships and stations they included amateur listings. This was, of course, a boon to the U. S. amateur and, together with issuance of formal licenses to qualified persons, gave the amateur Government recognition (see Fig. 3).

The growth of radio was phenomenal. Installation of equipment on sea-going vessels progressed rapidly. Keeping pace, the number of shore stations with which to communicate with such ships grew by leaps and bounds. Experimenters increased proportionately as this fascinating science caught on.

Soon it became obvious to the Commerce

Mircless Thas 3ank
DFPARTMENT OF COMMERCE
DFPARTMENT OF COMMERCE
hi hrat or mavisation
hi hrat or mavisation

RADIO STATIONS OI THE UNITED STAIES

Left to right, title page of the first formally published call book of cmateur wireless telegraph stations, the Department of Commerce list of all radio stations of the United States, and the "Berne-list," in three languages.

Department that tc include the names, addresses and call letters of all of the radio services in one publication was impractical. The result was a splitting of the initial call books into two parts, one listing only the commercial and military vessels and shore stations, the other only the amateur class. Such an arrangement served for some time in a satisfactory manner, but with the continued expansion of radio services it soon became a monumental task to compile, revise and publish the call books. Departmental appropriations and staffing were inadequate.

For several years it had been recognized that wireless communication was no longer a local problem. Wireless signals knew no boundaries; vessels of foreign nations habitually sailed in U. S. waters and vice versa. Even shore stations overlapped with their signals between countries. The problem was international.

International Radio Telegraph corferences developed and from them it was determined that publication of an international call book, listing the ships, both naval and commercial, of the world, together with their companion shore stations, was a vital need. A Bureau, agreed on by all nations participating in the conference, was set up in Berne, Switzerland and was charged with the publication of an International list of ship and shore stations of the world, both commercial and military. The Berne Bureau discharged its obligation to international agreements, and the annual issues of the Berne Bureau are now of such bulk and contain so many listings that they are published in three massive volumes and in three languages (see Fig. 3).

But what about the amateur? Growth of this hobby in the United States alone has reached such pheromenal proportions that it was evident that the Department of Commerce, with its limited facilities and funds, would be unable to continue publication of even the amateur call book for much longer. Radio broadcasting had also entered the picture both in the United States and abroad. They, like the amateur, deserved a separate listing.

In 1924, Charles deWitt White assembled
and published "The Rhode Island Call Book" in Providence, R. I., a compilation of radio broadcast stations in that area. This was shortly followed by a more comprehensive publication which he called "White's Triple List of Radio Broadcast Stations." He soon introduced a number of related publications and they were shortly combined into one which appeared under various titles from time to time. They retained, however, the basic "log" or listing of radio broadcasting stations, both domestic and foreign. Eventually titled "White's Radio Log," this listing was published annually for 34 continuous years. Shortly after White's death his daughter Mrs. W. R. Washburn, disposed of all right in this publication to Science and Mechanics Publishing Company, who were entrusted with continuance of her father's work.

While the excellent listings appearing in "White's Radio Log" adequately cover its field, what about the amateur stations? In the fall of 1920, Charles O. Stimpson, himself an active amateur founded the "Citizen's Amateur Call Book." Today the Fadio Amateur Call Book, as it has been re-titled is still a quarterly publication. In 1956 an IBM electronic system was installed to speed up the processing of an average of 100 new call letters issued each week.

In 1959 the size of the volume began to approach the bulk of a telephone directory in a large metropolitan city, and it became necessary to split the book into two volumes, each of impressive size. The American section, containing over 500 pages, lists some $200,0 C 0$ U. S. amateur stations. The second section, which lists some 50,000 foreign amateur stations, is issued semi-annually rather than quarterly. The Radio Amateur Call Book remains the only publication in the field listing licensed radio amateurs throughout the world.

A history of the evolution of the call book is a chronological history of the growth of wireless, radio and TV. Without the call letter directories for the various services, radio communication and broadcasting as well as television would be a chaotic groping in the dark.

Transistor Hybrid Parameters

WHEN an experimenter builds a piece of gear, he can play around with component values to his heart's content. If the gadget doesn't work right, he can change the circuit until it does. Not so the professional engineer. If he wants to hold his job, he'd better have a darn good idea of just how the circuit will work long before the fumes of rosin arise.

The best engineer is helpless without adequate performance data for the transistors with which he works, and an effective design method. One of the most effective designing tools is the equivalent circuit. When an engineer designs a transistor circuit, he usually forgets about the exact details of the transistor's innards, thinking instead in terms of a simplified device that behaves in the same way. The useful numerical properties of this equivalent circuit are called its parameters.

There are a number of possible equivalent circuits from which an engineer may choose

A EQUIVALENT INTERNAL CIRCUIT.OF

but the one shown in Fig. A is one of the most popular.

Obviously the inside of a grounded-emitter connected junction transistor does not look like this, but it acts as if it does.

The important quantitative properties, or parameters of this particular circuit are:

1) The resistance between the input terminals, A and B, as "seen" by the input signal source. This is often called hie.
2) The internal conductance, seen by the output, or load circuit, called hoe.
3) The ratio between the output voltage across the load and the voltage internally fed-back from the output to the input circuit, through interaction within the transistor.

This is symbolized by hre and called, "Reverse Voltage Transfer Ratio."
4) The current gain of the transistor, a ratio between input and output signal currents. This is often also called "beta" in the literature, or hfe, as a hybrid parameter.

Why "hybrid" parameters? Well, you'll observe that there are three different electrical quantities involved; a resistance, a conductance, and two pure ratios, without units. Hybrid means mixed, the philologists tell us, and these certainly represent a mixture of quantities.

Of what significance are these parameters to the circuits engineer? The first parameter tells the engineer whether he can connect his signal source directly into the transistor, or whether some sort of an impedance-matching or coupling network is necessary. The second tells him much as to the proper load resistor necessary to obtain maximum performance from this particular transistor. For instance, one theoretically gets the best output when the load resistance is made equal to $\frac{1}{\text { hoe }}$. The third, "reverse voltage ratio," tells the engineer what effect the load circuit will have upon input circuit conditions, and also often whether he may anticipate oscillation troubles in a particular circuit.

The fourth parameter is perhaps the most important of all, for this tells the circuit designer directly how much amplification he may expect in the circuit he contemplates. Will it be sufficient to meet "the specs"? The parameter hfe will tell him. It is actually the "figure of merit" of the transistor.

Of course, electronics is still an art as well as a science. No human can predict the exact performance of any circuit; a prototype must be built for the final checks. But the parameters will tell the engineer whether the prototype will be worth building, and this is a prediction that can save thousands of dollars.

Recharger for Dry Bateteries

Timely booster shots from this quick-charging power unit
will renew B-batteries and strobe batteries

In just two minutes, the $d-c$ power supply unit stepped up the charge in this 240 -volt photo strobe dry battery from 200 to a steady 230 volts at 100 milliamperes. Connector was adapted to fit battery.

By HAROLD P. STRAND

PROLONGING the useful life of dry cell batteries is not only possible but very practical these days if you have several pieces of battery-powered equipment.

You can revive the expensive, high voltage "B" batteries used in portable radios and industrial laboratories with the $350-400-$ volt power supply in Fig. 1if you don't wait too long. In a matter of minutes, this simply-made charging unit will boost the slipping output of the popular 240 -volt batteries used in pairs in battery-operated electronic flash outfits and retailing for about $\$ 7.50$ each.

The same power supply can also be used for numerous lab test applications where up to 400 -volt d-c at 70-90 milliamperes (ma)
may be required.
You can use a healthy 6or 12 -volt storage battery, in place of the power unit, to recharge standard $11 / 2$-volt dry cells or other batteries rated at substantially less voltage than that of the source of your charge.

How Long Will the Boost Last? Success of the job depends almost entirely on condition of the batteries when treated. Old units with bulging walls or corroded zinc casings are beyond hope, but many appearing in good shape are simply in a state of partial exhaustion and can be boosted to near-original voltage.

Generation of electrical energy, or a voltage in a primary cell is accomplished by a basic law stating that when two dissimilar materials (such as the two metal elements or metal and carbon in a battery) are placed in an electrolyte or chemical solution, an electro-motive force will be developed.
When a battery is delivering current, the chemical reaction in theory, frees hydrogen gas which collects around the carbon rod or positive electrode. Since this gas is an insulator, electrical output is substantially re-

FRONT PANEL LAYOUT

duced as it continues to build up on the rod and increase resistance. To slow down this polarization, the electrolyte paste filler within the battery case includes manganese dioxide, a substance with which hydrogen readily combines. Whenever the battery stands idle after use, some gas is drawn away from the carbon pole by the attraction of the electrolyte. As the resistance declines, the battery gradually recovers its strength. This action continues until the cell has become chemically exhausted, or severely polarized, or both.

In cases where service demands for current cause appreciable voltage drop due to excessive polarization, and chemical decomposition is only minor, you can save the battery by recharging or -more accurately-depolarizing it.

Recharging reverses d-c current flow through the cells to drive the hydrogen off of the carbon electrode and back into the electrolyte mixture. As the internal resistance is lowered, voltage immediately rises and the ability of the depolarizing agent to "take care of it" is resumed.

In any event, recharging can be repeated as often as

RADIO-TV EXPERIMENTER

	MATERIALS LIST-BATTERY CHARGER
Desig. or No. Req.	Size and Description
C1, C2	$8 \mathrm{mfd}, 500 \vee$ electrolytic capacitors, Cornell $\# 850$ (Allied $=14 \mathrm{~L} 000$)
R1	2,500-ohm, 25-watt power rheostat, Ohmite type H-0160 (A\#74M334)
R2	150,000-ohm, l-watt bleeder resistor, IRC GBT-1 (A \#1MM020) (optionalsee text)
T	$700 \vee$ at 90 ma power transformer with $5 \vee 2 \mathrm{amp}$ and $6.3 \vee 3 \mathrm{amp}$ filament supply, Stancor PC-8409 (A \#64G185)
FC	3 hy, 150 ma, 90-ohm filter choke, Stancor C2309 (A \# 64 G 457)
M	0-300 scale panel d-c milliammeter, Shurite MT-314
S1, CS2	two terminal chassis strips ($A \mp 41 \mathrm{H} 500$)
CS3	three-terminal chassis strip (A \#41H501)
S	SPST toggle switch. Arrow H\&H \#20994EW (A \#34B195)
1	indicating toggle switch plate for above (A \#34B157)
1	black binding post, Superior type DF30BC (A \#41H177)
1	red binding post, Superior type DF30RC ($\# 41 \mathrm{H178}$)
1	$6 \times 6 \times 6$ ' gray hammertone aluminum cabinet, Bud AU1039 (A \#88P551)
	Alove items available at Allied Radio, 100 N . Western Ave., Chicago 80, Jll.
1 pc	$3 / 32 \times 53 / 4 \times 8^{\prime \prime}$ sheet aluminum
V	5Y3GT rectifier tube
M isc	7' \#18 flat rubber or plastic famp cord, a-c power plug, octal socket, 2 rubber gronmets for $3 / 8^{\prime \prime}$ hole, 6 rubler grommets for $1 / 4^{\prime \prime}$ hole, solder, hookup wire

Top view of power supply shows components used. Wires through grommets lead to panel mountings.

All normally grounded leads go to insulated terminal strip at right. No leads should touch chassis.

ing part of cabinet edge as in Fig. 9, if necessary, for transformer clearance. Secure chassis with sheet metal or self-tapping screws through bottom of cabinet. Mount switch and binding posts to front panel, using red post for the positive lead. Connect switch and high voltage leads as in Fig. 8.

Mount the milliammeter and rheostat and wire leads through other open end of cabinet. Drill ventilation holes in each side panel as in Fig. 2, ream edges of holes and touch up with gray paint. Knot the line cord about 4 in . above chassis grommet and pull free end of cord through a grommetinsulated hole cut

desired, until a battery finally reaches a state of exhaustion. While results depend on the individual battery, they will usually double or triple its life span.
Building the Power Supply. Begin by checking the front panel hole locations given in Fig. 2, modifying size of each to fit the components you are using and drill the holes in cabinet front. Shape the chassis from $3 / 32$ in. sheet aluminum, then locate and drill holes for components and grommets as in Fig. 3. Mount transformer, filter choke and octal socket as in Figs. 3 and 4. Run all leads through rubber grommets to underside of chassis and tape up the transformer 6.3-volt leads since they are not used.

Install the two 8 -mfd, 500 -volt capacitors and three terminal strips on chassis underside as in Fig. 5 and wire connections as in Figs. 6 and 7. For safety reasons, avoid grounding the chassis. Instead, run all leads which normally would be grounded to an insulated terminal strip (CS1) serving as a common connection point.

Slide assembled chassis into cabinet, notch-
through cabinet side panel as in Fig. 9.
Insert rectifier tube in octal socket and attach panels with screws furnished. Connect plug to end of the line cord. For positive identification, letter binding post terminals and rheostat knob positions.

High-Voltage Charging. For any battery not equipped with screw or clamp terminals, it will be time-saving and more convenient to make a special terminal block for quick and safe connections. Figure 10 shows such a block designed to fit the 240 -volt electronic flash batteries (Burgess U160, Eveready 491, etc.). For other cell types, modify brass pin diameters and spacing to fit.

To charge, connect the battery to the power unit with rheostat set at "LO." When you

After chassis is placed in cabinet, panel connections are easy to complete through side openings.

Notch in cabinet to clear transformer will be covered when side panel is attached. Note knot in line cord to prevent any unintentional strain from loosening input connections.
turn on the line switch, the meter should read but a few ma. Advance the rheostat towards "HI," cutting out some of the resistance and the ma value will rise. If battery is badly exhausted, this reading may be about 50 or 60 ma at the start, but in about two minutes $100 m a$ should be indicated with the rheostat further advanced. Turn off the switch and disconnect battery. You can now test it with a high-resistance voltmeter to compare with pre-charging voltage.

Carefully feel the battery during charging. If it seems more than just slightly warm, either discontinue charging or reduce the rate until it has cooled down.

Batteries that are quite well up and only being given a boost will read about $80-90 \mathrm{ma}$ at the start and need but a half-minute or so of charging to advance to 100 ma .

You can charge B batteries with this unit in similar fashion, but for 45 -volt and smaller sizes you will first have to reduce the current to a reasonable level. This can be done without disturbing the unit by mounting another 2,500 -ohm, 25 -watt variable resistance on a stand and connecting it in series between positive terminals of the unit and the battery.

Remember to test B batteries and photoflash batteries with a voltmeter only. When we tested the one in Fig. 10, voltage had dropped from a normal 240 to 200 . After the two-minute charging period, voltage jumped to 245 , then quickly dropped to 240 . The next day, it had leveled out to 230 volts. Some batteries may not respond so well if they have one or more cells that have depreciated chemically, and milliammeter readings will vary, too. While it may not be possible to get voltage past 225 , even that will allow some extra service.

Low-Voltage Charging is adequately accomplished with the aid of storage batteries, using the hookup in Fig. 11. To revive 6-volt "hot shot" ignition and electric fence bat-

Difference of pin diameters insures right hookup for high voltage charge. As further safety measure, positive lead has red covering, matching color of positive terminal on panel.

teries, substitute a 12 -volt storage battery.
Adjust the rheostat to apply 1 to 3 amperes, since these large batteries can stand such current for a short time without heating. Disconnect after two or three minutes and test momentarily with an 0-25 scale ammeter. Check with a quick touch of the terminals since this meter short circuits the battery and will quickly drain it if left in contact. If less than 15-20 amps are indicated, put it back on charge. It may take as long as five or six minutes to bring the battery up sufficiently for good service.

Here's what happened when we charged a well-used \#6 dry cell testing 1.4 volts but only 2-3 amps! After a minute at 3 amps , voltage measured 1.6 and the current was $41 / 2$ amps. Put back on charge fox two more min-
utes; the readings were 1.7 volts and 17 amps , quite satisfactory for such a depleted cell and enough to team up with another recharged cell to ring the door bells again.

Caution: Do not permit the battery to get very warm to the touch. Current tends to heat the cells if its value is too large or charging continues for too long a time. The smaller the battery, the less current should be put through it. Overheating will dry out the electrolyte and build up pressure which may blow out the internal mixture at the sealed end.
Generally, the voltage value used in charging should be nearly twice that rated for the battery, applied through a variable resistance. More voltage may be needed, however, to force a satisfactory current through at the start where the battery is heavily polarized.

To prolong life in batteries, it's a good idea to apply a short charge at frequent intervals to depolarize them and thus keep them in fresher condition. Such a boost may require only a half minute or so-just long enough for the meter to rise up to $100-125 \mathrm{ma}$. And while voltage will always drop a bit right after the battery is removed from the charger, it should remain substantially higher than before.

After the unit is turned off and before touching the binding posts, be sure to dis-
charge the capacitors by shorting across the posts with a well-insulated screwdriver. If you change connections often, it's a good idea to eliminate this potential shock hazard permanently by connecting a 150,000 -ohm, 1 -watt bleeder resistor across the output posts just inside the cabinet. With this setup (Fig. 7), the resistor will drain off the charge in a minute or two.

Capacitor Modified for Printed Circuit

- When you need a singleended capacitor for a printed circuit and none is available, modify a regular dou-ble-ended capacitor of the same value to serve the purpose. Bend the lead at one end over, and down the outside of the capacitor
 housing. If necessary, solder on an extra length of wire to extend the lead. Wrap the capacitor body with electrical tape to avoid any possibility of the bare wire lead accidentally shorting out to other adjacent components. This modification brings both leads out at one end, thus converting the component into a single-ended one, useable in printed circuits.-Jонл A. Сомstock.

1

Door Bell Silencer

HERE'S a simple way of silencing that door bell so that it won't wake babies taking afternoon naps.
Obtain a small twist switch with threaded shaft and nut for mounting from your hardware store. Remove the cover or housing from your door bell and drill a hole through it large enough to pass the threaded shaft on the switch (Fig. 2). Make sure the switch parts inside the housing won't interfere with the bell mechanism.

Remove the wire coming from the bell

transformer from its terminal and connect one of the pigtail wires on the switch to the transformer terminal. Then connect the transformer wire to the other pigtail wire on the switch by twisting them together and taping.

You don't have to turn off the house current for this job-house bell circuits carry only 6 volts.

Replace bell housing, and have someone press door bell button so you will know if the switch is in the "on" or "off" position.

A midget IF transformer can (inset) housed the original phono surface noise and scratch filter, but other more common types of tin containers can be used. To use filter, merely plug unit into line between record player and amplifier or radio phono jack.

Noise Filter for Record Playing ECORDS, both old and new, fre-

Rquently suffer a common disease -surface noise. Here's a filter that should help to cut down that distracting scratching, so that you can enjoy even those old favorite records made before the advent of electronic recording.
This record filter plugs into the input line of the phono amplifier (Fig. 1) so that in most instances no internal circuit changes are required, either at the record player or amplifier. The original unit was housed in a miniature IF transformer can (Fig. 1A), but any small metal container may be used.

Drill a $7 / 32$-in. hole in one end of the can; this hole will be just large enough for you to insert the neck of the ICA-type phono plug shell. Solder the shell to the can. If the housing is made of aluminum, first "tin"

The noise filter consists of six inexpensive radio components listed
in Fig. 3.
 the areas around the $7 / 32-\mathrm{in}$. hole with aluminum solder. You can then solder the shell to the aluminum with regular lead/tin alloy radio solder.
Drill a $3 / 8$-in. hole in the opposite end of the can, along with two $1 / 8-\mathrm{in}$. holes for mounting an ICAtype phono jack. When screwed down with $1 / 4 \times$ 4-40 machine screws, the jack shell is automatically grounded to the metal container.
The filter network (Figs. 2 and 3) consists of two $470 \mathrm{k}(470,000)$ ohm $1 / 2$-watt resistors and two ceramic capacitors with an identical capacity of 100 to 500 mmf each. Where surface noise is only slight, use capacitors of 100 mmf to 250 mmf . For old, scratched discs, use capacitors of about 500 $m m f$. The larger capacitors will somewhat increase the bass response of records, and suppress the highs, but at least you'll be able to hear both bass and treble far better with the annoying surface noise suppressed.

If you are very ambitious, substitute a pair of
adjustable mica trimmer capacitors with a range of about 100.500 mmf for the fixed ceramic types. Then with a screwdriver, you can adjust the capacitances to suit the condition of the record.

When wiring up the filter, be sure the resistor and capacitor lead to the phono-plug pin does not accidentally ground to the shell since this would render the phono inoperative. A short length of radio "spaghetti" or other insulation will prevent this.-T. A. Blanchard.

Designed primarily for use by the student ham who wants to keep up his code speed, the Student's Special can be modified to recoive the standard broadcast band.

SW Receiver

By C. F. ROCKEY

Here's a project for the radio-minded high school or college student, or for the man whose son is such a student-an inexpensive short-wave receiver for the study desk
ing out the chassis as shown in Fig. 2. Set the tubes and coil in position in order to assure proper clearance, then drill all small holes with a No. 27 drill, large enough to clear the body of a 6-32 screw. Punch socket holes with a $13 / 16$-in. Greenlee socket punch (available from any large radio supply house).
Next, take the $7 \times 10-\mathrm{in}$. front panel (see Materials List) to your neighborhood sheet-metal shop and have the tinsmith cut exactly 1 in . from it, making it 7×9 in. He can do this on his foot-powered shear much more neatly than you can with a hacksaw. If no such facilities are available, however, you'll have to use the saw; this metal is too tough for hand tin shears. Finish the raw edge of the panel with black automobile "touch-up" enamel.
Now lay out and drill holes for the frontpanel mountings (Fig. 3). Consult the instructions and template enclosed with the tuning dial when drilling mounting holes for it. Then fasten the sockets, terminal strip and selenium rectifier to the chassis, using 6-32 steel machine screws and hex nuts (buy $1-\mathrm{in}$. screws, cutting them shorter where too long with diagonal cutters and pliers) and secure to the chassis the insulated tie points for holding the electrolytic filter capacitors. Insert other tie points as the wiring progresses.
Figure 4 gives the schematic for the

THIS receiver employs an untuned radio frequency amplifier, a regenerative detector, and an audio amplifier. In addition to increasing the unit's sensitivity, the RF amplifier isolates the detector from the antenna, thus minimizing hand-capacity effects. A voltage regulator tube also makes a big contribution to overall stability. This circuit thus offers the maximum in short-wave receiving satisfaction at minimum cost. And, since a large resistance unit is required to drop the heater voltage, a lamp bulb is used for this purpose, a lamp that normally burns only slightly less brightly than normal and does double duty as a close-in reading lamp. In addition, a sturdy book trough, capable of holding half a dozen textbooks, is included.
Build the receiver unit itself first; then, the book trough and lamp assembly. Begin by lay-

wiring; Fig. 5, the pictorial. Heater and platesupply leads can be as long as convenient; you can even group these together cable-like if you wisk. Keep these wires close to the chassis, however, in order to avoid hum troubles later.

Keep plate, grid and other signal-carrying leads as short and direct as possible. Except for the electrolytic and large paper capacitors (which should be hung between tie points) the resistors and capacitors can be wired-in directly without other mounting precautions.
Care is the only preventer of wiring errors. Mark over the schematic as wires are inserted; check each stage or circuit as it is completed. Carefully observe polarity on electrolytic capacitor and selenium rectifier connections. Finally, have one of your radio-minded friends recheck the wiring for you, before plugging-in to eliminate those annoying mistakes a person misses when checking his own work.
When you are sure that the under-chassis wiring is complete and correct, mount the variable capacitors, dial, potentiometer and phone jack securely on the panel. Then fasten the chassis and panel together, and complete the wiring.
When all wiring has been completed and checked, insert
the voltage regulator tube into socket (insert only the VR tube, no others). Then plug in the line cord and turn on the line switch. A bright pink glow inside of the VR tube indicates that the plate voltage supply is satisfactory. If such a glow is not observed, 'pull the plug instantly and recheck the wiring. If it is correct, try a different VR tube, check electrolytic and shunting 25 mf paper capacitors for short circuits with an ohmmeter and try another selenium rectifier unit. One of these checks will turn up the trouble.
When the VR tube lights up properly, remove the line-cord plug and insert the rest of the tubes in their sockets. Connect a 40 -watt lamp bulb (any other size bulb may damage tubes) to the terminals marked "lamp" in Fig. 4. Plug into the line again and turn on the line switch. If the filament circuit is satisfactory, the 40-watt lamp bulb should light up to nearly full brilliancy. Removing any tube except the voltage regulator will cause the lamp to go out.
If the lamp does not light, recheck the wiring, then check the lamp bulb and tube filaments for open circuits to locate the trouble.

When the filament circuit has been checked out satisfactorily, wind the coils. Figure 6 illustrates the construction of the short-wave coils and gives the turn specifications for the various frequency bands. (For those who like occasional standard-broadcast reception, coil specifications are given for the broadcast band. However, many features desirable in broadcast reception have been sacrificed here for best possible shortwave reception. Only local broadcast stations can be received satisfactorily). When making the cathode tap, be sure that you don't short circuit adjacent turns. Wind and check each coil's operation before beginning another. Start with the lowest-frequency (25-turn) short-wave coil.

When your first coil is finished and checked, plug it into the four-prong, plug-in coil socket. Then insert the phone plug into its front-panel jack, plug the line cord in and turn on the line switch. After allowing a reasonable warm-up period, put on the headphones. With the potentiometer knob at its extreme counterclockwise position, slowly rotate clockwise. With the control knob between one-third and two-thirds fully rotated, you should hear a soft "swish," followed by an increase in the hiss level. The "swish" is the receiver's point of oscillation. If it is not heard, carefully recheck the wiring, and

Under-chassis pictorial view of receiver.
test the tubes in a good, reliable tube tester. Then re-examine the plug-in coil and its connections. One of these is at fault if oscillation does not occur.

When oscillation occurs freely and regularly, connect roughly 25 ft . of wire to the antenna

MATERIALS LIST-SHORT.WAVE RECEIVER

No Description
$17 \times 10^{\prime \prime}$ steel panel (Bud Radio Carp.)
1 chassis, steel, $1 / 2 \times 5 \times 7^{\prime \prime}$ (Bud Radio Corp.)
1 terminal strip. 5 -terminal barrier type (Allied Radio Corp., catalog no. 41-H.673)
1 vernier tuning dial, national type BM
2 knabs, $1 / 4^{\prime \prime}$ shaft
1100 mmf variable band-set capacitor (Bud Radio Corp., type \#1855)
133 mmf variable main tuning capacitor (Bud Radio Corp., type \#1852)
1 100K linear taper potentiometer, with S.P.S.T. switch
48 -prong (octal) socket, amphenol, type "MIP''
1 4.prong socket, amphenol, type "MIP"
1 single circuit headphone jack (Mallary type 701)
1 phone plug (Mallory tepe 75)
1 selenium rectifier, half wave, 65 ma (Selectron)
6 insulated tie-points, 2 insulated lugs
coil forms, 4 -prong (I.C.A. type 2158) one for each coil desired
2 6SK7 tubes (metal type preferable; "GT" type may be used)
6SG7 tubes may be used instead of 6SK7's if available
16.55 tube (a 6 L 5 may be used; metal type preferred)

1 VR 90 tube (sometimes called OB+3)
wire, screws and solder as required

No.
Description Capacitors Required
Mica ("postage stamp" type)
3100 mmf
56000 mmf
125 mmf
Paper (200 v. working voltage)
20.25 mf tubular 11.0 mf tubular

Electrclytic (150 v. working voltage, tubular type)
230 mfd

Resistors Required

Carbon type (all l-watt size unless otherwise stated) All values In ohms (K-1000 ohms)

2	22 K
2100 K	18.2 megohm
1470	1270 K
1100	147 K
1	$15 K, 2$-watt

Wire-wound type:
12 K .10 watt
1 40-watt, Mazda lamp. 110 volt, with socket.
Headphones required: Trimm "dependable," or any other good hiphimpedance double headset. Crystal phones may be used, but are expensive and not necessary here.
1 line cord and plug

Top of chaseis viow.
post on the terminal strip. With the potentiometer set just above the oscillation point (slightly on the "hiss" side), rotate the band-set capacitor. Whistling, indicating the presence of signals, should be heard. For best reception of code signals, the potentiometer should be set just on the oscillating point; for voice signals, just below the oscillation point.

The correct technique for tuning-in a voice signal is first to tune for the steady whistle, indicating the presence of the "carrier wave,"
then gradually back down the potentiometer until the whistle just stops. Finally, carefully and slowly readjust the tuning control until the voice or music comes in the best. Much as with playing the violin, a little practice is prerequisite to good results.

The band-set, band-spread tuning system used in this receiver enables you to spread a narrow section of the spectrum, such as an amateur or a short-wave broadcasting band, over the whole dial. When used properly, this vastly improves tuning, and enables you to hear many stations which otherwise would be missed completely.

As designed, this receiver is for use with headphones. This is to avoid barraging a non-radiotic roommate with irritating "noise." However, many strong amateur and short-wave broadcasting stations (the Voice of America, the British Broadcasting stations, and occasionally Russia) come in strong enough to work a small PM speaker when coupled through a plate-to-voice coil output transformer. Stick to the 'phones for regular work, however. You'll hear many more stations with them.

Oh yes, the set is automatically grounded through the power line. Do not use an outside ground (you may blow a line fuse). And, if the hum-level seems high, reverse the plug. If you want to use a doublet antenna instead of the straight wire, connect one side to the antenna terminal and the other to the chassis.

