

The new performance standard in preamplifiers

New Jerrold Lightning-Protected Powermate ${ }^{\text {D }}$ Preamplifiers now bring you a degree of reliability never before achieved in mast-mounted solid-state preamplifiers. Our extensive field tests in lightning storms prove it. Powermate models are available for every signal situation-VHF, UHF, and FM. And you can expect them to deliver snow-free, ghost-free, line-free TV in color or black and white for plenty of reasons:

- High gain
- Extremely low noise figures
- Unusually flat response

Outdoor antennas

Indoor antennas

Distribution equipment

Focusing on one thing... better reception

COMPLETE MANUFACTURERS'CIRCUIT DIAGRAMS
AND TECHNICAL INFORMATION FOR 5 NEW SETS

ZENITH
Color TV Chassis 20Y1C37

COMPLETE MODEL/CHASSIS INDEX FOR ALL CIRCUIT DIGESTS AND

 TEKFAX FROM JANUARY 1961 THROUGH DECEMBER 1967| MONTH IN WHICH SCHEMATIC APPEARS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 607-613. | Jan. 1961 | 780-784. | May 1963 | 951-953 | Sept. 1965 |
| 614-620 | Feb. 1961 | 785.790 | . June 1963 | 954-961 | Oct. 1965 |
| 621-627. | Mar. 1961 | 791-797. | July 1963 | 962-969 | Nov. 1965 |
| 628-633. | . Apr. 1961 | 798-805 | Aug. 1963 | 970-975 | Dec. 1965 |
| 634-636 | . May 1961 | 806-811. | Sept. 1963 | 976-982 | Jan. 1966 |
| $637-643$ | . June 1961 | 812.817 | . Oct. 1963 | 983-988 | feb. 1966 |
| 644-650 | . . July 1961 | 818-822. | . Nov. 1963 | 989-995 | Mar. 1966 |
| 651-656. | . Aug. 1961 | 823-828 | . Dec. 1963 | 996-1001 | Apr. 1966 |
| 657-662. | Sept. 1961 | 829-833 | Jan. 1964 | 1002-1009 | May 1966 |
| 663-669 | Oct. 1961 | 834-838 | Feb. 1964 | 1010-1015 | June 1966 |
| 670-675 | . Nov. 1961 | 839-843 | Mar. 1964 | 1016-1022 | July 1966 |
| 676-680 | Dec. 1961 | 844-850 | Apr. 1964 | 1023-1028 | Aug. 1966 |
| 681-686 | Jan. 1962 | 851-853 | . May 1964 | 1029-1035 | Sept. 1966 |
| 687.692 | Feb. 1962 | 854-858 | . June 1964 | 1036.1041 | . Oct. 1966 |
| 693-698. | Mar. 1962 | 859-863 | . . July 1964 | 1042-1047 | Nov. 1966 |
| 699-705. | . Apr. 1962 | 864-870 | . Aug. 1964 | 1048-1054 | Dec. 1966 |
| 706-709. | . May 1962 | 871-875 | Sept. 1964 | 1055-1060 | Jon. 1967 |
| $710-716$ | . June 1962 | 876-881 | . Oct. 1964 | 1061-1067 | Feb. 1967 |
| 717-723 | . . July 1962 | 882-887 | . Nov. 1964 | 1068-1073 | Mar. 1967 |
| 724-729. | . Aug. 1962 | 888-893 | Dec.. 1964 | 1074-1080 | Apr. 1967 |
| 730-735. | Sept. 1962 | 894-900 | Jan. 1965 | 1081-1086 | May 1967 |
| 736-743 | Oct. 1962 | 901-908 | Feb. 1965 | 1087-1092 | June 1967 |
| 744-749. | Nov. 1962 | 909-916 | Mar 1965 | 1093-1098 | . . July 1967 |
| 750-755. | Dec. 1962 | 917-923 | Apr. 1965 | 1099-1104 | Aug. 1967 |
| 756-761. | Jon. 1963 | 924-926 | . May 1965 | 1105-1110 | Sept. 1967 |
| 762-766. | . . Feb. 1963 | 927-934 | . . June 1965 | 1111-1116 | Oct 1967 |
| 767-772. | Mar. 1963 | 935.942 | . . July 1965 | 1117-1122 | Nov. 1967 |
| 773-779. | Apr. 1963 | 943-950 | . Aug. 1965 | 1123-1127 | Dec. 1967 |

\qquad
\qquad Reverb
AMIFM Consol 3A. 88 ..

automatic radio
Auto Rodio 1959. 1960 Chev.

| schematic no. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 120842 1033 | hoffman | 202 Auto Rodio 727 | 14×50.......................862 | KCS5158 Series 1119 | Model | Sosiw Coprice Am/fm/sw | 4DC7465 Tope Recorder |
| 120843 ${ }^{1033}$ | | ${ }_{204}^{203}$ Auto Rodio | ${ }_{15125}^{1520} \ldots \ldots \ldots .1005$ | | ${ }_{\text {S63P197 }}^{563197} \ldots$ | Rodio | |
| | bp318 Trons Rodio 703 | ITMC Auto Rodio 673 | ${ }_{15227}$ | ${ }_{\text {KCS5163 Series1 }}^{1065}$ | ${ }_{\text {S64K236M }}$ | | westinghouse |
| 120848 1033 | Model ${ }^{\text {P708 }}$ Tons Redio ${ }^{\text {a }}$ | ${ }^{2}$ TMR Auto Rodio 6961 | $15 \mathrm{M91}$ … 898 | Kcs164 | S65P198 1060 | | |
| Model: | P708 Trons Rodio 703 | | ${ }_{15 N 50}^{15030} \ldots$ | KCS5 165 Series RC-124A Radio | Chassis: $1194-194$ | | |
| | | | | RC-1214A Rodio $\mathrm{RC-1216}$ Rodio | 1194-194 869 | TOSHIBA | |
| EP-40 Air Purifier lonizer 618 | KORTING | 19T5, 7, 11, 12, 13, and | 165126. A $\quad 965$ | RS.1944 Reverb Amp 615 | | Model: | H-883^29 Rodio 846 |
| P. 11913 Stereo/Rodio 7790 | ${ }_{\text {M }}^{\text {M } 22333,}$, 2243 Tope Recorder 865 | 109 Moorer Aulo Rodio ${ }^{\text {Alari Series }}$ | ${ }_{16 \mathrm{~N} 82}^{16 \text { 3 }} 1$ | RS-200 Stereo Adopter RS-206-A Record Chorger | Sony | 971-3655 Trons Rodio 685 | |
| 1800/2000 Series 742 | MT3643/ 3633 Stereo Tope | 109 Mopor Aly ${ }^{\text {alo }}$ | | RS-206-A Record Chonger 868 | lode | ${ }_{\text {Chest }}^{\substack{\text { Chassis: } \\ \text { 10p6 }}}$ | H-M1900, 01, 03 Phono |
| FIRESTONE | | C22A-18806-M-N Auto Rodio C2YA-1800-E Auto Rodio | | regency | ${ }_{8-301}^{5-303 \mathrm{~N}}$. | | |
| firestone | layfayette | RV2F c202-18875-C Auto | 17217. 274 …........... 1063 | | TRW-621 Trons Rodio 690 | ravier | V-2409-1, -2, -3625 |
| Chassis ${ }^{\text {a }}$ | | | | | | | |
| | KT-236 Stereo Amp 610 | muntz | 17 N 35 17 NT 45 | CBM-27 Citizens Bond Rodio 658 | SPART | | V-2414-1, -2, |
| FISHER | | | $18 \mathrm{NT45}$.................. 1125 | | Model | GTC-4014A | |
| | magnavox | T68A14 | 180185 / 18MT70 1118 | SETCHELL.CARLSON | ${ }^{12}$ MS5-P Stereo Phono | GTC.4044a . .i. .i. .i...... 821 | $\mathrm{V}-2444-1,-2,3,-5,-6,-9,-10 \ldots 795$ |
| 800 AMFM Stereo Amp 693 | | | | Chosis: | ${ }_{\text {chas }}^{\text {chasis: }}$ 191................. 765 | | |
| 800 AM/FM Stereo Amp 693 | ${ }_{77.01}$ Model: AMFM Tuner 794 | | PHILHARMONIC | 1598 - ${ }^{639}$ | 23 K 2.................714 | GTC.4144 | V-2451-2 CB Tronsceiver . 774 |
| | Chossis: | | | ${ }_{401}^{361 A} \ldots$ | | GTC-4154A 821 | V-2451-2 CB Tronsceiver 817 |
| flet | ${ }_{35}^{34}$ Series | OLYMPIC | TSL-001 689 | | sterling | | |
| Chassis: | 36-02 Series …….............672 | Model: | | SHERWOOD | | 1156.89 _...............696 | V-2476-1 _ |
| | | | ray theon co. | | 1/6333S AM/FM/SW | | |
| | ${ }_{43}$ Series 835 | Chossis: | | | Rodio Phono..... | truetone | V-2485-11 |
| general electric | ${ }_{45}^{44}$ Series | | TWR-1 "Rortel" Citizens 640 | | | | ${ }_{\text {V-2487 Series }}$ |
| Chassis: | 47 Series 1062 | CTC19/21 Series 1077 | | Silvertone | STR | $20 ¢ 13008$................ 767 | v 2490 Series $\quad 1014$ |
| | ${ }_{49}^{48}$ Serieses912 | JWR671 | er / Decoder 895 | Model: | Auto Rodio 622 | ${ }_{201}^{2013018}$ | |
| | 70.01 FM Multiplex Adopter 702 | | RCA VICTOR | ${ }_{6122} 12 . \ldots10099$ | | ${ }_{2}^{20121301 C ~}$ | |
| | ${ }_{\text {IT }}^{\text {I908 Series }}$ Series9981 993 | | rca victor | | sylvania | | ${ }_{\text {V.2528-3 Rodio }}$ |
| 0_{08} …1.................... 930 | | | ${ }_{\text {193-A.S42-MV, Mu }}^{\text {Model }}$ (730 | | Mode! | | |
| ${ }_{\text {D } 0 \text { d }}$ | | packard-bell | 193-A.546-VMM MU 730 | | 4P19 Series 19117 Series Rodio a | | V2656-1-2 1121 |
| ETV 1046 | | Model | 193-A-549-MV -MU 213-G.21-M | ${ }_{6157}^{6156}$ (157..............995 995 | 21 TC1-C2 _................. 858 | 20 Cl 165 . | |
| ${ }_{\text {H8 }}{ }^{\text {a }}$ - | T9201 Series Tories a | ${ }^{230 C 16}$ - ${ }^{\text {a }}$ (748 | ${ }_{213.6 .23-\mathrm{M}}^{213} \mathbf{}$ | | | ${ }_{201}^{20 \mathrm{Cl} 1803}$ | zenith |
| | T922 Series
 T923 Series
 1072
 1076 | MPP-1.1. Chossis: Seeo Adopter | | | | ${ }_{20}^{20 C 35555} \ldots \ldots1079$ | |
| (W \mathbf{x} | T925 Series1076 1111 | ${ }_{88.9}{ }^{\text {c. }}$ | ${ }_{213-6-27 M}$ | 7114 1026 | | 20 C 3551 203712 | Model: |
| | | ${ }^{88.16}$. | ${ }_{213}^{213-G-27-R}$ - ${ }^{2}$ | 7120 1038 | | 20 C 3741 … | |
| MxT _ 785 | MATSUSHITA | ${ }_{88 \text { 8.19 }}^{88 \text {-18C }}$ | ${ }_{213-6-31-\mathrm{R}}^{213.6-1 . M} \ldots$ | ${ }_{7122}^{721} \ldots \ldots \ldots \ldots \ldots \ldots1038$ | ${ }^{55531-1}$ Stereo ${ }^{738}$ | $20 \mathrm{C3818}$ _ 1127 | Royal 150 Rodio $\ldots \ldots . . .635$ |
| ${ }_{\text {Ox }}^{\text {ar }}$ (| | $98 \mathrm{C15}$.................... 1083 | ${ }^{213-6.33-M}$ - ${ }^{1}$ | 7128 | | 1096 -243 788 | |
| | | | ${ }_{\text {4VC6 Record Ployer }}^{\text {2138 }}$ | 7131 _ ${ }^{1026}$ | A02-1, -2 . | | 6614272 Rodio $\ldots \ldots635$ |
| | MF8oo Motional Feedback Amp ... 810 | | $4 \mathrm{4C8}$ Record Ployer798 798 | | | | |
| TA 881 | | PeARCE-SIMPSON | | | A06.1, -2........... 1085 | United scientific labs | 6KT4021 Irons Rodio 781 |
| TB ${ }_{\text {TG }}$ | MONTGOMERY WARD | Model: | KRK 105//12, KRK1 12 with | 7756 | | | |
| U56992 | | CBD-5 CB Rodio 338 | | ${ }_{7158}^{7157 \ldots \ldots1098 ~}{ }^{1098}$ | 806-1, 2, 2, - ${ }^{\text {a }}$ | Contoct 23 CB Tronsceiver | |
| | WG-399A FM Multiplex 768 | | MARK11 Citizens Bond Rodio . $\quad 645$ | | | | 13 M 15 13×15 \ldots |
| | | PERMA-POWER | RFG635 Rodio Rk-295 Stereo Adopter | 456.61588 456.61581 | ${ }^{0011,-2 \ldots, 1020}$ | UTIC | |
| | motorola | | | ${ }_{456.70120}^{450 .9567 ~} 96$ | | | $\underset{1425}{1420} \ldots \ldots \ldots{ }_{838}^{842}$ |
| | | | ${ }_{\text {CTCC11 }}$ Cliol | | Dos | 18C11 C8 Tronsciver 805 | |
| | | | CTCCI $12, ~ A, ~ B, ~ P, ~ R ~$ | | 006.1, -2 ${ }_{\text {007-1, }-2.1}$ | | |
| CTIIO, CP775 Trans Rocio 619 | OTSS RTS 4366 | G-500 \& RC-200 Remote Control . 797 | | ${ }_{528.70121}^{528.70120} \ldots \ldots \ldots \ldots967$ | 1-537.5, -6 _........ 611 | voice of music | $14 \mathrm{M27}$ _-................. 916 |
| | STS-435 614 | | CTC19984 | ${ }_{528.7120}^{528.7121} \ldots$ | 406-3 Stereo
 551
 1 | | $14 \mathrm{M} 32 \ldots \ldots934 ~$ |
| | | PHILCO-FORD | | $528.72280 \ldots \ldots \ldots \ldots \ldots \ldots 1114$ | ${ }_{551,-2,-3,-5,-6,-7 \ldots \ldots}^{680}$ | | $14 \mathrm{N22} \ldots \ldots \ldots \ldots$ |
| | | | CrC22 Series CTC25 | | ${ }_{558}^{552-1,-2,-9} \ldots 6{ }^{\text {a }}$ | 725 Top | |
| P970A Rodio 8099 | IS 438 IS 440 \ldots | | C1CCS KCSI3OF, H, K, M | | | | 14 N 28. |
| RP2060A Stereo Phono 725 | TS-4549931 | ${ }_{\text {L-1 }}^{1532}$ Stereo Phono 761 | KCSI 30YAB, YAC 705 | ${ }_{529.61581}$ | 557, -1, -2 _ | webcor | |
| ${ }_{\text {I-3000A, B, Steree Receiver } \ldots836}$ | | 1-1.155 Stiereo | | | ${ }_{585-1,-24}^{584-1 / 4.4}$ | | 14 N 292
 14×31 |
| W360A Raciol inercom. 796 | | M-1618 Stereo Phono
 M-160
 1060
 Stereo Phono | | ${ }_{\substack{529.70121 \\ 5621096}}^{\text {a }}$...............967 972 | ${ }_{682-1,-2,-3 \text { Trons Rodio }}^{668}$ | ${ }_{13}^{\text {Model }}$ Stereo Phono - 735 | |
| general electric (Canada) | IS.499 _.................... 752 | NT-600 Rodio 867 | | | | 1377 Steree Phono 735 | |
| | TS.576 TS.588 \ldots | Q1054
 RC-65 Remote Control Receiver .1113
 137 | | | SYMPHONIC | | $\underset{\substack{16623,0 \\ 162805}}{1}$ |
| M618\% | TS.584-05, H............... ${ }^{103}$ | T-63 Trons Rodio | KCSI38 | $\begin{aligned} & 564.10000 \\ & 564.10001\end{aligned} \ldots . \begin{array}{r}988 \\ \hline\end{array}$ | | | 16k20.0 05 739 |
| M649 M ${ }_{\text {M }}$ | | | ${ }_{\text {KCSS1404, B }}$ | ${ }_{56410002}$ _.............. 988 | $\underset{\text { Chossis: }}{\substack{\text { TS-001 }}}$ | WElls-GARDNER | 160124 176280 |
| | | Chassis | | | | Wets-gardner | ${ }_{201281}$ |
| granco | | ${ }_{\text {N1204 }}^{\text {N200 }}$ | | 564.10005988 98 | TELECTRO | ${ }_{20}^{\text {Model }} 14144 \ldots 2{ }^{\text {a }}$ | $23 \times(36$ $24 N(31$ |
| | IS-596 957 | 11425 613 | KCS514A, B . $\quad 788$ | | | | $25 \mathrm{Mc} 30 \ldots \ldots \ldots$ |
| | | 11127 11 N56 | | | ${ }_{215}$ Model | WGG4324, S2, S2V $\quad{ }_{\text {W }}$ | |
| | | 12127 _.................... 676 | KCSI51A A...........917 | sonar | MM-214 Tope Recorder 801 | | 27kc20, Q 728 |
| heath | T55994A-00 thru A-07951 | | ${ }_{\text {KCSSI53 }}$ | | | western auto | ${ }_{5.54344}^{291520}$ Hond Control ${ }_{799}{ }^{675}$ |
| | | ${ }_{13 \text { 3N5 } 2 \ldots . ~}^{754}$ | | "G" CB Tronseiver 770 | telefunken | | S-60804, 44, 1024 |
| | | ${ }_{14620}^{1353} \ldots \ldots \ldots \ldots754$ | ${ }_{\text {KCSSI5s }}^{\text {KCSI56 }}$ | | | Mod | 175-141). 142. Renotel |
| 6R-53 _............... 839 | Model: | 14430 871 | KCS157 Series1116 | SONORA | 77 Stereo Tope Recorder 715 | $40 \subset 7260$ A Tape Recorder840 | -171, -172 Tuner 623 |

1123 CANADIAN GENERAL
ELECTRIC ELECTRIC DECEMBER • 1967

1124

(1) $35 \times .0 .0 .15750 \mathrm{c}$
 Soak vell in corntol
号

1126 COPYRIGHT 1967 bY ELECTRONIC TECHNICIAN - OJIBWAY BUILDING. DULUTH. MINNESOTA 55802

1127
TRUETONE
TV Model 2DC3818

SYMBOL Description

 DECEMBER • 1967
COMPLETE MANUFACTURERS' CIRCUIT DIAGRAMS
AND TECHNICAL INFORMATION FOR 5 NEW SETS

\qquad

DET-E1024C

* Wint redin mes ier

1127 COPYRIGHT 1967 bY ELECTRONIC TECHNICIAN - OJIBWAY BUILDING. DULUTH, MINNESOTA 55802

Nine-seventy-five buys you a complete tuner overhaul-including parts (except tubes or transistors) - and absolutely no hidden charges. All makes, color or black and white. UV combos only \$15.
Guaranteed means a full 12-month warranty against defective workmanship and parts failure due to normal usage. That's 9 months to a year better than others. And it's backed up by the only tuner repair service authorized and supervised by the world's largest tuner manufacturerSarkes Tarzian, Inc.

Four conveniently located service centers assure speedy in-and-out service. All tuners thoroughly cleaned, inside and out . . . needed repairs made . . . all channels aligned to factory specs, then rushed back to you. They look-and perform-like new.

