Popular Electronics

Build The Sonic Emulator Turn your car or living room into a concert hall, and pick any seat in the house!

Is Your Hobby Hazardous
 To Your Health?

Does RF radiation from ham transmitters place their operators at risk?

Violet-Ray Generators

A look at one of yesteryear's most novel devices, and how you can use it today.

Design Your Own
Power-Supply Circuits
Combine basic building blocks to make the perfect power-supply circuit

3 NEW FactCards IN THIS ISSUE

Audio Sweep/
 Burst Generator

Build this valuable addition to your workbench.

Electronics Hobbyists In The Soviet Union
A rare look at a hobbyist's life behind the Iron Curtain.

$\frac{\text { gernisback }}{\text { publication }}$

Ataris Tiny Marvel PC-compatibility and small size are just part of the Portfolio story.

Diqi.Key_-1-800-344-4539
 CORPORATION FAK, Puerto Rico - 218.681.6674 FAX - 218-681.3380 TWX 9103508982 DIGI KEY CORP

FEBRUARY 1990, VOLUME 7, NO. 2
Popular Electronics
THE MAGAZINE FOR THE ELECTRONICS ACTIVIST!
CONSTRUCTION ARTICLES
BUILD THE SONIC EMULATOR Chadwick Pryson 31
Improved stereo imaging can add concert-hall acoustics to your listening area.
BUILD AN AUDIO SWEEP/BURST GENERATOR John Wannamaker42Upgrade your testbench with this inexpensive audio-signal source.
MAKE A CUSTOM PLASMA DISPLAY Ralph Hubscher 65
Making a power supply is easy, but the real fun starts when you design your own displaysFEATURE ARTICLES
DESIGNING POWER-SUPPLY CIRCUITS Stephen Bigelow 35
Learn how to design and build power supplies for all your electronics needs.
VIOLET RAY GENERATORS Stanley Czarnik61Restore a device from years ago, and perform timeless high-voltage experimenis.
DIGITAL ELECTRONICS COURSE Robert A. Young69
An introduction to op-amps in all their many forms.ATARI'S TINY MARVELJulian S. Martin74Portfolio: A palm-top personal computer that runs DOS-type software.
ELECTRONICS HOBBYISTS BEHIND THE IRON CURTAIN Anton A. Antokkin 77
Where clandestine meetings in dark hallways to get parts is the norm
PRODUCT REVIEWS
GIZMO 49
Including: Light and Sound's MC-2 Drea
PRODUCT TEST REPORTS 78
Instant Replay VT-498EM Multi-Format Video-Cassette Recorder.
HANDS-ON REPORT 81
Ocean Products NAVplus Navigation Sottware
COLUMNS
THINK TANK Byron G. Wels 24
Brain Busters
ANTIQUE RADIO Marc Ellis 82
Brother Pat's marvelous museum of tubes.
COMPUTER BITS 85
Vitrax IX Microcontroller.
CIRCUIT CIRCUS Charles D. Rakes 86
Unusual circuits and design aids
DX LISTENING Don Jensen92
A new transmitter for New Zealand
HAM RADIOJoseph J. Carr94
Is your hobby hazardous to your health?
SCANNER SCENE . Marc Saxon96The PRO-2005: a new and improved PRO-2004.DEPARTMENTS
EDITORIAL Carl Laron 2
LETTER BOX 4
ELECTRONICS LIBRARY 6
NEW PRODUCTS 15
FACTCARDS 37
FREE INFORMATION CARD 71
ADVERTISER'S INDEX 105

Popular Electronics (ISSN 1042-170X) P.bished monthly by Gernsoack Publications, Inc., 500 - B Bi-County Boulevard, Farningdale, NY 11735. Second-Class postage paid at Farmingdale, NY and at additinnal mailing offices. One-year, twelve issues, subscription rate US. and possessious $\$ 21.95$, Canada $\$ 26.95$, all countries $\$ 29.45$. Subscription orders payable n U.S. funds onty International Postal Money Order or check drawn on a U.S. bank US. Single copy price $\$ 2.50 \$ 1989$ by Gemsback Pubicications. Inc. All rights reserved. Hands-on Electronts and Gizmo Gemsback Pubilcations. Inc. All rights reservor. Hands-on Electronics and Gizmo lar Electronics trademark is registered in U.S. End Canada by Electronics Technology Today, Inc. and is ficensed to Gernsback Pubications. Printed in U.S.A.

Postmaster: Please send address changes to Popular Electronics, Subscription Dept, P.O. Box 338, Mount Morris, IL. 61054-9:332.

Comributing Edilors
PRODUCTION DEPARTMENT
Ruby M. Yee
Production Director
Karen S. Tucker
Production Manager
Marcella Amoroso
Production Assistant
ART DEPARTMENT
Andre Duzant Art Director
Russell C. Truelson
Technical Illustrator
Injae Lee Assistant lllustrator
Michele Torrillo P.E Bookstore
BUSINESS AND EDITORIAL OFFICES
Gernsback Publications, Inc. 500-B Bi-County Blvd. Farmingdale, NY 11735 1-516-293-3000 Fax: 1-516-293-3115 President: Larry Steckler Vice President: Cathy Steckler
Composition by Mates Graphics and Magtype
The publisher has no knowledge of any proprietary rights which will be violated by the making or using of any items disclosed in this issue.

Editorial

A JOB WELL DONE

It was shortly after 5 p.m. in San Francisco (8 p.m. here on the East Coast) on October 17, 1989, and the nation was settling back in their easy chairs and sofas waiting for Game 3 of baseball's showcase-the World Series. Suddenly, all the fun and games turned deadly serious as the Bay area was hit with a killer earthquake.

And, as always happens when disaster strikes, radio hobbyists were on the scene lending aid and comfort, and providing vital communication links. REACT (Radio Emergency Associated Communications Teams), an organization of amateur radio operators, CB'ers, and GMRS (business) radio users who have volunteered their expertise in emergencies, and for the general public good, was already active in the area, assisting travelers on the way to the World Series when the earthquake struck.

Almost immediately, calls reporting accidents, injuries, major damage, downed lines, and fires began to pour in to REACT monitors, who relayed the information to the appropriate emergency services. Other requests included directions around blocked roads, locations of Red Cross centers, and where to go to volunteer. At the police's request, and to help them concentrate their efforts on disaster relief, REACT members patrolled areas left without power, watching for looters and other problems.

Disasters like the San Francisco Bay area earthquake and Hurricane Hugo, which had devastated the Southeast coast and the Caribbean region just weeks before, try the courage and dedication of every man, woman, and child involved. And time after time, radio hobbyists have performed above and beyond what could be reasonably expected of anyone. Job well done-again!

Carl Laron
Managing Editor

Letters

DE-MYSTIFIED STATION

Regarding the letter from G.R. in the November 1989 issue of Popular Electronics: The station he asks about, W6QIE, is the station of Don Johnson, located in South San Francisco. Since the mid-1960's that station has been transmitting code practice on 3590 kHz every Tuesday through Saturday, commencing at 8 PM local Pacific Time. Don's dedication to code-practice transmissions may well represent the longest running such service in the country, besides the ARRL's W1AW.

> F.S.B., W6OWP
> Paradise, CA

IN THE DARK

I built the "Electronic Darkroom Timer" (Popular Electronics, November 1989), and before I even got started on the circuit I noticed an error in the timing capacitors. Capacitors C 2 and C4 must be reversed so that the $2.2-\mu \mathrm{F}$ is in series with the $22-\mu \mathrm{F}$ capacitor. To get the exact 15 -second and 30 -second intervals I used my digital capacitance meter to select the 2.2 -and $22-\mu \mathrm{F}$ capacitors.

Other than that, I really enjoyed the projectkeep 'em coming!

> D.S.
> Kansas City, $M \mathrm{O}$

ADDRESS CORRECTION

HSC Electronic Supply appreciates being included in the article "Supplying the Electronic Workshop" in the November 1989 issue. However, please inform your readers that the Zip Code in the mail-order address in the article's sidebar is incorrect. The correct address for mail orders is HSC Electronic Supply of Santa Clara, 3500 Ryder Street, Santa Clara, CA 95051-0717. Recent requests for catalogs have depleted our supply, but additional catalogs are currently being prepared.

Bob Ogburn, WA6LXK National Marketing Manager HSC Electronic Supply

BOOSTER AMP WARNING

As I was looking over the schematic of the "Booster Amp for Your Car Stereo" (Popular Electronics, November 1989) I
noticed something that could cause heartburn for some stereo owners who try to use the circuit.

Not all stereo outputs are referenced directly to ground; in some units, including latemodel Delco stereos in GM cars, the outputs are balanced. If the booster-amp circuit was connected to one of those output-balanced stereos, at minimum the final output would probably be degraded. It's likely that the stereo would sustain damage from smoke!

P.W.

Virginia Beach, VA
You are, of course, correct. While most current production stereo amplifiers do reference their outputs to ground, a few do not. If you are not sure about your amplifier's output configuration, consult the manual or contact the manufacturer. Under no circumstances should the Booster Amp be connected to an output that is not referenced to ground.-Editor

SECRET AGENT'S ADDRESS REVEALED!

We could pretend that the publisher and address of Golgo 13 Comics (GIZMO, December 1989) were withheld to protect the security of "Duke Togo" secret agent for hire in the popular Nintendo game on which the comic is based-but the truth of the matter is we simply forgot to include it. The comic is published in a joint venture by Vic Tokai Inc., Saito Productions, and Lead Publishing Company Ltd., and those interested can contact Vic Tokai inc., 370 Amapola Avenue, Torrance Tech Park, Suite 104, Torrance, CA 90501. Sorry for any inconvenience caused by the omission.-Editor

SORRY, WRONG NUMBER

The phone number listed for Jameco Electronics Inc. in the "Sources" box accompanying the article "Upgrading Your PC'' (Popular Electronics, December 1989) is actually that company's fax number. The correct telephone number is: 415-592-8097.
-Editor

CELLULAR CONNIPTION

Politely, l'll listen to crank phone calls, even when they're collect and pre-recorded. And junk mail over my fax doesn't annoy me, or "Urgent \& Personal" letters, pre-sorted.
I offer coffee to all door-to-door salesmen and refills before bidding them "Good day." I've always given very thoughtful responses to each and every obnoxious opinion survey.
I've made a few interesting friends because to wrong numbers I just can't say "good bye." I also leave messages on answering machines even though l'd only called up to say "hi."

But I went totally berserk stuck in traffic when I answered a call on my cellular phone and heard the computer's solicitation begin
"Dear Friend . . ." in a hollow aluminum tone. I ranted, I raved at that digital disk-head, while watching for the light to turn green. My fellow drivers must surely have wondered to whom I could have been speaking so mean.

Naomi Hardy

SOURCE FOR MANUALS

I'd like to let other Popular Electronics readers in on the advice I sent to John Daniels in response to his "Haves \& Needs" letter in the November 1989 issue. There is a company called Hi-Manuals that supplies hard-tofind manuals. Even if they don't have the manual, they may be able to provide a circuit diagram. Enclose $\$ 1.00$ and ask for "Cata$\log \mathrm{J} . "$ Their address is P.O. Box J-802, Council Bluffs, IA 51502.

> P.R.F.
> Cincinnati, OH

BAR NONE

I spotted an error in Fig. 3 of The Digital Electronics Course (Popular Electronics, November 1989). It should read $Y=\bar{A}(Y$ is equal to $n o t A$) instead of $Y=A$.
K.F.
Sauk City,

HAVES \& NEEDS

I have a Convergence Technology AWS 231 workstation that I purchased at a flea market for what I thought was a bargain price. I was told that software and an operating system was available. The only place that has even been willing to answer my letters concerning software was charging a hefty price of $\$ 400.00$ each for the operating system and word-processing software.
I also was told at the time of purchase that the system, which has 256 K of RAM, can use MS-DOS software. I haven't been able to get the system up and running. It's been a year since I bought it, and I have since bought an IBM-compatible computer, but I would still like to use the Convergence Technology computer, if possible. Can any Popular Electronics readers help me find out if it's possible to use MS-DOS with the system, or to find a reasonably priced operating system and software?

D. Rutledge

3110 Mt. Vernon Avenue \#190

Alexandria, VA 22305
I need service notes or a schematic for a Philco 7-transistor radio (model $T 7$-126), and I'm also looking for service notes, schematics, or owner's manuals for an RCA model WO-91B oscilloscope and an EICO model 377 audio generator. I'm willing to pay copying costs and postage for any of those manuals and schematics. Thanks.

Robin Evans
622 Stevenson Street Jacksonville, AR 72076

CIRCLE 19 ON FREE INFORMATION CARD

FEBRUARY 1990

Electronics Library

Ti) obtain addirional information on the books and publications covered in this section from the publisher. pledse circle the tem's code mumber on the Frea Information Card

QTC (I HAVE A MESSAGE FOR YOU)
by "Sparks"

Author Ray "Sparks" Redwood-a wireless operator in the RAF during World War II who later served as the radio officer on a British merchant ship and now works for 3 to 6 months at a stretch on freighters or tankers-wrote this book under the pseudonym "Sparks" because it represents the experiences of all sea-going radio officers -also known as "Sparks." With their radios and Morse code, those officers (the "ears and voice" of their ships) provide a vital communications link

The book brings the history of radio to

life by mixing personal anecdotes with background material and true stories of rescues and mysteries of the sea. The contributions of five radio pioneers-Maxwell, Hertz, Marconi, Fleming, and De Forest-are described. Well-known sea stories, such as the sinking of the Titanic, are presented from the unique viewpoint of a radio operator. Those tales are interspersed with accounts of lesser-known historic events and personal at-sea and port-of-call stories of adventure, friendship, and love. With communications satellites and high-tech computer and electronics systems threatening to replace the Morse-code operators, a cer-
tain nostalgic spirit surrounds the tales told.
QTC (I Have A Message For You) is available in hardcover in a limited edition, numbered and signed by the author, for $\$ 15.00$, or in paperback for $\$ 8.95$, from Sequoia Press, 2502 Cockburn Drive, Austin, TX 78745.

CIRCLE 90 ON FREE INFORMATION CARD

COMMUNICATIONS NETWORKS

by Michael F. Hordeski
With today's business world becoming increasingly dependent on networking among PC's, mainframes, and minicomputers, managers at all levels need to stay abreast of the latest developments in order to set up networks and keep them operating smoothly. This book provides an in-depth examination of the technical, managerial, and economic issues surrounding communications networks.
It shows readers how to evaluate their current and future networking needs so that they can select appropriate systems and add-ons, and how to avoid making costly mistakes. It explains the differences between available modes, to ensure compatibility between systems and components. Using practical examples throughout, the book provides a comprehensive analysis of available hardware and software, including how to buy it.
Communications Networks is available in hardcover from TAB Professional and Reference Books, Division of TAB Books Inc., Blue Ridge Summit, PA 17294-0850; Tel. 1-800-233-1128.

CIRCLE 98 ON FREE INFORMATION CARD

MORE ADVANCED MIDI PROJECTS

by R.A. Penfold

The projects presented in this book are designed to overcome a deficiency in a piece of MIDI equipment, to enhance the performance of an electronic-music system, or to make the system easier to use. For the most part, the projects are more complex than those presented in the author's previous book (MIDI Projects) and are not suitable for beginners. However, a few simple ones have been included, and all of the projects should be well within the capabilities of electronics hobbyists with some experience. Included are circuits for a MIDI indicator, a THRU box, a merge unit, a code generator, a pedal, a programmer, a "channelizer," and an analyzer. The circuit descriptions are also intended to provide sorr:e useful building blocks for use in the reader's own designs.
More Advanced MIDI Projects (No. BP247)

is available for $\$ 7.95$, including shipping and handling, from Electronics Technology Today, P.O. Box 240, Massapequa, NY 11762.

CIRCLE 97 ON FREE INFORMATION CARD

ELECTRICAL TEST EQUIPMENT

by Harry Mileaf
Written for anyone who needs to understand the electrical test equipment used by electricians-expecially trade-school students, apprentices, journeyman electricians, and do-it-yourselfers-this book provides a detailed look at its construction, operation, and practical applications. As a complete source of practical instruction on how to use electrician's instruments to test and measure various kinds of circuits, the book strives to make learning easy. Each page covers one concept or topic, with an illustration to clarify it. All technical terms are defined as soon as they are introduced, key points are high-lighted (and often reiterated in later sections), and summary sections with review questions are included, making quick refresher studies simple.
The book provides a solid foundation in electrical measurements and complete information on the basic meter movement, including its construction and how it's used to measure current, voltage, continuity, and resistance. The book covers analog and digital meters, as well as special-purpose meters such as oscilloscopes, component testers, and wattmeters.

Electrical Test Equipment is available for $\$ 19.95$ from Howard W. Sams \& Company, 4300 West $62 n d$ St., Indianapolis, IN 46268; Tel. 800-428-SAMS.

CIRCLE 95 ON FREE INFORMATION CARD

CAD AND DESKTOP PUBLISHING GUIDE

developed by Que Corporation

This comprehensive sourcebook of soft-
ware, hardware, accessories, and services covers the three fastest growing personalcomputer technologies: computer-aided design (CAD), desktop publishing, and presentation graphics. It includes thousands of listings, each of which contains complete product and company informa-tion-the systems the product runs on; pricing information; product description;

and vendor name, address, and phone number.

The book's easy-to-follow layout lets the reader access information about 2,600 products, saving time and simplifying purchasing decisions. The guide is divided into four main sections: CAD systems and software, system software and programming languages, desktop-publishing systems and software, and hardware and peripherals. Each section is further divided into more specific categories, and within those entries are arranged alphabetically.

CAD and Desktop Publishing Guide is available for $\$ 24.95$ from Que Corporation, 11711 N. College Ave., Carmel, IN 46032.

CIRCLE 94 ON FREE INFORMATION CARD

MODERN ELECTRONIC AND ELECTRICAL DRAFTING WITH COMPUTERS

by James D. Bethune
Taking a generic approach rather than depending on a single CAD system, this book explains how to use computer-aided design to prepare electronic and electrical drawings and schematics. Introductory material is included on computers as well as on the basic mathematical concepts needed to set up and prepare drawings using CAD. The book explains two-dimensional construction and how those techniques are applied to a variety of electronic and electrical drawings. Extensive illustrations and photographs accompany the text.

Chapters on electronic symbols, schematic diagrams, and printed-circuit development include design layouts, film mas-
(Continued on page 12)

CABLE-TV

BONANZA!

\|TEM	$\begin{gathered} 1 \\ \text { UNIT } \end{gathered}$	$\begin{aligned} & 10 \mathrm{OR} \\ & \text { MORE } \end{aligned}$
	2900	1800
PANASONIC WIRELESS CONVERTEA (our best buys	9800	7900
STAR GATE 2000	8800	6900
JERROLD 400 COMBO	16900	11900
JERROLD 400 HAND REMOTE CONTROL	2900	1800
-JERROLD 450 COMBO	19900	13900
-JERROLD 450 MAND REMOTE CONTROL	2900	1800
JERROLD SE-ADD-ON	9900	6300
JERROLD SB-ADD-ON WITH TRIMODE	10900	7500
M-35 B COMBO UNIT ICH 3 oulput only,	9900	7000
- M-35 B COMBO UNIT WITH VARISVNC	10900	7500
- MINICOOE (N -12)	9900	6200
MINICODE (N-12) WITH VARISYNC	10900	6500
MINICODE VARISYNC WITH AUTO ON-OFF	14500	10500
ECONOCOOE iminicode substituts)	6900	4200
ECONOCODE WITH VARISYNC	7900	4600
MLD-1200-31Ch 3 Oufput	9900	6200
	9900	6200
ZENITH SSAVI CABLE READY	17500	12500
INTERFERENCE FILTERS ICh 3 only,	2400	1400
EAGLE PD-3 DESCRAMBLER ICh 3 output duly	11900	6500
SCIENTIFIC ATLANTA ADO-ON REPLACEMENT DESCRAMBLER	11900	8500

Quantity	Item	Output Channel	Price Each	TOTAL PRICE		
						California Penal Code \#593-D forbids us
:---						
from shipping any cable descrambling unit						
to anyone residing in the state of California						
Prices subject to change without notice.						

PLEASE PRINT

Pacific Cable Company, Inc. 7325½ RESEDA BLVD., DEPT. \# P-2 • RESEDA, CA 91335 (818) 716-5914 • No Collect Calls - (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION Please have the make and modelः of the equipment used in your area. Thank You

Take any one of these HANDBOOKS ELECTRONICS and CONTROL

- your one source for engineering books from over 100 different publishers
- the latest and best information in your field
- discounts of up to 40% off publishers' list prices

322/910

Publisher's Price \$114.50
ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik

- 1,408 pages, 946 illustrations
- covers all types of antennas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundamentals, operating principles, design techniques, and performance data
- up-to-the-minute information on antenna applications
- a must for those involved in any phase of antenna engineering

Publisher's Price $\$ 75.00$ STANDARD HANDBOOK OF ENGINEERING CALCULATIONS, Second Edition
By T. G. Hicks

- 1,468 pages, 793 illustrations, 499 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- virtually all procedures can be easily programmed on your PC or calculator
- uses USCS and SI units in all calculation procedures

Publisher's Price $\$ 98.50$
TELEVISION ENGINEERING HANDBOOK
Edited by K. B. Benson

- 1,478 pages, 1,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television system and industry standards for the U.S. and other countries
- the most comprehensive book on the subject of television engineering

for only $\$ 14.95-$ when you join the ENGINEERS' BOOK CLUB

Publisher's Price $\$ 89.95$

MODERN ELECTRONIC CIRCUITS

 REFERENCE MANUALBy J. T. Markus

- 1,264 pages, 3,666 circuit diagrams
- a handy, desktop reference with 103 chapters organized by "family" grouping
- filled with predesigned and use-tested circuits to save you production time and money
- includes concise summaries of all the recent applications notes, journal articles, and reports on each circuit, efficiently organized and indexed for the practicing engineer

Publisher's Price $\$ 92.00$

STANDARD HANDBOOK FOR ELECTRICAL ENGINEERS, Twelfth Edition

Edited by D.G. Fink and H.W. Beaty

- 2,416 pages, 1,388 illustrations, 430 tables
- the essential reference for all electrical engineers
- ranges from basic circuits and measurements to advanced topics, such as power distribution and telecommunications
- fully updated to cover all recent advances and developments
- written and compiled by 115 contributors - all experts in their fields

209/758

4 reasons to join today!

1. Best and newest books from all publishers! Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.
2. Big savings! Build your library and save money, too! Savings range up to 40% off publishers' list prices.
3. Bonus books! You will automatically be eligible to participate in our Bonus Book Plan that allows you savings up to 70% off the publishers' prices of many professional and general interest books!
4. Convenience! 14-16 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection - or no book at all - you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Club's expense.
As a Club member you agree only to the purchase of two additional books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the two additional books.

FOR FASTER SERVICE IN ENROLLING CALL TOLL FREE 1-800-2-MCGRAW

Electronics Library
 (Continued from page 7)

ters, soldering, and drill drawings. The section on integrated circuits features sample problems that illustrate how to draw the various masks required for IC manufacturing. Other topics covered include orthographic views, sheet-metal bending, dimensioning of multiple-hole patterns, residential and industrial wiring, and charts and graphs. Each chapter ends with exercises designed to apply the material presented.

Modern Electronic and Electrical Drafting with Computers is available for $\$ 40.00$ from Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

CIRCLE 99 FOR FREE INFORMATION CARD

MLITARY STANDARDS LISTING

from Seastrom Manufacturing Co., Inc.
In this brochure, more than 130 listings of AN, NAS, M, MS, and USAF Standards are identified for immediate shipment from stock. Most variations and dash numbers are also available for prompt pricing and shipping.

The MIL Standards listing is available at no charge from Seastrom Manufacturing Co., Inc. 701 Sonora Avenue, Glendale, CA 91201-2495.

CIRCLE 91 ON FREE INFORMATION CARD

THE COMPUTER NETWORKING BOOK

by Peter O'Dell

The personal computer has changed the business world by providing even the smallest companies with the power to manipulate and share information (in other words, to network) in various ways. Unfortunately, the information that generally isn't being shared involves how to implement a networking system. Nontechnical managers must trust key decisions to consultants and vendors, who might have a vested interest in a particular system.
This book aims to put the decisionmaking process back into the hands of management, by providing impartial, plainEnglish explanations concerning how and when to link up their computers. It helps business owners decide whether they need to network and, if so, what type of network would work best for their office environment. For clearer communications with consultants and computer dealers, the book provides the right questions to ask the experts. It shows how to create a network without disrupting business-by "phasing" it in step by step, business can proceed as normal and large capital outlays can be
avoided. With an emphasis on cost control, the book explains how to manage a network without a full-time MIS director, and includes a special chapter on low-cost alternatives to expensive networks.

The Computer Networking Book is available for $\$ 19.95$ from Ventana Press, P.O. Box 2468, Chapel Hill, NC 27515.

CIRCLE 92 ON FREE INFORMATION CARD

THE ART OF ELECTRONICS: Second Edition

by Paul Horowitz and Winfield Hill

This update of the book that was widely accepted as the single authoritative text and reference for the study of electronics retains the informality and easy access that made the original so popular. The emphasis is on the methods actually used by circuit designers-a combination of some basic laws, rules of thumb, and a large bag of tricks. The result is a primarily nonmathematical treatment that encourages circuit intuition, brain-storming, and simplified calculation of circuit values and performance.

Extensive changes have been made in this edition. The chapters on microcompu-

ters and microprocessors have been completely rewritten, every table has been revised and many new ones have been added, and a new chapter on micropower design was added. Chapters on many sub-jects-digital electronics, op-amps, FET's, precision design, construction techniqueshave been substantially revised. New sections have been added on active-filter designs, switched-capacitor filters, optoelectronics, isolation amplifiers, RS-232 interfacing, low-dropout regulators, sensor linearization, and dozens of other topics of current interest. The 1100 -plus-page book is well-indexed and fully illustrated.
The Art of Electronics: Second Edition is available in hardcover for $\$ 49.50$ from Cambridge University Press, 32 East 57th Street, New York, NY 10022.

CIRCLE 101 ON FREE INFORMATION CARD

600 LOW-COST ELECTRONICS CIRCUITS

by David M. Gauthier

When you need a circuit for a specific application right away, this book is sure to come in handy. Its 350 pages contain up-to-the-minute, practical circuit designs assembled from a broad cross section of major manufacturers. The circuits-which can be used "as is" or adapted for your own pur-poses-are presented with all necessary diagrams and complete specifications. All of them use between one and ten hobby-

type, readily available IC's-and most of them can be built for less than $\$ 25$.
The book is logically organized and extensively indexed so that you can quickly find the correct circuit from the array offered. Included are power-regulators, am-plifier-based circuitry, A/D and D/A converters, waveform-oscillator circuits, array circuitry, and voltage-to-frequency converters. Also included are high-speed, proprietary high-voltage switches and multiplexers, and special-purpose circuits.

600 Low-Cost Electronic Circuits is available in paperback for $\$ 18.60$, or in hardcover for \$27.95, from TAB Books inc., Blue Ridge Summit, PA 17294-0850; Tel. 1-800-233-1128.

CIRCLE 98 ON FREE INFORMATION CARD

TUNE IN THE WORLD WITH HAM RADIO: 8th Edition

edited by Larry Wolfgang, WA3VIL
The latest edition of this classic from the American Radio Relay League (ARRL) includes the question pools that will be used on FCC Novice-level exams beginning in November 1989. Available as a separate text or as a kit including two 90 -minute audio cassettes, Tune in the World With Ham Radio provides a comprehensive study guide. The book has been updated to be easier to read, and the code-teaching and code-practice cassettes have also been revised.

Tune in the World With Ham Radio is available for $\$ 14.00$ for the book alone, or
$\$ 19.00$ for the book and cassettes (plus $\$ 2.50$ shipping or $\$ 3.50$ for U.P.S.) from ARRL, 225 Main Street, Newington, CT 06111.

CIRCLE 102 ON FREE INFORMATION CARD

MASTER CATALOG

from Jensen Tools
Along with their full line of products, this 168 -page booklet features new tools and test equipment for the repair and maintenance of radios, televisions, VCR's, computers, and other electronic and electromechanical devices. The catalog also presents complete lines of specialized fieldservice kits, test equipment, hand and

power tools in inches and metric measurements, lighting and optical aids, tood boxes and cases, soldering supplies and equipment, and static-control devices. All items are fully illustrated and described in detail.

The 1989-90 Master Catalog is free upon request from Jensen Tools, Inc., 7815 South 46th Street, Phoenix, AZ 85044, Tel. 602-968-6241.

CIRCLE 103 ON FREE INFORMATION CARD

GREAT RADЮ READS

from Tiare Publications
This brochure contains an assortment of books that will appeal to radio enthusiasts of all types and levels of experience. Featured are books on shortwave-radio listening, ham radio, and scanner monitcring, as well as pirate radio, clandestine brcadcasters, and $A M$ and FM station directories. The booklet also announces the first annual celebration of "Shortwave Radio Week."

Great Radio Reads: Fall \& Winter 89 - 90 is available for $\$ 1.00$ from Tiare Publications, P.O. Box 493, Lake Geneva, WI 53147.

CIRCLE 104 ON FREE INFORMATION CARD

THE CUCKOO'S EGG: Tracking a Spy Through the Maze of Computer Espionage
by Clifford Stoll
Proving that not all spy-catchers are James Bond clones, self-professed "ex-hippie" and astrophysicist-turned-systems-analyst Clifford Stoll broke up an international computer spy ring almost single-handedly. On his second day of work at Lawrence Berkeley Laboratory, Stoll found a 75 -cent accounting error that alerted him to the presence of an unauthorized user on the com-
puter system. That discovery triggered the hunt for an elusive hacker. With a little help frorn "friends" (including the FBI, the CIA, and his girlfriend), Stoll tracked down the hacker who was prowling through the nation's computer networks.

Reading more like a techno-thriller than a true story, Stoll's book describes the plan he devised to follow every move the intruder made, and the dawning realization that the hacker's focus on nuclear weapons, intelligence satellites, and the Strategic Air Command had the potential to compromise U.S. security. The trail led Stoll on

mall orders to:

ALL ELECTRONICS

P.O. BOX 567

VAN NUYS, CA 91408
TWX-5101010163 (ALL ELECTRONIC)
OUTSIDE THE U.S.A. SEND \$2.00 POSTAGE FOR A CATALOG!!

ORDER TOLL FREE
800-826-5432
INFO: (818)904-0524
FAX: (818)781-2653 MINIMUM ORDER $\$ 10.00$
QUANTITIES LIMTED QUANTITIES LIMATED
CALIF. ADD SALES TAX USA: $\$ 3.00$ SHIPPING FOREIGN ORDERS
INCLUDE SUFFICIENT SHIPPING. NO C.O.D.

Electronics Library

a chase around the world, finally resulting in a "sting" operation that exposed a computer spy ring that sold the data it collected to the Soviets. This unlikely hero weaves

his tale with wry humor and suspense, creating an absorbing read.

The Cuckoo's Egg: Tracking a Spy Through the Maze of Computer Espionage is available for $\$ 19.95$ from Doubleday, 666 Fifth Avenue, New York, NY 10103.
CIRCLE 105 ON FREE INFORMATION CARD

ELECTRONICS KITS CATALOG

from Mark V Electronics
A full line of projects for hobbyists at all levels of expertise is included in this 32page brochure. More than a dozen different amplifier kits are offered, along with an array of light controllers, regulators, and digital meters and counters. Other items include electronic Lotto and roulette, touch switches, level meters, a digital clock, a wireless microphone, and an infrared control unit. The level of difficulty of each kit is clearly indicated in the catalog's index and in each fully illustrated item description. Besides the kits, LCD thermometer/clocks and "talking clocks" are offered fully assembled.

Catalog C-3 is free upon request from Mark V Electronic, Inc., 8019 East Slauson Avenue, Montebello, CA 90640.

CIRCLE 106 ON FREE INFORMATION CARD

MASTERING NINTENDO VIDEO GAMES:

Tips, Tricks, Strategies

by Joshua Robbins and Judd Robbins Written by a father-son team, this book is aimed at "kids of all ages" who want to improve their video-game scores. It is divided into three sections. The first provides in-depth reviews of 25 popular Nintendo games, including summaries of each game's plot and main characters, as well
as specific game-playing tips, techniques, and codes. The "Turbo Tips" section reveals "the hottest passwords and secret features" for dozens of games from Nintendo and other manufacturers, and the final section includes game summaries as well as "mini tips" for still more games. Over 100 different games are covered in the book.

Mastering Nintendo Video Games: Tips, Tricks, Strategies is available for $\$ 7.95$ from Hayden Books, Division of Macmillan, Inc., 4300 West $62 n d$ Street, Indianapolis, IN 46268.

CIRCLE 107 ON FREE INFORMATION CARD

CONSUMERS SHOULD KNOW .

from Electronics Industries Association/ Consumer Electronics Group
Three "Consumers Should Know..." booklets from the EIA/CEG provide important information for anyone buying and using a variety of popular consumer-electronic items. How to Save Money and Take Care of TV's, VCR's, Camcorders, Audio Products, Computers, and other Electronic Products covers preventative maintenance, including special-care products such as voltage surge suppressors, tape-deck demagnetizers, and protective covers. It explains how to care for floppy and compact discs and audio and video tapes. How to Install, Connect, and Expand TV's, VCR's, Telephones, Audio Systems, and other Con-sumer-Electronic Products begins by explaining what types of installations and expansions you can do yourself, and which require professional assistance. It covers how to shop for and use cables, wires, connectors, and antennas; and how to hook up virtually every popular audio and video accessory. How to Choose and Use Accessories to Improve Your Enjoyment of Consumer-Electronic Products points the reader toward accessories that enhance, adapt, and protect their audio, video, and communications products. Included are remote controls, headphones, microphones, stereo and surround-sound converters, portable power supplies, audio and video tapes, video lights, tripods, modems, and more. Each brochure includes a glossary of terms and a description oi related pamphlets that are also available.

Each "Consumer Should Know..." pamphlet is available by sending a self-addressed, stamped (25 cents for How to Save Money and Take Care of..., 45 cents for How to Choose and Use Accessories..., and 65 cents for How to Install, Connect, and Expand...) No. 10 envelope to Electronic Industries Association, P.O. Box 19100, Washington, DC 20036.

CIRCLE 108 ON FREE INFORMATION CARD

IBM PS/2: User's
 Reference Manual

by Gilbert Held
Although the newest generation of IBM PC's-the PS/2's-support DOS and can run more than 99% of the software developed for use on the original PC's, there are major differences between the two computer families. PS/2's use different datastorage media, support different expansion slots, and use new video standards. This book was written for people who have switched to the PS/2 system, and want to take full advantage of its increased capabilities.
The book provides an in-depth guide to the PS/2 computers, the DOS 3.3 and 4.0 and $O S / 2$ operating systems, and data communications. Beginning with an overview of the hardware involved, it progresses in a clearly written style to explain proper fixeddisk organization for efficient use of datastorage space. It describes how to create and implement configuration and batch files-including installation, hardware requirements, and commands. Detailed instructions are provided for using both OS/2 and DOS, including a comparison of the two operating systems. Advanced DOS commands are explored, as is the OS/2 Presentation Manager. The book's coverage of data communications includes methods of transmission, protocols, LAN's, and networking techniques.
With an emphasis on practicality, the book provides solutions to compatibility problems and explains how to integrate PS/2 with other computers. Third-party products that increase the performance of PS/2 systems are also described. All procedural steps and instructions are accompanied by illustrations to make learning easier.
IBM PS/2: User's Reference Manual is available for $\$ 24.95$ from John Wiley \& Sons, Business/Law/General Books Division, 605 Third Avenue, New York, NY 10158-0012.

CIRCLE 109 ON FREE INFORMATION CARD

New Products

To obtain additional information on new produces conered in this section from the mamufacturer. please circle the them's corle number on the Free Information Card

100-MHz OSCILLOSCOPE

B\&K-PRECISION's model 2190 oscilloscope offers a wide range of high-end features, including triple input and six-trace operation, which allows three different signals to be observed at two timebase settings. The instrument provides excellent high-frequency triggering; it will trigger on signals well beyond its rated bandwidth. That extra margin ensures stable performance over the full rated bandwidth.
Other features include 1 -mV-per-division
vertical sensitivity, V-mode for viewing two signals unrelated in frequency, dual time base, alternate sweep function, a $20-\mathrm{MHz}$ bandwidth limiter, and video-sync separators. The user can choose from 23 calibrated sweep-time ranges on the main time base, and 20 calibrated ranges on the de-layed-sweep time base. Each sweep-time range is fully adjustable between calibrated ranges. $\mathrm{A} \times 10$ magnifier is also provided to allow closer examination of waveforms. In delayed-sweep operation, the delayed signal can be viewed as a second trace, or superimposed on the non-delayed signal. For special applications, the 2190 also offers front-panel x-y operation, TTL-compatible z-axis input, channel 1 output on the rear panel, signal delay line, and singlesweep operation.

The model 2190 oscilloscope, complete with two probes, a manual, and a schematic diagram, has a suggested user price of $\$ 1645.00$. For additional information, contact B\&K-PRECISION, Maxtec International Corp., 6470 West Cortland St., Chicago, IL 60635.

CIRCLE 74 ON FREE INFORMATION CARD

COMPACT-DISC PLAYER

Improved digital filter oversampling and multiple digital-to-analog converters in NEC's CD-730 CD-player provide substantially reduced audio distortion. Professionalquality features include a 16-times transversal filtering circuit; four dedicated D/A converters (two for each audio channel) to minimize crosstalk and phase shift; electrical and optical digital outputs to transmit audio data in unaltered digital form to compatible amplifying systems; and an optical decoupling mechanism to reduce digital noise and RFI.
The unit's convenience features include auto edit, which lets the user select specific songs; auto space, which provides a 5 -second pause between tracks, helpfui when recording from a CD; and "cue and

New Products

review," which plays five seconds from each track to help the listener find the desired song. "Delete programming" tells the player which songs not to play, and "time search" tracks the length of recordings. The player also has digital audio fade, auto and manual edit modes, and 24-track random memory.

The CD-730 compact-disc player has a suggested retail price of $\$ 399.00$. For additional information, contact NEC Home Electronics (U.S.A.), Inc., 1255 Michael Drive, Wood Dale, IL 60191.

CIRCLE 75 ON FREE INFORMATION CARD

CAR-AUDIO AMPLIFIER

Styled in black, with a distinctive pyramidlike shape, Sansui's SM-A807 power amplifier delivers a maximum 100 watts per channel for stereo operation, and can be bridged to provide 200 watts of mono power. The car-audio power amplifier has a frequency response of $10 \mathrm{~Hz}-100 \mathrm{kHz} \pm 3$ dB . THD is less than 0.04% and the signal-

to-noise ratio is 90 dB . The 6.6 -pound amp measures $11^{13} / 16$-inches wide by $2^{9 / 16-}$ inches high by $85 / 16$-inches deep. With ad-justable-level RCA inputs, the SM-A807 is easy to install.

The SM-A807 car-audio power amplifier has a suggested list price of $\$ 399.95$. For further information, contact Sansui Electronics Corp., 1250 Valley Brook Avenue, Lyndhurst, NJ 07071.

CIRCLE 76 ON FREE INFORMATION CARD

ISOLATED AC-POWER SOURCES

KAPPA/VIZ's Iso-V-AC II WP-30 and Iso-VAC III WP-32 (pictured) provide isolatedoutput $A C$ voltage, adjustable from 0 to 150 volts. The WP-30 can supply a continuous 5-amp output current to a maximum of 650

VAC, and the WP-32 can supply a continuous 10 -amp output current to a maximum of 1300 VAC. The output current can be set to the maximum output desired, at which point a latching relay will open the circuit and reduce output volts and amps to zero. Two parallel three-prong AC sockets are provided, allowing the unit to be used for more than one load.

Both models include a leakage tester that can measure AC-current in electronic equipment to determine if the leakage is within UL and CSA limits. An audible alarm warns of "hot" chassis or shorts to exposed metal on the equipment under test. Each unit

comes with two $3^{1 / 2}$-inch meters. One meter monitors line or output voltage and the other can be used to display output current or leakage. For safety, the units' metal cases are connected to the power-line ground through the three-conductor AC-power cord. The AC input is separately fused.

The Iso-V-AC II WP-30 and Iso-V-AC III WP-32 have suggested user prices of $\$ 420.00$ and $\$ 570.00$, respectively. For further information, contact KAPPAVIZ Test Equipment, 175 Commerce Drive, Fort Washington, PA 19034.
CIRCLE 77 ON FREE INFORMATION CARD

LAPTOP COMPUTER

Aimed at portable-computer users who require PC compatibility but don't want the tradeoff in terms of increased weight, size, and cost, Tandy has introduced the ultralight 1100 FD laptop computer. It features the MS-DOS 3.3 operating system and DeskMate's Desktop, TEXT application, and 90,000-word spell checker in ROM. With those features, its one $3^{1 / 2}$-inch 720 K drive provides plenty of disk space for most purposes. In addition, the standard array of DeskMate applications, accessories and util-ities-Worksheet, Filer, Telecom, Calendar, Address Book, PC-Link, etc.-are included on floppy disks.

The 1100 FD measures $12.1 \times 2.4 \times$ 9.8 inches and weighs less than $61 / 2$ pounds. It runs for more than five hours on a removable, rechargeable battery. An AC adapter/recharger is included. The laptop has a low-battery indicator and a batterysaving stand-by mode.

Other features include an NEC V-29
microprocessor with $8-\mathrm{MHz}$ clock speed, 640K of available memory, a built-in realtime clock, and a full-size 84-key keypad with enhanced keypad emulation. The 80 $\times 20$, high-contrast LCD has 640×200 resolution. The fold-over display measures approximately 9 inches diagonally, and closely resembles the aspect ratio of conventional video monitors. The laptop also

has a parallel printer port, a serial communications port, and one dedicated internal modem slot.

The 1100 FD laptop computer (catalog No. 25-3530) has a retail price of $\$ 999.00$. A 2400-bps internal modem (catalog No. 25-3538) and a replacement battery (cata\log No. 25-3536) are available optionally for $\$ 199.95$ and $\$ 29.95$, respectively. For more information, visit or call your local Radio Shack Computer Center or Radio Shack store.

CIRCLE 78 ON FREE INFORMATION CARD

VHS CAMCORDER

Digital special effects including picture wipe, image mix, and strobe set Philips' top-of-theline Sylvania VKC242A apart from the camcorder crowd. When using picture wipe, the last shot recorded is stored in the digital memory and used as a transition into the next recorded segment. The photographer can choose between left-to-right wipes, center wipes, and a "dissolve wipe" effect. Six different image mixes are available: The stored and live pictures can be viewed simultaneously on a full screen, viewed side by side, viewed with either of those pic-

tures in the center of the screen and the other surrounding it, or the stored picture can appear in the upper-left or lower-right corner with the live picture filling the rest of the screen. The strobe feature lets the user record a series of progressive still images onto the tape.

The VKC242A also offers a 10 -watt integrated DC video light, a flying erase head, and a built-in monitor speaker with volume control. Other advanced features include VHS index search, audio/video dubbing, automatic date with battery backup, windnoise defeat, and review/edit search. The camcorder has an 8:1 f/1.2 two-speed zoom lens with Macro, and a two position highspeed shutter.
The model VKC242A VHS camcorder, including a 3 -year limited video-head war-ranty-has a suggested retail price of $\$ 1,849.00$. For more information, contact Philips Consumer Electronics Company, One Philips Drive, P.O. Box 14810, Knoxville, TN 37914-1810.

CIRCLE 79 ON FREE INFORMATION CARD

WEATHER RADIO CB

By combining a National Weather Service receiver with a CB, Cobra's $18 R \mathrm{~V}$ offers a complete travel-information center in one unit. The model 18RV, designed with truckers, RV owners, and off-road enthusiasts in mind, is also the industry's first mobile CB with a front-firing speaker. That makes it easy to install under a seat, in the dashboard, or in an overhead instrument panel-without needing to cut extra openings for speakers.

The radio's integrated National Weather Service receiver allows selection of the three most active weather frequencies by a frontpanel switch. The 24 -hour broadcasts provide regional and local forecasts and

weather summaries, as well as weatherrelated highway and waterway information and emergency announcements about travel conditions. The weather bands are received with the CB's standard antenna.

Other features of the 18RV include electronic tuning, a front-panel microphone connector, squelch control, and an automatic noise limiter to reduce background noise. Its "channel saver" feature retains the last channel used when the CB is turned off. The large LED readout includes separate

transmit and receive indicators and a signalstrength meter.

The 18RV CB radio has a suggested retail price of $\$ 129.00$. For more information, contact Cobra Electronics Group, Dynascan Corporation, 6500 West Cortland Street, Chicago, IL 60635.

CIRCLE 80 ON FREE INFORMATION CARD

COMPACT SPEAKER

Ideal for situations where space is at a premium, Cambridge SoundWorks' Ambiance speaker system measures just $71 / 16 \times 10^{7 / 8}$ $\times 51 / 2$ inches. The compact two-way system was designed by Henry Kloss according to classic acoustic suspension principles. It uses a $6^{1 / 2}$-inch long-throw woofer

and a 1 -inch dome tweeter. While a minimum of 15 -watts-per-channel is recommended, unusually high power-handling capabilities assure safe operation with virtually any amplifier or receiver designed for home use. The Ambiance can also be used as an extension speaker, and in surroundsound systems in the rear or in the "front center-fill" position.

Ambiance speakers are available for \$109.00 each in gunmetal-gray Nextel or primed but unpainted; in a solid-oak cabinet, they cost \$129.00 each. (Prices do not include shipping.) For additional information, contact Cambridge SoundWorks, Inc., 154 California Street, Newton, MA 02158; 1-800-252-4434 (in Canada, 1-800-5254434).