Building the Book Trough Unit. Make this unit from clear white pine unless you are equipped for and experi. enced in working with hard woods. Begin by cutting and dadoing the book trough end pieces (see Fig. 8). Then make

MATERIALS LIST-BOOK TROUGH

No.	Description
7 linear ft.	$3 / 4 \times 5$ and $11 / 16^{\prime \prime}$ white pine stock, clear
$11^{\prime \prime}$	$1 \times 1^{\prime \prime}$ white pine
3^{\prime}	rubber covered lamp cord
$121 / 4^{\prime \prime}$	lamp tubing, threaded
1	nut to fit lamp tubing
1	keyless lamp socket
1	clipoon-bulb lamp shade, $g^{\prime \prime}$ dia. at hottom Nails, insulated staples, finishing materials

the front and back pieces for the book trough (Fig. 9A). If you don't have dadoing equipment, nail the book trough directly to the ends, shortening the back and front pieces by about $1 / 2$ in. in order to keep the overall proportions correct and omit the panel recess shown in Fig. 9A in the book trough front piece. Sand these parts and assemble, using $3 d$ finishing nails.

Next, make the left-hand receiver cabinet end pieces, and the top piece for the receiver cabinet (Fig. 9B). You can simplify this part of the project by not recessing the cabinet back or by omitting the back entirely if you don't need its dust-proofing protection.
Now cut off 25 in . of the $511 / 10$-in. stock for the base (Fig. 10A), drill the $1 / 2$-in. and $1 / 4$-in. holes, and groove the bottom for the lamp cord.
Begin the general assembly (Fig. 11) by first nailing the left-hand cabinet end to the baseboard, with its outside edge $3 / 4$-in. from the left end of the baseboard. Then nail the left-hand end of the book trough (right-hand end of the cabinet) to the base with its right-hand edge exactly 9 in . from the outside edge of the previously nailed end piece. Then nail down the right-hand end of the book trough.
After the cabinet top has been nailed on, make the lamp stand (Fig. 10B) from an 11-in. piece of 1×1 stock. Carefully drill a $1 / 2-i n$. hole (lengthwise) through this piece, using a long, electrician's auger bit, or drill halfway from each end with a regular auger bit. Round the corners at the upper end.

From your local electrical supply store get $121 / 4-\mathrm{in}$. of lamp tubing (long, threaded steel pipe through which the cord is passed in nearly every table lamp), and a nut to fit. Pass this lamp tubing through the lampstand and through the $1 / 2$-in. hole at the right-hand end of the base. Screw the nut on to the bottom of the lamp tubing, thus fastening the lampstand on to the base. Next, screw the shank of a lamp socket on to the upper end of the lamp tubing until it presses firmly on the upper end of the wooden lampstand. Now nail the lampstand to the right-hand end of the book trough. Remove the lamp socket to facilitate finishing the woodworking. Cutting, drilling and installing the back of the cabinet completes the woodwork.

This unit may be finished either by painting or by staining and varnishing.

When the finish is dry, screw the lamp socket back on the upper end of the lamp tubing, con-

nect about 3 ft . of rubber-covered lamp cord to the socket and assemble after passing the cord down through the lamp tubing to the bottom of the base. Run the lamp cord through the groove and pass it up through the $1 / 4-\mathrm{in}$. hole into the cabinet.

Fasten the cord into the groove with small insulated staples, at several places, being careful not to pierce the insulation on the lamp cord.

Now make lamp, power line, and antenna connections to the terminal strip on the back of the receiver chassis and fasten the receiver panel to the front of the cabinet. Screw a 40 -watt lamp bulb into the lamp socket, put an appropriate shade on this bulb, and your Student's Special is complete.

Custom-Making TRANSFORMERS

Transformers built using methods described in this two-part article. Left to right: a 10 V 12 amp filament transformer; a 10 V 25 ump filament transformer; a 3000 V 400 ma . plate transformer; a 2000 V 350 ma . transformer for large Tesla coil.

How to make your own special transformers for ham radio, high voltage experiments, welding, plating, and special electronic equipment

By HAROLD P. STRAND

|F YOU need a certain voltage and amperage not available in a stock transiormer, you can get exactly what you need by salvaging core metal from a discarded transformer. Then, by winding your own coils, you have a tailor-made job, at a fraction of the cost of having a special transformer made to order.

A transformer consists of a laminated core of special silicon steel (Fig. 2) on which is placed a primary and secondary coil. Dependifig on design needs, primary and secondary windings can be wound on top of one another as a unit, or placed side by side on the core.

Your first step in design is to decide exactly what transformer output voltage and amperage you need. You determine what size laminated metal core to use, by means of Table A. A formula gives you the wire size and number of turns for the windings. Varnishing, baking and testing completes the job.
Obtaining Laminations. Let's start with the transformer's metal core. We'll assume that you want to get set to make up practically any type of transformer. Usually, large metal stamping companies are not anxious to handle orders for transformer laminations in small lots. But you can pick up old transformers from electrical equipment, radio and TV sets, sometimes for the asking, in repair shops and junk yards. We suggest that you obtain a variety of used or burned out transformers in all sizes.

Suspend the transformers over an incinerator or steel drum, with wires attached to a $1 / 2$-in. steel rod (Fig. 3). If the transformers have side enclosures, they should be removed before burning, but brackets and clamping parts can be left on. Work away from buildings because the fumes and odor are objectionable. A little fuel oil sprinkled over paper

will get a good fire started. Keep the heat up for a half hour by adding more paper and scrap wood. The heat will burn away all old insulation and wrapping material, but will not harm the laminations. In fact, it will tend to anneal the steel, resulting in lower magnetic losses, an important factor in good quality transformers. Quench the fire with a garden hose, and cool the transformers so they can be handled.

Now you can remove the laminations (Fig. 4). If you have an "E and bar" type transformer, pull alternately from each side. Another kind of core has one-piece laminations (Fig. 5B) with a joint open at one side. Take it apart by carefully lifting the side pieces first. Then pull the laminations alternately from each side, one at a time. Clean the metal with a stiff brush, and wipe clean with cloth.

Planning Core Size is easy. You need a mass of metal in the center big enough to provide an adequate path for the magnetic flux in relation to the volt-ampere rating of the transformer. The window opening must be big enough to take the wound coil. Table A lists transformers from 5 to 500 volt amperes. The core area minimum figures refer to the width of the center leg, times the thickness of the stacking in inches (Fig. 5A). You need not follow the table exactly. A variation of 20% plus or 5 cic minus is allowable.

Theoretically, the best core would have a square cross-sectional area, for example 1.5 $x 1.5-\mathrm{in}$. In practice, many coils will not fit in such a stack. Your core should not vary from the square more than by a factor of 1.75 for the best designs. For example, it would measure $1-\mathrm{in}$. by a maximum of 1.75 in . But if a certain required coil size would not fit into such a stacking, you might have to exceed the 1.75 ratio.

This will happen when your coils have un-
table a-transformer core areas
Approximate cross sectional area in inches for Silicon steel trans. former laminations.

Output in volt-amperes	25 cycles	50 cycles	60 cycles
5	0.6	0.3	0.25
10	1.0	0.5	0.4
15	1.2	0.6	0.5
20	1.4	0.7	0.6
25	2.8	0.8	0.7
50	4.0	1.4	1.2
75	4.8^{*}	2.0	1.8
100^{*}	5.2	$2.4^{* *}$	2.2^{*}
125	6.6	2.6	2.4
150	6.8	3.0	2.6
200	7.6	3.4	2.8
250	8.0	3.8	3.2
300	9.4	4.0	3.6
350		4.2	3.8
400			4.0
500			4.6
Text example.			

usually large numbers of turns, or where large size wire is being used. In such cases, use more stacking or larger laminations and then recalculate the winding with the larger core area; this in turn will result in a smaller coil with less turns. When designing transformers, you may have to recalculate several times with different core dimensions, before you can be certain that the finished coil will fit into the core space.
Window Opening. The second important design factor to consider is the length times the width of one of the rectangular openings in a lamination (Fig. 5A). A good transformer design is thus the best combination of three factors: core size, window opening area, and coil size. Common rectangular cores can be mounted either horizontally or vertically (Fig. 7A, B). In some amplifier circuits where two transformers are to be mounted close together on a chassis, their cores are placed at right angles to each other. This reduces the flux linkage between them to minimize hum and other bad effects.
Building a Transformer. Let's run through a typical design problem and build a transformer. We're making a rectifier unit that runs on $120-a c$ line voltage. The circuit requires 16.5 volts at 5 amps . So we multiply secondary voltage (16.5) times secondary amperage (5), to get the volt-amp rating (82.5 v.a.), which is equal to watts. This, of course, is provided that the future load of the equipment is non-inductive.
In Table A you will find that the nearest core size is 100 v.a., calling for 2.2 -sq. in. core area. This area is an average and we can be under 5% or over 2%. From our stock of salvaged laminations, we select a suitable group with a center leg width of the " E ", $1.25-\mathrm{in}$. Stacking these laminations to $1.75-\mathrm{in}$. thick, and multiplying the two dimensions, (Fig. 5A) we get 2.18 sq . in. The window opening measures $5 / 8-\mathrm{in}$. x $17 / 8-\mathrm{in}$. or an area of 1.17 sq . in.-the space into which the coil cross section must fit.

Now calculate the coil windings (Fig. 7C).

Heavy Formvar Diameter (Nominal)	Wire size in B\&S Gane	Cross-sectional area (bare) in circular mils	Turns per square inch with aver. age insulation. layer wound
. 1055	10	10,380	90
. 0942	11	8.226	112
. 0842	12	6,529	140
. 0753	13	5,184	177
. 0673	14	4,109	220
. 0602	15	3,260	276
. 0538	16	2.580	346
. 0482	17	2,052	428
. 0431	18	1,624	534
. 0386	19	1,289	665
. 0346	20	1,024	835
.0310**	21^{*}	812*	1,042*
. 0377	22	640	1,310
. 0249	23	511	1,600
. 0223	24	404	1,980
. 0200	25	320	2,470
. 0179	26	253	3,090
. 0161	27	201.6	3,870
. 0145	28	158.8	4,830
. 0131	29	127.7	5,920
. 0116	30	100	7,430
. 0104	31	79.21	9,120
. 0094	32	64	10,000
. 0084	33	50.41	13,900
. 0075	34	39.69	17,700
. 0067	35	31.36	22,200
. 0060	36	25	27,700

Volt-amperes required (83) are divided by line voltage (120), to get the amperage which must flow through the primary circuit. But since small translormers usually cperate at 85% efficiency in transferring electromagnetic energy from primary to secondary, we must add 15% more current to compensate. This totals .79 , or .8 amp (with decimal rounded off).
Figuring for constant duty, a value of 1,000 circular mills per ampere is satisfactory. In wire Table B, \#21 wire has 812 c.m. area. Therefore you point off three decimal places to the left for the current carrying capacity, 812. For intermittent duty, or if the transformer is to be used only at partial load, one smaller size wire, \#22, can be used.

Your next step is to find out how many turns of wire will be required for the primary. The formula is:

$$
\mathrm{N}=\frac{10^{n} \times \mathrm{E}}{4.44 \times \mathrm{f} \mathrm{x} \times \mathrm{B}_{\mathrm{m}}}
$$

N is number of turns, E is counter electromotive force (line volts), 4.44 is a multiplying factor, f is frequency in cycles per second, B_{m} is maximum flux density in lines per sq. in., A is area of core in sq. in.
B_{m} (maximum flux density) is the value of the flux or magnetic lines of force set up in the core by the primary exciting current (Fig. 8). If the density is too high, the transformer will heat excessively and waste power. Various values are selected by a designer according to the use. In some electronic transformers it may be as low as 20,000 ; in some cases a density of 80,000 has been used, especially for intermittent duty. A value of 60,000 lines is a good average for

Burning a half hour will loosen the insulation and wrappings so that core laminations can easily be removed.

The heat has reduced the insulated wire to bare copper and laminations that are easily pulled out.
small power transformers.
Thus turns $=\frac{100,000,000 \times 120}{4.44 \times 60 \times 2.18 \times 60,000}=344$
We now have the primary winding calculated as having 344 turns of \#21 wire which would operate with little temperature rise.

Now figure the turns-per-volt in the primary to determine how many turns will be required in the secondary. Divide primary turns (344) by line voltage (120), which is 2.87 turns per volt. As 16.5 secondary volts are required, multiply by 2.87 , resulting in 47.3 turns. There will be some iron and copper losses, however, which average about 4%, and there will also be a normal voltage drop when the load is added so, if we want the stated voltage at full load, about 2% more turns must be added-or a total of 6% additional turns. The exact values of losses and regulation (the \% difference between no load voltage and full load voltage) are difficult to estimate in advance. In commercial applications where the voltage under load must be exact, it is often necessary to construct a second pilot model after tests on the first one show more or less is involved in the loss and regulation factors. In our case the

RADIO-TV EXPERIMENTER

5
PUNCHED TRANSFORMER LAMINATIONS
STACKED LAMINATIONS ARE *26-" 29 GAGE, SILICON TRANS FORMER STEEL. FOR 60-400 CYCLES, USE " 29 GAGE TO LOWER LOSSES. ("29 MAY BE USED ON LOWER FREQUENCIES)
voltage is not too critical, so the addition of 6% is sufficient in the calculated turns, making 50.1 (50) turns for the secondary winding. This winding will be tapped at 25 turns.

The wire size of this winding is the next consideration. The transformer winding is to carry a current of 5 amperes. Table " B " lists \#13 wire with 5184 circular mils, or as having 5.184 amp capacity at 1000 circular mils per amp. Since this is heavy wire to wind, use two wires wound on together, three sizes smaller, or \#16, which will have the same

Clamp the stack of transformer laminations tightly together when you measure thickness. The thickness x the center leg width is the cross sectional area of core.
area and be easier to wind. (For intermittent duty, you could use one \#15 wire.) Formvar magnet wire is recommended for its tough enamel insulation and minimum required space.

The final problem is to estimate the size of the finished coil to make sure it will fit in the lamination window openings (Fig. 7C). To do this, refer to Table " B " in the "turns per sq. in." column. We are using 344 turns of \#21, so divide 344 by 1042, resulting in 33 . Figure the 50 turns of double \#16 singly first, then the result doubled: 50 divided by 344 is .14 times 2 equals .28 . Add this to .33 for a total of 61 . To this must be added a figure which represents the approximate space taken by the insulation between primary and secondary, between secondary turns if any, and out-

7 small transformer design

A taped sec modary winoing
figure each tap for a single voltage
TURNS = DESIRED VOL:S \times TURNS PER VOLT RATIO - 6% FOR LOSSES. (SEE TEXT)

FIRST CALCULATE PRIMARY AND SECONDARY FOR HIGEST GOLTAGE. THEN ADD TUFNS TO PRIMARY FOR LOWER VOLTAGES
8 VARIABLE VOLTAGE TAPS.
side taping of coil. Another factor is that the turns may not be wound in flat layers, but may be "random" wound, which is easier for the amateur. This type of winding, while satisfactory, takes up more space. Therefore, an estimate of 25% must be added to the figures previously obtained as the probable total space required for the finished coil. This totals .76 sq. in. As the window opening in the core ($5 / 8 \times 17 / 8$ in) is 1.17 sq. in., the coil should fit in place if it is neatly and tightly wound.

Transformer designs which must be quite exact, usually include a stacking factor for the core, since a stack of laminations 2-in. high does not necessarily have the same area as $2-\mathrm{in}$. of solid steel. Therefore, .9 , another multiplier, is added to the row of figures below the line in the formula. For practical purposes, however, this figure can be omitted in most cases.

A transformer is often needed which has
several output voltages, obtained with a multi-point switch or so-called tap switch. There are two ways of doing this. You can design the secondary winding with taps at the turns to deliver the desired voltages, each of which can be calculated by the methods already described, and bring out leads at these points (Fig. 8). Or the primary winding can be tapped. This is especially desirable when the size wire in the secondary is large and it is impossible to make taps there without adding considerable bulk. To tap the primary, first calculate the primary winding by the methad described for single-voltage transformers.

Then, figure the number of turns for the secondary for the highest voltage required, using the primary turn-per-volt ratio as the multiplier plus the added percentage for losses and regulation. This will establish the number of secondary turns. In order to get several lower voltages, more turns must be added to the primary with taps at each of the points to be determined.
Supposing that we wish to have $24,18,12$ and 10 volts through the use of a tap switch on the primary. A particular transformer with a certain core, for example, is figured to require 350 primary turns for a 60,000 flux density.
Dividing this by the line voltage (120), we get a turn-per-volt ratio of 2.9. Multiplying this by the highest secondary voltage (24), the turns for the secondary-with 6% added for losses and regulation-will be 73.77 (74) turns. Eighteen volts will be the next objective, so 70 is divided by 18 which is 4.1. Multiply this by line voltage (120) and the result is 492 primary turns as the next tapping point.

Repeat this procedure for each secondary voltage and the last figure obtained will be the total primary turns required, with the point for each tap indicated.
With so many primary turns, the coil when wound will be comparatively large, so careful selection of the laminations must be considered to provide a suitable space for the coil. When the transformer is operating on the tap which produces the highest secondary voltage (24), the flux density in the core will be at its highest- 60,000 lines.

The taps which cut in more primary turns will reduce the secondary voltage and the exciting current and hence the flux, so the transformer will not be in danger of overheating on any of the taps. If you tapped the basic 350 turns in an attempt to get variable secondary voltage, the result would be an increase in flux density for each tap used, and the flux density would reach a point where the core would overheat, and the line current become excessive.

This homemade machine makes transformer and coil winding easy. Speed is controlled by a foot pedal.

We have described the steps in designing cores and coils for making your own special transformers for rectifiers, plating, ham radio as well as high voltage and electronic experiments.
Laminations were salvaged from discarded transformers, and complete calculations were shown for designing a special rectifier transformer which is to step down 120 line voltage to 16.5 volts at 5 amperes. The continuous duty primary coil was calculated to require 344 turns of \#21 Formvar magnet wire; the secondary winding requires 50 turns of two \#16 Formvar magnet wires wound together in parallel, with a center tap at the 25th turn. The basic procedure which follows can be used to wind any kind of similar transformer.

Start by making the winding form (Fig. 9) with a center block cut slightly larger than the core center of your transformer laminations. The grooves and the slots in the coil form (Fig. 10) are used for temporarily binding completed turns of wire with cord. Sand the wood smooth, slightly rounding the corners, and then coat with shellac. When dry, sand lightly and apply paste wax to make it easy to remove the coil after winding.
The home-made machine (Fig. 9) includes a variable-speed foot pedal which controls a vacuum cleaner motor. If you plan to make a number of transformers, or coils, you will save time by building an electrical coil winding machine (such as the one shown in Craftprint 265, \$1). Otherwise, you can chuck the winding form in a lathe that has slow speeds, or rig up a hand crank. For any winding method, you need a positive way to
count turns, such as a mechanical counter tied in with sprockets and chain.

To insulate the coil from the laminations first place a turn of lapped .007 Duro insulating paper around the form. Fit the paper tightly with $1 / 18$-in. brought up on all sides (Fig. 12). Secure with a strip of Scotch masking tape. Then slip a length of spaghetti tubing over the end of your \#21 Formvar magnet wire, for the starting lead of the primary. Allow at least a foot of this wire and bring the spaghetti in through a side slot into the coil form about $1 / 4-\mathrm{in}$. Secure the end of the

wire by taking a few turns around the bolt on the chuck side of the form. Set your counter at zero and wind back and forth as evenly as possible to avoid unnecessary wire crossings. When the counter reads 344 , cut about a foot beyond the last turn, slip on spaghetti tubing, and bring the lead out through the same slot used at the start. Again, secure the lead with paper Scotch tape and a few turns taken around the bolt.
Start the secondary winding with a turn of .007 Duro insulating paper placed over the primary. Follow the same procedure as before (Fig. 11). But after you slip the spaghetti tubing over the lead of your pair of \#16 secondary wires, run them through the opposite slot on the coil winding form. Set counter to zero and wind 25 turns, flat and even because your space in the laminations is limited. After the 25th turn, use tape around the turns to temporarily hold them in place. Scrape $5 / 8$-in insulation from both wire ends and solder on a flexible \#16 insulated lead (Fig. 13). Insulate with a folded piece of the .107 Duro paper and secure with paper

Use Duro insulating paper, brought up at the sides and fastened with tape to insulate the coil from the leminations.

When primary winding is finished, bring out the leads and wrap around the mounting bolt. The paper insulates primary from secondary winding.

With iape temporarily holding the windings, solder a flexible lead wire to make your first tap.
masking tape. Then wind another 25 turns, cut the wires, slip on spaghetti, and bring the last lead out the same slot used to start the secondary winding.

Now you are ready to remove the coil from the form. Make a fish wire and thread some strong cord through the slots (Fig. 14). Gently tap the windings with a block of wood and tightly bind the coil with secure knots. Unchuck, tap out the coil block, and check the coil size with a lamination. Coils have a tendency to spread out at the center after removal from the form, but can be compressed slightly with tape, or in a vise with two blocks of wood.
Use cotton coil tape, the kind specially sold for this purpose, to wrap the coil. Pull it tight each turn, and overlap the tape half its' width. Avoid bunching tape excessively at the corners, which might interfere with the laminations. When you come to a tie cord, cut it, and continue taping (Fig. 15). Run the cotton tape tightly around the leads and sew with needle and thread to keep tight. Also secure the ends of the tape with sewing.

COIL WINDING-SOURCES OF SUPPLY

Formvar Magnet Wire*
1-1b. spools; Allied Radio, 100 N. Western Ave., Chitago 80, 111. $5 \mathrm{lb} . \# 21,10-\mathrm{lb} ., \$ 16$ minimum orders; Huse Liberty Mita Co. Lynfield Street, Peabody, Mass.

Insulation ${ }^{\text {P }}$
Duro insulating paper . 007 or $.010^{\prime \prime}$ thick in $24 \times 46^{\prime \prime}$ sheets: cotton coil tape, $.007 \times 3 / 4^{\prime \prime}$ wide rolls; clear baking varnish, 1 gal. cans.; Huse Liberty Mica Co.
Spayhetti tubing, heat-resistant; assorted sizes available most electronic supply houses. Assorted bundle, $8^{\prime \prime}$ lengths, Allied Radio Cat. No. 49 T220. (\$.25)
Scotch masking tape, paper; hardware and paint stores.

Flexiule Insulated Lead Wire

Braided, heat resisting type; electrical and electronic supply houses. * Many of these items in small quantities can be purchased throujh motor winding shops.

Use a small fish made of a short piece of wire to thread through the slots to tie the finished windings.

Before you can install the laminations, the coil must be dipped in heat-reactive clear coil baking varnish, and baked. First be sure the coil is free of moisture, dirt etc. Use a can with enough varnish to completely submerge the coil. Wait 20 minutes or until all bubbling ceases, and then hang it up over the can to drain.

The Baking Oven (Fig. 16) uses two 250watt infra-red lamps and has a hook fitted through the center of the large galvanized stove pipe for turning the coil during baking. Use asbestos cord for the leads to the lamps, and bind the asbestos fibers with carpet thread to prevent fraying. The infra-red heat rays penetrate down through the windings to the bottom layer, and so baking time will vary with the size of coil and make of varnish. Two or three hours should be enough, provided that you turn the coil a few times.

Assemble the laminations as soon as the

Pull each turn of the cotton coil tape tightly, and avoid bunching the tape at the corners.
coil is cool. You can insert two laminations per layer at once, but be sure to alternate the direction of the " E " for each layer (Fig. 17). When the stack is complete, insert the longer "E" pieces (keepers) which generally are used to cover the last laminations. If such keepers were not part of your original core assembly, disregard. They are not essential.

Now insert core assembly bolts through the laminations and tighten temporarily. Drive Bakelite or fiber wedges into the spaces between the winding and " E " legs to pre-

	MATERIALS LIST-BAKING OVEN
Amt.	Req. Size and Description
1	$10 \times 24^{\prime \prime}$ length, galvanized stove pipe
2	$1 \times 25 \times 1 / \mathrm{B}^{\prime \prime}$ strips, mild steel (legs)
2	$1 / 16 \times 6 \times 18^{\prime \prime}$ pieces aluminum, or galv. sheet steel. (bend 90° for lamp brackets)
1	$1 / 8 \times 6^{\prime \prime}$ steel rod (coil support)
1	$3 / 4 \times 1^{\prime \prime}$ Bakelite rod (coil support knob)
4	$6.32 \times 1 / 2^{\prime \prime}$ rh machine screws and nuts (leg stove pipe as. sembly)
4	$6.32 \times 3 / 4^{\prime \prime}$ rh machine screws, washers and nuts (lamp socket assembly)
4	8-32 nuts, (rod-hook assembly)
2	250-watt infra-red lamps
2	lamp sockets, porcelain surface type
12^{\prime}	\#16 braided asbestos-covered appliance cord
1	a-c plug

MATERIALS LIST-BAKING OVEN

Amt. Req. Size and Description
$10 \times 24^{\prime \prime}$ length, galvanized stove pipe
$1 \times 25 \times 1 / \mathrm{s}^{\prime \prime}$ strips, mild steel (legs)
$1 / 16 \times 6 \times 18^{\prime \prime}$ pieces aluminum, or galv. sheet steel. (bend 90° for lamp brackets)
$18 \times 6^{\prime \prime}$ steel rod (coil support)
$4 \quad 6.32 \times 1 / 2^{\prime \prime}$ rh machine screws and nuts (leo stove pipe as. sembly)
$6.32 \times 3 / 4^{\prime \prime}$ rh machine screws, washers and nuts (lamp socket assembly)
250 wuts, (rod-hook assembly)
lamp sockets, porcelain surface type
braided asbestos-covered appliance cord a.c plug

Use a 10 -inch stovepipe and two 250 -watt infrared lamps to make the oven. With the knob you can turn the coil during baking.
vent the laminations from vibrating. Square up your laminations and drive the joints together with a hammer, with the assembly resting on a steel block (Fig. 18).

Terminal strips are a practical necessity on this type of experimental transformer (Fig. 19), because you can make and break connections quickly. Use Jones \#3-140 barrier terminal strips, and make two sheet metal brackets that just clear the top of the laminations. Complete construction by bolting the terminal assembly, the laminations, and transformer mounting brackets together. Carefully clean the ends of ycur lead wires and lcop around the terminal screws, or solder permanently.

Insulation Tests. A

Left. Assemble the laminations alternating the E each layer. Usually longer E pieces cover the ends. Right. Fiber wedges driven into the open center spaces prevent vibration of the laminations.

high voltage transformer is generally used to check for grounds, or electrical leakage to core. A commercial "Megger" insulation tester, will also tell you whether you have perfect insulation Make the test by applying the high voltage between one primary terminal and frame, and one secondary terminal and frame. Also test across one primary terminal and one secondary terminal.

Apply the high voltage for only an instant and of course, never between terminals of either winding. The leakage will show on the test transformer lamp, or on a megger, the meter will register value of insulation resistance.
Make the No-Load Test by connecting an ammeter in series with one line wire to the primary. A well designed transformer should draw hardly any current with no load on the secondary. Our transformer read .160 amps , which is a satisfactory value. A high current would indicate insufficient primary turns, or that there are shorts between turns. Either of these faults will require rewinding of the coil.

A final test is with a secondary load. For our model, we used an adjustable 100 -watt resistor (Fig. 19) capable of carrying the output amperage (5 amps) with a 4 -ohm resistance. Connect the resistor with an ammeter in series with one side of the sccondary, and
a voltmeter in parallel. Also connect a voltmeter across the line. An a-c ammeter to indicate line current, connected in series with one of the primary leads, would also be helpful. Adjust resistor band so secondary ammeter reads exactly 5 amps. Secondary voltage on our model read 16.4 volts, and reading primary amps, we found that full load current was exactly .75 amps . We found the finished transformer voltage was within 1% of our original calculations (using the right line voltage for the test).

You can use the method demonstrated in this article to wind any low voltage transformer. When you build high voltage transformers, you will need to use many turns of fine wire, which usually require insulation between layers to prevent breakdown. On factory winding machines, the insulation is applied automatically over perfectly even layers. On a hand winding machine, use a turn of paper every 500 turns to break up the otherwise continuous winding. Transformers up to 3,000 volts can be built by this method. As an added precaution with highvoltage types, thoroughly impregnate the coils and bake and varnish twice. Also, especially with high voltage transformers, use your infra-red oven to pre-bake the coil for 10 minutes to dry out any moisture that otherwise might be sealed in by the varnish.

WHITE'S RADIO LOG

QUICK REFERENCE INDEX

U. S. and Canadian AM Stations by Frequency 163
U. S. and Canadian AM Stations by Location. 172
United States FM Stations 180
Canadian FM Stations 183
United States Television Stations. 183
Canadian Television Stations 184
World-Wide Short-Wave Stations 185

Remote TV- Radio Sound Silencer

You won't need to dash madly to the TV before answering the phone, nor smash the picture tube when a hammy huckster goes into his commercial pitch

FCOR no more than the cost of a push button from your dime store and some fixture wire, you can squelch the TV sound or a radio from your telephone stand or table near your favorite chair. The installation takes only a moment, and the silencer neither shuts off the radio or TV set requiring it to warm up when turned On again, nor connects to any 110 -volt power line or high voltages within the set.
Because there are no high voltages involved, you can run the squelcher's cord under a carpet without worrying about fire or shock. TV twin-wire lead-ins are excellent because they lay flat.
Mount a doorbell push button with two $\# 4-40 \times 1 / 2-\mathrm{in}$. machine screws and nuts on a plastic coaster (Fig. 2) after cutting a hole in the side to let the cord through. Determine the required run of connecting fixture cord or TV lead-in and attach alligator clips to the ends opposite the push-button.

