Radio-Electronics

FOR MEN WITH IDEAS IN ELECTRONICS

PHISE-LOCK-LOOP FOR FM

A Superior Multiplex Detector
PG Electronic callulatoris

We think Sylvania ChroMatrix ${ }^{\text {TM }}$ gives the best of both.
Brightness is great if you don't have to lose contrast.
And contrast is great if you don't have to pay for it with a dimmer picture.

At GTE Sylvania, we think the best replacement tube is the one that gives you just the right balance of both.

That's why we developed the ChroMatrix line using a jet black dark surround and Sylvania bright phosphors.

Our design uses the black surround to get both brightness and contrast. And it also helps to maintain a uniform brightness across the entire face of the tube.

As replacement tubes for many of the color sets now coming out of warranty, ChroMatrix is a line that's hard to beat.

And you can get them now in all large-screen sizes from 19" to $25^{\prime \prime}$ diagonal includirg the popular $23^{\prime \prime}$ diagonal size.

Using the replacement line that gives the best of both worlds might make customers think that you're the best serviceman in this one. Sylvania Electroric Components, 100 First Avenue, Waitham, Mass. 02154.

FREE...demonstration lesson to prove that you can learn TV servicing at home.

 Practice on a new 25"

 Practice on a new 25" MOTOROLA QUASAR II ${ }^{\otimes}$ chassis. MOTOROLA QUASAR II ${ }^{\otimes}$ chassis.

TV Servicing is a satisfying career . . and the pay is great. Qualified men are needed now to maintain the 93 million sets in U.S. homes. And prospects for the future are even brighter.

Now . . . here's an opportunity for you to prove to yourself that you can learn TV Servicing ... at home, in your spare time. ICS, the world's most experienced home-study school, will send you a FREE Demonstration Lesson (complete with sample questions) if you will merely fill out the coupon below and mail it to us.

In addition to your free demonstration lesson, we'll send you . . . also FREE . . . a brochure that describes the 25" (diagonally measured screen) MOTOROLA QUASAR II Color TV chassis that we include in our TV Service Training Program.

This chassis with automatic fine tuning control is ideal for training purposes because it combines solid state devices with vacuum tubes to give you both kinds of practical experience.

Credit towards a Certified Electronic Technician (C.E.T.) rating will be granted by the National Electronics Association to ICS students upon completion of the ICS Career Program in TV Service / Repair.

International Correspondence Schools Since 1890
School of Electronics Scranton, Pa. 18515

All parts carry Motorola's two year replacement guarantee!

The QUASAR II chassis comes to you in three basic sub-assemblies . . . NOT AS A KIT . . . because we want you to learn how to repair TV sets, not build them.

Our free literature also describes the fully assembled test equipment you receive such as the Deluxe 5" Solid State Oscilloscope, the tools and the learn-by-doing kits, all of the finest quality.

And we're going to tell you about eight other career opportunities in Electronics and the ICS Career Programs that can help prepare you for them. All you've got to do is mail the coupon. SEND IT TODAY!

the Sansui AU9500: hottest-siling power amplifier in the field.
 Here's the power amplifier that not only boasts 85 hefty watts per

AU7500

AU6500 channel, but also boasts a host of other fantastic features. It's designed and made for people who want only the best-and are willing to pay for it. And, judging by the way the AU9500 is selling, there must be a lot of those folks around.

The new Sansui AU9500 is the most advanced stereo product we make. Its superior performance characteristics include total harmonic distortion and intermodulation distortion below 0.1\% throughout the entire audio spectrum and well beyond. Power bandwidth is extremely wide $(5-40,000 \mathrm{~Hz})$ and RMS true power, conservatively rated, is 85 watts per channel into 8 ohms.

Among the many exciting features of the AU9500 are a wide variety of conveniences, such as a 4 -channel adaptor switch, for QS, SQ, or CD-4 add-on units, the ability to handle up to four tape decks, and provision for tape-to-tape dubbing. Triple tone controls allow even the fussiest listener to adjust the AU9500's response to his taste.

As eye-catching as it is functional, the AU9500's elegant front-panel styling is a standout in any audio display. And it has two counterparts, the AU7500 and AU6500, which offer many of the same features, the same quality engineering and manufacturing, but slightly less power. All three are powerful, quality units that are unequalled for fine hign fidelity reproduction.

SANSUI ELECTRONICS CORP.

Woodside, New York 11377•Gardena. Calıfornia 90247
SANSUI ELECTRIC CO., LTD.. Tokyo. Japan • Sansui Audio Eupope S. A., Antwerd. Belgium

SPECIAL FEATURES

33 How To Keep Electronic Calculators Running
Repairs are easy if you know how. An expert tells how to do it. by Patrick N. Godding

37 Radar Oven Repairs
With a few special tools and techniques you can make money fixing this new appliance. by D. R. Mackenroth

44 Telephone Answering Robots
Been wondering how they work? Here's a look at several machines. by Eugene Walters

| 100TH 52 | Lee deForest-Father Of Radio
 Radio-Electronics celebrates the 100th anniversary of this
 famous electronics pioneer, by Fred Shunaman |
| ---: | :--- | :--- |
| ANNIVERSARY | |

famous electronics pioneer. by Fred Shunaman

4-CHANNEL
 HIGH-FIDELITY STEREO

59

GENERAL	5	Looking Ahead Tomorrow's news today. by David Lachenbruch ELECTRONICS
	22 Appllance Cilinic	
Floor polishers and carpet scrubbers. by Jack Darr		

TELEVISION
65 Service Clinic
The horizontal creeper. by Jack Darr
66 Reader Questions
R-E's Service Editor solves reader problems

DEPARTMENTS

83	Books	$\mathbf{7 6}$
84	Circults	89
16	Letters	$\mathbf{9 9}$
6	New \& Timely	82
79	New Literature	86

7689

New Products
Next Month
Reader Service Card
Technote
Try This

ON THE COVER

A LOOK INSIDE the new Heathkit model C-2009 electronic calculator you can service yourself. It has 8 -dlgit display, constant key, floating decimal and features plug-In keyboard and display panet for easy serviceabillty.

FUNCTIONAL DRAWING OF A MAGNE-TRON-the heart of the microwave oven. Are you up on latest servicing tricks?
. . . Iurn lo page 37

Hugo Gemsback (1884-1967)
founder
M. Harver Gernabeck, editor-in-chief and publisher
-rry steckler, CET, edito
Robert F. Scott, W2PWG CET, technical edito
dack Darr, CET, service editor
Loels E. Garner, tr., semiconductor edito
. Oueen, editorial associate
Leonard Feldmen, contributing high-fidelity editor
Deald Lechenbruch, contributing editor
Barbara Schwartz, Editorial Assistant
Vincent P. Clcenia, production manager
Sarah Martin, production assistant
H. Malysko, circulation

Cover photograph by Walter Herstatt Cover design by Louls E. Rubsamen
Redio-Eiectronice is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
 grmphe while in our posesteion or otherwitw.

You get more"security" from Mallory. And it's alldo-it-yourself.

The Mallory line of security products is not only the most complete line you can get anywhere, it's also just about the easiest to hook up. It's genuinely a do-it-yourself line.

Especially the complete systems.
From complete home intrusion alarm systems (plug-in or wire-in) to smoke alarms and car alarms.

And we have all the accessories you need to expand and adapt any of these systems to your specific security needs.

Look for our security systems and accessories on display in their bright, new packages (with installation directionș printed right on each package). It's all at your Mallory distributor's now.

Send for our new Security Systems Catalog 9-654. It describes and explains how to use every item we have.

MALLORY DISTRIBUTOR PRODUCTS COMPANY
a divimion of P. R. Mallory \& CO. inc.
Box 1284, Indianapolle. Indiana 46208: Telephone: 317.838-53153

looking ahead

How VLP works

Eindhoven, Holland-The European electronics giant, Philips, has now moved its VLP (Video Long Play) color television disc system into the pre-production engineering stage, although it's not targeted for commercial introduction until the second half of 1975. Philips is in a competitive videodisc race with Teldec (German Telefunken and British Decca), MCA Disco-Vision (Universal Pictures), RCA and others.

At Philips' sprawling headquarters here, I saw a pressed 12-inch VLP disc and talked with Dr. K. Compaan, the scientist who is considered the father of the VLP. The disc itself looks like an art object-bright silver, emitting rainbow reffections when caught by the light. It is pressed in the conventional manner, then coated with a reflective material and a transparent protective coating.

As reported previously in this column, the disc revolves at 25 rps , one revolution being the equivalent of one television frame (the American version will spin at 30 rps, reflecting the difference in standards). The disc is scanned from the bottom by a laser beam, which is reflected back by a mirror. Looking at the disc, it is possible to discern a radial line running from the center to the outside. This is the vertical interval, or the space between TV frames. The reflective mirror itself assures tracking accuracy, while a servo keeps the pulses on the disc in focus.

One of the significant features of the system is that the picture jumps immediately into sync and stays in sync. The mirror is the integral component in retaining the synchronization as well as tracking, and permits slow motion, stop motion or even
reverse action. A pulse is fed to the mirror during the vertical interval. For stop motion, this pulse instructs the mirror to continuously repeat the previous track. For slow motion, the mirror repeats each track once or more. For rapid motion, it skips one or more tracks each revolution. For reverse, it goes back to the preceding track. These instructions can be fed to the scanning mirror through controls on the record-playing machine or, in a more sophisticated version, through signals impressed on the disc itself in the vertical interval.

The current version of VLP plays for 30 minutes, scanning from the bottom of the disc, from the center to the outside, playing on one side only. Two-sided discs, and 45-minute discs, are also possible, according to Dr . Compaan. In its first version, the disc was to have used a standard high-intensity light, but Dr. Compaan said a breakthrough made possible a low-cost, mass-produced laser system. A by-product of this breakthrough will be reasonably priced lasers for many other applications.

Philips has no plans to make a disc changer, feeling that 30 minutes per disc is sufficient and perhaps the longest period anyone would want to view recorded video material without interruption. Polygram, a joint venture of Philips and Siemens (Germany), is currently developing consumer programming for the VLP, which is expected to be introduced simultaneously in Europe, the United States and Canada.

Other discs

I came away from my interview with Dr. Compaan with the feeling that Philips is seriously determined to be the leader in the video disc
field, despite some allegations that Philips' activities constituted a defensive reaction tc other efforts in this field, notably by Teldec.

The Teldec disc, using a mechanical pressure pickup, plays for 10 minutes in color, and achieves long-play status through means of a special disc-changing system it is expected to be demonstrated, and perhaps launched in the European consumer market, next month at the Berlin Ra-dio-TV Show. We hope to be there, and to report on this event in detail.

Among other video discs are two which use laser readout, placing them generally in the same classification as the Philips system. MCA Disco-Vision appears to be generally similar to Philips, and there have been reports of the beginning of discussions aimed at reaching compatibility between the two systems, but Philips calls these reports premature. The big leader in French electronics, ThomsonCSF, also is developing a laser disc system, about which little is currently known.

In the United States, Zenith has demonstrated what appears to be a variation on the Teldec mechanicallyscanned system. RCA is known to have developed an electrostatic LP videodisc system which uses an electrically conductive coating on the disc and conductive stylus with an electrolytic layer in between, the varying capacitance producing video signals. Other video disc systems may also surface before long.

It's becoming clear that the video disc offers a promising method for low-cost home playback of pre-recorded color TV information. It now appears that everybody and his brother are working on new video disc systems. It's probable that only one system can be the winner.

Unlike the audio race which was compromised by the 3345 player, it would be impractical to develop a device which could play different types of video discs-laser. mechanical and electrostatic.

TV film players

Several years ago, Sylvania introduced its Color Slide Theater, a combination color set and slide viewer, which made possible the showing of $35-\mathrm{mm}$ color slides on the color TV screen. It seemed like a great idea, but the public just didn't take to it, so Sylvania shelved its plans for a followup-the Su-per-8 electronic movie viewer.

Last month we reported that Eastman Kodak plans to market this year a Super-8 attachment for playing home movies through the family color set. This system uses many of the principles developed jointly by Kodak and Sylvania. Now, others are getting into this act, too. Cassette Sciences says it will introduce a film videoplayer shortly. It will accommodate either Super-8 or $16-\mathrm{mm}$ film with magnetic or optical sound.

Sign of the times

The first major American TV manufacturer to discontinue black-and-white set production entirely to concentrate on color is Warwick Electronics, which makes receivers for Sears Roebuck. The company's goal is to produce solid-state sets exclusively by the end of this year. It will add two new color TV sizes-15 and 17 inches-both using the newly developed slot-mask tube system with inline electron gun.
by DAVID LACHENBRUCH
CONTRIBUTING EDITOR

new etimely

New electronics museum preserves radio history

Two unparalleled collections of electronics archives and artifacts form the basis for the new Foothills Electronics Museum, just opened to the public under the sponsorship of Foothills College, Los Altos Hills, near San Jose, California. Called a "hands-on" museum, only a vital few of its exhibits are shielded from handling by visitors. No admission fees are charged.

The Lee de Forest collection preserves some 2,500 photographs, models, personal documents, citations and awards, pertaining to the late Dr. de Forest. His widow, Marie de Forest, aided in identifying and cataloging the material.

The second collection consists of several thousand artifacts of the radio pioneer Douglas Perham. It includes furnishings from "the world's first regularly scheduled broadcast station," started in San Jose in 1909 by C. D. Herrold, as a high-frequency spark radiophone. Known as FN originally, it was KQW from 1921 to 1949 and now operates in San Francisco as KCBS.

Besides the de Forest and Perham
collections, the museum houses a number of other exhibits, including two amateur stations. One is an operating set-up. to show visitors what amateur radio is all about-the other a replica of a 1920 ham station.

Holographic computer memory uses laser, liquid crystals

An optical computer memory that can perform all the operations of a traditional computer memory-read, write, store and erase-has been demonstrated by scientists of the RCA laboratories at Princeton, N.J. The system, still in the early experimental stage, may be the forerunner of a new generation of mass memories with capacity equal to that of the largest present disc systems, but with a speed one hundred times as great.

The binary digits of the computer's two-word language are stored as holographic patterns of light and shade in a thermoplastic material. The holograms are produced in the material by a laser beam. On the way to the thermoplastic, the beam passes through a liquid crystal film, which is controlled electronically to

A NEW RADIO FIRE ALARM SYSTEM was credited with getting firefighters to this disastrous Lewlston, Malne, fire in time to keep lite and property loss to a minimum. The raclo alarm box, Introduced by Gamewell In outtying reglons, looks like a conventional "cottage" call box, but sende out a digitally coded whi shanal, which sounds an alarm and actuates a printout at the lire station. The box transmits in the $72-76-\mathrm{MHz}$ reglon between TV channels 4 and 5. It also has pushbuttons for pollce, medical ald and road service calls.
be transparent to the laser light or to scatter it, according to whether the signal represents a "1" or a "0." This produces the patterns of light and shade in the holographic material. These can be read out again with a laser, as numbers composed of binary digits. Electroacoustic deflectors direct the beam, both in reading and writing. The holograms can be erased at will, simply by applying heat to the thermoplastic storage matorial.

Bronx electronic technicians organize new association

A group of electronic technicians and shop owners of the Bronx. NY, met recently to discuss the formation of a

SEATED, LEFT TO RIGHT: John Matos, Sylvanla instructor; Miguel Rosado, Astro Electronlcs; Morris Rosenthal, David Goldknopi, KIngsbridge TV; Andy Hegh, Andy's TV; and Robert O'Caslo, Telefix, Inc. All the shops are in the Bronx. STANDING: Robert Plunz, TSA, Inc., Albany, N.Y.; Sarah O'Casio, Teleflx, Inc. Warren Baker, of TSA, Albany, N.Y., was operating the camera.
new local association in their area. They invited two members of the Television Service Association (TSA) of Northeastern New York, a group headquartered in Albany, to answer questions. The president of TSA, Robert Plunz, and Warren Baker, CET, responded to the invitation and expressed themselves as well pleased with the turnout and the interest shown.

Some of the subjects covered at the meeting were the proposed registration of shops in New York State, and the alternative bill(s) to license the growing industry.

The group scheduled a second meeting, at Telefix, Inc., 862 Gerard Avenue, the Bronx, and arranged to publicize it more widely than the first. Interested parties were requested to contact Robert O'Casio of Telefix, phone 212-588-0884.
(continued on page 12)

Don't delay ... Stop at your Sprague distributor's Q-MART today! And while you're there, don't forget to pick up your free copy of Sprague's 48-page Semiconductor Replacement Manual K-500. Or write to Sprague Products Co., 81 Marshall St. North Adams, Mass. 01247.

Naw
 SPRAGUE SEMCONDUCTOR Q-MART READY TO SERVE YOU!

Replacement Semiconductors for Service Technicians, Laboratories, Hobbyists, Experimenters

Sprague's "Total-Capability" Replacement Semiconductor Q-MART, being installed in more distributors' sores with each passing day, simplifies the selection and purchase of small-signal transis:ors, power transistors, field effect transistors, silicon rectifiers, linear integrated circuils, and LED devices, with a product variety that cannot be obtained from any other single sou ce.

Designed with the service technician/hobbyist/experimenter in mind, it gives you ready replacements for over 30,000 original manufacturers' pat numbers which are frequently found in home; mobile entertainment and communications equipment.

You'll enjcy the ease with which you can serve yourself right from your Sprague distributor's Q-MART. Every semiconductor is individually packagəd in a handy, reusable Kleer-Pak plastic tox (no hard-to-open bubble packs or slister packs) mounted on a card that gives you a good description of the device, complete with pinning diagram, electrical parameters, and important cross-reference replacement information.

What's more, every device is a popular device. There are no dogs to waste time with or cause confusion. Your distributor's Q-MART contains only the hottest, fastestselling semiconductors based on frequency-of-use. With this kind of movement, you can be sure you're always getting factory-fresh stock.

Discover the ease and excitement of learning Electronics with programmed equipment

NRI Sends youWhen you train at home with NRI, you train with your hands as well as your head. You learn the WHY of Electronics, Communications, TV-Radio the NRI pioneering "3-Dimensional" way. NRI training is the result of more than half a century of simplifying, organizing, dramatizing subject matter, and providing personal services unique for a home study school. You get the kind of technical training that gives you priceless confidence as you gain experience equal to many, many months of training on the job.

NRI-The Leader in Electronics Training for more than Fifty Years

Earn $\$ 5$ to $\$ 7$ an hour spare or full time in

TV-RADIO SERVICING

Color television sales are soaring. And so is the demand for trained repairmen. If you can service TV sets, portable radios, tape recorders, hi-fi sets, phonographs and auto radios, you'll always be in demand. It's one of your best routes to sparetime earnings, a good paying job or a business of your own. NRI trains you quickly and expertly, showing you how to get started in servicing soon after you enroll, earning as you learn. NRI trains you in today's method of installing and repairing all electronic equipment for the home -including solid state Color TV. You even build, experiment with and keep to enjoy your own solid-state radio plus your choice of black-andwhite or the new $25^{\prime \prime}$ diagonal solid state Color TV receiver NRI developed from the chassis up for training. Like thousands of others, you can soon be earning good money in your spare time . . . the easy NRI way.

There's money and success awaiting you in COMMUNICATIONS MOBILE RADIO \&
BROADCASTING

NRI training in Complete Communications equals as much as two years of training on the job. With NRI, you can train for a choice of careers ranging from mobile, marine and aviation radio to TV broadcasting and space communications. You learn how to install, maintain and operate today's remarkable transmitting and receiving equipment by actually doing it. You build and experiment with test equipment, like a TVOM you keep. You build and operate amplifier circuits, transmission line and antenna systems, even build and use a phone-cw transmitter suitable for transmission on the 80-meter amateur band. Whichever of these five intensely practical NRI Communications courses you choose, you prepare for your FCC License exams, and you must pass your FCC exams or NRI refunds your tuition in full.

Move ahead in America's fast growing industry as
COMPUTER TECHINCIAN
Ours is rapidly becoming the age of the computer . . . and NRI can train you to cash in on the opportunities in this field. Only NRI trains you at home on a real computer-not a simple logic trainer, but a complete, stored program digital computer using over 50 integrated circuits. As you build the NRI Computer, you explore all fundamental logic circuits, then how to combine them in a complete, stored program computer You observe the "heart" of a real computer. You solve typical problems and learn how to locate faults with diagnostic programs. Bite-size texts make studying easier. Prove to yourself what nearly a million NRI students could tell youthat you get more for your money from NRI. Check the card and mail it today for your free NRI Color Catalog. NO SALESMAN WILL CALL. NRI Training, 3939 Wisconsin Ave., Washington, D.C. 20016.

YOU GET MORE FOR YOUR MONEY FROM NRI

NRI Kits and Equipment

Dollar for dollar, you get more value from NRI training kits, because they are designed as educational tools. In the TV-Radio Servicing Course, for instance, the end product is a superb $25^{\prime \prime}$ diagonal color TV your whole family will enjoy. The set is designed so that, while building it, you can introduce and correct defects . . . for trouble-shooting and hands-on experience in circuitry and servicing. The kits include, at no additional cost, a wide-band service type oscilloscope and color crosshatch generator, and other valuable equipment that will let you start earning money in your spare time making repairs . . . even before the course is completed.

new etimely
 (coniinued from page 6)

Snooper detects hidden fire

A recently patented piece of firefighting equipment spots hidden burning materials, such as hot coals between walls, by the radio waves emitted from the hot material. Operating between 8 and 9 GHz , the equipment is compact and light enough to be handheld and

carried about. The signal becomes louder as the equipment is moved closer to the source of heat. Signals are picked up by a small parabolic antenna about the size of a saucer, and read on a meter mounted on top of the device. Prototype models of the detector have been built by the manufacturer, International Microwave Corp. of Cos Cob, Conn., and are being distributed to fire departments for testing.

Government frequency "need" perturbs uhf broadcasters

Uhf TV broadcasters are watching with a certain fearful interest a government move for more frequencies-presumably in the present uhf-TV band. The director of the Office of Telecommunications Policy has informed FCC Chairman Dean Burch that the government needs an additional 100 MHz "in the 100 -to1215 MHz band."

Since television broadcasting takes up the area between 174 and 216 MHz , and 470 to 890 MHz , the feeling that the government is looking at part of the spectrum allotted to TV broadcasting is
strong, especially as other frequencies in the region carry important services that the government would not be disposed to bother.

The request has puzzled some in the FCC, because the government recently returned to the FCC for reallotment 26 MHz in the spectrum in which it is now asking four times the frequency space.

It was also pointed out that any needs claimed by the government would have to be examined very carefully, since in the past government agencies have not been famous for efficient use of spectrum space available to them.

Millimeter waves may open new communications spectrum

An experiment to test the feasibility of communication at super-high frequencies will be orbited aboard NASA's ATS-F satellite in the spring of 1974. The experiment was designed by Hughes Aircraft Co. to test the feasibility of using this presently unexplored band of microwave frequencies, which could possibly provide a wide spectrum of "talking space" for future satellite systems.

MILLIMETER WAVE COMMUNICATIONS equipment, to orbit the earth aboard the ATS-F satellite, may open up needed "talking space" in the presently unexploited 20 to 30 GHz spectrum.

The Millimeter Wave Experiment contains two transmitters, which will radiate CW (continuous wave) and multitone signals on 20 and 30 GHz . (1.5 and 1 centimeter, or 150 and 100 millimeters). These will be received by the Goddard earth station near Rosman, N.C.

Two experiments will be performed. In the first, signals will be transmitted
from the satellite to earth, to check atmospheric effects on the signal quality. In the second experiment, signals will be sent from the earth to the satellite on present earth-satellite communications frequencies and retransmitted to earth in the millimeter wave bands.

It is known that heavy rainfall andto a lesser extent-other forms of precipitation, varying temperatures and possibly other factors have an effect on signals at super-high frequencies. These tests are intended to find out just how much these factors could affect a practical communications system.

SATELLITE'S SOLAR PANELS are larger than the shlp. The two 4×8-foot panels, one of whose more than 11,000 solar cetls is being Inspected by RCA techniclan John Schelbly, make the 10 -fool-high NASA Nimbus-5 look like a butterlly. As a contrast to the widespreading solar panels, RCA boasis of InstallIng one of the most compact Items on the shlp as well, the High Data Rate storage system, which measures only 11 inches high, yet can record 30 million bits of data over a perlod of 120 minutes. By speeding up for playback, the meteorological and geophysical information is tranamitted to ground stations In 5 minutes. Almost 300 watts of power ls supplled by the solar cell system.

Cassette tapes introduced for electronics home study

A new system of teaching the basic principles and theories of electronics by correspondence, using pre-recorded cassette tapes, has been announced by RCA Institutes' director L. W. Snow. Studying with pre-recorded tapes is, according to Snow, the nearest thing to having an instructor guide the student through each lesson. The "instructor"
(continued on page 14)

A best seller for over 40 years... and now better than ever.

It's the world-famous RCA Receiving Tube Manual in a new updated edition. And it's available now from your RCA Distributor.

The new 752-page manual, RC-29, includes technical data on more than 1400 RCA tube types. It also provides applications guides, terminal diagrams and replacement guides on entertainment and industrial receiving types as well as characteristics charts on picture tubes. In addition, there is a full section devoted to the use of RCA tubes in practical circuit applications.

So whether you're a service technician, hobbyist, engineer, student or educator, you'll find information you need in the new RC-29. Order your copy today from your RCA Distributor. At $\$ 2.50$, it's a real bargain.

RCA/Electronic Components Harrison, N.J. 07029

RPת

Now...the most enjoyable, do-ityourself project of your life-a Schoher Electronic Organ!

You'll never reap greater reward, more fun and proud accomplishment, more benefit for the whole family, than by assembling your own Schober Electronic Organ.

You need no knowledge of electronics, woodwork or music. Schober's complete kits and crystal-clear instructions show you - whoever you are, whatever your skill (or lack of it) - how to turn the hundreds of quality parts into one of the world's most beautiful, most musical organs, worth up to twice the cost of the kit.

Five superb models with kit prices from $\$ 500$ to around $\$ 2,000$, each an authentic musical instrument actually superior to most you see in stores, easy for any musically minded adult to learn to play, yet completely satisfying for the accomplished professional. And there are accessories you can add any time after your organ is finished - lifelike big auditorium reverberation, automatic rhythm, presets, chimes, and more.

Join the thousands of Schober Organ builder-owners who live in every state of the Union. Often starting without technical or music skills, they have the time of their lives - first assembling, then learning to play the modern King of Instruments through our superlative instructions and playing courses.

Get the full story FREE by mailing the coupon TODAY for the big Schober color catalog, with all the fascinating details!
The Coloher Organ Corp Dept periv
43 West 6ist Street, New York, N. Y. 10023
\square Please send me Schober Organ Catalog.
\square Enclosed please find $\$ 1.00$ for 12 -inch L.P.
record of Schober Organ music.
NAME
ADDRESS
CITY

new etimely

(continued from page 12)
explains the material as the student reads the text and describes the
schematic illustrations in easily understood terms.

R-E

TELEVISED X-RAY MAGNIFIES IMAGES 6,000 times, bringing up delails that would be unnoticeable otherwise, and reducing exposure to patient, technician and radiologist. The new system is called "Dynavision" and was developed at Raytheon's Machlett Labs, In Stamford, Conn.

Radio-Electronics is published by Gernsback Publications, Inc. 200 Park Ave. S. New York, N.Y. 10003 (212) 777-6400 President: M. Harvey Gernsback Secretary: Bertina Baer

ADVERTISING SALES

EAST
Stanley Levitan, Eastern Sales Mgr.
Radio-Electronics
200 Park Ave. South
New York, N.Y. 10003
(212) 777-6400

MIDWEST/Texas/Arkansas/Okla.
Ralph J. Bergen
The Ralph J. Bergen Co
6319 N. Central Ave.
Chicago, III. 60646
(312) 792-3646

PACIFIC COAST/Mountain States
Jay Eisenberg
J.E. Publishers Representative Co., 8560 Sunset Blvd.,
Suite 601
Los Angeles, Calif. 90069
(213) 659-3810

420 Market St.,
San Francisco, Calif. 94111
(415) 981-4527

SOUTHEAST

E. Lucian Neff Associates 25 Castle Harbor Isle,
Fort Lauderdale, Florida 33308
(305) 566-5656

MOVING?

Don't miss a single copy of Radio-Electronics. Give us:

Six weeks' no-
HERE tice

Your old ad- 1 dress and zip code

Your new address and zip code
name (please print)

address

city state zip code

Mall to: Radio-Electronics
SUBSCRIPTION DEPT., BOULDER, COLO. 80302

MITS Presents The New 150 Series Handheld Calculator .. 8 Functions Mean a Handful of Features!

6 AA Batteries

letters

BRITISH AMATEUR ELECTRONICS CLUB

While we have nearly 250 members in this country and overseas, I am very disappointed that there are no girls, particularly as I know from articles and letters in electronic magazines that there are many who are interested in electronics as a hobby.

I would appreciate it if you would mention in your excellent magazine, which I am sure is read by many girls (of all ages) who are interested in electronics as a hobby, that if they would care to write to me at the above address, I would be only too pleased to send them details of the B.A.E.C. and also a copy of our Newsletter so that they can see the sort of things we do.

I would like to thank you for your interest and support of the B.A.E.C.
Cyril bogod
26 Forrest Road, Penarth Glam, Great Britain

WHAT WAVEFORM IS THAT?

In the article on the Modulated Function Generator in the July issue, ycu show a waveform (1) but do not describe it. What is it and how would I use it? H. Harlee

Brentwood, N.Y.

The waveform is for an ultra-low-frequency AM signal. Its peculiar shape has made it useful in testing animal per-ception-as with porpoise and dolphins, earthquake simulation and certain types of oceanographic studies.

BETTER CLOCK GENERATOR

The clock generator circuit for the Digi-Designer shown on page 59 of the February issue of Radio-Electronics can be improved with three simple changes:

1. The output waveform has an on time of 45% and an off time of 55%. This is due to the capacitor being charged exponentially and discharged linearly. A

- Converts any test jig to service any solid state TV.
- Simple plug-in operation
- Economical - Saves buying a solid state jig.
- Versatile - Dual impedance. Avallable from your distributor.

2245 PITKIN AVE., BROOKLYN, N. Y. 11207

[^0]symmetrical output can be obtained by adding a resistor, approximately 27,000 ohms, from the 5 -volt supply to pin 2 of IC1. However, this will increase the frequency by approximately 10%.
2. IC1 pin 5 should be connected to ground when switch 1 is in the off position to prevent high-frequency oscillations.
3. The output waveform can be improved by using the unused gates in IC1 as buffer stages per attached sketch.
Robert G. Fleeger
Los Angeles, Calif.

NEW HEARING AID NOT NEW

With regard to the article on hearing through the teeth Radio-Electronics, June 1973, page 94), it may interest you to know that my grandfather used this method to tell if his watch was running. (He lost his hearing as a child.)

I saw him do this in 1925 and he had been doing this for some 30 or 40 years before then.

Some more information on medical electronics would be a welcome addition to your excellent publication.
R. H. Stockman

Morrison, Colo.

BOOLEAN BOBBLE

Please allow me to point out an error in the solution to a problem given in the article "Boolean Algebra And Computer Switching" by James F. Kennedy in the July 1973 issue of Radio-ElectronIcs, on page 68, the circuit as follows is shown:

The solution as given in the article is"
1-Write the equation $\quad A B+A B=Y$
2-Factor out A $A(B+B)=Y$
3-From a previous rule $B+B=1$
(this is not so!)
The Idempotent Law states: $\mathrm{B}+\mathrm{B}=$ B NOT 1 .
4-We should now continue:
$A(B+B)=Y$
$A(B)=Y$
A and $B=Y$
This finally reduces us down to a two-switch circuit in place of the four original switches.

George J. Beaupre
Danvers, Mass.

