NEW LOOK - NEW STORIES - NEW DEPARTMENTS Popular Electionics FIFTV CENTS / OCTOBER 1970

Indestructible 125-Watt
 Power Amp

EDISON-INVENTOR

 OF WIRELESS!REFORMING YOUR ELECTROLYTICS VHF-UHF GRID-DIP OSCILLATOR
MEASURING RESISTANCE BELOW 1.0 OHM PHOTO ENLARGER LIGHTMETER
Grophic Sereo Ione Control

FREOUENCY EOUALIZER

Egetronios comes alive with NBil Training Kits

4thens

DISCOVER THE EASE AND EXCITEMENT OF TRAINING AT HOME THE NRI WAY

New Achievement Kit-Custom Training Kits -"Bite Size" Texts

Only NRI offers you this pioneering method of simplified "3 Dimensional" home-study training in Electronics, TV/Radio and Broadcasting/Communications. It's a remarkable teaching idea unlike anything you have ever encountered, the result of more than half a century of simplifying, organizing and dramatizing learn-ing-at-home techniques. If you are an ambitious man -regardless of your education-you can effectively learn the Electronics field of your choice the NRI way.
NRI has simplified Electronics by producing "bite size" lesson texts averaging only 40 pages each. Dozens of illustrations open wide a picture window through which you'll see and understand practical uses of Electronics. You start out with NRI's exclusive Achievement Kit, containing everything you need to get started fast. (llustrated at right.)
NRI has organized Electronics training to take you step-by-step from the first stages into more intriguing areas. Once you know the fundamentals thoroughly, it's easy to grasp more advanced theory and techniques. You move with confidence and enthusiasm into a new adventure filled with the excitement of discovery.
NRI has dramatized Electronics through the careful development of special training equipment that is programmed into your training systematically... beginning with your first group of lessons. Things you read about come alive in your hands as you build, experiment, purposely cause 'problems'" in circuitsand solve them. You learn to use test equipment, to build radios and TV sets, transmitter, or computer circuits. It's the priceless "third dimension" in NRI training . . . practical experience.

More than 50 years of leadership in Electronics Training

YOU GET MORE FOR YOUR MONEY FROM NRI

Mail postage-free card now for your free NRI catalog. Then, compare. You'll find-as have thousands of others -NRI training can't be beat. Read about the new Achievement Kit sent the day you enroll; about "bitesize," texts and custom designed training equipment. See why NRI gives you more value. Whatever your reason for wanting more knowledge of Electronics, NRI has an instruction plan for you. Choose from major programs in TV/Radio Servicing, Industrial Electronics and Complete Communications. Or select from special courses to meet specific needs. Check the course of interest to you on postage-free card and mail today for free NRI catalog. No salesman will call. National Raoio Institute, Electronics Div., Washington, D.C. 20016.

A vailableUnder
 NEW
 GIBILL

If you served since January 31,1955 , or are in service, check free card. postage

Career? Part-Time Earnings? Hobby? Choose From 12 Training Plans
 5. MATH FOR ELECTRONICS - Brief
 9. MARINE COMMUNICATIONS* -

1. TELEVISION-RADIO SERVICING Learn to fix all TV sets, including Color. Includes your choice of NRI Color Kit or 19" black-white TV Kit. Also covers radios, stereo hi-fi, etc. Profitable field spare or full-time.
2. INDUSTRIAL•MILITARY ELECTRON. ICS - Basics to computers. Starts with fundamentals, covers servos, telemetry, multiplexing, phase circuitry, other subjects.
3. COMPLETE COMMUNICATIONS * Operation, service, maintenance of AM, FM and TV broadcasting stations. Also covers marine, aviation, mobile radio. facsimile, radar, microwave.
4. FCC LICENSE*-Prepares you for 1st Class FCC License exams. Begin with fundamentals, advance to required subjects in equipment and procedures.
course for engineers, technicians seek. ing quick review of essential math: basic arithmetic, short-cut formulas, digital systems, etc.
5. BASIC ELECTRONICS - For anyone wanting a basic understanding of RadioTV Electronics terminology and components, and a better understanding of the field.
6. ELECTRONICS FOR AUTOMATION Not for beginners. Covers process control, ultrasonics, telemetering and remote control, electromechanical meas. urements, other subjects.
7. AVIATION COMMUNICATIONS* Prepares you to install, mairtain, service aircraft in-flight and landing systems. Earn your FCC License with Radar Endorsement.

Covers electronic equipment used on commercial ships, pleasure boats. Prepares for FCC License with Radar Endorsement.
10. MOBILE COMMUNICATIONS * Learn to install, maintain mobile trans mitters and receivers. Prepares for FCC License exams.
11. ELECTRICAL APPLIANCE REPAIR Learn to repair all appliances, including air conditioning, refrigeration, small gas engines. Leads to profitable part or fulltime business.
12. ELECTRONICS FOR PRINTERS Operation and maintenance of Electronic equipment used in graphic arts industry. from basics to computer circuits. Approved by major manufacturers.

* You must pass your FCC License exams (any Communications course) or refunds in full the fuition you have paid.

[^0]
MIPLANR Making GB newer every day!

Midland's biggest product is innovation...such as compatible Single Sideband in base, mobile, and hand-held units...or using revolutionary Integrated Circuitry in our professional CB line...or a sapristicated 23-

A B E E E E

(Associate in Science in Electronics Engineering)

degree

Mostly by HOME STUDY Instruction

Where will you be five years from today? Are you headed for real advancement in electronics, or are you in a rut? The technical experience you now have is important; it gives you a head start toward a better future. But to get ahead and stay ahead, experience must be supplemented with more education in electronics and allied subjects.

Grantham School of Engineering - "the college that comes to you"-offers to electronics technicians a home-study educational program for the Degree of Associate in Science in Electronics Engineering (the ASEE), accredited by the Accrediting Commission of the National Home Study Council.

The complete degree program except for the final ten lessons is presented entirely by correspondence. However, these last ten lessons are part of a two-week "Graduation Seminar" held at the School. Thus, you may do all of your ASEE Degree work by correspondence except for the final two weeks.

Accreditation and G.I. Bill Approval

Grantham School of Engineering is accredited by the Accrediting Commission of the National Home Study Council, is approved under the G.I. Bill, and is authorized under the laws of the State of California to grant academic degrees.

GRANTHAM SEMGINEREING

"the college that comes to you"
1505 N. Western Av, Hollywood, CA 90027

Popular Flectronics

LAWRENCE SPORN

Publisher OLIVER P. FERRELL Editor
LESLIE SOLOMON
Techaical Editor JOHN R. RIGGS Manaoing Editor
EDWARD I. BUXBAUM
Art Director
ALEXANDER W. BURAWA Atrociate Edator
ANDRE DUZANT
Technical Illusirator
PATTI MORGAN Assistant Editor
JUDITH L. HOGAN Editorial Assintant d. GORDON HOLT L. E. GARNER, JR. DAVID L. HEISERMAN Contributing Editort 1. ROYCE RICHARD Asaistant Publisher RICHARDJ. HALPERN Advertising Mananer ROBERT UR Marketimg Manager MARGARET DANIELLO Advertiaing Service Manager FURMAN H. HEBE Grown Vice Preaidont ZIFF-DAVIS PUBLISHING COMPANY

Editorial and Executive Offices
One Park Avenue, New York, New York 10016
212 679-7200
Midwestern Office
The Paftis Group, 4761 West Touthy Ave. Lincolnwood, Illinois 60646, 312679.1100 GERALDE. WOLFE, DICK POWELL Western Office
9025 Wilshire Boulevord, Beverly Hills, California 90211 213 CRestview 4.0265; BRadshaw 2-1181 Western Advertising Manager, BUD DEAN Japan: James Yagi Ishikawa Mansion \#4, Sakuragaoka Shibuya-ku, Tokyo, 462-2911-3 Circulation Office P.O. Box 1096, Flushing, N.Y. 11352

William Ziff, President
W. Bradford Briggs, Executive Vice President Hershel B. Sarbin, Senior Vice President Stanley R. Greenfield, Senior Vice Presiden Philip Sine, Financial Vice President Walter S. Mills, Jr., Vice President, Circulation Phillip T. Heffernon, Vice President, Markeling Frank Pomeraniz, Vice President, Creative Services Arthur W. Butzow, Vice President, Production
Edward D. Muhlfeld, Vice President, Aviation Division Irwin Robinson, Vice President, Trovel Division George Morrissey, Vice President
Sydney H. Rogers, Vice President
Ziff-Davis also publiehes Alring Manazement and Marketing In. cluding American Avlation, Boating. Business Commercial Avia tion. Car and Driver. Cycle, Elcctronics World, Flying. Nodern Trade News. Stereo Revicw. and Travel Weekly.
Forms 3579 and all subscriptions correspondence should be adBrx 1096. Flushink. N,Y. 11352. Please allow at least six wit. P.O. change of address. Include your old address. at went six weeks for closing if mossible an address label from a recent isgue.
EDITORIAL CONTRIRUTIONS must be accompanied by return post assumes no responsiblitity for return or afety of art work, photo graphs or manuscripts.

MPA.
Member Audit Bureav of Clrculations

Second in a Monthly Series by Oliver P. Ferrell, Editor

CB! FOR BETTER? OR WORSE?

Since its introduction to the $27-\mathrm{MHz}$ band, millions of words have been written about the pros and cons of CB. From that plethora of verbiage, there has been little objectivity, substantial denegation of facts, and an incomprehensible attitude toward CB by the Federal Communications Commission. Exactly how the FCC can ignore $4,000,000$ CB transceivers and 875,000 "licensed" CB stations defies rational explanation. But, ignored it is-castigated on occasion-and a source of enormous revenue to the FCC.

Even the most cursory tally shows that CB license fees and forfeitures provided 7% of the money spent by the FCC in 1969more than any other radio service. This was achieved at an expenditure of around $\$ 300,000$. The FCC's return on its investment is about 500% and if that situation is not a shocker, bear in mind that the FCC expects CB to make up $17 \frac{1}{2} \%$ of its annual budget starting August 1, 1970. For this larger sum, the FCC apparently expects to provide little or no additional services.

Several years ago the FCC proposed an independent study of $C B$ regulatory problems and budgeted money to get the program under way. When Congress didn't approve of all the FCC proposed expenditures, what money was available went to the Broadcast Bureau and hopes of finding a solution to CB went down the drain.

Popular Electronics feels that the time is past for the FCC to "make something" as is out of $27-\mathrm{MHz}$ CB. The $\$ 20$ license fee (up from \$8) will be ignored by an ever-increasing number of illegally operating CB'ers. In its unthinking haste to make itself look good fiscally on paper, the FCC has created a behemoth out of a monster. Rather than take the initiative and right the wrongs of CB, the FCC has opened the floodgates to put more stations on the air with fewer and fewer controls.
When will the FCC learn that they must live with CB? It cannot be hidden away in the attic or swept under the rug. Through its own inadequate planning and slavish responsiveness to broadcasting lobbies at the sacrifice of all other radio services, the FCC is now in a cul-de-sac.

Popular Electronics finds no valid argument for the FCC's continuing to think of CB solely in terms of 23 channels scattered around 27 MHz . The FCC must consider either the allocation of additional channels between 26.1 and 27.54 MHz (90 channels possible) or close down the $27-\mathrm{MHz}$ citizens band within 5 years and move it en masse to the $450-\mathrm{MHz}$ band.

Every record you buy is one more reason to own a Dual,

If you think of your total investment in records - which may be hundreds or even thousands of dollars - we think you'll agree that those records should be handled with the utmost care.

Which brings us to the turntable, the component that handles those precious records. Spinning them on a platter and tracking their fragile grooves with a diamond stylus, the hardest substance known to man.

For many years, serious music lovers have entrusted their records to one make of automatic turntable - Dual. In fact, most professionals (who have access to any equipment) use a Dual in their own stereo component systems. And not always the highest priced mode.

So the question for you to consider isn't which Dual is good enough, but how much more than "good" your turntable has to be.

This question can be answered in our literature, which includes complete reprints of independent test reports. Or at any of our franchised dealers.

United Audio Products, Inc., 120 So. Columbus Ave., Mt. Vernon, New York 10553. Dual

Dual i209, \$129.50.
Other models from $\$ 99.50$ to $\$ 175.00$.
CIRCLE NO. 27 ON READER SERVICE PAGE

To obtain a copy of any of the catalogs or leaflets described below, fill in and mail the Reader Service blank on page 15 or 115.

Abstract

Dynascan Corp. has released a 24 -page catalog of B\&K Professional Test Equipment for electronics servicing and school, laboratory, and industrial applications. Solid-state design is dominant in the instrument listing, including a FET VOM, an rf signal generator, a sine/square-wave generator, and a tube tester with lockout pushbuttons that provide positive short indications. Other instruments listed include: a sweep/marker generator, oscilloscope/vectorscope, capacitor analyst, color bar generators etc. Probes, adapters, and other accessories are also included.

Circle No. 75 on Reader Service Page 15 or 115

A 24-page illustrated catalog has just been published by Turner Company describing its complete line of microphones and accessory equipment. The catalog, No. 2620, contains specifications and prices of professional, recording, broadcast, and PA cardioid dynamic mikes; standard and transistorized mobile communications mikes; tape recording and general-purpose mikes; paging and PA mikes; and stands, cartridges, and accessories.

Circle No. 76 on Reader Service Page 15 or 115
For the automobile enthusiast who demands high performance from his wheels, Automotive Research Electronics has available a catalog of electronic device listings for mobile use. Among the items listed are a capacitive discharge ignition system, a dwell stretcher. street and strip r/min limiter, road and track $\mathrm{r} / \mathrm{min}$ limiter, and a digital racing timer.

Circle No. 77 on Reader Service Page 15 or 115
The Space Support Division, Sperry Rand Corp., is offering Scanning Electron Microscope (SEM) services at its Microanalysis Laboratory on a machine-hour basis. The SEM has a useful range from 20X to $50,000 \mathrm{X}$ and is capable of examining, with little or no special preparations, surface details of almost any kind of specimen in such diverse fields as biology, microelectronics, and material science. A photograph which faithfully rep-

Be creative-and thrifty too!

Save up to 50% with EICO Kits and Wired Equipment.

NEW "BULLHORN" KIT Carries your voice up to 400 feet. EICO BH- 16 Solid Slate Bullhorn. $21 / 2 \mathrm{lbs}$. light, is periect for all outdoors, camping, sports Battery-operated: $\$ 15.95$.

NEw EICOCRAFT
The electronic science project kits lor beginners, sophisticates, educators. 42 kits to date.

8 NEW EICOCRAFT KITS Automolive "LIGHTGUARD" "VARIVOLT" DC Power Supply * "MOODLITE" Light Dimmer Control " VARASPEED" Motor speed Control - "LIGHTSHOW" Sound/Lite Translator \bullet "ELECTRIC FIESTA" Audio Color Organ " "SUPER MOODLITE" Remote Control Light Dimmer - "ELECTROPLATER" From $\$ 2.50$ to $\$ 14.95$.
NEW
"FLEXI-CAB" Build your own custom deslgned cabinet in minutes! Give your EICOCRAFT and other projects that finished pro. fessional look with decor-styled FLEXI. CAB vinyl clad steel cabinets. Fast, easy, push-togelher assembly. 3 -sizes from $\$ 3.49$.

EICO 3080 50-Watl Silicon Solid Slate Stergo Amplifier. Kit $\$ 69.95$, Wired $\$ 109.95$

EICO 3300 Silicon Solid State FET AM-FM Stereo Tuner. Kit $\$ 69.95$, Wired $\$ 109.95$

NEW SOLID STATE TEST INSTRUMENTS

The tirst and only solid-state test equipment guaranteed for 5 years!

EICO 240 Solid State FET-TVM. Kit $\$ 59.95$, Wired $\$ 79.95$ EICO 379 Sotid State Sine/ Square Wave Generator. EICO 379 Solid State Sine
Kit $\$ 69.95$, Wired $\$ 94.50$.
EICO 242 Solid State FET-TVOM. Kit $\$ 69.95$, Wired $\$ 94.50$ EICO 150 Solid State Signal Tracer. Xit $\$ 49.95$, Wired $\$ 69.95$. EICO 330 Solid State RF Signal Generator.

NOW YOU CAN SEE THE MUSIC YOU HEAR. Sound ni' Color Calor Organs. Tra

COLOR ORGANS The now dimension to music pleaşure.
EICO all electronic solid-state Audio-Color Organs transform sounc waves into moving synchronized color images.
MODEL 3450 Giant ($30^{\prime \prime} \times 12^{\prime \prime} \times$ 10") 4 -Channels. Kil \$79.95, Wired $\$ 109.95$.
MODEL $3445\left(24^{\prime \prime} \times 12^{\prime \prime} \times 10^{\prime \prime}\right)$ 4.Chamnels. Kit $\$ 64.95$, Wired $\$ 99.95$
MODEL 3440 ($10^{\prime \prime} \times 15^{\prime \prime} \times 16^{\prime \prime}$) 3-Channels. Kit $\$ 49.95$. Wired $\$ 79.95$. Other models 10 . choose, from $\$ 1995$ and up.

TRANSLATORS
The electronics you need to creato audio-stimulated light displays.

STROBE LITES
Burst of white light flash in caderce of each beat of audio. Model 3470 Adjustable Rat Kit $\$ 29.95$, Wired $\$ 3995$. Wired $\$ 3995$ Mudis Actuated

Kit $\$ 39.95$, Wired $\$ 5995$.

EICO 888 Solid State Universal Engine Analyzer. Tunes and troubleshoots your car/boar engine, the totally professional way. Kit \$49.95, Wired \$69.95.

Get the last word every time.

Get
Turner's " +2 " series:
+2 base station mike (List Price: $\$ 55.00$) and $\mathrm{M}+2 / \mathrm{U}$ mobile mike (List Price: $\$ 39.50$). Up to 50 times the modulation of other mikes. No more fade outs. No more static. (Even at great distances). Both " +2 " series microphones use a

 two - transistor pre-amp and work with all transistor and tube sets. See them at your CB dealer or distributor soon. And get the last word.

TURNER

919-17th Street N.E. Cedar Rapids, lowa 52402 In Canada: Tri-Tel Associates, Ltd.

CIRCLE NO. 55 ON READER SERVICE CARD

LITERATURE (Continued from page 8)

resents the surface features of the test sample can be provided within a few seconds at any stage of the examination. Flyers are available on request.

Circle No. 78 on Reader Service Page 15 or 115
A two-page data sheet, No. 5170, that describes the company's new Models 8000 and $8000-\mathrm{A}$ digital volt-ohm-milliammeters is available from Triplett Corp. The two-color data sheet provides complete electrical and mechanical specifications.

Sircle No. 79 on Reader Service Page 15 or 115
Catalog No. 710, available from Lafayette Radio Electronics, is a complete buyer's guide to current home entertainment, hobby, and experimenter parts and equipment. It includes the latest in hi-fi tuners, receivers, and amplifiers; turntables; reel-to-reel, cartridge, and cassette recorders and decks; TV receivers; test equipment; auto accessories; and many other items.

Circle No. 80 on Reader Service Page 15 or 115
International Rectifier's No. JD352 "Diamond Line" catalog for 1970 will be of interest to anyone involved in electronics either as a hobby or a livelihood. It lists such items as Diacs and Triacs, IC's, silicon and germanium diodes and transistors, photocells, heat exchangers, and electrolytic capacitors. Also included is a two-page cross reference guide to IR transistor and diode replacements.
Circle No. 81 on Reader Service Page 15 or 115
An 80-page catalog of computer parts, Geiger counters, electronic parts and equipment, cameras, telescopes, watches, a tachometer kit, and many other surplus parts and items from government and industry is available from B. \& F. Enterprises. The catalog lists some real bargains on electronic parts.

Circle No. 82 on Reader Service Page 15 or 115
Sharpe Audio Division of Scintex, Inc., is offering their price list and catalog of newly developed audio visual products. Included are high-quality headphones, headset microphones, cordless induction-type headsets, wireless headsets, and audio station and sound centers. There is also an extensive listing of impedances and radio frequencies.

Circle No. 83 on Reader Service Page 15 or 115
A new full-line, 63 -page dealer catalog of selected electronic products has just been published by North American Electronics, Inc. The various items listed are in discrete product groupings which include virtually everything in electronics from test equipment to unit parts such as resistors and capacitors. The number of items in standard packages is listed.

Circle No. 84 on Reader Service Page 15 or 115

THE GREAT NEW "45"

Looking for the mobile antenna that outperforms the others? Get the "Super 45". You'll see why Shakespeare, the fiberglass pioneer, is the leader in fine antennas.

Shakespeare

Industrial Sales Division

1970 - WINTER
$\$ 1.35$
ELECTRONIC EXPERIMENTER'S HANDBOOK
148 pages of the most fascinating and chal. lenging construction projects for the electronics hobbyists. All with complete schematics, illustrations, parts list, and easy-to-follow instructions that guarantee you perfect finished products.

1970-SPRING $\$ 1.50$ ELECTRONIC EXPERIMENTER'S HANDBOOK

Another big package containing the most challenging, fun-to-build electronics'projects ever! Be sure to order this one today!

1970 STEREO/HI•FI DIRECTORY \$1.35
Giant 180 page buyer's guide listing more than 1,600 individual Stereo/ $\mathrm{Hi} \cdot \mathrm{Fi}$ com. ponents by 176 manufacturers. Nine individual sections complete with specs, photos, prices-the works!

6 Vital Components

For Knowledge.... For Profit ...For Sheer Electronics Enjoyment!

1970 TAPE RECORDER ANNUAL $\$ 1.35$ Over 130 pages covering every aspect of tape recording. Complete buyer's guide to the brands and models on the market. Ex. pert tips on equipment - making better tapes-editing-copying-everything you want and need to know about tape recording. 1970
$\$ 1.35$
COMMUNICATIONS HANDBOOK
148 fact packed pages for the CB, SWL or HAM. Equipment buyer's guide--photos -tables-charts-getting a license-ev. erything to make this the world's most complete guide to communications. 1970
$\$ 1.35$
ELECTRONICS INSTALLATION \& SERVICING HANDBOOK
Covers all. 8 areas of consumer electronics servicing-all the tricks of the trade in one complete guide. The ind ustry's "how-to" book for installing and servicing consumer electronics equipment.

[^1]

ABC's OF THERMISTORS

by Rufus P. Turner
This book tells, in simple language, how the thermistor works and how it can be used in representative circuits. The text should be equally useful to the student and practicing technician. Soft cover. 96 pages. $\$ 2.95$.

101 QUESTIONS \& ANSWERS ABOUT HI-FI \& STEREO

by Leo G. Sands \& Fred Shunaman
Whether you are interested in building and servicing hi-fi equipment or in how well hi-fi equipment can reproduce music, there should be something for you in this book. The simple question-and-answer format of the text seems to be the best approach to the subject. Soft cover. 128 pages. $\$ 8.50$.

COLOR-TV TROUBLE CLUES (Volume 3)

Since the first two volumes of Trouble Clues were published, remarkable changes have taken place in the television industry. This volume contains information on receivers produced since Volume 2 was published. It is not intended to replace the earlier volumes; rather to provide additional, up-to-date material. Soft cover. 128 pages. $\$ 3.50$.

TAPE RECORDER SERVICING GUIDE

by Robert G. Middleton
In this book are presented both the electronic circuit theory and mechanical construction of tape recorders. The magnetic and biasing circuits unique to tape recorders are emphasized in the text. Soft cover. 96 pages. \$3.95. Above four titles published by Howard W. Sams \& Co., Inc., 4900 West 62 St., Indianapolis, IN 46268.

ELECTRIC MOTOR REPAIR, Second Edition

by Robert Rosenberg
For many years, there has been a need for a practical nontheoretical book on electric motor repair and control that could be used by men with little background or knowledge of electrical engineering. This book appears to fill that need admirably. Both alternate and direct current motors are treated, and extensive consideration is given to the connections and troubles in controllers. Although numerous changes and additions have been made in this edition, nearly all of the material that appeared in the first edition has been

The Army can take your hobby and turn it into a career.

Tear down an engine or snap a picture or solder some wires to a speaker to rock the room.

Maybe you call it a hobby or a knack or maybe even your thing.

And, you know, the Army can take that favorite talent of yours and turn it into a rewarding, lifetime career.

We have more horsepower than the Motor City.

We have cameras that can take a portrait of a bird a half mile away.

We have electronic equipment so new that it hasn't even been named yet. The Army needs people to run it all and keep it running.

We can train you to be an expert. What's more, we'll guarantee this training in writing before you enlist.

Send for our free book. Use the coupon or write: Army Opportunities, Department 200A, Hampton, Virginia 23369.

It's full of things. Maybe yours is one of them.

Your future, your decision. Choose ARMY.

*THE MOONRAKER!

Designed along the lines of antennas used to pinpoint signals on "moon bounce."

Uses only a 15 ' boom to eliminate efficiency loss inherent in multiple in-line quad designs, thus better signal excitation is achieved to provide greater true gain.

Combines $1 / 2$ wave cross dipole elements with the famous Avanti PDL ${ }^{\text {IM }}$ design reflector. Switch box (included) permits operation on the horizontal or vertical mode.

Aircraft quality seamless aluminum construction ...extrusions and castings used in hubs and mounts . . . no stampings. 1 year guarantee.

SPECIFICATIONS

Gain 14.5 db

SWR: . $20: 1$
Impedance: . 50 ohms
Power Handling: 1000 watts
Front to Back
Separation: . 38 db
Vertical to Horizontal
Separation: . 25 db
Wind Survival: . 90 mph
Weight: . 24 lbs.

\$129.95

*Patent Pending
Made in America
retained. Because solid-state electronics is important to motor control, a section on solid state controls has been added. Study questions for each chapter are included. The physical design of the book is practical; all illustrations appear at the reader's left on a separate wire ring binder, while at the right is the text.

Published by Holt, Rinehart and Winston, Inc., sss Madison Ave., New York, NY 10017. Soft cover. 750 pages. $\$ 12.95$.

CB RADIO

> by Leo G. Sands

Since the Federal Communications Commission established the Class D Citizens Radio Service, more than one million station licenses have been issued authorizing the use of some four million CB transceivers. Here, in this one compact volume, is the entire story about the most widely used and fastest growing form of radio communication. The book describes the Citizens Radio Service and its many applications. Equipment is discussed in detail, and information on equipment installation and maintenance as well as on operating rules is presented. The book is a basic introduction to $C B$ radio.

Published by A.S. Barnes \& Co., Box 421, Cranbury, NJ 08512. Hard cover. 143 pages. $\$ 6.95$.

AUDIO CYCLOPEDIA, Second Edition by Howard M. Tremaine

Most books dealing with the subject of audio cover only specialized topics-such as hi-fi amplifiers, tape recorders, etc.-or touch on a broad range of subjects without really going into detail. The Audio Cyclopedia, however, combines specialized topics from all areas of audio and discusses them in detail. Primarily a reference source, this book is of particular importance to the audio engineer but will also be used by anyone whose interest in audio goes beyond just listening. The text coverage is complete and is supported by numerous schematic diagrams, photographs, line graphs and charts.
Published by Howard W. Sams \& Co., Inc., 4300 West 62 St., Indianapolis, IN 46268. Hard cover. 1757 pages. \$29.95.

INTRODUCTION TO SWITCHING CIRCUIT THEORY

by Donald D. Givone

Most books on switching circuit techniques are either too basic or too technical. Here the author attempts to hit a happy medium by integrating the two extremes-first providing the fundamental mathematical principles of switching circuit theory and then letting the mechanics of logic design be a direct consequence of the theory. Because this book is for a first course on the undergraduate level, mathematical development is presented in detail. Special features include: a chapter devoted to universal logic operations; transformation development between switching expressions involving these opera-

SERVICE PAGE

free information service：

Here＇s an easy and convenient way for you to get additional information about products advertised or mentioned editorially（if it has a＂Reader Service Number＇）in this issue．Just follow the directions below．．．and the material will be sent to you promptly and free of charge．

1On coupon below，circle the number（s）that corresponds to the key number（s）at the bot－ tom or next to the advertisement or editorial men－ tion that is of interest to you．（Key numbers for advertised products also appear in the Advertisers＇ Index．）Print or type your name and address on the lines indicated．

2Cut out the coupon and mail it to：POPULAR ELECTRONICS， P．O．Box 8391，Philadelphia，PA 19101. POPULAR ELECTRONICS about an article on any subject that does not have a key number，write to POPULAR ELECTRONICS，One Park Avenue，New York，N．Y．10016．Inquiries concerning circulation and subscriptions should be sent to POPULAR ELECTRONICS，P．O．Box 1096，Flushing，N．Y． 11352.

POPULAR
 ELECTRONICS
 P．O．BOX 8391
 PHILADELPHIA，PA． 19101

$\begin{array}{lllllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ 2122232425262728293031323334353637383940 4142434445464748495051525354555657585960 6162636465666768697071727374757677787980 81828384858687888990919293949596979899100

NAME（Print clearly） \qquad
ADDRESS \qquad
CITY \qquad STATE \qquad ZIP CODE

Push the buttons. They're there to give you program control over your choice of eight UHF crystal controlled frequencies $-450-470 \mathrm{MHz}$.
Program it to hear both sides of two-way conversations, even though they may be on different frequencies. Operate it automatically or manually. Each of 8 channels has a push button for placing the frequency in or out of service. Hear what's happening on all or any combination of channels. Fascinating scanning lights detail over busy receiver's signal search. It stops to hear all of an active message. . . . then resumes search for a return or other signal.
Our new monitoradio/scanner has been developed and tested to perform in areas of high density interference. With Regency, you get the result of exacting performance: . 05 second per channel scan rate and 0.7 microvolt sensitivity @ 20 db .
It comes complete with $A C$ and $D C$ cords, mobile mounting bracket, detachable telescope antenna, built-in 4" speaker plus terminals for external speaker and remote antenna. All for only $\$ 159.00$. Crystals $\$ 4.95$ each. Also single channel Model TMR1U $\$ 119.00$. See them at your favorite Regency retailer all over the country.

American Made

[^2] CIRCLE NO. 21 ON READER SERVICE PAGE
tions and the more conventional operations of Boolean algebra; and a study of fundamental mode and pulse mode sequential circuits.

Published by McGraw-Hill Book Co., sso West 42St., New York, NY 100s6. Hard cover. 494 pages. $\$ 14.50$.

DESCRIPTIVE ELECTRONICS

by R.R. \& C.A. Huffsey

On the beginning electronics level, this volume proposes to explain both tube and solidstate circuits without the extensive use of mathematics. After an introduction to the concepts of current and voltage and a discussion of basic electronic components, the text continues with detailed explanations of circuit operations. Examples of power supply, amplifier, oscillator, and detector circuits are analyzed. Experiments suggested in the book are adaptable to almost any existing laboratory situation-including the hobbyist's and experimenter's bench.
Published by Holt, Rinehart and Winston, Inc., s8s Madison Ave., New York, NY 10017. Hard cover. 365 pages. \$9.95.

FILTER SYSTEMS DESIGN: ELECTRICAL, MICROWAVE, AND DIGITAL

by Yale Jay Lubkin

Employing an informal but thorough approach, this book is designed to extend the working engineer's knowledge of electrical filters and to provide him with tools he can use immediately. Presented are the fundamental concepts of electrical filters: why and how the various kinds originated, what types of problems they solve, and their limitations. Some of the concepts developed have never before appeared in printed form; and, while they are rather advanced in nature, they are nevertheless understandable. Aimed at the engineer, this book requires little mathematical sophistication; the math needed is developed with the flow of the text.
Published by Addison-Wesley Publishing Co., Inc., Reading, MA 01867. Hard cover. 212 pages. $\$ 11.50$.

FET APPLICATIONS HANDBOOK, Second Edition

by Jerome Eimbinder

For anyone who needs practical design data on FET circuits, here is possibly the most current and comprehensive guide currently available. In its second edition, the book contains almost 25 percent more material than before, to the tune of six entirely new chapters. The text covers FET types, parameters and characteristics, and operational modes. Emphasis is on applications from linear to switching circuits and IC's. For the engineer interested in photo-FET design, the last two chapters offer new data and many practical and unusual applications, including a FET electrometer amplifier. More than 250 schematics and graphs illustrate (Continued on page 117)

UNIVERSITY JUST MADE YOU A SOUND INSTALLATION EXPERT

rCS = Totally Coordinated Sound systems you can install yourself.

University just invented TCS - Totally Coordinated Sound systems so painstakingly pre-engineered anyone can install them. Everything you need comes with each system: speakers, amplifiers, microphones, color-coded cables, plus assembly and installation instructions. All pre-engineered, pre-matched, pre-sized, for hundreds of applications.
If you can twist a wire, screw a screw, push a plug into a socket - congratulations! University just made you a sound installation expert.
Write for details today about how you can install your own PA sound system tomorrow.

Can you solve these problems in electronics?

 They're a cinch after you've taken RCA Institutes'

 They're a cinch after you've taken RCA Institutes' new communications electronics program.

 new communications electronics program.}

It includes new preparation for the FCC license plus the assurance of your money back if you fail to get it.

This one is quite elementary.

In this door bell circuit, which kind of transformer is T_{1}-step-up or step-down?
Note: if you had completed only the first lesson of any of the RCA Institutes Home Study programs. you'd easily solve this problem.

This one is more advanced.

What is the total capacitance in the above circuit?

Note: you'd know the solution to the problem if you'd taken only the first two lessons in RCA's new Communications Electronics Program.
These are the lessons that prepare you step-bystep for an FCC License.
This license is a requirement for servicing all types of transmitting equipment and can help open doors to jobs commanding high income in communications, radio and broadcasting, aerospace, industrial automation and many others.
$1^{n} G$
*UMOD-dəIS :sıamsub

For a rewarding career with good pay, take that first step now. Send for complete informationmail the attached card.

RCA Institutes Autotext learning method makes problem-solving easier... gets you started faster towards a good-paying career in electronics

Are you just a beginner with an interest in electronics? Or, are you already making a living in electronics, and want to brush-up or expand your knowledge? In either case, RCA has the training you need. And Autotext, RCA Institutes' own method of Home Training will help you learn more quickly and with less effort.

Wide Range of Courses

Select from a wide range of courses. Pick the one that suits you best and check it off on the attached card. Courses are available for beginners and advanced technicians.
Electronics Fundamentals Black \& White-Television Servicing (Transistorized TV Kit Available) Color Television Servicing (Color TV Kit Available) FCC License Preparation
Automatic Controls Automation Electronics Industrial Electronics Nuclear Instrumentation Electronics Drafting Computer Programming

Plus these new up-to-the-minute courses
Semiconductor Electronics
Digital Electronics Solid State Electronics Communications Electronics

Prepare for good paying positions in fields like these
Television Servicing
Telecommunications
Mobile Communications
CATV
Broadcasting
Marine Communications Nuclear Instrumentation Industrial Electronics Automation
Computer Programming

Solid State

Electronics Drafting

Build and keep this valuable oscilloscope.