Prefer a replacement? Sarkes Tarzian universal replacements are onty $\$ 10.45$, customized replacements $\$ 18.25$. Shipped same day order received. Order custom tuners by TV make, chassis, and model number. Order universal replacement by part number:

Part \#	Intermediate Frequency	$\begin{aligned} & \text { AF Amp } \\ & \text { Tube } \end{aligned}$	$\begin{aligned} & \text { Osc. Mim } \\ & \text { Tube } \end{aligned}$	Heater
MFT-1	41.25 mc Sound 45.75 mc Video	6GK5	6L. 8	Parallel 6.3V
MFT-2	41.25 mc Sound 45.75 mc Video	3GK5	5LJ8	Series 450 MA
MFT-3	41.25 mc Sound 45.75 mc Video	2GK5	5CG8	Series 600 MA

Genuine Sarkes Tarzian universal replacement tuners with Memory Fine Tuning-UHF Plug in for 82-channel sets-Pre-sel fine tuning-13-poshtion detent-HI galn-Lo nolso -Universal mountling

FOR FASTEST SERVICE, SEWD FAULTY TUNER WITH TV MAKE, CHASSIS, AND MODEL NUMBER, TO TUNER SERVICE CENTER NEAREST YOU

TUNER SERVICE CORPORATION FACTORY-SUPERVISED TUNER SERVICE HOME OFFICE, MIDWEST 817 N. PENNSYLVANIÅ ST., Indianapolis, Indiana TEL: 317-632.3493 under new management, east 547-49 tonnele ave., lersey City, New lersey TEL: 201.792-3730 SOUTH-EAST 938 GORDON ST., S. W. Atlanta, Georgia TEL: 404-758-2232 WEST SARKES TARZIAN, Inc. TUNER SERVICE DIVISION 10654 MAGNOLIA BLVD., North Hollywood, California ...TEL: 213-769-2720

ONLY ONE COLOR GENERATOR IS WINTER PROTECTED

Sencore's Color King puts an end to cold weather instability.

Transistors just don't perform properly on those cold, cold winter days. So, when you bring in an ordinary solid state color bar generator from a freezing car or van, you wait and wait for stable patterns. Even then you can't be sure.

Only Sencore's new Color King is truly winter protected. Only the Color King has a built-in heating element surrounding the critical timing circuits. The instant you plug in the generator, this heating element warms up these circuits; also driving out excessive humidity. When optimum oper-

ating temperature is reached, a thermostat automatically turns off both the heating element and the Temp Control indicator light. Now you know the circuits are rock stable.

Protect yourself this winter. Go for the hot one. The CG141 Color King. The color generator that works when its hot and works when its COLD.
That's why the Sencore Color King stays sold.
Only $\$ 149.95$ User Net

> HUGH "seorty wallact Publisher
> PAUL MORWI:ILER Fditor JACK HOBBS Managing Editor JOSEPH ZAUHAR Technical Editor
> PHILLIP DAHLEN Associate Editor
> RICHARD CLAYTON Field Editor MARTIN PADLEY Field Editor
> BARBARA BURNSON Productlon Editor DON SHERWOOD Art Editor
> RUTH GELINEAU Circulation Manager JOHN KESSLER
> Manager, Reader Services
> MAGGIE KANE
> Advertising Production
> GENERAL OFFICES
> OJIBWAY PRESS, INC
> Ojibway Building
> Phone: (218) 727-8511
> Telex: 029-4417
> MARSHALL REINIG President
> GREG BLODGETT Treasurer DEAN MYHRAN Executive Vice President JOE WOLKING
> Vice President, Marketing BEN MARSH
> Vice President, Editorial
> HARRY RAMALEY
> Vice President, Production
> LARS FLADMARK
> Circulation Director
> JAMES GHERNA Art Director
> WARREN BODIN Ad Production Supervisor
> NEW YORK OFFICES 71 Vanderbilt Ave. New York, N.Y. 10017 Phone: (212) 686-2200
> ROBERT EDGELL
> Senior Vice President
> RICHARD C. REINHARDT Vice President DON GENOAR
> Manager, New York Office
> CRICAGO OFFICES
> 43 East Ohio Street Chicago, Illinois 60611
> Telex: 02-53549 TOM GRENEY Vice President DOROTHY BOLAN Manager, Chicago Office

MARKETING REPRESENTATIVES
New York: (212) 686-2200 HUGH "SCOTTY" WALLACE

Chicago: (312) 467-0670

WORLDS LARGEST ELECTRONIC TRADE CIRCULATION

DECEMBER 1967 - VOL. 86, NO. 6

39 SERVICING SOLID-STATE AUTO TAPE PLAYERS

Learn how to handle your share of this boom cartridge tape player business

44 TECHNICAL TIPS FOR ‘RAZOR SHARP’ COLOR PICTURES
This article tells you how to solve some tough problems in color TV receivers

48 SEMICONDUCTORS FROM A TO Z
The seventeenth article of this series digs further into tuning-type diodes, their use in TV ATC and FM AFC circuits

54 DON'T FORGET THE HEAT-SINK COMPOUND
A technical description of silicone grease used to cool transistors
55 FROM SERVICE TO SALES-AND-SERVICE
Tells about the growth of one service-dealer operation
OPEN DISPLAY SHOP BOOSTS SERVICE IMAGE
Here's a service-dealer operation that you'll find interesting

```
EDITOR'S MEMO
70 1967 ARTICLE INDEX
    LETTERS TO THE EDITOR
    TECHNICAL DIGEST }73\mathrm{ CATALOGS &BULLETINS
    DEALER FAX }76\mathrm{ ADVERTISERS' INDEX
    COLORFAX
    NEW PRODUCTS
```

COVER
Our innovating photographers created this one by shooting part of the front window of a local TV-radio shop through a Christmas wreath.

TEKFAX • 16 PAGES OF THE LATEST SCHEMATICS • Group 184
CANADIAN GENERAL ELECTRIC: TV Chassis M685
CORONADO: TV Model TV2-7110A
PHILCO-FORD: TV Chassis 18 NT45
TRUETONE: TV Model 2DC3818
ZENITH: Color TV Chassis 20Y1C37

OJIBWAY PRESS, INC.

ELECTRONIC TECHNICIAN is published monthly by Oitbway Press, Inc. Subscription Rates: One year $\$ 5.00$, Two years $\$ 8.00$, three years $\$ 10.00$ in United States and Canada. Other Countries: One Year $\$ 9.00$, two years $\$ 14.00$, three years $\$ 18.00$. Single Copies, 60 . Second Class postage paid af Waseca, Minnesota and at additional mailing offices. Copyright 1967 by Oiibway Press, Inc.
POSTMASTER: Send form 3579 to ELECTRONIC TECHNICIAN, Ojibway Building. Duluth, Minnescia 55802.

Channel Master

 smashes the82 Channel size barrier!
 electronically interleaves U and V elements for compact size without sacrifice of VHF gain.

Deep Fringe
Model 366I-G
Same VHF gain as Color Crossfire Model 3610-G

New Color Crossfire 82 UHF/VHF Antennas plus FM/FM Stereo

Totally new concepts in UHF/VHF design are joined with Channel Master's proven Crossfire principle to produce the first 82-channel antennas that meet UHF reception needs yet also provide unsurpassed VHF gain... and with no appreciable increase in over-all size.

Here is another example of a major development from Channel Master Laboratories where, as always, leadership begins with research.

Until now, antenna manufacturers have created combination UHF/VHF antennas by coupling a UHF section to the front of a VHF antenna. To avoid costly, unwieldy, and unsightly construction, this has always meant sacrificing VHF gain. Now Channel Master fills the 82-channel gain gap with Color Crossfire 82 antennas designed for metropolitan to fringe areas where maximum VHF gain is as important as UHF reception power.

In addition to the famous Channel Master Crossfire VHF Proportional Energy Absorption Principle, these new antennas employ unique series-fed folded UHF dipoles with carefully engineered dimensions so that they literally "disappear" and operate as a perfect 300 ohm line at VHF frequencies...no "lossy" couplers required as is the case with the usual parallel-fed UHF elements.

And, of course, every Color Crossfire 82 antenna features Channel Master's famous E.P.C. golden coating and rugged preassembled construction.

COLOROTORS... for the complete U/V installation

Color Crossfire-82 anteanas and Channel Master Colorotors go hand-in-hand for best color on all U and V channels, crisp, clear $F M$, and FM Stereo reception.

Now the first and only complete line of full VHF Power 82-channel antennas.

> More Channel Master Crossfire Series Antennas have been sold and are being sold.., than any other antenna in the history of television.

CHANNEL MASTER

Ellenville N.Y.

ALIGNMENT OSCILLATORS DESIGNED TO MAKE SERVICING EASIER BOTH NEW FROM INTERNATIONAL

 signals in the alignment of IF and RF circuits. The portable design is ideal for servicing two-way radios, TV color sets, etc. This model can be zeroed and certified for frequency comparison on special order. Individual trimmers are provided for each crystal. Tolerance . 001%. Output attenuators provided. Battery operated. Bench mount available.

Complete (less crystals) \$125.00

MODEL 814
$(70 \mathrm{KHz}-20 \mathrm{MHz})$
The Model 814 is identical in size to the 812. It does not have individual trimmers for crystals. Tolerance is $.01 \%$. Battery operated. Bench mount available.

Complete (less crystals) $\$ 95.00$
Both the Model 812 and Model 814 have positions for 12 crystals and the entire frequency range is covered in four steps.

Write for catalog

CRYSTAL MFG. CD., INC.

10 NO. LEE - OKLA. CITY, OKLA. 73102

FLOURISH

Close the sales your ads start. Use Ojibway's total service to do it.

Effective merchandising. Tailored to your needs. Your market. Ojibway handles it for you. From beginning to end. Puts it where it gets the most action. From the people who make buying decisions. From unenthusiastic salesmen. From brokers and distributors who need a prod.

Solid market information. Facts and conclusions no one can argue with. Plus...

Business publications edited for the people who buy. Read by the people who buy for the companies that buy the most. This coverage and readership is basic. You get even more. The help of people who know your market, know the people in it.

Total service. Get it from Ojibway. Ask your Ojibway Marketing Man to get specific.

Your Product's Success is Ojibuay's Business

OJIBWAY PRESS, INC.
DULUTH • NEW YORK • CHICAGO • DALLAS • WASHINGTON, D.C.

Satistying the need to know... with 28 pubilcations in 13 industries.
ELECTRONIC TECHNICIAN - DAIVE-IN MANAGEMENT - DRIVE-IN MANAGEMENT GUIDEBOOK - HOSPITAL NURSING HOME FOOD MANAGEMENT - SCHOOL \& COLLEGE FOOD MANAGEMENT. FLANT \& BUSINESS FOOD MANAGEMENT - KITCHEN PLANNING G GAS AGE © GAS APPLIANCE MERCHANDISINGG
LPGAS. INDUSTRIAL GAS. BROWN'S DIRECTORY. PAPER SALES. TME PAPER YEAR BOOK LP-GAS - INDUSTRIAL GAS - BROWN'S DIRECTORY - PAPER SALES - TME PAPER YEAR BOOK
. CONVENTION NEWS. MODERA CONVERTER - HEARING DEALER HOSIERY \& UNDER. - CONVENTION NEWS - MODERN CONVERTER. HEARING DEALER. HOSIERY \& UNDE
WEAR. OFFICE PRODUCTS GEALER. OPD CONVENTION DAILY. AMERICAN FUA

Phono Needle Microscope

Further on this subject. We have used a $40 x$ styli scope for years but they are available up to $60 x$. Model PM60x is listed in a catalog we received from Santronics Sales Ltd., 608 Blackford St., New Westminister, B.C., Canada.

Brymar Tv
New Westminister, B.C.

Memoscriber Info

I'm still looking for operating instructions and parts list for Soundscribers - Memoscriber Model 77.

Leo E. Smith
RD! Box 375
Sandy, Utah 84070

UM80s

I read with interest in your "Letters to the Editor" column of the need which one of your readers had for a UM80 indicator tube.

1 believe it will be of interest to many of your readers that AMPEREX not only includes this tube type in our line but also many other foreign tubes which may be difficult to obtain from other sources. These tubes are available from our franchised distributors.

We will be pleased to furnish information on our distributors if your readers communicate with us.

Myron Smoller, Manager
Advertising \& Sales Promotion
Amperex Electronic Corp.
230 Duffy Ave.
Hicksville, L.I., N.Y. 11802

Looking to the Future

Yours is about the last publication, on a national scale, still endeavoring to aid small service-dealers and working technicians. But the first glimmer of a real recognition of the basic ills plaguing the industry as a whole appeared in your Editor's Memo, titled "They Must Standardize," in the August 1967 issue of Electronic Techinician.

Let's face it - EIA standards began going out the window when printed circuits came in at the door. And 1 doubt if your brief comment will impress those who have foisted so much hard-lo-service junk on the public.
"Space Technology," as sold by many companies. simply boils down to the cheapest and easiest means to get the product off the assembly line and because the technician is the low-

Call in your neighborhood TV technician when your set first starts acting up... you'll please the family ... and SAVE money in the long run! YOUR INDEP ENDENT TV-RADIO SERVVICE DEALER don't forget to ask your customers "what else needs fixing?" DECEMBER 1967

RENT-A-CAR(TRIDGE) BUSINESS

Perhaps this is what some of Astatic's competitors are talking about when they claim to be No. 1 in the phono cartridge field. They must mean that they have gone into the RENTAL car(tridge) business!
They can't mean cartridge manufacture or sales. Astatic has held that No. 1 position for more than 30 years. Astatic leads the industry with, far and away, the MOST COMPLETE line. ONLY Astatic has a replacement for EVERY need... the replacement that matches performance and fit as well as appearance. Astatic is also the largest OEM producer, creating the bulk of the replacement market you sell and service. From every standpoint, Astatic is No. 1.

Wonder how the competition keeps track of the mileage?

THE ASTATIC CORPORATION Conneaut, Ohio 44030 U. S. A.

In Canada: Canadian Astatic Ltd., Toronto, Ontario Export Sales: Roburn Agencies, Inc.
431 Greenwich Street, New York, New York 10013, U.S. A.

for more details circle 103 on postcard

If LETTERS
 TO THE EDITOR

est man on the totem pole _ that's where the buck ends up.

One of the few companies still making concessions to the servicing end of the business is now pushing "number one." He didn't get in that position on his advertising budget alone. He simply produces products which most service technicians can live with and honestly recommend.

Since few consumers plan on orbiting their color sets, stereo or whatever, I'n puzzled about the source of the future Space Age youngster who is going to work as an apprentice technician while there's a possibility of getting a college sheepskin that automatically means a higher starting income than most technicians can command after many years in the game.

Whether your publication is the means for getting or calling attention to standards that would not only give technicians a "break" but the consumer as well, is of course something for you to decide. I think, however, it would promote interest and maybe get a few technicians' heads out of TV sets long enough to write you if you were to run a "Jackpot and Lemon" column featuring manufacturers names, model numbers and a short description of why the product is a stinker to troubleshoot and repair or is a delight to work on.

Heinz Neuman
South Beach, Ore

- Read ET carefully and you will see that many arricles, including those produced in ET's Teklab, call attention to numerous servicing problems which arise because of design. The Tecdigest section also covers manufacturers' design changes - changes made after previous equipment runs have proven defficient in certain ways. We honestly believe that design trends are now moving toward fewer servicing problems. Standardization would be only one factor involved in acceleruting this process. -Ed.

Long Distance Call

I have a model 153 signal generator and tracer made by Accurate Instrument Co. Understand they are no longer in existence. I need a spare variable capacitor and a complete schematic.
Y. L. ONG

10, Lorong 10/10A Petaling Jaya
Selangor, Malaysia

NOW...a full-sized VOM in a palm sized "package"

[^0]

160 Volt-Ohm-Milliammeter Complete with alligator clip leads and operator's manual.

Cat. No. 2225.
\$ 9.50
Accessory Leads-
Probe Tip Lead-
Cat. No. 2055 \$ 2.75

impson 160 Handi-VOM

Simpson Handi-VOM gives you the ranges, the timesaving conveniences and the sensitivity of a full-sized volt-ohm-milliammeter-yet it's only $3-5 / 16^{\prime \prime}$ wide, weighs a mere 12 ounces. Recessed range-selector switch never gets in the way . . . polarity-reversing switch saves fuss and fumble. Self-shielded taut band movement assures high repeatability and freedom from external magnetic fields. Diode overload protection prevents burn-out-permits safe operation by inexperienced employees and students. The demand is BIG, so get your order in to your electronic distributor, 'TODAY!
OIVISION

5200 W. Kinzie Street, Chicago, Illinois 60644
(312) 379-1121

Export Dept : 400 W. Madison Street, Chicago, Illinois 60606, Cable, Simelco
IN CANADA: Bach-Simpson Lid., London. Ontario
IN INDIA: Ruttonsha-Simpson Private Lid,, International House, Bombay-Agra Road, Vikhroli, Bombay WORLD'S LARGESTMANUFACTURER OF ELECTRONIC TESTEQUIPMENT

ACE
TV-REPAIR

Surprising what you can pick up in a good week's work.

Play along with us and we'll see that you get a little something extra to take home. Like a shiny new toaster or an electric percolator. Maybe a fishing reel or a Harris Tweed jacket.

For that matter, we'll get you a toboggan, if that's what you want most.

What we ask in return is that you use Sylvania tubes when you're repairing TV sets-both our own make and others.

As you know, we make color and black \& white picture tubes and receiving tubes for virtually every make set on the market. In fact, 15 out of 21 color set manufacturers use some Sylvania picture tubes as original equipment.

So you shouldn't have much trouble moving a lot of our tubes, week in and week out.

When you use our tubes, you get our Sylvania Bright Guys award certificates as a bonus. They're not quite the same as money. But they will get you the kinds of things only money can buy.

Your distributor is the man to contact for details. He'll give you a Sylvania Bright Guys award kit (which includes a catalogue listing the good things we offer-about 1500 in all).

Naturally, the more tubes you buy from him, the more certificates he'll give to you.

It's a pretty fair way to work, wouldn't you say?

SYLVANLA
GENERA: FELEPHONE \& EIECTRONICS

GENERAL ELECTRIC

TV/Phono Chassis M6/MW - Function Switch Availability
Replacement function switch assemblies, used in M6 and MW chassis TV/Phono combination models, will soon become "no longer available." The switch assembly

catalog numbers are ET55X35 for the M6 chassis models and ET55X41 for the MW chassis models.

Each switch assembly includes one wafer switch, two SPST switches and two DPST switches.

Nearly all defective switch assemblies can be repaired by replacing the faulty switch section or sections.

The illustration identifies the various individual switch sections.

Adjustable Line Voltage Transformer

Occasionally there is a desire to boost or cut the line voltage for a TV set or appliance. This can easily be done with a small filament transformer placed in series with the appliance power cord. A switch could also be added in the secondary to provide a step-variable shop supply for cooking out' stubborn intermittents.

The 5a unit shown has enough capacity for a color TV set (about 350 w). For other requirements you can roughly calculate the transformer needed by adding 30 percent to the wattage of the appliance and dividing it by 120 v . This will give you the current requirement for the transformer secondary.

NOTE: THIS IS NOT AN ISOLATION TRANSFORMER!

Filament Transformer
$117 \mathrm{~V} / 12.6 \mathrm{~V}, \mathrm{CT}, 5 \mathrm{MmP}$

1. Purchase locally, a filament transformer with a 12.6 v , center tapped, 5a secondary.
2. Construct unit in small metal box large enough to hold transformer (and switch, if desired). Use adequate gromment and strain reliefs where wires enter box. Cut a number of small holes in the box for ventilation. Remove all burrs!
3. Attach VTVM to output - set on 150 vac scale. Connect secondary leads to A and B, two at a time, until you get the desired voltage reading on VTVM. In diagram, connecting 1 to A and 3 to B would add $12 \mathrm{v} ; 3$ to A and 1 to B would subtract 12 v .
4. Tape up unused secondary lead. Label box with input and output voltages and wattage limit.

RCA Victor

Stereo Phono Cartridge RMP205-2 - Cartridge Description
RMP205-2 is a high-performance stereo phonograph cartridge assembly fitted with ceramic pickup elements and a matching isolating integrated circuit designed to operate with solid-state preamplifiers.

The precision tracking and high compliance necessary to achieve high fidelity reproduction of a phonograph record require a small, light mechanical mass at the stylus and voltage generating element in the cartridge. To achieve optimum electrical performance in the preampli-

fier, however, the pickup element should be as large as possible. To secure both of these opposed conditions, the chip effectively separates the mechanical and electrical limitations to permit each to be designed for optimum performance. To achieve a small-mass mechanical system, the ceramic elements in the 205-2 are rectangular bars approximately $0.013 \times 0.030 \times 0.375 \mathrm{in}$.