CIRCLE 81 ON FREE INFORMATION CARD

DATA-ACQUISITION CARD

A turnkey 8-channel data-acquisition system from Global Specialties, dubbed the PROTO-KEY AD-128, offers an accurate means of real-time data collection from IBM and compatible PC's. It comes complete with menu-driven software, no programming skill is required. The software uses a pop-up menu format, and users can

New Products

save and recall experiment setups, \log data, or obtain on-line help with a single key stroke. Data can be stored in a disk file for later use with popular spreadsheet and analysis program.

The board plugs directly into the PC's I/O expansion slot. It includes 8 AD input channels with 12-bit resolution, selectable conversion times of 7 Hz or 30 Hz , three input ranges from ± 5 volts to $50 \mathrm{mV}, 100$ -

uv resolution, software-programmable gain, and built-in thermocouple linearization. The AD-128 easily interfaces to a variety of transducers, and with the optional WORKBOX accessory it is possible to construct specialized signal-conditioning circuits. Accessory pods for interfacing type-K thermocouples are available in single-channel or eight-channel versions.

The PROTO-KEY AD-128 data-acquisition system costs $\$ 395.00$. For further information, contact Global Specialties, 70 Fulton Terrace, New Haven, CT 06512; Tel. 1-800-572-1028.

CIRCLE 82 ON FREE INFORMATION CARD

AM/FM HEADPHONE RADIOS

Two AM/FM stereo headphone radios from Emerson, models AR2200 and AR2203 feature FM-mono/FM-stereo slide switching, a built-in four-section telescoping FM antenna, an AM ferrite antenna, direct station rotary tuning, and rotary volume control. The AR2203 (pictured) also offers a threeband graphic equalizer for bass, midrange, and treble. Both compact, lightweight

models have soft earpads and an adjustable headband for comfortable listening.

The AR2200 and AR2203 AM/FM stereo headphone radios have suggested retail prices of $\$ 19.95$ and $\$ 24.95$, respectively. For further information, contact Emerson Radio Corp., One Emerson Lane, North Bergen, NJ 07047.
CIRCLE 83 ON FREE INFORMATION CARD

SURGE SUPPRESSORS

Specially designed for protecting data lines ($D L$) in computer and communications systems against transient voltages, Verite's Veri/ Protektor line of surge suppressors safeguard signal lines and equipment against electrical overstress caused by lightning, electrical motors, heavy machinery, or generators in the area. The devices are qualified with 6000-amp 8×20 microsecond pulses and attenuate transients that exceed EIA limits with a peak current up to 25 amps .

The DL series includes three standard models of 2,6 , or 8 lines rated for the desired clamping voltage. The standard clamping voltages offered are 5, 12, 24, and 48; special voltages are avarlable on request.

Custom units for up to 1024 lines are also available, and multiple banks can be added in parallel for larger systems. The 2-, 6-, and 8 -line units are configured in individual modules using screw terminal connectors. Larger systems use plug-in circuit cards of 16 lines each that plug into a custom integrated rack-mount system. Each cabinet features an interconnecting backplane, power supplies, and a distribution network.

The Veri/Protektors DL surge suppressors cost $\$ 59.90$ for the 2 -line model, $\$ 89.90$ for the 6 -line, and $\$ 129.00$ for the 8 -line. For additional information, contact Verité, P.O. Box 697, Harbor City, CA 90710-0697.
CIRCLE 84 ON FREE INFORMATION CARD

BINARY-DIGIT CLOCK

Adding a high-tech touch to home or office, the Binary Digit Wall Clock from Sunrise Computer Products is a conversation piece

as well as a time-keeping device. The 13inch diameter clock has numbers in binary digits, especially appealing to computer lovers who are accustomed to working in the binary system. The timepiece has bat-tery-operated precision quartz movement, so it can be hung anywhere; an AA battery is included.

The Binary-Digit Wall Clock costs $\$ 49.95$ plus $\$ 3.00$ for shipping and handling. For more information, contact Sunrise Computer Products, P.O. Box 709, Kenilworth, NJ 07033.

CIRCLE 85 ON FREE INFORMATION CARD

DIGITAL HF TRANSCEIVER

Designed for serious contesting and DX'ing, Kenwood's TS-950SD is the first amateur radio transceiver to use digital signalprocessing (DSP) techniques, a 50 -volt final amplifier, dual fluorescent-tube digital display, and a digital bar meter with a peakhold function. The transceiver is fully equipped with CW, SSB, and AM IF filters.

The unit's digital signal processor improves spurious response and unwanted sideband suppression, and delivers flat and clean sound with a wide frequency response. The user can choose from any of

four possible audio levels on the DSP. For CW, digital filtering results in a waveform that is free of key clicks; the waveform's rise time is adjustable. A digital AF filter, synchronized with SSB IF-slope tuning, provides optimum filter response.

The TS-950SD can receive two frequencies simultaneously. Its built-in microprocessor has been factory programmed to quickly tune for minimum SWR, and the tuner settings can be stored in memory.
(Continued on page 22)

No other training-in school, on the job, anywhere-shows you how to troubleshoot and service computers like NRI

HARD DISK

20 megabyte hard disk drive you install internally for greater data storage capacity and data access speed.

PACKARD BELL COMPUTER
NEC V40 dual speed ($4.77 \mathrm{MHz} / 8 \mathrm{MHz}$) CPU, 512 K RAM, 360 K double-sided disk drive.

MONITOR

High-resolution, non-glare, $12^{n} \mathrm{TL}$ monochrome monitor with tilt and swivel base.

DICITAL MULTIMETER
professional test instrument for quick and easy measurements.

LESSONS
Clearcut, illustrated
texts build your
understanding
of computers step by step.

SOFTWARE

Including Ms-DOS, Cw BASIC, word processing. database and spreadsheet programs.

Only NRI walks you through the

 step-by-step assembly of a powerful XT-compatible computer system you keep-giving you the hands-on experience you need to work with, troubleshoot, and service all of today's most widely used computer systems. You get all it takes to start a money-making career, even a business of your own in computer service.No doubt about it: The best way to learn to service computers is to actually buikd a state-of-the-art computer from the keybsard on up. As you put the machine together, performing key tests and demonstrations at each stage of assembly, you see for yourself how each part of it works, what can go wrong, and how you can fix it.

Only NRI-the leader in career-building, at home electronics training for 75 years-gives you such practical, real-world computer servicing experience. Indeed, no other training-in school, on the job, anyubere-shows you how to troubleshoot and service computers like NRI.

> You get in-demand computer servicing skills as you train with your own XT-compatible system—now with 20 meg hard drive

With NRI's exclusive hands-on training, you actually huild and keep the powerful new Packard Bell VX88 PC/XT compatible computer, complete with 512K RAM and 20 meg hard disk drive.

You start by assembling and testing the "intelligent" keyboard, move on to test the circuitry on the main logic board, install the power supply and $51 / 4^{\prime \prime}$ disk drive, then interface your high-resolution monitor. But that's not all.

Only NRI gives you a top-rated micro with complete training built into the assembly process

Your NRI hands-on training continues as you install the powerful 20 megabyte hard disk drive-today's most wanted computer peripheral-included in your course to dramatically increase your computer's storage capacity while giving you lightningquick data access.

Having fully assembled your Packard Bell VX88, you take it through a complete series of diagnostic tests, mastering professional computer servicing techniques as you take command of the full power of the VX88's high-speed V40 microprocessor.

In no time at all, you have the confidence and the know-how to work with, troubleshoot, and service every computer on the market today. Indeed you have what it takes to step into a full-time, money-making career as an industry technician, even start a computer service business of your own.

No experience needed, NRI builds it in

You need no previous experience in computers or electronics to succeed with NRI. You start with the basics, following easy-to-read instructions and diagrams, quickly

New Products

(Continued from page 18)

The transceiver includes all of Kenwood's well-known interference-reducing controlsSSB IF slope tuning, CW variable-bandwidth tuning, CW AF tune, IF notch filter, dual-mode noise blanker with level control, a 4-step RF attenuator, and all-mode squelch circuit.
Microprocessor-managed frequency control is easy to operate using the transceiver's built-in keyer, direct band access key, and illuminated keyboard frequency selection. It offers 100-channel memory that stores independent transmit and receive frequencies, mode, filter data, auto-tuner data, and tone frequency. Ten channels are used to establish the upper and lower limits for the programmable band marker.

The TS-950SD transceiver has a suggested retail price of $\$ 4399.95$. For additional information, contact Kenwood U.S.A. Corporation, Communications \& Test Equipment Division, 2201 East Dominguez Street, Long Beach, CA 90810.

CIRCLE 86 ON FREE INFORMATION CARD

POWER SUPPLY

Elenco's 3-output power supply, model XP620 , is regulated to better than 0.2 -volts when going from no load to a full load. It provides one fixed voltage- -5 volts DC at 3 amps -and two variable supplies-1.5 volts DC to 15 volts DC and ± 1.5 volts DC to ± 15 volts DC at 1 amp.

The XP-620 is small enough to fit on any workbench, measuring just $81 / 4 \times 7 \times$

4 inches. It is available fully assembled with a two-year warranty, or in kit form with easy-to-follow instructions and circuit descriptions.

The XP-620 3-output power supply costs $\$ 89.95$ fully assembled or $\$ 59.95$ in kit form. For more information, contact Elenco Electronics, 150 West Carpenter Avenue. Wheeling, IL 60090.
CIRCLE 87 ON FREE INFORMATION CARD

SWR WATTMETER

A peak-reading function, offered along with the standard average-reading function, distinguishes the MFJ-815B lighted crossneedle SWR/Wattmeter. It lets users

monitor SWR, forward and reflected power at a single glance. There are two power ranges available for forward and reflected power: 2000 watts forward and 500 watts reflected, or 200 watts forward and 50 watts reflected. The instrument displays SWR from $1: 1$ to $8: 1$, and covers 1.8 to 30 MHz with 10% accuracy.

The MFJ-815B cross-needle SCR/wattmeter, with a full one-year guarantee, costs $\$ 69.95$. For more information, contact MFJ enterprises, Inc., P.O. Box 494, Mississippi State, MS 39762.

CIRCLE 88 ON FREE INFORMATION CARD

EMI FILTER MODULE

An easy way to eliminate the problems of stray electromagnetic interference (EMI) in signal cables running between poorly filtered equipment is provided by Coilcraft's EMI Filter Module. Many pieces of electronic equipment produce large amounts of EMI that can interfere with low-level data and timing signals. If it isn't eliminated inside the equipment, EMI can escape through connector cables, where it mixes with the signal and often spreads to other devices. EMI can cause printer mal-

functions, corrupted data, and errors in modem transmissions.

The EMI Filter Module has two DB-25type connectors (one male and one female) and plugs between an RS-232 cable and an input or output port. Common-mode circuits filter all lines except the frame ground, attenuating EMI by at least 15 dB over the critical $30-300-\mathrm{MHz}$ range.

The EMI Filter Module costs $\$ 29.95$ plus shipping. For further information, contact Coilcraft, 1102 Silver Lake Road, Cary, IL 60013.

CIRCLE 89 ON FREE INFORMATION CARD

VIDEO DISPLAY RESTORER/ANALYZER

Designed for servicing computer video terminals as well as video monitors and television receivers, B\&K-PRECISION's model 490 can display the condition of a CRT and then, through an exclusive restore capability, extend its life and improve performance. The unit's patented "Tri-Dynamic" multiplex test method simultaneously tests all three CRT gun colors. Only the beam current that actually passes through the G1 aperture to the screen is measured, providing an immediate analysis of cathode-to-cathode leakage. Results are displayed on individual meters. The model 490 also analyzes G1-to-cathode leakage and tests focus-electrode continuity.

The model 490 removes shorts, cleans and balances guns, and rejuvenates cathodes. The restoration process is completely

automatic, requiring no adjustments or special monitoring. The CRT's cathode controls its own restoration duration, reducing the risk of cathode damage. B\&K says that more than 95% of the CRT's that have been restored with the technique used by the model 490 function as well as new tubes for as long as two years.

The instrument comes in a rugged, molded plastic case with CRT-adapter storage space in the lid. It is supplied with six CRT adapters, and other adapters for a variety of VDT's, video monitors and television receivers. A CRT Information Updating Service provides users with charts that describe how to use the restorer/analyzer with all common CRT's. The charts are updated twice yearly.

The model 490 video-display restorer/ analyzer has a suggested user price of $\$ 715.00$. For further information, contact B\&K-PRECISION, Maxtec international Corporation, 6470 West Cortland Street, Chicago, IL 60635.
CIRCLE 100 ON FREE INFORMATION CARD

Think Tank

BRAIN BUSTERS!

1was at home working on a project, busily populating a board and soldering components in place. That's when the doorbell rang. It was my friend Murray, who always showed up unannounced. I went back to the din-ing-room table, which frequently serves as my workbench, and Murray sat down alongside me. I had components all over the place, and he picked up a handful of green disc capacitors. He laid them on the table, like this:

"Byron," he said, can you move only one of these things only once, and have four of 'em in each row?"

I glanced at what he had done. Impossible. I put the soldering iron down, and he watched, amused, as I made a couple of tentative moves, "How?" I asked. "Work on it," he said. "Murray," I told him, either show me how to do it, or I'm going to strangle you. That's your choice."

Well, to make a long story short, he did it! I didn't believe him, but it can be done, and so simply that you'll be totally flabbergasted. Now I know you guys like these little brain teasers, so this is it for this month. Since you can't reach me to strangle me, I'm safe. Next month I'll give you the answer, okay?

The mail has been pouring in from all of you, with the correct answer to "How to bring back seven gallons of water." And I mean, you have been flooding me! I don't really expect too much mail on the one with the disc capacitors, as it is a little tough. Incidently, if you haven't
got six ceramic discs, you can do it with coins too.

Now let's get down to business and see what the flood (?) of mail brought in for this month. The guys whose circuits appear here have already received one of our dwindling supply of Fips Books
And speaking about the Fips Books, l've got some good news. Today, yes, this very day, the boss and I went to the warehouse and located a few additional cartons of the Fips Book. Now the pressure is off, and we've got a brand new supply that should hold us for at least the next week or so!
As I said, the mail has been pouring in (in three- and five-gallon buckets). Let's see what you guys have been up to lately.

Digital Readout. This unit displays a scale using even numbers or odd numbers, It's simple, inexpensive, and uses only three IC's. See Fig. 1. When $V_{\mathbb{I N}}$ is below all four references on the LM324, all outputs are low, causing all outputs of the 4070 to be low. That causes a 0 to appear on the seven-segment LED display (DISP1).

As each reference point is passed and its output goes from low to high, DISP1 displays the numbers $2,4,6$, and 8. As the voltage decreases, the numbers will decrease in value; e.g., 8, 6, 4, 2, 0. By placing S1 (a SPDT toggle switch connected to pin 7 of U 3) to V_{CC} from ground, the scale will then read 1,3,5,7, 9 and vice-versa. The hardest part will be deciding whether to choose an even- or an odd-numbered scale, and that's the reason for the toggle switch.

The feedback loops on the four opamps (U1-a-U1-d) are a must to ensure clean switching states and sharp number changes. You can make your own reference scale (resistor network). The one shown covers the full range from ground to $V_{C C}$

You can substitute a 7486 (ITL ex-clusive-OR) and a 7447 (TTL 7 -segment
 $40 \mathrm{MB}(28 \mathrm{~ms})$ hard drive.

- One 3.5" 1.4 MB floppy disk drive.
- 2 MB RAM. - 100\% IBM compatible.
- "Page.White" fluorescent backlii LCD display,
$10.5^{\prime \prime}$ viewing area. •MS-DOS 3.21 included. - Supports: MS OS/2 version 1.0, Xenix, and also Microsoft Windows/386 environments. - Zero wait state.
- Socket for 80387 numeric co-processor.
- Internal Hayes 2400 baud modem.

Serial and parallel printer ports.

- Resolution: 640×400 pixels.
- 79-key full function detachable keyboard. - Real time clock and calendar. . AC adapter. - "Fast" charge NiCad battery pack included. - Dim.: $13.25^{\prime \prime} \mathrm{W} \times 14.75^{\prime \prime} \mathrm{D} \times 4.75^{\prime \prime} \mathrm{H}$. - Weight: 14.7 lbs . One Year Warranty!

FOR FASTEST SERVICE CALL TOLL FREE 1-800-729-9000

RUSH DELIVERIES ONLY
Exapaige $\$ 6.95$ plus normal S/H. Ask an operator to "SHIP IT FED EX ${ }^{(1)}$ Delivery Service!"

[^0]DELIVERY TO 48 U.S. STATES ONLY

THINK TANK

decoder/driver) for their CMOS counterparts, but it will be necessary to rewire the circuit somewhat due to differing pinouts. If TTL units are substituted for those shown in the schematic diagram, use LS (low-power Shottky) units only.
l've learned that feeding a signal to a standard TTL device from pin 14 of U1-d (during the low output state) causes the output of U1-d to rise just enough to cause the D-input of the 7447 trouble in recognizing if it's a low or a high state, and consequently the D input will assume a high state and the numerical LED display will show a number eight or nine and a number of Arabic symbols.
I hope that qualifies me for a Fips Book.

- Michael S. Lewis, London, Ontario, Canada
Right Mike. It qualifies you and how! This sort of circuit is more a tutorial than anything else, but there's nothing wrong with our learning more from our readers. I do it all the time.

Auto Kitchen Fan. While l've got your attention By, look at this Automatic

Fig. 2. This simple IR control circuit is designed to activate a kitchen cxhaust fan under pre-defined conditions.

Kitchen Fan (see Fig. 2). In my circuit, the \mathbb{R} detector has a sort of wide-angle view of the whole stove top, but not the exhaust hood light, so it will operate properly. When the \mathbb{R} detector "sees"

Fig. I. The Digital Readout displays a scale using cither even numbers or odd numbers, from low to high (0, 2, 4, 6, 8) or from high to low (8, 6, 4, 2, 0).
heat, it automatically turns on the kitchen fan. Mine comes on when there is any warmth to be vented at the stovetop, even from the oven's vent up through one of the back burners.

Capacitor C 1 can be any value between $0.02 \mu \mathrm{~F}$ and $2.2 \mu \mathrm{~F}$. The higher the capacity, the less sensitive the circuit will be. The circuit can be powered from any supply that can provide 9. volts DC; a small wall-plug type, for instance.

Okay, l've submitted my two applications circuit, and hope that at least one of them will be worth a book.
-Don M. Beaver, Santoquin, UT
Well Don, you've done it again. But I'm not sending you two Fips books. For your effort, you're going to be rewarded with one of Our Think Tank books!

Ultimate Alarm. I had my car stolen, and was not about to have that experience repeated. I shopped áround for car alarms, not for prices, as I was determined to build my own. I was looking for features. Finally, armed with sufficient knowledge, I designed a unit that I felt incorporated the best that the others had to offer. l'll grant that it was too complete, but the circuit shown here (see Fig. 3) omits some of those features that aren't really required. I think you'll like it.
You can't forget to set it; the circuit automatically turns on when the car is turned off. It gives you a variable time to

Discover Your Career Potential In High-Tech Electronics...Call 1-800-453-9000

CIE Gives You The Training You Need to Succeed... At Your Own Pace...\& In Your Own Home!

Iyou're anxious to get ahead ... and build a real career...you owe it to yourself to find out about the Cleveland Institute of Electronics!

CIE can help you discover your career potential in the fast growing field of high-tech electronics. A career that will challenge and excite you every day...reward you with a powerful feeling of personal accomplishment and deliver a level of financial security you may have only drearmed of before!

As the leading school in home-study electronics, CIE has helped over 150,000 students in the U.S.A. and over 70 foreign countries get started in this exciting field. To find out how CIE could be helping you ... read on...then send for a CIE catalog TODAY!

A Growing Need For Trained Professionals!

There's almost no end to the number of challenging, high-paying careers you could enjoy as an electronics technician.

You could be the "brains" behind the scenes of an exciting TV broadcast trouble-shoot life-saving medical equipment... design exotic new aeronautics systems...CIE's job-oriented programs offer you the quickest possible path to the career of your dreams! And CIE also features military and union re-training, to build on what you already know.

Dozens Of Fascinating Careers To Choose From!

Even if you aren't sure which career is best for you, CIE can get you started with core lessons applicable to all areas of electronics. As you advance, CIE makes job opportunities available to you through the bimonthly school paper, The Electron.

Personal Training From A Renowned Faculty.

Unlike the impersonal approach of large classroom study, CIE offers you one-on-one instructional help 6 days a week, toll-free. Each CIE lesson is authored by an independent specialist, backed by CIE instructors who work directly with you to answer your questions and provide technical assist ${ }^{-}$ ance when you need it.

Practical Training... At Your Own Pace.

Through CIE, you can train for your new career while you keep your present job. Each course allows a generous completion time, and there are no limitations on how fast you can study. Should you already have some electronics experience, CIE offers several courses which start at the intermediate level.

"State-0f-The-Art" Facilities \& Equipment.

In 1969. CIE pioneered the first electronics laboratory course, and in 1984, the first Microprocessor Laboratory. Today, no other home study school can match CIE's state-of-the-art equipment. And all your laboratory equipment is included in your tuition cost. There is no extra charge-it's yours to use while you study at home and on the job after you complete your course!

Earn Your Degree To Become A Professional In Electronics!

Every CIE course you take earns you credit towards the completion of your Associate in Applied Science Degree, so you can work towards your degree in stages. And CIE is the only school that awards you for tast study, which can save you thousands of dollars in obtaining the same electronics education found in four-year Bachelor's Degree programs! Call or write for details today!

Call TOLL-FREE 1-800-453-9000

CIE World Headquarters

Cleveland Institute of Electonics, Inc.
AHO-142
| 1776 East 17th St., Cleveland, Ohio 44114
I YES! Please send me your independent study catalog (For your convenience, CIE will have a representative contact you-there is no obligation.)

Print Name
Address Apt \#
City/State/Zip
Age \qquad Area Code/Phone No.

Check Box For G.I. Bill bulletin on Educational benefits a Veteran

- Active Duty

Mail This Coupon Today!

THINK TANK

get out and lock up, and also provides a variable time delay to get in and start the car. The alarm I used was a 110-dB siren from Radio Shack. It's mounted inside the car and out of sight. The reason for that is that most outside alarms really don't attract much attention, and the sound from this unit is so loud (on the threshold of pain) that you just can't stay in the car while the siren is sounding.

Here's how it works: Due to the innate instability of 555 oscillator/timers, they are always powered down when the car is on. That keeps the alarm from going off while you're driving. As soon as the car is turned off, Q2 switches off and shunts power to U1. When that happens, U1 immediately sends its output high, keeping Q3 on, and thereby preventing power from returning to U 2 .

Transistor Q2 also sends power to Q3's collector to be used only when U1 has
completed its timing cycle. When U1 has finished, it turns Q3 off, which in turn activates $Q 4$, sending power to the balance of the circuit. That timing period was the time needed to get out of the car. LED1 indicates that the system is disarmed, and LED2 indicates that the system is armed.

At this point, U2 waits for a trigger pulse from the car's door switches or dome light. A positive impulse at the 4011's input sends a negative trigger pulse to the first stages of $U 2$, which is connected as a cascading timer. The first stage's output goes high for a time to allow the car to be turned on.

If that does not happen, the first stage's output goes low, sending a low trigger pulse to the second stage. The second stage then sends its output high, turning on $Q 5$, which sounds the alarm for a given time. Once that time has elapsed, the alarm is shut off by a low output to $Q 5$ and the system is reset.

If the car door is closed or a second door opened while the alarm is sounding, the first stage re-triggers and prepares to extend the on-time of the alarm.

The cascading or counting action continues until the car is left alone. You can add a switch on the positive supply rail at J3 to override and silence the alarm if (for example) you plan to work on the car. Hide the switch well. Switch S 1 is a normally-closed type built into the case of the alarm, and is pushed to the open position when the case is mounted flush with a surface, and acts as a tamper switch. Any attempt to remove the alarm will cause the alarm to sound.

- John Whitebread, Carp, Ontario,

 CanadaObviously a very well thought-out system, John. I've tried mentally, to punch holes in it, and couldn't. You know, it really makes sense, when you think

Fig. 3. This alarm circuit, intended as a grand-larceny auto deterrent, automatically turns on when the car is turned off. and has a variable time delay.
about it. I've heard those powerful little sirens, and a crook would really have to want a car to withstand all that noise! All the police would have to do is look for a deaf car thiefl One more book, on the way.

Automated Entry Alarm. I'm really writing in reference to Ed Nordheim's "Relay Debouncer" circuit (September, 1989). I had a similar need to switch to a larger voltage by means of a small trigger voltage and used an SCR. I thought Ed might be interested in how I handled the problem.

I needed a way to work in my shop and be able to determine if somebody comes in the front door of the house. This circuit could be hooked up as an automated entry light, burglar alarm, or anything that would react to a change in light and/or motion. I got the light sensor from All Electronics Corp., PO Box 567, Van Nuys, CA 91408; it is part LSVD. and is priced at $\$ 5.75$. The light sensor senses changes in light, making it very versatile. The rest of the parts come from Radio Shack.

I put the light sensor in a weathertight container outside the front dcor. I ran a wire down to the basement to the signalling circuit (shown in Fig. 4), which then triggers a signalling device, in my case a buzzer. It could just as easily be connected to a lamp.

When the light sensor is first turned on. make sure that switch S 2 is set to the Off

Fig. 4. At the heart of the Automated Entry Alarm circuit is a sensor (All Electronics Corp. part LSMD) that detects changes in ambient light andlor motion.
position while the sensor adjusts itself for ambient light levels. Switch 52 prevents false triggering of the buzzer until it is adjusted. After about 5 seconds, set $\$ 2$ to the on position. Now the circuit is ready to go. The LED serves as a troubleshooting device. If the buzzer does not sound, the problem is obviously in the relay hookup.

When the sensor activates, it puts out about three volts, which is insufficient to drive most relays. However, that voltage is sufficient to bias a transistor through a
$330-$ ohm resistor. Forward biasing the transistor applies a gate trigger voltage to the SCR, turning it on. With the SCR turned on, the supply voltage is fed through the relay coil.

The circuit's supply voltage requirement depends on the type of coil being used. In my case, it was 11.7 volts. My SCR is rated at 200 volts and my relay at 125 volts AC. I was able to control a low current (about 1 amp) AC device. The SCR keeps the buzzer on, even after the sensor resets itself. To turn

CIRCLE 8 ON FREE INFORMATION CARD

No costly School. No commuting to class. The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone License". This valuable license is your "ticket" to thousands of exciting jobs in Communications. Radio-TV. Microwave, Computers. Radar. Avionics and more! You don't need a college degree to qualify, but you do need an FCC License. No Need to Quit Your Job or Go To School This proven course is easy, fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

COMMAID PRODUCTIONS

FCC LICENSE TRAINING, Dept. 203
P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately! Name address CITY STATE_Z_Z

THINK TANK

the buzzer off, just push S3. That removes the power from the SCR's anode, which turns it off, leaving it ready for the next occurrence.

- Brian K. Andrews, Newark, DE

Good circuit Brian, but let's get one thing straight. You called me "Mr. Wels." My name is Byron, or better still, "By." "Mr. Wels" is my father! We're all friends, and I like to keep things informall

Instrument Alarm. Like most electronics enthusiasts, I have collected lots of test equipment, and when I realized how much money I had invested in this stuff, it knocked me back! Then I wondered how l'd react if it got stolen. So I came up with a circuit (see Fig. 5) that's small enough to fit into almost any empty space in a small piece of test equipment. You just need a small hole for a miniature push-to-open switch (S2) and a few holes at the buzzer location to allow more sound to escape. And if your equipment uses a nine-volt battery, you can derive power for the alarm from it.
The mercury switch (S1) is normally

BUILD YOUR OWN MICROCONTROLLER

The Vitrax IX emphasizes real time control, equipment and sensor monitoring, automated measurement and data acquisition applications, rather than simply manipulate data and text as most microcomputers do. To handle a large scope of applications, the Vitrax IX unit contains large on-board RAM/EPROM memories, a built-in EPROM programmer and copier, two variable baud rate RS-232 interfaces, a full featured ROM based BASIC language interpreter for versatile and fast programming and 24 programmable I/O channels. (8 -channel A/D converter and real-time calendar clock. Optional modules $\$ 39.50$ ea.)

CIRCLE 14 ON FREE INFORMATION CARD

Fig. 5. The Instrument Alarm is nothing more than a simple tilt switch, whose operation is wholly dependent upon SI (a mercury switch).
open. Should the equipment in which the alarm has been installed be picked up and tilted, S1 closes, applying a trigger current to the gate of the SCR. Transistor Q1 then latches in a conducting state, allowing current to flow through the buzzer (BZ1). The buzzer will sound and continue to sound untilyou press S2 (reset) to set the circuit. For better results, use an electromechanical buzzer instead of a piezo type; electromechanical units make a good deal more noise. I recommend building duplicate circuits into each and every piece of equipment you own. I know that I did, and it helps me relax when people come to visit my electronics lab!

- Thien Nguyen, Briageport, CT

Thien, it's a great idea. The units will be inexpensive, easy-to-build, and can give you a bit of security, especially with test equipment getting smaller and smaller all the time. Your circuit does indeed earn you a book.

Remote Control. This ultra-simple re-mote-activated AC control circuit is easy to build, and uses readily available components. See Fig. 6.

When Q1 is exposed to a brief flash from an ordinary flashlight, it turns on, feeding a positive pulse to pin 14 of U1 (a 4017 decade/divider counter). Wired as shown, the pin 3 output goes low for every other positive pulse received at pin 14.

When pin 3 goes low, an LED inside U2 (an MOC3010 optocoupler with bilateral or triac-driver output) is biased on, thereby activating U2's internal bilateral switch. The bilateral output of U2 is fed to the gate of TR1, causing it to turn on. With TR1 turned on, the 117-volt AC line voltage is applied to SO1.

When light strikes the phototransistor a second time, the output of U1 at pin 3 goes high, turning off the optocoupler,

Fig. 6. This ultra-simple remote-activated $A C$ control circuit can be activated by a brief flash from an ordinary flashlight directed at the light-sensitive area of Q1.
interrupting power to SO1. Loads up to 700 watts can be controlled by the circuit if the triac is properly heat sinked. An AC-derived power supply is recommended since constant power is required for the circuit.

You'll need a flashlight with a momentary pushbutton switch, which will serves as the remote transmitter. Mine has a signal button and a bright Krypton bulb. I built the circuit into a small project box, and used a small printedcircuit board. I've already got a Fips Book. Got anything else for me?
-Howard Adair, Jr., Spartanburg, SC
I'm glad you got a Fips Book. Howard. Notto worry, we'll dig up something else for youl

IR Remote Checker. I've been hunting for a simple remote-control checker so I could test all the infrared remotes

Fig. 7. The IR Remote Checker consist of little more than an infrared-sensitive phototransistor, and a pair of generalpurpose transistors connected in a Darlington configuration, to provide sufficient drive to light LEDI (a visible light unit).
that seem to be cluttering the house these days. I didn't want to spend the bucks on one of those commercial IR detector cards sold by some of the mail-order houses, so I built my own. I bought an \mathbb{R} phototransistor and designed a Darlington amplifier to allow it to drive an LED.

See Fig. 7. Infrared light striking Q1's base causes it to turn on, feeding the supply voltage to the base of $Q 2$, turning it on, which, in turn, turns on Q3, lighting LED1. The reason for chaining that many transistors, is to get sufficient gain to make the circuit sensitive enough to be useful. Resistor R1 biases Q3 for maximum sensitivity.

To use the unit, just point the business end of a remote at $Q 1$ from up to a foot or so away. Try all the buttons to check for an output. Some buttons will produce a continuous stream of IR pulses, others will fire only once.
You can fit the whole project along with a 9 -volt battery in a small project box. Wire it up any way that fits. You won't need a printed-circuit board. I've found this little gadget a real servicing time-saver, and it's a great entertainer for friends. And l'd love a copy of the Fips Book to show off to my friends and family along with it!
-Renard Dellafave, Raleigh, NC
Good show, Renard! And I might add that Renard, along with his submission, sent in the correct answer to the "Seven Gallons of Water" brain buster! Your book is on the way.

Signal Tracer. If you're troubleshooting a multi-stage amplifier, this device is more than helpful. See Fig. 8. It's essentially an amplifier with a variable-gain output, controlled by potentiometer R1. All you have to do is connect the alligator clip to the ground of the circuit
(Continued on page 100)

Add prestige and earning power to your technical career by earning your Associate or Bachelor degree through directed home study.
Grantham College of Engineering awards accredited degrees in
electronics and computers.
An important part of being prepared to move up is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways-to learn more and to earn your degree in the process.

Grantham offers two degree pro-grams-one with major emphasis in electronics, the other with major emphasis in computers. Associate and bachelor degrees are awarded in each program, and both programs are available completely by correspondence.
No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Write for our free catalog (see address below), or phone us at toll-free 1-800-955-2527 (for catalog requests only) and ask for our "degree catalog."

Accredited by
the Accrediting Commission of the National Home Study Council

GRANTHAM College of Engineering 10570 Humbolt Street Los Alamitos, CA 90720 ${ }_{\circ}^{\circ}$

6.Where can I turn for help?"

There is a way to get help when you need it. The American Home Satellite Association. An organization created exclusively to protect and enhance your enjoyment of your satellite TV system.

Take our toll free "Helpline," for example. From locating satellite signals to locating a reputable dealer, help is just a phone call away. AHSA provides educational videotapes and informative books, too. At very special member prices.

Plus, 10 times a year, AHSA's official newsletter, Sky Report, will bring you the latest word on products, legislation, programming, and more. Not to mention reviews of new products and services. And that's not all AHSA has in store for you.

Programming shouldn't cost a fortune.
With AHSA's group buying power, you can save on premium services, superstations and basic programming services. Enjoy savings on accessories, equipment, and programming guides, too.

You're not alone anymore!

With your voice behind us, AHSA is promoting legislation to guarantee fair access at reasonable prices. Addressing zoning and piracy issues. Even sending expert witnesses to Congressional hearings. Join other dish owners around the nation, and become a force to be reckoned with.
\square Rush my free information kit.
Name \qquad

Address
City \qquad State \qquad Zip \qquad
\square Sign me up right away and send my complete membership kit.
\square Check enclosed for $\$ 36$ (made out to AHSA)
Bill my \square VISA \square MasterCard
Card ${ }^{\#}$ \qquad
Exp. Date
e
Authorized Signature
X
30-day Money Back Guarantee
en Satellite Association

Return completed coupon to: American Home
Satellite Association Inc. Suite 800, 500 108th Ave. NE, Bellevue, WA 98004-5560
Or call Toll Free
1-800-321-AHSA (2472).

while at one of the more memorable concerts I have attended, I had the opportunity to take leave of my assigned seat and move around in search of belter acoustics. As I was moving to my alternate location, I noted the spectral content of the music changing relative to my movement. Certain instruments and passages became accented during my short trek across the auditorium. It occurred to me then that every person there, by virtue of their seat location, was interpreting the concert slightly different than everyone else!
That posed an interesting possibility. I envisioned a method that would emulate the acoustics of a live concert, while allowing the listener the option of altering his or her apparent position relative to the sound stage. Such a process could be applied to any stereosignal source and by selecting the appropriate minimum delay time, the sonic parameters could be shifted artificially to produce the most pleasing effect per a given listening environment, i.e., a living room vs. an auto interior. That's what the Sonic Emulator described in this article does. It gives you, the listener (whether in your car, living room, or elsewhere) the choice of the best seats in the house.

Bucket Brigade Update. The heart of the Sonic Emulator is a current-production, relatively new Reticon bucket brigade IC. For those not familiar with such IC's, a bucket-brigade device (BBD) is basically a long shift register capable of creating time delays of an analog signal within certain bandwidth limits. The shifting clock, which becomes a multiplexed component of the output waveform, is then filtered out to recover a delayed replica of the original input. There are three IC's in the Reticon series used in this project; the RD5106, RD5107, and RD5108. The sample-stage counts of those IC's are 256,512, and 1024 respectively.

Aside from the different counts, and hence the different delay times (see Table 1), the three IC's are identical. Indeed, because of their similar pinouts,

the user can select the time delay most suited to a particular application. For example, studies have shown that a time delay on the order of 2 to 3 milliseconds (available using the 5108) is well suited to a small listening area, such as an automobile.
in a large room, however, existing phase delays that are already a part of the room would severely cross-cancel if processed with excessive delay times. The results would be somewhat muddied by comparison, therefore a shorter delay, as provided by the other IC's in the series, would be warranted. Table 1 gives the number of samples per second and the time delays of the individual units.

The Sonic Emulator differs from similar "stereo expanders" in two respects: First, a variable phase control has been
added. Second, no high-passing of the compensatory signal to the delay device (BBD) was deemed necessary to create the effect that occurs all around us--the natural combing effect of the listening environment that emphasizes certain frequencies while attenuating others, no matter where we are.

How the Emulator Works. Looking at the schematic diagram shown in Fig. 1, the left- and right-channels are fed to op-amp U1-b through decoupling networks, consisting of R2 and C3, and R3 and C 4 , respectively. The gain of that stage, which acts as a difference amplifier, is set by $R 2, R 3, R 6$, and $R 7$ at $-6 d B$, and with the output being equal to $L-R$.

The combination of R1, C7, C19, D3, D4 make up the bias supply rail to all

BY CHADWICK PRYSON

Fig. I. At the heart of the Sonic Emulator is a bucket-brigade device (U4, one of a series of 5IOX devices), which is used to place delay in the audio signal, thereby expanding stereo imaging to produce concert-hall-like effects.
the op-amps and to the emitter of Q1, which is configured as a buffer stage. The resistor-capacitor combination of R8 and C8 serves a two-fold purpose; it acts as a load when the unit is bypassed, and it decouples the BBD's bias voltage.

Power for the RD510X device - U4, a variable-state shift register-is supplied to pin 8 (the $+V$ terminal) through resistor R10. Resistors R11 and R12 provide an adjustable bias voltage, which is applied to pin 6 . The left and right audio signal from U1-b is also fed to pin 6 of U4 through R8 and C8.

Resistor R13 is used to set the internal bias for the bucket-brigade device (U4). With R13 connected as shown, the circuit is configured to accommodate RD5108, and should have a value of 15k. For the 5106, R13 should have a resistance of 100 k and be connected between pin 5 and ground (in parallel
with C12). When U4 is the RD5107, R13 is not needed, and should be omitted. Capacitors C9-C14 are used as clock bypass capacitors.

A $2-\mathrm{MHz}$ (maximum) clock generator and divide-by-two delay clock driver are formed by 43 (a dual 4013 CMOS D-type flip-flop). A resistor network, consisting of R14, R15, and R16 comprise an adjustable voltage-divider that is used to vary the voltage applied to a voltage-controlled oscillator (VCO) consisting of Q2, D1, D2, C15, R18, and R19. Resistor R17 serves as a pull-down.

Delayed audio from U4 is present on pin 4 along with clock translations, which are filtered by a second-order filter, consisting of R20, R21, C16, and C17. Transistor Q1 is configured as an emitter-follower buffer, and biased to the common rail by R22. The output of Q1 is decoupled by C18, and fed to the inverting input of U1-a through R23, R24,
and R25; R24 (a 50k potentiometer) serves as a Gain control. A portion of Q1's output bypasses U1-a and is fed directly to the inverting input of U2-a, which provides an inverted replica of the input signal. With the values shown for R26 and R27, U1-a's gain is set at unity.

The inverted output of U1-a results in a delayed $R-L$ signal, which is routed through R30, where it is summed with the left-channel source-producing an $L+(R-L)$ signal-which is fed to the inverting input of U2-b (the right-channel output).

The delayed signal is simitarly routed (around U1-a) to the inverting input of U2-a (the left-channel output) through R29 where it, too, is summed with its complement (the right-channel source), thereby producing an $R+$ ($L-R$) signal. Resistors R33 and R34 set the gain of the left and right output stages at slightly more than 6 dB .

Capacitors C20 and C21 decouple the output stages from the power supply, while two RC networks (consisting of R35 and C22 for the left channel, and R36 and C23 for the right channel) provide final clock filtering and load protection.
Voltage regulator 45 is used to provide a constant 12 -volt power source for the operation of the circuit, while C1 and C 2 are used to remove any ripple. The input to $U 5$ should be at least 14 volts, and should be well filtered. The two-volt headroom in the source voltage will account for losses in the reg-ulator-which will be somewhere around two volts.
It is possible to power the Sonic Emulator from less than 12 volts, but the de-lay-line "window" tends to close up or roll off at the extreme ends of the pHASEcontrol setting. Rebiasing will adjust that condition to a point, and introduce minimum distortion. In some auto installations, it may be necessary to add a hot-line filter to reduce alternator effects.

Construction. Due to the nature of this project, it is recommended that the circuit be built on a ground-plane printed-circuit board. The template for such a board is shown in Fig. 2. For those who have no desire (or lack the ability or the facilities) to produce their own board, one can be purchased fromithe supplier listed in the Parts List.
Once you've obtain the necessary components, construction can begin. Using Fig. 3 as a guide, start by installing IC sockets at all positions where IC's are indicated, except U3. Install the jumper connection that runs beneath U3 and then install the socket for that IC. Next install the remaining jumpers. After all IC sockets and jumper connections have been installed, the sockets can serve as reference points, making locating the proper positions for the other components a bit easier. Note: Resistor R13 is shown in the parts-placement diagram (Fig. 3) as a dashed line. That unit (if needed) should be tack soldered to the appropriate points on the solder side of the board.
Once all components have been installed on the board, prepare the enclosure that will house your project. The author's unit was housed in a small metal enclosure (GC Electronics part number $16-130$), measuring about $49 / 16$ (W) by $3 \% 10$ (D) by $19 / 1$ (H) inches. Preparation of the enclosure requires that several holes be drilled in the front and

Fig. 2. A ground-plane printed-circuit board is recommended to use a for this project to eliminate the high-level clock pulses that might be present in the circuit. The printedcircuit template shown here is for such a board. You can etch your own or one can be purchased from the supplier listed in the Parts List.

Fig. 3. Using this parts-placement diagram as a guide, begin assembly by installing IC sockets at all positions where IC's are indicated, except U3. Install the jumper connection that runs beneath U3 first, and then install the socket for that IC. After all IC sockets and jumper connections are in position, install the rest of the components-resistors. capacitors, transistors. IC's, etc.

PARTS LIST FOR THE SONIC EMULATOR

SEMICONDUCTORS

Q1. Q2-2N39(4 general-purpose NPN transistor
U1, U2-LF353 dual low-noise op-amp. integrated circuil
U3-4013 dual D-type flip-flop, integrated circuit
U4- Reticon RD510X series bucketbrigade device, integrated circuit (see text)
U5-ECG950 12-volt. $100-\mathrm{mA}$, positivevoltage regulator. integrated circuit
D1, D2-IN914 general-purpose smallsignal. diode
D3. D4-5.6-volt, $1 / 2$-watt, Zener diode
LEDI-Jumbo red light-emitting diode w/panel mount

RESISTORS

(All fixed resistors are $1 / 4$-watt, 5% units.)
R1-47-ohm
R2-R5, R33. R34-100.000-ohm
R6, R7, R28, R31, R32-47,000)-ohm
R8. R9- 1000 -ohm
R10-4700-ohm
RII- 100.000 -ohm trinimer potentiometer
R12 $-820,000$-ohm
R13-15,000- or $100,000(-\mathrm{ohm}(\mathrm{sec} t \mathrm{text})$

R14-39.(0)0-ohm
R15. R18. R20, R21-10.000-ohm
R16-lOO.OOO-ohm linear potentioneter (Mouser 31CN501)
R17. R22-2200-ohm
R19—27.0(0)-ohm
R23. R26. R27. R29, R30-22.000ohm
R24-50,000-ohm linear potentiometer (Mouser 3ICQ405)
R25-39(0)-ohm
R35, R36-470-ohm

CAPACITORS

Cl- $22-\mu \mathrm{F} .25-\mathrm{WVDC}$. tantalum $\mathrm{C} 2-10-\mu \mathrm{F}, 16-\mathrm{WVDC}$, tantalum C3-C10. $\mathrm{C} 12, \mathrm{Cl} 4, \mathrm{C} 19-0.1-\mu \mathrm{F}$, ceramic-disc
C1I. C13-10- μ F. 16-WVDC. tantalum C15-10-pF. NPO, ceramic-disc or Mylar
C16-. $001-\mu \mathrm{F}$. polystyrene
$\mathrm{C} 17-.0022-\mu \mathrm{F}$. polystyrene
C18-10- $\mu \mathrm{F}, 16-$ WVDC. electrolytic
C20. C21-2.2- $\mu \mathrm{F}$. 16-WVDC. electrolytic
C22. C23-. $01-\mu \mathrm{F}$, ceramic-disc
ADDITIONAL PARTS AND MATERIALS
SI-Push-on/push-off DPDT switch (GC

ALL DIMENSIONS IN INCHES
A

B
Fig. 4. Here are the from- and rear-panel lavouts for the enclosure used by the athor to house his promotype unit: A shows the template for fromt-panel layen and B is the rearpanel layou.

Electronics 35-491)
JI-2.1-mm DC power jack (Mouser 16PJ031)
J2-J5-RCA phono jack PC-mount type (Mouser ME161-4216)
Printed-circuit or perfboard materials. enclosure (GC Electronics 16-130). IC sockets. knobs, wire, solder, hardware, etc.

