SPECIAL SECTION-USING RF SIGNAL GENERATORS
 Radio-
 E促
 $\$ 1.00 \square$ AUG. 1978
 THE MAGAZINE FOB,NEW IREAS IN EFECTRONICS

COVER STORY

DCITALTERMOME

Add it to your DMM. It reads out in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} \mathrm{F}$ at the flip of a switch and it's a cinch to build. Turn to page 29

DARKROOM TIMER

Digital countdown in seconds or minutes and seconds controls your enlarger. Puts your darkroom into the year 2001. Turn to page 33

VIDEO MODULATORS

Roundup of all that we could locate. Use them to turn any TV into a video monitor. Story starts on page 38

INVESTMENT

A computer program that lets you compare dollars in the bank with your pet investment. Story is on page 32.

PLUS

\star Computer Corner
Priogrammable timer
\star Hobby Corner
Build expanded-scale voltmeter
\star Service Clinic

ETER

 \title{NEW
}
 \title{
NEW
}

ASTioo- Fantom

coes where

 No ce ANTENNA HAS GONE BEFORE!
SUPERIOR

PERFORMANCE FOR AUTO, TRUCK, MARINE, RV, MOTORCYCLES AND

CLEAREST COMMUNICATIONS. Avanti's exclusive space age co-inductive ${ }^{\text {TM }}$ coupling box actually rejects static and interference as it establishes a highly tuned circuit to transmit and receive radio signals through the glass.

FULL 360° SIGNAL. Astro-Fantom's full $1 / 2$ wave design eliminates dead spots and directional problems found in conventional CB antennas.

You're stuck. You're at a phone booth trying to find a phone number, and people are waiting. You feel the pressure.
To the startled eyes of those around you, you pull out your calculator, press a few buttons, and presto-the phone number appears on the display of your calculator. A dream? Atisolutely not.

Space-age technology has produced the Canon Directory-a calculator that stores 20 of your most frequently called numbers in its memory and let's you recall them simply by entering the person's name or initials.
The keyboard has letters as well as numbers (like the touch-tone pad on a telephone), so it's easy to enter data and use. Want to call Jim? You enter J I M, and your display shows Jin's phone number. Even when you shut your unit off, it retains your complete directory in its large memory.

Ever forget to shut your calculator off when you slipped it in your pocket? No problem with the Canon Directory. The system was built like a liquid crystal digital watch. Its display can rernain on constantly without draining the two long-lasting hearing aid batteries which you get with your unit. A low battery indicator also warns you well enough in advance when it's time to change batteries.

STORE IN CONFIDENCE

If you lost your little black book with all those confidential numbers, you might get in trouble. Not so with the Directory. Without knowing the specific initials or name, you can't access the nurnbers.

And then there's convenience. You carry your calculator with you anyway. Why not add the convenience of a telephone directory to a full-function calculator? When it comes to calculating, the Canon is no slouch either.

There's a fully-addressable memory, square root, and an add-on discount percentage system.

EASY TO OPERATE

Just enter the name and number you want stored and press a few buttons. That's all there is to it. Changing an entry is just as easy. You can also store credit card numbers, important serial numbers, bithdays, and anniversaries. For example, enter the next birthday or important date you should remember under "DATE." This date will appear each time you enter the word "DATE." By getting in the habit of doing that each week, the Canon won't let you forget Or have you ever been stuck at a phone booth with no pen to write your messages? With the Canon, you can enter them directly into your unit - name and number.

The Canon Directory is a new breakthrough in recent calculator technology. The largescale integrated circuit is programmable by the user-something nearly impossible just a few short months ago.

TEST IT FOR A MONTH

Order the Directory. Quickly program it with your most frequently called numbers. (You'll be amazed at how many 20 numbers seem when you sort out your personal directory.) Then use it every day. Program those important dates, your social security number, the phone numbers of your favorite restaurants, airlines, or movie theaters. Test the batteries by leaving your unit on for a week.

See how easy it makes life. Then within 30 days, decide if you want to keep it. If not, no problem. Just slip it in its handy mailer and send it back. We won't be upset, and in fact, we'll thank you for at least giving our unique product a test.

JS\&A is America's largest single souce of space-age products-a substantial company which has been in business for over a decade. Canon is the famous company that manufactures quality cameras, calculators, and other precision quality instruments.

If service is ever required, just slip your three-ounce unit in an envelope and mail it to Canon's national service-by-mail center. It's just that easy. Service should never be required since practically all components are on a single integrated circuit, but we wanted to assure you that a service program is an established part of Canon's program. The unit is $23 / 4 " \times 5 \frac{1}{2}$ " and only one centimeter thick.
To order your own Canon Directory, send $\$ 79.95$ plus $\$ 2.50$ for postage and handling to the address below (Illinois residents, please add 5% sales tax), or call our toll-free number below. By return mail you will receive your unit, a handy wallet-style carrying case, and a oneyear limited warranty.

This year, let the sophistication of spaceage technology and your fingers do all the walking. Order your Pocket Yellow Pages at no obligation, today.

Dept.RA One JS\&A Plaza Northbrook, III. 60062 (312) 564-7000 Call TOLL-FREE 800 323-6400 In Illinois Call (312) 498-6900

every electronic hand tool voull ever need

The new, ultra-modern Xcelite manufacturing plant . . . the most advanced in the world for producing top quality forged tools. is now turning them out in record numbers to meet the evergrowing demand for the world's finest family of electronic hand tools. And at no-nonsense, competitive prices.

Employing the latest in manufacturing technology and quality controls, with every step in the oroduction process under one roof, this new, large facility is continuing evidence that Xcelite ... the pioneer that brought you so many innovations in electronic hand tool design . . . is also the front-runner in production innovations.
Whatever your needs for electronic product assembly, service, or maintenance, the Xcelite line, finest and most diverse available anywhere, offers your best answers . . perfectly aligned, hand-honed pliers and cutters, precision-machined screwdrivers and nutdrivers, exclusive thin-pattern adjustable wrenches, plus dozens of related tools and kits you might require.

It was no accident that Xcelite long ago earned . . . and still holds . . "Preferred Status" among electronics professionals. So keep expecting leadershlp from Xcelite . . . and see your distributor for today's most wanted hand tools made by tomorrow's production methods.

Radio-Electronics.

THE MAGAZINE FOR NEW IDEAS IN ELECTRONICS
Electronics publishers since 1908

SPECIAL

 FEATURES38 Video Modulator Roundup
A look at the many different units currently available, their circuitry, their specs, and what we think of them.

47 Using RF Generators
The easy way to troubleshoot stereo systems.

29 Digital Thermometer Add-On For Your DMM
Connect it to your digital multimeter and read temperature in ${ }^{\circ} \mathrm{C}$ or ${ }^{\circ} F$. An extremely accurate yet easy-to build unit.

33 Digital Darkroom Timer
Part II: Final construction and adjustment procedures get this unit ready for your darkroom.

GENERAL ELECTRONICS

3 Looking Ahead
Tomorrow's news today.
56 Reducing TV Interference
Use the right test equipment and it's easy to prevent unwanted interference from $C B$ transceivers.

66 Hobby Corner
Build an inexpensive expanded-scale voltmeter to monitor AC line voltage.

72 State-Of-Solid-State
Temperature transducer and precision voltage reference all in one IC.

STEREO HI-FI

42 R-E Lab Tests Revox FM Tuner
B-760 Stereo tuner earns a "Very Good" for overall FM performance.

44 R-E Lab Tests Shure V15 Type IV
New stereo cartridge rates a "Superb."

COMPUTERS

32 Investment Evaluation Program
Lets you determine if your investment earned more for you than a savings account.

64 Computer Corner
Intel 8253-a programmable interval timer

TELEVISION

24 Equipment Report
American Technology GTS-10 General Television Servicer
74 Jack Darr's Service Clinic
Pulse-width modulated DC power supplies and how to troubleshoot them.

DEPARTMENTS

14
 14

111 Free Information Card

16 Letters
82 Market Center
6 New \& Timely
79 New Products

ON THE COVER

Sitting on a background of video modulators is a digital thermometer add-on for a digital multimeter. It's a highly accurate instrument that reads out in both ${ }^{\circ} \mathrm{C}$ and ${ }^{\circ} \mathrm{F}$ at the flip of a switch. Story starts on page 29.

SIMPLE TEST CIRCUIT is used to set up your new digital darkroom timer. For details on how to build the timer turn to page 33.

NEW PHONO CARTRIDGE plays stereo discs so well that it earns a "Superb" from our test lab. For all the details turn to page 44. Radio-Electronics, Published monthly by Gernsback
Publications, Inc., 200 Park Avenue South, New York, Publications, Inc., 200 Park Avenue South, New York NY 10003. Phone: 212-777-6400. Second-class postage paid at New York, NY and additional mailing offices $\$ 9.98$, Canada, $\$ 12.98$. Other countries, $\$ 14.98$ Single copies $\$ 100$ o 1978 by Gernstack Publications Inc. All copies $\$ 1.00$. © 1978 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.

Subscription Service: Mail all subscription orders changes, correspondence and Postmaster Notices of undelivered copies (Form 3579) to Radio-Electronics Subscription Service, Box 2520, Boulder, CO 80322

A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs it their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

[^0] functioning of reader-built projects based upon or from plans or information published in this magazine.

looking ahead

Calculator evolution: Just a short time ago, it seemed that the pocket calculator market was about to dry up. Prices were tumbling well below $\$ 10$, and it was evident that sooner or later everybody would have one, and that would be it. Well, calculators are doing nicely, thank you. World production this year will be about 70 million units, and the little calculators are being introduced in forms which were unheard-of just a couple of years ago.

It's no longer price, but sophistication, which sells calculators. Of course, not everyone needs a complex scientific calculator, but we are now seeing a marked trend to ultrasophisticated calculators just about anyone can use-even people who have never heard of a logarithm or a cosine. One manifestation of the trend is the slim calculator, about the size of a credit card, with liquid crystal readout-some with a battery life so long that replacement probably won't be needed for the life of the instrument. Another is the calculator combination-such as the combination calculator, pocket watch, stopwatch, perpetual calendar and alarm clock.

The next generation pocket calculator almost certainly will be microprocessor-equipped, with alphanumeric keyboard and display. One of the forerunners of this trend is the Toshiba Electronic Notebook, which contains a CPU and a RAM chip. In addition to traditional calculator functions it has a secret memory-or rather 30 memories that can store information for recall at will. By punching in letters or numbers, or combinations of both, the user can use it to store telephone numbers, addresses, remind him of appointments, and so forth. For example, you might punch in the name of your wife and the readout will display her birthday. Of course, you can do the same thing with a memo pad, but this is electronic, and it's only $\$ 80$.

Obviously, the line between calculators and mini- or microcomputers is blurring rapidly. A far more deluxe gadget than the Electronic Notebook, but performing some of the same functions, is the Mind Reader, developed by a California company called CTI. This $\$ 495$ desktop accessory has an alphanumeric keyboard, electronic alarm and a 12-digit fluorescent display, and can be programmed as a complete office reminder-alerting its owner to the time of a meeting, the subject and so forth.

And while we're on bigger-than-pocket gadgets, the latest in computer chess games is a compact unit named Boris, which can play at all skill levels-and also kibitzes. The digital readout talks back to the player with such words and phrases as "Stalemate," "Is this a trap?" and "Congratulations." It's $\$ 300$

Back to the pocket. Calculators are changing so fast that John McDonald, president of Casio U.S.A., says the life of a calculator model is now only one year before it's replaced by an updated unit. As to the average life of a calculator itself, he estimates it's about four years before it's replaced-not because it wears out but because the user finds something better or more titillating. This suggests that we're becoming a nation of calcoholics.

CATV vs. VCR: "Record one TV program while you watch another." So proclaim the ads for home videocassette recorders, or VCR's. But some VCR buyers are finding out
this isn't always completely true. The fact is that under certain conditions, cable TV subscribers who own VCR's must choose between the ability to record all available channels or to watch one channel while taping another.

This is true when the home cable terminal has a converter box to provide extra channels above and beyond the 12 conventional VHF ones. These channels are the so-called mid-band and super-band channels, usually identified by letters instead of numbers and they often include any paycable channels such as Home Box Office, which present top commercial-free entertainment, including recent mov-ies-obviously prime home taping material.

The problem is that cable TV channels in these cases are selected through a converter box, normally connected between the cable and the TV set. The VCR has its own tuner, of course, which can select only the standard VHF and UHF channels, but not the special lettered channels. If the converter is connected directly to the home cable input and its output to the VCR, the tuner in the converter governs the signal fed to both the VCR and the TV. All the channels may be tuned, but the VCR can record only the same signal which is being fed to the TV. If the setup is changed and the cable fed directly into the VCR, with the converter installed between the VCR and the TV, the VCR can tune only to the numbered channels, while the TV can receive any of the cable channels since it (but not the VCR) is governed by the converter. Thus, if a viewer should wish to record Home Box Office he must use the first setup and can't view another program at the same time. If he wants to watch one show and tape another, he can't tape Home Box Office.

Most VCR suppliers who are aware of the problem, as well as most cable companies, suggest the addition of a second converter, available from the cable company at an additional monthly charge. In many such cases the cable companies insist on doing the installation themselves (at a fee) to assure that their equipment is operating properly. [Perhaps some R-E readers can offer a better-or cheap-er-solution; we'd like to hear from you.]

VCR's to come: It's new-model time, and this applies to VCR's as well as TV sets. In addition to updating its basic Betamax unit with built-in electronic clock-timer and remote pause control (Radio-Electronics, June, 1978), Sony also unveiled the first home portable VCR, which weighs about 17 pounds, can be operated from battery or AC and can be carried by a shoulder strap. As a companion, Sony will have a color camera weighing less than five pounds. They're both due later this year.

Among other coming VCR attractions will be a portable recorder and camera from Panasonic, and a home VCR from JVC which permits still-frame and slow motion as well as letting the user scan the picture during the fast-forward process for accurate location of any scene. And RCA is expected to introduce a VCR with built-in one-week programmer to permit automatic channel-switching and off-on cycling during unattended recording.

DAVID LACHENBRUCH
CONTRIBUTING EDITOR

Here's a new tool repair shops can really use.

ON REPLACEMENT TV PICTURE TUBES.

Aside from your fine work, what are you doing to make your customers return to you with more repairs? A nice smile and "thank you, please call again" may not be enough.

Well, Sylvania has come up with a new tool that's sure to help vou turn every customer into a steady customer. It's a 5-year warranty* that you can now offer on replacement picture tubes.

So now not only can you offer the best in replacement tubes, but also have a 5 -year backing from GTE Sylvania-one of the largest electronics corporations in the world.

For more information on how we can help your repair shop business just contact your nearest Sylvania distributor or GTE Sylvania, Distributor and Special Markets Division, Seneca Falls, N.Y. 13148

new estimely

1977-a banner year for CB applications and sales

The Federal Communications Commission reports receiving almost five million CB radio applications in 1977 (1976 saw more than five million such applications).

John Sodolski, vice president of the Electronics Industries Association and head of EIA's Communications Division, adds that more CB transceivers were sold at retail in 1977 than since 1958. With such a good sales record, Sodolski feels confident that "consumer interest in CB radio is still running high." The use of $C B$ radios in such crises as the blizzards and floods of recent months, he notes, are a clear indication that people are buying CB's for emergency use and for the peace of mind that results from knowing that these devices can be used in emergency situations. It is estimated that at present there are about 30 million CB's in use.

Computer-controlled optical
 scanning machine can read to blind

The New York Public Library has recently installed what has been described as one of the "most valuable rehabilitation aids (for the blind) since the invention of Braille." This device is a machine containing an optical scanner that actually "reads" material via a computer-generated voice.

The scanner began life as a computer science project developed by an M.I.T. student who, later realized its potential as an aid to the blind. What it does is beam a ray of white light across a printed page, and then convert the material into digital data that the computer analyzes and converts into an actual voice reading. The machine reads a selection by consulting 1000 preprogrammed pronunciation rules and exceptions; it recognizes each letter by its shape. There are controls for adjusting voice speed, repeating sentences or phrases, or spelling out words. So far, the only complaint seems to be that the New York Library machine speaks in a foreign accent!

James Gashel of the National Federation of the Blind asserts that "the device would make pleasure reading possible for those whose literary diets had been limited to Braille textbooks" and some recorded material. A blind reader can learn to operate the machine in 20 hours, as opposed to the many months (and even years) involved in learning Braille. The New York Library's machine is one of 15 in existence and the only one installed in a public library.

Electronic bank machines prey to fraud and embezzlement

Along with the convenience and speed of electronic bank transactions (i.e., cash machines) has come a perhaps not-unexpected side effect-criminals and con men

ULTRA-THIN BATTERY FOR WATCHES

AN ULTRA-THIN SILVER-OXIDE BATTERY, developed by Panasonic, is suitable for electronic watches using LCD displays as well as tor any other application requiring a low-protile cell. Called the model WL-5, the battery has a diameter of 0.4555 inch and measures only 0.085 -inch thick. The battery has a nominal output voltage of 1.5 VDC 40 mAH over a temperature range of $-10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$; a long storage capacity; and, because the silver oxide allows for a minimum variation in the internal resistance, the voltage is stable.
(and women) have learned how to manipulate the machine and the system to defraud both the public and the banks. Although some of the reported cases involve mail fraud, the main weakness lies in the machines themselves, which require you to dip a card and use a special code to withdraw, deposit, transfer funds and pay bills.

While most of these transactions are undertaken without incident, almost all the cases of theft involve the misuse of the cash dispenser cards. Bank officials, wary of the adverse publicity and unwilling to advertise the vulnerability of the machines, have tended to soft-pedal the incidents. However, it was estimated that in 1977 the total nationwide loss of both consumer funds and bank assets ran into $\$ 2.5$ million.

Some of the ways criminals have taken advantage of the card system:

- Preventing a customer from completing a transaction by posing as an official, then completing the transaction themselves.
- Intercepting bank cash cards and code numbers sent via the mail.
- In one bizarre case, a customer was mugged outside a cash machine and forced to hand over both card and code. The thieves made off with about $\$ 400$, although the victim's bank balance only contained $\$ 130$!
Banks by and large have tried to make up the losses privately on a case-by case basis. Many have strengthened their security systems and attempted to close system loopholes. The U.S. Congress is presently reviewing legislation that would limit customer liability, require bank receipts from automatic tellers, and make some transactions reversible. And in N.Y. State the Attorney General is trying to stop the unsolicited mailing of cash credit cards.

Top-name computer equipment sold at auction

Some famous names in computer equipment will fall under the auctioneer's gavel this summer. The auction is run by Newman

Computer Exchange, which buys up quantity lots of new and reconditioned equipment from leading manufacturers and sells them via mail-order catalogs. The auctioned items are selected from overstocked merchandise or slow movers.

Minimum bids are established on the equipment (which this year includes some top-rated items such as Commodore's PET). The equipment is sold at the highest bid above the minimum price set, regardless of the loss to the company.

Chuck Newman, vice president of the firm, stressed that only mail bids would be accepted, and individuals appearing in person at the auction cannot outbid the highest mailed-in bid received.

The estimated value of the merchandise to be auctioned this year will exceed $\$ 1,000,000$. Opening date for the bids has been set for July 31. For further information, write Newman Computer Exchange, Dept. R58, Box 8610, Ann Arbor, MI 48107 , or call Chuck Newman (313) 994-3200.

Hickok/Forest Belt Workshops

drawing nets Grand Prize winner

Hickok Electrical Instrument Company and the Forest Belt Training Workshops

GRAND PRIZE WINNER at opening ceremony for Forest Belt's 1978 Training Workshops is William T. Ricks (left). He is shown being presented with a Hickok instrument by Ferest Belt (right). Karen Ruff (center) drew Ricks' name from a list of six finalists.
continued on page 12

We've done the impossible again! A versatile and superior frequenc ${ }^{\text {c }}$ counter kit for only $\$ 89.95$

NRI trains you
on a real digital computer you as assemble as you learn.

Learn computer design, construction, maintenance and programming techniques and pro own programmable digital your puter.

Qualified technicians are urgently needed for care the exciting new field of digital and the best way tronics

We've done tne impossible again! A versatile and superior frequency counter kit for only $\$ 89.95$

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 you get features you once expected to pay several hundreds of dollars for. But you pay only our low, low price of $\$ 89.95$!
Dare to Compare. This frequency counter, using LSI technology, has the performance and input characteristics you demand. Note the specifications: You will see that the frequency range is guaranteed all the way to 100 MHz ; and a high or low input impedance allows you to select for high-frequency operation. And you'll see a sensitivity that holds well over the frequency range; convenient selectable gate-time for best resolution; and selectable attenuation; and even an optional pre-scaler. Note the highly accurate time base, and its excellent ageing and temperature characteristics. And a full 8-digit LED display with floating decimal point, leading zero suppression, and overflow indicator.
You would expect to find all these features together only on a much higher-priced instrument. But Sabtronics' advanced digital technology combines with your own skill - you assemble this kit from our easy-to-follow instructions - to make it possible for you to have this fine frequency counter at a fraction of what you would otherwise expect to pay.

Free 10-day trial

Examine the 8100 Frequency Counter Kit for 10 days. If not completely satisfied, return unassembled for full refund of $\$ 89.95$ purchase price.

13426 Floyd Circle. Dallas, Texas 75243 Telephone 214:7833-0994

Brief Specifications

- Frequency Range: 20 Hz to 100 MHz guaranteed (10 Hz to 120 MHz typical) - Sensitivity: 25 mV RMS, 20 Hz to 70 MHz (20 mV typical); 45 mV RMS, 70 MHz to 120 MHz (30 mV typical) - Selectable Impedance: $1 \mathrm{M} \Omega$ at 25 pF , or $50 \Omega \cdot$ Selectable Attenuation: X1, X10, or X100 - Accuracy: $\pm 1 \mathrm{~Hz}$ plus time-base accuracy - Ageing rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$ - Temperature stability: $\pm 10 \mathrm{ppm}, 0^{\circ}$ to $50^{\circ} \mathrm{C}$ - Selectable Gate-time: $0.1 \mathrm{sec}, 1 \mathrm{sec}$., or 10 sec. - 8-digit LED display with floating D.P., overflow indication - Input: $9-15 \mathrm{VDC}, 350 \mathrm{~mA}$ (550 mA with optional prescaler) - Input protection: 150 V RMS, 20 Hz to $10 \mathrm{kHz} ; 30 \mathrm{~V}$ RMS to 2 MHz ; and 3 V RMS to 100 MHz - Optional prescaler extends frequency range to 650 MHz . (Available soon)

To: Sabtronics International, Inc.

Learn digital computer

> NRI trains you on a real digital computer you actually assemble
> as you learn.

Learn computer design, construction, maintenance and programming techniques on your own programmable digital computer

Qualified technicians are urgently needed for careers in the exciting new field of digital and computer electronics and the best way to learn digital logic and operations is now available to you in NRI's Complete Computer Electronics Course.

This exclusive course trains you at home on your own digital computer! This is no beginner's "logic trainer", but a complete programmable digital computer that contains a memory and is fully automatic. You build it yourself and use it to define and flow-chart a program, code your program, store your program and data in the memory bank. Press the start button and the computer solves your problem and
displays the result instantly
The NRI digital computer is one of 10 kits you receive in the NRI Complete Computer Electronics Course. You build and use your own TVOM, and experiment with NRI's exclusive Electronics Lab. You perform hundreds of experiments, building hundreds of circuits, learning organization, operation, trouble-shooting and programming.

New NRI Memory Expansion Kit

The Model 832 NRI Digital Computer now comes with a new Memory Expansion Kit. Installed and checked out in 45 minutes, it doubles the size of the computer's memory, significantly increasing the scope and depth of your knowledge of digital computers and programming. With the large-scale IC's you get the only home training in machine language programming
experience essential to troubleshooting digital computers.

electronics at home.

NRI offers you five TV/Audio Servicing Courses

NRI can train you at home to service Color TV equipment and audio systems. You can choose from 5 courses, starting with a 48 -lesson basic course, up to a Master Color TV/Audio Course, complete with designed-for-learning 25" diagonal solid state color TV and a 4speaker SQ" Quadraphonic Audio System NRI gives you both TV and Audio servicing for hundreds of dollars less than the two courses as offered by another home study school.
All courses are available with low down payment and convenient monthly payments. All courses
provide professional tools and "Power-On" equipment along with NRI kits engineered for
 training With the Master Course, for instance, you build your own $5^{\prime \prime}$ wide-band triggered sweep solid state oscilloscope, digital color TV pattern generator, CMOS digital frequency counter, and NRI electronics Discov-
 ery Lab.

NRI's Complete Communications Course includes your own 400-channel VHF transceiver

NRI's Complete Communications Course will train you at home for
 one of the thousands of service and maintenance jobs opening in CB; AM and FM trans-
mission and reception; TV broadcasting; microwave, teletype, radar, mobile, aircraft, and marine electronics. The complete program includes 48 lessons, 9 special reference texts, and 10 training kits. Included are: your own "designed-for-learning" 400channel VHF transceiver; electronics Discovery Lab ${ }^{\text {w }}$; CMOS digital frequency counter; and more. You also get your all
important FCC Radio-telephone License, or you get your money back.

CB Specialist Course also available

Servicing with your own CB Transceiver, AC power supply and multimeter. Also included are 8 reference texts and $1 \angle$ coaching units to make it easy to get your Commercial Radiotelephone FCC License.

You pay less for NRI training and you get more for your money.
NRI employs no salesmen, pays no commissions. We pass the savings on to you in reduced tuitions and extras in the way of professional equipment, testing instruments, etc. You can pay more, but you can't get better training.
More than one million students have enrolled with NRI in 62 years.
Mail the insert card and discover for yourself why NRI is the recognized leader in home training. Do it today and get started on that new career. No saiesman will call.

If card is missing write

NRI SCHOOLS
McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue Washington, D.C. 20016

new e timely

recently conducted a final drawing for the Grand Prize offered to six finalists from earlier contests sponsored by the 1977 Workshops. Last year, each Workshop culminated in an Awards Banquet, at which the first drawing was held. The first name drawn had the option of selecting either a prize on the spot, or electing to go for the Grand Prize; the second name drawn would "get what was left."

At the San Antonio Awards Banquet, the second name was that of William T. Ricks, who automatically became a finalist in the Grand Prize contest. This year, at an opening ceremony for the 1978 Forest Belt Workshops, his name was drawn from among the six finalists. The Grand Prize was the Comm-Line CB Service Rack, containing seven test instruments and accessories, which Ricks will find most useful for his modest repair business near Dallas.

Both Hickok and Forest Belt have announced that Hickok test instruments will be awarded during the five Forest Belt Workshops planned for 1978. For details, write: Forest Belt's Training Workshops, Box 68120, indianapolis, IN 46268.

Automotive computer handles 24 different functions

A self-contained 24 -function automotive computer called the Prince On-Board Computer has been developed by the OBC Products Division of Prince Corporation, Holland, MI. The computer is compact, weighs less than 1 pound, is easy to operate and presents no installation problems. It can be connected via a speed transducer and a fuel flow transducer, both supplied with the unit; and it can be mounted on or under the dash or overhead.

Now as to what it can do: An LED display provides information on such vital statistics as miles to destination, vehicle location (at any time), ETA, miles per gallon, cost per mile, time of arrival, fuel need, time of day, etc. In addition, the unit contains an alarm set/audio pulse alarm, five memories with
individual entry and recall and automatic memory scan. All the controls are easy to get at and color-coded.

In sum, the On-Board Computer provides significantly more information to the driver than has been available up until now
and, it is hoped, will provide a safer and more hassle-free drive. The company estimates the cost of the On-Board Computer will be about $\$ 400$ and that it will appear on the market by early 1979.

Inadequate field service can jeopardize future of computer companies

Speaking before the Association of Field Service Managers (AFSM), George Harmon warned that lack of adequate field servicing could cause many new computer companies to go out of business. Harmon, president of AFSM and vice president of the Service Division of Pertec Computer Corporation, emphasized that servicing a dataprocessing system requires the same dedication as that given other office machinery, "but it is almost impossible for a small computer company to position a repairman 20 minutes from each customer - and not go broke."

The problem lies in not being able to control where sales originate. For instance, a first customer can be based in one city (with a service technician placed close by), but then subsequent sales could come from areas far removed from that of the original sale. The manufacturer is then faced with either extensive travel costs and/or the necessity of placing service reps to take care of each new customer. Such costs can result in staggering losses to many young, small companies in the mini and microcomputer field.

One answer to the problem is "third party maintenance" such as that offered by Pertec, in which the computer manufacturer can assign service responsibility to a company having offices in many diverse areas. Another alternative, Harmon went

AUTOMOTIVE COMPUTER provides motorists with a driver controlled information center with 24 functions. At a touch of the button, vehicle location, trip information, time of day and fuel economy data can be displayed on the LED digital display. The unit is expected to retail for $\$ 400$.
on, would be to offer sales to regions that can be serviced within a one-hour traveltime limit. Whatever solution is tried, it is important to keep in mind that with computer companies proliferating almost daily, field service is a "major factor in product costing . . . if a company doesn't have its service operations under control, it faces the distinct possibility of going out of business."

Two new Forest Belt Workshops scheduled for late 1978

Two new Training Workshops have been added to the Forest Belt 1978 CB Service series. The first is a three-day Advanced Video Servicing Workshop, to be conducted twice-one in Indianapolis, September 18-20, and again in Captiva Island FL (at The South Seas Plantation) on November 13-17. The latter workshop session offers two extra days that can be used either for personal consultation or relaxation. The other workshop offered will be in Advanced Communications Servicing, also to be held twice-Indianapolis, September 11-13, and Florida, November 6-10

The Advanced Video Servicing Workshop will deal with video cassette recorders, digital TV tuning, VIR color control, plus new alignment and troubleshooting procedures. The Advanced Communications Servicing Workshop will feature FM two-way radio systems, advanced PLL, SSB, marine radio and more.

Fees for the Indianapolis Workshops, $\$ 495$; for Florida, $\$ 595$. Included in the fees are lodging; breakfast, lunch and coffee breaks; and an Awards Banquet. Spouses are invited to attend on a no-workshop fee basis. Enrollments close August 4 for Indianapolis; September 15 for Florida. Send check or money order to: Forest Belt's Training Workshops, Box 68120, Indianapolis, IN 46268.

New School offers audio electronics workshop for beginners

The New School for Social Research in New York City this past summer provided a workshop for beginning electronics students. The three-hour-per-week, six-session course emphasized basic skills and information needed to assemble kits, purchase components and design and construct audio-digital equipment. Students learned how to solder, prepare PC boards and point-to-point wiring techniques. The course fee was $\$ 75$, and students were asked to bring their own tools.

Steve Ohr, the New School's audio-visual director and course instructor, believes that "providing individuals with a working knowledge of electronics will serve them in many ways long after the course has been completed."

R-E

- Personal Computer Systems now including Floppy Disk Storage
- Power Supplies - Oscilloscopes - Frequency Counters
- VTVM's and VOM's
- Ham Radio Gear - Digital Programmable Color TV - Hi-Fi Components
- Electronic Clocks and Weather Instruments - Self-instruction Electronics Programs
- Auto, Fishing, Marine and Aircraft Accessories - nearly 400 kits in all!

Every Heathkit product comes with a fullyillustrated, step-by-step assembly manual that tells you everything you need to know to make kitbuilding fun and easy. Thousands of people have discovered the satisfaction - and value - of handcrafting electranic equipment You can build it better... let us show you how.

Send for your FREE Catalog today!

OR pick it up at the Heathkit Electronic Center (Units of Schlumberger Products Corperation) nearest you, where Heathkit products are sold, displayed and serviced. Retail prices on some products may be slightly higher. See the white pages of your phone book.

Heath Company, Dept. 020-440, Benton Harbor, Michigan 49022

A Computer In Every HomeFact Or Fantasy

NOT SO LONG AGO, INDUSTRY EXPERTS WERE PREDICTING THAT CALCULATORS AND DIGITAL watches were going to be the next major revolution in consumer electronics. Soon afterwards, when the markets for these items became saturated and sales leveled off, the consumer electronics industry turned its attention to $C B$ radio. With a little bit of help from the Federal Government (40 channels or bust), sales of $C B$ radios nose-dived and a new, more lucrative, product was needed. Out of this search came projection TV, video games, VTR's and home computers.

Although sales predictions for these products vary widely, my concern is with one product that is doomed to failure - the home computer. Keep in mind that there is a definite and distinct line drawn between the hobby and home computer markets. Hobby computers are those systems designed for electronics enthusiasts, those that will take the system home, experiment with it, learn about it and then modify it. Whether the hobbyist intends to use his computer for stock market analysis, personal finances, income tax preparation or just plain game-playing, matters little. The point is that he will be learning about computers, how they work, how to program them and, more important, how the microprocessor works. After gaining the necessary knowledge, he will look towards applying the computer and the microprocessor to solve real everyday problems.

The home computer, however, is directed toward the masses. Here the industry is looking for mass volume sales and is touting the home computer as a home appliance able to solve a host of problems for the homeowner. Who is the industry trying to fool? Does the industry really expect John Q. Public to take the computer home, learn to program it, interface it and use it to solve problems? The same John Q. Public that calls a service technician only to discover that the line cord isn't plugged into the wall outlet? And what sort of problems does the industry expect the home computer to solve? Can anyone name a single application that is more meaningful to the home-owner than a $\$ 1000$ solar energy converter? The silence is deafening. To put the home computer in perspective, it's a solution looking for a problem.

There are those that tout the computer as a central control unit for the home. It could handle such tasks as controlling lights, appliances, lawn sprinkler systems and the like. Total nonsense! Do we need a $\$ 1000$ system for these tasks? We certainly don't need a CRT, a floppy disc and 32K of RAM. Microprocessor IC's are inexpensive. The control tasks can be handled easily with an 8008; an 8080 or Z-80 simply isn't required. Why not put a microprocessor IC in each appliance we wish to control rather than building a single central control unit. This would certainly be more economically desirable.

As far as hobby computers are concerned, the knowledge gained from these systems is worth every penny spent. It is the users of these systems that will find meaningful applications for the microprocessor. Radio-Electronics will, therefore, continue to provide tutorial, applications and construction-oriented hobby computer articles.

How about sending us your opinion on the future of the home computer? What problems around the home do you foresee the microprocessor solving? Get busy designing circuits to solve those problems. For it is you that comprise that segment of the population that comprehends, understands and has the knowhow to accomplish these feats. And it is you, therefore, that is a most vital force within the consumer electronics industry.

ART KLEIMAN
Managing Editor

Radio-Electronics

Hugo Gernsback (1884-1967) founder
M. Harvey Gernsback, editor-in-chief and publisher

Larry Steckler, KTX-3644, CET, editor
Arthur Kleiman, KTZ-3288, managing editor
Robert F. Scott, CET, W2PWG, KXK-8533, technical editor
Sonia Greenbaum, copy editor
Jack Darr, CET service editor
Leonard Feldman
contributing high-fidelity editor
Karl Savon, semiconductor editor
David Lachenbruch, contributing editor
Earl "Doc" Savage, K4SDS, hobby editor
Vincent P. Cicenia, production manager
Harriet I. Matysko, circulation director
Sheila Wertling, circulation assistant
Arline R. Bailey, advertising coordinator
Cover design by Louis G. Rubsamen
Cover photo by Mike Wilson
Radio Electronics is a member of the Institute of High Fidelity and is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.

Gernsback Publications, Inc.
200 Park Ave. S., New York, NY 10003
(212) 777-6400

President: M. Harvey Gernsback
Vice President: Larry Steckler
Treasurer: Carol A. Gernsback
Secretary: Bertina Baer

ADVERTISING SALES

Paul McGinnis
Director of Marketing

EAST

Stanley Levitan
Radio-Electronics
200 Park Ave. South
New †ork, NY 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph Bergen
The Ralph Bergen Co.
540 Frontage Road-Suite 361-A
Northfield, Illinois 60093
(312) 446-1444

PACIFIC COAST
Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8732 Sunset Blvd., 4th Floor,
Los Angeles, CA 90069
(213) 659-3810

Sales Mart Building
1485 Bayshore Blvd., Box 140
San Francisco, CA 94124
(415) 467-0125

SOUTHEAST

J.E. Publishers Representative Co., 214-387-2424

NTS trains you on tomorrow's equipment.Today. Microcomputers, digital systems and more... from the first name in home study.

Now NTS training programs include an even wider choice of solid-state digital equipment than ever before offered in any electronic home study course. Advanced NTS/Heath digital color TV ($25^{\prime \prime}$ diagonal with optional programming capability), NTS/Heath digital computer, digital test equipment, digital stereo receiver (70 watts per channel) plus much more state-of-the-art equipment to make your training exciting and relevant. Learn servicing and maintenance easily with step-by-step Project Method lessons and kits.
An all-new full color catalog shows you exactly what each of the fourteen courses cover, and every piece of equipment you receive.
Send for it today and see for yourself what's really happening in electronics training technology at NTS. It's free. Just send the coupon.

NO OBLIGATION. NO SALESMAN WILL CALL. AFPROVED FOR VETERAN TRAINING.

TECHNICAL-TRADE TRAINING SINCE 1905 Resident and Home-Study Schools 4000 South Figueroa St., Los Angeles, Calif. 90037

TV AUDIO-TO-STEREO ADAPTER

With reference to Robert E. Thomas II's letter in the January 1978 issue regarding his attempts to feed TV audio into his hi-fi system, I have been conducting numerous experiments of this type for many years, and have made several observations:

1. If you wish to feed the audio from your TV into the input of your mono or stereo amplifier or receiver, be sure both sets have power supplies that are fully trans-former-isolated. Many portable and lowpriced sets do not, and have their chassis connected directly to one side of the AC line and are dangerous to connect into. To find out, check your set's schematic.
2. If your TV set is a tube type, it probably has a high-output, high-impedance quadrature detector. If so, a cathode follower must be installed in the set, close to the sound detector tube or the volume control. A suitable circuit is shown in the diagram. This cathode follower can be built in a minibox, and takes its heater and $\mathrm{B}+$ voltage from the TV set.
3. If the set is solld-state, its detector is of a lower impedance and can be tapped
directly. However, use low-capacitance shielded cable and keep it as short as possible. Include a $1.0 \mu \mathrm{~F}, 100$-volt capacitor in the hot side of this lead (at the TV end) to prevent unwanted DC voltages from
control and must be traced with a scope. Again, check the set schematic.
4. Even if the set has no power transformer, you can still disconnect the small speaker in the set and bring leads out to a

being coupled. As with tube sets, the volume control immediately follows the sound detector in most cases. This, in turn, varies the gain of an amplifier stage. If so, audio does not appear on the volume
better speaker. Be sure that the impedance of the new speaker matches the original and insulate all connections, since they may be hot. Select an efficient speaker continued on page 22

YOU CAN OWN A VERSATILE 6800 COMPUTER SYSTEM

 FOR AS LITTLE AS \$799.5ロ!MP-68/1 Computer Kit . $\$ 395.00$
CT-64 Terminal Kit (less monitor) $\$ 325.00$
AC-30 Cassette Interface Kit. \$ 79.50

You can add a 40 -column printer and a professional quality data terminal monitor for only $\$ 460.00$
PR-40 Printer Kit
$\$ 250.00$
MP-L Interface Kit \$ 35.00
CT-VM Data Terminal Monitor \$175.00

You can expand to a full-scale personal computer system with dual disk drives for only $\$ 1,445.00$
MF-68 Dual Disk System Kit. $\$ 995.00$
MP-16 16K Memory (assembled). $\$ 450.00$
.. . OR buy the complete system at our special low price of $\$ 2,595.00$
YOU GET: A 20 K byte computer

- A true "stand alone" data terminal and monitor
- A 40-column dot matrix printer
- A dual drive 200 K byte disk system
- Disk BASIC with file handling

These are the same proven, reliable components used in our industrial and business systems. Why settle for the limitations of a so-called "personal computer" or hobby system?

Yon gottat. shopailotind.

When you do, yon'11 probably pick CIE. Yon can't afiord to set tic for less when it comes to something like electronics training that conld affect yonr whole life.

When you shop around for tires, you look for a bargain. After all, if it's the same brand, better price - why not save money?

Education's different.
There's no such thing as "same brand." No two schools are alike. And, once you've made your choice, the training you get stays with you for the rest of your life.

So, shop around for your training. Not for the bargain. For the best. Thorough, professional training to help give you pride and confidence.

If you * * graduates res, chances are you'd find a lot of them shopped around for the ir training. They pretty much knew what was available. And they picked CIE as number one.

Why you should shop around yourself.

We hope you'll shop around. Because, frankly, CIE isn't for everyone.

There are other options for the hobbyist. If you're the ambitious type - with serious career goals in electronics take a close look at what we've planned for you at CIE.

What you should look for first.

Part of what makes electronics so interesting is it's based on scientific discoveries - on ideas! So the first thing to look for is a program that starts with ideas and builds on them!

That's what happens with CIE's Auto-Programmed ${ }^{\text {® }}$ Lessons. Each lesson takes one or two principles and helps you master them-before you start using them!

How practical is the training?

This is the next big important question. After all, your career will be built on what you can do - and on how well you do it.

Here are ways some of CIE's troubleshooting programs help you get your "hands-on" training...

With CIE's Experimental Electronies Laboratory..
you learn and review the basics perform dozens of experiments. Plus, you use a $3-\mathrm{in}-1$ precision Multimeter to learn testing, checking, analyzing!

When you build your own 5 MHz TriggeredSweep, Solid-State Oscilloscope you take your first real professional step. You use it as a doctor uses an X-ray machine - to "read" waveform patterns... lock them in ... study, understand and interpret them!

When you get your Zenith 19-inch Diagonal Solid-State Color TV you
simply this:
All this training takes effort. But you'll enjoy it. And it's a real plus for a troubleshooting career!

Do you prepare for your FCC License?

Avoid regrets later. Check this out before you enroll in any program.

For some troubleshooting jobs, you must have your FCC License. For others, employers often consider it a mark in your favor. Either way, it's govern-ment-certified proof of specific knowledge and skills!

More than half of CIE's courses prepare you for the government-administered FCC License exam. In continuing surveys, nearly 4 out of 5 CIE graduates who take the exam get their Licenses!

Shop around...but send for CIE's free school catalog first:

Mail the card. If it's gone, cut out and mail the coupon. If you prefer to write, mention the name and date of this magazine. We'll send you a copy of CIE's FREE school catalogplus a complete package of independent home study information! For your convenience, we'll try to have a representative contact you to answer your questions. Mail the card or couponor write: CIE, 1776 East 17th St., Cleveland,
OH 44114.
apply your new skills to some real on-the-job-type troubleshooting! You learn to trace signal flow. . . locate malfunctions . . . restore perfect operating standards-just as with any sophisticated electronics equipment!

you work with a completely Solid-State Color Bar Generatoractually a TV signal transmitter-you study up to ten different patterns on your TV screen. . . explore digital logic circuits ... observe the action of a crystal-con. trolled oscillator! Of course, CIE offers a more advanced traintng program, too. But the main point is

Learn Electronics along with MATHEMATICS

The Grantham Electronics -With Mathematics SERIES - in five volumes, written in home-study-cou. style - now available by mail order...
\square Introductory Electricity With Mathematics. Size, $7 \times 101 / 2.288$ p ... \$12.75
\square Fundamental Properties of AC Circuits. Size, $7 \times 10 \frac{1}{2}$. 267 pages $\$ 12.75$
\square Mathematics for Basic Circuit Analysis. Size, $7 \times 101 / 2.352$ pages . . $\$ 12.75$Basic Electronic Devices and Circuits. Size, $7 \times 101 / 2.431$ pages $\$ 14.75$
\square Antennas, Transmission Lines, \& Microwaves. Size, $7 \times 10 \frac{1}{2}$. 315 pages $\$ 12.75$ The books listed above were written by Donald J. Grantham, whose 25 years of teaching-in print and in the classroom-enable him to anticipate questions in these subjects and thus answer them in these books: 16 lessons and 16 multiple-choice tests in each book (except for the last one, which has ten lessons and ten tests); many circuit diagrams with detailed explanations; many sample problems with step-by-step solutions; many practice problems with answers given; easy-to-understand language; in-depth explanations. Order from GSE Book Company - at address below.

Prepare for Your

 F.C.C. LICENSE\square Grantham's FCC License Study Guide. Size, $7 \times 101 / 2.377$ pages $\$ 12.75$ This not a Q \& A book, not a correspondence course, but simply an authoritative down-to-earth presentation of what you should know to pass FCC license exams for 3 rd , 2nd, and 1st class radiotelephone licenses. Four information sections. 1465 FCC-type multiple-choice questions, with more than 65,000 words "explaining" the correct answers. Self-study presentation. Order from GSE -address at bottom of page.

OTHER GSE BOOKS

\square Improve Your Technical Communication (How to write technical reports, manuals, proposals, articles, etc.). Size, $7 \times 101 / 2.216$ pages $\$ 4.95$Geometry for Science and Technology. Size, $7 \times 101 / 2.141$ pages $\$ 5.95$
\square Modern Electronic Calculations.
Size, $7 \times 101 / 2.207$ pages
. $\$ 6.95$Answers in the Mail (The author, a correspondence instructor in electronics, physics, and math, gives examples of questions written in by students, along with his detailed replies.) Size, 6×9.217 pages \qquad $\$ 4.95$

TO ORDER any of the books listed above, check off the ones you want, compute the total price, add only 750 (regardless of the number of books you are ordering) for postage and handling, and mail this ad with your name and address and payment (no C.O.D.s) to:
P.O.Box 25992, Los Angeles, CA 90025

LETTERS
continued from page 16
since you will have only one or two watts to work with.
5. Don't expect concert-hall sound from TV programs. Most TV stations compress the audio rather tightly, and the frequency response is about 100 Hz to 5 kHz , mainly due to the narrowband telephone lines used by the networks in their audio links. You will, nonetheless, overcome the worst villain in TV sound reception-the obnoxious resonances and distortion characteristics of the small speakers used in most sets.
MICHAEL KILEY
Palos Heights, IL

DIGITAL CLOCKS

I enjoyed the article 'Unusual Electronic Clocks" (April, 1978, page 40) since I have constructed many digital clock kits from past articles.

The electronic designs are unique, but the designers do not seem to understand the geometry of a mechanical clock's pendulum. The centers of the pendulum radii are too low to make it a realistic "swing." Mechanical pendulum centers are around the " 12 o'clock" position. The Bullet clock is the worst offender.
There is also a serious problem in the mechanism of the face of the Amelect Grandfather Clock. The hours only advance when the minutes reach 60 , so that when the minutes are at say 55 , you do not know what hour it is five minutes before.

A fine selection of small tools, measuring instruments, hard-to-find items for shop, home and lab. Convenient one-stop shopping for technicians, engineers, craftsmen, hobbyists. Major credit cards accepted, satisfaction assured. Get your NATCAM catalog today.

[^1]CIRCLE 14 ON FREE INFORMATION CARD

The hours should progress $1 / 60$ th for every 12 minutes, just as a mechanical clock does.
HAROLD CORNELL
Blg Flats, NY
Regarding your comments about the physical appearance of the electronic pendulums of the Amelect, Bullet and Solid State Time clocks, I can only assume that, similar to myself and others, the designers of these electronic simulations were not aware of the normal mechanical parameters associated with pendulum geometry.

As for the Amelect clock not having more hourly positions, this was certainly a reasonable design compromise to reduce the components count (your suggestion would require 48 more LED's) and design complexity (extra counting circuitry would be needed). If you simply read hours, minutes and seconds in that sequence, there's no ambiguity.
FRED BLECHMAN

COMPUTER CORNER ERROR

The Computer Corner column in the February 1978 issue uses an erroneous example for the relative addressing mode. The machine instruction given $\left(30 E E_{16}\right)$ will jump to address $9 \mathrm{FO}_{16}$, since $E E_{16}$ equates to a displacement of -18_{10}. To jump from address 1002_{16} to $10 \mathrm{FO}{ }_{16}$ would require a displacement of 238_{10}, which is outside the range of this addressing mode
ROGER J. HENN
Offutt AFB, NE
As the text preceding the example indicates, a displacement of 238_{10} is outside the range of the relative jump. Mr. Henn is correct in stating that the example is wrong. The example should have read:

$$
\begin{array}{ccc}
J R \text { NC, } 1080 H & 00110000 & 01111110 \\
\text { byte } 1 & \text { byte } 2
\end{array}
$$

$J R$ instruction is at location 1000_{16}. A jump is executed if carry flag $=0$. The jump address is 1002 ${ }_{16}$ (program counter contents) $+7 E_{16}$ or 1086_{16}.

However, Mr. Henn's correction is in itself wrong. The machine instruction 30EE will jump to FFO_{16} rather than $9 F 0_{16}$. Score two more victims (Mr. Henn and me) for the rigors of hand-assembling instructions. A microcomputer would never have made the error.
WILLIAM BARDEN

REAL ENERGY CRISIS

In the editorial in the April issue of RadioElectronics, you say that you would like to have intensive work carried out to raise the efficiency of photovoltaic cells to 50%.
It may surprise you, as indeed it surprised me, to learn that it is physically impossible even to reach 30%.

You will agree that the theoretical maxImum efficiency of an internal combustion engine is a figure quite a bit lower than 100% and that there is just no way to exceed this.

