NEW LOOK - NEW STORIES - NEW DEPARTMENTS

Popular Electronics

FIFTY CENTS / SEPTEMBER 1970

High-quality Low-cost Miniature Digital

EXPERIMENT THAT SAVED HI-FI
CAMERA SHUTTER SPEED METER GATED $100-\mathrm{kHz}$ CALIBRATOR WINDING OUTPUT TRANSFORMERS
GETTING TO KNOW THE J-K FLIP-FLOP HAM \& THE LADY PSYCHOLOGIST

Discover the ease and excitement of NRI's

of Electronics,Communications, TV-Radio Training

12 HOME STUDY PLANS TO CHOOSE FROM

Practically all vocational and engineering schools require students to conduct carefully planned laboratory demonstrations to prove theory presented in textbooks. So does NRI. Why? Because the only way to really learn at home . . . to recog. nize and understand circuits . . . is to get your hands on actual equipment, including transistors, printed circuits and today's other solid-state devices. NRI's unique, 3-Dimensional training method puts theory you learn into actual practice. You learn with your hands as well as your head. You learn by unique "discovery" methods the WHY of Electronics, Communications, TV-Radio . . . WHY circuits do the things they do. NRI training starts with carefully, condensed "bitesize," interesting books programmed with ab-
sorbing, revealing experiments using the finest parts money can buy. You get the kind of technical training that gives you experience equal to many, many months of performance on the job.
Whatever your interest, whatever your education, the NRI 3-Dimensional training method can fill your needs. Learning becomes as close to being fun as any school can make it. Tens of thousands of men have learned the NRI way. Pick the field of your choice and mail the postage-free card today for your FREE NRI Color Catalog. NATIONAL RADIO INSTITUTE, Electronics Division, Washington, D.C. 20016.

BEGIN NOW AN ABSORBING
ADVENTURE-LEARN ELECTRONICS
THE NRI WAY-MAIL CARD TODAY

\square

Start Fast with NRI's EducatorAcclaimed Achievement Kit

The day you enroll with NRI this remarkable starter kit is on its way to you-regardless of the course you choose. It is specifically designed for you and your training objective. It has one purpose-to get you started quickly and easily. It is an outstanding way of introducing you to NRI training methods. . an unparalleled "first dimension" that opens the way to new discoveries, new knowledge, new op portunities. The Achievement Kit is worth many times the small payment required to start your training. Find out more about it. Mail the postagefree card now.

NRI "Bite-Size" Lesson Texts Program Your Training

Reading is a necessary part of any training program, but it takes a great deal of stamina to wade through a 300 -page technical textbook. Every NR1 course is condensed into "bite-size" texts that are simple, direct, well-illustrated, averaging an easilydigested 40 pages. These are "programmed" with NRI training equipment you build, experiments you perform, to bring to life the fundamental laws of electronics, the theory, the training of your choice. You are always kept well supplied with these books. NRI does not require you to "pay as you go."

You Get Practical Experience With Actual Electronic Equipment

NRI.does not leave the practical side of Electronics to your imagination. Electronics becomes a clear. understandable force under your control as you build, experiment, explore, discover. NRI pioneered the concept of home-lab training equipment to give you 3-Dimensional knowledge and experience. Every kit is designed by NRI to demonstrate principles you must know and understand. Kits contain the most modern parts, including solid state devices. NRI invites comparison with equipment offered by any other school, at any price. Prove to yourself what nearly a million NRI students could tell you. . . that you get more for your money from NRI. Mail postage-free card for your NRI Color Catalog. No obligation. No salesman will call.

APPROVED UNDER GI BILL if you

 served since January 31, 1955, or are in service, check GI line in postage-free card.

Popular Electronics

WORLD'S LARGEST-SELLING ELECTRONICS MAGAZINE

FEATURE ARTICLES

Sure it's got a big mouth. We designed it that way. With FETs for befter selectivity and ICs that give more sensitivity and trouble free performance.

You get a full 3.5 watts output, instead of the usual 3. And exclusive Dyna-Boost speech compression and a noise cancelling microphone put your message through crisp and sharp, even when others are garbled and unclear.

The all solid-state Cobra 24 has big ears, too. A selective dual-conversion superheterodyne receiver with ceramic filter gives you outstanding sensitivity and gain.

It even has a handsome face-a striking, no-nonsense case compact enough to fit under and dash.

And that's not all. You get crystal controlled transmit and receive on all 23 channels. Plus positive or negative ground operation without internal wiring changes.

There's also a PA/CB switch with adjustable volume. And an illuminated channel selector and 'S' meter that make night transmission easy. It even comes with its own mounting bracket. And an AC adapter is available.

So why settle for less? The Cobra 24 has all these important features plus the biggest power output in its class.

Cobra 24 \$169.95
 STRIKE CLEAR THROUGH WITH COBRA POWER

Product of DYNASCAN CORPORATION 1801 W. Belle Plaine Chicago. Itlinois 60613

You don't have to pay a lot of money to get a great CB transceiver. Though similar to the Cobra 98, the CAM-88 costs slightly less and has the same striking power that has made Cobra famous. You get full 5 watts input, 3.5 watts output, exclusive Dyna-Boost speech compression, and lots more.

Every record you buy is one more reason to own a Dual.

If you think of your total investment in records - which may be hundreds or even thousands of dollars - we think you'll agree that those records should be handled with the utmost care.

Which brings us to the turntable, the component that handles those precious records. Spinning them on a platter and tracking their fragile grooves with a diamond stylus, the hardest substance known to man.

For many years, serious music lovers have entrusted their records to one make of automatic turntable - Dual. In fact, most professionals (who have access to any equipment) use a Dual in their own stereo component systems. And not always the highest priced mode.

So the question for you to consider isn't which Dual is good enough, but how much more than "good" your turntable has to be.

This question can be answered in our literature, which includes complete reprints of independent test reports. Op at any of our franchised dealers.

United Audio Products, Inc., 120 So. Columbus Ave., Mt. Vernon, New York 10553. Dual

Dual 1209, \$129.50.
Other models from $\$ 99.50$ to $\$ 175.00$. CIRCLE NO. 23 ON READER SERVICE PAGE

Popular Electronics

LAWRENCE SPORN
 publisher

OLIVER P. FERRELL Editor
LESLIE SOLOMON
Technical Editor
IOHN R. RIGGS
Managing Editor
EDWARD I. BUXBAUM Art Directar
ALEXANDER W. BURAWA Associate Edifor
ANDRE DUZANT
Technical Mlustrator
PATTI MORGAN Assistant Editor
JUDITHL. HOGAN
Nditorial Antistant
H. BENNETT, W2PNA
H. S. BRIER, W9EGQ

DAVIO GARNER, HEISERAN Contributing Kditors
J. ROYCE RICHARD Assistant Publisher
RICHARD J, HALPERN Advertising Atanager ROBERT UR Marketing Manager
MARGARET DANIELLO Advertising Service Manager FURMAN H. HEBB Electronics and Photonraphic

ZIFF-DAVIS PUBLISHING COMPANY Editorial and Executive Offices
One Park Avenue, New York, New Yorlt 10016 $212679-7200$
Midwestern Office
The Pastis Group, 4761 West Touhy Ave., lincolnwood, Illinois $60646,312679.1100$ GERALD E. WOLFE, DICK POWELL

Western Office
9025 Wilshire Boulevard, Beverly Hills, California 90211
213 CRestriew 4-0265; BRadshaw 2.1161
Western Advertising Manager, BUD DEAN
Japan: James Yagi
Ishikawa Mansion \#4, Sakuragaoka Shibura-ku, Tokyo, 462-2911-3

Circulation Office
P.O. Box 1096, Flushing, N.Y. 11352

William Ziff, President
W. Bradford Briggs, Executive Vice President Hershel B. Sarbin, Senior Vice President Stanley R. Greenfield, Senior Vice President Philip Sine, Financial Vice President Walfer S. Mills, Jr., Vice President, Circulation Phillip T. Heffernan, Vice President, Marketing Frank Pomerantz, Vice President, Creative Services Arthur W. Butzow, Vise President, Production Edward D. Muhlield, Vice President, Aviation Division Irwin Robinsen, Vice President, Travel Division George Morrissey, Vice President Sydney H. Rogers, Vice President

Ziffilavis also pablishes Alrine Management and Marketimg Incluiling A nerican Avintion, Boating. Bugineza and Marketing Intion. Car and Driver. Cycte, Electronics Worid, Figing, Moviern Trade News. Stereo Review, and Travel Weckly.
Forms 379 and all subserintions correspondence should the ad-
dressed to Hressed to PnPII,AR ELECTRONICS, Circilation Department. P. O, change of address. include yoir old address. as well as new-cnclosing if possthle an address lahel from a recent issue.
EDITORIAL CONTRIMUTIONS must be accompanied by retirn poat. assumes no responsiblity for return or safoty of art work, photo graphs or manuscripts.

Momber Audit Bureau of Circulations

First in a Monthly Series by Oliver P. Ferrell, Editor

THE "NEW LOOK"

Regular readers of Popular Electronics can scarcely fail to notice that many important changes have been made in this issue. Not only do we have a new logo design, there will be more technical content, more news, more state-of-the-art reporting, more new product mentions, improved typography and layout, plus many other minor editorial additions and changes. The purpose of our "new look" in this magazine has been to aim its editorial content toward the electronics experimenter whose hobby interests are serious, challenging, and extraordinarily motivated. While reading the new Popular Electronics, we expect you to be stimulated into more active participation in hobby electronicseither building our unusual projects, studying our test reports, arguing with our columnists, investigating our product dissertations, or even looking for what's new among our advertisers.
popular Electronics has observed that within the past few years a new "community" of electronics experimenters has reached maturity. These people are primarily interested in more technical, somewhat more complex, and more useful types of construction projects-analogous to our stories on lasers, holography, decimal counting units, digital voltmeters, stereo power amplifiers, etc. We believe that an extension of our new editorial policy will result in more far-reaching and earnest electronics experimentation.

From now on, all of the construction projects published in Popular Electronics will be unique, (Continued overleaf)

NEW
 Short-Wave Listening VERTICAL ANTENNA Model SWV.7

For 11,13,16,19,25,31 and 49 meter bands Cramped quarters keeping you from installing an SWL antenna? Your problem is solved! Model SWV-7 mounts easily on the roof or on the ground and stands just 13 ft., $3-5 / 8$ in. tall.
Extensive field testing confirms that this antenna measures up to Mosley's high standards of performance. Construction is of the finest material to bring you years of trouble free listening pleasure. Complete with installation instructions.
Get the facts from your mosley dealer, or write factory direct, for detailed brochure.

4610 N. LINDBERGH BLVD., BRIOGETON, MO. 6304 CIRCLE NO. 16 ON READER SERVICE PAGE

CIRCLE NO. 8 ON READER SERVICE PAGE

DIRECT © CURRENT CONTINUED

relatively sophisticated, and submitted to a whole battery of tests and examinations prior to publication. "The Product Gallery" is an unusual method of reporting on new items appearing in the electronics marketplace. Our monthly department, "Opportunity Awareness," will continue to provide valuable guidance to the reader seeking career and job information. The "Stereo Scene" department has been assigned to a writer of outstanding ability with strong opinions about what is right-and not-so-right-with the stereo/hi-fi component equipment field. This department we feel will fill the need for an objective overview that has been sadly lacking in the audio field.

Our new "Communications" section replaces four departments that have regularly appeared in Popular Electronics for the past decade. Through the means of this department, we will bring you more pertinent information on what is taking place in communications in a more understandable and usable fashion. The "Solid State" department has been upgraded to include extra experimental applications involving the use of transistors and integrated circuits.

Many exciting things are ahead for Popular Electronics. They will embrace a number of areas of experimental electronics-including test equipment, audio and stereo gear, communications accessories, computer terminals, advanced electronic games, etc. Electronics is an everchanging technology and the avocation of hobby electronics should advance consonant with the technology -and, as in the past, you will find Popular Electronics in the forefront.

Newest SAMS Books

Hi-Fi Stereo Servicing Guide

by robert c. middleton. A complete guide to effective hi-fi and stereo servicing. Provides the basis for a full understanding of hi-fi tuner and amplifier circuitry and procedures for servicing this type of equipment. The proper use of audio test and measurement equipment and the basic principles of acoustics are also given. Covers all hi-ficomponents (except record players and tape recorders). Order 20785, onty . . $\$ 3.95$

ABC's of Avionics

by lex parrish. Provides a basic understanding of avionics- the electronic equipment used to insure the safety ot crew and passengers. The type of equipment and the techniques employed in private aircraft operations are featured. Discusses requirements for basic communications, navigation aids, instrument flight aids, weather guidance, and flight control safety devices. Order 20764, only
$\$ 3.50$

Mobile-Radio Systems Planning

by leo c. sands. Here is practical, hasic information about various types of mobile-radio systems, how they work, their capabilities and limitations, system requirements, licenses, channels, band and frequency selection, trans-mitter-receiver selection, antenna systems, and accessories. Includes an invaluable system-requirements form for planning a mobile-radio system. Order 20780, only \qquad

Transistor-TV Servicing Made Easy

by Jack bark. This practical guide will help you become skilled in the special techuiques of transistor-TV servicing. ((overs tools and equipment required: transistors and transistor-servicing techniques: power supplies; horizantal and vertical sweep circuits; video i-f and outpul circuits; agc and sync-separator problems; tuners; audio circuits; and selecting replacement transistors. Order 20776, only $\$ 4.95$

Aviation Electronics, 2nd Edition

by kfith w. boss.: I'his practical handbook for aircraft owners. pilots, technicians, and engineers explains the design, operalion, and maintenance of aviation electronics equipment. Covers automatic direction-finders, distancemeasuring equipment, omnirange, A'C transponders and weather radar, communications and instrument-landing systems, and related devices and systems used in aviation today.
Order 20743, only.
$\$ 9.95$

Questions \& Answers

on Short-Wave Listening
by h. charles woodruff. A helpful guide to the interesting world of listening afforded by short-wave receivers. Questions and answers cover international short-wave broadcasting, frequencies, and services; how short-wave is transmitted; how short-wave is received: and how short-wave receivers are constructed and operated. Order 20783, only.
$\$ 3.50$

1-2-3-4 Servicing Transistor Color TV

by forest h. Belt. The "1-2-3-4 Method" is a simple, logical, step-bystep process that helps do the service job the right way and the easy way. In this book, the fundamentals of transistor color TV are covered, followed by a detailed explanation of how to apply the method for quick troubleshooting and easy repairs.
$\$ 4.95$

Security Electronics

by johis e. cunningmam. Explains the operating principles of modern electronic devices and systems used to provide security against crime. Describes intrusion alarms and intrusion-detection devices. Includes chapters on the detection of hidden metal objects, announcement of detected intrusions, bugging, debugging, and speech-serambling systems, and fature developments.
Order 20767, only
.$\$ 4.50$
How to Hear, Police, Fire, and Aircraft Radio
by len buckwalter. After World War II, police, fire, and aircraft radio moved to the less crowded vhf bands, and the "police band", which was found in many older radios, was silenced. Few listeners had receivers capable of covering the vhf band, becanse they were relatively expensive. With the advent of solidstate circuitry, a wide variety of relatively low-cost monitoring equipment is available. This book is a guide to the selection and use of vhf radio.
Order 20781, ozly.
$\$ 3.50$

101 Questions and Answers Ahout Transistor Circuits

by t.eO c. sands. Answers the most commonly asked questions about transistor circuitry. Explains transistor nomenclature, biasing, the three basic circuit configuratons, input and output impedances, current and voltage gain, and other basic considerations. Covers power supplies and circuits; af circuits; rf circuits, and oscillators.
Order 20782, oaly.
.$\$ 3.50$

1-2-3-4 Servicing Automobile Stereo

by forest h. belt. This book first applies the ingenious "1-2-3-4" repair method to both mechanical and electrical equipment. It then proceeds to cover the electronic and mechanical principles of automobile stereo, fm multiplex and tape cartridge systems. Finally, the bowk shows how to apply the method to auto stereo systems.
Order 20737, only.
\$3.95

North American Radio-TV Station Guide, 6th Edition

by vane a. jones. Lists all radio and TV stations in the U.S., Canada, Mexico, and the West Indies. Includes operating $a-m$, fm , and television stations, as well as those that are about to start operating, or are temporarily off the air. Separate listingsarranged by geographical location, frequency (or channel), and call letters make this guide the most useful one available.
$\$ 2.95$

Order 20779, only.
\qquad
\qquad
. SAMS \& CO., INC.
Order from your Electronic Parts Distributor,

or mail to Howard W. Sams \& Co.. Inc., Dept. PE-090 4300 W. 62 nd St., Indianapolis, Ind. 46268	$\square 20785$	- 20777
	ᄃ20764	■ 20767
Send books checked at right. \$ \qquad enclosed Send FREE 1970 Sams Book Catalog	± 20780] 20781
	$\square 20776$	- 20782
Name	$\bigcirc 20743$	- 20737
Address		
City __ State________ Zip		

4300 W. 62 nd St., Indianapolis, Ind. 46268 _enclosed

BUG-SHOO REPORT

Used your Bug-Shoo (p 27, July 1970) for two days while camping and got only one mosquito bite-on my ankle! Frequency was set at 2050 Hz . Thanks for a great idea.
J. M. Teich, WBEJAE Edison, N. J.

HI-FI SYSTEM EQUALIZER

Having built quite a few of your hi-fi/stereo projects, I hope you will publish plans for a loudspeaker equalizer. It need not be supercomplex.

Rion Dedley Seattle, Wash.

See our up-coming October issue for a lowdistortion frequency equalizer using slide potentiometers. It is designed for inse tion between a stereo preamp and power amplifier.

SLEEP LEARNING—REAL OR HOAX

The conclusions drawn on page 70 of your June issue ("Sleep Learning-Real or Hoax?"') are rather hastily and scantily presented.

Much work has been done on hypnopaedia in the Soviet Union. Researcher A. M. Svyadoshch reports that in one experiment of 20 test subjects, 16 of the subjects were able to reproduce 89% of the material presented to them while asleep. The other four subjects reproduced 18% of the material.

The subject of hypnopaedia is a controversial one and certain authors do deny the ability to learn, memorize, and retain subject matter while asleep. This is a scientific phenomenon and the application of sleep learning determines its success. I would encourage those who are interested to read the book, Current Research In Hypnopaedia, edited by F. Rubin, and published by MacDonald \& Co., London, 1968.

Robert B. Wicks State College, Pa.

SCA INTERCONNECTIONS

An alternate method of connecting your SCA Adapter (page 49, June 1970) is to feed it to the Tape Monitor input. The user must surrender tape monitoring, but he is also as(Continued on page 116)

The does-it-all turntable at a do-it-yourself price.

It's the ESR McDonald 310/X, and it's the best buy in automatic turntables. Anywhere.

This is no "little brother" turntable, either. It's got a full-size platter, cue and pause control, low mass tone arm system and a visible stylus pressure indicator.

And because it's a famous BSR Total Turntable, it comes complete with a tinted dust cover, custom molded base and a Shure M-75 magnetic cartridge-all fac-tory-installed and balanced and included in the low price.
The BSR McDonald 310/X. It's perfect for people who want the best, no matter how little it costs.

Send for free full color catalog on all our automatic turntables. BSR (USA)Ltd., Blauvelt, N.Y. 10913

McDONALD

Try these installations with any other five watt unit!

At $\$ 9995$ the Messenger 125 fits any where

 ...including your budget.Best of all, even with its mini-size and price, the Messenger 125 is big on performance. Its 5 -watt transmitter, with high level class B modulation and speech compression, gives it all the "talk power" you'd expect from a full-size radio. Half-amicrovolt receiver sensitivity pulls in the weak ones. Automatic threshold noise limiting, IF clipping, and special AGC circuitry means less noise-better quieting. Full 2-watt audio lets you hear even in noisy vehicles. And the Messenger 125 looks great, too. Not a single knob-push-buttons select up to 5 channels, slide-levers adjust squelch and volume. Installs between bucket seats, in door pockets, on trail bikes-or over your shoulder with its optional rechargeable battery pack.

Dimensions: $1 \% / 16^{\prime \prime} \mathrm{High} \times 4^{1 \%} / 32^{\prime \prime}$ Wide $\times 7^{*}$ Deep • 4 -watts output at 13.8 VDC. ${ }^{\text {FCC }}$ type accepted, DOC approved All solid statedraws just 0.2 amperes on squelched stand-by - Optional portable pack available with rechargeable battery, charger, antenna, and leather carrying case

WASECA, MINN. 56093

New Heathkit ${ }^{\circ}$ Solid-State

Design and performance features add up to one-of-a-kind superiority.

Over five years were spent in research and development to achieve the notably superior performance, improved convenience features, and ease of service now embodied in the new GR-270 and GR-370. They are premium quality receivers in the truest sense, and, we believe, the finest color TV's on today's market. Here's why . . .

Compare these features:

- Madular plug.in circuit board canstruction.
- MOSFET VHF tuner and 3-stage IF.
- Adjustable video peaking.
- Sound instantly, picture in seconds.
- Built-in Automatic Fine Tuning.
- Pushbutton channel advance.
- Tilt-out conve rgence and secondary controls.
- Hi.fi sound outputs - for amplifier.
- Virtually total self-service capability with built-in volt-ohm meter, dot generator, and comprehensive manual.
- Premium quality honded-face etched glass picture tubes.
- Choice of $295^{\prime \prime}$ or $227^{\prime \prime}$ picture tube sizes.

Exclusive solid-state circuitry design...total of 45 transistors, 55 diodes, 2 silicon controlled rectifiers; 4 advanced Integrated Circuits containing another 46 transistors and 21 diodes; plus 2 tubes (picture and high voltage rectifier) combine to deliver performance and reliability unmatched by conventional tube sets.

Exclusive design solid-state VHF tuner uses an
 MOS Field Effect Transistor for greater sensitivity, lower noise, and lower cross-modulation ...gives you sharply superior color reception, especially under marginal conditions. Gold/ Niborium contacts give better electrical connections and longer wear. Memory fine tuning, standard. Solid-state UHF tuner uses hot-carrier diode design for increased sensitivity.

3-stage solid-state IF has higher gain for better HITR overall picture quality. Emitter-follower outpist prevents spurious signal radiation, and the enttire factory-aligned assembly is completely shielded to prevent external interference.

Automatic Fine Tuning - standard on both sets. Just push a button and the assembled and aligned AFT module tunes in perfect picture and sound automatically ...eliminates manual fine-tuning. Automatic between-channel defeat switch prevents tuner from locking in on stray signals between channels. AFT can be disabled for manual tuning.
VHF power tuning...scan through all VHF and one preselected UHF channel at the push of a button.

Built-in automatic degaussing keeps colors pure. Manual degaussing coil can be left plugged into the chassis and turned on from the front panel... especially useful for degaussing after the set is moved some distance.

Automatic chroma control eliminates color variations under different signal conditions.

Adjustable noise limiting and gated AGC keeps pulse-type interference to a minimum, maintains signal strength at corstant level.

High resolution circuitry improves picture clarity and new adjustable video peaking lets you select the degree of sharpness and apparent resolution you desire.
"Instant-On". A push of the power switch on the front panel brings your new solid-state set to life in seconds. Picture tubez filaments are kept heated for instant operation, and extended tube life. "Instant-On" circuit can be defeated for normal onoff operation.

Premium quality color picture tubes. Both the 227 sq. in. GR270 and 295 sq . in. GR-370 use the new brighter bonded-face, etched glass picture tubes for crisper, sharper, more natural color. And the new RCA HiLite Matrix tube is a low cost option for the GR-370. See below.

Adjustable tone contral lets you choose the sound you prefer ... from deep, rich bass to clean, pronounced highs.

Hi-fi output permits playing the audio from the set through your stereo or hi-fi for truly lifelike reproducton. Another Heath exclusive.

Designed to be owner serviced. The new Heath solid-state color TV's are the only sets on the market that can be serviced by the owner. You actually can diagnose, trouble-shoot and maintain your own set.
Built-in dot generator and tilt-out convergence panel let you do the periodic dynamic convergence adjustments required of all color TV's for peak performance. Virtually eliminate technician service calls.

Snap-out glass epoxy circuit boards with transistor sackets add strength and durability and permit fast, easy troubleshooting and transistor replacement. Makes each circuit a module.

Built-in Volt-Ohm Meter and comprehensive manual let you check circuits for proper operation and make necessary adjustments. The manual guides you every step in using this built-in capability. Absolutely no knowledge of electronics is required.

Easy, enjoyable assembly . . . the Heathkit way. The seven-section manual breaks every assembly down into simple step-bystep instructions. With Heath's famous fold-out pictorials and simple, straightforward design of the sets themselves, anyone can successfully complete the assembly.
Heathkit Solid-State Modular Color TV represents a significant step into the future... with color receiver design and performance features unmatched by any commercially available set at any price! Compare the specifications. Then order yours today.
Kit GR-270, all parts including chassis, 227" picture tube, face mask, UHF \& VHF tuners, AFT \& $6 \times 9^{\prime \prime}$ speaker, 114 lbs. $\$ 489.95^{*}$ Kit GR-370, all parts including chassis, 295" picture tube, face mask, UHF \& VHF tuners, AFT \& 6x9" speaker, 127 Ibs. $\$ 559.95^{*}$ Kit GR-370MX, complete GR-370 with RCA matrix picture tube, 127 Jbs.
. $\$ 569.7$ n *
GR-270 AND GR-370 SPECIFICATMNS - PICTURE TUBE SIZE: GR-370 Approximate Viewing Area; 295 Sq. In. GR-270 Approximate Viewing Area; 227 Sa. In, DEFLECTION: Magnetic, 90 degrees. FOCUS: Electrostatic. CONVERGENCE: Magnetic. ANTENNA INPUT IMPEDANCE: VHF 300 ohm balanced or 75 ohm umbalanced. UHF: 300 obm balanced. TUNING RANGE: VHF TV channeis 2 through 13. UHF TV channels 14 through 83. PICTURE IF CARRIER: 45.75 MHz . SOUNO IF CARRIER: RUENCY: 4.5 MHz , VIDEO IF BANDWIOTH: 3.58 MHz . HI-FI OUTPUT: Output impedance - 1 k ohm. Frequency response -41 dB 30 Hz to 10 $\mathbf{k H z}$. Harmonic distortion - less than 1% at 1 kHz . Output voltage $0.3 \vee$ rms nominal. AuDIO OUTPUT: Output impedance -4 ohm or $\overline{8}$ ohm. Output power -2 watts. POWER REQUIREMENTS: 110 to 130 volts AC, $60 \mathrm{~Hz}, 240$ watts. NET WEIGHT: GR-370, 114 Ibs.; GR-270, 101 lbs.

Modular Color Television!

Exclusive Modular Design... Circuit Boards snap in and out in seconds for easy assembly, simple servicing

New Expedited 48-Hour No-charge Warranty Service Plan for SolidState TV Modules! Special service facilities have been established at the factory and all Keathkit Electronic Centers to expedite service and return of Soldo-state warranty period, TV modules will working days. During the $90-\mathrm{day}$ warrange for labor or parts. After be serviced initial 90-day warranty period expires, TV modules will be serviced or replaced at a fixed charge of $\$ 5.00$ per module for labor ano parts for a period of two years from date of original kit purchase.

Add extra convenience and versatility to your new GR-270 or GR-370 Solid-State Color TV with this new ultrasonic remote control kit. Lets you turn the set on and off, adjust volume, change VHF channels and adjust color and int from the comfort of your chair. Assembles and installs complete in just a few hours and adjustrent a matter of minutes. 584.95^{*} Kit GRA-70-8, 6 lbs.
.\$84.95*

Choose One Of These Handsome, Factory Assembled Cabinets

 3 models in 295 sq. in.

3 models in 227 sq. in.

NEW

FREE 1971 CATALOG! Now with more kits, more color, Fully describes these along with over 300 kits for tereo/hi-fi, color IV, elecronic organs, guitar ampliflers, amateur radio, marine. educational, CB, home \& hobby. Mail coupon or write Heath Company. Benton Harbor, Michigan 49022.

Contemporary walnut Cabinet... factory as sembled of fine veneers rubbed walnut finish. $29.17132^{\prime \prime} H^{\prime} \times 35-13 / 16^{\prime \prime}$
$W^{\prime} \times 197{ }^{\prime \prime}$ O. Assembled W $\times 1970^{\prime \prime}$ D. Assembled CRA-301.23, 56 lbs. 14.9
 matching base. 58 ibs,

CIRCLE NO. 12 ON READER SERVICE PAGE

Olson electronics
 Fate Catalog

Fill in coupon for a FREE One Year Subscription to OLSON ELECTRONICS' Fantastic Value Packed Cafalog - Unheard of LOW, LOW PRICES on Brand Name Speakers, Changers, Tubes, Tools, Stereo Amps, Tuners, C8, and other Values. Credit plan available.
NAME \qquad
ADDRESS
CITY \qquad
GIVE ZIP CODE
If you have a friend interested in electronics send his name and address for a FREE subscription also.

OLSON ELECTRONICS
 DEPT. II, 260 S. FORGE STREET, AKRON, OHIO 44308

CIRCLE NO. 18 ON READER SERVICE PAGE

New book shows simple woys to test and identify thousands of cheap, strplus transistors now widely available. Includes plans for on amazing, inexpersive tester that revecls the inside of unknown, unmarked transistors.
Also describes over 100 projects you can build with borgain trantistors; receivers, transmitters, omplifiers and control godgets. Build them on a handy "breodbocrd" fully deseribed. Plus a valuable roting section on 3900 sransistors.
No risk! Satisfaction guaranteed or money back. For your postpzid copy, send only \$3 to:

Copstone Electronics Corp.
9 Danbury Road, Wilton, Conn, 06897

INVENTORS IDEAS

Have an idea? Could you use one or severai? Quad-i Inc., through its nation-wide network of consultants, locates and works with inventors and their ideas, Quad-i evaluates. classifies. offers developmental and marketing services and then exposes marketable ideas to industry and investors through computer systems. Call or write Quadi, Inc., 277 Park Avenue, Chalfont, Penna. 18194. 215-822-0181.

To obtain a copy of any of the catalogs or leaflets described below, fill in and mail the Reader Service blank on page 15 or 115 .

The "Semiconductor Replacement And Interchangeability Guide," available from Semitronics Corp. (265 Canal St., New York, NY 10013) and authorized distributors for 25% is a handy item to have around if you do a lot of electronics servicing. The guide lists EIAtype transistors, foreign substitutes, silicon and selenium rectifiers, germanium and silicon diodes, and zener diodes. In addition, there are a guide to all Semitronics devices with complete technical specifications and a replacement list for color TV rectifiers and crystals.

Currently being offered by Vaco Products Co. is Catalog No. SD-170 describing the company's comprehensive line of hand tools. Each tool listed in the 140 -page, four-color catalog is fully illustrated, described, and keyed to an applications guide for correct selection and use. Included is a variety of "unique" tools specifically designed to solve usage problems faster and, more importantly, safer.

Circle No. 92 on Reader Service Page 15 or 115
Information on enclosed pushbutton and rotary switches and high-quality termination hardware is at your finger tips with Grayhill's No. G-306-A catalog. Its 88 pages contain descriptions of decorative pushbutton, environmentally sealed pushbutton, key-operated pushbutton, build-your-own rotary (kit), smallest available 24 -position rotary, and other types of switches. The engineering data section lists switch parameters and their importance when choosing switches.

Circle No. 93 on Reader Service Page 15 or 115
The newest edition of the Edmund Scientific Co. catalog, No. 705, is once again jampacked with interesting listings. Basically a science and optics catalog, its 148 pages include listings of unique lighting effects equipment, scientific educational toys for everyone from toddlers to adults, tools and measuring devices, and HeNe lasers and holography kits.

Circle No. 94 on Reader Service Page 15 or 115

free information service:

Here's an easy and convenient way for you to get additional information about products advertised or mentioned editorially (if it has a "Reader Service Number") in this issue. Just follow the directions below. . and the material will be sent to you promptly and free of charge.

> 1.On coupon below, circle the number(s) that corresponds to the key number(s) at the bottom or next to the advertisement or editorial mention that is of interest to you. (Key numbers for advertised products also appear in the Advertisers' Index.) Print or type your name and address on the lines indicated.

2Cut out the coupon and mail it to: POPULAR ELECTRONICS, P.O. Box 8391, Philadelphia, PA 19101.

> If you want to write to the editors of on any subject that does not have a key number, write to POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016 . Inquiries concerning circulation and subscriptions should be sent to POPULAR ELECTRONICS, P.O. Box 1096 , Flushing, N.Y. 11352 .
$\begin{array}{llllllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20\end{array}$ 2122232425262728293031323334353637383940 4142434445464748495051525354555657585960 6162636465666768697071727374757677787980 81828384858687888990919293949596979899100

NAME (Print clearly) \qquad
ADDRESS \qquad
CITY \qquad STATE ZIP CODE \qquad
\qquad

ACTIVE FILTERS

edited by L. P. Huelsman

Composed of contributions by experts in the fields of active filters, integrated circuit filters, parametric amplifiers, and gyrator filters. The purpose of this book is to summarize and discuss a wide variety of available approaches and techniques applicable to the general problem of processing signal information. This approach enables the engineer to make a selection as to which particular method is most appropriate for any one given filtering problem. Hard cover. s72 pages. $\$ 16.50$.

RADAR HANDBOOK

edited by Merrill J. Skolnik
In a single volume, is provided a comprehensive survey of the major aspects of radar. Broad in its coverage, with each chapter written by an expert describing his particular specialty, the book is intended for those involved with the design, development, or procurement of radar systems or with research in radar technology. Some of the chapters present detailed design information, while others are descriptive. Almost every topic of significance in modern radar is included. Hard cover. 1536 pages. $\$ 39.50$.

HANDBOOK OF SEMICONDUCTOR ELECTRONICS, Third Edition

edited by Lloyd P. Hunter

This Third Edition of a now-famous handbook in the field of solid-state electronics gives the practicing engineer the methods and techniques for designing whatever semiconductor circuit he may need. It also gives valuable background material on device physics and device and circuit fabricating techniques so that the engineer can understand the built-in limitations of the devices with which he works. New information on integrated circuits, including the physics, fabrication, and design of these devices is included. Seventeen leading experts pooled their abilities to provide the modern engineer with this book. Hard cover. \$27.50.

