

Oxm 2
$2{ }^{5}$
が，品
－
$<0 \times 6$
π Mンo
$z 0 n$
∞
m
m

Editorial：Status of Association Merger

Just as each color dot determines the total TV picture，what each of us does determines the future fate of our profession．

FEBRUARY 1973 A HARCOURT BRACE JOVANOVICH PUBLICATION

ELECTRONIC TECHNICIAN／DEALER

WORLD＇S LARGEST TV－RADIO SERVICE \＆SALES CIRCULATION

"The reports of my death

$\rightarrow \infty \rightarrow \infty$

Ne're also a leader in this big, profitable reslacement business Go with RCA and get your ihare.
ver one and a quar:er bill ion tubes are uming it on.

| (| Electronic Components

ELECTRONIC
 TECHNICIAN/DEALER

FEBRUARY 1973 • VOLUME 95 NUMBER 2

PHILLIP DAHLEN, CET
Editor
1 East First Street
Duluth, Minn. 55802
(218) 727-8511

ALFRED A. MENEGUS

Publisher
757 Third Avenue
New York, N.Y. 10017
(212) 572-4839

TOM GRENEY
Publishing Director
JOSEPH ZAUHAR
Managing Editor
GAYNELLE DAVIDSON
Production Manager

JOHN PASZAK

Graphic Design
LILLIE PEARSON
Circulation Fulfillment

JOHN KESSLER

Manager, Reader Services

MANAGERS

BERNARD H. PYGON
43 East Ohio Street
Chicago, III. 60611
(312) 467-0670
chuck cummings
Ad Space South/West 613 North O'Connor Irving, Texas 75060
(214) 253-8678

KEN JORDAN
DONALD D. HOUSTON
1901 West 8th Street
Los Angeles, Calif. 90057
(213) 483-8530

CHARLES S. HARRISON
CY JOBSON
57 Post Street
San Francisco, Calif. 94104
(415) 392-6794

ROBERT UPTON
Tokyo, Japan
C.P.O., Box 1717

Our cover photo is a closeup of the screen of the Electrohome color-TV set described in the Teklab Report beginning on page 21. Taken by your editor, this photo symbolizes how each one of us is important in determining the total picture of our industry (note the Editorial on this subject-page 7).

```
LETTERS: Pertinent comments concerning past issues.
EDITORIAL: Our Professional Associations.
READERS' AID: What you need or have for sale.
NEWS: Events of interest to our industry.
NEW PRODUCTS: Instruments and components to make your job easier.
NEW AND NOTEWORTHY: Merchandise of special interest.
```


FEATURES

21 TEKLAB REPORT

They make things a little different in the first Canadian color-TV set that we have examined in our lab-a model that is now being marketed in this country.

25 THE CAT GAME

The third in a series of quizzes by Lambert Huneault tests our understanding of circuit functions in a solid-state color-TV set, using a Zenith 20X1C38 Chassis as an example.

30 BASIC DIGITAL CIRCUITRY

The fourth in this series of staff-written articles is concerned with the digital processing of 1 kHz and 1 Hz clock signals in a Heath IB101 Frequency Counter.

39 VIDEOTAPE IMPROVES FIRE-FIGHTING TECHNIQUES

There is nothing like a real fire for evaluating men and equipment-an evaluation that can now be realistically accomplished with the use of on-site television.

41 TEST INSTRUMENT REPORT

Reviewing specifications for Keithley's 167 Auto-Probe Digital Multimeter.

[^0]
A HARCOURT BRACE JOVANOVICH PUBLICATION

HARCOURT BRACE JOVANOVICH PUBLICATIONS: James Milholland, Jr., Chairman; Robert L. Edgell, President; Lars Fladmark, Senior Vice President; Richard Moeller, Treasurer; John G. Reynolds, Vice President; Thomas Greney, Vice President; Ezra Pincus, Vice President; Bruce B. Howat, Vice President; James Gherna, Vice President.
ELECTRONIC TECHNICIAN/DEALER is published monthly by Harcourt Brace Jovanovich Publications. Corporate Offices: 757 Third Avenue, New York, New York 10017. Advertising Offices: 43 East Ohio Street, Chicago, Illinois 60611 and 757 Third Avenue, New York, New York 10017. Editorial, Accounting, Ad Production and Circulation Offices: 1 East First Street, Duluth, Minnesota 55802. Subscription rates: One year $\$ 6$, two years $\$ 10$, three years $\$ 13$, in the United States and Canada. Other countries: one year $\$ 15$, two years $\$ 24$, three years $\$ 30$. Single copies: 756 in the U.S. and Canada; all other countries $\$ 2$. Second class postage paid at Duluth, Minnesota 55806 and at additional mailing offices.
POSTMASTER: Send form 3579 to ELECTRONIC TECHNICIAN/DEALER, P.0. Box 6016, Duluth, Minnesota 55806.
Copyright (C) 1973 by Harcourt Brace Jovanovich, Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopy, recording, or any information storage and retrieval system, without permission in writing from the editor or publisher. ELECTRONIC TECHNICIAN/DEALER is a registered trademark of Harcourt Brace Jovanovich, Inc.

Our Professional Associations

As has been indicated frequently in past editorials, news items and letters, your editor is an extremely strong supporter of our professional associations. As editor, it is my belief that only by working together can we hope to master the political strength, the economic resources, and the technical and business skills necessary for insuring our position in the future world of electronic sales and servicing. We must all work together for our own common good or perish separately!
As you know, the two major national associations in existence today are the National Alliance of Television and Electronic Service Associations (NATESA) and the National Electronic Associations (NEA)-Frank Moch being Executive Secretary of NATESA and Dick Glass being Executive Vice President of NEA.

Our publication has in the past made every effort to offer equal support to both associations. When receiving an offer to become an associate member of NEA, we immediately contacted the NATESA headquarters to see if we might also purchase such a membership from that association. NATESA, wanting to remain independent of such "outside" influence, was unable to provide such membership-current membership being restricted entirely to active service dealers and honorary members.

The first two national association conventions that I attended were NEA's 1971 convention in Portland, Oregon and NATESA's 1971 convention in Hot Springs, Ark. I brought my wife and daughter to the Portland convention and we had a delightful time meeting people there and working with them. Although the Arkansas association that sponsored the NATESA convention was very cordial and did an excellent job in preparing for the convention, I just about bit my fingers off as I observed a group within the NATESA membership openly ridicule Mr. Moch as he sat at the platform, attempting to unseat him as Executive Secretary-plus taking a number of business sessions merely to approve the minutes of the previous convention's business meeting.

Prior to the 1972 Joint Convention, I passed the CET Exam and was accepted as a member of the International Society of Certified Electronic Technicians (ISCET)-a technical arm of NEA and the only association prepared to offer me full voting membership. And at the Joint Convention I was drafted and elected Chairman of ISCET. Thus as a result of association acts-rather than any bias on my part-I have become more deeply involved in one phase of our professional associations.

As a result of my ISCET activity, there have been complaints that I have promoted that association's programs more strongly than the "NATESA Plan to Create Confidence," described in our December issue. On the other hand, one NATESA member has complained that their plan has received too much coverage. His letter then went on to say: "I noticed the big spread in your December issue about NATESA's 'Electronician' certification. Unfortunately, you were given only an outline of how the plan should worktheoretically. It is possible that it might actually work that way in Chicago and maybe elsewhere, but I have never seen that good an application made of the potentially good program. In practice, every member of NATESA gets a certificate with an 'Electrician License \#' (I and every local member has one and we were never required to prove any degree of competency), and, except in areas
where local associations are active, anyone who pays $\$ 35.00$ can become a member of NATESA."

Previous issues of our publication have given considerable coverage to the subject of association merger, some background concerning the subject having been included in the December Editorial. As strongly as our publication-plus many manufacturersare in favor of merger, the process of merger presently appears at a virtual standstill. In fact, to such a degree that the presidents of both associations recently issued a statement indicating that additional studies were required before future action could be taken concerning merger. It is unfortunate (and in my opinion improper) that such a statement was not first given to the respective merger committees and then allowed to be regretfully released to the public by the gentleman elected by both associations as Chairman of the Joint Merger Committee-Mr. Morris L. Finneburgh, Sr., E.H.F.

Mr. Finneburgh, as Chairman of the Joint Merger Committee, has attempted to influence both associations as they have worked toward this effort. In carrying out his elected function, he has been subjected to unnecessary abuse. (After having commitments for a 1973 NEA convention in Hawaii postponed-over their strong objec-tions--in order to conduct another Joint Convention this year and improve the chances of merger, some individuals became obsessed with a nightmare that much of what had been accomplished for the good of the association might be scuttled as an expediency for the sake of merger.) From my frequent personal telephone conversations with Mr. Finneburgh, it has become apparent that their resulting overreactions have been most distressing to him.

What is the basic problem? Both associations were formed for the same basic purpose. We are supposedly dealing with highly intelligent grown men and women, all of the same profession, who should be capable of getting along with one another. What has gone wrong?

Our November issue contained a glowing report of the first Joint Merger Committee meeting in Memphis, Tenn. It seemed in November that merger was just as close at hand as the end of the Vietnam War.

On page 26 of the November issue there are two sentences from the merger report that seemed to blow things "sky high." It said: "The Joint Committee unanimously agreed that there should be a continuation and maximum support of the CET Examination, ISCET and the development of a 'shop certification' similar to the program initiated by NATESA. The Joint Committee unanimously decided that Messrs. Moch and Glass would not be invited to the next Joint Committee Meeting, but that an invitation would be considered for subsequent committee meetings." The latter of these two decisions was made over the strong objections of Mr. Finneburgh, who felt that these two gentlemen should at least be allowed to express their personal views at the next Joint Merger Committee meeting.

Mr. Moch founded NATESA and has been a leader in this association for about 25 years. It has become his life. During one phone conversation with Mr. Moch, he told me of his concern that without the proper safeguards the NEA segment of the new association (once merger was completed) might attempt to dump him, leaving him with nothing in return for his many years of dedicated service to our industry. And if the new national association headquarters were to be somewhere else, what of his secretary who has served
him these many years, and what of his own personal investment in NATESA headquarters' equipment?

Mr. Glass was part of the faction in NATESA that around 10 years ago decided they had enough of NATESA and Mr. Moch, leaving that association to form NEA. These people now feel that the majority of the NATESA delegates would remain loyal to Mr. Moch and would reject any merger proposal that did not assure Mr. Moch a position at least equal to that of Mr. Glass-yet they (this earlier faction) seem to stay awake nights with the fear that by gaining such a position, Mr. Moch might somehow obtain control of the new association, nothing having been gained them as a result of the original association split. Some NEA members have even openly stated that they would not belong to any association that employed Mr. Moch. Old feuds have thus been revived-at least in the memories of some association members.

Of equal concern to many association leaders is the apparent incompatibility of the CET Exam, which involves testing under controlled conditions and which is even used in some states as the official state licensing exam, and the NATESA program, which calls for shop testing of employees under an honor system.

Some association members feel that if we are to be successful in our efforts to achieve merger, then both associations should demonstrate a greater respect for the other association and its activities. For quite some time now, considerable effort has been given to the task of developing a program for coordinating manufacturer technical training programs for the electronic technician. The resulting program-the JESUP Program which we support and have described in detail on page 30 of our January issue-was developed by NEA through the cooperation of the Electronic Industries Association (EIA). Although the pilot run of this program is being greeted with enthusiasm by electronic technicians across the nation (judging from the responses received even at this early date) for a while the enthusiasm of some manufacturers was cooled by adverse comments printed by Mr. Moch in the November 1972 issue of NATESA SCOPE. In concluding his comments concerning the JESUP Program, Mr. Moch said: "Let us be really practical about the problem and its many ramifications. Let us not commit the serious blunder of hoping to create a thousand genii in one location that will cost far more in dollars and time servicers cannot afford, and let us not be so foolish as to expect that effective upgrading is a one week-end cram session."
At the October NEA Board meeting that I attended in Omaha, Nebr., a resolution was passed granting the Merger Committee the authority to act on merger, authorizing the balloting of all members by certified mail to hopefully complete the merger prior to the next Joint Convention this August in Kansas City, Mo. It was the Board's hope that the NATESA Executive Council would give a similar endorsement to its Merger Committee. But in contrast, on December 20th Leo Shumavon, President of NATESA, wrote: "NATESA has not given nor does it intend to give the Merger Committee any undue power. Their job is to progress to as far as possible, then report to the Executive Council. After the council acts on its progress and they feel it is warranted, they will ask the NATESA membership for a vote."
Some members of NEA see no need to hurry into a merger. They feel that should attempts at merger fail, then several disgruntled NATESA state associations would simply leave NATESA and join NEA, thus in effect resulting in but one major association. (There is even talk of the association then adopting a new constitution, taking on a new name and pretending that a merger had taken place.) However, such a shift of state associations may not occur. As you will note in this month's Letters to the Editor Column, one state association-Virginia-has decided that too many feet have dragged long enough. If the two national associations cannot get together and complete a merger by August 1973, then the Virginia association will no longer have anything to do with either national association. We have received reports that one major NEA state
association is also considering the withdraw of its support after August 1973 until a merger has been accomplished-or a new association has been formed.

Prior to the publication of this editorial, and hopefully even after, I have had a good working relationship with both Messrs. Glass and Moch. However, quite a number of rank-and-file association members (of both associations) that I have spoken with are of the opinion that attempts at merger have deteriorated to a battle between the advocates of these two men. These members are quick to acknowledge the great work done in the past by Messrs. Moch and Glass, but feel that a new united association is far more important than these two personalities. Merger may thus be completed through the regrouping of state associations, ignoring current national association leadership. And, because of (or despite) everything done thus far, we may very well have a new major association developing from the next Joint Convention. Just as our nation's Congress may well end the Vietnam War despite the peace efforts of President Nixon, our state associations may bring about merger without the aid of their national executives.

However, these dissident state associations had better have their strategy clearly mapped out and well coordinated with other states before they even seriously consider undertaking such a drastic plan of action. Otherwise they will merely produce a third association no stronger than the former two, or generate anarchy -each state association functioning independently without any national coordination of efforts. We need one strong associationnot two, three . . . or fifty!

This evaluation of the merger situation by your editor is bound to generate additional controversy. Many will fear that it is an unfortunate case of airing our dirty linen in public. However, with all the harmful rumors that are currently being spread around, your editor feels that it is necessary to attempt to clear the air by reporting on the situation as he sees it.

Despite many unresolved conflicts concerning the merger situation, plans are definitely underway for a second Joint Convention to be held at the Crown Center in Kansas City, Mo. on August 23-26. These plans call for another ELECTRONIC SERVICE INDUSTRY YEARBOOK, which will again be very capably edited by Vincent Lutz, CET. Those manufacturers wishing to show continued support of independent electronic sales and servicing would still invest their money wisely by contacting Mr. Lutz directly concerning all advertising in the only yearbook that serves our entire industry. His address is 1546 Sells Ave., St. Louis, Mo. 63147. (He already has ELECTRONIC TECHNICIAN/DEALER's contract for an advertisement in this next edition of the yearbook.) Revenue from that publication will be divided amongst the participating associationsNEA and NATESA.
Last year Nolan Boone did a very capable job as Chairman of the Joint Convention Trade Show. All manufacturers having a product worth selling for more effective consumer electronics sales and servicing should most definitely contact him directly to reserve their booths while space is still available. His address is 5522 W . 12th St., Little Rock, Ark. Manufacturers need not get involved in association controversy in their active support of our industry!
This is definitely the year of decision. Association matters must now be resolved to insure our place in the future of electronic sales and servicing. Now is not the time to sit back and let others fight the battle for you. It offers the best opportunity ever to have a part in molding our association future-and thus our own business future. We need men and women with enough "guts" to get out there, join their respective associations, put on their hard hats, and take up their battle stations to insure a better future! We are facing an exciting challenge! The next Joint Convention should prove to be the most interesting ever!

