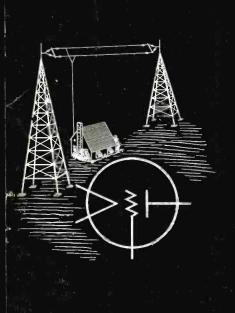

Radio Engineering

ARMSTRONG "FEEDBACK" DECISION

A NEW AND PRACTICAL MULTI-VIBRATOR By Samuel S. Egert and Samuel Bagno

BROADCAST STUDIO INSTALLATION FOR A-C. OPERATION By P. S. Gates


THE EXTERNAL LOUDSPEAKER AND THE MINIATURE RECEIVER By Barnet S. Trott

> NOTES ON CRYSTALS By E. H. Rietzke

PURCHASING GUIDE

americanradiob

SUEA METAL

-the **PRODUCT** of

A CENTURY OF PROGRESS

is at your COMMAND!

- -32 new customers in 6 months
- 2,000 lbs. of metal present weekly sales!
- 10,000,000 SVEA METAL tubes on the market!
- \$1,500,000 estimated annual saving to the industry!

PROGRESSIVE tube makers are now turning from tube *design* research to tube materials research for PROFITS!

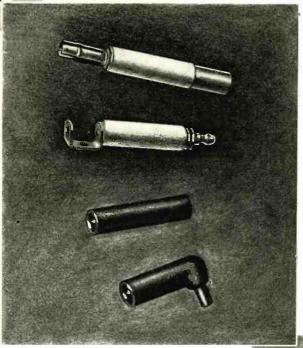
Steel Corporation

17 Battery Place

Swedish Iron &

New York City

Makes


ESS

BET

For more than a quarter of a century suppliers of high grade metals to the foremost electrical equipment manufacturers.

50000 miles with little change in RESISTANCE VALUE.

Repeated tests in actual use and in the laboratory have proved that ERIE SUPPRES-SOR RESISTORS do not change more than 10% in resistance value in 50,000 miles of use—provided one suppressor resistor is used in each high tension lead.

Makers of automobile radio receiving sets have confidence in ERIE SUPPRESSOR RESISTORS because of their high suppression effectiveness and long life resistance value.

Resistance units are enclosed in both porcelain and Bakelite tubes, giving the best possible protection from oil, dirt, moisture and mechanical breakage.

In addition to the plug, screw and distributor types the new L type has been perfected recently. In this suppressor the resistance unit is a special "mix" which stands up in spite of the extremely short length used.

We will gladly give you charts and complete data showing performance of ERIE SUPPRESSOR RESISTORS and furnish you with any details needed on the particular type or types of suppressors needed for your requirements.

THE ERIE RESISTOR CORPORATION, ERIE, PA. TORONTO, CANADA, AND LONDON, ENGLAND

ERIE SUPPRESSOR RESISTORS

Page |

Rea II S Patent Office MEMBER UDIT BUREAU RCULATIONS

Western Editor Ulmer G. Turner

Editor DONALD MCNICOL Managing Editor F. WALEN

Vol. XIII

SEPTEMBBER, 1933

Number 9

Contents

	Page
A CHRONOLOGICAL HISTORY OF ELECTRICAL COMMUNICA- TION-TELEGRAPHI, TELEPHONE AND RADIO, PART XXI	
As the Editor Sees It	15
The External Loudspeaker and the Miniature Receiver By Barnet S. Trott	
THE RELATION OF ENGINEERING TO THE RADIO INDUSTRIAL CODEBy Dr. Lewis M. Hull	
A COMPLETE BROADCAST STUDIO INSTALLATION FOR A-C. OPERATIONBy P. S. Gates	
A New AND PRACTICAL MULTI-VIBRATOR By Samuel S. Egert and Samuel Bagno	20
Armstrong "Feedback" Decision Rendered	22
NOTES ON CRYSTALSBy E. H. Rietzke	23
CIRCUIT DATA ON AN IMPROVED 200 WATT CLASS B Amplifier	
SVEA METAL—ITS APPLICATION AND USE By Harold C. Todd	26

Departments

News of the Industry	29
New Developments of the Month	31
Purchasing Guide	36
Index of Advertisers	62

THE I. R. E. ROCHESTER MEETING

N November 13, 14, and 15 the Rochester Fall Meeting of the I. R. E. will be held at the Sagamore Hotel at Rochester, New York. An outstanding technical program has been arranged including the following

subjects and speakers: "Development of Cathode Ray Tubes for Oscillograph Purposes," by H. B. Headrick, R. T. Orth and C. W. Taylor, RCA Radiotron

R. 1. Orth and C. W. Taylor, RCA Radioton Company. "Dynamic Detection," by Kenneth W. Jarvis, Zenith Radio Corporation. "Some Television Problems and Their Solu-tions," by I. G. Maloff, RCA Victor Company. "Super-Regeneration as Applied to Ultra High-Frequency Reception," by David Grimes and William S. Barden, RCA License Labora-tory

"Losses in Electrolytic Capacitors," by P.

Robinson, Sprague Specialties Company. "Speaker Problem in High Fidelity Receiv-ers," by Hugh S. Knowles, Jensen Radio Mfg. Company.

Company. "Conditions Necessary for an Increase in Usable Receiver Fidelity," by Dr. Alfred N. Goldsmith, Consulting Engineer. "Problems in Ignition Interference Suppres-sion," by L. F. Curtis, United American Bosch Corporation. "New Tube Design Problems," by Roger M. Wise, Hygrade-Sylvania Corporation. "Vibrating Rectifiers for 'B' Power Supplies," by C. T. Wallis, Delco Appliance Corporation. There will be technical exhibits as in the past, and several important RMA Committee meetings will be held during the three meeting days. days.

BRYAN S. DAVIS President

Published Monthly by

Bryan Davis Publishing Co., Inc.

SANFORD R. COWAN Advertising Manager

JAS. A. WALKER Secretary

19 East 47th Street New York City

J. E. NIELSEN Circulation Manager

Chicago Office-737 N. Michigan Ave.-Charles H. Farrell, Mgr. St. Louis Office-505 Star Building-F. J. Wright Kansas City, Mo. Office-306 Coca Cola Building-R. W. Mitchell Indianapolis, Ind. Office-5215 W. 14th St.-H. W. Haskett Boston, Mass., Office-Lawrence Mitchell-80 Boylston St.

San Francisco Office-155 Sansome St.-R. J. Birch Los Anzeles Office-846 S. Broadway-R. J. Birch Philadelphia Office-1313 N. 13th St.-H. S. Thoenebe. New Zealand-Tearo Book Depot-Wellington. Melbourne, Australia-McGill's Agency.

Entered as second class matter August 26, 1931, at the Post Office at New York. N. Y., under Act of March 3, 1879. Yearly subscription rate \$2.00 in United States. \$3.00 in Canada and forcign countries.

· · ·

In Assembly Work it will pay YOU to follow the Leaders

UST glance down the list of radio manufacturers shown here. Certainly those concerns "know something" about radio assembly work. And when all of them agree on the same method of fastening parts to the chassis, IT MEANS SOMETHING. You couldn't ask for stronger evidence of the worth of Parker-Kalon Hardened Self-tapping Sheet Metal Screws.

These unique Screws were thoroughly tested against other fastening devices by each of the manufacturers listed here. Adoption, and consistent

	re and Kalon Ha			
For ma	aking fast	enings t	o sheet r	netal up
to 6 g	s., alumin	um, die	castings,	Bakelite,
molded	urn Screv i hole. I	t forms	a thread	in the
materi	al as it ti	urns In.	Can be	removed
and re	placed.	Availabl	e in a fu	ll range
of dia	meters a ds as sh	nd lengt own hel	rns, and ow	5 STYLES
01 1100	43 43 511			
1	a un	AN TANK		
吾		雲	震	吾
哥				
	12	晋	-	日日

use year after year, has come solely because no other device offers such great speed, ease, economy and security of assembly.

In many cases Hardened Self-tapping Sheet Metal Screws have saved 50 per cent and more of assembly time and labor. Savings of 15 per cent to 30 per cent are common on the assemblies of the concerns listed. Your opportunity to cut costs with these famous Screws is just as large, for savings do not depend on volume production.

Make a test. See how these Screws eliminate tapping ... unhandy riveting ... fumbling with bolts and nuts. Prove to your own satisfaction that assemblies made this easier, cheaper way actually do hold better than assemblies made with machine screws, bolts and nuts, etc. Use the coupon to get a free "Money-Saver Test Bag" of samples with recommendations of Parker-Kalon Fastening Specialists.

ATWATER-KENT BOSCH COLONIAL CROSLEY ERLA FADA MAGNAVOX MAJESTIC NOBLITT-SPARKS PHILCO R. C. A.-VICTOR SPARTON STEWART-WARNER STROMBERG-CARLSON U. S. RADIO WURLITZER ZENITH

PARKER-KALON Hardened Self-tapping Screws

PAT. IN U. S. AND FOREIGN COUNTRIES

PARKER-KALON CORPORATION, DEPT. L, 190-198 VARICK STREET, NEW YORK, N. Y. Tell me whether assemblies described on attached sheet can be made cheaper with Self-tapping Screws. I'll make	St
a "Money-Saver Test" if you send samples and recommendations—Free.	PARKER-K
Name and Title	MONEY-SA
Company	TES
Address	10000

Radio Engineering Readers

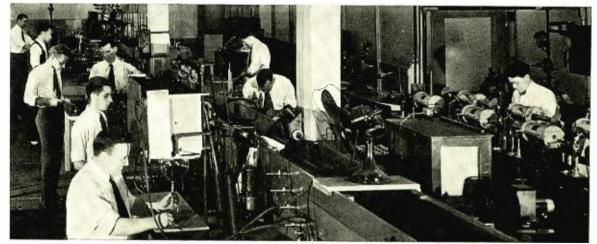
are cordially invited to investigate the Research and Development Laboratory facilities of the

RCA Radiotron Company, Incorporated

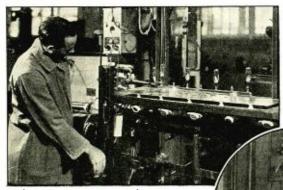
A radio tube is no better than the laboratory facilities behind it. RCA Radiotron Co., Inc., believes that the excellent reputation of its product is due to its superb technical talent and equipment—its unsurpassed laboratory facilities. We invite you to investigate them through the medium of these pages.

Systematic Development and Application of Radio Tubes

The Research and Development Laboratory of RCA Radiotron Company, Inc., at Harrison, N. J., is necessarily organized on a broad basis. While the primary functions of such a laboratory are to develop new types of tubes for broadcast and amateur use, and to perfect existing types, a conscientious and vigorous application of this program leads into almost limitless paths of research and engineering endeavor. Exploration of these paths, many of them long and difficult, has no attraction for a manufacturer who is concerned solely with immediate sales. Yet it is through research, backed up by a capable and sympathetic development and application engineering organization, that the real advances are made.


The aim of the RCA Radiotron Laboratory staff is to cover the broad field of electronics in so far as this is humanly possible; to concern themselves equally with research on the fundamentals of tube characteristics and designs, the development of new tubes and the application of existing tubes; to look not only at the immediate present but the near and distant future as well. The pursuit of this objective involves a division of laboratory activity into three parts:—research, development and application. While at times, due to the closely related nature of the work, the activities of one section may merge with those of another, the general field of each section remains clearly defined.

The Research Sections


The Research Sections are concerned with new ideas in radio tube characteristics, principles of design, basic materials and processes. Seldom do they occupy themselves with existing tubes, or even the introduction of new tubes of conventional design. Their research activities extend into the field of physical and chemical science. An example of physical research is the recent work on the fundamental principles of tubes for ultra-short waves. The work of the chemical division includes such things as new "getter" substances, ceramics for insulation, alloys for various tube parts, chemical processes and studies of primary and secondary electron emission.

The Development Section

The introduction of RCA Radiotrons and Cunningham Radio Tubes for which there is an immediate practical market, or for

A SECTION OF THE RCA RADIOTRON RESEARCH AND DEVELOPMENT LABORATORY

Exhausting experimental tube types

which there will be such a market in the future, and the constant improvement of existing types, fall in the province of the Development Section. It is the designing engineering group of the company and is the largest section of the RCA Radiotron Laboratory. It is continually incorporating into actual tube designs the new ideas obtained from the Research Sections, as well as

from its own personnel. In this section a new design is carefully worked out before it goes on to the factory for regular production. Developmental tubes are made in a special factory where the combined experience of engineers and expert factory personnel is applied.

The Application Engineering Section

RCA Radiotron Company, Inc., has long prided itself on its Application Engineering Section. Working closely with "Development, "this section acts as a "proving ground" for

RCA-800—an example of RCA Radio-tron Engineering development. The new 800 is designed particularly for short wave transmitting.

tubes in process of development. No automobile under development is put through more thorough performance tests on the proving ground than these tubes under actual performance tests in circuits.

Before any new tube is introduced it should be proven that it offers the equipment-design engineers at least two possibilities as compared with tubes already available. These are, to produce a receiver which will give better performance for the same cost, or equal performance for less cost. The two-fold function of this section is, therefore, to find out (1) what can be done with both old and new

Precision apparatus reduces errors to a minimum

tube designs, and (2) the manner of obtaining best results from them. The coordination between tube and set manufacturer is facilitated by the Field Division of the Application Engineering Section, whose members are constantly calling on set manufacturers, discussing their problems, answering their questions and receiving their recommendations.

Commercial Engineering Section

Another highly important work of the RCA Radiotron Laboratory is the collection, correlation and dissemination of technical data in concise and usable form. This work is performed by the Commercial Engineering Section. The staff of this section, through handling much technical correspondence with users of the product, are fully informed as to the type of data which will be helpful to the technical man. As a result, they are always mindful of his needs and viewpoint when preparing information for distribution.

lesting

The activities of the RCA Radiotron Research and Development Laboratory have been outlined in brief. Numerous essential engineering functions that belong to the laboratory as a whole have not been discussed. Probably the most important of these is the thorough and extensive testing program which is carried on to insure a product of uniformly high quality. The development of the test equipment for measuring both the common and more obscure tube characteristics, careful test procedure,

rigid test limits and a consistent life testing program are activities which have been developed to a high degree because of the leading role which testing plays in RCA Radiotron engineering, as it does in RCA Radiotron manufacture.

The broad scope of RCA Radiotron research and engineering, plus a manufacturing organization that works hand in hand with it, is responsible for the technical leadership of RCA Radiotrons and Cunningham Radio Tubes.

Extreme care is exercised in all measurements

An example of RCA Radiotron research – a miniature laboratory tube used in research on ultra-short waves.

RCA RADIOTRON CO., INC. HARRISON · · · · NEW JERSEY A Radio Corporation of America Jubsidiary

RADIO ENGINEERING

Page 6

				DIMENSIONS			RATI	NG					_		-	A-C	MUTUAL	VOLT-	LOAO		
TYPE	NAME	BASE	SOCKET CONNEC- TIONS	MAXIMUM OVERALL LENGTH	CATHOOE TYPE =	HE	ATER	PLATE MAX.	SCREEN MAX.	USE Values to right give operating conditions and characteristics for Indicated typical use	PLATE SUP- PLY VOLTS	GRIO VOLTS =	SCREEN	SCREEN MILLI- AMP.	PLATE MILLI- AMP.	PLATE RESIS- TANCE OHMS	CON- DUC- TANCE MICRO-	AGE AMPLI- FICATION FACTOR	FOR STATEO POWER OUTPUT	PUT	TYPE
RCA-1A6	PENTAGRID CONVERTER D	SMALL 8-PIN	F10. 28	DIAMETER 4117 x 118	FILAMENT	VOLTS	AMPERES	VOLTS	VOLTS 67.5	CONVERTER	180	-3.0 min.	67.5	2.4	1.3	500000	MHOS Anode-Gri Oscillator	1 (# 2) 13	OHMS	ts. 2.3 Ma.	C-146
RCA-2A3	POWER AMPLIFIER	MEDIUM 4-PIN	FIG. 1	5] * x 218*	FILAMENT	2.5	2.5	250	_	CLASS & AMPLIFTER PUSH.PULL	250	-45	Self-		60.0 40.0	300	Conversion \$250	Conducta 4.2	2500 5000	3.5 10.0	C-2A3
RCA-2A5	TRIODE POWER AMPLIFIER PENTODE	MEDIUM B-PIN	FID. 15A	412" x 112"	HEATER	2.5	1.75	250	250	AMPLIFIER CLASS & AMPLIFIER	300 250	-62	Fixed 250	bias 6.5	40.0	stated 100000	2200	to-plate 220	3000 7000	15.0	C-2A5
RCA-2A6	DUPLEX-DIODE HIDH-MU TRIODE	SMALL 6-PIN	FID, 13	417 × 118	HEATER	2.5	0.8	250	-	TRIODE UNIT AS CLASS & AMPLIFIER	250 ×	- 1.35			0.4	-			er stage		C-2A6
RCA-2A7	PENTAGRID CONVERTER 10	SMALL 7.PIN	F10. 20	433 × 118"	HEATER	2.5	0.8	250	100	CONVERTER	250	- 3.0	100	2.2	3.5	360000	Conversion	Conduct	Resistor, 5	dicromhos.	C-2A7
RCA+287	DUPLEX-DIODE PENTODE	SMALL 7-PIN	FIG. 25	4]] x 1]?"	HEATER	2.5	0.8	250	125	PENTODE UNIT AS R.F AMPLIFIER PENTODE UNIT AS A.F AMPLIFIER	100 250 250-1-	- 3.0 - 3.0 - 4.5	100 125 50	2.3	5.8 9.0 0.65	300000 650000	950 1125	285 730		-	C-287
RCA-6A4 elso LA	POWER AMPLIFIER PENTODE	MEDIUM 5-PIN	F10. 8	4#* x 1#*	FILAMENT	6.3	0.3	180	180	CLASS & AMPLIFIER	100 180	- 6.5 -12.0	100 180	1.6 3.9	9.0 22.0	83250 45500	1200 2200	100 100	11000 8000	0.31	C-6A4 else LA
RCA-6A7	CONVERTER O	SMALL 7.PIN	FIG. 20	4 <u>17</u> " x 1 <u>4</u> "	HEATER	6.3	0.3	250	100	CONVERTER	250	- 3.0	100	2.2	3.5	360000	Oscillator (Conversion	Conducts	Resistor, Si		C-6A7
RCA-687	DUPLEX-DIODE PENTODE	SMALL 7-PIN	FIG. 21	4册" x 1击"	HEATER	6.3	0.3	250	125	PENTODE UNIT AS R.F AMPLIFIER PENTODE UNIT AS A.F AMPLIFIER	100 250 250+	-3.0 -3.0 -4.5	100 125 50	1.7	5.8 9.0 0.65	300000	950 1125	285	-		C-687
	Grids #3 and #5 are	screen. Grid #"	is signal-inp	ut control-grid.								plied throu plied throu	gh plate c gh plate c	oupling re	sistor of sistor of	200000 of	1 1/128. 1/11.8.		-	1	
								100	-	TRIODE UNIT AS	100	- 3.0	-	-	3.5	17800	450	8	-	-	
RCA-6F7	TRIODE. PENTODE	SMALL 7-PIN	FIG. 27	413" x 118"	HEATER	6.3	0.3	250	100	PENTODE UNIT AS AMPLIFIER PENTODE UNIT AS MIXER	259 250	- 3.0	100	1.5	6.5 2.8	850000 Oscill	1100 ator peak y ersion cond	900			C -6F7
UX- 200-A	DETECTOR	MEDIUM 4.PIN	F10. 1	4#8" x 1#8"	FILAMENT	5.0	0.25	45	-	GRID LEAK DETECTOR	45	-	d Return		1.5	30000	666	20			CX-300-A
RCA- 01-A	DETECTOR+ AMPLIFIER	MEDIUM 4-PIN	FIG. 1	412" x 112"	D-C FILAMENT	5.0	0.25	135	-	CLASS & AMPLIFIER	90 135	- 4.5			2.5	11000	725	8.0			C - 01-A
RCA- 10	POWER AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	5% × 218	FILAMENT	7.5	1.25	425	-	CLASS & AMPLIFIER	350 425	-31.0 -39.0	-	-	16.0 18.0 2.5	5150 5000	1550 1600	8.0 8.0	11000 10200	0.9 1.6	C - 10
WD- 11 WX- 12	AMPLIFIER	WD 4-PIN MEDIUM 4-PIN	FIG. 12 FIG. 1	4 x 118 418 x 118	FILAMENT	1.1	0.25	135	-	CLASS & AMPLIFIER	135	-10.5	_		3.0	15000	440	6.6 6.6	-		CX- 12
UX -112-A	AMPLIFIER TRIODE	MEDIUM 4-PIN	F10. 1	4#* x 1#*	FILAMENT	5.0	0.25	180	-	CLASS & AMPLIFIER	90 180	- 4.5 -13.5	-	-	5.0	5400 4700	1575 1800	8.5 8.5	-	-	CX-112-A
RCA- 19	AMPLIFIER	SMALL 6-PIN	FIG. 25	44" x 116"	D-C FILAMENT	2.0	0.26	135	-	CLASS B AMPLIFIER	135 135	- 3.0	-		at	stated loan	alue is for o d. plate-to-p	late.	10000	2.1	C - 19
UX -120	POWER AMPLIFIER	SMALL 4-PIN	FIG. 1	41" x 116"	D-C FILAMENT	3.3	0.132	135	-	CLASS & AMPLIFIER	90 135 135	-16.5 -22.5		0.6*	3.0 6.5	8000 6300 725000	415 525 375	3.3 3.3 270	9600 6500	0.045	CX-220
RCA- 22	R-F AMPLIFIER TETRODE	MEDIUM 4-PIN	FIG. 4	512" x 112"	FILAMENT	3.3	0.132	135	67.5	R-F AMPLIFIER SCREEN CRID	135 180	= 1.5 = 3.0	67.S	1.3	3.7	325000 400000	1000	160	=	-	C - 22
RCA- 24-A	R-F AMPLIFIER YETRODE	MEDIUM S-PIN	F10. 0	5行" x 1拾"	HEATER	2.5	1.75	275	90	R.F AMPLIFIER BIAS DETECTOR	250 275	- 3.0 - 5.0 approx.	90 20 to 45	1.7*			t to be adju with no	signal.	1 milliam	pere	C - 24-A
RCA- 26	AMPLIFIER	MEDIUM 4-PIN	FIQ. 1	418" x 118"	FILAMENT	1.5	1.05	180	-	CLASS & AMPLIFIER	90 180	-7.0 -14.5 -9.0	-		2.9 6.2 4.5	8900 7300 9000	935 1150 1000	8.3 8.3 9.0	-		C - 26
RCA- 27	DETECTOR# AMPLIFIER TRIODE	MEDIUM 5-PIN	F10. II	4 <u>18</u> " x 1 <u>18</u> "	HEATER	2.5	1.75	275	-	CLASS & AMPLIFIER BIAS DETECTOR	250	-21.0		_	5.2	9250	975 at to be adju- with no	9.0 uted to 0.	2 milliam	pere	C 27
RCA- 30	DETECTOR# AMPLIFIER TRIODE	SMALL 4-PIN	FIG. 1	4}" = 11%"	FILAMENT	2.0	0.06	180	-	CLASS & AMPLIFIER	90 135 180	- 4.5 - 9.0 -13.5	—		2.5 3.0 3.1	11000 10300 10300	850 900 900	9.3 9.3 9.3	-	-	C - 30
		rid-leak Detectio	n-plate volt	s 45, grid return to		r to cati	iode.		_	 Applied through 			sistor of 2	\$0000 ohr			oke shunted	i by 0.25 r			laximum.
RCA- 31	POWER AMPLIFIER TRIODE	SMALL 4-PIN	FIG. 1	42" x 118"	FILAMENT	2.0	0.13	180	-	CLASS & AMPLIFIER SCREEN GRID R.F AMPLIFIER	135 180 135 180	$ \begin{array}{r} -22.5 \\ -30.0 \\ -3.0 \\ -3.0 \\ -3.0 \end{array} $	67.5	0.4° 0.4°	8.0 12.3 1.7 1.7	4100 3600 950000 1200000	925 1050 640 650	3.8 3.8 610 780	7000 5700	0.185	C - 31
RCA- 32	R-F AMPLIFIER	MEDIUM 4-PIN	FIG. 4	537" x 138"	FILAMENT	2.0	0.06	180	67.5	BIAS DETECTOR	180	- 6.0 approx.	67.5	-			t to be adju with no	sted to 0.	2 milliam	pere	C - 32
RCA- 33	POWER AMPLIFIER PENTODE SUPER-CONTROL	MEDIUM S-PIN	FIG. 6	4H, = JH,	FILAMENT	2.0	0.26	135	135	CLASS & AMPLIFIER	135	-13.5	135	3.0	14.5	50000	1450	70	7000	0.7	C - 33
RCA- 34	R-F AMPLIFIER PENTODE SUPER-CONTROL	MEDIUM 4-PIN	F10. 4A	537 x 138"	FILAMENT	2.0	0.06	180	67.5	SCREEN GRID R-F AMPLIFIER	180	{ min. }	67.5	1.0	2.8	1000000	620	620	-	-	C - 34
RCA- 35	R-F AMPLIFIER TETRODE	MEDIUM S-PIN	FIG. 9	535" x 138"	HEATER	2.5	1.75	275	90	SCREEN CRID R-F AMPLIFTER	250	(min.)	90	2.5*	6.5 1.8	400000	1020	420	-		C - 35
RCA- 36	R-F AMPLIFIER TETRODE	SMALL 5-PIN	FIG. 8	4 <u>17</u> " x 1 <u>4</u> "	HEATER	6.3	0.3	250	90	SCREEN GRID R.F. AMPLIFIER BIAS DETECTOR	180 250 100●	- 3.0 - 3.0 - 5.0 - 8.0	90 90 55 90	1.7•	3.1 3.2	500000 550000	1050 1080	525 595	1 milliam	pere	C - 36
	DETECTOR	SMALL D-PIN			HEATER	6.3	0.3	250		CLASS & AMPLIFIER	250 9 0 180 250	- 6.0 -13.5 -18.0		-	2.5	11500 10200 8400	800 900 1100	9.2 9.2 9.2		-	C - 37
RCA- 37	AMPLIFIER	SMALL D-PIN	F10. 8	4 ² x 1 ⁴	HEATER	0.3	0.5	130		BIAS DETECTOR	90 250 100	-10.0 -28.0 - 9.0			P		t to be adju		2 milliam	0.27	6 - 3/
RCA- 38	POWER AMPLIFIER PENTODE	SMALL 5-PIN	FIG. M	4H" = 1#"	HEATER	6.3	0.3	250	250	CLASS & AMPLIFIER	180 250	-18.0 -25.0	180 250	2.4 3.8	14.0	110000 100000 375000	1050 1200 960	120 120 360	11600 10000	1.00 2.50	C - 36
RCA-39-44	SUPER-CONTROL R-F AMPLIFIER PENTODE	SMALL S-PIN	FIQ. BA	$4\frac{11}{32}^{\prime\prime} \equiv 1\frac{4}{34}^{\prime\prime}$	HEATER	6.3	0.3	250	90	SCREEN GRID R.F AMPLIFIER	180 250	{- 3.0 min.}	90 90	1.4	5.8	750000	1000 1050	750 1050			C -39-44
UX -240	VOLTAGE AMPLIFIER TRIODE	MEDIUM 4-PIN	FIG. 1	418" = 118"	FILAMENT	5.0	0.25	180	-	CLASS & AMPLIFIER	135 x 180 x	- 3.0	100	1.6	0.2	150000 150000 103500	200 200 1450	30 30 150	12000	0.33	CX-340
RCA- 41 RCA- 42	POWER AMPLIFIER PENTODE POWER AMPLIFIER PENTODE	SMALL 6-PIN MEDIUM 6-PIN	FIG. 18A	41 = 111' 411' = 111'	HEATER	6.3 6.3	0.4	250	250	CLASS & AMPLIFIER	180 250 250	-13.5 -18.0 -16.5	180 250 250	3.0 5.5 6.5	18.5 32.0 34.0	81000 68000 100000	1850 2200 2200	150 150 220	9000 7600 7000	1.50 3.40 3.00	C - 41 C - 42
1	For Grid-leak Detect	ion-plate volts	45, grid retur	n to + filament o	r to cathode.	noted.	For use			Applied to Applied th	hrough p	plate coup	ing resistor	or of 2500	00 ohm	or 500-h	enry choke	shunted i	by 0.25 m	egohm resis	
	of D. C. on A-C files	ment types, de	rease stated	grid volts by 32	(approx.) of r	uamen	t voitage.			M Applied th	brough p	late coupli	ng resistor	of 250000	ohms.			*Max	rimum.		
				ти	BE SYME	BOLS	AND I	вотт	OM V	IEWS OF SO	CKET	CONN	ECTIO	NS				_	_		
		ALL CONTRACT		Care Ho				100 - Q)	Contraction of the second		(DOODE-I)	(PA	D A	Allower (Dec	nt 6-2.	- Part of	O SAL			
	FIG.I	FIG.	2	-	-	1-00	FIG.			L+ CRID-METAL TOP C			FI	G. 5			FIG	.6		FIG.	7
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																					

