
Popular Radio Edited by KENDATT

*JULY 1925

Annual HOOK-UP NUMBER

Containing 101 of the Best Radio Circuits, Revised and Brought Up-to-date

age batteries.

A uniform, constant power supply for both "A" and "B" circuits

Here at last is a convenient and unfailing power supply for your radio set. Balkite Radio Power Units furnish constant uniform voltage to both circuits, and will give your radio set greater clarity, power and range. The Balkite Battery Charger keeps your "A' storage battery charged. Balkite "B" replaces "B" batteries entirely and supplies plate current from the light socket.

Based on the same principle, both the Balkite Battery Charger and Balkite "B" are entirely noiseless. They have no bulbs or moving parts, and nothing to break, adjust or get out of order. They have a very low current consumption, are simple and efficient in operation, and can be put in use at any time by merely connecting to a light socket. Both are guaranteed to give satisfaction.

Sold by leading radio dealers everywhere

cite Power Units

BALKITE BATTERY CHARGER - BALKITE "B" PLATE CURRENT SUPPLY

Manufactured by FANSTEEL PRODUCTS COMPANY, Inc., North Chicago, Illinois

Two big improvements—but no boost in price! Now the Table-Talker is adjustable. It has a convenient little lever that does a big job—increases the volume, snaps up the sensitivity. And a gooseneck horn that makes each sound clearer, fuller, more real!

Ten dollars is still the price. But uncountable are the hours of fun and interest and gaiety it will give.

> 50c additional West of the Rockies

Copyrighted by C. Brandes, Inc.,

All apparatus advertised in this magazine has been tested and approved by POPULAR RADIO LABORATORY

Brandes

All apparatus advertised in this magazine has been tested and approved by Popular Radio Laboratory

POPULAR RADIO

EDITED by KENDALL BANNING

PAGES WITH THE EDITOR

EVEN at the risk of stepping on the toes of certain radio interests and conflicting with the many and varying opinions in regard to the more or less vague group of difficulties that are classified under the general term "the broadcasting problem," POPULAR RADIO is plunging into the subject with some constructive suggestions—beginning on page 3 of this issue.

No one can arbitrarily put forth a scheme or a plan that will make the problems that confront the broadcasting stations dissolve. They are too many and too involved to be dispersed so easily. The radio industry is undergoing readjustments and developments that are akin to growing pains. And its problems are more likely to be solved, not so much by untried theories and schemes, as by modifications that are gradually brought about by the essentially practical laws of economics.

The article starting on page 3 does not propose any untried plan for solving the broadcaster's problems; it merely points out some of the probable changes that will be brought about as the result of experiments that have been and are now being successfully made, and that appear to offer grounds for belief that a plan is being worked out that will benefit the broadcaster and the listener alike.

WHILE one hesitates to make dogmatic predictions concerning radio, the absurdities of over-caution may not be ignored. Which brings to mind the following essay (attributed to a foreigner in a Chicago night school), which is sufficiently devoid of flat-footed statements to commend itself to the most circumspect.

"What a queer bird the frog are, When he sit he stand, almost. When he hop he fly, almost. He ain't got sense hardly. He ain't got no tail hardly, either. He sit on what he ain't got, almost."

"Your timely attention to the excess of religious propaganda by radio deserves the acknowledgment of every American with sufficient brains and progressiveness to provide himself with a receiver," writes Mr. Ford N. Orr, of Little River, Florida. "The idea of restricting the broadcasting by all stations promoted, operated or sponsored by any religious organizations to certain hours of Saturday night and Sunday, occurs to me as a fair solution."

AT last POPULAR RADIO is able to respond to the demands of its readers and present, in compact, revised and up-to-date form, the complete list of radio circuit diagrams that

was run serially in eleven issues of this magazine, under the title "100 Best Hook-ups."

BEGINNING on page 17 the reader will find this modernized record of diagrams under the title, announced last month, "The Best 101 Hook-ups." POPULAR RADIO believes that this list includes the most efficient and the most serviceable hook-ups that have been developed to date. Keep this list for reference.

"I HAVE been a POPULAR RADIO fan for almost three years, but have never read in any radio publication as interesting an article as 'Can Man Release the Enormous Energy in the Atom?' by T. F. Wall in Popular Radio for May," writes Mr. George H. Liesenberg, of New York. "Such articles as that are helping to promote interest in the scientific world among the most intelligent group of radio fans—which means Popular Radio readers."

Radio fans who pride themselves on the superlative qualities of their pet receiving sets are challenged to a friendly competition by Mr. John Isler, of 906 Bloomfield St., Hoboken, N. J. Here are the particulars as he defines them:

"It is now approximately six months since I constructed the Cockaday Four-circuit Tuner with resistance-coupled amplification, described in your October, 1924, issue. Since then I have had perfect radio reception at all times.

"I BELIEVE that I have experimented with as many different radio circuits as any average home-builder, from crystal set to superheterodyne. The results I obtain with the Cockaday are so far superior to any of the others that there is absolutely no comparison, either in reproduction, volume, selectivity or distance range. When I was able, during the winter months, to pick up the west coast stations I was agreeably surprised; but when, during April and May (static permitting) I obtained clear loudspeaker reception consistently from Georgia, Texas and California, it convinced me that I have a radio receiver second to none. But the most pleasing feature is the undistorted clearness with which the circuit sends forth its reproduction.

"Please put me on record as issuing a friendly challenge to any type of receiver now on the market to equal the performance of my set in the same locality under identical conditions."

READERS who want to come to grips with Mr. Isler are invited to communicate with him direct.

(Continued on page 6)

POPULAR RADIO

EDITED by KENDALL BANNING

CONTENTS for JULY, 1925

(Cover design by Frank B. Masters)

LUME VIII NUMBER	
A Forerunner of Tomorrow's BroadcastingFrontisi	PIECE
A Probable Solution of the Broadcasting Prob-	
lem—"Super-broadcasting" Laurence M. Cockaday Page	3
Handy Tools for Radio Fans	13
Simple "How-to-Build" Articles for Beginners. Albert G. Craig No. 10: How to Build a Two-stage Resistance-coupled Amplifier	14
The Best 101 Hook-ups	17
"What Set Shall I Buy?"	68
Broadcast Stations in the United States	72
Departments	
Hints for Amateurs	79
What Readers Ask	80
In the World's Laboratories	82
The Broadcast Listener	88
What's New in Radio Apparatus	92
Broadcasts	96
VOLUME VIII JULY, 1925 NUMB	
Published monthly by Popular Radio. Inc., 627 West 43rd St., New York, N. Y., telephone number, Chickering 1906; Douglas H. Cooke, President and Treasurer; Kendall Banning, Vice-President; Laurence M. Cockaday, Secretary; Joseph T. Cooney, Asst. Treasurer. Price 25 cents a copy; subscription \$3.00 a year in the U. S., Canada and all countries within the domestic postal zone; elsewhere \$3.50 a year, payable in advance. The International News Company, Ltd., No. 5 Bream's Bldg., London, E. C. 4, sole distributors in England. Entered as second class matter April 7, 1922, at the Post Office at New York, N. Y., under the act of March 3, 1879. Copyright, 1925, and title registered as a trade-mark by Popular Radio, Inc. Copyright in Great Britain by Popular Radio, Inc., 6 Henrietta St., Covent Garden, W. C., London, England. Printed in U. S. A. LAURENCE M. COCKADAY: Technical Editor	and Second
E. E. FREE, Ph. D., Contributing Editor JOHN V. L. HOGAN, Contributing Editor	

For advertising rates address

E. R. Crowe & Company, Inc.

New York: 25 Vanderbilt Avenue

Chicago: 225 North Michigan Avenue

All apparatus advertised in this magazine has been tested and approved by POPULAR RADIO LABORATORY

PAGES WITH THE EDITOR

EVEN at the risk of stepping on the toes of certain radio interests and conflicting with the many and varying opinions in regard to the more or less vague group of difficulties that are classified under the general term "the broadcasting problem," POPULAR RADIO is plunging into the subject with some constructive suggestions—beginning on page 3 of this issue.

* * *

No one can arbitrarily put forth a scheme or a plan that will make the problems that confront the broadcasting stations dissolve. They are too many and too involved to be dispersed so easily. The radio industry is undergoing readjustments and developments that are akin to growing pains. And its problems are more likely to be solved, not so much by untried theories and schemes, as by modifications that are gradually brought about by the essentially practical laws of economics.

The article starting on page 3 does not propose any untried plan for solving the broadcaster's problems; it merely points out some of the probable changes that will be brought about as the result of experiments that have been and are now being successfully made, and that appear to offer grounds for belief that a plan is being worked out that will benefit the broadcaster and the listener alike.

While one hesitates to make dogmatic predictions concerning radio, the absurdities of over-caution may not be ignored. Which brings to mind the following essay (attributed to a foreigner in a Chicago night school), which is sufficiently devoid of flat-footed statements to commend itself to the most circumspect.

"What a queer bird the frog are, When he sit he stand, almost. When he hop he fly, almost. He ain't got sense hardly. He ain't got no tail hardly, either. He sit on what he ain't got, almost."

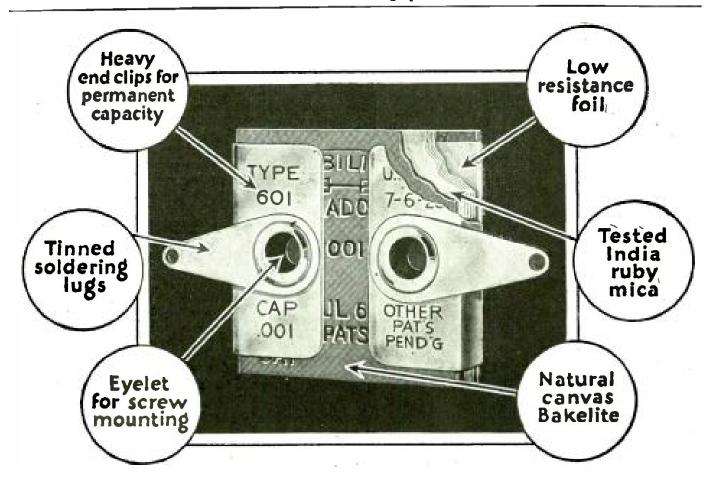
"Your timely attention to the excess of religious propaganda by radio deserves the acknowledgment of every American with sufficient brains and progressiveness to provide himself with a receiver," writes Mr. Ford N. Orr, of Little River, Florida. "The idea of restricting the broadcasting by all stations promoted, operated or sponsored by any religious organizations to certain hours of Saturday night and Sunday, occurs to me as a fair solution."

At last Popular Radio is able to respond to the demands of its readers and present, in compact, revised and up-to-date form, the complete list of radio circuit diagrams that was run serially in eleven issues of this magazine, under the title "100 Best Hook-ups."

BEGINNING on page 17 the reader will find this modernized record of diagrams under the title, announced last month, "The Best 101 Hook-ups." POPULAR RADIO believes that this list includes the most efficient and the most serviceable hook-ups that have been developed to date. Keep this list for reference.

"I HAVE been a POPULAR RADIO fan for almost three years, but have never read in any radio publication as interesting an article as 'Can Man Release the Enormous Energy in the Atom?' by T. F. Wall in POPULAR RADIO for May," writes Mr. George H. Liesenberg, of New York. "Such articles as that are helping to promote interest in the scientific world among the most intelligent group of radio fans—which means POPULAR RADIO readers."

Radio fans who pride themselves on the superlative qualities of their pet receiving sets are challenged to a friendly competition by Mr. John Isler, of 906 Bloomfield St., Hoboken, N. J. Here are the particulars as he defines them:


"It is now approximately six months since I constructed the Cockaday Four-circuit Tuner with resistance-coupled amplification, described in your October, 1924, issue. Since then I have had perfect radio reception at all times.

"I BELIEVE that I have experimented with as many different radio circuits as any average home-builder, from crystal set to superheterodyne. The results I obtain with the Cockaday are so far superior to any of the others that there is absolutely no comparison, either in reproduction, volume, selectivity or distance range. When I was able, during the winter months, to pick up the west coast stations I was agreeably surprised; but when, during April and May (static permitting) I obtained clear loudspeaker reception consistently from Georgia, Texas and California, it convinced me that I have a radio receiver second to none. But the most pleasing feature is the undistorted clearness with which the circuit sends forth its reproduction.

"Please put me on record as issuing a friendly challenge to any type of receiver now on the market to equal the performance of my set in the same locality under identical conditions."

READERS who want to come to grips with Mr. Isler are invited to communicate with him direct.

(Continued on page 6)

What makes for efficiency in fixed condensers?

This diagram indicates the efficient details of construction that have made Micadons the standard* fixed condensers of radio.

Dubilier engineers have developed these standard condensers of accurate and permanent capacity. Micadons are known the world over—and are used in 90% of all radio sets.

*Standard—anything recognized as correct by common consent . . . of a high degree of excellence.—Webster

PAGES WITH THE EDITOR

(Continued from page 4)

From a photograph made for Popular Radio

OLD DR. POPULAR RADIO IN THE BOYS' WARD

"This boy," writes Mr. Preston T. Slayback, the Business Executive of the Los Angeles Orthopaedic Hospital-School for Crippled Children, "is a most enthusiastic and well-informed radio fan—and is, of course, a constant reader of Popular Radio. He was made very proud and happy when he was told that this photograph, showing your magazine on his bed, was to be sent to you, with an expression of thanks to you for the pleasure your magazine gives him and the other boys who are in the same ward with him in our hospital."

THE eminent British statesman Gladstone used to subscribe to American magazines not only for the purpose of looking over the articles contained in them, but also to read the advertising pages. For in them, he said, he found reflected the activities and the industries and the needs of the American people.

In similar spirit American radio fans are reading the advertising pages of Popular Radio—because they find in them what is, in effect, the best and most carefully tested and consequently the most dependable of all radio apparatus.

ONE of our advertisers, for example (A. Hall Berry of New York), writes: "For more years than I like to admit I have been engaged in selling and advertising things, elec-

trical and kindred lines. I have been accumulating experience in practically every department of the broad field of advertising and selling, but never, as advertising and sales manager for one of the largest electrical manufacturers in the world, as sales manager for two prominent advertising agencies in this country and as selling and advertising manager for a smaller but prominent manufacturer of electrical products, have I seen a quicker or more consistent response to advertising than has resulted from my small advertisement in Popular Radio."

Popular Radio, which created the idea of the silver cover which has distinguished the magazine from its earliest issues, has been tendered a subtle form of flattery—if imitation is flattery, as the poet tells us. "Radiofoma," a radio journal published in Rome, Italy, appears with its April 20 number enclosed in a silver cover!

"THE material in POPULAR RADIO is splendid. I have seen so much of thin and unauthoritative radio magazine stuff in current newspapers that it is a real adventure to see well written articles by the men who are advancing radio."

-Commander Fitzhugh Green, U.S.N.

ANOTHER scientist of world-wide renown has joined the small but distinguished list of contributors to Popular Radio—Sir William Bragg, K.B.E., D.Sc., F.R.S., M.R.I., Fullerian Professor of Chemistry at the Royal Institution of England and Director of the Davy-Faraday Research Laboratory.

SIR WILLIAM will contribute a series of articles on the atom—a phase of electrical science that is becoming of increasing import to radio. The first article of this series will appear in a near issue.

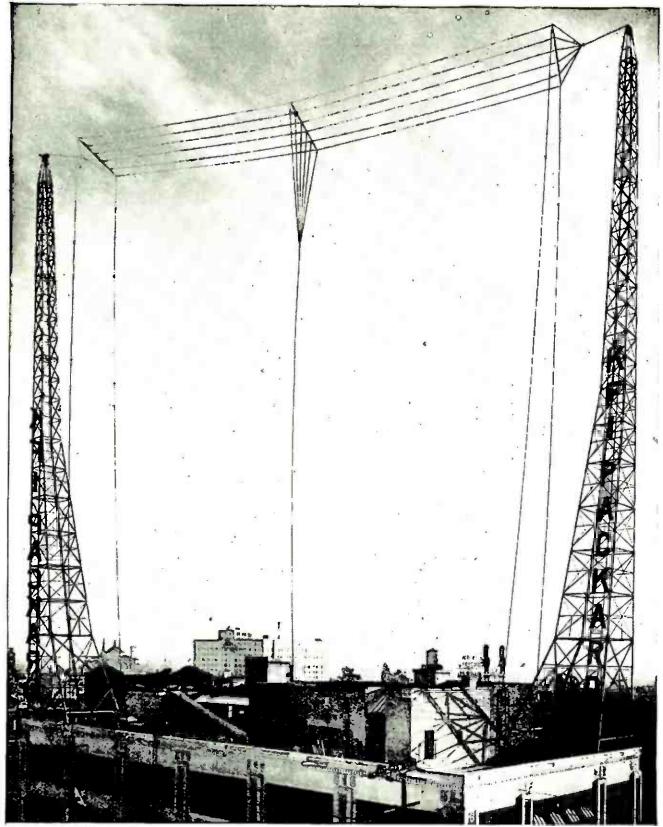
"I would not trade my subscription to POPULAR RADIO for a two weeks' vacation, nor trade my four-circuit receiver for any other that I have ever heard."

-DR. H. C. Foyler, Portsmouth, O.

In the next number will appear the latest contributions to the radio art by the Popular Radio Laboratories—"How to Build a 5-Tube Receiver with Simplified Control."

Kendall January

Editor, Popular Radio



Kadel & Herbert

"Radio's Finest Interpreter"

A MAGAZINE dedicated to the presentation of an art or science in terms and language that the public can understand and appreciate, is in very truth the House of the Interpreter. The radio art has no finer interpreter than Popular Radio, which combines an exact and thorough knowledge of this great science with the happy gift for interesting popular expression.

-R. A. WEAGANT

Courtesy of Earle C. Anthony

A Forerunner of Tomorrow's Broadcasting

It is from such great antenna systems as this one (the powerful station KFI in Los Angeles), that programs of national importance may be broadcast throughout the entire country. And it is this type of power station that is destined to become a part of the 'plan for attaining "super-broadcasting" and to be an important factor in solving the broadcasting problem.

Popular Radio

VOLUME VIII

JULY, 1925

Number 1

A PROBABLE SOLUTION OF THE BROADCASTING PROBLEM—

"SUPER-BROADCASTING"

Questions That the Radio Interests Must Eventually Answer—

What constitutes program features of superlative merit?

From what stations shall these "super features" be broadcast?

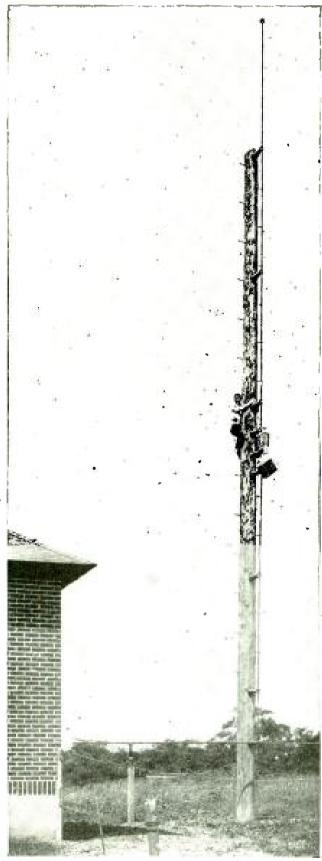
How can these programs reach the maximum number of listeners?

Who will pay the costs of maintenance of the stations?

How will the broadcast artists receive remuneration?

Who will pay authors' and composers' royalties on copyright features?

By LAURENCE M. COCKADAY


BROADCASTING has grown in the past three years from the experimental work of a few scientifically-minded amateurs to the greatest medium of disseminating news, entertainment and education that the world has ever known.

Today there are 475 class A broad-casting stations in this country and 90 class B stations. The former broad-cast on wavelengths ranging between 280 and 545 meters, and are required to have a minimum of 500 watts of power in the antenna. The latter operate on wavelengths between 200 and 280 meters, and are limited to a maximum of 500 watts in the antenna. These two classes of stations total 565. Between them they cover the entire country.

The quality of the broadcast programs

that are sent out from these stations varies to a marked degree. In those areas that are served by stations which are noted for the general excellence of their programs, the interest in radio has been developed to the benefit of the radio fan and to the profit of the radio dealer and manufacturer. As a consequence, the growth of radio has been in reality the direct reaction of the development of individual broadcasting stations. Those stations have been most successful that have given the best programs to the largest number of listeners.

In other words, the public interest in radio and the radio industry itself is dependent upon the maintenance of a higher standard of broadcast program, and the future of radio will be deter-

Westinghouse

A RADIO "RELAY STATION"

This is the type of short-wave antenna that is used at station KDKA for relaying radio programs to other stations. It is a vertical rod mounted rigidly on evenly spaced insulators. This prevents swinging and changes in the transmitted wave on a pole.

mined by the character of programs that will be furnished.

On the maintenance of broadcast programs the whole structure of the radio interests rests.

How shall this be accomplished?

In the answer to this question lies the problem of super-program building—the selection of those features of the broadest possible interest, of the best possible quality and of the greatest national import.

And here is where "superbroadcasting" enters the situation as a probable solution.

"Superbroadcasting" is the term that may be applied to what is, in effect, universal broadcasting; i.e., the broadcasting of those program features of outstanding excellence that may be received over the entire country or over the entire continent or, conceivably, over the entire world at the same moment. This may be attained in three ways, any one of which may be used separately or in combination.

These three ways may be summarized thus:

- 1. A small number of strategically located broadcasting stations that operate on "super-power" ranging from 5,000 to 20,000 watts:
- 2. The linking together of broadcasting stations by wire, so that the same program may be sent out from them simultaneously;
- 3. The linking together of broadcasting stations by means of "relay stations," which pick up programs broadcast from other stations simultaneously on a short wavelength (say 90 meters), and re-broadcast them on a regular wavelength.

Let us consider for a moment the first of these methods—the super-power stations.

It has been estimated that fifteen or twenty super-power stations of 5.000 watts or more could cover the whole of

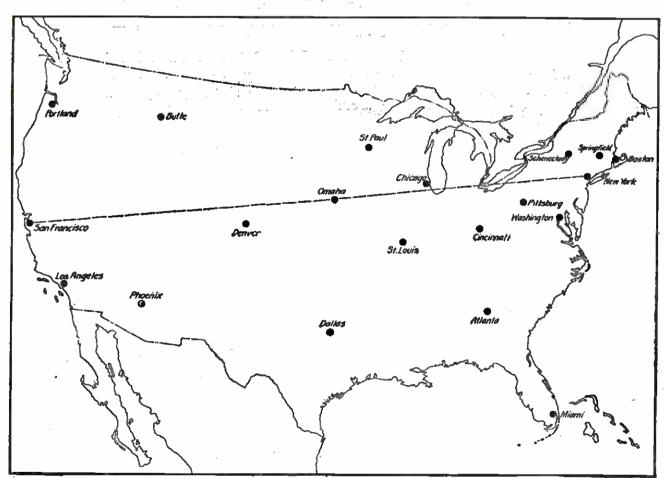
HOW BROADCAST STATIONS ARE LINKED TOGETHER BY WIRE Here is a long-distance control board for the telephone lines that are used to connect a number of widely separated broadcasting stations, so that they may all transmit the same broadcast program.

the United States with as many different programs (see Figure 1). This could be done in such a way that a listener in any part of the country, with a receiver of only medium sensitivity, could pick up that particular type of program or feature in which he was interested, and he could receive it with good volume and in pleasing quality.

This system of broadcasting would undoubtedly help to popularize a simple receiver (of not more than three or four tubes) which would be easy to tune (probably a single-control unit) and that would be a profitable instrument to sell at a price well within the reach of everybody's pocket. In fact, a receiver capable of receiving signals from a superpower station at a distance of 2,000 or 3,000 miles can be manufactured at a considerably lower cost to the ultimate consumer than the ordinary receivers

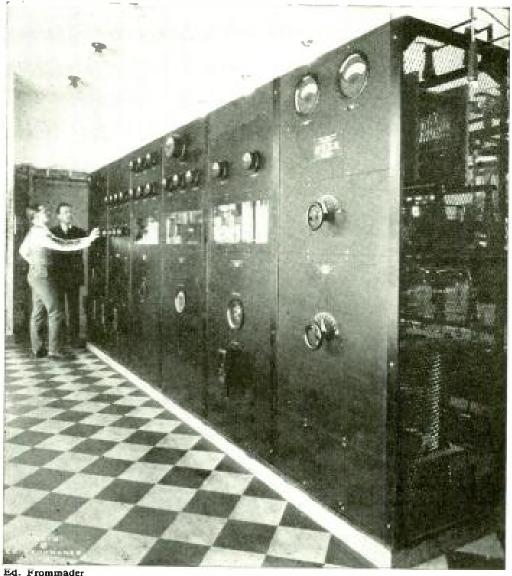
sold today. At the same time, the manufacturers could incorporate in these simplified receivers an audio-frequency amplifier of much better quality than is used today, so that the reproduction of the program in the homes would be much more enjoyable than in even the most expensive of the receivers now in use.

A super-power station, however, if it is located in the midst of a large city, causes an undue amount of interference. This is especially true if the receivers now in general use are employed. To avoid this interference it may become necessary to install and operate super-power stations outside of the crowded areas. No super-power station (in the writer's opinion) should be located in the center of a city or town. It should be built at a distance of fifteen or twenty miles from a congested district. It should be located at some place where


there are few residents—as, for example, in low, flat marshes or up in the mountains on some high peak.

The studios for these stations would not, of course, be at such a distance from town, as it would be difficult to induce performers or lecturers to travel to them. The studio itself would be located in the most accessible district of the city or town, and would be connected to the transmitting station by telephone lines. In this way, the multitudes in the city would not have a broadcasting station of tremendous power "in their back yards," so to speak, and they would be able to tune it out with a receiver of only fair selectivity. But other broadcast listeners at great distances would be able to pick up these programs from this station although the nearer super-power stations might be transmitting at the same time.

There are a number of super-power stations now in operation in the United States, including stations KDKA at East Pittsburgh, Pa.; WBZ at Springfield, Mass.; WOC at Davenport, Ia.; KFI at Los Angeles, Cal.; WLW at Cincinnati, O.; WEAF at New York City; KGO at Oakland, Cal.; WGY at Schenectady, N. Y., and WSB at Atlanta, Ga. These stations have an average power of 5,000 watts with minimum and maximum powers ranging from 2,500 watts to 50,000 watts in one or two cases.


By the second method of super-broadcasting, a number of local stations of low, medium or high power would all be connected to each other by means of special land wires—and all connected to a single broadcasting studio.

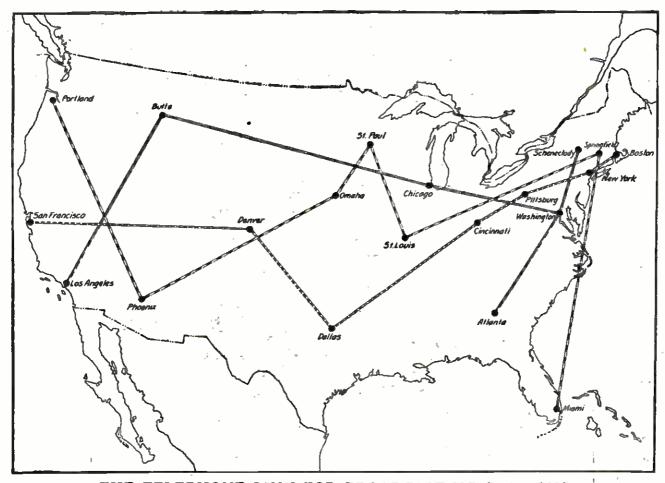
These separate stations, properly distributed around the whole country (see

HOW SUPER-POWER STATIONS SHOULD BE DISTRIBUTED

Figure 1: A number of high-powered radio stations may supply the country with the same number of national programs, if the wavelengths of the stations are far enough apart to avoid interference. A station at Omaha would need but half the power required if it were located at New York or San Francisco.

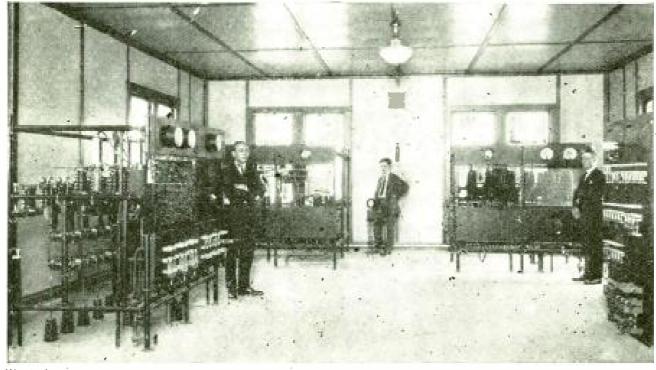
A FAMOUS SUPER-POWER TRANSMITTER

This is the recently erected panel transmitter of station WOC, at Davenport, Ia. It is one of the greatest super-power stations in the world and is heard throughout the year from coast to coast on a loudspeaker with simple three or four-tube receivers.


Figure 2) and each broadcasting the same program, could be received throughout the entire nation with the same type of simplified receiver as would be required to tune in the super-power stations. In other words, this second method of broadcasting would make it possible for any person in any part of the country to pick up a program originating at a distant point with a receiver that would not strain even the most modest pocketbook.

This method, however, has a disadvantage, in that it would make available at one particular time only a single program. This objection, however, could be overcome by using a series of inter-

connected low-power stations, with (say) one program from the east on one chain, another program from the western part of the country on another chain of stations, and so on.


But this method has one outstanding advantage; it would reduce local interference considerably over that obtained by the first method.

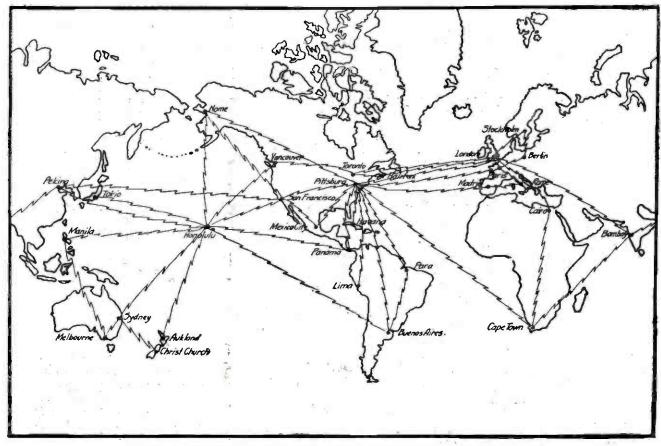
Of course, this second method is only applicable on one continent. It cannot be used for linking stations over large bodies of water, as it is necessary to run a high quality telephone line between every one of the stations to be connected in the chain.

THE TELEPHONE LINK FOR BROADCASTING STATIONS

FIGURE 2: Seven stations with a 1,000-mile range and located at proper points throughout the country would be able, if connected by telephone wires, to broad-cast a program simultaneously to the whole country.

Westinghouse

A PIONEER IN SHORT-WAVE TRANSMISSION

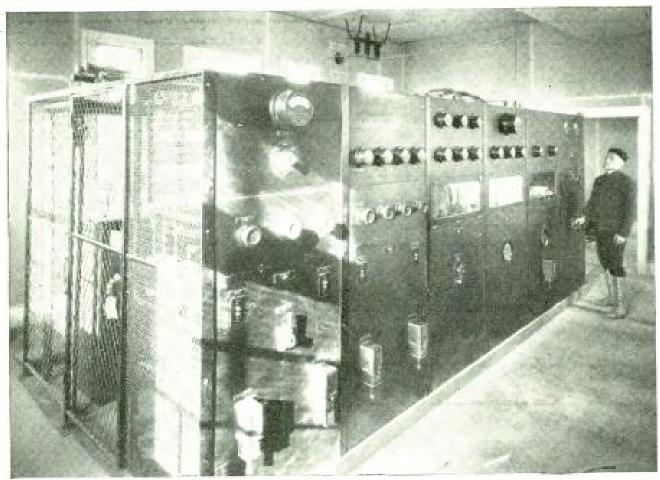

Here is the apparatus used at the new experimental radio station at KDKA of the Westinghouse company. By means of this high-powered short-wave system, radio programs have been transmitted across the continent and even across the ocean.

Kadel & Herbert

THE START OF A NATIONAL RADIO EVENT

The pick-up apparatus used at the Capitol when the inaugural ceremonies were broadcast so that the entire country could listen in.

THE INVISIBLE RADIO NET AROUND THE GLOBE


FIGURE 3: The diagram shows how short-wave radio stations could be tied together.

The third method of super-broadcasting provides for the use of a short wave radio link between a number of well distributed transmitting stations of low, medium or high power, so that they all could re-broadcast on a higher wavelength the programs transmitted to them by the "mother" station on a short wave. Programs broadcast from these separate radio-linked stations, properly distributed throughout the whole country, or in fact, throughout the whole world (see Figure 3), each broadcasting the same program,

could be received anywhere within the range of any one of the separate stations—and with the same type of simplified receiver already mentioned in connection with the other two methods of super-broadcasting. This latter method, however, has the added advantage that its service is available to any transmitting station at any place within the range of the short wave mother transmitter. It does not rely on expensive land lines for its operation and its apparatus and maintenance would not include these or their

Tomorrow's Broadcasting May See—

- 1: A small number of super-power broadcasting stations, located throughout the country and connected by telephone wires so that programs of national importance and of superlative quality may be broadcast simultaneously for the benefit of all;
- 2: These broadcasting stations authorized to collect toll charges for the rental of these stations for educational, publicity or other purposes, so that funds may be thus secured for their maintenance;
- 3: Manufacturers of radio sets, and manufacturers of parts that are required for radio sets, assessed on some fair and equitable basis so that those who profit from the sales of radio equipment may contribute toward the maintenance of the stations; (on this point there is much controversy);
- 4: These broadcasting stations operating under the direction of a representative group of publicspirited citizens of practical experience, acting under the supervision of the Secretary of Commerce;
- 5: The entire revenue derived by these broadcasting stations—which might conceivably amount to several million dollars a year—devoted exclusively to the maintenance of the stations and to the payment of the broadcasting artists and to the payment of proper royalties to the composers and authors whose work is thus published for the entertainment or for the instruction of all our people.

Crosley Radio Corp.

A 5,000-WATT STATION

This is the high-powered transmitter which is now working day and night at station WLW in Cincinnati. This station may be heard at any time in the evening throughout the United States and in many foreign countries.

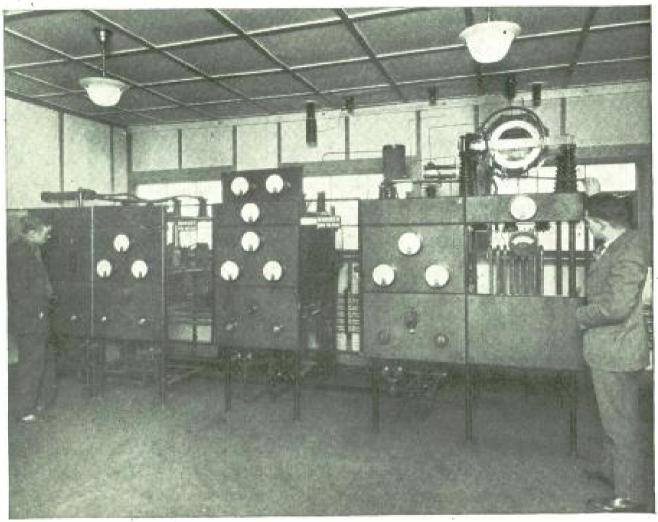
accompanying repair work. It would rely wholly upon short wave ether vibrations for the inter-connecting link between the local broadcaster and the mother station transmitting the original program. On the other hand, it might prove to be difficult to transmit to the whole world by this method on account of static conditions in any one vicinity. This condition, however, is ameliorated by the fact that static disturbances are very slight or almost totally absent on certain short wavelengths. It would probably assure the greatest range for super-broadcasting.

Any one of these three methods of broadcasting points a way to a practical solution of the national broadcasting problem. No one of these three systems would interfere in the least with the operation of our regular broadcasting as it is carried on today. There would be ample field for medium-powered

local stations, of, say, 250 watts for the transmission of purely local news and items of local interest. These stations should be equipped with the best modulating apparatus obtainable, so that their programs will be reproduced in the receiving sets with as good quality as from the super-broadcasting stations. These local stations would fit in with either of the latter two plans, so that they too could broadcast national programs, when they are of sufficient importance to assure interest on the part of the local listeners.

It is quite possible that certain elements of all three of these schemes may be incorporated in the ultimate plan for world broadcasting. Such a plan might include the following:

(1) A number of super-power stations well distributed throughout every country in the world, and arranged so that no two adjacent super-power stations would be transmitting on approximate wavelengths;


- (2) A number of local mediumpowered stations in every large city (not more than four to a large city and, possibly, only one in small towns) all equipped so that they could be tied in with some national program by means of telephone wires;
- (3) A small number of high-powered short-wave broadcasting stations (two or three to each nation) that might be used as relay stations across large bodies of water (such as the Atlantic and Pacific Oceans), to be used as an interconnecting link between the various national broadcasting chains;
- (4) A comprehensive telephone landwire link for every nation, which would be

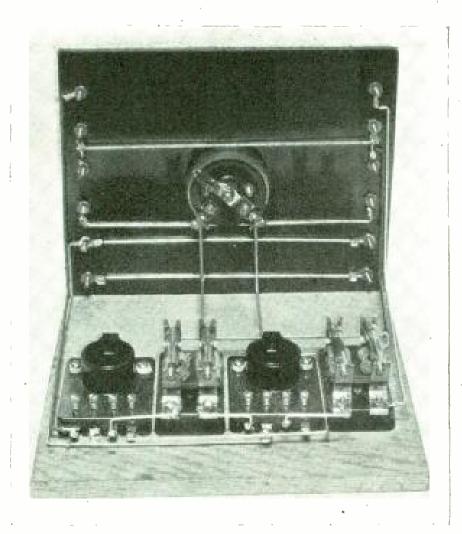
used for no other purpose than to supply national broadcasting programs to any client broadcasting station that would pay for the service.

When some such plan as this is put into effect and all of the broadcasting facilities of the nation, or of the whole world, are pooled, so to speak, the success of radio broadcasting will be reasonably assured.

And such a comprehensive broadcasting plan would tend not only to reduce the price of receiving apparatus but also to increase the quality of reception throughout any area at the same time cutting down the trouble from interference.

When these steps have been taken radio broadcasting will be available to practically every family in the world.

Westinghouse


ANOTHER "SUPER" STATION

The transmitting apparatus at station WBZ in Springfield, Mass. Almost all radio listeners in the United States have at some time received programs from this powerful transmitter.

Handy Tools for Radio Fans: No. 5

METER.

THE REAR VIEW OF THE AMPLIFIER

Study this view in connection with the picture diagram of the hook-up on page 15. The location and connecting points of each wire appear clearly and you can determine just how to bend the wires to get the shortest connection with the proper clearance.

Simple "How-to-Build" Articles for Beginners No. 10

How to build a two-stage resistance-coupled amplifier for use with dry-cell tubes

By ALBERT C. CRAIG

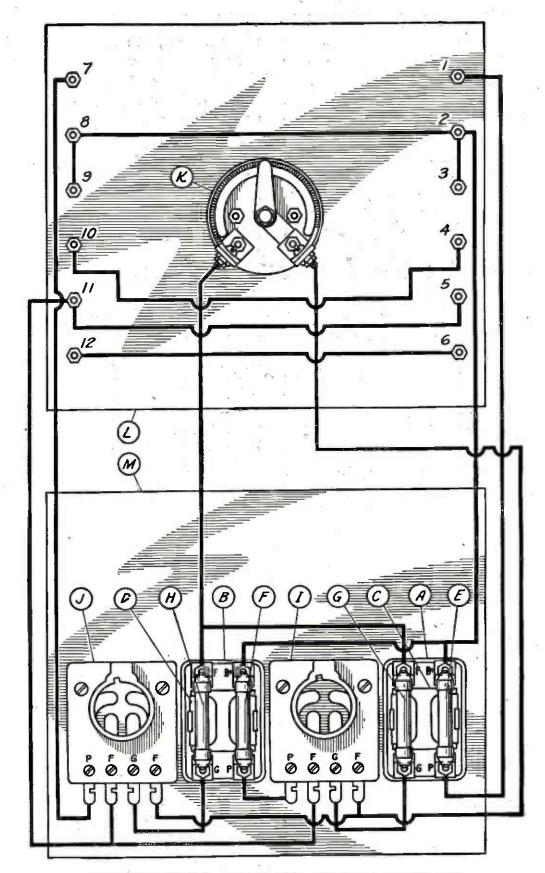
Cost of Parts: Not more than \$11.00

HERE ARE THE ITEMS YOU WILL NEED-

A and B—Daven resisto-couplers;

C and D-Dubilier mica fixed condenser, .006 mfd.;
E, F and H-Durham metallized grid-leaks,

1/4-megohm;


G-Durham metallized grid-leak, 1/2-megohm;

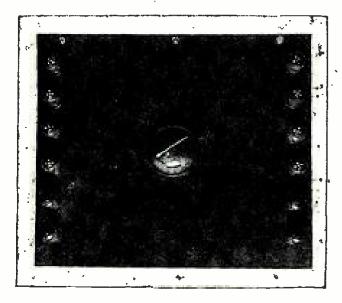
I and J-Remler sockets, Type 399;

K-"E-Z" Stat;

L-composition panel, 7 inches by 8 inches;

M-hardwood sub-base, 61/2 inches by 8 inches; twelve binding posts.

THE "PICTURE DIAGRAM" OF THE HOOK-UP


FIGURE 1: This illustration shows the exact manner in which the instruments are placed on the panel and baseboard and how the wires run in relation to them. The upper rectangle shows the back of the panel, and the lower one shows the baseboard. All the parts are lettered to correspond with the designations in the text and in the list of parts.

THIS tenth unit to be described in this series is a vacuum-tube audio-frequency amplifier that comprises two stages of resistance-coupled amplification for use with the small type dry-cell tubes. This unit will be found efficient and useful for connecting to the preceding units and tuners described in this series.

This unit was built in the POPULAR RADIO LABORATORY for the express purpose of submitting to the beginner a resistance-coupled amplifier that will give him the best reception possible, and at the same time teach him something about the problems involved in resistance-coupled circuits.

After you have decided to make this simple amplifier, take these pages to a radio dealer and ask him to supply you with the parts listed at the head of the article. When you have your parts ready for mounting, you may spread them out on a kitchen worktable and begin the construction of the set. Mount them on the panel and baseboard as shown in the picture diagram and the two photographs that accompany this article. These three illustrations show you exactly how to mount the instruments and also how to wire up.

Next, connect up the instruments in

THE PANEL ARRANGEMENT

This photograph shows the front view of the panel with the rheostat mounting in the center and the binding posts in two rows, one at each end.

the electrical circuit as indicated specifically in the picture diagram.

If you follow the directions shown there you cannot make a mistake, as the instruments are all marked with designating letters that re-appear in the list of parts.

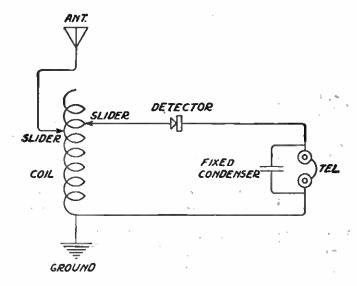
When you have finished wiring up, all you have to do is connect the telephones or loudspeaker, the batteries and the tuning unit and you are ready to "go."

To connect this unit, be sure to do the following:

Connect the binding posts 10 and 11 to your dry-cell "A" battery consisting of three dry-cells in series, with the positive terminal connected to binding post 11:

Then, connect the 67½-volt "B" battery to the binding posts 9 and 10 with the positive terminal connected to binding post 9. The loudspeaker should be connected to binding posts 7 and 8. Binding posts 1 and 2 go to the binding posts on the preceding unit, where you usually connect the telephones. Binding posts 3 and 4 may be used to apply the "B" battery directly from this unit to the "B" battery terminals of the preceding unit. Binding posts 5 and 6 may also be used to supply the "A" battery current to the two binding posts for that purpose on the preceding unit:

Place two tubes of the UV-199 or C-299 type in the two sockets, I and J, and turn on the rheostat K and the set is ready to work.

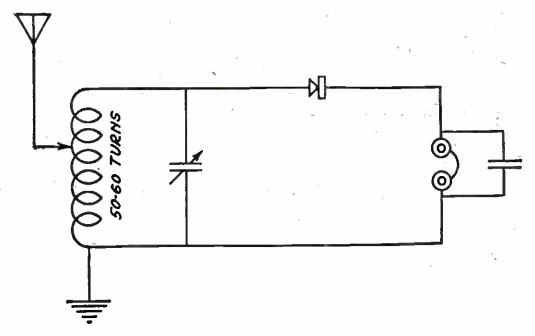

You will find that you will obtain wonderful reproduction if a good loudspeaker is used with this type of amplifier. For best results with a loudspeaker, it is recommended that the single-stage dry-cell amplifier described in a previous article be used in between this amplifier and the tuning unit. This will give exceptionally loud and clear results.

Do not turn the rheostat which controls the filament current to the two tubes any higher than is necessary to produce sufficient volume. This will conserve the batteries and lengthen the useful life of the tubes.

101 HOOK-UPS

ERE are listed—for the guidance of broadcast listeners and radio experimenters, and as a ready reference record—what POPULAR RADIO believes to be the most efficient of the radio circuits that have been developed to date. Accompanying each diagram is information concerning costs of parts, selectivity, operation, construction and other practical features that will guide the builder or purchaser of a set that will meet his own particularneeds. The approximate ranges as here given, are yearly averages on actual records. During the summer the actual ranges may fall to 50 percent of the value given, while in the winter, under the best of conditions, the actual ranges have been known to exceed the values given by as much as 500 percent.

Crystal Circuits



THE CONDUCTIVELY-COUPLED CRYSTAL CIRCUIT

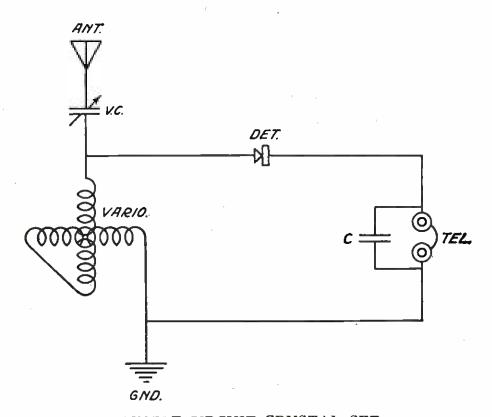
Cost of parts: Not more than \$10.00. Selectivity: Fairly good. Operation: Very simple. Only two

Only two controls are used; a primary and a secondary slider. Ease of construction: No technical knowledge necessary.

Approximate range: 15 miles. Outstanding features: This circuit is especially suitable for the beginner who wants to start out by building the simplest set that will give him clear reception of local signals at the smallest cost.

THE CAPACITY-TUNED CRYSTAL CIRCUIT

Cost of parts: Not more than \$12.00.


Selectivity: Good.

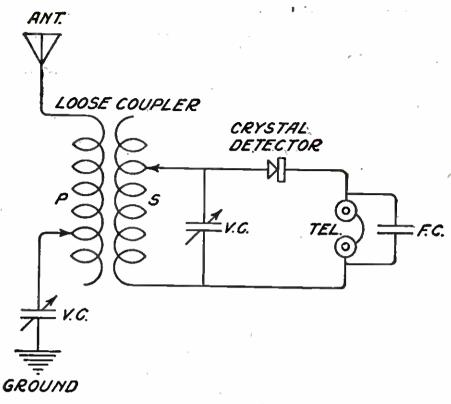
Operation: Simple. Only two controls; a primary slider and a secondary variable condenser.

Ease of construction. Nothing complicated.

Approximate range: 15 miles.

Outstanding features: The circuit is more selective than the ordinary conductively-coupled tuner and the variable condenser gives smoother wavelength control.

SINGLE-CIRCUIT CRYSTAL SET


Cost of parts: Not more than \$18.00. Selectivity: Fair.
Operation: Simple. The antenna ci The antenna circuit is tuned by both the condenser and the vari-ometer. The closed circuit is controlled by the variometer.

Construction: Very simple to make.*

Approximate range: 15 miles.

Outstanding feature: A good, inexpensive set for the city dweller who is content to listen to local programs with the headphones.

*(See POPULAR RADIO, December, 1922, page 292, for details of operation.)

INDUCTIVELY-COUPLED CRYSTAL RECEIVER

Cost of parts: Not more than \$22.00.

Selectivity: Good.

Operation: Fairly simple.

Construction: The whole set can be constructed

on a board and wired up in an hour or two.*

Approximate range: 15 miles.

Outstanding feature: The sharpest tuning crystal receiver that it is possible to make.

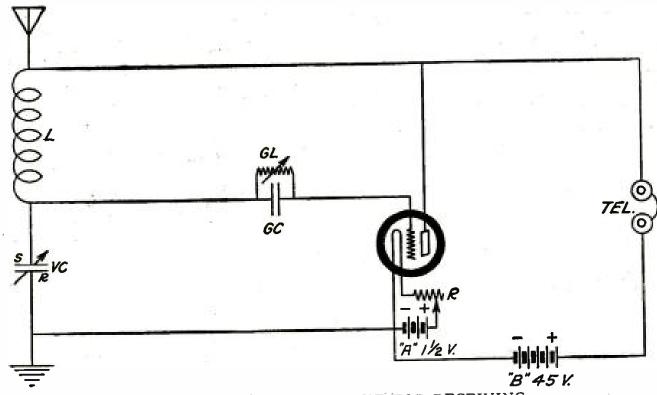
*(See POPULAR RADIO, August, 1922, page 293, for constructional details.)

CONDUCTIVELY-COUPLED CRYSTAL SET WITH LOADING COIL AND BUZZER TEST

Cost of parts: Not more than \$14.00.

Selectivity: Fair.

Operation: Simple. The buzzer test simplifies the adjustment of the crystal detector.


Ease of construction: Not difficult. The

whole set can be mounted on a board and wired up ready for use in an hour or so.

Approximate range: 15 miles.

Outstanding feature: A simple set for a young

beginner to help him obtain his first knowledge of radio.

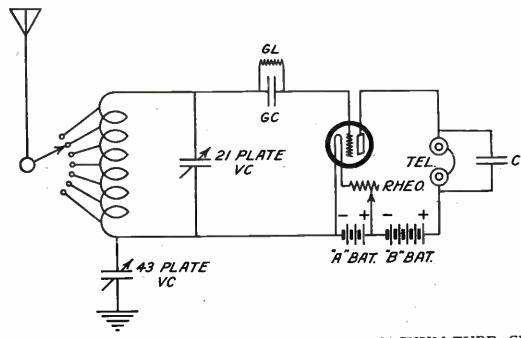
MODIFIED COLPITTS CIRCUIT FOR RECEIVING

Cost of parts: Not more than \$14.00.

Selectivity: Fair.

Simple. The variable condenser Operation: changes the wavelength and the filament

rheostat controls regeneration.


Construction: Easy to make.*

Approximate range: 500 miles.

Outstanding features: Only a single, simple control for tuning. The filament rheostat should not be turned up too high or the

set will radiate badly.

*(See Popular Radio, May, 1924, page 439, for constructional details.)

CONDUCTIVELY-COUPLED, CONDENSER-TUNED, VACUUM-TUBE CIRCUIT

Cost of parts: Not more than \$20.00 (Note: The cost of tubes and batteries is not included in the cost given in these de-

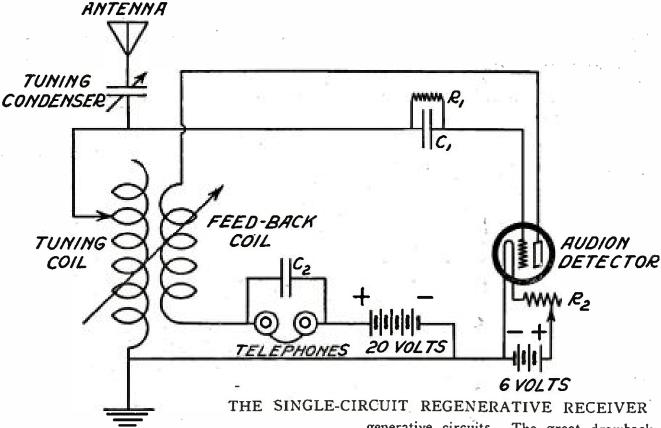

scriptions).
Selectivity: Fair.
Operation: Simple.

Construction: Easy to build, and a good circuit for the beginner to try.*

Approximate range: 100 miles.

Outstanding feature: The best set for the beginner to learn the operating characteristics of the vaccuum tube with tics of the vacuum tube with.

*(See Popular Radio, January, 1923, page 61, for constructional details.)


Cost of parts: Not more than \$21.00.

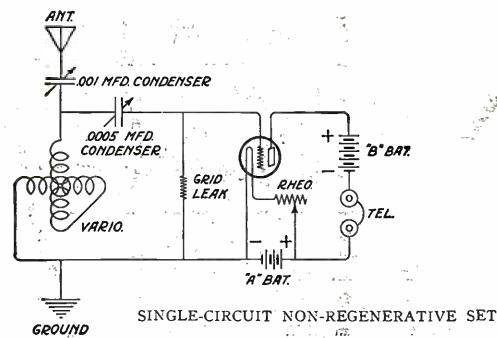
Selectivity: Excellent.
Operation: Very simple. One control for wavelength and one for regeneration.

Ease of construction: Not difficult to make.*

Approximate range: 20 miles.
Outstanding features: Works without an antenna. Reduction in static. Fine for local reception.

*(See Popular Radio, November, 1923, page 372, for constructional details.)

GROUND Cost of parts: Not more than \$20.00.


Selectivity: Poor. Operation: Simple.

Ease of construction: Not complicated.*

Approximate range: 500 miles.

Outstanding features: Easy to build and easy to operate; much simpler than most regenerative circuits. The great drawback to the use of this circuit, however, lies in the fact that it re-radiates strongly. In other words, while it is being used for receiving, it generates radio-frequency currents in the antenna system which cause radio waves to be sent out to produce interference in other receiving sets in the neighborhood. In the hands of an expert operator this might not happen.

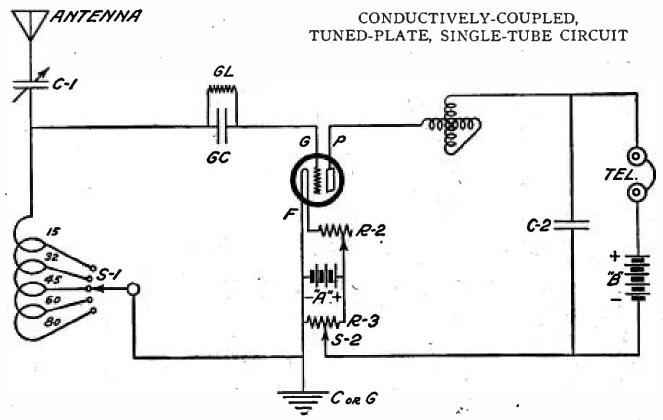
*(See Popular Radio, November, 1922, page 192, for constructional details.)

Cost of parts: Not more than \$22.00. Selectivity: Only fair. (This modification is a little more selective than the one shown

on page 50 of the January, 1923, issue.)

Operation: Simple. The variometer and one of the variable condensers tune the antenna and the condensers tune the condensers tune the condensers tune the condense condensers tune the condense con

tenna, and the variometer and the other


variable condenser control the grid-circuit tuning.

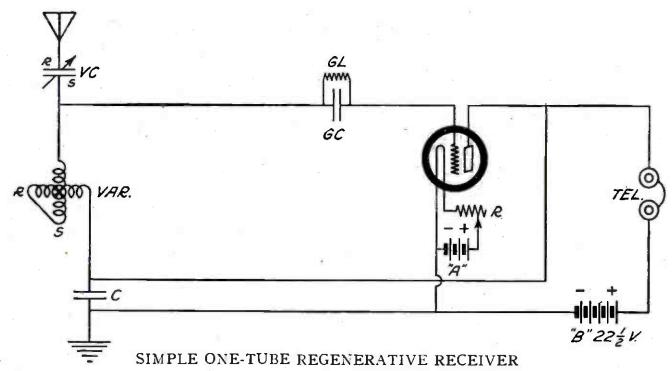
Construction: Not complicated.*

Approximate range: 100 miles.

Outstanding feature: A non-re-radiating, single-circuit receiver for reception of local signals.

*(See POPULAR RADIO, January, 1923, page 59, for constructional details.)

Cost of parts: Not more than \$23.00.


Selectivity: Only fair.

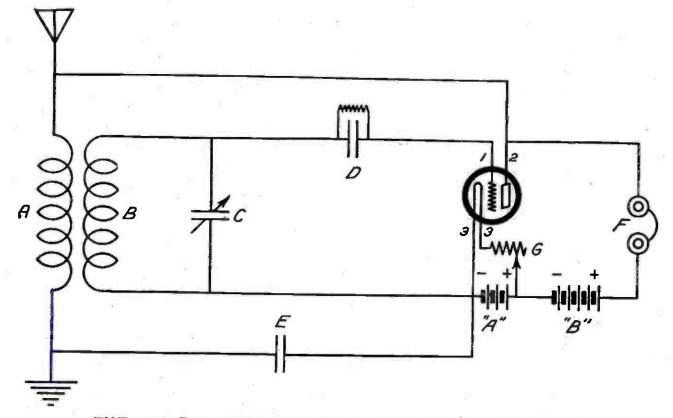
Operation: Simple. A variable condenser is used for wavelength control and a variometer is used in the plate circuit to control regeneration.

Ease of construction: Not complicated.* *(See Popular Radio, June, 1923, page 430, for constructional details.)

Approximate range: 500 miles.

Outstanding features: This modification will tune a little better than the straight singlecircuit set, and can be kept in more stable operation by means of the potentiometer. The set is guilty, however, of permitting interfering re-radiation in the hands of the inexperienced operator.

Cost of parts: Not more than \$19.00.

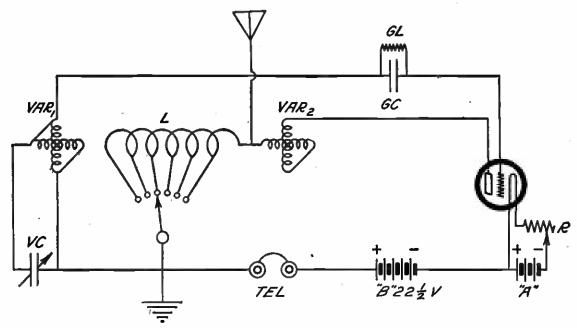

Selectivity: Fair.

Operation: Simple to tune. Wavelength is controlled by the variable condenser and the variometer. Regeneration is controlled by the filament rheostat.

Construction: Extremely simple.*
Approximate range: 500 miles.

Outstanding features: This is a simple set to build and operate. It will give good results in the hands of beginners. But the filament rheostat should not be turned up too high or the set will radiate badly.

*(See Popular Radio, February, 1924, page 197, for constructional details.)


THE MAN-DAY SINGLE-CONTROL REGENERATIVE CIRCUIT

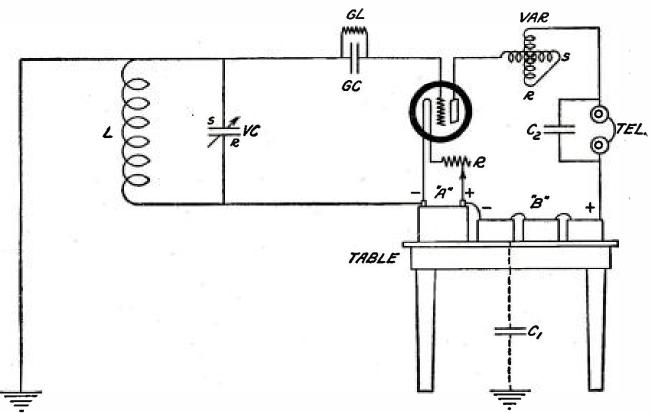
Cost of parts: Not more than \$12.00.

Selectivity: Excellent.

Operation: Very easy. Only one control for wavelength. Regeneration is adjusted with the filament rheostat.

Ease of construction: Simple.
Approximate range: 500 miles.
Outstanding features: This is the simplest regenerative circuit to tune. It is very selective and costs but little.

NOVEL VARIOMETER HOOK-UP


Cost of parts: Not more than \$24.00.

Selectivity: Fair.
Operation: Rather complicated.

Construction: Just an ordinary acquaintance with tools and some experience in wiring up the circuit is necessary.*

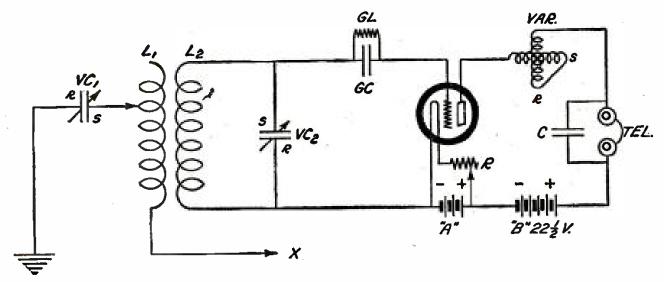
Approximate range: 800 miles.
Outstanding features: Strong signals from one tube. The set will readily radiate, unless carefully handled. For this reason it is a menace to a neighbor's reception, in the hands of a novice.

*(See Popular Radio, August, 1923, page 176, for constructional details.)

A REGENERATIVE SET FOR RECEPTION WITH A GROUND ONLY

Cost of parts: Not more than \$23.00.

Selectivity: Excellent.


Operation: Easy to tune. There are only two controls, the variable condenser for wavelength, and the variometer for regeneration.