Note: The following items are available from Chadco Enterprises, PO Box 5872. Knoxville, TN 37928: A partial kit containing Reticon IC (U4, please specify version), etched, drilled, and silk-screened printed-circuit board. case, and all hardware (except IC sockets), plus RII. R16, R24, SI. $\mathrm{JI}-\mathrm{J} 5$ for $\$ 30.00$, plus $\$ 2.50$ for shipping and handling; printed-circuit board only. $\$ 7.50$. plus $\$ 1.25 \mathrm{~S} / \mathrm{H}$.
The bucket brigade devices are priced as follows: $5106 . \$ 7.50$, plus $\$ 1.25 \mathrm{~S} /$ H; $5107 . \$ 11.50$, plus $\$ 1.25 \mathrm{~S} / \mathrm{H} ; 5108$ $\$ 19.50$, plus $\$ 1.25 \mathrm{~S} / \mathrm{H}$. Tennessee residents please add 7.75% sales tax. No personal checks accepted, payment by money order only. Please allow 6 to 8 weeks for delivery

AII electronic circuits require some source of power，yet the power supply is often the most overlooked and least understood part of a project．A power supply not only converts an $A C$ line voltage into the $D C$ voltage and current that a circuit needs，but it protects the circuit from line noise and any erratic voltages that might be entering the supply．For that reason，if for no other，it＇s important to understand how supplies function．

This article will explain the principles of power－supply operation and con－ struction using practical circuits as ex－ amples．The article will also cover important power－supply limitations， safety practices，and conclude by de－ scribing some interesting features found in many supplies．

A Typical Supply．Power supplies come in many shapes and sizes，with a vast selection of options and controls， but all supplies，no matter how com－ plex．can be broken down into five functional building blocks：the AC input， the transformer，the rectifier，the filter，
and the regulator．Figure 1 shows a block diagram of a typical supply．Let＇s examine each of its sections in detail．

Due to differences in household cir－ cuitry，AC line voltage applied to the input leads of a supply can range from 105 to 125 Vrms in the United States，or 210 to 250 Vrms in Europe．A supply will operate correctly as long as the input voltage remains in some reasonable range．If the $A C$ line voltage falls too low－such as on a heavily loaded AC circuit－the supply might not be able to sustain its rated DC output voltage and current to a load．

Conversely，if the $A C$ line voltage is too high－such as if you were close to a power substation or were on a lightly loaded AC line－the supply will pro－ duce more than its rated DC output，or overheat and destroy the regulator cir－ cuit（if it is a regulated supply）．It is al－ ways a good idea to check the line voltage before connecting a power supply to be sure that the input voltage falls within the proper range．A＂buck／ boost＂transformer can be used to cor－ rect high or low line－voltage problems．

Fuses can provide protection against excessive current flowing into or out of the supply．A fuse is nothing more than a fine wire encapsulated by a glass or plastic tube that is placed in series with a circuit．Increasing current will raise the temperature of the wire link．When cur－ rent exceeds the fuse rating，the result－ ing heat will melt the link and break the path of current．protecting the supply．
Circuit breakers are switches that au－ tomatically open themselves in the presence of excessive current to pro－ tect a circuit．Inside one，a trip sensor is connected in series with the breaker （switch）contacts．As long as current re－ mains below the rated value，the breaker contacts remain closed．If cur－ rent exceeds the rated value，the sen－ sor will open the breaker contacts， which will stay open until the breaker is physically reset Some breakers react instantly to small increases in current， others have a built－in time delay that will allow the breaker to trip only after a significant current surge．

Transformers．A transformer is used to

Fig. I. This block diagram of a mpical regulated power supply makes its most commonly used sections apparent. Note, however, that the regulation stage is not required for all circuits.
convert the AC line voltage into a higher or lower AC voltage. A transformer operates on the principle of "magnetic coupling"-varying line voltage applied to the primary windings will generate a strong, varying magnetic field that in turn sets up an alternating current in a secondary winding. That principle is often called "inductive coupling." Direct current can not be coupled through a transformer since its current, and thus its magnetic field, is always constant.

The $A C$ voltage at the secondary terminals depends on the ratio of primary-to-secondary windings. For example, if the primary and secondary coils have an equal number of windings, the turns ratio, as it's called, of primary-to-secondary windings would be 1:1, and the secondary $A C$ voltage will equal the primary $A C$ voltage. If the primary has twice the number of windings as the secondary, the turns ratio would be 2:1 and the secondary $A C$ voltage would be half of the primary $A C$ voltage. The transformer is said to be a step-down transformer.

If the secondary has twice the windings of the primary, the turns ratio would be $1: 2$, resulting in a secondary $A C$ voltage twice that of the primary. So the transformer is a step-up transformer.

Current is also "transformed", but in an inverse fashion: If $A C$ voltage is stepped down in the transformer, the current is stepped up by that same proportion, and vice versa. For a 1:1 turns ratio, the current at the secondary (like the voltage) will be the same as the
primary. However, if the secondary voltage is stepped down by a ratio of $3: 1$, the secondary current will be stepped up by a ratio of $1: 3$. If the secondary voltage is stepped up by 4 times, the secondary current will be stepped
down one quarter. That's because there can never be more power (voltage \times current) coming from the secondary than is entering the primary. In fact, there will always be less power available at the secondary than applied to the primary-exactly how much less will depend on the efficiency of the transformer.
A power supply might use either a step-up or a step-down device depending on the particular application for the supply. For an average supply, a step-down transformer is the mostcommon. High-voltage power supplies, such as one used to fire a carbon-dioxide laser, require a step-up transformer. This article, however, will deal only with step-down transformers.
A transformer should be chosen based upon the secondary voltage and current required. It is always a good practice to add a 50% safety margin when specifying the secondary's output current to guarantee that the supply can meet the power demands of the anticipated load. For example, if the supply must produce an output of +12 VDC and provide up to 2-amps DC while operating from a 117-

Fig. 2. The schematic of the half-wave rectifier (A) indicates just how fen' parts go into one. The full-wave rectifier (B) provides cleaner DC but it uses only half the secondary voltage at a time. The full-wave bridge rectifier (C) provides full rectification and uses the full secondary voltage.
volt line, choose a transformer with a 117-VAC primary and a secondary winding rated for about 12.6 Vrms (or about 25.2 Vrms if you use a centertapped transformer, which we'll discuss) and 3 amps ($2 \mathrm{amps} \times 1.5$), current output.

Rectifiers. The rectifier stage coriverts the secondary $A C$ voltage into a pulsat-ing-DC signal. Even though the voltage output of the rectifier varies greatly, its polarity doesn't change, thus the term "pulsating DC"
Rectifying stages are often composed of semiconductor-diode networks or discrete solid-state bridgerectifiers. There are three classic rectifier circuits used in power supplies. The halfwave rectifier is the simplest and most direct type of circuit (see Fig. 2A) since it requires only one diode and no center tap on the transformer secondary. The major disadvantage of the half-wave rectifier is that only one half of the secondary $A C$ voltage is rectified, which leaves a gap between pulses. That results in a lower average output voltage and a higher amount of AC (or ripple) riding on that output. For that reason, a power supply containing a half-wave rectifier isn't suitable for heaw loads. Half-wave rectifiers are almost never used in commercial power supplies.
Full-wave rectifiers are a signficant improvement over half-wave designs (see Fig. 2B). In one, two diodes allow both halves of the secondary $A C$ voltage to be rectified into pulsating $D C$. With almost no time delay between pulses, the ripple is drastically reduced and the average DC voltage output is steadier and can support heavier loads. One drawback of the full-wave rectifier is the center-tapped transformer required to provide a ground reference for the circuit. It increases the wiring complexity a bit and allows only one half of the secondary $A C$ to appear at the rectifier output at any time. For example, if the transformer secondary of Fig. 2A is rated at 12 Vrms , a pulsating 12 VDC will appear at the load as shown. If the same transformer is used in Fig. 2B, the use of the center tap as a ground will cut the voltage appearing on each diode in half, so that with the same 12 Vrms centertapped secondary, only a pulsating 6 VDC will appear at the load. The cen-ter-tapped transformer used with such a circuit must have a secondary voltage that is twice the desired output voltage. A 24 Vrms transformer would

Fig. 3. As you can see, when pulsating DC is fithered insufficiently the troughs berween peaks deepen. Using the right capacitor for the right job is a good motto to learn from this
be needed for Fig. $2 B$ to provide the desired pulsating 12 VDC .

That confusion can be eliminated by using a bridge rectifier circuit (Fig. 2C). The bridge network provides full-wave rectification of the secondary $A C$ voltage, as well as its own ground reference so there is no need for a centertapped transformer. The full secondary AC voltage applied to the bridge network will appear as pulsating DC at the bridge output, so if 12 Vrms is applied to the bridge, pulsating 12 VDC will be available at the rectifier output. Bridge rectifiers are found in more expensive unregulated supplies, and in almost all types of regulated supplies.

The two most important factors in choosing rectifiers are the forward current (often denoted I_{f}) and the peak inverse voltage (or PIV). The lf is the maximum current that can flow through the diode in the forward-biased, or conducting state. It should at least equal the maximum expected load current plus 50% for safety. For example, a supply built to provide 2 -amps DC should use diodes with an 1_{f} of 3 amps (2 amps $\times 1.5$). The PIV is the maximum voltage that the diode can stand in the reverse bias, or off state. It should be at least twice the peak secondary voltage plus an additional 50% as a safety margin. For a transformer with a $24-\mathrm{Vrms} \mathrm{sec}$ ondary, the peak voltage is $24 \mathrm{Vrms} \times$ 1.414, which is 34 volts peak. The minimum PIV should then be 84 volts or greater (100 PIV is typical for a rectifier diode). Do not worry about high PIV ratings; diodes that can carry heavy current almost always have high PIV ratings. As long as the ratings are higher than required diodes will work properly.

Filters. Power-supply filters smooth out pulsating DC to form a somewhat

Glossary

Boost/Buck Transformer-A multilapped transformer used to correct high or low variations in line voltage to maintain the optimal AC line voltage
Derating-Reducing the rating of the supply output current as the ambient temperature around the supply increases. Derating is usually needed when the ambient temperature at the supply exceeds 50 $\operatorname{deg} C$
Efficiency-The ratio of power output to power input, usually expressed as a percentage.
EMI (Electro-Magnetic Interference)Electrical noise or any sporadic signal that might be radiated or conducted into a circuit and cause abnormal operation.
Operating Temperature-The temperature range that a supply will operate within and still maintain its rated output voltage
Line Regulation-The ability of a power supply to maintain its rated DC output as the AC line voltage changes.
Load Regulation-The ability of a power supply to maintain its rated DC output as the Load current changes
Ripple-The AC voltage component appearing on the output voltage of the power supply, usually expressed in jeak-to-peak voltage
Stability-The change in output over time while line voltage, load, and ambient temperature remain the same.
Inrush Current-The initial surge of current into a supply to charge the filter capacitors when the supply is first turned on.
steady DC output. The effects of the pulsating DC can still be seen in filtered output in the form of an $A C$ ripple riding on steady DC. Often an electrolytic power capacitor, usually with a value in excess of $1500 \mu \mathrm{~F}$, is used to form the filter. A power capacitor is basically an eneigy-storage device that will charge to the peak voltage of the pulsating DC. The charged capacitor will discharge slightly to provide energy to the load in-between pulses. The amount of discharge that occurs between pulses depends on the value of the capacitor and the current drawn by the load. If the load is heaw, more current will be required and the filter will discharge more fully between pulses. That causes a larger amount of ripple to appear at the output (see Fig. 3). A lighter load will draw less.current, resulting in a much lower ripple

Several capacitors might be placed in parallel to increase the value of the filter capacitance. Additional capaci-

Fig. 4. Although this Zener-based regulator works fine. it has a drawhack: the diode will probably blow out if the load is removed.
tance will reduce the ripple in the DC output by allowing more energy storage between pulses. More energy will then be available to sustain a load and that will reduce the degree of discharge between pulses, so ripple will be lower. Use caution when the filter capacitance becomes more than $10,000 \mu$ F. At that level, the inrush current to initially charge the filter when the supply is first turned on might be great enough to blow the AC input fuse. High capacitance also tends to hold a charge that can become a shock hazard. To reduce the possibility of a shock, a high value "bleeder resistor" should be added in parallel to the network. A 1 - or 2 -megohm resistor is usually a good value; not enough load to draw significant current, yet it will slowly dissipate any energy remaining in the filter when the supply is turned off.

Choose a working voltage for the capacitor that is about 50% above the peak voltage of the pulsating DC that feeds it. If a $12-$ VDC filter is fed by pulsating 12 VDC , the peak voltage of the pulses is 12×1.414, or 17 volts. After adding a 50% safety margin, the working voltage of the capacitor should be 26 WVDC (17×1.5).

The amount of ripple voltage can be measured easily by placing an AC voltmeter across the DC output. Ripple can then be read directly in Vrms. In a wellfiltered supply operating at full load current, the ripple voltage should not exceed 0.1% of the $A C$ input voltage.

Unregulated supplies are used in applications that do not require a precise voltage control, such as driving relays, solenoids, and lamps.

Regulators. Regulators allow a very precise control and adjustment of the DC voltage output. By adding a regulating circuit after the filter network, ripple might be almost completely eliminated through a wide range of loads.

The simplest regulator consists of a Zener diode and a current-limiting re-
sistor, as shown in Fig. 4. The unregulated voltage from the output of a filter stage is fed into the resistor-Zener "clamping" circuit in order to regulate a voltage down to that used to drive some load. Any Zener diode with a voltage rating less than the unregulated input voltage can be used. Resistor R_{z} will dissipate the extra energy and help reduce the unregulated voltage to the desired level. The value of R_{Z} depends on the voltage drop across it (the difference between the unregulated voltage and the regulating voltage of the Zener), and the current that must be provided to the load.

For instance, if an unregulated supply produces 12 volts that must be reduced to 10 volts, then the resistor has to drop 2 volts. If we know the maximum load current is 1 amp, then by Ohms Law, the resistor's value has to be 2 volts/ 1 amp , or 2 ohms. The power dissipated by R_{z} is also related to the load current; In this instance, the power dissipated by R_{z} will be ($1 \mathrm{amp} \times 1 \mathrm{amp}) \times(2 \mathrm{ohms})$, or 2 watts. It is also a good practice to add a 50% safety margin to that value, so R_{z} should be a 2 ohm resistor that can dissipate 3 watts.
A fuse is usually placed in series with the Zener. That is to protect it from carrying the full load current if the load should accidentally be disconnected. Normally, the load will take most of the current flowing through R_{Z}. The remaining current will flow through the Zener.

Integrated-circuit regulators, such as the 7800 and 7900 series, are good alternatives to Zener regulators. The "intelligence" built into a three-terminal regulator (or TTR) will compare the output voltage to an internal reference (see Fig. 5). Any difference causes the current flow to change at the pass transistor. That works to keeps the regulated output voltage constant for any given load. Capacitors C1 and C2 act as additional noise filters to help eliminate any high-frequency noise or ripple entering or leaving the TTR.

Voltage drop and load current are also important in the choice of a TTR. The unregulated input voltage must exceed the regulated DC output by several volts in order for 7800 - and 7900 series regulators to function properly. Tables 1 and 2 list the input and output voltages for each 7800 and 7900 device. The load current should not be greater than 1 amp when using them. The great advantage to using TTR's is their tolerance to changes in the load. A load might be completely removed from the power supply without any damage to the regulator.

Heat sinks should be attached to regulator IC's when power dissipation is expected to be greater then 1 watt. Mica insulators are used to electrically isolate the regulator from the metal of the heat sink. That reduces the possibility of any short circuits to the heat sink, and is necessary when the regulator must be

Fig. 5. This block diagram of a spical TTR doesn't really give one the feel for the level of complexity normally found in such devices.
mounted to the metal chassis of the enclosure．Thermal grease should be used on both sides of the mica insulator to guarantee a good flow of heat away from the regulator．If a regulator is ex－ pected to dissipate more than 5 watts， the supply enclosure should be thor－ oughly vented to allow free air flow in that area．Above 5 watts，the regulator should also be mounted to the chassis within the enclosure．Heat kills inte－ grated circuits；proper mounting and cooling is very important to ensure the long，reliable working life of the reg－ ulator．

Load regulation can be calculated by measuring the DC output of the sup－ ply with no load $N_{N L}$ ），then measuring the DC output of the supply under full load $\left(V_{\mathrm{FL}}\right)$ ．The voltage output of a well－ regulated supply under full load should drop no more than 1% from the no－ load output voltage．If $\mathrm{V}_{\mathrm{NL}}=24 \mathrm{VDC}$ and $\mathrm{V}_{\mathrm{FL}}=23.8 \mathrm{VDC}$ ．the difference is 0.2 VDC，or 0.83%（that＇s $0.2 / 24$ ）regulation， which is within regulator limits．

Negative Output．Once a transformer， rectifier，filter，and regulator are in place，a simple，single－output regu－ lated power supply is formed．But there are also several other features that can

Fig．6．To get multiple voltage outputs from a power supply you simply have to piggy－back the regulators provided the other components can handle the additional current requirements．
be added to improve the versatility of the supply

For example，negative－output power supplies can be made．The polarity of a power supply is determined by the rec－ tifier network．Each of the rectifier ap－ plications discussed so far have been for a positive voltage output．A negative output can be obtained by simply re－ versing the direction of each rectifier diode，and the polarity of the filter ca－ pacitors．The reversed diodes will pass the negative half of the secondary $A C$ voltage to produce a negative，pulsat－ ing DC to feed the filter network．The filter capacitors are reversed because the polarity of the output is reversed．

The rule to remember is that the positive electrolytic lead should always be connected to the＂more positive＂ part of the circuit．So in a negative sup－ ply，the plus lead goes to ground be－ cause that is at a higher or more positive voltage than the output．The component values for the rectifiers and filter components would be deter－ mined in the same way as they are for a positive supply，except a negative volt－ age regulator（i．e．one from the 7900 series）should be used．

Multiple Outputs．A second output voltage can easily be added to a power supply by tapping into the fil－ tered $D C$ to provide voltage for a sec－ ond regulator（see Fig．6）．The extra current drawn by a second load $\left(l_{2}\right)$ will add to the current drawn by the origi－ nal load $\left(l_{1}\right)$ ，which will put a greater strain on the transformer，rectifier，and filter．Find the total current $\left(l_{t}\right)$ by adding the maximum expected load currents for each output．Choose a transformer with a secondary that can handle the value of I_{+}plus a 50% safety margin．
Use rectifier diodes with an I_{f} equal to It plus 50% ，and a PV that is twice the peak inverse（or reverse）voltage plus

Fig．7．You could actually construct the variable－output power supply shown here．It can supply your workbench with 1.25 to 12 volts DC．

TABLE 1－VOLTAGES FOR
7800－SERIES REGULATORS

Part No．	Regulated Output	Minimum Input
7805	5.0 Vdc	7.3 Vdc
$780 €$	6.0 Vdc	8.4 Vdc
$780 €$	8.0 Vdc	10.5 Vdc
781 C	10.0 Vdc	12.5 Vdc
781ε	12.0 Vdc	14.8 Vdc
7815	15.0 Vdc	17.8 Vdc
781ε	18.0 Vdc	21.0 Vdc
$782 \leftharpoonup$	24.0 Vdc	27.2 Vdc

TABLE 2－VOLTAGES FOR 7900－SERIES REGULATORS

Part No．	Regulated Output	Minimum Input
7905	-5.0 Vdc	-7.4 Vdc
7906	-6.0 Vdc	-8.4 Vdc
7908	-8.0 Vdc	-10.5 Vdc
7909	-9.0 Vdc	-11.5 Vdc
7912	-12.0 Vdc	-14.6 Vdc
7915	-15.0 Vdc	-17.8 Vdc
7918	-18.0 Vdc	-21.0 Vdc
7924	-24.0 Vdc	-27.2 Vdc

50% ．You＇ll have to select the filter ca－ pacitors to provide extra energy at a working voltage that is twice the peak voltage of the secondary AC plus 50\％． The use of heat sinks on both regulators is highly recommended．

Variable Output．Every three－terminal regulator requires a common terminal to act as a reference level for the input and cutput voltages．In a fixed－output application that terminal is usually con－ nected to the supply ground．Some regulators can reference a voltage above ground that will offset and adjust the output voltage of the device．The LM317 is an example of an adjustable power regulator ideally suited for use in variable supplies．Figure 7 is a sche－ matic diagram of an adjustable power supply using an LM317 regulator．
The adj pin of the LM317 is connected to a variable voltage－divider network formed by resistors R1 and R2．As the value of $R 2$ is increased，the reference voltage on the ADJ pin rises，that in turn will raise the DC output voltage from the LM317．Check the regulator＇s ap－ plication notes for the equations you＇ll need to determine values for the re－ sistor network．The output voltage range for the circuit shown is from 1.25 VDC up to the limit set by the value of R2．Voltage output can not be adjusted
（Continued on page 102）

Tone burst generators are something of a rarity these days and function generators offering such a feature are most likely to be found among the more expensive units. The Audio Sweep/Burst Generator described in this article is inexpensive to build, and can produce sine waves that cover the entire audio range. It can also be made to automatically sweep the audio spectrum; provide variable dutycycle pulses; and provide a variable linear ramp.

Description. The Audio Sweep/Burst Generator has three modes of operation - continuous, burst, and sweep and each mode has two frequency ranges; from 20 Hz to 2 kHz and from 200 Hz to 20 kHz . There is also a frequency control that allows you to adjust the output of the circult to anywhere within those limits for the burst and contiruous-output modes.

The dial markings for the manual control are almost linearly spaced, eliminating crowding of the frequencies at the high end and that helps considerably when laying out the dial itself. The sweep is linear and the dial's range markings were selected to mesh with the grid markings of an oscllloscope so that you'll know what frequency is where once you've adjusted the oscilloscope controls properly. For example, on the low range, each vertical line except the leftmost, will be at 200 Hz intervals, and the end will be on the rightroost line at 2 kHz . If your scope has the five short hash marks between major lires, you'll have a sweep broken into segments of 40 Hz . That gives a very useful expanded view of the low end of the spectrum. The high range uses the same setup, but all frequencies are ten times higher.

The sweep and bursts both are automatically recurring signals with an adjustable "dead-time." The dead-time has three ranges and an adjustment for fine control. Burst-time can range from as little as 1 millisecond to more than 15 seconds. That gives a burst containing 20 cycles at 20 kHz or 1 cycle at 1 kHz .

The circuit is designed to start with a positive alternation, but occasionally it
oscilloscope can match (perhaps 10 seconds, or more, when the scope's sweep is not in its calibration mode).

The output impedance of the circuit is 600 ohms, with an output level that's varied from 0 to 2.5 volts peak-to-peak into a 600 -ohm load, or twice that with no load. The sweep signal can be heard when the output is connected to an 8 -ohm speaker, particularly when set to the 300 Hz to 2 kHz range.

The stinc output is used to initiate the sweep of an oscilloscope, and is the same +12 -volt pulse that creates the dead-time; the frequency and duty cycle can be varied via the DEAD TIME and burst-TME Controls.

Theory of Operation. A schematic diagram of the Audio Sweep/Burst Generator is shown Fig. 1. At the heart of the circuit is an XR2206 function-generator (U2). The output frequency of U2 is determined by the amount of current applied to pin 7, throught transistor Q3 (which acts as a voltage-to-current converter). When the circuit is set to the continuous or burst modes, a voltage is applied to the base of $Q 3$ through the wiper of R33 (a linear potentiometer)

When Q3's bias voltage is zero, Q3 is cut-off and no trigger is applied to pin 7

Build an

Audio Sweep/

of U2, sc it does not oscillate. But when a positive bios of few millivolts is applied to the base of $Q 3$, the transistor turns on (pulling pin 7 low), causing U2 to oscillate at either 2 kHz or 20 kHz , depending on which timing-capacitor bank (C15-C18 or C19-C22) is selected.

Each liming-capacitor bank consists of four capacitors of equal value; with the values shown, the capacitance of the two capacitor banks are $.04 \mu \mathrm{~F}$ and 0.4μ F The cutput of U2 at pin 2 is a sine wave that can be varied from about DC to roughly +6 volts, which is fed to U7-a (half of an LF354N dual op-amp). The output of U7-a is fed to the noninverting irput of U7-b through a simple voltage-divider/Level control, consisting of R38 and R339. Resistor R40 sets the sine-wave cutput impedance at nearly 600 ohms fand may, or may not, be included, as the builder wishes).

Iwo monostable multivibrators, U1-a, U1-b, are coníigured as an oscillator whose cutput is used to provide the timing signals for the dead-time and burst (or sweep) time function. The a output of each monostable is fed to the falling-edge input of the other. The timing for U1-b is provided by C8, R15, and R16. Timing for U1-a is handled ty capacitors C.2 Mrough C7, which are

> If you are into audio-electronics design and repair, but your budget won't cover an expensive, commercial-grade signal source, why not upgrade your electronics workbench with this build-ityourself audio-signal generator

Burst Generator

charged via 21 . Transistor Q1 acts as a constant-current saurce.
The charge stored in the imirig capacitor is discharged as a linear ramp. which is fed to the non-inverting input of U3. Op-amp U3 buffers the discharge voltage, so that it maintains linearity when it is later adju:sted for proper amplitude (via R20) and offset (via R24).
Transistor Q2 assures that the timing capacitor discharges to near ground potential and remcins that way during the dead-time.

When R34 has been adjusted, R33 (FREQ. ADJUST) can supply a proper voltage variation to the base of $Q 3$ (via R17) for the desired frequericy coverage. Once the minimum and maximum voltage is known, the romp is adjusted so that it covers the identical voltages and, therefore, sweeps the same frequencies as the manual adjustment.

Construction. The author's prototype of the Audio Sweep/Burst Generator was assembled on a printed circuit board, measuring $41 / 4$ by $21 / 10$ irches. The foil pattern for that printed-circuit board is shown in Fig. 2. You can either etch your own board from the pattern provided or purchase one from the supplier listed in the Parts List.

Nate that the patterri in Fig. 2 shows a small notch in the heaw copper trace near U8. That notch was necessary in the author's prototype so that the line cord could be connected to the frontpanel mounted power switch (S5). Once you've obtained the board and all the components construction can begin. An important word of caution; not all 4538 's are equal. Orilv those bearing the " $B C N$ " suffix should be used in this project (note a 14538 is the equivalent to a 4538; the suffixes of the IC part number are the important consideration in this project).

Stert by installing IC sockets at the IC location shown in Flg. 3. Installing the sockets first allows them to be used as reference points so that the proper positions for the other components can be easily located. Atter installing the sockets, install the resistors and the capacitors, and then the transistors; do not install the IC's at this point. In assembling the circuit, there cre two places where you might want to make substitutions. both of which will make frequen-cy-range adjustments go smoother. The first is to substitute an upright multi-turn trimmer for the single-turn unit used for R34. The second has to do with fixed resistors R31 and R32, which are in series
with ffee adjust R34. Pads have been placed so that a 2 K upright multi-turn unit can replace both resistors.

Without that, the value of R32 must be determined by trial and error, because not all 78 M 12 regulators will regulate to the same value; there is a ± 0.5-volt tolerance associated with those units. A 0.2 -volt rise above the ideal 12.00 volt value will increase the high-end frequency of the $\times 10$ range by 400 Hz . Even with the suggested multi-furn units, obtaining the desired frequency will be an iffy proposition since each unit affects the other. For that same reason, a 20 -minute warmup is recommended so that any thermal changes that affect the voltage will have settled down.
A convenient ground point (TP1) may be installed to be available from both sides of the boord. Enlarge the hole in the big round pad near one end of U2 and insert a length of \#14 solid copper wire until about one-half inch sticks out below the bottom. Solder and then cut to leave a similar length on the foil side. TP2 can be a small loop of hookup wire.

Once all of the on-board components have been installed, connect lengths of hook-up wire to the board at the appropriate points 4 or 5 inches each should be enough-and tem-

Fig. 1. This schematic diagram of the Audio Sweep/Burst Generator shows that the heart of the circuit is an XR2206 function-generator, which is capable of providing three output waveforms: sine waves, square waves, and triangle waves.

PARTS LIST FOR THE AUDIO SWEEP/BURST GENERATOR

SEMICONDUCTORS

U1-CD4538BCN. CMOS dual precision-monostable, integrated circuit (see text)
U2-XR2206, function-generator, integrated circuit
U3, U4, U5, U6-CA3140E, op-amp. integrated circuit
U7-LF353N wideband, JFET-input. op-amp, integrated circuit
U8-78M12, positive 12 -volt, $.5-\mathrm{mA}$, voltage regulator, integrated circuit
U9-79M12. negative 12 -volt. $100-\mathrm{mA}$, voltage regulator. integrated circuit
Q1-2N2907 or 2N2905 generalpurpose PNP transistor
Q2, Q3-2N4401 general-purpose NPN transistor
D1. D2, D3-1N914, general-purpose small-signal diode
D4, D5-IN4001, I-amp. 50-PIV. general-purpose rectifier diode
LEDI-T-1-3/4 red light-emitting diode w/panel mount

RESISTORS

(All resistors are $1 / 4$-watt, 5% units, unless otherwise noted.)
RI, R30-220)-ohm
R2- 100,000 -ohm
R3. R20, R24. R35-10.000)-ohm trimmer potentiometer ($3 / 8$-inch square)
R4-3900-ohm
R5. R15- 100,000 -ohin potentionieter, linear taper
R6, R34-500-ohm trimmer potentiometer, ($3 / 8$-inch square; R34, see text)
R7-50,000-ohm trimmer potentiometer, ($3 / 8$-inch square)
R8, R14, R18, R31-1000)-ohm
R9. R10, R12-4700-ohm
R1I-39.000-ohm
R13. R16, R17, R19, R21. R22, R25.
R26, R27. R38- 10.000 -ohm
R23-22,000-ohm
R28-15,000-ohm
R29. R36, R37-47,000-ohm
R32-6800-ohm (see text)
R33- $1.000-\mathrm{ohm}$ potentioneter, linear laper
porarily connect the other erds of those wires to their respective off-board components. When that's done, fut the board to the side; the next step is to prepare the enclosure that will house the circuit.

Preparing the Enclosure. The author's prototype was housed in a rather small plastic enclosure of about $55 / 8$ by $55 / 8$ by $27 / 8$ inches (available from Radio Shack as part 270-250), but any plastic

R39- 10,000 -ohm putentiometer. linear taper, w/SPST on/off switch (S5)
R40-560-ohm

CAPACITORS

$\mathrm{Cl}-0.1-\mu \mathrm{F}$, ceramic-disc
C2, C3- $0.1-\mu \mathrm{F}$. low leakage, ceramicdisc
C4 $-0.05-\mu \mathrm{F}$. low-leakage ceramic-dise
C5-0.01- $\mu \mathrm{F}$, low-leakage ceramic-disc
C6, C7, C10-3.3- $\mu \mathrm{F}, 35-\mathrm{WVDC}$. tantalum
C8-0. $33-\mu \mathrm{F}$, ceramic-disc
C9-33- μ F, 16-WVDC, radial-lead electrolytic
$\mathrm{C} 11-\mathrm{h}$-pF. ceramic-disc
$\mathrm{Cl} 2, \mathrm{Cl} 3, \mathrm{Cl} 4, \mathrm{C} 23, \mathrm{C} 25-10-\mu \mathrm{F}, 16-$ WVDC, radial-lead electrolytic
$\mathrm{C} 15, \mathrm{C} 16, \mathrm{C} 17, \mathrm{C} 18-0.01-\mu \mathrm{F}, 1 \%$ precision ceramic-disc
C19, C20. C21, C22- $0.1-\mu \mathrm{F}, 1 \%$ ceramic-disc
C24-2200- $\mu \mathrm{F}, 25-\mathrm{WVDC}$, radial. electrolytic
C26-1000- $\mu \mathrm{F}$. $25-\mathrm{WVDC}$. radial, electrolytic

SWITCHES

SI. S2-Miniature SPST, center-olt toggle
S3-4P3P rotary
S4-Miniture SPDT toggle
S5-SPST (part of R39) tee text

ADDITIONAL PARTS AND MATERIALS

TI-12.6-volt. $300-\mathrm{mA}$, step-down power transformer
JI, J2-RCA panel mount phono jack
$\mathrm{Fl}-0.25$-amp fuse
Printed-circuit or perfboard materials. enclosure (Radio Shack 270-250), IC sockets, knobs, line cord, fuse holder, hook-up wire, solder, hardware, etc.

Note: A printed-circuit board for the Audio Sweep/Burst Generator is available for $\$ 15.75$ (ppd); from John Wannamaker, Rt. 4, Box 550. Orangeburg. SC 29115; payment by money orders only; South Carolina residents, please add 5% sales tax.
or metal enclosure of sufficient size can be used. Assuming that you've decided to house your unit in the same case, the small slot (mentioned earlier) cut in the board will be necessary to feed the power lines through to the power switch.

Prepare the enclosure to receive the panel-mounted components. You'll need to drill 10 holes of various sizes to accommodate the switches, potentiometers, and phono jacks. An additional four holes are also drilled in the

An expanded view of the frequency-sweep signal output by the Audio SweepiBurst Generator. The signal starts (left) at a relatively low frequency (left), and increases at a rate determined by the operator, as the generator's output is swept through the audio spectrum.

The Audio Sweep/Burst Generator can produce many signal patterns; shown here is a sine-wave burst followed by a deadtime period, which is follow by another burst.
rear panel: two for T1's mounting hardware, and the others for mounting F1's holder and a feed-through hole for the line cord.

Begin by making a tracing of the outline of the front panel area (you'll need two; one will be used for a front-panel drill guide layout, and the other you will later prepare as the front-panel dial with interval markings and control labels). Within the parameters of the trace. make circles at the points where the panel components are to be mounted; it will necessary to allow sufficient space between components for the front-panel dial markings.

Once the drill guide (tracing with the panell layout) is complete, tape or tackglue the drill guide to the front panel of the enclosure, and drill holes through the guide and panel, using an appropriate sized drill bit (about $1 / 4$ to $5 / 8$ inch).

Next drill holes at any convenient or desirable location on the rear panel of the enclosure for the rear-panel mounted components. Mount the power transformer (1) to the rear panel along with a three-terminal soldering lug strip (barrier block), using T1's mounting hardware. Install F1's fuse holder and a grommet in the line cord's feed-

Fig. 2. This primted-circuit template was used by the author to produce his prototype unit This pattern can be copied to a printed-circuit slug (unetched PC board material) to produce vour own board.
through hole. If you have a strain relief of the proper size to accommodate the line cord, use it instead of the grommet.

Feed the line cord through the chassis, and connect one lead of the line cord to the fuse holder and tie the other line-cord lead to the barrier block. After that, finish wiring the off-board, powersupply components into the circuit. Now let's return to the front panel of the enclosure.
In the prototype, the paper tracing of the front panel was laid out with handwritten dial markings and the lettering typed on. Copies were then made to get rid of any correction blemishes. The final (blemish-free) copy was laid face down and its back sprayed with yellow paint. After drying, the copy was taped down flat to the front panel face up and two coats of polyurethane were sprayed on. An X-acto knife blade was then used to cut out the holes with the drilled panel below acting as a guide

The MODE switch, S3, need only be a 2 pole unit, but a 4-pole switch is eașier to find and will readily index to match the panel markings. A moderately small switch will be necessary here, since it is so close to an inner plastic protrusion (assuming that you've selected the same case as the author). Because the switch might have to be rotated for best fit, it might not be possible to use the "flat" side of the switch shaft to key with the screw in the knob.

Checkout. An oscilloscope and a frequency counter will be needed to
check out the circuit's operation. If a counter isn't available and your scope's time base is accurate, you can get by using it alone.

First remove the rear panel of the enclosure for safety - it has exposed wires carrying 117 volts $A C$-and wrap it in something to protect yourself. As you adjust the circuit trimmers and probe around, be careful of the voltage at the contacts of S5 (the power switch) on the front panel.

No chips should be inserted until the power supplies are checked out. Apply power momentarily as you check the output of the regulators (U8 and U9) for the proper DC voltages; U8 should have a positive 12 -volt output, and U9 should be at negative 12 -volts. Using an oscilloscope, check the ripple content of the regulator outputs; ideally, there should be none. Any problem will most likely be a backwards diode or regulator, one of the several filter capacitors that are spread throughout the board, or a solder blob

If everything seems okay, keep power applied for several minutes and then check the tabs of the regulators for overheating. They should be barely warm; if the circuit, thus far, seems to be functioning properly, proceed to the next step in the checkout procedure. If not, check your work to find out why.

Next, remove power from the circuit and wait for the charges on the capacitors to decay. The discharge of the capacitors can be hurried along by placing a direct short across them. In
fact that's a good habit to get into when servicing equipment that has recently been under power (personally, I make sure the capacitors are discharged, even when I have no knowledge of the equipment having been recently under power).
Once the charges have been bled off, insert U1 and U3 in their respective sockets, and power up the circuit. Set the burst-IIme range selector ($\$$ 1) to high, the burst-time control (R5) to mid-range, the dead-time range switch (S 2) to high, and the dead-time control (R15) to midrange. Adjust the burst-time trimmer (R3) to mid-range.

Now set your oscilloscope for a DC input of $2 \mathrm{~V} /$ div (2 -volts-per-division). Using the scope's Auto-trigger control, adjust for zero volts to be on the bottom graticule line. Adjust the sweep for $10 \mathrm{~ms} /$ div.، positive (+) slope triggering. Connect the scope ground to the circuit ground. Connect a one-to-one probe to the SNYC output (J 1) of the Audio Sweep/Burst Generator. Adjust the scope's triggering level (as needed) to display a positive 12 -volt pulse of roughly 17 ms . Adjust the bursf-time trimmer (R3) until two pulses can be seen. If no pulses are observed, U 1 is not oscillating.

Next adjust the generator's burst-rime control (R5) for the closest pulse spacing. Adjust the OEAD-TME COntrol (R15) for the narrowest pulses (both should be fully CCW). Adjust the scope for $1 \mathrm{~ms} / \mathrm{div}$, and readjust the bursi-ime trimmer (R3) so that the spacing between pulses is 1 millisecond or just a hair less. The pulses
should be 3 - to $4-\mathrm{ms}$ wide. There is no adjustment for pulse width; that's determined by C1 and R16.

Observe TP2 near U3. Scope triggering may have to be adjusted. Ramps of 1 ms in duration, separated by a zerovolt time of 3 to 4 ms should be seen. The ramp should start at almost exactly zero volts and have a linear rise to about +8.5 volts. The bursf-TMme control should be able to extend the ramp to more than 25 ms . It may be more convenient to trigger the scope with a negative slope.

Particularly observe the ramp for linearity by holding a straight paperedge against the CRT. Any non-linearity will be due to a leaky C5, or any other leakage path attached to pin 2 of U1. Note: If you try to observe the ramp anywhere along the pin-2 line, the scope will create non-linearity.

Disconnect power, and bleed the capacitors by shorting them out. Once that's done, insert U4, U5, and U6. Set the MODE switch ($\$ 3$) to the sweep position. Adjust the scope input for $1 \mathrm{~V} / \mathrm{div}$. Adjust RAMP-LEVEL trimmer (R20) and RAMP-OFFSET trimmer (R24) to mid-position. Connect the scope probe to the end of R17 furthest from Q3.

Again restore power to the generator, and connect your scope to the circuit, with the scope set to auto-trigger until the scope is triggered on a ramp-like waveform (which may have clipping at either the top or bottom). Adjust the RAMP OfFSET trimmer (R24) so that the ramp starts at +0.5 volt. Switch the scope to $0.5 \mathrm{~V} /$ div for better accuracy, but make sure that zero volts is still on the bottom line. Adjust the ramp. level trimmer (R20) so that the ramp peaks at +3.2 volts. Those are preliminary adjustments and will be done again.

Disconnect power, bleed the capacitors, and insert U2 and U7 in their respective sockets. Set the front-panel SINE-LEVEL Control (R39) to mid-range. Set the fREQ-ADJUST potentiometer (R33) about $3 / 4$ clockwise. Set the sine-RANGE switch ($\$ 4$) $\times 10$, and adjust R34 (the FREQ trimmer) to mid-range. (If you've used a multi-turn trimmer as suggested, set R34 at about its mid-range point). Adjust the SINE-OFFSE trimmer (R35) to mid-range.

Adjust the shape trimmers (R6 and R7) to mid-range. Set S3 to the continuous mode, and adjust the scope to $0.5 \mathrm{~V} / \mathrm{div}$, with the scope set to auto-migger. Adjust the trace position so that zero volts is on the middle line of the CRT (be very precise). Set the scope-sweep rate to $10 \mu \mathrm{~s} /$
div, and for just this test only, select $A C$ input. Again, check that zero volts is dead on center.

Connect the scope probe to the SINE outputjack (J2). Restore power, and adjust the scope's triggering as needed until you see a sine-like waveform. Adjust R6, R7 alternately for the best sinewave shape, taking into account that precisely equal positive and negative alternations (areas and peaks) should appear on their side of the zero-volt line.

Adjust the sine-level control and the scope's time base to your best advantage when shaping the waveform. A good shape is definitely possible, but there may be a very small irregularity near the peaks of the output waveform; that's a peculiarity of the XR2206 IC. Keep the same setting for the next step.

Switch the scope back to DC input while observing the output at sine output jack J2. The waveform will shift away from the zero-volt axis. Judging as before, adjust the sine-offset trimmer (R35) so that the waveform is again precisely centered about the zero-volt axis. That completes the offset adjustment.

Now select continuous mode, and connect a frequency counter to the generator's SINE Output and its ground to ground. Set the front-panel $\operatorname{FREQ}-A D J U S T$ contral for the lowest frequency on the $\times 10$ range (that should be fully CCW). Adjust R34 to mid-range. The counter might indicate 100 Hz or more. Verify the frequency by checking the time of one cycle on the scope, convert the time into seconds, and divide into 1.

Be sure that the scope's timebase is in the CAL. position. (Use this method if a counter is not available or as a check of the counter since some indicate double a true low frequency. Check against the scope for at least 95 percent agreement.)

Adjust freQ trimmer (R34) for a frequency anywhere between 185 and 195 Hz ; that may be a delicate adjustment. Pad space is provided to allow the use of an upright multi-turn trimmer R34 if you have trouble. On the scope, the time of one cycle at 190 Hz is about 5.2 milliseconds.

If you have shut the unit off for any length of time, allow for a 20-minute warmup. Vary the front panel FREQ-ADJUST

Fig. 3. Here is the parts-placement diagram for the foil pattern shown in Fig. 2. The wise way to begin assembly is to install IC sockets at the appropriate locations on the board. and then use the sockets as reference points to the proper positions for the other boardmounted components.

In the author's prototype, low-profile trimmer potentiometers were used for the internal adjustments to the circuit, however, vertically mounted, multi-turn units can be substituted.
control fully CW for the highest frequency on the $\times 10$ range in the continuous mode. An acceptable frequency is anywhere between $20,020 \mathrm{~Hz}$ and $20,220 \mathrm{~Hz}$. If not, the value of $R 32(6.8 \mathrm{k})$ must be lowered to increase frequency or raised to decrease frequency. If trial and error is too tiresome, pads have been provided for replacing both R31 and R32 with a $2 k$ upright multi-turn trimmer.

Whichever you choose, the highest frequency on the dial should be about 20.120 Hz and the lowest about 190 Hz . Adjusting either end affects the other. Adjustments must be repeated until both ends are acceptable. When the $\times 10$ range is correct, the $\times 1$ range will be also. Disconnect the counter.

The automatic sweep must be adjusted to cover the same range as the FREQUENCY dial. Adjust the scope for DC input, $0.5 \mathrm{~V} / \mathrm{div}, 2 \mathrm{~ms} / \mathrm{div}$, auto trigger, and place the trace so that zero volts is on the bottom line of the oscilloscope display. Connect the probe to the end of R18 nearest to Q3. Rotate the FREQ ADJUST control fully CCW, then fully CW, and note the minimum and maximum voltages as precisely as you can (it never quite goes to zero).

Now switch to S 3 to the sweep mode. Adjust the scope triggering as required to observe the ramp now applied to R18. Adjust the RAMP-OFFSET trimmer (R24) so that the ramp starts at the lowest voltage previously noted. Adjust the RAMP-LEVEL trimmer (R20) for the peak to

Here is the author's finished prototype unit; note the close spacing of the from-panel mounted controls. The locations of the controls in relation to each other is unimportant, and the dial markings of the individual controls must be determined by the builder.
just reach the maximum voltage noted. If the ramp starts too near zero, it will have a noticeable curve fust as it is beginning. There will be a little irregularity here even when adjusted properly. That completes all adjustments.
Now we must check the burst and sweep functions. Trigger the scope from the sync output (J1), using negativeslope triggering. Select the BURST mode and set the FREQ-ADJUST control fully CCW. Observe the sine output (J2). Adjust the scope as necessary to see that the buRSTIIME and DEAD-TIME Controls work properly. A burst containing many sine waves, one or a part of one sine wave should be attainable, followed bv 4 ms to about 3 seconds dead-time.
Adjust for a burst that just about fills the graticule (left to right) when using $2 \mathrm{~ms} / \mathrm{div}$, then switch to the sweep mode. Although that setting is too fast for any practical sweep and will cause the first cycle to be badly distorted, it should be easy to see the frequency increase from left to right. Also check it on the $\times 1$ range. That completes the checkout procedure.

Using the Sweep Properly. The slowest sweep speed will be the best since the sine wave will undergo the least distortion. That will be awkward with a conventional scope and you may wind up tracing on the CRT with a grease pencil.

Adjust the scope for the slowest sweep possible, taking it out of the CAL mode if necessary. That will be about 10 seconds for most scopes. The sweep should start a little to the right of the leftmost graticule, exactly one-half of one small hash mark. On the $\times 10$ scale of the generator, that's the equivalent to where 200 Hz should be since the first hash mark has to represent 400 Hz . Adjust the burst-time control so that the sweep ends exactly on the right-most line where 20 kHz should be. The same arrangement applies to the $\times 1$ scale where all frequencies are ten times less.