To install the squelcher, merely attach a clip to each of the lugs on the set's speaker (Fig. 3). Do not disturb any wires already soldered to these lugs. When the push-button is depressed, it shorts out the secondary (voice coil) of the set's output transformer. Voltages are too slight to feel. In some instances this device may not completely kill
the sound, but will reduce it to a whisper.-T.A.B.

CHIITES RADIO LOG 3207

Every effort has been made to ensure occuracy of the information listed in this publication, but absolute accuracy is not guaranteed and, of course, only information available up to press-fime could be included. Copyright 1961 by Science and Mechanics Publishing Co., a subsidiary of Davis Publications, Inc., 450 East Ohio St., Chicago 11, III.

U. S. and Canadian AM Stations by Frequency

U.S. stations listed alphabetically by states within groups, Canadian stations precede U.S. Abbreviations: Kc., frequency in kilocycles; W.P., watt power; d-operates daytime only. Wave length is given in meters

Kc. Wave Length
540-555.5
CBK Regina, Sask. KVIP Redding. Calif KFMB San Diego, Cálif. W GTO Cypress Gardens, Glori WDAK Columbus, Ga.
KBRV Soda Springs, idaho KBRV Soda Springs, Idah KWMT Ft. Dodge, lowa WDMV Pocomoke City, Md. WBIC Islip, N.Y. WETC Wendell.Zebulon, N.C. WCNG Canonsburg, Pa. WDXN Clarksvilie. Tonn WRIC Richlands, V a.

550-545.1
CFNB Fredericton, N.B. CFBR Sudbury, Ont. CKPG Prince Georg, Que. KEN। Anehorage Alask KOY Anehorage, Alaska K Y Phoenix, Ariz. KAFY Bakersfield, Calli WRAYR Cralg, Colo. WAYR Orange Park, Fla KGVA Wainesville, Ga. K FRM Concordia Kans WCBI Columbus, MIss KSD St. Louis, Mo. KOPR Buite, Mon WGR Buffalo, N Y WDEM Statesville, N.C. KFYR BIsmarek. N.Dak WKRC CInelnnati, Ohlo KOAC Corvallis, Oreg. WHLM Bloomsburg, Pa WPAB Ponce, P.R. WPAW Pswtucket, R.I KCRS Midland, Tex. KTSA San Antonio, Tex. WDEV Waterbury, Vt. WSVA Harrisonburg, WSAU W ausau, Wis.

560-535.4
CBY Corner Brook. N.F. CFRA Ottawa, Ont. CFOS Kirkland Lako, Ont WOOF Dothan. Ala. KYUM Yuma, Ariz. KSFO San Fran., Calif. KLZ Danver Fran., Ca WQAM Mlami. Fia. WIND Chicago Fla. WMIK Middlesboro, Ky WGAN Portland, Maine WHYN Sprlngfiold. Mast. WQTE Monroe, Mich. WEBC Duluth. Minn. KWTO Springfield MO KMON Great Falls Mo. WGAI Ellzaboth City No WFIL Philadelphia Wis Columbia, S.C. WHBQ Memphis. Tonn KFDM Beaumont Tenn. KPQ Wenatehes W Iex. WJLS Beckley. W.Va

570-526.0
CKEK Cranbrook, B.C.
 1000
5000 250 5000 5000
1000 1000 1000 1000 d 5000 1000 5000 d 1000
5000 5000 1000 5000
500 d 500 d
5000 5000
5000 5000
5000 5000
1000 1000
5000 5000
500 5000 5000
5000 5000
5000 5000
5000 500 d 5000 1000 5000
5000 1000 5000 50000 1000
5000 5000 5000 5000 5000 500 d 5000 1000
$500 d$ 500 d 5000 KID Honolulu, Hawall 5000, WVLK 5000 WEEI Boston, Mass. 5000 WKZO K alama200. Mich 5000 WOW Omaha, Nehr. 5000 WROW Albany. N.Y. 5000 WGTM WIIson. N.C. 5000 KUGN Eugene, Oreg. 5000
5000 5000 WMBS Uniontown KTBC Austintown. KSUB Cedar City WLVA Lynchburg, Utah 1000 KHQ Spokane Wha

Ke. WoveLength W.P CJEM Edmundston. N.B. KCNO Alturas, Calif. KLAC Los Angeles, Callf. WGMS Washington, D.C. WACL Waycross, Ga. WKYB Paducah, Ky. WVMI Biloxi, Miss. WMCA New York. N. Y. WSYR Syracuse, N. Y. WWNE Asheville, N.C WIKBN Youngstown. Ohio WNAX Yankton, S.Dak. WFAA Dallas, Tex. WBAP Ft. Worth. Tex KLUB Salt Lake City, Utah WMAM Mer. Wash.

580-516.9
CJFX Antigonish, V.S. CKEY Toronto, Ort. CKUA Edmontom. Ont CKY Winnipeg, Mn WABT Tuskegeo, Ala. KMAN Tucsong Ariz. KUBC Montrose Colo WDBO Mrane. CDlo WGAC Augusta, Fia. KFXD Nampa, Ga. WILL Nampa, Idă KSAC Manhattan. WIBW Manhattan, Kans KALB Topeka, Kans. WTAG Worcester Mass WELO Worcestor, Mass WAGR Lumberton, N.C. WHP Hurrisbion, N.C. WKAQ San KOBH Hot Spring P.R. WRKH ROCwDod. S.D KDAV Lubbock. Ten WLES Lawrencoull. WCHS Charleston iw WKTY LaCrosse, Wis.

590-508.2

CFAR Flinflon, Man. CKAR Huntsvillo, Ont. VOCM Sonquiore, Que. WRAG Carrolltor A. KBHS Hot Springs A. KFXM San Bernardino. KCSJ Puoblo Colo WDLP Panama Cisy. Fla PLO Atlanta Hawall	Ke. Wove Length W.P. Ke, Wave Length W.P.		
CKCQ Quesnal, B.C.	1000	$600-499.7$	

1000
1000
1000
5000
1000
5000
5000
5000
1000
1000 d
5000 d
5000
5000
5000
500 d
5000
5000
5000
5000
5000
5000
5000

5000
5000

10000
50000
500 d
5000
500
5000
000

5000 d
5000
5000
5000
5000
5000
5000
1000
500
5000
500 d
1000 d
500 d
$500 d$
5000
5000
5000

1000

1000 1000

10000

1000 d
1000
1000
1000
5000

5000
5000

5000

 600-499.7CFCF Montreal. Que. CFCH North Bay, Ont. CFQC Saskatoon. Sask. CJOR Vancouver, B.C CKCL. Truro, N.S. WIRB Enterpriso, Ala. KCLS Flagstañ, Ariz. KFSD San Dlego, Calif wICC Bridgeport, Conn WPDQ Jacksonvilio, Fla. WMT Cedar Rapids. Jowa WWOB Liberal, Kans. WWOM Now Orioans, La. WFST Caribou, Malne WCAO Baltimore, Md. WLST Estanaba, Mic WTAC Flint, Mleh. WCVP Murphy, Mont. WSJS Winston-Salem. N.C. WFR WAEL Mayaouez WREC Mayaguez. P.R. KROD EI Paso Tex KERB Kermit ${ }^{\text {K }}$, KTBB Tyler. Tox.
610-491.5
CHNC New Carlisie, Que. CJAT Trail, B.C.
CKKL. Thompson, Man. W SGM St. Catharines, Ont, KAVL Laneaster, Calif. KFRC San Franciseo, Callf WCKR Mrami, Fla WCEH Pensacola, Fla. WRUS Mawkinsvile, Ga KDAL Duluth Minn WDAF I (ansas City, Mo KOJM Havre, Mont. WGIR Manchester, N.H. KGGM Albuquerque, N. Mex. WAYS Chariotte, N.C. WTVN Columbus, Ohio WIP Philadolphia, Pa KILT Houston, Tex. KVNU Logan, Utah WSLS Roanoke. V a. KEPR Kennewick, Wash.

620-483.6

CFCL Timmins, Ont. CRCK Regina, Sask KTAR Phoonix, Arlz. KNGS Hanford. Calif. KWSD Mt. Shasta, Calif. WSTR Grand Junetion. Colo WTUN St. Petersburg. Fla. KWAL Wallange, Ga. KMNS Sioux WTMT Sioux City, low WLBZ Bancorilo. Ky. WJDX Jangor, Malne WVNJ Jackson. Miss. WHEN Syracuse, N. Y. WDNC Durham, N.C. KGW Portland, Oreg. WHJB Greensburg. Pa WCAY Cayce, S.C
KWFT Wichita Falls.
000 WCAX Wulingtom, Tox.

P.	Kc. Wove Length W'WNR Beckiey. W.V. WTMJ Milwaukee, Wis.	W.P. 1000 5000
5000		
10000	630-475.9	
5000		
5000	CFCO Chatham, Ont. CHLT Sherbrooke Que	1000
1000	CHLT Sherbrooke, Que.	10000
1000	CFCY Charlottetown, P,E.	5000
5000	CJET Smith Falls, Ont.	1000
1000	CKRC Winnipeg, Man.	5000
5000	CKOV Kelowna, B.C.	1000
1000	CKYL Peace River, Alta.	1000
5000	WAVU Albertville, Ala.	1000 d
5000	WJDB Thomasville, Ala,	1000d
500	KJNO Juneau, Alaska	1000
1000d	KVMA Magnolia. Ark.	1000 d
5000d	KIDD Monterey, Calif.	1000
5000	KHOW Denver, Colo.	5000
1000 d	WMAL Washlngton, D.C.	5000
1000	WSAV Savannah, Ga.	5000
2000	KIDO Boise, Idaho	5000
$1000 d$	WLAP Lexington, Ky.	5000
5000	KTIB Thibodaux, La.	500
5000	WJMS Ironwood, Mleh.	1000
1000 d	KDWB So, St. Paul, Minn.	. 5000
1000	KXOIC St. Louis, Mo.	5000
5000	KGVW Belorade, Mon	1000 d
5000	KOH Reno, Nev.	5000
1000 d	KLEA Lovington, N.Mex.	500
1000	WIRC Hickory. N.C.	1000d
	WMFD Wilmington.	1000
	KWRO Coquillo, Ores.	5000d
	WEJL Scranton, Pa.	500d
5000	WKYN Rio Piedras, P.R.	1000 d
1000	WPRO Providence. R.I.	5000
1000	KGFX Pierre. S.Dak.	250
5000	KMAC San Antonlo Tox.	5000
5000	KSXX Salt Lake City, Utah	1000 d
1000	K GDN Edmunds, Wash.	5000d
5000 5000	KZUN Opportunity, Wash.	500d
500d	-468.5	
500 d		
500 d	CBN St. John's, N.F.	10000
5000	KFI Los Angeles, Callf.	50000
5000	WOI Ames, lowa	5000 d
1000	WHLO Akron, Ohio	1000
5000	WNAD Norman, Okla.	1000 d
5000		
5000	650-461.3	
5000 5000		
5000	KKAA Honolulu, Hawali	10000
5000	WSM Nashville, Tonn.	50000
1000	KRCT Baytown, Texas	250 d
5000		
5000	660-454.3	
	KFAR Fairbanks, Alaska KMEO Omaha. Nobr	10000
10000	WNBC New	
5000	W ESC Greenville, S.C. 1	10000 d
5000	KSKY Dallas. Tex.	1000
1000	670-447.5	
5000d		
5000	WMAQ Chicago, III,	50000
1000 d	680-440.9	
1000		
1000	CHFA Edmonton, Alta.	5000
500d	CHLO St. Thomas, Ont.	1000
5000	CJOB WInnipeg, Man.	10000
5000	CKGB Timmlns, Ont.	10000
5000	KNBC San Fran., Calif.	50000
5000	WPIN St. Petersburg, Fla.	1000 d
5000	WCTT Corbln, Ky,	1000
5000	WCBM Baltimore, Md.	10000
1000	WNAC Boston, Mass.	50000
5000 5000 5000	WDBC Escanaba, Mich.	1000
	WHIJES RADIO LOG	1,63

Kc. Wave Length KFEQ St. Joseph, Mo. WRN Binghamton. N.Y WPTF Ralcigh, N.C. WISR Butler, Pa. WAPA San Juan, P.Rico WMPS Memphis, Tenn. KENS San Antonio, Tex KOMW Omak. Wash

690-434.5
CBU Vancouver, B.C.
CBF Montreal, Que.
WVOK Birmlngham. Al
KVNA Flagstaff, Ariz. KEVT Tucsoll, Ariz. KBBA Benton. Ark. KAPI Pueblo, Colo. WAOS Ansonia, Conn. WAPE Jacksonville, Fla. KBLI Blackfoot, Idaho KGGF Coffeyville, Kans. KSTL St. Louis, Mo. KUSD Vermillion. S. Dak. KHEY EI Paso. Tex. KPET Lamesa, Tex WCYB Bristol, V.
WNNT Wristol,
WELD Fisher, W.V.Va.
700-428.3
WLW Cincinnati, Ohio 50000
710—422.3
CJSP Leamington, Ont.
CFRG Graveltourg, Sask. WKMG Ville Marie, KMPC Los Angeles, Calif. KICN Denver, Colo. WGBS Mlami, Fla WROM Rome. Ga. KEEL Shreveport, La,
WHB Kansas City, Mio WOR New York, N. Y D2RH Manila. P.I. WTPR Parlation. KGNC Amarillo, Tex.
K-URV Edinburg. Tex. KIRO Seattle, Wash WDSM Superior, Wis.

720-416.4
WGN Chicago, ill.
730-410.7
CJNR Blind River, Ont. CKAC Montreal, Que. CKLG No. Vancouver, B.C. KFQD Anehorage, Alaska W JMW Atheris, Ala WKTG Thomasville. Ga KBLR Goodland. Kans. WFMW Madisonville. K WMTC Van Cleve, Ky. WARB Covington. La WMMS Bath, Maine WACE Chicopee. Mass, KWOA Worthington, M KURL Blllings, Mont KMGM Albuquerque, N. Mex. WOOS Oneonla, N.Y WFMC Goldsboro. N.C WHRW Bowling. Green, 1000 d KBOY Medford. Oreg. w WPIT Pittsburgh. Pa. WPAL Charleston. S.C WLIL Lenoir. Telin KKSN Grand Prairio. Tox. KSVN Ogden. Utah WPIK Alexandria WMNA Gretna, Va KULE Ephrata. Wash.

740-405.2
CBXA Edmonton, Alta BAM $\quad 50000$
UEQ Phoenix. Ariz. 1000r

KBIG Avalon. Calif.
KCBS San Francisco, Calif. 50000
有
KFC Cortez. Colo.
KYME Boine idaho
WVLN OIney. 11 .
KBOE Oskaloosa, Iowa
W.P. 5000
1000
2500
5000
250 d
10000
10000
50000
1000 d
250

10000
50000 50000 1080
25011 250 d 250 d 500त 25000d 000 10000 50000
10000 000 d 10000 250 d
10000 d
500 d

1000d
5000 d
5000 d
1000
1000
50000 5000 50000
000 d
1000 d
10000
10000
10000
50000
10000
1000
250 d
2000
5000

50000

1000
50000
10000
10000
10000 10000 100011
1000 d
1000 d
250 tl

1000 d

250 d
250 d
250 d
500 d
500 d
1000 d
1000d
500d
500d

000d

d
0001
1000 d
1000 d
000 d
000 d
000d 500d
500 d
000 d
000d
000d
000d
Ke. Wave Length
WFRB Frostburg, Md.
WTAO Cambridge, Mlass.
KPBM Carisbad, N. Mex.
WGSM Huntington. N.Y.
WMBL Morehead CIIy. N.C.
WPAQ Mount Alry. N.C.
KRMG Tulsa, Okla,
WVCH Chester, Pa.
WIAC San Juan, P.Rico
WBAW Barnwell, S.C.
WIRJ Humbolt Tenn.
WJIG Tullahoma. Tenn.
KTRH Houston. Tex.
WBCI Williamsburg, Va.
$750-399.8$

WSB Atlanta, WBMD Baltimore, Mid KMMJ Grand Island, Neb. WHEB Portsmouth, N.H. KSEO Durant. Okla. WPDX Cland, Oreg, $\mathrm{V}, 50000$

760-394.5

$\begin{array}{lr}\text { KGU Honolulu, Hawaii } & 10000 \\ \text { WJR Detroit. Mich. } & 50000 \\ \text { WCPS Tarboro. N.C. } & 1000 \\ \text { WORA }\end{array}$
770-389.4
KUOM Minneapolis. Minn. WCAL Northfield. MInn WEW St. Louis. Mo KOB Albuquerque. N. Mex. 50000 WABC Now York. N.Y. 50000 KXA Seattle, Wash.
780-384.4
WBBM Chlcago, III. WCKB Dunn. N.C. KSPI Stillwater, Okla. WARL Arlington, Va.
790-379.5
CKMR Newcastle. N, B. WTUG Tuscaloosa, A KCEE Tucson, Ariz. KOSY Toxarkana, Ar
KOAN Eureka, Calif KABC Los Angeles. Calif. WLBE Leesburg, Fia W MBM Miaml Beach. Fla.
WPFA Pensacola. Fla. WQXI Atlanta, Ga. WGRA Cairo, Ga. KEST Bolse, Idaho $K X X X$ Colby, Kans. WAKY Louisville, K WRUM Rumford, Me. WGGW Saglnaw, Mich. WWNY Watertown, N.Y. WLSV Wellsville. N.Y. KXGO Fargo, N.Dak. KWIL Albany, Oreg. WPIC Sharon, Pa. WEAN Providence, R.I. WWBD Bamlierg S.C.
WETB Johnson City. Tenn WMC Memphis, Tenn. KTHT Houston, Tex. KFYO Lubbock. Tex. KSIG Mount Jackson, WSIG Mount Jackson
WTAR Norfolk. Va. WTAR Norfolk. Va, KNEW Spokant, Wash.
WEAQ Eau Claire, Wis

800-374.3

KAB Moose Jaw, Sask.

 CFOB Ft. Frances, Ont CJLX Ft. William, Ont. CJ8Q Belleville, Ont. CKLW Windsor. Ont. CHRC Quebec, Que. CJAD Montreal. Que.VOWR St. Johns, N.F. WHOS Decatur, Ala. WMGY Montgomery. Ala KINY Juneau, Alaska KAGH Crossett. Ark. KVOM Morrilton. Ark.
KUZZ Bakersfield. Calif. KDAD Weed, Calif. KBRN Brighton, Colo. WLAD Danbury. Conı WJAT Swainsboro, Ga KXIC lowa City. Iowa WCCM Lawrence. Mass. KREI Farmington. Mo. KDBM Dillon, Mont WKON Camden. N.J KPDQ Fortland, Oreq.
$\begin{array}{llr}\text { Ke. Wave Length } & \text { W.P. } \\ \text { WCHA Chambersburg, Pa, } & 1000 \mathrm{~d} \\ \text { WDSC Dillon, S.C. } & 1000 \mathrm{~d} \\ \text { WEAB Greer, S.C. } & 250 \mathrm{~d} \\ \text { WDEH Swectwater, Tenn. } & 1000 \mathrm{~d} \\ \text { KDDD Dumas, Tex. } & 250 \mathrm{~d} \\ \text { KBUH Brigham City, Utah } & 250 \mathrm{~d} \\ \text { WSVS Crewe, Va, } & 1000 \mathrm{~d} \\ \text { WKEE Huntington, w.Va. } & 1000 \mathrm{~d} \\ \text { WDUX Waupaca, Wis. } & 1000 \mathrm{~d}\end{array}$
Kc. Wave Length 890-336.9

WHNC Chicago, lll.

 KBYE Okla. City, Okla50000 $1000 d$
$1000 d$

900-333.1

$910-329.5$

CJDV Drumheller, Alta. CKLY LIndsay, Ont.	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$
CBO Ottawa, Ónt.	5000
CFJC Kamloops, B,C.	10000
CHRL Roberval. Que.	000
KPHO Phoenix, Ariz.	5000
KLCN Blytheville, Ar	5000d
KAMD Camden, Ark.	1000
KDEO El Cajon, Calif	1000
KEWB Oakland, Calif.	5000
KOXR Oxnard, Callf.	$1000 d$
KPOF nr. Denver, Colo.	5000
WHAY New Britain, Con	5000
WPLA Plant City, Fla,	10001
WGAF Valdosta, Ga.	5000
KBGN Caldwell, Ida.	1000 d
WAKD Lawreneeville. Ill.	500d
WSUI lowa City. lowa	5000
WLCS Baton Rouge, La	1000
WABI Bangor, Malne	5000
WFDF Flint, Mich.	5000
WCOC Meridian, Miss.	5000
KOYN Billings, Mont.	1000d
KYSS Mlssoula, Mont.	1000 d
KBim Roswell, N.Mex.	5000 d
WLAS Jacksonville, N.C.	1000d
KCJB Minot, N.Dak.	1000
WPFB Middletown, Ohio	1000
KGLC Miaml, Okla.	1000
KURY Brookings, Oreg.	100011
WAVL Apollo, Pa.	100011
WGBI Scranton, Pa.	1000
WSBA York, Pa.	1000
WPRP Ponce, P.R.	5000
WORD Spartanburg, S.C.	1000
WJCW Johnson City. Tenn.	5000
WEPG S. Pittsburgh, Tenn.	500d
KNAF Fredericksburg, Tex.	100011
KRIO MicAllen, Tex.	1000
KRRV Sherman, Tex.	1000
KALL Satt Lake City.	1000
WWRJ White River Junctio Vermont	n, 1000d
WRNL Richmond, Va.	5000
WHYE Roanoke. Va.	10001
KDRD Pasco, Wash.	1000d
KUDY Renton, Wash.	1000
KISN Vancouver, Wash.	1000
WHSM Hayward. Wis.	1000d
WDOR Sturgeon Bay, Wis.	500 d
$920-325.9$	
CJCH Halifax. N. 8.	100
) Woodstork, N.B.	100

Kc. Wave Length WCTA Adalusia. Ala KARK Little Rock. Ark. KDES Palm Springs. Calis. 1000 d KVEC San Luis Obispo, Cal. KLMR Lamar, Colo WMEG Eau Gallie,
KAHU Walphau Hawail WMOK Metropolis, III. WBAA W. Lafayette, Ind, WTCW Whitesburg Ky. WBOX Bogalusa, La. KTOC Joncsboro, La.
WPTX Lexington Pk., Md. WMPL hancock. Mich,
KDHL Faribault, Minn. KWAD Wadena, Minn. KRAM Las Vegas, Nov. KOLO Reno, Nev. KaEO Albuquerque. N.Mer. WTTM Trenton. N.J, WKRT Cortland, N.Y. WGHQ Saugerties, N.Y. WMSI Columbus, Ohio KGAL Lebanon, Ore日. WKVA Lewistown, Pa. WJAR Provirtence, R.I, KEZU Rapid City, S. Dak, WLIV Livingston, Tonn KELP EI Paso. Tex KECK Odessa. Tex,
KTLW Texas City. Tex KITN Olympla, Wash. KXLY Spokane. Wash
WMMN Fairmont. W.Va. WOKY Milwaukee. Wis.

930-322.4

CFBC Saint John. N.B. CJON St. Johnos, N.F. KTKN Ketchikan. Alask KAPR Douglas. Ariz. KHJ Los Angeles. Callif. KIUP Durarico, Colo. WKSB Milford, Del. WHAN Haines City, Fla. WJAX Jacksonville, Fla. WKXY Sarasota, Fla. KSEI Pocatelfo, Idaho WTAD Qulncy, III. WKCT Bowling Green, Ky. WFMD Froderiek. MC. WREB Holyoke, Mass. WBCK Battle Creek, Mirh. WSLI Jackson, Miss.
KWOC Poplar Bluff. Mo. KOFI Kalispell. Mont. KOGA Ogallala, Nebr. WWNH Rochester. N.H. WPAT Paterson, N.J. WBEN Buffalo. N.Y. WSOC Charlotte, N.C. WRRF Washington. N.C. WEOL Elyria, Ohio WKY Oklahoma Clity, OEla, KAGI Grants Pass, Oreg. WCNR Bloomsburg. Pa KSDN Aberdeen, S.D. WSEV Sevierville, KDET Center. Tex. 5000 d KITE San Antonio, Tex.
KENY Bellingham-Fernda WSAZ Huntington, W W Wh.
WLBL Stevens Point, W in.

940-319.0

CBM Montreal, Que.
CJGX Yorkton, Sask.
CJIB Vernon. B.C.
KMBO TUeson, Ariz.
KFRE Fresno, Calif.
WINZ Miami, Fla.
WMAZ Macon, Ga.
WMIX Mt. Vernon, III,
KIOA Des Moines, Iowa
WYLD New Orleans, La,
KGRL Bend. Oreg.
WESA Charierol, Pa.
WGRP Greenville, Pa,
WIPR San Juan, PR.
KIXZ Amarillo, Tex.

950-315.6

CKNB Campbellton, N.E. CKBB Barrio, Ont. WRMA Montgomery. Ala KXJK Forrest City, Ark. KFSA Ft. Smith, Ark. KAHI Auburn, Callf. KIMN Denver, Colo.
WNUE Ft. Walton Sch., Fla. W LOF Orlando, Fla. WGTA Summerville, G WGOV Valdosta, Ga.
KBOI Boise, Idaho
W.P. Kc. Wave Length 5000 KLER Orofino, Idaho 5000 WXLW Indianapolis. Ind. d KOEL Oelwein, lowa KJRG Nelwein, Kowa

K Newton. Kans. 5000 WBVL Barbourville. Ky. 1000d 000 d 5000 WWJ Botroit. Mass. 1000 KRSI St. Louis Mich. Minn. 5000 KLIK Hattiesburg, Miss, 5000 KLIK Jefferson CIty, Mo. 1000 d WIBX Uochester, ${ }^{\text {N }}$. 1000d WPET Greensboro, N.C 500 d W NCC Greensboro, N.C 500d WPEN Barnestoro, Pa. 000 d WSPA Spartanburg, S.C. 1000 KWAT Watertown. S. Dak. 1000 WAGG Franklin. Tenn. $\begin{array}{ll}1000 & \text { KOSX Oenison. Tex. } \\ 1000 & \text { KPRC Housion. Tex. }\end{array}$ 1000 KSEL Lubbock. Tex. 1000 WXGI Richmond, Va. 1000 KJR Seattle. Wash. 1000d WERI Eagle River, Wis. | 500 | WKAZ Charleston, W. Wa |
| :---: | :---: |
| 5000 | WKTL Sheboygan, Wis. | 1000 1000 d

5000
1000 5000
1000 d 1000 d
100 dd
1000 d CHNS Calpary. Alta. 1000 CKWS Kingston, Ont. 1000 WBRC Birmingham. Ala,
1000 WMOZ Moblle, Ala 1000 W MOZ Noblle, Ala.
1000 d
KOOL Phoenix, Ariz. 000d KAVR Apple Valley. Calif. 5 5000 KNEZ Lompoc, Calif. 5000
1000 00 WELI New Haven, Conn. WGRO Lake City, Fla, WJCM Sebring. Ha,

5000
 5000 10000

10000
10000
000 d
1000
1000
5000
500 d
5000
5000
500 d
500 d
500 d WHAM Fitchburg. Mass. 00 d KLTF Little Falls, Minn. 5000 WABG Greenwood, Miss.
1000
KFVS Cape Girardeau. Mo 5000 d
5000
5000 KWEB Seotts bluff. Nebr,
5000
WWarmingion, N. Miex,
5000 WEAV Plattsburg. N.Y.
1000
500d
1000 KGW W WST Kinsten. N.C. 5000 KGWA Enid, Okla.
1000 WLAD Klamath Falls, Oreg.
5000d WADP Kane, Pa,
$500 d$ WADP Kane, Pa,
5000 d WBEU Beaufort, S.C.
5000 WBMC McMinnville, Tenn.
$\begin{array}{ll}5000 & \text { KIMP Mt. Pleasant, Tex. } \\ 5000 & \text { KGKL San Angelo, Tex. }\end{array}$
5000 K0VO Provo. Ulah
1000 WDBJ Roanoke, Va. KALE RIchland, Wash.
WTCH Shawano, wls.

970-309.1
1000d
5000
1000 d
5000
WERH Hulf, Que. WTBF Troy, Ala. KNEA Jonesboro, Ark KCHV Coachella, Calif. KBEE Modesto, Callf. KFEL Pueblo, Colo. 50000 10000 W IIN Atlanta, Ga.
1000 VOP Vidalia, Ga.

250 KHBC Hillo, Hawais 50000 KAYT Rupert, Idaho 50000 WMAY Springfild, III. 50000 WAVE Louisville, Ky . 1000 KSYL Alexandria, La. 10000 WCSH Portland, Maino 1000 WESO Southbrldge. Mass. 250 WJAN Ishpeming, Mich.
000 WKHM Jackson. Mich.
10000 KQAQ Austin. Minn.
10000
5000
50
50
50
100

WNTA Nowark, N.J.
1000
10000
10000 1000 d 5000 d WWIT Canton, N.C. 1000 WRES Fargo, N.Dak. 1000 d WATH Ashtabula, Ohio 5000 KAKC AUlsa Okla.
$1000 d$ KOiN Portland, Oreg,
5000 WWSW Plttsburgh. Pa,
5000 WW SW Plttsburgh. Pa,
1000 d WJMX Florence S.C.
5000
5000 KNOK Ft. Worth, Tex.
W.P. Kc. Wave Length W.P.|Kc. Wave Length W.P. 500d WIVI Christianstel, V.I. 1000 WCNU Crestviow. Fla. 1000d 1000 d WDTI Danville, Va.