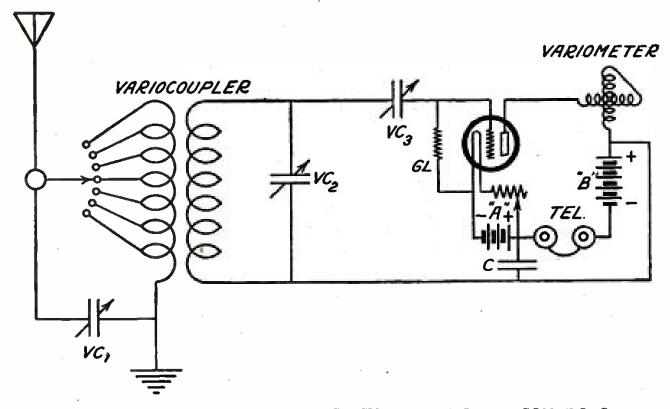
Construction: Very simple to make.*

Approximate range: 25 miles.

Outstanding feature: This is a good type of receiver for local reception where the conditions make impossible the erection of an outside antenna.

^(See Popular Radio, November, 1923, page 372, for constructional details.)

A SIMPLE REGENERATIVE RECEIVER FOR USE WITH TWO GROUNDS


Cost of parts: Not more than \$30.00.

Selectivity: Excellent.
Operation: Not especially complicated. The ground circuit is tuned by means of a variable condenser; likewise the secondary circuit. The plate circuit of the detector tube is tuned by means of a variometer

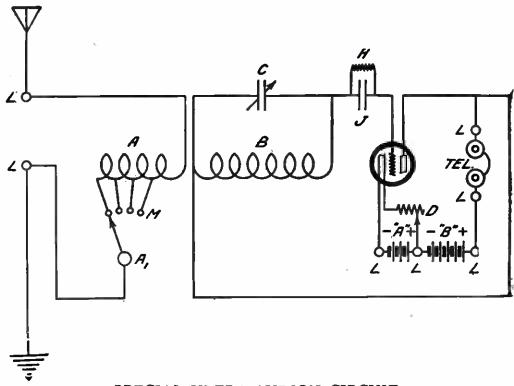
and this controls regeneration.

Construction: Not complicated.*
Approximate range: Local.
Outstanding feature: No antenna is necessary. Just use two grounds; one may be the water pipe and the other the radiator system or the gas pipes.

*(See Popular Radio, November, 1923, page 373, for constructional details.)

TUNED-PLATE ULTRA-AUDION CIRCUIT WITH FINER CONTROLS

Cost of parts: Not more than \$34.00.


Selectivity: Excellent.
Operation: Fairly simple. This adaptation of this circuit contains variable tuning elements such as a variable grid-condenser, variable grid-leak, and a variable con-denser in the antenna circuit which will enable the more experienced operator to

get maximum results out of the receiver. Ease of construction: Just an ordinary acquaintance with tools and some ability in wiring up the circuit are necessary.*

Approximate range: 1,000 miles.

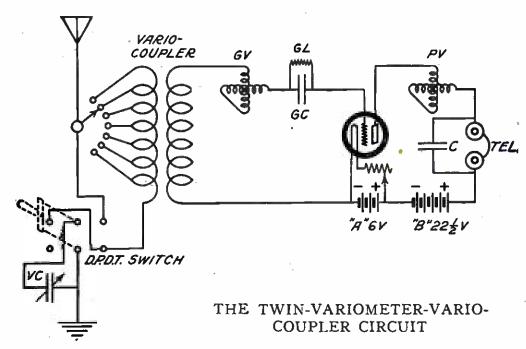
Outstanding features: A real set for the advanced man who wants selectivity and sensitivity at reasonable cost.

*(See Popular Radio, February, 1923, page 142, for constructional details.)

SPECIAL ULTRA-AUDION CIRCUIT

Cost of parts: Not more than \$12.00 (Note: The costs of tubes and batteries are considered "extras" and are not included in the costs given in these descriptions).

Selectivity: Excellent.


Operation: Very easy. When the switchpoint
Al is adjusted for the antenna, there is
only one control for wavelength. The re-

generation is controlled by the filament rheostat.

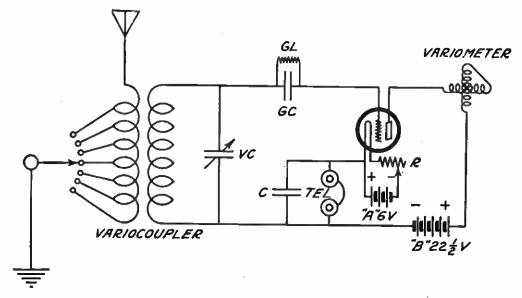
Ease of construction: Simple.

Approximate range: 500 miles.

Outstanding features: This circuit shares first place with the Man-Day circuit in simple. plicity of operation. It is very selective, and costs but little.

Cost of parts: Not more than \$30.00.

Selectivity: Good.


Operation: Requires considerable skill which can be acquired in a couple of months of

experimenting with the tuning.

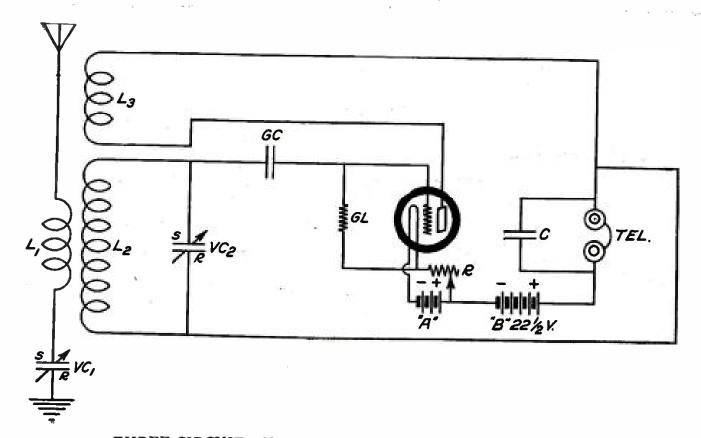
Ease of construction: Just an ordinary acquaintance with tools but some electrical

ability in wiring up the circuit is necessary.

Approximate range: 500 miles.
Outstanding features: This was the first wellknown short-wave regenerative receiver and it has been found reliable and probably has been more used than any other type of receiver in the past.

THE COMBINATION TUNED-PLATE, ULTRA-AUDION CIRCUIT

Cost of parts: Not more than \$25.00 (Note: The cost of tubes, and batteries is considered "extra," and is not included in the cost given in these descriptions).


Selectivity: Excellent.

Operation: Requires considerable skill which can be acquired in a couple of months of experimenting with the tuning.

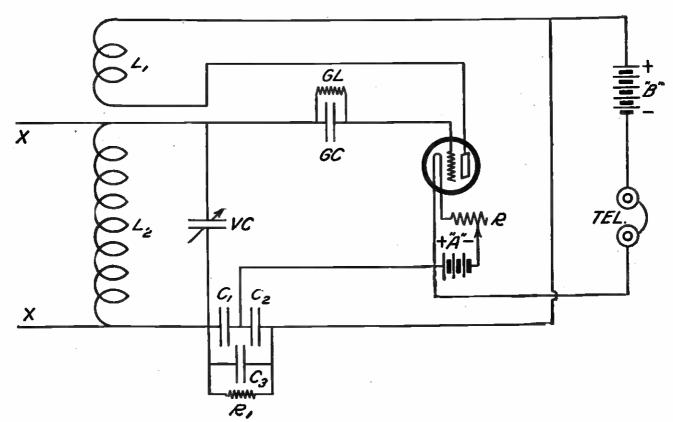
Ease of construction: Just an ordinary acquaintance with tools, but some electrical ability in wiring up the circuit is necessary.

Approximate range: 500 miles.

Outstanding features: Exceptionally suitable for DX amateur work on CW. Tuning is very sharp and easy when it is learned correctly.

THREE-CIRCUIT TUNER FOR SHORT-WAVE RECEPTION

Cost of parts: Not more than \$27.00. Selectivity: Very good. Operation: Not very hard to tune when the operator has worked with the set for a


week or so.

Construction: Not difficult to make.*

Approximate range: 500 miles for telephony; 1,000 miles for CW reception.

Outstanding features: For work below 200 meters. For short-wave broadcast reception and amateur CW reception.

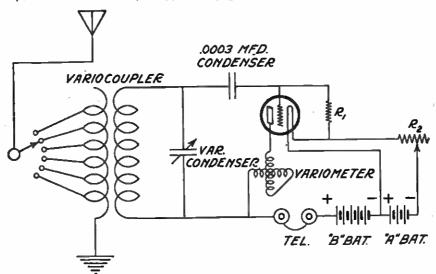
*(See Popular Radio, August, 1924, page 183, for constructional details.)

FLEWELLING MODIFIED SUPER-REGENERATIVE CIRCUIT

Cost of parts: Not more than \$22.00.

Selectivity: Fair (on outdoor antenna). Good (on loop).

Operation: Not hard to operate when the circuit has once been adjusted properly. When used on an outdoor antenna, however, it is liable to produce bad interference


to neighbors, due to re-radiation.

Ease of construction: Easy to make but not easy to get adjusted right.*

Approximate range: Local (on loop).

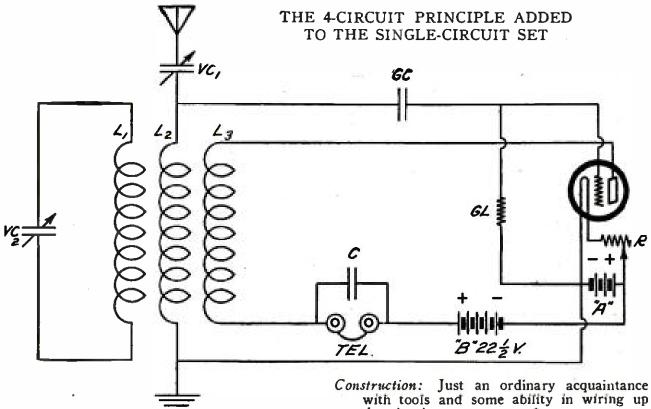
miles (on an outdoor antenna).
Outstanding features: Simplest super-regenerative circuit. Can be made to operate a loudspeaker on one tube. This is only true when all conditions are satisfied. Actually, many experimenters do not get very good results on account of some mistakes they have made and have failed to locate. Reception is accompanied with a high-pitched whistle.

*(See Popular Radio, May, 1923, page 393, for constructional details.)

TUNED-PLATE ULTRA-AUDION CIRCUIT

Cost of parts: Not more than \$23.00 (Note: The cost of tubes and batteries is considered "extra" and is not included in the cost given in these descriptions).

Selectivity: Excellent.


Operation: Fairly simple.

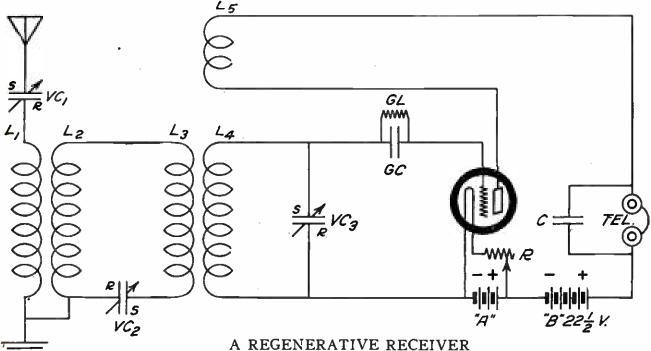
Ease of construction: Not complicated.*

Approximate range: 1,000 miles.

Outstanding features: Noted for DX, amateur and broadcast reception and for its exceptionally sharp tuning.

*(See Popular Radio, Schtember, 1922, page 62, for constructional details.)

Cost of parts: Not more than \$25.00.

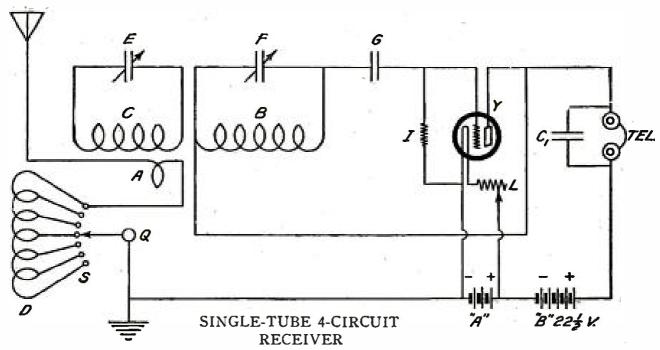

Selectivity: Fair.

Operation: The extra circuit, comprising the condenser VC2 and the coil L1, gives a much better control of regeneration than in the conventional circuit.

the circuit are necessary.*

Approximate range: 500 miles.
Outstanding feature: The added circuit will give stability to the control of regeneration so that the circuit will not burst into oscillation and cause a violent disturbance in neighbors' receivers.

*(See Popular Radio, October, 1923, page 325, for constructional details.)

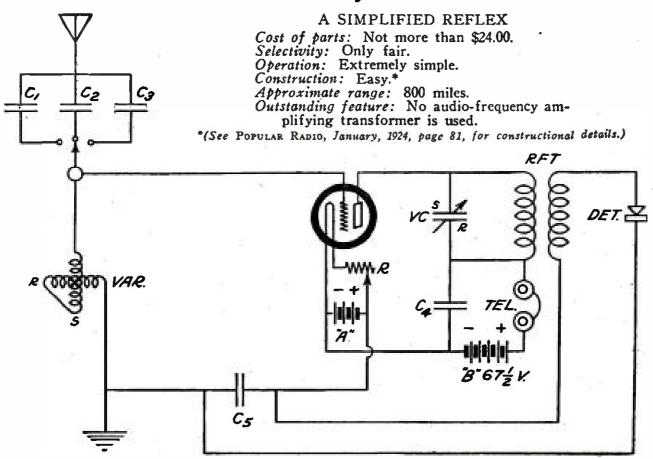

WITH AN INTERMEDIATE CIRCUIT TO REDUCE RADIATION

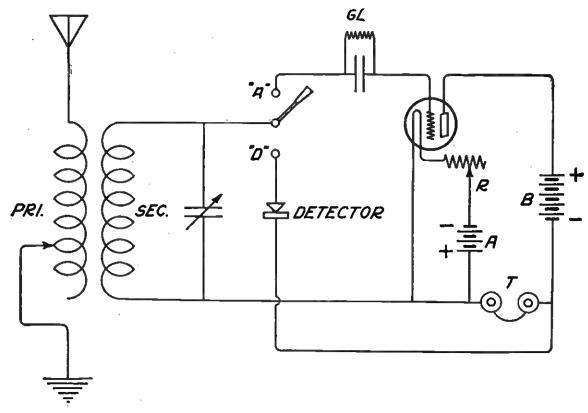
Cost of parts: Not more than \$30.00. Selectivity: Very good. Operation: Rather complicated.

Construction: Just an ordinary acquaintance with tools and some ability in wiring up the electrical circuit are necessary.*

Approximate range: 500 to 1,000 miles. Outstanding features: The receiving system used here makes use of an intermediate, resonant circuit for loosening the coupling between the antenna circuit and the grid circuit so that radiation will be prevented.

*(See Popular Radio, March, 1924, page 292, for constructional details.)


Cost of parts: Not more than \$24.00. Selectivity: Excellent. Operation: Simple. The condenser C1 should be of the correct value to put the set into stable condition and then the condenser E is adjusted so that the circuit is just on the highly regenerative point. All tuning is then accomplished with the condenser F and the antenna switch Q.


Ease of construction: Not complicated. Be sure that the best parts are obtained and the results will exceed expectations. Poor parts render the circuit useless.

Approximate range: 1,000 miles.

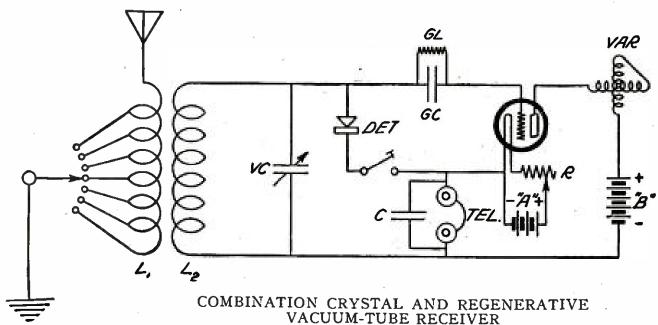
Outstanding features: The regeneration is independent of wavelength. The selectivity and sensitivity of this type of receiver are noteworthy.

One-tube and Crystal Circuits

COMBINATION CRYSTAL AND VACUUM-TUBE SET

Cost of parts: Not more than \$21.00.

Selectivity: Fairly good. Operation: Very simple.

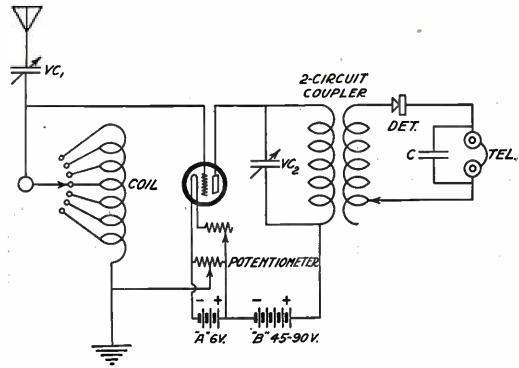

detector.

Ease of construction: Simple to make.*

Approximate range: 15 miles on the crystal 100 miles on the vacuum-tube detector.

Outstanding features: Here is the circuit for the man who already has a crystal receiver and wishes to find out what the vacuumtube detector will do for him in the way of increased signals. The crystal may be used for strong local stations and the vacuum tube may be used for the more distant and weaker ones.

*(See Popular Radio, July, 1922, page 222, for information about use.)


Cost of parts: Not more than \$27.00. Selectivity: Good (with crystal). Excellent (with vacuum tube). Operation: Simple.

Construction: Not complicated.*

Approximate range: 15 miles (with crystal);

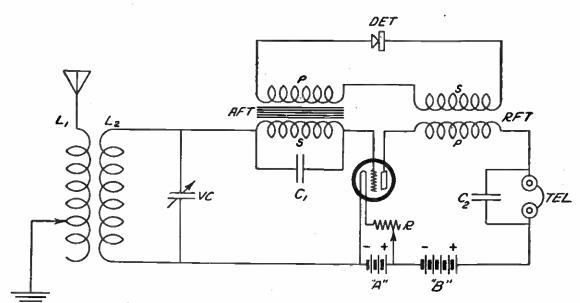
500 miles (with vacuum tube).
Outstanding feature: By simply throwing a switch, the operator can listen in with a crystal detector for local reception, or can use the vacuum tube for distant stations.

*(See Popular Radio, May, 1923, page 397, for constructional details.)

SINGLE-STAGE RADIO-FREQUENCY AMPLIFIER WITH CRYSTAL DETECTOR

Cost of parts: Not more than \$26.00.

Selectivity: Fairly good.


Operation: Not complicated. There are two controls for antenna wavelength, a variable condenser and a tapped coil. The plate circuit is tuned by a second variable condenser, and the inductance tap on the secondary of the 2-circuit coupler controls the wavelength of the crystal circuit.

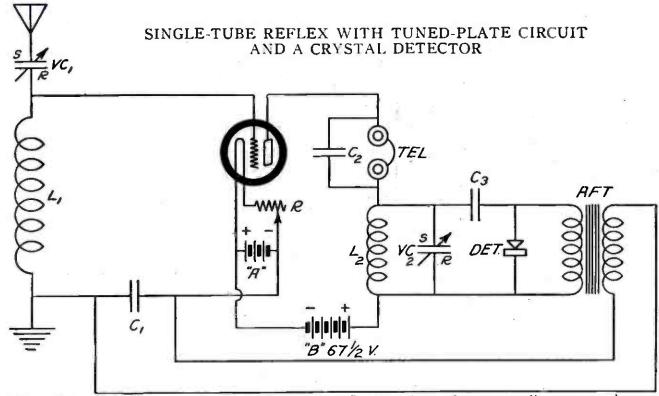
Ease of construction: Just an ordinary acquaintance with tools and some ability in wiring up the set are necessary.*

Approximate range: 500 miles.

Outstanding features: Clear, crisp reception. A short antenna may be used (such as an indoor antenna strung behind the picture molding).

*(See Popular Radio, February, 1923, page 142, for constructional details.)

SINGLE-TUBE AND CRYSTAL REFLEX CIRCUIT

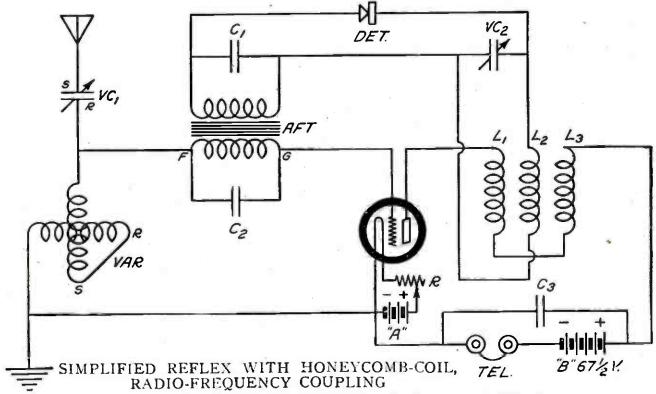

Cost of parts: Not more than \$28.00.
Selectivity: Very good.
Operation: Fairly simple. Two controls for wavelength and one coupling control are used. The crystal adjustment must be changed for any considerable change in wavelength in order to prevent the circuit from oscillating and still have it

retain its maximum signal strength. Ease of construction: More complicated than the straight regenerative circuits but not beyond the ordinary radio fan's ability.

Approximate range: 1,000 miles.

Outstanding feature: Circuit combines radio-

frequency, and audio-frequency amplifi-cation and regeneration in one tube.


Cost of parts: Not more than \$30.00. Selectivity: Good.
Operation: Easy to tune. The variable condenser in the antenna circuit tunes the input circuit to the tube and the variable condense- in the plate circuit tunes that circuit.

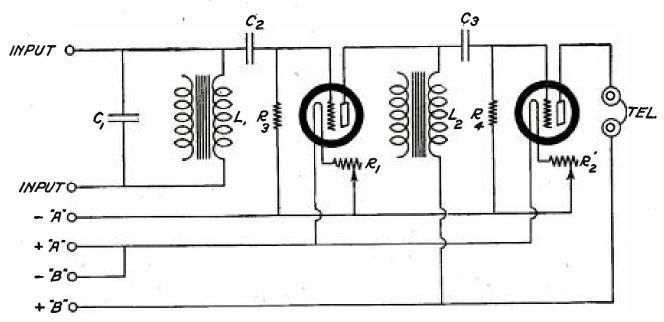
Construction: Just an ordinary acquaintance with tools and some ability in wiring.*

Approximate range: 500 miles.

Outstanding features: A good set for the experimenter who wishes to learn the principles of radio-frequency amplification and of the reflex.

*(See POPULAR RADIO, May, 1924, page 498. for constructional details.)

Cost of parts: Not more than \$45.00. Selectivity: Fair. Operation: Rather difficult.

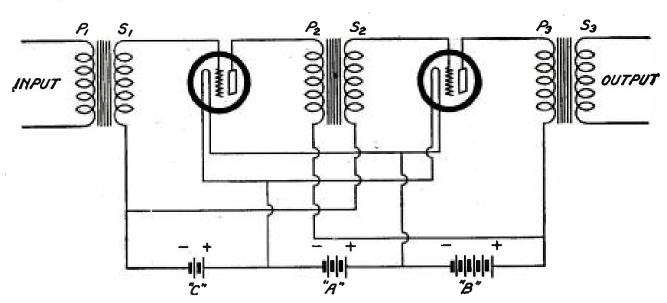

Construction: Some experience in making sets should be had before trying this one.*

Approximate range: 1,000 miles.

Outstanding features: Will operate a loudspeaker on local stations. Incorporates one stage of radio-frequency amplification and one of audio with only one tube.

*(See POPULAR RADIO, July, 1924, page 105, for constructional details.)

Amplifying Circuits


TWO-STAGE, IMPEDANCE-COUPLED AMPLIFIER MADE FROM FORD SPARK COILS

Cost of parts: Not more than \$15.00. Usage: With headphones or loudspeaker. Signal strength: Fairly good.

Quality of reproduction: Fairly good.

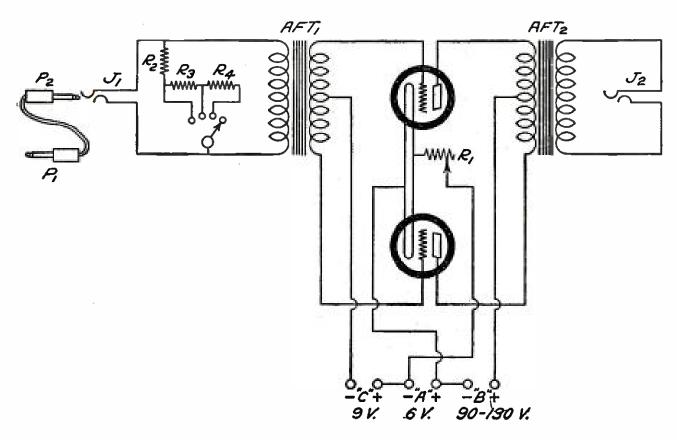
Construction: Simple.*
Outstanding features: Simple to make and operate, and of low cost, especially if you have same old Ford coils on hand.

*(See Popular Radio, April, 1924, page 417, for constructional details.)

TWO-STAGE, TRANSFORMER-COUPLED, POWER AMPLIFIER FOR USE WITH 5-WATT TUBES

Cost_of parts: Not more than \$25.00 (Note: The costs of tubes and batteries are considered as "extras" and are not included in the costs given in these descriptions).

Usage: With loudspeaker.
Signal strength: Excellent, when added to a two-tube receiver.


Quality of reproduction: Good, if good trans-

formers are used. Construction: Not complicated.*

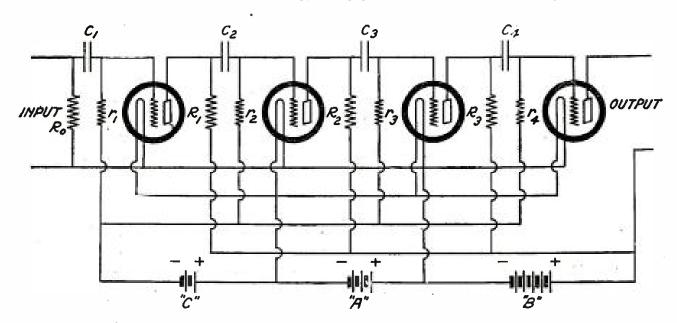
Outstanding features: No rheostats need be used with these tubes (Western Electric 216-a) on 6 volts. The plate circuit of the last tube includes a step-down transformer across the secondary of which is connected

the loudspeaker.

*(See Popular Radio, January, 1924, page 69, for constructional details.)

ONE STAGE OF PUSH-AND-PULL POWER AMPLIFICATION

Cost of parts: Not more than \$22.00. Usage: With loudspeaker. Signal strength: Very good when used with a single-stage of transformer-coupled amplification.


Quality of reproduction: Very good, if good transformers are used.

Construction: Just an ordinary acquaintance with tools and some ability in wiring up a

Circuit are necessary.*

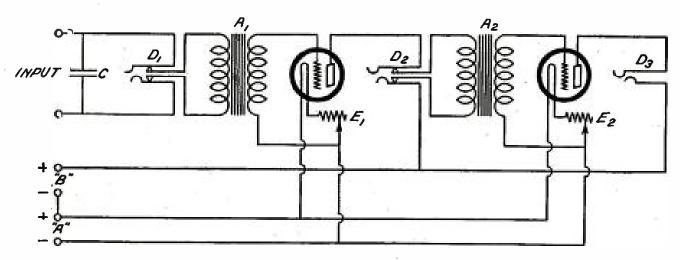
Outstanding feature: This form of amplification takes advantage of both sides of the amplified alternating current that makes up audible voice signals.

*(See Popular Radio, February, 1924, page 165, for constructional details.)

RESISTANCE AND CONDENSER-COUPLED AMPLIFIER

Cost of parts: Not more than \$20.00.

Usage: With phones or with loudspeaker.


Signal strength: Good.

Quality of reproduction: Excellent.

Construction: Fairly simple.*
Outstanding features: Truthfulness of repro-

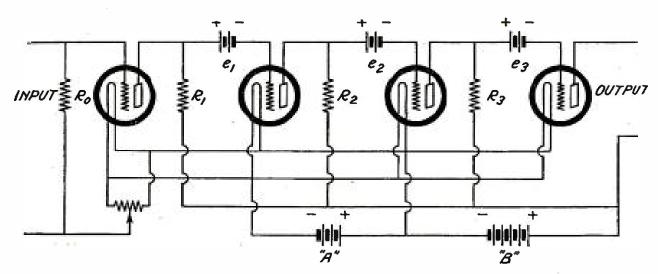
duction and simplicity and low cost.

*(See Popular Radio, January, 1924, page 71, for constructional details.)

TWO STAGES OF TRANSFORMER-COUPLED AMPLIFICATION

Cost of parts: Not more than \$19.00.

Usage: With headphones or with loudspeaker.


Signal strength: Good.

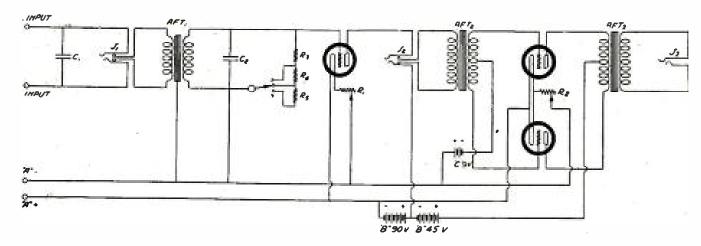
Quality of reproduction: Good, if good transformers are used.

Construction: There is nothing really difficult in putting together and wiring up such an amplifier.*

Outstanding feature: A simple circuit for getting consistent loudspeaker reception with a small number of tubes.

*(See POPULAR RADIO, October, 1923, page 289, for constructional details.)

APERIODIC RESISTANCE-COUPLED AMPLIFIER


Cost of parts: Not more than \$15.00. Usage: With headphones or with loudspeaker. Signal strength: Good.

Quality of reproduction: Excellent.

Construction: Simple.*

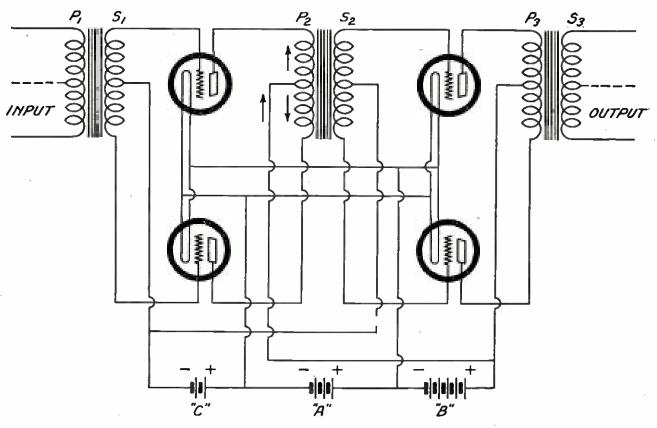
Outstanding features: Perfect reproduction, if properly adjusted. Simplicity of construction. Low cost.

*(See Popular Radio, January, 1924, page 74, for constructional details.)

ONE STAGE OF TRANSFORMER-COUPLED, AND ONE STAGE OF PUSH-AND-PULL AMPLIFICATION

Cost of parts: Not more than \$30.00. Usage: With headphones or with loudspeaker.

Signal strength: Excellent.


Quality of reproduction: Very good, if good

transformers are used.

Construction: Not very difficult to make.*
Outstanding feature: Large volume and good

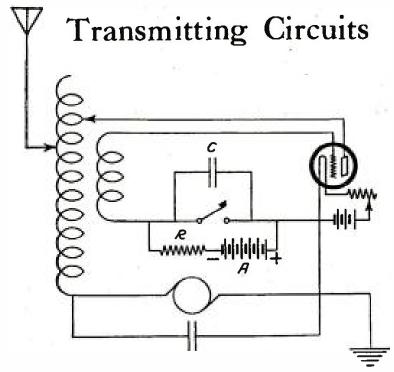
reproduction through a loudspeaker.

*(See Popular Radio, February, 1924, pages 198-199, for constructional details.)

TWO STAGES OF PUSH-AND-PULL AMPLIFICATION.

Cost of parts: Not more than \$30.00. Usage: With loudspeaker. Signal strength: Excellent, when used as a

power amplifier.


Quality of reproduction: Very good—if the

transformers are good.

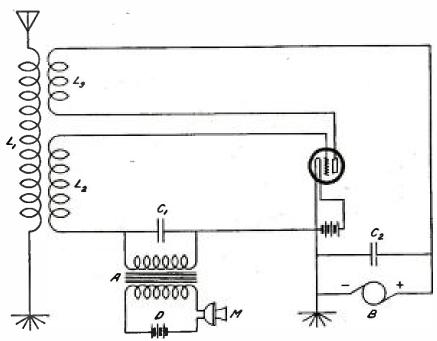
Construction: Rather complicated.*

Outstanding feature: Excellent for use as a power amplifier where great volume and good clarity is required.

*(See Popular Radio, January, 1924, page 70, for constructional details.)

GRID-TICKLER CIRCUIT FOR PURE CW TELEPHONY

Cost of parts: Not more than \$125.00. Emitted wave: Extremely sharp.


Operation: Not difficult.

Construction: Nothing especially complicated in the arrangement of this set, but the builder should have had some experience in putting together receiving sets, wiring, soldering and the like before he attempts to make a transmitter.*

Approximate range: 1,000 miles.

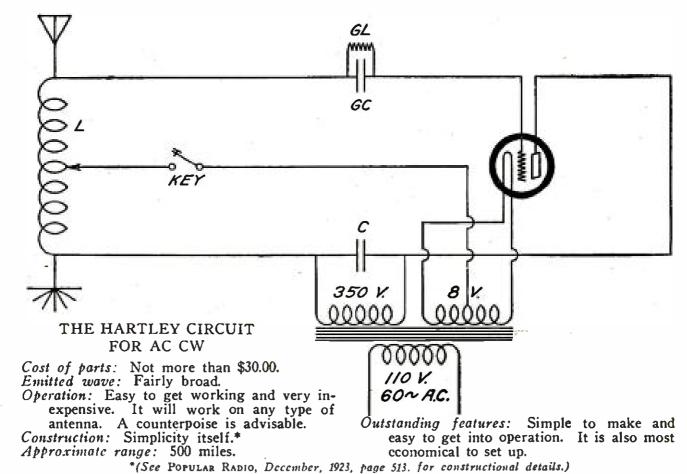
Outstanding features: A sharp wave, and a pure "whistle" note for telephony.

*(See Popular Rapio, September, 1922, page 39, for constructional details.)

THE MEISSNER CIRCUIT FOR TELEPHONY, WITH GRID MODULATION

Cost of parts: Not more than \$120.00. Emitted wave: Fairly sharp. Operation: It is quite difficult to get a large percentage of modulation and still keep the

transmitted speech clear.


Construction: The most important parts in this circuit are the coils; they should be wound on high-grade composition tubing with no shellac on the windings. A reg-

ular modulation transformer should be used at A.*

Approximate range: 50 to 100 miles (on telephony.)

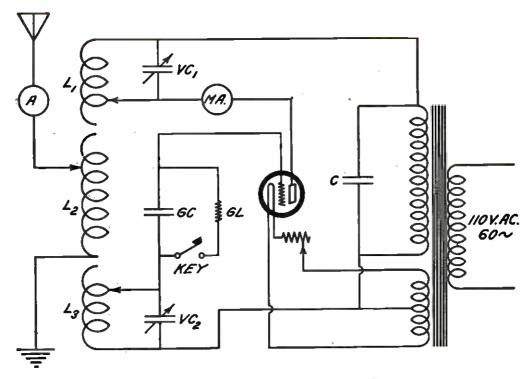
Outstanding features: This is a good singletube telephone outfit for the amateur. It will give him a lot of information and. allow him to try a lot of experimenting to get better modulation.

*(See Popular Radio, July, 1923, page 42, for constructional details.)

RECEIVING GROUND A COMBINATION HARTLEY CIRCUIT FOR USING A CHEMICAL RECTIFIER FOR RECTIFYING THE PLATE CURRENT

Cost of parts: Not more than \$125.00 (for use with 50-watt tubes).

Emitted wave: Broad (with self-rectified AC). Somewhat sharper (with chemically-rectified AC. It depends upon how good the filter is).


Operation: Complicated.

Construction: None but the experienced amateur had better try to build this set alone.*

Approximate range: 2,500 to 3,000 miles (on telephony).

Outstanding feature: A powerful set which can be used without batteries for CW telegraphy.

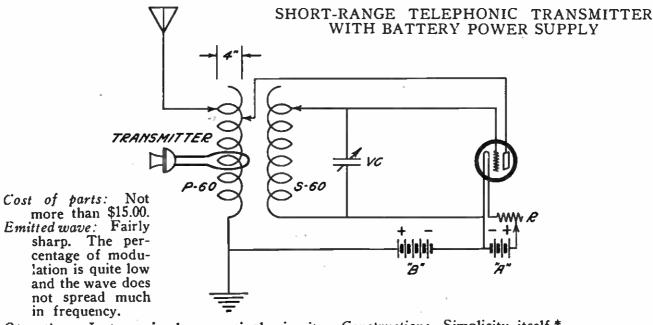
*(See Popular Radio, April, 1923, page 298, for constructional details.)

MODIFIED MEISSNER CIRCUIT WITH AC POWER SUPPLY

Cost of parts: Not more than \$40.00 (Note: The costs of tubes and batteries are considered "extras" and are not included in the costs given in these descriptions).

Emitted wave: Fairly broad. Using straight AC on the plate of the oscillator tube causes a 30-cycle note to be transmitted (as the modulator frequency) which spreads out the frequency to a band instead of a single pure wave. This will cause inter-ference in nearby receivers which do not tune sharply.

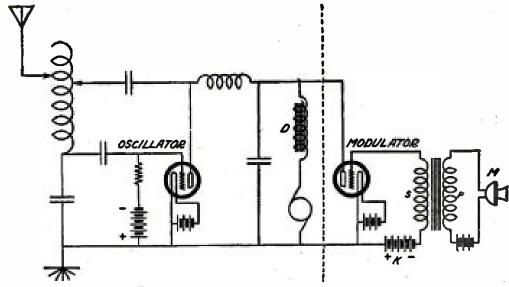
Operation: Easy to get working and inexpensive to keep up. The first cost is the last


cost except for tube replacements. It will

work on any type of antenna.

Construction: Nothing difficult about making this set, probably as simple as a single-tube receiving set.*

Approximate transmitting range: 500 miles. Outstanding features: Simple to make and get into operation. Set functions without any moving parts to wear out, is applicable to a large band of wavelengths with any type of antenna, and requires no batteries. It may cause interference to nearby broadcast listeners, however, if they use single-circuit tuners or other simple sets that are de-ficient in tuning qualities for reception.


*(See Popular Radio, April, 1923, page 312, for constructional details.)

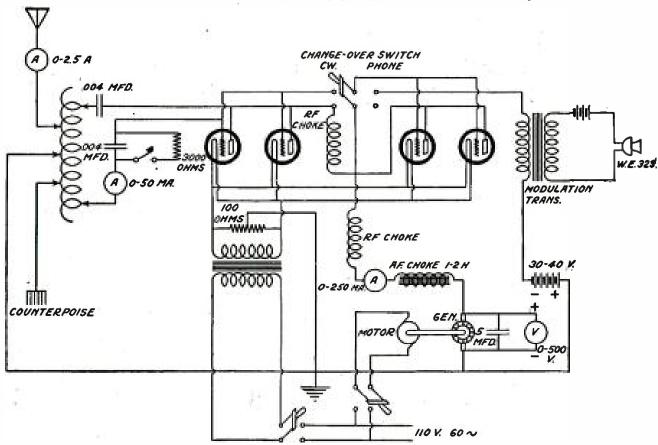
Operation: Just as simple as a single-circuit receiving set. The UV-201-a tube may be used with about 100 volts of "B" battery for the plate supply.

Construction: Simplicity itself.* Approximate transmitting range: 5 miles.
Outstanding features: Simple to make and operate.

*(See Popular Radio, April, 1923, page 309, for constructional details.)

THE COLPITTS CIRCUIT WITH HEISING MODULATION

Cost of parts: Not more than \$130.00.


Emitted wave: Fairly sharp. The modulation is (if the set is properly adjusted) of a very high order and also of a high percentage. This may cause the wave to be broadened out so that the set may interfere broadened out so that the set may interfere locally.

Operation: Simple and efficient.

Construction: Rather complicated.*
Approximate range: 500 to 1,000 miles (on telephony).

Outstanding features: The best modulating system and the one most used for broadcasting.

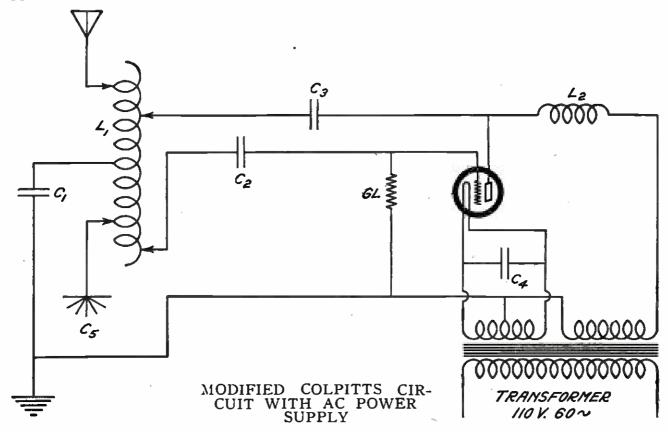
*(See Popular Radio, July, 1923, page 46, for constructional details.)

THE HARTLEY CIRCUIT USING HEISING MODULATION FOR TELEPHONY

Cost of parts: Not more than \$175.00. Emitted wave: Extremely sharp for CW and

good on telephony.

Operation: Complicated. A thorough understanding of the principles of modulation is necessary to get the set operating efficiently on telephony.


Construction: Difficult.*

Approximate range: 2,500 miles (on CW),

and 1,000 miles (on telephony).

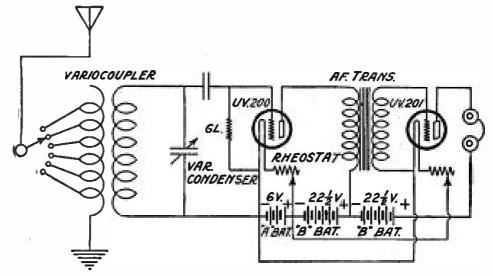
Outstanding features: This circuit is noted for its efficiency and perfection of modulation. This type of modulation is used at most of the broadcasting stations.

*(See Popular Radio, December, 1922, page 256, for constructional details.)

Cost of parts: Not more than \$35.00.

Emitted wave: Fairly broad. (This is due to the AC power supply and not to the type of circuit used.)

Operation: Simple to get into successful operation (if a counterpoise is used).


Construction: Not complicated.*

Approximate range: 500 miles.

Outstanding features: A persistent oscillator and efficient. This set employs no batteries of any kind. It is run wholly from the 110-volt, 60-cycle, AC lighting mains.

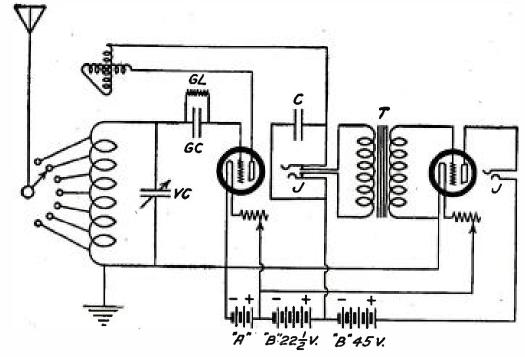
*(See Popular Radio, September, 1923, page 249, for constructional details.)

Two-tube Circuits

INDUCTIVELY-COUPLED, VACUUM-TUBE RECEIVER WITH ONE STAGE OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$28.00.

Selectivity: Fairly good.


Operation: Simple.

Construction: Easy to make.*

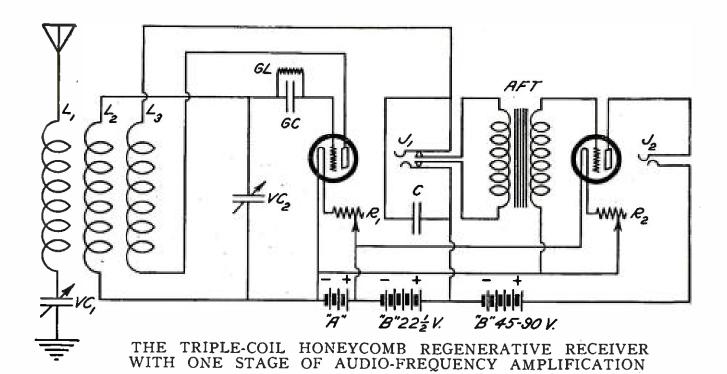
Approximate range: About 100 miles.

Outstanding features: The added stage of amplification increases the operating range considerably and makes the local programs more enjoyable for use with a number of headphones.

*(See Popular Radio, October, 1922, page 147, for constructional details.)

THE CONDUCTIVELY-COUPLED, TUNED-PLATE REGENERATIVE CIRCUIT WITH ONE STAGE OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$30.00.

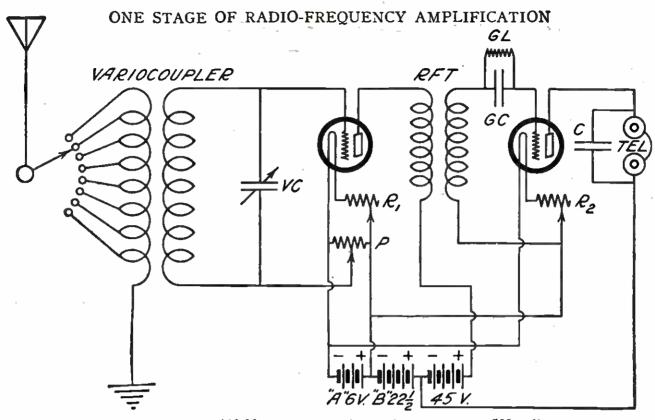

Selectivity: Fair.

Operation: Not very complicated. The antenna is tuned by means of a tapped switch, the secondary by means of a variable condenser and the regeneration is controlled by the variometer.

Ease of construction: Just an ordinary acquaintance with tools and some ability in wiring up the circuit are necessary.

Approximate range: 800 to 1,000 miles.

Outstanding features: Easy to operate and will bring in distance with good volume on a pair of telephones. Good for amateur CW reception.


Cost of parts: Between \$25.00 and \$30.00 (depending on the wavelength). ectivity: Very good.

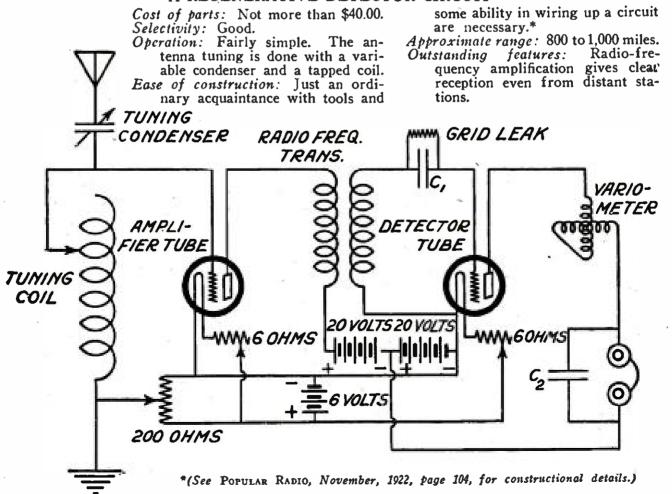
Selectivity:

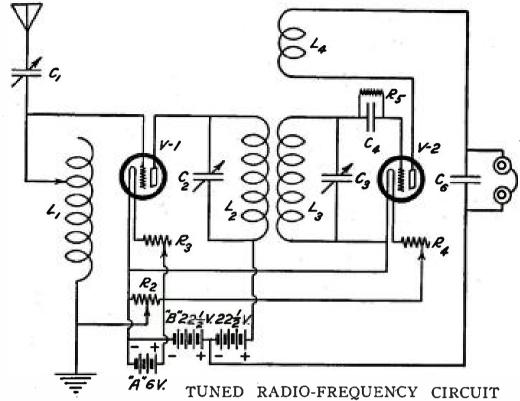
Operation: Rather complicated for a beginner.

Ease of construction: Fairly simple. Approximate range: 800 miles.

Outstanding features: Can be used on any wavelength. By merely changing the three coils, using large or small, for the long or short waves, the set can be used for commercial reception, broadcast reception or amateur reception.

Cost of parts: Not more than \$28.00. Selectivity: Good. Operation: Not difficult.

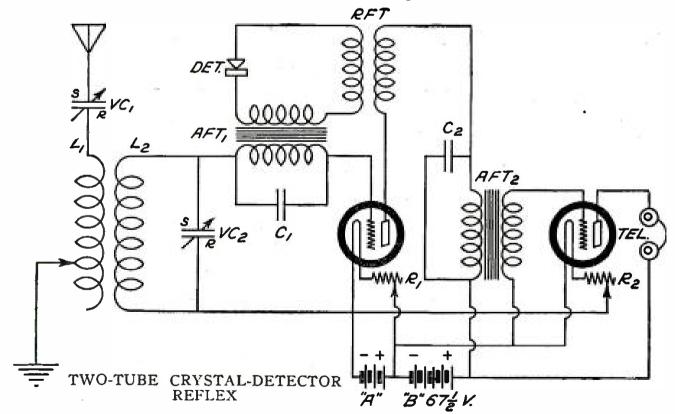

Construction: Nothing especially complicated.*


Approximate range: 500 miles.
Outstanding feature: A good circuit for the

man who has a simple vacuum-tube circuit and wishes to make it more sensitive.

*(See POPULAR RADIO, June, 1923, page 471, for constructional details.)

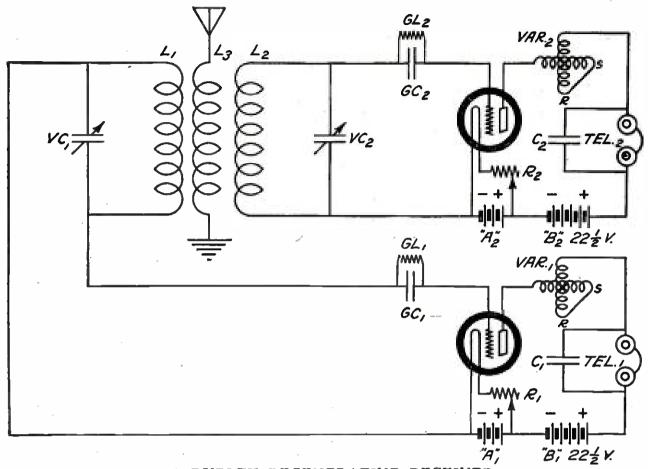
A REGENERATIVE DETECTOR CIRCUIT



Cost of parts: Not more than \$28.00.

Selectivity: Good.
Operation: Rather complicated for a beginner.
Ease of construction: Easy.
Approximate range: 500 miles.
Outstanding features: May be used with short

indoor antenna. It may be made from a single-circuit, honeycomb set to stop reradiation, and may be used to give the builder a good idea of radio-frequency amplification before he tries out the more complicated circuits.


Cost of parts: Not more than \$45.00. Selectivity: Very good. Operation: Fairly simple.

Construction: Not easy to make. Care must be used in mounting the transformers in the proper position with respect to each

Approximate range: 1,000 miles.

Outstanding features: Loudspeaker operation is possible with only two tubes. The circuit has the advantage, also, of being workable with a short antenna.

*(See Popular Radio, March, 1924, page 293, for constructional details.)

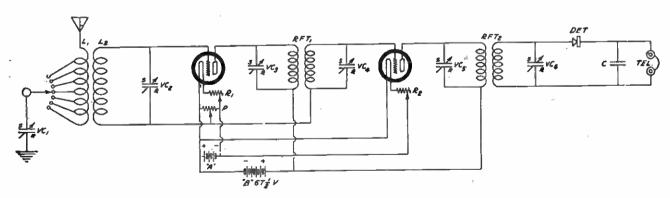
A DUPLEX REGENERATIVE RECEIVER

Cost of parts: Not more than \$55.00.

Selectivity: Very good.

Operation: A few weeks' practice will suffice to enable efficient tuning of both parts of

the set.


Construction: Just an ordinary acquaintance

with tools and some ability in wiring up the circuit are necessary.*

Approximate range: 500 miles.
Outstanding features: Sharp tuning, and the fact that the set will bring in two programs (on different wavelengths) at the same

time on two pairs of telephones.

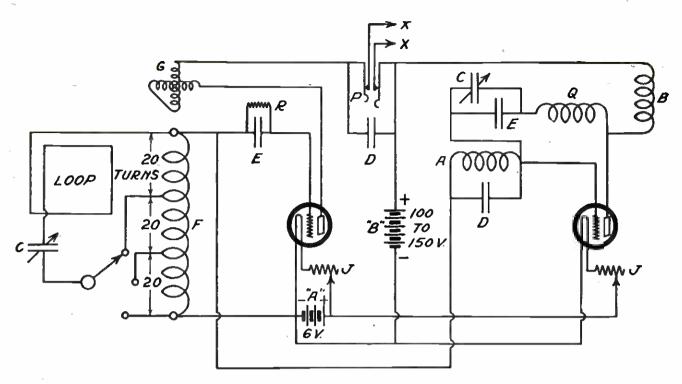
*(See POPULAR RADIO, January, 1924, page 96, for constructional details.)

CIRCUIT EMPLOYING TWO STAGES OF TUNED-RADIO-FREQUENCY AMPLI-FICATION, WITH A CRYSTAL DETECTOR

Cost of parts: Not more than \$56.00.

Selectivity: Excellent.
Operation: Rather critical in operation. Construction: Not very hard to make. Be sure

that the best parts are obtained and the results will exceed expectations. Poor


parts will render the circuit useless.*

Approximate range: 1,500 miles.

Outstanding features: A set for the man who

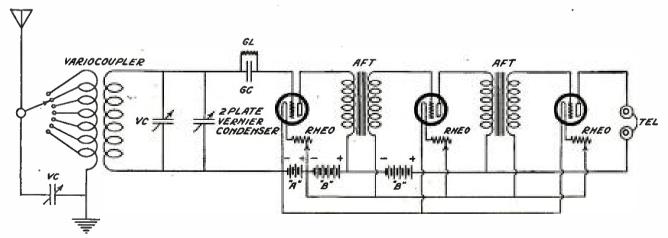
wants distance, but who is willing to de-pend on the headphones instead of trying to use a loudspeaker.

*(See Popular Radio, April, 1924, pages 400-1, for constructional details.)

TWO-TUBE SUPER-REGENERATIVE CIRCUIT

Cost of parts: Not more than \$45.00

Selectivity: Good.
Operation: Difficult. It is a real engineering feat to get the oscillator circuit to function with the correct frequency and amplitude to cause the proper "super" action and at the same time filter out the high-pitched whistle in the detector circuit.

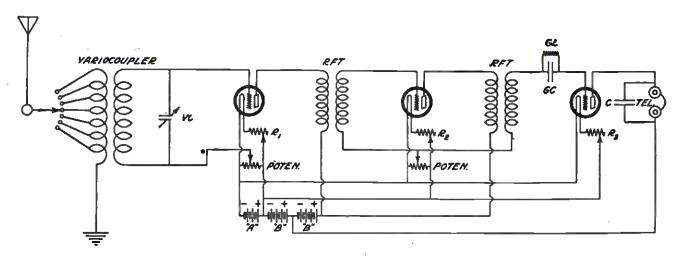

Ease of construction: Difficult. Every part of the circuit must be just right before the

set will function as it should.

Approximate range: Variable; from local reception on the higher broadcasting wavelengths up to 1,000 miles on lower wavelengths (with 1000).

lengths (with a loop).
Outstanding features: The best method for unlimited amplification at the extremely short wavelengths. Especially suitable for local reception with great volume for a minimum number of tubes.

Three-tube Circuits


A SIMPLE AUDION CIRCUIT WITH TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

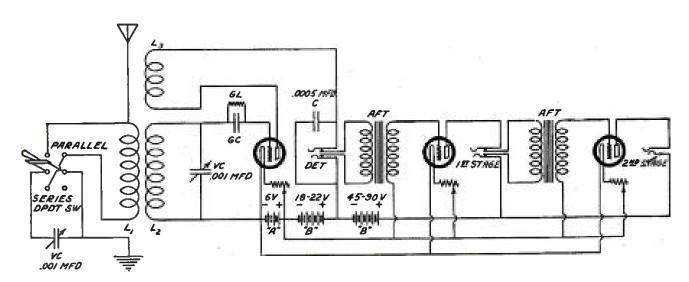
Cost of parts: Not more than \$40.00.

Selectivity: Fairly good. Operation: Easy to operate. Construction: Simple.*

Approximate range: 300 miles.
Outstanding feature: The set will bring in any signals, with great clarity, as long as they are strong enough to operate the detector.

*(See Popular Radio, March, 1923, pages 232-233, for constructional details.)

TRANSFORMER-COUPLED RADIO-FREQUENCY CIRCUIT WITH VACUUM-TUBE DETECTOR


Cost of parts: Not more than \$35.00.

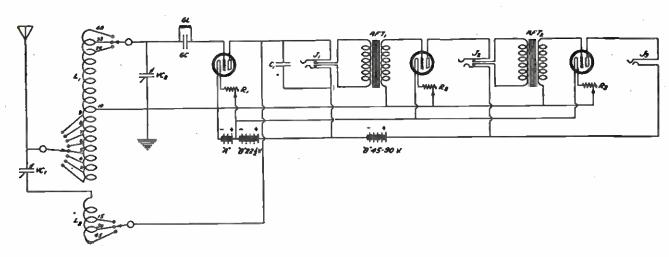
Selectivity: Good. Operation: Simple. Two controls for wavelength, one for coupling and one for regeneration (the potentiometer).

Ease of construction: Not easy for the experimenter to get working right but a little patience and experimenting will soon get results.

Approximate range: 1,000 miles.

Outstanding feature: Although the amplification with this type is not as great (per stage), as with tuned-radio-frequency amplification, the tuning control is simplified.

TRIPLE-COIL, HONEYCOMB REGENERATIVE CIRCUIT WITH TWO STAGES OF AMPLIFICATION


Cost of parts: Not more than \$35.00. Selectivity: Good. Operation: Rather complicated.

Ease of construction: Not hard to make.

Approximate range: 1,000 miles on the low

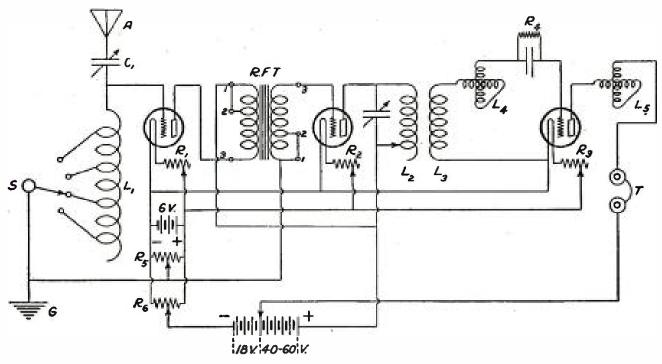
broadcasting and amateur wavelengths and 3,000 miles on the extreme high wavelengths.

Outstanding features: It may be made to cover all wavelengths by interchanging coils. The coils may be plugged into sockets at will, thus making the set into a high or low wave receptor which is regenerative.

THE REINARTZ CIRCUIT, WITH TWO STAGES OF AUDIO AMPLIFICATION

Cost of parts: Not more than \$35.00.

Selectivity: Excellent on amateur wavelengths, very good on broadcasting wavelengths.


Operation: Easy when mastered; about a month's practice should suffice to become well enough acquainted with the peculiari-

ties of the tuning.

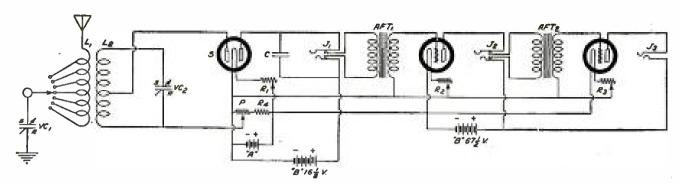
Ease of construction: Simple.

Approximate range: 1,500 miles.

Outstanding features: It is noted for its DX amateur reception and its low cost.

TWO STAGES OF TRANSFORMER-COUPLED, RADIO-FREQUENCY AMPLIFI-CATION ADDED TO THE TWIN-VARIOMETER, VARIO-COUPLER, REGENERATIVE CIRCUIT

Cost of parts: Not more than \$50.00.


Selectivity: Good.
Operation: Complicated. The antenna must be tuned with the tapped switch and the variable condenser. There are two potentiometer adjustments, one for the stabilizer for the radio-frequency tubes, and one for adjusting the plate potential of the detector tube. Then the output circuit of the second radio-frequency tube must be tuned with the variable condenser, and the regular tuning of the variometers

in the grid and plate circuits of the detector must be done before the signal is tuned in properly.

Ease of construction: Fairly complicated.

Approximate range: 1,500 miles.

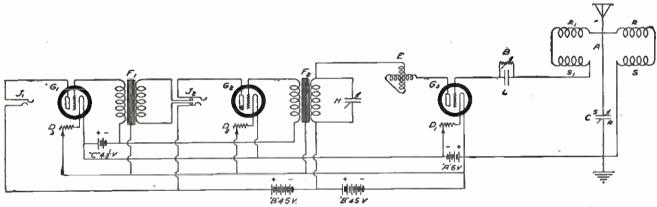
Outstanding features: Is reliable for distance reception without the audio-frequency amplification that is usually used with this detector circuit. The radio-frequency amplification brings in the distance with much greater strength without appreciably increasing the local signals.