INTRODUCTION TO SIGNAL TRANSMISSION

by William R. Bennett Drawing upon years of research experience, the author demonstrates how the knowledge of the response of a transmission system to sine waves reveals the performance of any

kind of signal in the system. The essential core of communications engineering is imparted to the reader in a straightforward manner. The important cases of voice, data, and television transmission are explained in detail. Hard cover. 266 pages. $\$ 12.50$.
Above four titles published by McGraw-Hill Book Co., sso West 42 St., New York, NY 10036.

ELECTRONIC ORGANS, Volume 2

by Norman H. Crowhurst

The author presents models of electronic organs produced by eight well-known manufacturers. The first chapter discusses general considerations. Thereafter, each chapter deals with individual manufacturers, discussing important features of one or more of their organ models. Items covered in the individual models are selection stops and voices offered, tone-generation methods, keying methods, pedal generators, special sound effects, etc. Many schematic diagrams are included throughout the boak. The final chapter deals with tuning methods and commercial tuning aids.
Published by Howard W. Sams \& Co., Inc., 4300 West 62 St., Indianapolis, IN 46268. Soft cover. 199 pages. \$5.50.

RCA HIGH-SPEED, HIGH-VOLTAGE, HIGH-CURRENT POWER TRANSISTORS (PM-80)

This 96 -page manual is designed to provide a basic understanding of the theory and application of the RCA line of medium-frequency power transistors. It covers physical theory, structures, geometries, packaging, critical application-limiting factors, and the operation and requirements of power transistors in amplifler, switching, and control applications. Typical circuits illustrate the use of transistors in series voltage regulators, linear ampliflers, switching regulators, and inverters and converters, as well as the application of complementary transistor pairs.
Published by RCA Solid State Division, Somerville, NJ 08876. Soft cover. 96 pages. \$2.

RCA RECEIVING TUBE MANUAL, RC-27

Revised to include up-to-date tube types and technology, this data-packed manual provides information on the complete RCA line of home-entertainment-type receiving tubes, monochrome and color picture tubes, and voltage-regulator and voltage-reference tubes. The manual includes material on electron tube types, characteristics, installation, and testing. The circuits section illustrates 36 practical tube applications and includes detailed descriptive text explaining the operation and function of individual circuits and stages. In all, this is an indispensable tool for the use and understanding of receiving tubes.
Published by RCA Electronics Components, Harrison, NJ 07029. Soft cover. 672 pages.

The modern Army goes to school, and there's a place in class for you.

In fact, high school graduates have more than 300 job training courses to choose from.

And if you qualify for the Army's enlistment program, we guarantee your course selection before you step forward and raise your hand.

There's still another plus. The training is great. A leading American university credits the Armed Forces with one of the most advanced and comprehensive educational programs in the world.

Job training in the Army could be the opportunity you need tovacquire a vital and rewarding skill. At the same time, you fulfill your military obligation.

We can give you more than 300 good reasons for joining the Army.

But all you need to choose is one.
Your future, your decision...choose ARMY.

Army Opportunities

 Dept. 200Hampton, Va. 23369
Please send me your free 40-page booklet. I understand there's no obligation attached to this request.

Name \qquad
\qquad

Address \qquad
City \qquad County \qquad
State \qquad
Phone \qquad Education

Enroll in the Army.

> How to become a "Non-Degree Engineer"

In today's electronics boom the demand for men with technical education is far greater than the supply of graduate engineers. Thousands of real engineering jobs are being filled by men without engineering degrees-provided they are thoroughly trained in basic electronic theory and modern application. The pay is good, the future is bright . . . and the training can now be acquired at home-on your own time.

The Electronics boom has created a 1 new breed of professional man-the non-degree engineer. Depending on the branch of electronics he's in, he may ride herd" over a flock of computers, run a powerful TV transmitter, supervise a service or maintenance department, or work side by side with distinguished scientists on a new discovery.

But you do need to know more than soldering connections, testing circuits and replacing components. You need to really know the fundamentals of electronics.

How can you pick up this necessary knowledge? Many of today's non-degree engincers learned their electronics at home. In fact, some authorities feel that a home study course is the best way. Popwlar Electronics said:
"By its very nature, home study develops your ability to analyze and extract information as well as to strengthen yous sense of responsibility and initiative.

Cleveland Method Makes It Easy
If you do decide to advance your career through home study, it's best to pick a school that specializes in the home study method. Electronics is complicated enough without trying to learn it from texts and lessons that were designed for the classroom instead of the home.

Cleveland Institute of Electronics concentrates on home study exclusively. Over the last 30 years it has developed tech-

niques that make learning at home easy, even if you once had trouble studying. Your instructor gives the lessons and questions you send in his undivided personal attention-it's like being the only only student in his "class." He not only grades your work, he analyzes it. And he mails back his corrections and comments the same day he gets your lessons, so you read his notations while everything is still fresh in your mind.

Students who have taken other courses often comment on how much more they learn from CIE. Says Mark E. Newland of Santa Maria, Calif.:
"Of 11 different correspondence courses I've taken, CIE's was the best prepared, most interesting, and easiest to understand. I passed my Ist Class FCC exam after completing my course. and have increased my earnings by $\$ 120$ a month."

Always Up-(o-Dite

Because of rapid developments in electronics, CIE courses are constandy being revised. This year's courses include up-1o-the-minute lessons in Mierominiaturization, Laser Theory and Application, Suppressed Carrier Modulation, Single Sideband Techniques, Logical Troubleshooting, Boolean Algebra, Pulse Theory, Timebase Gencrators... and many more.

CIE Assures You an FCC License

The Cleveland method of training is so suceessful that better than 9 out of 10 CIE
graduates who take the FCC exam pass it. This is despite the fact that, among nonCIE men, 2 out of every 3 who take the exam fail! That's why CIE can promise in writing to refund your tuition in full if you complete one of its FCC courses and fail to pass the licensing exam.

This Book Can Help You

Thousands who are advancing their electronics carcers started by reading our famous book. "How To Succeed in Electronics." It tells of many non-degree enginecring jobs and other electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you would like to cash in on the clectronics boom. let us send you this 44 page book free.

Just fill out and mail the attached postpaid card. Or. if the card is missing, mail the coupon at right.

NEW COLLEGE-LEVEL CAREER COURSE FOR MEN WITH PRIOR EXPERIENCE IN ELECTRONICS

ELECTRONICS ENGINEERING... covers sleady-state and transient network theory, solid state physics and circuitry, puise techniques, computer logic and mathematics through calculus. A col-lege-level course for men already working in Electronics.

1776 East 17 th Street Clisveland, Ohio 44114

Please send mee without cost or obligation:
Your 44.page book "How Io Succeed In lectronics" describinR the job opportunities. In Electronics today. and how your courses can prepare me for them.
Your book on "How to Get A Commercial FCC LIcense."
I am especially interested in:
\square Electronles Technology
\square Broadcast EngineeringFirst Class FCC License
\square Electronic Communication \square Industrial Electronics
\square Electronics Engineering

Name- (PLEASE PRINT)
Clity
(PLEASE PR1HT)

Address
State
Zip \qquad
\qquad
\square Inroll unoer new g.i. Bill. All cie Ourses are available under the new G. courses are available under the new G.I. January 31, 1955, or are in service now. check oox on rard or in this coupon for G. 1. olll information.

Additional information on products described in this section is available from the manufacturers. Each new product is identified by a corresponding number on the Reader Service Page. To obtair additional information on any of them, circle the number on the Reader Service Page, fill in your name and address, and mail it in accordance with the instructions.

SENCORE HI-LO MULTIMETER-Here's something really new in a VOM for checking solid-state equipment. Sencore, Inc. has just introduced a VOM with an ohmmeter powered by either 1.5 or 0.08 volts! The latter voltage is so low that resistors can be measured in circuits without the readings being falsified by conduction in the surrounding solid-state components. The 1.5 -volt battery is only used when conduction is required such as when reading diode front-to-back ratios. Sencore claims that the Model FE21 Hi-Lo VOM was developed to check integrated circuits where it is obviously impossible to disassemble individual transistors. The Model FE21 has plenty of general servicing uses and will read from 0.1 volt to 3000 volts full scale. There are 9 ranges for measuring direct current flow from 100 microamperes to 1.0 A and 7 resistance ranges from 100 ohms to 1000 megohms.

OLSON AM/FM/STEREO FM RECEIVER-Slide potentiometers and pushbutton controls are "in" according to the Olson Electronics RA-300 stereo receiver. Measuring only 5 inches in height, the RA- 300 is a nicely styled, 250 -watt (total), all solid-state unit featuring ceramic fixed-tuned i-f's, four IC's, and a FET FM front end. Slide potentiometers are used for the right/left volume and tone controls. Pushbuttons control the programming, speaker switching, filters, tape monitoring, loudness, muting, etc. The manufacturer claims a frequency range of 15 to $25,000 \mathrm{~Hz}$, capture ratio of 2.5 dB , and an FM separation of 35 dB .

Circle No. 78 on Reader Service Page 15 or 115

TOMPKINS WIRELESS BROADCASTER-A new version of an old trick is being marketed by Herbert Salch \& Co. It's a "wireless broadcaster" operating within the realm of Part 15 of the FCC Rules \& Regulations. Available in either of two models (65 and 76), it takes its input from the speaker leads of a hi-fi system, TV receiver, CB transceiver, etc., and radiates a limited-range AM signal between either $640-660 \mathrm{kHz}$ or $750-770 \mathrm{kHz}$. The units are solid-state and may be battery operated or powered by an optional extra-cost rectified ac supply. A unique feature is the avc circuit that prevents over-modulation of the AM carrier from the speaker connection. Range with the antenna supplied is about 100 ft .

$$
\text { Circle No. } 79 \text { on Reader Service Page } 15 \text { or } 115
$$

FISHER 4-CHANNEL STEREO RECEIVER-Expressing the firm conviction that 4 -channel is the hi-fi of the future, Fisher Radio has introduced its 701, a 4-channel, 250-watt (total) music power stereo receiver. Solid-state with 14 IC's, the 701 can be used either as a conventional 2-channel stereo receiver or as a 4-channel tuner/amplifier for tapes, records, and broadcasts with a rating of 40 watts rms/channel. The user has numerous programming options with the 701, including: remote control speakers for all four channels, AutoScan FM electronic tuning (using varactor diodes), simulated concert hall acoustic conditions using all four speakers on 2-channel material, high
 filtering of front and rear speakers, etc. There are the usual provisions for loudness compensation, tape monitoring, headphones, AM broadcast band reception, channel reversing, muting, etc.

Circle No. 80 on Reader Service Poge 15 or 115

TECHNI-TOOL DESOLDERING PUMIP-One-hand operation is the major claim for the imported Techni-Tool Inc. T-2 Desoldering Pump. Built in an aluminum housing, the T-2 can be primed using your thumb and released by your index finger. There is no external plunger so this hazard is removed from the lab bench. Tefion replaceable tips are available from the distributor. Cleaning of the T-2 is easy since it is easily disassembled into 3 separate parts.

Circle No. 81 on Reoder Service Page 15 or 115

VICTOREEN RADIATION METER-With so many of the populace worrying about color TV receiver radiation it's nice to know if you're being zapped or not. To detect both X-ray and gamma radiation, Victoreen Instrument Division of VLN has announced its Moclel 499 VIC-CHEK with a range up to 1000 counts per minute. Radiation is admitted through an aluminized Mylar window to a Gei-ger-Mueller counter tube with organic quenching. The counting circuit is battery operated and the small (1 lb) handheld instrument has meter readout.

Circle No. 82 on Reoder Service Poge 15 or 115

PANASONIC PROFESSIONAL TAPE DECK - Some fairly flamboyant claims are made for Panasonic's RS-736 Professional Tape Deck. However, this much seems to be obvious: the RS-736 is a 3 -speed deck ($15,71 / 2,3 \% \mathrm{in} . / \mathrm{sec}$) with slide potentiometer recording and output level controls. Both sound-on-sound and sound-with-sound recording is possible due to the variety of intermixing and special effect controls. The user can also select the proper oscillator bias for optimum signal-to-noise ratio at each recording speed. It also has a 4 -digit counter, pause control, walnut wood-style enclosure, and the Panasonic "hot pressed ferrite" tape heads.

Circle No. 83 on Reoder Service Poge 15 or 115

HOULE FAST-ETCHING KIT-If you want to speed up your small $P C$ board etching, investigate the new process offered by Houle Manufacturing Co. A trial kit is available containing ammonium persulfate, 25 square inches

NEW PRODUCTS

CONTINUED FROM PAGE 23

of one-sided copper board, a role of black tape and strips of donuts and teardrops, plus a special bottle of catalyst. The latter is said to speed up the etching process so that a board is ready to be rinsed in 3 to 5 minutes.

Circle No. 84 on Reader Service Page 15 or 115

LITTELFUSE REPLACEMENT COILS-In an attempt to broaden its marketing base, Littelfuse, Inc. has entered the peg-board replacement r-f. coil and i-f transformer business. See-thru packages are being distributed to stores to provide a variety of coils and transformers. Each coil is packaged with a wiring diagram and i-f transformers are packaged with pin connection diagrams and a plastic hex alignment tool. The manufacturer claims that these coils and transformers will be "universal" as replacements and can often be used by the hobbyist and experimenter requiring pre-determined inductances and tuning ranges.

Circle No. 85 on Reader Service Page 15 or 115

MOSLEY 80-METER KIT-Any ham using, or contemplating installing, the Mosley Electronics, Inc. Model RV-4C vertical should know that a $75 / 80$-meter conversion kit is available to make this popular antenna tune all 5 shortwave ham bands. The kit is designated RV-8C and consists of a loading coil, capacitor tube and a trombone matching section. The builder must also install a suitable length radial (not supplied) to enable the antenna to work efficiently against ground. The power rating on 80 meters is 750 watts $A M$ and $C W$, or 2 kW PEP SSB input to the final amplifier.

Circle No. 86 on Reader Service Page 15 or 115

MARANTZ STEREO POWER AMPLIFIER-If you want plenty of stereo power at practically no distortion, you will probably be satisfied with the Marantz Co., Inc. Model 32. With a frequency response in the audio spectrum of plus or minus 0.25 dB , the solid-state amplifier has a continuous rms power output rating (both channels driven) of 120 watts into either 4 or 8 ohms and 60 watts into 16 ohms. This is equal to an IHF tested rating of 180 watts into 8 ohms or a music power rating of plus or minus 1.0 dB of 240 watts into 8 ohms . The Model 32 is loaded with protective features for turn-on stabilization and current limitation. A walnut cover is
 available as an option. There is a 3-year warranty.

Circle No. 87 on Reader Service Page 15 or 115

ADVENT UTILITY LOUDSPEAKER-If you want to save $\$ 20$ on a stereo installation, you can now obtain a utility version of the Advent Corp. two-way speaker system. The saving is in the enclosure exterior which, in the utility version, is walnut-finish vinyl with a neutral colored grille cloth. The Advent speakers inside remain
(continued on page 26)

Our new ultrasonic Crime Alert(1) alarm.
It catches intruders flatfooted. With invisible, silent, unavoidable ultrasonic waves.
Just plug it in ... no complicated installation. Any movement within its range triggers its piercing scream . . . accessory outlet lets you plug in lights, siren, or other device.
It's the first really sophisticated electronic warning device available to consumers in its price range. And no wires, lightbeams, or anything else to see and get around.
It's the perfect, low-cost (only $\$ 89.95$) intruder warning for homes, stores, industry, plants . . . anything you want to keep safe.

> MALIORY

MALLORY DISTRIBUTOR PRODUCTS COMPANY
a division of P. R. MALLOITY \& CO. INC
Box 1658. Indianupolls, Indiana 40200: Telephone: 317-636-5:353

NEW PRODUCTS

CONTINUED FROM PAGE 24

the same-a particularly unusual woofer with an effective cone diameter of about $71 / 2^{\prime \prime}$ and a direct radiator tweeter. The enclosure measures $141 / 4^{\prime \prime} \times 251 / 2^{\prime \prime} \times 111 / 2^{\prime \prime}$. The manufacturer recommends a minimum amplifier rating of 20 watts rms per channel for good performance. The Advent speaker has been getting rave reviews in the stereo press. The system was designed by Henry E. Kloss, co-founder of AR and later of KLH.

Circle No. 88 on Reader Service Page 15 or 115

DIALALARM SECURITY SYSTEM-If you worry about burglaries, power failures, or personal safety, it would be worth your while to investigate the Mark X system offered by Dialalarm, Inc. Principal ingredient in the new system is a tape cassette player that has been programmed to transmit a recorded message over the telephone lines. The self-contained system dials the number and then repeats the message several times to insure correct interpretation. The cassette player is activated by any of the usual fire, water, or theft sensors employed in business and home protection systems.

Circle No. 89 on Reader Service Page 15 or 115

PIONEER ELECTRONIC CROSSOVER-Electronic crossovers, popular hi-fi items in the late ' 50 's, are coming back in style. Usable only between separate component stereo systems (preamp separate from power amplifier) Pioneer Electronics U.S.A. Corp. has just announced its Model SF-700 crossover. This unit divides the audio spectrum into three discrete bands with volume level adjustments from the front panel. The crossover frequencies may be selected by the user. The lower to midrange crossover can be at $125,250,500,700$, or 1000 Hz ; midrange to upper at $1000,2000,4000,6000$, or 8000 Hz . Transition between ranges can be set at 6,12 , or 18 dB per octave. A center channel woofer output is also available. Insertion loss and distortion are reported by the manufacturer to be extremely low.

Circle No. 90 on Reader Service Page 15 or 115

VECTOR BREADBOARD IC SOCKET-Anyone working in experimental logic circuitry will probably appreciate the new 570F Vector Electronic Co., Inc. breadboard IC socket. Designed for $12-$ pin TO- 5 IC's, the breadboard socket has spring-loaded pins (6 to a side) that permit up to 4 connecting leads to be temporarily attached to the IC. The 570F also has two pins mounted on the bottom of the socket plate that can be press-fitted into an "AA" pattern Vectorboard with $3 / 32$ " holes. The spring pins are numbered to correspond to the TO-5 lead numbering.

Chrle No. 91 on Reader Service Page 15 or 115

If you need a fishing rod look else. where.
Antennas are our only business. These communications antennas, the first and only complete fiber glass line designed from the manufacturing equipment on up with one idea in mindthe rugged, varied environment and special requirements of mobile twoway radio.
Nobody makes anything like them. Nobody even makes the machines they're made on. We designed our own.

Why A/S fiber glass?
Antenna Specialists fiber glass has all the advantages, none of the failings of conventional fiber glass materials:

- Perfect elasticity-bend one and it will return to its exact vertical position.
- Super strength-stronger than brass, aluminum, even most steels.
- Impervious to corrosion-and positively will not fade or deteriorate under most intense sunlight, even ultraviolet.
- Will not split or run - Exclusive "Armorweave" material contains much more fiber glass, woven in both directions to resist blows.

White-hot new designs, features!
Entirely new, contemporary styling and features make this the most beautiful and versatile line you've ever seen. Like the slim and elegant new tapered spring that seems to flow right into the slender tapered whip...the quick-disconnect joints that make full length whips practical...like the ingenious new tuneable whip-tip that allows instant VSWR adjustment with a twist.

the antenna specialists co.
Divisior of Allen Electric and Equipment Co 12435 Esciid Avenue, Cle:o and. Ohio 44106
 EXPORT: 2200 Shames Drive Nes-bury, L. I., New York 11690 CANADA: A. C. Simmonds \& Sons Lid.

Now it costs less to own the best VOM You need.

* Inexpensive Quality †Optional Distributor Resale Price

REת

The best you need is the new solid-state RCA WV510A Master VoltOhmyst ${ }^{\text {® }}$. The most functional VOM we've ever produced, the 510A has all the features you'll ever need no matter what your requirements may be.
And we've added some extra features you won't find in any competitive VOM, at any price...features designed to make your work easier, help you get the job done faster.
For example: RCA WV-510A operates from batteries or AC. Remove the detachable AC line cord while you're taking a measurement and the batteries take over immediately without a flicker of the pointer. And you'll get maximum life from the batteries because they're always on trickle charge during AC operation. Stability? Switch from range to range and watch a whole series of measurements without constantly zero-adjusting the meter.

Some statistics:
Current:
0.01 milliampere to 1.5 amperes in 8 ranges.

Resistance:
0.02 ohm to 1000 megohms in 7 ranges.

DC Volts:
0.01 volt to 500 volts in 8 ranges.

AC Volts:
0.2 to 1500 rms AC volts in 7 ranges plus peak-to-peak voltages of complex waveforms.
21 megohm resistance on all DC ranges.
And it's only $\$ 128$, \ddagger complete with DC/AC ohms probe and flexible shielded input cable with BNC connector, and removable AC line cord.
Some statistics! For complete details, contact your local RCA Distributor.
RCA|Electronic Components|Harrison, N. J. 07029

BY THE TLAE World War II ended in 1945, the wartime shortage of home radio and phonograph products had beeme acute. Even radio experimenters were hampered by the shortage of parts, but that didn't stop some of them from tinkering with a concept they called "high fidelity." What could have stopped them cold didn't happen until a month after the war ended.

That was a report ${ }^{1}$ by Chim and Eisenberg in the Proceedings of the $I L E$, describing the results of a study to investigate the tonal spectrum preference of radio listeners. An audience lad been given a choice of three frequency ranges to choose from: narrow ($150-$ 3500 Hz), medium ($100-5000 \mathrm{IIz}$), and wide ($50-10,000 \mathrm{~Hz}$). Surprisingly, most of the listeners chose the narrowest band. In fact, they continued to choose narrow-range sound even after they were told that it was "low fidelity."
Professional musicians listening to classical musie pieked the low-fi sound by an even
greater margin than the average listener. Among the musicians, 73% chose narrow range, while only 5% liked the wide range and 22% were undecided.

For hi-fi fans, that report was a double whammy. The study purported to fix the "ideal" frequency range for the recording and broadcasting industries. What good was it to build wide-range hi-fi amplifiers and speaker systems if the frequency response of records and radio broadeasts were to be restricted?

However, there wasn't much to be criticized in the experiment. The qualifications of the investigators were impercable. One, a consultant to the Office of Scientific Research and Development, with extensive experience in broadeasting, had been associated with M.I.T. and Harvard. His colleague was a professor of psychology. Their andio equipment was the best available-flat from 40 to $10,000 \mathrm{~Hz}$ with "supposedly" low measurable distortion. The speaker system used was coaxial with a multicellular horn for highs; folded horn for lows.

Frequency responses used in the Chinn and Eisenburg tests. Most people preferred the narrow band which rolled off at 3500 Hz . (See reference 1.)

The investigators had kept record noise to a negligible level by using original master recordings and playing early only one time. To double check the results with records, a live network broadeast of a 29 -picec orchestra with a 14 -voice female chorns was monitored in the listening room for some of the tests. Again, the frequency range for the medium and narrow bands was altered by an electronic (single-section band-pass) filter inserted in the system. And the listeners liked the filter.

Highs Are for the Birds. If the study threw a wet blanket over hii-fi, it wasn't the first one. In 1944, O. J. IIanson, clicf engineer for one of the major broad asting networks questioned the desirability of high fidelity. ${ }^{2}$ IIe suggested that frequencies above 10,000 Hz were good only for somend effects: nonmusical noises. such as key jingling, handclapping, and resin squeaks. Anyway, he said, the jokes of a favorite comedian were just as: funne when heard on a ralio with a $200-$ to-$3000-1 \mathrm{Iz}$ range as on a wide-range sistem.

Those who argued against a wide response on the grounds that it was impractical had many reasons to cite. They said that a listener would have to sit directly in front of his speaker because if lee were 45° off the axis, the response would be inadeguate at frecpuenrices as low as 3000 If\%. Crities also noted that backgromel noise increased along with bandwidth and that the extension of high-frequen(y response berond $5000 \mathrm{IL} \%$ on A.I radios would only result in "monkey clatter" due to the $10-k i \mathrm{z}$ spacing of radio stations.

Such were the views of the "establishment."

It was hardly smprising, then, that many of the first post-WWII radio receivers were built on the same chassis layouts as the last prewar models. The ceonomic climate of wartime price fixing and high demand was also partly to blame. But a scientific study which showed a one-sided preference for low-fi musie discouraged all but the most adventurons manufacturers.

Low-Fi Reigns Supreme. And so the console A.IT radio was still king of the mountain, or at least of the American living room. Eighteen million lad been manufactured; the latest of them being superhets, with a pair of pushipull pentotes: in the output stage. The power output may have been listed in the tube manual at 8 to 10 wattis; but it was usually considerably lesis than that, depending on how much distortion one would tolerate. A small output transformer coupled the outpnt tubes to a 10- or 12 -incli electromagnetic stiffconed speaker, mountel in the lower section of the open-hack cabinet. That arrangement producel a booming resmance in the $200-\mathrm{Hz}$ region that almost masked the absence of fundamental bass resiponse under about 100 IIz. The almost total lack of either clectrical or mechanical damping on the speaker permittel the cone to vibrate after a signal lad ended and added the word "hangover" to onr audio vocabulary.

Sometimes the radio amplifier was fed by a $78-\mathrm{r} / \mathrm{min}$ recorl player whose massive tone arm carried a crystal piek-up. At the end of the cartridge was a "chnck" or set serew that held the stylns, which was ealled a needle but looked like a brad nail. People who were fussy about record wear could substitute a cactuis needle, which killed what little high-f fequeney response might have escapel the other equipment.

Those were the "components" of a home musie system; commercial sound systems were not much better. An investigation by Fagleson and Faglesson in 1946^{3} showed that, when listencrs tried to identify musical instruments heard over a p.a. system, the results were wihd guesses. In a test involving 3 listeners, 22 of them musiciens:, the one who got the best seore identified the instrument correctly less than 40% of the time. And he wasn't one of the musicians. In fact, hed had no musical training at all.

The Chimn-Eisenberg study clearly backel up the enginecr:s who had argued for a "sensible" frequency range, and against hi-fi. But when the paper was read calcefully, some okd
comparisons emerged. For example, when the professional musicians listened to male speech, they showed a preference for widerange reproduction. Another curiosity: TWhy did listeners prefer a higler sound intensity for speech than for music? This was a suspicious reversal of the normal difference in sound intensity for live speech and live music.

Fortunately for the future of hii-fi, some readers were skeptical of the results. One of these was Harry F. Olson. Born in MIt. Pleasant, Iowa, Olson had received his $\mathrm{Ph} . \mathrm{D}$ at the University of Iowa in 1928 and had gone to work for RCA that year. Six years later he was placed in charge of acoustical research for RCA.

As Olson analyzed the conclusions of the controversial paper, he decided that there could be three possible explanations for the results. The first two were:

People were so conditioned to a narrow frequency range from listening to the radio that they accepted it as natural.

Musical instruments are improperly designed. They should be redesigued to eliminate the undesirable overtones. Olson was offcring these suggestions to

Now retired, Dr. Harry F. Olson had a long, distinguished career with RCA. Holder of numerous patents, Dr. Olson spent many years developing a phonetic typewriter. Here he is speaking into the microphone connected to an early model of his typewriter. Capacity of this model was limited to 100 speech elements; it was developed before the advent of solid-state components which eventually reduced the physical size and increased the speech memory capacity. Research work on the speech typewriter is still taking place although there are reportedty many unsolved problems.
cover all the possibilities. He knew that the professional musicians should lave had no difficulty choosing what was the most natural sound. And as for recognizing musical instruments, stripping the overtones would rob each instrument of its individuality. A violin, for cxample, would lose its gutty string tone and sound somewhat like in flute. One might as well write music for a battery of sine-wave generators!

The third possibility? Olson said, "the distortions and deviations from true reproduction of the original somud are less objectionable with a restricted frequency range."

But how could lie prove his suspicion? If distortion were the demon, his problem was to design an experiment that would eliminate distortion. His solution wa- simple.

If distortion in amplitiers and speakers could not be eliminated, he would bypass 1945 electronies and use live music. This time "live music" would mean exactly that-no microphone, no amplifiers, and no speaker system.

A Real Acoustical Filter. Olson's background in acoustics served him and the cause

Acoustical filter, designed by Dr. Olson and John Preston, was placed between live crchestra and audience. When filter was open as shown here listeners heard the full frequency range.
of high fidelity well. He and Jolm Preston, a member of the techinical staff at RCA Laboratories, designed an acoustical filter to place between a live orchestra and an andience. The filter was made by properly spacing 3 sheets of perforated metal. The holes in the metal shects provided a reactance (or inertance) to the vibrating air partieles that increased with the frequency of vibration. The trapped air volumes in the two sections of the filter, on the other hand, provided a reactance that de-
creased with frequeney, tending to absorb the vibration of the particles. By careful choice of hole size in the metal sheets and air volumes (by spaciug the sheets) Olson was able to obtain a cutofe at the desired frequence. He selected the eutoff point to correspond to the high-frequency response of "ver? good" radios and phonographe of that time. The cutoff point was 4000 Hz ; however, as defined by radio and phonograph terminology, the filter was called a $5000-\mathrm{Hz}$ low-pass filter.

Floor plan of room for live acoustic tests is at leit. Sectional view of highopaśs acoustical filter is in. center and électrical network equivalent is shown at right. (See reference 4.)

With filter in position shown here, frequency components above 5000 Hz were eliminated. The lever at left controlled filter louvers to permit quick changes in frequency response.

Olson designed the filter mathematically, then checked its performanee by aetnal measurements. The result was a sharp cutoff filter that worked the way he had hoped. "A snare drum," said Olson, "seemed to be an entirely different instrument." ${ }^{4}$ And the exmbals, instead of having the usual shimmering resonance of thin disks, sounded as if they were " $1 / 8$ inch in thickness."

But Olson was an unusually keen listener, with years of experience in the science of
acousties. Which sound would the average bnyer of records and ratios prefer? To answer that question, Olson conducted an experiment involving 1000 listeners.

He installed the filter aeross the corner of a room that was $20^{\prime \prime} \times 24^{\prime}$ and $91 / 2^{\prime}$ high. The dimensions of the romm were no aceident. They were selected to approximate the size of a typical living room, since the results would be used by engineers to design equipment for use in living rooms.

At left is frequency-response characteristic for the acoustical fixter used in Dr. Oison's tests. At right, bars indicate the listeners' frequency range preferences. (See meference 4.)

Abstract

Audio section of a typical pre-hi.fi radio. Lettered sections indicate points where frequency response was restricted: A-small coupling capacitor reduced hum by rolling off bass. E-pentode output without feedback produced distortion and inadequate speaker damping. C-plate capacitor served purpose of maintaining proper load on output tube but knocked down high-frequency response. D-small transformer limited low-frequency response; its leakage inductance cut highs. E-electro-magnetic speaker had limited response; stiff cone and poor baffling cut lows; large, straight cone gave poor high-frequency and polar response.

Belind the filter. a small orchestra-piano, trumper, violin, clarinet, contrabass, drums, and traps-was assembled. A somed-transparent contain prevented the andience from seeing the position of the filter. Then Olsom assembled his listeners: chemists and gardeners. doctors and farmers, secretaries and electri-cians-anyone who was available as worker or visitor at R(RA Laboratories. The oreloestra played and A-B tests were made, the filter rhanged cerere 15 seconds during each number. For different tests, the letters A and B were reversed to prevent the results from being skewed by letter preference. The listenems made their choice, and added comments if they desired.

The results of the experiment produced a reversal of all previons studies. It was a striking virtory for the eoncept of high fi-

References

${ }^{1}$ Howard A. Chinn and Plilip Eisenberg, Procrealings of the I.R.E.. Yol 33. Sept. 1945. piot, "Tonal Range and Souml lutensity Preferenees of Broadeast Listeners."
${ }^{2}$ O. J. Hanson, Elcetronics. Yol 17. Aug. 1944, p 130, "'omments on ligh Fidelity."
${ }^{3}$ ITalson V. Eagleson and Oran N. Eagleson, Journal of the Acoustical Socity of America. Mar. 1947. "Iltentification of Musical Instruments When Heard Directly. Over a luhlic Address System."
${ }^{4}$ Harry F. Olson, Journal of the Acoustical Socirty of Amrrica. July 1947, p 41, "Frequency Range l'refernier for speech and Music."
delity. A strong majority, 69% of the listeners, preferred full-frequenco-range hi-fi, compared to 31% who voted for the low-fi music.

But there was a suspicion that even some of the minority who didn't like the full-frequencerange may have been reacting to something otlee than sound quality. Beranse of the small room, Olson could not supply classieal musie devoteses with a full symphony orchestra. Some of them added negative remarks about popular music to their votes for narrowrange sound.

Olson also disproved anotler belief held by the broalcasting industry: that the product of the upper and lower limits of the reprodneed frepucner range should always equal about 500,000 in order to insure proper balance between highs and hows. He fomed that his listeners did not approve when lie eut off the bass at 100 Hz to balanee the high-frequency cut-off at $5000 \mathrm{II} \%$.
Tests on specel produced comments that the restricted frepuency range produced "mufflel" sperell that was not as intelligible as the full-range speecel.

Olson's experiment showed that previons workers who had attempted to find the "ideal" frecueney range for music reproduction hat been working in the dark. Evidently his third suggestion, that distortion was less objectionable with a narow frequeney range, was eorrect.

Get the Distortion Out. "Distortion was inlierent in the phonographs and radio receivers of that clay," Dr. Olson said recently. (Comtimued on page 117)

HIGH-QUALITY, LOW-COST

MINIATURE DIGITAL VOLTOHMMETER

This is an up-graded version of the original Popular Electronics "Low-Cost Digital Voltohmmeter" that appeared in our December 1968 issue. Assembly has been eased, accuracy and stability improved, and the instrument may be constructed for a dollar outlay of less than the 1968 prototype. Detailed specifications appear on page 45 . Full assembly details are published in this issue.