Why buy "second line" TV components when you can buy the best... Winegard engineered-and-built for less and get the same high quality and performance?

Check with your distributor for new low pricing on these items.

High quality, low loss Band Separator for adapting single 300 ohm downlead to separate 300 ohm VHF and UHF

CC- 3382 CH .
2-SET COUPLERInexpensive coupler for connecting two TV or $F M$ sets to a single 300 ohm downlead. Features handy no-strip
terminals for easy terminals for easy

CS- 380 300 OHM
V-UM BAND
SEPARATOR
SEPARATORLatest Band Separator design adapts 300 ohm downlead to separate VHF and UHF antenna terminals of TV set and provides FM stereo thru handy no-strip screw terminals Unique printed circuit design has extremely low loss, excellent match and high match and high perfect color
and $F M$

CC- 28282 CH .
2-SET COUPLER-
Efficient 300 ohm coupler connects two TV-FM sets to a single 300 ohm downlead. Input and output connections are handy no-strip type for easy installation. Quality circuitry insures perfect color and black and white reception. 5 BAND SEPARATORBand Separator for making connection between 75 ohm coaxial downlead and separate 300 ohm antenna terminals of TV set and FM receiver. match. Excellent for stereo reception.
 -

How to become a "Non-Degree Engineer"

Exciting careers in the new industries of the Seventies are waiting for men with up-to-date electronics training. Thousands of engineering jobs are being filled by men without engineering degrees provided they are thoroughly trained in basic electronic theory and modern application. The pay is good, the future is bright... and the training can now be acquired at home-in your spare time.

ELECTRONICS, The Science of the Seventies, has created a new breed of professional man-the "non-degree engineer." Because industries depend on them to meet emergencies, move in and keep things running, they get top pay - and a title to match. At Xerox they're called Technical Representatives. At IBM they're Cusiomer Engineers. In radio and TV, they"re the Broadcast Engineers.
But these men must know more than how to solder a connection, or test circuits or replace components. They need to k now the fundamentals of Electronics and how to apply them.

How can you pick up this necessary knowledge? Many of today's non-degree engineers earned their electronics diplomas at home from Cleveland Institute of Electronics.

7 Electronics Courses to Choose From CIE is the largest home-study school in the U. S. specializing exclusively in Electronics. The seven CIE career courses provide solid preparation for nearly every career field in Electronics today.

The Electronics Technology with Laboratory Course teaches you fundamentals. With a 161-piece space-age laboratory, you apply the principles you learn by analyzing and troubleshooting electronics equipment.

If an FCC License is your goal, five of our courses prepare you to take the Government FCC License exam. For the man already working in Electronics, CIE offers a college-level Electronics Engineering Course.

CIE Home-Study Method Works

Whatever CIE course you select, you can learn in your spare time while holding down your present job. Over the last 37 years, CIE has developed techniques that make learning at home effective even if you once had trouble studying. CIE's special Auto-Programmed* Lessons help you learn faster and easier than you'd believe possible.

The CIE Instruction Department gives immediate attention to the lesson examinations you send in. Your work is not only graded, it is analyzed. The corrected examination, complete with comments and suggestions, is mailed back to you the same day it is graded so that the lesson is still fresh in your mind.

If you have a special question, it will be referred to the most qualified instructor on the subject. You get the benefit, then, of the combined training and experience of the entire CIE Instruction Department.
Authorities feel that home study is the best way. Popular Electronics magazine says: "By its very nature, home study develops your ability to analyze and extract information as well as to strengthen your sense of responsibility and initiative."

Money-Back FCC License Warranty

 CIE's home-study courses are so successful that, in a recent survey of 787 CIE graduates, better than 9 out of 10 CIE grads passed the FCC License exam That's why we can offer our famous Money-Back Warranty: when you complete any CIE licensing course, you'll be able to pass your FCC exam or be entitledto a full refund of all tuition paid. This warranty is valid during the completion time allowed for your course. You get your FCC License - or your money back!

Students who have good jobs in Electronics often comment on how much they learned from CIE. Says Joe Perry, Cambridge. Mass., Engineering Specialist at National Radio Co., "CIE training gave me the technology I needed to understand many of the electronic concepts I never dreamed I could learn. I'm already earning 30% to 40% more than I could have without my CIE training.'

Richard Kihn, Anahuac, Texas, passed the Government exam for his 1st Class FCC License before finishing his CIE course. He landed a job as broadcast engineer at KFDM-TV in Beaumont, Texas. "I was able to work, complete my CIE course and get two raises. . . all in the first year of my new career in broadcasting."

FREE Book Can Help You

Thousands of men got started in Electronics by sending for our school catalog, "Succeed in Electronics." It tells of many non-degree engineering jobs and other electronics careers open to men with the proper training. And it tells which courses of study will best prepare you for the career you want.
Let us send you this interesting book FREE. Just fill out and mail the reply card. For your convenience, we will try to have a representative call. If card has been removed, mail coupon or write: Cleveland Institute of Electronics, Inc., 1776 E. 17th St., Cleveland, Ohio 44114.

APPROVED UNDER G.I. BILL

All CIE career courses are approved for educational benefits under the G.I. Bill. If you are a Veteran or in service now, check box for G.I. Bill information.

CIIE
 Cleveland Institute of Electronics, Inc.

1776 East 17th Street
Cleveland, Ohio 44114
Accredited Member National Home Siudy Councll
Please send me your two FREE books:

1. Your school catalog, "Succeed in Electronics."
2. Your book on "How To Get A Commercial FCC License.'
I am especially interested in
\square Electronics Technology
\square Electronics Technology with Laboratory
\square Broadcast Engineering
\square First Class FCC License
\square Electronic Communications
\square Industrial Electronics
\square Electronics Engineering

Name (please print)
Address
City
State
Zip Age

Vaterans and Servicemen
\square Check here for G.l. Bill information
RE-21

Electro-Voice Paging Speakers.. If you pay less it may cost you more I

How many trips up the ladder does it take you to finally install a paging speaker? (Be honest and include the times you drop hardware, and the extra trips to change level or positioning). Good news! E-V has made paging speaker instaliation easier and faster.

Now you need fewer tools and less time to get better sound. Speaker base removes for easy mounting, and it won't fall apart in your hands in the process. There are no screw terminals to short out, pigtails are already attached, no transformer cover plates to unscrew, and final speaker positioning is simple and positive.

All this and great sound in the bargain. Plus competitive prices on every model. More than a dozen from which to choose. Write today for our catalog or see your nearby Electro-Volce sound merchant.

ELECTRO-VOICE, INC., Dedt. a36E
613 Cecil Street. Buchanan. Michigan 49107
In Europe: Electio Voice. S. A.. Rommeratraese As, 2580 Nideu, Switemend

Electro7oice
aGumon
Circle 9 on reader service card

We've expanded our replacement guide to over 75,000 listings.

Our new receiver can demodulate or decode any kind of 4-channel including some that haven't been invented yet.

The Technics SA-8000X is a 4-channel expert. Not just one kind of 4 -channel. All of them. And it translates each one accurately.

We are particularly proud of its discrete capabilities. Because it has a demodulator for CD-4 records. Built in! And it adapts to any CD-4 cartridge instantly. Via front-mounted carrier level and separation controls.

The SA-8000X has an exclusive combination of controls and circuitry that adjusts to the coefficients of any matrix method. The Acoustic Field Dimension (AFD) controls and the Phase Shift Selector provide a variety of blendings that encompass every popular matrix system. Even some that haven't been tried yet. And the same controls can compensate for poor room acoustics. Or undesirable but unavoidable speaker placement.

The Technics "Total 4-Channel" concept shows just as clearly in the rest of the front panel. A well-thought-out set of controls manage both volume and balance. There's a large master gain surrounded by separate contrals for each channel. And any balance set with the individual knobs is maintained when the master is adjusted.

The rear panel reflects the same versatility. With plug-ins for three 4-channel tape decks. Plus provisions for future discrete FM.

Technics' attention to detail continues inside the SA-8000X. With sophistications like a pair of 4 -pole MOS FETS and a 3 -gang linear tuning capacitor. A trio of 2-element ceramic IF filters, a new type of epoxy resin coils as well as monolithic IC's in the multiplex circuit.

The four directly coupled amplifiers are very gutty in the bottom end and can be"strapped" together. So that in stereo, four amplifiers work as two, which more than doubles per-channel wattage in that mode.
The combined effectiveness of the whole design produces specifications like these:

FM TUNER SECTION		AMPLIFIER SECTION	
Sensitivity	$1.9 \mu \mathrm{~V}$	1 kHz RMS Power (all ch. driven at 8Ω) 4-channel operation 2-channel operation	64 w 84 w Seleclivity$\quad 65 \mathrm{~dB}$

The concept is simple. The execution is precise. The performance is outstanding. The name is Technics.

200 PARK AVE., NEW YORK, N.Y. 10017 FOR YOUR NEAREST AUTHORIZED TECHNICS DEALER, CALL TOLL FREE 800 447-4700. IN ILLINCIS, 800 322-4400.

Reduce Car Maintenance Increase Engine Performance.

Put a Mark Ten Capacitive Discharge Ignition (CDI) System On Your Car.

Even Detroit finally recognizes that electronic ignition systems dramatically increase engine performance. Chrysler is now putting them on their new models. The Mark Ten CDI, the original electronic ignition system, has been giving increased performance with lower maintenance to hundreds of thousands of satisfied customers for over eight years. Install a Mark Ten CDI on your car, boat or truck and eliminate 3 out of 4 tune-ups. Increase gasoline mileage up p 20\%. Enjoy improved engine performance. Or put a Mark Ten B on your car. It was especially designed for engines with smog control devices. By reducing combustion contaminants, the Mark Ten B restores power losses caused by these devices. Equipped with a convenient switch for instant return to standard ignition, the Mark Ten B is applicable to ANY 12 volt negative ground engine. Both systems install in 10 minutes with no rewiring. Order a Mark Ten or Mark Ten B CDI today.

Mark Ten (Assembled) $\$ 44.95$ ppd.

Mark Ten (DeltaKit)
$\$ 29.95 \mathrm{ppd}$.
(Kit available in 12 volt only.
positive or negative ground.)
Mark Ten B
(12 volt negative ground only)
Superior Products at Sensible Prices
Mfg. in U.S.A. (303) 242-9000

Please send me free literature

Enclosed is \$__ Ship ppd. - Ship C.O.D.
Please send:
__Mark Ten B @ \$59.95 ppd.
\qquad Standard Mark Ten (Assembled) @ \$44.95 ppd.
__ 6 Volt: Neg. Ground Only
_- 12 Volt: Specify
___ Positive Ground ___ Negative Ground
——Standard Mark Ten (Deltakit")@
$\$ 29.95$ ppd.
(12 Volt Positive Or Negative Ground Only)
Car Year Make
Name
Address
City/State

equipment report

Heathkit GR-110 VHF Scanning Monitor

Circle 100 on reader service card
automatically scanning the 146 to 174 MHz vhf Emergency Radio Service Band the GR-110 is 1000% more convenient than manually tuning a conventional dial receiver. Anyone who wants to monitor more than a single frequency on this busy band will find the manual radio abandoningly frustrating in comparison to the auto-scan technique. The Heathkit GR-110 gives hands-off operation freeing the user for other tasks.

The receiver demodulates narrowband FM broadcasts with less than $\pm 7.5 \mathrm{KHz}$ deviation. User specified in frequency, the desired channels are tuned with separately ordered crystals. The kit builder can purchase crystal certificates from Heath which are then mailed to the crystal manufacturer before starting to put together the kit. A $9-\mathrm{MHz}$ limit is imposed between the highest and lowest frequency crystal.

The $50-\mathrm{ohm}$ antenna terminals feed a two-stage FET rf amplifier well known for low intermodulation distortion as a result of their square law transfer characteristics. Sensitivity is better than $1-\mu \mathrm{V}$ for 20 dB of quieting. A third FET is used for mixing. The oscillator input to the mixer is derived from eight crystal controlled oscillators. The output of one oscillator is selected and fed through a tripler. The crystals are sequentially selected at a 17 per second rate by diodes controlled by IC logic centered around a TTL 7490 decade counter. A BCD-to-decimal decoder supplies the diode select currents. Only eight of the ten decoder outputs are used with one
of the binary inputs grounded so the two extra counts 9 and 10 simply rescan channels 0 and 1.

A second seven segment decoder converts the BCD output of the 7490 to the seven segment display needed to drive the front panel incandescent display tube. The display logic can be wired to be lit all the time including scanning time or to be lit only when receiving a channel. We preferred the latter since it eliminates any extraneous display and unnecessary flicker.

Eight push button switches allow bypassing any of the channels.

Manual selection of channels is opted by putting the auto/manual switch in the manual position and stepping the frequencies with the select switch.

The mixer output feeds an LC/crystal filter to give an i.f. rejection greater than 80 dB . Two FM quadrature detector IC's are used, one strictly as an i.f. amplifier and the second as an i.f. amplifier-FM detector. The detector stage of the first amplifier is wired to give additional gain. The FM detector outputs drive the squelch and audio output circuitry.

Three boards are wired, a large scan circuit board, the i.f. and the audio boards. Construction proceeds with the usual Heathkit straight-forwardness although there were a couple of minor snags probably attributable to our early production model. Initial turn-on was delayed by a half hour because of a poor solder joint, verifying Heath's contention that most kit problems are caused by poor soldering. Total construction and alignment time comes to about 12 hours.

While the Heath receiver is no worse than the other scanning and non-scanning receivers we have seen, recent improvements in i.f. amplifierdetector IC's should allow improved squelch design. This is particularly important where there is a great deal of switching on and off of signals.

There are a lot of goodies combined in this kit which among things includes 30 transistors, 8 IC's and 17 diodes well worth the $\$ 119.95$ price tag. Crystal certificates are an additional \$4.95 each.

Check these Heathkit Plus-Values in electronic equipment...

 for every interest, every budget.Your dollars buy more in Heathkit electronics, hand-crefted by you. More quality. More features. Betler performance. Added self-service savings. Plus the personal pride and satisfaction you get trom creating something of value with your own hands. It all adds up to the "plus-value" inherent in every Heathkit product. Check the new Heathkit products shown at right. They're just a few of the world's largest selection of electronic kits described in the new FREE Heathkit catalog.

NEW Heathkit Ultrasonic Intrusion
Alarm. $\$ 49.95^{\circ}$

Heathkit $21 / 2$ Digit

NEW Heathkit Acoustic Coupled Stereo Recelver. \$169.95*

Heathkit 25 V Solid-state Color TV with detent power tuning. $\$ 599.95 *$

NEW Heathkit 8-transistor AM Radio for first-time kit-builders. $\$ 14.95 *$

See them all at your nearest Heathkit Electronic Center... or fill out the coupon below

[^1]

If YOUCANUSE ANY OFTHESE TOOLS...

 ...You've got a head start on a rewarding career or a profitable business of your own in electronics. We've got two ways for you to make it happen. Which one's right for you?

Prepare for a new career in Home Entertainment Electronics
 ... as you build yourself a Bell \& Howell solid state color TV!

For the guy who's tuned in to electronic devices, here's a way to build the skills you'll need to fix stereo systems, FM-AM radios, phonographs, recorders, tape decks. almost any kind of home entertainment electronics equipment. Next year the world will buy about $\$ 17$ billion worth of consumer electronic equipment. And by 1985 the figure will
 climb to $\$ 35$ billion. Somebody's going to make a lot of money fixing it when it breaks. That's where you come in!

Mail the card for all the facts about ...

..growing opportunities in electronic equipment servicing - and how you can start getting ready for them now! Bell \& Howell Schools offers a complete learn-athome program in home entertainment electronics equipment that includes building yourself a Bell \& Howell 25 -inch diagonal solid state color TV!

It's an important part of your training-gives you "hands on" experience with sophisticated solid state circuitry. By the time you've finished this project, you'll be able to troubleshoot just about any kind of home entertainment electronics device on the market today.

One thing's certain, you're going to need...
.. something to sell if you want to build yourself a future. That's what this Bell \& Howell Schools program is designed to give you - up-to-date technical skills employers are looking to buy.

Whichever program you choose, you build...

1 The brand-new Bell \& Howell Schools

 Laboratory Starter Kit! Starts your "hands on" training with your very first lesson. Includes volt-ohm-meter (VOM) with design panels, modular connectors, experimental parts, battery power source.2 The exclusive Bell \& Howell Schools Electro-Lab ${ }^{\text {® }}$ electronics training system! three precision instruments you assemble and use in your new career: Design Console . .
"breadboard" circuits for solid state, vacuum tube experiments.

Oscilloscope . . . professional technician's diagnostic instrument. Transistorized Voltmeter.. measures current, voltage, resistance.

Use it all
as you get ready for
a new career...
$\$ 1,500.00$ worth of two-way radio electronic communications equipment!
 made market for your skills? FCC regulations could mean security and regular income for you!

Almost two million commercial two-way radio systems are vital communications links for trucks, planes, boats and taxis. The FCC requires that each system be serviced regularly by a licensed technician. That adds up to at least two million service calls a year for licensed technicians.

That's quite a market - if you've got the training to handle it!

To get ready for a business

of your own, you'll need . .

1) Career-oriented training; 2) "Hands on" experience with commercial-grade equipment; 3) FCC License. By the time you've finished your Bell \& Howell Schools learn-at-home program, you'll have the training and the "hands on" experience-and we'll do everything we can to make sure you get your license!

Just look at the equipment

you'll work with

Commercial-Band FM Transceiver... the kind of two-way radio you'll be servicing in your new career. Deviation Meter ...checks modulation of transmitted signals. Frequency Meter . . . checks signal frequency within precise tolerances established by government standards.

Work with this equipment by dropping by a "help session" or a Bell \& Howell Resident School. Or have the equipment shipped to your home in return for a $\$ 100$ deposit - refundable when you return it.

We'll help you pass

the FCC License Exam!

Getting your FCC License is your first step toward a new career in two-way radio electronic communications. When you've completed your Bell \& Howell Schools program in two-way radio, you should have the know-how you'll need to pass the First Class License Exam. If you don't, we'll arrange special tutoring at no additional cost. If you still can't get your license after retaking the exam, your full tuition will be refunded.

If card has been removed, write:
An Electronics Home Study School
DEVRY INSTITUTE OF TECHNOLDGY
a

Here's everything you'd expect from a high-priced portable VOM.

Except a high price.

The VOM is one of the most important tools in your kit-but you needn't pay high prices to get the features and quality you want. Like the highpriced units, the $\mathrm{B} \& \mathrm{~K}$ model 120P VOM has features like a front-resettable overload protection circuit, preventing damage to the instrument and components should an overload occur.

The 120P is more accurate than you'd expect - 20,000 ohms/volt sensitivity on DC, with 2% accuracy. Plus a total
of 35 ranges, measuring DC volts and current with 0.25 volt and $50 \mu \mathrm{~A}$ low-range scales; AC RMS volts, output volts, and decibels; and ohms. That makes it one of the most versatile test units ever designed. But it's also one of the most rugged-its meter movement is a taut-band, self-shielding annular type, to withstand damage from shock or vibration.

You'll also appreciate the 120P's easy-access battery and fuse compartment complete
with extra fuse; and the handy TRANSIT position on the range switch.

All considered, the B \& K 120P VOM gives you more accuracy, reliability, and versatility for your money than any other battery-powered portable VOM. And that's just what you'd expect from B \& K.

Contact your distributor tor complete information. Or write Dynascan Corporation.

$\$ 7995$

Circle 12 on reader service card

CRLEULATEAS

how to keep them running

Abstract

The electronic calculator is perhaps the newest of all consumer devices and one that requires special troubleshooting and servicing techniques.

by PATRICK N. GODDING*

small electronic calculators require more sophisticated troubleshooting techniques than those used to service many other kinds of electronic equipment. In addition to the basic procedures used in discrete transistor circuits, calculator servicing requires some understanding of integrated circuits and logic.

To service a defective calculator you will need a pencil-type soldering iron (30 to 40 watts at about $700^{\circ} \mathrm{F}$), small screwdrivers, solder remover, sharp knife, diagonal cutters, and needle-nose pliers. A vom and oscilloscope are the only mandatory pieces of test equipment, but a frequency counter can come in handy at times. Some problems can be solved with no test equipment at all or possibly a vom alone.

Basic troubleshooting

A few general procedures will save lots of time and reduce the prospects of inadvertently damaging additional components in an already defective machine. First, give the machine a careful visual inspection. Burned or bubbly resistors, blown electrolytic capacitors, solder bridges, and other obvious malfunctions can usually be quickly found and corrected. If the problem involves a destroyed component, never install a replacement part until the cause of the problem is found and corrected. Never use a replacement component of poorer quality than the original one.

Next, while it may be necessary to turn on a calculator to find the
symptoms of a problem never leave a malfunctioning machine on longer than necessary. A good example is the overflow indicator. If the readout devices don't light, multiply two numbers whose answer will give an overflow indication. If the "Error" signal is displayed, the problem is not in the input, control, or arithmetic sections of the machine. In this manner possible causes of the trouble can be quickly identified.

Finally, if a thorough visual inspection fails to reveal the problem begin troubleshooting at the point of the improper indication and work backwards checking each associated component. If more than one problem. exists, begin with the simplest since it frequently leads to the major trouble spot. Here's a typical example:

In Fig. 1, the " C " segment in the display fails to light. Follow these steps to isolate the trouble:
(1.) Check continuity from the "C" segment to Q5's emitter
(2.) Check Q5's base for proper incoming signal
(3.) Check Q5
(4.) Check R15
(5.) Check R14

To cover as many troubleshooting procedures as possible, the remainder of this article is divided into subsections describing the problems and symptoms common to the various subsections of almost all electronic calculators. The accompanying Troubleshooting Chart summarizes this material and helps pinpoint many trouble sources.

Keyboard

The keyboard consists of an array of switches either connected directly to the input LSI chip or connected as a matrix which is scanned by the input chip. The latter technique is usually used in multi-chip calculators.

In the direct input technique such as the one shown in Fig. 2, the $0-9$ digit keys are connected to a diode matrix which provides a BCD (Binary Coded Decimal) output. An open or shorted diode will cause incorrect segments on the display readouts to light. A shorted keyboard switch, either digit or function, can cause a great variety of symptoms.

After eliminating other possible causes of the problem, disconnect the keyboard and make entries manually. If this cures the problem, check each switch in the keyboard for continuity. If only one key fails to work properly the problem is in the switch itself, an open line to the input section, or the input LSI chip. Another possible cause of trouble is input lines from the keyboard shorted to one another. This problem can be identified by using a vom to check for shorts.

In most multi-chip calculators, the input chip scans a keyboard matrix to detect entries. In Fig. 3, the keyboard matrix for a MITS 816 desk calculator, the " X " lines are pulsed by the input chip and the " Y " lines are at a negative voltage. When a key is depressed there will be pulses on both lines common to the closed switch.

[^2]

FIG. 1-PARTIAL SCHEMATIC OF DRIVER CIRCUIT for a seven-segment digital readout device. In the problem discussed in the text, the "C" segment of the readout does not Ilght.

The pulses can be seen on an oscilloscope, and, if not present, the problem is either in the keyboard or the input chip. If pulses are seen on a " Y " line with no keyboard entry, that particular line is shorted to one of the "X" lines at the keyboard, the input chip, or one of the interconnection lines. When no pulses appear on the "Y" line with a correct entry, the entry switch is open. An " X " line with no pulses means the input chip is not functioning or the line is shorted (probably to ground). A non-functioning chip is caused by an internal defect, lack of clock pulses, or insufficient voltage. If any key clears the machine, it is shorted to the CLEAR key. And when the CLEAR ENTRY key is shorted the normal display will be on, but the machine will not accept entries.

Power supply

Usually consisting of a transformer and one or more bridge recti-
fiers, some of which are regulated by either a transistor or Zener diode, the power supply is the major source of trouble in most electronic equipment. A close visual inspection is important when a malfunction points to the power supply. A shorted supply line, for example, is indicated by a burned or bubbly series resistor and is usually caused by a shorted regulator, shorted filter capacitor, or possibly a short in the LSI circuitry.

LSI chips generally require two regulated voltages, V_{Gi} and V_{DD}. V_{GG} is a higher voltage and if open or shorted no entries are possible and an error indication is sometimes seen. With a missing V_{bj}, there is no display and no entries can be made.

If the regulated driver voltage is shorted or open, the condition of the driver circuitry determines whether the display readouts are all on or off. But one of these malfunctions will be present.

Both gas discharge and electro-

TO CALCULATOR

FIG. 2-DIRECT-INPUT KEYBOARD with the 0 to 9 keys connected through a diode matrix that provides a BCD output. An open or shorled dlode causes errors In readout Indication.
fluorescent readout devices require a large anode voltage with the latter also requiring a filament voltage. The entire display is off when either of these voltages is open or shorted.

Fig. 4 shows a typical power supply for a calculator using electro-fluorescent readout devices. The +45 V is anode voltage and the -2.4 V is for the filaments. The -26 V and -14 V are V_{GG} and V_{DI}, respectively, and the -5 V is the segment and digit drive bias voltage. If a bridge rectifier diode shorts, the output voltage is reduced. If an input filter capacitor opens, the readout tubes receive unfiltered voltage and appear to flicker on and off. If a capacitor shorts, its voltage line is at zero potential and one or more bridge rectifier diodes may short.

Three of the lines shown in Fig. 4 use Zener diodes for regulation. If the output is open, the total current in the line goes through the Zener diode, sometimes causing it to short and the series resistor to bubble. The voltage line reads higher than normal if the Zener opens. This may or may not cause a problem, and if the difference

FIG. 3-MATRIX-TYPE KEYBOARD. Closing a key places pulses on the assoclated "Y" Ilne.

FIG. 4-A TYPICAL POWER SUPPLY FOR A DESK-TYPE ELECTRONIC CALCULATOR. The one shown ls for the MITS model 816 and uses Zener diodes to deliver regulated voltages.
between the peak voltage and the Ze ner's rated voltage is only a few volts the machine should operate normally.

Clock

LSI calculators, just like full-scale digital computers, require a time base to synchronize all operations. The timing pulse generator is called the clock, and it usually consists of an astable or free-running multivibrator or series of gates in a TTL chip. The former ap-

NOTES

NOMINAL OUTPUT FREQUENCY 130 KHz
ALL RESISTORS IN OHMS
ALL RESISTORS $1 / 2 \mathrm{~W} .5 \%$
FIG. 5-TIMING PULSE GENERATOR is calied a clock In calculator circults.
proach is used mainly in LSI calculators that require a two-phase clock. These are usually one- or two-chip machines. If the timing pulses are missing at the output of the clock IC, the problem is either in the chip or its associated components, or the chip's supply voltage is open or shorted.

A representative TTL clock is shown in Fig. 5. The clock pulses are fed through a buffer for interfacing with the LSI chips, and the absence of pulses can frequently be traced to the buffer transistor. Check for proper voltage at both the transistor and the chip. If voltages are correct, check the clock chip in an IC tester or try it in another calculator. CAUTION: To avoid possible damage to the IC, never substitute a good chip for a bad one
until the problem is discovered and eliminated.

Display drivers

The driver system for a display consists of switching transistors which are sometimes arranged in a Darlington configuration for added current gain. At any one time, a driver transistor is either on or off. Driver circuits are required for the various digits and the segments within a digit, and both are described below.

Digit drivers

The digit drivers are fed from the output LSI chip, and their output goes to the anode of the display device. Fig. 6 shows a typical Darlington configuration used in most drivers. Initially the base of Q15 is positive with respect to its emitter and is driven into saturation. This turns Q16's base negative, turning off Q16 and the digit. When the proper command is received, the digit line output goes negative. This turns Q15 off, which forces Q16 into saturation, and the digit turns on.

A digit which is constantly on can be caused by a faulty output LSI chip, open interconnect leads from the chip to the driver, Q15 open, Q16 shorted, or the readout anode shorted to $+V$.

INSIDE THE HEATHKIT IC-2108 caiculator. Top of main board and rear of readout board shown.

FIG. 6-THE DARLINGTON CONFIGURATION used here is typlcal of the amplifiers used in the digit drivers in calculators. A similar arrangement is used in some segment drivers.

FIG. 7-BCD TO 7-SEGMENT DECODER. BCD Input to IC8 (on pins 1, 2, 6 and 7) is convertod to 7-segment data on pins 9-15. Transistor-palr drivers for segments F and G are shown.

TROUBLESHOOTING CHART

SYMPTOM
No display or entry

Overtiow works but no display

Display always on or oft

Segment always on or off

More than one segment or display device on

Keyboard Swltch failure

All diglts on or off
Random segments on

Function key fallure

Entries not possible
(display normal)
Constant function always on
Dispiay warms up and
turns off

Display flickers

Error Indicator on and no entries possible

TROUBLESHOOTING PROCEDURE
Check: Power Supply
Clear Circuit
Clock Circuit
Check: Power Supply
LSI Chips (output)
Check: Display Digit Driver
Soldering
LSI Chips (output)
Check: Segment Drivers
Soldering
LSI Chips (output)
Check: Soldering

Check: Keyboard
LSI Chips (input)
Check: Power Supply
Check: LSI Chips (output) Segment Drivers

Check: LSI Chips (arithmetic)
Check: Keyboard
LSI Chips
Check: Constant Circuit and Switch LSI Chip (input)

Check: Soldering LSI

Check: Power Supply
Check: Power Supply

Conversely, a digit that never turns on is caused by the opposite of any of the above problems.

Segments drivers

The same basic circuit shown in Fig. 6 is used to drive the segments of the readout devices, but a separate driver is required for each segment. The information coming from the output chip is fed through a BCD to seven-segment converter and then is sent to the segment drivers.

In some driver circuits, such as the one shown in Fig. 7, a shorted transistor can cause the gate in the converter feeding it to short. This is a good example of why a good IC should never be randomly substituted for a defective one. If at all possible, test it in another calculator or in an IC tester. If it's bad, find the cause of the problem before trying a new chip.

Operation of the driver in Fig. 7 is as follows: With no segments illuminated, the output BCD lines are at -5 V and the converter outputs are at OV. If a 2 , for example, is entered on the keyboard, it will appear on the four BCD lines as: $\mathrm{B} 1=-5 \mathrm{~V} ; \mathrm{B} 2=$ $\mathrm{OV} ; \mathrm{B} 3=-5 \mathrm{~V}$; and $\mathrm{B} 4=-5 \mathrm{~V}$. This code at the input of the BCD converter forces the $\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}$, and G outputs to go to -5 V and the remaining segments stay at OV . The -5 V signal at Q1's base cuts off Q1, turns Q2 on, and causes the appropriate segment to be illuminated. This circuit is virtually identical to the digit driver discussed earlier, and the same service procedures apply.

Display devices

Most electronic calculators employ light emitting diode, gas discharge, or electro-fluorescent display devices. The LED readout has characteristics similar to those of a conventional diode. A typical seven segment LED readout has eleven connection pins-one per segment, one for the decimal point, and three for the anodes. LED readouts usually employ a series string of at least two diodes per segment to give dots which merge into a line pattern.

If all the diodes in a particular segment are not illuminated, the readout is defective and should be replaced. When two segments in an LED readout are shorted together internally, isolating the bad readout from others in the display may prove difficult. One way to find the bad readout is to measure the resistance between the two segments on each readout with a high-sensitivity ohmmeter such as a bridge comparator. A second method is to remove each LED readout from the display and test it individually until the defective
(continued on page 80)

Microwave ovens are comparatively simple and easy to service. Be prepared when you're called to fix one.

by D. R. MACKENROTH

microwave ovens are now used in trains, on airplanes and ships, in restaurants, and are proliferating in private homes as well. If a microwave oven fails to operate correctly, most consumers rely on appliance servicemen to repair them, when in fact, the devices contain electronic circuitry that should more properly be maintained by qualified electronic technicians. TV and other consumer electronics service technicians should become familiar with the principles involved in microwave ovens, as well as the specialized service techniques which they require.

