

ONLY IRC GUARANTEES

satisfactory mechanical fit

and electrical operation

OR DOUBLE-YOUR-MONEY-BACK

The typical manufacturer's specifications shown here are exactly duplicated by IRC QJ-180 control. CONCENTRIKIT assembly includes P1-229 and R1-312 shafts with B11-137 and B18-132X Base Elements, and 76-2 Switch.

Wherever the Circuit Says -un-

The mechanical accuracy of IRC Exact Duplicate Controls or universal CONCENTRIKIT equivalents is based on set manufacturers' procurement prints. Specifications on those prints are closely followed.
Shaft lengths are never less than the set manufacturer's nominal length-never more than $3 / 2_{2}{ }^{\prime \prime}$ longer.
Shaft ends are precisely tooled for solid fit.
Inner shaft protrusion is accurately duplicated for perfect knob fit.

Alterations are never needed.
For Exact Duplicate Controls, specify IRC.
Most Service Technicians do.

INTERNATIONAL RESISTANCE CO.

423 N. Broad Street, Philadelphia 8, Pa.
In Canada: International Resisfance Co., Ltd., Toronto, Licensee

Pick of the Trade

PRESENT INDICATIONS are that Germanium diode use will double again in 1953. 1952 sales totaled 9.5 million, as compared to 4.5 million in 1951. 1953 sales are expected to approach 20 million, and half of this figure being divided between UHF-TV mixers (5 million) and video detectors (5 million) in VHF and VHF-UHF combination sets.

UHF GAINS. With 15 stations on the air and a score or more rapidly approaching completion, UHF television has receiver manufacturers watchful. Biggest question mark is front-end design.

Sets available generally feature either of two RF tuning methods: One uses UHF-converter strips with from 13 to 16 positions. (An 82 -channel detent-type tuner was recently announced.) The other method requires a separate tuner or converter that tunes continuously through all 70 UHF channels.

$$
\star \star \star
$$

BIG QUESTION is whether the average consumer will pay extra dollars that all-channel UHF reception might cost.

Manufacturers are divided in their answers. Some have come out for strip tuning. Others offer continuous tuning, while others supply both. A wait-and-see attitude pervades the industry.

```
* *
```

Of TWENTY-FOUR MANUFACTURERS asked about their plans: 11 said they were making UHF sets, 5 said sets would soon be forthcoming, 6 gave no information and 2 disclaimed interest in UHF

All 24 had something to say about converting their latemodel sets in the field for UHF. Three offered conversion only by adding a continuous tuner, 15 said strips would be available and six offered both

Of the new sets discussed, six models are continuously tuned, two are strip tuned and three come both ways. Only five set manufacturers responding announced a line of external UHF/VHF converters; two firms said that external converters were under development.

- Electronics
$\star \star \star$

WITH THE SOLE EXCEPTION of the atomic energy program, more money is being spent by the government on electronic research than in any other field. 95% of the major items in current military electronics production are new, designed since the Korean war.
*

BING CROSBY ENTERPRISES, INC., has demonstrated its system for recording TV on tape. The machine is expected to be on the market in 1954. Such an all-electronic device for recording TV shows could have tremendous advantages over present movie techniques in speed, cost and versatility.
$\star \star$
WATCH THE DEVELOPMENT of a new electronic device still largely hush-hush. All it is is a copper tube but what it does is phenominal. It's a three-way street. Microwaves such as TV's can go through the middle, electrical current for power through the copper, and the outside carries a surface wave. In short, it's an electrical current carrier that is a waveguide on the outside and a coax cable on the inside.

- Electronic Markets

ABOUT THE COVER: The cover illustration is dedicated to the rapidly growing field of high-fidelity. The reproducer-a Jensen TRi-PLEX, the pre-amplifier-a Brook Model 4B, the amplifier (not shown) a Brook 12A. The attractive model is Jean Cusack, photography by Robert W. Reed.

AND TECHNICAL DIGEST

VOL. 3 - NO. 3 MAY-JUNE, 1953

JAMES R. RONK, Editor
Editorial Staff: Merle E. Chaney • Robert B. Dunham
Ann W. Jones - Glenna M. McRoan • Glen E. Slutz
Margaret Neff • L. H. Nelson • C. P. Oliphant
Technical Direcfor: W. William Hensler
Art Directors: Anthony M. Andreone • Pierre L. Crease
Phofography: Robert W. Reed
Production: Archie E. Cutshall • Douglas Bolt
Printed by: The WALDEMAR Press; Joseph C. Collins, Mgr.

CONTENTS

Shop Talk

$$
\text { Milton S. Kiver } 5
$$

Ailing Picture Tube? Glen E. Slutz.7
Reflex Enclosure for 8 -inch Speaker Robert B. Dunham. 11
Vertical Sweep Systems (Part II)
C. P. Oliphant 15
UHF (Circuits and Equipment for UHF Reception) Merle E. Chaney 23
In the Interest of Quicker Servicing Glen E. Slutz. 29
Examining Design Features Merle E. Chaney 33
A Stock Guide for TV Tubes 41
UHF Report-Reading, Penn. W. W. Hensler and C. P. Oliphant 43
Audio Facts
Robert B. Dunham 45
Dollar and Sense Servicing John Markus 49
Photofact Cumulative IndexNo. 38 Covering Photofact SetsNos. 1-206 Inclusive.51
Non-Intercarrier Receivers 115
Status of TV Broadcast Operations 121
+More or Less - 126

HOWARD W. SAMS, Publisher

COPYRIGHT 1953 . Howard W. Sams \& Co., Inc.
2201 East 46 th Street - Indianapolis 5, Indiana

The PF (PHOTOFACT) INDEX and Technical Digest is published every other month by Howard W. Sams \& Co., Ine. at 2201 East 46th Street, Indianapolis 5, Indiana-and is included as a part of PHOTOFACT folders from PHOTOFACT Distributors without additional cost.
SUBSCRIPTION DATA: For those desiring the convenience of delivery to their homes or shops, Howard W. Sams \& Co., Inc. will mail each issue of the INDEX direct, promptly upon publication. The subscription charge is $\$ 2.00$ for eight issues in the United States and U. S. possessions. Acceptance under Section 34.04 P. L. \& R. authorized af in dianapolis, Indiana

Vice Fresilent in Chazce of Snlen, Magregrid, Ino.
Keqency \#ncesse ashliwe moostre at any price

Observation of the picture and listening to the sound is the serviceman's first step toward the repair of a defective television receiver. The next step is to decide, from the symptoms noted, where the trouble is located and then to begin the actual search for the defective component itself.

Of these, the second step is the most important because the decision made there will determine the direction of the serviceman's subsequent probing. And a wrong turn in the road may not be righted for several hours.

Now, the way to avoid falling into a trap, especially in instances when no clear cut decision can be made from screen and sound observation, is to double-check yourself by using one or more of the guideposts which exist in every television receiver. The experienced serviceman is aware of these guideposts and relies on them heavily. The less experienced technician is frequently unaware of their existence or significance and thus loses the benefit of their assistance.

What is a guidepost? A guidepost is an observation point where the serviceman can inspect the signal to determine its condition. If the results are satisfactory, then he knows that a certain section of the set is operating normally. And the trouble must lie beyond this point. But if the signal indications are abnormal (i.e., distorted or missing) then the trouble probably exists at some prior point. So why waste valuable time looking for trouble where it does not exist?

You' ve encountered the same situation in every day life. If you feel sick between lunch and dinner, you wouldn't blame the dinner, would you? Pretty obvious, you say. But have you ever seen a serviceman check the picture tube because he wasn' t getting any high voltage, even with the high-voltage lead disconnected from the picture tube? I have.

There are a number of suitable guideposts in a television receiver
and any man may really choose his own. However, the writer has found the following ones to be the most reliable and the easiest to use when the indications obtained are not normal.

1. Sound-Video Separation

 Point. Probably the most important guidepost in any television receiver is the sound-video separation point. This will tell us first whether the set is of the intercarrier or splitsound (conventional) type, and second, which stages are common to both signals. With this information, the serviceman can then better evaluate the original sound and/or video signal behavior as observed when the set was first brought in. Are both signals affected? If the answer is yes, then the trouble should lie in a stage common to both. This willalso include the power supply since it is common to every section of a television receiver. But if only onesignal is affected, then, of course, attention would be directed to those stages which deal exclusively with this signal.*2. Video Detector Output. This observation point is valuable for indicating whether any trouble exists

* A more extensive discussion of the sound video separation point and its significance to TV servicing will be found in the author's 'Servicing TV In the Customer's Home'", published by Howard W. Sams \& Company, Inc., Price $\$ 1.50$.

Figure 1. The Visual Effect Produced When 60-cycle AC (Hum) Enters the Video System.
prior to the video second detector. Sync compression, sync clipping, or hum in the video signal are distortions of the video signal which frequently occur in the RF or IF stages. However, they may also arise in any of the stages following the video second detector. As a first step toward their isolation, the video signal is scoped at the output of the video second detector. If it is normal, then the RF and IF stages are freed of suspicion and the technician should direct his attention to the stages which follow the second detector. But if the signal is distorted, then trouble is indicated in the RF and/or IF stages.

Sync clipping or sync compression will show up most markedly as unstable vertical or horizontal lock-in. (The picture will also be darker than normal under the same conditions, but this may not be noticed. Unstable lockin will be more obvious.) Hum in the video signal will produce such distortions as shown in Figure 1 accompanied by poor vertical lockin. In either case no clear-cut decision as to defect location can be made simply by observing the picture. Additional information is required and scoping the video signal at the detector is one step in this direction.
3. AGC Voltage. Closely tied in with the appearance of a distorted signal (or no signal at all) at the video second detector is an AGC systemthat is not operating properly. Too high an AGC voltage will reduce the gain of the controlled $R F$ and IF stages and result in little br no signal reaching the video detector. Too low an AGC voltage can lead to sync clipping or sync compression because of the excessive gain which normal signals would receive.

Hence, checking the AGC voltage can go a long way toward the location of a defect in the IF and RF systems.

There is, however, one problem which the technician may en-

* * Please turn to page 85 * *

FOR MAXIMUM COVERAGE WITH MINIMUM STOCK

It is important to you as a service technician and to your customers that your decision to replace a picture tube be well considered and accurate. No one particularly relishes laying out 30 to 60 dollars for a new picture tube, and feelings are apt to become strained if trouble reoccurs shortly after a picture tube replacement has been made. The following information is therefore passed along in the hope that it may help you deal with possible picture tube failures in a manner both timesaving and customer pleasing.

What are some of the ills that befall picture tubes? By far the most common one is insufficient cathode emission. The function of the cathode is to provide the electrons which make up the scanning beam in the tube. If through age, accident, or misuse this electron emitting property deteriorates, the beam current will decrease and certain characteristic changes will occur in the screen image.

One of the se changes is illustrated in Figure 1A. At high brightness control settings, a reversal toward the black occurs in the high-lighted portions of the image and produces what we have affectionately named the " Zombie" effect. Faces take on the. weird appearance of death masks; the life-like shadings are lost. Very often in a tube with this defect when the brightness control is reduced, the image regains its true shadings as shown in Figure 1B. Sometimes a tube will show very marked evidence of the " Zombie" effect when it is first turned on; then after a half to three-quarters of an hour in opera-
tion the cathode emission rate will increase enough to allow a normal picture on the screen. Of course, such a tube is nevertheless defective and should be replaced.

A dim picture, even at maximum brightness setting on the receiver, is another indication of low cathode emission. Certain other defects may also produce a dim picture, but these can be traced down fairly quickly in most cases. For example, a thick coating of dirt and grime on the tube face or safety glass will cut down the a mount of usable light from the phosphor. Also a condition of low high voltage may be responsible for lack of brightness in the picture. The latter can be detected through the use of a voltmeter and high voltage probe. Then, too, if the dim picture is caused by insufficient high voltage, a characteristic "blooming'" or raster expansion very often accompanies the lack of brightness.

Figure 1. Picture Tube Having Low Cathode Emission. (A) "Zombie" Effect at High Brightness Setting. (B) Normal Shading at Reduced Brightness Setting. (Photographs Reproduced with Permission of CBS Television with Apologies to Winston Burdette.)

What may be done to extend the life of a picture tube whose only de fect is low cathode emission? This problem has a degree of solution in a brightener attachment of the type shown in Figure 2. Several makes of brighteners are on the market at the present time. They consist essentially of a step-up transformer or similar component which provides a slightly higher than normal filament voltage for the picture tube. In $t h i s$ way the cathode is heated to a higher temperature and consequently gives off more electrons. Some brighteners are equip ped with a control which provides a means of adjusting the output voltage between limits. Others have only a fixed output voltage. They all are inserted between the picture tube base and its socket. In the case of electrostatically focused tubes with connections to pin \#6, a brightener with pin \#6 included in its circuit must be used.

A brightener is not a substitute for a new picture tube. If using one is found to give satisfactory picture improvement, the customer should be fully advised of the limitations of its use. He should be told that a brightener cannot be guaranteed in the same way that a new picture tube would be guaranteed. A brightener may perform properly for only two or three weeks or it may operate over a period of many months, depending upon the condition of the picture tube. If the customer is told these facts when the brightener is installed, call-back misunderstandings will be avoided.

Furthermore, at the time a brightener is contemplated, it is a good policy to give the customer the option either of having the brightener installed with full knowledge of its limitations or of buying a new picture tube outright. If the occasion is a house call, this option can be presented directly to the customer. If the set happens to be on the shop bench, it takes only a phone call to learn the customer's preference.

One further word concerning picture tube brighteners - many of them have their field of application strictly limited to those receivers employing parallel heater connections. These brighteners are not suitable in series filament sets because a series line cannot supply the increased current demand of a brightener.

Another device for revitalizing tubes with low emission has been on the market for some time. It is known as a reactivator; and,in
short, it subjects the picture tube heaters to a high voltage for a short period of time. During this period the cathode coating gets so hot that it literally boils. In this way it decontaminates itself by permitting more of the electron emitting substance to come to the surface.

This device, like that of the brightener, is only a stop-gap measure to extend the usefullife of a picture tube for an unknown period, and the customer should be advised of this. Replacement of the picture tube is ordinarily necessary at the end of this period.

The second ill which befalls picture tubes is the ion burn. Figure 3 shows a 16 TP 4 picture tube with an ion burn visible against the crosshatch image on the screen. (Sometimes a really bad burn can be seen on a screen even when the receiver is off.) The ion burn in Figure 3 is in the shape of an " X ". Rectangular picture tubes can develop either these X shaped burns or the round burns depending on the second anode voltage employed with the tube. The X burns are found on rectangular tubes that have been used with rather low second anode voltages. Round picture tubes develop the circular ion burns exclusively.

Ion burns are caused by misadjustment of the ion trap magnet (beam bender). When the ion trap is correctly set for maximum screen brightness, the electron beam threads the aperture in the gun structure cleanly without striking the edges. If the ion trap is not placed properly, on the other hand, the beam nicks the edges of the aperture and the heat generated actually causes the release of very small particles or ions out of the gun material. These are accelerated toward the screen and eventually create the discoloration known as an ion burn.

There is no known cure for ion burns within the means of the average servicetechnician. Prevention, therefore, must be the rule. If the brightness control is kept at the
lowest convenient level-while the ion trap is being adjusted, the beam will have much less energy and so will not work havoc around the gun aperture. On some picture tubes it is actually possible to see the gun material turn fiery red where the beam hits it (the writer witnessed this phenomenon a short time ago in a 17TP4). Picture tubes with aluminized screens are purported to be immune to the damaging effects of ions. The aluminum forms a very thin coating over the inside surface of the phosphor. This coat ing is such that ions are blocked and kept from striking the phospor while the much smaller electrons penetrate the aluminum and energize the phosphor.

Dirt on the safety glass or picture tube face can sometimes be mistaken for an ion burn. It is surprising how often a supposedly " bad" picture tube can be restored by cleansing. Mild soap and water applied with a soft cloth and a thorough rinse with clear water afterwards perform this job very well.

Sometimes a dark spot appears on the center of picture tube screens because the tube is too close to the safety glass. This dark spot may be mistaken for an ion burn when actually it is produced by an electrostatic discharge between the tube and the glass. Moving the chassis and tube backward a little farther away from the glass will remedy the trouble.

Another defect which develops in picture tubes and which is frequently found in company with ion burns andgassy conditions is a burnt or misshapen aperture in the gun structure. Aburnt aperture is caused, in the first place, by misadjustment of the ion trap magnet. The electron beam strikes and eats out holes in the edges of the aperture and so in time a beam is fashioned which is no longer circular in crosssection and which produces a blurred, out-of-focus picture. One instance is known where a tube actually developed a double aperture in this way, and as a result a double

* * Please turn to page 89 * *

ALLEN B. DU MONT LABORATORIES, ING., BLIFTON, N. J. Renlagement Sales, Cathode-Ray Tube Division

A Reflex Enclosure for...

..an 8 in. SPEAKER

by ROBERT B. DUNHAM

Some of the characteristics desired in a high quality loudspeaker system include a smooth frequency response throughout the audible range and a minimum amount of distortion, obtained with adequate efficiency, from an enclosure small enough to be used in the desired location. The one particular qualification difficult to attain, in an enclosure of reasonable dimensions, is adequate reproduction of the low bass tones.

The reflex enclosure (known under such names as bass reflex, vented and phase inverter enclosure) has been popular for some years since it does reinforce the low frequencies with a cabinet of comparatively small dimensions. But to accomplish the desired results certain things must be taken into consideration in its design and construction. A study of the multitude of information concerning reflex enclosures will reveal a great variation in the dimensions and values recommended, which can be puzzling. But the reasons for this situation can be explained.

Cabinet size is dependent upon the speaker; the cubic content of the enclosure increasing with larger speaker (cone) diameter and lower open-air resonant frequency of the speaker. Port size also varies for definite reasons. Some better understanding of this can be had from the following data collected by us when tuning a reflex enclosure to a certain speaker. Figure 1 shows impedance meas urements being taken on a speaker enclosure.

In this case an enclosure, which had been designed and constructed for use with one particular 8 -inch speaker, was modified for best operation with another 8 -inch unit of different manufacture. The inside dimensions of the cabinet and the port had to be changed to tune it to the new speaker, which had a higher resonant frequency than the original one. The following procedure applies whether an existing enclosure is being tuned to accommodate a different type speaker or a new enclosure is being built for a specific speaker.

The term "tuned" is used, as that is exactly what must be done since the reflex cabinet is a resonant enclosure. It has the properties of a parallel resonant circuit while a speaker follows the characteristics of a series resonant circuit. The enclosure should be tuned so its resonant frequency corresponds to that of the speaker.

Since the speaker acts as a series resonant device, its cone movement tends to be excessive when a signal equal to the speaker's resonant frequency is applied to its voice coil. This of course means that any tones at, or very near, this frequency will be reproduced much louder and result in a peak in the response curve at that point. When the parallel resonant enclosure is tuned to the same frequency as that of the speaker, the column of air inside the cabinet offers opposition to the excessive cone travel and does not allow it to "run wild". Therefore a correctly tuned reflex enclosure eliminates the peak caused by speaker resonance. Two peaks, not quite so high

Figure 1. Equipment Used in Determining Resonant Frequency of Speaker and Data for Impedance Curves.

Figure 2. Equipment Used in Making Measurements.
 tubes fall below requirement standards in every TV receiver, due to use. Hickok tube testers are the only instruments to contain the dependable completeness of test necessary to accurately pick out below normal tubes. All tubes that the Hickok testers reject should be replaced tobring the receiver back to its manufacturer's standards.

We have continued to stand on the accuracy of our Hickok 533 and 534 A shop testers for any tube test, so we decided to invest in another Hickok to build our income with increased "house-call"' business. We chose the Hickok 605 tube tester because of its multimeter. For a little more than the standard Hickok we got a built-in multimeter with a vacuum tube rectifier which is better than any other V.O.M. we could buy separately; even up to $\$ 50.00$ as it will

Sincerely, Bill Schneider

WRITE TODAY FOR COMPLETE INFORMATION

Figure 3. Front View of Reflex Enclosure Discussed in Text. Boards Used to Fill in Cabinet to Reduce Size Are Shown at Left.

Figure 4. Interior View of Enclosure. Ozite Paddirg, Duct on Port and Boards Installed on Inside of Back to Reduce Cabinet Size Are Shown.
in amplitude, now appear - one above the speaker resonant frequency and one below. These peaks can be reduced by proper damping.

An audio signal generator is required when determining the resonant frequency of the speaker. By connecting a resistor (100 to 200 ohms is satisfactory) in series with the output of the signal generator and the voice coil, the resonant frequency can be found by varying the signal, fed to the speaker, through a range of about $0-200 \mathrm{cps}$. The speaker must be held in the open air while this check is being made as any surface of appreciable size close to the cone, will load it and change the resonant point. As the generator frequency is varied through this range the resonant frequency will be evident as the frequency at which the cone movement is very pronounced. If an AC
voltmeter, or the vertical input of an oscilloscope, is connected across the voice coil, the frequency is very readily indicated by the maximum voltage reading at that point. This is actually an indication of the increased impedance across the voice coil at resonance. The purpose of the series resistor is to isolate the speaker and make the peak reading more evident. The equipment used in making these tests can be seen in Figure 2.

It might be well to mention here that modern high quality audio power amplifiers have a damping action upon the speaker which reduces most of the peaks, in some instances, to such an extent that they are practically eliminated.

The enclosure (Figure 3) used to obtain the following data, was
solidly constructed of $1 / 2$-inch plywood with all joints reinforced with $3 / 4$-inch material of sufficient length and secured with screws and glue to insure against air leaks and rattles. All flat inner surfaces were covered with $1 / 2$-inch Ozite (Figure 4) to reduce reflections and absorb the high frequencies inside the cabinet. The back, with crossed braces screwed to its inside surface, was carefully fitted and fastened to the cabinet with wood screws as shown in Figure 5.

The resonant frequency of the new speaker was found to be 94 cps which was, as mentioned before, higher than the original. With this speaker installed in the cabinet, the signal generator was connected to the speaker, following the method previously described, to

[^0]

Figure 5. Rear View of Reflex Enclosure.

Figure u. Installing Boards to Reduce Cabinet Size.

with the all-weather "silver" pigmentation that lets you INSTALL IT and FORGET IT!

FEDERAL'S 'TV-1185-newest sensation of the top-quality twin-leads - is virtually a "pipeline" for better-thanever TV reception...VHF or UHF!

Insulated with the revolutionary Fed-eral-developed "silver" polyethylene, TV-1185 is amazingly tough and efficient. It repels sunlight...fights heat... resists moisture and salt spray and other destructive deposits. Dirt and dust tumble off its fine, smooth, tubular surface!

TV-1185 keeps the energy field inside the weather-proof "silver" polyethylene sheath . . . providing low loss . . . more constant impedance . . . a better TV picture regardless of area or length of lead!

There's nothing finer for VHF or UHF than Federal's "pipeline" twinlead...because nothing but the finest has gone into its design and production!

For complete details see your Federal distributor or write to Dept. D-5118

Federal Telephone and Radio Corporation

 SELENIUM-INTELIN DIVISION, 100 KINGSLAND ROAD, CLIFTON, NEW JERSEY[^1]OUTSTANDING FEATURES OF FEDERAL'S TV-1185

- Exceptionally low loss
- Holds impedance values
- Copperweld conductors7/\#28
- Leads in Weatherometer tests
- Flexible in low temperatures
- Rejects ultra-violet rays at higher temperature levels
- Top performer in any area
- Attenuation- db/ 100 ft .

$10 \mathrm{mc}-0.50$	$400 \mathrm{mc}-2.6$
$50 "-0.95$	$500 " \prime-3.0$
$100 "-1.11$	$1000 "-4.6$
$200 "-1.7$	
SO EASY TO INSTALL:	

Expose required length of wire by stripping off polyethylene. To tight-seal, heat end of tube with match or other flame and crimp together with pliers. Sealing assures quality performance under all atmospheric conditions.

(Part II)

Multivibrator: Another method of providing vertical sweep is through the use of the multivibrator type of oscillator. The main advantage in using a multivibrator is that it is usually less expensive to manufacture than the blocking oscillator, since it does not require the added expense of a feed-back transformer. However, the reason it is not used as much as the blocking oscillator is that the circuit is more critical to changes of tube characteristics. As the tube ages, any changes in characteristics of the tube affects the operation of the multivibrator circuit. The periods of oscillations of the multivibrator depend critically on the cut-off and conduction characteristics of the tube being used. If these characteristics should change appreciably over a period of time, the cut-off and conduction period of the circuit would be affected.

In Figure 7-14 is shown the basic circuit of a multivibrator. This circuit is known as a platecoupled multivibrator. Basically the circuit is a two-stage amplifier. In order to sustain oscillations, the output of the second stage (V2) is coupled back to the input of the first (V1). It is possible to obtain oscillations in a circuit of this type because the output voltage appearing at the plate of the second stage is in phase with the voltage appearing at the input of the first stage. This fact is always true in the case of an even number of stages of amplification. In this way, the voltages always aid rather than oppose each other.

Figure 7-14. A Basic Multivibrator Circuit.

Upon the application of power to the circuit, both sections of the multivibrator tend to conduct. However, due to a slight disturbance in the circuit, one section will start to conduct sooner than the other section. If the characteristics of both tubes were exactly the same and the circuit elements were exactly matched, astate of equilibrium would exist and oscillations would not be produced. Conditions for perfect equilibrium are not obtainable in practice; therefore, oscillations will occur. There are a number of reasons why one plate will start to conduct slightly sooner than the other. It may be due to a lower plate resistance, a hotter cathode, or a slightly lower plate load resistance. Since this is the case, assume that V1 will start to conduct sooner than V2.

The operation of the multivibrator of Figure 7-14 can best be explained by presenting a numerical sequence of the events which occur. With the assumption made in the previous paragraph, the operation of the multivibrator is as follows.

1. With V1 increasing in conduction more rapidly than V2, the voltage drop across R3 increases and the plate voltage of V1 decreases. The rise in plate current of V1 is accompanied by a drop in plate-tocathode resistance and also a drop in plate-to-cathode voltage.
2. As a result of the lower plate-to-cathode resistance of V1, a low resistive discharge path for C2 is formed. This discharge path, which is shown in Figure 7-15A, is through the grid resistor of V2 and through the low resistive path of V1.
3. Capacitor C 1 acquires its charge during the time V1 is conducting. The first instant, the charge path is through R4 to ground and through the grid resistor R1. This charging current instantaneously places a positive charge on the grid of V1 which causes grid current flow from V1. With grid current flowing, the charge path of $C 1$ is as shown in Figure 7-15B. As a result, the plate

Figure 7-15. Charge and Discharge Paths of the Coupling Capacitors, Cl and C2 of Fig. 7-14.
current flow of V1 is further increased by the slightly positive potential on the grid.
4. The'discharging of C2 through R 2 applied a negative voltage on the grid of V2. With the voltage at the grid of V2 becoming more negative, the plate current of V2 diminishes. This results in an increase of plate-to-cathode voltage and an increase of plate-to-cathode resistance. The increase in plate voltage of V2 increases the charge on C1.
5. The discharging of C2 through the grid resistor of V2 drives the grid highly negative, driving it beyond plate current cutoff. V2 is held at cut-off until the grid voltage has increased to a value on the exponential discharge-time curve of $C 2$ which will bring the tube out of cut-off. The rate at which capacitor C2 is able to dissipate its charge depends upon the time constant of C2R2.
6. With V2 brought out of cutoff by the discharge of C 2 , plate cur rent starts to flow in V2. As a result of plate current flow in V2 there is a decrease of plate-tocathode voltage and a decrease of plate-to-cathode resistance.
7. This lower plate-to-cathode resistance of V2 provides a low resistive path for the discharge of C 1 . This discharge path, which is shown in Figure $7-15 \mathrm{C}$, is through the grid

It's new... its' simple... its inexpensive!

Now, it's a simple matter to operate two or more TV sets from a single antenna. The four illustrations show you how easy it is. There's no need to cut or splice the twin lead because connections to the coupler are automatically made when the screw caps are tightened. A wood screw in the base makes it easy to fasten the coupler to a wall or baseboard. You can make an installation in a matter of minutes.

The new RCA-240A1 coupler will help you sell customers a second set . . . let people "double up" on apartment antennas . . . provide a simple, inexpensive floor demonstration set-up for dealers. That's why you'll want a good supply on hand to take care of the extra business that will come your way. See your RCA Parts Distributor today for full details.

V Easy to install ... self-contained wood screw
\checkmark For $\mathbf{3 0 0}$-ohm ribbontype line

\checkmark Reduces oscillator interference between sets
\checkmark Only $\$ 1.95$ suggested list price

The RCA-240A1 TV Set Coupler

Figure 7-16. Grid Waveform of each Section of the Free-running Multivibrator of Fig. 7-14.

(A) Grid of VI.
(B) Grid of V-2.

resistor of V1 and through the low resistive path of V2.
8. Capacitor C 2 acquires its charge during the time V2 is conducting. The first instant, the charge path is through R3 to ground and through the grid resistor R2. This charging current instantaneously places a positive charge on the grid of V2 which causes grid current flow from V2. With grid current flowing the charge path of C 2 is as shown in Figure 7-15D. As a result, the plate current flow of V2 is further increased by the slight positive potential on the grid.
9. The discharging of C 1 through R1 causes the grid of V1 to become negative. With the grid of V1 becoming negative, the plate current of V1 diminishes. This results in an increase of plate-to-cathode voltage and an increase of plate-tocathode resistance. The increase in plate voltage of V1 increases the charge on C 2 .
10. The discharging of C 1 through the grid resistor of V1' drives the grid highly negative, driving it beyond plate current cut-off. V1 is held at cut-off until the grid voltage has increased to a value on the exponential discharge-time curve of C 1 which will bring the tube out of cut-off. The rate at which capacitor C1 is able to dissipate its charge depends upon the time constant of C1R1.
11. With VI brought out of cut-off by the discharge of C , plate current starts to flow in V1. As a result of plate current flow in V1 there is a decrease of plate-to-
cathode voltage and a decrease of plate-to-cathode resistance. At this point, the cycle of events of the multivibrator is in the same condition as in step 1. At this time, a new cycle begins which is the same as the one previously described.

Figure 7-16 represents the grid waveform of each section of the free-running multivibrator of Figure 7-14. Waveform (A) is that which is present at the grid of V1. Waveform (B) is that which is present at the grid of V2. The portion of the waveform between points 1 and 2 of curve "A" is formed by the charging of C 1 . From point 2 to point 3 , the voltage at the grid of V1 instantaneously drops far below the cutoff bias of the tube. The portion of the curve between points 3 and 4 of curve " A " is formed by the discharge of capacitor C1. At point 4 the waveform is repeated.

Curve " B " is the opposite curve "A". When curve "A" is going positive, curve " B " is going negative. From point 1 to point 2 of curve " B "', the voltage at the grid of V2 drops far below the cutoff bias of the tube. The portion of the waveform between points 2 and 3 is formed by the discharge of C2. The charging of C 2 is represented by the portion of the waveform between points 4 and 5. At point 5 the waveform is repeated.

A commercial type multivibrator used for the generation of the vertical sweep voltage is shown in Figure 7-17. This circuit incorporates the use of a plate-coupled multivibrator, which is representative of the type of circuit in Figure $7-14$. This circuit follows through
the same operation as was discussed in the previous section concerning the basic plate-coupled multivibrator. The only difference between the two circuits being the commercial circuit contains more components than the basic circuit of Figure 7-14. If the components of Figure 7-17 were lumped together the circuit would correspond to that of Figure 7-14.

The free-running frequency of the multivibrator is controlled by changing the discharge time of C80. This adjustment is R3A, which is the vertical hold control. Since this control is located in the grid circuit of V17B the duration of time the tube is cut off is determined by the setting of the hold control. This control is set so that the free-running frequency of the multivibrator is just below that of the incoming synchronizing pulse. The amplitude to which the charge voltage of the saw tooth forming capacitor is able to reach, is controlled by the height control. This adjustment, R5, is located in the plate circuit of V17B. This control changes the B plus volt age applied to the charging network of V17B; thereby, increasing or lowering the amplitude of the sweep voltage.

The discharge capacitor of the multivibrator of Figure 7-17 is C82. This capacitor acquires its charge from the B plus supply through the plate load resistance of V17B while this section is not conducting. During the time section B is in conduction, the discharge capacitor discharges through the cathode resistance of the output amplifier and the low resistive path of V17B.

Figure 7-17. A Commercial Type Plate-coupled Multivibrator.

CBS-HYTRON TRANSISTORS

MECHANICAL FEATURES

1. Single-ended construction gives maximum mechanical stability,
2. Rugged triangular basing design resists shock and vibration.
3. Dual-purpose connections permit use of flexible leads or stiff plug-in base pins.
4. Direct soldering of germanium wafer to base support guarantees posifive contact, avoids flaking.
5. Glass-filled plastic case and high-temperature impregnating wax assure moistureresistant, trouble-free operation.

BASING AND SOCKET
 (bottom view)

Note similarity of pin layout to that of transistor symbol CBS-Hytron type T-2 transistor socket features groove to guide pins sistor socket features groove to guide pins sure that base connection of transistor will

Triangular arrangement of base pins is stronger . . . avoids bent pins. Easy-to-remember basing layout simulates basing symbol always be made first.
 (see diagram). Polarization makes socket connections foolproof. You are assured of uniformly optimum characteristics by electronic control of pulse forming. Thorough aging achieves maximum stability. You may operate these transistors up to $55^{\circ} \mathrm{C}$. And you can order both CBS-Hytron PT-2A and PT-2S for

WRITE FOR DATA. Complete free data on CBS-Hytron PT-2A and PT-2S . . . and the T-2 socket . . . are yours for the asking.

(A) Grid of V17A.

(B) Grid of V17B.

(C) Plate of V17B.

Figure 7-18. Operating Waveforms of the Plate-coupled Multivibrator of Fig. 7-17

The waveforms of Figure 7-18 show the operation of the platecoupled multivibrator of Figure 7-17. Waveform "A" is the one present on grid number 1, while waveform " B " is the one that is present on grid number 4. Waveform " C " is the output sawtooth of the multivibrator.

A type of multivibrator more commonly usedfor the generation of the vertical sweep voltage is the cathode-colipled multivibrator. This type of multivibrator enjoys more popularity because of its simplicity of design and the fact that good stability is realized. The circuit of the cathode-coupled multivibrator differs from the plate-coupled multivibrator in t wo ways. The cathode-coupled circuit does not contain a feed-back capacitor from the output of the second stage to the grid of the first stage as is present in the circuit of the plate-coupled multivibrator. Also, a common cathode resistance is present in the circuit of the cathode-coupled multivibrator.

Figure 7-19 is a typical ca-thode-coupled multivibrator circuit. The feed-back voltage, necessary for oscillations, is obtained through the common cathode resistor, R84, and the coupling capacitor, C71.

V15A drives V15B through the grid coupling circuit C71, R85, and R5. V15B is cut off by the conduction of V15A as C71 discharges through the grid resistance of V15B because of the drop in plate voltage of V15A. The cut-off of V15A is accomplished by the cathode bias produced across the common cathode resistor when V15B is conducting. The hold control, R5, operates the free-running frequency of the multivibrator.

The operation of the cathodecoupled multivibrator of Figure 7-19 is as follows. Upon the application of power to the circuit, both tubes are in the conduction condition because the control grids are substantially at zero potential. Following is a numerical sequence of events through which the circuit passes in order to produce an asymmetrical pulse.

1. Upon the application of power to the plates, capacitor C71 acquires a charge through R 86 , B plus supply, and from the gridto ground resistance of V15B. This charge is acquired very rapidly because the grid of V15B is initially at zero potential.
2. With plate current starting to flow in both tubes a bias voltage is built upacross the common cathode resistor, R84, which will tend to cause the plate current of both tubes to start decreasing.
3. A lower plate to cathode voltage drop across $V 15 \mathrm{~A}$ is present due to the decreased flnw of plate current. As a result, a lower plate resistance of V15A is present.
4. The discharge of C71 will now be initiated, due to the reduced plate resistance of V15A. The dis charge path of C71 is through R85 and R5 in the grid of V15B, through the common cathode resistor, and through the low resistive path of V15A.
5. With the discharge of C71 flowing through the grid resistance

Figure 7-19. A Commercial Type Cathode-coupled Multivibrator.
of V15B, a negative voltage is applied at the grid of V 15 B , driving it into cut-off. During the time V15B is cut off, V15A is conducting and biasedonly by its own plate current flowing through the common cathode resistor.
6. When the bias on V15B decreases, due to the discharge of C71, to the point where it is equal to the cut-off potential, V15B will begin to conduct again.
7. When V15B suddenly conducts it produces a pulse of current through the common cathode resistor. Since this resistor is common to both V15A and V15B, the voltage produced immediately drives the grid of V15A negative with respect to its cathode.
8. With the grid of V15A more negative with respect to its cathode, the tube is driven into cut-off.
9. With V15A being cut off, there results a sudden increase in plate to cathode resistance and an increase of plate voltage on V15A. This sudden increase of plate voltage on V15A causes C71 to charge, thus instantaneously placing a positive voltage on the grid of V15B. This increase of positive voltage on the grid of V15B further increases the plate current flow.
10. The increase of plate current flow of V15B adds to the voltage across the common cathode resistor, which drives the grid of V15A further into cut-off region.
11. When C71 has charged to its full value the plate current of V15B ceases to increase which results in no further increase of the voltage across the common cathode resistor. With a decrease in bias voltage, V15A will begin to conduct.
12. With the start of platecurrent flow in V15A, C71 will start to discharge through the grid to ground resistance of $V 15 B$, the common cathode resistor, and through V15A. The discharge current flowing through the grid resistance of V15B places anegative potential on the grid which drives it into cut-off. At this point the cycle repeats itself.

The cut-off time of V15B depends on the discharge time of C71, while the cut-off time of V15A depends on the charge time of C71. The charge time is made very much shorter than the discharge time in

This combination of features explains why

- Complete frequency coverage with one probe, 20 cps to over 110 me. Insulated and shiclded RF tube probe, found usually only with laboratory instruments, is included.
- Peak to Peak ACV and RF with one probe.
- One volt full scale reading on $A C \& D C$.
-Onemain selectorswitch, all ranges.
- ACrms-Peak to Peak
- 32 Ranges
- Zero center mark for FM discriminator alignment plus any othergalvanometer measurements. - High input impedance 11 megohms on DC.

Suggested U.S. A. Dealer Net $\$ 6950$. Prices subject to change without notice.

(B) Grid of Tube 2, Point W6.

(c) Plate of Tube 2, Point W7.

Figure 7-20. Operating Waveform of of the Cathode-coupled Multivibrator of Fig. 7-19.
order that an asymmetrical output can be obtained.

As in the case of the platecoupled multivibrator, the circuit of Figure $7-19 \mathrm{c}$ an be compared with the circuit of a blocking oscillator and discharge tube. V15A corresponds to the blocking oscillator and V15B corresponds to the discharge tube. The discharge capacitor of the circuit of Figure $7-19$ is C72. The charge portion of the sawtooth is formed when V15B is cutoff, while the discharge portion is formed when V 15 B is conducting.

The cathode-coupled multivibrator is controlled by a negative sync pulse that is fed directly from the integrating network. When the sync pulse is applied to the grid of V15A, the tube is cut off and ceases to conduct. At this time V15B begins conducting. With V15B in the conducting state, the sawtooth capacitor C72 starts to discharge through R90 and the low resistive path of V15B. At this time, the rapid flyback portion of the sawtooth waveform is developed in the output. When V15B is cut off by the action of the multivibrator circuit, C72 begins to acquire its charge from the B plus supply through the resistance com-
bination of R88, R3, and R87. During the charge time of C 72 , the linear rise of the sawtooth is formed.

The variable resistor, R3, is the height control, which varies the amplitude of the sawtooth waveform. The frequency of the multivibrator is adjusted by the variable hold control, R5, located in the grid circuit of V15B. By decreasing the grid resistance of V15B, the frequency of oscillation is increased. Onthe other hand, by increasing the resistance, the frequency of oscillation is decreased. By proper setting of the vertical hold control the freerunning frequency of the multivibrator is set so that it is slightly below the frequency of the controlling vertical sync pulse. The waveforms of Figure 7-20 show the operation of the cathode-coupled multivibrator of Figure 7-19. The waveforms show the operation at the grids of each section and the output of the multivibrator.

Another method employed for the vertical sweep system, which is unique in the fact that only two triade sections are used for the multivibrator and output amplifier, is shown in Figure 7-21. The circuit of Figure 7-21 employs the use of one-half of a 12AT7 for the first half of the multivibrator and uses a type 6S4 for the second half of the multivibrator and also the output amplifier. Other designs of this type of circuit have employed twin triode tubes of the type 6SN7GTA, 12BH7, and 6BL7, with the multivibrator and output amplifier circuits contained in the same envelope. The development of this type of circuit results in sim-
plicity of design and reduced cost of manufacturing.

The circuit of Figure 7-21 is the same as a basic unbalanced multivibrator, with the circuit designed so that V14 will conduct longer than V13. This is accomplished by making the time constant of C57-R88 much longer than the time constant of $\mathrm{C} 60-\mathrm{R} 80, \mathrm{R} 4$. The desired trapezoidal waveform which is used for the vertical sweep is formed across C56 (sawtooth forming capacitor) and R87 (peaking resistance). This waveform is coupled to V14 through C57. Inthis stage the waveform is amplified to the desired height before it is fed to the deflection system.

The trace portion of the output waveform of the amplifier increases in a negative direction, which is the desired condition for the vertical sweep. Since the feed-back voltage must be positive in order for the multivibrator to function properly, a wave shaping network is employed in the coupling circuit to obtain the desired pulse. This network is a differentiating typecircuit consisting of C58 and R85. The desired pulse is coupled from this network to the input of V13 through capacitor C60. This pulse is used to sustain oscillations in the multivibrator.

Drawings of the pulses present in the wave shaping network are shown in Figure 7-22. " A "' is the trapezoidal waveform present at the plate of V14. "B"' represents the pulse at point Wl after it has passed through the differentiating network. The pulse then passes through the

* * Please turn to page 110 * *

Figure 7-21. A Commercial Vertical Multivibrator Circuit Employing Two Triode Sections for the Multivibrator and Output Amplifier.

Approvéd Precinion Quality

How do we know? We surveyed hundreds of service men like yourself... maybe you were one of them. We found that Mallory Vibrators were preferred over others because of their long life and dependability.

There is good reason for that vote of confidence. It is the same reason why more Mallory Vibrators are used as original equipment than all other makes combined. The patented, tuned mechanism in Mallory Vibrators assures completely dependable performance, every time . . .

Less wear because of slow contact
Low resistance because of high contact pressure
Reduced arcing because of clean, fast break
You can depend on Mallory Vibrators for highest quality . . yet they cost no more. Ash for Mallory, by name, the next time you call your distributor. It is a sure way to beat the call-back problem . . . make sure every job is right the first time.
MAILORY

CAPACITORS • CONTROLS • VIBRATORS • SWITCHES • RESISTORS RECTIFIERS • POWER SUPPLIES • FILTERS • MERCURY BATTERIES APPROVED PRECISIONPRODUCTS
P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

GE Model UHF-103 Tuner
The GE tuner Model UHF-103, shown in Figure 1, is a three channel UHF converter designed for installation in existing GE television receivers. It consists of a turret type tuning mechanism contained in a cylindricalshaped can. It employs a VHF-UHF switch, a 6AF4 oscillator tube, 6 BK 7 IF amplifier tube, a 1 N72 crystal mixer, and components associated with these stages. Employing the double conversion system, the UHF tuner output is fed into the antenna input terminals of the VHF tuner which in turn provides the correct frequency for the video IF stages in the receiver.

The UHF-103 is supplied in kit form containing all the parts necessary to complete the installation. Part " A" of the kit consists of the tuner proper, power supply unit, side mounting knob and hardware, and installation instructions. Either bracket kit " C " or kit " D ' is used in conjunction with kit " A ". The table given below shows the exact model number for which the tuner assembly is designed and the correct bracket kit to obtain for each receiver.

Since the assembly is designed for installation in any one of a number of GE receivers, it may be found that some of the mounting hardware supplied with the kit is not required. In this case, the surplus items may be discarded.

A description of circuits and equipment for Ulira High Frequency reception.

by MERLE E. CHANEY

$\begin{gathered} \text { Part "C'" Kit } \\ \text { for } \\ \text { STRATOPOWER } \\ \text { ('"E'' Line) } \\ \text { RECEIVERS } \end{gathered}$		
17 C 125	21 C 206	21C214
20 C 107	21 C 208	21 T 1
21 C 201	21 C 208 U	21 T 3
21 C 202	21 C 210	21 T6
21C204		
$\begin{gathered} \text { Part " }{ }^{\text {D ' ' Kit }} \\ \text { for } \end{gathered}$		
STANDARD ('AK' Line)		
RECEIVERS		
17C113	17 T 10	21 T2
17 C 117	17 T 11	21 T4
17C120	17 T 12	21 T5
17 T 7	20 T 2	

The procedure employed in the installation detail is divided into two parts; First, the fastening of the unit to the mounting hardware, and secondly, the physical placement of the assembly into the cabinet and completion of the electrical connections. It is unnecessary to remove the chassis for this installation, thus contributing to a saving of time.

Prior to placing the tuning assembly into the cabinet it should be determined if the UHF tuner output stage is set to the desired channel frequency. Nominally, the out put stage is adjusted at the factory at
the frequency of channel 5 . However, if interference problems arise such as the presence of a strong channel 5 VHF station, the output stage should be adjusted to channel 6. With this adjustment made as required, the assembly can be mounted inside the cabinet.

A feature of the Model UHF-103 is that any combination of three UHF channels may be tuned by the tuning unit, provided of course that the tuned circuits have been pre-adjusted at the time of installation. The switching method employed to activate the UHF positions facilitates the selection of either VHF or UHF reception.

Figure 2 is a view of the tuning unit showing the turret assembly and components contained inside the structure. It is interesting to observe the method utilized in the fabrication and adjustment of the coil-like transmission lines. These lines are employed in the preselector and oscillator circuit and electrically are shorted quarter wave transmission lines. Although exhibiting the physical characteristics of an inductor it is noted that each winding is doubled back on itself. Advantages of the use of trans mission lines as tuned circuits is retained while maintaining the small space requirements of conventional wound inductors at the frequencies used. It is further noted in the construction of these lines that the turns

Figure 1. Photo of GE UHF Tuner Model UHF-103 with Included Power Supply.

Figure 2. Photo of Tuner Turret with Shield Removed.

JFI) gives you a direct line to profits with the amazing new JeTie coupler. Here's "single ransmission line" reception on such disparate channels as 4 and 61-a miracle of engineering know-how that will pay off for you in countless sales. Made with a new silver printed circuit for ideal conductivity, the JeTie is hermetically sealed in a transparent moisture-resistant, dust-proof Butyrate case - the only one of its kind. Light weight, easy-to-attach, the Je'lie coupler is the easy-to-sell answer to the new UHF and VHF stations in your territory. LIST PRICE $\$ 5.30$
For more information on the JFI) JeTie, write to JFl) Manufacturing Company, Inc.

Brooklyn 4. Nrw York Bensonhurst 6-9200 World's largest manufacturer of TV antennas and accessories

JETENNA - JET 28.3 and now...

-IFD introdukes the remolntionary

$J_{\text {EFTie cornter , quas }}$
for VHF amd UHF antennas

first of its Lind!

- joins one UHF and one VHF antenna
- joins two VHF antentas
- joins two VHF antennas and one UHF antenna
all with only OVE down-lead!

Figure 3. Schematic of GE Model UHF-103.
are formed of bare silver plated wire in such a manner as to accept a threaded silver plated shorting screw. Turning the screw clockwise reduces the length of the transmission line, thus controlling its resonant frequency.

Three pairs of lines are mounted on a detent plate inside the tuner unit. However, there are four detents in the plate. Three positions of the selector knob connect the various lines in the circuit while the fourth or VHF position is located such that the lines are out of the
circuit. In this position contacts on a wafer switch connect a 22 K resistor in series with the B+ line to the UHF oscillator stage. Additional contacts on the wafer switch disconnect the UHF tuner output and connect the VHF antenna lead to the input of the television receiver.

Operation of the television receiver to accept signals from UHF stations requires that the VHF tuning knob be set at either channel 5 or channel 6 position, determined by the setting of the UHF tuner output established at the time of installa-
tion. With the VHF tuning knob set at the desired channel and the UHF tuner switched to the desired UHF position, tuning of the signal proceeds in the accustomed manner as for VHF.

A schematic of the GE tuner Model UHF-103 is shown in Figure 3. An incoming UHF signal and a signal from the oscillator V1 are heterodyned in the mixer stage employing a 1 N 72 crystal. The resultant intermediate frequency signal is fed to the dual triode amplifier tube (V2) connected cascode and from

Figure 4. Philco UHF Converter Model UT-21A.

Figure 5. Block Diagram of Philco UHF Tuner and Converter.

INSTALLATION OF UHF TUNER ADAPTOR UT-21 (PUSH-PULL)
The following list of models will accept the adaptor as it is presently being assembled in production.

Model	Code								
$52-\mathrm{T} 1802$	124	$52-\mathrm{T} 1841$	121	$52-\mathrm{T} 2142$	121	$52-\mathrm{T} 2252$	121	$53-\mathrm{T} 1883$	125
$52-\mathrm{T} 1804$	124	$52-\mathrm{T} 1842$	121	$52-\mathrm{T} 2144$	121	$52-\mathrm{T} 2252$	124	$53-\mathrm{T} 1884$	125
$52-\mathrm{T} 1808$	121	$52-\mathrm{T} 1844$	121	$52-\mathrm{T} 2145$	121	$52-\mathrm{T} 2253$	121	$53-\mathrm{T} 1886$	125
$52-\mathrm{T} 1810$	121	$52-\mathrm{T} 1850$	121	$52-\mathrm{T} 2150$	121	$52-\mathrm{T} 2254$	121	$53-\mathrm{T} 2125$	124
$52-\mathrm{T} 1812$	121	$52-\mathrm{T} 2106$	121	$52-\mathrm{T} 2150$	124	$52-\mathrm{T} 2256$	121	$53-\mathrm{T} 2126$	125
$52-\mathrm{T} 1820$	121	$52-\mathrm{T} 2108$	121	$52-\mathrm{T} 2151$	121	$52-\mathrm{T} 2258$	121	$53-\mathrm{T} 2152$	124
$52-\mathrm{T} 1820$	124	$52-\mathrm{T} 2110$	121	$52-\mathrm{T} 2151$	124	$52-\mathrm{T} 2259$	121	$53-\mathrm{T} 2183$	125
$52-\mathrm{T} 1821$	124	$52-\mathrm{T} 2120$	121	$52-\mathrm{T} 2157$	125	$52-\mathrm{T} 1824$	124	$53-\mathrm{T} 2260$	125
$52-\mathrm{T} 1822$	124	$52-\mathrm{T} 2120$	124	$52-\mathrm{T} 2224$	121	$53-\mathrm{T} 1825$	124	$53-\mathrm{T} 2262$	125
$52-\mathrm{T} 1839$	121	$52-\mathrm{T} 2122$	121	$52-\mathrm{T} 2244$	121	$53-\mathrm{T} 1826$	124	$53-\mathrm{T} 2264$	125
$52-\mathrm{T} 1840$	121	$52-\mathrm{T} 2140$	121	$52-\mathrm{T} 2245$	121	$53-\mathrm{T} 1852$	124		

The following is a list of models which will accommodate the subject adaptor revised with the cable kit $43-6690 \mathrm{~m}$ to permit its assemble into receivers using TV-30 (cold) chassis:

* Shaft extension kit 43-6476 used in conjunction with UT20 on Remote sets.
** Extension cable kit 43-6593 used in conjunction with UT20A for 27" sets.
Figure 6. Table of Philco TV Receivers Showing UHF Tuning Kit to Obtain for Installation.