IT ISN'T OFTEN that you see a small, compact digital voltolmmeter with Nixie ${ }^{(1)}$ tube readout that doesn't cost at least several hundred dollars. The "Mini-DVID" deseribed here is a seven-range, high-impedance digital
voltolmmeter with 1% accuracy that can be built for about the cost of a better-grade analog multimeter. It nses $21 / 2$-decade Nixietube numeric display to indicate-brightly and unambiguonsly-any d.c. voltage from 10 millivolts to 200 volts or any resistance value from 1 to 200,000 olms. It has internal self-calibration and zeroing.

The Mini-DVAI can be assembled in its own case or the internal electronies can be used as a 0-199 digital comnter or panel meter to indicate digitally amy quartity that can be converted into a $0-2$-volt d.c. signal driving a 1-megolum load. Complete teclmical specifications are given in the Table. The instrument consists of a comnter module, a power module, and some ease-momnted controls and components.

10 Reasons why RCA Home Training is

your best investment for a rewarding career in electronics:

1LEADER IN ELECTRONICS training

When you think of electronics, you immediately think of RCA...a name that stands for dependability, integrity and pioneering scientific advances. For over a half century, RCA Institutes, Inc., a service of Radio Corporation of America, has been a leader in technical training.

2 RCA AUTOTEXT TEACHES ELECTRONICS FASTER, EASIER, ALMOST AUTOMATICALLY

Beginner or refresher, AUTOTEXT, RCA Institutes' own method of programmed Home Training will help you learn electronics more quickly and with less effort, even if you've had trouble with conventional learning methods in the past.

2 thousands of well paid jobs ARE NOW OPEN TO MEN SKILLED IN ELECTRONICS

RCA Institutes is doing something positive to help men with an interest in electronics to qualify for rewarding jobs in this fascinating field. Every ycar, literally thousands of high paying jobs in electronics go unfilled just because not enough men take the opportunity to train themselves for these openings.

WIDE CHOICE OF CAREER programs

Start today on the electronics career of your choice. On the attached card is a list of "Career Programs", each of which starts with the amazing AUTOTEXT method of programmed instruction. Look the list over, pick the one best suited to you and check it off on the card.

5 specialized advanced training

For those already working in electronics or with previous training, RCA Institutes offers advanced courses. You can start on a higher level without wasting time on work you already know.

PERSONAL SUPERVISION THROUGHOUT

All during your program of home study, your training is supervised by RCA Institutes experts who become personally involved in your efforts and help you over any "rough spots" that may develop.

7 VARIETY OF KITS YOURS TO KEEP

To give practical application to your studies, a variety of valuable RCA Institutes engineered kits are included in your program. Each kit is complete in itself. You never have to take apart one piece to build another. At no extra cost, they're yours to keep and use on the job.

8
FROM RCA INSTITUTES ONLY TRANSISTORIZED TV KIT, valuable oscilloscope
Those enrolled in RCA's television course or program receive complete transistorized TV Kit. All students receive a valuable oscilloscope-both at no extra cost and only from RCA Institutes.

0 convenient payment plans
 RCA Institutes offers a unique

 tuition plan that lets you progress at your own pace. You only pay for lessons as you order them. You don't sign a contract obligating you to continue the course. There's no large down-payment to lose if you decidenot to continue. However, if you dcsire, RCA Institutes also offers a convenient monthly payment plan.

10

RCA INSTITUTES GRADUATES GET TOP RECOGNITION
Thousands of graduates of RCA Institutes are now working for leaders in the electronics field; many others have their own profitable businesses. This record is proof of the high quality of RCA Institutes' training.

CLASSROOM TRAINING ALSO AVAILABLE

If you prefer, you can attend classes at RCA Institutes Resident School, one of the largest of its kind in New York City. Coeducational classroom and laboratory training, day and evening sessions, start four times a year. Simply check "Classroom Training" on the attached card for full information.

JOB PLACEMENT SERVICE, TOO!

Companies like 1BM, Bell Telephone Labs, GE, RCA, Xerox, Honeywell, Grumman, Westinghouse, and major Radio and IV Networks have regularly employed graduates through RCA Institutes' own placement service.
SEND ATTACHED POSTAGE PAID CARD TODAY! FREE DESCRIPTIVE BOOK YOURS WITHOUT OBLIGATION! NO SALES̉MAN WILL CALL!

All RCA Institutes courses and programs are approved for veterans under the New G.I. Bill.

RCA INSTITUTES, DEPT. 694-009-0 320 West 31st Street, New York, N. Y. 10001

Accredited Member National Home Study Council

Construction of Oscilloscope.

Temperature experiment with transistors.

Counter Module Construction. Tlie selmatic of the comnter module is shown in Fig. 1. A printed cirenit board is essential for this module. You can purchase one as mentioned in the Parts List or youl ran make your own using the etching gulde shown in Fig. 2 and the drilling instructions in Fig. 3.

In laying out the components as slown in Fig. 4, make sure that the jumpers (\#2t
wires) are positioned exactly as shown and that insulated sleeving is used where it is needed.
Note particularly the orientation of the semiconductors, diodes, IC's, ete. There are three different kinds of basing involved on the transistors used. All transistors "point" the same way, except for Q6. The IC's are identified by a dot and notel. Note that IC5

PARTS LIST COUNTER MODULE

CI-0.I- $\mu \mathrm{F}, 50$-volt Mylar capacitor
C2-1000-pF polystyrene or mica capacitor
C2A-0-800-pF polystyrane or mica capacitor as needed (see text)
C3-100- F , 50 -volt eleatrolytic capacitor
C4- $1-\mu F, 10$-volt electralytic capacitor
C5-0.005- μ F disc ceramic capacitor
C6-0.I- $\mu \mathrm{F}, 10$-valt disc ceramic capacitor
DI,D6-IN4734 5.6-volt zener diode (do not substitute Dl)
D2,D3,D5-Silicon conquter diode (IN914 or similar)
D.4-27-volt, l-uatt zener (IN4750 or similar)

ICI-Quad tuco-input gate (Motorola MC724P)
IC2,IC3—Decade counter (Motorola MC780P)
IC4-Dual JK Flip-fop (Motorola MC791P)
IC5,IC6-Low-level I/IO decoder (Motorola MC770P)
Q1-Transistor (Motorola MPS6521, do not substitute)
Q2-Transistor (Motorola MPS6523, do not substitute)
Q3-Q6-Transistor (Motorola MPS2923 or 2N2923)
Q7-Transistor (Texas Instruments T1S43, do not substitute)
Q8-Q29-Transistor (Sprague 2N3877, do not substitute)
Rl-l0-megohm
R3-3.3-megohm
R4-68-ohm
R5-2700-ohm
R6-680,000-ohmL
R7-100,000-ohm:
R8_R23,R24,R27-33,000-ohm All resistors
R9.R20-4700-ohm
R10,R2I,R22-6800-ohis
Rll-330-ohm
R17—3300.ohm
R18,R28,R29—1000-ohrs
R19—12-ohm
R2.5,R26-68,000.ohm
R2-10,000.ohm, PC-mount linear potentiometer
R12-565,000-ohm, I\% precision resistor
RI3-60,400-ohm, 1% precision resistor
R14- 5900 -ohm, 1% prerision resistor
R15- 590 -ohm, 1% precision resistor
R/6-250-ohm, PC-mount linear potentiometer
VI,V2-Nixie tube (Burroughs B-5750)
V3-Neon bulb (Signalite A-26I)
Misc-Printed circuit terminals (21, optional); \#24 solid wire for jumpers; insulated sleeving; snap-in mounting spacers (8); solder; etc.
Note-The following is available from SouthHest Technical Products, Box 16297, San Antonio, TX 78216: etched and drilled PC board, $\$ 6.75$, postpaid, insurance extra.

Fig. 1. The schematic has been broken into two parts. This section contains the volt-age-to-frequency converter, the reset and unblanking circuit, and the ohms constantcurrent source. Circuit continued overleaf.
and ICG go in "upside down" with respect to IC1-IC.a. Also, be careful not to mix up the two calibration potentiometers, 122 and 216. The warning, "Do Not Substitute," on some part.s in the Parts List should be observed since subtle changes in performane may result from apparently reasonable alternatives. Use a low-wattage soldering iron and fine solder to install all components.

The second half of the circuit contains the units, tens, 1 , and overrange indicators. Only the units decade is shown in detail as the tens decade is similar. The overrange indicator is con. nected to terminal marked " X ".

The Nixie indicators maly be mounted either using the plastic basing guide as an insertion aid; or the leads may be ellt diagomally so that progressively shorter leads can be inserted two at a time until the tube is seated. Be careful to have both Nixie tubes vertical wher you finally sulder them in place. Also be
sure that the tube leads are pulled all the way through the PC board; a bent or shorting lead inside the plastic insertion guide can be very diffieult to fix after the tube is soldered in place.

Power Module Construction. The com-

ter modnle reguires 3.6 volts at $400 \mathrm{~mA}, 180$ volts at 5 mA and 30 volts at 35 mA for power. These are prosided by the power modnle which is driven by a power transfomer. The power module (see Fig. 5) has a fullwave center-tapped rectifier for the high voltage and a similar one for the low voltage.
with 30 volts derived throngh a dropping resistor. Watele the diode polarity: and, if different beakdown voltage ratings are used tor the low-voltage diodes, be sure not to interchange them.

While a printed rireuit board is not essential for the power modnle, it is convenient.

Fig. 2. Actual size foil pattern can be duplicated if you are very careful or use photog. raphy. If you don't feel up to it, a commercially made, pre-drilled board is available.

An etching guide and drilling instructions are shown in Figs. 6 and 7 respectively. Components are momed as shown in Fig. 8. Watch the polarities on the diorles and the electrolytic eapacitors. Be certain that $l i 1$ is spaced well away trom the electrolvties since
actual contact can shorten the eapacitor's life.

Assembly. Fonr plastic spacers are used to mount the power supply module over the comiter module (see Fig. 9). The spacers

TECHNICAL SPECIFICATIONS MINI-DVM

Ranges
D.c. volts: 0-2, 20, 200

Ohms: 0.200, 2000, 20,000, 200,000
Range extendable to anything that can be represented by a variable $0-2$-volt d.c. signal.

Input Impedance $0-2$ volts: 1 megohm
(voltmeter) 0.20 volts: 1 megohm
0.200 volts: 10 megohms

Input Current 0.200 ohms: 10 mA maximum (ohmmeter) $0-2000$ ohms: 1 mA maximum
$0-20,000$ ohms: $100 \mu \mathrm{~A}$ maximum
$0-200,000$ ohms: $10 \mu \mathrm{~A}$ maximum

Resolution

Accuracy

Stability

Noise Rejection

One part in 200, any range $\pm 5 \mathrm{mV}, 02$-volt range
± 0.5 ohms, $0-200$-ohm range
Better than $\pm 1 \%$ over most portions of most ranges
Internal calibration with 1.35 volt diode standard
Less than 1 count drift per 20 minutes after 15 -minute warmup
Dual input filter plus fixed phase measurement with respect to power line hum and noise
Update Time

60 measurements per second. instrument integrates input for 8.33 milliseconds and displays for 8.33 milliseconds.
should have shoulder on both ends and suitable holes may be drilled in both PC boards.

The over-all wiring of the Mini-DVAS is shown in Fig. 10. While the photographs show the prototype momed in an $8^{\prime \prime} \times 23 / 4$ " $\times 41 / 4^{\prime \prime}$ two-picec metal enclosure, any other
type of housing may be used, as long as a $21 / 2^{\prime \prime} \times 1^{\prime \prime}$ opening for the readout is provided.
Five-way binding posts, spaced $3 / 4$ " apart should also be provided on thic front panel for input terminals $J 1$ and $J 2$. In addition, holes

Fig. 4. Take your time when installing the components to make sure you insert the IC's and transistors properly. Certain jumpers are insulated to remove the possibility of shorts when all components are installed.

Fig. 5. The power supply is on its own board, with sepa. rate transformer on chassis.

Cl- $20 \cdot \mu F$, 350 -volt electrolytic capacitor
C2,C3-4000- μF, 6-volt electrolytic capacitor C4- $0.1-\mu F, 10$-vole dise ceramic capacitor DI,D2-I-ampere, 50-PIV diode (IN4001 or similar)
D3,D.4-l-ampere, 400.PIV diode (IN 4005 or similar)

R1—5000-ohm, IO-wall resistor
Misc.-Printed circuit terminals (10, optional); mounting hardurare; solder; eic.
Note-The follouing is available from Southwest Technical Products, Box $1629 \overline{4}$, San Antonio, TX $\mathbf{7} 8216$: etched and drilled $P(:$ board, s2.to posipaid, insurance extra.

Fig. 6. Actual size foil pattern for the power supply.

Fig. 7. Drill the power supply board as shown here. Use of PC terminals makes connections easier.
must be made for 12 -position rotary switch $S 1$, polarity reversal switch $S 2$, ralibration and zero potentiometers 722 and $R 1$, and the plastic lens for overrange neon lamp 11 .

The switch specified for $S 1$ has five deeks: the first ($\$ 1 / 4$) determines the position of the decimal point; $S 1 B$ enntrols the ohmmeter curent source; $S 1 C$ and $S 1 D$ provide input scaling and selection. With $S 1$ in the ZERO position, the SW terminal on the counter module is connected directly to the IN terminal. In the CAL position, the SW reference is connected through a 1.35 -volt reference diode (D1) and the ohmmeter cmrent source is switehed to provide the 10 mA required by the reference diode. In the various voltage ranges, fixed resistors are used to provide the required attenuation of the input signal before it is applicel to the comer module.

Fig. 8. Install the power supply components as shown here making sure R1 is away from C2.

HOW IT WORKS

The Mini-DVM consists of two elements: a counter module and a power supply module. The operation of the power supply is straightforward and will not be discussed here. On the counter module there are two principal circuits: the connter and the $21 / 2$-decade display. In the following discussion, reference should be made to Fig. 1 as well as the dia. grams shown here.

The counter circuit is made up of a timing gate generator $/ / C /$, a display unblinker (Q6), a voltage-to-current converter ($Q 1, Q 2$, Q3), a gated oscillator (Q4. Q7), an ohmmeter current source (Q5), and a 1.35 -volt calibration reference sonree.

The timing gate generator takes a splitphase $60-\mathrm{Hz}$ reference from the power line via TI (waveform E) and uses it to drive a set. reset flip-flop in IC: This produces a sharprise square wave that is initially wromded for 8.33 milliseconds and then is positive for 8.33 milliseconds (waveform A).

At the beginning of each measure cycle, the square wave suddenly drops to zero, producing a reset output pulse that "erases" any number that was in the counter and realout, thus resettiny the counter to 000 . At the same time, drive is removed from the mblanking transistor (Q6), which turns the display off. Simultaneously. drive is removed from the gatinus transistor (Q4), allowing the oscillator to operate.

Thus. for the first half cycle. the gated oscillator is allowed to rum and the initially reset counter accumblates the desired 0-199 counts in proportion to the input voltage. On the second half of the rycle. the V / F converter is stopped and the display is umblanked. or turned on. The counter "keeps' the total comnt presented to it on the first half rycle and the display in turn presents it as a visual output.

The time that the gated oscillator is allowed to rum is a constant 8.33 millisponds. The frequency is determined by the input current to the gated oscillator. which in tutm is proportional to the input sipnal voltage. By suitable scaling. the total number of counts per measurement interval is made to relate to the imput voltage. As a result, for example, an input of 1.35 volts produces 135 counts.

The input voltage is applied to impedance matcher Q1 and voltage-to-current converter $Q 2$. The input signal is protected by $D I$ and an input offset compensation is provided by RI and R2. Transistor Q3 is a current sink that constantly removes 100 microamperes of $Q 2$ s collector current to make the conversion process very linear. The zero input current is determined by the front-panel ZERO potentiometer. while the scaling or gain is controlled by the CAL potentiometer and $R 5$.

The gated oscillator performs the current-to-frequency conversion. The output of mijunction transistor Q7 consists of pulses appraring arros R19 (waveform C). Transistor Qt provides the sating that cletermines wheth. ir $Q 7$ is allowed to oscillate. Waveform B can be measured only with a 10 -megohm srope probe.

The display circuit is an improved version of the circuit used in the "Numeric Glow Tube 1)CU" described in Popular Electronics, February 1970.

The first two decades are identical to earh other. They start with a decimal counter (/C2 or $I C 3$) driving a l-of-10 low-level decoder (IC5 or (C6). The decoder drives ten highvoltage transistors 1 Q8-QI7 or Q/8-Q27) which, in turn. drive the Nixie tube.

The overflow counter uses a single dual flipflop to serve both as a 100 -up counter and a $200-1$, overflow latch. Each half drives a neon lamp-the first one aligned with the Nixies to produce a " 1 " and the second mounted on the front panel behind a red "overrange" lens.

The ohmmeter current source is $Q 5$, whose base voltage is fixed by D6 (adjusted slightly by R16) and temperature-compensated by $D 5$.

Emitter resistors are selected to get the four values of ohmmeter current needed $(0.01,0.1$, l. and 10 mA). as well as the 10 mA for the 1.35 -volt calibrate diode. The emitter is left unconnected to disable the current source for the input voltage ranges. A resistance measurement is made by delivering the selected amount of current to the resistor under test and then using the Mini-DVM to measure the resultant voltage drop. This method provides a great convenience over the normally cramped and highly nonlinear ohmmeter scales common to most analog multimeters,

With S1 in any of the ohms positions, the imput is comected directly to the commer module and the olimmeter current sonre is switched to provide the proper current.

The fifth deek of $S 1$ is a snap-action power switeh ($S 1 E$) which turns the power input to the meter on and off.

Power transformer T1 mounts on the bottom of the chassis, behind the selector switeh. while the fuscholder fits on the rear wall of the chassis. After all mechanionl parts are mounted, wire the Mini-DVM together as
shown in Fig. 10. The two modules are attached to the bottom of the chassis using four plastic supports.

Put four non-skid rubber feet on the bottom of the chassis, making sure that the bark ones are directly along the rear wall. This: permits standing the case on the swivel handle. The handle is fabricated as shown in the photographis and should be attached to the -hatsis so that it can swing and be nsed either as a carrying handle or a support.

A polarized orange filter should be glued

with eposy to the back of the display opening. The filter oriontation is critical and the filter should be installed to provide the darkest possible interior when the interior is illmminated and viewed from the outside.

Checkout and Calibration. With the sclector switch off, plug the Mini-DVAE into a $117-$ volt, $60-\mathrm{Hz}$ power somrc. Now place the selector switch on ZFRO and note that the two Nixie tubes glow with some number. If the instrument has been properly wired, varying
the ZERO control should cause the display to vary from 0.00 to about 0.40 with the 0.01 indication at about the middle of the range control. The proper setting for the ZERO control is just before the numeral one is lit on the right-hand side.

Put the sclector switch on CAL and note that the Nixies and the neon 1 indicator are all lit. With the selcetor switch in this position, adjusting the CAL control can rary the reading by about 60 counts, depending on the particular mit. If the operation seems nor-
mal, add up to 800 pF of capacitance as needed across $C 2$ (on the counter PC board) until 1.35 can be obtained at about the midpoint of the rotation of the CAL potentioneter. (Be sure that the zero adjustment has been properly set previously.)

The input offset potentiometer (R2) on the counter module is set next. Put the selector switch on ZERO and adjust the front-panel ZERO control to obtain an indication of 0.01 on the display. Place the selector switel on 2V and short the imput jacks together. The display should not change from the 0.01 indication. Remove the short, and, if necessary, adjust the input offset potentiometer (R2) to regain the 0.01 indication. Place the selector switch on ZERO and reset the ZERO control to get a 0.00 display.

Obtain a 1% precision resistor with a valne

Power supply is joined to counter board via plastic spacers. Make sure both Nixies and the " 1 " neon lamp are vertical. Photograph is into viewing plane.

PARTS LIST COMPLETE MINI-DVM

C1-0.47- $\mu \mathrm{F}$, 50 -volt Mylar capacitor (do not substitute an electrolytic)
DI-1.35.V, $10 \cdot \mathrm{~mA}$ reference diode (Motorola MR2361)
F1-0.5-ampere fuse and fuseholder
II-Neon lamp and overrange lens (A261 or $N E-2$)
J1,12-Banana jack or 5 -way binding post (one red, one black)
MI-Power module
M2-Counter module
RI- 250 ohm linear poteniometer
R2-1000-nhm linear potentiometer
R3- $1.2-$ megohm, $1 / 2$-watt resistor
R4- $102.000-\mathrm{ohm}, 1 \%$ precision resistor
R5— $1000-0 \mathrm{hm}, 1 / 2$-r'all resistor
R6-909.000.ohm, I\% precision resistor
R7-9.09-megohm, 1% precision resistor
SI-Four-pole, ten-position, non-shorting rotary sutitch. with s.p.s.s.t snap switch attached to make on positions 2-10.
\$2-D.p.d.t. slide switch
TI-Transjormer; primary, 117 V ; secondary \#1, 6.3 VCT at 500 mA ; secondary \#2, 270 VCT at 40 mA
Misc.-Case with three-way handle: line cord with strain relief; s/a" knobs (2); 1" kinol; circularly polarized orange viewing filter: rubber feet (4); mounting and stund-off hardware; solder; sleeving; wire; etc.
Note-The following is available from Southwest Technical Products, Box 16297, San Antonio, TX 78216: complete kit of all ahove parts, \#MDVM-K, 869.95 ; postpaid, insurance extra. Any and all individual parts also available.

Fig. 10. The overall DVM showing module inter. connections. This system is to be used on $60 \cdot \mathrm{~Hz}$ power only as the counting circuit will have to be changed for other power-line frequencies.

The two photos above and below show how the DVM is assembled within its low-profile case. The viewing window should be large enough to show the readouts clearly and covered with optical filter as explained in text. The small bracket visible at the rear of the chassis is used to wind up the power line. The averrange indicator is isolated from the display so as to be very eye catching when it comes on.

The various front-end resistors are wired point-to-point directly on the switch. This can be done before the switch is mounted, but be sure to double check the assembly before installation. Keep all wiring short and make sure no part shorts against the metal chassis.
between 1200 and 1400 olms. Using test leads, comect this resistor to the imput jacks. After zeroing and calibrating, place the selector switch in the 2 K position. Adjust the Ohms potentiometer (R6) on the comiter module until the display indicates the exact resistance value (in kiloloms). Potentiometers 1 i: 2 and $R 6$ will rarely, if ever, need re-adjustment.

In using the Mini-DVM, allow a minute or
two for wammp before making auy measurements. Then check both the ZERO and CAL positions of the selector switch and make any necessary front-pancl adjustments. There is in slight interaction between these two coutrols so double check their operation. Calibration of the Mini-DVM can always be checked by switching back to the ZERO and CAL positions of the selector switch. -30-

The handle is optional if the DVM is mounted on a shelf. Otherwise, the handle also serves as a tilting support to make the viewing easy.

BUILDa GATED 100-kHz CALIBRATOR

Deluxe reference

signal generator
 is keyed for

easy identification

This $\mathbf{1 0 0} \mathbf{- k H z}$ calibrator has a rich harmonic output. For easy identification, the calibrator signal is pulsed on and off 0.5 sec., alternately. Maximum stability is insured by sturdy construction. Two IC's are used in the oscillator/ modulator. A single transistor output amplifier permits critical adjustment of the harmonic intensity through the use of an aftenuator potentiometer in the emitter circuit. Zero-beating to WWV is controlled by coarse and fine tuning adjustment. Construction cost (less metal working) is under $\$ 25$.

NUMFROUS FREQUENCY standard or calibrator circuits have appeared in print -some relatively simple, others quite elaborate. The majority of such cireuits gencrate the required hamonies satistinetorily, but few have been really practical in twe.

In addition to generating vigorous harmonics ont to 30 XHz , a really good calibrator should have several important features. First, it should have an attenuator expable of varring the output signal from maximum down to a very low level, and it shonld work
as satisfactorily at 30 MHz as it does at 100 kHz . Second, it should liave available a means of modnlation that can be casily identified (a sime ware is not always casy to recognize on the erowied bands). Third, it should be provided with coarse ame fine frequency adjustments so that very close calibration against WWV can be obtained easily. Fimally, it shoukd be so efficiently and properly shiekled that the ontput signal is inaulible when the attenuator is on maximum and no comnection is made to the "high" output, even if the "alibrator is on top of the receiver. In a very practical sense, this means that leakage must be down at least 60 dB .

The "Reference Signal Generator" described in this article meets all of the above requirements. However, this is not a project for the neophyte; while the instrument is not especially complex, skill in forming and drilling sheet metal parts accurately and a knowledge of r.f. cirruit layout and wiring are essential to assembly.

About The Circuit. Λ schematic and a

Fig. 1. Crystal and IC logic circuitry assure precise frequency control. The Q1 amplifier stage boosts output signal to usable level.

PARTS LIST
B1-Two 1.5 volt D cells connected in series
C1-5-pF variable capacitor with ceramic insulation (Hammarlund Type APC with $1 / 4$ " shaft or similar)
C2-50-pF variable capacitor with ceramic insulation (Hammarlund Type APC with screwdriver adjustment or similiar)
C3-1000.pF polystyrene capacitor
C4-150-pF silver-mica capacitor
C5-50-pF silver-mica capacitor
C6, C7-20- μF, 6-volt miniature electrolytic capacitor
C8- $0.22 \cdot \mu F, 100$-volt Mylar capacitor
IC1, IC2-Quad, two-input gate integrated circuit (Motorola MC824P or HEP570)
J1, J2-Banana jack, one red and one black (or use color-coded five-way binding post)
QI-2N2475 or HEP56 transistor
R6—500.ohm linear-taper potentiometer (0 hm ite Type AB, No. CU5011-DO NOT

SUB.STITUTE)

R1, R2-10,000.ohm
R3-3300-ohm All resistors
$\left.\begin{array}{l}R 4, R 9-4700 \cdot o h m \\ R 5-1000 \cdot o h m\end{array}\right\} 1 / 2-4$ att, 5% tolerance
R7, R8- $22,000-\mathrm{ohm}$)
S1—S.p.d.t. slide or toggle suitch
S2-S.p.s.s.t. slide or toggle switch
XTAL-100.000.kHz frequency standard crys. tal (James Knight No. HI7T)
$1-5^{\prime \prime} x 4^{\prime \prime} \times 3^{\prime \prime}$ aluminum utility box
Misc. $5^{\prime \prime} \times 3^{\prime \prime} \times 1 /{ }^{\prime \prime}$ hardhoard; 2-cell battery holder; aluminum alloy sheet (22 gauge) for subchassis and brackets; small flexible coupling with ceramic insulation; printed circuit board or perforated phenolic board and push-in terminals; two control knobs; four rubber feet; panel bearing; four metal posts; rubber grommet; epoxy cement; puint; \#6 harduare; hookup wire; solder; etc.

block diagran of the eirenit are given in Figs. 1 and 2, respectively. In Fig. 1, $I C 1$ and $I C: 2$ are cpaul two-input gates, while in Fig. 2, cach gate is represcuted as a triangle. The outputs are taken from the apiees of the triangles, while the comections to the bases are the two imputs. Noufunctional inputs in the circuit are gromindel.

In Fig. 2, gates Gi-Cii make np $I C 1$ and
 are part of the aryial ascillator. Feetback

Fig. 3. Capacitors Cl and C 2 mount on three-piece subchassis; note facilities for board mounting.
ocemes thongh the erystal, which is in series with ralibration rapaciten's ('1 amel C2. Rexistors $P 1$ and $R 2$ supply gate input bias, capacitor $C \frac{1}{4}$ is a parasitic suppressor, and capacitor C'3 comples the two gates.

Gates (i.3 and (if operate as a buffer and a driver stage, respectively, for the erystal osrillator. lewistor $R=3$ kegns oscillator loading at a low level. The output of the bufter is roupled diredelle to the input of the driver.

Mondulation is supplicel to the secoud input of both the driver and baffer stages. The modulatiage signal is a sulume wave which kers the Calibator's output on and olf at a rate of one pulsofserond. Since the waseform of the modulation iss symuctriala, output from the (alibrator is on fir 0.5 : erome and off for 0.5 sconnel. This rate is sulfieiently rapid not to be passed casily during carefol tming, yet it is not so finst that it might be mistaken for a CW signal. (The only signal resembling it is the modulation on the carrice of Canalian station (cll.)

Keving is clean and sharp. The ontput of the calibrater is at a very lew level cluring the "key m" intervals, cerei thongh the erystal oscillator operate contimumsly while the instrment is powered. Keving clicks are audible when the attennator is set for maximmm output; and no attenipt is marle to suppress them since they help to identify the calibraton"s sigmal in the presence of QRAI, at which time the output from the calibrator is set at or hear maximum.

The onc-pulse/secomd signal is generated in

Fig. 4. Four tapped metal spacers affix circuit board on top of subchassis. Shield at far right is $33 / 4^{\prime \prime}$ long by $21 / 8^{\prime \prime}$ wide and has a $3 / 8$ "'wide skirt.

Actual size printed cir. cuit board etching guide is shown above, while at right is component place. ment/orientation guide.

symmetrical cross-coupled astable multivibrator, using electrolytic capacitors C 6 and $C 7$. Resistors 17% and $7 ; 8$ supply gate input bias. The ontput from $G 6$ is fed to G^{7} through $R 2$. The output of G 7 is directly coupled to ontput stage (88 , the signal from which is fed to the buffer and driver in $/ C 1$ through $1 / 2$ and R5. Resistor R9 decomples the multivibrator, thereby helping to maintain the symmetry of the modulating signal.

Iligh-speed romputer transistor Q1 operates as an outpht amplifier, comnected in an enitter-follower configuration with the ontput of IC1 direct-conpled to the base. Output attemator potentiometer $\operatorname{li} 6$ is loeated in the emitter cirenit, while the wiper lead couples the signal through ('5 to "high" output jack J1.
"Gate" switeh s1 turns on and off modulator IC2, while S2 is the power switeh. The instrument is powered by 3-volt supply $B 1$ but satisfactory operation can be obtained down to a terminal potential of about one volt. The maximum orerall swing of the ralibrator's output sigual is approximately equal to the supply potential. Hence, the output signal level decreaies as the supply potential lerel deteriorates.

Construction. The calibrator is best built in $25^{\prime \prime} \times 4^{\prime \prime} \times 3^{\prime \prime}$ aluminum ntility box, to one side of which has been epoxy eemented a $5^{\prime \prime} \times 3^{\prime \prime} \times 1 / 8^{\prime \prime}$ piece of hardboard to improve appearames. Before rementing tha hardboarl in place, degrease the flange of the bux with lighter fluid, and when the surface is thoronghly dry, ecment the harthoard in place -do not use a clamp as, mulike other eemente, epoxy hold.s best when it is fairly thick. Allow the eposy to set for at least 24 homs. Then sand all surfaces.

Marchine the holes thromgh the front panel of the utility box, and spray paint the box in the eolor desired. Mosst of the eomponents momen on a small L-shaped bracket which is shown as the basid part of the assembly in Fig. 3. C'aparitor ('1, which is the front-panel frequeney control, momuts on amother L bracked and is compled fo the knob shaft with a simall flexible compling. The caparitor shaft, the insulated compling, and the pancl bushing must be aligned areurately.

Coarse frequency control capacitor $C 2$ mounts on a bracket which also supports one end of the cirenit board. The other end of the board fastens to a W bracket of equal height at the opposite end of the chas:is: Capacitors C1 and ('2 must be insulated from the chassis

Exit holes for J 1 and J 2 and access to C 2 tuning screw must be drilled through rear of utility box. Access hole for C2 must be rubber-grommet-lined.
since nether the rotor nor the stator can be grounded. (A "postage-stamp" type capacitor is not recommended for C2. The APC type shown in Fig. 3 and sperified in the Parts List is much more stable.) When high-cparity components are used for C1 and C2, the latter ordinarily refuires only oceasional resetting.

All of the small components, except C'5 and C\& moint on a $35 / 8^{\prime \prime} \times 21 / 8^{\prime \prime}$ glass-cpoxy printed cirenit board or on perforated board with push-in solder clips. Layont is not especially critical.

Solder Co directly to $J 1$ and $C 8$ across $S 1$. Then solder leals of appropriate lengths (for connections to ($11,(2, S 1, S 2$, and $/ 26$) to the rirenit board before momenting the board on the subchassis with four tapped metal posts as shown in Fig. 4 . Then monnt the subrhassis., securing it to the front pancl with the panel bearing at the top and a single $2-56$ stecl machine serew at the lower ent.

Sulder the leads from the circmit board to U1, C2, $\$ 1, S 2$, and 186 . Note that the learls between Res and the eirenit board should be a twisted pair and shoulel be positioned smoly against the front panel. Note also that the arystal holder should be a printed-efrenit-type which grips and gromeds the crystal's metal casc.

An L-shaped almuimm shicld, monnted on the threated posts seceres the eirenit board to the brackets on the subehensis. The largest dimensionss of the shield slomld be equal to the longest dimensionsi of the cirenit board, and the flange part, which goes toward the front of the chassis, extends in the direction of the rirenit board for a distance equal to the
length of the posts. An L bracket, to support the output jacks, can then be secured to the shield before it is momented in the utility. box.

Run a twisted pair from $R G$ to $J 1$, via $C 5$, and $J 2$. Press these leads up against the circuit board shicld as shown in Fis. 5 .

Mount battery holders for the C cells on a bracket secured to the rear wall of the box. Two holes (see p 57), to provide exits for $J 1$ and $J 2$, and a third hole, rubber-grommetlined, to allow areess for adjusting (': must now be drilled. Finally, assemble the box.

Adjustment and Use. If the calibrator is located at a distance from the receiver, conneet a wire from the instrument's ground post and the ground terminal on the receiver. However, if the calibrator is to stand on top of the metal cabinet of the receiver, a ground connection between the two units will not usually be needed.

Comnect a composition resistor with a value ecpual to the nominal input impedance of the receiver between the calibrator's "high" output jack (J1) and the receivers antenna terminal. If you do not know the receiver's input impedance, chances are that it is about 400 ohms. In any crent, it is not critical; so a +70-ohn composition resistor will probably be satisfactory.