-

	_	DIMENSIONS			USE PLATE						A-C	MUTUAL CON-	VOLT-	LOAD FOR	POWER						
TYPE	NAME	BASE	SOCKET CONNEC-	MAXIMUM Overall	CATHODE TYPE =	FILAMENT OR HEATER		PLATE	SCREEN	Values to right give operating conditions and characteristics for			D SCREEN	SCREEN MILLI-	MILLI-	PLATE RESIS- TANCE	DUC- TANCE	AGE AMPLI- FICATION	STATED	OUT- PUT	TYPE
			TIONS	LENGTH X DIAMETER		VOLTS	AMPERES	MAX. VOLTS	MAX. YOLTS	Indicated typical use	VOLTS			AMP.	AMP.	OHMS	MICRO- MHOS	FACTOR	OHMS	WATTS	· · · · ·
RCA- 43	POWER AMPLIFIER PENTODE	MEDIUM 6-PIN	FIG. 15A	418 x 118"	HEATER	25.0	0.3	135	135	CLASS & AMPLIFIER	100 135 180	-15.0 -20.0	100 135 180	4.0	20.0 34.0 31.0	45000 35000 1650	2000 2300 2125	90 80 3.5	4500 4000 2700	0.90 2.00 0.82	C - 43
RCA- 45	POWER AMPLIFIER	MEDIUM 4-PIN	FIG. 1	418" x 118"	FILAMENT	2.5	1.5	275	-	CLASS & AMPLIFIER	250 275	-31.5 -50.0 -56.0	250 275	—	34.0 36.0	1610 1700	2175 2050	3.5	3900 4600	1.60 2.00	C - 45
RCA- 46	DUAL-GRID POWER AMPLIFIER	MEDIUM S-PIN	FIG. 7	58" x 215"	FILAMENT	2.5	1.75	250	-	CLASS & AMPLIFIER CLASS & AMPLIFIER	250 300	-33.0	-				2350 lues are for		6400 5200 5800	1.25 16.0 20.0	C - 46
RCA- 47	POWER AMPLIFIER POWER AMPLIFIER PENTODE	MEDIUM 5-PIN	FIG. 6	5% × 216"	FILAMENT	2.5	1.75	400 250	250	CLASS & AMPLIFIER	400	0	250	6.0	31.0	60000	2500	150	7000	2.7	C - 47
RCA- 48	PENTODE POWER AMPLIFIER TETRODE	MEDIUM 6-PIN	FIG. 15	5]" x 216"	D-C HEATER	30.0	0.4	125	100	CLASS & AMPLIFIER	95 125	-20.0	95 100	9.0 9.0	47.0	10000	2800 2800	28 28	2000	1.6	C - 48
RCA- 49	DUAL-GRID POWER AMPLIFIER	MEDIUM 5-PIN	FIG. 7	4 <u>2</u> , x 1 <u>2</u> ,	D-C FILAMENT	2.0	0.120	135 180	-	CLASS & AMPLIFIER O		20.0	-	_	5.7 Power at in	4000 output val dicated pla	1125 lues are for ate-to-plate	4.5 2 tubes load.	12000	0.17	C - 49
UX -950	POWER AMPLIFIER	MEDIUM 4-PIN	FIG. 1	64" x 211"	FILAMENT	7.5	1.25	450	-	CLASS & AMPLIFIER	300 400 450	-54.0 -70.0 -84.0	-	-	35.0 55.0 55.0	2000 1800 1800	1900 2100 2100	3.8 3.8 3.8	4600 3670 4350	1.6 3.4 4.6	CX-350
RCA- 53	TWIN-TRIODE	MEDIUM 7-PIN#	FIG. 24	414 x 111 *	HEATER	2.5	2.0	300		CLASS 8 AMPLIFIER	250 300	0		—	at s	tated load.	lue is for o , plate-to-p	late.	8000 10000	8.0 10.0	C - 53
RCA- 55	DUPLEX-DIDDE TRIODE	SMALL &-PIN	FIG. 13	417 x 1 *	HEATER	2.5	1.0	250	-	TRIODE UNIT AS	135 180 250	-10.5 -13.5 -20.0		-	3.7	11000 8500 7500	750 975 1100	8.3 8.3 8.3	25000 20060 20000	0.075 0.160 0.350	Q - 55
RCA- 56	SUPER-TRIODE	SMALL S-PIN	FIG. 0	41" x 116"	HEATER	2.5	1.0	250		CLASS & AMPLIFIER BIAS DETECTOR	250	-13.5			5.0	9500	1450 t to be adju	13.8			C - 56
	TRIPLE-GRID AMPLIFIER DETECTOR	SMALL 6-PIN	FIG. 11	415" x 14"	HEATER	2.5	1.0	250	100	SCREEN GRID R-F AMPLIFIER	250	- 3.0	100	0.5 Cathode	2.0	exceeds 1.5 meg.	1225	exceeds 1500			C - 57
RCA- 67										BIAS DETECTOR	250	- 3.9 d next to p	100 plate tied t	0.97	na.	grids tied	Grid con	upling resis	tor 250000	owing tube	
		different socket	from small 7	15, grid return to - pin.		1	-		_	SCREEN GRID	250	1- 3.0)	100	2.0	8.2	800000	1600	1280	_	_	
RCA+ 58	TRIPLE-GRID SUPER-CONTROL AMPLIFIER	SMALL 8-PIN	FIG. 11	418" x 176"	HEATER	2.5	1.0	250	100	MIXER IN SUPERHETERODYNE	250	min. ∫ −10.0	100	-			Oscillator ;	peak volts	= 7.0.	1-25	C - 58
BC4. 50	TRIPLE-GRID POWER AMPLIFIER	MEDIUM 7-PIN#	FIG. 18	5] * x 2 to*	HEATER	2.5	2.0	250 250	250	AS TRIODE CLASS & AMPLIFIER AS PENTODE CLASS & AMPLIFIER	250 250	-28.0	250	9.0	26.0	2400 40000	2600 2500	6-0 100	6000	3.00	C - 59
RCA- 59	POWER AMPLIFIER	HEDION PRIM	110.18	28 X 712				400	-	AS TRIODE O	300 400	0	-		at ir	dicated plu	lues are for ate-to-plate		4600 6000	15.0 20.0	
RCA- 71-A	POWER AMPLIFIER	MEDIUM 4-PIN	FIG. 1	418" x 118"	FILAMENT	5.0	0.25	180	-	CLASS' & AMPLIFIER	90 180	-19.0 -43.0		-	10.0	2170 1750	1400 1700	3.0	3000 4800	0.125	C - 71-A
RCA- 75	DUPLEX-DIODE HIGH-MU TRIODE	SMALL 6-PIN	FIG. 13	411 x 118"	HEATER	6.3	0.3	250	-	TRIODE UNIT AS CLASS & AMPLIFIER SCREEN CRID	250 x	-1.35	60	0.4	0.4	650000	1100	715	er stage -	50-60	C • 75
RCA- 77	TRIPLE-GRIO AMPLIFIER DETECTOR	SMALL 6-PIN	FIG. 11	4 ¹ / ₂ " x 1 ² / ₁₆ "	HEATER	6.3	0.3	250	100	R.F AMPLIFIER BIAS DETECTOR	250 250	- <u>3.0</u> - 1.95	100 \$0	0.6 Cathode 0.65	2.3 current ma.	1500000	1250 Plate co Grid cor	1500 pupling residupling residupling residupling	ator 25000	0 ohms. ohms**.	C - 77
RCA- 78	TRIPLE-GRIO SUPER-CONTROL AMPLIFIER	SMALL 6-PIN	FIQ. 11	4 <u>17</u> " x 1 <u>0</u> "	HEATER	6.3	0.3	2 50	125	SCREEN GRID R-F AMPLIFIER	90 180 250 250	{- 3.0 min.}	90 75 100 125	1.5 1.0 2.0 3.0	4.0 7.0 10.5	315000 1000000 800000 600000	1100 1450 1650	1100 1160 990	-		C - 78
RCA- 79	TWIN-TRIODE	SMALL 6-PIN	FIG. 19	453" x 176"	HEATER	6.3	0.6	250	-	CLASS B AMPLIFIER	180 250	0	-	-	at s	stated load	lue is for o	plate.	7000 14000	5.5 8.0	C - 79
RCA- 85	DUPLEX-DIODE	SMALL 6-PIN	FIG. 13	4kg" x 1춙"	HEATER	6.3	0.3	250	-	TRIODE UNIT AS	135 180 250	-10.5 -13.5 -20.0	-	-	3.7 6.0 8.0	11000 8500 7500	750 975 1100	8.3 8.3 8.3	25000 20000 20000	0.075 0.160 0.350	C - 85
104- 05	THIODE								-	AS TRIODE S	160	-20.0	-		17.0	3300	1425	4.7	7000	0.300	
RCA- 89	TRIPLE-GRID POWER AMPLIFIER	SMALL &-PIN	FIG. 14	4 ¹¹ / ₂₂ " x 1 ^{\$} / ₁₆ "	HEATER	6.3	0.4	250	250	CLASS & AMPLIFIER AS PENTODE ** CLASS & AMPLIFIER AS TRIODE * CLASS B AMPLIFIER	250 100 180 250 180	-31.0 -10.0 -18.0 -25.0 0	100 180 250	1.6 3.0 5.5	32.0 9.5 20.0 32.0 Power at in	2600 104000 80000 70000 output va idicated pl	1800 1200 1550 1800 lues are for late-to-plat	4.7 125 125 125 125	5500 10700 8000 6750 13600 9400	0.900 0.33 1.50 3.40 2.50 3.50	C • 89
UV -199 UX -199		SMALL 4-NUB SMALL 4-PIN	FIG. 10 FIG. 1	3) x 1/6" 4) x 1/6"	D-C FILAMENT	3.3	0.063	90	_	CLASS & AMPLIFIER	90	- 4.5	-		2.5	15500	425	6.6	-	-	C -299 CX-299
RCA-864	AMPLIFIER	SMALL 4-PIN	FIG. 1	4" x 112"	D-C FILAMENT	1.1	0.25	135	-	CLASS & AMPLIFIER	90 135	- 4.5	-		2.9	13500 12700	610 645	8.2	—		C -864
	*For Grid Either / of D. #Require	Leak Detection- A. C. or D. C. ms C. on A-C filamo s different socket	-plate volts 4 iy be used or ant types, de from small 7	5, grid return to + filament or heat crease stated grid pin.	filament or to er, except as l volts by ½ (apecific approx.	ally note) of filam	lent von		"Grid #1 is SGrid #1 is @Grids #1	s control s control and #2	grid. G grid. G connected	ridi sí2ia rida sí2ia Itogether.	screen. nd #3 tie Grid #3	d to plat tied to	tied to ca c. x Ap plate.	plied through the second secon	ogh plate o of followin	oupling re g tube.	aistor of 25	0000 chms.
RCA-523	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	FIG. 2	52" x 21";"	FILAMENT	5.0	3.0	1_	-		N	faximum faximum	A-C Volta	ge per Plat	e	.5	500 Volts, F	RMS			C -523
RCA-1223	HALF-WAVE RECTIFIER	SMALL 4-PIN	FIG. 22	41" x 176"	HEATER	12.6	0.3	-			N	faximum i	A-C Voltag	c per Plat	e	2	50 Volts, F 60 Milliam	RMS			C-12Z3
RCA-2525	RECTIFIER- DOUBLER	SMALL 5-PIN	FIG. 5	41" x 1rg"	HEATER	25.0	0.3		-		N	faximum /	A-C Voltes	te per Plat	E		25 Volts, F 00 Milliam	peres			C-2525
RCA-1-v°	HALF-WAVE RECTIFIER	SMALL 4-PIN	¥10. 22	41" x 11%"	HEATER	6.3	0.3		-	A-C Voltage per	N N	faximum /	C Voltag	t Current	The		50 Volts, F 50 Milliam ating applie	peres	circuits ha	ving an	C-Iv°
RCA- 80	FULL-WAVE RECTIFIER	MEDIUM 4-PIN	FIG. 2	4 <u>1</u> <u></u>	FILAMENT	5.0	2.0		-	D-C Output Cur	rrent (M	aximum M	A-C Plate	Voltage	inpu	t choice of	at least 20 100 Volts, F	henries. RMS			C - 80 CX-381
UX -281	HALF-WAVE RECTIFIER	MEDIUM 4-PIN	FIG. J	61 x 215	FILAMENT	7.5	1.25	-	-	Maximum A-C Maximum D-C	N	faximum l	D-C Outpu	at Current	Max	timum Pea	85 Milliam	Voltage	400 Volta		C - 82
RCA- 82	FULL-WAVE >	MEDIUM 4-PIN	FIG. 2	418" x 118" 51" x 216"	FILAMENT	2.5	3.0	-	-	Maximum A-C	Voltage	per Plate,		ts. RMS	Max	timum Pea	ik Plate Cu ik Inverse ik Plate Cu	Voltage	400 Milli	imperes	C - 83
RCA- 83 RCA- 84	RECTIFIER FULL-WAVE RECTIFIER	SMALL S-PIN	FIG. 23	41" x 175"	HEATER	6.3	0.5		-	Maximum D-C	A	daximum l	A-C Voltag	e per Plat	e		25 Volts, F 50 Milliam	MS			C - 84 alee 524
RCA-866	HALF-WAVE > RECTIFIER	MEDIUM 4-PIN		65" x 214	FILAMENT	2.5	5.0		-		h	deximum i	Peak Inve	rse Voltage	-	.75	500 Volta), 6 Ampere				C -866 (CX-366)
	> Mercury Vapor T	ype. ° Interchar	geable with	type 1.				PH	отс	DTUBES	_	_									
RCA-868	PHOTOTUBE	SMALL 4-PIN	FIG. 28	4 ¹ / ₈ " x 1 ² / ₁ "						Max. Anode S Statie Sensitiv Dynamic Sens									cond, resp	ectively.	C -868
				TU	BE SYM	BOLS	AND	вотт	OM N	IEWS OF SO	CKET	CONN	ECTIO	NS	_				-	_	
	A CAR	CREENC	OP CAP	GRID-METAL FIG.	TOP CAP	GRID	FIC	5.10	Private	CRO-WEAK			FIG) 13	X	OF THE TATE		the state	FIG.	
A CONTRACTOR	CATHORN	FIG.2		INTEGE - 22 - 24 - 24 - 24 - 24 - 24 - 24 - 2	CATHODE	GRID RODEH) DIPLATE (TRODEH)	CR (TRIC PLATE((TRICOC-2)		FIG.2	PLATE			10		IS PEN	X	GRID-MELT	TOP CAP	NODE	FIG	

—an offer to Broadcasters . .

UNIFORMITY!

A Line of Standard Tubes

Federal Transmitting Tubes are built for service and proven by years of successful operation in exacting communication services, such as point-topoint and ship transmitters. Federal tubes include oscillators and amplifiers for all frequencies and all rectifier types and sizes. Rigid manufacturing and testing requirements insure tubes of uniform quality and long life. Ideal for radio and industrial uses. Federal offers equal or greater efficiency in terms of better performance and life per unit cost. A COMPLETE LINE OF TRANSMITTING TUBES and RECTIFIERS—

WRITE FOR Engineering Data To-Day!

FEDERAL TELEGRAPH COMPANY

200 Mt. Pleasant Avenue, Newark, N. J.

preceded our Major Operation

THE SUMMERILL CASE packed for shipment

The scientific care used in making SUMMERILL SEAMLESS TUBING extends to the shipping case, a container constructed to insure the tubes against damage in transit. There is no waste through crushing or bending. Each tube arrives in perfect condition, just as it was when packed.

SEAMLESS tubing for the Radio Industry is now our Major Operation. This was not always so. In fact, Summerill's first service to industry was the production in quantity of seamless tubing for manufacturers who wished to escape the trials of machining their own tubes.

Shortly after the Company moved to Bridgeport in 1910 it succeeded in obtaining almost the entire hypodermic needle market, which it has since dominated.

Then came Radio. When pure nickel was found to be the most suitable metal for use in radio tubes the Radio Industry turned to Summerill because of its experience in producing small tubes.

Summerill's radio business grew to such an extent that in 1929 it represented the largest percentage of the Company's total output—its MAJOR OPERATION.

Now, as in 1929, the Radio Industry still consumes the bulk of the Company's business. However, in 1930, '31 and '32 Summerill perfected processes with the result that the price of radio tubing is far below what it was in '29. What is more important, due to the preparation made for increased demand, absolutely dependable schedules can be expected of Summerill.

SUMMERILL TUBING COMPANY BRIDGEPORT, Montgomery County, PA. • PHILADELPHIA DISTRICT

A chronological history of electrical communication -telegraph, telephone and radio

This history began with the January 1, 1932, issue of RADIO ENGINEERING. The items are numbered chronologically, beginning at 2000 B.C., and will be continued down to modern times. The history records important dates, discoveries, inventions, necrology and statistics, with numerous contemporary chronological tiein references to events in associated scientific development. The material was compiled by Donald McNicol.

Part XXI

1890 (Continued)

- (814) During the year fast-sending telegraph tournaments (814) During the year fast-sending telegraph fournaments are held at Hardman Hall, New York, April 10; New Orleans, April 20, and St. Louis, June 10.
 1891 (815) Paper insulated cables are introduced in land-line communication and lighting service.
 (816) Polyphase motors and alternators are exhibited at the Frankfort, Germany, Exposition.
 (817) The Strowger automatic telephone exchange system
 - - (817) The Strowger automatic telephone exchange system
 - (817) The Ströwger automatic telephone exchange system patented, March 10.
 (818) Tesla delivers an important lecture before the A. I. E. E., New York, on polyphase electric transmission.
 (819) Eduard Branley, in France, announces the discovery that the effect of electrical oscillations upon a body of metallic filings is to produce an increase in the electrical conductivity of the filings.
 (820) W. R. Phelps, in New York, improves existing stock-ticker systems
 - ticker systems.
 - (821) Alexander Graham Bell is elected president of the A. I. E. E.
 - (822) A telephone line is opened for business between London and Paris.
 - (823) The Automatic Electric Company, Chicago, is organized, to manufacture automatic telephone systems
 - (824) Arthur L. Dearlove establishes the duplex method of working on submarine cable lines of the Brazilian Submarine Cable Company at Lisbon, St. Vincent and Pernambuco.
 - (825) The H. Ward Leonard Electric Company is organized with works at Bronxville, N. Y.
 - (826) The Burnley dry-cell primary battery patented in January, 1890, is widely used for telephone and bell ringing purposes.
 - (827) The Bonus system of message handling is given a trial in the New York office of the Postal Telegraph-Cable Company.
 - (828) Perrett electric motors and dynamos are manufactured by the Elecktron Manufacturing Company, Brooklyn. N. Y.
 - (829) The Standard Underground Cable Company. Pittsburgh, Penna., manufactures duplex electric light cables, lead covered; also 50-conductor, lead-covered telephone cables.
 - (830) Queen and Company, instrument makers. Philadelphia. Penna., produce a new line of alternating-current and

 - (831) Willoughby Smith dies. (Born in England 1828.)
 (832) Willoughby Smith dies. (Born in Germany 1804.)
 (833) In the St. Louis, Mo., main office of the Western Union Telegraph Company dynamos are installed to

replace primary batteries for line and instrument operation.

- (834) George G. Ward is elected vice-president of the Commercial Cable Company.
- (835) The International Brotherhood of Electrical Workers organized at St. Louis, Mo., November 28.
 (836) H. Ward Leonard invents a multiple-voltage control
- system. 1892 (837) Professor George Forbes, of Edinburgh, suggests that
- the Branley filings tube will respond to the action at

 - a distance of Hertz' waves. (838) Cyrus W. Field dies. (Born United States 1819.) (839) Frank J. Sprague is elected president of the A.I.E.E. (840) Samuel Insull becomes president of the Chicago Edi-

 - (840) Samuel Insul becomes president of the Chicago Edison Company, Chicago.
 (841) Werner Von Siemens dies. (Born Germany 1816.)
 (842) Arthur Vaughn Abbott is appointed chief engineer of the Chicago Telephone Company.
 (843) The General Electric Company is established, combining the Edison General Electric Company and the Thorneon Houston interaction. Thomson-Houston interests.
 - (844) The Electrose Manufacturing Company organized, Louis Steinberger, president.
 (845) Toll telephone service is inaugurated between New
 - York and Chicago, October 18.
 - (846) The Society for the Promotion of Engineering Edu-
- 1893 (847)
- (840) The Society for the Promotion of Engineering Education founded.
 (847) Thomas T. Eckert becomes president of the Western Union Telegraph Company, February 13. (Remained in this position until March 12, 1902.)
 (848) A telegraphers' fast-sending tournament is held in Hardman Hall, New York, March.
 (849) The attorney general, in behalf of the United States Government, begins suit in Massachusetts asking that Berliner's telephone patent No. 463,569 of 1877, be set acide

 - (850) E. J. Houston is elected president of the A.I.E.E.
 (851) Gilbert's early electrical writings embodied in his work "De Magnete" are translated into English by P. Fleury Mottelay, of New York.
 (852) A three-phase, 2,600 volts, electric power transmission line is built in California, over a distance of eight related.
 - miles.
 - (853) The Crocker-Wheeler Company establishes works at Newark, N. J.
 - (854) The first electric motor-driven roller table is installed at the Homestead, Penna., mills of the Carnegie Steel Company.
 - (855) Herbert C. Jackson, in England, and Professor Lenard, in France, experimenting with electric discharges (856) On December 26, N. Tesla procures U. S. patents 511,559 and 511,550 covering the invention of a system of electric terrarging of a system.
 - of electric transmission of power. These patents cover what is known as the "split phase" inventions of Tesla. Patents assigned to the Westinghouse Electric and Manufacturing Company. Patent applications filed De-cember 8, 1888. (In later years these patents were the subject of a considerable amount of litigation in which Tesla's claims were ultimately sustained.)
 - (857) Thomas E. Morford is granted a U. S. patent (No. 490.034) for an electric heater using enameled wire resistor units. Application filed 1891.
 - (858) The Fibre Conduit Company, Orangeburg. N. Y., organized.
 - (859) Moses G. Farmer dies. (Born United States 1820.)
 - (860) Direct-current arc lighting systems now in operation in America are operated at 5,000 volts, 125 lights per station unit.

(To be continued)

ENGINEERS ENGINEERS COOPERATE WITH YOU!

HROUGHOUT 31 years of successful manufacturing, the Hygrade Sylvania Corporation has given first importance to organizing an outstanding staff of production, research and development workers.

Today this staff of experts includes not only those who supervise manufacture — but also a large group occupied in the intensive development of new and better tubes, and in their application to circuit problems.

A COMPLIMENTARY SERVICE

Through this staff of 134 scientists, Hygrade Sylvania has been enabled to lend important assistance to most of the leading radio set manufacturers. We welcome all requests for cooperation of this type — either in our own

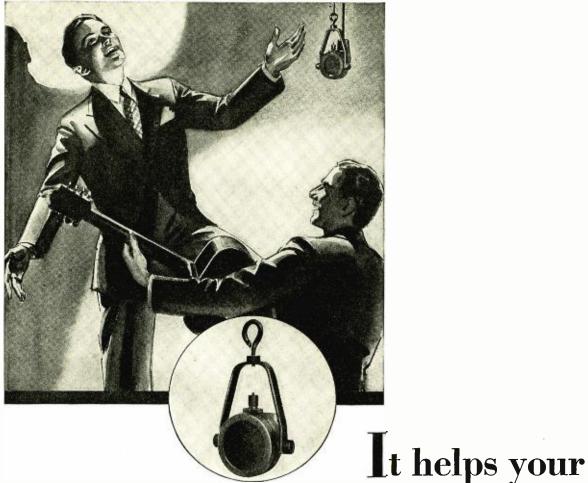
laboratories or in the plants and laboratories of interested manufacturers. Your acceptance incurs no obligation.

NEW ELECTRONICS FACILITIES

Early this year, Hygrade Sylvania extended its facilities to completely cover the field of electronics. A new plant was established in Clifton, N. J., for the design and production of radio transmitting tubes, industrial power tubes, special radio receivers, broadcast equipment, custom-built electronic devices. phototubes, radio transmitters and sound amplifiers. As in the radio tube division, the same engineers who develop this specialized equipment are available to assist in solving your own electronics problems. Write:

HYGRADE SYLVANIA CORPORATION

500 Fifth Avenue. New York Citv


HYGRADE	LAMPS

```
SYLVANIA TUBES
```

FACTORIES EMPORIUM, PA. SALEM, MASS.

- ST. MARY'S, PA.
 - CLIFTON, N. J.

ELECTRONIC EQUIPMENT

station's stars to shine *more brightly*

The Western Electric Moving Coil Microphone provides clear, undistorted pick-up—helps to put your programs on the air at their very best. This equipment—which assures uniform response throughout the range of audible frequencies—is not affected by changes in temperature, humidity or barometric pressure. ¶ Today's improved single microphone technique was made possible by the Moving Coil Microphone—a development of the Bell Telephone Laboratories. Available in desk, floor and suspension mountings, you can use it to cover a single artist or an entire symphony orchestra. ¶ For highest quality and fidelity of tone reproduction, rely on the Western Electric Moving Coil Microphone.

Western Electric

RADIO TELEPHONE BROADCASTING EQUIPMENT Distributed by GRAYBAR Electric Company

-		
	GRAYBAR ELECTRIC CO.	RE 9-33
ĺ	Graybar Building, New York, N.Y.	
l	Gentlemen: Please send me full information on the	Western Electric
l	Moving Coil Microphone.	
L	·	
1	NAME	
1	ADDRE88	
Į.	CITYSTATE	
۰.		

radio engineering

FOR SEPTEMBER, 1933

– As the Editor Sees It –

HE next few months are crucial ones, not only for the radio and associated industries but for all industry. It is during that time that the complete working out of code operation will take place.

An industry which hopes to get the full benefit of the recovery program must arrange to adjust itself to the trend toward economic planning. If it does not do so, it may find itself at a disadvantage in competing with industries more forward-looking and aggressive, which in the process of looking out for their own futures may inadvertently step on the toes of some related industry. The radio industry, working under the NEMA code, still faces many problems. The solution of many of these problems will be found before the end of the year.

It is extremely important that we keep before us continually the picture of the radio industry as a whole in its competitive position. We are competing as an industry for the leisure time of the general public. There is no doubt that over the past two years the quality of radio reception, as far as the general public is concerned, has been lowered. If there is a falling off in the quality of reproduction from the individual receiver, consciously or sub-consciously, it is recognized by listeners who drift away to other forms of recreation. In a general way we are competing with the theatre, movies, all athletics, night clubs, games, and scores of other forms of entertainment.

In meeting this general industry competition the important factors of product improvement, engineering refinements and research must be matched to a program of intelligent promotion, forceful selling, consumer education and service. It is distinctly encouraging to note that where the engineering personnel of the industry for the past two years has been employed for the purpose of lowering costs, cheapening quality and working down to a price—that to day in many quarters, an increased or reinstated engineering personnel is engaged in the development of improved radio products of all kinds. Within the next few months this change will be observable by all.

The absorption by the public of the products of the

radio industry, with its immense productive capacity, can be had only upon the basis of continual "progressive obsolescence." Sustained engineering and research activity is essential to the maintenance of volume sales. During these next few months it behooves the forwardlooking manufacturer to move cautiously, but aggressively, with full consideration given to the importance of performance value, technical refinements, material improvements and the resulting increase in the public's time which can and will be given to an improved quality of reception.

Already we are having a foretaste of what is to come although, of course, the advancements have been more in the way of eye value appeal than along the lines of technical improvement, the latter, of course, requiring more time and preparation. Many novelty receivers have recently been released—sets sold in quantities to manufacturers for advertising use, pocket receivers, receivers in bars, beer kegs, remote control speakers, etc. products which cater to specific or specialized demands.

And let's not overlook the opportunities for increased export sales. The social and economic upheavals in foreign nations seem to be paving the way to a better living standard for the nationals of these various countries. In the immediate offing we have the economic conference with the South American countries, with every prospect of resulting favorable trade agreements. The position of the American dollar in foreign exchange is a self-evident aid to securing a larger proportion of the world's radio purchases. International loans, made upon the strict understanding that the money is to be spent for American products, will, directly or indirectly, help to finance increased purchases of radio from this country. The next two years should see a material increase in our radio shipments to foreign shores.

At this moment the general feeling throughout the radio and associated industries is distinctly one of optimism, which we believe is entirely justified. Cut-throat competition is disappearing, and increased markets are in the offing. The outlook today for the legitimate manufacturer is decidedly favorable.

15

THE EXTERNAL LOUDSPEAKER and the MINIATURE RECEIVER

By Barnet S. Trott*

HEN the miniature or so-called cigar-box receiver first made its appearance it was looked upon with scorn by the more conservative radio manufacturers. The first models of this type of receiver were 4-tube t.r.f. sets using a small magnetic speaker and utilizing such tubes as were then available. The sensitivity was poor, the selectivity wretched and the "tone quality," if it could be called such, miserable. Though interesting as examples of ingenuity the less said about their performance, the better.

However, the small size, attractive appearance, portability and novelty of these receivers, together with the a-c.—d-c. feature, appearing just before the Christmas season, seized upon the public imagination. By the middle of January, every wide-awake manufacturer had either a set of this type in production, or in the laboratory. The tube engineers, always on their toes, came forward with better tubes and tubes serving dual purposes, and in some cases triple functions, specially developed for a-c.—d-c. service at low voltages, so that seven or eight tube performance was obtainable with five tubes.

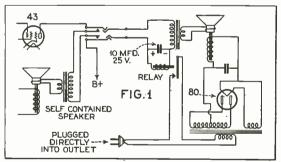
With the advent of high current output rectifiers, it now became possible to utilize dynamic speakers, which though in general insufficiently energized, contributed a considerable improvement in tone.

At a low price and in a space hardly greater than that occupied by the original 4-tube t.r.f. sets, there are now available five or six tube superheterodynes, with excellent gain and selectivity, equipped with avc tone control and wave band switches for listening in on police calls, airports and amateurs, and housed in beautiful cabinets of metal, moulded Bakelite, or contrasting woods; in fact everything that can be desired in a radio set except a high degree of fidelity.

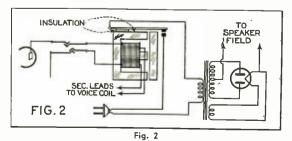
Within the last few months, there has been considerable discussion regarding the use of external plug-in speakers with 8 or 10 inch cones, with fields adequately excited from a separate power source, and mounted on baffles of sufficient area to permit of a high degree of fidelity contributed by increased bass response, and the ability to handle more power. Thus the control mechanism, housed in its small artistic cabinet, may still be placed on a table alongside the favorite arm-chair or on the book shelf, without sacrificing any of its advantages. It still may very readily be carried from room to room or be taken away for the week-end, as a complete self-contained a-c. or d-c. receiver.

The external plug-in speaker may be mounted in an attractive piece of furniture which serves some other usual function as well, such as a secretary desk or end table.

Though permanent magnet dynamic speakers have been used to some extent, they are expensive and their performance is not comparable to that of a good electromagnetic type of dynamic speaker. With the latter

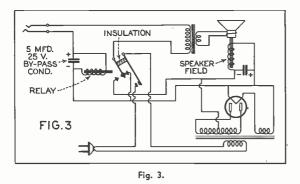

* Chief Engineer. Garod Radio Corporation of N. Y.

type, used in a housing separate from that of the receiver itself, an additional consideration presents itself. Since this speaker is separately excited from a copper oxide or a tube rectifier it becomes desirable to have some means of turning the power for this device on and off without having to cross the room and manipulate another switch. Furthermore, a pilot light with its attendant complications would be necessary to remind the listener to turn the device off when through listening.


Where the speaker plugs into the plate circuit of the output tube, in place of the small self-contained speaker, a means of overcoming this difficulty readily suggests itself. The d-c. component of the plate current of the power tube, usually a 43, which is of the order of 20 milliamperes, is sufficient to operate a simple and relatively rugged relay in series with the transformer primary. This may be placed adjacent to the speaker. The a-c. component may be adequately by-passed by an inexpensive low-voltage dry electrolytic condenser of the order of several microfarads so that no loss of the audio component is sustained here. The d-c. drop through the relay is inconsequential. This arrangement is illustrated in Fig. 1.

Another possibility is to utilize the leakage flux of the output transformer itself to actuate the relay arm, so that no additional coils are required, or any additional parts other than the armature with its contact. This is built in as an integral part of the output transformer assembly as indicated schematically in Fig. 2. While it is true that the plate current fluctuates somewhat with an overload condition existing, this fluctuation is relatively small and with proper design of the armature system, no chattering should result.

With either of these arrangements, the extension



SEPTEMBER, 1933

cord is a simple two wire cable, with the external speaker plugged directly into a convenient outlet. With a jack provided for plugging into the plate circuit of the output stage (Fig. 1) no additional wiring is required and no extra switches need be used. Inserting the plug and turning the radio set on, switches on power for the speaker field without any further manipulation.

The miniature radio set is now capable of good sensitivity and selectivity as well as good bass response. With the low plate voltage available for the operation

of the output tube, the power supplied to the speaker is limited to about one watt when a 43 type tube is used, and even at this level, considerable distortion is noticeable due to the presence of a fairly high harmonic content which is more or less characteristic of all pentode output tubes. In a portable receiver, this is not considered of any great importance where adequate power output is paramount and due to the limitations of the small speaker with its inadequate baffle, any improvement here would go unnoticed. In the home, with the large external speaker, this distortion becomes more apparent. While, it is true, a power output of one watt is generally more than ample for the average room, still, under certain conditions, a greater power output is desirable.

With the common use of diode detection, the output tube generally overloads long before the detector tube. It seems a pity, therefore, that in the search for high quality in home radio reception, we should stop at this point. Since a power supply device consisting of a rectifier and filter of some sort are needed to excite the field for the extension speaker, it becomes a simple matter at only a small increase in cost to include an output stage consisting of one or more pentodes (41's, 42's or 2A5's) operating at full rated plate voltage (250 volts) or better still, one of the new high output triodes (2A3) or preferably a pair of them in pushpull, operating out of the amplifier portion of the dual function detector amplifier tube. With such an output stage and a good loudspeaker, no apologies need be offered for the performance of a well-designed miniature receiver.

Still another possibility, if the increased cost is not warranted, is to utilize the voltage supply for the speaker field (about 100 volts) or a portion of it to boost the plate volage of the output tube. This changeover may be accomplished by adding an additional insulated contact to the relay of Fig. 1, so that when the relay is energized by the plate current of the 43 tube, the speaker field is thrown in series with the "B" supply of the miniature set, the voltage across it, or any portion of it, which may be tapped off, is added to the available plate voltage. (Fig. 3.)

The output of a 43 type tube increases from 0.90 watt at 100 volts to 2.00 watts at 135 volts. Thus a considerable improvement in operation can be obtained at only a slight increase in cost.

The Relation of Engineering to the Radio Industrial Code

MERICAN radio manufacturers are now operating under a "Code of Fair Competition for the Electrical Industry" which was approved by President Roosevelt on August 4. In the necessarily broad regulations thereby established for this highly ramified industry there is no formal recognition of that select class of professional laborers to whose creative effort the principal commodities of every radio manufacturer owe their origin. There exists, nevertheless, a vital connection between the corporate welfare of every radio manufacturer and the productivity of his engineering employees. Unless the teachings of industrial history are mockery, the radio industry will be distinguished for years to come by an essential dependence upon inventive thought, both technical and artistic. Periods in which this industry has provided large employment for labor and legitimate return on invested capital have always been preceded by exceptionally productive engineering activity. The recur-

By Dr. Lewis M. Hull

President, Institute of Radio Engineers

•

rence of this sequence has been too consistent to suggest anything but a causal relation.

A choice is now presented squarely to all radio engineers and their employers: whether to revive conditions favorable to inventive engineering efforts or to continue with price-lowering as the main objective of engineering thought. Such a revival would provide sufficient centrifugal force to throw the industry out of the vicious competitive circle in which it is now spinning. Competition in ideas, rather than competition in prices, is still a sane and profitable activity. Furthermore, this revival of creative engineering is the most direct means of reconciling the Government's requirement of sustained highly-paid employment with that renewed effectiveness of invested capital which is vital to the industry. Recognition of this principle is an obligation to be shared alike by engineers and by their employers, in striving toward that rehabilitation of the industry which we all confidently anticipate.

A COMPLETE BROADCAST STUDIO

By P. S. Gates *

 HE modern broadcast station today is decidedly different from that of yesterday in practically every phase of its operation.

Several years ago the broadcast engineer saw the feasibility of eliminating the use of batteries in the radio frequency and modulator portions of the transmitter and substituting in their place either generators or tube rectifying equipment, which resulted in increased economy and better stability of operation. However, due to the low current drain and low voltage required for the operation of speech amplifiers, condenser microphones and other associated equipment in connection with broadcast studios, broadcasters were slow to change to rectifying equipment in this department of the equipment.