DONLE DETECTOR CIRCUIT WITH TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$38.00.

Selectivity: Fair.

Operation: Very simple.


Construction: Not hard to put together.*

Approximate range: 1,000 miles.
Outstanding feature: This circuit uses the new type of sodion tube which is extremely

sensitive but which cannot oscillate or

radiate.

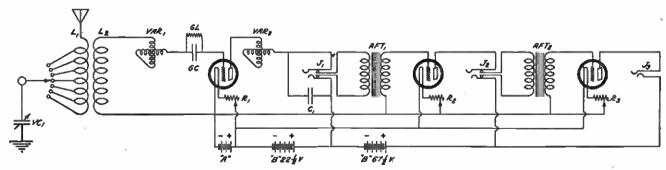
*(See Popular Radio, March, 1924, pages 294.5, for constructional details.)

THE TOBIAS CIRCUIT FOR RECEPTION WITH AN INDOOR ANTENNA

Cost of parts: Not more than \$55.00.

Selectivity: Excellent, if used on a short antenna.

Operation: Not hard to tune, once the mode of adjustment has been thoroughly learned.


Construction: No more complicated than other types of regenerative circuits.*

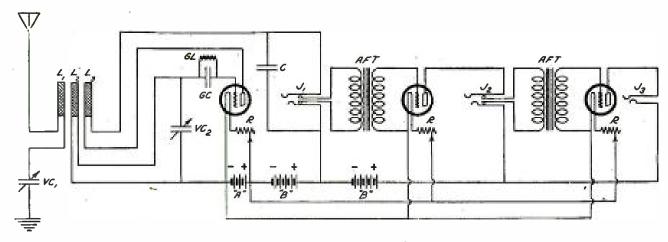
Approximate range: 1,200 miles.

Outstanding feature: Operates on a short in-

door antenna with results about equal to the ordinary regenerative receiver used on an outdoor one.

*(See Popular Radio, June, 1924, page 567, for constructional details.)

TWIN-VARIOMETER, VARIOCOUPLER REGENERATIVE CIRCUIT WITH TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION


Cost of parts: Not more than \$45.00. Selectivity: Good Operation: Difficult.

Ease of construction: Just an ordinary acquaintance with tools and some ability in wiring up the circuit is necessary.*

Approximate range: 1,200 miles.

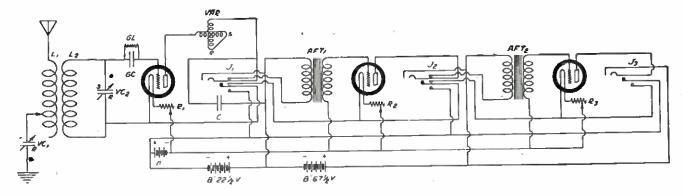
Outstanding features: All the tuning is inductive and this makes for louder signals, at a slight loss of selectivity. Both tuning and regeneration are controlled by variometers.

*(See Popular Radio, October, 1923, page 329, for constructional details.)

TRIPLE-COIL HONEYCOMB REGENERATIVE RECEIVER WITH TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$45.00.

Selectivity: Good.


Operation: Rather difficult to tune.

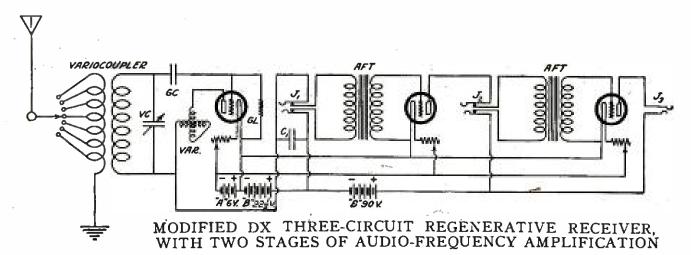
Ease of construction: The building of such a set is more difficult than the single-circuit tuner but better results in tuning will be

worth the extra trouble, and the amplifier will make the set suitable for loudspeaker reception.*

Approximate range: 1,200 miles.
Outstanding feature: The set can be used for reception on any wavelength range by merely changing the size of coils.

*(See Popular Radio, April, 1923, page 308, for constructional details.)

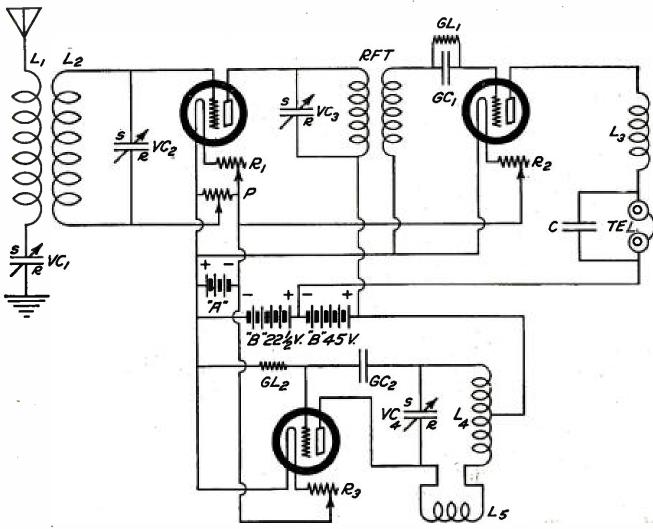
REGENERATIVE RECEIVER WITH TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION, EQUIPPED WITH AUTOMATIC FILAMENT-LIGHTING JACKS


Cost of parts: Not more than \$45.00. Selectivity: Excellent. Operation: Simple. The primary and secondary condensers control tuning, with the variocoupler for coupling control and the plate variometer for effecting regeneration. By merely inserting the telephone plug into the stage desired the filaments

used are automatically turned on and off.

Construction: Some care is necessary in laying out the circuit and in wiring up the filament circuit.*

Approximate range: 1,200 to 1,500 miles.
Outstanding features: Selectivity. Automatic filament control.


*(See Popular Radio, July, 1924, pages 80-1, for constructional details.)

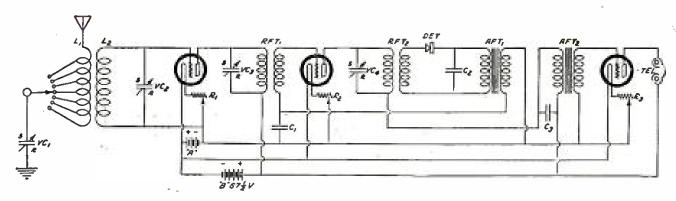
Cost of parts: Not more than \$35.00 Selectivity: Excellent.
Operation: Fairly simple.

Ease of construction: Fairly easy to build.

Approximate range: 1,500 miles. Outstanding features: Noted for DX amateur and broadcast reception and for its exceptionally sharp tuning.

ONE STAGE OF TUNED-RADIO-FREQUENCY, VACUUM-TUBE DETECTOR, WITH SEPARATE HETERODYNE FOR CW RECEPTION

Cost of parts: Not more than \$50.00. Selectivity: Excellent. Operation: Difficult to tune.


struction: Only the experienced radio experimenter should try to build this Construction:

receiver.*

Approximate range: 1,500 to 2,000 miles for CW.

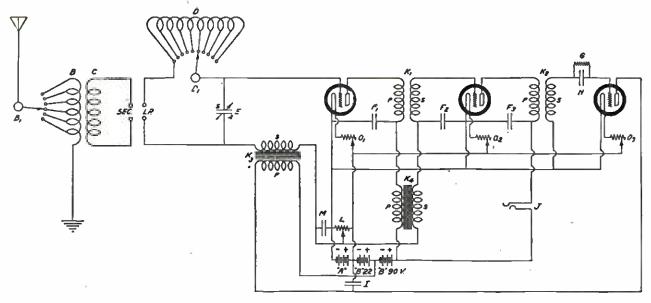
Outstanding feature: Excellent for reception of continuous-wave telegraphy.

*(See Popular Radio, July 1924, page 77, for constructional details.)

TWO STAGES OF TUNED-RADIO-FREQUENCY AMPLIFICATION, CRYSTAL DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$60.00. Selectivity: Very good. Tuning is accomplished entirely by means of variable condensers.

Operation: Rather complicated. The tuning should be done by logging the settings for the various wavelengths.


Construction: Not a simple set to make. Some experience in making sets should be had

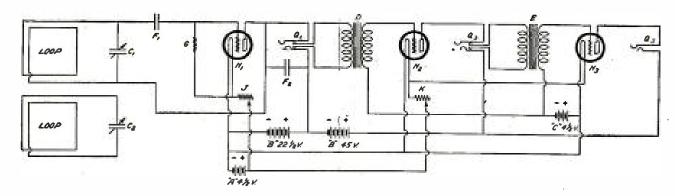
before attempting construction.*

Approximate range: 2,500 miles.

Outstanding features: Only three tubes are used. One stage of audio-frequency amplifeation is reflected. plification is reflexed.

*(See Popular Radio, January, 1924, pages 80-1, for constructional details.)

THE REMY REFLEX


Cost of parts: Not more than \$70.00.
Selectivity: Very good.
Operation: Simple.
Construction: Not very difficult to make. Re-

fer to the article in the issue given below.*

Approximate range: See Remy's article.

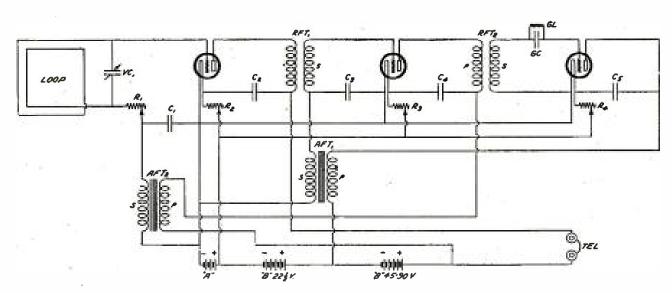
Outstanding features: Simplicity of control and economical from a tube standpoint.

*(See POPULAR RADIO, February, 1924, page 167, for constructional details.)

FOUR-CIRCUIT PORTABLE RECEIVER

Cost of parts: Not more than \$50.00.

Selectivity: Excellent. Operation: Simple.


Construction: Not difficult.*

Approximate range: Local.

Outstanding feature: All parts mounted in a cabinet, including loops, batteries and

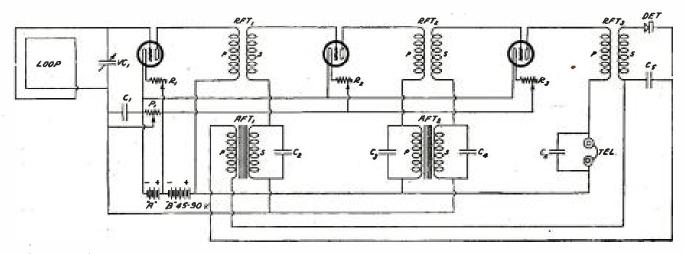
tubes.

*(See Popular Radio, February, 1924, page 152, for constructional details.)

THE GRIMES REFLEX CIRCUIT

Cost of parts: Not more than \$40.00.

Selectivity: Excellent.


Operation: Extremely simple. Only one control for wavelength needed and one control for regeneration.

Ease of construction: This is a quite complicated circuit to follow out and to get in operation. There are a number of details that will give the beginner trouble when he

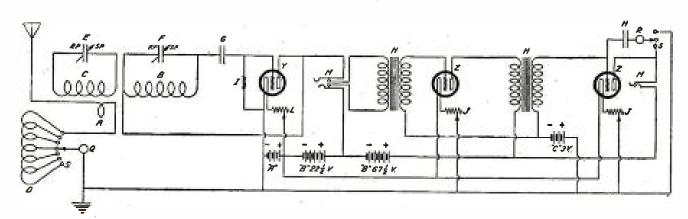
first tries to make this set, but they can be overcome.

Approximate range: 500 miles (with loop antenna).

Outstanding features: No outdoor antenna is needed for DX reception. Simplicity of tuning. No crystal detector to bother with. The audio-frequency amplification is fed back to the next preceding tube in each stage.

THE SQUIRE REFLEX CIRCUIT

Cost of parts: Not more than \$50.00. Selectivity: Excellent. Operation: Very simple. One con One control for wavelength and one control for regenera-tion; the only other adjustment that must be made is the setting of the crystal detector.


Ease of construction: More or less compli-

cated. There are a number of precautions that must be taken to get the circuit to operate at highest efficiency.

Approximate range: 500 miles (with the loop

antenna).

Outstanding features: No outdoor antenna is needed for DX reception. Simplicity of tuning.

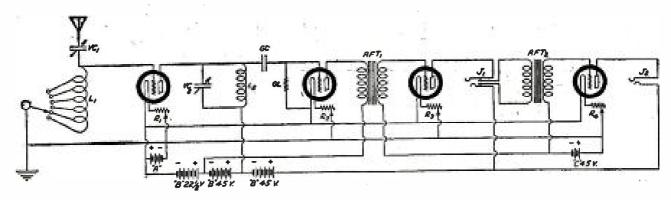
THE THREE-TUBE, 4-CIRCUIT TUNER

Cost of parts: Not more than \$40.00.

Selectivity: Excellent.

Operation: Very simple. There is one dial which controls the wavelength and one dial which controls regeneration. This dial can be set for the whole band of wavelengths over which regeneration will be constant.

Ease of construction: Not complicated. Be sure that the best parts are obtained, and the results will exceed expectations. Poor parts will render the circuit useless.*


Approximate range: 2,400 miles.

Outstanding features: Loudspeaker reception

from distant broadcasting. Regeneration is independent of wavelength. Best sensitivity and selectivity.

*(See POPULAR RADIO, May, 1923; also August, 1923, page 165, for constructional details.)

Four-tube Circuits

ONE STAGE OF TUNED-RADIO-FREQUENCY, DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

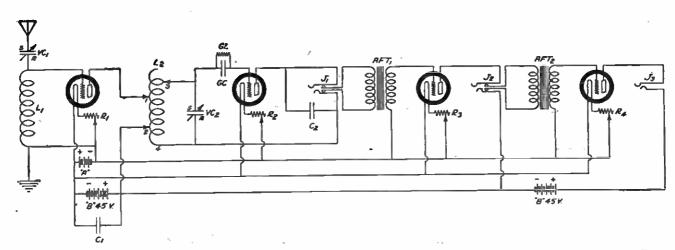
Cost of parts: Not more than \$30.00.

Selectivity: Good.

Operation: Not difficult to tune.

Construction: Not any more complicated than

the ordinary 3-tube regenerative receiver.*


Approximate range: 2,000 miles.

Outstanding features: Good on DX reception.

No potentiometer used. Truthful repro-

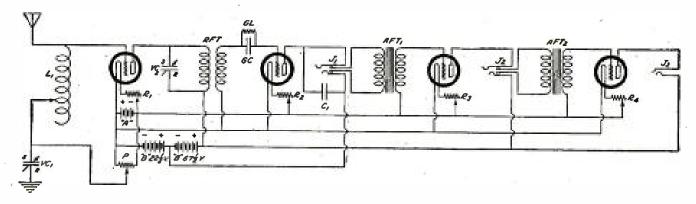
duction.

*(See Popular Radio, May, 1924, pages 446-7, for constructional details.)

ABELE CIRCUIT COMPRISING ONE STAGE OF TUNED-RADIO-FREQUENCY AMPLIFICATION, VACUUM-TUBE DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$35.00.

Selectivity: Very good.


Operation: Fairly complicated.

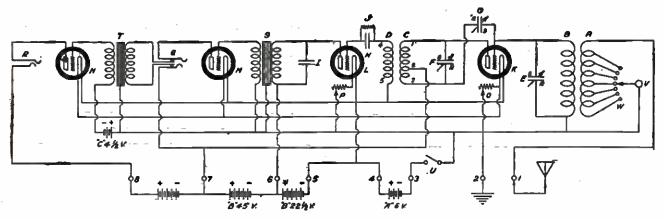
Construction: Rather difficult to make.*

Approximate range: 2,000 miles.

Outstanding features: Tuned-radio-frequency amplification is employed with a novel means for coupling the plate circuits of the radio-frequency amplifier tube and the detector tube together, to obtain regeneration.

*(See Popular Radio, May, 1924, pages 502-3, for constructional details.)

SINGLE-STAGE RADIO-FREQUENCY AMPLIFIER WITH TUNED-PLATE CIR-CUIT, DETECTOR, AND TWO-STAGE AUDIO-FREQUENCY AMPLIFIER


Cost of parts: Not more than \$45.00. Selectivity: Very good. Operation: Simple.

Ease of construction: Not any more complicated than the regular regenerative 3-tube circuit.*

Approximate range: 2,000 miles.

Outstanding features: Particularly good for DX reception of broadcasting. Simple to handle and truthful in reproduction of musical programs.

*(See Popular Radio, November, 1923, page 420, for constructional details.)

THE CRAIG CIRCUIT, EMPLOYING THE PRINCIPLE OF TUBE-CAPACITY **NEUTRALIZATION**

Cost of parts: Not more than \$70.00. Selectivity: Excellent.


Operation: Easy to tune. Two dials on the variable condensers tune the input and the output circuits of the radio-frequency Construction: Not hard to build.*

Approximate range: Up to 3,000 miles.

Outstanding features: Exceptional volume.

DX reception. Does not radiate.

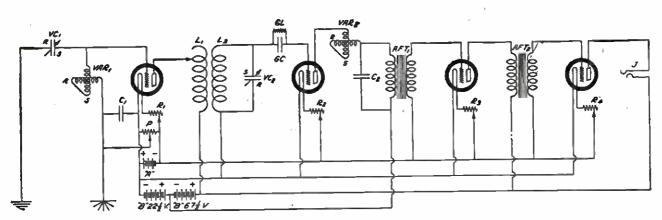
*(See Popular Radio, April, 1924, page 378, for constructional details.)

ONE STAGE OF TUNED-RADIO-FREQUENCY AMPLIFICATION, VACUE TUBE DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION EMPLOYING HONEYCOMB COILS FOR TUNING VACUUM

Cost of parts: Not more than \$46.00.

Selectivity: Good.

Operation: Fairly complicated.


Construction: Not easy to build.*

Approximate range: 2,400 miles.
Outstanding features: With few additions, this set can be made from the standard triple-

coil hook-up. It is good on distance re-

ception.

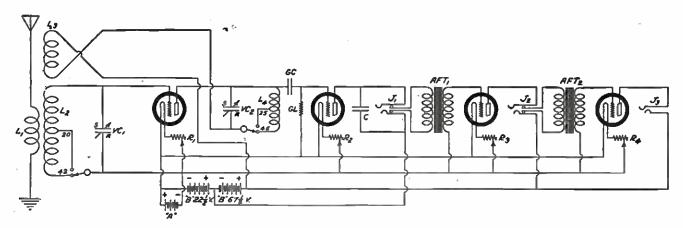
*(See Popular Radio, July, 1924, pages 78.9, for constructional details.)

STAGE OF TUNED-RADIO-FREQUENCY AMPLIFICATION, WITH A VACUUM-TUBE DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$50.00.

Selectivity: Excellent.

Operation: Not hard to tune. Some experience will have to be gotten, however, before the operator will be able to get the most out of the set.


Construction: Rather complicated. The layout of the set should be carefully

studied before it is finally decided upon.*

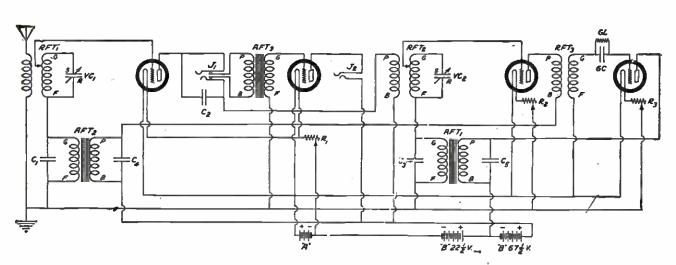
Approximate range: 500 miles.

Outstanding features: The set will operate without an antenna and employs two grounds or a ground and a short piece of wire acting as a counterpoise. It tunes extremely sharp and will operate a loud. extremely sharp, and will operate a loudspeaker.

*(See Popular Radio, November, 1923, pages 374-5, for constructional details.)

THE SUPERDYNE CIRCUIT WHICH EMPLOYS A REVERSED-TICKLER FEED-BACK FOR ELIMINATING REGENERATION

Cost of parts: Not more than \$47.00.


Selectivity: Excellent.

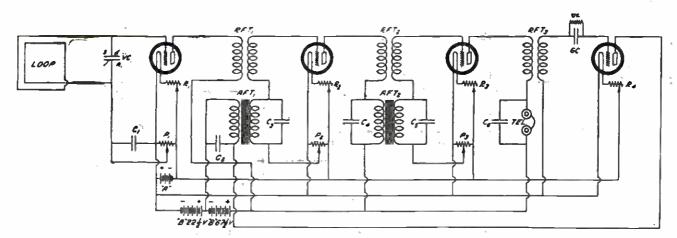
Operation: Rather complicated. The operator will have to get used to the proper adjustment of the tickler before he will

get good results, but when this has been learned, the set will function nicely. Construction: Fairly complicated.*
Approximate range: 2,000 miles.
Outstanding features: Excellent selectivity and

sensitivity.

*(See Popular Radio, March, 1924, pages 296-7, for constructional details.)

GRIMES INVERSE-REFLEX


Using two stages of tuned-radio-frequency amplification, one stage of transformer-coupled radio-frequency amplification, vacuum-tube detector, and two stages of audio-frequency amplification.

Cost of parts: Not more than \$55.00. Selectivity: Very good.

Operation: Not complicated. Two controls. *(See Popular Radio, April, 1924, page 398, for constructional details.)

Construction: More or less complicated. There are a number of precautions that must be taken to get the circuit to function properly.*

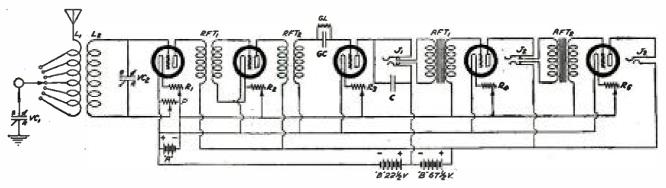
Approximate range: 2,000 miles.
Outstanding features: Simplicity of control, and sensitivity to weak signals, as well as being economical from a tube standpoint.

FOUR-TUBE REFLEX WITH THREE STAGES OF RADIO-FREQUENCY AMPLI-FICATION, VACUUM-TUBE DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$60.00.

Selectivity: Excellent.
Operation: Very simple. Just one control for tuning—a variable condenser connected in shunt to the loop. Regeneration is controlled in the radio-frequency circuits by means of potentiometers.

Ease of construction: More or less compli-


There are a number of precautions that must be taken to get the circuit to function properly.*

Approximate range: 1,000 miles (on a loop antenna).

Outstanding features: No outdoor antenna needed for DX reception. Simplicity of tuning. No crystal detector to bother with.

'(See POPULAR RADIO, November, 1923, page 418, for constructional details.)

Five-tube Circuits

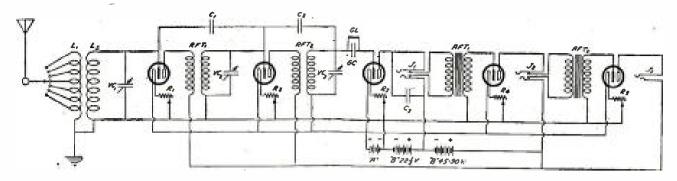
TWO STAGES OF TRANSFORMER-COUPLED RADIO-FREQUENCY AMPLI-FICATION WITH VACUUM-TUBE DETECTOR AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$54.00

Selectivity: Good.

Operation: Easy to tune. The two variable condensers control tuning. Coupling is varied by means of the variocoupler, and regeneration in the first stage is controlled with the potentiometer.

Construction: More or less complicated. There


are a number of precautions that should

be taken to get the circuit to function properly.*

Approximate range: 1,500 miles.

Outstanding features: Only two dials for changes of wavelength. The coupling can be set for the desired degree of selectivity and then all other tuning can be accomplished with the two condensers.

*(See Popular Radio, June, 1924, pages 610-1, for constructional details.)

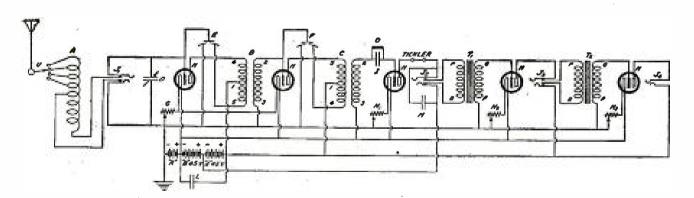
FIVE-TUBE NEUTRODYNE

Cost of parts: Not more than \$60.00. Selectivity: Very good. There are three con-

trols for wavelength.

Operation: Simple, if the set is tuned by means of a chart. In fact this is the only way to tune this receiver successfully.

Ease of construction: More or less complicated. There are a number of precautions that must be taken to get the circuit to function properly, especially in the matter


of eliminating feedback. The set will operate more efficiently when the neutralizing condensers are upset slightly so that the set will regenerate without readily bursting into uncontrolled oscillation.*

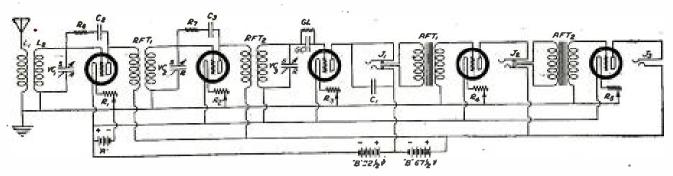
Approximate range: 2,400 miles.

Outstanding features: The wavelength can be calibrated. The set will not re-radiate.

Anyone can operate the set by means of the tuning chart.

*(See Popular Radio, September, 1923, page 248, for constructional details.)

MODIFIED ACMEDYNE CIRCUIT WITH TWO STAGES OF COMPENSATED RADIO-FREQUENCY AMPLIFICATION AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION


Cost of parts: Not more than \$60.00. Selectivity: Wonderful. Operation: Rather complicated for the beginner, but the correct method can be ac-

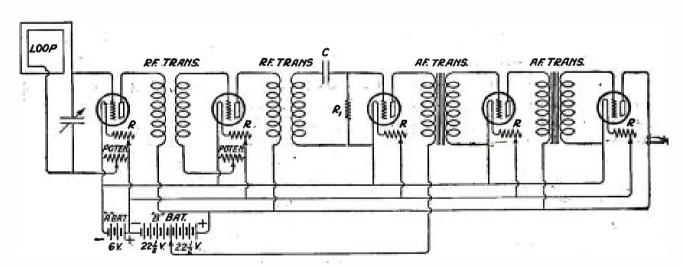
quired in a month's practice in tuning.

Ease of construction: This, of course, is a complicated circuit to follow out and to get going properly, but it can be done and the set is well worth while.

Approximate range: 2,500 miles.

Outstanding features: Extremely sharp tuning, DX reception and clarity of signals. The trouble encountered in most radio-frequency-amplification circuits, that of properly controlling or eliminating oscillation, is definitely taken out of this circuit by an ingenious device called a compensating condenser which has three plates attached respectively to the grid, filament, and plate circuits of the vacuum tubes.

THE PLIODYNE PRINCIPLE INCORPORATED INTO A RADIO-FREQUENCY CIRCUIT WITH VACUUM-TUBE DETECTOR AND TWO-STAGE AUDIO-FREQUENCY AMPLIFIER


Cost of parts: Not more than \$60.00. Selectivity: Very good. Operation: Not very difficult to tune. Three variable condensers, which are set at practically the same settings, control the tun-

Construction: Complicated.*

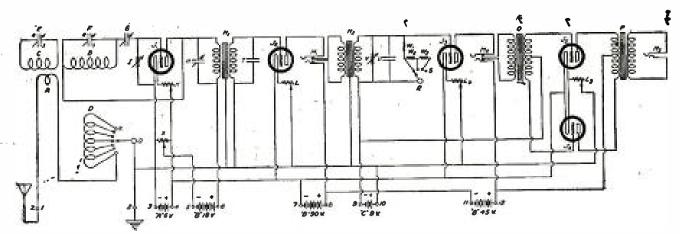
Approximate range: 2,400 miles

Outstanding features: Oscillation and regeneration are prevented by means of "phas-ing out." The set will not radiate.

*(See Popular Radio, May, 1924, pages 500-1, for constructional details.)

TWO STAGES OF RADIO, DETECTOR, AND TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$50.00.


Selectivity: Good.

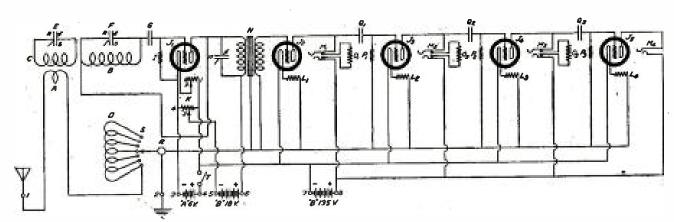
Operation: Simple. Only one control for tuning the variable condenser. The two potentiometers are used as stabilizers for the control of regeneration in the radio-frequency stages.

Ease of construction: More or less complicated. There are a number of precautions that must be taken to get the circuit to function properly.

Approximate range: 500 miles (on a loop antenna).

Outstanding features: No outdoor antenna necessary and simplicity of tuning.

THE FOUR-CIRCUIT TUNER WITH TWO STAGES OF STRAIGHT TRANS-FORMER-COUPLED AMPLIFICATION, AND ONE STAGE OF PUSH-PULL AMPLIFICATION


Cost of parts: Not more than \$90.00. Selectivity: Excellent. Operation: Simple to tune.

Construction: Some experience in wiring up

the circuit is necessary.* Approximate range: 3,400 miles.
Outstanding features: Selectivity.
tuning. Good reproduction.

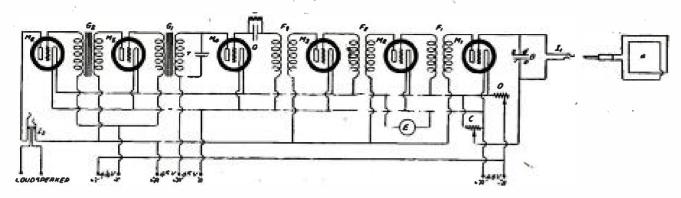
Ease of

*(See Popular Radio, January, 1924, page 23, for constructional details.)

FOUR-CIRCUIT TUNER WITH ONE STAGE OF TRANSFORMER-COUPLED AND THREE STAGES OF RESISTANCE-COUPLED AMPLIFICATION

Cost of parts: Not more than \$55.00.

Selectivity: Excellent. Operation: Simple to tune.


Construction: Not difficult.* Approximate range: 3,400 miles.

Outstanding features: Increased selectivity.

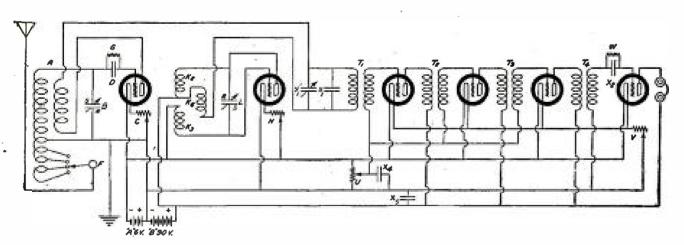
Ease of tuning and wonderful reproduction are possible with this receiver. In fact, with this particular circuit there has been no other receiver ever tested in POPULAR RADIO LABORATORY that can beat it as to truthful and pleasing reproduction of speech and music.

*(See Popular Radio, October, 1924, page 378, for constructional details.)

Circuits of More Than Five Tubes

THE POPULAR RADIO PORTABLE

Cost of parts: Not more than \$100.00 (complete with tubes, batteries and loudspeaker).


Selectivity: Good.
Operation: Extremely simple. All tuning is done with the variable condenser, and regeneration in the first tube circuit is controlled by the potentiometer.

Construction: Not difficult, but there is a lot of work necessary.*

Approximate range: Up to 1,500 miles.

Outstanding features: Portability. All batteries and tubes and loudspeaker contained in carrying case. Simplicity of op-

*(See Popular Radio, July, 1924, page 60, for constructional details.)

A SUPERHETERODYNE CIRCUIT FOR AIR-CORE INTERMEDIATE-WAVE TRANSFORMERS

Cost of parts: Not more than \$80.00.

Selectivity: Very good.

Operation: Not difficult to tune, when the

mode of operation is learned.

Construction: Rather complicated.*

Approximate range: 3,400 miles.

Outstanding features: Easier to tune than most

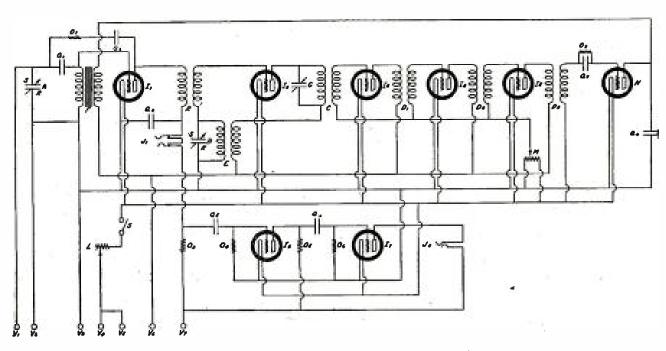
complicated circuits. Good distance and selectivity.

*(See Popular Radio, September, November and December, 1923, issues, for constructional details.)

A RESISTANCE-COUPLED SUPERHETERODYNE WITH TWO STAGES OF AUDIO-FREQUENCY AMPLIFICATION

Cost of parts: Not more than \$80.00.

Selectivity: Excellent. Operation: Difficult.


Construction: A very complicated circuit to

master.*

Approximate range: 3,000 miles.
Outstanding feature: This set combines sen-

sitivity with great selectivity.

*(See Popular Radio, June, 1923, pages 468-9, for constructional details.)

8-TUBE SUPERHETERODYNE REFLEX CIRCUIT

Cost of parts: Not more than \$80.00.

Selectivity: Excellent.

Operation: Rather simple.

Construction: A complicated circuit to put together and get into proper operation.*

Approximate range: 3,500 miles.

Outstanding features: This receiver has an exceptional range on a loop. Its tone quality is good and the directional effect of loop tuning helps to cut out a large percentage of interference that could not be eliminated through ordinary tuning means. Needs no outdoor antenna.

*(See POPULAR RADIO, January, 1925, page 36, for constructional details.)

"What Set Shall I Buy?"

2nd Installment

For the guidance of readers who want specific and authoritative information concerning the best of the ready-made receivers that are now on the market, this feature will be published monthly until all of the receivers that have passed the tests of the Popu-LAR RADIO LABORATORY have been included

The Standardyne Receiver

Manufacturer's Name; The Standard Radio

& Electric Company

Model: type C

NUMBER OF TUBES; six

Type of Tuning; tuned-radio-frequency

Type of Detector; C-300 or UV-200

RANGE ON PHONES; 3,000 miles

RANGE ON LOUDSPEAKER; 2,500 miles

COST COMPLETE; \$250.00

ANTENNA RECOMMENDED; 100p

KIND OF TUBES FOR R. F.; C-301-a or UV-201-a

DETECTOR TUBE; C-300 or UV-200

Audio Tubes; C-301-a or UV-201

Type of "A" BATTERY; storage

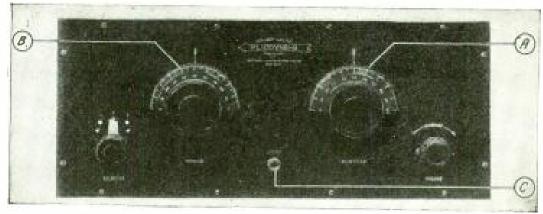
Type of "B" BATTERY; dry-cells

DETECTOR "B" VOLTAGE; 221/2-volt

WAVELENGTH RANGE: 220 to 550 meters

NUMBER OF TUNING CONTROLS; two

"A" BATTERY CURRENT USED; 61/4 amperes


"B" BATTERY CURRENT USED; 134 amperes.

Underwood & Underwood

HOW THE RECEIVER LOOKS, COMPLETE IN A CABINET

In this set the batteries, the loudspeaker and the set itself are completely installed in a neat cabinet with two doors which open outward in front. The controls on the receiver consist of the three tuning controls A and the two rheostats B.

A and B are the tuning dials. C is the loudspeaker jack.

The Pliodyne Receiver

MANUFACTURER'S NAME; Golden Leutz, Incorporated

Model; Number six

Number of Tubes; six

Type of Tuning; tuned-radio-frequency

Type of Detector; UV-200 or 201-a

Range on Phones; 3,000 miles

RANGE ON LOUDSPEAKER; 2,000 miles

COST COMPLETE; \$150.00

Antenna Recommended; outdoor

KIND OF TUBES FOR R. F.; UV-201-a

DETECTOR TUBE; UV-200 or 201-a

Audio Tubes; UV-201-a

Type of "A" Battery; 6-volt storage

Type of "B" Battery; two 45-volt and one 22½-volt

DETECTOR "B" VOLTAGE; 221/2-volt

Wavelength Range; 200 to 546 meters

Number of Tuning Controls; two

"A" BATTERY CURRENT USED; 11/2 to 21/2 am-

"B" BATTERY CURRENT USED; 30 milliamperes.

A is the volume control. B is the detector rheostat. C is the tuning dial.

Paragon Type Two Receiver

MANUFACTURER'S NAME; Adams-Morgan Co.,

Inc.

Model; Type two

NUMBER OF TUBES; two

Type of Tuning; capacity

Type of Detector; vacuum tube

RANGE ON PHONES; none specified

RANGE ON LOUDSPEAKER; none specified

Cost, Bare Receiver; \$27.50

ANTENNA RECOMMENDED; 100 ft.

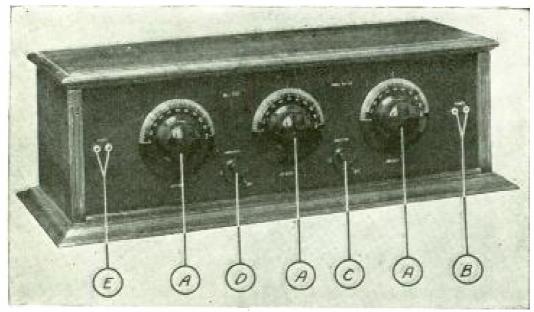
KIND OF TUBES FOR R. F.; standard tubes

DETECTOR TUBE; standard tube

AUDIO TUBE; standard tube

Type of "A" BATTERY; standard tubes

Type of "B" BATTERY; standard tubes


DETECTOR "B" VOLTAGE; 20-45 volts

WAVELENGTH RANGE; 200 to 580 meters

Number of Tuning Controls; one

"A" BATTERY CURRENT USED; 1/2-ampere

"B" BATTERY CURRENT USED; 6 milliamperes.

A are the three tuning dials. B are the plugs for the phones. C and D are the rheostats and E are the loudspeaker jacks.

Mu-Rad MA-20 Receiver

MANUFACTURER'S NAME; Mu-Rad Laboratories, Inc.

Model; MA-20

Number of Tubes; five

Type of Tuning; three dials; tuned-radio-frequency

Type of Detector; vacuum tube RANGE ON PHONES; not used

RANGE ON LOUDSPEAKER; 1,000 miles

Cost Without Horn; \$238.00

ANTENNA RECOMMENDED; single outside wire

KIND OF TUBES FOR R. F.; C-301-a
DETECTOR TUBE; C-299
AUDIO TUBES; C-301-a
Type of "A" BATTERY USED; none

Type of "B" BATTERY Used; none

DETECTOR "B" VOLTAGE; 36 volts

WAVELENGTH RANGE; 200 to 600 meters

Number of Tuning Controls; three

Operates with Mu-Rad Recto-filter from 110-volt, 60-cycle light socket.

From a photograph made for Popular Radio

Note the tuning control A, the antenna inductance switch B, the rheostat C and a tickler D.

The Crosley Portable Receiver

Manufacturer's Name; The Crosley Radio Corporation

Model; Number 51

Number of Tubes; two

Type of Tuning; regenerative

Type of Detector; vacuum tube

RANGE ON PHONES; 1,500 miles

RANGE ON LOUDSPEAKER; 1,000 miles

Cost Complete; \$30.25

ANTENNA RECOMMENDED; outdoor

DETECTOR TUBE; any standard detector tube

Audio Tubes; any standard amplifier tube

Type of "A" BATTERY; to suit tubes

Type of "B" BATTERY; 90-volt

DETECTOR "B" VOLTAGE; 221/2-volt

WAVELENGTH RANGE; 200 to 600 meters

NUMBER OF TUNING CONTROLS; one.

Fada Neutrola-Grand Receiver

MANUFACTURER'S NAME; F. A. D. Andrea, Inc. Model; Neutrola-Grand, Cat. No. 185/90-A

NUMBER OF TUBES; five

Type of Tuning; tuned-radio-frequency (neutrodyne)

Type of Detector; hard tube

RANGE ON PHONES; none specified

RANGE ON LOUDSPEAKER; none specified

Cost Complete; \$270.00 (without accessories)

ANTENNA RECOMMENDED; 40 to 150 feet

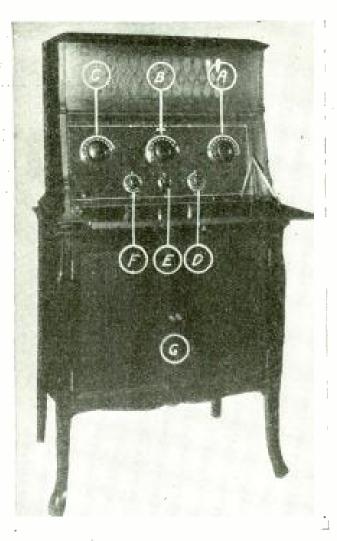
KIND OF TUBES FOR R. F.; UV-201-a, C-301-a, C-299, UV-199

DETECTOR TUBE; UV-201-a, C-301-a, C-299, UV-199

Audio Tubes; UV-201-a, C-301-a, C-299, UV-199

Type of "A" Battery; 6-volt storage or 4½-volt dry-cell batteries

Type of "B" BATTERIES; two 45-volt batteries


DETECTOR "B" VOLTAGE; 221/2-volt

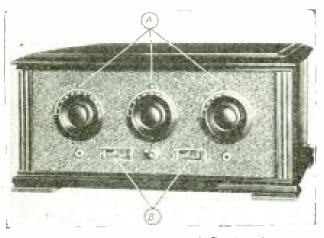
Wavelength Range; 200 to 575 meters

NUMBER OF TUNING CONTROLS; three

"A" BATTERY CURRENT USED; 11/4 amperes

"B" BATTERY CURRENT USED; 7 to 20 milliamperes.

A, B and C are the tuning dials. D, E and F are the rheostats and volume control. G is the container for the batteries.


Eisemann Type 6-D Receiver

MANUFACTURER'S NAME; Eisemann Magneto Corporation

Model; Type 6-D

NUMBER OF TUBES; five

Type of Tuning; tuned-radio-frequency

A marks the tuning dials and B the rheostats.

Type of Detector; vacuum tube
Range on Phones; none specified
Range on Loudspeaker; none specified
Cost Complete; \$125.00 (less accessories)
Antenna Recommended; 75 to 125 feet, single

KIND OF TUBES FOR R. F.; UV-201-a
DETECTOR TUBE; UV-201-a

DEFECTOR TOBE, OV 201

Audio Tubes; UV-201-a

Type of "A" Battery; storage, 6-volt

Type of "B" Battery; large size, 90 volts

Detector "B" Voltage; 22½ to 45 volts

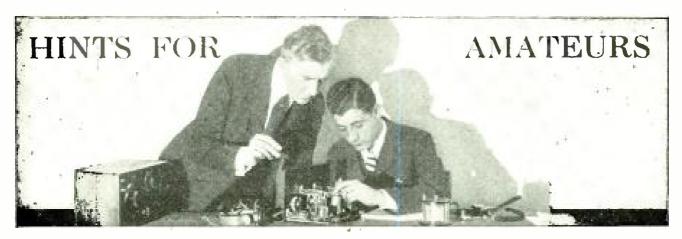
Wavelength Range; 200 to 560 meters

Number of Tuning Controls; three
"A" Battery Current Used; 1¼ amperes.
"B" Battery Current Used; 15 milliamperes.

Broadcast Stations in the United States

Call Letters	Location	Wave- length	Location	Wave- length	Call Letters	Wave- length	Location	Call Letters
KDKA	E. Pittsburgh, Pa.	309	AGRICULTURAL CDL., N. D.	283	WPAK	200	Joliet, Ill.	WIBD
KDLR KDPM	Devils Lake, N. D. Cleveland, O.	231 270	AKRDN, D. ALBUQUERQUE, N. M.	258 254	WADC	205 206	San Pedro, Cal. Downers Grove, Ill.	KFVD WHBT
KDPT KDYL	San Diego, Cal.	244 250	ALLENTOWN, PA.	280 229	WCBA	207	Ames, Ia.	WOI
KDYM	Salt Lake City, Utah San Diego, Cal.	280	ALLENTOWN, PA. ALTDONA, PA.	261	WSAN WFBG	208 209	Hollywood, Cal. Martinsburg, W. Va.	KFVF WIBE
KDZB KDZE	Bakersfield, Cal. Seattle, Wash.	240 270	AMES, IA.	207 234	WOI	208	Mechanicsburg, O.	WHBS
KDZI	Wenatchee, Wash.	360	AMARILLO, TEX. AMARILLO, TEX.	263	WQAC WDAG	209 209	Fall River, Mass. New Bedford, Mass.	WGBH WEBH
KFAD KFAE	Phoenix, Ariz. Pullman, Wash.	360 348	ANDERSON, IND.	246 218	WEBD	211 212	Upland, Cal.	KFWC
KFAF	Denver, Col.	278	ANDERSON, IND. ANN ARBDR, MICH.	280	WHBU WCBC	212	Punxsutawny, Pa. Spring Valley, Ill.	WHBX WGBW
KFAJ KFAN	Boulder, Col. Moscow, Ida.	360 230	ARNOLD, PA. ASHLAND, WIS.	254 233	WCBU WJBD	214 214	Ogden, Utah St. Louis, Mo.	KFWA KFWF
KFAU	Boise, Ida.	271	ASTORIA, ORE.	252	KFJI	215	Philadelphia, Pa.	WHBW
KFAW KFBB	Santa Ana, Cal. Havre, Mont,	280 360	ATLANTA, GA. ATLANTA, GA.	278 428	WDBE WSB	216 217	Cincinnati, O. Chicago, Ill.	WHBR WFKB
KFBC	San Diego, Cal.	278	ATLANTIC, IA.	273	KFLZ	217	Evansville, Ind.	WGBF
KFBE KFBG	San Luis Obispo, Cal. Tacoma, Wash.	218 250	ATLANTIC CITY, N. J. ATLANTIC CITY. N. J.	275 300	WHAR WPG	217 218	Pullman, Wash. Anderson, Ind.	KFRX WHBU
KFBK	Sacramento, Cal.	283	AUBURN, ALA.	250	WMAV	218	Flint, Mich.	WTHS
KFBL KFBU	Everett, Wash. Laramie, Wyo.	224 283	BAKERSFIELD, CAL. BALTIMDRE, MD.	240 229	KDZB WCBM	218 218	Manhattan, Kan. R. R. No. 2	KFVH WGBY
KFCB	Phoenix, Ariz.	283 238	BALTIMORE, MD.	254	WBGA	218	San Luis Obispo, Cal.	KFBE
KFCC KFCF	Helena, Mont. Walla Walla, Wash.	248 256	BALTIMORE, MD. BALTIMORE, MD.	275 452	WCAO WFBR	220 220	Logansport, Ind. Oklahoma City, Okla.	WHBL KFQR
KFCP KFCZ	Ogden, Utah	360 258	BANGOR, ME.	240	WFBR WABI	220	Olympia, Wash.	KFRW
KFDD	Omaha, Neb. Boise, Ida.	252	BANGDR, ME. BERRIEN SPRINGS, MICH.	252 285	WDBN WEMC	220 221	Osseo, Wis. Fort Worth, Tex.	WTAQ KFQB
KFDH KFDJ	Tuscon, Ariz. Corvallis, Orc.	368 254	BATAVIA, ILL. BATON ROUGE, LA.	275 254	WORD KFGC	222 222	Bellefontaine, O.	WHBD WHAG
KFDY	Brookings, S. D.	360	BEAUMONT, TEX.	315	KFIM	222	Cincinnati, O. Culver, Ind.	WHBH
KFIM KFDX	Beaumont, Tex. Shreveport, La.	315 360	BELLEFONTAINE, O.	273 222	KFQY WHBD	222 222	Elkins Park, Pa. Hartington, Neb.	WIBG KFRZ
KFDZ	Minneapolis. Minn.	231	BELOIT, WIS.	283	WEBW	222	Norfolk, Va.	WBBX
KFEC KFEK	Portland, Ore. Minneapolis, Minn.	248 261	BELVIDERE, ILL, BEMIS, TENN.	274 240	WOAG WCBI	222 222	Rock Island, Ill. St. Petersburg, Fla.	WHBF WIBC
KFEL	Denver, Col.	254	BERKELEY, CAL.	275	KRE	222	Tacoma Park, Md.	WBES
KFEQ KFER	Oak, Neb. Fort Dodge, Ia.	268 231	BOISE, IDA. BOISE, IDA.	271 252	KFAU KFDD	224 224	Camden, N. J. Everett, Wash.	WABU KFBL
KFEY	Kellogg, Ida.	233	BOONE, IA.	226	KFGQ	224	La Porte, Ind.	WRAF
KFFP KFFV	Moberly, Mo. Lamoni, Ia.	266 280	BOSTON, MASS. BOSTON, MASS.	256 244	WDBR WTAT	224 224	Monmouth, Ill. Ogden, Utah	WBBU KFUR
KFGB	Utica, Neb.	280 224	BOSTON, MASS.	250	WNAB	224	Scattle, Wash.	KFPB
KFGC KFGD	Baton Rouge, La. Chickasha, Okla.	254 248	BOSTON, MASS. BOSTON, MASS.		WNAC WEEI	224 224	Utica, Neb. Wallace, Ida.	KFGB KFOD
KFGH	Stanford Univ., Cal.	273 226	BOULDER, COL.	360	KFAJ	225	Kenosha, Wis.	WOAR
KFGQ KFHA	Boone, Ia. Gunnison, Col.	25 3	BRECKENRIDGE, MINN. BRISTOW, DKLA:		KFUJ KFRU	226 226	Boone, Ia. Chicago, Ill.	KFGQ WBBM
KFHH KFHL	Neah Bay, Wash. Oskaloosa, Ia.	261 240	BROADLANDS, ILL.	233 360	WSRF KFDY	226 226	Chicago, Ill.	WIBO
KFHR	Seattle, Wash.	283	BROOKINGS, S. D. BROOKLYN, N. Y.	240	WHAP	226	David City, Neb. Juneau, Alaska	KFOR KFIU
KFI KFIF	Los Angeles, Cal. Portland, Ore.	468 248	BUCK HILL FALLS, PA. BUFFALO, N. Y.	268 319	WCBY WGR	226 226	Los Angeles, Cal. Macon, Ga.	KFQG WCBW
KFIO	Spokane, Wash.	252	BURLINGAME, CAL.	231	KFNZ	226	Marion, Ind.	WIAO
KFIQ KFIU	Yakima, Wash. Juncau, Alaska	242 226	BURLINGAME, CAL. BURLINGTON, IA.		KFQH WIAS	226 226	Montgomery, Ala. A Portable	WKAN WEBM
KFIX	Independence, Mo.	240 l	BURLINGTON, VT.	250	WCAX	226	San Jose, Cal.	KFVJ
KFIZ KFJB	Fond du Lac, Wis. Marshalltown, Ia.	273 248	BUTLER, MO. BUTLER, PA.	286	WNAR WBR	226 226	Seymour, Ind. St. Paul, Minn.	WFBE KFOY
KFJF	Oklahoma City, Okla.	252 252	BUTTE, MONT.	254	KFUY KFKV	226	St. Petersburg, Fla.	WDBI
KFJI KFJL	Astoria, Ore. Ottumwa. Ia.	242	BUTTE, MONT. BUTTE, MONT. CAMBRIDGE, ILL.	283	KFLA	227	Thrifton, Va. Chesaning, Mich.	WGBG WHBI_
KFJM KFJR	Grand Forks, N. D. Stevensville, Mont.	280 258	CAMBRIDGE, ILL. CAMBRIDGE, O.	242	WTAP WEBE	227	Cleveland, O. Elyria, O.	WDBK WGBL
KFJX	Cedar Falls, Ia.	280	CAMDEN, ARK.	242	KFVC	227	Indianapolis, Ind.	WBBZ
KFJY KFKA	Fort Dodge, Ia. Greeley, Col.	246 273	CAMDEN, N. J. CANTON, N. Y.	224 280	WABU WCAD	227 229	Lake Forest, Ill. Allentown, Pa.	WABA WSAN
KFKB	Milford, Kan.	286	CANTON, O	245	WHBC	229	Baltimore, Md.	WCBM
KFKQ KFKU	Conway, Ark. Lawrence, Kan.		CAPE GIRARDEAU, MO. CARTERSVILLE, MO.	275 268	WSAB KFPW		Graniteville, O. Lincoln. Neb.	WJD WJAB
KFKV	Butte, Mont.	283	CARTHAGE, ILL.	246	WCAZ	229	Marshfield, Wis.	WGBR
KFKX KFLA	Hastings, Neb. Butte, Mont.	288 283	CAZENOVIA, N. Y. CEDAR FALLS, IA.		WMAC KFJX	229 229	Pasadena, Cal. Roanoke, Va.	KPPC WDBJ
KFLB	Menominee, Mich.	248	CEDAR RAPIDS, IA.	256	KFLP	229	Rockford, Ill.	KFLV
KFLD KFLE	Franklinton, La. Denver, Col.	268	CEDAR RAPIDS, IA. CEDAR RAPIDS, IA.	268 278	WJAM WKAA	229 230	Taunton, Mass. Butler, Mo.	WDBB WNAR
KFLE KFLP KFLR	Cedar Rapids, Ia.	256	CHARLESTON, S. C.	268	WBBY	230	Moscow, Ida.	KFAN
KFLU	Albuquerque, N. M. San Benito, Tex.	236	CHARLES TOWN, W. VA. CHARLOTTE, N. C. CHATTANOOGA, TENN.	275	WPAZ WBT	231	Burlingame, Cal. Burlingame, Cal.	KFNZ KFQH
KFLV KFLX	Rockford, Ill. Galveston, Tex.	229 240	CHATTANOOGA, TENN. CHESANING, MICH.	256	WDOD WHBI	231	Devila Lake, N. D. Ellsworth, Me.	KDĽR WHBK
KF',2	Atlantic, Ia.	273	CHICAGO, ILL.	535	KYW	231	Fort Dodge, Ia.	KFER
KFMB	Little Rock, Ark.	254	CHICAGO, ILL.	286	WAAF	231	Greenenstle, Ind.	WLAX