Switch on the receiver and tune it to any of the WWV broaleast frequencies. Set the instruments calibration and level controls to their midpositions, and switel on the calibrator. Gate switch $\$ 1$ should be in the off position. When the WWV earrier is unmodulated (except for ticks), adjust C'2 with an insulated serewdriver (through the aceess hole in the rear of the cabinet) until the beat with WWV is within a few eycles. Then bring the calibrator to zero beat by aljusting the front panel control.

Near zero beat with WWV is hest observel as the "breathing" or very slow rise and fall in background noise the the two signals altermately add and subtract at the receiver's input. This effect is maximum when the signals are of equal sfrength. Simply rotate the Ievel control until the beat is the loudest. It is often adrantageons to switel oft the receiver's a.v.e. and use the manual r.f. gatin control for this step.
Tlie calibrator produces aceurate marker signals at $100-\mathrm{kHz}$ intervals to 30 MHz and beyond. To locate markers, it is generally best to switel off the a.v.e. and switels on the b.f.o. Set the manal r.f. gain control at about midposition initially. Switch on the callibrator and the gate switeh to key the calibrator's output. Keep the Level control turned up lighl during initial trials with the calibrator. Optimm settings of the receiver's r.f. gain and the calibrator's Level controls can be determined when you have become well acruainted with the operation of the calibrator. Too high a setting of the Level control, however, might canse the receiver to block. Pinpoint the exact location of the marker signal with the Gate switele set to the off position.
Alternate markers are at noticeably different levels. This is quite nomal and is, in fact, the nomal eharacteristic of hamonies contained in a sfiliare wave.
If the value of the series resistor between the calibrator and the receiver has been properly selected, it will not be necessary to diseonneet the calibrator when it is not in use. Its presence should produce little or no attemation of incoming signals from the antemia to the receiver.
$-30-$

If care is exercised during the fabrication of the metal parts that make up the subchassis, the project will have a neat, professional appearance.

SOME NOT-SO-PRODUCTIVE RESEARCH
by Fred Ebel

T
HE FORWARD GAIN of the stacked blonde at the door made neon lights out of my eyes. After a series of gulps, I stammered an invitation to come in.
"Are you the radio ham?" she asked in dulcet tones.
"Yes-s-s," I said guardedly, ready to give my lecture on why hams are unjustly accused of TVI. "Why don't we go into the ham shack," I added, sounding more like an old roué than the conservative individual that I am.
"I suppose you're wondering why I'm here," as she looked into my eyes and pinned my biological S-meter.
"I'm Dr. Susan Sweetie from Tell It Like It Is magazine. We deal in the psychology of human behavior and the editors thought it would be interesting to interview a radio ham on just why he is a ham. The local amateur radio club suggested you, and here I am."
"Well, Sweetie-I mean Dr. Sweetie-go right ahead and ask me anything."
She started her casette tape recorder and said, "Now what started you in ham radio?"
"Fascination," I said, looking into her warm brown eyes. "I was absolutely fascinated by the idea that I could talk through the air without wires."
"So, you were motivated by the aura of mystery?"
"Yeah! I guess so."
"Any other reasons for being a ham?"
"Yes. Pride. Radio amateurs are respected." I straightened my shoulders. "It takes ability to pass an FCC code and theory examination."
"Hmmm. Gratification of the ego with overtones of narcissism."
I frowned.
She looked at me as one does at a slow-thinking ind ividual. "Don't be alarmed. The real reasons behind one's actions are often disguised. Now, please continue."
"Well, I think another big reason I'm a ham is because I like to fish."
"A piscatorial complex. How interesting!"
Now she had me with a complex. What next? "It's like this," I said. "Your lure is a CQ call which you cast out from the rod which is the beam antenna. Now, you never know what kind of 'fish' will strike at your bait. It could be a small bass, a muskie, or a tarpon on the other side of the world. That's what makes it interesting-you never know whether you're going to hook someone a hundred miles away or eight thousand miles away."

She leaned forward, eyes aglow. "Would you say that you're hooked by this facet of ham radio?"

I laughed. "Yeah! I sure am."

She squealed with delight. "This is simply wonderful. I can hardly wait to report this to the psychology society. I'll call it the W'altonian syndrome." I looked sideways at her. "Syndrome? That sounds like I'm sick." She apparently didn't hear me. "Here," she said, pointing to the couch, "why don't you lie down. You'll have better free association."

I jumped up). "What is this-a psychoanalysis?"
"Come," she said, leading me to the couch, "you'll be able to think much more clearly."

The glow was still in her eyes and 1 thought it was best to humor her.
"There, there," she said like a mother to a small son. "Now tell me about your hostilities."
"My hostilities!" I raised my head but she pushed me down.
"Yes. Let's regress to your childhood. Tell me about your liather. Did you hate him?"
"I don't think so. He was a nice guy. One funny thing, though."
"Yes!" The eyes were even more ecstatic.

"That's it! You took up ham radio because your father repressed..."
"He got a bad electric shock once and didn't want me to fool around with any electrical stuff. You know, bells, lights, and-"
"That's it! That's it!" She screamed. "Yon took up ham radio because your father repressed your normal desire for things electrical."

I inched away from her. The attraction I initially felt was disappearing as she bent over me like a vampire.
"Hatred of fiather resulting in a compulsion neurosis or obsession for ham radio," she said into the microphone of the tape recorder. Then, speaking to me "oh, this is the happiest day of my life. Neuroses, complenes, obsessions, hostilities. You're just filled with them!"
"You got it all wrong," I
said, "I like ham radio. It's fun. What other hobby brings the world into your home? Here," I waved my log book mider her eves, "look at all the different people I've talked to in the last few days. A doctor, a missionary, a salesman, an Antarctic scientist, a businessman in his airplane, mobiles, ships, even a submarine!"

She grabbed the recorder microphone tighter, spoke excitedly. "Patient evidences sublimation, receives gratification in ham radio without physical association."

I jumped off the couch. "No physical association? I've met many of these hams. I stayed a week with a ham's family in England, a month with a ham in Australia. And I intend to marry a girl ham!"

She didn't hear. Instead she uttered terms I didn't understand into the

NTS nulfs a whole new world at your fingertins.

NTS home training can put a whole new way of life in the palm of your hand. A new, exciting job, a much bigger income is now easily within your reach.
NTS training is something special. We provide all the kits you need for the most effective training. National Technical Schools sends kits with every course, and leaches you to build and test a
wide range of professional equipment - the same kind of equipment you'il actually use on the job. That's the NTS "Project Method" -training that's practical and in-depth. You learn everything from fundamentals to the latest innovations. From beginning to end, NTS makes it fascinating and fun to learn this way. And all you need is a little
spare time and an interest in electronics.
Each year, men are moving into important new jobs, or their own businesses, straight out of NTS electronics training. NTS is what's happening to men everywhere. Check the coupon. Take hold of the career you want most. Do it now. No obligation. No salesman will call.

We nack your electronics currse with kits to nake your training last. Yaill enioy every minute of it.

NTS COLOR TV SERVICING

NTS training provides an easy way to become a professional homeentertainment service technician. You receive a big screen Color TV with many unique features. The unit even includes self servicing equipment that permits you to make all normal test operations. No additional test equipment is needed for adjusting your set. In addition you get an AM-SW radio, Solid-State radio, Field-Effect Transistor Volt-Ohmmeter, and Electronic Tube Tester. You learn about Electronic principles and trouble shooting, hi-fi, multiplex systems, stereo, and color TV servicing.

NTS COMPUTER ELECTRONICS

This is the future. And it's happening now. The number of computers will increase many times in the next

National Technical Schools
4000 S. Figueroa St., Los Angeles, Calif. 90037
Please rush Free Color Catalog and | Sample Lesson, plus information on course checked below. No obligation. (No salesman will call.

NTS offers a solid grounding in computer operation, wiring, data processing and programming. One of the 10 important kits included is our exclusive Compu-Trainer. It's a fully operational computer logic trainer - loaded with integrated circuits the first ever offered in home study. It introduces you quickly to how, what, when and why of computers ... from theory to practical servicing techniques. This unit is capable of performing 50,000 operations per second.

NTS ELECTRONICS COMMUNICATIONS

Choose from two exciting courses to get into the big-paying fields of transmitting and receiving equipment: (1) The FCC License Course. (2) The Master Course in Electronic Communications (more comprehensive, with Citizens' Band Two-WayRadio). Either Communications program qualifies you for your FCC First Class Commercial Radio-Telephone License - NTS assures you will pass this FCC exam within six months after successfully completing your course or your tuition is refunded. Kits include an AmateurPhone 6 Meter VHF Transceiver NTS exclusive, 6 transistor SolidState Radio, Volt-Ohmmeter (fully

NTS AUTOMATION/ INDUSTRIAL ELECTRONICS

Let NTS put you into the age of electronic controls. Systems Automation is rapidly becoming the emphasis of modern industry. Your NTS training in automation electronics includes equipment like a $5^{\prime \prime}$ wide band Oscilloscope. You also get the new NTS Electronics Lab. It's an exclusive NTS experimental laboratory - a complete workshop that simplifies learning about solid-state, miniature and integrated circuits.

CLASSROOM TRAINING AT LOS ANGELES

You can take classroom training at Los Angeles in sunny Southern California. NTS occupies a city block with over a million dollars in facilities devoted exclusively to technical training. Check box in coupon.

WORLD-wIDE ThANING SINCE 1805

4000 South Figueroa Street Los Angeles, Calif. 90037, U.S.A.

APPROVED FOR VETERANS

Accredited Member: National Association of Trade and Technical Schools; National Home Study Council.
microphone. It was obvious I had become a patient instead of an interviewee. "Please," she said, "lie down again. You were having such wonderful free associations."
"Nol I want to tell you more about the wonders of ham radio. Can you name a hobby where friendships are made so quickly? Where with the exchange of 'handles' you are friends on a first-name basis. Why a twelve-year-old youngster can call a senator or a company president by his first name! Here, let me demonstrate."
I turned on the rig. The 20 -meter band was jumping and I soon worked a ham in London. We exchanged reports and handles. "You see," I said, "we've talked only two minutes and already I'm Bill and he's Byron."

Dr. Sweetie seemed impressed; but there was a glint in her eye that suggested she was working on some new theory.

I decided to show her another facet of ham radio. "Most ham QSO's or conversations are nothing more than an exchange of reports. But look what happens when we mention our work."

It was my turn to transmit. "Thanks for the fine report, Byron. By the way, I'm in electronics. What do you do?"

He came back with the wish that he knew more about electronics. And then he dropped a bomb. "About the work here, old man-I'm a psychoanalyst."
Dr. Sweetie's big eyes became even bigger. Here was my chance to capitalize on coincidence and at the same time demonstrate one of the most unusual features of ham radio. "I have a surprise for you," I came back. "I've got a Dr. Susan Sweetie, a beautiful girl psychologist, in the shack."
"Wonderful!" he said. "Maybe she would like to discuss my latest research project -dream interpretation."
I gave her the mike and that was the last time I had it until I signed one hour later. What a QSO those two had! The terminology made my head spin-unconscious fantasies, Oedipus complex, punishment fantasies, symbolism, Nirvana principle-to name a few that I remember.

When I finally signed, I looked around. Dr. Sweetic was rushing toward the door. "Wait!" I yelled. "I want to tell you about one of the greatest things in ham radio."
"Can't," she said, her face aglow. "Byron wants me to visit him as soon as I finish this report. He needs an assistant."
Before I could open my mouth, she was gone. Too bad. I wanted to tell her about the hams that meet YL's on the air and get married. - $30-$

BETTER UNDERSTANDING OF A MISUNDERSTOOD CIRCUIT

JUST BECAL'SE the JK flip-flop is one of the basice devieres on which today's complex and sophisticated computers are based is no reason for you to jump to the conclusion that it is too complicated for you to understand and use. Much of the mystery enn be dispelled if you view the JK flip-flop for what it is: mothing more nor less than a very elever and extremely versatile switeh.

On this and the following pages, we will trace the evolution of the JK flip-flop to its present integrated circuit form and explain how it operates. Then we will deseribe a few basic cirenits which employ JK flip-flops as dividers.

Bistable Multivibrators. The JK flipflop is a sophisticated and highly versatile
form of the bistable multivibrator. As shown in Fig. 1, a bistable multivibrator is simply a pair of amplifier stages whose inputs and outputs are cross-ronpled to catch other.

When power is applied to the circuit in Fig. 1, a state in which one transistor conducts heavily and the other transistor is held at cutoff is fored upon the cirenit. A heavily conducting transistor has a collector-to-emitter resistance that is very low (on the order of between 10 and 20 ohms). If the eollector load resistance is about 40 times this value (typically (640 olms in an IC package), virtually the entire sapply voltage is dropped aeross the load revistor, and the collector is essentially at ground potential. When a transistor is cut off, its collector-to-emitter resistance is so high that it can be considered as an

open cirenit. The transistor's no-load eollertor potential will then approach the amplitude of the supply voltage.

For the purposes of positive computer logie, when a transistor's collector is very close to gromed, its output (taken between collector and ground) is said to be a logieal " 0 ." Conversely, when the collector is at some potential significantly higher than zero volts, the transistor's output is said to be a logical "1."

With 0.2 conducting heavily, the eirenit's ouput is $Q=0$; and $Q 1$, held at intoff, produees an output of $\bar{Q}=1$. (The rineminm or bar over the Q , as in $\overline{\mathrm{Q}}$, mems "not." IIence,

Q means "not Q ." Whencrer the vincnlmm appears, it is an indication that the logie level at that symbol is the opposite or complement of the logie where the symbol is maceompanied by the vinculnm.) This can be defined ass the reset or preset state of the cireuit and, unless the circuit is deliberately made to change, it will maintain this state indefinitely for as long ass power is applied.

To change the state, "set" pushbutton switel S mast he momentarily pressed. This lowers the collector potential of 01 to near grombl level, depriving 0.2 of base bias. Transistor 02 ceases conducting, its collector rises to the smpply voltage value, and provides base bias to Q1. Therefore, Q1 hurns on and remains conducting while $Q 2$ is ant of until "reset" switelı R is momentarily pressed to make the cirenit change state again.

The 15 -olm ressistors eomeded in series with switches S and l simply simulate the approximate eollector-to-emitter resistances of heavily conducting tramsistors. If it is desired to tripuger the bistable multivibrator into changing state electrically with a pulse (instead of mechanically with a switch), a transistor is used in plate of each switch and 15olm resistor (see Fig. 2).

In Fig. 2, making the input of $Q 3$ positive ($S=1$) has the same effect as pressing switch S in Fig. 1. Similaty, making the input of $Q \dot{E}$

positive ($\mathrm{l}=1$) has the same effect as pressing switcll h. The cirenit in Fig. 2 is known as an liS (for reset-set) flip-flop or a lateh, the latter term derived from it, operational resemblance to a latehing relas:

Also shown in Fig. 2 are a "truth table" and a "logic diagram" for the schematic. The truth table lists all possible inputs and the outputs resulting from these inputs. Two states not previously described are those on the botton two liness of the table. With inputs S and I both pulsed positive, the resulting output state of the flip-flop can be cither 0 or 1 , depending primarily on which of the two inputs is the last to oceur. Becanse the output is doubtful, S and R inputs are never pulsed simultancously in practical applications.

The logic diagram is a symbolic representation of the flow of logic throngh the circuit. The triangles are amplifier symbols. Here they are shown with two input., while the small cireles at the apexes indicate that the ontputs are inverted rersions of the inputs. So, if the input is a logical 1, the output will be a logical 0 . If no circle is shown, the output is nom-inverted.

The IRS flip-flop is not as versatile as the JK flip-flop, nor is it used as often. It does, however, find use as a start/stop switch in such instruments as digital voltmeters, fre-
quener meters, and as a bomecless contact for the toggle input of a JK flip-flop.

The Toggled Flip-Flop. There are certain alvantages to having a flip-flop that can be made to toggle or slift from state to state with the application of a pulse to a single input point and without laving any doubtful states. The cirenits in Fig. 1 and 2 camnot accomplish this. What is needed is a cireuit like that shown in Fig. 3, in which diode gates are used to "stecr" the input pulse to the side of the cirenit where it will be effective. (The dioles in this cireut are biased according to the conductive states of their respective transistors. This means that one of the diodes will be biased in such a way that it cannot pass the pulse, while the other bode, more appropriately biased, can at any given instant.)

Toggle pulses are applied to the circuit at the junction between the two $0.01-\mu \mathrm{F}$ capacitors. lecanse the polses must be negativegoing, transistor $Q 3$ is included in the circuit to demonstrate the principle of negation or inversion and to make the circuit responsive to positive-going pulses applied to toggle input T.

The Truth Table for Fig. 3 shows that, for suceessive pulses, the Q output is alternately toggled between 0 and 1 ; the \bar{Q} output is the Q output complement (or as Q goes from 0 to

1. \bar{Q} goes from 1 to 0). A T input at the base of $Q 3$ becomes a T at its collector; when a T input goes to 1, the outpht at the collector goos to 0 at the instant of toggling.

A study of the truth table shows that the circuit in Fig. 3 divides by two. So, for the four input pulses listed, there will be tivo output puhises in each of the Q and \bar{Q} columns.

Transistor $Q 4$, with its input terminal P, is nsed for presetting the toggled flip-flop to $Q=0$. Hence, imput terminal P in Fig. 3 is nsed for exactly the same purpose and in the same manner as terminal R in Fig. 2.

The JK Flip-Flop. A typical JK flip-
flop cirenit (sec Fig. 4, which is a sehematic diagram of one section of a Motorola IIEP572 (1) sems a far cry from the simple circuits thus far describect, but they have much in common with cach other. Familiar circuits can be found in Fig. 4. Anl the JK flip-flop has much the sume features-toggling and pre-setting-plus a comple of others that are essential but have not yet been clescribed, such as set and clear (S and C) inputs.
Transistors Q1 and Q2 make up the bistable multivibrator proper, while Q3 performs the preset function, exactly as in the preceling cirenits. Transistors $Q 4$ and 25 take the place of the capacitors shown in Fig. 3. The charges
FLIP-FLOP SYMBOLOGY
Because many electronic notations are ex-
tremely repetitive, an easily identifiable sym-
bology, or shorthand, for these notations has
evolved. For example, vacuum (and even gas)
tubes are identified by the letter V, transistors
by Q integrated circuits by IC, etc. Symbols
have also been applied to IC logic devices-
sometimes with seeming abandon. However,
since the symbology has become standard-
ized throughout the industry, you should be
familiar with the letter symbols used. Here
is how they are derived:
RS-Reset/Set
Jand K-Arbitrarily chosen designations
T-Toggle input
S-Set input
C-Clear input
P-Preclear input
Q-Arbitrarily chosen output designation
Q-Complement of Q
stored in the base-to-collector junctions of these transistors toggle the flip-flop when the toggle input is sulficiently fast. (The charge capacity of a transistor's basc-to-collector jumetion is small, so toggle transit must be rapid.)

The toggle input is applied to terminal T and enters the cirenit via transistor Q14. The pulse must be negrative-going (the "fall" of a sepuare wave, known ans "frailing edge triggering." is a typieal T input) and fall time must be within the range of $10-100$ nanoseconds. Any T input that meets these requisites is called a "clock" or "toggle" pulse.

Inputs to terminals S and (; are raluable features of the JI flip-flop. They determine whether or not the flip-flop will change state and, if so, in which direction in response to a clock pulse. In divider applirations, they are essential to obtaining division ratios other than 2, 4, 8, etc., which are strictly binalre:

When imputs at $Q 8-Q 10$ are 0 a (P (clock pulse) at T senels the Q output to o. Similarly. when inputs at Q11-Q 13 are 0 , a (P at 'T produces a Q output of 1 . Thans, steering is obtained by commecting the input of $Q 10$ to the output of Q ? and the input of $Q 1.3$ to the output of Q1. The states mentioned, in which $\mathrm{S}=0$ and $\mathrm{C}=0$, are shown on the first two lines of the trutla table in Fig 4.

On the third and fourth lines, note that if $S=0$ and $\mathrm{C}=1$ at the time a ('P) arrives at T, the Q output will go to or remain at 0 . Similarly, on the fifth and sixth lines, if $\mathrm{S}=1$ and $\mathrm{C}=0$ when a (P) arrives at T , the Q output will go fo 1 or remain at 1 if it is already there. If $S=1$ and $(C=1$, the flip-
flop does not clange state in response to a CP , as demonstrated on the last two lines of the table.

A 1 input to S or C camot independently cause the JK flip-flop to change state. It simply prepares the JK ffip-flop so that operations described in the statements in the truth table can occur coincidentally with a CP input. Tnlike inputs at S and \dot{C}, a 1 input at P sends the Q ont put to 0 independently:

Inputs at S and C must be applied sufficiently before a CP arrives (setup time) to assure that they are well established at the time toggrling takes place. A definite release time is also required. Menimum intervals equal to about twice the propagation delay, or 60 nanoseconds, slonld be sufficient for the average medim-power JK tlip-flep.

The terms "fan-in and "fan-out" refer to the input load and output drive factors, re-【 spectively, of digital-logic devices. Fan-in is associated with the required power to the input terminals, while fan-out is related to the maximum power available at the output terminals. These two terms apply to any digital - logic device and must be taken into consideration whenever you are interconnecting digital devices.

When a JK flip-flop is connected to one or mcre additional JK F/F's and/or other devices, the sum of the load factors must not exceed the drive factor. For example, a Fairchild 9923 single JK flip-flop, or each of the two JK flip. flops in the Motorola MC790P or HEP572,

- has a fan-out of 10. (The fan-in and fan-out of other digital devices can be found by examining their spectification sheets.) The T input and the P input of each JK F / F has a Ifar-in of 5 , while the S input and C input each has a fan-in of 3. Thus, the Q or $\overline{\mathrm{Q}}$ output of one JK flip-flop can drive two T inputs $(5+5)$. or three S and/or C inputs $(3+3+3)$ with a little to spare.

The HEP571 is an inverting dual-buffer. In medium-power service. has a fan-in of 6 and a fan-out of 80 , or about 8 times the fan-out of a typical medium-power JK flip.flop (such as one section of the HEP572). A buffer is actually a current amplifier. It can be an emitter-follower; in this case, it is noninverting, but its voltage output is lower by the amount of the base-emitter drop in the transistor involved. Each section of the HEP571 involves three transistors, and the circuit more nearly resembles a power amplifier. The output is inverted.

JK flip-flops are sensitive to capacitive loads. Where such loads are unavoidable, a buffer should be used, with the JK flip-flop driving the buffer's input and the buffer's output driving the load. Some JK F/F's have buffers built-in as part of the IC.

The JK flip-flop is not responsive to posi-tive-going pulses or to steady-state signals of either polarity at the T input.

While the S, C, and P inputs of a JK flipflop are not particularly sensitive to rate or multiple pulsings, the input at T is very much so. At the T input, a CP must be fast, singular, negative-going, and have at least a 1.5volt peak amplitude. Ordinary mechanical contacts bounce on closure, producing a ragged signal that will toggle a JK flip-flop an indefinite and random number of times instead of just once at each closing. For accurate performanee, a JK flip-flop must be toggled electronically, preferably with an RS flip-flop, a Schmitt trigger, or a monostable multivibrator. Sine waves must be clipped severely to convert them into essentially scquare waves with fast fall times to make them suitable for clock pulses. (Suitable "bounceless contact" circuits were given in "Build Numeric Glow Tube DCU," Popular Electronics, Feb. 1970, Fig. 8.)

Simple Divider Circuits. Now that the evolution and theory concerning the JK flipflop are out of the way, let us go to a few examples of practical cireuits. The JK flip-flops thus far described are used with resistor- transistor logic, or in enginecring shorthand, RTL.

A single JK flip-flop divides only by two, which means that for cach output pulse there must be two input or trigger pulses.

Greater division ratios can be obtained by comnecting the output (Q or Q) of one JK flip-flop to the toggle input of another JK flipflop in a clain of as many JK F/F's as desired. This connection is often called a "ripple divider," because the toggling of each flip-flop (except the first) is produced by an output pulse provided by the preceding flip-flop. The maximum division ratio of a string of JK flip-flops connected in this manner is equal to $2^{\text {n }}$, where n is the number of JK F/F's in the chain. In simpler terms this means that two JK flip-flops divide by four, three divide by cight, and so on.

A divider made up of JK flip-flops connected in this manner is called an asynchronous divider becanse all JK flip-flops in the chain are not clocked at their T inputs simultancously. Each JK flip-flop exhibits a certain delay between the arrival of a CP and the appearance of a pulse at the output.

For a medium-power JK flip-flop, like cach section of a HEP572, this amounts to a delay of about 36 nanoseconds per JK flip-flop. Called propagation delay time, it accumulates in a chain of asynchronous conneeted JK flip-
(Continued on page 117)

Assembling a camera shutter speed meter

ONE TO ONE-THOUSANDTH MEASUREMENTS WITH REASONABLE ACCURACY

A peak-reading voltmeter activated by a phototransistor is calibrated for the range between 1.0 - and 0.001 -second shutter speeds. The voltmeter circuit uses a high-quality capacitor and a moSFET. The builder can make his own meter coincide with the scale illustrated through manipulation of the various internal calibration controls.

HOW OFTEN have you wondered whether the shatter speeds marked on your camera are correct? Have you ever missed an important, unrepeatable shot because of overor under-exposure and considered whether your camera's slutter was at fault?

If you have, you probably took your cam-
cra to the repair shop to have it checked. For little more than it cost for that one check-up you can build your own Shutter Speed Meter so that you can check your camera anytime you have a suspicion that it is not performing properly. You can also use this device to cheek your camera for cold-weather operation.

Shutter speed ranges are 1 to $1 / 10 \mathrm{sec}, 1 / 10$ to $1 / 100 \mathrm{sec}$, and $1 / 100$ to $1 / 1000 \mathrm{sec}$. In measuring shutter speed, the camera is placed on the pickup unit with a light source over the camera. Then the reset button is pushed and the shutter is released; shutter speed is read directly from the single-scale meter. Any camera may be checked, whether it has a focalplane or between-the-lens shutter. The meter

retains a reading for several minutes, depending on the quality of the components used.

Construction. The Shutter Speed Meter consists of two physically separate sections: at light-sensitive transistor in its own case and an electronies package on which the meter readont is mounted.

The schematic of the cirenit is shown in Fig. 1. A foil pattern for a printed circuit board and component mounting layout are slown in Fig. 2. The printed circuit board was designed to mount directly on the meter terminals. If you do not want to use the PC board, assemble the circuit on perforated bourd following the same layout. Note that 5% resistors are used for $R 2, R 3$, and R4 to obtain nominal accuracy. For greater accuracy use 1% resistors. It is also important that capacitor $C 1$ be hermetically sealed (glass or ceramic with metal) and of high unality. If you use the foil pattern, the potentiometers specified in the Parts List camnot be substituted.

A silicon transistor with low leakage must be used for Q2. Transistor Q3 is a mosfet and must be carefully handled. The mospet is shipped with a shorting ring aromed its four leals to prevent the possibility of elec-

Fig. 1. The circuit is essentially a very high input resistance d.c. voltmeter with a MOSFET. It measures charge on capacitor C1, which is a function of how long light is applied to Q1.

PARTS LIST
BI-8.4-vole mercury battery
Cl- $-0.1-\mu F$, hermetically sealed capacitor (Sprague 96P-10491 or similar)
MI-0-1-mA, d.c. meter (Calectro DI-912 or similar)
QI-Phototransistor (G.E. 2N5777)
Q2-2N2712 trunsistor
Q3-MOSFET (RCA 40468A)
RI-100.ohm
R2-220,000.ohm,5\%
R3-2.2-megohm, 5%
R4-22.megohm, $5 \% \quad$ All resistors
R5—2700-ohm $\} 1 / 2$-watt
R7-680-ohm
R8, R11-2200-ahmt
RIO-200-ohn
R6-1000-ohm potentiometer (Clarostat U39 or similar if PC board is not used)
R9—500-ohm potentiometer (Clarostat U39 or similar if PC board is not used)
R12-5000-ohm potentiometer (Clarostat U39 or similar if PC board is not used)
SI-2-pole, 5-position rotary switch (Calectro E2-163 or similar)
S2-Momentary pushbutton switch
Misc,-Plastic cases (Lafayette 99E62721 and 99 E80722 or similar), printed circuit board, battery holder, transistor socket, felt, uire, solder, etc.
trostatic charges acemmulated on the fingers from damaging the transistor's gate. Do 1 ot remove this shorting ring until after the device has been installed in the eireuit. If a shorting rivet is supplicd, wind a single turn of copper wire aromed the four leads, remove the rivet, and leave the wire in place until construction is complete. When soldering Q 3 into the circuit, use a heat sink on the leads and a small soldering iron rather than a soldering gmo sine it is possible for the magnetic ficld created by a soldering gun to damage the mosfet. For furtlice safety, gromel the metal frame of the soldering iron. If, after construction is complete, you have to make any wiring changes, install a shorting wire around the mosfet leads.

To remake the meter face, gently remove the front of the meter, taking care not to beml the needle, and carcfully remove the meter seale. Cut out or copy the seale shown in Fig. 3 and put it on the meter face. Carefully reassemble the meter, making sure that the mechanieal zeroing adjustment is properly aligned.

The printed circuit board and other components, including the meter, are momuted in a $\left(\mathrm{i}^{\prime \prime} \times 33 / 4{ }^{\prime \prime} \times \underline{2}^{\prime \prime}\right.$ plantic box with a metal eover as shown in the photographs. Drill the required mounting holes for the meter so that the top of the meter is about $1 / 2^{\prime \prime}$ from the top of the panel. Drill the mounting hole for rotary switch $S 1$ below the meter, on the panel centerline. Reset switeh $S 2$ can be located in any convenient place on the front pancl. In the prototype, a miniature carphone jack was used to connect the phototransistor box to the meter box but the wires can be passed through a small hole in the box jnist as well.

Moment the printed cirenit board on the meter terminals and tighten the nuts. This antomatically makes the required electrical connections between the meter and the circuit. Mount the battery in a holder secured to the ease. Use mereury batteries for stability. Wire up the circuit as shown in Fig. 1, but do not assemble the meter on the box until after calibration.

The box holding phototransistor Q1 must be large enough to support the camera to be

Fig. 2. Make printed circuit board using the actual size foil pattern at left. Install components as shown at right. Board is supported directly on meter terminals and should be drilled accordingly. Alter layout if potentiometers in Parts List are not used.
tested. Drill a hole slightly smaller than the sensitive face (the rounded part) of the phototransistor at the center of the upper pancl. Cement the phototransistor to the panel so that the light-sensitive surface is visible through the drilled hole. Attach a picee of felt to the upper surface of the case, cutting out a hole to match the phototransistor hole, to proteet the camera finish. In the prototype a transistor socket was used for the Q1 leads with the cable to the meter box attached to the sorket.

Fig. 3. Cut out or copy this meter scale and substitute it for tae original $0-1-\mathrm{mA}$ meter scale.

Checkout and Calibration. If at any time during the following tests, the meter deflects lard below zero, check out the instrument before installing it in the casc. Place switch $S 1$ to ofr and install the battery. Note that the meter neetle rests on the left-hand zero mark. If it does not, gently adjust the mechanical zero setting until it does. Plave א1 in the batt position and note that the meter deflects to the batt position on the scale. Adjust $R 12$ if it does not. A new battery may indicate slightly above the mark.

Comert the phototransistor to the cirenit and place it near a bright light. Switch S1 can be in any position (1,10 or 100). Note that the meter starts to indicate upseale. Remove the light source and note that the meter indication does not clange. With the meter indiating upseale depress $S 2$, the reset switelh. The meter should drop to zero immediatcly. Ailjust fig to make the zero exact. liepeat this procedure a couple of times, making sure that the meter drops to zero whenceer $S 2$ is depressed.
The next step is calibration. If you have aceess to a time-interval comter, all you have to do is measure the length of time that charging voltage is present across $C 1$ when a shut-

Phototransistor is cemented with epox: to metal lid using a socket to make necessary connections.

To use meter, camera back is removed and camera is placed on the photatransistor mount. Very bright light source is used to activate the phototransistor when the camera shutter is operated. Be sure the light source is bright to insure the complete saturation of the photptransistor.
ter is tested and adjust $R 6$ so that the meter indication matches the counter reading. If you don't have a digital counter, you can use a camera having a 1 -see shutter that is known to be accurate and, using it as a model, adjust $R 6$ to get a 1 -sec reading on the meter. Depress the reser button after each test. Another means of ealibration is to discomect Q1 temporarily and apply 1.6 volts (a fresh flashlight cell will do) across C1. Then arljust $R 6$ until the meter indieates exactly full seale.

Operation. Before using the Shutter Speed 'Tester, always check the battery condition and then depress $S 2$ to zero the meter. Make sme the camera lens is wide open. To test the camera shutter speed, remave or open
(Continued on page 110)

The board mounts directly on the meter terminals and is wired to the front panel components. Be sure to observe the special precautions before handling Q3.

For Jmproved Matching and Power Handling

Circuits involving solid-state components frequently require "non-standard" audio output transformers. This article describes simplified methods of calculating the primary/ secondary; ratios, wire sizes, and numbers of turns for low-impedance matching transformers wound on "salvaged" cores.

PROJECT BUILDEIRS and experimenters occasionally need a small impedance matching audio transformer witl an uncommon impedance ratio. When such a transformer is specially wound, its cost is usmally prohibitively ligh compared to the total cost of the project in which it is to be used. However, with a few calculations and a little work on your part, you can duplicate many ususual transformers or any special andio coupling or matching transformer to suit your needs. The teohniques prescribed in this article are limited to transformers of average
si\%e and low-to-medium impedance. It is impractical to duplicate subminiature transformers that normally cost only $\$ 1$ or less and high-impedance transformers that require many turns of very fine wire.

Throughout this article, you will find the term "volt amperes" (VA) used in the same manner that "watts" is used for power. This usage involves an assumption which is not quite true. However, for this type of work, if you accept the assumption that the two are equal, the results will be acceptable.