I would suggest that while work on alternative forms of energy proceeds, the waste of petroleum should be slowed down.
G. W. SMILES

Ontario, Canada
R-E

Radio Shack：No． 1 Parts Place Low Prices and New Items Everyday！

Top－quality devices，fully functional，carefully inspected．Guaranteed to meet all specifications，both electrically and mechanically．All are made by well－known American manufacturers，and all have to pass manufacturer＇s quality control procedures．These are not rejects，not fallouls，not seconds．In fact，there are none better on the market！Always count on Radio Shack for the finest quality electronic parts！

Linear ICs

By National Semiconductor and Motorola－first quality

Type	Cat．No．	ONLY
301 CN	276－017	49 E
324 N	276－1711	1.49
339 N	276－1712	1.49
386 CN	276－1731	995
555 CN	276.1723	79 F
556 CN	276－1728	1.39
566 CN	276－1724	1.69
567 CN	276－1721	1.99
723 CN	276－1740	69 f
741 CN	276－007	49 E
741 H	276－010	498
3900 N	276－1713	998
3909 N	276－1705	994
3911 N	276－1706	1.99
4558 CN	276－038	79%
75491	276－1701	998
75492	276－1702	994
7805	276．1770	1.29
7812	276－1771	1.29
7815	276－1772	1.29

Computer Chip

8 －Bit Data Bus，
16－Bit Address Bus
8080A Microprocessor． 100% prime CPU handies up to 65 K bytes memory
$276-2510$ ．Reg． $17.95 \ldots . .$. Sale 12.95
RAM Memory IC

Under 450 nS Access Time

2102 1K Static RAM．Low power ver sion．16－pin DIP．Buy 8 and save 276－2501 ．．．．．．．．．．．．2．49 Ea．or 8／14．95

CMOS Logic ICs

Full－Spec Devices Direct from
Motorola and
National Semiconductor

Type	Cat．No．	ONLY
7400	276－1801	356
7402	276－1811	395
7404	276－1902	$35 ¢$
7406	276－1821	495
7410 7413	276－1807 $\mathbf{2 7 6 - 1 8 1 5}$	${ }_{796}$
7420	276－1809	39 e
7427	276－1823	49 c
7432	276－1824	495
7441	276－1804	996
7447	276－1805	996
7448	276－1816	996
7451	276－1825	396
7473	276－1803	496
7474	276－1818	496
${ }_{7475}$	${ }^{2766-1806}$	$79 ¢$
7476 7485	－ 276 －1826	59% 1.19
7486	276－1827	496
7490	276－1808	794
7492	276－1819	695
74123	276－1817	996
74145	276－1828	1.19
74150	276－1829	1.39
74154	276－1834	1.29
74192	276－1831	1.19
74193	276－1820	1.19
74194	${ }^{276-1832}$	1.19
74196	276－1833	1.29
4001	276－2401	49 C
4011	276－2411	496
4013	276－2413	896
4017		1.49
${ }_{4020}$	－276－2420	1．49
4049	－2702427	699
4050	${ }_{276-2450}$	${ }_{69}$
4511	276－2447	1.69
4518	276－2490	1.49

Update Your Semiconductor Library Now！

REGULARLY \＄1．95．Archer Semiconductor Reference and Application Handbook．Com－ plete specs and application data on every Archer semiconductor－display devices，too！ 46,000 cross－reference／substitution listings plus glossary of words，symbols，abbreviations． 276－4002 ．．．With Any \＄5 Parts Purchase，Only 99 ¢ Ofter good at participaling Radio Shack stores and dealers

© Slope Front．Sloping top panel－ideal for lab projects． $13 / 8$ to $2^{3 / 4} \times 77 / 8 \times 57 / \mathrm{g}^{\prime \prime} .270-265$
［回［a Project Cabinet． 20 ga ．steel cover with 16 ga ．aluminum chassis．
$2^{7 / 1144^{9} / 1 \times 6^{5} / \mathrm{s}^{\prime \prime} .270-268}$
5.99
7.99

		rimaries Solder		POW to Op sy Wiri	ted fro or PC		ers Hz ng	Solar Cell
Volts	Current	Cat．No．	Each	Volts	Current	Cat．No．	Each	21／4＂Round Silicon
6.3	1.2 A	273－050	2.49	6．3 CT	3 A	273－1510	3.99	
6.3	300 mA	273－1384	1.99	12.6 CT	3 A	273－1511	4.69	Device
12	300 mA	273－1385	1.99	25．2 CT	2 A	273－1512	4.99	
24	300 mA	273 －1386	2.49	12 －	5 A	273－1513	8.95	
24	1.2 A	273－1480	2.99	18 CT＊	4A	273－1514	8.95	
12.6 CT	1．2A	273－1505	2.89					mately 0.5 volt at 400 mA ．For higher
－Ideal for 5V（using CT）or 12V solid－state regulators								in series or parallel．276－121 ．．．5．99

Archer ${ }^{\circledast}$ Project－Boards－Ready to Build All include Finishod Circuit Board，

5V．3－Amp Power Supply．Metered output cur－ rent，foldback limiting．Remote sensing．For all 5 V TTL projects． 277－119（PCB less parts，case）$\quad 7.95$

Time Base Generator．Built－in 10 MHz xtal or ext input．Decade selector，switch．TLL output．Re－ input．Decade selector，switch．TIL output．Re－
quires $5 V D C$ Reg $\$ 599$ 277－115．（PCB less parts，case）．．．．Sale 3.99 Shown Buitt with Recommended Parts and Cases

2－Watt IC Stereo Amp．Uses LM377 IC for 2 watts RMS／channel into 8 ohms．Dual volume controls． headphone jack，phono／tape inputs．Output current limiting，thermal protection．Reg．\＄5．99． 277－118．（PCB less parts，case）．．．．Sale 3.99
\qquad

Epoxy－Glass High－Brightness
 Plug－In

Neon Panel Lamp

For 22－pin connectors． $41 / 2 \times 4^{\prime \prime}$ $1 / 10^{\prime \prime}$ grid 3 styles available． Standard．276－155 ．．．．．． 4.99 $\begin{array}{ll}\text { Digital．276－156 } & 4.99 \\ \text { Op－Amp．276－157 } & 4.99\end{array}$ 22－Pin Connector． 276－1551．
4.99

High－intensity rectangula lamp assembly can be seen across the room Mounts
$9 / 16^{\prime \prime}$ dia hole．For 120VAC．
$\mathbf{2 7 2 - 7 0 6} \ldots . ~$

Extra Length Test Clips

Ideal clips for precision test－ ng of components on PC boards or chassis． 3 each．
$\mathbf{2 7 0 - 3 5 2} \ldots$. Pkg．ofif $\mathbf{2 , 1 . 5 9}$

WHY WAIT FOR MAIL ORDER DELIVERY？

 IN STOCK NOW AT OUR STORE NEAR YOU！
equipment report

American Technology Corp. Model GTS-10 General Television Servicer

CIRCLE 101 ON FREE INFORMATION CARD

about two years ago, the americañ technology Corporation (225 Main Street, Canon City, CO 81212) developed a color-bar generator, the model ATC-10, that they called a TV Servicing System. Now, we have the second generation, model GTS-10. It looks similar to
the earlier model at first glance, but there are significant differences. ATC has used the feedback received from TV technicians all over the country to make some changes. All the most useful functions of the earlier model ATC-10 have been retained, some of the less-useful ones have been deleted and others have been added.

The model GTS-10 still provides three col-or-bar patterns: The standard; the Vector (a color-bar pattern without the brightness component to create sharper "petals"; and the invaluable 3.58 Monitor. The latter pattern creates color bars with the burst gated-out so that the color oscillator can be checked without your having to add any jumpers, etc., to the set. The pure red raster is still there (for fast purity checks), and blue and green rasters have been added.

Another new feature is the Color Trio: The top half of the screen shows a saturated red, the lower left blue and the right green. All colors are fully saturated for checking the TV set's automatic color control, etc. This feature can also display a handy three-leaf vector pattern. For quick gray-scale adjustment, the Gray Quad pattern is divided into four seg-
ments-white, light gray, dark gray and black. This can be used to instantly check the video response, especially for low frequencies.

For convergence, the model GTS-10 provides a special pattern called Hatchdots. This is a standard crosshatch, with dots in the squares around the outside of the pattern, and one center dot. If you prefer using dots only, they can be produced by using the next switch position. The center dot is marked by omission of the dots above and below it. And I almost forgot to mention that the sixth bar of all color-bar patterns is also marked by gating out a portion in the center. This gives positive identification of the blue bar for tint-control tests, etc.

All three input signals needed for TV servicing are present: RF, IF and video. The RF/IF control is the attenuator for both of these. To obtain an RF signal, push the gain-control knob in; for an IF signal, pull the knob out. Both RF and IF signals come out at the BNC jack just below and through the same output cable. Baluns are provided for the RF output so that any TV input can be matched. A pair of clips on the IF adapter lets you connect to the
continued on page 27
 Its allon The Cards
... and the deck is stacked in your favor. VERO, known throughout the industry for quality, is now offering a wide selection of electronic components for the serious hobbyist or home builder. These fine products have all passed the demanding requirements of one of the most demanding industries in the country - the electronics industry.
From basic breadboards to exciting enclosures, VERO products offer you proven capability and reliability and an affordable price. So, next time you are in the mood to build something

great, insist on the finest component parts - insist on VERO.
If your dealer does not stock VERO, drop us a line and we will send him all the necessary information required to get him started. You'll be doing him a favor if you do!

171 Bridge Road, Hauppauge, N.Y. 11787 (516) 234-0400

TWX: 510-227-8890

Fed up trying to find the right semiconductors? Look to the Mallory PTC line to help you out.

$\smile_{\text {our Mallory distributer rés a complete up-to- }}$ date line of quality PTC: semicon ductors keyed to y zur needs

He also has the Malliory comp ete semicon-duc:-r \subseteq cuide and cross reference to take the guesswork out of buyinc.

Comoonents for the atest TV, stereo $\mathrm{Hi}-\mathrm{Fi}$, $C B$ adio and many NRJ applica-ions are evailable now in conveniənt poly-bag pack-
ages. Contents are clearly marked, so you car't go wrong.

See your Mallory distributor for the conveniense and economy of simplified one-sounce busing or contact us for more information. Ma lory Capacitor/Distributor Praducts Conpary, a division of P. R. Mallory \& Co. Inc., Bo: 1284, Ir dianapolis, Indiana 46206. (317) 85€-3731.

MALIORY

For a limited time only WESTON offers this handsome carrying case...FREE...with any Model 6000 DMM you buy.

That's right! With any Weston Model 6000 DMM you buy between May 1 and August 31, you will get . . . absolutely FREE . . . this handsome, sturdy carrying case. Leather grained for a look of elegance, the expanded vinyl is rugged and easy to keep clean. The pouch style makes it simple to remove or replace the meter. The case, worth more than $\$ 15$, comes with a handle for easy carrying, and a snap-loop for hanging from a belt.

The Model 6000 is the renowned "Drop-Proofed" digital multimeter with standard built-in autoranging for its five measurement functions over 26 broad ranges. All ranges, including resistance, are provided with complete overload protection and automatic zero calibration.

The Model 6000 comes with a "Hold" feature to This allows measurements to be made in crowded circuitry or high voltage areas with greater safety. The meter is housed in a high impact molded plastic case to isolate inputs and to provide greater ruggedness and durability. The inside of the 6000 is coated with a conductive paint to shield the circuits
from industrial radio frequency interference noise and insure more accurate readings. A sturdy, patented plastic handle makes the meter easy to carry, acts as a tilt stand during bench operation, and folds down to protect the display face during storage.

The Model 6000 also has two new optional features . . a manual range hold button to override autoranging, and a display backlight button for reading the meter in very low illumination areas.

You get all of these features in the Weston Model 6000 DMM . . . and you also get, absolutely FREE, a handsome, sturdy carrying case for extra protection. Be sure to get in on this FREE, limited-time offer. Call your nearest Weston sales affice now!

SANGAMO WESTON

Schlumberger

WESTON INSTRUMENTS a DIVISION OF SANGAMO WESTON, INC
614 Frelinghuysen Avenue, Newark, Neiv Jersey 07114 Tel. (201) 242-2600 Canada: 1480 Dundas Highway, Mississauga, Ontario (416) 277-3191 Europt:: Ingolstadter Str. 67a 8München 46, W. Germany (49-89) 31-70-31

WESTON FREE Case Offer

Contact Your Nearest Distributor

alabama Brownell Electro Mobile (205) 765-2222	minnesota Cramer/Bonn Edina (612) 835.7811
Cramer/Alabama Huntsville (205) 539-5722	Instrumentation Services, inc. Minneapoils (612) $544 \cdot 8916$
Forbes Decatur (205) 353-4762	MISSOUAI Inóustrial Service Labs St. Louis (314) 535-5760
ARIZONA Cramer/Arizona	Olive Electronics
Phoenix (602) 263-1112	St. Louls
CALIFORHIA Acro San Diego (714) 282.8115	MONTANA Flamand Electronics Supply Belgrade (406) 388-6606
Cramer/Los Angeles Irvine (714) 979-3000	NEW JERSEY Browneli Electro, Inc
Cramer/San Diego San Diego (714) 565-1881	South Plainfield (201) 753-460 Cramer/Pennsy\|vania Cherry Hill (609) 424-5993
Cramer/San Francisco Sunnyvale (408) 739-3011	Cramer/New Jersey
Dunlap Electronics Sacramento (916) 444-8070	Moonachle (201) 935.5600 NEW Mexico
Metermaster, Inc. Palo Alto (415) 968.0313	Cramer/New Mexico Al buquerque (505) 265-5767
Metermaster, Inc. Los Angeles (213) 685-4340 Wemco	NEW YORK Baldwin Ha!l Co. Inc. Syracuse (315) 463-9251
Oakland (415) 452-1936 Western Electronics Supply	Cramer/Long Island Hauppauge (516) 231-5600
Glendale (213) 849-3451	Cramer/Rochester Inc Rochester (716) 275-0300
colorado Cramer/Denver Qenver (303) 758-2100	Cramer/Syracuse Syracuse (315) 437-6671
CONNECTICUT	Electronic Devices Co. Albuquerque (505) 293-1935
Cramer/Connecticut North Haven (203) 239-5641	E. E. Taylor Company, Inc. Albany (518) 489-5600
The Mancib Company Middletown (203) 346-6646	Summit Distrlbutors Butfalo (716) $884-3450$
Florioa	Trott Electronics Ciarence (716) 634-8500
Brownall Electro, Inc. Orlando (305) 843-6775	NORTH CAROLINA Cramer/Winston-Salem
Cramer/E. W. Hollywood Hollywood (305) 923-8181	Winston-Salem (919) 725 -8711
Cramer/E. W. Orlando Orlando (305) $894 \cdot 1511$	OHIO Cramer/Cleveland Cleveland (216) 248-8400
gedrgia Browneld Electro, Inc	Hughes-Peters, inc. Columbus (614) 294-5351
Atlanta (Hapevilile) (404) 762-5181 Cramer/Atlanta	Pioneer Cleveland (216) 587-3600
Norcross (404) 448-9050	Pioneer/Dayton Dayton (513) 236.9900
ILLINOIS Cramer/Chicago Mt. Prospect (312) 593-8230	OKLAHOMA Electronics Supply
Nowark Electronics Corp. Chicago (312) 638-4411	Oklahoma City (405) 232-5215 Hunzicker Bros., Inc. Oklahoma City (405) 239-7771
McNamara Supply Chrcago (312) 922-5032	Tri-State Instrument Lab, Inc. Tulsa (918) 838-8883
Oak Park (312) 261-1330 W. H. Leary Co. Chlcapo (312) 721-3832	PENNSYLVANIA Pioneer/Pittsburgh Pittsburgh (412) 782-2300
LOUISIANA Butler \& Land. Inc. Kenner (504) 722.6363	Pracess Endineerling Pittsburgh (412) 516-5050 TEXAS
Industrial Electronic Supply Shreveport (318) 222-9459	Butler \& Land Houston (713) 464-4662
Industrial Instruments Works Harahan (504) 733-8355	Maters \& Instruments Housten (713) 644-1631
Ralph Electronics Lataygtte (318) 234-4507	Straughn Electronics, Inc. Beaumont (713) 838-4563
MABYLAND Cramer/E. W. Washington Gaithersburg (301) 948.0110	UTAH Cramer/Utah Salt Lake City (801) 487-4131
Cramer/E. W. 8altimore Hanover (301) 796-5790	WASHINGTON Almac/Stroum Electronics Seattio (206) 763-2300
Ploneer instrumentation Gaithersburg (301) 948 -1012	Branom Instrument Corp. Seattle (206) 762-6050
MASSACHUSETTS Brownell Electro, Inc. Cambrldge (617) 864-7500	Cramer/Seattlo Seattle (206) 762-5755 Elcher/Richarts Co.
Cramer Elactronics, Inc. Newton (617) 969-7700	Seattle (206) 523-7888 WISCDMSIM
Metermaster Billarica (617) 667-8346	E!ectro-Mechano Co. MIlwaukee (414) 272-4050
michigan Ram Moter, Inc. Forndale (313) 547-1000	virginia Instrument Tachnical Reps Rlchmond (804) 285-3931

EQUIPMENT REPORTS continued from page 24

TV set's IF input for tuner-substitution tests.
The video output has its own output jack and control on the left of the front panel. The video signal level ranges from 0 volt to 1.6 volts $P-P$. Either positive-going or negative-going sync may be used. Again, just push or pull the control knob. This output is ideal for tests on either VTR's or video tape players. The Chroma control adjusts the saturation of the color bars. Pulling this control knob out turns on a $4.5-\mathrm{MHz}$ signal for fine-tuning the TV set. The RF output is crystal-controlled on Channel 2 or Channel 3, this is optional. Signal levels can be varied from about $5 \mu \mathrm{~V}$ to $100,000 \mu \mathrm{~V}$ for an excellent check of tuner sensitivity, automatic-gain control, etc. Horizontal or vertical trigger signals are available at three front-panel jacks. This helps lock the scope patterns very solidly for easier evaluation. Both video and RF/IF outputs can be used simultaneously.

This instrument lets you make some fast signal-tracing tests through the color, video stages, etc. With a dual-trace scope, feed the video signal into the upper trace, then check the output of the stage on the lower trace. Any loss of gain, distortion, ringing, or other problems will show up instantly. Sync problems can be adjusted by injecting the RF/IF signal into the front end. This feature is handy for those sets that have a sync takeoff ahead of the video detector.

The $4.5-\mathrm{MHz}$ and the $3.58-\mathrm{MHz}$ outputs (actually, the latter is 3.579545 on the nose!) can be used to set the $4.5-\mathrm{MHz}$ trap to eliminate beats (worms) in the color, as well as for correct fine-tuning of the TV receiver. Any of the video patterns can be used as a video signal from this output.

The problem of whether to "interlace or not interlace" signals in color-bar generators has been neatly solved-in the model GTS-10 you can do either. In most older TV sets and many new ones, a noninterlaced signal yields more stable convergence patterns without a $30-\mathrm{Hz}$ beat. In normal operation, the model GTS-10's signals are not interlaced. However, some latemodel sets using countdown circuitry do not operate well with a noninterlaced signal. So, for interlaced signals, just turn the function selector knob all the way to the last clockwise position marked \# START I'LACE. This is a spring-return control, so after setting you can just release it. From then on, all the signals will be interlaced. For noninterlaced signals, turn the knob back counterclockwise to OFF and then back to ON, and there you are.

All video patterns, sweep signals, burst, etc.,
are developed by crystal oscillators and IC countdown circuitry. There are two master clock oscillators (used for different pur-poses)-one at 14.318182 MHz , the other at 14.255245 MHz (they are separated by four times the line-scanning frequency). The first is counted down to give a precise frequency of 3.579545 MHz , the standard color-oscillator reference frequency used in broadcasting. A total of five crystal oscillators are used.
The instruction manuals are worthy of special mention-they are a two-volume set! The first manual, entitled In The Home Servicing, is small and discusses in great detail the many previously rough tests that can be made with the model GTS-10: video frequency response, tuner sensitivity, automatic-gain control action, color-oscillator check or setup, and many others. Volume 2, entitled In-Shop Servicing, shows bench-type tests using a scope. With a dual-trace scope, you can make instant in-out signal-tracing tests of any TV stage-video, color, etc. For instance, as mentioned before, you can feed the video signal into the top trace and the stage output to the lower trace. Stage gain, frequency response, distortion and even that most difficult test, phase-shift-all can be read off the screen. Any of the video or color patterns can be used for these tests. Vectorscope analysis is equally simple, especially with a dual-trace scope.

Full calibration data is also given, if it is ever needed, plus simple accuracy tests for clock oscillators, etc. The schematic diagram is included, as well as 8 pages of logic diagrams for all circuits. The model GTS-10 uses standard transistors and IC's, and is covered by a two-year warranty.

All test leads and cables stow in a compartment in the back of the handy, all-metal case, which also has aluminum side bars to protect the front panel plus a carrying strap.

By the way, the first instruction manual shows how you can instantly identify those pesky hum-bars and crawling lines in the TV picture. (These could be caused by the TV set itself or by the input signal from CATV/ MATV systems.) Just place one of the convergence patterns of the model GTS-10 on the TV set. If the bars are still there, with the control knob set to interlace, and the signals originate in the TV set, the bars will crawl slowly up the screen. Switch to the noninterlace position on the switch, the bars move down. This gives positive proof that the bars are caused by a fault in the TV set itself and not by the cable system. To see shading bars at their worst, select the Vector and noninterlace positions. This instrument is handy for bench troubleshooting.

The price tag on the model GTS-10 is $\$ 349$.

|nn-PEMK

One-Stop Component Center

ALABAMA
Mobile
Anchorage
ARIZONA
Flagstaff
Fountain Hills
Tempe
Sierra Vista
Yuma
CALIFORNIA
Bellflower
Brea
Cypress
El Monte
Fontana
Fullerton
Giendale
Lake Tahoe, South
Lancaster
Long Beac
Mission Vieio
Modesto
Monterey
Oceanside
Palmdale
Palo Alto
Pasadena
Riverside
Sacramento
Sacramento
San Bernardino
San Cartos
San Diego
San Diego
San Fernando
San Francisco
San Francisco
San Jose
San Luis Obispo
San Rafaal
Santa Barbara
Santa Cruz
Santa Maria
Santa Monica
Sunnyvale
Torrance
Vallejo
Van Nuys
Ventura
Walnut Creek
Westminster
Whittiar
COLORADO
Aurora
Steamboat Springs
CONNECTICUT
Bridgeport
Ft Lauder Gainesville Lakeland Orlando
Tampa Tampa GEORGIA
Atlanta
HAWAll
Aiea
HOnOluIU
ldaho Falls
ILLINOIS
Carbondale
Evanston
Evanston
Granite City Groveland
Mount Prospect
Niles
Oak Park
Rockford
Schaumburg
East Chicag
East Chicago
Hammond
IOWA
Clinton Davenport Indianola
KANSAS Kansas Cit

Lafayette Radio Electronics
 Electronics Corp. of Alaska

Jim's Audio \& Stereo Repair

 P \& C Communications Computerworla lnc. $B \&$ Electronics Yuma ElectronicsEarl's Hobby Shop Al Lasher Electronics Century Electronics SCR Electronics Kimball \& Stark Fontana Electronics Orvac Electronics inc. Eagle Electronics CalPine Electronics Consumer Electronics Scott Radio Supply Inc. Tower Electronics Corp. Computer Magic
Zackit
Electronic Canter
Radio Shack A.S.C. Palmdale
Zack Electronics

$$
\begin{aligned}
& \text { Dow Radio Inc. } \\
& \text { Comnuter Center }
\end{aligned}
$$

$$
\begin{array}{r}
\text { Computer Center } \\
\text { Heathkit Electronic Center }
\end{array}
$$

$$
\begin{array}{r}
\text { Heathkit Electronic Center } \\
\text { The Radio Place }
\end{array}
$$

$$
\begin{array}{r}
\text { The Radio Place } \\
\text { Zackit }
\end{array}
$$

Inland Computer \& Electronics
Radio Shack A C Mira Mesa Radio-Tronics Inc Radio Tronics Inc San Fernando Electronics Zack Electronic Zenith Distributing Corp Quement Elec tronics
Mid-State Electronic Supply Electronics Plus
Lombard Electronics Santa Cruz Electronics Cops Electronics Mission Contro
Sunnyvale Electronics SE Electronics
Zackit Thrifty Electronics Supply Lombard's Electronics Inc. Byte Shop of Walnut Creek JK Electronics
\& S Electronics D\&S Electronics

Com Co Electronics Norm's TV \& Electronics Bridgeport Computer

Computers For You Lafayerte Radio Lakeland Specialtv Electronics Altair Computer Center AMF Electronics Microcomputer Systems

Atlanta Computer Mart
Delcoms Hawal
Integrated Circuit Supply

Audiotronics

Lafayette Radio
Itty Bitty Machine Co. Tri.State Electronic Corp. Computer Systems Center Tri-State Electronic Corp. Computer Land Imperial Computer Systems Data Domain

Acro Electranics Corp. Quantum Computer Works

Bridge Elec. Computer Center Computer Store of Davenport Electronix Limited

Electronic Surplus Sates

KANSAS (Continued)

Manhattan	Communications Soecialties Ltd.
Wichita	Amateur Radio Equipment Company
KENTUCKY	
Lexington	Radio-Electronic Equipment Co.
LOUISIANA	
Baton Rouge	Davis Electronics Supply Co.
MARYLAND	
Baltimore	Computer Workshop of Baltimore
Baltimor	Every thing Electronic
La Vale	$J \& M$ Electronics
Rockville	Computer Workshop
Silver Spring	Computers Etc.
Towson	Baynesville Electronic inc.
Towson	Computers Etc.
MASSACHUS	SETTS
Medford	Tufts Electronics
North Adams	Electronics Supply Center
Waltham	Computer Mart Inc.
Worcester	RM Electronics Inc
MICHIGAN	
Ann Arbor	Alrway Electronic Communications
Flint	Hobby Electronic Center
Grand Rapids	- Micro Computer World
Lansing	ulton Radio Supply Co.
Mt. Clemens	The Computer Store

MINNESOTA

 MISSOURI E/ Dorado Spring Park ville

MONTANA

Billings
NEBRASKA
Lincoln
North Platte
Omaha
NEVADA
NEW JERSEY
Bavville
Brickrown
Hoboken
Hoboken
Paterson
Pompton Lake
Ramsey

> NEW YORK
> Albany
> New York

Northwest Radio of Duluth Computer Room inc. Heathkit Electronic Center

Beckman Electronics Computer Workshop of Kansas City

Conley Radio Supply
Altair Computer Center Scott Radio Supply Corp Omaha Computer Store

Century 23
A.R.S. Communications Services Radio Shack Associate Store The Computer Emporium Hoboken Computer Works All-tronics Computer Corner of New Jersev Typetronic Computer Store

Computer Mart of New York

NEW YORK (Continued)
Rensselaer

Troy

White Plains Williams ville NORTH CAROLINA
Durham
Greensboro
Raleigh
OHIO
Bucyrus
Cincinnati
Columbus
Dayton
Reynoldsburg OKLAHOMA
Guvmon
Guymon
Oklahoma City
Tulsa
OREGON
Albany
Beaverton
Coos Bay
Medford
Ontario
Ontario
Salem PENNSYLVANIA
Drexel till
Erie
Hershey
Murraysville
Phoenixville
Pittsburgh
Wilkesb
RHODE ISLAND
Cranston
Pawtucket
SOUTH CAROLINA
North Charleston
TENNESSEE
Chattanooga William's Data Comp Division

Clarksville	Masstronics
Knoxville	Byte Shop

Memphis Bluff City Electronics
Memphis Sere-Rose \& Spencer Electranics
TEXAS
Amarillo
Computer Encounters Inc.
CompuShup

Houston
Houston
San Antonio
UTAH
Provo
VIRGINIA
Alexandria
Alexandria Charlottes ville Hampton Richmond
Roanoke Springfield

Virginia Beach
WASHINGTON
Bellevue
Kennewick
Longview
Richland
Seatt/e
Seattle
Spokane
WEST VIRGINIA
Morgantown Morgantown

CANADA
Alberta (Calgary)
Ontario (Williowda/e)
Quebec (Montreal)
PANAMA
Panama City
Panama City

Altair Computer Center
Interactive Computers
Sherman Electronics Supply Inc.
Alpine Electronic Supply Co.
Computer Hardware Store Computers Plus Inc. Lafayette Electronics Larayette Radio Computers-To-Go
The Computer Place
The Computer Place Computer Workshop Heathkit Electronic Center $C \& J$ Electronics Progress Electronics
Riverview Electranics
Riverview Electronics
C\& Electronics Empire Electronics Personal Computers

The Computer Corner Electro Distributing Co. Thompson's Radio Shack

The Computer Shop Home Computer Centre Wang's Microcenter

Electrotecnia S. A
Sonitel, S. A.
FRANCE
Paris
Computer Boutique
SINGAPORE
Inter-Trade (PTE) Ltd.
2001 Electronics
2001 Microsystems
Trojan Electronics The Computer Corner Hirsch Sales Co.

Futureworld
Byte Shop
Byte Shop of Raleigh
Mead Electronics

Souna Service High Technology

Oregon Ham Sales Altair Computer Center | Herrick Electronix |
| :--- | Miller Electronics Portiand Radio Supply

Kass Electronic Distributors
Warren Radio
Computer Workshop of Pittsburgh
Stevens Electronics
Hamline Electronics
G.Y.C. Company

Jabbour Electronics City Jabbour Electronics City

Technical Services Inc. re-Rose \& Spencer Electronics

Computer Encounters inc.

Computer Hardware Store

Altair Computer Center

 mputersFor Dealer Information, write or phone JIM-PAK ${ }^{\circledR}, 1021$ Howard Ave., San Carlos, California 94070 (415) 592-8097

Digitita Themmometer Add-On for your DMM

 A simple, easy-to-build accessoryconverts your digital voltmeter into a handy
thermometer for monitoring semiconductor
case temperatures, photographic chemicals
and numerous other uses around the lab,
home and workbench.

BILL OWEN*

HOW OFTEN HAVE YOU WORRIED ABOUT a component that was running hot to the touch? The part could be safely within specifications or in danger of burning out. If you include a digital thermometer as part of your test gear then you simply measure the component's temperature and check the data book for temperature limits. The capability to reliably and accurately measure temperature can also help to get a handle on more complex temperature problems such as specifying heat sinks, crystal oscillator drift and opamp stability.

Several major manufacturers of digital multimeters now offer a thermometer option built in or as a separate accessory. Now you can build a simple thermometer conversion circuit for your digital voltmeter that is as good as any and better than most of the commercial units and at one-third the cost.

The temperature sensor is an integrated circuit developed by Analog Devices Inc. as a precision temperaturedependent current source. Of the many advantages this sensor enjoys over others, its accuracy of 0.5° and its range of from -55° to $+150^{\circ} \mathrm{C}$ are most impressive. Because it is a current source with only two active leads, the sensor is virtually free from noise pickup even when remoted over hundreds of feet of cable. Its tiny TO-52 metal-can transistor package allows for fast temperature response. Other features will be apparent as we use the temperature sensor to build the T- 100

[^2]direct-reading thermometer
The $\mathrm{T}-100$ has a 10 mV -per-degree output that enables any digital or analog voltmeter to directly read Fahrenheit or Celsius by the flip of a switch. Resolution is to 0.1° with a $31 / 2$-digit voltmeter and to 0.01° with a $41 / 4$-digit meter. Total current consumption is about 3 mA , giving the T-100 many hours of operation from an inexpensive 9 -volt battery.

While we have mentioned only electronics, the T-100 is ideally suited for a wide variety of other applications. Simply dedicate a voltmeter to exclusive use and you have a thermometer 10 monitor inside, outside, aquarium, swimming pool, greenhouse, darkroom chemical, freezer, cooking, air conditioning and an almost infinite list of other temperatures.

Circuit description

Figure 1 shows the AD590K temperature transducer's linear current out put of I $\mu \mathrm{A}$ per degree Kelvin. The Kelvin degree is the same size as a Celsius degree; however, the Kelvin temperature scale is 273.16° higher than the Celsius scale. Zero degrees Kelvin is called absolute zero because it can be shown that colder temperatures cannot exist. There is also an absolute Fahrenheit temperature scale (Rankine) that is 459.69° higher than the regular Fahrenheit scale.

Figure 2 is the schematic of the thermometer accessory. The transducer's output current is scaled by the combination of resistors R10 and R11, or by R8 and R9 depending upon the position of the CELSIUS/FAHRENHEIT switch SI. The
voltage developed across scaling resistors R8 and R9 is equal 1010 mV per degree Kelvin or 10 mV per degree $\mathrm{C}+2.73$ volts. Similarly, the voltage across the R10. R11 combination is equal 1010 mV per degree $F+4.59$ volts. These output voltages follow naturally from the Kelvin to Celsius and Kelvin to Fahrenheit conversion equations:
T Celsius $=\mathrm{T}$ Kelvin -273.16°
T Fahrenheit $=9 / 5 \mathrm{~T}$ Kelvin 459.67°

To read Celsius and Fahrenheit directly we must generate reference voltages of 2.73 and 4.59.

The LM334Z is a precision current source with a $2-\mathrm{mA}$ output that is set by resistor R 1 . The current output is used to bias a LM329DZ precision 6.9-volt temperature compensated Zener reference.

This device is actually an integrated circuit with many advantages over the usual Zener diode. A big advantage is the low current level required (1 mA) for stable operation. The 1C1/1C3 combination provides a very stable, low-power voltage reference for the voltage dividers. The voltage divider formed by R2, R3 and R4 generates the 2.73 -volt reference and the divider formed by R5, R6 and R7 generates the 4.59 -volt reference. The correct reference is selected by the switch SI and connected to the "minus" output terminal. The thermometer's output then is the voltage difference between the + and - output terminals.

Construction

Assembly of the thermometer circuit
board is simple and straightforward. The foil pattern for the PC board is in Fig. 3 and the components placement is shown in Fig. 4. Trimmer resistors R3, R6, R9 and R1I are mounted on the foil side of the PC board. The thermometer shown here uses a custom aluminum enclosure for the circuit board and battery. The two slide switches were installed in the cabinet top and the PC board aligned for proper fit with the cabinet bottom before soldering. Grommets were fitted in each end of the cabinet top. Small diameter coax cable was inserted in the hole labeled PROBE and zip cord in the hole labeled Vm in the cabinet top. The coax center conductor and shield are soldered to the PC connections labeled SIG and shid, respectively, in Fig. 4. The zip cord is soldered to the holes labeled out with the red banana plug soldered to the "+" wire and the black banana plug to the "-" wire. The 9 -volt battery snap is connected to BATT holes with the red wire soldered to " + " and the black wire to "- "

The AD590K sensor was prepared by cutting off the case lead and staggering the + and - leads leaving the + lead longer. Figure 5 shows a cross section of the probe assembly. The sensor leads will not short together if the coax conductor and shield are staggered to match as shown. The shield lead is connected to the sensor's + lead. The sensor is soldered on the end of the coax and the connection potted in with epoxy glue to make it waterproof. A nylon shell was used to house the coax connection and provide a seal for the sensor. The shell was slid over the free end of the coax with the larger diameter end going on the cable first.

A 5-minute setting epoxy is used to pot the sensor. A very small amount was mixed and an even coat applied to the bottom of the sensor. The sensor was then held tightly against the end of the nylon shell and kept centered until the epoxy became set.

Next, an amount of epoxy to sufficiently fill the probe was thoroughly mixed. The probe tip was held down and epoxy was applied between the shell and coax using a toothpick. The epoxy flows down

FIG. 1-CURRENT OUTPUT of the AD590 is linear at $1 \mu \mathrm{~A}$ per degree Kelvin.

FIG. 2-SCHEMATIC OF THE T-100 thermometer accessory for a digital voltmeter. The circuit is essentially a resistive bridge with the temperature sensor as one of its legs.

R1-30 ohms, 2%
R2-11,800 ohms, 1%
R3, R6, R9, R11- 1000 ohms PC mount trimmer potentiometer
R4, R7-7860 ohms, 1%
R5-4020 ohms, 1%
R8-9530 ohms, 1%
R10-17,400 ohms, 1%
IC 1-LM334Z constant-current source (National)
IC2-AD590K linear temperaturedependent current source (Analog Devices)
IC3-LM329DZ precision temperaturecompensated voltage reference

PARTS LIST

(National)
S1, S2-miniature DPDT slide switch
BATT1-9-volt battery, transistor radio type
PL1, PL2-banana plugs, 1 red, 1 black
Misc: RG-174/U coax, 4 feet or as needed; 2 feet of lightweight ZIP cord, nylon probe shell (see text), PC board, case screws and assorted hardware.

The following items are available from Optoelectronics, Inc., 5821 N.E. 14th Avenue, Ft. Lauderdale, FL 33334. Phones: (305) 771-2050 and 771-2051. Epoxy (used in probe assembly) and 9 -volt battery must be purchased separately.

Kit T-100RE-Complete parts kit less case and switches. $\mathbf{\$ 3 0 . 0 0}$ Kit CAB 10S—Deluxe prepunched gold anodized and screened aluminum cabinet with switches, screws, grommets and rubber feet. 59.95.

T-100WT-Factory-wired, tested and calibrated thermometer. \$59.95.
TP-100K-Additional probe kit with 6 feet of coax. \$14.95.

Florida residents add state and local taxes as applicable.

DIGITAL THERMOMETER with rear cover removed shows internal layout. Note four trimmers are mounted on foil side of PC board.
the coax and into the space inside the shell. Tapping the probe tip on the table helps the epoxy flow. As the probe space fills, the epoxy seeps out of the vent holes in the sides of the shell. Any excess can be wiped away. Keep the coax centered in the end of the shell while the epoxy sets. Allow the epoxy to cure overnight before subjecting the probe to mechanical stress or excessive temperatures.
(The plastic probe shell is made from a 1 -inch-long $1 / 4$-inch O.D. plastic spacer with one end counterbored to accept the outside diameter of the RG-174/U coaxial cable. (See Fig. 5.) A reasonably good substitute can be made using $1 / 4$-inch O.D. shrinkable tubing. Connect the cable to the sensor and fill the void in the tubing with the potting compound. When the compound has fully cured, apply just enough heat to shrink the tubing.Editor)

Calibration

The voltage reference in the thermometer can be more stable than the internal voltage references in some digital voltmeters. Calibration should be done with the voltmeter that will be used with the T-100.

Connect the negative voltmeter lead to thermometer ground. The center lugs (wipers) on trimmers R9 and R11 are grounded as is the black (negative) battery lead. Connect the voltmeter's positive lead to the center terminal on trimmer R3 and adjust R3 to read 2.73 volts. Move the voltmeter's positive lead over to the center terminal of trimmer R6 and adjust R6 to read 4.59 volts.

The thermometer's output is linear so calibration for the entire range can be performed at one known temperature. Although the AD590K had 0.5° linearity over its entire range, we have found that it is even more accurate between 0° and $100^{\circ} \mathrm{C}$. This means that to realize the accuracy potential of the device, we should have a temperature standard accurate to $0.1^{\circ} \mathrm{C}$ or better. Certified thermometers accurate to 0.1° are expensive and not readily available. For calibration we must then rely on some less precise methods.

Method 1. A 50% mixture of water and

FIG. 3-PRINTED CIRCUIT PATTERN for the digital thermometer accessory.

FIG. 4-THE PARTS LAYOUT is an indication of the simplicity of the device.

FIG. 5-DETAILS OF THE PROBE ASSEMBLY. The potting compound seals the probe against moisture and other contaminants.
crushed ice that is well stirred in a styrofoam container should come to equilibrium within $0.5^{\circ} \mathrm{C}$ of $0.0^{\circ} \mathrm{C}$ in 15 to 30 minutes.

Method 2. Boiling water, containing no chemical impurities at standard atmospheric pressure (29.92 inches of mercury) should come very close to $100.0^{\circ} \mathrm{C}$. Altitude and pressure corrections must be made.

Method 3. A good-quality accurate clinical thermometer can be used to compare readings within its range. Errors arise in reading the thermometer as well as from trying to have two different sensors track a changing temperature
when they have differing time constants.
After calibration, the Celsius and Fahrenheit ranges on the thermometer should be reconciled using the conversion formulas:

$$
\mathrm{T}_{\mathrm{F}}=32^{\circ} \mathrm{F}+9 / 5 \mathrm{~T}_{\mathrm{C}}
$$

and

$$
\mathrm{T}_{\mathrm{C}}=\left(\mathrm{T}_{\mathrm{F}}-32\right) 5 / 9
$$

This completes the construction and calibration, and your thermometer accessory is ready to use. At first you'll probably have just one or two applications but as you become more familiar with it, the digital thermometer will become increasingly valuable.

Investment Evaluation Program

FRED BLEECHMAN

have you ever made an investment in stocks or metals and then wondered some time later if you would have been better off leaving the moncy in the bank? Or perhaps you'd like to know how much an investment must grow before it equals what you'd make leaving the money in the bank, at regular bank interest. The Investment Evaluation Program, written in TRS-8 \varnothing Level 1 BASIC uses only 2464 bytes of RAM (Random Access Memory), so it can be run on the least expensive 4 K RAM TRS-8 9 .

The program is very straightforward, and has a handy subroutine for calculating the number of days between any two 20 th century dates. The calculations are based on daily compounding of interest; if you want to change to monthly, quarterly or yearly compounding, you'll have to change lines $169,179,290,250$ and the subroutine starting at line 590 .

Using the program is easy! After carefully entering and checking each line, type RUN and enter.

To illustrate, let's say that on July 20, 1974 you purchased 404 ounces of silver bullion for $\$ 2098.38$, including a service charge of $60 ¢$ per ounce and 6% sales tax. You would like to know how the value of that bullion now compares with the same amount of money if it had been left in savings at, say, 5.25% annual interest, compounded daily. The day you want to calculate up to is July $\mathbf{I}, 1978$.

Set up the program on the computer and enter your name, social security number, 2098.38 invested at 5.25 as the questions are asked. Enter \emptyset for the days calculation, then enter $7,20,74$ for the start date and $7,1,78$ for the end date. The computer will tell you the number of investment days is 1442 . Enter this number and the computer will print out, after about 40 seconds, the total interest ($\$ 483.58$) and the new principal of $\$ 2581.80$. (Don't mind the $16 ¢$ error in addition of the interest and new principal. As a matter of fact, even the interest calculated is slightly off, due to round-ing-off during the 1442 multiplications!).

Enter 404 for the number of ounces of silver bullion and the value of silver per ounce on the calculation end date-say, 5.28. The computer now displays that your investment is worth $\$ 2133.12$ and that you have now lost $\$ 448.676$ (there's that slight inaccuracy again!) compared to having left your money in your savings account. It also tells you that silver on that date would have to be worth $\$ 6.39058$ per ounce for you to just break even!

You can then press break to end the program, or perform another calculation. This same program can also be used to determine the future value of stock, bonds, gold, silver, etc., for break-even at some future date if you plan a particular investment.