(Almost)

Bet you thought it took a whole stack of instruments to analyze audio equipment. It does. And that's a whole stack of instruments above - disguised as two boxes. Most of the stack is in the bottom box. . . the McAdam Tester. The McAdam Tester contains oscillators, meters, transformers, circuitry and controls for measuring nearly every critical parameter of audio equipment per-
formance. It checks harmonic distortion, IM distortion, true RMS power and true RMS voltage, plus others. And it displays the results on a digital readout.

Just above the McAdam
Tester is the new McAdam Phase Lock Wow and Flutter Analyzer. It does exactly what it sounds like it should do, for tape decks and turntables. You can either use our test tapes or the two built-in oscillators. We also can furnish test records. The
"almost" is because we're missing an FM Alignment Generator. Fortunately, Sound Technology makes one the Model 1000A. But if you don't need sweep, you can buy the Leader LSG 231 FM Stereo Generator instead. Add either one to the picture and your laboratory is complete. For more information circle our reader service number or contact McAdam Electronics, 7360 Convoy Court, San Diego, CA 92111, Telephone (714) 278-0300.

Reader comments concerning past feature articles, Editor's Memos, previous reader responses or other subjects of interest to the industry.

General Membership Demands Merger Be Accomplished

You are to be commended for your timely and provocative editorials and, especially, for your outspoken stand in support of unification. We very badly need that kind of support if this singleassociation concept is going to get past the next convention (or even to it).

I feel that the key to unification lies in heavily promoting the fact that a new association will be formed, not with the intent of having a third association and trade representative but with the expressed purpose of replacing both of the existing associations. As it is, too many people are against merger (not the general members, but the "leaders" and the persuaded Delegates) for there to be any hope of success at the NATESA [and NEA] convention[s].

If, however, stress is placed upon the new association and the fact that both existing organizations have but to vote to become part of it in order to implement the merger resolutions -and if it is publicized loudly enough -it will be extremely difficult for the group which reject "unification" to survive. One can be against merger because of various technical problems, or because he doesn't like the leaders of the other group, etc., but it would be a little more difficult to vote against becoming a part of an already established "single association."

While certain anti-merger groups within NATESA control too many votes to permit a "dishonorable merger," even Frank Moch and Dick Glass will have to be impressed by the handwriting on the wall when probably all of $N E A$ plus many of the major Affiliates from NATESA actually become a "single association." If either leader passes up the opportunity to get in on the ground floor of the new group, he will have to know that he will never be allowed in afterwardsand I don't believe that any remaining group can long survive financially on the members that remain. This will be especially true if the new group can rightfully gain recognition from interrelated industries as THE association.

Anyhow, those are some thoughts, and I'd sure be interested in hearing other possible alternatives. The enclosed resolution printed below is submitted with the hope that you will be

Virginia Electronics Association INCORPORATED

RESOLUTION

WHEREAS; The Virginia Electronics Association is an organization composed of over 150 independent consumer-electronics service businesses in the state of Virginia; and

WhEREAS, the purpose of the Virginia Electronics Association is to promote the general well-being of those persons and firas identified with the electronics service industry; and

WHEREAS, the Virginia Electronics Association is committed to cooperato and/or affiliate with other such organizations which enhance, promote and safeguard the electronics service industrys and
WHEREAS, the Virginia Electronics Association has traditionally cooperated with and significantly contributed to the recognition and growth of both NATESA and NEA; and

WHEREAS, the Virginia Electronics Association is keonly aware of the existing situation whereby the electronics service industry is inadequately represented at the national level by two factionally divided and duplicative associations, NEA and NATESA; and

WHEREAS, the Virginis Electronics Association believes that the existence of such duplicative groups promote frictional rivalries which are wasteful of already insufficient time, effort, talonts and funds and which are conducive to neither harmony within the industry nor productive achievement of the goals of either association; and

WHEREAS, the pressures being exerted upon the industry from outside sources demand nothing loss than a totally unifiod comaittment by industry representatives toward collactively seeking offective solutions to survival; and

WHEREAS, the membership of the Virginia Electmonics Association has the utmost confidence in the abilities of the eleven-man NATESA-NEA Nerger Committes to democretically effect fair and practical solutions and rules for the croction and implomentation of s single, effective and widely-recognized national trade association to represent the electronics service profession; now therefore

BE IT RESOLVED THAT, EFFECTIVE DURIN THE MONTH OF AUGUST, 1973, THE VIRGINIA ELECTROIICS ASSOCIATIONS SHALL HENCEFORTH CEASE TO RECOGNIZE BOTH TEE NATIONAL ELECTRONIC ASSOCLATIONS (NEA) AND THE NATIONAL ALLIANCE OF TELEVISION AND ELDCTRONIC SERVICE ASSOCILTIGNS (NATESA) ; AND
be it funther resolved that the viduinia electronics association and its local AFFILIATES SHALL WHOLEHEARTEDLY SUPPOZT, AFFILIATE WITH NND/OR COOPERATE WITH THAT NATIONAL ASSOCLATION WHICH IS CREATED EY OR FORMED UPON THE STUDIED RECCOMMENDATIONS OF THE COMBINED MFREGER COMTITTEES OF NRTESA AND NEA AND CHAIRMAN/MODERATOR MR. M. L. FINNEBUPGH, SR.

The above resolution was adopted by a unenimous vote of the Board of Directors in regular quarterly session on December 9, 1972.

able to utilize it, or the idea behind it, in a forthcoming issue of ET/D.
W. S. (Bob) Harrison

Likes November Editorial

This letter is a little tardy, but I must write to you and comment about your editorial in the November 1972 issue.

Having been in the electronics field 20 years-a graduate of DeVry Technical Institute of Chicago 1957, after military service and a BBA from Central Missouri State College, Warrensburg, Mo. 1963-I certainly think you laid the cards where they belong.

I have worked as an electronic technician in the Cable-TV Industry and
assure you that your last sentence [" A free nation such as ours cannot consider restricting its public video communications to a hunk of cable."] is 100 percent correct; and so is the other information published.
I am just as anxious to hear more about the Canadian transmitter as you are-especially the equipment necessary for the reception of this signal. I surely hope I'll be able to receive this signal in the state of Kansas. I am looking forward to seeing additional articles on this subject.

The Cable-TV Industry is against anything and everything that might interfere with its capitalistic pursuits! Again-a wonderful article.

Arthur Crabb

PROVIDES YOU WITH A COMPLETE SERVICE FOR ALL YOUR TELEVISION TUNER REQUIREMENTS.

REPAIR

VHF Or UHF any Type $\$ 9.75$ UHF/VHF Combo \$15.00.

In this price all parts are included. Tubes, transistors, diodes, and nuvistors are charged at cost.

Fast efficient service at any of our conveniently located service centers.

All tuners are cleaned inside and out, repaired, realigned and air tested.

REPLACE

Replacement Tuner \$9.75.
This price buys you a complete new tuner built specifically by SARKES TARZIAN INC. for this purpose.

All shafts have a maximum length of $12^{\prime \prime}$ which can be cut to $11 / 2^{\prime \prime}$.

Specify heater type parallel and series 450 mA or 600 mA .

CUSTOMIZE

Customized tuners are available at a cost of only $\$ 15.95$.

Send in your original tuner for comparison purposes to:

TUNER SERVICE CORPORATION FACTORY-SUPERVISED TUNER SERVICE

Backed by the largest tuner manufacturer in the U.S.-Sarkes Tarzian, Inc.

The fast and easy way to troubleshoot

This unique, automatic ranging, ac/dc digital multimeter puts the data right at your fingertips.
The Model 167 Auto-Probe DMM:

- measures dc voltage -1 mV to 1000 volts
- measures ac voltage -1 mV to 500 volts rms
- measures resistance - 1 ohm to 20 megohms
- measures current - with optional shunts
- battery operated (line adapter optional)

It's fast (saves time!), it's accurate, and its readout is right in the hand-held probe.
The Model 167 Auto-Probe DMM - only \$325. Send for more details.

READERS'AID

Space contributed to help serve the personal needs of you, our readers.

Schematic Needed

We have a George Gott amplifier and preamplifier in for repairs. It was manufactured by Bigg of California, 2506 W. Washington Blvd. L.A. 18, Calif. We need a schematic for the following: Model G50D amplifier and Model GDP-50 preamplifier

Nimpkish Electronics
P.O. Box 324

Albert Bay, B.C.

I would like to obtain a schematic for a Mercury Model 1800 VOM.

Bill Brett
P.O. Box 562

Leesburg, Fla. 32748

I need a schematic for a Candle TV Model MT-510A, manufactured by Tokyo Transistor Ind. Co.
D. Van De Water

18 St. Josephs Dr.
Stirling, N.J. 07980

I need a schematic for a Stromberg Carlson short wave receiver, Model BC-348M.

William West
238 Alta Loma Ave.
Daly City, Calif. 94015

Alignment Data Wanted

I would like to obtain alignment data and instructions for a Korting AM/FM/SW/Phono, Model 1007W, manufactured in Germany in August of 1959. Will gladly pay cost of duplication, mailing, etc.

Rey Eilers
7419 Somerset Ave.
Clayton, Mo. 63105

Antique Tubes

I have antique radio and TV tubes for sale at less than dealers' price.
G. C. Goodwin

126 W. 1st Ave.
Rankin, Ill. 60960

Winegard Three-Day Workshop Entitled "MATV Like It Is"

"MATV like it is," was the main topic of discussion at the three-day workshop held by the Winegard Co. in the new Pzazz! complex in Burlington, Iowa. The workshop, one of 12 in a series held throughout the country in 1972,

was conducted by J. C. Banard, Sales Mgr., Commercial Products Div.; Hans Rabong, Jr., Chief Engineer; and Dick Paulus, Systems Engineer. The session drew 43 distributors, contractors and dealers-plus your editor.

Instruction centered around basic MATV theory, system layout and design, trouble shooting, operation, maintenance and selling systems. The importance of installing systems "that work" was a recurrent theme throughout the workshop. Active discussion on this subject, the problems and solutions, persisted during the session.

ISCET Moves Headquarters To New Indianapolis Facilities

With the rapid growth of ISCET (and NEA, its parent association) it recently became necessary to move to larger quarters. This was accomplished by the ISCET/NEA Staff with the assistance of Charles R. Couch, CET, President of NEA. The new address is 1715 Expo Lane, Indianapolis, Ind. 46224; and the phone number is now (317) 241-8172.

Shown holding the ISCET letters upon completion of the move are (l to r): Mike Tapp, Sherrill Glass, Charles Couch, Barbara Tapp and Suzy Rives.

As indicated frequently in previous issues of our publication, electronic technicians can become members of ISCET only after having successfully completed the CET Exam. Sample questions of the type found in part nine of this continued on next page

MAGC COOR ANTENNAS Sales Orbit

THROUGH:

NEWS..
exam are given below.
Section IX
Antennas and Transmission Lines

1. If a flat-ribbon 300Ω line is connected to the 75Ω antenna input of a TV set, what problems might occur in reception?
2. A simple dipole antenna is bi-directional. (True/False)
3. If an antenna distribution amplifier has a 0 dB gain, what will the output be if the input signal is $400 \mu \mathrm{v}$?
4. Why is a preamplifier sometimes located at the antenna?
5. What will an ohmmeter measure on a 75Ω coaxial cable from center conductor to the outside shield?

Explanations

1. Because of the impedance mismatch, at certain frequencies standing waves will result in "ghosts." Some channels may be very weak or may be "trapped" out completely.
2. True. A simple dipole has a "two-petal" clover-leaf pickup pattern. With a reflector added it becomes uni-directional.
3. $400 \mu v$ since a 0 dB gain is the same as no gain.
4. To reduce noise. If the preamplifier is located at the end of the transmission line away from the antenna, it will amplify the noise picked up by the transmission line.
5. The ohmmeter will measure a very high resistance-unless the line is shorted, in which case it would measure 0Ω. The 75Ω is the ac impedance at high frequencies.

Drawing shows the football-shaped antenna coverage provided from synchronous orbit by the Anik communications satellite successfully put in space last November for Telesat Canada. Triangles mark initial network TV ground stations to be activated when commercial service started some time in January. Small black dots mark remote TV stations, which will provide live TV programming to isolated regions not served by terrestrial facilities. The largest and only manned stations in the network are located at Allan Park, near Toronto, and Lake Cowichan, near Vancouver. Dttawa is the main satellite control center for Telesat.

Telesat Canada to Provide

U.S. Communications Service

An agreement with Telesat Canada for the first use of Canada's satellite system to provide domestic communications satellite service in the United States was recently announced by RCA Chairman Robert W. Sarnoff.

Mr. Sarnoff said the service is subject to Canadian Parliamentary approval of Telesat's objects and powers permitting Telesat, the Canadian domestic satellite system, to continued on page 14

There is: Sylvania's Chek-A-Color test jïg.

TV servicemen were never meant to be movingmen.

But, that was before antique, modern and French Provincial units that included hi-fi, tape decks and record players were built around a large-screen color TV set. Getting those units to the shop can be a big job.
That's why we developed our two Chek-A-Color test jig units. One, our full-house model, gives everything you need to test a chassis. The other is a basic unit that practically lets you design your own test jig.

All you have to take back to the shop is the electronic guts of the TV monsters.

(diagonal) screen. It adapts to both high and low focus voltage sets and a full line of adapters lets you test over 5,000 different models.

A front-panel switch controls a yoke programming system that gives you a range of impedances and/or deflection voltages to closely match both tube and solidstate systems.
For actual testing, a convenient meter lets you measure anode voltage and a speaker lets you check sound performance.

Since Chek-A-Color handles tube, hybrid and solid-state chassis, there won't be many complete cabinets to lug.
With a Chek-A-Color test jig all you have to take is the Regardless of the size of the original picture, Chek-A-Color chassis. Get the picture? Sylvania Electronic Components, lets you see it on a benchtop 14 -inch

100 First Avenue, Waltham, Mass. 02154

SUPER STICK

This is the superstuff you've been hearing about. Eastman 910^{*} adhesive.

Use it on wafer switches, tuners, drive belts, cabinets, ferrite cores and antennas, knobs, panels, trim.

Cost? About 1-1/2 cents a drop for one square inch coverage. Available through Tech Spray, P.O. Box 949, Amarillo, Texas 79105. Originated and produced by Eastman Chemical Products, Inc., Industrial Chemicals Division.
provide service outside Canada. The agreement with Telesat was approved by the Telesat Board on December 5.

The U.S. service is scheduled to begin no later than June 1, 1973. The RCA companies will install earth stations in

the Washington-New York corridor, California and Alaska, to relay communications signals through the Canadian satellite.
With inexpensive 15 -ft diameter antenna earth stations, the system will be used in a test program of demand multiple access techniques for Alaska. That state's remote, sparsely populated "bush" communities, in particular, now have minimal communications.

It is planned that the RCA companies initially will provide approximately 260 voice-grade circuits between the four initial earth stations-one on the East Coast, one in California and two in Alaska. In addition, a full channel of color TV can be carried through the occasional use channel.

Association Merger Meeting Postponed by Chairman

As a result of previous difficulties in resolving vital issues in the NATESA/NEA Merger Project, Morris Finneburgh, Sr., E.H.F., Chairman of the Joint Merger Committee, requested that the leaders of both associations hold a special "sub-committee" meeting. Those invited to attend included: Frank Moch, Executive Secretary of NATESA; Dick Glass, Executive Vice President of NEA; Leo Shumavon, President of NATESA; Charles Couch, Jr., President of NEA; Leroy Ragsdale, Chairman of the NATESA Merger Committee; and Norris Browne, Chairman of the NEA Merger Committee. This meeting was scheduled to be held at the Muehlbach Hotel in Kansas City, Mo., on January 29th, following a NATESA Executive Council meeting scheduled for January 27th and 28th at the same hotel.

In response to his request for this meeting, Mr. Finneburgh was advised that Mr. Moch would be unable to attend due to an excessive work load, and that Mr. Shumavon would be unable to attend due to other commitments in Massachusetts-the NATESA Executive Council meeting having been postponed to February 3rd and 4th. (All others indicated that they were prepared to attend.)

Mr. Finneburgh has wired both associations, rescheduling the same meeting for the same location, to follow the rescheduled NATESA Executive Council meeting.

RCA antennasyour answer for the 2 toughest questions you get.