Calculations involved in designing an andio transformer are covered by the nine steps: outlined in the box on page 81 . To see low these steps work, let's design a typical transformer.

Assume that a transistor output transformer with a 130 -olim primary and a $4 / 8 / 16$-olim secondary is needed to match the output of an RCA CA3020 IC to a loudspeaker. By referring to the mail-order catalogs, we find that the full output of the $I C$ is 0.5 watt. The nearest thing you can find in the catalog

is a 125 -olm renter-tapped transformer rated at 300 mW . This transtomer rould be nsed, but you can make one that will be just as grood and design it for a full watt if space and weight requirements permit.

First ealcolate the core area required. Note, however, that the core area applies only to the erossectional area of the roress eenter leg as shown in Fig. 1. Referring to Fig. 2, we find that the graph shows an approximate core area of 0.18 sid in. will suit our requirements. (We wan use an approximation sinee the actual core area is not too eritical.)

Determine the turns ratio from the impedane ratio. Sinee we know the primary ame lowest secomlary impelanees to be used, plug 130 and 4 into the edration: liatio $=$ the square root of $(130 / 4): 1=5.7: 1$. Hence, the adtual thens ration refuired shows 5.7 turns in the primary winding for every turn in the secomlary winding.

Next, determine the d.e. voltage to be applied to the transformer's primary. In this rase, we desire 9 -rolt operation. The CA3020 employs a pusil-pulb output. So, bear in mind that an 18 -rolt figure must be used in all primary calculations.

Calculate the wire size needed for the primary winding. Sinee we have decided to design the tramsformer to hande 1 watt of powar, let us first determine how much current will be handled by the prinary: $1=$ (VA/ $\mathrm{Vec})=1 / 9=0.111 \mathrm{~A}$. Now, becanse of the push-pull division of the current, we divide the primary eurrent he two for determining the wire size; this gives 1.55 mA in each half of the primary winding. If 700 circular mils/ ampere is desired, refer to the Wire Table (column four) on page 80, and locate the enrrent at or greater than 55 mA . Column one shows that \#3t wire will safcly handle 57
mA , the nearest figure to 5 mA . This size is quite small and diffecult to work with, so choose \#28 wire for case of winding.

We will have to make some assumptions now in determining the number of primary turns to be used. For this caleulation, we will use 2Vce, or 18 volts, and an area of 0.18 sq in. for our 1-watt transformer. 'lhe fredueney we will arbitrarily settle on as being 100 II . For flux density BMI in gansis/sq in., any figwe between 40,000 and 90,000 ran be used; we'll settle on 70,000 to be conservative:

$$
\begin{aligned}
& \text { Primary Turns }=\frac{2 \text { Vee } \times 10^{8}}{4.44 \times \mathrm{A} \times \mathrm{f} \times \mathrm{BMM}} \\
& \quad=\frac{18 \times 10^{8}}{4.44(0.18)(100)(70,000)}=321
\end{aligned}
$$

so, 320 turns will be elose enough.
Having ralevated the number of primary turns, we use the turns ratio formula to calenlate the mumber of secondary turns needed. This is a step-down-type transformer, so we divide the number of primary turns by the turns ratio: Sceondary Turns $=$ Primary T'urns/Turns Ratio $=320 / 5.7=56$ turns.

Sceombary wire size is determined by the eurvent ratio method. Secondary vurrent is equal to the primary current multiplied by the turns ratio: $0.111 \times 5.7=0.64 \mathrm{~A}$. The secomlary wire size is determined by the same

Fig. 2, Lengthy mathematical computations for determining the transformer core area can be avoided with the aid cf the graph shown here.
method as usel for the primary. At 700 cireular mils/ampere, the Wire Table indicates a $577-\mathrm{mA}$ current caparity for \#24 and 728 mA for \#23 wire. Sime 640 mA is about midway loctween the two sizes, we will settle on \#:3 wire.

Finally, the 8 - and 16 -olim taps must be caleulated. Again, refer to the turns ratio formula, and determine the turns ratio for 8 and 16 ohms separately. Then use these ratios with the primary turns to determine the
exact number of turns required for cach impedance: 16 -ohm ratio $=$ the square root of $(130 / 16): 1=2.86: 1 ; 8$-olm ratio $=$ the square root of $(130 / 8): 1=4.04: 1$. Secondary turns $=320 / 2.86=112$ turns for the 16 -olmm ratio; Sccondary timns $=320 / 4.04$ $=79$ turns for the 8 -ollm ratio. Hence, the composite sceondary will consist of 112 turns of wire with taps at the 56th and 79th turns.

Fig. 3. Bifilar winding technique precisely locates center-tap. Center-tap is derived by twisting together opposite ends of winding.

Now that we have all of the design parameters, we can proceed to assembling our spe-cial-purpose transformer.

Assembling the transformer from the design parameters derived from the above procedure is easy. We know that the core area must be about 0.18 sq in. The simplest and least expensive way of obtaining a suitable core is to salvage an old andio output transformer. Many such transformers have a core area of $0.25 \mathrm{sq} \mathrm{in}$. laminations are removed, approximately the correct dimensions will be obtained (about 0.185 sq in .).

Disassemble the salvaged transformer, and remove and discard the windings, but reserve the plastie winding bobbin if it las one. If no bobbin is available, you can make one from an index card or heavy waxed (butcher's) paper. This bobbin should easily slide over the eore leg and be a little shorter than the center leg of the laminations.

Slide the bobbin onto a length of wood to serve as a winding handle. Then begin winding the primary turns onto the bobbin, starting and ending along the $1 / 2^{\prime \prime}$ side of the bobbin to avoid having the ends exit from the

AWG	WIRE TABLE				
	Area (circular	Current capacity at 600 c.m.	Current capacity at $700 \mathrm{c} . \mathrm{m}$	Current capacity at 800 c.m	Turns/ linear inch,
B\&S	mils)	per ampere	per ampere	per ampere	insulation
14	4107	6.85	5.87	5.14	15.0
15	3257	5.43	4.65	4.07	16.8
16	2583	4.31	3.69	3.24	18.9
17	2048	3.42	2.93	2.56	21.2
18	1624	2.71	2.32	2.03	23.6
19	1288	2.14	1.84	1.61	26.4
20	1022	1.71	1.46	1.28	29.4
21	810	1.35	1.16	1.02	33.1
22	642	1.07	. 918	. 804	37.0
23	509	. 848	. 728	. 636	41.3
24	404	. 674	. 577	. 505	46.3
25	320	. 534	. 458	. 400	51
26	254	. 424	. 363	. 318	58
27	201	. 336	. 288	. 252	64
28	160	. 265	. 228	. 199	72
29	126	. 210	. 181	. 158	81
30	100	. 167	. 144	. 125	90
31	79	. 133	. 114	. 096	101
32	63	. 105	. 090	. 079	113
33	50	. 083	. 072	. 063	127
34	39	. 065	. 057	. 049	143
35	31	. 053	. 045	. 039	158
36	25	. 042	. 036	. 031	175
37	20	. 033	. 028	. 025	198
38	15	. 025	. 022	. 019	224
39	12	. 020	. 018	. 015	248
40	10	. 017	. 014	. 012	282

core "windows" when the boblin is in place. Ordinary "scatter" winding is acceptable in most cases; but if space is limited, you might have to close-wind the turns. Our hypothetical transformer has a further complication : The primary winding is center-tapped. It must be wound so that both sides of the wind-

Fig. 4. Individual taps are obtained by twist. ing short pigtails from continuous length of wire. Attach stranded wire leads to pigtails.

NINE-STEP AUDIO TRANSFORMER DESIGN

In approaching something like the design of your own special-purpose audio matching or output transformer, you should use a practical, realistic procedure. The nine steps outlined here are set up so that you will not overlook time and work-saving steps and will lead you from start to finish without a lot of messy mathematical calculations.

Step (1). Refer to the catalogs for all available data (such as primary and secondary impedances and power and voltage ratings) concerning the transformer needed.

Step (2). Determine the transformer core area; from the transformer power rating (VA), area is equal to the square root of VA divided by 5.58 . A quicker method is to refer to the graph in Fig. 2. Read up from the selected volt-amperes figure to the diagnoal line, project to the left and read the core area in square inches.

Step (3). Calculate the turns ratio. From the impedance ratio, the turns ratio is equal to the square root of $(Z 1 / Z 2)$, where $Z 1$ is the larger and $Z 2$ the smaller impedances.

Step (4). Determine the voltage for which the transformer primary is to be used. For single-ended operation, use supply voltage Vcc; for push-pull operation use 2 Vcc .

Step (5). Compute the size of the wire needed for the primary turns. Using the transformer power rating and the d.c. operating voltage (Vcc), primary current equals VA/Vcc. For audio service, a minimum of 600 circular mils/ampere is recommended; winding space permitting, it would be better to figure on using 700-1000 circular mils/ampere. A center-
tapped primary would have only half of the total current flowing through each half of the winding at any one time, so the metric area can be reduced by half.

Step (6). Calculate the number of primary turns needed:

$$
\text { Primary Turns }=\frac{V c c \times 10^{8}}{4.44(A)(f)(B M)}
$$

where Vcc is supply voltage; A is core area in square inches; f is the lowest frequency to be passed without loss; and BM is flux density in gauss/square inch).

Step (7). Determine the number of secondary turns required. If the transformer is to be an impedance-step up type, multiply the turns ratio by the number of primary turns calculated; if step-down, divide the primary turns by the turns ratio.

Step (8). Calculate the secondary wire size by the turns ratio method. Current transfer is inversely proportional to the turns ratio. Hence, if the transformer is a $10: 1$ step-down type, the secondary should be capable of handling ten times as much current as the primary. Once the current capacity is determined, you can refer to the Wire Table to find the smallest diameter wire that will suit your needs. It is, however, advisable to use the largest practical size wire to obviate a large d.c. voltage drop in the windings.

Step (9). If the center tap is required, use the "bifilar" method of winding (see text). For multi-impedance outputs, recalculate the turns ratios, secondary currents, etc., for each output impedance.
ing are balaneed. To do this we will nse the "bifilar" winding method slown in Fig. 3.
For our 320 -turn primary winding, we wind two wires onto the bobbin simultanconsly, side by side, until there are 160 double turns on the bobbin. Then to complete the bifilar winding, we comnect one end of one wire to the opposite end of the other wire and solder on a $5^{\prime \prime}$ length of stranded hookup wire to make the center tap. Two more stranded wires soldered to the free ends of the primary windings complete the primary assembly.

Color code the wires so that the center tap is casily identifiable. Make sure that each soldered comection is well insulated from the others; then wrap a layer or two of plastic tape over the winding:.
Now wind the secondary turns onto the bobbin. Count the turns as you go, and make a pig-tail tap leads at the $56 \mathrm{th}_{1}$ and 79 th turns for the 4 - and 8 -ohm taps (sce Fig. 4). Use color coded stranded hookup wires for the winding ends and taps so that each can be easily identifiable. Again, make sure that the

On Sale September 17

FEATURING:

Virtually indestructible hi•fi 70 watts/channel power amplifier. Tested by Hirsch-Houck Laboratories with verified performance at half power of 0.02% distortion from 20 Hz to 20 kHz . Full construction details in the October issue.

A Graphic Frequency Equalizer with remarkably low distortion (2 volts output) for insertion between preamp and power amplifier. Tone control range of plus or minus 12 dB at 60 , $250,1000,3500$, and $10,000 \mathrm{~Hz}$. Complete details for construction.

How Thomas Alva Edison lost out on the discovery of "wireless" because of a simple question of semantics.
How to assemble: an electrolytic reformer usable over a wide range of voltages; an enlarger lightmeter for your darkroom; and a VHF-UHF Drain-Dip Oscillator covering the range between 140 and 550 MHz .
solder connections are well insulated from each other, and wrap a layer or two of electrical tape over the assembly to prevent the windings from unrareling.

Slip the bobbin assembly off the winding handle. Orient the primary leads to one side and the secondary leads to the other side of the bobbin. Then slip the bobhin onto the center leg of the transformer core laminations. Assemble the transformer.

Testing the completed transformer is not really necessary if yon excreised care during assembly and followed each step exactly as deseribed. However, if you want to be on the safe side, you can test the transformer with the aid of an andio signal generator, two at: VTVN's or FET VOM's, an 8 -ohm load resistor, and a 1000 -ohm potentioneter as shown in Fig. 5. Sct the gencrator's amplitude control for an output of several volts at 1000 IIz. Adjust the potentiometer for minimum resistance so that both meters have an identical reading.

Now, increase the resistance of the potentiometer until meter \#2 indicates exactly one half its original indication while making sure that meter \#1 remains at the original voltage setting. Since changing the resistance of the potentiometer decereases the load on the andio gencrator, meter \#1 will indicate an increase in voltage. Simply reduce the gencrator's output level to return meter \#1 to the original voltage setting.

After jockering back and forth between the gencrator's amplitude control and the potentiometer a few times, you shonld be able to arrive at settings where meter $\# 1$ indicates the original voltage and meter $\# 2$ indieates exactly half of its original voltage. When this occurs, remove the potentiometer from the cirenit without upsefting its final setting and measure its resistance. This resistance should be equal (or as near as possible) to the transformer's input impedance, or 130 ohms. However, if the transformer is loaded with an ineorrect impedance (say, the 8 -ohm load resistor connected across the 4 - or 16 -olm output leads), it will reflect an incorrect impedance into the primary. As a matter of fact, if you use a 3.2 -ohm speaker on the 4 -ohm transformer output, a primary impedance somewhat lower than that for which the transformer was designed will be reflected. But if you plan to use such a speaker with the transformer, you could casily have phegged into the equations the 3.2 -olm figure for the 4 -ohm figure.

Sixth in a Monthiy Series by David L. Heiserman

Sound Engineering Opportunities

I would like to become a sound recording engineer, but I find it almost impossible to get any information on the training and career opportunities.

- After discussing your problem with several engineers at recording studios and radio stations, I can see why there is so little available information. Every company that works with sound recording equipment seems to have a different idea of what a sound engineer is supposed to be, and how he gets the job.

The term, "engineer," is misleading because it doesn't necessarily mean that a sound recording specialist has a college degree. Some sound "engineers" do nothing but set up and monitor sound recording equipment, while other "engineers" design, maintain and troubleshoot the recording equipment.

As a would-be sound "engineer," you have two different career opportunities. Most sound recording engineers work in the radio or TV broadcasting industry. A second group of sound engineers works in recording or motion picture studios.

To get into radio or TV broadcasting, you must have a First-Class FCC license. This license tells the chief broadcasting engineer, your prospective boss, that you are fully qualified to operate and maintain all of his transmitting equipment. Even though your main responsibility might be sound equipment, you must have the knowhow of the First-Class license to get through the front door of a radio or TV engineering department.

Two schools accredited by the National Home Study Council offer courses in "broadcast engineering," a catch-all phrase for engineering jobs in broadcasting. They are: Cleveland Institute of Electronics (1776 East 17th St., Cleveland, Ohio 44114) and Grantham School of Engineering (1505 N. West-
ern Avenue, Hollywood, California 90027). Dozens of other home study schools offer special courses in FCC license preparation. Most courses are somewhat short on material about sound equipment engineering, but they at least pave the way for getting a sound engineering job in the broadcasting industry.

Electronics technicians who work as sound "engineers" at recording or motion picture studios don't have to worry about radio or TV broadcasting problems, so they don't need the FCC license. However, just as in the broadcasting business, it helps to have a good background in basic electronics so that you can learn to trouble shoot your own gear. You'll stand a much better chance of getting a job in these studios after you have completed a home study course in electronics technology and get some experience with sound equipment.

Starting Your Own Business

I tuork as an electronics engineering technician at a major ariation company. In the eqenings, I manufacture a circuit that automatically turns on the bouse lighting when the sun goes dou'n. Most of my customers like to wse this gadget uben they go on tatcation. The gadget is selling so well I am tbinking about quitring my regular job and putting all my time isto this business. Do you think it is safe and u'orthubile."

- Presumably, you are doing your manufacturing in your own laboratory or basement and there may be local zoning laws to stop you from operating such a manufacturing operation from your home. You had better check with your city zoning commission to find out how the laws read for your particular neighborhood. You may be able to get a waiver if you can prove that your business won't upset the "residential flavor" of your neighborhood. Be careful in this area and stay on good terms with your neighbors,
because one complaint is enough to cancel the waiver.

Although your "moonlighting" manufacturing operation sounds promising, I wonder if you have as great a market as you imagine. Unless you advertise and market this gadget outside of your own city, you'll soon saturate the market and run yourself out of business. I would suggest that you study some of the publications available from the Small Business Administration government offices. Their address is: Small Business Administration, Washington, D.C. 20416. Ask them for a copy of a free booklet titled, "Small Business Administration-What it is and What it Does."

From the description of your product, it sounds like something that is commonly available and appears in most of the mailorder catalogs. Unless you have several other products, I wouldn't recommend going into business with only one thing to sell.

Qualifications Questioned

> In your May 1970 column, your comment coucerning electronics teaching opportunities in high school and technical colleges is misleading. You imply that a degree is required to teacb vocational electronics at the tecbnician level. Tbis is not so. Although a college degree would not burt, it is definitely not a necessity. The desired qualifi. cations for an electroutcs teacher at the bigh school and tecbnical school level are simply a strong theoretical training in the feld at the level to be taught and a reasonable depth of practical experience.

The reader who asked about the preparation for a career in electronics teaching was a 16 -year-old lad in high school. If the questioner had been a mature, experienced and highly skilled electronics technician, the question would have been answered in the manner you suggest.

Experienced electronics technicians who do not have a college degree can find teaching jobs at just about any kind of nonaccredited school. Some states even offer a waiver that lets a technician without a degree teach in regular high schools and technical colleges.

Note that a mature, experienced electronics technician isn't betting his whole future on a school that happens to hire such people at the present time. He can always leave teaching and get his technician's job again. However, the growing popularity of electronics in high schools is bound to change the scope, quality, and methods of teaching this subject.

Until some guidelines are spelled out as to what will be demanded of tomorrow's electronics teacher, the only responsible recom-
mendation for a 16-year-old is for him to get a college degree, special electronics training, and, ideally, practical experience. I could not in all honesty tell a 16 -year-old he can expect a successful lifetime career in electronics teaching without a degree.

Technical Writing

> Although I am working as an electronics technician, I would like to try my band at technical writing. My employer's publications department bas given me some sug. gestions, but I'd like lo know where I can learn more about tecbnical uviting.

- Let's draw a distinction between people who are technical writers and those who write about technical subjects. A technical writer generally works for a manufacturer that must generate a lot of instruction manuals concerning the equipment he has developed. The technical writer studies the equipment and works with the engineers and technicians who designed the equipment. He then prepares the necessary instruction manual telling what the equipment will do, how to install it, how to keep it in operation, and how to troubleshoot when necessary.

People writing about technical subjects are really book or magazine authors and are not necessarily technical writers. In electronics, many people writing on technical subjects are free-lance authors and are moonlighting since this is not a field that will support too many technical authors. It is difficult to break into the field of writing technical articles for publication in nationally circulated magazines or hard or soft cover books. However, there continue to be a number of good openings in the technical writing field for commercial (including military) equipment. To obtain more information on this subject, write to the Society of Technical Writers and Publishers, 1010 Vermont Ave., N.W., Washington, DC 10005.

You can also obtain information from the following home study schools offering courses in technical writing. All of these schools have been approved by the National Home Study Council.

Brittanica Schools, Inc.
425 N. Michigan Ave.
Chicago, IL 60611
Famous Writers School
Westport, CT 06881
Grantham School of Engineering
1505 N. Western Ave.
Hollywood, CA 90027
Newspaper Institute of America
2 Park Ave.
New York, NY 10016
Palmer Writers School 500 S . Fourth St. Minneapolis, MN 55415

BROADCASTING

It Started with Caroline-Pirate broadcasting is becoming a chess game played in the European North Sea. It all started nearly a decade ago with a pirate AM broadcaster called "Radio Caroline" aboard a vessel anchored outside England's territorial waters. The programming was 100% commercial with the then upcoming Beatles and Rolling Stones songs being played over and over. Soon a half-dozen similar pirates were on the airopenly defying the British Broadcasting Corporation's ban on commercials and rock music. The pirates were check-mated by a British law that changed the outer limits of the territorial waters. Since then, pirates have moved to waters off the shore of the Netherlands-the latest being "Radio Nordsee International" which has been driven off the air by jamming supposedly originating from secret transmitters operated by the British Post Office! Last spring "RNI" operated on 1610 kHz outside the high end of the broadcast band. A shortwave outlet on 6210 kHz is active.

See! It's not uncomfortable at all. The 25.1b elk collar is weatherproof and it is lined. Cross-dipole antenna is on top.

Abstract

RESEARCH The Space-Age Elk - A femala elk, undoubledly wondering what mankind will think of next is u'andering around the Jackson Hole, Wryoming, elk refuge wearing a 25-pound collar. The subject of this indignity is communicating ber travels to an orbiting weather satellite, Nimbus III. Each time the satellite passes overhead, it radios (on 401.5 MHz) a query to the elk as to where she is and bow she's feeling. The collar responds on 466.0 MHz in an $F M$ binary code. Animals are taking an unwilling part in an experimont related to the IRLS (Interrogation, Recording, and Locations System) built by Radiation, Inc. The collar bas been designed to transmit for 6 months (April through October 1970) and, besides being protected from severe shock, it bas a bank of solar cells to recharge the battery pack, an alitude sensor, skin temperature sensor, and a $32-\mathrm{MHz}$ gronnd tracking transmilter. If the experiment works, more elks will be "collared."

INTERNATIONAL

Mao's Thoughts Go VHF-TV-It is reported that channel 7 TV viewers in Kuala Lumpur, Malayasia, are being treated to an unannounced show around 2:30 a.m. Probably due to some freak reception, viewers have been seeing weak TV pictures that are obviously Mao Communist inspired. Whether the TV transmitter is actually in Peking, or even in Yunnan, is unknown; but rumors have been flooding Malayasia that Mao's "thoughts" are so powerful that they propagate themselves via 625 lines and 60 frames. Even the Russians are unable to duplicate a comparable TV system.
(More "Communications" overleaf)

COMMUNICATIONS

CONTINUED

RADIO CONTROL

For Other Than R/C Aircraft-Aircraft modelers unhappy with the proposed sharing of frequencies in the $72-76-\mathrm{MHz}$ band with R/C'ers working boats and cars have been mollified by the FCC. In early June the FCC announced a new plan permitting aircraft modelers exclusive use of $72.08,72.24$ and 75.64 MHz . There will be shared use of 72.40 and 72.96 MHz , while models other than aircraft will use 72.16 and 72.32 MHz . The FCC's proposals concerning use of the $72-76 \mathrm{MHz}$ band have been hanging fire since November 1969. Final date for comments on the original proposal and the expansion mentioned above is August 31.

Radio Hauraki's second vessel, Tiri II, suffered many mishaps, but always was refitted and returned to the air. During a severe storm, she failed to reach shelter and drifted 60 miles before running aground on Uretiti Beach, North Auckland.

BROADCASTING

1111 Days At Sea-It took 3 years, but the New Zealand pirate radio station "Radio Hauraki" broke the monopoly of the Government's broadcasting corporation and this month opens up as a duly-licensed, land-based AM broadcaster. Radio Hauraki made its first appearance on Nov. 20, 1966 and its bistory uas dotted with storms, mishaps and frustrations. Using 2 kW on 1480 kHz , Radio Hauraki operated from the Tiril outside the New Zealand territorial u'aters. An almost immediate commercial success, Tiri I went aground on Great Barrier Island while trying to assist in the rescue of a man who fell from a passing ship. The public-by now listening to Radio Hauraki by the thousands-raised an outcry and forced the government to establish a "broadcasting authority" that finally saw the light and granted a commercial license for a land-based transmitter. Radio Hauraki shut doun on June 1 from the Tiri II and is expected to open its new 5000 -watt transmitier from Auckland in late September. (Submitted by Arthur Cushen, MBE.)

CITIZENS RADIO (CB)

Can CB'ers Be All Wrong?-Washington lobbyists may soon be vying for the privilege of representing 875,000 licensed CB'ers. One CB club has already established a Washington office to work with the FCC. Rumors in the capital city have it that CB has caught the eye of an ex-White House staffer and several Texas Congressmen. A nationwide CB organization is said to be in the offing. Doubtlessly, CB does need a Washington voice, but several previous attempts to organize CB'ers have been disasters. With the proper political connections and good financing, a CB lobby could become a potent force in reorienting FCC thinking about the value of CB, which would be good for everyone.

AMATEUR RADIO

John Gore Memorial Scholarship-A licensed amateur who has completed one year in an accredited college or university may apply before October 31 for the John Gore $\$ 500$ scholarship.

Supervised by the Foundation for Amateur Radio, Inc., Suite 72, 1150 Connecticut Ave., N.W., Washington, DC 20036, the scholarship honors John W. Gore, who was president of F.A.R. until his untimely death in 1960. Applicants must be enrolled in a course of study leading to a degree. All things being substantially equal, preference will be shown to applicants in the Washington area.

INTERNATIONAL

WWVH Moves to Kauai-Within the next 9 months, the National Bureau of Standards' time and frequency station now located on Maui Island in Hawaii will be set up on a 35 -acre site on another island-Kauai. The new location was chosen over Guam, Wake Island, and the American Samoas. Virtually free of electromagnetic interference, WWVH will erect antennas favoring all of the Orient, from Alaska to New Zealand. In addition to a power increase from 2 kW to 10 kW , a $20.0-\mathrm{MHz}$ transmitter will be added to existing services on $2.5,5.0,10.0$ and 15.0 MHz . WWVH will be phase-locked to the VLF atomic clock signal originating from National Bureau of Standards' Boulder Labs., Fort Collins, Colorada.

RESEARCH

Noise-Free Mercury Lamp-Japanese scientists clam to have produced a mercury lamp free of the static discharge that plagues shortwave and VHF reception. Contributing to the research were Toshiba and Nippon Hoso Kyokai (NHK), the Japanese national broadcasting service. Toshiba is said to have perfected a noiseless fluorescent lamp in 1965 and has been devoting the past 5 years to the reduction of radio interference from mercury lamps. Price, production schedules and exporting: information on the new lamps were not available at press time.

Hughes Aircraft ADAR receiving array consists of a microwave optical system with individual 2°-beamwidth horn feeds. Computer selects beam to track many targets.

> RESEARCH
> Faster Than A Speeding Bullet-A scaled-down version of a new radar system called ADAR (Advanced Design Array Radar) is being tested by the Hughes Aircraft Company. Funded by the USAF Rome (N.Y.) Air Development Center, ADAR comprises two antennas, a specialized transmitter/receiver site and a computer center. The transmitting antenna is a phased-array billboard with electronic beam steering. The receiving array selects the desired beams and feeds then to receivers. ADAR will be the most poucrful radar yet built in terms of radiated peak power. Targets are automatically acquired and tracked. Resolution is now being checked and ADAR is expected to track a target with a true air speed exceeding that of a rifle bullet. Althougb noore complex than conventional radar equipments, the phase-array concept is expected to replace all ICBM intercept radar in the next 5 years and all FAA radar within 10-12 years.

BROADCASTING

Marconi Company Half Century-A little over 50 years ago, Dame Nellie Melba sang into a microphone at the Marconi Works

"He’s a good worker. I'd promote him right now if he had more education in electronics."

Could they be talking about you?

You'll miss a lot of opportunities if you try to get along in the electronics industry without an advanced education. Many doors will be closed to you, and no amount of hard work will open them.

But you can build a rewarding career if you supplement your experience with specialized knowledge of one of the key areas of electronics. As a specialist, you will enjoy security, excellent pay, and the kind of future you want for yourself and your family.

Going back to school isn't easy for a man with a
full-time job and family obligations. But CREI Home Study Programs make it possible for you to get the additional education you need without attending classes. You study at home, at your own pace, on your own schedule. You study with the assurance that what you learn can be applied to the job immediately.

CREI Programs cover all important areas of electronics including communications, radar and sonar, even missile and spacecraft guidance. You're sure to find a program that fits your career objectives.

You're eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. Mail postpaid card for your copy. If card is detached, use coupon at right or write: CREI, Dept. 1209A, 3224 16th St., N.W., Washington, D.C. 20010.

CREI, Home Study Division
McG-aw-Hill Book Company
Dept. 1209A, 3224 Sixteenth Street, N.W.
Wastington, D.C. 20010
Please mail me FREE book describing CREI Programs. 1 am enployed in electronics and have a high school education.
NAME AGE

ADDress
CITY \qquad STATE ZIP CODE

EMPLOYED BY
TYPE OF PRESENT WORK \qquad \square G.I. BIL6
1 am interested in
\square Electronic Engineering Technology \square Computers

- Space Electronics \square Nuclear Engineering Technology - Industrial Automation a NEW! Electronics Systems Engineering
APPROVED FOR TRAINING UNDER NEW G.I. BILL.

COMMUNICATIONS

CONTINUED

in Chelmsford, England and made broadcasting history. The British claim that this was one of the first truly "advertised" radio broadcasts. Melba's broadcast to about 400 radio amateurs was on 110 kHz using a 15,000 -watt transmitter. Subsequent to the June 1920 broadcast, Marconi Works inaugurated regular transmissions from 2 MT and from the famous 2 LO , which became the keystone of the BBC. Today, the spot where Melba sang "Home Sweet Home" is part of the Marconi High Power Test Dept., where equipment for overseas broadcasting studios is tested.

Abstract

RESEARCH Shad Tagging-In an effort to ascertain how shad fish cope with river pollution, the Pennsylvania Fish Commission will "sonic tag" about 50 shad and follow them up the Delaware River. Miniature transmitters were forced down the throats of female shad by commercial netters and then returned to the water in lower Delaware Bay. Biologist Dick Marshall will follow the shad to see what happens when they reach the pollution block between the Benjamin Franklin Bridge and Marcus Hook. He wants to find out if the fish die, turn around and go back downstream, or find a way around the pollution block. (Submitted by Leo Mooney.)

SHORTWAVE LISTENING

To ALL WPE Registrants-The world-renowned WPE SWL Registration Program will be continued by Hank Bennett. To avoid future conflicts, all WPE callsigns will be re-issued with the prefix WDX. All old and new registrants should send a self-addressed stamped envelope to Hank Bennett, WDX Program, Box 333, Cherry Hill, NJ 08034, for details on obtaining a new certificate. During the 10 -year life of the WPE Program, nearly $40,000 \mathrm{SWL}$'s were registered and assigned identifying WPE callsigns.

FCC NEWS

License Fees-August 1 was the effective date selected by the FCC to implement its multi-million-dollar license fee program. The schedule of fees covers all radio communications services and even affects CATV. Of interest to Popular Electronics readers is the increase in the fee for a class D Citizens Radio (CB) license from $\$ 8$ to $\$ 20$. Amateur radio licenses were not given comparable boosts, but now are $\$ 9$ (instead of $\$ 4$) for a license other than Novice (still free), $\$ 4$ for a change of address (instead of $\$ 2$) and $\$ 25$ (instead of $\$ 20$) when applying for a special callsign or license.

SHORTWAVE LISTENING

Deutsche Welle Opens in Portugal-The Iberian peninsula is the home of another major international shortwave relay broadcaster. Following the example of Radio Liberty (Spain) and Radio Free Europe (Portugal), Deutsche Welle, the radio voice of the German Federal Republic has opened a new relay site at Sines, Portugal. Operating in June on 5595, $6075,7275,9545$ and 11795 kHz , the relay is beamed to eastern Europe and is being heard with a strong signal-so far without jamming. Special over-printed QSL cards are being issued.
(Continued on page 112)

First in a New Series by "The Reviewer"

Having reviewed a dozen or so items for The Product Gallery it is not too surprising that I feel a proprietary interest in this department. In line with the revised editorial outlook of Popular Electronics, inaugurated in this issue, The Product Gallery is undergoing a facelifting. The stuffiness of product reviewing will hopefully be eliminated in future columns and along with it the too-glowing summary write-ups. This is not to say that, if I see something particularly noteworthy about a new product, it won't be described in favorable terms. However, I don't intend to make mountains out of insignificant molehills.

Nor, do I intend to blast or fault products (à la consumer reporting services) simply because I want everyone to know liow smart I am. I will chide and I will recommend (usually in private to the manufacturer) certain modifications or adjustments that my experience tells me might prove valuable. Furthermore, I intend to use that experience to seek and report on actual product usages and not depend on manufacturer-originated write-ups or handout press releases.

I think the ground rules for product reviews are quite simple. Don't exalt trivia or go overboard for a marginal product. Provide the Popular Electronics reader with an accurate, objective appraisal of electronic products to enable him to make a sound buying decision. Look, test and report on products as actually used, not as I suspect they might be employed.

I intend to keep The Product Gallery as informal as possible. This department is a service to the Popular Electronics reader and I will attempt to answer your mail about products that have been discussed in print. I will not be able to make comparisons between similar products of different manufacturers and please don't ask me what to buy-there are just too many unknowns and variables for me to make an objective judgment in your behalf.

Tools of Our Hobby-Through the years I have concurred with the tenet of buying the best tools you can afford. Good tools are
nothing less than long-term investments. While most of us think this applies particularly to hand and power tools, it should be given equal weight in buying essential electronic test equipment-a VOM, a tube/ transistor tester, a scope, etc.

Several years ago I started using two VOM's on my lab bench-a. 20,000-ohm-pervolt Triplett 630-L and a solid-state Triplett 600. Both VOM's have their uses and have performed as well as I expected when they came into my possession. Thus, it was with interest that I learned of the new Triplett solid-state Model 602 which has features not built into the 600 .

The Tripplett Model 602, Type 1 is a $21 / 2$ pound FET-VOM with eight ac and de voltage ranges, six ohmmeter ranges, and four ac or dc current ranges. The input resistance is 11.12 megohms on all voltage measuring ranges. The manufacturer emphasizes the introduction of "Auto Polarity"-a circuit that makes the meter read upscale regardless of the polarity being measured. This eliminates the need for continually switching the two test leads.