500 d
5000 5000 d
1000 KREM Spokane. Wash.
WWYO Pinevllie, W.Va WHA Madison, WIs. 5000 d

980-305.9
5000 d
5000 5000
000 d 000d

KNW New Westminster,
Brit. Columbia 10000
KPL Landon. Ont.
 CBV Quebec. Que. CHEX Feterboro, Ont, CKRM Regina, Sask,
WKLF Clanton, Ala,
KINS Euroka, Calif,
KEAP Fresno, Callf.
Ont,
ask.
Ala.
lif.

10000
5000

1030-291.1
WBZ Boston, Mass
$\begin{array}{ll}\text { WBZA Springfold, Mass, } & 50000 \\ & 1000\end{array}$ KOB Albuquerque. N.Mex. 10000 KCTA Corpus Christi. Tex. S0000d

1040-288.3
KHVH Honolulu, Hawall 5000 KIXL Dallas, Tex.

1050-285.5
CFGP Grande Prairle. Alta. 10000 CKSB St. Boniface, Man. 10000 CHUM Toronto. Ont. Ont. 5000 WRFS Alexander City, Ala. 10000 WRFS Alexander City, Ala. 1000 d
WCRI Scottsboro. Ala. KVW Scotisboro, Ala. 250 d
KVW Show Low, Ariz, 250d KVLC Little Rock, Ark, 1000 d
KOFY San Mateo, Calif. $\begin{array}{lll}\text { KOFY San Mate0, Calif. } & 1000 \mathrm{~d} \\ \text { KWSO Wasco, Calif. } & 1000 \mathrm{~d} \\ \text { KLMO Longmont, Colo. } & 250 \mathrm{~d}\end{array}$
WRMF Titusville, Fla, $\quad 5001$
WAUG Augusta, Ga.

| | WCAZ Carihage, III. 1000 d WAUG Augusta, Ga. |
| :--- | :--- | :--- |
| WITZ Jasper. Ind. | 1000 d WBIE Marietta, Ga. |

5000 KAYL Storm Lake, lowa 250d KZIN Coeur D'Alene, Idaho 250d $\begin{array}{lll}5000 & \text { KRSL Russell. Kans, } & 250 d \text { WDZ Decatur, III. } \\ 5000 & \text { WJMR New Orleans, La. } & 250 d \text { KNCO Garden City. Kans. } 1000 \mathrm{~d}\end{array}$ 1000 KNCO Garden City. Kans.
WNES Central City, Ky. WZIP Covington, $K y$.
WCRM Clare. Mich.
WABO Waynesboro, Miss.

5000
KSVP Artesia, N.Mex. 1000
KCiJ Shreveport, La,
250d KVPI Villa Platte, La. 250 d WPAG Ann Arbor. Mich. $\quad 1000 \mathrm{~d}$ KLOH Pipestone, Minn. $\quad 1000 \mathrm{~d}$
WACR Columbus, MIss. KMiS Portagevilie, Mo. 250 d KSIS Sedalia, Mo. \qquad 1000 d r000d WVSC Somerset, Pa.
10000 WPRA Mayaguez, P.R. WLKW Providence. R 5000d
5000 d
WNOX Knoxville. Tenn.
KWAM Memphis, Tenn.

WBNC Conway. N.H 500 d
100 d

1000 KWAM memphis, Tenin. 100
WSEN Baldwinsville, N.Y. 250 d
1000 d
50000 WBTL Farmville. N.C. 50000
250 d KSYD Wichita Falls, Tex. 10
$\begin{array}{lll}1000 & \text { KSYD Wichita Falls, Tex, } & 10000 \\ 5000 & \text { KDYL Tooele. Utah } & 1000 \mathrm{~d} \\ 1000 & \text { WNRV Narrows, Va. } & 1000 \mathrm{~d} \\ 5000 & \text { WANT Riehmond, Va. } & 1000 \mathrm{~d} \\ 500 \mathrm{~d} & \end{array}$
$\begin{array}{lll}1000 & \text { KSYD Wichita Falls, Tex, } & 10000 \\ 5000 & \text { KDYL Tooele. Utah } & 1000 \mathrm{~d} \\ 1000 & \text { WNRV Narrows, Va. } & 1000 \mathrm{~d} \\ 5000 & \text { WANT Riehmond, Va. } & 1000 \mathrm{~d} \\ 500 \mathrm{~d} & \end{array}$
$\begin{array}{lll}1000 & \text { KSYD Wichita Falls, Tex, } & 10000 \\ 5000 & \text { KDYL Tooele. Utah } & 1000 \mathrm{~d} \\ 1000 & \text { WNRV Narrows, Va. } & 1000 \mathrm{~d} \\ 5000 & \text { WANT Riehmond, Va. } & 1000 \mathrm{~d} \\ 500 \mathrm{l} & \end{array}$ 500d WANT Richmond, Va. 1000 d

5000 d

1000-299.8

W W k k W

CKBW Bridgewater. N.S.
1000
5000 WLYC Wutler. Pa.
5000 CKBW Wridgewater. N.S.
5000 d KTOK Okla. City, Okla,
$\begin{array}{lr}500 \mathrm{~d} \text { WHWE Rutland, Vt. } & \text { 250d } \\ 5000 \mathrm{~d} \\ \text { KOMO }\end{array}$

5000	$1010-296.9$	
5000	W	

$\begin{array}{lll}1000 & \text { KFRB Toronto, Ont. } & 50000 \\ \text { W Whoenix, Ariz. } & 500 \mathrm{~d} \\ \mathbf{W}\end{array}$

5000	KVNC Winslow, Ariz.	1000
5000	KLRA Little Rock, Ark.	10000
5000	KCHJ Delano Calif	

$\begin{array}{llr}5000 & \text { KCHJ Delano. Calif. } & 5000 \\ 1000 \mathrm{~d} & \text { KCMJ Palm Sprgs.. Callf. } & 1000\end{array}$
$\begin{array}{lll}1000 \mathrm{~d} & \text { KSAY San Fran., Calif. } 10000 \mathrm{~d}\end{array}$ WHITE'S RADIO LOG 165

Kc. Wave Length 1060—282.8

CFCN Calgary, Alta. KUPD Qucbec, Que. KUPD Tempe, Ariz. WNOE Now Orleans. WHFB Benton Harbor
WMAP Monroe, N.C, WCMW Canton, Ohio WRCV Philadelphia, Pa.

1070—280.2

CBA Sackville, N.B. CHOK Sarnia, Ont. KNX Los Angeles, Calif. WIBC Indianapolis ind KIRL Wichita. Kans. KHMO Hannibal MO WHPE High Point, N.C WFLi Lookout Mtn., Tenn. WDIA Memphls, Tenn. WKOW Alidison, WIs.

1080—277.6
CHED Edmonton, Alta. KSCO Santa Cruz. Calif WTIC Hartford, Conn. WKLO Loussville. KY WOAP Owosso, Mich.
WYSL Kenmore N.Y. WEWO Laurinburg, N.C. KWJJ Portland, Oreg. WEEP Pittsburgh, P
KRLD Dallas, Tex.
1090-275.1
CHEC Lethbrldge, Alta. CHIC Brampton, Ont. KTHS Little Rock. Ark KNWA W Anderloo, III. WBAL Baltlmore, Md. WILD Boston, Mass. W MUS Muskegon, Mich KING Seattle, Wash.

1100-272.6

KFAX San Francisco. Calif. 1000d WHBB Carroliton, Ga. KYW Cleveland, ohio

1110-270.1

CFML Cornwall. ont. CFTJ Galt, Ont. KRLA Pasadena, Calit. KIPA Hampa, Fla. WMBI Chicago, III. KFAB Omaha, Nebr WBT Charlote, N.C KBND Bend, Oreg, WVAP Caguas. P.R.
1120-267.7
WUST Bethesda. Md. KMOX St. Louis. Mo. WWOL Buffalo, N. Y.

1130-265.3

CKWX Vancouver, B.C. KWKO Sh diego, Calif. WCAR Detroit, Mich. WBGY Minneapolis. Minn. WNEW New York, N.Y. 50000

1140—263.0

CFTK Terrace, B.C.
$\underset{\text { KRAK }}{\text { CKXL }}$ Sacramento, calif. WMIE Miami. Fla KGEM Boise, Idah WSIV Pekin, III. KLPR Oklahoma City. OK 1000d WITA San Juan, P,R. 500 KSOO Sloux Falls. S. Dak. 10000 KORC Mineral Wells, Tex. WRVA Richmond, Va.
1150—260.7
CKSA Lloydminster. Alta. CHSJ Saint John. N.B. CKX Brandon. Man. CKTR Three Rivers, Que. WBCA Bay Minetto, Ala. WGEA Geneva, Ala.
W.P | 50000
5000
50000
50000
1000 d
50000
10000
5000
1000 d
10000
50000
1000
10000 0000
5000

10000

10000
0000
1000 1000
50000 5000 KNED M1 MAlester, Okia, 250d KAGO Klanath Falls, Oreg. 1000 d W LPS Huntingdon, Pa 000 d WKPA New Kensingtor 1000 d 10000 WRPA New kensington. Pa. 1000 d 1000 d
50000 WTNO Rock Hill, S.C.C.
WSNW Seneca Townhip.

South Carolina WAPO Chattanooga. Tenn.
WCRK Morristown, Tenn,
5000
1000
2000
250d KVIL Highland Park, Tex.
1000 d KJBC Midland. Tex. Tex, 1000 d
50000 KOLG Quanah, Tex.
O00d KOFE Pullman, Wash,
50000 KAYO Seattle, Wash.
KKEY Vancouver, Wash. WELC Welch, W,Va. WAXX Chippewa Falls,
WISN Milwaukee, Wis.

$1160-258.5$

WJJO Chicago, lli, 50000 1170-256.3
1000
250
10000
50000 d
1000
5000 d
50000
5000
5000
CFNS Saskatoo WCOV Montgomery. Ala. KCBQ Sall Diego, Calif KOHK San Jose, Calif. W LBH Mattoon, Ill. KSTT Davenport, Iowa KVOO Tulsa, Okla.
WLEO Ponce. P.R.
KPUG Bellingham. Wash.
WWVA Wheeling, W.Va. 50000
1180-254.1
250 d
50000
1000 d
1000 d
250 d
WLDS Jacksonville, IIt.
1190-252.0
KEZY Anahelm, Callf.
50000
5000
50000
50000
50000
WOWO Ft. Wayne. IId. WKOX Annapolis, MII 10000 d WLIB Now York. N Mass WLIB New York. N.Y.
KEX Portland, Oreg. KLIF Dallas, Tex.

1200-249.9

$\begin{array}{lr}\text { WOAI San Antonio. Tex. } & 50000 \\ \text { KDWT Stamford, Tex. } & 250\end{array}$ KDWT Stamford, Tex.

1210-247.8

WCNT Centralia. III. WKNX Saginaw, Mlch.
WADE Wadesboro, N.C. WAVI Dayton, Ohio 50000

1220-245.8

1000 CJOC Lethbridge. Alta, 10000 CJRL Kictoria, B.C 10000 CKCW Moneton. N.B.
5000 CJSS Cornwall. Ont.
1000 CKSM Shawinigan, Quebec
100011

1000
10000
50000
10000
1000
250 d
1000
50000
250
1000
50000

100011
50000
00011

1000
50000
10000d
$1000 d$
$1000 d$
r000d
50000
50000

WXLI Dublin, Ga.
WFOM.
WFOM Marietta, Ga,
WAYX Waycross, Ga.
1000d
10000d
1000d
250d
50000

10000
10000
1000
1000
10000
1000
1000
1000
1000
1000 d
1000 d
$1000 d$
$1000 d$

KKFSC Denver, Colo.WDEE Hamden, Conn.WQTY Arlington, Fla,WKBX Kissimmee, Fla,WFEC Miami, Fla,WCLB Camlia, Ga.WPLK Rockmart, Ga.WSFT Thomaston, Ga,WLPO LaSalle, Ill,WKRS Waukegan,		

1
W
W

W

1000
250
250
250

Kc．Wave Length

KYNO Fresno，Calif． KWKW Pasadena，Calif． WAVZ New Haven．Conn． WRKT Cocoa Beach．Fla， WFFG Marathon，Fia， WSOL Tampa，Fila． WIMO winder，Ga． KOZE Lewiston，Idaho WFAQ LaGrange，III， WHLT Huntington，ind， KGLO Mason City，lowa WBLG Lexington．i＜y． WIBR Baton Rouge，La． WFBR Baltimore．Md， WJDA Quincy．Miass． WOOD Grand Rapids，Mich． WRBC Jackson，Miss，
KMMO Marshall，Mo， KBRL McCook，Nebr． IKPTL Carson City．Nev WAAT Trenton，N．J． WOSC Fulton，N，Y， WGOL Goldsboro，N．C． WERE Cleveland，Ohio WMVO Mt．Vernon，Ohio KOME Tulsa．Okla， KDOV Medford，Oreg． KACI The Dalles，Oreg．
WWCH Clarion．Pa． WWCH Clarion．P
WTIL Mayaguez，P WCKI Greer SC． OLY Mobridge，S．Dak． WMTN Morristown，Tenn． MAK Nashville，Tenn． KTFY Brownfield，Tox KAS Silsbee．Tex， KOL Seattle，Wash， WKLC St，Albans
$1310-228.9$ CKOY Ottawa，Ont．
CJRH Richmend Hli，Ont． WHEP Foley，Ala． WJAM Marion．Ala，
KBUZ Mesa，Ariz． KBOK Malvern，Ark KPOD Crescent City，Calif． KDIA Oakland，Calif． KTKR Taft，Calif，
KFKA Greeley，Colo KFIKA Greeley．Colo．
WICH Norwich．Conn． WOOO Deland，Flann． WAUC Wauchula，Fia． WBRO Waynesboro．Ga． WBMK West Ppint，Ga． KLIX Twin Falls，Idaho WISH Indianapolis，Ind． WOKX Keokuk，Iowa WTTL Madisonville，Ky，
WDOC Prestonsburg．Ky． W DOC Prestonsbur
KilS Sulphur，La． KUZN W．Monroe，La． WLOB Portland，Maine WORC Worcester，Mass． WCCW Traverse City，Mich． KRBI St．Peter．Minn．
$\mathbf{W} X X X$ Hatties WXXX Hattieshurg
KFSB Joplin．Mo， KFBB Great Falls，Mont，
WJLK Asbury Park，N．J， WJLK Asbury Park，N．
WCAM Camden．N，J． KARA Albiquerque，N．M．
WVIP Mt．Kisco，N．Y． WVIP Mt．Kisco．
WTLB Utica．N． WISE Asheville，N．C． WTIK Durham，N．C，
KNOX Grand Forks．N．Dak． WFAH Allance．Ohio WBFD Bedford，Pa． WGFD Bedford，Pa． WNAE Warren，Pa．
WDKD Kingstree，S．C． WDOD Chattanooga，Tenn WBNT Oneida，Tenn． KZIP Amarillo，Tex． WRR Dallas．Tex， KUBO San Antonjo，Tex． WEEL Fairfax，Va． WGH Newport News．Va WIBA Madison，Wis．

1320－227．1

CHQM Vancouver，B．C． CJSO Sorel．P．Q． CKKW Kitchener，Ont， WAGF Dothan，Ala．

W．P．Kc Kc．Wave Length W．P． KWHN Fort Smith，Ark．
KRLW Walnut Ridge，Ark． KHSJ．Hemet，Calif． KLAN Lemoore，Calif．
KUDE Oceanside，Cali KCRA Sacramento．Callf．
\qquad
5000 d$1000 d$
5000
500
500d WHIE Griffice，Ga．
WHE

500d WNEG Toccoa，Ga．
500d WKAN Kankakee，III．
5000 KNIA Knoxville，lowa
1000 KMAQ Maquoketa，Lowa
1000 KLWN Lawrence，Kans．
5000 WBRT Bardstown，Ky．
$000 d$ KVHL Homer．La，
5000 WICO Salisbury．Md，
1000 d WARA Attleboro，Mass．
1000 d WDM Lansing，Mich，
5000 WCPC Houston．Miss，
250d WRJW Picayune，Miss．
000d KXLW Clayton，Mo．
1000 d
5000 WOLT Scottsbluff．Nebr．
5000 WWHG Hornell，N．Y，
5000
500
500 WCOG Greensboro．N．C．
5000 KQDY Minot，N．Dak．
5000I WHOK Lancaster，Ohio
5000d KWOE Clinton，Okla．
500 d WKAP Allentown，Pa，
1000 WGET Geitysburg，Pa，
000d WAMP Plttsburgh，Pa．$\quad 5000$
$\begin{array}{lll}1000 \mathrm{~d} \\ 5000 \mathrm{~d} & \text { WSCR Scranton，Pa．} & 1000 \\ \text { WRIO Rio Piedras．P．R．} & 5000\end{array}$
5000 d
1000 KELC Columbia，S．C． 1000
000d WKIN Kingsport．Tenn． 5000 d
500 d
5000 WMSR Manchester，Tenn． 1000 d ，
1000 d
1000 d 1000d KCPX Houston．Tox， WEET Richmiond．V

5000
1000 1000 d $5000 d$ 1000 $1000 d$
1000 500d 1000 1000 5000d 500 d 000d 1000 WHAT Dublin，Ga．Fla， WEAW Evanston． WRAM Monmouth．III． WRRR liockford，Ill． WJPS Evansville．Ind． KWWL Waterloo．lowa KFH Wichita，Kans，
WMOR Morehead，Ky． 1000d 10001
5000
5000 1000 d 1000 d5000250000d
10001000
1000 d3000
000 d1000 d
1000 ds000d5000 d$5000 d$
50005000
50000 K
1000 1000 d
500 d
1000500010004
500010000
2500001000
KHIT Walla Walla. Wash. 1000 d
WFHR Wisconsin Rapids, 000 d
1330-225.4
WROS Scottsboro
ROS Scottsboro. Ala. 1000 d

KVOL Lafayette, La.	10000

 WASA Harve deǴrace. Md 1000
 WCRB Waltham, Mass. 5000
 WTRX Flint. Mleh.
 WLOL Minneapolis. Minn.
 WCRR Corinth, Miss.
 WJPR Greenvilie. Miss.
 WDAL Meridian, Miss.
 KUKU WIllow Springs, Mo.
 KGAK Gallu|, N.Mex.
 WEVD New York. N.Y.
 WPOW New York, N.Y.
York,
N.Y.
WEBO Owego. N.Y
WHAZ Troy. N.Y.
WFiN Findlay, Ohio
WKOV Wallston, Ohio
WBLF Bellefonte Orea.
WicU Erie. Pa
WLAT Conway, S.C
WAEW Crossville, Tenin
MOP Tucson, Ariz,
FAC Los Angeles, Callf.
500 d
5000
1000 d
500 d500 d
50001000 a1000 a
50000 d5000 d5000 d5000 d
1000 d

Kc．WaveLength W．P．

CJLM Joliette, Que.
Pocatlere, Que.
CKLB Oshawa, Ont.
CKEN Kentvilie, N.S.
WELB Elba, Ala.
CKOX Woodstock. Ont,
WKUL Cullman, Ala.
W JOI Florence, Ala.
WGWC Selma, Ala.
WFEB Sylacauga, Ala.
KIBH Seward, Alaska
KIKO Meward, Ariz,
KNOG Nomi, Ariz,
KNOG Nogales, Ariz
KPGE Page, Ariz,
KZOK Prescott, Ariz
KBTA Batesulile, Ark.
KBRS Springdalo. Ark.
KENL Arcata, Calif.
KMAK Fresno, Calif.
KMAK Fresno, Calif.
KDOL Mojave, Callf.
KSFE Neelles, Calif.
KATY San Luls Obispo, Calif.
KIST Santa Barbara, Callf.
KOMY Watsonville, Callf.
KDEN Denver. Colo.
KVRH Sallda. Colo.
WOOK New Haven, Conn.
WTAN Clearwater. D.C.
WROD Daytona Bch., Fla.
WDSR Lake City, Fia
WTYS Marlanna, Fa.
ミミ§
Fla.
ミススミミ
WGAU Athens, Ga. Fla
WAKE Atlanta, Ga.
WBBQ Augusta, Ga,
WGAA Cedartown, Ga,
WOKS Columbus, Ga.
WBBT Lyons, Ga,
WTIF Titton, Ga.
KPST Preston, Idaho
KSK Sun Valley, Idaho
WSOY Decatur, Ill.
WGAU Athens, Ga. Fla
WAKE Atlanta, Ga.
WBBQ Augusta, Ga,
WGAA Cedartown, Ga,
WOKS Columbus, Ga.
WBBT Lyons, Ga,
WTIF Titton, Ga.
KPST Preston. Idaho
KSK Sun Valley, Idaho
WSOY Decatur, Ill.
WGAU Athens, Ga. Fla
WAKE Atlanta, Ga.
WBBQ Augusta, Ga,
WGAA Cedartown, Ga.
WOKS Columbus, Ga.
WBBT Lyons, Ga,
WTIF Titton, Ga.
KPST Preston. Idaho
KSKI Sun Valley, Idaho
WSOY Decatur, III.
WJPF Herrin. Ill.
WJOL Joliet, III,
WBIW Bedford, Ind
WLBC Miknart. Ind,
KROS Clinton. Ind,
KLIL Estherville, Iowa
KCKN Kansas City. Kans.
KSEN Kansas City, Ka
KCMI Pittsburg.
WShland.
WBGN Bowling Green, Ky.
WNBS Murray. Ky,
WNBS Murray, Ky,
WEKY Richmond. Ky
KVOB Richmond.
K Bastrop. La,
WFAU Augusta，MialneWHOU Houlton，MaineWGAW Gardner Mass，
WNBH New Bedford，MasWNBH New Bedford，Mass，WBRK Pittsfield．Mass．W
W
W
WWLAV Grand Rin MichWCSR Hillsdale DiichWMTE Maniste，MichWAGN Menomlnee，Mich．WAGN Menominee，Mich．
WMBN Petoskey，Mich．WEXL Royal Oak，MichWEXL Royal Oak，Mich，
KDLM Oefroit Lakes．Minn，KDEVE Eveleth，Minn．
WEVE
KROC Rochester，Miili．KROC Rochester，Minn．
KWLM Willmar，Minn．WJATB Brookhaven，Miss．
WAML Laurel．WAML Laurel，Miss．KXEO Mexico，Mo
KSMO Salem．Mo
KICK Springfield. Mo
KCAP Helena, AIont.
KPRK Livingston, Mont.
KATL Miles City, Mont.
KQTE Missoula, Mont.
KQGE Missoula, Mont,
KGFW Kearney, Nebr
KSID Sidney, Nebr
KORK Las Vegas. Nev
KBET Reno, Nev.
WDCR Hanover, N.
WMID Atlantlc City, N.J.
WMID Atlantlc City
KNDE Aztec, N. M.
KYAP Ruidoso. N.M
KSIL Silver City. N. Mex
KSIL Silver City, N.M
WMBO Auburn, N. Y.
WENT Gloversville, N.Y.
WJOC Jamestown, N. Y.
ふNinc
． WHAT Philadelpha，
$\begin{array}{ll}\text { WTRN Tyrolle, Pa. } & 250 \\ \text { WBRE Wilkes-Barre, Pa. } & 250 \\ \text { WWPA Willamsport, Pa. } & 250\end{array}$
WGRF Aguadllla, P.R
WOKE Charleston, S.C
WOKE Charleston, S.C
WSSC Sumter, S.C.
KRSD Rapid City, S.Dak.
WBAC Cleveland, Tenn,
WKRM Columbia, Tenn,
WGRV Greenevillo, Tenn.
WKGN Knoxvillo, Tenn.
WHMA
WHHM Memphis, Tenn,
WCDT Winchester, Ten.
KWKC. Abllene. Tex.
KAND Corsicana, Tex.
KSET EI Paso. Tex.
KDUB Lubbock. Tex.
KRBA LufkIn. Tex.
KPDN Pampa. Tex.
KOLE Port Arthur. Tex.
KVIC N. of Victoria.
WTWN St. Johnsbury, Vt
WHAP Covington, Va.
JMA Orange, V a.
KAGT Anacortes. Wash.
KPKW Pasco. Wash.
KAPA Raymond, Wash.
KMEL Wenatchee, Wash.
WHAR Clarksburg, W.Va.
WEPM Martinsburg. W. Va.
WMON Montoomery, w.Va.
WOVE Welch. W.Va.
WLDY Ladysmith, Wis,
WRIT Mllwaukee, Wis,
KWOR Worland, Wyo,
10000
1000
WGAD Gadsden, Ala
1000
1000 d
5000
KAAB Hot Springs, Ark. 1000
KAAB Mot Springs, Ark. 1000
KLYD Bakersfield, Callif. $1000 d$
KCKC Sakersfield, Calif. $1000 d$
KS Bernaruino, Calif, 500
$\begin{array}{ll}\text { KCKC San Bernaruino, Calif, } & 500 \\ \text { KSRO Santa Rosa, Callf. } & 1000 \\ \text { KGHF Pueblo, Colo. } & 500\end{array}$
WGHF Pueblo, Colo.
WNLK Norwalk, Conn.
WNLK Norwalk, Con

Kc. Wave Length WINT Winter Haven. Fla. WLAW Lawrenceville, Ga. WLBK DeKalb。III. KHAK Cedar Rapids iowa KXGI Ft Madison Iowa KSC」 Sloux City lowa KBTO EI Dorato, kans WFLW Monticello Ky. KOBC Mansfield K VIM New Iberia, La WEB8 Dundalk Aid WE88 Dundalk. Mo KMI Kalamazoo, Mleh. KLRS Mountain Grove. Mo. WWNZ Newton, N.J. WKOP Binghamton, WMNS Olean, N.Y. WCHL Chapel HIII. N.C SAl Cincinnati N. w wow Conneaut, Ohio KUIK Hillsboro, Oreo WMCK McKeesport P. WPPA Pottsuille Pa WELP Easley, S.C WLCM Lancaster. WNAH Nasliville. Tenn. KRAY Amarillo, Tex. KWBA Raytown. Tex. KRYS Corpus Christi. Tex. KXOL Ft. Worth. Tex WBOB Galax, Va. HFBG Harrisonburg. Va, KMO Tacoma, Wash. WMOV Ravenswood. W. Wa. WBAY Green Bay. WI WISV Virouqua. Wis. KVRS Pock Sprinos, W\%o.

1370-218.8

WBYE Calera, Ala, KBUC Corona, Catis. KEEN San Jose, Callf. KGEN Tulare, Calif. WHYS Ocala, Fla. WCOA Pensacola. Fla,
WAXE Vero Beach, Fla, WBGR Jesup. Ga.
WFDR Manchester, Ga WKLE Washington, Ga WPRC Lincoln. Ili WTTS Bloomington, Ind. WGRY Gary. Ind.
KDTH Dubuque, lowa KGNO Dodge City. Kan: WGOH Grayson. Ky WTKY Tompkinsville, Ky. KAPB Marksville, La. W KMN Leonardtown, Md. WGHN Grand Haven, Mi KSUM Fairmont, Minn. WDOB Canton. Miss. KWRT Boonville. Mo KXLF Butte. Mont
KAWL York. Neur WFEA Manchester. N.H WALK Patchogue, N.Y. WSAY Rochester. N.Y. WTAB Tabor City. N. KFJM Grand Forks. N.LI WSPD Toledo. Ohio KAST Astoria Oreg WOTR Corry, Pa. WPAZ Pottsiown, Pa. WKMC Fioaring Spros., Pa. WDEF Chattan P.R. WDEF Chattanooga, Tenn. WDXE Lawrenceburg. Tent
WRGS Rogersville Tenn. WRGS Rogersville. Tent. KOKE Austin. Tex. KFRO Longview, Tex KUKO Post. Tex. KSOP Salt Lake City, Utah WBTN Bennington. V t. WHEE Martinsvilte, Va. WJWS South Hill, Va. KPOR Quincy. Wash. WMOD Mourdsville, W.Va. WCCN Neilisville, Wis KVWO Cheyenne, Wyo

1380-217.3
CFDA Victoriaville, Que. CKPC Brantford, Ont. Way KDXE N. Little Rock. Ark. KBVM Lancaster, Calif. KGMS Sacramento. Calif KSBW Salinas. CaliI KFLJ Walsenburg. Colo. WAMS Wilmington, Dei. WQUQ Lake Worth, Fla.
W.P. Kc. Wave Length W.P. 1000 d WLCY St. Petersburg. Fla,
1000 d WAOIS Atlanta. Gia. 1000d
1000 d
WROIK Atlanta. Gia
WR Cleveland, Ga
500d KPOI Honolulu, Hawais 500d WITE Brazil, Ind. lo00d WKJG Ft. Wayne, ind.
l000d KCiM Carroll. lowa 1000 d
5000
WMTA Central City. Ky. 5110d WWKY Winchester. KY. lo00d WYNK Baton Rouge, La,
1000 d WKTJ Farmington, Me. 1000 d
1000 d
WTTH Port Huron, MIch. 1000 d
500 d WPLB Greenville. Mich. 5000 d KLiZ Brainerd. MInn. 5000d KLZ Brainerd, MInn.
1000 d KAGE Winona, Minn. 5000 WDLT indianola. Miss. 5000 KUD 1000 KUD Kansas City, Mo. 1000 d
1000 d KK St, Louis. Mo. 1000 KUVR Holdredge, Nebr. 5000 W AWX Portsmouth, N.H. 000d
1000 d
W BNX K New York. N, N. 1000 5000
5000
500 W
WWOB Winston-Saiom, N.C.
WWIZ Lorain. Ohio 500d WWIZ Lorain, Ohio 1000 d KSWO Lawton. Okla, 1000 KMUS Muskogee. Okla. 1000
1000 K
KBCH Ocean Lake, Oreg.
KSRV Ontarlo, Oreg. 100 1000 d
1000 d
WACB Kittanilng. Pa.
WARC Milton. Pa 500d WARC Milton, Pa. 500d WAYZ Waynesboro. Pa. 1000 d
1000 1000
5000
1000 5000 1000 d
5000
1000 d 1000 5000
500 d 1000 d 00 W
W.P.