Also, due to the fact that in the majority of cases the output of the studio amplifier is amplified many times before reaching the antenna, it has been until recent months the general concensus that unless a great investment was made in rectifying equipment and new design speech amplifying equipment, that the alternatingcurrent hum could not be reduced to a satisfactory level to bring about high quality transmission. Hence, until only a short time ago the complete a-c. operated studio equipment was found only in the larger stations, and even at this time some of the largest stations in the country use battery supply in certain parts of the complete installation.

Fig. 1 illustrates the complete a-c. operated broadcast studio of Station KUOA, Incorporated, of Fayetteville, Arkansas. The studios of this station had been destroyed by fire and, of course, when designing their new studios they were desirous of having the entire outlay of equipment without any batteries, whatsoever. Con-

*Chief Engineer Gates Radio & Supply Company.

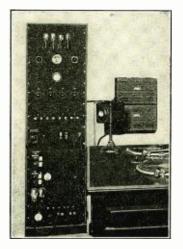


Fig. I. A-C. operated studio station KUOA.

sequently, the model 3205D speech input amplifier was chosen. This amplifier uses the conventional high quality three-stage circuit, having the vacuum tube type level indicator self-contained in the amplifier proper. Directly below the amplifier is found the meter test panel for testing the plate current on the amplifier tubes, as well as the carbon microphone current when carbon microphones are used and below the meter test panel will be found the four-channel mixing panel. This mixing panel has four channels which will handle either carbon or condenser type microphones, each channel being fully equipped with transformers, current adjusting and testing equipment for carbon microphones. Con-stant impedance T pad mixing controls are used and these controls are so wired into the circuit that no change in output level is had when channels are added or taken from the circuit by means of the channel switches directly above the mixing controls.

Below the mixing panel will be found the filament rectifier, which will be discussed somewhat in detail, due to the fact that the copper oxide rectifier has been a subject of discussion both pro and con for many years. The early type of rectifier used a chemically treated copper plate with the elements driven in one direction so that when alternating current was applied to this plate it could travel but in one direction, hence resulting in a fair measure of direct-current output. This was known as the electrolytic principle and the output waveform of direct current was not as straight as could be desired and it had the added disadvantage that as the element aged, the voltage, current output and waveform deteriorated in efficiency and in the case of the waveform, uniformity.

However, in recent years a new type of copper oxide rectifier has been developed by Dr. L. O. Grondahl, which basically is a sheet of copper with a layer of cuprous oxide. Rectification takes place between the oxide and the mother copper, hence it can be seen that the element operates electronically, and not electrolytically. Life tests have shown as much as six years of satisfactory results with little or no deterioration.

The design of the filtering portion of the rectifier, of course, depends entirely upon the voltage output of the rectifier. In the case of the 3205D speech input rack, the output voltage required is 6 volts at $3\frac{1}{2}$ amperes, hence the filtering condensers need not have as high a working voltage as would be required with speech input amplifiers requiring a 12-volt filament supply. A total of 16,000 mfds. of filter are used in connection with two .6 henry choke coils. The choke coils have a d-c. resistance of one twelve hundredth ohm and, of course, are able to carry about 25 per cent more current than the normal operating requirements.

The a-c. supply transformer has a tapped secondary ranging from 10 to 16 volts, so that adjustments can be made for either low or high line voltage. The usual rheostat voltmeter and other desirable accessories are incorporated to complete a rectifier for filament supply purposes that is equivalent in every respect to that of

INSTALLATION FOR A-C. OPERATION

storage battery supply, and has the desirable advantage that it is clean, requires no maintenance, and because of the low voltage output of the transformer used in the filament rectifier, little or no difficulty is encountered with induction hum, even when the rectifier is placed close to the adjacent equipment.

The bottom panel is the plate and bias rectifier, which is conventional in design to any good rectifier to develop a ripple content of .25 per cent or lower. As the design of suitable rectifiers of this type has been discussed in previous issues of RADIO ENGINEERING, and the design of this rectifier is very similar, it will not be discussed in detail other than to say that the rectifier incorporates large capacitors to eliminate any trace of alternating-current hum, and due to the high voltage output of the rectifier, the parts are carefully placed to prevent any induction pickup between it and the other adjacent equipment on the rack. Jacks are provided for testing each plate and bias voltage, and a voltmeter is also incorporated in connection with a cord and plug for testing each voltage.

All of the lines running between the various units on the rack are run in heavy shielded cable and the input circuits are segregated and run through a separate cable to those of the output and alternating-current lines. This is not all absolutely necessary where the cables are shielded, but it is done as a precaution.

The a-c. input connections and output are terminated at the bottom rear of the rack through standard conduit outlet boxes, and dust covers are then mounted on the back as a complete protection, as well as shield, both mechanically and electrically to the equipment. It is preferable to ground the rack, especially where it is in the field of the transmitter.

In Fig. 1, directly to the right of the rack assembly will be found mounted on the wall the two rectifiers for supplying current to the condenser microphones. The top rectifier is the filament supply rectifier, which will supply $1\frac{1}{2}$ amperes or adequate current for six condenser microphones. It is very similar in design, only in smaller proportions, to the filament rectifier on the rack, and is supplied with voltmeter and rheostat so that the voltage may be adjusted to the correct amount as microphones are added, or taken from the circuit.

The plate supply rectifier for the condenser microphones takes advantage of the new type 25Z5 tube, which is a voltage doubler tube and delivers a maximum of approximately 220 volts, which is adjustable by means of a variable bleeder strip across the output of the rectifier, giving a variation from 170 to 220 volts. A second control is also provided for microphones requiring an intermediate voltage for the amplifier tubes. This is variable from 90 to $167\frac{1}{2}$ volts. The rectifier incorporates a total of 56 mfds, of capacitors in connection with the usual filter circuit. Due to the fact that the 25Z5 tube is a voltage doubler tube, grounding of the microphone filament supply, when necessary, must be done through a 1 mfd. condenser or larger, that is, the condenser must be inserted between the ground and the rectifier, proper. The complete design of a plate rectifier for condenser microphones will be discussed in a succeeding issue of RADIO ENGINEERING.

Fig. 2. Transcription equipment.

On the transcription desk will be found the type B Gates condenser microphone and the transcription unit is a standard VB-105 assembly altered to fit into an ordinary desk as shown in Fig. 2.

The complete setup offers operation without the use of batteries in any form. The filament rectifier on the 3205D speech input rack supplies current for the carbon microphones on the mixing panel, while the rectifiers discussed in the above paragraphs supply complete current to the several condenser microphones used in the studio.

All broadcast stations that have installed modern speech input equipment for alternating-current operation throughout have agreed that their service has been improved one hundred per cent as the periodical noises which naturally develop from worn batteries were completely eliminated, the confidence in the stability of operation was increased in the opinions of the control engineers, and the cleanliness of the operating room and the convenience of having no batteries to contend with have been expressed by several as, alone, worth the investment in new a-c. operated apparatus.

From the standpoint of economy a-c. operated equipment is decidedly an advantage. The average broadcast station is required, when using storage batteries, to replace them once every twelve to eighteen months due to the moderately heavy drain and continued charging required. Dry batteries naturally require replacing at certain specified intervals and broadcast stations desiring to supply a high grade of service at all times usually replace these batteries before they reach the point of noisy operation.

The average broadcast manager will readily agree, if he has had occasion to check battery cost and current cost for charging batteries, that his expenditure in this particular has ranged from seventy-five to two hundred dollars a year, even in the average size station. The complete a-c. operated studio setup as describeu consumes approxima:ely 300 watts, which is far less than the current consumption of the battery charger required in the average radio station, and would effect an expenditure of approximately four dollars a month for power to operate the equipment in a station operating from ten to twelve hours a day. Hence, it can be seen that the station working toward the goal of economy can have economy as well as increased efficiency by changing its studio equipment for complete a-c. operation.

A New and Practical Multi-Vibrator

By Samuel S. Egert and Samuel Bagno*

A LTHOUGH our modern multiple pronged tubes have been conceived principally for their uses in broadcast receiver design, they have as well opened paths leading to a wide variety of uses to which they are applicable in the laboratory. It is the intention of the authors to demonstrate one of these uses and also to incorporate the following in this paper.

(1) Describe the relaxation type of multi-vibrator; interpret the factors upon which their action depends, and demonstrate their weaknesses and limitations.

(2) Describe a practical method of obtaining a multivibrator effect by using a multi-pronged tube such as the 78, and to demonstrate the advantages of this method when compared to the relaxation type of vibrator.

Almost everyone who has had experience with the relaxation type of multi-vibrator will admit that the latter is subjected to temperamental tendencies all their own. A careful analysis of a conventional circuit of this type (Fig. 1) will show why this is so.

Here a self-induced oscillatory action is created in tubes 1 and 2 by feeding part of the induced signal from the plate of tube 2 back to the grid of tube 1. The frequency of this action is dependent on the values of the characteristics of the tubes, coupling condensers and resistors. Deriving this condition from the values known in order to analyze the resultant factors we obtain:

$$E_{P_{1}} = \frac{E_{g} \ \mu_{1} \ R_{2}}{Rp_{1} + R_{2}} \ I_{1} = \frac{C_{1} \ dE_{P_{1}}}{dt}$$
$$E_{P_{2}} = \frac{I_{1} \ R_{3} \ \mu_{2} \ R_{4}}{Rp_{2} + R_{4}} = \frac{C_{1} \ \frac{dE_{P_{1}}}{dt}}{Rp_{2} + R_{4}}$$

C2 dEp2

 $I_2 = -$

also

$$L_{2} R_{1} = Eg_{1} = \frac{C_{2} R_{3} \mu_{2} R_{4}}{Rp_{2} + R_{4}} \frac{d^{2}Ep}{d^{2}t}$$
$$Ep_{1} = \frac{Eg_{1} \mu_{1} R_{2}}{Rp_{1} + R_{2}}$$

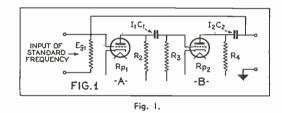
but

Therefore:
$$Eg_1 = \frac{C_1 R_3 \mu_2 R_4 \mu_1 R_2 C_2}{(Cp_2 + R_4) (Rp_1 + R_2)} \frac{d^2 Eg_1}{dt^2}$$

This is a differential equation of the second order whose solution is:

$$Eg_{1} = K_{1} \sin \left(\sqrt{-\frac{C_{1} R_{3} \mu_{2} R_{4} \mu_{1} R_{2} C_{2}}{(Rp_{2} + R_{4}) (Rp_{1} + R_{2})}} t + \Theta \right)$$

where K_1 and Θ are two arbitrary constants, depending on the initial conditions at the start of oscillation.


This derivation assumes that the tubes are linear over their infinite range, and that the capacitive admittance is

*Wireless Egert Engineering, Inc.

negligible in comparison to the leakages of the various resistors.

Neither of these assumptions is strictly true and the actual result will probably be far from the calculated value. Nevertheless, the formula demonstrates the factors that determine the frequency, and the tube constants involved are very important parameters.

 μ_2 , μ_1 , Rp₂ and Rp₁ are the factors involved. Herein lies the weak spot of multi-vibrators of this type as tube characteristics are known to change with age and also with battery voltages. While aging the tubes in the circuit, constant resetting of the capacity C₁ and careful inspection of battery voltages are imperative for with a change of the above demonstrated values, vibrators of this type have the very annoying habit of skipping ahead an entire sub-harmonic. When a vacuum tube burns out, and it becomes necessary to go through the entire

process of aging again, one can appreciate that the foregoing is not only costly but is also a very trying and uncertain method of tying into a standard oscillator in order to obtain a known sub-harmonic of that frequency, especially so when the above described aging process necessitates from two to three months of constant observation.

In similar manner it can be demonstrated that the above derivations also hold true in relaxation circuits employing both neon or thyratron tubes.

With the recent issuance of the type 78 tube the authors have endeavored to ascertain the practical advantages of employing the three grids of this tube in an electronic tie-in circuit. It has been found that an electronic tie-in between a definite pre-determined frequency and any harmonic or sub-harmonic of that frequency is possible over a sufficiently wide band, to make this characteristic extremely useful in order to obtain a

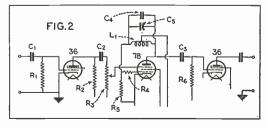


Fig. 2.

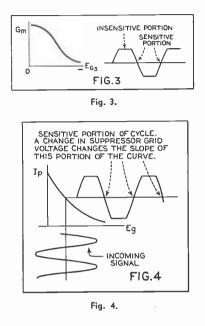

multi-vibrator effect. Also it has been found that this effect could be employed in a circuit which would minimize, to a great extent, the disadvantages encountered in the relaxation type of multi-vibrator. Fig. 2 shows a diagram of the general arrangement of

Fig. 2 shows a diagram of the general arrangement of the circuit employed. The standard frequency is fed into the input posts, amplified by the first type 36 tube and impressed across the external connections of the potentiometer R_3 . The necessary voltage to accelerate the desired action is tapped off by the moving arm of the potentiometer and impressed on the suppressor grid of the type 77 tube. Incidentally, this voltage is not critical. The remaining elements of the 77 tube are employed in an independent series fed Hartley circuit operating at a pre-determined sub-harmonic of the introduced frequency. By varying the capacity C_5 the frequency of the independent circuit can be adjusted until it ties in with the standard frequency. The resultant signals are then amplified by another 36 tube. Analyzing the tie-in circuit we can see the following:

Fig. 3 shows a curve of the suppressor-grid voltage E_{G_3} against mutual conductance. It can be seen that the incoming standard frequency changes the G_m of the 78 tube and makes it sensitive at definite time intervals, depending on the voltage of the incoming standard frequency. Fig. 4 shows a curve of Eg against Ip which demonstrates the action of the independent oscillator circuit. By inserting R_4 in Fig. 2, the grid is biased so that on the positive cycle the tube is insensitive.

By arranging the biases of the two grids, the sensitive portion of both waves can be made to operate on the same part of the cycle. In this manner the tie-in effect of the standard incoming frequency and of the independently generated sub-harmonic can be accentuated to a great degree.

In a practical example of the above it has been demonstrated that employing a 50 kc. oscillator as the standard frequency and using 10 kc. as the independent subharmonic generated, the 10 kc. oscillator tied in with the 50 kc. standard within 1000 cycles of zero beat. This tie-in factor of 1000 cycles either side of zero beat allows for ample variance of the 10 kc. oscillator, As it is not very difficult to construct an oscillatory circuit which will stay within 200 cycles (2 per cent) when Coupled with this accentuated tie-in effect, it can be seen that the independent oscillatory circuit is truly independent in the sense that it does not depend on the incoming frequency to determine its action, unless it is at some sub-harmonic reasonably close to the standard frequency. By placing a dial on the variable

condenser C_s it is possible to calibrate the sub-harmonic desired and to be sure that this point of calibration will truly represent that definite sub-harmonic at all times.

Also, in conclusion, note that it is possible to obtain a wide variety of known sub-harmonics of the introduced frequency by means of changing the capacity of the fixed condenser C_4 coupled with the variable condenser C_8 .

RMA Secures More Freight Rate Reductions

URTHER and substantial reductions in freight rates on receiving sets have been secured by the RMA. The reduced rates, effective August 31, are estimated to effect annual savings, on freight charges, to receiving set manufacturers of from \$250,000 to \$400,000 annually. This follows freight rate reductions secured by the Association amounting to about \$1,500,000 annually two years ago.

The new freight savings on receiving sets, on which the RMA traffic committee and W. J. M. Lahl, traffic manager, have been working with the carriers' classification committee for several months, are effective in reductions now ordered in minimum carload weights. Effective August 31 minimum weight on console type sets, in carloads, will be reduced from 18,000 lbs. to 16,-000 lbs. Very few shippers can load the present minimum rates and are being penalized for excess charges. The same reductions will apply on combined radio and talking machines in carload lots.

On mixed carloads minimum weight will be reduced from 24,000 lbs. to 20,-000 lbs. There will be no change in the rating and the present second-class rating will apply on both console sets and combined articles, in carload quantities; also, the present third-class rate will be retained on mixed carloads.

In addition to the above reductions in minimum carload weights, the RMA secured a reduction in the less-thancarload rating on other than console type sets from one and one-quarter times first-class rate to the first-class rate.

The above reductions mean a saving to set manufacturers of \$25.05 in the minimum charge per car between Chicago and New York City, for example. On console type sets and on mixed carloads there is a difference of \$42.40 per car. On box type sets in less-thancarloads the saving in freight rates is 38 cents per hundred pounds.

Page 22

ARMSTRONG "FEEDBACK" DECISION RENDERED

HE invention of no other element of modern radio has had such shuttling back and forth in the courts as has that of the feedback or regenerative circuit arrangement. The decision rendered toward the end of August by the United States Circuit Court of Appeals for the Second Circuit, returns the honors to Major E. H. Armstrong, of New York.

Throughout the decade following the year 1914, Major Armstrong was the legally recognized inventor of the regenerative system. Then, in 1924, the courts decided that Dr. Lee de Forest was the original inventor. From the legal viewpoint explanation of reversals of court decisions takes into consideration whether in particular court actions the question to the fore is infringement, priority, or original invention. Evidently court actions may be prosecuted on any of these scores without prejudice to the others.

The latest decision in this historical controversy hinged upon a suit brought against a manufacturer of radio receivers and transmitters, by the de Forest Radio Company, the A. T. & T. Co., and R. C. A. In this case the plaintiffs charged infringement of de Forest's patent covering regeneration.

Notwithstanding that Armstrong sold his invention to R. C. A., he supported the receiver manufacturer. the defendant in the recent suit, in his defense action, recognizing the opportunity to again present the question of priority, with new evidence. Naturally, the plaintiffs cited the Supreme Court decision of ten years ago, but the majority opinion of the judges of the Court of Appeals was that the present action had no relation to the matter of the previous Armstrong-de Forest case.

Majority Opinion

In the majority opinion, Judge Chase, of the U.S. Circuit Court of Appeals, states, in part:

"On the merits the decisive question of fact is the same as it was in Armstrong et al v. de Forest Radio Telephone and Telegraph Co., where the matter was considered carefully in this court and Armstrong found to be the first inventor. Had the district judge been of the opinion, as we are, that the decision of the Supreme Court was based on questions of law not here involved he would not have confined his consideration of the evidence to deciding whether or not any new proof was present which would have led the Supreme

Court to reverse instead of affirm. On the contrary he would have entered a decree for the defendant on the authority of Armstrong's discovery of the hitherto unknown existence of radio frequencies in the plate circuit and the regenerative feedback of these frequencies to the grid circuit gave the necessary novelty to the invention; that the work of de Forest in 1912 did not disclose these essential facts to him or to any one else; and that the contrary results which have been reached on the facts have been due to a divergence of opinion as to what really was the invention. If when de Forest discovered audio frequencies in the plate circuit when he was trying to perfect his telephone repeater in 1912 the presence of radio frequencies in that circuit was to be taken as a matter of course; the note book entries of Van Etten may be read in that light and stretched to cover Armstrong's invention. That such a thing could be so obvious in 1912 seems impossible because of the then uncertain state of the art, and because de Forest, a recognized genius in the field, could hardly have made such a discovery without promptly taking steps to protect it. That he did not is highly significant and leaves the claims he advanced after Armstrong's discovery became known faced with the inconsistency of his own inaction."

The patents involved in this suit are Armstrong's No. 1,113,149 granted October 6, 1914, and those granted to de Forest by decision, September 2, 1924; numbers 1,507,016 and 1,507,017, the former the oscillating audion patent and the latter the feedback circuit patent. The latter was the original de Forest-Logwood patent No. 1,170,881 of February 8, 1916.

Commenting on this latest decision Major Armstrong says: ". . . the decision handed down by Judge Chase is a tribute to the memory of the late Judge Julius Mayer, who tried this case and decided it correctly when it was first presented more than ten years ago, and whose decision, affirmed at the time by the Circuit Court of Appeals in an able opinion by Judge Manton, has now been reaffirmed in this case, where every fact found in the previous decisions has been re-proved.

Life of Patent

The patent control over the use of feedback or regenerative systems in radio, gained by de Forest in 1924, would have continued in force until the year 1941. At the present time most short-wave receivers, and many radio transmitters, employ the feedback principle.

Broadcast Towers, Demand Best Care, Says U. S. Official

RADIO transmitting stations could be improved greatly in general appearance and repair bills would be cut down if all broadcasters were to paint the towers of their stations at frequent intervals, according to Thad H. Brown, acting chairman of the Federal Radio Commission and commissioner in charge of the division of field operations.

Chairman Brown, in discussing ways and means to improve the appearance of radio transmitters, recalled that the aeronautic branch of the Department of Commerce demands that all radio towers in the immediate vicinity of airports be painted. He

"While this is a matter outside the jurisas part of their good-will campaign, should

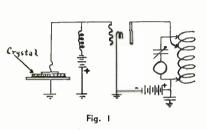
as part of their good-will campaign, should see to it that their equipment does not pro-duce eyesores in the neighborhoods in which they operate. "Believing that it is a good investment, the Commission's master monitoring sta-tion at Grand Island, Nebraska, is kept scrupulously clean and painted. All the unrights in and near the station are kept uprights in and near the station are kept freshly painted as well as the walls of the rooms wherein the valuable equipment is located."

Paint experts say that not only will the painting of radio towers add to the dis-

painting of radio towers add to the dis-tinctive appearance of a station, but it will prolong the life of the towers themselves. "It is difficult to make an accurate esti-mate," said Dr. Henry A. Gardner, one of the leading paint research experts of the country, "of the losses resulting from weathering away of metals, but the an-nual loss of steel alone, due to corrosion, has been estimated to be in the neighbor-hood of five hundred million dollars." Dr. Gardner says that "a ton of fabricated steel, worth. say \$50.00, is effectively pre-served by probably less than three dollars worth of paint."

NOTES on CRYSTALS

LTHOUGH the piezo-electric effect of certain crystalline substances has been known for almost 50 years, the practical commercial use of this effect is not much more than 10 years old. Briefly, their action is described as follows: When certain crystalline substances are compressed and then allowed to expand, a difference of potential will be generated by the compression and a difference of potential of opposite polarity will be developed by the expansion. Conversely, if an alternating voltage is applied across this same substance the substance will alternately be compressed and expanded by the action of the difference of potential.


The piezo-electric effect can be shown in many substances. It is very pronounced in tourmaline, rochelle salts, and quartz. Tourmaline is a semiprecious stone, is not usually found in large pieces, and is comparatively rare, thus not being commercially suitable. Rochelle salts can be "grown" in a laboratory in any quantities and in almost any dimensions at a comparatively low cost. However, this substance is strongly affected by temperature and humidity, and where exact dimensions are necessary is not suitable. Quartz, on the other hand, has many good qualities to assure its use for a piezo-electric effect-it can be found in abundant quantities; it is hard, it is not easily affected by moisture; it lends itself to accurate machining, and it has an extremely low temperature coefficient.

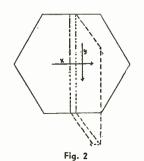
The period of vibration of a quartz crystal is dependent upon its physical dimensions in much the same manner as a violin string or a bridge's sections. Hence, as the structure of quartz is almost always the same, frequencies have approximate predetermined dimensions.

A crystal has three assumed axes, x, y, and z. Fig. 4 shows the rough form of the quartz crystal in its natural state, always hexagonal and pointed at both ends. The axis drawn from point to point through the length of the crystal is called the optical or z axis. Along

*President, Capitol Radio Engineering Institute.

By E. H. Rietzke*

this axis the crystal manifests no piezoelectric effect. Figs. 2 and 3 represent sections cut out of the crystal perpendicular to the z axis as shown in Fig. 4. In this hexagonal section of crystal the x axes are from corner to corner and the y axes are perpendicular to the flat sides as shown. The crystal manifests a piezo-electric effect along both the x and y axes; that is, it will oscillate at frequencies corresponding to the dimensions of both the x and y axes. Along its x axis the frequency of vibration corresponds to a wavelength of about 105 meters per millimeter and along the y axis to a wavelength of approximately 110 meters per millimeter.


Fig. 2 shows an x cut crystal. A piece is cut from the hexagonal section as shown, along the y axis, with its thickness along the x axis. The two axes of the crystal are thus separated by 90 degrees and the crystal can be made to oscillate at either frequency. In the case of very low frequency crystals, such as 50 or 100 kilocycles, the y

oscillation is normally used. In the broadcast band and at higher frequencies the x dimension usually determines the frequency.

Fig. 3 shows the y cut crystal. In this case the length of the cut is along the x axis, 30 degrees displaced from that of the x cut, and the thickness of the crystal corresponds to the y axis. This is sometimes called a "30" crystal." It will be observed that in this crystal the x and y axes are separated by only 30 degrees. The length of the x and y axes through the crystal are not greatly different and it may be very easy to obtain oscillations at either frequency by means of plate circuit tuning.

The greatest natural change in the dimensions of a quartz crystal (and hence the frequency) takes place when the crystal is subjected to a change of temperature. In the x cut crystal this change will be approximately 25 parts in a million per degree Centigrade change in temperature and the frequency will decrease with an increase of temperature. In the case of the y cut crystal the frequency change will be approximately 10 parts in a million per degree Centigrade temperature change and the frequency will *increase* with an an increase of temperature.

At first glance it may seem that 10 to 25 parts in a million represents a comparatively small variation. Let us consider this in terms of cycles. In the middle of the broadcast band, say at 1000 kc., in cycles a frequency of 1,000,-000, the x cut crystal will vary in frequency about 25 cycles per degree of temperature change. Room temperature will often change 10 degrees or more

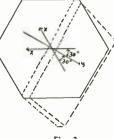
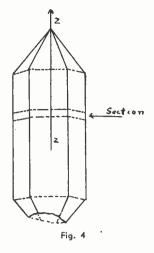



Fig. 3

over a period of several hours and a crystal subjected to this change would undergo a frequency variation of about 250 cycles. In the broadcast band the Federal Radio Commission allows a maximum variation, + or --, of only 50 cycles. This could be caused by only a 2 degree variation of temperature. At 10,000 kc. this same percentage variation would represent not 250 cycles but 2500 cycles. Another factor entering here is the increase of temperature of the crystal caused by the r-f. current through it.

It therefore becomes necessary to provide means for keeping the temperature of the crystal constant. This is usually done by means of a thermostatically controlled oven, the temperature of which is maintained considerably higher than is likely to be reached by the surrounding air. The usual oven temperature is 50 degrees Centigrade. Since a small temperature change can cause a considerable change in frequency, the thermostatic control should be sensitive to very slight temperature variations. Good crystal ovens can maintain a temperature constant to .01 degree.

The usual crystal controlled oscillator circuit consists of a three element tube, usually a Type 210, a simple tuned LC plate tank circuit and a quartz crystal of the proper dimensions connected between the grid and filament. This is shown in Fig. 1. Since the crystal itself is a non-conductor, a separate d-c. circuit must be used between grid and filament. In the diagram the d-c. circuit consists of a bias battery and an r-f. choke. Very often a grid leak is used in place of the

bias battery. However, with the grid leak, the operating bias is developed by the flow of grid current through the leak and the crystal must supply the necessary power to develop the correct bias. With such a load the crystal vibrations are reduced in amplitude and less power will be supplied by the tube. When a bias battery is used in conjunction with a choke the operating bias is supplied by the battery and no power is taken from the crystal for this purpose. The crystal can then vibrate more strongly for a given amount of feedback and the tube can be made to supply a greater power output. With this circuit the tube can be biased almost to the cutoff point so that when the crystal is not oscillating there is little plate current and when oscillations start the plate

RADIO ENGINEERING

current is brought up to normal.

The type 47 tube (power pentode) or a similar tube may be more advantageously used. The characteristics of this tube of primarily high amplification factor and small plate-grid capacity suit themselves admirably for this purpose. The high feedback reactance of the tube tends to keep the r-f. crystal current and the amplitude of the vibrations low and at the same time the high amplification factor of the tube permits adequate power output with the crystal furnishing comparatively low excitation voltage.

With ordinary care a quartz crystal will give long and efficient service. A small chip from the edge of a crystal, dirt or even fingerprints will often cause its failure to oscillate. All dirt or dust should be carefully cleaned and removed with carbon tetrachloride (carbona) before being placed in the holder. The crystal holder should be well designed for clearance around all edges of the crystal and for the correct area and pressure of the upper contact plate. The holder should also be dust-proof.

When purchasing a crystal it is well to remember that the crystal must be very carefully ground to a given frequency. In order to grind it accurately, the manufacturer must have very accurate frequency measuring equipment for checking as the crystal calibration cannot be any more accurate than the calibration equipment by which it is checked. Such equipment is expensive and the purchaser should expect to pay a little more for a crystal manufactured under such conditions if an exact calibration is required.

HAIN television. like chain radio broadcasting, is going to be one of the first requirements of commercial television, but the links in that chain need a wholly new method of interconnection, a method which challenges the skill of the engineer and fires the imagination of the man in the street who wants to know the

"how" of things. 'Tall buildings, high hills and great towers will be at a premium for television," states Hollis Baird, chief engineer of the Shortwave and Television Laboratory. "Ultra-short waves will be used in order to get the space (or width) in the ether necessary for sending the fine details that will make up the home pictures of the future. As ultra-short waves have more the characteristics of light rather than and fog, but solid objects rapidly weaken them. Thus, the visual horizon, from a given point, promises to be the range limit

of an ultra-short wave station. "The television broadcaster will have a range for his main station, depending on how high he can get the transmitting antenna into the air; the higher its loca-tion, the broader the horizon and thus the

Chain Television

greater distance the signal will travel. "When radio became good entertain-ment, it had to expand its field to meet the public demand. So will television. Present chain radio broadcasting is sent over telephone wires, but the voice re-quirements are only one four-hundredth of television requirements and no present telephone circuits, nor any that appear in the offing, will be able to carry the tele-

vision signals. "A relay system is the solution. At the farthest visible point on the horizon from the main transmitter, a receiving station will pick up the television signals and relay them to another similar station. This point to point transmitting is called 'directional' and the action is repeated until the required distance is covered. When the required distance is covered. When the signal reaches the city desired, it will be put out on a non-directional antenna and the program will then cover a circle some 30 miles in radius. "As an instance, a two hundred mile

airline between two cities would require

five 1,000 watt relay stations 30 miles apart. Sending ultra-short waves out on a narrow focused beam requires but little power. This same signal to be clearly heard over a radius of 30 miles necessitates a transmitter as powerful as those now used for city radio broadcasting stations. This means that every sizable city in the country will eventually have its own powerful television station interconnected by relay stations to various key television stations from which the programs will emanate. At first thought, the erecting of a sufficient number of powerful stations and small relay stations to prostations and small relay stations to pro-vide nation-wide reception appears to be a herculean task but, as in radio, public needs are invariably met when the de-mands become great enough. Research and invention have a kindly way of meet-ing such requirements when they arise. "These stations, dotting the countryside, from the requirement advances from

transmitting Super Eye television from point to point, create an exciting picture of the not too distant future when skilled artists will appear in our homes over chain television systems."

Circuit Data on AN IMPROVED 200 WATT CLASS B AMPLIFIER

HIS article is not intended to cover the theory of class B amplification, but rather to illustrate a number of developments which tend to simplify and improve a typical class B power amplifier using 203A tubes in the output stage.

The four major requirements for any amplifier are low frequency discrimination, low harmonic content, ample power handling ability, and low hum level.

The first of these qualities is governed almost entirely by the transformers used. Good transformers are available, one commercial grade having a uniform response from 30 to 15,000 cycles.

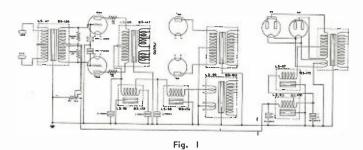
The second factor, harmonic distortion, is dependent upon proper bias, properly designed transformers and correct matching throughout the circuit. One major difficulty is the use of batteries for biasing. Fig. 1 illustrates a complete 203A amplifier showing a bias rectifier designed to eliminate the variability of battery bias. Through the use of a liberally designed power transformer, mercury hot cathode rectifiers and a saturated input reactor, the d-c. output of this bias system can be kept very constant. The 250 mils thrown away in the 150 ohm bias potentiometer also tends to stabilize the grid bias action. While oscillograph tests have shown that quite a wide variation in the bias voltage is allowable (30 to 42 volts), it is essential that the plate currents be equalized for best operation. This is readily accomplished with the dual arm potentiometer indicated.

Another form of distortion which is often mistaken for higher harmonics is due to an audio oscillation in the output tubes. This oscillation occurs only when an audio-frequency signal is applied to the grids and results in an audible rasp in the output. To remedy this effect, a shunt path for the high frequency oscillation should be introduced from each 203A grid to ground. Tests have indicated that .001 mfd. condensers are highly suitable for this purpose. However, if an equalizing network is used in the output circuit as described below, .0005 mfd. condensers can be used. The resisters in the plate circuits of the 203A tubes also aid in stabilizing the circuit.

*President United Transformer Corp.