How it works

About twenty-five years ago, so the story goes, Dr. Percy Spencer of Raytheon walked past a radar device with a chocolate bar in his pocket. The chocolate became very warm and melted. Intrigued, Dr. Spencer and his associates found that they were able to pop popcorn and heat other foods with the microwave radiation from the radar.

This is the principle used in the modern microwave oven. The oven itself is nothing more than a tightly sealed metal box as shown in Fig. I. Microwaves are generated in a special type of tube, called a magnetron, and fed into the box through a waveguide. A stirrer is also placed in the box. This is simply a slow-speed fan with metal blades. As these blades rotate, they reflect the microwave energy, bouncing it around to all corners and areas of the interior of the metal box.

Without the stirrer, standing waves would be created in the oven, and some regions would be "hot" and some would be "cold".

The heart of the oven is the magnetron tube (see Fig. 2). The tube is basically a diode with a cylindrical cathode surrounded by a cylindrical anode. A strong magnetic field is

created by a large permanent magnet or electromagnet. This field affects the flow of electrons from anode to cathode.

A high negative dc voltage is applied to the cathode from a power supply. The magnetic field changes the trajectories of the electrons flowing from cathode to anode, causing them to return toward the cathode. The tube oscillates at a high frequency (2450 MHz is the FCC-regulated operating frequency for microwave ovens), and the cavities of the magnetron act as resonant circuits. Energy is given up to the cavities by the electrons, producing rf power which is coupled into the waveguide by a small "antenna" at one end of the tube.

As can be seen in the typical schematic of Fig. 3, most ovens also have a timer that turns the oven off when cooking is completed, a fan that (continued on page 42)
FIG. 2-DIAGRAMATIC REPRESENTATION of a magnetron. Its operation depends on a strong magnetic field developed by a permanent magnet or electromagnet.

DOOR INTERLOCK on Heathkil oven prevents the door from opening untll high-voltage to the magnetron is turned oft.

An NTS Graduate

James A. Gupton Jr. graduated from National Technical Schools with a diploma in TV \& Radio Servicing. Today, he's a mighty important man in the world of Electronics!

Research associate with a major electronics corporation; author of numerous articles in electronics magazines; an inventor with five patent applications to his credit. In the field of electro-optics, he has perfected a revolutionary phosphor deposition technique for cathode ray tubes.

Quite a list of accomplish-
ments for a man who began his career with an NTS diploma and a job in TV \& Radio servicing.

Any student can succeed

James Gupton is certainly an exceptional NTS graduate. He proves there's nothing to keep a determined man from becoming a success in Electronics.
As he himself says, "Any student, properly motivated, can succeed in Electronics through home-training."

Every NTS Electronics Course is specially designed to keep you motivated from the time you
start building your first test instrument until you're ready to plug-in your solid-state Color TV or other advanced electronics equipment.

Exciting "Project Method"

 TrainingNTS Project Method Training is the best way to learn electronics.

You build advanced equipment while you learn Electronics principles and applications.

Each week brings new excitement when you actually see the progress you've made.

NTIS buillds selif.conididence.

For a man to become successful, like James Gupton, he must have confidence in himself.

As an NTS graduate you have this confidence. Your training is practical and thorough. You know Electronics from the bottom up. You enter a world of Electronics you're familiar with.

And if you have the drive and determination of a man like James Gupton, there are no limits on your success!
(James Gupton's address available upon request).

NTS COLOR TV SERVICING

Build and keep the largest, most advanced color TV made! Over-all solid-state design, ultra-rectangular screen, matrix picture tube, built-in self-servicing features, "Instant On," A.F.T., solid-state, 24-channel detent UHF/VHF power tuning, and much more! Also build and keep AM-SW Radio, solidstate Radio, FET Volt-Ohmmeter, and Electronic Tube Tester. Learn trouble-shooting, hi-fi, stereo, multiplex systems, radio, color and B\&W TV servicing.

NTS B\&W TV SERVICING

Learn sophisticated solid-state circuitry as you build this B\&W TV Receiver, Lo-Silho "Superhet" Radio, FET Volt-Ohmmeter, solidstate Radio, Electronic Tube

Big, Colorful NTS
Guide to new opportunities in Electronics.
Yours FREE!

NATIONAL TECHNICAL SCHOOLS

 4000 S. Figueroa Street Los Angeles, California 90037Please rush me FREE Color NTS Electronics Guide \& FREE lesson, plus information on course checked at right. No obligation. No salesman will call.

Checker, and Signal Generator. TV and all other equipment are yours to keep.

NTS ELECTRONIC \& COMPUTER TECHNOLOGY

Solid-state Compu-Trainer 14 integrated circuits replace 198 Transistors!
Build
and keep
this exclusive NTS
Compu-Trainer. It teaches you the same principles used in million-dollar systems. Contains 14 integrated circuits! All solid-state! You perform all wiring and patchcording. No shortcuts. No pre-wired circuit boards. Your training is complete! Also receive a FET Volt-Ohmmeter and a $5^{\prime \prime}$ wideband solid-state Oscilloscope.

NTS ELECTRONIC

COMMUNICATIONS

Gain the prestige and earning power of owning and F.C.C. First Class Radio-Telephone license. Two comprehensive NTS Courses cover the big opportunity field of transmitting and receiving.

You build and keep 14 kits, including this amateur phone 6-meter VHF Transceiver, NTS's exclusive 6-transistor solid-state Radio, and a fully transistorized Volt-Ohmmeter. Also, learn 2-way radio, Citizens Band Microwaves, and radar.

NTS INDUSTRIAL \&

 AUTOMATION ELECTRONICSAutomation is the future of industry, and you can play an important part! Learn industrial controls by training on the NTS Electro-Lab (a complete workshop). You also build and operate this $5^{\prime \prime}$ solid-state
oscilloscope. And you perform experiments that involve
regulating motor speeds, temperature, pressure, liquid level, and much more. All equipment is yours to keep.

NTS AUDIO ELECTRONICS SERVICING

Learn sound theory - how it works in home radio, car tape decks, stereo multiplex component systems, and more! Set up a spectacular music system. Learn about sound distortion, amplification and control, loud-speaker baffles, problems of system installation, etc.

Build and keep this famous Heath Stereo Receiver and Speakers Included is Volt-Ohmmeter, InCircuit Transistor Tester and solidstate Radio. Prepare yourself for great opportunities in the Home Entertainment Industry!

CLASSROOM TRAINING

AT LOS ANGELES
You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in technical facilities. Check box in coupon below.

APPROVED FOR VETERAN TRAINING

Accredited Member: National Association of Trade and Technical Schools; National Home Study Council.

NATIONAL SHOMS

World-Wide Training Since 1905 Resident \& Home Study Schools 4000 S. Figueroas St., Los Angeles, Ce. 90037

FIG. 3-SCHEMATIC OF HEATMKIT micro-

cools the magnetron assembly, and a series of interlocks and thermal relays designed to shut down the oven when the door is opened or the magnetron temperature climbs too high. Microwaves can be dangerous-they make no distinction between heating food or heating flesh, and we know that microwave energy is particularly damaging to delicate areas of the body, such as eye tissue.

Testing the control circuitry

A microwave oven never should be operated completely empty. If it is, you can get arcing within the oven and a damaged magnetron may be the result. Always place a load in the oven when it is on. A good load, as well as a test of the oven, is to place a cup of water into the oven. Then set the timer for five minutes. If the oven is operating correctly, the water should be boiling in $11 / 2$ to 3 minutes. Don't use metal utensils, pots, or foil in the oven-this can also cause arcing, since metal surfaces reflect the microwaves and do not absorb them.

For a more accurate measure of the output power (in watts) of the oven, measure the temperature rise of
a specific amount of water in one minute in the oven. Measure 500 mil liliters of tap water into a ceramic or china dish, heat the water in the oven and measure the temperature rise. Use the formula:

$$
\mathrm{P}=(\mathrm{T} 2-\mathrm{T} 1 \times 35)
$$

where
$\mathrm{P}=$ power in watts
$\mathrm{T} 2=$ temperature in ${ }^{\circ} \mathrm{C}$ after heating
$\mathrm{Tl}=$ temperature in ${ }^{\circ} \mathrm{C}$ before heating
Don't leave the thermometer in the oven when it's on, since the mercury is a metal and will reflect microwaves, perhaps damaging the oven.

If the oven doesn't go on at all, check the interlock and timer switch loop. Clean the oven door and make sure that it will close completely, since small particles of food can work themselves into the seals and keep the door from activating the interlock switch. If food does not heat evenly in the oven, check the operation of the stirrer.

Magnetron and high-voltage tests

If the oven appears to operate normally (the stirrer turns, the timer
works, etc.), but there is poor or no heating, the trouble is probably in the magnetron or its power supply. If you are checking these circuits, make sure the unit is unplugged and you've bled the filter capacitors first.

Check the magnetron for loose or dirty connections. It may be a good idea to clean the contacts of the magnetron and the waveguide with metal polish, then remove any residue with alcohol. Dirt or corrosion can severely cut down the efficiency of microwave circuitry. Be careful working around the magnetron, though, since most magnetron tubes have a warranty and

MICROWAVE OVEN is Heath's GD-29 klt. Four panel lampes show operating status at all tlmes.
they are expensive-typically well over $\$ 100$ each.

To check the magnetron and associated circuitry, the first step is a simple resistance check. The heater of the magnetron should read about one or two ohms, and the resistance from the cathode to the anode of the mag. netron should be infinite.

A good check to make is to read the anode current of the magnetron. Some manufacturers have placed a 10 ohm, 5 or 10 -watt resistor in series with the rectifier diode, and reading across this resistor with a dc voltmeter gives a reading for the anode current. If, for example, the voltage drop across the 10 -ohm resistor is 3.0 volts, the anode current is 300 mA . If the manufacturer, as in the diagram in Fig. 3, has not inserted this resistor, you can put one in the circuit for test purposes. Place the resistor, a healthy 10 -ohm, 10 -watt wirewound type, between ground and the cathode of rectifier diode D3. Remove the resistor when tests are completed.

Although manufacturer's specifications should be checked to make sure, anode current in most magnetrons used in microwave ovens will usually range from 250 to 320 mA . A small fluctuation, 5 to 10 mA on either side of the reading is normal, but wide changes of anode current indicate that the magnetron tube has an internal short or is moding (oscillating at a frequency other than the designed frequency of operation). Although anode current is normally not adjustable, the circuit in Fig. 4, from the Westinghouse microwave oven, includes a coil for the electromagnet of the magnetron and a 5000 -ohm 25 -watt, ad-

FIG. 4-MAGNETRON POWER SUPPLY. Current through electromagnet is adjustable so you can set magnetron's anode current.

FIG. 5-EXPLODED VIEW of typical microwave oven and magnetron assembly. You'll need thls sort of Informatlon when removing a defective magnetron and Installing a new one.
justable wirewound resistor. This resistor is used to set the magnetron current to its optimum value (300 mA in the case of this Westinghouse oven).

If anode current is nonexistent or very low, all components in the power supply should be eliminated before the magnetron is changed. With a high-voltage probe, measure the anode voltage, but remember that it will normally be in the $2500-4000 \mathrm{Vdc}$ range. If you have to change the magnetron, be very careful to get all seals and gaskets back in the way they came out. Lay them out on the bench in the order they are removed to facilitate reassembly. Fig. 5 shows a typical

THIS MICROWAVE OVEN, Mlcromile model 2000 has timer dial and see-through oven door.
magnetron installation, as well as a partial interior of a microwave oven.

A visual inspection of the magnetron may reveal faults. A crack in the glass envelope around the antenna, for example, may indicate excessive vibration or rough handling, or possibly that the magnetron was installed incorrectly. The interior of the tube will take on a milky, whitish color if air has gotten into the tube. If a sunken place or a bubble has developed on the glass envelope, it means that the magnetron probably has been overheated by operating it without a load in the oven.

When a new magnetron is installed, the old one should be kept, and the serial numbers of both tubes recorded. For the warranty to be valid, the old magnetron must be sent back to the factory, along with the serial number of the tube that was newly installed.

Leakage, seals and testing

The Bureau of Radiological Health of the Department of Health, Education, and Welfare, regulates the permissible radiation that can emanate from a microwave oven. Under these Federal standards, radiation leakage '(continued on page 47)

I NEEDED A ROBOT PHONE GADGET, and I unpacked my spanking-new one with a little anxiety. After all, how good could such a machine be when it retails for $\$ 129.95$? Next, I opened the manual and read. This was no ordinary tape recorder that you could turn on and use right away without instructions; it's two very specialized tape recorders in one package and it's designed to do just one thing in this world: answer the telephone.

I got to the section on recording your answering message. There's a continuous-loop of tape for this message and it holds 30 seconds worth of your own voice. Thirty seconds! How would I ever record that much material; after all, what do you say besides "Hello," and "Please leave your name and phone number"? I soon found out. I read the suggested sample message in the instruction book, then composed a revised version of my own:
"Hello. This is Eugene Walters. I'm out right now, but will return shortly. That's right. You're talking to a friendly robot, and it'll take a message as well as the best secretary. So when the beep sounds, won't you please leave your name, phone number and any brief message that you like. I'll return your call as soon as I can. Remember, wait for the tone before you start talking, then leave your name and phone number. Yes, I will call you back. Thanks for calling, and wait for the tone before speaking."

I read it over, got out the stopwatch and put on my best radio-an-

SHE WON'T MISS ANOTHER CALL with the Dictaphone Ansatone 640 answering device.

FIG. 1-REDUCED TAPE WIDTH (a) and a slot in tape (b) are two ways of controlling the recorders.

nouncer's voice. On three readings, I got 32 seconds, 27 and finally 29.

My new phone robot uses two tape drives. One is a continuous-loop drive for the answering message and has a 30 -second duration. The other is a reel-to-reel tape that's locked to the reels at both ends. According to the book, it's long enough to hold 30 halfminute messages.

A machine like this-and other inexpensive phone recorders, work basically the same way. The outgoing (answering message) is recorded on an endless loop of tape. At the end of the message, there is either a strip of metal foil, or a physical change in the tape to operate a switch. In the Phone-Mate, a piece of leader tape is spliced into the loop, and this leader

FIG. 2-BLOCK DIAGRAM of a typical telephone answering machine connected to the Incoming telephone line. Some message recorders use cassettes for quick removal and storage.

telephone answering robots

> An automatic telephone answering machine is a boon to small businesses and to anyone who cannot be at his phone at all times. Here is what they are all about.
going recorder and closing $\mathbf{R Y} 2$, which latches. RY2 triggers a short oscillator tone burst (the "beep"), powered by a stored capacitor charge, and starts the message recorder-a rimdrive unit that runs at approximately $33 / 4 \mathrm{ips}$. At the same time, an L-C circuit with a time constant of about 30 seconds starts to charge. When this circuit is fully charged, it dumps its load across RY2, causing it to unlatch, shutting down the entire machine. The machine is now ready for the next phone call.

Acting as an interface between the phone line and the recorder is a phone-line matching circuit, which looks to the phone line like any ordinary extension telephone. It's usually at a telephone location, and a "sandwich" phone plug is supplied which plugs into a standard telephone company jack, and accepis the jack phone's plug on its face (see Fig. 3). If you're using the unit with a phone that isn't equipped with a jack connection, you can hook it up as shown in Fig. 4. The other end of the cable

FIG. 3-CONNECTOR PLUG is a handy adapter to intertace line and answering device.
plugs into the Phone-Mate via a sixpin DIN connector.

Tapes can be changed when worn or damaged. Or for that matter, the outgoing message tape can be shortened easily, simply by snipping out some tape where the leader is spliced in, removing a turn or two of tape, and resplicing. Thirty seconds does seem overlong for an outgoing message.

Other low-cost phone-answering systems are packages of electronics that require the addition of a standard lape recorder to take messages. Such machines have an outgoing message recorder, and most of the electronics shown in Fig. 2, but don't have the message recorder. Connecting cables are provided, and the recorder that's used for this purpose must be left in the "record" position permanently.

There are several limitations to most inexpensive machines. For one thing, there's the 30 -second limit on phone messages; also, the message tape can't be easily removed for file storage or later reference; and there's the unit's limited capacity- 30 messages total is plenty for the consumer, but possibly not for business.

To avoid these problems, a more sophisticated (and more expensive) system is called for. Several models made by Record-a-Call offer definite advantages. Depending on the model purchased, messages are taken on open reel tape ($3^{3 / 4} \mathrm{ips}$, capstan driven) or on a standard cassette-and in either case, the tape can be quickly removed for storage. The outgoing message is on a built-in endless loop tape, and standard length for this message is 20 seconds-although the tape can be changed easily for longer or shorter messages.

The outgoing message tape is set

RECORD-A-CALL UNITS (right) give operator a cholce of three outgoing mes--age channels. A lilck of a switch selects the desired message by moving the head assembly.

FIG. 4 (below)-HOW TO HOOKUP ANSWERING DEVICE to a phone not equipped with a plug-and-jack connection. The phone line may be direct or patched through a switchboard.

TO

ANSWERING
MACHINE
up for three-channel operation; a selector knob picks one of the three tracks, marked for alternate messages. Thus, the user can change outgoing answering messages by turning the selector knob. This change in message capability is especially important for professional offices, where a doctor may be on call and wishes to direct the caller to dial another number, or may be on an emergency, or may simply want the caller to leave a message.

Businesses may want to use different messages for lunchtime closings, evenings and weekends. It's simpler than changing the message cassette as some recorders do, although it's limited to choice of three such messages. Still, this is adequate for most businesses. The message channel is changed by moving the head assembly up or down with the selector knob.

Like other answering equipment, these machines plug into a phone jack with a sandwich plug. For installations where the jack isn't available, and where any kind of direct connection might raise Cain with the local telephone company, equipment is available that makes no electrical connection at all. Instead, the telephone handset is placed on an acoustic coupler and a solenoid-operated finger operates the telephone's relay plunger. This may look a little Rube Goldbergian, but phone company rules are still open to such a wide variety of legal interpretations, that this type of arrangement is all that can be used by some businesses.

In some machines, the outgoing message tape uses a central cutout for triggering, as shown in Fig. 1-b. The cutout portion in the center of the tape admits a feeler which operates a switch to trigger the message-taking cycle. The electronics in these units is highly sophisticated. Such features as adjustable ring lets the user leave the recorder connected and turned on at all times. By setting the unit to answer on the fourth or fifth ring, the machine will even answer the phone when the user is on the premises but too busy to answer. In cases like this, the outgoing message option chosen may simply say, "I'm tied up at the moment but will pick up the phone in a minute or so. If you can't wait, please leave a message after the tone."

Unlike less expensive machines, the better units are caller-controlled; they'll take as long or short a message as the caller wants to leave, and will continue to record until he hangs up. Some manufacturers provide the option of voice-activated control, and such machines will stop recording if there are "six or eight seconds of silence. Because of the unlimited time of recording on these units, it's possible to call your own office and dic-

OUTGOING-MESSAGE TAPE and etectronics of Fhone Mate telephone answering machine. PInch poller la always against the capstan and can cause liats to doretop on It.

THE GEMINI, by Record-A-Call uses physical IIt unit and offers a cholce of acoustic or inductive coupling so there is no need for direct electrical tle to phone ilne.
tate lengthy memoranda or even letters for your secretary, who can pull the cassette and replace it instantly with a fresh one while she's transcribing dictation.

Another type of phone-answering unit is the announcer. This species is favored by movie theaters and special services like "dial-a-prayer" and others. A recorded outgoing message is played for the caller, and it can be a fairly lengthy one, depending on the length of the cassette used. The message can be changed instantly by simply replacing the endless-loop cassette. The tape itself is a specialized contin-uous-loop cassette/cartridge of a nonstandard size. It's somewhat larger than a standard cassette, and much smaller than an 8-track cartridge. This same cassette is used by other manufacturers too.

The low-cost phone-answering machine has its place in the scheme of things. These machines, because of their low cost, are appealing to the consumer, hobbyist and private citizen who would like to have his phone answered on a 24 -hour-a-day basis

Most sales agencies also offer service and usually have service contracts that are often figured into the selling price. The solid-state electronics usually don't create problems; the main service areas involve replacing tapes and possibly adjusting and cleaning relays. The serviceable mechanical areas are all accessible and pretty much self explanatory in their operation.

Special options add to the robot's versatility. The remote message pickup can operate in several ways, depending on the unit. On one machine, it's

SLOT IN OUTGOING-MESSAGE TAPE activates switch to slop the announcement loop and tum on the message recorder in the Record-A-Call answerling machine.

A NOTCH IN THE MESSAGE TAPE controle change-over In the Phone Mate. The feeler of a sensitive snap-action swhich drops Into notch to activate process.

PHONE-MATE answering machine can be used with any telephone.
a plug-in, add-on module. Incoming messages are recorded as usual, but when the owner calls in and beeps his electronically coded remote "key" into the telephone, the machine plays back its messages.

Some remote units have extra features, such as keyed backup for repeating hard-to-understand or complex messages. In all cases, a special elec tronic "combination" code is used to trigger the unit-a different combination for each one.

One recurring problem is the robot user who leaves and forgets to luin the machine on. Obviously, the onit can't answer the phone if the switch is turned off. But there's an answer to that one, too. There's a unit soon to appear that will turn itself on after the fourth ring, so it simply can't be forgotten.

RADAR OVEN REPAIRS

(continued from page 37)
from a microwave oven cannot exceed 1 mW per square centimeter prior to factory release and 5 mW per centimeter measured at a distance of 2 inches from the oven at any time thereafter.

Oven doors are usually sealed primarily by a choke section, a quarterwave slot around the inside of the door. As you can see in Fig. 6, this is

FIG. 6-RADIATION FROM INSIDE OVEN Is prevented by a quarter-wavelength slot or trap section around the door perimeter.
backed up by a secondary, Teflon-covered metal-to-metal seal. Particles of food or grease, or wear on the seals themselves, can cause leakage, and an unconnected neon bulb held next to the edges of the door, will indicate leakage. If the edge of the door feels warm to a finger run around it while the oven is operating, leakage is probably excessive.

More accurate tests of leakage are performed with commercially-made leakage testers, such as International Crystal Corporation's Microlite 287 and Microdek 310. The 287 is a simple bulb that glows when radiation levels exceed $5 \mathrm{~mW} / \mathrm{cm}^{2}$. The Microdek 310 has a meter that reads 0.4 mW to 23 mW in two scales.

To test an oven for leakage, place a measuring cup or bowl filled with water in the oven. Close the door, turn on the oven, and set the timer for the longest available time. The meter probe usually has a spacer that places the antenna of the leakage detector at the proper distance from the oven. Place the tip of the probe into one of the cracks where the door contacts the oven and slide it back and forth all along the door. At the point where maximum indication is obtained on the meter, the level should be recorded and the meter turned 90° and another reading taken. The sum of the (continued on page 90)
there are at least three reasonable ways to make your Superclock (Radio-Electronics, July and August 1972) or any other parallel-load clock self-resetting and always accurate. One is to use National Bureau of Standards stations WWV and WWVH. A second is the television timing system, whith WWVB is experimental. A final way is with WWVB, a $60-\mathbf{k H z}$ station of the Na tional Bureau of Standards broadcasting from Fort Collins, Colorado. WWVB a day. The conte inuous time code 24 hours a day. The code is in Greenwich Mean time, but this is easily converted to local time with the Time Zone conversion chip in the Superclock. The performance of West in varies across the country, being east, far south, and in noisy industrial far high thunderstorm areas. Depending or your area, you might get reliable reception with a very simple system, or you might not get good enough results to reliably run a clock even with the most exotic techniques. We'll try to show you how to build up several receivers, ranging from the able decoder. What wex, along with a suittee results-but What we won't do is guarantee results-but with our circuits and subsystems as a start, maybe you can avoid all way.

Even if you can't get continuous coverage, a late night update can usually be used to keep your clock accurate, with the crystal timebase filling in between updates. The systems we'll talk about were tested in Phoenix, Arizona, where the simplest system worked very well and in San plicated system where the more complicated system gave acceptable performance in the middle of a high industrial
noise and high topical noise and high topical storm area. Your of the Mississippi, but NBS
Neover dificult east of the Mississippi, but NBS coverage of the
entire US by WWVB is entire US by WWVB is termed "adequate" citing project.

About WWVB

You can find out about all of the NBS services by getting a copy of NBS Frequency and Time Broadcast Services, NBS Special Publication \#236 for 25 from The Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, Stock Number 0303-0866. Or, you can subscribe to the NBS Time and Frequency Services Bulletin, a monthly publication that gives day-to-day operating details coming changes, and so on. WWVB transmits on.
WWVB transmits a continuous $60-\mathrm{kHz}$ carrier 24 hours a day, except for occatransmitter is located in Fort schedules. The rado and the located in Fort Collins, Colorado and the transmitted power is 13,000 Watts. Field strength contours for the for the code modulation we'll 1. Except about in a minute the sion we'll tell you about in a minute, the signal is all carrierthere are no voice announcements, no tics, geoalerts, or anything else. At the beginning 10 decibels in the carrier suddenly drops sion of "half value" giving the impression of "half value" on a peak-to-peak
scope display. The scope display. The signal stays low for a again, dropping on the next second

One bit of an elabext second.

Experiment with WWVB

Details on various $60-\mathrm{kHz}$ reception techniques that can make your superclock self-resetting and always accurate. These are strictly experimental systems, described for advanced electronics buffs only

by DON LANCASTER

presented each second by the duration of the low part of the code. If the signal stays low for 0.2 second, you have a "0." If it stays low for 0.5 second, you have a "l." If it stays low for 0.8 second, you have a "P" or framing pulse. These pulses are shown
in Fig. 2, along with the complete code. The code repeats every minute code. out with two "P", pulses in a row start fying the start of a minute. Next comes the " 10 minutes" information, followed by the

Hz from Ft. Collins, Colo.

FIG. 1-SIGNAL STRENGTH of wwve broadcast over the contlnental U.S.
onds. This is followed by the "ten hours" information, and the "hours" information, ending up with a P pulse at 20 seconds. Beyond 20 seconds, the code goes on to give you the day in the form of a number from 1 to 365 or 1 to 366 , and some "fine grain" time information we won't be using.

The code repeats once each minute, updating the information for that minute. Since it takes at least 10 seconds to get out the minutes information, the code runs 10 seconds late. To beat this, you preload a " 10 " into your seconds counter at the time you update the minutes information. The time-zone chip in the Superclock automati-

TRADITIONAL LOOP ANTENNA. Note Insulating eection on shleld.
cally takes care of the 2400 hour GMT to local time conversion.

So, to get from WWVB to a Superclock update, we need a $60-\mathrm{kHz}$ receiver that picks up the signal and converts it to a reliable string of " 1 "s and " 0 "s. Then we need a decoder that converts the " 1 "s and " 0 "s into a proper format and decides when the Superclock is to be updated. The decoder is easy and reliable-the problem is the receiver.

WWVB is completely free from fading and keeps a remarkably stable output, except for a short diurnal variation for a few minutes at local dusk and dawn. The low frequency allows very accurate timing information with the whole world behaving as a waveguide to bring the signal to you without any of the problems common to the shorter wavelengths. There's almost always enough signal. The problem is that WWVB is an AM system at low frequency and there is substantial terrestrial and manmade noise, particularly near thunderstorms

WWVB PREAMP is in the loop antenna. It should be completely shlelded.
and in industrial areas. So we have to start with a stable, narrow-band receiver. If we are lucky, that's all we'll need. If not, we'll have to go to some more exotic reception techniques.

Building a preamp

Regardless of what you do with your receiver, a good preamp is absolutely essential. The one we'll tell you about is simple and cheap-but has been the result of many hours of painful testing and lessons learned the hard way.

Before you do anything, if you could beg, borrow, or steal five minutes of time on a real, high-quality, military field strength receiver (Singer, Empire Devices, etc.) with a low-frequency plug-in, you can get a fair idea of how hard the signal will be to receive. Use a vertical antenna, a location above all local metal, and try it an hour after dusk. Tune to 60 kHz and watch the S meter. If there's any hope at all, you should get a fairly strong signal on the meter with a distinctive once-each-second sudden drop in amplitude. You should be able to read the code except for occasional noise pulses, and the background level should drop below the minimum signal as you tune off frequency.

A shielded loop antenna is essential for the preamp. It's shown in Fig. 3 along with the complete preamp schematic of Fig. 4. Start with 6 feet of copper tubing, insert a piece of 12 -conductor surplus shielded cable, and bend it into a loop. Terminate it in a conduit housing that's big enough to hold the preamp. Be sure to use a plastic fitting on one end to keep from getting a shorted turn on your shield. These are available in many hardware and electrical supply stores and are intended for shockproofing electric hot water heaters. The shield must be double (the cable plus the tubing) and has to be this thick because of the skin effect at 60 kHz requiring considerable shield thickness. The final form of the loop will be slightly over 2 feet in diameter.

The loop is completed by wiring the conductors together to form a 12 -turn loop and then soldering the shield and tubing at one end only. Tune this coil to 60 kHz with high-quality polystyrene capacitors or the much more expensive silver micas. Any other capacitor type is unsuitable. The coil Q should be around 25 to 40 . More will cause temperature and tuning problems. less will let in too much noise.

FIG. 3-SHIELDED-LOOP ANTENNA for recelving wWVB broadcasts.

FIG. 5-A SIMPLE WWVB RECEIVER can be built around a Nallonal LM372 IC. Just follow this basic schematic.

If you're real lucky, you'll have around $0.5 \mu \mathrm{~V}$ to play with. So, you'll need a very high gain, extremely low-noise preamp. Use the transistor called out or another one designed specifically for low-noise, high-gain operation. This one runs a gain of around 1200 with a 0.5 dB noise figure at a $75-\mu \mathrm{A}$ collector current. A shielded, temperature compensated, variable cup core is used for the collector load, tuned with a silver mica capacitor. One suitable cup is the \#448-07. 25 mHy .

Costs around $\$ 4$ from Caddell Burns Mfg. Co., 40 East 2nd Street, Mineola, N.Y. 11501. A special \#2103 tuning tool is $\$ 1$ extra. The Q of this tank should be over 200 for proper noise reduction. Thus, the coil, the tuning capacitor, and any loading all get into the act. A Darlington emitter follower, using a superbeta transistor driving a plain one superimposes the signal onto the $\mathrm{B}+$ line so you can drive $30-50$ feet of shielded single-conductor cable. You power the preamp from a 9 - or 10 -volt supply. A 470 -ohm dropping resistor and capacitor to demultiplex the other end. The supply line must be thoroughly bypassed to prevent any stray signals from getting into your receiver.

The output signal level should be over 100 microvolts in a poor area and up to 4 millivolts in a good one, getting the signal up big enough that we can handle it with ordinary IC's.

To use the preamp, get it above all local metal and point it towards Fort Collins, Colorado, or so the hole in the loop is pointing 90° away from Fort Collins. This is the optimum signal position, although turning it slightly from this might reject some directional local interference.

Hook up some supply power and look at the output with a sensitive $100-\mu \mathrm{V}$ audio voltmeter, or add some raw gain and look at the output of your amplifier with a vom. Unless you can get a reasonably legible, if somewhat noisy, signal, there's no point in going any further. Try reading the code. Unless the preamp can get you at least a recognizable signal, there's no hope for anything further down the line. Both the loop and the tank cup core should be tuned for maximum amplitude. Try rotating the loop 90° and see how far out of the noise the minimum signal is.

At this point, you should have a good idea of how rough the reception job will be. If it looks like you could arc weld with
the signal-fine, a simple receiver is all you need. If the signal is barely identifiable, some more exotic techniques will do the job. If it's not there, either you don't have a working preamp, it's daytime of an alternate Tuesday, or else the job is hopeless. Above all, don't go beyond this point until you are confident you can get results. Total cost this far should be under $\$ 8$.