10
000d 5004
1000 5000 1000 d KGER Long Beach. Calif. 5000 KTUR Turlock. Calif. 1000 d 10000 O00d WGES Chicaro Park. Fla.
000 d 000 d WFIW Fairfield, III. 00d KCLN Clinton lowa KCBC Des Molnes. lowa KNCK Concordia, Kans. WANY Albany, Ky. WKIC Hazard, Ky.
KFRA Franklin, La. KNOE Monroe, La. WEGP Presque Isle, Me. WCAT Orange, Mass. WPLM Plymouth, Mass WCER Charloite. Mich KRFO Owatonna. MInn
WROA Gulfport, MIss WROA Gulfport. Miss,
WQIC Meridian, Miss KENN Farmington, N. Mex. KHOB Hobbs. N.Mex. WEOK Poughkeepsio. N,Y. WRIV Riverhead, N.'Y WFBL Syracuse. N. \dot{W}.
WF NC Fayetteville. WKRK Murphy, N.C. WEED Rocky Mount, N.C. WADA Shelty. N.C.
KLPM Minot. N.Dak. KLPM Minot, N.Dak.
WOHP Bellefontaine, Oh WOHP Bellefontaine, Ohlo
WMPO Middleport-Pomiroy,

```
WFMJ Youngstown. Ohlo
KCRC Enid.Okta
```

KSLM Salem, Oreg.
WLAN Lancaster, Pa 000d WLAN Lancaster, P
000 d WHPB Belton, S.C 1000d
1000 WCSC Charleston, S.C. 500 d KJAM Madison, S.D. 1000d WTJS Jackson. Tenn. 5000 d KBEC Waxahachle. Tex 5000 d KLGN Logan, UtahC.

1000 d WEAM Arlington, Va. 1000 d 5000 d 1000 WWOD Lynchbura, Va. KLOQ Yakima, Wash

1400-214.2

1000 CKBC Bathurst. N.B. 10000 CKCY Sault Ste, Marle. Ont CJFP Riviere-du.Loup, Que 000d CKRN Rouyn. Que. lo00d CKSW Swift Current, Sask. 1000 d WMSL Decatur. Ala. 1000 WXAL Demopolis. Ala 5000 WFPA Ft. Payne, Ala. 000d WJLD Homewood. Ala. 1000 WJHO Opelika. Ala. 500d KSEW Sitka. Alask 1000 d KCLF CIffton, Ariz.

Kc.
Wave Length KXIV Phoenix. Ariz
KTUC Tucson. Arlz KTUC Tucson, Ariz.
KVOY Yuma, Arlz. KVEY Yunia, Ariz.
KELD EI Dorado, Ark.
KCLA Pine Bluff. Ark. KCLA Pine Bluff. Ar
KWYN Wynne, Ark. KRE Berkeley, Calif KREO IIdio, Calif.
KSDA Redding, Calif. KSLY San Luis Obispo, Cal. KSPA Santa Paula. Calif.
KHOE Truckee, Cali!. KUKI Ukiah, Calif. KONG Vlsalia, Calif. KRLN Canon City, Colo. KDTA Delta, Colo. KFTM Ft, Morgan. Colo. KBZZ La Junta. Colo, WILI Willlmantic. Conn. WFTL Ft. Lauderdale, Fia. WIBA Ft. Pierce. Fla. WPRY Perry, Fla. WTRR Sanford, Fla WCQS Alma, Ga. WSGC Eiberton, Ga WNEX Macon. G WMGA Moultrie, Ga WCOH Newnan, Ga. WGSA Savannah, Ga. KART Jerome, Idaho
KRPL Moscow, Idaho KSPT Sandpoint. Idaho WDWS Cliampaign, III. WGIL Galesturg, III, WEOA Evansville, I
WBAT Marion, Ind. KCOG Centerville, Iowa
KVFD Fort Dodge, Iowa KVFD Fort Dodge, Lowa
KVOE Emporia, Kans. KAYS Hays, Kans WCYN Cynthiana, Ky, WFTG London, Ky,
WFPR Hammond, $L_{\text {a }}$ KAOK Lake Charles, La.
WRDO Augusta, Maine WiUE Biddeford. Maine WWIN Baltlmore, Md. WALE Fall River, Has WLLH Lowell, Mass WHMP Northampton. Mass,
WELL Batte Creek. Mich. WJLB Detroit. MIch. WHDF Houghton. Mich. WMAB Munising, Mich.
WSAM Saginaw. Mlch.5000500 d
1000 d$1000 d$
$1000 d$1000
50011000 d5000 d
500 d5000 d
1000 d
5000 d
1000 d
500 d
1000 d
5000 d5000
5000 d000 d
KEYL Traverse City. Mich.W
K
K
KKMHL Marshall. Minn.WMIN Mpls.-St. Paul. M
WHLB VirginiaWHLB Virginia. Minn.WBiP Booneville, Miss.WNAG Grenada. Miss.
WFOR HattiesburWFOR Hattiesburg. Miss,
WJQS Jackson, Miss.
WMBC Macon. Miss.
KFRU Columbia iss.KSIM Sikeston. Mo.KTTS Springfield, Mo.KXGN Glendive. Mont.KCOW Alllance NonKCOW Alllance. NebrKLIN Lincoln, Nebr.KBMI Henderson, Nev.KWNA Winnemucea Nev.WTSL Hanover. N.HKTSL Hanover, N.H.
KGFL Roswell, N. Atex.KTRC Santa Fe, N.Mex.KTNM Tucum or ConsequenceKTNM Tucumearl. N. Mex.WOND Pleasantvile, N.J.WABY Albany, N.Y,
1000
-
1000
5000
1000
500 d
5000
1000 d
5000
500 d
500 d
N500
50005000
50001000500 dWBMA Beaufort N. N.WBMA Beaufort. NrC.WGBG Greensboro. N.
WKDX HamletWKDX Hamlet. N.C.
WSIC Statesvilie. N.C.
WLSE Wallace. N.
WLSE Wallace, N.C.
WHCC Waynesvill
WHCC Waynesville.
WCNF Weldon, N.C.
KEYJ Jamestown. N. Dak
WMAN Mansfield, Ohio
WPAY Portsmouth Ohi
KWON Bartlesville Okla
KWON Bartlesville. OKI
KNOR Norman. Okla
KNOR Norman. Okli
KWIN Ashland, Oreg.
KNND Cottage Grove, Oreg.
WEST Easton. Pa.
WHGB Harrlsturg. Pa
250
250
1000
1000
250
NN
WCOS Columbia. S.C
WGTN Georgetown. S.C.
WTHE Spartanburg, S.C.
WHZM Clarksville, Tenn.
WLSB Copper Hill. Tenn.
WKPT Kingsport, Tenn.
WGAP Maryville, Tenn
W.P.
.
Kc. Wave Length
W.P.

1410-212.6

1420-211.1

CKPT Peterborough. Ont. 1000
CKOM Saskatoon, Que.1000
1000
WACT Tuscaloosa. Ala. 5000 dKHFH Slerra Vista. Arlz. 1000 dKPOC Pocahontas. Ark. 1000 dKSTN Stockton, Calif. $\quad 5000$WLIS OId Saybrook. Conn. 500dWDBF Delray Beach Fia 50000WSTN St. AugustIne. Fla. 1000 dWAVO Avondale Estates, Ga. 500 d

Ke. Wave Length WTCR Ashland, Ky. WHBN Harrodsburg, Ky KPEL Lafayette, La wBSM New Bedford, Mass WAMM Flint, Mich. WKPR Kalamazoo. Mlch. WSE Mankato, Minn. WSUH Oxford, Miss, W ABC Vicksburg,
KBTN Neosho, Mo. K000 Omaha, Nebr KSYX Santa Rosa, N. Mex. WALY Herkimer, N.Y WACK Newark, N.Y. WLNA Peekskili, N.Y WMYN Mayodan, N.C. WVOT WIIson, N.C. WHK Cleveland, Ohio KTJS Hobart, Okla, KYNG Coos Bay, Oreo.
WCOJ Coatesville, Pa, WCED DuBois. Pa WCRE Cheraw, S. \dot{C}. KABR Aberdeen, S.D. WKSR Pulaski, Tenn. KTRE Bonham, Te KGNB New Braunfels, Tex. KPEP San Angelo, Tex WOOY Gloucester, Va WKCW Warrentori. Va KUJ Walla Walla, Wash WPLY Plymouth, Wis.

1430-209.7
CKFH Toronto, Ont. KHBM Monticello, Ark KAMP El Centro. Calif
ARM Fresno, Callf. ALI Pasadena, Calif KOSI Aurora, Colo. WSDB Homestead. Fla, WPCF Panama City, Fla, GRF Covington. Ga. WRCD Dalton, Ga WWGS Tifton, Ga WCMY Ottawa, III WIRE Indianapolis, Ind. KASI Ames, Jowa KMRC Morgan City, La
WNAV Annapolis, Md WNAV Annapolis, Md WHIL Medford, Ma
WION Ionia, Mich. WION Ionia, Mich,
WBRB Mt. Clemens, Mich WLAU Laurel. Miss, KAOL Carrolltón, M KRGI Grand Island. Nebr. WN NRE Newark. N, J. WMNC Morganton, N.C. W RXB Fostoria, N.C. WCLT Newark. Ohio KCLY Newark, Ohio KTUL Tulsa, Okla, WVAM Altoona. Pa. WBL WBLR Batesburg. S.C KBRK Brookings WFCT Fountain City, Tenn WHER Memphls Tenn KSTB Breckenridge, Tex KSiJ Gladewater, Tex. KCOH Houston, Tex KLO Ogden. Utah KBRC Mt. Vernon. Wash. WEIR Woirton. W.Va.

1440—208.2

CFCP Courtenay, B.c. WHHY Montoomery, Ala KHOG Fayettevilie. Ark. KOKY Little Rock, Ark. KVON Napa, Calif. KPRO Riverside, Calif. KCOY Santa Maria, Cali WBIS Bristol. Conn WABR Winter Park. Fla WWCC Bremen, Ga. WGIG Brunswick, Ga. WRAJ Anna, III. WGEM Quincy ill
WROK Rockiord, ill
WPGW Portiand, ind

KLMS Lincoln, Nebr. WLEA Hornell N. Mex WHOM New York, N.Y wWOK Charlotie N. WYRK Loulisburg, N.C WMSJ Sylva N C. N.C WHBC Canton. WCIN Cineinnati, Ohio WTRA Latrobe Ohio WDAS Philadelphia, Pa WISL Shamokin, Pa. WLOK Memplis. Tenn K BOX Dallas, Tex KAPE. San Antonio. Tox KONI Spanish Fork, Utih WCFR Springfield, $V t$. WBBL Richmond, Va, WLEE Richmond, Va, WBLU Salem. Va, KVAN Camas, Wash. KAYG Lakewood, W ash. KRAE Cheyenne, Wyo.

1490-201.2

CFRC Kingston, Ont. CKBA Montmagny, Que. WANA Anniston Ala. WAJF Decatur, Ala. WRLD Lanett, Ala WHBB Selma Ala KYCA Prescott, Ariz KAIR Tucson, Ariz. KXAR Hope, Ark.
KTLO Mtn. Home, Ark. KDRS Paragould. Ark. KOTN Pine Bluff. Ark KMAP Bakersfleld, Calis KPAS Banning, Calif. KBLA Burbank. Calif. KICO Calexico. Calif. KOWL Lake Tahoe, Calif. KAFP Petaluma, Calif. KBLF Red Bluff. Callif. KDB Santa Barluara, Calif. KSYC Yreka, Calif. KBOL Boulder. Colo. KCMS Atanitou Spros., Colo KOLR Sterling. Colo. WNLC New London, Conn. WTOR Torrington, Conn WJRL Bradenton, Fla WMET Mlami Beach, Fia WSRA Milton, Fla WTTB Vero Beach, Fla, WSIR Winter Haven. Fla WMMJ Brunswick, Ga WMRM Cordele, Ga, WSFB Quitman, Ga. WSNT Sandersvillo. Gz. KTOH Syivania, Ga. KCID Caldwell WKRO Cairo ill WOAN Danvill WAMV East St. Louis, III. WOPA Oak Park. Ill. WKBV Rlchmond, Ind KBUR Burlington, iowa WDBQ Dubuque, Iowa KRIE Mason City, Iowa KKAN Phillipsburg, Kans. KTOP Topeka, Kans. WFKY Frankfort, Ky. WKAY Glasgow, Ky.
WOMI Owenshoro K. WSIP' Paintsville, Ky. WIKC Bogalusa, La. KEUN Eunice. La.
KCIL Houma. La.
KRUS Ruslon, La. WTVL Waterville, Maino WARK Hagerstown, Md. WHAV Haverhill, Mas 3 . WMRC Milford, Mass. WTXL W. Springfleld. Mass. WABJ Adrian, Meh. WMDN Midland Mich KXRA Alexandria Minn KOZY Grand Rapids, Minn. KLGR Redwd. Falls, सinn. WLOX Biloxi, Miss. WCLD Cleveland, Miss. WHOC Philadelphla, Miss WTUP Tupelo. Miss. WVIM Vicksburg. Miss. KDMO Carthade, Mo. KTTR Rolla, Mo. KDRO Sedalia, Mo. KBOW Butte, Mont KBON Omaha, Nebr. WEMJ Laconia, N.H WLDB Atlantic City, N.J. KRSN Los Alamos. N. Mex. KRTN Raton, N,Mex.

1
.
W.P. Kc. Wove Length W.P

Kc. Wave Length 1000 WCSS Amsterdam. N.Y. $\quad 250 \quad 1540-195.0$ 1000 d WKNY Kingston, N.Y 5000 WICY Malone. N.Y. Y lood WOLC Port Jervis, N.Y
1000 d
WULF Syracuse, N. 500d W WSB Durham, N.C. 500d WSSB Durham, N.C. 50000 5000
500 5000
5000 5000 WSTP Salisy Mount. 1000 KNDC Hettinger, N.C. 5000d KOVC Valley City, N.Dak.
5000 W BEX Chillicothe, Ohio

500 WOHI Cleveland Hohts., Oh $500 d$
500d WMRN Marion, Ohlo
5000 KWRW Guthrie, OkJa.
5000 K B IX Muskogee, OkJa.
5000d KBKR Baker, Dreg.
000 d KRNR Roseburg, Oreg.
5000 WB2Y Salem, Oreg.
5000
1000 d
WBCB Levlttown, Pa.
WMR Lewiston, Pa. WMGW Meadville, Pa.

250 250 250 250 250 250 250 250 250

 WLOLKXEL
KNEX
KL
W
W
W
W
W
W
W
WA
00
KCU
KGE
WTK

$$
-\infty
$$

K
ZNS Nassau, B.W.I. WSMI Litchfield. IH.
WBNL Boonville. Ind.
WLOI LaPorte, Ind. WXEL
KNEX
KLKC
WDO
WPT
WIF
WA
WJM
WP
WP

$$
\begin{array}{l|l}
0 & W T K \\
0 & \\
0 & 155
\end{array}
$$

250
250
250
250 0
WOPI Brlstol. Tenn.
50 WDX Chattanooga.
WROL Fountain City, Tenn.
WJM Lewisburg. Tenn.
KNOW Austin. Tex.
KIBL Beeville, Tex.
KBST Big Sprino. KHUZ Borger, Tex.
KNEL Brady. Tex. KNEL Brady. Tex.
KSAM Huntsville. KVOZ Laredo. Tex.
KZZN Littlefield. Tex KZPLT Paris, Tex.
KGKB Tyler, Tex.
KVOG Ooden, Tex,

$$
\begin{array}{lr}
\hline \text { KPMC Bakersfield, Callf. } 10000 \\
\text { WBYS Canton, Ill, } & 250 d
\end{array}
$$

WKVT Brattloboro, Vt

$$
\begin{array}{lr}
\text { WBYS Canton, Ill. } & 250 \mathrm{~d} \\
\text { KSWI Council Bluffs. Iowa } & 500 \mathrm{~d}
\end{array}
$$

$$
\begin{array}{ll}
\text { KSWI Council Bluffs, Iowa } 500 \mathrm{~d} \\
\text { WDXR Paducah, Ky. } & 1000
\end{array}
$$ WIKE Newport, Vt.

$$
\begin{aligned}
& \text { WDXR Paducah, Ky. } \\
& \text { WQXR New York. N. Y }
\end{aligned}
$$ WCVA Culpeper, Va.

$$
\begin{aligned}
& \text { WQXR New York, N.Y. } \\
& \text { WTNS Coshocton, Ohio } \\
& \text { WTON Talot }
\end{aligned}
$$ WAYB Waynestoro. Va.

WTOD Toledo. Ohio KBRO Bremerton. W
KLOG Kelso. Wash. KENE Toppenish. Wash.

$$
\begin{aligned}
& \text { KWCO Chickasha, Okla. } \\
& \text { WENA Bayamon, P.R. } \\
& \text { KHBR Hilisboro, Tex. }
\end{aligned}
$$ KTEL Wafla Walla, Wash.

WHMS Charleston, W.Va.
KHOQ Hoquiam, Wash. WTCS Falrmont. W.Va. WLOH Princeton, W.Va

$$
1570-191.1
$$ WGEZ Belolt. Wis. WLCX LaCrosse, Wis.

$$
\begin{aligned}
& \text { CHUB Nanaimo. B.C. } \\
& \text { CFRY Portage la Pralrle, }
\end{aligned}
$$ WIGM Medford, Wis

WOSH Oshkosh, Wis KiML Glllette, wyo.

$$
\begin{aligned}
& \text { CBi Sidney, N.S. } \\
& \text { CFOR Orillia, Ont }
\end{aligned}
$$ KRTR Thermopolis, Wyo.

KGOS Torrington, Wyo. 1500-199.9
CHUC Port Hope, Ont. 1000 KXRX San Jose, Call WKIZ Key West. Fla. WJBK Detroit. Mich. KSTP St. Paul, Minn.
WMNT Mianati, P.R: KTXO Sherman. Tex.

1510-199.1
CKOT Tillsonburg, Ont. KASK Ontario, Calif.
KTIM San Rafael, Calif. KMOR Littleton, Colo. WIKAI Macomb, III. WMEX Boston. Mas KANS Independence, Mo. WRAN Dover, N.J. WLAC Nashville, Tenn KSTV Stephenville Tex KGA Spokane. Wash. WAUX Waukesha. Wis.

1520—197.4

KACY Port Hueneme, Calif, 250 WHOW Clinton. III. KSIB Creston, lowa
WKBW Buffalo N WKBW Buffalo, N,Y.
WFYI Mineola, N. Y. KOMA Okla, City, Okla. WWWW RIO Pledras P.R 250
CFRS Simcoe, Ont. 250 d
\qquad
WWRWJ Selma, Ala.KBRI Brinkley, Ark.
KBJT Fordyce, Ark.KRKC King City
KRKC King City, Calif.
KCVR Lodi CilKACE Riverside, Calif.KLOV Loveland, Colo.
WPAP Fernandina Beach,
WJOE Ward Ridge, Fla. 250 d
WGHC Clayton, Ga. Fla.
WEAS College Park, Ga.
WGSR Millen, Ga.
WOKZ Alton, III.
WFRL Freeport, III,
WBEE Harvey, III.
WTAY Robinson, III.
WTAY Robinson. III.
1000 d
1000
1000 d
1000
1000
250 d
5000
1000 d
1000
1000
50000
25000
$250 d$
250 d
50000
$250 d$
Od
$\begin{array}{ll}\text { WILO Frankfort. Ind. } & 250 \mathrm{~d} \\ \text { WAWK Kendallville. Ind. } & 250 \mathrm{~d}\end{array}$
WOWI New Albany. Ind. 1000 d
KMCD Fairfieluany. Ind.
KJFJ Webster Cily, Iowa
KNDY Marysville. Kans.
KWSK Pratt, Kans.
WKKS Vanceburg, Ky
WABL Amite
WABL Amite, La.
KMAR Winnsboro,
KMAR Winnsboro, L
WAQE Towson, Md
WAQE Towson, Md.
WPEP Taunton, Mass.
WDEW Westfield. Mass.
WMRP Flint, Mlich.
WFUR Grand Rapids

KMRS Morris, Minn.	1000 d

 WONA WInona, Miss. 1000 d
 KLEX Lexington, Mo. 250 d
 WFLR Dundee, N.Y. 1000 d
 \(\begin{array}{ll}\text { WBUZ Fredonia, N.Y. } & \text { 1000d } \\ \text { WAPC Riverhead. N. }\end{array}\)
 WAPC Riverhead, N. \(\mathbf{W}\).
 WNCA Siler City, N.C.
 WHOT Campbell, Dhio
 WCLW Mansfield, Ohio
 WPTW Plqua, Ohio
 KTAT Frederick, Okla.
3. $\quad 50000$
$1000{ }^{\circ}$
1000 d
50000
50000 d
50
$\begin{array}{r}10000 \\ \hline \quad 250\end{array}$

Michigan 1000 d

Kc.	Wove Length	W.P.
K	a.	d
KWAY	Forest Grove, Orog.	100011
KOHU	Hermiston, Oreg.	1000d
WBUX	Doylestown, Pa.	1000 d
WSHH	Latrobe, Pa.	1000 d
W M LP	Milton. Pa.	1000d
WFGN	Gaffney, S.C	250d
WLSC	Loris, S.C.	1000 d
WHLP	Centerville, Tenn.	1000d
WCLE	Cleveland. Tenn.	1000 d
WTRB	Riploy, Tenn.	1000 d
KZOL	Farwoll, Tex.	250d
KVLG	La Grange, Tex.	250d
KTER	Terrelf, Tex.	250 d
WKIC	Salt Lake City, Utah	500d
WSWV	Pennington Gap, Va.	1000 d
WYTI	Rocky Mount, Va.	1000 d
WEER	Warrenton, W, Va.	500 d
WAPL	Apoleton, Wis.	1000d

1580—189.2

$\begin{array}{ll}\text { CBJ Chicoutimi, Que. } & 10000 \\ \text { WJнB Talladega, Ala. } & 1000 \text { d }\end{array}$ 1000 d KYND Tempe, Ariz. \qquad 0000 d
250 d $\begin{array}{llr}\text { KPCA Marked Tree, Ark. } & \text { 250d } \\ \text { KFDF Vall Buren, Ark. } & 1000 \mathrm{~d} \\ \text { KPON Anderson, Calif. } & 1000 \mathrm{~d}\end{array}$ KWIP Merced, Calif. 500 d KDAY Santa Monica, Cal. 50000d KPIK Colorado Sprgs., Colo. 5000 d WWIL Ft. Lauderdale, Fla. Florida 500d
WMDF Mount Dora. Fla. 1000 d
WCCF Punta Gorda. Fla. 1000 d $\begin{array}{lll}\text { WCCF Punta Gorda. Fla. } & 1000 \mathrm{~d} \\ \text { WRFB Tallahassee, Fla. } & 5000 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { WCLS Columbus, Ga. } & 1000 \mathrm{~d} \\ \text { WLBA Gainesville, Ga. } & 5000 \mathrm{~d}\end{array}$ WLBA Gainesville, Ga 5000 d WKKD Aurora, dll.

ili. WBBA Pittsfield. Ili. WKID Urbana, III. | WCNB Connersville, Ind. | 250 d |
| :--- | :--- | WCNB Connersville, Ind. $\quad 250 \mathrm{~d}$

WJVA South Bend, Ind. 1000 d
W AMW Washington, Ind. $\begin{array}{lll}\text { KCHA Charles City, lowa } & 500 \mathrm{~d} \\ \text { KWNT Davenport, lowa } & 500 \mathrm{~d}\end{array}$ $\begin{array}{ll}\text { KWNT Davenport, lowa } & 500 \mathrm{~d} \\ \text { KDSN Denison. lowa } & 500 \mathrm{~d}\end{array}$
$250 d$
1000
WAXU Georgetown, Ky. 10000 d
WMTL Leitchfield, Ky.
WPKY Princeton, $K y$.KLUV HaynesvilleKLUV Haynesville, La.
KLOU Lake Charles, LKLOU Lake Charles, La, $\quad 1000$
WPGC Bradbury Hots., Mus. 10000 d$\begin{array}{ll}\text { WOWE Allegary, Milch. Mu. } & 250 \mathrm{~d} \\ \text { WJUD St. Johns, Milch. } & 1000 \mathrm{~d}\end{array}$$\begin{array}{ll}\text { WJUD St. Johns, Mleh. } \quad \text { I000d } \\ \text { KDOM Windom, Minn. } & 250 d \\ \text { WAMY Amory, Miss. }\end{array}$$\begin{array}{lr}\text { WAMY Amory, Miss. } & 5000 \mathrm{~d} \\ \text { WGLC Centreville, Miss. } & 250 \mathrm{~d}\end{array}$$\begin{array}{ll}\text { W GLC Centreville, Miss. } & 250 \mathrm{~d} \\ \text { WESY Leland. Miss. } & 1000\end{array}$W PMP Pascagoula, Miss. I000d$\begin{array}{ll}\text { KBIA Columbia, Mo. } & 250 \mathrm{~d} \\ \text { KNIM Maryville. Mo. } & 250 \mathrm{~d}\end{array}$KNIM Maryvllle. Mo
WCRV Washineton250 d
500 d
KHAM Albuquerque. N. Mex. I000d$\begin{array}{ll}\text { WPAC Patchoque, N.Y. } & 100001 \\ \text { KZKY Albemarle, N.C. } & 250 \text { d }\end{array}$$\begin{array}{lr}\text { KZKY Albemarle, N.C. } & 250 \text { d } \\ \text { WVKO Columbus, Ohio } & 1000 d\end{array}$KLTR Blackwall, Okla. 250 dWCOY Columbia, Pa. 500 dWBPD Orangeburg, S.C. $\quad 1000 \mathrm{~d}$

WLIJ Shelbyville.1000 d
250 d$\begin{array}{lr}\text { KGAF Gainesville, Tex. } & 2500 \\ \text { KGR Misslon Tex. }\end{array}$
KIRT Misslon. Tox.
KTLU Rusk. Tex.
KWED Seguin. Tex.
WILA Danville, Va.
WPUV Pulaski, Va
10000

50d
50 d

- 1000
250
1000

1590—188.7

Kc. Wave Length
KRAD E. Grand Forks WOKJ Jackson, Miss KDEX Dexter, mo. KPRS Kansas City, Mo. KCLU Rolla, Mo. WSMN Nashua, N WERA Plainfield N.J WAUB Auburn, in. WEHH EImira Hoights. WGGO Horseheads. N.Y WGTC Greenville, N.C. WNOS High Point. N.C. WAKR Akron, Ohio WSRW Hillsboro. Ohio KHEN Henryetta. Okla. KTIL Tillamook, Orea. WCBG Chambersburg. P WEEZ Chester, Pa. WXRF Guayama, P.R. WABY Abbeville, S. C. WACA Camden. S.C. KCCR Plerra S. Dak. WSO Jonesboro, Tenn. WDEL Springfiold, Tenn.
W.P.|Ke.

Wave Length KGAS Carthage. Tox. 1000 d 5000 d 000 d KYT El Paso, Tex. loo0d KCBD Lubston, Tex. 10000 KBUS Mexia, Tex. 5000 KTOD Sinton, Tex. 500 dWEZL Richmond, Va. KTIX Soattle, Wash. WSWK New Richmond, W is. 1000d WTRW Two Rivers, Wis. | 5000 d | |
| :--- | :--- |
| KCHY Cheyenne, Wyo. | 1000 d |
| 100 d | | 1000 d

5000
500 d
500 d
5 250

000 d | 5000 d | |
| ---: | ---: |
| 1000 | W |
| 1000 | KC | 1000 1000 d $\begin{array}{ll}\text { 000d KLAK Yuba City. Calif. } 1000 \\ & 1000\end{array}$ 1000 d WKEN Dover De Colo. 5000 d WKTX Atlantic Beach. Fla 500 d

loo0d WKWF Key West, Fla,
W.P. ${ }^{\text {Ke. }}$ 1000 d
500 d
1000 d
5000
1000
500 d
1000 d
5000 d
5000 d
5000 d
1000 d
1000 d
1000 d
600-187.5
CHVC Niatara Falls, Ont. 5000
GEUP Huntsville, Ala.
APX Mont jomery. Ala.
5000
5000 d
1000
0

Kc. Wave Length W.P.
WTRU Ann Arbor, Mieh.
WKDL Clarksdale Miss
KATZ St. Louls. Mo.
KTTN Trenton. Mo.
KNCY Nebraska City. Nebr. 500 d
KRFS Superior, Nobr. 500d
WHEW Riviera Beach, Fla. 1000
WOKB Winter Garden. Fla. 1000 d
Ke. Weve Length
WWRL Woodside, N.Y.
WGIV Charlotte. N.C.
WIDU Fayetteville. N.C.
WFRC Roidsville, N.C.
m
5000
WGKA Atlanta, Ga. Fia. 1000 W GIV Charlotto, N.C. 500

1000 d
10000
1000
$1000 d$
WMCW Harvard, (H).
WKSK W. Jentorson,
WBLY Springflatd, Oh
1000 d
WBTO Linton. Ind.
WARU Peru.