Because ceranic and crystal pickups function as high impedance, capacitive strain/voltage generators, they must be coupled to a low-input impedance preamplifier through a matching network to maintain optimum energy transfer and to insure acceptable frequency response.

The chip is said to achieve the first of these matching parameters without the inherent insertion loss of an RC network by using a 4-NPN-transistor integrated circuit. Two transistors function in a Darlington configuration for each stereo channel. This circuitry achieves a current gain of approximately 10 k . It is said that a cartridge of this type has the important advantages of excellent tracking, improved frequency response, low distortion and contributes to longer record life.

A secondary feature of a Darlington circuit is the input-

NEW

 FINEO
COLOR SPECTRUM

are "signal customized" for better color reception...

"the ANTENNA that captures the RAINBOW"

FINCO has developed the Color Spectrum Series of antennas - "Signal Customized" - to exactly fit the requirements of any given area.

There is a model scientfically designed and engineered for your area.
Check this chart for the FINCO "Signal Customized" Antenna best suited for your area.
STRENGTH OF

Strength of VHF Signal at Receiving Antenna Location				
NO VHF	VHF SIGNAL STRONG	VHF SIGNAL MODERATE	VHF SIGNAL WEAK	VHF SICNAL VERY WEAK v
				$\begin{array}{ll} \text { CS.V15 } & \text { CS.V18 } \\ \$ 48.50 & \$ 56.50 \\ \hline \end{array}$
		$\begin{aligned} & \text { CS-B1 } \\ & \$ 29.95 \end{aligned}$	$\begin{aligned} & \text { CS.C1 } \\ & \$ 43.95 \end{aligned}$	$\begin{aligned} & \text { CS-C1 } \\ & \$ 43.95 \end{aligned}$
$\begin{aligned} & \text { CS-U2 } \\ & \$ 14.95 \end{aligned}$		$\begin{aligned} & \text { CS-83 } \\ & \$ 49.95 \end{aligned}$	$\begin{aligned} & \text { CS-C3 } \\ & \$ 59.95 \end{aligned}$	$\begin{aligned} & \text { CS-D3 } \\ & \$ 69.95 \end{aligned}$
CS-U3 $\$ 21.95$				$\begin{gathered} \text { CS-D3 } \\ \$ 69.95 \end{gathered}$

NOTE: In addition to the regular 300 ohm models (above), each model is avallable in a 75 ohm coaxial cable downlead where this type of installation is preferable. These models, designated "XCS", each come complete with a compact behind-the-set 75 ohm to 300 ohm balun-splitter to match the antenna system to the proper set terminals.

THE FINNEY COMPANY

34 West Interstate Street • Dept. 110 • Bedford, Ohio 44146

Your best answer for solid state servicing, production line testing, quality control and design.
Sencore has developed a new, dynamic in-circuit transistor tester that really works-the TR139-that lets you check any transistor or diode in-circuit without disconnecting a single lead. Nothing could be simpler, quicker or more accurate. Also checks all transistors, diodes and rectifiers out of circuit.
BETA MEASUREMENTS-Beta is the all-important gain factor of a transistor; compares to the gm of a tube. The Sencore TR139 actually measures the ratio of signal on the base to that on the collector. This ratio of signal in to signal out is true AC beta.
ICBO MEASUREMENTS-The TR139 also gives you the leakage current (Icbo) of any transistor in microamps directly on the meter.
DIODE TESTS-Checks both rectifiers and diodes either in or out of the circuit. Measures the actual front to back conduction in micro-amps.
COMPLETE PROTECTION-A special circuit protects even the most delicate transistors and diodes, even if the leads are accidentally hooked up to the wrong terminals.
NO SET.UP BOOK—Just hook up any unknown transistor to the TR139 and it will read true AC beta and Icbo leakage. Determines PNP or NPN types at the flick of a switch.
Compare to laboratory testers costing much more. . . . $\$ 89.50$

See America's Most Complete Line of Professional Test Instruments - At Your Distributor Now.

to-output impedance ratio. The input impedance to the chip is approximately 3.5 M and the output impedance from the chip is approximately 22 K . This matches the input of the solid-state preamplifier and is immune to capacitance effect, hum and noise pickup.

The second condition for acceptable pickup performance - frequency response - is accomplished by an RC equalizing, or compensating network having a high-frequency rolloff comparable to de-emphasis. The chip effectively isolates this network to provide optimum equalization without serious loading of the pickup element.

Color TV chassis CTC35 - Modification in Video Peaking Circuit

In some instances picture ringing and background noise may be encountered.

To minimize these effects, disconnect C 127 from connecting point "AN" of PW700 board and reconnect to

junction of T705 and C761 and R782. Change C326 PW300 board from a 5 pf capacitor to a 3.5pf Stock No. 117531.

TV Chassis KCS160/164 - Critical Lead Oress

Recent field reports indicate "arcing" of the HV may occur in humid areas, from the 2 nd anode to wiring close by or to ground. This arcing may cause a breakdown and deterioration of the 2 nd anode connection cap.

HTECHNICAL DIGEST

When service is required on these chassis it is recommended that the wiring in the vicinity of the 2 nd anode lead be dressed straight down as illustrated, when plugged into the CRT.

Color TV CTC22 Chassis - Capacitor Failure

Various field reports indicate some failures of C 601 , screen B + boost filter. When replacement of this capacitor is required a $0.01 \mu \mathrm{f} 1 \mathrm{kv}$ ceramic capacitor, stock \#79918 should be used.

When capacitor C 601 is replaced, R 610 , a 33 K resistor
 may also need replacement and $\mathrm{R} \mid 36$, a $\mid \mathrm{K}$ resistor (stock \# 502210) should be added in series with B + as shown in schematic. Late production will include this resistor.

Take advantage of the handy mail-order card in this magazine. If you would like additional information about any of the products listed on this card, return it to us and we will see to it that you receive the literature that you desire.

ELECTRONIC TECHNICIAN

Ojibway Building
Duluth, Minn. 55802

RCA Institutes, Inc.. offers these four compre. hensive home study courses especially designed to help build your income immediately!

Take advantage of RCA's Liberal Tuition Plan. You only pay for lessons you order; and have no long.term obligations. Licensed by New York State Education Department. Approved for Veterans.

RCA INSTITUTES, INC.

A Service of Radio Corporation of America 320 West 31st. Sireet, New York, N. Y. 10001

The Most Trusted Name in Electronics

- SEND THIS COUPON NOW FOR COMPLETE FREE INFORMATION ■ RCA INSTITUTES, ING. Home Study School, Dept. ET-D7 320 West 3lst. Street. New York, N. Y. 10 A 01
Without obligation, rush me free information on the following RCA Home Training Course: COLOR TV__ TRANSISTORS__ MOBILE COMMUNICATIONS AUTOMATION ELECTRONICS \qquad
Name Age

Address

City Zone___ State

(86) Capracion	53 CAPACITOR	S3 CAPACITR	(3) CaPABTOR	6
$\mathrm{xcl}-8$	XCI-18	XCI-19	XCI-19.2	101
(36) CAMMITOR	(33) CaPAGITOR	(56) CAPPATIOR	(96) Capactior	
XCI-21	$x<2-1.1$	$x<2-26$	XC2-36.1	
(5\%) CAPABTIOR	(53) CAPATIOR	(3) CAPAETOR	(9\%) Capaitior	unauu
XC3-45	xc4-4.2	XC4-5.1	XC4-6.1	ntarnment
(96) Capaition	(86) CAPCCLTOR	(96) Capaition	(96) H14\|II	
xc4-9.1	xC4-10.2	XC4-55.1	XC4-63.1	00
(96) CAPMCTITR	(3) CAPCLTITR	(56) Capraitior	ging Caphition	
XC4-68.1	XC4-68.2	xc4-70.1	xC4-80	

Stock only 20 General Electric ServiceDesigned replacement capacitors and meet over 70% of your replacement needs.

Use General Electric extended-range replacement capacitors. Just 20 General Electric Service-Designed replacement units will meet over 70% of all TV can style needs!
"Extended-range" means that fewer General Electric types are needed to meet your requirements. Every GE aluminum capacitor meets not just one, but a range of capacitance and voltage requirements. And, to make selection easier, the application range of every General Electric capacitor is shown clearly on the unit, and on the carton.

You can quickly see, for example, that the GE capacitor rated $50-60 \mathrm{mfd}$ up to 450 VDC will replace any unit between

50 and 60 mfd at any voltage up to 450 VDC. You save time and money in making replacements because General Electric capacitors are Service-Designed with you in mind!
Your local GE electronics distributor carries a complete line of replacement capacitors from General Electric, a leader in supplying capacitors to the radio and television industry. Call him today for full details.

430-31

GENERAL
 electric

Call your GE distributor now for a special offer on replacement capacitors for COLOR TV!

It's a Treasure Chest loaded with 12 of the most popular General Electric replacement capacitors for COLOR TV! Your distributor's offering it at a special low, low price. And to make it more appealing, you get an Xcelite ${ }^{\circledR}$ nut driver set with each Treasure Chest. Don't delay, call today! Offer is limited.

DECEMBER 1967

INSTALLING AND SERVICING SOLID-STATE AUTO TAPE PLAYERS

Craig-Panorama model C503 mounted in automobile.

Here's another goldplated bandwagon you
can ride on

- Auto cartridge tape players are now moving like hot cakes at a Shriner's breakfast. And thousands of TV-radio service-dealers are selling, installing and servicing them.

Today's automobile cartridge tape player is produced in 4 - and 8 track types or a combination of both. Other units have a 4-track adapter that must be attached to the 8 -track stereo player (See Fig. 1).

The typical unit has a frequency response from 40 Hz to 15 kHz . Power outputs range from 5 to $10 \mathrm{w} /$ channel Some units have electrically governed motors with heavy flywheel and capstan drive.

The Lear-Jet Stereo 8 model, AS831, for example, has a direct
capstan drive inverted dc motor. No belts or pulleys are used. Other units may control speed with mechanical governors, electrical and solid-state systems.

The new tape units have many features - including fast forward speed, precision pitch control and solid-state speed control. Some others have a dial light that indicates which track is being played. Still another type has a system for separate control of volume on both back and front speakers. Another feature is a fine tuning control operated from the front panel to eliminate crosstalk.

In the Automatic Radio Co.'s tape player (Fig. 2) the cartridge slot is designed to operate with eith-

SJB's model ST808, a straight 8 -track stereo tape player.

Lear Jet's stereo-8 model ASR851 auto tape player.

Fig. 1 - Automatic Radio's 4 track cartridge and adapter for using 4-track cartridge on its 8 -track player.

Fig. 2 - Automatic Radio's convertible cartridge tape player shown with FM radio tuner "cartridge" inserted.
er 4- or 8-track stereo cartridges. Separate $\mathbf{A M}$ or FM radio tuner "cartridges" are available to slip into the same slot. This model is also equipped with a built-in keylock mechanism - protecting against theft.

Installation

Practically all tape players are mounted under the auto dash by bolting a heavy-duty mounting bracket to the underdash cowl. Several perforated holes are provided for rigid support. Slotted positioning holes are used to push the mounting bracket forward or sidewise (see Fig. 3).

Be sure to avoid mounting the equipment where it will be exposed to the sun or near the air conditioner vents. Install the player where dust, dirt and humidity are at a minimum. Mount the unit securely to minimize vibration.

In some cases it may be necessary to use only the first row of holes when mounting the unit under the dash. In this case, add a perforated strap at the rear of the unit. Attach the top of this strap to the firewall or a rigid structural point behind the dash.

Before drilling holes in the firewall or dash, make certain the drill will not penetrate into wiring or other working members.

All stereo tape units should be grounded for proper operation. This is usually accomplished with metal mounting bracket or perforated strap. In new automobiles having plastic undercarriage, bond the tape unit to the metal under dash or firewall.

Slip the tape player into the mounting bracket and level up. Do not mount the player more than 45 deg from horizontal. Simply unloosen the side bolts for easy removal (see Fig. 4).

Speaker Installation

Install two PM speakers in each front door or one on each side in both front and rear doors. The latest cars have metal cut-outs on each side of the rear deck. These are size 6×9 or 5×7. When using these two rear speakers, add only one on each side in the front doors.

Many of the new cartridge play-
ers have a custom installation speaker kit containing four PM siliconetreated speakers. Included are mounting hardware and grille covers. Correct speaker cable is included to be clipped to speakers with polarized amplifier plug.

Instant mount enclosures are also available for firewall, kick panels, or under-the-seat installation. These quick easy speaker enclosures do not require large mounting holes.

Before attempting to mount the speakers in the front door or kick panels check for speaker clearance. Make sure the magnet portion of the speaker will clear before drilling large holes in the door panels.

Phasing the Speakers

Whenever two or more speakers are connected together, they should be properly polarized and in phase. Polarity marks are located on the speaker frame near the terminals in the stereo speaker kits. Unmarked speakers should be polarized and marked.

To polarize the unmarked speaker use a small flashlight battery and clip leads. Now connect the negative end to one voice coil terminal. Momentarily touch the positive terminal to the other speaker terminal. Check to see if the cone moves in or out. Mark this connection with a plus sign on the speaker frame. Check and mark all speakers in the same manner - using either an "in" or "out" movement of the cone as the departure point (see Fig. 5 for speaker connections).

Battery Polarity

Be sure the correct battery polarity is applied to the 12 v cartridge player. Check the car battery to see which terminal is grounded. All cars made in this country use the negative ground system.

Incorrect battery polarity can damage a stereo unit. During the winter months this condition can happen. The car battery can be charged backward and still operate the auto electrical system. But the transistor car radio or tape player will not perform.

Polarity switches are installed in several tape players for either positive or negative ground installa-
tions. Always connect the A " lead of the tape unit to the fuse block or ahead of the ignition switch.

Cleaning the Drive Assembly

The capstan drive and pinch roller should be cleaned periodically with chemically pure alcohol. The tape head should be cleaned after every 15 to 20 hours of playing time. You can safely bet the tape player should be cleaned every time it is repaired. A regular tape head cleaning cartridge is available which can be used to clean the tape head automatically.

Wipe off all tape drives and pinch rollers. When the belt, pulleys and capstan drives become glazed with tape dust and oxide residue, clean and then lubricate with special tape lubrication. Slow and erratic music will result if this is not done.

After cleaning the tape drive and rollers, apply one drop of oil on each bearing. Use a lightweight oil - similar to sewing machine oil. At the same time, check for a dirty thrust pad. Clean off the dust and tape oxide and wipe away all visible lubricant on any moving parts.

Head Adjustment

Crosstalk is the reproduction of two audio sources simultaneously. This will render both reproductions unenjoyable. The tape head is picking up two separate tracks of the tape. This is especially true of the 8-track stereo players. Actually, the recorded tape is only $1 / 4 \mathrm{in}$. wide with eight channels of sound and seven silent guard channels between each recording.

Check several cartridges before attempting alignment of the head. If only one cartridge produces crosstalk, the cartridge is defective.

In the Ranger model RR41T (Fig. 6), a fine tuning control is mounted on the front panel to permit the listener to raise or lower the playback head manually. Other models have the tape head adjustment at the bottom of the tape player.

The Lear Jet stereo, for example, has a red painted screw on the bottom of the player. To adjust the head properly, place a good cartridge in the player and adjust the red painted screw. If the interfer-

Fig. 3 - Mount the bracket tight against the metal underdash in a clear area.

Fig. 4 - The tape player is easily removed by unloosening the two side bolts.

Fig. 5 (A) - Hookup for two 4 to 80 hm speakers. (B) - For four 4 ohm speakers. (C) - For four 8ohm speakers.

Fig. 6 - Ranger tape player has a crosstalk fine tuning control on the front panel.

Slotted Speed Control

Fig. 7 - Speed can be adjusted on this player by adjusting the slotted speed control.

Speed Disc

Fig. 8 - A speed disc indicator is located on the bottom of this tape player.

Fig. 9 - This Phillco-Ford model tape player has a "shiny" belt and flywheel. Slow or erratic speeds can be eliminated by cleaning the glaze and oxide dust from belt, wheel and tape drive assembly.
ing channel becomes louder, reverse the screw adjustment until the tape plays without interference. Place rubber or plastic glue in the screw slot to prevent vibration moving it out of position.

If the tape head is sitting or angling to one side, adjust the azimuth adjustment screw until the head is perpendicular with the tape guide. Demagnetize the tape head if noisy reproduction exists. Once again, check with several tape cartridges to make sure the one being used is not defective.

Speed Checks

If the speed of the player varies, always check the suspected player by substituting a new cartridge. Now select a recording with a vocal singer and listen for the pitch of the known artist's voice. If the pitch is high, the tape player is running fast, or if the voice pitch is low, the tape is running too slow.

To adjust the speed of a LearJet stereo-8 player, remove knobs on the right and insert a thin-bladed screwdriver. If the unit is running fast, a counter-clockwise rotation of the screwdriver will slow the unit. If it is running too slow, turn the control clockwise. Only a fraction of a turn will do the trick.

As shown in Fig. 7, a small rheostat is located on top of the electronic control board. Adjustments of this control will govern the speed of the drive motor. At the bottom of the large flywheel (see Fig. 8) a speed disc is located which can be seen through a small hole in the bottom of the tape player. When a neon or fluorescent light shines against the speed disc, correct speed adjustment can be made. Adjust the small speed rheostat until the lines stand still.

When checking transistors in a solid-state speed control, remove them from the circuit. Several diodes and directly coupled transistors will produce false readings with an incircuit beta tester.

Intermittent transistors can easily be checked in a beta tester. Clip the suspected transistor to the correct test leads and push the beta test switch. Carefully watch the meter hand for any movements. Spray on freeze mist and see if the meter
needle moves toward full scale or indicates "open." A transistor with any great change of beta reading should be replaced.

Low Volume with Distortion

The complaint on a Ranger model RR4IT was "low volume and extreme distortion." Both troubles were isolated to the left tape channel.

Since distortion is generally caused by faults in the output stages, we began with the two push-pull power output transistors. One was replaced and the second output transistor turned out to be the culprit.

In this model the bias should be adjusted after the output transistor is replaced. Connect the player to a 13.5 vdc power supply and connect a 4Ω speaker across each speaker output. With no signal applied, carefully adjust the bias potentiometer, RI33 for 7.5 v at the collector of the output transistor.

Slow Speed

The owner of a Philco-Ford stereo player reported that all tapes were running very slow. Sure thing, when we placed the stereo player on the bench, it was running slow. From previous experience we checked the belt and flywheel assembly. The belt was glazed and the flywheel looked like a mirror.

We cleaned the belt and flywheel with cleaning solution. At the same time, we have found that a complete cleaning and lubrication of the tape capstan drive and pinch roller assembly are necessary. Intermittent speed and "wow" are symptoms of glazed belts or dragging tape drives (see Fig. 9).

Intermittent Speed

An Automatic tape DEK8 came into the shop with intermittent speed. We suspected a frozen or binding capstan drive, pinch roller or thrust bearing. Cleaning and lubrication of the complete tape player did not solve the problem, however. While checking the electronic speed control circuit we discovered, by pushing up and down on the PC board, that the speed would vary. All soldered connec-

TROUBLE SYMPTOM	Causes
Fails to play	Check fuse Poor ground Faulty power switch Frozen capstan bearing Broken drive belt Dry pinch roller assembly
Tape plays slow or erratic	Belt dragging or slipping Misaligned motor or capstan assembly Glazed belt, pulleys or pinch roller Oil on capstan drive Defective motor Flat pinch roller Check electronic speed control PC board
Doesn't change channels	Indicator arm binding on top of head index cam Channel selector switch shorted or contacts spread too wide Solenoid defective - check with ohmmeter. About 10Ω
No sound	Try another cartridge. See if unit will hum with volume control wide open Check for defective playback head Check to see if either left or right channel is dead Use audio signal generator to locate dead stages
Distorted Output	Check bias adjustment Check power output transistors Difficult-to-locate distortion (Use square wave audio signal generator and scope)
Unbalanced Output	Check balance potentiometer Check for poor ground on one speaker Clean tape head Check for weak stage
Noisy	Check for ignition noise and install capacitor on ignition coil Install suppressor in distributor lead Install new noise ignition spark plug cables for extreme conditions Check playback head and demagnetize Check drive motor flux noise by rotating motor field until magnetic nuil is lined up with the tape head.

continued on page 69

TECHNICAL TIPS for

Fig. 1 - Schematic of an adjustable transformer focus control which is used in the RCA Victor CTC12 color chassis.