A simple receiver

A National Semiconductors LM372 makes a dandy receiver. The IC has two sections-an initial age stage which you can capacitor couple to a high-gain stage and a detector. You should get several tenths of a volt of detected output signal, and you can monitor the output with a vom. Be sure to have data sheets on this and all the other transistors and IC's on hand when you are working with them. Also, if you attempt preamp tuning with the LM372 attached, don't forget to defeat the agc or you won't see your tuning peak. If you can get reliable results with this simple system, all you have to do is add a suitable comparator on the output to get l's and 0's and then go straight to your decoder. The simplified receiver is shown in Fig. 5.

Some advanced techniques

At this point in the game, you either have a good signal, a marginal one or a worthless one. If it's good, you're done at low cost. If it's a little marginal, maybe some of the tricks we'll show you will help. Which ones you want to use depends on what you want to spend in the way of time and effort and how close you are to reliable operation. Here's a rundown of suggestions:

TECHNIQUE No. 1-Clip the impulse noise. Much of the interference will be caused by high-amplitude, high-energy spikes of short duty cycle many times the signal amplitude. If you can clip these off at twice the normal signal level, they won't contribute nearly as much to problems later

in the circuit. The limiter has to be inside the agc loop, and the inside gain has to be adjusted so that limiting takes place at twice the normal signal level over the normal operating agc range. Once set properly, the agc will accommodate a reasonably wide range of signal levels without the clipping level moving around too much. It's absolutely essential that you limit the noise before further filtering or detection, for the impulse noise gets wider and lower with further processing. Thus you want to remove as much of the noise energy as soon as possible in the circuit. Fig. 6 shows an experimental circuit that includes the limiter with some of the other advanced techniques. The circuit includes the basic receiver and is used with the preamp.

TECHNIQUE No. 2-Watch how you reduce the bandwidth. The way in which you end up with a final narrow-band detected signal can make a drastic difference. The effective noise bandwidth at the preamp with a Q of 200 is $60,000 / 200$ or about 300 hertz. We need a final "video" bandwidth of around 3 hertz. Here's some facts of life on how we can pick up signal to noise ratio while we decrease bandwidth:

1. If you do your filtering after detection, you will only improve the signal-to-noise ratio by $\sqrt{100}$ or a factor of 10 . This is how the simple receiver of Fig. 5 does the job.
2. If you do your filtering before detection, you will improve the signal-tonoise ratio by a factor of 50 which is slightly better than seven times or 7 power dB better than the basic receiver.
3. If you don't detect. but instead you multiply (autocorrelate) the signal with a limited version of itself and then filter, you also gain 7 times or 7 power dB over the basic receiver. The filtering is now much cheaper, but the circuit more complex.
4. If you don't detect, but instead multiply the input signal (cross correlate) by a signal that looks like WWVB is supposed to and derived from an ultra narrow band phase-lock loop, you can do three power decibels or twice as good as in 2. or 3. The ultimate improvement is then 10 times or ten power decibels better than the simple receiver.

FIG. 7-VARACTOR-TRIMMED CRYSTAL OBcillator improves noise 3 dB .

FIG. 8-LOW-PASS FILTER Is used to filter the output. GIves a dB or two of additional Improvement.

By the way, the final "worst case" sig. nal to noise ratio must be at least 14 dB fos error free code reception.

We already went route 1 with the simple receiver of Fig. 5. For 2, all we need is a nice $6-\mathrm{Hz}$ wide, temperaturestable, accurate 60,000 hertz filter. Lots of luck. We tried a bunch of very expensive ones, including quartz resonators, magnetostrictive stacks and ultrasonic filters. All of these worked but were too expensive. You might try several preamp circuits cascaded; this will reduce the signal bandwidth somewhat but probably won't be cost effective and could cause oscillation and shielding problems. $60-\mathrm{kHz}$ crystals have too high a Q , even if you let air into the can to damp them, although a pair of crystals properly stagger tuned probably would work. Again, it's not cost effective.

For 3, use the limiter/multiplier. shown in Fig. 6, and you'll get good results. This IC is under \$3. Make absolutely certain the limiter output is a noise-free square wave. Incidentally, this output also makes a reasonable precision frequency reference for lab work if it is hard limited.

This multiplication technique is not detection. It translates the signal down to dc, and a filter following it acts just like a narrow band filter in the rf. Since both sidebands fold over, a 3 Hertz low pass output filter does the same job a 6 Hertz Bandpass RF one would.

For 4, you have to ask whether another 3 dB is really worth all that effort. Anyway, a block diagram is shown in Fig. 7. First you build a varactor-trimmed crystal oscillator that runs within a few hertz of 60,000 Hertz. You build a phase detectos and an integrator with a half-minute time constant, and critical loop damping. Full details are in Phaselock Techniques by Floyd Gardner, published by John Wiley. Master the book before you start.

The theory of the phase lock loop says that you are reconstructing a replica of WWVB that averages out all the noise. When you multiply (cross correlate) this signal against the regular received WWVB. the signal you want gets translated down to dc. Noise that happens to be out of phase (in quadrature) with the signal gets cancelled, while other noise gets reduced in proportion to its phase angle. The average statistical reduction of the noise is 3 dB , os 0.707 . It probably isn't worth it, although you get an ultra-accurate, ultra-stable lat standard in the bargain. Note that IC phase
lock loops are hopelessly inadequate for this job where the stability has to be measured in drift rates of cycles per minute.

EXPERIMENTAL SUPER-LOOPSTICK Is shown less shleld. Rods are $51 / 4$-Inch long, Figure of mert is around 2. Resonating capacitor is around 235 pF .

TECHNIQUE No. 3-Filter the output sharply. If we only need 3 Hz bandwidth to get the signal we want, anything else beyond 3 Hz is noise. If your filter falls off slow, you pick up extra noise. So, use a second order low-pass like the one in Fig. 8. It only buys you a decibel or so of improvement, but it's simple and cheap. Fig. 8 also shows a comparator that converts the analog code to digital logic levels.

Once again we've just run out of space and cannot complete this article till next month. In the September issue we will present details of an improved receiver and a decoding circuit including two more schematics.

PC BOARDS
Replicas of the PC boards for the Preamp (Fig. 4) and the Flywheel (Fig. 9) are available free from

SOUTHWEST TECHNICAL PRODUCTS
219 WEST RHAPSODY
SAN ANTONIO. TEXAS 78216

Lee de Forest

WHY THIS ARTICLE?

August 26, 1973 marks the 100th anniversary of the birth of Lee de Forest. And it is in recognition of the many contributions of this electronics pioneer that this article appears.

In this age of solid-state, after 25 years of the transistor, many of us are inclined to underestimate the importance of the fundamental invention of electronics, the vacuum tube. Yet before the 25 years of the transistor. we have had 40 years of the tube.

Indeed, if we had been forced to continue with the crude methods of transmission and reception of the pre-tube era, it is unlikely that radio communications would have developed enough to make the research that led to the transistor's invention possible.

So, as de Forest is acclaimed as the Father Of Radio, his vacuum tube can be considered the progenitor of the transistor-the father of solid state.

De Forest's most important invention has, unfortunately, overshadowed his other accomplishments, which would have made him probably the most important figure in American radio communications without it.

Most of the more important "wireless" stations now operating along the Atlantic coast were established by him. His "radio knife" of electronic surgical scalpel is well known in the medical field and our present talking movies follow very closely the principles of the de Forest Phonofilm.

The Audion-the vacuum tube triode; telephone dialer; and an electronic scalpel

by FRED SHUNAMAN

LEE DE FOREST-LIKE TOO MANY OTHER figures in the history of electronics-is already becoming a victim of neglect by those who write the histories of radio. Given the honorific "Father of Radio" for his invention of the Audion amplifying vacuum tube, practically none of his other work is men-tioned-nor remembered. And illiterate historians-because of a superficial resemblance between the two de-vices-are prone to describe even de Forest's most important invention as a mere improvement on the Fleming valve rectifier. Yet-invention of the vacuum tube aside-de Forest was the prime figure in the development of radio communication in the United States.

Graduating from Sheffield Scienlific School, Yale, in 1899, he had chosen for his Ph.D. thesis, "The Reflection of Hertzian Waves from the Ends of Parallel Wires." Marconi was then demonstrating his equipment in England (where he was denounced by some as using the apparatus of Lodge). Popov was experimenting between his station at Kronstadt and ships of the Russian Navy, and Ducretet had sent signals from the Eiffel Tower in Paris to the Pantheon,

4 kilometers distant. Tesla had (in 1898!) actually demonstrated remote radio control in Madison Square Garden, New York City. There was enough "wireless" in the air to fire the imagination of the newly hatched Ph.D., and he immediately sought employment in the communications field, meanwhile starting to work on a detector of his own, which he called the Responder.

This first de Forest detector was patterned on a principle described by the German scientist Aschkinass. A drop of liquid (de Forest spent many weeks trying to find the perfect one) between two contacts carried current until the arrival of an electric wave. Then its resistance rose suddenly, due to the breakdown of "little trees and bridges" of metal in the liquid. Its great weakness was that after a timeranging from minutes to days-it would "clog" and pass current continuously.

Working in Chicago, first for Western Electric, then part-time as assistant editor of the Western Electrician and receiving some support from a fellow-worker, Ed Smythe, de Forest brought the Responder to a point considered usable, and-jointly

100th Anniversary

Abstract

SCHEMATIC OF THE FIRST AMPLIFIER ever constructed. "RepeatIng coll" is an old telephone term lor transformer. The clrcult was made 80 strength of the signal can be varied and has a variable resistor shunt lor phones $s 0$ amplified and unamplified signals could be compared. \leftarrow hugo gernsback, lounder of thls magazine, as he presented In 1947, a copy of the special "de Forest" Issue to Dr. de Forest. The Jan. 1947 lssue of Radio-Craft marked the 40th anniversary of the trlode vacuum tube.

the first radio signal jamming; an automatic are all the inventions of this man

with Smythe-took out a patent on it.
The famous "gas mantle" incident occurred during this period. Smythe and de Forest noted their spark discharge caused the gaslight to brighten, and devised an interesting theory to account for it. When they found it was simply the sound waves from the spark gap that caused the effect, de Forest refused to abandon the "ionized gas" theory. Finding that a gas flame was, indeed, a crude detector of wireless signals, he patented during the next several years some 11 devices using ionized gas, the last one being the Audion.

Having developed equipment that would work reliably over at least four miles, de Forest went East with the idea of covering the upcoming International Yacht Races by wireless for the Associated Press. But Marconi had already signed a contract with them. After some trouble, de Forest got a contract from the Publishers Press Association, loaded his equipment on a tug, and went out to write a new page in the history of wireless.

That new page was the discovery of interference. Both Marconi and de Forest had heard of tuning, but neither considered that refinement neces-
sary. They jammed each other hopelessly, and the race reports were transmitted to shore-wirelessly. sure enough-by wig-wag flags.

De Forest in business

Organizing a small firm, the American Wireless Telegraph Co., to raise capital to improve his apparatus, de Forest struggled to keep alive through the rest of the year. In January 1902 he met the first of the "businessmen" destined to move the de Forest fortunes into affluence and bankruptcy not once, but three times. Abraham White was a highly successful professional promotor, who was convinced there was money in the glamorous wireless field. Not as critical as de Forest's technical friends, he asked only that the equipment show up well enough to persuade investors to buy stock. Absorbing de Forest's company, he formed the American de Forest Wireless Telegraph Co., and de Forest found himself with capital to work with-plus a regular salary of \$30 a week!

His first development was an acoperated spark transmitter, with a "high-frequency note" of 120 Hz , which produced a sharper and easier-

WHAT WAS THE AUDION, REALLY?
What actually was this Audion, de Forest's most important invention? Was it-as some say-simply an improvement on the Fleming valve ("de Corest inserted a third electrode") or was it an entirely separate invention?

The answer is that the Fleming valve and the de Forest Audion are not only two distinct inventions, but belong to two different families of detection devices. The Fleming valve is a rectifier. As such, it takes its place with Fessenden's Wollaston wire desector and the crystal detectors of Pickard and Dunwoody. The de Forest Audion is a relay-a device that uses the radio signal to trigger or control a greater amount of power supplied by a local source (de Forest's " B " battery). It belongs to the same family as the Branly coherer and de Forest's earlier Responder.

Because the Audion can control a greater amount of power with a smaller amount, it can amplify, and can also be made to regenerate. Oscillation and radio transmission are, of course, a product of that effect.

Dr. de Forest experimented for a number of years with devices fundamentally similar to the Audion, using the ionized gases of Bunsen burners. In 1904 he turned to partially evacuated lamp bulbs to produce the same ionization. It is quite possible that the idea of using a lamp bulb may have been suggested to him by the Fleming valve. It is equally possible that, since both were working with glass bulbs in 1904, that they may have been working in ignorance of each other's efforts.

But even if de Forest had known of Fleming's valve, and (as an extreme case) had obtained one of them, opened it, placed his grid in it and resealed it, it would still have been in no sense a modification of nor an improvement on the Fleming valve, but a separate and independent invention. Lee de Forest was persuaded of the importance of ionized gas, found that a partly evacuated bulb gave him an opportunity to work with ionized gas. It was a more reliable and rugged device than his earlier open flame devices. Fleming's rectification did not enter into his calculations-in fact one of his earliest patents on what we now know as the Audion was entitled "A Device for the Amplification of Feeble Currents."
to-read signal than the low notes of the de interrupters previously used. He then set up stations in lower Manhattan and Staten Island, and exchanged messages between them. The Navy became interested, though continuing to depend in the main on German apparatus, which could print messages out on tape. They bought de Forest equipment, both for shipboard use and to

PATENT DRAWINGS used to Illustrate the princlples of an early vacuum-lube ampllfier patented by Dr. Lee de Forest in 1907.
outfit two new stations, one at Washington and one at Arlington. This kept the de Forest plant working full-time through the winter of 1902-03.

In 1903, de Forest finally succeeded in reporting the International Yacht Races by radio instead of light waves. 1903 also saw the introduction of wireless to Canada. The first press station, with which the Providence Journal kept in contact with Block Island, and the first commercial wireless telegraph-between Nome, Alaska, and Fort St. Michael, a distance of 107 miles-were also installed that year.

The year 1904 was even better. with de Forest's exhibit the main attraction of the St. Louis World's Fair, and a contract for five powerful Government stations-at San Juan, in Puerto Rico; Key West and Pensacola, Florida; Guantanamo, Cuba; and Colon, in the future Canal Zone.

In 1906 de Forest first ran afoul of his stock-selling associates. White and his pals gutted the company by organizing a new outfit, United Wireless, and transferring to it all the assets and none of the debts of the older company. Quitting the organization in disgust, de Forest turned in all his stock, asking nothing but the patents on the Audion and on the

Aerophone, an arc telephone with which he had been experimenting, and $\$ 1,000$ in cash.

The radiophone

Organizing the de Forest Radio Telephone Co., almost without capital, he moved into the Parker Building, New York City (now famous as the birthplace of the Audion) and started to make radio telephones. During 1907 and 1908 he installed equipment on two dozen Navy craft for a round-the-world cruise. Because of hurried installation and untrained operators, results were good only in odd cases, according to de Forest. But even these results persuaded Admiral Evans of the value of the radiophone, and he became a strong supporter of it.

In 1908 the Italian government bought four sets of equipment for use in warships, and a little later the British bought two, after tests showed reliable communication over more than 50 miles.

Amplification and regeneration

Working on a method of recording signals, de Forest found they were often too weak to be recorded properly. One of the earliest patents on the Audion was entitled "A Means for Amplifying Feeble Currents," and with two assistants, Charles Logwood and Herbert van Etten, de Forest set about to make it earn the title. But the Audions of that day would glow blue and stop amplifying if more than a few volts were applied to the plate. Realizing that the trouble was probably too much gas (de Forest was still sure that some gas was necessary for Audion action) he had a local X-ray manufacturer evacuate some tubes to a higher vacuum. The new Audions would take 120 volts, and were immediately successful as amplifiers.

While working on the amplifier, de Forest and his assistants one day connected the output of the second stage back to the first. That historic day, August 16, 1912, was the birthday of feedback, regeneration and oscillation. They heard (and described in van Etten's notebook) a high musical note as a result of the feedback experiment, and noted that it could be varied by varying the capacitance or inductance in the circuit. Further ex-periments-on a day when only one good Audion was available-showed that the same results could be obtained with a single tube-self-regeneration or oscillation.

Years later, when Armstrong claimed the invention of regeneration, van Etten's notebook was the instrument that proved de Forest's priority.

De Forest decided to go East and demonstrate his new amplifier to "The

Telephone Company" (AT\&T and its subsidiary Western Electric) who had long been searching for a way to boost signals on long-distance telephone lines. He was encouraged by the attitude of the Telephone Co. and decided to remain East. But after nearly a year of waiting, with no money coming in from the North American Wireless Corp., de Forest found himself literally broke, with his watch in pawn.

At this time he was approached by a young lawyer, Sidney Meyers by name, who said he represented parties interested in the Audion as an amplifier. He would not reveal his backers, only pledging his "word of honor as a gentleman," that he did not represent the Telephone Co. He offered $\$ 50,000$, a much smaller sum than de Forest thought he could get for the amplifier rights. But his company, owner of the patents, was in a precarious position and might find company assets, including the patents, put up at auction to satisfy creditors. And de Forest himself was on the verge of starvation. So he agreed, only to find a few weeks later that his customer was indeed the Telephone Co., and that its directors had allegedly been prepared to pay as much as half a million dollars for the rights he sold for $\$ 50,000$.

The deal was not as bad as it has been represented; de Forest did not sell the Audion patent-simply the right to use it as an audio amplifier on wire lines.

THIS THREE-STAGE AUDION AMPLIFIER was first bullt In 1912 by the Federal Telegraph Co. (predecessor of ITT) during the perlod that de Forest was the head of the research department. The earllest known commerclal cascade amplifler, It had a galn of 120. It was first demonstrated to the United States Navy in September of 1912.

A fraud case came to trial late in 1913. Some of the stock-jobbing directors of the company were found guilty and sent to Federal prison. The jury found de Forest innocent, even though the prosecutor produced unassailable proof that de Forest had
claimed it would soon be possible to send the human voice across the Atlantic with what the prosecutor described as "a queer little tube that had proved worthless-not even a good lamp!"

In 1914 de Forest ran into new legal trouble. The Marconi Co. charged that the Audion infringed the Fleming valve patent, and won the case. But the court also decided that
came the first newscaster, announcing the results of the 1916 Presidential election (four years before KDKA's heralded broadcast). The High Bridge station closed at the outbreak of World War I.

By 1916 the Telephone Co. had decided it needed still more rights in the Audion, and re-opened negotiations. Finally, de Forest sold all rights in the Audion and in radio service for

SOUTH SAN FAANCISCO STATION of the Federal Telegraph Co., as It appeared in 1912. The station Is fitted for duplex operation as developed by Dr. de Forest, with two Identical 30-kW transmitters laking turns on one antenna.
the Audion patent was valid as well. The result was that neither de Forest nor Marconi could make Audions. The resulting confusion lasted until the Fleming patent expired in 1922, and produced some absurd effects. For example, Marconi had licensed the Moorehead Co. in San Francisco to make Fleming valves. So de Forest's company ordered Audions from Moorehead, and sold some to Marconi!

Also in 1914, Sidney Meyers appeared again-in the open this time. The Telephone Company was interested, he said, in securing radio signalling rights in the Audion, and offered $\$ 10,000$ for such rights. More cautious this time, de Forest asked for $\$ 100,000$, and obtained $\$ 90,000$. The de Forest company retained the right to manufacture Audions "for amateur and experimental use."

In 1915 de Forest used the Audion to make the first music synthesizer, selling the patent to Wurlitzer.

Broadcasting established

In the winter of 1909-1910 de Forest had pioneered broadcasting by putting the Metropolitan Opera on the air-for one performance. Now he began a regular broadcast service from his High Bridge station. Because he transmitted phonograph records, lent by Columbia, he claims the title of world's first disc jockey. He also be-
public pay, plus rights in all patents pending and to be filed during the next seven years. The price was $\$ 250,000$. The de Forest Radio Telephone and Telegraph Co. retained foreign and government rights.

This deal has not been nearly as well publicized as the first one. All in all, instead of $\$ 50,000$, de Forest received $\$ 390,000$ for the Audion and developments based on it.

Broadcasting from High Bridge started again after the war, and de Forest moved his station to midtown Manhattan, where he had access to a better antenna. The number of listeners had swelled "into the hundreds" when the station was closed by the Federal radio inspector, Arthur Bachelor. The legal reason was that the station had changed location without a permit, but Mr. Bachelor made it clear that interference with commercial radio stations would not be tolerated, and that "there is no room in the ether for entertainment."

De Forest Phonofilm

De Forest next turned to the movie sound field. He had already experimented with magnetic wire recordings synchronized with the film, but now decided to try to put the sound on the film itself. The world's first talking picture, a Swedish film called "Retribution" in translation, was pro-
duced by de Forest Phonotilm in 1925. Phonofilm had some 34 theaters "Wired for sound" at that time, but competition was strong and the movie moguls moved to another system. He retired from the field in 1929, with only $\$ 60,000$ as a settlement from one of his commerical and legal competitors.

To get capital for his sound-onfilm work, he had sold control of the de Forest Radiotelephone and Telegraph Co. to a group of Detroit automobile capitalists. He was hired by them as a consulting engineer, and was able to watch the company go downhill to ultimate absorption by RCA. Thus the last of the de Forest companies-like the first-finally became part of RCA.

The busy period of de Forest's life ended with sound-on-film. In the ' 30 's and ' 40 's, he experimented with television, devising a color filter hardly larger than the tube screen, instead of the bulky and alarming color wheel.

In his work with television he also developed his last important invention, radial scanning, patented in 1941. He disposed of the patent to RCA, at a lower price, he said, than he would have if he could have forseen radar (only a year or so later) and the PPI display.

Continuing to experiment and invent, he again found himself not oversupplied with funds. A contract entered into in the ' 40 's with the Bell Telephone Laboratories supplied him with means to equip a new laboratory and eased his financial situation considerably. In return, he was to license Bell under all patents that might be granted him.

Dr. de Forest remained more or less active until his retirement in 1958, when he was 84 years old. His last patent-on an automatic telephone dialing device-was issued in 1957. He went to France the same year, to receive the Cross of the Legion of Honor, which was added to a number of earlier honors, including the degree of Doctor of Science from both Yale and Syracuse universities, and awards from various learned institutions and organizations. He died June 30, 1961, after a long illness

REFERENCES

Carneal. Georgette, Conqueror of Space, 1930.

Archer, Gleason L., History of Radio, 1938.

MacNicol, Donald, Radio's Conquest of Space, 1946.
Radio-Electronlcs, January, 1947, Special de Forest issue. Several articles and items.
de Forest, Lee, Father of Radio, 1950. New York Times, July 2, 1961. pages 1, 32. Obituary and short biographical sketch.

STATE-OF-SOLID•STATE

THE DEVELOPMENT OF A NEW AND unique semiconductor imaging device using a novel principle known as charge-coupling was announced by scientists and engineers of the Bell Telephone Laboratories (Murray Hill, N.J.) during the first quarter of 1971. Writing at the time, I predicted that commercial devices based on this new principle "probably will not be available . . . for many months." Nearly 24 months later, that prediction has now been fulfilled by Fairchild's Semiconductor Components Group (464 Ellis Street, Mountain View, Calif. 94040) with their recent announcement of the industry's first commercial charge-coupled device (or CCD), a 1×500-element image sensor.

Illustrated in Fig. I, Fairchild's

FIG.1-FAIRCHILD'8 NEW CCD Image sensor Unear array.
new CCD is a linear array comprising 500 photosensitive elements sealed under an anti-reflective glass window in the center of a 24 -pin DIP measuring only 0.6×1.3 inches. The monolithic n-channel device also includes two charge-transfer gates, two 250 -element CCD analog shift registers, a two-element CCD selection register and an on-chip NMOS output amplifier.

FIG. 2-CROSS-SECTION SKETCH showing layered construction of the new CCD Image sensor.

Photosensor elements are spaced on 1.2 -mil centers, and the shift register elements are on a 2.4 -mil spacing. The new device has a typical dynamic range of $1,000: 1$, combining this capa-

bility with a high sensitivity of 15 mi crofootcandle seconds.

Fairchild has used a buried-channel structure and poly-silicon gate technology in producing its new device, as shown in the cross-section sketch, Fig. 2. Poly-silicon is transparent to visible and near-infrared light, thus assuring maximum efficiency. A thin n-type donor layer implanted between the oxide dielectric and the silicon substrate forms a transfer channel that is isolated from the oxide-substrate interface, thus eliminating the trapping effects caused by surface states in other types of charge-coupled designs, and resulting in increased transfer efficiency and greatly enhanced image integrity.

The physical layout of the image sensor's circuit components and con-

FIG. 3-PHOTOMICROGRAPH (lett) of Falrchild's new device.

FIG. 4-CCD IMAGE SENSOR SCHEMATIC.
 opment of new devices is ever expanding. Read all about some of the most interesting new devices and developments
by LOU GARNER SEMICONDUCTOR EDITOR
trol functions are illustrated in the photomicrograph, Fig. 3, while circuit connections are identified in the corresponding schematic, Fig. 4.

In operation, light striking the photosensitive elements in the thin center strip are collected as individual charge packets proportional to the amount of light at each element. These charge packets then are transferred to one of the 250 -element, three-phase charge-coupled shift registers at either side of the photo gate.

Alternate charge packets are simultaneously moved to the left and right shift registers. The packets are then transferred vertically through the shift registers to a two-element horizontal selection register which interleaves alternate packets from the left and right vertical registers to restore the proper sequence of image elements and feeds them to an output gate. This gate then feeds the image signal sequentially into an NMOS output amplifier which, in turn, delivers an output electrical signal representing the scanned light image on the photosensitive elements.

Fairchild's new 500 -element linear array is intended for use in slow-scan TV systems, document reading, optical character recognition and similar highsensitivity imaging applications, including military reconnaissance and weapons systems. Current stock availability and pricing information on the new image sensor may be obtained directly from Fairchild or its authorized distributors and representatives.

The lit bit

One of our best sources of information concerning new device applications is the literature published by semiconductor manufacturers. Despite their value and expense of preparation, these publications often are available either free or for a nominal charge.

Depending on the product and the publisher, individual publications may range from single page specification sheets to multi-page design brochures and even to thick hard-bound handbooks. In addition to basic design information, these publications frequently include complete project schematic diagrams and circuit construction hints.

The practical 28 -volt switching regulator circuit illustrated in Fig. 5 is typical of the information given in some manufacturers' literature. Ab-
stracted from Application Note 49, published by the Delco Electronics Division (General Motors Corporation, Kokomo, Ind. 46901), the design features a type DTS 1020 npn Darlington silicon power transistor. According to Delco's 4 -page application note, the circuit will furnish 28 -volts dc at loads of up to 100 watts when supplied by sources of from 22 to 28 volts dc. Its output regulation and ripple are less than 1% at full output.

Aside from its general performance specifications, the design's most interesting feature is its ability to furnish a regulated output voltage higher than its supply voltage (28 volts out with 22 volts input) without using conventional dc-to-dc inverter circuitry and a step-up transformer.

In operation, this is achieved by the flyback action of the 0.4 mH series choke when switched at a 9 kHz rate. Voltage regulation is accomplished by sensing the circuit's output voltage and

FIG. 5-28-VOLT SWITCHING regulator clrcult absiracted Irom Deico Application Note 49.
using this for pulse-width modulation of the signal used to drive the Darlington switch. A UJT relaxation oscillator serves as the basic 9 kHz signal source.

Delco's complete application note includes not only the circuit diagram, but basic design mathematics, a dis-
cussion of circuit theory, performance curves, all parts values, and even winding details for assembling a suitable choke.

A number of useful publications are available from the Sprague Products Co. (North Adams, Mass. 01247), including a 50 -page Semiconductor Replacement Manual, Manual K-500, a 40-page IC catalog, and a new series of LED Application Notes, publications SPAN-IA through SPAN-6.

Basic specifications and outline drawings of the 82 general purpose semiconductor devices in Sprague's QLine are provided in Manual K-500, together with replacement cross-references to over 30,000 standard industry type numbers. In addition, the manual includes a number of valuable guidelines covering semiconductor replacement techniques.

Entitled Sprague Integrated and Thin-Film Hybrid Circuits, Short-Form Catalog WR-125F covers the firm's
line of linear and Hall Effect IC's, functional electronic circuits, thin-film resistor arrays and hybrid circuits, and digital and logic devices. The catalog includes device specifications, terminal connections, internal schematic diagrams, package outlines and suggested applications.

Featuring a down-to-earth "how to" approach, Sprague's series of LED Application Notes should be of particular interest to practical engineers, technicians, and hobbyists. Starting with a discussion of LED power requirements in SPAN-IA, the notes cover such topics as a BCD simulator, the assembly of a seconds timer, device interfacing, and semiconductor relays. SPAN-4, typically, describes an inexpensive LED voltage and continuity tester, illustrated in Fig. 6, which is

FIG. 6-SCHEMATIC (a) AND CONSTRUCTION detalls (b) for voltage/continulty tester described In Sprague Application Note.
suitable for many automotive, marine, and household maintenance tests.

Working with FET's? Then you should check with Siliconix, Inc. (2201 Laurelwood Road, Santa Clara, Calif. 95054), for this firm offers a number of superb application notes dealing with these versatile devices. Recent releases include the 16-page FET's As Voltage-Controlled Resistors and the 12-page FET's As Analog Switches.

If microwaves are your bag, you'll want to check with RCA's Solid State Division (Box 3200, Somerville, NJ 08876). RF and Microwave Devices, publication RFT-700K, is an 8 -page brochure which includes a quick-selection guide showing power-vs-frequency curves for RCA's entire product line, with power levels to 80 watts and frequencies to 3.5 GHz ; block diagrams illustrate typical circuit applications, while photographs show all package styles.

Application Note AN-6084, HighPower Transistor Microwave Oscillators, describes a simplified approach to the design of transistor microwave power oscillators with outputs of from 1 to 10 watts at L - and S. band frequencies; a number of practical circuits are included in the brochure. Broadband push-pull rf amplifiers are discussed in Application Note

AN-6126, 60- and 100 -walt Broadband (225-10-400 MHz) Push-Pull RF Amplifiers Using RCA-2N6105 VHFIUHF Power Transistors; AN-6126 contains schematic diagrams, performance characteristics and photographs of the amplifiers described. Finally, Application Note AN-6118, 10-, 16-, 30 - and 60 Watt Broadband (620-1o-960 MHz) Power Amplifiers Using the RCA2N6266 and 2N6267 Microwave Power Transistors, discusses basic broadband circuit design.

Texas Instruments, Inc. (P.O. Box 5012, Dallas, Tex. 75222) has released a number of interesting publications recently, including a simplified guide to JAN IC's, a new TTL IC data book, and an applications report on using dual-gate MOSFETs for TV.

Product/device news

Suitable for use as a photocell amplifier as well as for other general applications, the 3542J (Fig. 7) is a new low-cost op amp recently introduced by the Burr-Brown Research

FIG. 7-BURR-BROWN'S NEW lost-coat FET op-amp IC used as a photocell amplifier.

Corporation (International Airport Industrial Park, Tucson, Ariz. 85706). Offered in a hermetically sealed TO99 package, the unit is pin compatible with the familiar 741 type op amps. It features a high impedance monolithic FET input stage, hybrid/thin-film construction, and a maximum voltage drift of only $\pm 50 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. With a minimum dc voltage gain of 88 dB , the 3542 J has a full-power frequency response of 8 kHz . When operated on a ± 15 volt dc supply, the new device has a rated output impedance of 75 ohms, and can supply ± 10 volts at $\pm 10 \mathrm{~mA}$. Both output short-circuit and input-to-supply-voltage protection are provided in the unit.