When you display the frequency response of your device under test, there will be a mirror-image response curve also. Position the display downward so that the bottom graticule line splits the two halves and the distracting mirror image is mostly off the bottom of the CRT.

The generator is fairly versatile for such a simple-looking small unit and its easy enough to use. But see if you can come up with some unique use for those tone bursts.

A CHRONICLE OF CONSUMER ELECTRONICS

Serene Machine

MC ${ }^{2}$-DREAMACHINE. Produced by: Light \& Sound Research, inc., 6991 E. Camelback Road, Suite C-151, Scottsdale, AZ 85251. Price: $\$ 329$.

Since the 1950's and ' 60 's, research has been conducted on what the brain is doing when the body is observed to be in a particular state. It has been found that at icast four distinct states of brain activity. discernable by low-frequency electrical waves generated by that organ, can be detected. Those states (and the frequencies typical of them) are:
Beta (13 Hz): Wide awake, talking, driv-
ing, working
Alpha ($8-12 \mathrm{~Hz}$): Meditation, eyes-closed state
Theta ($4-7 \mathrm{~Hz}$): Creative, "super-learning" state
Delta ($1-3 \mathrm{~Hz}$): Deep sleep
Over the past twenty years it has also been determined that the brain can be stimulated into producing waves of those frequencies, thereby inducing the mental states associated with them. The stimuli are simple, external ones-light and sound. The $M C^{2}$-Dreamachine marketed by Light \& Sound Research is a simple device that claims to be able to induce the beta, alpha, and theta states of mind and thus be used "as a tool to guide the user to a state of deep relaxation 10 enhance creative visualization, self-development, spiritual explorations, or any of the other consciousnesses associated with deep relaxation or meditation."

To be honest, we're not especially interested in spiritual exploration, creative visualization (whatever that is), or other concepts of that ilk. We're not even into healing crystals-the only crystals into which we put our faith are the 3.1415975MHz color-burst ones in our TV sets and those that keep our computers and digital watches running. However, we are interested in finding ... shall we say ... "nontoxic, non-destructive, and legal" ways of unwinding. The $\mathbf{M C}^{2}$-Dreamachine looked as though it might be worth a try if the mystical mumbo-jumbo were peeled away.

There's not much to the device. The heart of the unit is a small box not much larger than the Touch Tone pad mounted on its top. Into the box you plug a set of stereo headphones and somerhing that looks like it used to be pair of dark designer sunglasses. The "glasses" have a pair of red LED's mounted inside each lens, pointing at your eyes. After making sure that the unit's wall-plug adapter is plugged in (there's also a rechargeable battery pack available as an option for portable usesay, relaxing or indulging in spiritual explorations while on a transcontinental plane trip), you settle yourself in a com-
fortable spot, punch in a number from one to zero on the keypad to select one of the ten preset programs, don the phones and "glasses." and close your eyes.

As the program goes into motion the LED's start to flash and you start to hear a string of low-pitched beeping tones that seem to echo through the phones. As the program progresses, the repetition rate of the tones and flashes (which you can easily perceive through your closed eyelids) slows and so, supposedly, does the frequency of your brain waves as they synchrorize with the external stimuli.
(Contimued on page 8)

This month in

GIZMO

Light \& Sound's
MC²-Dreamachine pg. 1

Soundesign AM/FM Clock Radio/ Cassette Player

Koss JCK/300 Kordless Infrared
Stereophone pg. 3
Dauphin LAPPRO-286 Laptop Computer. pg. 4
OHM Acoustics' CAM-32 Loudspeakers. pg. 6
Cobra CP-482 Cordless
Telephone pg. 7
CD Personalizer pg. 9
Hip Tunes. pg. 9
Kroy Labeimaker pg. 9
Speaker Protector pg. 9
Auto Alarm. pg. 10
Integrated Amplifier pg. 10
Sony 43-inch Trinitron TV pg. 10
Ricoh Laser Printer pg. 10
Combination Laser-Disc Player pg. 11
LCD Video Projector pg. 11
Noise-Cancelling Headphones pg. 11
Video Enhancer/Audio Mixer pg. 11
CD Digital Processor pg. 12
Programmable Turntable pg. 12
Weatherproof Speakers. pg. 12
Wireless Microphone pg. 12

Gizmo is published by Gernsback Publications Inc., 500-B Bi-County Boulevard, Farmingdale, NY 11735. Senior Writer: Josef Bernard. Contributors to this issue: Joan Chernok, Milford Fletcher. ©Copyright 1989 by Gernsback Publications. Gizmo is a registered trademark. All rights reserved.
supply. Should it be called into play, the clock will continue to run for eight to ten hours (until the battery gives out) although the display will not be active.

The alarm can be either a "buzzer" (actually a "beeper") or the radio. The cassette player is only for falling asleep to. The volume of the alarm beeper is fixed at "LOUD," and that of the radio alarm is the same as what you fall asleep to. That may be a source of trouble for people who like to be lulled to sleep quietly but who need something with a bit more volume to be awakened. We were pleasantly surprised when we found that we did awaken to the radio's quiet morning murmurings. A "snooze" feature allows you to catch an extra eight or ten minutes of sleep in the morning atter being awakened by the alarm, and the alarm automatically resets itself for the next day when you turn it off in the morning. The falling-asleep part of the clock radio allows you to have up to an hour of lullaby before it turns off. That. however, applies to the radio only.

The cassette player, although it did play cassettes, was something of a disappointment. We record our own, and use a good quality high-bias tape and Dolby-C noise reduction. The 3836's cassette player has no provision for anything other than stan-dard-bias, no-noise-reduction-at-all, recordings. That made ours sound a little thin and screechy. A tone control could have smoothed things out a bit, but there is none.

Worse is the fact that while you can play or fast-forward a cassette. there is no provision to rewind it. If you are in the habit (as we are, and it's one we should get out of) of stopping a tape partway through. you're going to have a problem when you put that tape on to fall asleep by. You either have to get out of bed and go rewind it on another cassette player, or turn it over to the side that you don't want to listen to. fast-forward it to the end. and then flip it back to the side you want. We'll grant that this player is intended for less-than-professional purposes, but no rewind? Come on, Soundesign!
Also missing from the player is a timer. You start the tape from the beginning (or wherever you happen to be if you don't want to fast-forward it back to the beginning) and it runs until the end, at which time the player shuts off. If you're still awake then and need more music, you have to open the cassette compartment, turn the cassette around, and press the plar button again. At least you're at the beginning of the side when you do that. The 3836 does not allow you to wake up to taped material.

Well, you get what you ask for. We wanted a clock radio with a cassette player. and that's what we got. The clock worked. the radio worked. and the cassette player played cassettes. For a list price of less than $\$ 33$ we suppose you could not wish for much more.

Dauphin de Siecle

DAUPHIN LAPPRO-286 LAPTOP COMPUTER. Manufactured by: Dauphin Technology, Inc., 1125 E. St. Charles Rd., Lombard, IL 60148. Price: \$3495.

Several years ago we wote a book on the then-brand-new subject of laptop computers. When we began the book there were only two of them: one from Radio Shack, and one from NEC. both built on the same Kyocera chassis. They had eightline, 40 -column LCD screens and. if you chose to expand them all the way, could have 32 K of RAM. A proprietary operating system was included ir ROM, as were a rudimentary word proces.sor, communications program, and interpreted BASIC. Radio Shach's version of the system also had a 300 -baud moden built in, as well as two additional utilites in ROM. If you wanted to save programs or data externally. you did so using an audio cassette recorder. By the time we had firished the book there were about a dozen manufacturers of laptops. IBM included, tessling for their share of that promising market.

The rush to fill the void has slowed somewhat, but has not stopped entirely.

The newest company to enter the field. and one devated exclusively to laptops, is Daunhin Technology, a startup firm located far away from Silicon Valley in Lombard. Il?inois. Its initial product is the Lap.PRO-286 computer, one of the first of which we were able to obtain for review. Because it was one of the first of its kind, the computer we received contained some of the design flaws that are seeningly inevitable in first-off-the-line products. We hope you'll understand this, and keep in mind the fact that Dauphin, too, is aware of the problems and is working to eliminate or correct them.
Two of Dauphin's big selling points for the LapPRO-286 are its relatively low price of $\$ 3500$. and what you get for that price. Dauphin claims that the features buit into the LapPRO-286 cannot be found elsewhere for much less than $\$ 5500$, two-thousand dollars more than it is charging A srief survey of the market shows that to be pretty much the case. Here's some of what we got as standard equipment with our LapPRO-286:

- 80286 microprocessor with socket for 80287 math coprocessor
- Backlit, 25 -line by 80 -column. Her-cules-compatible LCD
- One megabyte of RAM (640 K plus 360 K uner-configurable as either EMS or EXT-expanded or extended memory)
(Continued on page 5)

Of Koss, of Koss

KOSS JCK/300 KORDLESS INFRARED
STEREOPHONE. Manufactured by: Koss Corporation, 4129 North Port Washington Avence, Milwaukee, WI 53212. Price: $\$ 275$.

We, as a society, do not do too much of our music listening through headphones ... yet. We prefer to use loudspeakers that leave us unencumbered. However, as the Walkman Generation grows and comes into its own. headphone listening is becoming more acceptable and more widespread. Part of the appeal of that way of listing to music may lie in the way in which sounds are perceived through a set of phones, and part may be the beginning of a social movement that recognizes that loud music is not to everyone's taste and that there is a way to enjoy it without disturbing those around you too much.

Finally, in a world having a population of over 6.1 billion people, headphone listening, with your own "personal" music coming straight into your ears, allows you to build a barrier between yourself and everything else. We do not say that is a good thing. but like 品 or not it's happening, as you can easily see on any masstransit vehicle, or even by observing the young skateboarders careening about the parking lots in the twilight, each equipped with his own personal music system. (About forty years ago social-/science-fiction author Ray Bradbury wrote a story in which most of the populace walked about with little seashell-shaped earpieces stuck in their ears, listening to what they poured forth and oblivious to the world around them. How sad. And how prophetic.)

Be that as it may, let's now snap ourselves back to reality and examine the Koss JCK $/ 300$ cordless (or kordless in Koss ${ }^{*}$ parlance) stereophone. It's not for skateboarding. The JCK/300 is a highquality circumaural headphone set intended for serious listening while liberating you from the trailing cable that makes athome headphone use such an annoyance.

The term "circumaural" means "around-the-ear," and refers to the fact that cushions on the earpieces fit against the skull around the ears rather than just against the ears, as do the foam cushions used in open-air designs. The advantages of that are twofold, First, the path between the transducer and ear is unobstructed, ensuring that there is no absorption of sound at critical frequencies; it all gets through to your ear Second, the cushion forms a seal and makes it impossible for sound waves to leak into the air (as they do rather copiously with open-air phones). That improves low-frequency response tremendously and, incidentally: does away with that tinny "chink-a-chink-a-chink" that we find so irritating when we're in close proximity to most wearers of openair phones.

The sound from the Koss phones is very good, as it should be considering that Koss has been in the headphone business ever since we can remember. The most impressive thing to us, though, about the phones is their near-total lack of background noise, or hiss, which is a problem in some underpowered infrared headphone systems. The JCK 300 system is anything but underpowered Its infrared transmitter panel contains an array of thirty infrared LED's arranged in 5×6 pattern. If those were ultraviolet-emitters, we could use the panel as a sunlamp! Actually, by our cal-
culations the power consumption of the LED array is only about 600 mm . Still, if that were RF, it would be about the equivalent of the output of a low-power portable cellular phone. No wonder there's no hiss!

The power of the LED panel ensures very good coverage. (A considerable amount of that seems to have been provided, in our case, by reflections from our light-colored walls.) We could even walk around behind the transmitter panel and get acceptable results. And, turning our back on the transmitter did not seem to affect the quality of the signal. Whether that was due to reflections in our listening room or to the design of the infrared sensor mounted atop the headband of the phones we cannot say; all we know is that the results were good no matter how difficult we tried to make it for the system to work well. Our only failure came when we aimed the transmitter outside through a window. The infrared radiation was apparently reflected back inside by the glass, and we got no reception out of doors.

Setting up the JCK/300 took a little more effort than we had expected, but would not present a problem to any audiophile in search of quality cordlessheadphone sound. A signal from your amplifier (or TV receiver, or other signal source) is fed by cable to a flat box called a modulator base, which in turn drives the aforementioned LED panel. Koss supplies all the necessary cables, connectors and adapters, and input can come from a headphone jack or, more elegantly, from any of an amplifier's line-level outputs such as that used for taping. The connectors at the amplifier end of the Koss cable allow you to piggyback another set of RCA plugs onto them, so you can drive both the modulator base and the tape deck (or other device) that was originally connected to the output jacks. There is also a mikeinput jack at the rear of the modulator base for use in case the device to which you wish to listen has no means of output other than its speaker. You are supposed to place a microphone (not supplied) in front of the speaker with the volume level turned down low. The sound is picked up by the mike and then amplified at the modulator base before being fed to the transmitter panel. We did not try that method.

The LED transmitter panel fits into a swivel mount atop the modulator base that allows you to aim it in the direction of your listening position. Koss also supplies a separate base for the panel if you want to mount it away from the modulator. And, if you want to extend the coverage of your system beyond its already considerable range, you can daisy-chain additional LED panels, one to the next.

The modulator base has two LED's on it: The red one is a power on indicator, and the green one works in conjunction with a level control on the side of the base. You are supposed to adjust that control until the
green LED just starts to blink．That，say the instructions，indicates the optimum modulation level for the transmitter．In our tests we couldn＇t make the LED blink；it stayed on all the time．However，we did not let that hitch prevent us from enjoying the phones by adjusting the level by ear．

The phones themselves are comfortable to wear，although，as is the case with all sealed－ear designs，we found that the local ＂ear－weather＂got a bit humid after a while．The phones weigh only a bit over $111 / 2$ ounces（ 350 grams）even with the 9 － volt battery used to power them in place in the left earpiece．The battery，we should mention，has a working life of between 20 and 30 hours．Two slide switches control power and mono－stereo selection respec－ tively．A small red LED indicates that the power is on，and begins to blink when the battery starts to run down．

A volume control is built into the right earpiece，and controls the sound level in hoth．We were bemoaning to ourselves the lack of a balance control on the JCK／300） when we happened to glance over the press release on the product．Lo and behold，it talked about a dual knob volume control on the unit，which allowed the sound levels of the left and right channels to be adjusted independently．When we looked，there it was．When we scrutinized the instruction sheet，there it wasn＇t．Sometimes reading the instructions isn＇t enough！Being a member of the press does have its advan－ tages．

If you are a devotee of circumaural－de－ sign headphones and want the quality for which Koss has become known over the years in a cordless（or kordless）imple－ mentation，try the JCK／300．It＇s a nice set of phones．

DAUPHIN COMPUTER
 （Continued from page 3）

－One 1.44 －megahyte 3.5 －inch floppy－ disk drive
－One 40 －megahyte． 28 －ms，hard－lisk drive
－Two serial ports and one parallel port
－Provision for external video monitor
－Rechargeable battery plus operation from 120 or 240 volts $A C$ or 12 －vols $D C$ －DR DOS operating system，Laplink file－transter software，and Alphaworks in－ tegrated software

That＇s quite a bit！And it all comes in a package weighing 16.5 pounds，battery in－ cluded，and measuring about $15 \times 12.5 \times$ 3 inches．You would expect that to offer all that some sacritices would have to be made and．yes．it appears that a couple were．All in all，though，the LapPRO－286 is a sub－ stantial product．

Most of the complaints we had with our unit stemmed from the fact that，as origi－ nally designed，the computer did not neet FCC radio－frequency emissions require－ ments．and a new case had to be produced
to satisfy the law．The case currently in production（which satisties the FCC reg－ ulations）has a number of bothersome points about it－little things，but enough of them to be annoying

For instance，the cateh that holds the LCD in its closed position is awkward to release and the computer is difficult to pick up from a lying－down position be－ cause of the way the handle is constructed． At the rear of the case，a small proj－ ection－actually the jach for inputing 12 － volts DC－sticks out far enough to prevent you from standing the case on its tail，as you would want to do，say．while shuffling along the check－in line in a busy airport． That may be a good idea．since it prevents you from standing the case in what may be an unstable position（we re not sure where the computer＇s center of gravity is），but it also keeps you from resting the unit，even lightly，on the floor as you move along． That could have been remedied simply by the addition of a couple of ruhber or plastic feet on the back of the case．and such feet are included on the carrying case that＇s available as an option（more about that case later）．
The computer＇s keyboard had a good feel to it and，despite the somewhat unor－ thodox layout of some of the keys（which seems to be the case with every laprop we＇ve used－a consequence of mapping all the functions onto a keyboard of rea－ sonable size），it was quite usable．There are no separate function keys－functions Fl through F10 are activated by pressing a key in the top row marked FUNCTION logether with one of the number kcys in the same row．That is not as awhward an operation as it sounds，although it does require two hands for functions higher than F6 or so．

The biggest problem our review model had was with its LCD．Although the con－ trast of the screen，even with the backlight－ ing turned on．was not spectacular and we sometimes lost the cursor（a difficulty so common with LCD computer sereens that an aftermarket program is available to create a large visible cursor to replace the one that keeps disappearing），the screen was usable under most conditions，al－ though somewhat disconcerting to watch when scrolling rapidly．However，one pleasant day when we chanced to take the computer out of doors to do some work in the fresh air we got a rude surprise．The display seemed to develop a very annoying tlicker，almost bad enough to induce a form of seasickness．At first we thought it was the heat affecting．perhaps，our eyes； then we thought it was the heat affecting． nerhaps，the display．It tums out that，heat or no，the Hercules－compatible display that came with our unit did have a serious llicker prohlem．It is not apparent（to us．at least）under artificial light，which is where we＇d have expected it to show up．hut out of doors it made the computer unusable
except for very short periods of time．We spoke to Dauphin about that difficulty and they told us that（by the time you read this review）you will be able to order the Lap－ PRO－286 computer with one of several displays．The others are said by the com－ pany not to tlicker and to have better con－ trast，as well．Order what you like，but stay away from the high－resolution Hercules－ compatible display if you plan to use the computer under natural light

Despite its weaknesses，we found a lot to like about the LapPRO－286．For exam－ ple，the battery pack（which will power the computer for about an hour and a half） uses lead－acid，not nickel－cadmium cells． That means that you don＇t have the ＂Catch－ 22 ＂situation of having to unplug the computer when its batteries are fully charged to prevent them from developing a memory problem and yet insisting that they always be kept fully charged else they＇Il run down more quickly than you expect．Lead－acid cells like to be kept up to charge，and by keeping the unit plugged in you＇re doing them a favor by providing them with a constant trickle charge．The power supply will automatically conform itself to source voltages of 120 －or 240 － volts AC，at either 50 or 60 Hz ，and a separate jack is provided for operation from an external 12 －volt source－an auto－ mobile cigarette－lighter receptacle，for ex－ ample．

We also like DR DOS（the＂DR＂stands for Digital Research，the software firm that created it）．which is the operating system provided with the computer．DR DOS is an MS－DOS 4 clone，with a few improve－ ments such as on－line help for many of the DOS commands．The operating system also has an XDIR command that we find more informative and convenient than the standard DIR command，as well as several other niceties not included in MS－or PC－ DOS，such as password protection．The manual，while not especially long，is nic－ ely intelligible

And the computer did work as we ex－ pected it to．That＇s no insignificant point！

The soft carrying case that＇s available at extra cost is well worth it．Not only does the carrying case give you a convenient means to schlep the computer around comfortably over your shoulder（even 16 pounds gets heavy to carry around after a while），but it also provides plenty of stor－ age space for disks，manuals，cahles，and all the other paraphernalia you need to get your work done on the road

In sum，if you are willing to put up with a little inconvenience to save a couple of thousand dollars．we think the Lap－ PRO－286 is worth investigating．We wish Dauphin had done more of its market re－ search before releasing the LapPRO－286 to the public，but even so，the relative value of that computer is good．We look forward expectantly to Dauphin＇s new－ and－improved models

The Eggs and I

OHM CAAI 32 COHERENT AUDIO MONITOR LOUDSPEAKERS. Manufactured by Ohm Acoustics, 241 Taafie Place, Brooklyn, NY 11205. Price: $\$ 450$.

The two-wav speaker system designated CAM 32 by Ohm Acoustics is the middle one of a group of three sporting an unusual design featur-a small egg-shaped protuberance projecting from the top of the enclosure. (More precisely, the "egg" resembles the "bullet"-shaped housing used for many communications microphones. However, a rose by any other name...) Iaside the "egg" is the system's $3 / 3$-inch tweeler, and it is that egg twecter, or "ET" as scme refer to it, that sets the CAM series apart from other speakers in their price range.

Ohm claims two advantages for outboarding the tweeter in that fashion. The first is that by removing it by an inch or so from the vicinty of the main enclosure's surfaces and corners. diffraction effects that can alter and distort the high-frequency waveform are avoided. The sound waves generated by the tweeter leave it and travel straight thrmough the air to your ear without even brushing against anything in between.

The other benefit from having an outboard tweeter, says Ohm , is that it can be made rotatable. That allows you more flexibility in positioning the speakers in a "real" listening area that may already have furniture or other items occupying the spaces in which the speakers would ideally be located. The CAM (which stands for Coherent Audio Monitor) instruction man-
ual says that by redirecting the high frequencies, which are one means our ear; use to localize sound sources. displacements that may occur because of less-thanideal speaker locations can be offset so that sounds produced by the system seem to originate from the points they were intended to.

Setting up the CAM 32 's was simple enough. Spring-loaded push-type connectors (the kind with a hole into which you insert about half an inch of bare wirc or a banana plug, which is then trapped tightly by a spring-loaded clamn) make cabling easy. The egg tweeters are packed separately in each shipping case. They are attached at the base to microphone plugs that plug into jacks atop the main-speake: enclosures. That makes the ET's rotatable. and a rudimentary scale marked in degrees is provided around the jacks, presumably to make position settings repeatable. Of course. the only indicator for that scale is the somewhat pointed rear end of the bul-let-shaped "egg" enclosures; if Ohm had been really serious about that they would have come up with a more accurate pointer. What there is is probably good enough. though.

Ohm recommends that you set up the speakers initially with the tweeters aimed so lines drawn through their axes cross slightly in front of your listening position. We started out that way, and found there was so much treble it made listening unpleasant. Even decreasing our amplifier's treble output didn't ameliorate the situation. We next tried aiming the tweeters away from our ears, but that didn't help much either. Nor did turning the eggs so they faced backward, completely away from us. We sat down to think about it and, as we gazed into space beyond the speak-
ers, came to the realization that the tweeters were exactly at the level of our ears and that all their output was in the same plane as our hearing apparatus. Checking the manual, we saw that Ohm recommends that the main enclosures be at ear level, which places the tweeters' line of fire sometwhat above the head. We inclined our set of CAM 32's a bit so they fired slightly upward, and the problem cleared up. The sound immediately became more mellow and much more listenable.

We already knew that the CAM 32's had plenty of high-frequency output. Their bass response, while adequate, was not spectacular, although we suppose we shouldn't expect miracles from a systein with a $61 / 2$-inch midrange/woofer assisted by a ten-inch passive radiator. If you like the egg-tweeter idea, the CAM 32 has a big brother, the CAM 42 , with an $81 / 2$-inch midrange/woofer and 12 -inch passive radiator that may provide enough bass to satisfy you. Or you can add a subwooter.
When we first started listening to the CAM 32's. we noticed an unusual effectan almost unreal expansion of the stereo soundstage. It was particularly noticeable in the case of the announcers on our favorite radio station, who sometines sounded as though they were speaking almost from offstage, in the wings. "Wow!" (we thought) "Ohm really has something here. The phase-matching on these speakers must be exceptional!" Of course, the system didn't seem to be able to localize particular instruments very well, but who cared with that incredible spread!

It was when we started rotating the egg iweeters to see whether Ohm's claims about them were true that we discovered what was really going on. We were running our amp in its monophonic mode to generate a single sound source that we could pinpoint easily, and discovered that we couldn't do that-something just didn't sound right. We checked our cabling, and everything there was as it should have been. Then, on a hunch, we reversed the connections to one of the two speakers. Aha! The mono sound source suddenly took on location and when we switched to stereo, the imaging improved tremendously and the sound took on a solidity it had lacked before.

What was the problem? Phasing. One of the two speakers apparently had been shipped either with connections crossed internally, or with its insides mechanically out of phase with those of the other. That isn't supposed to happen, but it did. (We had originally suspected the radio station of playing phase tricks, but listening to it in the car and on other receivers did not produce that same spectacular effect; that's when we started to think the speakers might be responsible.) By changing the phase relationships in a stereo signal, all kinds of interesting effects can be ob-
tained．For instance，sounds can be made to seem to come from beyond the space bound by the speakers producing them． Indeed，the extraction of surround－sound rear－channel information from a stereo sig－ nal depends on the out－of－phase informa－ tion contained in that signal．When we switched around the leads to one of the speakers，we reversed the reversed－phase relationship and caused it to be hooked up properly．

Now we could play with rotating the eggs．And，as we had been told they would be，they were effective in shifting sound sources to compensate for our listening position．The trick is to point the egg of the nearer speaker away from you，and the one on the farther speaker toward you．Since， as we mentioned carlier，one of the ways we localize sounds is by the intensity and source of their high－frequency content， hearing more high－frequency sound from the farther speaker（and less from the closer one）displaces the apparent center of the soundstage．We＇d always thought that was the purpose of the BALANCE control on our amplifier，but now we know you can do it with speakers as well．

While we wouldn＇t term the CAM 32＇s to be outstanding performers，we have to point out that they are not outstandingly expensive，either．Their performance is about commensurate with their price．and the＂ET＂feature does work．If you can use it，take a listen to these or the smaller CAM 16＇s or larger CAM 42＇s．

Look Ma，No ．．． Antenna

COBRA MODEL CP－482 INTENNA CORDLESS PHONE．Manufactured by： Cobra Electronics Group，Dynascan Corp．， 6500 West Cortland St．，Chi－ cago，IL 60635．Price：$\$ 179.95$ ．

The companies that sell cordless tele－ phones probably do an enormous after－ market business in replacement antennas． It＇s so easy to turn around and snap off an extended antenna against a wall or the top of a low doorframe．Collapsing one of the telescoping whips too energetically can cause it to crumple like a drinking straw， and if you drop your phone in just the right way you can just as easily render it anten－ natess．

Besides that，antennas are a pain in the neck to use unless you＇re right by the base unit you have to extend the antenna to get and maintain a usable signal，and then collapse it when you return the phone to its cradle．And carrying around a cordless phone with its antenna extended can be dangerous．You could poke somebody＇s eye out！（Ask your mother．）

Wel，the people at Cobra，who＇ve been in the cordless－phone business for quite some time，seem to have found a solution to the antenna problem．They now make a phore without one．It＇s called the Intenna． There are several phones in the Intenna line：we chose to look at the middle－of－line model CP－482．

Of course，the Intenna phone really does have an antenna，but it＇s inside the handset．That＇s how the phone got its name．The base station．incidentally，uses a conventional telescoping whip．The in－ ternal Intenna antenna is a piece of nickel－ plated brass（we＇re told that Cobra experi－ mented with a number of different metals before settling on that combination） shaped to fit inside the upper portion of the handset．At least，that＇s the way it began； the shape was then refined to optimize radiation characteristics while still fitting inside the handset shell．

Since the big difference between this cordk is phone and other types is in the design of its antenna，we attempted to find out something about how the new design works．No luck．The best we could get from Cobra was something to the effect of ＂．．you have to stop thinking of antennas in traditional linear（？）terms．．．＂That＇s not much of an explanation．We think that what they meant was either＂None of your business！＂or＂Gosh．we don＇ know how it works，either．＂

In raking design compromises of this nature－＂linear thinking＂or not，we still believe that a long external antenna is the better and more efficient design－you may have to accept certain compromises．One of them is in the cordless phone＇s range of
operation．Actually，we were pleasantly surprised by the range we got out of the ＂aniennaless＂phone．While the phone＇s range was not quite as great as that of some more conventional cordless phones we ve usec，the range of the Intenna allowed us sufficient latitude（and longitude）of movement to roam throughout，and around the outside of，the house－proba－ bly as far away from it as you＇d normally find yourself strolling in the course of a phone conversation．

We found that the orientation of the an－ tenna on the base unit，as well as its prex－ imity to metal objects such as lamps，had a considerable effect on the quality of the phone＇s signal．Also，Cobra warns that you should hold the handset at its lower end，away from the location of the internal anterna．If you hold it near the tep of the hanciset，your hand will，in effect，become part of that antenna through capacitive coupling．and you＇ll interfere with the unit＇s transmission and reception charac－ teristics．

To be honest we had a few difficulties with the phone portion of the CP－482． We＇ve been extremely pleased with some of Cobra＇s other cordless phones but the Intemna，we re told，is produced at a dif－ ferent factory（and using different mate－ rials）from them，and the differences in design，and maybe manufacture，show． The incoming audio，for example，is very ＂peaky，＂and is difficult to listen to for long periods．（We＇re told that what＇s heard at the other end also partakes of the same characteristic．）In our use of the phone． that peakiness sometimes rendered call－ ers－especially women with heavy ac－

cents-nearly unintelligible. and more than once we had to switch to another phone just to figure out what was going on at the other end. The phone's audio characteristics also made extended conversations something of an ordeal.
We did not care for the numeric keypad's rather mushy feel. which made it seem as though the phone were hesitating for an instant before generating the tones for the keys pressed. The keypad's characteristics made it impossible for us to dial a number with the rapidity to which we are accustomed; it was sort of like dialing through molasses. Those with a more positive outlook than ours might refer to the keypad's "soft touch" rather than its "mushiness."
When taken off hook, the phone was somewhat sluggish to respond. The delay involved is probably only a few dozen milliseconds, hut that was more than enough to cause a problem when we were expecting an immediate response. For example, the phone took longer than we think it should have to realize that it was off hook. We did not get a dial tone as quickly as we should have, and consequently occasionally got a recorded " 'you must first dial one . .." message when attempting to call long distance. We also had to learn to wait a few moments before speaking when we picked up the phone, otherwise our first one or two "hellos" never made it out of the house.

Hidden switches on the handser and base unit allow you to select one of several digital codes to help keep other cordless phone users in your neighborhood from getting into your system. In addition, Cobra claims that when your Intenna system is on hook (hung up), it is inaccessible to other cordless-phone systems that might otherwise be able to dial out on your line and thereby ring up considerable long-distance charges at your unwitting expense

What did we like abour the Intenna CP-482? Well, this particular Intenna model also includes an intercom function, which can be used independently of the phone line (in essence, you use the system's radio transmitters and receivers as a wireless intercom link). That worked pretty well, although it was subject to the same range limitations as the phone itself. The Intenna phones also include the now-standard memory, redial, and pulse/tone-dialing features that no modern phone would be caught dead without.

We like the idea of the Intenna system. and, except for the peculiarities we've noted, the phone worked well. We sort of missed the "Captain Kirk" leeling of being able to snap the telescoping whip smartly out to its full extension before embarking on a conversation, but we certainly didn't miss snapping off that antenna as we stepped through the hatch to the transporter room.

DREAM MACHINE
 (Conimued from page 1)

And you know what? It seems to work! We haven't tried all ten of the programs built into the MC²-Dieamachine, but the ones we have tried have left us feeling that something more happened to us than just half-an-hour or so of beeping and flashing. At the end of one of the shortest programs. which lasts fifteen minutes. we did, indeed. feel much more calm and clearheaded than when we began. And it wasn't a fluke-we could repeat the experience (one of the tenets of the scientific method, repeatability) any time we wanted to. The MC^{2} doesn' put you into a trance or anything like that-you re always conscious and fully aware of the world around youbut it does seem to allow your mind 10 uncoil and free itself from some of its more temporal concerns, at least temporarily. The state of mind induced by the unit is not permanent-after a little while your brain starts selting its own pace again. The effect is hard to describe if you haven't experienced it; it 's what you supposedly get after practicing just about any relaxation tech-nique-Transcendental Meditation is what comes to mind-except that you have an electronic assist and don't have to do it all yourself.

The MC^{2}-Dreamachine has a number of parameters that you can adjust from the keypad. After you ve selected your program and started it running, the keys allow you to raise or lower the volume of the sound coming through the phones, as well as to change its pitch. Apparently, pitch is not nearly as important as is the repetition rate, and you can even remove the sound's tonal characteristic entirely, leaving a series of hissing pink-noise pulses (not nearly as objectionable as it sounds). A small control on the "glasses" allows you to adjust the intensity of the flashing red LED's.

A jack on the main box allows you in mix the output of a cassette recorder (or other audio device) in the phones with the sound generated by the MC^{2}. Light \& Sound suggests several uses for that feature: Quiet music and "inspirational messages" are two of them. The theta state is said to be a receptive state of mind. and a catalog included with the unit lists a number of instructive cassette programs, with titles such as "Mind Aerobics" and "Meeting Your Inner Mate." that are available for purchase from Light \& Sound. There are also a few more practical titles, as well as a number that we (our opinion, only, of course) consider to be metaphysically out of hounds. The manual also provides suggestions for scripting your own "mind-movies" to reach yourself new and improved patterns of behavior while in the receptive theta state. We restricted ourselves to coming up with new ideas for Gizmo

Should you be interested in exploring the MC2-Dreamachine further, here's what the ten preset programs are said to do, although what works best for you for a particular purpose might be a different program than the one sugeested. The figures in parentheses indicate the "running time" in minutes of each frogram
1 (15) High energy, focusing
2 (15) Relaxation, brainstorming
3 (30) Meditation, topic tapes
4 (30) Relaxation, leaming
5 (30) Sleep learning, visualization
6 (30) Motivation, relaxation
7 (20) Intense relaxation, focusing session $8(45) *$ *Programs $8-0$ car be set
$9(60)^{*}$ for deep relaxation.
$0(75)^{*}$ accelerated learning.
dream enhancement, and advanced visualization
The MC ${ }^{2}$-Dreamachine is said to be harmless with one possijle exception. Some epileptics are subject to photoconvulsive seizures-that is. seizures brought on by flashing lights. Light \& Sound recommends in several places that epileptics not use their product unles: it is with their physicians' approval
We don't know how much a relaxed state of mind is worth to you. nor to what lengths you re willing to gos to attain some measure of serenity. However, if you are a hard-core serenity seeker, in the long run the MC^{2}-Dreamachine might be a worthwhile investment for you. One thing that's certain is that it won't leave you with a hangover the next morning.

Coming Next Month in (E1RMU.

- Bose AW-1 "Acoustic Wave" Compact Music System
- Casio CT-650 Tone Bank Musi cian's Keyboard
- MaxTrek SmartMax Automatic Fax Machine/Telephone Switch
- Canon A1 Hi8 High-Band 8 mm Camcorder
- Yamaha DSP-100 Digital SoundField Processor
- AudioSource EQ Ten Computerized Graphic Equalizer/Spectrum Analyzer
- And Much More!

For more information on any product in this section, circle the appropriate number on the Free Information Card.

High-Tech Labelmaker

A portable labeling and lettering system with keyboard that's half the size and one-third the price of comparable nachines has been introduced by Kroy Inc. (P.O. Box C-12279. Scottsdale, AZ 85267-2279). The Kroy DuraType 240, which is about the size of a desktop calculator or telephone, prints characters onto a transparent or opaque tape that is then bonded to a clear overlay, creating a letter strip that resists scratching, water, and heal. The unit, which operates from either four "D"-size dry cells or an optional AC adapter, weighs four pounds and includes a QWERTY keyboard and a 16 -character LCD. Its built-in, highresolution, thermal printer produces lettering on half-inch-wide adhesive-backed tape-clear tape with black letters and opaque white tape with blach, red or blue letters. A typestyle corresponding to Helvetica medium 10-. 20- and 30 -point sizes is resident in the system and a total of 13 slip-in typestyle cards are available. Typestyles can be changed in about ten seconds. The DuraType 240 prints upperand lower-case English-language letters, numerals, and punctuation marks as well as graphic symbols useful for architectural and engineering drawings and a full set of western-European-language characters. Price: $\$ 495$.

CIRCLE 56 ON FREE INFORMATION CARD

CD Personalizer

Can you prove ownership of your CD's? You can if you've protected them using the Identadisc system being marketed by Hi-Pro-Tech (Box 1357, Lansdale, PA 19446). Using only pressure, a sharply embossed metal ring inside the Identadisc embosses a factory-issued personal identity code permanently and safely on the CD's inner gripping ring, away from the information area. That personalized security code is also entered in the the Identadisc Computer Network (which will also register the serial numbers of your high-fidelity equipment), with a $\$ 1000$ cash reward being offered by Hi -Pro-Tech for information leading to the arrest and conviction of a thief found with dises and equipment protected by the Identadise system. In addition to the Identadisc stamping unit, the Identadisc System includes warning labels for your individual CD boxes. car windows, and stereo system ("Warning-Protected by Identadisc"); automatic registration in a national reporting and checking system; access to a toll-free phone number to assist owners, police, or swap shops in the recovery of imprinted stolen discs; and discounted prices on CD \log books, collector CD's, and other items. Price: \$49.95
CIRCLE 57 ON FREE INFORMATION CARD

Speaker Protector

Power Shields are aftermarket loudspeaker-protection devices from Allison Acoustics (1590 Concord St., Franuingham, MA 01701) that can be installed inline with any speaker system to prevent driver damage or destruction caused by high signal levels. Power Shields differ from fuses and circuit breakers in that, after they have been triggered, they automatically reset when signal levels are reduced. Four different power ratings (equating to eight wattages-four into fourohm and four into eight-ohm loads-are available. Price: $\$ 39.95$
CIRCLE 58 ON FREE INFORMATION CARD

Music Maker

You can create your own "hip tunes" while you dance with Hip Tunes, a product of Nasta Industries (200 Fifth Ave., New York, NY 10010). Hip Tunes is a portable electronic music system with its own amplifier and speaker. To use it, you clip it to your belt or waistband and select one of four background rhythm buttons (ROCK 1, rock 2. Latin, or RAP) to start the beat. Then, after adjusting the tempo, you start dancing. Moving to the right makes one sound, moving to the left another, and jumping in the air still another. You can create entirely new music by selecting another rhythn. If that's not enough for you, you can add to the music with a special "accent sound" triggered by a button on the microphone included with the device. Or, you can use the mike simply to sing along with your newly created tunes. Hip Tunes is recommended for ages six and up, unless you think someone's going to catch you at it. Price: Under $\$ 35$.
CIRCLE 59 ON FREE INFORMATION CARD

Kroy Label Maker

Hi-Pro-Tech's Identadisc System

Allison Acoustics Speaker Protector

Nasta Industries' Hip Tunes

Sony 43-inch Trinitron

A. coh Laser Printer

Kansas MIcrote=h Auto Alarm

Onkyo Integrated Amplifier

Huge Trinitron

The world's largest direct view Trinitron television set is Sony's (9 West 57th St. New York, NY 10019) 43-inch PVM-4300 receiver. Aimed at the videophile and elite-consumer market. this limited-production receiver weighs over 450 pounds and is said to be so large it is unable to fit through a standard doorframe. However, its IDTV (Improved Definition TV) non-interlaced scanning system and digital frame memory may, for some, outweigh those inconveniences. Sony's IDTV system allows all 525 scan lines to be displayed simultaneously rather than hall in one video field and half in the next. That results in an image with greater density, less inter-line flicker, and an improvement in vertical resolution of as much as 50% compared to conventional TV receivers. The set's digital frame memory includes motion sensors and motion-adaptive circuitry to produce a crisp image, provides accurate color reproduction, and reduces picture noise. An onscreen display uses multiple windows to simplify adjustments of picture hue. color, sharpness. brightness, treble, bass, and stereo balance. The unit contains a pair of 15 -watt-per-channel stereo amplifiers and, for high-resolution sources, three S-Video inputs. Price: About $\$ 1000 /$ inch. or $\$ 40,000$.

CIRCLE 60 ON FREE INFORMATION CARD

Controller-less Laser Printer

Realizing that many laser-printer users want more flexibility than has traditionally been available, Ricoh Corporation (5 Dedrick Place, West Caldwell, NJ 07006) has introduced the PC Laser 6000/EX, a six-page-per-minute laser printer that uses a computer-resident control to tailor its performance to a user's requirements. The printer has a standard 50 -pin video interlace that connects it to a controller card in one of a host computer's expansion slots. Controller cards, which are available from more than a dozen companies, shape the printer's personality to include such "traits" as PostScript or another PDL capability and to provide a choice of processing speeds. If your printing requirements change, they can be accommodated by a simple controller-card replacement rather than the acquisition of an entire new printer. The 37 -pound PC Laser $6000 / \mathrm{EX}$ printer produces text and graphics at a resolution of 300 dots per inch. It can accept letter-, legal-, and international-size paper formats and can also print on envelopes, transparencies, and label stock. Output can be configured to be either face-down or face-up. The printer's paper capacity can be expanded from 150 to 400 sheets with the installation of a 250 -sheet auxiliary paper tray. Price: $\$ 1895$ (less controller).

CIRCLE 61 ON FREE INFORMATION CARD

Portable Auto Alarm

CarCop is a portable automobile alarm that uses patented motion- and vibra-tion-sensing circuitry to detect even the slightest disturbance to a vehicle. Manufactured by Kansas Microtech (7300 West 110 th St., Suite 990, Overland Park, KS 66210) the alarm, which is powered by a single 9 -volt alkaline battery, requires no installation and can be moved easily from vehicle to vehicle. To use CarCop, the owner simply mounts it on a window, turns the power switch on, and rolls up the window. Ten seconds after the car door is closed and locked, the device arms itself, emitting a chirp to indicate that it has entered the armed state. The alarm, which offers three selectable levels of sensitivity, emits a $105-\mathrm{dB}$ warble tone when it is triggered. Re-entry to the car is accomplished by unlocking and opening the door. Because of the high-visibility way in which it is mounted, CarCop is said also to provide a visible deterrent to would-be thieves and vandals. Price: $\$ 149.95$.

CIRCLE 62 ON FREE INFORMATION CARD

Integrated Amplifier

The A-8700 Integra integrated amplifier from Onkyo (200 Williams Drive, Ramsey, NJ 07446) is rated at 105 watts-per-channel and provides up to 305 watts-per-channel into two ohms. The Class AB linear-switching amplifier uses an ELF (Extremely Low Frequency) phase-cancellation servo circuit to prevent DC leakage at its outputs. Among its virtues is an extremely stable power supply that uses such exotic measures as opto-coupling rather than Zener diodes to ensure unvarying operating current, and an adjustable load for its moving-magnet/moving-coil phono stage. Price: $\$ 530$.

CIRCLE 63 ON FREE INFORMATION CARD

For more information on any product in this section, circle the appropriate number on the Free Information Card.

ELECTRONICS WISH LIST

Combination Disc Player

Able to play 8 - and 12 -inch laser discs, 5 -inch CD's and CDV's. and 3 -inch singles. Pioneer Electronics' (2265 E. 220th Sı.. P.O. Box 1720. Long Beach, CA, 90801-1720) CLD-3070 conbination player also permits both sides of CLV (extended play) and CAV (standard play) 12 -inch laser discs to be played without having to turn them over manually. The tumover function is performed automatically by a fast "alpha turn" mechanism. The CLD-3070 uses a four-timesoversampling (176.4 kHz) digitat filter and twin D/A converters to provide clean phase response and audio. Besides offering a variety of programming options too numerous to mention, the CLD- 3070 has many other useful features. A "jog-andshuttle" dial-found on both the main unit and on its remote control-permits rapid scanning of material both forward and backward at a variable rate of from 2to 40 -times normal speed. An 8 -bit digital field memory provides clean special effects such as freeze frame or slow motion on CAV and CLV disks and can freeze a single scene while CD music continues to play. The player is capable of delivering 425 lines of horizontal resolution and features a $47-\mathrm{dB}$ video signal-tonoise ratio. An " S " video output separates chrominance and luminance signals to eliminate video artifacts such as dot crawl. The player's audio signal-to-noise ratio of 98 dB makes it comparable to high-quality audio-only CD players. Price: $\$ 1200$.
CIRCLE 64 ON FREE INFORMATION CARD

Avionics Headset

The first aviation headset said to effectively cancel unwanted noise has been introduced by Bose Corporation (The Mountain, Framingham, MA 01701). The Bose Aviation Headsel combines both physical and electronic noise-attenuation systems to offer two major improvements over conventional headsets. First, the cushions used on the headset's earcup, which are filled with a combination of silcone gel and soft foam, conform to the shape of the head and seal out noise without the use of an inordinate amount of force. Second, an active-cancellation circuit uses microphones in the earcups to monitor sound at the user's ear. That signal is compared with the signal the user wants to hear-a radio signal or, perhaps, silence. The difference signal generated by combining the two is then used to create an out-of-phase noise-cancellation signal. Price: $\$ 965$.

CIRCLE 65 ON FREE INFORMATION CARD

Video Enhancer/Stereo Mixer

With Ambico's (50 Maple St. , Norwood, NJ 07648) model V-0629 A/V Maesiro you can orchestrate a professional-sounding mix of narration and background music into the soundtrack of any tome video while, at the same time, enhancing the quality of the video image. The A/V Maestro has three stereo-audio inputs. each with its own volume control. that let you mix and fade among camcorder or VCR audio, music, and narration inputs. The unit can provide an audio boost of up to 14 dB , and includes a master volume control for overall control ol soundsignal level. The video portion of the A / V Maestro allows you to add up to 6 dB of boost, which is said to result in richer colors and more detailed images. A microphone for narration is included. Price: $\$ 69.95$
CIRCLE 66 ON FREE INFORMATION CARD

LCD. Video Projector

Three 3-inch LCD panels cortrol the red, blue, and green beams in Sharp Electronics' (Sharp Plaza, Mahwah, NJ 07430-2135) XV-IOO video-projection system. The panels, manufactured using TFT (Thin-Film Transistor) technology, contain over 268,000 pixel elements and can provide more than 300 lines of horizontal resolution. The projector is equipped with a zoom lens that allows the projected image to be enlarged or diminished in size from 100 to 25 inches (diagonal measure) to suit room and screen size, and images measuring up to 200 inches diagonally are possible if you are willing to trade brightness for size. Two standard video inputs and an S-video input allow for connections to VCR's, laserdisc players, or other video-signal sources. Price: $\$ 6500$.
CIRCLE 67 ON FREE INFORMATION CARD

Pioneer Combination Disc Player

Ambico Video Enhancer/Audio Mixer

Sharp LCD Video Projector product in this section, circle the appropriate number on the Free Information Card.