By I. A. Mitchell*

Proper coupling is an essential feature for low harmonic content. The 2A3 driver tubes are coupled to the 203A tubes with a transformer having a high step-down ratio. Unfortunately, the grid circuit of the class B tubes varies in impedance continuously as the signal is varied. Naturally, this reflects a varying load to the 2A3 tubes and, inasmuch as these tubes are somewhat critical as to load value, there is a tendency for additional harmonic introduction. To keep this grid impedance at a more constant value, 10,000-ohm ballast resistors are used in the class B tube grid circuits. The input transformer design is irrelevant as few readers will desire to construct their own transformers. However, one feature is important in the design of this transformer. If we examine the distortional components, we find that the maximum is the third harmonic. It is found that the third harmonic introduced into the audio system through the input transformer will be opposite in phase to the distortion in the class B output circuit and the result is a partial nullification of the distorting effects. It is evident that this nullification will not be perfect unless exact phase displacement is effected between the input and output distortions. This is possible if the leakage reactance in the transformer is kept down to a very low value.


Another important point in keeping harmonic content in class B systems to a low level is proper loading of the class B tubes. The load in such a system, very much like a pentode tube is quite critical. When operated into a class C stage, the plate load is noninductive and constant in value. This is readily matched to the class B tubes. However, when attempting to use a class B system, such as indicated to operate a loudspeaker system, it is found that the load circuit is highly inductive in nature. In other words, if the impedance of the entire system is 6,000 ohms at 1,000 cycles, it may be four times that value at a higher frequency. Naturally such a great mismatch at the higher frequency will introduce a large degree of harmonics. To neutralize this effect, an equalizing network is necessary. A typical network for use with the amplifier noted, operating into a number of dynamic speaker voice coils, consists of a 6,000-ohm resistor and a .04 mfd. condenser connected in series from each 203A plate to ground.

It is interesting to know, with reference to the class B output transformer, that this transformer differs very appreciably from the average pushpull class A output. As in other transformers, the high frequency response is dependent principally on low leakage reactance and low distributed capacitance in the transformer structure. In a class A transformer, the leakage reactance computations are based on the entire primary and the entire secondary. In class B only one-half the secondary is really working at a time, and it is therefore necessary to consider the leakage reactance as between the primary and one-half the secondary. It is consequently necessary to have a more closely coupled coil structure.

The third amplifier requirement given above, ample power handling ability is governed by the tubes used. The fourth requirement, low hum level is effected by plate supply hum, filament supply hum, electrostatic pickup and electromagnetic pickup.

The filter circuits shown in the fig-

(Continued on page 28)

Page 26

SVEA METAL its application and use

OW that the new material, Svea metal, is being used on a production basis by large radio tube makers, both in this country and abroad, it is easy to look back upon its beginning and the minor production difficulties, both real and imaginary, which have been so simply overcome.

When, several years ago, nickel and other raw materials were being tested out for internal vacuum tube parts a somewhat similar experience was had. Naturally, engineers who were interested in deriving the benefits to be obtained from Svea metal, both in quality and price, were able to profit by their experiences and soon found that the general methods of handling and operation were along the same lines as those previously used for nickel and other metals. The variations were slight and once the proper procedure was determined it was found simple to adapt it to standard routine.

Probably the greatest handicap was the preconceived notion that iron, as such, had been tried in electronic tubes for many years and found to possess characteristics of corrosion, gas, and hard temper, which made it wholly unsuitable for use.

Iron itself is centuries old but Seva metal is as new as radio. It is a distinct departure from iron as it is generally known, and possesses very different characteristics. In the process of the development of Svea metal it was observed that as the remaining impurities were removed from an already pure quality of iron the fundamental characteristics were changed and the extraction of each additional percentage of impurity brought new properties heretofore considered foreign to iron. Resistance to corrosion increased tremendously; the reduction of gas content and the elimination of all slag resulted in the total elimination of blistering at high temperatures. The refinements not only improved the chemical features but modified the physical structure so that the metal might be readily formed, rolled, drawn or processed into any kind of shape and type of strip, wire, woven mesh, pertruded strip, tubing or similar intricately formed part. Under this new method of treatment iron ceased to be a base metal and rightfully took its place in the class of noble metals. To these characteristics and properties were added that of brilliancy of finish, the metal being furnished with a satin silver finish. Many of the chemical and metallurgical advances of the past decade have been brought about not so much by the discovery of entirely new products but rather by the production of well known and largely used materials by new and more direct processes, either synthetically or by improvement in methods of refinement.

In the application of Svea metal to vacuum tubes there have been only two problems of any consequence, namely those of oxidation and carbonization. The problem of oxidation was never a serious one and has long since been solved. Carbonization presented a real

* Engineer, Swedish Iron and Steel Co.

By Harold C. Todd*

initial difficulty but this, too, can no longer be considered as an objection because it has likewise been overcome.

Oxidation

There is in Delhi (British India) a column of iron made 1,000 years ago by metallurgists of that remote period. This column has withstood the ravages of a tropical climate for 1,000 years without showing any signs of erosion or other deterioration. When the startled discoverers of the column had some chips taken from it and analyzed, they found to their greatest surprise that it was just iron of an exceptionally high degree of purity. Investigations undertaken in recent years, mostly on electrolytic iron as a medium, have shown conclusively that very pure iron has remarkable rust resisting properties.

It is known that all metals take on a film of oxidation to greater or lesser degree. On some metals the film is invisible while on others it may readily be seen. Svea metal, when *improperly* treated, will show a thin oxide film or temper color due in the first instance to atmospheric conditions or in the second to the application of heat in the presence of oxygen. Strange as it may seem, the slight oxide coloring on Svea metal under *improper* treatment has been considered an advantage which other metals do not possess because it shows immediately the presence of an oxide which should *not* be permitted to enter into the sealed radio tube.

The presence of any oxide film on this metal may be eliminated with a very slight change of method and at no additional expense. The metal itself is furnished in bright rolled form with a thin protective film of light neutral oil which may be promptly removed by a carbon tetrachloride wash. This wash is given to all metals entering into vacuum tubes and therefore is merely a matter of routine, whether the material be Svea metal or any other.

The difference in the treatment of Svea metal as compared with nickel begins after the carbon tetrachloride wash. If Svea metal is permitted to be exposed for any appreciable time after the wash it will take on a slight oxide film. If, on the other hand, it is hydrogen fired within a reasonably prompt period of, say 24 hours (preferably less) after the bath, it will resist oxidation in a very satisfactory manner and plates thus treated have been permitted to lie around in plants for several months without any visible oxidation. Thus, so far as this type of oxidation is concerned, there is no occasion for its further consideration.

The second type of oxidation occurs when the metal

is heated in an atmosphere of air. Every engineer knows that all iron, however pure, will show temper color in the presence of oxygen. It only remains, therefore, to eliminate the presence of oxygen in the treatment and this may be done by a number of methods. If the metal is to be hydrogen annealed, it is preferable to use a furnace with a single continuous annealing chamber running through the hot zone and into the cooling zone. Such a single continuous pipe or square chamber for both the heating and cooling zones will prevent oxygen from entering through a joined middle section between heating and cooling parts of the furnace.

Hydrogen should be introduced, if possible, at two points: one between the heating and cooling zones and the other near the exit end of the cooling zone. If this is not possible it should be introduced at the entrance end and turned on to a point where the flame at the door is about 3 inches high. It is advantageous to have an illuminating gas pilot burning at the rear end of the furnace to ignite the oxygen hydrogen mixture formed upon opening the exit door. This prevents the possibility of an explosion or the presence of free oxygen in the cooling zone.

Plates or other parts should be placed in a heat resisting metal boat and it is important and essential that this boat be covered with a loose fitting cover of the same material. The boat itself may have perforations in the side of it but in practice the covers have not contained perforations. The plates or other parts come into contact with the hydrogen through the perforations in the side of the boat and up under the sides of the loose fitting cover. Best results are obtained at a temperature of about $1,000^{\circ}$ C., but this, of course, may be varied somewhat. It is suggested that the boat be kept in the heating zone for about one minute, although very fine results have been obtained with as long as three minutes, the time being varied with the temperature. The boat may be permitted to remain in the cooling chamber for from 5 to 12 minutes, depending upon the other factors.

It will be noted that the practice of handling this metal differs from that of handling nickel mainly in that the parts must not come in direct contact with oxygen while they are hot, and every precaution be taken to prevent the entrance of oxygen into the furnace. The procedure suggested above is practically the same as that now used for nickel and requires little if any modification of present method.

Considerable experience has been had with the tendency of Svea metal to oxidize or show temper coloring on spot welds where the material is brought into direct contact with the heat of the welding apparatus. If a nickel support is to be welded to Svea metal plate, or vice versa, the temperature at the point of welding should be kept as low as possible—that is, below the point at which discoloration takes place. Since Svea metal has a greater heat conductivity than nickel, or conversely, since nickel requires a higher heat for welding purposes, it is suggested that the time of application of heat be reduced to a minimum. The proper combination of the heat and time elements can be quickly determined by experiment.

A much easier and more satisfactory job can be done if both the plate and the support are of Svea metal, since it welds itself very satisfactorily and quickly at a low temperature, and its use offers a very definite way of eliminating any difficulty.

In either of the above cases, it should be known that the difficulties in connection with this type of oxidation have been overcome after a very slight amount of experimentation.

Suggestions for Prevention of Oxidation

No doubt the readers of RADIO ENGINEERING will be interested in a few suggestions for the prevention of oxidation. These suggestions have been adopted by practically all users of Svea metal with excellent results.

(a) Keep Svea metal uncontaminated by finger prints as far as possible, or, if it is so contaminated, put it through the processes and make it into finished tubes without any unnecessary delay.

(b) If hydrogen cleaned parts are kept for more than 24 hours after they are taken from the furnace, they should be stored in a desiccator.

The latter may be one of the customary glass desiccators, or a closet or small room where the doors and windows have been made tight by felt strips or otherwise, and where a tray of calcium chloride or other desiccating material is kept to absorb humidity.

(c) Svea metal will oxidize at a lower temperature than nickel. It is therefore necessary to make sure that a reasonably high vacuum is present in the tube in process of exhaustion when the first induction heating treatment is applied. If this precaution is taken, no trouble whatever with oxidation during exhaust is experienced.

(d) When Svea metal is shipped its surface is protected by a very light coat of a special oil which completely protects it from oxidation during shipment. This oil film is no heavier than the one present on nickel or other parts after it has been passed through stamping or other forming operations. The film can be washed off with carbon tetrachloride, but it will also evaporate completly during hydrogen firing. As an additional precaution, no considerable amount of time should elapse between washing with carbon tetrachloride and hydrogen firing.

It is to be remembered that carbon tetrachloride, particularly after having been used several times, may easily contain some acid decomposition products of the tetrachloride which may lead to tarnishing if too much time elapses between washing and hydrogen firing.

(e) Hydrogen fired parts of Svea metal should either be used up the same day or stored in a desiccator closet as described.

(f) For best results the hydrogen used in cleaning should be dried. The most practical method consists of passing it through two vertical 6 inch pipes, 6 feet high which are filled with caustic potash. This is standard practice in many plants even for nickel.

Carbonization

By the time this article goes to press carbonized Svea metal will be available and ready for distribution. It has been a long and difficult task to overcome this final obstacle. It is not anticipated that the tube makers will have much interest in doing the carbonizing work themselves and for this reason the method used for carbonizing will not be outlined here. Suffice it to say that a considerable quantity of strip has been carbonized and the results pronounced as excellent and fully equal to that now being furnished to the vacuum tube industry. This has been accomplished by what has proven to be a simple method and the finished strip is soft, easily formed, and coated with a firm adherent coating of carbon. Naturally this development has been slow and, like most new processes, it required considerable experimental work along entirely new lines. The main difficulty was due to the fact that the maximum heat of carbonization, without carburization, was found to be very close to the minimum cracking at which the gas would deposit carbon. Once the base was established an increase in deposit could be obtained by time of exposure at the critical heat. The suppliers of carbonized Svea metal plan to be prepared to furnish it to all users on a production basis within a comparatively short period of time.

It may be asked at this point whether the precautions outlined for the use of Svea metal are warranted or, in blunt language, whether Svea metal is worth the consideration which has been given to it. To these questions the answer is most emphatically in the affirmative. The benefits to be derived from the use of Svea metal are worth many times any slight modification in method of manufacture or precautions required. In this respect the writer wishes to point out and emphasize the advantages of quality and cost. These may be summarized for quick review as follows:

1. Gas Content—An important tube engineer has reported that Svea metal contains 55 per cent less gas and consequently less impedance to electronic emission and less ionization.

2. Higher Heat Resistance—A higher heat resistance means not merely longer life in the tube but less distortion in the part, greater rigidity after heat treatment, and a better ability to withstand application of higher voltages without tube damage.

3. *More Conductive*—Svea metal is more conductive of heat and electrical current under high frequency treatment which permits the maintenance of higher equilibrium temperature and a quicker operation of the tube.

4. Lighter Weight—For a given area of plate size Svea is approximately 12 per cent lighter in weight. The progressive tendency of tube makers is naturally toward lightness provided there is no sacrifice of ruggedness or rigidity. For transmitter tubes it is a distinct advantage.

5. Retains Springiness-This is advantageous because

it permits a part to be subjected to abuse in handling without permanent distortion and the part tends to resume its initial position after receiving a physical shock.

6. Joins Better with Glass—The coefficient of expansion of Svea metal is nearer that of glass and for all parts coming in contact with glass there is an excellent fusion without air bubbles or gas. This should be of interest in connection with the development of the new all metal tube.

7. Temper—Svea can be produced to a much softer temper. Material has been made with a Rockwell hardness under standard methods down to 79.5.

These are only a few of the major points of quality.

There has probably never been a time in the history of the manufacture of radio tubes when the matter of cost was of such paramount importance as it is in these days of price competition. Svea metal represents a saving to the vacuum tube industry of approximately one and one-half millions of dollars annually. This, however, is not all. It has for years been the consensus of opinion of the best technical talent available that shrinkage in production and difficulties arising in the use of tubes are decreased in the same measure as materials of greater purity are used in the fabrication of tubes. If this be true it is a forcible con-clusion that Svea metal, which is by far the purest tube making material commercially available, must do its share in decreasing both shrinkage and field troubles. In the last analysis, the proof of the pudding is in the eating. Svea metal is being produced in various forms at the rate of approximately two thousand pounds per week for internal parts in electronic tubes. Over thirty manufacturers of various types of radio receiving tubes, neon lights and similar vacuum tubes are using it in production regularly and without difficulty. It has long since passed the experimental stage and has received the final approval of many of the finest tube engineers in the country. It is estimated that over ten million tubes are already on the market. This material represents progress and the spirit of the times.

• • •

BOOK REVIEW

"THE INDUCTANCE AUTHOR-ITY," by Edward M. Shiepe, B.S.. M.E.E., published by Herman Bernard, 135 Liberty St., New York. N. Y., 9 x 12 inches, 50 pages, 40 curve sheets, flexible black cover. Price, \$2.00.

This book makes it unnecessary to calculate single-layer coils, by presenting on large curve-sheets in logical order the results of precise calculations for the entire radio-frequency spectrum, using the accurate corrected formulas of the Bureau of Standards. All coils of diameters between 34 and 3 inches, of wire between No. 14 and No. 32 B. & S. gauge, and for all insulations, are included.

The text shows how coils with spaced windings can be determined from the

curve sheets, with examples. The effect of resistance on frequency response is reviewed.

This book has not appeared until now because of the considerable amount of work necessary to bring it out. It will undoubtedly become of great value to all radio men.

•

CIRCUIT DATA ON AN IMPROVED 200 WATT CLASS B AMPLIFIER

(Continued from page 25)

ure use a hum-bucking arrangement which is much more efficient than a brute force filter. In this way, the plate supply ripple can be kept to a small value economically. The filament hum is negligible in the output stages and can be remedied by using DC on the first stages. Push pull tube connections also tend to minimize the filament hum. Magnetic pickup is the most difficult to cure, but by using transformer components in cast iron housings, preferably of a high permeability steel, this effect can be practically eliminated.

Audio and power components should be kept as far as possible from each other to prevent both electrostatic and electromagnetic coupling.

An audio amplifier as described is at present being used for carillon sound projection covering a radius of five miles. The audio-frequency range of the system compares with that of the finest broadcast equipment. A preliminary oscillograph check on the harmonic distortion of this amplifier showed a total content of slightly over 5 per cent at maximum power output.

TUBE PRODUCTION GROWING

Hygrade Sylvania Corporation, manu-Hygrade Sylvania Corporation, manu-facturer of incandescent lamps, radio tubes, broadcasting equipment and other elec-tronic devices, with plants at Salem, Mass., Emporium, Pa., St. Marys, Pa., and Clifton, N. J., increased its employees by over 1,400 between June 17 and Au-gust 12 gust 12.

A majority of these employees were added in anticipation of the provisions and requirements of the NRA.

Payroll increases for this eight-week period are at the rate of \$1,000,000 yearly,

or over 35 per cent. All plants of the corporation are work-ing at capacity and officials of the com-pany anticipate an unusually active Fall season, stimulated by actual market de-mands. Present production of both incandescent lamps and tubes is the result of consumer needs rather than an anticipation of price increases, one of the officials of the company said.

UNITED TRANSFORMER CORP.

I. A. Mitchell, chief design engineer and rice-president, S. L. Baraf, technical and sales director, and L. Goldstone, produc-tion manager, have organized the United Transformer Corporation with plant and offices at 264-266 Canal St., New York

City. The plant of the United Transformer Corporation is equipped with modern pre-cision machinery and accurate tools and testing equipment for the manufacture of quality audio, filter and plate transformers, as well as voltage regulators for broadcast. television, public address, laboratory and

industrial applications. UTC engineers specialize in the design of audio transformers having a linear characteristic from 20 to 20,000 cycles. Special schematic circuits are available on Class A and Class B power amplifiers having power outputs from 5 to 200 watts.

4

TUBE SHIELDS

Goat Radio Tube Parts. Inc., 314 Dean St., Brooklyn, N. Y., announce that they are now supplying their new form fitting-tube-shield in five sizes.

These various shields fit the standard receiving tubes using both the short and long dome bulbs and the S-14 pear shaped bulb

Two models are with the chimney top to provide shielding around the control grid cap.

SYNTHANE'S CLEVELAND MANAGER MOVES

The Synthane Corporation. of Oaks, Pa., manufacturers of Synthane laminated bake-lite, announces a change in address of J. W. Davis, their Cleveland manager. Mr. Davis' new guarters are now located at Room 437. Penton Building, 1213 West Third Street, Cleveland, Ohio.

ZAPON-BREVOLITE CONSOLIDATION

The announcement of The Zapon Company, a subsidiary of Atlas Powder Company, that its western business has been combined as of September first with that of the Brevolite Lacquer Company, of North Chicago, Illinois, should be of in-terest not only to all users of finishing materials, but to the business world in general. The consolidation will be known as The Zapon-Brevolite Lacquer Company. A new corporation of that name has been formed under the laws of the State of Illinois.

The Zapon Company was founded in 1884 and in addition to being the oldest manufacturer of pyroxylin base finishing materials, is also one of the world's largest producers of leather cloth, suede fabric, auto top and similar materials.

The Brevolite Lacquer Company was founded in 1919 by the late Dr. Brevis, one of the pioneer lacquer chemists of the country. It has enjoyed a steady growth and occupies at the present time a modern fireproof factory, constructed in 1930, at North Chicago. Illinois.

٠ NEW GATES CATALOGS ISSUED

The Gates Radio & Supply Co., of Quincy, Illinois, manufacturers of a com-plete line of public-address and broadcast station equipment, have announced the re-lease of three new catalogs. Catalog G-33 covers public-address. sound distribution and sound amplifier

equipment to meet every requirement from microphone to speakers.

Catalog A-10 covers a complete line of accessories for the broadcast engineer and sound engineer for use in replacement and maintenance work.

Catalog B-20, strictly for broadcast stations and broadcast station engineers. describes speech input and remote amplifiers, volume indicators, transcription units. microphones, microphone mixers, and so forth, with valuable technical data

These catalogs may be obtained by let-terhead requests to the Gates Company.

SHURE TECHNICAL BULLETIN

A monthly publication of special interest to broadcast, public-address and recording engineers, radio amateurs, transmitter operators and others concerned with micro-phones and related equipments, is issued phones and related equipments, is issued by the Shure Brothers Company, 215 West Huron St., Chicago. There is no charge for the publication, which is known as "The Shure Technical Bulletin." Address subscription requests to the company on your letterhead. A limited number of back issues are available for those who wish complete files wish complete files.

The bulletin contains authoritative articles covering various phases of microphone placement, as well as design data on associated speech-input circuits, new applications of microphones for industrial and research purposes, and similar tech-nical information.

CONTINENTAL CARBON, INC., PURCHASES IGRAD

The Igrad Condenser & Manufacturing Company, of Rochester. New York, has been purchased by Continental Carbon, Inc., of 13900 Lorain Ave., Cleveland, Ohio.

The Rochester plant is being moved to Cleveland, and a complete line of paper condensers will be offered by the same sales organization that is now distributing Continental resistors and auto-radio suppressors to manufacturers and jobbers.

The Igrad Company was organized in 1925 by C. C. Eckhardt. Carl Grams, who became secretary and factory superintendent, has had twenty years experience in the manufacture and design of paper condensers with Stromberg-Carlson, and will come to Continental to take charge of the production of Continental-Igrad condens-

ers. The new Continental-Igrad line will include all paper condenser types now in use. An exclusive new development of the Continental-Igrad engineers is a line of paper condensers to replace electrolytic condensers. These are housed in containers of the same size as the electrolytics they replace and will withstand exceptionally high potentials and temperatures.

GREECE NOW HAS EIGHT RADIOTELE-GRAPH STATIONS

Radiotelegraphy in Greece is entirely in the hands of the State. There are eight sending stations, six belonging to the Navy located at Athens, Piraeus, Salónika, Alex-androupolis (Dedeagatch), Corfu, and Chios. Two others are owned by the Min-istry of Comnunications, located at Vari, near Athens, and Canea (Island of Crete). Private messages are handled through all stations except Athens, which is used ex-clusively for official business. Private mesclusively for official business. Private mes-sages for Athens are handled through the Piraeus station. Telegrams transmitted by radio have been increasing, notably in the marine.

ARGENTINA OPENS NEW POLICE RADIO STATION

The wireless station at the Buenos Aires Central Police Department was formally inaugurated on March 22. The new station is to be known as LPZ, Radio Policial, and will transmit on a wavelength of 140 meters. The station is to be used in transmitting instructions to police stations. detachments, etc.

NEW STATION FOR CHILE

The Government granted a concession to Sr. Joaquin Lepeley, Director of "El Mercurio," one of the leading newspapers in Valparaiso, to install and operate a radio breederetiser staticue. The action will have a power of 1,000 watts and will have a power of 1,000 watts and will operate on a frequency of 880 kilocycles; call letters, CE88. The concession is granted for a period of 30 years.

UNIVERSAL MICROPHONE ANNOUNCES PRICE REDUCTIONS

Universal Microphone Co., Inglewood, Cal., has announced a list price reduction on microphone cords and cables; desk counts; input stages, and QRXF, which is a QRQ microphone mounted directly on a junior output stage.

CHARACTERISTICS OF THE TYPE RCA 1-V AND THE TYPE RCA 12Z3; CUNNING-HAM C 1-V AND C 12Z3 TUBES

The type 1-v and type 12Z3 tubes are half-wave vacuum-type rectifiers having heater voltages of 6.3 and 12.6 volts respectively and heater currents of 0.3 ampere each.

Rated characteristics for	ollow	:	
	1-v	12Z3	1
Heater voltage	6.3	12.6	v.
Heater current	0.3	0.3	amp.
Maximum a-c. plate volt-			
age (RMS)	350	250	v.
Maximum d-c. output cur-			
rent	50	60	ma.

JENKINS BROS. PUBLISHES DATA BOOK **ON VALVES**

An excellent source of information on valves and valve layout is the new Catalog No. 23 just published by Jenkins Bros., 80 White Street, New York. Not only does this book cover 400 Jenkins valves, in a wide range of types and patterns, but also it gives unusually complete details. All features of design and construction are leader and full duraribed. Full identify clearly and fully described. Full informaclearly and fully described. Full minimum tion is given about the metals used in mak-ing the valves. Services, pressures, tem-peratures and fluids for which the valves are recommended are stated. The last section of the book contains many pages of engineering data that is constantly needed where valves are used.

COLLOWING conclusion of arrange-ments between the RMA and NEMA for the operation of the electrical code as it attects radio manufacturers, as soon as possible there will be called a general radio industry meeting, according to present plans. Uniformity of operation under the code is expected to result, together with plans regarding submission of reports re-quired by the NRA, particularly as to labor operations. The RMA members and the trade generally will be advised at an early date of the time and place of the proposed general mosting proposed general meeting.

Radio Interests Block Proposed Tax in Ohio

The RMA and Ohio radio interests have blocked a proposal before the special ses-sion of the Ohio State Legislature to levy a new ten per cent. "luxury" sales tax on receiving sets. With the assistance of receiving sets. With the assistance of Charles T. Naddy, Columbus radio jobber, and other Ohio distributors and dealers, under the direction of Bond Geddes, executive vice-president, general manager of the RMA, a vigorous fight against the the RMA, a vigorous hight against the proposed ten per cent. sales tax, suggested to apply generally in Ohio, has been waged. The latest reports indicate that the pro-posed tax will be defeated. Fortunately, a few years ago the RMA brought a test suit against a similar tax law in South Carolina and secured a Federal Circuit Court decision that radio receiving sets

NEW YORK OFFICES OF GENERAL ELECTRIC MOVED

The General Electric Company and four of its associated companies have announced the removal of their offices in New York City to the new General Electric Building, 570 Lexington Avenue at 51st Street. Included are the executive offices, New York district office, air conditioning department, electric refrigeration department, Atlantic division of the incandescent lamp department, merchandise department, and plastics department of the General Elec-tric Company, and the General Electric Contracts Corporation, G. E. Employees Securities Corporation, General Electric Realty Corporation, and International Gen-eral Electric Company. Last eral Electric Company, Inc.

NEW RADIO DISTRIBUTION SYSTEM FOR SING SING

Arrangements for the installation of a modern multiple radio receiving system which will distribute three separate pro-grams simultaneously to every cell in the state penal institution, have been made by Warden Lewis E. Lawes, of Sing Sing.

The equipment is being supplied by the RCA Victor Company, Inc., with funds raised from the proceeds of prison athletic activities. The programs will originate from three control panels having separate radio receivers feeding into a centralized sound distribution system, and sent out to the individual earphone sets located in the cells. An automatic phonograph mechan-ism is also being provided so that programs of recorded music may be sent over the same system. Two new "velocity" type microphones will be located in the chapelauditorium and on the athletic field so that religious services, lectures and announce-ments can be carried through the entire institution by the centralized sound sys-

RMA ACTIVITIES

• • •

are instrumentalities of interstate com-merce and therefore cannot be taxed by any state. This United States court decision was transmitted by Mr. Geddes to the Ohio legislative committee and used most effectively.

Leading RMA set manufacturers also were advised by the RMA of the proposed Ohio tax and through their jobbers and dealers brought much influence to bear against the ten per cent. tax plan before the Ohio special taxation committee. Originally the Ohio committee proposed to tax cosmetics and other luxuries in addition to radio, but present information is that the radio tax will probably not be included in the Ohio sales fax program.

Marconi Will Be Guest of Radio Industry

As a feature climax to Radio Progress Week beginning October 2, Senator Gug-lielmo Marconi will be a guest of the RMA during the radio industry celebra-tion. He probably will be the honor guest at a radio "Family" dinner in New York during Radio Program Week. Through during Radio Program Week. Through the Italian Embassy in Washington, a formal invitation was recently extended by the RMA to Senator Marconi and Mr. David Sarnoff, president of the Radio Corporation of America, who is now in Europe, has pursuaded Mr. Marconi to visit America. The distinguished radio pioneer will be a guest of the Chicago Ex-

RADIO ENGINEERING

NATIONAL RADIO AND ELECTRICAL **EXPOSITION**

The National Radio and Electrical Ex-Garden, New York, September 20 to 30. It is expected that many interesting exhibits will be there. ٠

TRANSCRIPTION PROGRAMS

A new west coast transcription activity has come into being with the establishment of Radioart Guild of America, with head-guarters in Los Angeles and a branch in

New York City. The group will act as producers and dis-tributors of transcription programs and will do recording at Recordings, Inc., in Hollywood.

Officers will be W. L. Standard, for 22 years executive of the Standard Oil of California, as president, and Miss Ruth Clark, former KFI-KECA music librarian, as secretary-treasurer.

Weyert Moor, for twelve years orches-tra manager for the Cleveland Symphony and at one time its director for summer concerts, will be music director for the Guild

Miss Zhay Clark, harp soloist with the Chicago Opera Company for two years, will be official arranger. W. Arthur Rush, who was with the Hollywood office of the RCA-Victor Company, will also be asso-ciated with the Guild.

GILBY HANDBOOK

Walter Gilby, for many years identified with all phases of electrical resistance wire manufacturing, announces that the Walter Gilby Alloy Company Handbook of Elec-trical Resistance Alloys is ready for distribution.

This catalog contains completely revised data and tables concerning Nicraloy "A" and "C"; Constaloy; special alloys; pure nickel; Svea metal; and enameled and covered wires.

position and his visit is timed during Radio Progress Week.

Many New RMA Members

A large number of radio manufacturers recently have affiliated with the RMA to secure the advantages of Association membership especially in connection with the NRA code and its administration. They have also taken advantage of the tempo-rary reduction by one-half of the RMA initiation fee. This privilege expires Oc-tober 18 and companies which are consid-ering membership are requested to act before the full initiation fee again becomes effective.

New RMA Committee on Police Radio

A special committee to study engineering developments in connection with police radio has been organized by Chairman Virgil M. Graham of the Association's Standards Committee. Special study will be made of problems in connection with De made of problems in connection with police radio. The committee consists of L. F. Jones of Camden, New Jersey; E. L. Nelson of New York; T. J. Scofield of Jackson, Michigan; W. E. Poor of New York; L. F. Curtis of Springfield, Massachusetts, and David Grimes of New York. C. G. Jolliffe, chief engineer of the Federal Radio Commission, has accepted appointment as guest member of the comappointment as guest member of the committee.

COLD-FORGED THUMB SCREWS

The Parker-Kalon Corp., 200 Varick St., New York City, announces the addition of cold-forged thumb screws.

These thumb screws are made by a new and improved process perfected after eighteen months of experimentation. The thumb grips are nicely shaped and are of pleasing proportions; because they are free of burrs and roughness they take an excellent plated finish. The knurling pro-

vides a firm finger grip. The screws are rolled-threaded to close limits. They are made for stock in a complete range of sizes—from 3/16 inch—24 by $\frac{1}{2}$ inch to $\frac{1}{3}$ inch—16 by 3 inches inclusive.

EBY MULTIPOLAR SNAP SWITCH

The H. H. Eby Mfg. Co., Inc., of Philadelphia, Pa., is marketing a new and novel snap action switch which answers a question that has been frequently raised as to the availability of a multipolar snap action switch and which is applicable to power or radio circuits.

or radio circuits. This switch can be furnished in any combination of polar arrangements up to 6 poles and either single or double throw.

It is sturdily constructed in addition to being compact and is adaptable to a wide variety of mounting conditions. The endurance of the Eby multipolar switch is beyond question as is also the excellence of design, the quality of materials used and the workmanship. Due to low contact resistance and low

Due to low contact resistance and low capacitance to ground of the live parts, this series of switches is ideal for twoband receivers, low-powered transmitters, test equipment, laboratory apparatus and electronic equipment generally.

NEW NICKEL ALLOY FOR TUBES

The Gilby Wire Company, 150 Riverside Ave., Newark, N. J., has developed a new alloy filament known as Cobanic. This material has distinct advantages over pure or silicon nickel inasmuch as it definitely eliminates chipping. We have this filament available for the following type tubes: Types 210, 250, 281, 230, 232, 231. 233, 280, 282, 566, 567, 572, 575 and 5Z3.

DEVELOPMENTS THE MONTH

NEW RECORDING FEED SCREW DEVICE

Latest releases from the laboratory of the Universal Microphone Co., Inglewood, Calif., is the Universal recording feed screw device which moves any recording cutting head across the face of the recording disc and thereby grooves the record at the time of making the recording. This method of making the groove at the actual time of the recording has proven

This method of making the groove at the actual time of the recording has proven far superior to the use of pregrooved records. The device is so constructed that the recording head may be lifted from the record without disturbing the feed screw. There are no critical adjustments re-

There are no critical adjustments required in the operation of the device, and the instrument will fit any phonograph turntable. Records up to 12 inches in diameter can be accommodated, and the thread is cut at the rate of 80 grooves an inch.

It will be marketed through regular trade channels and will be found practicable for transcription studios, home recording purposes and agencies which make a check of air programs, and broadcasters who make their own recordings and transcriptions.