1. "How do I get a better picture?" 2." What does it cost?"

With RCA in your inventory, you'll never have to turn down a sale because you don't have the right image-improver. RCA has everything for every reception problem-a complete line of outdoor antennas, rotators, reception aids and hardware. Each RCA product is a precision engineered, top quality performer in its class. All carry the RCA name that your customers know they
can depend on. And the complete array of models gives you a full range of prices to bargain from, too.
Next time you get a tough question from a customer, make sure you have RCA on hand to answer it for you.
See your RCA Parts and Accessories distributor today, or contact RCA Parts and Accessories, Deptford, N.J.

For additional information on products described in this section, circle the numbers on Reader Service Card.
Requests will be handled promptly.

CORDLESS SOLDERING IRON ACCESSORY

Auto lighter plug allows in-transit charges

A new accessory is designed for the "Iso-Tip" cordless soldering iron for
the convenience of field service personnel. The cigarette lighter adapter

plug allows charging of the soldering iron while traveling between jobs or

LV-77

FET MULTIMETER
Solid state dependability and stability plus high impedance - make this a fine general purpose meter. Has dual power supply - bat-
teries and AC ine. Ir's truly portable! $\pm 3 \%$ fulf scad, clearly marked easy to face panel

LSW-250
FM-TV SWEEP/MARKER GENERATOR
Use with any scope to test and service FM. TV and more. Has $2-260 \mathrm{MHz}$ freq. range, cont. adjustable, with calibrated markings ing method is post bands. Marking method is post injection with external signal input provision
Highly stable and accurate. With accessories. $\$ 309.95$

LFM - 30 TAPE SPEED/CHECKER Checks any tape recorder for speed and drift accuracy at 3 KHz as well as $1,2,4$, $5,6,7,8 \& 9 \mathrm{KHz}$ frequencies 100 MV to 10 V rms input level $+5 \%$ end scale accuracy with -3% to $+3 \%$ test range. Complete with carrying case $\$ 129.95$

LMV - 89
2 CHAN. AC MILLIVOLT METER Test stereo circuitry and 4-channe too-especially where differences exist in voltage at two separate points. $\pm 3 \%$ full scale accuracy (1 KHz); dB scale readings at $0 \mathrm{~dB}=0.775 \mathrm{~V}$ and 1 V each. 2 chans, 100 MV to 300 V range in 12 steps. With separate pointers, individual switches, and amplifier systems. Both channels operate separately or together $\$ 229.95$

Wrie fordetails. See vour distributor
The more you see... the more you believe ... the more you save $\begin{array}{lllll}\text { Leader Instruments Corp. } \quad 37-27 \text { Twenty-Seventh St. L.I.C., N.Y. } 11101 & \text { (212) 729-7410 }\end{array}$
where ac power is not available. The adapter, No. 7585 Charger Plug Assembly, can be used with any 12 v system and with all current "Iso-Tip" models, as well as previous models coded D72 and up. The plug will reportedly allow complete recharges from dead to full overnight with negligible battery drain. Wahl Clipper Corp.

FREQUENCY
 MULTIPLIER/COUNTER

Measures frequency to 0.001 Hz in 1 sec

A counter has been developed to make highly accurate direct-reading measurements of audio and low-frequency inputs. The Model 62202 MHz Frequency/Multiplier Counter reportedly features a unique phase-lock/ multiplier technique which makes

possible high resolution measurements without an increase in measuring time, and which offers high rejection of electrical noise. Additional features include AGC which sets all input adjustments automatically for total hands-off operation, zero suppression to blank out all leading zeroes for easier reading of measurements, and a highly legible, parallax-free digital readout with an autoranging decimal point and units annunciator. The 2 MHz frequency measuring range of the unit is covered by four manually selectable multiplier ranges. All measurements are also available in digital serial 4-bit BCD parallel output. Systron Donner Corp.

MATV COAXIAL CABLE

705
Designed for greater
flexibility and easier handling
A top-of-the-line low-loss MATV cable, Part No. 4851, features a 12 gauge copper-clad aluminum center
 conduct or 100% shielding and aluminum tape shielding with 50%
aluminum braid. It is reportedly continued on page 45

Our 39 audio power transistors replace...

and thousands more.

There are a lot of identical transistors around hiding under different manufacturers' part numbers.

But we've boiled power transistors down to just 39 types that will handle almost all of your replacement problems.

And we've also puttogether a crossreference guide that tells you which one replaces which.

Our cross-reference guide also tells you about the rest of our ECG replacement semiconductor line. Altogether they can substitute for 53,000 others.

Practically everything from diodes to integrated circuits.

And we don't stop there.
The ECG semiconductor line includes a variety of heat sinks, heatsink compounds, transistor mounting kits, and sockets.

In short, carrying Sylvania's ECG replacement semiconductor line can take a big load off your back.

And you can still give power to the people.

Sylvania Electronic Components, Waltham, Mass. 02154.

NEW AND NDTEWORTHY

For additional information on products described in this section, circle the numbers on Reader Service Card. Requests will be handled promptly.

AUTOMATIC TELEPHONE DIALER 700
Offers replacement for
direct-wire telephones
A single-number automatic dialer called "Hot-Line" is introduced as an economical replacement for dedicated or leased telephone lines. The unit is available as a desk set with dialer built in or as a wall box that converts any phone to a "Hot-Line." It can reportedly be programmed to dial automatically when the handset is lifted or when a push button is manually actuated, and it is being marketed as a replacement for direct-wire telephone lines now being used by businesses as an aid for customers who can use a direct line to suppliers and for any reservation, security, alarm system, or other applications using a frequently dialed telephone number. Com-U-Trol Corp.

NEEDLE MERCHANDISER 701
Holds over 400 needles on three slide-out trays
A needle merchandiser, Model CND,
has been introduced for dealers. Its front panel displays 25 of the most popular needles for instant identification. Holding over 400 needles on three slide-out trays, the merchandiser is equipped with lock and key. The side panels are walnut-grain and available in a counter type or with a floor stand.

> Duotone Co.

VHF BROADBAND AMPLIFIER 702

Separate high-and low-band amplifiers with individual GAIN controls

An all solid-state VHF/FM broadband amplifier, Model CVB-45A, is designed for large VHF MATV systems. The low- and high-band Gain can reportedly be separately varied over a range of at least 18 dB , a feature which permits the user to individually balance both bands to compensate for higher cable losses in high-band service. The input circuit may be fed from either a single wideband VHF antenna or from two separate VHF antennas designed for channels 2-6 and 7-13 with input choice switch-selectable. With low- and high-band Gain controls fully open, full gain is said to be typically 45 dB for all TV channels and FM. Rated seven channel output capability is 59 dBmv for each low-band channel and 54 dBmv for each high-band channel. Blonder-Tongue Laboratories.

Now

appearing

Here it is! 'A sure fire guide to a profit loaded market. The foreign-made TV, stereo, AM/FM radio, tape deck and cassette player service market. And this time saving guide is yours FREE.

The program is Raytheon's Sizzling 66. A collection of top quality semiconductors designed to replace over 5000 foreign devices.

And our guide to this program will be your guide. It cross-references the thousands of foreign semiconductors to the exact Raytheon
replaceable. Complete with all electrical, mechanical and terminal arrangement data So you can find the information you need fast. Without frustration and confusion.

A beautiful program, a beautiful program guide (and it fits right in your service caddy). For all the details see your local Raytheon distributor. Or contact Raytheon Company, Distributor Products Operation, Fourth Avenue, Burlington, Mass. 01803.

RAYTHEON Telephone 617-272-6400.

The B\&K Model 501A.
It's a lab-quality instrument that provides fast analysis of all semiconductors including J-FET's, MOS-FET's, signal and power bipolar transistors, SCR's, UJT's and diodes.

You can test transistors in circuit for GO/NO GO condition. Badly distorted curves will indicate the stage where a defective transistor or other faulty component exists.

The 501A is complete-with scope graticule and FP-3 probe for fast, one-handed in-circuit testing. It generates true current and voltage steps, with 3% accuracy, for measuring beta at all current levels. And it has a sweep up to 100 volts and 100 milliamperes.

With the 501 A , curves are displayed on an auxiliary scope screen. And you can hook it up to any scope-
 old or new.

All three controls can be set in quick-test positions to test and evaluate 90% of all solid-state devices without manufacturer's data sheets.

The 501A won't burn out either the semiconductors or itself.

With all these features, you'd think the 501A was an expensive curve tracer. But look at the price.

For complete technical data, call your B\&K distributor. Or write Dynascan Corporation.

Very good equipment at a very good price.

Product of Dynascan Corporation
1801 West Belle Plaine Avenue, Chicago, Illinois 60613

TEKLAB REPORT

Electrohome's Servicease C12 Color-TV Chassis

by Joseph Zauhar

This set contains a fault indicator board for informing the technician of the defective area in the chassis

Abstract

Each year as new col-or-TV sets are introduced, we try to review the major ones that you are likely to encounter while servicing, pointing out the service features and what to expect in new circuits. The one reviewed this month is manufactured by Electrohome Limited, a major manufacturer of color-TV sets in Kitchener, Ontario. This, the first Electrohome color-TV set that

we have received, it was of particular interest to us for two reasons: Electrohome products are now sold in the U.S. and therefore this is a set that our readers in this country may be called upon to service; plus some unusual circuitry which you have probably never encountered before.

We received in our lab an Electrohome Capri, Model C12-301, Color-

Electrohome's Capri Color-TV set employs a C12 Servicease chassis.

TV set employing a C12 chassis. This is a table model set with a 20-in. (measured diagonally) screen.

The C12 color-TV chassis itself is all solidstate, although two tubes are used in the tuner. Transistors and integrated circuits are provided with sockets for quick replacement, if required, and modularization is employed in the tuners, AFT unit and prealigned IF stages. These factory-serviceable modules are plugin with metal cases that greatly reduce transit and handling damage.

This chassis is accessible, while it is operational, from the top or the bottom by removing the back cover and a panel on the bottom of the TV-set cabinet. The chassis can also be pulled back for service after removing two screws from the rear chassis skirt. It is roadmapped on both the bottom and top to assist in locating components and test points.

Whenever the tuner, IF or AFT module is suspẹct as a particular problem, the modular approach al-
lows diagnosis by substitution to isolate the trouble. The circuits in these modules allow interchanging without realignment, and the task of immediate realignment may be deferred until the trouble has been isolated and confirmed.

As we review some of the important new circuits, they may be followed in this month's Tckfax schematic, No. 1456.

VHF Tuner

After removing the back cover of the TV set we noted a number of important features in the tuner and associated components.

Bcing equipped with a 75Ω antenna input on the tuner, provisions for a 300Ω connection is accomplished at the antenna terminal board by means of a 300Ω-to- 75Ω balum
and link switch. The tuner employs a simplified tuner mount and can be casily removed by loosening two screws and removing a third. All electrical connections to the tuncr including antenna input and IF output, employ quick disconnect, plug-in connectors.

The VHF tuner employs two tubes, a 6AH5 RF amplifier and a 6LJ8 RF oscillator tube. Its fine tuning is quite different from the TV sets that we have reviewed in the past since it does not employ the familiar mechanical linkage arrangement, but utilizes the control of varactor diode D1 over the tuner's local oscillator. The electronic fine tunING control R2, called "Electrolock," is located in the lower right control panel on the front of the

Rear view of Electrohome's Capri color-TV set with an open display of components and a slide-out chassis.

Top view of the solid-state color-TV chassis with road-mapped circuit boards to simplify identification of components.

TV set. It is connected between llv $\mathrm{B}+$ and ground through resistor R 3 to provide the AFT input voltage to the tuner. The reverse bias voltage range of this control is sufficient to affect tuning into either sound or smear. Resistor R3 restricts the range into sound and the control can be centered mechanically for the correct channel tuning point.

Power Supply

The power supply used in the C12 chassis must provide a number of independent voltages, resulting in a more complex design than in previous chassis. Included are two regulated de supplies of 132 v and 24 v ; four unregulated dc supplies of $270 \mathrm{v}, 170 \mathrm{v}$, 60 v and 32 v ; and two ac supplies of 6 v for the pic-ture-tube filament and 6.3 v for the pilot light and tuncr filament.

The de power supply provides four separate sources generated from three separate rectifier circuits. The 32 v and 60 v sources are supplied by the same rectifier groupdiodes D406 through D409.

The 60 v source is sup-
plied by full-wave bridge configuration while the transformer secondary supplying this rectifier group is tapped at the half-voltage point to supply two rectifiers of the group (diodes D406 and D407) in a full-wave, cen-ter-tapped configuration to provide the 32 v source.

The full-wave bridge configuration of diodes D402 through D405 supplies the 170 v from the tapped T401 secondary winding (red to green/ red). A 4.7Ω resistor, R404, limits the surge current through switch SW401 and its A and B contacts as capacitor E 401 charges with initial switchon.

The 270 v source is provided by a half-wave rectifier circuit employing diodes D401 and D403 and the full transformer winding. When switch SW401 is open, the 270 v source does not drop to 0 v , but rather to 110 v as diode D402 functions in addition to diode D403 with a reduced portion of the transformer winding. Thus to eliminate the expense of an extra switch, a portion of the TV set remains active even when

After removing a panel the complete
underside of the chassis is exposed, making solder connections very accessible.

A panel deop hides most of the controls on the front panel of the TV set.

The AFT module is coupled to the IF module with a phono-type jack connector and is mounted on the top of the main chassis.

The blue, red and greea video output transistors are pluggell into the chassis and employ large heat sinks. Also shown are the ground pins to disable the color guns for purity adjustments.

A 75Ω cable connector on the antenna block allows direct connection to cable systems or coax antenna system without additional adapters.

The fault indicator board is mounted vertically on the main chassis and monitors the five important voltages in the power supply. Should excess circuit current cause one of these voltages to drop, the corresponding bulb will light.

The DETAIL, BRIGHTNESS, CONTRAST and VERTICAL controls are mounted on a separate video preamp board.

This rugged metal-cased factory serviceable IF module can be substituted in the field without requiring alignment.

The auto-saturation printed-circuit board employs edge connectors and plugs into a socket on the main small signal printed-circuit board.

The integrated circuits are plugged into sockets for ease of removal when using the substitution method of servicing.
the TV set is turned off. This TV set is always hot unless unplugged!

A very interesting current foldback circuit is incorporated in the 132 v regulated supply of this chassis. Scan stability is obtained by regulating the B+ supply to the horizontal deflection circuitry for $\mathrm{a} \pm 10$ percent line voltage variation and for a 0 -to2 ma picture-tube beam current variation. For this reason the 132 v supply may be considered a part of the horizontal deflection circuitry, and supply adjustment R422 serves as the high-voltage adjust control.
Transistor Q401 is the series regulator power transistor, transistors Q402 and Q404 are the two high-voltage error amplifiers and diode D414 is the reference zener. Transistor Q403 and resistor R416 form the current limiter and components D416, D415, R424 and R418 work in conjunction with the current limiter to provide a current foldback feature that allows a short circuit at the supply output to be maintained indefinitely. This is possible because even with the large voltage drop that results across transistor Q401, when the supply output is short circuited, the current through Q401 has reduced to a point where the power dissipation in Q401 is actually less than during normal operation. This we observed with interest, making an intentional direct short to ground.

Fault Indicator Board

The fault indicator board used in this chassis is quite unique and different from any other serviceability feature that we have encountered in the
past. This feature was designed to diagnose service problems quickly and efficiently, allowing most of the service work to be done in the home. Since most service problems result in abnormal load on the power supply, this feature should shorten service time.

This board is located next to the power transformer on the top left rear of the chassis. Five neon bulbs are located on the board to monitor the five important voltages in the power supply. Should abnormal loading occur to one of the supplies, the appropriate bulb will illuminate, indicating the problem area. Since both of the regulated supplies derive biases from the higher B+ sources, failures in the higher sources will cause a combination of lamps to light.

Since loss in the 270 v supply results in loss of voltage in the 132 v supply, due to biasing through resistor R411, both the 270 v and 132 v lamps will light. Similarly, losses in the 60 v source will cause both the 60 v and 24 v lamps to light.