UT-20A	"A" Line TV-90 Series	" A " Line TV-97 (See Note 1.)
UT-20	'53 Line TV-90 Series	"A" Line TV-90 Series (See Note 2.)
UT-21	Universal Adaptor for '52 Line TV-40, TV-45, TV-70 Series	'53 Line TV-80, '53 Line TV-90, "A" Line TV-80, "A" Line TV-90 (See Note 2.)
UT-21A	'53 Line TV-80	'53 Line TV-90, "A" Line TV-90, "A" Line TV-80 (See Note 2.)
UT-21B	"A"' Line TV-80	"A" Line TV-90, "A" Line TV-97 (See Notes 1 and 2.)

GENERAL

When using UT-21, 21A, or 21 B with TV-90 or TV-97 it is necessary to use Channel 2 or 3 of the TV-90 or TV-97 instead of the UHF position on the VHF tuner.

NCTE 1.

To use UT-20A or UT-21B with TV-97 it is necessary to extend the length of the plug and cable assembly which supplies power to the tuner.

NOTE 2.

The "A" line TV-80 and TV-97 control panel has a cutout (see attached diagram) to accommodate the "A" line Beam of Light Tuner UT-20A or UT-21B. In order to mount UT-20, UT-21, or UT-21A to "A" line receivers it is necessary to change the mounting of the control Bezel (see attached diagram). Brackets for this special mounting may be procured from your Philco distributor.

Figure 6. Table of Philco TV Receivers Showing UHF Tuning Kit to Obtain for Installation.

there to the output transformer L13. This transformer tuned to resonance at either channel 5 or 6 frequency provides an IF signal to the output terminals of the UHF unit which in turn is fed to the input terminals of the VHF tuner unit.

The power supply shown in Figure 3 is used to provide B+ and filament voltage to the UHF oscillator and IF tubes. This is required since the GE receivers for which the UHF-103 is designed employ series filament strings, and have one side of the AC line connected to chassis. It is important, therefore, that the tuner assembly does not make contact with the TV chassis since one side of the AC line would be connected to the control shafts of the television receiver. Also do not permit the transmission lines to contact any portion of the television chassis.

From an operational standpoint it is seen that selection of either VHF or UHF stations by a GE receiver equipped with a Model UHF-103 is a simple procedure. Also availability of reception of all VHF channels has not been impaired while a total of three UHF stations may be selected providing such a number exists within receiving range.
PHILCO - UHF Tuning Devices -
Philco is providing UHF reception through the use of built-in
type UHF units continuously tunable over the full UHF TV range. These units are either installed at the factory or maybe obtained for installation in the field. To facilitate the details of installing UHF units in the field, all kits are supplied with adapter sockets,plugs and connectors such that no soldering is required.

The Philco UHFtuning devices are produced in two basic types. The first is strictly a tuner that changes an incoming UHF signal to an IF frequency in the 40 megacycle range in a sing le conversion process. This type unit is installed in Philco receivers that have a UHF position on the VHF tuner. When the VHF tuner is switched to this UhF position, it becomes a two stage IF amplifier for accepting and amplifying the UHF tuner output prior to application of the signal to the receiver's IF stages.

The second type of UHF unit produced by Philco is a converter type unit. A photo of Philco built-in converter Model UT-21A is shown in Figure 4. In this case the incoming UHF signal is converted to a channel 2 or 3 signal which can be accepted by the VHF tuner in the receiver when switched to channel 2 or 3 position. Figure 5 illustrates in block diagram form the function of the two types of Philco UHF tuning units.

A number of variations are required in the UHF units to provide all the later model Philco receivers with built-in UHF facilities. Circuitwise all units are similar in design and in many cases the differences are mechanical in nature.

The table given in Figure 6 lists the tuner kits and the Fhilco TV receivers for which each is designed.

Schematics of the Philco UHF tuner and converter are shown in Figure 7 and 8 respectively. Philco converter unit UT-21 is identical as that shown in Figure 8 except for the switch variation and a different type adapter socket illustrated in Figure 9.

An explanation of the circuitry shown in Figure 8 should serve to illustrate the function of all the Philco UHF tuning units. The antenna RF tank, mixer RF tank and oscillator tank are tuned by a three gang capacitor. An even distribution of channel spacing indications on the UHF dial is accomplished by employing cut-plate construction in the tuning capacitors.

An incoming UHF signal is fed to the antenna tank coil and from there is coupled by mutual coupling

* * Please turn to page 95 * *

Get the jump on VHF, UHF service needs

Keep plenty of these new Centralab capacitors on hand

TAKE a good look at these NEW Centralab Ceramic Capacitors. Chances are you'll be meeting a lot of them - soon. Why? Because these miniature Feed-Thru, Standoff and Button-Style (Zippers) Hi-Kaps are as up to date as the newest VHF and UHF circuits. And, in many cases, they're actual replacements for a vast majority of popular make sets. You'll find them simpler to install, mechanically stronger and longer lived than ordinary oldstyle capacitors. They have all the features you need to maintain customer satisfaction. What's more, they offer all the advantages of famous Centralab ceramic construction.

Helping you get the jump on this replacement business is another example of the close coordination between Centralab and you Service Engineers. One more reason why it pays to specify Centralab products every time. Remember, it's good business to be first with the newest! For full details, see your Centralab jobber, or use the coupon.

Why it pays to install Centralab Ceramic Capacitors

- Highest dependability - lasting permanence

J Smaller - $1 / 2$ the size of ordinaty capacitors

- Impervious to moisture - absorption 007 or less

」 Maintain capacity - even at $80^{\circ} \mathrm{C}$ plus
\checkmark Low power factor
/ High accuracy - exceptionally close tolerances
\checkmark Exact temperature compensating qualities where required.

Centralab

A DIVISION OF GLOBE-UNION INC.
942-E East Keefe Ave. - Milwaukee 1, Wisconsin
In Canada, 635 Queen Street East, Toronto, Ontario

In the Interest of... Quicker Servicing

by GLEN E. SLUTZ

Rejuvenating Front Panel Knobs

A problem sometimes arises in connection with certain types of front panel knobs used on television receivers. These knobs become worn in such a way that the set owner begins to experience difficulty with slippage between knob and shaft. In order to engage the shaft he is obliged to press the knob tightly against the panel while rotating it. As time goes by this condition becomes worse until finally the knob completelyfails to perform its function.

The sketch in Figure 1 shows a style of control knob that has proved to be a frequent offender. There are two opposing keys in the center hole of the knob. These keys fit into keyways cut into the shaft, and normally a firm interlocking of knob and shaft is accomplished. However, the difficulty appears when the keys in the plastic knob start to wear away and fail to mesh securely with the shaft keyways. This wear is mostliable to occur in cases where the portion of shaft length extending beyond the front panel of the cabinet is too short; hence the knob engages only the very end of its shaft and the stress on the keys is concentrated.

Such a condition has been known to happen after picture tube replacement. If the new tube is mounted too far forward on the chassis, the control shafts will not

Figure 1. Worn Knob with Dotted Line Marking the Flange Cut.

Figure 2. Response Curve with "Ghost" Produced by Horizontal Oscillator Radiation from TV Set.
extend out their original distance in front of the cabinet. This is something to guard against when making picture tube changes.

The wear on the keys is usually confined to their ends on the back side of the knob. The worn portion of one of the keys is visible in the drawing of Figure 1.

Of course, a new knob can be ordered, and in severe cases it should be. However, if a remedy is not found for the inadequate locking between knob and shaft, the new knob may, after short use, follow the way of the old. One sure cure is to move the chassis forward until suf ficient shaft length protrudes from the cabinet. But this is not always convenient or possible. In such cases a very practical solution may be had by operating on the knob itself.

Many knobs have flanges on their rims which can be removed by careful use of a sharp knife or coarse sandpaper. For example, a cut along the dotted line in Figure 1 will remove the flange and enable the knob to be moved, sometimes as much as $1 / 8$ inch farther back on its shaft. In this way the keys and their respective keyways will mesh securely and wear will less likely take place during use. Only the flange should be removed in this operation; no
cutting should be done around the shaft hole in the knob.

An Alignment Difficulty Caused By Horizontal Oscillator Radiation

During an alignment procedure, the service technician might suddenly find himself faced with an oscilloscope picture like the one in Figure 2. The response curve is present all right, but there seems to be a ghost-like patterntrailing after it. Manipulating the phasing adjustment on the sweep generator fails to improve the picture.

By observing carefully the nature of the undesired image on the scope screen, one may note that in tracing the "ghost" the beam seems to be traveling very rapidly in a horizontal direction; the vertical motion of the beam is apparently as it should be. This clue is enough to indicate the horizontal section of the scope is affected.

Upon further investigation, the connection between the sweep generator and the horizontal input of the scope comes under surveillance. This is the connection which provides the scope with horizontal sweep volt age. When the lead is grasped in the hand, a sharp change is noted in the character of the scope pattern.

Figure 3. Random Operation of a Horizontal Oscillator Produces Characteristic "Christmas Tree" Effect.

When you need a fuse THINK of BUSS

Fuse Headquarters for the Electronic Industries

DUAL-ELEMENT (SLOW BLOWING) FUSES RENEWABLE FUSES, ONE TIME FUSES, SPECIAL FUSES

TELEVISION • RADIO • COMMUNICATIONS CONTROLS • AVIONICS • INSTRUMENTS

A complete line of fuses is available. Made in Dual-Element (Slow blowing), Renewable and OneTime types. Sizes from $1 / 500$ ampere up.

And a companion line of BUSS Fuse Clips, Fuse Blocks and Fuse Holders.

Behind each fuse or fuse mounting are 37 years of know-how in building products of unquestioned high quality, the world's largest fuse research laboratory and the world's largest fuse production capacity.

Each BUSS Fuse Electronically Tested.
To assure proper operation in the field, each and every BUSS fuse is tested in a highly sensitive electronic device that rejects any fuse that is not correctly calibrated properly constructed and right in physical dimensions.

BUSS Fuses are made to Protect not to Blow.

The BUSS Trademark can help in SALES or SERVICE

The name BUSS is recognized as standing for fuses of unquestioned high quality. Millions and millions of BUSS fuses in daily use in Homes, Buildings, Automobiles, T-V, and other Electronic devices and in industry have built for BUSS a reputation for quality and an acceptance enjoyed by no other fuse manufacturer.
That is why BUSS Fuses protect your profits and goodwill as surely as they protect the user.

BUSSMANN MFG. CO., St. Louis, Mo. Division of McGraw Electric Company MANUFACTURERS OF A COMPLETE LINE OF FUSES FOR HOME, FARM, COMMERCIAL AND INDUSTRIAL USE.

Figure 4. Typical "Synchroguide" Circuit.

It then becomes clear that undesireable interference is being picked up by the lead in question. This interfering signal must be a good deal higher in frequency than 60 cycles because of the rapid horizontal movement of the beam.

What would be a likely source for a signal strong enough to produce this kind of interference? The horizontal output circuit of the television receiver under test is the natural suspect. Its guilt may be substantiated by moving the lead toward or away from the horizontal output circuit of the receiver and noting the pronounced change in the "ghost" pattern. Once the origin of the trouble has been traced in this manner, the remedy is quick tocome by.

The unshielded lead connecting the sweep generator with the scope may be replaced by a shielded lead. This will reduce the possibility of interference pick up in this lead to a minimum. Furthermore, in many sets the horizontal oscillator tube may be safely removed when making IF and RF alignments provided there is a current limiting resistor in the cathode circuit of the horizontal output tube.

Remedy For "Christmas Tree" Effect

Multiple triggering of the horizontal oscillator in a television set produces a characteristic pattern on the screen similar to Figure 3. This phenomenon is known as
"Christmas Tree" effect because, on occasion, a bright outline of lines in the rough shape of a Christmas tree appears. With some types of receivers the oscillator performs these gyrations for a few moments during warm-up and then snaps into synchronization. Usually if the condition lasts for only a very brief period, there are no customer complaints. However, if the effect begins to persist for a longer time, some remedial measures may be called for.

The circuit of Figure 4 is a type of Synchroguide* circuit, a not

* Registered trademark of Fadio Corporation of America.
* * Please turn to page 113 * *

Figure 5. Using a Pencil as a Control Shaft Extension.

Figure 6. Sylvania Tube Cartons (A) Badly Worn and (B) Neat and New.

BUY PERFORMANCE - NOT SPECIFICATIONS! PRECISION PERFORMANCE, ACCURACY, WORKMANSHIP and VALUE have been setting a world-wide standard of comparison for over 20 years.
Every PRECISION instrument is guaranteed for one full year against mechanical or electrical defects.

OTHER MATCHED COMBINATIONS The instruments shown above illustrate one of many possible MATCHED COMBINATIONS of PRECISION Test Equipment for the modern TV-FM-AM service bench. Each combination provides a selected, basic and efficient Laboratory at moderate cost.

SERIES TV-4-Super-High Voltage Safety Test Probe. Extends ronge of Series EV-10A (above) to 60 KV direct Multiplier cartridges oliso ovailoble to match mast YTYMt:
 Series TV-4: - Complete, for use with EV-10A. Net Price: \$14.75
$T V \cdot A M \cdot F M \cdot T V \cdot A M \cdot F M \cdot T V$
PRECISION Performance-Engineared Instruments are on display at leading iradio partsand nquipment distributors,

pricision

PRECSIOX APPARATUS CO., ITC.
92-27 Horace Harding Boulevard, Elmhurst 2 . New York Export Division: 458 Broadway, New York 13, U.S.A. - Cables-Morhanex In Canada: Allas Radio Corp., Ltd. 560 King Street, W., Toronto 28

DESIGN FEATURES

by MERLE E. CHANEY

ADMIRAL PRINTED CIRCUIT CHASSIS

Admiral Models 5S21AN, $5 \mathrm{~S} 22 \mathrm{AN}, 5 \mathrm{~S} 23 \mathrm{AN}$, using the 5C3 radio chassis, employ the printed circuit wiring technique in place of hookup wire. The suffix letter " A " in the model number designates the use of printed circuitry. Models without the suffix "A" use the 5S2 chassis.

A photo of an Admiral radio receiver employing the printed circuit chassis is shown in Figure 1. Although early and late production versions of this receiver employ slight variations in the routing of the printed circuit leads, they are electrically the same.

Advantages claimed for the printed circuit wiring technique are: greater uniformity of chassis wiring, fewer wiring troubles, and simplicity of trouble-shooting and circuit-tracing. To aid servicing, all components are mounted above the chassis plate (Figure 2) and are of standard type.

The circuit employed in the 5 C 3 chassis is the familiar 5 -tube $A C-D C$ superheterodyne type. From this fact, standard troubleshooting procedures may be employed when servicing the unit. There are, however, certain precautions that should be taken because of the unique method of chassis wiring. It is important that the chassis should not be set down on a metallic bench surface since the circuits could easily short

Figure 1. Admiral Radio Receiver Employing Printed Circuit Chassis.
out. Also, since one side of the line connects to the B - or chassis ground, the use of an isolating type line transformer is recommended. If it should become necessary to replace a component, use an iron whose wattage is no greater than 60 watts. Heat the connection of the component lug or lead where it connects to the printed circuit and shake off excess solder. In this manner, the component may be easily removed. Another factor influencing quick servicing is that a defective tube socket pin clip may be unsoldered and removed individually without the necessity of replacing the entire tube socket. Socket pin clips are available for replacement purposes and obtained under part number 87A35-2.

Because of the open nature of all lead and component connections, trouble-shooting is facilitated. During voltage or resistance measurements, it is advisable to use needle-point test prods to avoid
shorting out sections of the printed circuit.

A damaged section of a printed circuit lead presents no problem since a short length of hookup wire may be readily soldered across the gap.

Additional space saving and simplification of circuitry is maintained by the use of a printed circuit unit in the AF circuit. A total of eight capacitor and resistor com:ponents are enclosed in this unit. Should any of these components in this unit becomie defective, it is recommended that the entire unit be replaced.

The printed circuit wiring leads, shown in Figure 3, are contained on a small plastic base measuring about $1 / 16$-inch thick, $2-1 / 2$-inches wide, and $5-3 / 4$-inches long. The leads are formed on the chassis base by a photo-engraving process. Since the printed circuit is on one side of the base only, all soldering is done from this side. This feature is conducive to a single dip solder process.

After the soldering is comipleted, the printed circuit chassis base is coated with a quick-drying substance for protection against shorts or leakage due to moisture and the depositing of dust or foreign material.

GENERAL ELECTRIC RECEIVER EMPLOYING DIP SOLDER TECHNIQUE

Features associated with the General Electric Model 542 radio

Figure 2. Component Arrangement in Admiral Radio.

Figure 3. Printed Circuit Leads Formed on Plastic Chassis Plate.

TIGHT SEAL
 ... BONDED BLUE-POINT
 TOUGH SHELL

... MOLDED PLASTIC TUBULAR

 burn or melt under soldering iron or flame.
BONDED SEAL
Positive, heat resistant, non-
inflammable bond seals
leads and shell, locks out humidity.

FIRMLY SECURED LEAD Can't be pulled out, even under soldering iron heat.

ASTRON Bilip Pilil

undividually TESTED AND GUARANTEED

To insure still greater dependability in the field, each and every Astron Blue-Point Capacitor is subjected to an exhaustive series of physical and electrical tests prior tofinal shipment. As aresult, Astron proudly guarantees the excellence of every Blue-Point Capacitor you buy

Major Achievement

Molded Capacitor

Construction and

Performance

Engineered and Produced Exclusively by ASTRON

Now - Heat and Moisture PROTECTION To a Degree Never Before Possible!

Oufstanding Performance in Hot and Humid Climates!

Here at last is a capacitor that affords absolute protection under every condition-a capacitor you can rely on completely - ASTRON BLUE-POINT, the bonded capacitor.

This capacitor is produced by an exclusive new design and manufacturing process (patent pending) developed by Astron engineers.

The all-important blue point which distinguishes this new capacitor actually bonds itself to the tough, heat-resistant outer shell and leads-forming the tightest seal against moisture ever produced!

The Blue-Point dry-assembly process-as used in hermetically sealed metal encased capacitors-prevents contamination, provides still further protection against moisture, and assures uniform quality and dependability for every Blue-Point.

The Blue-Point is mineral oil impregnated* for continuous operation at $85^{\circ} \mathrm{C}$. The blue point seal
itself makes ingenious use of a special thermo-setting, heat-resistant, non-inflammable bonding agent as a positive protection against moisture.

With the Astron Blue-Point, you may solder leads as close to the capacitor as you like. Leads will not pull out, nor will the heat of the soldering iron damage the lead or the connection.

Further, every Blue-Point is clearly marked with rated voltage and capacitance, and is imprinted with outside foil identification.

The Astron Blue-Point Capacitor gives you greater protection against heat and moisture at every stage-assuring long life and dependable performance from every unit-to a degree never before possible with molded plastic capacitors.

From now on, look for the Blue-Point-ask for exclusive Astron Blue-Point Capacitors by name ... more than ever before, depend on, insist on ... ASTRON!
*For bulletin AB-20A, with complete engineering data and listings, write: Astron Corporation, 255 Grant Avenue, East Newark, N.J.
Astron manufactures a complete line of dry electrolytic capacitors, metallized paper capacitors, plastic molded capacitors, standard and subminiature paper capacitors and RF interference filters for every radio, television and electronic use.

DEPEND ON-INSIST ON

Figure 4. General Electric Radio Receiver Model 542.
receiver are chiefly mechanical in nature. They are of interest primarily because of the particular methods utilized to manufacture the receiver through mass-production techniques.

The Model 542 (Figure 4) is an AC-DC type receiver employing 5 miniature tubes in the familiar superheterodyne circuit. Externally, the appearance of the cabinet is in keeping with current design. However, when the chassis is removed, it is observed that a plastic shield surrounds all the tubes. See Figure 5. The purpose of the shield is to prevent accidental contact with pin-type terminal connections which extend through each tube socket to the top of the chassis. Eight pintype terminals are on each socket with seven pins connecting to the tube pin clips. The remaining terminal is a spare and utilized as a connector terminal for component leads. Figure 6 shows the construction details of a socket. The side view shows the manner in which the component leads are inserted in the socket.

Each pin terminal on the tube socket is hollow. Thus, during assembly, wire leads and component leads are inserted in the proper terminals. It is unnecessary to bend and crimp each lead as is customary with many assembly
procedures. Also, individual soldering of each connection is omitted. At this stage, the IF transformers, variable capacitor, and speaker are temporarily left off the chassis. The chassis is then inverted and dipped in molten solder effecting simultaneous soldering of all pin terminals. The remaining components may then be connected in the circuits by individual soldering. A bottom view of the chassis with the completed wiring is shown in Figure 7.

Servicing the Model 542 receiver may be performed without departing from standard practice. However, it is suggested, when components are replaced, that the plastic shield be left in place in most instances. This eliminates the possibility of causing damage to the tube socket and terminals. Components may be added by first clipping the connecting leads to the pin terminals and forming a small loop at the connecting leads. Crimping and soldering these connections yields a satisfactory repair job with a minimum expenditure of time.

The Model 542 is an AC-DC receiver and one side of the power line is connected to $B-$. Possible damage to the receiver and test equipment may be avoided through use of an isolating transformer during test procedures.

Although this technique of chassis assembly is not necessarily intended to provide additional performance characteristics, it is evident that production-wise, certain gains have been sought to achieve accelerated assemibly processes and greater uniformity of the finished product.

Figure 6. Construction Details of Socket Employing Hollow Tubular Terminals.

GENERAL ELECTRIC MODEL 21T1

A new technique emploged in the fabrication and assembly of General Electric receivers is illustrated in the G. E. Model 21 T1 television receiver.

This technique, particularly associated with this receiver, has to do with wiring and component placement procedures and methods. Standard techniques require that the component leads and wires be individually placed in each lug or terminal opening, manually bent and crimped to insure mechanical connection, and then individually soldered. A process utilized by G. E. greatly minimizes the time required to complete each individual connection. Through the use of special types of hollow terminal lugs, which are designed to extend through to the top of the chassis, wires and leads from components are inserted in the respective terminal lugs. Figure 8 illustrates the placement of the terminal strips and components. After this process is completed, the chassis is inverted and dippedinto molten solder which

Figure 5. GE Chassis with Plastic Shield Surrounding Socket Terminals.

Figure 7. Bottom View of Model 542 Showing Completed Wiring.

Ask your distributor for Stancor bulletins 461 and 465 , listing replacement applications of these transformers - or write directly to Stancor for your free copy.

A-8132-Replaces Muntz \#TO-0031; used in 1951 and 1952 production. Covers approximately 300000 Muntz sets.

A-8136-Replaces Philharmonic \#80.263, \#80. 265-2 and \#80-265. Used in all sets built since early 1951 including AMC, Pathe, Silvertone, and other 'private label' sets.

Stancor Transformers are listed in Howard W Sams' Photofact Folders, John W. Rider's Tek-Files, and the Howard Company's Counterfacts

STANDARD TRANSFORMER CORPORATION

3594 ELSTON AVENUE - CHICAGO 18, ILLINOIS
EXPORT SALES -
Roburn Agencies, Inc., 39 Warren St., New York 7, N. Y.

Figure 8. General Electric Receiver Model 21 II Using Tubular Terminal Strips.
makes the required soldering connections at all terminal points simultaneously. These terminal lugs can be seen extending above the chassis in Figure 9.

A feature of this method of chassis fabrication is that a number of test measurements may be per formed from the top o_{-}^{c} the chassis at the various terminal lugs. In Photofact Folder 2 of Set 194, cover ing the G. E. Model 21T1, the terminal lugs at the top of the chassis are keyed to similarly indicated points on the schematic. Although not primarily designed to effect this method of chassis testing, measurements from the top of the chassis may prove advantageous in many instances.

The previously listed features are essentially mechanical in nature. However, a number of other features are observed in the electrical circuitry of the unit. Among these are: two stages of amplification in the RF tuner, noise cancellation, AGC level control (Picture Stabilizer) with an attached " Local-Distance" switch, horizontal and vertical retrace blanking circuits, and intercarrier sound.

RF TUNER

The RF tuner is a switch type, employing three tubes. A 6AB4 is used as a grounded grid 1st RF amplifier, the 6AK5 is a grid driven 2nd RF amplifier, and a dual-triode 12AT7 is used as an oscillator and mixer. An adjustable IF trap is built
into the tuner for reduction or elimination of interference. The tuner is designed to provide an IF signal in the 40 mc range.

NOISE CANCELLATION CIRCUIT

A noise cancellation circuit, shown in Figure 10, is employed to prevent premature triggering of the sweep circuit by high level noise pulses. The purpose of the inverter stage is to apply a pulse of opposite polarity to that of the sync pulses at the input of the sync clipper tube.

By correct arrangement of biasing, this process occurs only when pulses are received whose amplitude exceeds that of the sync.pulses.

From examining the schematic in Figure 10, it can be seen that the video detector is connected to provide negative-going sync pulses in the detector output. It is further noted that negative-going pulses are applied to the grid of the sync amplifier tube and the cathode of the noise inverter tube. Normally the sync pulses are amplified by V3A and, due to signal inversion, posi-tive-going signals are present in the plate circuits. From here the signal is fed to the clipper stage. Clean sync pulses are obtained in the output and applied to the vertical and horizontal sweep oscillator sections.

During the reception of a noise free signal, the noise inverter tube is inoperative. This is achieved by applying a bias to the cathode of V3B by means of the voltage divider R8 and R7. Additional bias, obtained from the output of the video detector is applied to the grid of the stage. When a noise pulse occurs, the noise inverter tube is driven into a conductive state, negative-going pulses are produced in the plate circuit and coupled to the grid of the clipper tube. Simultaneously, positive-going pulses are fed from the sync amplifier plate circuit to the grid of the clipper tube. Thus, the two opposite polarity signals cancel each other

* * Please turn to page 101 * *

Figure 9. Terminal Strip Pin Extending Through Top of Chassis.

G.E. AGAIN TELLS AMERCA THE TRUE STOR OF TV SERVICING

- Four powerful, informative ads in Look Magazine
- Reaching 13,187,140 readers
- Reporting the facts on typical TV Service Dealers
- Convince present and future set owners of the know-how and integrity of TV Service Dealers
- These ads, and those run in Life and Collier's last fall, and the booklet for set owners outlining the requirements of TV service, are all part of the public relations prograin G.E. is sponsoring in the interests of the TV Service industry.

What are you doing to follow through on this effort in this locality?

HERE'S WHAT YOU CAN DO:

You can build customer goodwill through full explanation of service charges.(2) You can endorse sound business practices in your own service associations.
(3) You can actively "sell" service business to increase your income and prestige in your community.
(4) You can support those distributors and programs which advance the interests of the TV Service Dealer.

TUBE DEPARTMENT, SCHENECTADT.

A STOCK GUIDE FOR TV TUBES

One of the most difficult merchandising problems that confronts the service technician is that of maintaining an adequate stock of tubes. This is brought about by several things. With the introduction of the television medium, a great number of tubes are required to operate this type of instrument. Since the various manufacturers employ different type tubes to perform a given function, an even greater number of tube types must be stocked in order to properly service several brands of receivers. Certain tubes have a shorter life due to the amount of work that they must do in any given circuit. This fact places an evengreater demand upon the number of tubes which must be stocked in any given type.

Tubes are the most frequently replaced component in a television receiver. Thus, adequate tube stocks provide the service technician with a very valuable tool to perform fast, efficient, and profitable service work. With this thought in mind, we have made a survey of all television receivers produced since World War II. The data obtained from this survey is contained in the accompanying chart.

This chart takes into account the total number of receivers produced rather than classification by models only. F'or example, a manufacturer who produces 50,000 units of a given model will obviously use more tubes than a manufacturer who only produces 5,000 units of a given model. Thus, a " production factor" has been projected into the final tabulation so that a more truer representation of the number of any given tube type in service is provided in the chart.

Another factor which is included is that of a "depreciation factor." The complete retirement of a set has been estimated, for the purpose of this chart, at slightly over six years. This means that a tube type that might have been used in a receiver built in 1946 would not appear in this chart since most of these receivers are now completely out of service, making it unnecessary to continue stocking of tubes for servicing that particular receiver.

The quantities shown in this chart are arrived at on a percentage basis and the figure shown is based on 1,000 units. For example, the $6 \mathrm{AL5}$ is shown with a rating of 80 ,
which means that 8% of all tubes in service in television receivers are the 6AL5 type. Likewise, 15% of all tubes in television receivers are the 6AU6 type. By presenting these fig ures it is hoped that they will be helpful in determining not only the tubes which should be stocked but also the quantity of each type that need be stocked.

As a word of explanation, the figure 140 for the type 6AU6 does not mean that we are recommending that a shop stock 140 6AU6 tubes. This high figure, however, can be used as a guide to point out that a sufficient quantity of these tubes should be stocked to take care of replacement needs between the regular ordering periods.

As we know, the life of some types of tubes is much longer than other types. For instance, the replacement requirements of a type 6AL5 tube is much lower than a 6SN7GT or a 6BG6G. Referring to the chart, it can be seen that the frequency of use of the 6AL5 tube gives it a rating of 80 while the 6BG6G has a rating of only 15. In actual practice it would be advisable to stock no more 6AL5 tubes than the type 6BG6G, since the replacement rate of the 6AL5 is so low. The important thing to remember in the use of this chart is that it only represents the number of tubes of any given types that are now in service as compared to the total number of tubes in service. Also keep in mind that the units shown in the chart are based on a total of 1,000 units.

There are some tubes that have been employed in television receivers which do not appear on this chart. In compiling the data, any tube having a rating of less than one-tenth of one percent was dropped from the chart. Most of these tubes were used several years ago and, due to the retirement of these sets, the rating has fallen to a very low value. There are a few tube types, however, which have been incorporated very recently but because of their newness, they still do not have sufficient rating to be included in the chart. In order that you can be advised of these new types, they will be included in subsequent charts with an indication as to what type receiver started using that particular tube. For example, the 6CL6 tube appears in the chart without a rating. The reason being that on a percentage basis this tube is far below the one-tenth of one
percent minimum rating. Perhaps in the next chart there may be a sufficient number of these tubes employed that a rating figure will appear. You will note, however, that the notation following the 6CL6 listing indicates that this tube is employed in a recent RCA chassis. Any service shop or distributor specializing in this brand of receiver should stock a minimum number of these tubes so that they will be available in case of tube failure.

The type 6AF4 presents a similar situation. This tube is being employed in a great many UHF tuners and converters. On a percentage basis, however, it has not been used sufficiently to warrant a rating figure. It is recommended, however, that service shops or distributors who are called upon to handle UHF equipment should stock a few of this type tube. It is very probable that the next chart will provide a rating. figure for this tube type.

You will note that there are two columns included in the chart. The left column headed " 46-53 Models" is based on all post war receivers. The right hand column headed ' 52 53 Models' ${ }^{\prime}$ is based on these model receivers only. The double rating is intended to serve two purposes. One, a service shop located in an area where television transmission has been carried on before the freeze, will be called upon to service the older models as well as the new models. The left column is helpful in determining what type tubes must be stocked to service all of these receivers. The right hand column can be used by service shops in those areas which have had television service inaugurated after the freeze. These areas, for the most part, will have the greatest percentage of the later 52-53 models. Thus, the right hand column should be helpful in serving as a guide for tube stocking purposes.

The second advantage of the double rating lies in the fact that a trend in tube usage can be readily noted. To cite an example; the most popular tube, as indicated by a rating of 140 in the left column, is the 6AU6. In the right hand column, however, the most popular tube type is the 6CB6 which has a rating of 137 . The rating on the 6AU6 has fallen to 128. This indicates that there is a trend for less use of the 6AU6 while the

[^2]

As was reported in PF Index and Technical Digest \#37 for MarchApril, 1953 satisfactory UHF reception in the South Bend, Indiana area can be obtained with very little difficulty. This is due to the comparatively level terrain that surrounds South Bend. But, what happens to the UHF signal when it must pass over hilly or mountainous terrain? How great are the installation problems then?

In order to obtain answers to the above queries, we ventured to Reading, Pa. for the purpose of conducting personal interviews with the installers and dealers of that area. By conducting these interviews it was hoped that an idea of problems common to the area could be obtained.

It was substantiated from our interviews that the installers are frequently having a difficult time obtaining desirable reception for their customers. According to most of the installers, the UHF reception in Reading is very spotty. Good reception may be obtained at one location while only a block away the signal may be so weak that nothing at all can be received. Furthermore, the final positioning of the antenna is very critical, which results in considerable probing for the best signal. Depending on the condition of the signal, the final placement of the antenna may be as low as five feet off the ground. Because of this necessity of probing in areas of rough terrain, installations should not be made prior to the time that the UHF station goes on the air.

In presenting the results of our interviews, it must be kept in mind that solutions to the problems of the installers in Reading are not attempted in this writing for the simple reason that we have made no field tests in the area to date.

Station WHUM-TV of Reading operates on Channel 61 with a frequency of 752-758 megacycles. The ERP (Effective Radiated Power) of
the transmitter is listed as 260 kilowatts. The antenna, which is mounted on a 1000 foot tower, is located approximately 28 airline miles northwest of the city of Reading. It was placed at this location so that the surrounding towns and cities, such as Harrisburg, Wilkes-Barre, Allentown, and Lancaster would be included in the service area.

The terrain of Reading is very hilly, the highest elevation being Mount Penn which is approximately 1100 feet. Mount Penn is located along the eastern boundary of Reading. Hills of smaller elevations surround the other sides of the city. The city itself, especially the downtown area, lies in a valley which extends out toward the direction of the transmitter.

Upon our arrival in Reading, we contacted Mr. Carl Barbey of the George Barbey Company. He was very helpful in supplying us with a list of dealers and installers in the Reading area and the surrounding towns. After a sho'rt discussion with Mr. Barbey we began making contacts with the installers.

Below is a list of questions that were asked during the course of our interview with the installers.

Are you having any trouble receiving UHF?

How many UHF installations have you made?

Are you having any ghost elimination problems?

Do you probe for the best signal? If so, how long? Hंow high?

What type or types of antennas do you use?

What type of lead-in do you use?

Any difficulties with lead-in?
Have you used lightning arrestors in UHF installations? If so, with what results?

Have you installed matching units? If so, with what success?

Which are you selling the more of, external converters or conversion kits?

Have you installed strips? If so, how does the operation of the strips compare with the operation of converter units?

Have you made any service repairs on converters?

Answers to the above inquiries were always nearly the same in the Reading or nearby Reading area. When asked, 'Are you having any trouble in receiving UHF?'', the answer in almost every case was, "very much so". The installers seemed to be very disheartened with the difficulty they were experiencing in making UHF installations for Channel 61. They never know whether desirable reception will be received or how many hours they will have to spend in locating the best signal. One of the installers that we interviewed said that his crew usually spends an entire day in making an installation. Sometimes after spending that much time, the reception isńt acceptable at all. It can be seen that if this much time is spent, an installation job would not be profitable. This particular installer has approximately 20 UHF installations in operation.

Another installer reported that he sells a survey first for a certain charge and spends from two to three hours in locating the best possible signal. If an acceptable signal can not be found within three hours, the installation is disregarded. The maximum height which is probed is 20 feet above the roof top. The only thing that the customer pays for in this instance is the survey charges that are agreed upon before the installation is attempted. This particular installer reported that he has approximately 30 UHF installations for Channel 61 in use.

In answer to the question " Are you having any ghost elimination problems?'", it can be saidthat surprisingly little trouble is being experienced in the elimination of reflected signals. Some of the install-

[^3]

Most high quality sound systems now employ more than one speaker to reproduce the excellent present day recordings and program material. Some of these are coaxial (or even triaxial) and may appear to be single speakers, but are actually dual (or triple) systems, composed of t wo (or three) separate units within the large unit. Of course special extended range single cone speakers are available and are a definite improvement, but their performance cannot be expected to equal that possible with a good multiple system.

When a system of two or more speakers is used, some form of divider network must be included, if correct tonal balance with low distortion is to be attained. An understanding of why this is true is valuable when designing or assembling a speaker system.

The range of frequencies in the audio spectrum is actually quite wide, which poses problems in all phases of audio work, especially when handling the extreme high and low frequencies. This can be real-
ized when the wavelengths are considered. At 40 cps , the wavelength is approximately 28 feet; at 500 cps , 2.2 feet; at $10,000 \mathrm{cps}, 1.1$ inches; and at $20,000 \mathrm{cps}, 0.56$ inches.

Sinca most high fidelity systems are used for the reproduction of music, which covers the full frequency range, these problems must be solved, if realisn is to be had from the speaker. The speaker is one part of the audio system which encounters difficulties in reproducing this wide range. One definite reason for this is that a speaker is a mechanical device.

Low frequencies can be best reproduced by powerful, large speakers, with compliant cone suspensions and low resonant frequencies, because of the amount of air to be moved at these long wavelengths. Also, large enclosures are needed for producing low bass tones.

A small speaker can reproduce the high frequencies very efficiently since comparatively low power is handled and a fast, short movement is required at the short wavelengths.

The large speaker cannot reproduce the higher frequencies satisfactorily with its large cone designed for low frequencies. Neither can the high frequency speaker, or tweeter, handle the low frequencies. So compromises have to be made in the design and construction of a single cone speaker to approach a wide range response. This usually results in uneven output over a still limited range and tendencies toward something not wanted, intermodulation distortion.

Intermodulation, the generation of unwanted beats and sounds, due to the modulation of t he high frequencies by the low frequencies, is a product of the non-linear action of the large cone of a single cone speaker vibrating at both high and low frequencies.

All of the above touches just lightly upon some of the difficulties encountered when trying to obtain high quality wide range response from a single cone speaker. But it does give some idea of why we have coaxial speakers, woofers, tweeters, dual systems, three-way systems and other speaker arrangements

Figure 1. Jensen H-222 Coaxial Speaker with Capacitor Attached to Frame.

Figure 2. Stromberg-Carlson RF-71, Coaxial Speaker Showing Capacitor in Series with Tweeter.

that make divider networks necessary.

Many speaker systems use one or more woofers for the low tones and one or more tweeters for the highs. Three-way systems have a third speaker (or speakers) for the middle range of frequencies. Each unit does the work which it can do best, provided the correct range of frequencies is fed to it. That is where the divider network fits into the picture.

In a two-way system, the network directs the low frequencies to the woofer and the highs to the tweeter, while also performing the important function of keeping the high frequencies out of the woofer and the lows out of the tweeter. Otherwise the tweeter could be easily overloaded by the lows, creating distortion, which would also occur if the highs were fed to the woofer. The frequency at which this division is made is known as the crossover frequency. Two crossover frequencies are used in a three-way system.

Divider networks can be elaborate or simple. Many of the complex types are very satisfactory; others of the simpler variety, while not ideal, do serve the purpose.

Many woofers are so designed that they respond only to the low frequencies. Advantage is taken of this by inserting a capacitor, of correct value, in series with the tweeter, blocking the low frequencies to it, thereby achieving frequency division by a combination of electrical and mechanical means. The Jensen H-222 in Figure 1, and the Stromberg-Carlson RF-71, in Figure 2, are two high-quality 12 inch coaxial speakers using this method. The schematic in Figure 3 illustrates the simple circuit of the RF-71.

Figure 3. Schematic of StrombergCarlson RF-71 Speaker.

Several speakers accomplish strictly mechanical division with specially designed cones and voice coils.

Characteristics of the speakers and enclosures involved must be considered when selecting the crossover frequency of a divider network to be used with a speaker system. The usual coaxial speaker has a crossover of somewhere around 2000 cps , while a large elaborate system may have its lowest crossover as low as 45 cps .

The usual large enclosure, necessary for the reproduction of the low bass tones, cannot handle the high frequencies satisfactorily for several reasons. In most types, the treble tones can become lost and absorbed in the long, sometimes folded, signal path. Also standing waves can be created inside the enclosure by the short wavelength tones, causing very uneven, muddy response. Some enclosures, designed for the extreme low tones, will resonate at frequencies above 45 cps , resulting in "booming" at these frequencies. The above effects can be eliminated by a crossover frequency low enough to keep the unwanted frequencies out of the woofer. This may even call for a third divider network, with a crossover as low as 45 cps , for the operation of a fourth speaker to reproduce the lowest bass tones.

If the crossover frequency is kept low (around 45 to 800 cps in many three-way systems) the tweeter has to operate nearly out of its lower range. This is particularly true with the tweeters designed to reproduce up into the 15000 cps region. To overcome this a mid-range speaker is included in the system to handle the frequencies from the low crossover (600 to 800 cps) to another at possibly 4000 cps . Above the crossover at 4000 cps , the high frequencies are fed to the highfrequency tweeter.

Most manufacturers furnish divider networks designed for use with individual speakers and complete systems. The Jensen A-402 Crossover Network, shown in Figure 4 with the Jensen RP-302 High Frequency Unit (Supertweeter) is a 4000 cps divider network designed and supplied by Jensen for use with this tweeter in their complete speaker systems or in any application of this unit. The selection of such matched components is certainly to be recommended when assembling a custom installation.

Divider networks can be constructed if certain precautions are taken. The coils, with inductance kept within reasonable tolerances, should be wound with large gauge wire to keep resistance low, since networks are connected into the circuit between the output transformer and the speakers.

Paper and oil capacitors are recommended although electrolytics have been reported as giving satisfactory service. The signal in the network is AC, so if electrolytic capacitors are used, they should be the AC type or connected back-toback for nonpolarization. Electrolytic capacitors are susceptible to heat so this should be taken into consideration when installing the

* * Please turn to page 112 * *

Figure 4. Jensen RP-302 High Frequency Unit and A-402 Network.

more sales power - more selling strength with new cellophane-packaged FERCULES ANGLE-DRIVE 4-pronged Universal Vibrafor

the only vibrafor with selling features:

- New revolutionary design means points won't stick-ever! Absolutely eliminates early failures for complete dependability!
- Hushed performance is built in! Insured for all mounting positions through improved sponge rubber suspension!
- Vibrators stay bright and sparkling new! Individually packaged in moisture-proof cellophane for added sales appeal!

Best of all-it's competitively priced, costs no more than old-style vibrators, bulk-packed!

The new Hercules is the competitively priced companion to a full line of JAMES AUTO AND COMMUNICATIONS replacement vibrators. See your Rep today for your complete vibrator requirements.

Dollar and Sense Servicing

BATHTUB. In Chicago, there are now more television receivers in homes than bathtubs or telephones, according to Admiral's sales vicepresident, Wallace Johnson. The figures he offers are $1,350,000$ TV sets, $1,320,000$ phones and only $1,260,000$ bathtubs. Other cities having more TV sets than telephones are Baltimore, Boston, Cleveland, Los Angeles, and Philadelphia. Indications are that people will drop the telephone before the TV set in a depression, which is good for servicing's future.

KISS AND PUNCH. Over in Leicester, England, Harold Cross left the engine of his truck running while giving his girl friend a long goodnight kiss. Ignition interference from the idling engine ruined a neighbor 's television picture, causing him to go out to the truck to protest. Mistaking the neighbor for a peeping Tom, Cross dashed out to the truck and broke his jaw. For this, a Leicester court awarded the neighbor exactly $\$ 204$ damage, two weeks after Cross had married the girl.

ELECTRONIC SERVICE RATES. Servicing of all-electronic mimeograph stencilcutters is billed at $\$ 4$ per hour per man for local calls and $\$ 7$ per man hour for provincial calls. Provincial is defined as outside the corporate limits of cities where service representatives are maintained by Times Facsimile Corp., the manufacturer.

Many well-known television and electronic service organizations throughout the country are listed as service representatives in the company ${ }^{+}$s booklet. With electronic stencil-cutting just beginning to take hold in business offices, there are undoubtedly opportunities for other organizations to get in on the ground floor in this potentially attractive new branch of servicing. If interested, the firm's address is 540 W . 58th St., New York, 19, N. Y.

The machine itself is simpler than a television set. Copy is placed on a cylinder under a photo tube at one end of a lathe-type carriage. The stencil to be cut is placed on
another cylinder under a high-voltage cutting electrode at the other end of the moving carriage. As the lathe rotates, photo tube and sparking electrode move in unison to scan copy and stencil spirally. In response to amplified photo tube output, the sparks burn holes far apart for black regions and close together for lighter-colored regions of the copy.

An important advantage of electronically cut stencils is that they have no mistakes and hence require no proof reading. Even photographs can be transferred to stencils. With a similar but more complex British-made Roneo machine having 500 line resolution, the mimeographedreproduction of a photo can scarcely be told from the original copy at a distance of a few feet.

FLASHBULBS. When a Los Angeles photographer ran out of flashbulbs while covering a televised hearing, he simply penciled a note '' I NEED NO. 5 BULBS'' and held it up to the TV camera. The bulbs were sent over immediately by his newspaper, which had a TV set right in the city room for watching the hearings.

OVERSHOOT. Among the technical growing pains of highpowered UHF station WHUM-TV, on channel 61 in Reading, Pa., was the discovery after many weeks on the air that the antenna on their 1,000 foot tower was overshooting the entire service area. This left tremendous dead spots within its announced coverage area and gave erratic but phenomenal longdistance reception. After diagnosing the cause of the trouble, engineers still had the terrifically complicated job of electrically tilting the entire transmitting antenna array $0.8 \mathrm{de}-$ gree downward in all directions.

AUSTERITY. Despite a head start of many years, British TV is now way behind ours in at least one category - picture size. Over there, 63% of all post-war set sales were for the 12 -inch size, 20% were 14 inch and 12% were 15 -inch, according to Television Digest. This left 5% for smaller tubes and possibly a few larger tubes.

BRAIN MACHINES. C an a machine have more intelligence than man puts into it? Putting the question another way, can a robot ever be smarter than the men who made him? Two brain-machine experts, Ashby and Wiener, agree that the answer is yes under certain conditions.

Once a machine is made sufficently large and complex to absorb a sufficient quantity of man's knowledge, they say, it can conceivably do things far beyond the scope of the instructions built into it, and possibly even go in for reproduction. One analogy is the atom bomb, which does nothing until it exceeds a certain size.

Getting back to earth, it's reassuring to know that when a tube burns out or a condenser blows in a machine that's smarter than man, they' ll still call a human serviceman to fix it.

PAINT-ON SOLDER. Newest in soldering is Eutec-TinWeld, a solder-paste-flux combination that's applied with a brush, then heated conventionally. The need for a third hand in soldering is thus eliminated. Where necessary, the excess flum can be wiped off with a damp cloth. Tinning and soldering are combined in one operation. By leaving the soldering iron in its holder, both hands can be free to hold the parts being joined by soldering.

In one test for production soldering of small radio sets, output was more than doubled. Other equally attractive applications are for joining sheet metal, copper tubing, and any other parts that can be soldered conventionally with $50 / 50$ or $60 / 40$ lead-tin s older. It's not for aluminum. At $\$ 5.60$ postpaid for a 2 lb can, the cost seems high, but it is claimed that the material goes much farther because there is no waste. Source is Eutectic Welding Alloys Corp., 172nd St. \& Northern Blvd., Flushing 58, N. Y., for those who like to be the first to try something new.

[^4]
INDEX to PHOTOFACT

RADIO AND TELEVISION SERVICE DATA FOLDERS

HOW TO USE THIS INDEX

To find the PHOTOFACT Folder you need, first look for the name of the receiver (listed alphabetically below), and then find the required model number. Opposite the model, you will find the number of the PHOTOFACT Set in which the required Folder appears, and the number of that Folder. The PHOTOFACT Set number is shown in bold-face type; the Folder number is in the regular light-face type.

IMPORTANT-1. The letter "A" following a Set number in the Index listing, indicates a "Preliminary Data Folder." These Folders are designed to provide you immediately with preliminary basic data on TV receivers pending their complete coverage in the standard, uniform PHOTOFACT Folder Set presentation.
2. Models marked by an asterisk (*) have not yet been covered in a standard Folder. However, regular PHOTOFACT Subscribers may obtain Schematic, Alignment Data or other required information on these models without charge by supplying make, model or chassis number and serial number. (When requesting such data, mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets.)
3. Production Change Bulletins contain data supplementary to certain models covered in previously issued PHOTOFACT Folders, and are listed in this Index immediately following the listing of the original coverage of the model or chassis. These Bulletins should be filed with the Folders covering the models to which the changes apply.

be an expert on AUTO RADIO SERVICING!

Get the only authoritative compilation of its kind-complete Auto Radio Service Data coverage of all important models since 1946-in 3 great PHOTOFACT Manuais! All data complete, accurate, uniform-based on lab analysis of the actual auto radios covered. Helps you service any model quicker, easier-for greater profits. Get the complete Library!

VOL. 1. AUTO RADIO

 SERVICE MANUAL Covers over 100 models made from 1946 to 1949 by 24 manufacturers. Each receiver is completely covered in uniform format; includes schematics, chassis photo views, replacement parts data, servce hints, etc. All data based on actual lab analysis. 396 pages, $81 / 2 \times 11^{\prime \prime}$. ORDER AR-1. Only\$4.95

VOL. 2. AUTO RADIO SERVICE MANUAL Covers 60 different chassis (40 models) used in 1948, 1949 and 1950 auto radio receivers. Authoritative, complete service data that makes your work quicker, easier and more profitable. 288 pages. $81 / 2 \times 11^{\prime \prime}$
ORDER AR-2. Only
$\$ 3.00$

VOL. 3. AUTO RADIO SERVICE MANUAL Covers 47 different chassis (80 models) used in 1950, 1951 and 1952 auto radio receivers. Absolutely the most complete, accurate and easy-to-use data avail-able-uniform and practically presented to make you an expert on the repair of any auto radio. 288 pages. $8 \frac{1}{2} \times 11$ " ORDER AR-3. Only
\$3.00

Order from your Parts Jobber, or write direct to Howard W. Sams \& Co., Inc. 2201 E. 46th St., Indianapolis 5, Ind.

Howard W. Sams PHOTOFACT Publications

PHOTOFACT SERVICE MANUALS

Here's the radio-TV service data that saves time and helps you earn more! Preferred and used daily by thousands of Radio and TV Service Technicians. Complete, accurate-based on analysis of the actual equipment. Uniform treat ment for each model. Includes Standard Notation Schematics; ful chassis photo coverage complete circuit analysis and replacement part data; wave forms, alignment data, record quick, profitable servicing. Fiach volume in quick, profita
deluxe binding.