There are distinct differences between the older Model 600 and the new Model 602. These can best be summarized as follows:

1. A current measuring provision has been added to the 602 .
2. The same switch positions are now used for measuring ac or de volts-not different switch positions as in the older 600.
3. The top resistance range is now X1 meg versus X 100 K as in the older 600.
4. The OHMS ADJ and ZERO NULL knobs have been reversed from side to side and the labelling is now visible since it is above the knob.
5. A special BATT CHECK position on the selector switch enables the user to check the condition of the two 9 -volt batteries.
6. The voltage scales have been changed so that the full scale readings on the Model 602 are now: $0.3 ; 1.0 ; 3.0 ; 10.0 ; 30.0 ; 100.0$; 300.0; and 1000.0. On the older Model 600 the ranges were: $0.4 ; 0.8 ; 1.6 ; 4.0 ; 8.0 ; 16.0$; $40.0 ; 160.0 ; 400.0$; and 1600.0.

Wringing out the 602 -The "Mini-DVM" featured in this issue and the Heath (Maln-stadt-Enke) EU-80A voltage reference source were still available in the Popular ELECTRONICS laboratory so these were used to verify the low-voltage accuracy of the 602. On the 1 -volt scale an input of exactly 0.5 volt read out on the 602 as 0.49 V . On the 3 -volt scale, 1.5 volt was read as 1.6 V by several observers. And, on the 10 -volt scale, 5.0 V was read as 4.7 V . All of these readings are under the manufacturer's stated accuracy.

From my precision resistor box, I selected some random values to check the X1, X10, X100, X1K and X10K scales. It went like this: 10.0 ohms at 1% was read as 9.9 ohms ; 250 ohms at 1% as 250 ohms; 2778 ohms at 1% as 2800 ohms; 14,400 ohms at 1% as 14,600 ohms; and 825,000 ohms at 1% as 810,000 ohms. Again, all of these readings are well under the manufacturer's accuracy claims.

Rather than bore you with further details, it should suffice to say that the 602 was checked on the current ranges and the ac ranges to further demonstrate that the unit under test had an accuracy of something usually better than 3%.

So far I am quite pleased by the operation of the 602. It is slightly different than the older Model 600 especially in the handling of the ZERO NULL adjustment. You must learn to rock this control back and forth around zero to obtain an absolute minimum reading to achieve maximum accuracy. The AUTO POLARITY is a remarkably handy feature that you really don't appreciate until you have used it for several weeks. In fact, it is difficult to break the habit of interchanging leads for polarity reversal measurements. Frankly, the 602 is starting to be a

NEW AND FANCY: Decorator series of enclosures has egg-shell white fronts, wood-grain tops and sides.
"spoiler" (as the TV commercial goes).
As far as I am concerned there is still a major problem unsolved regarding FET VOM's-automatic turnoff. On a few occasions I left the older Model 600 "on" for several days exhausting the batteries. The 602 hasn't solved this headache, although it is now possible to double-check battery condition. I've always thought that the old Amphenol "Millivolt Commander" with the switch in the lid was a great idea for insuring turnoff-until I got sick and tired of unscrewing the test probe from the instrument itself to be able to shut the lid. Okay Triplett, go to work.

A Better Instrument © Enclosure --Seven months ago The Product Gallery observed that very few modestly priced instrument enclosures that didn't look like a plain square box were available to the experimenter. The exception noted was an LMB Model CO-3-a low profile sturdy enclosure with a spotwelded integral chassis. A few months after that item appeared in print, Al Kahn, president of a new electronics manufacturing company brought to my attention some of his equally new Ten-Tec Inc. enclosures. I couldn't help but be impressed, if only from the view that here was another nicely styled enclosure-different than the LMB-that would make almost any home-made project look like it was built by a professional.

Al, a ham with the two-letter call, K4FW, founder and ex-president of Electro-Voice, retired to go into the business of manufacturing specialized gear for hams and experimenters. The new enclosures follow the introduction of a variety of unusual low power ham transmitters. There are two basic enclosure styles and six sizes within each style. There are also two finishes available-the

ACCESSIBILITY: Top of the enclosure slides off after removal of two sheet-metal retaining screws.

LOOK ALIIKES: The Triplet Models 600 (rear) and 602 (front) appear identical, but are different.

BATTERY CHECK: New on the 602 is a battery check switch position to monitor the 9 -volt batteries.

PUSH BUTTONS: Four push buttons (below) on Model $\in 02$ select polarity options of the test probe. If button AP is depressed, the needle reads upscale in the automatic polarity seeking mode. Positions for plus and minus also reverse the ohms battery polarity for ease in making solid-state tests.

PROBES-NEW and OLD: Triplett made two minor and one major change on the test probe. There is a bigger slide switch button, brighter and bigger lettering and a needle point vs the old tip pirn of the 602 probe. Alligator clips are supplied.

PRECISION LOW VOLTAGE TEST: The 602 passed all tests with flying colors. Using the Heath EU-80.A (see cover photo) and the Lancaster "Mini-DVM", the 602 was well within any possible meter needle parallax error between values of 0.1 and 9.9 volts.
"Professional" with grey and black and the "Decorator" in egg-shell white with woodgrain top and side panels. A matching chassis for each size and style is available.

I haven't built anything too fancy into the Ten-Tec enclosures that are in my workshop. I say this not to indicate that this review may be premature, but to illustrate the quandary I face in putting the right project in an instrument enclosure you almost hate to deface.

B Negative Patterns-Most electronics experimenters are familiar with two easy ways of making their own printed circuit boards. The first-direct masking-is used to make a single board. In this method, the circuit is created on the copper surface using pressuresensitive tape or some type of liquid resist. Once the circuit is laid out, the board is etched.

The second method-photo mask cut and peel-is used when tracing a foil pattern. Here, a two-layer mask (one dark film and the other clear) is used and the circuit outline is cut out with a sharp knife. The dark layer is removed to expose the circuit. The board is prepared with light-sensitive resist and allowed to dry. The film is then placed over the prepared board and exposed to light. After exposure, the film mask is removed and the board is treated and etched.

To produce a board with good, clean lines, both methods depend on a steady hand and a sharp knife. This becomes even more difficult when you are working with transistors and IC's.

Recently, I started using the GC Electronics "B Neg" Drafting Aids to make an actual size master that is equal to the best photographic product. The B Neg stick-on's eliminate the need for photography and are speedy and easy to use. I simply determine the circuit pattern and place the negatives for the terminals in their proper positions on clear acetate. The remaining area is filled in with adhesive-backed black background. The interconnecting lines are carefully drawn with a sharp white charcoal pencil and then cut out using a sharp knife and metal guide. If a mistake is made or the circuit must be redone, the necessary portion of the black background can be easily removed and replaced.

After using the B Negs to make several relatively complex PC boards, I found that I could turn out really professional looking boards. Although designed for the small electronics manufacturer, the B Neg approach is excellent for the serious experimenter who takes pride in his work.

Incidentally, GC Electronics distributors also have an excellent manual called "Printed Circuit Handbook" costing 50¢. This well-written and illustrated manual details
all the methods used to make a PC board, giving each step. This is a must if you make your own boards, or would like to.

Work in Progress-Due to a few editorial disruptions this first installment of the new "TPG" is unfortunately brief. However, next month, it will be enlarged and will include discussions on the Electro-Voice "Landmark 100 ". stereo system, Avanti "Astro-Plane" CB antenna, Eico Model 150 signal tracer and Knight-Kit R-195 communications receiver.

In the months to come, The Product Gallery will take a look at two new Heathkit items, the IO-101 Vectorscope/Color Generator and the solid-state GR-370 color TV receiver. Test equipment, shortwave receivers, ham radio gear and various CB transceivers will be laboratory and field tested. If you would like a report published on a particular item, drop me a letter or postcard. - $30-$

SIMPLICITY PLUS: Use of "B Negs" results in PC boards with accuracy equal to photo-made patterns.

First in a Monthly Series by J. Gordon Holt

$\mathbf{M}^{\text {²}}$INITIAL REACTION when asked to do a monthly column on audio for this magazine was, "Phooey!" Not that I have anything against Popular Electronics spe-cifically-it just happens to be an advertisersupported, hobby-oriented, consumer-type magazine; and my experience writing for such magazines had been that I could say anything I wanted so long as I did not criticize, embarrass or otherwise cause discomfiture to the advertisers, some of whose products I was supposed to discuss for the edification of the reader. However, I was assured that this time I could do my own thing so I agreed to take a crack at it. It seemed too good to be true, but a writer with opinions can't resist a soap box.
Let me make it clear at the outset that, though I try to be fair, I am opinionated. I say this in the hope of forestalling letters from those readers who are offended by some of my opinions. I have definite ideas about the aims and objectives of high-fidelity sound reproduction and about the people who make the equipment and those who buy it in the stores. I am, in fact, what is sometimes called a "purist." Which is to say that I believe that high fidelity is, by definition, the pursuit of realistic sound reproduction-not pretty, or spectacular, or effective sound reproduction, but realistic! I feel that it should be the aim of every component manufacturer, recording studio, and audio hobbyist to reproduce the best possible semblance of a live musical performance, as heard from a good seat in the auditorium or wherever the music might be performed. I do not abide with the fiction concerning sound as heard from the "best seat in the house," because it was that fanciful idea that gave birth to the theory that a recording should be a "work of art unto itself," devoid of any relationship to a live-performance experience. That may be art, and it may provide an outlet for the frustrated musical creativity of recording directors, but it ain't fidelity.

Without the concept of the "original sound," there can be no appreciation of
fidelity in reproduced sound. By definition, a high-fidelity reproduction is a highly accurate reproduction, and without the original by which to judge the copy, there can be no meaningful measure of fidelity. An original abstract painting has no fidelity. Only a reproduction of it can be judged in terms of fidelity of color, texture, and so on. Similarly, the sound of live music has no fidelity; only the reproduction of it can be judged on that basis. You may prefer more brilliant coloring or more spectacular sound in the reproduction of the painting or the music, and that's your privilege. Buf if you do, don't kid yourself by thinking that you are a highfidelity enthusiast. You're a color enthusiast or a sound enthusiast, and you will probably disagree with much of what I'll have to say in this and future colums. That's your privilege, also.

So You're Way Out. Those of you who are addicted to rock and roll will no doubt be screaming that my view of high fidelity excludes your particular type of music because there is no original performance. The far-out sounds of the Beatles' "Sergeant Pepper" and the Blood, Sweat and Tears records don't exist in a "live" form. They are created on tape, and are never heard until the tape is played through a reproducing system, which in this case is actually the "producing" system. It's true-I don't consider this to lie within the realm of fidelity, unless we think in terms of fidelity's being the original intent of the people who made the tape. Nevertheless, an audio system that can faithfully reproduce a recording of orchestral music will do equal justice to rock-at least at moderate volume levels.

Speaking of reproducing rock music, it is obvious from the epidemic of burned-out loudspeakers and smoldering amplifiers that the listening levels for rock music are far beyond the bounds of what is adequate for reproducing "serious" music. So fidelity aside, it would seem that the new music, with its mystique of the traumatized ear,
has created the need for a new breed of audio systems. But we'll discuss that at length at a later time.

I will go on record now as being a confirmed audio snob. I have no interest in and no personal commitment to the so-called mass-hi-fi field. High fidelity sound reproduction is really for people who listen; and there aren't very many who can do this for more than a few minutes at a time without talking, reading, or filling their stomachs. Most socalled "listeners" would be just as happy with a cheap portable stereo; but if they're willing to pay for something more in the name of status, I can't criticize them or the industry which caters to them. I'm just not that concerned about either one.

What I am concerned about is that segment of the audio industry which seems willing to corrupt the entire audio field by bowing to the imagined "preferences" of those people who don't pay enough attention to what they're listening to to have any preferences. By far the worst offenders are the recording companies, who can give you a long list of reasons-backed up by market surveys-why they can't sell a recording that is as high in fidelity as the current state of the art permits it to be. Dynamic range must be compressed, individual instruments must be spotlighted and the lows must be rolled off below 70 Hz .

Then the highs must be given an extra dose of presence because the "average buyer' listens at low volume in a small living room with drapes and overstuffed furniture to a phonograph with lousy trackability and a treble control that is turned down. Certainly, there's nothing the matter with doing this kind of thing to background music and similar forms of aural chewing gum, but why must it also be done to recordings of grand opera, pipe organ, and that segment of the orchestral repertoire that isn't included in the "twenty great masterpieces that every music lover must have in his library?"

All Is Not Lost. If I have given the impression that I am a sourpuss who disapproves of everything, that is not really the case. I can see some things to be happy about. I am still not convinced that fourchannel (quadrasonic) stereo is one of them, but I am immensely happy with a few new components that have recently made their appearances and am encouraged by the announcements of some others.

The Crown DC-300 stereo power amplifier, for example, is something to do cartwheels over, not only because of the way it is built, but also because of the way it sounds. Whether the superb transparency and detail of this costly hunk of hardware are due to its extremely low distortion, its high available power, or its rock-solid stability is a matter
for conjecture. The fact is that it does sound better than anything else I've listened to, even at low volume levels; and my reaction to those critics who've reported that they couldn't hear the difference is that they either didn't really listen to it or they need to do some more ear-training exercises.

The current popularity of the DC-300 is encouraging to me in another way. It was only a few years ago that "established" high-fidelity equipment manufacturers were telling me that they had no intention of supplementing their mass-market line with toppriced, no-holds-barred components because "there's no demand for top-flight equipment." I wonder how they are feeling about the consumer reaction to the DC-300 and some of the other astronomically priced new components like the SAE preamplifier and the Infinity Servo-Statik I speaker system that bears a pricetag in the $\$ 2000$ range and then calls for two power amplifiers to drive it (one of which should, according to Infinity, be a Crown DC-300). I don't expect to see components like this cornering the high-fidelity market, but I find it encouraging that some manufacturers are at least interested in advancing the art instead of trying to make cheaper mass-market items that are "almost as good as" last year's.

Europeans to the Rescue. Another thing that I find encouraging on the current audio scene is the increasing number of disc recordings that are being imported from Europe. Until fairly recently, most U.S. releases of European discs were "mastered" here from imported tapes and were "equalized" according to the prevailing philosophy of

J. GORDON HOLT

A graduate of Lehigh University, with a journalism major, Gordon got his primary and secondary education in Melbourne, Australia. He joined the staffs of High Fidelity and Audiocraft magazines in the mid-50's, and moved to Weathers Industries to write instruction manuals and service bulletins in 1960. Resuming free lance writing, he contributed to various magazines, including our sister publication Stereo Review. Seeking further freedom, Gordon started his own magazine, The Stereophile, in 1962 to report extensively on hi.fi/stereo components.

Always interested in obtaining the highest fidelity, he has been involved since 1948 in the live recording of choral and orchestral groups, including folk singer Richard DyerBennet on discs bearing the latter's own label. Gordon designs and does consulting work for various equipment manufacturers and stereo enthusiasts planning ambitious reproducer installations.
U.S. recording tastes. Western Europe, however, has tended to view serious music as primarily of interest to the discriminating so there has been less inclination to compromise their discs to please a mass market. Previously, the quality obtainable from Europe was available only to a few dedicated hobbyists who had learned to order their discs from overseas. Now, Argo, Odeon, and Oiseau-Lyre (and others) discs are coming into the U.S. as pressings, cut in Europe to European standards. And some U.S. shops are importing-probably illegally-English recordings that would normally be processed and released by licensed American companies.

I am pleased to note the growing popularity of the so-called "compact" tape media -the cassettes and cartridges-but for an unusual reason. Sonically, they are not, and probably never will be, as good as the better discs or open-reel tapes; but they serve a purpose that can only be considered beneficial to the quality audio field: they are siphoning off that large segment of the music-buying market whose existence has been the principal excuse for the compromising of all recordings.

The portability, convenience, and relative ruggedness of the instant-load, easy-carry compacts have great appeal to the mass music consumer (using consumer in the sense of one who buys, uses, and discards). These compacts will very probably be The Medium of the Future for the casual music listener. This means that most of the firms currently making discs will eventually abandon that medium in favor of the compact tapes, leaving the recording of music with less mass appeal to smaller companies who believe strongly enough in the artistic value of what they record to be content with selling it to a relatively small but appreciative market. This has happened before. Westminster Records started as the latter type of company, as did the now defunct Unicorn Records.

It is even possible that some of the major U.S. recording firms will acknowledge the existence of that small band of record buyers who have been resisting the kind of domestic recording practices that reached their zenith with RCA Victor's much-heralded but (to audiophiles) disappointing Dynagroove recordings. Columbia Records has been reissuing "discontinued" definitive recordings that have little if any mass appeal, so it is not unlikely that they might start doing the same thing for fidelity-conscious buyers, for the same ostensibly altruistic reasons.

In other words, there are, even now, forces for good at work on the domestic high-fidelity scene. I do recognize their existence. So please keep this in mind when, in future col-
umns, I harp on all the things I do not like about recordings, components, dealers and musicians. (Yes, musicians are partly to blame for the sorry state of most domestic orchestral recordings, simply because their union rules have raised the price of experimental recording to the point where it is better to play it safe than to try new techniques.)

It's fine to give due credit for things that are done right, and I am happy to do this from time to time. But there are other audio publications whose devotion to positive thinking should yield all the praise the industry deserves. What is needed, I feel, is some constructive criticism; and I hope this column will contribute something interesting and informative along those lines.

Early Beginnings. I became hooked on both music and high sidelity as the result of a music appreciation course in Junior High School. The school was the proud possessor of one of the first genuine high-fidelity pho-nographs-a two-piece ensemble consisting of a variable-speed $78-\mathrm{r} / \mathrm{min}$ turntable with a 5-oz crystal pickup, a vacuum-tube amplifier with real bass and treble controls, and a separate speaker system about the size of a large steamer trunk.

My exposure to music at home had been through such ditties as "Falling Leaves" and "Today I Feel So Happy," played on a vintage wind-up portable Victrola (whose wonden case now carries my microphone cables for remote recording jobs). Since music-appreciation courses are predicated on the notion that the most important thing about music is how it developed, I was subjected to a succession of Gregorian chants, descants, polyphony, Baroque pieces, and Italian opera. Then there was Wagner-and a recording of the Prelude to Act III of "Lohengrin"--and I was hooked.

I bought the record, probably expecting it to sound just as hair-raising on my little Victrola. That was when I realized that some sound reproducers were better than others and started trying to improve my own. I'm still trying.

Today, I find that there are other musical works that impress me as much as my first "revelation" did, but. my tastes still aren't particularly catholic. I like most orchestral music; but I consider John Cage a practical joker, the vast bulk of rock and roll unmitigated trash, and live music better than canned music. I like the transparency of electrostatic speakers; I prefer a row-A seat in the first balcony at live performances; and, accordingly, I play reproduced music somewhat but not terribly loud. And I amin no uncertain terms-a nut about high fidelity.

- $30-$

One Hundred Seventy-Second in a Monthiy Series by Lou Garner

WITH ALL the recent interest in digital display devices, it is no wonder that a 7 -segment readout that measures only $3 / 4{ }^{\prime \prime} \times$ $1 / 2^{\prime \prime} \times 1 / 8^{\prime \prime}$ would create an exceptional stir. Such has been the case with the announcement by Monsanto Electronics Special Products of the availability of their H-4 lightemitting diode display. Because of their small size and compatible power requirements (3.6 volts d.c. at 20 mA per segment), the H-4's have been tried in the designs of several devices requiring digital readout.

In fact, while the article on the Mini-DVM which is featured in this issue of PopUlar Electronics, was being prepared, the editors tried using the Monsanto H-4's as readouts for the DVM. The instrument's circuit was duplicated except for the Nixies and the " 1 " and overrange lamps. Instead two H-4's and small filament lamps for the " 1 " and overrange were used. Two printed circuit boards were made-one for the driving and decoding integrated circuits, the other for the readouts. The two narrow PC boards were installed in an aluminum tube $1^{\prime \prime}$ in diameter and $5^{\prime \prime}$ long, with a cutout for viewing the readouts. A cap was molded for the front of the tube and a probe tip was installed in it to make the input for the DVM.

The remainder of the electronic circuit for the DVM was mounted in a separate chassis and a 3^{\prime} narrow-diameter, multi-lead cable was used to connect the readout package to the chassis.

The result was a new look in DVM's. Having the complete readout within the probe enabled the user to bend over the equipment being tested and still see the measured quantity with great ease. The probe handled easily and was small enough to fit the hand comfortably.

You might want to give the Monsanto readouts a try-either in the DVM or in a digital clock. They cost $\$ 11$ each from Monsanto Electronics Special Products, 10131 Bubb Road, Cupertino, CA 95014. Decade counters and driver circuits are available from Southwest Terhnical Products Corp.,

219 W. Rhapsody, San Antonio, TX 78216. If there is sufficient interest, Popular ElecTRONICS may put together a set of construction plans for either the DVM or the clock.

Laser Communicator. An efficient commercial laser communications and data transmission system was among the interesting products displayed at the annual convention of the Armed Forces Communications Electronics Association (AFCEA) held recently in Washington. Although similar in principle to the laser communication system described in the May issue of this magazine, the commercial system uses an all-solidstate circuit. Developed and manufactured by the University Instruments Corporation (2585 Arapahoe St., Boulder, CO 80302), the system is intended for commercial, industrial and military applications and can transmit digital data at a high speed over appreciable distances.

Designed specifically for integrated-circuit applications, the breadboard module shown in Fig. 1, was exhibited at the Western Electronics Conference (WESCON) in

Fig. 1. Breadboarding module was designed specifically for setting up experimental and pre-produciton IC prototype layouts using plug-in technique.

If you can't come to the world's newest, largest and most exciting electronics department store, well mail the store to you!

Exclusive! knight-kit and Science-Fair Kits, Exciting build-
your-own kits made to our own exacting standards. Stereo, CB, automotive, ham radio, science,

Exclusive!

time Tubes. Never Ristic Life-
buying another tuber worry about antee ours will labe. We guarhobby, test equipment, photography your set or we replace it FREE!
and more!

New Allied Radio Shack Catalog!

Thousands of electronic values!
Allied Radio and Radio Shack have joined forces to form the largest electronics distributing company in the world! This new 1971 460-page catalog offers you the best of both companies: famous-name brands, exclusive new products you'll find nowhere else (including some items you didn't even think were invented yet), and special money-saving prices that only the combined buying power of these two great companies could offer!
World's Largest Electronic Department Stores. Over 800 stores in 48 states. See your phone book for store nearest you.

Exclusive! Quality Audio Products at Factory-Direct Savings Allied TD-1099 3.Head \cdot E III one-piece head makes tead Stereo Tape Deck. New case. Spectacular value! $\$ 179.95$ a snap. With Realistic STA-120 Wideband AM, FET-FM Stereo Receiver. 140 Watts. With case, $\$ 269.95$

Mail Coupon To Address Below

. or bring to

Älied Radio Shack store for new catalog!
allied radio Shack 100 N . Western Avenue Chicago, Illinois 60680612 Yes! I want your big new 1971 catalog. I enclose \$1 for mailing and handling (refundable with my first purchase of $\$ 1$ of more).
NAME

> First

Middle
Last
ADDRESS
Street or Foute and Box No.
CITY \qquad -STATE \qquad $2 I P$ $\square \square \square \square \square$ 1 enclosecheck \square money ordercash

Los Angeles in August. This is a product of S.D.C. Electronics, Ltd., one of the twentyeight British firms participating in the conference. An improved and modified version of the general purpose S-DeC breadboard described in our Product Gallery in July 1969, the IC board is distributed in the U.S. by Intratec (399 Jefferson Davis Highway, Arlington, VA 22202).

Although there were many interesting displays at the National Electronic Packaging and Production Conference (NEPCON East) held at the New York Coliseum, the major emphasis, naturally, was on production equipment, and comparatively few new components and instruments were introduced. There was, however, one item which could be of real interest to serious experimenters and advanced hobbyists. Presented by Bishop Graphics, Inc. (7300 Radford Ave., North Hollywood, CA 91605) and called Circuit Zaps ${ }^{\text {® }}$, the new circuit board elements are copper components patterns, mounting pads, and conductor paths etched on thin semiflexible glass-epoxy base material backed with a special pressure-sensitive adhesive. A number of individual patterns are offered, including various TO-type, DIP, and flatpack IC terminal configurations; connector pads; terminal strips; and conductor lines. A comprehensive introductory assortment, the Circuit Zap "Speedkit" is available for $\$ 59.50$.

In practice, a functional prototype circuit board can be made by selecting the needed component terminal patterns and applying them directly to any suitable insulating substrate, much as one would apply a pre-
gummed label to a package. Ceramic plates, phenolic sheets, glass-epoxy laminates, or similar substrates may be used. The component and active-device terminal patterns are interconnected using either pressure-sensitive conductor strips or short lengths of hook-up wire to complete the circuit. Parts are mounted and saldered as with conventional etched boards.

Reader's Circuit. Designed primarily for automotive applications, the solid-state lamp flasher circuit shown in Fig. 2 was submitted by reader Paul Schultz (6208 Templeton Dr., Carmichael, CA 95608), who also contributed the sequential lamp control circuit featured in our August column. Suitable for use in conjunction with the earlier circuit, the flasher can be used as a replacement for conventional electro-mechanical flashers, offering higher efficiency coupled with a fully adjustable flashing rate.

Unijunction transistor Q1 is used as a conventional $R C$ relaxation oscillator to furnish control pulses to switching devices SCR1 and SCR2. The oscillator's repetition rate is determined by the time constant of the circuit made up of $R 1, R 2$, and $C 1$. Capacitor $C 5$ provides commutation between the two SCR's, which, in turn, furnish a drive signal to the cascaded output circuit, $Q 2$ and $Q 3$. Voltage regulation is provided by $R 8$ in conjunction with zener diode $D 2$ to insure stable operation.

Coupling diode $D 1$ is type 1N2615, although any silicon diode with a PIV rating of at least 200 volts and a maximum current rating of at least 500 mA can be used. Ca-

Fig. 2. Solid-state lamp flasher circuit can replace conventional electro-mechanical flashers, offering greater efficiency and fully adjustable flash rate control.

Shortstop.

Our exclusive posted-filament design stops shorts in highvoltage rectifiers.

And you know what shorts cause . . . catastrophic failure, or weakened tubes and components.

The result: unprofitable callbacks.
Our 3CU3A, 3BM2A, 3BL2A, and 3DC3 high-voltage rectifiers all use the fail-safe posted-filament design.

Put our shortstops on your team. You'll find that callbacks won't even get to first base.

Sylvania Electronic Components, Electronic Tube Division, West Third St., Emporium, Pa. 15834.
pacitor $C 5$ is a $2-\mu \mathrm{F}, 100$-volt non-polarized unit which may be made up by connecting two $4-\mu F, 100$-volt electrolytics back-to-back.

The circuit can be assembled using any construction method; layout and lead dress are not critical. All dc polarities must be carefully observed; and if desired, insulated heatsinks may be provided for the SCR's and output transistors.

If the circuit is to be used only for standard turn signal applications, rather than in conjunction with the sequential control described last month, components C2, D2, and $R 8$ may be omitted, with $C 1$'s value reduced to $2 \mu \mathrm{~F}$.

Intended for use in autos with conventional 12 -volt negative-ground electrical systems, the assembled circuit is normally mounted under the dashboard as a direct replacement for the standard electro-mechanical flasher. After installation and check-out, rate control $R 2$ should be adjusted for the desired flashing rate.

TV Set on a Chip? Not quite, but give the industry a little time and it may occur. For example, consider RCA's new TA5914 integrated circuit. This 18-lead plastic package contains an $85-\mathrm{dB}$ video i-f amplifier, video detector, video amplifier, sound channel amplifier and detector, $4.5-\mathrm{MHz}$ amplifier, keyed agc-noise immunity circuit, tuner agc delay amplifier, and zener diode voltage regulator. A block diagram of the circuits in the device is shown in Fig. 3.

If you decide you want color, you can also use the TA5625 chroma control system which has a gain-controlled chroma amplifier, band-pass amplifier, injection-locked oscillator, automatic color correction detec-tor-amplifier, killer detector-amplifier, dc chroma gain control, and a zener voltage
regulator. The TA5625 comes in a 16-lead plastic package.

Also in the color section is the TA5752 chroma demodulator that contains a synchronous detector with color-difference matrix, complete dc phase-shift (tint) control, oscillator injection limiter, output amplifiers for the $R-Y, G-Y$, and $B-Y$ signals, and a zener diode voltage regulator. Again this is in a 16-lead package. All we need now is an IC tuner, IC sweep circuits, a micro-color tube, and we are ready for color TV in the shirt pocket.

Watch That Watch! If you were watching NBC-TV's "Today" show a few months ago, you saw one of the first public demonstrations of an amazing new all-electronic, solid-state wristwatch. If you missed the show, you probably saw a write up on the watch in the newspaper. In any case, you are probably wondering how it works.

Actually it is still in the prototype stage, but the watch is scheduled for production and sale in 1971. It is a joint development of Electro/Data, Inc. (Garland, Texas) and the Hamilton Watch Co. (Lancaster, Pa.). The watch is essentially a battery-powered microminiature electronic digital computer with a fixed precision signal source and a

Fig. 4. Block diagram shows circuit breakdown of total electronic watch. Precision oscillator drives divider and logic circuits to provide numeric readout via light-emitting diodes. Readouts are passive until switch is closed to conserve battery power.

Fig. 3. Just add a front end, power supply, horizontal and vertical drive circuits, a picture tube, and maybe a volume control to RCA's TA5914 IC (diagram at left), and you have a com. plete monochrome TV receiver.

If you've been using your mechanical ability only on weekend projects while you spend the rest of the week in a dull, low-paying job-you just don't know how much your ability could be worth!

Consider this: according to the National Science Foundation, four million trained technicians will be needed within the next five years; yet projections show that less than one million will be available. Already, big and small companies are competing desperately for technicians...spending hundreds of millions of dollars in newspaper advertising to woo them with excellent salaries and mouth-watering fringe benefits!

Today there's almost no field that doesn't depend on electronic equipment and the technicians who can make it work...from life-saving medical electronics to computer technology to the exotic new field of astrionics-the application of electronics to space flight!

How can you learn to become a technician? Our free booklet will explain how United Technical Institute can actually train you to be ready for your first position in just a matter of monthsthanks to our practical learn-by-doing approach.

Whether you attend classes or take our home-study course, you'll find yourself thinking and acting like a professional technician from the very first day...facing the same challenges you would face on the job...simple at first, then more complex in a series of natural, easy-to-digest steps. All along the way, you'll be guided by expert UTI instructors. Even if you found ordinary schooling dull, you'll find UTI training fascinating!

There couldn't be a better time for you to put your technical ability to work on the most important project of all...earning you more money at work you really enjoy doing! Send for UTI's free booklet today by mailing the card or coupon.

how much is worth-

 foe booklt electronics!
ADVANTAGES ONLY THE FINEST SCHOOLS OFFER:

\star Nationwide placement assistance at no extra cost!
\star Accredited Member of the National Association of Trade and Technical Schools.
\star Eligible institution under the Federally Insured Student Loan Program.
\star Resident Schools approved for veteran training.
\star Your choice of home study or classroom training in major cities from coast to coast.

UTI TRAINING WORKS!

"Patrick is making good use of his UTI education now at the Westinghouse Defense and Space, In Sep-
tember, tlir ${ }^{4}$
him througn
University. Thàna,
from us and from Poti -Mr. \& Mrs. Eugene Bealia
"L'm classified as an Advanced Graduate because of my schooling at UTI!'’ —Gerald A. Modjeski
"Finally settled here in sunny Southern California. Will be getting a raise in October and a higher cost of living allowance too. I must thank UTL!"
-Kirby Wanden
Seplember, 1970
"Joined a young company... outstanding opportunity to grow and be within a stone's throw from one of the best fishing areas in the country. "'ish to again thank UTI for -ion 1 received!"
"iam F. Secraw
ways be glad
that on Bob, attended UTI and n ould like you to know that he is doing very well in his closen vocation!'
-Mrs. V. M. Irwin
"I'm very glad I attended UTI. 1 don't know where 1 would have been without your help. Thank you!"
-James Wukoman

CAREER ACADEMY

United Technical Institute Division
611 E. Wells Street, Dept. 07N087221 Milwaukee, Wisconsin 53201

Please send me the FREE booklet describing the exciting future walting for me in electronicsl

Name \qquad Age \qquad

Address

City
State/
Province \qquad Zip
Year of high school graduation \qquad Phone
(Home, Business, or Neighbor) Interested in \square Classroom Study \square Home Study Check here if eligible for Veteran's Benefits \square
popular ELEGTRONICS subscriber service
Please include an address label when writing about your subscription to help us serve you promptly. Write to: P.O. Box 1096, Flushing, N.Y. 11352 CHANGE OF ADDRESS: Please let us know you are moving at least four to six weeks in advance. Affix magazine address label in space to the right and print new address below. If you have a question about your subscription, attach ad. dress label to your letter. TO SUBSCRIBE: Check below.5 yrs. $\$ 21$
$\square 3$ yrs. $\$ 15$ Specify: \square Payment enclosed You get 1 extra issue per year as a BONUS! Bill me later.
print nome

oddress
city

Add'I postage: $\$ 1$ per year outside U. S., its possessions \& Canada.

ABOUT YOUR SUBSCRIPTION

Your subscription to Popular Electronics is maintained on one of the world's most modern, efficient computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.

We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, if your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill Jones, Cedar Lane, Middletown, Arizona," our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.

So, please, when you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

SOLID STATE

(Continued from page 104)
numeric readout. A block diagram of the watch is shown in Fig. 4.

A crystal-controlled oscillator operating at 32.768 kHz provides the instrument's time base. The oscillator's output is coupled to a multi-stage binary counter which serves as a frequency divider, reducing the signal to $1-\mathrm{Hz}$ pulses. Logic and counter circuits establish the pulse forms needed to provide a running memory of second, minute, and hour time intervals. These signals are coupled to appropriate drive amplifiers which, in turn, actuate a dot-matrix gallium arsenide phosphide LED readout on the face of the watch. Micropower subminiature LSI circuitry is used throughout, while dc operating power is furnished by a tiny 3 -cell, 4.5 -volt rechargeable silver zinc battery.