R-E

[^3]```
100 CLS:P
105 REM * COPYRIGHT 1978 FRED BLECHMAN * FOR TRS-80I-4K *
110 P." INVESTMENT EVALUATION"'P.:P.
112 P."THIS PROGRAM COMPARES AN INVESTMENT WITH PUTTING THE"
113 P."SAME AMOUNT OF MONEY IN A SAVINGS ACCOUNT WHERE IT EARNS"
114 P."DAILY INTEREST. IF YOU WISH TO CHANGE THE PERIOD TO"
115 P.`MONTHLY OR YEARLY, CHANGE LINES 160, 170,200 & 250.
116 P.".AND THE SUBROUTINE STARTING AT LINE 500."
120 P.P.
125 IN."WHAT IS YOUR FIRST NAME";A$
126 IN."WHAT IS YOUR SOCIAL SECURITY NUMBER";B$
130 A=0:B=0:C=0:D=0:E=0:F=0:G=0:H=0:I=0
131 J=0:K=0:L=0:M=0:N=0:O=0:P=0:Q=0:R=0
132S=0:T=0:U=0:V=0:W=0:X=0:Y=0:Z=0
140 IN."WHAT IS THE DOLLAR AMOUNT INVESTED';P
150 IN."WHAT IS YOUR REGULAR SAVINGS INTEREST RATE(%)";R
155 P.
160 P."HOW MANY DAYS ARE INVOLVED? IF YOU WANT THE NUMBER"
170 P."OF DAYS CALCULATED (20TH CENTURY ONLY) ENTER 0';D
180 IF D=0 GOSUB 500
185 IF D=0 GOTO 155
186 P.
190 P.`. PATIENCE! . . .I'M CALCULATING THE ANSWER.
195 P." (TAKES ME ABOUT 10 SECONDS FOR 365 DAYS)"
200 S = R/36500:V = P
205 REM * CALCULATE INTEREST AND ADD TO PRINCIPAL *
210 FOR X=1 TOD
220 I= V*S:V = V +I:T = T + I
230 NEXT X
235 P.
240 P."" THE TOTAL INTEREST IS";T
250 P.''THE VALUE OF $";P;"AFTER";D;"DAYS AT";R;"% IS";V
255 P.
256 REM *COMPARE PRESENT VAIUE OF INVESTMENT TO SAVINGS *
260 P. "HOW MANY SHARES,BARS,OUNCES,ETC.,DO YOU OWN?"
265 IN." (TO RECALCULATE INVESTED AMOUNT,ENTER 0)";H
270 IF H=0 GOTO 130
275 P.
280 IN. 'WHAT IS THE PRESENT VALUE OF EACH SHARE,BAR,ETC.";M
290 Q =H*M
295 P.
300 P."YOUR INVESTMENT IS NOW WORTH $";Q;',';'A$;"."
310 Z=V-Q
315 P.
320 IF Z>0P.A$;"-";B$;",YOU HAVE LOST $";Z;"COMPARED TO SAVING!"
330 IF Z<0 P.A$;"-";B$;",YOU HAVE EARNED'$";-Z;"MORE THAN SAVINGS!"
335 P.:P."THE 'BREAK-EVEN' POINT IS $";V/H;"SHARES,BARS,ETC."
340 P.:P.`PRESS BREAK TO END PROGRAM.
350 GOTO }13
360 END
500 REM * SUBROUTINE FOR CALCULATING DAYS *
510 DATA 0,31,28,31,30,31,30,31,31,30,31,30,31
520 REM * DETERMINE NUMBER OF DAYS FROM 0 TO START *
525 P.
530 IN. "WHAT IS THE INVESTMENT START DATE(M,D,Y)";A,B,C
540 E=A
550 GOSUB 1000
560 F=F+B
570 G=F+C*365
580 REM * DETERMINE NUMBER OF DAYS FROM 0 TO END *
590 IN."WHAT IS THE INVESTMENT END DATE(M,D,Y)";J,K,L
600 E=1
6 1 0 \text { GOSUB } 1 0 0 0
620 F=F+K
630 N=F+L*365
640 REM * CALCULATE AND ADD LEAP YEARS *
650O=|NT}((L-1900)/4):U=\operatorname{INT}((C-1900)/4):W=O-
660 X=(N-G)+W
665 P.
670 P.''THE NUMBER OF INVESTMENT DAYS IS";X
60 RETURN
1000 F=0
1010 FOR X=1 TOE
1020 READ Y
1030 IF Y = 28 THEN IF (L/4)-INT(L/4)=0 THEN Y = 29
1040 F=F+Y
1050 NEXT X
1060 RESTORE
1070 RETURN
```



> The ideal timer for today's darkroom. This one counts down in your choice of minutes and seconds, or seconds only.

RAYMOND G. KOSTANTY

LAST MONTH WE INTRODUCED THIS unique digital darkroom timer. In this issue we will complete the article, presenting the remaining construction details and final setup, test, and operating steps.

As stated, the timer's internal capacity is 8 digits. To alert you that more than 4 digits have been entered, the output of IC16-10, which is high if any digit is present, is combined with D5 in IC16 and used to unshort LED 3 (allowing it to light) if any digit is present in the D5 position.

In the minutes/seconds range, 41 must be subtracted each time a whole number of minutes $(2: 00,5: 00$, etc.) is displayed. The zero-zero detector output, IC14-1, goes high if a zero is present in both D8 and D9 positions. Pin 11 of IC4 is low when a zero is detected. Recalling that D8 goes high before D9 does, IC15-4 will be high during D8 if a zero is present. Latch IC15-d remembers this high and enables IC14-6, the $J$ input to a flip-flop. If the zero is also present during D9, IC15-3 will go high and clock IC14. This makes IC14-1 go high and enables IC813, which changes the normal - , delay, blank and 1 sequence to the required - , delay, 4 and 1 sequence. Latches IC14-a and IC15-b and $d$ are reset each time IC6-3 is high.

Counter ICl divides the $60-\mathrm{Hz}$ squarewave generated on the power supply
board by 6 to produce 10 Hz . The pause switch halts timer operation by grounding the base of QI and the clock pulses into ICl.

On the power supply board, Fig. 4, a 555 IC is connected as an astable oscillator to generate the audio tone when gated on by the signal at input K . The tone's frequency is inversely proportional to R 6 , R7 and C2.

The relay directly switches the line voltage to the low-power safelight outlet when de-energized, and indirectly switches line voltage via the triac to the highpower enlarger outlet when energized. The maximum load that can be connected to the enlarger outlet is determined solely by the triac rating. Heavier safelight loads can be driven by adding a second triac as shown in the Fig. 4 inset.

Transistor Q1 amplifies the half-wave rectified $60-\mathrm{Hz}$ signal applied to its base and converts it to an approximate squarewave.

## Assembling the timer

Start assembly with the power supply. The board will accomodate speakers up to $21 / 2$ inches in diameter, but will be supplied with mounting holes for a 2 -inch speaker. If using a larger speaker, drill one No. 28 hole (hole $S$ in Fig. 9) such that the part of the hole closest to the speaker center is just tangent to the diameter of the speaker. Solder all small
components into their appropriate locations. If using a 309 K as ICl , fasten it with two No. $6-32 \times 3 / 8$ screws with the head of one of them in firm contact with the foil which serves as the connection to the case of IC 1 , and install R 1 and R 2 . Clip leads 1 and 2 to about $1 / 8$ inch. Resistors R1 and R2 are not used when a 340-8 is used as IC1.

If the timer is to be used on $60-\mathrm{Hz}$ power, do not use D2 or D3, but instead solder a jumper in the D2 position. (For $50-\mathrm{Hz}$ operation, use a transformer with a $50-\mathrm{Hz}$ or 50 to $60-\mathrm{Hz}$ primary, and use D2 and D3, which will change the output of Q1 to 100 Hz . On the main board, cut the connection from IC1-1 to IC1-6, and jumper $\mathrm{ICl}-1$ to $\mathrm{ICl}-13$ to change ICl to a decade divider to give the required 10 Hz output.) Mount the transformer with two No. 6-32 $\times 3 / 8$ screws, again with the heads on the foil side. Solder the transformer, relay and IC2 in place. The IC may be soldered without a socket. The triac doesn't need a heat sink for loads up to 150 watts, and is supported by its leads. For loads between 150 and 600 watts, mount the triac on a heat sink whose thermal resistance doesn't exceed $3^{\circ} \mathrm{C}$-perwatt. In each of the three speaker holes, install a $6-32 \times 3 / 8$ screw, heads on the foil side, and fasten one nut firmly to each screw. If the holes were properly drilled, the speaker should be able to rest on the nuts just installed. Install one additional

 contains the audio circuit that develops 1 second pulses.

FIG. 5 (left)-COMPONENTS SIDE of the main circuit board. Note the size marked.

FIG. 6 (bottom left)-FOIL. PATTERN on the other side of the two-sided board.
nut on each screw to secure the speaker and solder the two speaker connections to their pads. Refer to Fig. 11 for details. Set the board aside.

Continue with the main board. Sockets are highly recommended for all IC's, and imperative for the calculator IC. The displays are installed in Molex Soldercon sockets. When using these sockets, do not press them directly against the board unless you are sure that they will not short to foil patterns running between them. All pushbuttons, rocker switches, LED's and displays go on one side, and the remaining parts and jumpers on the other. Mount components in this sequence: resistors, diodes, transistors, jumpers, capacitors and IC1-16's sockets. On the other side, mount the display's sockets and the three LED's. The LED's mentioned in the parts list were selected for their small diameter, .085 inch, and pleasing appearance. Their lead length, however, is only 0.25 inch. To raise the

## POWER SUPPLY PARTS LIST

All resistors $1 / 4$ watt, $10 \%$
R1, R8-220 ohms
R2-91 ohms
R3-100,000 ohms
R4, R5-6800 ohms
R6, R7-47,000 ohms
C1-220 $\mu \mathrm{F}, 35$ volts, electrolytic
$\mathrm{C} 2-.01 \mu \mathrm{~F}$
Q1-2N222, RS-2031 (Radio Shack) or any NPN silicon transistor with a beta between 50 and 150
Q2-200-volt, 10 -amp triac. Sylvania ECG 5633 or equal
Q3-Optional, same as Q2. See text.
IC1-309K or 340-8 voltage regulator
IC2-555 timer
D1, D4-7-1N4001, Radio Shack 276-
1101 or any 25 -volt, 1 -amp silicon diode D2, D3-Silicon diode, see text.
RY1—Relay, SPDT contacts, 12-VDC coil. Guardian 1345-1C-12D, Essex 64-902 or Cornell-Dubilier 603-12V
T1-Transformer, 120 volts to 12.6 volts, 300 mA . Radio Shack 273-1385 or equal
Miscellaneous-Speaker, 3-16 ohms, $2-2^{1 / 2}$ inches. Power cord, 8 feet, No. 18, 3 conductors. Strain relief.
tip of the LED's to the same height above the board as the 7 -segment displays ( 0.6 inch), solder solid-wire extensions to the LED leads or use larger LED's. Finish by installing the switches. Do not install the IC's or displays at this time. Set the board aside.

The case can be easily made as shown in Figs. 10 and 11, or purchased ready-touse. Strip about 18 inches of outer jacket from the line cord and install the cord through the side of the case with a strain


FIG. 7-THE POWER SUPPLY CIRCUIT BOARD is single-sided. Again, be sure to note the dimension across the top as this board is not drawn actual size.
relief. The duplex outlet will have 2 silvery screws in a silvery metal strip on its cold side, and a brass-colored metal strip with either 2 silver or 2 brasscolored screws on the hot side. Break the thin brass strip connecting the 2 screws on the hot side to isolate them from each other. Leave the 2 screws on the cold side in common with each other. Shorten the green and white leads on the line cord from 18 to 6 inches. Connect the green wire to the green screw on the outlet, and the white wire to one of the cold screws. Connect one end of the remaining 12 inches of white wire to the other cold screw, and the other end to one side of Tl's primary (hole B in Fig. 9). Connect
one end of an 18 -inch wire to each of the remaining holes on the power supply board. The wires to holes A and C should be No. 18 gauge. The remaining ones can be No. 24 or 26 . Temporarily connect the wire from hole $A$ to the black wire in the line cord. Interconnecting wires should be stranded.

Attach the board to the rear half of the case as shown in Fig. 11. Mount it so the transformer is toward the bottom of the case (when mounted on a wall). The outlets can be on either the right or left side to suit your darkroom's layout. Connect the No. 18 wire from the triac (hole C on the power supply board) to one of the unused hot screws on the outlet sock-


COMPONENTS. HOLES T-T TO Z-Z ARE JUMPERED TO EACH OTHER ON REAR SIDE OF BOARD.
FIG. 8-PARTS PLACEMENT ON THE MAIN CIRCUIT BOARD. Note that the keyboard mounts directly to this board too. As indicated, jumpers connect this board to the power supply board.

# VIDEO <br> MODULATORS 

If you are into VTR's, TV games, home computers and TV modulator must be used to feed modulated RF to



ATARI model CA-010410


SUP "R" MOD II, cables and switch included


RF-1 RF modulator
MODEL E \& P


RFVM-1 sold by Vamp and Quest Electronics

FRED BLECHMAN K6UGT
IN THE LAST TWO YEARS FOUR "NEW" ELECTRONIC PRODUCTS have been introduced into the consumer marketplace-video games, video cassette recorders, video cameras and home computers. While these products have been available in some form for several years, their design finally became practical enough for consumer acceptance. Coincidentally, each product uses a video display for its output. A TV screen is essential for playing a video game or watching a video recorder, and most home computers use a video display for the readout, although printers can also be used. Video cameras, long used for closedcircuit security and surveillance systems, are growing in popularity now that video cassette recorders are available for making home movies, and, of course, cameras also use a video display.

Two basic methods make the video signal visible on a picture tube. The most efficient method is to feed the video output of a game, camera, video recorder or computer directly into the video amplifier of a video monitor or TV set. Since most TV sets require rewiring to provide direct access to the video amplifier (and those with a hot chassis can create a dangerous shock hazard), video monitors have generally been used. However, when home video games became popular, it was obvious that the public would not care to buy a special monitor to play the games. Therefore, an old video camera technique was revived-generating an RF signal on an unused TV channel and modulating it with the video signal! By connecting the modulated RF carrier to the antenna terminals of a standard TV set, you could watch the game by simply tuning to the unused channel.

In the beginning, video game manufacturers, to avoid interfering with VHF signals, created carriers in the high UHF band. Shielding problems, signal instability with temperature variation and other design considerations caused the shift to VHF carriers modulated by the video signal. Several million video games were sold (some for as little as $\$ 25$ ) complete with builtin video-modulated RF oscillators. The Federal Communications Commission (FCC) then cracked down on the manufacturers, requiring them to test units to rigorous specifications before type approval was issued, in order to try minimizing the spurious radiations being generated to neighboring TV sets-or even to other sets in the home!

With technological advances taking place in the game field, microprocessors and dedicated integrated circuits (IC's) became commonplace among experimenters. Home computers suddenly blossomed from garage and basement labs to fullblown manufacturing plants. Experimenters and hobbyists found an increasing need for some means to couple the video output of their devices to a display. Video monitors have remained a low-production item and are therefore high-priced. TV set manufacturers have not recognized the sales advantage of adding a switch and jack to existing designs to allow direct video input. Therefore, there has been a steadily increasing


> The ideal timer for today's darkroom. This one counts down in your choice of minutes and seconds, or seconds only.

RAYMOND G. KOSTANTY

LAST MONTH WE INTRODUCED THIS unique digital darkroom timer. In this issue we will complete the article, presenting the remaining construction details and final setup, test, and operating steps.

As stated, the timer's internal capacity is 8 digits. To alert you that more than 4 digits have been entered, the output of IC16-10, which is high if any digit is present, is combined with D5 in ICl 6 and used to unshort LED 3 (allowing it to light) if any digit is present in the D5 position.

In the minutes/seconds range, 41 must be subtracted each time a whole number of minutes $(2: 00,5: 00$, etc.) is displayed. The zero-zero detector output, IC14-1, goes high if a zero is present in both D8 and D9 positions. Pin 11 of IC4 is low when a zero is detected. Recalling that D8 goes high before D9 does, IC15-4 will be high during D8 if a zero is present. Latch IC15-d remembers this high and enables IC14-6, the J input to a flip-flop. If the zero is also present during D 9 , IC15-3 will go high and clock IC14. This makes IC14-1 go high and enables IC813, which changes the normal - , delay, blank and 1 sequence to the required - , delay, 4 and 1 sequence. Latches IC14-a and IC15-b and d are reset each time IC6-3 is high.

Counter ICl divides the $60-\mathrm{Hz}$ squarewave generated on the power supply
board by 6 to produce 10 Hz . The pause switch halts timer operation by grounding the base of Q1 and the clock pulses into ICl.

On the power supply board, Fig. 4, a 555 IC is connected as an astable oscillator to generate the audio tone when gated on by the signal at input K . The tone's frequency is inversely proportional to $R 6$, R 7 and C 2 .

The relay directly switches the line voltage to the low-power safelight outlet when de-energized, and indirectly switches line voltage via the triac to the highpower enlarger outlet when energized. The maximum load that can be connected to the enlarger outlet is determined solely by the triac rating. Heavier safelight loads can be driven by adding a second triac as shown in the Fig. 4 inset.

Transistor Q1 amplifies the half-wave rectified $60-\mathrm{Hz}$ signal applied to its base and converts it to an approximate squarewave.

## Assembling the timer

Start assembly with the power supply. The board will accomodate speakers up to $21 / 2$ inches in diameter, but will be supplied with mounting holes for a 2 -inch speaker. If using a larger speaker, drill one No. 28 hole (hole $S$ in Fig. 9) such that the part of the hole closest to the speaker center is just tangent to the diameter of the speaker. Solder all small
components into their appropriate locations. If using a 309 K as IC1, fasten it with two No. $6-32 \times 3 / 8$ screws with the head of one of them in firm contact with the foil which serves as the connection to the case of IC1, and install R1 and R2. Clip leads 1 and 2 to about $1 / 8$ inch. Resistors R1 and R2 are not used when a 340-8 is used as ICl.

If the timer is to be used on $60-\mathrm{Hz}$ power, do not use D2 or D3, but instead solder a jumper in the D2 position. (For $50-\mathrm{Hz}$ operation, use a transformer with a $50-\mathrm{Hz}$ or 50 to $60-\mathrm{Hz}$ primary, and use D2 and D3, which will change the output of Q1 to 100 Hz . On the main board, cut the connection from IC1-1 to IC1-6, and jumper $\mathrm{ICl}-1$ to $\mathrm{ICl}-13$ to change ICl to a decade divider to give the required 10 Hz output.) Mount the transformer with two No. 6-32 $\times 3 / 8$ screws, again with the heads on the foil side. Solder the transformer, relay and IC2 in place. The IC may be soldered without a socket. The triac doesn't need a heat sink for loads up to 150 watts, and is supported by its leads. For loads between 150 and 600 watts, mount the triac on a heat sink whose thermal resistance doesn't exceed $3^{\circ} \mathrm{C}$-perwatt. In each of the three speaker holes, install a 6-32 $\times 3 / 8$ screw, heads on the foil side, and fasten one nut firmly to each screw. If the holes were properly drilled, the speaker should be able to rest on the nuts just installed. Install one additional


FIG. 4 (above)-POWER-SUPPLY CIRCUIT also contains the audio circuit that develops 1second pulses.

FIG. 5 (left)-COMPONENTS SIDE of the main circuit board. Note the size marked.

FIG. 6 (bottom left)-FOIL PATTERN on the other side of the two-sided board.
nut on each screw to secure the speaker and solder the two speaker connections to their pads. Refer to Fig. 11 for details. Set the board aside.

Continue with the main board. Sockets are highly recommended for all IC's, and imperative for the calculator IC. The displays are installed in Molex Soldercon sockets. When using these sockets, do not press them directly against the board unless you are sure that they will not short to foil patterns running between them. All pushbuttons, rocker switches, LED's and displays go on one side, and the remaining parts and jumpers on the other. Mount components in this sequence: resistors, diodes, transistors, jumpers, capacitors and ICl-16's sockets. On the other side, mount the display's sockets and the three LED's. The LED's mentioned in the parts list were selected for their small diameter, .085 inch, and pleasing appearance. Their lead length, however, is only 0.25 inch. To raise the


## POWER SUPPLY PARTS LIST

All resistors $1 / 4$ watt, $10 \%$
R1, R8-220 ohms
R2-91 ohms
R3-100,000 ohms
R4, R5-6800 ohms
R6, R7-47,000 ohms
C1-220 $\mu \mathrm{F}, 35$ volts, electrolytic
C2-. $01 \mu \mathrm{~F}$
Q1-2N222, RS-2031 (Radio Shack) or any NPN silicon transistor with a beta between 50 and 150
Q2-200-volt, 10 -amp triac. Sylvania ECG 5633 or equal
Q3-Optional, same as Q2. See text.
IC1-309K or 340-8 voltage regulator
IC2-555 timer
D1, D4-7-1N4001, Radio Shack 276-
1101 or any 25 -volt, 1 -amp silicon diode D2, D3-Silicon diode, see text.
RY1-Relay, SPDT contacts, 12-VDC coil. Guardian 1345-1C-12D, Essex 64-902 or Cornell-Dubilier 603-12V
T1-Transformer, 120 volts to 12.6 volts, 300 mA . Radio Shack 273-1385 or equal
Miscellaneous-Speaker, 3-16 ohms, 2-2 $1 / 2$ inches. Power cord, 8 feet, No. 18, 3 conductors. Strain relief.
tip of the LED's to the same height above the board as the 7 -segment displays ( 0.6 inch), solder solid-wire extensions to the LED leads or use larger LED's. Finish by installing the switches. Do not install the IC's or displays at this time. Set the board aside.

The case can be easily made as shown in Figs. 10 and 11, or purchased ready-touse. Strip about 18 inches of outer jacket from the line cord and install the cord through the side of the case with a strain


FIG. 7-THE POWER SUPPLY CIRCUIT BOARD is single-sided. Again, be sure to note the dimension across the top as this board is not drawn actual size.
relief. The duplex outlet will have 2 silvery screws in a silvery metal strip on its cold side, and a brass-colored metal strip with either 2 silver or 2 brasscolored screws on the hot side. Break the thin brass strip connecting the 2 screws on the hot side to isolate them from each other. Leave the 2 screws on the cold side in common with each other. Shorten the green and white leads on the line cord from 18 to 6 inches. Connect the green wire to the green screw on the outlet, and the white wire to one of the cold screws. Connect one end of the remaining 12 inches of white wire to the other cold screw, and the other end to one side of Tl's primary (hole B in Fig. 9). Connect
one end of an 18 -inch wire to each of the remaining holes on the power supply board. The wires to holes A and C should be No. 18 gauge. The remaining ones can be No. 24 or 26 . Temporarily connect the wire from hole A to the black wire in the line cord. Interconnecting wires should be stranded.
Attach the board to the rear half of the case as shown in Fig. 11. Mount it so the transformer is toward the bottom of the case (when mounted on a wall). The outlets can be on either the right or left side to suit your darkroom's layout. Connect the No. 18 wire from the triac (hole $C$ on the power supply board) to one of the unused hot screws on the outlet sock-
 COMPONENTS. HOLES T-T TO Z-Z ARE JUMPERED TO EACH OTHER ON REAR SIDE OF BOARD.
FIG. 8-PARTS PLACEMENT ON THE MAIN CIRCUIT BOARD. Note that the keyboard mounts directly


FIG. 9-PARTS PLACEMENT ON THE POWER-SUPPLY BOARD. Note that the speaker and audio circuit components are also placed on this board.


FIG. 10-FOLLOW THESE GUIDES FOR MAKING HOLES in both the front and rear panels of the case. Be sure to follow the listed dimensions accurately.
et, and the wire from hole $D$ to the remaining unused hot screw. Secure the duplex receptacle outlet to the case with a single $6-32 \times 3 / 8$ screw in its center hole. Either scrape the paint from below the head of this screw or use a star washer
under the head to cut through the paint and into bare metal. It is imperative that the head of this screw be in excellent electrical contact with the case for safety. Mount the phono-type jack used in conjunction with a foot switch as a remote

START/STOP switch with two $4-40 \times 1 / 4$ screws. Make sure the ground terminal is in intimate contact with bare metal on the inside of the case.

Verify that the clearance between the foil side of the board and the case is adequate, and plug a 15 -watt lamp into the socket connected to hole D , the safelight socket. Plug the line cord into the 120 -volt power line. A steady tone should be heard and the lamp should light. Grounding IC2-4 should turn the tone off. Measure +7.5 to +8.5 volts DC at hole E , and 30 to 70 percent of this voltage at hole J. Vary R4 if outside the 30 to 70 percent range. Ground hole H or I and verify that the lamp goes off. Move the lamp to the other outlet and verify that it lights when hole H or I are grounded.

Interconnect the main and power supply boards and the front panel switches and remote START/StOP jack as shown in Figs. 3 and 4. Remove the temporary connection between the line cord's black wire and T1's primary, and make the permanent connections shown in Figs. 3 or 4. Epoxy the red filter in place over the cutout in the panel for viewing the displays. This should be one of the very first things done when assembly initially starts. Connect main board to front panel as shown in Fig. 11.

## Testing

With all the IC's and displays removed from the main board, power the unit. Verify that the AC power switch works, and that the focus switch activates the relay. Verify that $B+$ is present on each of the IC's power pins as shown in the table in Fig. 3. Shut power off and install the calculator IC, the four readouts and IC2. The displays, when power is reapplied, will usually show one, but occasionally two, zeroes in the right position(s). A decimal point will show if the TIME switch is in the SEC position, and a colon if in the min/SEC position. The overflow LED and audio will be on. Enter 9, 87, 7, 6 and verify that these digits show on the display. If odd characters appear, look for solder bridges near the display sockets, using a loupe of about 10 power. If none of the numbers appear on the display, check orientation of IC7 in its socket, the voltage at IC7-15 and that IC7-12 is at ground. If these tests pass, measure the voltage at IC7 pins 6,7 and 8. The voltage at these pins should be high only when a pushbutton is pressed or a switch inside IC8 or IC11 is closed. If high at this time, either one of the pushbuttons is defective, or a solder splash exists somewhere, probably near IC8 or IC1I's sockets. After getting the correct results, turn the unit off and then on to clear the display. Enter 5], 4, [3, 2] and verify the display. Again, momentarily turn off the unit, then enter and verify the 1,0 entry. Turn the unit off and install the remaining IC's, being careful to minimize touching the leads to prevent static elec-


FIG. 11-CASE BENDING INSTRUCTIONS for the builder who wants to make his own case. The detail at the right shows how the speaker is positioned and mounted inside the case.


FIG. 12-SIMPLE TEST CIRCUIT produces a single bounce-free output each time you push the switch.
tricity damage. Before applying power to the unit, double check the orientation of the IC's. Apply power and verify that the audio switch works. Enter any 5 digits. When the fifth one is entered, the overflow LED should light. Clear the display using the clear button (one zero will remain). With the time switch in the min/SEC position, enter any 2 digits and press the START button.

About 0.5 second later, the relay will energize and the timing cycle will begin. Allow it to complete, and verify that the selected time reappears at completion. Enter 2 new numbers and reinitiate the cycle. Interrupt it with a single push of the pause button. A second push should allow the cycle to continue. Interrupt it again, this time with the start/STOP button. The time last entered should reappear in the display.

Enter 1, 1, [0 ( 1 minute and 10 seconds) and start the cycle. Verify that the display jumps from 1:00 to :59.

Move the time switch to the SECONDS position, enter any number and verify operation. The fickering of the display in the SECONDS mode is normal. It occurs because during the computation period, the calculator IC blanks its segment and digit outputs until a valid final answer is produced.

The audio signal produces one beep for each second selected on the minutes/
seconds range. In the seconds range, there may be one additional beep more than the number of whole seconds selected, depending upon the size of the fractional seconds entered. For example, an entry of $2 \square 2$ will give 2 beeps, and an entry of $2 \square 4$ will give 3 beeps. An entry of 203 will give 2 solid beeps and maybe a half-hearted third one also, depending upon the speed of your particular calculator IC and the position of its internal oscillator when you happened to start the cycle.

Most discrepancies will be due to construction errors such as miswiring, bad soldering, etc., or defective IC's. I have had difficulties when using 4017's manufactured by mitel Semiconductor whose part identification prefix is SIL. Usually, one of the 10 outputs refuses to go high. If the failed output is unused, the IC is OK to use since usually the good outputs go high at the correct time. Integrated circuits IC6 and IC10 can be interchanged as can be many other pairs of IC's.

Several innocent-looking capacitors are vital to proper operation. Capacitor C3, if too small or open, will cause timing accuracies to be off as much as $20 \%$ or cause the decrementing to look erratic, and make the unit sensitive to line transients. If line transients are suspected of causing large jumps in the display's contents, try increasing C3 to $0.1 \mu \mathrm{~F}$, adding no more than $0.1 \mu \mathrm{~F}$ from the collector of Q 1 on the power supply board to ground, and/or adding capacitance across the secondary or primary of T1.

Capacitor C4, if too small or open, will cause difficulty in entering numbers, selfstarting while entering numbers, or premature ending of the timing cycle. If C6 is too small, it could cause 41 to be subtracted at undesired times.

Calculator IC's aren't designed for a $10-\mathrm{Hz}$ counting rate. To make this unit operate reliably at this rate, IC7's internal clock was speeded up by reducing R21 to 75 K from the manufacturers' recommended 470 K . My prototypes operated
properly with three IC's manufactured at widely different times. If R21 is too small, the internal clock will harmlessly stop, while if too large, the timing interval on the SECONDS range will be about double the desired value.

For difficult problems, wire the test circuit in Fig. 12, which produces a single bounce-free output each time the pushbutton is pressed. Break the connection between holes $J$ and $J$, and connect the test circuit output to hole $J$ on the main board. You can now single-step the timer through its sequences, remembering that 6 pulses are required to produce a single output from IC1-5.

When using a scope to look at the outputs of IC7 or most other points in the circuit, connect the scope's external trigger input to D 1 (a convenient test point can be made by inserting a bare loop of wire in the holes adjacent to IC7-10 and IC7-11). Adjust the controls so triggering is on the positive polarity. Connect the vertical input to D1 and adjust the horizontal gain and centering until D1 is high between the first and second vertical lines on the scope's graticule (assuming 10 major divisions and 11 vertical lines). Move the vertical input to D9, IC7-16. If the horizontal controls are properly set, the trace should be high between the ninth and tenth vertical lines. (If your scope's external trigger input is capacitively coupled, add a 100 K resistor from D1 to ground.) As an example of using this setup, suppose that pressing the keys would not enter numbers in the display. Suspecting that either KP, KN or KO is always high or continuously being pulsed high, you scope these points. If you noted that KO was high between the fourth and fifth vertical lines, the D4 time slot, you should suspect everything associated with the Minus function (IC8-10, IC8-11 and the drive circuits to IC8-12). Similarly, if 41 isn't being subtracted at whole-minute intervals, enter the numbers [2, 0, 0 and make sure that IC4-11 is low in the D8 and D9 time slots, IC15-4 is high during the D8 time slot, IC15-3 is high during the D9 time slot, IC15-11 is high during the D8 and D9 time slots, etc. Ignore signals occurring during D1 to D4.

Fasten the halves of the case to each other with four sheet metal screws. The timer is ready for use.

## Parts substitution

Although the only custom parts are the cabinet and PC boards, several parts are difficult to obtain. For example, Datanetics has a minimum billing of $\$ 25$, and GI's Los Angeles-area distributors have minimums of $\$ 10$. But since the calculator IC is not a heavy-demand item, distributors don't stock it and are reluctant to order the necessary quantity from the factory.

The remaining items should all be readily available from R-E's advertisers continued on page 60

# VIDEO <br> MODULATORS 

> If you are into VTR's, TV games, home computers and TV modulator must be used to feed modulated RF to


ATARI model CA-010410

SUP "R" MOD II, cables and switch included

RF-1 RF modulator
MODEL E \& P


RFVM-1 sold by Vamp and Quest Electronics


VD-1 by Ramsey
ex



## FRED BLECHMAN K6UGT

# turn your TV into a video monitor 

cameras in security and surveillance systems, a video TV set used as monitor. Here's what modulators are about.
market for a separate video-modulated VHF oscillator that allows the owner of a video game, camera, recorder or home computer to use the device with a standard TV set.

These VHF oscillators have many different names: RF modulator, VHF modulator, RF oscillator, video-to-TV interface, video-to-RF modulator, etc., but in this article we will use the general term of "video modulator," even though this is technically incorrect. (The device is not modulating the video-it is being modulated by the video!) Some manufacturers have sensed the need for this device among hobbyists and experimenters, and the Comparison Chart shows 14 video modulator sources. Many of these devices (and maybe others) are available at computer shops.

Figure 1 shows a simplified block diagram for a typical video


FIG. 1-BLOCK DIAGRAM OF VIDEO MODULATOR.
modulator. The video signal from the camera, computer, recorder or game should be the standard NTSC (National Television System Committee) format used in the United States, Japan, Canada and Mexico. This means that the picture carrier is modulated so a decrease in scene brightness causes an increase in output power. This is known as negative modulation polarity. With negative modulation polarity, the picture content may vary the transmitter output power from $15 \%$ for white level to $75 \%$ for black at the blanking level. The horizontal sync pulse rides atop the blanking pulse-extending into the blacker-thanblack level at $100 \%$. The tunable VHF oscillator generates a sinewave on a locally unused TV channel; this sinewave signal becomes the carrier. In the mixer, the video signal amplitudemodulates the VHF carrier with negative modulation polarity. This modulated VHF carrier connects to the antenna terminals


PXV-2A Pixe-Verter

TV-1 video to TV interface


PXP-4500 Pixe-Plexer from ATV Research


Model 1-7 RF modulator


E \& P video modulator


VIDEO CUBE 5500-R from Delta Electronics


NOTES: E $\equiv$ EXCELLENT $G=G 00 D \quad F=F A I R$ P POOR $Y=Y E S N=N D$ "E\&PSTAMPED ON CASE IS ONLY IOENTIFICATION
(1) RCA PHONO JACK. (2) NOT TESTEO - SEE TEXT. (3) UNIT WILL NOT WORK WITH NTSC VIDEO-SEE TEXT. (4) VARIES WIth INTERFACE CIRCUIT
(5) F-59 CONNECTOR SUPPLIED. (6) INFORMATION NDT AVAILABLE. WRITE COMPANY FOR SPECIFICATIONS, PRICE AND AVAILABILITY.
of a standard black-and-white or color TV set. When the TV set is tuned to the VHF carrier frequency, the information contained on the video signal is displayed conventionally. For most units tested, a TV antenna switch or a balun transformer ( 75 ohms to 300 ohms ) is needed for connection to the TV antenna terminals.

## Evaluating the modulators

Bob Buckner, an electronics consultant, built all the kit units reported on, and did the majority of the data compilation. He and I did the comparative testing together. Gene Hill, co-owner of UHF Associates, provided most ot the units for building and testing, with the understanding that the "chips fall where they may" in the evaluations. (As it turned out, the two UHF Associates units were outstanding, and the reader will have to take my word that my objectivity was not influenced by the cooperation of UHF Associates!)

Twelve different video modulator designs were examined for this article, although some were available from more than one source. Each design was different in circuitry, layout and components, although some similarities existed. Two sources distribute the E \& P unit: Formula International, Inc., and Godbout Electronics. Although this was the least expensive assembled unit, it appears to be wired for a positive-sync, video input signal, since we could not receive anything except a negative picture that would not synchronize with the TV. Inverting the input video signal with a properly biased transistor circuit would probably allow this unit to be used with a standard TV set. However, this was not tried.

Figure 2 shows the schematic of the UHF Associates model


FIG.2-UHF ASSOCIATES MODEL $T V-1$ schematic diagram.
TV-I modulator, distributed by Jade Computer Products and Quest. The VHF frequency is generated by a tuned Hartley oscillator circuit. Resistors R2, R3 and R4 bias the transistor, with tapped printed-circuit inductor Ll and trimmer capacitor Cl forming the tank circuit. Adjusting C 1 determines the frequency. Capacitor C2 provides positive feedback from the tank circuit to the emitter at Q1. Capacitor C4 provides an RF ground for the base of Q1. Bypass capacitor C5, together with resistor R1, filters the radio frequencies generated in the tank circuit to prevent radiation from the power-supply lines.
The video signal enters the parallel combination of resistors R5 and R6; this combination closely matches the 75 -ohm impedance of most video cables. Resistor R6 is a small screw-driver-adjusted potentiometer that is used to control the video input level to mixer diodes D1 and D2. These diodes are operated in their nonlinear region to mix the video signal with the VHF carrier. With no video input, the VHF carrier, which is loosely coupled to the mixer by capacitor C3, passes through D1 to voltage divider R7-R8. The output impedance is 75 ohms, to match standard video coaxial cable. As the video signal leaves video level control R6, it encounters the ferrite bead; this bead
blocks any RF on the video-input line, yet passes the video signal on to diodes D1 and D2. This video signal effectively biases the diodes, allowing them to conduct or block the carrier signal, thus modulating the carrier. For example, as the video signal amplitude goes positive, D2 is forward-biased toward ground, so the carrier amplitude is decreased. However, as the video signal goes negative, and grows even more negative to the sync level, D2 cuts off and the maximum carrier amplitude (minus the diode voltage drop) passes through D1 to R7-R8. Therefore, white-level video signals yield the lowest VHF carrier output, and sync pulses are the highest, as shown in Fig. 1!

## Comparison chart

The sources, prices and shipping information shown in the Comparison Chart were correct as of early March, 1978. The output channels and supply voltages are those specified in manufacturer's literature. Some units might be tunable beyond the specified channels. The supply voltages are all positive, except for ATV's Pixe-Verter, which requires a negative voltage. The video input on those units designated in the chart with a " $Y$ " (for "Yes") consists of a small potentiometer, usually with a screwdriver slot for adjustment. Most units do not have video input or VHF output connectors, this being left up to the user's discretion to suit a particular application. Those units that do have connectors use standard RCA phono jacks, except for the Vamp unit, which has one F-59-type RF connector supplied with the kit.

The performance parameters were judged based on comparisons with other units. The peak-to-peak video voltage was measured using an oscilloscope, with the "minimum" standard being that point below which the picture quality was noticeably affected. For those units with a listed voltage range, the test was conducted at the minimum voltage.

Since a video modulator might be operated in or near a computer terminal, each modulator was used to display a color signal while near a Radio-Shack TRS-80 computer, and the interference from the computer was evaluated. In many cases, the interference was hardly noticeable, even though most units were unshielded and clip leads were used for making some connections. Probably if shielded wire and connectors are used and a metal enclosure is placed around each unit, the RF interference from the computer would not be a problem.

The most difficult judgment involved was that of picture quality using a black-and-white video camera and a color TV video signal. The camera was an FS II from Advanced Video, and all the negative-sync-output modulators provided good to excellent results, except for the Videocube. The Videocube requires special matching, depending on the mating circuits, and the results could probably be improved by further refinements.

The color video source was the video output of an RCA SelectaVision video cassette recorder, and most units provided a surprisingly good picture. in some cases, jockeying of video input level and supply voltage was required; once tuned properly, however, the color and contrast were good. Again, the exceptions were the positive-sync units, which were unusable with a standard video signal.

The test that really "separated the men from the boys" was when we tried to receive a video signal from a computer through the TV front end! The Radio Shack TRS-80 computer was used with each video modulator and displayed on a Midland model 15-023 12-inch black-and-white TV set. The computer produces 16 lines at 64 characters-per-line, and the results were compared with a direct video connection to the TRS-80 12 -inch black-ạnd-white video monitor. Under no conditions in our tests could a video modulator duplicate the clarity that was obtained by this direct connection to the video monitor. This is not really surprising when you consider that the effective video bandpass of even a good TV receiver is no more than 4.0 MHz , while the video monitor is rated at $5.5-\mathrm{MHz}$ maximum bandwidth.

Next month we'll continue this discussion and then take a detailed look at the products of each manufacturer as listed in the comparison chart.

# Radio-Electronics Tests ReVox 

# Model B-760 FM Tuner 

LEN FELDMAN<br>CONTRIBUTING HI-FI EDITOR

ANYONE READING THE PUBLISHED SPECIFIcations of the model $B-760$ stereo FM tuner manufactured by Studer ReVox America, Inc. ( 1819 Broadway, Nashville, TN 37203), and familiar with the new U.S. tuner measurement standards as adopted by the IHF and the IEEE, will immediately realize that the manufacturer's specs are not written in accordance with the approved standards (as of this writing). We realized that this would make it difficult to compare published claims with actual measured performance, but we also felt that it was appropriate to measure this fine tuner in exactly the same way that we measure other tuners. This, as we came to learn, was particularly important in distortion measurements where $40-\mathrm{kHz}$ deviation signals resulted in one distortion reading, while full $75-\mathrm{kHz}$ deviation yielded another.

The front panel of the model $B-760$ is shown in Fig. 1. The left side of the front panel contains a POWER on-off switch, with a superimposed indicator light and phone jack just below. A switch immediately to the right of these controls is used for introducing optional Dolby noise reduction (our unit was not equipped with this extra circuit module), and a light above this switch illuminates when the Dolby unit is activated. The volume control just below is then used for varying the headphone output level. The selected-station frequency is displayed digitally above two meters (a signalstrength meter and a center-of-channel meter). Pushbuttons below the meters are used to store frequencies in the system's memory bank, introduce a station blank for any given memory pushbutton, add or cancel a fixed $25-\mathrm{kHz}$ to the tuned-to frequency that is displayed and select manual tuning, which then permits you to use the conventional rotary tuning knob in the usual fashion. As you turn this knob, displayed frequencies move up or down in 50 -

## kHz increments.

The 15 numbered pushbutions to the right of the tuning knob are used to store favorite station frequencies. While in the manual mode, if you tune to a station that you wish to retain, just press the STORE IN MEMORY pushbutton and the numbered station selector pushbutton desired; from then on, pressing that particular numbered pushbutton instantly tunes to the selected frequency.
To the right of the 15 memory buttons are a stereo indicator, a SEPARATION switch for maximum or high-blend stereo reception and a mONO override pushbutton. A companion switch selects interstation muting or interstereo muting (this switch allows only stereo signals to come through). A muting indicator light is located above this switch, while below is another pushbutton that overrides both forms of muting.

Hidden secondary controls are located behind the upper bezel showing the trade name and model number; this bezel swings down to disclose the controls. Figure 2 shows the group of switches at the left of this area, including slide switches for selecting de-emphasis (75 or

$50 \mu \mathrm{~s}$ as well as $25 \mu \mathrm{~s}$ if an optional Dolby unit is installed) and a memory mode switch. In the READ ONLY mode of this switch, new information cannot be programmed into the tuner (to prevent accidental cancellation of previously stored frequencies), while in the READ WRITE mode, frequencies can be programmed into any of the 15 memory locations. Three

## MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Usable Sensitivity (for $40-\mathrm{kHz}$ deviation, $46-\mathrm{dB} \mathrm{S} / \mathrm{N}$ ): mono, $2.0 \mu \mathrm{~V}$ (11.2 dBf); stereo, $20 \mu \mathrm{~V}(31.2 \mathrm{dBf})$. AM Suppression: 70 dB . Selectivity (referred to $300-\mathrm{kHz}$ separation and $40-\mathrm{kHz}$ deviation): 80 dB . Capture Ratio: 0.9 dB . IF Rejection: 110 dB . Image Rejection: 106 dB . Frequency Response: 30 Hz to $15 \mathrm{kHz}, \pm 1 \mathrm{~dB}$. Harmonic Distortion (mono and stereo, L = R): 0.15\%. S/N Ratio: 75 dB . Stereo Separation ( $40-\mathrm{kHz}$ deviation, 1 kHz ): 42 dB . Subcarrier Suppression: 65 dB . Output Level: $1.16 \mathrm{~V}(400$ Hz ). Power Requirements: $100,120,140,200,220$ or $240 \mathrm{~V}, 50$ to $60 \mathrm{~Hz}, 40$ watts. Dimensions: $17 \% \mathrm{~W} \times 5.94 \mathrm{H} \times 13 \%$ inches $D$. Weight: 26 lbs., 7 Oz. Suggested Retail Price: $\$ 1145$.
(variable-capacitance) diodes and 3 bridge rectifiers. Of particular interest to those not familiar with a frequency-synthesized, digital readout tuner is the circuit design used for these functions.

The electronic storage of station frequencies and their addresses is accomplished by a 16 -bit by 12 -bit CMOS random access memory (RAM). The stored information is retained in RAM as long as the unit remains connected to the power outlet, and in the event of a power failure, replaceable alkaline batteries (stored behind the tilt-down front bezel) can be used so there is no loss of information. Extremely low current consumption (less than $10 \mu \mathrm{~A}$ ) makes storage in RAM possible for over a year from the battery supply.

The front end of the tuner contains two broadband amplifying stages, followed by six tuned filters and a symmetrical push-pull mixer stage. Eighteen dual-varicap diodes are used for tuning all tuned circuits including the local oscillator. The IF section is designed as a phase-linear toroid filter in a separate screened compartments and is completely passive. An IC-equipped broadband limiter features six amplifying stages. An automatic-gain control circuit allows the signal-strength meter to display input-signal values logarithmically, so that meaningful readings are possible from a few microvolts to more than 100 mV . The FM detector is a digital demodulator type that uses a line-demodulating principle. A phase-lockedloop circuit is used in the multiplex decoder section and, unlike most of these circuits, discrete parts were used for the phase-locked loop (not an IC). Interference frequencies above 53 kHz are suppressed through the use of a phase-linear $100-\mathrm{kHz}$ low-pass filter, a bandpass filter ( 23 kHz to 53 kHz ) and separate $114-\mathrm{kHz}$ and $130-\mathrm{kHz}$ rejection filters plus a $19-\mathrm{kHz}$ pilot tone rejection filter

## Lab measurements

Table 1 summarizes our lab measurements, which were taken in accordance with IHF measurement standards; they therefore do not readily lend themselves to comparison with the manufacturer's currently published specifications. The $50-\mathrm{dB}$ quieting value was exceptionally good in both mono and stereo, as were the ultimate signal-to-noise ratios obtained for a $65-\mathrm{dBf}$ input signal at $100 \%$ modulation. Image, IF and spurious rejection measurements were limited by our test equipment, which can only read these figures up to 100 dB (hence, the " + " notation after each one).

We encountered difficulties when we began to measure harmonic distortion at the three prescribed test frequencies in mono and stereo. As long as we used the DIN values of $40-\mathrm{kHz}$ deviation, distortion readings were quite low; but as deviation was increased to meet U.S. standards, the readings began to rise over the last few kHz of modulation. The distortion figures shown in parentheses are those obtained using $\pm 40-\mathrm{kHz}$ modulation, while the higher figures are those obtained using $\pm 75$ kHz modulation. Although the high-deviation results were not bad, they would have been much better if the design had been adjusted for U.S. modulation extremes. The significance of this difference is of little importance if you are listening to a station that carefully monitors its modulation depths, but, as most people know, many stations not only reach but sometimes even exceed the $100 \%$ modulation limits. It is common practice for many popular and rock music stations to use high compression levels (decreasing dynamic range) and, at the same