Separation Sep									
Section		Location		Location			4	_	
## Stean Long, in Minn. ## Ste	KFMQ			CHICAGO, ILL.		WBBM	231	Harrisburg, Pa.	WHBG
CHICAGO, ILL. 237 WERB 237 WINGE 238 WINGE 2			261 231						KFPR
CHICAGO, ILL. 320 WEBH 23 Partucket, B. I. WTHX WTAX	KFMW					WFKB			
Seminary	KFMX			CHICAGO, ILL.	370	WEBH	231	Pawtucket, R. I.	WHBO
CHILAGO, ILL. 223 WEBM 221 Westland, Wis. WIBF 222 Westland, Wis. WIBF 223 WESTLAND, WIBP 223 WESTLAND, WIBP 224 Westland, Wis. WIBF 223 WESTLAND, WIBP 224 Wis. 224 Wis. 225 Westland, Wis. WIBF 225 Westland, Wis. WIBF 225 Westland, Wis. WIBP							231		WTAX
CHICAGO, ILL. 228 WIBO 221 Whestland, Wis. WIBF 225 WIBO 221 Whestland, Wis. WIBF 225 WIBO 2	KFNJ		234		233	WHBM		Webster, Mass.	
CHICAGO, ILL. 447 WIAG 231 Wilke-Brare, Pa. WIRE 231 Wilke-Brare, Pa. WIRE 231 Wilke-Brare, Pa. WIRE 232 WIRE 233 WIRE 234 WIRE 23								Wheatland, Wis.	WIBF
KFNZ Burlingame, Cal. 231 CHICAGO, ILL. 246 WMBS 233 Ashland, Wis. WSRF COL Settle, Wesh. 257 CHICAGO, ILL. 258 WMBS 238 Breadland, Wis. WSRF COL Walker, Ida. 259 CHICAGO, ILL. 250 WMBS 238 Breadland, Wis. WSRF COL Walker, Ida. 250 CHICAGO, ILL. 250 WMBS 238 Breadland, Wis. WSRF COL Walker, Ida. 251 CHICAGO, ILL. 252 CHICAGO, ILL. 253 WALQUE 238 Greater, N. Y. 254 CHICAGO, ILL. 255 WALQUE 238 Kingston, N. Y. WSRF COL Walker, Ida. 256 CHICAGO, ILL. 257 WALQUE 238 Kingston, N. Y. WSRF COL Walker, Ida. 258 CHICAGO, ILL. 259 WALQUE 238 Kingston, N. Y. WSRF COL Walker, Ida. 250 CHICAGO, ILL. 250 WALQUE 238 Kingston, N. Y. WSRF COL Walker, Ida. 251 CHICAGO, ILL. 252 CHICAGO, ILL. 253 WALQUE 238 Kingston, N. Y. WSRF COL Walker, Ida. 254 CHICAGO, ILL. 255 WALQUE 238 Kingston, N. Y. WSRF WALQUE 238 WALQUE 238 WALQUE 238 WALQUE 238 WALQUE 238 WALQUE 238 Seattle, Walque 238 WALQUE 238 Seattle, Walque 238 WALQUE 238 Seattle, Walque 238 Seattle, Walque 238 Walque 238	KFNY								
KFOC Whistier, Cal. 256 CHICAGO, ILL. 447 WEBA (CO) Wholey, Mo. 226 CHICAGO, ILL. 447 WEBA (CO) Wholey, Mo. 226 CHICAGO, ILL. 447 WEBA (CO) Wholey, Mo. 226 CHICAGO, ILL. 447 WEBA (CO) Wholey, Morphile, Per Color of the Color o	KFNZ	Burlingame, Cal.	231	CHICAGO, ILL.	447	WMAQ	233		WJBD
## CFO M Abbrity, Mo. 246 CHIDKASHA, OKLA. 248 KFGO Last Ringston, N. J. WIDBS KFO M Sharington, Cal. 224 CHIDKASHA, OKLA. 248 KFGO M Sharington, Cal. 224 CHIDKASHA, OKLA. 248 KFGO M Sharington, N. J. WIDBS CHIDKASHA, OKLA. 249 CHIDKASHA, OKLA. 240 CHIDKASHA, OKLA. 240 CHIDKASHA, O. 210 WIBB 233 New York, N. J. WIDBS CHIDKASHA, OKLA. 240 CHIDKASHA, O. 210 WIBB 233 New York, N. J. WIDBS CHIDKASHA, OKLA. 240 CHIDKASHA, O. 210 WIBB 233 New York, N. Y. WIDBS CHIDKASHA, OKLA. 240 CHIDKASHA, OKLA.			384 236				233		
## CFO M Abbrity, Mo. 246 CHIDKASHA, OKLA. 248 KFGO Last Ringston, N. J. WIDBS KFO M Sharington, Cal. 224 CHIDKASHA, OKLA. 248 KFGO M Sharington, Cal. 224 CHIDKASHA, OKLA. 248 KFGO M Sharington, N. J. WIDBS CHIDKASHA, OKLA. 249 CHIDKASHA, OKLA. 240 CHIDKASHA, OKLA. 240 CHIDKASHA, O. 210 WIBB 233 New York, N. J. WIDBS CHIDKASHA, OKLA. 240 CHIDKASHA, O. 210 WIBB 233 New York, N. J. WIDBS CHIDKASHA, OKLA. 240 CHIDKASHA, O. 210 WIBB 233 New York, N. Y. WIDBS CHIDKASHA, OKLA. 240 CHIDKASHA, OKLA.	KFOD	Wallace, Ida.	224	CHICAGO, ILL.			233	Highland Park, N. J.	
CFOP Marshifeld, Ore. 224 CINGINNATI, O. 309 WFBV 233 Mempis, Tenn. WiEBQ CFOP Marshifeld, Ore. 240 CINGINNATI, O. 222 WHAD 233 Mempis, Tenn. WiEBQ CFOP Marshifeld, Ore. 240 CINGINNATI, O. 222 WHAD 233 Mempis, Tenn. WiEBQ CFOP Marshifeld, Ore. 240 CINGINNATI, O. 222 WHAD 233 Mempis, Tenn. WiEBQ CFOP CFO	KFOJ		246	CHICKASHA, OKLA.	248	KFGD	233	Kellogg, Ida.	KFEY
KFOO Salt Jake City, Utah KFOO Manhisheld, Ore. KFOO Manhisheld, Ore. 240 CINCINNATI, O. 241 CINCINNATI, O. 242 WHBR 233 New York, N. Y. WOBX KFOO W David City, Neb. 243 CINCINNATI, O. 244 CINCINNATI, O. 245 CINCINNATI, O. 246 CINCINNATI, O. 247 CINCINNATI, O. 248 CINCINNATI, O. 249 CINCINNATI, O. 240 CINCINNATI, O. 240 CINCINNATI, O. 240 CINCINNATI, O. 240 CINCINNATI, O. 241 CINCINNATI, O. 242 CINCINNATI, O. 243 CINCINNATI, O. 244 CINCINNATI, O. 245 CINCINNATI, O. 246 CINCINNATI, O. 247 CINCINNATI, O. 248 CINCINNATI, O. 249 CINCINNATI, O. 240 CINCINNATI, O. 240 CINCINNATI, O. 240 CINCINNATI, O. 240 CINCINNATI, O. 241 CINCINNATI, O. 242 CINCINNATI, O. 243 CINCINNATI, O. 244 CINCINNATI, O. 245 CINCINNATI, O. 246 CINCINNATI, O. 247 CINCINNATI, O. 248 CINCINNATI, O. 249 CINCINNATI, O. 240 CINCINNATI, O. 241 CINCINNATI, O. 242 CINCINNATI, O. 243 CINCINNATI, O. 244 CINCINNATI, O. 245 CINCINNATI, O. 246 CINCINNATI, O. 247 CINCINNATI, O. 248 CINCINNATI, O. 249 CINCINNATI, O. 240 CINCINNATI, O. 241 CINCINNATI, O. 242 CINCINNATI, O. 243 CINCINNATI, O. 244 CINCINNATI, O. 245 CINCINNATI, O. 246 CINCINNATI, O. 247 CINCINNATI, O. 248 CINCINNATI, O. 248 CINCINNATI, O. 249 CINCINNATI, O. 240 CINCINNATI, O. 241 CINCINNATI, O. 242 CINCINNATI, O. 243 CINCINNATI, O. 244 CINCINNATI, O. 245 CINCINNATI, O. 246 CINCINNATI, O. 247 CINCINNATI, O. 248 CINCINNATI, O. 248 CINCINNATI, O. 249 CINCINNATI, O. 240 CINCINNATI		Long Beach, Cal.	234					Kingston, N. Y. Memphis Tenn	
CROR David City, Neb. 228 CHRCIMMATI, 0. 422 WilW. 223 Caland, Cal. XFUS CROWN CONDAIN, Neb. 248 Calles Son Col., S. C. 233 Wild. 233 Calles Col. XFUS Calles Son Col., S. C. 233 Wild. 234 Calles Col. XFUS XFUS Calles Son Col., S. C. 235 Wild. 235 Calles Son Col., S. C. 236 Calles Son Col., S. C. 236 Calles Son Col., S. C. 237 Wild. 238 Calles Son Col., S. C. 238 Wild. 234 Calles Son Col., S. C. 238 Wild. 238 Wild. 234 Calles Son Col., S. C. 238 Wild. 238 Wild. 238 Calles Son Col., S. C. 238 Wild. 23	KF00	Salt Lake City, Utah	261	CINCINNATI, O.	222	WHAG	233	Newark, N. J.	
KFOT Wichita, Kian. KFOW Comaha, Neb. 234 CINCINNATI, O. COM Comaha, Neb. 235 CINCINNATI, O. COMAHA, Neb. 236 CILEMSON COL., S. C. 331 WBAC 233 Fort Huron, Mich. KFOX COMAHA, Neb. 236 CILEMSON COL., S. C. 331 WBAC 233 Seattle, Wash. 234 CILEMSON COL., S. C. 235 WBAC 235 WBAC 237 WBAC 238 Fort Huron, Mich. KFOX CREW COMAHA, Neb. 238 CILEMSON COL., S. C. 239 WBAC 231 Port Huron, Mich. KFOX CREW COMAHA, Neb. 230 CILEMSON COL., S. C. 231 WBAC 232 Seattle, Wash. 232 WBAC 233 PORT COL. 233 WBAC 233 PORT COL. 234 Manife, Tel. 235 WBAC 236 Seattle, Wash. KFOX 237 WBAC 238 WBAC 238 PORT LURON, Mich. KFOX 239 WBAC 230 WBAC 231 CINCINNATI, O. 230 WBAC 231 Port Huron, Mich. KFOX 231 WBAC 232 WBAC 233 PORT LURON, Mich. KFOX 234 WBAC 235 WBAC 235 WBAC 236 Seattle, Wash. KFOX 236 WBAC 237 WBK 237 WBAC 238 WBAC 238 WBAC 239 WBAC 230 WBAC 231 Louis, Mo. 231 CINCINNATI, O. 232 WBAC 233 WBAC 233 PORT LURON, Mich. KFOX 234 WARM 235 WBAC 235 WBAC 236 Seattle, Wash. KFOX 237 WBK 238 WBAC 238 WBAC 239 WBAC 230 WBAC 230 WBAC 231 Louis, Mo. 231 CIRCINNATI, O. 232 WBAC 233 WBAC 233 PORT LURON, Mich. KFOX 234 WBAC 235 WBAC 236 Seattle, Wash. KFOX 237 WBK 238 WBAC 238 WBAC 239 WBAC 230 WBAC 230 WBAC 231 Louis, Mo. 232 WBAC 233 WBAC 233 WBAC 233 WBAC 234 La Sale, Rill, Wash. 235 WBAC 236 Seattle, Wash. 237 WBAC 238 WBAC 238 WBAC 239 WBAC 230 WBAC 230 WBAC 231 Louis, Mo. 232 WBAC 233 WBAC 234 La Sale, Rill, Wash. 235 WBAC 236 WBAC 237 WBK 237 WBAC 238 WBAC 238 WBAC 239 WBAC 230 WBAC 230 WBAC 231 WBAC 232 WBAC 233 WBAC 234 La Sale, Rill, Wash. 235 WBAC 236 WBAC 237 WBAC 237 WBAC 238 WBAC 238 WBAC 239 WBAC 230 WBAC 230 WBAC 231 WBAC 232 WBAC 233 WBAC 234 WARB 235 WBAC 235 WBAC 236 WBAC 237 WBAC 237 WBAC 237 WBAC 238 WBAC 238 WBAC 239 WBAC 230 WBAC 230 WBAC 231 WBAC 231 WBAC 232 WBAC 233 WBAC 234 WBAC 235 WBAC 236 WBAC 237 WBAC 237 WBAC 237 WBAC 238 WBAC 238 WBAC 238 WBAC 239 WBAC			240				233	New York, N. Y.	
CROW Colon	KFOT		231	CINCINNATI, O.	321		233		
Columbia	KFOU	Richmond, Cal.	254	CINCINNATI, O.	325		233	Port Huron, Mich.	WAFD
KFPB C. Los Angeles, Cal. 238 (LEWELAND, O. 270 KDPM Los Angeles, Cal. 238 (LEWELAND, O. 389 WEAR 224 Denver, Cal. WIRD Denver, Cal. WIRD Denver, Cal. WIRD Company, Cal. CEVELAND, O. 389 WEAR 224 Denver, Cal. WIRD Company, Cal. WIRD Denver, Cal. 280 (LEWELAND, O. 380 WEAR 224 Frankinson, La. WIRD Company, Cal. 280 (LEWELAND, O. 380 WEAR 224 Frankinson, La. WIRD Company, Cal. 280 (LEWELAND, O. 380 WEAR 224 Frankinson, La. WIRD Denver, Cal. 280 (LEWELAND, O. 380 WEAR 224 Frankinson, La. WIRD Company, Cal. 280 (LEWELAND, O. 380 WEAR 224 Frankinson, La. WIRD Company, Cal. 280 (LEWELAND, O. 380 WEAR 224 Frankinson, La. WIRD Company, Cal. 280 WIRD Company, Cal. 28			248 226		331 336		233 234		WOAC
CFPH	KFPB		224	CLEVELAND, O.	270	KDPM	234	Cranston, R. I.	WKAP
KFPL Dablin, Tex. 242 CLEVELAND, O. 273 WHK 244 Franklindon, La. KFLD KFPM Green Ville, Tex. 242 CLEVELAND, O. 238 WTML 224 Long Beach, Cal. WJBC WJBC VILLEVELAND, O. 238 WTML 224 Long Beach, Cal. KFCO VILLEVELAND, O. 224 WALL 224 Long Beach, Cal. KFCO VILLEVELAND, O. 226 COLUSTATION, TEX. 228 WTML 224 Long Beach, Cal. KFCO VILLEVELAND, O. 224 WALL			238	CLEVELAND, O.	227	WDBK	234	Denver, Col.	
CEPPE Color Colo	KFPL	Dublin, Tex.	242	CLEVELAND, O.					
Col. STATION, TEX. 230 WTAW 234 Marengo, Ia. KFOL KFPW Carterville, Mo. 285 COL. STATION, TEX. 236 COL. STATION, TEX. 236 COL. STATION, TEX. 237 COL. STATION, TEX. 238 COL. STATION, TEX. 239 COL. STATION, TEX. 238 COL. STATION, TEX. 239 COL. STATION, TEX. 239 COL. STATION, TEX. 230 COL. STATION, TEX. 231 COL. STATION, TEX. 232 COL. STATION, TEX. 232 COL. STATION, TEX. 234 COL. STATION, TEX. 235 COL. STATION, TEX. 236 COL. STATI	KFPM	Greenville, Tex.	242	CLEVELAND, O.	389	WTAM	234	La Salle, Ill.	WJBC
COLLEGEVILLE, MINN. 236 WFB. 234 McKesport, Pa. WIK CFPW Cartevrille, Mo. 285 COLORADO SPRINGS, COL. 224 WAAN 224 Philadelphia, Pa. WFBD WFD. Prot. Worth, Tex. 225 COLUMBIA, MO. 226 WDB. 224 WAAN 224 Philadelphia, Pa. WFBD WFB				COLDWATER, MISS.					
Columbia	KFPV	San Francisco, Cal.	236	COLLEGEVILLÉ, MINN.	236	WFBJ	234	McKeesport, Pa.	WIK
FFOR St. Louis, Mo. 294 COLUMBIS, GA. 236 WDBM 224 Providence, R. I. WGBM FFOR FOR F	KFPW	Carterville, Mo.	268		242			Menominee, Wis.	WGBQ
FORD FORD WORD Coll. WIDEN COLL WIDEN			264	COLUMBIA, MO.			234		
Los Angeles, Cal. 226 COLUMBUS, O. 292 WBAV 234 San Laandro, Cal. KFUU KFQH Portland, Ore. 283 COLUMBUS, O. 293 WEAO 234 Washington, D. C. WDM \ VERT	KFQB	Forth Worth, Tex.	221	COLUMBUS, GA.	236	WDBA	234	Salem, N.J.	WDBQ
STORING Burlingame, Cal. 231 COLUMBUS, O. 288 WEAD 238 WEAD 234 Warrensburg, Mo. KFNJ Warrensburg, Mo. 284 Warrensburg, Mo. WDM 234 Warrensburg, Mo. WDM 234 Warrensburg, Mo. WDM 234 Warrensburg, Mo. WDM 234 Wooster, O. 286 WPAL 234 Warrensburg, Mo. WDM 234 Wooster, O. 286 WFAL 234 Wooster, O. 286 WFAL 236 Wroter, Mo. 236 Wooster, O. 236 WFAL 236 Columbus, Ga. WFBL WFFBL WFBL WFBL WFBL WFFBL WFFL WFBL WFFL WFBL WFFL WFF		Taft, Cal.						San Francisco, Cal.	KFUQ
Foreign	KFOH	Burlingame, Cal.	231	COLUMBUS, O.	286	WCAH	234		
KFÖR Oklahoma City, Okla. 220 COLUMBUS, O. 286 WPAL 224 Wooster, O. WABW CFOW Holy City, Cal. 255 CONWAY, ARK. 250 KFKQ 266 Columbus, Ga. WDBA CFOW Holy City, Cal. 263 CORWAY, ARK. 250 KFKQ 266 Columbus, Ga. WDBA CFOW Seattle, Wash. 243 CRANSTON, R. . 244 KFDZ 266 Greenville, S. C. WGBT CRANSTON, R. . 246 KFDZ 266 Greenville, S. C. WGBT CRANSTON, R. . 240 CRANSTON, R. . 240 CRANSTON, R. . 240 CRANSTON, R. . 286 WKBF 228 Madison, Wis. WIBA WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WIBA WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WIBA WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WIBA WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WIBA WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WIBA WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 Madison, Wis. WKBGF CRANSTON, R. . 286 WKBF 228 MKBG CRANSTON, R. . 286 WKBF 228	KFON	Portland, Ore.	283 [293	WEAO		Warrensburg, Mo.	KFNJ .
### CONWAY, ARK. 250 KFKQ 236 Collegeville, Minn. WFBJ ### WFBJ WFBJ WFBJ WFBJ WFBJ ### WFBJ WFBJ WFBJ ### WFBJ WFBJ WFBJ WFBJ ### WFBJ ### WFBJ WFBJ ### W	KFOR		220		286 286			Washington, D. C. Wooster, O.	
GORVALLIS, ORE. 254 KFDJ 236 Greenville, S. C. WGBT Convay, Ark. 250 CANSTON, R. I. 234 WKAP 236 MKSP Conway, Ark. 250 CHRM Fort Sill, Okla. 251 CANSTON, R. I. 236 WKBT 236 MKSP 236 MKSP 236 MKSP 237 CANSTON, R. I. 236 WKBT 236 MKSP 236	KFQT	Dennison, Tex.	252	CONWAY, ARK.	250	KFKQ	236	Collegeville, Minn.	WFBJ
FOX Seattle, Wash. 233 CRANSTON, R. I. 240 WDWF 238 Madison, Wis. WIBA CRANSTON, R. I. 224 WKAP 236 Nashville, Tenn. WCBQ CRANSTON, R. I. 225 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, R. I. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, TEX. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, TEX. 226 WKBF 238 Titisburgh, Pa. WCBF CRANSTON, TEX. 226 WKBF 238 Waterloo, Ia. WRAN CRANSTON, TEX. 226 WTCBF 238 Waterloo, Ia. WRAN WRAN CRANSTON, TEX. 226 WFOR 238 Waterloo, Ia. WRAN WRAN CRANSTON, TEX. 228 WDBS 238 Dearfield, III. WHT	KEQU				250 254	KFRJ KFDI	236 236		
FFFI	KFOX		233	CRANSTON, R. I.	440	WDWF	236	Madison, Wis.	WIBA
CFRM Conway, Ark. 250 CULVER, IND. 222 WHSHA 236 San Benito, Tex. WFLU CFRO Fort Worth, Tex. 246 DALLAS, TEX. 472 WFRA 236 San Benito, Tex. KFLU CFRO Fort Worth, Tex. 246 DALLAS, TEX. 251 WRR 236 San Benito, Tex. KFLU CFRO Fort Worth, Tex. 246 DALLAS, TEX. 251 WRR 236 San Benito, Tex. KFLU CFRO C		Belden, Neb.				WKAP	236	Nashville, Tenn.	WCBQ
CFRM Fort Sill, Okla. 263 DALLAS, TEX. 215 WRR 236 San Francisco, Cal. KFPU CFRU Orleand, Orleand Cal. CFRU Cal. Cal. Cal. CFRU Cal.	KFRJ				222		236	Richmond Hill, N.'Y.	
CFRU	KFRM	Fort Sill, Okla.	263	DALLAS, TEX.	472		236	San Benito, Tex.	KFLU
CFRW Olympis, Wash. 220 DAVENPORT, IA. 244 WOC 226 Whittier, Cal. KFOC CFRY Vallman, Wash. 217 DAVID CITY, NEB. 225 KFOR 228 Derfeld, Ill. WHT CFRY State College, N. M. 266 CFRZ Hartington, Neb. 222 DAYTON, O. 283 WDBS 238 Los Angeles, Cal. KFPG CFSG Los Angeles, Cal. 272 DEARBORN, MICH. 273 WWI 238 Reading, Ps. WRAW WBAO 238 WHT 249 Baserfield, Cal. KDZB CFUL Calveston, Tex. 258 CFUL Calveston, Tex. 258 DEARTHELD, ILL. 238 WHT 240 Baserfield, Cal. KDZB CFUL Calveston, Tex. 258 KFAF 240 Bangor, Me. WABI CFUL Calveston, Tex. Col. 254 KFEL 240 Brooklyn, N. Y. WHAP CFUL Calveston, Cal. 234 DENVER, COL. 254 KFEL 240 Brooklyn, N. Y. WHAP CFUL Calveston, Cal. 234 DENVER, COL. 234 KFUL 240 Calveston, Tex. KFUL CFUL Calveston, Cal. 234 DENVER, COL. 234 CFUL Calveston, Cal. 234 DENVER, COL. 234 CFUL Calveston, Cal. 234 DENVER, COL. 235 KOA 240 Calveston, Tex. CFUL Calveston, Cal. 234 DENVER, COL. 235 KOA 240 Calveston, Tex. CFUL Calveston, Cal. 234 DENVER, COL. 235 KOA 240 Calveston, Tex. CFUL Calveston, Cal. 234 DETROIT, MICH. 236 KOP 240 Calveston, Tex. CFUL Calveston, Cal. 240 Calveston, Cal. CFUL Calveston, Cal. 240 Calveston, Cal. CFUL Calveston, C	KFRU KFRU		240 394				236 236	San Francisco, Cal. Waterloo, Ia	WRAN
CFRY State College, N. M. 266 DAYTON, O. 283 WDBS 238 Los Angeles, Cal. KFPG CFRZ Harbington, Neb. 222 DAYTON, O. 270 WEBT 238 Phoenix, Arizs. KFCB CFSY Helena, Mont. 261 DECATUR, ILL. 360 WBAO 238 Worcester, Mass. WCBT CFUM Cloerado Springs, Col. 242 DENNISTON, TEX. 255 KFCB 240 Bangor, Me. WABI CFUP Denver, Col. 234 DENVER, COL. 278 KFAE 240 Bernis, Tenn. WCBT CFUP Denver, Col. 234 DENVER, COL. 254 KFEL 240 Bernis, Tenn. WCBT CFUP Ozhaland, Cal. 233 DENVER, COL. 254 KFLE 240 Bernis, Tenn. WCBT CFUP Ozhaland, Cal. 234 DENVER, COL. 234 KFUP 240 Bernis, Tenn. WCBT CFUP San Leandro, Cal. 234 <th< td=""><td>KFRW</td><td>Olympia, Wash.</td><td>220</td><td>DAVENPORT, IA.</td><td>484</td><td>WOC</td><td>236</td><td>Whittier, Cal.</td><td>KFOC</td></th<>	KFRW	Olympia, Wash.	220	DAVENPORT, IA.	484	WOC	236	Whittier, Cal.	KFOC
CFRZ Hartington, Neb. 222 DAYTON, O. 270 WEBT 238 Phoenix, Ariz. KFCB CFSY Helena, Mont. 261 DEARBORN, MICH. 273 WWI 238 Reading, Pa. WRAW CFUL Breekenridge, Minn. 242 DEERFIELD, ILL. 238 WHT 240 Bakersfield, Cal. KDZB CFUM Colorado Springs, Col. 242 DENNISTON, TEX. 252 KFQT 240 Bangor, Me. WABI CFUP Denver, Col. 234 DENVER, COL. 258 KFLE 240 Berosklyn, N. Y. WHAB CFUP San Francisco, Cal. 234 DENVER, COL. 234 KFLE 240 Brooklyn, N. Y. WHAB CFUP San Francisco, Cal. 234 DENVER, COL. 234 KFUE 240 Brooklyn, N. Y. WHAB CFUR San Lake City, Utah 271 DENVER, COL. 233 KDA 240 East Providence, R. I. KFLZ CFUL Butte, Mont.	KFRX	Pullman, Wash.	217	DAVID CITY, NEB.	226	KFOR	228	Deerfield, Ill.	WHT
CFSG Los Angeles, Cal. 272 CFSY Helena, Mont. 261 DECATUR, ILL. 360 WBAO 238 Worcester, Mass. WCBT CFUL Galveston, Tex. 228 CFUL Galveston, Tex. 228 CFUL Galveston, Tex. 228 DEERFIELD, ILL. 238 WHT 240 Bakersfield, Cal. KDZB CFUL Colorado Springs, Col. 242 DENVER, COL. 254 KFEL 240 Bangor, Me. WABI CFUL C	KFRŽ		222		270	WEBT	238	Phoenix, Ariz.	
FULL Galveston, Tex. 242 DERNFIELD, ILL. 238 WHT 240 Bakersfield, Cal. KDZB CFUM Colorado Springs, Col. 242 DENVER, COL. 258 KFAF 240 Bangor, Me. WABI CFUP Denver, Col. 234 DENVER, COL. 254 KFLE 240 Brooklyn, N. Y. WHAP CFUQ San Francisco, Cal. 234 DENVER, COL. 234 KFUP 240 Brooklyn, N. Y. WHAP CFUR Coden, Utah 224 DENVER, COL. 234 KFUP 240 Brooklyn, N. Y. WHAP CFUR Coden, Utah 224 DENVER, COL. 234 KFUP 240 Brooklyn, N. Y. WHAP CFUR Coden, Utah 224 DENVER, COL. 234 KFUP 240 Brooklyn, N. Y. WHAP CFUR Coden, Utah 224 DENVER, COL. 234 KFUP 240 Brooklyn, N. Y. WHAP CFUR Coden, Utah 224 DENVER, COL. 232 KOA 240 Galveston, Tex. KFIX CFUR San Leandro, Cal. 234 DENVER, COL. 232 KOA 240 Hollywood, Cal. KFOR CFUR Camden, Ark. 242 DETROIT, MICH. 286 KOP 240 Marshfield, Ore. KFIX CFUR Camden, Ark. 242 DETROIT, MICH. 286 KOP 240 Oskaloosa, Ia. KFIL CFUR Camden, Ark. 242 DETROIT, MICH. 285 WWJ 240 Oskaloosa, Ia. KFIL CFUR Camden, Ark. 248 DETROIT, MICH. 285 WWJ 240 Oskaloosa, Ia. KFIL CFUR Camden, Ark. 248 DETROIT, MICH. 285 WKAR 240 Sandusky, O. WABH CFUR CFU	KFSG		272				238	Reading, Pa.	WRAW
CFUL Galveston, Tcx. 258 DENNISTON, TEX. 252 KFQT 240 Bangor, Me. WABI CFUO St. Louis, Mo. 549 DENVER, COL. 278 KFAF 240 Bernis, Tenn. WCBI CFUO St. Louis, Mo. 549 DENVER, COL. 254 KFEL 240 Bernis, Tenn. WCBI DENVER, COL. 254 KFEL 240 Bernis, Tenn. WCBI DENVER, COL. 255 KFQT 240 Bernis, Tenn. WCBI DENVER, COL. 256 KFLE 240 Bernis, Tenn. WCBI WCAI DENVER, COL. 256 KFLE 240 Bernis, Tenn. WCBI WCAI DENVER, COL. 256 KFLE 240 Bernis, Tenn. WCBI WCKI DENVER, COL. 256 KFLE 240 Bernis, Tenn. WCBI WCAI DENVER, COL. 256 KFLE 240 Bernis, Tenn. WCBI WCAI DENVER, COL. 256 KFLE 240 Bernis, Tenn. WCAI EVEN WCAI EVE	KFUJ	Breckenridge, Minn.	242		238	WHT	240	Bakersfield, Cal.	KDZB
CFUC St. Louis, Mo. S49 DENVER, COL. 254 KFEL 240 Brooklyn, N. Y. WHAP WFBB CFUR Ogden, Utah 224 DENVER, COL. 233 KLZ 240 East Providence, R. I. WKAD CFUR Ogden, Utah 224 DENVER, COL. 233 KLZ 240 East Providence, R. I. WKAD CFUR San Leandro, Cal. 234 DENVER, COL. 233 KOA 240 Hollywood, Cal. KFOZ CFUR San Leandro, Cal. 234 DETROIT, MICH. 286 KOP 240 Marshfield, Ore. KFOP CFUR San Leandro, Cal. 242 DETROIT, MICH. 286 KOP 240 Marshfield, Ore. KFOP CFUR San Pedro, Cal. 242 DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH CFVC Camden, Ark. 242 DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH CFVC Camden, Ark. 242 DOWNERS GROVE, ILL. 206 WHBT 240 Sandusky, O. WABH CFVF Hollywood, Cal. 208 EAST PITTSBURGH, PA. 242 KFPL 240 Sandusky, O. WABH CFVI Houston, Tex. 248 EAST PROVIDENCE, R. I. 240 WKAR 240 Scranton, Pa. WGBI CFVM Ogden, Utah 214 ELGIN, ILL. 278 WCEE 240 Trenton, N. J. WOAX CFVI Vancouver, Wash. 231 ELGIN, ILL. 278 WCEE 240 Trenton, N. J. WOAX CFVI Vancouver, Wash. 248 ELGIN, ILL. 278 WCEE 240 Trenton, N. J. WOAX CFVFW Upland, Cal. 211 ELGIN, ILL. 278 WCEE 240 Trenton, N. J. WOAX CFVFW Upland, Cal. 211 ELGIN, ILL. 278 WCEE 240 Trenton, N. J. WTAP ELGIN, ILL. 278 WCEE 240 Trenton, N. J. WTAP ELGIN, ILL. 278 WGBI 242 Cambridge, Ill. WTAP ELYRIA, O. 227 WGBL 242 Cambridge, Ill. WTAP CGO Oakland, Cal. 361 ECSCANABA, MICH. 256 WRA K 242 Erie, Pa. WOAV 242 Careville, Tex. KFPL CGO Oakland, Ore. 491 EVANSVILLE, IND. 217 WGBF 242 Careville, Tex. KFPM WWAE CGW Portland, Ore. 491 EVANSVILLE, IND. 217 WGBF 242 Careville, Tex. WGAV CGW CGW Portland, Ore. 491 EVANSVILLE, IND. 217 WGBF 242 Careville, Tex. Color and prince Color	KFUL	Galveston, Tex.	258	DENNISTON, TEX.	252	KFQT	240	Bangor, Me.	WABI
Denver, Col. 234 Col. 235 Col. 236 Col. 237 Col. 238 KLZ 240 East Providence, R. I. WKAD Col. 238 KLZ 240 East Providence, R. I. WKAD Col. 238 KLZ 240 Col. 240				DENVER, COL.	278 254	KFEL.			MHYD
CFUR Ogden, Utah 224 CFUR Oakland, Cal. 233 CFUT Salt Lake City, Utah 271 DES MOINES, IA. DETROIT, MICH. 286 KOP 240 Marshfield, Ore. KFOP Marshfield, Ore. KFOP Marshfield, Ore. KFOP Camden, Ark. 242 DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH CFVC Camden, Ark. 242 DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH CFVC Camden, Ark. 242 DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH CFVF Hollywood, Cal. 205 CFVF Hollywood, Cal. 206 CFVF Hollywood, Cal. 226 CFVF Houston, Tex. 248 CFVI Houston, Tex. 248 CFVI Vancouver, Wash. 231 CFVI Vancouver, Wash. 231 CFWB Hollywood, Cal. 252 CFWC Upland, Cal. 251 CFWC Upland, Cal. 252 CFWC Upland, Cal.	KFUP	Denver, Col.	234	DENVER, COL.	268	KFLE	240	Eureka, Ill.	WFBB
CFUS Oakland, Cal. 233 DENVER, COL. 323 KOA 240 Hollywood, Cal. KFÖZ KFUY Salt Lake City, Utah 271 DES MOINES, IA. 526 WHO 240 Independence, Mo. KFTX KFOP KFUY Butte, Mont. 254 DETROIT, MICH. 516 WCX 240 Oskaloosa, Ia. KFHI, KFUZ Virginia, Minn. 248 DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH CFVC Camden, Ark. 242 DOWNERS GROVE, ILL. 206 WHBT 240 Paso Robles, Cal. KFNL KFVC KFVF Hollywood, Cal. 248 CFVF Hollywood, Cal. 248 CFVF Hollywood, Cal. 226 EAST PITTSBURGH, PA. 240 WKAD 240 San Jose, Cal. KQW KAD CFVI Wandatan, Kan. 218 EAST PROVIDENCE, R. I. 240 WKAD 240 Stevens Point, Wis. WHBB CFVI Vancouver, Wash. 231 ELGIN, ILL. 278 WCEE 240 Stevens Point, Wis. WDBO CFWA Ogden, Utah 214 ELGIN, ILL. 231 WHB K 242 Cambridge, Ill. WTAP CFWF St. Louis, Mo. 214 ELYRIA, O. 227 WGBL 242 Cambridge, Ill. WTAP CGO Oakland, Cal. 361 EVANSVILLE, IND. 217 WGBF 242 Greenville, Tex. KFPM CGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Greenville, Tex. KFPM CGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Cardenden, Ark. CFPM CGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Greenville, Tex. 242 Greenville, Tex. EVANSVILLE, IND. 217 WGBF 242 Greenville, Tex. 242 Greenville, Tex.	KFUQ KFIIR		234	DENVER, COL.	234 282		240 240	East Providence, R. I.	WKAD
CFUT Salt Lake City, Utah CFUT San Leandro, Cal. CFUT San Leandro, Cal. CFUT San Leandro, Cal. CFUZ Camden, Ark. CFUZ Camden, Ark. CFUZ Camden, Ark. CFUZ Camden, Cal. CFUZ CAMDEN CAL. CFUZ Camden, Cal. CFUZ CAMDEN CAL. CFUZ CAMDEN CAL. CAMDEN CAL. CFUZ CAMDEN CAL. CAMDEN	KFUS	Oakland, Cal.	233	DENVER, COL.	323	KOA	240	Hollywood, Cal.	KFQZ
Second S	KFUT	Salt Lake City, Utah	271 l	DES MOINES, IA.	526	WHO	240	Independence, Mo.	KFIX
DETROIT, MICH. 352 WWJ 240 Owosso, Mich. WSMH	KFUU KFUY		254 254		280 516	WCX			KFUP KFHL
CFVD San Pedro, Cal. 205 DOWNERS GROVE, ILL. 206 WHBT 240 Rapid City, S. D. WCAT CFVK Sacramento, Cal. 248 DUBLIN, TEX. 242 KFPL 240 Sandusky, O. WABH CFVH Hollywood, Cal. 228 EAST LANSING, MICH. 285 WKAR 240 San Jose, Cal. KQW CFVH Manhattan, Kan. 218 EAST PROVIDENCE, R. I. 240 WKAD 240 Scranton, Pa. WGBI CFVI Houston, Tex. 248 ELGIN, ILL. 278 WCEE 240 Winter Park, Fla. WDBO CFVI Vancouver, Wash. 231 ELGIN, ILL. 303 WTAS 240 Winter Park, Fla. WDBO CFWB Hollywood, Cal. 252 ELLSWORTH, ME. 231 WHB K 242 Cambridge, Ili. WTAP CFWC Upland, Cal. 211 ELYRIA, O. 227 WGBL 242 Colorado Springs, Col. KFUM CFWF St. Louis, Mo.	KFUZ	Virginia, Minn.	248	DETROIT, MICH.	352	WWJ	240	Owosso, Mich.	WSMH
CFVK Sacramento, Cal. 248 DUBLIN, TEX. 242 KFPL 240 Sandusky, O. WABH CFVF Hollywood, Cal. 208 EAST LANSING, MICH. 285 WKAR 240 Sandusky, O. WABH CFVJ San Jose, Cal. 208 EAST PROVIDENCE, R. I. 240 WKAD 240 Scranton, Pa. WGBI CFVI Houston, Tex. 248 ELGIN, ILL. 278 WCEE 240 Scranton, Pa. WHBB CFWL Vancouver, Wash. 231 ELGIN, ILL. 278 WCEE 240 Winter Park, Fla. WDBO CFWA Ogden, Utah 214 ELKINS PARK, PA. 222 WIBG 242 Breckenridge, Minn. KFUJ CFWB Hollywood, Cal. 252 ELLSWORTH, ME. 231 WHB K 242 Cambridge, Ili. WTAP CFWF St. Louis, Mo. 214 ELYRIA, O. 227 WGBL 242 Colorado Springs, Col. KFUM CGO Oakland, Cal. 36	KFVC KFVD		242	DEVILS LAKE, N. D. DOWNERS GROVE !!!	231 206	KDLR	240 240	Paso Robles, Cal. Rapid City S. D.	
CFVF Hollywood, Cal. 208 EAST LANSING, MICH. 285 WKAR 240 San Jose, Cal. KQW CFVJ San Jose, Cal. 226 EAST PROVIDENCE, R. J. 240 WKAR 240 Scranton, Pa. WGBI CFVI Houston, Tex. 248 ELGIN, ILL. 278 WCEE 240 Stevens Point, Wis. WHBB CFVL Vancouver, Wash. 231 ELGIN, ILL. 278 WCEE 240 Winter Park, Fla. WDBO CFWB Hollywood, Cal. 252 ELKINS PARK, PA. 222 WIBG 242 Breckenridge, Minn. KFUJ CFWG Upland, Cal. 211 EL PASO, TEX. 268 WDAH 242 Cambridge, Ill. WTAP CFWF St. Louis, Mo. 214 ELYRIA, O. 227 WGBL 242 Colorado Springs, Col. KFUM CGB Tacoma, Wash. 252 ERIE, PA. 242 WOAV 242 Dublin, Tex. KFPL CGU Honolulu, Hawaii	KFVK	Sacramento, Cal.	248	DUBLIN, TEX.	242	KFPL	240	Sandusky, O.	WABH
CFVH Manhattan, Kan. 218 EAST PROVIDENCE, R. I. 240 WKA D 240 Stevens Point, Wis. WHBB	KFVF		208	EAST LANSING, MICH.	285	WKAR	240	San Jose, Cal.	KQW
CFVI	KFVH		218		240	WKADI			WHBB
(FWA) Ogden, Utah 214 ELKINS PARK, PA. 222 WIBG 242 Breckenridge. Minn. KFUJ (FWB) Hollywood, Cal. 252 ELLSWORTH, ME. 231 WHB K 242 Cambridge, Ili. WTAP (FWC) Upland, Cal. 211 EL PASO, TEX. 268 WDAH 242 Camden, Ark. KFVD (GB) Tacoma, Wash. 252 ERIE, PA. 242 WOAV 242 Colorado Springs, Col. KFPL (GO) Oakland, Cal. 361 ESCANABA, MICH. 256 WRA K 242 Erie, Pa. WOAV (GU) Honolulu, Hawaii 360 EUREKA, ILL. 240 WFBB 242 Greenville, Tex. KFPM (GW) Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Joliet, Ill. WWAE	KFVI	Houston, Tex.	248	ELGIN, ILL.	278	WCEE	240	Trenton, N. J.	WOAX
KFWB Hollywood, Cal. 252 ELLSWORTH, ME. 231 WHB K 242 Cambridge, Ili. WTAP CFWC Upland, Cal. 211 EL PASO, TEX. 268 WDAH 242 Camden, Ark. KFVC CFWF St. Louis, Mo. 214 ELYRIA, O. 227 WGBL 242 Colorado Springs, Col. KFUM CGB Tacoma, Wash. 252 ERIE, PA. 242 WOAV 242 Dublin, Tex. KFPL CGO Oakland, Cal. 361 ESCANABA, MICH. 256 WRA K 242 Erie, Pa. WOAV CGU Honolulu, Hawaii 360 EUREKA, ILL. 240 WFBB 242 Greenville, Tex. KFPM CGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Joliet, Ill. WWAE	KTVL KFWA		231 214	ELGIN, ILL, ELKINS PARK PA.	303 222				K EIII W DBO
CFWC Upland, Cal. 211 EL PASO, TEX. 268 WDAH 242 Camden, Ark. KFVC CFWF St. Louis, Mo. 214 ELYRIA, O. 227 WGBL 242 Colorado Springs, Col. KFUM CGB Tacoma, Wash. 252 ERIE, PA. 242 WOAV 242 Dublin, Tex. KFPL CGO Oakland, Cal. 361 ESCANABA, MICH. 256 WRA K 242 Erie, Pa. WOAV CGU Honolulu, Hawaii 360 EUREKA, ILL. 240 WFBB 242 Greenville, Tex. KFPM CGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Joint, III. WWAE	KFWB	Hollywood, Cal.	252	ELLSWORTH, ME.	231	WHBK	242	Cambridge, III.	WTAP
GGB Tacoma, Wash. 252 ERIE, PA. 242 WOAV 242 Dublin, Tex. KFPL GGO Oakland, Cal. 361 ESCANABA, MICH. 256 WRAK 242 Erie, Pa. WOAV GGU Honolulu, Hawaii 360 EUREKA, ILL. 240 WFBB 242 Greenville, Tex. KFPM GGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Joliet, Ill. WWAE	KFWC			EL PASO, TEX.	268	WDAH	242	Camden, Ark.	KFVC
GO Oakland, Cal. 361 ESCANABA, MICH. 256 WRA K 242 Erie, Pa. WOAV GOU Honolulu, Hawaii 360 EUREKA, ILL. 240 WFBB 242 Greenville, Tex. KFPM GOW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Joliet, Ill. WWAE	KGB		252	ERIE, PA.			242	Colorado Springs, Col. Dublin, Tex.	
CGW Portland, Orc. 491 EVANSVILLE, IND. 217 WGBF 242 Joliet, Ill. WWAE	KGO	Oakland, Cal.	361	ESCANABA, MICH.	256	WRA K	242	Erie, Pa.	WOAV
(GY Lacy, Wash. 253 EVERETT, WASH. 224 KFBL 242 Oakland, Cal. KIS	KGW								
	KĞY				224	KFBL			


		_						
Call Letters	Location	Wave- length	Location	Wave- length	Call Letters	Wave- length	Location	Call Letiers
KHI	Los Angeles, Cal.	405	FALL RIVER, MASS.	209	WGBH	242	Ottumwa, Ia.	KFJL
KHQ KJR	Scattle, Wash. Scattle, Wash.	273 384	FALL RIVER, MASS. FALL RIVER, MASS.	254 248	WSAR WTAB	242 242	Oxford, Miss.	WCBH
KJS	Los Angeles, Cal.	293	FARGO, N. D.	244	WDAY	242	Philadelphia, Pa. Salt Lake City, Utah	WABY KFPH
KLŞ	Oakland, Cal.	242	FAYETTEVILLE, ARK.	299	KFMQ	242	Superior, Wis.	WEBC
KLX KLZ	Oakland, Cal. Denver, Col.	508 283	FLINT, MICH. FLINT, MICH.	250 218	WEAA WTHS	242 242	Tecumseh, Neb. Yakima, Wash.	WTAU KFIQ
KMJ	Fresno, Cal.	243	FOND DU LAC, WIS.	273	KFIZ	242	Yellow Springs, O.	WRAV
KMO KNT	Tacoma, Wash. Kukah Bay, Alaska	250 263	FT. BEN HARRISON, IND.	266 258	WCBN WFBY	243 244	Fresno, Cal.	KMJ
KNX	Los Angeles, Cal.	337	FT. BEN. HARRISON, IND. FORT DODGE, IA.	231	KFER	244	Boston, Mass. Columbus, Ga.	WTAT WHBV
KOA	Denver, Col.	323	<u>FORT</u> DODGE, IA.	246	KFJY	244	Fargo, N. D.	WDAY
KOB KOP	State College, N. M. Detroit, Mich.	348 286	FORT SILL, OKLA. FORT WAYNE, IND.	263 258	KFRM WDBV	244 244	Freeport, N. Y. Galesburg, Ill.	WGBB WRAM
KPO_	San Francisco, Cal.	428	FORT WAYNE, IND.	234	WHBJ	244	Houghton, Mich.	WWOA
KPPC KQV	Pasadena, Cal. Pittsburgh, Pa.	229. 270	FORT WORTH, TEX.	221 246	KFQB	244	Jennings, La.	WCBJ
ŔŎW	San Jose, Cal.	240	FORT WORTH, TEX. FORT WORTH, TEX.	476	KFRO WBAP	244 244	La Crosse, Wis. Minneapolis, Minn.	WABN WAMD
KRE	Berkeley, Cal.	275	FRANKLINTON, LA.	234	KFLD	244	Missoula, Mont.	KUOM
KSAC KSD	Manhattan, Kan. St. Louis, Mo.	341 545	FREEPORT, N. Y. FREMONT, NEB.	244 280	WGBB	244 245	San Diego, Cal. Canton, O.	KDPT WHBC
KSL _	Salt Lake City, Utah	299	FRESNO, CAL.	243	KMJ	245	Johnstown, Pa.	WBBV
KTHS KTW	Hot Springs, Ark. Seattle, Wash.	375 454	GALESBURG; ILL. GALESBURG, ILL.	25 <u>4</u> 244	WFBZ WRAM	248 248	Anderson, Ind.	WEBD WCAZ
KUO	San Francisco, Cal.	246	GALVESTON, TEX.	240	KFLX	248	Carthage, Ill. Fort Dodge, Ia.	KFJY
KUOM	Missoula, Mont.	244	GALVESTON, TEX.	258	KFUL	246	Fort Worth, Tex.	KFRO
KWG KWH	Stockton, Cal. Los Angeles, Cal.	360 360	GLOUCESTER CITY, N. J. GRAND FORKS, N. D.	268 280	WRAX KFJM	248 246	Milwaukee, Wis. Moberly, Mo.	WSOE KFOJ
KY0	Honolulu, Hawaii	270	GRAND RAPIDS, MICH.	256	WBDC	246	Petoskey, Mich.	WBBP
KYW KZM	Chicago, Ill. Oakland, Cal.	535 360	GRANITEVILLE, O. GREELEY, COL.	229 273	WJD KFKA	246 246	Providence, R. I. San Francisco, Cal.	WCBR KUO
WAAB	New Orleans, La.	263	GREENCASTLE, IND.	231	WLAX	248	Cambridge, O.	\mathbf{WEBE}
WAAC	New Orleans, La.	275	GREENTOWN, IA.	254	WJAK	248	Chickasha, Okla.	KFGD
WAAD WAAF	Cincinnati, O. Chicago, Ill.	248 286	GREENVILLE, S. C. GREENVILLE, TEX.	236 242	WGBT KFPM	248 248	Cincinnati, O. Fall River, Mass.	WAAD WTAB
WAAM	Newark, N. J.	263	GROVE CITY, PA.	258	WSAJ	248	Helena, Mont.	KFCC
WAAN WAAW	Columbia, Mo. Omaha, Neb.	254 285	GUNNISON, COL. HAMILTON, O.	252 360	KFHA WRK	248 248	Houston, Tex. Johnstown, Pa.	KFVI WGBK
WABA	Lake Forest, Ill.	227	HARRISBURG, PA.	266	WABB	248	Lancaster, Pa.	WĞAL
WABB	Harrisburg, Pa.	266 240	HARRISBURG, PA.	231	WHBG	248	Marshalltown, Ia.	KFJB
WABH WABI	Sanduaky, O. Bangor, Me.	240	HARTFORD, CONN. HARTINGTON, NEB.	323 222	WTIC KFRZ	248 248	Mattapoisette. Mass. Menominee, Mich.	WBBG KFLB
WABL	Sorrs, Conn.	283	HASTINGS, NEB.	288	KFKX	248	Northbend, Wash.	KFQW
WABM WABN	Saginaw, Mich. LaCrosse, Wis.	254 244	HAVERFORD, PA. HAVRE, MONT.	261 360	WABQ KFBB	248 248	Omaha, Neb. Portland, Ore.	KFOX KFEC
WABO	Rochester, N. Y.	283	HELENA. MONT.	248	KFCC	248	Portland, Ore.	KFIF
WABQ WABR	Haverford, Pa. Toledo, O.	261 270	HELENA, MONT. HELENA, MONT.	261 261	KFNY KFSY	248 248	Sacramento, Cal. Virginia, Minn.	KFVK KFUZ
WABU	Camden, N. J.	224	HIGHLAND PARK, N. J.	233	WEBA	248	Yankton, S. D.	WNAX
WABW	Wooster, O.	234 270	HOLLYWOOD, CAL.	240	KFQZ KFVF	250	Auburn, Ala.	WMAV
WABX WABY	Mt. Clemens, Mich. Philadelphia, Pa.	242	HOLLYWOOD, CAL. HOLLYWOOD, CAL.	208 252	KFWB	250 250	Boston, Mass. Burlington, Vt.	WNAB WCAX
WABZ	New Orlcans, La.	263 258	HOLY CITY, CAL. HONOLULU, HAWAII	253	KFQU KGU	250	Chicago, Ill.	WMBB
WADC WAFD	Akron, O. Port Huron, Mich.	233	HONOLULU, HAWAII HONOLULU, HAWAII	360 270	KYO	250 250	Conway, Ark. Conway, Ark.	KFKQ KFRJ
WAHG	Richmond Hill, N. Y.	315	HOT SPRINGS, ARK.	375	KTHS	250	Flint, Mich.	WEAA
WAMC	New York, N. Y.	340 244	HOUGHTON, MICH.	266	KFMW WWOA	250 250	Knoxville, Tenn.	WFBC WCBO
WAMD WBAA	Minneapolis, Minn. W. Lafayette, Ind.	283	HOUGHTON, MICH. HOULTON, MO.		WCBL	250	Memphis, Tenn. Oil City, Pa.	WHBA
WBAC	Clemson Coll., S. C.	331	HOUSTON, TEX.	248	KFVI	250	Salt Lake City, Utah	KDYL
WBAH WBAO	Minneapolis, Minn. Decatur, Ill.	417 360	HOUSTON, TEX. HOUSTON, TEX.	256 360	WRAA WEAY	250 250	Tacoma, Wash. Tacoma, Wash.	KFBG KMO
WBAP	Fort Worth, Tex.	476	HOUSTON, TEX.	360	WSAV KFIX	250	Tampa, Fla.	WGBP
WBAV WBAX	Columbus, O. Wilkes-Barre, Pa.	292 254	INDEPENDENCE, MO. INDIANAPOLIS, IND.	240 227	KFIX WBBZ	250 252	Tulsa, Okla. Astoria, Orc.	WLAL KFJI
NBAY	New York, N. Y.	492	IOWA CITY, IA.	284	KFOP WSUI	252	Bangor, Me.	WDBN
NBBG	Mattapoisett, Mass.	248	IOWA CITY, IA.	498	WSŬI	252	Boise, Ida.	KFDD
NBBL NBBM	Richmond, Va. Chicago, Ill.	253 226	ITHACA, N. Y. JAMESTOWN, N. Y.	286 275	WEAI WOCL	252 252	Dennison, Tex. Gunnison, Col.	KFOT KFHA
NBBN	Wilmington, N. C.	275	JEFFERSON CITY, MO.	440	WOS WCBJ	252 252	Hollywood, Cal.	KFWB
NBBP NBBR	Petoskey, Mich. Rossville, N. Y.	246 273	JENNINGS, LA. JOHNSTOWN, PA.	244 245	WCBJ WBBV	252 252	Newark, N. J. New Orleans, La.	WBS WBBS
NBBS	New Orleans, La.	252	JOHNSTOWN, PA.	248	WGB K	252 252 252	Oklahoma City, Okla.	KFJF
VBBU	Monmouth, Ill.	224	JOHNSTOWN, PA.	256	WHBP	252	Orono, Me.	WGBX
VBBV VBBX	Johnstown, Pa. Norfolk, Va.	245 222	JOHNSTOWN, PA. JOLIET, ILL.	360 200	WTAC WIB	252 252	Shreveport, La. Spokane, Wash.	WGAQ KF10
VBBY	Charleston, S. C.	268	JOLIET, ILL.	242	WWAE	252	Springfield, Mo.	WFUV
NBBZ NBCN	Indianapolis, Ind. Chicago. Ill.	227 266	JOPLIN, MO. JUNEAU, ALASKA	283 226	WHAH KFIU	252 252	Tacoma, Wash.	KGB WTAL
NBDC	Grand Rapids, Mich.	256 256	KALAMAZOO, MICH.	283	WLAQ	252 252	Tullahoma, Tenn.	WCBV
NBES	Tacoma Park, Md.	222	KANSAS CITY, MO.	365	WDAF	253	Holy City, Cal.	KFQU
VBGA VBOQ	Baltimore, Md. Richmond Hill, N. Y.	254 236	KANSAS CITY, MO. KELLOGG, IDA.	365 233	WHB KFEY	253 253	Lacy, Wash. Richmond, Va.	KGÝ WBBL
NBR T	Butler, Pa.	286	KENOSHA, WIS.	225	WOAR	254	Albuquerque, N. M	KLLR
NBRE NBS	Wilkes-Barre, Pa. Newark, N. J.	286 231 252	KINGSTON, N. Y.		WDBZ WFBC	254 254	Arnold, Pa. Baltimore, Md.	WCBU WBGA
NBT .	Charlotte, N. C.	275	KNOXVILLE, TENN. KUKAH BAY, ALASKA		KNT	254	Baton Rouge, La.	KFGC
NBZ	Springfield, Mass.		LACONIA, N. H.	254	WKAV		Butte, Mont.	KFUY