VOL. 1-Post-war models to Jan. 1, 1947
VoL. 2 -Jost-war models to Jan. 1947 -July 1, 1947
VOL. 2-Jan. 1, 1947 -July 1, 1947
VOL. 3-July 1, 1947 -Jan. 1, 1948
VOL. 3-July 1, 1947 -Jan. 1, 1948
VOL. 4-Jan. 1, 1948 -July 1, 1948
VOL. 5-July 1, $1948-$ Dec. 1,1948
VoL. 6-Dec. 1, $1948-$ May 1, 1949
VOL. 6-Dec. 1, 1948-May 1, 1949
VOL. 7-May 1, 1949-Oct. 1, 1949
VOL. 8-Oct. 1, 1949-Dec. 1, 1949
VoL. 9-Dec. 1, 1949-Mar. 31, 1950 VOL. 10-Mar. 31, 1950-July 31, 1950
VOL. 11 -July 31, 1950-Oct. 31, 1950 VOL. 11 -July 31, 1950 -Oct. 31,195 Vol. 13 -Jan. 1, 1951 -Apr. 30, 1951 VOL. 13-Jan. 1, 1951-Apr. 30, 1951
Vol. 14-Apr. 30, 1951-Aug. 1, 1951 VOL. 14-Apr. 30, 1951 -Aug. 1,1951
VOL. 15 -Aug. 1, 1951 -Oct. 31, 1951 VOL. 15 -Aug. 1, 1951 -Oct. 31,1951 Vol. 16 -Oct. 31,1951 -Jan. 31,1952 -Apr. 30, 1952 VoL. 18 -Apr. 30, 1952-July 31, 1952 Vol. 19-July 31, 1952 -Nov. 30, 1952
vol. 20-Nov. $30,1952-$ Feb. 28, 1953 Vol. 20-Nov. 30, 1952 -Feb. 28, 1953 VOL. 22-May 31, 1953-Sept. 15, 1953 VOL. 23-Sept. 15, 1953-Dec. 15, 1953
(2) Each Volume in Deluxe Binder. . \$21.00

PHOTOFACT FOLDER SETS

The easiest way to own the world's finest TV-Radio Service Data. Issued three sets per month-put in your standing order for them.
(3) Per PHOTOFACT Sef................. $\$ 1.75$

Photofact Service data items
(2) Deluxe Photofact Binder, Each........ $\$ 3.50$
2.50
(1) Index Tabs for Sets 1.10
(1) Index Tabs for Sets 11-20
(1) Volume Labels for Vols. 1-10
(1) Volume Labels for Vols. 11-20
.40
(1) Volume Labels for Vols. 21-30
.25
Volume Labels for Vols. 21 . $30 \ldots$. . . 25
(1) Index Cards, zets $-100 \cdots \cdots 2.50$ per set (1) Index Cards, Sets 101-200 .. 2.50 per sef (1) Index Cards, Sets $201-300 \ldots 2.50$ per set
(1) Moiling envelopes 2.70 per 100 EASY-PAY PLAN: Ask your Parts Distributor for details on our attractive Time Payment terms that enable you to own and use the PHOTOFACT Service Data Library on a convenient pay-as-you-earn basis.

AUTO RADIO SERVICE MANUALS

Vol. 3. Full service data on 47 chassis (80 models) used in 1950, 1951 and 1952 auto radio receivers 288 pages, $81 / 2 \times 11^{*}$. Order AR-3 $\$ 3.00$

Vol. 2. Covers 60 chassis (90 models) used in 1948, 1949 and 1950 auto radios. 288 pages, $8 \frac{1}{2} \times 11^{\prime \prime}$. Order AR-2.
Vol. 1. Covers 100 auto radio models made from 1946 to 1949 by 24 manufacturers. 396 pages $81 / 2 \times 11^{\prime}$. Order AR-1

HANDY SERVICE GUIDES

Dial Cord Stringing Guide. Vol. 2: Shows correct way to string dial cords in radio receivers made from 1947 through 1949 . 96 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order DC-2.
.$\$ 1.00$
Vol. 1: Covers receivers produced from 1938 through 1946. 112 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order DC-1

Order
$\$ 1.00$
Radio Receiver Tube Replacement Guide. Shows where to replace each tube in 5500 receivers made from 1938 to 1948.196 pages, $51 / 2 \times 81 / 2$. Order TP-1.

INVALUABLE TELEVISION BOOKS

Photofact Television Course. Gives a clear, complete understanding of TV principles, operation and practice. 208 pages, $81 / 2 \times 11^{\prime \prime}$. Order V-1

V Servicing Short-Cuts. Describes actual TV service case histories; shows how to solve similar roubles in any receiver. 100 pages, $51 / 2 \times 81 / 2$. Order TK-1 . $\$ 1.50$

TV Test Instruments. Tells how to operate each est instrument used in TV service work. 148 pages, $81 / 2 \times 11^{\prime}$. Order TN-1
UHF Converters. Describes 21 popular converters; hows how they work. 44 pages, $81 / 2 \times 11^{\prime}$. Order UC-1

UHF Antennas, Converters \& Tuners. Covers all antenna types, transmission lines and matching networks, UHF converters and tuners. 136 pages, $51 / 2 \times 812^{\prime \prime}$. Order UHF-1.......... $\$ 1.50$

Television Antennas. 2nd Edition. Tells how to select, install and service antennas. 224 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TAG-1
Servicing TV in the Customer's Home. Short-cut nethods for repairs in the field; helps eliminate保 C-1

Making Money in TV Servicing. Tells how to set up and operate a profitable TV service business. 136 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order MM-1 $\$ 1.25$
IV Tube Location Guides: Vol. 3. Shows tube positions and functions in hundreds of TV receivers. Helps quickly locate faulty tube. 192 pages, $51 / 2$ $x 81 / 2$ ". Order TGL-3

Vols. 1
Vol. 2. Covers receivers not included in Vols. 1 and 3. 208 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TGL-2. $\$ 2.00$
Vol. 1. Covers hundreds of sets made by 56 mfgrs. 208 pages, $51 / 2 \times 81 / 2^{\prime \prime}$. Order TGL-1. $\$ 1.50$

AUDIO PUBLICATIONS

Recording \& Reproduction of Sound. Oliver Read's biggest selling volume on all aspects of Audio fully covers recording and amplifying methods and equipment. Authoritative, complete. 810 pages, $6 \times 9^{\prime \prime}$. Order RR-2
Audio Ampliflers. Vol. 3. Full analysis of 50 audio amplifiers and 22 tuners made during 1950. 352 pages, $81 / 2 \times 11^{\prime \prime}$. Order AA-3

Vol. 2. Covers 104 amplifiers and 12 tuners pro duced during 1949. 368 pages, $81 / 2 \times 11$. Orde AA-2 . $\$ 3.95$
Vol. 1. Covers 102 amplifiers and tuners pro duced from 1946-1948. 352 pages, $81 / 2 \times 11^{\prime \prime}$ Order AA-1

RECORD CHANGER MANUALS

Vol. 4. Full service data on 38 changers and re corders made during 1951.288 pages, $81 / 2 \times 11^{\prime \prime}$ Order CM-4.
Vol. 3. Covers 44 changers and tuners made in 1949 and 1950. 288 pages, $8 \frac{1}{2} \times 11^{\prime \prime}$. Order CM-3
Vol. 2. Covers 45 models made in 1948 and early 1949. 432 pages, $81 / 2 \times 11^{\prime \prime}$. Order CM-2 $\$ 4.95$ Vol. 1. Covers 41 post-war models made up to 1948. 396 pages, $81 / 2 \times 11^{\prime \prime}$. Order CM-1.... $\$ 3.95$

COMMUNICATIONS RECEIVERS

Vol. 2. Full analysis of 26 popular communications receivers made during recent years. 190 pages, $81 / 2 \times 11^{\prime \prime}$. Order CR-2

Vo!. 1, Covers 50 well-known models produced from

Get these PHOTOFACT Publications

 at your Parts Distributor

AIRCASTLE-Cont.	
568.305	141-2
572	55
594.935 (See Model 935-Set 128-21	
602-182144	114-2
603.PR-8.1	133-2
604	53-2
606-400WB	11
607.299	177-3
607-314, 607-315	122-2
$607.316, ~ 11,607.317$.138-2
$610 . C 351$	174
610.0200	142-3
810.5100	138
$610 . F 151$	172
$610 . \mathrm{H} 400$	178
$710 . \mathrm{P}-651.1$	179
610.5500	184
621 (Ch. FJ.91)	14-2
626.	18-3
641	17-1
651	
652.A25, 652.435	169
652.6 T1E,	205
652.505	16
659.511 .850	
659.520 E ,	
9151, W	129-2
935	

$1400 \mathrm{C}, 1400 \mathrm{~T}$ Tel. Rec...140-3
1700 C , 1700 T Tel. Rec... 140-3
1700 C , 1700 T Tel. Rec... 140-3
2000 C Tel. Rec........ 140-3
3170 Tel. Rec. ifor TV Ch.
See Set 140.3 , For
Radio Ch. See Model
150 -Se
$150-$ Set 126-2)
4170 Tel. Rec. (For TV Ch.
See Set $140-3$, For
See Set $140-3$, For
Radio Ch. See Model
350 Set $136-4$)

5008,5009
5010,5011
$1 \mathrm{Ch}, 1101$
5015.1

159144 (See Model
139144 -Set 59.4)
AIR CHIEF (5ee Firesfone)

AIR KING

05BR-3021B Tel. Rec...
058R-3021C Tel. Rec....
$\stackrel{0}{0}$

O5BR-3044A Tel. Rec..... 125-2

SGSE-3020A, B, C Tol.
Rec. (Also see Prod.
Chge. Bul. $36-$

(Also see Prod. Chge.
Sul. 36 Set 100.11). 117-3
94 WG-1811A-Set $99-41$
$05 W G-1813 A-127-4$ 5WG-2748C, D, EISee
Model 94WG.2748A-

94 WG-3006A-Set 72.4
05WG.3030A Tel. Rec...119-3
05WG. 3030 C
Tel. Rec...148-2
$05 W G-3031$ A
Tel. Rec...109-1
05WG-3030A, 8 Tel. Rec. 148 -
05WG.3038A Tel. Rec...129-4
$05 W G .3039 A$, B Tel. Rec. 148-2

15BR-154BA, 15BR-1549A 191
15BR-2757A
$148-3$
$155-2$
5BR-3048 Te!. Rec........
5BR-3053A, B Tel. Rec
${ }_{15 \mathrm{GAA} .995 \mathrm{~A}}^{15 \mathrm{GHM} .934 \mathrm{~A}}$ …............. 16
5GHM-935 1

5GSE-3043A Tel. Rrc....
15GSE.3047C Tel. Rec..
5GSL-1564A, B, 15651.
$1565 \mathrm{~A}, \mathrm{~B}, 15 \mathrm{GSL-156A}$,
$\mathrm{B}, 15 \mathrm{Si}-1567 \mathrm{~A}, \mathrm{~B} . .169-3$
5WG.1545A, B,
5WG-2745C
SWG.2752D, F
5WG.2758B (See Piod.
$202-1$ Buld Model 15 WG .
SWG-2759A (See Prod.
2758A-Set 144-2)

AMBASSADOR-Cont.
$20 M C, M C S, M T$
20MC, MCS, MT, MTS
Tel. Rec. 1173-2
$21 C 02 A$, B Tel. Rec. (See 21CD2A, B Tel. Re.........
Model $21 C 2 A-S e t$ Model 2IC2A-Se
20PC, 2OPCS, 20PCS2 20PT, 2OPTRS, 20pTS Tel. Rec. (See Model
20PC-Set 178.3)
 21 CD 2 B Tel. Rec. (See Model Rec.......... 17
921 Tel. Rec. (See Model 921 Tel . Rec. (See Mode
$21 \mathrm{C} 2 \mathrm{~A}-\mathrm{Set} 191.4$) 9120, 20 Tel. Rec.......191-4
9121,10 Tel Rec ise Model $21 \mathrm{C} 2 \mathrm{~A}-\mathrm{Sot} 191.41$ 9820, LO, 9821,10
Tel. Rec. 191-4
AMC (AIMCEE)
${ }^{1} \mathbf{C} 23$ Tel. Rec
(Similar to Chassis)... 139-11
1C72 Tel. Rec. (Similar to Chassis)...126-8 (Similar to Chassis) $\ldots 126-8$
17 C CB (Similor to Chassis)...126-8
17 CG , $17 \mathrm{Cl}, 17 \mathrm{TG}$ Tel. Rec. $17 \mathrm{CG}, 17 \mathrm{C3}, 17 \mathrm{TG}$ Tel. Rec.
(Similar to Chassis). . 149-13 (Similar to Chassis)...149-13
17 T 20 Tel. Rec.
(Simassis) 139-11 (Similar to Chassis)... 139—11
20 C 2 A , -1 Tal. Rec..... 188-3 $20 \mathrm{C} 2 \mathrm{~A},-1 \mathrm{Tel}$ Rec.....
$20 \mathrm{C} 22,200, \mathrm{DB}, 20 \mathrm{~T} 21$
Tel. Rec.
(Simila Chossis)...139-11
$20 \mathrm{CD}, 20 \mathrm{Cl}$, 20TG Tel. Rec.
(Similar to Chassis). 149-13 20CD2A, ${ }^{-1}$ Tel. Rec..... 188-3
$2012 \mathrm{~A}, \mathrm{I}^{2} \mathrm{Tel}$. Rec. . . 188 l 21CD2A, B Tel. Rec. 1 See
Modal 20C2A-Sel 188-3) 21C2A Tel. Rec. (See Model
20C2A-Set 188.3)
 114 C , I14T Tel. Rec.
(Similar to Chassis....111-3
$116 \mathrm{CC}, 16 \mathrm{CO}, 116 \mathrm{~T}$ Tel, Rec.
(Similar to Chassis)...111-3
125 P 3- 27
AMERICAN COMMUNICATIONS (5ee Liberty)
AMPLIFIER CORP.
ACA. 100DC, ACA-100GE 63-2 AMPLIPHONE 10
20
AMPRO (See Recorder Listing)

ANDREA

BT-VK12 Tel. Rec........76-5
BC.VIT VLc. (Sh. VIIT) Tel. Rec. (See Model
C.VL17-Set 152.1) BT-VLIT (Ch. VII7) Tal. Rec. (See Model
C.VL17-Set 152.1)
Co. U15,27-3
co.vk15, covkio ich. O.VK15, COVK16 (Ch.
VK1516 Tel. Rec. (Also vee Prod. Chec. Bul
8-Set $112-11$.....
OVK- 125 Tel. Rec. 8-Set 112-1)...
COVK. 125 Tel. Rec.
COVI-16 (Ch. VL16)
COVL-16 (Ch. VLI6)
Tel. Ree. Wila)
COVIIG(Ch. VVIg)
$.103-4$
$76-5$

125-3

C-vki9 Tel. Rec. (See
Prod. Chge. Bul. Bul. $8-1$
Prod. Chge. Bul. Bul,
Set $112-1$ and Madel
Covk15- Set 103-41
CVK-126 Tel. Rec...
CVL-16 (Ch. VL16)
CVL-16 (Ch. VL16)
TVI. Rec.
CVIIT (Ch. Vil)
 Tel.
P-163
T16.
T-U15
T16
T-U15
T-U16
TVK
T-VK12 Tel. Rec..........
TVK-127B, M Te.. Rec.
TVL-12 Tol. Rec....
TVL-16 (Ch. VL.16)
Tel. Rec.
T.VII7 (Ch. VLiz)
Tel. Rec
$\xrightarrow{\text { Tel. Rec. }}$ VM21 (Ch. VM2i) $.152-1$

V1.15 Tel. Rec.i.
2C-Vbl (Ch. Vili)
Tel. Rec.
$2 \mathrm{C} V .20$ (Ch. Vi.20)
Tel. Rec.

Ch. VK1516 (S....
Model CO.VK15)
Ch. Vllo (See
Model covi-1
Ch. Vl7 (See
Model C-V(1)
Model C-V(17)
Ch. V19 (See
$\mathrm{Ch} . \mathrm{VLI9}$ (See
Model Co.VLI
Ch. V120 (Seel
Ch. VL20 (See
Model 2C-VL20)
$C h . V M 21$ See
Model C-VM21)

ANSLEY

APEX

APPROVED ELECTRONIC

ARTHUR AN5LEY	
LP-2, LP-3	62-4
LP-4A	82-2
LP-5 (See Model P-5Set 108.4	
LP-6, LP6-S	136-5
LP. 7	134-3
P-5	108-4
R. 1	200-2
SP. 1	60-4
TP. 1	73-3

ARVIN-Cont.
Ch. TE-289-2, TE.289.3
(See Model 2120 CM)
Ch. TE. See Model 2120 Cm
Ch. TE-300 Model 2160)
(See Model 5204)
Ch. TE.302, -1, $2, .3$
-5, 5 SA, -
(See Model S170CB]
Ch. TE-315,-11,-2,-3
5, $5 A,-6$
(See Model 5210)
(See Model 5210)
Ch TE-310,-1
(See Madel 6213 TM
(See Model 6213TM)
Ch TE.320 (See
Models 5175,5176)
Models 5175, 5176)
Ch. TE-331, -1, $2,-3$,
(See Model $\mathbf{~ (1 7 5 T M) ~}$
Ch. TE-334
Chee Model 5213 TM)
Ch. TE-337-1
(See Model 7210 CM)
(See Model 7210 CM)
Ch. TE. 341 , 2 (See
Model 7210 CB-UHF)

ASTORIA

A. 21, A. 72, A. 73

See Similar Chassis)...182-3

ASTRASONIC

AVIOLA (Also see Record

BENDIX-Cons
8001 Tel. Rec. (Also soe
Prod. Chge. Bul. 16-
Set $126-11$ 11-3
0002 Tel Rec. 8002 Tel. Rec. AAlso.....
 8090 Tel. Rec.............
8100 Tel. Rec. (Also sue
Prod. Chge. Bul. 10 -
Set 120.1).

7001 Tel. Rec. (See Prod.
Chge. Bul. 16 -Set $128-1$
and Model 2051-
Set 111-31
Ch. C-19 (See Model 753F)
BOGEN (See David Bogen)
BREWSTER
1084, Q-1085, 9-1080..
BROCINER

198-2
$200-3$
BROOK ELECTRONIC5 INC

100
12 A
12 A
12A2. 1243 (See Model
12A-Sef 89-3 and
Model 3C-Sel 184-4)
BROOKS ELECTRONIC LABS.
ST-144
ST. 10

BRUSH SOUND MIRROR (See
Recording Listing)
BRUSH MAll-A-VoICE (See
Recording Lisfing)
BUICK

980979 (See Model
980888 -Set 104.4)
981111 (See Model
980888 -Set $104-4$)
BUTLER BROS.
(See Air Knight or Sky Rover)
CADILLAC (Auto Radio) *

CAPEHART

B. 504-P16 Tel. Rec, (For

Set 87.2 For Radio Ch
see Model 35P7-
Set 135-4)

ITI7MX (Ch. CT27) Tel.
Rec. (See Ch. CT-27-
Set 180.2)
1 T172m (Ch. CT-52)
IT172M (Ch. CT-52)
TJel. Rec.
2 Cl 172 M (Ch. CT-52)
Tel. Rec.
2 T 20 MC ($\mathrm{Ch}, \mathrm{CT}-38) \mathrm{TeI}$.
Rec. (Seee
Set $160-2$)
3 Si 7 mx (Ch. CT-27) Tel
Rec. (See Ch. CT-27-
Set $160-2)$
$3 C 212 \mathrm{M}, \mathrm{M}$ (Ch. (T-57)
${ }_{4}^{\text {Tel }}$ (212B, Rec. M (Ch. CT-57)
${ }_{5 F} 212 \mathrm{M}$ (Ch, CT-57)

CORONADO-Cont.	CORONADO-Cont.
8129A, 8130A, B, 8131A, B (See Model 94RA4-43.	9169 (See Model 43.9196-Set 14-35)
94RA33.43-8130C-	9230 A [See Model 15RA37.
(100 (Sees Model	43.9230A - Set 173.5)
43-8160-S Sot (2.7)	9841A (See Model $94.98 \mathrm{Ra31}$
77. 8178 [See Model	98764 lsee Model O5RAA.
${ }_{8180}^{43.8178}$ (Set Set 21.8)	43-98764-Set 103.7)
43-8180-S Sot 10.12)	CORONET
8190 (Sea Modol	C2 6-8
${ }_{820}^{43-8190-500 t 19.11}$	CRESCENT (Also see Changer
	and Recorder Listings)
8213 (See Model ${ }^{\text {a }}$	H-16A1 76-8
43.8213-Set 7.5)	CRESTWOO
30A ISee Model O5RA2.	(See Recorder Listing)
${ }^{\text {82 }}$	CROMWELL
43.8240-5et 12.8)	(Mercantile Stores)
8245A, 8246A (See Model	1010 88-2
15RA33.43.8245A-	1020
3 Sel 174.51	crosley
43-8305-5et 8.3)	DU. $17 \mathrm{CDB}, \mathrm{CD}$
8312 A (5ee Model	CHM, CHN ICh. 356-
43.83124-Sot 8.4)	${ }^{\text {2) }}$ Tel. Rec.
(See Model	
13.8330-Set 19.121	1.356-3, -4) Tel. Rec.
8351,8352 (Seeo Model	
${ }^{8353}$ 8354-5ee Model	Model DU-17CDs-
43.8353-5et 28-7)	Set 168-6)
60A [See Madel 05RA37.	DU. 17 CHNL (Ch. 356, ${ }^{17}$
43-8360A - 0 ol 102.31	$\left.{ }^{2},-3,-4\right)$ Tol. ${ }^{\text {Prod. Chge. }}$ Bul.
8365 (See Model 15RA33. $\text { 43.8365-Set } 169.4 \text {) }$	
420 (See Model	7CDB-5et 168.6)
43-8420- Set 24	, 17COB, COM (Ch
$43.8305_{\text {- }}^{\text {Sef }}$ 8.31	du.17coit, $\mathrm{COM}^{\text {(Ch. . }}$,
371 (See	356-3. 4) Tel. Rec. (Seo
43.8312A-Set 8-4)	Prod Chge. Bul.
5104, 85114 (Seo Model	Sel 192.1 and Mode
94RA1-43.8510A-	OU. 17 TPDB , PDM, PHB,
85108, 8511b (See Madel	PHM, PHN, PHNI [Ch
94RA1.43.85108-	359 and Radio Ch. 36
Set 75.6)	Tel. ${ }^{\text {Roc }}$
515 (See Model O5RA2-	Du-1708, ${ }_{\text {3 }}$
8576B (See Model	du-17TÓl) (Ch.
43.85788-Set 9.8)	$356-1,-2)$ Tel. Reci
8885 ISee Mo	Model Du-17iol
43.8885-Set 11.4)	Sot 168-6)
${ }_{89408} 8908$ Tel. ${ }^{\text {a }}$. Rec	356-1, -2) Tel. Rec.). . 168 -6
8945A Tel. Rec. ISee Modal	U-20CDM, CHB, CHM,
O5TV1.43-8944A-	COB, COM (Ch. 357)
Set 145.5)	Rec. $\mathrm{CONa}^{\text {cim }}$
	DU. $21 \mathrm{CDMM1}$ CDN: CHM
8948A-Set 175-7)	(Ch. 357-1) Tel. Rec... 175-8
8950 A Tel. Rec. (See Mod	- 2 25BE, CE, GN, MN, TN
O5TV2-43-9010A-	WE (Ch. 311, 311.1). .202-2 EU. 17 COM TOB, TOM
8953 A Tel. Rec. (See Model	$\left.{ }^{(C h} .380,383\right)$ Tel. Roc. 186
94TVO.43.8933A-	
	EU.17tola, rols ich.
151V1-43.8957A-	385) Tel. Rec........ 193-3
Set 62-4)	EU-21CDB (Ch. 388 ,
58A, B Tol. Rec. (See	${ }^{384)}$ Tel. Rectio. 186
Prod. Chgo. Bul. 34 -	EU-21COL, EU-21 CDIB
Seet 162.1. and Model	(Ch. 3871 Tel. Rec. (See
151V1.43.8958A-	Sel 193-3)
8960 Tel. Rec	U-21CDM, ${ }^{\text {con }}$, COBa,
${ }^{8985}$ Tel.1. Rec. (Seo Modol	Coma (Ch. 381, 384) 186-3
	EU.2icoibd, coild
$89704,8971 \mathrm{~A}, 8972 \mathrm{~A}$,	(Ch, 386) Tal. Rec..
${ }^{89734}$ Tol. Rec. (Seee	
Model 94TV2-43-8970ASet 78.4)	EU-21 COmua, COBUa,
8985A, 8986A, 8987A	CDMU, CDBU, CDNU,
Tel. Rec. (Seeo Model	Tel. Rec.
94iV2.43.8970A-	
$8993 \mathrm{~A}, 8994 \mathrm{~A}, 8995 \mathrm{~A}$	Model EU-21COLB-
Tel. Rec. (See Model	Sot 193-3)
94TV2-43.89704-	EU-21PDBU, EU-21PDMU Ch. 392 U UHF Ch. 391
9002 A Tel. Rec.........	and Rodio Ch. 362-1)
$90054,9008 \mathrm{~A}$ Tel. Rec.	Tol. Roc. ${ }^{\text {a }}$ (1).
(See Model O5TV1-43. 8945A-Set 145-5)	EU.21TOL, TOLB (Ch. 386) Tel, Rec. 193-3
9008 A Tel. Roc......	Elobe, Ci, RD, WE
90104 Tric. Rec. 15 ee	
Model OSTV2-43-9010A- Set 146.5)	
9010 Btal Rec. (See	E20GN, GY, MN, IN
Model O5TV2.43.90108- Set 153-2)	E3OBE, GN, MN, TN . ${ }^{\text {a }}$ 201-3
$9012 \mathrm{~A}, 9013 \mathrm{ATel}$, Rec...	(Ch. 30E, 30'.1) , 206-3
9014 A Tel. Rec. (See Model 05TVI.43.9014A-	S11-442MIU, 511.444 mu , $\$ 11.453 \mathrm{MU}$ (Ch.
Set 128-4]	331-4) Tel. Rec...... 153-3
	S11-459MU (Ch. 321-4) ${ }_{\text {Tol. Rec. }}$
15 TV1.43.8957A -	S11.472810, s11-4748u
Set 162.41	(Ch .331 .4 Te: $\mathrm{Tec} . .153-3$
Bul. 34-Sot 162-1 ond	(Ch. 331-4) Tel. Rec. . 153-3
Model 15TV1-43-8958A-	
Sot Tol. Roc. (Soo	Tol. Rec.
Model 25TV2-43. 9022 A Set 183 -4	S20CDC1, S20CDC2. S20CDC3 (Ch 323.6)
$9025 \mathrm{~A}, \mathrm{~B}, 9026 \mathrm{~A}, \mathrm{~B}$ Tol.	Tol. Rec.
	${ }_{\text {9.101 }}^{9.102}$ ¢................ ${ }^{58} \mathbf{5 8}$
30 Tel. Rec. [Soe Model	
${ }_{\text {Ket }}^{\text {K-731 }}$ (82-3) ${ }^{[43-9031]}$ -	
9031 Tel. Rec. (See Model	Q-117 51
9041 (S.ee Model K - 21	9-121, $9.122 \mathrm{~W} \cdots \ldots .$.
$[43.9041]$-5et 12.1] $014,9102 \mathrm{~A}$ Tel. Rec.	9-201, $9.202 \mathrm{M}, 9-203 \mathrm{~B}, \mathrm{~S}^{52-5}$
$\begin{aligned} & \text { (See Model 15TV2.43. } \\ & 9101 \mathrm{~A}-S e \mathrm{~S} \\ & \text { 152.4) } \end{aligned}$	${ }^{\circ} \mathrm{-207M}$.

Crostey-Cont.	CROSLEY-Cont.	
$9-213 \mathrm{~B}$ (See Madel 9.209 -Set 53.10)	$571 Q$ (See Model 56TQ-Set 33.2)	
$9.214 \mathrm{M}, 9.214 \mathrm{ML}$ …. 65-6		36-4
	587 C (Soe Model	
$9.403 \mathrm{M}, 9$.	Set 38	
Tel. Rec. . ${ }^{\text {a }}$. ${ }^{\text {a }}$. 79	${ }_{\text {s8TK }}$............	34
$9-404 \mathrm{M}$ Tel	${ }^{587 L}$	
9-407	58 TW	
	$66 C A, C P, C Q 1$ Sea	
$9.413 \mathrm{~B}, 9-413 \mathrm{B-2,9.4148}$	OOCS. 6 OCSM	
Te!. Rec. 79-4	66TA, ${ }^{\text {SOTC, }}$	
$9.419 \mathrm{Ml}, 9.419 \mathrm{Ml}$. LD .	${ }_{68 \text { CP, }} 88 \mathrm{CR}$	37
9m2, 9.419m3,	${ }^{68 T 4,}$, 68 TW	
$9-419 \mathrm{~m} 3$ LD Tol. Rec.. 94-3	86CR, 86Cs	
9.420 M Tel. Rec. F 79-4	${ }_{87 \mathrm{CR}}^{86 \mathrm{CR}} 88 \mathrm{CS}$ (Re	36-5
$9.422 \mathrm{M}, ~ 9.422 \mathrm{MA}$ Tel. Rec. 81 -6		
$9-423 \mathrm{M}$ Tel. Rec........ 91A-4	89CR (See Model	
9.4248 Tel. Rec........ 79-A	87 CQ - Set 36.5)	
9.425 Tel . Rec......... 954.2	${ }^{8874}{ }^{\text {a }}$, 881C	38
10.135, 10-136E, $10-13$	${ }^{\text {BrTA, }}$ Seit (Revised) (Soe	
$10.138,10.139,10.140$	Set 43-8 and Model 88TA-Set 38.31	
10.307 M 10-308 10.30980	106 CP , 106 CS	7-6
10-401 Tel. Rec........ 95	$146 C 5$	
$10.404 \mathrm{MU}, 10.404 \mathrm{mlU}$	$148 \mathrm{CP}, 148 \mathrm{CQ}$	42
	148 CR (See Model	
10.412MU Tel. Rec		
$10.414 \mathrm{MUS} \mathrm{Tel}. \mathrm{Rec....}$.		
$10.414 \mathrm{Ml} \mathrm{(Ch}. \mathrm{292)} \mathrm{Tel}$.		
Rec. (See Model	10E, 10E-1.	
	ElOBE)	
$10.416 \mathrm{Ml}, 10.416 \mathrm{M} . \mathrm{U}$ (Ch.	Ch. 15-20E	
292) Tel. Rec. (See	(Soe Model EISBE)	
del 10-414M	iseo model E3OBE)	
Set (16-4)	Ch. 292 Tel . Rec. ${ }^{\text {See }}$	
10.418MU Tel. Rec...... 114	4 MU1	
$10-419 \mathrm{mu}$ Tel. Rec. . . . 1104	Ch. 301	
	(5ee Model 11.100U)	
	${ }^{\text {Chi }}$ (5ees Model 11.106 U)	
10.428 mu Tel. Rec......129-5	Ch, 303 (${ }^{\text {a }}$	
10.429 M (Ch .292) Tol.	(See Model 11-301 U)	
(Sep Model	311, -1 (See	
10.414 MU -Set (16.4)		
0-429MU Tel. Rec. . . . 116	Ch. 312 2 11.1260	
100U 11-1010,	(See Model 11-126U)	
11-102U, 11.1034 ,	is 320	
(Ch. 301) 127-5	Ch. $321,321-1,321$	
11-108U, 11-1070,	See Model (1-445Mu)	
11.108u, 11-109U	321-4 Tel. Rec. 1 See	
(Ch. 302) 1 a....... 155	Model 511.442 ml	
.114U, 11.1150	323	
11-1180, 11.1170.	(See Mod	
(Ch. 330) .	(See Model 20 CD 1)	
126U, 11-127U,	Ch. 323.6	
11.128U, 11-129U	${ }_{325}$ Model S20CDC1)	
11.207Mu, 11.2088u ${ }^{\text {a }}$	${ }_{\text {CSee Model }} 11.446 \mathrm{MU}$)	
(Ch. 333) .a......142-6	Ch. ${ }^{330}$	
11.301u, 11.3020,	(See Model 11-1	
\$11.303U, 11.304U, 11.305 L (Ch. 303i)...124-3	Ch. $331,-1$,	
11.441 MU (Ch. 320)	$\mathrm{Ch} .331-4$ Tel. Res. 15 ee	
Tel. Rec.	Model S(1-442M1U)	
11-442MU (Ch. 331)	Ch. ${ }^{333}$	
, Rec. ${ }^{\text {a }} 126$		
Prod. Chgo. Bul. 22-	${ }^{\text {Chi }}$ [${ }^{33}$ eo Model 11.550 MU)	
Set i38.1 and Model	356-1, 356-2 (See	
11.442-Set 126-4)	Model DU.17CDB)	
1.445 MU (Ch. 321, -1,		
	, 357 Tel. Rece. (See	
Tel. Rec. 126 -4	Model DU-20CDM)	
1.447 MUL (Ch. 321, -1.		
	Ch. 359 Tel. Rec, ISeo	
Tel. Rec. 126-4	Model DU-17PDMI	
11.459M1U, Mu (Ch. 321	Ch 3300361 Tol. Rec.	
-1, -2) Tel. Rec.	Ch. 380	
Tel. Rec. 126 -4	is ee Model EU-17COM)	
1.461 WU (Ch. 320)	M 381 (Soe	
	Ch. 383 -	
	(Soe Model EU.17COM)	
11.4708U (Ch. 331 Tel. Rec. 126		
11-471 BU (ch. 320)	Ch. 385, 386, 387	
Tel. Rac.	(See Model EU-17CO	
1-473BU Tel. Rec. 'Soes	Ch. 387 (See	
Prod. Chge. Bul. 22-	Model EU. 21 COLBe)	
Set 138.1 and Model	Ch. 390 Tel. Rec. (See Model EU- 21 COMUa)	
11.4758 C (Ch. 321, 1 ,	Ch. 392 (5 em	
2) Tel. Rac. 126-4	Model EU-21 PDBU)	
1-4768U (Ch. 325)	ROYDON	
	C17FM Tol. Rec. (Also	
11) Tol. Rec... $31 . . .126$-4	see Prod. Chge. Bul. 57-5et 191.11 ...	
11.4838U (Ch. 331) 126	C21FM, C21FTM (Al) 37 see	
Tel. Rec. 126-4	Prod. Chge. Bul. $57-$	
	Set 191-1)	
$17 \mathrm{CDC1}, 17 \mathrm{COC} 2.10 .139$	CRYSTAL PRODUCTS	
$17 \mathrm{CDC3}, 17 \mathrm{CDC4}$ (Ch.	(See Coronet)	
331, $-1,-2)$ Tel. Rec.	dalbar	
Set 126-4)	Barcombo jr.".	10-14
$17 \mathrm{COC1}$, 17COC2,	M8. 'Tonomatic'	${ }^{8-34}$
	100-1000 Series 400	9-9
11-442-Set (28-4)	DAVID BOGEN	
$20 \mathrm{CDC1}, 20 \mathrm{COC2} 2,20 \mathrm{CDC} 3$		
(Ch. 323-3, 323-4)	DB. 10.	2-4
Tel. Rec. . .l.	DP. 16	165
	E66	
	FM801	198
	6.50	30
${ }^{5616}$............. ${ }_{5}{ }^{3}$	G0.50	26
${ }_{56 \text { S6TN }}^{56 \text { S }}$	G0.	22-12
${ }_{\text {TP }}$ L,	415	80
Tz 33-2	H5	
ru' 10		

MERSON-C	Emerson-Cont.
1 (Ch. 120066B)	4888 (Ch. $120134 \mathrm{~B}, \mathrm{G}$,
Tel. Rec.	Tel. Rec. (See Prod.
571 (Ch. ${ }_{\text {Iel. }}$ Rec. 200868)	Chge. Bul. 48 - 182 il -
572 (Ch. 120065) isee	+137-4)
Model 540A-Set	A (Ch. 1200
5738 (Ch. 1200398).... 42-11	Tel. Rec. \ldots........ 106 -7
574 (Ch. 120064) 97-3	650 (Ch. 120113 C$)$ Tel.
575 (Ch. 120068A,	
	650
${ }_{577 \mathrm{~B}}\left(\mathrm{Ch} .120012 \mathrm{~B}\right.$).... 41- ${ }^{\text {a }}$	Tel. Rec. .
578 (Ch, 120050) (Se	$50 \mathrm{~B} / \mathrm{Ch} .12$
ode:	Rec. (See
	Cb
$\left.{ }_{581} \mathrm{CCh} .120014 \mathrm{~A}, \mathrm{~B}\right) . . \mathrm{C}$. 68 -7	
582 (See Model 548 -	
Set $30-8)$	
583 (See Model 573BSet 42-11)	650F (Ch. 120138-
584 (See Model 558-	6518 (Ch. [20120)
585 (Ch. 1200258)	651C ICh. 12
Tel. Rec. . .	6510 (Ch , $120124, \mathrm{~B}$)
${ }^{1} 1 \mathrm{Ch}$	Tel Rec
120083	652 (Ch. 12003
587 (Ch. 120033A, 8)... 71-10	${ }_{653}$ (Ch. ${ }^{1200808}$)
588 (See Mo	${ }_{6538}(\mathrm{Ch} .120136-\mathrm{B})$
591 (Ch. 120055A) $87-9$	
593 (Ch. 1200638)...... 73-4	${ }_{\text {Rec. }}$ (See Mo
594.595 (Ch. 120071A).	et 113-2)
596	40 Ch .
597 (Ch. 1200738)	
599 (Ch. 1200758)..... 69--8	Chge. Bul.
600 (Ch. 120103-B)	182-1)
Tel. Rec. (A) so see Prod.	545
Set	Tel. ${ }^{\text {a }}$
601 (Ch. 120075B)	655B (ch.
602 (Ch. 120072A.	Tel. Rec.
3 (Ch. 1200638)...... 73-4	
604 A 15ee Model 57	
	h.
05	
06 (Ch. 120066) T	${ }^{\text {6568, }}$ 657 Bich. 120
606 (Ch. 120066B)	${ }^{6588}$
Tel. Ree.	
	Rec. (See Model
Tel. Rec, 76-11	65801
607 (Ch. 120074A) 90-5	
608A (Ch. 1200898)	${ }^{6608}$ (Ch. 1201338)
Tel. Rec.	${ }_{\text {rel. }}$ Rec.
609 (Ch. 120084-B)	Tel (Ch. $1201348, G$, H)
Rec.	
	Set 182.11137-4
Rec. 76-11	${ }^{6628}(\mathrm{Ch}, 120 \mathrm{t} 27-\mathrm{B})$ Tol.
3 C (Ch. 120085A, B). . 79-7	Rec.
614. B, BC, C CCh. 120110	Chge. Bul
	6638 ($\mathrm{Ch} .120128-\mathrm{B}$) Tel.
Tel. Rec. ${ }^{\text {a }}$ 95A-3	
615 (Ch. 1200018) 63-7	Chse. Bu
616 (Ch. 120100A, B) ... 71-10	
$618(\mathrm{Ch} .120090 \mathrm{~B}, \mathrm{D})$	
	665.8 (Ch. 120131-8 and
Tel (Ch. Rec 20092D)	120130-B)
620 (Ch. $120091 \mathrm{D}-\mathrm{QO}$	Tel, Rec. $\ldots \ldots146$
Tel. Rec. .a.l.e. . 76-11	666 B (Ch. 120135 B,
21 (Ch. 1200988)	Tel. Rec. (Also see Prod.
Tel. Rec.	Chge. Bul. $27-$
Tel. Rec. ${ }^{\text {a }}$ (Ch. 20098 P)	Set 148.1)
3 Ch .12010	
(Ch. 1200878-D)	see Prod. Chge. Bul.
	48-Sot 182.1)137-4
${ }_{625}^{625}(\mathrm{Ch}, 1201058) \ldots . .103-8$	6698 (Ch. 1201298 , of) Yel.
626 (Ch. 120104 B , 120104BJ) Tel. Rec.... 84-6	Rec. (Also see Prod.
727 (Ch. 1201078)	
Tel. Rec. .a. 76-11	
${ }^{028}$ Tel. Rec. ${ }^{\text {en }}$	669 B (Ch .120148 -8)
	Tel. Rec
Rec. isee Model $631-$	${ }^{6718}{ }^{6710}$ (Ch. 120137.8).
Set 934.6	Model 6718-Set 118
$298,629 \mathrm{ClCh}$ $120120)$ Tel. Rec	6728 (Ch. 120097-8)131-7
6290 (Ch. 120124 B)	${ }^{673 \mathrm{~B}}$ (Ch. $120133-\mathrm{B}$)
Tel. Rec. .a.......116-5	${ }_{\text {rel }}$ Rec.
630 (Ch. 1200998)	
631 (Ch. 120109)	Prod. Chse. Bul. 48
Tel. Rec. 93A.6	Set 182.11137-4
632 (Ch, 1200968)	${ }^{6758}$ (Ch. $1201298, \mathrm{D}$)
Tel. Rec.	Rec. 1 A
633 (Ch. 120114)	
	ge. Bul.
${ }_{635}(\mathrm{Ch} .120108)$	Set 181-1]
${ }^{6364}$ (Ch. 1201064) . ${ }^{\text {che }}$ 99-7	
	7760 (Ch. $120144 \mathrm{~B}, \mathrm{G}, \mathrm{H}$)
	Tel. Rec. (Also see Prod.
Tel. Rec. 95A-3	do
88 (Ch. 120087D) Tel.	
Rec. (See Mode	6F (Ch. 120143 B)
(Ch. 120	Bul. 50-Set 184-1)...148
Rec. (Also see Prod.	778, 6788 iCh .1201348 ,
Bul. 9-	G, H) Tel. Rec. (Also
4-1)	see Prod. Chge. Bul. 137
- 120122	48-5et 82.11
	6798 (Ch. 130116.B).... 142
	6808 ($\mathrm{Ch} .120144-\mathrm{B}, \mathrm{G}, \mathrm{H}$)
	Tel. Rec. (A
	${ }_{\text {Cot }}$ Chge. $82.1 i^{48}$ -
120115)...... 94	6800 (Ch. 120140B)
C. 120121 A)	Tel. Rec. \cdots....... 128-6
6B ($\mathrm{Ch}, 1201218$) ..1020-	D (Ch. $1201448, \mathrm{G}, \mathrm{H}$)
. $\mathrm{B}, \mathrm{BC}, \mathrm{C}$ CCh. 120113	Tol. Rec. (See Prod.
48 B (Ch. 120110 E) Tel. Rec.	

UMONT-Cont.	ECHOPHONE	
Uringame Model	(Also see Hallicrafters)	
	EC-1A	
(SSee Model RA.113)	¢ EC-113	
(See Model RA.117A)	EC-403, EC. 404	
(See Model RA-103)	EX-102, Ex-103 64	
Chester (See Model RA.147A)	EX. 306 (See Model EC-306-Sot 14-8)	
Clifton (See Model RA-102)	EDWARDS	
Clinton Model RA-164.A1	Fidelotuner 33-4	
Club 20 modal RA-104)	EICOR	
RA-106A	(Also	
	15135-6	
	EKOTAPE (See Recorder Listing)	
Devonshire(See Model RA-101)	Elcar	
	602 5-19	
Dynasty (See Model RA-1621	Electone	
(See Model RA- \|lOA) Flanders Model RA.162-B5	TSTS	
	Electro	
(See Model RA-162) Guilford Model	820	
	electromatic	
	APH301-A, APH301-C ... 7-	
Honover Model RA-109-A2, -A6 (See Model RA-109A)	606A, 607A 5-32	
	ELECTRO-tone	
Hanover (See Madel RA-109A-FAS)	555	
Hastings (See Model RA-104A)	706, 555	
Manchu (See Model RA-106A)Mansfeld(Seee Model RA-108A)	ELETRONIC CORP. OF	
	AMERICA (See ECA)	
	Electronic specialty	
Meadowbrook 11	(See Ranger)	
Miliord Model RA-165.(See Model RA.165)	E/L (ELECTRONIC	
	75 (Sub-Station) 20	
	76	
	76 RU ("'Radio.Utiliphone')	
${ }_{\text {Newbury }}^{\text {(See }}$ M	${ }^{7108,710 \mathrm{~m}, 71}$	
Porit Lone Model RA-117-A7(Seo Model RA-117A)	Orthosonic (Ch, 287 $710 \mathrm{~PB}, 710 \mathrm{CPC}$ Orthosonic	
	(Ch. 2887) Mrichonc. 24	
Parklone ${ }_{\text {I }}^{\text {See }}$ Mo	2660 "Master Ufiliphone:'	
Putman Model RA-111-A1, -A4 Tel. Rec. (See Model RA-11\|A		3000 Orthosonic 31-10
	Emerson	
Revere (See Model RA-101) Revere 11 Madel	501,502 (Ch. 120000,	
	20029)	
RA-113-B3. -B4 (See Model RA-113)	503 (Ch. 120000, 120029)	
	${ }_{505}^{504}$ (Ch. (Ch. 120000, 120029)	
Ridgewood Model RA-165.B4 (See Model RA-165)	Sos (Ch. 120041) (see	
	Model 523-Set 5-27)	
	6	
(e) Rumson (See Model RA-103D)		
	${ }_{509}^{508}$ (Ch. 1200	
Sheffield (See Model RA. 103D]	$510,510 A$	
Shelburne Model RA-165.B5 (See Model RA-165)	Ch. 120000, 120029).	
Sherbrooke Models RA.109-A3, -A7 (See Model RA. 109	511 (Ch. 120010) (See Model 541-Set 16.23)	
	512 (Ch. 120006)...... 9-	
Merbrooke (See $\begin{aligned} & \text { Model } \\ & \text { M-109A-FAS) }\end{aligned}$	512 (Ch. 120056	
	514 (Ch, 120007)	
Sherbrooke(Soe Model RA.130A)Somersel (Seo Model RA-162)	515. 518	
	515. 516 (Ch. 120056).. 26-11	
Stratrord (See Model RA-105A)	${ }^{517(\mathrm{Ch}}$ Model 120010$)$ (See	
	518 ……......... 8-	
Strathmore Model RA.-117-As	519 (Ch. 120030)	
	520 (Ch. 120000, 120029) 2	
Sumter Model RA.117.AIISee ModelLAA 117 A	${ }_{521}(\mathrm{Ch} .120013,120031)$	
	523 524	
	527 (Ch. 120019 Tel. Rec.	
	${ }_{528}$ (Ch. ${ }^{1200381}$. ...) $21-$	
	529, $529-9$ (Ch .120028$).$	
Wakefield Model RA.165-83		
	531, $532,533, \ldots \ldots . .0$, 11	
Wellingon (see Model RA. (0.4A)	${ }^{534}$ (Ch. 120007)...... 27	
Westerly Model RA-112.A2, -AS (See Model RA-112A)		
	${ }_{536}^{536}$ (Ch. 120036)...... $21-14$	
Westbury	${ }_{537}^{5364} \ldots \ldots \ldots \ldots \ldots \ldots{ }^{24}$ 23-1	
	538 (ch. i2005i) isee	
Medel RA. $109 \mathrm{~A} . \mathrm{FAS}$)	Model 549 -Set 26.12)	
Westwo ${ }_{\text {(See Model }}$ RA-IIOA)	539 9-13	
	${ }_{541}^{5404}$ (Ch. 120042)..... ${ }^{20} 16$	
Whee Model RA-105A)	542 (See Model ${ }^{\text {a }}$ (${ }^{\text {a }}$	
Whithall II	521-Set 7-13)	
(See Model RA-130A)	543, 544 (Ch. 120046).. 19-	
	$545(\mathrm{Ch} .120047)$ 1el. Rec. Photofact Servicer	
	547A (Ch. 120050) 25-13	
Wimbledon Model RA-162-B6	${ }_{548}$ (Ch. 120051) ${ }^{30}$	
	549 (Ch. 120051)...... 26	
Winslow (See Model RA-109A.FAS)	550 (Ch. 120006) (See Model 512-Set 9-12)	
Winslow Model RA-109-A1, -AS (See Model RA.109a)		
duosonic	${ }_{553 \mathrm{~A}}^{552} \cdots \cdots \cdots \cdots \cdots \cdots{ }^{20}$	
K3, K4 19-16		
	5578 (Ch. 1200488).	
drnavox		
	${ }_{563}$ (Ch. 1200638)..... 73-4	
3-P-801 \ldots.......... 36-3	564 (Ch. 120027) (See Model 540A-Set 20.101	
eca	$565 \text { (Ch. 120018B)..... 70-4 }$	
101 (Ch. AA).......... 1-25	566 (Ch. 120051) (See Model 549-Sel 26-12)	
105 ¢................ 16-11	567 (Ch. 120016$)^{(55 e 8}$	
106 7-10	567 (Ch. 120042) (See	
	Model 540A-Set 20.10)	
${ }_{131} 121$ a............... ${ }^{16-12}$		
132 45-9	${ }_{570}$ (Ch. 120064)...... 97-3	
${ }_{204}^{201}$............... 32-5		

FIRESTONE-Cont.
No. 5.5-9001 4.A. 26 (Code
$307-6-9030-A)$

$$
\begin{aligned}
& \text { 4.A-31 (Code } \\
& \text { 4o. } 177-5-4 \mathrm{~A} 3 \text {) } \\
& \text { 4-A-37 }(\text { Code } 177-5-4
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \text { No. 177.5-4A31) } \\
& \text { 4.A.37 (Code 177-5-4A37) } 113-20 \\
& 4 \cdot A-41(\text { Code } 291-7 \cdot 576) .52-8
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4.A. } 37 \text { (Code 177-5.4A37) } 13-7 \\
& 4 . A-41 \text { Code 291.7.576). } 52-8 \\
& 4 \cdot A \cdot 42 \text { Code }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4-A-60 (Code } \\
& \text { No. } 307-89047 \text { A) ... } \\
& \text { 4.A-61 (Code }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4.A.61 (Code } \\
& \text { No. } 332-8.13712 \mathrm{~T} \text {). } \\
& \text { 4.A. } 62,4-\mathrm{A}-63 \ldots . .
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4.A. } 62, \text { 4-A-63 } \\
& \text { 4- }-64, \\
& \text { 4-A. }-65 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& 48-7 \\
& 67 \text { —10 } \\
& 68-9
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4-A-66 (Code } \\
& \text { No. 177-8-4A66) } \ldots \ldots \\
& \text { 4-A-68 (Code }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4-A-68 (Code } \\
& \text { No. 332.8.143653) ... 53-11 } \\
& \text { 4.A. } 89 \text { (Code }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4-A-69 (Code } \\
& \text { No. 155-8-B5) } \\
& 4-A-70
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4-A. } \\
& 4-\mathrm{A}-78, \\
& 4-\mathrm{A}-85
\end{aligned} \text { 4-A-79}
$$

$$
\begin{aligned}
& 4-A-85 \\
& 4 \cdot A .86
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4.A. } 86 \\
& 4 . A-86 \text { (late) } \\
& 4 . A-87
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4.A- }-88 \\
& 4 \cdot \mathrm{~A} \\
& 4 \cdot \mathrm{~A}-89
\end{aligned}
$$

$$
\begin{aligned}
& 4-A-89 \\
& 4-A-92 \\
& 4 \cdot A-95
\end{aligned}
$$

4-A-98 (See Model
4.A.87-Set 119-7)
4.A-97, 4-A-98

.... 147-5
$361{ }^{5} 181$ -
8

4-A-112 (See Model

4-B.1 (Code 7.6-PM15).

