ELECTRONIC TECHNICIAN WORLD'S LARGEST ELECTRONIC TRADE CIRCULATION

 $9 p$

DECEMBER 1964

"Our Yellow Pages ad brought us a $\$ 250$ a month commercial account," says James F. Rorie, AAA Appliance \&. Electric Service, Charlotte, North Carolina. "It's the only advertising we do... and we've had great success with it. Fact is, the response to our Yellow Pages advertising has been overwhelming. People see our ad and remember us. We can trace a good portion of our business increase to Yellow Pages; it's largely responsible for the good business we enjoy today - and that's the truth of it."

t961 saquəəəg
NVIDINHDEL OINOHLDETE
N

$\begin{array}{ll}\text { BALLOONS（1）（2）．ETC．，} & \text { USE LOW－CAPACITY } \\ \text { SHOWN ON SCHEMATIC } & \text { PROBE WHEN OBSERVNG }\end{array}$

$\begin{array}{ll}\text { SHOWN ON SCHEMATIC } & \text { PROEE WHEN OBSERVNG } \\ \text { INDICATE POINTS OF } & \text { WAVEFORMS } \\ \text { OBSERVATION OF THE }\end{array}$ OQSERVATION OF THE
WAVEFORMS．

ELECTRONIC TECHNICIAN

子品呙

 DUMONT

SEMS SETS

 （－）

Sarkes Tarzian, Inc., largest manufacturer of TV and FM tuners, maintains two completely-equipped Service Centers to serve YOU. Both centers are staffed by well-trained technicians in this specialized field and are assisted by engineering personnel to assure you of FAST, DEPENDABLE service.
() Tarzian-made tuners-identified by this stampingreceived one day will be repaired and shipped out the next. A little more time may be required on other makes. Every channel is checked and re-aligned per manufacturer's specifications, not just the channels which might exist in any given area.
You get a 12-month guarantee against defective workmanship and parts failure due to normal usuage. Cost to you is only $\$ 9.50$ and $\$ 15$ for UV combinations, including all labor and parts except tubes. No additional costs. No hidden charges. All tuners repaired on approved, open accounts. You pay shipping. Replacements on tuners beyond practical repair are available at low cost.

When inquiring about service on other than Tarzian-made tuners, always send TV make, chassis and Model number. Check with your local distributor for Sarkes Tarzian replacement tuners, parts, or repair service. Or, use the address nearest you for fast factory repair service.

SARKES TARZIAN, INC.

 TUNER SERVICE DIVISIONSee your distributor, or use the address nearest you

537 South Walnut St., Bloomington, Indiana Tel: 332-6055

10654 Magnolia Blvd., North Hollywood, Calif. Tel: 769-2720

Never before couplers like these! New Winegard Super Color Couplers the 2 most efficient TV-FM 2 and 4 set Couplers ever built!

- Constant Isolation between sets...22db minimum across all channels (2.13 and FM)
- Lowest Loss of Any Coupler . . . - 3.2db maximum
- Best Impedance Match from Antenna to Coupler and Set to Coupler
- Allow Best Possible Reception on Color or Black \& White Sets

There is a wide difference in the performance of TV-FM couplers. And now, with the new Winegard 2 -set and 4 -set Super Color Couplers, there is a greater difference than ever.

For example, no resistors are used for isolation of outputs. No resonant coils are used in the circuit. Instead. our research labs have developed an entirely new coupler circuit using three high, frequency, ferrite core transformers in a unique "Balanced Bridge" circuit.

What does this do to performance? Well, for one thing, the 2 -set Super Coupler provides an isolation figure of 22 db minimum across all channels (2-13 and FM). Until now, the minimum isolation between sets with 2 -set couplers was about 10 db or 3 times, and was not constant on all channels. With the new Super Color Couplers. it's 12.8 times-four times better than the previous best. In fact, isolation is so good. you can put a dead short across one set of output terminals without affecting the set connected to other output.

LOSS is another key factor in measuring the performance of a coupler. The lowest possible theoretical loss in a 2 -set coupler is -3db but no coupler on the market had ever approached this ideal. Now, with Winegard's new 2-set Super Coupler (CC200), the MAXIMUM loss is -3.2 , nearly perfect and by far the best on the market.

One more very important factor-IMPEDANCE. There are two impedance matches to consider.
"Forward" from coupler to antenna,
 and "Backward" from set to coupler. A perfect coupler would have a VSWR of 1.1:1 on both matches. Some couplers have good match one way but, until now, no coupler ever had a good match both ways. Winegard Super Couplers have a near perfect VSWR of 1.2:1 both forward and backward... and on all channels. This far exceeds other couplers on the market.

What does all this mean to your customers? Most imporiant, it means that the Super Coupler will not spoil picture resolution by addling smear or halos. The Super Coupler is especiallv recommended for color insfallations where preservation of picture quality is even more critical than on black \& white.
What besides performance? Construction and price. The new Winegard Super Color Couplers have a unique 5 -way mount, sleek new weather-proof coupler housing, pre-notched transmission line outlets. $1 /{ }^{\prime \prime}$ slotted Hex terminal screws and no-strip terminal connections .. the price is only $\$ 4.50$ for the CC200 which includes the special inside-outside mount.

Try the new Winegard Super Couplers now and see the difference. Ask your distrihutor for a 6 pack dispenser. Try them on your next six installations. If they aren't the finest you've ever used. take them back for a full refund.
CC200 - For VHF and FM Specifications as above.
List $\$ 4.50$ includes 5 way mounting bracket and strap.
CC400 - For VHF, UHF and FM (replaces LT-43).
Max. loss -6.23 DB (A theoretical loss for perfect 4 way coupler would be -6.0DB); Isolation 12DB min; Response $\pm 1 / 4 \mathrm{DB}$ per 6MC; VSWR: Input 1.15:1; Output 1.4:1 Max; Bandpass 20MC. 1000 MC ; Impedance: Input 300 ohm , Output 300 ohm . List $\$ 5.50$ including 5 -way mount and strap.

Winegard's Famous CC23 Color Couplet
 Finest VHF/FM color coupler on the market next to our new Super Color Couplers. List Price $\$ 3.95$.

Winegard All New CVU-2 UHF-VHF

 Coupler Efficiently transfers UHF and VHF signals from antennas to sets. Serves as coupler or splitter for channels 2.83 (UHF-VHF). List $\$ 3.95$.| | UHF | VHF/FM |
| :--- | :---: | :---: |
| Splitter loss | 3.5 db | 4.3 db |
| Isolation | 20 db | 12 db |
| VSWR | $1.4: 1$ | $2: 1$ |

NEW COUPLER
6 PACK DISPENSER

COVER:

Color TV set sales continue to rise throughout the nation in thousands of small, medium and large-operation sales-service organizations.

FEATURES:

Basic Business Practices For Independent Service-Dealers
Marvin Tepper tells why many TV-radio service-dealers fail to make the grade in business
What You'll Find in 1965 TV Sets Part II 41
Some innovations in new sets that improve operation and simplify servicing
What's 'Public Relations?' 45This arficle reveals a sure way to boost your business
Improving Color TV Reception 46
Lon Cantor shows why you have to install better antennasfor color TV reception
Your Records Can Save Your Business 49How to use your books to monitor your operations andavoid financial difficulties
Visual Symptoms Will Tell You Part I 51
Jay Shane reveals importance of visual symtoms indiagnosing subject
Choosing and Using Audio Oscillators Part III 53Art Walters continues his in-depth article on thisimportant subject
1964 Article Index 62
An alphabetically arranged listing of
TRONIC TECHNICIAN during 1964

Letters to the Editor … 22
Editors' Memo .. 26
Sync on Business 30
Technical Digest
Shop Hints 58
'Tough Dogs' 60
New Products75
Advertisers Index 82

ADMIRAL: TV Chassis Dll, 1D11, 2D11, 3D11, and 4D11

AIRLINE: TV Model WG-2785A
DUMONT: Color TV Chassis 120699 and 120722

GENERAL ELECTRIC: TV Chassis AA

MAGNAVOX: TV Chassis 47 Series
ZENITH: TV Chassis 14 M20

"A professional quality TV system priced for the home?"

"I understand that professional TV systems use 75 ohm coax."
"That's right. Because coax minimizes interference and ghosting.'

"How's that?"

"It's shielded-doesn't pick up noise. Also, it's unaffected by changing weather conditions.
With 300 ohm twinlead, moisture can play
havoc with the signal."
"So, that's it."
"What's more, you can feed coax thru all types of surfaces, even near metal, without interfering with performance."
"l'd like to have a system with TV outlets all over the house - bedrooms, kitchen and patio."
"The new two-transistor Blonder-Tongue Vamp 2-75 is easy to install and it can deliver sharp, clear pictures to as many as 8 TV outlets."
"Sounds real professional. What about the cost?" "The rugged, weatherproof amplifier with remote power supply lists for only $\$ 44.95$."
"Il'm on my way to my dealer."

A Well-Worn 'Tool'

I have been a subscriber to your publication for some time now and consider it as valuable as any of my tools or test equipment I have been trying, without success, to obtain an instruction book for a Solar capacitor analyzer, EXAM-ETER Model CE. I would be willing to purchase, or borrow, a copy. Would return the book.

Sy Sheard
Ottawa, Ont., Canada

Wants More On EOs

I want to compliment Mr. Joe Hayes on the "Electronic Organ Principles" article which appeared in your October 1964 issue. The mention of forthcoming articles on this subject sounds interesting and profitable.

James Jirovsky
Hooper, Nebraska

Likes Realistic Art

The two technicians your artist invented for the September 1964 Electronic Technician cover look like first class amateurs. The one climbing the roof ladder looks like he's scared to death crawling on all-fours. The ladder leading to the roof is too short and too far away from the roof ladder. And the antenna attached to the chimney must have been installed by a do-it-yourselfer without any knowledge of safety factors and I have yet to see an antenna mast bend in three or four places like the one in the picture. Outside of that, I think ET is the best magazine on the market. I compliment you on publishing such an educational and informative magazine.

Nick Rosco
Farrell, Pa.

- That's a 20-ga mast that got worked over by an East Coast hurricane.-Ed.

Technician Certification

I am seriously interested in certification for engineering technicians . . . Please send full information . . I want to thank Electronic Technician for the many fine

bother with makeshift twist-prong capacitor replacements?

When you substitute capacitor sizes and ratings, you leave yourself wide open for criticism of your work . . you risk your reputation . . . you stand to lose customers. It just doesn't pay to use makeshifts when it's so easy to get the exact replacement from your Sprague distributor!

Get the right SIZE, right RATING every time

 with improved

[^0]GET YOUR COPY of Sprague's comprehensive Electrolytic Capacitor Replacement Manual K-107 from your Sprague Distributor, or write Sprague Products Co., 65 Marshall St., North Adams, Massachusetts.

SpRague
the mark of reliability

SO SMALL you can hold it like a pencil, guide it just as easily.

SO LIGHT IN WEIGHT you can use if for hours without tiring.

SO EFFICIENT it does the work of irons having much higher wattage.

SO COOL AROUND THE HANDLE it will never overheat your hand.

SO RUGGED it's unbeatable for long life and dependable performance.

SO LOW IN COST you can't afford to be without it.

Weller

"Pencil" Soldering Iron

A 25-watt, 115-volt iron that's ideal for miniature-type soldering. Complete with tip and cord set. Screwdriver-shaped tips available in three sizes. Model W-PS. $\mathbf{\$ 5 . 2 0}$ list. Buy Weller "Pencil" Soldering Irons at your Electronic Parts Distributor.
WELLER ELECTRIC CORP., 601 Stone's Crossing Rd., Easton, Pa. . . . for more details circle 40 on post card
articles and to say you deserve a lot of credit for carrying one like this . .

William G. Porter
North Warren, Pa.
At this writing we have received more than 600 letters in response to this article and they are still coming in! - Ed.

I have been a TV service technician for 10 years and am interested in engineering technician certification
W. W. Adkison

Yale, Okla.

I read your article on Certification of Engineering Technicians and like the idea very much . . . Since retiring from the Navy I've worked as an electronics technician in the missile field ...

Frank S. Thomas
So. Daytona, Fla.

I enjoy Electronic Technician Magazine very much ... Please send further information about engineering technician certification . . .

Kenneth Blauvelt
Erie, Penn.
Please send me more information on certifying engineering technicians. I am a registered professional engineer . . . and believe some of the men here could qualify . . .
J. L. Oberholzer, supt. Relay \& Communications Div. Honolulu, Hawaii

We Scooped 'Em!

You scooped the entire TV-radio magazine field with your "Compactrons - Condensed Specifications" in the May 1964 edition. Congratulations and thanks for some useful information. I have been a subscriber since about 1945, when ET was know as "Retailing."

Horace D. Westbrooks
Griffin, Ga.

Sylvania's new EUROPIUM RED.
New COLOR BRIGHT 85 picture tube brings more natural color to television and increases monochrome brightness 43\%.*

The startling news in the television industry is Sylvania's new picture tube, and its new, truer red phosphor.

EUROPIUM RED, developed at GT\&E Laboratories, is the brightest red known to the industry. And, to match it, now the full brightness of blue and green is used. The result is a color picture tube that gives the entire television industry a boost.

Because the COLOR BRIGHT 85 tube is really bright, dealers can demonstrate color TV effectively in normally lighted showrooms. As the set's brightness is adjusted, the colors remain true - not shifting to unnatural tones in the highlights of the picture

Another thing, black and white performance is far better than you've ever seen before in a color tube. Be-
sides the increased brightness, there's improved contrast in a sharp, vivid picture.

The new, exciting COLOR BRIGHT 85 picture tube is a product plus from Sylvania for the entire color television industry, and particularly for dealers. In color, as in black and white, you know it's good business to handle the Sylvania line.

How to save time, increase profit with Admiral antennas!

Simplified for easier installation ... priced for bigger profits! All Admiral antenna kits are designed to help you increase outdoor antenna sales and installations. New "AllSnap" assembly overcomes customer complaints of slow installation and high cost.

Each kit is prepacked in its own carton with all the necessary hardware. There's nothing more to buy! No need to have extra hardware lying around your shop-or in your service vehicle.

You can sell every antenna need with conical, in-line, yagi, uhf, and new parabolic styles. Many are available with gold anodizing for custom installations.

And the remarkable Admiral price gives you bigger profits from the expanding antenna market.

Call your Admiral Distributor today . . . start saving installation time, pocketing new profits tomorrow.

Be wise . . . standardize on

AdmiraI.

"ALL-SNAP" ASSEMBLY ANTENNAS

Always Precision Crafted Quality

Through the Looking Glass

We recently took a long look at Electronic Technician readers through a reader inquiry. Four thousand questionnaires were mailed to subscribers throughout the country. The giant six-page folder had more than 80 questions.

What do you think this confidential "revealer" told us after the last data processor button was pushed?

Among other important things, it shows that you are loyal to proven brand name products. And other information you gave indicates that you strongly influence the millions who buy TVs, radios and Hi Fi equipment; audio communications, regular 2-way, CB and marine clectronics equipment.

We have said for years that your recommendation is a prime factor influencing the ups and downs of various consumer product sales figures.

Your answers contained in previous questionnaires, your thousands of frank letters about everything from technician licensing to associations to printed-circuit and handwired TVs have revealed your independent views.

You are servicing close to $65,-$ $000,000 \mathrm{TV}$ sets - B/W and color; 200 million radios - portable, home and auto; other millions of Hi Fi sets - packages and components - including 39 million phonographs; more millions of twoway communications radios - including over two million citizens band transceivers.

We feel certain that the mass of consumer electronics owners buyers of replacements and additional equipment - will come to you in even greater numbers in 1965 to ask for your technical help, advice and recommendations.

We know that you can and will continue, as you have in the past, to serve these customers fairly and with technical skills you have accumulated after many years of study and experience. And we also know that you can use your powerful influence to make your world a better and more pleasant place to live.

designed and

produced to the

 highest standard of excellence... NORTRONICSlaminated core, all-metal face heads are now available for more than 500 different tape recorders! Nortronics complete replacement line includes:

miniature heads for use with compact audio-visual equipment

record, play and erase heads for use with home and professional tape recorders

multi-channel heads for use with video tape machines

Find out how you can increase your sales and service business! Write for your FREE copy of Nortronics Tape Head Replacement Guide.

Rortronics:

8133 Tenth Ave. N., Minnneapolis, Minn. 55427

 Tips for TechniciansMallory Distributor Products Company A division of P. R. Mallory \& Co. Inc. Indianapolis, Indiana 46206

New Kind of Zener Diode

Typical shunt overvoltage protection circuit using zener diodes. Output is controlled between V_{1} and V_{2}.

A zener diode, as you're probably aware, is a special kind of semiconductor which has excellent voltage regulating characteristics. It's the solid-state successor to the gas discharge tube. It acts like a rectifier diode, blocking current in the reverse direction, until the "zener voltage" is reached -then it starts to conduct with a capital C . The zener diode can carry appreciable current continuously. So this makes it a fine regulating device. You can use it in power supplies where you need highly accurate output. Or you can use it in clipper or clamper circuits, by biasing the diode negative.

The big news in zener diodes is that you can now get them from Mallory at a price which makes them practical for service work, experimentation, or commercial circuitry. The news-maker is the new Mallory Type ZA molded-case diode. Its electrical properties and reliability record are comparable to those of military grade units. In fact, we use the same silicon cell in the ZA as in the zener diodes we make for military requirements. But the price is only about half that of hermetically sealed diodes.

The ZA is rated 1 watt at $25^{\circ} \mathrm{C}$. If you install it in a hot spot, you can use it at ambients up to $100^{\circ} \mathrm{C}$, derating linearly to 0.5 watt. Voltage ratings go from 6.8 to 200 volts, in small increments so that you can get exactly the regulating voltage you need. Standard tolerances are $20 \%, 10 \%$ and 5%.

You'll like the cold-case design of the ZA. No need for insulating sleeves when you squeeze it into tight layouts. It's so small-only $3 / 8^{\prime \prime}$ long by $0.220^{\prime \prime}$ in diameter-that it fits practically anywhere.

Your Mallory distributor has the Type ZA in a range of ratings. He also stocks Mallory silicon rectifiers. . . including handy packaged doubler, bridge and center-tap circuits. See him soon!

Do you realize that a high percentage of converters being sold today don't meet minimum F.C.C. requirements? It's a fact.
It's also a fact that Standard Kollsman converters fall well within F.C.C. minimum requirements-and are among the few which do. This is one reason why we're the number one seller in Los Angeles, Chicago, Boston, or wherever UHF is on the air.
Here's how to convert 45 minutes into solid profit. Install a Standard Kollsman Transistor UHF Converter. That's all the time it takes. It's the built-in, all-channel converter that gives any set a sought after custom look. And, only Standard Kollsman gives a full year warranty. Best performance. Fits all consoles, table models, and most portables. Compact size: $51 / 2^{\prime \prime}$ long, $111 / 6^{\prime \prime}$ wide, $41 / 2^{\prime \prime}$ high; weight: $11 / 4 \mathrm{lbs}$. Easy tuning high-ratio ball bearing drive. Service.free tuning element. For both series or parallel filament sets. Quick and easy way to make TV trade-in's saleable.
ORDER YOUR UCT-051 KITS TODAY

WORLD'S LARGEST MANUFACTURER OF TELEVISION TUNERS

$$
\begin{aligned}
& \text { X } \\
& \text { Standard Kollsman }
\end{aligned}
$$

.-. for more details circle 38 on post card

The growing need for electronic technicians has prompted Pratt Institute's School of Continuing Professional Studies to inaugurate a special program in Electronics Technology. A total of four courses will be given over a period of two years, one each semester. Further information may be obtained by contacting Edward D. Shanken, Assistant Dean, School of Continuing Professional Studies, Pratt Institute, Brooklyn, New York City 11205.