## TABLE 1

RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Studer/ReVox
Model: B-760
FM PERFORMANCE MEASUREMENTS
SENSITIVITY, NOISE AND
FREEDOM FROM INTERFERENCE
IHF sensitlvity, mono: ( $\mu \mathrm{V}$ ) ( dBf )
Sensitivity, stereo ( $\mu \mathrm{V}$ ) (dBf)
$50-\mathrm{dB}$ quieting signal, mono ( $\mu \mathrm{V}$ ) (dBi)
$50-\mathrm{dB}$ quieting signal, stereo ( $\mu \mathrm{V}$ ) ( dBI )
Maximum S/N ratlo, mono (dB)
Maximum $\mathrm{S} / \mathrm{N}$ ratlo, stereo (dB)
Capture ratio (dB)
AM suppression ( dB )
Image rejection (dB)
if rejection (dB)
Spurious rejection (dB)
Alternate channel selectivity (dB)
FIDELITY AND DISTORTION
MEASUREMENTS
Frequency response, 50 Hz to 15 kHz ( $\pm \mathrm{dB}$ )
Harmonic distortion, 1 kHz , mono (\%)
Harmonic distortion, 1 kHz , stereo (\%)
Harmonic distortion, 100 Hz , mono (\%)
Harmonic distortion, 100 Hz , stereo (\%)
Harmonic distortion, 6 kHz , mono (\%)
Harmonic distortion, 6 kHz , stereo (\%)
Distortion at $50-\mathrm{dB}$ quieting, mono (\%)
Distortion at $50-\mathrm{dB}$ quieting, stereo (\%)
STEREO PERFORMANCE
MEASUREMENTS
Stereo threshold ( $\mu \mathrm{V}$ ) (dBf)
Separation, 1 kHz (dB)
Separation, 100 Hz (dB)
Separation, 10 kHz (dB)
MISCELLANEOUS MEASUREMENTS
Muting threshold ( $\mu \mathrm{V}$ ) ( dBf )
Dial calibration accuracy ( $\pm \mathrm{kHz}$ at MHz )
EVALUATION OF CONTROLS,
DESIGN, CONSTRUCTION

| Control layout | Excellent |
| :--- | :---: |
| Ease of tuning | Superb |
| Accuracy of meters or other tuning aids | Excellent |
| Useruiness of other controls | Excellent |
| Construction and internal layout | Superb |
| Ease of servicing | Very good |
| Evaluation of extra features, li any | Excellent |
|  | Very good, |
| OVERALL FM PERFORMANCE RATING | see text |

time, push modulation to the limit so that they will be the "loudest station on the dial" as you traverse the FM frequency band.

Stereo separation was very good, and as claimed. Figure 6 is a scope photo showing a continuous plot of separation and frequency

response (including $75-\mu \mathrm{s}$ de-emphasis). Vertical divisions in Fig. 6 are equal to 10 dB of amplitude difference. The frequency response of the desired channel (shown by the upper trace) was well within 1 dB of the prescribed
curve from 30 Hz to 15 kHz .
The variable muting and variable stereo only threshold controls cover a wide range and enable users to take proper advantage of these features regardless of signal conditions in their areas.

## Summary

An overall product analysis is given in Table 2 , together with our summary comments.
As indicated, the sound quality was excel lent, with background noise on strong-signal stations pushed so far down as to be inaudible both in mono and stereo. Construction details (not apparent in the photos) include totally modular design, chrome-plated shield plates and zinc castings for the front-panel side sections and light alloy profiles to complete the subdued-looking front panel and its hinged bezel. Rear-panel connections are recessed so that plugs never interfere with a back wall or surface against which the unit is to be mounted.
Many of you may be familiar with ReVox's superb open-reel tape decks that, although they are often purchased for home use, are regarded generally to be of true professional

## B-760 UPDATE

After we completed our lab measurements, we advised the U. S. headquarters of Studer ReVox in Nashville of our findings regarding harmonic distortion readings when we applied full (U.S. standard) modulation to the prototype unit supplied to our lab.

The company immediately sent a Telex to the European headquarters, and has since been advised that this early prototype was typical of detector bandwidth requirements in Europe, where stations are often crowded even more closely together than in the U.S. Studer ReVox also reported that modifications incorporated in model B-760 units being shipped to the U.S. have resulted in a lowering of the THD figures so that their present published specification will read $0.1 \%$ THD (for $40-\mathrm{kHz}$ modulation) as compared with $0.15 \%$ THD as first specified. Units presently in production are typically running $0.05 \%$ distortion for 40 kHz deviation and around $0.1 \%$ for a full $\pm 75 \mathrm{kHz}$ modulation, such as is practiced in the U.S. The manufacturers appreciated our bringing this matter to their attention, and we, in turn, thanked them for their prompt response and action. If their currently reported distortion measurements prove to be the case with units now being shipped to the U.S. (and that would mean all units, since our measurements were conducted upon a first available prototype), this would negate our only criticism of this excellent tuner.

## TABLE 2

RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Sfuder/ReVox
Model: B-760
OVERALL PRODUCT ANALYSIS

Retall price
Price category
Price/performance ratio
Styling and appearance
Sound quality
Mechanical performance
High
Very good
Excellent
Excellent
Superb
Comments: Compared with previously tested frequency-synthesized, crystal-controlled digital readout FM stereo tuners, this latest entry from Studer ReVox is something of a bargain. Of the other two poputar models currently available (Sherwood's model MicrofCPU 100 and Lux's model 5750, the former has nonvolatile memory for four favorite stations, while the latter "remembers" up to seven. The ReVox model (selling for considerably less) stores in its memory up to 15 of your favorite FM stations and will, like other frequency-synthesized tuners on the market, guar antee tuning accuracy (and, hence, lowest distortion) that is governed only by the accuracy of the reference crystal-in this case, $0.005 \%$, or 5 parts-per-million. An additional (if not obviously) advantage is that the ReVox model can be tuned in increments of as litte as $25 \mathbf{~ k H z}$. This means that it will not only take care of European FM station frequency assignments (these can be as little as 50 kHz apart from each other in certain countries); but if you want to use a wireless FM microphone with this tuner, its tuned-to frequency does not have to be a multiple of 100 kHz , or 200 kHz , and you would stlll be able to tune to it with great precision and low distortion. The one design flaw was that the IFdetector section could not hande U.S. high-modulation levels, as explained in the text. Even so, the measured distortion levels were, in most cases, lower than the inherent distortion of the program sources (and modulation practices) of many FM and stereo FM stations in the U.S. We belleve that once ReVox is aware of this problem, a quick fix will be found, since at lower modulation levels (up to $70 \%$ of U.S. standards). distortion is as low as one could expect from an otherwise excellent tuner.
quality and ruggedness. It appears that much of the same design philosophy has been applied to the model B-760 tuner, and it should enjoy good acceptance from those audiophiles who really care about the quality of their FM equipment. If there had not been a small problem in measuring distortion, our overall pro-
duct rating might have been an "excellent" or even a "superb." Under the present circumstances (which may well be modified by the manufacturer) we can only assign a "very good" to this product, taking due account of its price and other remarkable performance and convenience features.

# Shure V15 Type IV Phono Cartridge 

LEN FELDMAN<br>CONTRIBUTING HI-FI EDITOR

ShURE BROTHERS' LATEST CONTRIBUTION TO phono cartridge science is the model V/5 Type $I V$, a pickup that introduces several new design features that, altogether, significantly improve its trackability-the ability of the stylus to stay in contact with both walls of a record groove at extremely light tracking forces. The model V15 Type IV is shown in Fig. 1.

The effective stylus mass in the model V15 Type IV has been lowered to 0.29 milligram, a reduction of approximately $12 \%$ compared with Shure's model V15 Type III cartridge.

This reduction was accomplished by using a telescoped shank structure and a lightweight, high-energy magnet. The model V15 Type IV also incorporates a two-function bearing system that Shure claims has been independently optimized for low and high frequencies. Another feature of the stylus assembly is its hyperelliptical nude diamond tip.
Very low-frequency record warps (between 0.5 Hz and 8 Hz ) can result in changes in the distance between the cartridge and the record. These changes can cause groove skipping, cartridge bottoming, signal wow and even amplifier or speaker overload. The model V15 Type IV cartridge features a built-in, viscous-

## MANUFACTURER'S PUBLISHED SPECIFICATIONS:

Frequency Response: 10 Hz to $25,000 \mathrm{~Hz}$. Trackability (at 1-gram tracking force, mounted in SME tone arm): 29 cm -per-second at $400 \mathrm{~Hz} ; 42 \mathrm{~cm}$-per-second at 1 kHz ; 47 cm -per-second at $5 \mathrm{kHz} ; 37 \mathrm{~cm}$-per-second at 10 kHz . Output Voltage (at $1 \mathrm{kHz}, 5$ cm-per-second peak recorded velocity): 4.0 mV -per-channel. Channel Balance: within 2.0 dB . Channel Separation: minimum, 25 dB at $1 \mathrm{kHz} ; 15 \mathrm{~dB}$ at 10 kHz . Optimum Load: 47,000 ohms in parallel with $200-\mathrm{pF}$ to $300-\mathrm{pF}$ capacitance per channel. Inductance: 500 mH . DC Resistance: 1380 ohms. Tracking Force Range: 0.75 gram to 1.25 grams. Force Exerted by Dynamic Stabilizer (added to arm tracking force setting): 0.5 gram. Mounting Centers: 12.7 mm (standard, 0.5 inch ). Net Weight: 6.4 grams. Suggested Retail Price: $\$ 150$.
damped dynamic stabilizer. Because it is vis-cous-damped, the stabilizer also resists sudden warp-caused changes in motion, thereby maintaining a proper vertical tracking angle and


CIRCLE 103 ON FREE INFORMATION CARD
stylus tracking force.
Static charges on a record can attract the cartridge to the record surface, again changing the arm-to-record distance, vertical tracking angle and stylus tracking force. Static electricity also discharges through the stylus and amplifying system and is often heard as rapid pops and clicks. The model V15 Type IV deals with this problem by having a group of over

10,000 electrically conductive fibers in the dynamic stabilizer. This brush-like arrangement sweeps the record grooves, picks up the static electricity and discharges it through the cartridge ground terminal. The fibers also sweep the record grooves free of dust, and are ultra-fine with an approximate diameter of 7.6 microns ( 0.0003 inch).

Three types of replacement stylus assemblies are available for the model VIS Type IV cartridge. The model $V N 45 H E$ is a hyperelliptical nude diamond-tip stylus assembly, which is the exact replacement for the stylus assembly supplied with the original cartridge. It is identified by a black grip and a black nameplate. The model VN4G stylus assembly features a 0.0006 -inch-radius spherical (conical) nude diamond tip, and is identified by a black grip and a gray nameplate. For playing monophonic 78 RPM records, a biradial (elliptical) nude diamond tip is provided in the model $V N 478 E$ replacement stylus assembly. This tip has radial dimensions of 0.005 inch by 0.0025 inch, and will track at forces between $3 / 4$ gram and $11 / 4$ grams.

## Laboratory measurements

Results of our laboratory measurements of the model VI5 Type IV cartridge are summarized in Table 1. Two types of test records were used to measure cartridge frequency response. The first record, STR-100 (manufactured by CBS Records) offers constant velocity signals up to 500 Hz , at which point the cut switches to constant velocity ( 5 cm -per-second). The second record, CBS STR130 , is recorded using the standard RIAA recording curve. We translated the first results (from the STR-100) below 500 Hz to the equivalent of constant velocity so that a flat response curve could be presented. For the STR-130 tests, we used a laboratory preamplifier that has an accuracy of better than $\pm 0.2 \mathrm{~dB}$ over the entire RIAA range from 20 $\overline{\mathrm{H}}$ to $20,000 \mathrm{~Hz}$. We suspect that the small deviations in these test records are probably greater than any deviation from the flat response of the cartridge itself, and so we averaged the two results to plot the final response curve, (the upper trace in Fig. 2). Shure Brothers, in their own production-line testing, used a frequency-response envelope that is only $\pm 1$ dB wide to around 8 kHz , increasing to around $\pm 2.5 \mathrm{~dB}$ at $20,000 \mathrm{~Hz}$. This "limit envelope" is shown in Fig. 3. Note that in Fig. 2, our test sample performed considerably better than the limits permitted by Shure, with variations less than $\pm 1 \mathrm{~dB}$ from 20 Hz to 20 kHz .

The lower curve of Fig. 2 shows the separation between channels obtained over the entire audio range; again, this separation far exceeded Shure's minimum specifications at the two test

frequencies, 1 kHz and 10 kHz .

## Summary

The overall product analysis, together with our summary comments, is in Table 2.

TABLE 1
RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Shure Brothers Inc.
Model: V15 Type IV
PHONOGRAPH CARTRIDGE MEASUREMENTS


As with any phono cartridge, the final test is in the listening. Therefore, Shure has developed a test record containing instrumental selections (orchestral bells, flute and harp) of increasing intensity so that you can check trackability under practical musical listening conditions. The record also contains a series of subaudible tones superimposed upon music; this allows you to determine system resonance quite easily. This test record also shows how effective the dynamic stabilizer of the model V'15 Type IV is in reducing the effects of arm/ cartridge resonance, since it is possible to play these bands with and without the stabilizer for comparison. The record (Shure $T T R-115$ ) is available as a bonus to purchasers of the model V15 Type IV cartridge. Needless to say, the model V15 Type IV was able to track the most heavily recorded passages of this dise with clar-

ity and extremely good musical definition. Nor could we find any other "obstacle course" records that were beyond the capability of this cartridge. For serious-minded audiophiles who want the very best musical performance from their precious discs, the relatively high-priced model VIS Type IV cartridge will prove to be well worth its cost.

R-E

## TABLE 2

RADIO-ELECTRONICS PRODUCT TEST REPORT
Manufacturer: Shure Brothers, Inc.
Model: V15 Type IV
OVERALL PRODUCT ANALYSIS

| Retail price | $\$ 150$ |
| :--- | :--- |
| Price category | High |
| Price/performance ratio | Excellent |
| Styling and appearance | Excellent |
| Sound quality | Superb |
| Mechanical performance | Excellent |

Comments: We wonder why Shure Brothers calls their newest and most expensive cartridge the model V15 Type IV. This seems to suggest a relatively minor updating from the wellaccepted modeI V15 Type III. Actually, the mode/ V15 Type IV represents a quantum leap in engineering, performance features and concepts over the earlier model V15 Type III. Shure has managed to take into account many of the problems that plague the home user of a phonograph system and not just designed a cartridge that performs well under ideal test conditlons.

The model V15 Type IV achieves the sought-after straight-line frequency response that totally eliminates that peaked high-end shrillness encountered with many other cartridges. This may take some getting used to, since many are conditioned to expect such false high-end response from their records. Proper cartridge loading was made easier, too, since, unlike other Shure models, 200 pF of capacitance (not difficult to obtain with a few feet of audio cable combined with arm-lead and whatever other stray capacitance is "built in" to most systems) smooths out any slight upper-resonance peaks.

Our listening tests convinced us that the clean sound of the highs was also due, in part, to the lower tracing distortion made possible by the new, hyperelliptical diamond stylus tip shape. This shape not only maintains good contact with high-frequency undulations in the record groove, but also maintains that contact over a greater area of the groove wall than do conventional elliptical tips. The dynamic stabilizer, coupled with the graphite fiber destaticizer, really works-its audible benefits are easlly discerned, especially on seriously warped discs.


The PRO-2001 makes possible continuous, automatic reception of six UHF and VHF bands for all kinds of action - police, fire, Ham, weather, mobile telephone, railroad communications and more. And with its microprocessor you can program it for any 16 of 16,650 frequencies, without buying crystals!
Enter familiar area frequencies. Use the digital keyboard to punch-in actual frequencies for monitoring, storing or exploring - no codes or switches to slow you down. A special ENTER button reduces accidental entries. Digital readout shows which frequencies are being scanned, monitored or programmed into the memory. And you can monitor any frequency without entering it into the
scanner - it's like having a seventeenth channel for even greater versatility!

Search for "unknown" frequencies. The 2001's powerful search capability lets you find new, often unpublicized channels. Just enter lower and upper limits (they can even be in different bands) and select the search speed. The rest is automatic!
"Traditional" deluxe scanner features. LED channel indicators and individual lockout buttons. Automatic or manual scan. Switchable scan delay. High-speed skipper circuit. Büilt-in speaker, jacks for recorder, headphone, external speaker. With power cables for home or mobile use. The Realistic 2001 - a revolution in action radio. About $\$ 400$.*

Mabile use in some states and localities may be unlawful or reguire a permit - chectr with local authorities.

## Forest Belf fells...

## What You Need To Know About

## SPECIAL SICNAL GENERATORS

TO FIND OUT WHAT'S WRONG with a TV, hi-fi stereo system, or any other receiver, we must know where the circuitry fails to process its signal correctly. Spot the stage that messes up or blocks a signal, and you're more than halfway to curing the problem.

Two procedures have long served troubleshooters: signal tracing and signal injection. Both are intensely practical; both are fast; both are dependable-when you're sure of the signal being fed into the set.

That's where today's special signal generators come in handy. They produce specific, definite input signals, sometimes for the front end of a receiver, sometimes for a particular section In either case, you can be sure of what you're dealing with as you diegnose troubles, and this confidence speeds repairs. You cannot always be that certain whe7 you depend on station signals for testing.

A few generators today have evolved into multipurpose instruments that justify the term "analyzer" (which indeed several are called). This month's Special Section introduces you to sone of these unique instruments, and tries to guide you in taking advantage of the new efficient troubleshooting they can provide. This issue we cover stereo troubleshooting. Next month TV.

# Want To Fix Radios? Think Stereo 


#### Abstract

It takes a particular breed of signal generator to service quality radios. For FM stereo, you can use special-purpose analyzers or take advantage of some of the features of your TV sweep generator.


IT'S GOOD SOMETIMES TO REVISIT THE SOcalled "ordinary instruments." Like radios, for instance. Who thinks much about radios these days? Yet there are plenty of them around that need-and are worth-repairing.

Radios fall into four categories:

1. Inexpensive models, which are seldom worth bothering to fix. You can't work on them without charging a sensible fee, and that may be as much or more than a new set costs. Consider these sets as "throwaways."
2. Quite a few AM/FM clock radios and table models are good enough (and cost enough) to be worth making minor repairs. If you are familiar with these sets, they are easy to troubleshoot. A share of their troubles falls among clocks or switches that you typically replace rather than repair. Some table models are stereo.
3. Autosound has become a hot item in the electronics field. A truly elegant car stereo system now costs more than a TV set, even more than color TV in some cases. And in no way is a car stereo owner going to throw that away! Some technician will be asked to repair it whenever it doesn't sound right or goes on the blink. Besides that, a great many auto stereo systems are sold and installed by electronics dealers with service facilities. Many underdash and in-dash systems far outperform those available from the car manufacturer. (Indeed, car dealers are dipping into this quality autosound sales market by installing-or having an expert install-systems not provided by the car manufacturer.)
4. Home stereophonic and quadriphonic systems almost invariably include an AM/FM (or FM-only) tuner or receiver. In many systems, this is the prime music source. It has to be sold, installed and serviced periodically. There are few complaints about repair fees on these

[^4]systems, as long as the repair work is topnotch.

Radio servicing is not yesterday's orphan. It is today's strong, profitable business. You deal with stereo sets, in most cases. And that's no "bubble-gum-and-baling-wire" kind of servicing; it's right up there full of advanced technology.
"Never did like TV sets," one oldtime service tech told me a while back. No need for him to; he makes a respectable living fixing radios. He's good. He knows AM/FM/stereo sets inside out. From table models to hi-fi component receivers, radios are his specialty.
"I didn't think much of transistors, either," he continued. "But you learn what you need to." Watching him work, you'd think solid-state never bothered him at all.

What about IC's? "No problem," he answered. Just like that. Then, after a pause, he admitted, "Well, I have my share of dogs, but I'm learning to trust


Sound Technology model 1000A
my judgment with integrated circuits."
So, if you haven't given radios a serious look lately, it's time you did. New technology has been used in them just as in TV sets. And high-grade instruments make the servicing just as definite a process. Haphazard work has no place in troubleshooting stereo radios. They're not difficult to fix, but neither are they simple gadgets that you can repair by guesswork alone.

## What it takes

As with any electronics servicing, you
first need a no-hesitation way to move directly toward an accurate diagnosis. If you don't have your own logical troubleshooting system, consider the method I call Easi-Way. This method is a refinement of 1-2-3-4 Servicing (see box).

Additionally, you need to know what's in all those sections, stages and circuits, and how they should act normally.

Highly important today, precisely because technology has spread so rapidly into ordinary radios, are special test instruments. Chief among those designed for radio servicing is a multiplex generator. The complex nature of an FM stereo signal dictates that an instrument duplicate dependably the signals and combinations required for testing and adjusting. Just because much of the multiplex circuitry now resides in an IC does not eliminate the need for a distinct test signal. In fact, as you'll see presently, IC servicing makes a good generator absolutely necessary. Without one, you can only guess at what's actually happening in a faulty radio (or in a working radio, for that matter).

Not that there are many choices. Only a few manufacturers build generators now for servicing stereo radios. Table 1 lists those models for which we've been able to obtain information. These multiplex generators each produces a composite stereo signal that contains pilot, $\mathrm{L}+$ $R$ and $L-R$ sideband signals. The composite signal can be used alone to test multiplex sections directly, or can be frequency-modulated on an FM-band station frequency so that you can feed it through the RF and IF stages. This latter mode tests the operation of the whole receiver, from antenna terminals to speakers.

Three of the generators listed in Table 1 provide sweep alignment for FM receivers. However, each unit does this differently. The Heathkit model $/ G-5237$, for example, provides a sweep at the generator's $100-\mathrm{MHz}$ RF center frequency. The sweep width is variable to 750 kHz , which is sufficient to let you assess the $250-\mathrm{kHz}_{\mathrm{H}}$ bandwidth needed in the RF and IF stages of an FM stereo receiver. A
$5.35-\mathrm{MHz}$ crystal oscillator supplies a fixed RF signal at 10.7 MHz , so that you can "mark" the IF sweep-response curve or prealign the IF adjustments. Moreover, its 17th through 20th harmonics occur at $90.95 \mathrm{MHz}, 96.30 \mathrm{MHz}, 101.65$ MHz and 107.00 MHz . These signals let you check operation and dial calibration in the front end.

On the other hand, Sencore's model SG165 provides a sweep signal for IF alignment only. A $10.7-\mathrm{MHz}$ center frequency is swept 500 kHz wide, which is quite sufficient for testing full bandwidth (a function of the IF strip anyway, not of the RF section). A $10.7-\mathrm{MHz}$ marker identifies where the precise center of the IF passband should be.

The Sencore generator offers an extra feature for working with AM/FM sets. It furnishes front-end signals at 535 $\mathrm{kHz}-1635 \mathrm{kHz}$ for AM broadcast receivers. And fixed RF signals at 262 kHz and 455 kHz allow quick, accurate IF alignment in either auto or home receivers that pick up AM broadcasts.

Sound Technology's model 1000 A provides a unique alignment method. It uses what they call a "dual-sweep" signal. The usual $60-\mathrm{Hz}$ sinewave signal, which fre-quency-modulates the generator's RF center signal and drives the oscilloscope's horizontal amplifier during sweep alignment, is in this case itself modulated with a $10-\mathrm{kHz}$ signal. The result is an unusual scope display that conveys a quantity of information in addition to just bandwidth. Intermodulation distortion, for example, in the whole RF/IF/demodulator system can be calculated directly from the scope display. Also, discriminator alignment can be perfected for minimum distortion, a highly desirable technique for quality hi-fi and autosound stereo receivers.

Of course, all these instruments include the regular composite multiplex signal, similar to the Leader model LSG231. Alignment of RF and IF sections can also be managed with an ordinary RF signal generator, although you cannot easily verify the bandwidth or discriminator symmetry by using single-signal alignment. For correct multiplex alignment, however, you must provide a stereo multiplex signal.

## Alignment troubleshooting

Communications technicians long ago learned a fast way to diagnose transmitter/receiver faults: alignment. Some TV technicians use this technique for color TV servicing and, of course, in the RF and IF sections of TV receivers.

You feed in an alignment test signal, and trace its effects with an oscilloscope or other appropriate instrument. Along the way, you proceed with alignment. Any stage that does not respond to adjustment, or does not produce the proper effect, must be defective. This combination of injection, tracing and aligning

TABLE 1-Stereo Generators

|  | FM <br> Freq. <br> (MHz) | Pilot <br> Signal <br> (kHz) | SCA Signal (kHz) | Audio Signals (Hz) | RF Output (mV) | Composite Output (V) | Sweep Width ( $\pm$ kHz) | Sweep <br> Base for Scope | RF Markers (MHz) | AM <br> Freq. <br> (kHz) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Heathkit IG-5237 | 100 <br> (var. <br> $\pm 2)$ | $\begin{aligned} & 19 \\ & 38 \end{aligned}$ | 65 <br> or <br> 67 | $\begin{array}{r} 400 \\ 1000 \\ 5000 \end{array}$ | n.a. | n.a. | $\begin{gathered} 750 \\ \text { (var.) } \end{gathered}$ | Yes ${ }^{1}$ | $\begin{array}{\|c} 10.7 \\ 90.95 \\ 96.30 \\ 101.65 \\ 107.00 \end{array}$ |  |
| $\begin{aligned} & \text { Leader } \\ & \text { LSG-231 } \end{aligned}$ | $\begin{array}{r} 100 \\ (\text { var. } \\ \pm 1) \\ \hline \end{array}$ | 19 | 67 | 1000 | $\begin{array}{r} 0.1 \\ -10 \end{array}$ | 0-1 |  |  |  |  |
| Sencore SG165 | 86- <br> 110 <br> tun- <br> able | 19 | 67 | 400, <br> sineand square wave | FM, 0.1; AM, 100 | 0-2.5 | 500 (at 10.7MHz only) | No |  | 525- <br> 1625 <br> tun- <br> able |
| Sound <br> Technology 1000A | 88- <br> 108 <br> tun- <br> able | 19 | 67 | 1000 | $0-30$ | 0-5 | $\begin{aligned} & 600^{2} \\ & \text { (var.) } \end{aligned}$ | Yes |  |  |

## Notes:

${ }^{1}$ Through composite signal jack.
${ }^{2}$ patented dual-sweep system-see text.
pinpoints just about any defect. At the very least, it helps you diagnose the faulty section and localize the defective stage very quickly.

Let's see how this concept works in the Pioneer model TX-8500 stereo tuner. This chassis incorporates some of the very latest IC's. It is important to note how this troubleshooting technique uncovers a defective IC as easily as any other component.

For a signal source, we use here the Sound Technology model 1000A. You thus gain some familiarity with the dual-


FIG. 1-EVEN WHEN A STEREO FM RADIO is not composed mainly of IC's, as this one is, it must have the stages shown here.

OS-1100 triggered oscilloscope is used.
Figure 1 is a block diagram of the tuner's sections and stages. Note that a great deal of the tuner's functions are handled inside IC's. All the more reason to approach the system logically.

Using the model 1000 A , feed a modulated FM signal into the antenna terminals, using a 300 -ohm matching transformer. Feed in enough RF to create a signal at the mixer that is large enough to observe on your oscilloscope. For the first steps in our example, the input level is $30,000 \mu \mathrm{~V}$.

Equipment interconnections are the


FIG. 2-SWEEP SIGNAL without demodulator probes shows (a) front-end amplification and tunability, and (b) the resull of IF filters that determine seleclivity and bandwidth.
same as for any sweep alignment. A 60Hz output from the generator goes to the oscillator's horizontal amplifier. Switch a triggered scope to its $\mathrm{X}-\mathrm{Y}$ mode of operation. In the model OS-1100, this converts Channel 1 into an X -axis or a horizontal channel; in some scopes, the triggered amplifier becomes the X -axis input channel. In this case, the vertical ( Y -axis) input goes to Channel 2, and through a cable from the generator. A regular 1:1 scope probe, connected to a jack on the generator, can be used as a test cable for the receiver.

Turn everything on, and give the instrument a few minutes to warm up. Adjust the scope's X-axis input knob to produce a trace that does not overscan the screen. Set the stereo tuner dial and the generator RF output at the same frequency. The model 1000 A must be set for dual sweep, and its sweep width must be at maximum (about 600 kHz ).

Find your first test point; the tuner output is usually handy. Clip the test probe to the high side of the IF feed line, and the common clip to ground. Turn the
scope's Y-axis sensitivity control fairly high. You can expect a twisted-looking RF trace to appear, with an amplitude as much as 100 mV , maybe a bit less. Swing the tuning of either the tuner or the generator back and forth until you center this curve on the scope trace.

Figure 2-a shows how this dual-sweep trace is likely to look when you check out the tuner's RF section-consisting of the RF amplifier, oscillator and mixer. There is slight (or no) RF signal; if you are unable to tune this sweep curve (move it back and forth by dialing the tuner or generator) this signifies trouble right in the front end. Troubleshoot these stages before you proceed. And only when they prove OK are you ready to go on to the IF section.

The model 1000A tuner has a narrow bandwidth for weak-signal stations. One filter allows the usual $250 \mathrm{kHz}+$ bandwidth; the extra filters, when they're switched into the signal path, cut the bandwidth to a sharply skirted, barely $250-\mathrm{kHz}$ bandpass signal. In either mode, the filters determine the IF selectivity. So, your next step is to verify that the filters pass the IF signal properly.

Move your test probe to the output of the filters. In this receiver, a good test point is at the input to the IF amplifier. This is at pin 1 of this particular IC, which is beyond the filter stages.

Filters are passive elements. What active transistors there are in the narrowband filter stages achieve mainly impedance matching. Therefore, in either mode, there is a signal drop across the filter system. Don't expect more than perhaps 20 mV of signal just past the filters. If there are any tuned circuits between the front end and the IF amplifier, peak them now.

Change the scope sensitivity so that you can observe such a small signal (see Fig. 2-b). The bandwidth-limiting effect of the filters is clearly visible. (If you've never seen a trace like this before, don't worry. It's a result of the unique dualsweep signal from this model 1000 A generator. Without it (that is, using a regular stereo signal) you would not be able to see

FIG. 3-THIS NEW IC CONTAINS almost everything needed to amplify IF, demodulate FM and amplify composite stereo signals-pius it offers several peripheral functions.


FIG. 4-DUAL-SWEEP PRESENTS unfamiliar but informative response curve (a) at the output of IC that demodulates FM signals. The signal at (b) results at same point when standard stereo signal is fed in. The trace at (c) shows how a slightly misadjusted FM detector can seriously alter the dual-sweep curve, creating considerable IM distortion.
so definitely the effects of the filters.)
All okay so far? You're ready to move on now to the IF section. Only two things can go wreng with the IC: It can develop an internal short that fouls up DC voltages both inside and out, and the same defect will probably also block or upset the signal operation. Or, the IC can mess up signals even without showing DC symptoms.

Obviously, a signal test is your quickest means of verifying that the IF integrated circuit is operative. The diagram of internal functions for this IC is shown in Fig. 3. The input to the IC is at pin 1 , and you've already proved the signal is OK there.

This IC performs many functions: It amplifies the IF signal, demodulates the

FM signal (the dual-sweep waveform, in this case), and adds some amplification to the recovered signal. Because certain peripheral operations originate here, you should check this IC if one of these is malfunctioning. First, however, you should make a signal check at output pin 6. Figure $4-\mathrm{a}$ shows the demodulated version of the dual-sweep signal.

If you feed a stereo signal into the tuner from the generator, you observe a signal composed mainly of $L-R$ sidebands at this point. Figure 4-b shows this kind of output from the IF integrated circuit. The signal has been demodulated by a quadrature detector in the IC (note the outboard phase-shift stage).

It is important to remember that as you use your scope to trace through the receiver stages, you should keep reducing the generator output to just the proper degree for a clean trace. The best generator RF level for every test can be found by reducing the generator output until the trace begins to look "grassy" or noisy, then by increasing the level just enough to clean up the display. The generatoroutput setting for all the traces shown in Fig. 4 is about $3000 \mu \mathrm{~V}$; this setting can vary with different receiver models.

One strong advantage of the dualsweep signal shows up at this test point. You can spot instantly any misalignment of the FM sound detector. Any humps (Fig. 4-c) in the bandpass display can be attributed to defective demodulation. Very carefully, realign first one slug, then the other, inside the detector tuning coil (Fig. 5). A perfectly flat top and bottom for this waveform display indicate absolute minimum intermodulation distortion, which is the worst product of even a slight detector misalignment. You could not detect subtle misadjustments with a stereo pattern, nor with the usual S -curve method of detector alignment.

With IF and demodulation all taken care of, you can now turn your attention to the multiplex section. A buffer amplifier (Fig. 1) feeds a composite stereo signal (or, in our example, the dual-sweep signal) to the detector output jack and to the multiplex decoder IC.
Again, the construction of the IC itself


FIG. 5.-TO CORRECT FAULTY DUAL-SWEEP curve in Fig. 4-c, realign FM sound-detector coil at end of IF strip, while observing curve.
(Fig. 6) tells you what your troubleshooting approach should be. Verify that the signal arrives at IC pin 2 for the input. Then, check that pins 4 and 5 generate the demodulated L and R signals.

At this point, you may feel more comfortable switching to a stereo signal from the generator. But first, look at the dualsweep signal once more at both output pins of the multiplex IC. The two traces should look exactly alike and bear the same amplitude. If so, it proves that the multiplex IC is not altering the overall frequency response. The $10-\mathrm{kHz}$ modulation that is part of the dual-sweep signal has come through properly and without attenuation. The frequency response from 60 Hz to 10 kHz is essentially flat; no tilt has occurred.

## Troubleshooting by stereo signal

Changing to a stereo test signal requires some alterations in the equipment connections. Leave the generator feeding between $300 \mu \mathrm{~V}$ and $1000 \mu \mathrm{~V}$ of RF signal into the tuner's 300 -ohm antenna input. Set the generator function switch to stereo, the internal signal to $\mathrm{L}-\mathrm{R}$ or


FIG. 6.-SINGLE IC OFTEN PERFORMS all stereo multiplex decoding functions; needs only external low-pass filters following, to eliminate $L-R$ sideband products.
multiplex, and the modulation level to about 80 percent ( $\pm 60 \mathrm{kHz}$ ).

Move the receiver test probe to Channel 1 of the oscilloscope. The sweep cable from the generator is left disconnected. Set the scope back to triggered operation, and set the scope timebase at 0.2 ms -perdivision if the generator's internal audio is 1000 Hz , or at 0.5 ms -per-division if the audio is 400 Hz .

Clip the test probe to multiplex IC pin 2 to monitor the input. Make sure the receiver and generator are tuned to the same frequency. You should find between 0.5 volt and 1.0 volt at this point, depending on the modulation percentage at the generator. (In our demonstration setup, an 80 -percent generator modulation results in 0.8 volt of signal input to the multiplex IC.) Figure 7-a shows how an $L-R$ signal looks at this point.

Now, to check multiplex decoding, move the test probe to pin 4 or pin 5 of the IC. These pins should produce exactly equal signal amplitudes, about the same as the input level. The signals should also look alike (you can't check phase with this simple a setup, but it isn't necessary.) Figure 7-b shows how the decoded stereo signal looks.

If the signal is missing or distorted at this juncture, you know that you have to troubleshoot in the vicinity of the IC. Verify that all DC voltages are what they should be on each pin of the IC. If they are not, check whether the voltage change is caused externally or by the IC.

Then, examine the small components around the IC, particularly electrolytic capacitors. Some capacitors are there to introduce phase shifts, others to bypass unwanted signals (your scope can check this), and others to couple signals. In addition, leaky capacitors can upset DC voltages.


FIG. 7.-WAVEFORMS TAKEN FROM PINS of stereo IC of Fig. 6. (a) Input from FM detector; ${ }^{\text {( }}$ (b) decoded stereo; and (c) audio signal after sideband products are filtered out.

Finally, if the DC voltage checks OK and none of the components around the IC are bad, but a signal still doesn't show up as it should at the output pins, suspect the IC itself. One last hint: Make sure a defective low-pass filter is not loading down the IC output. Disconnecting the filters will show.

Next in your troubleshooting sequence, verify that the low-pass filters do what they should. You can move the test probe to the input pins of the amplifier IC, and clip alternately to pin 3 and pin 14. Two things happen to the signal. First, the sideband components are removed, leaving only the $1000-\mathrm{Hz} \sin -$ ewave modulation (Fig. 7-c). Second, the filters pull down the amplitude (leaving in our demonstration only 0.2 volt peak-to-peak).

## TABLE 2-TV Sweep Generators for FM Radio Alignment

|  | Frequency <br> $(\mathrm{MHz})$ | Markers <br> Included |
| :---: | :---: | :---: |
| Eico | $3-220$, <br> continuous | Tunable |
| Leader <br> LSW-333 | TV VHF/UHF <br> 10.7 <br> $83-113$ | No |
| Viz | TV VHF | For TV |
| WR-514A | O5-50, | only |
|  | $88-108$ |  |

Pins 5 and 12 are the output pins for the audio IC. The output usually runs between 2 volts and 3 volts peak-to-peak. At this point when you've checked this, the whole audio section of this stereo tuner has been tested. Again, watch out for small parts associated with the IC; any one of them could lead you to think that the IC is bad. But if they are all definitely OK and the voltages supplying the IC are normal, any other trouble must be blamed on the IC itself.

## Serious misalignment

So far you have used a step-by-step, align-as-you-go method to troubleshoot an entire FM tuner. A special signal generator supplies the signals, which you track with your scope. The dual-sweep
technique offers obvious advantages but calls for an expensive instrument. What if you don't own this particular generator?

You can use this trace-and-align technique with any generator you do have. Some TV alignment generators cover FM frequencies. Table 2 lists some sweep generators that will work for this purpose.

A useful alternative has been included in the Sencore model SG165 and the Heathkit model IG-5237 stereo generators. Either of these generators can be used to perform plain sweep alignment of the IF signals and sound detector. The Heathkit unit lets you sweep-align both RF and IF sections, while the Sencore generator provides sweep only for the IF section. Either will do; remember that bandwidth and selectivity are determined in the IF strip and its filters, not in the front end.

The Viz model WR-50C RF generator offers something still different-it incorporates sweep outputs at 455 kHz and at 10.7 MHz. Moreover, an external crystal socket lets you plug in a $10.7-\mathrm{MHz}$ crystal, giving a tightly controlled unmodulated RF source; the $20-\mathrm{mV}$ output is ample enough to drive an IF strip.

It is not unusual to encounter an FM receiver that has been tampered with by its owner. Serious hi-fi buffs ordinarily know better than to try to fool around with coils in an expensive tuner. But you do encounter serious misalignment problems (sometimes caused by a technician who either doesn't have a proper signal generator or who has not been taught correct alignment procedure). In such cases, you need a fast way to adjust the alignment nearly right. When coils are far from their proper settings, you may be at a loss to correct them by just observing a sweep curve.

Begin with an accurate $10.7-\mathrm{MHz}$ signal source. The Sencore model SG165 has a crystal-controlled, unmodulated $10.7-\mathrm{MHz}$ oscillator. The Heathkit model IG-5237 has an IF marker output, held tightly at 10.7 MHz by a $5.35-\mathrm{MHz}$ crystal; the output is sufficient to drive the IF's and limiters in most receivers. The Leader model LSG-16 RF generator has

TABLE 3-RF Generators for FM Alignment ${ }^{1}$

|  | Model | Frequency <br> $(\mathbf{M H z})$ | Output <br> $(\mathbf{m V})$ | Audio <br> $(\mathbf{H z})$ | Built-in <br> Calibrator |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B\&K/Precision | E200D | $0.1-54$ | 100 | 400 | Yes |
| Eico | 330 | $0.1-54$ | 300 | 400 |  |
| Heathkit | IG-42 | $0.1-30$ | 100 | 400 |  |
| Hickok | 257 | $0.1-54$ | 100 | 1000 | Yes |
| Leader | LSG-16 | $0.1-100$ | n.a. | 1000 |  |
| Viz | WR-50C | $0.085-\mathbf{4 0}$ | 50 | 600 | Yes $^{2}$ |
| Wavetek | 3001 |  |  |  |  |

[^5]

FIG. 8.-INJECTION POINTS FOR IF singlefrequency or sweep alignment: (a) on mixer tuning capacitor; and (b) at IF input link.
a crystal feature similar to that of the Viz model WR-50C.
If crystal control is lacking, any good RF generator will do (see Table 3) if you do two things to insure pinpoint accura-cy-which is particularly important with FM stereo demodulators.

1. Turn the generator on for at least an hour's warmup before alignment.
2. Check the output at 10.7 MHz with a frequency counter, and refine it precisely whenever you are ready to make the final sounddetector adjustment.
(The Hickok model 257 RF generator has a counter output jack, which lets you leave the counter connected for monitoring.)

After selecting a precise source of $10.7-\mathrm{MHz}$ unmodulated $R F$, feed this signal into the FM tuner mixer. Figure 8 shows two handy points: Clip the genera-tor-output lead to the mixer tuning capacitor, or where the tuner feeds the IF strip on the main chassis board. In a car receiver, you can often clip the lead to the mixer-coil terminal, if it is easier to reach.
Find the electrolytic capacitor that bridges the balancing resistors in the sound detector. Connect a high-impedance DC voltmeter probe at the positive $(+)$ end of the capacitor and the common lead to ground. This is your alignment indicator; if the receiver has a signalstrength meter for FM, you can use that. (Do not confuse this meter with a center-ing-type tuning meter. They are not similar.)

Rock the generator-output level control up and down to find a signal strength
that does not saturate the indicator reading. Noise in the set causes a certain residual no-signal reading on the voltmeter. Set the generator output to make the meter read about halfway between this no-signal voltage and the level at which injecting more signal no longer raises the DC voltage reading. As you bring the IF strip into alignment, you may have to reduce the RF signal to keep this "half-way-between" reading. Otherwise, saturation prevents you from knowing whether your adjustments are improving anything or not.
Start with the last IF can. Adjust first the top slug, then the bottom slug for a maximum meter reading. Work your way back to the first IF coil, peaking the top slug first, then the bottom slug. Go through the whole IF strip at least twice. or until no further improvement can be made.

Do not tamper with the top slug (the secondary) of the sound-detector transformer yet. However, you can peak the bottom slug. You will probably have to revise this setting later, but this procedure presets it to nearly correct.

Now, to set the top slug of the detector, change your meter connection. Connect the probe to the resistor that is in series with the sound output (center tap) of the detector transformer. Be sure the coupling capacitor (if there is one) doesn't get between the transformer and your DC test probe.

Rock the top slug back and forth until you find an exact zero voltage. If the transformer and the diodes are OK, the voltage will swing sharply positive and


FIG 9.-SWEEP-ALIGNMENT CURVES: (a) offcenter from markers and too wide; (b) curve moved into position, with correct shape; and (c) detector S-curve set up symmetrically around markers, with 10.7 MHz at exact center.
negative from 0 as you rock the secondary adjustment. You may have to jump back and forth between this adjustment and the bottom slug (change the DC meter connection each time). The two slugs do interact. A little patience (and work) will find the proper zero setting.

## Sweeping IF signals

Now, with the IF coils peaked, you are ready to inspect bandwidth. This demonstration is carried out for you with the Sencore model SG165, on a stereo receiver that does not use filters in the IF section. With filters, you seldom find more than one or two IF coils to adjusttypically between the mixer section and the IF strip. However, you generally find a sound-detector coil that may need adjusting.

Use a sweep generator set to 10.7 MHz , and connect the sweep RF to the same mixer or IF point used for your preliminary IF alignment (Fig. 8). Note that with the Sencore model SG165, you must use an oscilloscope that has a linesweep function inside the scope, because the model SG165 does not have a sweepbase output to connect to an oscilloscope. Hence, with this generator, you cannot use the $X-Y$ mode of your triggered scope, and any triggered-sweep operation is impossible. We used the Sencore model PS163 scope for our test; several other scopes, especially recurrent-sweep scopes, have a line-sweep mode.

The Heathkit model IG-5237 and the Sound Technology model 1000A both have a $60-\mathrm{Hz}$ sweep-base signal to feed a scope. The model IG-5237 provides it via the composite signal jack, when you set the function switch for RF sweep. All the TV/FM sweep generators listed in Table 2 have a sweep-base output right on the front panel, ready to connect to the horizontal (X-axis) input of any oscilloscope.

This next step is important. Many technicians overlook it and become frustrated trying to set up a sweep trace in an FM receiver.

Disconnect the averaging capacitor that bridges the two balancing resistors in the sound detector. This is the same capacitor to which you clipped your DC voltmeter earlier. For sweep alignment, disconnect the positive $(+)$ end of the capacitor; just leave it dangling. Then, connect your oscilloscope 10:1 probe to the point from which you disconnected the capacitor. This places the probe at the cathode end of the diode pair, and an updirection sweep display on the scope screen. Set the scope input for 0.5 volt-per-division.

The Sencore model SGI65 generator uses post-injection markers; the scope probe therefore goes to a jack on the generator, and another test cable goes from the front panel of the instrument to the scope's vertical (Y-axis) input. To connect the probe inside the receiver, follow the same procedure.


Heathkit model IG-5237