Color Circuitry

The color circuitry in this chassis may be divided into four basic seg-

The transistors are mounted in sockets to shorten service time, if removal is necessary.
ments as follows: A twostage chroma bandpass amplifier and associated killer switch, a five-stage 3.58 MHz reference channel, a three-stage automatic saturation control function and the chroma demodulator.

The chroma amplifier contains two closed-loop, automatic - gain control systems: An ACC system dependent on signal burst amplitude gain controls (transistor Q701) and an automatic saturation control (electrocolor) dependent on average chroma picture information gain controls (transistor Q703). The killer switch (transistor Q702) interconnects with both of these to detect the transmission of color or B/W signals.

The ACC closed loop encompasses the first chroma amplifier (transistor Q701), the burst gate amplificr (transistor Q720), two reference buffer stages (transistors Q721 and Q722) and the ACC detector diode configuration (diodes D721 and D722). The bias controlling the gain to Q701 varies from 0.95 v for maximum gain on B / W transmissions to 0.55 v for maximum gain on strong chroma transmissions. The ACC control range is approximately 14 dB .

The second closed-loop gain control system is the auto saturation loop encompassing the second chroma bandpass amplifier (transistor Q703) and the electrocolor circuitry (transistors Q761, Q762 and Q763).

The purpose of the auto saturation control circuitry is to provide additional control over the range of color input signals so that reduced variation in saturation results as stations
are switched or as program material is changed. The circuit is designed to hold output changes to within 6 dB over an input change of 30 dB -at a saturation control setting that would likely be used for pleasing saturation for a reasonable input level.

This auto saturation control circuitry is located on its own small print circuit board that plugs into an edge-connector socket on the main chassis.
The chroma demodulator, IC701, is based on the principle that all color information is contained in any two of the three color difference signals. This integrated circuit demodulates the $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ signals through synchronous detection and then matrixes the proper proportion of inverted $\mathrm{R}-\mathrm{Y}$ and B-Y to get G-Y. The actual process of demodulation requires two phase locked 3.58 MHz reference signals in quadrature and phase locked to the burst by constant amounts.

Auto Tint (Electrotint) Circuit

Another feature employed in this chassis is the auto-tint circuit which takes advantage of the wider range of flesh tones (oranges) associated with wider than normal demodulation angles. Because this does produce somewhat incorrect colors (especially in yellows) the autotint switch, SW701A and B, provides for switching between normal hues and the auto feature.

High-Voltage System

The shunt efficiency deflection system used in this chassis is in parallel to the yoke windings and the primary of the flyback transformer T902-the 1100 v pulse developed continued on page 43

The CAT Game -Part III

by Lambert C. Huneault, CET

The first two Circuit Analysis \& Troubleshooting (CAT) Games-October 1969 and September 1971 issues of ELECTRONIC TECHNICIAN/DEALERinvolve vacuum tube and solid-state B/W-TV receivers. This third quiz deals with a color-TV chassis, Zenith 20×1C38. The format is the same, i.e., 20 multiple-choice questions which test the reader's troubleshooting skill by asking him to predict the symptoms that defective components will produce. Following the questions, detailed answers are given, which, it is hoped, will help the reader to better understand circuit operation and thus relate more clearly component failures to observed symptoms.

- Throughout the quiz, the assumption is made that the TV set has been properly set up, is tuned to a local (snow-free) color channel, properly fine-tuned, and that all controls (including the color killer control) are adjusted properly.

In several of the questions, the following expressions will be used:
Monochrome picture This will mean that the reproduced picture will show no color, i.e., the same as if a B/W-TV broadcast were tuned in or the color level control turned down fully counterclockwise.
Color out of sync This means that the luminance information is locked in, i.e., the B/W component of the picture is holding steady on the screen, while the color is drifting by. On a keyed rainbow generator signal, this leads to the well known "barber pole" effect, while on an actual televised picture, the colors of objects are constantly changing (drifting or flickering).
Raster okay This means a normal white raster.
Enjoy the game, and score five points for each correct answer.

Questions

1. Capacitor C147 (located in the grid circuit of reactance control tube V17A) becomes shorted. The resulting symptom will be:
(a) picture breaks into diagonal bars (no horizontal sync)
(b) monochrome picture
(c) no picture, raster okay
(d) color out of sync
2. Capacitor C35 (located to the right of the three CRT grid-two controls) becomes shorted.
(a) no raster
(b) picture quite dark (low brightness)
(c) raster (and picture) yellowish
(d) raster (and picture) purple
3. Open connection (e.g., poor solder joint) between pin 6 of the $\mathrm{R}-\mathrm{Y}$ demodulator (V13) and the wire leading to it.
(a) picture all blue; off-channel, the raster is blue
(b) picture contains only blues and greens (no reds), flesh tones being only blue or green, depending on the setting of the HUE control
(c) monochrome picture
(d) all hues are present, but hue control must be turned maximum clockwise to produce normal fleshtones
4. TR1, the video driver transistor, is inoperative or pulled out of its socket.
(a) no picture, raster and sound okay
(b) no raster (screen blacked out)
(c) blurry colored objects in the picture, but no B/W components visible, i.e., no luminance information
(d) no picture, no sound, raster okay
5. Tube V12 ($\mathrm{B}-\mathrm{Y}$ demodulator) develops an open heater.
(a) picture contains no blues, but does contain reds and greens
(b) dim picture has a bluish cast and low contrast
(c) same as (a), but picture is also out of focus and shows retrace lines
(d) same as (b), but picture is also out of focus and shows retrace lines
6. Capacitor C 89 shorts (located below demodulator injection transformer T12).
(a) no raster
(b) monochrome picture
(c) color out of sync
(d) monochrome picture, but also out of focus
7. Tube V15 (6JU8A, ACC killer detector and AFC

Lambert Huneault is supervisor of the Electronics Dept., Adult Retraining Div., St. Clair College of Applied Arts and Technology, Windsor, Ontario.
phase detector) develops an open heater.
(a) monochrome picture
(b) color out of sync
(c) picture contains no reds
(d) picture contains no blucs
8. Capacitor C72 opens (second color amplifier plate circuit).
(a) weak color (pastel shades only)
(b) no color (monochrome picture)
(c) color out of sync
(d) raster okay, no picture
9. Capacitor C146 opens (grid circuit of the reactance control tube, V17A).
(a) monochrome picture
(b) color out of sync
(c) B / W picture details holding steady while color information unsteady (wiggly or bending)
(d) little noticeable effect
10. Slug misadjusted by a couple of turns in burst transformer, L38.
(a) wrong hues in the picture
(b) color out of sync
(c) monochrome picture
(d) little noticeable effect
11. Capacitor C152 shorts (control grid circuit of the 3.58 MHz oscillator).
(a) monochrome picture
(b) color out of sync
(c) picture red throughout
(d) slight purple and green cast in the pieture, otherwise no colors
12. Poor solder connection (open circuit) between pin 5 (heater pin) of tube 6KT8 (V6) and ground.
(a) monochrome picture
(b) color out of sync
(c) no picture, raster okay

Schematic diagram of Zenith's 20x1C38 (late production) color-TV set.

(d) blurry color only, with no B / W (luminance) details in picture
13. Shunt peaking coil L13 opens in plate circuit of Y amplifier, V7.
(a) very bright picture
(b) raster very bright but no pieture
(c) no raster
(d) blurry colored picture with no B / W detail visible
14. If the delay line, L 8 (located to the right of the cathode follower, V6A) opens or becomes disconnected, the brightness of the raster will:
(a) increase
(b) decrease
(c) remain unchanged
(d) decrease completely (no raster)
15. The 27 K resistor opens in the cathode circuit of the burst amplifier, V16.
(a) color out of sync
(b) monochrome picture
(c) no blues in the picture
(d) no reds in the picture
16. Capacitor C88 opens (above and to the right of the AFC phase detector, V15B).
(a) wrong hues in the pieture
(b) monochrome picture
(c) little noticeable effect
(d) color out of sync
17. Electrolytic capacitor C32B shorts (screen circuit of Y amplifier, V7).
(a) monochrome picture
(b) no raster
(c) blurry color only, with no B / W (luminance) detail in picture
(d) color out of sync
18. Thermistor R103 opens in the low-voltage power supply.
(a) no raster, no sound

(b) brightly colored horizontal bands superimposed on the picture
(c) very dim, narrow, out-of-focus picture
(d) no raster, sound only
19. Capacitor C77 opens (red-grid circuit of CRT).
(a) raster normal (white), but no reds in the picture (blues and greens only)
(b) red colors lack intensity
(c) red gun cut OFF, causing a cyan raster
(d) little noticeable effect
20. Delay line L8 becomes shorted by improper lead dress that connects both ends together.
(a) no noticeable effect
(b) no B / W (luminance) detail in the picture
(c) color ghost
(d) monochrome picture

Answers

1. (d) --The color is out of sync because with capacitor C147 shorted the dc correction voltage produced by the color phase detector (V15B) is shorted to ground instead of being applied to the reactance control triode. The 3.58 MHz oscillator is therefore free-running, and colors do not lock in.
2. (b) -With capacitor C35 shorted, the 1200 v boosted-boost voltage drops to $390 \mathrm{v}(\mathrm{B}+)$. This drastic reduction in CRT screen-supply voltage reduces the beam currents of all three guns so much that only the brighter picture highlights remain visible. Incidentally, this short in the boosted-boost circuit does not appreciably upset the operation of the HOT, because of the 68 K resistor (R80) which isolates the boosted-boost terminal from the HOT.
3. (b) -With its grid lead open, the $\mathrm{R}-\mathrm{Y}$ demodulator receives no chroma signal and produces no red video for the CRT. The $\mathrm{B}-\mathrm{Y}$ demodulator, however, continues to produce video signals in its two plate circuits, feeding the blue and green grids of the CRT.
4. (c) -The cathode follower (V6A), video-driver transistor (TR1) and Y amplifier (V7) make up the luminance channel, which amplifies and applies to the CRT cathodes the high-resolution B / W (Y) picture information. With TR1 inoperative, this monochrome information is missing. The chroma information is taken off before these luminance circuits, however, and is applied through capacitor C28 to the chroma channel, which includes the first and second color amplifiers, V6B and V11B. After demodulation, this color information reaches the CRT grids. This is why colored pictures are still visible on the screen even though TR1 is out of the circuit. The chroma channel is a low-resolution circuit, however, its response limiting the chroma sidebands to a "fidelity" of only 0.5 MHz (compared to approximately 4 MHz in the luminance channel). This is why color information, by itself, looks quite blurry on the screen, lacking all the fine detail of the Y signal.
5. (d) -With tube VI2 inoperative, its pin-9 plate voltage will almost double, rising toward the $B+$
supply voltage of 390 v . Being dc coupled, this excessive positive voltage will cause excessive beam current in the blue gun, giving an overall blue hue to the picture. At the same time, the excessive beam current will exceed the regulation capability of the 6HS5 regulator and load down the high-voltage supply excessively, causing a dim and out-of-focus picture. Retrace lines would also be visible--as the CRT would continue conducting even during retrace blanking pulses, which are fed to its cathode via the transistor TR1 and tube V7 luminance channel.
6. (a) -No raster because the high voltage for the CRT anode is loaded down so much by the excessive beam current that it drops down to about 12 kv . The short in capacitor C89 grounds the +75 v dc voltage normally available at the demodulator tubes' beam switching plates (pins 1 and 2). This reduces the tubes' plate current sufficiently to raise the plate voltage to between 250 v and 300 v . This increase is de coupled to the CRT grids, causing a large increase in beam current, which makes the raster bloom right out of sight!
7. (a)-No color will be visible because the second color amplifier (V11B) will be cutoff by a high negative control-grid voltage (e.g., -25 v) from the killer circuit.

There is no color killer tube in this receiver. Color killing normally works as follows: When the color burst is missing (e.g., during a B / W show) the killer detector, V15A, produces essentially no output ACC voltage at the junction of its 2.2 M load resistors-R99A and R99B (Test Point Q). With approximately 0 v bias, the first color amplifier conducts heavily and its plate and screen voltage drops to 90 v . This low voltage is applied to the color KILLER control, R36, through a 150 K resistor.

On the other hand, the negative dc voltage is applied from a -75 v source (the grid of the horizontal discharge tube, V18C) through a 330 K resistor to the wiper of the killer control. With a normal adjustment of R36, the negative voltage has "the upper hand" and biases the second color amplifier to cutoff.

During a color show, the burst signal is normally rectified by the killer detector and a negative ACC bias developed at point Q (e.g., $-6 v$). This drastically reduces conduction of the first color amplifier and its plate and screen voltage rises to about 225 v . This much higher voltage, applied to the Killer control, bucks the negative dc from the -75 v source, and the wiper of the control now tends to become positive. This positive de voltage is shorted to ground by the clamp diode, X7, and, as a result, it does not actually reach the control grid of the second color amplifier, but allows the latter to operate normally, with only its own cathode bias.

Now, in the present case, i.e., with tube V15A dead, the effect is the same as if the burst were absent: no ACC bias is produced, and the second
color amplifier is killed. Note, however, that if the COLOR KILLER control were adjusted slightly clockwise from its normal setting, more positive voltage would be available to oppose the negative dc at the wiper, and tube V11B could easily be turned back on, allowing color to reach the CRT. But, since tube V15B, the color phase detector, is also dead, the color oscillator is free-running and color in the picture will be out of sync-answer (b).
8. (b)-C72 is the coupling capacitor between the plate of the second color amplifier and the input to the demodulators. When open, no chroma signals reach the demodulators.
9. (d)-Capacitor C146, along with its series 220 K resistor, forms an anti-hunt network. While the color oscillator might be expected to hunt when the capacitor is open, the writer has, in practice, observed no such instability in the color picture.
10. (a) -Misadjusting burst transformer L38 by a couple of turns causes an appreciable shift in the phase of the color burst signal reaching the AFC phase detector. This, in turn, results in a similar shift in the phase of the 3.58 MHz oscillator signal, forcing the detector tubes, V12 and V13, to demodulate along the wrong axes. Flesh tones will become different shades of purple or green, depending on whether the slug was misadjusted clockwise or counterclockwise.
11. (d)-If you chose answer (a), i.e., no color, don't feel bad . . . you probably have a lot of company! In many color-TV receivers, a B / W picture is precisely what you would get if the color oscillator failed. And the oscillator certainly has failed here, with its control grid shorted to ground! However, a strange phenomenon occurs in many models, including this Zenith receiver: the demodulators do produce some output signal, even in the absence of a reinserted 3.58 MHz subcarrier.

This is strange because one would expect that the incoming chroma signals (sidebands), not finding a subcarrier to heterodyne with, could not produce any color video signals (low-frequency) in the output circuits of the demodulators. The chroma signals themselves certainly could not pass through the demodulators, because of the 3.58 MHz traps (T10 and T11) in their plate circuits. And yet, some intelligence is provided in the outputs of tubes V12 and V13. This can be seen plainly on a scope.

This color video information, although not similar to the color signals that should normally be produced there, does reach the CRT grids and invariably produces a green and purple cast on the otherwise B/W picture. This is not a colored raster, i.e., if the set is switched off-channel, the raster is plain white, not tinted-the actual pictures take on a color tinge unrelated to the genuine colors that should normally appear. For example, a person's face may be purple, with the eyebrows green; or a close-up object purple against a green background. Although of low saturation, the intensity of this
purple and green cast is controllable with the coLor level control. Of course, the hue control has no effect on the color cast, the color oscillator being inoperative.

Why then do the color demodulators produce color video signals in the absence of a reference (C.W.) subcarrier signal? The writer feels that the phenomenon can perhaps be attributed to some sort of intermodulation distortion generated within the demodulators, different chroma sidebands at their inputs beating against each other, the heterodyne effect giving birth to some lower-frequency plate voltage variations which are then direct coupled to the CRT grids. Because these intermodulation products do not possess a direct, simple relationship to the actual chroma signals, the resulting intelligence is "all-wrong," i.e., objects in the picture take on a pastel green and/or purple hue, regardless of the actual colors of the real objects.