4-B.6 (Code No. 177.7-PM18) 4.B.58

$4-\mathrm{B}-58$
$4-8.60$
$4-8.81$
$4-8.82$
$4-8.67$
$\begin{array}{lll}\text { 4-C-5 (Code } 291.7-574) \cdots & \text { 33- } \\ \text { 19- } \\ & 17\end{array}$
4 - -1.13 iCode

4.C.20-2.CSI-U) 185-7 ${ }^{120-5}$
13.G.3 Tel. Rec.

3-G.4 (Code
$347-9.249 \mathrm{~B}$) Tel. Rec.. 73-5
291.9.651) Tel. Rec... 83-3

13-G-33 Tel. Rec...... 108-6
13.G-44, 13-G.45 Tel. Rec.
13.G.46, 13-G-47

Tel. Rec.
$13 . G .48$ Tel. Rec..........140-5
143 -6
13-G.49, 13-G.50 Tel. Rec
13 -G. $51,13-\mathrm{G} .52$ (Code
3-G.1.9202A, AA, B,
3071 Tel. Rec..........193-4
13-G. $53,13-\mathrm{G}-54$,
13.G. 55 Tel. Rec

13.G-107.13-G-108 (Code
$105-2-700140$ Tel. Rec. 197-6

13-G.109, A Code
105-2.700100, 105-2-
700104) Tel. Rec..... 197-6
$13-\mathrm{G}-110$ (Code 334-2.

MS29A) Tel. Rec...... 18
13-G.110A (Code 334-2-
ms3iCA) Tel. Rec. (Also
see Prod. Chge. Bul.
60 Sel 194-1)......182-5
13-G-114, A (Code
105-2.8170) (Ch. 817)
Tel. Rec.
13-G-115, 13-G-116 (Code
334-2-MS3ICA) Tel.
Rec. (Also see Prod.
Chge. Bul. 80 -
Set i94-11182-5
Set 194-11
105-2-81701 Ch. 8171 1
Tel. Rec. 13 -G-119: 13 -GG-120
(Code 334.2 -MS31CA)
(Code 334.2-MS31CA)
Tel. Rec. (Also see
Prod. Rec. Chge. Bul. 60 -
Prod. Chge. Bul. 60-
Set $194.11, \ldots182-5$
13-G-122 (Code
105-2.70014) Tel. Rec. 197-6
3-G-124 (Code
$105-2-82000$) Tel. Rec.
(See Model 13-G.107-
Set 197-6)
3-G-125 (Code
105.2.81700) Tel. Rec.
(See Model 13-G-107-

FLUSH WALL

FORD

GF890, E (OA. 18805-B). . 109—5
M.1A (OA.18805.A1) 1 (See

Model M-1-Set 40-4)

GENERAL ELECTRIC-Cont.	GENERAL ELECTRIC-Cons.	GENERAL ELECTRIC-Cont.
12 KI Tel. Rec.......... 95A.6	2112 Tel. Rec. 196-3	57
12 TI Tel. Rec. 96-4	21 T 3 Tel, Rec. (See	752, 753123 16
12T3, 12T3B, 12T4, 12 T 4 B	Model 21 Tl -Set 194-2)	754 167
Tel. Rec. 125-7	21T4. 21 T5 Tel. Rec.....184-8	755 130-6
12 T 7 Tel. Rec. 99A.5	21 T ¢ Tel. Rec. (See Model	756 167
14 35-8	2171-Set 194-2)	757 (See Model 755
14C102, 14C103 Tel. Rec. 123-4	24Clol Tel. Rec........152-8	Set 130-6)
14T2, 14T3 Tel. Rec.... 123-4	41, 42, 43, 44, $45 \ldots \ldots .32$	$800 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$ Tel Rec.
16 Cl 103 Tel . Rec. 123-4	50 ${ }^{7-16}$	(See Model 805
16C110, 16C111 Tel. Rec. 123-4	60, 62 36-9	Set 78.7)
16 Cl 13 Tel . Rec.123-4	64, 65 98-4	801 Tel. Rec.
16C115, 16C116, 16C117	66, $87, \ldots7676-12^{\text {7 }}$	(Photofact Servicer) .- 78
Tel, Rec. 123-4	100,101 6 6-13	802 Tel. Rec........... 914.7
16K1, 16K2 Tel. Rec. ...161-1A	102, 102W 41-8	803 Tel. Rec.......... 97A-4
$16 \mathrm{TI}, 16 \mathrm{~T} 2,16 \mathrm{~T}, 16 \mathrm{~T} 4$,	103, 105 6-13	805, 806, 807, 809
Tel. Rec. 123-4	106 8-14	Series Tel. Rec...... . 78
$16 \mathrm{TS} \mathrm{Tel}. \mathrm{Rec}. \mathrm{(See} \mathrm{Model}$	107, 107W 41-8	810 Tel. Rec. 53-12
16T4-Set 123.4)	113 51-7	811 Tel. Rec. 63-9
$17 \mathrm{C} 101,17 \mathrm{Cl} 102 \mathrm{Tel}$. Rec. 123-4	114, 114W, 115, 115w 41-8	814 Tel. Rec............ 69-9
$17 \mathrm{Cl} 103,17 \mathrm{Cl} 104$.	118, 119M, $119 \mathrm{~W}$. 39-5	815 Tel. Rec. 974.5
17 Cl 05 Tel . Rec.	123, 124 97-7	817 Tel. Rec............ 78-7
(Also see Prod. Chge.	131 (See Model 118-	818 Tel. Rec............ 954-7
Bul. 32-Set 158.11...141-6	Set 39-5)	820 Tel. Rec.
$17 \mathrm{Cl} 107,17 \mathrm{C} 108,17 \mathrm{C} 109$	135, 136 81-8	821 Tel. Rec..... 78 7-7
Tel. Rec. \|Also see	140 30-10	830 Early, Tel. Rec...... 81-9
Prod, Chge. Bul. 32-	143 75 759	835 Eerly, Tel. Rec...... 81-9
Set 158-1]141-6	145 60-13	840 Tel. Rec... 81-9
17C110, 17C111 (Early,	150 56-11	901 Tel. Rec. 97 A. 5
D.' \& "W' Versions)	160 56-12	910 Tel. Rec........... 97A.5
Tel. Rec. 180-5	165	GENERAL IMPLEMENT
$17 \mathrm{Cl12}$ (See Prod. Chge.	$180 ~ 20-11 ~$	
But. 32-Set 158.1 \&		
$\begin{aligned} & \text { Model } 17 \mathrm{Cl} 03-\mathrm{Set} \\ & (41-6) \end{aligned}$		GENERAL INDUSTRIE5 (5ee
17Cli3 Tel. Rec. 166-10	210, 211, $212 \ldots . . .$. 51-8	Changer and Recorder
$17 C 114$ Tel. Rec. (See Prod.	218, $218{ }^{\prime \prime} \mathrm{H}$ '121-5	
Chge. 32-Set 158.1 \&	219, 220, 221 4-1	GENERAL INSTRUMENT
Model 17Cl03-Set	226 91 -5	(5ee Record Changer Listing)
141.6)	230 (See Kaiser-Frazier	
17C115 Tel. Rec..... . 166-10	Model 200001-	GENERAL MOTORS CORP.
$17 \mathrm{Cl17} \mathrm{Tel}. \mathrm{Rec}. \mathrm{(See}$	Set 35.13)	
Madel 17C113-Set	250 4-13	2233029 93-6
186-10)	254 32-9	
17C120 Tet. Rec. 166-1	260 15-13	general televis
17 Cl 125 Tel. Rec. (See	280 23-10	1A5, 2A5, 3A5, 5A5
Prod. Chge. Bul. $64-$	303 18-19	Ch. 1-1] 1-21
Set 201.18 Madel	304 32-10	4B5 27-11
21C201-Set 194-2)	321 ${ }^{3-26}$	585G, 5B5Y 27-12
1711, 1712, 1793 Tel. Rec.		9AS 39-6
(Also see Prod. Chge.	326, 327 30-11	986P 36-10
Bui. 32-Set 158.1\| . 141 - 6	328 84-7	14A4F 3-21
1714, 1715, 17 T (Tel, Rec.	329, 330 (See Model 324 -	1545 (Ch. 1-1) 1-21
(See Prod. Chge. Bul.	Set 64.7)	17A5 5-22
32-Set 158.1 \& Model	354, 355 33-9	19A5 (Ch. 1-1)......... 1-21
17C103-Set 141-6)	356, 357, 358 37-6	2144 12-14
17 T 7 Tel. Rec. (See Model	376, 377, 378 45-11	22ASC, 13-19
17C113-Set 141-6)	400, 401 118-8	2346 14-14
17 T10 Tel. Rec....... 196-3	404, 405 121-6	2486 37-8
19C101 Tel. Rec........ 99A.6	408 116 -6	25B5 26-15
20¢105, 20¢106.	409 176 17 4	2685 29-11
Tel. Rec. 176-3	410 121-6	27C5 36-11
20 Cl 107 Tel. Rec. (See	411 $118{ }^{18-8}$	
Prod. Chge. Bul. $64-$	412 189-9	GILFILLAN
Set 201-1 \& Model	414, 415, 416175-11	56A, 56 B . ${ }^{\text {c......... } 1-27}$
21 201-Set 194.2)	417 16-15	$568 \mathrm{Cl}, 56 \mathrm{BCR}$ (See
20C150, 20C151 Tel. Rec. 153-6	422, 423 154-5	Model 56A-Set 1.27)
2012 Te1. Rec. 176-3	430 175 1 11	56C. 560 1-27
21 C 200 Tel . Rec. 176-3	500, 501 98-4	S6E (See Model 56A-
$21 \mathrm{C} 201,21 \mathrm{C} 202 \mathrm{Tel}$ Rec.	$502 \ldots35-9$	Set 1.27)
\|Also See Prod. Chge.	505, 506, 507, 508, 509 . 98-4	58m, 58W 45-12
But. 64-Set 201.1) . 194-2	510, 511120-7	66A, 66AM 8-16
21 C 204 Tel . Rec. (Also See	510F, 511F, 512F, 513F. . 143-7	66B "The Overland".... 8-17
Prod. Chge. Bul. 64-	514 198-7	660. 66 DM 8-16
Set 201-11 194-2	515F, 516F, 517F, 518F . 143-7	66P, ${ }^{68 \mathrm{PM}}$
21 C 206 Tel. Rec. (Also See	521, 522 114-5	"The EI Dorado" 9-15
Prod. Chge. Bul. $64-$	521F, 522 F 143-7	68B-D 46-10
Set 201-1) 194-2	530 98-4	685 46-11
21 C 208 Tel. Rec. (Also See	535 151-7	68.48 61 - 10
Prod. Chge. Bul. 64-	542, 543 …........ 198-7	86C, 86P, 86 J (86 Series) $\begin{aligned} & \text { 26-16 } \\ & 59\end{aligned}$
Set 201.1) 194-2	547, 547, 548, 549, ...191-9	108.48 59-10
$21 \mathrm{C} 208-\mathrm{U}$ Tel. Rec. ${ }^{\text {See }}$	551, 552 201-4	
Prod, Chge. Bul. 64 -	600 109 -6	$18-20$
Set 201.1 \& Model	601, 603, 604 115-3	
21 C 214 Tel . Rec. (Also See	605, 606 145-6	6D1 20 20-13
Prod. Chge. Bul, 64-	607, 608 (See Model $605-$	6P1 ….......... 20-12
Set 201-11 194-2	Set 145-6)	601 20-13
21 Tl Tel. Rec. (Also See	610. 611 147-7	
Prod. Chge. Bul. 64-194-	614, 615 199-6	
Set 201.11 194-2	650 101-3	62C 19-19

How to obtain a sample PHOTOFACT Folder

Service Technicians who have not yet enjoyed the advantages of the world's finest Radio-TV service data, may obtain a Free Sample PHOTOFACT Folder and see for themselves how they can save time and earn more. To get your free sample, simply state the PHOTOFACT Set Number and the Folder Number (not applicable to listings bearing suffix letter "A" or an asterisk *). Mail your request on your business letterhead (or enclose your business card) to:

HOWARD W. SAMS \& CO., INC
Department P
2201 East 46th Street
Indianapolis, Indiana
This offer is limited to one sample Folder. (PHOTOFACT Distributors do not stock sample Folders.)

FOR

WEW INSTALLATIONS

Nothing compares with the radically new WARD all-channel "TROMBONE" Antenna. It gets the best in VHF and UHF . . . now and in the future. Protects your customers against channel changes and new stations ... Delivers high gain - up to 16 db - on all channels -2 to 83 .

WARD'S "TROMBONE" is The Antenna for every new installation.

WARD'S "CAN-CAN" auxiliary Antenna is the answer to the demand for UHF through the medium of an already-existing VHF Antenna. Simply add the "CANCAN" to the mast of the present antenna and you have complete UHF-VHF reception. Small, light weight, streamlined, "CAN-CAN" gives high gain on all UHF channels. Also can be used for a new UHF installation.

dOUBLE ANTENNAS

WARD'S ingenius "DIPLEXER" is the complete solution of the problem of two lead-in lines, where two Antennas are used. Just connect the lead-in lines to the "DIPLEXER" and extend one single line to the receiving set. It solves the entire matter just that easily.

Leak

TL/12 166-12	
RC/PA/U	166-12
lear	
Learadio	
Chassis R-971	51-11
RM.402C (Learavian)	42-15
561, 562, 563	1-26
563, 565BL, 566, 567, 56B	9-20
1281.PC (Ch. 78)	49-11
6610PC, $6611 \mathrm{PC}, 6812 \mathrm{PC}$.	$9-21$
6614, $6615,6616,6619$.	3-18
6617 PC	16-22
LEE (See Rayal)	
LEE TONE	
AP-100	16-23
LEWYT	
605	*
615 A	11-13
	42--16
LEXINGTON	
6545	13-20
LIGERTY	
AGK, A6P, $6 K$ 507A	$20-18$ $20-19$

LINCOLN (Auto Radio)
ICH748 (1H-18805)
(See Ford Model ICF743-
(CH-748.1 (11H-18805)...158-5
$2 \mathrm{CH753}(\mathrm{FAA}-18805-\mathrm{A}) .167-7$ 7M1080 (5EH-18805.A).

8BML985ZE (8H-18805)'.83-4
LINCOLN
S13L-8 $\ldots \ldots \begin{array}{r}2-10 \\ \text { LINCOLN (Allied Radio Corp.) }\end{array}$
SA. $110 \ldots$. 5-3
LINDEX CORP. (See Swank) LIPAN (See Supreme) LULLABY (See Mitchell) LYMAN
LYRIC (Also see Rauland) 546T, 546TY, 546
MAGIC TONE 500, 501
504 (Bottle Recciver) 510
900
magnavox
104 Series (Ch. CT301
thru CT314) Tel. Rec...161-4 Chossis AMP-101A,
AMP-101B 43-12 Chassis AMP Chassis AMP-1iTA,
$41-10$
$68-10$
Chassis CR-188 (155B
Regency Symphonyl ... 18-2
Chassis CR190A, CR190B. 46-1
Chassis CR-192A, CR-192B 41-1 Chassis CR-197C
Chossis CR-198A, B, C
(Hepplewhite, Modern
Symphony1.
Chassis CR.199
Chassis CR-200A, B, C, D.
Chassis CR-207A, 8, C, D. 44-1
Chassis CR-208A, CR-208,
Chossis
Chassis CT-214, CT-218,. 68-10
Tel. Ree. Re. 219. CT.220. 62-13
Tel. Rec.
Chassis CT-221 Tel. Rec.
Chas
Chos
Chas
Chas
Chass is CT-235 Tel. Rec.. 93A-9
Chassis CT-236 Tel. Rec. 97A-8
Chass is CT-236 Tel. Rec.
Chass is CT237, CT-238 Tel
Rec. (See Set 95A-9 an
Ch. CT219-Set $82-7$)
Chassis CT239 Tol. Rec.... 93A
CT246 Tel. Rec. .
Chassis CT24, CT248,
CT249 Tel. Rec.....
Chassis CT250, CT25i
Chassis CT252, CT253
Chassis CT255 Tel. Rec.
Chassis CT257, CT258,
CT259, CT260 Tel. R
Chassis CT262, CT263,
CT264, CT265 Tel. Rec. 155-10
Chassis CT266, CT267. . 131-1A
CT269 Tel. Rec......131
Chassis CT-270, CT. 271 ,
CT.272, CT. 273, CT-27
CT-272, CT-2 273, CT-274,
CT-275, CT-276, CT-277,
CT. 278, CT-279, CT-280,

 Chassis CT287, CT-288 Tel.
Rec. $131-1 \mathrm{~A}$
Chossis CT289 Tel. Rec...1555-10 Chassis CT290 Tel. Rec
Chassis CT2
Tel Rec

MAJESTIC

Set 27-18)
7C432 (Ch. 4706)
7 C 447 (Ch. 4707) See Model
7C432-Set 14-171
7FM877, TFM888

(Ch. 7Cllo)	56-14
7JK777R (Ch, 4708R)	27-18
7 lt 866 (Ch. 7C25A)	60-14
7 P 420 (Ch. 4705)	26-17
75433, 75450, 75470	
Ch. 4702, 4703)	22-19
7TV850, TTV852 (Ch.	
18C90, 18C911 Tel	
Rec.	
7YR752 (Ch. 7B04A)	29-13
7YR753 (Ch. 7B09A-1	

MAJESTIC-Cont
21040, 21041 (Series 108)
Tel. Rec. (See Model $70-$
lel. Rec. (See Model 70-
Set $153-8$ ond Prod. Chge.
Bu1.
21050,21051 (Series 108
Tel. Rec. (See Model $70-$
Set 153.8 and Prod Chge.
Set. 43.8 and Prod. Chse 177.11
Bul
$21 F 86,21$ F87 (Series 108)
Tel. Rec. (See Model $70-$
Tel. Rec. (See Model $70-$
Set 153.8 and Prod. Chge.
Bul. 43-Set 177-1)
21F88, 21F89 (Series 108.5)
Tel.
Tel. Rec. (See Model $70-\mathrm{S}$
Set 153.8 ond Prod Chge.
Bul. 43-Set 177.11)
2120. 21 T 21 (Series 108)
Tel. Rec. (See Model 70
Set $153-8$ and Prod Chge.

Set $153-8$ and Prod Chge.
Set $153-8$ and Prod Chs
Bul. 43-Set 177.11
22 Thru 35 (Series 106
22 Thru 35 (Series 106.5)
Tel. Rec. See Model $70-$
Set 153.8 and Prod. Chge.
Bul. 43-Set 177-1)
Bul, 43-Set 177-1)
70,72 , 73 (Series 106)
Tel. Rec. (Also see Prod.

$177-$
80 FMP
$153-8$
$137-6$
$80 F M P 2,121 \mathrm{~B}(\mathrm{Ch}, 99)$
$120,121,12$
120, $121,121 \mathrm{~B}(\mathrm{Ch}, 99)$
Tel. Rec. (Also See Prod.

$141141 \mathrm{~B}(\mathrm{Ch}, 100)$
$141 \mathrm{C}(\mathrm{Ch} .101) \mathrm{I} 22$.
$142 \mathrm{~B}(\mathrm{Ch} .100) \mathrm{Tel}$.
142B (Ch. 100) Tel.
Rec. 127
143 Tel. Rec. 37 Ped.
Chge. Bul. 37 Sel $166-2$
and Model 170A-Se1
127.7 .
160, 1608, 162, 163
(Ch. 101) Tel. Rec....127-7
170 (Ch. 10r) Tel. Rec.. 127-7
173 Tel. Rec. (See Prod.
173 Tel. Rec. (See Prod
Chge. Bul. $37-$ Sei
160.2 \& Model 170A-

700,701 (Series 106) Tel.
Rec. (Also see Prod. Chge.
Bu1, 43-Se1 177.1)..153-8
$712,715,717,718,719$
$712,715,717,718,719$
(Series 106) Tel. Rec
(Sieries 106) Tel. Rec.
(Also see Prod. Chge
Bul, $43-\mathrm{Se} 177-11$. 153 -8 8
$800,801,802,803,804$
(Series 108) Tel. Rec
(Also
(Also see Prod. Chge.
Bul. 43-Set 177-1) 153-8
$02,903(\mathrm{Ch} .103)$
902. 903 (Ch. 103)
Tel. Rec. 127-7

$1042, G, G U, T$ Tel. Rec.
(See Model 12C4-
(See Model 12C4-
Set $108-7$)
$1043, G, G U, ~ T e l . ~ R e c . ~$
Set 108-7)
1142,1143 Tel. Rec. (See
Model 12C4-Set (See
1244, G, GU, T, TX
1244, G, GU, T, TX
Tel. Rec. (See Mod
12 CA 4 Get 108.7)
$1245, \mathrm{G}, \mathrm{GU}, \mathrm{T}, \mathrm{TX}$
Tei. Rec. (Soee Model
12 C 4 -Set $108-7$)
1328 Tel. Rec. (See Model
$12 \mathrm{C4}$ Set 108.7)
1400, B (Ch. 100) Tel.
Rec. (Ch. 105) Tel. Rec 127-5
1401 (Ch.
(Also See Prod. Chge.
Bul. 37-Set 166.2)...127-7
54ठ, G, GU,T Tel. Rec.
1546 , G, GU, T Tel Re
(See Model 12 CA -
Set Model
$1547, G, G U, T$ Tel Rec
(See Model $12 \mathrm{C4}$
Set 108-7)
Set $108-7$)
1548, G. GU, Tel. Rec
(See Model 12C4-
Set 108.7)
$549, \mathrm{G}, \mathrm{GU}, \mathrm{T}$ Tel. Rec
(See Model 12 CA -
Set 108.7)
$1600,1600 \mathrm{~B}(\mathrm{Ch} .101)$ 127,7
1605, 1605 B (Ch. 102
1610. Rec.

1610,16108
Tel. Res
1646, 1647. $16 . .$.
127-7
.127-7
Tel. Rec. (See Model
1671,1672,1673,167
1675 Tei. Rec.
(See Model G 414) 133
1700 C Tel. Rec. 1 See Prod
Chge. Bul. $37-$ Set 166.
and Model 170A-Set and Mo
127.71
1710 (Ch. 101) Tel.
(See Model 170A)
(See Model 170A) 127
1710 C (Ch. 101) Tel. Rec.
See Prod. Chge.
$37-$ Set $156-2$ and Model
$17 \mathrm{DA}-\mathrm{Set} 127.7)$
1720, 1721 Tel. Rec. (See
Prod. Chge. Bul. $37-$
Set $166-2$ and Model
$1704-$ Set
1900 Te . Rec.
1974 , 1975 Tel . Res
1974, 1975 Tel. Rec.
(See Model G-414)
2042 T , 2043T Tel
2042T, 2043T Tel. Rec.
(See Model 12 C 4 -
$2546 \mathrm{~T}, 2547 \mathrm{~T}, 2549 \mathrm{~T}$ Tel.
Rec. (See Model 12 CA -
Set 108.7)
Ch. 5801 A
(See Model 5AKZ11)
Ch. SBOSA

IV-101 (Below Serial No.
200,000) Tel.
UHF Conv.......... 194
TV-101 (Serial No. 200,000
and Abovel
Tel. UHF Conv.194-8
MANTOLA (B. F, GOodrich Co.)
MANTOLA (B. F, Goodrich Co.)
R630-RP
R630.RP
R643-PM
-Set
See Model
R643W Set $4-29$

$R 655 \mathrm{~W}$ (Ch. No, 501 APH)
R662, R662N
R664, R74.PV
R604.W W...............
R.743.W (See Model
R643W-Set 4.29)

R-75343 (See Model
R-76143-5et $25-17$)
$24 \mathrm{~B} 6-5 \mathrm{e}$
R-76162 \ldots.
R76262 (Fact. No.
F .7262 .17
F .78162
40-10

2486
$92-502$
4- 29
$9-22$
3 - 5
$8-20$
$3-33$
23-13
$92-502$ (See Model Rólow 25
92.503, 92.504 (See Model

RO54PM-Set 3-5)
$92-505,92-506$ (See
R 664 PM-Ser $23-131$
$92.520,92.521,92.522$
92.529

MARKEL
(See Record Changer Listing)
MARK 5IMPSON (See Masco) MARK
MASCO

IMR
JM- 5 (Master station).

$\substack{\text { Mas. } \\ \text { MA. } 10 \\ \text { MA } \\ \text { and }}$

MA

MA-25P MASN (See Model
MA. 25 N-Set 43 14)
MA. 35
MA-35N
MA. 35 RC
MA. 50
MA-35RC
MA-50
MA- 50 N
ISee Mode.
MA-5NO-Set $45-15$

MA-50NR	53-14
MA. 80	119-9
MA-75	28-22
MA. 75 N	52-27
MA-77, MA-77R	190-7
MA. 121	24-21
MA-125	188

NEWEST SELLER

 CDP

 CDP COMPOUND COMPOUND DIFFRAGION DIFFRAGION PROJECTOR

 PROJECTOR}
Public Address Loudspeaker System for kerfect VOICE PENETRATION AND FULL RANGE MUSICASTING

CDP is so advanced in concept . . . so efficient in performance...that conventional PA reentrant horns are now obsolete by comparison! The CDP COMPOUND diffracTION PROJECTOR* provides a loudspeaker system with peak-free response $\pm 5 \mathrm{db}$ to $11,000 \mathrm{cps}$... delivers $21 / 2$ octaves more musical range than usual PA units of even larger size. Speech articulation index is at least 20% superior. Polar distribution pattern exceeds 120° at all frequencies up to $10,000 \mathrm{cps}$. Diffraction principle, high sensitivity and power handling assure much greater sound dispersion, penetration and coverage with fewer units and at far less cost. Greatly improves public address-in all types of applications-indoors and outdoors. Get the amazing facts about CDP nou:

Compare POLAR PATTERN

Model 848 Compound Diffraction Projector* Loudspeaker System Conservatively rated at 25 watts. 1ó ohms impedance. Finished in attractive gunmefal gray. Twa mounting positions for hang-up bracket. Projectors can be installed horizontally, or vertically for ougmented dispersion. Dimensions: $101 / 2^{\prime \prime}$ wide at mouth, $201 / 2^{\prime \prime}$ high of mouth, $20^{\prime \prime} \$ 5900$ Send for Free Bulletin 195

ElectroWoics

ELECTRO-VOICE INC.,
Export: 13 East 40 th Si., N. Y. 16, U, S. A. Cables: Arlab

FOR LIMITED TIME ONLY WHILE THEY LAST!
This free offer is available only while special Dispenser stock lasts. Check with yaur E-V Distributar.

MASCO-MOTOROLA.

MOTOROLA-COnt.
17F12D (Ch. T5-401) Tel.
Rec. (For TY Ch. Only
see Prod. Chge. Bul.
29-Set 183-1 and Model
17F13, BiCh. TS-395A, 02 and Radio Ch. H5-3191 ifor TV Ch. soe Sel 192.6, For Radio Ch, see 17F13BC (Ch. TS.408A and 17F13BC (Ch. TS-408A and
Radio Ch. HS-319) Tel. Rec. For TY Ch. see Model 21 Cl -Set 191.13, for Radio Ch. see Model 17F12
Set 171.8)
17F13C (Ch. T5-408A and Radio Ch. HS-319) Tel. Rec. (For TV Ch. see Model 21 Cl -Set 191.13, for Radio Ch.
see Model 17 F 12 -Set see Model 17F12-
$171-8)$ TSA, 17KIBA (Ch TS-95) Tol. Rec......
17K1BE, E (Ch. TS.172) Tel. Rec. (See Model
14 K 1 BH $17 \mathrm{~K} 2 \mathrm{BE}, \mathrm{E}$ (Ch. TS-172) $7 \mathrm{K2BE}, \mathrm{E}$ (Ch. TS-M2)
Tel. Rec. (See Model 14 KI 1 BH -Set 121.10) $17 \mathrm{K3}, 17 \mathrm{~K} 3 \mathrm{~B}$ (Ch. TS-1181 Tel. Rec.
17K3A, 17 K 3 BA (Ch. TS-89) Tel. Rec
$17 \mathrm{K4A}(\mathrm{Ch}$. TS -95) Tel. Rec. 17K4E Rec. TS-172 Tel Rec. (See Model
$14 \mathrm{~K} 1 \mathrm{BH}-\mathrm{Sel} 12$)
$14 \mathrm{~K} 1 \mathrm{BH}-\mathrm{Sel} 121.10)$
17 K 5 Ch . TS. 1181 Tel
$17 \mathrm{K5}$ (Ch. TS-118) Tel.
Rec. (See Model
Rec. (See model 141.101
$14 \mathrm{~K} 1 \mathrm{BH}-$ Set 12.
17 K 5 C (Ch. TS-174) Te Rec. (See Model $14 \mathrm{~K} 1 \mathrm{BH}-$ Set 121.101 17K6 (Ch. TS-118) Tel Rec. (See Model 14 KIBH Set 121-10 17K6C (Ch. TS-174) Tel Rec. (See Model 14 KIBH -Set 121.101 17K7, B (Ch. TS-118) Tel.
Rec. (See Model) Rec. (See Model
$14 \mathrm{KI} 1 \mathrm{BH}-$ Set $121-10$ $17 \mathrm{~K} 7 \mathrm{BC}, \mathrm{C}$ (Ch. TS -174)
Tel. Rec. (See Model
$14 \mathrm{~K} 18 \mathrm{H}-\mathrm{Set} 121.101$ 17K8, B (Ch. TS.236) Tel. Rec.

17K8A, 8 CA (Ch. TS. 228) | Tel. Rec. |
| :--- |
| 7 K 9. | TKI. RRe. (Ch. TS.228)

17K9A, BA (Ch. Tel. Rec.
17 K 98 C (Ch. TS.221, -A) 17K98C (Ch. TS.221, A) 165-7
Tel. Rec. $159-10$

MOTOROLA-CONS.

MOTOROLA-COnt. 1714C (Ch. TS-174) Tol. Rec. (See Model
$14 \mathrm{~K} 1 \mathrm{BH}-$ Set 121.10) $14 \mathrm{KIBH}-\mathrm{Set} 121.10$)
17 T 4 E (Ch. TS-221. 17T4E (Ch. TS-221, A)
Tel Rec. $2, \ldots$
$17 T 5 A$ (Ch. TS-214)
 Tel. Rec. $\because 7 . \cdots$.
1750 (Ch. TS.236) 159—10 17150 (Ch. TS.236) 165-7 17T5E, F CCh. TS.314A. B . $152-4 \mathrm{~A}$ TS-315A, B) Tel. Rec..167-13 17SSBD, CC, D, (Ch. IS.230)
Tel. Rec. (I........152-4A 17T6BF, F (Ch. TS 228) Tel. Rec.
17TSG (Ch. TS-314A, Bi
17el 17T7. A Ch. TS-325. 165-7 TS.326) Tel. Rec. 171-8 $17 \mathrm{~T} 8, \mathrm{~A}, \mathrm{~B}, \mathrm{BA}$ Ch.
TS. 325 , TS 5261 TS.325, TS-3261
Tel. Rec. Tel. Rec.
1719 (Ch. TS-325A. B).......171-8 17r9 (Ch. TS-325A, B)
Tel. Rec. (See Model
17 F 12 . Sol 171 . 17F12-Set 171.8) $17 \mathrm{IgA}(\mathrm{Ch}$. T5.326A, B) Tel. Rec. See Model
17F12-Set $171-1)$ 17F12-Set $171-8$)
179E (Ch. TS.325A, B) 1719E (Ch. TS-325A, B)
Tel. Rec. (See Model
 1719EF (Ch. TS-401)
Tel. Rec. (See Prod. Tel. Rec. (See Prod.
Chge. Bul. $49-581$ 183.1 and Model 21 FI-
Se: $173-9$) 17 T 10 (Ch. TS-325B) Tel. Rec. (See Model
17 F 12 -Set 171.8) 17110A (Ch. IS-326A, B)
Tel. Rec. (See Model Tel. Rec. (See Mode
$17 \mathrm{Fl} 12-\mathrm{Set} 171.8$) 171100 (Ch. TS-401) Tel, Rec. (See Prod. Chge. Bul. 49-Set 183 and Model 21 FI -Se
173.9) $173.9)$
$1711(C h$
17T11 (Ch. TS-395,-02)
Tel. Rec. 192-............
17TIIC (Ch. TS-408A)
Te1. Rec. (See Mode
21C1-Set 191-13)

17IIIEC(Ch. T5-408A)
Tel. Rec. (See Model 21C11-Set 191.13)
1712, B (Ch. TS.395A, -02) Tel. Rec.
17 T 12 C Ch. TS. C 17T12C (Ch. TS-408A) Tel. Rec. (See Model
21 Cl -Set 191.131 1712W ICh. T5-395A, -02) Tel. Rec........192-0 17T12WC (Ch. TS-408A Tel. Rec. (See Mode)
21 C 1 -Set $191-13$)

IMPORTANT

Quick, Easy PHOTOFACT Filing Method

The preferred 30 -Second method for filing PHOTOFACT Folders
Your PHOTOFACT Folder Sets come to you in convenient envelopes. When you remove a Set from its envelope, you will find the Folders already arranged in proper filing order, and preceded by an Index Separator. This Separator lists each receiver covered in the Set, and has an index tab showing the Set number. To file, here's all you do:

1. Remove the Index Separator and the Folders from the envelope. The Folders and manila TV Jackets are already arranged in proper numerical filing order except the TV folders, which are placed last in the Set.
2. Open your binder and place the entire contents, taken from the envelope, behind the preceding Set of folders, laying aside the TV folders.
3. Now, insert the TV folders in their respective manila jackets and your filing is complete.

To locafe the folder you wanf, refer fo instructions

on the first page of this index lisfing.
ALWAYS REFER TO THE PHOTOFACT INDEX

MOTOROLA-COnt.

Motorola-Cont.	motorola-Cont.
$52 \mathrm{CW} 1,52 \mathrm{CW} 2,52 \mathrm{CW} 3$,	501
52 CW 41 Ch	501
$52 \mathrm{H} 13 \mathrm{U}, 52 \mathrm{H} 14 \mathrm{U}$	
(Ch. Hs.313) -...... 176-6	509 (See Model 508-
	Set 39-13)
U 52 Mz U'	
	603 (See Mopar Mode 603-Sel 65.9)
52R11, 52R12, 52R13,	604 (See Mopar Modal
52R14, 52R15, 52R1	(
H5-289)	605 (Ch. AS-15)
52R11, $52 \mathrm{R12}, 52 \mathrm{RI} 3$,	606 (See Mopor Mod
HS 2889 A) (5eo	607 (See Mopar
Model 5211-Sel 188.111	(07-Set 170-11)
R16A (Ch. HS-317) . 178-7	609 (see Mod
$52 \mathrm{R1IU}, 52 \mathrm{R12U}, 52 \mathrm{R13U}$,	700
52R1AU, 52R1su,	701 137
52R16U (Ch. HS-315). .177-11	702 (Ch. BT. 2 and P6.2). 197
$55 \mathrm{Fl1}$ (Ch. HS. 30)	705 (Ch. AS-16)
$55 \times 11 \mathrm{~A}, 55 \times 12 \mathrm{~A}, 55 \times 13 \mathrm{~A}, 2$	708
56×11 (Ch . HS-94) … 28-24	709 (See Model 70
$57 \times 11,57 \times 12$ (Ch. HS-60) 28-25	Set 40-12)
58A1, 58A12	800 103-10
(Ch. HS.158) 52-13	
58G11, 38612	802 (Ch. BT-2
(Ch. H5-160)	804 (See M
58111 (Ch. HS-114)	804 -Set 67-12)
58R11, 58R12, 58 R	opa
58R14, 58R15, 58R16 49-14	808-Sat 107.61
(Ch. HS.1160o. 49-14	4 (see Mopar Mod
R1A, $58 \mathrm{Rl2}$	814-5et 137-7)
${ }_{58 R 104}$ (Ch. H5.184) 69-11	Ch. AS-13 (See Model 105)
581104 (ch. H5-184).. 69-11	Ch. As-14 (See Model
58x11, 58×12	Ch. As. 15 [See Model 1
(Ch. HS. 125)	Ch. As. 16 (Seo Model
59 F 11 (Ch. CHS -188) 68	Ch. AS-22 (See Model
	Ch. ET-2 \% W.........197-
591110 591120, $591140{ }^{\text {che }}$	Ch. H5.2 (See Model
(1Ch. H5.187) .7... 78-10	Ch. HS.6 (See Model 5al)
59R11, 59R121, 5913 M ,	Ch. HS.7 (See Model
59R14E, 59R156	65611)
59R16Y (Ch. Hs-167)., 79-10	Ch. HS-8 (See Mode
$59 \times 11,59 \times 121$	${ }^{45812)}$
(Ch. HS 180) 81-11	Ch. HS-15 (See Model 5A
9x21U, 59×2210	Ch. HS. 18 (See Model
(Ch. HS.192) .17...98-6	Ch. Wr 5 . 22
(Soeo Model otl-	$85 F 211$
Set 102.7)	Ch. Hs. 26 (See Model
$62 \mathrm{Cl}, 62 \mathrm{C2}, 62 \mathrm{C} 3$	65 221)
(Ch. H5.299)	Ch. HS. 30 (See Model
62 CWI (Ch. HS -324)	55F11)
	Ch. HS. 31 (See Model
62×110	
$62 \times 13 \mathrm{U}$ (Ch . H 5 -314) 175-14	$0_{5 \text { T21) }}$
$65 \mathrm{F11}$ (Ch. HS-31)..... 6 -19	Ch. H5-36 (See Model
${ }^{65 F 12}$ (See Model 65F11-	HS-30
${ }_{65 F 21}$ (Ch. HS-26) 4-12	
65111,65112 (Ch. H5-7). 8-22	h. H5.38 15 ae Modal
	Q5F33)
(Ch. HS-32) 1-1	Ch. H5.39 (See Model
65 $\times 11 \mathrm{~A}, 05 \times 12 \mathrm{~A}$.	95531
	Ch. HS-50 $55 \times 11 \mathrm{~A})$ (5 ee Mod
67F11, 67F12, 67F12B,	Ch. H5-52 (See Model
(Ch. Hs-63) ….... 31-20	85 K 2
67F14 (Ch. HS.122).... 55-15	$\mathrm{Ch} . \mathrm{HS} .58$ (See Model
67F61BN (Ch. HS.69).... ${ }^{\text {44-14 }}$	${ }^{67 \times 1)}$ HS. 59 (500 Model
67111 (Ch. HS-59) 31-21	Ch. H5.59 (Seo Model
$67 \times 11,67 \times 12,67 \times 13$	67411,
(Ch.	5. HS S 60 (5
$87 \times \mathrm{Mm21}$ (Ch. CH -64).	57×11
	$\mathrm{Ch}_{5 \text { ST }}$ HS 62 (See Model
68111 (Ch. HS-119) … 45-18	Ch. HS-62A (See Model
${ }^{681111}$ (Ch. HS -144) 54-14	
68×11, 68×12 (Ch.	Ch. HS-63 (See Model
H5-127). $68 \times 11 \mathrm{~A}$,	67F11) HS 64
69811 (Ch. HS. 175$) \ldots \ldots$. . $76-15$	${ }^{\text {Ch. HSMM21) }}$ (See Model
69x11, 69×121	Ch. H5-69 (See Model
${ }^{(C h .}$. H5-181) $\ldots \ldots \ldots$. $82-9$	
$72 \times \mathrm{M} 21$ (Ch. H5.303) ...176-7	Ch. Hs-72 (Sae Model
75 F 21 (Ch. HS-91) 19-21	47811
$75 \mathrm{~F} 31(\mathrm{Ch} . \mathrm{HS}-36)$.	Ch. H5-87 (See Mod
77 Fm 21 (Ch. H5-89) \cdots. $29-18$	Ch. 7 FMP 211 (See Model
	Ch. HS.91 (See Model
77FM $22 \mathrm{WM}, 77 \mathrm{FM} 23$	5F21)
(Ch. HS.97) 3 ,, 33-13	Ch. H5.94 (See Model
	Ch. ${ }^{56 \times 11)}$ (5. 97 (5ee Model
78F11, 78 FIIM (Ch .	${ }_{\text {ITFM } 221}$
HS.150), 78 FL 2 M (Ch. HS. 155) 56-17	Ch. H5-98 (See Modal 76F31)
$78 \mathrm{M} 21,78 \mathrm{FM} 21 \mathrm{M}$ (Ch .	Ch. HS-102 (See Model
	77×421
	Ch. HS-108 (See Model
78FM21R (Ch. H5.178). 88-7	Ch. HS.113 (See Model
(Ch. HS.168) 85-9	${ }^{484111)}$
	Ch. HS. 111 (See Model
88FM21 (Ch. HS-133).... 54-15	$58 \mathrm{R11}$)
91 FM21 (Ch. HS-230A) (See Model 19F1.	
Set 111.9)	Ch. HS. 122 (See Mode!
FM21, A, B, BA	b7F1 4)
(Ch. H5.316A) (S50\%	
$\left.{ }^{95 F 31,955318(C h . ~} \mathrm{HS}-39\right)$	Ch. HS-125 (See Model
95F33 (Ch. HS-38) 19-22	58×11
107731, 1078318, ${ }_{\text {ch }}$	Ch. HS-127 (Soe Model
	Ch. HS S-127A (Sea Model
400 ${ }^{99-10}$	Ch. HS-128 (See Model
	78FM22M)
405 (Ch. A5.13)	Ch. HS-132 (See Model
405 M (Soe Set 21.25 and	Ch. HS-133 (See Model
408 38-12	Ch. HS-137 (See Model
409 Sea Model 40 B -	${ }_{\text {VFlo2) }}$
	Ch. HS. 144 (See Mode 68II)

MOTOROLA-CORt
Ch. TS. 5 (See Model
VKIOI)
Ch. IS. 7 (See Model
Ch. TS. 8 (See Model VF103)
$\mathrm{Ch} . \mathrm{TS} .9, \mathrm{TS} 9 \mathrm{~A}, \mathrm{TS}-9 \mathrm{~B}$,
TS.9C' iSee Model
Ch. TS-9D (See Model
Ch. TS.9E, TS-9E1
(See Model VK106)
Ch . TS-14, A, B, (See
Model 10 VK 12)
Ch . TS. 15 (See Model
Ch. TS-15 (See Model
VT121)
Ch . TS-15C, TS-15CI
Model 12 VK 18 B$)$
Ch. TS. 16. A (Seo Mo
Ch. TS.18, A (See Mode
Ch. TS-23, A, B 15
Model i2vk 11)
Ch. TS.30, A (See Mode
Ch. TS-52 (See Mod
Ch. TS-53 (See Model
12K2)
Ch. TS. 60 (See Model
Ch. TS-67 (See Mod
Ch. TS-74 (See Mode
16K2)
Ch. TS. 88 (See Mode
Ch. TS-89 (See Model
Ch. TS-94 (See
Ch. TS-94 (See Model
iOK2BH)
Ch. TS.95 (See Model
17K1A)
Ch. TS. 101 (See Model
Ch. TS. 114 (See Model
Ch. TS-114A (See Model
(14T3X1) (Seo Model
Ch. ${ }^{14 \mathrm{KS} 1 \mathrm{BH} \text {) } 118 \text { (See Mod }}$
17F1)
Ch. TS-118A, B
(See Model 1713×1)
Ch. TS- 119 , A (See Model

Ch . TS.119C, Cl, D (See
Model 20K3)
Ch. TS. 172 (See Model
Ch. TS-174 (See Model
Ch. TS-214 (See Mode
17T5A)
Ch. TS. 216 (See Model
i4T4)
Ch. TS-220 (See Model

Ch. TS. 228 (See Model
Ch. TS-236 (See Model
$\mathrm{Ch}_{14 \mathrm{P} 2} \mathrm{TS}-275$ (See Model
Ch. TS-292, A, B, (See
Model 21CI)
Model 21 Cl)
Ch . TS-292Y (See Model
21 Cl and TK-19M)
$\mathrm{Ch} . \mathrm{TS}-307$ (See Mod
20K61
Ch. TS-31

Ch Model $21 \mathrm{~T}-324 \mathrm{Y}$ (See
Ch. TS-324Y (See Model
21T4A ond TK-19M)
Ch. TS-325, A, TS-326,
Ch . TS-325, A, TS-326,
(See mode: 17 Fl 2)
Ch. TS. 326 Y (See Models
IFIF 12 and VTK. 17 M)
Ch. TS-351, A, B (
Model 21FI)
Ch . TS. 395, -02
(See Model 17F13)
Ch. TS.400A (See Model
iJTIIE)
Ch. TS-401
iTF12D)
(See Mode
Ch. TS-408A (See Model
Ch. TS-408Y
Ch. TS-408Y (See Models
i IFI 3 C and TK.19M)
17F13C and TK-19M)
Ch TS-410A (See Model
17T13)
Ch. TS.410Y (Soe Mode
iJF13 and TK. 20M)
$17 \mathrm{Fl3}$ and TK-20M)
Ch. TS-501A (Seo Model
Ch. TST3 (Soe Model
21T3)
Ch. TS-501r (See Models
$21 T 3$ and TK- 24 M)

national co.-	OLYMPIC-C	PACKARD-B	Philco-Cont.	Philco-Cont.
SW-54	20 K 43 (Ch. T(20)	1091 Tel. Rec	AT-2288, -HM (Ch. 81,	48.1262
TV-1201 Tel. Rec.	Tel. Rec. …....... 196-9	1181, 1181A 75	Code 123) T	48.1263 ….......... 32
TV. 1226 Tol. Rec. 119-10	$20 \mathrm{kS1}$ ((Ch. TL20)	127	(See Model 53.11824-	48.1264 ${ }^{36}$
TV.1601 Tel. Rec.119-10		${ }_{121291 \mathrm{~V} \text { Tel. Rec. }}$	C. 4608 Set (See Mo	
TV-1625 Tel. Rec. 119-10			C. 4008 (See Mopar	48.1270 - 48.127 .6 ${ }^{42}$
		${ }_{2091} 20012092 \mathrm{Tel}$. Rec...	C. 4608 (Re	
, 1725	21029 Tol. Rec	21012102 Tel. Rec. 123		
Tel. Rec. 145	${ }_{21} 1 \mathrm{~K} 26$ Tel. Rec, $\ldots1818$	2105,' 2105A		$48-1283$
-1729. TV	21127 Tel. Rec. 182	2115, 2116 Cl	C. 490	48-1284
1731,	51.4			dat
		2117 (Ch. 2117)		48-1290
2029, TV.	51.435-W (S00 9.435 V -Set		Model 5109	48-2500, 48-2500-5
TIONAL UNION	752, 752U, 753, 7534	$2291 \mathrm{TV}, 22$	Model 815 -Set 139-8	
13 '.'Com	Tel. Rec. 126-8	2294 TV , 22951	-5110 ISee Mopar	49-101
	754 Tel. Rec. (Soe Model	980 TV Tel. Re		49-500, 49.500
571, 571A, 5718 17-22	${ }_{755}^{752-55+126-8)} 126$	2297 -TV De Luxe, 22	$\mathrm{C}_{5} 5111$ (See Mooar	49.501, 49.50
NEWCOMB	755, ${ }^{\text {75 }}$			49.503
A-10	752-Set 120.81			
15-20	Rec	2302 Tel. Rec. (See	CR-88 …............ 38	4_{49-506}............... 48-19
KX-30	752-Set 126-81	2301-Set 126.91		49.601 42-21
NOBLITT SPARKS (See Aryin)		2311		
norelco	Tel	fail. Rec		19.6
				49.60
588 A Tol.	Set 120.8)	2602 Tel. Rec.123-	D. 5107 isee Mopor	
	767 Tel. Rec. 126		Model 813-Set	49.9
del 5884-Set 104.71	768, 769.	2621. 2622 (C)	4635 (See Packo	
				49.905
(See Record Changer Listing)	+ 268.81	12	P-4735 (See Packard Mode	
OLDSMOBILE	${ }_{785}{ }^{\text {Tel }}$, Rec.			49-90
982375 20-25	-5et 139.11	Tel. Rec. 126-9		Tel. Rec.
982376	791,792 Tel. Rec.	2803 TV Tel. Rec. 129	PD.4908 (5ee Mopar	49.1040 (Code 121)
982399	Model 752-Set 126-8)	2811 A Tel.		
82420	967, 968, 970 Tol. Rec. 139	2991	S-4624, 5-4625	1040 lCo
982421	Ch. Tk17 (See Model 17i40)	${ }_{3021}^{301}$ Tel. Rec. 3192 Tel .		
982455		338	S.4626	49.1075 Coodes 121
982543		4580 Tel. Rec		49.1070 (Code 122)
982544, 982573	1435	4691 TV Tel. Rec	5-462	Tel. Rec. 93A-1
982579	1 144	Ch. 2115	5t	-1078 [C
982697, 98282688 (See				49.1077 (C)
982699,982700150-10		Ch. 2117	UN6. 100	
LYMPIC		$2621)$	UN6.400 30-23	4.1
DX.214, DX. 215		PARKVIEW	UN6.450 18-26	49.1150 (Codes 121
DX-216 Tel. Rec....... 106-11		17X Tel. Rec. 185-8	UN6.500 17 -28	1231 Tel. Rec
-6119, Dx. 62	4A50.A, 4A51-A ${ }^{102}$	Pat	6.550 ${ }^{\text {31-24 }}$.1150 (Code
0.622 101.		5, 1	46-131 (Revised) 32-16	${ }_{\text {Tel }}$ R Reas.
Ox-931, Dx-932 Tel. Rec. 106	4 M 25 C		46.132	49.1175 [Cod
	${ }_{530}^{1145} 531.1335 \cdots \ldots \ldots .113$	chassis)....127-12	46.142 …........... 36-16	1211 It. Rec. (Code $70-6$
TV-104, TV-105 Tel. Rec.. 67-15,		PENT	46.200 Series 1-24	49.1175 (Codes 122, 124)
-107, TV-108	thoson	(All see Recorder Listing	46-200-12, 46	Tel. Rec. . .1...... 92-
TV-104-Set 6				1240 (Codes 121, 123)
-st	PACIFIC MERCURY			Tel. Rec. $\ldots \ldots9$ 93A-11
	(see		46.250,	49.1240 IC
. 928 Tel. Rec. (See	PACKARD	Philco (Also see	$46 \cdot 350$ -	
ded	PA-393607 S7-15	AT. 1814 (Ch. 81, H1)		Tel. Rec. ${ }^{\text {a }}$ (1275 (Code 121) . . 93A-11
TV. 944 , TV-9	416387 160-7	A (Code 123) Teli. Rec	46-427	49.1278 ICod
67	${ }^{416394}$. 13071	(See Model 53.1182	47.480 19-25	Tel. Rec. 93A-1
946 Tel. Rec. is	439279 lsee		46.1201 - 35	-1278
Mode	O	(1816, 1 ($\mathrm{Ch} .81, \mathrm{HI})$	46.1201	
Sot 67.15)	638	(Code 123)		49-1280 (Code 121)
947 Tel. Rec.	PAC	(See Model	${ }_{46-1213}^{46-1209}$.............. 12-34 ${ }^{\text {13- }}$	Tel. Rec.
V-948 Tel. Rec. is		AT.1817, HM (Ch. 81,	46.1226 …......... 15-24	49.1401
		Cole 1231 Tel Pei	47	49.7404 (Soe
TV.949, TV.950 Tel.	${ }^{\text {SDA }}$ (\ldots............ ${ }^{16-29}$	(See Model 53-T18	47-1227 25-22	\rightarrow - Set ${ }^{\text {che }}$
xL-210, XL-211 Tel. Rec.		Set 201-7)		
xL-612, XL-613 Tel. Rec.		T.1856, AT-1	${ }_{48.150}^{48.141,48.145} \cdots \cdots \cdots \cdots{ }^{25-23}$ 34-16	
		(Code 123) Tele. Rec. (See	48-200, $48.200-1 \cdots \cdots \cdot{ }^{3}$ 33-19	B) Tol. Rec.,
, . 77-8				
Solv U ISoe Mode	471 30-22	Model 53-1	48.206 37-16	-1475 (Codes 121A B,
SOIW-U-Set 3.201		Set 201.7)	48.214 33-19	$123 \mathrm{~A}, \mathrm{~B}, 12$
0.501W-U, 6.502-U..... 3-20	551-D (See	T-2230, $1(\mathrm{Ch}, 81, \mathrm{Hl})$		${ }_{\text {Tel }} \mathrm{Tel}^{\text {R Rec. }} 1480$
		Model 53-T1824)		$49-1480(\operatorname{Code}$ $123 \mathrm{~A}, \mathrm{~B}, 123 \mathrm{~T}$ A,$~ B)$
	563		48.360 ….......... ${ }^{38-14}$	Tel. Rec. 77
604V-110, 6-604V-220,		T-2232 (Ch. 81, H1)	48.460, 48-460-1 ${ }^{34-17}$	49.1600 ${ }^{50}$
		ode 123) Tel. Rec.		601 (See
, 0.604		ee Model $53-\mathrm{Tl} 82$		el 50-13)
Model 6-604 SeriesSet 22.21)	Model 572 -	AT-2272, ${ }_{\text {Sef }} \mathbf{2 0 1 - 7}$ (Ch, 81, H1)		190.160, 49.1603. 49.1605..... $55-18$
6-606 4-36	Set 22-22)	(Code 123) Tel. Rec.	${ }^{48-475}$ …........ ${ }^{40-14}$	49.1606, 49.1607 53-19
6.606	572 22-22	[Seo Model 53-T1824	$48-482$............. 30-24	
6-600.U	${ }_{5}^{581}$ (See	Set 201-7)		del 49.1606-Set 53.19)
		(Code 123)		49.1613 91-9
617U iSee Mod Set 4 -7)	621	(5 ed Model 53-1182d	Tel Rec	49.1615 - 64-9
7.421V, 7-421W, 7.421X, 57-13	661 ${ }^{8-25}$	Set 201-7)	48-1000, 48-1000-	${ }^{50} 501702$ code
$7.435 \mathrm{~V}, 7.435 \mathrm{~W} \ldots \ldots .{ }^{34-13}$		AT-2274, W (Ch. 81, HI)	(Code 122) Tel. Rec... $53-$	Tel. Rec
7.526	${ }_{882}^{873}, 673{ }^{8}$	\|See Model		50.7104 (Code 123)
${ }_{7}^{7.532 W}, 7.532 \mathrm{~V}$........ 32-15 ${ }^{32}$,		Tel. Roc. (A)so
7.622, 7.638 …...... 34-14	861 17-23	AT. 2277 , (iCh. 81, H1)	21 \& 122) Tel. Rec. .. 53-17	Chge. Bul
7.724		Code 123) Tel. Rec.		50-T1105, 50.7110\%
7.728 (5ee Model 7.724-		(See Model ${ }_{\text {S }}$ S3-11 824	3-1200 ${ }^{\text {a }}$. Rec. ${ }^{\text {29-17 }}$	50-11.5, 50.7106
Set ${ }^{\text {Set }}$ (29.19)	${ }_{884}^{881.4 .492}$	$4{ }_{4}$		50.11400 , $50-\mathrm{T}$
	-	(c)	$48-1253$............ ${ }^{36-17}$	50-T1402 (Code 121)
8.451 48-15	544 ${ }^{\text {B }}$	157.71824-	${ }^{48.1256}$............ 3 34-18	Tel. Rec. (Also soe
	1083 18-25	-7)	48.1260 ${ }^{\text {31-25 }}$	
				T1403, 50.71404
$9-435 \mathrm{~V}, 9.435 \mathrm{~W}$......152-11	How to obłain Service Data on Pre-War Models Photo copies of schematics covering pre-war (prior to 1946) receivers can be obtained by regular PHOTOFACT subscribers at $50 ¢$ each (our cost). Additional data can be supplied at a nominal cost per page. When requesting pre-war data, please mention the name of the Parts Distributor who supplies you with your PHOTOFACT Folder Sets. 154-1 \& Moder 50.T1403 (Code $0 . T 1403$ (Code 125). $50-71404,50-\mathrm{T} 1406$ (Codes 123, 124, 125) Tel. Rec. $\cdots \cdots \cdot . . .115-8$ 50-T1406 (Codes 121 and 122) Tel. Rec. (See Prod. Chge. Bul. 29-Set 154-1 and Modei $50-$ T1104-Set 114-9) 50-T1430 (Coda 121) Tel. Rec. (Also see 50-T1432 (Code 122) (See Prod. Chge. Bul. 29-Sot 154-1 and Model 50-T1104-Set 114.9) $50-\mathrm{T} 1432$ (Code 124) Tel. Rec. 50-T1443 (Codes 122, 123) Tel. Rec.			
$17 \mathrm{CL4}$ ((Ch. TK17)				
170 Tel. Rel. Rec. Rec. iseo Model ${ }^{\text {a }}$				
170 Tel. Reci (ISeo Model				
17K31, 17K32, Tel. Rec. 182-				
Tol. Rec. .lo				
17T20, Tel. Rec.182-6				
Tol. Rac.				
17 T 48 (Ch. TK17)				
20C45 (Ch. T120) tel. Rec. 20 $196-9$				