Fig. $2-\mathrm{HV}$ section of Zenith 20X1C36 color chassis showing selenium rectifier and adjustable pot used in focus voltage circuit.

'RAZOR SHARP' COLOR PICTURES

Keep your customers happy by using a little technical know-how to solve those troublesome HV problems

- In addition to the stabilized HV necessary for color CRT anodes, a stable but manually variable focus voltage must also be supplied to electrostatic focus elements of color CRT guns. Some high-voltage systems have a separate focus-voltage tap on the flyback which is connected to the anode of a solid-state diode or the plate of a separate focus-voltage rectifier tube (IV2, IAU2, etc.), as shown in Fig. 1. A focus-adjust transformer or pot may be used to vary this voltage.

The most likely cause of poor focus is a defective focus-voltage rectifier tube or diode. Use a VTVM with HV probe and check it. Note the set manufacturer's exact specifications on this. Specifications will probably call for 4.3 to 5.3 kv . If insufficient voltage is present after replacing with a known-good tube or diode, check associated circuit components. Pay close attention to all high-value resistors in these circuits as they do cause considerable trouble.

When adjusting the focus transformer or pot, the brightness and contrast controls should be set as close to the proper viewing level as possible. In general, the control should be adjusted to give maximum overall definition of fine picture detail. And you will need a VTVM with a HV probe that will handle up to 30 kv for making necessary over-all HV and focus voltage measurements. Extreme caution should be observed with these voltages.

An off-value resistor in the grid circuit of the 6BK4 voltage regulator, a tube element short, cathode-to-heater or grid-tocathode short or a shorted capacitor which normally appears across the shunt regulator grid and cathode can cause HV and focus problems.

A color chassis using a selenium rectifier for focus voltage and employing an adjustable pot is shown in Fig. 2. Focus potentiometers sometimes become pitted - causing intermittent or varying focus condi-
tions. If a replacement control becomes pitted also, you should check the circuit for a leaking or shorting bypass capacitor in the focus circuit. These pitted pots should be replaced. No effort should be made to clean them like we frequently do with volume and other low current carrying controls.

HV and Focus

Setting the HV properly and getting the best focus are two problems which many technicians find difficult. These two problems are closely related because, with improper high voltage, it is impossible to obtain good focus.

The HV on most color sets should be 24 kv . On some late model 25 in . CRTs, 25 kv is specified. The HV should never be less than 1 kv lower than the specified voltage. This is less than 5 percent tolerance. Understanding this, you can see why it is very important for your meter to be accurate. If you use a multiplier-type probe on a gen-eral-purpose VTVM, have it checked against a good electrostatic HV meter.

Too much HV is rarely a problem - but it happens occasionally. This can cause frequent shunt-regulator HV rectifier failures and insulation breakdown. Too much soft X-ray radiation may be caused also.

It will not be possible to obtain good focus unless the HV is properly set. And even when it is properly set, the focus may change slightly with brightness level adjustments.

In some sets you may find the focus transformer running hot or it may burn up - like the one shown in Fig. 3 which went up in smoke. Generally, this is caused by a shorted winding or some defect in the focus transformer. If a new one is installed and it still runs hot, check the circuits for shorts. Also check for HV arc-over from the flyback to the focus adjustment transformer.

Selenium Focus Rectifiers

The stacked selenium rectifiers used for

Fig. 3 - The focus transformer in this chassis went up in smoke.

Fig. 4 - Schematic of test circuit used to check out focus-rectifier stacks.
focus voltage in some color receivers have been troublesome at times. They frequently open and you have a blurred picture. Some short and this may kill the HV.

We had a Zenith 20X1C36 chassis (see partial schematic Fig. 2) which had 4in.wide vertical stripes that were alternately in and out of focus. At other times, streaks would dash across the screen. The technician with his ear "tuned" near the HV cage could also detect a faint arcing sound. A very close look at the individual scanning line revealed a ragged appearance. It should have been smooth. No HV arcing was located - nor loose connections. The selenium rectifier was substituted and this solved the problen.

Another Zenith $20 \times 1 \mathrm{C} 36$ chassis had a very blurry picture which was full of lines and streaks. This turned out to be a defective focus rectifier. This type of selenium rectifier is made up of many rectifier units stacked or built together to properly rectify the 5 kv for focus control. An arc sometimes develops between these selenium units. And this can cause all kinds of crazy focus problems.

Focus Rectifier Checks

You know that an ohmmeter check of a HV selenium rectifier will not reveal a thing. If a selenium rectifier is shorted, the ohmmeter will detect this, but these selenium units seldom become shorted.

So how can we go about checking them to determine if they are defective - except by substitution? But substitute units are sometimes defective and you can waste a lot of time this way. Also, some small all-transistor B/W TV sets use these selenium rectifier units and it is a good idea to find out which one is at fault.

The following easy-to-build test circuit can be made to check these rectifiers accurately. A schematic of this unit is shown in Fig. 4. The test circuit may be enclosed in a small metal box (see Fig. 5). SW1 should be a spring return type to assure an open circuit during these checks. SW2 is for meter protection in the event of excessive leakage and should also be a spring return type. The neon lamp should be mounted in an enclosed neon lamp assembly.

Since the unit is connected to the power line, it should either be operated through an isolation transformer or have a 1 to 1 isolation transformer built into the case.

To Check Focus Rectifiers

1). Disconnect one side of the rectifier and use an ohmmeter to check for a short-
ed unit. Caution. If a shorted rectifier is connected into the test circuit, it is possible for the neon lamp to explode. That is why an enclosed neon lamp assembly should be used.
2). Connect the leads of the test instrument in the proper manner so as to obtain a forward needle movement on the milliammeter. This can be done by polarizing the test instrument leads to match the leads on the rectifier. At any rate, note that the lead from the plus side of the milliammeter, when connected to the cathode end of the rectifier, will provide a forward movement of the milliammeter if the rectifier is not defective.
3). Depress SWI and observe the neon lamp. Proper rectifier action will produce pulsating dc and only one element of the neon lamp will light. If both elements light, this indicates ac current flow and the rectifier is defective.
4). Assuming proper neon indication is obtained, depress SW2 (SW1 also remains closed); then the meter should read from 1.0 to 1.5 ma when the focus rectifier is good. Readings of 1.0 ma or less indicate a defective rectifier.
The aforementioned system can also be used for HV rectifier checks in transistorized B/W TV receivers. These have several rectifiers connected in series. Disassemble the units and check out individually. The meter should read over 0.5 ma for a good rectifier. Readings of 0.5 ma or less indicate a faulty rectifier.

To test these units for an intermittent condition, tap the rectifier being checked and note if the neon lamp or the meter is erratic.

Green Flicks or Picture Streaks

Small green flicks and streaks in the picture have plagued some color receivers and technicians at times. This problem usually occurs in the sets with rectangular picture tubes that have small base socket pins. This problem is usually caused by corona discharge or some type of HV arc. These little flicks and dots (mostly green) may appear all the time or may be intermittent. This trouble also seems to happen more frequently in areas of the country having high humidity. The most common cause of this trouble is HV arcing at pin 9 - the focus socket connection of the CRT.

Pull the CRT socket off and inspect pin 9 for corrosion. If corroded, clean the pin and socket connection thoroughly. If the socket is badly burned or corroded, replace the complete CRT socket and wiring harness. This will usually clear up and solve the problem of flicks and dots.

Fig. 5 - Focus-rectifier tester built into metal box.

The Seventeenth Article in a Continuing Series

Semiconductors

Abstract

An understanding of basic AM, FM and TV diode-tuning circuits will help prepare you to service future TV and radio receivers intelligently

The fundamental principles of capacitor and coil impedances developed in the October and November 1967 articles of this series can be applied to all practical tuned circuits designed for receivers currently on the market or about to be produced.

The amount of signal current flowing through a receiver's par-allel-resonant circuit varies with the frequency of the signal. From the curves shown in Fig. 14, 16 and 18 of the November 1967 article, we see that a minimum amount of applied signal current
Fig. 1 - The ac current from a con-stant-voltage signal generator is smallest at the resonant frequency of a par-allel-resonant circuit.

flows through this circuit at a resonant frequency, while greater signal currents occur at higher or lower frequencies (Fig. 1) - the tuned circuit presenting maximum impedance to the flow of current at the resonant frequency. Because of the circuit's greater impedance at the resonant frequency, when signal currents of different frequencies but the same strength pass through a parallel-resonant circuit, a greater voltage is developed across the circuit at the resonant frequency than at higher or lower frequencies (Fig. 2).
Fig. 2 - The ac voltage from a con-stant-current signal generator is largest at the resonant frequency of a par-allel-resonant circuit.

Fig. 4 - The greater a parallel-resonant circuit's quality factor (Q), the smaller the bandwidth (BW) of the resonant frequency.

from A to Z

Resonant Circuit Q Factor

Practical tuned circuits do not have perfect characteristics. Theit quality is limited. A portion of the ac current applied to a tuned circuit is unaffected by reactance. Their resonant-frequency current is not reduced to zero by the resulting impedance (Fig. 1) as theory would dictate for a perfect resonant circuit (Fig. 18 in the November 1967 article). Neither does the voltage drop developed across a parallel-resonant tuned circuit decrease to zero at frequencies above and below the resonant frequency (Fig. 2).
Fig. 3 - The resonant voltage developed across a parallel-resonant circuit increases when the quality factor (Q) of the circuit increases.

Fig. 5 - A superheterodyne circuit contains a variable-tuned radio-frequency (RF) circuit, a variable-tuned oscillator circuit and a mixer circuit, which produce an intermediate-frequency (IF) signal for additional amplification.

The quality factor (Q) of a tuned circuit, capacitor or coil, can be defined by the equation:

$$
\mathrm{Q}=2 \pi\left[\frac{\begin{array}{c}
\text { energy stored in electric } \\
\text { and magnetic fields per } \\
\text { cycle }
\end{array}}{\frac{\text { energy dissipated per }}{\text { cycle }}}\right]
$$

The quality factor of a paralleresonant circuit (Q_{P}) is dependent on the quality factors of the capacitor $\left(\mathrm{Q}_{\mathrm{C}}\right)$ and coil $\left(\mathrm{Q}_{\mathrm{L}}\right)$ used in the circuit

$$
\left(\frac{1}{Q_{\mathrm{P}}}=\frac{1}{\mathrm{Q}_{\mathrm{C}}}+\frac{1}{\mathrm{Q}_{\mathrm{L}}}\right) \text {. }
$$

In the October 1967 article we saw that a capacitor's quality factor was:

$$
\frac{1}{\mathbf{Q}_{\mathrm{C}}}=\frac{\mathrm{X}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{C}_{\mathrm{P}}}}+\frac{\mathrm{R}_{\mathrm{C}_{\mathrm{o}}}}{\mathrm{X}_{\mathrm{C}}} .
$$

Where: $\mathrm{Q}_{\mathrm{c}}=$ Capacitor quality factor.

$$
\mathrm{X}_{\mathrm{C}}=\text { Capacitor } \quad \text { react }-
$$

ance.

$$
R_{C_{p}}=\text { Capacitor's effec }
$$ tive parallel resistance.

$$
\mathrm{R}_{\mathrm{Cs}}=\text { Capacitor's effec- }
$$

tive series resistance.

A coil's quality factor is determined in a similar manner:

$$
\frac{1}{Q_{\mathrm{L}}}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}_{\mathrm{P}}}}+\frac{\mathrm{R}_{\mathrm{L}_{\mathrm{s}}}}{\mathrm{X}_{\mathrm{L}}} .
$$

Where: $\mathrm{Q}_{\mathrm{L}}=$ Coil quality factor.

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{L}}=\text { Coil reactance. } \\
& \mathrm{R}_{\mathrm{Lp}}=\text { Coil's } \quad \text { effective }
\end{aligned}
$$

parallel resistance.

$$
\mathbf{R}_{\mathrm{Ls}}=\text { Coil's } \quad \text { effective }
$$

series resistance.
These equations can be combined to the following:

$$
\begin{aligned}
& \frac{1}{\mathrm{Q}_{\mathrm{P}}}=\frac{1}{\mathrm{Q}_{\mathrm{C}}}+\frac{1}{\mathrm{Q}_{\mathrm{L}}}= \\
& \frac{1}{\mathrm{Q}_{\mathrm{C}}}+\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}_{\mathrm{p}}}}+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{X}_{\mathrm{L}}}, \text { or }
\end{aligned}
$$

$$
\frac{\mathbf{X}_{\mathrm{C}}}{\mathrm{R}_{\mathrm{Cp}_{\mathrm{p}}}}+\frac{\mathrm{R}_{\mathrm{C}_{s}}}{\mathbf{X}_{\mathrm{C}}}+\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{Lp}}}+\frac{\mathrm{R}_{\mathrm{Ls}}}{\mathbf{X}_{\mathrm{L}}} .
$$

In most of the older parallelresonant circuits the values of R_{Cp} and $R_{L p}$ were so large while the value of $R_{\text {Cs }}$ was so small, with respect to X_{C} or X_{L}, that with little error the equation could be simplified to:

$$
\begin{gathered}
\frac{1}{Q_{P}} \approx \frac{1}{Q_{\mathrm{L}}} \approx \frac{\mathrm{R}_{\mathrm{L},}}{\mathrm{X}_{\mathrm{L}}} \text { or } \\
\mathrm{Q}_{\mathrm{P}} \approx \frac{\mathrm{X}_{\mathrm{L}}}{\mathbf{R}_{\mathrm{L}}} .
\end{gathered}
$$

In the new receivers that use vari-cap-tuning diodes, however, the capacitor's quality factor (Qc) is small enough to have a significant effect on the quality factor (Q_{p}) of the parallel-iesonant tuning circuits.

The amount of voltage developed across a parallel-resonant circuit differs with the O of the circuit (Fig. 3). The greater the Q , the greater the voltage developed and the sharper the reduction in voltage as the signal moves above or below the resonant frequency $\left(f_{i}\right)$.

A tuned circuit's bandwidth (BW) is defined as the range of signal frequencies that develop a voltage across a tuned circuit that is at least 0.707 times as large as the resonant voltage. The effect of Q on tuned-circuit bandwidth can be more clearly seen with the aid of a selectivity (S) curve (Fig. 4). The amplitude of this curve is determined by the equation:
$S=\frac{\text { nonresonant voltage }}{\text { resonant voltage }}$
Since the peak voltage across a par-allel-resonant circuit is always the resonant voltage, all curves drawn for these tuned circuits have a maximum value of one, whatever the cir-

Fig. 6 - A typical AFC circuit for an FM receiver.

by changing the parallel-resonant tuned circuit's capacitance by changing the spacing between capacitor plates or effective capacitor plate surface areas. Modern receivers can now be electronically tuned by varying the bias of varicap tuning diodes. (The theory behind all of these methods of changing capacitance or inductance was included in the October 1967 article).

Superheterodyne Circuits

Most receivers currently on the market have superheterodyne circuits (Fig. 5) containing a variabletuned radio-frequency (RF) circuit, a variable-tuned oscillator circuit and a mixer circuit. The RF and oscillator circuits are tuned simultaneously, the oscillator circuit always being tuned to a frequency below that of the RF circuit.

Measurements indicate that when signals of two different frequencies are mixed, the combination produces a waveform having frequencies equal to both the sum and the difference between the two applied frequencies. When an FM receiver's RF circuit is tuned to a 96.0 MHz station and the oscillator is tuned to 85.3 MHz , the resulting signals can be combined to produce 181.3 and 10.7 MHz signals. The intermediate frequency (IF) amplifier circuits are tuned to handle only those frequencies around 10.7 MHz .

Superheterodyne receivers have the advantage of containing additional amplifiers tuned only to the IF frequency, rather than additional amplifiers that must all be tuned to the frequency of the station being received.

Superheterodyne FM receivers at one time had a common problem
with their oscillator circuits. As the oscillator's temperature changed, its frequency would shift. When cold, the RF circuit might be tuned to a 96.0 MHz station while the oscillator frequency has shifted and is producing a 84.7 MHz signal. Since the IF amplifiers are tuned to 10.7 MHz , the signals passing through them must originate from a 95.4 MHz station $(84.7 \mathrm{MHz}$ osc. + $10.7 \mathrm{MHz} \quad 1 F=95.4 \mathrm{MHz} \mathrm{RF}$). Although the RF circuit is not tuned to that station, programs may still be received if that station's signal is strong. As the oscillator circuit warms up, the frequency it produces may gradually shift to 85.3 MHz and the signals from the 96.0 MHz station are heard. An automatic frequency control (AFC) circuit was required to prevent this apparent drifting of stations. It was in this circuit that technicians first encountered varicap tuning diodes.

FM AFC Circuits

FM receivers produce an audio input very similar to the audio input produced by integrated circuit IC201 (Fig. 1 in the September 1967 article). As the FM receiver's IF signal shifts in response to the shifting frequency of the FM station, the output voltage of the discriminator circuit (Fig. 2, 3 and 4 of the September 1967 article) also shifts. The audio signal consists of these rapid changes in output voltage.

By reversing the anode and cathode leads of diodes D3 and D4 in Fig. 4 of the September 1967 article, the induced current flow is reversed and a positive voltage is developed across capacitor C3 when the IF signal shifts above its mean frequency (4.5 MHz for the TV in-

tegrated circuit, 10.7 MHz for an FM receiver discriminator). It is this output voltage that regulates the AFC oscillator.

A typical FM AFC oscillator circuit is shown in Fig. 6. Any change in the transistor's emitter voltage results in an amplified change in its collector voltage like the signals present in the common base circuit shown in Fig. 10 of the August 1966 article. A portion of the amplified signal is returned to the emitter by a 2.7 pf capacitor, causing positive feedback. The maximum amount of collector signal voltage is developed across the tuned circuit at the circuif's resonant frequency. At that frequency the positive feedback is large enough to cause the tranistor to oscillate.

The tuned circuit in Fig. 6 is basically the same as the tuned circuit in Fig. 20 of the November 1967 article, except that here two capacitors, rather than one, are connected in series with the varicap. The audio signal normally present with the discriminator circuit's output voltage is filtered from the oscillator circuit with a $0.01 \mu \mathrm{f}$ capacitor and IM resistor.

Assuming that under some bias condition the varicap has a 2 pf capacitance and ignoring the negligible effect of the 3.3 K resistor, we can use the series capacitance equation derived in the November 1967 article to determine the total capacitance connected in parallel with the 2 to 7.5 pf tuning and trimmer capacitors.

$$
\frac{1}{\mathrm{C}_{\mathrm{T}}} \approx \frac{1}{6.8 \mathrm{pf}}+\frac{1}{1000 \mathrm{pf}}+\frac{1}{2 \mathrm{pf}}=
$$

$0.147 / \mathrm{pf}+0.001 / \mathrm{pf}+0.500 / \mathrm{pf}=$ $0.648 / \mathrm{pf}$.

Fig. 7 - In both parallel resistor and parallel capacitor circuits, the total current passing through the circuit is equal to the sum of the currents passing through each component.

$$
\mathrm{C}_{\mathrm{T}} \approx \frac{1}{0.648 / \mathrm{pf}} \approx 1.5 \mathrm{pf} .
$$

From these calculations we see that when capacitors are connected in series, their total capacitance is always less than that of the smallest capacitor.

An equation can also be derived to determine the total value of capacitors connected in parallel with the coil in the tuned circuit (Fig. 6).

When resistors are connected in parallel (Fig. 7), the total current passing through the circuit is equal to the sum of the currents passing through each resistor. $\mathrm{I}_{\mathrm{T}}=\mathrm{I}_{1}+$ $\mathrm{I}_{2}+\mathrm{I}_{3}$.