RCA's Solid State Division, in addition to releasing a number of valuable new application notes, has outdone itself with the introduction of a number of new semiconductor devices, including the following:

A new linear IC dual high-frequency differential amplifier for lowpower applications up to 500 MHz . This new device, type CA3102E, consists of two independent differential amplifiers with associated constantcurrent transistors on a common monolithic substrate. The six transistors
comprising the amplifiers are generalpurpose devices which exhibit low 1/f noise and a gain bandwidth product in excess of 1 GHz .

A new multi-purpose 7 -ampere, low distortion, 100 -watt, linear operational amplifier. Assigned developmental type No. TA8651A, this new power hybrid circuit is intended for use in high-fidelity audio applications requiring very low distortion (less than 0.1% IMD at 50 mW), and is also recommended for use in such applications as servo amplifiers, PA systems, voltage regulators, driven inverters, and power operational amplifiers. The device's output section can be externally biased Class $A B$ for low intermodulation $(0.05 \%$ at 50 mW) and low total harmonic distortion, while terminals are available for external frequency compensation, external short-circuit protection, and inverting and non-inverting inputs. As shown in Fig. 8, the TA8651A is supplied in a special compact multi-lead hermetic package.

FIG. 8-RCA'S NEW MULTI-PURPOSE 7-amp hybrid amplifier.

Two new plastic-packaged Versawatt 6 -ampere silicon triacs designed for the control of ac loads in such applications as motor and heating controls, relay replacement, solenoid drivers, static switching, and powerswitching systems. Identified as types 41014 and 41015, they are similar to the popular 8 -ampere 40669 series, introduced in 1968. Both are gate-controlled full-wave ac switches in plastic cases with three leads to facilitate mounting on printed circuit boards. They have on-state current ratings of 6 amperes at a case temperature of $80^{\circ} \mathrm{C}$., peak surge full-cycle ratings of 60 amperes, and repetitive off-state voltage ratings of 200 volts (41014) and 400 volts (41015).

Four new epitaxial silicon npn planar power switching transistors designed for aerospace applications in which the devices might be subjected to extreme neutron and gamma-ray exposure. Designated types TA8007. TA8007B, TA8100 and TA8100B, these devices are intended for use in 5 - and 10 -ampere high-frequency power inverter service. All types utilize a flat, cylindrical package. R-E

FIG. 1-SPECTRAL DISTRIBUTION of FM stereo composite sIgnal. Note the SCA subcarrler at the right.

New FM Stereo Decoder

Phase-lock-loop circuits are not new, but a PLL IC used as the FM multiplex detector in a FM stereo tuner is. See how this new circuit works

by LEONARD FELDMAN
CONTRIBUTING HIGH-FIDELITY EDITOR

Stereo fm broadcasting began back in 1961. Since then, most stereo FM tuners and receivers have used either of two basic decoder circuits to recover independent left and right channel program information.

The standard stereo composite signal consists of left-plus-right program content which modulates the main carrier much as a monophonic program would. In addition, left-minus-right information, amplitude modulates a $38-\mathrm{kHz}$ super-audible subcarrier which is subsequently supressed. Only the lower and upper sidebands of this modulation are used to further modulate the main FM station carrier. Finally, a constant amplitude $19-\mathrm{kHz}$ super-audible tone, having a fixed phase relationship to the supressed $38-\mathrm{kHz}$ subcarrier is used to modulate the main carrier to about 10% of total modulation. This $19-\mathrm{kHz}$ signal enables the receiver circuitry to reconstitute the "missing" $38-\mathrm{kHz}$ subcarrier so the "difference" (L-R) signal can be demodulated in a distortionfree manner.

Remember, the L-R program amplitude modulates the $38-\mathrm{kHz}$ subcarrier, but the resulting sidebands, sum information ($\mathrm{L}+\mathrm{R}$) and $19-\mathrm{kHz}$ "pilot tone" all frequency modulate the main station frequency. The spectrum distribution of this entire composite signal is shown in Fig. 1. An SCA subcarrier, used to transmit private, subscriber background music such as you have heard in hotel lobbies, res-
taurants and other public places, has been added.

The supressed-carrier sidebands attain their instantaneous peak values when the main-channel audio "goes through zero" amplitude (the principle is called interleaving). This makes it possible for both the sidebands and the $\mathrm{L}+\mathrm{R}$ information to modulate the main carrier to 80% of full modulation, leaving 10% for the pilot tone and another 10% for the SCA (background music) service. When the SCA service is not used, both $L+R$ and sidebands are permitted to modulate up to 90% each, leaving 10% for the necessary pilot tone.

The most obvious kind of circuit that might be used to recover left and right program information is in Fig. 2. The sum and difference signals are recovered separately, through complex low-pass and band-pass filters. A local oscillator, synchronized to the incoming $19-\mathrm{kHz}$ pilot signal, drives a doubler to provide the necessary 38 kHz "subcarrier restoration. The difference $L-R$ information is then $A M$ detected and re-matrixed with the recovered $L+R$ to form " L " and " R " signals.

The phase and amplitude requirements of this type of demodulator are so critical that it was soon abandoned. It can be shown mathematically that an overall phase shift of as little as 26 degrees between the $38-\mathrm{kHz}$ subcarrier and the $38-\mathrm{kHz}$ sidebands will result in a degradation of stereo separation
down to 26 dB . With all those coils and capacitors in the filter and oscillator circuits, that means only a few degrees of phase shift error in each could easily degrade stereo separation to even poorer values.

A somewhat simpler circuit, known as a "time division" demodulator or a "switching circuit" demodulator is shown in Fig. 3. The number of tuned circuits required has been reduced since the entire composite signal is now fed to the "switching detectors", but the conventional oscillator and doubler are still present and subject to phase errors, mis-tuning and drift. Phase errors in this circuit and in the circuit of Fig. 2 tend to become more severe when the desired "L" or " R " signal is a high audio frequency, since the sidebands then involved are further and further apart, bordering on the limits of the "passband", where phase shift is greatest. (A $10-\mathrm{kHz}$ audio signal will produce sidebands at 28 kHz and 48 kHz about the reconstituted 38 kHz subcarrier).

If an SCA rejection filter is added to this circuit (as indeed it must be, if SCA program interference is to be avoided), the added tuned circuit makes the situation that much worse. It has been calculated that the permissible mis-tuning of the $19-\mathrm{kHz}$ coil is only 30 Hz and that of the $38-\mathrm{kHz}$ coil is only 120 Hz if satisfactory separation is to be maintained. Even if the original alignment of the circuitry is that good, the slightest jarring of the
set, temperature variation, or even aging can easily "detune" these coils by that much and even more.

The phase-locked loop

A phase-locked loop is basically a feedback circuit which consists of a phase comparator, a low-pass filter and an error amplifier in the forward signal path and a voltage-controlled oscillator (VCO) in the feedback path. A block diagram of the phase-locked loop in its most basic form is shown in Fig. 4. With no signal applied to the system, the error voltage V_{E} is zero. The vco operates at a set frequency, ω_{0}, which is known as the free-running frequency. If an input signal is applied, the phase comparator compares the phase and frequency of the input with the vco frequency and generates an error voltage V_{E} that is related to the phase and frequency difference between the two signals. This error voltage is amplified, filtered and applied to the control terminal of the vco, forcing the vco frequency to vary in a direction that reduces the frequency difference between ω_{o} and the input signal. If the input signal frequency is close enough to ω_{o}, the feedback nature of the phase-locked loop causes the vco to synchronize or lock with the incoming signal. Once in lock, the vco frequency is identical to the input signal except for a small finite but constant phase difference necessary to generate the corrective error voltage which shifts the vco frequency from its freerunning value to the input signal frequency and keeps the phase-locked loop in lock.

RCA's IC stereo decoder

The first company to incorporate the phase-locked loop principle in a single, complex integrated circuit designed to do the entire stereo FM decoding job was RCA, and a block diagram of their CA-3090 IC is shown in Fig. 5. Subcarrier regeneration is handled by a phase-locked loop (PLL) circuit made up of a vco operating at 76 kHz , a series of flip-flops to obtain the required signals needed in the system, and a synchronous detector whose dc output is proportional to the phase angle between the frequencydivider output and the incoming 19 kHz pilot signal.

The vco used in the circuit is an LC oscillator and therefore requires one external coil. RCA decided to use a frequency of 76 kHz rather than 38 kHz to insure that the reinserted $38 \cdot \mathrm{kHz}$ carrier is perfectly symmetrical, because any loss of symmetry would impair audio channel separation. By starting at 76 kHz and dividing by two to get the required 38 kHz , symmetry is guaranteed.

FIG. 2-(top) EARLIEST TYPE of storeo FM decoder suffered from phase shifts because of large number of tuned clrculte.

FIG. 3-(above) SWITCHING DECODER has tewer tuned clrcults, but is difficult to adjust and drifis.

FIG. -(right) SIMPLIFIED BLOCK DIAGRAM Illustrates PLL principle.

Because the output of the phaselock detector is zero, either when the frequency of the oscillator is correct or when there is no 19 kHz pilot (no stereo is being broadcast), an extra de-tector-the pilot presence detector-is needed to signal the presence of a stereo broadcast. The output from the frequency-divider is in phase with the pilot signal and will, therefore, provide a signal to the mono-stereo switch to enable stereo reception. External components connected to pins 6, 7 and 8 set the threshold sensitivity and time constant of this detector. This filtering, along with the hysteresis

action of the stereo-mono switch (Schmitt trigger) circuit, eliminates all flicker of the stereo indicator lamp.

The L-R (difference audio) synchronous detector is a doubly balanced detector and the composite signal fed to it is carefully kept as nearly distortion-free as possible, to preserve both fidelity and SCA rejection. The outputs of the L-R detector are added to the composite signal in summing networks where precisely matched resistors (in the block labelled "matrix") provide the proper voltage ratios.

A circuit detail of one channel of the matrix arrangement is shown in

Fig. 6, and the resistor values are chosen to compensate for the fact that most FM detector circuits (the origin of the composite signal from the regular FM tuner) tend to attenuate higher frequencies somewhat because of stray capacitance roll-off and other combined factors. The CA-3090 assumes a $1-\mathrm{dB}$ rolloff at 38 kHz and it is for that reason that the test network shown in Fig. 5 is called for.

If the composite signal from the tuner detector were "perfect", separation would be reduced to about 26 dB unless deliberate attenuation such as this were introduced between detector

FIG. 5-(above) RCA CA-3090 IC phase-lockloop system shown in block dlagram form.

FIG. 6-(left) PARTIAL SCHEMATIC (left channet only) of matrix-amplifler portion of CA-3090, RCA multiplex decoder IC.
output and IC input. Table I, condensed from RCA's data sheet, summarizes important performance data which may be expected when this unit is used with a reasonably good FM tuner or receiver. Having experimented with the IC myself, I can attest to the separation figures which are essentially maintained all the way up to 10 kHz audio or better.

Motorola's inductorless IC

A few months after RCA's introduction of their CA-3090 chip, Motorola introduced a stereo decoder IC which required absolutely no coils. Instead of an L-C tuned circuit oscillator, an R-C type of oscillator circuit is used. As shown in Fig. 7, only a few external resistors and capacitors are required to complete the circuit, and frequency "lock-in" is done by setting potentiometer R5, which forms part of the $76-\mathrm{kHz}$ vco oscillator circuit. In addition to the fact that all inductors have been eliminated, some of the other performance parameters are very impressive indeed, as summarized in Table II. Separation, for example, is maintained at over 40 dB all the way up to 10 kHz and above, as

PIN $3=$ AMPLIFIER OUTPUT
PIN 4 = LEFT CHANNEL OUTPUT
PIN 5 = RIGHT CHANNEL OUTPUT
PIN $6=$ LAMP INDICATOR
PIN 7=GROUND
PIN $8=$ SWITCH FILTER
PIN $9=$ SWITCH FILTER
PIN $10=19 \mathrm{kHz}$ OUTPUT
PIN $11=$ MODULATOR INPUT
PIN $12=$ LOOP FILTER
PIN $13=$ LOOP FILTER
PIN $14=$ OSCILLATOR RC NETWORK

TABLE II
ELECTRICAL PERFORMANCE CHARACTERISTICS, MOTOROLA MC1310P CHARACTERISTIC
Max. Stereo Composite Signal for 0.5\% THD
Input Impedance
Stereo Separation ($50 \mathrm{~Hz}-15 \mathrm{kHz}$)
Audio Output Voltage
Mono Channel Balance
Total Harmonic Distortion
19 kHz Rejection
38 kHz Rejection
Inherent SCA Rejection
$19-\mathrm{kHz}$ Stereo Switch level
Capture Range Of VCO
Operating Supply Voltage Range

FIG. 7-(top left) HOOKUP of Motorala MC1310 IC as atereo decoder.

FIG. 8-(lop right) CURVE of separation ve Prequency for MC1310.

FIG. 9-(below) MOTOROLA IC In block dlagram lorm.

FIG. 10-(above) VCO DRIFT In Motorola MC.

TYPICAL VALUE

2.8 volts, peak-to-peak 50,000 ohms
40 dB
.485 V , rms
within 1.5 dB
0.3\%
34.4 dB

45 dB
80 dB
16 mV
$\pm 3.0 \%$
8.0 to 16 Vdc
shown by the curve in Fig. 8.
The superior performance of this new IC has prompted several high-fidelity component manufacturers to incorporate it in their new products for 1973-4, and an example of such a new product is Heath's AJ 1510 digital
stereo tuner shown in the photo on the first page of this article.

A complete block diagram of the layout of this IC is shown in Fig. 9. The upper line of circuit blocks are involved in the 38 kHz subcarrier regeneration process. An internal os-
cillator, running at 76 kHz , feeds its output to two divider stages, returning a $19-\mathrm{kHz}$ signal to the input modulator. There, the returned $19-\mathrm{kHz}$ signal is compared with the incoming pilot signal so that when a $19-\mathrm{kHz}$ stereo pilot is received a dc component is produced. This dc component is extracted by the low-pass filter and used to control the frequency of the internal oscillator which ultimately becomes phase-locked to the pilot tone, in much the same way as was true of the earlier RCA chip.

The decoder section is actually a modulator in which the incoming signal is multiplied by the regenerated $38-\mathrm{kHz}$ signal to produce L and R outputs. It is therefore analogous to the "time division" approach shown in Fig. 3.

The reconstituted $38-\mathrm{kHz}$ signal is fed to the stereo decoder block via an internal stereo switch. This switch closes when a sufficiently large $19-\mathrm{kHz}$ pilot tone is received. The $19-\mathrm{kHz}$ signal returned to the $38-\mathrm{kHz}$ loop is in quadrature with the $19-\mathrm{kHz}$ pilot tone when the loop is "locked". A third frequency divider shown in the lower line of blocks is connected to produce
(continued on page 88)

R-E's substitution guide for

replacement transistors

PART VI

complled by ROBERT \& ELIZABETH SCOTT
R-E's Transistor Substitution Guide is a compilation of material abstracted from the substitution guides of eight leading semiconductor manufacturers and distributors. These are:

ARCH-"Indicates the Archer brand of semiconductors sold only by Radio Shack and Allied Radio stores. Atlied Radio Shack, 2725 W. 7th St., Ft. Worth. Texas 76107
G-E-General Electric Co., Tube Product Div., Owensboro, Ky, 42301

ICC-International Components, Div. of IESC, 10 Daniel Street, Farmingdale, N.Y. 11735
IR-International Rectifier, Semiconductor Div., 233 Kansas St., El Segundo, Calif. 90245
MAL-Maliory Distributor Products Co., 101 S. Parker, Indianapolis, Ind. 46201

MOT-Motorola Semiconductors, Box 2963. Phoenix, Ariz. 85036
RCA-RCA Electronic Components, Harrison, N.J. 07029
SPR-Sprague Products Co., 65 Marshall St., North Adams, Mass. 01247
SYL-Sylvania Electric Corp., 1001 st Ave., Waltham, Mass. 02154
Radio-Electronics has done its utmost to insure that the listings in this directory are as accurate and reliable as possible; however, no responsibility is assumed by Radio-Electronics for its use. We have used the latest manufacturers material available to us and have asked each manufacturer covered in the listing to check its accuracy. Where we have been supplled with corrections, we have updated the listing to include them. The first part of this Guide appeared in March 1973.

$\frac{\lambda}{0}$									－	8iodow	
$\begin{gathered} \text { ■ } \\ \stackrel{0}{\boldsymbol{\omega}} \end{gathered}$	\&			888	$\frac{\infty}{i x} \frac{\infty}{a x}$			$\frac{0}{\dot{j}}$			
$\underset{\sim}{\mathbf{U}}$	్లా్లా్లర్లర్ల そそうそうど			式式哈合 らそろそうに	 あうろうろう			そうぞうに゙		Nニニ응ㅇㅇ ぁర్లిক্లి あうどうどあ	8ヘnion あそうごあ
$\frac{5}{2}$				 쏘쑤쑤눌 포포포푼					 iximix		
$\frac{1}{2}$	응ㅇㅇㅇ응	처NNㅢ	츙ㅇNNN	N	응ㅎㅇㅇ융			\％주융			
$\underset{\sim}{\sim}$		뚠뚜ㄴㅜㅜㄴ			ゆゆゆ్ఖゆゆ 						
\underline{U}	区区	をさきさき								乌ix	
$\underset{\boldsymbol{V}}{\boldsymbol{\sigma}}$			아우NNㅜㅇ			N	ゆゆゅゆ゙す岗岗岗苞		 ৩OOO	刿岂岗岗	
$\begin{aligned} & \text { T } \\ & \mathbf{U} \\ & \mathbb{C T} \end{aligned}$		をさせさせ		Oioㅇㅇㅇㅇㅇㅇㅇㅇㅇ ససNస్ N⿵人丶龴iN 	ถัరొంొర్రు 0 ${ }^{\circ}$			5号号官管 odibob స్ర్య్య『ェ凶凶゙	－ o్M م员员员员 NWN్N cruxェ		
									 zinczu		

毋プ్ర§

NA $=$ NOT AVAILABLE
ARCH GE ICC IR MAL MOT RCA SPR SYL

R-E's Service Clinic

trapping the creeper

A case of grid emission at its worst

JACK DARR SERVICE EDITOR

ONE OF THE MOST MYSTERIOUS TROU bles in horizontal output stages is "The Creeper." The set plays perfectly when first turned on. Then, the cathode current of the horizontal output tube starts creeping up, and up, and finally Click; out goes the circuitbreaker or the flyback, if the set doesn't have the proper protection. In most cases, the raster will pull in, dim, lose focus and gradually disappear.

What causes this? In most sets the standard tests will show no high leakage, or similar problems, in any of the numerous "loads" on this circuit. By loads, I mean the high voltage, boost, boost-boost, sweep and focus. In some, all tubes will be new. So, what in Tunket can cause such a symptom?

There are quite a few suspects. Normal suspects, that is. For one, a gradual loss of grid-drive signal. If the horizontal oscillator is weak, and the peak-to-peak voltage of the drive gradually falls off, you'd see the same symptom. With low drive, the grid voltage of the output tube goes more positive, and cathode current goes up. This voltage is developed by grid-leak action in the horizontal output tube's grid circuit.

A slight leakage in the coupling capacitor might be a good suspect. However, capacitor leakage is more or less fixed, and won't show the creep symptom. They're seldom thermal, too. But don't take chances, check it anyhow.

Another handy-dandy cause for this is the grid-bias control type of high-voltage hold-down circuit. These things use a pulse from the flyback, fed into a diode in the horizontal output tube's grid return circuit. When the output goes up, the pulse amplitude increases. This is rectified, and converted into a higher negative bias for the output tube, holding down its output. There are usually several highvalue resistors used in this circuit, always a good suspect for thermal drift. Diode leakage, too, could do it, although this is rare.

All of these are more or less "normal" causes, and we check them as a matter of course. However. a new one has been cropping up of late, and I thought it would be a very good idea to bring this out. It can be identified immediately, by a very simple test, if you know about it. (To be frank about it, I discovered it while looking for something else.

The basic fault is grid emission in the horizontal output tube! When this happens, the tube starts drawing grid current. This makes the grid go more negative, due to the grid-current flow through the high-value grid resistor. So instead of conducting for the proper amount of time (which is very short, something like 8 to $10 \mu \mathrm{~s}$), the tube stays on longer. This increases the pulse width, and conduction time and with it the average cathode current. This phenomenon is definitely thermal; the longer the tube operates the greater the grid emission and the greater the heat dissipation.

The "simple test"? Just hang a scope probe on the control grid of the horizontal output tube, and watch the waveform. The normal waveform is like Fig. 1-a, with a nice sharp peak. When this fault develops, you'll see this peak gradually start to flatten out, as in Fig. 1-b. Even a flattening of this much can raise the cathode current quite a bit. When it has flattened to something like Fig. l-c, your cathode current will be up around 400 mA , and the breaker had better be getting ready to trip. The equivalent pulsewidths are shown below, so you can see why it acts like this.

The cure? Simple; another new tube. Cook the set, with the scope still on the grid, and the meter in the cathode. In one of the first cases I ran into, a brand new set showed these symtoms. The horizontal output tube was replaced, only to find exactly the same trouble. A third new tube turned out to be good. The first two were checked on a tube-tester capable of reading grid-emission, and showed a

You'll be happy, too, with SK3020.

It replaces nearly 2,800 types and does the job as well or better. That means less service time, less inventory, more business for you. And with RCA's full SK line of only 156 devices, you'll have everything you need to replace over 51,000 foreign and domestic types.
Contact your RCA Distributor today for the full SK story and get the new RCA SK Replacement Guide, SPG-202N, too.
RCAIElectronic Components Harrison, N.J. 07029

Electronic Components

NORMAL

b

very high reading. Their emission was good, of course; any tube that can draw 400 mA current is in good shape in that department.

This problem doesn't seem to be confined to any particular tube-type. I first ran across it a couple of years ago, in a 6JE6. Since then, I've seen it in 6LQ6's, 3ILZ6's and so on. So, if you find a creeper, scope the horizontal output tube grid, with the currentmeter in the cathode, and wait.

This applies to tube and hybrid sets, of course. However, you can see a very similar symptom in solid-state sets. This seems to be due to thermal runaway, or its equivalent, excess junction leakage. This is almost always thermal, and the leakage grows progressively worse as the set plays. Read the current drain, and scope the base of the output transistor, to make sure that the drive pulses are of the correct width. They're different in shape to those of tube sets, but the basic principle is still the same. If the pulsewidth stays the same, try replacing the horizontal output transistor.

R-E

reader

 questionsHORIZONTAL OSCILLATOR SETUP
There are four or five pictures across the screen of this RCA KCS-130 chassis. I've changed the oscillator tube, and the stabilizer coil, and it still won't sync. -J.B., FPO, N. Y.

This chassis uses a variation of RCA's famous Synchroguide circuit. and must be set up using the factory procedures. or it won't work properly. Try this: 1. Connect a jumper across the terminals of the sinewave coil. 2. Ground the grid of the sync output tube; pin 9 of the 6EA8. on the same PC board with the oscillator. 3. Adjust the horizontal hold control until you can see only one picture. This will float from side to side, but if it will stand still for even a moment, fine. This means that the oscillator is able to free-wheel.
4. Take the jumper off the sinewave coil. If the picture falls out of
sync, adjust the core of the sinewave coil until it locks in again. There's still no sync, remember: so, the picture will float: get the sides of the picture straight. and it should hold fairly still. Shorting the sinewave coil should cause only a small sidewise shift.

Final step: take the short off the sync-tube grid. and the pieture should lock in very firmly. Change channels and see: it should snap in, in horizontal sync. instantly, if its working properly.

MIDDLE-STRETCH IN RASTER

This is a new one on me. I've seen pictures stretch at top or bottom, but never seen one stretch in the middle. What causes this?-M.P., Del Rio, Tex.

Most likely cause, the deflection yoke. Frankly, I don't know the exact nature of this defect, but l've cleared up quite a few cases of it by replacing the deflection voke. Probably some odd short.

NOT ENOUGH WIDTH

I replaced the deflection looke in this GE M-760-CWD, and got the raster back. Works fine now but I don't have enough width. Need about an inch on each side. Width comirol doesn't help. I have a bad hum on all channels, too.W.P., Carolina P.R.

Two possibiles here. One, low do supply voltage due to a bad electrolytic in the voltage doubler. This could reduce the width and cause the hum all at the same time. Check dc voltages at power supply. Normal +300 V .

No. 2: if the width control doesn't have any effect when you move the core, it could easily be shorted. For a
fast check, just disconnect it. If this brings back the width, replace the width control. (The hum would probably be due to an open filter capacitor or a heater-cathode short in audio tube, etc.)

MAKING IC SOCKETS; REMOVAL

You can buy lots of "boards", and things with IC's on them, dirt cheap. The only problem is getting them off the boards without overheating them. Also, how can you make good IC sockets?R.J., Antioch, IIL.

First, I'd use a low-wattage desoldering iron, and clear out only $2-3$ pins at a time. Let it cool between times. Or, spray coolant on the IC itself, as you work. (This could get to be a three-handed job, of course.) Or: clip a heat-sink on the IC while taking it out.

Second, you can get the "strip" contacts, for making IC sockets, from several places. They're made by Molex. and are sold at about 100 for $\$ 1.00$. They can be soldered into the holes of a PC board, to make a pretty darn good IC socket. You'll find these used on Zenith modules using IC's, and others.

NOISE IN GE "PORTA-FI"

They brought in a GE receiver unit, and called it a "Porta-Fi". Works with a big console stereo, and picks up the music, etc. Never ran into one before.

Anyhow, it works, but it's very noisy: Has a loud harsh buzz. Turn volume down, no buzz. I'm puzzled.-J.M., Donora, Pa.

Un-puzzle. This is a "carrier-current" device, like a wireless intercom. The transmitter, in the console, generates a low-frequency rf signal, which is carried to the receiver over the ac power lines. Works on one of two channels, 250 or 300 kHz .

Your buzz could easily be unfiltered fluorescent lights, or SCR light dimmers, etc. Turn them off and see if this stops the noise. If so, filter them. not the receiver unit.

Alternative: the receiver unit may not be correctly tuned to the transmitter. Normally, the receiver should "quiet" a good deal with a strong carrier.

MANY, MANY SYMPTOMS

I never saw a color TV set with so many' different symptoms! The horizontal sync is very bad, the age won't work, the colors drift, and you name it. This is an RCA CTC- 38 chassis. Any ideas as to what causes this?-R.D., Smackover. Ark.

With so many symptoms all at the same time, the most likely suspect would be something that is common to all circuits. The dc power supply. If one of the filter capacitors has opened,
it will allow a heavy feedback through the power supply, and upset everything for three feet in all directions.

One frequent offender in these chassis has been the $20-\mu \mathrm{F}$ electrolytic on the +40 V line. Check this with a scope. One showed 35 volts p-p ripple. and very similar symptoms.

TUNER TROUBLE

I can get an i.f. signal through from the input, and see good clear bars on the screen. No stations from the antenna. I suspect the tuner. Right?R.B.M., Miami, Fla.

Right! Most likely suspect. one of the transistors in the tuner. Check for correct de voltages. and especially for correct or nearly correct emitter voltages. If you find one with collector and base voltages close, but no emitter voltage, that's the one. Transistor probably open.

Some transistors used in this series of tuners are not the "BEC" basing shown on the schematic. Check with magnifying glass. May be "EBC"

BREAKER POPS WITH GOOD DIODE

Here's a weird one! If I remove diode DI in this Admiral 5 H10 chassis, the set works; good high voltage and focus. If I put DI back in. the breaker

trips. Even if I take off the loads, and unhook the degaussing coil, it still does it. What is this?-M.H., Del Rio, Tex.

Check that thermal switch. I think you'll find it is grounded, or stuck closed. Certainly, something is causing this, and that's the only thing left outside of the bridge rectifier itself.

HORIZONTAL HOLD AFFECTS COLOR

When I turn the horizontal hold control on this Zenith 5320 one way, colors get brighter. Turn it the other way, and they get lighter. Why?-J.F., Munhall, Pa.

This effect is seen in some chassis, and it's perfectly normal. The color burst, sync, acc, and several other things, are "gated on" by the horizontal pulse coming from the flyback. (Not by the horizontal sync pulse ex-

You'll win new customers with
 SK 3122.

Because it's the fast, easy way to put premium performance in over 2,800 different sockets. And that's the best way to give better service and get more customers.
Try it and see. Contact your RCA Distributor today. Ask him, too, for the new RCA SK Replacement Guide SPG-202N. It cross-references the entire SK line of 156 devices to replace over 51,000 foreign and domestic types.
RCA Electronic Components
Harrison, N.J. 0.7029

$\square \square \sqrt{\text { Electronic }}$ Components

NEW BIPOLAR MULTIMETER: AUTOMATIC POLARITY INDICATION

Model ES 210K

Displays Ohms, Volts or Amps in 5
ranges - Voltage from 100 Microvolts
to 500 V • Resistance from 100 Milli-
ohms to 1 Megohm - Current from 100
Nano Amps to 1 Amp
$\$ 77.00$
Case ex: $\$ 12.50$ (Optional probe) $\$ 5.00$

40 MHz DIGITAL

FREQUENCY COUNTER:

- Will not be damaged by high power transmission levels.
- Simple, l cable connection to transmitter's output.

ES 220K - Line frequency time base. 1 KHz resolution. 5 digit: $\$ 69.50$ Case extra: $\$ 10$ ES 221 K - Crystal time base. 100 Hz resolu. tion. 6 digit: $\$ 109.50$ Case extra: $\$ 10.00$ DIGITAL CLOCK:

ES $112 \mathrm{~K} / 124 \mathrm{~K}$ - 12 hr . or 24 hr . clock $\$ 46.95$ Case extra: Walnut $\$ 12.00$ - Metal $\$ 7.50$

CRYSTAL TIME BASE:
ES 201 K - Optional addition to ES $112 \mathrm{~K}, 124 \mathrm{~K}$ or 500K. Mounts on board. Accurate to. 002\%

Kit Price $\$ 25.00$
I D REMINDER:
ES 200K Reminds operator 9 min .45 sec . have passed. Mounts on ES 112 or 124 board. Silent LED flash $\$ 9.95$. Optional audio alarm $\$ 3.00$ extra.

Dependable solid state components and circuitry Easy reading, 7 segment display tubes with clear, bright numerals. These products operate from 117 VAC, 60 cycles. No moving parts. Quiet, trouble free printed circuit.
Each kit contains complete parts list with all parts, schematic illustrations and easy to follow, step by step instructions. No special tools required

ORDER YOURS TODAY:
Use your Mastercharge or Bankamericard Money Back Guarantee
10418 La Cienega • Inglewood, Ca. 90304 (213) 772.6176
some stage which handles only color signals. It is most apt to be due to heater-cathode leakage in some tube which fits the spec's, and has a cathode bias resistor!

This would be: 1. The 6AU6 color bandpass amplifier; 2 . The 6AL5 color phase detector; 3. The 6AW8 killer/lst video and 4. The 6GH8 3.58 MHz osc and control. Try new tubes in these sockets, one at a time.

AGC AND AFC PULSE TROUBLES

I have replaced the flyback on a G-E SB chassis, with a factory part. Now' I get a split picture, blanking bar in center. I can unhook the pulse coupling capacitor to the afc, and make the picture hold normally; horizontal hold very sharp, of course.

The waveform from the pulse winding to afc and agc doesn't look right. It's more like a square wave than a sharp pulse. Could this be reversed?W.M., Satellite Beach, Fla.

It is possible that the pulse is reversed, of course, and this would account for the problem. However, since this flyback fits into holes on the PC board, the pulse winding (terminals 1 and 2) would have had to be reversed accidentally at the factory.

Suggestion; take both the agc and afc pulse-coupling capacitors off, and check the amplitude and polarity of the pulse, right at the flyback. Terminal 1 should be ground, and there should be a sharp $250-\mathrm{V}$ positive going pulse on 2.