Prilco-Cont.	Prilco-cont.
51-T2170 (Code 121) (Ch.	52-T1850 (Code 121) (Ch.
35, F2) Tel. Rec. (See Model 51-T2102-	41, D1, D14) Tel. Rec.
Sel 132-10)	Ssee Prod. Chge. Bul
-T2175, 51-T2176 (Code	52-T2106-Set 171-9)
${ }^{(124)}$ (Ch. 35, F2)	52-T1850-W (Code 124)
el. Rec. ${ }^{132-10}$	ch
${ }_{51-532}^{51-530} \times \cdots \cdots \cdots \cdots \cdots \cdots \cdot 122=7$	
51.532 51.534	
51-537, 51-5371 126-10	44, D4, D4A) Tel. Rec.
	(Also See Prod. Chge.
	57-Set 191-1) . 181-9
51.632 , ${ }^{\text {a }}$	52-71 882 (Code 122) (ci
${ }_{51.934,51.931,51.932, ~ 102-10}^{51.93}$	35, CPII Tel. Rec. (See
	51
$51.1730,51.1730$ (1) 140-8	
51-1731, 51-1732 12	
$\begin{aligned} & 51-1733 ; 51.1733(1), 137-9 \\ & 51.1734, \ldots 1,1) \end{aligned}$	(Also See Prod. Chge. Bul. 57-Set 191.1) . 181—9
52-T1610 (Code 122) (Ch.	1.72108.
$32, \mathrm{Cl})$ Tel. Rec. (Seea	110 (code 1211
122-Sot 138.7)	Ch. 41, DI, DIA M Tel.
-T1612 (Code 122) (Ch.	Rec. (Also See Prod.
32, C1) Tel. Rec. (See	190.11171-9
	52-T2110 (Code 122) (Ch.
T1802 (Code 123)	
${ }^{2} 1 \mathrm{Tel}^{\text {d }}$	
Model 15-171800-	52.12120 (Code 121) (Ch.
Set 148-13)	41, DI, D(A) Tel. Rec.
(Ch. 71, Gl) Tel. Rec.	(See Prod. Chge. Bul.
(Also see Prod. Chge.	57-Set 190.1 and Model
Bul. $57-$ - et 191.1): 179-9	106-Set
-T1804 (Code 122) (Come	(12120 (Code 124)
32, C2) Tel. Rec. (See	Ch. 71, G1) Tel. Rec.
Model Si-18)	Bul. 57-Set 190.11 . . 179-9
52-T1 804 (Code 123) (Ch.	52-T2122, L (Code 121)
37, C2) Tel. Rec. (See	(Ch. 41, D1 Dla) Tel.
odel $51-\mathrm{T} 18$	
Set 148.13)	
-T1 808 (Code 121)	
41, D1, D1A) Tel.	2.12140
(See Prod. Chge. Bul.	${ }^{52}$ (Ch. 41, D1, DIA)
52.512100 -Set 171.91	Rec. (A'so See Prod.
2-T1 808 (Code 122)	
33, C21 Tel Ree.	52-12142 (Code 212$)$ (ch.
Set 148-13)	${ }^{41}$, D1, D\|A) Tol.
	(See Prod. Chge. Bul. 56 -Set 190-1 and Model
Ch. 33, C21 Tel. Rec... 148-13 52-T1810L, M (Code 123)	$\begin{aligned} & \text { 56-Set } 190-1 \text { and Model } \\ & 52-\text { T2106-Set } 171-9 \text {) } \end{aligned}$
(Ch. 37, C2) Tel. Rec...148-13	52.T2142 (Code 122) (Ch.
-T1812 (Code 122)	35, F2) Telel. Rec. (See
(Ch. 33, C2) Tel. Rec	Model 51-T2102-
T1812 (Code 123)	Set 132-10)
${ }^{(C h . ~ 37 . ~ C 2) ~ T e l . ~ R e c ~}$	52-T1144 (Code 121) (C
32-T1820 (Code 121)	41, D1, DIA A Me. Re.
Tel. Rec. (See Prod.	Bul. 56--Set 190.1) . .171-9
Chge. Bul. 56-Set	52-T2145X (Code 121)
190-1 and Model	Tel. Rec.159-1A
52-72100-Set 17	2-T2145X (Code 125
11821, 52.11822	
	Also See Prod.
Chge. But. 57-	Set 191-1) 181-9
Set 191-1)179-9	52-T2150, W, 52-T2151,
2.11831 (Code 1221 (Ch.	
33, C2) Tel. Rec. (See Model 51.T1800-	Tal. Rec. (A) 57
Set 148-13)	Chge. Bul. 57 -Set 19.179 -9
52-T1839 (Code 121) (Ch.	
${ }^{41}$, DI, DIA Mel. Rec.	41, D1, D1A) Tel. Rec.
(Seeo Prod. Chge. Bul.	(See Prod. Chge. Bul.
52-T2106-Set 171-9)	56-Set 190-1 and Model $52.71106-5 e t ~ 171-91$
52-T1839 (Code 122) (Ch.	
33, C2) Tel. Rec. (See	42, G2) Tel, Rec...... 186-10
Set 148.13)	52.T2182 (Code 121) (Ch.
$52-\mathrm{Tl} 1839$ (Code 123) (Ch.	${ }^{\text {a }}$ (Aiso D4, Dise Prod. Chac.
37, C2) Tel. Rec. (See Model 51-T1800-	Bul. $57-191.1)$ a...181-9
Set 148.13)	52.12224 (Code 121) (Ch.
52-T1840 (Code 121) (Ch.	41, D1, DIA) Tel. Rec.
41, D1, DIAl Tel. Rec.	$56-5 e t 190.1$ and Model
	52.72106-Set 171-91
52-12106-Set 171.91	52-T2244 (Code 121) (Ch.
52 -T1840 (Code 122) (Ch. 33. C2) Tel. Rec. 148 -	
52 -Ti840 (Code 123) ' Ch.	Bul. $56-\mathrm{Set} 190.11$
37. C2) Tel. Rec. ${ }^{\text {a }}$ (148-13	52-T2245 (Code 121) (Ch.
52-Ti841 (Code 121) (Ch.	${ }^{44}$, D4, DAA M Tel. Rec.
41, D1, D1A) Tel. Rec.	(Also see Prod, Chge. Bul. 57-Set 181-1)...181-9
$56-$ Set 190.1 and Model	52.72252 (Code 121 (Ch.
52.12106-Set 171-9)	41, DI, DIA) Tel. Rec.
52-T1841L (Code 123) (Ch. 37, C2) Tel. Rec. (See	
Model 51.Ti 800 -	52-T2252 (Coda 124) (Ch.
Set 148-13)	71, G1) Tel. Rec. (A) so
2.T1842 (Code 121) (Ch. 41, D1, D1A) Tel. Rec.	
(See Prod. Chge. Bul.	52.12253 (Code 121) Ch .
-Set 190-1 and Model	44, D4, DAA) Tel. Rec.
52.12106-Set 171.9)	(A) so see Prod. Chge. ${ }^{\text {a }}$
52-T1842 (Code 122) (Ch. 33, C2) Tel. Rec....... 148-13	Bul. 57-Set 191-1)...181—9 52-T2254 (Code 121) (Ch.
$52-\mathrm{T} 1842$ (Code 123) (Ch.	521, D1, D1A) Tel. Rec.
37, C2) Tel. Rec...... 148-13	(see Prod. Chge. Bul.
-T18424 (Code 124) (th .	56-Set 190.
33, C2) Tel. Rec. (See	52-T2106-Set 171.9)
Model S2-T1842- Set 148-13)	52-T2256 (Code 121) (Ch.
52.T1844 (Code 121) (Ch .	${ }^{\text {a }}$ (See Prod. Chac. Bul.
${ }_{\text {4 }}^{41}$, D1, DIA) Tel. Rec.	$57-\mathrm{Ser}^{\text {et }} 190-1$ and Model
Prod. Chge. Bul.	52.72106 -Set 171-9)
-50t 190.1 and Model	2-T2258 (Code 121) (Ch.
52. T2100-Set 171.9)	D1A) Tel. Rec.
52-11844 (Code 122) (Ch. 33, C2) Tal. Rec....... 148-13	(See Prod. Chae. Bul. $56-5$ et 900.1 and Mode
52-T1844 (Code 123) ch .	$52-72106-5$ et 171.9$)$
37, C2) Tel. Rec. . . 148-13	52-T2259 (Code 121) (Ch.
T844 (Code 124) (Ch.	41, DI, DIAl Tel. Rec.
3, C21 Tel. Rec...... 148-13	(See Prod. Chge. Bul.
2-T1845 (Code 124)) (Ch. 71, G1) Tel. Rec...179—9	$\begin{aligned} & 56-\text { Set } 190.1 \text { and Mod } \\ & 52-\mathrm{T} 2106-\text { Set } 171.9) \end{aligned}$

PURITAN-Cont

RADIO APPARATUS CORP.
See Policalarm a Monitoradio RCA VICTOR (Also see A55 (Ch. RC-1087) 109 - 10 A-82 (Ch. RC. 1094) ….. 1 A. 101 (Ch. RC1096) (See
Model A-108-Set 141.10)
 A. 108 (Ch. $R C 1096$).
B1.A. $81-\mathrm{B}, \mathrm{B1-C}(\mathrm{Ch}$.

KRS21-1, KRK1-11
Rec. (For TV Ch. Only See
Model 8PCS41-5e9 $90-9$) B2-C, $82-\mathrm{F}, \mathrm{B2}-\mathrm{H}(\mathrm{Ch}$.
KCS 24.1
K KRS21-1, KRK1-1)'Tel Rec. (For TV Ch. only See
Model BPCSA1--Set 90.91 B.411 (Ch. RC1098)132-12
BX6 (Ch. RC1082) BX55 (Ch. RC1088), BX57
 $\mathrm{M1.12237},-A$
$\mathrm{ML}-12238,-A$,
 $\begin{array}{ll}\mathrm{ML}-12287, & \mathrm{ML}-12288 \\ \mathrm{ML}-12289, & \mathrm{MI}-12290 \\ M 1-12291\end{array}$ M1-12293, M1-12294 M1. $12295, ~ M 1-122968$
$M 1-12298$ M1-12299
Ml.
M13159 MI- 13167
PPAU. (Ch. RCIII
PV15)
RV151 (Ch. RK121C,
RS-123D)
RS. 123D
$51000(\mathrm{Ch} . \mathrm{KCS31.i}$
 Tel. Rec.
TK...........93-9
9120, T12
Tel. Rec. 93-9 T164 (Ch. KCS40)
A.128 (Ch. KCS42A and
Radio Ch. RK135D) Tel.

Rec. (for TV Ch. See Sei
110-11, For Radio Ch. See
Model TA-169-Set 108-10)
Model (A-169-Set 108 -
TA. 129 (Ch. KCS41A-1 and
Radio Ch. RK1350) Tel.
Rec. (For TV Ch. See Se
110.11 , For Radio Ch. Se
Model TA-179-Set 108-10)
TA 69 (Ch. KCSA3 and Radio

(Ch. KCS348) Tel. Rec
$\mathrm{TCl} 165, \mathrm{TCl} 66, \mathrm{TCl} 67$
$\mathrm{TCl} 168(\mathrm{Ch}, \mathrm{KCS40A})$
TC168 (Ch. KCSAOA
Tel. Rec.
Tel. UHF Conv.......190-12
UIB |Ch. KRK-19A)
Tel. UHF Conv.
U2 Ch. KCS791
U70 (Ch. KCS70)
Tel. URF Conv.
$\times 551, \times 552$ (Ch.
$\times 551, \times 552(\mathrm{Ch}$.
$1089 \mathrm{~B}, \mathrm{C})$
X711 (Ch. RC. 1070 A)
1 R81 (Ch. RC-1102,
R81 (Ch. RC-1102,
A, B, C) (Also see
Prod. Chge. Bul.

Prod. Chge. Bul.
51 Sel 185.1$)^{1}$........172-8
$\times 591,1 \times 592$ (Ch.
1×591, 1×592 (Ch.
RC1079K, 19 . $159-12$
RC1079K,
28400, 28401,28402,
$28403,28404,28405$

2C551, 2C512, 2C513,
A, B, C)
$2 \mathrm{C} 521,2 \mathrm{C} 522,2 \mathrm{C} 527$ ${ }_{2 \mathrm{CS}}^{(\mathrm{Ch}} \mathrm{CHC}_{\text {RC-1120A) }}$ ES3 (Ch. RS-142).

2R51, 2R52 (Ch. RC1119) 196-13 2T51 (Ch. KCS45)
Tel. Rec. (Also
Tel. Rec. (Also See
Prod. Chgo. Bul. 11
Set 118.11)................
T60 (Ch. KCS45A) Tel.
Rec. (Also See Prod.
$\begin{array}{ll}\text { Chge. } \\ 118 \text { I) } & \text { Bul. } 11 \text {-................11-11 }\end{array}$
2 281 (Ch. KCS46 and Radio
or TV Ch See Model
$2 T 51$-Set 111111 , For
Radio Ch. See Model
4 T141-Set 139.12)

2×62 (Ch. RC-10800) ... 197-8
2×29
(Ch. RC-1121)
2XF91 (Ch. RC-1121) ...206-9
2X621 (Ch. RC-10858) . 199-9

RCA VICTOR-Cont.
4T101 (Ch. KCS.61)
Tel, Rec. K.........139-12
4 Tl 41 (Ch. KCS 62 and
139-12
Tel. Rec.
6T53 (Ch. KCS47, T) Tel.
Rec. (See Prod,
Rec. (See Prod. Chge, Bul.
12-Set 1201 .
12-Set 120-1 ond Model
6154 (Ch. KCS47, T) Tel.
Rec. (Also See Prod.
Rec. (Also See Prod
Ctge. Bul. 12 -Set
$120.1)$ Bul. 12-Se1 113-7
$6 T 64,6 T 65$ (Ch. KCS47A.
AT) Tel. Rec. (Also See
Set $120-1$ MCSA…......113-7
OT71 (Ch. KCSA7A, AT)
Tel, Rec. (Also See
Prod. Chge. Bul. 12 -
Prod, Chge. Bul. 12-113-7
Set i20-1).
$6 T 72(C h$. KCSAOB Tel.

(Also See Prod. Chge.
Bul. 12-Ser 120-1) . 113-7
Bul. 12 -Ser $120-11.1$
6 (84 (Ch. KCS 48 , T and
Radio Ch. RC. 1090) Tel.
Rodio Ch. RC-1090) Tel.
Rec. (For TV Ch. See
Rec. (For TV Ch. See
Prod. Chge. Bul 12-Set
120.1 and Model 7 T54-
120.1 ond Model 7T54
Sel 113 . For Rodio

Sel 113.7 , For Rodio
Ch. See Model $4 \mathrm{T1} 141$ -
Se1 $139.1 / 21$
6786,6787 (Ch. KCS 48, T
and Radio Ch. RC-1092)
Tel. Rec. (For TV Ch. See
Prod. Chge. Bul. 12 See
Per
120.1 and Model $6154-$
Set 113.7 For Radio Ch.
Seo Model 9 T89-Set $122-8$)

See Model 9T89—Set 122-8)
7T103, 7T104 (Ch.
KCS476B) Tel. Rec.....134-9
KCSA768) Tel. Rec..... $134-$
$7 T 103 \mathrm{~B}, 7 \mathrm{TH} 104 \mathrm{~B}$ (Ch. KCS 47F)
Tel. Rec. (See Prod. Chge.
Tel. Rec. ISee Prod. Chge
Bul. 26-Set 146.1 and
Model $71103-5 e t(134.9)$
Model 7T103-Set 134-9)
7111B (Ch. KCS47GF.2)

Tel. Rec. K......... 134
$7 \mathrm{Tl112B}$ (Ch. KCS 47 G) Tel.
Rec. (See Prod. Chge. Bul.
Rec. (See Prod. Chge. Bul
26 Set $146-1$ and Model
TT112-Set 134.9$)$
7T1128 1 Ch. KCS 47GFF-2
Tel. Rec. (See Model
Tel. Rec. (See Model
$7 T 1118$ See $156-11$)
KCS 47C) Tel. Rec. ...134-9
7T122B, 7 TI23B (Ch.
KCS 47G) Tel. Rec.
(See Prod. Chge, Bul.
26 Seet 146.1 and Model
7 T 122 Set 134-91) 7 T 122 -Set 134-9)
$7 \mathrm{~T} 122 \mathrm{~B}, \mathrm{TT1238}$ (Ch.
7T1228, 7T123B (Ch.
KCS 47GF-2) Tel Rec.
(See Model 7T111B-
(See Model 7T
Sel 156.11)
$7 \mathrm{~T} 124,7 \mathrm{~T} 125$
7T124, 7Te 25 (Ch. KCS 47G)
TTe. Rec.
$7 \mathrm{~T} 124 \mathrm{~B}, 7 \mathrm{~T} 125 \mathrm{~B}$ (Ch. . . 134-9
Tel. Rec.
TTI24B, 7 TH 1258 iCh.
KCS 47 G) Tel. Rec. (See
Prod. Chge. Bul. 26 Set
146.1 ond Model 71124
146.1 ond Model 7 T124
Set $134-9)$

7 Tl 32 (Ch. KCS47D)
Tel. Rec.
7143 (Ch. KCS 48A and 143-12
Tel. Rec. KCS 484 and
TH3 Ch.
Radio Ch. RC1092) Tol.
Radio (Ch. RCIO92) Tel.
Rec. (For V Ch. See Set
$134-9$, For Radio Ch. See
Model 9189-Set 122-8)
884 (Ch. RC-1069).
$8841(\mathrm{Ch}$. RC-1069),
8842 (Ch. RC-1069)
8843 (Ch. RC-1069B)'. 76-16
8846 (Ch. RC-1069C) (See
8BA (Ch. RC-1069C) (See
Madel 8841 Sel $76-16$)

$8 \mathrm{BX54}, 8 \mathrm{BX55}$ (See Mo
$8 \mathrm{MX5}-$ Sei 46.201
$8 \mathrm{~B} \times 65(5 \mathrm{e}$
$88 \times 5-$ Set 46.201
$88 \times 65($ See Model $88 \times 6-$
Set $44-18)$

8F43 (Ch. RC. 1037 B)
8PCS41, B, C (Ch.
KCS24B-1, KRS20A-1,
KRK1A-I, KCS24C.1,
KRK4 KRK2A KKR21A.

RCA VICTOR-COnt.
8V11), 8V112 (Ch, RC-616) 58-18
8V151 (See Model RV151) $8 V 151$ (See Model RVI51) 61-17
8×53 (Ch RC. 1064) $\begin{array}{lll}8 \times 53 & \text { (Ch. RC. } 1064) & \ldots \\ 8 \times 71, & 3 \times 72 & \text { (RC. } 1070) \\ 80 & 63-17\end{array}$ $\begin{array}{cccc}8 \times 71, & 8 \times 72(R C \cdot 1070) & . . & 63-15 \\ 8 \times 521 & (R C-1066) \\ 8 \times 522 & (R C-1066 A) & \ldots & 52-17\end{array}$
 $8 \times 544,8 \times 545,8 \times 546($ See
Model $8 \times 54 \uparrow-$ Set $59-161$ Model $8 \times 54 \uparrow$-Set 59-16)
8×547-16 16
$8 \times 681,8 \times 882$ (Ch. RC. 1061)
(Ch. RC-1059B, $65-10$ (See Model 8BX5-Sel 46.2
 9PCA1A, B, C ICh.
KCS24C.1,
KRS20B. KRK-4,
KRS20B.1, KRS21A.1,
RS-123A) Tel. Rec. ... 90-9
Jel. Rec. KCS49A.......
AT) Tel. Rec.
QT79 (Ch. KCS49, A.....
AT, I) Tel. Rec. $\mathrm{A}^{2}122-8$
9T89 (Ch. KCS60, T and
Radio Ch. RClO92)
Tel. Rec. C (Ch. KCS498) Tel. 122-8
Rec. 128 (Ch. KCS49C) Tel 134-9
R12c. (Ch. KCSS49C) Tel. 134-9
Rec.134-9
Rec. 1 (Ch. KCS $60 A$ and
Radio Ch, RCl092) Tel
Rec. (For TV Ch. See Set
134-9, For Rodio Ch. See
Model $9789-S e t ~ 122-8)$
$91240(\mathrm{Ch}$. KCS28

91246 (Ch. KCs38)
Tel. Rec. . 93-9
Tel. Rec. \because RS29)...... 93-9
T270 (Ch. KCS29)
Tel. Rec.
TC 240 (Ch. KCS28B)

Tel. Rec. $\ldots \ldots \ldots . .$. 93-9
9TC247 (Ch. KCs34, B)
Tel. Rec. 93-9
Tel. Rec.
وTC249 (Ch. KCS34, B)
Tel, Rec.
9TC272, 91C275 ich..... 93-9
KCS29C) Tel. Rec. 85-13
97 W 309 (Ch. KCS 41.1 and
Rec. (For TV Ch. See Model
8TK29-Set $88-9$, For
Radio Ch . See Sel $95 \mathrm{~A}-11$
TW333 (Ch. KCS30-1
9TW333 (Ch. KCS30-
Radio Ch. RC616N)
Tel. Rec.
وTW 390 (Ch. KCS31-1, 74-8
RColital Tel. Rec. 91A-11
W101, 9W102, 9W103

9×561 (Ch. RC- 10798) 9 97-12
9×562 (Ch. RC.1079C). 101 -9
$9 \times 571(\mathrm{Ch} . \mathrm{RC}-1079)$)
$9 \times 572(\mathrm{Ch}, \mathrm{RC}-1079 \mathrm{~A}) \quad 107-7$
9×642 (Ch. RC-1080A) $87-9$
$9 \times 651(\mathrm{CC}$. RC. 1085),
$9 \times 652(C h . R C .105)$

Ys (Ch, RC-1077)
ors11(Ch. RCl077B) . . 131-13

171150, 17T151 iCh.
Tel. Rec. 'KCSo6) Tel. 158-
TT154 (Ch. KCSobl
Rec. (See Model 17T153-
Set $158-11)$
$17 \mathrm{~T} 155{ }^{(\mathrm{Ch}}$. KCS60)
Tel. Rec. KCS66)158-11
17T160 (Ch. K.
Tel. Rec.158-11 17T1.62 Rec. Kh. KCS66A) Tel.
Rec. (See Model
17 T 153 -
17 T 153 -Sel 158.11)
17 T 163 (Ch. K 566 C)

XCSO6A) Tel. Rec. (See
Model $17 T 153$ - Ser 158 -

17T174K (Ch. KCS66D)
Tel. Rec. 169 - 13
17 TI74 (Ch. KCS66A)
Tel. Rec.
$17 \mathrm{~T} 200,17 \mathrm{~T} 201,17 \mathrm{~T} 202$ 158-11
(Ch. KCS72) Tel. Rec.
Bul. 59-Set 193.1) .184-12

Chge. Bul. 59-Set
193-1)...............184-12
17T220 (Ch. XCSz2) Tel.
Rec. (Also See Prod
Chge. But. 59-Set

17T250DE (Ch. KCS74] 193-8
Tol. Roc.

Tel. Rec.206-10
17T310, U (Ch. KCS78, B)
Tel. Rec. 206-10

rCa victor-Cont.	rca victor-cont.
59 (Ch. KCS6BC, E)	8PTK Ch. KCS24.1,
el. Rec. (See Prod. Chse.	KPK1-1, KRS
Bul 56-Set 190.1 and Model 21T176-Set : 57.8	KRS21A-1, RK-121A, RS.123A) Tel Rec. 90-9
217159 DE ($\mathrm{Ch} . \mathrm{KCS68F}$)	$6_{69 P V}(\mathrm{Ch} . \mathrm{KCS} 24 \mathrm{~A}-1$,
Tel. Rec.	KRK-1A, KRS2
21 T 165 (Ch. KCS68C, E)	KRS21A.) ${ }^{\text {R }}$ RK. 121
Tel. Rec. (See Prod. Chgo	RS-1238) Tel. Rec. ... 90
${ }^{801} 56-\mathrm{Set} 190-1$ and	710 V 2 (Ch. RC-613A) \quad 40-15
	711 VI isee Model 711
el. Rec. (See Model	Set 22.24
217159DE-Sel 197-9)	RK-117 and RS-123) ... 22-24
${ }^{2111740 E ~(C h, ~ K C S 68 F) ~}$	V3 (See Model 711V2-
	Ser
Tel. Rec. (See Model	
DE	
T176, 217177 211178,	721 TS (Ch. KCS26-1, -2)
215179 (Ch. KCS58C)	Tel. Rec. (See similar
	Model730TV1-Set 70.71
${ }_{5}$	OTV) (Ch. KCS27-
21 TI780E (Ch. KCS68F)	and Radio Ch. RC610A)
Tel. Rec. 197-9	
TI79 (Ch. KCS68C) Tel.	and Radio Ch. RCólios)
Rec. AAlso See Prod.	Tel. Rec.
Chge. Bul. 56-Set 190.11 157-8	741 PCS (Ch. ${ }^{\text {KCCS } 24 B-1,}$
21 T1790 E Ch. KCS 68 F	
Tel. Rec.197-9	Tol. Rec. ${ }^{\text {K }}$
21T207, G (Ch, KCs72A)	KCS20
Tel. Rec. (See Prod.	Mo
Chge. Bul. $59-$ Set 193-1	KCS208-1
and Model	(See Model 630TCS)
	KCS20.1. 1
Rec. (Also See Prod.	(See Model ${ }^{\text {KCS21-1 }}$
Chge. Bul. 59-Set	(See Model 621TS)
	KCS24
K-sizil	(See Mos
See Prod. Chae.	S24
Seef 193-11 Col ${ }^{\text {Sol }}$	(See Model ${ }_{\text {M }}$ K48PV
217227, 21T228, 217229	Chisee Model $8 P C$
(Ch. KC572A) Tel. Rec.	$\mathrm{Ch} . \mathrm{KCS24C}$-1
	(Seeo Model BPCS41)
	Ch. KCS240
Radio Ch. RC11	\%
Tel. Rec. 202-6	
T244 (Ch. KCS72D-2,	KCS2
C. RC11118,	See
Audio Ch. RSI41C) 202	Ch. KCS25D-1
	(See Model 8TV41)
45-EY-2 (Ch. RS.138,	$\mathrm{Ch}^{\text {K }} \mathrm{KCS} 25 \mathrm{EE-2}$
	Ch. KCS26-1, -2
45.EY-3116-11	(See Model 721TS)
${ }^{4} 5 \mathrm{EFY.4}$ (Ch. RSI 40$)$	KCS27
45 Cl (Ch. RS-132H) .. 33511	(See
45-EY-26 (Ch. 197-10	Ch. KCS28, A,
	(See Model ${ }^{\text {c }}$ 81241)
5481, $5481 / \mathrm{N}, 5482$.	(See Model 8T270)
5483 (Ch. RC5899) 7-22	Ch. KCS 29 C
${ }^{5485}$ (Ch. RC1047) 17-25	(See Model 9TC272)
55AU (Ch. RC1017) 2 -16	Ch. KCS30.1
55 U (Ch. RC1017) 2-16	iSee model
S5F (Ch. RC.1004E) ${ }^{\text {S5F }}$-6	Ch. $\mathrm{KCS31-1}$
55FA (See Model 55 FF	(See Model S 51000)
56 X , $56 \times 2,56 \times 3$	
(Ch. RC.1011) \%6.... 1-16	(See Model ${ }^{\text {KTK29) }}$
56×5 (See Model 56×10	$\mathrm{Ch} . \mathrm{KcS33} 3$-1
${ }_{50 \times 10} 50$	(See Model 8 ¢
58 AV , 58 V (Ch. RC-604) . . ${ }^{\text {- }}$ - 32	Ch. KCs34,
$59 \mathrm{AVI}, 59 \mathrm{Vl}$ (Ch. RC-605) 6-25	Ch. KCs. $38 . \mathrm{C}$
63 E (Ch. RS-127) …e 28-28	(See Model T100)
64F7, 64F2 (Ch. RC1037).	CSAO.
65BR9 (Ch. RC-1045) 23-16 65 F (See Model 55 F-	Ch. KCSA1A.)
${ }^{\text {Set 4-6) }}$)	
65AU, 650 (Ch. RC. 1017A) 14-23	(See model TA.128)
$65 \mathrm{U}-1$ (See Model 65AU- Set 14.23)	Ch. KCS 43
$65 \times 1.65 \times 2$ (Ch. RC-1034) 4-30	$\mathrm{Ch}^{\text {See Model }} \mathrm{KCS4} 5$
65x1, 65×2 (Ch. RC-1064) 31-26	(See Model ${ }^{\text {a }}$ TS1)
65x8, $65 \times 9 \times 1$ (See Model	Ch, KCSA7, A, AT, ${ }^{\text {T }}$
66BX (1040A) 14-24	$\begin{aligned} & \text { KCS47B, C } \\ & \text { (See Model } 7 \text { T103) } \end{aligned}$
66E (Ch. RS-126) 17-26	Ch. KCS470
66x1, $66 \times 2,57 \times 3,86 \times 4$ 7-23	(See Model 71132
	Ch. KCS47E
66×11 lich. RC-1046A	(See Model 7T1118)
${ }_{66 \times 12}$ (Ch. RC-1046).	Ch. $\mathrm{KCS48}$
	(See Model 6T84)
67V1, 67AY1	(See Model 7 T143)
(Ch. RC-6061 9-27	, KCS49, A, AT, ${ }^{\text {, }}$
68R1, 68R2, 68R3, 68R4 (Ch. RC-608) 23-17	(See Model 9T57) Ch. KCS49B, C
$75 \times 11,75 \times 12$	(See Model 9T105)
(See Model 75x11-Set	(Soe Model 9rios)
33-211	(See Model 9T105)
$75 \times 16,75 \times 17,75 \times 18$, 75×19 (Ch, RC-10508)	Ch, KCS60, T (See Model 9189)
(See Model $75 \times 11-$	Ch. KCS60A
77 U (Ch. RC-1057A) ... 38-17	See model ${ }^{\text {at a }}$
77 VI (Ch. RC.615) 38-18	(See Model 47101)
77 V 2 (Ch. RC-606-C) .. 39-18	Ch. KCS562
610V1 (Ch. RC-610C) . 10v2 (Ch. RC-610) . 31-27	(See Model 4T141) h, KCSo6, A
$612 \mathrm{~V} 1,612 \mathrm{~V} 2,612 \mathrm{~V} 3$	(See Model 17T153)
(Ch. RK-121, RS-123) .. 17-27	KCS66C
612 V (See Model 612 V -Set 17-27)	
621 Ts (Ch. KCs21.1)	(See Model 17T172K)
Tel. Rec. (Servicer) ... 78 630TCS (Ch. KCS208)	
$630 T \mathrm{CS}$ (Ch. KCS20B) Tel. Rec. 54-18	(See Model 21T176) XCS68E
63015 (Ch. XCS20A)	(See Model 217159)
Tel. Rec.	. \times CS68F
KCS25C-2, RK117A, RS-123A) Tel. Rec.	Ch. KCS70 (See Model U70)

no matter how

 you look at it...the only choice is the

RCA VICTOR

RCA VICTOR-Cont.	rCA VICTOR-Cont. Hartord (See Model 6T87)
Ch. RCIO77A, B (See Model 9Y510)	Hartord (See Model or87) Haywood (See Model
Ch. RC-1079, A	771118
(See Model 9x571)	Highland (See Model 616
Ch. RC-10798, RC-1079C	71112, 771128)
(See Model 9×561)	Hillsdale (See Model 977
Ch. RC1079K,	
(See Model 1×591)	Kent (See Model ${ }^{\text {co }}$ T54,
$C^{\text {Ch. }}$ RSC-1080C	Kendall (See Model
	Kendall 171174 , 179ee Modiel
(See model 2×62)	Kingsbury ISee Model
Ch. RC-1082	$6164)$
	Modern (See Model 6T7
	${ }_{\text {New Pori }}^{7 T 124)}$ See Models
Ch. ${ }_{\text {(See MC. Model }}$	New Port (See Models 6T53, $71103,7 \mathrm{~T} 1038)$
(See Model 2×621)	Northampton (See Model
RC. 1087	${ }^{97791}$
(See Model A55]	Penfield (See Model 217244)
Ch. RC. 1088 , RC.1088A	Preston (See Model 17T155)
Ch.	
(See Model X551)	Regency (See Model
Ch RC1090	6774, 71123, 711238 B)
(See Model 4T141)	Rockingtonham (See Model
$\mathrm{Ch}_{\text {isee }}^{\text {RC-1092 }}$ Model 9789)	
Ch. RC1094	7T143)
(See Model A.82)	Sedrwick (See Model 9 988
Ch. RC1096 (${ }^{\text {a }}$ (See Model A.108)	Stiluy
$\mathrm{Ch}^{\text {(S.ee }} \mathrm{RC10994}$ Model A.108)	
(See Model 45-W-10)	${ }^{4 T 141)}$
Ch. RCl 1098	Suffolk (Se
(See Model	Tolbot (See Model
	Woyne (See Model ${ }^{\text {a }}$ (77301) Westlond (See Model 21T242)
Ch. RC. 1102	Whiffield (See Model
(See Model 1R81)	$177154]$
	Winston (See model
(See Model ix51)	York (See Madel 9T57,
Ch. RC. 1110	$9{ }^{\text {91 } 1051}$
(See Model PX600)	RME
Ch. RC-1114 ${ }_{\text {(See Model }} \mathbf{2 8 4 0 0}$	D8.22A \ldots.......... $50-14$
(See Model 28×63)	
Ch. RC-1117A	45 13-25
(See Model 2US7)	${ }_{84} \cdot \ldots141^{13}$
	RADIOLA
Ch. RC-1117C	${ }^{61-1,1.61-2, ~} 61-3$
(See Model 2US7)	81.5 iCh. RC. 1023) 12-25
Ch. RC1118, A, B, C	61-8, 61.9 (Ch. RC. 0344) $27-21$
RC119	61-10 (Ch. RC. 10238 B .. 12-35
(See Model 2R51)	
${ }_{\text {RC-1 }} 1120$, A	752U (Ch. RC. 1063 A) ... 36-19
Ch. ${ }_{\text {(See }}^{\text {RC. Model }} 121$ 2C521)	$762 \times 11,762 \times 12$ (Ch .
isee Model $2 \times$ F911	RC-1058, RC-1058A) .. 36-20
Ch. RK-117	(See Model 61-1)
(See Model 7IIV2)	$\mathrm{Ch}_{\text {¢ }}$ RC. RC -1023, RC. 1023 B
	(See Model 61-5)
Ch. RK. 121 (${ }^{\text {a }}$	Ch. RC. 10238 (see
(See Model 612V1)	
	${ }^{\text {che }}$ isee Model
(See Model 648PTK) Ch. RK-121C	Ch RC-1058, RC-1058A
iSee Model RV151]	
	(See Model 752 U)
$\mathrm{Ch}^{\text {(Seee RK-135A-1 }}$ (Model ${ }^{\text {a }}$	radio chaftsmen
(See Model 81K320)	C400186-11
Ch. RK135C	
Ch. ${ }_{\text {(See Mo Model }}$	"Kitchenoire" Amp....... 6 6-14
${ }^{\text {Che }}$ (See Model (Al69)	
Ch. RS. 123	
${ }_{\text {(Soe Model }}^{\text {(}}$ (12V1)	RC. 100 A Tel. Rec. ${ }^{\text {a }}$ Aliso
$\mathrm{Ch}_{\text {(Sees Model }}^{\text {RSPC41A }}$	See Prod. Chg. Bul.
Ch. R5.1238	
	RC200 Tel. Rec. (Also
(See Model 8PCS41)	See Prod. Chge Bul. ${ }^{40} 140$
${ }^{\text {Ch. RS. }}$ (120e Model RV151)	${ }_{\text {RC201 Tel. Rec. }}$
	${ }_{2}$ RC..................176-8
	${ }_{500}^{202}$..................164-8
(See Model 9EY3)	RADIO DEVELOPMENT \%
Ch. RS-132F, ${ }^{\text {H }}$	RESEARCH CO.
(See Model ASEYI)	(See Magic-Tone)
(See Model 45-EY-15)	radioette
(RS-138, A, H	PR-2 50-15
	Y62W, Y728
[See Model 45-EY-26]	ranger
Ch. RSI 10	118 28-27
${ }_{\text {l }}^{\text {(See Model }}$ M5-EY-4]	RADIO MFG. ENGINEERS
	(See RME)
$\mathrm{Ch} . \mathrm{RS142}$ (${ }^{\text {a }}$	RADIO WIRE TELEVISION
(See Model 2ES3)	
Bentley (See Model 4 (101) Benton (See Model	
${ }^{\text {Bristol (See Model 17T153) }}$	1810 1799 - 10
Coldwell (See Model	1814 ${ }^{99}$ - 13
$177162)$	1820 . $18 . .$. $100-10$
Calhoun (See Model $17 \mathrm{Tl} 73,17173 \mathrm{~K})$	
Clorendon (Seo Model	
$\xrightarrow{211179)}$ Covington (See Model	
Covinston (See Model	
Cumberland (See Model	2100 (Sub-station) 39-20
	2101.A (Master Station) .. 39-200
Donley (See Model 215177$)$ Fairfax (See Model ${ }^{\text {(TB4) }}$	2105 (master Stotion) 36-21
Foirfox (See Model 6 TB4), Foirfield (See Model 6771 ,	
Foirfield (See Model 6T71, 6T72, 7T122, 7T122B)	
Farmington [See Model	2306, 2312, 2324 $\cdots \cdots$. ${ }^{877-10} 33-12$
217166 DE)	2400 Series 33-12
Glendale (See Model 17T302)	ray energy
Hampton (See Model 177100 Hanley (See Model	

lvertone-Cont.	ILVERTONE-Cont.
1266 (Ch. 456.150, -2)	7086 (Ch. 110.466)
	7095 (Ch. 101.826) (See Model 7115-
1270-21 (Ch. 456.150 .1$)$	
$\xrightarrow{\text { Telel. Rec }}$	7100 7102 (Ch, 101.811$)$ $101.814-14)$
	7103 (Ch. $110.468-1)^{\prime} \ldots . .27-25$
1272-21 (Ch. 456.150-1)	7105, 71
Tel. Rec.	$7111(\mathrm{Ch} .434 .140) \cdot . .{ }^{30-28}$
${ }^{1273.21}$ (Ch. 456.150	715 (ch. 101825),
${ }_{1274 \text {-21 (Ch. }}^{\text {Tec. }}$ (46.150-i)	$7117{ }^{\text {che }}$ (Ch. 101.825 .18$)$
	7118 (Ch. $101.825 \cdot 2 \mathrm{Cl}$). $62-18$
275.21 (ch. 456.150-1)	7145 (Ch. 436.200) $23-$
Tel. Ree	
$1300-1$ (Ch. 319.200.1) 90	7152 (ch, 109.6261 …) 25-26
301 (Ch. 319.190)	7153 (Ch. 109.627$)$
304 (Ch. 185.706)	7165 (Ch. 101.823-A,
(See Modol 2002 (Ch,	$1{ }^{\text {che }}$ - 231
	7210 (Ch. 101.820) 32-20
2007 (Ch. 757.100) 198-12	7220 (Ch. 101.801.2C)
2009	
132.022) ...196	7226 (Ch. 101.8194) 31-28
[Ch. 132.021] 196-15	7230 (Ch. 101.802-2A)
(Ch. 132.027)197-11	
2023. 2024, 2025, 2026	
2027 (Ch. 132	7300 ICh. 435.
(See M	${ }_{7350}{ }^{\text {che }}$
	7353 (See Model 735
${ }_{20}^{028}$ (Ch. 528.230$) \ldots . . .203$	
$\begin{aligned} & \text { 2060, } 2061 \text { (Ch. } \\ & 101.861 \text {-1)........ 203-9 } \end{aligned}$	${ }_{8003}(\mathrm{Ch} .132 .818-1)^{\prime} \ldots . .553-22$
63, 2064 (Ch. 101.860,	8004 (See Model 8003
Set 162-11)	
Set (162-11) 00	8010 (Ch. 132
-104) Tel. Rec. 201	8011 (See Model 80
$01 / \mathrm{Ch}$	Set 40.21
	${ }_{8021} \mathbf{1} \mathrm{Ch} .132$
O5 (Ch. $132.024,-1,-2$) 198 -13	${ }_{8022}$
2105 A (Ch. $132.024-3,31)$	8024
Tel. Rec. $\ldots \ldots 0 \cdot \ldots$, 198-13	
2 新 5 (Ch. 132.024, -1, -2,	
	(ch. 101.808-1C)... 68
Tel. Rec. 198-1	8053 (Ch. 101.808.1D)
21458 (Ch. 132.024-4)	(See Model
Rec.	8070 (Ch. 101.817 .1 A
1so (ch. 110.200	(See Model 7070
	Set 30-26)
Tel. Rec.	8072 (Ch. 101.834)
74 (Ch. 132.035)	
Tel. Rec	${ }^{8080}$ (ch. 131.852) 52
95-21 (Ch. 100.20	
and Radio Ch,	8084, 8084A (ch.
Chge. Bul. 59	101.809-18)
193.1 ond Model 1176-21	86. (Ch. 101.81
et 165.12	8086A, 80868 (Ch 101.814.6Cl
162.10 for Radio	8090 (Ch. 101
162.10 for Radio Ch.)	
(Ch. 528.2291) 201-9	8097 A (Ch. 101.825.4) .. ${ }^{62}$-18 ${ }^{8}$
10 (Ch. 132.880$)$	8100 (Ch. 101.829)..... 51-19
Model 210-Set 109-12)	8101, 8101a, 8
3105 (Ch. 132.024.5, -6)	${ }_{101.809-3 C)}$
Tel. Roc. 3106 (Ch, $132.045, ~-i) ~$	8102 (Ch. 101.814-2B) . . 61-18
	8102 A (Ch. 101.814.3B) . $61-18$
(Ch. 132.024-5,	81028 (Ch. 101.814.28) . 61-18
tel. Rec.	${ }^{8103}$ (Ch. 110.473) 56
70 (Ch. 528.239)	8104 (See Model 8086 Set 61.18)
(Ch. $132.035-2)$	
Tel. Rec. 206	(Ch. 101.833) 35-20
175 (Ch. 132.044) 203-10	8106. A (Ch. 101.833-1A)
	(See Model 8105
4120 (Ch. 456.150,	35
	8107A, 8108, 8108A (Ch.
6011 (Ch. 132.816),	101.851.11 64-10
8012 (Ch. 132.816 A$)$. 15-27	8112, 8113 (See Model
	8115-Set 62-181
	$8115 \mathrm{ICh}^{\text {che }} 101.825 .3$
${ }_{6052}(\mathrm{CH} .110 .452) \ldots$ 13-29	${ }^{8115 A, ~ B, ~ C ~(C h . ~}{ }^{\text {che }}$
6071 (Ch. 132.826-1) ... 15-29	8117 (Ch, 101.825-3E) . . $62-18$
6072 (Ch. 110.454) 13-30	
6092 (Ch. 101.672.18),	8_{8118}^{81} (Ch. 101.825-3F) .. $62-18$
	8118 A.
6104 (Ch. 101.662-20)	101.825-4) 62-18
(See Model 6 (124, 8125, 8126, (Ch. 101.831A,
$8105(\mathrm{Ch} .101 .622-2 \mathrm{~B}$) . 7	101.831-1) (Soe Model
6106 A (Ch . 101.662 .4 E). 29	$8127-50+41-20$)
$11(\mathrm{Ch} .101 .062-3 \mathrm{C})$	8127, A, B, C (Ch.
6111 A (Ch .101 .662 .5 F$)$. 29.23	101.831A), 8128, A, B,
${ }^{6200 A}$ (Ch. 101.800-31). $65-12$	Crich 101.83
62004 (Ch. $101.800-1$). 6203 (Ch. 101.800 A$)$	${ }_{\text {Recorder Amp. (Ch. .. 41-20 }}^{101.773)}$ (${ }^{\text {a }}$
ISee Model 6200A-	
Set 9-22)	8132 (Ch. 101.854)
$\left.{ }_{6}^{620,6220 A} 101.801,101.801-1 \mathrm{~A}\right)$.	
6230 iCh. $101.8021 . . .1 .11=$	$\left.{ }^{8133} 101.846\right)$ Tel. Rec. ${ }^{\text {che }}$ (1). $60-15$
62304 (Ch. $101.802 \cdot 1$). 11-21	8144 (Ch. 431-199) 32-21
6285 A (Ch .101 .666 -1B). $20-28$	8145 (Ch. 109.631) 45 4-23
6286 (Ch. 528.6286 ,	8148 (Ch. 109.632) 44-22
	8149 (Ch. 109.633) 48-23
${ }^{\text {a }}$ (Ch. 528.6287 ,	8150 (Ch. 109.634) 32-22
6290^{\prime} ' Ch. $101.677 .81 . . .200$	${ }^{8152}$ (Ch. 109.635)
6293 (Ch. 528.6293.21) .. 99	${ }_{\text {Sel }}$ (2ee mi.22)
	8153 (Ch. 109.635).
${ }_{6}^{685}$ Ch. 139.150 .1$)$.	8153 A ($\mathrm{Ch} .109 .635-1)$ 42-22
Power Shiftar 15-30	
20 isee	8160 (Ch. 109.636 A$) \cdot 50-17$
51 (ch 10	8168 (Ch. 109.638) 46-23
7021 (Ch. 101.807. $101.8074)$. 16-31	8169 (Ch. 109.638) (See Modal 8168-
7025 (Ch. 132.807.2) \ldots.. $29-24$	Set 46-23)
7054 (Ch. 101.808) 15-31	8200 (Ch. 101.800-28)
7070 (Ch. 101.817) 30-26	(See Model 62004-
7080 (Ch. 101.809) 16-32	Set 65-12]
7080, 7080A (Ch. 101.809-21 58-20	8201 (See Model 6200ASet 65.12)
085	10 ch .101 .820