As you know, current is equal to voltage divided by resistance, and since the resistors are connected in parallel, the same voltage is applied across all of them.

$$
\begin{aligned}
& I_{1}=\frac{\mathbf{V}}{\mathbf{R}_{1}}, I_{2}=\frac{\mathrm{V}}{\mathbf{R}_{2}}, I_{3}=\frac{\mathrm{V}}{\mathrm{R}_{3}}, \\
& \mathrm{I}_{\mathrm{T}}=\frac{\mathrm{V}}{\mathbf{R}_{\mathrm{T}}} .
\end{aligned}
$$

By substituting the second set of equations for parts of the first, we can calculate the circuit's total parallel resistance.

$$
\frac{\mathrm{V}}{\mathrm{R}_{\mathrm{T}}}=\frac{\mathrm{V}}{\mathrm{R}_{1}}+\frac{\mathrm{V}}{\mathrm{R}_{2}}+\frac{\mathrm{V}}{\mathrm{R}_{3}} .
$$

If both sides of the equation are divided by V , then we have the wellknown parallel resistance equation:

$$
\frac{1}{\mathrm{R}_{\mathrm{T}}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}} .
$$

The total reactance of parallel capacitors (Fig. 7) can be determined with the parallel resistance equation:

$$
\frac{1}{\mathrm{X}_{\mathrm{CT}}}=\frac{1}{\mathrm{X}_{\mathrm{C} 1}}+\frac{1}{\mathrm{X}_{\mathrm{C} 2}}+\frac{1}{\mathrm{X}_{\mathrm{C} 3}} .
$$

By substituting

$$
\frac{1}{2 \pi f \mathrm{C}}
$$

for X_{c} in that equation, we get the following:

$$
\begin{aligned}
& \frac{1}{\frac{1}{2 \pi f \mathrm{C}_{\mathrm{T}}}}=\frac{1}{\frac{1}{2 \pi f \mathrm{C}_{1}}}+ \\
& \frac{1}{\frac{1}{2 \pi f \mathrm{C}_{2}}}+\frac{1}{\frac{1}{2 \pi f \mathrm{C}_{3}}}
\end{aligned}
$$

This can be simplified to: $2 \pi f \mathrm{C}_{\mathrm{T}}=$ $2 \pi f C_{1}+2 \pi f C_{2}+2 \pi f C_{3}$. After dividing both sides of the equation by $2 \pi f$, we get: $\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$. The total capacitance of a parallel capacitor circuit is equal to the sum of the individual capacitances.

When the FM oscillator tuning and trimmer capacitors (Fig. 6) have a 4.0 pf total capacitance, and the varicap and the two capacitors connected in parallel with it have a $1.5-$ pf total capacitance, the tuned circuit contains $5.5 \mathrm{pf}(4.0 \mathrm{pf}+1.5 \mathrm{pf})$ of capacitance in parallel with the coil.

As the bias voltage across the varicap changes, the total capacitance of the tuned circuit also changes. When the IF signal drifts to a frequency slightly higher than normal, the discriminator's output voltage becomes slightly larger than normal and additional reverse bias develops across the varicap. This, in turn, reduces the diode's capacitance, lowering the oscillator's resonant frequency and returning the IF signal to normal.

TV AFTC Circuits

Automatic fine tuning controls in the newer TV receivers operate basically on the same principle as FM AFC circuits. A discriminator circuit (Fig. 5 of the June 1967

Fig. 8 - A schematic of a UHF tuner used in a TV set. Courtesy of Zenith

Fig. 9 - The UHF tuner's oscillator circuit is shown in a more familiar form.

Tecklab report), operating on the same principle as the one discussed earlier (Fig. 4 of the September 1967 article in this series), is connected to the receiver's IF circuit. Its response curve is like that shown in Fig. 7 of the June 1967 Tecklab report. When the frequency of the IF signal increases and shifts into the discriminator's negative voltage area, a smaller positive potential is applied across the varicap diode in the TV receiver's UHF tuner (Fig. 8). The tuner's oscillator section is shown in a more familiar form in Fig. 9.
In this circuit coil L7 serves merely to supply the transistor's collector with negative dc current, while the coil's impedance prevents UHF signals from passing through it to ground. This coil is required since no dc current is able to pass through coil L6 because of a variable capacitor connected in series with it. Its impedance is so much greater than that of coil L6 ($\mathrm{X}_{1.7}>$ $\mathrm{X}_{\mathrm{L} 6}$) that it (L7) has virtually no effect on the tuning of the oscillator circuit.

From the curves in Fig. 11 of the October 1967 article we saw that when a coil and a capacitor are connected in series and the coil's impedance is greater than the capacitor's impedance ($\mathrm{X}_{\mathrm{L}}>\mathrm{X}_{\mathrm{C}}$), the resulting ac voltage drop across the pair of components is like that across just a coil - their phase angles are the same. The capacitor has served the function of reducing the coil's effective impedance.
The effective impedance of coil L6 in the TV receiver's oscillator
circuit (Fig. 9) is varied by the capacitor connected in series with it, tuning the oscillator's parallel-resonant circuit. This type of circuit is required for UHF tuners since even very small coils have relatively large impedances at these frequencies.
From Fig. 7 and 8 in the November 1966 article we see that at ultrahigh frequencies (UHF) the phase shift and capacitance in a transistor results in positive feedback. At the resonant frequency of the parallel-resonant circuit the effective impedance of coil L6 in conjunction with the capacitors connected in parallel with it), there is sufficient collector signal voltage for the transistor, with positive internal feedback, to oscillate.

The varicap diode (X2), connected in parallel with the oscillator tuning coil (L6), also has a function in tuning the oscillator circuit. As the applied de potential from the IF discriminator circuit decreases with a higher IF frequency, the varicap's capacitance increases, and the oscillator circuit oscillates at a lower frequency. This circuit, in effect, adjusts the receiver's tuner oscillator for the best TV signal reception.

AM Varicap Tuning

The single transistor circuit shown in Fig. 10 is typical of the circuits used in many transistor radios, and it performs all the functions of a tuned oscillator circuit, tuned RF circuit and mixer circuit.

In this circuit transistor collectorcurrent signals pass through the
primary windings of transformers T 2 and T 3 . The secondary winding of one transformer (T2) and its parallel capacitors (65.2 pf maximum total parallel value components) form a parallel resonant circuit, and at their resonant frequency maximum collector signals are induced across the transformer's secondary winding (T2). These signals return through the ferrous antenna secondary (T 1) and $0.02 \mu \mathrm{f}$ capacitor to the base of the transistor. This positive feedback circuit results in an oscillation at the tuned resonant frequency of the transformer's secondary (T2).

The parallel-resonant circuit, formed by the primary winding of the ferrous antenna (T 1) and the capacitors connected in parallel with it (148.Ipf maximum total parallel value components), is tuned to the radio frequency (RF) of the station being received. The greater the voltage induced across the antenna's primary winding, the greater the voltage also induced across its secondary winding. The largest signal voltage is induced across these windings when the tuned parallel-resonant frequency of the primary winding is the frequency of the station received.

Both the oscillator signal, induced across the secondary winding of transformer T2, and the RF signal, induced across the secondary winding of the ferrous antenna (T1), pass through the $0.02 \mu \mathrm{f}$ capacitor and are applied to the base of the transistor. The pair of signals are amplified by the transistor and the resulting collector-current signal pass-

Fig. 10 - This mechanical-capacitor tuned, single-transistor circuit performs all the functions of a luned oscillator circuit, luned RF circuit and mixer circuit.

DESIREO OSCILLATOR VS. ANTENNA CAPACITANCE
Fig. 11 - The desired combination of oscillator and antenna tuned circuit capacitances are shown for a transistor AM receiver. Courtesy of Motorola.
es through the primary winding of the IF transformer (T3). The primary winding of this transformer is tuned, with a capacitor connected in parallel with it, to a 455 kHz resonant frequency. This frequency is the difference between the RF and oscillator frequencies.

The oscillator and RF resonant frequencies are tuned in this receiver by changing capacitor values in the oscillator and RF parallel-resonant circuits. The corresponding oscillator and RF tuning capacitor values required to maintain a 455 kHz difference in resonant frequencies are shown in Fig. 11.

The circuit shown in Fig. 10 can be modified (Fig. 12) to eliminate the mechanical tuning capacitors. The varicap diode functions in the RF tuned circuit (Fig. 12) in the same manner as it does in the par-allel-resonant circuit shown in Fig. 20 of the November 1967 article. Variations in the dc potential applied across the varicap change the component's capacitance and the resonant frequency of the parallelresonant circuit. The 5 K potentiometer (Fig. 12), connected between a positive voltage source and ground, varies the varicap potential and the resonant frequency of both the RF

Fig. 12 - The varicap tuned, singletransistor circuit performs all the functions of a tuned oscillator circuit, tuned RF circuit and mixer circuit.

and oscillator circuits. The 470 K resistors between the potentiometer and varicaps serve to isolate IF and oscillator signals, while the varicap bias current is so small that any bias voltage drop across the resistors is insignificant.

The varicap capacitance range is more than adequate for the RF tuning circuit and, therefore, a trimmer capacitor was not required for that circuit. A trimmer capacitor, connected either in parallel with the 150 pf capacitor or in parallel with both the 150 pf capacitor and the varicap, is used to adjust the oscontinued on page 74

Fig. 13 - The underside of two AM transistor receiver circuit boards is shown. The left one is luned with a mechani-cal-funing capacitor and the one on the right is tuned with a varicap.

Fig. 14 - The lop side of two AM transistor receiver circuit boards is shown. The left one is tuned with a mechanicaltuning capacitor and the one on the right is tuned with a varicap.

Don't Forget the Heat-Sink Compound

Silicone substance aids circuit stability

- As electronic components get smaller and smaller, the problem of dissipating excess heat becomes greater and greater.

Heat, of course, affects solid-state circuits and components in two ways: (1) it causes long-term drift in characteristics, caused by rapid aging, and (2) it can cause catastrophic "right now" failure if the temperature gets completely out of control.

The problem also includes distributing heat so as to minimize hot spots. One step in handling heat problems is to use heat sinks, and these have become necessary in many solid-state devices. But even good heat sink design does not provide the complete answer, since in practice, it is almost impossible to have two metal surfaces - even precision machined surfaces make perfect contact over their entire mating area. Inevitably, the resulting air spaces between component and heat sink, will act as a heat insulator.

Using silicone compounds to displace this insulating barrier has become standard practice. Grease-like silicone materials are applied to the base and mounting studs of transistors, resistors, and diodes, thereby improving the heat transfer from the components to the heat'sink or chassis.

The first silicone materials used, naturally enough, were the readily available materials which had been developed to seal moisture out of connectors, and to provide a soft, nonmelting, nongumming dielectric film in a variety of applications.

More recently, a material specifically designed for this function has been introduced. This compound is heavily filled with heat conductive metal oxides. It has about twice the heat conductivity of previously available materials, and has been
designed to provide minimum bleed for lasting protection.

To ascertain the value of this newer silicone heat sink compound in use, a series of 1000 -hour tests were run. It was decided to use $50-$ watt power resistors in order to simplify the tests and to more easily relate test results. The silicone heat sink compound was used in all tests where the resistor mounting surface was treated. The properties of the compound are as follows:

Bleed, percent after
24 hours at 200 C
24 hours at 200C
Evaporation, per-
cent after 24
hours at 200 C
0.5

Specific Gravity
Thermal Conductivity
K factor, cal/
$\mathrm{cm}^{2} / \mathrm{C} / \mathrm{sec} / \mathrm{cm}$
0.0010

Heat Distribution and Stability Tests

For the first series of tests to determine heat distribution, a 50 watt resistor was mounted on a 0.04 in. thick $5 \times 7 \times 2$-in. aluminum chassis and operated at 40 w for 1000 hours. Sixteen thermocouples were spotted on the chassis and one thermocouple was installed inside the resistor. Identical tests were run without and with the silicone compound. The heat distribution data, plotted as shown in Fig. 1, show at every point that more heat was transferred to the chassis when the resistor was sealed with the silicone material. This is also borne out by the internal temperature of the resistor: $233^{\circ} \mathrm{C}$ when unsealed and $201^{\circ} \mathrm{C}$ when sealed.

The second series of tests concerned the change in component characteristics. Again a 50w resistor was used, unsealed and sealed to the chassis using the heat sink compound. The curves in Fig. 2 reveal that for the first 300 hours the change in resistance of the sealed resistor was stable; whereas, the resistance continued to rise in the unsealed resistor. At 800 hours the resistance was stable in both cases.

So, when replacing power transistors, don't forget the silicone compound.

DEALER FAX

From Service to Sales-and-Service to ... More Sales and Service

The interdependent sales-service links in the TV-radio merchandising chain can provide your operation with maximum survival and growth strength - even in the face of 'cut-throat' discounter competition

- Twelve years ago Ed Levitt started a home-based TV repair service. For the fiscal year ending in August this year, his Oceanside, Long Island, N. Y., shopping-center-based store, See \& Hear TV, grossed $\$ 240,000$. About 20 percent of the gross came from service. Mr. Levitt anticipates close to $\$ 300,000$ gross in the upcoming year. The operation grossed only $\$ 120,000$ in 1965
"The change from service, to sales-and-service, was not a quick one," Ed Levitt told an Electronic Technician field reporter recently.
Eight years ago, after discontinuing an unsuccessful phono record department, Ed Levitt decided to go into B/W TV sales. He began in a small way, investing $\$ 2000$ in sets. At this point he was joined by his brother, Mack, who made all the home service calls at first. As business grew, however, it became clear to the brothers that they would have to spend all their time in the store - selling equipment and directing the operation. Technicians were hired to make home service calls.

According to Ed Levitt, one of the biggest factors in their success was the constant tie-in between sales and service.
"In this area," Mr. Levitt emphasizes, "people are price conscious but they are even more service conscious.
"But the greatest single boost we got came three years ago when the district sales manager of a leading company suggested that we carry a full line of home entertainment equipment," Ed Levitt smiles.

In addition to a Sylvania franchise, the Levitts also carry Admiral, RCA, Zenith and G.E. products.

Service Contracts

Every TV set sold by See \& Hear TV is serviced at a minimum charge the first year. But, when the year is almost up, Mack Levitt calls the owner and asks if any repairs or adjustments are needed and informs the customer that the first year contract will shortly run out. Additionally, he informs the customer that a second year contract can be obtained at a cost of $\$ 70$. So far, 80 percent of all customers have signed up for a second-year service contracts. "We have done the same for the third- and fourth-year contracts at a charge of $\$ 80$ and $\$ 90$, respectively," Mr. Levitt says.
"One important benefit you get from contracts," Ed Levitt says, "is not generally understood by most service-dealers.
"For example, when a service technician goes to a customer's home to service the set, he does not have to write up a bill and consequently the owner is usually willing to listen to a low-pressure pitch for a second set, a color console or some other home-entertainment equipment.
"Additional benefits also accrue from service contracts. During the term of the contract, for example, customers are unlikely to ever turn to another service-dealer for repairs on their other TVs or equipment in their hones."

Advertising and Promotion

Home-call technicians are instructed to mention that the store carries a line of the latest portable TVs and Hi Fi stereo equipment. But equipment prices are not discussed in the home.
"Sales promotion at See \& Hear TV is carefully planned," Mack Levitt says. "For one thing, we don't put the price of anything in our ads or on equipment in the store. We are selling quality and topgrade service. We're not in the 'bargain-basement' or 'discount' business."

Ads are run regularly in local newspapers and in the local shopper's guide under manufacturers' co-op arrangements. Additionally, flyers are enclosed with all bills sent to customers.
"The purpose of our advertising," Ed Levitt explains, "is simply to let customers and prospects know what new items we are carrying. We don't try to sell price; we sell our name and service through the ads."

Mr. Levitt points out that only one new-stock item is usually mentioned in an ad, rather than flood the customer and prospect with a confusion of makes and models.

Advertising for Christmas is heaviest during October and November, although Christmas is not actually mentioned at that time. Ads are curtailed considerably in December. Ed Levitt explains that most people who are considering Christmas-present purchases, because of the expense involved, think about the purchases well ahead of time.

Because the Lincoln shopping center in Oceanside is very active, the Levitts have taken advantage of this activity by installing a CCTV camera and monitor plus a color TV set in the store's show window. These are switched on every evening of the week from 7 p.m. to midnight. Since the shopping center has several restaurants, a fair number of passers-by stop to look at themselves on the CCTV monitor or watch the color TV.
A CCTV camera and monitor are also kept operating in the store during the daytime. This setup serves two purposes - customers are amused (the kids go wild) to see themselves on TV and, by using a small monitor in the office, thefts of small items like transistor radios have been prevented. Ed Levitt explains that a view of the main floor is blocked from the office, and the monitor makes it easy for one person to handle telephone calls and watch the shop at the same time.
"See \& Hear," originally a "Mama \& Papa" operation, is now overseen by the two brothers and staffed by four technicians who are always out on service calls, installing antennas or making deliveries in the three company-owned trucks. Two permanent technicians are on the work benches. Two part-time assistants help with

A section of the sales flioor at See \& Hear showing TV sets on display.

Ed Levitt, who began as a service technician 12 years ago, watches one of his technicians working at the bench.

Mack Levist at his desk. The CCTV monitor at the right covers the sales floor outside.
deliveries and antenna work and one woman in the office handles most calls and does office work.

The change from service to sales-and-service was gradual and carefully planned. And it has paid off.
"What's the advantage of providing good service to the public?" ET's reporter asked Ed Levitt.
"Quite simple," Mr. Levitt smiles. "You can't show increased sales, year after year, without providing fast and efficient service. And you won't have many sets to service if you don't sell 'em.
"Every good technician-dealer operation can provide fast and efficient service. A personal relationship develops with the customer at the time of the sale and is extended with the service. But the department stores, the big chains and the discounters just can't do it. Neither can the hardware stores and white goods outfits who play around with electronic home-entertainment equipment on the side," he concludes. -

DEALER FAX

Open-Display Shop Boosts

Ayoob's service shop is an integral part of the sales floor.

Tom Ayoob tells ELECTRONIC
TECHNICIAN how open-display service shop is building sales.

- The service shop is a part of the sales floor at Ayoob Bros., San Francisco. Customers shopping the store or coming up to the low service counter can see the array of test instruments and the technicians at work.
"This gives us a strong service image and is very good for business," Tom Ayoob says.

Mr. Ayoob has been in TV-radio sales and service for the past 20 years and is now sole owner of the firm, which he established with his two brothers. He is a service technician himself and still likes to troubleshoot sets when he can find the time.

Recognizing the importance of a proper service identity, he fixtured the open-display service shop across the rear of the sales floor when he moved to a new location two years ago.

Seeing Is Believing

"Now our customers can see something of what's involved in repair work and we're getting fewer complaints about service charges," Mr. Ayoob continues. "People tend to be suspicious about repairs, but when they

Don't hide the technical side of

see the work being done in the shop, they realize a lot of test instruments and labortime is involved.
"Why should we keep the shop hidden from view? It's good psychology to have it out in the open. It shows we're qualified to handle everything in service."

Setting up the service shop as an integral part of the sales floor has another advantage, Mr. Ayoob points out. The technicians can take care of customers at the counter and handle repair work when not busy at the front of the store.

A chime on the entrance door alerts personnel when anyone comes in. Thus Mr . Ayoob or one of the men working in the shop has only to turn around to see if a customer is being taken care of or if he needs help.
"With our increased business, it would have been necessary to add at least two more people to handle the sales floor and the counter," he says. "By setting up sales and service as an integrated unit, we're able to make more efficient use of our time."

Service Image

A view of the service shop as seen from service counter. Everything is bright and orderly and the big look shows customers something of what's involved in repair work.

your business behind closed doors

Well-Organized Shop

The shop is 30 by 15 ft . A white-topped, waist-high service counter, running along the front, is open at both ends for access between the shop and sales floor.

Work benches along the rear wall and one side of the shop are sectionalized to provide separate work areas, each with sufficient drawer and shelf space to hold tools. A centrally located battery of drawers holds small repair parts.

The shop is light, bright, airy - and always immaculate. Floors are waxed and shined monthly, along with the rest of the store. All service technicians wear white coats or smocks.

Increased Productivity

"We expect some effort from the men to keep the service area as attractive-looking as the rest of the store," Mr. Ayoob comments. "At first, there was something of a problem in retraining, but the men have learned to pick things up and put them away. They know that we're on public display now.
"It might seem that this would take up too much of the men's time and cut down on efficiency, but just the opposite is true. With a well-organized shop and a place for everything - and everything in its place - productivity has increased."