LOW HV, NO FOCUS VOLTAGE

The high voltage is down to $12 \mathrm{~V}, \mathrm{I}$ have practically no focus voltage, but the cathode current of the WE6 reads 220 mA. This is on a Heathkit GR-295 color TV. I am getting some odd readings on the grid-drive to the GJE6, too. 200 volts p-p at the oscillator plate, only 150 volts p-p at the 6JE6 grid. Also, when I pull the 6BK4, I lose all high voltage.-D.W., Vancouver, Wash.

You do have a lot of odd symp. toms, and they all seem to point to one thing; You may have a small short in the high-voltage winding of the flyback. Check all of the othes things first, of course; boost capacitor, yoke, and so on. However, the high cathode current of the 6JE6, with all outputs so low, points toward an over. load of some kind. This can be due to the short in the high-voltage winding, which will make the 6JE6 draw too much current. (Field feedback from thoughtful reader confirmed this; bad flyback.)

HOT (NEW) FLYBACK

This Admiral L33L31 came in with a burnt flyback. I replaced it with a new (bleep) exact duplicate. First replace-
ment heated up and went out in two days. Got another one like it, and it's overheating. Cathode current of 6DQ6 is below normal The only thing I can see is the resistance of the high-voltage winding; the spec-sheet, and the Sams Photofact data, calls for 550 ohms; I read 620 ohms.-C.G., Alamogordo, N.M.

While this is pretty rare, I am beginning to believe that your new (bleep) replacement flyback is defective. That high resistance reading on the high-voltage secondary could mean that it was wound with too small wire. If so, the $I^{2} R$ loss would be excessive and the flyback would heat. I'd recommend replacing it with an Admiral replacement. Also, write to the (bleep) factory and let them know about this. Without field feedback, they can't tell.

MUSICAL BARN

One of my customers has a Silverrone radio, which he plays in his barn. The 50HK6 output tube burns out about every two months. In the shop, everything is normal; no shorts, etc. What could cause this?-R.B., Springfield, Ohio.

The first thing I'd check would be the ac line voltage in the barn. In some cases, rural lines run higher than they should, up to 135 volts in some cases. This would shorten the tubelife.

If this is it, you can add a small line-ballast resistor, to hold the voltage down to about 105 for best tubelife. Check this in the shop with a Variac, and be sure that the resistor is well-protected; it'll get pretty hot.

OLD I.F. TRANSFORMER

I'm restoring an old Philco 39-45 radio. It's got an odd Ist if. transformer, which is open. It has 5 leads instead of four. Can I get a replacement for this?-E.N., Princetom, IIL

Not an exact replacement, but one that will work. This has a little tertiary winding, which is connected to the suppressor grid of the 78 i.f. amplifier tube. The diagram shows how, but not why. (Actually, I don't know why. It may have been to neutralize a "hot" stage or to provide regeneration to "hop-up" the stage for more gain.)

Something like a J.W. Miller 512-

Cl input i.f. transformer will work nicely. Just tie the suppressor grid of the 78 tube to its cathode, tune the i.f. transformer to 470 kHz (it is a 455 kHz type, but will easily tune to 470 kHz) and away you go.

PIECRUST FIX

(Note: This is the end result of a series of letters back and forth from here to the reader. Actually, he finally found it, himself. These are the best kind.)

The problem in this Zenith 16D25 TV was a tendency to piecrust or cogwheel, mostly at low brightness levels. After checking out the anti-hunt net-
work, and several other things in and around the horizontal oscillator, we found that for some odd reason, the set would piecrust when the load on the flyback (i.e., beam current of picture tube) was lowest.

The "fix" turned out to be odd, but simple. The value of the boost capacitor, originally $0.1 \mu \mathrm{~F}$, was raised to $0.47 \mu \mathrm{~F}$. This raised the boost voltage slightly, but stopped the piecrust completely!

Thanks to Ray Musick, Ballwin, Mo., for this oddball.

HV RECTIFIER HOT
This Electrohome V2-902 Video

> Will you be prepared to handle his business when it comes your way?

...remember...there's an Amperex replacement tube for any socket in any set you're likely to service. TV, Hi Fi, FM or AM, House Radio, Car Radio, P.A. System or Tape Recorder. Imported or Domestic!

Amperex
 tomorrow's thinking in todars products
 A NORTH AMERICAN PHILIPS COMPANY

AMPEREX ELECTRONIC CORPORATION. DISTAIBUTOR AND ENTERTAINMEMT PRODUCTS DIVISION, HICKSVILLE, N. Y. 11802

Monitor has a solid-state high-voltage rectifier. The thing runs hot, and there is no high voltage. 1 replaced it with a German TV-65, and this ran for about one minute and broke down; it also got hot. What's going on here?-L.G., Chicago, IIL.

Disconnect the ultor lead, replace the high-voltage rectifier again and see

what you get on a no-load test. As you can see from the schematic, the high-voltage supply should deliver 11 kV at a $100-\mu \mathrm{A}$ beam current. The RCA SK-3067 is rated at 11 kV , but I'd rather use an SK-3108, which is rated at 25 kV ; 20 kV conservative, same current rating.

Also check all of the de voltages on the picture tube. You have two possibles here: first look for excessive positive bias on the grid, causing heavy beam current; second you could have a shorted picture tube. I used to say there was no such thing as a highvoltage short, but 1 ran into one.

QUICK LIE DETECTOR

Someone told me that there is a very simple circuit for a lie detector. Do you know what he meant?-J.H. Sandusky, Husky, Ohio.

There is. Just set the ohmmeter of your vtvm or vom to about the Rxl Meg range, and hold the prods. You can make up "electrodes" with a larger surface area if you want to. When the person under test tells a lie, he'll either grip the prods tighter or start to perspire just a little. In either case, the ohms reading will go down. The lower his resistance, the bigger the lie, 1 guess. Sounds odd, but it works.

YOU DUNT NEED A BENCH FULL OF EQUIPMENT TO TEST TRAMSISTOR RADIOS! alf the facllities you need to check the transistors themselves - and the radios or other circults in which they are used - have been ingeniously engineered into the compact, o-inch high case of the Model 212. It's the transistor radio troubleshooter with all the troubles speedily with single, streamlined instrument instead of an elaborate hook-up.

Features:

Checks all transistor types - high or low power. Checks DC current gain (beta) to 200 in 3 ranges. Checks leakage. Uni. versal test socket accepts different base configurations. Identif

Oynamic test for ali transistors as signal amplifiers (oscilatnr check), in or out of circuit. Develops test $\$$ ignal for $A F, \quad \mid F$, of RF circuits. Signal traces all circuits. Checks condition of diodes. Measures battery or other transistor-circuit powersupply voltages on 12 -volt scale. No external power source needed. Measures circult drain or other DC currents to 80 milliamperes. Supplied with three external leads for in-circuit testing and pair of test leads for measuring voltage and current. Comes complete with Instruction manual and transistor ilsting.

LOW BRIGHTNESS

This Magnavox 1924 has a very low brightness. The picture tube checks out $O K$, and the high voltage is good. I changed the video amplifier tubes; no help. Contrast control works. What is this'-F.1., Brooklym, N.Y.

The most likely cause is picture tube bias. Check the voltages between grids and cathodes; this is actually what determines beam current. If the grids are too far negative or cathodes too far positive (same thing), you won't be able to get enough beam current. Check the screens of the picture tube, too, just for luck.

BLOBS OF COLOR

I'm working over a G-E KD chassis. It has a peculiar problem. The screen of the picture tube is covered with odd blobs of color, fixed. l've degaussed it with an external coil, run the purity adjustments several times, and tried everything else I can think of. I ran the grey-scale setup two or three times.

Nothing that I do has any effect on the blobs! I can see colors, when I put a picture on it, but I can't get the screen pure. What in the world is this?-I.I., Philadelphia, Pa.

I hate to say this, but if you can not make any difference in the blobs with a degaussing coil and the purity

adjustments won't change them either, this is very apt to be something wrong in the picture tube; a distorted mask, etc.

For a definite check, try the chassis on a test-jig. If this effect disappears, that's it. New tube.

NO FILAMENT VOLTAGE

After replacing flyback on this Zenith 21J20, (with Zenith part) I can't get the 1B3 tube to light up. I don't get it; this is such a simple circuit.-M.S., A shburnham, Ma.

It's probably too simple! You could have a couple of things causing this. Disconnect one side of the filament loop winding, and check for continuity across the filament pins, 2 and 7. Check that little 2.2 -ohm resistor.

Also make sure that the filament
is not shorted by one of the connections inside the tube. This can happen if other socket terminals are used to hold wires, etc! For a check, tack wires to a No. 222 penlight bulb, and tack this across 2 and 7. It should light, dimly.

INTERMITTENT ROLL

I'm working over an old Zenith 14N28 chassis. Got everything except an intermitrent vertical roll. Checked all capacitors and resistors in the vertical oscillator, changed rubes. Any ideas?W.M., Lagrangeville, N.Y.

Check the two integrators in this circuit; these are the little "threelegged" types, looking like dual ceramic capacitors. I doubt if they'll be shorted, but you may find the one in the feedback loop has increased in resistance, or is intermittently opening up. Normal resistance should be about 87,000 ohms for the one in the sync, and 90,000 ohms for the feedbackloop integrator. If you can't get the Zenith parts, a Centralab PC-407 or PC-408 will replace them

BIAS DIODE REVERSED

I cleared up some other problems in this Westinghouse V-2486-2 chassis, and I've got one left. This is a bad foldover from the bottom, in the vertical sweep. The bias on the output stage isn't
right. Should be -15V and the best I can get is about -5V. I've checked the parts in the bias network, and I get +15 V on the electrolytic capacitor.G.M., Greensboro, NC.

You shouldn't. This voltage should be 15 volts negative; see diagram. All of the other parts seem to be of the right value, but recheck that bias rectifier diode; it must be reversed. Some of these little diodes are very hard to identify, but if you're getting a positive voltage out of it, it has to be in backward.

This would cut down the negative bias on the grid of the 17JZ8 output section, and cause the foldover

17JZ8

false triggering of BURGLAR ALARM
I've built one of the burglar alarm circuirs you published in the June 1971 issue. Works fine, but it will 'false-trig. ger". Finally found that turning on the fluorescent lamp in the kitchen caused
this. What can I do to stop this.'-W.S., Buffulo, N.Y.

It sounds as if your alarm wiring is picking up some of the "rfi" or ra-dio-frequency hash generated by some older fluorescent lamps. They can cause quite a lot, if unfiltered.

Two "possibles": One, shield the alarm wiring where it runs near the lamp wiring. Two, add rfi filters to the lamp circuit. Start with a couple of small bypass capacitors across the line, as in a in the illustration. If this

doesn't get rid of it, add a couple of small if chokes as in diagram b. This ought to do it.

TrophyYear

Thanks. Every year that goes by proves we have the best competitive team going. You, the independent serviceman, and Raytheon, the largest independent tube supplier. In 1972, we put to gether the best tube year in a lot

of years. It didn't just happen. Raytheon worked hard to give you more dependability. You worked hard to stay ahead of the competition. Teamwork like that makes trophy years, every year. For both of us.

CRE - the only home-study college-level trainint

togram with mives you inelectroiic circuili desing

only Cine olfers you a complete college-level Electronic Design Laboratory lo speed y yor learning

Electronic circuit design-source of all new development in the application of electronics to new products and services. Without this skill, we would be unable to monitor the heartbeat of men in space. Without it, the computer revolution would never have occurred. And we would have yet to see our first TV show. Yet, only CREI teaches electronic circuit design at home.

ELECTRONIC CIRCUIT DESIGN

A key skill which paces our nation's progress in countless fields-from pollution control to satellite tracking to modern medicine to exploring the ocean's depths. And beyond. A skill which you must have to move to the top in advanced electronics.

CREI programs open up

 new worlds of opportunity for you.In addition to electronic circuit design, CREI provides you with a full advanced electronics education in any of thirteen fields of specialization you choose. Communications, computers, space operations, television, nuclear power, industrial electronics- to mention just a few of the career fields for which CREI training is qualifying With such preparation, you will have the background for a career which can take you to the frontiers of the nation's most exciting new developments. And around the world.

This free book can change your life.

Send for it.

If you are a high-school graduate (or equivalent) and have previous training or experience in electronics, then you are qualified to enroll in a CREI program to move you ahead in advanced electronics.

Send now for our full-color, eighty page book on careers in advanced electronics. In it, you will find full facts on the exciting kinds of work which CREI programs open up to you. And full facts on the comprehensive courses of instruction, the strong personal help, and the professional laboratory equipment which CREI makes available to you. All at a surprisingly low tuition cost.

And when you have it, talk with your employer about it. Tell him you're considering enrolling with CREI. He'll undoubtedly be happy to know you are planning to increase your value to him. And he may offer to pay all or part of your tuition cost. Hundreds of employers and government agencies do. Large and small. Including some of the giants in electronics. If they are willing to pay for CREI training for their employees, you know it must be good
Send for Advanced Electronics today. You'll be glad you did.

CREI Dept. E.1408D
3939 Wisconsin Avenue
Washington, D.C. 20016
Rush me your FREE book describing my opportunities in advanced electronics. I am a high school graduate.
Name \qquad Age \qquad
Address \qquad State \qquad ZIP \qquad

If you have previous training in elsctronics, check here \square

new products

More information on new products is available from the manufacturers of items identified by a Reader Service number. Use the Reader Service Card inside the back cover.

TWO-METER MOBILE ANTENNA, model CGT-144 has low radiation angle and 5.2 dB gain over a $1 / 4$-wave ground plane. Complete system includes collinear antenna with stainless steel radiating sections, 180 swivel ball, heavy-duty trunk lip mount for "no holes" installation on

side or edge of trunk lip and 17' Mil Spec RG-58-U coax with factory attached connectors.

Power rated at 200 watts $F M$, it has a SWR of 1:1:1 (typical) at resonance and within $1: 5: 1$ over its 6 MHz bandwidth of $143-149 \mathrm{MHz}$. Overall length is $86^{\prime \prime}$. 84" collinear antenna with *" -24° threaded base fits standard mobile ball mounts.-New-Tronics Corp., 15800 Commerce Park Drive, Brook Park, Ohio 44142.

Circle 31 on reader service card
TRIGGERED OSCILLOSCOPE, model 511 includes active sync separators for viewing TV vertical and horizontal and

field 1 and field 2 VITS. Has horizontal input on the front panel with front panel switch selectable ac/dc coupling for vectorscope operation. No external coupling capacitors are needed. Three snap-in overlays are provided. 10 MHz triggered bandwidth is available with high-frequency sync adjustments. Simplified controls, bright trace, large 8×10 cm display area. There is a trace invert switch so signals can be observed even though they go through an inverting amplifier. Regulated power supply for high line/low line operation-105V to 125 V , 60 Hz .
$81 / 2^{\prime \prime} \times 10^{\prime \prime} \times 17^{\prime \prime}$; single channel $\$ 395.00$, dual channel $\$ 495.00$.-Hickok Electrical instrument Company, 10514 Dupont Avenue, Cleveland, Ohio 44108.

Circle 32 on reader service card
STEREO SPEAKER SYSTEM KIT, model SK96RRFX has two $6^{\prime \prime} \times 9^{\prime \prime}$ dual-cone speakers with 20 oz . Syntox-6 ceramic magnets. Flexair suspension for inproved bass response. Power rating is 25 watts. Extended frequency response is $40-16,000 \mathrm{~Hz}$ with resonance of 50 Hz .

Impedance is 8 ohms. Weather resistant. Kit includes custom fit grills, 15^{\prime} heavy duty stereo wire, mounting hardware and complete instructions.-Jensen Sound Laboratories, 4310 Trans World Road, Schiller Park, III. 60176.

Circle 33 on reader service card
POCKET-SIZE OHM TRACER, model 4371 has a 0 to 5000 -ohm resistance test range with 2% accuracy. Two builtin standards are 20 ohms and 200 ohms. Uses low 0.08 Vdc test voltage for incircuit testing of solid-state circuitry. There is no danger of creating false signals or damaging components tested. Can also be used as a continuity tester.

No meters to watch as volume con-

trolled audible alarm signals less than calibrated resistance. Circuit is self adjusting to insure accuracy as battery power diminishes. Battery life is 200 hours; fused probe protects tester from misuse and leads are 4 feet long. $37 / \mathbf{s}^{\prime \prime} \mathrm{H}$ $\times 21 / 2^{\prime \prime} \mathrm{W} \times 11 h^{\prime \prime} \mathrm{D} ; 8.502$; $\$ 56.00$.-Ecos Electronics Corporation, 205 West Harrison Street, Oak Park, III. 60304.

Circle 34 on reader service card
DISASTER ALARM KIT detects gas or smoke to activate an alarm buzzer. The unit detects natural gas, methane gas.

carbon monoxide, iso-butane or any of the lonized gases and smoke in homes, work-shops, garages or any other area where there is a possibility of a dangerous gas leak.

The unit is complete with assembly instructions and a white plastic case. Unit runs on 120 Vac. \$19.95.-Radlo Shack, 2617 West 7th Street, Fort Worth, Tex. 76107.

Circle 35 on reader service card
DESOLDERING IRON PENCIL, model 510 has safety power indicating light, 3way on-idle-off switch and supporting bracket to insure proper alignment.

Operates at 40 W and idles at 20 W . Built-in light indicates operation at both heats with a different intensity for each. Unbreakable polycarbonate handle, flexible, burn-resistant neoprene cord and eight tip sizes. $81 / 2^{\prime \prime}$ long; $31 / 2$ oz.; $\$ 15.95$. Converts to dual heat soldering iron with

1/4" shank plug type tip. - Enterprise Development Corp., 5127 East 65th Street, Indianapolis, Ind. 46220.

Circle 36 on reader service card
FM TRANSCEIVER, model HR-220 for amateur communications in the 220 to

$225-\mathrm{MHz}$ range. 12-channel transmitter puts out ten watts minimum from 13.8-V dc power supply with phase modulation and automatic deviation limiting. Each crystal-controlled channel is equipped with individual trimmer capacitor for frequency netting. Built-in VSWR bridge limiting circuit protects the rf power amplifier.

Audio output is five watts. Noise operated squelch system provides clear reception. Sensitivity rated at $0.4-\mu \mathrm{V}$ (nominal). 20 dB quieting. $21 / 4^{\prime \prime} \times 51 / 2^{\prime \prime} \times 712^{\prime \prime}$; $\$ 239.00$ complete with factory installed transmit and recelve crystals for 223.50 MHz . Hand-held, plug-in ceramic mike is included as is dash mounting bracket.Regency Electronics Inc., 7900 PendIeton Pike, Indianapolis, Ind. 46226.

Circle 37 on reader service card
TELESCOPING ANTENNA MAST is constructed of extra-strength Golden Duratube special process steel and is available in 20, 30, 40 and 50 -foot telescoping lengths. Features contoured guy rings that eliminate sharp, wire-fraying edges. This steel is bonded inside

and out with oxide primer and is then overcoated with a tough, golden acrylic finish that resists corroslon. Guy rings are made of aluminum and rest on swaged shoulder of the mast which allows the mast to be firmly guyed before the antenna is oriented.-Channel Master, Ellenville, New York.

Circle 38 on reader service card

Call-backs are just what you and your customers' don't want. Once you install the B-T Horizon VHF two-set amplifier, you can forget it, because it's quality tuilt to be reliable. It's the mast-mounted amplifier that thousands and thousands of TV installers have found "stays on the roof".

What makes Horizon so reliable? Solid-state, troublefree circuitry. Four-way lightning and surge protection. Temperature compensation for all-weather reliability, and two individual amplifier circuits-one for $\mathrm{Ch} .2-6$
 and the other for Ch .7-13.

But the Horizon would not stay on the roof long if it didn't perform. And perform it does. It's back-matched for clearer color pictures. The patented ICEF circuit delivers wide dynamic range so that strong signals won't overload weak ones. It delivers more than ample gain for weak to medium signal areas for up to two TV sets.

And these are the reasons that made the Horizon one of the fastest and best sellers ever, and once it's sold, forget it. B-T has the industry's broadest line of home and MATV TV signal amplifiers-indoors and outdoors.

Circle 15 on reader service card

SUMMER SALE

FAMOUS BRANDS

25-2.5 Amp. 1000 Piv Rect. $\mathbf{\$ 3 . 9 5}$
10-DD-04 Dual Diodes $\$ 2.98$
10-DD-05-Dual Diodes $\$ 2.98$
1 Amp. 1000 PIB Top Hats 20 for $\$ 3.49$
3 Amp. 1000 PIV 20 for $\$ 3.95$
1N34A Diodes 25 for $\$ 2.00$
6500 PPIV Focus Rectifiers 4 for $\$ 2.00$
13.5 KV Focus Rectifiers 5 for $\$ 3.00$
18.5KV Focus Rect. 3 for $\$ 2.49$

RCA Color Crystals 3.58 MC 2 for $\$ 2.49$
2-Damper Diodes RCA 135320 $\$ 2.98$
Zenith Voltage Tripler $\mathbf{\$ 4 . 9 5}$
Zenith Color Chip 212-45 \$3.95 Ea.

COLOR YOKES-COLOR YOKES

SILVERTONE-80-56-4G $\$ 5.95$ Ea. MOTOROLA QUASAR-24D68592BO1 $\$ 5.95$ Ea. Equiv. DY95AC-Y109-Universal ... \$6.95 Ea. MAGNAVOX 361340-Equiv. Y-133 . $\mathbf{5 5 . 9 5}$ Ea. MAGNAVOX X361380-Equiv..Y-134 $\mathbf{\$ 5 . 9 5}$ Ea_ MAGNAVOX 361395-Equiv. Y-135 . $\$ 5.95$ Ea. Circuit Breakers-1.25 Amp 10 for $\$ 1.00$ 10 AC Interlock Polorized $\$ 1.00$ AC Cube Taps-3 Outlets 5 for $\$ 1.00$ HV Anode Leads B/W 10 for $\$ 1.00$ CRT Harnes Short Leads Color ... 5 for $\$ 1.00$ 100 Mica Cond. Assorted $\$ 1.00$ 100 By-Pass Cond. Assorted $\$ 4.95$. 01 Mfd.-1KV Spark Gap 20 for $\$ 2.00$ 25 Assorted Disc Cond. $\$ 1.39$
100 Mfd - 150 Volts Axial 12 for $\$ 1.98$
50 Assorted Fuses (5 Box) $\$ 1.98$
10 Align. Tools Asst'd. $\$ 1.98$
20 Asst'd Mallory Controls $\$ 2.00$
5-1 Meg. On/Off Sw. $\$ 1.00$
Wire Wound Resistors Asst'd 20 for $\$ 1.39$

TUNERS-NEW—WITH TUBES
Standard Coil Parallel 6GJ7-6HA5
. $\$ 6.95$
Sarkes-Tarzian Parallel 6GJ7-6HAS .. $\$ 6.50$
Sylvania Transistor-54-29331-3 .
Silvertone Combo-UHF-VHF-Par. $\$ 6.95$
$\$ 7.95$
Silvertone Combo-UHF-VHF-Series $\$ 7.95$
Silvertone Series $\$ 4.95$
Philco Series 76-13983-5GJ7-3HA5 $\$ 4.50$
Philco Series 7613579-6-5GJ7-3HAS ... \$4.50
Gen. Elect. Series 5GJ7-3HA5 \$5.95
Sylvania Series-54-27887-1-5GJ7-3HQ5 . $\$ 5.95$
Sylvania Series-54-15967-35GJ7-3GK5 ... \$5.95
RAYTHEON TUBES
6BA11
5 for $\$ 4.50$
12GES 5 for $\$ 4.50$

MINIMUM ORDER $\$ 15.00$
SEND FOR FREE CATALOG
TUBES UP TO 80\% OFF

SEND CHECK OR MONEY ORDER

TV TECH SPECIALS

P.O. BOX 603

Kings Park, L.I., New York 11754

LOCK'N'TIES consist of cable clamps, ties and solderless terminals. Brand new are the nylon screws, washers and

spacers. 91 different products are packaged in hang-up plastic tubes and have same list price.-Workman Electronic Products, Inc., Box 3828, Sarasota, Fla. 33578.

Circle 39 on reader service card

HARD-TO•FIND TOOLS

FOR ELECTRONICS AND FINE MECHANICS
 Circle 17 on reader service card

SMALL ENGINE TUNE-UP METER, CM1045 is a solid-state tune-up tool for all one to four cylinder, 2- and 4-cycle engines. Tests volts, ohms, dwell, continuity. In many cases permits checking the entire ignition system on a small engine without tearing it down to get at the ignition points behind the flywheel.

Built-in tachometer with snap-on inductive pickup and 0 to 3,000 plus 0 to

$15,000 \mathrm{rpm}$ ranges. By connecting the leads, rpm can be read on any engine from one to 4 cylinders without switching for the number of cylinders. Completely portable, powered by three $1.5-\mathrm{V}$ C batteries; self-contained in snap-lock oil-gas-water-resistant case; \$39.95.-Heath Company, Benton Harbor, Mich. 49022.

Circle 40 on reader service card
CORDLESS SOLDERING IRON, Iso-Tip. For use in all types of field repairs, for soldering on water, in air, for repairs to X-Ray and electronic lab equipment and for previously inaccessible areas such as

tower and antenna work and test flights in aircraft where ac power is not available. Quick heating isolated tip design prevents burning of wires near tip. $8^{\prime \prime} ; 6$ 0z; 5-second heat. Wahl Clipper Corp., 2902 Locust St., Sterling, Ill. 61081. R-E Circle 41 on reader service card

new literature

All booklets, catalogs, charts, data sheets and other literature listed here with a Reader Service number are free. Use the Reader Service Card inside the back cover.

ELECTRONIC PARTS catalog No. 8 is a 55page book that contains various components and devices such as: computer keyboard, semiconductor coolers, heat sinks, transistors, Zener diodes, power transistors, IC's, diode rectifiers, SCR's, semiconductors, transformers, AM/FM stereo multiplex receiver, radiosonde equipment, relays, printed circuit boards, computer-grade capacitors, potentiometers, power resistors, precision resistors, power supplies, switches, computer boards, speakers and damaged merchandise.-Delta Electronlcs Company, P.O. Box 1, Lynn, Mass. 01903.

Circle 42 on reader service card
QUIK-WRAP, catalog No. 350 presents handoperated wire-wrapping tools, bare ground strapping tools, hand unwrapping tools, wrapping tool kit, unwrapping tool kit, manual wire unwrap gun \& accessories and manual wire wrap gun \& accessories. Includes descriptions and pictures of each device.-Jonard Industries Corp., 3047 Tibbett Avenue, Bronx, N. Y.

Circle 43 on reader service card
CB RADIO REPAIR COURSE. 8-page booklet tells about 70 information-packed programmed lessons-25 on basic principles, 25 on actual CB circuits and 20 about CB servicing.-CB Radlo Repalr Course Inc., 15 South Overmyer Drive, Oklahoma City, Okla. 73127.

Circle 44 on reader service card
ALARMS CATALOG includes ultrasonic-sentry and electro-sentry burglar alarms and magnasentry burglar and fire alarm descriptions as well as alarm accessories and a variety of sensors and other hardware.-Audlotex, GC Electronics, 400 South Wyman Street, Rockford, III. 61101.

Circle 45 on reader service card
Write direct to the manufacturers for information on items listed below:

1973 MASTER INDEX is a 1957-73 listing for service data of about 40 manufacturers of TV receivers by chassis number. Radio listings are also presented in same fashion. Contains component stereo equipment too.-RCC Publlcations, 461 King Street West, Toronto. Canada M5V 1 K 8.

1973 SEMICONDUCTOR CROSS-REFERENCE GUIDE HMA-07. Approximately 43.000 semiconductor devices are cross-referenced to HEP replacements. Included are $1 \mathrm{~N}, 2 \mathrm{~N}, 3 \mathrm{~N}$, JEDEC, manufacturers' regular and special house numbers and many international devices with emphasis on Japanese types. 472 HEP items are listed. All Motorola HEP devices are listed by type numbers and case style with a packaging index, device dimension drawings and selection guide information.-

Motorola HEP Semiconductors, P.O. Box 2953, Phoenix, Ariz. 85036.

SOUND SYSTEMS. 15-page booklet outlines sound reinforcement concept and functions of system components. Path of signal is traced from the source through components in systems that range from elementary to complex.

System organization is depicted by flow diagrams with line drawings of actual components. Two tables assist in selecting appropriate volume controls and determining correct power requirements; check list aids in assembling data necessary for construction of sound system,-Dukane Corp., 2900 Dukane Drive. St. Charles, III. 60174.

R-E

ALL PTS BRANCHES are wholly owned subsidiaries of PTS ELECTRONICS. INC. (NO FRANCHISESI) And report directly to the Home Oftice in Bloomington, Indiana Only this way can we guarantee the ame quality-PRECISION TUNER SERVICE-that made PTS the leader in this field.
PTS is proud to be the only tuner service to publish a TUNER REPLACEMENT PARTS CATALOG (80 pages of quner blow.ups. funer antenna coil-and shaft replacement gu des available for $\$ 100$) WE OFFER MORE SERVICE IS EVERYTHING WITH US. WE ARE DYNAMIL AND FAST. TRUSTWORTHY

YOU AND US - A TRUE PARTNERSHIP

Color - Black \& White - Transistor Tubes - Varactor - Detent UHF All Makes

VHF, UHF or FM 16.95

IF-SUBCHASSIS 12.50
Major parts and shipping charged at cost.
(Dealer net!)
over 4000 exact tuner replacements available for $\$ 19.95$ up (new or rebuilt)
for finer, faster, Precision 制艮

ELECTRONIC TECHNICIANS!

Raise your professional standing and prepare for promotion! Win your diploma in

ENGINEERING MATHEMATICS

from the Indiana Home Study Institute
We are proud to announce two great new courses in Engineering Mathematics or the electronic industry.
These unusual courses are the result of many years of study and thought by the President of Indiana Home Study, who has personally lectured in the classroom o thousands of men, from all walks of life, on mathematics, and electrical and lectronic engineering.
You will have to see the lessons to appreciate them?
Now you can master engineering WE ARE THIS SUally enjoy doing it WE ARE THIS SURE: you sign no ontracts-you order your lessons on money-back guarantee.
In plain language, if you aren't satis trings attached.
Wite today for more information and
Write today for mor
our outline of courses hing to gain!

The INDIANA HOME STUDY INSTITUTE

Dept. RE.8 P.O. Box 1189, Panama City, Fla. 32401

Circle 19 on reader service card

Our 21st year of service to the World's finest craftsmen and technicians.

80 Circle 20 on reader service card

REPAIRING CALCULATORS (continued from page 36)
unit is located, a messy procedure if the readouts are soldered in place. If a segment fails to light in only one readout, by the way, either the device or the solder joints at one or more of its pins are defective.

Automatic clear

When initially turned on, most calculators automatically reset to zero without the need for a command from the clear key. A typical automatic clear circuit is shown in Fig. 8. In operation, the circuit grounds the clear line momentarily after power is applied to the machine. If the capacitor or resistor shorts, the indication is no display and no entries are possible. A shorted diode won't affect the circuit each time the power is activated, but occasionally the machine will not automatically clear. An open capacitor or diode will disable the circuit, but the machine can be manually reset via the CLEAR key.

Sign and error

The first readout on a display is generally used as a status indicator and receives only a few commands. The minus sign indication and overflow signal come directly from an LSI chip through buffer stages. As shown in Fig. 9, there are four active components involved with these functions

FIG. B-TYPICAL AUTOMATIC CLEAR CIR. CUIT. Clear tine is grounded momentarly when power le first applied to the calculator.

FIG. 9-THE MINUS SIGN is made by forward-blasing D5, Inghting Indicator segment G. When an error occurs, diodes D3 and D4 are turned on, forming an "E" by lighting segments A, D, E, F and G.
machine is not on) and pry up each side of the IC package with a screwdriver using a gentle rocking motion until it comes loose. When the IC comes free of the socket, pick it up without touching the pins and place the unit on a piece of Styrofoam covered with aluminum foil.