Precision instrument calibration can now be studied at the Los Angeles Trade-Technical College. A new two-year day school training program covers the subject. Students will learn to calibrate, repair, adjust and clean instruments.

Glo-Bar thermistor replacements are made by GC Electronics for Magnavox, RCA and Zenith color sets. The GC thermistor part is No. 25-908-S, at your regular parts distributor.

A transistorized stereo adapter by Delco can be plugged into the 1965 Chevrolet AM/FM radios with no modification to the radio receiver. Adapters can be installed either as a factory option or later by a service-dealer.

New indoor TV antennas for VHF and UHF are announced by RCA. Called "Stratoscope," they feature multi-position selector switches for "juggling" ghosts and interference.

A tape recorder service manual for the Viking model 88 is now available on request from the factory at a cost of $\$ 1$.

What TV viewers think of telecast programs was the theme of a contest sponsored by "tinyvision" TV set-maker, Sony. Six nubin-sized sets were given away

Full-Line Merchandiser. Only $11 / z^{\prime \prime}$ wide

Give'em an inch...

Counter space is money. That's why these RCA Radio Battery Counter Merchandisers are designed to pack maximum selling power into a few inches.
With RCA Batteries you have the brand name people associate with radio . . . a name that's immediately recognized and respected by the buying public. It's the brand that's nationally advertised over network TV on Walt Disney's "Wonderful World of Color" to over 30 million viewers.*
Remember - the radio battery market is big. . . over 65 million transistor radios now in use. And YOU can capitalize on it! Improve your profit picture today - with a modest stocking order of RCA Radio Batteries.
Call your Authorized RCA Battery Distributor. Or contact: RCA Electronic Components and Devices, Harrison, N. J.

New stick-on wiring system eliminates mechanical fasteners

New 'Scotchflex" Brand Flat Cable System lets you install low-voltage hookups anywhere in seconds. Applies like tape to tile, concrete, brick, paneling, any surface. No stripping necessary . . . sharp " U " shaped prongs in the connectors pierce the insulation and establish firm contact with each of the round wire conductors. "Scotchflex" Cable saves installation time and provides better looking wiring on intercoms, call systems, hi-fi, and other low voltage systems. For details, write: 3M Co., St. Paul, Minn. 55119.

3m
 Electrical Products Division
 minnesdta mining e manufacturing co.

"SCOTCHFLEX" is A REGISTERED TRADEMARK OF 3 M CO.

- for more details circle 30 on post card

Me... ? Rebuild Color Tubes? ? ? Why Nat!

Windsor Equipment Handles Color \& Bond-ed-Face As Well As Black-and-White Tubes.

So What?

Rebuilding with Windsor is a QUALITY PROCESS . . . and PROFITABLE!!!
Rebuild Color Tubes for a Cost of $\$ 11.75$ each
... You Sell them for???
Windsor Equipment
pays for itself in a few months.

Financing Available
Free Training at our Plant

Write for our Booklef "The Open Door to TV Profits" WINDSOR ELECTRONICS, INC.

Equipment Division
999 N. Main St., Glen Ellyn, Illinois

H(sync on business ${ }^{n}$

free to writers of the best letters. More than 10,000 viewers expressed opinions. Most viewers complained about loud commercials, summer reruns and violence. News, sports and not-too-old movies ranked high in viewers' favor.

A hand cleaner, called "Wilclean," can be used effectively with or without water. Container fits in the caddy for hand cleaning after doing antenna work and eliminates bothering the housewife when going indoors to adjust set. Must be easy on the hands because it is said to contain both lanolin and hexachlorophene. At your distributor.

A dealer-aid promotion features full-page advertising with dealer listing in local UHF markets. Also makes available free brochures, mail pieces, window streamers, complete UHF technical guides, etc. Called "DAD" (Dealer Aid Division), it's sponsored by Gavin Instruments.

Automatic telephone answering has taken another step into the Space Age. Outercom Electronics, makers of "outercall" automatic answering phones, have added

"Outerkey," a tiny device that makes your automatic phone "spill" its messages when you call in at a distance from another phone.

A phonograph needle merchandiser features five popular stereo sapphires on an attractive point-ofsale counter card. It's by Jensen Industries and at your jobber.

Hi Fi information kits are available to Sherwood Hi Fi dealers for promoting "first-equipment" sales or for experienced audiophile up-grading sales. Said to be conservatively valued at $\$ 1$, kits are available from Sherwood at 25%.

WESTINGHOUSE

Early production of the 12 in . portable (chassis V-2478) may show a 600 kc beat pattern on a number of channels if the 2 nd IF tube (4EJ7) is replaced. To correct this, an RF choke, Westinghouse number $230 \mathrm{~V} 065 \mathrm{H}-01$, should be added between pin 5 of the 4 EH 7 and pin 4 of the 4 EJ 7 tubes. This change can be made easily from the top of the board by cutting the 2 in . blue filament wire between the two tubes and soldering the RF choke in its place.

Chassis with a choke already added can be identified by a small red mark on the bottom of the chassis, on the right side front. The back cover must be removed to locate the identification mark.

If reccivers show the $6-\mathrm{kc}$ beat, check for the choke. If none is present, add the choke as described.

RCA

The vertical circuit in this chassis provides a stabilized picture size by using a VDR in the grid circuit of the vertical output tube. The values of

R532 and R504 are different from those used in prior circuitry. These changes result in improved vertical synchronization and optimize the lock-in characteristics of the color chassis.

ZENITH

Two corrector magnets are used in all 23 in. models to obtain straight, sharply focused sweep lines across the face of the CRT. The magnets are mounted on the deflection coil support bracket. Adjustment is made by bending the flexible arms sideways and up and down. Correct adjustment has been made at the factory and readjustment should not be required unless the brackets have been accidentally bent out of position. If this occurs, proceed as follows: With the vertical and horizontal size controls, reduce the size of the picture to a point where the four corners and sides are visible. (In some receivers it is not possible to reduce the picture sufficiently to see all sides and it may be necessary to shift the picture with the centering control to view one side at a time.) Bend
the corrector magnet arms until the corners become right angles and the top of the raster is parallel with the bottom and the left side is parallel with the right side. After adjustment, the picture should be restored to normal size. Note: Misadjustment of the corrector magnets may cause pincushioning, barreling, keystoning, poor linearity, etc.

PHILCO

Open capacitor C801 will cause the blue left horizontal convergence control to be inoperative. The

set cannot then be completely converged by the right blue horizontal control. Replacement of the defective capacitor corrects the fault.

MAGNAVOX

The horizontal hold circuit on this chassis was designed to provide sync pull-in of $11 / 2$ bars to reduce the possibility of color phase shift with adjustment of horizontal hold. The pull-in rarge can be increased to approximately three bars by removing resistor R529 (120K) in the horizontal oscillator circuit. This resistor is located on the deflection board to the right of the horizontal oscillator tube as you view the chassis from the rear. It is not necessary to remove the chassis from the cabinet to remove the resistor.

GENERAL ELECTRIC

The G-E Transistorized VHF Tuncr ET86X229 uses three silicon NPN transistors, one S1059 as RF amplifier and two S1060's as mixer and oscillator.

Thirteen channel strips contain the RF, interstage and oscillator coils for each of the 12 VHF channels and one for the UHF40-50 Mc IF channel. These strips are mounted in a turret type configuration and continuity of circuitry is maintained by the strips contacting nickel alloy stator blades. The stator blades are returned to the appropriate points on an etched circuit board. All other components with the exception of the fine tuning coil are mounted on this etched board which is rigidly held in place by the tuner body. A removable shield which clips to the tuner

16 YEARS AND STILL UP TO DATE

> checks all radio \& TV types
sensitivity \& shorts tests between elements

* FREE

NEW TUBE TEST DATA ISSUED REGULARLY KEEPS YOU CURRENT BETWEEN ROLL CHARTS

JACKSON MODEL 648S DYNAMIC TUBE TESTER

Developed over 16 years ago to give the servicemen a tube tester that could be kept up to date without fear of it becoming obsolete in a few short months. A tube tester that was fast and easy to use, while being able to check al! radio and TV type tubes. The results are a tube tester that is more profitable. There are over 30,000 servicemen to prove this.

DON'T BE FOOLED BY INADEQUATE PICTURE TUBE TESTERS

Now a picture tube tester - booster with features wanted most by the TV servicemen. Color keyed - push button operated for ease and speed. Designed to make more accurate tests than any other tester now in existance. Completely versatile for all black and white or color picture tubes. Oh yes! we keep you up to date.

See These Testers At Your Franchised Distributor and Ask Him About a Trade-In Deal

"Service Engineered Electronic Test Equipment"

ZENITH POSITIVE QUALITY CONTROL TRANSISTOR RADIO BATTERIES
Featuring "Transistor Blend" Electrolyte.

ZENITH QUALITY TELEVISION PICTURE TUBES
The industry's broadest line of replacement picture tubes

Zenith Color replacement tubes contain used material which, prior to re-use, is carefully inspected to meet our high quality standards. The electron gun is new.

Zenith replacement tubes are made only from new parts and materials except for the glass envelope in some tubes which, prior to re-use. is inspected and tested to the same standards as a new envelope.

CHOOSE ZLENITH for
 (®) in REPLACEMENT PARTS

Now Zenith is your number-one source of supply with a full line of replacement parts and accessories, built to famous Zenith quality standards.

Wherever you are located, there's a Zenith Distributor near you, who can supply you quickly with whatever you need on a day-to-day basis.

[^1]Specifications subject to change without notice.

NEW! ZENITH QUALITY OUTDOOR ANTENNAS
A complete line featuring...

NEW! ZENITH QUALITY HIGH-EFFICIENCY UNIVERSAL LOUD-SPEAKERS
32 popular sizes for practically any purpose. Built to Zenith's famous original equipment standards.

NEW ! NOW ZENITH HAS QUALITY WIRE AND CABLE Built to highest standards for every installation application.

NEW! LOW-LOSS 300 OHM UHF CABLE Finest for all installations-in hanks of 65 tt ., 100 ft . and reels of 1000 ft

NEW! VHF 300 OHM TRANSMISSION LINE Covered with special ultraviolet protective poly-ethylene- 15 -year warranty! In hanks of 65 ft ., 100 ft . and reels of 1000 ft .

COAXIAL CABLE-RG59/U ultra-flexible low-loss foam poly in vinyl packets of black, white, silver, gray and beige colors. In hanks of 50 ft . and reels of 250 ft . and 1000 ft

ROTOR CABLE 4/C Polarized Parallel-8/C Color Coded Round-5/C Polarized Parallel-in hanks of 65 ft ., 100 ft . and reels of 1000 ft .

MICROPHONE CABLE-1/C Foam Type Low Capacitance, spiral shielded. In reels of 250 ft .

SPEAKER CABLE-
Polarized heavy-duty in gray, white, brown, clear, clear gold colors. In reels of $100^{\prime} \mathrm{ft}$. and 500 ft

HIGHEST QUALITY

and ACCESSORIES!

I AM INTERESTED IN RECEIVING INFORMATION ON

PLEASE SEND ME THE NAME OF THE NEAREST ZENITH PARTS DISTRIBUTOR.

ZENITH RADIO CORPORATION • 5801 WEST DICKENS AVENUE
PARTS AND ACCESSORIES DIVISION, DEPT. ET-12-23
CHICAGO, ILLINOIS 60639
NAME
ADDRESS
CITY STATE \qquad ZIP CODE

H TECHNICAL DIGEST

body completes the shielding of the unit and provides access to the turret and circuit board.

Input impedance is 75Ω connected through a balun to the antenna. The power supply input is +12 at about 15 ma maximum.

The RF signal from the antenna is fed directly to the highpass filter consisting of L51, C52, L52, and C53. L51 and L52 are mutually coupled and tuned to 41 Mc and 45 Mc , respectively. This filter provides attenuation of frequencies in the IF band.

The (ch 2-13) RF coil is tuned by trimmer CT51 and the resonant circuit completed by C54 and Q1 base. The RF signal is coupled to the base of Q1 thru C55 which also provides dc isolation.

An AGC voltage of positive polarity is supplied to the base of Q1 through the isolation resistor R51 and filtered by C56. R53 is the collector load resistor.

Stabilization of Q1 is maintained by the bias derived from the voltage drop across R52. C58 provides the RF by-pass. Neutralization of Q1 is accomplished by feeding back the signal present at the junction of C57 and R53 to the base through L54 and trimmer CT52.

The primary of the interstage coil (ch 2-13) in the collector circuit of Q1 is tuned by trimmer CT53 and inductively coupled to the secondary coil (ch 2-13) in the emitter circuit of the mixer transistor, Q2.

The secondary coil is tuned by trimmer CT54 and fed to the emitter of Q2. Stabilization of Q2 is maintained by the bias developed across R59. C65 provides the RF by-pass and is also a portion of the capacitor divider required for the oscillator injection voltage. R60 and R61 constitute a voltage divider to provide base bias to Q2 with C66 as the RF by-pass at this point. R62 is the collector load resistor and C59 the RF by-pass capacitor. L56 and C64 in the collector circuit of Q2 and C67 constitute the resonant circuit to provide the $40-50 \mathrm{Mc}$ IF output.

Transistor Q3 is used in a modified colpitts circuit to provide oscillator injection voltage to the mixer stage. The oscillator tank coil (ch 2-13) is tuned by trimmer CT55 and shunted by L55 which contains an adjustable core to provide fine tuning. Each of the 12 VHF channels can be coarse-tuned by the brass screws mounted on the individual coil strips.

The tank coil is shunted by C61, C62, C63, and C 65 . The base of Q3 is connected to the junction of C61 and C62. The emitter is connected to the junction of C62 and C63 and returned to ground through the stabilizer resistor R58. The AC return for the collector is provided by C60, C65, and C63.

The oscillator injection voltage is fed to the mixer from the junction of the capacitor divider C63 and C65. Q3 base bias is supplied from the junction point of divider R56 and R57.

The channel one or UHF strip, wher switched to its operating position, converts the RF and mixer transistors to a two stage $40-50 \mathrm{Mc}$ amplifier. The output ($40-50$) Mc) of a separately mounted UHF tuner is applied across L53 and coupled to Q1 base through C55. L53 provides the dc return path for the UHF tuner.

The two coils on the UHF strip are mutually coupled and tuned to provide maximum bandpass from 41.25 Mc to 45.75 Mc . The circuit of Q3 becomes non-oscillatory because of the damping resistor R63. A shorting bar which is mounted on the turret provides the switching mechanism for supplying B + to the UHF tuner. The grounded shield mounted on the channel one strip prevents interaction between the low channels and channels 12 and 13.

If you sell or service TV sets

can we interest you in making a few extra dollars?

EICO brand NEW FOR '65

NEW EASY-TO-BUILD EICO KITS / OVER 100 LABORATORY PRECISION KITS

COLOR TV LAB

THREE COMPACT, PORTABLE INSTRUMENTS FOR SHOP OR HOME COLOR TV SERVICING ADD ONE MORE AND YOU'RE SET FOR FM-MPX STEREO.

EICO 380 COLOR GENERATOR

PORTABLE, SOLiD STATE N.T.S.C. STANDARD COLOR NIGNAL \& DOT-BAR GENER SIGNAL \& DOT-BAR GENERATOR (PAT. PEND.) GENERCOLOR SIGNALS, ONE AT A COLOR SIGNALS: ONE AT A TIME PROVIDES N.T.S.C. COLOR SIGNALS EXACTLYAS SPECIFIED.TAKESTHEGUESS SERVICING
KIT ONLY \$129.95. WIRED \$169.95.

EICO 369 SWEEP AND POST-INJECTION MARKER GENERATOR FOR EASIEST, FASTEST VISUAL ALIGNMENT OF COLOR OR B \& W TV AND FM RF AND IF CIRCUITS. FIVE SWEEP RANGES FROM $3.220 \mathrm{MC} / \mathrm{S}$. FOUR MARKER RANGES FROM 2-225 MC/S CRYSTAL MARKER OSCILLA. TOR. POST INJECTION OF MARKERS.
KIT ONLY 89.95.
WIRED \$139.95.

EICO 435 3-INCH
OSCILLOSCOPE
ULTRA COMPACT! TAKE IT ALONG ON SERVICE CALLS. BRIGHT. SHARP TRACE ON FLAT-FACE 3-1NCH CRT EXPANDABLE SEVERAL DIAM. ETERS. FLAT DC TO $4.5 \mathrm{MC} / \mathrm{S}$. EDGE LIT CALIBRATION GRID. ZENER CALIBRATOR. OUTPERFORMS 5-INCH SCOPES THREE TIMES AS BIG AND TWICE AS HEAVY. TRUE LAB QUALITY.
KIT ONLY \$99.95
WIRED $\$ 149.95$.

EICO 342 FM-MPX SIGNAL GENERATOR

FOR PROFITABLE SERVICING IN THE FAST-GROW. ING FM STEREO MARKET.PRO. VIDESBOTHA COMPOSITE AUDIOSIGNAL FOR DIRECT IN. JECTIONINTO MPX SECTION AND FM RF PLUS SYNC OUTPUT.

WIRED \$149.95
> cuaranteled PROFESSICNAL DUALI'TY

THESE FAMOUS BEST SELLERS FROM EICO'S SELECTION OF 230 KITS AND WIRED UNITS.

EICO 232 VTVM PEAK-TO-PEAK

A MUST FOR COLOR OR B \& W TV AND industrial USE. 7 NON. SKIP RANGES O N ALL 4
FUNCTIONS WITH UNI-PROBE®

KIT \$29.95.
WIRED \$49.95.

EICO 667 TESTER

TESTS RECEIVING. SPECIAL PURPOSE, NUVISTOR AND COMPACTRON TUBES FOR DYNAMIC CONDUCTANCE. TWO STEP TRANSISTOR TEST KIT \$79.95. WIRED $\$ 129.95$.

EICO 324 RF SIGNAL GENERATOR

$150 \mathrm{KC} / \mathrm{S}$ TO $435 \mathrm{MC} / \mathrm{S}$ RANGE. FOR IF-RF ALIGNMENT AND SIGNAL TRACING OF TVILFM, AND EXT. MOPULATION.
KIT \$28.95. WIRED \$39.95.

EICO 460 5-INCH OSCILLOSCOPE

	DC WIDEBAND 0.4 .5 MC FOR COLOR\&B\&W TAB USE PUSHPULL DC VER TICAL AMP BAL. ORUNBAL. INPUT. AUTO. LIMITER AND AMP.

KIT \$89.95. WIRED \$129.50.

EICO 1064 DC POWER SUPPLY

FOR BENCH TESTING AUTO RADIOS, CB, MOBILE AND TONE EQUIPMENT. VOLTMETER AND A M METER. LOW RIPPLE FOR TRANSISTOR EQUIPMENT 0-8V/0-16V OUTPUTS.
KIT \$45.95. WIRED \$54.95.

NEW
EICO SENTINEL 23 CITIZENS RADIO

CRYSTAL CONTROLLED TRANSMIT AND RE CEIVE ON ALL 23 CHANNELS. TRANSISTOR POWER SUPPLY. "S" METER. EXCEEDS ALL FCC STANDARDS. A BEST BUY AT ONLY $\$ 189.95$ WIRED.