STATICHECKER SIMPLIFIES TESTING NEW AND OLD SETS

A very simple device, called the Statichecker, has been built by the Clough-Brengle Company of 1140 W. Austin Ave., Chicago, III.

A midget size test plug and cable, small enough to get into any socket, brings every socket contact up to the terminals of a rotary selector switch on the panel of the instrument. On this same panel is a chart that shows the proper switch position for connecting to any element of

every type of tube, old or new. No more is time lost in puzzling out confusing tube diagrams.

The output may be connected to any ohumeter, or the resistance range of an analyzer, the combination making a modern point-to-point tester that is low in cost and rapid in operation.

and rapid in operation. The Clough-Brengle Statichecker, complete with test plug and cable for 7, 6, 5 and 4-prong tubes is priced at only \$8.82 net.

Clough-Brengle are also introducing a companion instrument, the Unimeter, which measures d-c. voltage and current, resistance, a-f. receiver output, and tube performance.

NEW DUMONT AMPLIFIER

In order to extend the range of the cathode ray oscillograph a special high quality a-c. operated amplifier has been developed by the Allen B. DuMont Laboratories, Upper Montclair, N. J. This amplifier may be used for the measurement or observation of many effects which of themselves are not of sufficient magnitude to operate the cathode ray tube directly but which nevertheless should not be entrusted to an ordinary amplifier for their faithful reproduction. It may also be used for many laboratory problems not connected with the cathode ray oscillograph.

The DuMont Type 136 amplifier is a three stage unit with power supply which has a voltage amplification of 500 and will deliver 50 volts r.m.s. to the cathode ray tube. The input impedance is one megohm and the output impedance is 7,000 ohns resistive. The ratio of output to input voltages does not vary more than 3 per cent from the 1,000 cycle value between 10 and 100,000 cycles, in which range the phase shift is proportional to frequency, there being a lag of 8 degrees at the upper freguency. The ratio of output to input voltages does not vary by more than 5 db. from the 1,000 cycle value between 100 kc. and 900 kc.

NEW FUSE RETAINER

The Littelfuse Laboratories, 1772 Wilson Ave., Chicago, Ill., announce their new No. 1061 fuse retainer. This fuse retainer was developed to meet the demand of manufacturers of auto and battery operated radio sets for a fuse mounting that would not take up any additional room in the set and still be readily accessible for servicing and renewals.

It is hung directly in the line between

the storage battery and the radio power supply. A tension spring furnishes perfect contact at all times to the fuse which is fully protected by the fibre casing. It takes a 3 AG type automotive fuse or Instrument Littelfuse. About one thousand a day are going into auto radio sets at this time.

FILTERMATIC OCTAVE TONE CONTROL

The Octave tone control, manufactured by The Filtermatic Mfg. Co., Philadelphia, Pa., was especially designed and developed for tone control. It is a patented tapped condenser, which entirely eliminates the resistance strip. It is a complete tone control in very compact form. This unit is very sturdily built, and is constructed of the best material obtainable for the purpose, such as bronze plates, mica dielectric and bakelite case. All exposed parts are plated to prevent rust or corrosion. It is thoroughly impregnated with the best grade

of condenser wax, rendering it practically moisture proof.

The Octave tone control can be supplied either with or without a power switch. The shafts are 34 inch long to permit their use as original equipment in practically all standard receivers, although we can sup-ply shafts in any desired length. Threaded 3% inch diameter mounting bushing per-mits single hole mounting in 3%-inch or 7/16-inch hole. The bushing is 3% inch long, permitting mounting on panels

up to ¼ inch thick. The Octave tone control requires very little space on the panel. It measures only 11/16 of an inch by 15%

The measures only 11/10 of an inch by 198 inches. It also cuts down installation costs by requiring only two soldered connections. Tone control may be used either in the grid or plate circuit of the audio ampli-fier. The most desirable is the grid cir-put circuit the current control to the cut cuit, since the same capacity can be used in any grid circuit, whereas different capacities are required in different plate circuits. When the tone control is used in the grid circuit it also eliminates the danger of current breakdown. There is also a saving in space and expense, as a smaller capacity condenser can be used in the grid circuit.

The Octave tone control has a variable capacity of from 50 mmfd, to .006 mfd,, for the grid circuit. Although the Octave tone control is composed of seven steps of capacity there is no noticeable interruption between capacities when used. It produces a smooth gradual tone taper from treble to bass.

NEW PORTABLE INSTRUMENTS FOR ELECTRICAL MEASUREMENTS

A new line of portable electrical instruments has been announced by the General Electric Company. The instruments, des-ignated as Type AP-9, includes medium-size voltmeters, milliammeters, ammeters. and wattmeters.

The case, of Textolite compound with hinged cover and snap lock, measures $2\frac{1}{2}$ by $6\frac{1}{2}$ by $4\frac{3}{4}$ inches. The finish is mot-

tled red with stippled leather finish on top and with nickel trimmings. The handle, of pliable leather, is convenient and durable. When the cover is closed, the case has no projecting parts; in the Type P-8 instruments, which have been superseded by the new line, the binding posts were on the side of the case, but in the new ones the terminals are under the cover, out of the way and easily connected. The cover also protects the glass over the scale when the instrument is not in use. Flush with the surface there is an external zero adjustment on top of the case.

Intermediate in size and accuracy be-tween the small, pocket-size instruments and the large, highly accurate portables, the new instruments are of higher accu-racy than is usually found in utility in-struments; are far less costly than the larger portables and but elipstic higher in larger portables, and but slightly higher in price than the small pocket instruments. The length of the scale in mean arc is 4¼ inches. The accuracy is 0.75 per cent of full-scale value, except in the case of the triple-range voltmeters in which it is 1½ per cent, and can be improved by spe-cial calibration on the job. An AP-9 in-strument can be read easily to within 0.5 per cent of full-scale value.

POWER SUPPLY FOR CONDENSER MICROPHONES

Designed to entirely eliminate batteries, besigned to entrely enumate batteries, the Shure model 41A power supply, manu-factured by the Shure Brothers Company, 215 West Huron St., Chicago, is now available for condenser microphones. A special rectifier circuit converts a-c. from commercial circuits into a perfectly filtered d-c. for both filament and plate circuits of the head amplifier, with the result that there is no audible hum even with the there is no audible hum even with the highest quality speech amplifying equip-ment. Tests on broadcast circuits have definitely established the suitability of the Shure 41A condenser microphone power supply for this most discriminating service. The equipment weighs only 12 pounds as compared with 24 pounds for the lightest corresponding battery complement, a fea-ture which will be appreciated in portable work. work.

The power supply operates from 105 to

125 volt, 60-cycle lines and furnishes 6 volts at 0.06 amp. and 200 volts at 5 ma., direct current, for filament and plate circuits respectively, "A" plus and "B" minus being grounded to the case. The plate voltage is adjustable. While designed especially for the Shure model 40A condenser microphone, the model 41A power supply may be used with any condenser microphone whose current requirements correphone whose current requirements corre-spond with these specifications. The base is double-baked black japan with chromium plated cover. The equipment is furnished complete with plug for attachment to the microphone cable, a-c. cord and plug, and rectifier tube.

RADIO ENGINEERING

NEW IRC VOLT-OHMMETER

An outstanding feature of the new IRC volt-ohmmeter is its automatic vacuum relay which prevents costly burn-outs of meters or circuits resulting from acci-dental overloads. When an overload oc-curs, the relay automatically throws the circuit open, then closes it when the overload is removed.

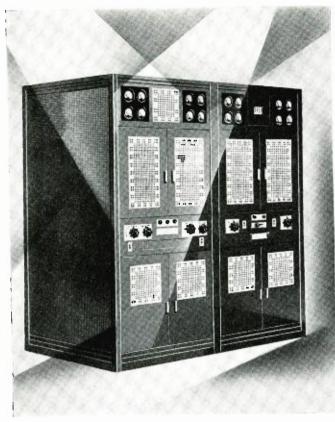
The IRC volt-ohmmeter weighs only $2\frac{1}{2}$ lbs. It is 7 inches long by 3 inches

deep. Voltage ranges are 3, 30, 300 and 600. Resistance ranges are 0 to 1,000; 0 to 100,000 and 0 to 1 megohm. With minor wiring changes and the addition of IRC Precision Wire Wound Resistors, various d-c. current readings can be made. The basic meter used is an 0-1 millianmeter.

This new instrument is expressly designed for accurate servicing through the point-to-point method. The volt-ohmmeter cannot be rendered obsolete by the intro-duction of new tubes or circuits and makes good servicing possible with a minimum of equipment. All that is necessary is the volt-ohmmeter and a tube checker to enable the point-to-point servicer to handle practically any job, quickly and satisfactorily. Other IRC volt-ohmmeter features in-

clude extra large 3-inch etch scale with double strength glass cover; full Bakelite case in either black or mahogany finish; one set of pin jacks for all readings; rotary switch; convenient compensation for battery variations on ohmmeter and many more.

NEW MICROPHONE AND CRYSTAL HOLDER


Eastern Coil Co., manufacturers of quartz crystal holders for the past three years, has expanded its line and is now manufacturing in addition to the above a high grade line of microphone stands.

Instead of concentrating on a single type of floor stand, three floor types have been developed to take care of price requirements.

An innovation in the line is a cable clamp which allows external use of the

'mike" wire, holds it neatly to the side of the stand, prevents injury to the wire and allows instant adjustment. Two of these clamps are meant to be used with each stand. Catalogue sheet describing the complete line may be had by writing to Eastern Coil Co., 56 Christopher Ave.. Brooklyn, N. Y.

THE NEW RCA VICTOR TYPE "1-D" ONE-K.W. TRANSMITTER ---A MODERN AND ATTRACTIVE DESIGN

THE MODERN **RCA VICTOR** ONE K. W. RANSMITTER **TYPE "1 D"**

Radio Headquarters takes pride in introducing this advanced-design one-k.w. broadcast transmitter, in anticipation of the great improvements being made in broadcast receiving sets, and the general trend towards extended audio frequency range of microphones and remote pickup telephone lines.

NOTE THESE OUTSTANDING FEATURES:

- Simplified and efficient all A.C. operation, result-ing in reliability and the usual RCA Victor high standard of performance. 1
- 2 Class B Audio Modulators for plate modulation of the power Amplifier stage.
- Specially designed for economy in power con-3 sumption.
- Cathode. Ray Modulation Indicator, permitting 8 4 the actual modulation envelope to be viewed at any time.

High fidelity monitoring loudspeaker with range 5 extending to 10,000 cycles.

Provision for connection direct to antenna or for 6 feeding into a two-wire transmission line.

- Constructed in two main units for convenience in transportation, installation and operation.
- Radiotron complement designed for efficiency, economy and convenience of maintenance, as follows:

Buenos Aires

EXCITER UNIT
I RCA 843
1 - RCA 865
5 UV 203-A
2 UV 845
2 UV 872

AMPLIFIER UNIT 4 --- UV 204-A 2 - UV 849 4 --- UV 872 I - Cathode Ray Tube

Santiago (Chile)

COMPANY, VICTOR A

Yokohama

N. J., U. S. A. CAMDEN,

HEADQUARTERS" "RADIO

New York: 153 E. 24th St. Chicago: 111 N. Canal St. San Francisco: 235 Montgomery St. Dallas: Santa Fe Bldg.

-

Shanghai

Atlanta: 150 Walton St., N.W.

BRANCH OFFICES in:

Rio de Janeiro

NEW HAMMARLUND PRODUCTS

The Hammarlund Mfg. Co., 424 W. 33d St., New York City, announces the following new products: Short-Wave Coil Forms.—The low losses

and stability of these forms provide for efficient high frequency reception under all encient high trequency reception under all conditions, being made of extruded Iso-lantite, a material closely approximating the ideal qualities of fused quartz. Equipped with convenient black enam-eled wooden handle with a flat top in which is inserted a removable paper disc for writing in frequencies. A collubrid

which is inserted a removable paper disc for writing in frequencies. A celluloid disc protects the paper, a spring ring hold-ing the disc in place. Surface is "non-skid," eliminating troubles encountered in winding on slippery surfaces. The enor-mous holes provided in the form make drilling unnecessary. The form is 1½" in diameter and 2½" long exclusive of knob and prongs. Made in 4, 5, and 6 prong types to fit the standard sockets. Ultra Short-Wave Coil Forms.—These

Short-wave coil form

Ultra short-wave coil form

Shielded r-f. choke

forms are designed for maximum efficiency at ultra high frequencies, or within the 28 to 56 megacycle band. Being made of Isolantite, and having correct form factor, high frequency resistance is at a minimum and absolute stability is achieved. The number and location of holes facilitates secur-ing the exact inductance desired and per-mits of almost any conceivable type of

experimental winding. Form is 11%" in diameter and 2" long ex-

clusive of prongs: Made only in five-prong type to fit standard sockets. Shielded R-F. Chokes. A new and im-

proved shielded choke for general use in high gain circuits. The coil unit is comhigh gain circuits. The coil unit is com-pletely shielded in an aluminum shell re-sulting in minimum external field and permitting compact receiver design with-out stray coupling to cause instability or feedback. Universal wound pies are thor-oughly impregnated to prevent moisture effects. The multiplicity of pies provides both high inductance and low distributed capacity resulting in extremely high im-pedances to all frequencies within the short wave and broadcast bands. wave and broadcast bands.

The mounting legs provided are on $1 \frac{11}{16''}$ centers.

EBY UNIVERSAL ADAPTOR

The H. H. Eby Manufacturing Com-pany, Inc., 21st and Hunting Park Ave., Philadelphia, Pa., has brought out a new type of universal analyzer adaptor which, with the use of a good multi-range meter, performs all the functions of the modernanalyzer or tube checker and is not restricted to any circuit or tube limitations.

This new instrument consists of a long-handled plug with grid connector, cable and small plug, a test panel having two seven-prong sockets and twenty-one jacks

with insulated jumpers, and a set of eight special adaptors. These parts are fitted into a neat imitation leather-covered carrying case.

In use, the tube for the receiver stage being tested is replaced by the long handled plug, the tube being placed in one of the test panel sockets and the small plug end of the cable is plugged into the remaining socket of the test panel. Now, to test any series circuit conditions for any element of the tube in question, the jumper is removed for any particular element accord-ing to the pin number indicated by the chart which comes with the adaptor, and a suit-able meter inserted into the circuit through the use of pin jacks and leads. For testing a condition between elements, they are chosen according to number and a test made between jacks connected to the respective elements.

For other than seven-prong tubes, the adaptors are used in pairs in conjunction with the long-handled plug and the socket of the test panel into which the tube is to be placed.

The new Eby universal analyzer adap-tor is known as Model No. 733.

TAUSSIG MASTERDIAL ELIMINATES CHARTS AND TABLES IN READING METERS

The Masterdial is a new invention which eliminates meter calibration troubles.

Through the use of the Masterdial, an ordinary single-range milliammeter is immediately converted into an instrument having hundreds of different applications. Using the meter in various suitable cir-cuits, the Masterdial is calibrated to read numerous voltage ranges, both a-c. and d-c. It is also calibrated to read resistances, capacities, etc.

The Masterdial consists of a calibrated roll of fine wove linen, fastened above the meter in such a way that it does not interfere with the reading of the meter scale. A knurled metal knob at one end permits the roll to be wound up, while a similar knurled knob at the other end permits it to be unwound. A metal slider with a

RADIO ENGINEERING

mica window may be moved laterally across the face of the roll. Above the roll, there is a scale printed on celluloid, which is identical with the scale on the meter face. Thus, suppose that the device is to be used on a voltmeter calibrated from 0 to 1, in 100 equal divisions. The Masterdial would then be furnished with a similarly calibrated celluloid scale. By changing the multipliers the same meter may be used for any desired range. A slight turn of the knurled knob on the Masterdial then brings the corresponding calibrated scale into view.

Sixteen different calibrations are provided on the Masterdial roll and in addition four spaces are available for the engineer to fill in his own calibrations. Cir-cuit diagrams are furnished with the instrument showing how to connect up a single meter for a-c. or d-c. measurements using a Taurex rectifier, how to use this meter as an ohmmeter, as a capacity meter, etc. When the meter is connected according to these diagrams, the sixteen calibrated scales on the Masterdial can then

be used to read off the values required. For example, if the meter is connected to read capacities of from .1 to 4 mfds., the roll is unwound until this particular scale shows in the window. If the meter needle reads .58 on a 0 to 1 ma. meter, the mica slider is moved laterally to this point on the upper permanent celluloid scale. The correct capacity reading is clearly readable directly below, in this case hav-ing a value of 1 mfd. The Masterdial is the invention of Leo Taussig, 3245 37th Street, Long Island City, N. Y.

CROSLEY-COCA-COLA RADIO

Novelty radios are coming thick and fast, but few of them combine utility with display value as well as this new Crosley-Coca-Cola set. It is being sold by Crosley direct to dealers as well as through the Coca-Cola Company, .as a display piece on soda fountains, and in drug and con-fectionery stores. The giant bottle replica

stands two feet high, is molded in two pieces of General Plastics' Durez, brilliant scarlet in color, and is equipped with Crosley's standard 165 chassis, using five tubes. The lettering of the words "Coca-Cola" forms the grille over the dynamic speaker. and the translucent green dial is lighted from behind. Tone value and volume are reported good.

SYNTHANE CORPORATION

RIVER ROAD, OAKS, PENNA.

PHILADELPHIA NEW YORK CHICAGO CLEVELAND BOSTON DETROIT ST. LOUIS

MINNEAPOLIS MINNEAPOLIS ATLANTA NEW ORLEANS DALLAS SAN FRANCISCO DAYTON PITTSBURGH KANSAS ('ITY

SYNTHANE Laminated Bakelite Will Definitely Better Your Product

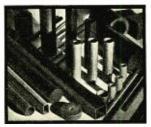
SYNTHANE laminated bakelite is made of fabric or paper base (according to the grade) impregnated with phenolic resins and laminated

under pressure and heat into a solid, homogeneous material. It is made in sheets, rods and tubes. We also supply fabricated parts and gear blanks to your specifications. Any standard grade listed below can

be varied to suit your individual requirements. SYNTHANE is a high quality, dependable material with uniform electrical and physical properties. It has high mechanical and dielectric strength, low moisture absorption and surface leakage, high impact strength,

minimum amount of cold flow, and minimum warpage.

It is resistant to water, oil and most chemicals. SYNTHANE can be turned, sawed, drilled, milled, threaded, tapped, punched, bored and machined in any manner desired. It is made with high glossy and dull finishes and can be easily buffed. SYNTHANE is supplied to close thickness tolerances to meet your specifications.


Our engineering department will gladly cooperate with you in developing SYNTHANE to your requirements. Samples for testing sent to your specifications with no obligation.

Standards of Quality For SYNTHANE LAMINATED BAKELITE

Standards of Quality For SYNTHANE LAMINATED BARELITE								
GRADES	x	xx	XXX	XP	c	CE	L	LE
CHARACTERISTICS	For ordinary use where low moisture absorption and good machining and electrical properties are required. Funches and machines easily. Paper base.	For extremely low moisture absorption and high dielectric atrength. Machines readily. Paper base.	For unusual applications requiring extreme density and bardness. Has very high resin con- tent. Paper base.	For punching operations. Funches and shear old tywards to 3/3/2 ito thinkers stress, depend- ing on temperature of material and type of die. High dielectrical properties. Paper base.	Resilient. High impact strength. Funches easily. Exceptional structural qualities muck it usable where high tensile and transverse strength is required. Canvas base.	Same as "C," except better electrical properties (ace below). Cauvas base.	Resilient, high impact strength. Fine weave fabric base gives easy machining qualities. Punches easily. Fine weave fabric base.	Same as "L" except better electrical properties. Fine weave fabrio base.
	Approxi- mate Average	Approxi- mate Average	Approxi- mate Average	Approxi- mate Average	Approxi- mate Average	Approxi- mate Average	mate	Approxi- mate Average
Tensile Strength, Lbs./Sq.In.	12,500	8,000	7,000	8,000	10,000	9,500	10,000	9,000
Flexural (Transverse) Strength, Lbs. /Sq.ln.	21,000	16,000	15,000	15,000	20,000	19.000	20,000	19,000
Compressive Strength, Lbs./Sq.1n.					38,000	36,000	35,000	37,000
Dielectric Strength, Volts per Mil(.001'') Short Time Step by Step	700 500	700 500	650 450	600 400	150 100	425 275	150 100	500 300
Power Factor,6 at 10 cycles		.045	.035	.042	.10	.055	.10	.045
Dielectric6 Constant at 10 cycles		5.5	5.0	5.0	7.0	5.5	7.0	5.0
Dielectric6 Loss Factor at 10 cycles		.25	. 18	20	.70	.30	. 70	.22
Moisture Absorption-%	4.0	1.3	1.0	4.0	1.7	1.5	2.0	1.2
Color ,	Natural; chocolate brown surface, natural core; black sur- face, na- turalcore.	Natural, Black	Natural, Black	Natural; chocolate brown surface, natural core; black sur- face, na- tural core Black.	Black	Natural, Black	Natural, Black	Natural, Black
SHEETS Size	36'' x 36''	36'' x 36''	36'' x 36'	36" x 36"	36'' x 36'	36'' x 36'	36'' x 36''	36'' x 36''
Thickness	36''x 36'' .010'' up- wards.	36'' x 36'' .010'' up- wards.	36'' x 36' .010'' up wards.	.010" up wards.		.015" up wards.	.012" up- wards.	.012" up wards.
TUBES, BODS	Wrapped Molded	Molded	Molded	Use Grade X	Molded 36''	Molded 36''	Molded 36''	Molded

Sheets

Tubes and Rods

Fabricated Parts

Stabilized Gears

SYNTHANE is always equal to and generally better than these standards.

Purchasing Guide

The following pages contain information which it is believed will be of value to executives, engineers and purchasing agents. The companies listed are recognized sources of supply whose products thru past and present acceptance and use by the radio, communication, broadcasting and allied industries, have achieved a reputation for merit and satisfactory performance.

In presenting this information, Radio Engineering

assumes no responsibility for omissions. We have tried to give comprehensive and accurate information. We have tried to make the information usable and as complete as possible. If we have unintentionally overlooked or omitted information, we'll be only too glad to have it brought to our attention and will make any needed additions in a following issue of the publication.

For the purpose of brevity and convenience, the listings are grouped in rather broad classifications which include groups of related materials or components. See Index below.

INDEX

Broadcasting and Public Address Equipment	t
Amplifiers, Attenuators, Crystals, Decade Boxes, Microphones, Mixers and Miscellaneous Equip- ment	37
Coils and Coil Forms Radio Frequency	40
Condensers, Fixed Dry Electrolytic, Wet Electrolytic, Mica and Paper	40
Condensers, Variable	42
Insulation, Molded and Laminated	
Molding Powders	42
Resistors, Controls and Rheostats Fixed and Variable Resistances, Carbon and	
Wire-Wound Volume and Tone Controls, Volt- age Regulators, Suppressors, etc	42
Sockets, Dials, Switches, Jacks Plugs, Escutcheons, Nameplates, Binding Posts, Knobs, etc.	
···· <u>·</u> ······	46
Speakers and Headphones Dynamics, Magnetic, Crystal Types	46
Transformers and Chokes Speaker Coils	46
Testing Instruments For Manufacturing, Broadcasting, Service and Laboratory	48
Tubes—Receiving and Transmitting, Photo Cells and Cathode Ray Tubes	50
Tube Machinery	52
Tube Parts and Materials Including Wire	

Wire—Antenna, Hook-Up, Magnet, etc.	
Miscellaneous Equipment	54
Cabinet Ornaments	54
Ceramics	54
Diaphragms for Speakers	54
Felt	54
Flexible Shafting	54
Foil	56
Fuses	56
Graphite	56
Laminations and Stampings	56
Lacquers and Varnishes	56
Lock Washers	56
Lugs and Terminals	56
Metals	
Aluminum	56
Phosphor Bronze and Nickel Silver	56
Brass and Copper	56
Mica	58
Motors, Motor Generators, Turntables and Record Changers	58
Oil Tubing, Saturated Sleeving, Varnished Cloth	58
Paper for Condensers	58
Paper Tubes	58
Rectifiers (Copper Oxide)	58
Relays	58
Shielding	58
Screws	58
Solder	58
Stop Nuts	58
Tape	58
Waxes, Cement, Battery Compounds	58

OUR READERS ARE CORDIALLY INVITED TO COMMUNICATE WITH US AT ANY TIME CON-CERNING PRODUCTS WHICH THEY ARE INTERESTED IN PURCHASING. WE WILL BE GLAD TO GIVE PROMPT, UNBIASED INFORMATION REGARDING SOURCES OF SUPPLY.

Broadcasting and Public Address Equipment Amplifiers, Attenuators, Crystals, Decade Boxes, Microphones, Mixers, and Miscellaneous Equipment

AMERICAN TRANSFORMER COMPANY

178 Emmet Street, Newark, N. J. Date of Organization: 1900

PRODUCTS

Audio, Plate, Filament, Power, Modulation and Testing Transformers, Reactors. and associated equipment for industrial, radio and laboratory application. Also Spot Welding Machines.

EXECUTIVES

W. R. Smith......Purchasing Agent BRANCH OFFICES OR REPRESENTATIVES James H. Southard, 420 Market Street, San Francisco, Cal. Kelburn Engineering Co., 600 W. Jackson Blvd., Chicago, III. Electrical Apparatus Sales Co., 10 High St., Boston, Mass. Western Radio Engineering, 5th and St. Peters Streets, St. Paul, Minn. J. W. Jones, 660 So. 18th Street, St. Louis, Mo. Arthur C. Stallman, 218 Waile Avenue, Ithaca, N. Y. K. J. Banfer, 1311 Terminal Tower, Cleveland, Ohio. L. D. Joralemon, 112 So. 16th Street, Philadelphia, Pa. Arthur L. Pollard, 307 New Sprankle Bldg., Knoxville, Tenn. Electrical and Mechanical Engineering Co., 612 Title and Trust Building, Phoenix, Ariz.

Phoenix, Ariz.

EXPORT

Ad. Auriema, Inc., 116 Broad Street, New York City. BEACON MICROPHONE CO.

590 Sumner St., Akron, Ohio. Microphones.

BLILEY PIEZO-ELECTRIC COMPANY

227 Union Station Bldg., Erie, Pa.

PRODUCTS Piezo-Electric quartz crystals and holders for use between 20 Kcs and 15,000 Kcs, used in transmitters, receivers, monitors, and laboratory stand-ards.

EXECUTIVES

General Manager.F. Dawson Bliley Sales Sales Manager. Joseph Haller Advertising Mgr......R. W. Hall BRANCH OFFICES OR REPRESENTATIVES

Pacific Coast Office: Mr. Don C. Wallace, 4212 Country Club Drive, Long Beach, Calif. . . . Sold through the best radio transmitting parts distributors throughout the United States and many foreign countries. **BRUNO LABORATORIES**

20 W. 22nd St., N. Y. C. Microphones.

BRUSH LABORATORIES

3715 Euclid Ave., Cleveland, Ohio. Crystal Speakers, Crystals.

THE ALLEN D. CARDWELL MANUFACTURING CORP.

Factory and Sales Offices-81 Prospect Street, Brooklyn, N. Y. Established 1920

PRODUCTS

Variable and Fixed (air and oil dielectric) Condensers for receivers, transmitters, high frequency furnaces. Maintains a Contract-Manufacturing Service specializing in designing, or manufacturing to specifications, of Inductances, Transformers, Relays, Automatic Telegraph equipment, electro-mechanical devices and instru-ments and stamped and welded aluminum and duralumin products.

EXECUTIVES

......Allen D. Cardwell President and Chief Engineer EXPORT

Ad. Auriema, Inc., 116 Broad Street, New York, N. Y. CARRIER MICROPHONE CO. 525 S. Commercial St., Inglewood, Calif. Microphones.

DAVEN RADIO CO. (See page 44) 158 Summit St., Newark, N. J. Attenuators and Decade Boxes

DELTA MFG. CO.

37 Osborne St., Cambridge, Mass. v Voltage Rectifiers—Rectifier Parts. Low

DOOLITTLE & FALKNOR

1306 W. 74th St., Chicago, Ill. Frequency Monitors, B. C. Equipment. EASTERN COIL CO.

56 Christopher Avc., Bklyn., N. Y. Microphones and Stands

ELECTRIC SPECIALTY CO. 211 South St., Stamford, Conn. Converters.

ELECTRICAL RESEARCH LABS. 2500 Cottage Grove Ave., Chicago, Ill. Amplifiers.

FEDERAL TELEGRAPH CO. (See page 50) 200 Mt. Pleasant Avenue, Newark, N. J.

GATES RADIO & SUPPLY COMPANY

Main Offices and Factory-Quincy, Illinois. Established 1922.

PRODUCTS Cable address—GATESRADIO, QUINCY, ILLINOIS

Broadcast station apparatus, public address equipment, centralized sound apparatus, talking picture equipment and other apparatus in the sound communication field.

EXECUTIVES

General Manager......H. C. Gates Chief Engineer.....P. S. Gates Assistant Chief Engineer..P. L. Tourney

GENERAL ELECTRIC CO. Schenectady, New York. Transmitting Equipment.

GENERAL RADIO COMPANY

30 State Street, Cambridge, Mass. (Established 1915)

PRODUCTS

Radio and electrical laboratory apparatus: Frequency-measuring equip-ment for broadcasting stations, laboratory and governmental monitoring installations; mixer controls, power-level indicators, standard-signal generators, audio- and radio-frequency oscillators, cathode-ray oscillo graphs, harmonic analyzers, impedance bridges, electrolytic condenser bridges, output power meters; and a complete line of dials, knobs, theo-stats, condensers and other laboratory accessories. Also manufacturers of the Edgerton stroboscope.

EXECUTIVES

President.......Melville Eastham Vice President......E. H. Locke Treasurer (General Manager) H. B. Richmond

Engineering Manager. C. T. Burke Production Manager. E. H. Locke Purchasing Agent. W. H. Sherwood Advertising Mgr. John D. Crawford

BRANCH OFFICES OR REPRESENTATIVES

General Radio Company, 274 Brannan Street, San Francisco, Calif. Leeds Radio Company, 45 Vesey Street, New York City, N. Y. (For laboratory parts and amateur gear.)

EXPORT

Claude Lyons, Ltd., 40 Buckingham Gate, London, S.W. 1, England. A. A. Posthumus, Vondellaan 15 and 17, Baarn, Holland. Ing. S. Belotti & C., Piazza Trento 8, Milan, Italy. Hayward C. Parish, 4th Floor, State Shopping Block, Market Street, Sydney, Australia. Ad. Auriema, Inc., 116 Broad Street, New York, N. Y.

HAMMARLUND MANUFACTURING COMANY, INC.

HAMMARLUND MANUFACTURING COMANY, INC. 424 West 33rd Street, New York City. Established for over a quarter of a century. PRODUCT Midget condensers in the Midline and Straight Line Gapacity types; double spaced dual Midget condensers; double spaced Midget condensers; bank spread Midget condensers; double spaced Midget condensers; bank spread Midget condensers; fields ings; Isolanitie short wave coil forms and ultra short wave coil form; solanitie sockets; screen grid tube shields and triple grid tube shields; "air-tuned" intermediate transformers; heavy duty transmitting chokes and splanting in the padding condensers in single and dual style; Midget condensers and equalizers, "Comet" and comet "Fro" Super-betordyne receivers for high frequency and all frequency coverage. The size. Anong the other special units which are produced by Hammarlund work, and other precision device. EXECUTIVES

EXECUTIVES

Oscar HammarlundPresident Joseph Lush......Chief Engineer Lloyd A. Hammarlund...Sales Mgr. Lewis Winner..Publicity Director BRANCH OFFICES or REPRESENTATIVES

BRANCH OFFICES or KEPKESEN 1438 North 13th Street, Philadelphia, Pennsylvania. 55 Kilby Street, Boston, Massachusetts. 9 South Clinton Street, Chicago, Illinois. 1400 West 25th Street, Cleveland, Ohio. 945 East Pico Street, Los Angeles, California. 1264 Folsom Street, San Francisco, California. 917 South West Oak Street, Portland, Oregon. Box 4101, Station "A," Dallas, Texas. EXPORT

EXPORT

Rocke International Co., 15 Laight Street, N. Y. C. White Radio Co., Canadian Representative, 41 West Ave., North, Hamilton, Ontario, Canada.

HYGRADE SYLVANIA CORPORATION Electronics Department, Clifton, New Jersey

PRODUCTS

Radio Transmitting Tubes, Phototubes, Industrial Power Tubes, Radio Transmitters, Special Radio Receivers, Sound Amplifiers. Broadcast Speech Equipment, Custom-Built Electronic Devices. EXECUTIVES

H. H. Reynolds. Purchasing Agent C. A. Rice......Sales Manager W. J. Barkley...General Manager D. E. Replogie.....Chief Engineer

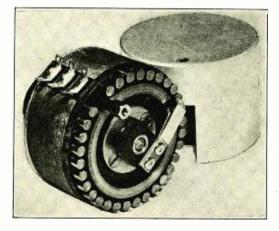
RADIO ENGINEERING

CATHODE RAY TUBES AND OSCILLOGRAPHS

The most complete line of cathode ray tubes and cathode ray oscillograph equipment ever offered is available through the research work of this laboratory. Nine standardized cathode ray tube types and three types of cathode ray oscillographs provide a wide choice for individual requirements.