For readers familiar with single-sideband, sup-pressed-carrier communications, this could be compared to reception of SSB signals with the BFO switched off. In the absence of a regenerated carrier, some signals still manage to appear in the detector's output, but the resulting audio is unintelligible, as anyone who has ever heard it will readily agree.

Incidentally, while some types of chassis will not produce this purple/green cast, this rather odd phenomenon is not peculiar to this chassis only. The writer has seen a similar effect on other color-TV sets as well-such as RCA chassis featuring lowlevel X and Z triode demodulators.
12. (c)-Because tube V6 contains both a luminance amplifier (triode V6A) and a chrominance amplifier (pentode V6B), no picture information is allowed to reach the CRT.
13. (c)-No raster, unless the color level control is turned to maximum-then, there will be a dark, blurry color picture with no luminance information visible. The reason for the blacked-out raster is a substantial increase in CRT cathode bias when the Y amplifier is removed from the R14-R15-R16R17 voltage divider network in the CRT cathode circuit.
14. (a)-Normally the cathode current of the tube, V6A, flows through the 1.5 K cathode resistor and peaking coil, L9, setting up a 2.3 v base voltage which forward biases the video driver transistor. With delay line L8 open, tube V6A can no longer conduct. Transistor TR1's base voltage then drops to 0 v , and the transistor turns off. The resulting increase in collector voltage is dc coupled to the grid of tube $V 7$, causing the latter's plate voltage to drop, reducing the CRT cathode bias, forcing the brightness to increase. Vertical retrace lines will also be visible.
15. (b) -With an open cathode resistor, tube V16 is inoperative. With no color burst signal fed to the killer detector, the ACC bias is 0 v . And as described in answer No. 7, the second color amplifier continued on page 50

Basic Digital Circuitry

by Phillip Dahlen

Part IV—Regulating the decade counters

- For the past few months we have been concerned with the function of digital circuitry used in Heath's IB-101 Frequency Counter, it being our belief that circuitry of this general type will be found in more and more of the consumer clectronic products that you will be called upon to service in the future. The previous articles in this series have been concerned with shaping the applied signal (of unknown frequency) so that it can be handled by the first decade counter (page 56 of November issue), how flip-flop circuits can be combined for counting to ten (page 45 of December issue), and how "clock" signals can be obtained for timing the decade circuits (page 48 of January issue).

We are now concerned with how these clock signals can be processed to produce a series of signals that regulate the decade counter and associated circuitry. This circuitry (Fig. 1 and 2) must gate the initial decade counter to determine the counting interval, transfer the resulting count to a buffer-storage stage, and then reset the chain of decade counters to zero prior to the next counting interval.

From the schematic in Fig. 1 we note that this circuit can function in either an Hz or kHz mode. In the Hz mode a 1 Hz signal is applied to the input of Inverter B (IC24-13)
and the resulting outputs of Inverters C and D (IC24-3 \& 5) are applied to capacitors C11 and C12; while in the kHz mode a 1 kHz signal is applied to the input of Inverter B and a 10 Hz signal is applied to capacitors C11 and C12. Although in both instances we are dealing with the same basic circuitry, there is enough difference in signals present to warrant their coverage in separate articles. Thus, this article is solely concerned with the function of the circuit in the kHz mode.

In the composite photo of scope traces in Fig. 3 we note the shape of the 1 kHz signal that is applied to the input of Inverter B (IC24-13). This inverter merely amplifies the more negative portion of the applied signal, the signal resulting at its output (IC24-2) thus differing from the applied signal in both polarity and waveform.

The flip-flop circuit contained in the portion of IC22 shown in Fig. 1 of this month's article functions in the same manner as the flip-flop circuit used in the other half of IC22-shown in Fig. 1 on page 46 of the December article. Thus we note that the two outputs of this flip-flop (IC24-8\&9) are of opposite polarity and change state with cvery negative excursion of the output of Inverter B (IC24-2). During the

Fig. 1-Schematic of the control circuitry. Courfesy of Heath Co.

Fig. 2-Close-up of the components used in the control circuitry.

Fig. 4-Differentiated pulses from the 10 Hz signal are used for resetting the flip-flop circuit.
0.001 sec . that $\mathrm{IC} 22-8$ is negative, it allows the first circuit in the decade counter to function. (This is the Gate-B signal shown in the December article.) During the 0.001 sec. that IC22-8 is positive, it keeps the decade circuitry from counting.

The second output of this flip-flop circuit (IC229) is fed to the input of Inverter D (IC24-10), while the output of Inverter B is fed to the input of Inverter C (IC23-12). Their resulting outputs are combined and observed as they occur at Terminal B. From the corresponding scope traces in Fig. 3, we note that this signal (at Terminal B) is positive only when both IC24-2 and IC22-9 signals are negative, and that it (signal at Terminal B) becomes negative when cither the IC24-2 or IC229 signal becomes positive.

The combined signal present at Terminal B is differentiated prior to being applied to the base of transistor Q2. This transistor, in turn, amplifies only the negative portion of the applied signal. The resulting positive pulse (at Q2-C) is used to reset the decade counters to zero prior to beginning a new count. (This is the ResetM signal shown in the December article.) Note that the reset pulse occurs just shortly before the gate signal changes state to allow the next count.

The circuitry, as described thus far, functions in a relatively simple manner and can be studied with any professionalquality scope available. If this constituted the only circuit function, the article would end right here. However, things are not nearly that simple. In fact, the remaining illustrations required approximately 160 Polaroid prints before we were able to obtain the
results shown. The basic problems should be clearly seen further along in the article.

The upper pair of scope traces in Fig. 4 are typical of the waveforms observed on nearly any professional scope that one might have available. From these waveforms it appears as though the 10 Hz signal fed to capacitor C11 is filtered to ground before reaching IC22-10. The applied signal can be clearly seen, but even when the second channel of the scope is at maximum gain, only a slight ac ripple can be observed on the lower trace. Can we thus assume that there is no differentiated signal present? No! This circuit is performing a function!

Capacitor-resistor (RC) time constants can be determined by using the equation $\mathrm{T}=\mathrm{R} \times \mathrm{C}$. This time constant is defined as the length of time required for a capacitor to gain or lose 63 percent of its charge in a circuit. Substituting values into this equation we have: $3000 \Omega \times 680 \mathrm{pf}=3 \times$ $10: \Omega \times 680 \times 10^{-1 \because f}$ $=3 \times 10^{3} \Omega \times 6.8 \times$ $10^{-10}=20.4 \times 10^{-7}$ sec. $=2.04 \times 10^{-6} \mathrm{sec}$. $=2.04 \mu \mathrm{~s}$ or roughly $2 \mu \mathrm{~s}$. Thus we know that if

Fig. 3-Composite photo of 1 kHz signals processed in the control circuitry.

Fig. 5-
Differentiated pulses from the 10 Hz signal are used for producing the transfer signal.
the capacitor is charged and discharged by a "sharp" enough square-wave-type signal-even if the basic frequency is only 10 Hz - it is capable of differentiating a $2 \mu \mathrm{~s}$ signal. And as we will note, this signal has "sharp enough edges" for the capacitor to do just that. This is in effect producing a half cycle of a 250 kHz signal with each edge of the 10 Hz signal.

In order to observe these differentiated signals, we found it necessary to use the delayed sweep of the Telequipment D67 scope described on page 47 of our July 1972 issue. Even with this scope, we found the time factors of the two signals so greatly different (observing a $2 \mu \mathrm{~s}$ signal generated by a 0.1 sec. signal) that we had considerable difficulty synchronizing the delayed sweep. This problem was finally solved by applying the transfer signal-which has a slightly longer time constant-to the external sync input of the delayed sweep circuitry. We then set the delayed sweep rate at $20 \mu \mathrm{~s} / \mathrm{cm}$ and switched the horizontal trace to $\times 5$. The resulting sweep rate was $4 \mu \mathrm{~s} / \mathrm{cm}$ and the differentiated pulses observed on the lower scope trace appeared $1 / 2 \mathrm{~cm}$ long -corresponding to the $2 \mu \mathrm{~s}$ signal calculated.

Thus in Fig. 4 the upper pair of scope traces show the 10 Hz signal and the resulting differentiated signal applied to IC22-10 when observed at a normal horizontal sweep rate of the scope. The lower pair of traces show the same pair of signals, the gain of the scope remaining the same, but the sweep rate being changed to show the three segments of the 10 Hz signal and the resulting differentiated signals applied to IC22-10.

With the differentiated pulses appearing 0.1 in . long in Fig. 4, a single cycle of the 10 Hz signal would have had to appear 50,000 in. or .78914 miles (roughly $3 / 4$ mile) long to be shown in its entirety.

The same techniques were used for obtaining the scope traces shown in Fig. 5. There the upper set of three traces show what is present on most profes-sional-type scopes when observing the 10 Hz signal present at Terminal C, the lower traces failing to indicate the resulting differentiated signal applied to Inverter A (IC24-14), or the signal present at its output (IC24-1).

The lower set of three scope traces were expanded as before. There we note that the resulting differentiated signal appears longer than that shown in the previous illustration. This is because of the longer time constant resulting from the use of a $.01 \mu \mathrm{f}$ capacitor ($3 \times 10^{3} \Omega \times 1$ $\times 10^{-5 \mathrm{~s}}=3 \times 10^{-7} \mathrm{sec}$. $=30 \mu \mathrm{~s}$). Inverter A, in turn, amplifies only the positive portion of the signal applied to it. The resulting negative pulse (at IC24-1) is used to transfer the count of the decade counters in the buffer-storage circuits.

With the circuit in its present mode of operation, we have (as previously indicated) a 1 kHz signal applied to Inverter B (IC24-13) -the upper trace in Fig. 6-and a 10 Hz signal at Terminal C applied to capacitors C11 and C12--the lower trace in Fig. 6. (Fig. 7 shows the same pair of scope traces with the scope sweep rate switched to $\times 5$.) The formation of these "clock" signals were described in detail in the previous article-page 48 of the January issue. The timing relationship of these

Fig. 6-Comparing the 1 kHz signal applied to Inverter B (upper trace) with the 10 Hz applied to capacitors C11 and C12 (Iower trace).

Fig. 7-By increasing the sweep rate by $\times 5$, more detail of the 1 kHz and 10 Hz signals can be observed.

Fig. 8-Even though the signal frequencies range from 1 kHz to 10 Hz , there is still a definite timing relationship.
signals, plus related signals described previously in this month's article, are shown in Fig. 8.

The top trace drawn in Fig. 8 represents the signal applied to Inverter B (IC24-13). The trace drawn below it represents the resulting gate signal developed at the output of
the flip-flop circuit (IC228). The third trace drawn represents a small segment of the output signal of decade counter IC4 (IC42 shown in last month's article). This decade counter is switched to a positive state with every tenth change of the previous decade counter (IC3)

Fig. 9—There are a hundred reset pulses for every transfer pulse.

Fig. 10-By increasing the scope sweep rate we can more clearly see the timing relationship between the reset and transfer pulses.

Fig. 11-Timing relationships exist between the applied 1 kHz signal and the resulting gate, transfer and resef signals.
to a positive state-the output of the previous decade counter being the 1 kHz signal applied to IC24-13. The fourth trace drawn represents an even smaller segment of the output signal of decade counter IC5, which is switched to a positive state with every tenth change of the previous decade counter (IC4) to a positive state. Therefore, with every hundredth change of the signal at IC24-13 to a positive state, the signal applied to Terminal C is switched to a positive state. This positive excursion results in a positive differential signal (the fifth trace drawn) applied to IC22-10 and IC24-14; a negative transfer pulse (the sixth trace drawn) appearing at IC24-1.

From Fig. 8 we thus see that the negative transfer pulse is produced with every hundredth positive excursion of the signal at IC24-13. With every second positive excursion of the signal at IC24-13, the gate signal at IC22-8 becomes positive to inhibit the function of the frequency counting circuitry. It is while the frequency counting circuitry is inhibited that this total count is transferred to the bufferstorage circuitry.

Should the gate signal not be synchronized with the transfer signal-it instead switching positive on the preceding and following positive excursions of the signal at IC24-13-the transfer signal (IC24-1) would cause the bufferstorage circuitry to accept an incomplete count. To prevent such a possibility from occurring, a reset signal (IC22-10) is applied to the flip-flop circuit in IC22. Thus with every hundredth excursion of IC24-13, both IC22-8 and Terminal C are coincidentally positive-the transfer signal occurring during the
interval that the gate signal inhibits the frequency counter.

From the scope traces clarified for reproduction in Fig. 9 we note that the transfer signal occurs each time the reset signal has occurred a hundred times. Thus only one count in a hundred is actually transferred to the buffer-storage circuitry. This permits later stages to operate at .1 sec . intervals while the preceding stages operate at .001 sec. intervals-the bufferstorage circuitry holding sample counts for longer observation.

The expanded scope traces in Fig. 10 (as clarified for reproduction) show in more detail the timing relationship between the 1 kHz reset pulses and the 10 Hz transfer pulse. Still more detail is shown in the composite illustration in Fig. 11.

To produce the illustration in Fig. 11 required using the delayed sweep of the scope-externally synchronizing the conventional sweep of the scope with the signal at Terminal C and externally synchronizing the delayed sweep with the signal at IC24-1. Thus for this illustration we photographed at the same sweep rates each scope trace used. This included one cycle of the signal at IC24-13 reproduced twice. Below it, using the waveforms in Fig. 3 as a guide, we drew in the waveform corresponding to the gate signal at IC22-8 (being unable to photograph the entire waveform at the sweep rate used). The reset signal (at Q2-C) and transfer signal (at IC241) are shown together as photographed on the scope-the base line having been extended to their left and right with the use of art work.

From Fig. 11 we note that just after the count continued on page 50

An Extraordinary offer

to introduce you to the benefits of Membership in ELECTRONICS BOOK CLUB for a limited time only you can obtain

May we send you your choice of any three books on the facing page as part of an unusual offer of a Trial Membership in Electronics Book Club?

Here are quality hardbound volumes, each especially designed to help you increase your know-how, earning power, and enjoyment of electronics.

These handsome, hardbound books are indicative of the many other fine offerings made to Members . . . important books to read and keep . . . volumes with your specialized interests in mind.

Whatever your interest in electron-ics--radio and TV servicing, audio and hi-fi, industrial electronics, communications, engineering--you will find that Electronics Book Club will help you.

With the Club providing you with top quality books, you may broaden your knowledge and skills to build your income and increase your understanding of electronics, too.

How You Profit From Club Membership

This special offer is just a sample of the help and generous savings the Club offers you. For here is a Club devoted exclusively to seeking out only those titles of direct interest to you. Membership in the Club offers you several advantages.

1. Charter Bonus: Take any three of the books shown (combined values up to $\$ 43.80$) for only 99ϕ each with your Trial Membership.
2. Guaranteed Savings: The Club guarantees to save you 15% to 75% on all books offered.
3. Continuing Bonus: If you continue after this trial Membership, you will earn a Dividend Certificate for every book you purchase. Three Certificates, plus payment of the nominal sum of $\$ 1.99$, will entitle you to a valuable Book' Dividend which you may choose from a special list provided members. 4. Wide Selection: Members are annually offered over 50 authoritative books on all phases of electronics.
4. Bonus Books: If you continue in the Club after fulfilling your Trial Membership, you will receive a Bonus Dividend Certificate with each addi-

SPECIAL FREE BONUS

. . . if you act now !

Yes, if you fill in and mail the membership application card today, you'll also get this Bonus Book, FREE!
TV TROUBLESHOOTER'S HANDBOOK Revised Second Edition
A completely updated quick-reference source for solutions to hundreds of tough-dog troubles. Regular List Price $\$ 7.95$
tional Club Selection you purchase. For the small charge of only $\$ 1.99$, plus three (3) Certificates, you may select a book of your choice from a special list of quality books periodically sent to Members.
6. Prevents You From Missing New Books: The Club's FREE monthly News gives you advance notice of important new books . . . books vital to your continued advancement.

This extraordinary offer is intended to prove to you, through your own experience, that these very real advantages can be yours ... that it is possible to keep up with the literature published in your areas of interest and to save substantially while so doing.