NEW EICO 3566 SOLID STATE FM-MPX STEREO TUNER AMPLIFIER

IN THE HIGHEST QUALITY RANK, WITH 43 TRANSISTORS 19 DIODES. 6 RECTIFIERS. 112 WATTS INTO 4 OHMS - 72 WATTSINTO 8 OHMS. - 38.40 DB CHANNEL SEPARATION. AUTOMATIC STEREO SWITCHING. © INTERSTATION MUTING. FRONT-END. IF AND MPX SECTIONS PRE-WIRED AND PRE-ALIGNED. PLUG-IN TRANSISTORS.
KIT ONLY \$229.95. WIRED WITH CAB. \$349.95.

MOST COMPLETE LINE OF KITS AND WIRED TEST EQUIPMENT, CB AND HI-FI COMPONENTS.

EICO Electronic Instrument Co., Inc. Flushing, New York 11352

ET-12
SEND 1965 KIT-O-LOG LISTING 230 EICO PRODUCTS.
NAME
ADDRESS
CITY
STATE \qquad ZIP

Basic Business Practices

For Independent

Service-Dealers

6y Maruin 7epper

Too many shops go on the rocks
because their owners fail to evaluate overhead, properly select a good business location or neglect to maintain aceurate records

According to information from the U.S. Department of Commerce and from other sources, the turnover of independent TV-radio service-dealers is constant and at a high rate. The number who leave, or more appropriately, are driven from the business, is needlessly high. A certain percentage of dropouts is normal. These are generally the technically incompetent, but too high a percentage is caused by a lack of understanding of basic business practices. Your chances for a successful business and increased profits will be improved if you learr something about these basic principles and set about to practice them diligently.

The basic rules of business are paramount:

1. Don't cheat your customers - give them true value for their money.
2. Don't cheat yourself - make a fair profit for your labor and equipment investment.

Overhead

Making a fair profit means more than merely getting paid for the time you spend on a TV, radio, Hi Fi or other repair. Many technicians forget that pickup and delivery time and a profit on their stock and equipment investment must be included in overhead.

Failure to take all overhead factors into account is probably the major cause for business failures. Overhead has been figured to be approximately 60

Business
 Practices...

percent of the value of labor. If you consider your labor is worth $\$ 3.75$ an hour, for instance, the total charge per hour for labor should actually be $\$ 6$. The small things that go to make up overhead are numerous. The main items are rent, electricity, salaries, telephone, etc. The lesser known costs include depreciation - ultimate replacement of test equipment, service car or truck, and worn or lost tools. Other costs include record keeping and accounting, taxes, instrument maintenance, car or truck maintenance, gasoline, fuel for heating if not included in rent, advertising, insurance, etc. Other overhead considerations are holidays, sick pay and vacation where salary must be paid when no work is being performed.

Store Location

A recent tendency has been for service shops to move out of congested, hard-to-park-in downtown areas, out to the main highways leading in and out of the city. These out-of-town locations must have ample parking facilities, and for auto radio repairs, must be out of the weather. The type of location required will be determined by whether or not the business includes sales of new merchandise as well as servize. A high traffic volume is required for sales and service; a more remote location may be suitable for service alone, or the service operation can be from a garage or home basement. The rent for a store will of course be determined by its location and size.

Records

Keeping accurate and complete records is a must, even if they are in a notebook instead of fancy journals. With proper records, you will know whether you are making a profit or losing money, and how much. Keep in mind that a salary alone is not enough for a self-operating repair business. Service-technician owners are entitled to a profit on inventory and equipment capital investments. Records will show whether this goal is being achieved, and to what extent.

Records of consumer repairs are also important. They help to determine over a period of time whether charges are correct or too low. They are also protection against customers' convenient memory lapses. A common complaint is that the repair was made "only six weeks ago," yet your records will frequently prove that the repair was made six months ago.

Another convenient form of record keeping is to
pay all bills by check. A petty cash fund is used for paying small bills. A cancelled check is useful as a receipt. Paying by check reduces record keeping effort to a minimum.

Advertising

Advertising is a problem that must be solved by each business. In some locations - like those operated from a home, for example - business will lean heavily on what is still the most important of all forms of advertising, "word of mouth." Other forms of advertising are also necessary. These include business cards, letterheads, store front name display, etc. Some advertising methods depend on the size of the business. These include: direct mail, match book covers, calendars, TV and radio spots. Another good form of advertising is a reasonable guarantee that you stand behind your work.

The back of each piece of equipment you repair should have an easily readable sticker with your name, address and phone number on it.

If your store is located in a small city or town with local newspapers, one good form of advertising is a small but consistent ad. By making a long-term agreement with the newspaper, special cost-saving rates can be obtained. Be sure to change the ad frequently or readers will begin to take the ad for granted. A neat-looking car or truck, prominently displaying the name of your firm, is another form of advertising.

Store fronts also figure in advertising. For stores that do only servicing, the problem can be a bit more difficult. Sizable window displays are available, howcver, from various manufacturers, particularly tube and battery manufacturers. Some of these displays can be used to attract attention. They may include dummy tube cartons, display boards, electric signs, electric clocks, decals and outdoor illuminated signs. Since a faded window display is worse than none at all, be sure to change the display regularly - and keep the display clean.

Buying

When buying replacement parts for future repairs it is desirable to take advantage of discounts given for early payment of bills. This is usually 2 percent. This figure may seem insignificant, yet a small business may well average $\$ 50$ a week for parts. On a 52 week basis this is $\$ 2600$ a year - 2 percent of which is $\$ 52$ - an amount no one can ignore because it represents free parts for more than a week.

Be cautious when purchasing parts. Buy only what is actually required as determined by the volume and type of business being done. Parts that gather dust on the shelves over a long period are useless and represent a loss of money. When bargains in parts are offered, be sure they are nceded parts to be used in repairs. A bargain that can't be used is no bargain.

There's no need for service technicians to tell themselves they're not good businessmen. If they can learn the intricacies of electronics they can certainly learn the basics of business - which boils down to simply using common sense.

WHAT YOU'LL FIND IN

TV SETS

Some innovations improve operation and simplify service adjustments

■ Last month we gave a few details on important circuitry in 1965 TV sets. A number of other new set innovations are being covered here.

Magnavox

The 45 series color chassis employs a total of 26 tubes, including the CRT. A transformer power supply uses two silicon rectifiers in a full wave circuit. Several features which aid in adjustment and servicing are included. The CRT screen grids, drive and bias controls, the service switch and height and linearity controls are all grouped together on a "video control board." The service switch has three positions, normal, service and purity. In the service and purity positions the IF supply voltage is removed so that no signal will be present on the CRT during white tracking or purity adjustments.

Dynamic convergence controls are grouped on the convergence panel to correspond to the area that each control affects. Controls are numbered one through twelve to show the correct adjustment sequence and each control has an arrow indicating the crosshatch pattern section to be observed while adjusting.

The convergence board assembly (Fig. 1) mounts in an opening in the front cabinet bottom. By removiing two screws the assembly can be dropped out and held while adjusting and observing the screen from the front (Fig. 2).

An instant-on circuit is featured on a number of 45 Series models (Fig. 3). The circuit applies a reduced filament voltage to the tubes when the set is off so that warmup time is kept short. Filament potential is lowered to about 3 v by a series choke in the power transformer primary. A large portion of the line voltage (about 100 vac) appears across the choke while a lower voltage is applied to the power transformer primary.

A switch, ganged with the main power switch, is connected in series with the secondary winding to prevent development of $\mathrm{B}+$ when the receiver is off. A defeat switch, located along the back edge of the
cabinet, opens the choke circuit so the receiver can be turned off completely.

More test points have been added to the PC boards to facilitate servicing. The 6JE6 horizontal output tube cathode has been brought out through the rear apron and soldered to a chassis terminal. A 0-250 ma meter can be placed in series with it and the horizontal efficiency coil can be adjusted for minimum cathode current.

The regulator tube cathode has also been made accessible. It is brought to a special terminal on the chroma board. By placing a low-range VTVM between the terminal and the 405 vdc supply (which is also present on the board), the drop across the 100Ω cathode resistor can be measured. The reading in ma is equivalent to the voltage reading.

A sepia switch (Fig. 4) is incorporated in all sets having the instant-on circuit. This feature allows customers to view black-and-white programs in sepia tones similar to those produced by the sepia glass on monochrome receivers. The sepia switch must be in the OFF position when color temperature adjustments are made.

Motorola

The BTS-908 color receiver uses a 27 -tube horizontal chassis with a 23 in . rectangular color CRT. It is handwired, has a power transformer and silicon rectifiers, solder-well terminals, inter-carrier sound, noise gate, sinewave horizontal oscillator and shuntconnected high voltage regulator. With the exception of the tuner input cable, all connections to the chassis are plug-in to allow easy sub-chassis removal for test or repair. The tuner cable is plug-in, but spot soldered to insure a good electrical ground connection.

Pincushion corrector circuits are an innovation in the BTS-908. When a raster is projected on the nearly flat CRT faceplate, its shape becomes slightly distorted. The distance from the deflection center to the corners of the CRT is greater than the distance from deflection center to any other part of the face-

Fig. 3-Magnavox instanton circuit.

PHILCO PORTABLE

The 3 in. TV set shown here was recently announced by Philco. The self-contained IV weighs a liftle more than 5 lb . It has its own stand for table-top or lap viewing or it can be slung from the neck on a strap for stand-up viewing. The TV is not yet in production, although the manufacfurer said it is possible to make the unit using existing materials. Philco is bringing out a fully-transistorized, batteryoperated 9 in . set and a tube type 12 in . set during this model year.

Fig. 2-Convergence adjustments are made from the set's front.
plate. The greater distance to the corners causes the raster to become larger at the corner (Fig. 5).

The pincushion error causes the corner squares to be larger in area than the center squares. The amount of pincushion crror will increase as the tube deflection angle is increased.

In a black-and-white CRT, this raster distortion is corrected by a yoke having a distorted field or by placing permanent magnets in a position to correct the geometric distortion. This is not possible in a color CRT because the three electron beams would not be acted on equally by a non-uniform field and it would not be possible to converge the three rasters.

The color yoke is designed for as uniform a field as possible. Power from an external source is then fed into its windings to correct the error. In this manner, convergence is not affected by the pincushion error or by measures to correct it. A simplified circuit for correcting the vertical pincushion error is shown in Fig 6.

Unfiltered boost voltage which is parabolic at a horizontal rate, is fed into transformer T 1 , connected in series with the vertical yoke. Capacitor C1 is tuned to bring T1 secondary to resonance at the horizontal parabolic rate, causing maximum energy from transformer Tl primary to be coupled into the secondary. The parabolic voltage fed into the vertical yoke will add and subtract from the vertical field at a horizontal rate and cause the raster to become straight at the top and bottom of the CRT screen (Fig. 6).

Notice that the correction required at the top of the screen is exactly opposite to the correction re-
quired at the bottom and half-way between these two points the required correction is zero.

The parabolic voltage is fed into each end of T1's center tapped primary. Since these two voltages are fed into opposite ends of the winding, their action will be in opposition and will have the effect of being 180 deg out of phase.

The voltage fed to one end of the primary has a tube connected to amplify the signal. A sawtooth voltage developed from the vertical sweep system is fed to the control grid to adjust tube gain in time with vertical sweep. This voltage causes the tube to have maximum gain at the beginning of trace and zero gain at the end of trace.

For the first few lines of a vertical field, T1 will receive two signals, A and B. Signal B is approximately twice as strong as signal A because of the tube gain and since the two signals have opposite actions, signal A will cancel out a portion of signal B. The portion of B signal that remains will correct the pincushion error at the top of the screen. At the center of vertical sweep where pincushion correction is not needed, the voltage on the tube's control grid has become less positive, reducing the tube gain to a point where signals A and B are equal. Being equal and opposite in action, the two signals cancel, providing zero correction at the center of vertical sweep. At the bottom of the vertical trace, the saw voltage on the tube grid is negative and turns the tube off, leaving signal A to correct the pincushion error at the bottom of the screen.

This arrangement will provide maximum correc-

Fig. 4-This circuit allows black and white pictures to be viewed in sepia tones on series 45 Magnavox color TVs.

Fig. 5-Pincushion raster distortion.

Fig. 7 - Motorola's horizontal pincushion corrector circuit.

Fig. 6-Vertical pincushion corrector circuit in Motorola's BTS-908 color chassis.

Fig. 8-Schematic of automatic degaussing circuit in 1965 PackardBell color TV.
tion in one direction at the top of the screen, maximum correction in the other direction at the bottom of the screen and zero correction at center.

Two controls are available to adjust the vertical pincushion corrector circuit. The transformer in the plate of the tube is adjusted to make the raster straight at the bottom of the screen. The tube cathode control is then adjusted until the raster is straight at the top of the screen.

The pincushion error viewed on each side of the CRT screen is corrected by adjusting the load
on the horizontal sweep system at the vertical rate, The load is varied by varying the current through the high voltage regulator tube with a saw voltage developed from the vertical yoke. The load on the horizontal sweep system is maximum at the start and finish of the vertical sweep, and minimum haifway between these two points. The uneven load will cause the horizontal sweep width to vary and correct the pincushion error on the screen sides. A simplified circuit is shown in Fig. 7.

A 200 v negative going pulse is taken from the

Fig. 9-Schematic of video IF strip in Packard Bell 98C8 color chassis.

Fig. 10-Circuit showing horizontal linearity coil in RCA KCS 136x chassis.

Fig. 11-Noise cancellation circuit used in RCA KCS 151 chassis.

Fig. 12-Schematic of automatic degaussing circuit employed in 1965 RCA color TV.

Fig. 13-Increased value of $\mathbf{C 7 2 8}$ results in greater displacement of " X " and " Z " axes in RCA CTC 16 color chassis.

Fig. 14-RCA CTC 16 focus circuitry.

Fig. 15-Bridge rectifier circuit used in 1965 RCA color TV.
vertical yoke and integrated into a sawtooth voltage by R 1 and Cl and fed to the high voltage regulator control grid.

At the start of a vertical field, the regulator grid has a negative voltage, causing the regulator current to decrease. The current decrease causes the high voltage supply to increase. The voltage increase takes place gradually because the CRT capacity requires time to charge to the new value through the high voltage supply impedance (approximately $9 \mathrm{M} \Omega$). At the center of the vertical sweep, the CRT capacity has charged and the current from the supply has decreased. The sweep system has less load and the sweep width increases. Past the center of the vertical sweep, the saw voltage on the regulator is drawing maximum current causing minimum sweep width. At the beginning and end of each vertical scan, the
horizontal sweep is reduced and at the center of the vertical scan, the horizontal sweep is expanded. This is shown in Fig. 7 to be the desired correction to eliminate pincushion error.

It might appear that the increase in high voltage at the middle of the vertical scan would reduce rather than increase the horizontal scan but the decrease in loading causes a substantial increase in horizontal size while the increased high voltage causes only a small reduction in size. This circuit does not require field adjustment.

Packard Bell

The automatic degaussing circuit used in these chassis is shown in Fig. 8. SW1A is normally open, so capacitor C charges to 410 v . When the switch

Continued on page 80

Fig. 16-Interconnection between blanker tube grid and horizontal output tube grid provides voltage limiting in RCA CTC 16.

Fig. 17-Peaking switch circuitry in RCA color chassis.

- Some servicc-dealers and technicians still believe that "public relations" (more specifically, customer relations), is a mysterious, exotic form of ointment, concocted by modern "snake doctors" who work in posh offices high above canyoned streets in New York, Chicago and Los Angeles. No idea could be so quaint or so obsolete.

Well, then, what are customer relations?

Customer Relations

Customer relations definitions are as numerous as "PR" experts. But let's face it. Your customers and prospects are just as human as you are. They're interested in doing business with the best service-dealer in the neighborhood; they want to get what they pay for, and they want what they want when they want it - within limits that seldom pose insurmountable problems. Because of this, you are forced to work hard to polish your image by various methods. And the methods are normally pinpointed in a carefully-thought-out customer relations program.

In the area where you work and live - as far as you and your business is concerned - customer relations means "putting your organization's best foot
forward" at all times and under all circumstances. It means treating your customers in precisely the same way that you want to be treated yourself. It's no more mysterious than that.

This means that you cannot separate public relations from your over-all business and service policies. Customer relations is a bright-colored thread that's interwoven throughout the total fabric of any successful service-dealer operation. In a foundering business, the tint of the yarn is drab and dull.

Let's take a close look at only one facet of customer relations and see how it can be practiced instead of preached.

Courtesy

Many public relations experts have indicated that courtesy rates high as a customer relations ingredient in a successful sales and service business. Yet, in some areas - in both large and small cities - courtesy is in a state of obsolescence.

Courtesy is an accomplishment that varies in degree with the particular individuals who practice it, their natural talents and how hard they work at it. Because courtesy is habit forming, almost anyone can become addicted. In advanced stages of courtesy, all addicts become keenly perceptive, genuinely sympathetic, warm and thoroughly sincere. In fact, courtesy has become the radiant public image of a few "tough" (and wealthy) businessmen.

One service-dealer on his way up, for example, has built a solid, thriving business by establishing a highly developed customer relations policy. Neither he nor any of his seven technicians would think of leaving a customer's home, after completing a house call or antenna installation, without uttering a final, smiling, "Thank you for calling us."

This same courtesy is extended to everyone who telephones by the person who answers the shop phone.

Every customer or prospect who comes into the shop, looks around, asks questions and departs without generating business, is thanked for coming in. Many of these return later to do business.

This service-dealer has seen to it that every employee in his business has developed the habit of being courteous at all times and under all conditions.

And he and his employees are thoroughly indoctrinated with the idea that it never pays to "argue" with a customer - even one they may be losing through no fault of theirs. They know that one "enemy" can, by word-of-mouth, negate thousands of dollars worth of otherwise effective advertising. The theory here is simple: "If you can't keep 'em as satisfied customers, then lose 'em as 'neutralized' friends." And the theory pays off in practical cash!

The sooner you begin to understand the real meaning of customer relations - the quicker you clean your public relations lamp, light it and keep it burning - the sooner you'll begin to solve the major problems that now confront you.

Make no bones about it - the amount of business you have at any given time will be proportional to the quality of your customer relations. And what your customers think of you and your work will be a measure of the quality of your customer relations.

Reception
 by Lan Cantor
 Jerrold Electronics

 Sell-up on antenna installations for the rainbow hues

 Sell-up on antenna installations for the rainbow hues}

- Nineteen-sixty-four has been a banner year for color TV. The public has finally overcome its suspicion of color TV. Most people seriously consider color today when buying a new TV console. Moreover, color programing is on the rise. It appears likely that a very high percentage of your customers will own color TV sets within the next few years.

Color TV represents an excellent profit potential for TV servicedealers and technicians. The awe of black and white TV has vanished. The time has gone when technicians were called to adjust vertical hold controls. Do-it-yourselfers replace tubes (including picture tubes), clean tuners, and make adjustments with abandon. Not all of these do-it-yourself efforts are successful, but technicians lose revenue. Further, when you do make a house call, some customers complain about the high cost of tubes and other parts.

Color TV is a different story, however. It's still very much an unknown quantity to most people. They tend to think of color TV as extremely complex and beyond their ken. They've paid more for the set and are afraid to perform do-it-yourself operations. For this
reason, they are willing to pay for your time.

Thus, the well prepared technician will enjoy an increase in business through color TV.

Antennas

Remember the early days of black and white TV? One lucrative aspect of the early TV boom was antenna sales and installation. And antennas will play an important part in your color TV revenue.