Also available are accessory equip-ment such as deflection coils, "quick return" mercury vapor discharge tubes and adapters enabling our tubes to be interchanged with other types. An improved amplifier especially designed

for use in connection with cathode ray tubes has recently been an-nounced. This amplifier consisting of three stages of resistance coupled amplification has a voltage gain of 500 and a useful range of from 10 to 500,000 cycles per second without distortion or appreciable phase bits shift.


We are prepared to make up special tubes if necessary for specific problems as well as the equipment to operate them. Write Technical Service Dept. for list of bulletins available.

Type 34 Price \$25.00

ALLEN B. L. M. PATI I NOTE

> Allen B. DU Mont Laboratories UPPER MONTCLAIR, N. J.

DAVEN SPEECH INPUT EQUIPMENT

The above mixer is new and entirely different. You will note by its unique construction that the resistance elements are entirely enclosed. No perishable resistance pile winding is used. The silk-insulated resistance wire is wound on thin bakelite strips and placed in a rigid position. The resistance strips are shielded at all times and cannot be tampered with unless taken apart. No tools, soldering iron, dust, water or stray wires can reach the resistance elements.

Price \$12.50

The Type No. LA 220 LADDER ATTENUATOR SPECIFICATIONS

CIRCUIT: Ladder network. NOISE LEVEL: 150 decibels or better. NUMBER OF STEPS: 30. MINIMUM ATTENUATION: 2.5 decibels. MAXIMUM ATTENUATION: Infinite. ATTENUATION ON NEXT TO LAST STEP: 45 db. ATTENUATION PR STEP: 1.5 decibels. FREQUENCY ERROR: Plus or minus 0.5 db. over the range of 30 to 10,000 eveles, and 1 db. from 10,000 to 30,000 eyeles per second. NUMPE: Utilize - infinite.

second. RESISTANCES: Unifilar winding on thin bakelite strips. Silk enameled resistance wire used throughout. SHIBLDING: Aluminum cover and front panel. DIMENSIONS: 2¹/₄" diameter x 2-1/16" in depth MOUNTING: Two mounting holes for No. 8-32 screws, 1¹/₂" apart on horizontal center line.

The determining factor in the selection of any volume control should be its actual performance in service. The characteristics given herewith have been substan-tiated by the world's leading communication com-panies and broadcast stations. (Names upon request.)

Write for literature covering Daven Power Level Indicators, Output Meters, Fixed and Variable Attenuators, Decade Boxes, Meter Multipliers and other precision resistances and resistance apparatus.

THE DAVEN COMPANY 158-160 SUMMIT STREET, NEWARK, NEW JERSEY

CROWE....

Radio Products for 1933-34

Illustration one-half actual size

NEW tuning units for larger sets now in process, embodying advanced ideas in styles, finishes and mechanical features.

Remote Controls for automobile radios. (See illustration at left.)

A varied line of tuning devices for small compact radios. New applications in small dials, tuning scales and volume controls, either etched or embossed.

New escutcheons in modernistic finishes, shapes and designs.

Illustration one-half actual size

A line of escutcheons and tuning units with multi-band scales—for combined short wave, broadcast range and long wave use—for export sale.

Metal trim in the modernistic trend for wooden cabinets. Designed and made to order only.

Metal cabinets in the latest finishes for small sets.

• • •

Metal grilles in aluminum and chromium finishes — see illustration — with escutcheons or tuning dials to harmonize.

Correspondence invited.

CROWE NAMEPLATE AND MANUFACTURING CO. 1749 GRACE STREET CHICAGO, ILLINOIS

RADIO ENGINEERING

. .

Page 40

Broadcasting and Public Address Equipment (Continued)

INT'L BROADCASTING EQUIPMENT CO. 3112 W. Sist St., Chicago, III. Frequency Monitors—Amplifiers. JENKINS & ADAIR, INC. 3333 Belmont Ave., Chicago, III. Monitors—Microphones, etc. KELLOGG SWITCHBOARD & SUPPLY CO. 1066 W. Adams St., Chicago, III. Microphones. OPEPADIO MEG. CO.

OPERADIO MFG. CO. 13th & Indiana Sts., St. Charles, Ill. Amplifiers-Sound Equipment.

PHILCO RADIO & TELEVISION CORP.

Philadelphia, Pa. Amplifiers, Sound Equipment.

IVES Vice President in Charge of Sales.....G. K. Throckmorton Vice President in Charge of Manufacturing and Engi-neering.....W. R. G. Baker

THE RADIART CORP. 13229 Shaw Ave., Cleveland, Ohio. Amplifiers.

THE RAULAND CORPORATION 3341 Belmont Avenue, Chicago, Iil. Amplifiers.

REMLER COMPANY, LTD. 2101 Bryant Street, San Francisco, Calif, Transmitting Equipment-Microphones.

SAMSON ELECTRIC INCORPORATED Subsidiary of S. H. Couch Co., Inc. 89 Broad Street, Boston, Massachusetts

PRODUCTS

Amplifiers, Centralized Radio, Public Address, Recording Equipment, Transformers (power and audio), Chokes (R.F. and filter), Talking Picture Amplifiers, Microphones—carbon, condenser, crystal, dynamic, Microphone Stands, Microphone Cables, etc.

EXECUTIVES

J. E. Atkinson......President Gilbert Smiley......Chief Engineer R. W. Cotton.....Vice-President A. T. Morrison....Purchasing Agent

EXPORT M. Simons & Sons Co., 25 Warren Street, New York City.

SCIENTIFIC RADIO SERVICE 124 Jackson Avenue, University Park, Hyattsville, Md.

PRODUCTS

PRODUCTS Crystals for Control of Amateur Transmitters, Broadcast Transmitters, Commercial Short Wave Stations, and for Aircait Transmitters, Crystals supplied to Radio Receiver Manufacturers for use in their test equip-ment-to the U. S. Coast Guard, Marine Corps, Dept. of Commerce, Air-ways Division, and U. S. Naval Reserve. Scientific Radio Service supplied its first crystal commercially on December 3, 1925 (probably the first organization to supply these crystals for experimental and commercial use). From this date to October 16, 1931 its laboratory was located at Mount Rainier, Md. During this period, demands were so great that it was necessary to build and move into larger quarters. On October 17, 1929, Scientific Radio Service moved into its especially designed laboratory, the structure being a two-story brick building, for the sole production of Piezo Electric Crystals. Manager and Owner, Harry D. Eisenhauer was one of the pioneers in developing Piezo Electric Quartz Crystals for the control of radio fre-quencies. From the early part of 1925 to September 1929, Mr. Eisenhaucr had charge of the production of crystals at the Naval Research Labora-tory, Bellevue, Anacostia, D. C., at which time he resigned to give his full time to his ever expanding business. SHALLCROSS MFG. CO.

SHALLCROSS MFG. CO. 700 Parker Avenue, Collingdale, Pa. Testing Equipment—Attenuators, Decades, etc.

SHURE BROTHERS COMPANY

215 West Huron Street, Chicago, Illinois

PRODUCTS

PRODUCIS Carbon Microphones. Condenser Microphone Power Supplies, Radio Modulator, Microphone Stands, Microphone Cordage, Plugs, Receptacles and Fittings, Microphone Transformers, Mixing and Amplifier Input Transformers, Call.Letter Shields for Micro-phone Stands. All types of Microphones and related equipment. Expert Microphone repairs.

TOPNONE repairs. EXPORT The M. Simon & Son Co., Inc., 25 Warren Street, New York City. SOUND ENGINEERING CORP. 412 N. Leavitt Street, Chicago, Ill. Amplifiers.

STROMBERG-CARLSON TEL. MFG. CO. Rochester, New York Sound Equipment-Amplifiers

UNIVERSAL MICROPHONE COMPA.NY, LTD.

424 Warren Lane, Inglewood, Calif.

PRODUCTS Microphones—all types for broadcasting, amateur and sound uses.

THE WEBSTER COMPANY 850 Blackhawk Street, Chicago, Ill. Amplifiers.

WEBSTER ELECTRIC COMPANY Racine, Wisconsin Established 1909

PRODUCTS

Power Amplifiers, Sound-on-Film Amplifiers, Electric Phonograph Pick-Ups, Radio Transformers and Chokes. EXECUTIVES

S. A. Loeb.....President A. C. Kleckner....Chief Engineer and Vice-President P. G. Crewe.....Credit Manager P. A. Karll.....Purchasing Agent R. Ferda....Sales Manager

WESTERN ELECTRIC COMPANY, INC. 195 Broadway, New York City. Founded in 1869. Since 1882 it has been the manufacturer of communica-tion apparatus for the Bell Telephone System. Its research and engineer-ing are conducted by the renowned Bell Telephone Laboratories. The Company has three principal manufacturing plants located at Chicago, Baltimore and Kearny, New Jersey.

PRODUCTS Radio broadcasting transmitting equipment. Police radio-telephone trans-nuitting equipment. Marine radio-telephone equipment. Aviation com-munication equipment. Point-to-point radio-telephone equipment. Speech input equipment. Microphones (carbon button, condenser, dynamic types). Vacuum tubes and photo-electric cells, Public address equipment. Music reproducing systems. Program distribution systems. Radio frequency distribution systems. Radio frequency monitoring equipment. Telephone systems, apparatus and cable. Vacuum thermo-couples, cathode ray oscillographs. Audiometers, hearing aids, electrical stethoscope. Talking picture equipment.

BRANCH OFFICES OR REPRESENTATIVES IN THE UNITED STATES For Aviation Communication Equipment, Marine Radio-telephone Equip-ment, Point-to-point Radio-telephone Equipment: H. E. Young, General Commercial Engineer, Western Electric Company, Inc., 195 Broadway, New York City. For talking picture equipment: C. W. Bunn. General Sales Manager, Electrical Research Products, Inc., 250 West 57th Street, New York City. For all other Western Electric equipment, the distributor is the Graybar Electric Company through their branches. CANADA

CANADA Northern Electric Company, Ltd., 1620 Notre Dame Street, West, Montreal, Quebec.

Quebec. OTHER COUNTRIES For Talking Picture Equipment, Audiometers, Hearing Aids, Electrical Stethoscopes: Electrical Research Products, Inc., 250 West 57th Street, New York, N. Y. For all other equipment: International Standard Electric Corporation, 67 Broad Street, New York City, U.S.A.

Coils and Coil Forms Radio Frequency

(For Chokes, Speaker Coils, etc., see listings under Transformers)

COILS, INC. GENERAL MANUFACTURING CO. 8066 S. Chicago Avenue, Chicago, Ill.

HAMMARLUND MFG. CO. (See page 37) 424 W. 33rd Street, New York City

MEISSNER MFG. CO. 522 S. Clinton Street, Chicago, Ill.

SICKLES COMPANY 300 Main Street, Springfield, Mass.

Condensers, Fixed. Dry Electrolytic, Wet Electrolytic, Mica and Paper

> ACME WIRE COMPANY New Haven, Connecticut Paper Condensers and Condenser Parts. AEROVOX CORPORATION 70 Washington Street, Brooklyn, N. Y. All types. CONDENSER CORP. OF AMERICA 259 Cornelison Avenue, Jersey City, N. J. All types. CORNELL-DUBILIER CORP. 4377 Bronx Boulevard, New York City All types.

DONGAN ELEC. MFG. CO. (See page 48) 2395 Franklin Street. Detroit, Mich. Paper Condensers. MAGNAVOX CO., LTD. 2131 Bueter Road, Fort Wayne, Ind. All types.

Announces a new group of line coupling transformers of especial interest to Sound Distribution Engineers. By careful study and experimentation in the field, Thordarson Engineers have developed a group of units that permit a wide flexibility of design and application without recourse to costly special apparatus.

Туре	Primary	Secondary	List			
SINGLE TUBE TO LINE						
	2A3-2A5-41-42-45 46-47-50-59-89	500 Ohms	3.00			
		200 or 50 Ohms	3.00			
	IPULL TUBES T					
PUSE	IPULL IUDES I	O LINE				
	2A5-41-42-45-46 47-50-59-89		3.00			
T-5873	47-50-59-89 2A3 46 Class B 59 Class B	500 Ohms	3.50			
T-5339	46 Class B	500 Ohms	5.00			
T-5756	46 Class B 59 Class B	500 Ohms	5.00			
LINE	TO TUBE					
			2.00			
1-5510 T 4107	200 or 50 Ohms	Grid (100,000)	3.00			
T-6194	500 or 125 Ohms	Grid (100,000) PP Grids (200,000)	4.00			
	500 01 120 Olimb	11 01103 (200,0007	4.00			
MIXE	R OR LINE TO					
T-6195	200 or 50 Ohms	200 or 50 Ohms	4.00			
T-6196	500 or 125 Ohms	200 or 50 Ohms 200 or 50 Ohms	4.00			
		<u> </u>				
LINE	TO VOICE C	OIL				
		Tapped for Voice Coils	3.00			
T-5381	500 or 250	8 or 4 Ohms	4.50			
	ROPHONE					
T-2357	Single Button	Grid (100,000)	3.00			
T-3020	Double Button	Grid (100,000)	5.00			
T-3180	Double Button Ribbon or Velocity	Grid (100,000)	8.50			
T-6123	Ribbon or Velocity	Grid (100,000)	3.00			
T-6197	Ribbon or Velocity	200 or 50 Ohms	3.00			

THC	RDARSON EL	ECTRIC MFG.	co.			
500 W. HURON STREET						
CHICAGO, ILL.						

HE

Constant use in all parts of the world, almost instantaneous change from freezing cold to tropical heat, extreme dryness and intense humidity-these are but a few of the factors to be considered in purchasing airplane radio equipment.

Here, all the adverse conditions met with in years of ordinary radio use-plus many new ones besidesmay be encountered in a few short hours. Here, precious human lives and the completion of important schedules may depend on the ability of resistors to function properly at all times.

Yet standard IRC Resistor units meet all requirements. You'll find them specified by leading air lines -find them in daily use from Alaska to Montevideo, from Los Angeles to New York, from Hong Kong to Peiping. Not only do they qualify by test-they excel in actual year 'round performance in this, the most exacting of all resistor proving grounds.

SUBMARINES, TOO

SUBMARINES, TOO Far below the surface of the sea as well as in the air, IRC units will be found in daily use-delivering 100% resistor performance under the most adverse conditions. Certainly no better practical demonstra-tion of quality could be asked for the resistors specified for your own product regardless of where or how it is to be used.

Write for literature on IRC Resistor construction and performance. Or, if you have special resistor problems, let IRC engineers help you solve them.

INTERNATIONAL RESISTANCE CO. 2100 ARCH ST., PHILADELPHIA, PA.

In Canada, 74 Wellington St. W., Toronto, Ont.

.

Condensers, Fixed (Continued) P. R. MALLORY & CO. 3029 E. Washington Street, Indianapolis, Ind. All types. MICAMOLD RADIO CORP. 1087 Flushing Avenue, Brooklyn, N. Y. All types. THE MUTER COMPANY 1255 So. Michigan Avenue, Chicago, Illinois PRODUCTS Candohm Resistors, Radio and Electrical Products. EKECUTIVES President.....Leslie F. Muter Chief F Vice-President......A. A. Dailey General Manager..Leslie F. Muter Sales Manager....J. R. Scanlon Advert Chief Engineer.....C. M. Kraemer Production Mgr..Joseph C. Nasturski Purchasing Agent....A. A. Daily Advertising Mgr...Leslie F. Muter BRANCH OFFICES OR REPRESENTATIVES Edward J. Beckley, 157 Chambers Street, New York, N. Y. Lombard Smith Co., 425 E. Pico Street, Los Angeles, Calif. EXPORT Sylvan Ginsbury-86, Due Du Pelican, Antwerp, Belgium. RCA VICTOR CO., INC. (See page 40) Carnden, New Jersey All types. SOLAR MFG. CORP. 599 Broadway, New York City All types. SPRAGUE SPECIALTIES CO. No. Adams, Massachusetts All types.

SANGAMO ELEC. CO. Springfield, Illinois Mica Condensers.

TOBE DEUTSCHMANN CORP. Canton, Massachusetts Paper Condensers, Filters, etc.

Condensers, Variable

ALLEN D. CARDWELL MFG. CO. (See page 37) 81 Prospect Street, Brooklyn, N. Y. 81 Prospect Street, Brookiyn, N. Y.
 DEJUR-AMSCO CORP.
 95 Morton Street, New York City
 THE H. H. EBY MFG. CO., INC.
 21st & Hunting Park Avenue, Philadelphia, Pa. GENERAL INSTRUMENT CO. 225 Varick Street, New York City GENERAL RADIO CO. (See page 37) 30 State Street, Cambridge A, Mass. HAMMARLUND MFG. CO. (See page 37) 424 W. 33rd Street, New York City OAK MFG. CO. 308 W. Washington Street, Chicago. Ill. PRECISE MFG. CO. 254 Mill Street, Rochester, N. Y. RADIO CONDENSER CO. Davis Street & Copewood Avenue, Camden, N. J. SCOVILL MFG. CO. Waterbury, Conn. UNITED SCIENTIFIC LABS. 510 Sixth Avenue, New York City

Insulation, Molded and Laminated (Molding Powders)

BAKELITE CORPORATION

River Road, Bound Brook, N. J. This business was established twenty-four years ago and was founded by Dr. L. H. Backeland. From a small beginning, it has grown to a point where it now has large modern manufacturing plants and repre-sentatives in all the major industrial countries in the country, as well as affiliations in the leading industrial countries in the world.

PRODUCTS

Plastic materials, including transparent resins, molding materials, laminating materials, baking type varnishes, lacquers, cements, and enamels, synthetic resins for air-drying finishes, resinoids for bonding abrasive products and for waterproofing fabrics.

BRANCH OFFICES OR REPRESENTATIVES BRANCH OFFICES OR REPRESENTATIVES Main Office-247 Park Avenue, New York. Research and Office-230 Grove Street, Bloomfield, N. J. Plant and Office-2016 Grove Street, Bloomfield, N. J. Office-3016 Euclid Avenue, Cleveland, Ohio. Office-410 Asylum Street, Hartford, Connecticut.

CONTINENTAL DIAMOND CO. Newark, Delaware

FORMICA INSULATION CO.

4614 Spring Grove Avenue, Cincinnati, Ohio

GENERAL ELECTRIC CO. Schenectady, New York (Textolite)

GENERAL PLASTICS INC.

North Tonawanda, N. Y. PRODUCTS Burez Moulding Compounds, Durez Insulating Varnishes. BRANCH OFFICES OR REPRESENTATIVES H. J. Williams, General Plastics, Inc., 9 S. Clinton Street, Chicago, Ill. C. F. Landsheft, 28 Burnett Terrace, West Orange, N. J. R. E. Dodd, General Plastics, Inc., 250 Park Avenue, New York City. A. W. Hanmer, Jr., P. O. Box J53, Wethersfield, Conn. C. D. LaMorce, Inc., 1325 San Julian Street, Los Angeles, Calif. Fred Kennerley, C. D. LaMorce, Inc., 1889 Mission Street, San Francisco, Calif. Durez Moulding Compounds, Durez Insulating Varnishes. Gaston E. Marbaix, Ltd., Vincent House, Vincent Sq., London, S.W. 1, England.

England. Otomune & Co., Ltd., Junkei-Machi, Sanchome, Osaka, Japan. McKenzie & Hollard Pty Ltd., Newport, Melbourne W. 15, Australia.

MICA INSULATOR CO. 200 Varick Street, New York City

NAT'L VULCANIZED FIBRE CO. Wilmington, Delaware

RESINOX CORPORATION

Sales Offices-Terre Haute, Indiana, Executive Offices-230 Park Avenue, New York City. PRODUCTS

Molding Resins-Molding Compounds-Laminating Varnishes. SYNTHANE CORPORATION

Oaks, Pa. (near Philadelphia) Organized in 1928 New plant constructed and production started during March 1929. PRODUCTS

PRODUCTS Synthane laminated bakelite, Sheets, Rods, Tubes, Fabricated Farts, Stabilized Gear Material. Synthane Corporation has devoted itself exclusively to the production of laminated bakelite. The plant itself was laid out and built to the re-quirements of laminated bakelite manufacture. This also guided the selection of equipment and, in several instances, machines were specially designed and constructed that would definitely contribute to a better and more uniform product. EVECUTIVES

EXECUTIVES

TAYLOR & CO., INC. Norristown, Pa.

WESTINGHOUSE ELEC. & MFG. CO. E. Pittsburgh, Pa. (Micarta)

Resistors, Controls and Rheostats Fixed and Variable Resistances, Carbon and Wire-Wound-Volume and Tone Controls, Voltage Regulators, Suppressors, Etc.

> AEROVOX CORP. 70 Washington Street, Brooklyn, N. Y. ALLEN-BRADLEY COMANY 126 W. Greenfield Avenue, Milwaukee, Wisc.

PRODUCTS Bradleyometers, Bradleyunits, Bradleystats, Radio Leak, Spark Plug Resistors and Suppressors, Fixed and Variable Resistances, Rheostats, Volume and Tone Controls.

Volume and Tone Controis. EXECUTIVES President......Lynde Bradley Sales Manager.....F. F. Loock Chief Engineer....C. O. Wilms. Credit Manager......Theron Child Chief Engineer.....Lynn Mathias

BRANCH OFFICES Indianapolis, Ind. Cleveland, Ohio. Detroit, Mich. Milwaukee, Wis.

Roston, Mass. Buffalo, N. Y. Chicago, Ill. Cincinnati, O.

New York, N. Y. Philadelphia, Pa. Pittsburgh, Pa. St. Louis. Mo.

Rocke International Electric Corp. 15 Laight Street, New York, N. Y. AMPERITE CORP. 561 Broadway, New York City

EXPORT

CARTER RADIO CO. 812 Orleans Street, Chicago, Ill.

CENTRAL RADIO LABORATORIES

900 East Keefe Avenue, Milwaukee, Wisconsin.

PRODUCTS Variable Resistors and Fixed Resistors manufactured primarily for radio service.

Dependable Long Life

KEN-RAD radio tubes are built by expert workers, according to the most rigid standards. The best grade materials are used. Every third operation is actually an inspection.

Every care is taken to maintain Ken-Rad's reputation as makers of the finest radio tubes on the market. Our sincere efforts have merited the extreme satisfaction of customers throughout the nation.

Write for information. There is no obligation.

THE KEN-RAD CORPORATION, Inc. Division of Ken-Rad Tube and Lamp Corporation OWENSBORO, KY.

Centralab FIXED RESISTORS

More and more servicemen are being "wised up" to the fact that they can do a better job with CENTRALAB Fixed Resistors.

For these sturdy, Dependable resistors are BAPTISED WITH FIRE and stand up under strains and abuses that would make the average resistor give up and quit.

So be sure to specify CENTRALAB when next you order your stock of replacement resistors.

Resistors, Controls, Rheostats, Etc. (Continued)

BRANCH OFFICES OR REPRESENTATIVES T. B. Hunter, 160 E. Illinois Street, Chicago, Ill. Mr. W. J. Kelley, c/o Electrical Apparatus Sales Co., 10 High Street, Boston. Mass. Samuel K. Macdonald, 220 Riggs Bank Bldg., Washington, D. C. W. Scharp, c/o Stoner & Heath, 545 Fith Avenue, New York City, N. Y. Leslie M. De Voe, 5779 No. Delaware St., Indianapolis, Ind. Wm. E. Hopper, 411 Georgia Savings Bk. Bldg., Atlanta, Georgia. L. H. Jackman, 2043 E. 77th St., Cleveland, Ohio. Jas. J. Backer Co., 109-11 Bell Street, Scattle, Wash. W. T. McGary, 5651 Cabanne Ave., St. Louis, Mo. Roland Moeller, 2105 No. Third Street, Milwaukee, Wis. Merrill K. Franklin, 490 Sexton Bldg., Minneapolis, Minn. Brickman-Saizow Co., 328 West 11th Street, Kansas City, Mo. R. C. Merchant, 572 Macabees Bldg., Detroit, Mich. J. O. Russell, P. O. Box 1255 Little Rock, Ark. Carl A. Stone Co., Ltd., 209 West 17th Street, Los Angeles, California.

CLAROSTAT MANUFACTURING COMPANY 285 N. Sixth Street, Brooklyn, N. Y. Established in 1928, succeeding the American Mechanical Labs. PRODUCTS Wire Wound Volume Controls, Potentiometers, Tone Controls, Hum Controls, Flexible Resistors, Noise Sup-pressors-Composition Element Volume Controls, Potentiometers, Tone Controls-Compression Type Rheostats-Fractional Horse Power Motor Speed Controls Speed Controls.

EXECUTIVES President......John J. Mucher Chief Engineer.....George Mucher Controller.....Victor Mucher

BRANCH OFFICES OR REPRESENTATIVES L. G. Cushing Co., 9 S. Clinton Street, Chicago, III. A. M. Bachr, 1400 W. 25th Street, Cleveland, Ohio. B. L. Moore, 191 Starin Avenue, Buffalo, N. Y. Trade Contract Corp., 25 Huntington Avenue, Boston, Mass. J. J. Perlmuth, 1360 S. Hill Street, Los Angeles, Calif.

EXPORT

M. Simons & Son, 25 Warren Street, New York City.

CONTINENTAL CARBON, INC. 13900 Lorain Avenue, Cleveland, Ohio

PRODUCTS Continental Carbon Resistors, Continental-Igrad Paper Condensers, Con-tinental Suppressors for automobile radio, Carbon Discs and Carbon Granules for telephone transmitters.

 Granules for telephone transmitters.

 EXECUTIVES

 President......G. F. Benkclman Factory Manager.....P. T. Isley

 BRANCH OFFICES OR REPRESENTATIVES

 Marshank Sales Co., 1224 Wall Street, Los Angeles, Cal.

 R. C. James Co., 2321 Second Avenue, Seattle, Wash.

 W. W. Boyd Sales Co., 9 S. Clinton, Chicago, Ill.

 Rossiter & Co., Inc., 25 Warren Stret. New York, N. Y.

CHICAGO TELEPHONE SUPPLY COMPANY (H. H. Frost, Inc.-Sales Division) 1142-1228 W. Beardsley Avenue, Elkhart, Ind.

PRODUCTS

Volume Controls, Tone Controls, Switches, Fixed Resistances, Head Phones.

EXECUTIVES

President......W. A. Nicely Chief Engineer.....N. C. Schellenger Purchasing Agent.....E. A. Bedk

THE DAVEN COMPANY 158-160 Summit Street, Newark, New Jersey PRODUCTS

Power Level Indicators, Meter Multipliers. Mixer Panels, Speech Input Control Apparatus, Attenuators, Potentiometers, Faders, Volume Indi-cators, Output Meters, Line Equalizers. Attenuation Boxes, Decade Resistances, Resistances, Glastor, Super Davohm wire wound Resistor.

EXECUTIVES President......Lewis Newman Chief Engineer....Magnus Bjorndal Production Manager.....Edward Coxey

BRANCH OFFICES or REPRESENTATIVES K. J. Banfer Sales Co., 1311 Terminal Tower. Cleveland. Ohio. Ralph P. Glover, 337 W. Madison Street, Chicago, Illinois. Merton A. Dobbin, Portland, Oregon, James H. Southard. 420 Market Street, San Francisco, California. Frazier Amplification Co., 217 S. Broad Street, Philadelphia. Pennsylvania.

DEJUR-AMSCO CORP. 95 Morton Street, New York City THE H. H. BBY MFG. CO., INC. 21st & Hunting Park Avenue. Philadelphia, Pa.

ELECTRAD, INC. 175 Varick Street, New York City

ERIE RESISTOR CORPORATION 644 West 12th, Erie, Pa.

PRODUCTS

Fixed and Variable Carbon Resistors-Automobile Suppressors, EXECUTIVES

www.americanradiohistory.com

BRANCH OFFICES OR REPRESENTATIVES Wesley S. Block, Jr. 15 E. 26th Street, New York, N. Y. Elmer E. Mills Co., 205 W. Wacker Drive, Chicago, Ill.

EXPORT

Erie Resistor of Canada, Ltd., 49 Bathurst Street, Toronto, Canada. Erie Resistor, Ltd., Waterloo Road, Cricklewood, London, N.W. 2, England.

FILTERMATIC MFG. CO.

6913 Dittman Street, Philadelphia, Pa.

PRODUCTS

Octave Tone Control, Fentenna Automobile Antenna. Supertone Table Model Tone Control, Short Wave Noise Suppressor, Filtermatic Antenna Adjusting Coil, Super-Filtermatic Outside Antenna Eliminator. EXECUTIVES

President.....C. H. Draving

President......C. H. Draving BRANCH OFFICES OR REPRESENTATIVES Adolph Friedman, 205 East 42nd Street, New York City. Fred Garner, 43 East Ohio Street, Chicago, III. Derneir Sales Co., 326 D. 3rd Street, Los Angeles, Calif. L. W. Nutt Sales Co., 618 Dayton Industries Building, Dayton, Ohio. Coopers Radio Service Co., Bowling Green, Missouri. EXPORT Smith Kirkpatric & Co., Inc., 115 Broad Street, New York City, N. Y. GENERAL RADIO CO. (See page 37) 30 State Street, Cambridge A, Mass. Controls. CORAP.CORP.

GLOBAR CORP. Niagara Falls, New York HARDWICK, HINDLE, INC. 40 Harmon Street, Newark, N. J. Wire-wound

INTERNATIONAL RESISTANCE CO.

21st and Arch Streets, Philadelphia, Pa.

PRODUCTS I.R.C. Resistors, Automobile Condensers, I.R.C. Volume Controls, I.R.C. Suppressors, I.R.C. Precision Wire Wound Resistors, I.R.C. Power Wire Wound Resistors.

President....Dr. Harold Pender Sales Manager...Daniei J. Fairbanks

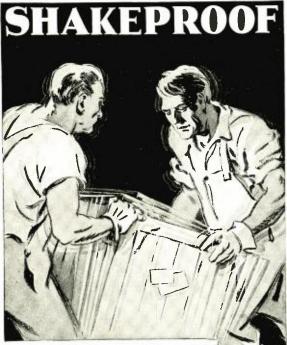
Vice-President...Dr. Harold Pender Production Mgr...M. W. Weiscopf Sales Manager..Daniel J. Faitbanks
BRANCH OFFICES OR REPRESENTATIVES
Geo. E. Anderson, Santa Fe Building, Dallas, Texas.
S. B. Darnstader, S20 N. Michigan Avenue, Chicago, Ill.
Hodges & Glomb, 1264 Folsom Street, San Francisco, Calif.
Albert M. Bachr, 1400 W. 25th St., Cleveland, Ohio.
B. J. Fitzner, 159 E. Elizabeth Street, Detroit, Mich.
Henger-Seltzer Co.. P. O. Box 877, Arcade Annex, Los Angeles, Calif.
J. Costello, 1160 Delaware Avenue, Buffalo, N. Y.
Harry W. Gebhard, 55 Kilby St., Boston, Mass., and Liberty Tr. Building, Philadelphia, Pa.
Killam, Inc., 53 4th Street, Portland Ore.
Galen Croxton, 606 Fullerton Bldg., St. Louis, Mo.
Jack L. Hursch Co., 436 Continental Oil Bldg. Denver, Colo.
The Lew Bonn Company, 2504 University Avenue, St. Paul, Minn.
J. E. Muniot, Jr., 918 Union Street, New Orleans, La.
Messrs. Murphy & Cota, 70 Spring Street, N. W., Atlanta, Georgia.
W. S. Reid, 308 E. 17th Street, New Orleans, La.
Messre, Murphy & Cota, 70 Spring Street, New, Atlanta, Georgia.
W. S. Reid, 308 E. 17th Street, New York City.
George O. Tanner, 345 4th Avenue, Pittsburgh, Pa.
A. E. Ackland, Ltd., 189 Clarence Street, Sydney, N. S. Wales, Australia.
T. H. Duncan, Box 242, Wellington, New Zealand.
W. Nissen (Pty), Ltd., P. O. Box 1655, Cape Town, S. Africa; P. O. Box 1326. Johannesburg, S. Africa; P. O. Box 2420, Durban, S. Africa.
Jose M. Zayas, Compostela 57, Havana, Cuba.

EXPORT International Resistance Co., Ltd., 74 Wellington St., West, Toronto, International Resistance Co., Ltd., 74 Weinington St., West, Toronto, Canada.
 Dubilier Condenser Co., Ltd., Ducon Works, Victoria Road, North Acton, London, W3, England.
 Vitrohm Elektroteknisk Fabrik, Holbergsgade 15, Copenhagen.
 Arthur Ludke. G.m.b.H. Unter den Linden 60, Berlin, Germany.
 Societe Des Condensateurs De Trevoux, 52 Rue De Dunkerque, Paris, France.