Ayoob's Bros. has seven service technicians and they all keep busy. When service calls and over-the-counter work fall off, they service electronic equipment for a hospital, a home for the aged and two county jails. Tom Ayoob bids for this work and finds it an excellent "time-filler" which produces a modest profit.
"Sales outside our immediate neighborhood have increased since we set up the shop on the sales floor," Mr. Ayoob smiles. "We confine our advertising to our neighborhood, so it's apparent we're getting more referral business.
"I can only conclude that emphasizing our strong service image by putting the shop on open-display is giving us more word-ofmouth advertising. It's one of our best business builders." \quad -

When it comes to 82-channel,

Doesn't make any difference how big or how small the system, or where you plan to install it (apartment building, hotel, motel, school, home, etc.) Winegard has all the products you need from antenna to outlet.

And we're not just talking about quantity. Winegard MATV products, all of them, are the finest quality commercial equipment available. They feature printed circuitry utilizing the newest, best performing temperature stable hiinput transistors.

Winegard not only gives you more products to choose from, but more professional assistance, too. That's right! Our staff of MATV engineers is ready to give you all the system layout service you need. And, of course, the service costs you nothing.

Yes, Winegard gives you everything you need to guarantee the best possible reception on each and every set in the system-on all channels-and in color as well as black \& white.

You get maximum reliability with minimum maintenance. You get easy installation using standard fittings. You get attractive design and complete customer satisfaction. And, just as important, you get that feeling of personal satisfaction that comes from a job well done.

What more could you ask for except the highest profits in the new and skyrocketing MATV industry. And that's exactly what you get from Winegard!
(You can see here just a very few of our many MATV products.) Get all the facts today, and start making more money faster with Winegard. Send for MATV kit No. DMS.

ANTENNASYSTEMS

Transcoupler Yagis
Whether you're planning a master antenna system for a single set in a home, or several hundred sets in an apartment complex, it's essential that you provide the strongest, cleanest signal possible on all channels. And especially in color. It takes the best performing, longest lasting antenna available. And Winegard has them; 25 five and ten element Transcoupler yagis plus a full line of Super Colortron VHF-
FM, VHF.UHF.FM, UHF and FM antennas FM, VHF-UHF-FM, UHF and FM antennas.

Antenna Pre-Amplifiers

Winegard's exclusive solid-state, printed circuit cartridge pre-amplifiers slip in to the built-in, weatherproof housing of Super Colortron antennas, or into the Model ACH-1 Universal Cartridge Housing that mounts easily on any antenna. Downlead connection is internal, with 100% protection from the weather. Eight different cartridge pre-amplifiers are available, enabling you to customize each antenna installation for perfect color and black \& white reception on all channels. All models utilize the newest silicon overlay transistors with an unequalled input of 500,000 microvolts ($1 / 2$ volt). Totally eliminates overload problems regardless of location.

solid state, color MATV systems,

Channel Control Couplers

Allow you to couple any number of VHF-FM antennas, equalize the signals to a predetermined level and match the 300 ohm antennas to a 75 ohm coaxial downlead. Any coupled antenna can be attenuated from 0 to -20 db with special plug.in attenuator pads.
Ultra-Plex Distribution System
Ultra-Plex is a unique, solid state, 82-channel modular plug-in MATV distribution system. Components of the Ultra-Plex system are designed to match and work perfectly with each other. Ultra-Plex equipment will never become obsolete-new VHF stations, UHF stations and FM bands may be added at any time with negligible expense to the owner. Ultra-Plex gives the installer an unprecedented flexibility and complete signal control, regardless of system size. It works equally well in small or large systems-in apartment buildings, motels, hotels, hospitals, schools, etc.

Solid State Distribution Amplifiers
Winegard tv system amplifiers are designed to highest commercial standards with models and accessories available to provide optimum color and black \& white reception to any number of sets. Each amplifier in. corporates the most recent developments in solid state circuitry with the advantages of increased life expectancy, reliability and less power consumption. Higher gain, greater band-width, lower noise figures and improved VSWR are other advantages of Winegard's high performance amplifiers.

82-Channel Line Splitters

Line splitters divide the tv signals on a trunk line into equal parts and, when properly used. greatly increase the number of taps in a tv distribution system. Winegard line splitters have very low insertion loss, low VSWR and high isolation between outputs to insure perfect transmission of color tv signals.

TV Signal Equalizers

Broad band distribution amplifiers operate most efficiently when input signals are equal and total picture carrier signals are the specified level. Winegard makes equalizers that can couple and equalize up to four low band or FM single channel antennas-or couple and equalize up to four high band single channel antennas.

Variable Isolation 82-Channel

Line Drop Taps
Drop taps allow the system designer to layout trunk lines in a straight line and operate outlet devices in remotelocations with feeder lines. Variable isolation control from 10 to 25 db , with fast, easy adjustment, makes it unnecessary to specify and order several fixed values of tap to best utilize signals at the end of each trunk line.

Variable Isolation 82-Channel Line Tap Offs All Winegard line taps have 82. channel capability, and can be used for VHF, UHF or FM or any combination of the three. The variable isolation feature enables the installer to independently vary the VHF and UHF isolation values from 10 to 25 db through simple adjustment of "wiper arms' located at front of tap. Use of 82-channel line taps insures that a system cannot become obsolete regardless of what channels are later added to the system. Flush and surface mounts.

Solid State Booster-Couplers
Winegard offers several transistorized boaster-couplers which will handle up to 4 TV/FM outlets or sets from a single antenna -up to 16 sets using 75 ohm outlets. Seven different models: some for channels 2.13 plus FM, some for channels 2.83 plus FM. Built to finest commercial quality standards. Available in both 300 and 75 ohm models. Extremely high (500,000 microvolt) input eliminates overload problems.

82.Channel + 25 db Amplifier

New "color system" amplifier is ideal for home and smaller systems. Solid state, printed circuitry with excellent stability. Can't become obsolete when new channels come on the air. By adding Winegard's unique line amplifiers, you can lay out and install most systems without calculations of any kind. Separate VHF and UHF inputs and power for VHF and UHF preamplifiers. Easy to customize each installation to exact signal conditions.
Plus...UHF single channel converters, antenna and back-of-set matching transformers, band separators, interference rejection filters, etc.
for more details circle 129 on postcard © Copyright. 1967, Winegard Co., Burlington, Iowa

COLORFAX

Weak Vertical Sync in Setchell Carlson Color TV

The following modifications to the vertical sync circuit in the CE unit will improve the vertical hold in areas where vertical sync is weak because of low line voltage or local signal conditions.

1. Remove C41। (sync coupling capacitor which is connected to the junction of R403 and R410).
2. Disconnect pin I of 6GF7 from ground. (Connect this ground wire to pin 5 of the 6GF7.)
3. Install a silicon diode, a 2.2 M $1 / 2 \mathrm{w}$ resistor, $20.01 \mu \mathrm{f} \mathrm{Jkv}$ disc capacitors and a $22 \mathrm{~K} \quad 1 / 2 \mathrm{~W}$ resistor as shown in schematic.

Vertical oscillator drift as the receiver warms up or vertical lock-in at the end of the vertical hold control range can be caused by a defective 12M resistor (R404) in the vertical hold circuit.

Modify the vertical hold circuit to the schematic shown, removing R404 (12M), R406 (2.2M), and R405 (470 K). The 470 K resistor is then placed between pin 9 of the 6GF7 and terminal 3 of the plug strip (vertical hold control). A $0.003 \mu \mathrm{f}$. 1 kv disc capacitor is added between terminal 3 of the plug strip and ground.

Burst Amplifier and 3.58 MHz Oscillator Circuit of the Magnavox T924 Color Chassis

The burst amplifier and 3.58 MHz oscillator circuitry is shown here. The chroma signal and a positive horizontal pulse are applied to the grid of the burst amplifier. The burst amplifier conducts only during the interval that the grid is driven positive by the horizontal pulse. This coincides with the interval that the color
burst reference signal is present on the grid, therefore, the burst signal is amplified but the chroma information is rejected.

If a scope is connected to the grid of the burst amplifier (scope sweep set to view horizontal rate), you can see the positive horizontal pulse with the burst signal sitting on the peak. The amplitude measured at this point is in the vicinity of 65 v P-P.

Moving the scope lead to the plate would reveal a burst signal having an amplitude of approximately 180 v P-P.

This burst signal is then coupled through a low impedance link on the burst transformer to the grid circuit of the 3.58 MHz oscillator. The injection of the burst signal in this fashion causes the frequency of the 3.58 MHz oscillator to become "locked" with that of the burst signal.

The 3.58 MHz oscillator is a version of the Pierce oscillator with the screen grid acting as the anode. Feedback is from the screen, through the link (on the burst transformer), through C742, through the crystal and back to the grid.

The free-running frequency of the oscillator can be precisely adjusted to 3.58 MHz by the small trimmer capacitor, C743 (2-12pf). This adjustment is made during AFPC alignment.

The oscillator signal is electron coupled to the plate which employs a 3.58 MHz tuned transformer for its load. The secondary of this transformer is used to couple the 3.58 MHz CW reference signals to the R-Y and B-Y demodulators. These are identical 3.58 MHz sinewaves having an amplitude of approximately 15 v P-P. A phase shift network is connected across the secondary so that the CW signal to the R-Y demodulator will lag the B-Y CW signal by approximately 90 deg . This relationship is necessary to demodulate the chroma signal properly. Remember that the 3.58 MHz reference signals applied to the demodulators represent the reinserted carrier with which the chroma signals - originally modulated but

suppressed prior to transmission. The chroma signal was modulated with a 3.58 MHz signal on two different axes 90deg apart which accounts for this phase shift network in the receiver.

This phase shift network "fixes" the phase relationship between the R-Y and B-Y CW signals. Both signals can be phase shifted, however, by rotating the TINT control. Assuming the TINT control is centered and T703 is tuned to precisely 3.58 MHz , the plate circuit of the oscillator will look resistive. Rotating the TINT control back and forth will cause the plate circuit to be tuned above and below resonance which causes the circuit to look capacitive and then inductive, resulting in a phase shift of the 3.58 MHz signal.

This permits phase adjustment of reference signals so the demodulated signal will reproduce the same tint (or hue) on the screen of the receiver as the scene originally scanned by the television camera. (Normal phase shift is approximately $\pm 50 \mathrm{deg}$.)

To be certain these circuits are performing their job, it may be necessary to perform an AFPC (automatic frequency and phase control) adjustment occasionally.

AFPC Adjustment

1. Tune in color bar generator.
2. Set TINT control to center of its range.
3. Ground grid of burst amplifier.
4. Connect VTVM to pin 9 of V706 (grid of killer).
5. Adjust T702 (burst transformer) for minimum dc (negative) voltage. Note: The 3.58 MHz oscillator must be running during this adjustment.
6. Adjust oscillator trimmer capacitor, C743, for zero beat (color bars stand still or drift slowly). Note: At zero beat the color bars will be the same color from top to bottom.
7. Remove ground from burst amplifier grid and connect VTVM to plate of either demodulator.
8. Adjust T703 (oscillator plate transformer) for maximum dc reading.
9. Observe color bar pattern and touch-up T703 (if necessary) for correct tint. Check tint control for sufficient range.

Motorola's Solid-State Color Chassis Fine Tuning Indicator and Fine Tuning Lock Circuit

In some solid-state color receiver models, an FTL (fine tuning lock) AFC circuit is employed to assure correct fine tuning. FTL compensates for normal tuner drift and aging of components. Also, an indicator light operates in conjunction with the

FTL to signal the customer when fine tuning is necessary.
Four NPN transistors, two diodes and a neon lamp make up the active components in the fine tuning indicator and lock circuits. This complete network is located on a single replaceable panel located on top of the video IF panel.

A selected portion of the 45.7 MHz video IF carrier is coupled from the 3 rd video IF collector through a 1 pf capacitor to an FTL amplifier stage. Operating as a class " A " emitter-follower, the FTL amplifier minimizes loading on the video IF , sending the IF signal to the FTL output and fine tuning indicator (FTI) detector.

Located across the input of the FTI detector emitter-follower is a high "Q" 45.75 MHz parallel tuned resonant tank (FTI coil). The tank selects the video IF carrier and presents the carrier to the FTI detector for detection and current amplification. The 45.75 MHz video 1 F carrier is only present when fine tuning is correct. Here the 45.75 MHz carrier is converted to a dc voltage and directly coupled to the FTI output.

Connected as a common-enitter, the FTI output is in shunt with the FT1 neon indicator lamp. Conduction of the transistor extinguishes the neon lamp.

When 45.75 MHz is present, indicating correct fine tuning, the FTI detector and output both conduct to extinguish the neon lamp.

If 45.75 MHz is not present, indicating incorrect fine tuning, the FTI detector and output will become nonconductive, allowing the neon lamp to light. This signals the customer to re-adjust the fine tuning control.

Directly coupled from the FTL amplifier stage, the video IF signal is presented to a class "A" operated common-emitter FTL output. A discriminator transformer tuned to 45.75 MHz center frequency recovers the amplified IF signal.

The discriminator secondary feeds two diodes. Rectification of the IF signal by the diodes produces opposite voltages across balanced diode load resistors. Across both diodes a dc correction voltage is coupled through a "pi" filter to a varactor (voltagevariable capacitor) across the tuner oscillator.

Tuner drift is counteracted by a varying dc correction voltage applied to the varactor from the FTL circuit.

If the tuner drifts, the 45.75 MHz video IF carrier change frequency. This frequency change is sensed by the discriminator coil, causing unequal conduction of the discriminator
diodes. A resultant correction voltage is developed because the voltage across each diodes is no longer equal. Coupling this correction voltage to a varactor in the tuner pulls the tuner's oscillator back on frequency.

With correct fine tuning, no correction voltage from the discriminator diodes is developed. An incorrect fine tuning adjustment will cause a corresponding dc correction voltage to be developed by the FTL for the tuner. An FTL defeat switch located in shunt with the correction voltage is provided to defeat FTL, allowing manua! fine tuning, then switched back to FTL position

Now, Sencore's new Mighty Mite \bar{Z} gives you the same reliability and accuracy, plus new features that make the " \bar{Z} " the most up-to-date tester of all.
NEW-Magnoval socket so you check many more tubes.
NEW-Horizontal in-line switch layout saves setup time.
NEW-Rugged vinyl-clad steel case stays new longer.
NEW-Brushed chrome panel; detachable cover.
The new TC142 is truly Sencore's mightiest
Mighty Mite and it's only ...
IN STOCK AT YOUR DISTRIBUTOR NOW.

NO. I MANUFACTURER OF ELECTRONIC MAINTENANCE EQUIPMENT
426 SOUTH WESTGATE DRIVE, ADDISON, ILLINOIS 6010.9

NEW PRODUCTS

For additional information on products described in this section, circle the numbers on Reader Service Card. Requests will be handled promptly

Tape Recorder/Radio

700
A system is announced for AM/ FM listening and off-the-air recording on magnetic tape. Specifications

indicate that the tape recorder is detachable and may be removed for any portable tape recording or dictation elsewhere. Up to two hours of music can reportedly be recorded at $17 / 8 \mathrm{ips}$ on a single cassette and commercials can be eliminated by a remote control switch. Concord.

CB Base Station

701
A 23 channel $C B$ base station reportedly contains a solid-state preamplifier designed to permit its use with a high-impedance desk microphone. Specifications indicate that

this enables the operator to have both hands free while communicating, and permits the operator to remain from 1 to $11 / 2 \mathrm{ft}$ away from the mike while still retaining 100% modulation. Price $\$ 269.90$. Pearce-Simpson.

Cable Tíe

A cable tie is reportedly being made in four sizes and will fit all bundle diameters from 1/16 to $43 / 16 \mathrm{in}$. Specifications indicate that the selflocking head is designed with dualgrip tie hooks that improve its tensile

strength. According to the manufacturer, it is lightweight, abrasive resistant, has good dielectric properties and is chemical resistant to common solvents, alkalies, dilute acids, oils and grease. Electrovert.

Turntable

703
A turntable is announced that reportedly features a 12 in , $71 / 2 \mathrm{lb}$ balanced nonmagnetic platter. Two low-speed synchronous 16 -pole motors

on a single rotor shaft are designed to provide $331 / 3$ and 45 rpm speeds. Specifications indicate that a springloaded suspension system minimizes vibrations and acoustic feedback. The dimensions are $155 / 8 \times 127 / 8 \times 31 / 4 \mathrm{in}$. Price $\$ 85$. Thorens.

High-Voltage Probe

704
Announced is a CRT high-voltage test probe with a built-in voltmeter. Specifications indicate that all a technician has to do is ground the instrument, contact the high-voltage anode with the probe tip and read the voltage (up to 30 kv) from the self-con-

tained meter. The probe reportedly contains no batteries and needs no warm-up time. Net price $\$ 19.95$. Pomona.

Tone Caller

705
A 10-channel tone caller is announced that reportedly contains a 23 transistor, 5-tuning fork circuitry designed to permit the private push-button calling of any one, assorted quantity up to 10 or all 10 stations at one time. Calls reportedly may be initiated at the remotes or from the master

to activate mobile / base CB sets. Specifications indicate that lights visually identify the station calling, and dualtone coding signals minimize false triggering on stray signals. The case measures $101 / 8 \times 7 \frac{1}{8} \times 33 / 4 \mathrm{in}$. Price \$129.95. Lafayette.

Electronic Tool Kit

706
A 20-piece tool set is announced that reportedly contains all the major tools essential for the repair of elec-

tronic equipment. The manufacturer indicates that these tools include one chain-nose plier, groove-grip plier,
diagonal cutting plier, standard screwdriver, Phillips screwdriver, round magnifier, soldering iron, bent-nose tweezer, straight-nose tweezer, solder aid, alignment tool, contact-type burnisher, pin vise, solder core, 3/16in. nut driver, $1 / 4 \mathrm{in}$. nut driver, plus two needle files, two miniature screwdrivers and a package of 12 burnisher blades. The manufacturer's specifications indicate that these tools come in a 7×6 in. leather zipper case that weighs 2 lb with tools included. Price \$29.90. Jonard.

Temp Sensitive Resistors
707
Announced is a line of bobbin wirewound resistors with resistance values that reportedly increase up to 60%

($\pm 5 \%$) with a temperature increase from 75 to $255^{\circ} \mathrm{F}$. Specifications indicate that they are made in sizes ranging from 0.1 to 0.5 w as well as in various network configurations. Dale.

Continuity Tester

708
Announced is a continuity tester designed for locating open transistors and diodes, and to determine diode polarity in circuitboards and assem-

blies. Specifications indicate that the current through the circuit under test is less than $50 \mu \mathrm{a}$. Desco.

FM Mobile Unit

709
Announced is a two-way FM mobile radio that is reportedly adjustable from 120 to 220 w in three steps, making it possible to use the unit on either limited power or high power channels. The 150 to 174 MHz band unit will reportedly operate on six chan-

nels and has solid-state circuitry throughout, except in the final RF power amplifier stage. Kaar.

Remote Station Console 710

A solid-state, remote-control console has been designed to provide complete control of remote base stations in a radio communications sys-
tem. A constant-current regulation system reportedly provides the exact

current needed at the base station regardless of wide variations in telephone line attenuation. Specifications indicate that the new unit also features lighted push-button switches which indicate the state of all control functions. Motorola.

How to break into the big money servicing 2-way radios!

$\mathrm{H}_{\mathrm{s}}^{\mathrm{ow}}$Ow would you like to start collecting your share of the big money being made in electronics today? To start earning $\$ 5$ to $\$ 7$ an hour... $\$ 200$ to $\$ 300$ a week... $\$ 10,000$ to $\$ 15,000$ a year?

Your best bet today, especially if you don't have a college education, is probably in the field of two-way radio.
Two-way radio is booming. Today there are more than five million two-way transmitters for police cars, fire trucks, taxis, planes, etc. and Citizen's Band uses-and the number is growing at the rate of 80,000 new transmitters per month.
This wildfire boom presents a solid gold opportunity for trained two-way radio service experts. Most of them are earning $\$ 5,000$ to $\$ 10,000$ a year more than the average radioTV repair man.

Why You'll Earn Top Pay

One reason is that the U.S. doesn't permit anyone to service two-way radio systems unless he is licensed by the FCC (Federal Communications Commission). And there aren't enough licensed electronics experts to go around.