What's the difference between a color TV antenna and a mono-
chrome TV antenna? Theoretically, none. After all, the same frequencies are involved. Let's look at a typical color TV channel say channel 2 (see Fig. 1). Channel 2 covers the frequency spectrum from 54 to 60 Mc . The picture carrier is at $55.25 \mathrm{Mc}, 1.25 \mathrm{Mc}$ away from the lower edge of channel 2 ; the sound carrier is 59.75 $\mathrm{Mc}, 1.25 \mathrm{Mc}$ from the top edge of channel 2. The color subcarrier is right between the two, at 58.83 Mc.

The antenna used for receiving

Fig. 1 (right)-Channel 2 carrier frequencies.

Fig. 3 (bottom left, page 47) - Response of a typical black-and-white TV antenna. Variations in response for channels $2,6,7,8$ and 13 would be too great for good color reception.

Fig. 4 (bottom right, page 47) - Response of one antenna made specifically for color TV reception.

Fig. 2-Decibels to voltage ratio conversion graph.
color on channel 2 should have a reasonably flat frequency response, especially at the frequencies near the color subcarrier. For monochrome reception, attentuation at any point on the response curve will cause some loss of picture detail. This detail loss is seldom observed by the viewer but attenuation around the color subcarrier frequencies could cause improper color rendition or even loss of color.

The color information is phase dependent and any mismatch between the antenna and the TV set can cause phase distortion of the color carrying signal, resulting in poor color response.

The gain of an antenna is also extremely important and as the color subcarrier is relatively weak compared to the picture carrier, an-
tenna gain in the 58.83 Mc region will tend to accentuate color signals.

For these reasons, antennas commonly used for black and white TV are not suitable for color. Most indoor "rabbit ears" are very badly mismatched. And the familiar VHF outdoor "conical type" antenna may not be much better.

As mentioned previously, the critical requirements of color TV make your services more necessary. People who were able to get satisfactory monochrome reception with a "rabbit ear" may have to use an outdoor antenna for color. And those who put up with "snowy" or "ghosty" black and white pictures from defective or poorly installed outdoor antennas will be asking you for help to get good color pictures.

To meet the needs of monochrome TV, antenna manufacturers have concentrated primarily on gain. In general, the more gain an antenna provides, the more effectively it can pick up distant TV channels. Free space transmission loss characteristics of channel 2 are shown in the table below. Although losses increase with frequency, other channels show essentially the same characteristics.

When the distance from the transmitter is doubled, this chart shows the loss increases by 6 db . For example, free space transmission loss is 78 db at 2 miles, compared with 84 db at four miles (84 db $78 \mathrm{db}=6 \mathrm{db}$). Also, between 30 miles (101 db) and 60 miles (107 db) the loss increases by 6 db . Antenna gain is also expressed in decibels (db). A standard dipole is generally used as a reference for determining antenna gain. In other words, an antenna with 8 db gain will actually provide 8 db more signal than a standard dipole.

While used for black and white TV for years, this type antenna is not generally recommended for color.

The relationship between decibels and voltage times is shown in Fig 2. For example, $6 \mathrm{db}=2$ times voltage. Therefore, if a standard dipole will pick up $1000 \mu \mathrm{~V}$ at a given location, an antenna with 6 db gain will pick up $2,000 \mu \mathrm{~V}$.

Perhaps more significant, since doubling the distance from the transmitter increases signal loss only 6 db , an antenna with 6 db gain will pull in as much signal at 40 miles as a dipole will pull in at 20 miles. Of course, all this is theoretical. Actually, signal propogation is affected by many things other than free space transmission loss, including especially terrain, atmospheric conditions, height of the transmitter and curvature of the earth. Neverthless gain is an important factor.

The trouble is that many antennas designed for black and white reception stress gain to the detriment of other characteristics. Many high gain antennas are poorly matched. More typically, high gain antennas are often frequency sensitive.

The frequency response of an antenna designed essentially for highest gain at specific channels, is shown in Fig. 3. The fact that channel 12 's gain is higher than channel 13's is no more important to color than it is to black and white. What is important is the ex-
treme slope within the spectrum of this individual channel. It would be virtually impossible to get good color reception on channel 6 with this antenna.

Response of an antenna designed especially for color reception is shown in Fig. 4. It is designed with a relatively flat frequency response and flatness of impedance. Gain considerations were not allowed to over-ride the characteristics so important to good color reception.

Lead-In

Average-type 300Ω flat twinlead has been most frequently used

Amplified couplers can provide stronger, well-isolated TV signals to as many as four TV sets.

Mast-mounted balun for matching 300 ohm antenna to 75 ohm coaxial downlead.
for monochrome TV. It is easily affected by external conditions including proximity to metal and other objects. It picks up TV and other signals directly. Its loss increases considerably when it is wet or dirty. The cheaper lead-in ribbons are not even 300Ω - spacing frequently results in impedances as low as 200Ω. Many technicians are beginning to use higher quality twin lead - especially the encapsulated foam-filled type.

Good color antennas cost more than those that are adequate for black and white reception. This

Continued on page 78

Indoor matching transformer for 75/300 ohm TV set.

||

Your Records

Can Save Your

Business

Accurate, comprehensive books can help you avoid financial troubles if you know how to use them

Service-dealers and technicians who have remained in business for any length of time have kept some kind of records. But just keeping records won't help much unless you keep them accurately, fully and, what is even more important, use them properly to keep your business on an even keel.

Statistics from the U. S. Bureau of Census indicate year after year that "failure to use existing records properly" is a frequent cause of small business failure. Just maintaining your books doesn't help you diagnose your business problems. You have to put those records to work for you.

And it's vital that you have pertinent information while it is still current. A doctor who accurately diagnoses his patients' illnesses only after they are dead would not be popular, and neither will you be with your associates and family if you learn what's taking place in your business only after it has already happened.

A number of "measurements" can be made from information contained in accurate, complete book records. And this information may well be used to prevent you from joining that business legion which disappears annually in the economic jungle.

Basic Information

Let's take your book information and break it down into (1) the number of call-backs or complaints you receive; (2) number of individual service calls, bench jobs, antenna installations, sales transactions and total service and sales volume; (3) accounts receivable and overdue accounts; (4) monthly service and sales; (5) profit percentages; (6) beginning and closing inventory values and total cost of goods sold; (7) bad debts; (8) current assets and liabilities; and (9) net yearly income plus net assets at the beginning of the year.

With this basic information you can compare your records with other information to determine trends

Your Records...

or spot deviations. You can use any or all of three comparisons: Prior periods (last month, year to date, saine month last year), to see where you're heading; budget figures calculated carlier, to see if you're meeting goals; and industry statistics, to determine how your operation stacks up against others.

1. Volume of call-backs. If your call-back figure is increasing, or is already too high -- compared with any of the three indexes mentioned previously - d number of things may be wrong with your operation and should be corrected immediately.

You may be "pushing" yourself or your technicians to make more calls than they or you can handle properly. A more thorough check of the equipment may be needed on house calls. Perhaps more time should be spent explaining the condition of the equipment to the customer to avoid unpaid call-backs.

Maybe your benchman isn't doing the job properly. Perhaps you need to check the sets closer and "cook" them longer before returning them to the owner's home. And it's possible you're doing too many "minimum" repair jobs.

If too many accessories are being returned, perhaps you are high pressuring your customers or your jobber is selling you "reject" or damaged goods. Let up on sales pressure and set up a quality control system for incoming shipments.
2. Average value of each house call, bench job, antenna installation and sales transactions. If any of these items show a drop by comparison with a given index, check up and find out why. Here again you may be "rushing" the house jobs and actually leaving a few bad tubes in the sets when they should be replaced. And once again, you may be doing too many "minimum" bench jobs which can get you into all kinds of trouble.

If your antenna installation values have dropped or remain steady, you could be missing an opportunity to "sell-up" on antenna installations because of increased UHF and color activity. If your product sales are down, dress up your battery display counter, your indoor antenna display or push your radio and TV sales a little harder. Because your major overhead items remain relatively stable, the more you increase sales the more you actually cut expenses. And when you're selling up on antennas by supplying boosters, rotors, etc., in effect yc'I're cutting overhead expenses even more.
3. Overdue accounts as a percentage of all accounts receivable. If overdue accounts as a percentage of all accounts receivable start to creep up suddenly, you're being too liberal with credit. Tighten up your credit requirements.
4. The number of each day's service calls, bench jobs, antenna installations or sales transactions that
appear in accounts receivable. (Divide the total monthly transactions by the number of working days; that gives average per day. Then divide that into accounts receivable.) If too high, your collection procedures aren't working too well. Get after your negligent customers and whittle this down quickly or you may find a substantial portion of your profits going to a collection agency soon.
5. Gross profit percentages. Two things can cause declines here. First, your total service and sales volume may be off in comparison with fixed overhead expenses. Second, you may be paying too much for your products, or not charging your customers enough. You may need better prices from suppliers, or you may need to cut internal costs or both. If you're not charging your customers enough, of course, you have to raise prices.
6. Inventory turnover. Divide the cost of goods sold, (or used in repair) by the average of opening and closing inventories. A decreasing figure can result from inefficient buying policies, deteriorated repair and replacement policies (too many minimum bench and house-call jobs), or misdirected selling practices. Inefficient buying in a given product area results in that product's contributing a lower-than-normal share of profit. If you're not careful, too, you may get stuck with unsalable or unusable items if prices drop as a result of competition or improved manufacturing operations.
7. Bad debts as a percentage of total sales. If you do not check this periodically, it may creep up to a point where your financial position is precarious. You may then find it necessary to turn over all bad debts to a lawyer or collection agency so you can salvage something.
8. Working capital ratio. (Current liabilities divided into current assets, then expressed as a ratio.) For example, with current liabilities of $\$ 2000$, and current assets of $\$ 5000$, your ratio is 2.5 to 1 . Traditionally, a $2: 1$ ratio has been considered healthy by banks lending money, but the situation varies from area to area. A ratio less than 1.5:1 means that you may soon have difficulty meeting payment demands from your suppliers.
9. Return on investment. (Net income for the year expressed as a percentage of net assets.) Compare your figure with returns you could get from other types of investment - government-guaranteed bonds, for example - as well as with other service-dealer operations. For your answer to be meaningful, make necessary adjustments. If, for instance, you pay yourself a salary of $\$ 6000$ a year but it would cost $\$ 7500$ to hire a service manager, subtract the additional \$1500 from net profit before making your calculation. Follow the same type of procedure with any special allowance (car, expense account, etc.) which you allow yourself, but to which a service manager wouldn't normally be entitled.

If you use these nine measurements regularly, you will have sufficient information about your organization's financial health to ward off crippling financial crises.

'The picture slowly drifts sidewise after the set has been on for awhile-then suddenly flips back'

by Day Shame

Part I

\square Of all circuits in a TV receiver, the horizontal oscillator seems to stand as number one. It must drive the horizontal amplifier to give us high voltage as well as boosted $\mathrm{B}+$ needed for other circuits, and directly or indirectly excite the AGC keyer. Despite this, it's probably taken for granted more than any other circuit in the receiver.

Because most of the difficulties developing in an oscillator reveal themselves on the screen long before they become serious, knowing how to spot and correct them early and make secondary adjustments can earn a shop an enviable reputation for good work.

A typical synchroguide circuit is shown in Fig. 1. All TV receivers employing this type of oscillator will have only minor variations - getting plate supply from boost instead of $\mathrm{B}+$, the wave-shaping and frequency coils openly set at juxtaposition, or a "fine" hold control may be added, as examples.

Complicated as this oscillator may appear, when compared to the multivibrator, its problems are fairly simple and easy to correct. So much so that many technicians either ignore the visual signs on the screen, or they don't recognize them for what they are. Thermal deterioration is the common enemy of all components. In this circuit, which operates at optimum just below the point of "trip-out," trouble signs are clearly evident to the trained eye.

In the early stages, the first symptom is for the picture to slowly drift sidewise after the set has been on for awhile - then the picture flips back. This may repeat itself until someone turns the hold control. In time, the picture no longer comes on in sync, requiring adjustment of the frequency coil.

The next phase is for the picture to go periodically into "Christmas tree" effect. Also called "gunboating," it's a condition where bright jagged lines appear across the center of the screen. (They're often mistaken for an arcing damper tube, since the appearance is similar.) Changing tubes may delay its occurence, but this won't cure the trouble. Adjusting the oscillator frequency further may only make the problem worse. The solution lies in proper circuit alignment.

Component Changes Required

Before alignment is even attempted, several circuitcorrective steps must be taken. The .01 capacitor, C1 (Fig. 1) across the wave shaping coil, must be replaced. Use nothing less than a 5 percent tolerance capacitor as replacement. Rarely is it necessary to replace the oscillator coils - unless they've been damaged through constant adjustment.

Fig. 1-Schematic of typical 'synchroguide' horizontal oscillator.

Change the coupling capacitor, C2 shown in Fig. 1 , and it won't hurt a bit to check C3 as well as the "hot and cold" values of all resistors in the circuit. If there's the least bit of doubt, change them. Resistors under the constant strain of high $\mathrm{B}+$ on one end and a low B-at the other, do change in value and this can be critical here.

Replace the horizontal amplifier cathode and screen resistors and the bypass capacitors. All these components may have drifted out of tolerance or have some thermal deterioration.

Alignment

Alignment is not difficult, but each step, as outlined here, must be taken in turn.

First: If the receiver has a "frequency lock" padder (somebody may have discovered that loosening it helped correct the trouble), it must be tightened clockwise, then loosened one and a half turns. This is critical to alignment. Likewise, if a drive padder is used, check to see if it's been tightened. If it has, loosen it a half turn. If a drive line appears on the screen, ignore it until after alignment. Follow manufacturer's alignment instuctions.

Second: Don't guess. Use a scope. You must see the "heel and toe" (Fig. 1), to know if they're cven. When they are, the oscillator is at optimum anti-hunt condition.

Third: Connect the scope to the junction of Cl and R1 (Fig. 1), and a ground point close by. If you don't have a capacitor probe, place a small capacitor, 10 to 22 pf , in series with the direct probe to pervent capacitive circuit loading. If the receiver has an isolation pigtail protruding from the chassis, probe isolation is not necessary.

Fourth: Adjust the waveshaping coil until the "heel and toe" looks like the waveform shown in Fig. 1. At this point, keep the picture in sync: If the receiver has a "fine hold" control on front and you've reached its limit, ädjust the frequency coil. Turn the "fine hold" control back and forth while putting the finishing touches to the waveshaping adjustment - until the control no longer affects the waveform.

Fifth: Disconnect the scope and make final ad-

Fig. 2-Modified synchroguide horizontal oscillator circuit.
justment to the frequency coil, turning the "fine hold" until a blanking bar starts to drift in from the left side of the picture, or until the oscillator drops out of sync at both extremes of the "fine hold." Check the drive. Readjust the padder as needed to get full sweep with no drive line. Recheck for the blanking bar drift or drop-out at both ends of the control.

Sixth: Receivers without a "fine hold" control must rely on the frequency coil adjustment for sync. Here you switch from channel to channel, adjusting the frequency coil until the picture maintains sync. Let the set run for awhile and switch channels again. If the blanking bar wants to move onto the screen, a quarter turn or so of the frequency coil should stop it.

Some manufacturers indicate that they desire the waveform to be just a little uneven - "toe" a trifle higher than the "heel." Unless this is specified under alignment instructions, do it exactly as outlined here and as shown in Fig. 1.

Modified Circuitry

As shown in Fig. 2, one manufacturer has come out with a modification of this old reliable circuit. Instead of the "stabilizer" coils being in the plate circuit, they've been inserted in the oscillator cathode. One coil is tapped, with coupling back to the grid making this a variation of the Hartley oscillator.

The core of one coil is fixed, while the other is adjustable for waveshaping. Frequency is changed with a "hold" control connected to the grid in a manner that sync can be plucked off the cathode of the AFC tube as well as changing the bias of the oscillator. Another version of this circuit may have one end of the control tied to ground, thereby changing only the grid bias.

Instead of having a "heel and toe" wave shape, Fig. 2 shows a low amplitude sine wave with a vertical spike riding the leading edge. (It's similar to the spike riding the output of a vertical integrator in many sets.) This same waveform, somewhat suppressed, appears on the grid, while a sawtooth is at the plate.

Servicing and alignment procedures for this oscillator are the same as for the synchroguide. Since the frequency coil is fixed, no adjustment can be made at this point. This is done with the control.

Most of the receivers employing this oscillator will be equipped with a vernier ball-bearing type control, giving very fine adjustment.

Since the rear cover of the control is the bearing race, the control is often insulated from ground: It would be good practice to watch for metal objects coming in contact with the control. For example, a set came into the shop recently with "no picture." It was found that a bobby pin had been dropped into the set, becoming lodged against the control and a chassis bracket, shorting the cathode of the AFC and the grid of the oscillator to ground.

Because no sliding contact exists in these controls, replacement is rare. If, on turning the control, the picture is "watery," a good quality contact cleaner will frequently do the trick.

Choosing and Using

Audio Oscillators

by Arthur M. Walters
Hewlett-Pacikard Co:

Prevent extraneous ground-loop signals from entering measurements when driving sensitive input circuits with low-level signals

W When driving sensitive input circuits with lowlevel oscillator signals especially, some precautions are needed to prevent extraneous signals from entering the measurements. Noise and hum may be picked up by unshielded inter-connections, especially when the conductors are at high impedance. But the most common problem is hum, and its most common source is ground loops.

A ground loop is formed wherever two parallel paths, each closed at each end, exist for ground between two circuits. This situation often arises when a ground connection is made at both ends of a line interconnecting an oscillator with the tested instrument. Usually another ground path exists between the two through the ac power line or the power line safety ground. When this path is linked at both ends to signal terminals, a closed loop is formed. Currents at power line frequency circulate through these paths. They arise from capacitive and inductive coupling in and around transformers, and elsewhere; they develop voltages across the low resistance of wire interconnection. Their current level may be considerable, so their voltage can be comparable with the lowest voltages encountered in signal circuits.

When these currents are allowed to circulate through a line which also carries test signals, they add together and an unwanted hum appears. The usual solution is to float one end of each interconnection, grounding at the other end only. When three or more
chassis are interconnected, extra care must be taken to assure that signal-carrying lines do not form closed loop ground paths with other ground lines.

Practical Work

To get practical, meaningful information when using audio oscillators, a number of factors must be considered. Let's take a simple case to demonstrate.

A high quality consumer-type power amplifier is shown in Fig. 1, together with an audio oscillator and ac voltmeter. The amplifier is to be tested for sensitivity. The practical question to be answered is, "what should be the output voltage capability of the preamplifier we need to drive this amplifier?"

First, we need to consider the amplifier's specifications which are:

Continuous power output of 30 w .
Frequency response at full power output - ± 0.1 $\mathrm{db}, 20$ to $20,000 \mathrm{cps}$.

Input: single-ended, 250,000 Ω.
Tone controls: none.
Maximum distortion @ 400 cps @ rated output: less than 0.5 percent.

If the preamplifier is not to limit the power capability of the sound system, it must put out at least enough voltage, substantially undistorted, to drive the amplifier to full output. So we find the input voltage which will produce 30 w at the power amplifier's output. In the real case we may reasonably expect

The antemna that challenges
 nEw Swest Element HOOLOR-VE

Er

Finco's Color Ve-Log challenges all competition on color or black and white reception and stands behind this challenge with a "Guarantee of Supremacy". - The swept element design assures the finest in brilliant color and sharply defined black and white television reception - as well as superb FM monaural and stereo quality. - FINCO precisionengineered features make these advanced design antennas indispensable to good home sight-and-sound systems. And, of course, they carry the famous unconditional guarantee from the leading manufacturer in the field - FINCO. - Promote the Color Ve-Log Antennas with pride, sell them with confidence, and profit handsomely.