LYNCH MANUFACTURING CO., INC. 51 Vesey Street, New York City P. R. MALLORY & CO. (Yaxley Div.) 3029 E. Washingotn Street, Indianapolis, Ind.

MICAMOLD RADIO CORP. 1087 Flushing Avenue, Brooklyn, N. Y. THE MUTER CO. (See page 42) 1255 S. Michigan Avenue, Chicago, III.

OH10 CARBON COMPANY Cleveland, Ohio OHMITE MFG. CO. 636 N. Albany Street, Chicago, Ill. PRECISION RESISTOR CO.


334 Badger Avenue, Newark, N. J. (Wire-wound) SHALLCROSS MFG. CO. 700 Parker Avenue, Collingdale, Pa. (Wire-wound)

SPEER RESISTOR CORP. St. Marys, Pennsylvania STACKPOLE CARBON CO. St. Marys, Pennsylvania

SOLAR MFG. CORP. 599 Broadway, New York City

Sys Broadway, New York City WARD LEONARD ELECTRIC CO Mt. Vernon. New York
 S. WHITE DENTAL MFG. CO.
 152 W. 42nd Street. New York City Resistors and Suppressors

SEPTEMBER, 1933

GIVE YOUR PRODUCT THE" VIBRATION CONTROL" TEST ! TF you would like to know how

IF you would like to know how Shakeproof can improve the performance and lasting satisfaction of your product — make this simple test. First, equip one of your products with Shakeproof Lock Washers and pack it in a shipping case along with another taken from your regular stock. Then, turn these over to your shipping department with instructions to give them plenty of rough handling—just

them plenty of rough handling – just like the treatment they might experience in shipment to a Shakeproof Catalog. Exdealer. Next, unpack them and examine each connection – what you see will tell you more

connection—what you Shakeproof products. see will tell you more about Shakeproof protection and why it cuts down complaints and repair costs than anything we can say. See for yourself—send for

Look Windows

(C)

MIGHTY MIDGETS, molded of durez DESIGNED TO SELL and SELLING!

Two of the month's most successful small cabinets — both molded of Durez. The huge Coca-Cola bottle conceals a five tube Crosley. The words "Coca-Cola" serve as a grille over loud speaker opening. Tone value good. Display value overwhelming.

Jan Streng, New Yorker, designed the Colonial Compact of black molded Durez, and modern chromium fittings. When first announced, orders ran far ahead of production. Still selling fast—and profitably.

IF YOU have yet to use the perfect molding compound for your product—write now for full details! Scores of manufacturers find Durez superior. Because—details are reproduced faithfully. Surfaces are lustrous, rich, proof against warping, peeling, chipping. A variety of versatile effects can be obtained. Because it is *the modern* raw material, for a modern public. Let Durez help you win *new* markets—gain a surer grip on *present* markets. Your competitors use it. Why not you? Write to General Plastics, Inc., 1209 Walck Road, N. Tonawanda, N. Y. Also, New York, Chicago, San Francisco, Los Angeles.

THE PERFECT MOLDING COMPOUND

We supply the raw material to custom molders with whom you work. Contacts gladly arranged with molders and designers. Full cooperation.

Page 46

Resistors, Controls, Rheostats (Continued)

WIRT COMPANY 5221 Greene Street, Philadelphia, Pa.

Sockets, Dials, Switches, Jacks, Plugs, Escutcheons, Nameplates, Binding Posts, Knobs. etc.

THE D. L. AULD COMPANY 5th Avenue and 5th Street, Columbus, Ohio

PRODUCTS

Radio Escutcheons, Name Plates, Embossed Metal Dials or Plates, Balsa Wood, Metal-clad. **EXECUTIVES**

ALDEN MANUFACTURING CO. Campello Station, Brockton, Mass.

BASTIAN BROS. CO. 1600 N. Clinton Avenue, Rochester, N. Y.

BEST MANUFACTURING CO. 1200 Grove Street, Irvington, N. J.

CARTER RADIO CO. 812 Orleans Street, Chicago, Ill.

CENTRAL RADIO CORPORATION

Beloit, Wisconsin

PRODUCTS Tube Sockets, Socket Clips, Transformers, Chokes. EXECUTIVES

L. W. Kamquist. SALES OFFICES C. Hubert Anderson, Box 307, Fort Madison, Iowa. Edward F. Aymond. 3750 Urban Avenue, Dallas, Texas. Lew Bonn Company, 2484 University Avenue, St. Paul, Minnesota. George R. Clarke, 551 Vancouver Avenue, Detroit, Michigan. Dernier Sales Company, 408 F. P. Fay Building, Los Angeles, California. Gerber Sales Company, 94 Portland Street, Boston, Massachusetts. L. H. Jackman, 2043 East 77th Street, Cleveland, Ohio. R. C. James Company, 219 Second Avenue, Seattle, Washington. Kay Sales Company, P. O. Box 2116, Tulsa, Oklahoma. Murphy and Cota. 90 Sping Street. N. W., Atlanta, Georgia. **EXPORT**

EXPORT Smith, Kirkpatrick & Co., 115 Broad Street. New York.

CINCH MANUFACTURING CORPORATION 2335 W. Van Buren Street, Chicago, Ill. PRODUCTS Tube Sockets, Radio Plugs, Laminated Plugs, Binding Posts, Tip Jacks, Soldering Lugs, Mounting Strips, Metal Stampiugs.

CROWE NAME PLATE & MFG. CO. 1749 Grace Street, Chicago, Illinois

1749 Grace Street, Chicago, Illinois PRODUCTS Tuning Units, Escutcheons (Embossed and Etched), Remote Controls (Auto Radio), Grills and Metal Trim for Cabinets. Dials and Scales, Nameplates (netal), Radio Cabinets (metal). EXECUTIVES E. C. Coolidge......President G. C. Hass.. .Purchasing Agent Winslow C. Goodwin....Radio Sales Manager

BRANCH OFFICES or REPRESENTATIVES I. Robinson Smith, 142 Liberty Street, New York City.

EXPORT Rocke Int'l Electric Corp., 15 Laight Street, New York City. W. Burt Knight, Inc., 1646 West Adams Street, Los Angeles, California. C. C. Meredith, Streetsville. Ontario, Canada.

DEJUR-AMSCO CORP. 95 Morton Street, New York City

THE H. H. EBY MFG. CO. 21st & Hunting Park Avenue, Philadelphia. Pa.

EDDIE MFG. CO. 9 W. Illinois Street, Chicago, Ill. FAHNESTOCK ELECTRIC CO.

46-50 Eleventh Street, Long Island City, N. Y.

GENERAL RADIO CO. (See page 37) 30 State Street, Cambridge, A, Mass.

HOWARD B. JONES 2300 Wabansia Avenue, Chicago, Ill.

THE MUTER CO. (See page 42) 1255 S. Michigan Avenue, Chicago, Ill.

OAK MANUFACTURING CO.

308 W. Washington Street, Chicago, Ill. SORENG-MANEGOLD CO.

1901 Claybourne Avenue, Chicago, Ill.

Speakers and Headphones (Dynamics, Magnetic, Crystal Types)

ACRATEST PRODUCTS COMPANY 20 Murray Street, New York City. Established 1930.

PRODUCTS Public Address and Sound Equipment including Power Amplifiers for all purposes. Condenser Microphones—Power Supplies. Tuners—Mixers— Recording Apparatus—Speakers—Transformers—Condensers—Phono Pick-

ups. EXECUTIVES President......Oscar Roye Production Mgr.. William A. Daniels Chief Engineer...Clifford E. Denton Purchasing Agent.....Oscar Roye Advertising Manager...Nathaniel Feiner BRANCH OFFICES OR REPRESENTATIVES M. W. Berns, 1331 S. Michigan Avenue, Chicago, Ill. M. Roye, 631 Spring Street, N.W., Atlanta, Ca... Walter Fischer, 343 Blvd. of the Allies, Pittsburgh, Pa. N. Love, 233 Central Avenue, Newark, N. J. William Carduner, 25 Park Place, New York City. EXPORT

EXPORT Federated Export Company 23, Park Place, New York City.

BEST MANUFACTURING CO. 1200 Grove Street, Irvington, N. J.

BRUSH LABORATORIES 3715 Euclid Avenue, Cleveland, Ohio

C. F. CANNON CO. Springwater, New York

CHICAGO TEL. SUPPLY CO. (H. H. Frost, Inc.) (See page 44) Elkhart, Indiana Headphones

ELECTROPHONE CORP. Philadelphia, Pennsylvania JENSEN RADIO MFG. CO. 6601 S. Laramie Avenue, Chicago, Ill. MAGNAVOX CO., LTD. Fort Wayne, Indiana OPERADIO MFG. CO. 13th & Indiana Street, St. Charles, Ill.

PHILCO RADIO & TEL. CORP. Philadelphia, Pennsylvania RCA VICTOR CO. (See page 40) Camden, New Jersey

PRODUCTS

Air Column Horns, Electro-dynamic Speakers, High-frequency Speakers, Public Address Equipment.

THE ROLA CO. 2570 Superior Ave., Cleveland, Ohio. THE RUDOLPH WURLITZER MFG. CO. North Tonawanda, New York STEWART-WARNER CORP. Chicago, Illinois STROMBERG-CARLSON TEL. MFG. CO. Rochester, New York

TRIMM RADIO MFG. CO.

1528 Armitage Avenue, Chicago, Ill. Headphones only.

UTAH RADIO PRODUCTS CO. 820 Orleans Street, Chicago, Ill. VICTORY SPEAKERS, INC. 7131 East 14th Street, Oakland, Calif.

WESTERN ELECTRIC CO. 50 Church Street, New York City WRIGHT-DE COSTER, INC. St. Paul, Minnesota

Transformers and Chokes (Speaker Coils)

THE ACME ELEC. & MFG. CO. 1440 Hamilton Avenue, Cleveland, Ohio.

PRODUCTS Radio Transformers-Neon Transformers.

EXECUTIVES President......G. R. Hillstrom Chief Engineer....J. A. Comstock Vice-President....J. A. Comstock Production Manager...Wm. Radon Sales Manager....C. H. Bunch Purchasing Agent..J. A. Comstock Advertising Manager.C. H. Bunch

BRANCH OFFICES OR REPRESENTATIVES (Radio) R. C. Veale & A. D. Strathy, 125 Church Street, New York City. C. H. Fryburg. 215 S. 5th Street, Philadelphia, Pa. (Neon)

SEPTEMBER, 1933

Testing Instruments (For Manufacturing, Broadcasting, Service and Laboratory)

APPARATUS DESIGN CO. Little Rock, Arkansas Tube Testers.

ALLEN DUMONT LABS. Upper Montclair, New Jersey Cathode Ray Equipment-Oscillographs-Telautographs.

FERRIS INSTRUMENT CORP. Fairview Avenue, Boonton, N. J. Micro-Volters.

GENERAL ELECTRIC CO. Schenectady, New York Meters.

GENERAL RADIO CO. (See page 37) 30 State Street, Cambridge A, Mass.

HICKOK ELEC. INST. CO. 10514 DuPont Avenue, Cleveland, Ohio Tube Testers.

INTERNATIONAL RESISTANCE CO. (See page 44) Philadelphia. Pennsylvania Volt-Ohmmeters

G. F. LAMPKIN 146 W. McMillan Street, Cincinnati, Ohio Monitors.

PREMIER CRYSTAL LABS., INC. 55 Park Row, New York City Impedance Measuring Devices.

RCA VICTOR CO., INC. (See page 40) Camden, New Jersey RADIO PRODUCTS CO. 5th & Norwood. Dayton, Ohio Tube Testers.

RADIO RESEARCH CO., INC. 9th & Kearny Streets, N. E., Washington, D. C. Special Instruments to Order.

RAWSON ELEC. INST. CO. 90 Windsor Street, Cambridge, Mass. Voltmeters, Electrical Measuring Instruments, Thermocouples, etc.

READRITE METER WORKS 136 E. College Avenue, Bluffton, Ohio Meters.

SHALLCROSS MFG. CO. 700 Parker Avenue, Collingdale, Pa. Wheatstone Bridge-Decades, etc. SUPREME INSTRUMENTS CORP.

Greenwood, Mississippi Tube Testers.

WESTERN ELECTRIC CO. (See page 40) 50 Church Street, New York City WESTINGHOUSE ELEC. AND MEG. CO. East Pittsburgh, Pa. Meters.

WESTON ELECTRICAL INSTRUMENT CORP. Newark, N. J. (Established in 1888)

PRODUCTS Electrical measuring instruments of all types and for all classes of service, Standard Cells, Elec'l Tachometer and Speed Indicating Equip., Scnsitive Control Relays, Photoelectric Cells and Associated Apparatus and Radio Service Equipment, Tube Testers.

EXECUTIVES President......Edward F. Weston Vice-President.....Caxton Brown Sales Manager H. Leigh Gerstenberger H. deigh Gerstenberger Advertising Manager..Sidney Cassey

Branch Artschloffer Internating August Art. R. Briggs Advisting Manager...Sidney Cassey
 BRANCH OFFICES OR REPRESENTATIVES
 Albany-Schiefer Electric Co., Inc., 100 State Street.
 Atlanta-E. A. Thornwell, Candler Building.
 Boston-James O. Murray, 126 Newbury Street.
 Buffalo-Schiefer Electric Co., Inc., 891 Ellicott Square.
 Chrisdo-Weston Electrical Instrument Corp., 1640 Walnut Street
 Cincago-Weston Electrical Instrument Corp., 1640 Walnut Street
 Cincago-Weston Electrical Instrument Corp., 1640 Walnut Street
 Cinciago-Weston Electrical Instrument Corp., 1640 Walnut Street
 Cinciago-Weston Electrical Street.
 Denver, J. W. Van De Grift, 632 Charles Building.
 Detroit-T. F. Mueller, 713-14 Stephenson Building.
 Noraville-Bowditch & Co., P. O. Box 3145.
 Jacksonville-Ward Engineering Co., 1052 E. Bay Stret.
 Kansas City, Mo.-C. B. Fall Co., Commonwealth Hotel.
 Knowlide-Arthur L. Pollard, 515 2lst Street.
 Los Angeles-Electrical Eng. Sales Co., 575 Subway Terminal Building.
 Meriden, Conn.-John S. Isdale, 16 Prospect Avenue.
 Minneapolis-John T. Jones (Jowa-Nebr.), 106 First Ave. No.
 Newark, N. J.-J. R. Hemion, 614 Frelinghuysen Avenue.
 (See page 50)

Transformers and Chokes (Continued)

W. E. Judge, 606 Atlantic Avenue, Boston.
A. M. Baehr, 1400 W. 25th Street, Cleveland, O.
F. C. Sonners, 2004 Grand Avenue, Kansas City, Mo.
R. M. Campion, Box 4101, Sta. A, Dallas, Texas.
Jas. J. Backer Co., 109 Bell Street, Seattle, Wash.
Lombard Smith Co., 425 E. Pico St., Los Angeles, Calif.
O. A. Huber, 341 10th Street, San Francisco, Calif. AMERICAN TRANSFORMER CO. (See page 37) 178 Emmet Street, Newark, N. J. CENTRAL RADIO CORP. (See page 46) Beloit, Wisconsin CHICAGO TRANSFORMER CORP. 2626 W. Washington Boulevard, Chicago, Ill. DONGAN ELECTRIC MFG. COMPANY 2987-3001 Franklin Street, Detroit, Michigan Established 1809 PRODUCTS Transformers, Radio Power, Audio, Special, Neon, Oil Burner, Chokes, Condensers. EXECUTIVES President.....L. J. Hicks Vice President..Hugh H. Littlebury BRANCH OFFICES or REPRESENTATIVES
Rocke Int'l Corp., 15 Laight Street. New York City.
H. A. Ledig, 1712 67th Avenue, Philadelphia, Pennsylvania.
R. C. James Co., 2319 Second Avenue, Seattle, Washington.
J. H. Healey Co., 120 Pearl Street, Boston. Massachusetts.
Lyman C. Reed, 709 Girard Street, New Orleans, Louisiana.
A. G. Werner, 5522 South 37th Street, St. Louis, Missouri.
S. H. Stover. 704 Century Building. Pittsburgh, Pennsylvania.
G. A. Fischer, Room 608, 47 S. Pennsylvania Street, Indianapolis, Indiana.
G. E. Rosche, 1913 57th Street, Milwaukee. Wisconsin.
Sierra Equip. Corp., 341 Ninth Street, San Francisco, California. THE FRANKLIN RADIO CORP. Dayton, Ohio

GENERAL RADIO CORP. (See page 37) 30 State Street, Cambridge A, Mass.

GENERAL TRANSFORMER CORP. 1900 N. Kilbourn Avenue, Chicago, Ill. THE HALLDORSON COMPANY 4500 Ravenswood Avenue, Chicago, Ill.

JEFFERSON ELECTRIC CO. Bellwood, Illinois.

KENYON TRANSFORMER CO., INC.

122 Cypress Avenue, New York, N. Y. PRODUCTS

Amplifiers, Transformers and Reactors. -

EXECUTIVES F. P. L. Kenyon,.....President Paul R. Fernald...Gen'l Sales Mgr. A. H. Beach......Controller R. J. Philipps......Chief Engineer

A. H. Beach......Controller R. J. Philipps.......Chief Engine BRANCH OFFICES or REPRESENTATIVES
 H. J. Baier & Son, 6545 Carnegie Avenue, Cleveland, Ohio. Jules W. Beneke, 377 Arcade Building. St. Louis, Missouri. Jas. J. Backer & Co., 109-11 Bell Street, Scattle. Washington. Joseph Gardberg, 915 Atlantan Hotel, Atlanta, Georgia. Harry Gerber, Gerber Sales Co., 94 Portland Street. Boston.
 R. O. Holland, 520 North Spring Street, Greensboro, North Carolina. Frank H. Kaiser, 510 Prudential Building. Buffalo, New York. Howard P. Hardesty, 356 East Grand Boulevard. Detroit, Michigan. Kay Sales Co., P. O. Box 2116. Tulsa. Oklahoma.
 Kay Sales Co., P. O. Box 2116. Tulsa. Oklahoma.
 Kay Sales, Gones, 5314 Beelermont Place, Pittsburgh, Pennsylvania. Arnold Sinai, 626 Powell Street. San Francisco. California.
 Wilmer S. Trinkle, 1438 North 13th Street, Philadelphia, Pennsylvania. Samul Bialek, 205 East 42nd Street, New York City.

EXPORT M. Simons & Sons, 25 Warren Street, New York City.

KINGSTON PRODUCTS CORP. Kokomo, Indiana

RCA VICTOR CO., INC. (See page 40) Camden, New Jersey

THE RADIART CORPORATION 13229 Shaw Avenue, Cleveland, Ohio

STANDARD TRANSFORMER CORP. 850 Blackhawk Street, Chicago, Ill.

THORDARSON ELEC. MFG. CO.

500 W. Huron Street. Chicago, Ill. Power Filament, Audio Transformers, Reactors, Microphone and Line Coupling Transformers

UNITED TRANSFORMER CORP. 264 Canal Street, New York City

RAD	0	ENGIN	EERING

Testing Instruments (Continued) New Orleans-W. J. Keller, 203 Natchez Building. New York-Weston Electrical Inst. Corp., 50 Church Street. Philadelphia-L. D. Joralemon, 912 Otis Building. Pittsburgh-Superior Engineering Co., 810 Penn Avenue. Rochester-Schiefer Electric Co., 1nc., 89 East Avenue. San Francisco-C. F. Henderson, 420 Market Street. Seattle-Eicher & Bratt, 263 Coleman Building. St. Louis-C. B. Fall Co., 705 Star Building. Syracuse-Schiefer Electric Co., Inc., 215 State Tower Building. WIRELESS EGERT ENGINEERING, INC. 179 Varick Street, New York City Cathode Ray Equipment—Beat Frequency Oscillators. Tubes-Receiving and Transmitting Photo Cells - Cathode Ray Tubes ARCTURUS RADIO TUBE COMPANY Newark, New Jersey PRODUCTS Arcturus Radio Tubes EXECUTIVES BRANCH OFFICES or REPRESENTATIVES Re.lly, 1481-A Merchandise Mart, Chicago, Illinois. "uppy, Minneapolis, Minnesota. Tri-State Sales Co., Dallas, Texas. Houran Sales Company, Seattle, Washington. T. B. Pritchard. Los Angeles. Calitornia. P. F. Madden, McKeesport, Pennsylvania. EXPORT ort sales handled direct by T. P. Feeney, Export Manager. CHAMPION RADIO WORKS, INC. 90 Holten Street, Danvers, Mass. HERMAN A. DEVRY, INC. 7 E. Wacker Drive, Chicago, Ill. ALLEN B. DU MONT LABORATORIES 9 Bradford Way, Upper Montclair, N. J. PRODUCTS Cathode Ray Tubes and Oscillographs-Adaptors, Deflection Coils, Relay Racks, Amplifiers, Sweep Circuits. EXECUTIVESAllen B. Du Mont President..... EXPORT C. A. Richards, Inc., 304 E. 45th Street, New York City. FEDERAL TELEGRAPH COMANY, INC. 200 Mt. Pleasant Avenue, Newark, N. J. PRODUCTS Radio Transmitting Tubes and Rectifiers, Radio Transmitters and Receivers, Radio Compasses, Associated Equipment. Receivers, Kadio Compasses, Associated Equipment. EXECUTIVES W. J. Deegan......President St. G. Lafitte......Vice-President A. Y. Tuel......Vice-President J. Wallen.....Comptroller BRANCH OFFICES OR REPRESENTATIVES H. L. Rodman, 22 Battery Street, San Francisco, Cal. G-M LABORATORIES, INC. 1731 Belmont Avenue, Chicago, Ill. Photo-cells GENERAL ELECTRIC CO. Schenectady, New York. GENERAL SCIENTIFIC CO. 4828 S. Kedzie Avenue, Chicago, Ill. Photo-cells GOLD SEAL MANUFACTURING CO., INC. 127 S. 15th Street, Newark, N. J. GRIGSBY-GRUNOW CO. 5801 Dickens Avenue, Chicago, Ill. HYGRADE SYLVANIA CORPORATION 500 Fifth Avenue, New York City. PRODUCTS

Receiving and Transmitting Tubes of all Types, Photo Cells, Broadcasting Equipment, Police Radio Equipment, Incandescent Lamps.

EXECUTIVES

 EXECUTIVES

 D. G. Erskine.
 President

 L. J. Poor.
 Chairman of the Board

 W. E. Poor.
 Vice-President in Charge of Manufacturing

 S. N. Abbott.
 Sales Manager (Jobber-Dealer Sales) Receiving Tubes

 C. G. Fyle.
 and Incandescent Lamps

 P. S. Ellison
 Advertising Manager (Tubes)

 R. A. Poor
 Advertising Manager (Tubes)

 W. A. Coogan
 Export Manager

 C. W. Shaw
 Asst. Manager Equipment Sales

 R. M. Wise
 DEFICIES or REPERSENTATIVES

 BANCH OFFICES or REPRESENTATIVES Plants located at Emporium, Pennsylvania, Salem, Massachusetts, St. Marys, Pennsylvania, Ciliton, New Jersey, Offices located at Emporium, Pennsylvania; 500 Fith Avenue, New York City; 10 Fost Office Square, Boston, Massachusetts; 445 Lake Shore Drive, Chicago, Illinois, and 3440 South Hill Street, Los Angeles, California. HYTRON CORP. Salem, Mass.

> JOHNSONBURG TUBE CO. Johnsonburg, Pa.

THE KEN-RAD CORPORATION

Owensboro, Kentucky Organized 1922

PRODUCTS

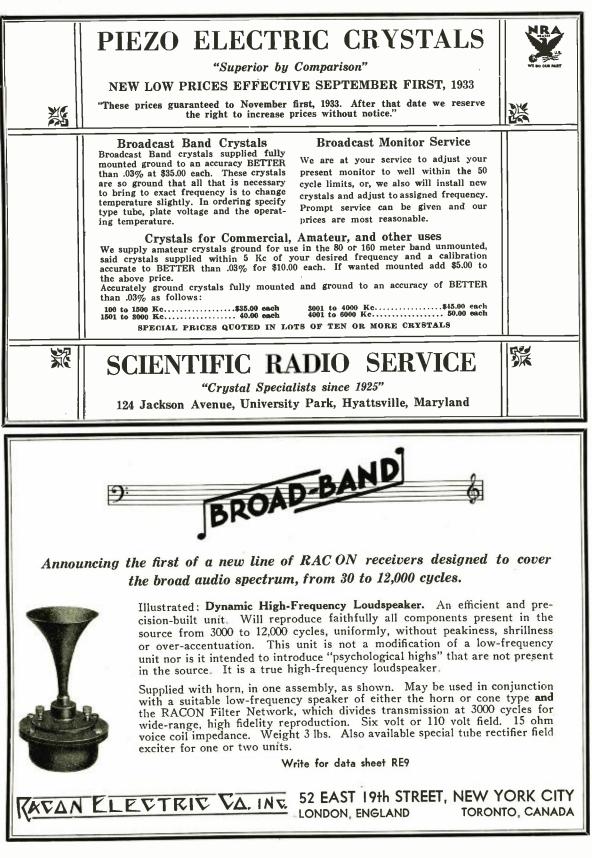
Frank G. Risher, 3360 North Meridian Street, Apartment C-9, anusana Indiana. H. A. Schanaker, 2129 Pine Street, St. Louis, Missouri. Kay Sales Company. P. O. Box 2116, Tulsa. Oklahoma. L. P. Naylor, 3222 Sequoia Avenue, Baltimore, Maryland. C. H. Shuptrine, 2625 Meadowbrook Drive, Cedar Rapids, Iowa. Jas. J. Backer Company, 109 Bell Street, Scattle Washington. Albert F. Lotz. 191 Sterling Avenue, Buffalo, N. Y. Southwestern Radio Sales Co. 212 Thomas Building, Dallas, Texas. Export

EXPORT Leonard L. Minthorne Company, 116 Broad Street, New York City.

NATIONAL UNION RADIO CORP. 400 Madison Avenue, N. Y. C.

RCA RADIOTRON COMPANY, INC. Factories and Laboratories—415 S. Fifth Street, Harrison, N. J. Sales Headquarters—Front and Cooper Streets, Camden, N. J.

Sales Headquarters—Front and Cooper Streets, Camden, N. J. PRODUCTS Broadcast Receiving Tubes and Receiving and Transmitting Tubes for Amateur and Experimental Use. RCA Radiotron Company. Inc., was incorporated as a subsidiary of Radio Corporation of America January 1, 1930. to take over the manu-facturing activities of General Electric Company and Westinghouse Electric and Manufacturing Company, and the commercial activities of Radio Corporation of America, relating to vacuum tubes and other apparatus in the field of radio purposes. In November, 1932, a unification of the sales direction of RCA Radiotron Company, Inc., and E. T. Cunningham, Inc., was effected, and the same progressive program has since been applied to both brands of radio tubes. EXECUTIVES EXECUTIVES


LALOOTT	
PresidentE. T. Cunningham	Vice President Manufacturing J. M. Smith
Executive Vice President G. K. Throckmorton	Secretary and Treasurer F. H. Corregan
Vice President, Engineering L. C. Warner	Asst. Treas. and Asst. Secy. F. H. Troup
Sales Manager	

Mgr., Equipment Mirs. Sales & Service......Meade Brunet DIVISION AND DISTRICT SALES OFFICES

DIVISION AND DISTRICT SALES OFFICES EASTERN DIVISION W. H. Thompson, Division Mgr., Front & Cooper Sts., Camden, N. J. Districts 1 & 3-L. W. Teegarden, District Manager, 66 Broad St., New York City. District 2-H. C. Brown, District Manager, 2009 Holland St., Utica, N. Y. District 4-F. B. Wanselow, Manager, Front & Cooper St., Camden, N. J. District 6-P. M. Jeffreys, District Manager, 498 Spring St., Atlanta, Ga.

WESTERN DIVISION
 F. H. Larrabee, Division Mgr., 520 N. Michigan Blvd., Chicago
 District 5-H. A. Edwards, Manager, 925 Euclid Ave., Cleveland, Ohio,
 District 7-R. A. Graver, District Manager, 520 N. Michigan Blvd.,
 Chicago, Ill.
 District 8-F. E. Harding, Manager, 4415 Aldrich Ave., S., Minneapolis,
 Minn, District 10-J. W. Cooke, Manager, 325 Ninth St., San Francisco, Calif.
 District 12-E. I. Sutton, Manager, 325 Ninth St., San Francisco, Calif.

EXPORT RCA Radiotron Company, Inc., exports tubes throughout the world and through its Export Division actively cooperates with its distributors in all locations.

Page 52

RADIO ENGINEERING

Tubes, Etc. (Continued)

RCA VICTOR CO., INC. (See page 40) Camden, New Jersey. RAYTHEON PRODUCTION CORP. 30 E. 42nd Street, N. Y. C. TELEPHOTO & TELEVISION CORP. 133 W. 19th Street, N. Y. C. TRIAD MANUFACTURING CO. Pawtucket, Rhode Island. TUNG-SOL RADIO TUBES, INC. 95 Eighth Avenue, Newark, N. J. WESTON ELEC. INST. CORP. (See page 48) Newark, New Jersey. WESTINGHOUSE ELEC. & MFG. CO. E. Pittsburgh, Pa. WESTERN ELECTRIC CO. (See page 40) 50 Church Street, N. Y. C.

Tube Machinery

CENTRAL SCIENTIFIC CO. 460 E. Ohio Street, Chicago, Ill. EISLER ELECTRIC CO., INC. 750 S. 13th Street, Newark, N. J. INT'L MACHINE WORKS, INC. 927 Van Wagenen Place, N. Bergen, N. J. KAHLE ENGINEERING CO. 320 Manhattan Avenue, Union City, N. J. LEPEL HIGH FREQUENCY LABS. 39 W. 60th Street, N. Y. C. Bombarders, etc.

Tube Parts and Materials (including Wire)

ALLOY METAL WIRE CO., INC. Moore, Penna.

ALO LABORATORIES Glenwood Avenue, Bloomfield, N. J. Parts.

AMERICAN ELECTRO METAL CORP. Lewiston, Maine.

PRODUCTS Molybdenum and Molybdenum Tungsten Alloys in all forms-Grid Wire, Support Wire, Furnace Wire.

EXECUTIVES President.....Dr. Paul Schwarzkopf Vice President......Rudolf Lowit

EXPORT N. V. Molybdenum Co., Amsterdam, Holland. Deutsche Gluchfadenfabrik, Berlin, Germany. Metallwerk Plansee Ges.m.b.H., Reutte, Austria. Tcchnisches Bureau Willi Schwarzkopf, Vienna, Austria.

AMERICAN LAVA CORPORATION

Chattanooga, Tennessee. Established 1903.

Established 1903. PRODUCTS Insulating parts for receiving tubes and broadcasting tubes. For these parts, specially treated Lava, Magnesia and Alumina form the raw ma-terials. Also a new ceramic insulating body to which through derivation from its constituent materials, is given the name of "Alsimag." "Alsi-mag" combines high dielectric strength with a low loss factor and unusual mechanical strength, while porosity tests show only 0.02 per cent absorption by weight. The co-efficient of expansion at 900° C. has tested as low as 2.93 x 10-6. In practice "Alsimag" is being used advan-tageously, not only in highly specialized applications, but in all ordinary appliance work where it insures against current leakage. EXECUTIVES

EXECUTIVES resident......Paul J. Kruesi Secretary......H. R. Smartt Sales Manager..Gus E. Richter, Jr. Asst. Sales Mgr....Carl R. Hower Engineer in Charge Frank J. Stevens

Asst. Sales Mgr....Carl R. Hower Engineer in Charge'Fra: BRANCH OFFICES OR REPRESENTATIVES Boston--No. 80 Federal Street, Room 223. Chicago--1112 Merchandise Mart. Cleveland--Newman Stearns Building. Newark--Globe Indemnity Bldg. St. Louis--1623 Locust Street. San Francisco--163 Second Street. Washington--Room 441, Evening Star Building.

ART WIRE & STAMPING CO. 16 Boyden Place, Newark, N. J.

CALLITE PRODUCTS CO. 540 39th Street, Union City, N. J.

PRODUCTS Tungsten and Molybdenum Products in shape of rods, sheet and wire filament; Tugsten and Refractory Contacts; Radio Products, Refractory Carbide Tools and Dies; Lead-in wire, Kulgrid wire, etc.