How the Club Works

Forthcoming selections are described in the FREE monthly Club News. Thus, you are among the first to know about, and to own if you desire, significant new books. You choose only the main or alternate selection you want (or advise if you wish no book at all) by means of a handy form and return envelope enclosed with the News. As part of your Trial Membership, you need purchase as few as four books during the coming 12 months. You would probably buy at least this many anyway ... without the substantial savings offered through Club Membership.

Limited Time Offer!

Here, then, is an interesting opportunity to enroll on a trial basis . . . to prove to yourself, in a short time, the advantages of belonging to Electronics Book Club. We urge you, if this unique offer is appealing, to act
promptly, for we've reserved only a limited number of books for new Members.

To start your Membership on these attractive terms, simply fill out and mail the postage-paid airmail card today. You will receive the three books of your choice for 10 -day inspection. SEND NO MONEY! If you are not delighted, return them within 10 days and your Trial Membership will be cancelled without cost or obligation. Electronics Book Club, Blue Ridge Summit, Pa. 17214.

Typical Savings Offered Club Members on Recent Selections

Kwik-Fix TV Service Manual

Color TV Repair

(57.95 . Club Price \$2.95 How to Repair Musical Instrument Amplifiers
Refrigeration Price $\$ 8.95$; Club Price $\$ 5.95$ List Price $\$ 7.95$; Club Price $\$ 4.95$ Beginner's Guide to Computer Program'g How to Solve Solid-State Ckt Troubles List Price \$8.95; Club Price $\$ 5.95$ Elements of Tape Recorder Repairs Handboost Price \$7.95; Club Price $\$ 4.95$ Handbook of Electronic Tables: 2nd Ed. How to Repair Small Gasoline Engines Fire \& List Price $\$ 8.95$; Club Price $\$ 4.95$ Fire \& Theft Security Systems
Servicing Electronic Organs List Price $\$ 7.95$; Club Price $\$ 4$ Basic Electronic Circuits Simplified

List Price \$8.95; Club Price $\$ 5.95$ Electronics Data Handbook: New 2nd Ed. How List Price $\$ 7.95$; Club Price $\$ 4.95$ How to Interpret TV Waveforms Inst. \& Sveing Electronic Protecice $\$ 4.95$ Inst. \& Sving. Electronic Protective Sys. Electronic Testers for Auto Tune.Up 199 Color TV Troubles \& Solutions Commerst Price \$7.95: Club Price $\$ 4.95$ Commercial FCC License Handbook RCA Color TV Service Manual-Vol. 2 Citist Price $\$ 7.95$; Club Price $\$ 4$ Citizens Band Radio Service Manua
Electronic Musical Instruments List Price \$7.95; Club P
Computer Technician's Handbook
How to Build Solid-State Audio Circuits How to Build Solid-State Audio Circuits
List Price $\$ 8.95$; Club Price $\$ 5.95$

104 Simple One-Tube Projects

tion are
kets,
ruecest ivers, i,
 steren and
dingore.
dite
ort
 to spec
bound.
List Price $\$ 6.95$ - Order No. 486
this convenient sel power supplies, gad devi, cavesdroppers,

Understanding Solid-State Circuits

This brand-new book truly eliminates the mystery of solid-state
ircuits and devices.
Writen to serve the interests of anyone at he sub-engineering
evel service techinienins, hobbyists, stinents, etc.), the con-
ent thoroughly ex
lains spunconder
ractical Color TV Servicing Techniques

cluded
niques
solid-s
case
chassis in fact each of the
$1 ;$ chanters is filled with informa-
tion applicable to virtually any brand
tion applicable to virtually any brand
of color TV receiver. enabling you to
solve tough-dog troubles quick
pus., 250 illus. Hardbound.
List Price \$8.95 Order No. 436

Basic Electronics Problems Solved

Solved are easy sten-
Mere are solutions to
bystep sing basic electronics
many
problens in a conve-
 there are formatioroun
these are you to

 List Price $\mathbf{\$ 7 . 9 5}$ - Order No. 530

Motorola Color TV Service Manual - Vol. 2

ayout drawings and and plug-in pane lists. Numermis troubleshonting cast
histories on Quasar and gnasar chassis will elable you to quitickly pair panel defects. 196 pps.
full-size schematic diagrans. 584
List Price \$7.95 Order No. 584

Handbook of Semiconductor Circuits

ples of standard
 complete with operational data for amplificers, and oscillators,
switching
circuits, power supplies, and rarious The broad rircuits.
circuits included were selected min the basis
of application spection is included of circuits, thereby
for undersianding those selected as
a collection of circuit descrip
cerning any
tional data. II
and diarraus
List Price $\$ 8.95$ - Order No. G. 30

DICTIONARY OF ELECTRONICS

DICTIONARY OF ELECTRONICS

You'll find this huge volume extremely useful in what ever connection you have with electronics. This dic tionary of electronics defines most all of the electronic terms you will run across in your everyday reading. from alpha particies through 200 m lens . . . defines the terms you need and use most often, including those found in radio, TV, communications, radar, electronic instrumentation, broadcasting, industrial electronics etc. It provides fuli, complete and easily-understand able explanations of thousands of specific electronics terms (such as transistors, acoustic feedback, alpha particies, beat osciliator, final anode, electrostatic ens, nonlinear resistance, pool cathode, etc.). A unique feature of this seiection is the cross-indexing, whereby defined more fully elsewhere in the book) are printed in small capitals so you are not left in the dark by any definition. An example of this is the definition for "Susceptance, which includes the words "Conductance," "Admittance, Resistance," and "Reactance," indicating other applications. Appendix material includes a list of units and abbreviations, graphic symbols used in schematics component color codes, db conversion tables, data on the electromagnetic spec: trum, tube base diagrams, etc. 420 pps., 487 illustrations. Hardbound.
List Price \$8.95

199 Electronic Test \& Alignment Techniques

AN EMTRAQRDINARY OFAER...

EVERYTHING YOU ASKED FOR IN A VOM FOR ONLY $\$ 53.50$

Videotape Improves Fire-Fighting Techniques

> Central Fire House in Wilmington, Del., uses television for evaluating and training its men

- The alarm bell rings three times at the Central Fire House in Wilmington, Del., and the serenity of the morning coffee break is shattered as the fire fighters rush to do their thing-hands automatically reach for the uncomfortable garbboots, gloves, helmets and heavy canvas coats. The big red apparatus roars out, sirens shrieking, and leading the way is the district chief . .

Depoty Chief James P. Blackburn takes along a Panasonic portable video camera and VTR un a fire call.

Wilmington Fire Dept. personnel tape instruction in fire-fighting equipment with a Panasonic portable camera and VTR.
lights flashing on his fire-red station wagon. The chief's car conveys the department's newest and most unusual piece of fire "equipment"-a portable Panasonic video tape recorder and camera.

Wilmington, Del.'s progressive fire department is believed to be the first in the country to use videotape as a means of capturing the action at actual fires and then replaying
the tapes for its men at critique sessions held in the fire houses. These sessions are providing invaluable training for the department's personnel, and also provide the chiefs and captains with an evaluation of their fire equipment's performance. The tapes let the brass see how their equipment works in bonafide fire situations.

Initially, most of the VTR action

The Wilmington Fire Dept.'s top brass preparing training tapes for their fire fighters.

Wilmington firemen at Center City station house handle the video console with professional skill.
was done with portable Panasonic cameras and video tape recorders, tapes were edited on a video console at the Center City Fire Station, and then sent to the various fire houses, which are equipped with playback VTRs and monitors.

In order to improve the training programs and performances of its firefighting force, Deputy Chief James P. Blackburn of the Planning and Research Unit contacted Rick Whildin of Megonigal Electronics, a local Panasonic dealer, to draw up the specifications and the plans to equip a highly sophisticated CCTV/ VTR studio directly in the Center City Fire Station.

Deputy Chief Blackburn submitted the plans to Commissioner William J. O'Rourke and Chief John J. Malloy for approval and received their okay to launch the VTR/CCTV program. The Planning and Research Unit is also planning to telecast programs over Wilmington's local cable channels, with the idea of communicating to the public on a regular basis suggestions that will reduce and prevent fires.

The department recently purchased a number of Panasonic CCTV cameras which, along with the console, are being used to produce in-studio tapes of high quality to be received during in-service training in all the firehouses.

Delaware Technical and Community College, along with Megonigal Electronics, is assisting the fire department in training its personnel in the latest techniques of programing and proper utilization of the studio equipment.

Chief Blackburn intends to use the Panasonic portable VTR and cameras at actual fires for training purposes and also the taping of arson investigations for apprehension of arsonists. According to Chief Blackburn, "We can stage burn downs and hot drills as often as possible and still never quite achieve the atmosphere of an emergency situation in a non-drill situation. Not only does the video tape recording of the actual actions of men and equipment in the face of an emergency serve as a valuable critique for the chief and company officers, it captures both the sights and sounds of the fire scene, it conveys the urgency of the moment to personnel who were not there. This continued on page 52

TEST INSTRUMENT REPORT

Keithley’s Model 167 Digital Multimeter

by Phillip Dahlen

Features digital readout right in the probe

- This is one of those test instruments that might initially appear awkward to someone that has never used it before. However, from actual experience in our electronics lab, we found this battery-powered instrument one of the most convenient that we have ever used. No longer need a person look in one direction to see that a probe is properly touching the desired connection while having to look in another direction to sce the resulting reading. All this can be done at a glance by merely looking at the probe. And the 15 -lead shielded cable between
the instrument and probe is reasonably flexible, allowing us relatively easy access to the portion of the circuit under test.

When using the instrument, it is only necessary to select the desired function-acv, dcv or ohms-scaling and polarity are automatic; and the present mode of operation and polarity are indicated-along with the digital reading-at the end of the test probe.

Should it be necessary to make high-voltage measurements or shunt the instrument for current measurements, or should one find an in-
stance when it is not convenient to hold the entire probe assembly when making measurements, then the probe can be inserted through an opening in the front of the instrument, and while in that position an auxiliary test lead may be used.

In addition to the impressive instrument specifications included in this article, much attention should be given to the exceptional instruction manual included with the instrument. Most such manuals merely tell how to turn an instrument ON, what the controls do, and list some specifications. But not this manual, which is 32 pages long and includes fold-out schematics. In addition to the usual sections on specifications, general information and operating instructions, it provides extensive coverage of the theory related to the instrument's operation, plus maintenance tips, troubleshooting procedures, parts lists, component layout photographs, and block diagrams of the integrated-circuit functions.

Manufacturer's specifications for this instrument include those shown at the lower left.

Keithley's Model 167 Digital Multimeter. For more details circle 900 on the Reader Service Card.

DC Volts

Range: $\pm 1 \mathrm{mv}$ per digit to $\pm 1000 \mathrm{v}$
Accuracy: $\pm 0.2 \%$ of reading ± 1 digit
Impedance: 55 M shunted by approximately 220 pf

AC Volts

Range: 1 mv per digit to 500 v rms
Accuracy: Up to $200 \mathrm{v} ; \pm 1 \%$ of reading ± 2 digits, 20 Hz to $10 \mathrm{kHz}, \pm 2 \%$ of reading ± 4 digits to 20 kHz 200 v to $500 \mathrm{v} ; \pm 2 \%$ of reading ± 2 digits, 20 Hz to $1 \mathrm{kHz}, \pm 5 \%$ of reading ± 4 digits to 20 kHz
Impedance: 50 M shunted by approximately 220 pf

Resistance

Range: 1Ω per digit to 20 M
Accuracy: $\pm 0.3 \%$ of reading ± 1 digit $\pm 1 \Omega$
Test Conditions: Current; 1 ma to 0.1μ a depending on range Voltage; 1v at 1000 digits, 9 v maximum into open circuit

Measurements are digitally displayed at the end of the probe.

Closeup view of digital readout.

The material used in this section is selected from information supplied through the cooperation of the respective manufacturers or their agencies.

MAGNAVOX

Stereo Console Four Channel Speakers
Some cases have been reported of low volume level from the rear speakers when playing four channel mode. This can occur when the front (console speakers) are higher in efficiency than the rear speakers.

A new series of open back extension speakers, with higher efficiency, are now available for use with console stereo models as either extension speakers or rear four channel speakers.

Model 1S8440 speakers should be used with the 1P3440, $3470,3680,3780$ and 3790 series console stereos; and Model 1S8450 speakers should be used with the 1P3840 and 3960 series console stereos.

PHILCO-FORD

Tape Recorder Model TRC20BK—Battery-Cover Replacement

The following is a procedure to use when it is necessary to replace the battery cover on the TRC20BK tape recorder:

The plastic catch is not included when the battery cover is ordered. It will be necessary to remove the catch from

the old cover by sliding the blade of a small pen knife between the catch and the cover, very carefully prying it loose.

When placing the catch into the new cover, use speakercone cement. With the back of the cover facing up and away from you, place the catch in the lower left hand corner of the smooth cut-out area.

Portable Phono Models P710BU/S1479BU/P715BE/S1480BE— Broken Hinge Studs

Should any of the above models require service because of broken hinge studs on the motor board, the following method can be used to replace hinge studs-thus avoiding the necessity of otherwise replacing the entire motor board. Replacement of the motor board would entail exchanging all items and assemblies attached to the old motor board.

First cut away any remains of the plastic stud flush with the plastic stud support, then drill a hole through the cen-
ter of the circle where the plastic stud extended from, using a. 136 in. diameter drill (wire size No. 29). Next, use a

size No. 8-32 tap to thread a hole for a No. 8-32 screw, $7 / 8 \mathrm{in}$. long to replace the broken hinge pin.

Stereo Component Models M4780BWA/M5780BWA-Hum Conditions Low Residual Hum on Minimum Volume-All Functions

These models contain a chassis assembly of modular design composed of individual modular assemblies. Each modular assembly (tuner, preamps, amplifier, etc.) are linked together with inter-connecting wires and cables having plug connectors to form the complete tuner-amp chassis assembly, 2ACMT100354Q. To avoid danger of "ground loops" causing a residual hum at minimum volume, the chassis of all individual modular sub-assemblies are externally grounded together by ground cables and clips.

Should a condition of residual hum occur at minimum volume on all functions, look for a poor or open connection in the ground wires and clips electrically connecting the chassis of each module together. A "ground-loop" is caused when inter-modular grounding is made through the inter-connecting signal cables rather than externally through common-ground jumper wires and clips.

Background Hum on FM Reception

When replacing any of the choke coils (L301, L302, L303 and L304) on the tuner panel in the 2T204E tuner modular assembly, a condition of 60 Hz hum can be created as background interference during FM/stereo operation if the coils are not polarized by their phasing dots as shown in the sketches.

The four color dots should be facing in, towards the center of the panel or facing out, towards the outer edge

of the panel. In either of these two combinations, the coils are oriented so that stray 60 Hz hum pickup is cancelled out.

With any other combination having some coil color dots facing out and others facing in, the hum pickup by these coils will pass through along with the FM monaural or stereo audio signals as the volume is increased, either on or off station-the hum level also increasing. Moving the
bass control to maximum will emphasize the background hum.

This hum results from the close proximity of the power transformer and its ac leads to the multiplex circuitry on the tuner panel. The power transformer leads should be dressed tight against the amplifier sub base to minimize coupling to the tuner.

RCA SALES CORP.

Characteristics of Solder

Solder is an alloy (mixture) of two metals that have lowtemperature melting points. The two metals used are tin and lead. Tin melts at about $625^{\circ} \mathrm{F}$. An alloy of the two metals has a lower melting point than either metal in its pure state. The lowest melting point (known as the "eutectic" point) is reached when the tin-lead mixture is about 62 percent tin and 38 percent lead. The melting point of this mixture, usually written $60 / 40$, is about $306^{\circ} \mathrm{F}$. The

Melting Temperatures of Various Solder Alloys

chart shows the various solid and liquid states of tin and lead alloys over a given temperature range. Since tin is more expensive than lead, a cheaper solder with a tin/lead ratio of $40 / 60$ or $50 / 50$ is sometimes used for non-critical applications where the higher melting temperatures are of no concern. The solder used for radio and TV servicing should be the $60 / 40$ alloy because a lower temperature is required to melt the solder and thus components of the circuit are not exposed to excessive temperatures.