Adjust the generator output to provide just enough signal so that a sweep display doesn't show a lot of "grass" or noise. Don't overdrive the receiver IF strip because this would show a false response. Also keep the markers as small as you can; with post-injection, they won't distort the curve but they can spread out and become confusing.

Now, use IF adjustments to bring about a flat-topped sweep response. Do not turn any single slug very much; presetting made them all fairly close. Watch the three markers, if you're using the Sencore generator. These markers are at $10.6 \mathrm{MHz}, 10.7 \mathrm{MHz}$ and 10.8 MHz . The curve should not turn down for skirting until its flat top is beyond the 10.6 MHz and $10.8-\mathrm{MHz}$ markers.

Figure 9-a shows a typical IF response after preadjustment but before sweep touchup. The curve is slightly off-side. The IF cans must be touched up. Otherwise, bandwidth and tuning will not be symmetrical, and stereo recovery may not be dependable-particularly on any marginally distant station.

You will find that in each IF can, one core affects the tilt of the top of the response curve. The other core slides one end or the other of the curve under or out from under the markers. Very little adjustment is needed to place the properly shaped curve, evenly under all three markers, as shown in Fig. 9-b. Also adjust the bottom (primary) slug in the detector transformer.

The flat top of the curve should extend a bit beyond the two outer markers, to give a solid $250-\mathrm{kHz}$ response. Be careful not to extend the top too far, or adjacentfrequency stations will try to capture each others' places on the dial!

Finally, you're ready to adjust the detector coil. Disconnect the scope and reconnect the capacitor you unhooked earlier. Now, find the resistor that comes from the center tap of the detector-coil secondary. This resistor is the soundoutput point that precedes any coupling capacitor. Connect your scope probe there.

You may have to increase the scope's vertical-input sensitivity. Otherwise, the S-curve display may be too flat. You may also have to turn down the markers; if they are too large, they may confuse you as to where the center of the curve is.

Now, adjust the top slug of the detec-tor-transformer sound so that the 10.7 -

## A Methodical Troubleshooting System

Basically, Easi-Way Servicing' comprises five steps. A brief description of each step gives some idea of how timesaving and direct this troubleshooting technique is.
Step 1: Analyze the Functions in an instrument. Consider a hi-fi system, for example. Operate the equipment and decide whether the trouble lies in a turntable, a tape or cassette deck, in the tuner function, or in the receiver's amplifier. You cannot afford to waste time hunting defects in the wrong equipment. This may seem an obvious point, but it often happens. The trick is to establish specific tests that let you analyze each function more or less independently of all others.

Step 2: Diagnose the Section that operates incorrectly or not at all. In a stereo tuner, it might be the RF section, the IF section, the demodulator, or the multiplex section. In a stereo or quadriphonic amplifier, the malfunction could occur in the preamp section, power supply, voltage amplifiers, tone control, or power amplifier; any of these could be at fault, and you can multiply by two (or four for quadriphonic operation). Diagnose which section, and you're way ahead of the game. Naturally, your aim is to focus troubleshooting attention only in the section actually containing the fault. That makes sense, but it's not always the way it happens. Again, the secret rests in specific procedures that prove your diagnosis.

Step 3: Localize the Stage that's bad within the section you diagnosed. I define a stage as a transistor, FET, diode, (or tube) plus its components and wiring.
An IC and its associated components can form a stage. Or an IC can be a whole section. A stage usually processes a signal; some stages process DC voltages (or voltage changes). The fact is, your tests for localizing a bad stage depend largely on what components are in the stage and what they should accomplish. But (a) you have only a few of these stages to test because of steps 1 and 2 ; (b) the tests are common and seldom complicated; and (c) you save a lot of other testing once you know which stage is bad.
Step 4: Isolate the Circuit that is causing the stage malfunction. Circuits are contained within a stage. Signal circuits include input coupling, output coupling, decoupling or bypass, feedback and tuned circuits. The DC circuits include the coliector, base and emitter-supply circuits; bias dividers; and supply branches, etc. In DCcoupled stages, signal and DC circuits involve the same components; but you can test them either as DC-handling or as signal-handling circuits. And, of course, you only have a few circuits to test.
Step 5: Pinpoint the Component at fault, which is the ultimate goal. Obviously, the whole concept involves avoiding having to troubleshoot functions, sections, stages, or circuits that are really OK. All five servicing steps described here point you logically in that direction.
If you're an old-timer and successful, you probably already use all these steps. But it doesn't hurt to review good techniques. These steps are a godsend to technicians who were never taught a direct, straightmoving troubleshooting procedure. R-E


FIG. 10.-STAGES IN NON-IC MULTIPLEX SECTION actually work similar to IC types, but several adjustmente are needed to keep them in alignment.

MHz marker is exactly centered on the S-curve. Touch up the bottom slug to make the S-curve symmetrical. Figure 9-c shows the symmetrical S-curve that you're trying for. (Do not make any other IF adjustments.)

Work back and forth between the top and bottom slugs. The bottom slug should cause the shoulders of the S-curve to be symmetrical and equidistant from the center marker. The top slug slides the whole curve back and forth around the center marker.
Disconnect the generator and the scope. You know if the IF section is not only operative but in tip-top alignment. Naturally, any nontunable coils you find along the way will alert you to troubleshoot the associated stage. Check the transistor first, then other components. Open bypass capacitors can make a coil tune more broadly than expected, distort the sweep curve to an impossible degree, and make coil-tuning seem erratic. Yet, you might not spot this trouble when you go through the set with an unmodulated IF signal. Nor is a faulty coil uncommon; ordinarily, it will fail completely to tune.

## Stereo multiplex alignment

Integrated circuits in modern stereo receivers leave little adjustment either necessary or possible. But there are still many older receivers around that you may have to service. As with the rest of the receiver, alignment makes a fine troubleshooting technique.
Figure 10 shows the stages you can expect to see in the multiplex section of most stereo receivers. Without a multiplex IC such as that shown in Fig. 6, the balanced-detector system is the most used. The main differences lie in how the pilot signal from the station (or generator) develops a $38-\mathrm{kHz}$ injection signal


Leader model LSG-231
for recovering the $L-R$, which then combines with $L+R$ to form the original $L$ and $R$ signals. Some pilot signals lock a $19-\mathrm{kHz}$ oscillator, which then is doubled to 38 kHz . In other sets, the pilot signal is amplified and then locks a 38$\mathbf{k H z}$ oscillator. In either case, a $38-\mathrm{kHz}$ signal goes to a balanced demodulator.

A composite stereo signal is sometimes amplified before being applied to the balanced demodulator, sometimes not.

To troubleshoot, start by aligning the $19-\mathrm{kHz}$ and $38-\mathrm{kHz}$ coils. Connect a $10: 1$ scope probe at the output of the last coil, the one that feeds the balanced demodulator. You'll find a handy clip-on point at the input end of either diode in the demodulator. Figure 11 -a shows the 38 kHz sinewave that is present there. The scope timebase was set for $20 \mu \mathrm{~s}$-per-division; the vertical input was set for 5 volts-per-division, or whatever voltage it takes for a sizable display.

Peak all the transformers for maximum amplitude of the $38-\mathrm{kHz}$ signal. This is not their final adjustment, but indicates whether any of them are defective. If one transformer fails to tune, investigate the stage around it as described. If there's no $38-\mathrm{kHz}$ signal, use your scope to trace through this branch of the section to discover the reason.

Connect your scope probe to the center


FIG. 11.-PLAIN RF SIGNAL (a) at 38 kHz injects carrier signal into balanced demodulator to beat against $L-R$ sidebands and recover (b) $L$ - R signal for stereo FM reception.
input point of the balanced demodulator. Set the generator to modulate only one side-say, the left side. The composite stereo waveform at the input to the demodulator is distinctive (Fig. 11-b). If it's missing or unduly weak, which means its amplitude is less than at the input of the section, trace backward until you find where the waveform reappears or shows normal amplitude.

A major criterion for good multiplex alignment is separation: When you feed a left-side-only signal into the stereo receiver, does any audio signal appear in the right-side amplifiers and vice-versa (of course)?

One easy way to check this is to first measure the output of both amplifiers using a monophonic signal, balancing them equally (which also proves that the amplifier part of the stereo receiver is working), and then switch to a stereo input with only one side modulated.

The meters on the Sencore model SGl65 generator are already calibrated in decibels for comparing separation. Connect the meters to the left and right amplifier outputs. You are still feeding a stereo-modulated RF signal into the receiver's front end.

Turn the left-side modulation on and the right-side modulation off. Crank up the amplifier volume until the left-side meter indicates about three-fourths of full-scale. Then, very carefully tweak each transformer in the multiplex section. Try for a maximum left-side output, but with minimum reading on the right-side


Sencore modil SG165


FIG. 12.-SENCORE MODEL SG 165 METERS are calibrated to show exact amount (in decibels) of separation in stereo recovery system of FM radio.
meter.
You'll find it necessary to compromise. You will also discover that these adjustments are extremely critical, and that there is some interaction between trans-
formers. These are the same coils you peaked earlier, but those were rough adjustments. Now you are settling the phase right down to the very best obtainable for the demodulator. Perfect phase results in the best possible separation.
When the left-side output is at maximum and the right-side output is at minimum, set the amplifier volume so that the meter on the left reads exactly full-scale. The decibel scale will show that this establishes a zero-decibel reference. The meter on the right then indicates the decibel difference, the amount of separation. Figure 12 shows a stereo tuner exhibiting 25 dB of separation.
Switch the left-side modulation off and turn on the right-side modulation. Adjust the volume for a full-scale reading on the right-hand meter. The meter on the left should indicate the same low separation achieved with the opposite mode. If the two sides are unbalanced-that is, if separation is greater in one direction than in the other-you must refine the final adjustment, the balanced demodulator transformer. Also you must check the potentiometer separation control, if the set has one.

Finally, separation in both directions should meet the radio manufacturer's specification. Naturally, as you go along, defects can simply prevent you from accomplishing the necessary alignment. Once you are accustomed to making alignments tests, you can diagnose a set quicker this way than it takes to read about it.

R-E

## Low-priced programmable TV game IC's introduced

"A winner for next Christmas," says R. C. Norwood, general manager of General Instruments Consumer Products Line, referring to the company's new low-priced programmable (LPP) game set. Norwood indicated that the product has already received an enthusiastic response from such manufacturers (among others) as Radofin and General Electronics.
The LPP system "offers the consumer a large number of game combinations with cartridge flexibility at a console price one-


LOW-COST PROGRAMMABLE TV GAME built using new IC's from General Instrument. The game is not microprocessor based. Instead of the cartridges containing ROM memory, each cartridge contains a dedicated game IC.
half of that of the programmables currently in the market place." All cartridges provide realistic sound, on-screen scoring and are tailored to both U. S. and European TV standards.

The LPP uses an AY-3-8615 color video processor IC in the game console. Cartridges currently available are: the 8610 Supersport (20 games); the 8675 Motorcycle ( 8 games); and the 8603 Road Race Set ( 3 games). In the planning stage are three other cartridges: Shooting Gallery (12 games); Wipeout (24 games); and Warfare (10 games).

## 1978-1979 SCTE officers and directors

The Society of Cabie Television Engineers, Inc. (SCTE) has announced its slate of officers and regional directors for 19781979. They are as follows:

President, Bob Bilodeau (serving to end of 1978 only); eastern vice president, Harold Null; western vice president, Gay Kleycamp; secretary, Judith Scharf; and treasurer, Ed Horowitz.

Regional directors are Frank Bias, Glenn Chambers, Bill Ellis, Jim Grabenstein, John Morovich, Bruce Verling, and John Weeks.

## Moratorium asked on microwave installations in NY area

Because of increased public concern over the possible adverse long-term effects of microwave radiation, New York City's

Board of Standards and Appeals has asked Mayor Edward Koch to declare a temporary moratorium on constructing or installing microwave facilities in the area until "satisfactory guidelines" have been established. To date, no studies have been made concerning the long-term effects of such facilities.

The Board's request arose partly out of a recent decision to deny permission to construct a 180-foot microwave transmission tower in Staten Island. This tower would have formed part of an overall U.S. Coast Guard maritime traffic plan for New York Harbor. If the moratorium is approved, this would be the first time any major metropolitan area in the U.S. has taken such an action to determine health and safety standards for microwave radiation.

## Robert Villont announces his candidacy for NESDA president

At a recent meeting of the Washington State Electronics Council, NESDA senior vice president, Robert (Bob) Villont announced that he would seek the presidency of NESDA. In his speech, Villont expressed his main concern was increased NESDA membership, but also stressed that the national office should strive to practice what it preaches to the membershipnamely, service to the customer. Washington and Oregon groups have endorsed Villont and pledged continued support in implementing his campaign plans, if he is elected.

# Reducing CB interference 




#### Abstract

Many television interference complaints are caused by the second and third harmonics from CB transceivers. A special test instrument has been developed so technicians can easily measure interference components.


## ED PILLER, W2KPO

JIM SMITH PUSHES THE MICROPHONE button on his CB base station to communicate with a friend on the other side of town. Thirty seconds later, he receives a phone call from an irate neighbor telling him that he's wiping out his favorite football game on Channel 5. How many times (in one form or another) is this scene repeated across the United States? Judging from information provided by the FCC, over 100,000 formal complaints of CB-caused interference are now being received a year. However, for every documented complaint, there may be 50 or more cases that are unreported. Apparently the problem has reached tremendous proportions.

The FCC has cracked down through rules requiring harmonics and spurious radiations from new CB transmitters to be a minimum of 60 dB down from the power output of 3 watts to 4 watts. Furthermore, since many home entertainment receivers may be as much at fault as poorly designed transceivers, Senator Goldwater and Congressman Vanik have introduced bills into Congress that would require RF inter-ference-suppression devices to be incorporated in home receivers at the time of manufacture. In addition, local town boards in some cases have levied fines for interference and have imposed ordinances on antenna structures. Many of these cases are now being tried in the courts since they usurp some of the FCC's jurisdictional powers.

I faced some of these problems from 1951 through 1966 while operating a l-kW SSB amateur transmitter on the $21-\mathrm{MHz}$ and $29-\mathrm{MHz}$ bands. from a 50 -foot tower in a suburban area. A situation developed that even when I was out of town, interference complaints were received against my
nonoperational station. This was primarily due to the fact that my antenna was the most prominent one in the area. Accordingly, it was the most logical place (in the minds of some) from which these interfering signals could originate. There is a wealth of information available on the causes and cures for RF interference from cases studied in the amateur radio service, and some of the major items will be discussed in this article.

## Causes of interference

In seeking to cure interference problems, it is important to diagnose the cause. Suppression techniques can be applied only when the interference path has been located. Generally, interference can be caused by harmonics and other spurious frequencies generated in the CB transceiver itself. It can also be generated through overload and audio rectification in the home entertainment device that is caused by faulty design. It can also be the result of other outside phenomena completely unrelated to the communication devices.

Interference in the home TV set can be caused by front-end overload from a local signal due to inadequate rejection ahead of the first RF stage. During the overloading process, interfering frequencies are generated within the receiver itself. They can also be induced by a strong RF signal being rectified in a particularly sensitive portion of a solid-state or vacuum-tube circuit. Low-level audio circuits are especially vulnerable to this. Interference signals have also been known to enter directly through the power lines, which can act as a receiving antenna and conduct the signal to the affected receiver.

Other sources of interference that may be blamed on the CB'er are completely unrelated to his operations; i.e., corona and noise generated by local power lines and oil burner ignition systems; or line noise caused by vacuum cleaners, electric razors, washing machines, light dimmers, fluorescent lighting and other appliances. Automobile ignition systems, diathermy machines and industrial equipment have also been known to cause interference problems. Improperly adjusted power microphones can cause badly distorted signals as well as spurious products that could affect adjacent-channel CB's and other homereceiving devices. Emissions from the public service, broadcast, amateur and land-mobile bands can also interfere.

In tracking down the interference, it is important to determine a pattern: When does it occur? How often? What are its symptoms? Can voices or call signals be identified? Does the visual or aerial interference occur in accordance with a ranging voice modulation?

Once it is determined that the interference is caused by a local transmitter, a receiver capable of tuning from 2 MHz to 30 MHz could help identify the cause in most cases. Other receivers tuning the $30-$ to $54-\mathrm{MHz}$ and 144 - through $170-\mathrm{MHz}$ frequencies could also identify emissions in other bands that could cause interference. Observing the interference signal on the home set, while listening to it on its fundamental frequency, would be the surest way of identification.

## Measurements and tests

In making interference measurements to determine its sources and causes, it is important to make sure that your own CB system is relatively


Fİ. 1-SPECTRUM ANALYSIS of fundanental, second and third harmonic frequencies.
free from radiating spurious signals. This, of course, can be established by se ting up the receiver in a laboratory and making tests with a good spectrum aralyzer. The resulting test data would appear on the cathode ray tube of the aralyzer. Figure 1 shows the fundamental frequency of 27 MHz and the se cond and third harmonics at 54 MHz and 81 MHz . The second and third harmonics are normally considered to be a major source of CB interference and should be at least 60 dB do wn from the fundamental frequency.

Unfortunately, the above lab setup re fuires very expensive equipment that is normally not available to the average se:vice technician. Leader Instruments Corporation, recognizing this problem, has introduced the model LHM-950 Cl 3 harmonic meter system. This instrument includes a calibrated tunable voltmeter and a directional coupler (model LC-32) at a cost of $\$ 334.95$. When used with a 50 -ohm dymmy load, such as the Leader model LPM-880S, a complete test system is available for harmonic measurements. (See Fig. 2). Once the test setup is completed, suitable adjustments can be made to harmonic traps within the transceiver.* The effectiveness of add-on low-pass filters in the RF output line can also be determined.

Interference caused by radiation of the second and third harmonics can easily be detected on a home TV set. The second harmonic normally appears or Channel 2, and the third harmonic or Channel 5 or Channel 6 .

It is important to note that while the FCC regulations require that harmonic suppression be a minimum of 60 dB , this value may not be adequate under certain conditions. For example, a fringe-area receiver picking up a weak TV signal could be wiped out by the second or third harmonic of a local $C B$ set even though the interfering harmonic is suppressed more than 60 dB .

Figure 3 shows the block diagram of the model LHM-950. A signal is coupled from the output of the transceiver via a directional coupler (sue Fig. 2) to the input of the model
*)B transceiver adjustments should only be performed by a technician having a ve lid first-class or second-class FCC radiotelephone license.


FIG. 2-TEST SYSTEM for harmonic measurements.


FIG. 3-INTERNAL CONSTRUCTION, model LHM-950 harmonic meter.

LHM-950. A calibrated attenuator feeds the signal through an RF tuner, which then converts it to a $45.75-\mathrm{MHz}$ IF signal. The IF is thereby amplified and rectified. The DC output signal of the rectifier is fed to a calibrated meter. The attenuator is adjusted to bring the reading on-scale, and the secondharmonic tuning is peaked. A reading is then obtained in $\mathrm{dB} \mu(\mathrm{dB}$ above $1 \mu \mathrm{~V})$. When applied to a calibration curve, a dB reading below the fundamental signal can be obtained. The third harmonic is measured similarly.

## Curing interference

The cure for radio-frequency interference can be very simple or extremely involved and complicated. The simple remedies should be tried first. A good low-pass filter, designed to operate at the output connector of the CB set, should be installed if the measured harmonics do not meet the $60-\mathrm{dB}$ requirement. If interference is still being received on the TV set, a high-pass filter, mounted as close as possible to the tuner, should be installed. This filter attenuates signals below 54 MHz and prevent spurious interference from being generated by an overload condition at the TV set front-end. If interference still persists, the $C B$ set output should be connected to a shielded 50 -ohm dummy load. If interference is still present, perhaps it is being conducted through the power line or radiated directly from the set itself. A power-line RF could cure the first problem; the second may require extensive grounding and shielding at the $C B$ set.

It is a good idea to substitute another CB set for the one under test and determine if the interference persists. Some CB sets have been known
to generate spurious frequencies in the RF-amplifier chain that are not harmonically related to the output frequency. In addition, you can substitute a second TV set to observe if the interference signal disappears. If this is the case, then the fault lies in the TV set rather than in the CB unit.

## Summary

RF interference from a CB set can be reduced by applying appropriate measures at the set itself, the affected receiver or in both. A logical system would include trying filters at each place and substituting a different transmitter and receiver in each case. The path of interference should be determined and measures applied to eliminate it. Additional RF interference information can be obtained by contacting the A.R.R.L. or the FCC. In many cases, RF interference filters may be supplied free of charge from the home entertainment equipment manufacturer. R-E

A complete RFI (Radio Frequency Interference) packet containing extensive information can be obtained at no cost. Just send a large selfaddressed manila envelope with forty-six cents (\$.46) postage to the A.R.R.L., 225 Main Street, Newington, CT 06311, and request the information.

To obtain the new FCC booklet on "How to Identify and Resolve Radio-TV Interference Problems," send a check for $\$ 1.50$ (payable to the Superintendent of Documents) to the Consumer Information Center, Dept. 051F, Pueblo, CO 81009.

# for an experience in electronics, 



## get into <br> cameras

Improve your income by acquiring additional skills as a camera repair technician. Increasing use of electronics in cameras is creating still more opportunities for camera repair specialists. Take advantage

## Performance Training

National Camera developed the first comprehensive technical training for camera repair technicians in the '50's. More practicing technicians have received training from us than from any other single source. Now this better-than-ever professional program is as close to you as your mailbox. Learn at home!

## Complete Package

You get texts, tools, practice equipment - a complete program including the latest additions in photographic electronics - not available anywhere else.

Free catolog
Find out about great training programs in camera repair technology. You can learn at home, keeping your present job, or at our one-year resident school in Colorful Colorado. For free information, use the card in this publication or write us today

Technical Training Division, Dept. GBD 2000 West Union Ave Englewood, Colorado 80110

Accredited member: NHSC, NATTS

CIRCLE 15 ON FREE INFORMATION CARD

## FLYBACK SUBSTITUTE

Help! I need a replacement for the flyback in an Ambassador color TV, model 2914. The part number seems to be A29056-A, but it's not listed in Sams or any other sources I could think of.-S. G., Tucson, AZ.
l've been crisscrossing references until l'm blue in the face! With no direct substitute yet. This is a brand name that was made by 10 different companies. From the type of part number, it could be a Nivico. A random check of Sams Photofacts turned up a Nivico 7208, and the flyback number is A29056-A. However, no substitute is listed for it either

You might try obtaining one from JVC, America Inc., 58-75 Queens-Midtown Expwy, Maspeth, NY 11378. Check Sams 1035-2 to see if the circuit looks like yours. Good luck!

## TOO MUCH RIPPLE

There's far too much ripple in the DC power supply of this GE model JA chassis. I've checked and replaced the filter capacitors; this didn't help much. What else could cause this?-A. K., Elmhurst, NY.

There's really only one thing left. Check the filter choke. It may have developed an internal short across the windings but not to ground!
(Feedback: "Bingo!")
R-E

## You Can Count On DAVIS!



## NEW CTR-2A

$500 \mathrm{MHz} \& 1 \mathrm{GHz}$ COUNTERS NOW WITH
PERIOD MEASUREMENT (Optional) AND BUILT•IN PREAMP

- 8 Digit .3" LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Prescaler \& Preamp
- Period 1 us to 1 sec . (optional)
- TCXO Std $\pm 2$ ppm
- Input Diode Protected
- 12V-DC Operation (optional)
- Oven Crystal $\pm .5$ ppm (optional)
- Selectible Gate Times $.1 \mathrm{sec} . \& 1 \mathrm{sec}$

500 MHz kit CTR-2A.500K $\$ 249.95$
500 MHz assembled CTR-2A-500A 349.95
1 GHz kit CTR-2A-1000K 399.95

GHz assembled CTR-2A-1000A 549.95

## OPTIONS

(02) Oven Crystal
$\$ 49.95$
(03) . $43^{\prime \prime}$ LED
10.00
(04) 12 V -DC
10.00
(05) 10 sec. Time Base
10.00
(06) Period Option
15.00

## DRDDS

DAVIS ELECTRONJICS
636 Sheridan Drive
Tonawanda, NY 14150
716/874-5848
CIRCLE 7t ON FREE INFORMATION CARD

## TUNER SUB \$19.95

Since all tuner subs that we know of are modified TV Tuners, we decided to market an excellent performing yet very low cost sub for the technician who has to get all he can for his money . . . a "Poor Boy's Sub" for only \$19.95.
This was not an easy task since cabinets, knobs and controls would push the price far above $\$ 19.95$

We searched for a tuner that needed no cabinet and no controls . . . one that the tech could scounge the knobs from most any old TV
It took over two years but we finally found it. The gain is excellent . . Battery drain is very low (only 18 mils). It's self biasing so there is no R.F. gain control to fiddle with ... It works equally well on tube or transistor sets . . . b/w or color . . . and is as easy to use as starting a fight with your wife (well, almost). All you need do is hook the set's IF cable to the "Poor Boy" and view the picture . . . That's it no set up controls to confuse you.
We compared the "Poor Boy" with other subs costing over twice the price and found it to work just as well on all the comparison tests we made . . . and often a lot easier to use ... Even though instructions aren't needed... you get those too.
The "Poor Boy" is small enough to easily hold in one hand . . . no wires or controls dangling around. It comes completely wired and tested including batteries and ready to use. Send a check for only $\$ 19.95$, and we even pay the shipping (how about that?) or we will ship COD.
Try it for 10 days ... If not completely satisfied . . return for full refund.

## CALL TOLL FREE 1-800-433-7124

## TEXAS TUNER SERVICE

FORT WORTH, TEXAS 76117
Master Charge and Visa accepted
CIRCLE 76 ON FREE INFORMATION CARD


## Our new Bearcat ${ }^{\circledR}$ 250I

| has all the fantastic space age features of our super popular Bearcat ${ }^{\star}$ 210, but now we've added:

- 50 synthesized crystalless channels
- User selectable scanning speeds
- Priority channel
- Digital time clock-accurate to seconds
- Automatic or user controlled squelch
- Search Direction-Search "up" or "down"
for quicker return to desired frequencies
- Transmission activity counter-tells you how busy each frequency has been
- Search \& Store-Will find and "remember"
- up to 64 active frequencies for later recall
- Direct channel select-Advance directly to a

$1-$channel without stepping through interim channels

- Non volatile memory-No batteries required to
- Auxiliary-On/Off control of equipment (tape deck, alarms, lights, etc.) when transmissions occur on programmed channels
To reserve your space-age Bearcat ${ }^{\bullet} 250$ and
receive your order priority number for spring-
summer delivery, send $\$ 389.00$ plus $\$ 5.00$ for U.S.
U.P.S. shipping. Foreign orders invited at slightly
higher cost. Visa and Master Charge card holders
may call toll free 800-521-4414 to order. Outside
order by mail or for a free catalog completely
describing the fantastic crystalless Bearcat 250
write: COMMUNICATIONS ELECTRONICS, Box
1002-Dept. 10,Ann Arbor, Michigan 48106 U.S.A.
$L$
CIRCLE 68 ON FREE INFORMATION CARD


Dual-Trace $5^{\prime \prime} 30 \mathrm{MHz}$ Triggered Scope
EX PRECISION

80MHz Counter with Period Function

## SUMMER

 SPECIALS$\$ 144 .{ }^{95}$


New Low Distortion Function Generator

Simpsent New Compact Portable DMM

New MODEL 461 Digital Multimetet

i

## $\$ 142 .{ }^{50}$

The C-Meter pricisiov, autoranging CAPACITANCE METER

## Doonic \$325


digital multhetas

\$16980 FLLUKI
percussion units... the
PROERAMMRELE DRUM SET
features: score editing, bridges, intros, extemal sync. to sequencers foot controls, memory seve switch \& much more.

Enter scores in seconds NO PROGRAMMI NG KNOWLEDGE IS REQUIRED!

High Fidelity describes the 3750 as "an easy project. . fun to do and yields delightful results.... an excellent educational tool and versatile aid to the musician who can' t afford a live rhythm section."
\#3750
. $\$ 84.95 \ldots$. (+\$3 shipping)

## AnotherGreatKit from: ;an


$\square$ Send Programmable Drum Set Kit ( $\$ 84,95+$ shipping enclosed)
$\square$ TELL ME MORE. . Send the instruction manual first (\$2.00 refundable upon kit purchase)
name: address:

City: $\qquad$ State: $\qquad$ Zip:__ SEND FREE CATALOG
CIRCLE 18 ON FREE INFORMATION CARD


100\% Solid State • Includes 10:1 Probe
More Professional scope performance for your money! DC to 10 MHz bandwidth, AC and DC coupling, 11 position calibrated attenuator, $10 \mathrm{mV} / \mathrm{cm}$ sensitivity, pushbutton operation. Outstanding features: Built-in TV Sync Separator: Digitally controlled trigger circuits; reference baseline display; calibrated 21 step sweep speed; Fully regulated power supply; Custom Bezel for standard camera mounting. Assembled $\$ 425.00$
FREE 78 EICO CATALOG
Check reader service card or send 50 c for first class mail. See your local EICO Dealer or call (516) 681-9300, 9:00 a.m.-5:00 p.m. EST. Major credit cards accepled.
EICO-108 New South Rd. $\mathcal{E I C D}$ Hicksville, N.Y. 11801

CIRCLE 64 ON FREE INFORMATION CARD


# You can build a better organ than you can buy! 

## A magnificent Schober Electronic Organ

What a marvelous way to put your special talents to work! With our Schober Electronic Organ Kits and your skill, you can build yourself some very special satisfaction, and a lifetime of great music!

Schober Organs are literally far superior to comparably-priced "ready-made" units. You could actually pay twice as much and get no better organ... and miss the fun of assembling it yourself. A PC board at a time, component by component, you'll assemble your own "king of instruments." And when you're done, you'll wish there was more to do. And there is! For then, Schober will help you learn to play, even if you've never played a note before!

Schober Organ Kits range from $\$ 650$ to \$2850, and you can purchase in sections to spread costs out... or have two-year time payments. Combine the incomparable quality of Schober components with your talent...and produce a far better organ than you can buy!

Thousands of others have, ever since 1955
You can have all the details, without cost or obligation. Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see Schober quality.) Why not clip it right now. before you forget?


DIGITAL DARKROOM TIMER
continued from page 37
and local parts houses. Most of the IC's are part of Sylvania's ECG series (just add the ECG prefix to the 4-digit designation given in the parts list), and probably part of RCA's SK series. Do not use Motorola's HEP series because even though they designate their CMOS gates with a 4 -digit number between 4000 and 4099, their numbers, in no case, correspond to the industry standard numbers given in the parts list. That is, HEP4001 is not the same as CD4001, ECG4001 or the part specified for IC3 and IC15.

## Repeatability, accuracy and

 short-time limitsThe repeatability of any selected interval is about 7.8 ms , the period of the digit-scan frequency. This occurs because operation of the equals key is not syncronized with IC7's internal clock.

The uncompensated accuracy of any interval is a constant dependent upon: 1) line-frequency accuracy; 2) the difference between the relay's pull-in and dropout time; 3) the phase shift across the transformer (which may delay the triac's turn-on if the relay energizes while the line voltage is close to zero); 4) an extra delay of 0.2 second in IC7 the first time the Equals function is activated. The first

## THERM DIGIIAL HEAT SENSORS


*THERM I: 3 digit .3" LED display; 5AA alkaline batteries; 15-20 hour continuous operation; battery recharger and NiCads optional.
*THERM II: 3 digit $.5^{\prime \prime}$ LCD display, 9 v alkaline battery; 125 hour continuous operation.
*MINI-THERM: plugs directly into DVM for reading on DVM display; 9 v alkaline battery; 125 hour continuous operation.

- Rughed, hanelhelef aluminum case.
- Acrurary $2^{2}+ \pm 1$ 1.sh:
- Resolution: $1^{\circ}$ F.K. or
- Probe: Comes whh it letlon cable (replaceanle)
 (30201)
- ballery-opprated
(415) 941-2764
P.O.Box 4477 Mtn. View CA 94040

CIRCLE 63 ON FREE INFORMATION CARD
three factors will not produce more than about 12 ms of error. The 0.2 -second trror is compensated for by delaying the relay pull-in by using IC6-7 as the source of the signal to latch IC3. As a result, the accuracy is about 30 ms in the seconds range, and 100 ms in the minutes/ seconds range. Though repeatability is ruuch more important than accuracy, if you need high accuracy at short intervals, shunt R2 with any silicon diode, anode to ()l's base, and experimentally add sufficient capacitance from Q1's base to \& round to achieve the required accuracy. Sitart with about $5 \mu \mathrm{~F}$.

If you print in color, avoid using intervals less than about 0.5 second with i candescent-lamp enlargers because during the warmup and cooling period of the lamp, which could be close to 0.1 second long, the color temperature of the lamp will be too low compared with the steadystate value. This will produce reddish color shifts if printing from a slide, and a cyan shift is produced if printing from a negative.


CIRCLE 28 ON FREE INFORMATION CARD

HOLD IT! Anywhe One quick turn of the control t nob and you securely position your work exactly where you viant it. Holds firmly but gently the most delicate electronic parts and P. C. boards.

Whether you're into building home electronics, trouble shooting, or professional servising . . you'll wonder how you got along without this modestly priced 'extra hand.'

Model 396 Wide Opening Panavise shown. An ingenious variety of other interchangeable bases, holders and accessories also available. See your $\epsilon$ lectronics distributor, or write for FREE brochure.

## PrANAMSE

5224 Chakemco St., South Gate, CA 90280



This new clamp-on probe lets you read from 0 to 1 kHz and from 0 to 200 A , accurately, safely, quickly. No disturbing the circuit or insulation. Clamps over conductors up to $3 / 4^{\prime \prime}$ dia.
Write for full specs today.
 Phone: (614) 888-7501 TWX: 810-337-2851 C|RCLE 37 ON FREE INFORMATION CARE


You know that's a great price. Especially when you consider the outstanding performance you get with this Gould OS245A oscilloscope.

And you get clear, bright displays. 5 mV /div. sensitivity and exceptionally versatile trigger performance. It's ideal for TV or general electronic service work; perfect for hobbyists and educational institutions. You can rely on Gould to live up to these specs:

- DC to 10 MHz ; dual trace
- Trigger performance in excess of 15 MHz
- TV trigger facilitates solid synchronization with TV signals

- Portable; weighs just 11 lbs.
- Carries full two year warranty on all parts and labor excluding normal calibration, fuses and minor maintenance. Just one phone call gets you action.
Don't miss out on this bargain. Pick up the phone now and call us toll-free at 800 -325-6400. (In Missouri call 800-$342-6600$ ). We'll rush you free literature and ordering information on the OS245A as well as other Gould oscilloscopes applicable to your needs. Gould Inc., Instrument Systems Division, 3631 Perkins Avenue, Cleveland, Ohio 44114.


CIRCLE 62 ON FREE INFORMATION CARD

## NEGATIVE PICTURE, NO SYNC

The picture goes negative and loses sync on this Sears model 562.10420 chassis. The brightness control behaves like automatic-gain control. I checked the AGC circuit but didn't find anything. Where to now? - G. E., Belleville, IL.
Go right back to the automatic-gain control (AGC) and clamp it with a bias box at about +1.9 volts. If this clears up the problem, then follow through the AGC stage very carefully. These symptoms could indicate leaky transistors.
(Feedback: "That solved it. The AGC keyer and amplifier transistors were both very leaky. Thanks for the help!")

## DOUBLE PICTURES

I'm a student trying to fix this Sanyo model 21V65. It has double pictures or double horizontal foldover. Changing the tubes brought no results.-J. S., Virginia Beach, VA.
This is most apt to be a horizontal oscillator/AFC problem. Remove the AFC by grounding it, then see if you can adjust the horizontal-hold control so that only one straight-sided picture appears on the screen. If you can, the oscillator is able to run on-frequency. Put the AFC back in. If the picture goes out of sync, the problem is in the AFC, with the most likely cause being the dual-diode unit. Make sure that this unit is perfectly balanced.

R-E

> BEST IN NEW ELECTRONICS BOOKS!
> OThe Handhook of Teiaphones 2 accassories. 432 p., 215 il. $\$ 9.95$ Instali Electronic in Cars, Boats. Planes, Trucks \& RY' 364 p. $\$ 7.95$ $\begin{aligned} & \square \text { The BASIC Cookbook. } 140 \mathrm{p} . \\ & \text {. } 270 \text { p, } 182 \mathrm{il}\end{aligned}$ $\square$ Beginner's Gde.-Designing/Building Irans. Radios. 140 $\square 101$ Practical Uses for Propane Torches. $140 \mathrm{p} ., 98$ il. $\square$ Towers' International $\mathbf{F E T}$ Solector, 140 p . $\square$ How to Design/Build Elactr Instrumentation 150 Automotive Rir Conditioning Handhook. 280., 157 il , 210 il. $\$ 9.95$ $\square$ How to Repair Movie \& Slide Projectors. 304 p., 270 il. $\$ 7.95$ $\square$ Closeci-Circuit TV Instll., Mainten., \& Repair. 304 p., 220 il. $\$ 8.95$ $\square$ Understanding Sound, Video \&ilm Recording. 140 p., 74 il. $\$ 5.95$ $\square$ Build-th Book of Solar Heating Projects. 196 p., 111 it. $\$ 4.95$ $\square$ Mdbk. of Solar Flare Monitoring/Propag. Forecasting. $196 \mathrm{p} . \$ 6.95$ 57 Practical Programs $\&$ Games in BASIC. 210 p., 611 il. $\$ 7.95$ $\square$ Beginner's Guide to Microprocessors. 182 p., 106 il. $\square$ Hearing Aid Handbook. $432 \mathrm{p}, 224$ il.
> $\square$ CMDS Databook. $280 \mathrm{p} ., 210$ il.
> $\square$ Master DP-AMP Appicications Handbook. $476 \mathrm{p} ., 320 \mathrm{il}$.
> Miniproces sofs: From Calculators to Computers. $196 \mathrm{p}, 67$
> $\square$ Complete Hobk. of Public Address Sound Systems. 212 p. \$7
> $\square$ Modern Iransistor Radios. 64 p ., 112 il .
> $\square$ Microwave Oven Service o Repair. 420 p., 210 il.
> $\square$ IC Function Locator. 224 p .
> $\square$ Hdbk. of Marine Electronic/Electrical Systems. 546 p ., 338 il \$9.95
$\begin{aligned} & \square \text { Master Handbook of Ham Radio Circuits. } 392 \mathrm{p} ., 301 \mathrm{il} . \\ & \square \text { How to Completely Secure Your Home. } 224 \text { D., } 162 \mathrm{il} .\end{aligned}$
$\square$ Iowers' International Iransistor Selector. 200 p., 179 il.
Ham Radio Incentive Licensing Guide. 154 p .10
$\square$ The "Compulator" Book - Build Super Calculators/Mi
Hardware with Calculator Chips. 322 D 221 il icomputer
$\square$ Master Transistor/IC Substitution Handhook 518 口. 165 il $\$ 7.95$
Master iransistor/lC Substitution Handbook. 1 I8 p ., 165 in. $\$ 1.95$
$\begin{aligned} & \text { Modern Crystal Radios (Make and Use Series). } 64 \text { p., } 101.1 . \$ 2.50 \\ & \square \text { Home-Brew HF NHF Antenna Handhook. } 210 \text { p., } 143 \text { il. } \$ 5.95\end{aligned}$
$\square$ Home-Brew HF/NHF Antenna Handhook. 210 p., 143 il. $\quad \$ 5.95$
$\begin{array}{llll}\square \\ \square\end{array}$ CBerinner's Gde.-Making Electronic Gadgets. 140 p., 113 ii. $\$ 2.95$
$\square$ Beginner's Gde-Making Electronic Gadgets. $140 \mathrm{p} ., 113$ ii. 3.95
$\square$ Modern Oigital Communications. 308 p., 122 il.
0 Microprocessor Progr.-Computer Hobbyists. 378 p., 219 il. $\$ 8.95$
Hlus. Dict.-Broadcast-CATV - Telecommunications. $420 \mathrm{p} . \$ 8.95$
$\begin{array}{llll}\square \\ \text { Build } 1 t \\ \text { Pook of Dptoelectronic Projects. } & 238 \mathrm{p} ., 175 \mathrm{il} . & \$ 5.95\end{array}$
$\begin{array}{lll}\square \\ \text { Photo Guide to AM/FM Stereo Repair. } 288 \mathrm{p} \text { p., } 281 \text { il. } & \$ 6.95 \\ \square\end{array}$
$\square$ How to Use AF \& RF Signal Generators 238 p .162 H
$\square$ Model Raitroad Electronics. 308 p ., 218 il.
The ABC Book of Hi-Fi/Audio Projects. 182 p ., 131 il
$\square$ Complete Hdbk. of Electrical/House Wiring. 476 p., 197 il. 88.95
$\square 88$ Practical Op Amp Circuits You Can Build. $140 \mathrm{p} ., 120 \mathrm{il} . \$ 4.95$
$\square$ How to Build Metal/Treasure Locators. $140 \mathrm{p} . \mathrm{I} 60$ il. $\$ 3.95$
Home Audio Systems Schematic/Servicing Manuals. each 200 p .
$\$ 5.95 \square$ Vol. 1 Capehart, Zenith. $\square$ Yol. 2 Channel Master, Coronado
Hitachi.[]Vol. 3 Autamatic Radio, Admiral, Midland, Sharp
SEND NO MONEYI We'll invoice you on 10-DAY FREE TRIAL. Clio
entire ad to order $100 \%$ guaranteed or your money refunded

TAB BOOKS
BOOKS wuu fobis summi Pa. 1214
CIRCLE 23 ON FREE INFORMATION CARD


Solid state component tester works in or out of circuit. Simple hook-up to any standard oscilliscope. High, medium and low range switch for matching the impedance to the component being tested.

Dealer Net \$54.95
See the Yellow Pages for the PTS Servicenter Nearest You or Contact:

CIRCLE 40 ON FREE INFORMATION CARD

## MATHEXATILSS EIECTRONISS Enenverning matilenatics adyave d matematics

These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom to thousands of men, from all walks of life, on mathematics, and electrical and electronic engineering.

You will have to see the lessons to appreciate them!

NOW you can master mathematics and electronics and actually enjoy doing it!

WE ARE THIS SURE:-you order your lessons on a money-back guarantee.

In plain language, if you aren't satisfied you don't pay, and there are no strings attached.
Write today for more information and your outline of courses.

You have nothing to lose, and everything to gain!

The INDIANA hOME STUDY INSTITUTE P.O. BOX 1189<br>PANAMA CITY, FLA 32401

CIRCLE 12 ON FREE INFORMATION CARD


ZIRCLE 6 ON FREE INFORMATION CARD


# computer corner 

## 8080

A demonstration program for the 8253 timer.
C. TITUS, M. DEJONG, D. LARSEN, P. RONY and J. TITUS*

IN A PREVIOUS COLUMN, WE INTRODUCED the characteristics of the Intel 8253 programmable interval timer, a 24 -pin IC that is very useful in counting and timing operations.

This month's column describes a demonstration program that illustrates the various modes of operation of the timer.

The details of the test circuit are shown in Fig. 1. Although an oscilloscope is handy to monitor the output signal, outo, from counter No. 0 , we have found it just as useful to use a single 7490


FIG. 1
decade counter IC to detect negativeedge transitions at output signal outo. The $25-\mathrm{kHz}$ input clock frequency, which has a period, T , of $40 \mu \mathrm{~s}$, is the input at cleo.

Before you use the 8253 IC, you must understand the nature of output signal outo as a function of the IC's six different modes of operation: mode 0 through mode 5. Intel literature ${ }^{1}$ is somewhat confusing in this area, so the diagrams have been simplified by omitting all signals except for the outo signal. This permits you to simultaneously compare all six operation modes, as shown in Fig. 2. Note that modes 0 and 1 provide a negative monostable clock pulse of duration NT; mode 2 provides a series of negative clock pulses of pulse width $\mathbf{T}$ and period NT; mode 3 provides essentially a

[^6]squarewave of period NT ; and modes 4 and 5 provide a single strobe pulse of pulse width T at a time NT after a trigger pulse has been applied to counter No. 0 . Quantity $N$ is a 16 -bit timing byte initially loaded into counter No. 0. In our demonstration program, the timing byte is $000000_{8}$, which corresponds to the decimal number 65,536 . At this point, there are two possible actions input GATEO can take:

1. GATEO functions as a gating input; when at logic 0 , pulses that are input at clko do not reach counter No. 0 and no counting occurs. This type of behavior occurs with mode 0 , mode 2 , mode 3 and mode 4.
2. GATEO functions as a trigger/reset
an address of $200000_{8}$. The program is quite simple. First output the control word, $060_{8}$ (mode 0 ), into the control register. Next, successively load the lo and HI counter bytes, both of which are $000_{8}$, into counter No. 0. Finally, enter a wait loop.

When you execute this program, output signal outo goes immediately to logic 0 and remains there for NT seconds, after which it returns to logic 1. You can repeat this behavior only by executing the program a second time starting at memory address 0030008 .

If you change the control word at location 003001 to $062_{8}$ (mode 1 ), start the execution of the program and press the pulser shown in Fig. 1, you will also observe a negative pulse with a duration of 2.62 seconds. If you fail to press the pulser, however, and thus do not apply a positive edge at GATEO, you will observe no monostable pulse. On the other hand,


FIG. 2
input; a positive-edge transition at GATEO resets counter No. 0 and initiates counting. Each time there is a positive edge at GATEO, counter No. 0 is reset. This type of behavior occurs with mode 1 , mode 2 , mode 3 and mode 5.
These different actions can best be observed with the aid of a counter and a value of NT in the range of 3 to 10 seconds. In this case, the value of $N$ is 65,536 and T is $40 \mu \mathrm{~s}$; so $\mathrm{NT}=$ $(65,536)\left(40 \times 10^{-6}\right)=2.62$ seconds.

The program that we use to test the 8253 IC is shown in Table 1. Note that a memory-mapped I/O (Input/Output) is used, in which the control register has an address of $200003_{8}$ and counter No. 0 has
repeatedly pressing and releasing the GATEO pulse at time intervals of less than 2.62 seconds can prolong the monostable pulse indefinitely. In this way, you are able to produce a retriggerable monostable multivibrator input.