In the new program on Solid State Electronics you will study the effects of temperatu e and leakage characteristics of transistors.

Variety of Kits-Yours to Keep

A variety of RCA Institutes engineered kits are included in your program of study. Each kit is yours to keep when you've completed the course. Among the kits you construct and keep is a working signal generator, a multimeter, a fully transistorized breadboard superheterodyne AM receiver, and the all-important oscilloscope. These 4 kits are at no extra cost. Compare this selection with other home study schools.

Two Convenient Payment Plans

Pay for lessons as you order them. No contract obligating you to continue the course. Or, you can take advantage of RCA's convenient monthly payment plan. No interest charges!

Classroom Training Also Available

RCA Institutes operates one of the largest technical schools of its kind. Day and evening classes. No previous training is required. Preparatory courses are available. Classes start four times a year.

Job Placement Service, Too!

Companies like Bell Telephone Labs, GE, Honeywell, IBM, RCA, Westinghouse. Xerox, and major radio and TV networks have regularly employed graduates through RCA Institutes' own placement service.
AlI RCA Institutes courses and programs are approved for veterans under the new G.I. Bill.
Send Altached Postage Paid Card Today. Check Home Study or Classroom Training.
Accredited Member National Home Study Council.

Additional information on products described in this section is available from the manufacturers. Each new product is identified by a corresponding number on the Reader Service Page. To obtain additional information on any of them, circle the number on the Reader Service Page, fill in your name and address, and mail it in accordance with the instructions.

SONY REEL-TO-REEL/CASSETTE SYSTEM-If

 you're in a quandary about the reel-to-reel vs cassette debate, the Sony Model 330 provides a workable solution. Billed as a Stereo Tape System/Control Center, the 330 permits reel recording, editing, and re-recording to cassette. Or, if you have too many bulky reel tapes, the cassette may be your answer by simply transferring one format to the other. Modestly priced, the 330 has 3 reel tape speeds, dual VU meters, tone controls, separate volume controls, headphone output jack, 5" lid-integrated stereo speakers and two cardioid microphones. Adding a tuner and changer, you have a full complement of a low-cost stereo system.

Circle No. 85 on Reader Service Page 15 or 115

Abstract

UNIMETRICS MONITOR SCANNER-Simplicity seems to be the keynote in the appearance of the Unimetrics, Inc. Digi Scan-8 VHF/UHF automatic scanning receiver. Only two lever switches are seen on the panel. One lever sets the receiver up for scanning up to 8 preselected crystal-controlled channels or permits manual channel selection. The second selects the appropriate channel after manual setup. Readout of the channel being monitored is through a bright, segmented digital indicator. Manufacturer claims a $0.5-\mu \mathrm{V}$ sensitivity and $-60-\mathrm{dB}$ image rejection. Circle No. 86 on Reader Service Page 15 or 115

SENCORE POWER MONITOR-Using the Sencore PM157 Power Monitor, radio-TV technicians have a new test instrument for solving problems concerning excessive power drains. The technician first reads line voltage on an expanded scale covering 65 to 135 volts ac. Then the drain is measured and can be read in values up to 10.0 amperes and/or 1150 watts. The PM157 also contains a bridge circuit to permit measurement of dc up to 10 amperes and/or a combination of ac and dc, such as might be found in fuse resistors. In fact, a separate scale on the PM157 reads the drain on fuse resistors with the common values of 4.7, 5.6, 7.5, 9-10, 22,47 , and 100 ohms . The PM157 is protected by a circuit breaker.
Circle No. 87 on Reader Service Page 15 or 115

NIKKO "DO EVERYTHING" STEREO RECEIVER-A

 recent entry in the American market, Nikko Electric Corp., has announced its feature-loaded 1101 stereo receiver. Rated at 160 watts (IHF) at plus or minus 1.0 dB and 4 ohms (112 watts at 8 ohms) the claimed frequency response of the amplifier is $10-70,000 \mathrm{~Hz}$, also

Hi-Fi Stereo Servicing Guide

by ROBERT G. MIDDLETON, A complete guide to effective hi-fi and stereo servicing. Provides the basis for a full understanding of hi-fi tuner and amplifier circuitry and procedures for servicing this type of equipment. The proper use of audio test and measurement equipment and the basic principles of acoustics are also given. Covers all hi-fi components (except record players and tape recorders). Order 20785, only... \$3.95

ABC's of Avionics

by lex parrish, Provides a basic understanding of avionics-the electronic equipment used to insure the safety of crew and passengers. The type of equipment and the techniques employed in private aircraft operations are featured. Discusses requirements for basic communications, navigation aids, instrument flight aids, weather guidance, and flight control'safety devices. Order 20764, only.
.$\$ 3.50$

Mobile-Radio Systems Planning

by leo g. sands. Here is practical, basic information about various types of mobile-radio systems, how they work, their capabilities and limitations. system requirements, licenses, channels, band and frequency selection, trans-mitter-receiver selection, antenna systems, and accessories. Includes an invaluable system-requirements form for planning a mobile-radio system. Order 20780, only.
$\$ 4.50$

Transistor-TV Servicing Made Easy

by Jack Darr. This practical guide will help you become skilled in the special techniques of transistor-TV servicing. Covers tools and equipment required; transistors and transistor-servicing techniques; power supplies; horizontal and vertical sweep circuits; video i-f and output circuits; agc and sync-separator problems; tuners; audio circuits; and selecting replacement transistors. Order 20776, only. \qquad

Security Electronics

by John e. cunningham. Explains the operating principles of modern electronic devices and systems used to provide security against crime. Describes intrusion alarms and intrusion-detection devices. Includes chapters on the detection of hidden metal objects, announcement of detected intrusions, bugging, debugging, and speech-scrambling systems, and future developments. Order 20767, only.
. $\$ 4.50$

How to Hear, Police, Fire, and Aircraft Radio

by len buckwalter. After World War II, police, fire, and aircraft radio moved to the less crawded vhf bands, and the "police band", which was found in many older radios, was silenced. Few listeners had receivers capable of covering the vhf band, because they were relatively expensive. With the advent of solidstate circuitry, a wide variety of relatively low-cost monitoring equipment is available. This book is a guide to the selection and use of vhf radio.
Order 20781, only.
\$3.50

101 Questions and Answers About Transistor Circuits

by leo G. SANDS. Answers the most commonly asked questions about transistor circuitry. Explains transistor nomenclature, biasing, the three basic circuit configurations, input and output impedances, current and voltage gain, and other basic considerations. Covers power supplies and circuits; af circuits; rf circuits, and oscillators.
Order 20782, only.
$\$ 3.50$

1-2-3-4 Servicing Automobile Stereo

by forest h. belt. This book first applies the ingenious " $1-2-3-4$ " repair method to both mechanical and electrical equipment. It then proceeds to cover the electronic and mechanical principles of automobile stereo, fm multiplex and tape cartridge systems. Finally, the book shows how to apply the method to auto stereo systems
Order 20737, only. \$3.95

North American Radio-TV Station Guide, 6 th Edition

by vane a. dones. Lists all radio and TV stations in the U.S., Canada, Mexico, and the West Indies. Includes operating $\mathrm{a}-\mathrm{m}, \mathrm{fm}$, and television stations, as well as those that are about to start operating, or are temporarily off the air. Separate listings arranged by geographical location, frequency (or channel), and call letters make this guide the most useful one available.
Order 20779, only.
$\$ 2.95$

1-2-3-4 Servicing Transistor Color TV

by FOREST H, BELT. The "1-2-3-4 Method" is a simple, logical, step-bystep process that helps do the service job the right way and the easy way. In this book, the fundamentals of transistor color TV are covered, followed by a detailed explanation of how to apply the method for quick troubleshooting and easy repairs.
Order 20777, onl
$\$ 4.95$ munications and instrument-landing systems, and related devices and systems used in aviation today.
Order 20743, only
. $\$ 9.95$

Questions \& Answers

on Short-Wave Listening

by h. CHarles woodruff. A helpful guide to the interesting world of listening afforded by short-wave receivers. Questions and answers cover international short-wave broadcasting, frequencies, and services; how short-wave is transmitted; how short-wave is received; and how short-wave receivers are constructed and operated.
Order 20783, only.
. $\$ 3.50$

at plus or minus 1.0 dB . Besides receiving AM/FM/FM stereo, the Nikko 1101 has the following somewhat "different" features: VU metering in the stereo amplifier; plus 10 dB speaker compensation at 30 Hz ; stepped volume control for remote (second pair) speaker system; rear panel patch cords to disconnect stereo preamp from stereo power for insertion of special components; triple circuit breakers; plug-in circuit board construction; etc.
 All solid-state, the Model 1101 uses 6 FET's, 12 IC's, 25 transistors, and 22 diodes. Available in either a black metal or walnut ($\$ 20$ extra) cabinet.
Circle No. 88 on Reader Service Page 15 or 115

Abstract

HARMAN-KARDON CAD5 CASSETTE RECORDEROne of the chief complaints about cassette recordings has been the presence of high-frequency noise. The Dolby noise reduction system, a technique recently introduced to get rid of a lot of this noise, is an integral part of Harman-Kardon's CAD5 tape cassette deck. It is said that the system extends the frequency response of cassettes to beyond $12,500 \mathrm{~Hz}$. The CAD5 can play standard tape cassettes or Dolby processed tapes without special adjustment and the Dolby controls (per channel) can be set for special tapes. An electronic speed control assures minimum speed variation and professional-type sliding potentiometers set the recording level.

Circle No. 89 on Reader Service Page 15 or 115

ABPHOT AC VOLTMETER-Measuring low-level signals in audio equipment is made easier with the Model 1001 Electronic Analog Voltmeter, a solid-state instrument with a range of 30 microvolts to 100 volts in the frequency range from 10 Hz to 1 MHz . Sensitivity is 300 microvolts FSD and internal noise is typically -108 dBm on the 300 -microvolt scale. Battery operation eliminates troublesome ground loops and beat effects while making measurements in the vicinity of the line frequency. Accessory Series 900 plug-in notch filter makes possible measurements at spot frequencies. These RCL bridged-T networks plug directly into the meter.
Circle No. 90 on Reader Service Page 15 or 115

PIONEER AUTOMATIC-TUNING RECEIVER - The ultimate for dial twisters is Pioneer's AM/FM/FM stereo Model SX-2500 receiver with precision automatic tuning. With a 340 -watt !IHF) output, the receiver can
 be set to hunt out strong local stations or weak stations or to stop only on stations broadcasting in stereo. A muting level control permits the listener to determine the amount of muting beween FM stations. The SX- 2500 also has a remote control unit for automatic tuning and volume control from distances up to 23 feet. The FM front end tuner uses FET's, IC's and crystal filters and has a sensitivity of 1.6 microvolts per meter. Selectivity is 65 dB at 98 MHz and signal-to-noise ratio is over 70 dB . Circle No. 91 on Reader Service Page 15 or 115

Johnson's new transceiver tester.

Does everything other testers do... and more! Reads power output in actual watts. Reads modulation directly in percentage. And lets you hear what your transmitted signal actually sounds like, with the headphone monitoring jack! Also can be installed to read received "S" units. Constantly monitors your rig while you're on-theair. Flip a switch and you can make
tests using the built-in dummy load. There are built-in RF and audio generators, crystal activity checker, SWR meter, and more-so you can pinpoint problems like a professional. Battery operated and portable, it even has a field strength meter that's great for making comparative checks at jamborees. No serious CBer should be without it!

Other Johnson Accessories for the Advanced CBer...

E. F. JOHNSON COMPANY

WASECA. MINNESOTA 56093 (R)

Now it costs less to own the best oscilloscope you need.

The New RCA WO-505A Solid-State Oscilloscope
*Inexpensive Quality †Optional Distributor Resale Price

The best you need is the new 5 -inch RCA WO-505A, all solid-state oscilloscope. It makes yesterday's general-purpose 'scopes look old-fashioned.
At just \$298.50t the WO-505A offers an 'unmatched list of features usually found only in more expensive, laboratory-type instruments.. For example there's the all solid-state circuitry... an illuminated graph screen calibrated directly in volts, and a deep-lip bezel for exceptional clarity. The regulated power supply minimizes trace bounce and provides excellent stability. And the camera mounting studs offer still more evidence of the functional value built into the new WO-505A.
But you've got to see this new RCA 'scope in operation - see the sharp, clean trace it providesto appreciate it.

Some statistics:

- High-frequency response, usable to 8 MHz .
- High Sensitivity (. 05 V p-p range).
- DC vertical amplifier; DC/AC input.
- Return trace blanking...Trace polarity reversal switch... Phase control.
- High-frequency horizontal sweep; solid lock-in on 5 MHz .
- Preset TV "V" and "H" frequencies for instant lock-in.
- Built-in square-wave signal for calibrating P-P voltage measurements.
- Provision for connection to vertical deflection plates of CRT.
Some statistics! For complete details, contact your RCA Distributor.
RCA|Electronic Components॥Harrison, N. J. 07029

WHO DID INVENT RADIO?

BY FRED SHUNAMAN

IN ALL PROBABILITY there will never be total agreement on the question of who actually diseovered radio. In fact, the wort "radio" itself does not stand up to a strict historical interpretation. Does the "first radio" mean the first two-way wireless communication? Or a onc-way wireless transmission? Or would a minor laboratory demonstration and a patent establish the precedency of the discowerer/inventor?

In one way or another, Mareoni, Popov, Loomis, Butterfield, Lodge, Hertz and Tesla all qualify as discoverers of radio. However, history now shows that none of these men has the supporting evidence of discovery that belonge to Thomas Alva Edison-to whom the honor may rightfully belong.

A simple lauguage difficulty may have cost Filison the credit for first diseovering and using ratio as a means of communication. He anmonned the diseovery of "etheric foree"
when Maremi was meng a year old and white Tesla was still attending sehool. And, in 1885, two years before IIert\% amonneed the discovery of electromagnetic waves, Fdison applied for a patent on a complete wireless system. Submittel with his application were patent drawings of radio towers and antemas on the masts of slips.

How It All Began. During the evening of November 22, 1875, Fdison was studying the action of a magnetic vibrator. He noticed a tiny spark between the armature and core of the vibrator as the armature approached the core. Suspecting fanlty insulation, he checked the coil but found everything in order.

However, Edison reported that: "If we toncherl any part of the vibrator we got the spark," and that "the larger the body of iron tonelied to the vibrator, the larger the spark." If a wire wats commerted between the vibrator

Righ

Above is one of the drawings from Edison's Patent No. 465,971, Dec. 29, 1891, describing a "Means for Transmitting Signals Electrically." Particularly interested in transmitting across bodies of water, he showed high towers and ships carrying "condensing surfaces" (which we would call antennas). At the right is an enlargement of the insert, in which Edison described how signal was generated and transmitted to antenna.

and a gas jet on the wall, a spark could be drawn from the gas pipes anywhere in the room.

Then Edison performed the experiment that IIertz was to do 17 years later; he found that "if you turn the wire round on itself and let the point of the wire touch any part of itself, you get a spark. . . . This is simply wonderful and a good proof that the cause of the spark is not now known force."

Next, Edison constructed a demonstration apparatus and revealed his new setheric force" to the Polyclinic Club of the Ameriean Institute. Many of the members seemed upset by the name he had chosen for the new effect. But Edison was undannted, and he predicted (in the Jannary 1876 issue of the Operator, a telegrapher's magazine) that the new force might become the telegraphic medinm of the future. He is quoted as having stated: "The cumbersome appliances of transmitting ordinary electricity, such as telegraph poles, insulating knobs, cable sheathings, and so on, may be left out of the problem of quick and casy telegraphic transmission, and a great saving of time and labor accomplished."

The Scientific American of December 1875 stated: "By this simple means signals have been sent [by wire] for long distances, as from Mr. Edison's laboratory to his dwelling house in another part of the town. Mr. Edison states that signals have also been sent the distance of 75 miles on an open circuit, by
attaching a conducting wire to the Western Union telegraph line."

As It Developed. A "black box," used by Edison to demonstrate etheric force was sent to Paris where Edison's assistant, Charles Batchelor, lectured on the etherie force. (The black box detector consisted of a pair of adjustable graphite points in a shaded enclosure, with terminals to attach it to an external circuit.) There is a bare possibility that Heinrich Mertz might have heard about Edison's experiments, for his spark points with the micrometer aidjustment are virtually identical to those in the black box, and he repeated the experiment of turning the wire back upon itself.

Work on the telephone took Edison's attention away from etheric force for some time. But in 1885 he applied for a patent for a wireless telegraple system based on his ctheric force. The patent drawings show towers that are casily recognizable as radio masts, and two ships with broad ribbon-like antemnas hung between their masts! The text of the patent application gors into detail about the equipment shown in the drawings.
"The wire (from the 'condensing surface' C) extends throngh an electromotograph telephone receiver D (Fig .2) or other suitable receiver, and also inclndes the scoondary circuit of an induction coil F. In the primary of this coil is a battery b and a revolving circuit-

Thomas A. Edison, from a print dated 1877, about the time he was working on his '"etheric force" invention. This and other illustrations in this article are adapted from those appearing in "Menlo Park Reminiscences," Vol. I, by F. Jehl, Edison Institute, Dearborn Park, Mich.
breaker G. This cirenit-breaker . . . is shortcircuited normally by a backpoint key K , by depressing which .. . the cirenit-breaker makes and breaks the primary cirenit of the induction coil with great rapidity," Edison wrote.

Explaining the phenomenon as he saw it, Edison went on to state: "These electric impulses are transmitted inductively to the elevated condensing surface at the distant point..."

Here is where the confusion in langnage oceurred. At the time, the term induction, unless otherwise explained, meant elcetrustatic induction (a tendeney that still lingers on in some elementary physics textbooks). The transformer had just been invented, and magnetic induction was a laboratory curiosity. The term "electrostatic" drifted into obsenrity as the art progressed, and later writers referring to the "induction telegraph" mo questioningly aceepted the term to mean magneticinduction.
The confusion was inereased because the only commereial use Edison made of his invention was the "grasshopper telegraph," a system of telegraphing from moving trains to the telegreph wires alongside the tracks. This was a distance that could be covered casily by elcetromagnetic induction, and historians who belice that radio communication started with Tesla, Lodge, and Mareoni assumed that this was the case. Yet, in explaining the "grasshopper telegraph" to a reporter, Edison said, "The system works by electrostatic induction."

So, a change in the generally aceepted meaning of a word with the changing times buried the fact that Edison invented, deseribed, patented, and operater a radiotelegraph system in 1886-a year before Hert\% explained the canse of the etheric foree, which he called electric forec.

What other "firsts" may lay buried or attributed to other diseoverers becanse semantics denied the original inventor or discoverer his: duc? At least now Thomas Alva Edison's long list of achievements will have numbered among them the disenvery of radio waves-even if he did not title them as such.

Editor's Note: We are given to understand that the graphic-points "black box" is still in existence and has been exhibited on the second floor of the restored Edison Labora. tory.

In his book, "Menlo Park Reminiscences" (now believed to be out of print and unob. tainable), author Jehl says that Edison was intrigued by the spark and performed many experiments to seek an explanation of its nature. Edison did find that the spark was unpolarized; had no respect for the usual types of insula. tion; would not discharge a Leyden jar; and had no effect on his electroscopes.

Unquestionably, Edison had stumbled onto radio-wave transmission, but the fact that energy could be propagated through the atmos. phere and not via wires was alien to all of his telegraphy experiments.

Assembling a unisen

sulmination of various "Tiger" eniplifier projects sevelloped by the same author 14 is virtually indestructible and our exhaustive tests revelal that na combination of input-output mismatuling and short circuits can cause amp ifier failure. The performance specificationl: equal or bettẹr numérous commarifal quality hi-f power amplifiers

NO HI-FT pow or mplifier cante al thags to all mon, but the "Taiversal Treno congos aloser to the ideal than rousonglit think. Comsigler the follawing the tro put prower of the Chisersal T4ear ray be beit t hini level between 00 and 780 unatt mast

 de). Over the anfira.sitectum, distortion is
 To leas than do 0.5\% at the insers option. The bandwidth betrocen the 3413 dsan [10 Is is重 $100,000 \mathrm{~Hz}$

Ana thak vat fir. St expmar hoal atriont areive of ir pett constiotran unise gmplit?
 Hown Alse Vicemon mby =io pood that

 of waterl teth ne th acmer tol self-gestruct. stor is there ans darmer of spgaker lammo The to a starting fransen sine there are aro lare eqaagtors it tresmionit that must capge $3 p$ berone formal on a tion ban begtr:
 ts uall diok loma in to spenker statem. Then in anesomild.

Construction. The imicollawd voluge

 mosmbled of a printed ci wagt boand, the ac. thal sizonting gide and conponent place. \ldots ment dagran for which are soown in Fig. 2. Tle cirnit joard yedesigned to mpteh thasc
 dee "Tiger: That Roin"-Porrdan Byme-
 emfer protect call chilly cubate it : 1

The chassis and power supply for the Super Tiger can also be used with the Universal Tiger if no more than 80 watts mono or 60 watts/channel stereo output is desired. If you want a lower output power, one of the
low-woltage transformers listed in the sidebar should be used. And with a 4 -ohm load and a heavy-duty power supply (see Fig. 3) for each channel, a 125 watts rms/channel stereo system can be built.

The power supply circuit is simple and straightforward. Itowever, depending on the amount of power you want from your amplifier, you will have to seleet the proper secondary voltage-current rating for tramsormer

PARTS LIST AMPLIFIER

Cl,C8-220-pF crapectitor
C2-220- $\mu F, 6.3$-wolt electrolytir rapmator
C3,C4-1000-pF capucitor
C5-C7.C9-0. $1-\mu$ F cupectior
C10-C12- $0.1-\mu \mathrm{F}$ disc capacitor
DI-4.7-volt zener (liode (1 1732 (or HEP602)
D2,D3-IN3754 or HEP 156 silicon diode
F1-5 ampere standurl-V()T' slow-blow-fuse JI-Phono Jack
Q1,Q2,Q9—MPS-6566 (ransistor
()3,Q6-Transistor (RC:1 $11+110$)

Q4,Q5-Transistor (RCA 40409)
QT-Transistor (Moturola MJ4502)
Q8-Transistor (Motorola MJ802)
R1,R5,R7-2200-ohm. $1 / 2$-wat!
R2-20,000-ohm, $1 / 2$-ltatt
R3-4700-ohm, $1 / 2$-watt
R4-18,000-ohm, I-watt
R6-1000-ohm, $1 / 2$-watt
R8-150-ohm, $1 / 2$-watt
All resistors
R9,R10-390 ohm, $1 / 2$-watt
R11-R16- 100 -ohm, $1 / 2$-watt
R17,R18-0.1-ohm, 5-uatt
R19,R20—10-ohn, I-watt
R2I-50-ohm potentiometer
Misc.-Steel chassis ($6^{\prime \prime} \times 1 l^{\prime \prime}$); Wakefield Semiconductor No. NC403C or Thermalloy Co. No. 6403B heat sinks (2); tuo-lug ungrounded terminal block; four-lug terminal strip; 22-18-gauge aluminum stock for U and L brackets; \# 18 or larger stranded hookup wire ; fuse holder; \#6 and \#4 machine harduare; diode clamps (2); solder lugs (2); three-lug terminal strips (2); transistor mounting hardware; solder; etc.
Note-The follouing items are available from Southwest Technical Products Corp., 219 W est Rhapsody, San Antonio, TX 78216 : circuit board (No. 175B) for 82.75 ; complete amplifier as listed, but excluding chassis (No. 175C) for $\$ 30$ plus shipping and insurance on 3 lb: complete steren tersion with punched chassis and power supply (No. 2S-175) for $\$ 80$ plus shipping and insurance on 17 lb ; complete single-channel version with punched chassis and power supply (No. S-175) for $\$ 60$ plus shipping and insurance on 14 lb .

Fig. 1. Circuit of power amplifier is simple and foolproof in design. Note absence of "weak link" large-value capacitors. Two such amplifier circuits are required for stereo system.
$T 1$ and the enrrent rating of fuse $F 1$ from the table in the sidebar.

The power supply mounts directly on the steel chassis that accommodates the amplifier circuits. Point-to-point wiring is used throughout, but be extremely careful during wiring to make sure diode and capacitor polarities are correct.

Since the physical layout of the Super Tiger was presented previously, this artiele will focus on the construction of only the 125 -watt mono rersion with power supply.

Unless you purchase the steel chassis with the complete kit from the souree listed in the Amplifier Parts List, you will have to machine your own, using the photos given in this article to guide you.

Ifter mounting and soldering into place the components on the circuit board, solder $8^{\prime \prime}$ lengthis of \#18 or larger stranded hookup wire at hole locations C and D from the foil side of the board and at locations G, GND, E, L, F , and K from the component side. Twist together $21 / 2^{\prime \prime}$ lengths of black and white wires. Solder the black wire to A and the white wire to B on the component side. Then mount the circuit board in its proper location on the rhassis.

At the opposite end of the chassis, anchor the power transformer with \#8 hardware and the filter capacitors with \#6 hardware. Fasten the power supply primary fuse holder and line cord with strain relief in their appropriate holes on the rear apron of the chassis. Then bolt down the secondary fuse block and the terminal strips associated with

TECHNICAL SPECIFICATIONS

Output power: Up to 80 watts/channel with 8-ohm load; to 120 watts/channel with 4-ohm load
Distortion: Less than 0.5% from 20 to 20,000 Hz standard; less than 0.05% from 20 to $20,000 \mathrm{~Hz}$ with optional low distortion adjustment
Frequency response: 3 dB down at approximately 1 and $100,000 \mathrm{~Hz}$
Hum and noise: Better than 80 dB below 1 watt rms output
Damping factor: Better than 100 with 8 -ohm load
Sensitivity: 1.5 volts rms input for full output
Stability: Completely stable with any source impedance; can be used with any load im. pedance as low as 3 ohms or capacitive loads to $1{ }_{\mu} \mathrm{F}$.

Fig. 2. Actual size etching guide is shown at left. In component layout and orientation diagram (above), boxes around Q3-Q6 represent outlines of heat sinks on these transistors.

Fig. 3. Negative dc supply voltage is taken from right side of F2. Table lists ratings of F1 and T1 for desired amplifier output.

POWER SUPPLY PARTS LIST

C1,C2-4000- $\mu \mathrm{F}, 50$-vole electrolytic capacitor CBI-200 thermostat (.Vo. L200 88-4, avail. able for $\$ 5$ from Elmwood Sensors, Inc., 1655 Elmicood Ave., Crunston, RI 0290 万)
Fl-Slow-blow fuse (sec table for rating)
F2-5 ampere standard-NOT slow-blowfinse
RECT1-Full-uave bridse rectifier assembly (Motorola MDA962-3), or substitute four 3-anpere, 200 PIV silicon diodes

POWER SUPPLY COMPONENTS

Output	F1
Power	Current
$125 \mathrm{~W}^{*}$	2.6 A
80 W	2.6 A
40 W	1.5 A
20 W	1.0 A
10 W	1.0 A

T1 Secondary	
Voltage	DC
\& Current	Output
$62 \mathrm{~V} \mathrm{ct}, 3 \mathrm{~A}$	$\pm 40 \mathrm{~V}$
$62 \mathrm{Vct}, 3 \mathrm{~A}$	$\pm 40 \mathrm{~V}$
$45 \mathrm{~V} \mathrm{ct}, 2 \mathrm{~A}$	$\pm 28 \mathrm{~V}$
$34 \mathrm{~V} \mathrm{ct}, 1.5 \mathrm{~A}$	$\pm 20 \mathrm{~V}$
$24 \mathrm{~V} \mathrm{ct}, 1 \mathrm{~A}$	$\pm 15 \mathrm{~V}$

*At 4-ohan load; all other poneer ratings referenced to 8 -ohm loud impedance.

T1-117-valt primary (see table for secondary voltage and current ratings) power transformer
Misc.-Fuse holder; fuse block; ac line cord with plug; line cord strain relief; \#18 or larger stranded hookup wire; \#6 and \#8 machine hardware; two-lug-neither grounded-terminal strips (2); five lugcenter lug grounded-terminal strip; solder; etc.
Note-All above items available from Southwest Technical Products Co. as part of kils S-175 and 2S-175 (see Amplifier Parts List).

Fig. 4. Power supply secondary fuse and bridge rectifier as, sembly diodes mount on fuse block and terminal strip. Resistors R17 and R18 connect output of power supply to Q7 and Q8 in amplifier circuit.

the power supply (see Fig. 4). Now, referring to Fig. 3, wire together the power supply ercuit, using \#18 or larger stranded hookup wire. (Note: Where \#18 or larger wire is specificd, do not substitute a smaller size wire. The circuits to which these wires connect carry as much as 10 amperes when the amplifier is driven to full power. If too small a wire size is used, power will be sacrificed and damping will sulfer.)

Returning to the amplifier end of the chassis, mount input jack $J 1$, the speaker fuse holder, and the output terminal block on the front apron. Solder the white wire from hole B on the circnit board to the center contact of J1 and the black wire from hole A to the
other lug on J1. Bolt a four-lug terminal strip (one lug gromded) to the chassis at the right of the circuit board and in line with the speaker fuse holder.

Close-wind one layer of \#26 enameled wire along the entire length of the body of R19 (10 -olm, 1 -watt resistor). Scrape the ends of the wire and solder them to the leads of the resistor. Then solder one lead of this L1/R19 assembly to the center ling on the output fuse holder and comect the other lead to the lug nearest the fuse holder on the last terminal strip momiterl.

As shown in Fig. 5, connect C5 and R20 to the terminal strip near $/ 119 / L 1$. Solder only the ground lug that serves as the tie

Fig. 5. Close-wind a single layer of \#22 enameled wire along the entire length of R19 and solder the wire ends to the resistor leads to make the L1/R19 assembly.

NTS nuts a whole new worli at your fingertios.

NTS home training can put a whole new way of life in the palm of your hand. A new, exciting job, a much bigger income is now easily within your reach.
NTS training is something special. We provide all the kits you need for the most effective training. National Technical Schools sends kits with every course, and teaches you to build and test a
wide range of professional equipment - the same kind of equipment you'll actually use on the job. That's the NTS "Project Method" - training that's practical and in-depth. You learn everything from fundamentals fo the latest innovations. From beginning to end, NTS makes it fascinating and fun to learn this way. And all you need is a little
spare time and an interest in electronics.
Each year, men are moving into important new jobs, or their own businesses, straight out of NTS electronics training. NTS is what's happening to men everywhere. Check the coupon. Take hold of the career you want most. Do it now. No obligation. No salesman will call.

We nack your electronics course with hits to make your training fast. Youll enioy guery minute of it.

NTS COLOR TV SERVICING

NTS training provides an easy way to become a professional homeentertainment service technician. You receive a big screen Color TV with many unique features. The unit even includes self servicing equipment that permits you to make all normal test operations. No additional test equipment is needed for adjusting your set. In addition you get an AM-SW radio, Solid-State radio, Field-Effect Transistor Volt-Ohmmeter, and Electronic Tube Tester. You learn about Electronic principles and trouble shooting, hi-fi, multiplex systems, stereo, and color TV servicing.

NTS COMPUTER ELECTRONICS

This is the future. And it's happening now. The number of computers will increase many times in the next

National Technical Schools
4000 S. Figueroa St., Los Angeles, Calif. 90037
I Please rush Free Color Catalog and Sample Lesson, plus information on course checked below. No obligation. No salesman will call.

NTS offers a solid grounding in computer operation, wiring, data processing and programming. One of the 10 important kits included is our exclusive Compu-Trainer". It's a fully operational computer logic trainer - loaded with integrated circuits the first ever offered in home study. It introduces you quickly to how, what, when and why of computers ... from theory to practical servicing techniques. This unit is capable of performing 50,000 operations per second.

NTS ELECTRONICS COMMUNICATIONS

Choose from two exciting courses to get into the big-paying fields of transmitting and receiving equipment: (1) The FCC License Course. (2) The Master Course in Electronic Communications (more comprehensive, with Citizens' Band Two-WayRadio). Either Communications program qualifies you for your FCC First Class Commercial Radio-Telephone License-NTS assures. you will pass this FCC exam within six months after successfully completing your course or your tuition is refunded. Kits include an AmateurPhone 6 Meter VHF Transceiver NTS exclusive, 6 transistor SolidState Radio, Volt-Ohmmeter (fully transistorized).

NTS AUTOMATION/ INDUSTRIAL ELECTRONICS

Let NTS put you into the age of electronic controls. Systems Automation is rapidly becoming the emphasis of modern incustry. Your NTS training in automation electronics includes equipment like a $5^{\prime \prime}$ wide band Oscilloscope. You also get the new NTS Electronics Lab. It's an exclusive NTS experimental laboratory - a complete workshop that simplifies learning about solid-state, miniature and integrated circuits.

5" Oscilloscope

CLASSROOM TRAINING AT LOS ANGELES

You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

wonlb.wide training since 1903
4000 South Figueroa Street Los Angeles, Calif. 90037, U.S.A.

APPROVED FOR VETERANS

Accredited Member: National Association of Trade and Technical Schools; National Home Study Council.Master Course in Color TV Servicing Color TV Servicing Master Course in TV \& Radio Servicing Practical TV \& Radio Servicing Master Course in Electronic Comm. FCC License Course Master Course in Electronics Tech. Industrial and Automation Electranics Computer Electronics Basic Electronics

Name
Age
Address
City \qquad State Zip

[^3]Dept. 205.100

HIRSCH-HOUCK LABORATORIES Project Evaluation

This is a very impressive basic ampli. fier for a home-brew project. The schematic diagram of the "Universal Tiger" is reminiscent of the new Harman-Kardon "Citation 12," with an operational amplifier input configuration and overall directcoupled feedback to maintain the speaker at dc ground. However, unlike the Citation 12 , the Tiger uses complementary sym. metry output transistors, and opposite polarities on the other transistors.

In general, we confirmed Mr. Meyer's specifications figures. Where he claims a 0.01% or less distortion under most op-
erating conditions, we feel that he is a trifle optimistic, but he certainly comes close. At 80 watts, the distortion is typically less than 0.05% from 70 to 17,000 Hz , rising to slightly in excess of 0.5% at 20 Hz . At half power or less, the dis. tortion is typically less than 0.02% from 20 to $20,000 \mathrm{~Hz}$.

At 1000 Hz , distortion falls from 0.15% at 0.1 watt to a minimum of 0.009% at 20 watts and rises to 0.1% at 85 watts, which is just below clipping level. These powers were measured with an 8 -ohm load and a 117 -volt line.