500d
1000 d
KLGA Algona, lowa lowa
KUSH Cushing, Okla.
KASH Eugene, Oreg.
1000
KCRG Codar Rapids, lowa 5000 KASH Eugene, Oreg.
1000 d
KMOO Ft. Scott. Kans.
KOHI St. Helens, Oreg.
$\begin{array}{ll}\text { WHOL Allentown. Pa, } & 500 \mathrm{~d} \\ \text { WEZZ Elizabethtown, Pa, } & 500 \mathrm{~d}\end{array}$
WEZN Elizabothtown, Pa, \quad 500d
WFIS Fountain Inn, S.C. 1000 d
WFIS Fountain Inn, S.C. 1000 d
WHBT Harrinıan. Tenn. $\quad 5000 \mathrm{~d}$
WKBd
$\begin{array}{ll}\text { WHBT Harrinıan, Tenn. } & 5000 \mathrm{~d} \\ \text { WKBJ MWan, Tenn, } & 1000 \mathrm{~d}\end{array}$
WKBJ M木an, Tenn.
1000 d
KBBB Border. Tex.
500 d
1000
KWEL Midland. Tex. 1000
KCFH Cuero, Tex.
$\begin{array}{ll}\text { KMAE MeKiniey, } & \text { KOX. } \\ \text { KOGT Orance. Tox. } & 1000\end{array}$
KBBC Centerville, Utah 1000 d
WHLL Wheeling. W.Va. 5000 d
5000 d

U. S. and Canadian AM Stations by Location

Abbreviations: C.L., call letters; Kc., frequency in kilocycles; N.A., network affiliation-A: American Broadcasting Co., C: Columbia Broadeasting System, Inc.; M: Mutual Broadcasting System; N: National Broadeasting Co., Inc.

Lecafion Corinth, Mlse.	C.L. Kc, N.A. WCMA 1230	Location. . C.L. Kc. N.A.	C.L. Kc. N.A.	Location	C.L. Kc. N.A.
	WCMA 1230	460	Alt		280
Cornelia, Ga.	WCON 1450	De Kalb, III. WLBK 1860	126	N	AG 1250
	Id. CFCB 570	De Land, Fla WJBS 1490	CHED 1080		- 8770
Corning. Ark.	KCCB 1260	Dolano, Callf. KCHJ 1010	CJCA 930		R 1470 OL 1570
Corning	WCBA 1350	Delaware, Ohio WDLE 1550	Edmunder CKUA 580		
	WCLI 1450 A	Dolray, Beh., Fla, WDBF 1420	Edmundston, N,C, CJEM 570	ayetteville, Ark.	KHOO 1440
nwa	CJSS 1220 CFML 1110	Del Hio, Tex, KDLK 1230 Delta, Colo. KDTA 1400	Efinsham, WI. WCRA 1090		KFAY 1250 M
	KB	Deming, N.Mex. KOTS 1230	Elborton, Ga. WSGC 1400		
	x.	Demopolis. Ala. WXAL 1400 M	El Cajon, Calif. KDEO 910 A		A
	15	Denison, lowa KosN 1580	El Centro, Calif. KXX 1230 m		WIDU 1600
	44	Denison, Tex. KD			
	1360 N		El Dorado, Ark. KDMS 1290		
	KUNO 1400	1390	Eldorado. Kabs, KBTO 1360		
Corsicana, Tex.	1340	$\begin{array}{ll} \text { KHOW } & 630 \\ \text { KIMN } \\ 950 & \text { M } \end{array}$	Elpin, 111.		
Cortez, Colo.	KVFC 740	$\begin{array}{ll} \text { KLIR } & 950 \\ \text { KLIR } \end{array}$	WCNC 1240		F
tland	WKRT 920	KL2 560 C	A) 560		WFEN 1830
Corvallis, Oreg.	KOAC 550	KICN 710	ค. WBEJ 1240		A
	1240	A 850	Elizabathtown, Ky. WIEL 1400	tehburg. Ma	WELM $1280{ }^{690}$
	(00 1340	OF 910			WFOH
Cottage Grove, Ore,	, KNND 1400	KTLN 1280	1600		B 1240 M
Coud	WFRM 600	De Queen, Ark, KDON 1390	K 1240 A		
Council Blutrs, Io	-	Deridder, La, KDLA 1010	Whart, ind. WTRC 1340 N		
Courtenay, B.C		KCBC 1390 A			
gton, Ga.	GFS 1430				CFAR 590
Covington, Ky.	WZIP 1050 M	KS0 1460	KELK 1240 M		
Covington, La,	WARB 730	1150	Ellens burg, Wash, KXLE $1240{ }^{\text {m }}$		AMM 4230
Covington, Tes	WKBL 1250	1040 N	Ellsworth, Mo, WDEA 1350		70
Cowan	WKYX ${ }_{1440}$	1130	EImira, N,Y. WELM 1410 A-C		$\begin{gathered} 1470 \\ C \\ C \end{gathered}$
Craig, Colo,	KRAI 550	$\begin{array}{ll} \mathrm{LB} & 1400 \\ \hline 118 \end{array}$		omaton, A	TCB $990{ }^{*}$
Cranbrook, Crans, Tex, B, c.	CKEK ${ }^{570}$	$\begin{aligned} & 760 \\ & 950 \end{aligned}$		oreate, Al	WJOI 1840 m
Crescent City, Callf.	11. KPLY 1240	1270	El Paso,	Florenes, S.C.	A
Creston, lowe	KPOD 310	Detroit Lakes, Minn.	KELP 920 KHEY 690		
Crestviow, Fis.	WCNU 1010				
	WJSB 1050	M	150		
Crawe ${ }^{\text {che }}$	IVY 1290		1340 M	F	KFIZ 1450 M
Croeket	KIVY 1290	Diekinson N Oak KDP		F	570
Crossett	(1)	Diekson, Tenn, WDKN 1260			WMAG 860
Crossvi	AEW 1330	Dillon, mont. KDBM 800			W
Crowl	KSIG 1450 M	Dillon, 8.C. WDSC 800 A	Eminonce, Ky. WSTL ${ }^{1600}$		WAGY 1320
Cuero,	KCFH 1600	Dinuba, Calif. KRDU 1240	Emporia, Kans, KVOE 1400		50
Cullman, Ala.	WFMH 1460	Dodge City, Kans. KGNO 1370 \%	Emporia. Va. WEVA 860		5
	1340	Dothan, Ala. WAGF 1320	Emporium, Pa, WLEM 1240		KCOL 1410
	VA 1490 M	1450 m	Endieott, N.Y. WENE 1430 A	, Dodge, lowa	KVFD 1400
mberiand, Ky.	WCPM 1280	560	Enplowood. Colo, KGMCC 1150		KWMT 540 A
	5	930	KGWA 960 M		$\begin{aligned} & 8800 \\ & C \\ & C \end{aligned}$
Cypr	KUSH 1600	Douglas, Ga. WDMG ${ }^{860}$	Enterarise, Ala. W1RB $600^{\text {m }}$		WFTL 1400
Cypress Ga	1a. WGTO 540	(e) KWIV 1050	KWVR 1340		WWIL 1580
Dade City	CYN 1400 ,	Dover, Del. WMO 140	Ephrata, Pa. WGSA 1310		KXGI 1360
		Oover. N.H. WTSN 1270	Ephrata, Wash. KULF 730	Ft. Morgan, Col	KFTM 1400
Dallas, 'N.C	CFT ${ }_{960}$	Dover, N.J. WRANI510		yort	WI
Dallas, Oreg.	KPLK 1460	Dover, Ohio WJER 1450			WMYR 1410
Dallas, .Tex.	KRLD 1080 C	Dowagide. Mieh. WDOW 1440		ay	WFPA 1400
	KIXL 1040	Doylestown. Pa. WBux 1570	Erwin, Tenn, WEMB 1420		WARN 1330
	KSKY 660	Orumhellier, Alta. CJDV 910	Escanaba. Mich. WOBC 680 M	Ft. Plores, Fin.	Warn 1350
	WFAA 570		$\begin{aligned} & \text { WOST } 600 \text { A } \\ & \text { KOWN } \end{aligned}$	Ft. Seott, Kans	KM00 1600
	820 .N	1330			0
	KBOX 1480	WXLI 1230	WCPH 1220		
The Dalles, Oreg.	$\begin{array}{l\|l\|l} \text { RR } & 1310 \mathrm{M} \\ \text { CCI } & 1300 \end{array}$	Du Bols, Pa. WCED 1420 C Dubuque, lova KDTH 1370 A	Eufaula, Ala. WULA 1240 m		
	DL 1440 A	1490 m		Stackto	
Dalton, Ga.	WBLJ 2330 M	Duluth, Minn, KDAL 610 C	KERG 1280		
	WRCD 1430				
促	DAN 1490	RHD 1350 m			WFTW 1260
	WITY 980				
Danville, Ky. Danville, Va	HIR 1230 M	Dundee, N.Y.			WANE 1450
	WDTI 970	Dunkirk, N.Y. WDOE 1410	WEAW 1330		KJG 1380 N
	WDVA 1250 M	Dunn, N.C. WCKE 780		Illam, 0	CKPR 580
Dartio	WILA 1580		0	Ft. Worth, To	
Dauphin Man.	CKOM 1050	KOGO 1240	GBF $1280{ }^{\text {ch }}$		
Davendort. lowa	WWOC 1420 N	Durant, Okla. KSFO ${ }^{\text {Dur }}$ \% 750	WIKY 820		NDK 970
	70 M		S 1330 A		BAP 570
	990	1490	erott, Washo: KRKO 1880		BAP 820
Dawson' Creek, B.C.	C. CJOC 1350	Dyersburg, Tena. WDSG 1450	230	Fostoria. Ohto	WFOE 1430
Dayton, Ohio	WH10 1290 C			Fountain City, To	
	410	Eagle Pass, Tex. KEPS 1270	N		
		Easle River, Wis, WERL 950		Fountal	
Dayton, Ten	WONT 1280	E. Grand Forks, Minn.		硣	$\text { VKOX } 1190$
tona Bezeh,		Eastland KRAD 1590	Fairfield, Iow K KMCD 1570	Frankfort, Ind,	370
	DB 1150 M -A	Eastland, Tex. KERC 1590	Fairmont. Minn. KSUM 1370 M	E	$\begin{aligned} & 90 \\ & 20 \end{aligned}$
	MFJ 1450	ansing, Mich. WKAR 870	Fairmont. N.C. WFMO 860		$\begin{aligned} & 1220 \\ & 390 \end{aligned}$
	WROD 1340	iverpool, Ohio WOHI 1490 A	Fairmont, W.Va. WMMN 920 C		1390
Deadwood, S. Dak.	WKOSJ 980		Fajardo, P.R. WMDD 1490		FRA 1430
Dearborn, Mith.	WKMH 1310	E. Moline, III. WDLM 960	Falfurrias, Tox. KPSO 1260	Fra	VAGG 950
esatur, Ala,	WHOS 800	E. Palatka, Fla, WREA 1480 A	Fallon, Nev. KULV 1250	Frankli	W8R 1250
	WAJF 1490	E. Point, Ga. WTJH 1260	Fall River.* Mass, WALE 1400		FMD 930
	WMSL 1400 M				$1 T$
Decatur, Ga, Decatur, III.	WGUN 1010	Easton, Md. WEMD 1460 Easton. Pa. WEEX 1230	Falls Chureh, Va WFAX 1220 Falls City, Nabr. KTNC 1290		
ecatur, III.	WDZ 1050 SOY 1340	Easton. Pa. WEEX 1230 WEST 1400	Falls City, Nebr. KTNC 1230 Fargo, N.Dak. WDAY 970 N	Fredericksbur	30 A
Detorah, Iowa	$\text { KDEC } 1240$	Eatontown, N.J. WHTG 1410	K FNW 900		WFLS 1350
	WLC 1240	is. WEAQ 790 N	KUTT 1550		$\text { CFAB } 550$
flanee. 0	WONW 1280	$\begin{aligned} & Z 1400 \\ & L 1050 \end{aligned}$		Fraeport, III.	WFRL 1570
De Funiak Springs.	gs. Fla.	Eau Gallle, Fla, WMEG 920	Farminston, Mo, WKTJ 1380	${ }_{\text {Freeport. }}$ N.Y.	GBB 1240
		Edenton. N.C. WCDJ 1260	$\text { KREI } 800$		KBRZ 1460
174 WHITE'S	S RADIO LOG		$\begin{aligned} & \text { KENN } \\ & \text { KWYK } \\ & \hline 960 \end{aligned}$	Fromont, Mleh.	NCBA M90

Location
Millinaton C．L．KC．N．A． Mulution，Tenn．WHEY I220 milton，fla．

MIIton，Pa．
MIIwauken，Wis．

Minden，La， Mineral Wols， Mineala，N．Y． Minneapolis，M
 Miston，Kans． Mission，Tox． Missoulan，Mont．

Mitehell，S．Dak．

 Moab，Utah Moberly，Mo．
Mobrlidge，S．Dak

Modesto，Calif．

Mojave，Callf．
Moline，Ill．
Monahans．Tex．
Moncton．
Monett，Mo． Monmouth，ild，
Monroe，Gi．

Monros，Mleh．
Monros，N．C．
Monroe，Wis．
Monroovile，Ala．
Monterey，Calif．
Montevideo，Minn．

Monte Vista，Colo． Montoomery，Ala．

Montgomery．W．Va

Montrenl，Que

Montrose，Colo．

Montrose， Pa
Mooresville， \mathbf{N}, \mathbf{C} ．
Moorhoad，Minn．
Morohesd，K Morehead City，WMOR I 830
MOR 1300 Morgan City，La，C．WMBL 740 Morganton，N．C．WMNC 1430 morcantown．W．Ve．WAJR 1440 Morrilton，Ark WCLG $\$ 300$ Morris，Minn．KYOM 800 Morristown．N．J．WMTR 1250 Morristown，Tenn．WCRK 1150 Moseow，Idaho WMTN 1300 Moses Like，Wash． Moultrie，Ga，WMGA 1400
WMTM 1300 Moundsville，W．Va．WMOD I370 Mountain Grove，Mo．KLRS 1360 Mountain Home，Ark．KTLO 1490 Mt．Airy，N．C．WPAQ 740 Mt．Carmel，II．WVYD 1300 Mt．Clomens，Mieh Mt．Dora，Fla．WBRB $\mathbf{1 4 3 0}$ Mt．Jackson，Va，WSIG 790 Mt．KIseo．N．Y．WVIP $\mathbf{H} 10$
M

M
A
N

$$
F
$$

を定

エアo
\square

Location
Now Richmond，Wls．
Now Rochalle，N．Y，W

C．L．Kc．N．A． New Richmond，Wls． WiXK 1590
Now Rochalle，N，Y，WVOX 1460 New 8myrna Beach．Fla．

New
New
Now
Now
Now
Now
Now

Nebraska City．Nebr．

$$
\mathbf{c}
$$

Nedtles，Caltf．
KNCY 1600
KSFE
Nellisuill Wis．WNAM 1280 Nelson，B．C．WCCN 1370
NeIs． 1390 $\begin{array}{ll}\text { Noon，Ky．} & \text { WNKY } 1480 \\ \text { Neosho，Mo．} & \text { KBTN } 1420\end{array}$ $\begin{array}{ll}\text { Nevsho，MO，KBN } & \text { KNEM } 1240 \\ \text { Nevada，Mo，ind WOWI } 1570\end{array}$ Now Albany，Mise．WNAU 1470
\square

Newberry，S．C．WRTT 1450 Now Boston，Ohio WIOI 1010 Now Braunfels，Tex KGNB 1420
New Britain，Conn．WHAY 910 New Brunswick．N．J．WCTC 1450 Newburgh，N，，WGS WNB 1470
Newburyport．Mass WN
New Carlislo，Que．CHC 610
New Castle，Ind．WCTW 1550 N New
Nev $\begin{aligned} & \\ & \text { New Iberia，La．WELI } 960 \\ & \text { WANC } 1340 \text { A } \\ & \text { Wew }\end{aligned}$
Now Konsington，Pa KVIM 1960 New London，Conn．WNLC 1490 M New Martinsville， \mathbf{V} ．Va．
WCOH 1400 N
WDSU 1280 N
WCOH 1280
WJBW 1230

$$
1
$$

之
$3 \geq 25$
$2 \geq 22$

N．

No．Syracuse．

No．Syracuse，N．Y．


```
Ocean city, Md.
    Odessa, Tex,
```

Oelwain, Jowa
Dgden, Utah
 Oa
Oa
0 al Oak Growe．La． 0
0
$0 a$
$0 a$
$0 a$
$0 e$

0
0
0
0
00 Dgden，Utah

Ogdensburg．N．Y． Okla，Cify，Okla．

N．Vernow，Ind．

 No．Wilkesboro，${ }^{\text {Nort }}$ Norton， $\begin{aligned} & \text { Na．} \\ & \text { Norwal } \\ & \text { ．}\end{aligned}$ Norwatk，Conn． Norwieh，Conh． Oakdale，La．okmuldee，Okla． Olean．N．Y．

OIn Oly

Omaha，Nebr，

KOOO 1420
WOW 590
$\begin{array}{ll}\text { WOW } & 590 \\ \text { KOMW } 680\end{array}$
WONG 1600
WBNT 1310

C．L．Ke．N．A．
K．L．Ke．N．A
KBRX 1350 WCRL 1570 WDOS 730
KASK 1510 $\begin{array}{ll}\text { KASK } & 510 \\ \text { KSRV } & 1380\end{array}$ KSRV 1380
WPHO 1400 M KSLO 1230
WAMI 860 WAM！ 860 KZUN 890

WCAT 1890 | KOGT | 1600 |
| :---: | :---: |
| WJMA | 1840 | WDIX 1150 A

WBPD 4580 WBPD 1580
WTND 920 WAYR 550
KGON 1520 M
CFOR 1570 Orlando，Fla，

Ormond Bch．，Fia． Orofino Idaho Osage Bch．Mo． Osceola．Ark Oshawa，Ont
0
Oskaloosa，lowa
othello．Wash．

Ottawa，III．
Ottawa，
Oan

A

C

Ottumwa，lowa
Owatonna，Minn．
Owego．N．Y．
Owensboro，Ky，

Owen Sound，On Owosso，Mich．

Oxford，Miss．
Oxford，N，C．
Oxnard．Calif
$\begin{array}{lll}\text { Ozark．Ala．} & \text { KOXR } 910 \\ \text { Paduegh Ky．} & \text { WOZK } 900\end{array}$
1
$\begin{array}{ll} & \text { WPAD } 1450 \\ \text { Page，Arlz．} & \text { KPGE } 1340\end{array}$
Pahokee，Fila．WRIM 1250
Painesville，Ohio WPVL 1460 Palntsville，Ky．WSIP 1490 N Palatka，Fia．

PalestIne，Tox． Palm Beh．，Fia．
Palm Spros．，Calif．

Palmdalle，Calif．
Palo Alto，Calif． Pampa，Tox．

Panama City，Fla． Panama clty Beach WTHR 1480
Fla． Paradise，Callf．WSCM 1290 Parabould，Ark KDRS 1490 $\begin{array}{ll}\text { Paris，Ark，KCCL } 1460 \\ \text { Paris，III．} & \text { WPRS } 1440\end{array}$ $\begin{array}{lll}\text { Paris，Ill．} & \text { WPRS } 1440 \\ \text { Paris，Ky．} & \text { WKLX } 1440\end{array}$ $\begin{array}{ll}\text { Paris，Tonn．} \\ \text { Parls，Tox．} & \text { WTPR } 710 \\ \text { KPLT } 490 \text { A }\end{array}$
Parkersburg，W．Va．

Park Falls，Wis， Parry Sound，On
Parsons，Kans Pasadena，Calif．
$\begin{array}{ll}\text { Pasadena，Tox．} & \text { KLVL } 1800 \\ \text { Paseapoula，Miss．WPMP } 1580 \\ \text { Pa }\end{array}$
Paseo，Wash．KORD 910
KPKW 1340

Paso Robles，Callf．KPRL 1230 M Patchogue，Li．，N．Y

WALK 1370
WPAC 1580
WPAT 950
Paterson，N．WPAT 950
Pauls Valloy．Okla．KVLH 1470
Pauls Valloy．Okia．KPLW 550 A
Pawtucket，R．I．WPAW
$\begin{array}{lll}\text { Payette，Idaho KEOK } & 1450 \\ \text { Peace River，Alta，CKYL } 630\end{array}$ Pecos，Tex．KIUN 1400 Paokskili，N．Y．WLNA 1420 Pokin，Ill．

WLNA 1420 Poll city，Ala．WFHK 1430 Pembroke，Ont．CHOV 1350 Pendlaton，Orea．KKID 1240 KUBE 1050
KUMA 1290

Pennington Gap，Va．

WSWV 1570

WHITE＇S RADIO LOG

ation	C.L. Kc. N.A.	on C.L. Ke. N.A.	C.L. Ke. N.A.	Location C.L.Ke. N.A.
Pensteola, Fla.	$\begin{array}{ll} \text { WBOP } & 980 \\ \text { WDEB } & 610 \end{array}$	$\begin{array}{ll}\text { Port Arthur, Ont. } \\ \text { Port Arthur, Tex. } & \text { KOLE } 1230 \\ \text { KOLE }\end{array}$	Reading, Pa, WEEU 850 A	Roswell, N.Mex. KSWS 1230
	WBSR 1450 C	KPAC 1250 N		K KBIM 910
,	WCOA Y370 N	$\text { Port Hope, ont. CHUC } 1500$	Redding, Calir. KPAP 1270	Roxboro. N.C. WRXO 1430
	WPFA 790	Port Hueneme.Calif. KACY 1520	KSDA 1400	Royal Oak. Mieh. WEXL 1340
	CKOK 800	Port Huron, Mich. WHLS 1450	KVCV 600 C	Ruidoso, N.M. KYAP 1340
Peoria, ili.	WAAP 1350	WTTH 1380 A	Red Plufe calle KVIP 540	Rumford, Mo. WRUM 790
	WMBD 1470 C	Port Jervis, N.Y. WDLC 1490	Red Bluff. Callf. KBLF 1490	Rupert, Idaho KAYT 970
	WIRL 1290 M	Portiand, Ind. WPGW 1440	Red Deer, Alta. CKRD 850	Rushton, La, KRUS 1490
	WPEO 1020	Portland, Maine WCSH 970 N	Redlands, Calif. KCAL 1410	Rusk. Texas KTLU 1580
Perry Fias	WPRY 1400	WGAN 560 C	Red Lion, Pa. WGCB 1440	Russell, Kans. KRSL 990
Porry,	WPGA 980		Redmond, Oreg. KPRB 240	Russeliville. Ala, WWWR 92
Perryto	KEYE 14000 m	POR 1490 A.M	Red Wing. Minn. KCUE 250	Russellville, Ark. KXRI 1490
Poru, Ind.	WARU 1600	Portland, Oreg. KBPS 1450	Redwood Falls, Minn. KLGR 1490 Reedsbure. Wis. WRDB 1400	Russellivilte, Ky. WRUS 810
Petaluma,	KAFP 1400			Rutland, Vt. WHWB
	$\begin{aligned} & \text { CHEX } 969 \\ & \text { CKPT I421? } \end{aligned}$	KEX 1190	Repina, Sask. - CBK 540	Sackville, N.B. CBA 1070
Potersburi, Va.	WSSV 1240 m	KGW 620 N	CJME 1300	Sacramento. Calif. KCRA 1320 N
	W	KOIN 970 C	CKCK 62	KFBK 1530 A
enix Clty. A	WPNX 1460 A	00	Reideville NC. WKRM 980	
Philadolphia, Miss.	WHOC 1490	KPDO 800	Reidsville, N.C. WFRC 600 A	140
delp	WCAU 1210 C			1240
	WDAS 1480	$K \times L .750$	Reno. Nev. KOH 630	Salford. Ariz. KGLU 1480 A
	WFLN 900	Port Neches, Tex, KPNG 1150	KBET 1340 M	Saginaw, mich. WKNX 1210
	WHAT 1340			
		Portsmouth, Ohio WPAY 1400 C		
		WNXT 1260 A	Renton, wash. KUDY 910	Albans, W.Va. WKLC 1300
	WPEN 950	Portsmouth, Va. WLow 1400 A	Rexburg, Idaho KRXK 1230	St. Augustine. Fla. WFOY 1240 C
	WRCV 1060 N	WAVY 1350 N	Rhinalander, Wis. WOBT 124	N 1420
	WTEL 860	Post, Tex. KUKO ${ }^{1370}$	Riee Lake. Wis. WJMC 1240	CKSB 1050
Phllipsburs, Pa.	WPHB 1260	Poteau, okla. KLCO 1280		- CKTB 610
Phillipsbu	KKAN 1490 KIFN 860	Potsdam, N.Y. WPDM 1470	Richland, Wis. WRCO 1450	St. Cloud, Minn. KFAM 1450 N
	KXIV 1400	Pottitown, Pa. WPAZ 1370	Richlands, Va. WR	W. WON $1240{ }^{\text {N }}$
	KHAT 1480	Pottsvillo, Pa. WPAM 1450	Richmond, Ind. WKBV 1490 A	An
	KHEP 1280	Pounhkeepsie N Y WEOK 1890		catiere, Que. CHGB 1350
	KINK 1010		Rehmond. Va- WBEL 1480	George Utah KDXU ${ }^{\text {Gen }}$
	KOY 550 A	Powell, Wyo. KPOW 1260 M	WE2L 1590	Helen, Mich. WMIC 1590
		Poynette, Wis WIBU 1240	1480 N	St. Helens, Oreg. KOHI 1600
	(740	Prairie du Chien, Wis	20	St. Hyacinthe, Que. CKBS 1240
	KRIZ 1230	WPRE 980	WMBG 3880	St. Jean, Que. CHRS 1090
	KTAR 620 N	KWSK 1570	WRNL 910 M	St. Jerome, Que. CKJL 900
leayune, Miss.	WRJW 1320	tt, Ariz. KYCA 4900 N		Saint John, N.B. CFBC 930
mont, Ala.	WPID ${ }^{1280}$	KTPA $1370{ }^{\text {A }}$	Rlehmend HIII, Ont. CJRH 1310	Johns, Mich. WJUD 1580
	KCCR 1590	K20 K 1340	Richwood, W.Va. WVAR 1280	8t. John's, Nfld. CBN 640
keville, Ky.	WLSI 900	Presque lisle, Me. WAGM 950	Ridgecrest, Calif. KRCK 1360	CJON 930
ne Blunt, Ark.	2400 M	ho KPST 1340	Rimouski, Que. CJ	VOAR 1230
Pino Blun, Ark.	KADL 1270	Prestonsburg, Ky. WPRT 960	WR10 1320	VOWR 800
	KOTN 1490 M	WDOC 1310	630	St. Johnsbury, Vt. WTWN 1340
	KPBA 1590	Prico, Utah KOAL 1230		St. Joseph, Mieh. WSJM 1400
Pine City,				St. Joseph, Mo. KFEO 680
Pineville,	WWYO 970	Prinee Goorse, B.C. CKPG 550	Riverhead, N.Y. WRIV 1390	SN 1270
Pipestone, Minn.	KLOH 1050	Prinee Rupert, B.C. CFPR 1240	WAPC 1570	Joseph d'Alma, Que.
Piqua, ohio	WPTW 1570	Prineoten. Ind. WRAY 1250	Riverside, Calif. KPRO 1440	GT 1270
Pittsburn, Calif.	KKIS 990			St. Louls. Mo. KATZ 1600
ittsburs, Kans.	$\begin{aligned} & \mathrm{M} \\ & \mathbf{K} \\ & \hline 1340 \end{aligned}$	Princeton, W.Va. WLOH 1490 A Prinevilie, Oreg.	Riviera Beach, Fla. WHEW 1600	KFUO 850
Plitsburgh, Pa.	DKA 1020	Prosser. Wash. KARY 1310	Riviere du Loup, Que. CJFP 1400	KSD 550
	KQV 1410 C	Providence, R.I. WEAN 790 C	Roanoke. Ala. WELR 1360	KSTL 650
	1250	WHIM 1110	Reancke, Ve. WDBJ 960 C	1380
	WEEP 1080	WICE 1290	1410 M	(
	WAMO 860	WJAR 920 N		WEW 770 M
	WAMP 1320 N			A
	WWSW 970	WR1B 1220 m	Roanoke Rapids, N.C.	KRSI 950
Pittsfield, LII.	WB ${ }^{\text {WRA }} 1580$	ovo. Utah KIXX 1400 A	Roaring Spres., Pa.WKMC 1370	St. Mary's, Pa. WKBI 1400
ittufold, Mass.	WBEC 1420 A	$\begin{aligned} & \text { KEYY } 1450 \\ & \text { KOVO } 960 \text { m } \end{aligned}$	Roaring Spres., Pa. WK CHR 910	St. Paul. Minn. KSTP 1500 N
	$1540{ }^{\text {m }}$	Pryor, okla- KOLS 575	Robinson. ILI WTAY 1570	St. Pater, MInn. KRBI 1310
Plainfoild. N.J.	WERA 1590	Pueblo, Colo.- KO2A 1230	Rochester, minn. KROC 1340 N	St. Potersburg, Fla. WPIN 680
lainview, Tex.	KVOP 1400 m	970	WWEB 930	WSUN 620 A
Plant City, Fla.	PLA 910	M	WBBF 950 M	St. Petersburg Beael
	WSWW 1590	TCSJ 1480		590
attsburg, N.Y.	WEAV 960 A.N		680	CHLO 680
	WIRY 1340 M		WSAY 1370	Salamanea, N.Y. WGGO ${ }^{\text {S }}$ S 590
Pleasanton, Tox.	KBOP 1380 WOND 1400	Pullman, Wash. KWSC 1250	W WVET 1280 A	Salem. Ind. WSLM 1220
Plymouth, Mass.	WPLM 1390	Punte Gorda Fla WOFE 1150	. III. Wrok 1440 A	Salem, Mass. WESX 1230 M
Plymouth. N.C.	WPNC 1470	Punta Gorda, Fla. WCCF ${ }^{\text {Punxsutawney, Pa. WPME } 1540}$	WRRR 1330	Salem, Mo. \quad KSMO 1340
Plymouth, Wlas.	WPLY 1420	Putnam, Conn. WINY 1350	Roek Hill, S.C. WRHI 1340 m	
Poeatello, idaho	KSEI 930 N	Puyallup, Wash. KAYE 1450	WTYC 1150	KGAY 1430
	KWIK 1240 M	Quanah, Tex. KOLJ 1150	Rockingham, N.C. WAYN 900	Salem, Va. WBLU 1480
	KYTE 1290	Queber, Que. CHRV ${ }^{980}$		Salida, Colo. KVRH 1340 M
Pocomoke City. Md.	d. WDMV 540	CJiLR 1060	Rockmart, Ga. WPLK 1220	Sallna, Kans. KSALII50 M
ointe Claire, Que.	. CFOX 1470 .	$\text { CJQC } 1340$	KVRS 1360 m	Salinas, Calif, KDON 1460
mena. Callf.	KWOW 1600		Rockville, Md. WINX $1600{ }^{\text {m }}$	KSBW 1380
	KKAR 1220	B.C. CKCQ 570	Rockwood, Tenn. WRKH 380	Saline, Mith. WOIA 1290
mpano Beach, Fla		Quiney, Fla. WCNH 1230 M	Roeky Ford, Colo. KAVI 1320	Sallsbury, Md. WBOC 960
	WLOD 980	Quincy, Ill. WGEM 1440 A	Roeky Mount, N.C. WCEC 810	wico 1320 A
	WPOM 1470 A	WTAD 930 C	WEED 1390 A	WJDY 1470
Ponee. P. R.	WPBE ${ }^{\text {WPA }} 910{ }^{\text {W }}$	Quiney, Mass. WJJA 1300	WRMT 1490	Salisbury, N.C. WSTP 1490 M
	WEUC 1420			WSAT 1280 A
	WPAB 550		Rocky mount, Va. WYMO 1570 Rogers, Ark.	Salmon, Idaho KSRA 960
	WLEO 1170	WRIN 1400 A	Rogers City, Mlch. WHAK 960	Salt Lako Clity, Utah
	Wiso 1260	Radford, Va. WRAD 1460	Ropersville, Tenn. WRGS 1370	KALL 910 M
	WPON ${ }^{\text {WWOC }} 930$	Raleigh, N.C. WKIX 850 A	Roila. Mo. KCLU 1590	KCPX 1320 N
-rtage, Pa,	WWML 1470	WPTF 680 N WSHE 570	Rome Ga WTTR 1490	KLUB KNAK 1280
rtage. Wis.	WPDR 1350	$\text { WRAL } 1240$	Romb, Ga. WRGA 1470 m	KNAK 1280
ralrje,		Rapid City, S. Dak. KOTA 1380 C	WROM 710	KSOP 1370
		KRSD 1340	Rome, N.Y. WKAL 1450 A	KSXX 630
Alberni, B.C.	CJAV 1240		Ronceverte, w.Va, WRNY 1350	KWHO 860
Portales, N.Mex.	KENM 1450	Ravenswood, W. Va. WMOV 1360	Rosoburg. Oreg. KRNR 1490 C	WIC 1570
Port Angeles, Wash	$\text { sh. KONP } 1450$	Rawlins, Wyo. KRAL 1240 m	Reseburt. Ores. KRXL 1250	San Anealo. Tex. KTXL 1340
		ond, Wash. KAPA 1340	KQEN 1240 A	KGKL 960 A
78 WHITE	ADIO LO	Raymondville, TeX. KSOX 1240 Rayville, La. KRIH 990	Rosenberg, Tex. KFRD Ressvillo, Ga. WRIP 980	KPEP 1420 KWFR 1260