Keivin Color Temperature

The color temperature of the raster on a color picture sube refers to the tint of white or gray produced by the raster, and not to its brightness level. To reproduce color and black-and-white pictures properly on a color-TV receiver, it is necessary that the raster be set up to a specific color temperature. This provides the background upon which the picture can be reproduced.

The Kelvin temperature scale is used in reference to light, as a means of establishing the hue (coloration-yellowish, bluish, etc.) of a light source. Most light is produced by thermal-radiation (matter being raised in temperature until it emits light). The hue of this light is directly related to the absolute temperature of the heated, light-emitting object. Thus, this temperature is a quality of light that can be readily measured.

The Kelvin scale (${ }^{\circ} \mathrm{K}$) is somewhat like the centigrade scale; but begins at absolute zero rather than the freezing temperature of water. Hence, $0^{\circ} \mathrm{C}$ is $+273^{\circ} \mathrm{K}$. By using

Light Source	Kelvin Temperature
Ordinary Candle	1900-1950
Common Household Lamp	2750-2850
Moonlight	4100
Sunlight	5300-5800
Daylight (Sun \& Clear Sky)	5800-6500
Daylight (Overcast Sky)	6300-7200
Clear Blue Sky	14000-50000

Kelvin temperatures as a means of measuring the color of light, black is the color that an absolute black body would emit at $0^{\circ} \mathrm{K}$ (absolute zero). As the temperature of the black body is increased, the color of the light emitted changes. When the temperature of the black body reaches the range of $9,000^{\circ} \mathrm{K}$ to $10,000^{\circ} \mathrm{K}$, the color of light emitted approaches the white that is seen in the raster of a TV picture tube. The Kelvin color temperature of several of the more common light sources is shown in the color temperature chart. This table is included to provide some relationship between this visual appearance of a light source and its Kelvin temperature. RCA color-TV receivers normally call for a color temperature of $9300^{\circ} \mathrm{K}$, which is a bluishwhite screen color.

The technician, knowing the meaning of the Kelvin temperature scale, will realize the importance of adjusting the color receiver to produce the proper white raster. When the screen temperature of a color-TV receiver is adjusted too high, loss of red in the picture detail will result and the overall picture will take on a metallic appearance. Conversely, too low a color temperature results in the picture having a reddish-brown cast. Thus, this short discussion should illustrate the importance of optimizing the performance of a color-TV receiver.

TEKLAB...

across this circuit during the retrace period being applied to T902. By auto transformation, this pulse is stepped up to 8.3 kv in the tertiary winding, which is tuned to a combination of the third and fifth harmonic to provide for improved regulation. The 8.3 kv pulse is applied to a capacitor-input six-diode six-capacitor tripler system, which multiplies the voltage to a 26 kv de level.

Bleeder resistor R945 and FOCUS control R946 provide dynamic focus and a means of preloading the tripler assembly to avoid excessive picture "breathing" at low-bright-
continued from page 24 ness settings.

Unlike previous designs, the yoke windings in this chassis are in parallel and balancing coil L943 provides for equalization of currents. Coil L903 is treated as a convergence adjustment, since it can control red-green crossing in the yoke. The parallel connection of the yoke windings means that the hot ac potential on the common lead is only 1400 v .

A unique circuit in the collector of the horizontal output transistor, Q906, damps any short-term collector transients which could exceed the collectorcontinued on page 50

NOMECOTR-40
solidsterte
inigeered Oscilloscope
$5 \sin ^{95}$
Never before has so much been built into a low cost solid state triggered sweep scope!

EICO introduces the first laboratory quality, high performance, wideband Triggered Sweep Oscilloscope, at a price you can afford!

Use as Vectorscope for Color TV Servicing a 3 calibration vollages (2, 5 and 10) - Quick connect BNC connector at Vertical Input a Front panel adjustable Horizontal and Vertical DC Balance Controls Vertical and Horizontal selection of AC or DC modes of amplification = Sweep synchronized Gate Output - Fat faced CRT I Z Axis input \quad Rear panel astigmatism control a Edge lit calibrated screen 4 Operates on a standard 120 volt, a low 100 volt or a $220-230$ volt line.

FREE MIB ECO CivALOC

For name of nearest dealer and free catalog check re. order service card or send 25 f for prompt first class mail service. ElCO-283 Malta Si., B'kiyn, N.Y. 11207

. . . for more details circle 108 on Reader Service Card

SOLDERING +
 DESOLDERING + RESOLDERING =
 WORLDE MOST PRACTICAL SOLDER HANDLINE TOOLS

meets industries demands.....
with a Completely poorale soloerng desolobring Resoloering system

EDET स
15954 aRminta stieet
VAN muYs, CALIFORMIA 91406 PHONE (213) 989.2324 TELEX MO. 65.1469 EDSYMEX van

Ads in EEM, MAS, EBG, $A E, T R$, and EPAC Catalogs
comparable to aluminum sheath. It is rated for only 3.1 dB of attenuation per 100 feet at Channel 13 frequencies and only 3.1 dB attenuation at Channel 57 frequencies. Nominal dc resistance of the center conductor is only 1.59Ω per 1000 ft . Nominal capacitance of the cable is $17 \mathrm{pf} / \mathrm{ft}$. while nominal velocity of propagation is 81%. Blonder Tongue Laboratories.

BATTERY

More energy capacity

 than ordinary batteriesIntroduced is a 9 v alkaline battery called Duracell, with reportedly three times the energy capacity of ordinary batteries and es-
 pecially adapted for use in minicalculators and transistor radios. Its development has been reportedly made possible by an entirely different internal construction, with fewer parts allowing for greater volumetric energy density. As a result, longer service life and better performance under continuous high drain are obtained by more efficient use of the energy producing materials conlained in the battery. Mallory Battery.

ANTENNA HARDWARE

Colorful display mounted on pegboard card's

A new line of colorful display packed hardware for TV and FM antennas is introduced. The line includes masts, chimney mounts, roof mounts,

wall mounts, stand-off insulators, guy wires, anchor hooks, eye bolts, turnbuckles, lead-in clips, lightning arrestors, ground rods, ground wire and twinlead. Except for masts, the entire
line is mounted on pegboard cards which graphically illustrate their use and provide complete installation instructions. Jerrold Electronics Corp.

high-voltage putty

Eliminates high-voltage arcing to 40 kv

A high-voltage putty is introduced that can be molded around uneven objects, eliminating arcing in high-voltage TV transformers, anodes, tube sockets, filament wire and any application where high-voltage arcing is a problem. The putty is designed to re-
place corona dope and, according to the manufacturer, it will last for years.

The putty is packaged in 6-in. lengths for convenient use. Oneida Electronic Mfg. Inc.

If we don't have the needle, theres's no point in looking tor ii.

We're a prime manufacturer of phonograph needles and cartridges. So we're always ahead in needle knowledge. That's why your E-V/Game distributor always has just the right replacement needle you want. Factory sealed. Attractively packaged. And priced right.
And, it's easy to specify Electro-Voice needles. They're listed in the most up-todate, comprehensive catalog in the industry. Simplified cross-referencing and precise illustrations enable you to pinpoint what you want in seconds.

Tell your local distributor haystacks are for making love. Ask him for a free E-V/Game needle and accessories catalog today. Or contact us. E-V/Game, Inc., Box 711, Freeport, N.Y. 11520.

E-V/GAME, inc.
 Division of Electro-Voice, inc. * A GULTON Company
 In Canada E-V of Canada Ltd. Gananoque, Ontario

. for more details circle 109 on Reader Service Card

Delta's Instant Emergency Telephone

 Warning System.Dial \& Coder guards you around-the-clock, signaling alarm for any emergency condition where a simple contact closure activates the system. Completely solid state, Dial \& Coder utilizes the latest in discrete and integrated circuit technology to provide immediate remote signaling between any two telephones.

CHECK THESE FEATURES!

- Dial any phone number up to eight digits.
- Change numbers in ten seconds.
- Over 100 different code combinations allow multi-phone connections.
- Works with any direct contact switch.
- Unlimited applications. Use with intrusion detectors, fire \& smoke detectors or a simple button control. Allows children, clerks, or physically handicapped to call for help.
- Automatic redialer when busy signal received.
- Microphone can be added for audio surveillance.
- Self-contained power supply. Once tripped, unit cannot be stopped.
This one's really priced right!
Made in U.S.A.
Write or Call today for free sales details!
P.O. Box 1147, Grand Junction, Colo. 81501, Dept. ETD, (303) 242-9000

Superior Products At Sensible Prices
. . for more details circle 106 on Reader Service Card

DEALER SHOWCASE

For additional information on products described in this section, circle the numbers on Reader Service Card. Requests will be handled promptly.

CASSETTE TAPE RECORDER 709

Built-in condenser microphone allows "no-hands" operation

A compact ac/dc portable cassette tape recorder, Model M8455, operates in its protective case and reportedly offers a three-way power capability to

enable users to record anywhere. The built-in sensitive condenser microphone is said to ease the recording difficulties encountered in situations such as class-

REBUILD YOUR OWN PICTURE TUBES?

With the Lakeside industries, Inc. picture tube rebuilding unit, you can rebuild any picture tube, be it black and white or color or 20 mm or etc. We offer you the most revolution. ized equipment of our modern times. This unit is easy to operate and requires only $4 \times 8 \mathrm{ft}$. of space. You can rebuild the finest tube available. The picture will be clear and sharp. Your cost to rebuild a color tube is approx. \$6.60. Your cost to rebuild a black and white tube is approx. $\$ 1.85$.
Profit? Imagine building four color tubes per day and if you sold these tubes for $\$ 60.00$ each. Total income $\$ \mathbf{2 4 0 . 0 0}$. Total cost $\$ \mathbf{2 6 . 4 0}$. Net profit $\$ 213.60$. Multiply this figure by five days per week. Your profit $\$ 1,068.00$ per week. Cut this figure in half! Build and sell only two color tubes per day. Your profit $\$ 534.00$ per week. Facts are facts, figures do not lie.
For further information, please send your name and address to Lakeside Industries, Inc., 3520 West Fullerton, Chicago, III. 60647. Phone: (312) 342-3399.
P.S. No salesman will call.
. . for more details circle 120 on Reader Service Card
rooms and meetings, and allow "nohands" recording. Also featured is an automatic end-of-tape shut-off capability in Play and record functions. This feature promotes motor life and saves on battery life. Tone calibrated volume and built-in automatic levEL controls (ALC), erase guard to prevent accidental erasure of pre-recorded cassettes, external microphone jacks, cassette eject and easy-to-load cassette carrying door also are reportedly offered. General Electric.

AC POWER CORD
Designed for use with
Japanese electronic products
The Model 44-459 ac power cord is designed for use with most Japanese

ac-dc tape players, radios or record players. Weltron Co.

FM TRANSCEIVER
711
A compact and lightweight solid-state unit

Introduced is the Model GTX-2, a 10-channel, 2 meter, FM transceiver with a frequency range of 144 to 148 MHz . The lightweight, all solidstate unit is said to employ 11 silicon

transistors, 4 diodes, 5 FETs and 3 integrated circuits. The unit reportedly comes complete with quick disconnect
power cable, plug-in microphone, antenna connector and mobile mounting bracket. The manufacturer indicates that pushbutton frequency selection is a major feature of the unit, which comes equipped with a 146.94 MHz communications channel-the remaining nine channels being available for a nominal charge. Specifications indicate that the transceiver has 30 w of output power and is readily adaptable for fixed or mobile operation. General Aviation Electronics, Inc.

COLOR-TV SET

Incorporates nine
'snap-in" modules
Introduced is the Seville, Model 5 L 5658 , a $25-\mathrm{in}$. (measured diagonally) color-TV set employing the SS900 chassis. This Super-Solarcolor chassis incorporates nine "snap-in" modules for faster and more convenient servicing. The picture tube is a black matrix design that reportedly imparts greater brilliance to color phosphors. The "Color Master" con-

trol provides one-button tuning of AFC, color and tint. This all-wood pecan finish Mediterranean cabinet, with "wrap-around" design, rolls easily on concealed casters. Admiral.

STEREO CASSETTE RECORDER

Employs heavy-duty
bi-peripheral drive system
A cassette stereo recorder deck is said to contain a heavy-duty bi-peripheral drive system, Dolby tape and FM broadcast noise reduction circuits. When the Model 4765 recorder is used in conjunction with a tuner, "Dolbyized" FM broadcasts can reportedly be received without additional equipment. When the FM Dolby switch is on, the broadcast signal is fed back into the pre-amp and speakers. The motor is shut off automatically, except when it is in the RECORD Play mode. A tape selector continued on next page

. . for more details circie 104 on Reader Service Card

MOLDED PLASTIC COLOR CODED AMP FUSES

Reliable protective fusing device for replacement of original manufacturer's part numbers.

Listed in Howard Sams' Photofacts and Counterfacts.
-
FREE vest pocket cross reference booklet indicating correct Workmon part numbers to manufacturer's part numbers. No. X 58

MANUFACTURED BY

 Wemer Min AnBox 3828 SARASOTA. FLA. 33578
for more details circle 132 on Reader Service Card

SPRAY nuar THE RACKET.

Squeak. Whine Whirr. Psss! Silence. Quietrole did it again. Silenced those moving T.V parts, with one squirt from the handy spray pack. Cleaned away dirt. dust, and crud Without damaging anything . . in any anything.. in any
black and white or black and white or
color set. Silence is golden. So is Quietrole.
Also available in bottles, and the new Silicone"Silitron."

continued from page 47

switch changes the record-playback equalization and record current for regular and high-performance tapes as against chromium-dioxide tapes. Other

features are said to include large pro-fessional-style dual VU meters, separate record and playback level controls, ferrite head, head cover (which can be removed easily for head cleaning and azimuth adjustments), end-of-tape sensing and shut-off, plus an adjustable high-level, low-impedance headphone output for monitoring and playback. 3M Co.

AM/FM/FM STEREO RADIO
 714

All solid-state

stereo modular unit
Introduced is the Model $2002 \mathrm{AM} /$ FM/FM Stereo Radio, a compact, all solid-state modular unit. The unit employs 3 IC's, 1 FET, 10 transistors and 12 diodes. The stereo multiplex frequency range is from 88 to 108 MHz , while AM covers frequencies from 540 to 1600 kHz . A swivel base allows turning in any direction with-
out lifting the unit. It will reportedly operate on ac power, batteries or from your car or boat cigarette lighter. Weltron Co.

SECURITY SYSTEM

Burglar and fire protection
for the "do-it-yourself" market
Total burglar-fire protection for any home or business is possible with the introduction of a complete line of "do-it-yourself" burglar and fire alarms. Security Systems Merchandising Program, 49-1430, features three economically priced, solid-state burglar

and fire alarms (Ultra-Sonic Sentry-Electro-Sentry-Magna-Sentry) with a wide variety of selected accessories, offered on a space saving, self-service display merchandiser. Also included with the program is a complete selection of related accessories such as connecting wire, mat switch, magnetic reed switch, satellite extensions, fire sensors and battery charger that allows expanded protection. GC Electronics.

AUTO BURGLAR ALARM SYSTEM
Easy to install
and all solid-state
An electronic siren vehicle burglar alarm system reportedly features the

latest sound used by police and emergency vehicles. This alarm, Model SE812 , is said to feature full vehicle protection by sounding an alarm when the trunk, door, hood, ignition, lights, brake, etc., are activated. The system is said to include hood and trunk switches for cars without hood and trunk lights, plus an electrical switch lock (factory wired) with built-in dust cover and two keys. Also included is
the wire, mounting hardware, instructions, and decals. On-Guard Corp.

VIDEO TAPE RECORDER

Designed for professional time-lapse recording

The Model TVR-321 is reportedly the only time-lapse video tape recorder using the standard EIAJ-1 format and solenoid operated. It is reportedly the only recorder capable for surveillance use of over 300 lines of horizontal resolution with playback at time-lapse speed, normal speed or still frame. The machine uses a $7-\mathrm{in}$. reel of $1 / 2-\mathrm{in}$. video tape. and offers such features as

stop motion, solenoid operated controls, auto-cycling and automatic gain control. Tapes made on the unit can be played back on any standard recorder. GBC.