Special circuits are provided for setting the watch, while a light sensor automatically adjusts the LED readout brightness to compensate for varying ambient light.

Although the oscillator, divider and logic circuit operate continuously, the LED readout is energized only on demand to conserve battery power. When the control switch is closed momentarily, the hour and minute display is activated for 1.25 sec . If switch closure is maintained, the hour/minute display darkens and a continuously counting seconds display appears.

With a maintained.accuracy of better than 3 seconds per month, the new watch, called the "Pulsar," is expected to retail for approximately $\$ 1,500.00$.

ESD or Super Capacitor. A new solidstate capacitor-like device developed by Gould Ionics, Inc. (P.O. Box 1377, Canoga Park, CA 91304) was described last May in a technical paper presented by H. I. Rudman and J. E. Oxley at the 20th Electronic Components Conference in Washington, D.C. It has almost unbelievable characteristics. It can have an effective capacitance of up to 50 farads (no that's not a typographical er-ror-it's 50 F) in less than $1 / 3 \mathrm{cu} \mathrm{in}$. and will retain better than 97% of its charge for an indefinite period. (Tests, thus far, have been extended to only 9 months, but extrapolation and theoretical considerations indicate a multi-year charge retention.)

So unique that it is called an Energy Storage Device (ESD) rather than a capacitor, and identified by a special schematic symbol, the new component has virtually unlimited potential in control, timing, memory, time delay, filter, and power supply applications.

POPULAR ELECTRONICS

Fig. 5. Energy Storage Device (ESD) can have effective capacitance of up to 50 F! So new, special schematic symbol had to be evolved. in (A) is a time control circuit; (B), running time integrator.

Except for its extremely high capacitance, its electrical characteristics are roughly analogous to those of an electrolytic capacitor. It has an internal series resistance of a little less than 1 ohm with a very high shunt (leakage) resistance and it is dc polarized. A single ESD cell has a breakdown rating of approximately 0.66 volts; 0.5 volt is considered its nominal working voltage. Series and series-parallel cell connections may be used,
however, if they are needed to increase the capacitance and/or working voltage.

Externally, a typical ESD cell somewhat resembles a flat nickel-cadmium or mercury battery, although thick-film versions of the device have been assembled for test purposes. The standard cell consists of two electrode wafers separated by an electrolyte, with suitable electrode terminals attached and the entire unit encapsulated in a small metal can. Its extremely high capacitance (which can reach 300 farads per cu in, is a result of a maximization of the electrodeelectrolyte interface area and the development of a blend of finely divided carbon and a high-ionically conducting solid electrolyte.

Two typical circuit applications for the ESD are shown in Fig. 5. Note the special symbol. The long time control circuit shown in Fig. 5A uses an ESD as a shunt element between logic circuits and a control amplifier (Q1). Depending on R1 and the ESD's values, such a circuit could provide delays of several hours ta many weeks.

A running time integrator arrangement is shown in Fig. 5B. Requiring only a diode ($D 1$), a dropping resistor (R), and the ESD, this circuit can be used to determine the total running time of a piece of electrical or electronic equipment. In operation, the ESD is charged during each positive half cycle and slightly discharged by the diode's leakage during each negative half cycle. As a result, the ESD's charge will increase linearly with operating time, permitting a measurement to be made simply by checking the ESD's voltage with a VTVM and correlating to a standard charge curve. With a suitable resistor, a low reverse leakage diode, and a $50-F$ ESD, over a century of continuous operation can be obtained.

Not yet in full production as stock items, currently available ESD's command relatively high prices as prototypes. All types, from the Model $1050 \mathrm{C}-150-\mathrm{F}$ unit to the Model $5.5 \mathrm{U}-10.5-\mathrm{F}$, are $\$ 30.00$.

So, Happy Farads, Everybody. -Lou

FREE $\prod 11$ Intosh cATALOG and FM DIRECTORY

Get all the newest and latest information on the new Mcintosh Solid State equipment in the Mclntosh catalog. In addition you will receive an FM station directory that covers all of North America.

MX 114

FM/FMSTEREO TUNER and STEREO PREAMPLIFIER

McIntosh Laboratory Inc.
2 Chambers St., Dept. PT-97
Binghamton, N.Y. 13903
NAME
ADDRESS ___
CITY

STATE ZIP

not by a long shot it isn't !!

There's certainly nothing top secret about Popular Elee. tronics' classified pages. They're wide open to every buyer in the market for the product or service he knows can be found in Electronics Market Place.

More than 375.000 buyers of Popular Electronics, largest readership of any electronics magazine in the world, guarantee that your ad is being read by people constantly looking for and buying electronics products. It is these people to whom you MUST direct YOUR advertising as do the many key advertisers appearing in this issue and in each issue throughout the year.

No doubt about it-there's a vast market of buyers searching the classified advertising pages of Popular Electronics and it's important that your ad be exposed to them. Prove to yourself that the leading electronics mag. azine MUST ALSO be the leader in sales responses to the many classified ads presently enhancing its pages-it makes a great deal of sense-give it a try.
See classified section for rate information or write to HAL CYMES, Classified Advertising Manager ZIFF-DAVIS PUBLISHING COMPANY One Park Avenue, New York, N. Y. 10016

COOPERATE WITH

 THE ZIP CODE PROGRAM OF THE POST OFFICE DEPARTMENT. USE ZIP CODE IN ALL ADDRESSES
COMMUNICATIONS

(Continued from page 92)

SHORTWAVE LISTENING

Interview with Keith Glover-The "Voice of Australia" to millions of listeners everywhere is Radio Australia's popular "Overseas Mailbag" man, Keith Glover. Over the last two decades, Keith has broadcast personal calls to over 10,000 listeners during his North American show. Popular Electronics met Keith during his first U.S. visit, and the following conversation ensued:
popular Electronics: Welcome to North America, Keith. Tell us about your North American Mailbag show.

Keith Glover: Thank you. I'm delighted to be here in the U.S. and Canada for the first time, meeting some of my listeners and radio friends. The North American Mailbag goes out twice every Sunday. In the morning at $7: 45 \mathrm{EST}$, on 9580 and $11,710 \mathrm{kHz}$, and in the evening at $8: 10$ EST on $15,320,17,840$ and $21,740 \mathrm{kHz}$. During DST in America, we shift the morning transmission.

PE: Is the North American Mailbag your only show on Radio Australia?

KG: No, it's just one of my three Mailbag sessions: the European and British Isles Mailbag is broadcast once every Sunday, and the Asian and Pacific edition (which also covers Africa, and has some South American listeners) goes out seven times.

PE: Does this mean that Radio Australia stresses broadcasts to Asia?

KG: Yes, we see Asia as our main sphere of influence, and we beam the majority of our transmissions there. For instance, our $250-\mathrm{kw}$ booster station at Darwin is beamed to Asia exclusively. And we broadcast in 6 Asian languages, besides English (24 hours a day) and French.

PE: Now that Darwin is operational, what other plans does Radio Australia have?

KG: We will keep on stressing our Asian beams; we would like to add an Indian lan-guage-Hindi or Tamil-soon. But the other areas will not be forgotten. Our Perth transmitters are now used for the service to Africa, where we have a sizable audience. And we are considering Spanish broadcasts.

PE: Some Western countries such as Denmark have made cuts in their international broadcast services. Even the Voice of America recently dropped its Japanese service and made other cuts. How do you see this trend?

KG: We are going to do our best to keep our place in the international bands. Our Japanese service is very popular with its

COMPLETE WITH ALL ADAPTERS AND ACCESSORIES,

NO "EXTRAS"

STANDARD TUBES:

\checkmark Tests the new Novars, Nuvistors, 10 Pins, Magnovals, Compactrons and Decals.
More than 2,500 tube listings.
\checkmark Tests each section of multi-section tubes individually for shorts, leakage and Cathode emission.
\checkmark Ultra sensitive circuit will indicate leakage up to 5 Megohms.

- Employs new improved $41 / 2^{\prime \prime}$ dual scale meter with a unique sealed damping chamber to assure accurate, vibration-less readings.
- Complete set of tube straighteners mounted on front panel.
- Tests all modern tubes including Novars, Nuvistors, Compactrons and Decals.

\author{

- All Picture Tubes, Black and White
} and Color

ANNOUNCING...for the first time

A complete TV Tube Testing Outfit designed specifically to test all TV tubes, color as well as standard. Don't confuse the Model 257 picture tube accessory components with mass produced "picture tube adapters" designed to work in conjunction with all competitive tube testers. The basic Model 257 circuit was modified to work compatibly with our picture tube accessories and those components are not sold by us to be used with other competitive tube testers or even tube testers previously produced by us. They were custom designed and produced to work specifically in conjunction with the Model 257.

BLACK AND WHITE PICTURE TUBES:

- Single cable used for testing all Black and White Picture Tubes with deflection angles 50 to 114 degrees.
The Model 257 tests all Black and White Picture Tubes for emission, inter-element shorts and leakage.

COLOR PICTURE TUBES:

\checkmark The Red, Green and Blue Color guns are tested individually for cathode emission quality, and each gun is tested separately for shorts or leakage between control grid, cathode and heater. Employment of a newly perfected dual socket cable enables accomplishments of all tests in the shortest possible time.

The Model 257 is housed in a handsome, sturdy, portable case. Comes complete with all adapters and accessories, ready to plug in and use. No "extras" to buy, Only.

SEND NO MOHEY WITH ORDER PAY POSTMAN NOTHING ON DELIVERY

Pay Cash or in EASY MONTHLY PAYMENTS AFTER 15 Day Trial!
Try it for 15 days before you buy. If completely satisfied remit $\$ 52.50$ plus postage and handling charge. (If you prefer you may PAY MONTHLY ON OUR EASY PAYMENT PLAN.) If not completely satisfied, return to us, no explanation necessary.

ACCURATE INSTRUMENT CO., INC.
2435 White Plains Road, Bronx, N. Y. 10467
Please rush me one Model 257. If satisfactory I agree to pay at the terms
specified at left. If not satisfactory, I may return for cancellation of ac-
count.
Name.
Address_
City
Save Money! Check here and enclose $\$ 552.50$ with coupon and we will
pay all shipping and handling charges, You still retain privilege of
returning after 15 day trial for full refund.

listeners; and, in fact, we have been beaming transmissions to Expo '70 in Osaka. Of course, Australian taxpayers pay for our operations, but we keep them informed.

PE: You work for the domestic services too, then?

KG: Yes, I spend about 25% of my time on the ABC's domestic networks, as a sportscaster and outside broadcast coordinator. On Radio Australia; I also read the news and do musical programs.

PE: Getting back to the Mailbag, how many letters do you receive a year?

KG: For the North American edition, about 750 or 800 a year. I try to read ten each Sunday- 7 from the U.S. and 3 from Canada. Judging from the reports, by the way, most North American listeners, especially on the East Coast, tune in our morning program at 7:45 EST; the bands are quiet then and reception is good. In the evening, we run into big interference from other sta-tions-especially European ones-beaming to America at the same time. Talking about mail, last year Radio Australia got no less than 289,000 letters from overseas listeners.

PE : so the audience is growing as Radio Australia grows. Thank you, Keith. We look forward to many more years of Mailbag programs. (Interviewed by Richard E. Wood.)

MARINE LISTENING

Nation's Boat Owners "Discover" SSB -With a Report \& Order released June 16, 1970, the FCC has completed major changes in the $2-3-\mathrm{MHz}$ and the $156-162-\mathrm{MHz}$ VHF/FM marine communications bands. Transition to single-sideband (SSB) in the $2-3-\mathrm{MHz}$ band begins January 1, 1972, when there'll be no more new installation of AM marinephones (now used) and January 1, 1977, when all use of AM will be banned. Any AM equipment installed before January 1, 1972, can stay on the air until January 1, 1977. New installations of SSB marinephones (mandatory on $2-3 \mathrm{MHz}$ after January 1, 1972) won't be permitted unless the boat already has VHF/FM. Even then, the FCC won't allow use of SSB "when within VHF range" which is regarded unofficially by the Coast Guard as 20 miles ship-to-shore. This transition to SSB in the most-used marine band-termed "precipitous" by some-was dictated by America's unique recreational boat population explosion which made it impossible for the FCC to go along with the international framework of January 1, 1973 and January 1, 1982 as the respective dates for "no more installation" and "no more use" of AM in the $2-3-\mathrm{MHz}$ band. (Submitted by Richard Humphrey.)

1970 -WINTER

$\$ 1.35$

ELECTRONIC EXPERIMENTER'S

HANDBOOK

148 pages of the most fascinating and chal. lenging construction projects for the electronics hobbyists. All with complete schematics, iflustrations, parts list, and easyto.follow instructions that guarantee you perfect finished products.

1970-SPRING
 $\$ 1.50$ ELECTRONIC EXPERIMENTER'S HANDBOOK

Another big package containing the most challenging, fun to -build electronics projects ever! Be sure to order this one today!
1970 STEREO/HI-FI DIRECTORY \$1.35
Giant 180 page buyer's guide listing more than 1,600 individual stereo/Hi-Fi com. ponents by 176 manufacturers. Nine individual sections complete with specs, photos, prices-the works!

6 Vital Components
 For Knowledge... For Profit... For Sheer Electronics Enjoyment !

1970 TAPE RECORDER ANNUAL $\$ 1.35$
Over 130 pages covering every aspect of tape recording. Complete buyer's guide to the brands and models on the market. Expert tips on equipment - making better tapes - editing - copying - everything you want and need to know about tape recording. 1970
$\$ 1.35$
COMMUNICATIONS HANDBOOK
148 fact packed pages for the CB, SWL or HAM. Equipment buyer's guide-photos -tables-charts-getting a iicense-ev. erything to make this the world's most complete guide to communications.
1970
$\$ 1.35$
ELECTRONICS INSTALLATION \& SERVICING HANDBOOK
Covers all 8 areas of consumer electronics servicing-all the tricks of the trade in one complete guide. The industry's "how-to"" book for installing and servicing consumer electronics equipment.

ZIFF-DAVIS SERVICE DIVISION Dept. W
595 Broadway, New York, N.Y. 10012
Please send me the annuals I've checked below:
1970 Electronic Experimenter's Handbook-Winter
1970 Electronic Experimenter's Handbook-Spring
1970 Stere/Hi-Fi Directory
1970 Tape Recorder Annual
19970 Communications Handbook
19970 Electronics Installation \& Servicing Handbook
I am enclosing \$........................ My remittance includes an
additional 25¢ per copy for shipping and handling (Outside
U.S.A. all magazines are \$2.00 per copy, postpaid.) PE-9-70
print name
address
city
state
E PAYMENT MUST BE ENCLOSED WITH ORDER

free information service:

Here's an easy and convenient way for you to get additional information about products advertised or mentioned editorially (if it has a "Reader Service Number') in this issue. Just follow the directions below... and the material will be sent to you promptly and free of charge.

1.On coupon below, circle the number(s) that corresponds to the key number(s) at the bottom or next to the advertisement or editorial mention that is of interest to you. (Key numbers for advertised products also appear in the Advertisers' Index.) Print or type your name and address on the lines indicated.

2.

Cut out the coupon and mail it to: POPULAR ELECTRONICS, P.O. Box 8391, Philadelphia, PA 19101.

U(If you want to write to the editors of POPULAR ELECTRONICS about an article on any subject that does not have a key number, write

 to POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. Inquiries concerning circulation and subscriptions should be sent to POPULAR ELECTRONICS, P.C. Box 1096, Flushing, N.Y. 11352.\qquad STATE ZIP CODE \qquad

SHUTTER SPEED METER

(Continued from page 77)
the camera back and place the camera on top of the phototransistor unit. Make sure that Q1 is directly monder the center of the space oecnpied by the film.

Place a strong light source (such as a highintensity lamp) over the camera not more than a comple of inches away from the lens. A camera with a between-the-lens shutter may be placed with the lens up or down, while types with focal-plane shutters are placed with the back down.
To read the shutter speed, turn on the lamp, select the shutter speed and rock the shutter. Momentarily depress the reses button and note that the meter indicates zero. Then operate the shutter release. The meter pointer will rise to the correct shuter speed and remain steady. Over a period of several minutes, the meter pointer will slowly drift upscale.

Besides elocking the shutter for accuracy, you can also check its consisteney. Take sevcral readings at each shonter sipeed and note how closely the readings agree. A slight variation is normal; but if one or more readings differ greatly, the shatter's mechanical operation should be checked.

If you make photographs in cold weather, you can get some usetul information by rumning a series of temperature tests. Place the camera in ar refrigerator (or outside if it is cold) for a couple of hours to allow all moving parts to get cold. Then make a series of shutter-speed tests before the camera has had time to warm up. You may have to remove the lens so that moisture condensation will not block the light-or you can use a stronger light
source. Yon will probably find that the shutter slows down somewhat at low temperatures; but if it becomes inoperative, special low-temperature lubrication must be used.

If, at any time, you find that your shutter is not operating properly, do not attempt to repair it yourself monless you are expert at the job. Take it to a professional and save time and money.
$-30-$

INTERFACE
 (Continued from page 10)

sured that the power to the tuner part of his stereo receiver is not cut off when he wants to listen to SCA. The only disadvantage that I am aware of is that on some cheaper stereo receivers this connection may reduce the maximum power autput-but who wants to listen to loud SCA?

Experimenters may find that attempting to rewire stereo receivers that are still under the manufacturer's warranty is likely to void the warranty. This is a situation that should be considered if the builder is not too familiar with modern stereo receiver circuits.

Joseph Feng
Kenilworth, Ill.

OUT OF TUNE

"Build a Signal Injector" (June 1970). In Fig. 3, page 45 , change callont $J 3$ to read $J 2$.
"Build a Low-Cost Time Delay Relay" (June 1970). The third line from the bottom in the left columm on page 71 should read: ". . . thermal relay $\mathrm{K} 2($ NOT K 3) and the a.c. outlet."

EXPERIMENT THAT SAVED HI-FI

(Contimued from page 3i)

"The engineers ent back the frequency range until the performance was satisfactory."

But the fact that listeners preferred fullrange somd, if undistorted, had now been proved. It gave a solid fomdation for hii-fi development work that had onee been conducted on faith alone. The hi-fi or stereo fan of today owes much to Dr. Olson and to the men who kept building better amplifiers and speaker systems when no one else seemed to care enough to listen.

If you ever find that your cars and your test equipment disagree, trust your cars until they are proven to be wrong. The listeners who chose the narrow range for reproduced music were reacting to the high-order distortion in the wide-range erpuipment of the 1940 's. In that respect their low-fi choice was the correct one and explains whe the professional musicians objected more than the average listence to the distortion. And it was the ears of Dr. Olson's listeuers that proved the desirability of a foll-frespuncy range.

Perhaps there should be a minority report from the people who chose the narrow hand with live music. One such reaction came from a lady in Texas when the local radio-TV shop returned a repaired console radio to her. "Oh good," she said. "I'll he glad to listen to a radio with a good tome again. And the records you get today just don't sound like the old ones."

Maybe she read that 1945 report. Too bad she didn't eatch Dr. Olson's experiment. - $30-$

KNOW THE JK FLIP-FLOP

(Continued fiom prage 72)
flops. In complex eirenits, it can limit the maximum operating speed. In contrast, in a synchronons divider, all JK flip-flops are clocked simultanconsly. So, the total propagation delay is equal to that of a single JK flipflop.
Λ few simple divider cirenits that make use of the JK flip-flop are given in Fig. 5. Note how the S and C inputs are nsed to return the circuits to the same state as preset at the oceurrence of the desired comut.

The "divide-by-three" circuit, for cxample, is a synchronous divider; so both T inputs are pulsed simultanconsly with cach CP. After preset, $Q 1$ of $F / F 1$ is at 0 , and $Q 2$ of $F / F 2$ is also at 0; S1 is at. 1 ($\overline{Q^{2}}$ ontput) and C2 is at 1 ($\overline{Q 1}$ output). Thus, F/F1 can change state when it receives a CP, but F/F' cammot.

After the first CP, Q1 is at 1 and Q2 remains at 0 . With $Q 1=1$ and $S 1=1$, and $\mathrm{Q} 2=0$ and $\mathrm{C} 2=0, \mathrm{~F} / \mathrm{F} 1$ camot change state upon reccipt of a ('P, but F/F2 can. Thens, alter the serond ($\mathrm{P}, \mathrm{Q} 2=1$ and Q 1 remains at 1 . With S1 $=0$ and $(2=0$, both JK F / F 's can clange state upon receipt of a CP. After the third ($\mathrm{P}, \mathrm{Q} 1$ is at 0 and Q 2 is at 0 . This is the same as the preset state, so the eycle is completed at the coment of $3 . \Lambda$ concise resume of these events; is given in the truth table in Fig. \bar{b}.

Pin connections and numbers for the Motorola MC790P and LEPE572 liTL dual-JK flip-flop integrated cirenits are also provided in Fig. 5.
$-30-$

ELECTRONICS MARKET PLACE

COMMERCIAL RATE: For firms or individuals offering commercial products or services. $\$ 1.15$ per word (including name and address). Minimum order $\$ 11.50$. Payment must accompany copy except when ads are placed by accredited advertising agencies. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance. READER RATE: For individuals with a personal item to buy or sell. 70c per word (including name and address). No Minimum! Payment must accompany copy.

FOR SALE

FREE! Giant bargain catalog on transistors, diodes, rectifiers, SCR's, zeners, parts. Poly Paks, P.O. Box 942, Lynnfield, Mass. 09140. GOVERNMENT Surplus Receivers, Transmitters, Snooperscopes, Radios, Parts, Picture Catalog 25 \&. Meshna, Nahant, Mass. 01908. ROCKETS: Ideal for miniature transmitter tests. New illustrated catalog. 25 s. Single and multistage kits, cones, engines, launchers, trackers, rocket aerial cameras, technical information. Fast service. Estes Industries, Dept. 18-J, Penrose, Colorado 81240.
LDWEST Prices Electronic Parts. Confidential Catalog Free. KNAPP, 3174 8th Ave. S.W., Largo, Fla. 33540.
EUROPEAN and Japanese bargains catalogs. \$1 each. Dee, $10639 E$ Riverside, North Hollywood, Calif. 91602.
WE SELL CONSTRUCTION PLANS. TELEPHONE: Answering Machine, Speakerphone, Carphone, Phonevision, Legal Connector, Auto Dialer, Central Dial System. TELEVISION: $\$ 35.00$ Color Converter, Tape Recorder, 3DTV. \$25,00 Camera. DETECTIVE: Infinity Transmitter, Tail Transmitter, Police Radar Detector. HOBBYIST: Electron Microscope, 96 Hour Tape Music System, Ultrasonic Dishwasher, Radar-Oven, Electronic Tranquilizer. Plans $\$ 4.95$ each. COURSES: Telephone Engineering $\$ 39.50$. Detective Electronics $\$ 22.50$, Anti-Detective Electronics $\$ 27.50$. NEW SUPER HOBBY CATALOG AIRMAILED $\$ 1.00$. Don Britton Enterprises, 7906 Santa Monica Blvd., Hollywood, Calif. 90046.
WEBBER LAB's. Police \& Fire Converters. Catalog 25\&. 72 Cottage Street, Lynn, Mass. 01905.
INVESTIGATORS, LATEST ELECTRONICS AIDS. FREE LITERATURE. CLIFTON, 11500-L NW 7th AVE., MIAMI, FLORIDA 33168.
LINEAR AMPLIFIERS: "Hawk-25 watts output-\$59.95; "Hornet" -50 watts- $\$ 98.50$; "Raider" -100 watts $-\$ 139.95$; "Maverick. 250 " -250 watts- $\$ 244.95$; AM/SSB. "Scorpion' 50 watt 12 volt mobile-\$99.95: "Bandit II" 100 watt mobile-\$169.95. 20-35 megacycles. (Illegal Class D 11 Meters.) Dealer inquiries invited. D \& A Manufacturing Co., 1217 Avenue C, Scottsbluff, Nebraska 69361.
ELECTRONIC PARTS, semiconductors, kits. FREE FLYER. Large catalog $\$ 1.00$ deposit. BIGELOW ELECTRONICS, Bluffton, Ohio 45817.
RADIO-T.V. Tubes- $33 \neq$ each. Send for free catalog. Cornell, 4213 University, San Diego, Calif. 92105.
ULTRA-SENSITIVE AND POWERFUL METAL DETECTORS-join the many who are finding buried coins, minerals, relics and artifacts. Don't buy till you see our FREE catalog of new models. Write Jetco, Box 132-PE, Huntsville, Texas 77340.
LASER parts catalog 60\%. Moynihan, 107 North Brighton, Atlantic City, New Jersey 08401.
PSYCHEDELIC catalog. Posters, lighting, etc. Send $50 \$$ for handling to Hole In The Wall, 6055PE Lankershim, North Hollywood, Calif. 91606.

THE ART OF DE-BUGGING-\$5.95. TRON-X PUBLICATIONS, P.O. BOX 38155 , HOLLYWOOD, CALIFORNIA 90038.
CONSTRUCTION PLANS: LASER.$\$ 2.00$. Listening Devicestwo F.M. Mike Transmitters . . . $\$ 1.00^{\circ}$. Tail Transmitter . . . $\$ 1.00$. Sound Telescope . . . \$2.00. Infinity Transmitter . . . $\$ 2.00$. Equipment and kits available. Howard, 20174 Ward, Detroit, Mich. igan 48235.
COMPONENTS? Kits? Hardware? Free catalog! Truvue Paks, Box 275, Chelsea, Mass. 02150.
ELECTRDNIC ignition, various types. Free literature. Anderson Engineering, Epsom, N.H. 03239.

GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. All copy subject to publisher's approval. Closing Date: 1st of the 2 nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to: Hal Cymes, POPULAR ELECTRONICS, One Park Avenue, New York, New York 10016.

SENCORE, B\&K tESt EQUIPMENT UNBELIEVAble PRICES. FREE CATALDG AND PRICE SHEET. FORDHAM RADIO, 265 EAST 149 TH STREET, BRONX, N.Y. 10451.
AMATEUR SCIENTISTS, Electronics Hobbyists, Experimenters, Students . . . Construction Plans-all complete, including drawings, schematics, parts lists with prices and sources . . . Laser-Build your own conerent-light optical laser. Operates in pulsed mode, visible light range- $\$ 6.00$. . Radar-Build your own ultrasonic doppler radar. Detect motion of people, automobiles, even falling rain drops. Transistorized, uses standard small 9 -volt battery$\$ 4.00$. Long-Range "Sound Telescope'"-This amazing device can enable you to hear conversations, birds and animals, other sounds hundreds of feet away. Very directional. Transistorized. Uses 9 V battery $-\$ 3.00 \ldots$ Or send 25 \& coin (no stamps) for complete catalog. Other items include Psychedelic strobes, light shows. robots . . . 38 different projects. Technical Writers Group, Box 5994, State College Station, Raleigh, N.C. 27607.
MECHANICAL, ELECTRONIC devices catalog 10%. Greatest ValuesLowest Prices, Fertik's, 5249 "D", Philadelphia, Pa. 19120.
CLEARANCE SALE rectifiers, transistors, 1000 's other items, Catalog 154 . General Sales Company, 254 Main, Clute, Texas 77531.
SEMICDNDUCTORS and parts catalogue free over 100 pages. J. \& J. Electronics, Box 1437, Winnipeg, Manitoba, Canada. U.S. Trade directed.
MUSIC LOVERS, CONTINUOUS, UNINTERRUPTED BACKGROUND MUSIC FROM YOUR FM RADIO, USING NEW INEXPENSIVE ADAPTOR. FREE LITERATURE. ELECTRONICS, $11500-\mathrm{Z}$ NW 7th AVE., MIAMI, FLORIDA 33168.
SPACE-AGE TV CAMERA KIT! Terrific for Experimenters, Industry, Education. Solid-state, Only $\$ 116.95$! Starter kits: $\$ 18.95$ up. Plans 25% up. Catalog FREE. Phone: 402-987-3771. Write: AIV RESEARCH, 1301 Broadway, Dakota City, Nebr. 68731.
CONVERT any television to sensitive, big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans, $\$ 2.00$. Relco-A33, Box 10563, Houston, Texas 77018. BURGLAR ALARM SYSTEMS and accessories. Controls, bells, sirens, hardware, etc. OMNI-GUARD radar intruder delection system, kit form or assembled. Write for free catalog. Microtech Associates, Inc., Box 10147, St. Petershurg, Florida 33733.
PRINTED CIRCUITS. Magazine projects and experimental. Free listing. Vico, Box 1590, Los Angeles, Calif. 90053.
ELENCO LR-6 Bi-Lateral linear amplifier 150 watts output, variable receive boost, $\$ 149.95$. (Illegal for Class D CB use.) Elenco, Dept. A, Wabash, Ind. 46992.
MC790P \$2.00. MC724P, MC789P \$1.05. Write for catalog. Hal Devíces, Box 3652, Urbana, Illinois 61801.
ELECTRDNIC COMPONENTS-Distributor prices, Free catalog. Box 2581, El Cajon, California 92021.
C.B. SALE CATALOG. Send today. Hirsch's, 219 California Drive, Williamsville, New York 14221.
PRINTED CIRCUITS WITHOUT THE MESS!!! Design your own Circuits on circuit cards that are removable. Kit includes Pre.Punched card $4.5^{\prime \prime} \times 6.5^{\prime \prime}$ with 35 etched contacts, matching panel mount receptacle, and 50 push-in terminals for component mounting. Complete Kit $\$ 12.95$, extra cards $\$ 6.50$ each, Card Holders $\$ 5.50$ each, Package of 50 terminals $\$ 2.50$ each. Cash, check, money order. Ky. Residents Add 5\% Tax. Federated Electronics, Inc., 3004 Preston Highway, Louisville, Kentucky 40217.
SLOW FLASHING TURNLIGHTS ARE DANGEROUS. WINKER-KIT DOUBLES FLASHING RATE. $\$ 3.00$ FOR ALL CARS. GUARANTEED. ACE, 11500 N.W. 7TH AVENUE, MIAMI, FLORIDA 33168.

STROBES, Xenon, save over 50%. $\$ 14.95$ assembled! Guaranteed. Plans, \$1.00. Box 233P, Mablevale, AR 72103.
PRINTED CIRCUITS for projects, Popular Electronics or others. Send page or black-white drawing of circuit pattern, 25 square inch. Min, order $\$ 1.75$. Send remittance: General Printed Circuits, Box 4013, Downey, California 90241.
CIRCUIT BOARDS: Complete Job Shop Operation. Jetca, Inc., Box 418, Monon, Indiana 47959.
BURGLAR and FIRE ALARM SYSTEMS and supplies. INSTALLATION MANUAL and catalog $\$ 1.00$. Refunded first order. Electronic Sentry Systems, P.O. Box 8023A, Sacramento, California 95818.
ANTIGRAVITY, EXPERIMENT AND THEORY; rushed-\$1.00. U.S. Inquiries. Intertech-7A1, Box 5373, Station-F, Ottawa, Canada.
POODLE RADIO-Transistor $\$ 9.95$. Details. Universal Listribution, Box 156, Brooklyn, New York 11226.
SWL'S, Ham's, CB'ers-Rotary QSL File CB-8. MB Sales, 1917 Lowell, Chicago, Illinois 60639.
INFRARED light beam audio communicator. Private, clear transmission to one mile. Unique solid state, optoelectronic portable system. No license required. Brochure, 30\%. Comprehensive construction manual, $\$ 6.00$. Parts sources provided. Lundart, University Station, 4008-E2, Tucson, Arizona 85717.
RESISTORS.PRECISION, assorted values, $100 \quad \$ 10.00$ postpaid. Check, Money Order. Utah Electronics Co., 956 W. 2nd S. Salt Lake City, Utah 84104.
SWLs-DRAKE SW4A receiver, brand new, factory sealed/warrantied, $\$ 230$ (save $\$ 70$). $\$ 0 C H O R, 419$ South Euclid, Oak Park, Illinois 60302.

COMP-U-KIT. Computer micro-circuits, a unique inter-connection method, and a book which tells all about computer logic. Free illustrated literature. Scientific Measurements, C131, 9701 Kenton, Skokie, Illinois 60076.
TV TUNER REPAIRS-Complete Course Details, 12 Repair Tricks, Many Plans, Two Lessons, all for \$1. Refundable. Frank Bocek, Box 833, Redding, California 96001.
RADIO CHASSIS'S NEW. Postpaid with SCHEMATIC. AM/FM 10 TRANSISTOR $\$ 5.20$ each. AM 6 Transistor $\$ 2.65$ each. Information 15k. Union Supply; Box 32; Niles, 11 linois 60648.
INSIDE THE FAREAST ELECTRONICS INDUSTRY. Told like it is. We traveled throughout the Orient, hiring interpreters, visiting factories, Chambers of Commerce, Banks, government offices, trade centers and shows. Now offering a comprehensive directory of products in every area of electronics, manufacturers, traders, information on customs, trade agreements, finance, pitfalls, political trends, much more. $\$ 5.00$ complete. TPI, 2833 Paradise Park Road, Pebble Beach, California 93953.
INFRARED light beam audio communicator. Private, clear transmission to one mile. Unique solid state, optoelectronic portable system. No license required. Brochure, 30p. Comprehensive construction manual. $\$ 6.00$. Parts sources provided. Lundart, University Station 4008-E2, Tucson, Arizona 85717.
BARGAIN sheets listing relays, steppers, \& other electronics parts for experimenters. Send name, address and a dime to: Gust \& Company, Box 24081. Edina, Minnesota 55424.
50 NEW PRECISION RESISTORS $1 / \mathrm{aw}$ - Iw 1% and better with 50 NEW MICA CAPACITORS. Tremendous assortment of walues. $\$ 3.95$. General Instrumentation Services, Box 34721, Los Angeles, Calf. fornia 90034.
STROBES, color organs, the incredible Strobit. Electric Candies, Remote Switch, Touch Switch. All in KIT and ASSEMBLED forms. Send 25 for complete catalog. Teletronics, Box 1266, South Lake Tahoe, California 95705.
SOUND EFFECTS. Every sound conceivable. From professional master tapes. Theatrical or home use. Reichert, 125 East 23, New York City 10010. (212) 533-0180.