Sony Weatherproof Speakers

Vivitar Wireless Microphone

Krell Digital Processor

Weatherproof Speakers

Realizing that with the proliferation of all-terrain vehicles, open-vehicle four-by-fours, motorcycles, and boats there comes a need to protect speakers from the rigors of heat, sunlight, water. and corrosion, Sony (One Sony Drive. Park Ridge, NJ 07656) has introduced an all-weather speaker designated the Mariner XS-6/6 The $61 / 2$-inch unit, with a power-handling capacity of 75 watts, uses a polypropylene cone material to resist damage from water and sun. and zinc plating and rust-resistant white enamel add further protection. To complement the XS-616, a waterproof stereo receiver cover, the GMD-6/6, is also available. Price: $\$ 89.95$ (XS-616), \$49.95 (GMD-616).

CIRCLE 68 ON FREE INFORMATION CARD

Programmable Turntable

Filling an increasing void in the analog record-player arena is the VT-320 lineartracking programmable turntable from Vector Research (1230 Calle Suerte, Camarillo, CA 93010). An optical sensor in the pickup assembly senses the shiny blank vinyl intertrack areas, and that information is used to keep track of the cuts that contain the program material. The VT- 320 can be programmed to play up to eight tracks, and a REPEAT function allows the same track, side, or selection of cuts to be played as many as 16 times. A row of buttons on the front panel provides direct access to any or all of the selections on a record. The unit also includes a tone-arm muting circuit to eliminate the "thump" that is heard when the stylus is set down on or lifted from a record's surface, and allows you to override its automatic speed and size selectors in the event that transparent or other non-standard-type records are played. A dual moving-magnet cartridge is included with the turntable. Price: $\$ 199$.

CIRCLE 69 ON FREE INFORMATION CARD

High-Power Wireless Mike

To use while recording those $1-0-0-0-\mathrm{n}-\mathrm{g}$ telephoto shots, you may want to consider Vivitar's (9350 DeSoto Avenue, P.O. Box 2193. Chatsworth, CA 91313-2193) WMK-2 wireless microphone kit. With an RF output of 50 milliwatts, its transmitter has a range extending up to 1500 feet. To avoid interference, the crystal-controlled unit can operate on either of two frequencies in the $170-\mathrm{MHz}$ range. The WMK-2's specifications indicate a frequency response extending to 15 kHz . The microphone has a $20-\mathrm{Hz}$ to $20-\mathrm{kHz}$ response ($\pm 3 \mathrm{~dB}$), with a dynamic range of 120 dB . The receiver has mute adjust and output level. adjust controls. That latter feature can be extremely useful in matching the receiver's output to the requirements of the recording unit. Both transmitter and receiver operate from 9 -volt alkaline batteries; the life of the transmitter battery is between six and eight hours. Price: $\$ 249.95$.

CIRCLE 70 ON FREE INFORMATION CARD

Digital Processor for CD's

Krell Digital, Inc. (20 North Plains Industrial Road, Suite 12, Wallingford. CT 06492) has introduced a firmware-based signal processor for CD players named the SBP-64X Digital Processor that is supposed to eliminate noise and restore sonic qualities previously thought to be missing from digital music. Using four Motorola DSP-56001 digital signal processors, the Krell unit can carry out more than 60 -million computations per second on the digital information it processes and provides 18 -bit, 64 -times oversampling. That high-speed signal processing results in a dynamic-range capability in excess of 300 dB . The SBP- 64 X is said to be the first digital system to effectively challenge high-end analog systems for leadership in the reproduction of pure, high-resolution sound. Price: $\$ 8950$.

Restore a curious electricat instrument from years ngo and perform high voltage experimerts that are timeless.

0n May 20, 1851. Nicola Tesla deIvered his firmous lecture on "Experimerts wih Alternate Curre to of Very Hign Frequency" before the American Insttute of Electrizal Engine ers in New Vork City. Tes a's unique an = unusual demonstrations cttracted ar enormous amount of attention. The interest exhitited by the mecical arofession was especially strong. Physicians were quick to begin speculating on the picssible therapeutic value of high-frequency currents.

The ciathermal, or neat-producing,
effect of high teauency on organic issue was obvious. Hzwever hiow that novel form of eeztroherapy actually Denefited the E:oxy was ur:cecr. But hat didn't stop trose fasciraed with he idea of electrica medication: Beween the end of the nineteent ceniury and the Second world Wra a small ndustry flourished around wiat was sometimes caller "vi Set Ra; Therapy" after the distinctive color of c high-voltage discharge. Figh-frequency currents became an inexr,austicle cure-all and wonder drug

You can rezreaie authentic Violet rays in rour home workshop and, moreover, possess on excellent source of high-fequency, high-voltage elecfricity for experimental purpose. What you need to laccte is a Violet Ray Generatar. Unfortunately, its not something you can usually pick up at the local electonk-paits store But they're not uncomiron, and finding one is well wortt the effort.

Where to Look And What To Pay. I cal almost hear it "Now how am I sup-

This generator was manufactured by Master Appliances. These machines do not seem to be as common as the Renulife units, at least in the Midwest. In other parts of the country the situation may be different. Note the power switch and the shape of the electrode handle.
posed to find one of those things?" Well, this is a clear case of "Seek and ye shall find." They are out there. I know it. But you must look for them.

If you don't have a lot of time, you might try checking out small antique stores. Sometimes all it takes is a phone call. Many -antique dealers are familiar with Violet Ray Generators. If they're not, show them the pictures in this article. Occasionally, dealers will be eager to get rid of them because they don't really have a lot of decorative appeal.

Expect to pay about twenty-five dollars for a unit in satisfactory shape. That means one with an electrode handle and compartment lid. The electrode handle is the long, black thing containing the induction coil. On Renulife units like the one pictured, the compartment lid is the slab of wood screwed to the inside of the case with a small knob on top. Units with no electrode handle or a damaged compartment lid should be avoided, unless you're ready to start collecting parts. Of course a missing line cord can always

Larger machines or machines with one or more glass electrodes can be more expensive. The presence of electrodes is often a good sign. It indicates a machine that may be in above-average condition. Violet Ray Generators in nice shape with a lot of electrodes can cost over one hundred dollars.
number of shapes and sizes and not all of them resemble the ones pictured. But they all have electrode handles. And all electrode handles have a hole in one end and a cord coming out of other. You'll know one when you see one.

Does it Work? You've finally found a Violet Ray Generator and you're anxious to see if it operates. There is a safe way of checking it, which will be explained; but first a word of caution. Violet ray generators are not toys. They are crawling with high voltages that can seriously shock you. Be extremely careful.

The following instructions are written with Renulife Violet Ray Generators in mind, specifically the model patented by James Eastman in 1922. If you have found another kind of machine, the operation may be a bit different. But it is never very complicated. Simply think about what you are going to do before you do it and you should have no problem.

So let's see if it works. First, set the unit on a dry non-conductive surface. A large, solid wooden table top is perfect. Also, make sure no metal objects or other potential conductors, like a glass of lemonade, are anywhere near the electrode handle. That will prevent the electricity from jumping all over your workbench. If the line cord and the wire leading to the electrode handle are tangled up, untangle them.

Second, and before plugging the
machine in, turn the adjusting screw counter clockwise several revolutions. That is a precautionary measure. It separates the contact points and keeps the generator from working until you're ready. Now, plug in the machine and slowly turn the knob clockwise.
If the internal wiring is in fairly good shape and if the contact points are fairly clean, the Violet Ray Generato: should operate and you will hear a high-pitched buzz. No buzz? Don't worry, you can probably fix it. And even if the unit does operate, chances are that it is not working as well as it should, but you can make it better.

Restoration. Unplug the unit, unscrew its lid, and turn the device over. You should be now looking at something called a vibrator. A vibrator is an elec-tro-mechanical device used to change a steady current into a pulsating current. The output of the vibrator energizes the primary of a small Tesla coil inside the electrode handle. One end of the secondary winding is connected to the electrode socket inside the barrel.
The output of Violet Ray Generators can be restored and improved by carefully cleaning the contact points and resoldering all accessible connections. Let's start with the so-called:armature post-a structure that holds the armature arm in a horizontal position. Remove the armature post and armature arm. Make sure to note the position of all washers, spacers, and other original hardware. Now take a look at the contact points. The surfaces are likely to be dirty and pitted. That is not good. They should be clean, shiny, and flat. Fine emery cloth is excellent for contact cleaning.
When you're done polishing the points, rebuild the interrupter gap. Do not allow the armature arm to rub against the end of the magnet coil. Make sure all electrical connections are solid, tight, and free of corrosion. If the line cord is in bad shape, replace it.

Once the interrupter gap has been restored, the rest of the job is just a matter of rewiring. Go slowly and be careful not to mix up any of the wires. If you think you might be making a mistake, check your work against the photos.

Now's the time to look for cracked or broken insulation on the wires coming off the capacitor. You can cover those imperfections with tape, spaghetti tubing, or something similar. If the leads coming off the magnetic coil are too

Here's a restored generator circuit. Use as much fresh hardware as possible. The screws going into the comparment lid should be fairly short; long ones will go straight through and damage the outer surface.
short they can be made longer with any bare narrow-gauge wire; bus wire works fine. Insulate the leads, too.

When you're finished, wipe the inside of the compartment lid with a clean cloth moistened with solvent alcohol. Take a moment to contemplate the technical simplicity of this strange contraption. Now check the wiring one more time and screw the lid back into the case.

If you were luck.y, your generator came with two or three electrodes, and

Here's everything you need to make an attractive electrode for your generator. pliers, and old coat hanger, and a size-0 one-hole rubber stopper (optional). Cut a seven- or eight-inch length of wire, scrape off the paint, and bend one end into a small loop about $3 / 8$ of an inch in diameter.
you probably already know whether or not they work. So just a couple of tips. If you're having trouble getting the electrodes into and out of the handle, try cleaning the metal end with fine sandpaper or steel wool. Be gentle. The electrodes break and develop leaks very easily. Finally, don't ever, ever, ever twist the electrodes into the electrode handle. That's one sure way to wind up with a handful of sharp glass. Just push to install and pull to remove.

If you were very lucky, your generator also came with a small pamphlet entitled "Electrode Applicators." It is a cat-alog-like document that explains how the various electrodes were used. There were electrodes for the hair, the throat, and even the teeth!

For those of you who choose to play with these things, my advice is: Don't do it. For those of you who choose to ignore this advice, it becomes necessary to say that you proceed at your own risk.

Diversions. Violet Ray Generators are electrotherapeutic devices and were never intended for use with anything other than the electrodes made to fit inside the handle. That makes getting at the high-voltage terminal for experimental purposes a little difficult. Any metal rod or piece of wire will solve the problem, but neither makes for a secure connection. A fine general-purpose electrode may be made in a few minutes from a stiff wire coat hanger and a size-0 one-hole rubber stopper. It looks good and it won't fall out.

Start by cutting a length of coathanger wire to whatever size suits your needs. Sand or scrape its paint or coating off. Bend a small hook in one end of the wire and place that end into the

Push the loop into the barrel, fit the stopper down over the wire, and your probe is done.
electrode handle. Push the stopper onto the coat-hanger wire until it seats itself in the handle.
The coat hanger electrode provides an excellent way of illustrating what Benjamin Franklin called the "power of points." Place the coil on a wooden table top and at least one foot away from any conducting material. With the room lights out and the generator on, a small, flamelike discharge forms around the tip of the electrode. Little wonder why Franklin liked to think of high-voltage emanation as "electrical fire." The intensity of the discharge can be varied with the adjusting screw. Do not turn the screw all way to the left; this jams the contact points and stops the vibrator.

Now grasp a piece of metal, like a large nail, firmly with your fingers. Move it slowly towards the electrode and a thin, threadlike spark will jump from the wire to the nail. A Violet Ray Generator in good working condition should produce a spark at least one-half inch long.

If you are holding the nail tight, you will feel nothing whatsoever. That is due to something known as the skin effect, or the tendency of RF currents to pass near the surface of a conductor. In this case the conductor is you. If you loosen your grip on the nail just a bit, you will begin to feel a tingle. This is because

Scatter some small neon lamps in front of the electrode. Now turn on the generator and turn off the room lights. High-voltage discharge descends from the wire and the neons flicker with a cold bright orange glow. Make sure to do this on a wooden, plastic, glass, or other non-conductive surface.

The output of the Violet Ray Generator can be improved by carefully cleaning the contact points. Both the armature arm and the adjusting screw can be removed to make the job easier.

The RenuLife generator has an adjustment screw that sets the distance between the contact points. Before plugging in the unit for the first time, turn the screw several revolutions to the right.
tiny sparks are jumping from the metal and piercing your epidermis. A large spark jumping to your body in this way can be fairly painful.
Inert gases ionize easily in the presence of Violet Ray currents. Just point the electrode at a neon bulb, a xenon flash lamp, or a conventional flourescent tube and it will light up. Do not expose any of these to a strong spark for more than a couple seconds. The heat can burn a hole in the glass and destroy the tube.
Everyday objects found around the
home and workshop can also take part in other experiments with your Violet Ray Generator. High-frequency discharge inside an ordinary light bulb, for example, is simply spectacular. Large ones, small ones, round or tubular, clear or frosted. no two will look alike.
For further ideas, you can consult The Inventions, Researches, and Writings of Nicola Tesla (orig. 1894). The book was reprinted in 1977 and is available for $\$ 17.00$ (ppd) from Omni Publications, PO Box 900566. Palmdale. CA 93590 (Tel. 805-274-2240).

Make A Custom

Plasma Display

Designing a power surply is the easy part-the real
fun staris when you iockle the plasma globe itself?

BY FA_PH HUBSCHER

The first t me l ever laia my eyes on a Plasmc Globe in Dis eyland in 1986-I was instanty fascinated It was a small black box with a glass ylobe mounted on tcp. Bl _ish arcs emanated from a central electrode and noved outward erratic ally to. wards the glass walls. If a finger was held rear the glass or if tre glass was toucred, the arcs intensifiec. It was beauriful and cabtivating

I had been building Tesla ransfor: miers for 'years and I knew that similar diset arges could be podlced by holding transparent light bulbs near the high-roltage e ectrode of such a de-
vice or an irduction coil. Anyone who has ever seer plucker-tube dischárges is automaficcly reminded of plasma dischar jes of rare gases such as neon or xenon, which are equally spectacular.

I was delermined to build ny own plasma dissck, and because of my experience wit Tesla coils I knew where to start $O=$ vipusly the globe was an evacuctec r essel spiked with a frace of one of the cbove mentioned gases and agita-ec by a high-voltage current. Rcre §ases have an electron arrangemen -hat facilitates gas discharges. A erassis connection is not
recessary where sush high-votage: cre involved. The surrouncings in this scse are negative enough. If 1 . coulc er y shrink my Fala tiansforrers I hac rever seen one his smăll before.

Saarching for a Supply. Cnce 1. re tuined home to West Eermsny 1 -ried o rimber of high voltage devices and th 三ir effects on 2C-salt tansparerToht bulbs grourded with wire ar one side. 1 found that
4. An auto ignitipl cail driven by a trar sstor ignition ana an electronic inter. rjeter (variable zoross the frebuency band) gave pocr results.

- An SCR-driven high-voltage device used for Kirlian photography did not work any better.
- A photo-multiplier high-voltage power supply was tapped before the rectifier. It produced a $3 / 4$-inch arc in air but was a poor choice for the purpose intended.
- A discarded $27.12-\mathrm{MHz}$ generator, once used for medical purposes, was repaired and tried. The output was tapped after the output amplifier tubes, but before the filter, so it probably put out frequencies in addition to the intended one, but all of them were in the high-frequency band. It worked fairly well.

Obviously, high-voltage alone is not sufficient to generate a plasma (make a gas glow). High frequency is also important. That's why the last power source, as well as Testa transformers and induction coils worked well; they all can be classified as high-frequency devices.

Fig. I. A modified black-and-white TV flysack transformer is at the heart of the plasma-globe power supply. The transformer is driven b゙ a blocking oscillutor:

That led me to investigate the use of N flyback transformers. Since those have a peak output frequency of $15,625 \mathrm{~Hz}$, one might work well as a source of high-frequency high voltage

There are many ways of exciting a flyback transformer, but none of them are downright easy. One is to drive the transformer with a square-wave oscillator built around a 741 op-amp or the popular 555 timer. However, I found that a blocking oscillator (Fig. 1) was about the best solution.

Here's the author's high-voltage. high-frequency power suphl: Note the large heat sink used for transistors Q/ and Q2

That brought me to the next problem Old black-and-white TV sets produced their high voltage in flyback transformers whose outputs were rectified and then applied directly to the picture łube. Unfortunately, more modern sets, especially color ones, are equipped with flyback transformers that put out only a fraction of the voltage that the old black-and-white flybacks did. In such sets, the high-voltage DC is derived from voltage-doubling circuits. Such flybacks are of little or no use for driving plasma globes. The DC voltage will not cause the discharges, and the AC generated is too low in frequency to excite the gas. So when selecting a flyback, be sure you chose one that's the proper type
The flyback generator shown in the schematic has a consumption of about 3.5 amperes at 12 VDC . Because of that, large heat sinks must be used on

Fig. 2. This simple circuit allons the poncer supply o be operated from 1/7-rolts $A C$.
the transistors. The generator should also be housed in a heavy plastic (or other non-conductive) case in order to eliminate the possibility that anyone might touch the chassis and high voltage at the same time. Such an occurrence is quite unpleasant and dangerous. Always treat high voltages with the utmost respect.

However, housing the circuit in a small plastic case may result in overheating. A small fan or blower may be needed in some cases depending upon the nature of your salvaged flyback

A 117-VAC/12-VDC power supply can be assembled easily so that the unit can be run on house current. A schematic for that power supply is shown in Fig. 2.

Modifying the Flyback. When you salvage black and white N flybacks, clean them with a paint brush. Look for the tube filament winding-it is a oneturn well-insulated winding. Once you have located the winding, remove it; it is no longer needed
Connectone lead of your multimeter to the flyback's high-voltage output and try the other lead on the remaining connections until you find the highest resistance reading (probably between 180 and 500 ohms); that is your negative connection. Next, look for some free space on the ferrite core and wrap five turns of \#18 wire, bring out a loop of wire to use as a center tap, and wind

This set up was used to imestigate the different displas produced br the rare gases. Note the arras of home-made plasma globes located behind the set up.
another five turns in the same direction without overlaps. See Fig. 3. Secure the ten-turn winding with tape. A second winding will go over the one you have just completed. To create the second winding, wrap two turns of \#18 wire, come out with a center tap, and complete the winding by making two more turns. The four-turn coil should be wrapped in the same direction as the ten-turn coil and, when it is completed, it should be secured with tape also.

Hook up the circuit as shown in Fig. 1. Plastic insulators must be used where the transistor leads pass through the heat sink and a mica disc is used in between the transistor and heat sink. Heat-conducting grease should be applied over and under the mica disc.

PARTS LIST FOR THE PLASMA GLOBE POWER SUPPLY

Q1, Q2-2N3055 NPN Iransistor
BR1-40-PIV. 5-amp bridge rectifier
R2-110-ohm, 5-watl resistor
R1-27-ohm. 5-walt resistor
Cl-4700- $\mu \mathrm{F} .25-\mathrm{VDC}$. electrolytic capacitor
T1-Ferrite-core flyback Iransformer. see text
T2-12-volt, 4-amp, transformer
FI-I-amp luse
PLI-II7 VAC line plug and cord assembly
S1-SPST (on/off) line-cord switch
NEI-NE-2 neon lamp with resistor. Radio Shack 272-1100 or equivalent Heat sink (see text), mica disks and plastic insulators for Q1 and Q2, heatconducting grease. plastic case. hardware, wire, solder, etc.

Fig. 3. To modify the flybuck remowe the filament winding and replace it with this 10-turn, center-tapped winding. A second. 4-1urn winding will be placed oner this 10 furn winding.

When you turn on the juice, you should get arcing from the high-voltage lead to a well-insulated screw driver, If you don't, turn off the power and reverse the connections of either the 10-turn or 4 -turn coil (but not on both). If you still get no arc, something is not properly connected probably the transistors or the chassis connection. If you encounter problems, double check everything.

Making the Display. Now that a source of high voltage was found, globe production was tackled. The easy way out is to use an ordinary light bulb. Of the light bulbs available on the market, 100-watt transparent "globe" bulbs were best. Their glass envelopes are most voluminous, which leaves
some room between filament and wall for arcs to form. However, while the displays that bulb creates are impressive, I was not satisfied; I decided to experiment with making my own globes.

Before l continue, a word of caution is in order. Evacuated glass containers must be handled with care. The danger of implosion is always present. Use glass vessels of appropriate thickness and design, and keep an appropriate distance between you and the container while air is being removed from it. If you are unsure of what you are doing, get experienced assisfance.

In an effort to save money in my initial efforts, cucumber and mayonnaise jars were used as globes (see Fig. 4). A glass petcock was cemented into the lid with epoxy resin. Electrodes were soldered onto the lids if they were steel, or cemented on with epoxy resin if the lids were aluminum. The lids themselves were cemented onto the jars with epoxy resin and allowed to set for 24 hours.

One-liter round-bottom flasks from a laboratory supply house were also tried. They were first closed with a rubber stopper into which a glass petcock

Fig. 4. The first antempts at globe making used mavonnaise jars as the containers.
with tubing and an electrode were well fitted.

Next, high voltage wus applied to the electrodes while the air was evacuated from the jars and flasks by means of a simple one-stage diaphragm-type vacuum pump (see Fig. 5). As air was removed from the flask, arcing became increasingly pronounced and spread out to form an eerie glow and purple bands and waves formed.

When air pressure inside the container dropped to $3-4 \mathrm{~mm} \mathrm{Hg}$, a thorn-like purple corona discharge became visible around the electrode. That all became more intense when a ground connection-such as a human fin-ger-approached or touched the glass globe.

I next used the set up shown in Fig. 6 to study the effects of rare gases on the display. Gas suppliers have laboratorysize lecture bottles of neon or xenon, or even smaller sample bottles under very light pressure. The latter are not very expensive for neon and quite sufficient. Only a small amount of gas is needed. When such small bottles are used, a pressure reduction valve is not necessary, either.

Fig. 5. A high voltage was applied to the electrode while air was evaruated asing a simple one-stage vacuum pump.

In my experiments, I found that neon is the most reasonably priced rare gas that can be used. Its red plasma is spectacular and probably the best visible. It reacts at pressures of $70-180 \mathrm{~mm} \mathrm{Hg}$ and at voltages that are lower than the other rare gases. Discharges are in almost straight lines.
Xenon is perhaps the most spectacular gas of the rare-gas series. Its plasma is bluish-white and lightninglike. It is unbelievably expensive even in smail amounts. It reacts at roughly 70 mm Hg and discharges only with the best generators at the highest voltages. Discharges are erratic, bend at nearly right angles, and are snake-tongued. Neon-xenon blends make spectacular displays. The other rare gases I triedhelium, argon, and krypton-were unspectacular performers.

I also experimented with using different shaped electrodes. My first electrode was simply a stiff wire. A disc was used next and worked well insofar as it spread the emanations around better than a wire. Bell-shaped and ballshaped electrodes were chosen as the best of all. They work about equally well because the top part of the globe is the most important part.
These methods were sufficient to study the effects of vacuum, different rare gases, and different electrodes on

Fig. 6. Sinall amounts of rare gases were introduced into the plasisne globe using this set up. A high voltage was then applied to study the effects of the gas.

One of the author's many plasma displavs. This one features a 6 -liter flask and a metal ball-shaped electrode, and is filled with neon at a pressure of 70 mm Hg .

Fig. 7. A glass-blowers services were required to croate a truly vacuum-tight enclosure. Here, a platinum wire melted into the glass serves as the high-voltage lead.
the discharge. The vacuum held for hours, days, sometimes months. But none of the jars mentioned, were vac-uum-tight forever. Even epoxy resin or sealing wax were no guarantee that the vacuum would hold.
In order to better hold the vacuum in the jars and globes, I decided to melt the electrodes into the glass and to blow on a vacuum connection. While a glass blower's charges are high, he is the only one who could tackle the job. See Fig. 7.

I quickly discovered that this approach added a few complications. For instance, steel or copper wires cannot be melted into glass. They will crack the glass on cooling since their coefficient of expansion is different from that of glass. Platinum's coefficient of cooling is close enough to that of glass to work. While platinum wire is very expensive, a small piece for use as an elec-
(Continued on page 106)

The Digital Electronics Course A Close Look at Comparisons

There is a great deal to know about comparator design and operation We make the learning easy with this fundamental course in comparators.

The operational amplifier is d unique device in that it can be used to perform many functions in addition to amplification-hence the term operational. Generally speaking, operational amplifiers (more commonly referred to as op-amps) require both positive and negative power sources in order to operate.

However, there are some that operate from a single-ended supply: The supply voltages for an op-amp can range from 4 to about 18 volts. They have two inputs: the inverting input (denoted by -) and the non-inverting input (denoted by +).

Op-amps can be configured as differential (difference) amplifiers by applying two different signals to their positive and negative input terminals. The voltage difference (thus the term differential) between the two signals is amplified by a ratio determined by the feedback network connected between the amplifier's output and its negative input terminal. If that network is eliminated, the amplification is extremely large, In fact, the amplifier output will either be totally on, with the output equal to the positive-supply voltage, or off, with the output at the riega-tive-supply or ground potential.
Our gratitude is extended to the EIACEG for the creation of this course, especially to the consultants who brought it to fruition: Dr. William Mast, Appalachian State University; Mr. Joseph Sloop, Surry Community College; Dr. Elmer Poe, Eastern Kentucky University.

However, in digital electronics we are not interested in the op-amp's amplifying abilities, but rather its output level under various input conditions. If the voltage at an op-amp's positive input terminal exceeds that at its negative input terminal by some small amount, its output goes high (all the way up to the power-supply voltage). But if the voltage at its negative input terminal exceeds that at its positive input terminal by some small amount, its output goes low (completely to ground). When used in that manner, the op-amp is called a comparator.

Comparators. A comparator is a special op-amp used to compare the voltage levels presented to its two inputs. Its output swings between fully on and fully off and so the op-amp operates open loop; e.g., there is no negative feedback applied to its inverting input to moderate the output. Circuits optimized for comparator use, therefore, require none of the phase/frequency compensation needed for op-amp feedback stabilization.

In fact, compensation components (if used) would slow the response time of a comparator. Although in principle. an ordinary op-amp can be used as a comparator, using a compensated device would produce a response time of tens of thousands of microseconds, whereas devices optimized for comparator use have response times typ-
ically in the several-hundred nanosecond range.
Comparators are often used to interface with digital circuits (TTL, CMOS, etc.). Therefore using a standard op-amp-which is designed for linear operation (with say, ± 10-volt swings)would require some level shifting and/ or clamping in order to drive a logic circuit.

Differential Input Comparators. A

 comparator circuit is one that provides an indication of the relative state of signals applied to its inputs. If one input is a reference voltage and the other is an unknown or "signal" voltage, the output of the comparator will indicate whether the unknown input is above or below the reference voltage. A basic op-amp comparator is shown in Fig. 1.Let's assume that $V_{\text {ref }}$ is a positive voltage applied to the inverting input of

Fig 1. A basic op-amp comparator is shown here. Because the op-amp is operated in an open loop configuration. the input voltage difference required to toggle the output from one state to another is very small.
the op-amp and $V_{\text {in }}$ is an unknown applied to the non-inverting input. When $V_{\text {in }}$ is lower than the reference voltage,
the output of the op-amp goes to negative saturation (in this case ground). As soon as $V_{\text {in }}$ goes higher than $V_{\text {ref }}$ the output of the op-amp switches to the positive saturation limit (the supply voltage).

Because the op-amp is operated in an open-loop configuration, the input voltage difference required to toggle the output from one state to another is very small (a few hundred microvolts or less). That characteristic threshold is called the "offset" voltage of the opamp (which can be as much ± 10 volts in some cases). Because of that, precision comparators should be nulled so that the input differential voltage is as close to zero as possible, and any source resistances in the input path should be selected to minimize the offset voltage.

Beyond the basic requirement of input voltage range, speed (which has two meanings for comparators) is the next consideration in selecting opamps suitable for use as comparators. In comparators speed is related to both response time and slew rate. Response time is simply the total time required for an output change to occur once a change in the input (either positive or negative) has taken place. Slew rate indicates how quickly an output can change - which can be different for positive- and negative-going slopes.

Frequency compensation in a comparator is usually detrimental because it slows the open-loop speed of the opamp: For example, with a slew rate of 0.5 volts per microsecond $(N / \mu s)$, an opamp needs $40 \mu \mathrm{~s}$ to swing from -10 volts to +10 volts because of its slewrate limitation.

Elimination of frequency compensation also increases the high-frequency gain of the op-amp; thereby increasing the frequency range over which the comparator will have sufficient sensitivity (a high open-loop gain suggests that a small input voltage is required to cause a change in the output). Comparators are subject to wide differential input voltages since $V_{\text {ret }}$ and $V_{\text {in }}$ can be anywhere within the common-mode input range of the op-amp (± 10 volts). rating of at least ± 20 volts to accommodate the worst-case situation.
Inverting comparators may be needed in some cases-a configuration that may be obtained by reversing the inputs of the comparator so that $V_{\text {in }}$ is connected to the inverting input of the comparator. In either case, the op-
amp presents a high input impedance to $V_{\text {ref }}$ and $V_{\text {in }}$.

Single-Ended Input Comparator.

The differential input comparator described previously is the most general configuration and the most often used. Single-ended inputs are around, but both the signal and the reference voltages are fed to a common terminal, and the other input is grounded, as shown in Fig. 2.

Resistors R1 and R2 form a voltage divider between $V_{\text {in }}$ and $V_{\text {ref }}$ (which are of opposite polarities). The resistors along with $V_{\text {ret }}$ define the level of $V_{\text {in }}$ required to cause the junction of R1 and R2 to cross ground, thereby changing the state of the output.

Fig. 2. In the single-ended input comparator both the signal and the reference voltages are fed to a common terminal, and the other input is grounded.

In practice, $V_{\text {ref }}$ and R2 define the current in R2 for $V_{\text {tr }}$ (the trip point); so R1 is selected for the desired trip level of $V_{\text {in }}$ Although non-inverting operation is shown, negative operation is possible by using the inverting input as in the previous example.

The circuit in Fig. 2 has the advantage of being non-critical as to the specific device used. The voltage between its two inputs will be smaller due to R1 and R 2 , so a smaller input-voltage rating is tolerable. The magnitude of $V_{\text {in }}$ can be unrestricted because R1 can always be chosen to reduce the voltage of $V_{i n}$.

It is also a good idea (though not necessary) to add a parallel clampingdiode circuit (as shown in Fig. 2) to govern V_{d}. The diodes don't affect the trip point because when V_{a} is 0 , both diodes are biased off. The diodes can also be connected across the two inputs for differential clamping. Many opamps have those diodes built into their input stages for protection.

Comparators With Hysteresis. The comparators discussed so far have been of the basic open-loop configuration, which amplify the difference
between an input signal and a reference voltage. In situations where the input signal is a slowly varying voltage, that can be a disadvantage-particularly when used to drive logic circuits requiring fast trigger pulsesbecause the output would also change slowly.

One solution is the application of positive feedback to the non-inverting input of the unit, which would give a "snap action" to the output transition. Figure 3 shows an inverting differentialinput comparator that has $V_{\text {ref }}$ applied to the non-inverting input through R1.

Fig. 3. In situations where the input signal is a slowly varving voltage, comparators with husteresis-which would give a "snap action" to the output-are desirable.

Without R2, the circuit would perform similar to the circuit in Fig. 1. If $\mathrm{V}_{\text {ref }}$ (for example) were 1 volt, the output would toggle as $V_{\text {in }}$ rises above or dips below 1 volt.

By adding R2, on the other hand, a positive feedback is developed, so that when the output is high, the fed-back signal is added to the reference voltage, producing a new reference voltage and trip level.

The feedback is regenerative, so the output quickly snaps back to the opposite state, regardless of the rate of change in $V_{\text {in }}$, providing a constant out-put-transition time.

Positive feedback introduces two new terms: We now have an upper threshold point and a lower threshold point rather than a single threshold. The difference between the two threshold points is the hysteresis, which is always centered around $V_{\text {ref }}$ and is not always symmetrical. If the saturation voltages of the op-amp are not equal, the hysteresis region is not symmetrical.

Hysteresis is a useful feature in comparators, not only for reducing response time. For instance, if a low-level noise is superimposed on the input signal, an open-loop comparator will switch rapidly back and forth due to noise fluctuations as the input signal passes through the threshold region. In addition, some open-loop circuits may oscillate during transition due to stray
capacitive feedback. One cure for those problems is a small amount of hysteresis, providing a "dead zone" within which the comparator does not respond. Often as little as 10 mV of hysteresis can eliminate such unwanted effects.

Single-Ended Comparators with Hysteresis. Single-ended com-

 parators with hysteresis, as shown in Fig. 4, can also be used. In that circuit, U1 senses the difference between ground, applied to the inverting input, and the

Fig. 4. Single-ended comparators with hysteresis are also possible.
voltage developed at the junction formed by R1, R2, and the non-inverting input of U1.

Assuming the output is negative, a positive $V_{\text {in }}$ would cause the voltage at V_{a} to rise until it reaches zero volts. The output then snaps positive as a result of the feedback through R2. The voltage at V_{a} is now positive because the output of U 1 is at positive saturation. When $V_{\text {in }}$ goes negative, the voltage at V_{a} also decreases until it approaches zero.

When $V_{\text {in }}$ has reached its lower trip point (often denoted LTP) its output snaps negative again, returning to its original state. The output saturation voltages, in conjunction with the R1/R2 network, sets the trip points of the circuit. The comparator circuit in Fig. 4 is useful, in that no separate reference is required and it can be assembled from an unprotected op-amp.

On the down side, however, the positive and negative output saturation voltages are not suitable references, because they tend to vary with loacing, temperature, and from device to device. That's an undesirable characteristic since some op-amp outputs can swing from rail-to-rail.

Clamped-Feedback Comparators. Adding a Zener-diode clamping network in the positive feedback loop (as shown in Fig. 5) is one solution to variations in threshold voltage. In that circuit, back-to-backZener diodes (D1 andD2)

Fig. 5. Adding a Zener-diode clamping network in the positive feedback loop is one solution to the varying threstholdvoltage problem.
are used to clamp the feedback portion of the output of U1 to V_{Z} (the Zener voltage).

The Zener diodes along with D3 and D4, provide temperature-stabilized thresholds. With equal resistances for R1 and R2, the circuit's input trip level will be equal to the V_{z} reference point. Higher and lower input voltages are possible by changing the value of $R 1$.

The circuit provides two outputs: V_{o} which will vary between the positive and negative supply voltages, and V_{Z} (which is V_{0} clamped across D1 and D2). If input voltages exceeding the common-mode range of U1 are fed to the circuit, a pair of input-clamping diodes (D3 and D4 in Fig. 5) should be used.

Exercise. Figure 6 shows two opamps, both configured as comparators. The voltages that are to be compared are derived from a typical resistive network (known as a voltage divider), consisting of R1 and R3 for the negative (inverting) input. The positive (non-inverting) inputs for U1-a and for

PARTS LIST FOR THE COMPARATOR EXERCISE

SEMICONDUCTORS

U1-LM324 quad comparator, integrated circuit

RESISTORS

(All tixed resistors are $1 / 4$-watt. 5% units.)
R1. R2. R6-47.000-ohm
R3 12,000-ohm
R4. R5-Light-dependent resistor (see text)

ADDITIONAL PARTS AND MATERIALS

Breadboard, ohmmeter, logic probe. No. 22 wirc.

The Digital Microprocessor Course is reprinted here with the permission of the Electronic Industries Association/ Consumer Electronic Group (EIA/CEG). The complete parts kit is available from EIANCEG. For further information, contact EIA/CEG Product Services Department, 1722 Eye Street, NW, Suite 200, Washington, DC 20006; or call 202-457-4986.

Fig. 6. In this circuit (A), the voltages that are to be compared are derived from typical voltage-divider networks: RI and R3 for the inverting inputs; and the R2/R4 and R6/R5 combinations, for the noninverting inputs. Shown in B is the pinout diagram for the 324 quad op-amp.

U1-b are derived from the R2/R4, and R6/R5 combinations, respectively.

In each case, the voltage-divider network connected to the non-inverting input contains a light-dependent resistor (LDR)-a resistive semiconductor whose resistivity varies inversely with light intensity-and a fixed resistor. For the sake of discussion let's assume that resistors R1 and R3 are equal. That means that the inverting input to both comparators is equal to one-half V_{CC}.
(Continued on page 99)

While you wait for your chief executive officer to call you into his office for that important meeting, you slip out your pocket personal computer and check the essential data stored in its memory. Yep, the all-important budget spreadsheet is there as well as the modified version you worked up. You also stored some important memos and letters for immediate reference if needed, In fact, you've cranked in a resume of your accomplishments within the company, and your salary history, should you get the chance to pitch for the raise that you so richly deserve.

The Palm-top Computer! Was that fantasy you just read? No! With the introduction of Portfolio, the world's first palm-top personal computer, Atari Computer (1196 Borregas Ave., Sunnyvale, CA 94088) has created a new category of personal computers. Portfolio establishes brand-new standards in small size, light weight, and minimumpower computing.
The Portfolio requires three standard "AA" alkaline batteries, yet it has the computer power to complete the spreadsheet, word processing, and other computational tasks required by today's business person, student, or funloving hacker. In fact, the $4.92-\mathrm{MHz}$ system, which includes a built-in Lotus 1-2-3 file-compatible spreadsheet program, word processing software, calculator software, appointment book package, and phone/address directory as well as an operating system using MS-DOS 2.11-compatible commands, is comparable in power to an IBM PC.

What's Inside. Packed inside Atari's Portfolio are the Intel 80C88 static CMOS microprocessor, CMOS RAM, and other CMOS components, as well as a compact LCD readout The low power consumption of those components, combined with special system software, enables users to run the system for six to eight weeks of "normal" use, with just three standard "AA" alkaline batteries.
The system software itself provides several power-conserving features. For example, while a program is waiting for the user to use the keyboard, Portfolio automatically switches into a stand-by mode. The stand-by mode actually stops the microprocessor clock. The feature is transparent to the user, because the screen does not go blank
and there is no delay when the user resumes work.

The energy-saving system also conserves its battery life by turning off automatically if no entry has been made for two to four minutes. However, data is not lost and the user need only press any key to continue any work in progress.

Users are also warned if Portfolio's batteries are running low. A built-in circuit senses when battery voltage is low and indicates the status by putting a message on the screen before it automatically shuts the system off. Users who turn on the machine will get a "Low Batteries" message and the machine will again turn itself off. If the user changes the batteries within a few
bines most of the system-integration features that, as recently as two years ago, would have used multiple, bulky chips.

To further help reduce Portfolio's size, a card drive and solid-state memory cards were substituted for a floppy drive and disks. That significantly reduced the necessary size, weight, cost and power consumption for the system

The 40 -column by 8 -line LCD screen may be an unattractive feature in the eyes of some users; however, that design has also enabled Atari Computer's engineering team to minimize the size and power consumption of Portfolio. Rather than doubling the size of the system with a full-screen display, an

weeks, the data in the internal memory can be salvaged.

Keeping the Weight Down. Creative component packaging and new fabrication technology was a major factor in determining the compact size of Atari's Portfolio. Rather than use standard integrated circuits that are packaged in full-size, dual in-line packages; Portfolio uses miniature, sur-face-mounted components, which are mounted on both sides of the circuit board.

Until now, it would have been virtually impossible to create such a small system with reasonable computing power because the technology just wasn't available. For example, Portfolio has a powerful ASIC (Application Specific integrated-Circuit) chip which com-
added window function allows the user to saunter throughout a virtual $80-\mathrm{col}-$ umn $\times 25$-line display. That "virtual screen" is used when running certain Portfolio-compatible MS-DOS programs that have been downloaded onto the system.
Portfolio's design is similar to a flat jewel box. The keyboard is on the bottom half of the system and the display is on the top half. They are joined by a hinge that enables users to adjust the angle of the LCD screen for optimal viewing.

Keyboard Considerations. As Portfolio developed into a palm-top computer, its small size created some keyboard-size problems. For instance, in an attempt to do touch typing, the reviewer's four fingers on the left hand

It's here!' A one-pound personal computer that runs DOS-type software and can even fit in your pocket!

BY JULIAN MARTIN

covered the A, S, D, F, and G keys_that's one key too many! The right hand had a similar experience. It was obvious that touch typing wouldn't be useful with the Portfolio. Children and adults with small hands may be able to manage it, though.

Portfolio's keyboard was made to provide users with the look and feel to which they are accustomed from fullsize computers. The keyboard has a 63key configuration with positive-action keys that fill the entire lower surface (7.8 -in. $\times 4.1$-in.) of the case. That means that when a user strikes a character, their tactile sense allows them to easily feel when the keystroke is complete. There is also an audible key click (that can be disabled) as second reassurance to users that they have entered data. Rather than add feet to the system to optimize the viewing and typing angle by pitching the entire unit, Portfolio designers chose to tilt the top of each key upward. The keyboard is not a cheap "chiclet" fabrication, but a craftsmanship-award winner.

The keyboard design eliminated the keys for the numeric keypad as we know it; but, a special key combination activates an "embedded" numeric keypad. So, accountants, engineers, students, and income-tax sufferers can still manipulate numbers as they do on full-size machines.

Memories, Memories. The solidstate memory cards, which are about as thick as two credit cards, are used in the same way as floppy disks. The cards can store data files or application programs, have no moving parts, are fully encased with plastic, and are more rugged and easier to store than floppies. The memory cards are available in $32 \mathrm{~K}, 64 \mathrm{~K}$, and 128 K capacities.

Independent software suppliers working closely with Atari will soon make available masked ROM cards. The cards will offer utilities and accounting and sales-support software: each card is capable of permanently storing up to 128 K of software.

Internal Software. Portfolio is bundled with five software packages, including:

Spreadsheet-This Lotus 1-2-3 file compatible spreadsheet offers users 127 columns by 255 lines. The Portfolio spreadsheet permits most Lotus $2 . X$ commands and functions except database management and graphics.

Text Editor-This basic word processor includes automatic carriage return and word wrap, as well as search-andreplace and cut-and-paste functions.

Calculator-The calculator has fivenumber memory, percentage calculations, and four numeric formats: general, fixed, scientific, and engineering. In addition, there are three functions: factoral, power, and root. The calculator also includes an editable "tape" of previous calculations with spreadsheet-like recalculation-a terrific feature for in-come-tax form preparation.

Diary-The personal diary includes a calendar and appointment book with programmable reminder alarms. Repeating alarms can be set to go off every day, week, month, or year--never forget a birthday or anniversary again.

Address Book-Names, phone numbers, and addresses are managed with an alphabetical index. Users may find entries alphabetically, by scrolling, or by searching for a word or phrase. You can retrieve telephone numbers visually or let Atari's Portfolio do the dialing. (The reviewer used the automatic dialer to contact his mutual-fund electronic operator for pricing information-Portfolio dialed the 800 number and provided 18 additional identification digits in two groups to get the financial data.)
Operating System-Atari's Portfolio operating system uses MS-DOS 2.11compatible commands. That enables MS-DOS software developers to easily adapt "well-behaved" PC programs to the unique features of Portfolio, such as the 40 -column by 8 -line LCD. The equivalent of MS-DOS .EXE and .COM files may be stored in Program Cards instead of floppy disks, or executed directly when specially compiled.
Portfolio also includes an internal file transfer function, which, when combined with the optional Smart Parallel Interface, enables users to upload or download data files from their IBMcompatible personal computers. For moving data within or between applications, Portfolio includes a cut-andpaste function. For example, spreadsheet data can be incorporated in a business memo.

Portfolio is a multi-lingual system. In fact, Portfolio is provided with one of seven different keyboard configurations during assembly. Each system includes one predominant language for menus and messages and two additional languages. Users can switch between languages with a few keystrokes. The three language formats

Sophisticated micro-miniaturization technology was used to make the Atari a one-pound unit, which is slightly smaller than a video-tape cassette. The thin memory card snaps into a side port. Note the piano-key-like contacts at the bottom of the card.
are: English/French/German, English/ Spanish/Italian, and English/Swedish/ Danish.

Options. Atari's Portfolio has a 60 -pin bus connector for use with proprietary peripheral devices. It can be connected to any peripheral that uses the industry-standard RS-232C serial interface. The Smart Parallel Interface supports standard Centronics parallel devices, such as printers.

Some of the optional Portfolio peripherals are:

Smart Parallel Interface-The \$4.95 Smart Parallel Interface can be used with Portfolio's internal File-Transfer program and PC File-Transfer software to exchange files between the palm-top system and an IBM PC or compatible computer. For example, users can download Lotus 1-2-3 spreadsheet templates created on their desktop PC and use them on their Portfolio. It can also be used to connect the system directly to a parallel printer.