When installing a chip in a socket, ground yourself and then carefully line up all the pins with the socket receptacles. Apply gentle pressure at first one end and then the other until the IC is secure in the socket. CAUTION: If the MOS LSI IC's are soldered in place DO NOT attempt removal unless the proper equipment and experience is available.

Troubleshooting the LSI portion of a calculator is extremely difficult if a block diagram showing inputs and outputs for each chip is not available. If the diagram is available, it can be used to work from the output chip or section of a chip backward to the input of the preceding chip. The procedure is more difficult in multi-chip calculators since some chips invariably receive feedback input information from other chips.

Case history

The MITS 1440 is a multi-function desk calculator with a square and square root capability. The machine
can also store a 14 digit word in memory. The unit uses fourteen readouts in its display and six LSI chips. A machine came in for service in which the overflow indicator worked but the display failed to operate. The power supply voltages and the pulses on the digit lines and BCD lines from the output chip to the display buffer were all good. From here on let's quote from the servicing technician's report:
"Having no other place to go I began looking at the input and output signals around the output chip. I started at the outputs of the circuit (pins 4 and 10 of IC11), found they were not present, and began working backwards until finding correct input pulses at pins 8 and 9 of gate 3-a. There was no output at pin 10 of the IC socket. I then checked pin 10 at the IC lead and determined that it was operating properly. A continuity check showed an open between pin 10 of the socket and the IC. Resoldering the pin failed to correct the problem. I removed the socket and found that pin 10 had been broken internally. The socket was replaced and when the chip was reinstalled the machine operated properly."

There are numerous examples of this kind of troubleshooting procedure. The best way to learn the technique is to service some actual calculators R-E

PROTECTS SPEAKER AND AMPLIFIER

An overload in wottage of amplifier output activates circuit breaker and prevents damage. Reset circuit breaker and make sure you use correct values of Speaker Guard.

18 DIFFERENT VALUES

ASK FOR CAT.: 145C
WGRKMAN
EJX 3828 SARASOTA FLA 33578

Circle 21 on reader service card

UPDATE WITH SOLID-STATE!

SOLID-TUBES

 replace 25 vacuum tubes

Pull out those troublesome vacuum tubes. Plug in the new SOLID-TUBES from EDI, pioneers in high voltage solid-state devices for the TV industry.

PART NO. EDI	REPLACE VACUUM TUBE TYPES
SOLID-TUBE R-3A3	3A3, 3AW3, 3B2, 3CA3, 3CN3, 3CU3, 3CZ3, 2CN3, 1B3, 1G3, 1K3, 1J3
SOLID-TUBE R-3AT2	3AT2, 3AW2, 3BL2, 3BM2, 3BN2
SOLID-TUBE R-3DB3	3DB3, 3DJ3
SOLID-TUBE R-2AV2	2AV2, IV2
SOLID-TUBE R-DW4	6DW4, 6CK3, 6CL3, 6BA3

CONSIDER THESE BENEFITS . . .

real cool

- more reliable - longer life
- no filament winding repairs - instant starting
- saves call backs

Order EDI SOLID-TUBES from your parts distributor Or call us collect. Write today for FREE new solidstate replacement parts guide.
ELECTRDNIC DEVICEB, INC.
21 GRAY OAKS AVE YONKERS N.Y 10710 TRLEPMONE P1A.065.0400. TELETYPE 110960002 IN CANADA: LEN FINKLER, LTD. designers and manufacturers of solid state devices since 1952
"There's so much new test equipment, I'm getting in shape to carry my tool kit."

technote

HUM REDUCING METHOD

Often, when one builds a high-sensitivity line-operated piece of equipment $60-\mathrm{Hz}$ hum can be a problem. Large filter capacitors and shielded cable help but to reduce 60 Hz hum and line noise to a minimum the special shielding technique described here can be used.

A major source of hum in ac equipment comes from the step-down transformer used to supply the dc voltage. Even if the transformer is mounted away from sensitive circuits it still generates enough of a magnetic field to in-

duce hum. One technique is to use a shielded transformer. However these are not always available, or are 100 expensive. A better method is to use two transformers, grounding (as shown) one of the common connections, or if available the center tap of one unit. In effect the secondary winding acts as an electrostatic shield grounding out all hum.

Transformer Tl is a 117 -to-117 volt isolation transformer. T2 is an ordinary filament transformer whose secondary matches the de voltage required. With the circuit shown and the unit used hum and line noise in a high-sensitivity audio amplifier was reduced by a factor of 5 over the usual single transformer method.-Robert Liebman R-E

books

INTRINSIC SAFETY by R. J. Redding. McGraw-HIII Book Co., 1221 Avenue of the Americes, Now York, N.Y. 10020. 180 pp. $\$ 12.50$.

Accidents are the invasion of the unprepared by the unexpected. But if intrinsic safety is considered in the basic design of electronic equipment, you will not be unprepared and no sacrifice of performance or convenience or any significant cost penalty need arise. In this book, the author sets out to present background information, past experience and present-day practice in making electronic equipment safe in explosive atmospheres and where flammable fluids are used.

BASIC ELECTRONIC TEST PROCEDURES by Irving Gottlalb. Tab Books, Monterey \& Pinola Sts., Blue Ridge Summit, Ps. 416 pp. $\$ 6.95$.

A step-by-step guide to all types of basic electronic measurements using simple, inexpensive test equipment. In this book, the mysteries usually associated with many electronics tests are unveiled. The author shows how to get accurate, meaningful measurements with ordinary vom's, oscilloscopes, etc. by taking into consideration the errors inherent in most test equipment. The important thing is knowing and understanding the true nature of what is to be measured.

EASI-GUIDE TO BOAT RADIO by Forest H. Bell. Howard W. Sams \& Co., Inc., 4300 W. 62 St., Indianapolis, ind. 160 pp. $\$ 3.50$.

Here is an introduction to boating radio. Photographs show what you can do with a radio in your own boat, how to find it, select one, the steps in installing it and how to use it. One chapter covers FCC rules that apply to the pleasure boater. The reader sees how to take care of his boat radio and learns what to do if it breaks down.

TESTS-ANSWERS FOR FCC FIRST AND SECOND CLASS COMMERCIAL LICENSE by Warren G. Weagant. Command Productions, P.O. Box 26348, Sen Franclsco, Callf. 94126.69 pp. $\$ 9.95$.

Consists of a set of tests and study material based on those suggested by the FCC in their study guide and intended to provide an additional means of preparing for the federal tests.

The test assumes that the reader already holds a third class radio/telephone license. The first section of the book is a self-study ability test which enables the student to determine which areas he requires the most practice in. Then each additional section presents a series of questions and answers similar to those in the actual FCC test and should enable the candidate to get an actual picture of what to expec when he does take his license examination.

COLOR TELEVISION THEORY AND SERVICING by Clyde N. Herrick. Reston Publishing Co., Inc., Box 547, Reston, Va. 22090. 372 pp.

A completely up-to-date approach that provides sound coverage of solid-state color television receivers, circuitry, operation and troubleshooting. Fully illustrated with line drawings and photographs, some in full color, this book accents system operation and color television transmission. Analyzing basic color fundamentals, the author surveys color television technology today. He covers all types of operations from systems, color picture tube principles to ri and i.f. circuitry. The author explains troubleshooting based on picture analysis and instrument troubleshooting.

TRANSISTOR CIRCUIT DESIGN by Laurence G. Cowles. Prentice-Hall, Inc., Englowood CIIfs, N.J. 344 pp. $\$ 16.00$.

A manual of practical transistor circuit design, this book gives technicians, junior designers and engineers an understanding of meaningful design relations requiring a minimum of mathematical analysis. The text covers vital subjects such as single-stage and multi-stage ampliflers, class A and class B power amplifiers, audio, video, uhf and microwave circuits, FET and MOSFET ampliflers and linear integrated circuits.

HOW TO BUILD SIMPLE ELECTRICAL METERS A INDICATORS by Charies Grepn. Howard W. Sams \& Co., Inc., 4300 W. 62 St., indianapolls, Ind. 128 pp. $\$ 3.95$.

For students who wish to learn the fundamentals of electrical instrumentation and who understand basic electrical theory. Each chapter covers a particular milestone in the history of electricity, discussing the scientists and inventors invoived. The besic theory and construction details of meter and indicator projects that are related to a particular part of electrical history are included in each chapter. The projects start simple and become increasingly more complex. Dry theory is kept to a minimum. Standard electrical components are used. Projects inctide an electroscope, a saltwater voltaic cell, an electrolytic conductivity tester, an electrically heated thermostat, a polarized vane meter, a galvanometer, a repulsion moving iron meter, a moving coil meter and experiments with a moving coll meter.

If You Work In Electronics:

Earn Your Electronics

DEGREE by studying at home.

Your technical experience can be a valuable asset in advancing your electronics career to the engineering level. By adding college-level home training and a college degree to your experience, you can move up to greater opportunities.

GRANTHAM
 School of Engineering

1505 N. Western Avenue Hollywood, CA 90027
is a college-level institution, specializing in teaching electronics and supporting subjects, mainly by correspondence. Granthan can prepare you to take advantage of advancement opportunities.
Grantham offers a correspondence program leading to the A.S.E.T.degree. After earning this degree, you may continue with additional correspondence plus a one-week residential seminar and certain transfer credits, to earn the B.S.E.T. degree. Then, the B.S.E.E. degree is available through further residential attendance.

Established in 1951 - G.I. Bill approved. Mail the coupon below for free bulletin.

AT LAST: PROFESSIONAL HOME PROTECTION EVERYONE CAN INSTALI AND AFFORD.

Model FC-100 wired 995

- Start your custom Burglar/Hold-up/Fire Alarm System with the FC-100. Add on Sensors, Alarms and Accessories to suit your own needs.
- "Do-it-Yourself" Installers Handbook included. No technical knowledge needed No soldering.
- 100\% Professional in Design, Reliability, Performance.

FREE 32 PAGE EICO CATALOG
For latest catalog on EICO Test instruments, storeo, EICOCRAFT Projects, Environmental Llghting, Burglar/Fire Alarm Systoms, and name of nearest EICO Distributor, check Reader Service Card or send $25 \notin$ for First Class mall service.

EICO, 283 Malta Street, Brooklyn, N.Y. 11207

Clever Kleps

Test probes designed by your needs - Push to seize, push to release (all Kleps spring loaded).
Kelps 10. Boathook clamp grips wires, lugs, terminals. Accepts banana plug or bare wire lead. $43 / 4$ " long. $\$ 1.39$ Kleps 20. Same, but 7" long.
Kleps 30 . Completely flexible. Forked-tongue gripper. Accepts banana plug or bare lead. $6^{\prime \prime}$ long.
Kleps 40. Completely flexible. 3 -segment automatic firmly grips wire ends, PC-board terminals, connector pins. Accepts banana plug or plain wire. $61 / 4^{\prime \prime}$ long. $\$ 2.59$ Kieps 1. Economy Kleps for light tine work (not lab quality). Meshing claws. $41 / 2^{\prime \prime}$ long. Pruf 10. Versatile test prod. Solder connection. Molded phenolic. Doubles as scribing tool. "Bunch" pin fits banana jack. Phone tip. $51 / 2^{\prime \prime}$ long.
$\$.89$ All in red or black - specify. (Add 50¢ postage and handling). Write for complete catalog of - test probes, plugs, sockets, connectors, earphones, headsets, miniature components.
 A vailable through your local distributor, or write to:
 Kleps 40

Kleps 1

circuits

VARIABLE BATTERY ELIMINATOR

We do industrial work, including metal locators and pipe finders. Occasionally an older type using $1 / 2$-volt tubes crops up. You will find a Geiger counter, timer, photo cell and other old devices still in operation. But enough of this work does not come in to keep several batteries in stock, so we designed a variable "B" supply. In our case. we found some old preamplifiers using a 6X4 rectifier and 6AU6 and 6C4 amplifiers. We used these for basic units. The power out is $0-150$ volts at 40 mA (it depends on power transformer you use). We used silicon rectifiers.

The choke can be any $200-500$ ohm. $40-\mathrm{mA}$ unit or even a 6 V 6 (or similar) audio output transformer with voice coil leads clipped off. The tube can be almost any audio output type, $6 \mathrm{~V} 6,6 \mathrm{~F} 6,6 \mathrm{~L} 6$. 12L6 etc.

The meter can be any voltmeter reading up to 150 volts or more or any instrument from 1.0 to 10 mA with RI serving as a multiplier resistor. The value of R1 is determined by dividing 1.0 volt by the meter's full-scale current in amperes and then multiplying the resultant (sensitivity in ohms per volt) by the maximum voltage you want to read. For example, suppose you come up with an old $0-5 \mathrm{~mA}$ meter and want it to indicate 150 volts full-scale. The value of R1 is then
$150 \times 1{ }_{\text {(volu) }} .005_{\text {(amps) }}=150 \% .005$ or $30,000 \mathrm{ohms}$. Similarly, RI would be 150,000 ohms with a $1-\mathrm{mA}$ meter movement. (We have disregarded meter resistance in this case, but if you want to get an exact value for RI, subtract the meter resistance from the calculated value.)

To use: Connect the A (flashlight or other battery) to the filament circuits and connect this B supply in place of the $221 / 2$-, 45 - or $67 \frac{1}{2}$-volt B battery and turn the control for zero voltage. Turn on unit under repair and turn on B supply. Then slowly turn pot until meter reads wanted volt-age.-W. G. Eslick

R-E

MORE ON THE FUNCTION GENERATOR
The function generator on the cover and top of page 41 of the July issue includes a digital frequency counter readout to indicate its output frequency. Technical details and construction data on this feature were not included in the article but will be the subject of an article in an early issue.

We regret that this fact was not mentioned in the July article.

AUGUST SPECIALS

SHANNON MYLAR RECORDING TAPE

3" - 225'.......... . 19	CASSETTE C-60............. . 50 CASSETTE C-00............. 1.10
	CASSETTE C-120(TDK) 1.97
5" - 800'.......... . 62	2-rrack - 84 Mm. 1,29
5" - 900'......... . 60	2-Track - $80 \mathrm{Min}1 .59$
$5^{\prime \prime}$ - 1200'.......... . 07	e-rrack - Clanner 1.49
$5^{\prime \prime}$ - 1800'.......... 1.49	-
7"' - 1200'.......... . 77	3" TAPE REEL 06
7"' - 1800'.......... 1.12	314" TAPE REEL............. 07
7" - 2400'............. 1.79	5" TAPE REEL 14
7"' - 3600'.......... 2.95	7 Tape necl 15

CANADIANS: Ordering is easy - we do the paperwork - try a small order

WESTINGHOUSE ALL TRANSISTOR HOME/OFFICE MESSAGE CENTER

Leaves menalages for other for replay... Built in speaker/microphone for talk-into convenience. . . Records up to ${ }^{8}$ minutes of messages pefing. Control signa absayback volume without affecting recording volume © Capstan Drive:
'7.95

SARKES TARZIAN TUNER 41 mc

Lateat Compact Model good for all 41 me TV's. BRAND NEW-

Best TUNER "GARKES TARZLAN ever made-last word for stability, definition emoothnesa of operation. An opportunit -to ceiver up-to-date.
COMPLETE with Tubes
 WESTINGHOUSE FM TUNER (12DT8 :2........................
 300 - ASSORTED MEX MUTS 2/56. 4/40, 1 3/40, 6/82, 8/32.
250 - ASST. SOLOEAING LUGS best typen : 1
$\square 250$ - ASsT. WOOD SCREWS haces popu- ?

1500 - HEX NUTS ..
MARKET SCOOP COLUMN \square fogs sumatura mectrolvtic capact : 1

Circle 27 on reader service card

DOTHATCH ${ }^{\circ}$

an exclusive Lectrotech development
 COLOR GENERATOR
The ultimate in pattern stability, at all temperatures, provided by Digital IC Counters. No internal adjustments. RF output channel 3 or 4 Video output $3 v$. P.P. 4.5 MHz crystal sound carrier. With shoulder strap and self-contained cable compartment. Net 129.50

See your distributor or write Dept. RE-4

LECTROTECH,INC.

[^3]Bend a " S " shaped hook in one end and a " C " shaped hook in the other. Note that the first hook has a reverse bend in it (a in the drawing), which allows the tool to be used to push on a spring end where it is out of reach of other tools. After careful bending, again heat each end, in turn, to cherry red, and plunge into cold water. to harden it.

-

Use the tool as shown in sketches. To push a spring into place, use the reverse-bent hook as in c. Push carefully, and let the loop of the spring drop into place. Then, remove the spring hook. A similar procedure is used for pulling a spring into place, as shown at d.-Hugh Gordon

DIP HANDLE

Handling IC packages with their delicate leads can present problems. Fingers obstruct the view when aligning the leads for insertion, and when the units are closely spaced removal frequently results in mangled leads.

Professional tools are available, but for occasional use the battery clip shown serves very well. The clips are avail-

able in various sizes from automotive stores and are used for battery charging. The " 5 amp ." size needs only a little work with a file to clip neatly under the ends of the DIP package. - R. G. Cooper

USING DULL WIRE STRIPPERS

If your automatic strippers get dull and won't strip properly, simply squeeze the end of the wire being stripped with a pair of long-nose pliers. The wire will strip cleanly.-A.E. Plavcan

Electronic Symbols

ELECTRONIC SYMBOLS -DATA CHART -- CALECTRJ HANDBOCK

with every CALECTRO HANDBOOK! Available from your CALECTRO distributor!

DISCOUNT PRICES

IEST EQUIPMENT

ETS SENCORE Eaderis

I.C.C. /Mullard

 Tube SpecialsTelematic Test Jigs \&Accessories

Catalog \& Prices on Request

FORDHAM
 Radio Supply Company, Inc.

558 Morris
Bronx Y
Branx Tel: $^{\text {N.Y. }}$. 212 . $585-0330$ RCת DISTRIBUTORS OF ELECTRONIC SUPPLIES

Circle 30 on reader service card

FM STEREO DECODER
(continued from page 62)
another $19-\mathrm{kHz}$ signal which is in phase with the pilot tone. This inphase signal is compared with the incoming $19-\mathrm{kHz}$ signal in the stereo switch demodulator and yields a dc component proportional to the pilot tone amplitude. This dc component is filtered and applied to the trigger circuit which activates both the stereo switch and an indicator lamp.

One of the advantages of a phase-locked loop arrangement is the fact that a fairly substantial variation in free-running frequency can be tolerated without degrading the performance in terms of stereo separation or distortion. Once "locked", frequency is absolutely constant (19 kHz) and, more important, phase lag or lead (compared with the incoming pilot tone) is also constant over a wide range of free-running frequencies. Motorola indicates that satisfactory performance will be maintained over a range of 2.5% detuning of free-tunning oscillator frequency. This corresponds to end frequencies of 19,475 Hz and $18,525 \mathrm{~Hz}$-a far cry from the $30-\mathrm{Hz}$ departure from $19-\mathrm{kHz}$ associated with conventional transformer and coil-tuned multiplex decoder circuits. If no regard is given to temperature compensation, free-running frequency will vary with temperature in accordance with the chart of Fig. 10. Under these circumstances, the 2.5% departure from 19 kHz will occur over a wider range of temperatures than is ever likely to be encountered in consumer use of the tuner or receiver product.

Although the phase-locked loop principle has been known and understood for more than 40 years, its practical use in consumer electronics had to await the development of largescale integration of circuits into single IC chips which we now take for granted. The Motorola MC1310P contains no less than 58 active transistor elements and three diodes plus a Ze ner diode, not to mention scores of built-in resistors.

The RCA CA-3090 contains 128 transistor elements, 14 conventional diodes, I Zener diode and some 114 resistive elements. Both devices are contained in a chip measuring approximately $3 / 4$ inch by $1 / 4$ inch $\times 3 / 16$ inch!

Other applications for phase-lockloop circuitry in high fidelity equipment are being devised in laboratories around the world. As more information becomes available, we shall perhaps devote a future article to other hi-fi applications of the phase-lockloop circuit.

The ultimate in ignition systems-The Infrared Breakerless Electronic Ignition System by Allison Engineering.

Eliminates Breaker Points. Eliminates Tune-ups. Never wears out or needs any maintenance. Timing and Dwell never change.

The Allison Breakerless Ignition system eliminates the points and condenser, replacing them with on optical trig. ger, using o light emitting diode and photatransistor. Only up cousing wiper orm (cantact point rubbing black) wear ond give the performance, economy ond reliobility of wear electronic ignition. This is why GM and Chrysler use only breakerless electronic ignition In thair now cor models. This is the only true electronic ignition that you con install on your cor for under $\$ 100.00$. The system gives breoker points. Actually increose engine efficioncy and gos mileage up to 30%. WIll not misfire under ony conditions Instolis In 20 minutes using existing distributor \& coil, no rewiring. Ten fimes as much energy ovalloble for plug firing Spark plugs last 3 ta 10 times longer. Unlimited R.P.M.
capability. capabilify. Tests prove dromatic increae in power and performance. Precision timing means instant storts in ony
weather and noticeably smoother running. An average 30% reduction in emissions. Instolting the Alliso
converts the present inefficionstrouble prone system to the most advanced electronic ignition system availoble. Remem ber $1 f$ it is nat breokerless then if is not true Electronic Ignition.
specific make. Stable for alf vehicles, each designed for To order: Send $\$ 49.95$ PPD. COD orders send $\$ 15.00$ pay bolance COD ${ }^{10}$ Allison Automotive Co.. P.O. B0x 973 Temple City, Ga. 91780, ar send for free literature. Circle 62 on reader service card

The Most Advanced Dasign in Color Combo Antennas

In these antonnas the best teatures of the log periodic and magnetically driven arrays with an exclusive corner reflector marnetic wave UHF section to make it a top periormer. The unique teature of this system is the ability to discriminate between desired signal and unwanted nolse. Sharp, vibrant tite-like color plus FM stereo listening at its tinest.

Investigate now!

S \& A ELECTRONICS

Phone 419-693-0528
202 W. Florence St. Toledo, Ohio 43605

next month

SEPTEMBER 1973

- Build A TV Typewriter

Alphanumeric character generator connects to the antenna terminals of any TV set and produces a message of your choice on the screen. What will you do with it? To name just a few: it's a teaching machine, a computer terminal, a cable system announcement generator. It's written by Don Lancaster

- What Hi-Fi Speaker Ratings Mean

R-E's Contributing High-Fidelity Editor Len Feldman explodes the myths of speakersystem spec sheets and winds up with a sample of what a speaker spec sheet should look like

- How To Wire A House For TV

All about master antenna systems for the one-family home. What equipment to use, how to install it, what it does for you.

- How To Select TV \& FM Antennas

Forest Belt tells how to make that final decision and buy the antenna that's best for you.

SOLDERING +

 DESOLDERING + RESOLDERING = SOLDER(ABILITY WORLD'S MOST PRACTICAL SOLDER HANDLING TOOLS
meets industries demands....

with : COMPLETELY Portable SOLDERING/DESOLDERING/RESOLDERING SYSTEM

Circle 64 on reader service card

THE VERO BK-6 KIT LETS YOU BUILD ANY CIRCUIT IN 3 STEPS

Here, in kit form is the fastest, simplest method of circuit building. Veroboard eliminates the need for etching, wires or terminals - you can now build any circuit in 3 easy steps. The BK. 6 Veroboard kit con. tains six assorted veroboards, a spot face cutter and instruc tion sheet. Try it and you'll never want to go back to the old method again.
$\$ 595$

THE ONE WORD
FOR PERFORMANGE
AND REMABILIIY IN
ELEHRRONG IGNIION

YOU
can have TOMORROW'S IGNITION ON YOUR CAR TODAY
Proven by over 100,000 in operation for over five years.

Don't accept "as good as" there are none.

Write Today for Literature
RESEARCH AND MFG.CO. (41
CONSHOHOCKEN PA.19428

Circle 66 on reader service card

Everything gou wanted to know about CD Ignition Systems but didn't know whom to ask.

Send for FREE Tiger booklet (20 pages) which answers all your questions.

Name \qquad - -

Address
City

State \qquad $21 p$

CLIP OLTT THIS AD AND SENI) TO-
TRI-STAR CORP.
P. O. Box 1727 Dept. H

Grand Junction, Colo. 81501

RADAR OVEN REPAIRS
(continued from page 47)
two readings is the leakage level of the oven at that particular point.

Leakage measurements should be taken along all edges of the door, and at the grille in the door, if the oven has a viewing window. In addition, leakage tests should be performed at all points on the oven case where leakage could possibly occur-at the slot between the timer panel and the oven, along the top and sides of the oven, and at the rear of the oven. Excessive leakage at the rear or top and sides of the oven may indicate that the magnetron and rf gaskets are not seated properly.

INTERNATIONAL CRYSTAL makes thls electronic oven. Two views show both the exterior and interior of the quick-cooking machine.

Also check the oven door with shims placed between the door and the oven. The thickness of the shims should be such that the oven door interlock switch is just barely defeated. If leakage on this test is excessive, the interlock switch should be adjusted so the oven will not turn on unless the door is adequately sealed.

If you find excessive leakage around the door, clean all surfaces and seals with a damp rag and a mild detergent. If microwave leakage is still excessive, the Teflon or metal seals may have to be changed.

Because he has the test equipment and electronic skills needed to repair microwave ovens, this venture can be a profitable undertaking for the electronic service technician. But he must be aware of the potential hazards to himself when working on this type of equipment, and also of his responsibility to his customer to limit radiation leakage.

*MAXI STEREO IN A MINI SPACE *aNY MAKE, any year car *DO-IT-YOURSELF INSTALLATION
Weltron's Model 717-K 8-track stereo tape player has 16 watts of output...slide controls for right/left speaker definition \& pinpoint tone control...push buttori channel selector... lighted digital channel indicator. Yet it's small enough to fit in the glove compartment or the smallest sports car!
8-ohm heavy duty speakers go right into car door, floor or rear deck...anywhere!

DETAILS FROM YOUR WELTRON DISTRIBUTOR OR:

Weltron

COMPANY, INC. DURHAM, NORTH CAROLINA 27702

Circle 68 on reader service card

*Controlled Quality Crystals for "ON CHANNEL" Communications for

CITIZEN BAND 23 Channels and "Mars"

HAM OPERATORS

Commercial 2-Way Marine-Monitor
See your Distributor for Speedy
"Zip Certificates"
世CHYSTEK
formerly Texas Crystals
Div. of Whitehall Electronics Corp.

1000 Crystal Drive 4117 W Jefferson 8lvod. Circle 69 on reader service card

MANJM ：	7400 dip
O．b2？${ }^{\text {a }}$	2400 dTL 35
segrent	
Stispays alt nuniers	74 CLI ． 50
AnL MINE Letters	
－Compact spacing	2403 ． 35
BRIGHT RED 400 FT －L	2404 74404 .35 50
20 MA PER SEGENT	
	74HES 50
ten or hore for ．．e．50	74221 1．60
LED＇s－－${ }^{\text {a }}$	
	$2420 \quad .35$
SDzo red lem	74не2－ 50
边	7430 7430 .35 50
OE Visible red 5 －	741．30 ． 750
70na	24440 ．50
ACA 2010	7444 7442 3.60 .70
NUMITRON DIGTTAL DIS－	2446 7447 3.75 3.75
Play tube Incandescent	74.48 3．15
Five volt seven seghent	7450
．6＂high numeral vis	7453， 35
IBLEFROO 30 FLET Pim	74453 7453
－STANDARD NINE PIN	$\begin{array}{ll}7453 \\ 7453 & .50 \\ 7454\end{array}$
－Left hat hald itecimal	7454
	744L54 7460 150
5for 5 ¢0．00	74453 $\quad .30$
CT5005	74L72 ．60
a Single mos chip with	7473 \％ 65
ALL THE LOGIC MECESSARY	${ }^{744743} 50.45$
For A ATEELVE PIEST	5
TOR HITH AN LXTRA STOR－	${ }^{74354} \quad 2.50$
AGE REGISTER FOR CONS－	${ }_{7}^{74780}$－ 68
TANT OR Memory applica	2483 3．30
－．ed lead dil packack	7486
	． 50
－chaim calculations	$7{ }^{7470} 5$
－true credit balanc	7472 1．15
	， 25
Cutbounce keboaro	$\begin{array}{ll}7445 \\ 74.45 & 3.25 \\ 2.00\end{array}$
Single voltace supply	74307 － 70
is possible	$74430 \quad .50$
IPLETE WITH	$\begin{array}{ll}74223 & 2.00 \\ 7.50 \\ 74193 & \\ 3.50\end{array}$
………． 314	74453 74795 1.20
	CMO
Purchase of（hip）	
SINGLE CHIP ${ }_{\text {a }}$	
SADD．Suetract，nulti－	（24400
PLY．AND DIVIDE	C84023 ${ }^{\text {CP }}$
－chain calculations	LINEARS
－true credit balance	Ln30c
－SIGN OUTPUT OVERFLOM	LT309\％ 3.00
－Indication	
－FIXED DECIMAL ${ }^{\text {at }}$	723 （10－5） 7 \％ 70
ATADIME IERO SUPpRES－	7377091.00 .45
STON	730
data only．．．．．．．．．．3．0	
（REFUNDABLE MITH	$723-3.00$
（ PURCHASE OF ${ }^{\text {Of }}$（ ${ }^{\text {chip）}}$	248 （T0－5） 2.00
…．．．．．．．．．．．．．．日 9.95	LINE
General	SPEC
Telephone keyborrd	N 741 Futh
TOUCH－TONE，ENCODING．PRO－	－COMPENATED
graming devices． 10 push BUTTONS D－9．	H pata sheets
＋1	
Y 6.95音	
ATIONAL／M	ZEN
NAT	DIODES
（thanic Shift recisters po－s	$5{ }^{5}$ IN4651 3．90
Tmsoz Pual ${ }_{\text {mox }}$	IN4735 b－2V
	IN4740 EACH 30.08 10.50
mso． 31024 日IT 2.25	
mmolb 5L2 DIL 2.50	－SEND
STATTC SHIFT Migisters	
	50

ALL IC＇S－NEH AND PULLY TESTED LLEADS PLA－
TED UITH GOLD OR SOLDER．ORDERS FOR ES．OD OR MORE ARE SHIPPED PREPADD．SMALLER OR－ DERS－－ADD 35E．CALIFORNIA RESIDENTS ADD SALES TAX．．．IC＇S SHIPPED EITHIN 24 HOURS

WANTED

QUICK cash ．．．for electronic equipment． components，unused tubes．Send list nowl BARRY， 512 Broadway，New York，N．Y． 10012. 212 Walker 5－7000

ELECTRONICS ENGINEERING \＆INSTRUCTION

EVALUATE complox functions on any four－ function arithmetic calculator．Details 254 （re－ fundable）．ADTECH，pob 1068，Englewood Co． 80110
sHORTCUTS to success！Highly effective， profitable short courses．（ 75 choices）．Study at home．Diploma awarded．Our 27th year． Free literature．CIEE－E，Box 10634．Jackson， Miss． 39209

TV TUNER repairs－Complete course details， 12 repair tricks．Many plans．Two lessons，all for \＄1．Refundable，FRANK BOCEK，Box 3236 （Enterprise），Redding，Calif． 96001

LOGIC newsletter，design and construction， sample copy $\$ 1.00$ ．LOGIC NEWSLETTER． Box 252，Waldwick，N．J． 07463

FREE brochure．FCC license．Key Tests－An－ swers．ACADEMY OF COMMUNICATIONS TECHNOLOGY，RE－873．Box 389，Roswell New Mexico 88201

REBUILD YOUR OWN PICTURE TUBES？ With Lakeside Industrien preciaton quipmont．you can rebuild n Dleture whal
For complete detalls，send name， ddrean，E1D sode ke：
LAKESIDE INDUSTRIES
3520 W．Fullerton Ave．
＇hicaso．Ill． 60847
Phone：312－342－3399

TAPE \＆RECORDERS

OLD Serials，Movies，\＆radio shows on tape． Cassettes or reels．Catalog 504．NOSTALGIA， 9875 SW 212 St．，Miami，Fla． 33157

FOR SALE

JAPANESE new products monthly！$\$ 1.00$ ．Re－ lundable DEERE， 10639 Riverside，North Hol－ ywood，CA

FREE CATALOG－TREMENDOUS ELECTRON－ ICS BARGINS．COMPUKITS，BOX 4188 G MOUNTAIN VIEW，CALIFORNIA， 94040.