Another reason two-way radio men earn so much more than radio-TV service men is that they are needed more often and more desperately. A two-way radio user must keep those transmitters operating at all times, and must have them checked at regular intervals by licensed personnel to meet FCC requirements.
This means that the available licensed experts can "write their own ticket" when it comes to earnings. Some work by the hour and usually charge at least $\$ 5.00$ per hour, $\$ 7.50$ on evenings and Sundays, plus travel expenses, Others charge each customer a monthly retainer fee, such as $\$ 20$ a month for a base station and $\$ 7.50$ for each mobile station. A survey showed that one man can easily maintain at least 15 base stations and 85 mobiles. This would add up to at least $\$ 12,000$ a year.

How to Get Started

How do you break into the ranks of the bigmoney earners in two-way radio? This is probably the best way:

1. Without quitting your present job, learn enough about electronics fundamentals to pass the Government FCC Exam and get your Commercial FCC License. Then start getting practical experience in servicing two-way radio systems in your area.
2. As soon as you've earned a reputation as an expert, there are several ways you can go. You can add mobile radio maintenance to the present services offered by your shop, or start your

ENROLL UNDER NEW G.I. BILL

All CIE courses are available under the new G.I. Bll. If you served on active duty since January 31, 1955, or are in service now, check box in coupon for G.I. Bill information.
own separate mobile radio business. You might become a franchised service representative of a big manufacturer and then start getting into two-way radio sales, where one sales contrac might net you $\$ 5,000$. Or you may be invited to move up into a high-prestige salaried job with one of the major manufacturers.
The first step-mastering the fundamentals of electronics in your spare time and getting your FCC License-can be easier than you think.
Cleveland Institute of Electronics has been successfully teaching electronics by mail for over thirty years. Right at home, in your spare time, you learn electronics step by step. Our auto-programmedtm lessons and coaching by expert instructors make everything clear and easy, even for men who thought they were "poor learners." You'll learn not only the fundanuentals that apply to all electronics design and servicing, but also the specific procedures for installing, troubleshooting, and maintaining two-way mobile equipment.
Your FCC License .. . or Your Money Back! By the time you've finished your CIE course ${ }_{r}$ you'll be able to pass the FCC License Exam with ease. Better than nine out of ten CIEtrained men are able to pass the FCC Exam, even though two out of three non-CIE men fail. This startling record of achievement makes possible our famous FCC License Warranty: you'll pass the FCC Exam upon completion of your course or your tuition will be refunded in full.

Find out more. Mail coupon for two FREE books, "How To Succeed In Electronics" and "How To Get A Commercial FCC License."

CIE

Cleveland Institute of Electronics
1776 E. 17 th Sx.. Oept. ET.35. Cleveland, Onio 44114

Cleveland Institute of Electronics

1776 E. 17th St., Cleveland, Ohio 44114
Please send me without cost or obligation . Your 40-page book "How To Succeed In Electronics" describing the job opportuntities in Electronics today, and how your courses can prepare me for them.
2. Your book on "How To Get A Commer. cial FCC License.

(please print)
Address
Clty
State \qquad Zip
Check here for G.I. Bill information.
Accredited Member National Home Study Council. ET. 35

Weller

makes first class

 soldering the easiest part of any job

Now get controlled $700^{\circ} \mathrm{F}$ tip temperature from a battery! Lightweight TCP-12 iron features Weller's patented "Temperature Sensing" system, clips to any 12 -volt battery or $\mathbf{1 2 . 1 4}$ volt AC/DC source. Also available for 24-28 volt operation (Model TCP-24). A must for mobile communications work.

Efficient MARKSMAN Irons for continuous-duty soldering

Ideal for the bench or caddy, Marksman irons outperform others of the same size and weight. Five models feature long-reach, stainless steel barrels and replaceable tips.

- 13/4-02, 25-watt Model SP-23
- 4-02, 80-watt Model SP-80
- 2-0z, 40-watt Model SP-40
- 10-02, 120-watt Model SP-120
- 16-02, 175-watt Model SP-175
 field. Available in three wattage sizes, each with Weller's exclusive trigger-controlled dual heat, pure copper tip, and spotlight. - 100/140-watt Model 8200 - 145/210-watt Model D-440 - 240/325-watt Model D-550

25-watt Technician's Iron for intricate circuit work

 Industrial rated pencil iron weighs only $13 / 4$ ounces, yet delivers tip temperatures to 860°. Cool, impact-resistant handle. All parts readily replaceable. Model' W-PS with $1 / 8$-inch tapered tip.

Complete Weller Line at your Electronic Parts Distributor
WELLER ELECTRIC CORPORATION, Easton, Pa. WORLD LEADER IN SOLDERING TECHNOLOGY

|/ NEW PRODUCTS

Digital Voltmeter

A solid-state 3 -digit voltmeter is announced that reportedly features $100 \mu \mathrm{v}$ sensitivity on the 100 mv range Specifications indicate that nonsegmented, inline, high-intensity, non-blinking 3 -digit readout is provided in five ranges: $\pm 100.0-$ $\mathrm{mv}, 1.000 \mathrm{v}, 10 .-$

$00 \mathrm{v}, 100.0 \mathrm{v}$ and 1000 v . It is designed to select and display the applied polarity automatically. In addition, the manufacturer indicates that a fourth digit provides over-range readout at full rated accuracy to 120% of full scale for all ranges. Rated accuracy from 60° to $105^{\circ} \mathrm{F}$ is $\pm 0.1 \%$ of full scale, \pm I count. The portable unit measures $31 / 2 \times 12 \times 12$ in. Price $\$ 375$. Roback.

CATV Weather Channel

712
A weather channel originator has been developed for use in CATV systems and closed-circuit TV systems for hotels, motels and schools. It reportedly consists primarily of a vidicon camera focused on a rotating mirror. Specifications indicate that the mirror picks up successively the following six positions, a clock, a
 thermometer, a humidity indicator, a barometer, a date indicator, and a six-sided rotating card holder. All of the weather instruments reportedly come complete with outdoor sensors. The rotating card holder is designed to accept photos, drawings. diagrams and lettering. The manufacturer indicates that the output is 1.5 v P-P or can be switched to RF, tunable channels 2 through 6. Price $\$ 2195$ Vikoa.

AM/FM Stereo Receiver

Announced is an AM/FM receiver that reportedly contains 82 semiconductors plus a nuvistor tuner front end. The manufacturer indicates that its controls include: clutch-type base and treble for each channel, flip-type switches
 for muting, AFC, LOUDNESS, speakers ON / ofF, high and low filter, $71 / 2$ and $33 / 4 \mathrm{ips}$ tape equalization switch, and a tape monitor switch that is combined with the stereo/individual-channel selector. Specifications indicate $1.5 \mu \mathrm{v}$ FM sensitivity, $5 \mu \vee \mathrm{AM}$ sensitivity and 122 w total IHF power output across a 4Ω load. Allied.

Soldering Station
714
Announced is a low-voltage soldering station that reportedly consists of a light 12 v soldering pen, a heat cap-

sule and a control unit that reduces the 120 vac line voltage to the proper voltage for the desired temperature. The control unit includes a linevoltage meter, a power setting knob and a table that indicates the proper power setting for the line voltage and desired soldering iron temperature. Ungar.

Tension Gage

715
Announced is a spring tension gage designed to measure the tension settings of relays or springs from 0 to 300 g in 10 gram steps. Specifications indicate that the scale is calibrated on

front and back for left to right or right to left readings. The frame is reportedly $41 / 2 \times 11 / 2 \mathrm{in}$. Price $\$ 7.60$. Neuses.

FM Receiver

716
Announced is an FM receiver that reportedly uses integrated circuitry, a FET tuner section and silicon transistors throughout. Specifications in-

dicate that the FM stereo tuner employs a four gang tuning capacitor to provide a maximum ratio of selectivity to sensitivity. The amplifier is rated at 100 w IHF music power and reportedly has a frequency response of $\pm 1 \mathrm{db}$ from 15 Hz to 30 kHz . The manufacturer indicates that the tuner sensitivity is $1.9 \mu \mathrm{v}$ with a 2.5 db capture ratio. The complete unit reportedly measures only $53 / 8 \times 163 / 8 \times 12 \mathrm{in}$. and weighs 19 lb . Altec Lansing.

Stereo Preamplifier

717
A solid-state preamplifier reportedly has a pair of tone controls with flat

frequency response when the dials are centered. Specifications indicate that some of the preamplifier's features include three steps of high frequency filtering, provision for a center channel without requiring an extra power amplifier, headphone output, front panel input that can handle an electric guitar. Dynaco.

Precision Apparatus By every standard, the hallmark of quality in test equipment.
 Division of Dynascan Corporation 1801 W. Belle Plaine Avenue Chicago, Illinois 60613
 Where Electronic Innovation Is A Way Of Life
 for more details circle 120 on postcard

GOIDR TINERS
 mocitiont cunanes

Simply send us the defective tuner complete; include tubes,
shield cover and any damaged parts with model number and complaint. Your funer will be expertly overhauled and returned promptly, Derformance restored, aligned to original standards and warranted for 90 days.
UV combinat mis res sandem UAF and VAF funers and send in the defective unit

Exact Replacements are available for funers unfit for over. haul. As low as $\$ 12.95$ exchange. (Replacements are new or rebuilt.)
And remember-for over a decade Castle has been the leader in this specialized field ... your assurance of the best in

5713 N. Western Ave. Chicaso 45, intiols
5713 N. Western Ave., Chicago 45, Illinois 41-92 Vernan Blvd., Long Island City 1, N. Y. For service in Cangda write to Chicago or use reader service card in this marazine. *Major parts are charged oxtra in Camada.
for more details circle 105 on postcard

for PROFITABLE, TIME-SAVING SERVICING 0F: Black \& Whit TV Color TV

$A M$ and $F M$, Tube or Transistor Home, Portable and Auto Radios

Communications equipment \& Home

Appliances
Hi-Fi
Components
\qquad

B\&K PROFDSSIONAL TEST EQUIPMDNT

WITH SIGNAL INJECTION AND IN.ANO.OUT OF CIRCUIT MEASURING TECHNIQUES
Send today for your free copy of Catalog AP22

DS 602
1801 west belle plaine avenue, chicago, Ill. 60613 Telephone: (312) 327-7270 - Cable Address: BANDKC0 Made in U.S.A.

FM Receiver
718
Announced is a 30 weak AM/FM and FM stereo receiver with plugin connections for tape recorder and

record changer. Specifications indicate that the receiver has a controlled injection AFC, a broad-scale logging dial all solid-state circuitry. Rheem.

Power Transistor

719
A plastic-encased silicon power transistor has been designed to provide easy mounting and collector isolation without the need for extra hardware or washers. Maximum

ratings reportedly are: $\mathrm{VCEO}=35 \mathrm{v}$, Ic $=3.0 \mathrm{a}, \mathrm{TJ}=-65^{\circ} \mathrm{F}$ to $+300^{\circ} \mathrm{F}$ Specifications indicate that the hFE is from 20 to 250 and 14.3 w can be dissipated at $212^{\circ} \mathrm{F}$. Bendix.

VTR Splicers

720
A line of video tape splicers has been developed to handle $1 / 2$ - and 1 -in. tapes, and they reportedly use pres-sure-sensitive patches. This method of splicing is reportedly the same as used in the computer field on the paper tape input devices. Robins.

Your local

 Amperex distributor:And he stocks the full line of Valvo receiving tubes, not just the "most called-for" types. With this new, off-the-shelf convenience, you can forget about any problem of immediate availability of replacements for your servicing jobs on imported radios and hi-fi components.

For names and addresses of the Amperex (and Valvo) distributors in your area, write: Amperex Electronic Corporation, Distributor Sales Dept., Hicksville, Long Island, N. Y. 11802

* All Valvo replacement tubes sold in the U.S. A. are branded Amperex and are packaged in Amperex cartons.

TOMORROW'S THINKING IN TODAY'S PRODUCTS

Transistorized Microphone

721
A transistorized dynamic microphone has been designed to directly replace an assortment of carbon

mobile microphones. Specifications indicate that it contains a two transistor preamplifier that improves the quality of transmission by providing a more uniform output level. Turner.

AM/FM Receiver

A solid-state AM/FM stereo receiver is announced that reportedly incorporates an integrated circuit IF strip for improved capture ratio and selectivity, and a FET front end for

maximum sensitivity with minimum interference. Specifications indicate 1.9μ v FM sensitivity with 90 db cross modulation rejection, 2.2 db capture ratio, 46 db selectivity and 36 db tuner stereo separation. It has a 90 w rated output. Price $\$ 439.95$. Scott.

AUTO TAPE PLAYERS

continued from page 43
tions were checked and resoldered. This didn't solve the intermittent speed problem either.

The trouble turned out to be a loose speed rheostat control. On top of the midget control is a screwdriver slot that turns a small wiping contact. Replacing the speed control with a new 1 K bias control solved the intermittent speed problem.

Children Must Play

After playing all channels except the last one, this Lear-Jet stereo-8 developed crosstalk. A new cartridge was inserted and the same thing happened. The player was slipped out of its mounting bracket and placed on the bench.

In this model, the tape alignment screw is located at the bottom of the player. Adjustment of this plasticcoated screw did not remedy crosstalk on the last channel. We removed the top cover and checked the head adjustment.

Now we could actually see the trouble. A piece of tin foil wrapper from chewing gun was wedged under the head assembly.

Don't forget to inform the customer of possible theft of his tape player in an unlocked car. In some cities up to 200 stereo thefts a month are taking place at the present time.

When installing a new tape player, record the model and serial number and give it to the customer for safe keeping.

Refer to Chart I for common trouble symptoms and possible causes. -

Rebuild your own CRT's. Average cost $\mathrm{B} / \mathrm{W} \$ 1.50$-Color $\$ 8.50$ Easy to operate.
Requires only 4×8 feet of space.

Write or Call

LAKESIDE INDUSTRIES

5234 N. Clark St. Chicago, III. 60640 AC $312465-2881$

1967 ARTICLE INDEX

Antennas and Accessories
Antennas-Sans Bafflegab and Bushwa 9/67-58
Repairing Antenna Rotators 4/67-58
Selecting 2-way mobile and Base Station Antennas 1/67-43
Business
From Service To Sales-and-Service to more Sales and Service12/67-55
Good Service Promotes Steady Sales Growth 10/67-60
How to Upgrade Your Business in One Easy Step 11/67-66
Money Is For Advertising 11/67-62
Open Display Shop Boosts Service Image 12/67-58
Operating a Marine Electronics Dealership 1/67-50
Showmanship Builds Big-Ticket Sales 5/67-43
6/67-56
TV Sales Thrive on Good Service 10/67-62
Color TV
A Look at the 20X1C38 Zenith ColorChassis6/67-37
A Technician Looks at G-E's ‘Porta-Color"TV Receiver 3/67-55
A Technician Looks at G-E's 'Porta-Color' TV Receiver 4/67-53
A Technician Looks at G-E's 'Porta-Color' TV Receiver 5/67-59
A Technician Looks at Motorola's TS915 Chassis 9/67-43
A Technician Looks at Motorola's TS915Chassis1/67-48
A Thinking Technician's Approach to Chroma Circuit Problems 3/67-43
Common Color Problems 10/67-44
Replacing Flyback Transformers in Color Sets 1/67-54
Solving Color 'Blur' and 'Smear' Problems
Technical Tips For 'Razor Sharp' Color Pictures 12/67-44
Troubleshooting Color ADG Circuits 3/67-46Troubleshooting Color Video Amplifiers with a
Dual-Trace Scope Dual Tace Scope 7/67-39
Unique Test Instruments for Color TV Servicing 10/67-56
What's New in 1968 Color TV 10/67-39
Whar's New in 1968 TV Sets 11/67-44
Miscellaneous
Don't Forget The Heat Sink Compound 12/67-54
Protecting Electronic Circuits 6/67-48
Servicing Closed-Circuit TV Equipment 4/67-71
Servicing Garage Door Operators 9/67-48
The Apprentice and the Pro 6/67-45
The Apprentice and the Pro 8/67-59
Understanding Modern AGC Circuits 4/67-68
Understanding Modern AGC Circuits 5/67-48
Understanding Modern AGC Circuits 6/67-42
Understanding Modern AGC Circuits 7/67-47

8/67-43

Radio Communications

Semiconductor Technology

Installing and Servicing Solid-State Auto Tape
Players .. 12/67-39
Semiconductors From A to Z 1/67-58

Semiconductors From A to Z 2/67-41
Semiconductors From A to Z 3/67-59
Semiconductors From A to Z 4/67-63
Semiconductors From A to Z 5/67-55
Semiconductors From A to Z 6/67-51
Semiconductors From A to Z 7/67-54
Semiconductors From A to Z 8/67-54
Semiconductors From A to Z 9/67-53
Semiconductors From A to Z 10/67-50
Semiconductors From A to Z 11/67-55
Semiconductors From A to Z 12/67-48
Solid-State Audio Amplifiers 9/67-40
Solid-State Audio Amplifiers 11/67-52
Solid-State TV Servicing the Easy Way 8/67-46
Solving Horizontal and Vertical Solid-State TV
Problems ... $3 / 67-50$
The State of Solid-State 8/67-39
Working With Integrated Circuits 7/67-50

Stereo and Audio Equipment Servicing

Installing and Servicing Solid-State Auto Tape Players

12/67-39
Stereo Hi Fi and Today's Technician 9/67-37
Stereo Hi Fi Tone-Arms, Cartridges and

Tape Recorders, Tape Decks and Cartridge
Players ...10/67-47
Understanding Stereo Multiplex 2/67-46
Using Audio Test and Alignment Instruments
Using Audio Test and Alignment Instruments 5/67-51
Using Audio Test and Alignment Instruments 8/67-49

Test Instruments

Keep Your Test Instruments Up to Par 5/67-39
Troubleshooting Color Video Amplifiers with a
Dual-Trace Scope 7/67-39
Unique Test Instruments for Color TV
Servicing .. 10/67-58
Using Audio Test and Alignment Instruments
Using Audio Test and Alignment
Instruments
Using Audio Test and Alignment
Instruments .. 8/67-49

TV-Radio Servicing

A Thinking Technician's Approach to Chroma	
Circuit Problems	
Common Color Pr	0/67-44
Repairing Solid-State	$7 / 67-43$
Replacing Flyback Transformers Sets	67-54
Servicing Solid-State Receivers \qquad	67.50
Solid-State TV Servicing the Easy	67-46
Solving Horizontal and Vertical Problems in	
Troubleshooting Color	7-46
Troubleshooting Color Video Amplifiers with a Dual-Trace Scope	7-39
Unique Test Instruments for Color Servicing	10/67-58
Using Advanced Troubleshooting Techniques in Tricky AGC and Sync Circuits \qquad	2/67-37
orking with Integrated Circuits	0

$-\left({ }^{\text {News of the Noustry }}\right.$

Amphenol and Sangamo Plan Merger

The Boards of Directors of Amphenol Corp. and Sangamo Electric Co. have announced that a proposal to combine the two companies has been approved following meetings of the respective Boards of Directors.

The terms of the transaction reportedly call for the issuance of $1 / 2$ share of Sangamo common stock and $1 / 16$ share of a new $41 / 2 \%$ convertible preferred stock for each share of Amphenol common stock. The announcement indicated that upon surrender of the convertible preferred stock and payment of $\$ 50$ in cash, each preferred share will be convertible into three shares of Sangamo common stock.
The proposed transaction is subject to the execution of definitive legal agreements, tax rulings and approval by the shareholders of each company.
Sangamo, the surviving company, will change its corporate name to Amphenol-Sangamo, Inc.