Intermodulation distortion was slightly higher. But at most power levels greater than one watt, it was less than 0.1%. We did not have enough voltage from our IM analyzer to drive the amplifier to more

When mounting Q3-Q6 on printed circuit board, make certain that triangular lead configurations and heat sink tabs line up with holes in circuit board.
point for looth (': a and 1 I20. Temporarily set aside the chassis assembly.

Spread a lilm of silieme paste on the bottom of the eats of $Q 7$ (MLJ4502) and slip onto the pasted side a mica insulator. Spread another film of the paste on one of the heat sinks in the area over which $Q 7$ is to be momented. Then seat $Q 7$ on the heat sink. Pasha a $\#+4$ machine serew through the mounting hole tabs in the case of the transistor, turn over the assembly, and slide onto each serew a shoulder fiber washer. Make sure that the shoulders engarge the oversize holes in the heat sink. Tlen place a solder lug over the serew nearest the edge of the heat sink and a threc-log terminal strip and a diode case

than 40 watts. These figures were measured with the bias adjust control set as received with best thermal stability. The low-level distortion could be reduced substantially with this control set at its opposite limit, where the measured reduction was from 0.045% to 0.023% at one watt and from 0.15% to 0.047% at 0.1 watt. However, it is hardly worth the bother to play with the bias adjust control, since we doubt that many people have the test equipment needed to make the adjustment.

Into 4 ohms, the maximum power at the clipping point was 97 watts; into 8 ohms, it was 92 watts; and into 16 ohms, it was 53 watts. An input of 0.9 volt was needed for a 10 -watt output (our standard reference level) and hum and noise were

86 dB below 10 watts-a very low figure.
The frequency response of the Universal Tiger was $\pm 0.2 \mathrm{~dB}$ from less than 10 Hz to beyond $20,000 \mathrm{~Hz}$. It was down 0.3 $d B$ at 5 Hz and $50,000 \mathrm{~Hz}$, and the higher end was slightly better than claimed, being down 1.1 dB at $100,000 \mathrm{~Hz}$ and 3.9 dB at $200,000 \mathrm{~Hz}$. Square wave tests showed a rise time of about 2.5 microseconds.

In all, the Universal Tiger is one of the best power amplifiers we have had the pleasure of testing. Short-circuiting the output at full power blew only the speaker fuse, while full power square-wave drive at $100,000 \mathrm{~Hz}$ blew only the power supply fuse after a few moments. But nothing seemed to damage the amplifier circuit itself.
clamp over the other serew. Fasten the serews with appropriate nuts. Use \#4 hardware to bolt $C B 1$ in place.

Repeat the above procedure for the second heat sink and $Q 8$ with the following changes. Anchor only the diode clamp) and solder lug to the hold-down screws for Q8. Nount R21 on an L bracket and fasten the bracket and a threc-lug terminal strip to the heat sink with \#t hardware and shoulder fiber washers.

Slide D2 and D3 into the diode clamps and puish onto the diode leads $1^{\prime \prime}$ lengths of plastic tubing. Connect the leads to the angrounded lugs of the terminal strips. Solder a $10^{\prime \prime}$ long wire to the lug to which the anode lead of $D 3^{3}$ is connected and a $1^{\prime \prime}$ wire from lug 3

In upper waveform, crossover distortion at base of Q4 can be seen; lower trace shows undistorted wave. form ($F=1000 \mathrm{~Hz}$ at 0.25 watts into 8 -ohm load).

THEORY OF CIRCUIT DESIGN

The circuit of the Universal Tiger is a combination of operational amplifier and complementary output techniques. As shown in Fig. I, transistors Q1 and Q2 form a differential amplifier. The input signal is applied to the hase of Q1, with negative feedback on the base of Q2.
Zener diode DI maintains a constant bias voltage on $Q 9$ so that the current is constant throngh the base-rmitter circuit of the transistor for any supply potential excceding 4.7 volts. Hence, the Q9 circuit functions as a constant-current source for Q1 and Q2. Since C2 provides for 100 percent negative fredlbark in the circuit, the output voltage offset is on the order of a few millivolts: any unbalance is immediately corrected by the Q1/Q2 differential stage. And the ratio of $R 7$ to $R 8$ determines the amomt of overall ac negative feelback. (Note that $C 2$ is the only element in the circuit that prevents the amplifier from responding down to de)
From the collector of Q1, the amplified innal goes to the base of Q3. Normally, Q3 would be the voltage amplifier that supplies the large voltage swing needed to drive the im-pedance-matching driver/ontput sircuit. Herc, however, it is limited in voltage gain and, working with Q4, it provides some unique characteristics.
In most of the common amplifier circuits, the voltage amplifier load resistor is split 'as in Fig. A), and a "bootstrap" capacitor is connected to the output. This canses the voltage across collector load resistor R_{L} to remain at a constant value so that collector current is constant. If a constant-current circuit were not used, the amount of current available to drive the output circuit would drop to zero as the positive praks of the waveform approach the peak positive potential of the power supply. This would result in a considerable amomen of distortion on positive peaks that would be difficult or impossible to correct no matter how much degenerative feedback was used.
In the circuit of the Universal Tiger, an active current source is used instead of the more common bootstrap system. The results are the same with one important exception. The driver is not affected by supply voltage variations, due to the use of a constant load resistance, and a solution is provided for the crossover distortion problem because the active current source supplies a ronstant current to $Q 3$ at all times. The bootstrap circuit, obviously, does not.

Consider what happens if a portion of the output waveform is flat, as from A to B in Fig. B , due to an underbiased condition in the output stage. During this portion of the eycle. there is no increase in output voltage, and, as a
result. no bootstrap action by the capacitor. And during this time the circuit does not prodide the driver transistor with a constant cur. roms. With the active current source, this does not oceur.

The artive current source actually eliminates most of the crossover distortion that can occur due to an underbiased condition in the output -irenit. We can sce why if we consider what a ronstant current source does. It adjusts the vilage to keep the current through the circuit ronstant. But what happens if an underbiased rondition exists in which Q5 and Q6 are both cut off?

As the driving voltage approaches zero, the active driver begins to turn off, but the voltage is not yet sufficient to cause the other driver to conduct. The loading on the current source becomes far less during this period since no current can be supplied to either driver while both are cut off. Hence, the current source increaves the voltage in an attempt to maintain a coustant current through the amplifier cirruit. And the driving voltage jumps very quickIy from the cutoff point of one driver to the ronduction point of the other driver, resulting in the minimum of effect on the outpme waveform during the crossover period.

In a case like this, the lias on the output stage would normally be adjusted so that both nutput transistors are conducting at a low level to aroid crossover distortion. However, if it is possible to avoid having to make a critical bias adjustment, so much the better. Without making this adjustment, a considerable problem in thermal stability will result. As the transistor's temperature increases, the same bias voltage will cause a considerable increase in collector furrent, opening the way to possible thermal runatway. The use of diodes $D 2$ and D3 in the Universal Tiger provides automatic adjustment which helps to eliminate the thermal problem.
The diodes are actually mounted on the heat sinks nsed for Q7 and Q8. Now, any temperafure ehanges in the output transistors are detected by the diodes. whose resistances vary with temperature. As the diode resistances change, so do the bias voltages to driver transistors Q5 and Q6. Hence, if Q7 and Q8 begin to operate abnormally hot, the diodes increase the bias voltage to $Q 5$ and $Q 6$ and indirectly lower the operating temperature of Q7 and Q8.

There are two types of compound connections commonly employed in the output stages of transistor power amplifiers. These are shown in Fig. C. The quasicomplementary circuits which use only one polarity of power transistors have one of each type in their output stage. The double emitter follower compound system requires two diode drops to bias it on, while the double common emitter compound requires only one diode. This is a slight ad-

B
vantage since one less diode must be included in the temperature-compensated bias network.

Neither compound has any voltage gain; both require a driving signal voltage swing equal to the needed output. Since the common emitter driver compound at the right in Fig. C has 100 percent degenerative feedback, gain matching is not required in the output transistors, just as in the double emitter compound also shown.

Comparison of the two circuits as a power output stage gives the circuit at the right a slight advantage in lowest distortion and other areas if the circuit has overall negative feedback.

While testing a full complementary circuit using the common cmitter compound. it appeared that there was really no reason why 100 percent degenerative feedhack should be necessary or even desirable in the driver transistor. With a complementary cirenit it is not necessary to rely on a double emitter follower for half of the output-which requires a serond half with matching drive voltage requirements. A complementary cirpuit allows the use of any amount of degencrative feelback from zero to 100 percent in the driver portion of the circuit. A circuit with no degeneration can provide the maximum amount of voltage gain from two transistors, but it requires matched gains in the ontput transistors.

Since there is plenty of gain available elscwhere in the circuit of the Universal Tiger, a 50 percent feedlack arrangement was selected for the driver stage. This gives a gain of two in the output stage and enough fecdback to make transistor matching unnecessary.

The gain of only two might appear to be too small, but it does provide several substantial benefits. First, the peak-to-peak drive voltage excursion need be only half that of the peak

Second, it is possible to keep distortion down to much lower levels in the driver circuit if it does not have to develop full supply positive and negative excursions. Additional temperature stability, by using 50 percent feedback in the ontput stage, is yet another advantage.

Eiven without the current drive system, the rircuit of the Universal Tiger would have been many times more stable than circuits employ. ing 100 percent degeneration in the driver. Another bonus is that the output stage is virtually failure proof.

If the output of the circuit in Fig C is short rircuited, or too low an impedance load is connected to it, the driver transistor would attempl to put enough current through the baseemitter junction of the output stage to bring the voltage up (dne to overall feedback efferts. This can canse the collector current rating of the driver transistor or the baseemitter rating of the power transistor, or both, to be exceeded. The same thing can also happon in the second circuit, but in a slightly different manner; therefore elaborate protection rircuits must be designed to prevent this.
This situation cannot occur with a 50 perfont feedback arrangement. The driver's emitter resistor limits the amount of current that can pass through the emitter-collector circuit and into the base of the output transistor. The base current is limited to a value that does not allow collector current in the output transistor to exceed its rating. Herce, short-proof protection is built in and works automatically.

Since the output transistors specified in Fig. 1 have a 30 -ampere rating, a fuse in the output line and another in the primary circuit of the power supply transformer will eircumvent any possible danage that might otherwise result from overloading. Also, to provide the maximum amount of protection against damage CB1 in Fig. 3 is nsed on one of the output transistor heat sinks.

- $30-$

Distortion control R21 fastens to heat sink on which Q8 is mounted with snall L bracket and machine hardware. Terminal strip for D2 mounts directly below R21.
of 1i21 to the anode hig of D2. Then solder an $8^{\prime \prime}$-long, \#18 or larger wire to the solder lug on $Q 7$ and a $3^{\prime \prime}$-long wire to the solder lug on Q8.
Use \#6 hardware to bolt the U brackets to the chassis. Mount the heat sink assmbly on which $Q 7$ is mounted to the left sides of the brackets. Solder the wire from hole (' on the circuit board to the cathode lug of $D .3$ on the terminal strip. Connect and solder a $6^{\prime \prime}$ long, \#18 or larger wire between 1117 and the emitter lead of 07 . Then solder the lead from lowle F on the eirenit board to the base lead of $Q 7$. Ronte the lead commectel to the solder lug on $Q 7$ under the board, and conneet it to the lug at the junction of L1/li19 and 1220 .

Now, moment the other heat sink assembly in place. Comnect and solder the lead from the solder hig on Q8 to the L1/R19 and li20 junction lug. (There should now be five wires comnected to this lug.) Lorate the lead from hole D on the cirenit board and remove $3 / 4^{\prime \prime}$ of insulation from the free end. Connect and solder this wire to lugs 1 and 2 of 1221. Rovite an $8^{\prime \prime}$-long, \#18 wire from the emitter of $Q 8$, under the board, and to $R 18$. Solder both connections. Then route the $10^{\prime \prime}$ wire from the anode connection lug of $D 33$ under the board and comeret the free end to the
cathode connection lug for D2. Solder the wire from hole E on the board to the base lead of $Q 8$.

Finish the wiring as follows. Solder a $0^{\prime \prime}$ wire between the side lug on the speaker fuse holder and the lug nearest the fuse holder on the output terminal block, and an $8^{\prime \prime}$ wire from the ground lug on the rectifier bridge terminal strip to the other lug on the terminal block. Cut two wires to $12^{\prime \prime}$ lengthis, strip the ends, twist them together, and conneet one end of the pair to the lugs on CB1 and the other end to the lugs, on the terminal strip located between the two fuse holders in the power supply. Finally, solder the free ends of the wires on the eirenit board to the appropriate points in the power supply filter section.

Insert a 5 -ampere standard fuse in both the speaker fuse holder and the power supply secondary fuse block. For the rating of the primary fuse, refer to the table in the power supply sidebar for the particular output power selected.

Adjustment and Use. If the Trinversal Tiger is to be used with any but the very best speaker system, the eirenit can be assembled without distortion control R21. (In this crent, simply comect the wire from hole D on the
circuit board directly to the lug to which the anode of D2 is connected.) However, with a first-rate speaker system where there is a possibility of notieing the difference between 0.1% and 0.01% distortion, R21 should be added as shown.

Control R21 allows adjustment of the bias to eliminate crossover distortion completely. Thermal stability will not be quite as good, but with a sound system there is little danger of overheating since few people would operate the amplifier continuously at its full rated power.

To set R21, adjust the potentiometer for minimum resistance and the amplifier for approximately a 1 -watt output into a load. Observe the waveform at the base of $Q 5$ on an oscilloscope. Increase the resistance of $R 21$ until the waveform is distortion free. Check the idle current of the amplifier; it should be approximately 50 mA . Then seal the adjustment.

The Universal Tiger should give years of trouble-free operation if it is properly assembled. It is doubtful that any improvements in amplifier design during the next few

Filter capacitors C1 and C2 in power supply mount between amplifier assembly and power transformer.

For proper operation, sensing element of thermal circuit breaker CB1 must contact Q7's heat sink.
years will produce an improvement in sound quality when compared with this amplifier. With distortion levels as low as they are in the Universal Tiger, speaker, cartridge, and tumer distortion will have to be reduced by a factor of at least ten to make the amplifier distortion a significant contributor to overall distortion.

If you decide to build any of the highpower versions of the Universal Tiger, remember that most speaker systems are rated for peak power handling ability. This means that in most cases you have to divide the peak power by two to determine roughly the amonnt of rms power the speaker can tolerate without damage. Other than this, there are no precautions that have to be taken. -30 -

BUILD AN

Electrolytic Restorer

PREVENT HIGH-VOLTAGE CAPACITOR BREAKDOWN

This project is used to restore (reform) the dielectric in electrolytic capacitors that have not been in use for an extended period of time. Half-wave rectified ac is switch-selected and applied to the capacitor. As the dielectric reforms, the voltage increases indicating a reduction in current flow through the capacitor. Various reforming rates are available to the builder, as well as various applied voltages from 100 to 600 volts.

WHEN a high-voltage electrolytic capacitor has been unused for too long a time, it is eustomarily looked upon as a possible troublemaker. Too often, when power is applied to such imits, the dielectric punctures, destroying the rapacitor and probably the associated circuit. Unfortunately, many people have
some of these capacitors in their junk boxes (they were quite common in power supplies for vacum-tube cireuits), but lesitate to use them. Since they are fairly expensive, it behooves the electronies experimenter or service man to salvage such capacitors by restoring the dielectrie so that there is no chance of its breaking down when put to use.

However, before finding out how to restore an electrolytic, let's be sure we know the exact nature of the trouble.

What Is an Electrolytic Capacitor?

 An electrolytic capacitor usually consists of two flexible sheets of aluminum foil separated by gauze impregnated with an electrolyte. Leads are commected to each foil section. The foil connected to the positive lead has anoxide coating which serves as the capacitor's diclectric. It is the thickness of this coating that determines the working voltage of the capacitor.

While the capacitor is being used, the oxide coating is preserved by chemical processes resulting from the voltage impressed across the terminals. Unfortunately, when it is in storage, time and ambient heat take their toll and the oxide deteriorates. When the full working voltage is applied to a eapacitor whose oxide
is weak, the latter breaks down and a short circuit is placed across the circuit.

Reforming the Dielectric. The dielectric of a suspect capacitor can be reformed by connecting a low de voltage across the capacitor and slowly increasing the voltage until the rated value is reached. This must be done over a long period of time to allow the oxide to reform properly.

The "Electrolytic Restorer" described here

Perf board construction may be used with the operating controls and jacks mounted on the front panel of the selected cabinet. A TV-type "cheater" connector is used to make the power connection. Mount the perf board on suitable spacers and be sure that components on the board do not make electrical contact with any of the front-panel elements.

does this job automatically, and recuires only an oceasional look at a de voltmeter to cheek progress. The cost of the project is about $\$ 14$ if all parts are bought new.

Construction. The prototype slown in the photos was housed in a conventional plastic case although any type of arrangement will suffice. The schematic of the cirenit is shown
in Fig. 1. Exact placement of parts is not given since dimensions are not critical and the control locations can be changed depending on personal preferences.

Most of the cirenit can be assembled on perforated board. The front panel controls and jacks are mombed directly on the ense cover, making sure that all leads are long enorght to reach the electronies board. For

THEORY OF CIRCUIT DESIGN

Diodes Dl through D4 and capacitors Cl through $C 4$ form a half-wave voltage quadrupler rectifier with a dc output of approximately 600 volts. Resistors R7 through R16 form a voltage divider network and $S 3$ selects the desired voltage and applies it to the parallelconnected positive output jacks $J 1$ and $J 2$. The negative side of the power supply is connected through a switch-selected resistor network consisting of $R 4$ through $R 6$ to the parallel-connected negative jacks $J 3$ and $/ 4$. The use of $S 2$ determines the forming ratc. The direct position permits the unit to be used as a bigh-voltage, low-current power supply. This position can be eliminated if desired.

The discharce position of $S 3$ places $R 17$ across the output to discharge the formed capacitor, while resistors $R 2$ and $R 3$ keep a small load on the power supply and discharge the power supply capacitors.

During the forming process, the capacitor's resistance is low so most of the voltage is dropped across the limiting resistor. As the oxide coating in the capacitor is re-formed, less current flows through the capacitor, causing the voltage across it to increase. When this voltage equals the preset voltage on $S 3$, the reformation is complete.
safety, a $1: 1$ are line isolation transiormer should be used, though this is not shown in the prototype.

Operation. The elcetrolytic caparitor to be reformed is ronnceted to the output jacks, making sure that the polarities are observed. The positive side of the eapacitor is connected to cither $J 1$ or $J 2$ and the negative side to either J3 or J4. The de voltmeter for rheeking the reforming action is connected to the remaining two jacks. Make sure that the polarity and foltage range are correct. The voltmeter ean be disconnected and reeonmected at any time withont affecting the operation.

Plawe $S .3$ in the discuarge position, plug the unit in, and turn on the power. Neon indicator lamp 11 shonld glow. Set the desired forming rate on $S \infty$ and flen rotate $S 3$ to the working voltage of the eaparitor. If the rapuditor is mformed, the roltmeter will indirate a much lower voltage than that set on $S 3$.

Note that the voltmeter indication starts to increase quickly at first, then slows down as the dielectric forms. The rate of inerease is determined by the condition of the capacitor and the setting of 52 . When the show setting is used, the operation takes longer but the oxide formed will be of better quality. The opposite is true for the riser setting. Use the Normsh position for most cases.

Be careful when drilling the holes in the plastic front panel as it will chip easily. The neon indicator lamp is cemented in the hole, other components use hardware.

Insulated wiring is used to make interconnections. If a metal case is used, make sure spacers keep connections from touching the case.

When the voltage across the capacitor is approximately equal to the set on $S 3$, put the switel on discliarge and remove the eapacitor. No harm will be done if the capacitor is left comnected longer than required, so it is not necessary to cheek progress constantly.

To use the unit as a higll-voltage, low-current power supply, set the forming rate switeh (S2) to pirect. A emrent of 4 mA may be
drawn continuonsly, and somewhat higher currents for a sloort period of time. (A load current of 10 mA causes a dissipation of 3 watts in the divider resistors.)

The Electrolytic Restorer can also be used for a quick go-no-go check of voltmeters. Comparison of voltage switch settings and voltmeter readings will reveal any gross inaccuracies.
$-30-$

This unity gain amplifier is inserted in a stereo system between the preamp and the power amplifier. Five manually operated controls

THE NEW THING-
Segment tone adjustment vary segments of the audio spectrum around $60,250,1000,3500$, and $10,000 \mathrm{~Hz}$ through a range of plus or minus 12 dB . The Equalizer introduces no distortion, hiss, or ac hum. Suggestions are made enabling the connection of this device to an integrated stereo system.

SO YOU SPENT a lot of time and money putting together vour separate-component stereo system. Now you are starting to wonder where you went wrong because some program material sounds terrific and some not so hot-especially when you know it should all be good.

Actually, there may be nothing wrong; your problems probably stem from a varicty of sources which are difficult if not impossible to control individually. For example, you may have an imported dise recording which was made using a nonstandard recording

PARTS LIST

Cl- $2-\mu F, 50$-volt, clectrolytic capacilor*
C2-10- $\mu F, 50$-volt, electrolytic capacitor*
C3, C4-10.pF disc capacitor*
C.5-10- μ F. 50 -volt, electrolytic capacitor ${ }^{*}$

C6, C $7-250-\mu F, 75-v o l t$, electrolytic capacitor
C8-1.7- $\mu F, 35$-volt capacitor*
(.9-1- μF. 100 -volt capacitor*

Cllo- $0.22-\mu F$ capacitor*
C:II-0.068- $\mu \mathrm{F}$ capacitor*
C12-0.022- $\mu \mathrm{F}$ capacitor*
D) $1-D 1-2-A, 600-V$ silicon recfifier diode

11 - 117 roll neon indicator assembly
/I-J4—Phono jack*
l.1-l.t.H inductor* (175 ohms de resislance**)
L2-0.t-H ineluctor* (60 ohms de resistance**)
L.3-0.I-H inductor* (20 ohms dc resis(ance ${ }^{* *}$)
L.1-30-mH inductor* (140 ohms de resis(ance**)
L5-IO-mII inductor* (30 ohms de resistunces*)
QI-Q3-2N. 5232 transistor*
O4-2N5354 transistor*
RI,RIO—IO,000-ohm, $1 / 2-$-Itatt resistor*
R2-150.000-ohm. 这-watt resistor*
$R .3-82,000-o h m, 1 / 2 \cdot$ ucatt resistor*
R4,R5.R6.R8,R9—3300-ohm, l', wall resistor*
$R^{-}-22,000$-ohm, 3 -lcatt resistor*
RIl-740-ohm, I-watt resistor
RI2,RI4,RI6.R18,R20-50,000-ohm linear-1aper, dual slide potentiometer (CTS V' 190 or similar)
R13-170-ohm, 1/4-reatt resistor ${ }^{*}$
R1.5,R19—. 560 -ohm, $1 / 4$-watt resistor*
R17,R21-680-ohm, 阵-walt resistor*
: 1 -Dpdt slide or toggle switch
$\therefore 2-5 p s t$ sliule or toggle switch
T1-Power transformer, 40-volt secondary (Triad F-90X or similar)

* For one channel only; duplicate for stereo.
*: D c resistance is important to avoid havering Q of circuit.
Misc.-Chassis, knobs (5), line cord, terminal strips. mounting hardivare, metal bracket for slide potentiometers.
Note- The follouing are available from Metrotec Industrics, 1405 Old Northern Blod., Roslyn. VY 11576: etched and drilled PC board \#501 for $\$ 2.40$; slide potentiometer \# 502 for $\$ 2.20$ cach: set of 10 coils \# 503 for $\$ 9.50$; complete kit of all parts including front pancl, knobs, walnut side panels, and instructions, \# FEK for $\$ 59.9 \mathbf{a}^{\mathbf{1}}$: commetely uired and tested unit with 2-ycar guarantec, \# FEW for $\$ 99.95$. For last two items. add $\$ 1.25$ shipping charge.
New York State residents add 5% sales tax.

Fig. 1. To avoid confusion, schematic shows only one channel of equalizer; other channel is identical to that shown. Power supply (at lower left) is used for both of the channels.

THEORY OF CIRCUIT DESIGN

The circuit uses a direct-counled, four-stage amplifier having slightly less than unity gain. The first stage (Q1) is an emitter follower for high-impedance imput and low distortion. The next two stages (Q2 and Q3) form a differential amplifier having tro inputs to allow the application of both signal and feedback. The last stage (Q4) is used as a voltage amplifier with high open-loop, gain to provide a stable de operating point.

The five manually operated tone controls are linear slide potentiometers connected between the two differential amplifier inputs. The slider of each potentiometer is returned to wround through a resonant circuit that determines the freguency and range of adjustment. When the slider is at the full cut position. the resonant circuit shunts the input to the differential amplifier to ground. When the slider is in the full boost position, the same resonant circuit shunts the feedback to ground. Thus, a single resonant circuit performs two functions.

By designing the circuit so that both ends of the slide potentiometers are returned to the same potential, the coupling capacitors which would otherwise be required are eliminated. The capacitors in the resonant circuits perform the de blocking function.

Due to the ligh feedback and ripple rejection. an inexpensive power supply can be used to full advantage.

The coils arc suspectible to magnetic field pickup from the power transformer if not properly oriented. If you follow the physical arrangement shown in the photos, pickup should be at a minimum.
purve. In this case, yon may not be able to erompensate for the odd somind level.

Your problems may also be due to room acousties and the response of your speakers. The wall behind a speaker acts as an extension of the speaker mounting board for low Irecpuencies, therefore wall size and how rlose the speaker is to it can make a dramatir difference in the low-frequency response of the system. The materials of which the floor, walls and reiling are made can aflect the frequencies from the lower mid-range and mp. When high-frequency sounds bounce aromend the hard walls of a room, the net effect is an apparent peaking of the highs. On the other hand, if the floor is earpeted and there are heary drapes on the walls, the hights may appear dull. Similarly, large sofas: and overstuffed chairs absorb ecrtain frefueneies and reduce their comtribution to the overall somel.

Speakers are particularly suspect. Certain type; (even goot one:) may have exeessive

Fig. 2. This actual size etching guide can be used to duplicate circuit board used in original prototype. Dots in corners locate board mounting holes.

Fig. 3. When mounting components on circuit board, make sure that lead orientations of electrolytic capacitors, diodes, and transistors are correct.
high-freguency response which makes strings sound timy and strident. Others may be weak in the mid-range, producing a sort of masal result. There are many reasons why speakers sound different and there's not much you can do abont most of them exerpt adjnst the frefuency response curve.
Up to now the high-fidelity industry las tried to solve these problems by supplying tone controls that boost or ent the high and low ends. This has not been satisfactory because such controls camnot compensate for the small changes required in the low and upper mid-ranges without dramatically affecting the extreme lows and highs. For example, if it is desired to boost "presence" at $3000 \mathrm{II} \%$ a few decibels, the standard tome control would also boost 10 kHz about 8 or 10 dl , increasing hiss and record seratch.

What the stereo enthusiast reguives is a tone control system that allows aldinstment of diserete segments of the audio freefnenery spectrum so that these individual segments can be tailored to shit a partienlar repuirement, without affecting any other part of the spectrum. The Stereo Freguency Equalizer is just such a system, with fire independent frequeney range adjustments. While there is no linit to the mumber of inlustments that conld be used, the more adjustments, the sharper the separation filters have to be, and it ins been fomd that sharp, narrow filters

TECHNICAL SPECIFICATIONS

Frequency response (flat setting): $\pm 1 \mathrm{~dB}, 5 \mathrm{~Hz}$ to 250 kHz
Tone control range: $\pm 12 \mathrm{~dB}$ at $60 \mathrm{~Hz}, 250 \mathrm{~Hz}$, $1 \mathrm{kHz}, 3.5 \mathrm{kHz}$, and 10 kHz
Intermodulation distortion: 0.05% at 2 volts output
Harmonic distortion: 0.05% at 2 volts output (20 Hz to 20 kHz)
Hum and noise (shorted input): 80 dB below 1 volt
Maximum output: 9 volts
Gain: Unity, plus 0, minus 2 dB
Recommended output load: 10,000 ohms or greater
Output impedance: 10 ohms
Input impedance: 75,000 ohms
Power consumption: 3 watts
have execsive phase shift and may actually canse a whole new serices of response problems.

Construction. The Equalizer, whose partial schematic is shown in Fig. 1, should be constructed on a printed circuit board, using the foil pattern shown in Fig. 2. Once the l'C board is available insert the emponents ats shown in Fig. 3. Note that the schematie shows only one chamel of the stereo system,

Capacitors, inductors, and resistors for filters mount on front panel of chassis. Terminal or tag strip is used to provide interconnection points for components.

HIRSCH-HOUCK LABORATORIES

Project Evaluation

The Frequency Equalizer is one of those add-on devices that go well with almost any stereo setup where tailoring the sound reproduction to the listening environment is desired. The project did a good job of tailoring. It was tested first on the bench, then through objective listening.

The gain of the Frequency Equalizer was measured at $0.79(-2 \mathrm{~dB})$ at 1000 Hz . It measured within $\pm 0.3 \mathrm{~dB}$ from 5 to $500,000 \mathrm{~Hz}$, well under the author's specification. The output impedance is exactly 10 ohms, also as claimed. Into a high-impedance load of about 100,000 ohms, the output clipping level occurred at 9.5 volts. Then into a $10,000 \cdot o h m$ load, clipping occurred at 9.0 volts, which is still ultra-safe for any hi-fi application. Even into a 1000 -ohm load, the Equalizer
was capable of delivering 3.7 volts, although distortion increased a bit here.

The harmonic distortion at 1000 Hz is virtually nonexistent, unmeasurable below 1 volt and much less than the 0.03% noise level. At one volt output, the first measurement was made-a mere 0.0077% of second harmonic! At the rated 2 -volt output, the distortion was only 0.015%, climbing to a maximum of 0.077% at 7 volts.

Intermodulation distortion at 2 volts was measured at 0.016% and fell to a minimum of 0.005% between 10 and 20 dB below the rated output, climbing to 0.015% at 30 dB below 2 volts. This is just about as distortionless as could be desired with modern equipment and techniques.

The noise level in the output could not

Response of equalizer at maximum and minimum settings; at zero position, response is flat.

This curve was obtained with all controls set at -12 dB , except 1000 Hz control at +12 dB .

New curve was obtained with all controls set at zero, except 1000 Hz control set at +12 dB .
be measured because of a slight subsonic "bounce" at about 70 dB below 1 volt, which masked the actual hiss and/or hum. Judging from the display pattern on an oscilloscope, the noise level in the audio region must exceed the $-80 \cdot \mathrm{~dB}$ rating claimed.

The composite frequency response curve was made with the 60. 1000 -, and $10,000-\mathrm{Hz}$ controls at maximum (and minimum), while the remaining controls were set to zero. Then the controls were set to zero and the 240 - and $3500-\mathrm{Hz}$ controls were set to a maximum (and minimum). This gives a rough idea of the variety of curves possible with the Equalizer. Needless to say, there are an extraordinary number of combinations available. Also, note how flat the re-
sponse is with all controls set to zero.
To display the shape of one filter, the $1000-\mathrm{Hz}$ filter was set to maximum with all the other controls set to zero. As an extreme case of correction, all but the $1000 \cdot \mathrm{~Hz}$ control were set to minimum and the $1000-\mathrm{Hz}$ control to maximum.

As compared to something like the Altec "Acousta-Voicette," of course, the Frequency Equalizer has rather broad filters. However, they do an effective job and go well beyond the capability of most ordinary tone controls. They are essentially equivalent to the JVC "SEA" am. plifier, which is considered to be one of the best from the equalization standpoint. In any event, the Frequency Equalizer performed fine in listening tests. It was able to tailor the sound very well.
while both chamels are on the one PC board. The power supply is common to both channels. Component numbers are identical in the two chamels.

A typical momenting and enclosure scheme is shown in the photos-any other arrangement wonld be equally satisfactory. The PC board is momed on four spacers at the bottom of the ehasis. The power transformer, power outlet so1, lape monitor switch $S 1$ and two sets of four phono jacks are on the
rear apron. Use a grommeted hole for the ac line cord.

The filter and potentiometer combinations are mounted on a spparate metal plate and are arranged so that only the potentiometer shafts protrude thromgh slots on the front pancl. The metal plate is drilled to aceommodate the five dual-slide potentiometerswhich are twist-lorked in place if you use the devies specified in the P'arts List. Be sure that the end holes for the slide potentiometers

Input and output jacks J1-J4, ac recep tacle SO1, and power transformer T1 are mounted on rear apron of chassis as in interior (above) and exterior (right) views. Strain relief protects line cord from sharp edges of entry hole in apron.

Dual slide-type potentiometers tasten to front surface of filter subchassis bracket. After fastening them in place, make certain that control tabs properly mate with slots in decorative front panel.

To provide clearance for and access to solder lugs on potentiometers, cutouts must be made through the filter subchassis bracket.
have sufficient clearance for the potentiometer terminals. One end of each inductor is connerted to its respective terminal on the potentiometer; the other end is comnected to it terminal strip (insulated from ground) lug. This lug also holds one end of the associated resistor. The other end of the resistor and one end of the assoriated capacitor are comected to another terminal lug. The other end of the capacitor is commected to a common ground buss that rums the length of the metal plate.

Slots just wide enough for the potentiometer slafts are made in the actual front panel. Power switch $S 2$ and indicator lamp 11 are mounted on the front panel. Once all mechanical work is complete, wire the cirenit as shown in Fig. 1, remembering that you are dealing with a sterco system.

For a neat appearance, the front pancl should be marked with care. Trim the five slots for the potentiometer shafts. Mark each slot with a frequency identifier as shown in the photos. At the exact center of each potentiometer range, mark a zero. Then space the $3-, 6-, 9$-, and $12-\mathrm{dB}$ marks cevenly above and below the zeros. The $12-\mathrm{dB}$ points should be at the extreme ends of the potentiometer travel.

Use. If your audio system has a preamplifier separate from the power amplifier, conneet the Frequency Equalizer between the two, obscrving the correct channel notations.

If you have an integrated receiver or any combination having a tape monitor switch, use the hookup shown in Fig. 4A. In this case, note that the tape monito switch on

Fig. 5, Wiring diagram (A) shows how to connect equalizer to integrated stereo system. Diagram (B) shows how to make hookup for a tape recorder.
the equalizer is in the "out" position; the receiver switeh in the "monitor" position. Use other controls nomally. The Equalizer provides a tape monitor feature with an additional pair of jacks at its output, to allow monitoring of the tape as before. For connections to a tape recorder, see Fig. 4B. The other connections are as shown in Fig. 4A.