SILVERTONE-Cont.	Stivertone-Cont.
8220, 8221 (Ch, 101.801-30)	$\mathrm{Ch} .101 .662-4 \mathrm{E}$
See Model $6220-1$ Set 9.301	(See Model 6106A) Ch. 101.662-5F
8222 (See Model 6220-	(See Model 6111 A)
${ }^{8231}$ (See Model $3230-$	${ }^{\text {Ch. }} 101.672-1 /{ }^{\text {a }}$
8260 (Ch. 101.823-28)	Ch. 101.672 -18
[See Model 7165	(Seo Model 6092)
	Chi ${ }_{\text {See }} 101.677 \mathrm{Model}$ (290)
8270A (Ch. 101.822A). 57-18	Ch. 101.773
9000 (Ch. 132.857) 65-13	(See Model 81271
9005, 9006 (Ch. 132.858) 72-11	$\mathrm{Ch}^{101.800 .1 .1} .1 \mathrm{~A}$
${ }^{9022}$ (Ch. 132.8711.... 76.17	(See Model 6200 A .
9054 (Ch. 101.849)..... 63-16	Ch. 101.800-1, (1A)
9073, 9073A 1 Ch .	101.800-3
135.244), 90738 (Ch 135.244, 1) 83-10	6200A. Ch. 101.800-3) Ch. 101.801, -1 A
9073 C (Ch. 135.243.1)	(See Model 6230)
(See Model 9073-	Ch. 101.802 2
Sot 83	
	10
9101 (Ch. $101.809-3 \mathrm{C})$	
${ }^{\text {(Seee Model }}$ Sot 58.20 l	Mode
${ }^{9} 102$ (See Model 7080-	Ch .101 .808 .1 C
Set $58-201$	(See Model 8052)
9105 (Ch. 132.875) 89-14	Ch. 101.808 -1D
9107 A (Ch. 101.851-1)	(see Mod
(See Model 8107A-	${ }^{809} 15080$
	101.8091
Rec. (See Model 9123 -	01.809.1
	isee Model 808
$9112(\mathrm{Ch} .110 .499 .1) \mathrm{Tel}$.	Ch. 101.809 .18
Rec. (See Model 9124-	(See Model 8084)
Set 79.16$)$	Ch. 101.809.2
13 (Ch. 110.499) T	(See Model 7080 ,
Rec. (Seee Model $9123-$	Ch. 101.809 -2)
11	H5ee Model 81011
	Ch. 101.810
Set 79-161	(See Model 7090)
9115 (Ch. 478.224), 9116	Chi 101.811
(Ch. 478.221$)$ Tel. Rec. 97	(See Model 7100)
10 (Ch. 478.221)	Ch 101.813
	Ch. 101.814
101.865) Tel. Rec.	(See Model 7085)
${ }^{9120 A} 1 \mathrm{Ch} .101 .865 .11$	${ }^{\text {Ch. } 101.814 .1 A ~}{ }_{\text {isee Model }}$
9121 (Ch, 101.867)	101.814-2B
9121 Tel. Rec. ${ }^{\text {che }}$	isee Model
22 (Ch. 101.864)	Ch. 101.814-38
(See Model 8132	See Model 81
Seet 66-15)	Ch. 101.814.5
9122 A (Ch. 101.868)	$\mathrm{Ch}{ }_{\text {(See }} 101.814 .6 \mathrm{Cl}$
	(See Model 8086A)
9 Tel. Rec. 79-	101.817
9124 (Ch. 110.499 .1$)$	(See Model 7070)
	Ch. 101.819 A
${ }^{9125}$ (Ch. 478.252$)$	$\mathrm{Ch}^{\text {LSee }} 101.820$
9125A (Ch, 478.233)	(See Model 7210)
Tel. Rec. 104-10	Ch. 101.821
9125B (Ch. 478.253-1)	(See Model
9126 (Ch. 110.499 .2$)$	(See Model 8270)
Tel. Rec. 79-16	Ch. 101.822A
27 (Ch. 100.499-2)	(See Model 1270A)
Tel. Rec. (See Model	${ }^{\text {chisee Model }} 71$
9128 A (Ch. 101.868)	101.823-A, 1A
Tel. Rec.	
29 (Ch. 110.499$)$ Tel)	$\mathrm{Ch}^{1} 101.825$
Rec. (See Model 9123	$\mathrm{Ch}^{\text {i }}$ Ses Model $101.825-1 \mathrm{~A}$
130 (Ch. 110.499.1) Tel.	(See Model 7116)
Rec. (See Model 9124-	$\mathrm{Ch} .101 .825 .1 \mathrm{~B}$
Tel. Rec.	(See Model 71191
9132 (Ch. $110.499-1$) Tel. Rec (See Model 9124-	
Set 79.16$)$	Ch 101.825 .3 E
9133,9134 (Ch. 101. 866.	(See Model 101.825 .3 F
	(See Model ${ }^{\text {che }}$ (18)
9139, 9140 (Ch. 110.499-1)	$\mathrm{Ch}_{\text {iseo }} 101.825 .4$
${ }_{\text {Tel. }}^{\text {Tel }}$ / Rec. (See. Model	
9153 (Ch. 435.417) 67-16	(See Model 8100)
9161 (Ch. 548.358)..... 88-10	$\mathrm{Ch} .101 .829 .1{ }^{\text {che }}$
${ }^{9260}$ (Ch. 101.850) \cdots.... $51-20$	$\mathrm{Ch}^{\text {(See }} 101.831$ Model ${ }^{\text {a }}$
${ }_{9280}\left(\mathrm{Ch} .528 .1681 . . .{ }^{\text {a }}\right.$ 94-9	(See Model 8128)
Ch. 100.043	$\mathrm{Ch}^{\text {c }} 101.831 \mathrm{~A}$
(Sbee Model 133)	Ch .101 .831 .1
(See Model 133)	(See Model 8124]
Ch. $100 \cdot 107.1$	
(Sae Model 149) $\mathrm{Ch}^{\text {(1). }} 100.111$	$\mathrm{Ch}^{\text {c. }} 101.834$
(See Model 143A)	
Ch. 100.112 (6)	(See Model 8230)
(See Model 142)	Ch. 101.846
	(See Model 8133)
$\mathrm{Ch}^{\text {Chee }} 100.201$ dos	
	Ch. 101.850 \%
(See Model 1066)	
$\mathrm{Ch}_{\text {i }} 1000.202$-1 ${ }^{\text {a }}$	(See Model 8107A)
Ch. [See Model 1177-21)	$\mathrm{Ch}_{\text {c }}$ 101.852
$\mathrm{Ch}_{\text {(}}^{\text {Seee Model }}$ Model 2195-21)	(See Model 8080)
Ch. 100.20912170 .6	${ }^{\text {Ch. }}$ (Soes Model ${ }^{101.854} 8132$)
$\mathrm{Ch}^{\text {(Seee Model }} 100.959$ 2170.C)	Ch. 101.859
(Seo Model 142]	(See Model 9133)
Ch. 101.660-1A (See Model 6100)	Ch. ${ }^{\text {See Model }}$ (7)
($101.662-28$.	Ch. 101.8599 .2
(See Model ${ }^{\text {b }}$ (105)	[See model
Ch. 101.662-20 (See Model 6105)	(See Model 1058)
Ch. 101.662-3C (See Model 6111)	$\begin{aligned} & \text { h. } 101.861,-1 \\ & \text { (See Model } 2060 \text {) } \end{aligned}$

SILVERTONE-COnt.

Ch. 132.858
(See Model 900
$\mathrm{Ch}^{1} 132.868$
(See Model 802)
(See Model 8021)
Ch. 132.871
(See Mode1 9022
$\mathrm{Ch}_{\mathrm{i}} 132.875$
iSee Model 910
[See Model
$\mathrm{Ch}_{\mathrm{H}} 132.877$
isee Model
(See Model
Ch. 132.878
iSee Model
Ch. 132.880
iSee Model 2
(See Model 210
Ch. 132.881
(See Model
(See Model 105)
Ch. $132.884,-1$
(See Model 15)
(See Model
Ch. 132.887
(See Model 51)
Ch. 132.888) [See Model 54]
Ch. $132.889,-1$ (See
Model 106, Ch. 132 .
h. $132.889,-2$ (See
Ch. 132.889, -2 (See 132.889 .1)
Model 106,
Ch. 132.890
(See Modef
Ch 132.896
1See Model
(See Model
$\mathrm{Ch}^{(132.896-1}$
Ch. 132.896-1
(See Model 2023)
Ch. 134.111
Ch. ${ }^{\text {(See Model }}$
(See Model 8073)
Ch. 135.243 -1
(See Model 9073 C)
Ch. 135.244
(See Model 9073)
(See Model
$\mathrm{Ch}, 135.245$
(See Model
(See Model
Ch. 137.906

(Seee Model
Ch. 185.7065)
(See Model
iSee Model
h. 319.200
(See Model 130
Ch. $319.200-1$
(See Model 1300.1)
Ch. 431.189
Ch. ${ }^{\text {See Model }} 714$
Ch. 431.188 .1
(See Model 714
Ch 431.199
(SSe Model 814
Ch) 431.202)
(See Model 8144)
$C_{\text {M }} 431.202$
(See Model 8130)
$\mathrm{Ch}_{\mathrm{H}}^{\text {(See Model }} 434.140$
(See Model 711
Ch. 435.240
iSee Model 730
(See Model 730
Ch. 435.410
(See Model 7
(See Model 9153)
(See Model 714
Ch. 456.150
(See Model 12

h. $456.150-2$
(See Model 1260)
h. 463.155

ISee Model 81
Ch. 478.206 -1
[See Model 8024]
h. 478.210
is
(See Model 478.210
(Sis. 478.221)
(See Model 9116)
(See Model 9115)
h. 478.238
(Seee Model 25]
Ch 478.240
iSee Model
(See Model
$\mathrm{c}_{\mathrm{c}}^{\mathrm{c}} \mathrm{C}$.
9125)
(Soe Model 9125A)
Ch. $478.253-1$
(See Model 9125B)
(See Model
(See Model 12
(See Model 1258)
h. 478.289
(See Model 112
Ch. 478.302
(See Model 114)
Ch . 478.303 . A
(See Model
Ch .478 .309
(See Model 159)
(See Model 120)
Ch. 478.312
(See Model
(See Model 144
(See Model 164-14)
Ch. 478.319
(See Model 163-16)
Ch. 478.338 (See Model 150.1
Ch. 478.339
(See Model 166-16)
h. $478.339 . A$
(See Model 166.17)
Ch. $478.339-8$
(See Model 1166.17)
Ch. 478.361 , A
(See Model 1150.
h. 488.237
(See Model 237)

SILVERTONE-COnt
$\mathrm{Ch}_{\text {Hee }} 528.168$
Ch . 528.171 .1
$\mathrm{Ch} \stackrel{\text { See Model }}{528.173}$
(See Model 22
$\mathrm{Ch}^{528.174}$
(See Model 21
iSee Model 215)
Ch 528.194
(See Model 1040)
(See Model
Ch. 528.106
(See Model 103
Ch. $528.210,-1$
iSee Model 10
Ch. 528.229
(See Model 2200)
Ch. 528.230
ISee Mode
Ch. 528.239
(See Model 3170)
$\mathrm{Ch}{ }^{\text {(Se }} 528.630,-1$
Ch. 528.630, -1
isee Model 151.1
Ch 528.631
(See Model 1184-20)
$\mathrm{Ch} 528.6286,-1 .{ }^{-3}$
(See Model' 6286)
$\mathrm{Ch} .528 .6287,-1$.
Ch (See Model 528 (
Ch. 528.629 Mol M
Ch. 528.6295
CSee Model 6295)
Ch (547.245
(See Model 9270)
isee Model 91
Ch. 548.358 .1
(See Model 24
$\mathrm{Ch}_{5} 548.360-1$
(See Model 239)
Ch. 548.361
(See Model 239)
$\mathrm{Ch}. \begin{gathered}\text { (See Mode } \\ 548.363\end{gathered}$
$\left.\begin{array}{c}\text { (See Model 33) } \\ \text { Ch. } 549.100 \\ \text { (See Model } 101\end{array}\right)$
Ch. $549.100-1$
(See Model 101A)
Ch. $549-100-3$
(See Model 102A)
(See Model 102A)
Ch. $549.100-4$
(See Model 160-12]
$\mathrm{Ch}^{549.100-5,-6,-7,-8,-9}$
(See Model $175-16$)
(See Model 175-16)
$\mathrm{Ch}^{2} 549.102,-2$
(See Mode 169.16)
$\mathrm{Ch} ~$
757.100
(See Model 2007

5KY KNIGHT (5ee Air Knight)
SKYRIDER (See Hallicrafters)

SKYROVER

5 KY WEIGHT

SONOGRAPH
BLI00 100 iSee Model............122-10
$8 W 100$ (See Model
$81100-$ Set 122.10)

SPARTON-

SPIEGEL (See Aircastle)
STARK

STEWART-WARNER

(Code 905 90548), AVC2
Code 9054 -A) Tel. Rec. 64 A.51T2 (Code 9020.B)
 AblCR1 (Code 9034.C),
AolCR2 (Code 9034.D),
AolCR3 (Code 9034.E), AblCR3 (Code 9034-E),
A6I CR4 (Code 9034-F) 39-25 AblP2 (Code 9036-A). A61P3 (Code 9036-B). A72T1 (Code $9020-\mathrm{A}$).
A72T2 (Code $9026-B$), A72T4 (Code 9026D)... A92CR3, A92CR3S
(Code 9028-C). A92CR6
(Code 9028-C). A92CR6,
A92CROS (Code 9028.F) 29—20
$85171, \mathrm{~B} 51 \mathrm{~T} 2, \mathrm{B51T3}$
(Code $9044 \mathrm{~A}, \mathrm{~B}, \mathrm{C}) \ldots 58-22$
$9046 A^{\prime}$, B)
B72CR1 (Code No, $9038 A$) 47-22
B92CR1, B92CR2, B92CR3 392CR1, B92CR2, B92CR3,
B92CR4; 892CR8,
B92CR9, B92CR10
(Codes $9043 \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}$

T. 711 (Code $9031-\mathrm{A}$)

Tel. Rec.
T-711M (Code 9031-AM)

Tel, Rec.
IRC. 721 (Code 9037.A)
Tel. Rec.
$21 \mathrm{C}-9210 \mathrm{C}$ (Sies $\because: \bar{A}$,

STEWART-WARNER-Cont.
$21 \mathrm{C} .9211 \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}$ (Series
A, B, C) Tel, Rec. 200_9

 S1T126 (Code 9018-C),
51T136 (Code 9018.F),
511136 (Code 9018.F),
511146 (Code 9018-H),
517176 (Code $9018 \cdot \mathrm{~B}$)... 15-35
61 T 16 (Code 9022 A)
61T26 (Code 9022-B).
62 J 16 (Code 9023-C).
62JClo (Code 9023-D).
\$2126 (Code 9023-E),

7261
$9000-1$

$9100 \mathrm{~A}, 9100 \mathrm{~B}$,
$9100 \mathrm{C}, 9100 \mathrm{D}, 9100 \mathrm{E}$,
$9100 \mathrm{~F}, 9100 \mathrm{G}, 9100 \mathrm{H}$

$9108 \mathrm{~A}, \mathrm{~B}, 9109 \mathrm{~A}$.
Te
9113
0120

9124-A Tel. Rec
$9125 . \mathrm{A}$ Tel. Rec
9125.A Tel. Rec........
$9126-A$, B Tel. Rec. (See
Prod, Chge. Bul. SI-
Set $185-1$ and Model

$9153 . A$
$9154-C$,
9150
$9154-C Z$
$9160 \mathrm{AU}, \mathrm{BU}, \mathrm{CU}$,
$9161 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
$9162 \mathrm{~A}, \mathrm{~B}$
$9164 . \mathrm{A}$, - B (See Model
$9162 \mathrm{~A}-$ Set 168.13)
$9165 \mathrm{~A}, \mathrm{~B}$

.G Tel, Rec,132-13
9202-A,-B (Thru Series
920.A, 'B Thel. Rec. [See

Model 9202-C
Set 5 (58-12]

Tel. Rec. [See Prod.
Chge. Bul, 60 Set.
$194-1$ and Model 9202 .

Set $194-1$ ond Mode!
$9202-A($ Series "K")-
Set $172-9]$
9202 -FA (Thru Series "B'")
9202-FA (Thru Series "B")
Tel. Rec. [See Model
$9202-C$ (Series "B")-
Set 158.12]

Tel. Rec.
9202 IFA ISeries ${ }^{\prime}$ M']
Tel. Rec. [See Prod.
Tel. Rec. [See Prod.
Chge. Bul. $60-$ Set
194.1 and Model 9202.
Series " H ' ' H-Set 172.9 J 166-14
9203 T Tel. Rec........ 1664-11
$9204 . \mathrm{A}$ Tel. Rec.
$9209 . \mathrm{A}, \mathrm{AW}, \mathrm{B}, \mathrm{C}, \mathrm{D}$
(Series A, B, C, D, E)
(Series A, B, C, D, E)
Tel. Rec. 181 R. 14
$9210-C$ (Series . A, B,

ST. GEORGE
(See Recorder Listing)
STRATOVOX

STROMBERG-CARLSON-COnt.

 Series Tel. Rec. ${ }^{72}$
TV-10L, TV. $101 W^{2}(112020)$ TV. IOPM, TV-1OPY (il2025, 112022) Tel. Rec.
TV. 12 (See Model TV-125-
TV. 12 (See Model TV-125-
Set 68.16)
Set 68.16)
TV. 12 PGM (For TV Ch.
Set o8-16)
V. 12 M 5 M (For TV Ch.
Only See Model TV.125-
Set 68.16)
TV-12LM

TV-1 TV TV-1 Te 10 175 245 32 110 117

\qquad $317 \mathrm{RPM}, 3171 \mathrm{M}$ Tel. Re
$321 \mathrm{CD} 2 \mathrm{M}, 321 \mathrm{CD} 20$.
$321 \mathrm{CF}, 321 \mathrm{C} 2 \mathrm{M}$ Tel.
Rec.
165-14
324CDM,
(Series 324) Tel. Rec. 172-10
Series 324 Tel. Rec.
$417 C 5-M, 417 C 5-0,417 C 5$.
Dec. 417TX (Series 417)
Tel, Rec. TX Tel....178-15
421 CDM , CM, TX Tel.
Rec. (Also see Prod.

Tel. Rec. Model 1220198-14
1020 (See Meo $50-191$
Series-Set
$1100-\mathrm{H}$ 1100-HI
1101-H8, $1101-\mathrm{H} 1$
(Ch. 112002), $1101-\mathrm{HM}$,
(Ch, 112002), 1101-HM,
$1101 . \mathrm{HW}, 1101-\mathrm{HY}$
$(\mathrm{Ch}, 112001$.
1101 -HM, HW .HY
16
110
110

1101 1105 1110

112

Series-Set $50-191$
$1121-1 W^{2}$
H21-HW, LW, M1-0,
M2-W, M2.Y, PFM. PFW
PGM, PGW, PI
PGM, 'PGW, PLM, PLW,
PSM' SGeries $10.11-121$,

1200 (Series 10) 120.
12024 (Ch. 112021 .
$1210 \mathrm{M} 2 \mathrm{M} . \mathrm{M} .1210 \mathrm{M} 2-\mathrm{W}$
$1210 \mathrm{M} 2 \mathrm{M}, 1210 \mathrm{M} 2-\mathrm{W}$,
1210 M 2 Y
,

$1210 \mathrm{M} 2-\mathrm{Y}$. 1210 PGM .
1210 PLM,

1210PLM, 1210 P
(Series $10-11)$
1220 Series
1235 Series
1400
1407 PFM M 1407 PL
$1409 \mathrm{Mz} \cdot \mathrm{M}, 1409 \mathrm{M} 2 . \mathrm{Y} . \mathrm{A}$
$1409 \mathrm{M} 2 \cdot \mathrm{~W}, 1409 \mathrm{M} 3 . \mathrm{A}$
$1409 \mathrm{M} 3 \mathrm{M}, 1409 \mathrm{PG}-\mathrm{M}$
150
150

sylvania-cont.
1.128 (Ch. 1-108) Tel.

Rec. (Aiso see Prod.
Chge. Bul. 2-Set 103.20
and Prod. Chge. Bul. . 96-11

1. 177 (Ch, 1.186) Tel. Rec.
(Also see Prod. Chge-
Bul. 48-Set 182-1). 92-8
$1-197$ (Ch. 1-139) Tel. Rec
(See Prod. Chge. Bul.
$48-\mathrm{Set} 182.1$ and Model
1.075 -Set 92.81
1.197 .1 (Ch. (-186)

Tel. Rec. (Also see
Prod. Chige. Bul. 49- 113 -
Set 833 -
1 -210 (Ch. 1-139) Tel.
Rec. (See Prod. Chge.
Bul. 48-Set 182 .)
Bul. 48-Set 182-t and
Model 1.075-5et $92-8$)
1-245, 1-246 (Ch. 1-139)
Tel. Rece (See Prod.
Chge. Bul. 48 -Set
182.1 and Model $1.075-1$
Set 92.81
1.245-1, 1-246.1
1.245.1, 1.246 .1
(Ch. 1.186) Tel. Rec
(Also see Prod. Chge.
Bul. 19-Set 183.1)
$1-247$ (Ch. $1-168)$ Tel.
Rec. $(A 1$ so see Prod.
Rec. (Also see Prod.
Chge. Bul. 49-Set
183.11
$247-1$ (Ch. 1-231)...........99-17
1.250, 1-251, 1-252
(Ch. 1-215)
228-11 (Ch. 1-507-1) 103-16
Tel. Rec.174-13
$22 \mathrm{M}\{\mathrm{Ch}, 1-387 \mid$ Tel. Rec.
See Model
Set 137-13!
$22 \mathrm{M}-1,-2$ (Ch. 1.387-1)
Tel. Rec. (Also See
Prod. Chge. Bul. 41 -
Set 174.11154-12
22M-11 (Ch, 1.507 .1$)$
Tel. Rec.
23B, B-1, M, M-1
(Ch. $1-387-1$ Tel Rec.
Bul. 41-Set 174-1) 154-12
238-11 (Ch. 1-507-1)
$23 \mathrm{M}-11$ (Ch. 1-507-1)
Tel. Rec.
24 M
Tel. (Ch. Rec. $462-1$)
$24 \mathrm{M}-1, \mathrm{M}-3 \mathrm{Ch}, 1$-387-1
Tel. Rec. (Also See
Prod Chge. Bul. 41-
Set 174.1) 154 - 12
$24 \mathrm{M}-3$ (Ch. 1-387.1)
Tel. Rec. (See Prod.
Chge. Bul. 41 Set
S4-
and Mode
154-12)
25M, 25 M -1 (Ch. 1-387-1
Tel. Rec. (For TV Ch Se
Prod. Chge. Bul. 41 -
Set 174.1 ond Model
$22 \mathrm{M}-1-\mathrm{Set} 154.12$, For
Rodio Ch. See Model
178 B Ser 192.9)
$71 \mathrm{M}(\mathrm{Ch} .1 .441) \mathrm{TeI}$. Rec.
$71 \mathrm{M}-1$ (Ch. 1-502.1) Tel.
Rec. (Also see Prod. Chge. Bul. 42-Set
170-1) 366) 163-12
728 (Ch. 1-366) Tel. Rec.
(See Prod. Chge. Bul.

$55-$ Set 189.1 and Model
$7110 \times-S e t ~$
14.101

72B-1 (Ch. 1.502-1) Tel
Rec. (Also See Prod.
Chge. Bul. 42-Set 163-12
72B-11 (Ch. 1-502-3) Tel.
Rec. (See Prod. Chge.
Bul. 42 Set 176.1 and
Model $71 \mathrm{M} .1-$ Set
Model
163.121
72 M (Ch. 1-366) Tel. Rec.
(See Prod. Chge. Bul.
55 Set 189.1 and Model
710 X -Set 124-10)
$72 \mathrm{M}-1$ (Ch. 1-502-1) Tel
Rec. Also See Prod.
Chge. Bul. 42 -Set
$176-1)$
2M-2 (CH 1 163-12
$72 \mathrm{M}-2$ (Ch. 1.437 .3) Tel.
Rec. (5ee Model 73B.
Rec. (See Model $73 \mathrm{~B}-5$)
$72 \mathrm{M}-11$ (Ch. 1.502-3) Tel.
Rec. (See Prod. Chge. Rec. (See Prod. Chge.
Bul. 42 Set 176.1 and Model $71 \mathrm{M}-1-\mathrm{Set}$
Model
163.121
738 (Ch. $1-366$) Tel. Rec.
(See Prod. Chge. Bul.
55-Set 189-1 and Mode
$7110 x-S e t ~ 124.101$
738.5 (Ch. 1-437-3) Tel

Rec. (See Prod. Chge.
Bul. $41-$ Set $174-1$ and
$M 0140 \mathrm{MA}-$ Model 7140 M
Set 131-15)
738-11 (Ch. 1-502-3) Tel
Bul. (See Prod. Chge
Model 71 M-1-Set 163-12)
$73 \mathrm{M} \mathrm{(Ch}. \mathrm{1-366)} \mathrm{Tel}, \mathrm{Rec}$.
(See Prod. Chge. Bul.
55-Set $189-1$ and Mode
$73 \mathrm{M}-1,73 \mathrm{M}-2 \quad$ (Ch.

$73 \mathrm{M}-1.73 \mathrm{M}-2$
$1-502-2\}$
$\mid \mathrm{Tel}$. Ch

(Also See Prod. Chge.
Bul. 42-Set 176-1) , 163-12
sylvania-cont.
$73 \mathrm{M} \cdot 3,-5$, -6 (Ch. 1-437.3)
Tel. Rec. (See Prod.
Chge. Bul. 41 -Set
174.1 and Model 740 MA

- Se: $131-15 \mid$
$73 \mathrm{M}-11$ (Ch. 1.502-3)
Tel. Rec. ISee Prod.
Chge. Bul. 42 -Ser 176-1
and Model $71 \mathrm{M}-1$-Set
163.12)

748 (Ch. 1-356) Tel. Rec
(See Prod. Chge. Bul.
55-Set $189-1$ and Model
$6140 \mathrm{~m}-\operatorname{Set} 120.101$
$74 \mathrm{~B}-1$ (Ch, 1-437.1) Tel.
Rec. (See Prod. Chge. Bul.
71 -Set 174. 7 and Model
74 B .2 (Ch. 1-437.2) Tel
AB. 2 (Ch. 1-437.2' Tel.
Rec. (See Prod. Chge.
Rec. See Prod. Chie.
Bul. $41-\mathrm{Set} 174.1$ and
Model $7140 \mathrm{MA}-\mathrm{Ses}$
Model
$131.15)$
131.15)

74 M (Ch. 1-356) Tel. Rec.
(See Prod. Chge. Bul
See Prod. Chge. Bul.
$55-$ Set $189-1$ anc Model
55 -Set 189.1 anc Model
6140 M -Sel 120.10 j
74M-1 (Ch. I-437-1) Tel.
Rec. (See Prod. Chge.
Bul. A1-Set $174-1$ ond
Model $7140 \mathrm{MA}-$ Sel
Model 7140 MA -Sel
$131.15)$
74 M .2 Ch
$74 \mathrm{M}-2$ (Ch. 1.437-2; Tel. Rec. (See Prod. Chae.
Bul. 41-Sel 174-1 and
Model
131.151
74M-3 (Ch. 1.437-2) Tel.
Rec. (See Model 74M-2)
758, M, M-1 (Ch. I-437-1
and Rodio Ch. 1-603.1)
Tel. Res. (For TV Ch.
See Model 5150 M -Set
131, For Radio Ch. See
Model 178B-Set 192.9)
$105 \mathrm{~B}, \mathrm{M}$ (Ch. 1.504.1)
105BU, MU (Ch, 1-504-2)
1208, BU, M, MU (Ch
1.510-1, $1.510-2$)

126B, BU, L, LU, M, MU
268, BU, $1 \mathrm{Ch}, 1.510 .1,1.510-2)$
Tel. Rec.
(See Model 120B)
$150 \mathrm{~A}, \mathrm{~L}$ ($\mathrm{Ch} .1-437.3$)
(Codes CO and
(Codes CO 6 and uF)
Tel. Rec.
155A, L, M (Ch. 1-437-3)
Codes COO ond upl . 187-11
$172 \mathrm{~K}, \mathrm{KU}, \mathrm{M}, \mathrm{MU} \mathrm{Ch}$.

1768, BU, L, LU, M, MU
Ch. $1.508-1,1.508-21$
Tel. Rec. MU (Ch
$77 \mathrm{~B}, \mathrm{BU}, \mathrm{M}, \mathrm{MU}$ (Ch
$1.508-1, \quad(-508-2)$
Tel. Rec. $1192-9 ~$
$178 \mathrm{~B}, \mathrm{BU}, \mathrm{M}, \mathrm{MU}$ iCh,
$1.508-1,1-508-2$ and

$200 \mathrm{M}, \mathrm{MU}$ (Ch. 1.504 .1,
2 2) Tel. Rec.
225 M , MU (Ch. $1.510-1$,
2) Tel. Rec.
430 C (Ch. 1.254)
$510 \mathrm{~B}, 510 \mathrm{H}, 510 \mathrm{~W}$
$510 \mathrm{~B}, 510 \mathrm{H}, 510 \mathrm{~W}$
$511 \mathrm{~B}, \mathrm{H}, \mathrm{M}, 512 \mathrm{BR}, \mathrm{CH}$,

$5418, H_{,}, M, S 42 B R, C H$,
GR, RE, YE
(Ch. 1.602-1)159-13
$1110 \times$ (Ch. 1.329) Tel.
1110 x (Ch. 1.329) Tel.
Rec. (See Prod. Chge.
Bul. 47-Set 181.1 and
Model $1210 \times$ Set $128-16$
$1210 \times(\mathrm{Ch} 1.381)$ eel
1210 x (Ch. $1-381$) Tel.
Rec. (Also see Prod.
Chge. Bul. 44-Set
178.1) 128-16
$2130 \mathrm{~B}, \mathrm{M}, \mathrm{W}$ (Ch. 1-462)
Tel. Rec. (See Prot.
Chge. Bul. 55 -Set
Chge. Bul. 55-Set
189.1 and Model $5130 \mathrm{~B}-$
Set $120-101$
Set 120-10)
21408. M (Ch. 1-462) Tel.
Rec. (See Prod. Chge.

Rec. (See Prod. Chge.
Bul 55 -Set 189.1 ind
Model 5140 - Set 120-10)
2221M. Ch. 1-387)
Tel. Rec.137-13
4120 M (Ch. 1.260) Tel.
Rec. (Also See Prot.
Chge. Bul. 55 -Set
1898-1) Bul. M124-10
41308, E, M, W /Ch.
41308 , E, M, W (Ch.
1.260) Tel. Rec. (Also
1.2601 'Tel.' Rec. (Aiso
see Prod. Choe. Bul

See Prod Chge. Bul. 124-10
55—Set i89.1)120
$5130 \mathrm{~B}, \mathrm{M}, \mathrm{W}(\mathrm{Ch}, 1-290)$
Tel. Rec. (Also See
Tel. Rec. (Also See
Prod, Chige. Bul. $17-$
Set i28.1).
$5140 \mathrm{~B}, \mathrm{M}$ (Ch. 1.290) Tel.
Rec. (Also See Prod.
Chge.) Bul. 17 -Set

tele-tone-Cont.
Ch. TY. TZ
ISee Model TV- 306
Ch. Series U
(See Model 156)
(See Model
Ch. Series U
(See Model 156)
Ch. Series Y
Ch Series Y $\begin{gathered}\text { (See Model 160) }\end{gathered}$
(See Model 160)
C. $8001,8002.8003$
(See Model TV. 355)
Ch (Sel 80
(See Model TV.355.U
Ch. 8013 (See Model TV.385-U)
Ch. 8015
(See Model TV-385-U)
Ch. 8016
Ch. 8016 Model TV-355-U)
TELE-VOGUE (5)
TELE-VOG
TELEVOX

RP	22-2
27JB-2W	$20-3$
27K.W	20-
27-P.T	22-2

TEL-VAR (See Audar)
TEMPLE

TEMPOTONE
500 E Series
2-.......
TEMPLETONE (See Temple)

THORDARSON

HORDARSON	
T-30W08A	31
t-3iwioa	30-30
T-31w10-AX	57-22
T-31W25A	9-33
T-31W50A	20-34
T.32W00, T-32W10	76-18
THORENS (See Record Changer	Listin
TONE PAK	
AC8HF	24-28
TRAD	
C-2020, C-2420, CD2020	
Tel. Rec.	173-14
T.20, A Tel. Rec.	133-14
T-20-E Tel. Rec.	165.17A
T. 1720 Tel. Rec.	173-1
	200-

TRANSVISION
Ch. Model A Tel. Rec......107-11
Ch. A.3 Tel. Rec........130-15
Ch. A-4, Tel. Rec.......192-10
WRS-3 Tel. Rec.112-10
TRANSVUE
17XC, 17XT Tel. Rec.
(Similar to Chassis).....132-8
20xC, 20xt Tel. Rec.
(Similar to Chassis)....132-8
160-L (Ch. I2AX21) Tel. Res.
601 (Ch. 16AX23. 25, 26)
(Similar to Chassis). ...) $99-14$
710 (Ch. 16 Ax $23,25,26$)
Tel. Rec.
(Similar to Chassis) . . . $99-14$
(Similar to Chassis) 99-14
1400T Tel. Ree.
(Similar to Chassis) . . . 132-8
1700C, T Tel. Rec.
(Similar to Chassis)132-8
(Similar to Chassis) 132-8
12AX21
TRAV-LER (Also see
Record Changer Lisfing)

IOT Tel. Rec.	86-11
12L50, A Tel. Rec.	108-13
12 T Tel. Rec.	86
14B50, A, 14C50, A	
Tel. Res	108-13
16G50a Tel. Rec.	08
16R50A, 16T50A	
Tel.	
T Tel. Rec.	
Prod. Chge. Bul. 31,	
Set 156-3)	86
R50, 63R50 Tel. Rec	150

trav-ler-Cont.	truetone-Cont.
64R50, 64 R 50.1 ,	D2237A \ldots..........182-15
64R50.2 Tel. Rec. . . 146-11	
$65650,-1,-2$ Tel. Rac.	${ }^{2} 2263$ …..........190-14
(See Modet 20a50-	D2325.A $\ldots \ldots \ldots \ldots$. . 205 - 11
Set 146-11)	D.2383 …..........199-15
75A50, 75A50-1,	02603 (Factory No. 461). 13-33
75A50-2 Tel. Rec.....146-11	02604 13-34
$114.1 \mathrm{~A},-2$ (Ch. 32A)	D2605 (Factory Model
$117.3,-4,-6$ (Ch. 32Al)	026066 65-15
Tel. Rec. $12 \mathrm{if}$.150-13	02612 (Code SW-9022.G) ${ }^{3-9}$
119.5 (Ch. 32A1)	02613 13-37
	D2615 (Factory
	8
(Ch. 32A2) Tel. Rec... 171-11 $217.15,217.16$ (Ch	
34A2) Tel. Rec.i. . . 170-14	D2616-B 31-32
217.25 (Ch. 3442) Tel.	D2619 (Factory No. 270i) 27-29
Rec. (See Model 217-15-	02620 1-28
Set 170.14)	02621 4-32
219-8A, 219.8 BB (Ch.	02822 14-30
11A2) Tel. Rec....... 162-14	02623 11-29
220.9, -9A, -98 (Ch.	D2624 (Factory 27D14.600)
33A2) Tel. Rec. . . . 171-11	${ }^{0} 2628$ (Foct. No. 457-2). 52-22
220.22, 23 23, $-24,-27$	D2630 (Factiory 270
	27014 -602 (1ssue A)... 1-10
${ }_{\text {Set }}$ (See Model 170	0263
Ser $180-14$)	02840 (Factory No. 459). ${ }^{43}$
Set (11.27)	02644 aciol
50001 11-27	D2645
5002 Series (Ch. 109).... 12-28	02661 (Factory 4819) ... ${ }^{\text {- }}$-23
5007, 5008, 5008	${ }_{02663}(\mathrm{Ch} .4 \mathrm{Cl}) \ldots . . .: 11-31$
	D2665 (Factory 48114
5010, 50115	es A) ${ }_{30}^{22-31}$
5015 .	D2692
${ }_{5019}$ …............... 23-30 ${ }^{\text {230 }}$	
5020 (Ch. 800) 11-28	24022-8308R) …... 23-31
5021 …e.......... 43-20	02718 (Factory No.
5022101-14	227014.6381U) ${ }^{23-32}$
5027 31	D2743
${ }_{5028} \ldots \ldots \ldots \ldots \ldots \ldots . . .{ }^{34-24}$	D2745 (Seo Madel D1645-
	6-33)
${ }_{5030}^{5030} 5031$......... ${ }^{32-25}$	D2748 (Ch. 7156) 26-27
	D2806, D2807 (Foctory
${ }_{5049} \ldots \ldots \ldots \ldots \ldots \ldots . .{ }^{\text {45-24 }}$	Model 181) 44-26
5051 32-26	D2810 (Factory No.
	24024.7308B) 36-27
	02815
${ }_{5060} 5060.5061$........ $116{ }^{11}$	D2819 (Factory No.
${ }_{5170}^{5066}$. $\ldots \ldots \ldots \ldots \ldots \ldots{ }^{\text {a }}$	${ }^{254882.7381} \ldots \ldots \ldots .{ }^{35-24}$
5170 $1633^{13}{ }^{13}$	
	${ }^{02906}$ (Factory No. 189). 690914
7000, 7001 ……... 59-21	
7003 (Ch. 501) 12-29	D2919 (Fact. No. 6 OF21) 59-22
7016, 7017 84	D2982 Tel. Roc.
${ }_{7023} \cdot \ldots \ldots \ldots \cdot \cdots \cdot{ }^{83}$ - 13	
7036112-11	D2985 Tel. Rec. .l. 70-11
	D2987 Tel. Rec. 69
Ch. 32 Al (${ }^{\text {a }}$ (el 219-8A	02988, D2989 Tel. Rec.... *
(See Model 62R50)	D2990 Tel. Rec
Ch. 33A2	D-3120A 203-12
(See Model 217-15)	D-3130A, B 203-13
Ch. 34A 2	D3210A 19015
(See Model 217-15)	D3265A …..........189-16
Ch. 104	D3615 (Factory 25802.606) 18-32
Ch. ${ }_{\text {chee }} 105$ Model 5007 (${ }^{03619}$ (Factory SP190)... 10-33
(See Model 5010)	
Ch. 109	
$\mathrm{Ch}^{\text {(Seee }}$ S01 ${ }^{\text {Model }}$ S002]	${ }_{\text {D3722 (Foct }}$ (Fo. No. 472) ... 51-24
(See Model 7003)	
Ch. 800	${ }^{03810}$ a
(See Model 5021)	D3811 (Fact. N
trela	
HW301 14-28	D3910 (Fact. Mode)
truetone	140611) 74-10
Dlo34A, B, C (See Model	D.4118, B 200-12
D1048A-Set 102.15)	D4142A \ldots..........142-14
D1046A 102-15	D4620 (Factory No. 5C12) 26-28
D1046B, C, D (ISee Model	D4730 (Factory 26C19.61) 7-28
D1046A-Set 102.15)	D4818 (Fact. No. 134DX) 45-26
D1090 Jel. Rec.	D4832 (Fact. No.
D1092 Tel. Rec.	$25 \mathrm{C22.82)}$ …..... 47-25
${ }^{\text {(Similor }}$ to Chassis).... 108	842 (Fact. No.
81234A, B 189815	26C21-81) \cdots...... $50-21$
${ }^{12404}$............. 187-12	201088A Tel. Rec. 105-11
01612 28-34	201088B Tel. Rec. 145-1A
D1644	201089 A Tel. Rec.113-10
${ }_{26476.8501}$........ 6 - 33	2 l 1089 B Tel. Rec. 136-14
D1747, 17488 …...... 32-27	201091 Tel. Rec. 161-10
01752 (Foctory 7901-14). 34-25	2D1093A, 201094A
D1835 (Factory Madel 25AB6-8561 44-25	201095 Tel. Rec. 134-11
D1836, D1936A flactory	201095A (Ch. 16A×27)
26A 85 -8561 ……. 45-25	Tel. Rec.
D1840 (Fact. No.	2011854 Tel. Rec. ${ }^{\text {chee }}$
1385CXM) \ldots....... 46-24	Model 2011858
1845 31-	Set 154.13)
1949 :	${ }_{\text {(See Prod. Chee. }}$
D1950, D1951 isee Mo	But. 43-
D1850-Set 51-23)	Model 201185B-
W1952 (Seee Model D1949-	Sot 154-13)
Sef 80.201	201185 E Tel. Rec. (See
D1990, D1922 (Factory No. ${ }^{\text {7AF21) Tel. Rec. }}$	Prod. Chige. Bul 43-
7af22) Tel. Rec....... 69-13 D1991 B, D1993, B	Set 177-1, Prod. Chge. But. 40-Seft 180-1 and
1994 Toi. Rec. 77-11	Model 201185B- ${ }^{\text {and }}$
996 Tel. Rec.	Set 154-13)
Model D2983-Set 88.18)	201190A, B Tel. Rec.... 147-12
-1889A Tei. Rec. ..	
2017, D2018 101-15	201194A Tel. Rec.......151-11
02020 106 -15	$201195 \mathrm{Al} \mathrm{Ch}^{\text {. }}$
	164×2161 Tel. Rec.
	20.1224A (Ch. 20AY21)
d2050A Tel. Rec. **	2D1225A (Ch. 21AYYIA)
	Tel. Rec.
	2D.1228A (Ch. 20AY21)
02145 197-13	Tel. 2 D .1224 A a)
D.2205201-12	2 L 2308 Tel . Rec. (Also
	Soe Prod. Chge. Bul.

WEBSTER ELECTRIC

WEBSTER (Telehome)
$\begin{aligned} & \text { W006M } \\ & 804 \mathrm{M} \\ & 8 \cdots \cdots \cdots \cdots \cdots \\ & \text { 56-24 }\end{aligned} l$

WELLS-GARDNER

$317 \mathrm{GS34C}-218$
317 GS 34 C .220
Tel. Rec. $.195-12$
$317 \mathrm{GS} 34 \mathrm{C}-278$
Tel. Rec. $195-12$
$32195-12$ $317 G S 34 \mathrm{C}-278$ Tel. Rec.. 195-12
$321 \mathrm{MS} 3 \mathrm{C}-222, .224$ Tel. Rec.
321MS3IC. $272,-274, \ldots 276$
Tel. Rec. 194-14

WESTERN AUTO (See Truetone)
WESTINGHOUSE (Also see
Record Changer Listing)
H-104, H-105
H-104A, H-105A, H. 107 A , 4-11 H-108A (See Set 21-36
and Model H-104-
Set 4-11)

$\mathrm{H} \cdot 113, \mathrm{H}-114, \mathrm{H}-116 \mathrm{Se}$
Model H-117-
Set 11.341
$\mathrm{H} .117, \mathrm{H} .119$

VIDEO CORP. OF AMERICA
Videol
10FM, 10TV, 12FM, 12TV
Tel. Rec............69-15
videola

VIDEO PRODUCTS

830.DXC Tel. Rec. 176-13
$630 . \mathrm{D} \times 24 \mathrm{C}$ Tel. Rec. $. . .176-13$
$630 \mathrm{FM} 3 \mathrm{~B}, 630 \mathrm{~K} 3 \mathrm{~B}$
$830 \cdot \mathrm{K3C}$ Tei.. Rec.176-13
$630 \cdot \mathrm{~K} 24 \mathrm{C}$ Tel. Rec. 176-13

VIEWTONE

VISION MASTER

(4MC, Mr Tel. Rec.
(Similor to Chassis)....117-8
16 MC IOMT 10 MXC IOMXCS

17 Mxis Tel. Rec
VIZ
RS-I
$\begin{array}{lll}\text { VOGUE } \\ 532 \text { A.P } & \\ \text { CR Moder } \\ \text { S3 }\end{array}$
WARWICK (See Clarion) WATTERSON

ARC-4591A	16-36
PA.4585, APA. 4587	3-2
RC-4581	16-35
4581	3-32
4582	6-34
4782	24-31
4790	16-34
4800	43-23
WAVEFORMS	
A-20	191-20
C. 5	191-20
WEBCOR (See Webster-Chicago)	

WESTINGHOUSE-Cont.

H-216, H-216A Ch.
$\mathrm{V} .2146-05, \mathrm{~V} .2146 .45$,
$\mathrm{V}-2149.1 \mathrm{~T}$ Tel. fec.... 97A-14
$\mathrm{H}-217, \mathrm{~A}(\mathrm{Ch}, \mathrm{V} .2146$.
$110 \mathrm{X}, \mathrm{V}-2137, \mathrm{~V}-2149)$
Tel. Rec. (See Set
O9A. 14 and Model
$4.217 \mathrm{~B}-\mathrm{Set} 91.141$
$\mathrm{H}-217 \mathrm{~B}$ ($\mathrm{Ch}, \mathrm{V} .2140-35 \mathrm{DX}$,
$\mathrm{V} .2137, \mathrm{~V}-2149$)

$\mathrm{H}-223$ (Ch. V.2150.01. .
V. $2150-021$ Tel. Rec.... 78-w
H. 225 (DX) (Ch.

V-2130-320X) Tel. Rec. 84-17

(See Model H-2i78-
H. 231 (Ch. 2150.51 and
H. 231 (Ch, 2150.51 and
V. $2137-3$ or
V. $2137-3 \mathrm{~S}, \mathrm{~V} .2149 .2$)

Tel. Rec. . $2130.1 . .$. 97A.1
H- 251 (Ch. V
H. 251 (Ch. V. 2150.81 Tel. Rec. (See

99A-14 and Mad
Set 95.71
H. 30015 , H-301T5

H. 307 TV, H-308T7
1Ch. V-2136)
H. $309 \mathrm{P} 5, \mathrm{H}-309 \mathrm{P} 5 \mathrm{C}$. 100-13
(Ch. V-2150)
H-31075, H-310TsU
H.311T5, H-311T5U
(Ch. V-2181, V-2161U). $99-18$
$\mathrm{H} .312 \mathrm{P} 4, \mathrm{H}-312 \mathrm{P}$
$\mathrm{H}-312 \mathrm{P} 4, \mathrm{H}-312 \mathrm{P} 4 \mathrm{U}$,
$\mathrm{H}-313 \mathrm{PA}, \mathrm{H}-313 \mathrm{PAU}$
$\mathrm{H}-313 \mathrm{P} 4, \mathrm{H}-313 \mathrm{P} 4 \mathrm{U}$,
$\mathrm{H}-314 \mathrm{P} 4, \mathrm{H}-314 \mathrm{P} 4 \mathrm{U}$,

H-317C7 (Ch. V-2136-1)
(See Model H-316C7-
Set 112.13
$\mathrm{H}-318 \mathrm{G} 5$
(Ch. V. 2157, U)117-15
H. $320 \mathrm{~T} 5, \mathrm{U}(\mathrm{Ch}$.
H. $220 \mathrm{~T} 5, \mathrm{U}$
$\mathrm{V}-2157 \mathrm{Ch}$.

H-321T5, U, H. 322 U5..... 11
(Ch. V. 2157.1 , U)
H. 323 T $5, ~ U 117-15 ~$

$\mathrm{H}-326 \mathrm{Cl}$ (See Model
$\mathrm{H}-316 \mathrm{C} 7$-Set 112.13)

$\mathrm{H}-328 \mathrm{CC}, U$
(Ch. $V \cdot 2136.4)$
$\mathrm{H} .331 \mathrm{P} 4 ; \mathrm{U}$ (Ch.
V.2164, U) (Also see
Prod. Chgo. Bul.

$\mathrm{H}-331 \mathrm{P} 4 \mathrm{U}$
$\mathrm{H}-333 \mathrm{P} 4$
(Ch. V. $2164, \mathrm{U}$)
(Also see Prod. Chge

$\begin{array}{lll}\begin{array}{l}\text { V.2136-5R) } \\ \text { H. } 336 T 5 U, H-337 T 5 U ~\end{array} & \cdots & \text { 149-14 }\end{array}$

H-342P5U, H.34P5U
(Ch. V-2156-1U)
H. $345 \mathrm{TS}, \mathrm{H} 346 \mathrm{TS}$ (Ch.
H. 338 T 5 U -Set 140-13)
H. 348 P5, H. 349 P5 $/ \mathrm{Ch}$.
$\mathrm{V}-2156.1 \mathrm{U}$) (See
Madel H-342P5U-
Sot 138-13)
H.350T7, H-351T7
(Ch. V-2180.1) (Also
see Prod. Chge. Bul.

(Ch. V-2157.5)161-1
H. 357 C 10 (Ch. V-2180-5) $161 \mathbf{l}^{12}$
H-359T5, H-360T5
H-3591. V. 2157.6)
(Ch...191-21
H. 381 T (Ch. V.2181-1). 186-15
H-365T5; H-366T5
(Ch. V. $2157-7$) 185-15
H-367T5 (Ch. V-2157.8). 189—17
H. 388 P 5 , H. 389 P 5 (Ch.