Locafion	C．L．Kc，N．A．	Location	C．L．Kc．N．A．	Locofion	C．L．Ke．N．		C.L. Kc. N.A.
San Antonio，Tex．	$\begin{aligned} & \text { KAPE } 1480 \\ & \text { KCOR } 1350 \end{aligned}$	Seaford，Del． Searey，Ark．	WSUX 1280 KWCB 1300		$\begin{gathered} Y \\ A \\ A \end{gathered} 330 \text { C }$	$\begin{aligned} & \text { e, Tex. } \\ & \text { ce, B.C. } \end{aligned}$	$\begin{array}{c\|c} \text { M } 1400 \\ \text { K } 1140 \end{array}$
	KENS 680 C	Seaside，Oreg．	KSRG 730	Sprlngdale，Ark．	S 1340 A	Haute，Ind．	W 1230
	$\begin{aligned} & \text { KIKK } 1550 \\ & \text { KITE } 930 \end{aligned}$	Seattle，Wash．	$\begin{aligned} & \text { KAYO } 1150 \\ & \text { KING } 1090 \end{aligned}$	Springfield，III，	$\text { VS } 1450 \text { A-M }$		＋
	KUKA 1250		RO 710 C		X 1240 C	Terrell．	KTER 1570
	KUBO 1310		KJR 950	Springfleld．Mass，	WBZA 1030		Y 790
	$\text { KMAC } 630 \text { A }$		$\text { KOL } 1300$		$\text { WHYN } 560 \text { C }$	Texarkana，Tex．	$230 \mathrm{~A}$
	$\begin{array}{ll} \text { NO } & 960 \\ \text { SA } \end{array}$		$\begin{aligned} & 1000 \\ & 590 \end{aligned}$		WSPR 1270	5	
	WAI 1200		55	Springfield，Mo．	KGBX 1260 N		KALM 1290
			570		KICK 1340	The Dalles，Oreg．	KODL 1440
	$\text { KCKC } 1350$ $\text { KFXM } 590$	Sebring，Fia	$\text { KXA } 770$		C		KRMW
	KRNO 1240	Sebring，Fia．	WSEB 1340	Springfield，Ohio	$\text { WIZE } 1340 \text { A }$		KRTR 1490 KTHE 1240
	K1T0 1290 m	Sedalia，Mu．	KDRO 1490			Riv	
Sande	WSNT 1490		KSIS 1050	Springfield，Ores	KEED 105		0
in D	BQ 1170		KWED 580		WDBL 1590	metford Mines	C．CKLD 1230
	KFMB 540 C		WGWC 340 C	Springfield，Vt．	WCFR 1480	hibodaux，	KT1B 630
	$\begin{array}{cc} \text { KFSD } & 500 \\ \text { KGB } & \mathrm{N} \\ \hline 1360 & \mathrm{~A} \end{array}$		$\begin{aligned} & 81490 \\ & 1 \\ & \hline \end{aligned} 570$	Springhill，La． Spruce Pine，	$\begin{array}{ll} \text { KBSF } & 1460 \\ \text { WTOE } & 1470 \end{array}$		$\begin{array}{ll} \text { WSFT } & 1220 \\ \text { WJDB } & 630 \end{array}$
	KSON 1240		KSML 125		WSTC 1400 A		WPAX 1240
	DO 1130	ec			KDWT 1200		730
Sand	SPT 1400		WSNW 1150		WRGR 1490	Thomasville，N．C．	790
Sandusky，Ohio	WLEC 1450 M	Sevi	WSEV 930		WSSO 1230	$10 \mathrm{n}$	WTW A 1240
San fernando，	WMGL 1260			State College， Pa	WMAJ 1450 M		
	W	Se	KSEY ${ }^{23}$		WSIC 1400	conder	
Sanford．	WSME 1220	Sha	WISL 1480		DBM 550		WTTF 1600
Sanford，N．C．	WEYE 1290	Sham	K BYP 1580	Sta	WTDN 1240 A	Tifton，Ga	WTIF 1340
	W		WPIC 790				30
San			WTCH 960	St	K	Tillamook，Oreg．	KTIL 1590
	610 M	St	CKSM 1220		KG		0
	KGO 810						CKGB 680
	BC 680 N		KSEN 1150 M		WSPT $101{ }^{*}$	Toccoa	$1420 \mathrm{~m}$
	BY 1550 M	Shelly	WOHS 730 M				320
	010		WADA 1390	Sti	WAVN 1220	Toledo．	
	50	Shelbyville，Tenn	WHAL 1400		80		N
	KSFO 560		WLIJ 1580	Stockt	KJOY 1280		TOD 1560 C
		Shenandoah，lowa	KFNF 920				
San	KLOK 1170		KMA 960 A	Storm Lake	KA		
	KLIV 1590	Sherbrooke，Que．	CHLT 600	Stratiord	cjes 1240	nsvilie	WTKY 1370
	KEEN 1370		KWYO 1410 m	Streator	WIZZ 1250	Tooele，Utah	KOYL 990
	KXRX 1500		RRV 910 M	Stroudsburg	WVPO 840	Topeka，Kans．	WIBW 580
	WAPA 680 M		KTXO 1500	Stuart，Fla Stuart，Va	WSTU 1450 NL		KJAY 1440
	WIAC 740	Sh	KVWM 1050		W		WREN 1250 A
	WIPR 940	Shreveport		Stu	WSTR 1230		EN
	WKAQ 580 C		KBCL 120	Stutio	KWAK 1240 M	ronto．Ont	CBL 240 N
	WKVM 1230		$\text { EL } 710$	Sudb			10 C
	WITA 1140		KREB 1550 M		55		50
			KJOE 1480				
	KCJH 1280		KOKA 980		くはくS 1310		$\begin{array}{r} 580 \mathrm{M} \\ 1430 \end{array}$
	KSLY 1400		KRMD 1340 A			rrinoton，Con	
	K VEC 920 M		C	Summerside	1240		W
	CNY 1470		KSID 1340 A	Summervilie，Ga．	WGTA 950	Torrington，Wyo．	
San Mateo，Calip，	KOFY 1050	Slerra Vista，Ariz．	KHFH 1420 A	Sumter，S．C．	WFiG 1290 M	Towan	WTTC 1550
San Rafaol，Calif．	KTIM 1510	Sikeston，Mo，	KSIM 1400		WDXY ：240		AQE 1570
San Saba	KBAL 1410	Siler C	WNCA 570		A		CJAT 610
Santa	KWIZ 1480	Siler	WNCA 5570	Sunbury	WKOK 1240 C		WTCM 1400
Santa 8	KDB 1490	Siloa	KUOA 1290 M	Sunny	KREW 1230		Cow 1310
	KGUD 990		KKAS 1300		1340		W
	IST 1340 N	Silver	340	Suli	KRFS 1600		
	TMS 1250 A．M	Silver		Supe	WDSM 710 N	Trenton，N，J．	WAAT 1300
Santa Cruz．Callif，	KSCO 1080	Sime	$\begin{gathered} \text { CFRS } 1560 \\ \text { KTOO } 1590 \end{gathered}$		WQind 1320		WBUD 1260
Santa Fe，N，Atox．	KTRC 1400 A	Sioux City，lowa	$\text { KSCJ } 1360 \mathrm{~A}$		$\begin{aligned} & \\ & \text { IAT } 1240 \\ & \hline \end{aligned}$		$\begin{aligned} & 920 \mathrm{~N} \\ & 1240 \mathrm{M} \end{aligned}$
Santa Maria，Cal．	KCOY 400		KMNS 620	Sweetw	WDEH 800		TBF 970 M
	KSMA 1240			Sweetwater，Tex	KXOX 1240	Y，N，Y．	WHAZ 1330
Santa Monica，Cal，	$\text { KDAY } 1580$	S	$\begin{array}{c\|c\|} \text { KISD } & 1230 \\ \text { KELO } & 1320 \end{array}$		CKSW 1400		WTRY 980
Santa Paula，Calif．	KSPA KSRO K K S		$\text { KIHO } 1270$	Sy	311570		KHOE 1400
	KJAX 1150		A				
ta Rosa，N．Mex．	KSYX 1420		KIFW 1230 C－A		WMLS 1290	Truth or Now Mexic	K＇
Saranac Lake，N．Y．	WNBZ 1240 A		WGHM 1150	Sylv	WMSJ 1480		WTYN 1550 M
Sarasota，Fla，	WKXY 930	Smlth		Sylv	WSYL 1490	Tucson，Ariz．	KTUC1400 A
	WSPB 1450	Smiths	WMPM 1270 CJET 630	Syracuse	WHEN 620 C		KAIR 1490
	WYND 1280		KSNY 1450 m		90		KCEE 790
		Socorro，N．	KSRC 1290				KTAN 580 A
	WRSA 1280	So	KBRV 540		WSYR 570 N		KCUB 1290 N
	CHOK 1070	So	WSFC 1240 M		WTAB 1370		KMBO 940
Saskatoon，Sask．	QC 600		90	Tacoma，Wash．	$\text { КMO } 1360$		P 1330
	CFNS 1170	S	WVSC 990		KTAC 850		KSWC 1550
	CKOM 1420	S	KROG 1450		400		KTKT 990
Saugerties，N．Y． Sault Ste，Marie． Michigan	HQ 920	So．Bend，ind，	WNDU 1490 A		${ }_{310} 57$		KOLD 1450 C
Sault Ste．Marie．	WSOO 1230		WJVA 1580 M	Tahleq	$\begin{gathered} \text { KTKR } 1310 \\ \text { KTLQ } 1350 \end{gathered}$	Tucumearl，N，Mex	KTNM 1400 M KCOK 1270 M
Sault Ste．Marie．			WSBT 960 C	Talladega，Ala，	WJH8 1580		KCON 1270
Ontar	10 CJIC 1050	Southbridge，	$\text { SO } 970$		WNUZ 1230 M	Tuli	KTUE 1260
	CKCY 1400	So，Boston．		Tallahassee．	MEN 1330	Tulahom	WJIG 740
Savannah，Ga．	WCCP 1450 N	Southern Pines， South Daytona	\mathbf{W}		RFB 1580	Tulsa，Okta．	KAKC 970
			$\text { W. ELE } 1590$		T		KOME 1300
	－ $630{ }^{\text {N }}$	So．Gastonia，	$\text { WGAS } 1420$		T 1450 A．M1－C		KRMG 740
	TOC 1290	So．Paris，Me．	$\text { WKTQ } 1450$	llu	KTLD 136		14
	WSOK 1230 A	So，Pittsburg，Tenn	WEPG 910	Tamua，Fla．			
Savannah，Tonn．	WORM 1010	So．St．Paul，Minn	WISK 630 M		WOAE 1250 C	Tupelo，mis	WELO 580 M
Sayre，Pa，	WATS 960				T 1550		WTUP 1490 A
Schefferville，Que．	CFKL 1230		WMPT 1450 KONI 480		$\text { FLA } 970$	Turlock，Callf．	KTUR 1390
Schenectady，N．Y．	WGY 810 N	Spanish Fork，Utat Sparks，Nev．	$\begin{aligned} & \text { KONI } 180 \\ & \text { KBUEB } 1270 \end{aligned}$		$\begin{aligned} & 1050 \\ & 1010 \end{aligned}$	Tuscaloosa．Ala．	W JRD 1150
	WSNY 1240		$\begin{aligned} & \text { KBUB } 1270 \\ & \text { WHCO } 1230 \end{aligned}$		010		1420
Seotland Neck，N．C．	W YAL 1280		WSMT 1050		WTMP 1150		NPT 1280
Scottsbluff．Nebr．	KNEB 960 M	Spar	WKLJ 990		$\begin{aligned} & \text { WSOL } 1300 \\ & \text { WCPS } 760 \end{aligned}$		TUG 790
	KOLT 1320 C	Spartanburg，S．C．	WTHE 1400 M	Tarpon Spres	WOCL 1470	$u \mathrm{mbi}$	WVAC 1230 m
O，Ala．	WCRI 1050		WORD 910 N	Tastidy．	WESR 1330		WCHP 1410
tsdale，	KPOK 1440		$\begin{aligned} & \text { SPA } 950 \\ & \text { ICD } \\ & \hline 1240 \end{aligned}$	Tawnton	WPEP	Tuskegee．Ala．	WABT 580
Scottsville，Ky	WLCK 1250	Sugkane，Wash．	KGA 1510	Taylor．Tex．	KTAE 1260	win	$\text { KTF! } 1270 \mathrm{~N}$ $\text { KLIX } 1310 \mathrm{M}$
Scranton，Pa．	WARM 590 A		YK 1230		WTIM 1410		$\text { KEEP } 1450$
	$\begin{aligned} & \text { EJL } 630 \\ & \mathrm{GBI} \\ & \hline 10 \end{aligned}$		$\begin{aligned} & E G \quad 1380 \\ & \text { HQ } 590 \end{aligned}$	Tazewell，Tenn． Tell City Ind．	WNTT 1250 WTCJ 1230	Two Rivers，Wis．	WTRW 1590
	$\text { BI } 910 \text { C }$		$\begin{array}{lll} 1 Q & 590 & \mathrm{~N} \\ \mathrm{~W} & 790 \end{array}$	Tell City Ind． Tempe，Ariz．			
	WSCR 1320		KREM 970		KYND 1580		179

United States FM Stations

Abbreviations: Mc., megacycles, asterisk (*) indicates educatianal statian

Canadian FM Stations

United States Television Stations

- (Territories and possessions follow states). Chan., channel number; asterisk (*) indicates educational station.

World-Wide Short-Wave Stations

Most international broadcasting is done within frequency limits agreed upon at international conventions These frequency ranges are listed here, af the right, expressed both in frequency and by meter bands (wave-length).
Reception in the various bands varies according to the time of day and season of the year. Reception in the 60,49 and 41 meter bands is best at night during the winter months. Reception in the 31 and 25 M . bands is best at night, but all year. Reception in the 19, 16, 13 and 11 M . bands is best during the day, also at night during the summer in the 16 and 19 M . bands.

Abbr.: AIR-All India Radio; RAI-Radiotelevisione Italiana; RTF—Radiodiffusion Television Francaise; VOA - Voice of America; EFE-Radio Free Europe. - denotes stations beaming evening (U.S.) broadcasts to the U.S., \dagger morning or afternoon broadcasts.

Kes. Coll and Locotion 4630 HCGBI, Quito. Ecua. $4765 \mathrm{HJEF}, \mathrm{Cali}$, Col.
4770 ELWA, Monrovia. Lib. 4770 YVMW, Punto FiJi, Ven 4775 Libreville, Gabon Rop. 4780 YVLA, Valencia, Ven. 4790 YVQN, Puerto La Cruz,
4795 Rangoon, Burma
4805 ZYS8, Manaus, Braz. 4810 YVMG, Marataibo, Ven, 4830 YVOA, San Cristobal,
4835 HJKE, Bogota, Col. von. 4840 Lourenco Marques, Moz. 4840 Y VOI. Valera, Ven. 4845 HJGF, Bucaramanga, Col. 4850 YVMS, Barquisimoto ${ }^{\text {Ven. }}$
4870 Cotonou, Dahomey Rep. 4880 YVKF,Caracas, Ven. 4893 Dakar, Mali Fed. 4898 H 4 6, Manaus, Braz. 4898 HJAG. Barranguilla. Col 4905 HRQN', Puerto Cortos

4910 HCIMI, Quito. Ecua 4910 Conary Quito. Ee 4915 Accra Gryana 4920 VLM4, Brisbane, Aus 4920 YVKR, Caracas, Ven. 4930 HCIRC, Quito. Etua. 4940 Abjdjan, lvory Coast 4940 YVMO, Barguisimeto 4945 HJCW, Bogota, Col, 4945 Paradys, So. Afr. 4950 Dakar. Mali Fed. 4955 CR6RZ, Luands. Ans. 4960 YVQA, Cumana, Ven. 4970 YVLK', Caraeas, Ven.
4975 Yaounde, Cameroun
4990 Lagos, Nigeria
4990 YVMQ. Barquisimeto,
Von.
5010 hCrCX, Quito, Eeua
5020 HJFW Manizate B.W.I
5020 Niamoy, Niger Rep.
5030 YVKM, Caracas Ven
5040 Y VMA, Marataibo, Von.
5045 Lomie, Togo
5050 YVKD, Caratas, Ven.
5075 HJGC, Bogota. Col.
5873 HRN, Tequcigalpa, Hond.
5940 Moseow, U.S.S.R
5952 TGNA, Guatemala, Guat. 5954 TIQ, Puerto Limon, C. R. 5960 HJCF, Bogota, Col.
5965 YNWW, Granada, Nis.
5980 TGAR, Guatemala, Gnat.
5981 Geargetown, Br. Guiana 5982 4VB, Port-au-Prince.
5990 Andorra, Andorra Haitl 5990 TGJA, Guatemala, Guat. 5995 Fort-de- France. Mart 6002 4VEC, Cap Haition, Halt 6005 RIAS, Berlin, Ger. 6006 TIHBG, San Jose, C
6010 XEOL, Mexico City

Mexico
6015 PRA8, Recifo, Braz.
6020 Amman, Jordan
6020 Kiev, Ukrainian S.S.R.
6025 Kuala Lumpur, Malaya 6025 Hilversum, Neth.
6030 Baghdad, I raq
6035 Rangoon, Burma
6035 HRTL, Tegueifalpe.
6037 TIFC, San Jose, C. 8
Carlo Mon.
6040 HJLB, Ibague. Col. 6045 YOF, D jakarta, Indon. 6045 HOU3I, David, Pan. lin50 HCJB, Quito. Ecua, f050 BBC, London, Eng. ti055 H JEX, Cail, Col.
lio5s JOZ2. Tokyo, Japan

Kcs. Coll and Locotion 6060 RAI. Caltanissetta. It 6065 XEXG, Lean, Mex. 6065 Horby, Sweden 6070 Sofia. Bulgaria 6070 BBC, Londor, Eng.
6075 Norden, Ger
6080 Z L7. Wellington, N.Z
6082 OAX42, Lims, Peru
6085 Munich, Ger
6090 VLI6. Sydney, Aus.
6090 Luxembourg. Lux
6090 XECMT, C. EI Mante.
6095 ZYB7, Sao Paulo, Braz.
6100 VOA, Munieln, Ger.
6100 Belgrade. Yugo.
6103 Peking, China
6105 XEQM', MeriIla, Mox.
6105 Tunis, Tunisıa
6110 BBC
6110
6115 BC, Londor, Eng. 6115 ZYC7, Rio di Jan., Braz. 6115 Khabarovsk, U.S.S.R. 6120 LRXI, Buenos Airas 6120 BBC, Limassol. Cyprus 6130 Port Moresby. Now Guinea 6130 Madrid, Spain. 6135 HRMF, La Ceiba, Hond. 6135 Papeete, Taliti
6135 Singaport, Sing.
6140 HCOV5, Azonues, Eeua. 6140 HCOV5, Azonues, E
6140 VLW6, Perth, Aus. 6145 Algiers, Algeria 6147 PRL9, Rio de Jan., Braz. 6150 VLR6, Melbsurne, Aus. 61554 VW , Cap $\dot{\text { Haltion }}$

Haiti
6155 VOA, Salonika, Grece 6160 HJKJ, Bogota, Col.
660 EN. Tokyo, Japan 6165 HERS, Bern, Switz.
6165 XEWW 6165 Salgon. Viotnam 6170 BBC, Limas sol, Cyprus 6170 Cayenne, Fr. Guiana 6175 RJF. Paris, France 6180 BBC, London, England 6185 HJCT, Bopota, Col. 6190 VOA, Munien, Ger. 6190 HYJ, Vatican City
6195 HJE, Call Col. 6195 HRD2, La Ćciba, Hond 6195 Pyongyang. N. Koroa 6200 Hi2LR, C. Trujlllo, D.R 6200 4VHW, Port-au-Prince,

Haiti
6208 TGHC, Guaiemala, Gu 6215 Pyongyang, N. Korea
6225 Peking. Chira
6305 Andorra, Andorra
6327 COCF, Havana. Cuba 6345 Ulan Bator, Mong.
6373 Lisbon, Port.
6790 BBC, Limassol, Cyprus
7105 Madrid, Spain
7110 VOA, Colombo, Coylon
7110 BBC, London, England 7115 Rabat, Mororco
1115 RFE, Germ.
7120 BBC, London, England
7120 BBC, Singapore
7140 Monte Carlo, Monaco
7145 RFE, Ger.
7150 Khabarovsk, U.S.S.R.
7160 RTF, Paris, France
7160 VOA, Tangier, Mor.
7165 RFE, Germ.
7170 Algiers, Als
7180 Baghdad. Imq
7185 BBC, Londan, Eng.
7200 BBC, Londen, Eng.
7200 R. Malaya, Sing.
7200 Omdurman, Sudan
7205 VOA, Salonika, Gr.
7210 BBC , London. Eng.
7210 Dakar, Mali Fed.
7210 Khabarovsk, U.S.S.R.
7220 VLD7, Melhourne, Aus.
7220 Budapest. Hunc.
7230 BBC, Londen, Ena.
7235 Taipei. Taiwatu. China
7235 VOA, Munith, Gor,

Kes. Coll and Locotion
7240 RTF. Paris, France
7250 BBC, London. Eng.
7255 Sofla, Bulo.
7260 Saigon, Vietnam
7270 Motola. Sweden
7270 Magadan, U.S.S.R.
7275 RA1, Rome, It.
7230 Teheran, I ran
7280 HVJ, Vat. City
7285 Ankara. Turk.
7295 Makassar. Celebes
7295 RFE, Ger.
7320 BBC. London. Eng.
7398 Damaseus, U.A.R.
7505 Peking, China
7650 YNMS, Leon, Nic.
7670 Sofa, Bulg.
7850 Tirana, Alb.
8002 Beirut, Leb.
8900 HCJC3, Zaruma, Eetua.
9009 Tel Aviv, lsrael
9026 COBZ, Havana, Cuba
9065 Peking, China
9210 Leopoldville, Conga
9360 Madrid. Spain ©
9363 C0BC, Havana, Cuba
$\mathbf{9 3 8 0}$ Alma Ata, Kazakh S.S.R.
9380
9385
Leopoldville, Congo
9385
9410
BBC . Leoldilio. Congo
Long.
9410 BBC , London. En.
${ }_{9458} 9440$ Peking, China
9458 PEWW, Mexico City,
9500
9500 Magadan, U.S.S.R.
9500 Motcow, U.S.S.R.
9505 PRB22. Sao Paulo. Braz.
9505 Rabat, Mor.
9505 HDLA, Colon, Pan.
9510 Poking, China
9510 VOA, Tangier, Mor
9515 RAI, Caltanissetta, It.
9515 Ankara, Turkey
9520 Colombo, Coylon
9520 Copenhagen, Den. -
9520 OAXBE, I Iuitos, Peru 9523 Paradys, S. Afr. 9525 BBC . London, Eng. ${ }_{9525} \mathbf{~ J O B 9}$, Tokyo, Japan 9525 J Warsaw, Poland 9525 Warsaw, Poland Cuba 9530 VOA, Munich, Gor. 9530 AlR, Delhi, India ${ }_{9530} 95 \mathrm{YMZ}$, Maracaibo, Von ${ }_{9535} 950$ YMZ, Maracaibo, Von 9535 Lagos, Nigeria
9535 HEA, Manila, P.I.
9535 HER4, Bern, Switz.
9540 Warsaw, Poland
9540 Omarsaw, Poland
9545 ZYS 43 , Curitiba, Braz. 9545 HED5, Bern, Switz. 9545 HED5, Bern, Switz.
9950 Prague, Czecho. 9950 Prague, Czecho. 950 Al 9550 OAX 12 , Tumbes, Peru 9550 OAXIZ, Tumbes, P 9555 CP6, La Paz, Bol. 9555 XETT, Mexico City, Mox. 9555 REFT, Moxico City, Mex. ${ }_{9560}{ }^{9560}$ Rokyo, Japan
9563 OAX 4 'R. Lima, Peru 9565 ZYK 3 , Recifto, Braz 9565 Radio Liberty Ber. 9565 Khabarovsk, U.S.S.R. 9570 Bueharest, Rom. S. 9575 ZYZ27, Rio de Jan., Braz. 9575 Taipei, Formosa 9575 RAI, Rome, Italy 9580 VLA'9, Melbourne, Aus. 9580 BBC , London, Eng. 9585 ZYR56, Sao Paulo, Braz. ${ }_{9585}$ ATF. Paris France 9589 Peking China rance ${ }_{9590}{ }^{5} 858$ Pekng, China 9590 H jaharta. Indon. 9590 Buersum, Neth. 9595 JOZ3. Tokyo Japan 9598 CE9SO, Santiago, Chile 9600 BBC, Landon. Eng. 9605 Cologne, Gier.
9 iilo VLX9. Perth, Aus

METER BANDS

4750 fo $5060 \mathrm{kc} / \mathrm{s}$ (60 mefer band)
5950 to $6200 \mathrm{kc} / \mathrm{s}$ (49 mefer band)
7100 fo $7300 \mathrm{kc} / \mathrm{s}$ (41 mefer band)
9500 fo $9775 \mathrm{kc} / \mathrm{s}$ (31 mefer band)
11700 to $11975 \mathrm{kc} / \mathrm{s}$ (25 mefer band) $15100 \mathrm{fo} 15450 \mathrm{kc} / \mathrm{s}$ (19 mefer band) 17700 to $17900 \mathrm{kc} / \mathrm{s}$ (16 meter band)
21450 fo $21750 \mathrm{kc} / \mathrm{s}$ (13 meter band)
25600 to $26100 \mathrm{kc} / \mathrm{s}(11$ meter band.