With the system oprating, each slide potentioneter can be adjusted for the desired results, whieh, of course, are up to you. - $30-$

BUILDING A

Printing Exposure Lightmeter
 Measure Enlarger
 Light Intensity with Accuracy and Repeatability

Through the use of an LDR as one leg of a du-al-range bridge circuit, this lightmeter "trips" on or off a panel indicator lamp. Light level variations are readily detectable and the longterm repeatability of the circuit is excellent. The tripping action is selected by the operator and may be calibrated in foot candles.

FOR THE PHOTOGRAPHY enthusiast who does his own enlarging, an enlarger lightmeter is a must it le expects to work efficiently and cconomically. By standardizing his enlarger exposures, he can just about climinate paper waste.

Since enlarging paper requires much closer control than photographic film, an enlarger lightmeter should include a well-subdivided

"Getmore

 education orget out of electronics ...that's my advice."

Ask any man who really knows the electronics industry. Opportunities are few for men without advanced technical education. If you stay on that level, you'll never make much money. And you'll be among the first to go in a layoff.
But, if you supplement your experience with more education in electronics, you can become a specialist. You'll enjoy good income and excellent security. You won't have to wo rry about automation or advances in technology putting you out of a job.
How can you get the additional education you must have to protect your future-and the future of those who depend on you? Going back to school isn't easy for a man with a job and family obligations.

CREI Home Study Programs offer you a practical way to get more education without going back to school. You study at home, at your own pace, on your own schedule. And you study with the assurance that what you learn can be applied on the job immediately to make you worth more money to your employer.
You're eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. Mail postpaid card for your copy. If card is detached, use coupon below or write: CREI, Dept. 1210A, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.

[^4]APPROVED FOR TRAINING UNDER NEW G.I. BILL

Fig. 2. Actual size printed circuit etching guide is shown at right; while below is the component location and orientation diagram.

scale for high resolntion readont. It should also have precise resettability and repeatability. The meter described here has a low range from 0.01 to 1 footcandle over an eightinch seale, plus a 10 X multiplier to increase the range to 10 footcandles. Light-level variations just a few pereent above or below the set point of the calibrated dial (ause smap, action turn-on or turn-off of a panel lamp. A stabilized bridge cireuit affords long-term repeatability and 100:1 light coverage per range, while a nonlinear scale provides readability to several pereent at any setting.

Construction. The schematic of the enlarger lightmeter is shown in Fig. 1. The photoresistor (light dependent resistor) LDR1, is mounted in a thin plate-like package which is connected to the rest of the circuit by a long two-conductor cable as shown in the photos. Most of the electronic circuit is built on a printed circuit board, the foil pattern for which is shown in Fig. 2. This figure

also shows the component installation and the external comnections. Transistor sockets should be used to prevent themal damage to the semieonductors during soldering.

For the prototype a $41 / 2^{\prime \prime} \times 61 / 2^{\prime \prime} \times 2^{\prime \prime}$ metal case was used to provide ample room for the components with enough space for a large, easy-to-read seale. Almost any type of enclosure can be used, as long as sufficient pancl space is provided.

Mounted on the top panel are the calibration potentiometer $1: 10$, power switeh S1, range switch S^{2}, , indiator lamp $I 1$, and input jack $J 1$. The latter shonld be insulated from the metal casc. When all of these components have been assembled, monnt the power transformer $T 1$ on one wall of the case; and after soldering the regnired leads to the PC board, mount the bourl on four spacers. Comnect the circuit as shown in Fig. 1.

Using a piece of $1 / 4$ al $^{\prime \prime}$ thick transparent plastic, make up a cursor (or pointer) as shown in the photos to fit on the shaft of R10. Scrateln a hairline at the center of the cursor and fill it with black ink. The knob selected for use on li 10 should preferably have a large diameter for casy handing. Cement the eursor to the knob. Prepare the upper surface of the panel for the calibration marks and with the knob temporarily installed on 7210 , make sure that the cursor can swing from limit to limit of the potentiometer. Install four rubber fect on the base of the chassis.

Interconnecting wires from chassismounted components can be soldered to appropriate points on the circuit board through use of "flea" clips.

The photoresistor is placed either within a thin plastic case or sandwiched between two pieces of thin insulation board. A slot is made in one board to provide room for the connecting cable (which can be made from old earphone cabling). A hole in the other board permits light to reach LDR1. Some form of finger grip should be fabricated and attached to the upper board. Use small hardware to finish off the insulation board sandwich.

Calibration. With the cirenit wired as shown in Fig. 1., turn on the power. Remove Q1 from its socket and note that indicator lamp 11 comes on. If $I 1$ remains off, progressively decrease the value of 155 to keep SCR1

A simple plastic "sandwich" provides a convenient means of mounting light dependent resistor LDR1.

from turning on by itself. Re-insert $Q 1$ in its socket and with $S 2$ set to the X. 1 position, connect a 390,000 -ohm resistor in place of LDR1. Lamp 11 should go on and off as R10 is varied about its mid-position. If it does not, reverse the leads of either secondary or T1. If the problem still exists, progressively decrease the value of $R 4$ to increase the drive to SCR1. Remove the 390,000 -ohm resistor and note that 11 remains off at all settings of $R 10$. If it does not, slightly inerease the value of $R 7$. Set R11 to about 30 ohms. Then adjust to desired lamp brightness but do not exceed 2 volts across lamp.

A 0-100 dial plate can be used as a logging scale. However, it's well worth the effort to prepare a calibrated seale for maximum versatility of the meter. The calibrating procedure makes use of the inferse square law relating to light radiating from point sources. Illumination in foot-candles (FC) is equal to lamp candle power (CP) divided by the square of the distance in feet (D) from lamp to LDP location. Thus, $\mathrm{FC}=\mathrm{CP} / \mathrm{D}^{2}$.

For the light source, use a new \#51 panel lamp operated at 7.5 volts ate from a filament transformer. Use a powerstat on the primary side or a rheostat in series with the lamp on the sccondary side to adjust the lamp voltage. Momet the lamp rigidly, base down, and positioned so that it.s filament is broadside to the LDR, facing it squarely.

Tape the mounted LDR to a wooden L^{2} bracket and mount a black eard having a $1 / 2^{\prime \prime}$ lole several inches in front of the cell to block off most of the stray room light. Run tests at night in a large dark-walled room. At lamp-to-

THEORY OF CIRCUIT DESIGN

Photoresistor (light dependent resistor) $L D R I$ and selected range resistors $R 8$ and $R 9$ form two sides of a bridge energized by filtered dc. Resistors $R 6, R 7$, and $R 10$ make up the remaining arms of the bridge, cnergized by a dc square wave developed at zener diode $D I$. The square wave resets $Q 1$ to off at each cycle.

When the voltage at the anode of $Q 1$ exceeds the voltage at the anode-gate (AG) , Q1 turns on thus energizing the gate of $S C R I$. This turns the SCR on and simultaneously turns pilot lamp $/ 1$ off. Averaging filter R2-C2 bypasses moderately large ac components of light present in cold light sources and the comparatively small components from incandescent sources.

As the resistance of $L D R I$ takes on different values when exposed to different light levels, the turn-on (or trip point) of Ql occurs at different settings of potentiometer R10. Circuit action provides a snap action, rather than a gradual turn on, of 11 at the trip point. Resistors $R 3$ and $R 4$ determine the bridge loading and are proportional in values so that turnon and turn-off of QI occur with minimum lysteresis or deadband on R10.

L, DR distances of $3^{\prime \prime}, 6^{\prime \prime}, 9^{\prime \prime}, 1^{\prime}, 2^{\prime}$, etc. to 10^{\prime}, measure LDR resistance it ealeh point with an ace orate ohmmeter.

Next, using the inverse square law, calculate the illumination in footeandles-using 1.2 for the lamp's eandle power. (This value is 20% higher than the rated value to allow for higher radiation broadside to the lamp filament.) Plot cell resistance vs footeandles on 1×1 cyele logarithmic graph paper.

From the graph, read cell resistances at $0.01,0.02,0.03$, cte. footeandles. Using a potentiometer set to these resistance values substituted for $L D R 1$, locate division marks on the panel from 0.01 to 1 FC. If the 0.01 to 1.0
range docs not fit over the available range of P10, use a different value of resistor for lis to account for LDR variations. With resistors equivalent to 1 and 10 FC , use a different value of resistor for $R 9$ so that the high range tracks the low range with as little tracking error as possible. You may prepare a second, separate seale for the high range if desired. Scale numbers may be direct reading or they can be as shown on the prototype with X. 01 and X. 1 multipliers selceted by $S 2$.

Application. When measuring light levels of a projected image, adjust Ii10 CCW so that $I 1$ goos from off to on. Also, when adjusting light level through lens opening, decrease the aperture so that the lamp goes on at the trip point. This eliminates any stray light contribution from the panel lamp itself. All darkroom lights must be off during use of the meter.

Standardize the meter by making test runs with the various enlarging papers that you use. Make a perfect print by the usual cut-and-try procedure. Using the meter, measure and record the setting of 7110 when the lamp turns on at the lightest and darkest portions of the image, as well as at the important parts of the image. For negatives and paper of the same or similar contrast and with the same or different enlarger magnifieation, all you have to do is adjust the lens aperture to match the standardized settings and expose the print as before.

Since readings on the calibrated seale have a known relationship to cach other, you can double the standardized readings and ent the exposmre in half-and vice versa. Also, the highest and lowest realings provide an indieation of the contrast on a negative, which is an aid in selecting paper contrast. For cnlarging, yon may prefer to read the calibrated scale as 1 to 100 on the low range and 10 to 1000 on the high to avoid use of decimals. - $30-$

Circuit board mounts on U bracket with aid of four spacers, Potentiometer R11 then fastens entire assembly to front panel of case via its mounting bushing.

VHF-UHF

SPOT CHECKING IN THE 140.540 MHz SPECTRUM

A carefully machined quarter-wavelength line is substituted for a parallel-resonant LC tuned circuit in this grounded-gate FET oscillator. Mechanical calibration of the tuned line permits accurate frequency determinations between 140 and 540 MHz . The author describes a unique coupling and tuning system of interest to the experimenter.

THE "GRID-DIP" OSCILLATOR is n real godsend when it comes to checking radiofrecuency circuits. Its versatility in measuring the resonant frequency of a tuned cireuit, as
a signal injertor. and as an aid to determining the values of noknown capacitors and induetors, plus its low cost, make it an item found on many workhenches. Unfortunately, the usefulness of most inexpensive dip oscillators decreases rapidly at frequencies exceeding about 150 MHz
"Tle VIIF-UHF "،Train-dip" oscillator described in this article is designed to work at frequencies where most dip oscillators work poorly-if at all. It covers a continuous frequency range of 140 to 540 MHz . Tuning over this range is smootlı and even, with only one false dip in the entire covernge.

Fig. 1. Those components shown inside dashedline box are located in one chassis, while in another chassis are located those at right.

PARTS LIST
B1, B2-9-volt battery
Cl-3-pF ceramic capacitor
Il-Phono jack
LI-See text
MI-0-1-mA dc meter movement
Pl-Phono plug
QI-2N.3819 or HEP802 field-effect transistor
RI-1000-ohm, 1/4-watt resistor

> R2—1000-ohm potentiometer
> R.3- 10,000 -ohm potentiometer

> Sl-Dpst slide or toggle switch
> Misc.—3/" x 3/4" x 1/3" aluminum angle: $1^{\prime \prime \prime}$ outer-diameter brass tubing; 1/2" faucet washer; 1/4"-diameter shaft; control knoh; dial cord; 1/1'" aluminum stock; 0.018" galvanized steel or brass; 0.005" brass; 4-40 muchine screws; hookup wire; solder; etc.

The cirenit is extremely simple, and the absence of plug-in coils and a sensitivity control makes for casy operation. Most important, the drain-dip oscillator costs less than $\$ 10$ to build if an inexpensive imported or surplus meter movement is used.

Theory of Circuit Design. Ficld-effect transistor Q1 in Fig. 1 operates as a groundedgate oscillator. The variable-length drain lead, L1, acts as a quarter-wavelength tuned line which is equivalent to a parallel-resonant LC tuned circuit. Feedback of the proper phase to sustain oscillations is provided by capacitor C1, which is in series with the internal source-to-gate capacitance of $Q 1$. These capacitances form a voltage divider across resistor $R 1$, applying a source-to-gate voltage that is in phase with the drain voltage to bring about oscillation.

Drain current varies with the strength of the oscillations and is greatest when the oscillations are the strongest When the dip oscillator and the external cirenit are both tuned to the same resonant frequency, the external cirenit absorbs power from the dip oscillator. This reduces the feedback and canses a reduction, or "dip," in the drain current indication on meter $M 1$.

Cnique construction is responsible for the simplicity of the drain-dip oscillator. Tran-
sistor Q1, capacitor C1, and resistor 1 R1 mount on a small circuit board assembly to which contact "fingers" are comnectel. This eireuit board assembly is designed to move in chassis rails so that the fingers bear down on the rails and ground the sonree and gate cirenits of Q1. Drain voltage is supplied by a length of copper braid (L1) that forms the resonant drain cirenit.

When the eirenit board is moved in either direction against the chassis rails, the effective length of the braid is varicd by pulling it through an output coupling loop. The base of the loop is grounded for r-f by the mounting plate, which itself forms one plate of an r-f bypass capacitor. Plysical movement of the board is accomplished by a tuning "dial" mechanism that conncets the copper braid and a dial cord in a continuous loop around the tuning shaft pulley. The circuit board is joined to the top side of the loop, while the bottom of the loop passes freely under the circuit board assembly.
By turning the tuning knob, the circuit board moves along the chassis rails, varying the length-and, hence, the inductance-of the line between the drain lead of Q1 and the coupling loop. Since, in the process, the inductance of the line changes, the resonant frequency of the line and, therefore, the frequency of oscillations also change.

Parts Fabrication. Machining the parts that make up the drain-dip oscillator is fairly simple. It involves cutting, filing, drilling, and thread-tapping the metal members, plas fabricating a circuit board assembly and minimal wiring. Some careful fitting together of the mechanical assembly is necessary, but in most cases tolerances are not critical; the only criterion is that the parts fit together uniformly and do not interfere with each other. In any
event, any machining that might be necessary to get the parts to fit together will be simplified by the use of soft aluminum angle which can be casily cut and filed.

First, fabricate the four chassis rails from $1 / 8^{\prime \prime}$-thick aluminum angle that is $3 / 4^{\prime \prime}$ on the side. Dimensions and hole locations are given in Fig. 2. When cutting the angle, use a finetootI hacksaw and take care to prevent bending the pieces. Use a $4-40$ tap for the holes to

Fig. 2. Chassis rails (upper drawings) are made from $1 / 8$ "-thick by $3 / 4^{\prime \prime}$ on the leg aluminum angle; front and rear bottom plates from $1 / 16^{\prime \prime}$-thick aluminum stock. Drill all holes as indicated, but screw-tap only those specified.

Fig. 3. The mounting plate for the output coupling loop must be fashioned from $0.018^{\prime \prime}$. thick galvanized steel or brass shim stock.
be tapped as indicated. Then fabricate the front and rear bottom plates from $1 / 10^{\prime \prime}$-thick aluminum.

The most difficult part to fabricate is the output coupling loop. This must be formed from $1 / 8^{\prime \prime}$-inner-diameter brass tubing (available from most lohby shops or salvaged from an old and empty ballpoint pen ink cartridge). The tubing is too hard to be bent immediately.

It must first be annealed by heating it until red hot and allowing it to cool to room temperature naturally; do not immerse the hot tubing in water or oil.

When the tubing is cool to the touch, pinch one end closed with pliers and fill the tubing with fine sand (beach sand will do nicely). Pack the sand tightly, and pinch closed the open end of the tube. Then file or cut a $1 / 8^{\prime \prime}$ wide by $3 / 32^{\prime \prime}$-deep groove around a length of $3 / 4$ "-diameter wood dowel to make a bending form. Place the tubing in the groove and carefully bend it to shape. Work slowly to avoid sharp bends.

Referring to Fig. 3, trim the tubing to size, removing both crimps. Empty out the sand and remove any remaining grit with a pipe cleaner. Machine the output loop mounting plate from $0.018^{\prime \prime}$-thick brass or galvanized shect steel as slown. Then solder the tubing to the plate. Be careful to prevent the solder from flowing into the open end of the tube and, through capillary action, causing an obstruction. Let the assembly cool; then slip over the curved portion of the tube a length of plastic tubing.
The drawings given in Fig. 4 show all of the dimensions and assembly instructions for the circuit board assembly. The circuit board and its base should be made from $1 / 16^{\prime \prime}$-thick epoxyglass board, copper-clad on one side only. After etching and drilling the circuit board, mount the components on it as shown in the

Fig. 4. Complete details for fabricating circuit board assembly are shown in this series of drawings. The contact fingers are made from $0.005^{\text {"/ thick }}$ springy metal. Circuit board etching guide (directly above) is actual size.

Fig. 5. Two short lengths of aluminum angle serve as supports for dial shaft. Faucet washer is cemented to shaft and grooved to make pulley.
layout drawing. Then carefully set the board over the oblong area shown on the base (see perspective drawing), and solder the two together. Bolt a dial cord spring to the board with 4-40 hardware.

The contact "fingers" must be made from thin (about $0.005^{\prime \prime}$) brass, beryllium-copper, or other springy metal. A piece of bronze weatherstrip is a convenient source of material. Eight fingers in all are needed. Before bending them to shape, lightly dimple each about $1 / 8^{\prime \prime}$ from one end.

Once bent to shape, the fingers should be soldered to the four square corners of the base of the assembly, about $1 / 64^{\prime \prime}$ in from the side edges to prevent the sharp edges of the fingers from dragging along the aluminum rails.

The drive pulley for the tuning mechanism can be made from $1 / 2^{\prime \prime}$-diameter hard rubber or fiber fancet washer (sce Fig. 5). The actual dimensions of this washer will be about $3 / 4{ }^{\prime \prime}$ diameter by $1 / 8^{\prime \prime}$ thick. Carefully ream out the center hole of the washer to provide a snug fit when it is slipped over a $1 / 4^{\prime \prime}$ tuning shaft. Position the washer as shown, and bond it in place with epoxy cement. Allow the eement to cure for at least 24 hours. Meanwhile fabricate the shaft brackets from the same aluminum angle used for the chassis rails. Drill
mounting holes and tap them for 4-40 machine hardware.

When the cement has cured, chuck the short end of the tuning shaft into a drill. With the drill operating, gently apply pressure from a small file against the outer rim of the washer until you have a groove that is about $1 / 32^{\prime \prime}$ deep by $1 / 8^{\prime \prime}$ wide.
The tuned drain lead is simply a length of tinned copper braid measuring approximately $1 / 10^{\prime \prime}$ wide when stretched and flattened. The exact dimension is not critical, just so the braid passes freely through the output loop tubing.

Assembling the Project. Locate the front bottom plate, the output loop assembly, and both bottom rails. Determine which will be the mating surfaces between these pieces; then cover the top side of the front bottom plate and the underside of the rails with a single layer each of Scotel ${ }^{(1)}$ "Magic" tape. Lay the tape on evenly without overlapping the strips or leaving any exposed metal. An awl or other sharp instrument can be used to perforate the tape at the screw hole locations.

Now, set the bottom plate atop the output loop's base, properly oriented, and mark the outline of the notch in the bottom plate on the

With brass tubing soldered to mounting plate, slip piece of plastic tubing over looped section; solder piece of hookup wire with solder lug to mounting plate.

 40 machine screws throughout. Also, carefully note how dial cord/variable drain braid must be routed.

When properly put together, circuit board assembly should move freely in the chassis rails. Use just enough spring tension to prevent dial cord from slipping when you tune back and forth along the dial train.

Shown is correct sequence of assembling parts that make up dial tuning assembly. Flat metal washers are used to reduce friction and wear between pulley and support brackets and to prevent play between them.
loop phate. Solder one and of a $24^{\prime \prime}$ length of stranted hookup wire within the outline marked. Make sure that neither the wire nor the solder goes beyond the outline.

Referring to Fig. (i, assemble the lower half of the projert, making sure that the larger holes in the ont put loop asembly are centered over the smaller leokes in the rails and bettom plate. Use $4-40 \times$ 解" mathine serews. (Under one of these serews, finsten one end of another " $\underline{t}^{\prime \prime}$ length of hooknp, wire, using a different color ol insulation for casy illentification. Twist looth wires logether and solder the free embs to a phome plug.)

Now, hise an ohmmeter, set to the highest multiplier range, to check the insulation between the output loop assmbly and all other metal parts. Fon should obtain a realing of infinity, Any other reading indicates that the insulation between the output loop assemble and metal chassis is defertive and must be corrected immediately betore proreding.

Temporarity momet the fop rail: to the assembly with $4-40 \times 1 / 4$ marhine sierens. Test the circuit board assembly for lit inside the rails and proper movement in both diecections. If you are satisfied, disatsemble the top rails.
 the dial cord and variable-kengeth thain lead braid as shown. Apply just chough dial ipringe tension to insure that the dial cord does not slip when the tuning knob is furned. Ahan at this time, make sure that the copper braid enters the coupling loop sixurely; if it does not, (arefully aljust the demetry of the loop tubing until it does. linb a soft leal pencil over the copper braid to prowide lubrication, and apply small amounts of light grease to the chassis rails where the contart fingers ride. Then fasten only one of the top rails, in place.

Meter M1, batteries $B 1$ and 132 , and resistors lit and li3 can be assembled in any size
charsis bux that will conveniently acemmmodate them. Cireuit layout is not critical.

Tuning And Use. Sct li2 for minimun resistane and temporavily disconnect /B2. Close
 satale pointer deflection on .1/1. Now tonch the thued line near Q 2 wifl the tipo of your finger. If the onseilator is operating, fomeninge the line will wanse at drop in the meter enrenen indiea-
 courent shonld remain fairly sithle wer most of the foning ranes, sprabually balling of at the high-frequeney chel.

If yon experience tronble getting the osrillator to work properly thronghont its chtire runge, try changing the value of C1 slightly. (You might encounter a falsis dip) in the meter indication at one point in the tming range. If so, make a note of its location on the dial vail to avoid futneremfusion.)

Next, set 13 for maximm resistance and recomert 1/2. With sil elowed and the oseil-

CALIBRAEION CHART			
F (MHz)	L (in.)	F (MHz)	L. (in.)
140	175/6	320	719\%2
150	$16^{5 / 32}$	340	71/8
160	155/32	360	61/4
170	149/32	380	63/8
180	1315/32	400	61/16
190	123/4	420	525/32
200	121/8	440	51/2
220	111/32	460	$5{ }^{5} / 3$
240	103/2	480	51/16
260	$9^{1 / 1 / 3}$	500	$4^{27 / 32}$
280	$8^{21 / 32}$	520	421/32
300	$83 / 32$	540	$4^{15 / 32}$

For other frequencies use the formula:
$L($ in. $)=\frac{2422}{\mathbf{F}\left(\mathrm{MHz}^{2}\right)}$
lator set near the high end of its tuning range, touch a moistened fingertip between the drain comnection of Q1 and the chassis. Oscillations should immediately cease. Still tonching the drain lead, adjust R2 so that the meter indieates zero. Remove your finger and tune the oscillator for a maximum meter indication. Adjust R3 for full-scale pointer deflection. Repeat this procedure and readjust $R 2$ as necessary. Now the meter pointer will remain onscale at any frequeney setting and the meter pointer will swing between zero (no oseillations) to full-scale (strongest oscillations).

The oscillator can be calibrated easily and with reasonable aceuracy by using predetermined lengths of 300 -olim twin-lead TV antenna cable as quarter-wave resonant lines with known resonant frequencies. Cut the twin-lead first to $18^{\prime \prime}$ long. Strip away $1 / 4^{\prime \prime}$ of insulation from both conductors at one end, bend the stripped wires toward each other until they touch, and solder the wires together.

Now, starting with the longest length of twin-lead (lowest resonant frequency) indicated in the Calibration Chart, tume the draindip oseillator as follows: Loosely couple the drain-dip oscillator to the shorted end of the line and rotate the tuning knob on the oscillator chassis for a dip in the meter pointer deflection. The dip shonld be sharp and dis-
tinctive. Mark the dial rail with the frequency indicated in the Chart for the length of line used near the circuit board index.

Trim the twin-lead to the next longest dimension indicated in the Chart (trim from the open end of the line only), and repeat the tuning procedure. Continue trimming and truing for each frequency desired.

If possible, lay the twin-lead across the edges of an open cardboard box so that most of the line is in open air and well clear of metal surfaces. For greatest accuracy, the coupling between the twin-lead and output coupling loop of the drain-dip oscillator should be as loose as possible. The 140 - to $180-\mathrm{AHz}$ lengths of line will also give resonances at three times the marked frequeney, or at $3 / 4$-wave resonances. These harmonic resonances, however, can be casily distingolished from the primary resonances by their positions away from the low-frequency end of the oscillator's dial.

If posisible, the output loop should be conpled to the low-impedance or grounded end of the circuit to be measured. If the cirenit is inaccessible, link coupling can be used between the eireuit and the dip oscilator. But take care to avoid mistaking the link resonances with the resonances of the cirenits under test. - 30 -

In the photo above, the oscillator subassembly is shown in the stages of final assembly, while the underside view below shows part of the power cables that goes to the bridge circuit's chassis (lower right).

Expanded 〔cale Milliohmmeter
 MEASURING THE ALMOST UNMEASURABLE

This test instrument was developed to measure what most electronic experimenters are inclined to think of as inconsequential resistances. However, the less than 1 -ohm losses are important factors in detecting hi-fi ground loops, poor contacts in high amperage circuits, corrosion, etc. The circuit is a simple, easily balanced bridge. Provision is made in the instrument for long storage and battery protection.

CONVENTIONAL home and field-type SOM's are not designed to resolve aceurately resistance reatings between zero amd one olim. Fven the very best multimeters employ a logarithmie scale, with 10 ohms as an average center-seale reading when the range switch is in the times-one position. And you need a very sharpere, indeed, to differentiate between readings of, say, 0.27 and 0.05 olms on a multitap transformer.

Commercially arailable milliohmmeters are

Fig. 1. Resistor R8 provides optional but very useful internal testing facility for checking calibration; Sl is momentary-action switch.

PARTS LIST

Bl-Three 1.5 -volt AA cells connected in parallel
MI-0.I-mA, 50-ohn meter movement (Monarch No. PMC6S ar similar)
R1—25.nhm. 5.natl wire-wound potentiometer (Mallory No. VW 25 or similar)
R2,R6-l-ohm, 2-usu, 5% tolerance wircnount resistor
R3-lo-ohm, 2-uratt, 5 问 tolerance wirewound resistor
R4-2-ohm, 5-atut wirenound potentiometer (Mallory No. V $\|=2$ or similar)
R5—4-ohm, $1.5-$ watt. 5% tolerance mirewound resistor
R7-0.1-ohnt, 2-watt, 5% tolerance wircuound resistor
R8-0.47-whm, 2-watt, 5% tolerance wirewound resistor (optional, see text)
SI-íust pin-plunger momentary-action suitih (Robertshruc No. 1MDI-1/1)
S2-liue-position. non-shorting rotary sutch (Mallory No. 3215 J or similar)
Misc.-Five-uay binding post pair; banana plug pair; Keystone No. 17l three.AA-cell holder; control hnobs: chassis box; hoolithp wire; epory rement: soller: etc.
expensive insiruments, (osting \$175 ame more. However, with modern solid-stale equipment in which biasing resistors in the $0-1$-ohm range are common, a milliohmmeter is almost a must for measming sueh values. By climinating unnecessary ranges and maintaining aceuracy to within practical limits, it is possible to buidd a milliohmmeter for less than $\$ 18$.

The milliohmmeter deseribed in this artiele has two very useful ranges-0-1. ohm anl $0-0.1$ ohm. The seale is very nearly linear (it wonld take very expensive and claborate equipment to show that it is not), but is actually a timy portion of a logarithmir rume. expanded to cover the full swing of the meter pointer.

Theory of Circuit Design. As slownin Fig. 1 , the circuit of the milliohmmeter comsists of a resistive bridge, one side of which is made of of the test leads (and resistance being measiured). Closing S1 canses current to flow from 711 via 121 to the bridge.

With 62 in position 2 and the test leats; shorted together, \quad is is adjusted to ten times. the lead resistance balameing the $1: 10$ ratio of the Ri2-Tis side of the bridge. The meter will now indieate zero, regardless of the setting of $R 1$. If the test leads are discomnected, with S1 closed, the bridge will be hearily anbalaned in a direction such that current will
flow from $\mathrm{P}: 2$ throngh the meter to 18, swinging the meter pointer off-seale.

For colibration purposes, $\$ 2$ must be switched to lif for the 1 -ohm range or $R 7$ for the 0.1 -olm rangc. If $S 2$ is in position $3, R 7$ is placed in series with the test leads, umbalancing the briclge circuit and moving the meter pointer by an amount determined by ralibration potentiometer $l i 1$. Potentiometer $f 1$ is then adjusted to prodnce a full-seale pointer deflection.

Setting S2 to position 2 and placing a 0.1 -ohm resistor across the leads will also (ause a full-scale deflection of the meter pointer (assmming that the setting of $/: 1$ remains undisturbed). Henec, it is possible to (ampare the standard internal resistanes of lig and 1 lit with the valnes of resistance being measmed and obtain direct readings in olmes.

Resistor fis is nsed to smooth the operation of $1 \cdot:$ and help balance the bridge. An optional feature of the cirenit is $/: 8$ which proviles a nseful internal resistance for checking calibration.

Construction. Assembling the milliohmmeter should present no problems, since there is nothing eritical about the cirenit. As shown in Fig. 2, all components, exrept the battery bank and its holder, mount directly to the front pancl. T'o simplify mounting, a hard-

Fig. 2. The simplicity of the circuit allows all components to connect directly to the control and meter lugs.

The battery supply for the circuit is mounted in place with the aid of three AA-cell holders and machine hardware.
set epoxy cement bonding is used between the top of the honsing of switch $S 1$ and front panel and between the battery hokler bank and case. The meter movement, binding posts, function switch ($\$ 2$), aul potentioneters fasten in place with the hardware supplied.

Since there are only a few eomponents, wiring by the point-to-point method is easy. Note, however, that the bank of three batteries that make up $B 1$ must be comected in parallel with earch other. Also, when momeing the binding posts, make absolntely cortain that both are insulated from the frout panel.

Once the circuit is wired up as illustrated in Fig. 2, assemble the rase. Now, make your test leads. Probe-type leads are useless for the milliohmmeter. What are needed for the test cuds of the cables nre strong springloaded clips that will lock solidly onto the leads of the components muder test. This is neressary because in clealing with resistance measnrements in the fraction of an olm range, contact resistance becomes an important factor in accurate ealibration and test raadings.

It is not necessiny to use iny special type

On Sale October 20

FEATURING

What may become the most significant invention within the past few years is the light-emitting diode. Possible applications range from miniaturized readouts to color TV with paper-thin screens. Find out all about LED'sincluding details on a basic voice communications system using commonly available components.
Kickoff of a new series of digital test instruments that provide the experimenter with premium gear at modest prices. This first article describes a main frame and frequency counter. Subsequent issues will show construction of a time period readout, digital voltmeter, etc. All are plug-in modules.

- If two hi-fi speakers are better than one, does it follow that four are better than two or 16 an improvement over 8? Not so, says Dave Weems in his analysis, "The Numbers Game."
of test lead cable, nor are the lengths of the cables critical. The instrument is designed so that, in zero-adjust nulling and full-scale deflection calibration, the test leads become part of the bridge circuit and are "nulled out" regardless of their specific resistances. (It may seem strange that you have to consider test lead resistance, but the meter will easily demonstrate that if a mull is obtained using only one lead, the meter will indicate halfscale deflection with both leads-and after calibration will give the resistance in milliolims of the lead not used in the nulling procedure!)

How To Use. First, short together the alligator clips on the test leads. It is best to clip the leads together in the same manner as they would be elipped to the leads of the component under test. This will assure good contact resistance. If you merely hold together the clips with one hand, you will find adjustments difficult to make because of the varying pressure you exert on the clips. Especially noticeable on the 0.1 -ohm range will be the "jumpy" movement of the meter pointer.

Next, set $R 1$ to maximum resistance and $S 2$ to the test leads position. Depress S1 and adjust null control 14 for a zero meter reading. Then release $S 1$ and set $S 2$ to the desired range position. Again, depress $S 1$. Now, adjust the setting of calibration control $R 1$ for a full-scale pointer deflection.

Release 51 . Set $S 2$ to the test leads position. Your meter is now ready to measure resistance values in the range for which it was calibrated.

When storing the milliolmmeter away, set $S 2$ to the store position. This minimizes the chances of damage or off-scale readings should the PRESS-TO-TEST switeh be accidentally depressed. As with any type of electronic equipinent, batteries should be removed altogether for prolonged storage.

Aside from checking the values of less-than-one-olm resistors, the milliohmmeter is a handy item to have available for other tests. It can be used to check corrosion in automotive wiring comnections, a serious source of IR losses even if only a few milliohms of resistance is involved. Other uses include troubleshooting motors, gencrators, and starters, measuring the cold resistance of incandeseent light bulbs, winding bias and motor control resistors from hookup wirc, and checking for resistance in power distribution systems and ground cirenits. - $30-$

Second in a New Series by "The Reviewer"

UNLIKE SOME stereo equipment, the testing of communications receivers is a well-defined art. First you make sure that alignment is on the nose and that all controls (panel and otherwise) are operating according to the parameters set forth in the instruction manual. Next, you submit the receiver to a battery of laboratory tests: selectivity, sensitivity, agc characteristic and i-f image rejection. Last, but not least, you try out the receiver on the air using a variety of antennas. Then, hopefully, you write a sensible and useful report.

In today's language, a "communications receiver" is defined as a receiver that tunes the shortwave spectrum (preferably 2 to 30 MHz), has a fair degree of sensitivity and selectivity, bandspread tuning. S-metering, bfo, product detection, noise limiting or blanking, etc. Obviously, there are many receivers (ranging up to $\$ 4500$) that fit within the above definition, but sad to say, there are probably just as many (regardless of price) that fail to qualify-usually in more ways than one.

Heretofore, an SWL or ham knowledgeable about receivers could distinguish a true communications receiver on the basis of selling price, but within the past year the price parameter has collapsed. In June 1970 The Product Gallery reviewed the Heathkit Model GR-78 and although Heath calls it a General Coverage receiver, it is really a flexible, low-cost communications-style receiver. About the same time that review was being written, Knight-Kit (Allied Radio

Shack) was announcing a new SWL/ham receiver that it did advertise as a communications receiver-the under $\$ 100$ Model R-195.