In East Europe
Their censored press keeps protesting But 31 million people keep listening to

RADIO FREE EUROPE

The In Sound from Outside

For information about East Europe and RFE, write: RADIO FREE EUROPE, Box 1972 , Mt. Vernon, New York 10551
will cutoff, allowing no chroma sidebands to reach the demodulators.

It should be pointed out here again, however, that a slight clockwise readjustment of the COLOR KILler control could restore color amplifier operation. Color would then appear on the screen, but it would be out of sync, the color oscillator being free-running in the absence of the burst signalanswer (a).
16. (d)-Capacitor C 88 couples the 3.58 MHz reference (subcarrier) signal from a tap on the $R-Y$ injection coil (T12, terminal 3) to the color phase detector tube (V15B, pin 8). With the capacitor open, the incoming burst signal finds no reference subcarrier to be compared to in the phase detector. As a result, no dc correcton voltage is applied to the reactance control tube, and the C.W. oscillator is left unsynchronized.
17. (b) -With its screen shorted to ground, tube V7 is inoperative (no plate current) and its plate voltage rises towards the $390 \mathrm{v} \mathrm{B}+$ potential, causing excessive bias on the CRT cathodes. The raster blacks out, even with the brightness control turned fully up, because the latter is in the video amplifier's grid circuit and thus has no effect.

Now is a good chance to see how well you remember some of the "basics" you picked up in electronics school: Will the screen resistor, R12, burn out when capacitor C32B shorts? Well, let's see: $\mathbf{P}=\frac{\mathrm{E}^{2}}{\mathrm{R}}=\frac{250 \mathrm{v}^{2}}{22000 \Omega}=2.85 \mathrm{w}$. Being a 2 w resistor, it would overheat.
18. (b)—Resistor R103 is across automatic degaussing coils L42 and L43. When the set is first switched ON, ac input current flows through the degaussing coils on the way to the $\mathrm{B}+$ bridge rectifiers. Since the resistance of R103 is then normally high, the CRT gets demagnetized. By the time the raster is about to appear on the CRT screen, R103 has normally heated up to the point where its resistance is negligible, thus essentially shorting out the degaussing coils-the ac input current thereafter flowing through the thermistor rather than the degaussing coils.

However, when resistor R103 opens, the input current to the $\mathrm{B}+$ rectifiers is forced to continue flowing through the degaussing coils, even after the set has warmed up. This produces ac magnetic fields which result in the colored bands. Depending on the exact frequency and phase of the $(60 \mathrm{~Hz})$ ac voltage from the local electric utility, as compared to the 60 Hz vertical scanning frequency generated by the broadcast source, these bands may appear stationary on the screen or roll slowly up or down across the picture.
19. (d)-Capacitor C77 and the 100 K resistor shunted with it form a frequency compensation network. With C77 open, a very slight phase shift in red video can be noticed if one examines the picture carefully and compares it with the picture under
normal conditions. But the effect is so slight that, from a normal viewing distance, it can easily go unnoticed.
20. (c) -The color ghost (displaced approximately $1 / 4$ in.) is caused by misregistration of the color and B/W information on the CRT screen. With the delay line shorted, the Y signal arrives at the CRT cathodes sooner than the color signals at the grids, resulting in a highly noticeable horizontal displacement. Color signals are normally slowed down due to the narrow passband of the chroma amplifiers.

The Moment of Truth!

Well, how did you make out? With five points per correct answer, if you scored 90 to 100 , congratulations! 75 to 85 is good, while 60 to 70 is considered fair. Less than 60 calls for dusting off the old color-TV textbooks, paying closer attention to circuit descriptions in manufacturers' service literature, or perhaps attending a few service clinics put on by manufacturers or by your local technicians' association.

Stay "tuned" to Electronic Technician/Dealer . . we'll be sending more CAT Games your way in future issues.

TEKLAB...

to-emitter breakdown rating of 1500 v for the transistor.

In the high-voltage hold down circuit a protection mechanism is incorporated in the horizontal scan system. Basically, the protection mechanism consists of a low-frequency multivibrator biased into operation by an overdrive sensing voltage. Once functioning, the multivibrator interrupts the horizontal oscillator drive to transistor Q905 to lower the average energy delivcred to the deflection system, thus decreasing the high voltage.

Summary

We feel that this chas-
continued from page 43 sis is well designed for rapid diagnosis and serviceability, reducing service time and allowing for more in-home type servicing.

The regulated power supply, with its current fold-back circuitry, which is considered a part of the horizontal deflection circuit, not only helps scan stability but permits trou-ble-shooting with a shorted circuit. We actually shorted the 132 v power supply source directly to ground for a period of time without injury to the TV set.

We also feel the TV set produces a very good, stable color picture.

DIGITAL CIRCUITRY...

continued from page 33
has been completed (just after the gate signal becomes positive) a negative transfer pulse allows the buffer-storage circuitry to accept the new count. And upon accepting the count, the reset signal (Q2-C) returns the decade counters to zero.

The next article in this series will cover the same circuit as it is driven by a 1 Hz signal-a frequency much too low to be observed without either timeexposure photography or a scope having a memory tube. We intend to use the latter.

TECHNICAL LITERATURE

Cables and Adapters

A 12-page brochure illustrates the various cables and adapters used with RCA's Industry Compatible Test Jig (ICTJ) Program. Color-TV sets of 41 manufacturers reportedly can be serviced with an RCA Color-TV Test Jig. Pictured in the brochure are extension cables and universal adapters, all identified by their appropriate stock numbers. Deflection yoke adapters, convergence adapters and automatic degaussing adapters are also listed by illustration numbers. Supplied with the brochure is an RCA ICTJ crossreference chart listing all the cables included in the program by description and numerical order. RCA Parts and Accessories, 2000 Clements Bridge Rd., Deptford, N.J. 08096.

Semiconductors

A 52-page Semiconductor Replacement Manual lists over 30,000 OEM part numbers alpha-numerically, which can reportedly be replaced by a line of 82 popular semiconductor devices. Manual K-500 also includes performance characteristics, outline drawings and pertinent parameters for the entire line. Included in the semiconductor replacement line are 42 small-signal and power transistors, 5 field-effect transistors, 6 silicon rectifiers, 14 linear integrated circuits and 15 LED devices. These semiconductor devices provide exact replacements for components found in home/mobile entertainment and communications equipment. Sprague Products Co., 65 Marshall St., North Adams, Mass. 01247.

CB Antennas

A 16-page Citizens-Band Communications Catalog featuring the firm's complete line of base station, mobile and marine antennas, trunk lid and deck mounts, co-phasing harness kit and other mobile accessories is available free on request. Avanti Research \& Development, Inc., 33-37 W., Fullerton Ave., Addison, Ill. 60101.

. . for more details circle 124 on Reader Service Card

Our 30 MHz Counter looked

SO good at 169.95* we put attractive new prices on our whole counter line

Heathkit IB-1102 120 MHz Counter
Reduced \$50, now just

The new Heathkit IB-1100 adds up to one of the best bargains you can buy in a 5 digit, -30 MHz counter. This easy-to-assemble kit gives you: Solid-state digital circuitry for non-blinking readout. Dependable cold-cathode display tubes. Custom designed time base for $\pm 3 \mathrm{ppm}$ accuracy from $+22^{\circ}$ to $+37^{\circ} \mathrm{C}$. Diodeprotected J-Fet for improved triggering over inputs from 100 mV to 150 V rms. 1 megohm input, shunted by 20 pF , for minimal loading. $\mathrm{kHz} / \mathrm{MHz}$ switch and overrange lamp. You can have yours together in approximately seven hours, and at this low price that's time well spent. Kit IB1100, 6 lbs.

The IB-1102 is the finest Heathkit Counter you can buy and build. Design features include a temperature compensated crystal oscillator clock for $\pm 1 \mathrm{ppm}$ stability from $+10^{\circ}$ to $+40^{\circ} \mathrm{C}$.; high impedance FET input circuit for minimum loading; automatic triggering level for hands-off operation. Sensitivity is 50 mV to 100 MHz and 125 mV above 100 MHz . The full 8 -digit cold-cathode display, overrange lamp, gate lamp and two range indicator lamps make the IB-1102 one of the easiest
reading counters around.

Free - Your 1973 Heathkit Catalog with the world's largest selection of instrument kits.

Heathkit IB-1101 100 MHz Counter Reduced $\$ 40$, now just -4 95^{*}

175 MHz Scaler
Reduced $\$ 10$, now just

Heathkit IB-1101 gives you maximum capability in the medium-price range. The all solid-state circuitry accepts inputs from less than 50 mV to 140 V rms, depending on frequency. The full fivedigit cold-cathode readout can be expanded to eight digit capability using the overrange circuitry. Other features include 1 megohm input impedance and low input capacitance; custom designed time base crystal for accuracy better than $\pm 3 \mathrm{ppm}$ from 17° to $32^{\circ} \mathrm{C}$. Compare performance and price with the competition. Then order your Heathkit IB-1101. Kit IB-1101, 8 lbs.

The Heathkit IB-102 Scaler is a two-evening kit that extends the range of virtually any counter to 175 MHz . In most cases you'll get improved sensitivity too. The solid-state circuitry divides input frequencies from 2 MHz to 175 MHz with the scaled output fed to any compatible frequency counter with a 1 megohm input. There is front panel switching of 10:1 or $100: 1$ scale ratios, plus $1: 1$ straight-thru counting. Resolution is down to 10 Hz with a counter having a 1 second time base. The Heathkit IB-102 is the economical way to add 175 MHz capability to your service bench. Kit IB-102,

8 lbs.

HEATH COMPANY, Dept. 24-2
Benton Harbor, Mlchigan 49022
\square Enclosed is $\$$. \qquad , plus shipping. Please send model(s)
\square Please send FREE Heathkit Catalog.
Name
Address
City
Prlces \& specifications state \qquad Zip
Prlces \& specifications subject to change without notlce.
*Mail order prices; F.O.B. factory. *Mail order prices; F.O.B. factory.

on these TOP-RATED "NO-NOISE" PRODUCTS PROVEN PERFORMANCE FOR COLOR AND B/W
FIRST, simply spray parts with SUPER SPRAY BATH. Dissolve and flush away grease, dirt,
oil and oxidation--penetrative action oil and oxidation-penetrative action
cleans and restores all component THEN, follow with VOLUME CONTROL AND CONTACT RESTORER
for special attention to
trols
push trois, push button assemblies, band
switches, contacts.

waime For Tuners CONTRD. (Incl. wafer type) use
COMTACT TUNER TONIC RESTORER With Perma Film OR SUPER LUBE for further
cleaning and lubrication economical, a little does a lot

$$
\begin{aligned}
& \text { Other Famous "NO-NOISE" Products } \\
& \text {-EC-44: :rizatat }
\end{aligned}
$$

Often imitated but never duplicated ELECTRONIC CHEMICAL CORP. 813 Communipaw Avenue Jersey City, N. J. 07304
for more details circle 112 on Reader Service Card

READERS SERVICE INDEX

ADVERTISER'S INDEX

101 B\&K Div., Dynascan Corp.
102 Book Club-Tab Books
103 Channel Master-Div. of Avnet, Inc. 3rd Cover
104 Chemtronics, Inc. .47
105 Cornell Electronics Co. 48
106 Delta Products, Inc. 46
108 EICO Electronic Instruments Co., Inc. 44
109 E-V/Game, Inc. 45
110 Eastman Chemical Products, Inc. 14
111 Edsyn, Inc. 44
112 Electronic Chemical Corp. 52
113 Finney Company, The 52
114 Fordham Radio Supply Co., Inc. 52
115 GC Electronics Company 11
GTE SyIvania, Electronic Components 13, 17
116 Heath Company, The 51
117 Jensen Tools \& Alloys 10
118 Keithley Instruments, Inc. 10
119 LPS Research Labs 12
120 Lakeside Industries 46
121 Leader Instruments Corp. 16
122 McAdam Electronics 5
123 Mountain West Alarm Supply Co. 52
124 Protective Weapons 51
125 Quietrole Company 48
, 3
126 RCA Parts \& Accessories4th Cover
127 RCA Test Equipment 38
128 Raytheon Company 18A-B, 19
129 Telematic Div., UXL Corp. 49
130 Tuner Service Corp. 9
131 Wahl Clipper Corp. 12
132 Workman Electronic Products, Inc. 48
133 Yeats Appliance Dolly Sales Co. 52
NEW PRODUCTS
700 Automatic Telephone Dialer 18
701 Needle Merchandiser 18
702 VHF Broadband Amplifier 18
703 Cordless Soldering Iron Accessory 16
704 Frequency Multiplier/Counter 16
705 MATV Coaxial Cable 16
706 Battery 45
707 Antenna Hardware 45
708 High-Voltage Putty 45
709 Cassette Tape Recorder 46
710 AC Power Cord 46
711 FM Transceiver 46
712 Color-TV Set 47
713 Stereo Cassette Recorder 47
714 AM/FM/FM Stereo Radio 48
715 Security System 48
716 Auto Burglar Alarm System 49
717 Video Tape Recorder 49

TEST INSTRUMENT

900 Keithley's Model 167 Digital Multimeter

DISCOUNT PRICES

 EQUIPMENTBH

人 Haxutio
I.E.C./Mullard Tubes Specials Catalog \& Prices on Request

Radio Supply Company, Inc
(t) 558 Morris Avenue, Bronx, N.Y. Tel: (212) 585-0330 TRI DISTRIBUTORS OF ELECTRONIC SUPPLIES
. . for more details circle 114 on Reader Service Card

.. for more details circle 133 on Reader Service Card

FREE ALARM CATALCG

Full line of professional burglar and fire alarm systems and supplies. 80 pages, 400 items. the shelf delivery, quantity prices.
$\pm \times$ mountain west alarm
W 4215 n. 16th st., phoenix, az. 85016
. for more details circle 123 on Reader Service Card

VIDEOTAPE...

continued from page 40

inmmediately is one of the key factors in getting a point across to the men," he stated.
Commissioner O'Rourke and Chief Malloy enthusiastically approve the use of science and technology in personnel training and firc-prevention public education. Says Chief Malloy, "VTR has improved our performance and operations tremendously. We are very proud of our new studio and are making increasingly effective use of our TV communications equipment."

 symbol description

9GちI

(2)

部

$697 L$

51,000 replacements can't be wrong when you go by the book.

Gives the data you need to replace today's most used solid-state devices with only 156 RCA SK s. For example, SK 3004, alone, replaces over 4,000 types.

RCA's "SK Replacement Guide" is the book to go by when you need a solid-state replacement. It not only cross-references the top-quality SK line with over 51,000 types, both foreign and domestic, but also supplies the kind of specific application information you need to choose the best replacement. It even includes a comprehensive Quick Selection Replacement Chart to save you time
and trouble when the device you want to replace is not identifiable.

You can be sure the devices that SKs replace so easily are not merely the off-beat kind. They're the ones you are most likely to encounter in your everyday servicing work. For example, the SK line not only offers the largest variety of matched audio pairs but also provides full coverage of TV deflection systems as well as

RF and Video stages. Add to this a full line of diodes and broad coverage of ICs and you see why so many service technicians go the SK, way. It's "The Solid State System" that reduces your inventory needs and builds customer satisfaction.

Contact your RCA Distributor today for the full SK story, and get the latest copy of the RCA SK Replacement Guide SPG-202N. You'll see why you can't go wrong with RCA SKs.
RCA I Electronic Components
Harrison, N.J. 07029.

[^0]: 42 TECHNICAL DIGEST: Hints and shortcuts for more effective servicing.
 44 COLORFAX: Tips for easier color-TV set repair.
 46 DEALER SHOWCASE: These items may increase your sales revenue.
 51 TECHNICAL LITERATURE: Informative material that you may need.
 52 ADVERTISER'S INDEX: Manufacturers concerned about you.
 53 READER SERVICE: A source of additional information.
 55 TEKFAX: Up-to-date schematics for easier servicing.