Call									
WOAD Pitteburgh, Pi.		Location		Location					Call Letters
## WCASH Coloridate A. A. A. A. A. A. A. A	WCAD	Canton, N. Y.	280	LA CROSSE, WIS,	244	WABN	254	Coldwater, Miss.	KFNG
MCAH Columbus, O.	WCAE	Pittsburgh, Pa.	461	LACY, WASH,	253	KGY	254	Columbia, Mo.	
WGAD Ontheid, Mina. 238 LAMONI, JA. 239 KFPU 25 Fall River, Mass. WGAB WGAD Ontheid, Mina. 231 LAMONI, JA. 232 WGBD 254 Galester, Jil. WFBV WGAD Ontheid, Mina. 231 LAMONI, JA. 232 WGBD 254 Galester, Jil. WFBV WGAD Minerapolis, Mina. 230 LARAMIE, WTO. 240 WGBD 254 Galester, Jil. WGAD Minerapolis, Mina. 230 LARAMIE, WTO. 240 WGBD 254 Galester, Jil. WGAD Minerapolis, Mina. 230 LARAMIE, WTO. 240 WGBD 254 Little Rock, Art. 256 LARAMIE, WTO. 254 WGBD 255 Galester, Jil. WGAD LARAMIE, WTO. 240 WGBD 255 Galester, Jil. WGAD LARAMIE, WTO. 255 WGBD 255 WGBD 255 Galester, Jil. WGAD LARAMIE, WTO. 255 WGBD 255 WG			262						KFEL
MCAD Pattorner, M.G			283				254	Fall River, Mass.	
WARD 25 Mashington, D. C. 668 LANSING, MiCh. 226 WERD 25 Lacenia, N. H. WKAY WKAR Minespolls, Minn. 260 LANSING, Mich. 226 WKAY 254 Lacenia, N. H. WKAY	WCAL	Northfield, Minn.	3 36	LANCASŤER, PA.				Galesburg, Ill.	
WGAS Minapopils, Minn. 288 LaPORTTE, IND. 224 WRAP 224 Lincoln, Neb. WRAP WGAS Minapopils, Minn. 280 LAPORTTE, IND. 288 WRAP 289 Little Rock, Ark. WGAS Minapopils, Minn. 280 LAPORTTE, IND. 280 LAPORTTE, IND. 280 LAPORTTE, IND. 281 Little Rock, Ark. WRAP WGAS Minapopils, Minn. 280 WGAS WIRD 284 WIRD 284 WIRD 284 WIRD 285 Minapopils, Minn. 285 WGAS WGAS Minapopils, Minn. 286 WGAS Minapopils, Minn. 286 WGAS Anna Arbor, Mich. 280 LAPORTTE, IND. 280 WGAS Anna Arbor, Mich. 280 LAPORTTE, MINN. 280 WGAS Minney 280 Minney		Baltimore, Md.							
WCAS DE CARDON STATE PROCESS AND STATE PROCESS A									
WCAU Philadelplain, Pa. 278 WCAV Little Rock, Ark. 281 WCAV Little Rock, Ark. 282 WCAV Little Rock, Ark. 283 WCAV Little Rock Rock Little Rock Rock Little Rock, Ark. 284 WCAV Little Rock, Ark. 285 WCAV Little Rock, Ark.			280	LARAMIE, WYO.	283	KFBU	254	Little Rock, Ark.	KFMB
WGAX Derigation, V. WGAX Cardinage, III. 250 LAWRENCE KAN, 250 WOAN 24 Richmond, Cal. KFOOU 250 WOAN 24 Richmond, Cal. KFOOU 250 WOAN 250 WOAN 240 WOAN 250 WOAN 25			240			WGBN			WIAD
WCAX Burlington, V. 250 LAWRENCEBURG, TENN. 280 WOAN 254 Sagman, Mich. WBAX WCBA Allestoren, I. 264 LIMA, O. NEB 269 WOAN 254 WIBAS WI	WCAU		263						
WGAS Carthage, III. 246 LIMA, O. WIEB CARDON, P. WAS WGAS CARDON,	WCAX		250		280	WOAN	254	Saginaw, Mich.	WABM
WCBD Zender Zen									
WCBD Corticant, La. 244 LINCOLN, NEB. 254 WMAH 256 Colar Rapids, Mass. WDBR WCBP Colar Rapids, La. 264 LITTLE ROUS, ARK. 254 KFMB 256 Colar Rapids, La. KFLP. WCBP Colar Rapids, Mich. WDRV Colar Rapids, Mi						WJAB			
WCBG Pictaburgh, Pa. 256 Charteryolle, Pa. 256 Charteryoll	WCBD		344	LINCOLN, NEB.	254	HAMW	256	Boston, Mass.	WDBŘ
WCBH Offerd, Miss. 283 LOCKPORT, N.Y. 273 WMAK 226 Escanabs, Mich. WRD Offerd, Miss. 284 LOCK GRANGER, MISS. 285 LOCKPORT, N.Y. 273 WMAK 226 Escanabs, Mich. WRD Offerd, Miss. 284 LOCKPORT, N.Y. 275 WMAK 228 KFPR 286 WRD Offerd, Miss. 284 LOCKPORT, N.Y. 275 WMAK 228 KFPR 286 WRD Offerd, Miss. 284 LOCKPORT, N.Y. 275 WMAK 284 LOCKPORT, N.Y. 275 WMAK 285 LOCKPORT, N.Y. 275 LOCKPORT, N.Y. 27					254	KFMB			
WCBH Defining Land Color Defining Color			268 268			WMAK		Escanaba, Mich.	
WCBI Jennis, Tenn. 240 LOS ANGELES, CAL. 251 LOS ANGELES, CAL. 252 KFPG 256 Walls Walls, Wash. 253 LOS ANGELES, CAL. 254 LOS ANGELES, CAL. 255 KFPG 256 Walls Walls, Wash. 256 LOS ANGELES, CAL. 257 KFPG 256 Walls Walls, Wash. 258 COS ANGELES, CAL. 259 KFPG 256 Walls Walls, Wash. 250 LOS ANGELES, CAL. 250 LOS ANGELES, CAL. 250 LOS ANGELES, CAL. 251 KFPG 256 Walls Walls, Wash. 252 LOS ANGELES, CAL. 253 KFPG 256 Walls Walls, Wash. 254 LOS ANGELES, CAL. 255 KFPG 256 Walls Walls, Wash. 256 LOS ANGELES, CAL. 257 KFPG 258 Walls Walls, Wash. 258 COS ANGELES, CAL. 259 KFPG 258 Walls Walls, Wash. 250 LOS ANGELES, CAL. 250 LOS ANGELES, CAL. 250 LOS ANGELES, CAL. 251 LOS ANGELES, CAL. 252 KFPG 258 Walls Walls, Wash. 253 LOS ANGELES, CAL. 254 LOS ANGELES, CAL. 255 LOS ANGELES, CAL. 256 LOS ANGELES, CAL. 257 WALLS WALLS,	WCBH	Oxford, Miss.	242	LOGANSPORT, IND.	220	WHBL	256	Grand Rapids, Mich.	WBDC
WCBN P. Ben. Harrison, Ind. 266 WCBN P. Manushia, Tenn. 250 WCBN P. Wordenee, R. I. 246 WCBT Providence, R. I. 246 WCBT Wordenee, R. I. 246 WCBT Wordene				LONG BEACH, CAL.		KFON		Houston, Tex.	
WCBN P. Ben. Harrison, Ind. 266 WCBN P. Manushia, Tenn. 250 WCBN P. Wordenee, R. I. 246 WCBT Providence, R. I. 246 WCBT Wordenee, R. I. 246 WCBT Wordene			280		238	ŔŦPG	256	Trenton, N. J.	WMAL
WCBO WCBQ WCBQF Memphis, Tenn. 256 LOS ANGELES, CAL. 272 MCBY Karon, O. WADC WCBT WCBT Wordence, R. 1. 266 MCBR LOS ANGELES, CAL. 233 RAS KARON, O. WADC WCBV WCBW Armold, Pa. 228 LOS ANGELES, CAL. 233 RAS KARON, O. WBP WCBV WCBW Macon, Ga. 226 LOUISVILLE, KY. Coll World LES, CAL. 230 RAS WBP Christophin, Ind. WBP Chroman, Ind. WBP WBP Lancester, Pa. WBB WBP WBP Lancester, Pa. WBP WBP WBP WBP </td <td>WCBM</td> <td>Baltimore, Md.</td> <td>229</td> <td>LOS ANGELES, CAL.</td> <td>231</td> <td>KFPR</td> <td>256</td> <td>Walla Walla, Wash.</td> <td>KFCF</td>	WCBM	Baltimore, Md.	229	LOS ANGELES, CAL.	231	KFPR	256	Walla Walla, Wash.	KFCF
WCBR			266 950			Krec			WADC
WCBT Wordence, R. 1. WCBT Wordency, Mass. 228 LOS ANGELES, CAL. 230 KWS 238 Galveston, To. WFBY WCBZ WCBZ Arnold, Pa. 224 LOS ANGELES, CAL. 230 KWS 238 Galveston, To. WFDZ WCBZ W	WCBO		236		405			Chicago, Ill.	WDBY
WCBU Arnold, Pa. 254 LOS ANGELES, CAL. 300 KWH 258 Galveston, Tex. KYUL WCBW Macon, Ga. 225 LOUISVILLE, KY. 286 WLAS 258 Lauseafer, Pa. WDBC WCBW Macon, Ga. 226 LOUISVILLE, KY. 286 WLAS 258 Lauseafer, Pa. WDBC WCBW Buck Hilf Falis, Pa. 286 MACON 226 WWA 228 Lauseafer, Pa. WDBC WCB Buck Hilf Falis, Pa. 286 MACON 226 WWA 228 Dramba, O. WBAZ WCK Eviciti, Mich. 275 MADISON, WIS. 236 WIBA 258 St. Peterburg, Fla. WHBN WDAF Kassae City, Mo. 365 MARISON, WIS. 236 WIBA 258 St. Peterburg, Fla. WHBN WDAH El Paco, Tex. 208 MARISHIA, INAN. 231 KFQL WILL Central Line, O. WWILL WDBA Falson, City, Ga. 236 <td< td=""><td>WCBR</td><td>Providence, R. I.</td><td>246</td><td>LOS ANGELES, CAL.</td><td>293</td><td></td><td></td><td>Ft. Ben. Harrison, Ind.</td><td></td></td<>	WCBR	Providence, R. I.	246	LOS ANGELES, CAL.	293			Ft. Ben. Harrison, Ind.	
WCBBW Tullahoma. Tenn. 252 COUISVILLE, KY. 399 WHAS 258 Grove City, Pa. WSAJ WCBW Newark, N. J. 233 LOWELL, MASS. 266 WOAS 258 Norman, Okla. WNAD WCCD Twin Cities, Minn. 416 MACON, GA. 226 WCWBW 258 Norman, Okla. WNAD WCCE Eigin, II. 278 MACON, GA. 251 WMAZ 258 Pomeroy, O. WAS WCK St. Louis, Mo. 275 MABISON, WIS. 236 WILL 258 Pomeroy, O. WBAZ WCA St. Louis, Mo. 275 MARDISON, WIS. 236 WILL 258 St. Petershurg, Fla. WBAZ WCA MARAIRANA 234 KFOL 285 St. Petershurg, Fla. WBAZ WDAG Amarillo, Tex. 263 MARHATTAN, KAN. 234 KFOL 260 Lima, O. WBAZ WDAR Philadelphia, Pa. 394 MARSHALLTOWN IA. 248 KFOL </td <td></td> <td></td> <td>238 254</td> <td></td> <td>337 360</td> <td>KNX</td> <td></td> <td></td> <td></td>			238 254		337 360	KNX			
WCBW Macon, Ga. 225 LOWELL, MASS. 258 WLAP 258 Lancaster, Pa. WJBC WCBY Buek Hilf Fails, Pa. 288 MACON, GA. 226 WCBW 258 Omaha. Neb. KFCZ WCCD Twin Cities, Minn. 416 MACON, GA. 226 WCBW 228 Omaha. Neb. KFCZ WCE Elgir, III. MACON, GA. 226 WCBW 228 Omaha. Neb. KFCZ WCK Detroit, Mich. 516 MAGDIN, GA. 236 WIBA 228 Peterburg, Fla. WHBN WDAF Kansaa City, Mo. 365 MARHATTAN, KAN. 234 KFVI 228 Taft, Cal. KFQC WDAH Pase, Tex. 288 MARRINGI, I. 224 KFOL 226 New Orleans, La. WWL WDBA Falson, D. 244 MARILLO, ORL. 224 KFOL 226 New Orleans, La. WWL WDBA Falson, D. 244 MARILLO, ORL. 224 KF			252	LOUISVILLE, KY.	399	WHAS	258	Grove City, Pa.	WSAJ
WCBY Buck Hill Falis, Pa. 286 MACON, GA. 226 WGAZ 258 Omaha. Neb. KFCZ WCK L. Louis, Mo. 275 MACION, GI. 535 WHA 286 Pomeroy, O. WSAZ WCK L. Louis, Mo. 275 MADISON, WIS. 258 WBA 288 Roberts, W. WBA WOAD Tanga, Fla. 365 MARAITATAN, KAN. 218 KFVL 288 Skevensville, Mont. KFZQ. WDAG Tanga, Fla. 365 MARHATTAN, KAN. 224 KFQL 288 Skevensville, Mont. KFQL WDAG Amass City, Mo. 365 MARHATTAN, KAN. 224 KFQL 280 No. 260 No. Machanta, Can. WVI. WOB WILL WWILL WWILL WWILL WWILL WWILL WWILL WWILL WILL Alloona, Pa. WWILL WWILL Alloona, Pa. WWILL WWILL Alloona, Pa. WWILL WWILL Alloona, Pa. WWILL WWILL		Macon, Ga.	226 I						
WCCD Twin Cities, Minn. 416 MAGLON, GA. 251 WMAZ 258 Pomeroy, O. WSAZ WCK St. Louis, Mo. 275 MADISON, WIS. 236 WIBA 258 Rechester, N. Y. WHEC WDADE Tampa, Fla. 365 MANHATTAN, KAN. 218 KFVH. 258 Teverablurg, Fla. WIBA WDAH Tasasa City, Mo. 365 MARHATTAN, KAN. 234 KFOL. 286 Taft, Cal. Lima, O. WOC WDAH Plaso, Tex. 268 MARRHORI, IND. 223 KFOL. 260 Now-Orleans, La. WVLC WDAP Paragon, N. Ca. 243 MARSHALLTOWNIA. 228 KFDB 240 Now-Orleans, La. Woll Washington, D. C. WILL WDBS Columbud, Mass. 229 MARTIANSBURG, W. VA. 229 WGBR 231 Maccaster, Pa. 238 MACEASPOPAIT, PA. WBB 251 Helena, Mont. KFPS WDBF Voungstown, O. 315 MCKEESPOPORT, PA. <td< td=""><td></td><td></td><td>268</td><td></td><td>200</td><td>WČRW</td><td></td><td></td><td></td></td<>			268		200	WČRW			
WCEE Elgin, III. 278 MARDISON, WIS. 335 WHA 258 Rochester, N. Y. WHED WCK L. Duis, Mo. 275 MADISON, WIS. 236 WIBA 258 K. Yetershurg, Fla. WIBN WDAE Tampa, Fla. 365 MARHATTAN, KAN. 218 KFVIT 258 St. Yetershurg, Fla. WIDT WIDT WIDT 276 Taft, Cal. KFQC WIDT WID	WCCQ		416	MACON, GA.	261	WMAZ	258	Pomeroy, O.	WSAZ
WCX Detroit, Mieb. 516 Marinattan, Kan. 218 KFVIL 258 Exceptible, Mont. KFIR. WDAF Rampa, Fla. 365 MARHATTAN, KAN. 211 KSAC 258 Taft, Cal. KFIR. WDAG Manamarillo, Tex. 263 MARHATTAN, KAN. 217 WDAC 280 MARHATTAN, KAN. 218 KFVIL 280 MARCA WDAC MARCA 280 MARCA WDAC MARCA 280 MARCA WDAC MARCA MARCA 280 MARCA WBAC ALGARIAL TOWN, IA. 248 KFJB. 290 WBBC ALGARIAL TOWN, IA. 248 KFJB. 290 WBBC ALGARIAL TOWN, IA. 248 KFJB. 291 MARSHFIELD, ORE. 240 KFOP. 261 Dallas, Tex. WFBG WBBC ALGARIAL TOWN, IA. 248 KFJB. 291 MARTHALTOWN, IA. 248 KFJB. 291 MARCHARISET, MSS. 248 WBBC 281 MarthALTOWN, IA. 248 KFJB. 291 MARCHARI			278	MADISON, WIS.					
WOAF Tampa, Fla. 365 MaRHATTAN, KAN. 341 KSAC 258 Taft, Cal. KFQC 260 KDAF KANAN 273 WTG 250 KJMa, O. 260 KJMa, O. 261 Casenovia, N. Y. WJMA 261 KJMa, O. 261 KJMA, O. 261 Casenovia, N. Y. WJMA 261 KJMA, O.									
WOAH E Paso, Tex. 263 MARENOG, IA. 224 KFOL 260 New Orleans, La. WWL WOAH E Paso, Tex. 288 MARION, IND. 226 WIAG. 260 Washington, D. 241 WIAG. 260 Washington, D. 261 Washington, D. 262 Washington, D. 261 Washington, D. 261 Washington, D. 262 Washington, D. 263 Washington, D. 264 Washington, D. 264 Washington, D. 265 Washington, D.	WDAE	Tampa, Fla.	365		341	KSAC	258	Taft, Cal.	KFQC
WARN Filadelphia, Pa. WARN WA		Kansas City, Mo.							WOAC
WOBA Philadelphis, Pa. 394 MARSHALLTOWN, IA. 248 KFJB 248 KFJB 249 KFOP 281 Casenovia, N. Y. WMAC WMBA Tunton, Mass. 229 WMBK Tunton, Mass. 238 WMATTAPOISETT, MASS. 248 WBBG 261 Helena, Mont. KFPY WMBK WMBK Tunton, Mass. 238 WATTAPOISETT, MASS. 248 WBBG 180 Helena, Mont. KFPY WMBK WMSK		El Paso, Tex.							
WOBBA Columbus, Ga. 226 MRSHFIELO, WIS. 229 WGBR 251 Haverford, Pa. WRR WARQ WOBE Annesser, Pa. 228 MATTINSBURG, W. VA. 209 WIBE 251 Haverford, Pa. Haverford, Pa. WARQ WOBE Athanta, Ga. 278 MATTINSBURG, W. VA. 209 WHBE 251 Haverford, Pa. Haverford, Pa. WARQ WOBE Athanta, Ga. 278 Movecester, Mass. 288 MATTINSBURG, O. 288 WHBS 251 Helens, Mont. KFNY WOBI S. Petersburg, Fla. 226 McCeaster, Mass. 288 MCH 251 WGI William 251 McGord Hillside, Mass. WIMMED 251 WGI William 251 McGord Hillside, Mass. WIMMED 251 WGI William 251 WGI William 251 WGI William 251 McGord Hillside, Mass. WIMMED 251 WGI William 251 WGI W	WDAR	Philadelphia, Pa.	394	MARSHALLTOWN, IA.	248	KFJB	261	Altoona, Pa.	WFBG
WOBB Taunton, Mass. 229 MARTINSBURG, W. VA. 209 WIBE 261 Haverford, Pa. WABQ WOBE WOBE Atlanta, Ga. 278 MATTAPOISETT, MASS. 248 WBB G 261 Helena, Mont. KFNY WOBH WOBF WORLD, Outsigntown, O. 315 MECHANICSBURG, O. 208 WHBS 261 WGI 281 Mecon, Ga. WMAZ WOBH WORLD, Country, Fla. 226 WBB, Cleveland, O. 226 WBD, Geveland, O. 227 MEDPORD HILLSIDE, MASS. 261 WGI 251 Medford Hilbside, Mass. WGI WIDBL ROBARD, ME, Cleveland, O. 2227 WBMPHIS, TENN. 250 WGBC 251 Medford Hilbside, Mass. WGI WIDBN Bangor, Me. 235 MEMPHIS, TENN. 236 WBC 251 Providence, R. I. WSAD WOBB WOBB Dayton, O. 235 MILMAIN, BEACH, FLA. 248 KFLB 231 Mush Bach, Minn. WGR WGR 251 New York, N. Y. WDAG WOBW Dayton, O. 235 MILMAIN, ELA. 238 WGAM		Fargo, N. D.	244						WMAC
WOBE Lancaster, Pa. 258 MATTAPOISETT, MASS. 248 WBBG 261 Helena, Mont. KFNY WOBF Youngstown, O. 315 McKEESPORT, PA. 234 WIK 261 Macon. Macon. KFNY WOBH Youngstown, O. 315 McKEESPORT, PA. 234 WIK 251 Macon. Macon. Macon. WMAZ WOBI Seanoke, Va. 227 MEMPHIS, TENN. 250 WCBO 281 Medford Hillside, Mass. WGB WGB WGB 281 Medford Hillside,		Taunton, Mass.	229	MARTINSBURG, W. VA.				Haverford, Pa.	WABO
WOBF VOURSEY, Mass. 268 WOBH Worcester, Mass. McKEESPORT, PA. 234 WIK 261 McGord Billiside. Mass. WMAZ WGI WOBI St. Petersburg, Fla. 226 MoBI Roanoke, Va. 229 McMPHIS, TENN. 250 WCBO. 261 McMord Billiside. Mass. WGI Minneapolis. Minn. KFEK 'KFEK' KFEK' WDBH Cleveland, O. 227 McMPHIS, TENN. 250 WCBO. 261 McMPHIS, TENN. 250 WCBO. 261 McMPHIS, TENN. 250 WCBO. 261 McMPHIS, TENN. WFEK 'KFEK' KFEK' KFHH KFHH KFEK' KFEK' KFHH KFHH WBAD 261 McMPHIS, TENN. 250 WCBO. 261 McMPHIS, TENN. 263 WGBC. 261 McMCESPORT. KFHH WBAD WBAD WBAD 261 McMCESPORT. KFHH KFHH WBAD WBAD WBAD 261 McMonding. KFHH WBAD WBAD 261 McMonding. WGAC WBC WBAD WB			258		248	WBBG		Helena, Mont.	KFNY
WOBH Worcester, Mass. 268 MEDFORD HILLSIDE, MASS. 261 WGI 251 Medford Hillside, Mass. WGI WCBO 250 WCBO 251 Minaepolis, Minn. KFFK WCBV WCBO 251 Meah Bay, Wash KFFH WEBV WCBO 252 MEMPHIS, TENN. 266 WGBC 251 Weah Bay, Wash KFFH WEBV WCBO WCBO 252 MEMPHIS, TENN. 253 WHGQ 251 Providence, R. I. WSAD WCBV WCB									WMAZ
WDBJ Roanoke, Vs. 229 MEMPHIS, TENN. 266 WGBC 261 Neah Bay, Wash KFHM WDBBL Stevens Point, Wis. 278 MEMPHIS, TENN. 233 WHDQ 261 Providence, R. I. WSAD WDBIN Bangor, Me. 252 MEMPHIS, TENN. 503 WMC 261 Salt Lake City, Utah KFOO WDBBP Superior, Wis. 261 WIBAD WIBAD WIBAD WIBAD WIBAD 261 Salt Lake City, Utah KFOO WDBB Salem, N. J. 234 WGBQ 261 Superior, Wis. WDBP WDBB Dayton, O. 283 MILMI, FLA. 283 WMAD 283 Amarillo, Tex. WDAG WDBX Port Wayne, Ind. 258 WILLWAUKEE, WIS. 220 WHAD 263 Fort Sill, Okla. KFRM WDBX New York, N. Y. 233 MILWAUKEE, WIS. 246 WSDE 263 Jash ville, Tenn. 268 MILWAUKEE, WIS. 226 WWAD 263 Jash ville, Tenn. 267	WDBH	Worcester, Mass.	268	MEDFORD HILLSIDE, MASS.	261	WGI	261	Medford Hillside, Mass.	WGI
WDBH WDBP Stevens Point, Wis. 278 MEMPHIS, TENN. 503 WHG 261 Providence, R. I. WSAD WDBP MEMPHIS, TENN. 503 WHG 261 Sid Lake City, Utah KFOO WINGER Park, Fla, 240 MEMPHIS, TENN. 248 KFI.B 261 Sioux City, Ia. KFM WEAD WINGER Park, Fla, 240 MEMPHIS, TENN. 234 WGBQ 261 Sioux City, Ia. KFM WEAD WINGER Park, Fla, 240 MEMPHIS, TENN. 248 KFI.B 261 Sioux City, Ia. KFM WEAD WOBR MENOMINEE, WIS. 234 WGBQ 261 Sioux City, Ia. WDBP WHAD 263 Memphis, Ia. WCAG WGAG			226	MEMPHIS, TENN.	250				
WDBBL MDBN Bangor, Mc Stevens Point, Wis. 278 MENOMINEE, MICH. 503 WMC 281 Lake City, Utah KFOO KFOO WDBD WDBP MDBP WDBP Saler, N. J. WDBP WDBP Saler, N. J. 240 MENOMINEE, MIS. 248 KFLB 281 Sioux City, Ia. KFOM WDBP WDBP Salern, N. J. 234 WMBP Salern, N. J. 234 WMBP Salern, N. J. WDBP WMBP Salern, All Salern, All Salern, All Salern, All Salern, N. J. WDBP WMBP Salern, All Salern			227	MEMPHIS, TENN.	233			Providence, R. I.	WSAD
WDBD	WDBL	Stevens Point, Wis.	278	MEMPHIS, TENN.	503	WMC	261	Salt Lake City, Utah	KFOO
WDBBP SUPERIOR, Wis. 261 MIAMI, FLA. 283 WQAM 282 New Orleans, I.a. WCAG WDBB Salem, N. J. 234 MIAMI BEACH, FLA. 384 WMBF GES Amarillo, Tex. WDAG WDBB Dayton, O. 283 MILWAUKEE, WIS. 286 KFKB 283 Fort Sill, Okla. KFRM WDBW Fort Wayne, Ind. 255 MILWAUKEE, WIS. 246 WSOE 283 Little Rock, Ark. WCAV WDBW Columbia, Tenn. 268 MILWAUKEE, WIS. 246 WSOE 253 Little Rock, Ark. WCAV WDBX New York, N. Y. 233 MILWAUKEE, WIS. 246 WSOE 253 Little Rock, Ark. WCAV WDBX Chicago, Ill. 258 MINNEAPOLIS, MINN. 261 KFEK 283 New Orleans, La. WAAB WDBX Kingston, N. Y. 233 MINNEAPOLIS, MINN. 231 KFMT 283 New Orleans, I.a. WAB WDDW Cranston, R. I. 440 MINNEAPOLIS, MINN. 417 WBAH 283 New York, N. Y. WSAP WEAA Flint, Mich. 250 MWEAT MINNEAPOLIS, MINN. 278 WLB 283 St. Louis, Mo. WEAD WEAH Vork, N. Y. 485 MINNEAPOLIS, MINN. 278 WLB 283 St. Louis, Mo. WEAD WEAD WEAD WEAD <t< td=""><td>WDBN</td><td>Bangor, Mc. Winter Park Ela</td><td>252 240</td><td>MENOMINEE, MICH.</td><td>248</td><td>WGBO</td><td>261</td><td>Sioux City, Ia. Superior, Wig</td><td>WDRP</td></t<>	WDBN	Bangor, Mc. Winter Park Ela	252 240	MENOMINEE, MICH.	248	WGBO	261	Sioux City, Ia. Superior, Wig	WDRP
WDBQ Salem, N. J. 234 MIAMI BEACH, FLA. 384 WMBF 283 Amarillo, Tex. WDAG WDBF Boston, Mass. 256 MILFORD, KAN. 286 KFKB 283 Fort Still, Okla. KFRM WDBV Fort Wayne, Ind. 258 MILWAUKEE, WIS. 280 WHAD 283 Kukah Bay, Alaska KNT WDBX New York, N. Y. 233 MINNEAPOLIS, MINN. 231 KFEK 283 Kukah Bay, Alaska KNT WDBX New York, N. Y. 233 MINNEAPOLIS, MINN. 231 KFEK 283 New Ark, Ill. WAAB WDBX Kingston, N. Y. 233 MINNEAPOLIS, MINN. 231 KFEK 283 New Ark, N. J. WAAB WDBX Kingston, N. Y. 233 MINNEAPOLIS, MINN. 241 WAMD 283 New Orleans, La. WABZ WDBX Kingston, N. Y. 234 MINNEAPOLIS, MINN. 247 WABA 283 New Orleans, La. New ABZ New Orleans, La. New ABZ	WDBP		261	MIAMI, FLA.	283	WQAM	262	New Orleans, La.	WCAG
WDBS Dayton, O. 283 WDBV Fort Wayne, Ind. 258 WDBW Columbia, Tenn. 268 MILWAUKEE, WIS. 246 WSOE 283 Little Rock, Ark. WCAY. WCAY. WCBY. WCBY. WCAY. WAAM. WCAY. WCAY. WAAM. WCAY. WAAY. WCAY. WCAY. WCAY. WAAY. WCAY. WCAY. <td>WDBQ</td> <td>Salem, N. J.</td> <td>234</td> <td>MIAMI BEACH, FLA.</td> <td>384</td> <td>WMBF</td> <td>'i 263</td> <td></td> <td>WDAG</td>	WDBQ	Salem, N. J.	234	MIAMI BEACH, FLA.	384	WMBF	'i 263		WDAG
WDBW Columbia, Tenn. 268 MINNEAPOLIS, MINN. 231 KFDZ 253 Nashville, Tenn. WEBX WDBY Chicago, Ill. 258 MINNEAPOLIS, MINN. 261 KFEK 283 Newark, N. J. WAAB WDBZ Kingston, N. Y. 233 MINNEAPOLIS, MINN. 244 WAMD 263 New Orleans. La. WAAB WDOB Chattanooga, Tenn. 256 MINNEAPOLIS, MINN. 241 WBAH 283 New Orleans. La. WABZ WDOF Cranston, R. I. 440 MINNEAPOLIS, MINN. 241 WLAG 283 New Orleans. La. WCBA WDZ Tuscola, Ill. 278 MINNEAPOLIS, MINN. 217 WLAG 283 New Orleans. La. WCBA WEAF Cranston, R. I. 440 MINNEAPOLIS, MINN. 217 WLAG 283 New Orleans. La. WCBA WEAF Nor York, N. Y. 485 MINNEAPOLIS, MINN. 218 283 New Orleans. La. WCBA WEAH Wiehita, Kan.			283	MILWAUKEE, WIS.	280	WHAD	263		KNT
WDBX New York, N. Y. 233 MINNEAPOLIS, MINN. 261 KFEK 263 New ark, N. J. WAAM WDBY Chicago, Ill. 258 MINNEAPOLIS, MINN. 231 KFMT 283 New Orleans. La. WAAB WDM Washington, D. C. 234 MINNEAPOLIS, MINN. 244 WAMD 263 New Orleans. La. WAAB WDW Cranston, R. I. 440 MINNEAPOLIS, MINN. 417 WBAH 283 New Orleans. La. WABAB WDV Cranston, R. I. 440 MINNEAPOLIS, MINN. 417 WBAH 283 New Orleans. La. WCBE WDV Tuscola, Ill. 278 MINNEAPOLIS, MINN. 417 WBAG New York, N. Y. WSAP WEAA Flint, Mich. 250 MINNEAPOLIS, MINN. 278 WLB 283 St. Louis, Mo. WRAO WEAA Wichita, Kan. 250 MINNEAPOLIS, MINN. 278 WLB 283 St. Louis, Mo. WSAG WEAI Wean Wichita, Ka	WDBV	Fort Wayne, Ind.	258	MILWAUKEE, WIS,	246	WSOE	263	Little Rock, Ark.	WCAV
WDBY Chicago, III. 258 MINNEAPGLIS, MINN. 231 KFMT 263 New Orleans. La. WAAB WDBZ Kingston, N. Y. 234 MINNEAPOLIS, MINN. 244 WAMD 263 New Orleans. La. WABZ WDOB Chattanooga, Tenn. 256 MINNEAPOLIS, MINN. 417 WBAH 263 New Orleans. La. WABZ WDZ Tuscola, III. 278 MINNEAPOLIS, MINN. 278 WLB 263 New York, N. Y. WSAP WEAF New York, N. Y. 440 MINNEAPOLIS, MINN. 278 WLB 263 New York, N. Y. WSAP WEAF New York, N. Y. 440 MINNEAPOLIS, MINN. 278 WLB 263 New York, N. Y. WSAP WEAF New York, N. Y. 445 MINNEAPOLIS, MINN. 278 WLB 263 St. Louis, Mo. WRAO WEAF New York, N. Y. 485 MINNEAPOLIS, MINN. 278 WLB 263 St. Louis, Mo. WBCA WEAC MEACOLIA, MONT.			268	MINNEAPOLIS, MINN. MINNEAPOLIS MINN	231 261	KFEK	263	Nashville, 1 cnn. Newark N. I	WAAM
WDBZ Kingston, N. Y. 233 MINNEAPOLIS, MINN. 244 WAMD 263 New Orleans, Lo. WABZ WDDM Washington, D. C. 234 MINNEAPOLIS, MINN. 2417 WBAH 263 New Orleans, Lo. WABZ WDWF Cranston, R. I. 440 MINNEAPOLIS, MINN. 220 WCAS 263 New Orleans, Lo. WCBE WDWF Cranston, R. I. 440 MINNEAPOLIS, MINN. 217 WLAG 263 New Orleans, Lo. WCBE WEAA Flint, Mich. 225 MINNEAPOLIS, MINN. 218 WLAG 263 San Antonio, Tex. WCAR WEAA Flint, Mich. 250 MISHAWAKA, IND. 369 WOAO 264 St. Louis, Mo. WFAQ WEAH Wichita, Kan. 280 MOBERLY, MO. 266 KFFD 268 Chicago, Ill. WENR WEAI Ithaca, N. Y. 286 MOBERLY, MO. 246 KFOJ 266 KFFOJ 266 KFFOJ 266 Chicago, Ill. <	WDBY	Chicago, Ill.	258	MINNEAPOLIS, MINN.	231	KFMT	263	New Orleans, La.	WAAB
WDOB Chattanooga, Tenn. 256 MINNEAPOLIS, MINN. 280 WCAS 263 New York, N. Y. WSAP WDZ Tuscola, Ill. 278 MINNEAPOLIS, MINN. 278 WLB 263 San Antonio, Tex. WCAR WEAA Flint, Mich. 250 MISSOULA, MONT. 278 WLB 263 St. Louis, Mo. WRAO WEAF New York, N. Y. 485 MISSOULA, MONT. 244 KUOM 264 St. Louis, Mo. KFQA WEAH Wichita, Kan. 280 MOBERLY, MO. 266 KFFP 268 Chicago, Ill. WEAN WEAJ Vermilion, S. D. 283 MONMOUTH, ILL. 224 WBBU 286 Chicago, Ill. WENR WEAN Providence, R. I. 273 MONTGOMERY, ALA. 226 WKAN 286 Chicago, Ill. WEBN WEAO Columbus, O. 293 MONTGOMERY, ALA. 226 WKAN 266 Harrisburg, Fa. WABB WEAR Cleveland, O. 389	WDBZ		233	MINNEAPOLIS, MINN.	244	WAMD			WABZ
WDWF Cranston, R. I. 440 MINNEAPOLIS, MINN. 417 WLAG 283 San Antonio, Tex. WCAR WEAA Flint, Mich. 250 MINNEAPOLIS, MINN. 369 WOAO 264 St. Louis, Mo. WRAO WEAF New York, N. Y. 485 MISHAWAKA, IND. 369 WOAO 264 St. Louis, Mo. KFQA WEAH Wichita, Kan. 280 MOBERLY, MO. 266 KFFP 268 Chicago, Ill. WBCN WEAJ Vermilion, S. D. 283 MONMOUTH, ILL. 224 WBBU 286 Chicago, Ill. WENR WEAN Providence, R. I. 273 MONTGOMERY, ALA. 226 WKAN 266 Chicago, Ill. WCBN WEAO Columbus, O. 293 MONTGOMERY, ALA. 226 WKAN 266 Houghton, Nich. KFMW WEAU Sioux City, Ia. 275 MOSCOW, IDA. 230 KFAN 266 Lowell, Mass. WQAS WEBA Highland Park, N. J. <td< td=""><td>MDUB MDM</td><td></td><td>254 256</td><td></td><td></td><td></td><td>263</td><td></td><td>WSAP</td></td<>	MDUB MDM		254 256				263		WSAP
WEAA Flint, Mich. 250 Mishawaka, Ind. 369 WOAO 254 St. Louis, Mo. KFQA WEAF New York, N. Y. 485 Missoulla, Mont. 244 KUOM 264 St. Louis, Mo. KFQA WEAI Ithaca, N. Y. 286 Moberly, Mo. 266 KFFD 268 Chicago, Ill. WENR WEAJ Vermilion, S. D. 283 MONMOUTH, ILL. 224 WBU 266 Ft. Ben. Harrison, Ind. WCBN WEAM North Plainfield, N. J. 286 MONTGOMERY, ALA. 226 WAB MCBN WABB WEBN WABB WABB WABB WABB WABB WEBN WABB WABB WEBN WABB WEBC WEBN WEBN WEBN <th< td=""><td>WDWF</td><td>Cranston, R. I.</td><td>440</td><td>MINNEAPOLIS, MINN.</td><td>417</td><td>WLAG</td><td>263</td><td>San Antonio, Tex.</td><td>WCAR</td></th<>	WDWF	Cranston, R. I.	440	MINNEAPOLIS, MINN.	417	WLAG	263	San Antonio, Tex.	WCAR
WEAH Wichita, Kan. 280 MOBERLY, MO. 266 KFFP 288 Chicago, Ill. WBCN WEAI Ithaca, N. Y. 286 MOBERLY, MO. 246 KFOJ 266 Chicago, Ill. WENR WEAJ Vermilion, S. D. 283 MONMOUTH, ILL. 224 WBBU 286 Chicago, Ill. WENR WEAN North Plainfield, N. J. 286 MONTGOMERY, ALA. 226 WKAN 266 Harrisburg, Fa. WABB WEAN Providence, R. I. 273 MOOREHEAD, MINN. 286 WPAU 266 Houghton, Mich. KFMW WEAO Columbus, O. 293 MOSCOW, IDA. 230 KFAN 266 Lowell, Mass. WQAS WEAU Sioux City, Ia. 275 MT. CLEMENT, MICH. 270 WABX 266 Lowell, Mass. WQAS WEB St. Louis, Mo. 273 NASHVILLE, TENN. 236 WCBY 268 Moberly, Mo. WFEP WEB St. Louis, Mo. 273	WDZ	Tuscola, Ill.	278	MINNEAPOLIS, MINN.				St. Louis, M.o.	WRAO
WEAH Wichita, Kan. 280 MOBERLY, MO. 266 KFFP 288 Chicago, Ill. WBCN WEAI Ithaca, N. Y. 286 MOBERLY, MO. 246 KFOJ 266 Chicago, Ill. WENR WEAJ Vermilion, S. D. 283 MONMOUTH, ILL. 224 WBBU 286 Chicago, Ill. WENR WEAN North Plainfield, N. J. 286 MONTGOMERY, ALA. 226 WKAN 266 Harrisburg, Fa. WABB WEAN Providence, R. I. 273 MOOREHEAD, MINN. 286 WPAU 266 Houghton, Mich. KFMW WEAO Columbus, O. 293 MOSCOW, IDA. 230 KFAN 266 Lowell, Mass. WQAS WEAU Sioux City, Ia. 275 MT. CLEMENT, MICH. 270 WABX 266 Lowell, Mass. WQAS WEB St. Louis, Mo. 273 NASHVILLE, TENN. 236 WCBY 268 Moberly, Mo. WFEP WEB St. Louis, Mo. 273	WEAR	New York, N. Y.	250 485	MISSOULA, MONT.				St. Petersburg, Fla.	WSĂG
WEAI Ithaca, N. Y. 286 MOBERLY, MO. 246 KFOJ 286 Chicago, Ill. WENR WEAM Vermilion, S. D. 283 MONMOUTH, ILL. 224 WBBU 286 Ft. Bern. Harrison, Ind. WCBN WEAN Providence, R. I. 273 MONTGOMERY, ALA. 226 WKAN 266 Houghton, Nich. KFMW WEAO Columbus, O. 293 MOOSEHEART, ILL. 303 WJJD 266 La Salle, Ill. WGBN WEAU Sioux City, Ia. 275 MT. CLEMENT, MICH. 270 WABX 266 Lowell, Mass. WQAS WEB St. Louis, Mo. 273 NASHVILLE, TENN. 236 WCBQ 266 Moberly, Mo. WFEP WEBA Highland Park, N. J. 233 NASHVILLE, TENN. 263 WEBX 266 State College, N. M. KFRY WEBC Superior, Wis. 242 NEW HAVEN, CONN. 268 WPAJ 268 Buck Hille, Mo. KFPW WEBE Cambridge, O. </td <td>WEAH</td> <td>Wichita, Kan.</td> <td>280</td> <td>i MOBERLY. MO.</td> <td>266</td> <td>KFFP</td> <td>268</td> <td>Chicago, Ill.</td> <td>WBCN</td>	WEAH	Wichita, Kan.	280	i MOBERLY. MO.	266	KFFP	268	Chicago, Ill.	WBCN
WEAM North Plainfield, N. J. 286 MONTGOMERY, ALA. 226 WKAN 266 Harrisburg, Fa. WABB WEAN Providence, R. I. 273 MOOREHEAD, MINN. 286 WPAU 266 Houghton, Vich. KFMW WEAO Columbus, O. 293 MOSCOW, IDA. 303 WJJD 266 La Salle, Ill. WGBN WEAR Cleveland, O. 389 MOSCOW, IDA. 230 KFAN 266 La Salle, Ill. WGBN WEAY Houston, Tex. 360 MT. CLEMENT, MICH. 270 WABX 266 Memphis, Tenn. WGBC WEB St. Louis, Mo. 273 NASHVILLE, TENN. 263 WEBX 266 Moberly, Mo. WFEP WEBA Highland Park, N. J. 233 NASHVILLE, TENN. 263 WEBX 266 Shenandoah, Ia. KFNF WEBC Superior, Wis. 242 WEB BEOFORD, MASS. 209 WIBH 268 State College, N. M. KFPW WEBE Cambridge, O. <td>WEAL</td> <td>Ithaca, N. Y.</td> <td>286</td> <td>MOBERLY, MO.</td> <td></td> <td>KFOJ WREIT</td> <td></td> <td></td> <td>WENR</td>	WEAL	Ithaca, N. Y.	286	MOBERLY, MO.		KFOJ WREIT			WENR
WEAN Providence, R. I. 273 MOOREHEAD, MINN. 286 WPAU 266 Houghton, Mich. KFMW WEAO Columbus, O. 293 MOOSEHEART, ILL. 303 WJJD 266 La Salle, Ill. WGBN WEAR Cleveland, O. 389 MOSCOW, IDA. 230 KFAN 266 Lowell, Mass. WQAS WEAY Bouston, Tex. 360 MT. CLEMENT, MICH. 270 WABX 266 Memphis, Tenn. WGBC WEB St. Louis, Mo. 273 NASHVILLE, TENN. 236 WCBQ 266 Moberly, Mo. WFEP WEBA Highland Park, N. J. 233 NEAH BAY, WASH. 261 KFHM 266 State College, N. M. KFRY WEBC Superior, Wis. 242 NEW BEDFORD, MASS. 209 WIBH 268 Buck Hill Falls, Pas. WCBY WEBD Anderson, Ind. 246 NEW HAVEN, CONN. 263 WAAB 266 Cedar Rapids, Ia. WJAM	WEAM	North Plainfield, N. J.	286 l	MONTGOMERY, ALA,	226	WKA N		Harrisburg, Pa.	WABB
WEAR Cleveland, O. 389 MOSCOW, IDA. 230 KFAN 266 Lowell, Mass. WQAS WEAU Sioux City, Ia. 275 MT. CLEMENT, MICH. 270 WABX 268 Memphis, Tenn. WGBC WEBY Houston, Tex. 360 NASHVILLE, TENN. 236 WCBQ 268 Memphis, Tenn. WGBC WEBA Highland Park, N. J. 233 NASHVILLE, TENN. 263 WEBX 266 Shenandoah, Ia. KFNF WEBC Superior, Wis. 242 NEW BEDFORD, MASS. 209 WIBH 266 State College, N. M. KFRY WEBD Anderson, Ind. 246 NEW HAVEN, CONG. 268 WPAJ 268 Cedar Rapids, Ia. WJAM WEBE Cambridge, O. 248 NEW ORLEANS, LA. 263 WAAB 266 Cedar Rapids, Ia. WJAM	WEAN	Providence, R. I.	273	MOOREHEAD, MINN.	286	WPAU	266	Houghton, Nich.	KFMW
WEAY Houston, Tex. 360 NASHVILLE, TÉNN. 236 WCBQ 268 Moberly, Mo. WFEP WEB St. Louis, Mo. 273 NASHVILLE, TENN. 263 WEBX 266 Shenandoah, Ia. KFNF WEBA Highland Park, N. J. 233 NEAH BAY, WASH. 261 KFHH 266 State College, N. M. KFRY WEBC Superior, Wis. 242 NEW BEDFORD, MASS. 209 WIBH 268 Buck Hill Falls, Pal. WCBY WEBD Anderson, Ind. 246 NEW HAVEN, CONN. 263 WPAJ 268 Cartersville. Mo. KFPW WEBE Cambridge, O. 248 NEW ORLEANS. LA. 263 WAAB 266 Cedar Rapids, Ia. WJAM			293		303	WIJD	266	La baile, III. Lowell Moss	WORN
WEAY Houston, Tex. 360 NASHVILLE, TÉNN. 236 WCBQ 268 Moberly, Mo. WFEP WEB St. Louis, Mo. 273 NASHVILLE, TENN. 263 WEBX 266 Shenandoah, Ia. KFNF WEBA Highland Park, N. J. 233 NEAH BAY, WASH. 261 KFHH 266 State College, N. M. KFRY WEBC Superior, Wis. 242 NEW BEDFORD, MASS. 209 WIBH 268 Buck Hill Falls, Pal. WCBY WEBD Anderson, Ind. 246 NEW HAVEN, CONN. 263 WPAJ 268 Cartersville. Mo. KFPW WEBE Cambridge, O. 248 NEW ORLEANS. LA. 263 WAAB 266 Cedar Rapids, Ia. WJAM	WEAU	Sioux City, Ia.	275	MT. CLEMENT, MICH.	270	WABX	266	Memphis, Tenn.	WGBC
WEBA Highland Park, N. J. 233 NEAH BAY, WASH. 261 KFHH 266 State College, N. M. KFRY WEBC Superior, Wis. 242 NEW BEDFORD, MASS. 209 WIBH 268 Buck Hill Falls, Pa. WCBY WEBD Anderson, Ind. 246 NEW HAVEN, CONN. 268 WPAJ 268 Cartersville, Mo. KFPW WEBE Cambridge, O. 248 NEW ORLEANS, LA. 263 WAAB 266 Cedar Rapids, Ia. WJAM	WEAY	Houston, Tex.	360	NASHVILLE, TENN.	236	WCBQ	266	Moberly, Mo.	WFEP
WEBC Superior, Wis. 242 NEW BEDFORD, MASS. 209 WIBH 268 Buck Hill Falls, Pa. WCBY WEBD Anderson, Ind. 246 NEW HAVEN, CONN. 268 WPAJ 268 Cartersville, Mo. KFPW WEBE Cambridge, O. 248 NEW ORLEANS, LA. 263 WAAB 266 Cedar Rapids, Ia. WJAM	WER A	St. Louis, Mo. Highland Park N. I	273 233	NASHVILLE, TENN. Neah bay, wash	263 261	WEBX KFHH	266 266		KFRY
WEBD Anderson, Ind. 246 NEW HAVEN, CONN. 268 WPAJ 268 Cartersville, Mo. KFPW WEBE Cambridge, O. 248 NEW ORLEANS, LA. 263 WAAB 266 Cedar Rapids, Ia. WJAM	WEBC	Superior, Wis.	242	NEW BEDFORD, MASS.	209	WIBH	268	Buck Hill Falls, Pa.	WCBY
	WEBD	Anderson, Ind.	246	NEW HAVEN, CONN.					KFPW
	WEBH		370	NEW ORLEANS, LA.					

Call Letters	Location	Wave- length	 Location	Wave- Call length Letters	Wave		Call Letters
WEBJ WEBM	New York, N. Y. A Portable	273 226	NEW ORLEANS, LA. NEW ORLEANS, LA.	263 WABZ 252 WBBS	268 268	Chicago, Ill. Chicago, Ill.	WJAZ
WEBP WEBT	New Orleans, La.	280	NEW ORLEANS, LA.	262 WCAG	268	Columbia, Tenn.	WTX WDBW
WEBW	Dayton, O. Beloit, Wis.	270 283	NEW ORLEANS, LA. NEW ORLEANS, LA.	263 WCBE 280 WEBP	268 268	Denver, Col. El Paso, Tex.	KFLE WDAH
WEBX WEEI	Nashville, Tenn. Boston, Mass.	263 475	NEW ORLEANS, LA.	270 WOW L	268	Gloucester City, N. J.	WRAX
WEMC	Berrien Springs, Mich.	285	NEW ORLEANS, LA. NEW ORLEANS, LA.	319 WSMB 260 WWL	268 268	New Haven, Conn. Oak, Neb.	WPAJ KFEQ
WENR WEW	Chicago, Ill. St. Louis, Mo.	266 280	NEWARK, N. J. NEWARK, N. J.	263 WAAM	268	Pascagoula, Miss.	WCBĞ
WFAA	Dallas, Tex.	472	NEWARK, N. J.	252 WBS 233 WCBX	268 268	Salt Lake City, Utah Worcester, Mass.	KFPT WDBH
WFAM WFAV	St. Cloud, Minn. Lincoln, Neb.	273 275	NEWARK, N. J. NEW YORK, N. Y.	405 WOR	270	Cleveland, O.	KDPM
WFBB	Eureka, Ill.	240	NEW YORK, N. Y.	340 WAMC 492 WBAY	270 270	Dayton, O. Honolulu, Hawaii	WEBT KYO
WFBC WFBD	Knoxville, Tenn. Philadelphia, Pa.	250 234	NEW YORK, N. Y. NEW YORK, N. Y.	233 WDBX 485 WEAF	270 270	Mt. Clemens, Mich.	WABX
WFBE	Seymour, Ind.	226	NEW YORK, N. Y.	273 WEBJ	270	New Orleans, La. Parkersburg, Va.	WOWL WQAA
WFBG WFBH	Altoona, Pa. New York, N Y.	261 273	NEW YORK, N. Y. NEW YORK, N. Y.	273 WFBH 315 WGBS	270 270	Pitteburgh, Pa. Schenectady, N. Y.	WQAA KQV WRL
WFBJ WFBQ	Collegeville, Minn.	236	NEW YORK, N. Y.	360 WHN	270	Seattle, Wash.	WDZE
WFBR	Raleigh, N. C. Baltimore, Md.	255 452	NEW YORK, N. Y. NEW YORK, N. Y.	455 WJY 455 WJZ	270 271	Toledo, O. Boise, Ida.	WABR KFAU
WFBW WFBY	Cincinnati, O. Ft. Ben Harrison, Ind.	309 258	NEW YORK, N. Y. NEW YORK, N. Y.	526 WNYC	271	Salt Lake City, Utah	KFUT
WFBZ	Galeaburg, Ill.	254	NEW YORK, N. Y.	360 WQAO 263 WSAP	271 272	Springfield, O. Los Angeles, Cal.	WNAP KFSG
WFI WFKB	Philadelphia, Pa. Chicago, Ill.	394 217	NORFOLK, NEB. NORFOLK, VA.	283 WJAG 222 WBBX	273 273	Atlantic, Ia. Belden. Neb.	KFLZ
WFUV	Springfield, Mo.	252	NORFOLK, VA.	280 WTAR	273	Charlestown, W. Va.	KFQY WPAZ
WGAL WGAQ	Lancaster, Pa. Shreveport, La.	248 252 360	NORMA, OKLA. NORTH BEND, WASH.	258 WNAD 248 KFQW	273 273	Cleveland, O. Dearborn, Mich.	WHK WWI
WGAZ WGBB	South Bend, Ind. Freeport, N. Y.	360 244	NORTHFIELD, MINN.	336 KFM X	273	Fond du Lac. Wis.	KFIZ
WGBC	Memphis, Tenn	266	NORTHFIELD, MINN. N. PLAINFIELD, N. J.	336 WCAL 286 WEAM	273 273	Greeley, Col. Lockport, N. Y.	KFKA WMAK
WGBF WGBG	Evansville, Ind. Thrifton, Va.	217 226	OAK, NEB. OAKLAND, CAL.	268 KFEQ 233 KFUS	273 273	Manhattan, Kan. New York, N. Y.	WTG
WGBH	Fall River, Mass.	209	OAKLAND, CAL.	361 KGO	273	New York, N. Y.	WEBJ WFBH
WGBI WGBK	Scranton, Pa. Johnstown, Pa.	240 248	OAKLAND, CAL. OAKLAND, CAL.	242 KLS 508 KLX	273 273	Omaha, Neb. Providence, R. I.	WIAK WEAN
WGBM WGBN	Providence, R. I. LaSalle, III.	234 266	OAKLAND, CAL.	360 KZM	273	Rossville, N. Y.	WBBR
WGBO	San Juan, P. R.	275	OAK PARK, ILL. OGDEN, UTAH	283 WTAY 360 KFCP	273 273	Seattle, Wash. Stanford U., Cal.	KHQ KFGH
WGBP WGBL	Tampa, Fla. Elyria, O.	250 227	OGDEN, UTAH OGDEN, UTAH	224 KFUR 214 KFWA	273 273	St. Cloud, Minn.	WFAM
WGBQ	Menominee, Wis.	234	OIL CITY, PA.	250 WHBA	273	St. Louis, Mo. Tarrytown, N. Y.	WEB WRW
WGBR WGBS	Marshfield, Wis. New York, N. Y.	229 315	OKLAHOMA CITY, OKLA. OKLAHOMA CITY, OKLA.	252 KFJF 220 KFQR	273 273	Urbana, Ill. Utica, N. Y.	WRM WSL
WGBT WGBW	Greenville, S. C. Spring Valley, Ill.	236 212	OKLAHOMA CITY, OKLA.	275 WKY	274	Belvidere, Ill.	WOAG
WGBX	Orono, Me.	252	OKMULGEE, OKLA. OLYMPIA, WASH.	360 WPAC 220 KFRW	275 275	Atlantie City, N. J. Baltimore, Md.	WHAR WCAO
WGBY WGI	R. R. No. 2 Medford Hillside, Mass.	218 261	OMAHA, NEB. OMAHA, NEB.	258 KFCZ 248 KFOX	275 275	Batavia, Ill. Berkeley, Cal.	WORD KRE
WGN WGR	Chicago, Ill.	370	OMAHA, NEB.	285 WAAW	275	Cape Girardeau, Mo.	WSAB
WGY	Buffalo, N. Y. Schenectady, N. Y.	319 379	OMAHA, NEB. OMAHA, NEB.	273 WIAK 255 WNAL	275 275	Charlotte, N. C. Jamestown, N. Y.	WBT WOCL
WHA WHAD	Madison, Wis. Milwaukee, Wis.	535 280	OMAHA, NEB. ORONO, ME.	526 WOAW 252 WGBX	275 275	Lawrence, Kan. Lincoln, Neb.	KFKU WFAV
WHAG	Cincinnati, O.	222	OSKALOOSA, IA.	240 KFHL	275	New Orleans, La.	WAAC
WHAH WHAM	Joplia, Mo. Rochester, N. Y.	283 278	OSSEO, WIS. OTTUMA, IA.	220 WTAQ 242 KFJL	275 275	Oklahoma City, Okla. San Juan, P. R.	WKY WGBO
WHAP WHAR	Brooklyn, N. Y. Atlantic City, N. J.	240	OWOSSO, MICH. OXFORD, MISS.	240 WSMH	275	Sioux City, Ia.	WEATI
WHAS	Louisville, Ky.	399	PASADENA, CAL.	242 WCBH 229 KPPC	275 275	Springfield, Vt. St. Louis, Mo.	WQAE WCK
WHAV WHAZ	Wilmington, Del. Troy, N. Y.	360 385	PASCAGOULA, MISS. PASO ROBLES, CAL.	268 WCBG 240 KFNL	275 278	Wilmington, N. C. Atlanta, Ga.	WBBN WDBE
WHB	Kansas City, Mo.	365	PARKERSBURG, PA.	270 WQAA	278	Cedar Rapids, Ia.	WKAA
WHBA WHBB	Oil City, Pa. Stevens Point, Wis.	240	PAWTUCKET, R. I. PEORIA, ILL.	231 WHBO 280 WJAN	278 278	Denver, Col. Elgin, III.	KFAF WCEE
WHBC WHBD	Canton, O. Bellefontaine, O.	245 222	PETOSKEY, MICH. PHILADELPHIA, PA.	246 WBBP 242 WABY	278 278	Minneapolis, Minn.	WLB
WHBF	Rock Island, Iti.	222	PHILADELPHIA, PA.	278 WCAU	278	Philadelphia, Pa. Rochester, N. Y.	WCAU WHAM
WHBG WHBH	Harrisburg, Pa. Culver, Ind.	231 222	PHILADELPHIA, PA. PHILADELPHIA, PA.	394 WDAR 234 WFBD	278 278	San Diego, Cal. Stevens Point, Wis.	KFBC WDBL
WHBI	Chesaning, Mich. Fort Wayne, Ind.	227	PHILADELPHIA, PA.	394 WFI	278	Stevens Point, Wis.	WLBL
WHBK	Eliaworth, Me.	231	PHILADELPHIA, PA. PHILADELPHIA, PA.	254 WIAD	278	Tuscola, Ill. Valparaiso, Ind.	WDZ WRBC
WHBL WHBM	Logansport, Ind. Chicago, Ill.	220	PHILADELPHIA, PA. PHILADELPHIA, PA	509 WIP 254 WNAT	280 280	Allentown, Pa. Ann Arbor, Mich.	WCBA WCBC
WHBN	St. Petersburg, Fla.	258	PHILADELPHIA, PA.	509 WOO	280	Canton, N. Y.	WCAD
WHBP	Pawtucket, R. I. Johnstown, Pa.		PHILADELPHIA, PA. PHOENIX, ARIZ.	360 WWAD 360 KFAD	280 280	Cedar Falls, Ia. College Station, Tex.	KFJX WTAW
WHB Q	Memphis, Tenn.	233	PHOENIX, ARIZ. PITTSBURGH, PA.	238 KFCB	280	Fremont, Neb.	WOAE
WHBS	Cincinnati, O. Mechanicsburg, O.	208	PITTSBURGH, PA.	270 KQV 461 WCAE	280	Grand Forks, N. D. Houlton, Mo.	KFJM WCBL
WHBT	Downers Grove, Ill. Anderson, Ind.	206 218	PITTSBURGH, PA. PITTSBURGH, PA.	236 WCBF 286 WJAS	280 280	Lawrenceburg, Tenn. Lamoni, Ia.	WOAN KFFV
WHBV	Columbus, Ga.	244	POMEROY, O.	258 WSAZ	280	Milwaukee, Wis.	WHAD
WHBW WHBX	Philadelphia, Pa. Punxsutawny, Pa.		A PORTABLE PORT CHESTER, N. Y.	226 WEBM 233 WSAY		Minneapolis, Minn. New Orleans, La.	WCAS WEBP

Call Letter:	s Location	Ware length		Wave- Call length Letters	Wave length		Call Letters
WHEC WHK	Rochester, N. Y. Cleveland, O.	258 273	PORT HURON, MICH. PORTLAND, ORE.	233 WAFD	280	Norfolk, Va.	WTAR
WHN	New York, N. Y.	360	PORTLAND, ORE.	248 KFIF 248 KFEC	280 280	Peoria, Ill.	WJAN
WHO WHT	Des Moines, Ia.	526	PORTLAND, ORE.	283 KFQN	280	San Diego, Cal. Santa Ana, Cal.	KDYM KFAW
WIAD	Decrfield, III. Philadelphia, Pa.	238 254	PORTLAND, ORE.	491 KGW 246 WCBR	280	Scranton, Pa.	WQAN
WIAK	Omaha, Neb.	273	PROVIDENCE, R. I.	273 WEAN	280 280	St. Louis, Mo. St. Louis, Mo.	WEW WMAY
WIAQ	Marion, Ind. Burlington, Ia.	226 283	PROVIDENCE, R. I. PROVIDENCE, R. I.	234 WGBM	280	Wichita, Kan.	WEAH
WIBA	Madison, Wis.	236	PROVIDENCE, R. I.	305 WJAR 261 WSAD	283 283	Agricultural Col., N. 1 Beloit, Wis.	D. WPAK WEBW
WIBC	St. Petersburg, Fla.	222 200	PULLMAN, WASH.	348 KFAE	283	Burlington, Ia.	WIAS
WIBE	Joliet, Ill. Martinsburg, W. Va.	200	PULLMAN, WASH. PUNXSUTAWNY, PA.	217 KFRX 212 WHBX	283 283	Butte, Mont.	KFKV
WIBE	Wheatland, Wis.	231	RALEIGH, N. C.	255 WFBQ	283	Butte, Mont. Dayton, O.	KFLA WDBS
WIBG	Elkins Park, Pa. New Bedford, Mass.	222 209	RAPID CITY, S. D. READING, PA.	240 WCAŤ 238 WRAW	283	Denver, Col.	KLZ
WIBO	Chicago, Ill.	226	RICHMOND, CAL.	254 KFOU	283 283	Joplin, Mo. Kalamazoo, Mich	WHAH WLAQ
WIK WIL	McKeesport, Pa. Washington, D. C.	234 360	RICHMOND, VA RICHMOND HILL, N. Y.	253 WBBL	283	Lambertville. N. J.	WTAZ
WIP	Philadelphia, Pa.	509	RICHMOND HILL, N. Y.	315 WAHG 236 WBOQ	283 283	Laramie, Wyo. Miami, Fla.	KFBU WQAM
WJAB DALW	Lincoln, Neb. Waco Tex.	229 352	ROANOKE, VA. ROCHESTER, N. Y.	229 WDBJ I	283	Norfolk, Neb.	WJAG
·WJAG	Norfolk, Neh.	283	ROCHESTER, N. Y.	278 WHAM 283 WABO	253 283	Oak Park, Ill. Portland, Ore.	WTAY KFQN
MALW	Greentown, Ia. Cedar Rapids, Ia.	254 268	ROCHESTER, N. Y.	258 WHECI	283	Rochester, N. Y.	WABO
WJAN	Peoria, Ill.	280	ROCKFORD, ILL. ROCK ISLAND, ILL.	229 KFLV 222 WHBF	283 283	Sacramento, Cal. Seattle, Wash.	KFBK KFHR
WJAR WJAS	Providence, R. I. Pittsburgh, Pa.	305 286	ROSSVILLE, N. Y. R. R. NO. 2	273 WBBR	283	Sorrs, Conn.	WABL
WJBC	La Salle, Ill.	234	SACRAMENTO, CAL.	218 WGBY 283 KFBK	283 283	Spokanc, Wash. State College, Pa.	KFPY WPAB
WJAZ WJBD	Chicago, Ill. Ashland, Wis.	268 233	SACRAMENTO, CAL.	248 KFVK	283	University Pl., Neb.	WCAJ
-M1D	Graniteville, O.	229	SANDUSKY, O. SAGINAW, MICH.	240 WABH 254 WABM	283 283	Vermilion, S. D. West Lafayette, Ind.	WEAJ WBAA
ATM OILM	Mooseheart, Ill. New York, N. Y.	303	SALEM, N. J.	234 WDBQ	284	Boston, Mass.	WNAC
WJZ	New York, N. Y.	455 455	SALT LAKE CITY, UTAH SALT LAKE CITY, UTAH	250 KDYL 261 KFOO	284 285	Iowa City, Ia. Berrien Springs, Mich.	KFQP WEMC
WKAA WKAD	Cedar Rapids, Ia. East Providence, R. I.	278 240	SALT LAKE CITY, UTAH	242 KFPH	285	East Lansing, Mich.	WKAR
WKAN	Montgomery, Ala.	226	SALT LAKE CITY, UTAH SALT LAKE CITY, UTAH	268 KFPT 271 KFUT	285 286	Omaha, Neb. Butler, Pa.	WAAW WBR
WKAP WKAQ	Cranston, R. I. San Juan, P. R.	234	SALT LAKE CITY, UTAH	299 KSL	286	Chicago, 111.	WAAF
WKAŘ	East Lansing, Mich.	340 285	SAN ANTONIO, TEX. SAN ANTONIO, TEX.	263 WCAR 392 WOAI		Columbus, O. Columbus, O.	WCAH
WKAV WKBE	Laconia, N. H. Webster, Mass.	254 231	SAN BENITO, TEX.	236 KFLU	286	Columbus, O.	WMAN WPAL
WKBF	Cranston, R. I.	286	SAN DIEGO, CAL. SAN DIEGO, CAL.	244 KDPT 280 KDYM		Cranston, R. I. Detroit, Mich.	WKBF KOP
WKY WLAG	Oklahoma City, Okla. Minneapolis, Minn.	275 417	SAN DIEGO, CAL. SAN FRANCISCO, CAL.	278 KFBC	288	Ithaca, N. Y.	WEAL
WLAL	Tulsa, Okla.	250	SAN FRANCISCO, CAL.	236 KFPV 234 KFUQ	286 288	Lansing, Mich. Louisville, Ky.	WREO WLAP
WLAP WLAQ	Louisville, Ky. Kalamazoo, Mieb.	286 283	SAN FRANCISCO, CAL. SAN FRANCISCO, CAL.	428 KPO	286	Milford, Kan.	KFKB
WLAX	Greencastle, Ind.	231	SAN JOSE, CAL.	246 KUO 226 KFVJ	286 286	Moorehead, Minn. North Plainfield, N. J.	WPAU WEAM
WLBL	Minneapolis, Minn. Stevens Point, Wis.	278 278	SAN JOSE, CAL. SAN JUAN, P. R.	240 KQW 275 WĞBO	286	Pittsburgh, Pa.	WJAS
WLS	Chicago, Ill.	344	SAN JUAN, P. R.	340 WKAQ		Hastings, Neb. Columbus, O.	KFKX WBAV
WLW WMAC	Cincinnati, O. Cazenovia, N. Y.	422 261	SAN LEANDRO, CAL. SAN LUIS OBISPO, CAL.	234 KFUU 218 KFBE	293	Columbus, O.	WEAO
WMAF	Dartmouth, Mass.	360	SAN PEDRO, CAL.	205 KEVD	299	Los Angeles, Cal. Fayetteville, Ark.	KJS KFMQ
WMAH WMAK	Lincoln, Neb. Lockport, N. Y.	254 273	SANTA ANA, CAL. SANTA ROSA, CAL.	280 KFAW 234 KFNV	299	Salt Lake City, Utah	KSL
WMAL	Trenton, N. J.	256	SCHENECTAOY, N. Y.	379 WGY [303	Atlantic City, N. J. Elgin, III.	WPG WTAS
WMAN WMAQ	Columbus, O. Chicago, Ill.		SCHENECTADY, N. Y. SCRANTON, PA.	270 WRL 240 WGBI	303] 305]	Moosehcart, Ill. Providence, R. I.	WJJD
WMAY	Auburn, Ala. St. Louis, Mo.	250	SCRANTON, PA.	280 WQAN	309 (Cincinnati, O.	WJAR WFBW
WMAZ	Macon, Ga.	261	SEATTLE, WASH. SEATTLE, WASH.	270 KDZE 283 KFHR	309] 315]	East Pittsburgh, Pa. Beaumont, Tex.	KDKA KFIM
WMBB WMBF	Chicago, III. Miami Beach, Fla.	250	SEATTLE, WASH.	384 KFOA	315	New York, N. Y.	WGBS
WMC	Memphis, Tenn.	384 503	SEATTLE, WASH. SEATTLE, WASH.	224 KFPB 233 KFQX		Richmond, Hill, N. Y. Youngstown, O.	WAHG WDBF
WMH WMU	Cincinnati, O. Washington, D. C.	321	SEATTLE, WASH.	273 KHQ	319 I	Buffalo, N. Y.	WGR
WNAB	Boston, Mass.	250 l	SEATTLE, WASH. SEATTLE, WASH.	384 KJR 454 KTW		New Orleans, La. Cincinnati, O.	WSMB WMH
WNAC WNAD	Boston, Mass. Norman, Okla.	284	SEYMOUR, IND.	226 WFBE	323 I	Denver, Col.	KOA
WNAL	Omaha, Neb.	255	SHENANDOAH, IA. Shreveport, la.	266 KFNF 360 KFDX		Iartford, Conn. Cincinnati, O.	WTIC WSAI
WNAP WNAR	Springfield, O. Butler, Mo.	271	SHREVEPORT, LA.	252 WGAQ	331 (Clemson College, S. C.	WBAC
WNAT	Philadelphia, Pa.	254	SIOUX CITY, IA. SIOUX CITY, IA.	275 WEAU 261 KFMR	333 S	Springfield, Mass. Clemson College, S. C.	WBZ WSAC
WNAX WNYC	Yankton, S. D. New York, N. Y.	248	SORRS, CONN. SOUTH BEND, IND.	283 WABL	336 N	lorthfield, Minn.	KFMX
WOAC	Lima, O.	260	SPOKANE, WASH.	360 WGAZ 252 KFIO	337 I	lorthfield, Minn. os Angeles, Cal.	WCAL KNX
	Fremont, Neb. Belvidere, Ill.	280	SPOKANE, WASH. SPRINGFIELD, MASS.	283 KFPY I	340 N	lew York, N. Y.	WAMC
IAOW	San Antonio, Tex.	392	SPRINGFIELD, MO.	333 WBZ 252 WFUV	340 S 341 M	an Juan, P. R. Ianhattan, Kan.	WKAQ KSAC
WOAN WOAO	Lawrenceburg, Tenn. Mishawaka, Ind.	280	SPRINGFIELD, O. SPRINGFIELD, VT.	271 WNAPI	344 C	hicago. Ill.	WLS
WOAR	Kenosha, Wis.	225	SPRING VALLÉY, ILL.	212 WGBW	348 P	ion, III. ullman, Wash	WCBD KFAE
	Wilmington, Del. Erie. Pa.		ST. CLOUD, MINN. ST. LOUIS, MO.	273 WFAMI	348 S	tate College, N. M.	KOB
	Omaha, Neb.	526	ST. LOUIS, MO.		352 D 352 W	etroit, Mich.	WWJ WJAD

Call Letters	Location	Wave- length	Location	Wave- length	Call Letters	Wave- length	Location	Call Letters
WOAX WOC	Trenton, N. J. Davenport, Ia.	240 484	ST. LOUIS, MO.	214	KFWF	360	Boulder, Col.	KFAI
WOCL	Jamestown, N. Y.	275	ST. LOUIS, MO.	545 275	KSD WCK	260 360	Brookings, S. D. Dartmouth, Mass.	KFDY WMAF
WOI WOO	Ames, Ia. Philadelphia, Pa.	207 509	ST. LOUIS, MO. ST. LOUIS, MO.	273 280	WEB WEW	380 380	Decatur, Ill.	WBAO
WOR	Newark, N. J.	405	ST. LOUIS. MO.	280	WMAY	360	Hamilton, C. Havre, Mont.	WRK KFBB
WORD WOS	Batavia, Ill. Jefferson City, Mo.	275 440	ST. LOUIS, MO. ST. PAUL, MINN.	263 226	WRAO KFOY	360 360	Honolulu. Hawaii Houston, Tex.	KGU WEAY
WOWL	New Orleans, La.	270	ST. PETERSBURG, FLA.	226	WDBI	360	Houston, Tex.	WSAV
WPAB WPAC	State College, Pa. Okmulgee, Okla.	283 360	ST.PETERSBURG, FLA. ST.PETERSBURG, FLA.	258 222	WHB N WIBC	360 360	Johnstown, Pa. Los Angeles, Cal.	WTAC KWH
WPAJ WPAK	New Haven, Conn.	268	ST. PETERSBURG, FLA.	264	WSAG	360	New York, N. Y.	WHN
WPAL	Agricultural Col., N. D. Columbus, O.	283 286	STANFORD U., CAL.: STATE COLLEGE, N. M.	273 266	KFGH KFRY	360 360	New York, N. Y. Oakland, Cal.	WQAO KZM
WPAU WPAZ	Moorehead, Minn. Charleston, W. Va.	286 273	STATE COLLEGE, N. M. STATE COLLEGE, PA.	348 283	KOB WPAB	360	Ogden, Utah	KFCP
WPG	Atlantic City, N. J.	300	STEVENSVILLE, MONT.	258	KFJR	360 380	Okmulgee, Okla. Phoenix, Ariz.	WPAC KFAD
WQAA WQAC	Parkersburg, Pa. Amarillo, Tex.	270 234	STEVENSPOINT, WIS. STEVENS POINT, WIS.	278 240	WDBL WHBB	360 360	Philadelphia, Pa.	WWAD
WÕAE	Springfield, Vt.	275	STEVENS POINT, WIS.	278	WLBL	360	Shreveport, La. South Bend, Ind.	KFDX WGAZ
WÕAM WÕAN	Miami, Fla. Scranton, Pa.	283 280	STOCKTON, CAL. STREATOR, ILL.	360 231	KWG WTAX	360 360	Stockton, Cal. Washington, D. C.	KWG WIL
WÓAO	New York, N. Y.	360	SUPERIOR, WIS.	261	WDBP	360	Wenatchee, Wash.	KDZI
WÕAS WÕJ	Lowell, Mass. Chicago, Ill.	266 447	SUPERIOR, WIS. TACOMA, WASH.	242 250	WEBC KFBG	360 360	Wilmington, Del. Wilmington, Del.	VAHW TAOW
WRAA WRAF	Houston, Tex.	256	TACOMA, WASH.	252	KGB	361	Oakland, Cal.	KGO
WRAK	Laporte, Ind. Escanaba, Mich.	224 256	TACOMA, WASH. TACOMA PK., MD.	250 222	KMO WBES	365 365	Kansas City, Mo. Kansas City. Mo.	WDAF WHB
WRAM WRAN	Galesburg, Ill. Waterloo, Ia.	244 236	TAFT, CAL. TAMPA, FLA.		KFQC WDAE	365	Tampa, Fla.	WDAE
WRAO	St. Louis, Mo.	263	TAMPA, FLA.	250	WGBP	368 369	Tuscon, Ariz. Mishawaka, Ind.	KFDH WOAO
WRAV WRAW	Yellow Springs, O. Reading, Pa.	242 238	TARRYTOWN, N. Y. TAUNTON, MASS.	273 229	WRW WDBB	370 370	Chicago, Ill. Chicago, Ill.	WEBH WGN
WRAX	Gloucester City, N. J.	268	TECUMSEH, NEB.	242	WTAU	375	Hot Springs, Ark.	KTHS WGY
WRBC WRC	Valparaiso, Ind. Washington, D. C.	278 468	THRIFTON, VA. TOLEDO, OHIO		WGBG WABR	379 384	Schenectady, N. Y. Miami Beach, Fla.	WGY WMBF
WREO	Lansing, Mich.	286	TOLEDO, O.	252	WTAL	384	Seattle, Wash.	KFOA
WRHF WRK	Washington, D. C. Hamilton, O.	256 360	TRENTON, N. J. TRENTON, N. J.		WMAL WOAX	384 385	Seattle, Wash. Troy, N. Y.	KJR WHAZ
WRL WRM	Schenectady, N. Y. Urbana, Ill.	270 273	TROY, N. Ý. TULSÁ, OKLA.	385	WHAZ WLAL	389	Cleveland, O.	WEAR
WRR	Dallas, Tex.	261	TULLAHOMA, TENN.	252	WCBV	389 392	Clevcland, O. San Antonio, Tex.	WATW WOAI
WRW WSAB	Tarrytown, N. Y. Cape Girardeau, Mo.	273 275	TUSCOLA, ILL. TUSCON, ARIZ.		WDZ KFDH	394 394	Bristow, Okla. Philadelphia, Pa.	KFRU WDAR
WSAC	Clemson College, S. C.	336	TWIN CITIES, MINN,	416	wcco	394	Philadelphia, Pa.	WFI
WSAD WSAG	Providence, R. I. St. Petersburg, Fla.	261 264	UNIVERSITY PL., NEB. UPLAND, CAL.		WCAJ KFWC	399 405	Louisville, Ky. Los Angeles, Cal.	WHAS KHJ4
WSAI WSAJ	Cincinnati, O. Grove City, Pa.	325 258	URBANA, ILL. UTICA, NEB.	273	WRM KFGB	405	Newark, N. J.	WOR
WSAN	Allentown, Pa.	229	UTICA, N. Y.	273	WSL	416 417	Twin Cities, Minn. Minneapolis, Minn.	WCCO WBAH
WSAP WSAR	New York, N. Y. Fall River, Mass.	263 254	VANCOUVER, WASH. VALPARAISO, IND.	231 278	KFVL WRBC	417 422	Minneapolis, Minn. Cincinnati, O.	WLAG
WSAV	Houston, Tex.	3 60	VERMILLION, S. D.	283	WEAJ	428	Atlanta, Ga.	WLW WSB
WSAY WSAZ	Port Chester, N. Y. Pomeroy, O.	233 258	VIRGINIA, MINN. WACO, TEX.		KFUZ WJAD	428 440	San Francisco, Cal. Cranston, R. I.	KPO WDWF
WSB WSL	Atlanta, Ga. Utica, N. Y.	428 273	WALLÁCE, IDA. WALLA WALLA, WASH.	224	KFOD	440	Jefferson City, Mo.	WOS
WSMB	New Orleans, La.	319	WARRENSBURG, MO.	234	KFCF KFNJ	447 447	Chicago, Ill. Chicago, Ill.	WMAQ WOJ
WSMH WSOE	Owosso, Mjeli. Milwaukee, Wis.	240 246	WASHINGTON, D. C. WASHINGTON, D. C.	468	WCAP WDM	452 454	Baltimore, Md. Seattle, Wash.	WOJ WFBR KTW
WSRF	Broadlands, Ill.	233	WASHINGTON, D. C.	360	WIL	455	New York, N. Y.	WJY
	Iowa City, Ia. Fall River, Mass.	498 248	WASHINGTON, D. C. WASHINGTON, D. C.		WMU WRC	455 461	New York, N. Y. Pittsburgh, Pa.	WJZ WCAE
WTAC	Johnstown, Pa.	360	WASHINGTON, D. C.	256	WRHF	468	Los Angeles, Cal.	KFI
MATW	Toledo, O. Cleveland, O.	252 389	WATERLOO, IA. WEBSTER, MASS.	236 231	WRAN WKBE	468 468	Washington, D.C. Washington, D.C.	WCAP WRC
WTAP	Cambridge, Ill	242	WENATCHEE, WASH.	360	KDZI	472	Dallas, Tex.	WFAA
WTAR	Osseo, Wis. Norfolk, Va.	220 280	W. LAFAYETTE, IND. WHEATLAND, WIS.	231	WBAA WIBF	475 476	Boston, Mass. Fort Worth, Tex.	WEEI WBAP
	Elgin, Ill. Boston, Portable	303 244	WHITTIER, CAL.	236	KFOC	484	Davenport, Ia. New York, N. Y.	WOC: WEAF
WTAU	Tecumseh. Neb.	242	WICHITA, KAN. WICHITA, KAN.	280	KFOT WEAH	485 491	Portland, Ore.	KGW
	College Station, Tex. Streator, Ill.	280 231	WILKES-BARRE, PA. WILKES-BARRE, PA.	254	WBAX WBRE	492 498	New York, N. Y. Iowa City, Ia.	WBAY WSUI
WTAY	Oak Park, Ill.	283	WILMINGTON, DEL.	360	WHAV	503	Memphis, Tenn.	WMC]
WTHS	Lambertville, N. J. Flint, Mich.	283 218	WILMINGTON, DEL. WILMINGTON, N. C.		WOAT WBBN	508 50 9	Oakland, Cal. Philadelphia Pa.	KLX WIP
WTG	Manhattan, Kan.	273	WINTER PARK, FLA.	240	WDBO	509	Philadelphia. Pa.	woo
	Hartford, Conn. Chicago, Ill.	323 268	WOOSTER, O. WORCESTER, MASS.		WABW{ WCBT	516 526	Detroit, Mich. Des Moines, Ia.	WCX WHO
WWAD	Philadelphia, Pa.	360	WORCESTER. MASS.	268	WDBH	526	New York, N. Y.	WNYC
WWI	Joliet, Ill. Dearborn, Mich.	242 273	YAKIMA. WASH. YANKTON, S. D.	242 248	KFIQ WNAX	526 535	Omaha, Neb. Chicago, Ill.	WOAW KYW
	Detroit, Mich.	352	YELLOW SPRINGS, O.		WRAV	535	Madison, Wis.	WHA
449443	New Orleans, La.	260	YOUNGSTOWN, O.	315	WDBF		St. Louis, Mo.	KSD

CONDUCTED BY ALBERT G. CRAIG

How to Sharpen up a Tuned Radio-Frequency Receiver

WHEN a tuned radio-frequency receiver is located close to a powerful broadcasting station, it is often difficult to tune out the local signals and receive signals from a distance.