Audio Oscillators...

it to be in the range 0.1 to 10.0 v . This is in the range of voltages at which the oscillator we have selected will deliver clean signals. (Its rated output is 1 w into 600Ω, or 24.5 v .)

We now decide that a precision calibrated attenuator is not needed here. We do not require great accuracy and we see that the selected voltmeter, with ± 2 percent full-scale accuracy, will easily meet the need.

Now we will strap one side of the oscillator output to ground, to make a single-ended driving source, realizing that we might equally well float the oscillator, omitting the ground strap. Then we will bridge the output with a resistor of "normal" 600Ω. In this case there will be no hazard to our purpose if we choose a common $620 \Omega \pm 10$ percent, 1 w or larger carbon resistor. The oscillator load requirement is entirely satisfied by this range of resistance values; we note that we will not approach the resistor's power dissipation limit. We see that the amplifier's 250,000 Ω input impedance will have negligible shunting effect.

Next we think of what load we should apply to the amplifier. Must we measure at exactly full rated power output, and thus require a precision resistor of high wattage rating? We may later want to know the amplifier's real maximum output power capability with accuracy, but now we only want to measure sensitivity. We might therefore accept the specifications, which define an amplifier that is essentially linear up to 30 w and make our measurements at some convenient fraction of 30 w .

Additionally, real audio power amplifiers must be designed to tolerate variations in load (more upward variation than downward, to be sure). So in this case, we may justifiably use a readily available $15 \Omega 25 \mathrm{w}$ wirewound resistor, and work at about 10 w . We should measure the resistor, to know its accuracy within ± 5 percent or so. A little exercise in algebra

will show that 5 percent variation from the assumed value will only barely affect the accuracy with which we will measure the power by ohm's $P=\frac{E^{2}}{R}$ formula.

Now is our voltmeter going to shunt either the input circuit or output circuit, which we will be measuring, enough to affect the accuracy of the measurement? No. We find its input is rated at $10 \mathrm{M} \Omega$, which is very many times higher than the impedance of either line to be measured:

At the input the $10 \mathrm{M} \Omega$ impedance will be shunting the oscillator's source impedance, its 600Ω load resistor, and the $250,000 \Omega$ amplifier input, all in parallel. The lowest of these is the oscillator source impedance; therefore, the impedance seen when looking from the signal line to ground will be just a little under this value. Similarly, the impedance of the output line will be effectively that of the amplifier's internal source impedance, which we know to be very low.

Calculating that 10 w into 15Ω is 12.4 v , the rest of the measurement is simple. We will warm up the amplifier and instruments first, and make sure with the voltmeter that power line voltage is within the right operating range. With the amplifier's gain set at maximum, the voltmeter connected across the amplifier output and load, the oscillator set at any convenient mid-range frequency, we will increase the oscillator level control until 12.4 v appear at the amplifier output. Now we measure the voltage at the amplifier input. In this case the voltmeter leads may be connected between any ground in the system and any part of the input line, since all signal levels are high in relation to noise, all line impedances are low, and all ground connections, though common, are short.

We find, perhaps, that 0.90 v in gives 12.4 v out. Since 30 w is 21.2 v across 15Ω, we calculate that a little under 1.6 v (1.56 to the nearest $1 / 100$) drive will be required, since 12.4 is to 0.90 as 21.2 is to 1.56. Although we have not rigorously analyzed the case for accuracy, we are safe in guessing we are

Continued on page 74

replace selenium rectifiers with the better kind

TARZIAN SILICON RECTIFIERS without worrying

ABOUT FAILURES OR CALL-BACKS!

Silicon rectifiers perform bettet and last longer than the outmoded selenium units. In most situations, it's simple to make the direct replacement without changing the circuit. In a few easily recognizable instances, a series resistance should be added to the circuit, because of the extremely low impedance of silicon rectifiers.
just follow these simple guide lines:

1. If there is a transformer in the circuit, you'll have no problems.

Make a direct replacement. (Tarzian F4)
3. On tube replacements, you'll have no problems.

Make a direct replacement. (Tarzian S-5251 or other appropriate unit.)
2. If there is series resistance already in the circuit, you'll have no problems.

Make a direct replacement. (Tarzian F4)

insert any 5 to $\mathbf{1 0}$ ohm, 5 or 10 watt resistor in series between the rectifier and the line. You'll have no problems, because the resistor will eliminate the excessive inrush cuirent during the first few cycles after turn-on.

Watch your resistance-and watch your results. No callbacks, no problems, no worries-just dependable performance when you use Tarzian silicon rectifiers.

For information on the complete line of Sarkes Tarzian replacement rectifiers, ask your distributor for Bulletin $62-\mathrm{DL}-4$, or write us for your free copy.

SHOP HINTS

TIPS FOR HOMEANDBENCH SERVICE

Tuner Spring Remover

A tricky shop job that arises frequently is removing the turret retaining spring in a TV tuner. Sometimes it comes off easily but

at other times it twangs across the shop like a projectile, resulting in fast ducking by the technician. Sometimes an extensive search is necessary to find it again. A special tool for removing these springs can be made from an old screwdriver. File or grind a slot in the end, as shown here. The slot should be about $1 / 16 \times 1 / 4 \mathrm{in}$. deep. You will also find this tool useful for removing springs from some parts of record changers, tape recorders; and for twisting wires, etc.-Hugh Gordon, Burlington, Ont., Canada.

HV Tube Puller

In some TV sets the 1 X 2 A tube is difficult to replace because of its location in the high voltage cage. A length of rigid plastic tubing which fits snugly over the plate connector of the tube makes a handy tool for removing or replacing the 1 X 2 . Once the tube is seated, the shaft can be removed by twisting it as it is pulled off.

Plastic shafts of this type are used to extend controls through the backs of sets and are available from many manufacturers.-Terry Maki, Libby, Mont.

Knob Removing Aid

A simple method to remove tight plastic tuning knobs on ac/dc radios is to apply heat from a soldering iron to the tuning capacitor shaft while pulling gently on the knob.-Fred M. Schultz, Ligonier, Ind.

Tool Kit

An attache case, purchased from any department store or luggage shop, can be used as a tool kit.

Atiache case may be converted into a functional tool box.

With the proper installation of a number of spring clips as toolholders, the case is transformed into a versatile tool container. The case has ample room for cleaning solvents, a soldering gun, and a small VOM besides all the necessary hand tools. A separate tool case eliminates loose tools from the tube cad-

A length of rigid

 plastic tubing may be used to replace or pull HV tubes.

SHOP HINTS WANTED

$\$ 3$ to $\$ 10$ for acceptable items. Use drawings to illustrate whenever necessary. A rough sketch will do. Unacceptable items will be refurned if accompanied by a stamped envelope. Send your entries to Shop Hints Editor, ELECTRONIC TECH. NICIAN, Ojibway Building, Duluth, Minn. 55802. The hints published in this column have not necessarily been tried by ELECTRONIC TECHNICIAN editors and are the ideas of the individual writers.
dy and allows more space for tubes and replacement parts. This neat arrangement allows service techniicians to easily check for missing tools after completing service calls. Anthony J. Fusco, Buffalo, N.Y.

Plastic Remair

Cracked plastic cabinets may be effectively repaired by heating a piece of No. 22 gage wire and em-

Small gage wire imbedded with a hot soldering iron forms a strong bond on cracked plastic items.
bedding it in a zigzag fashion along the crack. This method may also be applied to irreplaceable, cracked plastic knobs. The wire is heated and wound around the knob shank as shown.-William Schlickbernd, Cadron, Nebraska.

MISTER SERVICE DEALER:

Make an Extra $12 \underline{1} \mathbf{2} \%$ on your Replacement Speaker Purchases!

$121 / 2 \%$ EXTRA is a big deal! It's three times savings account interest... twice the yield of good bonds ... more than the final net profit of many a business enterprise.

Worth while? You bet! And it's easy. Every time you install a JENSEN Viking replacement speaker you make not 40%, but 45% profit plus your labor charge. No extra cost to the customer-official list prices are very competitive ... you benefit from a built-in better profit structure.

Quality? Of course. You and your customer know that the JENSEN label is synonymous with the best in hi-fi . . . with equipment on every fighting ship ... major commercial aircraft . . . wherever the finest is important.

Can you afford not to use JENSEN Viking replacement speakers? Better see your distributor soon!

Write for Jensen Catalog 1090.

Nominal Size	Model No.	Magnet Wt. Oz.	Imp. Ohms	List Price
3	$3 K 7$.68	3.2	$\$ 3.80$
$31 / 2$	$35 K 7$.68	3.2	3.80
4	$4 K 5$.55	3.2	2.90
4	$4 K 7$.68	3.2	3.55
5	$5 K 5$.55	3.2	3.25
5	$5 K 7$.68	3.2	3.85
$51 / 4$	$525 K 7$.68	3.2	4.35
6	$6 K 7$.68	3.2	4.35
7	$7 W 3$	1.00	3.2	6.55
8	$8 W 3$	1.00	3.2	5.85
10	$10 J 10$	1.73	3.2	9.00
12	$12 J 10$	1.73	3.2	10.50

*DP-Alnico 5 Magnets

Nominal Size	Model No.	Mannet Wt.Oz.	Imp. Ohms	List Price
3×5	$3 \times 5 K 5$.55	3.2	$\$ 4.10$
4×6	$4 \times 6 K 7$.68	3.2	4.80
4×8	$.4 \times 8 W 3$	1.00	3.2	6.00
4×8	$4 \times 8 W 9$	1.00	8.10	6.00
4×10	$4 \times 10 W 3$	1.00	3.2	6.50
4×10	$4 \times 10 W 9$	1.00	8.10	6.50
5×7	$5 \times 7 W 3$	1.00	3.2	5.35
5×7	$5 \times 7 W 9$	1.00	8.10	5.35
5×7	$5 \times 7 V 3$	1.47	3.2	5.40
5×7	$5 \times 7 V 9$	1.47	8.10	5.40
6×9	$6 \times 9 W 3$	1.00	3.2	5.95
6×9	$6 \times 9 W 9$	1.00	8.10	5.95
6×9	$6 \times 9 \mathrm{~V} 3$	1.47	3.2	6.40
6×9	$6 \times 9 \mathrm{~V} 9$	1.47	8.10	6.40

JENSEN MANUFACTURING COMPANY/ DIVISION OF THE MUTER COMPANY/ 6601 SOUTH LARAMIE AYENUE, CHICAGO BB, ILLINOIS Canada: Radio Speakers of Canada, Ltd., Toronto Argentina: Ucoaradio. S. A., Buenos Aires - Mexico: Fapartel, S. A., Naucalpan, Mex.

TOUGHDOG CORNER

Difficult Service Jobs Described by Readers

High Resistance Tiepoint

A customer complained that a Zenith 16021 chassis had insufficient vertical sweep for five minutes after switching the set on. After this time the raster filled out vertically but had very poor linearity, which was not readily adjustable. According to the owner the 6CY7 vertical oscillator and output tube had been replaced on two occasions and vertical adjustments made. The set was then brought to the shop for a thorough checkup.

Preliminary inspection of the set revealed a dirty and rusty chassis. Voltage measurements were taken with a VTVM. The vertical oscillator plate voltage was somewhat low and as the vertical sweep filled out, voltage returned to normal. With a full sweep I was unable to properly adjust the height and vertical linearity. I then proceeded to make resistance measurements in the vertical stages. The VTVM indicated a reading of approximately 800 K at pin 2 , the grid of the vertical output section of the 6 CY 7 . The $2.2 \mathrm{M} \Omega$ resistor from pin 2 to ground was disconnected and it checked out OK. With the resistor unattached, the VTVM still read about 900 K but

Breakdown of a fiber socket support caused loss of high voltage.
the reading should have been infinity. When the leads to pin 2 were removed one at a time, the VTVM indicated the same reading until a wire leading to a tiepoint was removed. When this lead was disconnected, the meter reading rose to infinity. I removed all connections from the tiepoint and checked the resistance to ground from the bare tiepoint. The meter read 900 K . A high resistance path to ground caused by corrosion of the tiepoint changed the input resistance of the vertical output. The tiepoint connections were all twisted together, soldered and taped away from the original point. All parts removed were soldered back and the vertical circuit returned to normal.-Howard Keilholtz, Ellicott City, Maryland.

HV Leakage

A Motorola TV chassis, QTS430, was brought into the shop by the owner for repairs. The set lacked high voltage and tube substitution did not correct the trouble. VTVM voltage readings in the horizontal output stage were normal. An in-circuit check of the horizontal output transformer with a flyback-yoke tester revealed shorted turns in the transformer. The flyback was replaced but still no HV appeared. A thorough resistance and capacitor check was made in the damper circuit with nothing abnormal found. The new flyback and the original yoke were tested and found to be OK. Several 1S2 HV rectifier tubes were tried with no favorable results. Close inspection of the 1 S 2 socket assembly revealed a small brown spot on the socket support near the metal corona ring.

The rectifier socket is attached to the chassis with a mounting screw inserted in the fiber socket support. The fiber material broke down and the HV arced from the corona ring

Corrosion created high resistance from tiepoint connection to ground and caused poor linearity in vertical output stage.
through the support to the mounting screw. No blue arc was visible with the set on because the ring almost touched the socket support and the HV leaked through to the mounting screw. The mounting screw was replaced with a shorter one and the fiber support covered with corona dope. The arcing ceased and the set operated normally.Frank D. McCreery, Providence Forge, Va.

[^2]
\$ell more tubes per customer / \$ave call-backs / \$atisfy more customers

B \& K MODEL 700 DYNA-QUIK DYNAMIC MUTUAL CONDUCTANCE TUBE TESTER with obsolescence protection

Everyday use by thousands of professional servicemen has proved its speed... its accuracy . . . its efficiency.
You can quickly check all the tubes in the set, detect hard-to-locate weak tubes that need replacement ... and sell more tubes. Provides multiple-socket section to quick-check most of the TV and radio tube types the true dynamic mutual conductance way*-plus simplified switch section to check new tube types in Dyna-Quik emission circuit. Also includes provision for future new sockets.

Makes test under set-operating conditions. Checks each section of multisection tubes separately. Checks for all shorts, grid emission, leakage, and gas. Makes quick "life" test. Exclusive adjustable grid emission test provides sensitivity to over 100 megohms. Insures your reputation. Quickly pays for itself.
${ }^{*}$ Makes test under actual set-operating conditions

TESTS All TV and Radio Tubes, Old and New

TESTS Nuvistors and Novars

TESTS 10-Pin Tubes

TESTS 12-Pin Compactrons

TESTS European Hi-Fi Tubes, Voltage Regulators, and Most Industrial Types

B \& K MANUFACTURING CO.

 division of dynascan corporation
1964 ARTICLE INDEX

Antennas	
Antenna Se	2/64-45
Are You Missing the 'Sky' BoatJim Sarayotes	9/64-46
Cash in on UHFLon Cantor	2/64-56
Detect... Select ... InstallJ. E. Bayne	9/64-52
Get Aboard the UHF 'Aerial' Gravy Train!	
Bob McDonal	9/64-50
Improving Color TV ReceptionLon Cantor	12/64-46
Mastering Master Antenna SystemsMarvin Thall	2/64-62
Rotors Sweep the Horizontal	9/64-49
Think Up-Sell Up-Put Up!Dan Roher	2/64-48
Why Some Antennas Have 'It'!Keith Peterson	9/64-43

Audio Communications

Home Multicoupler System 2/64-55
Installing Audio Distribution Systems,
Part IChu
Installing Audio Distribution Systems,
Chuck Overstreet 10/64-69

Batteries \& Semiconductors
Avoiding Pitfalls in Transistor Testing
.William Orloff
4/64-46
Next Time Use a ZenerRobert Brickey
Selling Packaged Power 7/64-64 6/64-46
Servicing Transistorized EquipmentNeil Ruffing 3/64-61

Business

Are Your Business Costs Climbing Too Fast?	
Basic Business Practices for Independent	
Service-DealersMa	2/64-39
Confidence-Important Trait for Technicians	3/64-59
Customer RelationsJohn LaCerda	2/64-59
Don't Go Bankrupt	6/64-40
Estimate or Guesstimate?Reg Bartlett	5/64-60
Looking for a New Location? Part IJohn Mertes	3/64-81
Looking for a New Location? Part II ...John Mertes	4/64-92
'Magic Words' for Success	4/64-95
Telephone Directory Advertising	4/64-50
What's 'Public Relations?'	12/64-45
Writing Better AdsF. Malcolm Minor 1/64-53	1/64-53
Your Credit Policy Can Make or Break You	
Harold Ashe	8/64-56
	12/64-49

Closed-Circuit TV

A Glossary of CC-TV Terms 7/64-48
CC-TV Systems Combat Losses 7/64-44
Closed-Circuit TV Grows UpJohn Haskell 8/64-54
There's Money in Closed-Circuit TV 7/64-50

Editors' Memo

Antenna Season? .. 9/64-34
Bigger and Better .. 5/64-36
Brown Tape .. 6/64-28
CB and the FCC 11/64-38
Honest Service 2/64-42
Keener 10/64-39
On Slaying Goliath 4/64-34
Progress 1/64-34
Through the Looking Glass 12/64-26
Time to Sell 'Gum' 8/64-32
3-D Television? 3/64-38
Hi Fi and FM/Stereo
Another Approach to FM Stereo Demodulation
Milt Langford and Jim Azbell 9/64-60
FM Stereo Receiver Alignment .Stanley Janas 11/64-60
Sampling Demodulators for FM Stereo,Part IIEd Noll 3/64-57
Industrial Electronics
A Look at Meter Relays 6/64-66
Adjustable Speed Control 8/64-67
Carbon Monoxide Alarm 8/64-66
Clean Up with Fluorocarbon Solvents
Intrusion Protection 7/64-45
Opportunities in Remote Control Switching 7/64-39
Phase Shift, Part II Louis Frenzel, Jr. pairing and Troubleshooting Xenon Lamp Devices,
Part I .. W. Neale 7/64-68
Repairing and Troubleshooting Xenon Lamp Devices, Part II . R. W. Neale 8/64-64
Time-Delay Relays .Herman R. Holtz 12/64-68
Tube Aging Benefits-Fact or Fancy?Carl Henry 7/64-66
Allan Lytel 6/64-64
Miscellaneous
Checking Power TransformersGeorge Oborto 8/64-73
Compactrons-Condensed Specifications 5/64-48
Electronic Organ PrinciplesJoe Hayes 10/64-72
Electronic Techniclan's Directory for 1964 5/64-52
Filters Can Do Funny Things H. L. Davidson 1 1/64-5
Guide to Foreign Tubes 5/64-59
How to Choose and Use ControlsNorman NeIson 5/64-43
Know Your Electrolytics 5/64-56
Look Up-Move Up Louis E. Frenzel, Jr. 8/64-68
Pleasure-Craft Electronic Equipment 3/64-53
Relays, Part III
6/64-43
Save Time with Power Tools 5/64-64
Soldering-Profit or Loss? Part IMelvin Zalkin 5/64-54
Soldering-Profit or Loss? Part IIMelvin Zalkin 6/64-48There's Money in Ideas4/64-55
Thinking Smaller 10/64-102
Tools and Techniques for Auto Radio Repair,Part I ...ack Brayton6/64-35
Tools and Techniques for Auto Radio Repair,
Part II Jack Brayton 7/64-52
Tools for Busy Technicians 6/64-50
S. P. Fairchild Troubleshooting! 9/64-72
Ultrasonic Leak Detector 8/64-73What About Potting and Encapsulation?..Jim Hawkins 9/64-76

convergence and color adjustments

 are easier, faster, more accurate!
B\&K MODEL 1240 LOW PRICED PORTABLE co or generator

with crystal-controlled keyed rainbow color display!