The Knight-Kit R-195-This is a 5-band single conversion superhet tuning from about 200 to 420 kHz and 550 kHz to 30 MHz . The $\mathrm{P}-195$ is another of the new breed of receivers using i-f stages employing 455$\mathbf{k H z}$ ceramic filters. These filters replace l-f transformers and are fixed tuned, thus the i-f strip never needs adjustment or alignment. Three FET's are used in the R-195 front end; one in a grounded-gate r-f stage, a second FET in the mixer, and a third FET as a Hartley oscillator. Separate AM and CW/SSB detectors are used and there is a series-gate AM noise limiter, S-meter amplifier, agc rectifier, and a complementary configuration audio output stage. Although designed for 117 -volt ac operation, the $\mathrm{R}-195$ may be operated in an emergency from a 12 -volt dc battery (about ' + -ampere drain) through a special rear skirt connection.

Assembly of the R-195 is very simple. since the receiver is delivered to the buyer with three pre-wired printed circuit boards-an r-f board, an i-f board and an audio amplifier board. The builder wires in the power supply, bandswitching, front and rear panel controls and terminals and strings the dial cord. Only the latter is of any sort of major undertaking and is notable for trying your patience and improving

The Knight-Kit R-195 is a good looking receiver, although the photo shown here, supplied by the manufacturer, differs (in bandspread scale) from the model as received and assembled by your reviewer.

your swear-word vocabulary. From opening the shipping container to turn-on, you can expect to invest between 12 and 13 hours.

Laboratory Tests. Following the r-f alignment instructions detailed in the Construction Manual and then double-checking with test equipment, I found that the builder can obtain very good performance from the $\mathrm{R}-195$ without resorting to an r-f alignment generator. However, for purposes of comparison between the manufacturer's claims and my tests, the R-195 was aligned with laboratory test gear. The sensitivity results ($10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$) are shown at the right.

The AM sensitivity vs CW/SSB sensitivity suffers from inefficiency in the AM diode detector. At many points on the dial the AM detector is operating at a very low level and apparently departs from the linear portion of its detection (rectification) curve. Thus, efficiency is low and there is a deterioration

Clean symmetrical selectivity curve of the R-195 results from the use of ceramic filters in the i-f stages. Unfortunately, good selectivity cannot be used to maximum advantage due to poor bandspread.

R-195 SENSITIVITY TABLE

AM
AM CW/SSB

Band
(Measured) (Claimed) (Measured) (Microvolts for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$)

A: $200-420 \mathrm{kHz}$	3.0	2.0	0.55^{*}
B: $550-1800 \mathrm{kHz}$	1.4	1.5	0.3^{*}
C: $1.8 \cdot 4.8 \mathrm{MHz}$	1.25	1.5	0.28^{*}
D: $4.8-12.0 \mathrm{MHz}$	3.1	2.0	0.5^{*}
E: $11.0-30.0 \mathrm{MHz}$	4.4	1.8	1.0^{*}

*Equal to or better than manufacturer's claim.
in the AM sensitivity of weak signals.
Selectivity was measured at 3.0 kHz at 6 dB down, 10.0 kHz at 30 dB down and 24 kHz at 60 dB down. This compares with the claimed 2.5 kHz at 6 dB and 7.0 kHz at 30 $d B$. The S -meter readings varied from a low of $28 \mu \mathrm{~V}$ for S 9 at 1800 kHz to a high of $240 \mu \mathrm{~V}$ at 28.0 MHz . A 40 dB r-f input change ($10-1000 \mu \mathrm{~V}$) resulted in a $14-\mathrm{dB}$ a-f output change indicating that the agc characteristic was not too satisfactory. Overloading occurs at about $1000 \mu \mathrm{~V}$ and will produce "birdies" and intermodulation on the AM broadcast band.

Image rejection averages 25 dB on Band A, 40 dB on Band B, 28 dB on Band C, 22 dB on Band D, and 10 dB on Band E. On the latter band the average is distorted by the very poor rejection above 22 MHz where it drops to less than 6 dB .

On The Air-As the test figures indicate, the $\mathrm{R}-195$ is a sensitive receiver with reasonable selectivity, both qualities far better than the operator can use to advantage. Also on the good side of the ledger, the audio quality is excellent and more volume output is available than necessary. Frequency stability is surprisingly good for a $\$ 100$ receiver and the front panel controls are nicely situated and convenient. On the negative side, I found Band A ($200-420 \mathrm{kHz}$) useless in metropolitan New York due to the strong images from the AM broadcast band stations. Overall bandspreading is too tight for ease in separating stations and on Band E the antenna trimmer pulls the oscillator making the R-195 somewhat unstable on the 10meter band. Dial calibration and the S-meter are difficult or impossible to read under some lighting conditions in your SWL/ham shack.
As a summary of my findings, I am convinced that the R-195 is easy and foolproof to assemble and in a dollar conscious marketplace it is an obvious bargain. What the receiver lacks in refinements are compensated for by excellence in stability, sensitivity, and selectivity.

Considering the selectivity and excellent sensitivity of the R-195, the totally inadequate main tuning and bandspread arrangements are almost crim. inal. Only below 4 MHz does the operator have a chance of setting up cold on a desired frequency.

Not only is the recessed S-meter difficult to photograph, it's more difficult to see when operating the receiver. The main dial tuning scale suffers from parallax problems and, on higher frequencies, it is virtually impossible to set or reset the R-195 receiver to a desired known frequency.

The printed circuit boards (above) are supplied pre-soldered and partially pre-aligned. Builder makes the necessary interconnections, mounts the front and rear panel controls and terminals and then threads that $\#!^{*} \%$ dial cord through the hole.

MY PERSSONAL nomination for the least used, yet highly useful, piece of test equipment is the signal tracer. I don't think it's a matter of discrimination or thoughtlessness, it's just that most hobbyists and experimenters fail to see the value of assembling something for which they have no immediate requirement. Also, the signal tracer is not exotic is an oscilloscope or as "basic" as a VOM/VTVM, but for what the tracer lacks in glamour, it makes up in practical usefulness.

I have had some sort of signal tracer on my lab bench for the past 20 years. Its built-in audio amplifier has been used a hundred or more times and the r-f probe has repeatedly located "lost" signals in receivers ranging from the All-American 5 to the most complex and costly multi-tube communications type. Within the past six years, the tracer I've used has been the

Eico Model 147A-an oldie with four vacuum tubes including a 1629 "Magic Eye" and 6 X 4 rectifier.

The Eico Model 150 Signal TracerSome months ago Eico obligingly sent me a new 150 Signal Tracer Kit. It is similar to the old 147A except that everything is solid state and the magic eye has been replaced by "cat's eye" meter! Assembling the kit is not a major undertaking and working at my snail's pace I had the job completed in just under 4 hours.

There's nothing too tricky about assembly although a few wiring instructions were confusing. For example the "Red Dot" on the speaker (p. 8, step 6) was missing as were the 10 solder lugs (p. 9, step 1), but neither of these classifies as a calamity. Of course, the GED 29A6 transistor is now a 2N5355 which might confuse some builders
and there's no eyelet to bend over the shield (p. 17, step 6) -both a little startling. But Eico is getting back on the ball and the 150 worked perfectly at first turn-on.

For those interested, the 150 is basically a four-stage audio amplifier with a $400-$ mW output, medium gain audis amplification ($60-\mathrm{mV}$ drive to full output), high gain $r-f$ amplification ($1-\mathrm{mV}$ drive), very low internal a.c. hum level, meter and aural output, plus provisions to use the built-in speaker separately without the amplifier. The amplifier output can also be fed to a scope or VOM.

There isn't too much more I can say about the 150 . I like it better in some ways than the elderly 147 A , although strangely enough the first thing I missed was the calibrated wattmeter of the 147 A . But this would have been a difficult addition to the 150 circuit. I have used the 150 twice in the last few weeks, once to find how much r-f was leaking out of a supposedly shielded enclosure and then as a substitute amplifier to trace out some residual hum in an HQ215 receiver-I still haven't found the hum, but that's not the 150 's fault-it did the job it was expected to do.

Signal tracer is supplied with two probes-direct for audio tests and an isolated diode rectifier for r.f tests. We dislike fragile tips and tip jacks and plan to substitute sturdy double banana jack and plug at Audio Input on our Signal Tracer.

Two hundred microampere meter on new 150 is "different." Wired to collector of the audio output stage, the speaker had to be blasted to get reading halfway up scale. It looked like cat's eye.

Behind the panel of the 150 , wiring is very simple. Audio amplifier is assembled on a printed circuit board. Power transformer is at lower left.

ITHINK that I have an unhealthy dislike about reviewing stereo hi-fi equipment. I seem to be more consciously aware that so much about stereo is wholly subjective. You can make laboratory measurements to your heart's content and report your findings in very explicit language, but reading in a magazine about a stereo system will never actually tell you what it really sounds like. Such word pictures can be misleading-possibly not intentionally-but subject to literal misinterpretation, nevertheless. In The Product Gallery I have made a decision (with the concurrence of the publisher and the editor) that I will only review stereo equipment that is "different" and not "run-of-the-mill."

Although such a decision might seem to limit severely stereo product reviews, I have found that there are numerous unusual products that can be reviewed in Popular Electronics and which the readers will find of particular interest. Some of these new products involve atypical concepts, some brilliant engineering innovations, and others represent either extraordinary performance capabilities or noteworthy dollar values. I don't intend to compete with the numerous competent analyses in my sister publication Stereo Review with its strong emphasis toward the user and music lover. But, then, I don't expect Stereo Review to start talking about test equipment or communications receivers either.

Stereo enthusiasts need not be told that within the past few years there have been two concurrent equipment developments for use in the home--the "compact" system and the "surround sound" reproducers. The evolutions of both developments make interesting stories-some of winich appears in this issue on page 94. I think it is safe to say that the compact stereo system is here to stay and that it has brought matched-component stereo equipment into the hands of music listeners who might not otherwise feel that they had the resources or knowledge to assemble an individual component setup.

There is a tendency among stereo equipment manufacturers to combine the two above developments into the same package. The reasoning is valid, but the method as to how the combining should be accomplished and to what order of magnitude the listener should depend on surround (or reflected) sound is just coming out of its experimental stage. And, for more years than I care to recall, audio engineers have attempted somehow or other to make the hi-fi amplifier responsive to changes in the listening environment. Engineers have explained that a system should sound better if it could be made to compensate automatically for changes in room absorption, changes in the furniture arrangement, selective room reso-
nances, etc. To my knowledge and up until now, none of these sehemes ever worked in a fool-proof fashion. The "feedback" loop of information caused these systems to "hunt" or "cycle" in wild-eyed attempts to compensate for compensations.

The Electro-Voice Landmark 100. Recently I field-tested and Hirsch-Houck labo-ratory-tested a "different" compact stereo system that has apparently solved some part of the runaway feedback problem-the Electro-Voice Landmark 100. This compact system has introduced what it calls "ServoLinear Motional Feedback" which it applies to its "Acoust-Array Cube Speakers."
All of this impressive lingo means that E -V has developed a new solid-state circuit to monitor the speaker cones and to instantaneously compare its movement with the signal being passed out the amplifier. If these two do not match, the feedback circuit makes a minor correction that has the effect of reducing audible distortion (particularly below 300 Hz) and slightly adjusting the amplitude responsiveness of the speakers to the listening environment.
When you open the three $\mathrm{E}-\mathrm{V}$ shipping cartons containing a Landmark 100 you find a Garrard turntable/player mounted above an AM/FM/FM stereo receiver/amplifier combination in one carton. In the second carton are two relatively small speaker cubes (somewhat truncated on two edges) and in the third carton is a smoke-tinted plastic dust cover that snugly fits over the turntable/player.
Hooking up the Landmark 100 is a matter of plugging in the cables from the speaker cubes, attaching the FM dipole (if necessary), releasing the turntable hold-down bolts, and plugging in the ac power cable. In a matter of 10 minutes you are listening to stereo.
The most obvious physical "difference" in the Landmark 100 to distinguish it from other compact stereo systems are the two partially truncated "Acoust-Array" cube speakers. Each cube contains three miniature full-range speakers and one emphasizing tweeter (see photo). Each cube weighs over 10 lb and has full-range radiation from the front and from the two truncated planes. The user can position the cubes to literally aim. compress, or expand the stereo listening stage. I have no information on the division of power between the various speakers in each cube and there may not be any, but I can say that the idea of "aiming" appears to work in practice. The connecting cables between the amplifier and the cubes are 16^{\prime} long and this permits placing the cubes in seven or eight different configura-tions-one of which is undoubtedly suitable
to your particular listening requirements. The amplifier in the Landmark 100 is rated at 80 watts IHF music power, or 20 watts per channel continuous output with both channels being driven. There is no way to confirm or deny this fact in a laboratory test since the speakers are permanently wired into the amplifier circuit. Although in power output the Landmark 100 may not look impressive, let me say that it can be played loud enough (without apparent breakup or distortion) to drive just about any listener out of a very big room.

Laboratory tests on the FM tuner were a different matter and, happily, all of the tests met the manufacturer's specifications. The IHF usable sensitivity was $1.9 \mu \mathrm{~V}$, as rated, and the FM distortion was 0.53%
which the manufacturer had rated at 0.5%. The FM frequency response was very flat and is well within $\pm 0.5 \mathrm{~dB}$ from 30 Hz to $15,000 \mathrm{~Hz}$. Stereo separation in the FM tuner was better than the average to be expected in this price category and exceeded 35 dB from 500 Hz to 2500 Hz and was more than 20 dB from 30 Hz to $12,500 \mathrm{~Hz}$.

New Phono Cartridge. For what appears to be exclusive use in the Landmark 100, Electro-Voice has developed a new moving magnet cartridge, trademarked the "Stereo-V." In laboratory tests it was noted that the cartridge itself does not have particularly high compliance, but does have excellent tracking ability at middle and high
(Continued on page 116)

E-V Landmark 100 is a compact stereo system with 40 watts (IHF) per channel output into pair of unusual cube speakers. Motion of speaker cones is monitored to insure reduction of low end distortion through special feedback loop. Rear skirt (below) reveals simplicity of stereo setup connections.

Cube enclosure has 3 full-range speak-ers-one facing forward, two on the truncated surfaces. Tweeter is under fingertips. Panel controls are plain with FM carrier centering meter and automatic "Stereo" multiplex light. Earphone output jack is under thumb.

SHORTWAVE LISTENING

Broadcasters Change Frequencies - The majority of the international broadcasting stations shift to winter/summer frequencies and schedules on November 1. Broadcasters make four primary schedule changes each year (March, May, September, and November). In view of the now rapidly declining sunspot cycle, shortwave listeners may expect to hear more crowding on the lower frequencies-particularly 31,25 , and 19 meters. Many of the broadcasters have abandoned 11 meters and a drastic curtailment of broadcasting on 13 meters is expected in 1971.

Abstract

AMATEUR RADIO Planet Mars QSO-Visitors to the beadquarters of the American Radio Relay League, luc., Newington, Comn,, continue to be intrigued by one of the most unusual trophies offered to bam radio operators. It is the Elser-Mathes Cup that will commemorate the "First Amatert Radio Tuo-Way Communicutions Earth and Mars." Donated by Colonel Fred Elser, W6FB/W7OX and Li. Cmdr. Slanley Matbes, KlCY (dereased). the cup also honors Hiram Percy Maxim (founder of the ARRL), ubo had an intense interest in communicating witb Mars and Venus. When donated to the ARRL in 1929, the idea of bam radio rearbing even the moon ual considered impractical, but bam-style E-M-E (earth-moon-earth) reflected communications are now almost commonplace. Maybe the first man on Mars uill be a bam. If so, bis trophy is all ready and waiting for bim.

BROADCAST BAND

TV Antenna for DX'ing-If you have a selective receiver and would like to try your hand at BCB DX'ing don't put up a long-wire antennayou probably have a better antenna right at your fingertips. Don't laugh, but it's your outdoor TV antenna! Look at it this way: if you twist the two wires from the 300 -ohm twinlead together and connect them to your receiver ANT input, you have a top-loaded vertical-just like a BCB transmitter. Make sure that the receiver GND goes to a very good earthy ground because at the medium wavelengths that part of the antenna system is particularly important. (Submitted by Frank H. Tooker)

RESEARCH

A Reading from on High -Tbe FCC bas been requested by Readex Electronics, Inc. $t 0$ establish a ubolly new radio service called "Industrial Telemetry." Readex u'ants assignments in the $216-220-\mathrm{MHz}$ band for miniature lou'-pouer transmitters,

Cleveland Institute of Electronics WWATRIRANTITY

of success in obtaining a Government FCC License

The Cleveland Institute of Electronics hereby warrants that upon completion of the Electronics Technology, Bradcast Engineering, or First-Class FCC License course, you will be able to pass the FCC examination for a First Class Commercial Radio Telephone License (with Radar Endorsement);

OR upon completion of the Electronic Communications course you will be able to pass the FCC examination for a Second Class Commercial Radio Telephone License;

AND in the event that you are unable to pass the FCC test for the course you select, on the very first try, you will receive a FULL REFUND of all tuition payments.

This warranty is valid for the entire period of the completion time allowed for the course selected.

You can earn more money if you get an FCC License

... and here's our famous CIE warranty that you will get your license if you study with us at home

NOT SATISFIED with your present income? The most practical thing you can do about it is "bone up" on your electronics, pass the FCC exam, and get your Government license.
The demand for licensed men is enormous. Ten years ago there were about 100.000 licensed communications stations. including those for police and fire departments, airlines, the merchant marine, pipelines, telephone companies, taxicabs, railroads, trucking firms, delivery services, and so on.
Today there are over a million such stations on the air, and the number is growing constantly. And according to Federal law. no one is permitted to operate or service such equipment without a Commercial FCC License or without being under the direct supervision of a licensed operator.

This has resulted in a gold mine of new business for licensed service technicians. A typical mobile radio service contract pays an average of about $\$ 100$ a month. It's possible for one trained technician to maintain eight to ten such mobile systems. Some men cover as many as fifteen systems. each with perhaps a dozen units

Coming Impact of UHF

This demand for licensed operators and service technicians will be boosted again in the next 5 years by the mushrooming of UHF television. To the 500 or so VHF television stations now in operation, several times that many UHF stations may be added by the licensing of UHF channels and the sale of 10 million all-channel sets per year.

Opportunities in Plants

And there are other exciting opportunities in acrospace industries, electronics manufacturers, telephone companies, and plants operated by electronic automation. Inside industrial plants like these, it's the licensed technician who is always considered first for promotion and in-plant training programs. The reason is simple. Passing the Federal government's FCC exam and getting your license is widely accepted proof that you know the fundamentals of electronics.

So why doesn't everybody who "tinkers" with electronic components get an FCC License and start cleaning up?

The answer: it's not that simple. The government's licensing exam is tough. In fact, an average of two out of every three men who take the FCC exam fail.

There is one way, however, of being pretty certain that you will pass the FCC exam. And that is to take one of the FCC home study courses offered by the Cleveland Institute of Electronics.

CIE courses are so effective that better than 9 out of every 10 CIE-trained graduates who take the exam pass it. That's why we can afford to back our courses with the iron-clad Warranty shown on the facing page: you get your FCC License or your money back.

There's a reason for this remarkable record. From the beginning, CIE has specialized in electronics courses designed for home study. We have developed techniques that make learning at home easy, even if you've had trouble studying before.

In a Class by Yourself

Your CIE instructor gives his undivided personal attention to the lessons and questions you send in. It's like being the only student in his "class." He not only grades your work. he analyzes it. Even your correct answers can reveal misunderstandings he will help you clear up. And he mails back his corrections and comments the same day he receives your assignment. so you can read his notations while everything is still fresh in your mind.

It Really Works

Our files are crammed with success stories of men whose CIE training has gained them their FCC "tickets" and admission to a higher income bracket.

Mark Newland of Santa Maria, Calif., boosted his earnings by $\$ 120$ a month after getting his FCC License. He says: "Of 11 different correspondence courses l've taken, CIE's was the best prepared, most interesting, and easiest to understand."

Once he could show his FCC License, CIE graduate Calvin Smith of Salinas, California. landed the mobile phone job bed been after for over a year.

Mail Card for Two Free Books

Want to know more? The postpaid reply card bound-in here will bring you free copies of our school catalog describing opportunities in electronics, our teaching methods, and our courses, together with our special booklet. "How to Get a Commercial FCC License." If casd has been removed, just mail the coupon at right.

> 2 NEW CIE CAREER COURSES

1. BROADCAST (Radio and TV) ENGINEERING . . . now includes Video Systems, Monitors, FM Stereo Muttiplex, Color Trans. mitter Operation.
2. ELECTRONICS ENGINEERING...covers steady-state and transient network theory, solid state physics and circuitry, puise techniques, computer logic and mathematics through calculus. A college-level course for men already working in Electronics.

CIRCLE NO. 6 ON READER SERVICE PAGE

THESE CIE MEN PASSED THE FCC LICENSE EXAM... NOW THEY HAVE GOOD JOBS

Maft Stuczynski,
Senior Transmitter
Operator, Radlo
Station WBOE
"I give Cleveland In. stitute sredit for my First Class Commercial FCC License. Even though I had only six weeks of high school weeks of high school PROGRAMMED PROGRAMMED lessons make electronics theory and fundamentals easy. I now have a good job in studio operation, transmitting, proof of performance, equip ment servicing. Believe me, CIE lives up o its promises."

Chuck Hawkins, Chief Radio Technician, Division 12, Ohio Dept. of Highways
"My CIE Course en abled me to pass both the 2nd and 1st Class License Exams on my first attempt...I had no prior electronics train ing either. I'm now in charge of Division Communications. We service 119 mobile units and six base stations. It's an interest ing, challenging and rewarding job. And incidentally, I got it through CIE's Job Placement Service."

ENROLL UNDER NEW G.I. BILL: All CIE courses are available under the new G.l. Bill. If you served on active duty since January 31, 1955, OR are in service now check box on reply card for G.I. Bill information.

Cleveland Institute of Electronics
1776 E, 17th St., Cleveland, 0.44114
Please send me without cost or obligation: Your 44.page book "How To Succeed In Electronics ${ }^{\text {" }}$ describing the joh opportuni ties in Electronics today, and how your
Your book on "How to Get A commercial FCC License.:
I am especially interested in:

plus frequencies for a 5 -uatt command unit. The miniature transmitters would be installed by utility companies and comected 10 u'ater, electric and gas meters. Information on customer usage would be put in digital code and the miniature transmitters interrogated by a command unit in a bigb-flying plane! Readex says that an area of ten thousand square miles can be covered in one flight and the readings would be recorded on tape. Big Brother and 1984 are getting closer!

AMATEUR RADIO

Novice or Technician Exams - Would-be hams in the state of Washington may take their Novice or Teahnician class exams at one of the following locations: Amateur Radio Supply Co., 6213 13th Ave. South, Seattle; G\&C Electronics, 2502 Jefferson St., Tacoma; and HCJ Electronics, 8214 Sprague Ave., Spokane. R. E. Aspinwall, W7PV, says exams are year-round.

Due to lack of space, we omitted Keith Glover's picture from last month's interview with Richard Wood. Still looks good, though, so here it is now.

CITIZENS RADIO (CB)

Channel 11-Nou that the matter of chamel 9 (exclusively for emergency traffic) has been settled, REACT National Headquarters bas proposed voluntary nation-wide adoption of channel 11 for inter-licensee calling. Emphasizing that channel 9 bad originally been used for intra-station and inter-station calling, a new, wationally recognized "calling" frequency must be sought. REACT says that channel 11 appears to be an agreeable choice to most clubs, REACT teams, and CB magazines. POPULAR ELECTRONICS agrees also.

SHORTWAVE LISTENING

Clarification—Radio Nederland's Tom Meyer. bas corrected some misinformation that appeared in Hank Bemett's June 1970 SWL column. First, tape recordings to Radio Nederland for verification need not be ONLY $71 / 2 \mathrm{in} /$.s ; but may be any speed, any track arrangement, and even in cassettes. Also, Tom's show is not a listener's request program, although be is filing auray bis regular listeners' preferences (and birthdays). Musical requests are bandled by Jerry and Dody Cou'an's "His and Hers" on Tuesdays and "By Request" on Mondays and Fridays.

SHORTWAVE LISTENING

Jamming It Up-The Sino-Soviet communist block countries are gradually intensifying jamming of international shortwave broadcasts. Practically all broadcasts beamed to the Soviet Union and mainland China are being jammed. On August 1, a sweep across the 19 -meter band showed jamming on the following frequencies (practically a new high) : 15,105 ; 15,$115 ; 15,125 ; 15,130 ; 15,145 ; 15,170 ; 15,205 ; 15,215 ; 15,225 ;$ 15,$260 ; 15,280 ; 15,290 ; 15,300 ; 15,340 ; 15,370 ; 15,380 ; 15,390 ; 15,440$; and $15,445 \mathrm{MHz}$. Because of the splatter, this means that about 25 percent of the possible broadcasting frequencies are useless.

SHORTWAVE LISTENING

Chicom 1 -Space scientists are still perplexed by the telemetry from mainland China's $380-1 \mathrm{~b}$ satellite Chicom 1 . Some specialists claim that it wasn't telemetry at all-simply the tag end of a tape recording made to sound like something important. Thousands of SWL's heard Chicom 1 on 20.009 MHz during its short life-an indication that battery power was used in this $\overline{5}$-plus-watt transmitter. Tape recordings mailed by SWL's to Peking have not been acknowledgedaccording to the latest information-much less "verified." Experts are now partially convinced that the $20.009-\mathrm{MHz}$ frequency was chosen not out of respect for the ITU, but as a convenience since Peking monitors the Soviet Cosmos series on 19.995 and 20.005 MHz .

BROADCAST BAND

Mexican Stereo-Where there's a will, there's a way; and since AM broadcast-band listeners want stereo they can get it from XETRA, Tijuana, Mexico. Stereo enthusiasts are advised to get a second AM receiver and tune one receiver to the lower sideband of the $690-\mathrm{kHz}$ AM signal and the other receiver to the upper sideband. Reports from southern California about the quality and stereo effects are mixed, but at least it's there for the tuning. (Submitted by Larry Sharp)

CITIZENS RADIO (CB)

Unique Noise Silencer-Introduction of the "Noise Eliminator" Model CE-0-0. by Omegat Systems Inc., opens exciting new possibilities in mobile operation. Intended to supplement the built-in CB transceiver noise limiter, the Omega-t solid-state (18 transistors, l IC and 11 diodes) device enables 100% copy of weak signals even in the midst of a traffic jam. Besides eliminating noise, the unit also acts as an rof preselector. Basic operation (patent pending) is to take incoming signal and compare it with noise on a nearby frequency. It then makes pulses from the noise bursts and, when pulses exceed a preset level (adjustable by operator), shifts the received frequency, ubich effectively suitches off the preselector and quiets the transceiver. Only tbree connections are necessary to use the unit: antenna in, antenna out, and $12-\mathrm{volt}$ dc power.

SHORTWAVE LISTENING

They Can't Do That To Us-Canadian shortwave listeners, police and fire signal buffs, feel that their Department of Communications has "flipped." In an apparent, but ill-advised, effort to stop unrestricted listening to police radio signals, the DOC has issued a new ruling that requires an SWL to have a "Private Commercial Receiving" license in order to listen to anything above 138 MHz . And, to add insult to injury, the SWL must also have permission from the stations he wants to hear in order to be granted the special license. According to reports in the Canadian magazine Electron, Department of Communications inspectors are not paying a great deal of attention to this new rule.

RESEARCH

Death of a Radar Echo--Try, try again, scientists are working on a "different" approach to the absorption of UHF radar signals. Laboratory tests indicate that a ballistic missile with recessed resonant antennas beneath an aerodynamically true-but transparent skin-will absorb UHF energy. If enough is absorbed, the echo return can be weakened to a point where detection at great distances is impossible. Stumbling blocks to implementing this idea concern not only mechanics of preparing missile skin, but determining Sino-Soviet radar frequencies. (Continued on page 116)

Second in a Monthly Series by J. Gordon Holt

THERE IS SOMETHING about loudspeakers that brings out the "kook" in people. Rational human beings, who would never think of designing their own amplifier or phono pickup, somehow get the idea that they have found The Answer to the loudspeaker problem; and the less they know about what they're doing, the more convinced they are that they are on the right track.

Perhaps this is because loudspeakers are less amenable to "instant objective analysis" than other audio components, and have gained a reputation for being arcane, occult devices, the science of which is more of an art than a science. It is only a short step from the observation that "measurements don't tell the whole story" to the conclusion that "the sound is what counts." Thus, an ardent home experimenter, blissfully ignorant of the pertinent laws of physics but with strong convictions about how things should sound, hits upon an earth-shaking idea that is so simple, so beautifully basic, that it is a wonder nobody ever thought of it before.

Produce and Reproduce. The conviction that the method by which music is produced must perforce be the correct way to reproduce music has resulted in some of the worst-sounding and oddest-looking speakers that have ever been made. One such design, that "worked like a pipe organ," used a dozen or so tubes of different lengths, bundled around one another and coupled at one end to a small loudspeaker. The inventor claimed that the loudspeaker would excite the "pipes" into resonance, just like a "majestic cathedral pipe organ." Predictably, it resonated horribly at a dozen or so different frequencies.

Not all speaker-cum-musical-instrument designers are unsophisticated hobbyists, though. The inventor of one speaker-that-worked-like-a-violin was a respected audio engineer whose idea also went awry. This device, called the Bi-Phonic Coupler, used as its radiating surface a wooden panel of "specially selected woods," to produce the "warmth and richness of a fine violin." Like almost all designs that reproduce music "the way music is produced," it added its own

sonic characteristics to every soumd it reproduced, including the sound of a violin.
Fortunately for us listeners, most loudspeaker designers know what they're doing. Some have access to computers that can draw a frequency response curve from a given set of design parameters. But not even the best technology can avoid occasional goofs. In fact, the only way to ensure perpetual success in loudspeaker design is to play it safe. Build a nice, conventional papercone speaker and try, if you can, to forget about the mathematical analyses.

The paper-cone speaker has been the "standard" design for over 50 years, and nobody can deny that today's versions are a whale of a lot better than they were in 1920. On the other hand, nobody can deny that paper leaves much to be desired as speaker cone material.

If a loudspeaker diaphragm or cone is to reproduce a wide range of frequencies, it must embody two properties that happen to be mutually antagonistic: Large size and light weight. To reproduce bass, it must move a considerable volume of air in order to create the necessary long-wavelength air disturbances. You can do this by using a smallish radiating surface and driving the daylights out of it, or you can use a very large radiating area and just barely tickle it; but however you do it, you must move the entire radiating surface in order to move enough air. Since the diaphragm is pushing air, its whole surface encounters some resistance to motion, and because the driving element (usually a voice coil) is generally much smaller than the total diaphragm area, the diaphragm must be very rigid if the driven area is to carry the whole surface back and forth with it. And, almost inevitably, adequate rigidity usually means heavy weight.

On the other hand, high-frequency reproduction and the concomitant ability to start and stop rapidly on demand require that the diaphragm be free from inertia. And there, in a nutshell, is the Loudspeaker Problem.

Material's the Thing. A flat surface has minimal rigidity. Forming the flat surface into a conical shape increases the stiffness significantly without affecting the mass; but beyond that, the crucial factor becomes the material that is used. Certain kinds of paper can provide a good compromise between mass and stiffness, and can also have good internal damping characteristics to minimize resonances. But paper is always a compromise.

Experimental speaker diaphragms have been made from almost every conceivable material that looked as if it might have the right mass/stiffness ratio. Soft materials

The Ge-Go "Orthophase" speaker had a long folded ribbon fastened to rear of flat diaphragm with a grooved magnet assembly interleaved with ribbon.
have excellent self-damping properties, but lack the necessary stiffness. Hard materials like metals have excellent stiffness properties but little internal damping, so they tend to resonate so characteristically that it is often possible to tell from their sound the material used to make the diaphragm.

There were a couple of successful nonpaper designs. The IMF speaker, with a solid foam-plastic "plug" instead of a thin cone, and the Leak "'sandwich" speaker, with two metal skins and a cone of polystyrene sandwiched between two layers of damping material, sounded so much like good paper-cone speakers that they prompted some people to wonder if the Speaker Problem was not so much the paper as the cone itself.

One interesting non-cone design was the Kelly ribbon tweeter, an English product that was essentially a somewhat oversized version of a ribbon microphone, and functioned in exactly the same manner, only in reverse. Still in production (like the Leak sandwich), and popular among English hobbyists, the Kelly tweeter yields exceedingly smooth, extended highs but has limited pow-er-handling ability. An intense cymbal crash or a transient burst of system oscillation, and the ribbon can disappear in a flash.

Unlike previous designs, the ribbon transducing element in the Kelly tweeter is also its radiating surface, and this surface is driven by the magnet assembly, so stiffness is not a consideration, even had the design been intended for low-frequency reproduction. The idea of a uniformly driven transducer element offers a promising way of driving a very large radiating area without demanding too much of it in the way of rigidity.

In push-pull electrostatic speaker, the flexible plastic sheet is either attracted or repelled by the opposing charges on the wire grids. Design must be large for good bass reproduction, but it makes good tweeter.

In the French Ge-Go "Orthophase" speaker, a long, folded ribbon was fastened to the rear surface of a flat foam-plastic diaphragm, and the ribbon interleaved with a grooved magnet assembly. The principle was the same as the Kelly: a ribbon microphone in reverse, but this one could move plenty of air. It sounded very good, but was costly to manufacture and, in order to yield deep bass, it had to be larger and costlier than most people were prepared to accept for something that still didn't sound remarkably better than a good paper-cone speaker system.

Meanwhile, some other designers had given up on the magnetic transducer and were investigating some entirely new actuating forces for speakers. One promising idea that was first brought to commercial refinement by England's Peter Walker was to utilize the same force that causes a lady's Nylon underwear to cling tenaciously to anything it touches in dry weather-electrostatic force.

As its name implies, static electricity is a concentration of electrons that aren't going anywhere (usually because they are on a nonconducting surface). Although they aren't moving, their negative charge exerts an attraction on any nearby object that has less of a concentration of electrons; and this attraction tends to draw the two objects together. If both objects have their respective charges spread evenly over their surfaces, the force of attraction will be uniform over their entire surface areas, and if, by design, one object happens to be a flexible plastic sheet and the other a stationary grid of wires, the sheet will move toward the grid
like the theoretically perfect loudspeaker diaphragm.

The nice thing about this arrangement is that, since the moving surface is uniformly driven, it needs virtually no stiffness, which in turn means practically no resonances. And with stiffness out of the picture, the diaphragm can be extremely thin, for maximum transient response.

The electrostatic speaker was one of the

Corona-wind speaker has high-voltage charge on two elements to move air molecules between them.
non-paper designs that did sound markedly better than the cone type of speaker. The design is rather less costly than the Ge-Go to manufacture, but it still must be physically very large in order to reproduce deep bass. It makes an ideal tweeter, though.