Serial Interface-The $\$ 7.95$ Serial Interface can be used to connect Portfolio to peripherals such as modems, printers, or bar-code readers. With suitable software, the serial interface can be connected to the serial interface of another computer so that Portfolio can act as an intelligent terminal.

Memory Expander Plus-The $\$ 229.95$ Memory Expander Plus contains 256 K of RAM that can extend the internal 128 K RAM in the main unit and/or increase the size of the internal RAM disk. Two memory expanders can be attached to Portfolio to extend the internal RAM to 640K. The memory expander retains data stored when

Portfolio is turned off and extends the bus so that additional peripherals can be attached. The memory expander contains a second "card drive" that accepts a memory or program card so users can run external programs and store data on a card at the same time, or both drives can be used to copy cards quickly.

AC Adaptor-Portfolio's \$9.95 AC Adaptor is useful to users who want to conserve their batteries during long periods of operation. When the adaptor is connected, batteries are not required to power the system or peripherals.

PC Card Drive-Users who frequently transfer files between Portfolio and their desktop PC will want to consider adding the \$99.95 PC Memory Card Drive to their desktop system. The card drive allows users to read and write memory cards with their IBM-compatible PC at high speeds. It also eases the process of downloading MS-DOS files from your personal computer onto Memory Cards for Portfolio.
The one-pound Portfolio palm-top personal computer is the most complete portable personal computer system available today; it is the smallest, full-featured personal computer ever designed. But even if it were several pounds heavier, it would be the most competitive system available for portable computer users in terms of price verses performance. Portfolio is available from Atari Computer's leading authorized dealers for $\$ 399.95$ and from Atari direct at 1-800-443-8020. For more information contact the company directly, or circle No. 118 on the Free Information Card.

It is a cold winter day on Garky Street-one of the central arteries of Moscow running to Red Square. Brown slush makes slurping noises under my feet as I walk up to the gray granite building. I feel a bit nervous, though not nearly as nervous as the first time I came here. After all, if I am caught, I can spend a few months in jail.

My right hand is wrapped around the handle of an ugly lime-colored suitcase; my fingers getting tired from the heaw load. On the first floor of the building red plastic letters over a shopwindow read: "Magazin Peeoner," which means "The store of young pi-

Being a serious electronics buff in the Soviet Union is not easy. It's nothing like it is in the States: It requires considerable money, connections, and a lot of inventiveness. It's not a hobby for a quiet introvert. In the Soviet Union it has more in common with something like stamp collecting, than anything else. You search for that one part for weeks, making phone calls, visiting black marketeers, and staking out dumpsters. When you finally get that 1000-pF, 5-volt capacitor, there is a sense of joy, comparable only to the feeling of a stamp collector who acquires a 1938 Swiss stamp with the price printed upside down.
ground electronics bazaar: a real hobbyist will first search an institutional trash can-the black market is only a last resort.

I starled out in electronics at the age of five, collecting tubes and burned-out potentiometers behind a TV repair shop riear my house. Every Tuesday and Friday evening, a janitor emptied a bucketful of electronic rubbish, surplus parts, funch leftovers, and, oftentimes, empty bottles of vodka into a dumpster next to the back door of the shop. A group of local hobbyists, ranging in age from five to fifty, would watch him from the stake out in a nearby park with rapt attention.

Electronics Hobbyists

Clandestine
meetings in dark hallways, scouting through trash, and manipulating
personal connections sounds normal for a hardened gum-shoe, but a typical electronics hobbyist?

BY ANTON A. ANTOKKIN

oneers." Inside, there are wood, paint, tools, model railroads, and electronics departments, outside however, is the black market for electronics parts.

I walk up to a heavy-set man with an expensive briefcase, standing next to an entrance. We study each other's faces for some time.
"What have you got?" he finally utters, nodding at my suitcase.
"Everything you want," I reply nonchalantly, "computer boards, MIG-35 insides, a bunch of Japanese IC amps, two-color LED's-lots of stuff."

The businessman's eyes light up, he cautiously looks around and whispers: "Trade or sell?"
"Trade." I say.
He says, "Let's go around the corner. Act normal."

Building the project is only a part of the hobby. Finding the part and building your collection is just as much a pastime as soldering and testing. That might seem inconceivable to a hobbyist here, in the States. But imagine; what would you do if Radio Shack discontinued its parts, mail order was outlawed, and you didn't want to take apart your grandfather's AM radio?

Gold from Trash. Mixing and matching parts is fine if you only want to build one-evening multivibrators that scream, bark, and meow. But if you decide to put together a receiver or an amplifier, substitution will not get you very far. But, of course, that doesn't mean it's time to put on your darkest sunglasses and head for the under-

In a matter of minutes the dumpster was toppled on its side, and the hunt began. Shortly, all that was left were lunch leftovers and broken vodka bottles. Almost everything was a good find: tubes, transistors, and electrolytics could be tested; yokes and transformers were good sources of wire, and can be re-spooled: chassis can be refitted; circuit boards could be rewired; and switches could be cleaned and rebuilt.

I would check out the trash every week, often with a few friends, at a number of "hot spots" around Moscow. Unfortunately, oftentimes the people who disposed of electronic parts, were also quite aware of their value. The best was taken home for their children, or for
(Continued on page 102)

Test Reports

By Len Feldman
 INSTANT REPLAY VT-498EM VIDEO CASSETTE RECORDER

Have you ever borrowed or received a video tape from a friend overseas, popped it into your VCR, and then been frustrated when all you could see on your TV screen were blurred, wildly fluctuating wavy lines? Unfortunately for world standardization, TV broadcasting "grew like Topsy" after World War II, with different parts of the world adopting different transmission and reception standards. The U.S., Canada, Japan, and most of South America use a system known as NTSC. Much of Western Europe uses one or more variations of a system known as PAL. while France, parts of Africa, the Middle East, and the USSR use a system called SECAM. While multi-system TV sets have been available to world travelers for some time, it took a company called Instant Replay (2951 S. Bayshore Drive, Miami, FL, 33133) to come up with a VCR that not only can receive programs broadcast in NTSC, PAL, or SECAM, but can also record and play back such programs correctly. With it, you can play a PAL or SECAM tape on an NTSC (U.S. System) TV monitor. Abroad, if you have this VCR with you,
you can play an NTSC-recorded tape on a PAL (European System) TV/Monitor.

The VCR is configured for the VHS format. It uses four heads for improved performance at all tape speeds. Multiple RF converters are built in for the various transmission standards. The unit comes with a full-function remote control that lets you program the timer for up to eight recording events over a one-year period. The remote also handles the usual VCR operations such as play, stop, pause, etc. The real-time clock can be set from the remote and, once set, will show you the day of the week for any day over the next 99 years!

The VCR's tuner section will memorize up to 79 TV -channel frequencies. Other timer features include instant or "onetouch" recording for periods of up to four hours (in 30 minute increments), as well as simplified timer recording (over a period of the next 24 hours).

Various automatic-operation modes are incorporated, such as automatic play (when a cassette is inserted), repeat playback, automatic power-on, automatic shutoff after rewind, automatic speed selection during play-

Instant Replay's VT-498EM NTSCIPALISECAM VHS VCR.
back, and even automatic colorsystem selection. The "World Traveler." as this VCR is called, also incorporates an $R G B$ output and its own PAL/SECAM color-level control right on the front of the unit.
The usual special effects common to single-system VCR's are available with this unit, too, such as still-frame viewing, and fast scanning in either direction.

Controls. A power switch at the left end of the front panel, adjacent to the cassette slot, activates the unit. COLOR MODE indicators that show the type of colorTV system being recorded or played back are nearby, while further to the right is a display area that shows time and day of the week, tape counter numerals, and channel indication. The usual array of tape transport buttons (REWINDMISUAL SEARCH. PLAY, FAST FORWARDNISUAL SEARCH, STOP and PAUSE) are below the cassette slot. To their right are counter reset and COUNTER MEMORY (rewind) buttons, "Up" and "Down" tv-channel select buttons, a RECORD button and a pair of buttons needed for instant recording.

A low-frequency video-burst signal was used to evaluate playback video-response. The test results in the PAL mode at SP speed are shown here.

Opening a hinged flap near the bottom of the front panel discloses an array of secondary controls, many of which are unique to this type of multisystem VCR. One nice little feature we discovered here is the imprinting of the control functions on the inside of the flap (which, when opened, is positioned on a horizontal plane) as well as on the vertical surface behind the hinged flap. A small matter, you might think, but for those of us who hate to stoop down to the ground to read the nomenclature, it is a convenient and thoughtful addition that didn't cost the manufacturer very much to incorporate.
Controls here include a picture SHARPNESS knob, a TRACKING control, con-

TEST RESULTS－INSTANT REPLAY VT－498EM VCR

Unlike the case with audio products，video products seldom have many meaningful published specifications associated with them．Thus，APEL＇s results are tabulated without any reference to manufacturer＇s specifications，simply because few of APEL＇s measurements are normally reported by this or any other manufacturer．As Popular Electronics publishes more and more reports，you will be able to make meaningful comparisons between competing products

Specification
Video Output
Maximum Record／Play Time（NTSC \＆PAL／Secam）
Frequency response，PAL（Video Output）
SP Playback

LP Playback
Frequency response，NTSC（Video Output）
SP Playback
LP Playback
Signal－to－Noise Ratios
Red－Field Chroma，PAL（Video Output）
SP（AM／PM）
LP（AM／PM）
Red－Field Chroma，NTSC（Video Output）
SP（AM／PM） LP（AM／PM）
Luminance，PAL（Video Output） SP（100／50／10 IRE） LP（ 100 IRE）
Luminance，NTSC（Video Output） SP（100／50／10 IRE） LP（100／50／10 IRE）

APEL Measured

1．0 Volts，p－p 8 hours／4 hours
$-4.33 \mathrm{db} @ 2.0 \mathrm{MHz}$
-4.86 dB ＠ 2.0 MHz
$-3.37 \mathrm{~dB} @ 2.0 \mathrm{MHz}$
-4.86 dB ＠ 2.0 MHz
$33.1 / 36.3 \mathrm{~dB}$
$32.9 / 36.2 \mathrm{~dB}$
$50.6 / 44.8 \mathrm{~dB}$
$44.5 / 38.9 \mathrm{~dB}$
$22.6 / 25.2 / 31.9 \mathrm{~dB}$
22.7 dB

46．1／47．1／47．5 dB
$41.6 / 41.8 / 42.2 \mathrm{~dB}$

Output Level for Referenced Input

SP
LP
THD at Referenced Output SP

Frequency Response（for -3 dB ）
SP
LP
Signal－to－Noise，Record／Play
SP
LP
Harmonic Distortion＠－10dB（SP／LP）
100 Hz
1 kHz

Power Requirements
Fast－Rewind Time（ T－120 tape）
Fast－Forward Time（T－120 tape）
Dimensions（ $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ ，inches）
Weight（Ibs．）
Suggested Retail Price
0.33 volts
0.30 volts

1．6\％
1.8%
90 Hz to 12.0 kHz
64 Hz to 5.2 kHz

$$
46.3 \mathrm{~dB}
$$

47.3 dB

0．62／1．00\％
0．60／1．00\％

Additional Data

38．0 Watts
4 min .42 sec ．
4 min .41 sec ．
$39 / 16 \times 171 / 16 \times 143 / 4$
16.0
$\$ 1995.00$

trols associated with automatic or man－ ual selection of the type of color system desired（NTSC，PAL，or SECAM），buzzer and EDIT switches（the buzzer，if turned on，acknowledges every touch of a control with a distinctive beep），controls needed for setting the clock and for timer programming，a RECORDING SPEED selector（playback speed control is，of course，automatic），and a simulcast switch that allows you to record video
from the tuner while audio（usually ster－ eo）is recorded via the external audio－ input jack，usually from an FM broad－ cast．
The rear panet of the $V T-498 E M V C R$ is equipped with the usual antenna－input and RF－output connectors，AuDIO and video input and output jacks，a vertical SYNCHRONIZATION COntrol，a selector switch that needs to be set according to the type or format of V set connected to

At the SD speed，the playback video－ response in the NTSC mode was a shade bether：
the VCR，and a switch and control that allow you to adjust the RF modulators to match your TV set＇s tuning exactly．

The remote control duplicates many of the major control functions found on the front panel．Furthermore，because it is equipped with numeric buttons，it al－ lows instant access to any channel．In addition，it has an LCD screen of its own so that timer programming can be done from the remote as well as from the front panel．

About APEL．Performance of video products tested for Popular Elec－ tronics is measured and tested by Ad－ vanced Product Evaluation Laborato－ ries（APEL），under the direction of Mr． Frank Barr．Mr．Barr has been in the busi－ ness of independently evaluating con－ sumer－electronics products for more than two decades，and his laboratory is one of the best equipped video－testing laboratories in the country．After APEL amasses data concerning a video product，that data，along with the prod－ uct，is sent to my laboratory（Leonard Feldman Electronic Labs）where we put the product through its paces，analyze the data supplied by APEL，and pro－ duce the final report you are reading now．Siome of APEL＇s measurements may appear to be too technical for casual readers．For that reason，the ac－ tual numerical test results are sum－ marized elsewhere in this report，while their significance is reported here．

The Test Results．Since APEL is based in the U．S．and generally is involved only with NTSC video equipment，it was nec－ essary for the lab to produce a special PAL test tape．That was done using a Tektronix PAL generator and a Magni Computer generator．Instant Replay supplied APEL with a couple of pre－re－ corded PAL and SECAM program tapes． The lab reports（and we can confirm，
having viewed those tapes) that playback quality was very good-better than the PAL signal-to-noise measurements would indicate.
APEL tested the video section first as a PAL player and then as an NTSC record/ play unit. Using a video-burst signal, video frequency-response was about what you would expect from any highquality VHS VCR. At the SP speed, video response was a shade better using the NTSC format, than it was in the PAL mode, but at the slower, LP speed (LP, not $E P$, is the slowest speed available on most European VCR's), results were about the same in both PAL and NTSC.
Both chroma (color) and luminance (brightness) signal-to-noise ratios using the PAL tapes were rather poor compared with the results obtained in the

This vectorscope measurement of NTSC record/play tapes shows that color phase. (accuracy) and intensity was near perfect.

In the case of the PAL tests, the vectorscope indicated a double set of vectors; one correct, one somewhat displaced. Since the effect was not viewed when observing the actual color bars on the monitor, APEL believes the odd display was caused by the difference line-repetition rate.

NTSC mode, but as already pointed out, those figures were somewhat deceptive when it came to playing back tapes in the PAL mode. As is usual, sig-nal-to-noise was poorer for either mode when measured at the slower LP
tape speed than it was in the SP speed.
APEL measured color accuracy and the degree of color saturation using a piece of test equipment known as a vectorscope, which measures the phase and intensity of the signals associated with standard color bars, as recorded on and played back from the tape. Ideally, the vectors produced should produce spots of light on the vectorscope display that fall precisely on the cross-hairs used to designate the various colors in the color-bar patterns, such as R (for Red), Cy (for Cyan), Yl (for Yellow), B (for Blue), and G (for Green). In the case of NTSC record/play tapes, both intensity and color accuracy were virtually perfect. In the case of the PAL tests, double sets of vectors seemed to appear on the vectorscope display; one set falling where it should, the other somewhat displaced from the first set. APEL did not observe that phenomenon when viewing the actual color bars on a TV monitor. They therefore feel that the odd display may have been caused by the fact that the U.S. power-line frequency is 60 Hz , whereas the PAL field repetition rate is 50 Hz , to correspond with power line frequencies in most of Europe.
Audio performance of the VCR was measured in the NTSC mode only. Since the VCR uses only a conventional linear audio track recorded by means of a stationary tape head, very little difference in audio performance might be expected between NTSC, PAL, or SECAM modes.
The tape speed is the single greatest governing factor when it comes to audio frequency-response, and SP tape speed does not vary that much between the color-TV operating modes (33.35 millimeters/second for NTSC, and $23.39 \mathrm{~mm} / \mathrm{s}$ for PAL and SECAM.) While audio signal-to-noise ratios were not much better than what you can expect from an inexpensive hand-held audiocassette recorder, frequency response extended to well beyond 10 kHz when the higher SP tape speed was used. Of course, at the slower LP speed, audio response suffered as it always does when linear edge-track audio recording is used on VCR's. At that speed, au-dio-frequency response extended only to about 5 kHz , which is actually slightly better than the average for VHS VCR's operated at that speed and in the conventional recording mode.

Hands-On Tests. Of course, we were not able to record programming of our
own in anything but the U.S. NTSC system. We did, however, play the tapes supplied by Instant Replay and found that there was little need for control adjustment and the "transcoding" (as the manufacturer calls the process of making PAL or SECAM tapes compatible with NTSC video monitors) was well done, with no vertical jitter and well stabilized horizontal synchronization.
The tapes that we did record from over-the-air broadcasts using the NTSC format played back with about the same picture definition or resolution as we normally get from a dedicated VHS NTSC VCR. One point worth mentioning is the fact that the VCR also has provision for operation at most of the world's line voltages. It comes from the factory adjusted for the highest line voltage, as a safety measure. When operated in the U.S. the setting of a switch (located on the underside of the unit) should be changed. And, of course, should you take the unit with you overseas, you must set the switch to a higher setting if the country you visit uses 210 to 240 volts as a standard supply voltage.
At a suggested retail price of $\$ 1995.00$, the VT-498EM "World Traveler" VCR is not for everyone. But, for the frequent traveler, or for anyone who receives "home movie" video tapes from friends or relatives living in other parts of the world and hasn't been able to view them without paying a steep fee for having a professional studio convert the tapes to NTSC format, the "World Traveler" VCR may be just what's needed. For more information contact the manufacturer, or circle no. 119 on the Free Information Card.

"It keceps spitting out the tapess.' Marbe it just has bether taste ill mories.:

$\left\{\begin{array}{c}\text { HANDSSON } \\ \text { REPORT } \\ \text { STM }\end{array}\right\}$

OCEAN PRODUCTS NAVplus NAVIGATION SOFTWARE

If Christopher Columbus had the NAVplus system on-board when he reached the shores of America, he would have known exactly where he was.

For centuries, navigating the world's waterways has been as much of an art as it was a science. While it's true that modern technology has yielded navigational aids that have made course-plotting a lot more precise (such as "Loran," which we'll discuss later), one still has to painstakingly plot Loran readouts onto an actual chart.

To remedy that problem, today's technology has also provided us with the extremely rugged, relatively lowcost, and easily portable Macintosh computer. The Macintosh has a highresolution display-perfect for nautical charts-and a mouse that makes selecting various points of interest extremely easy. It is for those reasons that the NAVplus charting and navigation software package was targetted for use on a Macintosh plus or better. An IBM version of the package is also in the works as of this writing.

Loran. Before we discuss the NAVplus system, let's first explain what Loran is, and how it's used. Loran is similar to radar in that it measures distance by noting radio-wave travel time. The basic difference between them is that Loran simultaneously uses several transmitter sites to accurately pinpoint a position.

Take a look at Fig. 1. For simplicity's sake, the figure contains only two transmitter sites. First, a "master station" sends out a radio signal that is pickedup by a Loran receiver on-board the ship. The signal is also detected by a "slave station," which sends out its own signal a short time after it receives the master-station signal. The on-board Loran receiver then picks-up the slave's signal and measures the time delay between the two signals and converts that to map coordinates.

Fig. I. A Loran receiver on the ship receives a pulse from the master station and then one from the slave station. The time difference between the two signals can be converted to map coordinates.

Actually, if only one master-slave pair is used as shown, the system couldn't tell if you were in the Atlantic to the right of the stations or somewhere in Idaho to the left. That problem is overcome by the use of multiple master-slave pairs. After all the data is converted to coordinates, it is then the job of the navigator to transfer those coordinates onto an actual chart.
By the way, other navigational systems (i.e. such as SAT NAV and GPS) also exist. They're not exactly Loran, but they operate in a similar manner. SAT NAV (Satellite Navigation) is a system that uses several satellites around the world to get a positional fix. The satellites, however, are not fixed in relation to the Earth's surface, so it is only good for periodic position updates. The GPS (Global Positioning System) uses several geo-synchronous, or fixed-to-Earth satellites, and provides a highly accurate, continuous means of determining your position. Because of the addition of more and more satellites, GPS coverage is constantly expanding and may eventually make Loran obsolete.

Most receivers designed for Loran, SAT NAV, or GPS have a standard marine output signal, NMEA 0183, which can be fed into a printer or modem port from a receiver via a cable.
(Continued on page 106)

 Antique Radio

BROTHER PAT'S MARVELOUS MUSEUM OF TUBES

Tucked away in a college library in the heart of the Bronx, a New York City borough, is a "must see" exhibit for anyone interested in the history of vacuum tubes. It's a collection of almost 4,000 tubes and related artifacts, representing every phase of U.S. vacuumtube evolution from the earliest to the most recent types manufactured. The permanent exhibit, mounted along the walls of Manhattan College's Engineering Library reading room, is the brainchild of Brother Patrick Dowd, F.S.C., science teacher at Paramus (New Jersey) Catholic Boys High School, who spent 16 years creating it.

Though considered by experts to be the most comprehensive permanent display of its kind anywhere in the world, the museum is as unpretentious as Brother Pat himself. If you're sightseeing in the New York City area, don't look for it in a visitor's guide. In fact, the museum doesn't even have a formal name. In the simple photocopied brochure that serves as its catalogue, this world-class exhibit is variously called "The History of the Vacuum Tube," or "the vacuum tube exhibit at the Manhattan College Engineering Library."

How It All Started. This incredible collection had its beginnings in the mid 1970's. The diamond anniversary of Marconi's 1901 Atlantic-spanning radio experiment was approaching, and the principal of Paramus Catholic Boy's High School wanted to put together a commemorative exhibit. Because of Brother Patrick's interest in amateur radio, he was recruited for the job of putting together a display of vacuum tubes.

As a licensed radio ham, Brother Pat was an intelligent user of tubes, but he knew little about their rich and interesting history. However, learning as he went along, he solicited donations from members of his ham-radio club the North Jersey DX Association), other oldtime radio amateurs, manufacturers, and dealers in second-hand tubes. The response was overwhelming, and over the next few years literally thousands of tubes poured in.

As he became more knowledgeable, he refined his hoard by purchasing at flea markets and estate sales, and by trading with other collectors. Eventually, the collection transcended its original purpose and came to in-

Engineering Library Reading Room at Manhattan College doubles as home for Brother Pat's tube muscum. Industrial and transmitting tubes too large to fit on panels are moumted on shelves above.
clude a large number of rare and historically significant pieces. That was when Brother Pat determined that he should try to find a permanent home for the tubes.

One of the difficulties that he had experienced when he first began to research the history of vacuum tubes was the lack of any public display of tubes anywhere in the New York City metropolitan area. Brother Pat was hoping to correct that condition. His first step was to mount the collection, in related groups, on attractive display panels.

Brother Pat (right) discusses the collection with Bruce Kelley (left). Curator of the Antique Wireless Association Museum in East Bloomfield. NY, and Rick Barry (center), Manhattan College's Engineering librarian. Panels in background show over 100 brands and variants of the famous 201/201-A tube.

Manhattan College Comes

 Through. The mounting project was started in the summer of 1978, and a permanent home for the collection was located by the following spring. New York City's Manhattan College was just completing a new reading room for its engineering library. Not only would the library be a very appropriate locale for the tubes, but the reading-room walls offered plenty of room for hanging the display panels. The deal was made, and the first 24 panels were completed and installed in time for the room's September, 1979 dedication ceremonies.The final four panels were added last summer, bringing the total to 76. Brother Pat considers himself most fortunate, because the available wall space held out until the addition of the last panel. What's he going to do for an encore? He's not saying --but, as curator of the collection, Brother Pat has a lot to do just updating the displays to include the new "finds" and additional information that continue to turn up.

Objectives and Organization. When the exhibit was first being installed at

Panel containing early "lighthouse" and "pencil" tubes (left) gets once-over from Brother Pat. Small panels at right were made by $R C A$, and illustrate assembly of Nuvistor tubes.

Manhattan College, the objective was simply to put together a permanent display showing the history of the vacuum tube. However, as more and more tubes were acquired, the goals slowly broadened. Today, the objectives call for not only illustrating vacuum-tube history, but also displaying types demonstrating all uses of the vacuum tubeincluding receiving, transmitting, industrial, and special purpose.
As the collection expanded, says Brother Pat, so did its status in people's minds. In the beginning, he and his principal thought of it as a display. When it was first moved to Manhattan College, folks began to think of it as an exhibit. Today, there's no doubt that it's a fullfledged museum.

Because of space limitations, the collection is mainly devoted to the hisiory and role of the vacuum tube in America. However, foreign tubes are shown wherever their inclusion is necessary in telling the complete story of the vacuum tube-or where they found widespread use in this country.

The tubes range in size from the smallest triode ever made ($1 / 8 \times 1 / 2$ inches) to a 5 -foot, $100-\mathrm{kW}$, transmitting model. The larger transmitting anc industrial tubes are located on special shelves above the panels. The museum currently displays about a hundred of those larger tubes, with more to be added in the near future.

The tubes are arranged in organized groups on the glass-enclosed oak panels. Depending on the point to be made, the samples on a particular panel might be mounted by type, time
period, function, manufacturer, etc. Individual panels, or groups of panels, are devoted to receiving tubes; transmitting tubes; special-purpose tubes such as rectifiers, magic-eye indicators, and voltage regulators; $T V$ image tubes; X-ray tubes; industrial types; radar types; and others.

Exhibit Highlights. Of course, there's no way to do justice to this unique and extensive collection in the limited space available. But here are a few things that caught my eye as I scanned the descriptions of the panels in Brother Pat's exhibit catalogue:
"Panel 1 (44 samples). ...Picture of the

Here is a close-up of Panel 4, which features RCA receiving tubes dating from 1925-1929.
'Edison Effect' Bulb; Samples of Pre-patent DeForest Audion; Fleming Valve; DeForest Spericals; Weagant Valves; Early Tubulars; Popular WWI Vacuum Tubes_France, England, Germany and America; Early Post-WWI Marconi/Deforest/Moorhead; DeForest 'Singer' Type Rectifier \& Amplifier-(1906-1920)."
"Panel 2 (53 samples). Western Electric Early spherical and tubular tubes (1914-1929)."
"Panel 3 (37 samples). RCA Receiving Tube Releases-(1920-1924) + Later Variants."
"Panel 4 (42 samples). RCA Receiving Tube Releases-(1925-1929) + Some Forerunners."
"Panel5 (56 samples) and Panel 6 (60 samples). Some of the Many Faces of the 201/201-A-perhaps the most popular vacuum tube ever made. (1920's)."
"Panel 18 (42 samples). G.E.'s Prototype All-Metal Receiving Tubes + RCA's first production samples of these tubes-(1933-mid 1938)."
"Panel 21-b (25 samples). Birth and Development of the Electron Ray (Mag-ic-Eye) Tube-'35 \& After."
"Panels 23 through 34 (336 samples). Devoted to the Transmitting and Industrial tubes (1920's to WWII \& after) of the following companies: G.E., Westinghouse, RCA, Western Electric, Deforest, Sylvania, Hytron, Taylor, Raytheon, Heinz \& Kaufman, United Electronics, Amperex \& Eimac."
The list of large tubes shelved above the panel displays includes several types of more-than-passing interest, and among them are several vacuum tubes whose individual histories are known. Here are a few of the tubes that seemed especially noteworthy to me: Western Electric Type 340-A used in a circa 1930 AT\&T 60-kilowatt Transatlantic Telephone Station; 1926-vintage RCA UV-851 transmitting tube used at Radio Station WOR; Westinghouse Type AW-200/899 50-kilowatt transmitting tube used atop the Empire State Building in the RCANBC experimental $T V$ station W2XBS from July, 1936 to World War II; Westinghouse WL-530 \& WL-531, the power-amplifier and rectifier types used in the Pearl Harbor radar (December 7th, 1941).

More on the Exhibits. I've shared with you some of the things that I personally thought were especially interesting about the museum, but now let's give Brother Pat the floor! In corresponding with me as this article was being developed, he made several
points about the collection that l'll pass along here.

In the summer of 1975 , while researching the panels devoted to metal tubes, Pat got to know the personnel at RCA's Harrison, NJ plant. Those contacts stood him in good stead when, in January 1976. RCA announced that their tube plants would be closed. During the last months at Harrison, he was allowed to photograph the tube manufacturing processes and to collect many tools and devices for his own museum (panels 59 and 68) and that of the Antique Wireless Association in East Bloomfield, NY. He was also able to obtain-for the Antique Wireless Association-all of RCA's tube records and manufacturing specifications.

More RCA artifacts found their way into Brother Pat's museum through his friendship with George M. Rose, the retired head of RCA's receiving tube advanced research and development group. George invented the glass-but-ton-stem and hard-wire-pin construction style that made possible the miniature and micro tubes. He developed the acorn, pencil, and Nuvistor tubes, to mention only a few of his many contributions. George had preserved the developmental samples of most of his projects, and those precious artifacts are now mounted in panels 9,10 , and 11.

Twelve panels of the exhibit (numbered 40 through 51) make up a unique display tracing the development of the image tubes used in N cameras. Beginning with the Zworykin Iconoscope and Farnsworth Image Dis-

Western Electric 50 -watt transmitting and industrial tubes of the 20's and 30's are shown on Panel 24.

Panel 46 highlights Image Orthicon tubes used in studio TV cameras during the 50's and 60's.
sector tubes of the early 1930's, the series of panels covers every step in the evolution of image-forming devices through the development of the solidstate studio-quality imaging devices that appeared on the scene in the mid 1980's.

Additional donations to the museum are always welcome. If you have a vacuum tube or related item of historical significance, and would like to see it preserved and made accessible to the general public, Brother Pat would like to hear from you. Write Brother Patrick Dowd, FS.C., 425 Paramus Ra., Paramus, NJ 07652.

Besides acting as museum curator and holding down his regular job at the high school, Pat also finds time to serve as the contributing editor on vacuum tubes for The Old Timer's Bulletin of the Antique Wireless Association. He regularly writes articles about vintage tubes for the Bulletin, and has received two separate awards from the Association for his outstanding contributions to vacuum-tube history. He is also an active radio amateur (W2GK).

The Antique Wireless Association is a non-profit group dedicated to the preservation of the history and artifacts of wireless communications and electronics. If you'd like to find out more about the Association and its extremely interesting quarterly publication, you might like to write Lauren Peckham, President, Antique Wireless Association, 101 Ormiston Rd., RR1, Box 676, Breesport, NY 14816.

Visiting the Museum. When you're in the New York City area, make a point of dropping in on the museum. You should find it well worth your time! The Manhattan College Engineering Building is located just off the main campus in the Bronx. It's on Corlear Ave. (a short block west of Broadway) between 238th and 240th Streets.

If you're driving, a parking lot is located just south of the building- - on the 238th Street side. If you're coming by subway from Manhattan, take the IRT Van Cortlandt Park train to the 238 th Street stop. Walk one block west to Corlear Avenue. The best access to the museum is not via the main door, but through the side entrance facing the parking lot.

Just before making your trek to the museum, it probably would be a good idea to call the Manhattan College Engineering Library (212-920-0165) and determine the hours that the reading room will be open. Once in the reading room, you'll be free to wander through the many displays at your own pace. There are no guides, but Brother Pat's handouts and the explanatory notes on the display panels themselves will tell you everything you need to know. Plan on spending at least a couple of hours at the museum if you'd like to do it full justice.

Bye For This Month! In March, we'll return to the saga of the Pilot A.C. Super Wasp. The power supply for the Wasp (as outlined in the January column) is now under construction, and we should be able to try the set out in time to report on the results next month. See you then, and in the meantime don't forget to let me hear from you! Write Antique Radio, Popular Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

回

 \square Computer Bits

VITRAX IX MICROCONTROLLER

Before IBM introduced the PC and subsequent members of that now－ ubiquitous family，owning a personal computer was a technical challenge． Rather than bookshelves filled with pre－ packaged software，a microcomputer owner was likely to own a bench full of test equipment and components．Of course no one wants to turn back the clock and give up the progress that＇s been made in software．On the other hand，there are still people who hunger for greater technical understanding，as well as the ability to tinker with hard－ ware．If that sounds like you（or if you＇re a professional engineer looking for an inexpensive yet powerful controller）， you should check out the Vitrax IX Mi－ crocontroller20（VIM）．

The VIM is a small（ 4.5×6.5 inch） card built around a Hitachi 64180 （Z80－ compatible）microprocessor running at 6 MHz ．For a base price of about $\$ 170$ ， you get an 8 K BASIC interpreter， 2 k of RAM，and a built－in EPROM program－ mer．Just add a single－voltage power supply and a dumb terminal or a PC running terminal－emulation software and you＇re ready to play．

Capabilities．The VIM has a lot of op－ tions that make it really flexible．You can
power it with either a regulated five－volt 200－mA source，or 8 －volts unregulated； the VIM generates the negative RS－232 voltages on－board．However，you＇ll need a 12．5－or 21－volt source to use the EPROM programmer．
The board includes circuitry for two RS－232 channels and 24 bits of parallel I／O．Normally，you＇ll use one of the serial ports to communicate with the VIM via a terminal；you＇re free to use the other as desired．The terminal channel is self－ configuring（i．e．，it automatically senses the correct baud rate after you press the＜RETURN＞key a few times）．All 24 parallel lines（implemented as a stan－ dard Intel 8255）are brought to a con－ nector；a subset of those lines is also brought to a second connector you can use as a printer port for program listings．
The board includes space for a real－ time clock chip and an 8－channel A／D converter；external options include an I／ O expander／isolator，cartridge memory system for remote data acquisition，D／A converter，power supplies，cables， memory IC＇s，etc．
The VIM comes with four memory sockets．The first is occupied by the BASIC interpreter；the second provides space for user programs in EPROM（16K

Table 1－BASIC Language

Function
Arithmetic
Branching
EPROM Programming
Execution
Format／configuration
Input
Looping
Miscellaneous
Output
Print and iist
String handling
Trigonometric
Logical operators

Command／Statement／Function／Operator

ABS，EXP，INT，LN，LOG，SGN，SQR，$+,-, *, /, ~ \wedge$ GOSUE，GOTO，IF．．THEN
COPY，PROM，LOAD
CALL，CONT，CNTL－C，RUN，STOP，XEO
DATA，DIM，DIS，ENA，NEW，NEW＊，RESTORE
INP，INVUT，INPUTS，INPUT LINE，LET，PEEK，READ，ON
INTERRUPT（OI）
FOR．．NEXT
FRE，RANDOMIZE，RND
OUT，PJKE
CNTL－F，LIST，LPRINT，PRINT ！，REM，
ASC，CHR\＄，INPUTS，INPUT LINE，INSTR，LEFTS，LEN，
MIDS，NUM\＄，STRINGS，VAL．＋
ATN，SIN，COS
\＆（AND），«（OR），\％（XOR）
maximum）：the third is the EPROM pro－ grammer；and the fourth accepts a CMOS RAM IC（ $2 \mathrm{~K}, 8 \mathrm{~K}$ ，or 32 K ，jumper selectable）．

For speed－critical applications that require machine－language code，Sin－ tec（the VIM＇s supplier）provides a sys－ tem－monitor EPROM that allows you to examine and change memory，set and remove software breakpoints，config－ ure the second RS－232 port，etc
In addition，Sintec has a free terminal emulator that allows you to edit，load， and save VIM BASIC program files on a PC．And a $\$ 60$ program called B－link allows you to create＂structured＂BASIC programs（without line numbers）；B－link also compresses files，＂pretty－prints＂ them，etc．

The Kit．The PC board is laid out well，is double－sided with plated－through holes，and contains silk－screened mark－ ings for all components．The kit comes with only one socket for the 64180；you＇ll probably want to add a 40－pin socket for the 8255 and 28 －pin sockets for the memory $I C$＇s．You＇ll also need some connectors，a momentary－contact re－ set switch，and a source of DC power．

The Vitrax IX Microcontroller is built around a $6-\mathrm{MHz} 64180$ microprocessor and contains an $8 K$ BASIC interpreter，as much as 32 K of RAM，and a built－in EPROM programmer．

An unregulated 20 －volt DC wall trans－ former will serve fine，as the board has space for a 7805 （however，that reg－ ulator is not included with the basic kit）．

It took me about three hours to solder everything to the board，and another hour to get it up and running，due to RS－232 interface problems．I had no problems thereafter．

The ROM BASIC is fairly powerful，as shown in Table 1．Variable names con－ sist of one or two characters；as many as 286 string and numeric variables can be defined．Numbers are stored in floating－point format；values may range from $2 \mathrm{E}-20$ to $5 \mathrm{E}+18$ ．VIM BASIC allows you to CALL machine－language routines，to PEEK and POKE memory lo－
（Continued on page 97）

घip ivi Circuit Circus

UNUSUAL CIRCUITS, AND DESIGN AIDS

By Charles D. Rakes

This month I would like to share a number of simple, but useful circuits, that might just make your next construction project or equipment repair job a wee bit easier.

Diode Matching Circuit. Our first test circuit came about when a number of matched silicon signal diodes were needed for a balanced modulator project. Since I wanted to match the diodes to within a few millivolts, the old "quick and dirty" method of using an ohmmeter to match the forward conduction of each unit was out. A 9-volt battery, two precision resistors, and a digital voltmeter, connected as shown in Fig. 1, proved to be a simple answer.
The two 2.2 k resistors (R1 and R2) must be a matched pair-remember that at the rated value, a 5% unit can be off by

Fig. 1. This circuit can be used to match diodes for use in circuits where such a balance is necessary-a balanced modulator for instance. The Diode Matching Circuit will indicate the forward voltage drop of the two diodes in millivolts.

PARTS LIST FOR THE DIODE MATCHING CIRCUIT

B1-9-volt transistor-radio battery
R1, R2- 2200 -ohm, $1 / 4$-watt, 5% resistor (see text)
Digital voltmeter (sce text)
Battery holder, alligator clips, wire, solder, etc.
as much as $+/-110$ ohms. Their actual resistance isn't critical as long as they are of equal value.

Finding two 2.2 k resistors of the same value isn't too difficult. Take at least a dozen 2.2 k units and carefully read each value using a digital ohmmeter. Pair the two closest values for R1 and R2. With any luck at all you should be able to find at least one set of twins without going through too many resistors.

Using the diode matching circuit is easy. Connect a diode to each pair of test terminals and set the DVM, if it's not an autoranging meter, to it's most sensitive DC-voltage range. The meter reading will indicate the difference in the forward voltage-drop of the two diodes in millivolts. Note: Each diode must be allowed to return to room temperature after handling before a reading is taken. To prove a point grab either diode and watch the meter change as the temperature rises.

Modified Matching Circuit. If a more-dynamic testing approach is de-

Fig. 2. If a more-dynamic testing approach is desired, try this modified version of the previous matching circuit. The main difference between the two circuits is the addition of a variable resistor, R4, which allows you to vary the current through the diodes.
sired, try the diode matching circuit shown in Fig. 2. The basic circuit is similar to the previous one; the main difference being the addition of a variable resistor, R4, which allows you to vary the current throuch the diodes.

That lets you compare the two diode's forward voltage-drop as the current flow is varied from less than 1 mA to over 7 mA . If the voltage changes very little over the current range, the two diodes are well matched in their forward voltage curve. Resistors R1 and R2 must be matched in the same manner as in the first circuit.

PARTS LIST FOR THE MODIFIED MATCHING CIRCUIT

B1- 9 -volt transistor-radio battery R1 - 470 -ohm, $1 / 4$-watt, 55 resistor R2, R3- 100 -ohm. $1 / 4$-watt, 5% resistor, see text
R4 - 5,000 -ohm, potentiometer
Battery holder, alligator clips, wire, solder, etc.

Oscilloscope-Based Matching Cir-

cuit. Our last diode-matching circuit, see Fig. 3, allows you to look at the forward conduction curve of both diodes simultaneously on an oscilloscope. A6volt transformer (T1) and diode D1 sup-

Fig. 3. The Oscilloscope-Based Matching Circuit allows you to look at the forward conduction curve of both diodes simultaneously on an oscilloscope.

PARTS LIST FOR THE OSCILLOSCOPE-BASED MATCHING CIRCUIT

DJ-IN4001 1 -amp, 50-PIV, rectifier diode
R1, R2-470-ohm, /4-watt, 5% resistor
R3- 5000 -ohm potentiometer
T1 -6.3 volt, $300-\mathrm{mA}$, step-down power transformer
Test terminals, scope, power cord, wire, solder, etc.
plies a pulsed positive voltage to the two diodes through a 5000 -ohm potentiometer and two matched 470-ohm resistors.

The scope must have dual vertical inputs to connect to each of the diodes under test. The scope's vertical amplifiers can be used in either the alternate or chopped mode to display both waveforms together.

Here's how to set the scope up for the dual-waveform circuit. Set the gain of both vertical amplifiers to 0.2 volts per division. Place the vertical-mode switch to either the chopped or alternate setting. Set the horizontal sweep to 2 milli-seconds-per-division. Set the scope's trigger to produce a horizontal line and adjust the trace of each vertical input to overlap and form a single line at the screen's center.

Connect the scope to the test circuit, re-adjust the trigger for a stable display. and if the diodes are alike the two waveforms will appear as a single trace. Resistor R3 sets the diode's forward current and can be adjusted during testing.

Crystal Tester. The next tester came about when our faithful old 75A-4 Collins amateur receiver failed to operate on the 20-meter band. A quick check of the receiver's schematic suggested that the crystal for the 20 -meter band was sound asleep in its socket. Naturally our shop's crystal checker was nowhere to be found; so the circuit in Fig. 4 was quickly whipped together.

In that circuit, transistor Q1 is connected in a Pierce-oscillator configuration with the crystal supplying the feedback from Q1's collector to its base to produce and sustain oscillation. Actually that is what happens if the crystal under test happens to be good. A small variable capacitor, C4, allows the checker to cover a wide frequency range. Diodes D1 and D2 convertthe RF to DC, lighting LED1 to indicate that the crystal is oscillating.

Fig. 4. In the Crystal Tester circuit, transistor Q1 is connected in a Pierce oscillator configuration with the crystal under test supplying the feedback from QI's collector to its base to produce and sustain oscillation. If the circuit oscillates, the crystal under test is good.

PARTS LIST FOR THE CRYSTAL TESTER

Q1-2N2222 general-purpose NPN silicon ransistor
DI, D2-iN34A general-purpose germanium diode
LED 1-Jumbo light-emitting diode fany, color)
R1- 100,000 -ohm, $1 / 4$-watt, 5% resistor
R2- 10,000 -ohm, $1 / 4$-watt, 5% resistor
R3-470-ohm, $1 / 4$-watt, 5% resistor
$\mathrm{Cl}-0.015-\mu \mathrm{F}, 100-\mathrm{WVDC}$, ceramic disc capacitor
C2 $39 \cdot \mathrm{pF}$, ccramic-disc, capacitor
C3- $0.1-\mu \mathrm{F}, 100-\mathrm{WVDC}$, ceramic-disc capacitor
C4- $10-$ to $-100-\mathrm{pF}$ (or similar) tuning capacitor
$\mathrm{LI}-2.2-\mathrm{mH}$ RF choke
SI-SPST toggle switch
Perfboard materials, alligator clips, battery and battery holder, wire, solder, hardware, etc.

The checker can be built breadboard style on perfboard and housed in a small plastic cabinet. Since there's such a wide range of crystal sizes used in electronics, two small mini alligator clips will serve fine as a universal crystal socket.

Using the crystal checker is simple. Connect the crystal to the tester and rotate capacitor C 4 , starting at its minimum capacitance value, until the LED lights. The circuit can also be used to check a number of the ceramic- and piezo-filter devices.

Magnetically Tunable Tone Generator. The next two circuits both use a permanent magnet to vary the inductance of a coil. The inductance value of a coil wound on a ferrite core is primarily determined by the number of turns of wire and the permeability of the core materiai. If a permanent magnet is moved toward a ferrite core, the permeability of the core will vary in relationship to the strength of the magnetic field and the inductance of a coil wound on the core will change accordingly.

The circuit in Fig. 5 uses an external horseshoe magnet to vary the frequency of an audio-tone generator. The tuning range of that circuit is about 2-to-1. Inductors L1 and L2 are wound on a ferrite core measuring $1 / 4$ inch in diameter and 4 inches in length. About any similar size ferrite rod will work in this circuit. A good source of ferrite material

Fig. 5. This tunable tone generator uses a horseshoe magnet to vary the inductance of $L I$, thereby altering the output frequency of the circuit.

PARTS LIST FOR THE MAGNETICALLY TUNABLE TONE GENERATOR

$\mathrm{Q}-2 \mathrm{~N} 3904$, general-purpose NPN silicon transistor
RI -220.000 ohm, $/ 4$ - watt. 5% resistor R2 - 470-ohm. $1 / 4$-watt. 5% resistor $\mathrm{Cl}, \mathrm{C}_{2}$-See lext
C3-0.1- $\mu \mathrm{F}$. 100-WVDC, ceramic-disc capacitor
C4- $220-\mu \mathrm{F}, 25-\mathrm{WVDC}$, electrolytic capacitor
L1. L2-See text.
SPKR1-4-inch, 8-ohm spcaker Pertboard materials, horseshoe magnet (with 1 to 2 -inch pole spacing), 9 -wolt transistor-radio battery and battery holoer, wire, solder, hardware, etc.

CIRCLE 16 ON FREE INFORMATION CARD
HOT BOOKS FOR HOBBYISTS

BUILD A REMOTE-CONTROLLED ROBOT.....FOR UNDER $\$ 300$

$\square 2617 \mathrm{~T}$-If you're fascinated by the home robots increasingly available on today's market but are stopped by their price tags here's your solution. Build your own home robot-and a full size unit at that-for less than $\$ 300$. No advanced electronics or computer skills are needed to put together "Questor", a robot butler especially designed to be both affordable and easy-to-build.-Order your copy for $\$ 9.95$ plus $\$ 2.00$ shipping.