The control word of $064_{8}$ lets you observe the mode 2 behavior shown in Fig. 2. Repeatedly generating positive edges at GatEO at time intervals of less than 2.62 seconds repeatedly resets counter No. 0 and prevents the short negative clock pulses from appearing. You can accomplish the same purpose by allowing GATEO to remain at logic 0 after you have applied a positive edge. The GATEO input thus exhibits both gating and trigger/ reset behavior.

TAEILE 1-DEMONSTRATION PROGRAM for the 8253 interval timer. The control word at address 003001 is changed to demonstrate the behavior of the different modes of operation.

| Address | Instruc- <br> lion | Label | Mnemonic | Comment |
| :--- | :--- | :--- | :--- | :--- |
| 063000 | 076 | TIMER, | MVIA | /Move control word into accumulator |
| 003001 | 060 |  | 060 | /Mode control word |
| 003002 | 062 |  | STA | /Store it within control register |
| 003003 | 003 |  | 003 | /in 8253 interval timer chip |
| 003004 | 200 |  | 200 |  |
| 003005 | 076 |  | MVIA | /Move LO counter byte into accumulator |
| 063006 | 000 |  | 000 | /LO counter byte |
| 003007 | 062 |  | STA | /Store LO byte in counter \#0 |
| 003010 | 000 |  | 000 |  |
| 003011 | 200 |  | 200 |  |
| 003012 | 076 |  | MVIA | /Move HI counter byte to accumulator |
| 003013 | 000 |  | 000 | /HI counter byte |
| 003014 | 062 |  | STA | /Store HI byte in counter \#0 |
| 063015 | 000 |  | 000 |  |
| 003016 | 200 |  | 200 |  |
| 003017 | 303 |  | JMP | /Wait |
| 003020 | 017 |  | 017 |  |
| 003021 | 003 |  | 003 |  |

The mode 3 behavior (control word of $066_{3}$ ) is similar to that for mode 2 , except that a nearly symmetrical squarewave is procuced. Deviations from symmetry occur when the counter byte is an odd number, and are most evident when the counter byte is very small.

In mode 4 (control word of $070_{8}$ ), the positive edge of the $\overline{\mathrm{WR}}$ pulse, which is applied at pin 23 of the timer when you execute the sTA instruction at 003014 , initiates counting that produces a nega-
tive clock pulse of pulse width T. The time duration between the positive edge and the pulse is 2.62 seconds. The gateo input acts as a gating input, with a logic 0 inhibiting the counting process.

Finally, in mode 5 (control word of $072_{8}$ ), a positive edge at GATEO initiates counting. Repeatedly generating positive edges at Gateo at less than 2.62 -second time intervals repeatedly resets counter No. 0 and prevents the appearance of the single negative clock pulse.

It should be noted that in all modes, counter action begins on the first negative clock transition after $\overline{\mathrm{WR}}$ (pin 23) or GATEO goes to logic 1; and that WR can initiate counting in all modes except mode 1 and mode 5.

Although in many 8253 timer applications, the primary purpose is to generate the proper output signal at outo (as shown in Fig. 2), you can also read the contents of the 16 -bit counter without affecting the counting operation. By inputing a control word of $000_{8}, 100_{8}$, or $200_{8}$, you can latch the 16 -bit count of either counter No. 0, counter No. 1, or counter No. 2, respectively. You can then read the two bytes into the 8080A IC, with the lo counter byte first and the H counter byte second.

To discuss complex counter applications in any detail is beyond the scope of this article. However, a 16-bit frequency counter has been described elsewhere. ${ }^{2}$ and a scheme has been proposed ${ }^{3}$ for measuring the half-life of a radioactive substance.

R-E

## REFERENCES:

1. Intel Data Catalog, 1977, Intel Corp., 3065 Bowers Ave., Santa Clara, CA 95051.
2. Lynne, P., "implementing an LSI Frequency Counter," Byte 2 (11), 146 (1977).
3. DeJong, M. L., private communication. (Prafessor Dejong will implement a number of counting schemes in a physics laboratory, and would be interested in corresponding with others who have similar interests.)


OK MACHINE \& TOOL CORPORATION
3455 Conner St., Bronx. N.Y. 10475 (212) 994-66C0 / Telex 125091

## Build an inexpensive expanded-scale voltmeter to monitor $A C$ line voltage. EARL "DOC" SAVAGE, K4SDS, HOBBY EDITOR

FEW THINGS ARE MORE FRUSTRATING TO those of us who know something about electricity than the hot weather "brownout." This occurs when the power company reduces the voltage in an attempt to make the supply go around. There were brownouts during the past several summers, and it is possible the situation will become worse before it gets better. Not only is it frustrating when the usually reliable AC voltage is cut by $5 \%, 10 \%$ or more, it is potentially harmful to your home appliances.

If you reduce the input voltage to a motor, the result is that the operating temperature rises. Reduce it enough and the temperature becomes so high that it burns the insulation off the coil wires, and that's the end of the motor.

Most motors can operate at a $10 \%$ or greater voltage reduction with no more effect than just running a little warmer than usual. The amount of undervoltage a given motor can tolerate safely depends upon its design and its load (i.e., how hard it is working).

Thus, you can see that there is no magic voltage figure that applies equally to all motors. If you have a motor that operates at or near its maximum load, it may be the first to go while others are seemingly unaffected.

On the other hand, it is not good for any motor to operate at higher than normal temperatures. Such operation over a period of time, whether all at once or broken up into many intervals, shortens the life of a motor. You don't want a motor to operate that way unless it must.

There are two things you can do: Raise the voltage or turn the motor off. The former can be a very expensive operation but sometimes it is necessary.

It is much more practical to turn the motor off or not start it up when the voltage drops. Do not use your washing machine or dryer until later; postpone using your power saw; and turn off a nonessential fan or air conditioner.

However, you have to know at the time when the voltage is down-reading about it later won't help. Of course, you could hook your VOM or VTVM to the power line but you do use them for other things. Not even a $150-V A C$ panel meter is the
easiest instrument to read accurately. What you should have is a line-voltage monitor and now is the time to build it.

## AC line monitor

The problem with a VOM or a panel meter is that the scale graduations are very small and set close together. Sometimes they are marked in units of 5 volts or even 10 volts, which does not make for very accurate readings. If the meter scale went from a low of 100 volts to a high of 125 volts, for example, you could read it much more easily.

That's just what an expanded-scale meter is: the bottom of the scale is left off or highly compressed, and the top is expanded to fill all or most of the space.

Figure 1 shows both an expanded-scale meter and the method for attaching it to the power line. I strongly recommend

## How it works

Here's how the meter operates: Diodes D1 through D4 rectify the AC voltage to DC voltage, and the capacitor smooths out most of the ripple. The Zener diode, D5, doesn't allow any appreciable amount of current through until its Zener voltage is reached, thereby effectively eliminating the bottom part of the scale. The potentiometer is used to set the meter during calibration. Any milliammeter with a scale from 0 to 1 can be used but choose one that comes apart easily so that you can change the scale markings.

Obviously, what the circuit is doing is measuring any change in a DC voltage that is caused by a change in the AC line voltage. The reason for this roundabout method of checking is to avoid a complex AC circuit that functions no better than this one.

## Calibration

To calibrate the expanded-scale voltmeter requires a variable AC voltage source and a way to measure it. The most


D1, 2, 3, 4 - SILICON DIODES, $50 \mathrm{~mA}, 250$ PRV ( 1 N4004 OR EQUIVALENT)
FIG. 1
using an isolating transformer. If you do not own or cannot find an inexpensive transformer with a secondary winding close to 120 volts AC , you can use two small filament transformers placed back-to-back, as seen in Fig. 2. These transformers can be $5,6.3$, or 12.6 volts, or almost anything as long as they are the same. They can also be the smallest transformers you can find since very little power is drawn from them.


FIG. 2
convenient variable AC source comes from a adjustable-voltage autotransformer (known also as a Variac) if you can borrow one. Figure 3 shows how to connect this transformer. The AC meter across the Variac output can be any accurate VOM, VTVM, DMM, etc.

First, set the transformer to put out 120 volts (or the normal voltage in your area) and adjust the potentiometer until the expanded-scale voltmeter reads about three-quarters full-scale. Do not change the potentiometer after making this adjustment. Mark " 120 " on the face of the scale right under the needle of your expanded-scale voltmeter.

Next, change the variable-voltage transformer to another voltage and mark that on your new meter. Continue changing and marking until there are as many gradations as you will need. Now your
expanded-scale voltmeter is ready to connect to the power line.

## Sub stitute variable-voltage supply

Here are a couple of ways to perform the calibration if you can't locate a vari-able-voltage transformer. One method requires an old model-train transformer (fror) back in the days when these trains


FIG. 3


FIG. 4
rän cn AC). Connect the secondary in series with the secondary of the isolation trans former (see Fig. 4).

The variable AC output (usually from 0 to 12 volts or 16 volts) will either add to or subtract from the output of the isolation transformer. Perform the calibration up or down (as needed) and then switch the output leads of the train transformer. This will cause the total output to vary in the other direction and you can complete the calibration. (Incidentally, that train transformer is a handy item to have around the workbench.)

You can also use several filament transformers, although this is a less convenient method. Connect them as shown in Fig. 5

to obtain various fixed points on the scale. Reversing one or more secondaries will provide additional points. Assuming you have a 117 -volt $A C$ line, the combination shown in Fig. 5 will yield outputs of $104.4,107.55,110.7,117,120.15,123.3$, 126.45 and 129.6 volts. [For voltages
below 117, you must reverse the phase (connections) to the primary winding of the 117 -volt isolation transformer.] Of course, other filament voltages will yield other results.

## The Zener diode

The useful range of your expandedscale voltmeter will depend upon both the exact voltage of the Zener diode and the internal resistance of the meter. In my setup, a 145 -volt Zener produces a range of 95 volts to 125 volts. Of course, the top and bottom readings also vary with how the calibration potentiometer is set; for example, I can easily change mine to read from 105 volts to 135 volts.

You can actually tailor your expandedscale voltmeter to your specific needs. Lowering the Zener voltage by 5 volts or 10 volts expands the range (compresses the scale-the gradations are closer together). Using a Zener with a higher voltage rating causes just the opposite effect (it expands the scale more), but if the Zener voltage exceeds the DC voltage applied, the meter will not register.

It is easy to adjust the Zener voltage in the circuit. When Zener diodes are placed in series, their voltages add (just like resistors). So, five 30 -volt diodes in series act just like a 150 -volt unit. Thus, you can place smaller Zener diodes of assorted values in series to obtain any value you need.


Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Klaps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4^{\prime \prime}$ long. Kleps 26. Same, but 7" long. cepts banana plug or bare lead. $6^{\prime \prime}$ long.

. $\mathrm{AC-}$
$\$ 1.79$ Kleps 411 . Completely flexible. 3 -segment automatic collet firmly gi ips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.59$ Kleps 1. Economy Kleps for light line work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long.
Pruf 10 Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
All in red or black-specify. (Add $50 ¢$ postage and handling). Write fo complete catalog of - test probes, plugs, sockets, connecters, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to.

## RYEINDUSTRIESINC.

133 Spencer Place, Mamaroneck, N.Y. 10543 In Canada: Rye Industries (Canada) Ltd. CIRCLE 59 ON FREE INFORMATION CARD

## Accuracy like a VTVM... Convenience like a VOM... NEW BATTERY-OPERATED FET SOLID-STATE VOLT-OHMMETER *116

Easy-to-build KIT
$\$ 41 .{ }^{85}$
Factory-Wired \& Tested
\$56. ${ }^{12}$
$=116 \mathrm{~W}$
Now you can get all the benefits of a VTVM (laboratory accuracy, stability and wide range) but with its drawbacks gone: no plugging into an AC outlet, no waiting for warm-up, no bulkiness. New Field Effect Transistor (FEI) design makes possible low loading, instant-on batteryoperation and small size. Excellent for both bench and field work
Compare these valuable features:

- High impedance low loading: 11 meg. ohms input on DC, 1 megohm on AC 500 -times more sensitive than a standard 20,000 ohms-per-volt VOM - Wide-range versatility: 4 P-P AC voltage ranges: 0.3 .3 , 33, $330,1200 \mathrm{~V}, 4$ RMS AC voltage ranges: J-1.2, 12, 120, $1200 \mathrm{~V} ; 4 \mathrm{DC}$ voltage ranges: J.1.2, 12, 120, $1200 \mathrm{~V} ; 4$ Resistance ranges: J. $1 \mathrm{~K}, 0.100 \mathrm{~K}, 0-10$ meg., $0-1000$ meg.; 40 B ranges. -24 to +56 DB .
Sensitive easy-to-read 41/2" 200 microamp meter. Zero center position avaitable. Comprises FET transistor, 4 silicon transistors, 2 diodes. Meter and transistors protected against burnout. Etched panel for durability. High-impact bakelite case with handle useable as instrument stand. Kit has simplified step-bystep assembly instructions. Both kit and factory-wired versions shipped complete with batteries and test leads. $51 / 4^{\prime \prime} \mathrm{H} \times$ $63 / 4^{\prime \prime} \mathrm{W} \times, 2^{7 / a^{\prime \prime}} \mathbf{D .} 3$ lbs.


## Advanced Electronic Career

## ANNOUNCING A New CREI Program: Minicomputer \& Microprocessor Technology Including A Microprocessor Laboratory

The microprocessor has ushered in the age of microtechnology and electronics will never again be the same. The microprocessor has made possible the placing of an entire computer on a silicon chip one quarter inch square. The microprocessor "miracle chip" is in the process of changing the world. Soon all technical personnel in electronics will have to understand and work with the microprocessor. It is invading virtually every area of electronics. And it is profoundly affecting your electronics career.

## Brand New <br> Program

CREI has a brand new program to help you learn how to work effectively with this revolutionary electronics development. CREI's new program in Minicomputer and Microprocessor Technology is designed to prepare you for this field by giving you the education and practical experience you need.

The program provides solid preparation in electronics engineering technology with a specialization in minicomputers and microprocessors. In addition, it includes a microprocessor laboratory which features a fully programmable microcomputer which utilizes the Motorola 6802 microprocessor chip. This is an extremely important element of your program.

## Programming Essential

As you may well know, you must learn how to program the microprocessor in order to design, service or troubleshoot microprocessor electronic systems. There is only one effective way to learn this all-important skill of programming, and that is by actually doing it. CREI's new program gives you this opportunity as you work with the exciting microprocessor laboratory.

## Programming

## Is Easy

With CREI's new program, learning the skill of programming is simple. Within a few hours you'll be programming the microprocessor and in a short time you'll learn how to program it in three languages: BASIC, assembly and machine languages. In addition, you will learn how to interface the microprocessor with other systems and to test and debug specialized programs.

## Preparation at Home

## Wide Choice <br> of Programs

Please note. however, that CREI's new program is only one of 16 state-of-theart programs in advanced electronic technology offered by CREI. So even if you choose not to specialize in microprocessor technology, CREI has an advanced electronics program to meet your needs.
With CREI, you may choose from any of the following areas of specialization in advanced electronics:

Microprocessor Technology<br>Computer Engineering<br>Communications Engineering<br>Digital Communications<br>Electronic Systems<br>Automatic Controls<br>Industrial Electronics<br>Television Engineering<br>Microwave Engineering<br>Cable Television<br>Radar and Sonar<br>Nuclear Instrumentation<br>Satellite Communications<br>Aeronautical and Navigational<br>Solid State Theory<br>Nuclear Engineering

## Unique Lab <br> Program

An exclusive option available with CREI programs in electronic engineering technology is CREI's unique Electronic Design Laboratory program. It gives you actual experience in designing practical electronic circuits. It also helps you to understand the theories of advanced electronics and gives you extensive experience in such areas as tests and measurements, breadboarding, prototype construction, circuit operation and behavior, characteristics of electronics components and how to apply integrated circuits. Only CREI offers this unique Lab Program

## Practical <br> Engineering

CREI programs give you a practical engineering knowledge of electronics. That is, each part of your training is planned for your "use on the job." By using your training, you reinforce the learning process. And by demonstrating your increased knowledge to your employer. you may qualify for faster career advancement.

## Free Book

There isn't room here to give you all of the facts about career opportunities in advanced electronics and how CREI prepares you for them. So we invite you to send for our free catalog. This fully illustrated, 56 page book describes in detail the programs, equipment and services of CREI.

## Qualifications

You may be eligible to take a CREI college-level program in electronics if you are a high school graduate for the true equivalent) and have previous training or experience in electronics. Program arrangements are available depending upon whether you have extensive or minimum experience in electronics.

## Send for this FREE Book describing your opportunities and CREI college-level programs in electronics

 Progrem 680: MINICOMTITER 8 MICROPROCESSOR TECHNOLDEY


Mail card or write describing qualifications to


## GI Bill

CREI programs are approved for training of veterans and servicemen thader the G.I. Bill.

# state of solid state 

## An in-depth look at a temperature transducer and precision voltage reference all on one IC. Plus a look at some new developments.

CONTAINED WITHIN THE DATA SHEET FOR the REF-02 +5 -volt precision voltage reference are the terms, regulator and thermometer. The REF-02 is a bandgap reference that uses the predictable temperature characteristics of silicon-diffused junctions to create a stable voltage. It does not use a constant-starting point such as a Zener, but much the opposite. It takes the temperature-variable junctions of two silicon transistors and sets them against each other to produce a near-zero temperature coefficient.

There is also a temperature-dependent output available at a terminal on the package. An accurate thermometer can be constructed by combining the reference and temperature-dependent outputs in an external operational amplifier. The thermometer can be calibrated directly in degrees Fahrenheit, Celsius or Kelvin, and can have a linear scale factor that can be adjusted by choosing different resistor values. Typical scale factors are from 10 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ to $100 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. Measuring the output voltage on a digital voltmeter then gives direct temperature readings.

The thermometer has another unique feature. It can be calibrated accurately at a single temperature, which can be room temperature. Although it requires an accurate $100-\mathrm{mV}$ source as part of the calibration procedure, repeated adjustments at two known temperatures, such as the boiling and freezing points of water, do not have to be made.

The REF-02 circuit is shown in Fig. 1. The circuit does not have many inputs and outputs and fits easily in an eight-pin TO-99 case. Included are an input terminal for the power supply; an output for the precisely regulated voltage; a terminal marked TEMP, which is the tempera-ture-dependent voltage; a trim terminal, and ground (three terminals are not connected).

You could not tell from a cursory glance that the heart of the circuit is just two transistors. Transistors Q1 and Q2 have been proportioned in current and area so that the current density in Q1 is one-sixteenth of the current density in Q2. The emitter area of Q1 is four times that of $Q 2$, which means if both transistors carried identical currents, the current density in Q 1 would be one-fourth
that of Q2. In addition, collector resistors R3 and R4 scale the currents in Q1 and Q 2 in the ratio of $1: 4$. The product of the two factors gives a $16: 1$ current-density ratio.

The diode equation relates the base-toemitter voltage of a diode or transistor to its temperature and current. One form of the diode equation is $\mathrm{V}_{\mathrm{bc}}=\mathrm{kT} / \mathrm{q} \operatorname{Ln} \mathrm{I}_{\mathrm{c}} /$ $\mathrm{I}_{\mathrm{s}}$. Here's a good opportunity to exercise the natural logarithm function on that gift scientific calculator!

First with respect to the constants, $\mathbf{k}$ is Boltzmann's constant, which is a physical constant equal to $1.3804 \times 10^{-23}$ joule $/$ ${ }^{\circ} \mathrm{K}$, and T is the absolute temperature of the junction in degrees Kelvin. Celsius temperatures are converted to Kelvin by adding 273. Kelvin and Celsius degrees represent identical temperature increments, but $-273^{\circ} \mathrm{C}$ or $0^{\circ} \mathrm{K}$ is known as absolute zero. The $q$ term is the charge on


FIG. 1


FIG. 2
an electron equal to $1.6021 \times 10^{-19}$ coulomb, $I_{c}$ is the diode or transistor collector current, and $I_{s}$ is the saturation current.
At first, it might seem that the voltage across a silicon junction increases directly as temperature because of term T at the
beginning of the equation. However, the saturation current is itself highly dependent on temperature, and, in fact, the temperature coefficient of the junction is negative. The coefficient is in the order of $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, with its precise value determined by the manufacturing process.
Even though the equation appears to show that $\mathrm{V}_{\mathrm{be}}$ would be zero at 0 degrees Kelvin, the temperature-dependent $I_{s}$ term decreases toward zero at a rapid rate. If absolute zero is approached as a limit, the 1.23 -volt bandgap voltage of silicon results. Another approach is to take the $-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ coefficient and determine what happens at absolute zero. The junction voltage would be the roomtemperature voltage, or around 0.6 volt, plus the increase that results from the $293(273+25)$-degree drop in temperature, or $298 \times 2.1 \times 10^{-3}=0.628$ volt. The bandgap voltage is therefore about 1.23 volts. It turns out that if this voltage is generated by adding two terms by the method described in following paragraphs, a zero coefficient voltage is theoretically produced.

*UP TO 10 FEET OF SHIELDED
4-CONDUCTOR CABLE.
FIG. 3
The diode equation becomes very interesting when you compare the voltage across two diode junctions with different current densities. Recall that when you take the difference between the logarithms of two numbers, the result is the same as the logarithm of the ratio between the numbers: $\operatorname{Ln} \mathrm{A}-\mathrm{Ln} \mathrm{B}=\mathrm{Ln}$ A/B. Substitute numbers for A and B and verify it on your calculator. If the voltage between two junctions is calculated by subtraction, the equation now looks very much the same as before, except that the Ln term operates on the ratio of the current densities in the two junctions: $\Delta \mathrm{V}_{\mathrm{be}}=\mathrm{kT} / \mathrm{q}$ in $\mathrm{J}_{1} / \mathrm{J}_{2}$. You may have seen this expression before to describe the input to a differential amplifier that produces specific currents in the two input transistors. The $\mathrm{kT} / \mathrm{q}$ term at room temperature calculates to about 26 mV . To double the current in a transistor, it takes 26 Ln 2 , or about 18 mV . A
significant change in the equation is that because it was created by subtracting two equations with $\mathrm{I}_{s}$-terms, the temperaturevariable saturation current has dropped out. Now, the temperature coefficient is entirely due to the T-term in the numerator and has a positive sign.

In summary, the temperature variation of a single transistor junction has a negative temperature coefficient, while the difference in voltage between two semiconductor junctions with different current densities has a positive temperature coefficient.

In Fig. 2, the components associated with the internal operational amplifier function are replaced with an amplifier
symbol, but essential feedback and gain determining resistors are retained.

As mentioned previously, the current density in Q1 and Q2 are in the ratio of 16:1. We can now calculate the differential voltage between the base-emitter junctions from the diode equation. The current in Q1 and Q2 is maintained in a $4: 1$ ratio by the $4: 1$ ratio of the collector resistors. Negative feedback around the operational amplifier requires that the input voltage at the inverting and noninverting inputs be identical; so the current through R3 in the Q2 collector must be four times as great as the current through R 3 in the Q 1 collector.
continued on page 76

## Everything you ever want to know about Personal Computers



Here it is-everything you need to know about the state of the art, just as it appeared in the big, colorful special section of the June, 1978 RADIO-ELECTRONICS - "Your Own Computer."

This complete, colorful, 32-page reprint of that first-in-the-field special feature tells you everything you want to know, including: An Introduction to Personal Computers-what they can do and how to select your own; What Makes a Computer System-peripheral devices and accessories; The Different Ways You Can Talk To Your Computer-programming languages and how to use them; a special edition of Computer Corner; and, A Roundup of the Equipment, the most complete Who-Makes-It Computer Manufacturer Listing you can find!

We've reprinted this giant special section of RADIO-ELECTRONICS for your convenience. Every serious experimenter and technician will want this vital information at home and in the office, lab or workshop, where you can refer to it when you need it. At this very special low, low price of just $\$ 1.00$, you can afford to have your own copy of "Your Own Computer" everywhere you go-and give some to friends, too
Don't delay. We're ordering a big reprint of this very popular feature section, but we're expecting a big demand, too. For your convenience, use the coupon below to order your own reprints of the single most authoritative, most colorful, most comprehensive report on today's Personal Computers, the 32-page reprint of RADIO-ELECTRONICS' 'Your Own Computer," for just \$1.00. Do it today.


## Pulse-width modulated DC power supplies and how to troubleshoot them.

WE'RE CONTINUALLY DISCOVERING NEW uses for known circuits. Pulse-width modulation (PWM) has been around for some time. Actually, the basic principle has been used for DC voltage regulation in TV sets. If I'm not mistaken, Sony's model KV-1722 was the first chassis to use a PWM circuit.

The basis of a PWM circuit is a controllable switch, to which a DC voltage supply (rectified and filtered) is fed from the AC line. This switch is normally off. Sony uses a gate-controlled switch (GCS) that behaves similar to a silicon controlled rectifier, but it can be turned on or off by control pulses to create a series of pulses; you'd probably call this circuit a chopper. Figure 1 is the block diagram of a basic PWM circuit.

GCS on or off. The error amplifier controls the pulse width of the modulator. In the Sony circuit, this is a monostable multivibrator. If the output voltage goes down, the pulses become wider; when the output voltage goes up, the pulses grow narrower.

If the output pulse becomes narrower, there is less total energy in it. A smaller amount of energy is sent to the filter capacitors, their charge decreases, and the output voltage goes back down to normal. A wider pulse sends more charge into the capacitors, with the result that the voltage goes up to normal. Remember, this all takes place within a very short period of time, the regulation action is almost instantaneous. Figure 2 shows the difference between the normal


FIG. 1

Let's see how this circuit behaves. As you should know, the DC output voltage of a power supply is developed from the charge in the filter capacitors. All that the power supply does is recharge the capacitors at regular intervals, when the load current discharges them. Therefore, there's a given amount of charge (energy) in the capacitors, and the voltage will remain fairly constant under normal current drain. In the PWM circuit, the chopped DC power supply simply feeds in pulses containing just enough energy to recharge the capacitors and hold the voltage constant.

Now, if the load current increases, more energy is being taken out than is being fed in and the output voltage drops. If the current decreases, less energy is removed and the voltage goes up. In either case, an error amplifier senses the change in load voltage. This stage controls the action of a switching-pulse generator. This is the stage that turns the
pulse with a $30 \%$ duty cycle (as used in the Sony circuit), a $10 \%$ duty cycle and a $50 \%$ duty cycle. Note that all duty cycles have the same peak voltage. Therefore, the amount of power that is fed to the capacitors depends entirely upon the duty cycle of the switch.

In most circuits, this switching action occurs at the horizontal frequency, and is controlled by pulses fed back from the horizontal oscillator or the flyback. The frequency of the monostable multivibrator is controlled by these pulses, and the duty cycle is controlled by the value of the DC output voltage, through the error amplifier. (There's a key point in here, which we'll deal with later; just remember it.)

The main reason for using this type of power supply is its increased efficiencyit uses less power than the older type of regulator. The PWM regulator can be designed for greater efficiency. The reason for this greater efficiency is the fact
that the GCS is actually off most of the time. With the $30 \%$ duty cycle, the GCS is off $70 \%$ of the time! This greatly reduces the power that is dissipated by the GCS.


There are other advantages, some of which have been used before in a different way. First, the basic ripple frequency isn't $60 \mathrm{~Hz}-120 \mathrm{~Hz}$, but $15,750 \mathrm{~Hz}$. The DC voltage is gated at the horizontal frequency. So, filter capacitors and chokes can be made smaller for the same filtering efficiency. However, both capacitors and chokes must be able to handle a fairly high ripple current at high frequencies. Only low-loss capacitors can be used in order to withstand the dielectric heating. Chokes must be high-Q types and able to withstand heavy RF current. So, do not use stock electrolytic capacitors or chokes for replacements.
This is the same problem we've been experiencing on flyback-derived DC voltage supplies. Stock sinewave diodes don't work well because they draw too much reverse current with a spike pulse. Only the fast-recovery diodes operate properly. The correct diodes, transistors and capacitors must be used, or "the cure will be worse than the disease."
Servicing these power supplies requires even more extensive use of the scope than in the old type of power supplies. You must use the scope to trace the control pulses through their circuits, and make sure they go to the right place, with the correct waveform! On a recent TV I found a nice squarewave where the schematic called for a sharp sawtooth waveform. Eventually, I found that two small capacitors contained in the sawtoothshaper circuitry were open. Replacing them brought back the sawtooth waveforms and normal operation of the power supply. These are just some more circuits where "the VOM isn't enough!"

Although PWM circuits look fairly complex at first, they aren't really. Each stage has a definite function, and if you check each stage methodically to make sure they are doing their job properly, it continued on page 78

# NEW for <br> Professional Technicians 

## Forest Belt's <br> IBAINING WORKSHOPS 1970

\author{

- thREE-DAY - Includes lodging <br> - INTENSIVE <br> - UP-TO-DATE <br> - PERSONAL <br> - UNIQUE <br> - Breakfasts, lunches, and coffee breaks during WORKSHOPS <br> - Grand AWARDS BANQUET <br> - FREE Extra SEMINAR
}


## advanced

# VIDEO SERVICING 

Featuring VCRs, Digital Controls, VIR . . .
and much more
Intensive Forest Belt teaching techniques and exclusive, proven training aids bring you right up-to-date in the troubleshooting and repair of today's video equipment for home or industry.
Special emphasis on solid-state and integrated circuits. See new IF and color alignment methods you probably never thought of. Learn about Vertical Interval Reference (VIR) automatic color control in newly introduced TV receivers. Understand digital and solid-state tuning systems. Participate in live equipment demonstrations. Sit in on the industry's first look at practical, Easi-WayTM repair of video cassette recorders.
DON'T BE LEFT BEHIND in your own industry! Be the one technician in your region who not only keeps up but stays AHEAD of new technology and servicing methods. ENROLL NOW to be sure you do not miss this vital and unique Advanced Video Servicing WORKSHOP.

FREE Price and Profit SEMINAR Tuesday evening.

## September

11-13 (Communications) or 18-20 (Video)

## Hospitality Inn East <br> Interstate 70 at Post Road Indianapolis, INDIANA

Centrally placed for convenient travel from anywhere in the mainland U.S. Also timed earlier in the year, in case you should not be away from your shop during the pre-Christmas season. You can attend in time to prepare you for the year-end service rush and the new sets being sold.
Comfortable, pleasant accommodations: two people to a room (two beds). Indoor pool. Shopping downtown by freeway. Bring your spouse if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to room with a specific other WORKSHOP attendee, tell us.

Enroliments close August 4, 1978, or when capacity is reached. Per Workshop \$495


## ADVANCED

# COMMUNICATIONS SERVICING 

Featuring FM Two-Way, PLL, Single Sideband . . . and much more

Here, too, intensive Forest Belt teaching methods and exclusive, tested learning aids assure you up-to-the-minute training troubleshooting and maintaining communications systems.
Special emphasis on solid-state and integrated circuits. Observe professional alignment and tuneup methods. Deal profitably with Business and Land Mobile Radio-and the growing General Mobile Radio on UHF wavelengths. Learn of new developments in Marine and Aircraft Radio. Study the latest phase-locked loops, including their digital programming. Take part in live equipment demonstrations. See Easi-WayTM techniques applied to communications.
GROW AS A REAL EXPERT in your specialty. Grab this exceptional opportunity to polish up your diagnosis and repair skills. Become familiar with new technology and money-saving instruments. ENROLL NOW in Advanced Communications . . a giant step beyond our popular CB Servicing WORKSHOPS.
FREE Math and Formulas SEMINAR Tuesday evening.

## November 6-10 (Communications) or 13-17 (Video)

## South Seas Plantation Captiva Island, FLORIDA

(near Sanibel and Ft. Myers)
For technicians who could use a bit of get-away time as part of this unique training package. Two days of consulting or on-your-own follow each WORKSHOP. Make your own airline reservations, well in advance; but we take care of placing you in our luxury cottage lodging.
Exceptional resort accommodations: four people (two bedrooms, four beds, two baths) or six people (three bedrooms, six beds, three baths) in fancy beach cottages. Bring your spouse, if you wish, at the nominal No-WORKSHOP fee (she joins the WORKSHOP group for breakfasts and lunches). If you prefer to share a room with a specific other WORKSHOP attendee, tell us. Cottages have kitchen facilities. An unusual winterseason bargain.
Enrollments close Sept. 15, 1978, or when capacity is reached.
Per Workshop $\$ 595$

| Yes, enroll me promptly for TRAINING WORKSHOP at right. Advanced Communications Servicing $\square$ Advanced Video Servicing | Name___ Age Company _____ |
| :---: | :---: |
| I enclose check or money order for \$ ._ U.S. dollars. | Address _ Phone |
| $\square \$ 495$ per WORKSHOP in Indianapolis $\square$ | City ___ State ___ Zip |
| $\square \$ 595$ per WORKSHOP in Florida $\quad \square \begin{aligned} & \text { \$250 for spouse } \\ & \text { (includes lodging. } \\ & \text { same meals as ior } \\ & \text { WORSKOP }\end{aligned}$ | NOTE: You need 2 years electronics training or experience to gain proper benefit from these Advanced TRAINING WORKSHOPS. NOT FOR BEGINNERS. |
| $\$ 475$ for CB Service WORKSHOP (same as 1977, and includes lodging) at Indianapolis August 21-23, 1978. | Mail to: Forest Belt's TRAINING WORKSHOPS, Box 68120, Indianapolis IN 46268 |

## STATE OF SOLID STATE

 continued from page 73The differential voltage between the two emitter junctions appears across RI and is 26 Ln 16 , or 72 mV . A positive temperature coefficient of $2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ is produced by amplifying 72 mV by a factor of 8.75 up to 0.63 volt.

The current through R 2 is the sum of I and 4I or 5I, already an amplification of five times the current through R1. Resistors R 2 and R 1 are in the ratio of 1.75 K to 1 K . The total gain is $(4+1) \times 1.75$ $=8.75$. Then, to determine the constant reference, just add the junction voltage of a silicon transistor with its negative 2.1-
mV coefficient. The base-emitter junction of Q2 increases the voltage across R2 by the required junction potential to the constant 1.23 -volt bandgap voltage. To get the rest of the way up to the 5 -volt output of the REF-02 at the base of Q1 and Q2, the voltage is amplified by the ratio of R6 and R 5 , at which point $\mathrm{V}_{\text {REF }}$ is $1.23 \times(3.06+1)=1.23 \times 4.06=5$ volts.

Now, combine the constant output and the variable temperature coefficient output of the REF-02 to construct the thermometer (see Fig. 3). The REF-02 acts as the temperature sensor and may be located remotely by using a shielded cable with the additional precaution of

## "THE ORIGINAL"



## The Largest Personal Computing Show Ever Held

 ONLY MAJOR EAST COAST SHOW IN 78$300+$ Booths<br>80 Hours of Free Seminars Art Show Music Festival Banquet<br>THREE FULL DAYS OF FUN

August 25. 26. 27th at the Philadelphia Civic Center

As of May 11, 1978 the following companies have selected their booth locations. Over 200 exhibitors expected at the onty Major Easi Coast Personal Computing Show of the year
INTEAFACE AGE MAGAZINE HEATH COMPANY BYTE MAGAZINE MICROAGE ITHACA AUDIO ARTECELECTRONICS. COMPUTER MART OF NEW JERSEY SUMMAGGAPHICS PERSONAL COMPUTER CORP TELPAR VECIOR ELECTRONICS. BITS BOOKS SOUTHWEST TECHNICAL
PRODUCTS (SWTP) CROMEMCO TECHNICAL DESIGN LABS HAYDEN BOOKS OIGITAL EOUIPMENT CORP OSBORNE \& ASSOCIATES OHIO

 INSTRUMENIS ISHORTESS \& RAWSONI NORIH STAR MARKETLINE. COMPUTER RESOURCES NBC IMPORTS E BERG PUBLICATIONS EXIENSYS DILITHIUM PRESS EXPANDOR MICROSETE NATIONAL MULIPLEX JADE COMPUTER EMPORIUM, NEWMAN COMPYTER
EXCHANGE MICPO TECHNOLOGY UNLIMITED MICRO COMPUTEA DEVICES RADIO ELECTRONICS MAGAZINE PARASITIC ENGINEERING EXCHANGE MICAO TECHNOLOGY UNLIMITED MICRO COMPUUER DEVICES RADIO ELECTRONICS MAGAZINE PARASIIIC ENGINEERING
COMPUIEA ENTERPAISES. ARAL COMPUTER TEXTILE BASIC BUSINESS SYSTEMS. MICRO COMPYTER PRODUCTS. SD SALES COMPUTALKR COMMPUCOLOR TECHNNCO POLYMORPHIC SYSTEMS WILIAM ELECTRONICS MODULAR SYSTEMS INC, ENCLOSLRE DYNAMICS MICROPOLIS, RICO ENTERPRISES OBJECIVE DESIGNS SYBEX. ELECIRONIC CONIROL TECHNOLOGY APPLE COMPUTER MANCHESTER EQUIPMENT

DAYTIME EVENTS - New Products - Demonstrations - Personal Computing College - Exhibits - Art Show EVENING EVENTS - User Groun Meetings Paites Music Festival Band
EVENING EVENTS - User Groub Meetirgs • Parties. Music Festival - Banquet, Saturday. August 26, featuring Di Adam Usborne. Chris Morgan, Edilor of Byte and more Slay over and enfoy the evening events Deluxe hotel accommodations with rales staning at $\$ 24$ single, $\$ 31$ double with free shuttle bus to and from Phiadelphia Civic Center Bring the tamily - Visit Historic Philadelphia - Have an unforgetlable Philadelphia experience, pre-register betore
August 101 n and save lime anti money $\left(20^{\circ}\right.$ ) $)$

reducing the capacitance loading pin 3 by isolating resistor $\mathrm{R}_{\mathrm{s}}$.

The TEMP output is directly connected to the noninverting op-amp input, and a portion of $V_{\text {ref }}$ is summed with a portion of the amplifier output at the inverting op-amp input. As usual, the feedback amplifier forces the inverting and noninverting inputs to be essentially equal. Thus, it is possible to solve the conditions relating the output voltage to the two inputs. An output must be created that can be controlled in temperature coefficient by using a portion of $V_{\text {TEMP }}$, and that can be shifted in DC value by using a portion of $\mathrm{V}_{\text {REF }}$

Since the inverting input must equal $V_{\text {TEMP, }}$ the sum of the contributions to the inverting input voltage on pin 2 of the op-amp from $\mathrm{V}_{\text {oUT }}$ and $\mathrm{V}_{\text {REF }}$ must also be equal to $V_{\text {temp }}$. Superposition is the method used. First, assume $V_{\text {out }}$ is zero by shorting it to ground and calculate what part of $\mathrm{V}_{\text {Ref }}$ gets to pin 2. At this point, $R_{b}$, the sum of the fixed resistor $R_{b}$ and the variable resistor $R_{b p}$ are in parallel with $R_{c} ; V_{\text {REF }}$ is therefore divided by the ratio $\left(R_{b}| | R_{c}\right) /\left(R_{a}+R_{b}| | R_{c}\right)$.
Similarly, with $\mathrm{V}_{\text {REF }}$ shorted to ground, the portion of $\mathrm{V}_{\text {out }}$ transferred to pin 2 is $\left(R_{a}| | R_{b}\right) /\left(R_{c}+R_{a}| | R_{b}\right)$.
Working out the equation for $\mathrm{V}_{\text {out }}$ yields the expression: $\mathrm{V}_{\text {OUT }}=\mathrm{AV}_{\text {TEMP }}+$ $\mathrm{BV}_{\text {REF }}$; where A is equal to $1+\left(R_{\mathrm{c}} /\right.$ $R_{a}| | R_{b}$ ) and $B$ is equal to $R_{c} / R_{a}$

## burglar - fire alarm catalog

## FREE!



## MORE THAN 900 PRODUCTS

detectors, controls, sounders, locks, tools

## EVERYTHING NEEDED TO PROTECT HOME, BUSINESS, INSTITUTION

Huge selection of high quality professional alarm products. 64 fact-filled pages with detailed specs, diagrams, technical notes. Products range from basic switches, controls, bells, sirens to most sophisticated detectors 4 radar, modulated or passive infrared, microwave, ultrasonics, ion, data links using pulse code multiplex. FSK radio, automatic phone dialers, leased line connections and display panels. Full selection of tools, relays, wire, foil, terminals books.
WRITE FOR FREE CATALOG TODAY!
(Outside U.S.. send $\$ 1.00$.)
mountain west alarm
box 10780 •phoenix, az 85064
(602) 263-8831

CIRCLE 13 ON FREE INFORMATION CARD

It is also known that $\mathrm{V}_{\text {TEMP }}$ follows the relationship, $0.632+2.1 \times 10^{-3}(\mathrm{~T}-$ 25), where T is in degrees Celsius. If, for example, you want to calibrate the thermometer to read degrees Celsius directly, and need a scale factor of 0.01 so that 0 degrees produces a 0 -volt output and -55 degrees Celsius produces a -0.55 volt output, plug these two temperatures into the above equation and solve for the respective values of $\mathrm{V}_{\text {темр }}$. You now have two values of $\mathrm{V}_{\text {TEMP, }}$ you know what $\mathrm{V}_{\text {out }}$ should be at those temperatures and you know that $\mathrm{V}_{\text {ref }}$ is 5.000 V . Now plug these into the equation for $\mathrm{V}_{\text {OUT }}$ and solve for $A$ and $B$. For these numbers, you get $A=4.762$ and $B=0.47$. If you put these numbers back into the equation for $\mathrm{V}_{\text {OUT }}$, the result is $\mathrm{V}_{\text {OUT }}=0.01 \mathrm{~T}$.

The final accuracy of the circuit depends on the op-amp and the version of the REF-02 reference used. It varies from $0.5 \%$ with the REF-02A and OP02 A to $0.9 \%$ with the REF-02C and OP02C. The first combination works over the $-55^{\circ}$ to $+125^{\circ} \mathrm{C}$ range and has a temperature error of under 0.625 degree at the high limit. The second combination, designed for operation from $0^{\circ}$ to $70^{\circ} \mathrm{C}$, calculates to a similar maximum temperature error of 0.63 degree. Deviations in the linear characteristic are also specified by linearity and offset errors. Offset error can be eliminated by using continued on page 98

## Try this exciting new hobby! Build your own electronic concert organ. It's easy. No technical knowledge required. Just follow the clearly.pictured instructions of the famous Wersi do-it-yourself system. Choose from seven different models. Send \$2.00 <br> (refundable) with coupon for colorful 104 page catalog. 



CIRCLE 1 ON FREE INFORMATION CARD

## more times in more circuits in more places than with any other multimeters on the market today

## Each Sencore DVM is backed with 15 Megohm input impedance for one third less cir-

## DVM38 <br> \$395

3½ DIGIT . $1 \%$ DCV ACCURACY AUTO-RANGING DVM
A "prime" standard at your fingertips for measurements you can trust. Autoranging for extended low-level range and ease of operation. 15 Megohm input impedance assures $.1 \%$ reading accuracy is maintained in solid state circuits. Highly sensitive, yet fully protected to 2000 VDC overloads. HiLo Power Ohms circuit simplifies in-circuit resistance measurements.

## DVM37 ${ }^{\text {N }}$ w

\$268
312 DIGIT .1\% DCV ACCURACY PORTABLE DVM
Prime standard $1 \%$ accuracy on the bench or in the field for less than $\$ 250$. The DVM37 is the most accurate portable DVM you can buy, with 15 Megohm input impedance for $50 \%$ more accuracy. Includes automatic features-Auto Zero, Polarity, Decimal, Overrange. Fully protected inside to over 2000 V on all functions, including Ohms, and protected outside with superrugged case. Full ranges for every test. Fingertip "Push-On" switch in probe saves batteries as power is applied only when needed.


New DVM37


DVM32
In stock at your favorite local Sencore Full Line Distributor.
cuit loading on every measurement. That means $50 \%$ higher accuracy than other DVMs.

## DVM32

\$225
3½ DIGIT .5\% DCV ACCURACY PORTABLE DIGITAL MULTIMETER
Bench and field master for digital accuracy measurements anywhere. $0.5 \% \mathrm{DCV}$ accur. acy, backed with 15 Megohm input impedance. Exclusive battery-saving Auto-Display turns the display on automatically when you make a measurement. 2000 V input protection on all functions and ranges-including Ohms.

## DVM36

\$158
$31 / 2$ DIGIT . $5 \%$ DCV ACCURACY POCKET PORTABLE DVM
Pocket portable lab accurate performance that fits every budget with highest perform-ance-to-price benefits of any meter. $.5 \% \mathrm{DCV}$ accuracy, backed with 15 Megohm input impedance for lowest circuit loading. Full protection to 1000 V on all functions and ranges-including ohms. Drop-proot case. Battery-saving "Push On" button in probe.

DVM35
\$134
3 DIGIT 1\% DCV ACCURACY
POCKET PORTABLE DVM
Fast, direct reading digital accuracy for the man on the go. Same features as DVM36. except 3-digit, 1\% DCV accuracy, backed by 15 Megohm input impedance that is ten times more accurate than analog meters.

$\longrightarrow$ NW $\longrightarrow$
DIGITAL MULTIMETER SPECIALISTS 3200 SE NCOHE DRIVF SIOUX AALLS SO 5/107 160513390100

## INTERNATIONAL FM-2400CH

## FREQUENCY METER FOR TESTING MOBILE TRANSMITTERS AND RECEIVERS

- Portable •Solid State - Rechargeable Batteries

The FM-2400CH provides an accurate frequency standard for testing and adjustment of mobile transmitters and receivers at predetermined frequencies

The FM-2400CH with its extended range covers 25 to 1000 MHz
The frequencies can be those of the radio frequency channels of operation and/or the intermediate frequencies of the receiver between 5 MHz and 40 MHz .

Frequency stability: $\pm .0005 \%$ from $+50^{\circ}$ to $+104^{\circ} \mathrm{F}$
Frequency stability with built-in thermometer and temperature corrected charts: $\pm .00025 \%$ from $+25^{\circ}$ to $+125^{\circ}$ (. $000125 \%$ special 450 MHz crystals available)

- Tests Predetermined Frequencies 25 to 1000 MHz
- Extended Range Covers 950 MHz Band
- Pin Diode Attenuator for Full Range Coverage as Signal Generator
- Measures FM Deviation

FM-2400CH (meter only) Cat. No. 035320 RF crystals (with temperature correction) RF crystals (less temperature correction) $\$ 595.00$ IF crystals


Write for catalog

##  <br> (9)

And Platis tool case helps you look more professional.
It comes in handsone. lightweight. durable ABS Thermoplastic. Or rich looking vinyl reinforced by ABS Thermoplastic What's more, it also has a 5 year guaramee.

Contact us for complete information on Plati's full line of tool cases and your nearest distributor:
platt
Pat No. $3.80(0.2 \times 5 \quad$ Cases for business and industry.