One way to help sharpen up reception with such a receiver is to include, directly in the antenna circuit, a small fixed condenser. It is advisable to obtain four condensers to make a try-out. The sizes for these condensers should be .0001 mfd., .00015 mfd., .00025 mfd., and .0005 mfd. Place these in the antenna circuit, one at a time, and tune to the different stations on various wavelengths, until you find the one which gives sufficient selectivity with the best volume from out-of-town stations.

The one you choose may be left "in" all the time, or it may be used with a short-circuit switch only when the local broadcasts are going full blast.

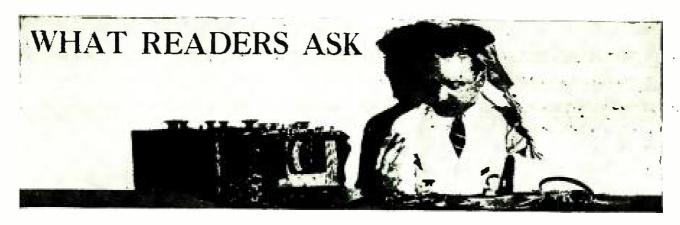
For greater distance reception, after the local broadcasting has stopped, it would be advisable to close the shortcircuit switch, which would give a direct connection to the antenna.

A Tip on Soldering

WHEN soldering the several pieces of wire together in constructing an antenna, it is advisable to clean the parts of the wire to be soldered by scraping them with a knife or a file until they are bright and shiny. When this has

been done, it will be much easier to make a good soldered connection that will be permanent.

This same procedure will insure good connections inside of the set itself at the time when the wiring is being done.


A Guide When Buying a Ready-made Receiver

In deciding on what kind of a receiving set one might want to buy, it is recommended that the prospective purchaser consult the department in this magazine, "What Set Shall I Buy?" Every month this series illustrates a number of excellent receivers of various designs and types, and gives data showing how much they cost, what kind of ærials are used with them, how many tuning controls they contain, what kind of batteries are used and what their average distance ranges are. The sets shown in every issue vary from the less expensive to the very costly grades.

Ask your dealer to demonstrate to you one or two of the models that you pick from this series.

Do Not Use Paint

NEVER use any kind of ordinary paint on a radio receiver. Do not paint the baseboard with any regular colored paint; use some sort of a vegetable stain for this purpose and dry it out thoroughly before it is installed in the set. Never use any kind of varnish for the coils or tuning units in a receiver.

CONDUCTED BY LAURENCE M. COCKADAY

In justice to our regular subscribers a nominal fee of fifty cents per question is charged to non-subscribers to cover the cost of this service, and this sum must be inclosed with the letter of inquiry. Subscribers' inquiries should be limited to one question or one subject.

Audio-frequency Transformer Leads

QUESTION: I have been experimenting in making my own audio-frequency transformers, and I have had a lot of fun in varying the different constants and then testing them out to see just what difference the various changes made. What is the proper way to connect the coils, primary and secondary? I have the secondary coil wound outside of the primary coil with a shell type core. Please tell me the best way to bring out the leads to the grid, filament, plate and B (+)?

F. LINDSAY

Answer: The outside end of the secondary winding should go to the grid of the vacuum tube. The inside end of this winding should go to the negative filament or to the negative (—) "C" battery (when one is used).

The outside end of the primary winding should go to the "B" battery (+) and the inside end of the primary winding should go to the plate of the tube. This gives the lowest capacity between the grid and plate ends of the windings, which lowers the effective capacity across the coils.

A By-pass for First Audio Transformer

QUESTION: Is it a good practice to use a by-pass condenser across the primary of the first audio transformer in a radio receiving set? In some sets I noticed that it makes little difference—in

other sets it makes a whole lot of difference. Just why is this and what size would you prescribe for ordinary receivers?

F. THIELE

Answer: A by-pass condenser in this position usually is of considerable benefit in a radio receiving set.

Some transformers have a large enough distributed capacity between the turns of the primary winding, so that the by-pass condenser is not necessary. However, it is usually good practice to include across the primary of the transformer, a condenser varying between .0001 mfd. and .0005 mfd. Larger sizes than this may tend to by-pass some of the audio-frequencies, especially the high ones that help so much in reproducing the consonants in speech.

Soldered Connections Inside Receivers

QUESTION: Do you recommend soldering connections inside a home-built receiver or just attaching the wire under the binding posts with which the instruments are equipped? I notice that the larger manufacturers are equipping their instruments with soldered lugs. Is this an indication that the soldered connection is better?

M. H. WEINTZ

Answer: We recommend using the soldering method throughout, as it insures better and more lasting contact. We also have been recommending to manufacturers that they include soldered lugs on all of the terminals of their parts and instruments, whether or not they equip them with binding posts.

When to Use Straightline Condensers

QUESTION: Do you advise changing the condensers I have in my present four-circuit tuner from the straightline capacity type to the straightline wavelength type, or the more recent development—the straightline frequency type of condenser? On my present set I do not find any trouble when separating the lower wavelength stations, but a friend tells me that I would get much better signal strength if I were to change to the straightline-frequency type of variable condenser. Is this true?

V. Reuscher

ANSWER: We do not recommend changing the condensers you are using. It is true that straightline-wavelength and more especially straightline-frequency condensers will give less crowding of stations on the dial at the lower wavelengths, but if the capacity and inductance ranges of the receiver are properly proportioned, the trouble of crowding in tuning over the regular broadcast range will not be severe.

The most compact type of condenser, of course, is the straightline-capacity condenser, with the straightline-wavelength type running second and the straightline-frequency condenser finishing up a bad third in regard to space they take up in a receiving set.

As the signal strength in a receiver is de-

As the signal strength in a receiver is dependent upon the electromagnetic and electrostatic fields inside of the receiver, it is always advisable to keep coils and condensers as small as possible in order to limit the size of both of these fields, so that they will not induce currents in other parts of the circuit where the energy might be wasted.

For this reason, we recommend the more compact apparatus and this includes the use of the straightline capacity condenser.

The Water Meter

QUESTION: I notice that my cold-water pipe is not as good a ground as the radiator system in our house. I always understood that the cold-water pipe as a ground was the best of any of them. Can you tell me why this is and how to overcome it?

M. PILAT

Answer: There is sometimes a considerable amount of resistance across the water meter in the cellar.

Procure two ground clamps and attach them, one on each side of the meter, to the incoming

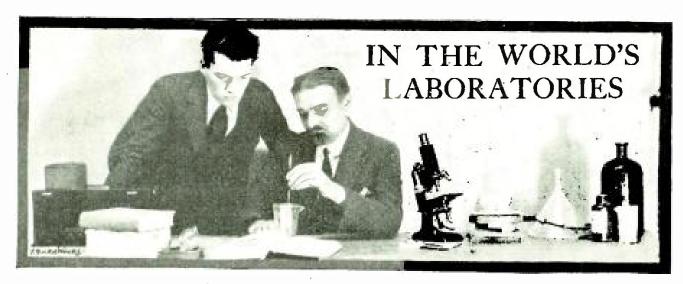
and the outgoing pipes and connect the two ground clamps together by a No. 14 copper wire. This will reduce the resistance of your ground circuit and probably will make reception on the water pipe even better than it is at present on your radiator system.

The Use of the Power Amplifier

QUESTION: Is it possible to use a power amplifier in connection with my Freed-Eisemann receiver? I have a Western Electric amplifier and horn, but I do not know how to connect it to the receiver.

L. MILLER

Answer: Connect the two "input" binding posts of your amplifier to a plug which should be inserted in the detector or first-stage jack of your receiver. Never use the second-stage jack or the quality will be very poor. Use separate "A" and "B" batteries for the power amplifier and keep the horn placed in a location as far away as possible from the receiving set itself.


How to Reduce Excessive Plate Current in an Amplifier

QUESTION: I have a three-stage transformer-coupled audio-frequency amplifier using two UV-201-a tubes and one 216-a tube with 90 volts on the plates of the first two tubes and 135 volts on the plate of the 216-a tube. My "B" batteries lasted me less than a month. I borrowed a milliammeter and found that the total plate current was more than 30 milliamperes. Is there any way in which I can reduce the drain on the "B" batteries without decreasing the volume of the signals?

C. Rover

Answer: What you need is a "C" battery. The "C" battery voltage on the grids of the first two tubes should be about 4½ volts. The "C" battery voltage on the grid of the last tube (the 216-a tube) should be 9 volts with the plate voltages that you are using. To connect the "C" batteries break the wire running from the filament to the terminal marked F on each of the transformers. Then connect the positive of the "A" battery to the filament wire and connect the 4½-volt tap to the terminals marked F on each of the first two transformers. Then connect a 9-volt tap which, of course, would be 9 volts negative, to the terminal marked F on the third transformer.

This will give a negative bias of 4½ volts on the first two tubes and 9 volts on the last tube.

CONDUCTED BY DR. E. E. FREE

Earth Screens for Radio Reception

THE use of an earth screen, composed of wires stretched along the ground under the antenna, is already usual in transmitting stations and it has been proved that a considerable lowering of the antenna resistance can be accomplished in this way. The theory is a little complicated but what happens essentially is that the wires of the screen serve as an attachment for the lower ends of the lines of electric force the upper ends of which arise from the antenna.

Another way of looking at it is to consider the antenna-to-earth's-surface system as a condenser. The antenna is one plate; the earth's surface is another plate. A metallic-wire screen placed underneath the antenna acts as a substitute for the earth's surface. The screen becomes the lower plate of the condenser. Naturally a set of highly-conductive wires has a lower resistance than the earth. Also it is more perfectly attached, electrically, to the transmitting apparatus. The net effect, then, is as if you substituted a good, metallic condenser, with its two plates exactly opposite to each other, for an imperfect condenser one plate of which was made of poorly conducting material.

In the case of transmitting systems all this has been well-known for two or three years. Recently, however, two scientists at the British National Physical Laboratory, at Teddington, England, have completed a series of experiments on the application of this same earth-screen idea to receiving antennas, including antennas used in ordinary broadcast reception.*

There is no theoretical reason why this should give any especial improvement of reception. The problems of transmitting antennas are very different from those encountered when the antenna is to be used for reception only. Nevertheless, actual tests proved that an earth screen really does give a considerable advan-

*"Some Experiments with Aerial and Earth Systems for Reception." by R. L. Smith Rose and F. M. Colebrook. Experimental Wireless (London), vol. 2, pages 207-217 (January, 1925).

tage in reception as well as in transmission. With three of four wires arranged a few feet above the ground, underneath the antenna and parallel to it, the received current was found to be approximately twice as great and the antenna resistance approximately one-half that found when a water-system ground of usual type was used.

In order to make use of as many as three or four such wires in an earth screen it is necessary to fence off the land under the antenna, a procedure which is seldom possible to the ordinary radio fan either in England or in America. But what can be done, in many instances, is to provide two wires stretched parallel to the antenna and more or less underneath it. For example, if the antenna wire runs the length of a long narrow lot or garden like the usual city "backyard," it is possible to stretch the two wires along the tops of the two side fences of the yard.

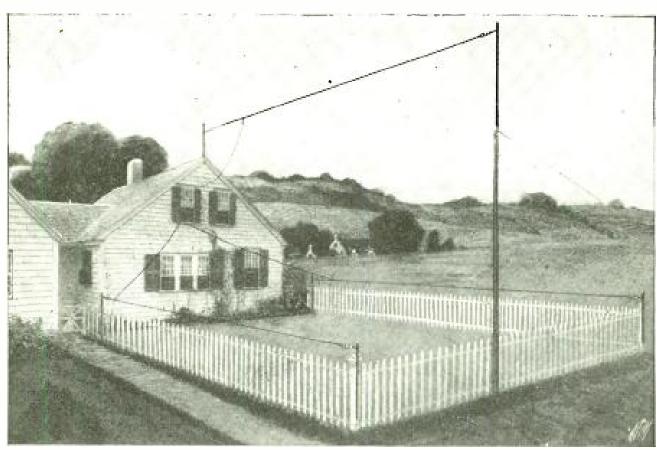
This procedure was tested by Dr. Smith Rose and Mr. Colebrook and was found to be almost as satisfactory as the three or four parallel wires with which the main experiments were made. In one test the two-wire screen system gave an antenna resistance of 13.5 ohms as against 10 ohms for the four-wire screen. In contrast with these low values, the antenna resistance when a water-system ground was employed was in the neighborhood of 25 ohms.

It is apparent, of course, that the advantage of low antenna resistance is of much greater practical importance with crystal sets or other sets having no great amplification and no source of local energy than it is in the multitube, high amplification sets now common in the United States. Nevertheless there are many circumstances under which the two-wire, garden fence screen device of Dr. Smith Rose and Mr. Colebrook is well worth trying.

In the same paper these gentlemen report, also, some experiments on the effect of the height, length and wire spacing of the antenna on the strength of the received signal and on the antenna resistance. The signal strength increased with the antenna height up to 25 feet above the earth screen, which was the greatest height tested. The signal strength also in-

creased steadily with increasing length of the (single) antenna wire up to 60 feet. Between 60 and 90 feet there was some increase of signal strength, but much less in proportion than occurred with length increases up to 60 feet. With two-wire antennas the spacing made comparatively little difference in the signal strength, although there was some increase as the spacing was increased, between the limits of one foot and eight feet.

The entire investigation marks what may prove, it is to be hoped, the beginning of the application to broadcast reception problems of the same precise and careful methods of investigation which have been used with so much success in the design of transmitting equipment for the larger stations.


Musical Echoes from Iron Railings

A curious phenomenon of sound waves, not without interest to the student of radio reproduction troubles, was described recently in a London weekly by Sir R. A. S. Paget, the distinguished British physicist.* Sir Richard is discussing the multiplicity and interest of the London echoes; how the busses go sh-sh as they go past the posts of a gateway, how you

can "hear" the open spaces of a side street that you pass, and the like. It is possible, he continues, to produce a musical tone, in the character of a thin, reedy whistle, merely by walking past a length of iron railing, a series of vertical iron bars erected as a fence.

The cause is a selective echo of the claps of your feet on the pavement. "Your footfall made," he says, "but a single explosive sound, but the wave of sound which was then produced traveled out in all directions, and some of it hit the railings. As it reached each upright rod in turn a little of the sound (no doubt some of the very short waves which formed part of the original 'clap') was reflected back, and so reached your ear. The sound takes time to travel, and, therefore, the original sound reaches each succeeding upright of the railings a little later than the last. In the same way the echoes each take a little longer to get back, according as they come from uprights which are farther and farther away. The consequence is that the echo of the original clap comes back to our ears not as a single clap, but as a rapid succession of infinitesimal claps, reflected by the succession of upright rods which form the fence."

The interval of time between each tiny, reflected sound impulse depends upon the distance between the upright bars of the fence. This, of course, determines the pitch of the musical note produced by their combination.

From a drawing by Arthur Merrick for Popular Radio

HOW TWO WIRES MAY BE USED FOR AN EARTH SCREEN

The wires strung along the top of the two fences make an earth screen like those tested by Dr. Smith Rose and Mr. Colebrook. There is said to be a considerable improvement for reception as well as for transmission.

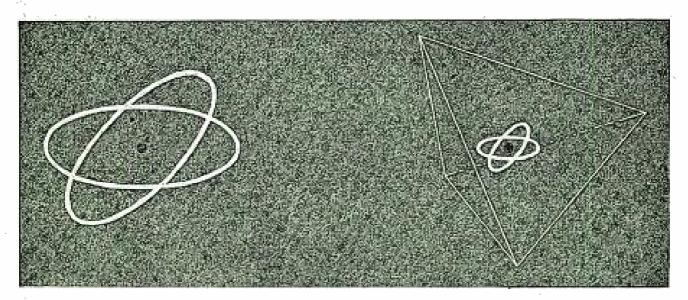
[&]quot;" 'Listening-In' to London's Echoes." by Sir R. A. S. Paget. The Graphic (London), February 14, 1925, page 232.

Sir Richard's casual observation has more to it than a mere curious incident. It is unlikely, it is true, that gangs of men tramping past rows of iron railings will ever be used to constitute an orchestra. But this phenomenon of repeated echoes, combining or reinforcing each other, is already of considerable importance in the science of acoustics. A year or two ago some one patented an anti-static device based on this principle. Rows of slats reflected the desired sounds, letting the others pass through. Other anti-static sound filters have been suggested.

Good quality radio involves problems of sound production and distribution as well as problems in electricity. We have gone farther with the electrical problems than we have with the acoustic ones. The sound experts must catch up. It is quite possible that difficulties with this or that broadcasting studio or receiving room may be due to reflections of sound waves, rather than to bad tuning or poor modulation. The Editor of this department has heard a dozen chairbacks, all set up in a row, make a most disturbing echo, not unlike that of Sir Richard's musical fence.

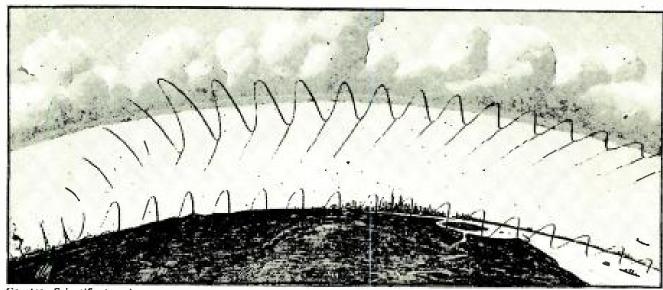
Helium Yields to Chemical Combination

STUDENTS of modern atomic theory have been accustomed to regard helium as the invincible spinster among the chemical elements. While most of the elements in the list combine readily with each other to form the long list of known chemical compounds, the helium atom, together with the atoms of the other so-called "inert" group—argon, neon, krypton, xenon and niton—remain stubbornly resistant to any kind of chemical union. It is exactly this chemical inertness which has made helium so valuable for airship use, as it


does not possess that avidity for oxygen, which makes hydrogen so inflammable and so dangerous.

Now, however, we have the most revolutionary announcement that helium can be made to enter into chemical combination after all. Last December Dr. J. J. Manley reported the apparent formation of a chemical compound between the mercury atom and the helium atom.* Now Dr. E. H. Boomer, of the famous Cavendish Laboratory of Cambridge University, England, believes that he has succeeded in producing compounds of helium with mercury, iodine, sulphur and phosphorus.† These compounds are relatively stable at the temperature of liquid air.

The importance of these results, should they be confirmed, will not lie so much in the mere conquest of the aloofness of helium. It will lie in the fact that one of the atoms believed, on grounds of modern atomic theory to be completely "satisfied," so that no attractive power remained for chemical combination, turns out not to be completely satisfied after all.


Fortunately, no atomic theories will need to be abandoned. It has already been suggested by the distinguished German physicist, Professor Franck, that there are two varieties of helium atoms, differing from each other in having slightly different arrangements of the orbits in which the two electrons of helium revolve. It is assumed by both Dr. Manley and Dr. Boomer that the apparent helium compounds which have been obtained are produced, in reality, by the one of the two varieties of helium in which the arrangement of the electron orbits does permit the retention of a very slight residual attraction; that is, a very slight chemical affinity.

* Nature (London), vol. 114, page 861 (December 13, 1924).
† Nature (London), vol. 115, page 16 (January 3, 1925).

ONE OF THE MOST INERT OF ATOMS

The diagram at the left shows the two electron orbits in an atom of helium—an element always supposed to be virtually incapable of chemical combination. This same group of two electron orbits exists inside many other atoms; as, for example, in the carbon atom shown in outline at the right.

Courtesy Scientific American

THE NEW DOUBLE-PATH IDEA OF RADIO TRANSMISSION Evidence obtained at the time of the recent eclipse of the sun indicates that radio waves move simultaneously along two paths; one close to the ground surface, the other in the higher levels of the atmosphere.

New Ideas of the Heaviside Layer

READERS of POPULAR RADIO cannot have forgotten the discussion which was carried on so vigorously some months ago concerning the relative accuracy of two theories of the transmission of radio waves around the earth, the Gliding Wave Theory and the Heaviside Layer Theory.* There was much to be said for each side to this controversy and it now appears, as happens so often in scientific controversies, that both sides were right. The actual transmission of radio waves along the curved surface of the earth appears to involve both a gliding wave along the ground (or the sea) and a second part of the wave which passes through the upper part of the atmosphere in the region commonly set aside for the supposed Heaviside Layer.

It has been necessary, however, to modify somewhat the supposed properties of this famous Layer. In the earlier theories the Layer was thought of as a kind of mirror for the radio waves. The waves were supposed to be reflected from the under surface of the Layer. Thus, by a succession of such reflections, the train of waves was curved to correspond with the curvature of the earth. The newer idea contemplates a bending of the waves rather than a rather tha waves rather than a reflection. The upper part of the air is more highly ionized. There-fore it is slightly conducting. This makes the upper part of the wavefront move a little faster than the lower part. The result is that the wave bends.

*"Is the Heaviside Theory Valid," by Elihu Thomson, Popular Radio for December, 1922, pages 231-235; "What Bends Radio Waves," by Sir Oliver Lodge, Popular Radio for January, 1923, pages 3-9; "What Really Guides Radio Waves," by Major General George O. Squier, Popular Radio for March, 1923, pages 184-187; "How Ether Waves Really Move," by Reginald A. Fessenden, Popular Radio for November, 1923, pages 337-346.

This conclusion was forecast, quite clearly, in Dr. Fessenden's article in POPULAR RADIO referred to in the footnote. It was again emphasized last winter in an important paper by Sir Joseph Larmort Important contributions have been made, also, by the distinguished British radio expert, Dr. W. H. Eccles, and the most cogent evidence of all has been secured, quite recently, as a result of the radio investigations made by the well-known American experimenter, Mr. Greenleaf W. Pickard, during the eclipse of the sun.

Actual radio transmission, Mr. Pickard has shown, is probably accomplished by two paths. First is a wave that travels close to the ground. This corresponds to the "gliding wave" of the older hypotheses. It is especially effective close to the transmitting station. Second, there is another wave which travels along the upper levels of the atmosphere and is bent around the earth as described by Dr. Eccles and Sir Joseph Larmor. This upper wave is responsible for most of the reception at a distance.

The reason why reception at great distances is possible with such low power—as has been evidenced by so many amateur records—is

t"Why Electric Rays Can Bend Round the Earth," by Sir Joseph Larmor, Philosophical Magazine (London), vol. 48, pages 1025-1036 (December, 1924). The paper was presented originally at the Cambridge Philosophical Society on October 27, 1924, and an abstract was published in Nature (London), vol. 114, pages 650-651 (November 1, 1924). There is a brief additional note in Nature for April 18, 1925 (vol. 115, pages 566-567).

Mr. Pickard's results were reported to the Institute of Radio Engineers (New York) on April 1, 1925, in a paper entitled "Effects of the Solar Eclipse on Radio Reception," which paper will be published in the Proceedings of that institute. Another brief report by Mr. Pickard is given in QST X (Hartford, Conn.), vol. 9, number 4, pages 24-25 (April, 1925). Additional reports of the eclipse observations are presented in an article entitled "The Effects of the Eclipse on Radio," by Alfred P. Lane and F. X. Walsh, Scientific American (New York), vol. 132, pages 224-226 (April, 1925).

that the transmission of this upper part of the wave is very nearly without loss. Once the wave sent out by a transmitter has penetrated the lower levels of the atmosphere and reached this upper, conducting layer, its further prog-

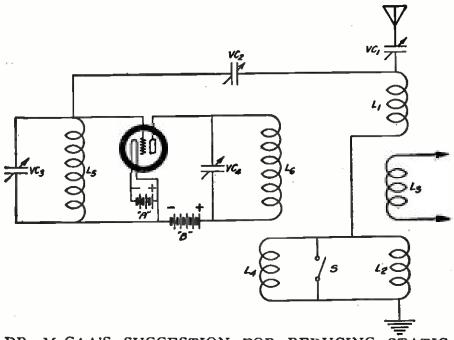
ress depletes its strength very little.

Why this is so is a story too long for this brief note. It is one result of the fact that the air atoms at that height are relatively very far apart and are considerably electrified. A full account of these facts, as well as of the details and implications of these newer theories of tradio transmission, will be presented in a special article in an early issue of Popular Radio.

A Promising Static Eliminator

An anti-static device which seems much more promising than most is announced as the invention of Dr. Galen McCaa.* It is not, strictly speaking, a static eliminator, for the static is not entirely eliminated. What the device does do, it is reported, is to reduce the static to the signal level, both static and signal having the same intensity in the receiver and in the headphones.

The device begins with the familiar principle of two primary coils in the antenna circuit, these being coupled in opposite fashion to the secondary and thence to the receiver. With proper adjustment of the coupling, these two primary coils may be made to balance out each other so that nothing—neither signal nor static—gets through into the secondary. The practical problem is to balance out the static and let the signal through.


*The McCaa Anti-Static Devices," by S. Kruse. QST (Hartford, Conn.), vol. 9, number 2, pages 8-12 (February, 1925); number 3, pages 18-23 (March, 1925). The second article contains constructional details.

Dr. McCaa accomplishes this by adding another coil of somewhat high inductance in parallel with one of the two primaries. In addition, there is a special control circuit containing a vacuum tube oscillator and coupled inductively to the added, high-inductance coil. The hookup will be clear from the diagram herewith.

The action of this control circuit on the highinductance coil is to alternately increase and decrease the effective impedance of the latter; in step, of course, with the oscillation of the control circuit. By adjusting the coupling this can be so arranged that the impedance of the inductance coil becomes periodically almost zero, thus shorting the primary coil with which this inductance is in parallel. The result is that the other primary coil is then able to affect the secondary coil, so that a signal (or static) impulse is heard in the receiver.

It is one of the characteristics of static that it produces, in general, a greater voltage in the antenna circuit than does the signal. Accordingly, the couplings of the McCaa circuits can be so arranged that this excess voltage due to static prevents, while it lasts, the shorting of the second primary by the inductance coil and the control circuit. Thus any static impulse stronger than the signal impulse for which the coupling is adjusted will not be passed into the secondary. The device is essentially one for the limiting of strays of any kind to the same intensity as that of the received signal. It is said that this produces, in practice, much the same impression as though the static were eliminated altogether.

For radio telegraphy the control circuit may be driven without reference to the frequency of the incoming signal. For telephony, however, the signal itself is made to operate the driving tube of the control circuit, as is illustrated in the hook-up reproduced herewith.

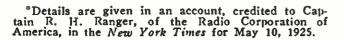
DR. McCAA'S SUGGESTION FOR REDUCING STATIC

The coil L3 is the secondary, connected to the receiving circuit. Of the two
primaries, L1 and L2, the latter is connected in parallel with a fairly high inductance,
L4, the impedance of which is periodically canceled by the central circuit connected
to L6. The theory of the device is described above.

Radio Interference from Clouds of Steam

Physicists have long known that visible clouds of water particles, such as the "steam" given off by a puffing locomotive, are electrified. The electricity seems to be produced merely by the separation of the water into the tiny droplets, although the exact mechanism of this electrification is still imperfectly understood.

Recently two authors have suggested independently that such electrified clouds may cause, in special circumstances, local interference with radio.* It has been observed that the electrified clouds show perceptible attractions and repulsions when they approach high-voltage transmission lines. In one instance the cloud has been observed to pulsate at a rapid frequency, an effect caused, perhaps, by an alternating potential on the nearby charged lines.

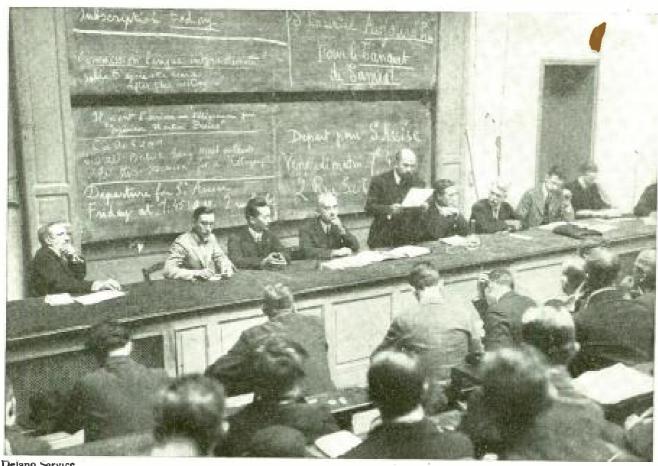

Radio interference thus caused might be of two kinds. One is the creation of strays, which would appear in nearby receivers as a variety of static. The other is a possible effect of such charged clouds in absorbing or deflecting incoming waves. It is well known that the radio interference of both kinds is much greater in factory towns than in the country and is far greater in the daytime (in cities) than it is at night. This has usually been ascribed to the operation of electric motors and no doubt that is where most of the blame belongs. But it may be that we will need, also, to look into the radio effects of the continuous steam clouds from locomotive yards and from factory chimneys.

*"The Positive Electrical Drift in the Air," by William C. Reynolds. Nature (London), vol. 115, page 531 (April 11, 1925); "High Tension Electric Lines and the Discharges of Steam Locomotives" (in French), by P. L. Mercanton, La Nature (Paris), number 2,663, page 255 (April 18, 1925).

A New Record for Pictures by Radio

On May 6, 1925, a new record was established for the sending of pictures—in this instance photographs—by radio. Practice war maneuvers were in progress off the Hawaiian Islands. The officers of the War and Navy Departments wished to report the results as fully and completely as possible to their superiors in the United States. By the aid of the facilities of the Radio Corporation of America illustrative photographs to accompany the report were sent by radio, traversing a distance of over five thousand miles in approximately twenty minutes.*

The route followed included three land-wire links and two radio links. First the signals corresponding to the pictures were sent by wire to station KIE in the Hawaiian Islands.



Brown Bros.

DOES SMOKE CAUSE INTERFERENCE?

Smoke and steam are electrified. It is possible that the clouds produced may interfere in several ways with nearby radio reception.

From here a 16.975-meter wave carried them to a receiver at Marshall, Cal. Thence a second land wire took them to KET, at Bolinas, Cal., which station again put them on the air on a wavelength of 13,100 meters. This wave was picked up at the receiving station of the Radio Corporation at Riverhead, L, I., where the signals were again put on a land wire to the picture-reproducing apparatus in New York City. The system used was substantially the same as has been employed for some months in the well-known experiments of the Radio Corporation in the radio transmission of pictures. It is already apparent that this system might prove of the greatest value in case of war or other national emergency.

Delano Service

AMATEURS FORMALLY ADOPT A "UNIVERSAL RADIO LANGUAGE" One of the actions of the First International Radio Congress (which was recently held in Paris) that is of interest to radio fans everywhere was the adoption of Esperanto as the official "internationally-understood" language of radio. Twentyone broadcasting stations abroad are now using it.

The BROADCAST LISTENER

Comments on radio programs, methods and technique -from the point of view of the average fan

By RAYMOND FRANCIS YATES

The Waning "Art of Jazz"

For three years now we have been ranting semi-frantically about the unmitigated employment by the studios of the zoölogical brand of music. Go to the radio any evening and you will find anywhere from five to ten jazz orchestras within the reach of your contraption. And the tragedy of it is the growing number of "fox-trot versions." If it is not the mangled body of a Wagner aria it is a Strauss waltz or a Chopin prelude. This simply goes to show that jazz is a bankrupt art and that supposition is a musical parasite. art and that syncopation is a musical parasite feasting on the luxurious fiber of creations far beyond the capabilities of its own masters. It is just as easy to syncopate the Flower Song as it is to sit down at the piano and

rag Moritz Moszkowski's Serenata Opus 15, No. 1. Yet to hear our jazz mongers talk, one would think that jazz was a great, big, healthy, artistic invention that must be fed from the deepest wells of human emotion.

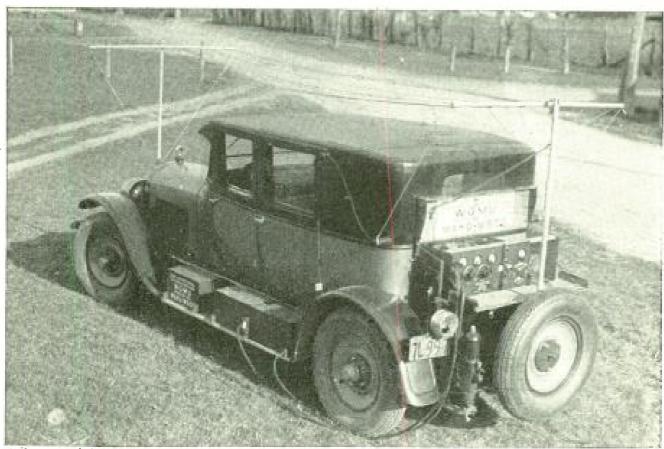
Radio has made jazz so hopelessly common that it is hurting both itself and broadcasting. Still, we have only a few studio managers in this big country of ours who are able to put their minds around this simple fact. We do not mean to say that jazz should not be allowed a place on the air or that all of its practitioners should be given a long rest at the Bide-a-Wee Sanitarium, for, after all, some of its supporters have been able to lift it, not to an art, but to a sort of craftsmanship that deserves some kind of recognition. No one can listen to the gentle playing of Paul Whiteman

and his original band without feeling kindly toward this drooling infant of the musical world. Lopez, too, has given more to radio than radio has given to him. Fortunately for jazz and the radio, Lopez is not what we call a "musical smarty." He does not take pride in trying to crush music into an unrecognizable pulp with the newer devices and methods. There is a charm, a warmth, a gentle flavor to his playing that one, even though hostile to jazz, must sympathize with. That Lopez is spending his time in the development of a hopeless musical protégé makes little difference; he is responsible for a vast source of entertainment.

It would be unfair to Ben Bernie (another WEAF feature) not to mention him along with the precious few. Bernie has an enjoyable technique all his very own and it seems to us that he has supplied jazz with some real originality.

Politicians Take the Air

If there is one thing that is hurting broadcasting in these great United States, it is stations like WNYC, the "Municipal Voice of Greater New York." WNYC, we are sorry to report, is a political station operated by politicians for politicians. Perhaps it would be wiser to feel charitable toward this experiment, for the gentleman who thinks that he can increase his popularity by filling the air with the raucous voices of his henchmen has yet to learn the resentful nature of the radio audience. If we were king we should never risk our kingship with the fickle radio listeners.


We can only hope for one thing in connection with Mr. Hylan and his broadcasting, and that is that someone is gathering data on the project so some sort of a scientific treatise on "Why Mayors Should not Broadcast" may be prepared after Mr. Hylan has retired to the quiet of his Brooklyn home in 1926.

How to Read Publicity Notices About Radio Artists

If you want to keep good friends with your radio and avoid those little disappointments that may eventually make you a "radio bolshevist," don't believe all you read in the newspapers about the radio programs. The studio publicity man is a guileless exploiter and he can, with his Smith Premier No. 9, make a third-rate violinist the pet of the Continent or a Chautauqua lecturer the 1925 model of Mark Antony.

of Mark Antony.

The job of a publicity man, whether at the theater or in the studio, is that of making big people out of little ones and great stars out

Courtesy of the New York World

A BROADCASTING STATION THAT GOES TO THE SOURCE OF NEWS This portable transmitter, sent out from the Grebe station WAHG, has been used successfully to send news to the editorial rooms of the New York World. As the machine speeds along the reporter sends his story to the main office. The movement of the car does not interfere with the smoothness of transmission.

Underwood & Underwood

"PRESENTING THE CATHOLIC POINT OF VIEW ON THE VARIOUS FIELDS OF HUMAN ACTIVITY"

Unlike the Protestant churches, which make extensive use of the independent broadcasting stations for transmitting sermons, hymns and debates on religious topics, the Paulist Fathers are establishing a chain of stations of their own for the frankly avowed purpose of disseminating Roman Catholic propaganda. Father John Handby, the Paulist missionary, is here shown before the microphone of station WPL, conducted for the Paulist League of New York.

of mere fireflies. The laying on of words is usually so thick and so heavy (anywhere from 3 to 47-ply) that the subjects of the notices do not believe them. Indeed, there is a rule to the game (any publicity man will tell you) that states: "Stars are not 'made' until they begin to believe the flattery in their press notices."

If you want to be a good radio listener, it is part of the game to learn to read the press notices about the "stars." Some alertness must be displayed in skimming the buncombe from the surface of the truth and it often happens that the buncombe is so thick that its complete removal leaves nothing for examination.

Repetitions on Broadcast Programs

It seems that there should be some simple way for overcoming repetition in radio programs. How annoying it is to hear the same number played from several local studios during the course of a single evening. With a little co-operation and by asking the assistance of the people who broadcast, it could be an easy matter for broadcasters to prevent the radiation of much monotonous material. If the

program managers of all of the large centers like Chicago, New York, Philadelphia and Boston would meet weekly for the avowed purpose of comparing notes, the repetition tangle soon would be ironed out and this department would be saved a lot of cussing. At times it does seem as though co-operation is the one thing that our studio managers care least about and yet little thought is required to show that the lack of it is one of the things that is hurting broadcasting and hurting it badly.

The Broadcasting of Advertising

We often hear fear expressed over the fact that our best studios may sooner or later be operated by advertising agencies and that radio broadcasting will become an out and out advertising medium. We don't know what could be more out and out advertising than radio is at the present time. If there is any station on the air that does not have a little advertising axe to grind, we shall be glad to set our intelligence department on its trail, and, if it should be found, to award its sponsor the Nobel Prize or something as good as the Nobel Prize for having taken the rôle of an honest-to-goodness public benefactor.

The Passing of Bedtime Stories

It is encouraging to note that the bedtime story, once such an important part of every station's equipment, and one of the most solidly entrenched traditions of the art, is rolling down the skids of forgotten events just as fast as anything so old and hopeless should roll. The bedtime story was invented in the early days of WJZ and it hung on for a long time eating up a half or three-quarters of an hour with more propitious program material standing by.

WEAF abandoned its juvenile story way back in 1924 and there was barely a ripple of disapproval. Another fond theory of every standardized studio manager exploded quietly.

Why Is Roxy?

For the first time in our long and colorful career we are going to come out flat-footed and tell this old world that Roxy is still unmatched as a broadcaster and that he will remain unmatched as long as he wants to reserve the little finger on his left hand to direct his broadcasting work while he uses the rest of his fingers to do in the art of presenting movies what no other man in the country has been able to do. Furthermore, we are going to let the world in on his secret; a secret that he told us many times in our inspiring association with him.

Those who are a bit envious of Roxy's standing as the only broadcaster in the United States with a full measure of dramatic imagination, usually account for his success with a faint derogatory smile and "Yes, he is a pretty clever showman." While Roxy is obviously a man of the theater, with a keen theatrical sense of theatrical values, it is superficial and stupid to grant him nothing more substantial than mere showmanship. A dozen and one showmen have tried to emulate him on the air only to find that their success in the theater did not follow them to the microphone and that broadcasting demanded a technique

much more intriguing than they had expected. Roxy is a sanguine person. There is nothing more mysterious about him than simplicity, but there simplicity can be mysterious enough to baffle the efforts of those who overlook its virtues. Roxy is completely human and antiartificial. Certainly no one could accuse him of putting on a pseudo-elegance before the microphone. He is just a plain, warm-hearted citizen obeying to the letter the natural impulses from a peculiar grouping of brain cells that we call personality. That he is able to transmit real personality to his audience and that he is at the same time a discreet eighteenhour-a-day showman with a truly remarkable sense of the things in life that interest other

human beings, is a mere act of Providence. Roxy is as safe from emulation as John Sargent, Sir Isaac Newton or any other great genius.

1882 Pianos

MICROPHONES do work miracles. Have you ever been exposed to the musical slander emitted by the rusty, loose strings of what may have been a piano back in 1882? Perhaps the thing had been made in Peoria or Cincinnati by a manufacturer long since extinct. Such instruments have usually withstood the punishment of four generations of a nonmusical family and they are not uncommonly found standing with the trinkets in the parlors of the rural districts. Even the moths have abandoned them for want of more substantial sustenance.

What agony to disturb their repose! They stab the heart of the musically sensitive with a knife so keen that it cuts clear to the soul. Yes, microphones certainly can work miracles. How efficiently they can transform the modern creations of the piano makers into those instruments that were once the pride of Cincinnati and Peoria! And what a complete and

deceiving metamorphosis it is!

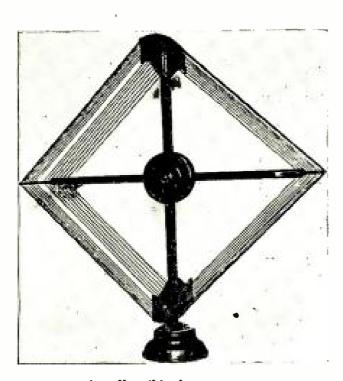
The piano. due to its wide range of sound frequency, is a most difficult instrument to broadcast. About 70 percent of our studios make a bad job of it and this department is usually carried back to the days when pianos were made with gingerbread fronts and revolving stools with gingerbread feet—usually a nice brass eagle's claw holding a glass ball. What we need is a commission for the study of piano transmission and if such a commission is formed we shall instantly suggest that it visit the studio of WEAF where perfection may be studied to the heart's content.

Why Not "Curtain Music" for Radio Programs?

If there is one thing necessary for a good entertainment on the radio, it is good curtain music. A few of our broadcasting novitiates appear to agree with us on this point, but how often the curtain rises on an act with an entertainment value comparable with the thirdgrade graduation exercises of Public School No. 4! We may be old-fashioned, but we have always felt that studios would bring their audiences to an agreeable and acceptable mood by starting off their programs with the right kind of music. Yet in the face of this, we find many of our best broadcasters leading off with the weather report or the financial developments of the day.

How to Build a 5-Tube Receiver with Simplified Control

This next product of the Popular Radio Laboratory will be described in the next issue of this magazinefor August.


This department is conducted by Popular Radio Laboratory for the purpose of keeping the radio experimenter and the broadcast listener informed concerning the newest inventions and the approved developments in radio equipment. Only such apparatus as has been tested and endorsed by the Laboratory is noted in these columns.

MISCELLANEOUS ACCESSORIES

Mahogany binding post; King Quality Products, Mahogany switch lever; King Quality Products, K·B adjustable bearing; Koelmel Bros.
Korker combination tool; Korker Products Co.
"Lenk" alcohol blow torch; Lenk Mfg. Co.
"Liberty" terminals; Liberty Transformer Co.,

RADIO-FREQUENCY TRANSFORMERS

"Kellogg" low-loss R. F. transformer No. 602; Kellogg Switchboard & Supply Co. Vario-transformers; Langhein & Kaufman. Special air core R. F. transformer; Liberty Transformer Co., Inc.

A collapsible loop antenna.

TUNING INDUCTANCE UNITS

"Kellogg" variometer; Kellogg Switchboard & Supply Co.
"Kellagg" variocoupler Kellogg Supply Co.
"Universal" variometer; Langbein & Kaufman. Variable clarifying selector; Langbein & Kaufman. "Lincoln" oscillascope; Lincoln Radio Corp. "Lincoln" "Long-45" tuner; Lincoln Radio Corp. "Lopez" low-loss tuner; A. C. Lopez & Co.

KITS

"Kellogg" kit; Kellogg Switchboard & Supply Co.
"King Quality" kit; King Quality Products, Inc.
"Liberty" Superheterodyne kit; Liberty Electric "Lincoln" kit; Lincoln Radio Corp.

GRID-LEAKS AND RESISTANCES

"Kellogg" resistance; Kellogg Switchboard & Supply Co.

AN EFFICIENT LOOP

Name of instrument: Loop antenna. Description: A really well-made loop of unique design. Four mahogany arms for supporting the wire are fastened to a non-magnetic metal centerpiece, which may be taken apart so that the loop may be folded up into a very small space. Instead of the regular box shape, the wire is formed in a curve. The assembly is mounted on a rotatable shaft with a dial which is calibrated in degrees and equipped with a pointer. The leads are brought out to two terminals in the nonmagnetic metal base.

Usage: As a pick-up device for a radio-fre-

Quency receiver.
Outstanding features: Portability. Directional efficiency. Good workmanship. appearance.

Maker: The Gowanda Co.

A NOVEL POTENTIOMETER

Name of instrument: Potentiometer.

Description: This instrument is made in accordance with the latest design of the "Bradley" resistance control apparatus. It contains a small rotatable knob at one end with a special lever arrangement for increasing the resistance of one set of carbon discs while at the same time decreasing the resistance of the other set. This gives a very smooth potentiometer arrangement. The three terminals are brought out to screw binding posts.

Usage: Any place where a potentiometer is needed in a radio receiver.

Outstanding features: Compactness. Ease of

Outstanding features: Compactness. Ease of mounting. Simplicity of connections. Smooth adjustment.

Maker: Allen Bradley Co.

SOCKETS AND ADAPTERS

"Kellogg" adapter, No. 501; Kellogg Switchboard & Supply Co.

"Kellogg" V. T. socket; Kellogg Switchboard & Supply Co.

"Keystone" V. T. socket; Keystone Radio Co.

Mahogany panel-mounting tube socket; King Quality Products, Inc.

Adapters; King Quality Products, Inc.

Caldwell socket (type 201); Knox Corp.

"Leich" Improved radio socket; Leich Electric Co.

VARIABLE CONDENSERS

"Kellogg" No. 704 low-loss variable condenser; Kellogg Switchboard & Supply (o. Variable condensers; King Quality Products, Inc. "Lincoln" low-loss condenser; Lincoln Radio Corp. "Lombardi" condensers; Lombardi Radio Mfg. (o.

An attractive new type loudspeaker.

A carbon disc potentiometer.

RECEIVING SETS

Kompentrol receiver; Kardon Products Co.. Inc. "Kennedy" receivers; Colin B. Kennedy Co. "King Quality" neutrodyne receiver; King Quality Products, Inc. "Kodel" receivers; Kodel Mfg. Co. Monarch receiving set; Krasco Mfg. Co. "Elkay" Super-Scleetor; Langbein & Kaufman. "Liberty" Scaled Five receiver; Liberty Transformer Co., Inc.

BATTERIES

Storage "B" batteries; Kelman Electric Co.
"Kic-O" storage "B" batteries; Kimley Electric
Co., Inc.
"Kic-O" "B" Multi-Power Unit; Kimley Electric
Co., Inc.

"B" BATTERY ELIMINATORS

"Kellogg" Trans-B-Former; Kellogg Switchboard & Supply Co.

CRYSTAL DETECTORS

Atomite crystal; Keystone Products Co. "Lego" Wonder fixed detector; Lego Corp.

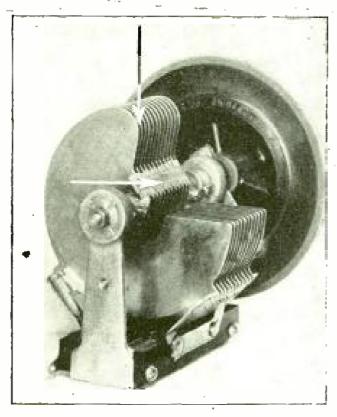
BATTERY CHARGERS AND RECTIFIERS

"Kic-O" Rectifier; Kimley Electric Co., Inc.
"Kic-O" double potential charger; Kimley Electric Co., Inc.

POTENTIOMETERS

Mahogany potentiometer; King Quality Products, Inc.

A CONE TYPE LOUDSPEAKER


Name of instrument: Loudspeaker.

Description: A medium size loudspeaker which consists of a magnetic unit attached to the frame of the device with a moving element that actuates a small push rod attached to the center of a special paper conc. The outer edge of the cone is supported lightly but freely between two circular strips of felt held in a circular panel of metal. The appearance is very attractive.

Usage: With any radio receiving set as a reproducer.

Outstanding features: Tone quality. Volume. Neat appearance.

Maker: Crosley Radio Corp.

Unique design for a variable condenser that embodies cut-away plates that are securely soldered together.

AUDIO: FREQUENCY TRANSFORMERS

"Kellogg" audio-frequency transformer; Kellogg Switchboard & Supply Co. Karas "Harmonik" audio-frequency transformers; Karas Electric Co. Audio-frequency transformer; Killark Electric Mfg. Co. "Liberty" audio-frequency transformer; Liberty Transformer Co., Inc.

JACKS

"Kellogg" jacks; Kellogg Switchboard & Supply Co. Jacks; King Quality Products, Inc. "Kings" double-circuit jack; Kings Mfg. Co., Inc. Duo-stage jacks; Leich Electric Co.

DIALS

"Kellogg" bakelite dial; Kellogg Switchboard & Supply Co.
Knobs and dials; King Quality Products, Inc.
Knobs and dials; Kurz-Kasch Co.

A CABINET MADE ENTIRELY OF PANEL MATERIAL

Name of instrument: Radio cabinet.

Description: A complete cabinet that is supplied by the maker in knockdown form with screws, brackets, hinges and base. The front panel is of celeron and the sides, back and top are of vulcawood, which is vulcanized fibre covered with a thin sheet of bakelite. The vulcawood is finished with a mahogany grain, which is very attractive in appearance.

Usage: As a container for a radio receiving set.

Outstanding features: Simple to set up. Neat in appearance. Light weight.

Maker: Diamond State Fibre Co.

A NEW VARIABLE CONDENSER

Name of instrument: A variable condenser.

Description: Here is an instrument with a new method for mounting the plates. The shaft of the instrument which holds the rotor plates is mounted on a "U" shaped aluminum casting with suitable bearings at each end. Also mounted on this casting are two strips of insulating material which carry the metal form that holds the stator plates. All the plates are soldered together so that connection will be firm and conductivity will be high. The instrument is equipped with soldering lugs and a special vernier.

Usage: In any radio-frequency circuit for tuning.

Outstanding features: Efficiency. Novel design. Approximate straightline wavelength curve.

Maker: Kellogg Switchboard & Supply Co.

CABINETS

Radio cabinet; Kellogg Switchhoard & Supply Co.

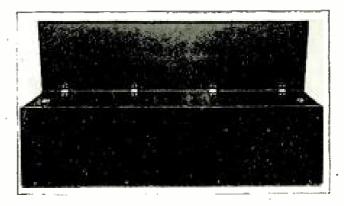
LOUDSPEAKERS

"Kellogg" Symphony Reproducer; Kellogg Switchboard & Supply Co. K.-E. loudspeaker; Kirkman Engineering Corp.

HEADPHONES

"Kellogg" headset; Kellogg Switchboard & Supply Co.
Lark headphone; Leich Electric Co.

PHONE PLUGS


Snap plug, No. 501; Kellogg Switchboard & Supply Co.
Plug No. 502; Kellogg Switchboard & Supply Co.
Plug; King Quality Products, Inc.
Lark plug; Leich Electric Co.

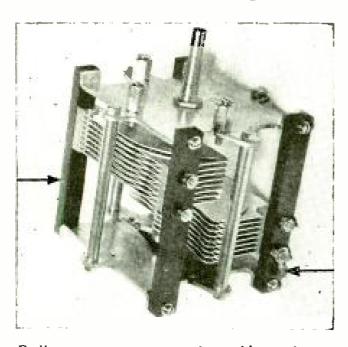
RHEOSTATS

Rheostat; Kellogg Switchboard & Supply Co. "Keystone" filament rheostat; Keystone Radio Co. Mahogany rheostat; King Quality Products, Inc.

SWITCHES

Tuner switch; Kellogg Switchboard & Supply Co.
Back-mounting inductance switch; Keystone Radio
Co.
Mahogany inductance switch; King Quality Products, Inc.

A complete cabinet supplied in knockdown form.


A FINE TRANSFORMER

Name of instrument: Intermediate-frequency transformer.

Description: This new instrument may be used as a coupling unit in the intermediate stages of a superheterodyne receiver. The coils are wound on a special bobbin with a small amount of iron placed so that the resonance curve will just include the side bands necessary for complete reproduction. The terminals are brought out to soldering lugs mounted on a bakelite panel. The whole instrument is built up in a small aluminum case with a novel means for attaching in either of one or two positions-vertically or horizontally.

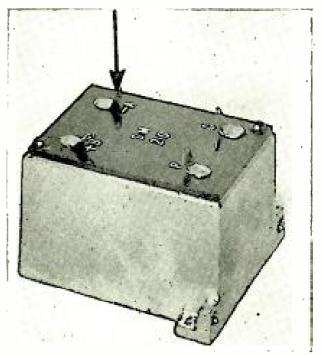
Usage: In a superheterodyne receiver as a coupling unit.

Outstanding features: High efficiency. Selectivity. Small size. Stable operation. Maker: Silver-Marshall, Inc.

Radion separators are used on this condenser with soldering lugs for connections.

A NEW TRANSFORMER WITH SELF-SUPPORTED WINDING

Name of instrument: Radio-frequency transformer.


Description: This instrument consists of two coils, a primary and a secondary which are wound in an octagonal form and fastened by means of two gummed strips of paper. The two coils are supported on two strips of bakelite with suitable brass angles for mounting on a baseboard or for attaching directly to a variable condenser.

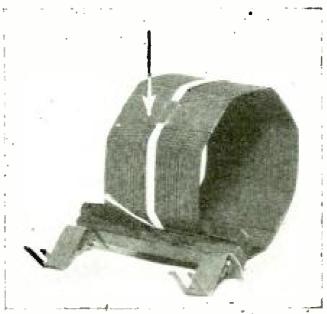
Usage: In any radio-frequency circuit for

coupling between stages.

Outstanding features: High efficiency. Low distributed capacity.

Maker: Eastern Coil Corp.

A transformer equipped with soldering lugs.


A DOUBLE TUNING UNIT

Name of instrument: A unit variable condenser.

This instrument contains two variable condenser units mounted on a single shaft. The two units are placed diagonally in relation to the shaft. The end-plates are similar to the regular Cardwell construction except that the design is doubled up. Four rubber insulating segments are used; two to each unit. Both rotors are grounded on the same shaft and the two stators are separately insulated. All connections are brought out to soldering lugs.

Usage: In any radio-frequency circuit for tun-

Outstanding features: High efficiency. Compactness. Simplicity in tuning. Maker: Allen D. Cardwell Mfg. Corp.

Coils supported with gummed strips.

CONDUCTED BY DAVID LAY

ITEMS of general interest that you ought to know; bits of useful information that every radio fan ought to know.

Inter-Continental Communication Between Amateurs

Two-way daylight communication between Australia and England was established for the first time on May 2, 1925, between Mr. E. J. Simmonds (20D), the well-known amateur of Gerrard's Cross, Bucks, transmitting on a new wavelength of 20 meters, and Mr. H. Maclurcan of Sydney.

How Radio Is Growing

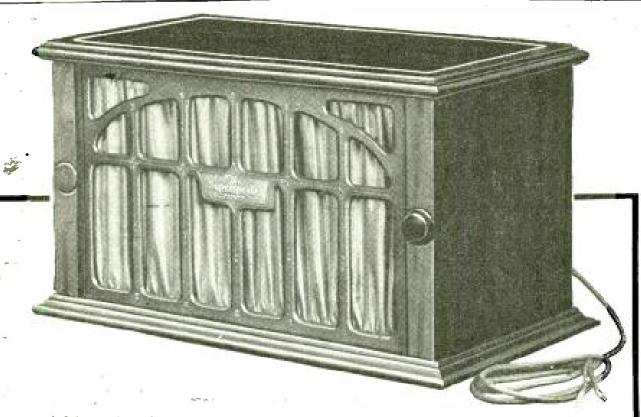
EXPORTS of radio apparatus increased from approximately \$2,900,000 in 1922 to \$3,500,000 in 1923 and to over \$6,000,000 in 1924. Radio exports during the first months of this year have been more than twice those during the same period last year. Canada is our best customer, with Mexico second and Brazil third.