Air is a Possibility. If an extremely lightweight diaphragm could reproduce sound so well, it seems reasonable to assume that no diaphragm at all would be better still. But without a diaphragm, how do we move air? Easy, use the air itself!

Some years ago, there were rumors of a fabulous loudspeaker design that could, literally, reproduce from dc $(0 \mathrm{~Hz})$ to the middle of the AM radio broadcast band. It was called the corona-wind loudspeaker, and it used the attraction between charged air

One air-pushing speaker that did get into production, though, is the so-called blueglow tweeter developed by the French Audax company and first manufactured in the U.S. under the name Ionovac. This produces sound in the same manner as a lightning bolt-through intense heating, and consequent expansion, of the air. A high-voltage supply creates a cont:nuous disc-shaped spark between two concentric electrodes. Audio impulses are stepped up and fed to the same electrodes, where they tend to cancel or reinforce the supply voltage, thus varying the intensity of the spark and hence the amount of heat it generates. As the spark is only about $1 / 8$ inch in diameter, and paper-thin, it can't move much air on its own, but with the assistance of a small horn in front of it, it functions rather efficiently

One of first omnidirectional speakers was the Hegeman lily cone tweeter aimed up at top of an open column cabinet with woofer in the bottom. The fragility of the cone was its downfall.

molecules to draw the air back and forth through a grid-like contraption that resembled two bed springs with Yogi-style spikes between them. When a high-voltage charge was placed across the spikes, air molecules between them would become ionized and would be drawn toward one or the other set of spikes, depending on the polarity at the moment. With dc applied, there would be a steady flow of air, and with no inertial elements involved (theoretically, anyway), there should be no limit to the speaker's upper-range response.

Some people who heard a prototype of the corona-wind speaker reported that it showed "promise," but wouldn't commit themselves further. Evidently, the promise was never kept, for it never got into production. Maybe the cost would have been prohibitive-like other flat-panel systems, the speaker would have had to be very large in order to plumb the lower-bass regions.
as a tweeter, with a virtually unlimited highend range and unusual freedom from peaks.

The Ionovac was subsequently made by DuKane Corporation and, more recently, by Electro-Voice, and is still popular with perfectionists as a range-extending tweeter, although its tendency to wear down electrodes and generate distressing amounts of ozone has discouraged its widespread use.

Before stereo, a home hi-fi loudspeaker's beaming tendencies were mainly of academic interest to designers If the highs collapsed off-axis, so what? The speaker just sounded a bit mellower. But along came the second channel, and suddenly speaker directionality was an important consideration. On-axis beaming causes poor center fill and limits the area in the room from which the listener can hear good stereo. The byword was 30 -degree sound, and there were some interesting variations on that theme, too.
(Continted on page 112)

Seventh in Monthly Seriet by David L. Heicerman

Those "Mysterious" Out-of-Town Jobs

One story after another in the periodicals tells of the shortage of electronics technicians and bou employers are screaming for belp. Ive completed an electronics teclonology course, gradnating with bigh scores, and bave a commercial FCC license. But, where are the guys who urote those articles: Where are the jobs: They are not in my area and the only places I know that bave any openings are New York and Los Augeles:-the last two places I'nz interested in living.

- Statistics from the U.S. Department of Labor show that there is an ever-increasing shortage of trained electronics technicians. Possibly, some of the articles that you have read misinterpret these statistics and ignore the hard realities that not every single electronics manufacturer in the nation is suffering from a shortage of help all the time. There are even whole areas of the United States that have shortages one or two months a year, and a surplus of technicians the remainder.
Your situation is aggravated by the fact that you live in a town with a population under 4000 people and in the state of Idaho, which is not particularly well-known for its electronics industry. I feel that anyone taking a home study course in electronics, or a recent home study graduate in electronics technology should face up to the fact that there are plenty of towns that have absolutely no need for electronics technicians.

It may be hindsight, but anyone enrolling in a home study program should always make sure that the school has a good job placement program for its graduates. The school should also provide some sort of free resume writing service. There should also be school counsellors to help graduates prepare resumes and to be able to direct those graduates to cities where employment op-
portunities exist at the moment of graduation. Without the help of a school placement service, you are on your own. Since, apparently, your school did not have a job placement service, it would be well to examine the three industries that are interested in electronics technicians. These are detailed in the Table.

Kind of Industry	Kind of Business	Technicians' Jobs
Manufacturing	Aerospace	Assembly lead man
	Communications	Quality control
	Computers	inspector
	Instrumentation	Test
	Components	Research and development
		Repair
	-	Customer representative
Communications	Commercial broadcasting	Radio engineer or monitor
	Private companies using radio equipment	Maintenance and troubleshooting
	Government agencies using radio equipment	
	Radio and TV Repair	
Research and Development	Universities	Electronic research
	Private research foundations	technician Instrument main-
	Government research facilities	tenance and repair

From this table, make a tentative decision as to the type of a job you would like. Don't be too narrow in your selection and always bear in mind that manufacturers
are looking for men with experience and you may find it necessary to lower your sights in order to gain that necessary experience for a better paying job.

Employers are not standing in dark doorways grabbing up every electronics technician that passes by. It is, however, true that some employers and manufacturers are "screaming for more help." The trick is to find those employers. There are about eight major areas in the country always looking for good electronics technicians-excluding New York City and Los Angeles. These areas are Boston, Denver, St. Louis, Baltimore/Washington, Chicago, and Houston/ Dallas/Fort Worth.

If you have the opportunity to visit any of these cities, your problem is practically solved. If not, try to obtain a complete edition of one of the major Sunday newspapers containing all of the classified employment advertisements. You will invariably find at least several dozen job openings in any of the cities mentioned above.

If you can't find the Sunday newspaper, try your local library and see if they by any chance have a few of the major city telephone directories-particularly the so-called "Yellow Pages." Select some promising looking companies and send a resume to those companies. Don't hesitate to saturate a particular area.

If you don't like the idea of moving into one of the above areas, there are still several tricks left. Find a smaller town that is the site of a major state university. Not all of the large state universities are in major cities. The University of Illinois, for example, has a lot of government-sponsored research work and is in the town of Cham-paign-with only a population of about 50,000 . Such colleges nearly always have openings for electronics technicians interested in working in various scientific projects.

For a complete listing of colleges and universities, consult the "World Almanac." And, for a listing of land grant colleges, write to the National Association of State Universities and Land Grant Colleges. Ask for their free "Fact Book." The address is: 1785 Massachusetts Ave., NW, Washington, DC 20036.

The last suggestion I can make is to attempt to find work through a competent and reputable employment agency. There is only one nation-wide employment agency that will handle clients not living in the major cities. This agency has about 400 offices and I would suggest that you write directly to the attention of: Mr. Howard Benner, International Headquarters, Snelling \& Snelling, 2 Industrial Boulevard, Paoli, Pennsylvania 19301.

Job Opportunities in Australia

I buve been told that the Australian Government pays the traveling costs for immigrants from the United States. Is this true? If so, what are the cbances of my getting a job there in electronics? I bave worked as an electronics techuician for three years, and I bave a diploma from a reputable bome study school.

- According to Mr. K. E. Scott of the Australian Embassy in New York City, the Australian Government welcomes immigrant settlers from the United States and Europe. The Government pays about $\$ 375$ (U.S. dollars) towards the fare for adults, and approximately $\$ 400$ for every child under 19 years of age. This so-called "passage subsidy" is paid after you arrive in Australia.

To leam something about up-to-the-minute employment opportunities for electronics technicians, we consulted Mr. P. H. Cook, Secretary of the Australian Department of Labour and National Services in Melbourne.
"The unemployment rate is only a little more than one per cent of the total workforce in Australia," Secretary Cook says. "In the professional, semi-professional, and skilled electrical fields (which includes electronics) the number of unfilled vacancies exceeds the number of job seekers."

Speaking of the places where electronics technicians and engineers work, the Secretary says, "In the more heavily populated eastern States of Australia there is a strong demand for experienced electronics engineers and technical personnel. In these States, the large firms, located mainly in Melbourne and Sydney, are engaged in the production of a variety of telecommunications equipment. instrumentation and control systems, electronic componentry and radio and television receivers."

The chances of an American immigrant getting a job with the Australian Government Departments are slim, ". . . because of the requirements that applicants for such employment be British subjects."
"Employment opportunities in the other States of Australia occur less frequently, with occasional vacancies arising for specialists in communications or control systems work, and there are good prospects for instrumentation engineers in those States in which major processing plants are located.

The commercial TV field is well-established and growing. Color TV is still a novelty, but the predicted popularity of color TV will open new positions for hundreds of skilled technicians and engineers.
(Continued on page 114)

One Hundred Seventy-Third in a Monthly Series by Lou Garner

AMONG the predictions for 1970 in our January column, we anticipated the development of a new solid-state memory system suitable either for a computer or, possibly, an "electronic" camera. Although, quite frankly, we considered this prophecy a little on the wild side, we can now thank Bell Telephone Laboratories (Murray Hill, N.J.) for turning our prediction into a reality.

At Bell Labs, Drs. Allen Meitzler, Juan Maldonado, and David Fraser have been working with solid-state devices which can store picture images until electronically erased or changed. Imagine a reusable 35mm slide on which an operator can electronically erase all or part of the image, add new material, and then project the new image on a standard screen.

Called "ferpics" (for ferroelectric picture) the new devices are based on the electrooptic properties of fine-grained lead zir-conate-lead titanate, a ferroelectric ceramic material first announced by the Sandia Corporation.

In its basic form, the ferpic is a sandwich structure consisting of transparent electrodes, a photoconductive film and a thin plate of ferroelectric ceramic. This basic sandwich is bonded to a transparent substrate which is then flexed so as to stretch or "strain" the material. Using this "strainbiasing" technique, Bell Labs scientists were successful in changing the stored information in the basic structure.

On a conventional photographic slide, the image is stored as variations in the transparency of the film. In a ferpic, on the other hand, the image is stored as a variation of the birefringence of the ceramic plate-that is, as a variation in the way the plate transmits polarized light.

In one mode of operation, a scanned laser beam records an image on the photoconductive film, one picture element at a time, much as a TV image is formed. A voltage applied to the transparent electrodes develops a field across the ceramic. When the field is removed, the image remains stored on the
ceramic plate. The resulting image can be viewed directly by putting light polarizing sheets over it or, if prefered, the image can be projected onto a conventional screen using polarized light.

To erase the image, the entire structure is flooded with light in the presence of a reversed electric field. Afterwards, the plate is ready to store another image.

At the present stage of development, Bell Lab scientists have demonstrated that ferpic devices can store and display, with good resolution, black-and-white images that have a relatively long lifetime before fading. Present ferpics are suitable for the display of written text or figures, since such applications, although exploiting the unique image storage capabilities of the device, do not place severe demands on the speed or lifetime of the ceramic material.

Further experiments are being carried out in the hope of obtaining efficient, low-cost

Bell Laboratories' Juan Maldonado adjusts focus of image from ferpic device on small viewing screen.

Same negative made original print at top and one from the ferpic storage device (directly above).
solid-state information displays with features that are difficult to obtain in present display systems. Since the stored image can be projected, very large displays may be obtained. In addition, ferpic slides can retain images for a long time without electrical power, in contrast to other electro-optical niemory systems.

Still considered laboratory devices, ferpics probably will not be available in commercial versions until at least mid or late 1971. But serious experimenters can look forwardone day-to the prospects of working with another new and exciting solid-state device.

Reader's Circuit. Sometime author and regular reader Luis Vicens (Box 1546 , Wheaton, Md. 20902) writ.es that the new
low-cost light-emitting diodes now being offered by Motorola, Hewlett Packard, and Monsanto can be used in a variety of interesting applications other than as simple replacements for conventional pilot lamp bulbs. He submitted the three basic experimental circuits illustrated in Fig. 1 as examples of how these intriguing little units can be used with other active semiconductor devices. All three circuits are suitable for breadboard tests, science fair demonstrations, or as sub-systems in complex equipment designs.

Useful in a visual metronome or as an attention-getting indicator for intrusion or process alarm systems, the blinker circuit

Fig. 1. Circuit (A) is relaxation oscillator blinker, (B) is dual blinker, and (C) is polarity reversal alarm, all using unusual light-emitting diodes.

new 19-piece midget reversible ratchet offset screwdriver set

3.3/4" heavy duty, stainless steel reversible 20 -tooth ratchet with short turning radius for close work.
Unique 6" spinner/extension has drive socket insert in handle for ratchet. Use also as regular screwdriver with bits.
$1 / 4^{\prime \prime}$ hex to $1 / 4^{\prime \prime}$ square adapter bit permits use of ratchet or spinner/extension with Xcelite Series 1000 or other $1 / 4^{\prime \prime}$ sq. drive sockets.
16 precision made, alloy steel bits with knurled spinner tops . . . 12 Allen hex type, 2 slotted screw bits, 2 Phillips bits.

FREE STICK-ON

 INITIALS personalize the sturdy plastic case and help prevent loss or mix-up.No. XL-70 Sot

Also 5-Piece Kit (No. XL-75)
Reversible ratchet with $3 / 16^{\prime \prime}$ and $1 / 4^{\prime \prime}$ slotted screw bits, \#1 and \#2 Phillips bits, all in a durable plastic, pocket size, snap fastener case.
nationwide availability through local distributors REQUEST BULLETIN N770

XCELITE INC. - 20 BANK ST., ORCHARD PARK N. Y. 14127 Send Bulletin N770 on Reversible Ratchet Offset Screwdriver Set.
name

address

city
state 8 zone
CIRCLENO. 28 ONREADER SERYICEPAGE
shown in Fig. 1A teams an LED with a programmable unijunction transistor (PUT), Q1, in a simple relaxation oscillator. In operation, C1 is charged by $B 1$ through $R 1$ until Q1's breakdown (or "firing") voltage is reached, as determined by voltage divider $R 2-R S$, at which time $Q 1$ switches to a conducting state, discharging $C 1$ through the LED and activating this device. The entire cycle is then repeated at a rate determined by the supply voltage, $R 2-R s$'s ration and R1-C1's time constant. The LED may be either a Motorola type MLED600 or Monsanto type MV50, and with the component values shown, the repetition rate is approximately 100 flashes/minute and the current drain about 0.5 mA . The flashing rate can be reduced by using a larger valued capacitor in place of $C 1$ and vice versa.

The alternating dual-blinker circuit given in Fig. 18 may be used alone as a simple demonstration or can be incorporated into such projects as electronic toys, games, and advertising displays. Transistors Q1 and Q2 are used as a conventional collector-coupled multivibrator, with their resistive collector loads replaced by LEDs. As in any multivibrator, the circuit's repetition (flashing) rate is determined by its R-C time constants.

Referring to the diagram, the LEDs are Motorola type MLED600 or Monsanto type MV50, with transistors Q1 and Q2 general purpose pnp types similar to RCA type 2N109.

In operation, the two LED's flash alternately about once per second with the specified component values. The flashing rate can be increased by using lower values for C1 and C2, decreased by using larger valued capacitors. Assuming a symmetrical circuit (matched components), the LED's will flash alternately for equal intervals. If the planned application requires unequal flashing periods, different value coupling capacitors (C1, C2) may be used. Typically, with C1 larger than $C 2, L E D 1$ remains lit for a longer period than LED2.

A combination dc polarity reversal alarm and protective circuit is shown in Fig. 1C. Suitable for use with mobile transmitters, receivers, p.a. systems and test instruments, the circuit will protect the equipment against catastrophic damage if the power source's dc polarity is reversed and, at the same time, will flash a warning signal for the operator. The circuit may be built in as an integral part of a new design or assembled as an outboard accessory for existing equipment.

In operation, rectifier diode D1 is forwardbiased when correct dc polarity is applied and, therefore, does not interfere with equipment performance. The LED is reversebiased, but at a very low voltage (i.e. D1's IR drop), and thus remains dark. If the
supply voltage polarity is reversed, whether accidentally during hook-up or as a result of external equipment failure, $D 1$ is reversebiased and, acting as a high resistance, prevents equipment damage. The LED, on the hand, is then forward-biased and activated, thus signalling the operator that there is a problem.

As in previous circuits, the LED is an MLED600 or MV50. Protection diode D1 can be any silicon rectifier capable of handling the equipment's load current and with a PIV rating at least twice the supply voltage. Resistor Rs is a half-watt or one-watt resistor, with its value determined by Ohm's law to limit the LED's voltage and current within the device's maximum ratings. Simply subtract the LED's maximum forward voltage from the source voitage and divide by the average operating current. With a $9-$ volt source, for example, a 200 - to $240-\mathrm{ohm}$ resistor may be used.
"TA-TA!" In the past, we've occasionally featured experimental circuits using RCA devices with a "TA" prefix in their type number. An example is the TA5371B IC featured in our June 1970 "Manufacturer's Circuit." The TA designation is used by RCA to identify development devices-those in pilot, but not yet full, production or those not yet assigned a commercial, JEDEC, or EIA type number. TA type devices are not stocked by distributors but, as a general rule, can be obtained on special order through franchised RCA semiconductor dealers or direct from the factory.

Often, due to publishing deadlines, a standard stock type number will be assigned by RCA before a device reference appears in print but too late for a change to be made in final copy. The TA5371B IC featured in our June column, for instance, is now available as a stock RCA device and is designated CA3062.

If you need a TA device for a special project, first check to see if it is available under a commercial stock number; if not. then the device can be obtained only on special order. A phone call to your local RCA component representative (check the Yellow Pages) or a letter to the factory will give you the information needed.

Manufacturer's Circuit. Although widely used and extremely popular for burglar alarm applications, the standard light-operated relay can be defeated quite easily by a clever thief. All that he needs is a flashlight to intercept the light beam and he can walk by as if on his way to a picnic. Using an invisible (infrared) beam helps some, but even this will not deter a determined and skilled intruder. One good solution to this problem

J SYDMUR
The Last Word in "CD" Ignition Systems

NEW heavy duty solid state "CD" ignition systems available. Take advantage of the latest technology . . . get the most out of your car'= engine.

- Increased mileage
- Greatly extended spark plug life
\rightarrow - East cold-weather starting
- Fewer tune ups

Wall built, conservatively rated components.
Every Sydmur part is pre-teated and guaranteed. The easy to install Sydmur is -ully adaptable; 6 or 12 volt systems, positive or negative ground.
Fly-away assembled
$\$ 60.00$ prepaid
Fly-away kit $\quad 44.50$ prepaid
Compac assembled $\$ 34.75$ plus $\$ 1.00$ handling
Compae kit 24.95 plus $\$ 1.00$ handling Or Build Your Own-Free Instructions!!
Power Transformer plus -detailed instructions SPC-4 (6 and 12 volt)
$\$ 14.95$
As described in June 1965 Popular Electronics (New York State residents add sales tax) Recommended by many of the world's leading auto. motive manufacturers. Send check or money order today.

For free literature and parts list write:
SYDMUR ELECTRONIC SPECIALTIES
1268 East 12th Street Brooklyn, NY 11230
CIRCLE NO. 26 ON READER SERYICE PAGE

popular ELECTRONICS SUBSCRIBER SERVICE

Please include an address label when writing about your subscription to help us serve you promptly. Write to: P.O. Box 1096, Flushing, N.Y. 11352 CHANGE OF ADDRESS: Please let us know you are moving at least four to six weeks in advance. Affix magazine address label in space to the right and print new address below. If you have a question about your subscription, attach ad. dress tabel to your letter. TO SUBSCRIBE: Check below. $\square 5$ yrs. s. 521 \square 3 yrs. $\$ 15$ Specify: \square Payment enclosed You get 1 extra issue per year as a BONUS! \square Bill me later.

print narne
oddress
city
state
zip
Add'l postage: \$1 per year outsick U. S., its possessions \& Canada

Thousands of hand tested parts in open stock. 24hour delivery on most items. Hard to find specialties? We have them! Order direct and save.

Springfield, N.J. 07081

SEMI-CONDUCTOR

 SUPPLY, INC.20 Commerce Street
is suggested by Motorola engineer John Bliss in his technical Applications of Phototransistors in Electro-optic Systems. John recommends the use of a modulated light beam coupled to a frequency-sensitive detector/amplifier. His complete paper, which includes a wealth of other information, is published by Motorola Semiconductor Products, Inc. (Box 20912, Phoenix, AZ 85036) as their Application Note No. AN-508. John's frequency-sensitive detector/amplifier circuit is illustrated in Fig. 2.

The modulated light beam is detected by phototransistor Q1, with the resulting signal applied through common-base amplifier Q Q to FET preamplifier Q3. The preamp's output signal is developed across a potentiometer which serves as the system's sensitivity control. From here, the signal is capacitance coupled to two cascaded band-pass IC amplifiers. A pair of parallel-T feedback networks establish frequency selectivity. The amplifier's output is coupled to a diode detector and applied as base bias to Darlington amplifier $Q 4$ which, operating in a saturated state, effectively shorts out the SCR's gate bias.

In operation, any interruption in the modulated light beam will result in a loss of Q4's base bias, shifting this device away from its saturated state and permitting a gate bias to be applied to the SCR. Triggered into operation, the SCR switches power to an alarm device, such as a bell, buzzer, siren, or floodlight. Once the alarm is actuated, it remains on even if the light beam is restored, until the system is reset by momentarily shorting the SCR by a spst anode-cathode switch.

The modulated light beam needed for system operation can be obtained by pulsing a LED, neon bulb, or low-power incandescent lamp. Such sources are adequate for short distances. If the installation requires a strong light beam for a long "throw," however, a pulsed laser or a high-intensity incandescent lamp modulated by a motor-driven rotary "chopper" can serve as the light source.

In practical installations, the frequencies of the two bridge-T networks are calculated by conventional techniques, making sure that they correspond to the frequency of the lightbeam transistor. Lenses would be used at both the light source and detector, with infrared filters provided to obtain an invisible light beam. Naturally, accurate optical alignment of the system is essential for optimum performance.

Roll (Design) Your Own! Old-time cowboys used to pride themselves on their ability to "roll their own" cigarettes with one hand. If you use Siliconix FET's in your projects, you'll now be able to outdo the legendary cowpokes and 'roll your own' circuit designs

Fig. 2. Motorola-designed intrusion alarm amplifier/control circuit employs modulated light (source not shown) to foil burglars; Q1, sensitive to frequency-modulated light, is detector.
with no hands, slide rules, computers, or other calculation gadgets.

Impossible? Not really-and you don't have to be a mental giant. Recognizing that design engineers are human and, as most people, inclined to avoid heavy mental effort, Siliconix, Inc. (2201 Laurelwood Road, Santa

Clara, CA 95024) is now including circuit design charts as part of their device data sheets. By using these new "full design" specification sheets, a hobbyist, experimenter, engineer or technician can develop circuit designs similar to the two-stage FET amplifier illustrated in Fig. 3 without tedious

If you can't come to the world's newest, largest and most exciting electronics department store, well mail the store to you!
 Exclusive!

ALLIED RADID 5HACK)

New! 1971 Allied Radio Shack Catalog 460 pages-thousands of electronic values!

Big Choice of Audio Items . . . Factory-Direct Savings! Allied TD-1099. 3-Head Stereo Tape Deck. Walnut-grain case. \$179.95
Realistic STA-120. Wideband AM, FET-FM Stereo Receiver. 140 Watts. with case. \$269.95

MAIL COUPON . . . or bring to Allied Radio Shack store.
ALLIED RADIO SHACK, 100 N . Western Avenue, 一- 613 Chicago, Illinois 60680
Yes ! I want your big new 1971 Calalog. I enclose $\$ 1$ for mailing and handling (refundable with my firsi purchase of $\$ 1$ or more).
NAME \qquad Middle
Last
ADDRESS \qquad Streetor Route and Box No.

CITY \qquad I enclose \square check \square money order \square cash.
I enclose \square check \square money order \square cash. STATE

New Heathkit ${ }^{\circ}$ Solid-State

Design and performance features add up to one-of-a-kind superiority.

Over five years were spent in research and development to achieve the notably superior performance, improved convenience features, and ease of service now embodied in the new GR-270 and GR-370. They are premium quality receivers in the truest sense, and, we believe, the finest color TV's on today's market. Here's why...

Compare these features:

- Modular plue.in circuit board construction.
- MOSFET VHF tuner and 3-stage IF.
- Adjustable video peakine.
- Sound instantly, picture in seconds.
- Built-in Automatic Fine Tunine.
- Pushbutton chansel adyance.
- Tilt-out convergence and secondary controls.
- Hi-fi sound outputs - for amplifier.
- Virtually total seli-service capability with built-in volt-ohm meter, dot generator, and comprehensive manual.
- Premium quality bonded-face etched glass picture tubes.
- Choice of $295^{\prime \prime}$ or $227^{\prime \prime}$ picture tube sizes.

Exclusive solid-state circuitry design...total of 45 transistors, 55 diodes, 2 silicon controlled rectifiers; 4 advanced Integrated Circuits containing another 46 transistors and 21 diodes; plus 2 tubes (picture and high voltage rectifier) combine to deliver performance and reliability unmatched by conventional tube sets.

Exclusive design solid-state VHF tuner uses an MOS Field Effect Transistor for greater sensitivity, lower noise, and lower cross-modulation ... gives you sharply superior color reception, especially under marginal conditions. Gold/ Niborium contacts give better electrical connections and longer wear. Memory fine tuning, standard. Solid-state UHF tuner uses hot-carrier diode design for increased sensitivity.

3-stage solid-state IF has higher gain for better overall picture quality. Emitter-follower output prevents spurious signal radiation, and the entire factory-aligned assembly is completely shielded to prevent external interference.

Automatic Fine Tuning - standard on both sets. Just push a button and the assembled and aligned AFT module tunes in perfect picture and sound automatically... eliminates manual fine-tuning. Automatic between-channel defeat switch prevents tuner from locking in on stray signals between channels. AFT can be disabled for manual tuning.
VHF power tuning...scan through all VHF and one preselected UHF channel at the push of a button.

Built-in automatic degaussing keeps colors pure. Manual degaussing coil can be left plugged into the chassis and turned on from the front panel ... especially useful for degaussing after the set is moved some distance.

Automatic chroma control eliminates color variations under different signal conditions.

Adjustable noise limiting and gated AGC keeps pulse-type interference to a minimum, maintains signal strength at constant level.

High resolution circuitry improves picture clarity and new adjustable video peaking lets you select the degree of sharpness and apparent resolution you desire.
"Instant-On". A push of the power switch on the front panel brings your new solid-state set to life in seconds. Picture tube filaments are kept heated for instant operation, and extended tube life. "Instant-On" circuit can be defeated for normal onoff operation.
Premium quality color picture tubes. Both the 227 sq . in. GR270 and 295 sq. in. GR- 370 use the new brighter bonded-face, etched glass picture tubes for crisper, sharper, more natural color. And the new RCA HiLite Matrix tube is a low cost option for the GR-370. See below.

Adjustable tone control lets you choose the sound you prefer ...from deep, rich bass to clean, pronounced highs.

Hi-fi output permits playing the audio from the set through your stereo or hi-fi for truly lifelike reproduction. Another Heath exclusive.

Designed to be owner serviced. The new Heath solid-state color TV's are the only sets on the market that can be serviced by the owner. You actually can diagnose, trouble-shoot and maintain your own set.
Built-in dot generator and tilt-out convergence panel let you do the periodic dynamic convergence adjustments required of all color TV's for peak performance. Virtually eliminate technician service calls.

Snap-out glass epoxy circuit boards with transistor sackets add strength and durability and permit fast, easy troubleshooting and transistor replacement. Makes each circuit a module.

Built-in Voit-Ohm Meter and comprehensive manual let you check circuits for proper operation and make necessary adjustments. The manual guides you every step in using this built-in capability. Absolutely no knowledge of electronics is required.

Easy, enjoyable assembly . . . the Heathkit way. The seven-section manual breaks every assembly down into simple step-bystep instructions. With Heath's famous fold-out pictorials and simpie, straightforward design of the sets themselves, anyone can successfully complete the assembly.
Heathkit Solid-State Medular Color TV represents a significant step into the future... with color receiver design and performance features unmatched by any commercially available set at any price! Compare the specifications. Then order yours today.
Kit GR-270, all parts including chassis, $227^{\prime \prime}$ picture tube, face mask, UHF \& VHF tuners, AFT \& $6 \times 9^{\prime \prime}$ speaker, 114 lbs . $\$ 489.95^{*}$ Kit GR-370, all parts including chassis, $295^{\prime \prime}$ picture tube, face mask, UHF \& VHF tuners, AFT \& $6 \times 9^{\prime \prime}$ speaker, 127 lbs. $\$ 559.95^{*}$ Kit GR-370MX, complete GR-370 with RCA matrix picture tube, 127 lbs.
. $\$ 569.95 *$
GR-270 AND GR.370 SPECIFICATIONS - PICTURE TUBE SIZE: GR-370 Approximate Viewing Area: 295 Sq . In. GR-270 Approximate Viewing Area: 227 Sq. In, DEFLECTON: Magnetic. 90 degrees. FOCUS: Electro-
static. CONVERGENCE: MaRnetic. ANTENNA INPUY IMPEDANCE: VHF static. CONVERGENCE: Magnetic. ANTENNA INPUT IMPEDANCE: VHF
300 ohm balanced or 75 ohm unbalanced. UMF: 300 ohm balanced. 300 ohm balanced or 75 ohm unbalanced. UHF: 300 ohm balanced. TUNING RANGE: VHF TV channels 2 through 13. UHF TV channels 14 through 83. PICTURE IF CARRIER: 45.75 MHZ. SOUNO IF CARRIER: A1.25 MHZ. COLOR IF SUBCARRIER: 42.17 MHZ SOUND IF FREQUENCY: 4.5 MHz . VIDEO IF BANDWIDTH: 3.58 MHz . HIFFI OUTPUT: Output impedance - 1 k ohm. Frequency response - $\pm 1 \mathrm{~dB} 30 \mathrm{~Hz}$ to 10 $\mathrm{kHz}_{\mathrm{V}}$ Harmonic distortion-less than 1% at 1 kHz . Output voltage0.3 V rms nominal. AUDIO OUTPUT: Output impedance - 4 ohm or 8 ontis AC, $60 \mathrm{~Hz}, 240$ watts. NET WEIGHT, GR. 370 , 114 Ibs: GR. 270,101 Ibs.

Modular Color Television!

Exclusive Modular Design... Circuit Boards snap in and out in seconds for easy assembly, simple servicing

Choose One Of These Handsome, Factory Assembled Cabinets

3 models in 295 sq. in.

Musi-Cube has revolutionized the idea of what a speaker should be. Four "switched on" color designs make them fun-even when they're quiet. And because Musi-Cubes measure just $73 / \mathrm{a}^{\prime \prime}$ on a side, you can put them almost anywhere. 50 to $16,000 \mathrm{~Hz}$ response and full 12 -watt music power rating produces a sound so big, you have to hear it to believe it. Write for free full color literature.

PROOUCTS COMRANY

 600 So. Sycamore, Genoa, III. 60135 CIRCLE NO. 1 ON READER SERVICE PAGEHey!
Hams, Engineers, Hobbyists MARK LIKE MAGIC

Any surface * * can be marked with DATAK'S DRY TRANSFER titles and symbols. The results are professional, it looks like the finest printing!

Write tor your FREE SAMPLE And Catalog. liating hundreds of letter sheets and aymbol aets.
Order trom your distributor or directly from:
 and numerals . . . $\$ 1.50$ Also avaitable $=9501$ professional title professional title
set for electronic set for etectronic
equipment ... $85.5 s$

85 Highland Ave. / Passaic, New Jersey 07055
CIRCLE NO. \& ON READER SERVICE PAGE
calculations. A portion of the design charts given for the 2N4338-41 series general purpose FET's is reproduced in the Table. This chart refers to the circuit given in Fig. 3. Note that supply voltages, current drains, component values, output voltages and even gain figures are specified.

$V_{D D} \quad R_{s} \quad R_{1} \quad R_{2} \quad C_{s} \quad l_{\text {DD }} \quad R_{D} e_{0} \max \quad A_{1}$ Q1 $30 \quad 18001 \mathrm{M} \quad \infty \quad 40 \mu \mathrm{~F} 0.42 \mathrm{~mA} 51 \mathrm{k} \quad 4.5 \mathrm{~V} \quad 40-50$ Q2 $30 \quad 91001 \mathrm{M} 13 \mathrm{M} 35 \mu \mathrm{~F} 0.32 \mathrm{~mA} 43 \mathrm{k} 5.0 \mathrm{~V}$ 40-43

Fig. 3. FET amplifier circuit was easily designed from information chart supplied with transistors.

Naturally, the Siliconix data sheets also include the customary information-maximum ratings, lead connections, electrical specifications, outline drawings, etc.

Brochures, Books \& Other Tid-bits. Solid-state design is dominant in the B \& K Professional Test Equipment described in Dynascan's latest catalog. Among the new semiconductor-operated instruments are a FET VOM, an RF signal generator, a sine square wave generator, a tube tester, and an improved television analyst with a solid-state sweep drive. The new 1970-71 2-color, 24page catalog, EK-71, is available on request from the Dynascan Corporation, 1801 W. Belle Plaine Ave., Chicago, IL 60613.

Edited by your columnist, GC Electronics' new Printed Circuit Handbook provides step-by-step illustrated instructions for producing professional quality etched circuit boards at home or in the small industrial or school laboratory. Photographic as well as direct application techniques are covered. For your copy, contact your local parts distributor or, for information, write to GC Electronics, 400 South Wyman St., Rockford, IL 61101.

Fairchild Semiconductor is now offering an 88-page, pocket-size catalog describing its complete line of linear integrated circuits. Measuring $31 / 2$ by 6 inches, the booklet pro-
vides key information and pin diagrams for 31 linear IC products, including operational amplifiers, dual op amps, ac amplifiers, comparators, communication devices, preamps, differential amplifiers, stereo multiplex decoders, chroma demodulators, and other specialized devices. Among the new products covered are advanced IC's designed for memory interface, analog-to-digital interface, communications systems, and consumer applications. The catalog also includes a cross reference for linear applications and products, a listing of application literature available from the manufacturer, an illustrated section showing package outlines and dimensions, and a fold-out section containing an operational amplifier selection guide for both military and commercial grade products. Copies of the Linear Integrated Circuit Condensed Catalog can be obtained by writing to Distribution Services, Fairchild Semiconductor, Box 880A, Mountain View, CA 94040.

Responding to a suggestion made by yours truly, Monsanto has issued a valuable applications booklet covering its LED's and other opto-electronic devices. Identified as ESP 40, Vol. 1, and entitled GaAsLite Tips, this 48 -page booklet costs $50 ¢$. Among the projects and circuits described are a constant brightness light source, a modulated IR beam control system, silicon PIN photodiode applications, and monolithic seven segment displays. For information, write to Monsanto Electronic Special Products, 10131 Bubb Road, Cupertino, CA 95014.