Distributor Sales Figures
 Shifted Slightly This Year

Comparative distributor sales figures prepared by the Electronic Industries Assn.'s Marketing Service Dept. indicate the following for the first seven months of 1966 and 1967 :

Item	Year-to-Date 1966	Year-to-Date 1967
B/W TV sets	$4,491,065$	$3,264,921$
Color TV sets	$2,487,037$	$2,729,555$
Home table, clock and portable radios	$\mathbf{7 , 9 3 0 , 1 0 4}$	$\mathbf{7 , 0 1 4 , 3 7 1}$
Home FM radios	$\mathbf{2 , 1 6 4 , 4 8 2}$	$2,318,564$
Auto radios	$5,648,449$	$5,269,279$
Portable and table phonographs	$\mathbf{1 , 7 8 2 , 0 0 7}$	$\mathbf{1 , 8 9 1 , 2 0 2}$
Console phonographs	$\mathbf{1 , 0 5 1 , 3 4 3}$	$\mathbf{8 0 1 , 2 3 5}$

FACTS MAKE FEATURES:

1
Popular streamlined tester with long meter scales arranged for easy reading. Fuse protected.

2
Single control knob selects any of 32 rangesless chance of incorrect settings and burnouts.

3 Four resistance ranges-from. 1 ohm reads direct; $41 / 2$ ohm center scale; high 100 megohms.

Attention to detail makes the Triplett Model 630 V-O-M a life time investment. It has an outstanding ohm scale; four rangeslow readings .1 ohm, high 100 megs. Fuse affords extra protection to the resistors in the ohmmeter circuit, especially the XI setting, should too high a voltage be applied. Accuracy 2% DC to 1200 V . Heavy molded case.
†630A same as 830 plus $1 \frac{1}{2} \%$ accuracy and mifror scale only $\$ 88.00$
TRIPLETT ELECTRICEL INSTRUMENT COMPANY, BLUFFTON, OHIO

THE WORLD'S MOST COMPLETE LINE OF V-O-M'S AVAILABLE FROM YOUR TRIPLETT DISTRIBUTOR'S STOCK.

I/ NEWS

OF THE INDUSTRY

Perma-Power Appoints

Regional Sales Manager
Eugene O^{-}
Brien has been appointed regional sales manager for PermaPower. He will coordinate the company's sales activities and work with its sales representatives in northern

O'Brien California, Oregon. Washington, Nevada, Utah, Arizona, New Mexico, Colorado, Montana, Wyoming and Idaho.

Supreme Court will Decide FCC Authority over CATV

The question of whether or not the Federal Communications Commission has authority to regulate the community antenna TV industry has finally reached the Supreme Court.

Using a section of the communications act that gives it authority to reg-
ulate wire communications, the FCC in 1966 asserted jurisdiction over all CATV systems. Traditionally telephone and telegraph companies have been regulated by this section.

When originally asserting its new jurisdiction, the FCC indicated that it would need additional time to prepare permanent CATV regulations but that in the interim no CATV system in the nation's 100 largest cities could handle signals from additional out-of-town TV stations without prior FCC permission.

The FCC's authority and the interim rule have been challenged by suits filed by a number of CATV systems. The Supreme Court agreed to review a case brought by three San Diego area CATV systems.

TV Antennas Designed For Travel Trailers

The Finney Co. of Redford, Ohio, has developed two TV antenna kits for use on travel trailers and mobile homes. One reportedly consists of an all channel UHF / VHF / FM antenna mounted on a telescoping mast and a rotator mechanism that allows the antenna to be rotated from inside the vehicle. The manufacturer indicates that when traveling, the antenna is folded down, closed up and locked
in a travel position below the vehicle roof top.

The second model consists of an all channel UHF/VHF/FM antenna mounted to the vehicle on a wall mount. The antenna and top mast section of this model must be removed for travel, and the preassembled antenna elements reportedly snap closed for storage.

Warranty Returns of Philco ' p ' and ' Q ' Line Color-TV Horizontal Output Transformers

Engineering evaluation of a large percentage of horizontal output transformers returned in warranty has shown that those tested were good and had no defects. Technicians have been returning the transformers because of wax drippings which appear on the base of the transformers. The manufacturer indicates that these wax drippings are normal and are caused by heat generated by the transformer.

Perma-Power Co. Appoints Sales Rep.

Electronic Sales Corp. has been appointed to represent Perma-Power Co. in the Pacific Northwest for its TV service and audio equipment lines. The sales territory will cover Washington, Oregon and Alaska.

* Motorola will train you for this rewarding, elite profession \star Send for our free evaluation ExAM. Prove to yourself that you are ready to learn FM 2 -way radio servicing.
Opportunities in 2 -way radio servicing are virtually unlimited. - Just one of the hundreds of successful Motorola Service Stations writes, "we would be pleased to interview any graduate of your school that has received some training in 2 -way radio maintenance. We are an established firm, 10 years old, with a promise of expansion governed by our ability to obtain competent technicians." Get all the facts today. There is no obligation and no salesman will call.

MOTOROLA TRAINING INSTITUTE
4545 Wist Aygusta Blvd. Chitato 51, llitinois - Dapt. AEH549

\square Send me FREE entrance exam.

\square Send full detalls on Home Study Course on FM 2-way Radio
Send me details on how you can help me prepare for an FCC License.

Name

Occupation

Addross

City
ity
Zone__State
just 47 inches high for STATION WAGONS

FOLDING PLATFORM $151 / /^{\prime \prime} \times 241 / 2^{\prime \prime} 10 \mathrm{p}$. Snaps on or off. (Platform only) $\$ 11.95$

and PANEL PICK-UPS

Designed for TV. radio and appliance men who make deliveries by station wagon or panel truck . . . the short 47 inch length saves detaching the set for loading into the "wagon" or pick up. Tough, yet featherlight aluminum alloy frame has padded felt front, fast (30 second) web strap. ratchet fastener and two endless rubber belt step glides. New folding platform attachment, at left, saves your back handling large TV chassis or table models. Call your VEATS dealer or write direct today!
"Euerlast" cover and paos
YEATS semi fitted covers are made of tough water repellent fabric with adjustable web straps and soft scratchless white flannel liners. All shapes and sizes - Write

APPLIANCE DOLLY SALES COMPANY

H
 CATALOGS
 AND BULLETINS

High-Fidelity Equipment 400

A 20-page brochure covers a line of high-fidelity components including a variety of furniture component cabinets and speaker systems. Altec Lansing.

Motor Switches

401
Manual motor starting switches for single-speed, two-speed and reversing functions are described in a four-page bulletin. G-E.

Coaxial Cables

Coaxial cables engineered for community antenna TV, closed circuit TV, and FM, CB and amateur antenna transmission lines are described in an eight-page catalog. Alpha Wire.

Conductor Selector Chart
 403

A free slide-rule chart has been designed to provide a simple method of converting from standard copper wire gages to an equivalent of aluminum wire gage and/or strip conductor in width and thickness. It reportedly provides information automatically concerning cross-sectional area in square
inch, weight and equal electrical resistance of copper and aluminum wire and strips. Included is basic data for the design of electrical windings, also factors of weight, space and current carrying capacity. Permaluster.

Write-On Labels

404
A full-color bulletin lists 130 different stock preprinted, color-coded, write-on labels for a large variety of needs. It also refers to special labels that can be designed to include trademarks, symbols, colors, shapes and whatever wording is required. W.H. Brady.

Captive Hardware

405
An illustrated eight-page catalog describes a complete line of stainlesssteel captive hardware for soft or thin metal panels, parts or chassis. Listed are seven types of captive nuts and studs that reportedly will not pull, push or torque out after their press fit installation. Precision Metal.

CATV Cable

406
A complete line of transmission and drop line cable for community antenna TV applications is described in a two-color, four-page brochure. Performance charts and mechanical and electrical data are also included. Amphenol.

check the "Silencer" QUIETROLE
Check QUIETROLE . . . the
"Silencer" for noisy radio, TV. (black and white, color too) and instrument controls, that protects your reputation, guards your profits.
QUIETROLE, the quality Iu bricant-cleaner for over 20 years, is harmless to plastics and metals, is non-conductive, non-corrosive, nonflammable.... with zero effect on capacity and resistance.

For best results, specify QUIETROLE . Mark 11 for tuners Spray Pack for controls and switches Silitron for general use Available in Aerosol Can or Dropper Bottle
manufactured by

Why not sell the best

ZENITH TUBES built to the quality standards of Zenith original parts

"Royal Crest" Circuit Tubes

More than 875 tubes-a full line with the same quality as original Zenith equipment. Get Zenith tubes for greater dependability and finer performance.

Order all genuine Zenith replacement parts and accessories from your Zenith distributor.

TV Picture Tubes

For color TV, B\&W TV or special purposes. A complete Zenith line of more than 200 tubes built for greater reliability, longer life.

Zenith B\&W replacement picture tubes are made only from new parts and materials except for the glass envelope in some tubes which, prior to reuse, is inspected and tested to the same high standard as a new envelope. Some color picture tubes contain used material which, prior to reuse, is carefully inspected to meet Zenith's high quality standards.

| CATALOGS
 AND BULLETINS

Floor Conduit

407
Rubber over-the-floor conduit for protecting electrical cords, computer and telephone cables are described in an eight-page catalog. Also included are installation tips and painting suggestions. Ideas.

Nutdriver Set

A bulletin describes a compact, interchangeable, hollow-shaft nutdriver set that features a drilled handle. Included is an illustration that shows how a screwdriver blade can be passed through the drilled handle and hollow nutdriver shaft to speed and simplify the setting of combination locknut/slotted screw adjustments found on rheostats and similar controls. Xcelite.

SEMICONDUCTORS

continued from page 53
cillator circuit capacitance so that a 455 kHz difference exists between IF and oscillator frequencies.

The varicap manufacturer substituted its diode in place of the tuning capacitor in a portable AM
radio. Using tuning circuits similar to those shown in Fig. 12, the capacitances in the antenna and oscillator circuits vary with the applied voltage as indicated by the curves in Fig. 15.

Tests were made in accordance with IEEE Standard 186 before and after this receiver was converted to electronic tuning. The results of these tests are shown in Table I.

The curve in Fig. 15 indicates small capacitive changes as the bias voltage is varied between 7 and 10 v , and we noted that the last station at the higher-frequency end of the dial covered a much larger portion of the tuning dial than the other stations. Since the potentiometer rotates a greater number of degrees than the mechanical tuning capacitor, the stations were more widely spaced across the dial of the converted radio.

Electronic Technician's TekLAB has also converted one of a pair of AM portable radios (Fig. 13 and 14) for comparative studies. After the conversion was made, both radios could tune in all local stations, which in this city are spread over nearly the entire broadcast band. The reception sounded as clear on one receiver as on the other.

We found that the capacitors con-

Fig. 15 - The capacitance in the antenna and oscillator circuits vary with the varicap reverse-bias voltage. Courtesy of Molorola.
nected in series with the varicaps had to be ceramic types since slight capacitor leakage detuned the radio, and sometimes a pair of stations would be alternately tuned "in" and "out" without moving the dial. It was also necessary to use a separate battery for the tuning bias supply since varying audio signals could load down a common battery and provide distortion by changing the tuning. A voltage-regulator circuit could have been included to eliminate this problem and permit single battery operation.

The converted tuning circuit did require a little additional space, and even more space would have been required if a voltage regulation circuit was included. There was no saving in component cost when constructing the varicap circuit. Then why a varicap tuning circuit?

Varicap tuning circuits permit the construction of all electronic automatic-search-tuning circuits, eliminating the need for complicated mechanical automatic-search-tuning systems that require relays, motors or solenoids. An oscillator step-counter circuit is used in place of the mechanical components. In this circuit, an oscillator produces a signal that slowly changes the varicap bias in steps so small they seem nearly continuous. These steps in bias potential continue to change the varicap capacitance until a station is received and its audio signal blocks the oscillator circuit. The step-count circuit then maintains a constant potential across the varicap, keeping the receiver tuned to the station received. When reactivated, the varicap bias is again changed by the oscillator step-count circuit until another station is received.

Remote tuning is another advantage of varicap tuned circuits. A varicap tuned receiver can be con-

For 1 A Antennas UD Specify mosLey

(1) DEMON

A short mobile antenno measuring $17^{\prime \prime}$; long on performance. Center looded. Stainless steel whip. SWR 1.5/1 or better. Serew on and off. Antenno complete with coox, chrome plated spring ond hdw. Weight 1.5 lbs. MODEL DA-27
(2) DEPUTY

Similor to DA-27, but base looded and longer. Meosures $433^{\prime \prime}$.
MODEL DP-27

(3) CADET TWINS

About the most versatile CB antenna on the market todoy. Suction cup mount for temporary use on ears, trailers, boats etc. Use on all smooth surfaces . . wood and fiberglass ineluded. No ground. Length 3^{\prime}. Center looded. No hole drilling. Installs in seconds. W. 1 lb. MODEL SUC-1
(4) PER-1

A permanent version of the SUC-I.
MODEL PER-1

(5) SILVER DOLPHIN

Performonce proven morine ontenno, dependable even in out-of-the-way coves! Height $8^{\prime} 5^{\prime \prime}$. Looding through solt-resistant, weather-proof iransformer. SWR 1.5/1 over 23 channels. No ground required. Fold over bose hinge. Weight 3.4 lbs. Accessories available for angle mounting and for elamping ontenna to wjndow ledge.

MODE L D-27
 STACK'IT

To nearly double the effective power of the transmitter, stacking beams is recommended. Resulis in extra reliable point-fo-point communications. Mosley Stack'it beam kits include everything needed for the stacking job. From two well-known Mosley performonce proven beams, coax yoke, hordware, guy rope, boom, to concise assembly insiructions. Feed with 52 ohm coox (not ineluded). 80 MPH wind survivol. Average ossembled weight 42 pounds. Three models avoilable: MODEL SKT-3
MODEL SKT-4 MODEL SKT-5

DEVANT ' 1 '

A performance proven vertical ontenna popular with CB'ers. Gain 3.4 db . compared to quarter wave ground plane or 5.9 db . over isopropic source. Rugged and built to last. Aluminum ends topered to reduce wind.load and vibrations cousing metal fatigue. So lightweight... . . mount it yourself! Exelusive 'Induct-O-Match' matching system. Height $19^{\circ} 71 / 2^{\prime \prime}$. SWR $1.5 / 1$ ar better. Low angle radiation. Lightning protected. Wind survival 80 MPH. Feed with 52 ohm coax. Assembled wt. 7.5 lbs . MODEL Devant 1.

Write for FREE Catalog . . . Dept. 139 for more details circle 118 on postcard

These new precision built power supplies are engineered to give extraordinary output per dollar . . . powerful new additions to the full eLECTRO line which includes a wide range of quality power supplies to meet your needs at sensible cost.

Send for complete specifications on these and other electro power supplies.

REGULATED Hi-Power PSR-500 SERIES 500 Watts

Continuously Variable Output

Delivers 500 watts of DC power continuously with output voltage regulated to less than 1% for both line and load changes. Maximum ripple less than 1%. All solid-state circuitry. Uses silicon rectifiers and SCR regulation. Fused input, circuit-breaker output protection.
Three models are available with output voltage ranges: $2-32 \mathrm{v}, 2-55 \mathrm{v}$, and $2-125 \mathrm{v}$.

EXTRA
 Hi-Power PS-1000 SERIES 1000 Watts

CONTINUOUSLY VARIABLE Well filtered for Low Ripple

For continuous heavy-duty. Continuously variable output, 0-32 VDC for loads to 30 amps . Ripple: less than 0.75% at max. current. Filter circuit uses chokes and capacitors. Variable autoformer for smooth control. Bridge-type silicon rectifiers. Also available in an 0-55 VDC at 20 amps . model.

HIGH CURRENT PS-50, PS-30

 12 Volts ADJUSTABLE
Low Ripple at Max. Current

These new general purpose power supplies are heavy duty adjustable 12 -volt units for servicing auto, aircraft and marine communications equipment. Useful in industrial and educational labs, thermo-electric cooling power source, etc. Maximum ripple is 1% at maximum current. Output voltage adjustment is 8 -position tap switch PS-50 delivers up to 50 amps . continuously; PS-30 rated up to 30 amps .

Sold through Ieading Electronic Distributors

틑 CT

POWER SUPPLIES

ELECTAD PRODUCTS LABORATORIES, INC. 6125-V Howard Street. Chicago, Illinois 60648 - 312 /647-8744 for more details circle 110 on postcard

THERE'S ONLY ONE COLOR LUBE ${ }^{\circ}$

That's

CHEMTRONICS INSIST ON IT! ACCEPT NO IMITATIONS

NON-DRIFT COLOR TV TUNER CLEANER

TEST AFTER TEST HAS PROVEN COLOR LUBE

- To clean better
- To be safe on plastics used in TV sets
- Non-flammable
- To cause no drifting

Another 7 inst SUPER

FROST AID
Cools Faster - Leaves No Liquid Residue SUPER FROSTAID is a faster circuit freezer designed to circuit ireezer designed to
locate intermittent compon ents. wlthout leaving a liauid residue.
for more details circle 107 on postcard
structed with a single potentiometer to control several RF tuned circuits, eliminating the need for superheterodyne circuits with IF amplifiers. Antenna lead signal loss can be reduced by locating the receiver next to the antenna, on the roof of a building or in the trunk of a car and tuning it remotely with a potentiometer.

The next article will describe photo-emissive and photosensitive semiconductors and how they are used in modern electronic equipment. ■

ADVERTISERS' INDEX

Amperex Electronic Corp.3rd Cover, 68
Astatic Corp. 28
B\&K Div., Dynascan Corp. 68
Castle TV Tuner Service 68
Channel Master Corp. 22-23
Chemtronics, Inc. 76
Cleveland Institute of Electronics 65, 69
Electro Products Laboratories, Inc. 75
Electro-Voice, Inc. ... 76
Finney Co. ... 33
GC Electronics Co. 26
General Electric Co. 38
International Crystal Mfg. Co. 24
Jerrold Electronics Corp. 2nd Cover
Lakeside Industries ... 69
Miller Co., J.W. ... 67
Mosley Electronics, Inc. 75
Motorola Training Institute 72
Precision Apparatus Div., Dynascan Corp. . 67
Quietrole Co. ... 73
Radio Corp. of America
RCA Electronic
Components \& Devices 4th Cover
RCA Institutes, Inc. 37
Sencore, Inc. 20, 34, 63

Simpson Electric Co. 29
Sprague Products Co 27
Sylvania Electric Products, Inc. 30.31
Triplett Electrical Instrument Co. ,............. 71
Tuner Service Corp. 19
Weller Electric Corp. 66
Winegard Co. .. 60.61
Yeats Appliance Doilly Sales Co. 72
Zenith Sales Corp. 73

349
PHONO CARTRIDESS!

PHONO NEEDLES!

NEW! PHONO AND TAPP RECOODER WHEES, DRVES, BELS!
(8) That's how many models are listed in the current ElectroVoice phono needle and cartridge catalogs. With more being added as you need them.

No other single source offers such variety-all built to the highest industry standards. All are exact replacements that install quickly, to give your customers "like new" performance-or better!
Electro-Voice models are listed in your Photofact files, or ask your E-V distributor for free copies of the E-V catalogs. It's your guarantee of complete customer satisfaction!
ELECTRO-VOICE, INC., Dept. 1277 T 663 Cecil Street, Buchanan, Michigan 49107

One out of every five

 professional servicemen has switched to Amperex TV replacement tubesIt takes a lot of quality to change the buying habits of 20% of the most knowledgeable technicians in the business. These servicemen are following the pattern set by the leading TV manufacturers, who are designing more and more of their quality lines around tubes originated by Amperex. The Amperex line of popular types is expanding all the time. Look for the green and yellow cartons at your distributor's or write: Amperex Électronic Corp., Hicksville, L. I., N.Y. 11802.

TOMORROW'S THINKING IN TOOAY'S PRODUCTS

RCA'S NEW FIELD SERVICE GUIDE, ERT-200 helps you make all adjustments on all RCA color sets from 1955 to 1966 that can be performed in the home ... including step-by-step procedure for replacing a color picture tube.

Three part index lets you look up the set you are working on by model number, name or chassis number. You'll find the ERT-200 Field Service Guide indispensable. There's nothing like it on house calls for RCA color sets.

WHAT THIS GUIDE CONTAINS:

- Schematics on all RCA color sets from 1955 to 1966
- Field service adjustments (AGC, linearity, centering, etc.)
- Convergence, purity and black and white setup adjustments
- Parts lists
- Wave forms keyed to test points for majority of chassis
- Top and rear chassis views
- Photos of typical receivers
- Index of models from CTC2 through CTC20
- Separate section on tuner schematics
- Separate section on remote tuner schematics

[^1]RCA Electronic Components and Devices, Harrison, N.J. 07029

[^0]: Representatives in Principal Cities ... See Telephone Yellow Pages

[^1]: See your RCA Tube Distributor today and arrange to get your copy.