V-2150-1U) (See Mods1
H.342P5U-Set 138-13)
H-370T7, H-37177
(Ch. V-2180-81 $186-16$
H-372P4, H-373P4,
Ch. V.2182-1 and $\mathrm{H}-377$
Optional PwF. Supply 188-14
H-374T5, H-375T5
(Ch. V-2157-9)
H. 376 P 4 (Ch. V.2182-1 189-17
and H- 377 Optional
Power Supply
$\left.\begin{array}{c}\text { H. } 377 \\ \text { H. } 38515\end{array}\right) . . .188-14$

H-400P4, H-401P4,

WESTINGHOUSE-Cont.	WESTINGHOUSE-Cont.
H-704T17 (Ch. V-2216-2)	3 C 21 ICh. V-221
Tel. Rec. (See Prod. Chge. Bul, 40-Set 172-1	and Radio Ch, V.2180.9, -101 Tel. Rec.190-16
Prod. Chge. Bul. 45-	H-733C21 ich, v-2217.11
Sot 179.1, Prod. Chge.	
Bul. 51 Prod. Chge. Bul. 52	
Sel 186-1 and Model	Set 193-1)190-16
H-667T17-Set 167-15)	H-737T17 (Ch. V-2216.5)
-704717 (Ch. V.2216.4,	
-51 Tel. Rec. -	H-750T21 (Ch. V-2221-1)
	H-751T21 (Ch, V.2217-4
Chge, Bul. 40-Set	5
172.1, Prod. Chge.	752221 Ch, V.2217-4,
Bul. 45-5et 179-1,	-5) Tel. Rec. $3 \ldots \ldots 2020$
Prod. Chge. But. $52-$	H-753K21 (Ch. V.2221-1)
Set 186.1 and Model	
H-667T17-Set 167-15) H-706T16 (Ch. V. 2207-1)	
Tel, Rec. 193-12	H-756k21 (Ch. V-2217.4,
H-708720 iCh, v.2220.1,	${ }^{\text {-5 J Tel. Rec. }}$
3,-11) Tel. Rec. \ldots...193-12	H-757K21 ICh. V-2217-4,
10121 (Ch. V.2217-2,	-5) Tel. Rec. Worai 202-10
-3) Tol. Rec. (See Prod.	H.758k21 (ch,
172-i, Prod. Chse.	H. 759×21 (Ch, v.2217.4.
Bul. 43-Set 177.1,	-5) Tel. Rec.
Prod. Chge. Bul. 43	H-1251
Set 177-1, Prod. Chge.	Ch. V-2102
Bul. $52-$ Set 186.1 and	
$\xrightarrow{\text { Model }}$ Set 167-667717-	Chisee Model H-138)
Sl0121 (Ch. v.2217.4,	Ch. V. 2103
-51 Tel. Rec. ${ }^{\text {a }}$	(See Model H-153)
H-71121 (Ch. V-2217-2,	Ch. V-2103.3
-3) Tel. Rec. (See	(Seomadel H-214)
Chge. Bul. $40-5$ et	Chee Model H.133)
Set Prod -1, Prod. Chge.	Ch. V -2118
Bul. 52-Set 186-1 and	(See Mod
Model H-667117- Set 167-15)	Ch. $\mathrm{V}_{\text {Vee }} \mathbf{2 1 1 9 - 1}$ Model H-164)
н.711121 (Ch. V-2217-4,	Ch. V-2120
S) Tel. Rec.	(See Model H-.165)
-	is es Model
Chge. But. $00-\mathrm{Set}$	Ch. V. 2123
172-1. Prod. Chso. Bul,	(See Model H-178)
	(See Model H-169]
Cond Model H-667T17-	Ch. V. 2127
Set 167-15)	See Model H-183)
$714 \mathrm{~K} 21 \mathrm{lCh} . \mathrm{V}-2217-2$,	C. V-2128, $\mathrm{V}-2128.1$
3) Tel. Roc. (See	(See Model H-182)
Chge. 8ul. $40-$ Set	$\mathrm{Ch}^{\text {che }} \mathrm{V}$ 2128-2
172-1, Prod. Chge	
Prod. Chge. Bul. s2-	(See Modol H-196)
Seet 186-1 and Model	Ch. V -2130.11Dx.
	H.1964
-5) Tel. Rec. Will, 202-10	Ch. Y.2130-21DX,
H-715K21 (Ch. V.2217-2,	22Dx [See Model
${ }^{\text {3) }}$ Tel. Rec. (See Prod.	H-207A (0x)]
Chge. Bul. 40--5et	. y -2130.310x,
172-1. Prod. Chae. Bul.	. 32 Dx [See Model
Chae. Eul. 52-Set.	Ch. V.2131, V-2131.1
186.1 and Model	(Seo Model H-185)
H.667T17-Set 167-15)	Ch. $V .2132$
715K21 (Ch. V.2217-4, 5) Tel, Rec, 202	
716T17 (Ch, v-2208-1)	(Soe Model H-188)
Tel, Rec.	
H-718K20 (Ch. V-2220-2) ${ }^{\text {den }}$	
Tel. Rec. ${ }^{\text {a }}$	(See Model H-307T7)
-31 Tol, Rec, (See	
Prod Chge. Bul. 40-	Ch. V-2136-2
Set 172-1, Prod. Chas.	(See Model H-32477)
	Ch. V-2136-4
Set iboll and Model	Ch. V-2136-5R (See
H-667ti7-Set 167-15)	Model H-334TYUR)
H-720K21 (Ch. V-2217-4, 5) Tel. Rec.202-	Chiverem Model H-33
H. 721 K 21 (Ch. $\mathrm{V}-2217.2$	Ch. V.2137
${ }^{-31}$ Tell. Rec. (See	(S5ee Model H-203)
Prod. Chge. Bul. 40Set 172.1 Prod. Chge	Ch. V.2137.1 H-199)
Bul. 43-Set 177.1.	$\mathrm{Ch}_{\text {i }} \mathrm{V}$. $2137-2$
Prod. Chge, Bul. $52-$	(Soe Model V -2137.3 ${ }^{\text {a }}$-198)
H.675717-Sel 167.15)	${ }_{\text {V. } 2137-35}$ isoe
H-721K21 (Ch. V-2217-4,	Model H-231)
-51. Tel. Rec. 202-10	$\mathrm{Ch}_{\text {(See Model }}$
H-722K21 (Ch. V-2217-2,	Ch. V. 2146 -05 (5ee
Prod. Chge. Bul. $40-$	Model H-216]
Sot i72-1, Prod. Chge.	
Brod. Chge. Bul. 52-	Ch. V-2146-210x,
Sef 186-1 ond Model	. 25 Dx (5 ee Model $\mathrm{H}-22$
H.667T17-Set 167.151	${ }^{\text {Ch. }}$ (See Model H-2178)
H.722K21 (Ch. V.2217.4, -5) Tel. Rec. 202-10	
H-723K21 (Ch. V.2217.5)	Ch. V-2148
Tel. Rec. . . . ${ }^{\text {a }}$	(See Model H300TS)
$\text { H. } 730 \mathrm{C} 21 \text { (Ch. V.2218-1 }$	$\mathrm{Ch} . \mathrm{V}-2149.1 \mathrm{l}$
and Radio Ch. V-2180-9,	(See Model H-216)
${ }^{-10)}$ Tel. Rec. $190-16$	${ }^{\text {Ch. }}$ S.2149-3
H.730C21 (Ch. V-2218-2 and Radio Ch. V.2180.9.	Ch. V -2150-01, v -2150-02
-10) Tel. Rec. (Also Ses	
Prod. Chge. Bul. 59Set 193.1 and Prod. Chge	${ }^{\text {Ch. }}$ See Model ${ }^{\text {a }}$-242)
Bul. 68-Set 205-11 190-16	Ch. V-2150.41 (See
H. 730 C 21 (Ch, V-2218.11	Model H -601K12)
and Radio Ch, Y-2180-9, -10) Tel. Rec. (Also See	Ch. V-2150-51 ${ }_{\text {See Model }}$ M-231)
Prod. Chge. Bul. 59-	Ch. V-2150.61, A, B
	(See Model H-600716)
and Radio Ch. V-2180.9.	
-10) Tel. Rec.190-16	$\mathrm{Ch}, \mathrm{V}-2150.91 \mathrm{~A}$
732C21 (Ch. V-2218-11	(Seo Model H-604T10)
and Radio Ch. V-2180-9,	V. 2150.94 (See
Prod. Choe. Bul. 59- Set 193.1)190-16	Ch. V-2150-94C (See Model H-609T10)

WESTINGHOUSE-Cont.
Ch. V-2150-101 (See
Model H-6051 2)
Ch. V-2150.111, A
C(See Model H. 606 K 12)
$C h$ V.2150.136
(See Model H. 610 T 12)
Model H.613KIof
Ch. V.2150.176, u
Model H-615
Ch. V-2150.176, U
(See Model H.617112)
Ch. V-2150.177U (See
Ch. V-2150.177U (See
Model M-617T12)
Ch . V-21 Mo.186, A, C, CA
(See Model H.618T16)
Ch . V-2150-197
Ch (See Model H-625T12)
Ch (S-215-1
(See Model H-302P5)
(See Model H-302P
Ch V-2152.01
(See
Ch. Model H-603(12)
Ch . V-2152.16
(Soe Model $\mathrm{H}-611 \mathrm{Cl} 2$)
Ch. V. 2153
Ch. See Model H303P4
C. $2153-1$ (See
Model H-312P4
Ch. V-2156
(See Model H-309P5)
Ch , V.2156.1U
(See Model H-342P5U)
Ch. V-2157, U
(See Model H-318T5)
Ch. V-2157.1, 1 l
(See Mode' H-321T5)
Ch. V . $2157-2,-2 \mathrm{U}$
(See Model $\mathrm{H}-323 \mathrm{~T}$)
(See Mode! $\mathrm{H}-323 \mathrm{~T}$
$\mathrm{Ch} . \mathrm{V}-2157.3 \mathrm{~S}$ (See
Model H-32716
(See Model H338T5U)
Ch V -2157-5
iSee Model H. 35515)
iSee Model H-359
Ch. V-2157-8
(See Model H-36715)
Ch. V.2157-9
(See Model H-374T5)
(See Model H-374T5
Ch. V-2157.11
(See Model H-38515
Ch. V-2181, V-2161U
(See Model H. 310 T 5
Ch. V.2164. U See
Ch. Vodel H-33164-2
(See Model H.400P4
V . 217 (See
Model $H-627 \mathrm{~K} 16)$
Ch.
V . 2172 (See
Model H-626T16)
(See Model H.633(17)
Model H-636T
$\mathrm{Ch} . \mathrm{V.2175-1}$
(See Model H-641K17)
Ch. V. $2175.3,-4$
(See Model H. 640 (17)
(See Model H.640T17
Ch V-2175-5
(See Model H.641K17)
$\mathrm{Ch} . \mathrm{V}$ - 2176
(See Model H.630T14)
Ch. V.2177
iSee Model H.637T14)
(See Model H-637T14)
Ch.
$\mathrm{V}-2178,-1,-3$
Model H-638K20)
Ch . V-2180-1
(See Model H350T7)
Ch V-2180.2
(See Model H.354C7)
Ch. $V-2180-3$
(See Model $H-660(17)$

Ch. V- 2180.8 (See
Model $\mathrm{H}-37077$)
Ch. V. $2180-9,-10$
(Soe Model
H .730 C
V .2181 .1
(See
Model H-361T6)
$\mathrm{Ch} . \mathrm{V} 2192,-1$ (See
Model H-639T17)
Ch. V. $192,-3,-4,-5,-6$
(See Model H. 640117 A)
Ch. V-2194, V-2194A,
V-2194-1 (See
Model H-642K20A)
Ch. V. $2194-2,-3(S \mathrm{See}$
Modet H-752K20)
Ch. V.2200-1 (See
Model H-651K17)
Ch.
$\mathrm{V}-2201.1$ (See
Model $\mathrm{H} .652 \mathrm{K20})$
$\mathrm{Ch} . \mathrm{V} 2202.2(5 e e$
Ch. V-2203-1 (See
Model H. 660 Cl)
Ch. V-2204-1 (See
Model $\mathrm{H}-659 \mathrm{FI}$)

Ch. V.2207-1
[See Model
Ch. V -2208-1
(See
Model H-716Ti7)
Ch V-2210-1 (See
Model H-653K24)
Ch. Ve2214-1 $\begin{aligned} & \text { (See Model H-689116) }\end{aligned}$
$C_{\text {. }}$ V.2215-1 (5ee
$\mathrm{C}_{\mathrm{M}}^{\text {Model V-2216.1 }}$ (Soe Model H-667T17)
$C h . V .2216-2,-3$ (See
Model H. 678 K 17)
Ch. V-2216.4, 5
Ch. V-2217.1
(Soe Model $\mathrm{H}-673 \mathrm{~K} 21$)
Ch.
$\mathrm{V} \cdot 2217-2,-3$
$C h . V-2217-2,-3$ (See
Model H.692T21)
Ch. M-2217-4, -5 (S
Ch. V-2217-4, -5 (Soe
Model H.7102211
Ch. V-2218-1. $-2,-11$
Ch. V-2218-9:-2,-11

ZENITH-Cont.
J2040E, J2042R, J2043R Jel. Rec. R (Ch. 20121)

J2049R (Ch. 20J21) Tel.... 159| Rec. (See Model J2027E |
| :--- |
| Set 159 . | - Set 159 -18)

J2050R (Ch. 20J21) Tel.
Rec. (See Model J2027E
$=$ Set 159.18)
J2051E, J2053R, 22054 R ,
J2055R (Ch. 20J22)
Tel. Rec. 2131)
J2126R (Ch.
J2126R (Ch. 21 321)
Tel. Rec.
J2127E, R, J2129E, R,
J2130E, R (Ch. 21320 J2130E, R(Ch. 21 J20)

$$
\begin{aligned}
& \mathrm{J} 140 \mathrm{E}, \mathrm{~J}, \mathrm{J142R,J2143R,} \\
& \mathrm{~J} 2144 \mathrm{E}, \mathrm{R}(\mathrm{Ch} .21120 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J} 2151 \mathrm{E}, \mathrm{~J} 153 \mathrm{R}, \mathrm{~J} 2154 \mathrm{R} \\
& \mathrm{~J} 25 \mathrm{~S}(\mathrm{Ch}, 21 \mathrm{~J} 21)
\end{aligned}
$$

$$
\begin{aligned}
& \text { For TV Ch. See Set. } \\
& 159-18 \text {, For Radio Ch. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 159-18, For Radio } \\
& \text { See Model } 1880- \\
& \text { Set } 168.141
\end{aligned}
$$

$$
\begin{aligned}
& \text { See Model } 18 \\
& \text { Set } 168.14) \\
& \mathrm{J} 2968 \mathrm{R}(\mathrm{Ch} .21
\end{aligned}
$$

$$
\begin{aligned}
& \text { J2968R (Ch. } 21 \mathrm{~J} 20 \text { and } \\
& \text { Rodio (h. } 8 \mathrm{H} 2 \mathrm{ZZ} \text {) Tel. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rodio Ch. 8H2OZ Tel. } \\
& \text { Rec. (For TV Ch. See } \\
& \text { Set } 150.18 \text {, For Rodio }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Set 159-18, For Radio } \\
& \text { Ch. See Model J880- } \\
& \text { Ser 188-14) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J} 3069 \mathrm{E}(\mathrm{Ch} .20121 \text { and } \\
& \text { Rodio Ch. } 10 \mathrm{H} 20 \mathrm{Z})
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel. Rec. (For TV } \\
& \text { Ch. See Set 159.18. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ch. See Set } 159-18, \\
& \text { For Radio Ch. See }
\end{aligned}
$$

$$
\begin{aligned}
& \text { For Radio Ch. See } \\
& \text { Model H3273E-Set } \\
& 151-131
\end{aligned}
$$

$$
\begin{aligned}
& \text { Model } 151.131 \\
& 153
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{J} 3169 \mathrm{E} \text { (Ch. } 21120 \text { ond } \\
& \text { Radio Ch. } 10 \mathrm{H} 20 \mathrm{OZ} \text {] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rodio Ch. } 10 \mathrm{H} 2 \mathrm{OZ} \text {] } \\
& \text { Tel. Rec. (Ior TV Ch. } \\
& \text { See Set } 159-18 \text {, for }
\end{aligned}
$$

$$
\begin{aligned}
& \text { See Set 159-18, For } \\
& \text { Rodio Ch. See Model } \\
& \text { H3273E-Set } 151-131 \\
& \text { K412G, R, W, Y }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Ch. } 4 K 01 \text {) } \\
& \text { K } 510 \text {. K510w, K51or, } \\
& \text { Ch. } 5 K 02 \text {) }
\end{aligned}
$$

$$
195-13
$$

$$
181-15
$$

$$
\begin{aligned}
& \text { Model } 1514 \text {-Set } 176 \\
& \text { KSi8 } 1 \mathrm{Ch} .5103 \text { (} 5 \text { See } \\
& \text { Model } 514 \text {-Set } 176 .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Model j514-Set } 176.1 \\
& \text { KK22. F. G. Wich. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { K777E, R (Ch. } 7 K 20 \text {). } \\
& \text { K1812E, R (Ch. 19K22) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { Kıl } 815 \mathrm{E}, \mathrm{R} \text { (Ch. } 19 \mathrm{~K} 20 \text {) } \\
& \text { Tel. Rec. }
\end{aligned}
$$

$$
184-15
$$

$$
\begin{aligned}
& \text { Tel. Rec. (Ch. 19K20) } \\
& \text { K1820E, R }
\end{aligned}
$$

$$
184-15
$$

$$
\begin{aligned}
& \text { K1820E, R (Ch. 19K20) } \\
& \text { Tel. Rec. } \\
& \text { K1846E, R (Ch. 19K20) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { K1846E, R(Ch. } 19 \mathrm{~K} 20) \\
& \text { Tel. RRC. } \\
& \text { K1850 R, R(Ch. 19K20) }
\end{aligned}
$$

$$
184-15
$$

$$
184-15
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { KI880R(Ch. } 19 \mathrm{~K} 20)
\end{aligned}
$$

184-15

$$
\begin{aligned}
& \text { Tel. Rec.. } \\
& \text { K2229R (Ch. Igk23) }
\end{aligned}
$$

$$
184-15
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { K2230E, R' }(\mathrm{Ch} .21 \mathrm{~K} 20 \text {) }
\end{aligned}
$$

$$
184-15
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { K2240E, R (Ch. } 21 \mathrm{~K} 20)
\end{aligned}
$$

$$
187-14
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { K2258R (Ch. 19K23) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tol. Rec. } \\
& \text { K2260R(Ch. } 21 \mathrm{~K} 20 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& 184-14 \\
& 184-15
\end{aligned}
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { K2263E Ch. } 21 \mathrm{~K} 201
\end{aligned}
$$

$$
\begin{aligned}
& \text { K2263E Ch. } 21 \mathrm{k} 201 \\
& \text { Tel. Rec. } \\
& \text { K2266, R (Ch. } 21 \mathrm{k} 20
\end{aligned}
$$

$$
187-14
$$

$$
\begin{aligned}
& \text { K2266. R (Ch. } 21 \mathrm{~K} 20 \text {) } \\
& \text { Tel. Rec. } \\
& \text { K2207E (Ch. 21K20) } \\
& \text { Tel. Rec. }
\end{aligned}
$$

$$
\begin{aligned}
& 187-14 \\
& 187-14
\end{aligned}
$$

$$
\begin{aligned}
& \text { K2260 (Ch. } 21 \mathrm{~K} 20 \text {) } \\
& \text { Tel. Rec. } \\
& \text { K2268R (Ch. } 21 \mathrm{k} 20 \text {) }
\end{aligned}
$$

$$
187-14
$$

$$
\begin{aligned}
& \text { K2268R (Ch. } 21 \mathrm{~K} 20 \text {) } \\
& \text { Tel. Rec. } \\
& \text { K2270H, R (Ch. } 21 \mathrm{~K} 20
\end{aligned}
$$

$$
187-14
$$

$$
\begin{aligned}
& \text { Tel. Rec. } \\
& \text { K2286R(Ch. } 19 \mathrm{~K} 23 \text {) }
\end{aligned}
$$

$$
187-14
$$

$$
\begin{aligned}
& \text { K2286R(Ch. } 19 \mathrm{~K} 23 \text {) } \\
& \text { Tel Rec. } \\
& \text { K2287R (Ch. } 21 \mathrm{~K} 20 \text { and }
\end{aligned}
$$

$$
\begin{aligned}
& \text { K2287R (Ch. 21k20 and } \\
& \text { Radio Ch. 8H20Z) Tel. }
\end{aligned}
$$

$$
184-15
$$

$$
\begin{aligned}
& \text { Rodio Ch. 8H20Z) Tel. } \\
& \text { Rec. (For TV Ch. See } \\
& \text { Set } 187.14, \text { For Radio } \\
& \text { Ch. See Model } 1880 \text { - }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ch. See Model J880- } \\
& \text { Sel 168-14) } \\
& \mathrm{K} 2288 \mathrm{E} \text { (Ch. } 19 \mathrm{~K} 23 \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Sel } 168-14 \text {) } \\
& \text { K2288 (Ch. } 19 \mathrm{~K} 23 \text {) } \\
& \text { Tel. Rec. . } 184-15 \\
& \text { K2290R, K2291E (Ch. } \\
& 21 \mathrm{K20} \text { and Rdio Ch. } \\
& 10 \mathrm{H} 20 \mathrm{Z} \text {) Tel. Rec. } \\
& \text { (For TV Ch. See Sol }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10H2OZ) Tel. Rec. } \\
& \text { (For TV Ch. See Sol } \\
& 187-14 \text { For Radio Ch. } \\
& \text { See Model H3273E- }
\end{aligned}
$$

ZENITH-Cont.
6G004Y (Ch. 6C4

6G004Y (Ch. 6C41)	20-35
6G038 (Ch. 6C50)	32-30
6G801 (Ch. 6E40)	53-26
6R084 (Ch. 6C21)	20-36
6R087 (Ch. 6C22)	7-32
$7 \mathrm{R886}$ (Ch. 6E02)	34-30
7H820, 7H820W (Ch. 7EOI)	43-24
7H822 (Ch. 7E02), 7H822WZ, 7H822Z	
7 H 918 (Ch. 7F03)	75-18
7H920, 7H920W (Ch. 7F01)	77-13
7H921 (Ch. 7F04)	73-16
7H922 (Ch. 7F02)	87-15
$7 \mathrm{RO70}$ (Ch. 6C06)	37--25
$7 \mathrm{P887}$ (Ch. 7E22)	54-22
$8 \mathrm{BG005Y}$ ($\mathrm{Ch} .8 \mathrm{8C40}$)	7-33
$\begin{gathered} \text { 8G005YT (Z1) (Ch 8C4OT) } \\ (Z 1) .8 G 005 Y T 1(22) \\ (\mathrm{Ch} .8 \mathrm{8} 40 \mathrm{~T})(22) \end{gathered}$	53-27
$8 \mathrm{H023}$ (Ch. 8CO1)	4-40
$\begin{gathered} \text { 8H032, 8H033 } \\ (\mathrm{Ch} .8 \mathrm{C} 20) \end{gathered}$	$1-33$
$8 \mathrm{H034}$	4-20
	1-33
8H832, 8H861 (Ch. 8E20)	52-24
$9 \mathrm{H079}$, 9H079E, 9H079R. 9 H 081 , 9H082R, 9 H 085 R 9 M088R (Ch. 8C21)	7-34
9H881, 9H882R,9H885. 9H888R (Ch. 9E21)	43-25
9H984, 9H984LP (Ch. 9F22)	64-14
$9 \mathrm{H995}$ (Ch. 9E212)	74-12
12H090, 12H091, 12 H 092. 12 H 093 , 12 H 094	
(Ch. 11C21)	2--20
$14 \mathrm{H789}$ (Ch. 13D22)	41-24
27T965R (Ch. 27F20)	
28 Tel 225 E , R (Ch. 28 F 2 O$)$	95-8
Tel. Rec.	64-15
28T926E, R (Ch. 28F25)	

28T926E, R (Ch. 28 FF 25)
Tel. Rec. (See Model
Tel. Rec. (See Model
28T925-Set 64.15)
28T960E (Ch. 28 F 29)
Tel. Rec. (See Model
28 T 960 - Set $64-15$)
$28 \mathrm{~T} 960 \mathrm{E} \cdot \mathrm{Z}$ (Ch. 28F20Z)
Tol. Rec. (See Model
$28 \mathrm{~T} 960-$ Set 64.15)
(Ch. 28F20) Tel. Re
(See Model 28T960-
Set 64.15)
28 T961E, $281961-\mathrm{GO}$
(Ch. 28F21) Tel, Rec.
(See Model 28TOSOl.
Set Model 281901-
Set 64)
$28 \mathrm{~T} 962 \mathrm{R}(\mathrm{Ch} .28 \mathrm{~F} 201 \mathrm{Te}$.
Rec. (Soe Model 287962

- Set 64.15

28T962R-Z (Ch. 28F20Z:
Tel. Rec. (See Model)
Tel. Rec. (See Mod
$289652-$ Set $64-15)$
287963 (Ch. 28F21)
28T964R (Ch. 28F23) 64-1
Thl, Rec.

and Radio Ch. 9E2 IZ)
Tel. Rec. (For TV Ch.
See Model 42 T999RIP-
See Model 42 T999RLP
Set $74-13$, For Rodio
Ch. See Model 9H995-
Set 74-12)
$371998 R$ LPU (Ch. 28 F 20
and Radio Ch. 9E21z)
Tel. Rec. (For TV Ch.
See Model 28 T900-
Set $64-15$, For Radio Ch .
Set 64-15, For Radio
See Model $9 \mathrm{H} 995-$
42 T999RLP (Ch. 28 F 23,
Rodio Ch. 13 D 22 I Tel.
Radio Ch. 13D22) T
Rec. See Model
Rec. Soe Model
28 T964R1
Ch . 4C52

(See Model 4KO35)
Ch. 4E4)
(See Model 4G800)
Ch . $4 \mathrm{EA1Z}$
(Seg Model 4 GB 800 Z)
Ch. 5 ee Model 4G903)
Ch. 4 H 40
(See Model H.401)
Chee Model H-401)
(SJee Model J402)
Ch. 4J60T
(See Model J4201
Ch. $4 \mathrm{KO1}$ (See Model K412G)
$\mathrm{Ch} 5 \mathrm{CO1}, 5 \mathrm{CO} 1 \mathrm{Z}$ (
(See Model 5001
Ch. $5 \mathrm{CO2}, 5 \mathrm{CO2Z}$
(See Model 5R080)
Ch SCO4
Ch. 5C40
(See Model $5 G 003$
Ch SC40Z
iSee Model 5 GOO
(See Model 5G003z)
Ch. $5 C 40 Z Z$
(Soe Model 5G003zZ)
Ch. SC51
(See Model 5D810)
Ch. $5 \mathrm{GO1}$
(See Model G511)
Ch. 5G02 Model G511
(See Model G510)
Ch. $5 \mathrm{GO3}$
(See Model G516)
Ch 5 G 40
(See Model G5001
(See Model G500)
(SG4)
(Sea Model G503)

(See Model H511) Ch. 5 H 40 (See Model H500) Ch. 5 H 41 (See Model H503) Ch. 5103 (See Model J514) Ch. 5 KO2 (See Modal K510] Ch. 5 K03 (See Model K518) Ch. 6 CO 1 (See Model 6DOT4) Ch. 6COS, Z (See Model 6DO15) Ch. 6 CO (See Model 7RO70) Ch. $\mathrm{SC}_{2} 1$ (See Model 6R084) Ch. 8 C22 (See Model 6R087) Ch. 8 C 40 (See Modal 6G001) Ch. 6 C41 (See Model 6G004Y) Ch. 6C50 (See Model ©G038) Ch. 6E02 (See Model 6R888) Ch. 6E05 [See Model 6D815] Ch. 6E40 (See Model 6G801) Ch. 6G01 (See Model G660) Ch. 6G05 (See Model G615) Ch. 6G05Z1 (See Model H615Z1) Ch. 6 G20 (See Model G2957)	

ZENITH-Cont. Ch. 7HO2Z1	
Ch. $7 \mathrm{H} 02 \mathrm{Z2}$	
(See Model H72422)	
Ch. 7 HO 4 (${ }^{\text {a }}$	
(See Model H723)	
Ch. $7 \mathrm{HO4Z}$	
$\mathrm{Ch}^{(S 80}$ Model H723Z)	
(See Model H723Z1)	
Ch. 7 HO 422	
${ }^{(S o o}$ Model H72322)	
(Ssee Model 1733)	
Ch. 7K20	
	(See Model K777E)
Ch. 8C01	
	(See Model 8H023)
Ch. 8C20	
[Soe Model 8H032]	
Ch. 8C21	
	(See Model 9H079)
Ch. 8C40	
(See Model 8G005Y)	
Ch. ${ }^{\text {S Seo Model }}$ MG005YT(Z1)1	
Ch. 8C401 (22)	
	[See Model 8G005YT (22)]
Ch. 8E20	
	(See Modal 8H832)
Ch. 8G20	
	(See Modal G881)
	Ch. 8G20/22 91A-13
Ch. 8 H 20	
	(See Model H880Rz)
Ch. ${ }^{\text {aH2O Revised }}$	
	(Sea Model H880)
Ch. 8H20Z	
	(See Model J880)
Ch. 9E21	
	(See Model 9H881)

ZENITH-Cont.

Ch. 23G24Z!
(See Model G2322Z
Ch. $23 \mathrm{H} 22,23 \mathrm{H} 22 \mathrm{Z}$
(See Model H.2328E)
iSee Model H-2328E
Ch .24 GG 20
Ch. 24G20.OX ${ }^{\text {(Soe Model }}{ }^{\text {G2420E }}$
(Soe Model G2420-EOX)
Ch. 24 G 21
(See Modal G2454R)
Ch. $24 G 21$-OX
(Sae Model G2454-ROX)
(Soe Model G2441 R)
(See Model G2441)
Ch. 24G24/25
Ch. 24G26 ${ }^{\text {Ch. }}$ 24G26Z1.
iSee Model G2441
Ch 24 H 20
iSeo Model H243
iSee Model H2437E
Ch. $24 \mathrm{H21}$
iSee Model H2245R
(5ee Model H2245R)
Ch. 27 F 20
(See Model 271905R)
Ch (See Model 28T980E)
Ch. 28F20Z
(Soe Model 28T960E-7)
Cher 28F21
(Seo Model 28T961E)
Ch. 28F22
(See Model 281925E)
Ch. 28 F 23
(See Model 28T964R)
Ch. $28 F 55$
(See Model 28T926E)
(See Model 28T926E)
$\mathrm{Ch}_{\text {29G20 }}$ (See Model G2951)

RECORD CHANGERS

(CM-1) indicates service data also available in Howard W. Sams 1947 Record Changer Manual. (CM-2) indicates service dato available in Howard W. Sams 1948 Record Changer Manual. (CM-3) indicates service data available in Howard W. Sams 1949, 1950 Record Changer Manual. (CM-4) indicates service data available in Howard W. Sams 1951, 1952 Record Changer Manual.

miscellaneous

Series $700 \mathrm{~F} \ldots . .(\mathrm{CM}-2) \quad 89-9$
Series $770 \mathrm{~F} 33 / 45(\mathrm{CM}-3) 75-11$
Sories $700 \mathrm{FLP} \ldots(\mathrm{CM}-2) 101-6$
Series $700 \mathrm{FS} \ldots . .(\mathrm{CM}-2) 104-8$
Series $700 \mathrm{R} \ldots . .(\mathrm{CM}-2) \quad 91-8$

RECORDERS

DOLLARS AND SENSE

(Cont'd. from page 49)
GOPHERS. Don't rely on leadcovered cable for underground use out on the Western plains. Bell Labs scientists haven't yet found out why gophers and muskrats take delight in chewing up buried Long Lines transcontinental toll cable, but they did discover that a thin steel tape wrapped around the cable sheath is more than a gopher can swallow.

FIREMEN. According to St. Paul, Minn. fire department officials TV is the greatest boon to department morale since the retirement of fire horses. Sets are installed in all 20 engine houses, and are making science, cooking and political experts out of erstwhile pinochle and cribbage players.

NOTES. Left on back door for telephone installer: ' Key inside small tub under wash tub. Don't let little dog out or big cat in''. In the big city such a note would be a museum-piece, but in small towns or out in the country where people trust each other it's quite customary to leave notes. Books and pamphlets on good business practices for servicemen warn against going in when no one is home, but local practices should govern. Many a good small town customer would be highly insulted if you refused to go into his empty house to fix a set.

GROUNDS. An old ten-inch TV set in a poorly wired home provided an interesting case history of the importance of a good electrical ground for house wiring. Each time the oil burner came on; the picture was wiped out horizontally and took up to 20 seconds to return. As part of the wiring overhaul job on this house, an electrician routinely connected a new ground lead to the fuse-meter box. Now there is only a slight twitch on the top line or two of the picture when the oil burner comes on. A possible explanation offered by Electronics' managing editor Vin Zeluff, who encountered this trouble, is that the high resistance of the old ground lead and the capacitance of some 1,400 feet of BX cable were involved. What a tough one this would be to ferret out on a service call!

BALANCING. To check for balance in a push-pull audio amplifier without using meters or test equipment, short the plates together with a wire jumper and feed a signal of any kind (such as from a
phonograph) to the amplifier input. If the output stage is unbalanced, the output signal will be heard. This technique permits accurate balancing by adjusting for zero sound output.

CARUSO RECORDS. Values of Caruso records for collectors range from $\$ 2.00$ for Victor No. 87321 to $\$ 25.00$ for Victor No. 5014 , with the average price running somewhere around $\$ 7.00$, according to a recent publication, "Price Guide to Collector's Records." Values are listed for over 7,000 historical recordings by the greatest names in recorded music, and are average prices for original copies in good condition. Increasing interest in old records as a hobby is boosting their value rapidly.

Servicemen are in a particularly good situation for acquiring attic hoards of such records for their personal enjoyment or for resale. A casual inquiry will often reveal almost forgotten collections that can be bought for a few dollars. There is, of course, a gamble in this as many old records have been so abused as to be worthless, but the true collector willingly takes this gamble. The 32 -page booklet of record prices is available at $\$ 2.50$ from American Record Collectors' Exchange, 825 Seventh Avenue, New York 19, New York.

Another book published by the same firm, "Collectors' Guide to American Recordings 1895-1925" supplements the above by giving titles and dates for each important record, along with other interesting data.

HORSEBACK RADIO. Out in Arizona, posse men on horseback use the Motorola "Handie-Talkie" as an aid to law enforcement. In one instance, Jim Van Winkel, captain of the hounds for Arizona State Prison, used the radio to call for additional men when his dawgs picked up the trail of an escaped prisoner. As another instance, Ernie Chilson of the Bar-T-Bar Ranch uses the Motorola set for contacting the ranch house while riding the range, for effective supervision of operations on this mammoth northern Arizona cattle spread.

WATER-TV RATIO. Watching the city water pressure is one way of telling which television programs are the most popular, according to Toledo' s water commissioner. During a popular program the water pressure is a bit higher than normal and drops sharply during station breaks. The explanation, he says, is that so many people get up to go to the bathroom all at once right after a popular program.

* * Please turn to page 105 * *

This might help sometime

An interesting story comes to us from Los Angeles, California. A customer came into the shop one morning with two radios to be repaired. One set was a GE, AM-FM radio; the other was an old Lyric of pre-octal vintage. The GE needed only a new 12AT7 to return it to normal working order; the Lyric, however, had been tampered with and considerable work was necessary in its repair. The owner, when he called for the sets, questioned the charges.

Knowing that the man operated a gasoline filling station, the service shop manager asked him this question by way of reply: "If a brand new Cadillac and an old jallopy each got five gallons of the same grade of gasoline at one of your pumps, would you charge each a different price?"

The man immediately answered, "Of course not. Our charge is based on grade and amount of gas, not on the value of the cars."

To this the service manager returned, "An hour is an hour, regardless of the value of the radio. Material and labor determine our prices.'

In this way, the technician and his customer arrived at mutual understanding through the medium of common business practice.

When you specify Seletron＂Safe Center＂ Selenium Rectifiers you eliminate arc－over danger，short circuits and heating at the center contact point．Assembly pressure，or pressure applied in mounting the rectifier cannot affect its performance－a Seletron feature accomplished by deactivating the area of the plate under the contact washer．

The millions of Seletron Selenium Recti－ fiers in satisfactory service as original equip－ ment in the products of leading manufac－ turers are millions of reasons why you can specify Seletron and be safe！

Consult your local jobber！

MODEL NO．	$\begin{aligned} & \text { PLATE } \\ & \text { SIZE } \end{aligned}$	STACK THICKNESS	MAX．INPUT voltage R．M．S．	MAX．PEAK INVERSE VOLTAGE	MAX．D．C． OUTPUT CURRENT
1M1	$1{ }^{\prime \prime}$ sq．	3／8＇	25	75	100 MA
8 Y 1	$1 / 2^{\prime \prime}$ sq．	最＂	130	380	20 MA＊
16 Y 1	1／2＂ 54.	18＂	260	760	20 MA＊
811	部＂ 5 q．	量＂	130	380	65 MA
5M4	1＂sq．	$1{ }^{\prime \prime}$	130	380	75 MA
5M1	$1^{\prime \prime} \mathrm{sq}$ ．	7／8＂	130	380	100 ma
5P1	$13^{3 / 16} \mathrm{sq}$ ．	7／8＂	130	380	150 MA
6P2	1 $\frac{3}{1 / 4}$＂ 54.	$1{ }^{\frac{3}{10}}{ }^{\prime \prime}$	156	456	150 MA
5R1	$11 / 2^{\prime \prime} \times 11 / 4^{\prime \prime}$	7／8＂	130	380	200 MA
50.1	$11 / 2^{\prime \prime} \mathrm{sq}$ ．	11／8＂	130	380	250 MA
601	$11 / 2^{\prime \prime} \mathrm{sq}$ ．	11／8＂	156	456	250 mA
602	$11 / 2^{\prime \prime}$ sq．	11／9＂	156	456	250 MP ．
604（ \dagger ）	$11 / 2^{\prime \prime}$ sq．		130	380	300 MA
5051	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11／8＂	130	380	350 MA
6as2	$11 / 2^{\prime \prime} \times 2^{\prime \prime}$	11／4＂	156	456	350 MA
551	$2^{\prime \prime} \mathrm{sq}$ ．	11／8＂	130	380	500 MA
652	2＂sq．	13／8＂	156	456	500 MA

（ \dagger ）This rectifier is rated at 25

RR SELETRON DIVISION RR RADIO RECEPTOR COMPANY，Inc．
 Sales Department： 251 West 19th St．，Now York 11，M．Y． Factory： 84 Worth Sth St．，Brooklyn 11，M．Y．

counter. Since the AGC voltage is dependent upon the strength of the video signal which the AGC stage receives, how can you tell whether a defect in the RF or IF systems is causing the abnormal AGC voltage or whether the AGC network itself is defective.

The answer to this problem canbe obtained by the following procedure. Disable the AGC system, either by removing the AGC tube (if this is feasible) or by breaking the connection coming from the AGC stage; then apply a negative DC bias to the AGC line. A pair of flashlight batteries with a control connected across them or a small bias supply can be used for this purpose. Now observe the picture. If it is normal, the AGC network is defective; if the picture is still distorted, the AGC system is probably OK.
4. Input and Output of Sync Separator Stages. The sync separator stages are at the threshold of the horizontal and vertical sweep systems and, as such, figure prominently in the operational stability of these systems. Any change in the sync separator stages which overly reduce the amplitude of the sync pulses or prevent the clean separation of the pulses from the video signal, will affect horizontal and vertical lock-in. (Visual consequences include picture curvature, critical hold-in, and a tendency for the picture to roll or break-up into a series of diagonal slices with the slightest distrubances.) It is desirable, therefore, for the technician to inspect the input and output signal
waveforms of the sync separator stages whenever these difficulties are encountered.

When checking the horizontal and vertical pulses in the sync separator system, use an oscilloscope sweep frequency of 30 cycles for the vertical pulses and a sweep frequency of 7875 cycles for the horizontal waveform. These are half the normal frequencies for these pulses and enable you to observe two cycles of each.
5. Sweep System. The remaining guideposts exist within the sweep systems themselves. In the vertical system there are two items that have found to be important to check. One is the ability of the vertical sync pulse to lock in the oscillator, and the other is the shape and peak-to-peak amplitude of the deflection wave at the grid of the output tube.

The vertical sync pulse, after it leaves the sync separator section, must travel through an integrating network to reach the vertical oscillator. An open resistor or a shorted by-1ass capacitor in the integrator can prevent the sync pulse from reaching the oscillator. By the same token, a change in resistor values or an open capacitor can cause a reduction in the sync pulse amplitude.

To determine whether the sync pulses are reaching the vertical oscillator, place the vertical input lead of the oscilloscope at point B, Figure 2. The ground lead of the
scope attaches to the receiver chassis. On the screen you should now see the waveform shown in Fig ure 3. The large negative pulse is that which the blocking oscillator develops in its grid circuit due to its oscillations. It appears at point B because of the coupling between this point and the oscillator grid.

The incoming sync pulse, if it is present, will show up as a small pip riding along the top of the grid wave. When it reaches the point indicated in Figure 3 the oscillator is locked in. This can be checked by rotating the vertical hold control. During a portion of the rotation, the wave will remain stationary on the screen. Then, when the control is advanced too far, the small sync will again be seen riding along the top of the wave indicating that the vertical oscillator has again slipped out of control.

The a mplitude of the sync pulse can be measured, if desired, by removing the vertical oscillator tube from its socket. This kills its oscillations and permits the sync pulses to be observed alone on the scope screen.

In the horizontal sweepsystem, one reliable guidepost exists at the output of the AFC control tube and one at the grid of the horizontal output amplifier. The significance (and importance) of the $D C$ output voltage of the AFC control tube was discus sed at length in this column in PF INDEX and Technical Digest, No. 37. It was shown how this voltage could be measured and what it would mean if the voltage was absent.

Figure 2. A Typical Vertical Deflection System

"A man is known by

the company he keeps"
(and so is his work)

AEROVOX	MALLORY
ASTATIC	MERIT
BURGESS	MILLER
BUSSMANN	QUAM
CENTRALAB	RADIART
CHICAGO	RCA
CIAROSTAT	SELETRON
CORNELL-DUBILIER	SHURE
ELECTRO-VOICE	SPRAGUE
ERIE	STANCOR
EVEREADY	SYIVANIA
FEDERAL	SARKES TARZIAN
I R C	THORDARSON-
JENSEN INDUSTRIES	MEISSNER
JENSEN MFG.	TRIAD
IITTELFUSE	WALCO

ASK FOR THESE FINE PRODUCTS
they safeguard your work

At the second point, i.e., the grid of the output amplifier, both form and amplitude are important. Check both carefully to make certain they meet specifications.

Here, then, are the major check points in a television receiver and the technician should consult one or more of them whenever he is unable to make a definite decision as to the cause or location of a defect. The rewards, in terms of time saved, will astound you.

REVIEW. The review this month concerns a quantity which is widely employed in everyday radio and television but which, strangely enough, is only vaguely understood by a good many technicians. The quantity is decibels and before you scoff at the idea that YOU are not familiar with decibels and how they are computed, see how fast you can work the following problem.

If you double the power output of an amplifier, how great is the db increase? (This is about the simplest problem you could have been given. If you cannot snap an answer back, you had better read further. And even if you know the answer right off, further reading is advisable for more complicated problems.)

DECIBELS PROBLEMS by John B. Ledbetter Radio-Electronics
(Formerly Radio-Craft)
February and March 1946

> Published Monthly by Gernsback Publications Inc.
> Erie Ave., F to G Streets
> Philadelphia 32 , Pa.
> Subscription Rate $\$ 3.50$ per year

The adoption of a special notation for indicating sound increases and decreases is based primarily on the fact that the human ear is not equally sensitive to all sound intensities. It is, for example, much more sensitive to changes in volume

Figure 3. The Incoming Sync Pip as Seen on the Grid Waveform of the Blocking Oscillator.
at low sound levels than it is at high sound levels. Therefore, since our ears are not linear detectors, so to speak, any system we establish for expressing changes in sound intensities must be similarly non-linear. This is where the bel and its more practical successor, the decibel, come in.

As originally established, the standard unit chosen for indicating power gains or losses was the bel. This, however, proved to be unwieldy for small ratios of sound and so a quantity only one-tenth as large as the bel, the decibel, was introduced. In all other respects, however, both quantities operate in the same manner.

A good insight into the bel and the manner of using it can be obtained from the following definition: The bel is equal to a power amplification of 10 . One $d b$, then, is a step which, when taken 10 times, will multiply the original power by 10 . From this we can arrive at the fact (to be shown in a moment) that 1 db is equivalent to a power ratio of approximately 1.26. In other words, if you take the power output of some device and multiply it by 1.26 , you are raising its level by 1 db .

Now let us prove some of these statements, principally the fact that 1 db is equivalent to a power ratio of 1.26 . Start with 1 watt and increase this power by 1 db or 1 x $1.26=1.26$ watts. Increasing again by $1 \mathrm{db}, 1.26 \times 1.26=1.588$ watts. Increasing the third time by 1 db gives us 1.588×1.26 or 2.0 watts.

Let us pause for a second here and note that in going from 1 watt to 2 watts, we went up 3 db . In other words, an increase of 3 db doubles the original power. (Here then is the answer to the introductory question. But let us continue.)

Increasing 2 watts to 4 watts (another doubling of power) requires 3 more 1 db steps. 4 watts, then, represents here a 6 db rise from 1 watt. Again increase by 3 db , for a total of 9 db , and we have $2 \times 4=8$ watts. Now increase by 1 db to make the total increase 10 db and we have $8 \times 1.26=10 \mathrm{w}$ atts approximately, or 10 times the original power.

From the foregoing we learn two important facts.

1. $1 d b$ is equivalent to a power ratio of 1.26 . Thus, a 1 db change is always a change of approximately 26% regardless of the power we start with. The decibel,
remember, is a unit for expressing a change in power and it does this on a relative basis. Thus, a change from 1 watt to 1.26 watts represents the same 1 db increase as a change from 20 w atts to 25.2 watts (20 x 1.26).
2. The second important fact is that a 3 db change means an increase in power by a factor of 2 . By the same token, a 3 db decrease means cutting the power in half.

It is interesting to note that a difference of 1 db is the smallest change in sound intensity that the ear can discern. Thus, if you are listening to a sound possessing a power of 1 watt, an increase to 1.26 watts would be necessary for you to tell the difference. But were you listening to a sound level of 20 watts, it would require a change to 25.2 watts before you could tell the difference. This illustrates forceably how non-linear a device the ear is.

The discussion, thus far, has concerned itself chiefly with power and that is as it should be since the decibel unit was originally concerned with power levels. However, power is given in terms of current or voltage by: $W=1{ }^{2} R$ or $W=E^{2} / R$. Hence, power may be calculated from the current or voltage, if the resistance is known. However, for a change involtage across a givenresistance, the corresponding power changes may be determined without regard to the value of the resistance. Following through with this in the above formulas, we arrive at the result that:

$$
\begin{aligned}
& \frac{\text { Final Power }}{\text { Initial Power }}= \\
& \text { Square of the Final Voltage } \\
& \text { Square of the Initial Voltage }
\end{aligned}
$$

This tells us that if we double the power, the corresponding voltage is raised four times. But, we have previously seen that dcubling the power resulted in a 3 db rise and an increase of 4 times meant a 6 db rise. Thus, a 3 db power rise is equivalent to a 6 db voltage increase.

Which leads us to the next important rule: To obtain the db value corresponding to a certain voltage ratio, proceed the same as for a power ratio and then multiply the result by 2 . (Conversely, if the db value is given and the corresponding voltage ratio is desired, divide the db values by 2 and then proceed to work the problem).

Now that we have established the fundamental rules for obtaining db values corresponding to various

and phonograply combinations which are equipped with, or which can effectively use Shure Crystal and Ceramic Pickup Cartridges. Shure Cartridges are superior or equivalent to the units they replace. This Replacement Manual covers the period from 1938 through 1952 - and lists models by over 125 Manufacturers. The Magnetic Tape and Wire Recording Head listing indicates the Shure Tape Heads used in original equipment. It also illustrates Tape and Wire Recording Heads-and shows typical operating data for the Tape Recording Heads.
for Manual

SHURE BROTHERS, Inc., Dept. $P \star$ Mentactureres of Micicophones 225 WEST huron street, chicago 10, illinois - Cable Address: shuremicro

DC-AC CONVERTER

These latest of all Carter DC to AC Converters are specially engineered for professional and commercial applications requiring a high capacity source of 60 cycle $A C$ from a DC power supply. Operates from storage batteries, or from DC line voltage. Three "Custom" models, delivering 300, 400 , or 500 watts 115 or 220 V. AC. Wide range of input voltage, 12, 24, $32,64,110$ or 230 V . DC. Unequalled capacity for operating professional recording, sound movie equipment and large screen TV receivers. Available with or without manual frequency control feature.

WRITE TODAY FOR CATALOG
Carter Rotary Power Supplies are made in a wide variety of types and capacities for communications, laboratory and industrial applications. Used in aircraft, marine, and mobile radio, geophysical instruments, ignition, timing, etc. WRITE TODAY for complete Dynamotor and Converter Catalogs, with specifications and performance charts on the complete line.
(Tarter motor co. Chicago 47

power, voltage, or current ratios, let us work a number of problems to see how the rules are applied. To help us, the following figures should be memorized.

DB	
Power Ratio	
.5	
1	
2	
2	1.12
3	
7	2.5 (approx.)
10	5.0
	10.0

Also keep in mind that adding 3 db causes the power ratio to be multiplied by 2 .

Example 1. 4 db corresponds to what power ratio?

Answer. $4 \mathrm{db}=3 \mathrm{db}+1 \mathrm{db}$. 3 db equals a power ratio of 2 and 1 db represents a power ratio of 1.26 . Hence, the answer is 2×1.26 or a power ratio of 2.52 .

Remember that power ratios (and voltage and current ratios, as well) are multiplied while db figures are added. We demonstrated this in our initial explanation.

Example 2. 15 db corresponds to what power ratio?

Answer. $15 \mathrm{db}=10 \mathrm{db}+3 \mathrm{db}$ $+2 \mathrm{db},-10 \mathrm{db}$ is a power ratio of 10 ; 3 db represents a power ratio of 2 ; and 2 db stands for a power ratio of 1.5. Hence, $10 \times 2 \times 1.5=30$.

What is perhaps somewhat more difficult is towork from a given voltage or power ratio to the corresponding db figure. The diffi-
culty arises in finding simple factors into which the ratio figure can be sub-aivided. As an example, what is the db value for a power ratio of 60 ? Looking at the key figures in our little table, we see that $5 \times 4 \times 2 \times$ 1.5 equals 60 . Thus, corresponding to a power ratio of 5 , we get 7 db ; for the power ratio figure of 4 we get 6 db ; for the number 2 , there is 3 db , and for 1.5 , there is 2 db . Adding these four db figures together gives us; $7+6+3+2=18 \mathrm{db}$.

A voltage ratio of 60 is, according to a previous rule, the db value for the power ratio multiplied by 2 . In this case it is 36 db .

In working problems of this latter type, it may be impossible to obtain the exact db value working with the simple table given above. In that case, an estimate of what this value should be can usually be arrived at by considering a slightly higher or a slightly lower value. Thus, suppose you wish to determine what the db equivalent of a power ratio of 57 is. Now, this number is not readily broken down into simple factors. However, we can readily obtain the db value of a power ratio of 60 ; this was 18 db , as we just saw. Also, a power ratio of 50 is, from the table, 17 db . So we know that 57 stands between 17 and 18 db and for most practical purposes, this is close enough.