Thinnest Horizontal Lines! Smallest Visible Dots! (Just one raster scanning line thick)

Simplifies In-Home (or Shop)
Color TV Set-Up and Servicing

You're the color TV expert when you use the "1240." You have the advantage of $\mathrm{B} \& \mathrm{~K}$ quality - with features not available before at such surprisingly low cost.

Provides crystal-controlled keyed rainbow color display on TV screen to test color sync circuits, range of hue control, and align color demodulators. Shows ability of TV receiver to display color values.

Provides dot pattern, crosshatch, horizontal and vertical lines. Highly stable crystal-controlled count circuit with small-step count assures greater reliability and stability of color, dots, and lines. All horizontal lines and
dots are just one raster scanning line thick. Lines begin off-screen and end off-screen, with no break in line. Dot brightness is adjustable with easily accessible control. Chroma Level Control simplifies color sync trouble-shooting.

Operates on channels 3,4 , and 5 , and adjustable without removing cabinet. No connection inside TV set is needed. Power transformer operated and line isolated to prevent shock hazards. Operates reliably on 105-125 VAC, 60 cps . (Color Gun Killer is available as optional accessory.) Extreme lightness and portability (9 lbs .) make it ideal for in-home servicing.

See it at your $B \& K$ Distributor or Write for Bulletin AP21-T

Radio

Eliminating Hum in Audio Amplifiers	Bob Batchelder	$9 / 64-57$
	Extra Profits with Rear Seat Speakers	$4 / 64-44$
Stop Unwanted OscillationsEugene Fleming	$6 / 64-53$	

Shop Hints

ol CompressorThomas Casey	6/64-56
Another Spare HandH. Muller	8/64-60
Antenna Clip AdapterJohn M. Tomlan	3/64-68
Automatic Screwdriver AdapterJan Girardot	11/64-68
Backward SawHarry J. Miller	8/64-60
Caddy LightWilliam Geneau	2/64-68
Cap/Connection ExtensionsC. J. Barnes	8/64-60
Capacitor Replacement TipN. V. Travis	6/64-56
Capacitor TestH. Josephs	4/64-64
Circuit KillerBob Hutson	11/64-68
Cleaning Record Changers	10/64-78
Clip-Lead HolderE. P. Skretka	10/64-78
Collaring DogsGilbert Clemons	10/64-78
Colored LightsA. J. Fusco	2/64-78
Dial Cord SlippageH. E. Cantrill	3/64-68
Drill Chuck KeyA. J. Fusco	3/64-68
Easy EtchingH. Josephs	6/64-56
Emergency Continuity TestJ. M. Tomlan	2/64-68
Extra Stereo SpeakerL. Davidson	11/64-68
Fail SafeHarry J. Miller	7/64-60
Feed Line AidG. E. McClaskey	9/64-66
Functional Tool HolderF. M. Burton	10/64-78
Fuse ClipWm. Schlickbernd, Jr.	3/64-68
Grille Cloth InstallationPaul Hennig	11/64-68
Head Light ...S. Clark	1/64-64
Hose Clamp HandlesAnthony J. Fusco	5/64-70
HV Tube PullerTerry Maki	12/64-58
Illegible Tube NumbersHenry Muller	4/64-64
Intermittent LocatorM. Vincek	5/64-70
Jig Pad ...Fred Stone	1/64-64
Knob ReamersRonald L. Ives	5/64-70
Knob Removing AidFred M. Schultz	12/64-58
Liquid Tube PullerClem O'Brien	1/64-64
Mast SubstituteSamuel H. Miller	8/64-60
Miniature Hand DrillF. M. Burton	5/64-70
Mobile HookupStan Clark	4/64-64
Nut Driver RepairE. S. Broyles	4/64-64
Nut Driver TipDon Studt	6/64-56
Nut HolderTom Ballentine	2/64-68
Parts IdentificationHenry Muller	1/64-64
PCB CleanerFred Harmon, Jr.	2/64-68
Phono Motor Speed-UpVirgil W. Zieg	8/64-60
Plastic RepairWillian Schlickbernd	12/64-58
Preventive Maintenance ..Richard D. Mohrmann	1/64-64
Quick Color Antenna CheckRobert Appel	3/64-68
Rectifier SubstitutionJohn Little	9/64-66
Remote Control TesterBob Hutson	7/64-60
Renewed Screw HolesH. Josephs	9/64-66
Repeated Silicon Rectifier Failure	
G-E Service Dept.	7/64-60
Rotator ThawerHenry Miller	2/64-68
Safety First ..RCA	10/64-78
Scratches Mark SpotDavid F. Jacobs	4/64-64
Screw HolderWilliam R. Skilling	4/64-64
Short DetectorH. Muller	4/64-64
Simple MonitorJames J. Porten	5/64-70
Skid-Proofing MetersS. Clark	9/64-66
Stringing AidGeorge Boettcher	1/64-64
Strobe SaverSamuel Jacobs	4/64-64
Technical LibraryRCA	2/64-68
Template TipEd Mayover	6/64-56
Tightens Pocket ClipsA. J. Fusco	1/64-64
Time \& Work SaversLeonard Blechman	9/64-66
Tool KitAnthony J. Fusco	12/64-58
Transformer CheckSi Clark	6/64-56
Transparent Heat ChamberTom Deedy	2/64-68

TV Jig ...F. M. Burton	8/64-60
TV Shock ..T. Wildon	6/64-56
Tuner RepairJohn A. Krzvwulak	7/64-60
Tuner Spring RemoverHugh Gordon	12/64-58
Twin Head StripperH. Josephs	8/64-60
Ultor InsulatorJohn Timm	2/64-68
Vertical ConvergenceG-E	10/64-78

Technical Digest
 ADMIRAL

Schematics for TV Chassis C21A1, C21A1-1E and C21A10-1C Stamped Run 10 and Run 11 - Component Listing Corrections

TV Chassis C21A1-1A, -1E and C21A10-1C Stamped Run 11-Improving Focus
TV Chassis Stamped Run 11, C21A1-1A, -IE and C21A10-1C-AGC Adjustment
-
TV Chassis Stamped Run 11, Models C21A101--1A, -1E C21A10-1C-Changes

6/64-35
TV Chassis Stamped Run 11 with Suffix "E"UHF Channel Adjustment

2/64-39

Color TV Chassis D 11-Field Adjustment of
Sync and Phase

AIRLINE (Montgomery Ward)
TV/FM/Am Phono Combinations, WG5914A, $5944 \mathrm{~A}, 5974 \mathrm{~A}, 6914 \mathrm{~A}, 6955 \mathrm{~A}, 6974 \mathrm{~A}-$ Poor Resolution

1/64-35
Same Chassis-Drive Cord Replacement 4 4/64-37
FM Section of TV Combination Models WGS 914 -5944A, 5974A-6814A; 6944A-FM Alignment Setup

3/64-41
DELCO
Oldsmobile and Pontiac Reverberation Amplifier Alternator Whine

1/64-35
All Chassis-Intermittent Noises 5/64-39
"Wonder Bar" Radios-Upside Down Operation 4/64-37
Auto Radio, Chevrolet 985876, Buick 980655A, Oldsmobile 982249, Pontiac 984077 Alternate 1964 Audio Circuit Push Button Radios

6/64-31
All 1964 Push Button and Manual Tuning Auto
Radios-Dead Radio Checks 3/64-4
DUMONT
TV Chassis 120734-A and 120735B-Circuit Changes

10/64-40

EMERSON

TV Chassis 120677-A, 120678-B, 120679-A, 120689-A--UHF Channel Strips

5/64-39
Stereo AM/FM Hi Fi Phonograph Record Changer 819206-Adjustment Settings
TV Chassis $120744 \mathrm{c} / 753 \mathrm{~J}$-UHF Tuner Field Alignment

9/64-37

TV Chassis $120677-\mathrm{A},-678 \mathrm{~B},-679 \mathrm{~A},-684 \mathrm{~A}$, 689A--Field Modification Note

9/64-37

GAMBLE-SKOGMO

TV Chassis TV2-9542A-Centering 23 in. Receivers

5/64-39

GENERAL ELECTRIC
TV Chassis QX Models M500X—Horizontal Pulling

3/64-41
TV Chassis "NW"-Production Changes 4/64-37
TV Chassis "NW"-_Production Changes 5/64-39
All TV Sets—Deflection Yoke Tests 6/64-31
All Sets-Shorted Yokes 7/64-35

TV "FY" Color Chassis-Horizontal Interfer-
ence During Alignment 8/64-35
TV Chassis DA RW 365-Power Tuning
Function ..11/64-22
MAGNAVOX
Companion Speaker Systems Models S-62, S-63
\& S-65-Connections
5/64-39
Combination, Model 1 MV/4381-AM RadioInterference in TV sound7/64-35
Series 75 AM/FM Tuners-FM Stereo Align- ment Preliminaries 2/64-39
MOTOROLA
TV Chassis TS-908 Models 23CK37, 38, 39, 40,42, 44 \& 46-Tuner Disassembly3/64-41
Color TV Chassis TS-908-High Voltage Regu-lator AdjustmentColor TV Chassis TS-908-Circuit Guard4/64-375/64-40
PHILCO
All 1963 "L" Line TV Chassis-Noise ControlSetup (Where Used)3/64-41
TV Chassis B, All 1963 "L" Line-Checking Horizontal Phase Comparer Selenium Diode 4/64-38TV Tuners TT82, TT83, and TT84 Series-In-stallation and Adjustment of UHF ChannelStrip
Color TV Chassis 14M91-No Color, Sound OKTV Tuners VHF TT-165 and VHF-155A-DiscRemoval
\qquad11/64-24
RCA
Some 1964 TV Models-UHF Tuner 3/64-41
Color TV Chassis CTC 15-"Boosted" Boost 6/64-32
Color TV Chassis CTC 15-Convergence 7/64-35
TV Color Chassis CTC 15-Blue Lateral Magnet 8/64-35
Color TV CTC 15-High Voltage RegulationVHF TV Chassis KRK 102 -S, 107-8, 113 and1/64-36
UHF KRK, 112-Tuner Field Service 2/64-39
Current Sets, VHF Tuners-General Description 11/64-26
SYLVANIA
TV Chassis 57319 in. Portable-Revisions in High Noise Impulse areas 7/64-35
All 21 in. 70 deg. Glass Shadow-mask CRTs- Color Purity 8/64-35
TRUETONE
Record Changer, Model 400B755--Set-Down Adjustment 4/64-38 9/64-38TV Chassis 2DC3417B-Focus
WESTINGHOUSETV Chassis--Width and Linearity Coil Opera-tion-TV Chassis V-2443-HorizontalInstability
Tape Recorder Models H-21R, H-22RS, H-24RS, H25R
All Tape Recorders-Troubleshooting with Rec-ord-Play Switch
Phono Amplifier, Models H-105/106ACS-Circuit Operation

Television-Color

A Technician Views the Synchronous Color Demodulator \qquad Reg Bartlett	8/64-39
Aligning Color ReceiversFred Jason	3/64-49
Change that Color CRT Fast!Homer Davidson	8/64-42
Color Convergency in 15 MinutesAl Nanni	10/64-59
Color High Voltage SystemsJohn Holmes	8/64-46
Color Trouble ..Joe Hayes	8/64-52
Kit Builders Have Graduated	3/64-45
Saving "Phase" with Your Color TV Customers	
Don Multer	10/64-65
Simplified Color ConvergenceBob Dunn	8/64-49
Sound-the Easy SectionBill Ganglinger	11/64-54
The One-Gun Chromatron	8/64-45

Test Equipment

Choosing and Using Audio Oscillators, Part I .. Choosing and Using Audio Oscillators, Part II ... Part III ..Art Walters 12/64-53 Color Convergence in 15 MinutesAl Nanni 10/64-59
Reach for Your VTVM 8/64-38
Saving "Phase" with Your Color TV Customers
Don Multerer 10/64-64
Selecting a Scope for Industrial WorkJ. P. Shields 10/64-66
Selecting and Using Color TV Test Equipment
Bob Dunn 3/64-65

Use the VOM ..Eugene Pudil 4/64-41
Why You Need a Transistor Tester....Pudil \& Stevens 10/64-61

Tough Dog Corner

Richard F. Doyle	1/64-62
Circuit ChangesL. Boutin	3/64-66
Corroded ClipCharles Yountz	11/64-66
Film BreakdownCalvin Smith	1/64-62
Foxy Dog ...John Yenneti	10/64-76
Grounded ControlJ. H. Wyatt	5/64-55
High Resistance CoilL. L. Davidson	11/6
High Resistance TiepointHoward Keilholtz	12/64-60
Hot CapacitorAlan G. Sorenson	7/64-58
Hum ...R. S. Bartlett	4/64-62
HV LeakageFrank D. McCreery	12/64-60
Intermittent FilamentCharlie Ferrell	3/64-66
Lead-In TroubleJack Fennasi	6/64-54
Leaky CapacitorReg Bartlett	5/64-66
Light Sensitive No. 2Larry Mings	4/64-62
Loose RivetScott R. Commons	4/64-62
Lower Frequency ConversionReid Montgomery	7/64-58
PC Network DilemmaArnold E. Nemmers	8/64-58
Resistor "Run-Around"Gary G. Backen	8/64-58
Shocking PortableJoe R. Sport	9/64-64
Shorted FilamentL. E. Walker	2/64-66
Shorted Turn ...Reg Bartlett	6/64-54
Spurious OscillationsClarence A. Bell	10/64-76
Under-rated CapacitorHoward Keilholtz	3/64-66
Wrong Polarity Donald H. Van Engen	5/64-66
Yoke ClampPaul H. Besler	2/64-66

Two-Way Radio

A Look into Communications Receivers..Doug Hedin 1/64-54 Communicatons MicrophonesGeorge Riley 1/64-39 Establishing a Two-Way Service Shop
..R. F. Clendenin 1/64-46
Pocket Pagers ... 6/64-61
Servicing Citizens Bank Communications
EquipmentJohn Haskell 1/64-50
Two-Way Radio Speeds Plan Operations 6/64-63

Get the CRT you need fast from your Sylvania Distributor

He has tubes for 'scopes, radar indicators, video recorders, industrial monitors, TV set checkers. These tubes benefit by the latest Sylvania advances in cathode-ray tube technology: high brightness, high resolution, double deflection, multiple guns, high visibility, low heater power, high deflection sensitivity, and fiber optics.

Rely on your Sylvania Tube Distributor for anything you need in CRT's for design or replacement. If he
doesn't have exactly what you want, chances are he can get it for you-quickly.

For technical data, see new Industrial and Military CRT Catalog ET-3914 or, if you are a design engineer, Systems Designer's CRT Handbook ET-3924. Contact your Distributor or write Electronic Tube Division, Sylvania Electric Products Inc., Box 87, Buffalo, N. Y. 14209.

INDUSTRIAL ELEGTRONIG SECTION

Time-Delay Relays 68Herman R. Holtz presents a guide to application andselection of electro-mechanical devices
Phase Shift Part II 71

Lovis Frenzel, Jr. continues his in-depth analysis of phase-shift circuits and applications

TimeDelay Relays

by Herman R, Holtz

A guide to application and selection of time-proven electro-mechanical devices

Fig. 1-Flow control and dry-pump protection.

Few control devices are as versatile and reliable as electro-mechanical relays. Basically inexpensive, simple, rugged, and requiring little maintenance, relays have grown into a vast family.

An important member of the family is time-delay relays. Time-delay relays are used to delay switch actuation (commonly from 5 to 30 minutes) following actuation of another switch.

Applications

Sometimes, for example, heat continues to radiate for a time from tubes and other components in forced-air-cooled equipment. Through time-delay relays the blowers continue to operate for several minutes after the equipment main switch is turned off. In other cases, equipment must be shut down or started up by stages - and a series of relays having progressively longer time delays may be used to control proper circuit sequence.

Aside from these general applications, time-delay relays are most useful in automatic control and failsafe equipment. They are used to shut down jammed, overloaded, overflowed equipment; to protect meter movements against slamming; to prevent "dry pumping" or for dozens of other comparable applications.

A time-delay relay used to prevent pump damage is shown in Fig. 1. The tank contains water used in a continuous-flow process. It is supposed to be kept full at all times by a pressure switch and a pump. When the water falls below a certain level,

Fig. 2-Meter overload protection.

Fig. 3-Overload control of automatic botiling line.
the pressure switch closes a circuit to the pump through the pump switch. The pump supplies water to the tank until the water pressure opens the pressure switch, stopping the pump.

Should the water supply fail, the pump would be pumping "dry" and probably be damaged. The flow switch and time-delay relay - not part of the basic control arrangement - protect the pump against this condition.

When the pressure switch is actuated, the circuit to the pump is completed through normally closed contacts 3-4 of the time-delay relay. The same voltage is applied to the relay coil, starting delay time.

After a few seconds the contacts transfer; contacts $3-4$ break and contacts $1-2$ make. If water is flowing, the flow switch is closed and the pump continues to operate until the tank is filled and the pressure switch contacts break.

If water has not been flowing, the flow switch is open and the circuit to the pump is broken. The pump shuts down, having run dry for only a few seconds. Note that the time-delay feature of the relay is needed here to allow the pump to build up a flow and close the flow-switch contacts.

A meter measuring intermittent voltage or current coupled over by a transformer will sense two transients, or spikes, on each measurement - one at the beginning and another at the end of the measurement. At these two instants the meter may be overloaded and the needle slammed against the stop. This
can be prevented as shown in Fig. 2 by shunting the meter with a short circuit (the normally closed contacts 3-4 of the time-delay relay) during no-current conditions. When current is applied the relay will be energized but the contacts will transfer only after expiration of the time delay, which is set long enough for the transformer secondary current to stabilize. Thus, the meter will escape the transient and measure only the steady-state voltage or current. When the current is removed and the relay de-energizes the contacts transfer immediately and the protective short circuit is restored until the next measurement.

Another application of time-delay relays is shown in Fig. 3, symbolizing an automatic bottle-filling and packaging system. The conveyor motor is powered through a circuit completed through normally closed contacts 3-4 of the time-delay relay. The filler motor is driven through similar contacts on the relay. Each time a bottle moves across the bottle-limit switch, the limit-switch contacts transfer and energize voltage for the relay coil. Normally, the bottle moves on and beyond the switch before the time-delayed contacts transfer. The limit switch contacts transfer again and the relay energizing voltage is removed. Therefore, no contact transfer takes place as long as the line moves on.

Another limit switch, wired in parallel to the first one, operates in the same way for the case-filling unit. Should a stoppage occur - should the limit switch contacts remain transferred and keep the relay

Fig. 4-Premature-restart protection.
TABLE I
Considerations in Selecting Relays

REQUIREMENT OR CONSIDERATION	REMARKS
Relay must be used in explosive, corrosive, dusty or moist atmosphere	Try sealed units, such as those in glass tubes with octal or noval bases; also mercury plunger types
Small mounting space	Many miniature units available
Need large number of contacts.	Try telephone types
Relay must latch up on transient pulse	Determine pulse duration and make sure relay has adequate operation time (see Table 2)
For office equipment; must be quiet in operation	Try mercury plunger types
May need relatively frequent replacement	Many plug-in types available
May need to change delaytime occasionally	Many types available with adjustable delay

TABLE II

Relay Parameters

RATING	EXPLANATION
Contact arrangement	Like switches; includes number and configuration: SPST, DPDT, efc; make before break, break before make, etc.
Contact rating	Current handled safely at specific voltages
Coil ratings	Voltages, current, resistance
Pick-up or pull-in voltage	Voltage across coil necessary to energize
Drop-out voltage	Voltage at which coil de-energizes
Operate time	Time between voltage applieation and contact transfer
Bounce time	Time for confacts to settle after transfer; add to operate and release time if closure time is critical.
Release time	Time for contacts to transfer when energixing voltage removed; inverse of operate time

energized until its contacts transfer - the conveyordrive and filler-motor circuits are broken and the line automatically shuts down. When the stoppage is cleared and the bottles are removed from the limit switches the operation resumes. A pushbutton reset switch makes it unnecessary to remove bottles from the limit switches to restart the line and pressing the limit switch restarts the line.