CHEMICAL FORMULAS and preparation instructions when possible. Send self-addressed stamped envelope and $\$ 3.50$ to Chemtronics, Box 1266, South Lake Tahoe, California 95705.
JAPAM \& HONG KONG DIRECTORY. Electronics, all merchandise. World trade information. $\$ 1.00$ today. Ippano Kaisha Ltd., Box 6266, Spokane, Washington 99207.
SINGERS-Sing like the professionals do in a matter of minutes. New scientific device changes tonality, volume, articulation. Device also used as a great aid to stop stuttering, stammering, lisping. Send $\$ 10.00$. Money back guarantee. Micro Wave Corp., 433 Durnan St., Rochester, N. Y. 14621.

PLANS AND KITS

ROCKET Plans Proven. Catalog 10t. Rockets, P.0. Box 7274, Long Beach, California 90807.
CIRCUITS for 32 electronic projects, R.F., audio and gadgetry complete plans \$1.00. P.M. Electronics, Inc., Box 46204, Seattle, Wash. 98146. Dealer inquiries invited.
B\&W TELEVISION CONVERTED TO COLOR. Patented System. Do it yourself kit. Free brochure. Bele Electronics Corp. 111 N.E. Second Avenue, Miami, Florida 33132.
FIBRE OP-KITS, using the "'magical optical fibers' that transmit light energy. FREE CATALOG. Scientific Devices, $211 E$ Albion, Wakefield, Mass. 01880.
METAL DETECTOR Plans, beat frequency type- $\$ 3.25$. New, operational amplifier discriminator type- $\$ 6.00$. Magneto-Hydro-Dynamics, Box 114, Plaza Station, Merrick, New York 11566.
BUILD amazing new device. Automatically indicates when oil in your auto's crankcase becomes 1 quart low. Inexpensive, easy to build. 12 volt neg. gnd. Plans $\$ 3.00$. J. R. Boykin, 40 Doncaster, Rome, Georgia 30161.
HOBBYISTS-PLANS INCLUDING PC BOARDS FOR DWELL METER$\$ 1.50,3$ CHANNEL COLOR ORGAN- $\$ 3.00$, METAL DETECTOR\$2.50, STROBE LJGHT-\$2.00, SCA CONVERTER-\$2.50. DYMAX, P.O. BOX 11495, PHOENIX, ARIZONA 85017.

COMP-U.KIT. Unique modules and kits and fascinating booklets and plans. Free illustrated literature. Scientific Measurements, C132, 9701 Kenton, Skokie, Illinois 60076.
300% More CB POWER with new antenna. Plans, $\$ 1.00$ and stamped self-addressed envelope. Roddenhery, Bainbridge Road, Cairo, Georgia 31728.
INTEGRATED CIRCUIT KITS: COMPUTER, OPTOELECTRONICS, AUDIO. Catalog free. KAYE ENGINEERING, Box 3932-A, Long Beach, California 90803.
BUILD your own electronic COMPUTER. New book explains theory, practical details. $\$ 2.25$ postpaid. Cinnamon Press, Box 8453-A, Minneapolis, Minnesota 55408.
RADIO Control any device, using SIMPLE Transistor Circuit. Complete Plans \$2. Creative Electronics, Box 4943A, Austin, Texas 78751.

PSYCHEDELIC ELECTRONICS HANDBOOK, \$8.95. Medical Elec. troniss, Box 46156, Seattle 98146.
FORTY Transistor Projects, $\$ 1.00$. Sirens, treasure finders, more! EDI, 1918B, 49th Street East, Palmetto, Florida 33561.
COLOR ORGAN KITS, Home/Aute \$7.50. Power supplies \$2.75. Catalog. Murphy, 204 Roslyn Avenue, Carle Place, N.Y. 11514.
SURVEILLANCE DEVICES IN KIT FORM: Telephone Transmitter, FM Spy Transmitter, Telephone.Recosder Actuator, Tail Transmitter, Bug Detector. Complete Kits Send $\$ 15.00$ each. ELECTRONJC SECURITY SYSTEMS, 1101 West Rosecrans Avenue, Gardena, Cali. fornia 90247.

TUBES

TUBES "Oldies'", latest. Lists free. Steinmetz, 7519 Maplewood, Hammond, Indiana 46324.
RECEIYING INDUSTRIAL TUEES, TRANSISTORS. All BrandsBiggest Discounts. Technicians, Hobbyists, Experimenters-Request FREE Giant Catalog and SAVE! ZALYTRON, 469 Jericho Turnpike, Mineola, N.Y. 11501.

TUBE Headquarters of World! Send 10c for Catalog (tubes, slectronic equipment) Barry, 512 Broadway, N.Y.C. 10012.
THOUSANDS and thousands of types of electronic parts, tubes, transistors, instruments, etc. Send for Free Catalog. Arcturus Electronics Corp., MPE, 502-22nd St., Union City, N.J. 07087.
RADIO \& T.V. Tubes-33p each. Send for free list. Cornell, 4213 University, San Diego, Calif. 92105.
TUBES-Lowest prices. Foreign-American. Obsolete, receiving, special purpose, transmitting tubes. Send for tube, parts catalog. United Radio Company, 56-P Ferry St., Newark, N.J. 07105.

TUBES SPECIAL LABORATORY MONTREAL-Buying-Seliing-Testing. U.S. Inquiries. Zdravko Wikolovski, 400 Sherbrooke Street, Room 200, Montreal 129, Canada.

TAPE AND RECORDERS

BEFORE Renting Stereo Tapes try us. Postpaid both ways-no deposit -immediate delivery. Quality-Dependability-Service-Satisfaction -prevail here. If you've been dissatisfied in the past, your initial order will prove this is no idle boast. Free Catalog. Goid Coast Tape Library, Box 2262, Palm Viliage Station, Hialeah, Fla. 33012.

RENT 4-Track open reel tapes-all major labels-3,000 differentfree brochure. Stereo-Parti, 55 St. James Drive, Santa Rosa, Ca. 95401.

AMAZING DISCOUNTS on famous brand high fidelity stereo components. No small wonder that we have set new sales records each year since 1959. Write. Arkay Electronics, 1028-03 Commonwealth, Boston, Mass. 02215.

STEREO TAPES, save $20,30 \%$ and more, postpaid anywhere U.S.A. We discount batteries, recorders, tape/cassettes, 80 -page catalog 25c. SAXITONE TAPES, 1776 Columbia Road, N.W., Washington D.C. 20009

OLD radio programs on tape. 6 hours for \$8.00. Catalog 50\&. Don Maris, 1926 Cherokee, Norman, Okla. 73069.

CASSETTES, Pre-recorded Spoken word-over 100 titles-educational, including language. Cassette and 8 -track Blanks plus many accessories. Send 10% in stamps or coin for latest literature. Cassettes Unlimited, P.O. Box 13119P, Pittsburgh, Pennsyivania 15243.
TAPE RECORDERS, TAPE-blank, pre-recorded. Catalog 254. Tower, Lafayette Hill, Pa. 19444.

REPAIRS AND SERVICES

TV Tuners rebuilt and aligned per manufacturers specification. Only $\$ 9.50$. Any make UHF or VHF Ninety day written guarantee. Ship complete with tubes or write for free mailing kit and dealer brochure. JW Electronics, Box 51C, Bloomington, Indiana 47401.
24 HOURS Plastic Laminating Service for Diagrams, Drawings, Charts, Licenses. $3 \notin$ per square inch. Check with order. V.M.F. Company, Box 278 E , Chuluota, Florida 32766.
ELECTRONIC assembling. Receive, assemble and return. Small to medium sized devices wanted. Satisfaction guaranteed. Electronics, Box 384, Everett, Wash. 98201.

PRINTED CIRCUITS made for experimenters. Send $10 ¢$ for prices, brochure. U.S. Inquiries. SATELLITE CIRCUITS, Box 488, Hespeler, Ontario, Canada.

PERSONALS

MAKE FRIENDS WORLDWIDE through international correspondence. lllustrated brochure free. Hermes, Berlin 11, Germany.
INVESTIGATORS, LATEST ELECTRONIC AIDS. FREE LITERATURE. CLIFTON, $11500-\mathrm{K}$ NW 7th AVE., MIAMI, FLORIDA 33168.

INSTRUCTION

LEARN ELECTRONIC ORGAN SERVICING at home all makes including transistor. Experimental kit-trouble-shooting. Accredited NHSC, Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820.
FCC First Class License in six weeks-approved for Veterans Training. Write Elkins Institute, 2603 B Inwood Road, Dallas, Texas 75235.
R.E.I.'s famous (5) week course for the First Class Radio Teiephone License is the shortest, most effective course in the nation. Over 98% of R.E.I. graduates pass F.C.C. exams for 1 st class license. Total tuition $\$ 395.00$. Job placement free. Write for brochure. Radio Engineering Incorporated Schools, 1336 Main Street, Sarasota, Florida 33577-or 3123 Gillham Road, Kansas City, Missouri 64109 -or 809 Caroline Street, Fredericksburg. Virginia 22401—or 625 E. Colorado Street, Glendale. California 91205.

LEARN WHILE ASLEEP, Hypnotize! Strange catalog free. Autosuggestion, Box 24-ZD, Olympia, Washington 98501.
DEGREE in Electronics Engineering earned mostly by correspondence. Free brochure. Dept. G-9, Grantham School of Engineering. 1505 N. Western Ave., Hollywood, California 90027.
PLAY ORGAN EASILY! AMAZING METHOD! FREE INFORMATION. KEGLEY, 1016-PE KELLY, JOLIET, ILLINOIS 60435.

HIGHLY effective home study courses in Electronics Engineering Technology and Electronics Engineering Mathematics. Earn your Degree. Write for Free Descriptive Literature. Cook's Institute of Electronics Engineering, (Dept. 15), P.O. Box 10634, Jackson, Miss. 39209. (Established 1945).
F.C.C. FIRST CLASS LICENSE in three to four weeks. Write American Institute of Radio, 2622 Oid Lebanon Road, Nashville, Tennessee 37214 or 3986 Beach Boulevard, Box 16652, Jacksonville, Florida. TAPE recorded lessons for FCC RADIOTELEGRAPH LICENSE requirement for SHIP RADIO OFFICER positions or FIRST CLASS RADIO. TELEPHONE LICENSE. Our nineteenth year teaching FCC license courses. Radio License Training, 1060D Duncan, Manhattan Beach, Calif. 90266.
LEAP! LEAP! LEAP! Into BIG Money: 150,000 Computer Programmers needed in 5 years. Diploma Home Study Course, Price Breakthrough: only $\$ 9.95$. Act Now. Money Back Guarantee. U.S. Inquires, Intertech-7G1, Box 5373. Station-F, Ottawa, Canada.
LEARN code from tireless teacher. Wilkinson programmed course and LP player stays with beginners to license speed. $\$ 9.45$ postpaid. Florida residents \$9.83. Details free. Wilkinson Laboratories, Box 14196, Gainesville, Fla. 32601.
AmATEUR RADIO. Correspondence Sight-and-Sound no textbook courses for GENERAL, ADVANCED and EXTRA CLASS licenses-com. plete Code Theory. These are NOT memory courses. AMATEUR RADIO LICENSE SCHOOL, 12217 Santa Monica Blyd., Los Angeles, California 90025.
MEMORIZE: " 1970 TESTS-ANSWERS" for FCC FIRST AND SEC. OND CLASS LICENSE. Plus "Self-Study Ability Test." PROVEN. \$5.00. Command, Box 26348-P, San Francisco 94126.

HIGH FIDELITY

FREE! Send for money saving stereo catalog \# P9E, lowest quotations on your individual component, tape recorder, or system requirements. Electronic Values, Inc., 200 W. 20th St., New York, N.Y. 10011.

LOW, Low quotes: all components and recorders, HiFi, Roslyn, Penna. 19001.
HI-FI components. Tape Recorders, at guaranteed "We Will Not Be Undersold" prices. 15 -day money-back guarantee. Two-year warranty. No Catalog. Quotations Free. Hi-Fidelity Center, 239 (P) East 149th Street. New York 10451.
TAPE RECORDERS, Hi-Fi, components, Sleep Learning Equipment, tapes. Unusual Values. Free Catalog. Dressner, 1523R, Jericho Turnpike, New Hyde Park. N.Y. 11040.
DIAMOND NEEDLES AND STEREO CARTRIDGES at low, Jow prices for Shure, Pickering, Stanton, Empire, Grado and ADC. Send for free catalog and price sheet. We will be happy to quote on any cartridge-Magnetic, Ceramic or Crystal. All merchandise brand new and shipped PREPAID. LYLE CARTRIDGES, Dept. P, 265 East 149 Street. Bronx, New York 10451.

WANTED

CASH PAID! Unused tubes, electronic equipment. Barry, 512 Broad. way, NYC 10012.
QUICKSILVER, Platinum, Silver, Gold, Ores Analyzed. Free Circular. Mercury Terminal, Norwood, Mass. 02062.

INVENTIONS WANTED

INVENTIONS wanted. Patented; unpatented. Global Marketing Ser. vice, $2420-\mathrm{P} 77 \mathrm{th}$. Oakland, Calif. 94605.
PATENT Searches including Maximum speed, full airmail report and closest patent copies, $\$ 6.00$. Quality searches expertly administered. Complete secrecy guaranteed. Free Invention Protection forms and "Patent Information," Write Dept. 9, Washington Patent Office Search Bureau. $711^{\prime} 14$ th Street, N.W., Washington, D.C. 20005. INVENTORS! Don't sell your invention, patented or unpatented, until you receive our offer. Eagle Development Company, Dept. P, 79, Wall Street, N.Y., N.Y. 10005.

GOVERNMENT SURPLUS

GOVERNMENT Surplus How and Where to Buy in Your Area. Send $\$ 1.00$ to: Surplus Information PE, Headquarters Building, Washington, D.C. 20036.

JEEPS Typically From $\$ 53.90$. . Trucks From $\$ 78.40$. . . Boats, Typewriters, Airplanes, Multimeters, Oscilloscopes, Transceivers, Electronics Equipment. Wide Variety, Condition, 100,000 Bid Bargains Direct From Government Nationwide Complete Sales Directory and Surplus Catalog $\$ 1.00$. (Deductible First $\$ 10.00$ Order). Surplus Service, Box 820-J, Holland, Michigan 49423.

SPORTS ACTION FILMS

BEST VALUE YET-25\% for catalog saves 50 c on purchase. SPORT. LITE FILMS, Dept. PE, Box 500, Speedway, Indiana 46224.

SHORTWAVE LISTENING

CONFIDENTIAL frequencies revealed! Over 450-spies, space, military, \$2.00. EDI, 1918B 49th Street East, Palmetto, Florida 33561. DX REPORT FORMS. SWL $\$ 3.00$ per hundred. BCB $\$ 3.00$ per hundred. DX Log Forms $\$ 3.00$ per hundred. Special DX information packet 50f. Minimum order $\$ 3.00$ plus $25 t$ handling. NY orders include Sales Tax. O'Connell's, 329P Water Street, Binghamton, New York 13901.

BOOKS

FREE catalog aviation/electronic/space books. Aero Publishers, 329PE Aviation Road, Fallbrook, California 92028.
"UNUSUAL" Books! Catalog Free! International, Boz 7798 (PE), Atlanta, Georgia 30309.
FREE book prophet Elijah coming before Christ. Wanderful bible evidence. Megiddo Mission, Dept. 64. 481 Thurston Rd., Rochester. N.Y. 14619.

PSYCHEDELIC LICHTING MANUAL! Make light-machines, strobes, organs, Kaleidoscopes, etc. Send $\$ 2.00$, Lightrays, 713D Pine, Philadelphia, Pa. 19106.
INFORMATION. Amazing Book. Swimsuits, jewelry. Write: LYN, Box 1573. Waco, Texas 76710.

MAGAZINES

back date magazines! Send needs, Midtown. Box 917-PE, Maywood, N.J. 07607.

HYPNOTISM

FREE Hypnotism. Self-Hypnosis, Sleep Learning Catalog! Drawer H400, Ruidoso, New Mexico 88345.
"MALE-FEMALE HYPNOTISM"" EXPOSED, EXPLAINED! "SECRET METHOD'" -THEY NEVER KNOW! \$2, RUSHED. GUARANTEED! ISABELLA HALL, SILVER SPRINGS, FLORIDA 32688.
HYPNOTIZE PERFECT STRANGERS-EITHER SEX-SUCCESSFULLY! Secret Methods-they never know! lllustrated Course and 10 inch Hypnodisk $\$ 2.00$. RESULTS ABSOLUTELY GUARANTEED! Dr. H. Arthur Fowler, Box 4399, Woodbury, New Jersey 08096.

MAGNETS

MAGNETISM (100) page script newly discovered magnetic principles ($\$ 3.00$). Jesse Costa, Box 26, Waquoit, Mass. 02536.
MAGNETS. All types. Special-20 disc magnets, or 2 stick magnets, or 10 small bar magnets, or 8 assorted magnets, $\$ 1.00$ Maryland Magnet Company, $5412 \cdot \mathrm{H}$ Gist, Baltimore, Maryland 21215.

PHOTOGRAPHY-FILM, EQUIPMENT, SERVICES

SCIENCE Bargains Request Free Giant Catalog "CJ"'-148 pagesAstronomical Telescopes. Microscopes, Lenses. Binoculars, Kits, Parts. War surplus bargains. Edmund Scientific Co., 300 Edscorp Bidg., Barrington, New Jersey 08007.

RECORDS

POPULAR organ albums factory direct. Concert Recording, Lynwood, Calif. 90262.

SPECIAL interest records available, produced by the editors of the world's leading special interest magazines. Send for free catalog. Record Catalog-PE, Ziff-Davis Publishing Company, One Park Ave. nue, New York, N.Y, 10016.

EMPLOYMENT INFORMATION

FOREIGN and USA job opportunities available now. Construction, all trades. Earnings to $\$ 3,000.00$ monthly. Paid overtime, travel bonuses. Write: Universal Employment, Woodbridge, Conn. 06525. EXCITING OVERSEAS J0B5. Directory $\$ 1.00$. Research Associates, Box 942-E, Belmont, California 94002.

BUSINESS OPPORTUNITIES

ELECTROPLATING Equipment and supplies. All types for home workshops and industrial. Send $\$ 2.00$ (refundable) for equipment quide formulas, operating data, catalog. EBS Equipment Division 90, 3543 East 16th, Los Angeles, California 90023.
I WhDE $\$ 40,000.00$ Year by Mailarder! Helped others make money! Start with $\$ 10.00$-Free Proof. Torrey, Box $318-\mathrm{N}$, Ypsilanti, Michigan 48197.
FREE BOOK "'999 Successful Little Known Businesses" Work home. Plymouth 445.J, Brooklyn, N.Y. 11216.
$\$ 200.00$ DAILY in Your Mailbox! Four opportunity to do what mailorder experts do, Free details. Associates, Box [36-J, Holland, Michigan 49423.
MAKE BIG MONEY raising chinchillas, rabbits, guines pigs for us. Catalog-25c. Keeney Brothers, New Freedom, Pa. 17349.
FREE CATALOGS. Repair air conditioning, refrigeration. Tools, supplies, full instructions. Doolin, 2016 Canton, Dallas, Texas 75201. BECOME CITIZEN BAND DEALER. Write RJS Communications, Brockton. Massachusetts 02403.
MAKE extra $\$ 25$ to $\$ 75$ spare fime! Take orders for double air cushion Bronson Shoes. Wen's, women's line for dress, work, play. Highest commissions. Shoes for yourself. Outfit FREE. Bronson, Dept. 299. Minneapolis. Minnesota 55408.
PIANO TUNING learned quickly at home. Tremendous field! Musica! knowledge unnecessary. G1 Approved. Information Free. Empire School, Box 327. Miami, Florida 33145.
MAILORDER! Make big money working home. Free report reveals millionaire's trade secrets! Executive (1K9), 333 North Michigan, Chicago 60601.
SELL HERTEL BIBLES-Part Time. Finest reference Bible available. Demonstrator and supplies furnished. Excellent commissions. Write International Book, Dept. PE, Box 118. Wichita, Kansas 67201.
SPARE TIME CASH-Sell advertising Book Matches-every business a prospect-no investment-no experience needed-build steady repeat business. Power house selling kit with new complete catalog FREE. Quick sales and big cash commissions. Dept. T-970, Superior Match, 7530 S. Greenwodd. Chicago 60619.
WAKE MONEY in spare time. Information write, Capitol, Box 9363. Austin. Texas 78757.
$\$ 2,000.00$ MONTHLY Possible. Details, Ropchan, Box 5341 X. Sherman Oaks, California 91413.

TREASURE FINDERS

GOLD, SILVER, RELICS! Located with powerfut Detectron Metal Detectors. Free information. Terms. Detectron, Dept. PE-9, Box 243, San Gabriel, California 91778.
TREASURE FINDER locates buried gold, silver, coins, treasures. 5 powerful models. $\$ 19.95$ up. Free catalog. Relco-A33, 80x 10839 , Houston. Texas 77018.
FIND EURIED TREASURE! New book shows how, maps exact localions. Details Free. Kankowski, 6 Alan Okell PI., Cranford, N.J. 07016.

FREE TREASURE GUIDE! Fact.filled collectors edition; send $50 ¢$ for postage. Also request fee literature on ultrasensitive, professional Fisher Detectors. FISHER RESEMRCH, Dept. PE-9, Palo Alto, California 94303.

AUTHORS' SERVICES

AUTHORS! Learn how te have your book published. promoted, distributed. FREE booklet "ZD,' Vantage, 120 West 31 St., New York 10001.

REAL ESTATE

FREE . . . NEW FALL-WINTER CATALOG! Describes and pictures hundreds of farms, ranches, town and country homes, businesses coast to coast! Specify type property and location preferred. Zip Code, please. UNITED FARM AGENCY, 612-EP West 47th St., Kansas City, Mo. 64112.

RUBBER STAMPS

RUBBER ADDRESS STAMPS \$2.00. SIGNATURE \$3.50. FREE CATALOG. JACKSON'S BOX 443-G, FRANKLIN PARK, ILL. 60131.

QUALITY Rubber Address Stamps \$2.00, Denton's, Box 3594, Albuquerque, New Mexico 87110.

STAMPS

WOW! 110 ALL DIFFERENT GERMANY 10\&. Commemoratives, Alr mails, High Values, Big catalog, bargain lists. Also, fine stamps from our approval service, which you may return without purchases and cancel service at any time. Jamestown Stamp, Dept. A80EG, Jamestown, New York 14701.

FREE! BIG BARGAIN CATALOG-NEW EDITION listing thousands of bargains including U.S. \& B.N.A. stamps, packets, albums, accessories and supplies. Also, fine stamps from our approval service which you may return without purchases and cancel service at any time. Jamestown Stamp, Dept. E80EG, Jamestown, N.Y. 14701.

MUSICAL INSTRUMENTS

30% DISCOUNT any name brand musical instrument. Free catalog. Freeport Music, 127-N Sunrise Highway, Freeport, N.Y. 11520.

PRINTING

OFFSET Printing. Free catalog. Speedy Print, 1906 Swede, Norrislown, Pa. 19401.

QUALITY PRINTING-Both Letterpress and Offset. Economically priced. Speedy service. Free samples on request. Charies McCalister, 1222 W. Sevier St., Clarksville, Arkansas 72830.

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog of yeasts, equipment. Sem. plex, Box 12276, Minneapolis, Minn. 55412.

JAPAN'S PUBLICATIONS GUIDE Business, pleasure, education. $\$ 5.00$. INTERCONTINENTAL, CPO 1717, Tokyo $100-91$.
SCARE BURGLARS away. Warning alarm sticker-Protects Car, Home -Anything- $\$ 1.00$ for three. Refundable. Staydri, Whitestone, New York 11357.

CLASSIFIED ADVERTISING IN POPULAR ELECTRONICS

Your best bet for outstanding mail order sales. These pages are read thoroughly by electronics hobbyists seeking products and services found only in ELECTRONICS MARKET PLACE. POPULAR ELECTRONICS readers respond readilythey rely on the advertisers appearing in the pages of their favorite magazine. Your low cost ad will result in increased sales responses for you! Send copy and payment to:

Hal Cymes, Classified Advertising Manager

POPULAR ELECTRONICS
1 Park Avenue
New York, N.Y. 10016

CLASSIFIED ADVEIRTISING DHDER FORM

Please refer to heading on first page of this section for complete data concerning terms, frequency discounts, closing dates, etc.
Please refer to heading on first page of this section for complete data concerning terms, frequency discounts,
closing dates, etc.

4

POPULAR ELECTRONICS

SEPTEMBER 1970 ADVERTISERS INDEX

READER
SERVICE NO.
ADVERTISER
PAGE NO.
I Accurate Instrument Co. 113

2 AMECO, Div. of Aerotron, Inc. IIG
Allied Radio Shack 101

6 Antenna Specialists Co., The 27

3 Avanti Research \& Development, Inc. THIRD COVER
7 BSR ... 10
8 Burstein-Applebee Co. 8
CREI, Home Study Div.,
McGraw-Hill Book Co.
88, 89, 90, 91
Capstone Electronics Corp. 14
Jetco 112

14 Lafayette Radio Electronics 105

15 Mallory \& Co., Inc., P.R. 25

17 Melntosh Labs .. 11 National Radio lnstitute. .SECOND COVER, I, 2, 3 National Technical Schools62, 63, 64, 65

18 Olson Electronics, Inc. 14
Quad-I, Inc. 14
19 RCA Electronic Components \& Devices 28
RCA Institutes, Inc.36, 37, 38, 39 Relco
\qquad
23 United Audio Products (DUAL)
6

U.S. Armiy

24 United Technical Institute,
Div. of Career Academy 106, 107, 108, 109

CLASSIFIED ADVERTISING 118, 119, 120, 121, 122

A SPACE AGE MIRACLE! Optical science called FIBER OPTICS. Imagine! Light transmits or receives in glass and plastic fibers by internal reflection, triggering 1000 's of lite sensitive projects using photo cells and infra red. The magical fibers, pipes light up walls, around corners. Bends, cuts. acts like wire, but No ELECTRICITY! Safe, fun, educational, hypnotic. A kit for all ages, all seasons, for sclence fairs, science classes. Makes dazzling displays, light pires, games, for $11-0$ railroad. Illuminates panels in home, hifit, electronics, and hot rodders. Literally OBSO. LETES PANEL LIGHTS! FIBRE OP-KITS feature: RE-DO process (make 1000 's of projects using same fibers). "BLINKY" the variable color control winks-blinks-twinksstrobes in instant color. With accessories. many booklets. \square FIBRE OP-KIT \#\# - "EXPERIMENTERS" makes light pipes. displays, scanners. Kit: 1400 glass fibers 2-ft. long, vinyl jackets, accessories, adhesive, self-powered light source "Blinky", booklets \square FIBRE OP-KIT 2 - "CELESTIAL LIGHTS" an 18" 3-level optical display, Kit: spme as \#1, except fibers $\$ 4 \mathbf{1 2}^{\prime \prime \prime}$ FIBIRE OPKIT 3 - "MAGIC WAND OR PSYCHEDELIC STROBE'. Kit: same as $\# 1$, fibers $8^{\prime \prime}$ long $\$ 3.50$

FIBRE OP-KIT \#4 - "CROFON(B) PLASTIC"', 100 -feet of solid $10-\mathrm{mil}$ 'micro' lite wire on handy reel, 11 times more light than glass. Accessories, booklet \$2.50

FIBRE OP-KIT \#5 - "HOBEY". 1000 glass fibers, hohby type, with assortment of plastic micro lites, acces sories, booklet $\$ 1.95$ \square FIBRE OP.KIT \#6 - "IMAGE STIK". 4" coherent light pipe transmits images with magnifier \$1.49 \square FIBRE OP-KIT \#7 - "LIGHT PIPES", 200 glass fibers, $24^{\prime \prime}$ long, with jacket, booklet 3 feet for $\$ 1.00$

SCIENTIFIC DEVICES 211E ALBION ST. WAXEFIELD, MASS. 01880 - (617) 245-3829

CIRCLE NO. 21 ON READER SERVICE PAGE

CHROMATIC "MACHINE-GUN" STROBE

 PSYCHEDELIC LIGHTING HANDBOOK

Fully information packed paken! ilgating equipment. in pechntques. nsychedelle 11 ght-bhow production Including strobes. black ilgbts, projectors. erystals, organic slides.
mirrors color, JIght boxes, Musievision, etc. Shaws how to "psychedelize",
 looseleaf paper for 3 rings. $\mathbf{\$ 3 . 0 0}$ ppa. Stock No. giooav

FIXTURE

Extremely versatile, compactly de.
Eigned long wave $(3200.4000$ nnix:
 tract Has 6-watt $110-\mathrm{V}$ lamp with
bultin filer-eltminates harmful shorter wave uitraviolet rays. UGe
to identify minerals. fungi, bacto ria-check mor surface nlaws. oil and kas leakage-perfect for dis-
and
play w ith fuorescent paper, pains. chask, erayons, trace powder incl:
adjustalite alunlnun reficetor
Mount vert, horr

tock No. 70,364A REPLACEOMENT BULB $\$ 12.50$ Ppd.

NEW! STATIC ELECTRICITY GENERATOR

sturdy, Improved Model See a thribing spark display as you
 9^{0} plastle dises rotate in opposite direetions. Metal collector brushes pick ip the static electricity, store It in the Leyden Jar type condenser untll discharged by the jumping spark, 24 page hlustrated thooklet included.
$\$ 19.50 \mathrm{Ppd}$.
3-CHANNEL COLOR ORGAN BARGAIN!

Omilia, fly them yourself book of AniERICAN's Compietition." Inclucles pians of all whning entries, time-aloft records, photos, technleal data commentaries. Has 20 musual designs on perforated pages for easy tear out. You won't believe how same of them sly: Amusing, entertaining, 128 pages. $5^{\prime \prime} \times 113 / 4$
$\$ 2.95 \mathrm{Ppd}$.
Order by Stock No Cneck or MO-Moncy-Back Guarantee EDMUND SCIENTIFIC CO., 300 EDSCORP BLDG., BARRINGTON, N.J. 0800 WRITE FOR GIANT FREF CATALOG "AV"

Completely new edition. New 148 easy-toread pages packed with 4000 unusual pages packed
of electrical and electromarrens parts, accecssorles. Enormous se parts, accessorles. Enormous se, scopes, Microscopes. Blnoculars,
Magnifiers. Magnets. Lenses, Magnifiers, Magnets: Lenses,
Lasers. Prisnis. Many war sur: Lasers, Prisnis, Many war sur perimenters, worksiops, factory:
Write for catalog

TERRIFIC BUY! TOP QUALITY!

price breakthrough in large size

 OPAQUE PROJECTORBest Opaque of its Kind Under \$200" Projects brlllant sharp $41 / 2 \mathrm{ft}$
square image from 8 fect inway using up to 5 "x5" color, b\&w if. lustrations. Retains afi ortininal colors ant proportions. Enlarges ors. pletures. stamps. coins. otlier objects. Features hinh speed. 200 mm anastlgmatic propowerful peanut-size nuartz halo. ren lamp (\$0 hr. Hfe): untque Internal reflecting system. Gives maximum brightness entire field focus. Flat stage and removalble magnetle platen enabic use upside

4 GIANT 180^{*} DAY GLOW TAPES!

BLACK-LIGHT MIGHTY MITES

 hidh-intensity bulb toik like 40,
watter. watter, Up to 3.000 hours of
 light \& theatickal shows, psy. chedelic decors. hollday decormove for sare. ensy replace.
ment of bulb anit starter. Stands Stock No
 DELUXE OUTDOOR/INDOOR MODEL \$14.95 Ppd. Stock No. $71.299 A V \ldots . .$.

MIRRORED BALLS BOUNCE LIGHT

Stock No. P-60.749AV-(Set A)
.A. $\$ 22.50 \mathrm{Ppd}$.
ASTRONOMICAL TELESCOPE KITS
Grind your own mirror for pow.
errui terescopes. fites contalin
 mirror, and eyeplece, dianses. In struments vou buld range in "Ol/ars "AMEEER- $3 / 4$ " Thick Stock No. 70.003 AV 510.75 Pnd. Stock No. $70.004 \mathrm{AV} \$ 13.95 \mathrm{Ppd}$.

good reasons why the revolutionary Avanti Astro Plane is the best omni-directional C.B. antenna you can buy.

1.

It has top radiation which means that your
signal gets out from the highest part of your antenna. This is especially important where antenna height is limited because your signal radiates about 15 feet higher than other antennas which radiate near the bottom. This 15 feet means you get increased range and fewer dead spots.
The ASTRO PLANE has a lower angle of radiation which makes more efficient use of the radiated signal by allowing it to hug the curvature of the earth instead of shooting your power up into the sky. This also gives you greater distance than an ordinary omni-directional antenna, one thing the professional users really look for.
3.

The ASTRO PLANE has 4.46 db gain (over an isotropic source) which gives you a stronger signal and better, clearer reception.

4.You'll get long lasting, trouble free performance because it is compact in design-without long drooping radials, without coils to burn or short out, and with direct ground construction to dissipate static charges and lightning.
5.

You'll find it easy to install because of its lightweight construction (less than 5 lbs .) and only 12 feet of total height and 30 inches in diameter.
All of these features need not cost you more money.

- Part of good engineering is how to make a better product for less money-by eliminating the coils for example we not only make the Astro Plane more reliable, but cheaper. Just like a radio back in the 30's cost $\$ 100.00$, today they're even better for $\$ 20.00$ or $\$ 30.00$ l So you can buy this
 advanced antenna for only $\$ 29.95$ and it is guaranteed for one full year against mechanical or electrical defects.
If your local C.B. Dealer does not have an ASTRO PLANE in stock, have him order you one or write direct to AVANTI.

avanti
33.35 WEST FULLERTON AVENUE, ADDISON. ILLINOIS 60101 AVANTI RESEARCH \& DEVELOPMENT, INC. THE PACESETTER IN HIGH PERFORMANCE ANTENNAS