2.301 S. Prairie Ave.. Chicago. Ill. 60616 (312) 225-6670


CIRCLE 67 ON FREE INFORMATION CARD

# new products 

## More information on new products is available from manufacturers of items identified by a Free Information number. Free Information Card is inside back cover.

8K DYNAMIC MEMORY, Econoram III $8 K$, uses memory-refresh system called Synchrofresh. The board is designed to be used with S-100 microcomputers. The 8 K memories use one-half the power of static boards and do not interrupt CPU operations or timing. SynchroFresh circuitry

uses the S-100 bus's natural timing and monitors the microprocessor's machine states using T4 states for refresh. Completely assembled, tested and warranted Econoram III $8 K \times 8$ sells for \$149.-Thinker Toys, 1201 10th St.. Berkeley, CA 94710.
CIRCLE 104 ON FREE INFORMATION CARD
MINIPRINTER, model MP-44, is a $5-\times 7$-dot matrix printer for use with any microcomputer using TTL logic levels. It makes permanent copies on electrosensitive paper at speeds up to 88 characters-per-second, 44 characters-per-line. Both printer and paper supply are boardmounted for interfacing to microcomputer. which

then uses an 8-bit parallel output port to control motor and print. Software can be easily implemented in any computer language, and examples of assembly-language coding for the 6800 and 8080 microprocessors are provided. Coding for the 6800 allows unit to be operated immediately from the model Micro-80 I/O bus. Price: \$257.Electronic Product Associates, Inc., 1157 Vega St., San Diego, CA 92110.
CIRCLE 105 ON FREE INFORMATION CARD
THIN-FILM FUSED RESISTOR, Me/t-Ohm, has dual-layer metal/organic thin-film structure. Unit generates sufficient heat during overload conditions to break resistance elements, thus opening the circuit. The Me/t-Ohm resistor creates an
open circuit at about $400^{\circ} \mathrm{C}$; it is noncombustible, functions precisely and accurately, and has excellent fusing characteristics. Specifications: Power, $1 / 4$ watt; range, $10-10,000$ ohms: $\pm 5 \%$ tolerance; TCR, $\pm 100 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.-Susumu Co., Ltd., Tosh-Jo Co., 140 Main St., Metuchen, NJ 08840.

CIRCLE 106 ON FREE INFORMATION CARD
CUSTOMIZED SWITCHING POWER SUPPLIES are available for special engineering requirements needing features or operating characteristics not found in standard catalog units. Power supplies are customized by either reprogramming off-the-shelf catalog units; by placing standard units into rack assemblies having control or sequential logic; or by redesigning units to incorporate changes and modifications required by

the special application; i.e., providing an 8.2-volt, 60 -amp output to a standard 500 -watt model (shown). Inquiries welcome.-Gould, Inc., Electronic Components Div., 4601 North Arden Dr., El Monte, CA 91731.

CIRCLE 107 ON FREE INFORMATION CARD
CRYSTAL-LESS SCANNER, Bearcat 250. provides 50 -channel monitoring and automatic search, store and recall capabilities. Solid-state circuitry includes non-volatile memory and allows pushbutton frequency programming in five bands: low and high VHF, UHF , "T" band and ham frequencies between 146 MHz and 148 MHz Other features include a digital clock, priority channel, count feature that displays the number of times any frequency has been received, selective scan- and search-speed control, lockout (to remove unwanted frequencies during scan and search); antenna, external antenna jack and crystal filter. Front-mounted speaker has bright LED


# ACCURAGY MADE EASY 



DUAL TRACE MODEL $532-30 \mathrm{MHz}$


DUAL TRACE MODEL 517-15 MHz USABLE TO 27 MHz


SINGLE TRACE MODEL 515-15 MHz

Put Hickok Scope reliability on your side and get things done easier, faster, better and with complete assurance that you're doing them right.

Economically priced Hickok push-button-triggered Scopes are quick and easy to set up and use. A color-coded front panel speeds up and simplifies operation. Triggering is practically fool-proof, well in excess of the MHz rating. And excellent pulse responses virtually eliminate overshoot and ringing.

Call your nearby Hickok distributor and set up a demonstration today. See for yourself how a modestly priced Hickok single or dual trace 15 MHz , or dual trace 30 MHz , Scope will save you time and exasperation.

If you're outside of Ohio, call us toll free at 800-321-4664 for the name of your nearest Hickok distributor.

## HICKOK

the value innovator
INSTRUMENTATION \& CONTROLS OIVISION THE HICKOK ELECTRICAL INSTRUMENT CO. 10514 Oupont Avenue • Cleveland, Ohio 44108 (216) 541-8060 - TWX: 810-421-8286 CIRCLE 10 ON FREE INFORMATION CARD

## Grandfather's Clock 'Was ${ }^{\circ}$ Never Tike This!



CL7402

If you love contemporary design and yet appreciate the more traditional, here's the perfect clock for you! Amelect has created their own version of the ever popular grandfather clock. Not only do the electronic eyes around the modern clock face light up displaying each second, minute, and hour, but our grandfather model includes a very novel and exciting electronic pendulum. There's even a shelf for displaying your prized treasures!

The upper section of the clock is $93 / 4^{\prime \prime}$ square with an overall length of $191 / 4^{\prime \prime}$ all encased in beautiful, hand crafted hardwoods. Select from solid walnut, maple, mahogany, or cherry. This clock is covered by a 1 year warranty on material and workmanship.

As shown on R-E April ' 78 front cover and described by Fred Blechman.

> A vailable completely assembled or in kit form.

CL7402 Assembled ......................... $\$ 95.00$
CL7402 Kit with Cabinet ................. 71.50
CL7402 Kit less Cabinet................... 56.25
Shipping and Handling .................... 3.50
To order write or call 219-297-3320
Indiana residents include 4\% Sales Tax
AMELEET
INCORPORATED
P.O. Box 367 - 106 S. Newton St. GOODLAND, INDIANA 47948

[^7]display and comes with mounting bracket. Price: $\$ 399.95$. Electra Co., Div. Masco Corp. of Indiana, 300 E. County Line Rd. So., Cumberland, IN 46229.

CIRCLE 108 ON FREE INFORMATION CARD

COLOR-BAR GENERATOR, model LCG-396, provides signals for TV alignment and performance tests as well as patterns for adjusting VTR, MATV and CATV systems. Pushbutton on/ off control of chroma and luminance. Both fixed and variable output levels are provided. The unit can generate 8 precision color bars as well as dot, crosshatch. center-line single crosshatch and four color rasters. Also featured are a composite video output, two RF channels, scope trig-

ger output and full protection against ambient temperatures. The model LCG-396 sells for \$899.95.-Leader Instruments Corp., 151 Dupont St., Plainview, NY 11803.
CIRCLE 109 ON FREE INFORMATION CARD
S-100 BUS-COMPATIBLE MUSIC BOARD, mOdel 6 , generates music, sound effects, Morse code, touch-tone synthesis and more. Fully assembled unit features selectable output port address decoding, latched 6-bit D/A converter, audio amplifier, speaker, volume control and phono jack for connection to home audio system. Glass-epoxy PC board has plated-through holes, gold-plated fingers and high-quality components. User's

manual (provided with the model 6) contains BASIC and 8080 assembly language programs. The model 6 Music Board is available through computer stores and costs $\$ 59.95$.-Newtech Computer Systems, Inc., 131 Joralemon St., Brooklyn, NY 11201.

CIRCLE 110 ON FREE INF ORMATION CARD
PROGRAMMABLE CLOCKS, model 3300 S, model 3300 H , are designed for auto, marine and aircraft-navigation applications, and come in two time-display formats: Hour/minute/second (model 3300 ) and hour/minute/. 01 minute (model 3300 H ). Both models contain the following features: 6-digit LED display; advance-retard control for fine adjustment of timebase frequency; a countdown timer that counts to zero and back up; auxiliary timer for use as a stopwatch; alarm; and split and remote/split run. Options include a rechargeable NiCad battery pack; a multiple timebase for timing in hour/minute/. 01 minute, minute/second/. 01 second, or minute/. 001 min ute; a periodic interval timer to sound beeper at selected intervals; an external alarm jack; and an $A C$ adapter.
Specifications include: accuracy-. $001 \%$ crys-tal-controlled, or better than 0.01 minute-perday; operating temperature $-32^{\circ} \mathrm{F}$; power re-

21 million Americans have high blood pressure. Bul 50 percent of hose who have it, don't know it When blood pressure goes higher than it should, and slays high. in seis
the stage for nean attack or stroke. mosi cases of tmgn blood pressure mosi be conirolied wilh drugs and other advances in teatment That's why you should see your doctor reg ularly Only he can tell it you need


quirements-11.0-14.5 VDC, $0.05-0.5 \mathrm{amp}$. Clock measures $21 / 4 \times 71 / 4 \times 63 / 4$ inches, and weighs $21 / 2 \mathrm{lbs}$. Prices: models 3300 S and 3300 H , $\$ 329$. Options: NiCad battery pack, $\$ 30$; multiple timebase (model 3300H only) $\$ 15$; periodic interval timer. \$15; external alarm jack, \$15; AC adapter, $\$ 20$-Custom Control Systems, 21 E Canon Perdido St., Santa Barbara, CA 93101.
CIRCLE 111 ON FREE INFORMATION CARD
CB BASE STATION, model D201A, is an SSB/ AM unit that features tube circuitry and a selectable crystal-controlled or fully tunable receiver; a 4-watt AM output; and a 12 -watt PEP SSB output. Controls include an S/RF power/SWR meter; mike gain; RF gain; squelch; clarifier; switchable noise blanker and limiter; and model Astatic GPD 104 mike. Specifications: adjacent

channel rejection, $8 \mathrm{~dB}+$; SSB sensitivity, $1 \mu \mathrm{~V}$; AM sensitivity, $.35 \mu \mathrm{~V}$. Unit measures $211 / 2 \mathrm{~W} \times$ $71 / 2 H \times 13$ inches $D$. Suggested list price, \$995.-TRAM/Diamond-Corp., Box 187, Lower Bay Rd., Winnisquam, NH 03289.
CIRCLE 112 ON FREE INFORMATION CARD
MOBILE TRANSCEIVER, model PTR-130K, is a miniaturized unit that provides $100-\mathrm{Hz}$ resolution from 100 kHz to 30 MHz in all modes; frequencies are pushbutton-selectable. The $100-\mathrm{Hz}$ frequency synthesizer contains an RF compressor that increases output by 12 dB , plus cascaded mechanical filters for high-quality selectivity. Unit

measures $61 / 2 \times 21 / 2 \times 8$ inches. Estimated retail price, $\$ 650$ - $\$ 700$.-Palomar Electronics Corp., 665 Opper St., Escondido, CA 92025.
CIRCLE 113 ON FREE INFORMATION CARD
DATA CASSETTES, Series CDC-1, CDC-2, CDC3 and Series $D D C-20, D D C-40, D D C-60$, are designed specially for use in hobby and smallbusiness computers. Series CDC cassettes come loaded in one-, two- and three-minute lengths and use high-quality computer shells, polyolefin slip sheets, machined guide rollers, stainless steel pins, oversized pressure pads and hubs, and extra-short leaders. The Series $D D C$ line of cassettes are loaded with high-density calendared ferric-oxide tape, ideal for most computer applications. Suggested retail prices: Series CDC, \$4.95-\$6.35; Series $D D C, \$ 4.50-$

\$5.50.-Avdex Corp., 2280 Grand Ave., Baldwin, NY 11510.
CIRCLE 115 ON FREE INFORMATION CARD

TEST INSTRUMENT KITS, Series 5280, comprise a test bench "primer"' for electronics beginners. The model IT-5283 Signal Tracer provides AF/RF tracing; acts as an audible voltohmmeter; reads resistance from 0 to 5 megohms; and can serve as substitute speaker for radio/TV servicing. The model $I M$ - 5284 Multimeter measures AC/DC voltage to 1000 volts, DC current to 1000 mA , and provides 4 impedance ranges to 100 megohms. The model IG-5280 RF Oscillator has an RF output from 310 kHz to 110 MHz and harmonics can be read to 220 MHz . The model /G-5282 Audio Generator has sinewave and squarewave output capability and a switchable range from 10 Hz to 100 kHz . The model $/ B-5281$ RCL Bridge provides separate resistance, inductance and capacitance ranges.


Each unit operates from two 9-volt batteries (plus one C-cell for the model $M-5284$ ), or from the model IPA-5280-1 power supply, which has 5 outputs for simultaneous operation of the instruments. Kits are priced at $\$ 37.95$ each; the model IPA-5280-1 power supply costs $\$ 24.95$. Free catalog available.-Heath Co., Dept. 350-500, Benton Harbor, MI 49022.

## CIRCLE 50 ON FREE INFORMATION CARD

BROCHURE describes new General Electric GAP (Guaranteed Active Parts) program for service technicians to order replacement TV parts by phone. Contains map of U.S. with listing of tollfree " 800 " numbers. Master Charge or BankAmericard/Visa can be used to order parts. Parts obsolescence is eliminated with the GAP program-GAP parts may be returned for full credit if they do not remain active. All requests for the brochure must be made on company letter-head.-General Electric, Room 1102, 45 E. 17th St., New York, NY 10003.
CIRCLE 117 ON FREE INFORMATION CARD

Measure resistance to .01』...


## at a price that has no resistance at all.

- $31 / 2$ digit bright LED display
- $100 \mu \mathrm{~V}, .01 \Omega$ resolution
- 0.5\% accuracy typical
- Autozeroing
- Completely overload protected on all 29 ranges
- RFI shielded for use in RF fields
- $100 \%$ overrange reading
- Selectable high-/low-power ohms
- Full range of optional accessories available

At $\$ 119.95$, the 2810 is a "best buy" among DMM's currently available. Its 10 ohms range allows you to check the low contact resistance of switches, relays, breaker points or connectors. Poor solder connections can also be spotted. Place your order now... contact your local distributor for immediate delivery.

> BUV paEcision DYNASCAN CORPORATION

6460 West Cortland Avenue Chicago, Illinois 60635 - 312/889-9087

In Canada: Atlas Electronics, Ontario Intl. SIs: Empire Exp., 270 Newtown Rd Plainview, LI, NY 11803


FROM KIT TO CAR IN 80 MINUTES!
Electronic ignition is "in." Update your car with the TOPS in power, efficiency and reliability - the TIGER SST capacitive discharge ignition (CD).
The TIGER delivers everything other CD's promise - and more: quicker starting, more power, more gas mileage, tune-ups eliminated, lifetime plugs and points, reduced repairs and pollution.
The TIGER can be built and installed in your car in 80 minutes. The TIGER is uniquel
The TIGER comes with a switch for TIGER or standard ignition for 12 V negative ground only.

## Simpli-Kit \$21.95 <br> POST PAID U.S.A.

WE ACCEPT:
Mastercharge or Bank Americard. Send check or money order with order to:

## Tri-Star Corporation

DEPT. FF, P.O. Box 1727
Grand Junction, Colorado 81501
CIRCLE 25 ON FREE INFORMATION CARD


CLASSIFIED COMMERCIAL RATE (for firms or individuais offering commercial products or services). $\$ 1.50$ per word (no charge for zip code) . . . minimum 15 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal items) 85e per word . . . no minimum
ONLY FIRST WORD AND NAME set in bold caps. Additional bold face (not available as all caps) at $10 \$$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. $5 \%$ discount for 6 issues, $10 \%$ for 12 issues within one year, if paid in advance. All copy subject to publisher's approval. Advertisements using P.O. Box address will not be accepted until advertiser supplies publisher with permanent address and phone number. Copy to be in our hands on the 26th of the third month preceding the date of the issue (i.e., August issue closes May 26 ). When normal closing date falls on Saturday, Sunday or a holiday, issue closes on preceding working day.

## PLANS \& KITS

CONSTRUCTION plans; over 100. From TV to telephone, from broadcasting to computers. Catalog air mailed $\$ 1.00$; includes year's subscription to Electronic Newsletter. DON BRITTON ENTERPRISES, PO Box G, Waikiki, HI 96815
MINI-iaser plans $\$ 1.00$. Science project catalog 254. MOTEN, 323 S. Franklin, \#804, Chicago, II 60606
DIGITAL reverb fully electronic plans P.C.B. available. Send S.A.S.E. for info: NEVES, Box 10327, Stanford, CA 94305
HOBBYIST give your project the professional look. Printed circuit boards from your sketch or artwork. Affordable prices. Also fun kit projects. Rush free details. DANOCINTHS, Box 261 , WestRush free details
land, MI 48185

EDUCATION \& INSTRUCTION
GRANTHAM's FCC License Study Guide-377 pages, 1465 questions with answers/discus-sions-covering third, second, first radiotelephone examinations. $\$ 13.45$ postpaid. GSE PUBLICATIONS, 2000 Stoner, Los Angeles, CA 90025


To run your own classified ad, put one word on each of the lines below and send this form along with your check To run your own classified ad, put one wor
for $\$ 1.50$ per word (minimum $\$ 15.00$ ) to:
Radio-Electronics, 200 Park Avenue South, N.Y., N.Y. 10003

|  |
| :---: | :---: | :---: | :---: | :---: |

## wo

KITS

## THACA AUDIO Sloard P.C. Boards 8K RAM Z-80 CPU 2708/2716 EPROM Boards (New)

 W/W Prototype Board (New) SOLID 5TATE MUSIC S-100 Kits \& Bare Boards MB6A 8K KitSTATIC RAM Bare Board STATIC RAM Bare Board
PAB7 1כK STATIC RAM $\begin{array}{lr}\text { Kit } & 435.00 \\ \text { Bare Board } & 25.95\end{array}$ MB8 8K/ 66 K EPROM USES 2708's
Kit Less EPROMs 75.95

## BOOKS

## The Basic Workbook Programming Proverbs

 COBCOL with StyleAdvanced BASIC
Standard Dictionary of Computer Game Playing with Cossing Game Playing with Computers Minicomputers Microprocessors
Digital Experiments Digital Signal Analysis Digital Troubleshootin 110 CMOS Digital IC Projects 400 Ideas for Design, volume 2 Analysis and Design of
Digital Circuits and Computer Systems
Telephone Accessories Telephone Access
You Can Build

$$
\begin{aligned}
& \text { Basic Electronic Switching for } \\
& \text { Telenhone Svstems }
\end{aligned}
$$

2 Ba

## 74L\$00 TTL

| 74L500 | 21 | 74L\$138 | 70 |
| :---: | :---: | :---: | :---: |
| 74LSOE | 21 | 74L\$139 | . 70 |
| 74L\$0 | 24 | 74L\$151 | . 65 |
| 74L\$0E | 21 | 74L\$153 | . 66 |
| 74L\$1C | 21 | 74L 5154 | 1.00 |
| 74L\$1\% | 85 | 74L\$157 | . 62 |
| 74L\$2C | 23 | 74L\$160 | . 82 |
| 74452] | 23 | 74L\$161 | . 82 |
| 74L\$22 | 23 | 74L\$162 | . 82 |
| 74L53C | 23 | 74L\$163 | . 82 |
| 744332 | 30 | 74L\$164 | . 98 |
| 74L\$37 | 31 | 74L\$174 | . 75 |
| 74L\$3E | 31 | 74L\$175 | . 79 |
| 74L542 | 60 | 74L\$190 | 90 |
| 74L\$47 | 75 | 74L\$191 | . 90 |
| 74L\$48 | 72 | 74L\$192 | . 90 |
| 744573 | 35 | 74L\$196 | . 80 |
| 741574 | 35 | 74L\$197 | . 80 |
| 744575 | 53 | 74L\$221 | 1.06 |
| 74L\$76 | 37 | 74L\$257 | . 71 |
| 741 \$86 | 36 | 74L\$258 | . 70 |
| 74L\$90 | 52 | 74L\$266 | . 26 |
| 741592 | . 32 | 74L\$283 | . 72 |
| 741593 | . 32 | 74L\$365 | . 55 |
| 74L\$103 | . 36 | 74L\$366 | . 55 |
| 7415113 | . 36 | 74L\$367 | 55 |
| 74L\$113 | . 36 | 74L\$368 | 55 |
| 74L\$114 | . 36 | 74L\$386 | . 39 |
| 74L3123 | . 16 | 81L\$95 | 77 |
| 74L\$125 | . 46 | 81L\$96 | . 77 |
| 74L3132 | . 75 | $81 L \$ 97$ | . 77 |
|  |  | 81L\$98 | . 77 |

TELEPHONE bugged? Don't be Watergated! Countermeasures brochure $\$ 1.00$. NEGEYE LA. boratories, Box 547-RE, Pennsboro, WV 26415

## UNLOCK your future. Become professional lock-

 smith by spare time homestudy. $\$ 13$ in an hour possible. All tools, equipment included. Facts FREE. Send name. LOCKSMITHING INSTITUTE (homestudy), Dept. 1339-088, Little Falls, NJ 07424
## FOR SALE

FREE catalog. IC's, Semi's. CORONET ELECTRONICS, 649A Notre Dame W., Montreal, Que., Canada, H3C-1H8. US Inquiries.
RADIO \& TV tubes $36 \mathbb{c}$ each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105


SEEKING Japanese transistors for CB, TV, stereo repair? Request complete list. Compare 1 to 9 prices: 2SC7 $10.45,2$ SC5 17 3.95, 2SC799 3.60, 2SC1306 2.90, 2SC 1678 2.25, TA7205P 2.90, BA521 2.90, SG6 13 5.95. See our full page ad in the Market Center of this issue. FUJI-SVEA ENTERPRISE, Dept. RE, PO Box 40325, Cincinnati, OH 45240
TS-510A signal generator, $10-420 \mathrm{MHz}, \$ 250.00$. Send stamp for test equipment catalog. E. FRENCH, Box 249, Aurora, IL 60507

| Same day shipment. First line parts only. Factory tested. Guaranteed money back: Quality IC's and other components at factory prices. <br> INTEGRATED CIRCUITS <br>  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Sinclair 3 $1 / 2$ Digit Multimeter Batt/AC oper. 1 mV and. 1 NA resolution. Resistance to 20 meg. $1 \%$ accuracy. Small, portable, completely assem. in case. 1 yr.

Not a Cheap Clock Kit \$14.95 Includes everything except case. 2-PC boards. 6-50" LED Displays. 5314 clock chip, transtormer, all components and fult instrucs. Green and orange displays also avail. Same ldt $w / .80^{\prime \prime}$ displays. $\$ 1.95$
Digital Temperature Meter Kit Indoor and outdoor. Switches back and forth. Beautiful. 50 " LED readouts. Nothing like it available. Needs no additional parts for complete, full operation. Will measure $-100^{\circ}$ to $+200^{\circ} \mathrm{F}$. tenths of a degree air or llquid. Very accurate. $\$ 39.95$
Beautiful hardwood case w/bezel $\$ 11.75$
NiCad Batt. Fixer/Charger Kit Opens shorted cells that won't hold a charge and then charges them up. all in

ACA Cosmac VIP Kit 275.00 Video computer with games and graphics. ${ }^{78}$ IC Update Master Manual 1978 IC Update Master Manual $\$ 30.00$ Complete ic data selector 2175 pg . Master reference guide. Over 42 ,00 cross references. Free update service through 1978. Domestic postage $\$ 3.50$. Foreign
$\$ 6.00$. Final 1977 Master closeout $\$ 15.00$

New Cosmac Super "ELF" RCA CMOS expandable to 64 K micro computer w/HEX keypad input and video output for graphics. Just turn on and start loading your program using the resident monitor on ROM. Pushbutton selection of all tour CPU modes. LED indicators of current CPU mode and four CPU states Single step op. for program debug. Built in pwr. supply, 256 gytes of RAM, audio a pwr. \& spkr. Detailed assy. man. w/PC amp. \& spkr. Detailed assy. man. W/Pp
board \& all parts fully socketed. Comp board \& all parts fully socketed. Comp.
Kit $\$ 106$. 95 . High address display option Kit 106.95 . High address display option
8.95; Low address display option 9.95; 8.95; Low address display option 9.95; Custom hardwood cab.; drilled tront panel 19.75; Nicad Battery Backup Kit w/all parts 4.95; Fully wired \& tested in cabinet 151.70; 1802 sottware club. 1012 pg . monthly publication 12.00 per yr. 4K Elf Expansion Board Kit with Cassette I/F $\$ 79.95$ Available on board options: 1 K super ROM Avainater $\$ 19.95$ Parallel I/O port $\$ 7.95$ RS232 I/F $\$ 3.50$ TTY 20 ma I/F $\$ 1.95$ S-100 Memory I/F $\$ 4.50$
Tiny Basic for ANY 1802 System Cassette $\$ 10.00$. On ROM Monitor $\$ 38.00$.
Super Elf owners, $30 \%$ off. Object code Super Elf owners, $30 \%$ off. Object code
listing or paper tape with manual $\$ 5.50$. Original Cosmac "ELF" kit
All parts and instructs. $\quad \mathbf{8 8 9 . 5 0}$ Board only

Video Modulator Kit $\$ 8.95$ Convert your TV set into a high quality monitor without affecting normal usage. Complete kit with full instructions.

## 60 Hz Crysial Time Base

Kit $\$ 4.40$ Converts digital clocks from $A C$ line irequency to crystal time base. Outstanding accuracy. Kit includes: PC board, MM5369, crystal, resistors. capacitors and trimmer

## Clock Calendar Kit <br> $\$ 23.95$

CT7015 direct drive chip displays date and time on $6^{\prime \prime}$ LEDS with AM-PM indicator Alarm/doze feature includes buzzer. Complete with all parts, power supply and instructions, less case.
2.5 MHz Frequency Counter Kit Complete kit less case $\quad \mathbf{\$ 3 7 . 5 0}$ 30 MHz Frequency Counter Kit Complete kit less case $\quad \mathbf{\$ 4 7 . 7 5}$ Prescaler Kit to 350 MHz $\$ 19.95$

## Stopwaich Kit

$\$ 26.95$
Full six digit battery operated. 2-5 volts. 3.2768 MHz crystal accuracy. Times to $59 \mathrm{~min} ., 59 \mathrm{sec} . .991 / 100 \mathrm{sec}$. Times $\mathrm{std} .$, split and Taylor. 7205 chip, all components minus case. Full instruc. Molded plastic case with bezel. $\quad \$ 5.00$

## Auto Clock Kit $\quad \$ 15.95$

 DC clock with $4.50^{\prime \prime}$ displays. Uses National MA-1012 module with alarm option. Includes light dimmer, crystal option. Includes light dimmer, crystaltimebase PC boards. Fully regulated timebase PC boards. Fully regulated comp. instructs. Add $\$ 3.95$ tor beautifa
dark gray case. Best value anywhere.


PRINTED circuit boards from camera-ready artwork. Free details. CM Circuits, 22 Maple Avenue, Lackawanna, NY 14218


TUBES, receiving and Industrial, semiconductors, factory boxed, low prices, free price list. TRANSLETERONIC' INC., 1365 - 39 th Street. Brooklyn, NY 11218 212-633-2800

## PiNATED QLicJIT <br> Positive Acting Photo Resist; Carbide bits; Bubble etchers; Artwork; Epoxy Glass Boards. <br> Send stamp \& address label for flyer TRUMBULL <br> 833 Balra Dr., El Cerrito, CA 94530

SUMMER special! Complete cartrivision television recorder electronic assembly. (See previous issues.) $\$ 11.50$ plus $\$ 3.50 \mathrm{~S}$ \& H . Master Charge, BankAmericard. M.E.C., 369, Madison, AL 35758


RECORDS-TAPES! Discounts to 73\%; all labels; no purchase obligations; newsietter; discount dividend certificates; $100 \%$ guarantees. Free details. DISCOUNT MUSIC CLUB, 650 Main St., Dept. 3-0878, New Rochelle, NY 10801


EREE PROBES FREE PROBES FREE PROBES



S1OC.WWG $50 / 100$ Cont. 125 ctrs
3 LEVEL WIRE WRAP $025^{\prime \prime}$ sq posts 3 LEVEL WIRE WRAP $.025 "$ sq. posts
on .250 spaced rows. GOLD plated. $\begin{array}{ccc}1.4 & 5.9 & 10.24 \\ \$ 4.00 & \$ 3.75 & \$ 3.50\end{array}$

S100-WWN 50/100 Cont. 125 ctrs 3 LEVEL WIRE WRAP .025" sq. posts on 250 spaced rows. NASGLO tin nickel plated.
$\begin{array}{lll}3.4 & 5.9 & 10.24 \\ 3 & \text { s3.25 } & \$ 300\end{array}$

## 

S $100-$ STG $50 / 100$ Cont. 125 ctrs.
DIP SOLJER TAll on 250 spaced rows to ${ }^{\circ}$ VECTOR and IMASI rows fo motherboards GOLD plated.
$\begin{array}{ccc}1.4 & 5-9 & 10-24 \\ \$ 4.00 & \$ 3.75 & \$ 3.50\end{array}$

RG81G 50/100 Cont. 125 ctrs. DIP SOLD:R AlL on 140 spaced rows for ALTAR ir otherboards. GOLD plated.

S100-STN 50/100 Cont. 125 cirs. DIP SOLDER-TAIL on .250 spaced motherboards. NASGLO tin-nickel
$\begin{array}{llll}1.4 & 5.9 & 10.24\end{array}$
$\$ 3.50 \quad \$ 3.25 \quad \$ 3.00$

R681-3 50/100 Cont 125 ctrs
PIERCED SOLDER EYELET tails GOLD

## Other Popular Edge Connectors



R644-3 22/44 Cont 156 ctrs WIR
WRAP tails. GOLD

## Sor wip ers <br> AETS <br> 

##  <br> 3677 9.6' $\times 4.5$ $\$ 10.90$

$36^{*} 7 .<6.5^{\prime \prime} \times 4.5$

$\$ 9.74$
Price: \$29.50

## Same as 8800 V ex buses 8 heat sink <br>  <br> 



$$
0
$$



PROBE 1\% POBE 16 with the
Durchase of SCOPE


3662 6.5"' $4.5^{\prime \prime} \quad$ CARD EXTENDER $\$ 7.65$ $\qquad$
$\qquad$S 11.45



## अITCIRONIC <br> Phone Orders: 617) $532-2323$ BA,MC or AE SUPFRMए ARE天

P.O. Box 619 Dept. R-8 Lynnfield, Massachusetts 01940 SPEAKER KITS Jhas miay viam we designed for direct dispersion dispersion Cabi wide dispersion of the low tones. Cabiincludes: 2-cabinets; 2-8"woofers; 2-4" ncludes: 2 -cabinets; 2.8 wooters; 2-4 dome tweeters; crossovers. gril cloth a req resp of 30 to 20000 Hz Buy the complete kit or just the cabinets! complete kit or just he cabiners!
COMPLETE KIT. Order No. 7 ZU 70242 Sh. Wt. 35 Lbs. . . . . . . . $\$ 49.50 /$ pair CABINETS Only . . . . . . . 70B70200 . $\$ 25.00 /$ pair


## esygur

lood pressure But 50 percent of when blood pressure goes highe han it should, and stays high. it sets Most cases of high blood pressur ther advances in treatment. Yhat's why you should see your doctor reg-
warly. Only he can tell if you need ularly
help


ENGINEERS, SCIENTISTS HOBBYISTS, GADGETEERS
This Month" catalog is published 7 times a year. Each 32 page issue is updated and filled with hundreds of unique, hard to-find special buys of industrial-electronic, scientific CCTV, optical and electro-mechanica products.

Our 44th year!



-
RADEMAN. INC
401 East Erie Avenue Philadelphia, Penna. 19134

NAME
address
HOME $\qquad$
ONE OF OUR UNIQUE PRODUCT HIGH TORQUE REVERSIBLE 6 OR 12 V, PM FIELD MOTOR This beautiful, chrome finished, high efficiency field motor was originally designed as a "pedal assist" drive motor for bicycies. It will find many applications in mechanical drives where high starting torque is needed. Can also serve as a low power DC generato
SPECIFY CAT.NO. 21 K 139


CIRCLE 79 ON FREE INFORMATION CIRD


# 600 MHZ . FREQUENCY COUNTER $\pm 0.1$ PPM TCXO 

## OPTO-8000.1



This new instrument has taken a giant step in front of the multitude of counters now available. The Opto- 8000.1 boasts a combination of features and specifications not found in units costing several times its price. Accuracy of $\pm 0.1$ PPM or better - Guaranteed - with a factory-adjusted, sealed TCXO (Temperature Compensated Xtal Oscillator). Even kits require no adjustment for guaranteed accuracy! Built-in, selectable-step attenuator, rugged and attractive, black anodized aluminum case (. $090^{\prime \prime}$ thick aluminum) with tilt bail. 50 Ohm and 1 Megohm inputs, both with amplifier circuits for super sensitivity and both diode/overload protected. Front panel includes "Lead Zero Blanking Control" and a gate period indicator LED. AC and DC power cords with plugs included.

SPECIFICATIONS:
Time Base-TCXO $\pm 0.1$ PPM GUARANTEED!
Frequency Range- 10 Hz to 600 MHz
Resolution- 1 Hz to $60 \mathrm{MHz} ; 10 \mathrm{~Hz}$ to 600 MHz
Decimal Point-Automatic
All IC's socketed (kits and factory-wired)
Display- 8 digit LED
Gate Times-1 second and $1 / 10$ second
Selectable Input Attenuation- $\mathrm{X}_{1}, \mathrm{X} 10, \times 100$
Input Connectors Type -BNC
Approximate Size- $3^{\prime \prime} \mathrm{h} \times 71 / 2^{\prime \prime} \mathrm{w} \times 61 / 2^{\prime \prime} \mathrm{d}$
Approximate Weight- $2^{1 / 2}$ pounds
Cabinet-black anodized aluminum ( $.090^{\prime \prime}$ thickness)
Input Power-9-15 VDC, 115 VAC $50 / 60 \mathrm{~Hz}$
or internal batteries
OPTO-8000.1 Factory Wired
$\$ 299.95$
OPTO-8000.1K Kit
\$249.95
ACCESSORIES:
Battery-Pack Option-Internal Ni-Cad Batteries and charging unit
$\$ 19.95$
Probes: P-100-DC Probe, may also be used with scope $\$ 13.95$ P-101-LO-Pass Probe, very useful at audio frequencies
$\$ 16.95$
P-102—High Impedence Probe, ideal general purpose
usage $\quad \$ 16.95$
VHF RF Pick-Up Antenna-Rubber Duck w/BNC \#Duck-4H $\mathbf{\$ 1 2 . 5 0}$ Right Angle BNC adapter \#RA-BNC \$ 2.95

FC-50 - Opto-8000 Conversion Kits:
Owners of FC-50 counters with \#PSL-650 Prescaler can use this kit to convert their units to the Opto-8000 style case, including most of the features.

FC-50 - Opto-8000
Kit \$59.95
*FC-50 - Opto-8000F Factory Update $\$ 99.95$
FC-50 - Opto-8000.1 (w/TCXO) Kit \$109.95
*FC-50 - Opto-8000.1F Factory Update $\$ 149.95$
*Units returned for factory update must be completely assembled and operational

TERMS: Orders to U.S. and Canada, add $5 \%$ to maximum of $\$ 10.00$ per order for shipping, handling and insurance. To all other countries, add $10 \%$ of total order. Florida residents add $4 \%$ state tax. C.O.D. fee: $\$ 1.00$. Personal checks must clear before merchandise is shipped.
$\mathrm{NO}-\mathrm{ETCH}$
Duplicate or make additions to modifications of Any Etched Board. Ideal for point-to-point or wire wrap breádboards. Complete set of (3) tools IP6003 $\$ 25.00$ ppd. A.F. Stahler Co., P.O.Box 354 R, Cupertino, CA 95014-(408) $252-4219$


FREE KIT Catalog
STOP! Take a minute \& let us send contains our latest kit catalog. If you like, TEST \& send us the name \& address of a EXPERIfriend who may also be interested MENTER' and we'll include to you our booklet "How to build-electronic thermometer" EQUIP
AGE SCIENTIFIC INSTRUMENTS


## $B K$ gressem OSCILLOSCOPES



Dual-Trace 5"-10MHz Triggered Sweep

- Usabie defiection to $15 \mathrm{MHz}=35$ SEC rise time permits accurate display of - Front-panel Vectorscope operation with matcned-sensitivity inputs - TTL compatible intensity modulation (Z-axis) input tor time or frequency markers and character displays
- Internal calidration source
- $100 \%$ solid state (except CRT) Compact, light-weight and rugged Protective carrying case and Model 1471B-p

Dual-Trace 5"-30 MHz Triggered Scope 11.7 nS rise time - 30 MHz dual trace operation - Interna ignal delay in 5 V . 1 position sweep swich - intensity $05 \vee \mathrm{p}-\mathrm{p} \pm 1 \%$ calibration source - $100 \%$ solid state (except CRT - X-Y Vectorscope capability - High performance/cost ratio

Model 1474•P


Before you buy, check our prices. . Call TOLL FREE (800) 645-9518
N.Y. State call (516)752-005 P D RADIO SUPPLYCO. INC $\begin{gathered}\text { Mastercharge, } \\ \text { BankAmericard. }\end{gathered}$ 855R Conklin St
Farmingdale $N$ Y 11735 COD VISA and
COccepted

YOUR ONE STOP DISCOUNT CENTER $\begin{array}{r}\text { ADO } \$ 3.00 \text { TO COVER } \\ \text { Send tor new } 1978 \text { catalog of over } 3.000 \text { items... } 164 \text { pages of lest equipment. } \\ \text { INSURANCE, HANDING \& }\end{array}$ Send for new 1978 catalog or over 3.000 items... 164

AMAZING ELECTRONIC PROJECTS and PRODUCTS: Lasers Super Powered, Burning, Cutting, Rifle, Pistol. Pocket. See in Dark-Shotgun Directional Mike-Unscramblers-Giant Tesla - StunwandTV Disrupter-Energy Producing, Surveillance, Detection. Electrifying, Ultrasonic, CB, Auto and INFO UNLTD PARTS SERVICE Catalog \$1. Information Unlimited, Box 626, Lord Jeffery Court, Am. herst, N.H. 03031.

B\&K test equipment. Free catalog. Free shipping. Dinosaur discounts. SPACETRON-DH, 948 Prospect, Elmhurst, IL 60126

BLITZ ZOINK ZATT: UNSCRAMBLE these fascinating police communications with our CODE-BREAKER and keep informed. Tunes all scramble frequencies. works with all scanners, and is factory built and guaranteed \$34.95PP. UNSCRAMBLER KIT: Latest Technology, $21 / \times \mathbf{X} 21 / \mathrm{X} 1 / x$-inch, complete instructions, only $\mathbf{\$ 1 9 . 9 5 P P}$. Thousands of satisfied customers. Catalog 504 Order from KRYSTAL KITS, BOX 445,
BENTONVILLE, ARK, 72712 COD orBENTONVILLE, ARK. 727 12. COD or
ders. $501-273-5340$.

SELLING rider manuals, single volumes, sets, older Sams' Photofacts, Supreme. Beitman, Box 46, Highland Park, IL 60035

## NOTICE: RECORD RATERS WANTED

(No experience required) Each month you will receive nationally released albums to rate THERE IS NO EXTRA CHARGE tor the LP s you receive. you pay a small membership fee which covers all costs of the LPs. We pay postage. In return for your opinion build your LP collection. "First come basis For application write EARS DEPT DX Box 10245 5521 Center St. Milwaukee. WI 53210

NAME brand test equipment. Up to $50 \%$ discount. Free catalog and price list. SALEN ELEC TRONICS, P.O. Box 82, Skokie, IL 60076

## Govt. SURPLUS ELECTRONIC EQUIPMENT CATALOC

New ITEMS ... New BARGAINS! FREE UPON REQUEST! Send today for FREE copy of NEW CATALOG WS-78. Address: Dept. RE

## FAIE RADIO SALES

1016 E. zUREKA - BOX 1105 - LIMA, OHIO - 45802
TAPE head cleaner. 8 oz . $-\$ 2.30$. Includes post age and handing. Write: "CLEANER," Box 176 , Whitewater, WI 53 190. 800-558-9572 except WI

COMPUTER, peripheral, technical reports; project supplies; kits. Send \$1 for THE CPU HOBBYIST, Box 738-RE, College Park, MD 20740



CIRCLE 38 ON FREE INFORMATION CARD



LOWEST prices. CPU's: $3001 \$ 14,3002 \$ 9,3003$ $\$ 10,8035 \$ 21,8035-8 \$ 16,8080 A 2 \mu 587.85$, $8080 \mathrm{~A}-1 \quad 1.3 \mu \mathrm{~s}$ \$11, $8080 \mathrm{~A}-2 \quad 1.5 \mu \mathrm{~S} \$ 8.95,8085$ $1.3 \mu \mathrm{~S}$ \$18, $8085 \mathrm{~A}-2$. $8 \mu \mathrm{~s}$ \$29.95, $8748-42.5 \mu \mathrm{~S}$ $\$ 49.95,8748-8 \quad 5 \mu \mathrm{~s} \$ 45.95$, PACE 16 bit $\$ 38$; PROM's: $2716 \$ 39.95,3621-1$ 50ns $\$ 5.95,8755$ EPROM \$65; RAM's: 1103A.95, 2114 \$11.15, 2115-2 45ns \$6, 2116 \$49, 2117-4 \$52, 2125A 45ns \$5.95, 3106A \$3.20,5101L CMOS \$8; 8080/ 8085 Back up: $8155 \$ 17,8156$ \$18, $8251 \$ 10$, 8253 \$22, $8255 \$ 8,8257 \$ 15,8259 \$ 16,8275$ $\$ 75,8279 \$ 17,8741 \$ 72$; Terms: Money order or certified check. California residents add $6 \%$ tax. BYTE ELECTRONICS, Box $8603-\mathrm{R}$, San Jose CA 95155

## BUSINESS OPPORTUNITIES

MECHANICALLY inclined individuals desiring ownership of Small Electronics Manufacturing Business-without investment. Write: BUSINESSES, 92-R, Brighton 11th, Brooklyn, NY 11235

## HIGHLY <br> PROFITABLE <br> ONE-MAN ELECTRONIC FACTORY

Investment unnecessary, knowledge not required, sales handled by professionals. Ideal home business. Write today for facts! Posicard will do. Barta-RE-H, Box 248, Walnut Creek, CA 94597.



## DATA BOOK SALE

## Through September 15th.

| AMB0203 8080A/9080A MOS Microprocessor Hand Book. Detailed descriptions of the 8080A and associated CPU components $\$ 4.95$ | LCC4041 T.I. Power Semiconductor Data Book. 816 pages germanium and silicon power transistors. SCR's. Triacs. daringtons sillicon power high voltage and low voltage types etc |
| :---: | :---: |
| AMB0205 MOSSLSI Data Book. Static RAM'S dyramic $4 K$ RAM's, $2 K$ EROM. shiff registers,FIFO memories and complete micropro$\begin{array}{ll}\text { Fessor and support circuits. } & \mathbf{\$ 3 . 9 5} \\ \text { cerner }\end{array}$ | types etc |
|  | UNB0400 Unitrode Semiconductor Da |
|  | 500 pages on rectiters, |
|  |  |
| AMB0206 Linear and Inlerface Data Book Comparators, data conversion products.microprocessor interface. Op Amps. Voltage <br> Regulators etc. <br> $\$ .95$ | istors, etc \$3.95 |
|  |  |
|  |  |
|  |  |
|  |  |
| Irchlid Blpolar |  |
| Bipolar memories, ECL | SIBO305 VMOS Power FET's Technical |
|  |  |
| ogic. \$1.95 |  |
| Data Book. Microprogramming for impiementing as many system tunctions as possible in one centralized logic block $\mathbf{\$ 2 . 9 5}$ |  |
|  |  |
|  |  |
|  |  |
|  | etc. \$1.95 |
| FSB0112 Fairchild Hybrid. Cus!om and standard product as well as reliability and design considerations. <br> $\$ 0.95$ |  |
|  | S. Complete data and app |
|  | Ons \$2.95 |

## TEXAS INSTRUMENTS

 DATA BOOKSLCC4162 TTL Supplement

The most recent TTL functions are included in this supplement to the 2nd edition of the TTL Data Book.
$\$ 1.95$
LCC4330 The Interface Circuits Data Book
Complete information including line drivers, receivers, memory drivers, sense amplifiers and peripheral drivers $\$ 4.75$ LCC4350 The Voltage Regulator Handbook
Encompasses the total power supply design and aids in selection of regulator I.G's and associated components \$2.50 LCC4380 The MOS Memory Data Book
Complete data, selection + interchangeability guide to
Static and Dynamic RAM's, ROM's, EPROM's, CCD, Shift Registers + UART

## The TTL Data Book

The brand new edition of the TTL data book (832 pages), provides the most complete, up to date information available, combining the contents of the circuits. The contents include: detailed specification on over 900 T .I. device circuits. The contents include: detailed specification on over 900 T .I. device types including stancard TIL and high technology schottky clamped TTL. microprocessors. Complete line of T.I. I.C. Sockets and interconnection panels. Stock No. LCC4112 \$4.95

## NEW DATA BOOKS Now available

GSB0100 Zener. Transistor and Transzorb Catalogue. Discrete devices and pertinent data and complete device
characterization
$\$ 3.95$

## RAB0606 Raytheon

Selection Guide. A full line condensed quick reference source on all Raytheon components $\$ 1.00$

## Artive Haptrinic SalesCorp.

TL HIGHSPEED PLASTIC DUAL-IN-LINE I.C.'s

|  |  |  |
| ---: | ---: | ---: |
| Stock level | Parl No | Price |
| 46000 | 74 H 00 | .16 |
| 1300 | 74 H 01 | .16 |
| 11600 | 74 H 02 | .16 |
| 8900 | 74 H 03 | .16 |
| 51000 | 74 H 04 | .17 |
| 9000 | 74 H 05 | 17 |
| 1500 | 74 H 08 | .22 |
| 17000 | 74 H 10 | .16 |
| 4400 | 74 H 11 | .22 |
| 1000 | 74 H 12 | .16 |

Stock level Part No Price $4000 \quad 74 \mathrm{H} 15.17$ $12000 \quad 74 \mathrm{H} 20 \quad .16$ $6000 \quad 74 \mathrm{H} 22.16$ $2000 \quad 74 \mathrm{H} 30 \quad .18$ $\begin{array}{ccc}24000 & 74 \mathrm{H} 40 & .18 \\ 3000 & 74 \mathrm{H} 5 & .16\end{array}$ $\begin{array}{rrr}24000 & 74 \mathrm{H} 40 & .16 \\ 3000 & 74 \mathrm{H} 50 & .16\end{array}$ $\begin{array}{lll}3000 & 74 \mathrm{H} 50 & 16 \\ 2000 & 74 \mathrm{H} 51 & 17\end{array}$ $\begin{array}{lll}2000 & 74 \mathrm{H} 5 & 17 \\ 1000 & 74 \mathrm{H} 52 & 17\end{array}$ $6000 \quad 74 \mathrm{H} 53 \quad 17$ $1000 \quad 74 \mathrm{H} 54 \quad 18$

Stock level Part No Price $\begin{array}{rrr}2000 & 74 H 55 & .18 \\ 3000 & 74 H 60 & .18 \\ 2000 & 74 H 61 & 18 \\ 2000 & 74 H 62 & .18 \\ 2000 & 74 H 64 & 16 \\ 6000 & 74 H 65 & 16 \\ 1000 & 74 H 71 & .35 \\ 2000 & 74 H 72 & 31 \\ 2000 & 74 H 73 & 49 \\ 24000 & 74 H 74 & .24\end{array}$

Stock level Part No Price $1200 \quad 74 \mathrm{H} 76.55$ $1000 \quad 74 \mathrm{H} 78 \quad 55$ $1500 \quad 74 \mathrm{H} 87275$ 1000 74H101 35 00074 H 102.35 00074 H 102.35 1000 74H103 . 5 C 200074 H 106 . 45 100074 H 108 . 300074 H 113
200074 H 114 120074 H 1832.25

## NEW 1978 CATALOGUE

Our new and expanded comprehensive 1978 catalogue ( 144 pages), listing complete descriptions, illustrations and monolithic pricing on over 10,000 items is available on request.

Subject to prior sale - Prices valid only till September 15th, 1978 - Standard 1978 catalogue prices on the above devices will once again take effect September 15th, 1978.


## Dual In- ine

 Sockets- pluggafle socket foric packages WITH LEADS
LOW COST NO GOLDIS USEDINTHE
RECEPTACLE ORNEEDED ON THE LEADS
- HIGH RELABBILITY GAS.TIGHT JOINT FOR

COMPACT LOW PROFILE DESIGN

- NO WICKING WHEN SOLDERED TO

PC BOARC

- flammaeiuty rating ul gav. 0

| Stock lever | Conlacis | Price |
| :---: | :---: | :---: |
| 185,000 | 8 PIN | 11 |
| 245,000 | 14 PIN | 13 |
| 190,000 | 16 PIN | 15 |
| 29,000 | 18 PIN | 19 |
| 80.500 | 22 PIN | .27 |
| 60,000 | 24 PIN | 28 |
| $30,00 \mathrm{C}$ | 28 PIN | .36 |
| 65,000 | 40 PIN | 48 |

BRAND NEW 1978 IC MASTER
Complete integrated circuit data selector. New 1978 edition (2200 pages) is twice as bigas last year. Master guide to the latesti.C.s including consumer circults

Free quarterly upoates
$\$ 24.95$
Lowest price available

From J.I.L., a leader in car entertainment centers . . . a modular. compact, first quality 4 -in- 1 unit ata price you might pay for a radio only! Get stereo high-fidelity FM Radio, AM Radio, Cassette or 8-track, and CB all for on low price. Tens of thousands sold nationally. Order while supplies last.
$\square$ \&853/102 In-Dash Combination 8. Track Stereo, AM/FM/Stereo Radio and 40-Channel Digital Touch-Tuning AM-CB. Features LO/DX switch, Stereo light, 8 track program lights. CB standby switch. LEO channel readout. Plus many other features

- while supply lasts only $\ldots \mathbf{\$ 1 4 9 . 0 0}$ $\square$ \#610/102 In Dash Combination Stereo Cassette Player, AM/FM / Stereo Radio and 40-Channel Digital TouchTuning AM.CB. Features casselte eject/ FF button. CB selector, CB standby switch Plus many other features while supply lasts only .... \$159.00 $\square$ \#202-SSB Single sideband 40 . Channel CB featuring Digital Touch-Tuning AM-SSB CB for 120 effective channels with greater clarity and reach. All functions right on the mike. A top-notch unit Choose SSB instead of standard 40 channel CB with \#853 or $\# 610$ above. Please add
$\$ 50.00$


## A Accessories

$\square$ AM/FM/CB Retractable Antenna
(mounta like reg. car antenna) List 39.95 ............ NOW $\$ 29.95$ $\square 5 \frac{1}{4}$ " Full-tone Cobxial Speakers 20. oz. magnets.
List 39.95 pr. .......... NOW $\$ 19.95$
$\square 6 " \times 9 "$ Full-tone Coaxial Speakers 10 oz. magnots each List $\mathbf{8 6 9 . 9 5} \mathrm{pr}$....... NOW $\mathbf{8 2 9 . 9 6} \mathrm{pr}$.

$\qquad$
$\qquad$


## DIGITAL CASSETTE TAPE C-60



## COMPUTER RECORDING

 All these tapes made in U.S.A Never Recorded-Reg. $\$ 6.80$ each OUR PRICE 3 for $\$ 5.00$ TYPE TIL 305 LED
$5 \times 7$ ALPHANUMERIC DISPLAY $\$ 3 \%$ EACH
SPECIAL SALE
-0.300-Inch-High Character

- High Luminous Intensity 4 for $\$ 9.90$
- Low Power Requirements
- Wide Viewing Angle
- $5 \times 7$ Array with $X-Y$ Select and Decimal
- Compatible with USASCII \& EBCDIC Codes


## THE MOST POPULAR

 MM5314 CLOCK KITFeatures

* 12/24 Hours Display
- $50 / 60 \mathrm{~Hz}$ Input
* 6 Digits Bright Orange Readouts
Kit includes plastic case, MM
5314 I.C. One set transistor
drivers, P.C. Board, gas discharge displays, all other elec-
tronic parts and transformer. Catalog no. DC-8SP SPECIAL PRICE
\$16.95 PER KIT
9 STEPS LED LEVEL INDICATOR KIT

for most stereo ampliflers This new project works as a pair of VU meter to indicate the output level of your ampllifer from -20 dB to +3 dB . Kit Includes all LED, translstors, electronic components, P.C. Board and instructlons.
Easy to bulld and fun to see. ONLY $\$ 9.90$ EA.



##  SUPER 15 WATT AUDIO AMP KIT



Kit includes: STK-015 Hybrid IC, power supply with power transformer, front Amp with tone control, af electronlc parts as well as PC Board. Less than $0.5 \%$ harmonic distortion at full power $1 / 2 \mathrm{~dB}$ response from $20-100,000 \mathrm{~Hz}$. This ampllfier has QUASI-Complimentary class $B$ output. Output max is watt (10 watt

## 30MHZ FREQUENCY COUNTER KIT



SI ad of custom mance site drastically reduced power consumption (portable batter mance, smaller physical siz 0.5 red LED 6 digits display

Resolution: 1 Hz at $1 \mathrm{sec} .10 \mathrm{~Hz}_{2}$ at $1 / 10 \mathrm{sec}$
 - Internal power supply: 5.2 V at 1 amp regulated Input power ror BNC type Diode protected for over voltage input
Model $250-30 \mathrm{~A}$ PC Board and Transforme

## MANY SOUND DECISIONSI


$\$ 3.60 \mathrm{EACH}$ Solid state sound indicator operating
$30 \mu \mathrm{~A}$. Smallage size approximately $3 / 4$ " $\times 1^{1 / 4}$ "
Model EB2116 (ContInuous) Model EB2126 (Slow Pulse)

## POWER SUPPLY KIT




# Special 『unctions 

 3050 VALMONT ROAD BOULDER，COLORADO 803OI| Slide Switch Smooth ac triple throw J． 5100 $80^{\circ}$ | $1 / 125 \text { vois }$ | Miniature glass type high speed switching diode．Case AA． |  |  | 22 ga．magnet wire w／solder through insulat ion．Appx．500 <br> J－7003 \＄2．50 | Mini Cap <br> 005 ut ． 500 WVDC 7 for $\$ 1.00$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | LED Panel <br> Black plastic clip for moun LED in panels 14002 | Socket <br> Standard，solder <br> pin IC socke <br> J． 7101 <br> 40 | glass．e： | $\begin{aligned} & \text { PC trimmer cap } \\ & \text { for crystal cir- } \\ & \text { cuits etc. } \end{aligned}$ culis, etc | 2N3055 <br> Popular audio． type power J． 1001 65 | $10 \text { for }{ }^{5} \text { 1. }$ |
| Sensitive 12 VDC <br> reed relay，DPST <br> $\mathrm{P}-\mathrm{C}$ leads． <br> J． $5047 \quad \$ 1.50$ | Standard size hex nuts for us on pots，switch es，etc． $3 / 8^{\prime \prime}$ I．D <br> 」 7006 | $\begin{aligned} & \text { Wire wound } \\ & \text { 1 watt } \\ & 25^{c} \end{aligned}$ | $6 \times 6$（J．8018） 5 for $\$ 3.60$ $\qquad$ | $\begin{aligned} & 20 \\ & \text { 20u } \\ & \text { mou } \end{aligned}$ | BNC <br> Connector <br> 3／8＂femaie BNC <br> jacketed $6^{\prime \prime}$ leads． <br> 」． 7102 <br> $\$ 1.00$ | Rubber <br> 8008 <br> 015151．60 <br> 00／12 <br> 100 |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  | $\begin{aligned} & \text { ITT } \% \\ & \text { OHMITE } \end{aligned}$ |
|  |  |  |  |  |  |  |

## MORE NEW ITEMS！

JUMBO LED READOUT ARRAY By Bowmar． 5 in． character common cathode．Designed for use with multi－ plexed clock chips \＄1．95 LIMITED STOCK $\begin{aligned} & \text { plexed clock chips } \\ & 4 \text { digits in } 1 \text { pack！}\end{aligned}$

MICRO－MINI TOGGLE SWITCH
SPDT BY RAYTHEON 996 MADEINIISA！WITHHDWR

EACH


NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE
MA1008A BRAND NEW：


ASSEMBLEDI NOT A KIt！ zULU VERSION： hited number of the 24 HR Real \＃MA1008D－\＄9．95


EATURES：
FOUR JUMBO INCHLED DISPIAKS FOUR JUMBO I／INCH LED
12 HR REAL TIME FORMAT － 24 hr alarm sigival output － 50 or 60 hz operation ＊LED bR GHTNESS CONTROL POWER FAILUAE INDICATOR SLEEP \＆SNOOZE TIMERS
DIRECT LED ORIVE LLOW RFI －COMES with full data

MOTOROLA 4K RAM＇s－99世 EACH（WITH DATA）

A major U．S computer mfg removed these parts from PC boards，then retested them to full specs．Best Memory Buy in the U．S．A．！ $4096 \times 1$ Bits．One of the easiest Dynamic RAM＇s to use A complete memory board design using these chips is detailed in the MOTOROLA M6800 APPLICATIONS MANUAL starting on page 4－ 70．The 6605 is the popular 22 Pin Dip．
8 FOR S $6^{\circ 5}$

MCM6605 470 NS

EXPERIMENTER＇S CRYSTAL


262． 144 KHZ ．This trequency is 2 to the 18 th power Easily divided down to any power of 2 and even 10 1HZ．New by CTS－Knight．A $\$ 5$
$\$ 1.25$ each

COMPARE AT UP TO TWICE OUR PRICE！
MANUFACTURER＇S CLOSEOUT！

## FAIRCHILD

JUMBO READOUTS 5 Inch Char．High Eiticiency FND－503－Common Cathode YOUR CHOICE 69 C 10 FOR $\$ 5.75$
FET SALE！
2N4304．Brand New N Channel，Junction Fet BVGD0－30V IDSS－15 MA Typ 1500 uMHOS．TO－ 18 Plastic Case．Mig by Teledyne 6 FOR \＄1

| DISC CAPACITORS .1 MFD 16 V ．P．C． leads．Most popular value！By Sprague． <br> 20 for $\$ 1.00$ | Full Wave Bridge <br> 4 Amp 200 PIV <br> 69Сеа．10／5．75 |
| :---: | :---: |
| Motorota PNP Power！ 2N4905 TO－3 case．90W VCEO－60．HFE－100 max．at 2．5A．Good mate for the 2N3055 PRIME $75 ¢$ ea． 4／\＄2．50 | COMPUTER CAPACITOR <br> By GE． 36,000 MFD 15W VDC Small Size： $4 \frac{3}{4} \times 13 / 4$ Inches． SUPER DEAL！$\$ 2.95$ Each 3 FOR \＄8 |

Digital Research Corporation
P．O．BOX 401247 B GARLAND，TEXAS 75040 •（214）271－2461

## MALLORY

POWER SUPPLY CAPACITOR 1500 MFD 16 WVDC

3／\＄1．00 10／\＄2．95
FACTORY FRESH！SMALL SIZE
LS SERIES TTL
74LSOO－33c 74LS74－49c 74 LSO4－ $55 \mathrm{C} 74 \mathrm{LS} 90-69 \mathrm{c}$ $74 \mathrm{LSO}-35 \mathrm{c}$
$744 \mathrm{LSS1} 38-89 \mathrm{c}$
7

## 

LED IC Counter Kit You Get：1－7490；1－ 7475；1－7447；1－Led Readou＇t．All this for $\$ 1.99$ （Led Readout is famous SLA－1．． 33 in．By Opcoa．）

TERMS：Orders under \＄15．add 75c．No COD＇s．We accept VISA．MasterCharge and American Express Cards．Money Back Guarantee on all items！Texas Residents add 5\％Sales Tax．WE PAY POSTAGE！


PRICES MAY CHANGE WITHOUT NOTICE COD ORDERS WELCOMED
Mınımum order $\$ 5.00$ Ohio residents add 4\% sales tax. Add $\$ 1.00$ postage and handing $\quad$ IMMEDIATE DELIVERY
Quantity discount prices. Ask For Our Complete Price List. Mfg. inquiries Welcomer WITHIN 48 HJURS

#  <br> <br> MEET THE 

 <br> <br> MEET THE}