In all the foregoing circuits contact-transfer delay followed relay coil energizing and the contacts returned to their normal, or de-energized-relay state when the energizing current was removed. However, time-delay relays also may be obtained with the opposite delay arrangement: contacts transfer immediately when the relay is energized, but when the energizing current is removed the contacts re-transfer only after a delay. This type relay has as many useful applications as the first.

In some systems, equipment cycles on and off frequently but it is necessary to prevent the equipment from restarting immediately after shutoff pipes may need a few minutes to drain before a pump is started again or heating elements may require a cooling-off period before current is again applied to them (Fig. 4).

The relay shown in Fig. 4 has a main switch (contacts 1-2 and 3-4) and an auxiliary switch (contacts $\mathrm{C}-\mathrm{NC}$ and $\mathrm{C}-\mathrm{NO}$). Both sets of contacts transfer immediately when the relay is energized but only the auxiliary switch re-transfers when the relay is de-energized and the main switch re-transfers only after a delay. Initially, when the energizing current is applied, the relay coil is energized through normally closed contacts $1-2$. Although the current is broken as the contacts transfer it is re-established immediately through C-NO. Later, when the equipment is shut off, the auxiliary switch contacts retransfer (C-NO breaks and C-NC makes) but main switch contacts 1-2 remain open while contacts 3-4 remain closed for the duration of the delay. Because voltage application will not energize the relay, it will be impossible to restart the equipment until the delay is over.

Selection

Deciding what relay to use for a particular application involves a large number of considerations because of the many variables in both relay design and operating conditions. Large as the relay family is, random catalog research can easily develop into an arduous and frustrating chore. To prevent this and guide your catalog research, it is advisable to analyze your requirements in detail; imposing or specifying only essential characteristics. Some factors you may wish to consider are listed in Table I, along with some helpful comments. Then a list of relay parameters is provided in Table II to give you some idea of the ways relays are rated. Restricting parameters to those reflecting your actual needs can be quite effective in keeping costs down.

[^3]
Phase

> Understand oscillator networks, control circuits, PSK, SSB and other important circuits using this important principle

PART II

by Lauis E. Frenzel, gr,

Fig. 1-Simplified schematic of phase shift oscillator.

Shift

You wouldn't think that a phenomenon as simple as phase shift could have so many applications. But it does. The phase shift oscillator of Fig. 1 is a good example. An oscillator is defined as an amplifier with feedback such that the output is in phase with and enforces the input.

This is exactly what a phase shift oscillator is. The common cathode electron tube amplifier has an inherent 180 deg phase shift. As seen in Fig. 1 the plate output is fed through an RC phase network which has a total shift of 180 deg. This plus the 180 deg shift of the tube makes a total shift of 360 deg. Since a 360 deg shift is the same as zero deg the grid of the tube is actually in phase with the plate. With the input feeding the output in phase, the circuit oscillates. The only other requirement for
oscillation is that the gain of the amplifier be great enough to overcome the loss in the RC phase shift network. For the network shown, a gain of 29 or greater is required.

The phase shift network in the oscillator consists of three cascaded sections of the simple RC shifter described earlier (Fig. 2A Part I). Each section provides a 60 deg shift with the three giving a total of 180 deg. Four 45 deg sections could also be used. Other phase shift oscillators have been designed using cascaded sections of the network of Fig. 2B (Part I). Either three or four sections can be used.

The frequency of a phase shift oscillator is de-

Fig. 2-Phase controlled thyratron rectifier circuit.
termined by the values of R and C in the phase shift network. This network produces a 180 deg shift at only one frequency and it is at this frequency that oscillation occurs.

The big advantages of the phase shift oscillator are simplicity, stability, good sinusoidal waveform, and the ability to be used inexpensively at very low frequencies. The inductor in an LC oscillator at frequencies below 100 cps becomes very large and expensive. The simple, inexpensive RC network of the phase shift oscillator allows operation at frequencies well below 10 cps.

Control Circuit

The popular industrial control circuit shown in Fig. 2 uses a phase shift network like the one in Fig. 5 (Part 1) to control the average current through a load. This circuit has a variety of uses in control applications. The load shown here is a simple resistor, but it could be a de relay for off/on control of other circuits, a variable temperature heating element or a de motor whose speed is a function of the average current in its windings.

The only difference between this circuit and the one of Fig. 5 (Part I) is that an inductor (L) is used instead of a capacitor, and a thyratron tube with a load is connected to the transformer primary. By varying R a lagging phase shift from 0 deg to 180 deg can be produced between the junction of L and R and the center tap of the transformer. The signal applied to the primary winding is usually the 60 cps ac line voltage.

The thyratron will conduct current when its plate is positive with respect to its cathode and when a positive bias of sufficient amplitude is applied to the grid. If the resistor R is adjusted for maximum resistance, the phase shift will be 0 deg. The plate and grid signals will be in phase and the tube will conduct during the positive half cycles of the input sine wave. The thyratron then is essentially a grid controlled half wave rectifier.

If the resistance is now decreased, a phase shift will be introduced, and the grid voltage will lag the

Fig. 3-Binary pulses and corresponding PSK signal.
plate voltage. The tube will still conduct when both grid and plate are positive, but because of the phase shift the tube will conduct for less than a half cycle. As more phase shift is introduced, the thyratron conducts for even a shorter period of time until a 180 deg shift is reached where no current flows through the tube or load. The average dc in the load depends on the amount of phase shift present, maximum current at 0 deg and zero current at 180 deg.

This circuit is also used with a capacitor as the reactive element in a phase shift circuit and can be used to control the current through an ignitron or SCR instead of the thyratron.

Digital Data Transmission

One of the most interesting applications of phase shift is in digital data transmission. Digital binary data is usually in the form of off/on rectangular pulses, but any electrical signal that can assume two distinct states can also be used to transmit the data. A continuous sinewave could represent one of these states, while the same sinewave, shifted 180 deg could represent the other. Binary data transmission using a phase shifted sine wave is called phase shift keying (PSK). Fig. 3 shows a conventional binary pulse signal and its PSK equivalent.

The digital pulses are fed to a special circuit called a biphase modulator. The modulator causes the carrier sine wave to be shifted in phase 180 deg at the trailing edge of each binary pulse (bit). This technique is called differentially coherent PSK. The data is transmitted by keying the phase of the carrier relative to the phase of the preceding transmitted bit. In another method, coherent PSK, the phase of the carrier is keyed relative to a stable phase reference that is transmitted along with the signal. This is more complex and requires more bandwidth, so differentially coherent PSK is preferred.

The transmitted data is retrieved at the receiver by comparing the phase of the carrier to a phase reference. In coherent PSK the reference is transmitted along with the data. The phase of the differentially coherent PSK signal (like Fig. 3) is com-

Continued on page 74

Fig. 4-Phasing method of SSB.

Color-TV servicing is profitable

GET THE MOST OUT OF IT WITH COLOR-TV TEST INSTRUMENTS FROM RCAPIONEER OF COLOR TV

Making last-minute convergence adjustments on a color-TV receiver with an RCA WR-64A Color-Bur/Dot/Crosshatch Generator.
(A) RCA WR-64A COLOR-BAR, DOT/CROSSHATCH GENERATOR
Low-cost, lightweight, portable instrument that provides all essential Color-TV test patterns: - Color-bar pattern: ten bars of color for checking phase and matrixing, and for automatic frequency and phase alignment.

- Crosshatch pattern: thin sharp lines for adjusting vertical and horizontal linearity, static and dynamic convergence, raster size, and overscan
- Dot pattern: small dots to facilitate accurate color convergence.
\$189.50* with output cables
(B) RCA WR-70A RF/VF/IF MARKER ADDER
For use with a marker generator and a sweep generator. Used for RF, IF, and VF sweep alignment in color and B\&W TV receivers. - Choice of four different marker shapes
- Provides very high-Q markers of high amplitude and narrow bandwidth
\$74.50* complete with cables
(C) RCA WO-91A 5-INCH OSCILLOSCOPE
A wideband scope for checking colorburst signals and general troubleshooting.
- Dual bandwidth: 4.5 Mc at 0.053 volt rms/in. sensitivity; 1.5 Mc at 0.018 volt $\mathrm{rms} / \mathrm{in}$. sensitivity.
- Continuously adjustable sweep frequency range: 10 cps to 100 Kc
$\$ 249.50$ * including direct/low capacitance probe and cable, ground cable, and insulated clip.
(D) RCA WR-69A TELEVISION FM SWEEP GENERATOR
For visual alignment and troubleshooting of color and B\&W TV receivers, and FM receivers.
- IF/Video output frequency continuously tunable from 50 Kc to 50 Mc .
- Sweep-frequency bandwidth continuously adjustable from 50 Kc to 20 Mc on $\mathbb{I F} /$ Video and FM: 12 Mc on TV channels \$295.00* including all necessary cables
(E) RCA WR-99A CRYSTAI.CALIBRATED MARKER GENERATOR
Supplies a fundamental frequency RF carrier of crystal accuracy for aligning and troubleshooting color and B\&W TV receivers, FM receivers.
- Most-used IF and RF frequencies indicated on the dial scale - Sound and picture carrier markers available simultaneously
$\$ 256.50$ * complete with output cable and phone tip.
(F) RCA WT-115A COLOR PICTURE TUBE TESTER
Designed specifically to test. color-TV picture tubes, either in or out of the set. Tests each gun for emission quality, inter-electrode leakage and shorts.
- Large sensitive meter with separate 3 -color scales
- Provision for accurate adjust-

New RCA Color Pict-O.Guide is now avail able through Authorized RCA Electron Tube Distributors.
ment of cut-off point for each gun
\$89.50* with cable, carrying case and socket assembly
See them all at your Authorized RCA Test Equipment Distributor.

* Optional Distributor Resale Price All prices are subject to change without notice. Prices may he higher in Alasku, Hawaii and the West.

RCA ELECTRONIC COMPONENTS AND DEVICES, HARRISON, N.J.
RCA The Most Trusted Name in Electronics

PHASE SHIFT

Continued from page 72
pared to a phase reference in the receiver. The differentially coherent PSK signal is full wave rectified to remove all phase information and is then used to synchronize a stable phase reference oscillator. Phase comparison circuits in the receiver reproduce the original digital pulse data.

The big advantage of PSK is that it conserves spectrum space by occupying only a very small bandwidth, smaller than the bandwidth required by a signal using AM, FM, FSK, or forms of pulse modulation. PSK receivers can use narrow bandwidth circuits which aid in improving signal-to-noise ratio. Another advantage of PSK is that like FM and FSK, peak power is continually being radiated under modulation.

Single Side-Band

Another modulation technique using phase shift is the phasing system of single sideband (SSB). An SSB signal is an AM signal from which one sideband and the carrier have been removed. Only one sideband is transmitted. There are two basic methods of generating a SSB signal, and both use balanced modulators to suppress the carrier. In the filter method, a very selective filter is used to reject the sideband and pass the other. The phasing method of SSB generation makes use of AF and RF phase shift networks to phase out one sideband.

The block diagram of a phasing type SSB gen-

The ENDECO Desoldering Iron Removes Soldered Components in seconds . . . without damage!

Endeco melts solder, then removes it by vacuum - Leaves terminals and mounting holes clean • Resolders too * Onehand operation - Temperature controlled for continuous use - Ideal for use with shrinkable tubing - 4 tip sizes • Quickly pays for itself in time saved - Only $\$ 18.75$ net.
SMALLER SIZE AVAILABLE. SEE YOUR DISTRIBUTOR OR WRITE:
ENTERPRISE DEVELOPMENT
CORPORATION
1102 E. 52ND. INDIANAPOLIS, IND. 46205
erator is shown in Fig. 4. Here the audio modulating signal and the RF carrier are applied directly to the upper balanced modulator. The carrier frequency is suppressed while the upper and lower sidebands (sum and difference frequencies) appear at the balanced modulator output. The audio and carrier are also applied to the lower balanced modulator but through 90 deg phase shift networks. The carrier phase shifter can be a simple circuit like the RC bridge of Fig. 3 (Part I) or the double tuned transformer mentioned earlier. The audio phase shifter is not so simple, however. Unlike the carrier that is fixed frequency, the AF (voice) signal generally covers the 300 to 3000 cps range. The phase shifter must produce a constant 90 deg phase shift over this range of frequencies. The circuits developed to do this are complex networks made up of resistance and capacitance.

The output of the lower balanced modulator also contains the upper and lower sidebands but they are modified by the 90 deg phase shifts. The carrier is suppressed.

The outputs of the two balanced modulators are then added together. The phase shifts introduced cause one set of sidebands (either upper or lower depending on circuit arrangement), to cancel while the others aid thus producing a single sideband output.

AUDIO OSCILLATORS

Continued from page 56
probably within 5 percent. Although we chose a good meter, rated accurate to 2 percent of full scale, we took readings below full scale. And there was a little error because of the $\Omega 5$ percent uncertainty of the amplifier load resistance.

Our practical purpose is easily served, however. We may be confident that if we can get at least 1.6 v out of the preamplifier, we may be sure of driving the power amplifier to its rated output, and that is what we set out to find.

We have seen that even this very simple case involved us in many considerations. Most of these become second-nature as many measurements are made, but all must be given, if we are to avoid measurement errors.

Technicians who make frequent use of audio oscillators find it convenient to make up a number of resistive voltage divider networks, and have them handy. When low-level signals are wanted, these networks drop the oscillator's output voltage allowing it to work in its high output range while delivering the desired low voltage for the test. Two simple examples are shown in Fig. 2.

When testing sensitive amplifiers with very low-level signals, special care is always necessary to avoid hum. If one of the conductors between oscillator and tested amplifier carries circulating power-line currents, through a loop, power-line hum appears in series with the test signal. It will usually be good practice to leave the G terminal on the oscillator unconnected. The two output terminals, being connected then to the input of the tested amplifier, are floated at the potential of the amplifier input, and no loop can be formed.

750. The rectifier is rated at 1.0 amp. Semitronics.

OUTLET BOXES

A line of pre-wired, heavy-duty electrical outlet boxes is announced. The units are ready to plug in for instant use, and were designed for industrial, laboratory and workshop use. Measuring four feet in length, the boxes are $11 / 2 \times 11 / 8$ in. The units are of steel construction with mounting ears, and are finished in

textured gray hammertone. They are rated at $15 \mathrm{amp}, 130 \mathrm{v}$ continuous duty. Model 1000 has 12 "U" ground outlets, a pilot light and an on/OFf switch. Model 1001 unts are similar, but have no pilot light or ON/OFF switch. Also available is Model 1010 with 8 " U " ground outlets, each controlled by an individual switch and pilot light. Waber.

POWER TRANSISTORS

202
Two silicon power transistors with VCEO ratings of 400 v and collector current ratings of 1 and 2.5 amp are announced. The manufacturer reports that an immediately practical application of the devices is in large screen TV horizontal and vertical sweep circuits. Satis-

new Allen type screwdrivers

XCELITE, INC. 32 BANK ST., ORCHARD PARK, N. Y. Canada: Charles W. Pointon, Ltd., Toronto, Ont .. . for more details circle 44 on post card

> Can you service mobile radio and CB?

It's a big business . . . and getting bigger every day. There are thousands of mobile radio systems now in use plus thousands more marine and CB sets. $B U T \ldots$ ONLY MEN WITH COMMERCIȦ FCC LICENSES ARE LEGALLY AUTHORIZED TO SERVICE THEM. Don't let this profitable new business get away from you. At home, in your spare time, a Cleveland Institute training program will prepare you for the tough new FCC License Exam . . is backed by this remarkable offer: "If you complete the CIE program yet fail the FCC License Exam specified, all tuition will be refunded".
Get details. Send coupon for our book "How to Get a Commercial FCC License". There's no obligation.
Cleveland Institute also offers the following Electronics courses: Electronics Technology, Industrial Electronics, Broadcast Engineering, and Electronic Communications.

If NEW PRODUCTS

factory operation of the horizontal output stage with a semiconductor device has been a major problem in the design of solid state, large screen TV, both technically and economically. Development of an advanced silicon wafer technique known as the triple sequential diffusion process will permit low cost volume production of the devices. Delco.

UHF-TV CONVERTER
203
A line of UHF-TV converters is announced. The manufacturer re-

ports that the deluxe model converter features a new high built-in amplifier solid state circuitry for peak all-channel reception. Gavin.

ANTENNA

204
A version of the Log-Periodic concept - the LPV-VU All-Band VHF/UHF/FM antenna is an-

nounced. By introducing parallel plate capacitors into the dipoles and adjusting precisely their capacitance and location, the design creates more driven elements, the an-
nouncement said. Each LPV-VU is provided with a VHF-UHF-FM signal splitter to separate and feed the VHF-UHF-FM signals into their respective inputs. JFD.

SIGNAL GENERATOR
205
A signal generator for troubleshooting AM and FM radio, transistor radio, black/white and color

TV and communications equipment is announced. The model 1500 has a separate high level audio output for checking Hi Fi sets and video amplifiers. The unit provides seven overlapping bands, 115 kc to 110 Mc to cover frequencies required in normal service work. A panel slide switch changes the generator oucput from a RF sine wave to 400 cps AM modulated RF, each with control for adjustable output level. Mercury.

MINIATURE IRON

206
A miniature soldering iron having three wattages is introduced. A choice of 25,30 , or 35 w is avail-

able. The iron weighs 3 oz , is $6 \frac{1}{2}$ in. long and has 18 optional nickel plated or clod tips available. American Beauty.

SOLID STATE PREAMPLIFIER 207
An FM preamplifier, designed to overcome the problems of FM stereo reception, is introduced. FM stereo broadcasts are weaker than monaural. According to FCC tests, an FM station gets twice as much range on monaural broadcasts as it gets with FM stereo. Thus, preamplification is highly desirable for

distant FM stations. According to the manufacturer the model SRX extends the range of FM tuners. A solid state device, the preamplifier can be mounted anywhere indoors between the antenna and the FM set. Jerrold.

NUT DRIVERS

208
A line of nut drivers, available in seven different socket sizes,

ranging from $1 / 4$ in. to $1 / 2 \mathrm{in}$. with extra large, color-coded handles, is announced. Vaco.

STEREO AMPLIFIER

209
The manufacturer lists the following specifications for a stereo amplifier: frequency response: 80

to $20,000 \mathrm{cps}$; output 15 w total. 7.5 w per channel; output imped-

Where there's

 of SERvicirg*
a contact... or a relay....

Service with Contact Shield! Protective! Corrective! It not only cleans and safeguards contacts bet ter on TV, radio, and hi-fi sets; on all relay-operated electrical equip. ment, regular protective maintenance with this versatile cleaner prevents sticky relays-while corrective servicing unsticks them... in seconds. Promotes greater conductivity, keeps relays working smoother, longer. Contact Shieldthe professional service man's cleaner.

APPLICATIONS INCLUDE:
Bowling Alley Automatic Pin Spotters
Vending Machines - Pinball Machines

- Slot Machines - Telephone Switchboards
- IBM Computers and other data

For handy guidebook to better servicing, write Channel Master Corp., Ellenville, N.Y.
processing equipment

- Industrial Equipment using relays, such as welding machines, etc.