The TRW Semiconductor Division (14520 Aviation Blvd., Lawndale, CA 90260) has issued a new 10 -page brochure covering a series of hybrid power Darlingtons. Designated Applications Note No. 14, the paper is concerned with Class-B amplifiers, solenoid drivers, and switching or series regulators employing 10 -ampere, 50 -volt Darlington hybrid microcircuits in either dual or complementary configurations.
-Lou

OUT OF TUNE

"Build a RIAA/NAB Preamplifier" (August 1970). In the schematic on page 62 , the dot and notch for the IC are shown on the wrong end. The foil pattern is correct. And, with apologies to the author, his name is spelled Huffnagle.
"Build Dynamic Diode Tester" (July 1970). The value of $R 1$ in the Parts List on page 58 is incorrectly specified as 100 ohms. It should be 1000 ohms as shown in the schematic.

CIRCLE NO. 25 ON READER SERVICE PAGE

Fill in coupon for a FREE One Year Subseription to OLSON ELECTRONICS' Fantastic Value Packed Catalog - Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, CB, and other Values. Credit plan available.
NAME
ADDRESS
cITY \qquad state
GIVE ZIP CODE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

The "On-Channel" Crystals

now $Z / P_{\text {order chystals }}$

Your dealer has new, fast, direct-factory ZIP Order Purchase Certificates to enable you to get CRYSTEK CB. Monitor Amateur. and Mars freq. Crystals mailed direct to you promptly. Ask about them.

CRYSTEK formerly Texas Crystals Div. of Whitehall Electronics Corp.

1000 Crystal Drive
4117 W. Jefferson Blvd. Fort :Myers. Florida 33901 Los Angeles, California 90016 CIRCLE NO. 7 ON READER SERVICE PAGE

COOPERATE WITH

THE ZIP CODE PROGRAM

OF THE POST OFFICE DEPARTMENT. USE ZIP CODE

IN ALL ADDRESSES

STEREO SCENE
 (Continued from page 97)

Omnidirectionality. One of the first truly omnidirectional hi-fi speakers was the brainchild of Stu Hegeman, an audio inventor of enviable reputation. This system had an upturned woofer in a rectangular shaped enclosure (standing on end) with a "cage" of grille cloth at the top. Looking inside the cage, directly above the woofer, you could see a cute looking tweeter shaped like a lily and made from what appeared to be stiff paper. (The prototypes were actually handmade of ledger paper and the fine blue rules could be seen.) The bottom end of the lily was attached to a voice coil on the tweeter assembly. The lily design proved to be a very excellent high-frequency radiator and the early prototypes of this Hegeman design sounded superb, embodying a sense of depth and openness that put practically every other loudspeaker available at that time to shame. Hegeman sold the manufacturing rights of his system to Eico and it might have been a commercial success were it not for the fact that the speaker system was too fragile for interstate truck or rail shipment.

There were, and still are, other 360-degree speakers of varying quality, but one (happily discontinued) design probably established a record for disorganized thinking. Advertised as a " 360 -degree speaker," this little gem contained the usual upturned woofer, but instead of an omnidirectional tweeter, it had a small cone tweeter aimed horizontally that was rotated by a little electric motor like a lighthouse beacon! However, once per revolution, the rear of the tweeter was actually aimed at the listener and the woofer/tweeter phasing was reversed twice for each revolution, causing an in-out modulation that was quite upsetting to the listener. If this wasn't bad enough, the remainder of the system left the midrange fairly muddled and not one of the consumer hi-fi magazines did more than mention this system in a cursory fashion. The fact that the rotating tweeter went over like the proverbial lead balloon with the buying public is a tribute to their perspicacity.

On the other hand, the popular hi-fi press has had some nice things to say about the Bose 901 speaker system, the first of a new spate of "omnidirectional" designs. This system is based on the idea that what makes 360 -degree speakers sound so spacious is the reflection of the rear radiated sound from the wall behind the system, rather than just the freedom from on-axis beaming.

The designer, Dr. Bose, is a professor of
acoustics at M.I.T. and a very capable and knowledgeable audio enthusiast. He claims that much of the music reaching the listener in a concert hall consists of reflections arriving from the walls, which is of course true.

After an extended analysis of this effect, Dr. Bose concluded that a speaker system for the home should radiate about 89% of its sound from the rear of the enclosure for reflection from the surrounding walls. This expands the stereo stage and produces (in the home) a concert-hall type of listening environment.

Personally, I happen to be on the side of those who say that the speaker system should do no more than accurately reproduce full-fidelity sound. Whether you should attempt to create conditions in your home similar to a concert hall is to me quite debatable. Certainly there can be no disagreement that concert-hall reflections produce the ambience information creating the feeling that the original sounds were made in a very large "room." I feel that this ambience information should be reproduced "as is" in the home and that this should mean adding as little as possible of the listening room's "ambience" to the reproduced sound.

Those who have listened to a properly installed Bose 901 system cannot fail to be impressed by the startling sense of spaciousness it provides. The system works as claimed; however, unless it is very carefully installed, listeners begin to notice that almost every sound across the stereo stage seems to be stretched from left to right. Mono material is strung out between the speakers-a not unpleasant illusion for mono, but a contradiction and an ill omen for stereo reproduction.

You can achieve the spaciousness claimed for the Bose 901 through very careful placement of the speakers. The phase relationship between sounds emanating from the rear speakers, reflected off the walls and reinforced by the sound from the front-facing speakers appears to be quite critical.

Proper speaker placement of ordinary front-radiatıng systems is more critical than most listeners realize. The Bose 901 certainly expands the stereo stage, but it seems to be that, although the answer to achieving optimum stereo reproduction in the home may be closer at hand, it is still subject to critical elements that not every listener has the knowledge and provisions to overcome.
$-30-$

MORE "BUG-SHOO"

I constructed your July project by Lyman Greenlee and clipped it to my belt strap. Potentiometer $R 3$ was adjusted until I could no longer hear the squeal. Now, while sitting in an outdoor patio, I am the only person not getting eaten alive by mosquitoes.
M. Waldman

Philadelphia, Pa.

BETTER TV RECEPTION

George Monser's article on TV twinlead "transformers" gave far better results than anticipated. I live about 80 miles from channels 2, 4, and 5; and the improved matching between antenna and receiver cut down about 80% of the snow.
D. Hasting

Hemingway, S.C.

SUGGESTIONS

In line with your new editorial outlook, how about projects on a magnetometer, balanced induction metal locator, AM BCB direction finder, and full-fiedged lie detector that records heart beats, etc?
J. Wegner, Jr.

Glendale, Calif.

> WITH THE ACTION SONARCOM LOW BAND (LF) FM TRANSCEIVER

Available in 2 frequency ranges $32.5-41-42.50 \mathrm{MHz}$ 1 pair of crystals, 1
set of standard bat.
teries less tone

- Other models available for VHF \& UHF with and without tone

WEGETTHRU-WHEREOTHERSFALL

 INDOORS-OUTDOORS-IN STEEL BUILDINGS Better performance and more features than much higher priced units : Engineered with spaze age techniques and military type components for high reliability, superior performance and long life • Full frequency range for all public safety, industrial and land transportation services - Provides instant voice contact with base szations, mobile units and other portable trans. ceivers * compatible with all NHF narrowband systems • 1.6 watt outputFCC TYPE ACCEPTED and D. O. C. APPROVED
SONAR RADIO CORP., 73 Wortman Ave., Brooklyn, N.Y. 11207
Please send information or the SONARCOM.
Dept. 207
Firm Nam
Address
City \qquad Title Phone. Zip

SEND COUPON FOR FREE CATALOG TO: DYNASCAN CORPORATION 1803 WEST BELLE PLAINE AVENUE CHICAGO, ILLINOIS 60613
I Name

| OCCUPATION
1 ADDRESS \qquad
| CITY
 STATE
\qquad ZIP

CIRCLE NO. 10 ON READER SERVICE PAGE

THREE NEW CB MOBILE ANIENNAS
With 500 Watt Coil
NOW AT POPULAR PRICES, Each model loaded with a SOLID-STATE high " a° " coil field tested to take up to 500 watts. Maximum legal power is assured Mosley innovated guying device, introduced in this series, keeps antenna upright at top highway speeds. model 500 . . . With 500 watt solid-state high "Q" coil
model 5008. . . With 500 wall solid-state coil, and capacity adapters model 500 C . . . With 500 walt solid-slate coil, capacity adapter and breakover (hinge) fealure
For details see your Mosley dealer or write Factory direct, Dept 200.

OPPORTUNITY AWARENESS

(Continued from page 99)

Concerning other branches of modern electronics, the Secretary states, "There is also a demand for highly skilled men to install and maintain computer hardware, although Australian manufacture in this field is at present concerned mainly with software. The development of fully electronic telephone exchanges and the extension of Subscriber Trunk Dialing services throughout Australia have meant great expansion in the field of integrated circuitry. In addition, the Australian Government actively encourages the local manufacture of microelectronic devices to meet both defense requirements, and the needs of the Post Office and Civil Aviation."

OPPORTUNITIES IN AUSTRALIA
Immigration information (Eastern USA)
Australian Consulate General
636 Fifth Ave.
New York, N.Y. 10020
Immigration information (Western USA)
Australian Consulate General
1 Post St.
Crocker Plaza
San Francisco, CA 94104
Employment information
Dept. of Labour and National Service
P.O. Box 2817AA

Melbourne, Victoria 300]
Australia
Information concerning application for professional engineering status or higher education
Institution of Radio and Electronics Engineers

Science House

157 Gloucester St.
Sydney, Australia
Electronics and electrical engineers from the U.S. can apply for professional engineering status, and any technician or engineer can further his education in the excellent Australian schools. According to Secretary Cook, "Professional recognition as an engineer in Australia depends upon acceptability to the Institution of Engineers, Australia. Some employers stipulate that applicants for positions in the engineering field must have qualifications for graduate membership in the Institution."

Salaries for electronics technicians and engineers are from 3500 to 8000 U.S. dollars a year. Although these figures are low by American standards, the cost of living in Australia is somewhat lower, too.

popular

f:HIRONIBS READER SERVICE PAGE

free information service:

Here's an easy and convenient way for you to get additional information about products advertised or mentioned editorially (if it has a "Reader Service Number') in this issue. Just follow the directions below. . and the material will be sent to you promptly and free of charge.

> 1.On coupon below, circle the number(s) that corresponds to the key number(s) af the bottom or next to the advertisement or editorial mention that is of interest to you. (Key numbers for advertised products also appear in the Advertisers' Index.) Print or type your name and address on the lines indicated.

2.Cut out the coupon and mail it to: POPULAR ELECTRONICS, - P.O. Box 8391, Philadelphia, PA 19101.

O If you want to write to the editors of POPULAR ELECTRONICS about an article on any subject that does not have a key number, write to POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. Inquiries concerning circulation and subscriptions should be sent to POPULAR ELECTRONICS, P.O. Box 1096, Flushing, N.Y. 11352.

POPULAR ELECTRONICS
 P.O. BOX 8391
 PHILADELPHIA, PA. 19101

$$
\begin{array}{rrrrrrrrrrrrrrrrrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 \\
41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57 & 58 & 59 & 60 \\
61 & 62 & 63 & 64 & 65 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
81 & 82 & 83 & 84 & 85 & 86 & 87 & 88 & 89 & 90 & 91 & 92 & 93 & 94 & 95 & 96 & 97 & 98 & 99 & 100
\end{array}
$$

NAME (Print clearly)
ADDRESS
CITY \qquad STATE \qquad ZIP CODE \qquad

COMMUNICATIONS
(Continued from page 93)

SHORTWAVE LISTENING

Speech Scramblers--Next year we can celebrate the 70th anniversary of first attempts at electronic speech scrambling-Alexander Graham Bell tried it, but the results were unimpressive. Local and state police are increasingly concerned over the influx of VHF/UHF monitoring receivers and speech scrambling is being installed in an average of three police communications systems per month. The E. F. Johnson Co. has demonstrated a hand-held VHF transceiver with 6 possible modes of scrambling. It will sell for about $\$ 1000$ per unit-not considered too high for the extra security. Scrambling can be speech inversion, band splitting, frequency modulation, analog, or time division. Band splitting was used during World War II for supposedly secure messages between Roosevelt and Churchill, but the Nazis managed to unscramble it.

CITIZENS RADIO (CB)

Canadians Get CB Reciprocity-In a sudden unexpected move, the FCC on July 24, granted CB reciprocal operating privileges to all Canadians coming into the U.S. with bona fide GRS licenses. CB'ers from the States have been able to operate in Canada for several years and a reciprocal arrangement had been advocated by numerous CB organizations. Canadians must request permission using FCC Form 410 (New Form 410-B after November 1) and should understand the FCC Part 95 CB Rules and Regulations. While in the States, Canadians use their "XM" callsigns followed by a geographical identification (city and state).

PRODUCT GALLERY
(Continued from page 86)

frequencies. A frequency response curve run on the cartridge alone (tracking at just under 3 grams) showed a response of ± 1 dB from 40 Hz out to $20,000 \mathrm{~Hz}$. The chan-nel-to-channel separation was better than 20 dB below $12,000 \mathrm{~Hz}$ and was still 10 dB at $18,000 \mathrm{~Hz}$.

Speaker response tests were made to con-firm-through the tone burst method-that the system had excellent response at all frequencies. Hirsch-Houck Laboratory subjectively reported land this reviewer subsequently confirmed) that the Landmark 100 has very solid and healthy-sounding bass in the $50-60 \mathrm{~Hz}$ region and that the audio output is smooth and free of peaking out beyond the limit of normal hearing (say, $15,000 \mathrm{~Hz}$).

As compact stereo systems go, the Landmark 100 is certainly one of the more unusual designs and one of the better sounding systems that we have heard. Due to the lack of "on-axis" beaming from the small speakers that are usually supplied with compact systems, the Landmark 100 appears to give the listener the ideal mix between direct and reflected sounds and judging from the response below 300 Hz the "Servo-Linear" feedback system can really perform in almost any listening environment.

One thing that I do dislike about the Landmark 100 is the absence of FM interstation hiss suppression or squelch. Just why this has been eliminated is a mystery and I hope that the next manufacturing run has this additional minor circuit.
I apologize for not getting to the Avanti "Astro-Plane" CB antenna in this column. I sometimes think I write too much. - $30-$

LIBRARY

(Continued from page 16)
the text, and practical mathematical analyses are used to explain operation and design detail.
Published by TAB Books, Blue Ridge Summit, PA 17214. Hard cover. 352 pages. \$14.95.

DICTIONARY OF ELECTRONICS AND NEUCLEONICS

by Hughes, Stephens \& Brown
Since electronics and neucleonics are in many cases interrelated, a common dictionary of definitions is a useful reference book, indeed. In addition to the dictionary text of some 9000 definitions, this book contains a conmprehensive list of abbreviations, acronyms, and symbols. The appendices provide fuller statements of some of the fundamental theories of the increasingly complex fields of atomic and nuclear physics, as well as numerous useful and relevant tables of data on a wide range of topics.

Published by Barnes \& Noble, Inc.. 105 Fifth Ave., New York, NY 10003. Haral cover. 4:43 pages. $\$ 14.50$.

TECHNICAL CALCULUS

by H.R. Stillwell \& D.H. Price
Written to meet the calculus requirements of students of engineering technology in technical institutes, junior colleges, etc, this book requires a working knowledge of trigonometry, college algebra, and logarithms. However, for the reader who may have been away from these subjects for some time, there is a brief review. The text material is elementary, with the subject matter grouped into basic categories, each of which is complete in itself. This is an excellent self-study textbook, but no answer key is provided for the review questions.

Published bu Holt, Rinehart and Winston, Inc., 383 Madison Ave., New York, NY 10017. Soft cover. 251 pages. $\$ 3.95$.

ACTIVE NETWORK THEORY

by S.5. Haykin
This book presents, in a unified manner, the fundamentals of active network theory so that the student can understand fully the circuit properties of semiconductor devices and vacuum tubes and be able to deal effectively with circuit devices yet to come. Written at a level suitable for use by senior undergraduate and graduate electrical engineering students, physical explanation and meaningful examples have been included to elucidate the results obtained. Each chapter ends with a list of problems and references.

Published by Addison-Wesley Publishing Co., Inc., Reading, MA 01867. Hard coter. 556 puges. $\$ 16.50$.

Build this pipelike Schoher Recital Organ
 for only " ${ }^{\text {s }} 1850$!
*Includes finished walnut console. (Onily $\$ 1446$ if you build your own console.) Amplifier, speaker system, optional accessories extra.
You couldn't touch an organ like this in a store for less than $\$ 4,000$-and there never has been an electronic instrument with this vast variety of genuine pipe-organ voices that you can add to and change any time you Jike! If you've dreamed of the sound of a large pipe organ in your own home, if you're looking for an organ for your, church, you'll be more thrilled and happy with a Schober Recital Organ than you could possibly imagine - kit or no kit.
You can learn to play it - and a full-size, full-facil. ity instrument is easier to learn on than any cut-down "home" model. And you can build it, from Schober Kits, world famous for ease of assembly without the slightest knowledge of elecłronics or music, for design and parts quality from the ground up, andabove all-for the highesi praise from musicians everywhere.
Send right now for the full-color Schober catalog, containing specifications of all five Schober Organ mode!s, beginning at $\$ 499.50$. No charge, no obliga. tion. If you like mbsic, you owe yourself a Schober Organ!

The CCheleo Organ Corp., Dept. PE. 35
43 West 61st Street, New York, N.Y. 10023
\square Please send me Schober Organ Catalog and free 7-inch "sample" record.
\square Enclosed please find $\$ 1.00$ for 12 -inch L.P. record of Schober Organ music.

NAME
ADDRESS
CITY \qquad STATE \qquad ZIP \qquad CIRCLE NO. 23 ON READER SERVICE PAGE

V.L.I. Lraining leads to tuceess as tecinicians, field engl. neers, speclallsto in communications, guided missiles. com. puters, rantar, automation. Baule \& adytaced courses, Elec. ironle Enyinecrln Technolozy and Electronic Technology curricula both avallable. Assomate derree In 29 months, B.S.
nhtalinble. G.I. approved. Start September, Februig: ohtainable G.I ifapproved. Stiart September, February,
valparaiso technical institute
DEPARTMENT PE, VALPARAISO. INDIANA 46383

\$12.95 BLACK DIAL TELEPHONES

Complete
add $\$ 2.00$ for color Factory rebuils Western Electric in white, beige, ivory, pink, green or blue. If 4 prong plug is required add $\$ 2.00$. Fully guaranteed. Designs may vary.
Write for free list. All shipments F.O.B.
SURPLUS SAVING CENTER
DEPT. PE-70, WAYMART. PENNA. 18472

ELECTRONICS MARKET PLACE

COMMERCIAL RATE: For firms or individuals offering commercial products or services. $\$ 1.25$ per word (including name and address). Minimum order $\$ 12.50$. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency dis. count: 5% for 6 months; 10% for 12 months paid in advance. READER RATE: For individuals with a personal item to buy or sell. 80 c per word (including name and address). No Minimum! Payment must accompany copy.

GENERAL INFORMATION: First word in all ads set in bold caps at ne extra charge. All copy subject to publisher's approval. Closing Date: lst of the 2 nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to: Hal Cymes. POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016.

FOR SALE

FREE! Giant bargain catalog on transistors, diodes, rectifiers, $S^{\prime} C R^{\prime} s$, zeners, parts. Poly Paks, P.O. Box 942, Lynnfield, Mass. 09140. GOVERNMENT Surplus Receivers, Transmitters, Snooperscopes, Radios, Parts, Picture Catalog 25\%. Meshna, Nahant, Mass. 01908. ROCKETS: Ideal for miniature transmitter tests. New illustrated catalog. 25\%. Single and multistage kits, cones, engines, launchers, trackers, rocket aerial cameras, technical information. Fast service. Estes Industries, Dept. 18.K, Penrose, Colorado 81240.
LOWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 3174 8th Ave. S.W., Largo, Fla. 33540.
EUROPEAN and Japanese bargains catalogs. $\$ 1$ each. Dee, $10639 E$ Riverside, North Hollywood, Calif. 91602.
WE SELL CONSTRUCTION PLANS. TELEPHONE: Answering Machine, Speakerphone, Carphone, Phonevision, Legal Connector, Auto Dialer, Central Dial System. TELEVISION: $\$ 35.00$ Color Converter, Tape Recorder, 3DTV. \$25.00 Camera. DETECTIVE: Infinity Transmitter, Tail Transmitter, Police Radar Detector. HOBBYIST: Electron Microscope, 96 Hour Tape Music System, Ultrasonic Dishwasher, Radar-Oven, Electronic Tranquilizer. Plans $\$ 4.95$ each. COURSES: Tefephone Engineering $\$ 39.50$, Detective Electronics $\$ 22.50$, Anti-Detective Electronics \$27.50. NEW SUPER HOBBY CATALOG AIRMAILED $\$ 1.00$. Don Britton Enterprises, 6200 Wilshire Bivd., Los Angeles, Calif. 90048 .
WEBBER LAB's. Police \& Fire Converters. Catalog 25\%. 72 Cottage Street, Lynn, Mass. 01905.
INVESTIGATORS, LATEST ELECTRONICS AIDS. FREE LITERATURE. CLIFTON, 11500-L NW 7th AVE., MIAMI, FLORIDA 33168.
LINEAR AMPLIFIERS: "Hawk-25 watts output-\$59.95; "Hornet" -50 watts-\$98.50; ''Raider'"-100 watts- $\$ 139.95$; '"Maverick250" -250 watts $-\$ 244.95$; AM/SSB. "Scorpion'' 50 watt 12 volt mobile-\$99.95; "Bandit II" 100 watt mobile- $\$ 169.95 .20-35$ megacycles. (iliegal Class D 11 Meters.) Dealer inquiries invited. D \& A Manufacturing Co., 1217 Avenue C, Scottsbluff, Nebraska 69361. ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large cata. $\log \$ 1.00$ deposit. BIGELOW ELECTRONJCS, Bluffton, Ohio 45817.
RADIO-T.V. Tubes-33; each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.
ULIRA.SENSIIIVE AND POWERFUL METAL DETECTORS-join the many who are finding buried coins, minerals, relics and artifacts. Don't buy till you see our FREE catalog of new models. Write Jetco, Box $132 \cdot \mathrm{PE}$, Huntsville, Texas 77340.
LASER parts catalog 60\%. Moynihan, 107 North Brighton, Atlantic City, New Jersey 08401.
PSYCHEDELIC catalog. Posters, lighting, etc. Send 50\& for handling to Hole in The Wall, 6055PE Lankershim, North Hollywood, Calif. 91606.

THE ART OF DE-BUGGING-\$5.95. TRON-X PUBLICATIONS, P.O. B0X 38155, HOLLYWOOD, CALIFORNIA 90038.
CONSTRUCTION PLANS: LASER $+\$ 2.00$. Listening Devicestwo F.M. Mike Transmitters ... \$1.00. Tail Transmitter . . . \$1.00. Sound Telescope . . . $\$ 2.00$. Infinity Transmitter . . . $\$ 2.00$. Equipment and kits available. Howard, 20174 Ward, Detroit, Mich. igan 48235.
CLEARANCE SALE rectifiers, transistors, 1000's other items. Catalog 154. General Sales Company, 254 Main, Clute, Texas 77531.

SEMICONOUCTORS and parts catalogue free over 100 pages. J. \& J. Electronics, Box 1437. Winnipeg, Manitoba, Canada. U.S. Trade directed.

SLOW FLASHING TURNLIGHTS ARE DANGEROUS. WINKER-KIT DOUBLES FLASHING RATE. $\$ 3.00$ FOR ALL CARS. GUARANTEED. ACE, 11500 N.W. 7TH AVENUE, MIAMI, FLORIDA 33168.
SENCORE, BEK TEST EQUIPMENT UNBELIEVABLE PRICES. FREE CATALOG AND PRICE SHEEI. FORDHAM RAOIO, 265 EASI 149IH STREET, BRONX, N.Y. 10451.
AMATEUR SCIENIISTS, Electronics Hobbyists, Experimenters, Students . . . Construction Plans-all complete, including drawings, schematics, parts lists with prices and sources . . . Radar-Build your own ultrasonic doppler radar. Detect motion of people, automobiles, even falling rain drops. Transistorized, uses 9 volt transistor battery- $\$ 4.50$. . . Long-Range "Sound Telescope" -This amazing device can enable you to hear conversations, birds and animals, other sounds hundreds of feet away. Very directional. Transistorized. Uses 9V battery- $\$ 3.70 \ldots$ Robot Man-Moves hands and arms- $\$ 3.50$

Or send 25 coin (no stamps) for complete catalog. Other items include Psychedelic strobes, light shows, lasers . . . 46 different projects. Technical Writers Group, Box 5994, State College Station, Raleigh, N.C. 27607.
MECHANICAL, ELECTRONIC devices catalog 10\&. Greatest ValuesLowest Prices. Fertik's, 5249 " D ", Philadelphia, Pa. 19120.
MUSIC LOVERS, CONTINUOUS, UNINTERRUPTED BACKGROUND MUSIC FROM YOUR FM RADIO, USING NEW INEXPENSIVE ADAPT. OR. FREE LITERATURE. ELECTRONICS, $11500-\mathrm{Z}$ NW 7th AVE., MIAMI, FLORIDA 33168.
SPACE-AGE TY CAMERA XIT! Terrific for Experimenters, Industry, Education. Solid-state. Only $\$ 116.95$! Starter kits: $\$ 18.95$ up. Plans 25\& up. Catalog FREE. Phone: 402-987-3771. Write: ATV RESEARCH, 1301 Broadway, Dakota City, Nebr. 68731.
CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illus. trated plans, $\$ 2.00$. Relco-A33, Box 10563, Houston, Texas 77018. BURGLAR ALARM SYSTEMS and accessories. Controls, bells, sirens, hardware, etc. OMNI-GUARD radar intruder detection system, kit form or assembled. Write for free catalog. Microtech Associates, Inc., Box 10147, St. Petersburg, Florida 33733.
PRINTED CIRCUITS. Magazine projects and experimental. Free listing. Vico, Box 1590, Los Angeles, Calif. 90053.
ELENCO LR-6 Bi-Lateral linear amplifier 150 watts output, variable receive boost, $\$ 149.95$. (Illegal for Class D CB use.) Elenco, Dept. A, Wa bash, Ind. 46992.
ELECTRONIC COMPONENTS-Distributor prices, Free catalog. Box 2581. El Cajon, California 92021.

PRINTED CIRCUITS for projects, Popular Electronics or others. Send page or black-white drawing of circuit pattern, 25 g square inch. Min $\$ 1.75$ board. Send remittance: General Printed Circuits, Box 4013, Downey, California 90241.
CIRCUIT BOARDS: Complete Job Shop Operation. Jetca, Inc., Box 418, Monon, Indiana 47959.
ANTIGRAVITY, EXPERIMENT AND THEORY; rushed-\$1.00. U.S. Inquiries. Intertech-7A2, Box 5373, Station-F, Ottawa, Canada. SWL'S, Ham's, CB'ers-Rotary QSL File CB-8. MB Sales, 1917 Lowell, Chicago, Illinois 60639.
RAOIO CHASSIS'S NEW. Postpaid with SCHEMATIC. AM/FM 10 TRANSISTOR $\$ 5.20$ each. AM 6 Transistor $\$ 2.65$ each. Information 15\%. Union Supply; Box 32; Niles, Illinois 60648.
50 NEW PRECISION RESISTORS $1 / 8 w-1 w 1 \%$ and better with 50 NEW MICA CAPACITORS. Tremendous assortment of values. $\$ 3.95$. General Instrumentation Services, Box 34721, Los Angeles, California 90034.

STROBES, Xenon, save over 50%. $\$ 14.95$ assembled! Guaranteed Plans, \$1.00. Box 233P, Mablevale, AR 72103.

STROBES, color organs, the incredible Strobit. Electric Candles, Remote Switch, Touch Switch. All in KIT and ASSEMBLED forms. Send 25% for complete catalog. Teletronics, Box 1266, South Lake Tahoe, California 95705.
CHEMICAL FORMULAS and preparation instructions when possible. Send self-addressed stamped envelope and $\$ 3.50$ to Chemtronics, Box 1266, South Lake Tahoe, California 95705

JAPAN \& HONG KONG DIRECTORY. Electronics, all merchandise. World trade information. $\$ 1.00$ today. Ippano Kaisha Lid., Box 6266, Spokane, Washington 99207.

XENON STROBE TUBE. Peak light output approximately 25,000,000. New $\$ 17.95$ postpaid. Free Literature. R.W. Electronics, 4005 West Belmont Avenue, Chicago, Illinois 60641 .
COMP-U-KIT. Computer micro-circuits and a book which tells all about computer logic. Unique modules and kits, fascinating booklets. Write for free illustrated literature. Scientific Measurements, C143, 9701 Kenton, Skokie, Illinois 60076.
SECRETLY transmit voice or music one mile on invisible infrared light beam. Solid state, optoelectronic communications day or night. License not required. Construction straightforward. Details, 30 f. Comprehensive manual, $\$ 6.00$. Lundart, University Station 4008-E3, Tucson, Arizona 85717.

CIGARETTE papers flash to music. Psychedelic Electronics Handbook, \$9.95. Box 46156 Seattle, Wash. 98146.
ROUTER Bits, $1 /{ }^{\prime \prime}$ shank, hi-speed, used, excellent condition, $\$ 2.50$ dozen postpaid. Lillian's, Box 17165PE, Chicago, Illinois 60517
PLANS AND PC BOARD FOR 3 CHAN ACTIVE FILTER COLOR ORGAN - \$3. ALSO FOR METAL LOCATOR-\$2.50, SCA FILTER-\$2.50. DYMAX CO., P.O. BOX 1023, SCOTTSDALE, ARIZ. 85252.
BURGLAR and FIRE ALARM SYSTEMS and supplies. INSTALLATION MANUAL and catalog $\$ 1.00$. Refunded first order. Electronic Sentry Systems, P.O. Box 8023A, Sacramento, California 95818.
67KC SCA Adapter, manufacturer's closeout on this model. The missing link between FM tuner and audio amplifier if you want commercial free music. Solid state demodulator board wired and tested. Operates on 9 to 30 volts. Variable gain input and adjustable mute. Easily switched in and out. Packed with instructions and station lists. All orders shipped postpaid same date as received, anywhere USA $\$ 16.50$ each. Marvin Industries, Box 551, Hudson, Ohio 44236.
PLANS-PARTS.KITS A wide range of the unusual for the experimenter, hobbyist and amateur scientist. Many psychedelic items; STROBES, color organs. ELECTRIC CANDLES, Touch Switches, LIGHTNING gENERATORS. Complete line of COMPONENTS. Air Mail Catalog 50%. Teletronics, Box 1266, South Lake Tahoe, Calif. 95705.

TINY LIGHT to cheer you, blinks for years. Five dollars postpaid. F. Ramsey, 1402 N. Fresno, Fresno, California 93703.

CAPACITORS 140 mfd 450 WVDC Electrolytics Brand New, Ten for \$9.50. Mehaffey, 6835 Sunnybrook Lane, NE, Atlanta, Ga. 30328.

BARGAIN sheets listing relays, steppers, \& other electronics parts for experimenters. Send name, address and a dime to: Gust \& Company, Box 24081, Edina, Minnesota 55424.
TV TUNER REPAIRS-Complete Course Details, 12 Repair Tricks, Many Plans, Two Lessons, all for \$1. Refundable. Frank Bocek, Box 833, Redding, Calif. 96001.
ELECTRONIC devices. Catalog 25%. Taurus Engineering, 706 Franklin, Worcester, Mass. 01604.

CITIZEN BAND Radios, SSB, AM, Accessories, Free Catalogue. Dealers send letterhead for factory prices. Call 714-846-3101. C.B.E.D., 6624 Westminister Avenue, Westminister, Calif. 92683.

IC MIXER, Professional quality, five input model, with master control, $\$ 58.20$ net postpaid. Other models available. Send 108 for catalog-specification sheet. AJC Electronics, 2801 Sandy Lane, Fort Worth, Texas 76112.

TELEPHONE Recorder Switch, Diagram, Parts list, \$5.00., TECH CONSULTANTS, P.O. Box 02231, Cleveland, Ohio 44102.

PLANS AND KITS

CIRCUITS for 32 electronic projects, R.F., audio and gadgetry complete plans \$1.00. P.M. Electronics, Inc., Box 46204, Seattle, Wash. 98146. Dealer inquiries invited.

FIBRE OP-KITS, using the "magical optical fibers" that transmit light energy. FREE CATALOG. Scientiffic Devices, $211 E$ Albion, Wakefield, Mass. 01880.

METAL DETECTOR Plans, beat frequency type- $\$ 3.25$. New, operational amplifier discriminator type- $\$ 6.00$. Magneto-Hydro-Dynamics, Box 114, Plaza Station, Merrick. New Youk 11566.
BUILD amazing new device. Automatically indicates when oil in your auto's crankcase becomes 1 quart low. Inexpensive, easy to build. 12 yolt neg. gnd. Plans $\$ 3.00$. J. R. Boykin, 40 Doncaster, Rome Georgia 30161.

SURVEILLANCE DEVICES IN KIT FORM: Telephone Transmitter, FM Spy Transmitter, Telephone-Recorder Actuator, Tail Transmitter, Bug Detector. Complete Kits Send $\$ 15.00$ each. ELECTRONIC SECURITY SYSTEMS, 1101 West Rosecrans Avenue, Gardena, California 90247.
"ONE TUBE DXER'' Handbook-50t. 15 Distance one tube plans25\%. Catalog. Laboratories, 2612-L Dutano, Sacramento, Calif. 95821.

SCA music adapter for commercial-free FM background music. Con nects easily to any FM tuner. 6-transistor circuit uses standard components. Plans and $3 \times 41 / 2^{\prime \prime}$ etched circuit board $\$ 4.50$. Component kits also available. Wallace Enterprise, Inc., 83-15 98th Street, Woodhaven, N.Y. 11421.

INTEGRATED CIRCUIT KITS: COMPUTER, OPTOELECTRONICS, AUDIO. Catalog free. KAYE ENGINEERIMG, Box 3932-A, Long Beach, Calif. 90803.

TESLA COIL-40" SPARKS! Plans $\$ 5.00$ Information 50\&. Hunting. ton Electronics, Box 9-P, Huntington, Conn. 06484.

TUBES

TUBES "Oldies", latest. Lists free. Steinmetz, 7519 Maplewood, Hammond, Indiana 46324.
RECEIVING \& INDUSTRIAL TUBES, TRANSISTORS. All BrandsBiggest Discounts. Technicians, Hobbyists, Experimenters-Request FREE Giant Catalog and SAVE! ZALYTEON, 469 Jericho Turnpike, Mineola, N. Y. 11501.