SALE calculator chlps CT 5005．CLOCK CHIPS，TTL，LINEAR IC＇S Digital clock kits， photographic timere L．E．D．＇s ASTRO LABS BOX 524，MESA，ARIZONA 85201

EXPERIMENTER supplies，PC chemicals．sol－ der adhesives，accessories－Free catalog TECMNICAL SERVICES，Box 687，Arlington， MN 55307

FREE catalog Electronic Parts Bargains．JK PRODUCTS，P．O．Box 527－R．Norris．Tennes－ see 37828

MANUALS for Govt．surplus radios，test sets， scopes，teletype．List 504．BOOKS， 7218 Roanne Drive，Washington，D．C． 20021

HIGHLY

ONE－MAN ELECTRONIC FACTORY
Investment unnecessary，knowledge not required．sales handled by professionals． Ideal home business．Write today for facts Postcard will do．Barta－DRF，Box 248， Walnut Creek，CA 94597.

Circle 78 on reader service card

FREE Bargain Catalog. Transistors, Computer Boards, LEDS, Themocouples, Parts. CHANEY'S, Box 15431. Lakewood, Colorado 80215

CAUTION. Any criticism of this complex device would only exhiblt your complete miscomprehension of the profound scientific principles mechanized herein. Order this handsome, humorous, metal plaque for your equipment, projects! Self adhesive. \$2. Two for $\$ 3$. Airmailed AUTEK, Box 1494R, Canoga Park, Calif. 91304

DIGITAL electronics! Complete schematics, parts lists, theories-Discrete Component Digital Clock, $\$ 3.00-$ Sound Sensitive Switch, $\$ 1.50$. Increase technical competence, hobby skills-Complete course in Digital Electronics is highly effective, $\$ 10.00$. Free literature. DYNASIGN, Box 60R2, Wayland, Mass. 01778
EXPERIMENTERS only use my used parts. Save money. Capacitors, resistors, transistors IC's. List 25¢. TED HOLDER, 502 Pacific Drive, Belton, Mo. 64012
B \& K, Sencore test equipment, discount prices. Free catalog and price sheet. FORD. haM RADIO, 558 Moris Avenue, Bronx, N.Y. 10451

FREE catalog lists resistors, tubes, transistors, rectifiers, condensers, tools, tuners, etc. etc. HYTRON HUDSON, Dept. RE 2201 Bergenline Ave., Union City, N.J. 07087
SEMICONDUCTOR and parts catalog. J. \& J. ELECTRONICS, Box 1437, Winnipeg, Manitoba, Canada

BEAUTIFUL CATALOG. Freel Professional Line of Guaranteed Metal Detectors. Find Coins, Jewelry, Relics. FISHER, Room 827-Q, Box 490, Belmont, Ca. 94002

TTL IC Semiconductor, Parts Discount Price List. 10¢. TOTELEK, Box 222, Goodyear, Ariz. 85338

CANADIAN'S free catalog LED's, I.C.'s, transistors, SCR's, diodes, parts. CORONET ELECTRONICS, 720 Notre Dame St. W., Montreal, Canada

GUARANTEED metal detectors. Catalog. DETECTOR, Room 278-T, 102 W. Arrellaga, Santa Barbara, Ca. 93101

1973 hobby electronics directory. Parts, plans, kits surplus, and much more. $\$ 1.50$. NEWCAL, Box 323-C, El Segundo, Calif. 90245

TUBES

SAVE money on parts and transmitting-receiving tubes, foreign-domestic. Send 254 for Giant Catalog. Refunded first order. UNITED RADIO COMPANY, 56-R Ferry Street, Newark, N.J. 07105

RADIO \& TV tubes 364 each. One year guaranteed. Plus many unusual electronic bargains. Free catalog. CORNELL, 4217-E University, San Diego, Calif. 92105

RECEIVING \& industrial tubes, transistors. All brands-biggest discounts. Technicians, hobbyists, experimenters-request free giant catalog and savel ZALYTHRON, 469 Jericho Turnpike. Mineola, N.Y. 11501

PLANS \& KITS

ELECTRONIC combination lock solid state. Plans $\$ 2.00$ kit $\$ 29.95$ RICHARD MEUSE, 9 Appleton Terr., Everett, Mass. 02149

BUILD warble tone audio alarm, 1 IC, fully adjustable. Detailed Plans $\$ 1.50$ MULTITRON. ICS, Box 6, Madison Heights, Michigan 48071

15 AMP CHARGER KIT

Brand new GE transformer with solid state rectifier. Assembled in minutes and ready to charge any 12 volt battery up to 15 amps.

POWER AMP TRANSFORMER

115 VAC Input. Output 70 VCT at 3 amps. Makes a mignificent power amp. * 73S-43 \$7.50

7 Segment LED display, similar to MAN-1 $\$ 3.50$ 7 Segment LED display, similar to MAN-3 2.00 7 Segment LED display, similar to MAN-4 3.50 LED (red) 3 for $\$ 1.00 * *$ LM 309K $\$ 2.00$
PA234 1 watt audio amp $\$ 1.25$
PA264 5 watt up to 25 volt regulator 1.25 PA265 5 watt up to 37 volt regulator 1.50 GE THYRECTOR 20 amp peak,

30 volt surge protector
8/\$1.00
709 OP AMP TO-5 $3 / \$ 1.00$
.75

HOW'S YOUR MEMORY

RCA MEMORY STACK

ultra compact $32 \times 32 \times 9$
$\$ 50.00$
MEMORY STACK $32 \times 32 \times 16 \times 9$ frames
SINGLE PLANE 64×64
10.00

AM-FM RADIO \$5.50

Fully built, with AC supply, no cabinet, no speaker. Send for free catalog. Postage extra on above items.

MESHNA PO Bx 62,
E. Lynn, Mass. 01904

PRICES SLASHED

FACTORY FIRSTS
NATIONALLY
KNOWN
BRANDS
SATISFACTION guaranteed
DIGITAL TTL
ITEM 1-99 100.999*
7400N $32 ¢ . . .28$ 7401N 32¢.... 28ヶ
7402N 32 \&.... 28%
7403N $32 \& \ldots . .28$
7404N35\&.... 31%
7410N 32 28%
7420N 32%.... 28%
7430N32¢.... 28%
7440N $32 \ldots$.... $28 \&$
$7441 \mathrm{~N} . . \$ 1.75 . . \$ 1.45$
7442N.. $\$ 1.35 . \$ 1.15$
7447N.. $\$ 1.30 . . \$ 1.10$
ITEM 1-99 100-999* 7472N 40%.... 35% $7473 \mathrm{~N}52 ¢ \ldots . .445$ 7474N52\&.... $45 ¢$ 7475N. $\$ 1.00$. $85 \not$ $7476 \mathrm{~N} .0^{2} . . .85 \%$ $7476 \mathrm{~N} . . .60 \notin . . .555$ 7487N60¢.... 554 7490N. $\$ 1.00$.... 858 7492N.. $\$ 1.00$.... $85 ¢$ 7493N.. $\$ 1.00$.... 85% 7495N.. $\$ 1.30 . . \$ 1.15$ 74107 N ..55¢.... 50% 74121N ..70¢.... 60\& *MIXED TIL PRICES

LINEAR INTEGRATED CIRCUITS

709C MINIDIP ..60\& $10 / \$ 5.50 \quad 100 / \$ 5$ 723C DIP $\quad \ldots . . \$ 1.15 \quad 10 / \$ 11.50 \quad 100 / \$ 100$ 741C MINIDIP ..75¢ $10 / \$ 7.00 \quad 100 / \$ 66$ 748 C MINIDIP ..80\& $10 / \$ 7.50 \quad 100 / \$ 70$ 558C MINIDIP $\$ 1.25 \quad 10 / \$ 12.00 \quad 100 / \$ 110$ NE565A DIP $\ldots . . \$ 3.57 \quad 10 / \$ 30.00$ LM309K TO-3 .. $\$ 2.50 \quad 5 / \$ 11.25$

GENERAL PURPOSE SILICON TRANSISTORS

2N3638 PNP 20 10/\$1.65 100/\$15.00 2N3638A PNP 22 10/\$1.80 100/\$16.50 2N3641 NPN 23 10/\$2.00 100/\$17.50 2N3643 NPN 23 \& $10 / \$ 2.00$ 100/\$17.50 2N5133 NPN 15 10/ 101.25 100/\$10.00 2N5134 NPN 15 \& $10 / \$ 1.25$ 100/\$10.00 2N5137 NPN …....... 18 10/\$1.50 100/\$13.65 2N5138 PNP 15 , $10 / \$ 1.25$ 100/\$10.00 2N5139 PNP 15 f $10 / \$ 1.25$ 100/\$10.00 2N3055 NPN $\$ 1$ 10/\$9.50 100/\$86.25

1 AMP SILICON RECTIFIERS

1N4001 50PIV12/\$1

1N4002 100PIV11/\$1 100/\$6 1M/\$51
$\begin{array}{llll}\text { IN4003 } & \text { 200PIV } . . .10 / \$ 1 & 100 / \$ 7 & 1 \mathrm{M} / \$ 53 \\ \text { IN4004 } & 400 \mathrm{PIV} & \text {.... } 10 / \$ 1 & 100 / \$ 8 \\ \text { 1 } / \mathrm{M} / \$ 55\end{array}$
IN4005 600PIV9/\$1 $100 / \$ 8 \mathrm{IM} / \$ 61$
IN4006 800PIV7/\$1 100/\$9 1M/\$75
IN4006 1000PIV6/\$1 100/\$101M/\$83

SILICON SIGNAL DIODES

1N4148 (1N914 equiv.) 20/\$1 100/\$4.50 1m/\$35

INTEGRATED CIRCUIT SOCKETS

14 PIN DIP SOLDER TYPE \qquad 16 PIN DIP SOLDER TYPE \qquad 45 14 PIN WIRE WRAP TYPE $.50 ¢$
16 PIN WIRE WRAP TYPE \qquad
MOLEX IC SOCKET PINS
100/\$1.00 200/\$1.80 300/\$2.60 500/\$4.20 $700 / \$ 5.80$ 1000/\$8.20 ea addn 1000/\$7.50

DISPLAY DEVICES

5 VOLT 7 SEGMENT TUBE \qquad DISPLAY KIT (TUBE $+7447+7475+7490$) $\$ 6.15$

3/\$17.50
7 SEGMENT LED (MAN-1 TYPE)
DISPLAY KIT.......... $\$ 4.00$
(LED $+7447+7475+7490+$
DISPLAY KIT (LED+7447+7475+7490+
RESISTORS) $\$ 6.403 / \$ 18.25$
$1 / 4 \& 1 / 2$ WATT 10% RESISTORS
$1 / 4$ W 5 \& $30 / \$ 1.20,100 / \$ 3.00,500 / \$ 13.75$ as low as 1.7 s ea in quantity-see catalog $1 / 2 W$ 4\& $30 / 90 \notin, 100 / \$ 2.50,500 / \$ 11.25$ as low as le ea in quantity-see catalog
COD orders aceepted for same day shipmant.
Cail 218 881 6874 .
free Catolog-Large Quantity Diseaunts-Ordert
Less Thon $\$ 10.00$ Add 25%-Others Postpoid
DIGI-KEY
PRICE PACESETTER FOR QUALITY IG'S
BOX 126H

THIEF RIVER FALLS, MM56701

ELECTRONIC gerage door opener, Complete building plan, installation details. $\$ 2$. AUTOMATIC DOOR CONTROL, BOX 114 RosIyn Helghts, New York 11577
UNIQUE devices: PLANS, KITS-SECURITY, AUDIO, HOBBY-CATALOG 50C (REFUNDABLE). METRO-ELCO, BOX 409; Toledo. Ohio 43692
DIGITAL alarm clock kit, consisting of MOSTEK MK 5017AA MOS/LSI DIP, four $1 / 2$ inch readouts, PC Board, and instructions. Send \$29.95. DIGI-TEL ELECTRONICS, Box 6585. Toldeo, Ohio 43612
"DIGITAL SPEEDOMETER with numeric readout plans $\$ 7.50$ KIMTRON, Box 80134 , Chamblee, Ga. $30341^{\prime \prime}$
 1016 F. EUREKA ROX 1105 - IIMA, OHIO - 45802

FREE catalog. Most unusual electronic kits available. Music accessories, Surf, Wind Synthesizers, Wind Chimes, many others. PAlA ELECTRONICS, Box B14359, Oklahoma City, Okla. 73114.
ELECTRONIC organ klis, keyboards and many components. Independent and divider tone generators. All diode keying. I.C. circuitry. With our kits you can build any type or size organ desired. 25t for catalog. DEVTRONIX ORGAN PRODUCTS, Dept. B, 5872 Amapola Dr., San Jose, Calif. 95129
DIGITAL IC manual-1973 edition-1500 types. Double llating by type and wiring disgram number. Many cross-referenced. $\$ 3.95$. ELECTRONETICS, Box 278, Cranbury, N.J. 08512.

FOUR trace ecope adepter planal TITUS, Box 242, Blacksburg, Va. 24060

> Technical Excellence in Electronics.

On our anall. Irtiendiy eampus the emphasis is on Livine at well

 to which to prepare for tomorrow Associkte Desree in ting

VALPARAISO TECHNICAL INSTTUTE

Independent News Compery, Inc. to pleesed to ennounce a Rotal Display Plen which includes Re-dio-Electronice ses pat of aroup of magazines avelidble for the earning of Display Allowance.

To cotain detalls and a copy of the formal contract please write to Marketing Depertment, Independent Nowe Co., Inc., 809 Third Avenue, Now York 10022 (Atimition Mr. Kon sprong). Under the Retail Olisplay Plan in consideration of your acceptance and futtillment of the terms of formal contract to be sent to you upon request you will recelve a Display Allowance of 10% of the cover price per copy of each magazine in the group sotd by you. This plan will become effective with all issues of the magazine group delivered to you subsequent to the date your written acceptance is received and accepted by our Company.

CLASSIFIED COMMERCIAL RATE (for firms or individuals offering commercial products or services). $\$ 1.00$ per word. . . minimum 10 words.
NONCOMMERCIAL RATE (for individuals who want to buy or sell personal tems) $70 ¢$ per word no minimum.
FIRST WORD and NAME set in bold caps at no extra charge. Additional bold face at $10 c$ per word. Payment must accompany all ads except those placed by accredited advertising agencies. 10\% discount on 12 consecutive insertions, it paid in advance. Misleading or objectionable ads not accepted. Copy for October issue must reach us before August 1.

BUILD 32-Iunction aigital computer 24-pin IC, 12 tramshatore, complete instructions. $\$ 15.25$. ELECTRONETICS, Box 278, Cranbury. N.J. 08512

BUSINESS OPPORTUNITIES

START small, highly profitable electronic production In your basement. Investment, knowledge unnecessary. Postcard brings facts. BARTA-REI, Box 248, Wainut Creek, Calif. 94597

"IN CIRCUIT" TRANSISTOR TESTER

$\$ 19.95$ PREPAID
MONEY BACK GUARANTEE
Piaces transistor Into actual operation Operates upon contact - Clear speaker tone-no visual observatlons to make Tests Transistors in or out of the circuil.

A complete electronic Tester. No additional equipment required. Designed to reach into small areas. Maximum voltage applied to the base-emitter junction by Tester is 0.8 volts.

Simple to operate.

United Sales, Dept. 8690
Brightwood, Washington, D.C. 20011

3 "FANS ON A RACK'

diart "CALCULATOR CHIP" SALE

Lorgest Selection TTLICs
Designed by our Scientific
udvanced dilital timin
unt
adyanced digital timing
field, One radio-and-Ty

 features include 3 netting controls. 1 hour per second

WIRED ADD $\$ 19.95$

SAMPLE COPY $\$ 1.00$
LOGICN
POB 252
WALDWICK,N.J. 07463

Help us help. So no one's left out in the cold.

 the good neighbor.The American Red Cross

TRANSISTOR SPECIALS								
2N1605	NPN	6E TO-5	. 15 W	24 V	.1A	14 MHZ	125	5/\$1.00
2N2360	PNP	$6 E$ T0.33	.06w	20 V	05A	980	32	\$.50
2 N5324	PNP	6E T0.3	60 W	250 V	10A	20		\$1.50
2N1015D	NPN	S1 10.82	150W	200 V	7.5A	. 025	10	\$1.45
2N2015	NPN	S1 T0-36	150 W	50 V	10A	. 012	26	\$.90
2N3584	NPN	SI T0.66	35W	250 V	2 A	10	100	\$1.50
2N3055	NPN	\$1 T0.3	115 W	100 V	15A	. 01	50	\$1.00
2N3772	NPN	S1 T0-3	150W	60 V	30A	. 2		\$1.25
2N5296	NPN	SI T0.220	36 w	40 V	4 A	. 8		\$.50
2N6109	PNP	SI T0-220	36 W	40 V	4 A	. 8		
2N4898	PNP	SI T0.66	25 W	40 V	4 A	4		\$. 60
MJ2251	NPN	SI T0.66	10w	225	. 5 A	10		\$ 70
2N3638	PNP	SI TO-5	. 3 W	$25 V$.5A	10		5/\$1.00

PRINTED CIRCUIT BOARD
$41 /{ }^{\text {" }} \times 61 / 2^{\prime \prime}$ double sided fiber
glass board. $1 / 16^{\prime \prime}$ thick, un
etched $\$.60$ ea. $5 / \$ 2.50$

NIXIE TUBES
Similar to Raytheon 8754
tubes, with socket \& data
sheet $\$ 2.25$ 3/\$6.00

TIS 73 N FET

APPLIANCE CLINIC
(continued from page 22)
side down. The obstruction can be pushed out with a thin rod

The pipes leading to the brush compartment can be clogged by anything that gets in. These can be cleaned out by running a wire through them

Electrical troubles are standard The most common one is probably breakage of the line cord, from continued pulling and flexing. Since these machines are used on damp floors, make a careful inspection of the line cord at regular intervals. If you see any cracks or breaks in the jacketing or insulation, replace the whole cord. Don't take chances.

The on-off switch is usually a slide or toggle type, mounted on the top of the handle. They do wear out from continual use. Replace with identical types, since they usually fit into slots in the handle. Most of them are mounted on a small plate, held to the handle by screws.

Mechanical troubles are "stock" If the machine has a gear box, it will be filled with a fairly heavy cream lubricant. If you find traces of grease on the floor or on the brushes, take it apart. You'll probably find that some of the screws holding the cover plates on the gearboxes have loosened from the vibration, and dropped out, allowing the grease to leak. In some cases, you'll have to take the cover plate off, clean the edges and replace the gaskets. If you happen to have a tube of Soft Permatex in your garage, it will often make very good gaskets for these little boxes.

R-E

SEND YOUR MONEY COLLEGE.

It's needed.
Give to the college of your choice. Now.

Advertising contributed for the public good. ©.".
渴
Council for Financial Aid to Education, Inc
6 Fast 45th St. New York. N. Y. 1017

Excellent sor "HAM" use as antenna switehmpg, laten!

am-fm-Stereo-Mux
 SOUND CONTROL CENTER

- AM, FM, FM-Multiplen stereo phono Inputel

$$
\begin{aligned}
& \text { Separate Tunert Amplifierl and multiplea! } \\
& \text { - FM Tuner has outomntle frequency control }
\end{aligned}
$$

- Hybrid tube, transistor printed circuitry!
- Separate volume and power controll

Separate bise and troble controlsi

- Remote epealier controlsl
- Minne, tepe, phono Inputs changert
- Push-pull power outpuis
cut soltd atel
This la at Poly. Pak exclusive. Boughe for the economy, for $\$ 300$ consolen. 15 with of stereo music power. separate units, euch unit protesaionally deaigned by
U. SA enkineert. AM-FM :uner. Multiplex, pushopull TO-66 puwier trannisiors mounted on chasmin. Dush-puli connect to any qood apeaker syatem. Voice colls of 8 stereo speakers to other patis of rooms, home or office Concentric volume controls for perfect stereo briance
Has buili-in presmplifer, bult-in AM untenna. $13^{\prime \prime} \times 6^{\prime \prime}$
$8 "$

TUNER - 13" $\times 6^{\circ} \times 8^{\prime \prime}$

 2nd FM i-f amp and AM detector. $12 \mathrm{BE}, 6 \mathrm{AM}$ converter $12 A X 7$ multiple preamp. Sepprate Npenker arrange-
ments for mifl and TV. Buiti-in AFC. Comea complete With 8-pg. $88 / 3^{n} \times 11^{\prime \prime}$ factory booklel, chock-full of purt are eastly identified. Power consumption 118 VAC
60 cy. Complete with all intercornecting cables. Wide
 MULTIPLEX - 4" ® $^{\prime \prime}$
 dicating' lamp.

LIVE IN THE WORLD OF TOMORROW...TODAY!

A BETTER LIFE STARTS HERE

IAnd our FREE CATALOG is packed with exciting and unusual ecological \& physical science items-plus 4,000 finds for fun, study or profit . . . for every member of the family.)

3-CHANNEL COLOR ORGAN KIT

IN HE-NE LASERS

Low price on 0.5 mW Laser (rendom mode): 0.9 mm beam dia. (at 10 m 16 mm) belies its quality. New cold luminum cethode tube for more life stability (hi beem: 9000-hr tube life under normal cond.) Ready to plug in, turn on. Starts instantly. small beam divergence.
Stock Mo. 79,020EH
0.7 mW ometry, alignment. Motal case, interfer. Stocir No. $\quad 0.7 \mathrm{~mW}$ $\times 10^{*}, 110 \mathrm{w} A C, 633 \mathrm{~nm}$ wavelength. Stock Ho. 79,024EH
$\$ 88.50$ Ppd.
stack No. 79,024EH
$\$ 99.50$ Ppd.

130 EXPERIMENTS IN OPTICS

and photography! Optix Experiments Kit is a complete optical \& photography lab for 130 exciting experiments. Lets you recreate the periscope, telescope. microscope, kaleidoscope! ... Build a 35 mm reflex camera with interchange. able lens system! Make, develop photographic film! Enjoy the fun and fascination of having your own optics $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ clearly explains. manual, this stimulating kit's 114 precision this stimulating kit's 114 precision Stock No. 71,646EH.
$\$ 21.00$ Ppd.

Stock No. 60,987EH (11" length) ..9.95 Ppd.

140 ELECTRICAL EXPERIMENTS!

 SEE FEATURE ARTICLE IN JUNE ISSUE!Explore the fun world of electricity,
 nagnetism, telecommunications. Exciting new Electrix(B) Experiment Kit enables you to build a Morse code sender, receiving buzzer \& printer; produce electricity with a real generator; assemble a working phone system; build an elec tric motor; 135 other projects. Illus. use of kit's 135 manual explains easy peroved. Everything you parts. Safety pproved. Everything you need except
stech Ne. 71,647EH $\$ 17.95$ Ppd.

See moon shots, orbits, stars, phases of Venus, plants close up. 60 to 180 power. New Improved, ameter $f / 10$ and overcoated 3^{n} dilated cell. Equatorial mount with vention both axes. Equatorial mount with locks and mounted Barlow lens. $3 x$ finder teie scope, hardwood tripod included FREE " teie CHART", "HOW TO USE YOUR FREE: "STAR book.
tock No. 85,050EH … $\$ 34.95$ Ppd DELUXE $3^{\prime \prime}$ REFLECTOR TYE
Stock No. $80,162 \mathrm{EH}$ ㅂ․․ $\$$ $41 /{ }^{\prime \prime}$ REFLECTOR TELESCOPE ($45 x$ to $270 x$)
Stock No. $85,105 E H$ 41/4" REFLECTOR TELESCOPE WITH CLOCK DRIVE Stock No. 85,107Ei \$145.00 F08 $6^{\prime \prime}$ REFLECTOR TELESCOPE Stock No. 85,187EH $\$ 215.00$ F08 6" REFLECTOR W/(ELECTRIC) CLOCK DRIVE NO. BS.OBSĖH. $\$ 215.00$ F 248

MAIL COUPON FOR CIANTERE CATALOG!

164 PAGES - MORE THAN 4000 UNUSUAL BARGAINS! Completely new Catalog. Packed with huge selection of telescopes, microscopes, binoculars, magnets, mag nifiers, prisms, photo components, ecology and Unique Lighting items, parts, kits, accessories - many hard-to-get surplus bargains. 100 's of charts, illustrations. For hobbyists, experimenters, schools, industry EDMUND SCIENTIFIC CO. 300 Edscorp Building, Barrington, N. J. 08007 Please rush Free Giant Catalog "EH "

Name
\qquad
\square

Southwest Technical Products Corporation
 210 W. RHAPSOOV
 SAN ANTONIO. TEXAS 78216
 PHONE: 512 OI 4.3140

August, 1973

Dear Radio-Electronics Readers,
The first thing I would like to do this month is to thank those of you who have taken the time to write and comment on this series of ads. I am glad to hear that you are enjoying them and I will do all I can to keep them as interesting and informative as possible.

This month I want to tell you about a new "now it can be told" kit that we are offering. This is our new FG-2 function generator. It is a considerably improved version of the instrument described in last September's Radio-Electronics. Since the original instrument was designed, even better waveform generators have become available; so it was "back to the drawing board". The original instrument was quite good and a real bargain at our price, but we don't like selling kits that we know can be considerably improved upon. Anyway, all of you who placed orders for the kit after the first of the year had to wait while we got the new FG-2 ready. Now that we have enough stock to ship these without a long delay we want all of you to know about it.

In the FG-2 the basic waveform is a triangular wave, just as in the original circuit, but in the new instrument this waveform is generated by two current sources, and a pair of comparators that are connected to an external capacitor. The current source produces a very linear ramp whose amplitude is controlled by the trip point of the first comparitor. The second current source works in the opposite direction and gives us a downward ramp that is terminated by the second comparator, and the process is then repeated for the next cycle of the waveform. This system gives the waveform a very constant amplitude which cannot change with frequency. The triangular waveform is then fed into a sixteen breakpoint shaping network (yes I said 16). This, in combination with the stable amplitude, produces a sine wave with less than 1.0% distortion at any frequency. The comparators are also used to trigger a flip-flop that produces a square wave. To get pulse and ramp waveforms, all you have to do is make the charge and discharge currents unequal. The output of the generator is fed into a high speed op-amp used as a buffer. This gives us a low output impedance and isolates the generator from any loading effects. The circuit is DC coupled throughout and a switch allows you to select the waveform offset. You can put the center, the top, or the bottom of the waveform on DC ground and it stays right there no matter what the level setting. This makes the FG-2 super handy for checking logic circuit toggle levels and stuff like this. There is also an AC position for use when the circuit point has voltage present on it.

So for only $\$ 39.95$ you can get this elegant little instrument. This is less than you would normally pay for a Sine-Squarewave generator with the same frequency range. Think about it-five different waveforms from 0.1 Hz to 100 KHz . Now isn't that enough reason to try a kit from the "other" kit company.

If you are looking for an interesting hobby and don't read schematics, or color codes please look elsewhere. If you are really serious about electronics, or work in the field, we would like very much to have you try one of our kits. We know you will be able to appreciate the quality of our parts, our engineering and the bargain our price represents. For instant shipment, call us and use your Mastercharge, or Bankamericard. For more details on our kits circle on the reader service "bingo" card and I will get a copy of our latest catalog to you as quickly as possible.

Sincerely,
San
Daniel Meyer

SOUTHWEST TECHNICAL PRODUCTS CORPORATION

 DEPT. RE-L219 W. RHAPSODY, SAN ANTONIO, TEXAS 78216

The Timesaver!

Latest, all solid state version of the sensational signal circuit analyzing timesaver originated by Castle.
Invaluable for locating the break in the tuner and i.f. signal chain or analyzing age system defects in tube TV receivers . . . essential for speedy location of signal circuit defects in modular IC, solid state and hybrid TV receivers.

A NEW APPROACH to agc system analyzing!

Permits signal injection after the agc controiled stages to simplify testing for age defects.

- Works with ony 40 MHz receiver
color or block ond white
- High level, low impedance output furnishes signal usable at input of finol i.f. stage.
- Special autput circuir works equally well into first i.f. input of late madel, link caupled systems and alder, law "C" bandpass coupled systems.
- Antenna input and i.f. autput eiectrically isolated; no "hot" chassis hazards
- No need to disconnect supply leods from suspected funer being tested. Substitutes the VHF funer and tests the UHF iuner.
- Tui *s all 12 VHF channels, has preset (memory) fine tuning on all channels.
- Hig' ar overall gain thon previous models with wide range goin reduction contral of 60 db .
- Completely self contained and battery operated, uses popular batteries available everywhere. Simple battery replacement; battery compartment in rear of custom molded case.
- Reduced current consumption extends battery life to as much os double that of previaus models. Bright LED indicator warns when unit is ON.
- Use on the bench or in the home . . . onywhere.
- Comes complete with extension cobles, batteries and instructions.

Specilicotions

Inputs:

```
300 ohmu,
    isolatec., minced VHF antenno terminals, Dectrically
```

Senaletivsty: $\quad 30$ macrovoks.
30 mugrovoks Inpur algnal handung capabuluty; over 100,000 mucrovolta
40 MHz TV t.f.: bondwadth 5 MHz .

Tuning range:
All 12 VHF TV ehonnets, plus Ch . 1140 MHz ampliter po-
allion iar tanting UHF turnars. High stabaluy of 40 MH

Turing: Rreser (mamary) \&ine ininsm.
Giann Consol: Gian mreduction 60 de
Power supply: 10 volts. Usen two gv translatar batteries.
Size \& Weight: $6.5^{\circ} \times 6.55^{\circ} \times 3.25^{\circ}$ exclusive of control knobs and handle.

Aceesaoties:
-Ma stertmote.
tarmination.
termination.
Ma
Mtermaticheouplier
minations. CASTLETVTUNER SERVICE, INC.

5715 N. Western Ave., Chicago, Illinois 60645 - Phone: (312) - 561.6354
In Canada: Len Finkler Co., Ontario

[^0]: Write Us! Free subscription for current cross-reference charts

[^1]: HEATHKIT ELECTAONIC CENTERS - ARIZ: Phoenix: CALIF: Anaheim, El Cerilc, Los Angeles, Pomona, Redwood City. San Diego (La Mesa), Woodland Hills; COLO.: Denver: CONN.: Hartford (Aven); FLA.: Mlami (Hialeah): GA.: Atlan:a; ILL:: Chicago, Downers Grove; IND.: Indianapolis: KANSAS: Kansas City (Mission); MD.: Baltimore, भockville; MASS.: Boston (Wellesley); MICH.: Detroit; MINN = Minneapolis (Hopkins). MO: St. Louis; N.J.: Fair Lawn; N.Y.: Buffalo (Amherstl, New York City, Jericho: L.1.: Fochester: OHIO: Cincinnati (Woodlawn). Cleveland: PA.: Philadelphla, Pittsburgh: R.l.. Providence (Warwick); TEXAS: Dallas. Houston; WASH.: Seattle; WIS.: Milwaukee.

[^2]: - Program Manager, Micro Instrumentation and Telemetry Systems, Inc., Albuquerque, New Mexico

[^3]: 5810 N. Western Ave., Chicago, Illinois 60659 - (312) 7696262