Color TV Coil Exact Replacements

Cat No.	Use	Mir.	Part No.
$\begin{aligned} & 6021 \\ & 6022 \\ & 6023 \\ & 6024 \end{aligned}$	Chroma Bandpass Trans. Chroma Bandpass Coil Burst. Transformer 3.58 Mc . Output	RCA RCA RCA RCA	$\begin{aligned} & 78887 \\ & 78888 \\ & 100431 / 78886 \\ & 78889 \end{aligned}$
$\begin{aligned} & 6025 \\ & 6026 \\ & 6027 \\ & 6028 \end{aligned}$	Sync and Phase Chroma Reference Osc. 3.58 Mc. Trap 3.58 Mc. Chroma Sync	RCA RCA RCA RCA	$\begin{aligned} & 78895 \\ & 78891 \\ & 78892 \\ & 78892 \end{aligned}$
$\begin{aligned} & 6029 R \\ & 6030-2 \\ & 6031 R \\ & 6052 R \end{aligned}$	First Chroma Burst. Amp Video I.F. Video I.F.	RCA RCA RCA RCA	$\begin{aligned} & 1107853-1 / 105213 \\ & 1107864-1 / 105214 \\ & 106385 \\ & 106386 \end{aligned}$
$\begin{aligned} & 603 R \\ & 6 \pi 4 \cdot R \\ & 635 \cdot R \\ & 656 R \end{aligned}$	Video I.F. Video I.F. Video l.F. Video I.F. and Trap	RCA RCA RCA RCA	$\begin{aligned} & 106387 \\ & 105292 \\ & 105293 \\ & 105294 / 1107858-1 \end{aligned}$
$\begin{aligned} & 6 E 37-R \\ & 6=38 R \\ & 7105 R \\ & 7=06 R \end{aligned}$	Horiz. Waveform Horiz. Linearity 4.5 Mc. Sound I.F. 4.5 Mc. Sound I.F.	RCA RCA RCA RCA	$\begin{aligned} & 102195 \\ & 105196 \\ & 105286 \\ & 105287 \end{aligned}$
$\begin{aligned} & 7.07 R \\ & 7.08-R \\ & 7.00 . R \\ & 711 \mathrm{C} \cdot \mathrm{R} \end{aligned}$	4.5 Mc. Quadrature 4.5 Mc. Sound I.F. 4.5 Mc. Sound I.F. 4.5 Mc. Quadrature	RCA RCA RCA RCA	$\begin{aligned} & 105288 \\ & 106381 \\ & 106382 \\ & 106383 \end{aligned}$

Wide line of exact replacement coils for TV, radio, hi- $\ddagger \mathrm{i}$ - over 30,70コ listings in Catalog 164 Cross Reference Guide-same day serzice on virtually all orders including special coils not listed.

See your losal distributor for the full line of RF and IF coils, chokes, filters and transformers.

BlonderTongue UHF converters are performanceproved in 3 million homes

Blonder-Tongue Labs. Inc. 9 Alling Street, Newark, N.J. .-. for more details circle 18 on post card

OLSON ELECTRONIGS, ING.

323 S. Forge Street Akron, Ohio 44308

NEW PRODUCTS

IMPROVING COLOR

Continued from page 48
ance: 4,8 and 16Ω. Controls: input selector, volume, tone and balance. Has stereo reverse switch. Inputs: crystal or ceramic phono plus auxiliary for tuner or tape recorder. Complete with ventilated metal cabinet. Size: $101 / 4 \times 63 / 4 \times$ 4 in. Operates on $110-120$ vac 50/60 cps. Olson.

SPEAKER SYSTEM

A playback speaker system is announced. The enclosure is finished in walnut with dimensions of

$40 \times 25 \times 18$ in. including its angled recessed base. Components in the unit are a pair of low resonance bass speakers and a cast aluminum sectoral horn powered by high frequency driver, and twosection, 800 cps dividing network. Altec.

TOOL KIT

A master kit containing a selection of the most popular, tiny tool sets is announced. The kit consists

of a leatherette carrying case $81 / 8$ x $31 / 2 \times 11 / 2$ in. and six tool sets. The tools contained in the kit are ideal for miniature sub-assembly work in all types of industrial operations. Moody.
means that you will have to charge more for a color TV antenna installation. It's important to take a positive attitude about this. Explain the increased price to customers by pointing out the following:
(1) Color TV reception requirements are more demanding than for black and white.
(2) Although a cheaper installation may temporarily provide passable pictures, it takes a solid, professional job to deliver consistently excellent pictures over a long period of time.

Antenna Amplifiers

During the past few years antenna amplifiers have been used extensively in weak signal areas. Because color requires a stronger signal, amplifiers will be used even more frequently in coming years. A good antenna amplifier not only amplifies the signal, but improves system signal-to-noise ratio. For best signal-to-noise ratio, the amplifier should be mounted as close to the anterna as possible.

Multi-Set Couplers

Most of your color TV customers already own a black and white TV receiver. This means that your antenna installation will have to provide signal for two or more sets. The answer is a multi-set coupler. This is where many color installations go wrong. Ineffective and poorly matched couplers should be avoided. The coupler you select should provide adequate isolation between sets. It will pay you to use a good coupler when a color set is involved.

If you haven't used a mast mounted antenna amplifier, you may not get enough signal for two or three TV sets through a passive coupler. Even the best 2 -set coupler causes about 4 db loss, while loss through a 4 -set coupler is at least 7 db . For this reason, amplified couplers are recommended.

A color TV antenna installation is generally more complex than a black and white job. This is to the good. It tends to discourage the do-it-yourselfer. On the other hand, it requires that you abandon old practices and adopt new ones.

with Quam speakers and rear seat kits - multi-taps and exact replacements -

Eight speaker sizes handle virtually any auto radio replacement--but size alone is not cnough. You need the right voicecoil impedance-and QUAM has it! Choose multi-tapped models for stocking convenience; or, for specific applications, one of the 25 Quam exact replacements. (In addition, any Quam speaker may be special-ordered with any voice-coil impedance for an extra $\$ 1.00$ list. This service is a QUAM exclusive.)

Write for your free copy of the Quam Auto Radio Speaker Replacement Guide, It gives complete replacement information on front and rear seat speakers for auto radio models from 1955 to 1963.

New Quam Multi. Tap Speakers in $5^{\prime \prime} \times 7^{\prime \prime}, 6^{\prime \prime} \times 9^{\prime \prime}$, and $4^{\prime \prime} \times 10^{\prime \prime}$ sizes. Taps for 10, 20, and 40 ohm impedances.

dual

QUAM-NICHOLS COMPANY 234 E. MARQUETTE ROAD CHICAGO, ILLINOIS 60637
.. . for more details circle 33 on post card

PUSH-PULL SWITCHES
300
A series of push-pull ac line switches are described in an illustrated bulletin. Mallory.

MINIATURE TOOLS

301
This catalog describes a variety of miniature tools suitable for service use in electronics and precision mechanics. Seven pages are devoted to charts and tables of useful engineering data relating to screwdriver and plier selection, machine screws and solders. Jensen Tools.

PHOTOELECTRIC CONTROL

302
A comprehensive brochure discusses in detail a photoelectric control used in highway, street and residential lighting. Tungsol.

DATA LISTING

A four-page bulletin tells about some recently released radio and TV manuals. Supreme.

MICA CAPACITORS

304
A line of button mica capacitors is described in a 12 -page bulletin. Complete engineering information, test data and dimension drawings on each style are included. Sangamo.

ELECTRONIC PROJECTS

305
This catalog contains a list of descriptive literature available for constructing various types of electronic equipment. Henry Francis Parks.

TOOLROOM EQUIPMENT

306
Toolroom equipment is featured in this catalog. The publication illustrates drawer units, benches, storage cabinets, tool toters and various other types of storage equipment. Equipto.

microwave tubes

A condensed catalog contains application information on a line of microwave tubes and components. Amperex.

ANSWERING SERVICE
A brochure describes various uses for an automatic telephone answering device. Phoneminder.

Sensational Performance!

Get on the profit line with the "hottest" CB going - the new Hallmark 1250!
Hand wired top performance and reliability in a size so compact (only $4^{\prime \prime} \times 61 / 4^{\prime \prime} \times 10^{\prime \prime}$) it fits any vehicle. Built like a 15 watt unit, the new full wave silicon bridge easily provides the power for maximum output and modulation. A dual powered, 12 channel, crystal-controlled unit, the 1250 has $0.3 \mu v$ sensitivity and 45 db selectivity. Other features include electronic switching, ferrite speaker and sturdy snaps for easy access to crystal sock. ets and chassis.
SPECIAL OPTION! Model 1250 X - with plug-in transistorized power supply! $\$ 189.50$, sug. gested list.

Write for information on the complete Hallmark line!
Hallmark 512. 12 channel CB.
Hallmark 3000. FCC type accepted 30 watt transceiver for business service.
Transceiver Tester. Battery powered, crystal-controlled signal generator.
Power Supply. Transistorized plug.in to replace vibrator power supply.

HALLMARK INSTRUMENTS 2.620 Freewood Dr. P. O. 10941 Dallas 20. Texas FL 7.0184 ... for more details circle 24 on post card

RCA
The KCS 136X, -148, and $\mathbf{- 1 4 9}$ chassis incorporate two new features to eliminate audio buzz at warmup. The first delays audio output tube warmup. The second speeds damper tube warmup. With one exception, the new 6HG5 audio output tube has electrical characteristics identical to the 6AQ5A. Heavy insulation is placed between the heater and cathode to increase the warm-up time approximately 40 percent. The 6AY3 damper tube heater element is placed nearer the cathode and warmup time is decreased about 20 percent.

KCS 136 X and 149 chassis employ a linearity coil to provide a more symmetrical raster (Fig.10). In the 136X there are no provisions for adjustment. The linearity coil used on the 149 is actually two coils wound on the same form to minimize mutual inductance.

The AGC circuit in the KCS 151 chassis (Fig. 11) differs from that used in either the 148 or 149. The 6 GH 8 suppressor grid is internally tied to the cathode and cannot function as a control grid. Since no AGC noise cancellation action comes from grid 3, degeneration is added in the cathode circuit to prevent excessive tube conduction on noise pulses.

The CTC16 color chassis is similar in basic design to the previous CTC15 chassis but incorporates a number of circuit refinements.

Most color models have automatic degaussing (Fig.

BUSS: 1914-1964, Fifty years of Pioneering...

1965 TV SETS

Continued from page 44 is closed, the capacitor discharges in an oscillatory manner through the degaussing coils L. Resistor R2 and the series crystal limit the first current surge (first half cycle). The field generated by the ac current flow in the coils demagnetizes the area around the CRT face. The operation may be repeated any time as the circuit operates independently.

The 98C8 color chassis uses 3 stages of IF amplification (Fig. 9). The first two stages use semi-remote cutoff pentodes, a 6 JH6 in the first stage and a 6GM6 in the second. The first two IF stages are dc series connected. AGC is applied to the first stage grid and with the series connection of the second stage the cathode voltage of V302 is dependent on the conduction of V301, thereby applying AGC to the second IF amplifier.

The third IF stage, V303, employs a high gain, frame grid 6EJ7 tube. The output of this stage is fed to two points. CR301 is the sound detector and CR302 is the video detector. The 4.5 Mc output of CR301 is fed to the 1st sound IF, V201A, with the video applied to V401A, the first video amplifier.

To reduce the difference in potential between the filament and cathode of V302, the heater of this tube is connected to a special heater winding. This winding, connected to a high positive voltage, is also used to supply heater voltage to the CRT and the 6 BK 4 .

- Fuseholder takes $1 / 4 \times 11 / 4$ inch fuses. Converts to $9 / 32 \times 11 / 4$ inch fuses simply by changing screw type knob. Holder is rated at 30 ampere for any voltage up to 250 .
- Also available in military type which meets all requirements of MIL-F-19207A.

. . . for more details circle 19 on last page

A redesigned high voltage compartment permits more accessible relocation of the shunt regulator, giving better ventilation. In event of tube failure the high voltage would have a tendency to soar above normal. An interconnection exists between the blanker tube grid and the horizontal output grid (Fig. 16). If failure occurs, a high negative voltage will appear at the blanker grid and in turn apply bias on the horizontal output tube. This prevents excessive rise in high voltage.

A selection of peaking levels are also included in the peaking circuitry (Fig. 17).

On the highest position of the three-position switch a sharp picture is produced without "ringing" effects. The middle position gives uniform video response, and in the lowest position a soft picture can be produced. Since the transmitted picture detail can vary somewhat in different geographical areas, the switch can be thrown to the position giving the desired video response based on signal conditions and customer viewing preference. A new tube type, the 6 LF 8 , is employed in the 1 st and 2 nd video amplifier stages. This tube is similar to the 6AW8 but has selected characteristics to provide optimum performance as a positive grid amplifier.

The final part of this article will appear in the January 1965 issue and will cover Setchell-Carlson, Sylvania, Westinghouse and Zenith TVs.

New Developments in Electrical Protection

12). This is accomplished during initial warm-up each time the set is switched on. When this occurs, the power supply circuit causes a substantial current flow, part of which passes through the degaussing coils. RT201, being temperature dependent, has about 120Ω resistance at this time. The circuit functions as follows: RV201 presents a low resistance since it is voltage dependent, and ac voltage is present. As RT201 heats, its resistance drops to about 2Ω shunting the degaussing coils. Also since ac voltage is now lowered across RV201, its resistance rises. The accumulative effect is that after receiver warmup, very little current flows through the coils and degaussing ceases. This action takes place prior to the appearance of a picture and causes no distraction to the viewer.

Basically the CTC 16's chroma section retains familiar circuitry. A change in the " X " and " Z " demodulator operation has been introduced, however. A value change in capacitor C728 results in greater displacement of the " X " and " Z " axes and improved color rendition (Fig. 13).

A new focus adjustment transformer permitting greater variation and faster action is also used (Fig. 14). A tube type focus rectifier is employed here and the over-all focus circuit gives minimum loading of the high voltage transformer.

A bridge type rectifier furnishing full wave rectification and resulting in less ripple is used in the low voltage $\mathrm{B}+$ supply (Fig. 15). The silicon rectifers are mounted on the sound board.

> For space-tight applications. Fuse has window for inspection of element. Fuse may be used with or without holder.

> Fuse held tight in holder by beryllium copper contacts assuring low resistance.

> Holder can be used with or without knob. Knob makes holder water-proof from front of panel.

> Military type fuse FM01 meets all requirements of MİL-F-23419. Military type holder FHN42W meets all military requirements of MIL-F-19207A.

Whnegard Dealer of the month

Admiral Corporation
American Telephone \& Telegraph Co. 2nd Cover Amperex Electronic Corp.3rd Cover Antennacraft Company …............................. 36 Airow Fastener Company, Inc. 82 B \& K Manufacturing Company 61 B \& K Manufacturing Company 63 Blonder-Tongue .. 22 Blonder-Tongue ... 78 Bussman Mfg. Division 80-81 Channel Master Corp. 77 Cleveland Instifute of Electronics 76 EICO Electronic Instrument Co., Inc. 38 Enterprise Development Corp. 74 The Finney Company54-55 Hallmark instruments 79 Jackson Electrical Instrument Co. 33 Jensen Manufacturing Company 59
E. F. Johnson Company 75
P. R. Mallory \& Co., Inc. 28
J. W. Miller Company 77

Minnesola Mining \& Mfg. Co. 30
Nortronics, Inc. .. 26
Olson Electronics, Inc. .. 78
Quam Nichols Company
Quietrole Company .. 82
Radio Corporation of America RCA Electronic Components
\& Devices4th Cover, 29, 73
RCA Parts and Accessories 37
Sarkes Tarzian Semiconductor Div. 19
Sarkes Tarzian Tuner Service Div. 57
Seco Electronics, Inc. 31
Sprague Products Company 23
Standard Kollsman Industries, Inc. 28
Sylvania Electric Products, Inc. 25
Sylvania Electric Products, İnc. 66
Weller Electric Corp. 24
Windsor Electronics, Inc. 30
Winegard Company .. 20
Winegard Company ... 82
Xcelite, Inc. ... 75
Zenith Radio Corporation34-35

NEW PRICES From QUUETROLE
 the oldest, most widely proved and sold radio and TV lubricant

For Fastening Any

 Inside or Outside Wire Up to $1 / \mathbf{2}^{\prime \prime}$ in Diameter- Bell wire
- Thermostat wire
- Radiant heating wire
- Hi-Fi, Radio \& TV wires Tapered striking edge gets into close corners!
Available in:
Brown, Ivory, Beige,
Monel, Bronze, Natural

D3019L Kirkwood • Burlington, Iowa

rd

YOURS FOR THE ASKING

This page is provided for your convenience. To obtain additional information on new products, trade literature and advertised products in this issue, simply circle the corresponding number on the perforated card below, fill in your name, business address and mail the card.

Use this convenient card if you wish to receive further information on products and services advertised or described in this issue

How to replace top quality tubes with identical top quality tubes

Most of the quality TV sets you are presently servicing were designed around special Frame Grid tubes originated by Amperex. More and more tube types originated by Amperex are going into the sets you'll be handling in the future. Amperex Frame Grid tubes provide 55% higher gain-bandwidth, simplify TV circuitry and speed up your servicing because their extraordinary uniformity virtually eliminates need for realignment when you replace tubes. Amperex Frame Grid Tubes currently used by the major TV set makers include:
 If your distributor does not yet have all the Amperex types you need, please be patient-in some areas the demand keeps gaining on the supply. Amperex Electronic Corporation, Hicksville, Long Island, New York 11802.

WHERE THE SILVERAMA SCREEN BEGINS

TV picture quality depends on precise control of phosphors

Television picture quality depends on the quality of the phosphor screen inside the faceplate. That's why every RCA Silverana replacement picture tube is completely rescreened-in the same painstaking manner and with the same precision-as RCA picture tubes produced for use in original equipment. Before receiving their new Silverama sereens, reused glass envelopes are scrubbed completely clean and given a series of chemical baths internally to restore them to the peak of their optical capabilities.
RCA produces and develops its own screen phosphors. These are
formed by reacting solutions of zinc sulfate and zinc and cadmium sulfates with hydrogen-sulfide gas in this complex precipitator, (above). The resulting zinc sulfide and zinc-cadmium sulfide are then activated, fluxed, fired, washed, dried, and screened to form phosphors which emit bue and yellow light, respectively. These are carefuily blended to produce phosphors that possess the pleasing "white", high light output, and uniform smoothness, which characterize RCA Silverama picture tube screens.
Make RCA Silverama your first choice in picture tubes.

Drying avens remave moisture from phosphor

Phosphors are blended for best screen quality

Base materials are fired Base materials are fired
to form the phosphors

[^0]: 1,863 different capacitors to choose from!
 The industry's most complete selection of twist-prong capacitors, bar none. Greater reliability, too. Exclusive Sprague cover design provides a leak-proof seal which permits capacitors to withstand higher ripple currents.

[^1]: Zenith The quality goes in before the name goes on

[^2]: TOUGH DOGS WANTED
 $\$ 10.00$ paid for acceptable items. Use drawings to illustrate whenever necessary. A rough sketch will do. Photographs are desirable. Unacceptable items will be refurned if accompanied by a stamped envelope. Send your entries to "Tough Dog" Editor, ELECTRONIC TECHNICIAN, 1 East First St., Duluth, Minnesota 55802.

[^3]: Illustration credit: Elastic Stop Nut Corp.