62 HOME REMOTE CONTROL AND aUtOMATION PROJECTS

\square 2735T-A device that automatically dims the lights when you turn on your stereo ... an automatic guest greeter ... sensors that keep your air-conditioning at ideal levels automatically ... voice-operated transmitters, door and window controllers and more. Complete instructions, wiring diagrams, and show-how illustrations for each device. $\$ 12.95$ plus $\$ 3.00$ shipping.
\square Send 40-page catalog-FREE with order. \square I've included $\$ 2.00$ Send catalog and coupon good for $\$ 2.00$ on first order.

Electronic Technology Today P.O. Box 240

Massapequa Park, NY 11762
is Amidon Associates (12033 Otsego St., North Hollywood, CA 91607).

Inductor L1 consists of 70 feet of \#26 copper wire wound on the ferrite rod from end to end. Inductor L2 is formed by winding 20 turns of \# 26 wire over the center of L1.

When a $1-\mu \mathrm{F}, 100-$ WVDC Mylar capacitor is used for $C 1$ and $C 2$, the oscillator's frequency is near 1500 Hz . The frequency will increase to about 3400 Hz with the magnet touching the coil in a parallel position. The first effect of the magnet is noted at a distance of about $21 / 2$ inches.

The circuit can be used as a CW (code) oscillator and tuned for just the right sound with the magnet, or housed in a non-metallic cabinet and turned over to the kids as a fun noise maker.

By changing the values of $\mathrm{C} 1, \mathrm{C} 2$, and L1, the circuit in Fig. 5 can be turned into a variable-frequency RF generator. When a 2 - by $1 / 2$-inch, flat-bar, ferrite AM-broadcast antenna coil is used for L1 and two 680-pF capacitors are used for C1 and C2, the oscillator will tune from about 600 kHz to over 1.5 MHz with the same horseshoe magnet.

Magnetically Tuned Crystal Radio. Our next magnetically tuned circuit is by far the simplest of the lot and could be that first build-it-yourself project you've been looking for.

The crystal-radio circuit in Fig. 6 replaces the hard-to-locate broadcast tuning capacitor with a fixed capacitor and a horseshoe magnet. Just about any ferrite AM-broadcast antenna coil with a length of 2 inches or more will work in the circuit. Any small horse shoe magnet with a 1- to 2 -inch gap between poles will do fine for tuning. The stronger the magnet the greater the tuning range.

Fig. 6. In this unusual umable crystal radio, the hard-to-locate broadcast-band tuning capacitor is replaced by a fixed capacitor and a horseshoe magnet.

PARTS LIST FOR THE MAGNETICALLY TUNED CRYSTAL RADIO

L1, L2-See text
Cl-See text
DI-IN34A general-purpóse germanium diode
$\mathrm{C} 2-.0015-\mu \mathrm{F}, 100-\mathrm{WVDC}$, Mylar or similar capacitor
$\mathrm{Zl}-2000$-obm (or similar) high ${ }^{* *}$ impedance headphones
Perfboard materials, horseshoe magnet (with I to 2-inch pole spacing). \#26 coil wire, battery and battery holder ${ }_{3}$ t wire, solder, small knob, etc*

Take the selected ferrite coil and unwind twenty turns from either end and make a tap at that point and rewind the wire back in place. Over the same end of the coil (end where tap was made) wind 20 turns of \#26 wire with a tap at the tenth turn. That winding will. serve as the antenna and ground input for the receiver.

The receiver can be built breadboard style on a piece of wood or any non-metallic material. Use two plastic cable-mounting clips to secure the ferrite core solidly to the breadboard's base. Position the magnet, as shown in the schematic diagram, with each pole aimed at opposite ends of the ferrite core and at equal distances. If the magnet has a hole through the curved portion, a small knob can be attached to allow easier tuning of the circuit. Let the magnet lay flat on the breadboard's base and slide back and forth parallel to the coil.

Checking out the crystal set is easy. If a long wire antenna (50 or more feet) is available connect it to the tenth turn on L2; but if only a short wire is handy, connect it to the end of L2 farthest from ground: The receiver will perform best when the circuit ground is connected to a good earth ground.
It's unlikely that the receiver will tune the entire broadcast band with a sin-gle-value tuning capacitor, so try a 150 to 250 pF unit for C 1 , and see how much of the band can be covered. Without the influence of the magnet, the value of C 1 will set the receiver to its lowest tuned frequency. As the magnet moves closer to the ferrite material, the frequency of the tuned circuit will increase toward the upper end of the broadcast band.

Well that's about all the space we have for this month, but be sure to join us next time when we'll present another batch of entertaining circuits.

How to build a high-paying career, even a business of your own, in computer programming.

CARL BARONE, NRI PROGRAMMER/ANALYST

Start with training that gives you

 hands-on programming experience -at home and at your own pace.Training that begins with BASIC,
then continues with Pascal, C, and COBOL-today's hottest computer languages. Training that even includes a powerful IBM-compatible computer, modem, and programming software you keep.

Start with real-world training. The kind of training only NRI provides.
Now with NRI's new at-home training in Computer Programming, you can be one of today's highly paid, creative team of computer wizards who give computers the power to carry out an astonishing range of business, professional, and personal applications. Now, with NRI, you can be a computer programmer, ready to build a higtpaying career-even a business o: your own-making computers do anything you want them to do.

The only programming course that includes a powerful computer system and software you keep.
Unlike any other school,'NRI gives you hands on programming experience with a powerful IBMcompatible Packard Bell computer system, including 2400
baud internal modem, 512 K RAM, disk drive, monitor, and invaluable programming software-BASIC, Pascal, C, and COBOL-all yours to keep.

You get the experience and the know-how, the computer and the software to get to the heart of every programming problem, design imaginative solutions, then use your choice of four key computer languages to build original, working programs.
No matter what your background, NRI gives you everything you need to succeed in programming, today's top-growth computer career field.
You need no previous experience to build a successful programming career with NRI training. Indeed, your NRI lessons start by walking you step by step through the fundamentals, giving you an expert understanding of the programming design techniques used every day by successful micro and mainframe programmers. And then the fun really begins.

C , and COBOL. Then, rounding out your training, you use your modem to "talk" to your instructor, meet other NRI students, even download programs through NRI's exclusive programmers network, PRONET.

Your career in computer programming begins with your FREE catalog from NRI.

For all the details about NRI's at-home training in Computer Programming, send the coupon today. Soon you'll receive NRI's fascinating, informationpacked, full-color catalog.

Open it up and you'll find vivid descriptions of every aspect of your NRI training. You'll see the computer system included in your course up close in a special, poster-sized foldout section. And, best of all, you'll find out how your NRI training will make it easy for you to build that high-paying career-even a business of your own-in computer programming.

You master today's hottest computer languages, gaining the skills you need to build programs for a wide varlety of real-world applications.

With your personal NRI instructor on call and ready to help, you use your computer and software to actually design, code, run,

Send for your NRI catalog today.

 It's yours, free.If the coupon is missing, write to us at the NRI School of Computer Programming, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a Registered Trademark of the IBM Corporation

Only NRI gives you an IBM-compatlble computer with modem, 512K RAM, dlsk drive, monltor, and software-BASIC, Pascal, C, and COBOL-all yours to keep!

A NEW TRANSMITTER FOR NEW ZEALAND

By Don Jensen

Ihas been a long time coming, but New Zealand has finally committed itself to a new and powerful shortwave station.

The new Radio New Zeakind will be broadcasting from a 100 -kilowatt shortwave transmitter at Rangitaki, a site on the Pacific nation's North Island.
As longtime readers will recall, I've mentioned Radio New Zealand's shoestring SW operations on several occasions in the past few years. While other Pacific rim nations-Japan, China, the Koreas, Australia—project powerful shortwave signals throughout Oceania, New Zealand made do with a pair of hopelessly underpowered seven-and-a-half-kilowatt, World War II vintage transmitters.

Despite the official policy of projecting a New Zealand presence in the Pacific from Papua, New Guinea to the Cook Islands, government after government since 1948 have left the broadcasting organization to scrimp
along with inadequate funding. In fact, in 1982 , Radio New Zealand shortwave nearly vanished from the air when the then-government chopped a $\$ 200,000$ a year subsidy. By pinching pennies, the shortwave service stayed on the air, but barely.

The government, however, was acutely embarrassed several years ago, when during internal disturbances in Fij-an island nation that New Zealand has long considered in its sphere of influence-listeners there had to rely on Radio, lustralia shortwave for newscasts. New Zealand's shortwave signal was simply not reliable in the crisis.

Now though, NZ Foreign Affairs Minister Russell Marshall notes, "We are now putting our money where our diplomatic mouth is...at last!" The foreign ministry will come up with the money, $\$ 3.2$ million, for the new transmitting equipment and will also provide $\$ 1$ million in annual operating expenses. Radio New Zealand will continue to

Don Moore gets around. Curremty teaching college in Big Rapids, MI. Don has tranelad extensively in Central and South America in recent yars, visiting many of the stations he has heard with his FRG7 shortwave receiver. Note the atractive station pentams: he has picked up in his journews.
provide the programming. They have always been a particular favorite of SWL's, mostly because of their low key Pacific-oriented English language pro. gramming.

The news from New Zealand does not say when the new 100 -kilowatt station will go on the air, but it probably will be within a year. In the meantime, though Radio New Zealand isn't the easiest shortwave station to hear in North America, you may have success if you try tuning 9,850 or $11,780 \mathrm{kHz}$ during the early morning, 0900-1200 UTC time period. Weekends you may find RNZ around 0500-0730 UTC on $17,705 \mathrm{kHz}$.

Feedback. Comments, questions about SWL'ing and your logging of shortwave stations you've heard are always wanted. Write to me, Don Jensen, in care of DX Listening, Popular Electronics, 500-B Bi-County Blvd., Farmingdale, NY 11735.

Comment comes in two varietiesfavorable and not-so-favorable. Some of the mail that comes across the desk here is in the latter category.

Example: A letter from Milwaukee, WI. listener Richard Mielke.
"I have been an SWL for 26 years and am an old Popular Electronics reader. I must say that the columns have done me almost no good. Listening to shortwave varies so much from area to area. Time and frequency information in magazines does not indicate that some programs are for the east coast, some for the west coast.
"I think that in putting your column together, care should be exercised as far as being accurate on time. You should know which months schedules change, when summertime hours start, and not have to say that the stations often change without notice.
"Many listeners could probably be helped by just having them write a short note to any station they want to hear and ask for a schedule. I have found they are all willing to tell you where and when to tune them.
"Lists of loggings and suggested schedules should be based on using a simple receiver. Not many people have receivers with filters, notches, or computers to fish a signal out of many on the bands. Listening conditions have deteriorated over the years, with many sta-

[^1]tions added to crowded bands，with higher power，sloppy control of signals， and lack of consideration for other sta－ tions．＂

Richard ends his letter with a＂wel－ come back＂to Popular Electronics and his hope＂that DX Listening improves．＂

I appreciate the comments，Richard． Constructive criticism helps us improve and we all want that！In putting to－ gether a magazine column，there is one basic problem that no one has yet figured out a way to lick．It is that it takes quite a while to put each issue together， from the early editorial planning until the magazine turns up on the news－ stand．Therefore，this column is being written a number of months before you read it．

Things change much more quickly on the shortwave bands．Hence，some－ times a station will have moved to an－ other frequency between the time the information is typed in the column manuscript and the time you read it．

I do take care in selecting the fre－ quencies and times noted in the＂Down the Dial＂portion of the column，but sometimes，unavoidably，the frequen－ cies will be different by the time you get your issue of Popular Electronics．Usu－ ally，you will find the major international broadcasters on other frequencies． often in the same band，if you t．une around a bit．

Major SW stations do make whole－ sale frequency changes not just at sum－ mertime but four times a year، usually the first Sunday in March，May，Sep－ tember，and November．But individual frequency changes can occur at any time a station feels the need to shift frequency to better serve listeners in a particular part of the world．

You＇re correct，Richard，that getting on a station＇s schedule mailing list is a very good way of getting advanced information as the station makes its fre－ quency decisions．

Another consideration some readers fail to appreciate is that there is no typ－ ical reader of this column．Some of you are beginners at shortwave listening， with but the simplest of listening equip－ ment．Others are more experienced SWL＇s and have somewhat more sophis－ ticated receivers．Thus the stations listed in this column range from the easy－to－ hear to the rather difficult．Some may not，as Richard suggests，be audible on the west coast of North America at the time they can be heard on the east coast．

What I try to do is offer just a sampling； hopefully a bit of something for every－ one．Don＇t expect to be able to tune every station，every time，on the fre－ quency and hour listed．You may hear it at another time，on another frequency．

Experienced listeners like Richard usually belong to DX clubs whose monthly（sometimes twice－a－month） newsletters can include much more current and complete schedule and frequency information．And with club members all over the world reporting，it is normally easy to determine when you，wherever you live，should be able to hear a particular SW station．Check recent $D X$ Listening columns for infor－ mation on joining those shortwave clubs．

And，yes，Richard，the SW bands are crowded with high－powered stations that many times do interfere with one another，probably to a greater extent than when you began listening 26 years ago．That，unfortunately，is life on the SW bands in the 1990＇s．Surely， though，it need not sour anyone on SWLing．There is plenty－in fact，more than ever－to hear and better，and in some cases cheaper SW receivers on the market today than there were when both of us began listening years ago！

Down The Dial．Let＇s focus on some of the Pacific area stations，besides Radio New Zealand，which are being re－ ported by SWL＇s：

Cook Islands－ $11,760 \mathrm{kHz}$ ．Radio Cook islands recently was reorganized， according to a visitor，to Rarotoga，the tiny nation＇s capital．It＇s schedule is 1600 to 1000 UTC（Universal Coordinated Time is equivalent to EST +5 hours； CST +6 ；MST +7 ；and PST +8 ）．Several of our reporters note，however，that the best time may be between 0700 and 0930 UTC．

Tahiti－ 15.170 kHz ，Radiodiffusion Francaise D＇Outre Mer（RFO），the French－operated shortwave station at Papeete uses this frequency，plus 6,135 ， 9,750 ，and $11,825 \mathrm{kHz}$ ．It can be a tough logging but try to catch it around 0300－0430 UTC．

New Caledonia－ 7.170 kHz ．Another French RFO station broadcasts from Noumea．Tune around 0700 UTC and later．

Tonga－ $5,025 \mathrm{kHz}$ ．Station $3 A Z$ is the newest of the shortwave voices in the Pacific and certainly the hardest to hear in most of North America．Try around 0700－1000 UTC

AMAYING
GRA1－ANTI GRAVITY GENERATOR

LC7－ 40 WATT BURNING CUTTING LASER
寅
SEBTC5－ 1 MILLION VOLT FESLA COIL
䘮巨MCPI－HIVELOCITY COIL GUN
むミLLSI－LASER LIGHT SHOW 3 METHODS
EH1－LASERLIGHT SHOW NY TECHNIOUES ．．．．$\$ 20.00$
C）EH1－ELECTRONIC HYPNOFISM TECHNIOUES．$\$ 8.00$
ENLI－LOWER POWERED COIL GUN LAUNCHER ．$\$ 8000$
$\begin{array}{llr}\text { JIS－} & \text { JACOB LADDER 3 MODELS } \\ \text { SD5 } & \text { SEE IN THE DARK }\end{array}$
．LEV1－LEVITATION DEVICE

岜 FMV1K－ 3 MILE FM VOICE TRANSMITTER ．．．．．．．$\$ 34.50$
S PFS1K－HAND CONTROLLED PLASMA FIRE SABER
MIG7K－HI FUXNEGATIVE ION GENERATOR
w PG5K－PLASMA LIGHTNING GLOBE
E LHC2K－VISIBLE SIMULATED 3 COLOR LASER ．$\$ 44.50$ HODIK－ROMING／TRACKING BEEPER TRANSMITTER ．$\$ 44.50$
LGU6K－2．5 MW HAND－HELD VISIBLE LASER GUN ．．$\$ 249.50$
后 BTC3K－ 250,000 VOLT TABLE TOP TESLA COIL $\quad \$ 249,50$
Ce IOG2K－ION RAY GUN，project energy without wires ．．．$\$ 129.95$ TKE1K－TELEKINETIC ENHANCERUELECTRIC MAN ．．．．$\$ 79.50$
WWPM 7 K － 3 MLE AUTO TELEPHONE TRANSMITTER ．$\$ 49.50$

ASSEMBLED IN OUR LABS	
LIST10－INFINITY XMTR Listen in via phone lines	50
IPG70－INVISIBLE PAIN FIELD BL	0
ITM10－100，000 VOLT INTIMIDATOR UP TO 20＇	$\$ 99.50$
TAT3O－AUTOMATIC TELEPHONE RECORDING DEVICE	\＄24．50
PSP40－PHASOR SONIC BLAST WAVE PISTOL	\＄89．50
DNE10－ALL NEW 26 ＂VIVID COLORED NEON STICK	\＄74．50
LGU20－． 5 TO ${ }^{\text {i MW V VISIBLE RED HeNe LASER GUN }}$	\＄199．50
BLS10－100，00 WATT BLASTER DEFENSE WAND	889.50

EASY ORDERING PROCEDURE－TOLL FREE 1－800－221－1705
or 24 HRS ON 1－603－673－4730 or FAX IT TO 1－603－672－5406 VISA，MC，CHECK．MOIN USFUNDS．INCLUDE 10\％SHIPPING．ORDERS $\$ 100.00$ \＆UP ONLY ADO $\$ 10.00$ ．CATALOG $\$ 1.00$ OR FREE WITH ORDER．

INFORMATION UNLIMITED
 R．O．BOX 716．DEFI．PN，AMHERST，NH 03031

THROUGH HOME STUDY
Our New and Highly Effective Advanced－Place－ ment Program for experienced Electronic Tech－ nicians grants credit for previous Schooling and Professional Experience，and can greatly re duce the time required to complete Program and reach graduation．No residence schooling re－ quired for qualified Electronic Technicians Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B．S．E．E．Degree．Up－ grade your status and pay to the Engineering Level．Advance Rapidly！Many finish in 12 months or less．Students and graduates in all 50 States and throughout the World．Established Over 40 Years！Write for free Descriptive Lit－ erature．

Ham Radio

By Joseph J. Carr, K4IPV

IS YOUR HOBBY HAZARDOUS TO YOUR HEALTH?

The signal from an amateur-radio transmitter is an electromagnetic wave that is identical to ultraviolet (UV) light, X -rays, and gamma rays, but it has a different frequency and wavelength.

There is no controversy about UV, X rays, and gamma rays-all are dangerous. There is also no controversy when it comes to microwave radiation. Stories of microwave hazards abound among electronics workers- and cardiac pacemaker wearers are especially at risk.

But prior to about 10 years ago, RF radiation below the microwave region was thought to be essentially harmless. Oh, sure, a few cranks on the fringe claimed that problems existed, but they were not the "experts." Some early studies on the subject were highly flawed, so they produced inconclusive results. Now, however, a different picture is emerging, and some of the best biomedical experts in the country are concerned about the negative effects of low-frequency radiation including 60Hz from the power lines.

How much is too much? At one time the standard for permissible exposure was $10 \mathrm{~mW} / \mathrm{cm}^{2}$ for continuous periods of six minutes. In more recent times, the ANSI (American National Standards Instifute) standard (see Fig. 1) has been adopted by many organizations. That standard takes note of the fact that VHF/UHF seems somewhat more dangerous than lower frequencies (probably due to resonance effects).

The standard in the $30-$ to $300-\mathrm{MHz}$ VHF region is $1 \mathrm{~mW} / \mathrm{cm}^{2}$. At UHF (300 to 1500 MHz) the standard calls for a maximum exposure of $f / 300$, where f is the frequency in MHz . That translates to 1 $\mathrm{mW} / \mathrm{cm}^{2}$ at 300 MHz , and $5 \mathrm{~mW} / \mathrm{cm}^{2}$ at 1500 MHz and higher.

In the HF (shortwave) spectrum used by most hams, the ANSI limit is $900 / f^{2}$ $\mathrm{mW} / \mathrm{cm}^{2}$, where f is once again the frequency in MHz . Thus, the standard is 100 $\mathrm{mW} / \mathrm{cm}^{2}$ at the low end of 80 meters
and $1 \mathrm{~mW} / \mathrm{cm}^{2}$ at 10 meters. The standard at frequencies below 3 MHz is 100 $\mathrm{mW} / \mathrm{cm}^{2}$.

The standard was based on the observation that bioeffects started to take place at a specific absorption rate (SAR) of 4 watts per kilogram of body weight; once a suitable safety factor was added, the allowed SAR was set at 0.4 watts per kilogram of body weight. The current standard updates the old $10 \mathrm{~mW} / \mathrm{cm}^{2}$ standard by taking frequency into account, and is for exposures of six minutes or more. It is probable that the standard will be revised again later this year.

It is not yet clear which amateurtransmitter and antenna installations are likely to exceed the permissible dosage rates. In order to be certain about the field strength at any given installation, calibrated field-strength measurements must be made. The instrument required for that type of measurement is expensive, although not so much so that larger ham organizations cannot afford it. At least one amateur operator has spent his own funds to obtain such an instrument. In addition, it is possible that some enterprising souls will make the investment and go into
the business of making measurements for hire.

What to Do. Although detailed measurements may not be available to you, there are some guidelines that you might want to follow in normal ama-teur-radio operations:

First, limit transmitter RF-output power to what is actually needed to make communications. All modern transceivers have a control that allows you to crank down the power level; either the auDio or MIC control when operating SSB phone or the CARRiER control when operating CW (Morse code).

Although I personally don't believe that my 100 -watt HF transceiver is dangerous, I'm only going to turn on the kilowatt linear-amp when it is needed... and then only at whatever power level is needed to actually make good contact. Incidentally, that is not only possibly healthier, if you'll check FCC regulations you'll see that it is also the law! And if everyone followed that law, the QRM (man-made interference) levels on the bands would drop tremendously!

Second, limit the time of transmission, especially in the VHF/UHF region. That is also good practice for ordinary operation, never mind the health benefits. Time and again operating experts (especially big-gun DX'ers) tell us that we get the most out of our rigs by listening more than transmitting. Although police and commercial users of mobile and hand-held radios tend to make short transmissions, hams tend to ragchew on and on, and are therefore subject to greater exposure.

Third, don't use a high power linearamp on VHF/UHF bands unless there is a

Fig. 1. The ANSI standard allows greater RF-exposure levels at lower frequencies and is for exposure times of six minutes or more.

Fig. 2. When operating a handheld VHF/ UHF transceiver, keep the unit at least six inches from your face and cocked at a 45° angle.
good reason to do so. According to one source, the high-powered 2-meter 150-watt mobile "brick" in the trunk, feeding an antenna on the trunk lip. will produce dangerous radiation levels for passengers in the back seat. Children are especially at risk (because of their lower body weight), and they are the very ones placed in the back seat of most family automobiles. To protect them, lower the power level and move that antenna to the roof of the car.

Some readers may make the argument that they "need" 150-watts on 2 meters mobile in order to "get into the repeater solid." That, I trust, means "full quieting" and more from 50 klicks out. But in truth, one does not need full quieting for effective communications. Repeaters tend to be very sensitive receivers, so they can be triggered within sensible range with a lot less power.

Fourth, when operating a VHF or UHF handheld transceiver, be sure to keep it at least six inches away from your face, and keep it cocked at a 45° angle (see Fig. 2). That's the advice given by a major supplier of commercial and police hand-held units to its customers, but it also applies to amateur 2-meter (and up) hand-held rigs as well. It seems that placing a 1 -watt to 5 -watt hand-held unit "rubber ducky" antenna close to your head does a good job of irradiating the temporal lobe of your brain. That problem is greatly reduced by correct operating procedures.

There is no reasonable doubt that RF radiation is at least a potential hazard. To deny or ignore that potential would be foolhardy, especially since most of the danger can be avoided by following correct operating procedures and common sense.

THE MONEY MAKING OPPORTUNITY OF THE 1990'S
IF you are able to work with common small hand tools, and are familiar with basic electronics (i.e. able to use voltmeter, understand DC electronics)
IF you possess average mechanical ability, and have a VCR on which to practice and learn. . . .then we can teach YOU VCR maintenance and repair!
FACT: up to 90% of ALL VCR malfunctions are due to simple MECHANICAL or ELECTRO-MECHANICAL breakdowns!
FACT: over 77 million VCRs in use today nationwide! Average VCR needs service or repair every 12 to 18 months!
Viejo's 400 PAGE TRAINING MANUAL (over 500 photos and illustrations) and AWARD-WINNING VIDEO TRAINING TAPE reveals the SECRETS of VCR maintenance and repair-"real world" information that is NOT available elsewhere!
Also includes all the info you'll need regarding the BUSINESS-SIDE of running a successful service operation!

FREE INFORMATION

CALL TOLL-FREE 1-800-537-0589
Or write to: Viejo Publications Inc
3540 Wilshire BL. STE. 310
Los Angeles, CA 90010 Dept. PE
CIRCLE 17 ON FREE INFORMATION CARD

Support America's colleges. Because college is more than a place where young people are preparing for their future. It's where America - and American business - is preparing for its future.

> Give to the college of your choice.

PROFESSIONAL QUALITY WEATHER STATION NOW AFFORDABLE ENOUGH FOR HOME USE!

The new WeatherPro weather station uses state-of-the-art technology to give you full monitoring capability at an incredibly low price. The WeatherPro includes a weather computer, remote precision wind direction vane, wind speed sensor, external temperature probe, mounting hardware and 40^{\prime} of cable-all for only $\$ 179$!

- WIND SPEED
-TEMPERATURE
- WIND DIRECTION

- WIND GUST - WIND CHILL - TIME
- AUTO SCAN - RAINFALL (OPTIONAL) - 1 YEAR WARRANTY
- 14-DAY MONEY-BACK GUARANTEE

DIGITAR WEATHERPRO

WEATHER STATION: ONLY \$179! ORDER TODAY:1-800-678-3669, PE M-F 7AM-5:30 PM Pacific Time
*Automatic-emptying electronic rain gauge- $\$ 49.95$
Add $\$ 500$ for shipping CA residents add sales tax.
Add $\$ 5.00$ for shipping. CA residents add sales tax.
DIABLOAVE
3465 DIABLO AVE, HAYWARD, CA 94545

Get A Complete Course In ELECTRONIC ENGINEERING

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level.

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, Postage Included. Satisfaction guaranteed or money refunded.

CIRCLE 10 ON FREE INFORMATION CARD

Scanner Scene

PRO-2005: A NEW-AND-IMPROVED PRO-2004

By Marc Saxon

There's no getting away from the fact that the most talked about scanner of 1989 was the 300 -channel Realistic PRO-2004 from Radio Shack. With the exception of some UHF-TV channel-spectrum and the $800-\mathrm{MHz}$ cellular bands, it covered from 25 to 1300 MHz . With a few very minor modifications, users could quickly increase the number of channels in the PRO-2004 to 400, and also restore the missing $800-\mathrm{MHz}$-band coverage.

The PRO-2004, however, has been removed from the market and replaced by the new PRO-2005. Like its predeces-
sor, this scanner costs about \$400 ($\$ 419.95$ to be precise). The question of the winter has been. "Whats the difference between the two units?" Other than a significantly redesigned exterior, the biggest difference seems to be that the PRO-2005 comes all set up with 400-channel capability. Although it doesn't come-oft-the-shelf with the ability to receive the cellular channels, I understand that they can be made to work in a manner essentially the same as the earlier model.
From an external point of view, the former set's sloping front panel has

Realistic's new PRO-2005 offers all the "pro's" of its predecessor, the PRO-2004, plus 400-channel capability built-in to a redesigned exterior.
been replaced by one that is vertical; however, front "legs" beneath the set allow the user to angle the front of the PRO-2005 upward if desired for a better view of the LCD readout. The keyboard has also been changed, with the previous flat piece of plastic replaced with "real" individual pushbuttons.

If you thought the PRO-2004 was fantastic, this newer edition will equally impress you. On the other hand, if you are using a PRO-2004 and have it modified for 400 -channel operation, there isn't sufficient cause to dump the older set and replace it with the current model. Still, if you have neither of the two models and are seeking the unit that many serious monitors swear by, then you'll certainly want to put the new Realistic PRO-2005 at the top of your shopping list. We like it a lot!

By the way, I can still supply information on how to increase your PRO-2004 to 400-channels, and also how to activate the missing $800-\mathrm{MHz}$ frequencies in those scanners. We recently received information on how to restore the missing $800-\mathrm{MHz}$-band frequencies in the Bearcat BC-760XLT, and can also supply that (although Uniden does not recommend doing such modifications to any of their scanners). Any of these modifications can be obtained from this column upon request (specify which you want) along with a stamped, self-addressed return envelope. Send for them at the address at the end of this month's column. And, yes, we can still supply cellular-restoration data for the Realistic PRO-34 handheld scanner.

Hey, Taxi! An interesting question was posed by Harry Waggenheim of California. Harry notes that in all commercial two-way services where repeaters aren't used, the base stations and mobile units operate in simplex mode: that is, with the bases and mobiles on one frequency. The one notable exception is the Taxicab Radio Service. where base stations operate in the 152.27 - to $152.45-\mathrm{MHz}$ band, while the mobiles operate on frequencies in the $157.53-$ to $157.71-\mathrm{MHz}$ band. He was curious about why that service was set up in such a manner.

My first guess would be that it reduces the amount of stations using the oftencrowded dispatch channels. Second, unlike many other users of two-way radio, mobile units seldom need to hear one another in order to coordinate their activities.

I posed the question to the owner of
a fleet of taxis, and, while he agreed with my guesses, he pointed out that the owners simply didn't want the drivers tying up the channels chit-chatting with one another about "nonsense"making arrangements for coffee breaks, etc. Moreover, he pointed out that the owners most especially did not want the passengers subjected to a constant stream of such idle chatter along with the mix of colorful and salty language often used by drivers.

In fact, he told me that many customers don't like hearing the two-way at all while they're riding and request that his drivers turn off the two-way radio. Some people feel it interferes with their conversation with other passengers, and others just find it generally annoying to be held captive in a taxi while a disembodied voice barks commands to various vehicles.
So, in the case of taxicabs, the radio service was somewhat custom-tailored to suit their rather unique needs. But remember that there are also UHF taxi channels where, in some cases, repeaters are in use. Apparently in major metro areas (where UHF taxi charnels are most used) the cash customers are treated to all of the chatter, which is a trade-off for the safety, security, and anti-crime benefits of the drivers being able to contact one another in a hurry.

QSL's? Readers constantly ask if it's possible to verify ($Q S L$) stations monitored on their scanners. In many instances it is; however, don't expect to dash off a reception report and get a fancy QSL card back.

Two-way communications stations aren't broadcasters. They don't seek an audience, and very often don't appreciate having one. That means they don't have QSL cards to send out, and might be just as annoyed to find that you asked for one as they were to learn that you were listening in.

Therefore, a reception report should mention only that communications between specified units occurred at certain times, but shouldn't mention the details of what those communications contained. If you prepare a postpaid return QSL card for the station to just sign and return to you, you could get lucky. You might (as others have) eventually develop a rather successful technique that will bring you a good percentage of returns from most categories of stations-except possibly some federal-agency operations in the law-enforcement and security fields.

COMPUTER BITS
(Continued from page 85)

VENDOR INFORMATION

Vitrax IX Microcontroller (\$169.50 for basic kit) Sintec Company
P.O. Box 410

28 8th Street
Frenchtown, NJ 08825
Tel. 800-526-5960
201-996-4093
CIRCLE 117 ON FREE BFORMATION CARD
cations, to read and write I/O ports, and to process interrupts (the VIM has four hardware-interrupt inputs).

After you write and debug your program, you can burn it into an EPROM, after which the VIM will automatically execute that code each time it boots. This means that when your program is finished, you won't need to connect a terminal to run it.

The VIM comes with detailed instructions on kit construction, how it works, the BASIC interpreter, use of terminal and printer ports, and more. Supplements include copies of manufacturers' data sheets for the IC's.

My only complaints are that I wish the VIM could burn EEPROM's and that it had a C language interface, but those are small points. All in all, the Vitrax IX Microcontroller is perfect for industrial control, science projects, and just plain tinkering.
Let'em know you read about it here.
Contest Update. No, we have not forgotten about the Pascal Program Writing contest. When the contest was announced back in August, we promised to announce the winners in this issue. Unfortunately, due to publishing schedules, this column had to be written before the contest deadline had passed. So, in fairness to everyone, we've decided to hold off the announcement until next month. Be sure to check in with us then.

Let your IBM PC compatible teach you electronics. Watch movies, analyze circuits, run experiments, design, troubleshoot -- all on your computer screen! Our new and patented Aristolle ${ }^{\text {TM }}$ system teaches you more electronics than dozens of books. Complete courses at $\$ 299$. Mini-courses at $\$ 49$. Your second chance to learn in the new hi-tech way. Used in hundreds of schools. Based on left brain/right brain theory -- lets you learn better and faster than ever before. Get ahead with Aristotle. For facts, mail coupon today or phone 1-415-961-2692.

```
ARISTOTLE
c/o Malvino Inc
229 Polaris Ave, Suite 17P
Mt. View, CA }9404
```

CIRCLE 18 ON FREE INFORMATION CARD

AMAZING NEW Pocket Reference

480 pages of tables, maps, formulas, and conversions and it fits in your shirt pocket ($3.2^{\prime \prime} \times 5.4^{\prime \prime} \times 0.6^{\prime \prime}$)!

* Pius $\$ 2.00$ shipping \& handling. Colorado residents add 584 tax.

Small sample of contents	
10	Radio Alphabel
Manuact	
mber Sizes \& Grades	Crodit
ncrete a Mor	
mput	
18 M \% PC Emor Codes	
- int	
ter Control Codes	Wood Screw/Nail Sizes
cric Wire Size vs	
Wire \& Sheet Guages	
m/Capachio	Ta
Cill Wind	nd Paper \& Abraskves ald Eloctrode a Solder
- Size vi Tuins/inch	20 Corversion Factors
Money Beck Guarante - If not completely sallsfiled, retur book postage prepaid, in mint condition for a 100% refund	
Sequoia Publishing Inc. Dept 903, P.O. Box 620820	
Littleton,	

- BP195-INTRODUCTION TO SATELLTTE TV..... \$9.95. A definitive introduction to the subject written for the professional engineer, electronics enthusiast, or others who want to know more before they buy. $8 \times 10 \mathrm{in}$.
\square BP190-ADVANCED ELECTRONIC SECURITY PROJECTS..... $\$ 5.95$. Includes a passive infra-red detector, a fiber-optic loop alarm, computer-based alarms and an unusual form of ultrasonic intruder detector.
\square BP235-POWER SELECTOR GUIDE..... $\mathbf{\$ 1 0 . 0 0}$. Complete guide to semiconductor power devices. More than 1000 power handling devices are included. They are tabulated in alpha-numeric sequency, by technical specs. Includes power diodes, Thyristors, Triacs, Power Transistors and FET's.
\square BP234-TRANSISTOR SELECTOR GUIDE..... $\mathbf{\$ 1 0 . 0 0}$. Companion volume to BP235. Book covers more than 1400 JEDEC. JIS, and brand-specific devices. Also contains listing by case type, and electronic parameters. Includes Dariington transistors, high-voltage devices, high-current devices, high power devices.
\square BP99-MINI-MATRIX BOARD PROJECTS..... $\mathbf{\$ 5 . 5 0}$. Here are 20 useful circuits that can be built on a mini-matrix board that is just 24 holes by ten copper-loil strips.
\square BPB2-ELECTRONIC PROJECTS USING SOLAR CELLS..... $\$ 5.50$. Circuits with applications around the home that are powered by the energy of the sun. Everything from radio receivers, to a bicycle speedometer, to timers, audio projects and more.
\square BP117-PRACTICAL ELECTRONIC BUILDING BLOCKS—Book 1.....\$5.75. Oscillators, Timers. Noise Generators, Rectifiers, Comparators, Triggers and more.
\square BP184-INTRO TO 68000 ASSEMBLY LANGUAGE..... $\$ 6.95$. The 68000 is a great new breed of microprocessor. Programming in assembly language increases the running speed of your programs. Here's what you need to know.
\square BP179-ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF ROBOTS $\mathbf{5 7 . 5 0}$. Data and circuits for interficing the computer to the robot's motors and sensors.
\square BP126-BASIC \& PASCAL IN PARALLEL......\$4.95. Takes these two programming languages and develops programs in both languages simultaneously.
\square BP198-AN INTRODUCTION TO ANTENNA THEORY... $\$ 6.95$
Basic concepts relevant to receiving and transmitting antennas.
\square BP248-TEST EQUIPMENT CONSTRUCTION.....55.95. Ten different instruments including an audio generator, transistor tester, capacitance meter, AF frequency meter, CMOS probe and more.
\square BP170-INTRODUCTION TO COMPUTER PERIPHERALS.....55.95. Shows how to use a variety of co computer add-ons in as non-technicai a way as possible.
\square BP239-GETTING THE MOST FROM YOUR MULTIMETER.....s5.95. Use your multimeter for components and circuit testing in ways that you probably never
thought possible.
\square BP169-HOW TO GET YOUR COMPUTER PROGRAMS RUNNING.....\$5.95. Shows how to identify error in program and what to do about them.
\square BP194-MODERN OPTO DEVICE PROJECTS.....s6.25. Crammed with great projects for the experimenter. Includes sections on Fiber optics, passive Infra-Red detectors, plus an assortment of miscellaneous projects.
\square BPI80-ELECTRONIC CIRCUITS FOR THE COMPUTER CONTROL OF MODEL RAILROADS..... $\mathbf{\$ 7 . 5 0}$. It's easy to interface home computers to model railroad control. The main problem is in intertacing the computer to the system.
\square BPI10-HOW TO GET YOUR ELECTRONIC PROJECTS WORKING..... $\$ 5.75$. How to find and solve the common problems that can occur when building projects.

- BP239-GETTING THE MOST FROM YOUR MULTIMETER..... \$5.95. Covers basics of analog and digital meters. Methods of component testing includes transistors, thyristors, resistors, capacitors and other active and passive devices.
\square BP97-IC PROJECTS FOR BEGINNERS..... $\$ 5.50$. Power supplies, radio and audio circuits, oscillators, timers, switches, and more. If you can use a soldering iron you can build these devices
\square BP37-50 PROJECTS USING RELAYS, SCR'S \& TRIACS..... $\$ 5.00$. Build priority indicators, light modulators, warning devices, light dimmers and more.
\square RADIO-100 RADIO HOOKUPS..... $\$ 3.00$. Reprint of 1924 booklet presents radio circuits of the era including regenerative, neutrodyne, reflex \& more.
\square BP42-SIMPLE LED CIRCUITS..... $\mathbf{\$ 5 . 5 0}$. A large selection of simple applications for this simple electronic component.
\square BP127-HOW TO DESIGN ELECTRONIC PROJECTS..... \$5.75. Helps the reader to put projects together from standard circuit blocks with a minimum of trial and error.
\square BP122-AUDIO AMPLIFIER CONSTRUCTION.....s5.75. Construction details for preamps and power amplifiers up through a 100 -watt DC-coupted FED amplifier.
[] BP92-CRYSTAL SET CONSTRUCTION..... $\mathbf{\$ 5 . 5 0}$. Everything you need to know about building crystal radio receivers.
[] BP45-PROJECTS IN OPTOELECTRONICS..... $\mathbf{\$ 5 . 5 0}$. Includes infra-red deteC tors, transmitters, modulated light transmission and photographic applications.
\square BP185-ELECTRONIC SYNTHESIZER CONSTRUCTION.....s5.95. Use this book to learn how to build a reasonably low cost, yet worthwhile monophonic synthesizer and learn a lot about electronic music synthesis in the process.
\square BP49-POPULAR ELECTRONIC PROJECTS.... \$5.95. Radio, audio, household and test equipment projects are all included.
\square PCP104-ELECTRONICS BUILD AND LEARN $\$ 9.95$; starts off with construction details of a circuit demonstrator and shows a variety of circuits for experimenters.
\square BP56-ELECTRONIC SECURITY DEVICES..... 55.50 . Includes both simple and more sophisticated burglar alarm circuits using light, infra-red, and ultrasonics.
\square BP59-SECOND BOOK OF CMOS IC PROJECTS..... $\$ 5.50$. More circuits show ing CMOS applications. Most are of a fairly simple design.
\square BP72-A MICROPROCESSOR PRIMER..... $\$ 5.00$. We start by designing a small computer and show how we can overcome its shortcomings.
\square BP74-ELECTRONIC MUSIC PROJECTS.....\$5.95. Provides the experimenter with a variety of practical circuits including a Fuzz Box, Sustain Unit, Reverberation Unit, Tremelo Generator and more.
\square BP91-AN INTRODUCTION TO RADIO DXING..... 55.50 . How you can tune in on those amateur ar J commercial broadcasts from around the world in the comfort of your home.
\square BP94-ELECTRONIC PROJECTS FOR CARS AND BOATS..... $\$ 5.50$. Fitteen simple projects that you can use with your car or boat. All are designed to operate from 12-vot DC supplies.

DIGITAL COURSE

(Continued from page 93)

Let's further assume that R2 and R6 have a resistance equal to the dark rating of the LDR's (0.5 megohms). That means that under no-light conditions, the same voltage level is applied to both inputs of each comparator. Now recall that we stated earlier that if the signal applied to one input exceeds that applied to the other, the output of that device toggles to one of the extremes (high or low), depending upon which input of the comparator is at the higher potential

With the scenario just outlined, the output of each comparator is at ground potential. (That's not really true, but it is convenient for the sake of discussion). If you were to shine a light on R5, its resistance would decrease, causing most of the supply voltage across that leg of the circuit to be dropped across R5. That means that the voltage at the non-inverting input of comparator U 1 -b is at a lower potential than the inverting input, which would cause the output of U1-b to go negative.
Since no light has been focused on R4, the two inputs to U1-a remain equal, and therefore that unit does not produce an output. If you did shine a light on R4, the output of U1-a would also go negative.

Now let's set up the circuit shown in Fig. 6 , and check out the operation of the two comparators. Plug in your own values for R1-R3, and R6, making R1 and R3 equal and the resistors connected to the LDR's equal to the LDR's full-light resistance (about 100 ohms). Apply power to the circuit with the power supply featured earlier in this series, and note the output condition of each comparator, using a multimeter.
Now cover one of the LDR's so that no light radiates on it, and observe the change in output states. Reverse the positions of one LDR and its associated series-connected resistor, and repeat the experiment. Try connecting the R1/ R3 junction to the positive input of one comparator, and the LDR/fixed-resistor combination to the negative input of that comparator. Again repeat the experiment. Note all observations.

What conclusion can be drawn from the data collected? How can the circuit in Fig. 6 be used in circuits of your own design? Try experimenting with the knowledge that you've gained, and see what you can come up with.

WATCH FY His ISSUE ON SALE JANUARY 2

OUR FEBRUARY ISSUE FEATURES:

BUILD R-E'S FREQUENCY PROBE
Gel bench-top performance from our handheld 100 MHz prombe!
BUILD A RADAR-DETECTOR TESTER
Lou-power radar transnitter is ideal for comparisoz testing.

TEST YOUR VIDEO HEADS

Our VCR head-amp sester will sanc you time and money.

CIRCUIT COOKBOOK

An in-depth look at National Semiconductor's LM38X armo senes.

COMPUTERDIGEST

Complete construction details for the Porl-A-Matic.

> PLUS: Hardware Hacker Audio Update Hardware Reviews

Software Reviews Video News And lots more!

THINK TANK

(Continued from page 29)
under test, and then apply the probe to the output of each stage. When you lose the signal, that's where your problem lies.

I built the circuit into a small plastic toothbrush holder and used a nail for the probe. The unit stays in my tool box, and I find frequent use for it. I realize that there isn't too much to say about it, but it's really just that simple. Still, it's got to be worth a Fips Book, right?
-Thomas Schloeder, Van Nuys, CA
Okay Tom. You're right, it's simple and concise, and also is very useful. The only thing I can suggest by way of improvement, would be the addition of a small SPST switch in series with the battery. While current drain is minimal, l'd like to be able to turn the battery off when it isn't in use.

Fig. 8. The Signal Tracer circuit presented here is essentially a variable-gain amplifier.

Turn On (and Off). Byron, l've been meaning to submit this night-light circuit for some time, and when I read that

Fig. 9. This circuit is little more than a light-dependent switch circuit that's used to trigger a relay, which in turn feeds AC power to the device connected to the socket (SOI).
you're running out of Fips Books, I decided to do it now. I originally built this circuit (see Fig. 9.) several years ago and it has provided excellent service ever since. It can be permanently installed, and requires very little in the way of operating power.
You can use the lamp normally by closing S1. A voltage divider (formed of R2 and R3) along with Zener diode D2 are used to obtain the voltage required. The Zener provides a stable base voltage for transistor Q1, which should be set to trigger at dusk.

I hope that circuit qualifies for a book?
-Robert N. Jennings, Woodlynne, NJ It's on the way, Bob. We sure could have used a bit more in the way of descriptive text, but l'm hoping that other, more windy contributors will take up some of the slack!

Okay guys, that should fill all the empty space for this month. But next month, there will be another batch of empty

POPULAR ELECTRONICS 1989 EDITORIAL INDEX FREE COUPON

Return this FREE coupon together with a No. 10 (business-size) envelope on which your name and address appear and to which you have affixed a 25 -cent postage stamp and we will send you a copy of the POPULAR ELECTRONICS 1989 EDITORIAL INDEX. Send your request to: Popular Electronics Annual Index, $500-\mathrm{B}$ Bi-County Blvd., Farmingdale, NY 11735. This is a limited offer so act today!