Kes. Coll and Lecation

9610 ZYC8, Rio de Jan., Braz.
9610 Oslo. Norway
9610 OAX8C. Iquitos, Peru
9615 VoA, Jangier, Moroceo
9620 ZYR98, Sao Paulo, Braz
9620 Poking, China
9620 VOA, Tangier, Mor
9620 Saipon, Vietnam
9625 Brazzavillo. Equat. Un.
9625 BBC , London, Eng.
9625 OAX8K, lquitos, P
9625 Moscow, U.S.S.R.
9630 CR6RL, Luanda. Ang.
9630 VLG9. Melbourne, Aus.
9630 RAI, Rome. Italy
9630 Komsomolsk, U.S.S.R.
9635 ZYR83, Aparecida, Braz.
9635 VOA, Munieh, Gor,
9635 Lisbon. Portugal
9640 Cologne, Germany.
9640 Acera, Ghana
9640 HLK5, Seoul, Kore
9640 Moscow, U.S.S.R.
9645 TIFC, San Joso. C.R.
9645 HVJ, Vatican City
9650 BBC, Limassol, Cyprus
9660 LRX Buenos Aires, Ar
9660 VLQg, Brisbane, Aus.
9660 Radio Liberty, Ger.
9660 Teheran, Jran
9660 Komsomolsk, U.S.S.R.
9665 Moscow, U.S.S.R.
9667 Hargeisa, Somalia
9667 TGNA, Guatomala, Guat. -
9670 COCQ. Havana, Cuba
9670 Pragut, Czecho.
9675 BBC, London, Eng.
9675 RTF, Paris, France
9675 J0B9. Tokyo, Japan
9675 Warsaw Poland ${ }^{9680}$
9680 VLH9, Melbourne, Aus.
9680 XEQQ. Mexico City, Mex
9680 VOA. Tangier. Mor.
9680 Paradys, S. Atr.
9685 Alplers, Algerla
9690 LRA, Buenos Aires,
Ars.
9690 BBC, London, Eng.
9690 BBC, Sin⿻apore
9700 Soffa, Bulgaria -
9700 Rabat, Moroceo
9705 Kabut, Afghan.
9705 Brussels, Bela.
9705 AlR, Delhi, Indis
9705 Radio Froe Europe, Port.
9710 BBC , London. Eng.
9710 RAL, Rome, it.
9715 Hilvarsum, Noth.
9715 Radio Free Europe, Ger.
9720 Paradys. S. Afr
${ }_{9725}^{975}$ RFE, Port.
9725 BBC, Singapore
9725
9730
Brazzavillo, Equat. Un.
9730 EZH7 ${ }^{9}$. Ger.
9730 DZH7, Manila, P.I.
9735 Peklng, China
9735 BBC, London, Eng.
9735 Coloone, Germany
9735 AlR. Madras, India
9740 VOA. Tandier, Mor.
9742 LRSI, Buenos Alres, Are.
974 Brussels. Bela.
9745 HCJB, Quito. Ecua.
9745 Ankara, Turk.
9745 MBC
9750 BBC , London, Eng.
9750 Radio Free Europe. Port.
9750 Khabarovsk U.S.S. R,
9750 Khabarovsk, U.S.S.R.
9755 ZYW 23, Goianla, Braz.
9755 RTF, Paris, France
9755 Salgon, Viatnam
9760 BBC. London, Eng.
9762 Hanoi, N, Vietnam
9765 Moscow, U.S.S.R.
8770 Brazzavillo, Equat. Un.
9770 BBC, London. Eng.
0775 Moseow, U.S.S. R.

Kes. Call and Locatlon
9795 Cairo, U.A.K.
8800 Motcow, U.S.S.R.
9605 Cairo, U.A.R.
9825 BBC, London, Eng.
9840 Hanoi, N. Vietnam
9850 AlR, Delhi, India
9860 Peking, China
9870 D Jakarta. Indon.
9895 Bongazi, Libya
9915 BBC, London, Eng.
0973 Peking, China
10335 Ulan Bator, Mong. 10530 Alma Ata, Kazakh S.S.R. 1290 Poking, China 1570 moscow, U.S.S.R. 1600 Peking, China 11630 Moscow. U.S.S.R. 1650 Peking. China 1665 Cairo, U.A.R 1675 Peking, China 1675 Karachi. Pak.
11680 BBC, London, Eng.
1685 HVJ, Vat. City
11690 Moscow, U.S.S.R. -
11700 RTF, Paris, France
11705 JOAil. Tokyo, Japan
1705 Horby. Swoden
11705 Moseow, U.S.S.R
1770 VLBi, Melbourne, Aus, t
11710 AlR, Dellhi, India
11710 WBOU, New York, N.Y.
1715 VOA, Munith, Ger,
11717 Athens, Gres.
11720 Athens, Greece
11720 BBC, Limassol. Cyprus
11720 BBC, Limassol. Cyprus
11725 Brazzavilie, Equ.
11725 Prague, Czecho.
11725 BBC, Singapor
1730 Hilversum. Noth.
11735 Rabat. Morocto
11740 MLCII, U.S.S.R.
1740 VLCII, Melbourne, Aus.
1740 Ceira, Sainaso, Chile
11740 Poking, China
11740 VOA. Tangier, Mor
1745 RFE, Germ.
11750 BBC, London, Eng.
17755 FEE, Port,
11755 Hilversum, Neth.
1755 KLBsomo Melbourne.R.
1760 VLBII. Melbourne, Aus.
11760 VOA, Munich, Ger.
11760 Lourenco Marques, Moz.
11760 Lourenco marques.
$11765 \mathrm{ZYBa}, \mathrm{Sao}$ Paulo. Bra
11765 Berilin, E. Germany
11770 Colombo Caylona
11770 BBC, Lóndon. Eng
17775 ZYZ28, Rio do Jan., Braz. 11775 Moscow, U.S.S.R.
11780 BBC. London, Eng
11785 D jakarta. Indon.
11785 VOA, Tangler, Moroce
11790 BBC, London, Eng.
11790 Moseow U.S.S.R
11795 Cologne, Ger.
11795 D jakarta, Indon
11800 BBC, London. Eng.
11802 Warsaw, Poland
11805 RAI. Rome It.
11805 VOA, Courier, Rhodes
11810 VLBil, Melbourne, Aus, \ddagger
1810 RAI , Rome, It.
II810 Amman, Jordan
11810 Bucharest, Rom.
11810 Horby. Sweden.
11815 Madrid, Spain
|1820 Peking. China
11820 BBC, London, Eng.
II820 XEB'R. Hermosillo, Mox.
11825 ELWA. Monrovia. Lib.
11830 Moscow. U.S.S.R.
11835 Algiers. Alg.
11835 VOA, Colombo. Ceylon
l|835 CXAI9, Montevideo, Urug.
11840 Prague, Czecho.
11840 VOA, Tangier, Mor.
11840 Lisbon. Port.
11840 Khabarovsk, U.S.S.R.
11840 Hanol, N. Vietnam
11845 RTF, Parls, Frante
11845 Karachi, Pak.
11850 Sofla. Bulg.
1850 AIR, Bombay, Indis
11850 0sio, Norway
11855 Brussels. Belo.
11855 Radio Free Europe, Ger,
11855 DZH8. Manlla, P.I,
11860 Peking, Chirra
1860 BBC, Londoh. Eng.
, Recife, Braz
1865 VOA, Tangier, Mor.
Ias5 HER5, Bern, Switz.
11865 Tunis, Tun.
1870 Moscow, U.S.S.R.
Il875 ZYN32, Salvador, Braz.

Kes. Call and Location
11875 VOA, Colombo. Ceylon 11875 VOA. Tangler, Mor, 11880 BBC, London. End.
11880 XEH, Mexico Clty, Mox. 11885 Poking. China
\{885 Karachi. Pak.
11885 Radio Free Europe, Ger.
11890 Moscow. U.S.S.R.
11895 Dakar, Mali Fed.
11895 VOA, Tangier, Mor,
11895 VOA, Manila, P.I.
11900 Bucharost. Rumania © 11900 CXA 10 . Montevideo. Ur. 11900 Moscow. U.S.S.R,
11905 RAI, Rome, Italy © U.S.A.
11905 WDSI, Now York. U.S.A.
1905 WDS1, Now York.
11910 BBC! London, Eng.
11910 Budapest, Hung.
11910 Bangkok. Thai,
11915 HCJB, Quito Eeva. 11915 Hilversum, Neth. 11920 RAI, Paris, France
11920 DXF2, Manila, P.I. 11920 DXF2, Manila, P.I. U.S.A.

11925 ZYR78. Sao Paulo, Braz. | 1925 HLK6, Spoul, Korea \dagger 11925 Warsaw.Pol.
$\$ 1925$ Moscow, U.S.S.R.
11930 BBC, London, Eng,
11930 BBC, Sinianora
11930 BBC. Sinqaporo
11935 Radio Liberty, Ger.
11940 CE 1190 . Valparaiso, Chile 1940 JOBII. Tokyo, Japan 1945 Peking, China
11945 B BC, London, Ent.
11945 Cologne, Germany
11950 Jidda, Saudi Arab.
11950 Jidda, Saudi Arab.
11955 BBC, London, Eng.
I 1955 BBC, Singapore
11960 CEllig6, Santiago, Ch.
11960 Moscow, U.S.S.R.ie
11965 Radio Liberty, Ger. 11972 Brazzaville E
1972 Brazzaville. Equat. Un. i 1975 Moscow, US
11985 Moscow, U.S.S.R.
11985 Moseow, U.S.S.R.
11986 ELWA, Monrovia, Lib. 11990 Praque, Czecho.
12000 Moscow, U.S.S.R.
12020 AlR, Delhi, India
12020 Moscow, U.S.S.R.
12040 BBC. London. Eng.
12050 Cairo, U.A.R.
12095 BBC, London, Eng.
15020 Hanoi, N. Viat
15030 Poking. China
15070 BBC, London. Eng. I5085 Grenada, Windward Is.i.
15095 Poking, China
15100 Lisbon, Port.
15105 ZYZ32. Rio do Jan., Braz.
15105 AlR. Delhi, India
15110 BBC , London, Eng.
15110 Mostow, USSR
15115 HCJB. Quito, Ecuador 1515 Poking, China
15120 Colombio, Ceylon
isi20 RAI, Rome. Italy
15120 Warsaw, Poland t
15120 HVJ. Vatican City
15125 ZYN31, Salvador, Brazil
15125 Prague, Czecho.
15125 Seous, Korea.
15125 VOA, Manila, P,I.
15130 RTF Paris Franco
15130 VOA, Manila, P.I.
15130 KCBR , Dulano, Calif.
15130 WBOU. Now York. USA
15130 Moseow, USSR
15135 PRB23, Sao Paulo, Braz.
15135 JOB15, Tokyo, Japan
15135 Radio Froo Europe, Port,
15140 Peking, China
15140 BBC . London. Eng.
15140 AlR, Dolhi, India
15140 Komsomolsk USSR
15145 ZYK33, Recife, Brazil 15145 Radio Free Europe, Port 15148 CEI5IS, Santiago. Chile 15150 Djakarta, Indonesia 15150 Lourenco Marquos, Moz. 15150 Lisbon, Portugal
15153 OAX4T, Lima.
15155 2YB9. Sao Pauto, Brazil
15155 Karachi, Pakistan
15155 WBOU, Now York, USA 15155 Moseow, USSA
15160 VLAl5, Melbourne. Aus. 15160 RTF, Paris, France 15160 XEWW, Mexico City, Mox.
15160 Ankara, Turkey
15165 ZYN7, Fortaleza, Braz. 15165 Copenhapen. Denmark 15165 Damascus. UAR

Kes. Call and Location 15170 0BX4C, Lima. Peru 15370 Radio free Europe, Port. 15175 Poking. China
15180 BBC, London. Eng
15180 AlR, Delhi, India
15180 Moscow. USSR
15185 VOA, Manila, P.I.
15185 Radio Froe Europe, Port. 15185 WDSI. Now York, USA 15190 Brazzaville. Congo Rep, $\$ 5190$ Holsinki. Finland \dagger 15190 Komsomolsk, USSR 15190 Moscow, US'SR
15195 Prague, Czecho.
15195 Radio Free Europe, Ger.
15195 Ankara, Turkoy
15200 Paradys, South Afriea
15200 WDSJ, New York, USA
15200 Moscow, USSR
15205 XESC. Mexico City, Mex.
15205 WDSI. Now York, USA
15210 VLGI5, Mol hourno AUs.
15210 VLGI5, Melbourne, Aus.
15210 VOA. Manita, P.I.
15210 KCBR, Delano, Cal., USA
5215 moscow. USSR
15215 Radio Free Europe, Port.
15215 VOA, Okinawa Ryiky 15215 VOA, Okinawa, Ryukyu Is, 15220 Hilversum, Neth. \dagger
i5225 Radio Liberty, Germany
1525 Radio Liberty,
i5235 MLHCOW. USSR Melbourne, Aus,
15230 VOA. Colombo. Coylon
15230 BBC, London, Eng.
15235 JOBis, Tokyo, Japan
15235 VOA , Tangier. Morocco
15235 Komsomolsk, USSR
15240 VLAIS, Melbourne, Aus 15240 Horby, Sweden
15240 Morby, SWeden
15240 Belgrade. Yugoslavia
15245 ZYE21, Belem, Brazil
15250 VOA, Manila, P.I.
15250 Bucharest, Rumania
$\$ 5250$ WLWO, Cincinnati, USA
i 5255 Radio \dot{F} ree Europe, Port.
15257 FEN. Tokyo, Japan
15260 BBC, London, England
15265 BBC , London, Englan
15265 Moscow, USSR
15270 Peking, Chins
15270 AlR. Bombay, India
5270 AOA. Sombay, India

5270 .
15270 WBOU. Now York, (VOA)
15270 WDSI. New York, USA
15275 Cologne, Germany
15275 Karachi. Pakistan
15275 VOA, Manila, P.I,
15275 Warsaw Poland © ${ }^{\dagger}$
15280 Moscow USSR
15285 Brussels. Belaium
15285 Prague, Czecho
15285 AlR. Bombay, India
15285 WBOU U, Now York, USA
15290 LRU. Buenos Aires, Arg.
15290 Paking. China Cal USA
15290 WLWR, Delano, Cal USA
15295 Rio de Janeiro. Brazil
15295 RTF. Paris, France
15295 VOA, Tangier, Moroceo
5295 Moseow. USSR -
15300 BBC, London, Eng, ${ }^{\dagger}$
15300 DZH9, Manila, P.i.
15305 Dacea, Pakistan
I5305 Moscow, USSR
15310 BBC . London, England -
15310 BBC, SIngapore
15310 KCBR, Delano, CaI., USA 15315 VLCI5, Melbourne, Aus.
15315 Peking, China
15315 HEU6, Born, Switz. -
15315 Moscow, USSR
5320 VLCi5, maibourne, Aus,
15320 AlR, Delhi, India
15320 VOA, Tangier, Moroceo
15325 Z YR228. Sao Paulo. Braz.
15325 RAI. Rome, Italy
15325 JOBI5. Tokyo, Japan -
15330 VOA, Munich, Gormany
15330 VOC, Salonika, Greece
15330 WBOU, New York, USA 15330 WGEO. Schenactady, USA 15335 Brussois, Bolgium t
15335 ZYU68. Porto Alegro. Braz.
15335 Karachi. Pakistan.
15335 VOA, Manila, P.I.
15335 VOA, Manila, P.I.
15335 Komsomolsk USSR
15335 Komsomolsk. USSR
15340 Radio Liberty. Germany
15340 Moseow. USSR
15345 LRA, Buenos Alres. Arg.
15345 Taipei, Talwan, China
15345 Athens, Greece
15345 Rabat, Moroceo
15350 RTF.'Paris, Franco
15350 RTF. Paris, Franco
15350 WLW O, Cincinnati, USA
15355 Radio free Eurone. Port.
15360 BBC , London, Engiand 15360 Moscow. USSR
15365 WLWO. Cincinnati, Ohio 15370 ZYC9. Rio do Jan., Braz. 15370 Radio Liberty, Germany 15375 BBC, London, Ens.
15375 Cologne. Gormany \dagger
lis380 VOA, Tangier, Morocco

Kes. Call and Location
15380 VOA, Okinawa, Ryukyu ls.
15380 WRUL, Boston, USA
15385 CXA60, Montevideo, Urue.
15385 Moscow, USSR
15390 BBC. London. Eng.
15390 Moseow, USSR
15395 Radio L'lborty, Gormany
15400 RTF, Paris, France
15400 RTF. Paris, France
15400 RAI, Rome, Italy
15405 Cologne. Gormany
5407 Paramaribo Surin
15407 Paramaribo, Surinam
15410 Prague, Czecho,
15410 Radio Liherty,
15410 Radio Liborty, Germany
I5410 VoA Tanoier Goroeco
15410 VOA, Tandier, Moroceo
15415 AFRS. Munich, Germany
5415 AFRS. Munich, Germany
15415 Budapest, Huneary e
I5417 Poking, China
15420 Brazzavillo, Conpo Rep.
I5417 BBC, London, Ens.
15420 Madrid, Spain
I 5425 VLXI5, Perth, Aus,
15425 Hilversum. Noth.
15430 Poking. China
15430 Cairo, UAR
15430 Cairo. UAR
$\$ 5435$ BBC. Liondon. Ens.
I 5440 VOA. Munich. Germany
15440 Moscow, USSR
i5445 Brazzaville, Conco Rop.
15445 Hilversum. Neth.
I 5447 BBC , London. Eng.
i 5465 Paramaribo, Surinam
15470 Moscow, USSR
15475 Cairo. UAR
15480 Peking. China
15480 AlR. Dolhi, Indie

- 5520 Peking. China

15555 Poking, China
15610 Peking. China
17605 Poking, China
17675 Pokint, China
17690 Cairo, UAR
17695 BBC, London. Enf.
, 17700 Moscow, USSR
17705 AlR, Delhi. India
17705 VOA, Tanfier, Moroceo
17710 WLWO , Cineinnati, USA
17710 Moseow, USSR
17715 BBC. Lohdon. Eng. -
17715 VOA, Colembo, Co
17720 Peking, China
17720 Brazzaville, Conpo Rop.
17720 Radio Liberty, Germany
17720 moscow, USSR
17725^{*} Radio Free Europe, Port.
17725 AlR, Dolht. India
17730 BBC, London, En.
17730 Radio Liborty, Germany
17735 Radio Free Europe Port.
17735 KCBR . Delano, Calif.
17735 HVJ. Vatietan City
17740 WLWO. Cincinnati, USA
17740 BBC, London. Ens.
17740 Moscow. USSR
17745 BBC, London, Eng.
17745 Karachi, Pakistan
17745 VOA, Manila, P.I
17747 Poking, China
17750 WRUL, Boston, USA
17750 VOA. Tangier. Morocco
17750 Moscow. USSR
17755 Prapus. Czecho.
17755 BBC, Sinaapore
17760 WGEO, Schenectady, USA
17760 AlR, Delhi. India
17760 Moscow, USSR
17765 RTF, Paris. France
17765 Peking. China -
17770 Radio Free Europe, Port.

Leam lialdio，TEEEVISHON In ELECTRONLCS by Practicing at Home in Your Spare Time
 At No Extra Cost you get specially de－ veloped Electronic Training Kits for prac－ lical experience．Shop and laboratory practice at home make learning easier， interesting，faster．You do nat need a high school diplomo or previous expe－ rionce．
 Increasing Demand for Trained Men
 This is the Electronics age．Men with Flectronic know－how are in demard They enjoy high pay and growing opportunities for advancement．Sat lites．Radar，Automation in Industry； Missiles．Rockets．Planes，Steren． TV，Kadio，Two Way Communications for trans portation are a few of the fantas

High Pay，Prestige，Bright Future What branch of Electronics interests you？Thou－ sands of successful NR1 graduates prove that NRIs learn－by－practice method is the way to success．You start in vour chosen career way success．Yo the man who only learns from books You ahead of the man who only learns from books．You
do not need to give up your job．You do not need to go away to school．Youlcarn at home，get prac tical knowledge from training kits NTRI provides tic developm growing Flectronics industry．If you are not complelely satisfied with your work：if you are doubtful about your future，inwestigate Electronics．

ーーーーーーーーラ

No Salesman will call．（1＇lease PlRIN＇l＇） 113133

N OLDEST \＆LARGEST WASHINGTON 16，D．C． accredited member national home study council

NEW Goursenc netm

Train With the Leader

 NRI is the world＇s oldest and larg－ est home study Electronics school． You benefit from the experience NRI has gained from training men for 45 years．NIRI offers you prover courses of home study in Elec tronics；Principles．I＇ractices and Maintenance－Radio Television Communications－Radio Televi－ sion Servicing．
Start Soon，Earn More

Soon after enrolling N IRI shows you how to apply your knowledge to carn extra money doing Electronic repairs or servicing Kadio and ＇Television sets for fricuds and neighbors．Take the first step to ward success now．Find out what NRI offers you．Mail the postage free card．No obligation．Cost of －Nan available．NA TIONAI，KADIO INS＇ITUTE －in $\cos ^{2}$ Washington 16，D．C

Needed

Radio
Institute

[^0]: \square Send "Edu-Kit" postcaid. I enelose full payment of $\$ 26.95$
 [Send "Edu-Kit" C.O.D. I will pay $\mathbf{\$ 2 6 . 9 5}$ plus postage.
 C Send me FREE additional information doscribing "Edu-Kit."
 Nams ...
 Address

 PROGRESSIVE "EDU-KITS" INC.
 1186 Broadway, Dept. 508NN, Hewlett, N. Y.

[^1]: "Man out here with the latest bookshel" equipment, dear."

[^2]: Desig.
 RP
 R1E, R2E
 RIC
 R2C, S R1B, R2B RS, RMI RM2
 C1, C2
 C3, C4
 C5
 D1, D2
 T
 6
 $T 1, T 2$
 1
 1

 MATERIALS LIST-CIRCUIT DESIGNER Description
 500 ohm, 3 w. potentiometer (Clarostat 58-500)
 1 K potentiometer (Lafayette VC.32)
 10K potentiometer (Lafayette VC-34)
 10K potentiometer with switch (Lafayette VC-28)
 1 megohm potentiometer (Lafayette VC-38)
 $1 \mathrm{~K}, 1 / 2-\mathrm{w}$. carbon resistors
 10K, $1 / 2-w$. carbon resistor
 20 mfd., 15 v. electrolytic capacitor (Lafayette CF-123)
 $100 \mathrm{mfd} ., 15$ v. electrolytic capacitor (Lafayette
 $160 \mathrm{mfd} ., 25 \mathrm{v}$. electrolytic capacitor (Lafayette CF.145)
 germanium diodes (General Electric IN64)
 6.3 v. filament transformer (Lafayette TR-11)
 knobs (Lafayette MS-185)
 transistor sockets (Lafayette MS.149)
 perforated Bakelite board (cut from Lafayette MS-305)
 Bakelite case (Lafayette MS-216)
 Parts are available from Lafayette Radio Co., Dept. SM,
 165.08 Liberty Ave., Jamaica 33, N. Y.

[^3]: 1) Bayonet base of pilot lamp
 2) Spool of wire solder
 3) Spaghetti
 4) Sharp nose pliers
 5) Aluminum foil
 6) Top of miniature tube
[^4]: MATERIALS LIST-PARABOLIC MICROPHONE
 No. Req. Size and Description
 1 "Flying Disc" sled, $26^{\prime \prime}$ dia. Sears Roebuck catalog \#8317 (\$3.72)
 $12^{\prime \prime}$ electrical conduit
 20 threaded rod with wingnuts and 2 washers. Available hardware stores.
 $211 / 2 \times 3 / 16^{\prime \prime}-24$ thread bolts with wingnuts
 $16^{\prime \prime}$ \#14 bare copper wire
 Misc. Electrical tape, $1 / 4-20$ tap. $\# 7$ drill, $7^{\prime \prime}$ sound absorbing disc of cardboard, felt or fiberglass

 Suggested Microphones
 Lapel Microphone PA-9, high impedance type. \$1.95* or
 3-way Crystal Microphone \#PA-31, high impedance type, \$3.95*
 *These microphones are listed in the 1960 Lafayette Radio Catalog, Box 1000, Jamaica 31, New York.

[^5]: MATERIALS LIST-LOW VOLTAGE POWER SUPPLY Desig. Description
 R1 22 ohm, $1 / 2$ watt carbon resistor (10%)
 R2 2.5 K ohms, 2 watt wirewound potentiometer (Clarostat 43.2,500)

 C2 $160 \mathrm{mfd} ., 15$ v. electrolytic capacitor (Lafayette CF-127)
 C1 $1000 \mathrm{mfd} ., 12 \mathrm{v}$. electrolytic capacitor (Sprague TVA-1133)
 T1, T2 2N307 transistors (Sylvania)

[^6]: MATERIALS LIST-AMPLIFIER
 270 ohms, $1 / 2$ watt carbon resistor, 10% 1 K ohms. $1 / 2$-watt carbon resistor, 10% 4.7 K ohms. $1 / 2$-watt carbon resistor, 10% 6.8 K ohms, $1 / 2$-watt carbon resistor, 10% 10 K ohms. $1 / 2$ watt carbon resist or, 10% 27 K ohms, $1 / 2$-watt carbon resistor, 10% 47 K ohms. $1 / 2$-watt carbon resistor, 10% required for certain mike, phone or tube tuner applications (see text)
 R2.S 10K volume control with switch (Lafayette VC-28)
 Cl, C3 30 mf .6 v . miniature electrolytic capacitor (Lafayette CF.104)
 100 mf .6 v. miniature electrolytic capacitor (Lafayette
 C2 $\quad 100 \mathrm{mf}$
 C4 $\quad 160 \mathrm{mf}$. 15 v . miniature electrolytic capacitor (Lafayette (F.127)

 Tl $2 N 508$ transistor (GE)
 T2 2N107 transistor (G E)
 T3 $\quad 2$ N255 transistor (CBS) (Quam 5A1Z45)
 J subminiature jack (Lafayette MS-282)
 subminiature jack (Lafayette MS.282) VSO 36) two double battery holders (Lafayette MS.176) $727 / 32 \times 11^{27 / 32} \times 1 / 8 \mathrm{in}$. perforated Masonite Board (Lafay. ette ML.181)
 $311 / 16 \times 63 / 4$ in. perforated bakelite board, cut to $311 / 16 \times$ $31 / 2^{\prime \prime \prime}$ (Lafayette MS-305)
 miniature knob (Lafayette MS-185)
 Losin core solder, hookup wire Lafayette Radio, except the loudspeaker.
 Allied Radio, 100 N. Western Ave.. Chicago 80. Ill., stocks all parts except those designed by Lafayette numbers.

[^7]: MATERIALS LIST-ELECTRONIC FISHING THERMOMETER Part/
 No. Req. 1.34-volt mercury cell. Mallory RM.401R (Lafayette BA. 239)

 M1 0.1 ma. D.C. Milliammeter (Lafayette TM.60)
 R1 $100 \mathrm{ohm}, 1 / 2$ watt, 10% carbon resistor (Lafayette RS-10) 470 ohm, $1 / 2$.watt, 10% carbon resistor (Lafayette RS-10) SPDT togole switch (Lafayette 8282k14)
 1250 ohm thermistor, Veco 31Al (Lafayette 31A1)
 $61 / 4 \times 33 / 4 \times 2^{\prime \prime}$ Bakelite case (Lafayette MS-216)
 panel for Bakelite case (Lafayette MS-217)
 holder for RM.401R Mercury cell (Lafayette MS.388)
 miniature parallel cable, Belden 8782 (Newark Electronics 36F105B)
 $1 / 2^{\prime \prime}$ rubber feet (Lafayette P-249)
 On-Off switch plate (Lafayette 827-228F3)
 \#1-33 wire markers. Brady B-500 (Newark 30F200)
 \#34.66 wire markers, Brady-500 (Newark 30F201)
 Misc machine screws, nuts. metal spasers, wood dowel, ball point pen casing, cement, sheet Bakelite, cardboard gasket, plastic electrical tape, wire and rosin core solder