TUBE Headquarters of World! Send 10 c for Catalog (tubes, olectronic equipment) Barry, 512 Broadway, H.Y.C. 10012.

THOUSANDS and thousands of types of electronic parts, tubes, transistors, instruments, etc. Send for Free Catalog. Arcturus Electronics Corp., MPE, 502-22nd St., Union City, N.J. 07087.

RADIO \& T.V., Tubes -33 \& each. Send for free list. Cornell, 4213 University, San Diego, Calif. 92105.

TUBES-Lowest prices. Foreign-American. Obsolete, receiving, special purpose, transmitting tubes. Send for tube, parts catalog. United Radio Company, 56-P Ferry St., Newark, N.J. 07105.

TAPE AND RECORDERS

BEFORE Renting Stereo Tapes tiy us. Postpaid both ways—no deposit -immediate delivery. Quality-Depend.ability-Service-Satisfaction -prevail here. If you've been dissatisfied in the past, your initial order will prove this is no idle boast. Free Catalog. Gold Coast Tape Library, Box 2262, Palm Village Station, Hialeah, Fla. 33012.
STEREO TAPES, save $20,30 \%$ and morm, postpaid anywhere U.S.A. We discount batteries, recorders, tape/cassettes, 80-page catalog 25\%. SAXITONE TAPES, 1776 Columbia Road, N.W., Washington, D.C. 20009.

OLD radio programs on tape. 6 hours for $\$ 8.00$. Catalog $50 \$$, Don Maris, 1926 Cherokee, Norman, Okla. 73069.

TAPE RECORDERS, TAPE-Hank, pre-recorded. Catalog 25 \%. Tower, Lafayette Hill, Pa. 19444.

OLD RADIO PROGRAMS on tape. Hundreds available. 2.hr. sample $\$ 6.00,4$-hr. $\$ 9.00$. Hobby Catalog for collectors of radio tapes, old comics, movie serials, nostalgic items, enly $\$ 1.25$ or free with sample tape. NOSTALGIA, 9875 SW 212 St., Miami, Fla. 33157.

CASSETTES-Cash in on a tremendous All-year round market. Send for lowest pricing and details. Ieclude $\$ 1.00$ for 2 cassette samples. DICTATION PRODUCTS, PO Box 87 DPM, Hallandale, Florida 33009.

REPAIRS AND SERVICES

TV Tuners rebuilt and aligned per manufacturers specification. Only $\$ 9.50$. Any make UHF or VHF Ninety day written guarantee. Ship complete with tubes or write for free mailing kit and dealer brochure. JW Electronics, Box 51C, Bloomington, Indiana 47401.
TELEVISION tuners, any make VHF or UHF, cleaned, repaired and realigned per manufacturer's specifications $\$ 9.50$. One year guarantee. Quality Tuner Repair, 526 West Busby Street, Lebanon, Indiana 46052.

SPEAKER RECONING, replacement grill cloth, vinyl covering, hardware. For price list send self-addressed, stamped envelope: Creative Sound Products, 262B Cranz Place, Akron, Ohio 44310.
ELECTRONIC Assembling. Receive, assemble and return. Small to medium size devices wanted. Satisfaction guaranteed. Electronics, Box 384, Everett, Wash. 98201.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. Illustrated brochure free. Hermes, Berlin 11, Germany.
INVESTIGATORS, LATEST ELECTRONIC AIDS. FREE LITERATURE. CLIFTON, $11500 \cdot \mathrm{~K}$ NW 7th AVE., EIANI, FLORIDA 33168.

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-trouble-shooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820.

FCC First Class License in six weeks-approved for Veterans Training. Write Elkins Institute, 2603B Inwood Road, Dallas, Texas 75235.
R.E.I.'s famous (5) week course for the First Class Radio Telephone License is the shortest, most effective courso in the nation. Over 98\% of R.E.I. graduates pass F.C.C. exams for 1st class license. Total tuition $\$ 395.00$. Job placement free. Write for brochure. Radio Engineering Incorporated Schools, 1336 Main Street, Sarasota, Florida 33577—or 3123 Giliham Road, Kansas City, Missouri 64109 -or 809 Caroline Street, Fredericksburg, Virginia 22401-or 625 E. Colorado Street, Glendale, California 91205.

LEARN WHILE ASLEEP, Hypnotize! Strange catalog free. Autosuggestion, Box 24-ZD, Olympia, Washington 98501.
DEGREE in Electronics Engineering earned mostly by correspondence. Free brochure. Dept. G.9, Grantham School of Engineering, 1505 N. Western Ave., Hollywood, California 90027.
PLAY ORGAN EASILY! AMAZING METHOD! FREE INFORMATION. KEGLEY, 1016-PE KELLY, JOLIET, ILLINOIS 60435.
HIGHLY effective home study courses in Electronics Engineering Technology and Electronics Engineering Mathematics. Earn your Degree. Write for Free Descriptive Literature. Cook's Institute of Electronics Engineering, (Dept. 15), P.O. Box 10634, Jackson, Miss. 39209. (Established 1945).
F.C.C. FIRST CLASS LICENSE in three to four weeks. Write American Institute of Radio, 2622 Old Lebanon Road, Nashville, Tennessee 37214 or 3986 Beach Boulevard, Box 16652, Jacksonville, Florida.

AmATEUR RADIO. Correspondence Sight-and-Sound no-textbook courses for GENERAL, ADVANCED and EXTRA CLASS licensescomplete Code and Theory. These are NOT memory courses. Amateur radio license school, 12217 Santa Monica Blvd., Los Angeles, Calif. 90025.
FCC FIRST CLASS LICENSE THROUGH TAPE RECORDED LESSONS. Also RADAR ENDORSEMENT. Radio License Training, 1060D Duncan, Manhattan Beach, Calif. 90266.
MEMORIZE: "1970 TESTS-ANSWERS" for FCC FIRST AND SEC OND CLASS LICENSE. Plus "Self-Study Ability Test." PROVEN. \$5.00. Command, Box 26348.P, San Francisco 94126.

EARN College degree at home. Many subjects. FLORIDA STATE CHRISTIAN COLLEGE, Post Office Box 1674, Fort Lauderdale, Florida 33309.

LEAP! LEAP! LEAP! Into BIG Money; 150,000 Computer Programmers needed in 5 years. Diploma Home Study Course, Price Breakthrough: only $\$ 9.95$. Act Now. Money Back Guarantee. U.S. Inquiries, Intertech-7G2, Box 5373, Station-F, Ottawa, Canada.

LEARN code from tireless teacher. Wilkinson programmed course and LP player stays with beginners to license speed. $\$ 9.45$ postpaid. Florida residents $\$ 9.83$. Details free. Wilkinson Laboratories, Box 14196, Gainesville, Fla. 32601.
DRAFTING (Electronic, Mechanical, Architectural). Home courses $\$ 5.00$. Send $\$ 3.00$ first lesson. Prior Inc., 23-09 169 Street, Whitestone, New York 11357.

HIGH FIDELITY

FREE! Send for money saving stereo catalog \# P10E, lowest quotations on your individual component, tape recorder, or system requirements. Elactronic Values, Inc., 200 W. 20th St., New York, N.Y. 10011.

LOW, Low quotes: all components and recorders, Hifj, Roslyn, Penna. 19001.
HI-FI components. Tape Recorders, at guaranteed "We Will Not Be Undersold" prices. 15-day money-back guarantee. Two-year warranty. No Catalog. Quotations Free. Hi-Fidelity Center, 239 (P) East 149th Street, New York 10451.
TAPE RECORDERS, $\mathrm{Hi}-\mathrm{Fi}$, components, Sleep Learning Equipment, tapes. Unusual Values. Free Catalog. Dressner, 1523R, Joricho Turnpike, New Hyde Park, N.Y. 11040.
DIAMOND NEEDLES AND STEREO CARTRIDGES at low, Iow prices for Shure, Pickaring, Stanton, Empire, Grado and ADC. Send for free catalog and price sheet. We will be happy to quote on any cartridge-Magnetic, Ceramic or Crystal. All merchandise brand new and shipped PREPAID. LYLE CARTRIDGES, Dept. P, 265 East 149 Street, Bronx, New York 10451.
New BSR record changers; \$13. McDonald 300-\$18; 400-\$20; $500 \cdot \$ 25$. AM $/$ FM component system- $\$ 50$. Davis, Dept. 2737 Third Ave., Bronx, New York 10451.

WANTED

CASH PAID! Unused tubes, electronic equipment. Barry, 512 Broadway, NYC 10012.
QUICKSILVER, Platinum, Silver, Gold, Ores Analyzed. Free Circular. Mercury Terminal, Norwood, Mass. 02062.
SCREW Base electrolytic capacitors. Must have solder lug terminals, ratings. No leakers. Henry Schwartzman, 73 Bridge Street, Corning, New York 14830.

INVENTIONS WANTED

INVENTIONS wanted. Patented; unpatented. Global Marketing Ser. vice, 2420 -P 77th, Oakland, Calif. 94605.
PATENT Searches including Maximum speed, full airmail report and closest patent copies, $\$ 6.00$. Quality searches expertly administered. Complete secrecy guaranteed. Free Invention Protection forms and "Patent Information," Write Dept. 9, Washington Patent Office Search Bureau, 711 14th Street, N.W., Washington, D.C. 20005. INVENTORS! Don't sell your invention, patented or unpatented, until you receive our offer. Eagle Development Company, Dept. P, 79, Wall Street, N. Y., N.Y. 10005.
FREE "Directory of 500 Corporations Seeking New Products." For information regarding development, sale, licensing of your patented/ unpatented invention. Write: Raymond Lee Organization, 230-GR Park Avenue, New York City 10017.
INVENTORS: Protect your ideas! Free "Recommended Procedure". Washington Inventors Service, 422T Washington Building, Washington, D.C. 20005.
PATENT SEARCHES, including copies of related United States Patents. Inventors, attorneys, manufacturers use our "World-Wide" Airmail service Free: "Invention Record" form and "Information Every Inventor Needs'", Hayward Company, 1029HR Vermont, Washington, D.C. 20005.
FREE PAMPHLET: '"Tips on Safeguarding Your Invention." Write: United States Inventors Service Company, 501-H Thirteenth Street N.W., Washington, D.C. 20004.

GOVERNMENT SURPLUS

GOVERNMENT Surplus How and Where to Buy in Your Area. Send $\$ 1.00$ to: Surplus Information PE, Headquarters Building, Washington, D.C. 20036.

JEEPS Typically From $\$ 53.90$. . Trucks From $\$ 78.40$. . . Boats, Typewriters, Airplanes, Multimeters, Oscilloscopes, Transceivers, Electronics Equipment. Wide Variety, Condition. 100,000 Bid Bargains Direct From Government Nationwide Complete Sales Direc. tory and Surplus Catalog $\$ 1.00$. (Deductible First $\$ 10.00$ Order). Surplus Service. Box 820.J. Holland. Michigan 49423.
SAVE up to 80% or more on all types of electronic equipment. Buy direct from Govt. surplus. How to receive their catalogues. Send $\$ 2.00$, Bridgeworth, P.O. Box $2292 \cdot \mathrm{M}$, Vancouver, Washington 98661.

INDUSTRIAL and Government Electronic Surplus. Latest list free. Startronics, Box 17127, Portland, Oregon 97217.

SHORTWAVE LISTENING

NEW 2nd EDITION OF POPULAR BOOK "Better Shortwave Reception'" covers eavesdropping 10 Khz -UHF; get best receiver buy; when/ where listen; outer space "'signals'"; astronaut circuits; police, etc. 156 pages, $\$ 3.95$. At leading dealers, or direct from publisher (please add $20 \&$ for handling). Radio Publications, Inc., Box 149M, Wilton, Conn. 06897.

B00KS

> | FREE catalog aviation/electronic/space books. Aero Publishers, |
| :--- |
| 329PE Aviation Road, Fallbrook, California 92028 . |
| "UNWSUAL" Books! Catalog Free! International, Box 7798 (PE), |
| Atlanta, Georgia 30309 . |
| FREE book prophet Elijah coming before Christ. Wonderful bible |
| evidence. Megiddo Mission, Dept. 64, 481 Thurston Rd., Rochester, |
| N.Y. 14619. |
| INFORMATION. Amazing Book. Swimsuits, jewelry. Write: LYN, Box |
| 1573, Waco, Texas 77710 . |

HYPNOTISM

FREE Hypnotism, Self-Hypnosis, Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.
"MALE-FEMALE HYPNOTISM'" EXPOSED, EXPLAINED! 'SECRET METHOD' - THEY NEVER KNOW! \$2, RUSHED. GUARANTEED! ISAbella hall, silver springs, florida 32688.
SLEEP Learning. Hypnotic method. 92\% effective. Details free. ASR Foundation. Box 702 leg HC Station, Lexington, Ky. 40502.

HYPNOTIZE PERFECT STRANGERS-EITHER SEX-SUCCESSFULLY! Secret Methods-they never know! lllustrated Course and 10 inch Hypnodisk $\$ 2.00$. RESULTS ABSOLUTELY GUARANTEED! Dr. H. Arthur Fowler, Box 4399, Woodbury, New Jersey 08096.

MAGAZINES

JAPAN PUBLICATIONS GUIDE Business, pleasure, education. $\$ 5.00$. INTERCONTINENTAL, CPO 1717. Toloyo 100-91.
OVER 2,000,000 backdate magazines! Specify needs. Midtown, Box 917.PE, Maywood, New Jersey 07607.

MAGNETS

MAGNETISM (100) page script newly discovered magnetic principles ($\$ 3.00$). Jesse Costa, Box 26, Waquoit, Mass. 02536.

PHOTOGRAPHY-FILM, EQUIPMENT, SERVICES

SCIENCE Bargains Request Free Giant Catalog "CJ" 148 pagesAstronomical Telescopes, Microscopes, Lenses, Binoculars, Kits, Parts. War surplus bargains. Edmund Scientific Co., 300 Edscorp Bldg., Barrington, New Jersey 08007.

RECORDS

POPULAR organ albums factory direct. Concert Recording, Lynwood, Calif. 90262.
SPECIAL interest records available, produced by the editors of the world's leading special interest magazines. Send for free catalog. Record Catalog.PE, Ziff-Dayis Publishing Company, One Park Avenue, New York, N.Y. 10016.

PRINTING

OFFSET Printing. Free catalog. Speedy Print, 1906 Swede, Norris. town. Pa. 19401.
QUALITY Printing-Both Letterpress and Offset. Economically priced. Speedy service. Free samples on request. Charles McCalister, 1222 W. Sevier St., Clarksville, Arkansas 72830.

EMPLOYMENT INFORMATION

FOREIGN and USA job opportunities available now. Construction, all trades. Earnings to $\$ 3,000.00$ monthly. Paid overtime, travel bonuses. Write: Universal Employment, Woodbridge, Conn. 06525.

EXCITING OVERSEAS JOBS. Directory \$1.00. Research Associates, Box 942-E, Belmont, California 94002.
"HOW to get jobs overseas" -Worldwide Lists Hiring Organizations - 143 pages inside information $\mathbf{\$ 2 . 9 8}$. Refundable. Staydrype, Whitestone, New York 11357.

BUSINESS OPPORTUNITIES

I MADE $\$ 40,000.00$ Year by Mailorder! Helped others make money! Start with $\$ 10.00-$ Free Proof. Torrey, Box $318-\mathrm{N}$, Ypsilanti, Michigan 48197

FREE BOOK "999 Successful Little Known Businesses'" Work home, Plymouth $445 \cdot \mathrm{M}$, Brooklyn, N.Y. 11216.
$\$ 200.00$ DAILY in Your Mailbox! Your opportunity to do what mail order experts do. Free details. Associates, Box 136-J, Holland, Michigan 49423.

MAKE BIG MONEY raising chinchillas, rabbits, guinea pigs for us. Catalog-254. Keeney Brothers, New Freedom, Pa. 17349.

BECOME CITIZEN BAND DEALER. Write RJS Communications, Brockton, Massachusetts 02403.

MAKE extra $\$ 25$ to $\$ 75$ spare time! Take orders for double air cushion Bronson Shoes. Men's, women's line for dress, work, play. Highest commissions. Shoes for yourself. Outfit FREE. Bronson, Dept. 2910, Minneapolis, Minnesota 55408.

PIANO TUNING learned quickly at home. Tremendous field! Musical knowledge unnecessary. GI Approved. Information Free. Empire School, Box 327, Miami, Florida 33145.

MAILORDER! Make big money working home. Free report reveals millionaire's trade secrets! Executive (1K10), 333 North Michigan, Chicago 60601.

SPARE TIME CASH-Sell advertising Book Matches-every business a prospect-no investment-no experience needed-build steady repeat business. Power house selling kit with new complete catalog FREE. Quick sales and big cash commissions. Dept. T-1070 Superior Match, 7530 S. Greenwood, Chicago 60619.

FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201.

PRODUCE Household Products. Your trade name-our formulas. Details 50\&. Thinker/Tinker, Box 205PE, Riverside, Conn. 06878.
bIG EARNINGS selling Hertel Bibles. New 3-dimension cover, finest reference edition selis fast. Demonstrator furnished. Big commissions. International Book, Dept. PE, Box 118, Wichita, Kansas 67201.

TREASURE FINDERS

GOLD, SILVER, RELICS! Located with powerful Detectron Metal Detectors. Free information. Terms. Detectron, Dept. PE.10, Box 243, San Gabriel, California 91778.

FREE TREASURE GUIDE! Fact-filled collectors edition; send 50% for postage. Also request free literature on ultrasensitive, professional Fisher Detectors. FISHER RESEARCH, Dept. PE-10, Palo Alto, California 94303.

TREASURE FINDER locates buried gold, silver, coins, treasures. 5 powerful models. $\$ 19.95$ up. Free catalog. Relco-A33, Box 10839, Houston, Texas 77018.

REMAILING SERVICE

HOUSTON REMAILING 25 Cents Each, $\$ 3.00$ monthly. Confidential. Box 12263, Houston, Texas 77017.

STAMPS

SPACEOPHOBIA? Romania nudes plus 50 different. 104 with approvals, BKJ, Astor, Boston, Mass. 02123.

REAL ESTATE

FREE . . . NEW 232-PAGE FALL-WINTER CATALOG! Describes and pictures hundreds of farms, ranches, town and country homes, businesses coast to coast! Specify type property and location preferred. Zip Code, please. UNITED FARM AGENCY, 612-EP West 47th St., Kansas City, Mo. 64112.

MUSICAL INSTRUMENTS

30\% DISCOUNT any name brand musical instrument. Free catalog. Freeport Music, 127-N Sunrise Highway, Freeport, N.Y. 11520.

RUBBER STAMPS

RUBBER address stamps $\$ 2.00$. Signature $\$ 3.50$. Free catalog. Jackson's, Box 443G, Franklin Park, Illinois 60131.

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog of yeasts, equipment. Semplex, Box 12276, Minneapolis, Minn. 55412.

DRIVER'S License, Birth Certificate, H.S. \& College Diploma, Marriage \& Divorce Certificates-Blank Forms. Fill them in yourself. Highest quality you can buy! Confidential 3 day service! $\$ 2.00$ each; any four- $\$ 5.00$, post-paid. Formco, Box 834-EA, Warren, Mich. 48090.

ABOUT YOUR SUBSCRIPTION

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

CHROMATIC "MACHINE-GUN", STROBE

PSYCHEDELIC LIGHTING HANDBOOK

	100 information packed pafeat ifytine equipment. in pechniques. developmention Coveri all facetit of psyctrodelic isght-show production inciunting, strobectors, crystala, orsanic siddes, mirrors. color organs. polarized cte. Show how to "tpsychedellize parthos. musical groups. shows or bow to aet up "electric trips" for looscleaf paper for s rings. $\$ 3.00$ Ppd.
LONG-WAVE BLACKLIGHT FIXTURE	
	Extrmmely verratlle, compactiy deBitned, long wave (sub0 itiolet) lixture. Has 6-watt $110-\mathrm{V}$ lamp with bulit in filter-eliminatea rays. Uae to identiry minerali, fungi, bace teria-check for surface flaws, dil. plays with fluorescent paper, palnt, chalh, erayons, trace powdert inct: Mount vert hort $11 /$ or $^{\text {or }}$ H. $\mathrm{H}^{\text {on }}$ cormer.
Stock No.Stock No.go,124AV	

NEW! STATIC ELECTRICITY GENERATOR

sturdy, tmproved mode

Sec thrtlling spark display as you set off a minlature bolt of Ifehtlng. Sturwlly made-stands $14^{* \prime}$ high. Two $9^{-\prime}$ pasilic dises rotate in opponite directions. Metal collector brushes pick up the static electricity. store it In the Leyden Jar type condenser until discharged by the Jumping spart. 24 page llustrated bcokict

1st QUALITY OPAQUE UNDER $\$ 200$

MIRRORED BALLS BOUNCE LIGHT \quad Yesteryear's ballrooms echo in
 the beat of today's discotheque. Up to 1,000 tustrous, clear. fanmmade glass mirrors on each ball create fantastic lighting ef. fects. Motorized-wey cast refecilo for llaht shows displays denl restaurants, hotels, and modern
stores. stores.

Order by stock No,-Check or M, O,-Money-Back Guarantee EDMUND SCIENTIFIC CO, 300 EDSCORP BLDG, BARRINGTON, NJ. OAOOT WRITE FOR GIANT FREE CATALOG "AV"

BUILD 20 RADIO and Electronics Circuits PROGRESSIVE "Edu-Kit"s HOME RADIO COURSE

Now Inciudes

* 12 RECEIVERS
* 3 TRANSMITTERS
* SQ. WAVE GENERATOR
* SIGNAL TRACER
* AMPLIFIER
* SIGNAL INJECTOR
* CODE OSCILLATOR
* No Knowledge of Radio Necessary
* No Additional Parts or Tools Needed
* EXCELLENT BACKGROUND FOR TV

SCHOOL INQUIRIES INVITED

* Sold in 79 Countries

YOU DON'T HAVE TO SPEND

HUNDREDS OF DOLLARS FOR A RADIO COURSE

The "alsdu-kit". orfers you an outstanding PRACTICAL HOME RADIO COURSE at a
Hock-Doctom price. Our kit is designed to train Radio \& Electronics Technicians, makink

 You will learn how to bulla radios, using regular schematics; how to wire and solder punched metal chassis as well as the latest development of printed circult chassis. RF and Af learn the basic principles of radio. You wbll construct, study and work with and practice code using the Prorressive code Oscillator. You witn learn and practice trouble-shooting, usinf the progressive Signal Tracer. Progressive Signal Iniector, proink instructional material Amateur Licenses. You will build Receiver. Transmitter. Square wave Gencraior, code oscillator, simnal rracer and signal injector eircuits, and learn how to operate then, rou Absolutely no previous knowledpe of radio or science is required. The "Edu.Kit" is the product of many years of teaching and engineering experience. The 'Edu-Kit'" will
provide you with a basic education in Electronics and hado. worth many times the low price you pay. The signal Tracer alone is worth more than the price of the kit.

THE KIT FOR EVERYONE

You do not need the slightest background In radio or sience. Whether you are inter ested In Radio \& Electronics because you
want an interesting hobby, a well paying
 ages and backgrounds have successfully
Used the "Edu-kit" In more than. 79 councarefully designed, step by step, so that yot eannot make a mistake. The 'Edu-kir" bllows you to teach yourseli at your own

PROGRESSIVE TEACHING METHOD

The progressive Radio "Edu-Kit" is the foremost educational radio kit in the world.
 learn schematics. study theory, practice trouble shooting-all in a closely integrated protearn sehematics. study theory, practice trouble shooting in in in a deresting. backpround in radiofou begin by examining the various radio parts of the "Edu.Kit." You then learn the function, theory and wling of these parts. Then you build a simple radio. With this first and trouble-shooting. Then you build a more advanced radio, learn more advanced theory and techniques, Gradually, in a progressive manner, and at your own raté you will professlonal Radio Technician; course are Receiver. Transmitter, Code oscillator slenal Tracer Scjuare wave Generator and signal Injector circuits, These are not unprofessional "breadboard" experiments, but genuine radio circults. constructed by means of professional wiring and soldering on metal chassis, plus the new method of radio construction known
as

THE "EDU-KIT" IS COMPLETE

You will receive all parts and instructions necessary to build twenty different radio and electronics circuits, each guaranteed to operate, our kits contain tubes, tube sockets. Variable, elecirolytic, micra, ceramic and paper dielectric condensers, resistors, tie strips, selenlum rectitiers, coils, volume controls and switches, etciuding Printed circuit chassis, speclal tube sockets, hardware and instructions. You also feceive a useful set of tools. J professional electric soidering irdes code instructions and the Progressive code osciliator. in addition to F.C.C. Radio Amateur Llcense training. You wilt also receive lessons for servicing with the Progressive signal Tracer and the progressive Signal injector, a High Fidelity Gutde and a quiz Book. You receive Membership In Radio-TV Club, Free Consulia. Instructlons, etc. Evervthing is vours to Keep.
Progressive "Edu-Kitstinc. 1189 Broadway, Dept. 687D. Hewiett. N. Y. 11557.

- - - UNCONDITIONAL MONEY-BACK GUARANTEE-

Please rush my Prograssive Radio "Edu-Kit'" to me, as indicated below:
Check one box to indicate choice of model
\square Deluxe Model. $\$ 31.95$
\square New Expanded Model $\$ 34.95$ (Same as Deluxe Model plus Television Servicing Course).
Check one box to indicate manner of payment
\square I enclose full payment. Ship "Edu-Kit" post paid.
\square I enclose $\$ 5$ deposit. Ship "Edu-Kit" C.O.D. for balance plus postage.
\square Send me FREE additional information describing "Edu-Kit."
Name

Alldress

PROGRESSIVE "EDU-KITS" INC.
1189 Broadway, Dept. 687 D, Hewleft, N. Y. 11557

Training Electronics Technicians Since 1946

FREE EXTRAS

SERVICING LESSONS

servicing in learn trouble-shooting and will practice repairs on the sets that you construct, rou will learn symptoms and car radlos. You will learn how to use the protessional signal Tracer, the unique signal Injector and the dynamic are learning in this practical way, you wour be able to do many a repalr job for your friends and meighbors, and charge fees. Which will lar exceed the price of wems reip you with any technical prob-

FROM OUR MAIL BAG

J. Stataltis. of 25 Poplar Pl., Water-
bury, Conn. Writes: several sets for my friends, and made money. The "Edu:Kit" pald for itself. I was ready to spend $\$ 240$ for a course, Ben Valerio. P. O. Box 21. Magna, I am: sendine Edu-Kits are wondertul. Here the sending you the questions and also Radio for the last seven years, but like to work with Radlo Kits, and wke to bubld Radio Testing Eguipment. I enjoyed every minute i worked with the different kits; the Signal Tracer works feed proud of becoming a menber of your Radio-TV Club." Runtingt L. Shusf. 1534 Monroe Ave. ${ }^{\text {Ra }}$ dron you a few lines to say that i received my Edu-Kit, and was really amazed a low price. bargain can be had at such pairing radios have already started reFet into the realiy surnoised to see me
troubline shooting of it so quickly. The trouble.shooting Tester that comes with the Kit is really iswell, and finds the

PRINTED CIRCUITRY

At no increase in price the "Edu= Kit" now includes Printed Circuitry. You build a Printed Circuit Signal Injcctor, a unigue Radiong instrument that can detect many hadio and TV troubles. This revolutionary new teclinique of radio construction is now becoming sets.
A Printed Cireuit is a special insulated chassis on which has been deposited a conducting material which takes the place of wiring. The various parts are nierely plugged in and soldered to torminals.
Printed Circuitry is the basis of modern Automation Electronics. A knowledge of this subject is a necessity today for anyone interested in Electronics.

LAFAYETTE 1971 Catalog 710 Our 50th Year

Your Complete Buying Guide to Everything in Electronics

- anniversary

GOLDEN JUBILEE

Use LAFAYETTE'S Budget Plan
\star Radios \star Cassette recorders \star Stereo $\mathrm{Hi}-\mathrm{Fi} \star$ Citizens Band \star Tape Recorders \star Cameras \star Photographs and More
---Mail This Card Today for Your Friend--

STORE LOCATIONS

38 Convenient Store Locations in nine states: NEW YORK CONNECTICUT VIRGINIA NEW JERSEY PENNSYLVANIA MARYLAND MASSACHUSETTS OHIO GEORGIA Associate Stores From Coast-To-Coast. Visit the Lafayette store nearest you for fast personalized service. Watch For New Grand Openings.

Mail the Coupon today for your FREE 1971 Lafayette Catalog 710 LAFAYETTE Radio ELECTRONICS Dept. 35100 P.O. Box 10 Syosset, L.I., N.Y. 11791

Please Send the free 1971 Lafayette catalog 710

Name
Address
City

MAIL THIS CARD TODAY FOR YOUR

FREE
 1971 LAFAYETTE CATALOG 710

MAIL THIS CARD TODAY FOR YOUR

crumeme ry

anniversary

Shop At the "World's Hi-Fi
\& Electronics Center"
For Widest Selection, Low Prices
Stereo Hi-Fi Citizens Band Ham Gear Tape Recorders Test Equipment TV and Radio - Phonographs, Accessories - Intercoms and PA - Closed Circuit TV Tubes and Parts Cameras - Auto Accessories - Musical Instruments - Tools - Books

Award Winning LR-1500TA IC Solid State Receiver

Musical Instruments and Accessories

Do A Friend A Favor . . .
Have a friend interested in hi-fi or electronics? Send us his name and address and we will send him his own personal copy of the 1971 Lafayette Catalog 710.
FREE!
MAIL THE CARD TODAY!
－－－－－－－Mail This Card Today－－＞ Lafayerte 1971 Catalog 710 Our 50th Year

Your Complete Buying Guide to Everything in Electronics

Use LAFAYETTE＇S Budget Plan
\star Radios \star Cassette recorders \star Stereo $\hat{\mathrm{Hi}}-\mathrm{Fi} \nsubseteq$ Citizens Band \star Tape Recorders \star Cameras \star Photographs and More

38 Convenient Store Locations in nine states： NEW YORK CONNECTICUT VIRGINIA NEW JERSEY PENNSYLVANIA MARYLAND MASSACHUSETTS OHIO GEORGIA Associate Stores From Coast－To－Coast．Visit the Lafayette store nearest you for fast personalized service．Watch For New Grand Openings．

Mail the Coupon today for your

FREE 1971 Lafoyette Catolog 710

LAFAYETTE Radio ELECTRONICS

 Dept． 35100 P．O．Box 10Syosset，L．I．，N．Y． 1179 i
Please Send the free 1971 Lafayette catalog 710

Name

Address

City （Please Give Your Zip Code No．）

MAIL THIS CARD TODAY FOR YOUR

 FREI！ 1971 LAFAYETTE CATALOG 710

1971 LAFAYETTE CATALOG 710

Name	
Address	
City	
State	Zip

NEW! CB Scanner monitors all channels visually

Watch the live ones flash on!

FIRST ONE ANYWHERE! Patented new Commander Scanalyzer 23 lets you monitor all 23 CB channels at a glance-continuously and simultaneously.

It not only tells you where the activity is, but offers an exclusive sensitivity control so you can determine the signal strength of any particular channel or the relative signal strength of all channels at once.

In addition, the 'Scanalyzer 23' has a memory control which lets you know what's been going on if you leave the unit.

This you've got to have! Solid state, selfcontained and ready for operation. You need no special tools or wiring for installation. Just use your present equipment and the Scanalyzer! It's the most spectacular CB advancement since the synthesizer! Carries full E.T.A. standard warranty. See your local authorized Commander distributor or ORDER BY MAlL. Model 779... $\$ 149.95$ Also available . . . REACT Model 780 . . gives AUDIO alarm when channel 9 is active only \$174.95.

7 arguments in favor of building your own speaker system from scratch.

The easiest way to buy high fidelity speakers may not always be the best. Because a complete pre-packaged system may be far from what you need. Consider some of the advantages of separate component loudspeakers:

1. You choose from an almost infinite variety of sizes and levels of performance. Your system will exactly reflect your specific listening preferences.
2. You save space by building speakers into walls, ceilings, closet doors, even in floors! Or use existing cabinets or custom-built enclosures that better suit your decor than any mass-produced system.
3. You enhance the illusion of "live" music by hiding or disguising the sound source. You listen to the music - not the speakers.
4. You can up-date your component system as often as you wish to meet advances in the state of the art.
5. You save money by paying only for performance.
6. You end the conflict between fine sound and handsome decor by making the speaker system an integral part of the room or the furniture.
7. You can use the building-block method of planned improvement as your budget permits. There's no problem of being "stuck" with a compact that fits today's budget but can't meet your ultimate listening goals.

Take a few minutes to study the variety of Electro-Voice component speakers. 21 models from $\$ 20.00$ to $\$ 275.00$. From super-tweeters to giant $30^{\prime \prime}$ woofers. Consider how they can aid in creating a speaker system that uniquely expresses your musical needs. And ask your Electro-Voice high fidelity specialist for his recommendation. Finally, take the time to listen carefully.
Freedom of choice. It's at the very nub of high fidelity.

ELECTRO-VOICE, INC., Dept. 1004P,
630 Cecll St., Buchanan, Michlgan 49107

CIRCLE NO. 4 ON READER SERVICE PAGE

[^0]: POPULAR ELECTRONICS Is Indexed
 In the Readerg' Guide
 to Periodical Literature

[^1]: ZIFF-DAVIS SERVICE DIVISION - Dept. W 595 Broadway, New York, N.Y. 10012

 - Please send me the annuals I've checked below:

 18
 -8
 $-\quad$1970 Electronic Experimenter's Handbook.Winter 1970 Electronic Experimenter's Handbook-Spring 1970 Stereo/Hi-Fi Directory 1970 Tape Recorder Annual 1970 Communications Handbook

 - I am enclosing \$. staliation \& Servicing Handbook
 \qquad My remittance includes an and copy for shipping and handling (Outside

 PE-10.70
 print name
 ! \squareaddress
 city
 state

[^2]: 7900 Pendleton Pike - Indianapolis, Indiana 46226

[^3]: \square Check if interested in Veteran Training under new G.I. Bill
 \square Check if interested only in Classroom Train. ing at Los Angeles

[^4]: CREI, Home Study Division McGraw. Hill Book Company Dept. 1210A, 3224 Sixteenth Street, N.W. Washington, D.C. 20010

 Please mail me FREE brok describing CREI Programs. I am employed in electronics and have a high school education.

 NAME \qquad AGE ADDRESS

 CITY \qquad state \qquad ZIP CODE

 EMPLOYED BY
 TYPE OF PRESENT WORK \qquad \square G.I. BILL I am interested in - Electronic Engineering Technology \square Computers - Space Electronics Nuclear Engineering Technology - Industrial Automation NEW! Electronics Systems Engineering