These static memory kits (one for the H8 buss, all others $\mathrm{S}-100$ compatible) deliver outstanding performance at prices even the dynamics can't match. What others consider "extras" we consider necessities, such as full buffering on all lines, reliable DMA, sockets for all ICs , gold-plated card fingers, prime ICs...and all the other signs of quality that make up an Econoram. No matter what machine you use, we want to be your memory supplier. and we know the best way to do that is to offer a superlor product at the lowest possible price.
NEW! $16 \mathrm{~K} \times 8$ ECONORAM IVTM KIT (\$329)
Guaranteed current consumption under 2000 mA. Manual write protect switches for 4 K blocks; use with or without phantom line. Fully static. Comes with sockets and bypass caps soldered in place for easy assembly. Add $\$ 35$ for assembled/tested.

## NEW! $24 K \times 8$ ECONORAM VIITM KIT (\$490)

Our densest board is your best value in 24 K memory. Current consumption under 2500 mA configured as two 4 K blocks and two 8 K blocks with independent manual write protect switches for each block. Use with or without phantom lines. comes with sockets and bypass caps soldered in place for easy assembly. Add $\$ 35$ for assembled/tested.
8K $\times 8$ ECONORAM IITM KIT (\$135)
A truly cost-effective package that has drawn raves from both owners and reviewers (see the 1/78 Kilobaud for an example). If you have the space in your motherboard, there's no better way to get 24 K of memory than taking advantage of our quantity offer ( 3 kjts for $\$ 375$ ). Add $\$ 20$ to single kit price for assembied/tested.

## H8 COMPATIBLE

ECONORAM VITM KIT (\$235)
$12 \mathrm{~K} \times 8$ for the H8, with the same features that have made our $\mathrm{S}-100$ boards so popular. Additionally, all sockels and bypass capacitors right into the best part of kit building.

## TRS-80 16 K CONVERSION KIT

This kit contains 8 uPD416 $1 \times 16 \mathrm{~K}$ dynamic memories and instructions on converting your 4 K TRS-80 to a 16 K machine. You could pay up to $\$ 290$ elsewhere, but our kit is only $\$ 190$ !

SOMETHING TO MAKE LIFE EASY: We carry AP test cllps for both 14 pin and 16 pin ICs. Gold plated wiping actlon; sturdy pins for scope probes; Model TC. 14 ( 14 pln): $\$ 4.50$; Modal TC. 18 (16 pin): $\$ 4.75$ We also carry the ACE 201 K breadboarding klt (with 1,032 solderless plug in tie point capacity) for only $\$ 24.95$ for only $\mathbf{2 4 . 9 5}$

## MORE? Send for our flyer

TERMS: Plesse allow up to $5 \%$ for shipping; excess refunded. Add $\$ 1$ handling for orders under $\$ 10$. Cal res add tax. COD OK with street address for UPS. For VISA ${ }^{\circ}$ jMastercharge ${ }^{\circ}$ orders call our order desk (24 hrs) at (415) 562-0836. Prices good through

CIRCLE 43 ON FREE INFORMATION CARD

## OP-AMP and PARTS BOARD



This giant board, $5^{\prime \prime} \times 13^{1 / 2} 2^{\prime \prime}$, is loaded with OP.AMPs. Their is a minimum of 24 Type 741 op amps, plus over $501 \%$ resistors, plus 13 tantalum caps,over 30 tubular caps, many $1 / 4$ watt resis tors, diodes and much more. A bonanza of modern parts. STOCK NO. $6754 R$
$\$ 3.95$ ea.
3/10.00

## INDICATOR LIGHT BOARD


ndicator board contains 7 grain of whea 3 incandescent buibs, Each 5 valts 0 is in mac. et, and has a colored lens. Each lamp has 2 2N3904 drivers. plus other parts. plus other parts.
2.00 ea. $3 / 5.00$
STOCK NO.6810R Indicator board.

## UNIVERSAL TRANSFORMER

115 Vprimary. Sec.1-12.6V@1.0 A.ct. Sec.2-33.5V, tapped @ STOCK NO.6772R $\$ 2.95$ ea. $\quad 2 / 5.00$

## Delta electronics

Our new Giant 120 page catalog is ready. Send for it.


Amesbury, Mass 01913
617-388-4705
RETAIL OUTLET
ATLANTA, GA. DELTA ELECTRONIC HOBBIES
5151 Buford Hwy. Doaraville, (Atlanta) Ga. 30340


CIRCLE 80 ON FREE INFORMATION CARD

## F. Reichert Sales <br> 1110 e. garvey ave. <br> W. COVINA, CA 91790 <br> CHOICE CHIPS

S20 minimum order - Sorry no coós

- SREE UPS OELIVERY ON US ORDERS ONLY OR BY SURFACE MAIL IF SPECIFIED money back guarantee (MOS \& LED DEVICES EXCLUDEO) UNDER 8 hOUR PROCESSING ON MONEY ORDERS \& CASHIERS CHECKS.
- SORRY NO COD'S.
po's OR CREDIT - pós or credit car - SALES tax

CANADA. Puerto rico \& U.S. POSSESSIONS AOD U.S $\$ 3.50$ ALL OTHERS AOD U.S $\$ 7.00$

ADD 25c FOR SPEC. SHEETS
lmion 2.37 V adjustable voliage regulator
LM317 1.1/2 amp 1.2.37V three terminal adjustable voliage regulator
lm358 LOW power oual operational amp
LM384 5 watt audio amplifier
LM387 LOW noise dual preamplifier
lm390 LOw voltage iw auolo amplifier
for a much wioer selection you may also ORDER FROM OUR JUNE AND JUEY ADS IN radio electronics and byte magazine
$\$ 4.95$ DC-DC UP CONYERTER SWITCHING REGULATOR I.C BULLD YOUR OWN MICRO (149 $\$ 1.75$ MINI DIP PKG WITH DATA $\$ 1.60$ HEWLETT - PACKARD HEWLETT - PACKARD
NTENSITY MICRO IEDS sioe stackable axial lead RED CLEAR YELLOW

LM703 LOW POWER DRAIN RF/IF AMPLIFIER
LM733 DIFFERENIIAL VIDEO AMPLIFIER
LMI 414 dual differential voltage comparator
LMI 496 BALANCEO MODULATOR/DEMODULATOR
LM1830 fluio detector (presence, absence, level
Lm2907 frequency to volitage converter
lm2917 frequency to voliage converter with hi gain op amp comparator
MM5330 4 1/2 DIGIT DVM LOGIC BLOCK
mm53104 iv game clock generator
MM57100 COLOR TV 3 game Chip
LM1889 TV VOEO MODULATOR
TBA 820 2w MONOLITHIC AUOIO AMPLIFIER
ULN 2277 f stereo amplifier 2 w per channel

6/99C 5/99C 4/99c
CARBIDE DRILL BITS
for P.C. BOARD WORK SIZES FROM NO 55 to NO 70 $\begin{array}{ll}\text { OUR } \\ \text { MIX } & 5 / \$ 749\end{array}$ $10 / \$ 12^{49}$


## ADVANCED COMPUTER PRODUCTS

## S100 PRODUCTS

LOGOS I 8K STATIC RAM

* Selectable Memory Protect
*Totally Buffered
* Battery Back-up
* Address on 1 K boundary
* Requires no front panel

ASSEMBLED \& TESTED
250ns. 199.95
$\begin{array}{lr}\text { KIT } & \\ \text { 250ns. } & 149.95\end{array}$
$\begin{array}{lr}\text { 450ns } & 125.95\end{array}$
Bare PC Board w/Data
Now ove 1 successtul field experience "Special Offer" Buy (4) 8K 450ns. Kits $\$ 17.00$

## IMS 16K STATIC RAM

* Memantom
* Address 16 K Bound
$\star$ Use with or w/o front pane
$\star$ Power 2.1 amps typ.
* Uses 2114

ASSEMBLED \& TESTED ONLY

S-100 32K STATIC RAM

* Address 32K Boundary
* Power 450ns. 28 amps
* No wait states
* Fully Buffered
* Phantom can be added

ASSEMBLED \& TESTED
ASSEMBLED \& TESTED
250 ns . $\$ 849.00$ 450ns $\$ 799.00$ $250 \mathrm{~ns} . \$ 790.00$ Bare PC Board w/Data
SPECIAL OFFER:
Kit without Memory only $\$ 99.95$. Add

PARATRONICS LOGIC
ANALYZER KIT
MODEL $100 \mathrm{~A} . . .$.
(analyzes any type of digital system) Trigger Expander Model 10....... $\$ 229.00$ Model 10 Manual
Model 150 Bus Grabber Kit
469.95
369

## DC HAYES DATA COMMUNI CATIONS ADAPTER

$\star$ Telephone/twx $\$$ S-100 compatibe
$\star$ Bell 103 freq Originate $\&$ answer mode
Assembled \& Tested …........ $\$ 279.95$
Bare PC Board w/data

2-80/Z-80A CPU BOARD
$*$ On board 2708
$\star$ Power on
$\star 2708$ included (450ns * completely socketed

Kit
Bare PC Board
Bare PC Board
$\$ 34.95$

* For 4 MHz Speed Add $\$ 15.00$


## TDL COMPATIBLE Z-80 CPU

 $\star$ Compatible to TDL $\star$ Can be upgradedsoftware \& hardware for 4 MHz operation Assembled and tested
Bare PC Board
$\$ 199.95$
$\$ 139.95$
BYTE USER 8K EPROM BOARD * Power on Jump * Reset Jump
 Special Offer: Buy 4 kits oniy $\$ 59.95$ each

## 8080A CPU BOARD

fully socketed
Assembled \& Tested
Kit
Bare PC Board w/data
el Vector in $\$ 149.95$
$\$ 9995$

TARBELL FLOPPY INTERFACE

* S100 Compatible
* Jumper Seectable * Persci,Shugart,et | Assembled and tested ........... $\$ 269.95$ |
| :--- |
| Kit................................ |
| 1795 | Bare PC Board ................. $\$ 179.95$

NOTE: For CPM Add $\$ 7.00$
Documentation Add $\$ 20.00$

WMC REAL TIME CLOCK

* Two Compatib
* Software programmable

Assembled and tested
Bare PC Board w/data

MICRODESIGN MR-16 2716 EPROM BOARD (MR-8 Also Availa

* Individual Prom Address
* Uses Low cost 16 K TI EPROMS
* Optional 1KRAM Phantom control

| Assembled and Tested $\ldots . . . . .$. | $\begin{array}{r}174.95 \\ \\ \text { Kit }\end{array} \quad \begin{array}{l}99.50\end{array}$ |
| :--- | :--- |



DESIGNER BOARDS MODULES PROTO BOARDS

| * Motorola Compatible Modules* |  | AMI EVK 200 KII | 449.95 |
| :---: | :---: | :---: | :---: |
| MEK 6800 D2 Kit | \$235.00 | AMI EVK 300 Assembied | 649.00 |
| 96006800 MPU Module | 495.00 | EVK Kluge Board | 95.00 |
| 960116 slot Mother 8 d . | 175.00 | EVK 16 K Byte Ram Board | 75.00 |
| 960216 slot Card Cage | 75.00 | EVK 6 Slot Motherboard | 3500 |
| 96038 slot Mother Bd. | 99.00 | EVK Extender Board | 45.00 |
| 9604 System Power Supply | 250.00 | EVK Solid Frame Chassis | 129.00 |
| 9610 Prototype Board | 36.00 | EVK Connectors | 6.50 |
| 9615 4KEprom Module | 25000 | AMI 6800 Prolo Rom | 30.00 |
| $9620{ }^{16}$ port parallel I/O | 375.00 | AMI6800 Micro Assembler Rom | 3000 |
| 9626 8K Static RAM | 29500 | 6800 Tiny Basic Paper Tape | 20.00 |
| 9626 K 8K Static RAM Kit | 225.00 | 6800 Tiny Basic Eprom | 125.00 |
| 9630 Extender Card | 60.00 | ZILOG COMPATIBLE BOARDS |  |
| 9640 Multiple Tuner Prog | 395.00 |  |  |
| 9650 8 port Duplex Asyn. 1/0 | 395.00 | $2-80 \mathrm{CPU}$ | 39500 |
| Mol 43/86 Connectorsw/wors/t | 5.95 | 2DC Disc Controller | 39500 |
| AMI EVK 99.6800 sub Kit | 145.00 | MEM 16/65K Memory | 595.00 |
| AMI EVK 100 Kit | 269.95 |  |  |

1. Proven Quality Factory tested products only, no re tetsts
2.Same Day Shipment check, money or


NEW CTS
DIPSWITCHES


## 

STATE OF SOLID STATE continued from page 77
one REF-02 as the sensor and a second one operated at constant temperature to generate $\mathrm{V}_{\mathrm{REF}}$.

The calibration procedure begins by measuring $\mathrm{V}_{\text {temp }}$ and the ambient centigrade temperature corresponding to that $\mathrm{V}_{\text {TEMP }}$ reading. A calibration ratio, r , is calculated from $V_{\text {темр }} / S(T+273)$, which equals $R_{a}| | R_{b} /\left(R_{c}+R_{a}| | R_{b}\right)$. The numbers in the previous example are $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{S}=10 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {TEMP }}=$ 632 mV , so that $\mathrm{r}=0.2121$. Precisely 100 mV is applied to $\mathrm{V}_{\text {out }}$ with the power

## Why is this the <br> LARGEST SELLING low cost COUNTER KIT?

This counter is such a great selier because people like you have found that, feature for feature, the CT- 50 gives you more for your money. Advanced LSI and CMOS circuitry has; lowered power consumption, increased performance, and reduced cost. Complete push button operation makes using the CT-50 a snap, and automatic decimal point posiusing the CT-50 a snap, and automatic decimal point posi-
tioning gives you quick, reliable readings. Battery operation is also possible becuase the CT-50 runs equally as well on 12 VOC as it does on 110 VAC . For ultra-accuracy we offer the CB- 1 color burst adapter, it locks the CT-50's internal crystal to the television networks color standard for 001 ppm accuracy! Why sacrifice performance by using another counter when you can get professional qualusing the unheard of price of $\$ 89.95$ ? Order yours today!
ity at
off and $V_{\text {REF }}$ shorted to ground. Variable resistor $\mathrm{R}_{\mathrm{bp}}$ is adjusted so that $\mathrm{V}_{\mathrm{B}}=\mathrm{r} \times$ 100 mV or 21.21 mV . Now the power is turned on and $\mathrm{R}_{\mathrm{p}}$ is adjusted so that $\mathrm{V}_{\text {out }}$ equals 0.25 volt. For this procedure the voltmeter used to measure the temperature is convenient for setting up the $100-$ mV calibration source.

The thermometer is discussed in detail in "Application Note AN-18," Precision Monolithics, Incorporated, 1500 Space Park Drive, Santa Clara, CA 95050

## Second-generation MC6800 MPU

Previously, improvements that were made to the MC6800 increased its fre-


Sensitivity: less than 10 mv.
Frequency range: 5 Hz to 60 MHz , eypically 65 MHz Frequency range: 5 Hz to 60 MHz , typically 65 MH
Gatetime I second, $1 / 10$ second, with automatic Gatetime 1 second, $1 / 10$ second, with automat
decimat point positioning an both direct and decimat
presacle
Display 8 digit red LED $4^{\prime \prime}$ height
Accuracy: 2 ppm . internal TCXO standard
Accuracy: 2 ppm. internal TCXO standard
input BNC, 1 megohm direct, 50 Ohm with
prescale,option
Power, $110 \vee$ ac 5 Watts or $12 \vee$ dc @ 300400 ma
Size Approx $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$, high quality aluminum
CT $50,60 \mathrm{MHz}$ Counter Kit .................................. $\$ 89.95$
CT-50 wt 60 MHz Counter Wired \& Tested .......... \$ 159.95 CT-600, 600 MHz prescaler option for CT-50, add $\$ 29.95$

## SIX DIGIT 12/24 HOUR CLOCK KIT

Here's a clock you can be proud or. The market looking, most complete kit on the buttons Features include: time set push ed aluminum case available in 5 colors, All parts included. Colors: gold, silver, bronze, black, blue (specify) Clock Kit, DC. 5
$\$ 22.95$ Mobile Clock, DC-7
25.95


## 600 MHz PRESCALER



CALENDAR ALARM CLOCK Has every feature one could ever ask for
Kit includes everyt hing except case FEATURES
Extend the range of your
counter to 600 MHz . Works counter to with all counters. Less than 150 mv sensitivity. Specify -10 or -100 . Wired, tested, $\mathrm{PS}-1 \mathrm{~B}$
Kit
ful tor touch-tone decoding, tone
burst

## MINI-KITS

FM WIRELESS MIKE KIT Transmit up to 300 to any
FM broadcas 1 sedio, suse
any type of trike. Runs on
3 to $9 V$. Type FM. 2 has added su
sensitive mike preamp
sensitive mike preamp.
$\mathrm{FM} .1-\mathbf{\$ 2 . 9 5}$
FM-2 SUPER-SLEUTH AMPLIFIER pick up a Din drod at 15 feet! Great for monitoring baby's room or a gen
eral purpose test amplifier. Full watrs of output, runs on 6 to 12 volts $m$ speaker

COLOR ORGAN/MUSIC LIGHTS lights flicker with music or differen light for lows, one for the mid-range
and one for the highs. Each channe individually adjustable, and drives up to 300 watts. Great for parties, band music, nite clubs and more.
TONE OECOOER KIT A complete tone decoder
on a single PC Board. Fea-
tures: $400-5000 \mathrm{~Hz}$ adjustage repulation 567 ic. volt ing. and many other uses. Use 7 for 12 button touchtone decoding. Runs on 5 to 12 volts. LED BLINKY KIT A great attention getter which alter -
nately fasters. nely flashes. 2 Jumbo LEDs. name badges, butions, type penel lights. Runs on 3 to 9 Complete Kh, BL-1 . . . . . . . . $\$ 2.95$ POWER SUPPLY KIT +Comptete triple regulated power sup.
pily provides variable +15 vol us at 200 py provides variable +15 volus at 200
mA and $\pm 5$ vots at 1 Amp 50 mV lomed regulation good filtering and and rogulation good filtering. And
smat

TV TYPEWRITERKIT

## CAR <br> CLOCK

KIT
r $\int 1013 \mathrm{zx}$
$12 / 24$ Hour 12 -volt AC or OC
 - 6 Jumbo 4' LED readout

- Easy, no-polarity hookup
- Cisplay blanks with ignition - Super instructions Auto dimmer for DC-11 $\$ 2.50$


## $\begin{array}{ll}\text { TH32 } 16 \mathrm{~K} 1 \text {, } \\ \text { TH3216, Assembled and Tested } & \$ 149.55\end{array}$

VDI Video to RF Modulator Kit
Vited

| IC3 |  | LINEAR |  |
| :---: | :---: | :---: | :---: |
| 5314 Clock | \$2.95 | 555 | 5. 50 |
| 7001 Clock | 6.95 | 556 | 75 |
| 5369 Cnos | 1.95 | 566 | 1.49 |
| 7447 | 79 | 567 | 1.49 |
| 7473 | 35 | 1458 | 50 |
| 7475 | 50 | LED D | VER |
| 7490 A | 55 | 75491 | . 50 |
| 74143 | 3.50 | 75492 | . 50 |

741 OP AMP SPECIAL Prime, Mini-dip 10/\$2.00
REGULATO
OROER AV
PHONE OR MAIL
$\qquad$
VIDEO MODULATOR KIT Converts any TV to video Monitor.
Super Super stable tunable over Ch. 4
Runs on $515 v, ~ a c c e p t s ~ s t d . ~ v i d e ~$ signal. Best unlt on the market.
Complete Kit
 Itilisely alahirnoizs
quency limits and extended its temperature range. Now, a sufficiently major architectural change has been made that warrants providing the device with a new number
The MC6802 is completely softwareand hardware-compatible with all other members of the M 6800 microprocessor family. The MC6802 is an MC6800 with an internal clock oscillator and driver, plus 128 bytes of RAM occupying the first 80 ( 0000 to 007 F ) memory addresses.
The MC6802 is available in a plastic package in quantities of 25 for $\$ 22$ each. Motorola Semiconductor Products, Inc. Box 20912, Phoenix, AZ 85036

## Doppler detector diodes

Parametric Industries has announced the PD422 Doppler detector diodes for use in police radar systems and such motion-detection devices as braking systems and intrusion alarms. The diodes are glass encapsulated, hermetically sealed and encased in ceramic for high burnout resistance and high sensitivity. The operating frequency of the PD422 is 10.525 $\mathrm{GHz} \pm 250 \mathrm{MHz}$, and the sensitivity is -60 dBm . The PD0919, which operates at $24.150 \mathrm{GHz} \pm 250 \mathrm{MHz}$, is also available.
For more information, write Parametric Industries, Inc., 742 Main Street, Winchester, MA 01890.



WE HAVE ONE THOUSAND OF THESE HIGH QUALITY ROCKER TYPE
AMP TEN POLE SWITCHES. SEND AN ORDER FOR $\$ 15$ OR MORE-
MENTION THIS AD AND YOU GET FREE SHIPPING AND ONE AMP SWITCH.. (prepaid and U.S. orders only)

| BISTABLE REL <br> SPDT 6VDC 200 OHM COILS 1 AMP 20 WATT DC CONTACTS LONG LIFE ( $1 \times 10^{9}$ ) OPER. HIGH SPEED ( 500 HZ ) MERMETICALLY SEALED | 360Y |
| :---: | :---: |
| SAVEA ${ }^{\circ}$ EPOXY BRIDGE 10 AMP $50 Y$ .90 ea. 10 for $\$ 7.5010$ | $100-\$ 65$ THREE LEVEL <br> $35 t$ each <br> 25 for $\$ 7.50$ <br> 100 for $\$ 25$. |
| 77402 quad | FOR TRIACS and SCR's <br> PULSE TRANEFOMMER $1 / 1$ toroid DLAC (triager diode) <br> $25^{\text {c }} 10$ for ${ }^{\$} 2$ specify which one to ship! |
|  | RB/I 40374 250V - 2A NPN T066 <br> POWER TRANSISTOR MOUNTED ON A FACTORY ASSEMBLED HFAT SINK S. B WATTS A AMBIENT OF 25 C $\$ .75$ ea. 10 for $\$ 6$ |
| 74178 (8270) shift regist. <br> LU321 dual JK FF (utilogic) <br> D18836 (SP380) bus receiver <br> 25 | ultra sensitive relay |
| $2504 \% 1024$ bit dyn SR...... . 80 | $\$ 2.95 \mathrm{ea}$ <br> Single pole normally open dry reed relay. unbelievable sensitivity, 1800 otm coil with 3 volt pull-in (that's Less than 3 ma.) A TMT gate will drive many of these. A and buffer will directly actuate this nifty relay.... MrF. urikrown. but I was told they cane from InM. 600 avai lable |
|  |  |
| MC4015 TTL quad latch .... 1.09 |  |
| ABM-1 (MFC6070) 1W audio .40 |  |
| 1 M 386 lo V audio pwr amm 1.00 |  |
| $1 N 3810$ 15A 200 stud rect. . 75 |  |
| $1 \mathrm{~N} 2356.4 \mathrm{~V} .005 \%$ ref. . 45 |  |
| 16 VZ Motorola 16 V 1W Zener . 15 |  |
| $1 \mathrm{~N} 47283,3 \mathrm{~V}$ 1W 5\% zener . 15 | ELEC-TROL 12 vic |
| Signal diodes Si or lie 40/2.00 |  |
| 40327 TO-39 NPN 300V 1A 5W . 35 | REED RELAY 440 L |
| T1P3IA (HN) NPN 6OV 3A 40W . 35 f706BPC fairchild 5 N audio amplifier $w /$ heat sink 14 pin DIP $\mathrm{w} / \mathrm{staggered}$ leads $\qquad$ 1.25 |  |
| uA776 programnable op/amp 1.00 | PICTURE IS APPROXIMATION, RELAY HAS |
| 75451 dual peripheral driver. 30 | FOUR PINS ON ONE END AND TWO ON OTHER, PINS ARE SPACED $.1 " \times 1^{\prime \prime} .1 / 2 A$ CONTACTS. |
| S270 functional sub for 7400 quad 2 in NAND gate | $794 \text { 2a. } 10=66$ |
| rbon film R 1/4W 5\% 100/1.49 |  |
| (specify single value only) 2N4304 N channel FET HEP 802 . 25 |  |
| Complementary 10A TO-220 pwr, transistors 2N6101 |  |
| G G.E.D45H8 (75-50W) pair 1 |  |
| Complementary Darlington |  |
| TO-220 60V 5A 70W MEll00 ME1091 . . . . . pair 1.75 |  |

## TOLL-FREE TELEPHONE SERVICE <br> 24 HOURS A DAY <br> $\$ 15$ minimum <br> DIAL: 8004232355 Ext 307

$$
\text { PO BOX } 41778
$$

Orders shipped same day $\$ 5$ minimum - we or or $\$ 1.50$ shipping fee. Foreign orders must Socramento, Ca. be paid in U.S. funds including sufficient post added. Open accounts accepted froni government 4811 MYRTLE AVE

## BABY

 gencies, schools, and stock exchange listed firm EL: $\square$
$\square$
$\square$
$\square$ IMTEGRATED
ELECTRDTIES

540 Weddell Drive, \#4, Sunnyvaie, CA 94086 (408)734-8470

| CMOS |  | 74 CO 74 Cl | 65 | 7427 | . 35 | 74861 | 1.00 | 8973 | 2.95 | 8334 | 4.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 25 | 7430 | . 15 | 74163 | 1.30 | 8974 | 2.95 | 8553 | 6.50 |
| 4000 | . 15 | $74 \mathrm{Cl4}$ | 1.75 | 7432 | 30 | 74164 | 1.45 | 8976 | 2.95 | 8556 | 3.25 |
| 4001 | . 20 | 74.20 | 26 | 7437 | 44 | 74165 | 1.35 | 75107 | 3.25 | 8599 | 3.25 |
| 4002 | . 20 | $74 \mathrm{C30}$ | 26 | 7440 | . 18 | 74166 | 1.20 | 75450 | 1.00 | LINEAR |  |
| 4007 | . 20 | 74 C 32 | 30 | 7442 | 1.00 | 74173 | 1.70 | 75451 | . 80 |  |  |
| 4010 | .36 | $74 \mathrm{C42}$ | 1.40 | 7445 | . 70 | 74175 | 1.05 | 75452 | 80 |  |  |
| 4011 | 20 | $74 \mathrm{C48}$ | 2.75 | 7446 | . 70 | 74177 | 90 | 75453 | . 80 |  | 35 |
| 4012 | . 20 | 74.73 | 1.25 | 7448 | 70 | 74182 | 95 | 75491 | 1.25 | $3 \mathrm{308N}$ | . 35 |
| 4013 | . 35 | $74 \mathrm{C74}$ | 75 | 7450 | . 25 | 74191 | 1.20 | 75492 | 1.40 | 309 K | 1.25 |
| 4014 | . 80 | 74686 | 1.00 | 7451 | . 25 | 74.192 | 1.45 | 75494 | 1.50 | 309 H | $\bigcirc$ |
| 4015 | 80 | 74690 74.93 | 1.10 1.25 | 7453 | .25 | 74193 | 1.35 | Peripheral |  | 318 H | 1.50 |
| 4016 | . 35 | $74 C 93$ 74 74 | 1.25 2.75 | 7454 7460 | . 32 | 74195 74196 | 1.00 1.10 | 8212 | 3.50 | $320 \mathrm{H}-5$ | . 88 |
| 4018 | . 92 | $74 \mathrm{C1} 54$ | 300 | 7472 | 40 | 74197 | 1.10 | 8214 | 8.50 | 320T. 5 | 1.25 |
| 4019 | 20 | 74 C 157 | 2.10 | 7473 | 40 | 74199 | 2.25 | 8216 | 3.75 | $320 \mathrm{~T} \cdot 12$ | 1.25 |
| 4020 | 1.00 | 74 C 160 | 1.40 | 7474 | . 40 | 74367 | . 90 | 8224 | 4.75 | 324 N | 1.75 <br> 1.25 |
| 4022 | 83 | 74 C 162 | 1.70 | 7475 | . 55 | Interface |  | 8228 | +1.90 | 340 T .12 | 1.25 |
| 4023 | . 21 | 74 Cl 64 | 1.75 | 7476 | . 45 |  |  | 8251 | 10.50 | 340 T .15 | +25 |
| 4024 | . 75 | 74 Cl 165 | 1.75 | 7483 | 1.05 | 0025 | 3.50 | 8255 2513 | 10.50 9.50 | $340 \mathrm{~T}-24$ | 1.25 |
| 4025 | 20 | 74 Cl 74 | 1.50 | 7485 | 1.10 | 0025 | 1.75 1.25 | 2513 2516 | 9.50 9.50 | 387 N | 1.25 |
| 4027 | . 34 | 74.9002 | 85 | 7486 | . 43 | 8640 | 1.25 2.75 | 1013 | 9.50 | 388 N | 1.15 |
| 4028 | .79 .00 | $74 C 904$ 74 | .85 3.00 | 7489 | $\begin{array}{r}2.00 \\ \hline 75\end{array}$ | 88806 | 1.75 3.00 |  | 6.50 | 555 N | . 35 |
| 4029 | 1.00 .20 | 74C905 | 3.00 1.95 | 7492 7493 | . 65 | 8819 | 1.25 | 8000 | TTL | 556 N | . 85 |
| 4035 | . 95 | TTL |  | 7495 | 78 | 8820 | 5.00 | $8 \mathrm{8T} 20$ | 3.25 | 558 N | 2.80 |
| 4040 | 1.00 |  |  | 7496 | 85 | 8830 | 4.90 | 8797 | 1.75 | 561 N | 5.00 1.70 |
| 4049 | 1.00 | 7400 | . 16 | 74121 | . 35 | 8833 | 2.45 | 8092 | 95 | 566 N | 1.70 |
| 4042 | . 70 | 7401 | . 17 | 74122 | 49 | 8835 | 2.45 | 8094 | 80 | 567 N 709 N | 1.65 30 |
| 4044 | . 60 | 7403 | . 17 | 74123 | . 65 | 8836 | 1.25 | 88095 | 80 | 789 N | . 25 |
| 4049 | . 35 | 7404 | . 19 | 74126 | . 65 | 8837 | 2.45 | 88096 | . 90 | 3035 | 2.46 |
| 4051 | 1.10 | 7406 | . 40 | 74132 | 1.25 | ${ }_{8859}^{8838}$ | 2.45 <br> 1.50 | 8098 | .90 2.25 | 3401 | 1.25 |
| 4066 | . 70 | 7407 | . 40 | 74141 74145 | 1.15 | 88865 | 1.50 | 8136 | 3.25 |  |  |
| 4068 4069 | . 40 | 7409 7410 | . 18 | 74145 741481 | 1.10 | 8865 8866 | 1.50 1.50 | 8220 | 3.25 | 74LS | x * |
| 4075 | . 20 | 7413 | 78 | 74150 | 90 | 8867 | 1.85 | 8231 | 2.25 |  |  |
| 4082 | . 23 | 7414 | . 68 | 74153 | 1.10 | 8869 | 1.75 | 8242 | 1.75 | 74LS00 |  |
| 74C00 | . 25 | 7417 | 38 | 74154 | 1.25 | 8879 | 2.25 | 8250 | 1.75 | throug |  |
| 74C02 | . 45 | 7420 | . 18 | 74155 | 75 | 8880 | 2.75 | 8260 | 2.25 | $74 \mathrm{LS670}$ |  |
| 74C04 | . 32 | 7421 | 35 | 74157 | 1.00 | 8884 | 2.45 | 8281 | 1.00 | 74.5670 |  |

For more 74LSxx, refer to our ad in the June issue of this magazine.

If what vou need is not listed, ask for it.
Send selfaddressed stamped envelope.

SPECIAL - 21LO2/450ns (1.50/10up; 1.35/50up; 1.25/100up) $\pm 3$ Digit A/D LD130 $\$ 5.50$ MM5865 Universal Timer $\quad \$ 7.50$
Minimum order $\mathbf{\$ 5 . 0 0}$ US currency. Check or money order only. Add $\mathbf{5 \%}$ ro cover shipping and
hinding charges. Calif. restdents add $6 \%$ sales tex. Santa Clara County residents add $6.5 \%$ sales tax. CIRCLE 44 ON FREE INFORMATION CARD

## SOCKET SALE

## WIRE WRAP SOCKETS

14 Pin Wire Wrap
30
27/400
16 Pin Wire Wrap
32
.29/350

## EDGE CARD CONNECTORS

44 Pin ST Edge Card Connector $1.75 \quad 1.50 / 10$ 100 Pin ST Edge Card Connector 3.50 100 Pin WW Edge Card Connector 3.50
$3.00 / 10$ All Sockets \& Connectors Include Gold

## SOLDERLESS BREADBOARDS SK $10 \quad \$ 16.50$

 INCLUDING:Over 100 pieces of precut wire in assorted lengths - free! Choose 1 color: Red, Black, Blue, Yellow, Green, White, Orange Or Assortment.


## PAGE DIGITAL ELECTRONICS

135 E. Chestnut Street 4A Monrovia, California 91016 Phone (213) 357-5005

ORDERING INFORMATION
Orders under $\$ 25$ and COD's. add $\$ 2$ All others. shipped Ppd in U.S. via UPS For Blue Label (Air) or 1st Class. add \$1 We accept Visa \& Master Charge Most orders shipped same day Dealer Inquiries Invited Quality Electronic Components

## TOL

FREE

1-800-346-5144
MINNESOTA RESIDENTS 218-681-6674

DON'T FORGET OUR
DON'T FORGET OUR
DISCOUNTS WHEN COMP ARING PRICES INTFGRATFD CIRCU1IS
RADIO-ELECTRONICS



8L6 1SOリn

## $N_{\text {Nation }} \mathrm{H}_{\mathrm{H}}$



Money back guarantee. NO COD'S. Texas residents add $5 \%$ sales tax Add $5 \%$ of order for postage and handling. Orders under $\$ 15.00$ add 75 cents. Foreign orders add $20 \%$ tor postage For your convenience. call your Bank Americard or Master Charge orders in on our Toll Free Watts Line: 1-800-527-2304. Texas residents call collect: 1-214-271-8423

## POLY', 1 CREBELLION WE'RE FIGHTING BACK INFLATION WITH THIS EXCLUSIVE $1 \mathbb{C}$ SALE

## Parts \& Semi One Centers

BUY 1 AT SALE
PRICE GET 2ND

| Type | PENNIES FOR YO Dascription | Sale | 1 CSale ? | Order by |
| :---: | :---: | :---: | :---: | :---: |
| Q 1103 | 1K Dynamic Ram | 1.29 | 1.30 |  |
| 05202 | 2K Prom | 2.95 | 2.96 | 8R3459 a |
| 05262 | 2K $=1$ Dymamic Ram | . 99 | 1.00 | Type |
| [0.1702A | $256 \times 8$ EPROM | 4.95 | 4.9 |  |


ar yrpo
ana
0
0







T


POP-AMPS AT "CENT-CIBLE" PRICES


LYTIC KLINIC



## LEDS:

 YOUR CHOICE 5 for $\$ 1.00$10 for $\$ 1.01$

Order by Cat. No
0 HAR2135 JUMBO RED LEDS

## 





 IO-SLIDE SWITCHES, solid standard type (\#\#8R2927)


 1 SPST RELA, norm, open $12-24 \mathrm{VDC}, 1250$ ohms, dip style (HAR 5175)
I











100 TERMINAL STRIPS, from 2 lugs up (823136)
30 NE-2 NEON LMMPS, il $100 \%$ good (8R213).








 ( 30-CLOCK CHIPS. Natlonal, hoppy 2 untested, alarm




24 HOUR-A-DAY, 7 DAY-A-WEEK telephone order DESK! Phone in your chargecard orders at low week and and evening rates! Call $1.518-561-8700$. come). We do the paperwork and ship to vou direct from the U.S.A. at low American



## S COMPUTER INTERFACES \& PERIFERALS

For free catalog including parts lists and schematics, send a self-addressed stamped envelope.

## APPLE II SERIAL I/O INTERFACE *

Part no. 2

- Baud rates up to 30,000 - Piugs into Apple Peripheral connector - Low-current drain - RS-232 Input and Output. SOFTWARE - input and Output routine from monitor or BASIC to teletype or other serial printer. - Program for using an Apple II for a video or an intelligent terminal. Also can output in correspondence code to interface with some selectrics. Board only - $\$ 15.00$, with parts $-\$ 42.00$; assembled and tested $-\$ 62.00$


## MODEM*

## Part no 109

- Type 103 - Full or half duplex - Works up to 300 baud - Originate or Answer - No coils, only low cost components - TTL input and output-serial -
 Connect 8 ohm speaker and crystal mic directly to board - Uses XR FSK demodulator - Requires +5 volts - Board $\$ 7.60$; with parts $\$ 27.50$


## DC

POWER SUPPLY*
Part no. 6085

- Board supplies a regulated +5 volts at $3 \mathrm{amps},+12,-12$, and -5 volts at 1 amp . Power required is 8 volts $A C$ at 3 amps., and 24 volts AC C T. at 1.5 amps - Board only $\$ 12.50$; with parts excluding transformers $\$ 42.50$


## TAPE INTERFACE *

Part no. 111

- Play and record Kansas City Standard tapes Converts a low cost tape recorder to a digital recorder - Works up to 1200 baud - Digital in and out are TTL-serial - Output of board connects to mic in of recorder - Earphone of
 recorder connects to input on board * No coils • Requires +5 volts, low power drain - Board $\$ 7.60$; with parts $\$ 27.50$
T.V. TYPEWRITER

Part no 106

- Stand alone TVT - 32 char/line, 16
lines, modifications for $64 \mathrm{char} /$ line included - Paralle ASCII (TTL) input Video output - 1 K
on board memory Output for computer controlled cur-
 ser - Auto scroll -
Non-destructive curser • Curser inputs: up, down, left, right, home, EOL, EOS - Scroll up, down • Requires +5 volts at 15 amps. and -12 volts at 30 mA - All 7400 . TTL chips - Char gen. 2513 - Upper case only - Board only $\$ 3900$ : with parts $\$ 145.00$


## TIDMA*



Part no. 112

- Tape Interface Direct Memory Access - Record and play programs without bootstrap loader (no prom) has FSK encoder/decoder for direct con nections to low cost recorder at 1200 baud rate and direct connections for inputs and outputs to a digital recorder at any baud rate. $\bullet$ S-100 bus compatible - Board oniy $\$ 35.00$; with parts $\$ 110.00$

UART \& BAUD RATE GENERATOR*

Part no. 101 - Converts serial to paralle| and parallel to serial - Low cost on board baud rate generator $\bullet$ Baud rates 110 150, 300, 600, 1200, and 2400 - Low power drain +5 volts and -12 volts required
 - TTL compatible - All characters contain a start bit, 5 to 8 data bits. 1 or 2 stop bits, and either odd or even pasity - All connections go to a 44 pin gold plated edge connector - Board only $\$ 12.00$; with parts $\$ 35.00$ with connector add $\$ 400$

8K STATIC RAM

Part no 300

- 8K Altair bus memory -

Uses 2102 Static memory chips • Memory protect - Gold contacts - Wait states - On board regulator $-\mathrm{S}-100$ bus compatible $\cdot$ Vector input option - TRI state buttered - Board only $\$ 22.50$; with parts $\$ 160.00$

## RF MODULATOR*

Part no. 107

- Converts video to AM modulated RF. Channels 2 or 3 . So powerful almost no tuning is required. On board regulated power supply makes this extremely stabie. Rated very
 highly in Doctor Dobbs' Journal Recommended by Apple. - Power required is 12 volts AC C.T., or +5 volts DC • Board $\$ 7.60$; with parts $\$ 13.50$


## RS 232/TTY interface*

Part no. 600

- Converts RS-232 to 20 mA current loop. and 20 mA current loop to RS-232 - Two separate circuits - Requires +12 and -12 volts - Board only $\$ 450$, with parts $\$ 7.00$



## RS 232/TTL INTERFACE *

Part no. 232

- Converts TTL to RS-232, and converts RS-232 to TTL - Two separate circuits
 - Requires -12 and +12 volts - All connections go to a 10 pin gold plated edge connector - Board only $\$ 4.50$, with parts $\$ 7.00$ with connector add $\$ 3.00$


## FREQUENCY COUNTER

TAKE ADVANTAGE OF THIS NEW STATE-OF-THE-ART COUNTER FEATURING THE MANY BENEFITS OF CUSTOM LSI CIRCUITRY. THIS NEW TECHNOLOGY APPROACH TO INSTRUMENTATION YIELDS ENHANCED PERFORMANCE, SMALLER PHYSICAL SIZE, DRASTICALLY REDUCED POWER CONSUMPTION [PORTABLE BATTERY OPERATION IS NOW PRACTICAL], DEPENDABILITY, EASY ASSEMBLY AND BEVOUUTIONARY LOWER PRICING!

KIT\#FC-50 C . . . ........ 60 MHZ COUNTER WITH CABINET \& P.S.
KIT\#PSL-650 . . . . . . . . . . 650 MHZ PRESCALER [NOT SHOWN]
MODEL \#FC-50WT. . . .... 60 MHZ COUNTER WIRED, TESFED \& CAL
'11995
COMPLETE

MODEL\#FC-50/600 WT. . 600 MHZ COUNTER WIRED, TESTED \& CAL
165.95
199.95

SIZE:
3" High
6" Wide
51/2"Deep
FEATURES AND SPECIFICATIONS:
display: 8 RED LED digits . 4 " Character heigh GATE TIMES: 1 SECOND AND $1 / 10$ SECOND PRESCALER WILL FIT INSIDE COUNTER CABINET RESOLUTION: 1 HZ AT 1 SECOND, 10 HZ AT $1 / 10$ SECOND
FREQUENCY RANGE: 10 HZTO 60 MHZ . 65 MHZ TYPICAL FREQUENCY RANGE: 10 HZ TO 60 MHZ . [ 65 MHZ TYPICAL]. SENSITIVITY: 10 MV RMS TO $50 \mathrm{MHZ}, 20 \mathrm{MV}$ RMS TO 60 MHZ TYP. INPUTIMPEDANCE: 1 MEGOHM AND 20 PF.
[DIODE PROTECTED INPUT FOR OVER VOLTAGE PROTECTION. ACCURACY: $\pm 1$ PPMI $\pm .0001 \%$ ) AFTER CALIBRATION TYPICAL STABILITY: WITHIN 1 PPM PER HOUR AFTER WARM UP [. $001 \%$ XTAL $]$ IC PACKAGE COUNT: 8 [ALL SOCKETED]
INTERNAL POWER SUPPLY: 5 V DC AEGULATED.
INPUT POWER REQUIRED: 8.12 VDC OR 115 VAC INPUT POWER REQUIRED: 8.12 VDC OR 115 VAC AT $50 / 60 \mathrm{~Hz}$.
POWER CONSUMPTION: POWER CONSUMPTION: 4 WATTS

KIT \#FC-50CIS COMPLETE WITH PREDRILLED CHASSIS ALL HARDWARE AND STEP-BY-STEP INSTRUCTIONS WIRED \& TESTED UNITS ARE CALIBRATED AND GUARANTEED.

## PLEXIGLAS CABINETS

$\left[\begin{array}{c}0: \\ 1 \mathrm{~B}: \mathrm{B}_{\mathrm{c}}\end{array}\right]$
CABINET I
Great for Clocks or any LED Digital project Clear-Red Chassis serves as Bezelto increase contrast of digital disolays.

> 3"H.6\%"W. $5 \%$ "D Black, White or CABINET II 2 $1 / 2$ "H, $5^{\prime \prime}$ W, $4^{\prime \prime} \mathrm{D}$ REOORGREYPLEXIGLAS FOR DIGITAL BEZELS $95^{6}$ ea $4 / 43$ $\$ 23_{\text {ea }}^{50} \quad 2 / 445 . \quad \$ 29^{95} \left\lvert\, \begin{aligned} & \text { Assemplete Kit } \$ 495 \\ & \text { Coir \& Cal } \$ 9.95\end{aligned}\right.$

## 60 HZ

XTAL TIME BASE Will enable Digital Clock Kits or Clock-Calendar Kits to operate from 12 VDC . 1"x2" PC Board Power Rea: $5-15 \mathrm{~V}$ (2.5 MA. TYP.) Easy 3 wire hookup Accuracy: $\pm 2$ PPM \#TB-1 (Adjustable)




KII 7DOI

29-30-31 DAY CALENDAR. ALARM. SNOOZE AND AUX. TIMER CIRCUITS
Will alternate time ( 8 seconds) and date ( 2 seconds) or may be wired for time or date display only, with other functions on demand. Has built-in oscillator for battery back-up. A loud 24 hour alarm with a repeatable 10 minute snooze alarm, alarm set \& timer set indicators. Includes 110 $\mathrm{VAC} / 60 \mathrm{~Hz}$ power pack with cord and top quality components through-out.

SPECIAL PRICING! PRIME - HIGH SPEED RAM 21LO2-3 mons LOW POWER - FACTORY FRESH 1-24 $\$ 1.75$ ea. $100-199 \$ 1.45$ ea. 25-99 1.60 ea. 200-999 1.39 еа. 1000 AND OVER \$1.29 ea.

KIT 7001 WITH 6 . 5 " DIGITS
 KIT - 7001 X WITH $6.6^{\prime \prime}$ DIGITS

kITS ARE COMPLETE (LESS CABINET)


## JUMBO DIGTT CLOCK

A complete Kit (less Cabinet) featuring: six . $5^{\prime \prime}$ digits, MM5314 IC $12 / 24 \mathrm{Hr}$ time, PC Boards, Transformer, Line Cord, Switches and all Parts. Ideal Fit in Cabinet II

$$
\text { Kit \#5314-5 } \quad \text { * } \mathbf{1 9}^{95} \quad 2 / * 38 .
$$

JUMBO DIGIT
$\$ 995$ ea.
Convert small digit LED clock to large $.5^{\prime \prime}$ displays. Kit includes 6 - LED's, Multiplex PC Board \& Hook up info. Kit \#JD-1CC For Common Cathode Kit \#JD-1CA For Common Anode

PRINTED CIRCUIT BOARDS for CT-7001 Kits
sold separately with assembly info. PC Boards are drilled Fiberglass, sold
with component
layout.
8. $\operatorname{Cor} \mathrm{X}-\$ 7.95$

## AUTO BURGLAR

 ALARM KIT

KIT MALR-1 $\$ 9.95$ \#ALR-1WT WIRED \& TESTED $\$ 19.95$

VARIABLE REGULATED

## 1 AMP

PDWER SUPPLY KIT VARIABLE FROM 41014 V SHORT CIRCUIT PROO 723 IC REGULATOA - 2N3055 PASS TRANSISTOR - CURAENT LIMITING AT 1 Amp

KIT COMPLETE INCLUDING ORILLED \& SOLDEA PLATED FIBERGLASS PC BOARD AND ALL PARTS LLESS TRANS. \begin{tabular}{ll}
FORMER) KIT*PS-01 <br>
\hline 8.95 <br>
\hline FOANSFORMER

 TRANSFOAMER 24 VCT Will 

provide 300 MA at 12 Vand <br>
1 Ampat 5 V . <br>
<br>
\hline
\end{tabular}

## MDRME LSN CLALK



## MODEL 12 VOLT AC or

\# 2001 DC POWERED


- 6 JUMBO . 4 " RED LED'S BEHIND RED FILTER LENS WITH CHROME RIM - SET TIME FROM FRONT VIA HIDDEN SWITCHES - 12/24-Hr. TIME FORMAT STYLISH CHAHCOAL GRAY CASE OF MOLDED HIGH TEMP PLASTIC - BRIDGE POWER INPUT CIRCUITRY - TWO WIRE NO POLARITY HOOK-UP - OPTIONAL CONNECTION TO BLANK DISPLAY[Use When Key Off in Car, Etc. - TOP QUALITY PC BOARDS \& COMPONENTS - INSTRUCTIONS - MOUNTING BRACKET INCLUDED KIT \#2UGI
COMPLETE KIT



## ASSEMBLED UNITS WIRED \& TESTED ORDER H2001 WT

 ORDER \#2001 WT [LESS 9V. BATTERY]Wired for $12-\mathrm{Hr}$. Op. if not otherwise specified.

ORDERS TO USA \& CANADA ADD $5 \%$ FOR SHIPPING ADDITIONAL \$1.00 CHARGE FOR ORDERS UNDER $\$ 15.00$ - COD FEE $\$ 1.00$. FLA. RES. ADD $4 \%$ STATE TAX.


| 29 | Mallory ............................................ 25 |
| :---: | :---: |
| 35 | Meshna ........................................... 110 |
| - | MLI Industries ................................... 90 |
| 13 | Mountain West Alarm Supply ............. 76 |
| 14,15 | National Camera Supply ................. 22,58 |
| - | National Radio Institute (NRI) ........... 8-11 |
| - | National Technical Schools.................. 15 |
| 53 | Netronics .......................................... 63 |
| - | Newman Computer Exposition.............. 88 |
| 38 | New Tone Electronics ......................... 89 |
| 31 | O. K. Machine \& Tool ....................... 65 |
| 66 | Olson.............................................. 110 |
| 16,17 | Optoelectronics ............................. 87,108 |
| 20 | Page Digital.................................... 100 |
| 18 | P A I A ......................................... 60 |
| 49 | Panavise ........................................... 61 |
| 72 | Leslie Paul, Inc.................................. 92 |
| - | Personal Computing ............................ 76 |
| 67 | Platt Luggage ..................................... 78 |
| 54 | Poly Paks ....................................... 105 |
| - | Priority 1 Electronics .......................... 85 |
| 40 | PTS Electronics ................................. 63 |
| 51 | Quest ................................................ 84 |
| 78 | Radio Hut ........................................ 104 |
| - | Radio Shack .................................. 23,46 |
| 55 | Ramsey Electronies ............................. 98 |
| 59 | Rye Industries.................................... 67 |
| - | Sabtronics ........................................... 7 |
| 56 | Schober Organ ................................... 60 |
| 22 | Sencore ............................................ 77 |
| 57 | Solid State Sales................................. 86 |
| 21 | Southwest Technical Products .............. 17 |
|  | Special Functions .............................. 94 |
| - | A. F. Stahler Co. ............................... 88 |
| 23 | Tab Books......................................... 62 |
| 76 | Texas Tuner Service ........................... 58 |
| 25 | Tri-Star............................................ 82 |
| 24 | Trinico International ......................... 109 |
|  | Trumbull ............................................ 84 |
|  | Vero Electronics ................................ 24 |
| 58 | VIZ Manufacturing............................ 16 |
| 1 | Wersi Electronics ............................... 77 |
| 26 | Weston Instrument .......................... 26,27 |


$O$ NI-CAD RECHARGEABLE
"AA" BATTERY

- 1.2 Voit Rechargeable - Made By 3 Famous Mit's - Ideal for Radios. Calculators - Rechargeable Over \& Over
AC Adapt 117V to 6. 7.5 \& 9VOC BA- 159 3.99
699 CBGute Mont An 5.99 CB Trunk Mount Antenna. AA. 999 messaze minder Tape Recorder. As-Is. RA. 731 500' Hook-UD Wire Kit. WW-579
Cassette Tape. Pxe of 3.30 Minute IA 879 8 -Track Tape. 40 minute TA- 907 arphones. 80 mm Less Cord Png of $4 \times-405$ 8" Poly Planar Speaker. Pair. SP-434 100 Ceramic Capactors. Phe of 100 CC .211 RED LED. 2 Volt IOMA PKe of 5 PL 233 Black Light Bulb. XM-29
Cassette Laplel Mike. 3.5 mm Plug Mm. 174 12 Volt- 12 Amp Hour, Wet Cell Battery. BA-404 09 6 to 12 Vott OC Converte: 6 V Acc On 12 V Batt MU. 297 499 OFFER GOOD ONLY IN THE CONTINENTAL U.S. electronics 260 S. Forge St. Dept. LE Akron, Ohio 44327


CIRCLE 66 ON FREE INFORMATION CARD


## SEE IN THE DARK

IR viewer complete ready to operate. Guaranteed by the manufacturer. Portable, runs on lantern battery. New, see in total darkness. No shipments to Calif. Comes complete with built in IR source and adjustable focus lens.

SPL-21 \$199.00

## CHARACTER GENERATOR CHIP

Memory is $512 X 5$ produces 64 five by eeven ASCH oharacters. New by National. w/specs

TOUCHTONE ENCODER CHIP
Compatible w/Bell aystep. Ideal for repeater work. W/epece
88.00

HAWKEYE RADAR SPEED TRAP alarm Plugs into cigar lighter outlet \$30 12 VOLT DC POWER SUPPLY $2^{1 / 2}$ amps. Runs CB's, tape decks in house. New in metal cabinet.
oustomer paye all pontage
MESHNA, PO BOX 62, E. Lynn Ma 01904

## ADVERTISING INDEX

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.

| Free Information Number |  |  |
| :---: | :---: | :---: |
| 77.52 | Active Electronics ........................... 90,91 | 53 |
| 2 | Advanced Computer Products ................ 97 |  |
| - | Advance Electronics ............................ 59 | 38 |
| 3 | Aldelco ............................................. 82 |  |
| - | AMC Sales ........................................ 84 |  |
| 70 | Amelect, Inc...................................... 80 |  |
| 32 | American Antenna .........................Cov. 4 |  |
|  | ATV Research ................................... 84 |  |
| 33 | Avanti Research ...........................Cov. II | 2 |
| 19 | Babylon Electronics.......................... 100 |  |
| - | Karel Barta ........................................ 90 | 67 |
| 37 | F. W. Bell, Inc................................... 61 | 54 |
| 30 | Forest Belt's Training Workshop:.......... 75 |  |
| 69 | B \& K Precision Dynascan Co............. 81 | 0 |
| - | Bullet Electronics ............................... 90 | 1 |
| - | C F R Associates ................................ 88 | 78 |
| 41 | Chaney Electronics ............................. 98 |  |
| - | CIE-Cleveland Inst. of Electronics..... 18-21 | 5 |
| - | Command Productions ......................... 82 | 59 |
| 68 | Communications Electronics ................. 58 |  |
| 5 | Continental Specialties ...................Cov. 3 | 56 |
| 80 | Consumer's Co................................... 96 | 22 |
| 4 | The Cooper Group Electronics Div. ......... 2 |  |
| - | CREI-Div. of McGraw Hill Continuing Ed. 68-71 | 1 |
| - | Dage Scientific Instruments .................. 88 |  |
| 71 | Davis Electronics ................................ 58 | 23 |
| 34 | Delta Electronics ................................ 96 | 76 |
|  | Devtronix Organ Products .................... 84 | 25 |
| 60 | Digi-Key ......................................... 101 | 24 |
| 61 | Digital Research Corporation ............... 94 |  |
|  | E.A.R.S., Inc...................................... 88 |  |
| 64 | EICO............................................... 60 |  |
| 28 | E \& L Instruments............................ 61 | 26 |
| 48 | Electronic Lollipop .............................. 96 |  |

- Electronic Systems ................................ 107
- EMC-Electronics Measurements ......... 67

63 Energy Control Systems .......................... 60
6 Enterprise Development .......................... 63
36 Etco Electronics .................................... 106
Fair Radio Sales ...................................... 88
74,75 Fordham Radio Supply ....................... 88,89
42,8 Formula International ........................ 92,93
7 Fuji-Svea ................................................ 95
43 Godbout Electronics ............................... 96

- Golden Enterprises................................... 84

62 Gould...................................................... 62

- Grantham College of Engineering ........... 22

27 GTE Sylvania-Consumer Renewal ............ 5
100 Heath ...................................................... 13
79 Herbach \& Rademan, Inc....................... 86
10 Hickok Electrical Instruments ................ 79
39 Hobby World ........................................... 83

- Information Unlimited .............................. 88

12 Indiana Home Study............................... 63
44 Integrated Electronics ........................... 100
65 International Crystal Mfg. Co. ............... 78
11 International Electronics......................... 99
47,45,46 James Electronics ...................... 28, 02, 103

- JS \& A .................................................... 1
- Krystal Kits ............................................. 88
- Lab Science ............................................ 84
- Lakeside Industries.................................. 88



## name (please print)

## address

city state zip code

Mall to: Radio-Electronics SUBSCRIPTION DEPT., P.O. BOX 2520 , BOULDER, COLO. 80322

# S2495 PROBE? <br> You bet! Meet CSC's Multi-family Logic Probe 2. 

Specifications

Wherever you need fast, safe, accurate digital testingyou need CSC's new LP-E. It's a compact, enorm cuisly versatile circuli-powered unit that's become indispensable. As a leveldetector. Pulse detector. And pulse stretcher.
Easier to use. Set LF-2's switch to the proper logic family, connect two cl p-leads to the circuit's supply, touch the probe to the node under test - and you get an instant picture of circuit conditions. Separate LED's indicatelogic "1", logic "0", and all pulse transitions. And a 300K-plus input impedance insuresminimum circuit lcading

At just \$24.95*, you dor thave to think twice about ownirg t ve LP-2. Especially when you see how it simplifies testing, debugging and servicir g alltypes of digital circuits.

Order today. Call 2C3-624-3103 (East Coast) or 4 15-く21-8E72 (West Coast) 9 a.m.-E p.m. local time. Major credit cards acceptec. Or see your CSC dealer. Prices stightly figher outside USF.

Logic Family Switch--TL/CTL or CMOS natc רes Logic "-" and " 0 " levels for greater versaility. CMOS positior als compat ible with HTL, HiNIL and MOS logic. PULSE LED -Ind cates positive and negative pulseand level transitions. Stretches pulses as narrow as 300 manoseconds to full $1 / 10$ sec. ( 10 Hz p slse rate).
HI/LO LED's -Digolay level
(HI-logic "1", Lo-logic "0") $\boldsymbol{j}$ signal activily.
Interchangeable ground lead conmection-Provices ground-side infut connection vie optional cables

Interchangeable probe
tips - Straight ip supplied optional alligator clip and insulated c uickconnecting clip avalable.
Plug-in leads -2 2 " suppled, with


Input impedance better tha7 300KS Threshoids (switch selectable) DT__TTL logic 1 thresholds (HI-LED) $2.25 \mathrm{~J} \pm .10 \mathrm{~V}$ logic 0 thresholds (LO-LED) $\quad 0.80 \mathrm{~J} \pm .05 \mathrm{~V}$

## HTL/CNOS

$70 \%$ Vcc $=10 \%$
$30 \%$ Vcc $=10 \%$
Min. detactable pulse width 300rsac.
Pulse detector (PULEE LED) $1 / 13-$-SEc. pulse stretcher makes high-speed pu'se train or single events (+ or - transitions) disible Input protection overload, $=25 \mathrm{~V}$ csn:inuous; 117 VAC Ir less than 10 sec .reverse-polarity, 50 V
Power requirements $5-15$ valls Vcc; 30mA max
Operating temperature $\approx-50^{\circ} \mathrm{C}$
Physical size ( $\times \mathbf{w} \times$ a)
$5.3 \times 1.0 \times 0.7^{\prime}(14 \overline{7} \times 25.4 \times 17.8 \mathrm{~mm})$
Weight 3oz. ( 085 K 3 )
Power leads detachable 24" $(610 \mathrm{~mm})$ with cclorcoded insulated clips; othe's available


EONT NENTAL SPECIALIIES CORPOFATION


70 Fution Terase. 30x 1492. New Haven, © 96509 :03-624-3103 TWX 710-465-1227 WEST LOAST 351 Calicrnia St. San Francisco, CA ©4104 E15-421-8872 TWX 910-372 7992 GREAT BRITAN: CSC UK LTD Sput 7ox, North Feltham Trading Estate Feltham, Middlesex, Enjand 01 -ES0-0782 int Telex: 851-8E1-3669

- Phanumact נrer's Recommended Resale © 1978 Cortirenlal Specialties Corpcretion
CIRCLE 5 ON FREE INFORMATION EARD



## WE'LL SELLYOU ONE FOR³8.50TO PROVE IT!

The K40 is more than just a premium antenna.
It's specifically guaranteed, in writing, to outperform any antenna it replaces.

TRANSMITS FURTHER. RECEIVES CLEARER.
We mean just that! We'll back you 100\% if the K40 doesn't transmit further or receive clearer than the antenna it replaces. We know it will. We've tested it with 771 CBer's just like you for one year.

## 2

WHEN YOU PAY MORE, YOU EXPECT MORE.
For a full year we'll let your dealer replace any part you're not happy with. You make the decision, not us. Our guarantee includes rust. It includes broken whips. It includes everything.

IT'S AMERICAN MADE.
No need to be concerned about replacement parts. There is not one component that is made anywhere else but in America.

## SOLD BY PROFESSIONAL DEALERS THAT TAKE PRIDE IN SERVICING CBER'S.

Like pro-golf clubs, the K40 antenna is sold through pro-CB/Electronic stores only. It's not being sold to mass merchandisers. It's not being sold to Sears or Penney's or any retail outlets that cannot offer full-time professional support to the service you need. We control that because we personally qualify each and every retailer before we sign him on.

## - HERE'S OUR DEAL.

Make a check for $\$ 38.50$. Rip out this page and run over to your local CB shop for your very own K40. If he is out of K40's, have him call us immediately. We'll get it out to him in 24 hours. Here's how:

MOUNTS ANYWHERE, EVERYWHERE. With the spectacular Unimount, you can fit your K40 to any mounting surface-anywhere. And that's guaranteed too. $100 \%$. That means this single K40 antenna can easily fit any vehicle you own-or you'll ever own. That includes choppers, dune buggies, -gutters, mirror mounts, luggage racks, trunks, hatch-backs, through roofs, semi's, pick-up's \& RV's.

REACH!
for your dealer's phone and dial,


Our boys will be waiting for him at
 AMERICAN ANTENNA, Elgin, Illinois.
An All-American Product by an All-American Company.


[^0]:    As a service to readers, Radio-Electronics publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers, Radio-Electronics disclaims any responsibility for the safe and proper

[^1]:    National Camera, Inc. 2000 West Union Ave., Dept. GBF Englewood co satio USA

[^2]:    - Product Engineer, Optoelectronics, Inc., Ft Lauderdale, FL

[^3]:    R-E will publish reader letters telling how to adopt this program to run on other hobby computers. Let us hear from you

[^4]:    ${ }^{1}$ Forest Belt wrote six books on 1-2-3-4 Servicing, published by Howard W. Sams \& Co., Inc., Indianapolis, IN 46206. Forest also teaches basic Easi-Way Servicing, an advanced version, in his Training Workshops. If you'd like to see us devote one whole special section to the principles of Easi-Way Servicing, drop us a note.

[^5]:    Notes:
    ${ }^{1}$ AM only; use without modulation.
    ${ }^{2}$ Also has $455-\mathrm{kHz}$ and $10.7-\mathrm{MHz}$ sweeps.

[^6]:    *This article is reprinted courtesy of American Laboratories.
    Dr. DeJong is head of the Department of Mathematics/Physics at the School of the Ozarks. Dr. Rony, Department of Chemical Engineering, and Mr. Larsen, Department of Chemistry, are with the Virginia Polytechnic Institute and State University. Dr. C. Titus and Mr. J. Titus are with Tychon, Inc.

[^7]:    Allow 3 to 4 weeks for delivery