The Best U. S. Amateur Station

The highest honor in amateur radio, the 1924 Hoover Cup, has been awarded to B. Molinari of 653 Union Street, San Francisco. This cup is given annually by Secretary Hoover to the operator of the best amateur radio station in the United States in which the bulk of the apparatus is the handiwork of the operator himself. The station for which the award is made, 6AWT, has been unusually efficient in communication with foreign countries; its signals have been reported by amateurs in Asia, Australia, South Sea Islands, Europe, Africa, South America, Central America and Danish America. 6AWT was one of seven stations selected to transmit press reports to Captain Donald B. MacMillan in the arctic. The station has also been in two-way communication with New Zealand and Australia. The station has the familiar Hartley circuit for the transmitter, which employs one 250-watt tube. The receiver is of the conventional amateur low-loss type, the tuning of which is accomplished by a glass insulated condenser across the low-loss secondary coil. The antenna is a semi-vertical parachute type, 15 feet long

and 80 feet high at the free end. The counterpoise is a nine-wire fan-shaped area 40 feet in length.

A World Conference on Radio


A RADIO conference will be held at Washington, D. C. this September when the representatives of about fifty nations will assemble to discuss international problems in radio communication and broadcasting. The necessity for calling the International Radio Conference is due to the fact that the old regulations comprised in the London Convention of 1912 are inadequate to cope with communication problems brought out by broadcasting and the modern radio apparatus. Originally, the London pact dealt with the shore to ship and ship to ship radio-telegraphy.

The Costs of Publicity by Radio

The following rates for broadcasting have been established by the principal stations: New York, WEAF, \$500 an hour; Philadelphia, WFI or WOO, \$200 an hour; Pittsburgh, WCAE, \$200; Washington, WCAP, \$150; Buffalo, WGR, \$200; Boston, WEEI, \$250; Providence, WFAR, \$250; Cleveland, WEAR, \$150; Cincinnati, WSAI, \$200; Detroit, WWJ, \$200; Davenport, WOC, \$150; Minneapolis, WCCO, \$250. The gross charge an hour for one group of eleven stations is \$2,600. Talks are limited to ten minutes and are assessed at half the hourly charge. Broadcasting music or entertainment for a half-hour is one-half the hourly charge, plus 25 percent.

Sorbonnne Broadcasts Courses

THE success last year in broadcasting courses from the Sorbonne University in France was so great that the service is being extended this year, when four complete courses will be given by eminent French scholars. This is the first time in France that men of high academic standing have lectured regularly over the ether.

And Now— The Superspeaker Console

In performance, it's a Superspeaker—enough said.

In Appearance, it's the finest piece of Radio cabinet work you have ever seen.

Just what you'd expect from two years' experiment and development by an organization with a record of leadership in the field of loudspeakers.

See it! Listen to it! Enjoy its ability to improve the appearance and performance of your set.

Of finest American Walnut or the new Clairemount Mahogany—Top inlaid with Arlington Ivory—Leather composition grill, richly draped with silk—Volume controlled by ebony knob—Superspeaker-Vemco Reproducing unit—Superspeaker-material concealed horn with full floating mounting. Overall size 10½ x 17½ inches, 10 inches high. Ask any Jewett dealer. Price \$40.00; west of the Rockies, \$42.50.

JEWETT RADIO & PHONOGRAPH COMPANY 5668 TELEGRAPH ROAD PONTIAC, MICHIGAN

Factories: Allegan, Michigan—Detroit, Michigan—Pontiac, Michigan
Canadian Sales Offices:
Walkerville, Ontario
Export Sales Offices:
116 Broad St., New York City

The Jowett Superspeaker—All that the name implies. Recommended by experts everywhere. Price \$30.00.

The Jewett Superspeaker Console—A handsome cabinet with Superspeaker performance. Enough said. Price \$40.00. West of the Rockies, \$42.50.

The Jewett Parkay Cabinet— With parquetry top. Puts the amateur on a par with the most exclusive cabinet worker All sizes, prices to correspond. The Jewett Micro-Dial-Makes tuning 50 times as accurate. Fits any set. Needs only a screwdriver to install. Price \$3.50.

The Jewett Vemco Unit—Makes a loud speaker out of your phonograph. The Reproducer used in the Superspeaker. Price \$12.00.

The Jewett Superspeaker Highboy—Houses Radio set and all batteries. Superspeaker built in. Takes Radio into the realm of fine furniture. Price \$130.00.

Jewett Quality Products

CHECULLOUGH RADIO TUBE

—the Tube that Eliminates A Batteries From Radio—

The elimination of the storage A battery with its periodic recharging—

The elimination of battery chargers—

Elimination of rheostats—

Lower impedance; greater electron emission and increased signal response—

No alternating current hum-

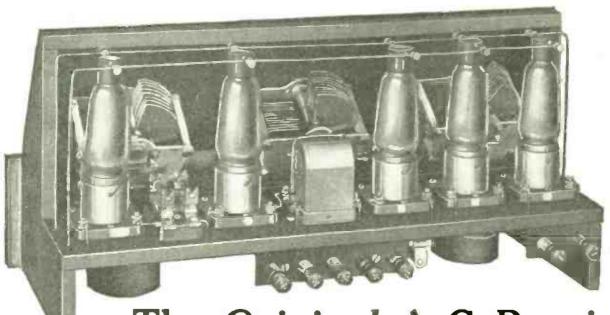
No microphonic action-

Low operating cost—

The longer life tube—no filament to burn out— THE RUGGED TUBE OF LONGER LIFE, GREATER EFFICIENCY AND BETTER QUALITY—

List Price \$6

Jobbers—
WRITE FOR
PROPOSITION



McCULLO GI

McCullough Sales Company

Distributors McCullough A-C Tubes 963 Liberty Avenue Pittsburgh, Pa.

The Original A C Receiver—

The Receiver built EXPRESSLY for the McCullough A C Tube.

The Receiver that "came along" with the A C Tube — evolved step by step with the A C Tube to ultimate perfection. Not an overnight makeshift, but the result of the same ingenuity, research and effort that created the McCullough A C Tube.

Great distance range— Exceptional selectivity— Easily logged—

Economically priced and economical to operate.

THE GREATEST THING IN RADIO! JOBBERS, WRITE FOR PROPOSITION

PITTSBURGH RADIO SUPPLY HOUSE

Manufacturers of the McCallough A C Receiver 963 Liberty Avenue, Pittsburgh, Pa.

Also manufacturers of "PRS" A C Leads for the McCullough A C Tube

Accuracy and Safety!

Money spent for a cheap voltmeter means more money spent for batteries. 60 ohms per volt—Nagel standard of resistance—is a protection against battery drainage. No. 23 (pictured above), in addition to its use as a "B" battery instrument, is being used extensively for "A" battery testing in place of hydrometers. See your dealer or write The W. G. Nagel Electric Company, 513 Hamilton Street, Toledo, Ohio, makers of the well-known Nagel automobile measuring instruments.

DRY CELL TESTERS AMMETERS HIGH-RESISTANCE VOLTMETERS VOLTAMMETERS BAKELITE HOT MOULDED INSULATIONS

Don't Let Your Tubes Deceive You!

You Can Tell Good Tubes From Bad Only By This Scientific Test-SAVES TROUBLE HUNTING-INSURES BETTER RADIO.

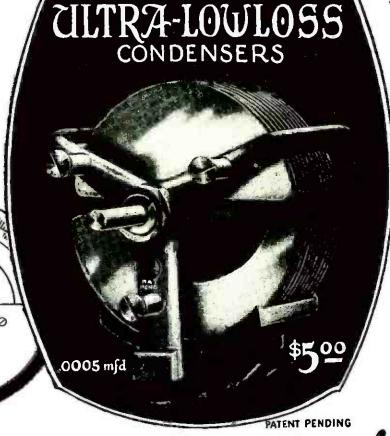
Remember one poor tube in your set may be the cause of many difficulties—loss of volume — failure to get distant stations — and other troubles. In less than half a minute this little tester will show you whether a tube is a good, fair or poor amplifier. It will save you hours of trouble hunting. Is invaluable to the set owner who wants the best radio there is in the air.

Absolutely warranted to protect your set from lightning, with a guarantee to pay you \$100 or repair your set, should it be damaged through any fault of the

FIL-KO-ARRESTER.

Listed as standard under the re-examination service of National Board of Fire Underwriters.

If your dealer has none, send his name with remittance to Dept. PR-725


DX Instrument Co. Harrisburg, Pa.

Showing stations "Bunched" as they are found on a 100 degree dial using any ordinary

The location of the same stations on the same dial using Ultra-LowLoss Condensers—"spread", simplifying

Tuning Simplified Now!

The day of tedious fumbling about for your stations is past-science has been brought into play. Now, with the Ultra-LowLoss Condenser you can instantly tune in on any station as easy as turning the hands of a clock to the hour.

With one station of known wavelength located on the dial, all others can be found instantly. Each degree on a 100 degree dial represents approximately 3½ meters difference in wave length. This applies to both high and low wavelengths. Other than 100 degree dials vary ac-

This simplification of tuning is made possible by the new Cutless Stator Plates to be found only in the Ultra-LowLoss Condensers. Every feature of the Ultra-LowLoss Condenser was developed with one predominating purpose—to overcome losses common in other condensers. Designed by R. E. Lacault, originator of the famous Ultradyne Receivers and Ultra-Vernier Tuning Controls.

At your dealers, otherwise send purchase price and you will be supplied postpaid. Design of lowloss coils furnished with each condenser for amateur and broadcast wavelengths showing which will function most efficiently with the condenser.

TO MANUFACTURERS WHO WISH TO IMPROVE THEIR SETS Mr. Lacault will gladly consult with any manufacturer regarding the application of this condenser to his circuit for obtaining best possible efficiency.

CONDENSER

PHENIX RADIO CORPORATION

116 East 25th Street, New York City

ULTRA-VERDIER CONTROL TUNING

Simplifies radio tuning. Pencil record a station on the dial—thereafter, simply turn the finder to your pencil mark and you get that station instantly. Easy—quick to mount. Eliminates fumbling question A single vernier guessing. A single vernier control, gear ratio 20 to 1. Furnished clockwise or anticlockwise in gold or silver

Silver \$2.50 Gold \$3.50

This seal on a radio product is your assur-ance of satisfaction and a guar-antee of design.

Parts for a Thousand and One Hookups Always Obtainable at Morisons!!!

Beside the parts listed for the three latest receivers shown below you can get any parts needed for any hookups by writing Morison's. You will also get-Morison service, expert advice, high quality, fair prices.

COCKADAY'S 8 TUBE SUPER-

Н	ETERODYNE REFLEX RECE	IVER
l	General Instrument Low- Loss Condenser (isolantite insula- tion) .0005 mfd	\$5.00
	General Instrument Low-Loss Condenser (isolantite insula- tion) .001 mfd.	5.50
l	Set of 4 Matched Haynes-Griffin Intermediate Transformers	20.00
ı	Precision Autodyne Coupler	8.50
l	Karas-Harmonic Audio-Frequency transformer	7.00
L	Amplex Grid-denser .0005 mfd	1.25
l	Benjamin Cle-ra tone Socket	1.00
7	Federal Socketa No. 16ea. \$1.20	8.40
L	Pacent Double Circuit Jack	.60
Ł	Pacent Single Circuit Jack	.50
2	Na ald 4 inch Dials No. 3043.ca75	1.50
L	Ameco 2 Ohm Rheustat	1.35
2	Amaco Potentiometer 400 Ohma	1.00
Z	Daven Resisto coupler mountings ca. \$1.00.	2.00
L	Daven Grid-leak Mounting	.35
2	Daven Rosistor .5 Megohma.ca .60	1.00
L	Daven Resistor 5 Mogohms	.50
t	Daven Resistor .005 Megohm	1.00
2	Daven Resistor .25 Megohm.ea. 50	1.00
L	Radion Panel 7x24 ins	3.00
2	.0001 N. Y. Coil Mica Condensers ea. 35	.70
6	ea. 75	3.00
L	.00025 N.Y. Coil Mica Condenser with Grid-leak Mounting Duratran Radio-Frequency Trans-	. 45
L	Corner Sauto-Frequency Irans-	4.00
L	former	.50
Į	Baseboard 9 3-8 x 22 3-4 x 1-2 ins Connection Block 1 x 9 x 8-16 ins	.75 .25
7	Connection Block I x 9 x 8-10 ins	1.05
	Eby Binding Poatsca15 Material for making brackets	.25
L	Korach Tuned LOOP	16.50
i	Mahogany Cabinet	
		nux un

TOWN AND COUNTRY RECEIVER

	Remler Variable Condenser .00035 \$5	.00
		.25
		1.50
	Cutler-Hammer Battery Switches	1.20
	Adams Jack No. 502	.70
	Adams Jack No. 501.	.60
	Adams Jack Ind. Dol.	.45
	Dubilier .00025-601-G Condenser	
	Dubiher .00025-601 Condenser	.35
	Daven 4 meg. Resistance	.50
	Benjamin No. 199 Socketses. \$1.00	00.8
	Dubiller Duratransea. 4.00 1	2.00
	Pacent Audioformers No. 26ea. 6.00 10	210
•		.35
	7 x 18 Radion Panel	2.45
	Brass Strip for Brackets	.15
	Hard Rubber Strip 1 x 9 ins.	.25
	Baseboard 7 x 16 3-4	
	Daseboard 1 x 100-4	.60
	Dixle Assortment of Screws, etc	
Þ	Lengths Bus Barea02	.30
	7 x 18 Cabinet	7.50
	Hoyt Bezel Hole 0-6 Voltmeter	3.00
	es.	5.85
	40.	2.00

McCullough AC Tubes \$6.00 each

Ask for any Parts you can't get WHOLESALE RETAIL

15 East 40th Street, New York City | WRITE

McCULLOUGH AC 5-TUBE RECEIVER

l	General Radio Variometer No.	
	269	\$5.00
2	Precision R. F. Coupling Units	5.00
	Hammarlund .0005	10.00
5	Federal Sockets No. 16, 1.20 ca.	6.00
ĺ	General Radio Audio Trans-	
	former No. 285	7.00
L	Daven Mtg. No. 41	1.00
è	Dubilier .006 Cond. No. 601	2100
	at .75	1.50
ι	Daven Resistor .25 Meg	.50
	Daven Resistor 4 Meg.	. 50
		. 50
L	Daven Resistor .5 Meg	. 00
L	Dubilier Condenser .00025 No.	48
	_ 601-G	. 45
1	Dubilier Condenser .00015 No.	0.5
	601	.35
1	Dubilier Condenser .0001 No.	
	601	.35
Ē	Pacent Jack No. 61 S. C	.50
1	Radion Panel 7 x 24	3.00
1	Baseboard 9 1/2 x 22 1/4	. 75
1	Antenna Binding Post Strip	. 15
I	Battery Binding Post Strip	.25
I	Cabinet 7 x 24	-12.50
3	4 inch Kurz Kash Dials	3.00
1	Dongan Transformer	6.00
A	. C. Leads	1.50
		\$65.80


Establish connections with Morison now before the fall rush begins. C O D Mail Orders filled promptly.

SENO NO MONEY Just state battery wanted and celved, by Express C. O. D. subject to your examination on arrival. FREE "B" Battery included. Extra Offer: 5 per cent discount for cash in full with order. Buy now and get a guaranteed battery at 50 per cent saving to you. WORLD BATTERY COMPANY

For **AUTO** RADIO ECHA - WEAF - WON - WUS - KHU - KISO - KISAF - WUY - KOP

for ALTERNATING CURRENT TUBES

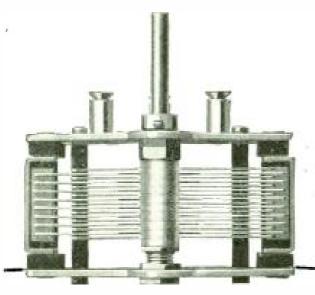
JEFFERSON

A-C TUBE TRANSFORMER

This Jefferson Transformer makes possible the most remarkable results, with McCullough A. C. Tubes. Attached to any A. C. lamp socket, it will supply the correct voltage for perfect operation.

Close voltage adjustment of the Tubes is made through a regulating switch that offers a flexible control ranging from $3\frac{1}{2}$ to 6 volts, so that it may be operated with equally good results on lighting circuits varying from 100 to 130 volts. It is designed so that it may be permanently mounted beside your set, if you wish. The Jefferson Special is built part by part by the world's largest manufacturers of small transformers. That means that the best brains of the industry stand back of its design.

JEFFERSON ELECTRIC MFG. CO. 501 South Green St., Chicago, Ill.


Twelve models of Jefferson Radio Transformers are famous for the fidelity of their reproduction. From the lowest notes of the bass drum to the highest notes of the violin, there is clarity and amplification without distortion. Makers of Jefferson Radio Tube Rejuvenators; Radio, Bell Ringing and Toy Transformers; Jefferson Spark Coils for Automobile, Stationary and Marine Engines; Jefferson Oil Burner Ignition Coils and Transformers.

Manufacturers of Sets

are Unequalled Your Engineers
Know It
Your Sales Will
Prove It

Fans demand Better Sets. A Good Set demands Better Condensers.

DXL offers a complete line of Straight Line Low Loss Condensers representing the high point in condenser design. Each condenser is a precision instrument.

Prices are Attractive

Our engineering department is at your service. Complete information on request.

RADIO CORPORATION 5767 Stanton Ave., Detroit, Mich.

DUDLO

Radio Windings and Wire

Audio Transformer Coils Battery Charger Coils Battery Eliminator Coils

Send Us Your Specifications Our Engineers, at Your Service Samples on Request.

Enameled Wire Cotton Covered Wire Silk Covered Wire Litzendraht Wire Bus-Bar and Aerial Wire

DUDLO MFG. CORPORATION

FT. WAYNE

NEWARK
NEW JERSEY

It is not alone these facilities and engineering skill which have given King a place of leadership—but the fact that when King products are put to actual test by radio users their performance is outstanding.

"King In Radio" stands not alone for a line

will determiné your

share. Let us tell

you the story of "King in Radio"

"King In Radio" stands not alone for a line of radio products—it stands for leadership, the very best, a complete line of King-Hinners Neutrodyne Receivers, King Five Tube Receivers, knock-down kits and a full line of radio parts.

All apparatus advertised in this magazine has been tested and approved by POPULAR RADIO LABORATORY

Summer Care of Batteries

WHETHER you use your radio much or little, test your batteries frequently. Unless the solution is kept just right, batteries may wear out even quicker than when worked constantly. Use a

Known everywhere for its absolute precision. Made to U. S. Bureau of Standards specifications. Gauged to 1/5000 of an

inch. Easy to read. Airtight joints. Acidproof container prevents electrolyte damaging clothes or rugs.

Major J. S. Hatcher, U. S. A., well-known radio authority, tells how to care for batteries. Send postcard today.

FRANCIS L. FREAS GLASS WORKS

America's Largest Hydrometer Manufacturers Conshohocken - Pennsylvania

Tunes straight through the locals, gets distance. Brings in more stations clearly and with volume—in a given length of time than any other set. Direct comparisons invited.
Zenith receiving sets cost more, but
they do more. —The exclusive choice
of MacMillan for his North Polar Expedition.

Seven Models—\$100 to \$475

Models 4R and 3R licensed under Armstrong U.S. Patent No. 1,113,149. They are NON-RADIATING.

Zenith 4R - - \$100 Zenith 3R - - \$175

Super-Zenith VII - - \$240 Super-Zenith VIII - - \$260 Super-Zenith IX - - \$355

Super-Zenith X - - - \$475 Only dealers who are equipped to give service handle Zenith. Ask your nearest Zenith dealer for a demonstration.

Zenith Radio Corporation

Efficient devices bearing this name have made it one of the best known For instance in radio.

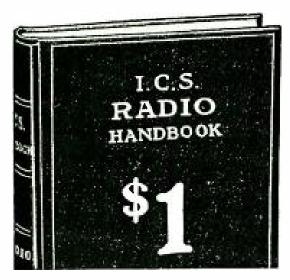
Simplex SR-5 Receiver—a distance getter of full volume and clear tone.

Simplex 180° DX Tuner — much sharper than 90° coils. Spiral wound molded rotor.

Simplex 180° Variocoupler -- especially well adapted to radio frequency circuits.

It's Lightning Arrester Time

The Simplex gives complete safety. Air gap sealed in glazed porcelain housing. Weather proof. Approved by National Board of Underwriters.


> At your Dealer's

SIMPLEX RADIO CO., Mfrs. 1013-15 Ridge Ave., Philadelphia, Pa.

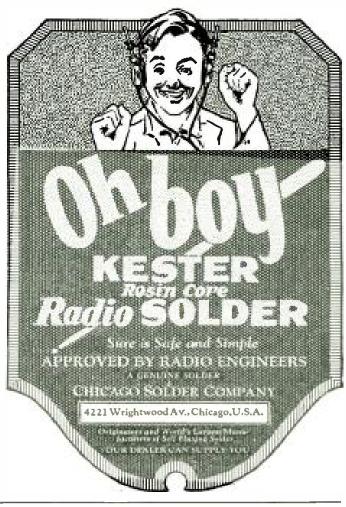
332 S. Michigan Avenue, Chicago

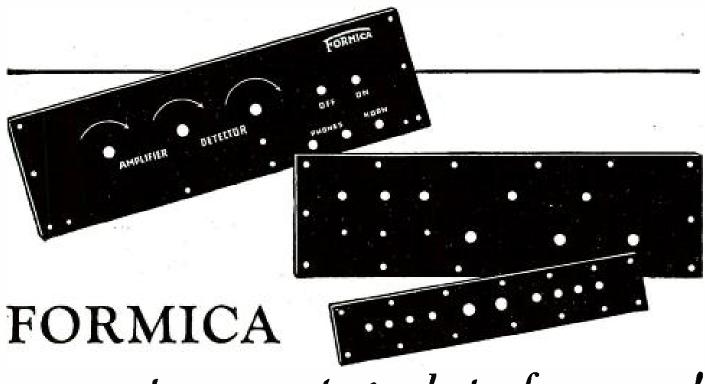
All apparatus advertised in this magazine has been tested and approved by POPULAR RADIO LABORATORY

Do you understand Super-Regeneration?

This unique book shows the way to work out practical circuits 514 PAGES—100,000 SOLD—ONLY \$1

Compiled by HARRY F. DART, E.E. Formerly with the Western Electric Co., and U. S. Army Instructor of Radio Technically edited by F. H. DOANE


SUPER-REGENERATION! Do you know that big money will be made by the first one to design a practical Super-Regenerative set? This marvelous circuit can be made to do with two tubes as much as a six or eight tube super-heterodyne. But it's not yet commercialized. It's where the super-heterodyne was until recently. Why don't you find out how to make Super-Regeneration practical? See pages 377 to 383, I. C. S. Radio Handbook, for details of the circuit and how to attack its problems.


This I. C. S. Radio Handbook explains electricity, electrical terms and formulas, antennas, batteries, motors and generators, vacuum tubes, transmitting and receiving principles and practice, radio and audio frequency amplification, condensers, battery chargers, filters, codes, license rules. Many other features.

Just mail the coupon with a dollar bill and your name and address, and we will send you this 514-page I. C. S. Radio Handbook by return mail. Note the other good books listed below and the low prices.

INTERNATIONAL CORRESPONDENCE SCHOOLS Box 8253-E. Scranton. Penna. I enclose \$.... for which send me, post-paid, the Handbooks marked X, at \$1 each. RADIO HANDBOOK, 514 PAGES, \$1 Automobile Handbook, 354 pages. \$1 Chemistry Handbook, 348 pages. \$1 Pharmacy Handbook, 348 pages. \$1 Traffic Man's Handbook, 386 pages. \$1 Building Trades Handbook, 336 pages. \$1 Building Trades Handbook, 335 pages. \$1 Salesman's Handbook, 335 pages. \$1 Salesman's Handbook, 352 pages. \$1 Civil Engineer's Handbook, 302 pages. \$1 Civil Engineer's Handbook, 302 pages. \$1 Steam Engineer's Handbook, 302 pages. \$1 Name. Address. Enclose \$1.50 for each book if you want the Leatheroid binding. All of the above books can be had in this binding except two—Traffic and Building Trades.

means permanent good performance!

WATCH out for the reaction against cheaply constructed radio sets. Every dealer has felt it on parts at one time or another. And radio sets cannot be built cheaper and cheaper without running into it.

Formica panels and base panels are a sure indication of quality in a radio set—of an intention on the part of the manufacturer to build for permanence and lasting good performance.

Formica base panels shorten and simplify the wiring and make the job a hundred times neater. Many sets built for real quality will have both front and base panels this year.

The better finish, greater uniformity, and greater freedom from warping that is characteristic of Formica have made it the preferred insulation of more than 125 leading set makers.

Dealers and jobbers find it the best known and most popular line of radio panels.

THE FORMICA INSULATION COMPANY

4641 Spring Grove Avenue, Cincinnati, Ohio

SALES OFFICES

JALLS	0117025
50 Church Street New York, N. Y.	1026 Second Avenue Minneapolis, Minn.
9 South Clinton St	725 Bulletin BldgPhiladelphia, Pa.
516 Caxton BldgCleveland, Ohio	708 Title Building Baltimore, Md.
327 Cutler BldgRochester, N. Y.	585 Mission Street San Francisco, Cal.
422 First Avenue Pittsburg, Pa.	419 Ohio BuildingToledo, Ohio
6 Beacon Street Boston, Mass.	309 Plymouth Bldg New Haven, Conn.
55 Calle Obispo	Whitney Central Bldg New Orleans, La.

Hear the Formica Orchestra over WLW every Tuesday evening from 9 to 10 Central Standard Time.

For Good Summer Radio Reception use

JEFFERSON

TUBE REJUVENATOR keeps tubes like NEW

DON'T blame the weather for all summer radio troubles. . . . How are the tubes? All tubes, remember, grow weak with use—especially in summer when operated at higher voltage. Bring them back to full efficiency with the Jefferson Tube Rejuvenator! Takes only 10 minutes; attach to a convenient electric light socket. Used once a month, it doubles and trebles the life of tubes! Quickly pays for itself in saving of tubes and batteries. It's wasteful to be without one; it's economy to own one. Fully guaranteed. At leading stores selling radio supplies. If your dealer can't supply you, send \$7.50 to

Jefferson Electric Mfg. Co., 501 So. Green Street, Chicago, Ill.

Makers of Jefferson Radio, Bell Ringing and Toy Transformers; Jefferson Spark Coils for Automobile, Stationary and Marine Engines; Jefferson Oil Burner Ignition Coils and Transformers.

Wonderful Volume with Clearness AMPL-TONE

\$300

Phonograph makers have spent years perfecting the acoustic properties of their phonographs. Use an AMPL-TONE Unit and make a real Loud Speaker in an instant or use it in your horn and get better results. After all, speakers are as good as their unit. We make a real unit at a real price. Money gladly returned if you are not entirely satisfied.

The UNION FABRIC CO. DERBY, CONN.

Makers of the Excellent French AMPL-TONE Headset
Please send me an AMPL-TONE Unit for which I
enclose \$3.00

Name .	٠.	. ,		 	 			•			•					٠				
Address		٠																		
State																				

Takes the mystery out of Radio

JUST OUT-514 PAGES

Compiled by HARRY F. DART, E.E. Formerly with the Western Electric Co., and U. S. Army Instructor of Radio.

Technically edited by F. H. Doane

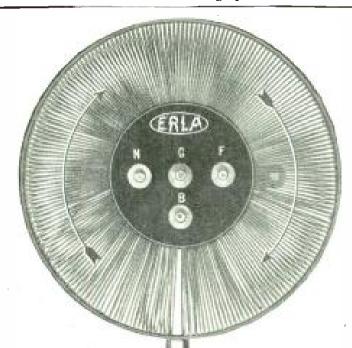
NO MORE need you turn from book to book, hoping to find what you want. It is all here, in 514 pages crammed full of every possible radio detail. Written in plain language, by engineers for laymen. More than 100,000 sold.

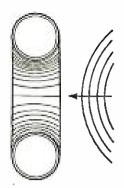
IT EXPLAINS: Electrical terms and circuits, antennas, batteries, generators and motors, electron (vacuum) tubes, many receiving hook-ups, radio and audio frequency amplification, broadcast and commercial transmitters and receivers, super-regeneration, codes, etc.

Send \$1 today and get this 514-page I. C. S. Radio Handbook—the biggest value in radio today.

INTERNAT	LON	AL COR	RESPOND	ENCE	SC	HOOL	8
	Rox	8250-F,	Scranton,	Penna.			

I enclose One Dollar. Please send me—post-paid—the \$14-page I. C. S. Radio Handbook. It is understood that if I am not entirely satisfied I may return this book within five days and you will refund my money.


Name.....


Address.....

Check here and coclose \$1.50 if you wish the de luxe edition, bound in Leatheroid.

"A" is a stray field or wave, traveling toward the coil. Due to the winding all induced currents oppose each other so no current can flow. Hence no pick-up.

The wave front here moves at right angles to the coil plane. Again opposing currents are set up in opposite sides of the coil, preventing interference.

New kind of coil

Instantly brings four amazing improvements to your present set—greater distance, more volume, increased selectivity, finer tone quality. Send for remarkable new book, Better Radio Reception.

SCIENCE has discovered a new inductance principle that is bringing astounding results. Now you can apply it to your present set through new type coils known as Erla *Balloon *Circloids.

Thousands of tests and experiments were necessary before the circloid was finally perfected. Leading radio engineers worked night and day in order to develop a coil that would correct the four vital weaknesses of present sets. At last they were successful.

When circloids are used, results you think impossible are obtained with surprising ease. Note especially the four that follow:

- 1. Greater distance. Circloids have no measurable external field to affect adjacent coils or wiring circuits. This makes possible higher amplification in each stage with increased sensitivity and greater range.
- 2. More volume. Higher r. f. amplification enables circloids to bring in distant stations scarcely audible in ordinary sets with volume enough on the loud speaker to fill an auditorium.
- 3. Increased selectivity. Circloids have absolutely no pick-up qualities of their own. Only signals flowing in the antenna circuit are built up. (See diagram above.) This explains the almost total absence of static.

Dealers—Exclusive franchises are available to high-class dealers in localities still open. Write or wire immediately.

4. Finer tone quality. The self-enclosed field positively prevents stray feed-backs between coils. Hence no blurring or distortion. Tones are crystal clear.

Write for new book, "Better Radio Reception"

You will be amazed at the difference circloids will make in your present receiver. Get a set and test them out today. Go to your Erla dealer or write direct.

Also send for remarkable new book just published. It explains the Circloid principle with diagrams and drawings and tells you many things you ought to know about reception. Send 10c to cover postage and cost of mailing.

ELECTRICAL RESEARCH LABORATORIES 2522 Cottage Grove Ave., Chicago, U. S. A. 77rado Mark Registered.

ELECTRICAL RESEARCH LABORATORIES, 2522 Cottage Grove Ave., Chicago, U. S. A. Send me free information on the Circloid. I enclose 10c for postage for book, "Better Radio Reception." Name Address	This sign identifies authorized Erla distributors. All are equipped to give complete radio service.
City	State

The CONDENSER

WE haven't asked, so we do not know why Laurence M. Cockaday chose Hammarlund Condensers for his new sensation, the McCullough A C Receiver.

But we suppose it was for the same reasons that so many other experts choose the Hammarlund—that he didn't wish to take any chances when presenting a new idea to the radio public—that he must use the best to insure success.

You, too, would be wise to use Hammarlund Condensers for the McCullough, or any other receiver from which you expect to obtain maximum efficiency.

All capacities, plain and vernier; single, dual and triple models; also "Hammarlund, Jr."—the precision midget.

Write for Descriptive Folder

HAMMARLUND MANUFACTURING CO. 424-438 West 33rd Street, New York Export Offices: 375 Broadway, New York

Copyright March 17, 1925

Approved! Recommended and used by L. M. COCKADAY to bring in the following Foreign Stations: 2BD, Aberdeen: 5NO, Newcastle: 2PY, Plymouth; ESP, Parls; 2LO, London; and PTT, Madrid. Positively the last word in loop construction. Exclusive features give you selectivity and distance unheard of before with loop aerials. Operates successfully on all sets designed for loop reception. PARTICULARLY ADAPTABLE FOR PORTABLE LOOP SETS. If your dealer cannot supply you, order direct from us. Price \$16.50. Send \$2.00 as good faith deposit with your order, balance C. O. D. Satisfaction guaranteed.

KORACH RADIO COMPANY 309 So. LaSalle St. Dept. 10 Chicago, Ill.

Full Porticulars on Request

Dealers and Jobbers: Write at once for attractive proposition.

Summer Static

Now Diminished by Volume

Static is diminished in proportion to the amount of volume which a radio set delivers, experts agree.

Kellogg transformers give volume with added clarity of tone.

The Kellogg radio frequency transformer is of the low loss type, having many important features. It will operate at all wavelengths with .00035 to .0005 variable condensers. For best results, use the Kellogg .0005 low loss variable condenser. Kellogg R. F. Transformers at all dealers—\$2.35.

Kellogg audio frequency transformers give greater volume with clearer reproduction, due to the high quality materials and expert workmanship, used in the Kellogg process of manufacture. Kellogg audio frequency transformers are made in both shielded and unshielded types ranging in price from \$3.50 to \$4.50.

Kellogg transformers can be obtained at all radio dealers.

Kellogg Switchboard & Supply Co. 1066 W. Adams St., Chicago, Ill.

WJS Brazil on One BRIGHTSON True Blue Tube!

BRIGHTSON LABORATORIES, Inc. Waldorf Astoria Hotel, New York City

Gentlemen:-

This is to advise you that I have tested the True Blue Tube which was submitted to me and that I am pleased to be able to praise it most highly.

At my station I am able to receive the signals from the Rice Expedition, WJS, in Brazil, on a single tube, and changing to the True Blue Tube gave it an excellent chance to make good.

It did. If anything the signals were louder. Keep up the good work.

Yours very truly,

P. C. OSCANYAN, Jr.,

Managing Editor, Amateur Radio.

All True Blue Tubes are alike; all sold on approval.

10 Day Return Privilege

Unless True Blue Tubes prove interchangeably uniform, noiseless, crystal clear in tone and the handsomest, finest quality tubes you have ever seen, you can return them in ten days for refund.

60 Day Guarantee

Whether you buy one True Blue Tube or a set of three, five, six or eight in a safety case, each individual tube is covered by its own Brightson guarantee. If within sixty days a mechanical defect prevents any True Blue Tube from operating perfectly, you can return it for replacement.

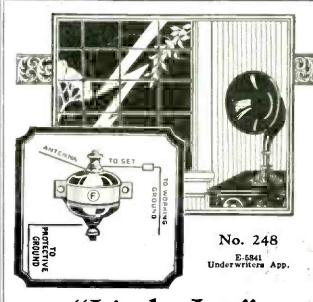
BRIGHTSON LABORATORIES, Inc., 16 W. 34th St., NEW YORK, N. Y. Philadelphia Office: 50 N. Eleventh St., Philadelphia, Pa.

Boston Representative: Wm. C. Oakes 832 Park Square Bldg., Boston Mass. Jersey City Representative: Triad Sales Co. Trust Co. of N. J. Bldg., Jersey City, N. J. Detroit Representative: H. C. Schultz 2831 Gratiot Ave., Detroit, Mich. Milwaukee Representative: Yahr & Lange 207 E. Water St., Milwaukee, Wis.

WATCH

Next Month's Issue

FOR


NEWS OF

NEW TYPES

OF

U. S. TOOL CONDENSERS

U. S. TOOL COMPANY, Inc.

"Little Joe" Lightning Arrester

Especially designed for Radio Work. Made of Porcelain, small, neat rugged and serviceable. Can be suspended on antenna or fastened to wall.

Ask Your Dealer

M'f'd by CIRCLE F MFG. CO.

Trenton, New Jersey

"That's right, Mike—talk back at him"

There are two sides to radio active and passive. The active radio enthusiast is creative building, experimenting, improv-To this class belong the boys. The passive radio lover concentrates on enjoyment of the finished creation. As a rule, grown people are radio-passives. Boys build and build—they experiment and improve, each move requiring purchases from radio dealers. Their activity arouses the interests of their elders, swelling the ranks of radio devotees which have been largely recruited by boys. Knowing little of radio, these converts depend on boys for guidance in their purchases and instruction in radio practice. When you consider that 1925 radio sales will probably exceed 350 million dollars, you realize the tremendous buying control of boys.

THE AMERICAN BOY is the radio oracle of 500,000 boys, averaging 15½ to 16 years old. In it they find thrilling stories of radio adventures—authoritative information on radio development and perfection—helpful suggestions for increasing their radio knowledge and improving their sets. In such an environment, the radio advertisement meets eager, interested readers who are able and anxious to buy.

You cannot find a quicker, surer, more direct way of reaching the source of radio purchases than by advertising to boys in THE AMERICAN BOY. You will not only augment your present customers and your sales to each, but you will also build up a vast army of steady buyers who will stick to you through thick and thin. Copy reaching us by July 10th will appear in September.

You can do this best with Sangamo Mica Condensers

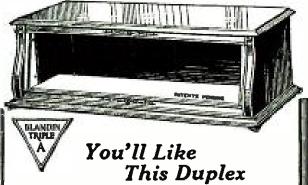
You can use the new Sangamo Mica Condenser to support long busbars, instead of using the busbar to support the condenser. Simply slip the busthrough condenser terminals and solder. No cutting of leads. This is merely one feature demonstrating the wide flexibility of connections possible with Sangamo Mica Condensers.

You can rely upon the capacity of this condenser being within ten per cent of marked value and remaining permanently at that value. Temperature or humidity changes, or even rough usage will not change it. You can freeze it in ice or boil it; keep it immersed in water for days, and the capacity will remain constant. Soldering has no effect whatever upon the capacity—there is nothing to melt or burn.

This feature of permanent accuracy is necessary to bring out the highest efficiency of any circuit—especially in reflex hook-ups.

Solidly molded in smooth brown bakelite, the Sangamo Mica Condenser sets a new standard of neat compactness. It looks finished and actually improves the appearance of the set.

Made in all standard capacities with or without resistor clips, Prices are very reasonable.



Sangamo Electric Company Springfield, Illinois

RADIO DIVISION, 50 Church Street, New York

SALES OFFICES—PRINCIPAL CITIES

For Canada — Sangamo Electric Co. of Canada, Ltd., Toronto.
For Europe — British Sangamo Co., Ponders End, Middlesex, Eng.
For Far East — Ashida Engineering Co., Osaka, Japan
1320-1

One cabinet-

Any panel size, 7x26, 7x24, 7x21 or 7x18". Depth 11".

Either straight or sloping panel—grooves, no screws.

Solid mahogany. Latest lacquer handrubbed finish. Entire lid raises. Full length piano hinge. Folding lid supports. Felt covered feet. Extra ½" mounting board.

Same quality as the Blandin 35-D supercabinet with built-in spruce horn.

Write for Duplex and 35-D price lists. Dealers, write your jobber.

Built by BLANDIN 1500-16th St. Racine, Wis.

PROFESSIONAL SET BUILDERS!

and dealers who build sets

WE will shortly begin a series of newspaper advertisements, featuring the work of individuals and dealers who build sets using Cardwell Condensers.

If you build to specification or from original design, it will be to your interest to communicate with us immediately.

Ask for details of plan. Be sure to give name of your jobber.

ALLEN D. CARDWELL MANUFACTURING CORP.

81 Prospect Street, Brooklyn, N.Y.

SHOCKPROOF, right under the guns

A modern battleship stripped for action is hardly a safe place for a radio tube! The terrific recoils of heavy guns jar and sway the whole ship, often breaking the incandescent lamps left in their sockets.

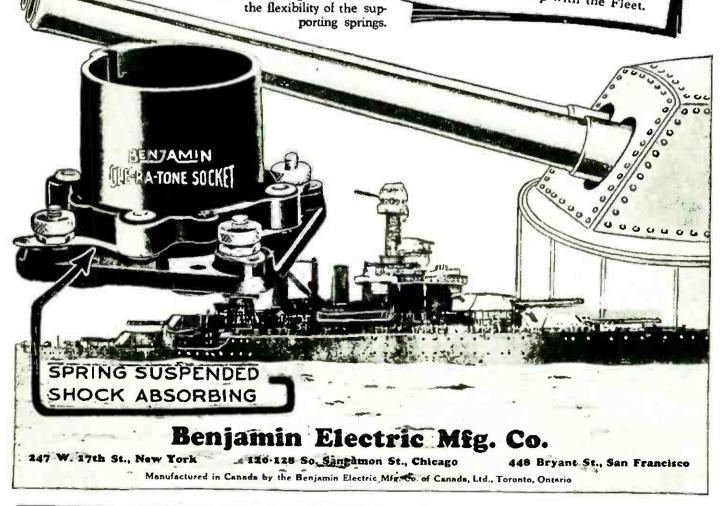
When Lt. Hill, on board the U. S. S. Medusa, installed Cle-Ra-Tone Sockets in his radio set, he was testing their shock absorbing qualities in the extreme. And his letter, reproduced at the right, proves that Benjamin Cle-Ra-Tone Sockets were worthy of his confidence.

Radio sets in your community may never be subjected to such nerve-shattering, lamp-breaking bombardment—but rumbling street traffic, indoor footsteps, mechanical and human activities set up vibrations to a surprising extent and cause microphonic distortions in radio sets by disturbing the tube filaments.

Cle-Ra-Tone Sockets prevent the transmission of this outside vibration to the filaments by "floating" the radio tube above all jars and shocks. Delicately adjusted springs do this! There are no soft rubber parts to deteriorate. The Bakelite construction assures high insulation and sturdiness. Contact points to tube terminals are perfect and permanent. Handy soldering lugs simplify

wiring. Stiff bus wiring does not affect

Benjamin Electric Mfg. Co., Chicago, Ill.


Dear Sir:

Recently my ship conducted a test firing of its five inch guns, one of which is just outside and below my stateroom.

During gun firing all lamps are removed from their sockets, as the shock can be counted upon to break the filament and frequently the glass itself.

During the firing I placed trust in the five Benjamin Cle-Ra-Tone Sockets in my radio, leaving the tubes in during the test. And although no more than thirty feet from the muzzle of a 5-inch naval rifle, the tubes were uninjured and are in perfect condition.

(Signed) C. E. Hill, Jr.
Lt. (jg) U. S. Navy
U. S. S. Medusa
Repair Ship with the Fleet.

A safeguard against current leakage

THOSE faint electrical impulses picked out of the ether by your antennae must be led along through the circuit of your set with the least possible chance of escape. To guard this path is the prime function of insulation.

Any leakage due to poor insulation has a marked effect on the character and volume of the current delivered to the phone The insulating material or loud speaker. proved most efficient in guarding against such leakage is Radion—made to order exclusively for radio purposes.

Radion Panels are the easiest to work with simple home tools and are regarded as the best-looking, best-finished panels made. There are 18 standard sizes in black and mahoganite. Radion Dials (in all regular sizes) match Radion Panels.

Send for Booklet, "Building Your Own Set." It contains complete, clear directions for building the most popular circuits; gives wiring diagrams, front and rear views, shows a new set with slanting panel, etc. Mailed for ten cents. Use coupon.

AMERICAN HARD RUBBER COMPANY Dept. B-7, 11 Mercer St., New York City

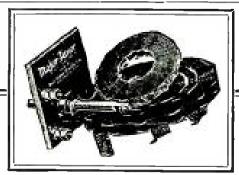
The Supreme Insulation

PANELS

Dials, Sockets, Binding Post Panels, etc.,

Dept. B7, 11 Mercer St New York City. Please send me your new booklet, "Building You Dwn Set," for which I enclose 10 cents (stamps or coin)
Name
Address

HOW ABOUT YOUR JOBBER?


Does he wholesale exclusively?

Does he refer all customers' inquiries to his dealers?

Does he carry reputable apparatus that is nationally advertised and in demand? Does he carry ample stock to insure prompt delivery?

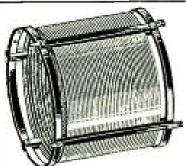
Does he sell all his stock to dealerseven when material is scarce?

Have vou met

Reg. U. S. Pat. Office.

AJOR TUNER will end those "interference blues." A set built with the MAJOR TUNER gets only one station at a time—the one you want to get and no other.

MAJOR TUNER is the most advanced form of three circuit Low-Loss tuner. It is packed with complete picture wiring diagrams and full instructions.


(If your dealer cannot supply you, write us.) BEL-TONE RADIO CO.

Build with AERO COILS For Greater Power, Range, **SELECTIV**

The inductance unit which has set new performance standards for tuned radio frequency.

Far more SELECTIVE, because its extremely low high frequency resistance loss enables it to tune every wavelength sharply into resonance.

Much more POWERFUL, because of its lower distributed capacity and absence of dielectric absorptions. Actually gives loudspeaker reproduction of signals otherwise too weak to be heard on headphones when other types R. F. Transformers are used.

Below 200, Above 550 Meters with a .00035 Condenser Gives Greatest Amplification per stage in tuned circuits because:

95% Air Dielectric.

Dopeless, air-spaced windings.

Very low distributed capacity.

Low high frequency resistance

44

Gives absolute tonal fidelity because of its delicate sensitiveness to all modifications of the radio frequencies.

If your dealer has not yet stocked Aero Coils—order direct from us

Write for circular H, which gives full information and circuit diagrams

DEALERS: Write for our proposition. The greater efficiency of this new inductance system has earned for it a steady, profitmaking demand everywhere.

MFG. CO. RADIO HENNINGER Dept. 34 CHICAGO, ILL. 1772 Wilson Avenue

Representatives: S. A. WINSOR, 1221 W. 16th St., Los Angeles, Calf.

terterence Eliminator

What Every Radio Owner Needs

Tested and approved by the Popular Radio Laboratory Over 36,000 Sold First 6 Weeks. Now you can select stations at will cut out interference and undesired stations—tune in loud and clear. Wonderful results with tube or crystal sets of any make using any kind of aerial except or crystal set: loop antenna.

Reduces Static

💲 🖪 Postpaid Amazing satisfaction. Better reception guaranteed or your money cheerfully refunded.

Select Stations At Will

Put this interference eliminator on your set—that's the test—no tools—attached in two minutes to aerial. Doesn't disturb present log. Directions easy to follow. No additional tubes or batteries. Two big banks testify to our reliability. Order today—dollar bill will do—we take the risk—money back if you say so.

STEINITE LABORATORIES

Manufacturers
134 Radio Bullding, ATCHISON. KANSAS

Write for complete radio literature—it's FREE. Steinite sharp tuning summer sets. Most beautiful and least expensive radio sets in America.

Jobbers—Dealers: Write today for full description and prices Steinite nationally known popular price radio sets, interference eliminator, and long distance crystals.

New and Improved

Authorized Cockaday Coil!

No more loose winding—special new feature holds coil windings fast. Built throughout of moulded hard rubber, not affected by atmospheric conditions. Wound with No. 18 D. S. C. copper wire.

The only coil specified by L. M. Cockaday in his New Four Circuit Tuner with Resistance Coupled Amplification because it meets all his specifications. Described in October Popular Radio as Cockaday Precision Coil. Hundreds have substituted this quality coil for those of inferior make and are amazed at the improved reception, selectivity and general D-X results.

ft your dealers, otherwise send purchase price and you will be supplied postpaid In Canada \$7.75. Canadian Distributor, Perkins, Ltd.
Montreal—Toronto—Winnipes

PRECISION COIL CO., Inc. 209-B Centre St., New York City

GENERAL RADIO

Transformers bring out all the REFINEMENTS of tone quality

By specially designing the core and adjusting the coil turns, the very low and very high notes are sustained to approximately the same degree as all other notes over the entire musical range. The amplification curves are high and flat over the full extent of audio tones common to speech, instrumental and vocal music. In spite of their pronounced superiority over other transformers they sell at a popular price.

Type 285 5.9 to 1 for 1st stage

TWO RATIOS

Type 285L

st stage 2 to 1 for 2nd stage

Price \$6 each

Because of the supremacy of General Radio type 285 transformers in tone quality and volume, L. M. Cockaday, nationally known radio editor of Popular Radio, has used them in practically all his principal hook-ups since these transformers appeared upon the market in December, 1924.

GENERAL RADIO COMPANY

Cambridge, Mass.


Type 285

Actual Performance Is the real test Of any Condenser.

Judged On this basis The RATHBUN Is the equal Of any - and At any price.

There is No Better Value.

RATHBUN MANUFACTURING CO., Inc. Jamestown New York

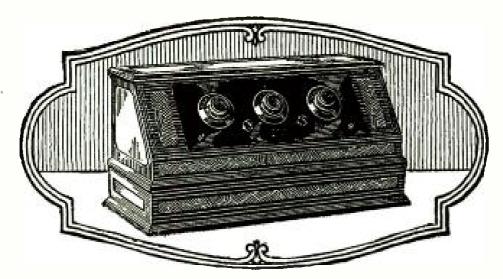
The Silver Super-Autodyne—The Perfected Super

Again S-M Engineering leads the field, just as it has since the first Silver Design was offered less than

has since the first Silver Design was offered less than a year ago.

McMurdo Silver, Assoc., I.R.E., has developed a six-tube receiver that will outperform average 7 and 8 tube sets—the "Super-Autodyne."

Read the description of this radio achievement in the July "Radio Broadcast." Read about the "Super-Autodyne's" unsurpassed intermediate amplifer, post-adjusting destators oscillators and distanting non-radiating detector-oscillator, and distortionless audio amplifier.


Send for List of Parts

The "Super-Autodyne" will cut thru locals wth amazing selectivity. Anyone can build and operate it. Plans and instructions—50c.

Dealers-Send for New S-M Catalog

110A-S. Wabash Av.

Chicago

Distinguished for its Musical Excellence!

Refinements had to come before radio could make its true appeal on the basis of musical excellence.

This was the view of the Thompson engineers, who, with fifteen years' experience in manufacturing wireless equipment to their credit, set their ample resources to thetaskof producing a radio receiver which should be not "just a radio," but a musical instrument

On every hand the Thompson Neutrodyne is acknowledged as the maestro of radio, a truly fine musical instrument by every standard. The recognition accorded the Thompson is due to Thompson Tone. Tone that is versatile in its handling of every sensitive shade of music. Tone that falls pleasantly upon the ear of the most orthodox music-lover. Tone that does not and cannot offend the sensibilities of the most critical listener. Thompson Tone!

SIX TUBES GIVE DISTANCE WITH VOLUME

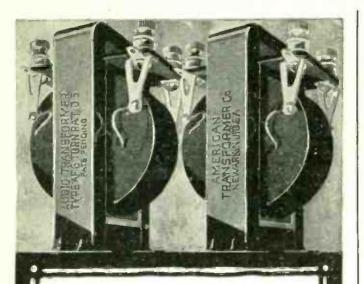
An unique transformer (an exclusive Thompson engineering feat) permits the use of six tubes in the Thompson Neutrodyne — an achievement heretofore confined to the experimental laboratory. Distant programs that come in faintly (if at all!) on ordinary receiving sets are delivered with the volume and brilliance of nearby broadcasts on the 6-tube Thompson.

THREE SETS FROM WHICH TO CHOOSE

The 6-tube Thompson Concert Grand, illustrated above, retails at \$180. This is unquestionably the finest thing in radio today at any price. There is also the 5-tube Thompson Parlor Grand which retails at \$145. Thompson quality throughout, but with one tube less than the Concert Grand. Then there is the 5-tube Thompson Grandette which retails at \$125. This differs from the Parlor Grand chiefly in size and cabinet work.

R. E. Thompson Mfg. Co., 30 Church St., N.Y.

Thompson RADIO



Prices slightly higher West of the Rocky Mountains

The Thompson Speaker

The Thompson Speaker contains over-size magnet and coils, amplifying armature, diaphragm in scientific cone shape. The volume regulator enables adjustment for varying strength of near and far stations. Uses no battery current. For supremely natural home radio — The Thompson Speaker — Retails at \$28.

QUALITY

Good materials and honest workmanship go far in transformer efficiency. Add to these the experience gained in 24 years of transformer building and you have the facts behind the quality of the AmerTran—a transformer hard to beat from any angle.

Among the better audio transformers AmerTran ranks high—higher than most by actual test.

Buy Amer Trans by the Pair

AmerTran is made in two types, one quality-AF6, ratio, 5:1 and AF7, ratio 31/2:1. Price either model, \$7.00 at your dealer's.

AMERICAN TRANSFORMER COMPANY

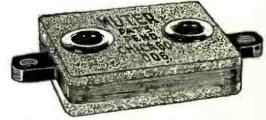
175 Emmet St., Newark, N. J. "Transformer builders for over 24 years"

Always Read Alike Because They Are ~~

Just one number to log—or eliminate log-ging and dial by wave-lengths. Made as Bureau of Standards specifies, and guaranteed. Rugged, with wear-proof bearings. Built for accuracy. Packed in matched sets. Sealed, to remain untouched until used.

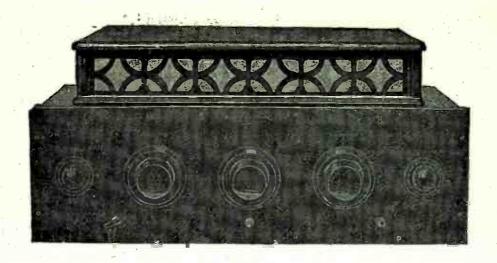
DUPLEX Matched condensers assure you the most out of your radio set. Ask your dealer.

Interesting illustrated folders on request.


DUPLEX CONDENSER & RADIO CORP. 50 Flatbush Ave. Extension, Brooklyn, N. Y.

COCKADAY RECOMMENDS

DEPENDABLE **CONDENSERS**


MICA INSULATION BRASS ELECTRODES ACCURATE CAPACITIES

Used By Leading Set Builders FOR BETTER RESULTS

We have a new book on the complete **MUTER** line; will be glad to send it to you. Write us for it today.

LESLIE F. MUTER COMPANY 76th & Greenwood Ave.

The New TIMBRETONE

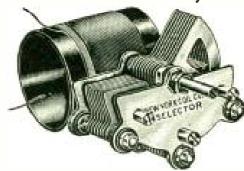
A conscientious effort to meet public opinion consistent with real merit.

To bring out the real quality—the "Timbre" or "Tone" of any set, try the new TIMBRETONE

Hear it, see it, and give your ears AND your eyes a real treat.

List Price in U. S. (east of Mississippi) \$30.00

We have an attractive proposition to offer responsible dealers and jobbers. Write for advance information.


Made in Hoosick Falls, N. Y. by the Timbretone Mfg. Co.

ATTENTION, SET MANUFACTURERS!!

Our special "Selector" Variable Condenser with self-balanced coils attached is the equipment you have been waiting for—at a price you can afford to pay.

To enable you to successfully manufacture a five-tube, popular-priced radio receiver consisting of two stages of tuned radio frequency, detector and two stages audio, combining selectivity, volume, true tone, distant reception and simplicity.

Our "Selector" Low Loss Grounded Rotor Variable Condenser, "The Manufacturer's Special," answers the demand for a ruggedly constructed efficiency instrument at an exceptionally low price.

Condenser and Transformer as shown, List Price \$3.75

Get manufacturers price and
descriptive literature

LIST PRICE:

\$2.75 .0005 (23 plate)

\$2.50 .00035 (17 plate)

New York Precision Mica Fixed Condensers

Choice of Leading Manufacturers and Radio Engineers
High grade large cap. paper condensers
for B battery eliminators.

NEW YORK COIL COMPANY 338 PEARL STREET New York City, N. Y.

PACIFIC COAST—Marshank Sales Co., 926 Insurance Exchange Building, Los Angeles Calif., also San Francisco, Portland.

JOS. W. JONES J-85 SET 5-Tube Tuned Radio Frequency Receiver; handsome gold dials and trimmings; Vernier adjustment on condensers. Price, without tubes, batteries, headphones or aerial equipment. Perfect Precision!

Perfect precision in every part enables you to shut out interference—to pick up, and hold, weak signals from far distant points.

Built of the Famous Jones Precision Parts

Write NOW for literature and full particulars

Jos. W. Jones Radio Mfg. Co., Inc. 40-46 West 25th St., New York City

Branch Offices: Philadelphia—Boston—Chicago

Quality Radio

for

Jobbers and Set Manufacturers

Type B AC Transformer

The Standard step-down transformer for AC Tube Circuits, used by Cockaday in Popular Radio's AC Receiver. Dongan Type B is approved and endorsed by the manufacturers of McCullough AC Tubes. Equipped with lever control for convenient adjustment. Positively guaranteed by Dongan, a house of 15 years' high standing.

Type N Voltmeter

One of five types of Panel Voltmeters ranging from 0-7 volts to 0-100 volts. These types are built for set manufacturers and are priced very attractively considering the Dongan quality. Here is an accurate instrument you can be proud to include with your receivers.

AC Tube Receiver Manufacturers should get Dongan specifications on standard AC Tube Step-Down Transformers (first on the market) and AC Tube Audio Transformers. Complete details and prices on request.

List \$4.00 Type

A special requirements of AC Tube Circuits.

Type C S B
Unmounted
Audio Transformer

One of 35 types of Dongan Audio Transformers built to answer any possible requirement of set manufacturers. Dongan supplies 38 manufacturers with audio transformers.

Dongan Electric Manufacturing Co.

2983 Franklin Street, Detroit, Mich.

New York Office: 6 Church Street

Transformers of Merit for 15 Years

Sickles Coil Set No. 24 for Browning-Drake Circuit. Price \$7.50.

An entirely new system of Radio Reception

Sickles Diamond - Weave Coils have been specified for use in the Hoyi System of Signal Augmentation, by the inventor, Francis R. Hoyi. We have a limited number of blue printed copies of Mr. Hoyi's original laboratory notes on this new system of radio reception, together with nine circuit sketches, which will be sent free to you upon receipt of this coupon and four cents for postage.

The F. W. Sickles Co, Springfield, Mass.

Please send information of Hoyt System

Name.....

Address

Popular Radio

SICKLES

DIAMOND-WEAVE COILS

Patented Aug. 21, 1923

For Craig, Roberts and Hoyt Circuits

Sickles Coils were chosen by Albert G. Craig in designing his remarkable new Reflex Receiver using the new Sodion detector, and are specified by him. for this circuit in the February issue of POPULAR RADIO. This coil sct, No. 20, is priced at \$4.50.

For the very popular Roberts Circuit the Sickles Coil Set No. 18 (\$8.00) is standard equipment. Unit No. 1 has primary and secondary coils. Unit No. 2 has primary, secondary, neutralizing coil and tickler. Broad variation in coupling adjustments is provided for. Tickler is provided with 180 degree dial control.

Coils for the Hoyt Circuit at \$10.00 a set, for the Knockout Reflex Circuit at \$4.00 a pair, the Tuned Radio Frequency coil at \$2.00 and the Acme Reflex Circuit at \$4.50 a set, are among the standard Sickles coils. We manufacture special coils also for manufacturers' requirements.

Send for descriptive catalog

The F. W. Sickles Co.

339 Worthington Street SPRINGFIELD, MASS.

For the best results with the new A C CIRCUIT

Use the Famous Pacent Audioformer

Used by McCullough. Perfectly designed for this circuit. High amplification over the entire band of sound frequencies, with no single high peak or distortion. Beautifully finished in satin nickel. Ratio 3½ to 1. Binding posts permit short leads. Price \$5. (NOTE: Leading authorities on A C Circuit recommend Pacent Jacks.)

PACENT ELECTRIC COMPANY, INC.
91 Seventh Avenue New York City

Pacent RADIO ESSENTIALS

DONT IMPROVISE - PACENTIZE

means right amperes"

Hook-ups

X-L VARIODENSERS

For Greater Distance, Volume and Clarity

SPECIFIED BY McMURDO SILVER. ENDORSED BY LAURENCE COCKADAY. TESTED AND APPROVED BY G. M. WILCOX, Prof. of Physics, Armour Inst. of Technol.

MODEL N—Capacity range 1.8 to 20 micro-micro-farads, for balance in Roberts two tube, Browning-Drake, McMurdo Sliver's Knockout, Neutrodyne and tuned radio frequency circuits.

Price \$1.00

MODEL G—Two capacity ranges, .00016 to .00055 and .0003 to .0015 Microfarads, for the Cockaday circuit, filter and intermediate frequency tuning in super-heterodyne and positive grid bias in all sets.

Price \$1.50 .00016 to .00055 and ockaday circuit, filter

X-L RADIO LABORATORIES 2422 Lincoln Ave. CHICAGO

Manufacture of High Grade Sets

Another Achievement!

Precision R. F. Coupling Unit

May be used as a transformer for coupling two tubes in a circuit as a radio frequency amplifier. Specified for use with the McCullough AC Tube, as described in June Popular Radio. Designed for present broadcast range in conjunction with a standard ooos mfd, variable condenser. The coupler consists of a compact primary winding to be connected to plate circuit of one tube and a split secondary winding, half on each side of the primary, to be slunted with the tuning condenser and connected in grid circuit of following tube.

The design is such that an amplifier built with this apparatus makes possible extremely sharp tuning with maximum signal strength and stability of operation.

Made by the makers of the famous Cockaday Coil.

At your dealers, otherwise send purchase price, and you will be supplied postpaid

Precision Coil Company, Inc.