EXECUTIVES

BRANCH OFFICES OR REPRESENTATIVES Eisler Electric Corp., Newark, N. J. International Wire Co., North Bergen, N. J. EXPORT R. G. McLoid, London, England. International Save Co., Paris, France. Braun & Braun, Vienna, Austria. Gladitz, Berlin, Germany. CLEVELAND WIRE CLOTH & MFG. CO. 3573 E. 78th Street, Cleveland, Ohio. HENRY L. CROWLEY & COMPANY, INC. 1 Central Avenue, West Orange, N. J. PRODUCTS Ceramic Products (Crolite) Radio Tube Parts Spacers for Radio Tubes Cathode Insulators Insulating Materials Tubing, Insulator Heat-proof Materials Coil Forms, Crolite Resistor Tubing Heaters, Tubes for Radio Tube EXECUTIVES Henry L. Crowley......President George Crowley......Sales Manager Robert Crowley....Production Manager DRIVER-HARRIS COMPANY Harrison, New Jersey. Alloy wires FANSTEEL PRODUCTS CO., INC. N. Chicago, Illinois Tantalum-Molybdenum WALTER GILBY ALLOY COMPANY 850 Mt. Prospect Avenue, Newark, N. J. Svea, Nickel, Alloy Wires.

GILBY WIRE COMPANY

150 Riverside Avenue. Newark, N. J.

Bare and Carbonized Nickel Ribbon-Nickel Support Wire-Grid Wire-Filament Wire-Nickel Chromium and Copper Nickel Resistance Wire in rounds or flats. Round wire can be furnished with enamel, silk or cotton insulation.

insulation. President......Wilbur B. Driver Vice-Pres......Robert O. Driver Sales Manager...Sidney A. Wood Advertising Manager...Sidney A. Wood

BRANCH OFFICES OR REPRESENTATIVES 217 N. Desplaines Street, Chicago, Illinois.

EXPORT European Works-Puteaux, France.

GOAT RADIO TUBE PARTS, INC. 314 Dean Street. Brooklyn, N. Y.

PRODUCTS Radio Tube Parts (Stamped and Formed Metal Elements, Plates, Shields, Cups, Caps, Collars, Discs, Clips, etc.). Tube Shields (Form-Fitting Tube-Shields). Metal Stampings, Light Manufacturing and Con-tract Manufacturing, Special Machinery. EXECUTIVES

BRANCH OFFICES OR REPRESENTATIVES Fred Garner, 43 E. Ohio Street, Chicago, Ill.

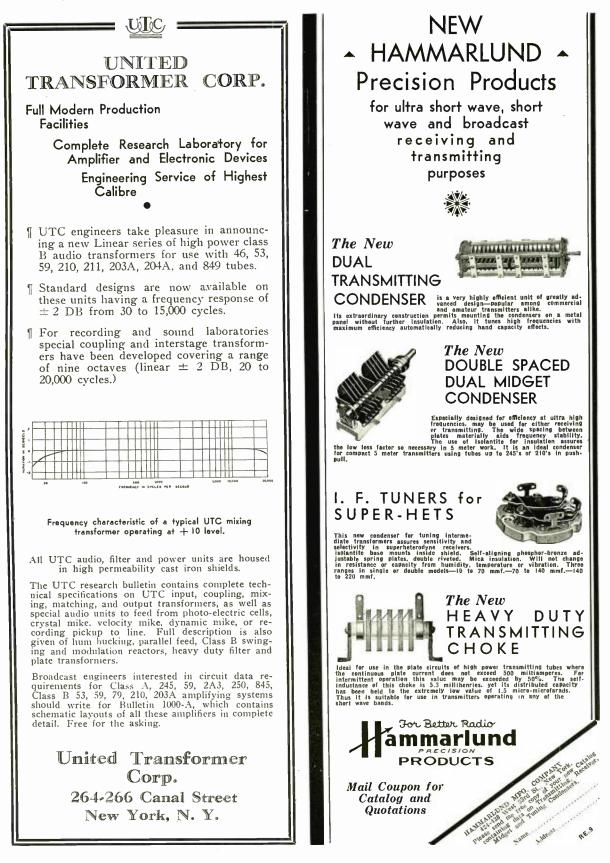
EXPORT J. Alois Karst, 90 West Street, New York, N. Y.

KING LABORATORIES, INC.

237 W. Division Street, Syracuse, N. Y. PRODUCTS

Barex Imbedded Getter for radio tube manufacture.

BRANCH OFFICES OR REPRESENTATIVES
 Mr. Frank Michaelian, 295 Sth Avenue, New York, N. Y.
 EVADOR


EXPORT J. A. Karst, 90 West Street, New York, N. Y. NEWARK WIRE CLOTH COMPANY 351 Verona Avenue, Newark, N. J.

PEQUOT WIRE CLOTH CO., INC. S. Norwalk. Connecticut.

GEORGE W. PRENTISS & COMPANY 439 Dwight Street, Holyoke, Massachusetts PRODUCTS

Wire for Radio Tubes, namely Filament Ribbon, Strip for Plates. Seam-less Tubing, Support Wire, Mesh Wire, etc. Also Alloy Wires of various kinds.

William A. Prentiss.....President W. F. Bachelder......Sales Mgr. George W. Prentiss...General Mgr. Frank A. Harris..Production Mgr.

Tube Parts and Materials, Etc. (Continued)

SCOVILL MANUFACTURING CO. Waterbury, Connecticut. Parts.

STUPAKOFF LABS., INC. 6617 Hamilton Avenue, Pittsburgh, Pa. Insulating Parts.

SUMMERILL TUBING COMPANY

Bridgeport (near Philadelphia), Pa. Established 1899

PRODUCTS The Summerill Tubing Company was organized to produce precision steel tubing, but in a very short time it added other metals such as brass, copper, aluminum, nickel silver, etc. In 1910 the Company moved to its present location and spread out into larger sizes and heavier wall tubing. In 1914 the Company suc-ceeded in obtaining practically the entire hypodermic needle tubing market in this country, and ever since it has dominated that field. Because of their experience in producing very small tubes, the Radio Industry turned to Summerill when Pure Nickel was found to be the most suitable metal in connection with the production of radio tubes. The Company was prepared to produce large quantities, and in 1928 set about taking care of this additional demand upon its facilities. This business grew to such an extent that in 1929, even though its other lines were being produced by the Company at a higher rate than ever before, the radio tube manufacturers, as an industry, took the largest percentage of the Company's total output for that year. In 1930, 31 and 32, the Company refined its processes, so the price of radio tubing today is one-sixth of that which prevailed in 1929. Now, as in 1929, the Radio Industry takes a larger percentage of this Company's output than any other line of business the Company serves. The small tube department is operating three shifts on a 24 hour basis, at the present time. SWEDISH IRCON 2 CITEL COMPANT

SWEDISH IRON & STEEL CORPORATION 17 Battery Place, New York City

PRODUCTS SVEA METAL Ribbon and SVEA METAL. Wire for internal vacuum tube parts such as plates, getter cups, screens, grids, mica strapping, welds, lead-ins, etc.

EXECUTIVES President.....Victor H. Todd Sales Vice-President....Harold C. Todd Chief Sales Manager...John W. Upp, Jr. Chief Engineer.Dr. Paul G. Weiller

BRANCH OFFICES OR REPRESENTATIVES 29 S. La Salle Street, Chicago, III. 66 Rutledge Street, Brooklyn, N. Y. H. F. Darby, Jr., 2019 Rittenhouse Street, Philadelphia, Pa.

EXPORT R. G. McLeod, Ltd., 17 Southampton Street, London, W.C. 1.

Wire—Antenna, Hook Up, Magnet, etc.

ANACONDA WIRE & GABLE CO. 20 N. Wacker Drive, Chicago, Ill.

Wire (Continued) ALPHA WIRE COMPANY 50 Howard Street, N. Y. C.

AMERICAN ENAMELED MAGNET WIRE CO. Port Huron, Michigan,

BENTLEY, HARRIS MANUFACTURING CO. Hcctor & Lime Streets, Conshohocken, Pa. **BELDEN MANUFACTURING COMPANY** 4647 W. Van Buren Street, Chicago, Ill.

CORNISH WIRE COMPANY, INC. 30 Church Street, N. Y. C.

ESSEX WIRE CORPORATION 37 Manchester Avenue, Detroit, Mich.

GENERAL CABLE CORPORATION 420 Lexington Avenue, New York City. HOLYOKE COMPANY 720 Main Street, Holyoke, Mass.

HUDSON WIRE COMPANY Ossining, New York.

PHELPS DODGE COPPER PRODUCTS CORP. (Inca Manufacturing Division) Fort Wayne, Indiana.

JOHN A. ROEBLING SONS CO. Trenton, New Jersey. SPARGO WIRE COMPANY Rome, New York.

Wire—Resistance

DRIVER-HARRIS CO. Harrison, New Jersey. WALTER GILBY ALLOY CO. 850 Mt. Prospect Avenue, Newark, N. J. GILBY WIRE COMPANY (See page 52) 150 Riverside Avenue, Newark, N. J. HOSKINS MANUFACTURING CO. Detroit, Michigan. GEORGE W. PRENTISS AND CO. Holyoke, Mass.

Wire Strippers

THE WIRE STRIPPER COMPANY 1725 Eastham Avenue, E. Cleveland, Ohio. PRODUCTS Wire Strippers, Brush Type Strippers, Knife Type Strippers.

MISCELLANEOUS EQUIPMENT (See Index, Page 36)

Cabinet Ornaments

CROWE NAMEPLATE & MFG. CO. (See page 46) 1749 Grace Street, Chicago, Ill.

SYRACUSE ORNAMENTAL COMPANY Syracuse, N. Y.

PRODUCTS PRODUCTS Radio Control Knobs. Dial Escutcheons, Carved Loud Speaker Grilles. Carvings and Mouldings for Cabinets. BRANCH OFFICES or REPRESENTATIVES Syracuse Ornamental Co., Suite 401, 358 Fifth Avenue, New York City.

EXPORT Syracuse Ornamental Co., 100 Rue de Montreuil, Paris, France.

Ceramics

AMERICAN LAVA CORP. (See page 52) 1411 William Street, Chattanooga, Tenn. HENRY L. CROWLEY & CO., INC. (See page 52) I Central Avenue, W. Orange, N. J. ISOLANTITE CO. OF AMERICA, INC. 75 Varick Street, New York City.

Diaphragms for Speakers

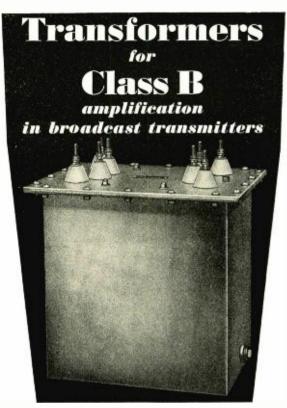
HAWLEY PRODUCTS COMPANY St. Charles. Illinois.

MASLAND MANUFACTURING CORP. Amber & Willard Streets, Philadelphia, Pa. UNITED PRESSED PRODUCTS CO.

407 S. Aberdeen Street, Chicago, Ill.

PRODUCTS Pressed and Moulded Forms and Foundations in Paper-Cloth-Composi-on-Speaker Diaphragms.

EXECUTIVES President.....Frank Raffles


Felt

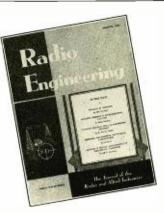
AMERICAN FELT COMPANY 315 4th Avenue, New York City. T. R. BRAWLEY FELT CO., INC. 279 20th Street, Brooklyn, N. Y. FELTERS COMPANY 210 South Street, Boston, Mass. WESTERN FELT WORKS 4115 Ogden Avenue, Chicago, Ill.

Flexible Shafting

CHARLES FISHER SPRING CO. 240 Kent Avenue, Brooklyn, N. Y. THE S. S. WHITE DENTAL MFG. CO. 152 W. 42nd Street, N: Y. C.

Output transformer for use between push-pull, class "B" stage using 204-type tubes and a class "C" amplifier. Operating level + 50d B; primary 1500 / 1500 ohms; secondary 4750 ohms; tested at 15,000 volts; oil insulated.

FOR six months AmerTran engineers have been studying all problems associated with Class B Amplifiers. With this experience as a background a complete line of audio-frequency transform-ers (input and output) has been especially designed for use with tubes suitable for Class B operation.


Large output transformers for use in Class B Amplifiers of broadcast transmitters are of the design illustrated above and have the following features:

- 1. Oil immersed with Isolantite bushings. This per-In minimum sed with isolatific business. This permits insulation testing at a voltage which is considerably in excess of any peak which might be experienced in actual practice.
 Welded aluminum tank provides complete r.f. abidition
- shielding.
- 3. Wire used in primary and secondary windings is of a size which insures low d.c. resistance and ample
- a size which insules low dot. resistance and ample current capacity.
 Primary sections are balanced within 0.5% and the same phase angle exists in each section.
 Core laminations of the best quality high-permeabilities and density and the same density.
- ity alloy are operated at a low density. 6. Coil structure insures low distributed capacity, low capacity coupling, and high inductance coupling. 7. High efficiency insured by excellent regulation, con-
- stant input impedance, and unusually satisfactory frequency characteristics throughout the band of 30 to 10,000 cycles.

Complete information on transformers for use with a specific type of tube will be mailed promptly on request.

AMERICAN TRANSFORMER COMPANY 180 Emmet Street Newark, N. J. The AmerTran line includes transformers of every description for audio amplification and radio transmission.

HE Group Subscription Plan for RADIO ENGINEERING enables a group of engineers or department heads to subscribe at one-half the usual yearly rate.

The regular individual rate is \$2.00 a year. In groups of 4 or more, the subscription rate is \$1.00 a year. (In Canada and foreign countries, \$2.00.)

The engineering departments of hundreds of manufacturers in the radio and allied industries have used this Group Plan for years, in renewing their subscriptions to RADIO ENGI-NEERING.

Each subscriber should print his name and address clearly and state his occupation-whether an executive, engineer, department head, plant superintendent, or foreman, etc.

> **Remember this Group** Plan when Your Subscription Expires

(Radio Engineering) Bryan Davis Publishing Co., Inc. 19 East 47th Street New York, N. Y.

Page 56

Foil

THE JOHNSTON TINFOIL & METAL CO. 6106 S. Broadway, St. Louis, Mo. PRODUCTS Tinfoil, Aluminum Foil. BRANCH OFFICES OR REPRESENTATIVES F. W. Flad, 1224 Halsey Street, Brooklyn, N. Y. O. D. Bramman, 400 W. Madison St., Chicago, Ill.

REYNOLDS METAL CO., INC. 541 W. 25th Street, N. Y. C.

Fuses

LITTELFUSE LABORATORIES

1772 Wilson Avenue, Chicago, Illinois PRODUCTS

Instrument Fuses, Aeroplane Fuses, Radio Fuses, High Voltage Fuses, Fuse Clips, Fuse Mountings and Retainers.

EXECUTIVES

BRANCH OFFICES or REPRESENTATIVES David F. Tobias, 30 Church Street, New York City. Electrical Apparatus Sales Co., 10 High Street. Boston, Massachusetts.

Electrical Apparatus Sales Co., 10 High Street, Boston, Massachusetts. FOREIGN DISTRIBUTORS South America-Ad. Auriema, Inc., 116 Broad Street, New York City. Far East-Frazar & Co., 7 Front Street, San Francisco, California. Sweden-Aktiebolaget ander & Ingestrom. Fredsgatan 4, Stockholm. Central Europe-D. Bercovitz & Sohn, Belziger Str. 61, Berlin-Schoneberg. Venezuela-Compania Bauer, Apartado de Correos No. 476, Caracas. Hawaii-The Hawaiian Elec. Co., Ltd., Honolulu. Holland-A. F. Hulsewe. Ingenieursbureau. Keizersgracht 188,Amsterdam C. Italy-Ing. S. Belotti & C., S. A., Piazza Trento N. 8, Milan. New Zealand-Johns Limited, Chancery Street, Auckland. Norway-Maskin Aktieselskapet Zeta. Drammensveien 26, Oslo. Snain-Sanchez Ramos y Simonetta Apartado 1033, Madrid. Australia-Warhurton Franki. Ltd., 307 Kent Street, Sydney, N. S. W.; Warburton Franki Ltd., 380 Bourke Street, Melbourne, Cl.

Graphite

ACHESON OILDAG COMPANY

Factory-Port Huron, Michigan New York Office-654 Madison Avenue

PRODUCTS

Colloidal-Graphited Oil. Colloidal-Graphited Water. Colloidal-Graphited astor Oil. Graphited Water. Colloidal-Graphited Glycerin. Castor Oil.

EXECUTIVES Vice-President.....G. R. Siegrist Purchasing Agent....L. H. Miller Secretary......F. L. Stark Technical Editor...R. Szymanowitz Chairman of the Board M. M. Acheson President......H. A. Acheson Executive Vice-President J. P. Deringer

BRANCH OFFICES OR REPRESENTATIVES

BRANCH OFFICES OR REPRESENTATIVES Boston-Industrial Products Company, 146 Summer Street. Chicago-Mr. T. P. Hunt, 2420 N. Sawyer Avenue. Cleveland-Mr. George F. Willson, 1372 S. 86th Street. Denvern-Schroth Sales Company, 1622 Broadway. Davenport, Iowa-Hinkelman & Tyler Company, 320 East 4th Street. Milwaukee-Mr. B. T. Reilly. 2020 N. 56th Street. San Diego-E. G. Garrettson. 607 First National Building. Detroit-W. A. Trebein, 143 Griswold Street.

EXPORT E. G. Acheson, Ltd., 40 Wood Street, London, S.W. 1, England.

Laminations and Stampings

THOMAS & SKINNER STEEL PRODUCTS CO. 1100-1120 E. Twenty-Third Street, Indianapolis, Ind.

PRODUCTS Permanent Magnets-Dies-Tools-Metal Stampings

F. R. ZIERICK MFG. WORKS 68 E. 131st Street. New York City.

Lacquers and Varnishes

BAKELITE CORPORATION (See page 42) River Road, Bound Brook, N. J. E. I. DUPONT COMPANY Parlin, N. J.

GENERAL PLASTICS INC. (See page 42) N. Tonawanda, New York.

MAAS & WALDSTEIN CO.

438 Riverside Avenue, Newark, N. J.

PRODUCTS

Speaker Cements for all purposes, such as Paper, Cardboard, Leather, Felt, Metal, Bakelite and Voice Coils. Metal Lacquer, Wood Lacquer, Water Dip Lacquer, Lacquer Enamel, Prasmlac, Thinner.

THE ZAPON COMPANY Stamford, Connecticut.

ZOPHAR MILLS, INC.

587 Court Street, Brooklyn, N. Y. Founded 1846

PRODUCTS Waxes and compounds for condensers, transformers, coils, resistances, lightning arrestors, battery seals, impregnators for cloth and wire, some types of varnishes, etc. The Company also manufactures compounds meet-ing specifications of buyers.

EXECUTIVES

President and Treasurer.....H. J. Blank Vice-President and Secretary.....C. W. Gramm Credit and Accounting.....T. C. Pearlstone Purchasing Dept.....E. C. Zolkoski

BRANCH OFFICES OR REPRESENTATIVES

DIOOKIYII. N. 1	Dianj
New York CityL. M. 1	laye
San Francisco, CalH. A. B.	Snev
Seattle, WashJ. B. Me	rifield
Seattle, WashJ. B. Me Toledo, OhioRalph B.	Clarl
Chicago, Ill	Haz
Technical Laboratory	

Lock Washers

SHAKEPROOF LOCK WASHER COMPANY 2501 North Keeler Avenue, Chicago, Ill.

PRODUCTS Lock Washers, Screws, Nuts, Locking Terminals.

EXECUTIVES Sales Manager.....Jack M. Gribbie Chief Engineer.....Carl G. Olson

BRANCH OFFICES or REPRESENTATIVES
 Shakeproof Lock Washer Co., 2832 E. Grand Boulevard, Detroit, Michigan. Mr. E. McClelland.
 Andrew Carrigan Co., Rialto Building, San Francisco, California.
 E. C. Crowther, 1502 W. Venango Street, Philadelphia, Pennsylvania.
 F. T. Donnelly, Century Building, Pittsburgh, Pennsylvania.
 C. O., Hard, 322 4th Street, Scotia, Schenectady, New York.
 F. C. Mortensen, 1027 West McKinley Street, Milwaukee, Wisconsin.
 Canada III Tools, 121 St. Patrick Street Toronto, Ontario. Canada.
 H. M. Howison, 401 Swetland Building, Cor. 9th and Euclid, Cleveland, Otho.

H. M. HOWISON, 401 SWELLARD SCHULTER, New York City, New York. C. E. Nagel, 41 Park Row, New York City, New York. Chase, Parker & Co. 288 Congress Street, Boston, Massachusetts. Carroll Company, 1323 Wall Street, Dallas, Texas. McVoy & Hausman, Birmingham, Alabama. Duane Ketcham, Box 110, Hamburg, New York. EVDODT

EXPORT Barber & Coleman, Ltd., Marsland Road, Brooklands, Manchester, England. J. Meye & Company, Rotenawaldstrasse 94. Stuttgart, Germany. R. S. Stokvis et fils. 20-22 Rue des petits hotels, Paris. France.

Lugs and Terminals

CINCH MANUFACTURING COMPANY 2339 W. Van Buren Street, Chicago, Ill. CLAROSTAT MANUFACTURING CO. (See page 44) 285 N. 6th Street, Brooklyn, N. Y.

F. R. ZIERICK MANUFACTURING COMPANY 70 E. 131st Street, New York City. PRODUCTS

Production stampings-lugs and terminals-hot tinned for easy soldering.

Metals

Aluminum

ALUMINUM CORP. OF AMERICA New Kensington, Pa.

FAIRMONT ALUMINUM COMPANY Fairmont, W. Virginia. Phosphor Bronze and Nickel Silver

PHOSPHOR BRONZE SMELTING CO. 2200 Washington Avenue, Philadelphia, Pa. RIVERSIDE METAL COMPANY Riverside, New Jersey.

Brass and Copper THE BALTIMORE BRASS COMPANY Wicomico and Ostend Streets, Baltimore, Md. (See page 58)

Mobile Radio

Radio is already standard equipment for some makes of automobiles. It is an essential factor in the development of air transportation.

"Mobile" radio will be an increasingly important portion of the radio field next year.

Automotive radio is now being considered and plans made for new models.

The October issue of Radio Engineering will cover the engineering and commercial phases of Mobile Radio thoroughly.

Advertising Forms Close October 10th.

RADIO ENGINEERING Member Audit Bureau of Circulations

19 East 47th Street

New York City

PETER J. SCWEITZER, INC. Newark Avenue and Virginia Streets, Elizabeth, N. J. FRED C. STRYPE 140 Lafayette Street, N. Y. C.

Paper Tubes

CHICAGO PAPER TUBE COMPANY 137 S. Albany Avenue, Chicago, Ill. CROSS PAPER PRODUCTS COMPANY 2595 Third Avenue, N. Y. C. THE PAPER TUBE COMPANY 1718 Damen Avenue, Chicago, Ill.

Rectifiers, Copper Oxide

LEO TAUSSIG 3245 37th Street, Long Island City, N. Y.

Relays

AUTOMATIC ELECTRIC, INC. W. Van Buren Street, Chicago, Ill. J. H. BUNNELL & CO. 215 Fulton Street. New York City. STRUTHERS-DUNN, INC. 139 Juniper Street, Philadelphia, Pa. WARD, LEONARD ELECTRIC CO. Mt. Vernon, New York. WESTON ELEC. INST. CORP. Frelinghuysen Avenue, Newark, N. J.

Shielding

GOAT RADIO TUBE PARTS, INC. 314 Dean Street, Brooklyn, N. Y. HAMMARLUND MANUFACTURING CO. 424 W. 33rd Street, New York City. SCOVILL MANUFACTURING CO. Waterbury, Connecticut.

Screws

PARKER-KALON CORPORATION Factories and Sales Headquarters, 190-198 Varick Street, New York City PRODUCTS Type Z Hardened Self-Tapping Sheet Metal Screws, Hex Head Hard-ened Self-Tapping Tap Screws, Hardened Metallic Drive Screws, Cold Forged Wing Nuts.

RADIO DIVISION C. S. Trott......Sales Manager EXPORT OFFICE Parker-Kalon Corp., 50 Church Street, New York City.

Solder

KESTER SOLDER COMPANY 4201 Wrightwood Avenue, Chicago, Ill.

Stop Nuts

AMERICAN GAS ACCUMULATOR CO. Newark Avenue, Elizabeth, N. J.

Tape

JOHNSON & JOHNSON New Brunswick, N. J.

Waxes, Cement, Battery Compounds

CANDY & COMPANY, INC. 2515 W. 35th Street, Chicago, Ill. TECHNICAL PRODUCTS COMPANY Pittsburgh, Penna. ZOPHAR MILLS, INC. (See page 56) Court, Lorraine and Creamer Streets, Brooklyn, N. Y.

Metals (Continued)

PRODUCTS Rolled Brass, Copper, Phosphor Bronze, Commercial Bronze, Nickel Silver, and other Non-Ferrous Alloys in thicknesses from .001 up, and in widths from 1/16" to 16". Above materials available hot tinned on both sides.

EXECUTIVES President......J. W. Pilling Vice-Pres.....J. W. Pilling, Jr. Secretary.....G. S. Doherty

BRANCH OFFICES OR REPRESENTATIVES G. F. Hohner, 15 W. 44th Street, New York, N. Y. E. C. Grant, 1411 Webb Avenue, Detroit, Mich. Aluminum & Brass Sales Co., 1675 W. Ögden Ave., Chicago, Ill. Avery Curtis Co., Cleveland, Ohio.

Mica

WILLIAM BRAND & COMPANY

268 Fourth Avenue, New York City. FORD RADIO MICA CO., INC. 830 Fourth Avenue, Brooklyn, N. Y. MICA INSULATOR CO. 200 Varick Street, New York City.

Motors, Motor Generators, Turntables and Record Changers

BALDOR ELECTRIC CO. 4353 Duncan Street, St. Louis, Mo. BODINE ELECTRIC COMPANY 2264 W. Ohio Street, Chicago, Ill.

DIEHL MANUFACTURING COMPANY Elizabethport, New Jersey.

ELECTROMATIC RECORD CHANGER CORP. 2212 S. Paulina Street, Chicago, Ill.

ELECTRIC SPECIALTY CO. 211 South Street, Stamford, Conn.

GENERAL ELECTRIC CO. Schenectady, New York.

THE GENERAL INDUSTRIES COMPANY Elyria, Ohio.

JANETTE MANUFACTURING COMPANY 556 W. Monroe Street, Chicago, Ill.

THE OHIO ELECTRIC MFG. CO. 5900 Maurice Avenue, Cleveland, Ohio.

RCA VICTOR CO., INC. Camden, New Jersey WESTERN ELECTRIC COMPANY 50 Church Street, New York City.

WESTINGHOUSE ELEC. & MFG. CO. E. Pittsburgh, Penna.

Oil Tubing, Saturated Sleeving, Varnished Cloth

WILLIAM BRAND & CO. 268 Fourth Avenue, New York, N. Y.

Turbo Qil Tubing (Varnished Cambric Tubing) Turbo Saturated Sleeving Turbo Varnished Cambric, Paper, Tape, Silk, etc. Mica Condenser Films, Block Mica, Mica Plate Bakelite in Sheet and Fabricated Fibre, Fish Paper, etc.

William Brand......Production Manager William Naurburgh.....Purchasing Agent

BRANCH OFFICES OR REPRESENTATIVES Chicago-Albert Cox-11 S. Desplanes Street Detroit-Nielson Clark Co.-2832 E. Grand Boulevard Hartford, Conn. Eugene Pack-647 Main Street Cleveland-G. A. Morrell-501 Caxton Building Rochester, N. Y.-G. Gislasan-124 Westchester Avenue

Paper for Condensers

C. H. DEXTER & SONS CO., INC. Windsor Locks, Connecticut.

RADIO ENGINEERING

SEPTEMBER, 1933

Page 60

RADIO ENGINEERING

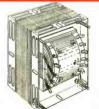
RADIO ENGINEERING

А		F		ĸ	
Acme Elec. & Mfg. Co., The	59 49 6 9	Federal Telegraph Co Filtermatic Mfg. Co	8 47	Racon Elec. Co., Inc	7
American Sales Co American Transformer Corp Auld Company. The. D. L	61 55 61		60	S Scientific Radio Service	
B	62	General Plastics. Inc Gilby Wire Co Goat Radio Tube Parts. Inc	63	Shakeproof Lock Washer Co 45 Summerill Tubing Co 11 Swedish Iron & Steel Corp.,	
Bakelite CorpnBack Cov Bernard, Herman Bliley Piezo-Electric Co		н		Synthane Corp., Inc 35	
Brand & Co., William Brawley Feit Co., T. R., Inc Brush Development Co., The	60	Hammerlund Mfg. Co Hygrade Sylvania Corp., The		Т	
C	90	I I	4.4	Taussig. Leo	
Callite Products Div	59 60	International Resistance Co	41	Thordarson Elec. Mfg. Co 41	
Cardwell Mfg. Co., Allen D Central Radio Laboratories	62 48 10	K Ken Rad Corp., Inc., The,		U	
Continental Carbon. Inc	10 55 39 62	Kenyon Transformer Co., Inc King Laboratories, Inc L		Universal Microphone Co., Ltd., 59 United Pressed Products Co., 63 United Transformer Corp., 53	
D		Lepel High Frequency Lab Littelfuse Laboratories		W	
Daven Company, The Du Mont Labs., Allen B	38 38	· M Morill & Morill Muter Company. The	61 63	Western Electric Co	1
Eastern Coil Company Erie Resistor Corp	60 1	P Parker-Kalon Corp	8	Z Zierlck Mfg. Co., F. R	

RADIO ENGINEERING

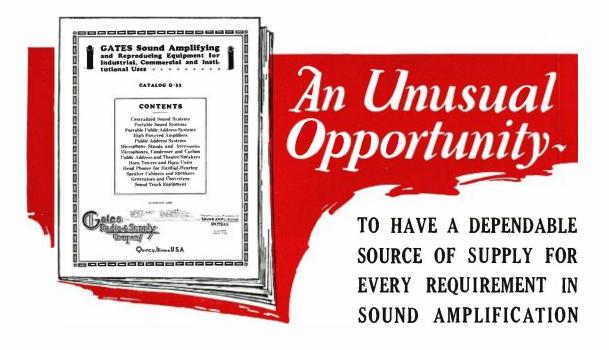
Laboratory Standard Audio Components All Purpose Amplifier Components Universal Replacement Transformers Manufacturers Type Audio Components Power Supply Transformers Automatic Voltage Regulators

EING one of the oldest organizations in the broadcast and communications transformer field, our years of specialized experience have enabled us to develop a superior quality product whose record of reliability is well attested to by exacting users. All parts used in Kenyon products are manufactured at our own plant where every facility for the production of precision material is available. Only raw materials are purchased allowing a constant control of the uniformity of manufacture of the many components used. The electrical and mechanical characteristics of both raw materials and finished units are constantly checked by our completely equipped research laboratory.


Our latest catalog and engineering sheets may be had upon application.

KENYON TRANSFORMER CO., Inc. 122-124 CYPRESS AVENUE New York City

412



Each division in the field of Sound Amplification is completely covered by a specialized GATES CATALOG of valuable data.

CATALOG G-33: Thoroughly covers the field of Public Address, Sound Distribution and Reproduction and is one of the most complete catalogs of quality Sound Amplifying Equipment published to meet every requirement from microphone to speakers.

CATALOG A-10: Is a complete Catalog of Accessories for the Broadcast Engineer, Sound Engineer and builder, for building, replacement and maintenance work. Embodies many necessary items not cataloged by others.

CATALOG B-20: Is intended for Broadcast Stations and Broadcast Engineers. It describes and illustrates the very latest developments for radio broadcast stations in Speech Input and Remote Amplifiers, Volume Indicators, Transcription Units, Microphones and Microphone Mixers, as well as much other valuable data of interest to broadcasters.

To get a complete catalog applying to your particular field of Sound Amplification merely write us on your own letterhead—No obligation.

GATES RADIO & SUPPLY CO.

Manufacturing Engineers

QUINCY, ILLINOIS, U. S. A.

TRIED • TESTED • PROVEN • INDORSED •
 THE WORLD OVER SINCE 1922

KADETTE says...

....A Bakelite Molded case "retains its good looks through all kinds of service"

"IN THE HANDS of thousands of owners the original Kadette has proven the complete desirability of Bakelite Molded where continuous portability is essential. Bakelite Molded will not dent nor is it easily marred. It retains its good looks through all sorts of service." This is the endorsement of the manufacturer of Kadettes, who is again using Bakelite Molded for the case of his new portable model.

The manufacturer of midget receiv-

ers will find that Bakelite Molded has many other advantages too. Any design, whether simple or ornate, may be faithfully reproduced. A variety of effects may be obtained through taking advantage of the different colors of Bakelite Molded which are available. Production economies are secured through the reduction of assembly operations made possible by the use of this material.

Bakelite Molded is the ideal mate-

rial for radio receiver cases and knobs. It is strong, has a rich, hustrous surface, resists moisture, and is unaffected by climatic conditions or changes in temperature. It also possesses high insulation value. To obtain additional information about this material and its possibilities write for illustrated Booklet 13M, "Bakelite Molded".

Don't miss the Bakelite Exhibit when you visit the Century of Progress Exposition.

New model Kadette with Bakelite Molded ease and knobs. Product of International Radio Corp., Ann Arbor, Mick

www-americanradiohistory com