THIS FREE OFFER EXPIRES APRIL 30, 1990 AFTER APRIL 30, 1990 THERE WILL BE A $\$ 1.00$ CHARGE.
pages. You can help us... and yourself...by sending in those circuits. Just mail 'em to Think Tank, Popular Electronics, 500-B BiCounty Blvd, Farmingdale, NY 11735.

SONIC EMULATOR

(Continued from page 34)
channel's VIDN selector switch to $20 \mathrm{mv} /$ div. Input the signal source to either the left or right input, and set the PHASE control (R16) to 12 o'clock. Slowly adjust the bas control (R11) until a replica of the input waveform appears on the scope trace. The PHASE control (R16) will interact with that adjustment, but there will be an optimum position where the delayline window will stay biased throughout the rotation of the PHASE control.

If you own an AM/FM-cassette car or home stereo with line outputs and a power amp, or stereo (or any installotion with phono jacks and available power), then hookup is a matter of placing this device in the tape or $C D$ loop. The effect can also be recorded for playback on any other system simply by inserting it ahead of the recorder input. Note that there is no power switch per se; a switched $B+$ line from an indash tape deck or power amp is the intended hookup.

No matter how elaborate your system is, you can improve upon it. The Sonic Emulator will do just that, tailor the sound to your listening environment... and your listening pleasure! Sc, put in that favorite cassette or CD, sit back, close your eyes (unless you're driving), and enjoy!

Enter A World Of Excitement with a Subscription to Popular Electronics

Get the latest electronic technology and information monthly!

Now you can subscribe to the magazine that plugs you into the exciting world of electronics. With every issue of Popular Electronics you'll find a wide variety of electronics projects you can build and enjoy.
Popular Electronics brings you informative new product and literature listings, feature articles on test equipment and tools-all designed to keep you tuned in to the latest developments in electronics. So if you love to build fascinating electronics, just fill out the subscription form below to subscribe to Popular Electronics...It's a power-house of fun for the electronics enthusiast.

EXCITING MONTHLY FEATURES LIKE:

\square CONSTRUCTION—Building projects from crystal sets to electronic roulette
\square FEATURES-Educational training on digital electronics, Ohm's Law, Antennas, Communications, Antique Kadio, Simplified Theory
\square HANDS-ON-REPORTS-User test comments on new and unusual consumer products
\square SPECIAL COLUMNS-Think Tank, Circuit Circus, Computer Bits, DX Listening, Antique Radio, Amateur, Scanner Scene

PLUS: ALL OUR GREAT DEPARTMENTS!

You'll get 12 exciting and informative issues of Popular Electronics for only $\$ 18.95$. That's a savings of $\$ 11.05$. off the regular single copy price. Subscribe to Popular Electronics today! Just fill out the subscription order form below.

FOR FASTER SERVICE CALL TODAY 1-800-435-0715
IN ILLINOIS 1-800-892-0753 (7:30AM-8:30PM) EASTERN STANDARD TIME
\square Popular Electronics SUBSCRIPTION ORDER FORM
P.O. Box 338, Mt. Morris IL. 61054

YES! I want to subscribe to Popular Electronics for 1 Full year (12 Issues) for only $\$ 18.95$. That's a savings of $\$ 11.05$ off the newstand price.
\square Payment Enclosed \square Bill me later
Please charge my: Visa \square Mastercard
Acct. \# \qquad

PLEASE PRINT BELOW:

NAME

ADDRESS

CITY
STATE
IIP
Allow 6 to 8 weeks for delivery of first issue. U.S. Funds only. In Canada add $\$ 5.00$ Postage. All Other Foreign add $\$ 7.50$ Postage.

IRON CURTAIN
 (Continued from page 77)

black-market re-sale, a good source of secondary salary.

An Edge. Often one has to turn to friends and relatives for parts. My grandfather worked at a facility that did not have a name, yet occupied about five street blocks near the center of Moscow. He told me that they were designing airplane turbines. It was clear enough that those were not civilian airplanes. Every month I would make my grandfather a list of the parts I needed, always ending it with a phrase: "And whatever else that looks good." A few weeks later he would come home with a long-awaited cardboard box wrapped in newspaper containing all sorts of goodies. I was considered very lucky by my fellow electronics buffs.

Military institutions in the Soviet Union are well funded, and the boxes I got were living proof. I acquired rugged 24volt power supplies, mercury switches embedded in a web of chips and resistors, alphanumeric displays, and non-polarized electrolytics, which were impossible to find anywhere else.

Once I came across a small lead box which was soldered all around, except for a 12-pin connector in one side. There was a radiation danger symbol on it. Hack-sawing the top off revealed a mass of dirty-yellow paraffin. I melted it off and discovered a number of sealed black boxes that looked like relays. All had cryptic English abbreviations on them. To this day I wonder what it was; whether it was actually radioactive, or if it was simply a cover-up for stolen Western technology.
Another connection I had was a distant uncle named Boris, who never ever mentioned his type of employment. Later I found out, from another uncle, that Boris worked for KGB's Department of State Communications. That department is responsible for all the communication equipment used by government agencies. He managed to carry out more than 50 IC 's for my projects, most of them were made by Motorola or NEC. Boris was naturally quite reluctant about stealing electronics from the KGB, and it took some family pressure to make him do it.

Entering the Black Market. Of course, my friends helped me with my hobby, too. When I was about fifteen years old, I got hold of two circuit di-
agrams: one of a ping-pong style video game, and the second of a 100-watt amplifier. The diagrams were handdrawn, and lent to me for only one day. Judging from the condition of the paper, they had gone through hundreds of hands already. Determined to build them, I re-copied them on a large sheet of drawing paper.
By then my grandfather retired, and Boris was transferred out of Moscow! The TV repair shop, and the hobby shop were of no help either. Besides, the projects required crystals, chips, and speakers, so it became necessary to visit the Black Market. Here in America I could just get in the car, drive three miles to a Radio Shack, and buy everything I need; in Russia that was not an option.

Supply and Demand. Do not get me wrong, there are parts inside the electronics shops in the USSR, and they are usually less expensive than those in the US, however, while it is common to see a counter full of 1-, 2-, and 5-ohm 1-watt resistors, (each for five kopecks-about two cents), any value above 100 -ohms would be a find. That is a common problem with all Soviet consumer goods as well as electronic components. Not enough popular parts are manufactured. Also, most of the parts will simply never make it to the store. They either go to the KGB, Defense Department, or to research institutes, or are stolen for black market re-sale.

While the supply of electronic parts for retail purposes is small, the demand is great. Hobby electronics is more popular in the Soviet Union than it is in the US. There are official district clubs, unofficial groups, and, of course, individual experimenters. Despite the deficit of literature, the scope of projects is as broad as you will find in the pages of American electronics magazines.

The government's rationale for restricting the free flow of electronics information is the same as it is for restricting the sales of shortwave receivers, and making computers and photocopy machines unavailable. The well-known truth, that knowledge, or information, equals power, was troubling for the government. So today, with the advent of Perestroika and Glastnost, electronics buffs in the USSR are getting a break. The black market, for example, has been legalized to some extent. That means more project books on the shelf, more parts at the counter, and, perhaps, no more dumpster-scouting.

POWER SUPPLY CIRCUITS

(Continued from page 41)
below 1.25 VDC due to the minimum voltage required across R 1 to maintain the LM317's bias. The filter capacitors are shown with typical values. They will filter out higher frequency noise and transients that might disturb the operation of the load.

The LM317, which is similar in appearance to a power transistor, comes in in a TO-3 case, and is designed to sustain up to 1.5 amps of load current. Use a heat sink with the LM317, or mount the component's case to the metal chassis of the supply (insulate the case from the chassis). Be very careful when mounting the TO-3 case since it acts as a terminal for the device. If the case should short to the chassis, the DC output voltage will be shorted and blow the $A C$ input fuse, if any.

Conclusion. Power supplies convert $A C$ line voltage to some desired value of DC voltage. Although supplies vary in size, shape, efficiency, weight, and output, there are sections common to every supply. An unregulated supply needs a transformer to generate a secondary $A C$ voltage, a rectifier to change $A C$ into pulsating DC, and a filter to remove the pulsations from the DC. That is the simplest and least expensive supply, but the DC output will vary with the load and $A C$ input. A regulator will reduce the efficiency of the supply (regulation disipates some energy), but the DC output is very stable even with changes in load and AC input voltage, and regulated $D C$ is virtually free of ripple.

Take every precaution to protect electronic components from heat and accidental short circuits. Heat sinks carry excess heat away from regulators to keep them cooler. Fuses protect the supply and the load from shorts and current surges. Use "slo-blo" fuses when the supply drives heavy loads like motors, relays, and heaters. A fast-acting fuse should be used to protect sensitive electronics that can not tolerate any sort of surge. With some practice, using and building power supplies will be easy and straightforward.

BUY BONDS

ELECTRONICS MARKET PLACE

FOR SALE

DESCRAMBLERS. All brands. Special: Combo Jerrold 400 and SB3 $\$ 165$. Complete cable descrambler kit $\$ 39.00$. Complete satellite descrambler kit $\$ 45.00$. Free cataiog. MJH INDUSTRY, Box 531, Bronx, NY 10461-0531.

LISTEN to the world! Huge catalog of shortwave receivers, antennas, acessories, plus radioteletype and facsimile decoding equipment. Send $\$ 1$ to: URNIVERSAL RADIO, 1280 Aida Drive, Dept. PE, Reynoldsburg, OH 43068.
SURPLUS ELECTRONICS. New giant wholesale catalog. Hundreds of incredible bargains. \$2. Box 840, Champlain, NY 12919

CB RADIO OWNERS!

We specialize in a wide variety of technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satisfied customer since 1976! Catalog \$2.

CBC INTERNATIONAL

P.O. BOX 31500PE, PHOENIX, AZ 85046

LASER Listener II, other projects. Surveillance, descrambling, false identification, information, Plans, kits, other strange stuff. Informational package $\$ 3.00$ refundable. DIRIJO/BOND ELEC ThONICS, Box 212, Lowell, NC 28098.
CABLE TV descramblers, Jerrold, Scientific Atlanta, Zenith. Most major brands. Dealer inquiries welcome. Visa-M/C accepted. E \& O VIDEO, 9691 E. 265th Street, Elko, MN 55020. 1 (800) 638-6898.

CABLE TV converters. Jerrold, Oak, Scientific Atlantic, Zenith \& many others. "New" MTS stereo add-on: mute \& volume. Ideal for $400 \& 450$ owners 1 (800) 826-7623. Amex, Visa, M/C accepted. B \& B INC., 4030 Beau-D-Rue Drive, Eagan, MN 55122.
CABLE TV converters bargain headquarters: Zenith, Tocom, Scientific Atlania, Hamlin. Jerrold 400-DRX3DIC w/remote $\$ 135$, Oak M35B $\$ 60.00$. Quantity discount. Visa-M/C-COD. Order yours today. 1 (800) 327-8544.

CABLE descrambler Ilquidation. Major makes and models available. Industry pricing! (Example Hamlin Combo's, $\$ 44$ each... Minimum 10 orders). Dealers only! Call WEST COAST ELEC TRONICS, 1 (800) 628-9656.

MICROWNE TV BEGEIVERS 19 to 27 GHz	
	2 CH Compact Dish System - $\$ 77.95$ 5 CH Dish System - $\$ 93.95$ 12 CH Yagi (Rod) System - $\$ 12395$ 30 CH Dish System-\$163.90 Yagi-\$183.90
VISA/MC/COD	QUANTITY DISCOUNTS LIFETIME Warranty

LASER components! New surplus tubes, power supplies, optics. Build a working laser for under $\$ 75.00$. Free plans with order. $\$ 1.00$ (refundabie) brings list. FUNDSERV, 1546A Peaceful Lane, Clearwater, FL 34616.

PLANS \& KITS

CATALOG: hobby/broadcasting/HAM/CB: Cable TV, transmitters, amplifiers, surveillance devices computers, more! PANAXIS, Box 130-H2, Paradise, CA 95967

ELECTRONIC kits! Transmitters! Recorders Phone Devices! Bug Detectors! Surveillance items! More! Catalog \$1.00: XANDI ELECTRONICS, Box 25647, 32KK, Tempe, AZ 85285-5647

BUILD the "Invader," common construction materials, electronic kits available, complete robot plans $\$ 11.95$, details free, ROBOT WORKS, Box 1979 , Colorado springs, CO 80901 .

CLASSIFIED AD ORDER FORM

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Popular Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, N.Y. 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of $\$ 11.00$.

```
( ) Plans/Kits ( ) Business Opportunities
) Education ( ) For Sale
()Education/Instruction ( ) Wanted ( ) Satellite Television
( )
```


Special Category: $\$ 11.00$

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.

(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15 (\$23.25)
16(\$24.80)	17(\$26.35)	18 (\$27.90)	19 (\$29.45)	20 (\$31.00)
21 (\$32.55)	22 (\$34.10)	23 (\$35.65)	24 (\$37.20)	25 (\$38.75)
26 (\$40.30)	27 (\$41.85)	28 (\$43.40)	$29(\$ 44.95)$	30 (\$46.50)
31 (\$48.05)	32 (\$49.60)	33 (\$51.15)	34 (\$52.70)	35 (\$54.25)

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.)

Card Number
Expiration Date

PRINT NAME

SIGNATURE

IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMBER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) $\$ 1.55$ per word prepaid (no charge for ZIP code)...MINIMUM 15 WORDS. 5% discount for same ad in 6 issues within one year; 10% discount for 12 issues within one year if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) $\$ 1.25$ per word, prepaid....no minimum. ONLY FIRST WORD AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 30 c per word additional. Entire ad in boldface $\$ 1.85$ per word. TINT SCREEN BEHIND ENTIRE AD: $\$ 1.90$ per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: $\$ 2.25$ per word. EXPANDED TYPE AD: $\$ 2.05$ per word prepaid. Entire ad in boldface, $\$ 2.45$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: $\$ 2.55$ per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: $\$ 2.95$ per word. DISPLAY ADS: $1^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 175.00 ; 2^{\prime \prime} \times 2^{1 / 4}-\$ 350.00 ; 3^{\prime \prime} \times 2^{1 / 4^{\prime \prime}}-$ $\$ 525.00$. General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 15th of the fourth month preceding the date of issue (i.e.; Sept. issue copy must be received by May 15th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding work day. Send for the classified brochure. Circle Number 49 on the Free Information Card.

MEREDITH INSTRUMENTS: 6403 N. 59th Ave. Glendale, AZ 85301 - (602) 934-9387 "The Source for Laser Surplus"

DETECTION - Surveillance, debugging, plans, kits, assembled devices. Latest high-tech catalog \$5. DETECTION SYSTEMS, 2515 E. Thomas, \#16-864J, Phoenix, AZ 85016.
ELECTROLOCK programable keypad door release system, complete kit including electric strike: $\$ 129.95$, assembled and tested: $\$ 149.95$. Free brochure and orders: SYSTEMS ASSOCIATES INC., 1320 Cranston Street, Cranston, RI 02920. (401) 943-2986.
PROJECTION TV. Convert your TV to project 7 foot picture... Easy... Results comparable to $\$ 2,500$ projectors... Plans and $8^{\prime \prime}$ Lens $\$ 24.95$... Professional systems available... Illustrated catalog free... MACROCOMA, 15 HE Main Street, Washington Crossing, PA 18977. Creditcard orders 24 Hrs. (215) 736-3979.
CLOSEOUT "TV Frequency Standard" April 1988 R-E, kit/antenna coil $\$ 55.00$, finished units $\$ 200.00$; Dot-Bar generator kit $\$ 35.00$; Matchbox FM transmitter kit \$15.00; PERSHING TECHNICAL, Box 1951, Fort Worth, TX 76101.
FREE list, simple amateur radio projects, send SASE, WA4DSO, 3037 Audrey Drive, Gastonia, NC 28054.

TUBES - 2000 TYPES
DISCOUNT PRICES!
Early, hard-to-find, and modern tubes.
Also transformers, capacitors and
parts for tube equipment. Send $\$ 2.00$
for 24 page wholesale catalog.

BUILD this five-digit panel meter and square wave generator including an ohms, capacitance and frequency meter. Detailed instructions $\$ 2.50$. BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

VIDEOCIPHER II manuals. Volume 1 - hardware, Volume 2 - software - either $\$ 32.45$. Volume 3 projects/software - $\$ 42.45$. Volume 4 - repair/ software - $\$ 97.45$. Volume 5 - Documentation $\$ 42.45$. Cable Hacker's Bible - $\$ 32.45$. CODs: $\$ 42.45$. Cable Hacker's Bible - $\$ 32.45$. CODs:
(602) 782-2316. 0100-032 software available. Catalog. $\$ 3.00$. TELECODE, Box $6426-\mathrm{PE}$, Yuma, $A Z$ 85366-6426.
PRIVACY problem - need information? New electronics surveillance, debugging, protection catalog $\$ 5.00$ kits - assembled. TECHNOLOGY SERVICES, 829E Ginette, Gretna, LA 70056.
ALARM kit for home, 12 vDC , delay and instantaneous loop. Includes board and components. $\$ 47.50+\$ 3.50 \mathrm{~S} 8 \mathrm{H}$. For purchase or free info: K.E.P., PO Box 830123, Stone Mountain, GA 30083 .

EDUCATION/INSTRUCTION

MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects. You get a binder to keep the materials in, and a oneyear membership in the International Performing Magicians with a plastic membership card that has your name gold-embossed. You get a one-year subscription to our quarterly newsletter, "IT'S MAGIC!" Order now! $\$ 29.95$ for each course $+\$ 3.50$ postage and handling. (New York residents add applicable state and local sales tax). The Magic Course, 500 B BiCounty Blvd., Farmingdale, NY 11735.
F.C.C. Commercial General Radiotelephone License. Electronics home study. Fast, inexpensive! "Free" details. COMMAND, D-178, Box 2824, San Francisco, CA 94126.

CABLE TV. CONVERTERS WHY PAY A HIGH MONTHLY FEE?

All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC / VISA or C.O.D telephone orders accepted (800) 648-3030 60 Day Guarantee (Quantity Discounts) 8 A.M. to 5 P.M. C.S.T. CLOSED WEEKENDS. Send self-addressed Stamped envelope (60 e postage) for Catalog.

No Illinois Orders Accepted.

BUSINESS OPPORTUNITIES

YOUR own radlo station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box 130 H2, Paradise, CA 95967.
LET the government finance your small business. Grants/loans to $\$ 500,000$. Free recorded message: (707) 448-0270. (KJ8).

EASY work! Excellent Pay! Assemble products at home. Call for info. (504) 641-8003 Ext. 5730.

CABLE EQUIPMENT

CABLE TV Secrets - the outlaw publication the cable companies tried to ban. HBO, Movie Channel, Showtime, descramblers, converters, etc. Suppliers list included. $\$ 8.95$. CABLE FACTS, Box 711H, Pataskala, OH 43062.

DIGITAL CAR DASHBOARDS

BUILD yourself complete electronic dashboards. Informational package: $\$ 2.00$ (refundable). MODERN LABS, $2900-{ }^{-}$Ruisseau, Saint-Elizabeth, QC, JOK 2JO, Canada.

CABLE TV CONVERTERS IN STOCK

Stocking all types of converters Panasonic, Jerrold, Tocom, Pioneer, Scientific Atlanta, Zenith, Oak, Hamlin, Eagle, and others brands available.
Call or write for FREE CATALOG
10 am-5:30 pm Eastern, Mon. - Fri.
VIDED-LIMK Enterprises, Inc.
165 WEST PUTNAM AVE. GREENWICH, CT 06830 Phone (203) 622-4386

WANTED

WANTED to buy Heathkit trainers model ET3400 series microprocessors. Highest price paid as sembled or not. Working or not. These are series 6800 based trainers and may have been purchased under other name. Contact TECHNICAL TRAINING CENTER, 3550 Stevens Creek Blvd., San Jose, CA 95117 or call (408) 554-0300.
INVENTORSI Call IMPAC - We submit ideas to manufacturers! For free information package call in US/Canada 1 (800) 225-5800.
R.F. jamming: knowledge and or equipment also highly sensitive hearing devices: surveillance or medical. EUGENE DELL, 300 Brentwood Ave. Johnstown, PA 15904.

SATELLITE TV

FREE catalog - Do-lt-yourself save 40-60\% Lowest prices world wide, Systems, upgrades, parts, all major brands factory fresh and warrantied. SKYVISION INC., 2008 Collegeway, Fergus Falls, MN 56537. 1-(800) 334-6455.

\$\$\$\$ SUPER SAVINGS $\$ \$ \$ \$$

ELECTRONIC parts, components, supplies and computer accessories. Send $\$ 1.00$ for a one year subscription to our catalogs and its supplements. Get on our mailing list. (214) 343-1770. BCD ELECTRO, Box 450207, Garland, TX 75045.

T.V. FILTERS

T.V. tunable notch filters. Free brochure. D.K. Video, Box 63/6025, Margate, FL 33063. (305) 752-9202.

ADVERTISING INDEX

POPULAR ELECTRONICS magazine does not assume any responsibility for errors that may appear in the index below.

Free Information No.		Page	-	Grantham College .	
16	AMC Sales	. 88	11	Heathkit	
15	All Electronics	. 13	-	McGraw Hill Book Club	
-	Amazing Concepts	93	18	Malvino Inc.	
-	American Home Sat. Assoc.	. 30	-	Meredith Instruments.	
-	Antique Electronics	. 104	-	Midwest Electronics	
10	Banner Books	. 95	-	NRI Elecronics	21
8	C \& S Sales	27	-	NRI Schools	91
-	CB City	103	-	Pacific Cable	
-	CIE	. 25	19	Panavise	
-	Command Productions	. 28	9	Parts Express	
6	Communications Electronics	CV4	-	Republic Cable	104
12	Cook's Institute	. 93	-	Securicom	104
-	Damark Int'l	23	20	Sequoia	
7	Digi Key	CV2	14	Sintec	
-	Digitar 95	-	Sun Microwave	103
13	Electronics Book Club	. 3	-	Trans World	104
-	Electronic Tech. Today . . .	88,98	-	Video-Link	104
-	Electronic Tech. Today	CV3	17	Viejo Publications Inc.	

ADVERTISING SALES OFFICE

Gernsback Publications, Inc.
500-B Bi-County Blvd.
Farmingdale, NY 11735
1.(516) 293-3000

President: Larry Steckter
Vice President: Cathy Steckler
For Advertising ONLY
516-293-3000
Fax 1-516-293-3115
Larry Steckler publisher
Ariine Fishman advertising director
Christina Estrada advertising assistant
Lisa Strassman
credit manager

SALES OFFICES

EAST/SOUTHEAST
Becky Akers
Pattis/3M
310 Madison Ave., Suite 1804
New York. NY 10017
1-212-953-2121
Fax 1-212-953-2128
MIDWEST/Texas/Arkansas/
Okla.
Ralph Bergen
540 Frontage Road-Suite 339
Northfield, IL 60093
1-312-446-1444
Fax 1-312-446-8451
PACIFIC COAST/Mountain States
Marvin Green
5430 Van Nuys Blvd., Suite 316
Van Nuys, CA 91401
1-818-986-2001
Fax 1-818-986-2009

FACTCARDS
ALL YOU NEED to know about electronics from transistor packaging to substitution and replacement guides. FACTCARDS numbers 34 through 66 are now available. These beautifully-printed cards measure a full three-by-five inches and are printed in two colors. They cover a wide range of subjects from Triac circuit/replacement guides to flip-flops, Schmitt triggers, Thyristor circuits, Opto-Isolator/Coupler selection and replacement. All are clearly explained with typical circuit applications.

WANT TO EXPAND your knowledge of electronics? Do it the easy way
by studying the Electronics Fact Cards. Do you travel to and from your job each day? Drop a handful of cards in your pocket before you leave, and the bus becomes a schoolroom! At home, you can build some of the projects and not only have fun building and using them, but learn how they work at the same time.

YOU'LL BE AMAZED both at how rapidly you learn with these cards, and how easy it is to understand. These new cards are available right now. Don't miss out. Send your check or money order today.

FACTCARDS-Facts at your fingertips for Experimenters and Project Builders!

Please send one copy of FACTCARDS at $\$ 3.50$. Shipping $\$ 1.00$ (U.S. and Canada only).
\square Please send \qquad copies of FACTCARDS. Total cost is sum of copy price and First Class postage and handling cost multiplied by number of card sets ordered.

Allow 6-8 weeks for the material to arrive
Please print

Jampacked with information at your fingertips

		Detach and mail today: Popular Electronics Bookstore	
(Name)	P.O. Box 4079 Farmingdale, NY 11735		
(Street Address)		All Payment must be in U.S. Alate)	(Zip)
Funds!	P-290		
(City)			

PLASMA DISPLAY

(Continued from page 68)
trical connection won't set you back too much.

Once the glass blower was done, the flasks were evacuated as far as possible (roughly 2 mm of Hg remaining), heated with a hot-hair blower to remove impurities from the inside walls, and filled with neon or xenon to approximately 70 mm Hg . The glass tubing was then melted off with a propane-oxygen torch. The flasks were truly vacuumtight.

Finally, I hit upon the design shown in Fig. 8. In it, a second, small globe is

The display generated by the neon-filled 6liter globe is quite impressive.

Fig. 8. This design proved to be the best of all. A second globe was blown within the first and was either coated with graphite or filled with fine sted wool.
blown inside the first; a narrow channel links the inside of the small globe to the outside world. That design allowed me to eliminate the internal electrode. In stead, the inside of the inner globe was coated with graphite and the graphite was dried on, or-filled with steel wool, and a wire was placed into it. That serves as the electrode and works fine through the glass wall.

Different sized round-bottom flasks can be used for your globes. I tried 1 , 2 and 6 -liter flasks. For the type of globe shown in Fig. 8, the 2-liter size worked well and was not too expensive.

Other Considerations. Discharges in

the globes can be influenced by changing the ground situation in respect to the globe. Any grounded object coming close has an influence Changing the supply voltage also has an influence. A dimmer can be used to diminish the discharges. A normal dimmer, however, is not meant to regulate inductive loads such such as the plasma globe power-supply (flyback) transformer. It will probably work for a while and then burn out, because the return current from the transformer will eventually destroy the SCR. You may be able to solve the problem with a diode across the transformer.

That brings you up to date on my experiments. That doesn't mean that I am done, however. I plan to continue my experiments, and I encourage you to do the same. But remember: The voltages involved in these units are dangerous and must be treated with respect. Furthermore, manufacturing the display globes is a tricky and hazardous operation that must be done with care. Before you perform any of these experiments, consider your personal safety first and foremost. If you are unsure of what you are doing, seek out someone with appropriate experience to help you.

NAVplus
 (Continued from page 81)

NAVplus. Charting coordinates from a Loran receiver onto a map is a chore that is impractical, if not impossible, to do on a "continuous" basis. And that's where NAVplus comes in; NAVplus is a software package that turns a Macintosh computer into a nautical chart.
The system requires a Macintosh plus or higher, and a mouse - no keyboard is required. The NAVplus program comes with an operating manual and one "charting area" (e.g. a region of interest encoded on a diskette)-additional areas are available. Charting areas come in two sizes: offshore and detailed. Offshore charts cover a broad area such as an entire coastline, and contain less detailed information about things such as ports and harbors
option, a menu appears on the screen. Under the fle icon, you would then select OPEN CHART and insert the chartingarea disk. Almost instantly, the chart appears on the screen, complete with navigational-aids (symbols and data) and a flashing indicator for your vessel's current position. By placing the pointer on any of the special symbols and pressing a mouse button, a box pops up with a complete description of the symbol. Selecting legend at the top of the screen provides you with a complete list of navigational symbols.

One of NAVplus' best features is the ability to zoom into or out of any selected area. Any area can be zoomedinto multiple times-the more you zoom-in, the more details and aids appear.
To plot a course you select New COURSE and place the pointer at the start of the course and "click" the mouse-_that becomes your first "waypoint." You continue to plot waypoints along the route to your destination, being careful to mind the navigational aids. You then store the course and get under way. The pointer continuously displays your actual position along with the plotted course, allowing you to follow it closely.

On your return trip you can either plot a new course, plot your actual original course in reverse, or simply follow your originally stored course in reverse.

As proof of the capabilities of NAVplus, the NAVplus system was used aboard the Gentry Eagle-a 110-foot speedboat that successfully broke the speed record for trans-Atlantic crossing this past July. The new record of 62 hours, 7 minutes nasily shattered the 1986 Virgin Atlantic IIrecord of 80 hours, 31 minutes. The Gentry team averaged 55.61 mph over the 3,248 -mile trip.

NAVplus has many more capabilities than the surface we've scratched has revealed. And even though you have to have a Macintosh on your boat to use NAVplus, you'll definitely find other uses for the Macintosh while you're at sea. (Who out there just said "play games?")

The NAVplus program, operating manual, and one charting area are available for $\$ 599.95$. Additional charting areas are $\$ 199.95$ each, and an interface cable is $\$ 19.95$. For more information contact Ocean Products Corporation, 8 Bayberry Lane, New Fairfield, CT 06812 1-203-746-1175. Circle no. 120 on the Free Information Card.

uniden \$12,000,000 Scanner Sale

Uniden Corporation of America has purchased the consumer products line of Regency Electronics Inc. for $\$ 12,000,000$. To celebrate this purchase, we're having our largest scanner sale in history! Use the coupon in this ad for big savings. Hurry...offer ends February 28, 1990.

Get special savings on the scanners listed in this coupon. This coupon must Credit cards, personalchecks andquanCredit cards personalchecks andquan-
tity discounts are excluded from this tity discounts are excluded from this
offer. Offer valid only on prepaid orders mailed directly to Communications Elec tronics Inc., P.O. Box 1045 - Dept. UN/3, Ann Arbor, Michigan 48106-1045 U.S.A. Coupon expires February 28, 1990. Coupon maynot be usedin coniunction with any other offer from CEl. Coupon may be phofocopied. Add $\$ 12.00$ for shipping in the continental U.S.A.
Regency TS2-T\$259.95 Regency TS2-T $\$ 259.95$
Regency R1600-T. $\$ 239.95$ Regency R1099-T $\$ 99.95$ Regency RH606B-T. $\$ 419.95$ Regency RH256B-T. . . . $\$ 294.95$ Bearcat 200XLT-T2 $\$ 229.95$ Bearcat 100XLT-T $\$ 184.95$ Bearcat 800XLT-T2 $\$ 229.95$ Uniden HR2510-T $\$ 229.95$ Uniden HR2600-T $\$ 274.95$ Uniden PRO500D-T2.....\$29.95

Bearcat? 760XLT-T
List price $\$ 499.95 /$ CE price $\$ 244.95 /$ SPECIAL 12-Bund, 100 Chennel Crystelless AC/DC Frequencyrange: 29-54,118-174,406-512, 806-956 MHz. Excludes 823.9875-849.0125 and 868.9875-894.0125 MHz The Bearcat 760 XLT has 100 programmable channels organized as five channel banks for easy use, and 12 bands of coverage including the 800 MHz . band. The Bearcat 760 XLT mounts neatly under the dash and connects directly to fuse block or battery. The unit also has an AC adaptor, flip down stand and telescopic antenna for desk top use. 6$5 / 16^{\prime \prime} \mathrm{W} \times 15 \mathrm{~s}^{\prime \prime} \mathrm{H} \times 7 \% \mathrm{~s}^{\prime \prime} \mathrm{D}$. Model BC 590XLT-T is a similar version without the 800 MHz . band for a similar version without the 800 MHz . band for
only $\$ 194.95$. Order your scanner from CEl today.

NEW! Regency ${ }^{\text {® }}$ Products

R4030-T Regency 200 ch , handheld scanner R4020-T Regency 100 ch , handheld scanner R4010-T Regency 10 channel handheld scanne R1600-T Regency 100 channel mobile scanner P200-T Regency 40 channel CB Mobile P210-T Regency 40 channel CB Mobile
P220-T Regency 40 channel CB Mobile P220-T Regency 40 channel CB Mobile P300-T Regency 40 channel SSB CB Mobile P400-T Regency 40 channel SSB CB Base. PR100-T Regency visor mount radar detector PR1 10-TRegency"Passport" size radar detecto PR1 20-T Regency "micro" size radar detector MP5100XL-TRegency 40 Ch . marine transceiver MP5510XL-T Regency 60 Ch . marine transceiver MP6000XL.T Regency 60 Ch . marine transceive

Regency ${ }^{\circledR}$ RH256B-T

List price $\$ 799.95 /$ CE price $\$ 299.95 /$ SPECIAL 1 ch Channel - 25 Wett Transcelver - Prlority The Regency RH256B is a sixteen-channel VHF land mobile transceiver designed to cover any frequency between 150 to 162 MHz . Since this radio is synthesized, no expensive crystals are needed to store up to 16 frequencies without battery backup. All radios come with CTCSS tone and scanning capabilities. A monitor and night/day switch is also standard. This transceiver even has a priority function. The RH256 makes an ideal radio for any police or fire department volunteer because of its low cost and high performance. A 60 Watt VHF 150-162 MHz . version called the RH606B-T is available for $\$ 429.95$. A UHF 15 watt, 16 channel version o this radio called the RU1 $56 \mathrm{~B}-\mathrm{T}$ is also available and covers $450-482 \mathrm{MHz}$. but the cost is $\$ 454.95$
$\star \star \star$ Uniden CB Radios
(®) styled to complimentizens Band Radio Hansceivers is Uniden CB radios are so reliable that they have a two 8810 F to yed warranty. From the feature packed PRO 810 E to the 310 E handheld, there is no better Citizens Band radio on the market today.
PRO310E-T Uniden 40 Ch . Portable/Mobile CB PRO330E-T Uniden 40 Ch . Remote mount CB KARATE-T Uniden 40 channel rescue radio GRANT-T Uniden 40 channel SSE CB mobile MADISON-T Uniden 40 channel SSB CB base PC122-T Uniden 40 channel SSB CB mobile.. PRO510XL-T Uniden 40 channel CB Mobile. PRO520XL.T Uniden 40 channel CB Mobile. . PRO530XL-T Uniden 40 channel CB Mobile. PRO540E-T Uniden 40 channel CB Mobile.. PRO640E.T Uniden 40 channel SSB CB Mobile PRO710E-T Uniden 40 channel CB Base
PRO810E-T Uniden 40 channel SSB CB
$\$ 83.95$
$\begin{array}{r}\$ 104.95 \\ \hline\end{array}$
$\$ 38.95$ $\$ 53.95$
$\$ 166.95$ $\$ 166.95$
$\$ 244.95$ 244.95
119.95 $\$ 39.95$
$\$ 56.95$ $\$ 56.95$
$\$ 79.95$ $\$ 79.95$
$\$ 97.95$
$\$ 137.95$ $\$ 137.95$
$\$ 119.95$.$\$ 179.95$
.$\$ 174.95$
$\star \star \star$ Uniden Radar Detectors $\star \star \star$ Buy the finest Uniden radar detectors from CEI today. TALKER-T2 Uniden talking radar detector RD9-T Uniden "Passport" size radar detector RD9XL.T Uniden "micro" size radar detector RD25-T Uniden visor mount radar detector $\begin{array}{r}\$ 114.95 \\ \hline\end{array}$ RD500-T Uniden visor mount radar detector. $\$ 144.95$
.$\$ 54.95$

Bearcat 200 XLT-T

List price $\$ 509.95 /$ CE price $\$ 239.95 /$ SPECIAL

 12-Bend, 200 Chennel - 800 MHz . Handheld Search © LImit - Hold - Priority Lockout Frequency range: 29.54, 118-174, 406-512, 806-956 MHzExcludes $823.9875-849.0125$ and $868.9875-894.0125 \mathrm{MHz}$ The Bearcat 200XLT sets a new standard for handheld scanners in performance and dependability. This full featured unit has 200 programmable channels with 10 scanning banks and 12 band coverage. If you want a very similar model without the 800 MHz . band and 100 channels, order the BC 100XLT-T for only $\$ 189.95$. Includes antenna, carrying case with belt loop, ni-cad battery pack, AC adapter and earphone. Order your scanner now

Bearcat ${ }^{\oplus}$ 800XLT-T

List price $\$ 549.95 /$ CE price $\$ 239.95 /$ SPECIAL 12-Band, 40 Chennel - No-crystal scanner Prlorlty control - Search/Scan AC/DC Bands: $29-54,118-174,406-512,806-912 \mathrm{MHz}$. Excludes 823.9875-849.0125 and 868.9875-894.0125 MHz The Uniden $800 \times$ LT receives 40 channels in two banks. Scans 15 channels per second. Size $91 / 4^{\prime \prime} \times 4 \frac{1 / 2^{\prime \prime}}{} \times 12^{1 / 2}$. If you do not need the 800 MHz . band, a similar model called the BC 210×1 T-T is available for $\$ 178.95$.

Bearcat ${ }^{\circledR} 145$ XL-T

List price $\$ 189.95 /$ CE price $\$ 94.95 /$ SPECIAL 10-Band, 1 © Channel - Nocrystal scanner Priority control - Weather search - AC/DC Bands: 29-54, 136-174, 406-512 MHz The Bearcat 145 XL is a 16 channel, programmable scanner covering ten frequency bands. The unit features a built-in delay function that adds a three second delay on all channels to prevent missed transmissions. A mobile version called the BC560XLT-T featuring priority, weather search, channel lockout and more is available for $\$ 94.95$. CEl's package price includes
President ${ }^{\text {HR2510-T }}$
List price $\$ 499.95 /$ CE price $\$ 239.95 /$ SPECIAL List price $\$ 499.95 /$ CE price $\$ 239.95 /$ SPECIAL
10 Meter Moblle Transcelver - DigItal VFO Full Band Coverage Alf-Mode Operation BackIIt llquid crystal display - Auto Squelch RIT - Preprogrammed 10 KHz. Channels Frequency Coverage: 28.0000 MHz to 29.6999 MHz . The President HR2510 Mobile 10 Meter Transceive made by Uniden, has everything you need for amateur radio communications. Up to 25 Watt PEP USB/LSB and 25 Watt CW mode. Noise Blanker. PA mode. Digital VFO. Built-in S/RF/MOD/SWR meter. Channel switch on the microphone, and much more! The HR2510 lets you operate AM, FM, USB, LSB or CW. The digitally synthesized frequency control gives you maximum stability and you may choose either pre-programmed 10 KHz . channel steps, or use the built-in VFO for steps down to 100 Hz . There's also RIT (Receiver Incremental Tuning) to give you perfectly tuned signals. With receive scanning, you can scan 50 channels in any one of four band segments to find out where the action is. Order your HR2510 from CE1 today.
NEW! President ${ }^{\text {® }}$ HR2600-T List price s5999.95/CE price s299.95/PRECIAL 10 Meter Moblie Transcelver New Features The new President HR2600 Mobile 10 Meter Transceiver is similar to the Uniden HR2510 but now has repeater offsets (100 KHz .) and CTCSS encode.
$\star \star \star$ Uniden Cordless Telephones $t \star \star$
XE750-T Uniden Cordless Phone with speaker $\$ 99.95$ XE550-T Uniden Cordless Phone
$\$ 99.95$ XE300-T Uniden Cordless Phone $\$ 6995$

t $\boldsymbol{*}$ E Extended Service Contrect

 t $\boldsymbol{t} \boldsymbol{t}$ phone from any a scanner, CB, radar detector or cordless days, you can get up to three years of extended service contract from Warrantech. This service extension plan begins after the manufacturer's warranty expires. Warrantech will perform all necessary labor and will not charge for return shipping. Extended service contracts are not refundable and apply only to the original purchaser. A two year extended con tract on a mobile or base scanner is \$29.99 and three years is $\$ 39.99$. For handheld scanners, 2 years is $\$ 59.99$ and 3 years is $\$ 79.99$. For radar detectors, two years is $\$ 29.99$. For CB radios. 2 years is $\$ 39.99$. For cordless phones, 3 years isOTHER RADIOS AND ACCESSORIES

BC55XLT-T Bearcat 10 channel scanner BC70XLT-T Bearcat 20 channel scanner

 BC175XLT•T Bearcat 16 channel scanner R2066-T Regency 60 channel scanner R1098-T Regency 45 channel scanner TS2-T Regency 75 channel scanner UC1O2-T Regency VHF 2 ch . 1 Watt transceiver BPS5-T Regency 16 amp reg. power supply BP205-T1 Ni-Cad batt. pack for BC200/BC1 00XL B8-T 1.2 VAANi -Cad batteries (set of eight) FBE.T Frequency Directory for Eastern U.S.A FBW-T Frequency Directory for Western U.S.A RFD1-T Great Lakes Frequency Directory RFD1-T Great Lakes Frequency DirectoryRFD2-T New England Frequency Directory RFD3.T Mid Allantic Frequency Directory RFD4-T Southeast Frequency Directory RFD5-T N.W \& Northern Plains Frequency Dir ASD-T Airplane Scanner Directory
SRF-T Survival Radio Frequency Directory TSG-T "Top Secret" Registry of U.S. Govt. Frea
TTC-T Tune in on telephone calls
CBH-T Big CB Handbook/AM/FM/Freeband TIC.T Techniques for Intercepting Communications RRF-T Railroad frequency directory
EEC-T Embassy 8 Espionage Communications CIE-T Covert Intelligence, Elect. Eavesdropping MFF-T Midwest Federal Frequency directory 460-T Magnet mount mobile scanner-antenna. A70-T Ease station scanner antenna A1 300-T $25 \mathrm{MHz} .-1.3 \mathrm{GHz}$ Discone antenna. . USAMM-T Mag mount VHF ant. W/ 12' cable....... $\$ 39.95$
USAK.T $34^{\prime \prime}$ hole mount VHF ant. W/ 17' cable $\$ 35.95$ 11495 $\$ 15995$ $\$ 156.95$ \$149.95 $\$ 10995$ $\$ 26995$ $\$ 26995$
$\$ 114.95$ $\$ 114.95$
$\$ 17995$ $\$ 17995$
.$\$ 39.95$ $\$ 39.95$
$\$ 1735$ $\$ 1795$
$\$ 1495$ $\$ 1495$
$\$ 1475$ $\$ 1495$ $\$ 1435$
$\$ 1435$ $\$ 1495$
$\$ 1495$ $\$ 1495$
$\$ 1495$ $\$ 1495$
$\$ 14.95$ $\$ 1495$ $\$ 1495$
$\$ 14,95$ $\$ 14,95$
$\$ 14.95$ $\$ 14.95$
$\$ 14.95$ $\$ 14.95$
$\$ 14.95$ $\$ 14.95$
$\$ 14.95$ $\$ 14.95$
$\$ 14.95$ $\$ 14.95$
$\$ 14.95$ $\$ 14.95$ $\$ 14.95$
$\$ 14.95$ $\$ 14.95$ $\$ 35.95$ $\$ 35.95$ Add $\$ 4.00$ shipping for all accessories ordered at the same $\$ 35.95$ Add $\$ 12.00$ shipping per radio and $\$ 4.00$ per antenna

BUY WITH CONFIDENCE
To get the fastest delivery from CEI of any scanner, send or phone your order directly to our Scanner Distribution Center." Michigan residents please add 4\% sales tax or supply your tax I.D. number. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10\% surcharge for net 10 billing. All sales are subject to availability, acceptance and verification. All sales on accessories are final. Prices, terms and specifications are subject to change without notice. All prices are in U.S. dollars. Out of stock items will be placed on backorder automatically unless CEl is instructed differently. A $\$ 5.00$ additional handling fee will be charged for all orders with a handling fee will be charged for all orders with a merchandise total under $\$ 50.00$. Shipments are F.O.B. CEl warehouse in Ann Arbor, Michigan. No COD's. Most items listed have a manufacturer's warranty. Free
copies of warranties on these products are available by writing to CEI. Non-certified checks require bank clearance. Not responsible for typographical errors.

Mail orders to: Communications Electronics," Box 1045, Ann Arbor, Michigan 48106 U.S.A. Add $\$ 12.00$ per scannerfor U.P.S. ground shipping and handling in the continental U.S.A. For Canada, Puerto Rico, Hawaii, Alaska, or APO/FPO delivery, shipping charges are two times continental U.S. rates. If you have a Discover, Visa, American Express' or Master Card, you may call and place a credit card order. 5\% surcharge for billing to American Express. Order toll-free in the U.S. Dial 800-USA-SCAN In Canada, dial 800-221-3475. FAX anytime, dial 313-971-6000. If you are outside the U.S. or in Michigan dial 313-973-8888. Order today. Scanner Distribution Center* and CEI logos are trade marks of Communications Electronics Inc
Sale dates 9/1/89-2/28/90 AD \#090189-T
Copyright © 1989 Communications Electronicsinc.
For credit card orders call 1-800-USA-SCAN

COMMUNICATIONS ELECTRONICS INC.

Consumer Products Division

For orders call 313.973 , 8888 or FAX $313-971$ - 8000

[^0]: 6707 Shingle Creek Parkway. Minneapolis, MN 55430 Customer Service - 612-566-4940
 Plaase rush me:__ Zenith Laptop Computer(s) @ $\$ 2999$ each, plus $\$ 19.00 \mathrm{~s} / \mathrm{h}$ each. Item NC. B-1573.128686. MN res. add 6% sales tax.

 Name
 Adcress
 City,State. Zip
 \square CheckMO \square VISA \square Master Card Discover
 Card No.
 Exp. Date
 Signature

[^1]: *CREDITS—John Campbell, England; AI Gastle, Ontario, Canada; Richard D'Angelo, PA; William Sparks, CA; Ontario DX Association, P.O. Box 161, Station A, Willowdale, Ontario M2N 5S8, Canada)