-B Centre St., New York City 209-B Centre St.,

ALL'AMERICAN Guaranteed Radio Products Standard Audio Transformers 3 to 1 Ratio, type R-12...\$4.50 5 to 1 Ratio, type R-21... 4.75 10 to 1 Ratio, type R-13... 4.75 Power Amplifying Transformers (Push-Pull) Input type R-30. Output type R-31 6.00 Rauland-Lyric A laboratory grade audio transformer for music lovers. R-500....\$9.00 Universal Coupler Antenna coupler or tuned r.f. transformer. R-140.....\$4.00 Self-Tuned R. F. Transformer Wound to suit the tube. R-199\$5.00. R-201A\$5.00 Long Wave Transformer (Intermediate Frequency (15-75 kc.) R-110......\$6.00 10.000 Meter (30kc.) Transformer 🕙 Tuned type (filter or input). R-120., \$6.00 Radio Frequency Coupler (Oscillator Coupler). R-130 \$5.00 Super-Fine Parts SUPP Consisting of three R-110's, one R-120 and one R-120 and one R-130,\$26.00 NI-MERICAN All-American Reflex Receivers Complete re ceiving sets with extraordinary range, volume and selectivity. All parts mounted on panel and baseboard, with full instructions for wiring. All-Amax Junior (one-tube)\$22.00 All-Amax Senior (three-tube) \$42.00 At Your Favorits Radio Store Largest Selling Transformers in the World

AC TUBES Mº COLLOUGH

Build Your Own

"A" BATTERIES **CHARGER** RHEOSTATS HUM

AND ELIMINATE THE CUMBER-SOME "A" BATTERY.

Amplex Engineers have perfected a circuit and Kit so that you can build your own 5 tube set using McCullough A.C. Tubes. Months of research produced this circuit and parts especially designed to meet the tubes' particular characteristics. Mr. Cockaday and POPULAR RADIO LABORATORIES unqualifiedly endorse them.

Build Your Own A.C. Set with this Kit! No technical skill required. Diagrams and instructions are clear and simple. Even the panel is drilled and engraved for you. In about one hour you should be ready to plug into your light socket and pull in those DX Stations.

Amplex A. C. Set Kit No. 1

Bakclite Pancl (Drilled and En-

Bakerite Paner
(Drilled and Engraved)

Amplex A.C. Tuners
1—Antenna Tuner
1—1st R.F. Tuner
1—2nd R.F. Tuner
Pr. A.C. Leads and
Clips
-Bakelite Sockets
-4' Dials
-Amplex 3:1 Transformers
-Amplex Grid-Denser
.0005
-4 Meg. Grid Leak
-002 Mica Condenser
-S.C. Jack

6-Marked Terminal Clips.

1-Baseboard Wire, Screws, Instructions, Diagrams and Hookups

\$32.50

Kit No. 2

Amplex A.C. Tuners Pr. A.C. Leads and Clips. Diagrams and Instructions \$12.50

SET-Completely wired in beautiful cabinet-\$45.00

AMPLEX INSTRUMENT LABORATORIES

DEPT. C7,

88 WEST BROADWAY, NEW YORK, N. Y.

"WINDHAM" WIRE FORMER

(Patent Pending)

A complete and handy tool for electricians. radio set builders and mechanics. It will accurately form loops or eyes for No. 4, 6, 8 and 10 screws, make easy radius and sharp right angle bends, has flat jaws and wire cutters. This tool is made of the best quality steel, dropped forged and carefully tempered in oil.

Price \$1.25 Each

Manufactured by

THE GOYER COMPANY

Willimantic

Connecticut

THEY **AMPLIFY** WITH AN **AMAZING CLEARNESS**

Transformers mean Better amplification and are DESIGNED to give **BEST** RESULTS when used in any CIRCUIT

NATIONAL TRANSFORMER MFG. CO. 154 Whiting Street Chicago

Increased Selectivity, Sensitivity and Distance

NEW HAYNES R. F. UNIT

Designed especially for use with the famous Haynes Circuit, but will give splendid results with any set

Thousands upon thousands of owners of the Haynes Circuit have been waiting for a one stage radio frequency amplifier to go ahead of the Standard Haynes Circuit.

The results obtained with the new Haynes RF Unit will astonish and delight them. Stations never heard before come in with good volume. Even in the early evening, right in the heart of congested broadcasting centers, the addition of this new Haynes Unit assures surprising distance reception.

It is easy and inexpensive to build. No changes in the original wiring of your set needed.

COMPLETE PARTS \$10 Everything necessary to build the unit is included—Special RF Choke Coil; Special Antenna Coupler; Socket; Haynes Condenser .00023 mfd.; Binding Posts; Rheostat; .002 Fixed Condenser; 7 x 10" Drilled Panel; Dial; Bus wire, Lugs, etc. 7x10 Mahogany Cabinet, extra \$2.95

HAYNES-GRIFFIN RADIO SERVICE, Inc.

41 West 43rd Street, New York, N.Y.

111 S. Clark Street, Chicago, Ill.

for greater DX

Snap a new style glass cartridge DURHAM Variable in place of your present fixed leak. No. 101 for soft tubes; No. 201A for hard tubes.

for better quality

Use No. 100 across audio secondaries to by-pass noise. Then the true tones ring clear. Results surprising!

Satisfaction Guaranteed

Dealers: Ask your jobber for details of new leak and sales plan

DURHAM&CO...Inc. 1930 Market St., Philadelphia

Canadian Distributors: De Forest Radio Corp., Ltd., Toronto

ALL LOMBARDI CONDENSERS **NOW STRAIGHT LINE FOR** WAVE LENGTH OR FREQUENCY

IMPORTANT ANNOUNCEMENT TO SET MANUFACTURERS

The recent statement by Secretary Hoover that all Class B station wave lengths have been assigned, will increase the interest of fans and broadcast listeners in unscrambling signals on the shorter

Sharp tuning of these stations requires variable condensers made with the utmost precision, with straight line wave length or straight line frequency, and absolute minimum of loss and variation from rated capacity.

Engineers of the LOMBARDI RADIO MFG.
CO. have therefore adapted their entire line of
low loss condensers to meet these requirements,
and they are now ready to offer to set manufacturers and the jobber trade, single, *double,
and *triple unit condensers, with patented shaft,
taper and ball bearings; also with geared verniers (natents pending)

taper and ball bearings; also with geared verniers (patents pending).


A three unit condenser tested at Sloane Laboratory showed in all three units the capacity varied less than one-half of one percent.

Set builders are cordially invited to communicate directly with the manufacturer for details of construction and the many advantages that have been discovered in single control of all wave lengths.

all wave lengths.

*The double and triple units are licensed under Hogan patent No. 1,014,002.

LOMBARDI RADIO MFG. CO. **67 MINERVA STREET** DERBY, CONN.

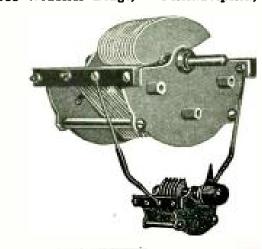
CONTINENTAL

S-E-P-A-R-A-T-E-R

Having a little trouble uning in the new wave lengths? It's your condensers!

They were made when there was a wide difference between stations. Now, you need more than a condenser—you need a Separater to successfully cut out the overlap of two stations sending on wave-lengths only a fraction of a meter apart.

The Continental Separater is all that its name implies—a rigidly built low loss condenser, designed to make your set receptive over the full range of broadcast wave lengths from approximately 200 to 600 meters.


Sold with the new continental junior (the perfect vernier) at the price of any high grade condenser.

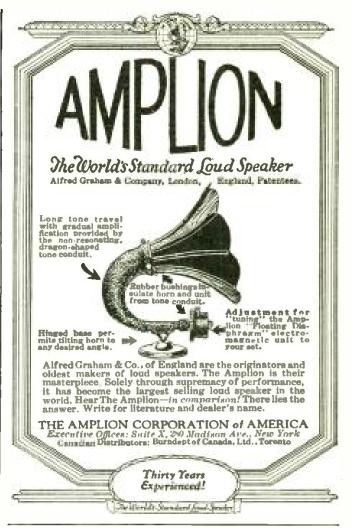

LIST PRICES:

Plate	Capacity	Price
13	.00025	\$4.50
18 25	.00035	4.75
25	.0005	5.00
AE	001	4 00

If your dealer can't supply you, write Condenser Headquarters.

GARDINER & HEPBURN, Inc. 611 Widener Bldg., Philadelphia, Pa.

THE TURE SUPERION WITH A SENSIBLE GUARANTEE.

PROTECTION

Public Demand Price

\$2.00

An "unlimited," "unconditional," etc., guarantee with all kinds of promises is not sound—that's nonsense.

Specific limitations with means of identification is the only kind of guarantee that can be sound—that's sensible:

Each Supertron tube is serial numbered and wrapped in a guarantee certificate bearing a corresponding number for your protection.

Buy Supertron Fearless! The dealers guarantee them fearlessly!

SUPERTRON

Supertron Mfg. Co., 32 Union Square, New York Export Div. M. Simons, 220 B'way, N. Y.

How can your set deliver maximum results unless the small parts are scientifically right?
AEROVOX is your insurance of quality.
If it is fixed or by-pass condensers or grid-leaks—use AEROVOX and you make sure of perfection.

AEROVOX Tested Fixed Mica or By-Pass Condensers are made in all capaci-ties; also Fixed Mica Condensers with grld mountings. The testing laboratories of Radio News, Popular Radio and Professor Wheeler of Yale have enthusiastic-ally endorsed them. Prominent set manufacturers throughout the country depend on them. Why shouldn't you have the

Write for particilars of our complete line including Resistoformers and Rhecstats

AEROVOX WIRELESS CORP. New York City 491 Broome St...

TESTED FIXED CONDENSERS

"Take No Chances—Use Como"

The World's Standard Push Pull Transformer

PRICE \$12.50 per pair For maximum volume without distortion What Prominent Writers on Radio Subjects say About Como.

Lewis B. Hagerman, Technical Editor, Chicago Post: "Actual Tests show this transformer to be far superior to any others of similar makes."

R. J. Robbins, New York Sun: "After consideration of several well-known makes of push pull transformers which are available 'COMO DUPLEX' was selected as most satisfactory."

most satisfactory."
C. White, Radio World: "'COMO DUPLEX' is infinitely superior—most other push pull transformers

C. White, Radio World: "COMO DOPLEX is infinitely superior—most other push pull transformers seem to be ordinary transformers with a center tap brought out as a makeshift."

E. P. Gordon, Open Road: "A system of audio-amplification which is becoming increasingly popular. Its use ... will give surprising results in both quality and volume, and is thoroughly recommended by this department."

NEED WE SAY MORE?

COMO APPARATUS COMPANY

Manchester, New Hampshire For Sale at Leading Dealers

Navy Model Super-Heterodyne

The supreme achievement in receiver design, setting a new high standard of efficiency not even contemplated heretofore.

A High Powered Receiver employing 10 tubes

Simple Tuning Compact (size only 28x8x8) Wave length range 50-600 meters

Selectivity far in advance of others

Total amplification almost 2,000,000 times

Perfect tone reproduction and volume

In actual tests the C-10 completely outclassed other receivers tested, in all respects.

For any Circuit

Prompt shipment can be made on tested, standard apparatus of the following manufacture:

E. I. S., Inc. General Radio Willard Benjamin Electric Allen Cardwell Dubilier Form Magnavox Amer Tran Western Jewell Western Electric Radio Corporation Music Master Ac Music Master Acme Cutler Hammer Frost Kellogg Federal

Illustrated descriptive matter gladly mailed upon request.

Write direct to

NORDEN-HAUCK, Inc.

Engineers Offices and Laboratories: 1617 Chestnut Street. Philadelphia, Pa.

First in the Field Specializing in Cockaday Kits

S. HAMMER RADIO CO., 303 Atkins Ave. Brooklyn, New York

Cockaday Sets Now Made Easier to Build by Our New "Ready-to-Wire" Plan 50% of Your Time, Work and Worry SAVED!

All you need do is to connect bus-bar according to diagram, solder and your set is finished.

These Kits are sent to you completely mounted and assembled on a Veneered Mahogany baseboard and genuine bakelite panel, drilled and engraved; in a solid Mahogany Cabinet. Genuine parts used as listed below; exactly as specified by Mr. L. M. Cockaday. COMPARE OUR OFFER!

NEW A C RECEIVER KIT

General Radio Variometer, No. 269
"Precision" R. F. Coupling Units
Hammarlund condensers, .0005 mfd.
Kurz-Kasch 4 inch dials
Federal Sockets, No. 16
General Radio A. F. Transformer, No. 285
Dongan Special Step-Down Transformer, Type B
Daven Resisto-Coupler mountings
Dubilier Mica, fixed condenser, .006 mfd.
ea. Daven resistor, ¼ megohm, ½ megohm
Daven grid leak, 4 megohms
Dubilier fixed condenser, .00025 mfd.—clips
Dubilier Mica fixed condenser, .00015 mfd.
Dubilier Mica fixed condenser, .0001 mfd.
Pacent single circuit jack

1 Publier Mica fixed condenser, .0001 mfd.
1 Pacent single circuit jack
1 Genuine Bakelite Panel Drilled and Engraved 7 x 24"
1 Veneered Baseboard
1 Antenna Binding Post Strip
1 Battery Binding Post Strip, small brass brackets,
A C Leads, Binding Posts, etc.

READY-TO-WIRE KIT PRICE, \$52.50
UNASSEMBLED KIT PRICE, Write Use WIRED COMPLETE In Genuine Mahogany gan Transformer and 5 McCullough A.C. Tubes \$79.50 Write Us

McCullough A.C. Radio Tubes in Stock

TUBE NEW COCKADAY SUPERHETERODYNE REFLEX RECEIVER

READY-TO-WIRE KIT PRICE WIRED COMPLETE IN GENUINE MAINCLUDING KORACH LOOP.

\$72.00 \$110.00

DEALER'S ATTENTION!

We can make immediate delivery of Cockaday Kits. parts complete and as specified by L. M. Cockaday. Write for prices

COCKADAY'S Authorized ANTENNA COUPLER for \$2.00 the 8 Tube Super-Het for use with outdoor serial \$2.00

Write for Circular about these Parts and Kits. Also for our Radio Catalog.

Transportation Prepaid.

One-third must accompany all C. O. D. orders.

Not insured unless insurance charges included

YOU

don't have to play second fiddle. You can have the most highly selective receiving set in the world. together with coast-to-coast reception at a moderate cost.

Furthermore, the Superheterodyne gives better results than any other circuit during warm weather. Build now for summer entertainment and to be prepared for fall.

Our booklet "Building the Mc-Laughlin One-Control Superheterodyne" gives full constructional data and exact size working blueprints.

Order from your dealer or from

Precise Manufacturing Corp. Rochester, New York

Resistance-Coupled Amplifier Kit \$5 00 for only - - -

Electrad 3 stage Resistance-Coupled Amplifier Kit No. 1.

Price \$5.00

Write for free diagrams and instructions

ELECTRAD, Inc.

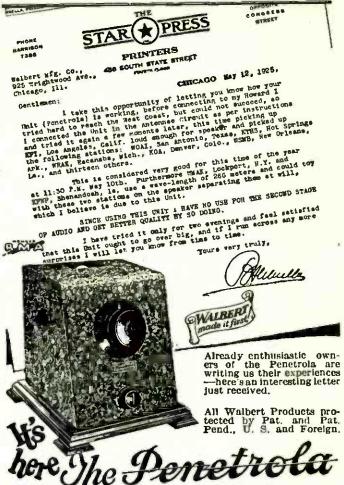
428 Broadway

New York City

Our King Type Cabinet

Our cabinets are made of carefully selected lumber. They are beautifully finished and hand rubbed. The workmanship is of as high grade as in the best furniture. If not entirely satisfied with cabinets received from us, money will be refunded. Black walnut cabinets have piano hinges and lid holders. Imitation walnut cabinets have regular hinges, no lid holders. Send for circular showing our De Luxe Type, also our Beauty Type.

00,	22	Deen	Yestendles	Conulno
	For	Deep,	Imitation	Genuine
No.	Panel	In.	Walnut	Walnut
King 621	6 x 21	7	\$4.60	\$6.80
King 714	7 x 14	7	4.20	6.70
King 718	7 x 18	7	4.35	6.80
King 721	7 x 21	7	4.90	7.40
King 724	7×24	7	5.35	8.00
King 726	7 x 26	7	5.80	8.50
King 728	7 x 28		6.60	10.00
King 730	7 x 30	77	7.00	11.00
King 71810	7 x 18	10	5.70	9.00
	7 x 21	iŏ	6.25	9.50
King 72110				
King 72410	7 x 24	10	6.70	10.00
King 72610	7 x 26	10	7.25	10.50
King 72810	7 x 28	10	8.00	12.00
King 73010	7 x 30	10	8.20	12.50
King 836	8 x 36	īŏ	8.75	12,00
King 840	8 x 40	iŏ	9.25	12.50
King 040				
King 921	9 x 21	10	7.50	9.25
King 924	9 x 24	10	8.50	10.50
	F. O. B.	WAUKE	SHA, WIS.	


UTILITY CABINET COMPANY

Waukesha

-

Phone-721

UNIVERNIER-LOCKSWITCH

A new, remarkable Auxiliary Unit for use with all standard receiving sets to increase selectivity, range, and volume.

found in the folk made in our labor with a General Radio Cocision instrument giving Without the Penetrola,	of this general sowing excerpts from atories on April 30. Type 164 Audiabi actual values of signature.	a series Tests we lity Meter	of tests re made r. a pre-
CNRW, for example, could not be heard, while WGN had a signal intensity of 150. With the Penetrola	Receiver	Desired Station	Inter- fering Station
CNRW could be heard with a signal intensity of 1.300, while WGN was inaudible. Inter- ference entirely elimi-	2 tube Regenera- tive	WOC Daven- port	WMAQ, WEBH, KYW, Chicago
nated; a station previ- ously unobtainable	Less Penetrola	0	2.000+
readily tuned-in with volume to operate a	With Penetrola	300	0
of other tests on request.	5 tube Tuned R. F.	CNRW Winnipeg	WGN Chicago
The Penetrola will positively stop your	Less Penetrola	0	150
set from radiating. Reduces static by per- mitting use of shorter	With Penetrola	1,300	0
marting use of shorter aerial while actually in- creasing signal intensity. Made in 3 types (a) for where it is desired to Equipped with standard At your dealer or sent	outdoor antenna sets replace outdoor an Walbert parts. Pr	, (b) loop itenna wi ice, \$35.0	sets, (c) th loop. o.

At your dealer or sent postpaid on receipt of purchase price. Performance is guaranteed or your money refunded. Jobbers and dealers write for discounts. price. Per refunded.

933 Wrightwood Ave.,

Chicago

PANELITE-SOCKET

BUILD A

5-TUBE A-C RECEIVER

Portable Town and Country Set

SIMPLIFIED BLUEPRINTS

AURENCE M. COCKADAY has personally supervised the preparation of Simplified Blueprints of seven of Popular Radio's most popular circuits. Each set consists of three separate Actual Size Blueprints; first a Panel Pattern; second, an Instrument Layout; and third, a Picture Wiring Diagram all simplified in the fullest sense of the word because

The Panel Pattern can be laid on the panel and all holes drilled as indicated. No scaling to do and so accurate there is no danger of ruining the panel through faulty calculation.

The Instrument Layout placed on the sub-base permits you to indicate by pinpricks the exact location of every screw.

The Picture Wiring Diagram gives every instrument in exact size and position with every wire clearly indicated from one contact to the other. With no knowledge of radio symbols you can assemble every part and complete your wiring with no chance of error.

Priced at \$1.10 per Set of Three Prints

Set No. 3—"Cockaday Distortionless Audio-Frequency Amplifier" (four tubes, combination of resistance-coupled and push-pull amplification, as described in the May 1924 issue of POPULAR RADIO).

Set No. 4—"Cockaday Four-Circuit Tuner with Resistance-Coupled Amplifier" (five tubes, distortionless, two dials, automatic vacuum tube control, as described in the October 1924 issue of Popular Ranio).

Set No. 6—"The Cockaday 8-tube Super-heterodyne Reflex Receiver" (eight tubes, two tuning dials, loop, non-radiating, distortionless, as described in January 1925 issue of POPULAR RADIO).

Set No. 7—"The Craig 4-Tube Reflex Receiver with the New Sodion Detector" (four tubes, two tuning dials, short antenna, non-radiating as described in February 1925 issue of POPULAR RADIO).

Set No. 8—"The Improved Cockaday DX Regenerative Receiver" (four tubes, one tuning dial, one regeneration dial, short or long indoor or outdoor antenna, resistance coupled amplification as described in March 1925 issue of Popular Radio.) Set No. 9—"Portable Town and Country Receiver" (six tubes, three stages of transformer, coupled, radio-frequency amplification, loop antenna, tuned by variable condenser as described

Set No. 10—"5-Tube A-C Receiver" (five "Mc-Cullough" A-C tubes, two stages of tuned radio frequency amplification, as described in June 1925 issue of POPULAR RADIO).

in May 1925 issue of POPULAR RADIO.)

Full constructional and parts details for these Receiving Sets will be found in the issue of POPULAR RADIO indicated. Back issues of POPULAR RADIO will be furnished at the rate of 35c a copy

Rogular Radio

627 West 43d Street

Dept. 74

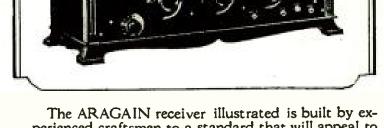
New York City

POPULAR RADIO, Inc., Dept. 74 627 West 43d St., New York City Date	
Enclosed is my remittance of \$	DEALERS
☐ Set Number 3 ☐ Set Number 7 ☐ Set Number 4 ☐ Set Number 8 ☐ Set Number 6 ☐ Set Number 9 ☐ Set No. 10	Write for terms on these fast sell-ing Blueprints.
Name	An attractive Dis-
CityState	play Chart free with orders.

'All apparatus advertised in this magazine has been tested and approved by POPULAR RADIO LABORATORY

Niagara Produces Another Wonder!

ARAGAIN


Radio Receiver

THE SET OF SATISFACTION

Combining extreme selectivity and exceptional tonal quality with ample undistorted volume, easily controlled.

It is a precision instrument, thoroughly tested before leaving the factory.

For Jobbers and Dealers, some territory is still available.

The ARAGAIN receiver illustrated is built by experienced craftsmen to a standard that will appeal to those who value quality based on sound engineering principles. It is the receiver of no regrets.

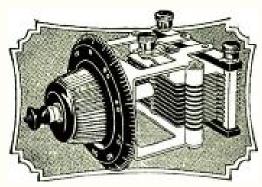
\$180.00 f. o. b. Niagara Falls

Autometal Corporation, 311 Falls St., Niagara Falls, N. Y.

CARTER

The choice of 92 leading set manufacturers.

Manufacturers who have found the originality of design and tested excellency of workmanship of Carter Products always dependable.


"TU-WAY" Plug
"ONE-WAY" Plug
"HOLD-TITE" Jacks
Jack Switches
Portable Jack
Name Plates
Loop Aerial
Rheostat
Potentiometer
"IMP" Batter
"IMP" Lock
"IMP" Cord

Loop Aerial
Rheostat
Potentiometer
"IMP" Battery Switch
"IMP" Lock Switch
"IMP" Cord Tip Jack
"IMP" Plug
Inductance Switch
Receptacle Jack

In Canada—Carter Radio Co., Ltd., Toronto

Carter Radio (o.

SHARPER TUNING in any of the 101 HOOK-UPS

B & P MICROMETER VARIABLE CONDENSER

In performance, the most amazing condenser on the market. Straight-line capacity or wave-length curves, combined with the only true micrometer type control, uncrowds the stations and makes tuning easier and sharp as a knife.

In every respect, an instrument of laboratory standard. Approved by POPULAR RADIO.

.00025 Straight line wave lengths \$6.00 at your .0005 Straight line capacity dealer's or direct

BARRETT & PADEN

1314 SEDGWICK ST. CHICAGO, ILI

DEALERS! Write for name of nearest jobber.

43

MANUFACTURERS AND WHOLE-SALE DISTRIBUTORS OF RADIO PARTS AND ACCESSORIES

WHOLESALE RADIO CO.

DEPT, 1265 6 CHURCH ST, NEW YORK CITY

Cockaday 5 Tube A-C Receiver

- General Radio Variometer No. 269 Precision R. F. Coupling Units
- Hammariund New Type Low Loss
 .0005 Condensers
 Kurz Kasch New Type Bakelite Dials
- Federal Sockets No. 16
- General Radio Audio Transformer No. 285
- No. 285

 1 Dongan Special Step-down Transformer Type B

 1 Daven Resisto Coupler Mounting
 2 Dubiller Mica .006 Fixed Condensers

KIT COMPLETE

- \$47.50 PAID
- 2 Daven Resistor 1/4 megohm and 1/2 megohm
 1 Daven Grid leak 4 megohms
 1 Dubilier Fixed Condenser .00025 mfd.
- with clips
 1 Dubilier Fixed Condenser .00015 mfd.
 1 Dubilier Fixed Condenser .0001 mfd.

EXACTLY as specified by Mr. Cockaday. For use with New McCullough A-C Tube

- Pacent Single Circuit Jack

 1 7x24 Genuine Bakelite Drilled and
 Engraved Mirror Finished Panel
 Veneered Mahogany Baseboard 97x2234
 Drilled Antenna Binding Post Panel
 Drilled Battery Binding Post Panel
 Panel Brackets
 1 Set of "PERSH" A-C Leads
 1 Box of Assorted Screws, Nuts, Lugs,

- 1 Set of three Popular Radio blueprints covering complete constructional details for building this receiver

TUBES In Stock McCullough A - C

COCKADAY'S 8 TUBE SUPERHETERODYNE REFLEX RECEIVER 1 General Instrument .0005 mfd. NO LDSS with Isolantite Insulation Detailed description of this kit appears in our latest catalog

- LOSS with Isolantite Insulation
 1 General Instrument .001 mfd. NO
 LOSS with Isolantite Insulation
 1 Haynes Griffin Input Transformer
 (new type)
 3 Haynes Griffin IntermediateTransformers (new type)
- Precision Autodyne Coupler
- 1 Karas Harmonik Audio Frequency Transformer Amplex Grid-denser
- Benjamin Cleartone Socket Federal Sockets No. 16

- Federal Sockets No. 16
 Pacent Double Circuit Jack
 Pacent Single Circuit Jack
 NAALD 4 inch Dials
 Amsco Rheostat 2 ohm
 Amsco Rheostat 400 ohm
 Daven Resisto-Coupler Mounts
 Daven Grid Leak Mounting
 Daven Resistors .6 megohm (600,-600 ohm)
- Daven Resistors ... 900 ohm)
 Daven Resistor .5 megahm
 Daven Resistor .005 megahm
 (5,000 ohm)

 Dadin Service Co

- 2 Daven Resistors .25 megohm (250,000 ohm) 2 New York Mica Condensers .0001
- mfd 4 New York Mica Condensers .006
- mid New York Mica Condenser .00025 mfd. with grid leak mounts Duratran Radjo Frequency Transformer

- former

 Walbert "A" Battery Switch

 Eby Marked Binding Posts

 1724 drilled and engraved Bakelite mirror-finished panel

 Mahogany Baseboard

 Drilled binding post panel

 Box assorted screws, nuts, washers
 lugs, etc.

 dete of extra heavy No. 12 tinned
 bus bar wire

 Set of angle brackets for mounting

- but set of extra neavy No. 12 tinned bus bar wire

 1 Set of angle brackets for mounting post panel

 1 Special bracket for mounting Amplex geldenser
- Set of three Popular Radio blue-prints covering complete con-structional details for building this receiver.

Wholesale Radio Service Co., Dept. 6 Church St., N. Y. C.

Trouble Shooting Chart.
Complete, New List of Broadcasting Stations.
Log Chart
and details of newest apparatus and hundreds of

Exceptional Radio Values on our

MONEY BACK GUARANTEE

om bus ber to the finest multi-tube set, we carry one quali-THE FINEST! EVERY snick represents 100 cents worth value for every dollar you invest! EVERYTHING pur-seed from WES is guaranteed: Your Money is etil YOUR may until you are thoroughly satisfied in every way.

vanil you are thoroughly satisfied in every way.

WRS 1S HEADQUARTERS FOR KITS
Cockaday Super
Cockaday D. X.
Uitradyne
Roberts' Knock-Out

TLESALE RADIO SERVICE CO

Cockaday Super
Cockaday D. X.
Uitradyne
Roberts' Knock-Out

FREE A postal brings you our lateat radio guide book, costs you pothing. Write for it TODAY!

A Dollar Bill Around the Coupon Below Will Bring Popular Radio for 5 Months

We want more subscriptions, and so we will enter your subscription for 5 months, if you will fill out the coupon below, wrap a \$1.00 bill around it and mail it to us promptly.

This offer should interest the casual reader, the newcomer into the ranks of radio fans and all POPULAR RADIO readers who are not now subscribers. This offer is only open to new subscribers.

DO YOU WANT TO BUILD A SET?

You will get more out of Radio when you build your own set. POPULAR RADIO has made it possible for the beginner, with no previous knowledge of radio, to build any type of receiving set desired with the assurance of getting perfect results.

"HOW TO BUILD YOUR RADIO RECEIVER"

The most complete and authoritative collection of material on Receiver Construction yet published in book form. All working details given; lists of parts required; complete hook-ups and circuit diagrams.

TUNE-IN ON ONE OF THESE

You may have a copy of "How to Build Your Radio Receiver" FREE with a 7 months' subscription to POP-ULAR RADIO for \$2.00. Or your subscription for POPULAR RADIO for 12 months and your copy of "How to Build Your Radio Receiver" both for \$3.00.

SIMPLIFIED BLUEPRINTS

POPULAR RADIO'S latest aid to receiving set builders show in ACTUAL SIZE every detail of the construction of 7 popular sets. (See page 46.)

Subscribe to POPULAR RADIO for 12 months and you may have your choice of any one set of Simplified Blueprints, at the regular subscription price of \$3.00.

POPULAR RADIO

627 West 43d Street

POPULAR RADIO, Dept. 77

627 West 43rd Street, New York City.

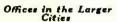
Enclosed is remittance of \$.... as payment, in ll, of subscription offer for POPULAR RADIO as checked below.

- months for \$1.00 (new subscription only).
- 7 months and "How to Build Your Radio Receiver" for \$2.00.
- 12 months and "How to Build Your Radio Receiver" for \$3.00.
- 12 months and Set ot "Simplified Blueprints" No. . . . for \$3.00.
 - 24 months for \$5.00.

New York City	CITY STATE
ice of \$3.00.	NAME
12 months and et of Simplified	NAME
or the construc-	

E-z-TOON

RADIO DIALS


"The Key to Simplified Tuning"

Will Simplify the Tuning of Any Popular Radio Hook-up

E-Z-TOON dials will improve the tuning of any radio set regardless of the hook-up. They have that fine, smooth 80 to 1 Vernier adjustment so essential to close tuning. There are no cogs, gears, backlash or lost motion.

INSTALLED IN A MOMENT WITH A SCREW DRIVER

3 in. Dials, Blk., \$2.00; Mahog, \$2.20, 4 in. Dials, Blk., \$2.25; Mahog., \$2.45, 2 in. Non-Vernier Dials, Blk., 40c; Mahog., 45c each. All Vernier Dials are made with Zero mark on either right or left side.

"The Best Transformer Money Can Buy"

Karas Harmonik Audio Transformers

Have been specified for highest quality amplification after exhaustive tests by numerous technical editors from coast to coast. A few cases: Popular Radio—Cockaday's 8 tube Reflect Super. Everybody's Radio Weekly—4 different circuits. In many Metropolitan Newspapers—Pressley's Super-Het. Radio Engineering—Nameless Circuit. The Famous Het-duo-gen Circuit. Also by Radio in the Home. Popular Science Monthly and many other radio publications

Karas Harmonik Transformers will greatly improve the musical quality of reception from any and all circuits. Greater volume with fewer tubes will be gained with equal quality by using Karas Harmonik amplification in all cases where resistance or impedance coupled amplification is called for. Karas Harmonik Transformers sell at

\$7.00

each. Get them from your dealer, or order direct from

KARAS ELECTRIC CO.

4036 N. Rockwell St.

Chicago, Ill.

Advertising a Fact

THE service of this Burgess Radio "A" Battery is and has been its greatest advertisement; its present recognition and world wide use is one of the most outstanding tributes paid to a quality product in the radio field.

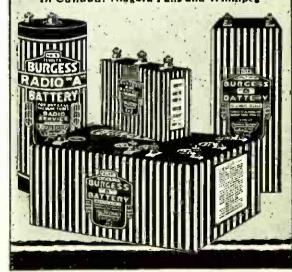
To date we are widely sustained in our opinion shalno other dry cell Radio "A" battery approaches the combined electrical efficiency and economical service of the especially designed Burgess Radio "A."

Use the Burgess Radio "A." Test it. Compare its service in any manner you wish.

"ASK ANY RADIO ENGINEER"

BURGESS RADIO BATTERIES

BURGESS BATTERY COMPANY


Engineers - DRY BATTERIES - Manufacturers

FLASHLIGHT - RADIO - IGNITION - TELEPHONE

General Sales Office: Harris Trust Bldg., Chicago

Laboratories and Works: Madison, Wisconsin

In Canada: Niagara Falls and Winnipeg

12 Collage D Dattely

12 Collage Lasts Indefinitely—Pays for Itself
Economy and performance unheard of before. Recharged at a negligible cost. Approved and listed as Standard by Leading Radio Auborities, including Pop. Radio Laboratories. Pop. Sci. Inst. Standards. Radio News Lab., Lefax, Inc., and other important institutions. Equipped with Solid Rubber Cage. an insurance against acid and leakage. Extra heavy glass lars. Heavy, ruxged plates. Order yours today! Just state number of batteries SEND NO MONEY wanted and we will ship day order is received: Extra Offer: 4 batteries in series (96 volts), \$12.75. Pay expressman after examining batteries. 8 per cent discount for cash with order. Mail your order now!

WORLD BATTERY COMPANY

1219 So. Wabash Ave., Dept. 77, Chicago, Ill. Makers of the Famous World Radio "A" Storage Battery Prices: 6-volt. 100 Amp. \$11.25; 120 Amp. \$13.25; 140 Amp. \$14.00 All Equipped with Solid Rubber Case

FOR RADIO STORAGE BATTERIES KOKA - WEAF - WON - WUS - KHJ - KGO - KFAF - WJY - KOP

FREE SIMPLIFIED BLUEPRINTS

YOU CAN HAVE YOUR CHOICE OF ANY ONE OF SEVEN SETS

You can have your choice of any one of seven Popular Radio Simplified Blueprints with your new or renewal subscription for Popular Radio, accompanied by remittance of \$3.00. These Blueprints will make it possible for you to build a tested and approved set, while Popular Radio for 12 months will keep you in touch with the progress being made in radio.

You, as a reader of Popular Radio, know the many entertaining, interesting and instructive articles that are published each month. Every Issue some new Item is sure to attract your attention. We promise that throughout the coming months Popular Radio will hold more and more of interest for Radio Fans.

Ease, Economy and Accuracy in Construction
Simplified Blueprints were prepared under the personal supervision
of Laurence M. Cockaday. They make it possible for anyone,
without previous knowledge of radio, to construct a highly efficient
radio receiver. Each set of Blueprints consists of 3 prints as follows.

Panel Pattern

This Blueprint is the EXACT size of the actual set. So accurate that you need merely lay it on your panel and drill as indicated. You can readily appreciate the convenience of this Blueprint. No scaling or measuring to do, no danger of ruining the panel through fourly conjugate the convenience. faulty calculation.

Instrument Layout

Here again you have an actual size print of each instrument and binding post and its exact location both on the panel and within the cabinet. Even the cabinet structure is clearly shown.

Wiring Diagram

The unusual feature of this Blueprint is that it is an actual size picture diagram of the finished set. Each instrument and other parts appear in exact size and the wires are so clearly traced from one contact to another that you can connect all terminals accurately without even knowing how to read a hook-up diagram.

Set No. 3—"Cockaday Distortionless Audio-frequency Amplifier" (four tubes, combination of resistance-coupled and push-pull amplification) as described in May, 1924, POPULAR RADIO.

Set No. 4—"Cockaday Four-circuit Tuner with Resistance-coupled Amplifier" (five tubes, distortionless, two dials, automatic vacuum tube control) as described in October, 1924, POPULAR RADIO.

Set No. 6—"Cockaday 8-Tube Super-heterodyne Refering Receiver" as described in January, 1925, POPULAR RADIO.

Set No. 7—"Craig 4-Tube Reflex Receiver with Sodion Detector Tube" as described in February, 1925, Popular RADIO.

Set No. 8—"Cockaday Improved DX Regenerative Receiver" (four tubes, distortionless, automatic filament control) as described in March, 1925, POPULAR RADIO.

Set No. 9—"The Portable Town and Country Receiver" (six tubes, three stages of transformer-coupled, radio-frequency amplification, loop antenna) as described in May, 1925, POPULAR RADIO.

Set No 10—"The 5-Tube A-C Receiver" (five A-C tubes, two stages of tuned-radio-frequency amplification) as described in June, 1925, issue of POPULAR RADIO.

Use coupon below; indicate which set of Blueprints you want.

POPULAR RADIO Dept. 79

627 West 43rd Street

New York City

POPULAR RADIO, Dept. 79 627 West 43rd Street, New York City Enclosed is my remittance of \$ in full payment for subscription, with Blueprints as checked below. FREE.
Set No. 3—Cockaday Distor- tiopless Audio- frequency Ampli- fier. Set No. 7—Craig 4-Tube Ro- flex Receiver with Sodion Detector Tube.
Set No. 4—Cockaday Four- circuit Tuner with Resistance- coupled Amplifier.
Set No. 6—Cockaday 8-Tube Super-heterodyne Town and Coun- Reflex Receiver. St No. 10—"The S-Tube A-C Receiver."
Name
Street
City

send for REE Bulletin 94

Whether you plan to build or to buy a receiving set, it will pay you to know something about the "insides" of radio. This booklet gives you the "inside dope" on some of the recent inventions embodying the latest ideas of radio engineers. In this bulletin is full information about the

Premier "HEGEHOG"

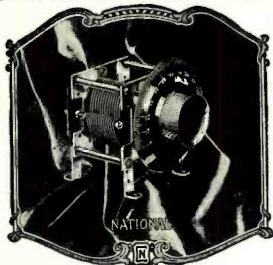
Audio Transformer

Ratios 1 to 3, 1 to 4 and 1 to 5, \$3.50 Ratio 1 to 10, \$4.50

This light weight audio transformer has earned a place in the very front rank for its remarkable volume, and pure, natural tone. It is 100% self shielded against foreign noises.

It cuts the space requirements for audio transformers in two. Ideal for neat and compact wiring, and for portables.

FREE HOOK-UP DIAGRAMS also sent on request. All popular types. Address


PREMIER ELECTRIC CO.

3807 RAVENSWOOD AVE., [CHICAGO

PREMIER

Quality Radio Parts

NATIONAL Velvet Vernier CONDENSERS and DIALS

Makes a Good Set Better

THE claims of superiority we make for NATIONAL Velvet Vernier DIALS and CONDENSERS are backed up by radio experts and by thousands of delighted users. Why? Because they give supreme satisfaction.

Excellent for DX Reception
PRICES—DX Condenser, including 3%-in Vernier
Dial, .001, \$7.25; .0005, \$6.25; .00035, \$6.00; .00025,
\$5.75. Usual trade discounts.

NATIONAL COMPANY, Inc.

110 Brookline Street, Cambridge, Mass.
Sole manufacturers of the genuine and justly famous
Browning-Drake Transformer. Patents Pending.

CHARGES

"A" or "B"

Storage Batteries

ULTRA HANDY (HARGER

Charges all storage batteries "A" or "B". No complicated adjustments. The Ultra Handy Charger will charge batteries from 2 to 48 volts.

Charges Quickly

The Ultra Handy Charger is speedy. It will charge 5 to 7 amperes per hour to a 6 volt Battery. "B" batteries at recommended rate.

Simple to Operate

Easy to use—connect the sturdy clips to the battery—plug the cord into a light socket and turn on the current. No care required when in or out of use.

Fireproof

The Ultra Handy Charger is absolutely fireproof. Even if allowed to run for several days there is no danger of fire or overcharging the batteries.

Write for Illustrated folder.

Interstate Electric Co.

4339 Duncan Ave.,

St. Louis, Mo.

GET ADVICE FROM COCKADAY

ON HOW TO GET THE MOST OUT OF YOUR RADIO RECEIVER

POPULAR RADIO maintains for the benefit of its readers a Technical Service Bureau and Laboratory, under the personal supervision of Laurence M. Cockaday which will, without charge, answer by personal letter any question, problem or request for information submitted by a subscriber. This service is, however, also available to readers, other than subscribers, at the very nominal rate of 50 cents the inquiry. the inquiry.

In writing please confine your questions to one general

subject, writing on one side of the paper only, and enclose a self-addressed and stamped envelope.

It is possible that your individual problem has been covered in an issue of POPULAR RADIO, and so as an aid to you we endeavor to keep a supply of back numbers in stock. The condensed index below gives a few of the subjects that have appeared recently, look this list over and if the information you want is covered, we will be pleased to supply back numbers at 35c. a copy.

October, 1922

--How to make a spider-web tuner.
--How to make your own grid condenser.
--Don'ts for Radio fans.
--How to use a Regenerative Set as a transmitter.
--How to restore worn-out crystals.

November, 1922

—Sir Oliver Lodge on ether waves.

—How to add a Vacuum Tube to your crystal set.

—The most popular transmitting aerial.

—How to make a novel variocoupler.

December, 1922 (Out of stock)

January, 1923 (Out of stock)
(A Reprint of Mr. Cockaday's article describing the DX Regenerative Receiver may be had for 25 cents.)

February, 1923 (Out of stock)

March, 1923 (Out of stock)

April, 1923 (Out of stock)

May, 1923 (Out of stock)

A reprint of Mr. Cockaday's original 4-Circuit Tuner will be found in Popular Radio's Handbook. See page 60.

June, 1923

-How the Microphone Transmitter Works. -How to Build a Good Single Tube Receiver. -How to Make a Crystal Detector Stand.

July, 1923

The ratio in size between your antenna and your coit.

Useful facts about ear-phones.

How to make a dry-cell tube Regenerative

-How to keep up your storage hattery.

August, 1923 (Out of stock)

A reprint of the Tunod Radio Frequency Receiver will be found in Popular Radio's HANDBOOK. See page 60.

September, 1923

—How to get a radio license. —How weak signals are regenerated. —How to make a battery charging rectifier. —How to build the Haynes DX receiver.

October, 1923

—Practical hints for Coll Calculations.
 —How to make a Two-stage Audio-frequency Amplifier.
 —Ten good rules for Broadcast Listeners.
 —How to make a simple Honeycomb Recolum.

November, 1923

The 100 Best Hook-ups (Part 1).

Receiving without Antennas.

How to build the New Regenerative Super-heterodyne Receiver (Part 1).

How to build a combination Short and Long-wave Receiver.

December, 1923

How to Select your Radio Parts.
The 100 Best Hook-Ups (Part 2).
How to Read a Diagram (Part 1).
How to build an efficient Crystal Receiver.
How to Build the Super-heterodyne Receiver (Part 2).

January, 1924 (Out of Stock)
(A Reprint of Mr. Cockaday's article describing the DX Regenerative Receiver may be had for 25 cents.)

February, 1924

-How to add "Push and Pull" amplification to the 3 tube Cockaday 4-Circuit tuner.

-The original 4-Circuit Tuner as a Portable Set with Loop.

-The 100 Best Hook-ups (Part 4).

-How to build a 3-tube Reflex Receiver.

March, 1924

-Hoffman Transformer Measurement Chart. -The 100 Best Hook-ups (Part 5). -How to Build an Amateur Transmitter. -A 3-tube Reflex Receiver (Part 2).

April, 1924

-How to Build a Simplified Neutrodyne. Receiver. -The 100 Best Hook-ups (Part fia) -How NOT to Tune the Single Circuit

Receiver.

-A Novel Substitute for "B" Batteries.

May, 1924

-A Compact Radio Kit for a Spring Hike.

-How to Get, the Maximum Radio-frequency Amplification.

-100 Best Hook-ups (Part 6b).

-Where Interference Comes In.

-How to Make an Audio-frequency Amplifier that Does Not Distort.

June, 1924

-How to Install a Receiver on your Boat.
-The 100 Best Hook-ups (Part 7).
-How to Bulld a Regenerative Receiver for Use with an Indoor Antenna.
-How to Make a Two-Slide Tuner.

—How to Avoid Local Interference.
—How "Resistance" Affects Radio Circuits.
—An Ideal Set for Summer-time Reception.
—100 Best Hook-ups (Part 8).
—How to Do Your Soldering Correctly.
—How to Build the POPULAR RADIO Portable.

able.

August, 1924

-How to build a single dry-cell tube, four-circuit tuner.

-How to build a two tube reflex receiver.

-Helpful hints for the broadcast listener

September, 1924

How to build a single dry-cell tube reflex receiver.
How to build a multi-wave tuner.
How to improve broadcast reception.

October, 1924

--How to Build the (Cockaday) Four Circuit
Tuner with a Resistance-coupled Am-

plifier.

How to Select a Ready-made Receiver.

How to Build a Detector-amplifier.

A Radio Set to Pack in Your Suitease.

Harnessing the Radio and the Movie.

November, 1924

How to Locate Interference from Power Lines.

Cockaday Article for Beginners.

How to Build a Low-loss Tuner for Shortwave Reception.

The New Type of Superheterodyne.

December, 1924

How to Build a Non-radiating 7-tube Superheterodyne Receiver.
Cockaday Article for Beginners.
How to Get the Most Out of Your Readymade Receiver.

January, 1925

-How to Build the Cockaday 8-tube Superbeterodyne Reflex Receiver.

-How to Improve Broadcast Reception.

-Cockaday Article for Beginners.

February, 1925

How to Get on a Radio Program.

A Loudspeaker for a Crystal Set.

How to Build a 4-tube Reflex I with the New Sodion Detector.

Coekaday Article for Beginners. Receiver

March, 1925

-How to Build the Improved DX Regenerative Receiver.

-Factors that Govern the Capacity of Vour Set.

Twe Receiver.

-Factors that Govern the Capacity of Condensers.

-What 'Induction' Means to Your Set.

-A Five Meter Vacuum-tube Transmitter and Receiver.

April, 1925

—Single Control Receivers.

—How to Improve Broadcast Reception. VI:
Increasing the Selecting Power of Your
Receiver.

—How to get the Most out of Your Readymade Receiver.

—Quartz Crystal as a New Wavelength
Standard.

May, 1925

-Factors That Affect Antenna Capacity.
-How to Wire Your Home to Have Radio in Every Room.
-Handy Tools for Radio Fans, The Hydrom-

eter.
-How to Build the "Portable Town and Country Receiver."

June, 1925

New Development in Vacuum Tubes.

How to Build a Five-tube A-C Receiver.

How to Draw Up Your Own Tuning Chart.

-Watt's Law in a Nutshell.
-"What Set Shall I Buy?"

627 West 43rd Street

Dept. 78

New York City

RESSI

SUPER HETERODYNE KIT COMPLETE

The Lasi 100 Genuine SANGAMO Kits on the Market

Patent litigation has stopped the manufacture of Sangamo Intermediate Frequency Transformers for the amazingly efficient Pressley Super Heterodyne. But—through a fortunate purchase, we have secured 100 sets of Sangamo parts and have made them up into complete kits exactly as specified by Capt. Pressley in December POPULAR

YOUR LAST CHANCE

No more genuine Sangamo parts will be available after these 100 kits are sold. Therefore, this is your last chance to obtain a real Pressley Super with original parts built to Capt. Pressley's own

NO SUPER EQUALS The Original PRESSLEY

Unlimited range and tremendous volume on a small loop! Tone quality of a higher standard than ever before attained in any kind of receiver, due to perfection in the intermediate transformers—the Parts which will no longer be manufactured! Selectivity far in advance of other types of Supers!

SEND YOUR ORDER TODAY

Aside from the fact that these are the last Sangamo parts that can be bought, this official complete Popular Radio kit at \$69.50 is a sensational value. Contains all necessary parts, including drilled panel and instructions. \$12.50 solid walnut de luxe cabinet 7 x 18 furnished for only \$7.00 extra. Send check or money order at once, as these 100 kits will be sold immediately following this announcement. Order today to be sure of yours. Also write for our big Free catalog of Radio Parts, Kits. Sets, Accessories at Bargain prices.

BARAWIK COMPANY, 102 S. Canal St., Chicago

One of Chicago's Oldest Radio Institutions.

Geared 80-1

Replaces your present dials without alterations to your set.

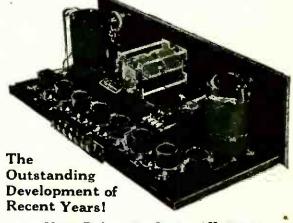
Patented April 21, 1921. Other Pais. Pending.

per-hei

Just where you need the finest adjustmenthighly geared, absolutely accurate Tuning Control. Accuratune controls give sharper tuning and improve any set. Particularly valuable for sensitive receivers where sharp tuning is essential. Equipped with patented friction clutch. Requires no set alterations.

improves selectivity

Write for descriptive folder.


Your set deserves the best!

At your dealers, otherwise send purchase price and you will be supplied postpaid.

Mydar Radio Company, 9-B Campbell St., Newark, N. J.

McLAUGHLIN ONE-CONTROL SUPER

Now Being Built in All Parts of the World

Think of it! A real 7-tube Super having only one dial to tune over the entire broadcast range. Selectivity so sharp as to bring in two and sometimes three stations within one degree of the dial, and without a particle of interference. Powerful Precise No. 1700 Super Multiformer makes necessary only one stage of audio amplification for satisfactory loud speaker home volume. Tone quality of music absolutely life-like—no distortion. A great distance getter. Distant stations usually have about same volume as locals under normal conditions. All "official" instruments and parts are "laboratory quality" including Low Loss colls. non-microphonic socket strip, automatic filament control jacks, etc. Easily and rapidly assembled from U-Ni-Dial official McLaughlin Kit.

Descriptive Bulletin on Request

U-NI-DIAL RADIO CO. 35 Greenwood Ave. East Orange, N. J.

FREE PARTS for RECEIVERS

NOW YOU CAN BUILD ONE OF THESE POPULAR RECEIVERS

READ THIS UNIQUE OFFER

IF you want to build your own set, here is your opportunity to secure FREE all the parts you need for any one of these three popular Popular Radio Receivers. Call on all your radio friends, and on anyone who has a set and tell them of the many special features of Popular Radio.

These liberal offers will make it possible for you to secure an order from every one you call upon. For each subscription with remittance you send us you will receive credits as per the following scale:

POPULAR RADIO

CREDITS Needed for Parts Required for the Cockaday Improved DX Receiver

(Described and Illustrated in POPULAR RADIO

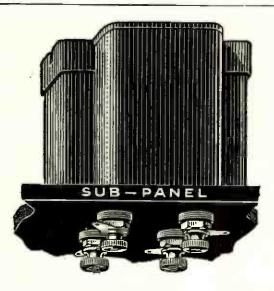
(Described as	for March, 1925)	2004
Quantity	Item •	Credita
1-Primary Seco	ndary and tickler col	is of the
New York Col	1 Co. (DX Coupler)	200
2—Kurz-Kasch 4-	inch dia is 6 4 0	
	ble condenser .0005 mfc fixed condensers Type	
.00025 mfd. @	18	36
1-Dubliier mica	18. fixed condenser Type	No. 640,
.005 mid	fixed condensers Type	No. 640
2—Dublier mick	uxed condensets Type	160
Teresel radio	type 285 amplifying tr	
2—Bradlevohma	vo. 25 @ 80	
1Cico double-ci	rcuit jack	
	cuit jack	
1-Clco filament	battery switch	
1-Composition p	anel 7 by 24 inches	120
	1A automatic filamen	
adjuster		
1-General instru	ment filament rheostat	(6 OHH(8)
equipped with	knob and dial ment, filament rheostat	
1—Octional matrix	knob and dial	90
1_Fil.Ko-Lock	VIII and dies.	
1—Reniamin Cle-	ra-tone socket	
	ts @ 20	
2-Daven mount	ngs No. 50 @ 14	
1Durham meta	llized filament grid-leak	.5 meg 20
1—Durham meta	ilized filament grid-leak	.25 meg 20
Total.		1,773

Send us the full amount collected with names and addresses of subscribers and tell us the parts your credits entitle you to and we will send them to you. If the subscriptions you secure do not give you enough credits for the parts you want, we will allow you to purchase credits at the rate of 3 cents each. Example: With (5) five 1-year subscriptions (250 credits) and 30 cents additional in cash you may have a General Radio variometer, No. 269 and a set_of "PRSH" A-C leads for which you need 260 credits. each.

If the parts you want are not listed on this page, we are prepared to supply them. Let us know what you want and we will tell you how many credits you will need.

On page 46 are described Popular Radio's Simplified Blueprints. You can have any set of prints you want for only 44 credits. You may also secure a copy of "How to Build Your Radio Receiver" for 60 credits.

CREDITS Needed for Parts Required for the "Portable Town and Country Receiver"


(Described and Illustrated in POPULAR RADIO

for May, 1925)	
Quantity Item (Credits
i—"Remier" square plate variable condenser Type No. 630, .00035 mfd. complete with dial and indicator	200
1—"Amsco" 20-ohm rheostat equipped with knob 1—"Amsco" 400-ohm potentiometer equipped	50
with knob. 2—Cutler-Hammer fliament battery switches @ 24 1—'Hoyt' Bezel-Hole Mounting voltmeter, 0 to	60 48
6 volts. 1—"Adams" jack, Type No. 502, 3-prong double	90
circuit 1—"Adams" jack, Type No. 501, 2-prong, single circuit, open	28 24
1—"Dubliler" mica-fixed condenser, .00025 mfd., with clips for grid-leak	18
1—"Dubliër" mica-fixed condenser, .00025 mfd. 3—"Dublier" Duratran radio-frequency transformers @ 160	14 480
1—"Daven" grid-leak, 4 megohms. 6—"Benjamin" Cle-ra-tone sockets for UV-199	20
vacuum tubes @ 40	240
frequency transformers @ 200	400 10
9—Eby binding posts @ 6	54 90
Total	1,826

CREDITS Needed for Parts Required for the New 5-Tube A-C Receiver

(Described and illustrated in Popular Radio for June, 1925)	Quantity Item 2—Dubliler mics fixed condensers, .006 mfd. @	Credits 30 60
Quantity Item Credits 1—General Radio variometer, No. 269 200 1—General Radio a.f. transformer, No. 285 280 2—"Precision" r.f. coupling units (per pair) 200 2—Hammarlund variable condensers, .0005 mfd. 400 3—Kurz-Kasch 4' dials & 40 120 5—Federal sockets, No. 16 & 48 240 1—Dongan special step-down transformer Type B 240 1—Daven resisto-coupler mounting 40 1—Daven resistor, ½" megohm 20 1—Daven resistor, ½" megohm 20 1—Daven grid-leak, 4 megohm 20	2—Dubiller mica fixed condenser, .000 mfd. & with grid-leak clips with grid-leak clips 1—Dubiller mica fixed condenser, .00015 mfd. 1—Dubiller mica fixed condenser, .0001 mfd. 1—Parent single-circuit jack 1—Composition Panel, 7 x 24* 1—Hardwood baseboard, 9% x 22% 1—Sattery binding post strip 1—Battery binding post strip 1—Sattery binding post strip 1—Set "PRSH" A-C Leads Cabinet for 7" x 24" panel Total	18

Popular Radio Department 71, 627 West 43rd Street, New York City

"Best by competitive test," says Zenith

"In the early Fall of 1923 we made numerous experiments of all existing types of transformers and finally adopted Thordarsons as the best by competitive test. The immediate result was improvement in the tone quality of our sets and comparative freedom from trouble due to the uniformity of your transformers.

"A radio set is only as good as the transformers that are used therein. We can, therefore, truthfully say that the superiority of Zenith sets is due to the superiority of Thordarson Transformers. We congratulate you upon the good product you are manufacturing."

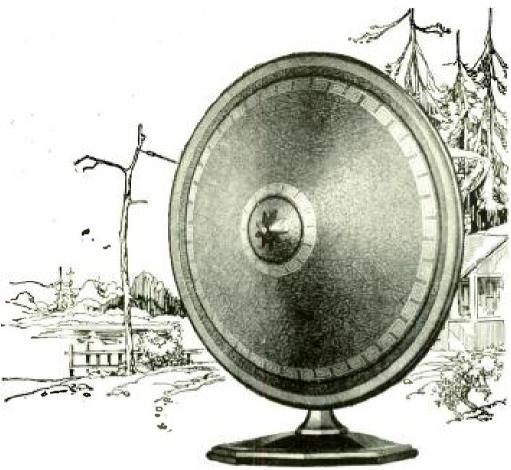
—from a letter dated February 28, 1925, written by Zenith Radio Corporation, Chicago.

SUB-PANEL MOUNTING TYPE THORDARSONS NOW ON SALE

They permit a neater assembly, the shortening of leads and the concealing of wiring—as in factory built sets. Same ratios—same prices—as standard type Thordarsons. If dealer cannot supply, order from us.

Unconditionally Guaranteed

Super-Het Builders!


For the "Best" 45,000 Cycle Super-Heterodyne "Radio" and other leading authorities recommend in highest terms the Thordarson 2:1 Ratio Transformers. Take no others!

HORDARSON TRANSFORMERS Standard on majority of quality sets

TYPES AND PRICES: Thordarson 'Super' Audio Frequency Transformers are to be had in three ratios: 2-1, \$5; 3½-1, \$4; 6-1, \$4.50. Thordarson Power Amplifying Transformers are \$13 the pair. Thordarson Interstage Power Amplifying Transformer, \$8. Write for latest hook-up bulletins—free.

THORDARSON ELECTRIC MANUFACTURING CO. WORLD'S OLDEST AND LARGEST EXCLUSIVE TRANSFORMER MAKERS Chicago, U.S.A.

The Crosley Musicone

a startling improvement in looks and tone over loud-speakers
Already replacing thousands

In camp or home, this remarkable development of radio reproduction will greatly increase your delight in radio.

It is a new idea. It diffuses the sound. Upon hearing it for the first time one is at loss to locate the source of the music, its perfection of reproduction is uncannily real.

Its price, like all Crosley products, is very low because of the half-million production plans under which it is being built. Hear it at all Crosley dealers now.

Crosley owns and operates station WLW, Cincinnati, the first remotely controlled super-power broadcasting station.

Crosley manufactures receiving sets which are licensed under Armstrong U. S. Palent No. 1,113,149, and priced from \$14.50 to \$65, without accessories.

The Crosley Radio Corporation
Powel Crosley, Jr., President
716 Sassafras Street. Cincinnati

The Marvels of Radio!

Incredible to those who don't know!

The Crosley 1-Tube 50

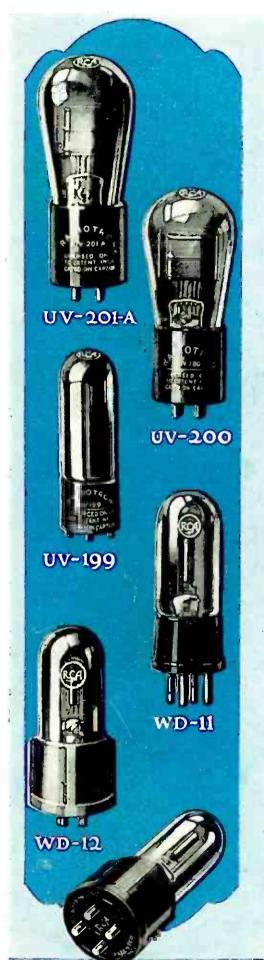
Crosley's development of the famous Armstrong regenerative circuit enables you to "roam" the country and enjoy the thrill of picking up distant stations just as though you owned a multi-tube set,—all with one tube and at \$14.50, without accessories.

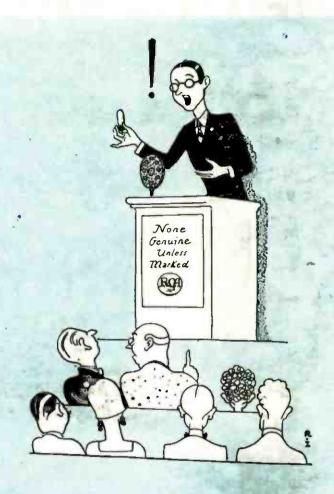
2-Tube Crosley 51

Same as wonderful Crosley 50 with additional tube amplifier. Local and nearby stations on loud-speaker always and distance up to 1500 miles under average conditions. Much greater range with head phones. \$18.50, without accessories.

3-Tube Crosley 52

A larger set for those who want greater reception range on the loud-speaker. Operates on three tubes, using wet or dry batteries. Consistent loud-speaker range 1500 miles or more. \$30, without accessories.




The Crosley Trirdyn Special

3 Tubes do the work of 5

A unique circuit combining tuned radio frequency, regeneration and reflexed amplification that equals in results the work of 5 and 6 tubes. None re-radiating. \$65 without accessories.

PRESS OF WILLIAM GREEN, NEW YORK

Vital to every radio fan

In a radio set, it is the tube that detects the sound—that amplifies the sound—that determines in large part the quality and volume of the sound. Therefore the tube—intricate of mechanism and delicate to make—is the vital spot in every set. And it always pays to be sure you use genuine Radiotrons—made with experienced precision.

Build any circuit—simple or complex. Buy any set, plain or fancy, simply boxed or elaborately cabineted. But give it every chance to achieve its best—with genuine Radiotrons. Be just as careful when you replace tubes, too. Always see for yourself that each one bears the identifying marks of a Radiotron: The word Radiotron and the RCA mark.

Radio Corporation of America

Chicago

New York

Sin Francisco

Radiotron

PRODUCED ONLY BY RCA