Just a few more examples to help cover the most important as pects of our simple table. Suppose we are told that a certain amplifier has a voltage g a in of 50 db . What voltage ratio does this correspond to?

Well, now, before we start the problem let us consider the rule that states; To obtain the db value corresponding to a certain voltage ratio, proceed the same as for a power ratio and then multiply the result by 2. In our present example, we are going in the opposite direction, that is, from db to the voltage ratio. Thus, as a start, we divide the db figure by 2. Doing this gives us $50 / 2$ or 25 db . Now from our table we see that 25 db is equal to $10 \mathrm{db}+$ $10 \mathrm{db}+3 \mathrm{db}+2 \mathrm{db}$ corresponding to ratios of $10 \times 10 \times 2 \times 1.5$ or 300 . Hence the voltage ratio is approximately 300 (actually 316 when worked more accurately).

Positive db values represent voltage and power gains whereas negative db values stand for voltage and power losses. +3 db is a power increase by a factor of $2 ;-3 \mathrm{db}$ means that the power is cut in half. By the same token, -6 db represents a power ratio of $1 / 4$ and -10 db indicates a power ratio of $1 / 10$. If you are told that a certain system has a db loss, convert this db value to the corresponding voltage or power ratio using the table and then take the reciprocal of it. Thus, a 1 db loss represents a power drop of $1 / 1.26$ or approximately .8.

As a quick and ready method for understanding the significance of db figures, the reader will find the foregoing extremely helpful. Naturally, for more precise computations, recourse to the logarithmic formulas for db would be necessary. But there is no need to become that involved for everyday applications and that is all that was considered here.

MILTON S. KIVER
"AILING PICTURE TUBE?"
(Continued from page 9)
image was visible on the screen. The double image resembled a "ghost" but differed in that it was displaced vertically as well as horizontally. In most cases, however, the principal symptom of a burnt aperture is the lack of sharp focus as a result of the deformed spot.

Loss of vacuum or gassiness is another affliction which some: times strikes down picture tubes. The serious cases very often show no visible picture at all, but instead a brilliant blue-tinted glow illuminates the necks of these tubes. The glow is a corona discharge through the gas which has either leaked into the tube or accumulated within the tube from vaporization of internal parts.

In less advanced cases of gassiness, the corona may not be so apparent. However, the scanning beam is very often affected as though the tube suffered from low cathode emission. Sometimes the "Zombie" effect, which was described in connection with low emission troubles, makes its appearance. Also a general loss of picture brightness accompanies the trouble. Substitution of a good tube is the only solution for a gassy pic ture tube.

Occasionally leakage or shorted conditions develop between elements within a picture tube. Frequent of fenders in this regard are the heater and cathode. The symptoms of this trouble vary considerably due to the differences in the circuits involved. Very often a heater-to-cathode
short results in no picture at all because the poor regulation of the high voltage supply will not permit excessive beam current flow. If the brightness control is in the cathode circuit of the picture tube,

Figure 2. A Picture Tube Brightener. (Sample-Courtesy of Workman TV, Inc.)

The man who brought back a smile

Excited? Cynthia was practically bursting! Last thing Dad said was "Now you look close, Cindy. You'll see me right there in the audience tonight, and I'll wave to you." (They always do!) Long about three o'clock Cynthia's mother turned on the set . . "just to make sure." Well, there was a picture, if you could call it that . . . but so dim and fuzzy they'd never even recognize Dad that evening. And Cindy ... disappointed? She was brokenhearted! But, you know the happy ending ... the serviceman's competent analysis . . . replacement of a worn-out tube with a Federal "Best-in-Sight" Picture Tube . . . and there are smiles again.

Line of Popular-Size Picture Tubes will take care of over $\mathbf{9 0} \%$ of all IV replacements.
Write for free copy of Federal's iV
Picture Tube Data Book, Dept. N-2118

THE SERVICEMAN gives his customers years of experience and expert technical ability. His business is knowing what's best . . . and giving the best. Customers rely on his judgment just as thoroughly as he relies on Federal "Best-inSight" Picture Tubes for the sharpest, brightest, clean-cut pictures possible. He knows that when he picks up the carton with the blue and white Federal label, he's going to make some customer a lot happier for a long, long time.

Consult your local Federal Distributor or write to

Federal Telephone and Radio Corporation

VACUUM TUBE DIVISION
100 KINGSLAND ROAD, CLIFTON, N. J.
In Canada: Federal Electric Manufacturing Company, Ltd., Montreal, P. Q.
Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y.

Figure 3. Severe X -shaped Ion Burn on a Rectangular 16TP4.

Figure 4. The Effect of a Strong Magnetic Field on a Picture Tube.
the control will very likely fail to function properly in the presence of a heater-to-cathode leakage or short. Sometimes, also, a negative picture occurs with this condition.

There is a remedial measure which may serve in some cases of heater-to-cathode shorts. A 6.3 volt, 0.6 amp . transformer may be used as a separate filament transformer to supply the cathode ray tube heater. The secondary of this transformer is left ungrounded; in this way the filament is isolated from ground and the cathode is left undisturbed by the heater-to-cathode short. When this method is employed in receivers using series connected filaments, an appropriate resistor must be substituted in the filament string to take the place of the picture tube heater. In such cases a transformer having a 117 volt primary must be used.

Other electrodes in the gun structure of picture tubes develop electrical leakage or shorts. The second anode is quite often involved because of the high voltage it handles. One such case came to the writer's attention not long ago. The complaint was a dim picture; and when a check was made with a voltmeter and high voltage probe attachment, it was found that the second a node voltage on the picture tube was two or three thousand volts lower than it should have been. Moreover, it was found that the voltage out of the high voltage supply rose to its correct value as soon as the anode lead was removed from the picture tube. With the brightness control kept at minimum setting, the anode lead was connected again to the picture tube and the high voltage was seen to drop once more to its former value. This indicated that leakage was occurring within the
tube and consequently causing the low high voltage. A new picture tube was the only solution.

We have received reports that a method of "sparking'" has been used to try and remove shorts caused by particles of material which becomes wedged between close-spaced electrodes. This "'sparking'" procedure is done with a source of high voltage, low current $A C$ or $D C$ such as that developed in the average TV receiver. The high voltage, when placed across the shorted elements, produces a spark through the foreign particle causing the trouble. The energy heats up the particle and vaporizes it. This method of curing a short has been reported to work in a percentage of cases, but it cannot be relied onfor all. Care should be exercised in this procedure since dangerously high voltages are involved.

Figure 5. Cathode Ray Tube Analyzer Model 707 Produced by Jackson Electrical Instrument Co.

Figure 6. BV Adaptor Made by Triplet Electrical Instrument Co .

Lequld 7 coricomposition cesistors

Tiny, yes . . . but what dependability, ruggedness, and stability! And they provide an extra margin of safety-being rated at 70 C rather than 40 C . Completely sealed and insulated by molded plastic, they meet all JAN-R-ll requirements . . . are available in $1 / 2,1$, and 2 -watt sizes in all RTMA values.

type ab Noisefree potentiometers

Because the resistance material in these
units is solid-molded-not sprayed or painted on-continued use has practically no effect on the resistance. Often, the noise-level decreases with use . . . and they provide exceptionally long, trouble-free service. Rated at 2 watts, with a good safety factor.

BROWN DEVIL® AND DIVIDOHM ® RESISTORS

BROWN DEVIL fixed resistors and DIVIDOHM adjustable resistors are favorite vitreous. enameled units! DIVIDOHM resistors are available in 10 to 200 -watt sizes; $13 R O W$ N DEVILS in 5 , 10 , and 20 -watt sizes.

```
WRITE FOR
    STOCK
    CATALOG
OHMITE MFG.CO.
    4871 Flournoy St.
        Chicago 44, III.
```

Be Right With
OHMITE

RHEOSTATS • RESISTORS • TAP SWITCHES

Jackson Model 707 CR Tube Analyzer

Beam Current Test is made to the final anode, the only anode that really counts. High voltage, selected to be on the linear portion of the curve, is used for greater accuracy

Gas Test checks for gas current caused by air leakage, improper ion trap setting or other causes. Gives an indication of tube life and quality. This test is absolutely essential, for tube manufacturers report that as high as 95% of tube failures are caused by excess gas.

Grid Control Test shows whether control grid is capable of cutting off beam current. Test voltage is ample for every type of tube.

Complete Leakage Tests. Each element is tested for leakage. Highly sensitive circuit gives indication on neon lamp.

The Jackson 707 with its fully flexible switching arrangement and special base adapters will test any cathode ray tube-television, radar, oscilloscope, even multi-gun types. Don't leave your reputation up to haphazard testing methods or improvised harnesses, when for just a little more money you can be sure with a Jackson 707.

Get the complete story from your dis tributor or write for free literature.

JACKSON

ELECTRICAL INSTRUMENT CO
"Service Engineered" Test Equipment DAYTON 2, OHIO

In Canada: The Canadian Marconi Co.

Here again, there can be no guarantee given the customer as to how long atube treated with this sparking procedure will perform. By making it clear to him that the sparking may only effect a temporary cure, future misunderstandings can be avoided.

One very obvious ill which might afflict a picture tube is an open heater. Visual inspection of the neck of the tube will usually reveal this trouble. Sometimes the heater will open after abrief warmup and make contact again when cool; it may undergo on and off cycles of operation, in this way producing a rather weird effect.

In cases of flickering in the picture or unaccountable changes in brightness level, the picture tube's base and socket and the socket cable should be checked for intermittent open connections before condemning the picture tube itself. In any case, where a picture tube is suspected of being defective, a test of the voltages at the socket contacts should be standard procedure to eliminate any possibility of the cause being there rather than within the tube.

Finally, in discussing picture tube ills some mention should be made of the effect of cone magnetization on a metal picture tube. Figure 4 shows what happens to a picture when subjected to a strong external magnetic field such as might be produced by the field magnet of a PM speaker. If a metal picture tube cone acquires a magnetized area either through proximity to, or contact with a magnet, the effect is similar to that shown in Figure 4. The prescribed remedy calls for a focus coil connected to a variable source of AC power such as a variac. The application of this focus coil, energized with low voltage $A C$, to the affected cone area is the recommended treatment. How-
ever, from experience with this method, we cannot vouch for its reliability. Replacement of the picture tube is advisable.

Cathode Ray Tube Testers -

In the matter of picture tubes, several manufacturers of test instruments have presented the service industry with some assistance. They have produced cathode ray tube testers and special adapters which extend the utility of their regular tube testers to include picture tube checking.

Figure 5 shows the Cathode Ray Tube Analyzer, Model 707, manufactured by the Jackson Electrical Instrument Co., of Dayton, Ohio. This instrument is laid out similar to a conventional tube tester, it has a roller chart which gives all control settings for the various types of picture tubes, and it features a meter with a "bad-good" calibration for the beam test and a "normal-gassy" calibration for the gas test. There are also a " shorts"' test and a " grid control" test incor porated in the instrument. The socket is made so that it fits either the diheptal or the popular duodecal tube base. For other bases a universal adapter is provided with the instrument. The Jackson 707 will test for shorted elements, low cathode emission, poor grid control, and gassiness; moreover, the tests may be performed on a picture tube without removing it from chassis, cabinet, or packing box. This instrument has indeed proven its worth in verifying the condition of picture tubes in the field.

Triplett Electrical Instrument Co., of Bluffton, Ohio, has a BV Adapter which is pictured in Figure 6. This unit consists of an 8 pin octal base, a cable, and a duodecal socket. It may be used with any of the Triplett Models 2413, 3312, 3413,
and 3413-A Tube Testers. Tests for shorted elements and for cathode emission rate are the principal checks which may be performed.

Sylvania Electric Products Inc. of Emporium, Pa., also has an adapter for use with Sylvania Models $139,140,219$, and 220 Tube Testers. It goes under the designation of Sylvania Cathode Ray Tube Testing Adapter Type 228 and is pictured in Figure 7. Both it and the similar Triplett adapter are for use only with electromagnetically deflected picture tubes having duodecal bases. Since this classification includes most modern picture tubes, the limitation is not a particularly serious one. When used with a Sylvania tube tester, the Type 228 adapter enables the technician to check the emission of a picture tube and detect the presence of shorted elements.

The adapter unit in Figure 8 is produced by the Hickok Electrical Instrument Co., of Cleveland, Ohio. The CRT-1 adapter is made for use with any Hickok tube tester and enables checks to be made on all picture tubes using the standard small duodecal base or the noval base such as employed by the 12WP4. The emission of the cathode, the grid control, and the presence of gas in the picture tube can be checked with the Hickok adapter and tube tester.

While this discussion has by no means exhausted the subject of picture tubes and their ills, we hope that it has contributed to the information on the subject. A picture tube cannot be substituted as easily and quickly as other tubes. Therefore, the more accurate the service technician's diagnosis with regard to a picture tube, the better and more profitable his work becomes.

GLEN E. SLUTZ

Figure 7. Sylvania Cathode Ray Tube Testing Adaptor Type 228.

Figure 8. CRT-1 Adaptor Made by Hickok Electrical Instrument Co.

Stymied for exact duplicates like these?

get acquainted with the complete line of
exact duplicate
TV Replacement Transformers
built-to-fit electrically and mechanically

Get to know the chicago complete exact duplicate TV transformer line! Stop hunting, stop taking chances, stop wasting your time and effort on makeshift "fits." chicago has everything you need in TV transformer replacements-units that fit exactly electrically and mechanically-units that slip right into place, with the right lead lengths, with specs that match the originals on the nose. They're right for the job because chicago has been making the world's toughest originals for years, because chicago makes more originals than all others combined. To save time and effort,
 to eliminate costly callbacks, to earn more - ask your distributor for chicago exact replacements-and be sure.

FREE! TV Replacement Catalog

Write for your copy of CHICAGO'S latest Exact Duplicate IV Transformer Catalog get acquointed with your complete guide to every replacement requirement. Do every job right-ask your distributor for CHICAGO built-to-fit replacements.

How to use

Krylon is a tough, quick-drying Acrylic coating with many important TV applications. To apply, just push the button on the aerosol can and spraythat's all you do!

Because of its high dielectric strength, Krylon Vanella-on the staff of dealer Mort Farr, Phila-delphia-"Krylon-izes" high voltage coil and insulation, the socket of the high voltage rectifier, component parts of the rectifier circuit.

Edward Weigand, Farr service man, sprays Krylon on entire antenna. Krylon shuts out moisture, rain, salt spray-prevents corrosion and pitting-keeps picture quality at peak.
"Krylon-izing" increases your cusfomer's satisfaction and iumps your own profits! Nafionally advertised to your customers!

TECHNICAL CHARACTERISTICS

Dielectric constant-2.8 to 3.4 (1,000 cycles)
Dielectric strength- 400 to 800 (number of volts necessary to cause electric are through Krylon coat one mil thick) Electrical resistance- 10^{10} ohms $/ \mathrm{cm}^{3}$ See your jobber, or write direct.
KRYLON, Inc., Dept. 2505
2038 Washington Ave., Philadelphia 46, Pa.

Figure 7. Schematic of Philco UHF Tuner Model UT-20A.

Figure 8. Schematic of Philco UHF Converter Model UT-21B.

Thousands and thousands are in use . . .
and not one has ever failed

ERIE 413 is fast becoming THE REPLACEMENT for high voltage TV filter applications

The ERIE 413 High Voltage Ceramicon is an innovation in capacitor design and has had wide acceptance by servicemen everywhere.

The Reason . . . ONE BODY, plus the correct combination of replacement terminals, permits any serviceman to carry a minimum stock, but at all times to have the correct replacement available. It's as simple as that and greatly reduces inventories. The illustrations on the left tell the story.

There's

 in

REPLACEMENT NEEDLES

When your service call indicates the need for o replacement needle, it's just as easy to sell a Walco Diamond needle and pocket a profit of $\$ 10.00$ (or more) . .. and you do the customer a favor. You instoll a needule that will lost 50 times longer than the next hardest point.

Ulaleo costs you as much as 40% less

than competition. That means you INVEST less when you stock Walco replacement needles, while enjoying the same profit-margin. You can't afford to be out of line in price.
Ualco manufactures needles
for many of the leading phonograph makers. Often Walco replacement needles are made at the same time and on the same machines as original equipment. That assures perfect qual-

ELECTROVOX CO., INC.
60 FRANKLIN ST. EAST ORANGE,N.J.

XCELITE TIP

Celite Stubby
Combination
Screwdriver.

Never "angle in" a sereudriver

 where space is too short - USE "STUBBY"!Ever have a job where the screwdriver handle is just a litele too long, and no "stubby" handy? So you drive or pull the screw at an angle. Who hasn'r? Bur did you ever look at your screwdriver tip afterwards? Chances are, you'd get a shock to see how it's bent or chipped.
Why not save your longer screwdrivers (and we hope they're all XCELITE!) by getring an XCELITE Srubby Combination. Only $31 / 2^{\prime \prime}$ overall, it's 2 screwdrivers in one, Phillips and Regular, for just $\$ 1.50$ list.
ASK YOUR SUPPLIER. And while you're at it, check into XCELITE regular and hollow shaft nut drivers, electronic pliers and non-magnetic Beryllium-Copper Focalizer Adjuster screw. and non

XCELITE, INCORPORATED

(Formerly Park Metalware Co., Inc.)
DEPT. 0
ORCHARD PARK, N. Y.
For Oniginality LOOK TO XCELITE

Figure 9. Function Switch and Adaptor for UHF Tuner UT-21.
and stray capacitance to another tank coil. Adequate selectivity is thus achieved in these tuned circuits while simultaneously maintaining the required bandwidth. From the tank circuits the signal is coupled to the mixer circuit. Signal conversion is achieved at this point by feeding a signal from the oscillator to the mixer. The oscillator tuned circuit also employs a semi-butterfly arrangement in a modified Colpitts oscillator circuit. The crystal mixer employed in the Philco UHF tuner units is specially designed for this application and yields the desired signal at the frequency of channel 2 or 3 . Signal gain is provided by a cascode coupled twin triode tube type 6BQ7. The output of the IF amplifier is transformer coupled to the function switch and from there to the input of the VHF tuner in the receiver.

Observe on the schematic in Figure 8 the use of an octal adapter socket. When plugged into the audio outputtube socket, the required operating voltages are supplied to the UHF unit. In the case of the
factory installed unit, adaptor sockets are not employed since the leads are wired directly to the receiver.

To simplify control of the UHF tuning unit when installed in a television receiver, the function switch is attached at the back of the VHF tuner except for the Model UT-21. Thus, the switch can be made to actuate at the position of the VHF tuner previously established to provide UFF reception.

The function switch is actuated in a different fashion in the Model UT-21 tuning unit. This tuner is designed for some of the earlier production receivers. In this Model unit, the function switch operation is controlled by pulling out or pushing in the UHF tuning knob.

The schematics of the UHF tuning devices are drawn showing a common antenna connected. It may be found after the completion of the installation that the existing VHF antenna provides adequate reception of both VHF and UHF signals. Thus
the antenna problem will not exist. It may be necessary to install either a common VHF-UHF antenna or installa separate UHF antenna which ever fits the particular situation.

Supplied with the tuner kits are the instructions for making a satisfactory installation. It is important that the included instructions be followed closely to obtain efficient performance. Another item of importance, is to obtain the correct tuner kit for a specific receiver and to make sure, particularly with older receivers, that built-in kits are designed for that particular receiver.

RCA KRK-25 VHF-UHF TUNER KIT

The KRK-25 kit is designed for installation in certain existing RCA television receivers not previously supplied with UHF tuning provisions. RCA chassis for which this kit was designed are as follows: KCS66, KCS66A, KC566C, KCS66D, KCS68C, KCS68E, KCS68F, KCS68H, and KCS74.

The tuner unit is identified as a KRK-12 and is designated as such when factory installed in a receiver chassis. This tuner is shown in Figure 10.

Included in the KRK-25 kit is VHF-UHF tuner unit KRK-12 and the necessary mounting hardware to complete the installation. To install this tuner in the previously listed chassis, the original tuner is replaced with the KRK-12. Supplied with the tuner kit are 12 VHF channel inserts to provide reception of any VHF station within the receiving area. As UHF stations go on the air, UHF inserts may be obtained from local RCA distributors. Figures 11 and 12 show the VHF and UHF inserts used with the tuner.

Figure 10. The RCA KRK-12 Tuner.
Figure 11. VHF Channel Strips for KRK-12 Tuner.

The UNIVERSAL Auto Antenna

Here, at last . . . the answer to inventory headaches! the "Revo-Tenna" can be used for every installation and, regardless of where mounted, it looks like a custom-made job. Features a unique swivel ball joint that may be revolved in any direction. 2 Sec. Extends to 49" $\$ 4.95$ List 3 Sec. Extends to 62", 5.95 List

Write Dept. PF for literature

insuline

CORPORATION OF AMERICA
INSULIHE BUILDING • 36-02 35th AVE. LONG ISLAND CITY, N. Y.
West Coast Branch and Warehouse
1335 South Flower Street, Los Angeles, Calif. Exclusive Canadian Sales Agents: CANADIAN MARCONI COMPANY, Toronto

Figure 12. UHF Channel Strips for KRK-12 Tuner.

To install this tuner in any of the above listed chassis, the original tuner is removed and the new tuner substituted in its place. Included in the KRK-25 kit are the VHF-UHF tuner unit shown in Figure 10, and accessories necessary to complete the installation. In addition, the rotor is equipped with twelve VHF channel inserts to provide reception of any VHF station within the receiving area. As UHF stations go on the air, UHF inserts may be obtained from local RCA distributors.

The design of the RF tuning unit in the KRK-25 departs consider ably from that of the original tuners in the previously listed chassis. The new tuner is a rotary turret type employing sixteen channel positions, four tubes, and a crystal mixer. (Th is rotor is shown in Figure 13.)

All tuner electrical components, with the exception of those on the insert strips, are mounted on the top cover plate. Components mounted below this cover are shown in Figure 14.

A cascode-connected 6 BQ7A functions as an $R F$ amplifier stage for VHF' reception. Common to both

VHF and UHF operation is a type 1N82 crystal mixer and a cascodeconnected $6 \mathrm{~B} \supseteq 7 \mathrm{~A}$ IF amplifier. Thus, it is noted $t h a t$ the tuner operation remains essentially identical for both types of reception, with the exception of the RF amplification provided in VHF positions only. This is illustrated in the block diagrams in Figure 15.

One feature of the tuner unit in the KRK-25 kit is the use of a 6S4 tube as a voltage control. Incorporation of the control circuit tends to provide greater stability characteristics of the oscillator circuits in UHF position. Although the control tube functions during both VHF and UHF reception, its primary function is to assure stable oscillator performance when receiving $U H F$ signals.

Oscillator plate voltage should be established at the desired figure by measuring the oscillator tube plate current with the circuit in a non-oscillatory state. The desired current to be read on the meter is 28 milliamperes and it is obtained by adjusting the oscillator voltage control. This procedure is facilitated by switching the tuner rotor to a
point midway between channel positions. Even though the tuned circuits are not connected, the tube may still continue to oscillate. If this occurs, touch the tuner spring contacts 12 and 13 (located near the front of the tuner) with a finger while making the necessary adjustments.

Note in the schematic for the tuner unit (Figure 16) only one oscillator tube (6 AF 4) is employed. Thus, a single conversion process provides the desired IF frequency of 40 megacycles in both the VHF and UHF channel positions.

After the tuner installation is completed, and all the necessary tuner inserts are installed and correctly adjusted, channel selection is automatic, governed only by the setting of the channel selector knob.

The circuitry for the tuner in the KRK-25 is shown in the schematic Figure 16. The schematic is drawn showing the channel 2-4 insert in position. In tracing a VHF signal through the unit, assume a VHF antenna is connected to the input terminals with a low channel VHF insert in place. The combination $\mathrm{L} 1, \mathrm{C} 1$ and $\mathrm{L} 2, \mathrm{C} 2$ forms

Figure 14. Under Chassis View of KRK-12 Tuner.

Figure 15. Block Diagram Showing Operation of KRK-12 Tuner.

Figure 16. Schematic of RCA KRK-12 Tuner.

Figure 17. Details of Selector Knob.
bandpass filters for attenuating undesired signals in the input. L3 is the antenna matching transformer that provides the proper impedance match for a 300 ohm line. The secondary of L3applies the incoming signal to the RF amplifier tube V1. Connected cascode, this tube provides the desired amplification with low noise as a result of its inherent low noise characteristics. L5 and C6 are a series resonant 43.5 mc IF trap. The signal in the output of V1 is developed across the plate load inductor, L6. The combined effects of L7, C8, L8 and C9 control the frequency response characteristics in the output circuitry of V1 and the input to the crystal mixer.

A 6AF4 oscillator tube is employed in the tuner for both VHF and UHF applications. Oscillator frequency is controlled primarily by the variable inductor, L9, in this instance, preset to obtain the desired frequency. L10, consisting of a small amount of inductance, may be varied by the fine tuning control knob to touch up tuning as required. C10, a 1 mmf capacitor on the insert strip provides the correct coupling of the oscillator to the mixer circuit. Note, that a coupling capacitor is not employed in this application on the high VHF channel inserts since adequate coupling at the frequencies of
these channels exists due to the proximity of the components.

From the mixer the resultant intermediate frequency is applied to the IF input transformer, L15. The primary is connected to ground through a 100 ohm resistor, R13, shunted by a 1000 mmf . capacitor, C39. At the junction of these connections is a test point location employed during alignment procedures.

The tuner IF amplifier tube, type 6BQ7A, is cascode-connected and is employed to counteract for the losses inthe crystal mixer, and provide a signal to the receiver IF stages of a level necessary to effect efficient receiver performance. Tuned elements associated with this stage operate at a fixed frequency which is the frequency of the receiver IF stages.

When the turret rotor is switched to a UHF position, tuner operation remains essentially the same, with the exception that RF amplification is not employed. In this instance, double tuned tank circuits (link coupled) are employed as preselectors prior to application of the signal to the mixer stage.

The tuning knobs and dial indicator are shown in Figure 17. As UHF inserts are incorporated in the unit, index tabs are placed in the indicator dialat positions corresponding to the location of the UHF inserts.

Since this tuner has provisions for utilizing various types of antenna systems, certain minor tuner input modifications are essential to achieve efficient performance. If a combination 300 ohm UHF-VHF antenna system is employed and con-
nected to the input of the tuner, it is necessary to break connection between the contact springs connected to the 72 ohm coaxial input and the buttons on the UHF inserts. This procedure is performed by removing the tuner cover and turning the selector knob until an empty drum compartment lies under the 72 ohm input jack. The contact springs are then accessible and may be bent away from the insert buttons.

Should separate VHF and UHF antennas be employed, it is necessary to remove the coupling link on each of the UHF inserts. The link is cut free from the contact buttons to which they are soldered. The tape securing the loop to the insert, is then removed. The loop is then removed by carefully rotating until it slips out easily.

Features associated with the tuner inthe KRK- 25 kit are as follows:

1. All channel inserts are preset at time of installation.
2. The same tuning knobs are employed for both VHF and UHF.
3. The tuner is built-in, forming an integral part of the television receiver chassis.
4. Oscillator drift is minimized through the use of an oscil-lator-voltage control tube.
5. A crystal diode forms the mixer for reception of both VHF and UHF signals.
6. The design of the tuner permits reception of any combination of sixteen VHF and/or UHF television signals.

MERLE E. CHANEY
" DESIGN FEATURES"
(Continued from page 39)
and noise pulses are blocked from the sweep oscillator sections. Another way of looking at the operation of the noise canceller tube, is to view it as a shorting switch or variable shunt. When the noise level of the received signal is below that of the sync pulse amplitude, the noise canceller tube is non-conductive or the switch is open. However, a high amplitude noise pulse causes the tube to conduct, immediately shorting the output of the sync amplifier, thus providing a low resistance path to ground for the signal.

Although, sync pulses may be eliminated simultaneously with the high a mplitude noise signal, for
short intervals of time, the sweep oscillator circuits in the receiver continue to function synchronously with the signal due to their inherent inertia or flywheel action.

PICTURE STABLIZER CONTROL

The picture stablizer control located on the rear apron of the chassis should be adjusted at the time of installation. It establishes the range of AGC bias developed. The correct setting for this control is at a position whereby the strongest received signal does not cause over loading.

LOCAL-DISTANCE SWITCH

A "local-distance" switch is incorporated in conjunction with the picture stablizer control. The
switch is actuated by the stablizer control at the full clockwise (distance) position. In this position, R 9 , a 22 K ohm resistor is switched out of the circuit, thus enabling a larger swing of plate voltage to effect triggering of the sweep oscillator circuits.

HORIZONTAL AND VERTICAL RETRACE BLANKING

An additional feature of the G. E. Model 21 T1 receiver is the use of circuitry to eliminate visible retrace lines from the screen of the picture tube. Provisions are employed to eliminate both vertical and horizontal retrace lines. In both instances, positive-going retrace pulse voltages are fed to the cathode of the picture tube, driving the tube

but they
221K VTVM Rif $32 \leq .95$. last a lifetime... and you save 50\%!
22 Kits and 24 Instruments the Industry's most complete line of MATCHED
 lete
sosk Mulhimeter Kii
Wired $\$ 24.95$.
20,000 ohms woill. TEST INSTRUMENTS!
Over $1 / 4$-million EICO instruments are now in use the world over! That's the proof of EICO's leadership in Value to the Serviceman!
For latest precision engineering, finest components, smart professional appearance, lifetime performance and rock-bottom economy - see and compare the EICO line at your jobber's today before you buy any higher-proced equipment! You'll agree with over 100,000 others that only EICO Kits and Instrum ments - no other - give you the industry's greatest values at lowest cost.

Write NOW for FREE latest Catalog PF-5

320 k sig. Een.
kit $\$ 79.95$. Wrged $\$ 29.95$.

Laboratory Precision at Lowest Cost Prices 5% higher on Wive "Coost

625 K Tybe Ienter Kit 3 3 4.95.
Wired $\$ 19.95$.
into non-conduction, or to sufficiently low beam, that fluorescence of the tube is not achieved. Vertical blanking is achieved by coupling a signal from the vertical amplifier stage through a differentiating network to the picture tube cathode. To achieve effective horizontal blanking, an additional triode is employed, connected as a cathode follower. This method provides adequate decoupling between the horizontal output stage and the picture tube cathode circuitry.

INTERCARRIER SOUND

Adaptability of this receiver to UHF service is assured through the use of the 40 megacycle IF system and intercarrier sound. The sound stages are fed by a 4.5 megacycle signal taken off from the video detector output stage. The sound IF circuits consist of an IF amplifier, limiter, and ratio detector.

STEWART-WARNER 9300 SERIES
The Stewart Warner 9300 Series television receiver incorporates several features of interest to the servicing technician. Physically a difference noted over the previous 9200 Series is the use of sectionalized chassis assembly. This permits the wiring in the form of a sub-assembly of many of the receiver circuits which in turn effects a grouping of components associated with each circuit. A comparison between the 9200 and 9300 Series chassis is shown in Figure 11.

One sub-assembly contains the entire video IF, video detector, sound IF and output stages. The next assembly consists of the gated sync separator stage, sync amplifier, vertical blocking oscillator circuit, and keyed AGC. The remainder of the chassis holds the deflection circuits.

Another mechanical feature is the use of a bridge bracket at the rear of the chassis to support the deflection yoke. This bracket is useful when servicing the receiver since the chassis may be tilted on its side without danger of damaging tubes or components.

Cther features of interest are the use of plug-in leads for the yoke. These leads are plugged into a terminal strip mounted on top of the vertical output transformer. (See Figure 12.) Thus the yoke leads may be readily disconnected for testing or removal without any soldering operations. In the same manner, the horizontal output transformer is designed with plugin jack connections (Figure 12)

So tiny yet so mighty in guarding against voltage breakdowns! Special dielectric materials developed by ceramic specialists, safeguard your initial-equipment or service jobs.
Hi-Q line includes extra-severeservice slug type ceramic capacitors in 10,000 and 20,000 volt ratings; disks in 7 sizes; feed-thru, stand-off, tubular and zero-temperaturecoefficient capacitors. All illustrated, described and listed in latest Aerovox catalog!

Ask your Aerovox distributor about Hi-Q capacitors. Ask for latest Aerovox catalog. Or wrife us.

[^5]

Figure 10. Partial Schematic of GE Model 2ITI Receiver.
which can be readily removed without unsoldering. Since horizontal output transformers are frequently tested when diagnosing receiver troubles, the plug-in connections contribute to a saving of time during this procedure.

In addition to the mechanical details described, there are several interesting electrical features. Among these are keyed AGC, gated sync separator, width control, and electrostatic self-focus picture tube.

The purpose of the keyed AGC tube is to permit a fast action AGC system that is relatively immune to noise bursts and rapidly varying signal strength such as encountered when TV signals reflect from aircraft. Thus, the AGC bias developed is more nearly indicative of the signal level at a given instant than with slower acting systems. Figure 13 is partial schematic showing the keyed AGC circuit.

The keyed AGC tube employs a gate-like action for its operation.

In order for the keyed AGC tube to conduct and develop bias, a pulse is fed to the plate of the tube from the horizontal output transformer. At the same time a sync pulse is fed to the grid from the video amplifier. Thus, if the horizontal sweep is not in synchronization with the sync pulses no AGC is developed. This allows the RF tuner and IF stages to provide increased amplification for pulling the sweep circuits into a synchronous condition with the incoming signal.

Figure 11. Stewart Warner Chassis Showing Component Grouping in 9300 Series (A) as Compared to 9200 Series (B).

STANDARD PAPER KIT 5 Each
of 25 Capacitios
.001 to .1-600V; 25-400V \& .5-200V List Price $\$ 37.50$
1000 Volt Paper Kit 5 Each of 17 Capacities List Price $\$ 35.00$

ARCO ELECTRONICS INC. 103 LAFAYETTE ST., N. Y. 13, N. Y.

Figure 12. Plug-in Connections Employed on Horizontal Output Transformer and Deflection Yoke.

The sync separator circuit in the Stewart Warner 9300 Series employs gating action for its operation. In this instance, a 6BF6 is employed as the sync separator. Frequently used as a converter in radio receivers, certain characteristics of this tube also make it readily adaptable for service as a sync separator. When employed in the circuit shown in Figure 13, it not only functions as the sync separator but also acts to prevent noise pulses from prematurely triggering the sweep oscillator circuits.

The components and voltages applied to the sync separator are
selected to insure that the normal video signal from the detector will cut off tube current. The signal from the detector is fed to pin 1 of the 6BE6 separator which is grid No. 1. Also observe that an opposite polarity signal from the video output stage is fed to grid No. 3 (pin 7) of the separator. Therefore, the action of this stage is as follows. The normal sync pulse signal is fed to grid No. 1 and, although of negative polarity, it is low in amplitude and will not cut off plate current in the tube. The large amplitude signal fed to grid No. 3 is passed by the tube. The low screen and plate voltages permit ready saturation in the tube which

Figure 13. Partial Schematic of Video, Keyed AGC, and Gated Sync Separator Circuits.
tends to provide uniform amplitude sync pulses.

When a noise pulse occurs and is fed to grid No. 1, tube current is cut off providing the noise pulse is of greater amplitude than the sync pulse. Although a positivegoing amplified version of the noise is fed simultaneously to grid No. 3, there is no action upon the plate current since the electron stream is blocked from reaching the plate by the gate action at grid No. 1.

It is noted, therefore, that noise occurring simultaneously with a sync pulse can prevent sync pulse triggering of the horizontal oscillator. This, however, should not affect synchronization since the flywheel action in the horizontal system will maintain a synchronous condition.

The width in the Stewart Warner 9300 Series is adjusted with the damper tube. All B+ voltage supplied to the output transformer and output plate flows through the damper tube. Thus, the width con-
trol varies the $\mathrm{B}+$ voltage to this stage which in turn varies the amplitude of the sweep pulses.

An electrostatically focused picture tube 21 MP 4 is employed in this receiver. This tube is the self-focusing type and external adjustments are not required. The focusing anode is connected directly to ground for this tube. Centering of the raster is achieved through the use of centering magnets on the neck of the picture tube.

MERLE E. CHANEY

" DOLLAR AND SENSE"
(Continued from page 83)
TELEPHONESE. Hot stick-a soldering iron. Punk fat--solder. Digs--diagonal pliers used to cut and skin wire. Bliffy sniffer--an amplifier used to detect breaks in a cable without picking through the insulation; linemen claimed it could smell the tone signal. Buttinski-hand telephone used for test purposes. Relay buster--an installer who specializes in adjusting relays. Shiner--the bare wire between the end of the insulation and the terminal. From a western Electric collection of colloquialisms used by telephone people.

KAMERAPHONE. A phonograph no bigger than a box camera got added to our collection this spring. It was made in Germany around 1900 and could well be the forerunner of portable phonographs. Spotted it at a moving-to-California auction in Mahway, N. J. and bid it in at $\$ 3.50$ for a real bargain.

The turntable is a cute threespoke folding arrangement that holds a 10 -inch record yet folds into three parallel bars for which there is a recessed storage slot in the wood motor-board. The horn is a celluloid half-sphere about 3 inches in diameter; it plugs onto the sound outlet of an almost-standard-size orthophonic reproducer, and even has a shutter-type volume control that controls the aperture sizes through which sound waves emerge from the half-sphere. This contraption violates all textbook rules we ${ }^{9}$ ve seen on horn design, yet it sounds quite loud and clear.

The spring motor, wound by inserting the crank in a hole where you'd expect the camera lens to be, lasts for about half of a 10 -inch record, but may do better after an overhaul and cleaning. Something

Ulitra-Hi and VHF "Conical-V-Beams" by

seems to slip and groan inside after it's partially wound. Reminds us of an old Electrical Merchandising carton showing a slide-'em-in portable phonograph being brought into a service shop with the complaint, " Every time I put in a record, it goes crunch, crunch, and then burps."

RARE NEEDLES. Getting spare parts or a new needle for a customer's favorite old cylinder or disk phonograph is by no means hopeless even now. The company to which Edison, Victor, and Columbia often refer requests for spare parts and repairs is Facorite Manufacturing Co., 105 E. 12th St., New York $3, \mathrm{~N}$. Y. It is run by Charles Kronenberger, Jr. as a wholesale distributor and manufacturers of practically everything in the phonograph line. Here are a few examples of prices: Replacement needle for cylinder phonograph-- $\$ 2.50$ up for sapphire and $\$ 12.50$ up for diamond. Replacement diaphragm for reproducer is $\$ 2$ up for aluminum, mica, or glass. New motor main springs run $\$ 6.75$ up. The broken part, worn needle, or motor spring barrel should be submitted for duplication. When the correct needle is not on hand, it can be made to order in diamond for $\$ 50$ up. Over 80% of this type of business is with collectors and antique dealers, according to the owner, sothese people may be a source of extraincome for mechanically-inclined servicemen.
CD. Government assigned frequencies of 640 kc and 1240 kc , the only ones that will broadcast in a national emergency, are marked CD on the tuning dial of Admiral's newest personal portable radio. Production of small, low -cost AM battery sets is being urged by the Federal Civil Defense Administration for use if power fails.

ITV. A three-tube television camera attachment that can be hooked up to a home television receiver was announced by RCA engineers at the recent IRE annual convention. The Vidicon camera tube is the same as that used in the larger RCA industrial television (ITV) system. This ultimate in simple picture pickups gets its power and scanning sig nals from the receiver through a connecting cable. The design is ready for mass production, at a cost comparable to that of a receiver, when demand warrants.

Suggested uses are closedcircuit TV for small business, for conventions, halls, and schools to
handle overflow audiences in adjacent rooms, and possibly even in homes to let upstairs invalids see what's going on in the living room.

Newest industrial use for ITV is for cutting down delays while customers' records are being checked at the New York Savings Bank. With the aid of television, signatures can be identified and other savings account information conveyed from the master file room to the tellers' cages at the speed of electricity. Telescreen Corp. installed the system, using Remington Rand camera tubes. Branch banks can be tied into the system with rooftop microwave links.

At this year's International Beauty Show in New York, RCA's closed-circuit TV brought closerange pictures of the creation of each new hair style to beauty-shop operators and owners gathered around 19 TV receivers in the demonstration room and in nearby lounges. Curls and other coiffure details were often larger than life-size.

LIVING. The United States is the only country in the world where the workers who make and fix automobiles and television sets can af ford to buy them.

" REFLEX ENCLOSURE"

(Continued from page 13)
obtain the data found in Graph 1, which shows the characteristics of the enclosure when using this speaker.

Curve A (Graph 1) illustrates the peaks found at 72 cps and 125 cps, with the low frequency peak having the greater amplitude. With a single thickness of grille cloth stretched over the port for damping (Curve B, Graph 1), the low frequency peak was reduced both in frequency and amplitude, while the higher peak was lowered in frequency but increased in amplitude. This was the effect of adding resistance to the tuned circuit of the enclosure and the reason for the damping action. If the port were to be covered with heavier and thicker material the effect would be increased to where eventually the cabinet would operate as a total enclosure and Curve C (Graph 1) would be obtained.

Actually, any of the three conditions in Graph 1 would give fairly satisfactory reproduction with a good amplifier, but from the difference in level of the peaks shown in Curve A, and the uneven peaks with the port damped, it is apparent that some change in dimension of either the cabinet or port, or both, might be needed.

Graph 2 illustrates the curves obtained when the port was partially covered with pieces of plywood to reduce it to the dimensions listed. Curves D and E are good but Curve F, with a port size of $4-1 / 4 \times 4-1 / 4 \times 1 / 2$ inches is the opposite of Curve A (Graph 1) although the peaks are lower in frequency. Damping of the smallest port is not satisfactory as can be seen in Graph 3, since the low frequencies are down to a very low level.

Next, still keeping the original dimensions of $20^{\prime \prime}$ high x $17^{\prime \prime}$ wide $\times 10^{\prime \prime}$ deep (inside) and a port of $4-1 / 4^{\prime \prime}$ high x $10^{\prime \prime}$ wide $\times 1 / 2^{\prime \prime}$ deep, a 2 -inch extension or duct was attached to the port inside the cabinet (See Figure 4). This had the effect of lowering the resonant frequency of the enclosure similar to that of reducing the size of the port. The resulting curve (Curve I, Graph 4) is nearly the same as Curve D in Graph 2. With damping

CABINET $20^{\prime \prime} \times 17^{\prime \prime} \times 10^{\prime \prime}$ 3400 cu . in gross OR

of one or two layers of grille cloth (Curves J \& K, Graph 4) the curves are still not very satisfactory.

To reduce the size of the enclosure, from its original cubic content of 3400 cubic inches, the

braces were removed from the inside surface of the $b a c k$ and the pieces of board were securely
mounted with screws to the back. This can be seen in Figure 4. This reduced the cabinet to 2465 cubic
inches gross content. The 2-inch duct was permanently installed and figures in all of the following readings. The curves in Graph 5 obtained with these dimensions show more stability with a more satisfactory low frequency peak. This low peak, due to the action of the port, is the one least affected by the damping action of the amplifier. Curve N is included to give a comparison of the reflex action with that of a totally enclosed cabinet of the same dimensions.

To further reduce the size of the enclosure, the Ozite padding was removed from the top, bottom and sides and the boards, shown beside the cabinet, were attached solidily with screws to the sides, top and bottom as shown in Figure 6. The Ozite was then reinstalled. This reduced the size to 2222 cubic inches which resulted in the curves in Graph 6. The cabinet was now very close to the correct size to tune to the speaker used and damping of the port produced a more uniform curve. Any of the three conditions in Graph 6 would give very satisfactory listening, depending upon the amplifier used. Although there was nogreat change, the effect of one or two layers of grille cloth for damping did progressively reduce the peaks to arrive at the most uniform curve.

The low frequency response has been extended without excessive peaks and with a fairly small cabinet of $18-1 / 2 \times 15-1 / 2 \times$ $7-3 / 4$ inches inside dimensions. Reproduction of music is very satisfactory, being smooth and clean, lacking only the extreme lows.

With larger speakers, with their lower resonant frequencies, the response can be extended well down into the very low frequencies very smoothly and with substantial output, by the methods described here. The smaller speaker with its resonance at 94 cps was selected since it was reaching the critical upper limits for this application and consequently emphasized the results of the changes made.

The curves are typical and illustrate what $c a n$ be done to check and improve the response when installing a speaker in reflex enclosure. "Boom," which is sometimes so objectionable, can be avoided by tuning and/or damping the port or even, in some cases, changing the cubic content of the enclosure with a sufficient number of wooden blocks or bricks.

ROBERT B. DUNHAM

use, consumer acceptance is greater for Burgess Radio Batteries.

Highest Quality!

Burgess product quality is tops. More than 40 years of making only dry batteries, protects dealer reputations... Burgess quality control is your best guarantee of satisfied customers and repeat business.

 Manufacturer Identity!

There's no private label competition with Burgess... and there's no question about the manufacturing source, either. You can be sure that every Burgess Battery you sell is a product of Burgess Battery Company.

Nationally Advertised!

Burgess advertising is a real sales help all along the line. Folks really remember those distinctive two-color ads in leading national magazines... you'll see it reflected on your profit sheet all through the year.

Oldest Line!
Burgess is the oldest line for radio dealers and servicemen. Burgess was first to see the great future of portable radios...that's why it's the major radio battery line today.

RADIO A
BATTERY

Best
 Promotional Program:

You'll like the aggressive way Burgess promotes sales for you in '52! For instance, the 1952 portable radio promotion... (the Burgess Portable Battery Prize Carnival) ... is the soundest, most complete sales promotional program everorganized.

Order Your Stock from Your
Burgess Distributor Today!
"VERTICAL SWEEP SYSTEMS"
(Continued from page 21)
limiting resistor R83 and is coupled to the grid of V13 through capacitor C60. "C" represents the waveform that is present at the grid of V13. The time constant C60, R80, and R4 is of such a value that the voltage developed across R80 and R4 will hold V13 at cutoff long enough to provide the correct free-running frequency of operation. In actual practice, the vertical hold control is set to provide a free-running frequency slightly slower than the vertical scan frequency. The positive-going sync pulse, which is coupled to the grid by C55, can then trigger the multivibrator at the proper instant to provide synchronization.

VERTICAL AFC SYSTEM

A very elaborate system of keeping the frequency of the vertical oscillator from being changed from one field to the next, by interference from horizontal sync or deflection signals, is shown in Figure 7-23. This circuit uses the same principle as is employed in the design of most current horizontal systems; whereby, flywheel synchronization is used to keep the frequency of the horizontal oscillator from being changed from one line to the next by noise. This type of circuit is known as an

pULSE AT POINT WI

waverorm at the GRID OF VI3
Figure 7-22. Pulses Present in the Wave Shaping Network of Fig. 7-21.

Figure 7-23. Vertical Sweep System Controlled by an AFC Circuit.

A FC (automatic frequency control) circuit.

The operation of the circuit uses the principal of picking a pulse off the plate of the output amplifier and feeding it back to the input of the phase detector. At the input of the phase detector, positive and negative sync pulses are obtained from the phase inverter and are combined with the deflection pulse obtained from the plate of the output amplifier. The output voltage of the phase detector depends upon the phase relation between the sync pulse and the receiver deflection signal (pulse from plate of output amplifier). This output voltage from the phase detector is amplified by V19A, vertical AFC, and is applied to the blocking oscillator, for bias, to controlits frequency. The synchronizing pulses are not applied directly to the oscillator and the control voltage is prevented from changing rapidly by C111. The blocking oscillator performs in the same manner as was

Figure 7-24. Vertical Output Circuit Employing a 6S4.
presented in the previous discussion of the blocking oscillator. C85 is the sawtooth forming capacitor with the peaking resistor being R106. Note that the vertical oscillator plate voltage is not obtained from the damper tube in this design, which removes that possible source of horizontal interference.

There are a number of reasons why this circuit doesn't realize a greater popularity. Obviously, a prime reason is that the circuit is too expensive to manufacture. A theoretical disadvantage is that the circuit is too stable. Whenever a change occurs in the video signal source at the time of a station break or when the receiver is switched from one channel to another channel, the picture usually rolls through part of a frame before becoming stationary again. This stems from the fact that the new vertical signals are not in phase with the previous ones and the receiver phase must be changed to correspond with the incoming vertical signals. If the time constant of this type of circuit is made short, so that the speed of the receiver's phase change can be very rapid, its ability to reject interference will be reduced.

VERTICAL AMPLIFIER

Most vertical circuit designs include an output amplifier stage in order to amplify the sawtooth voltage generated by the oscillator stage. This stage is necessary because the charging capacitor, across which the sawtooth sweep voltage is formed, is
not allowed to charge to the full amount of the applied voltage. This is done, as was explained before, so that the most linear portion of the sawtooth may be used. As a result, the output voltage of the sawtooth generator is not of sufficient amplitude to deflect the beam of the picture tube to the proper height. For this reason, the signal is fed to an output amplifier before it is fed to the deflection coils.

Figure 7-24 shows a vertical output amplifier. In this stage, the sweep voltage is amplified and the linearity of the waveform improved. The circuit incorporates the use of a high perveance triode (6 S 4), with the output being matched to the vertical sweep coils by transformer T4. The linearity control, R6, located in the cathode circuit controls the operating bias of the tube.

The use of a linearity adjust ment is necessary because the voltage produced across the sawtooth forming capacitor is not linear enough to produce a smooth sweep of the beam in the picture tube. The DC voltage present on the cathode of the amplifier is changed by the linearity control which in turn changes the bias on the grid. Due to the fact that the characteristic curve of the amplifier is not linear over the entire portion, the tube may be operated on the portion of the curve that is non-linear. When the amplifier is operated on the non-linear portion of the c haracteristic curve the distortion present in the input voltage is cancelled out, which provides a more linear sweep voltage. Without the variable resistance in the c athode

Figure 7-25. Removal of the Nonlinearity from the Sawtooth by Operating the Amplifier on the Curved Portion of the Characteristic Curve.
circuit the amplifier would operate as any class "A" amplifier. Figure $7-25$ shows the removal of the non-linearity from the sawtooth by operating the amplifier on the curved portion of the characteristic curve. By operating the amplifier at point ' O '" the amplifier produces a sawtooth output that is linear as is seen from curve "A". By changing the value of the cathode resistance, point "O" can be changed from a linear to a non-linear portion of the curve; thus achieving different degrees of linearity.

The output of the vertical sweep amplifier is fed to the deflection coil circuit through transformer T4. This transformer matches the plate impedance of the amplifier tube to the resistance of the deflection coil circuit. It is a step-down auto transformer, having a turns ratio of 11.4 to 1 . Transformers having a turns ratio of 10 to 1 are most commonly used for the vertical output. However, some circuits are designed to employ transformers with the turns ratio as high as 20 to 1.
C. P. OLIPHANT

[^6]AUDIO FAC TS (Cont'd. from page 47)

$$
\begin{array}{lll}
\mathrm{C} 1 & 13.25 \mathrm{MFD} & (1-5 / 5 \mathrm{MFD} 400 \mathrm{~V} \text { AND } 1-4 \mathrm{MFD} 50 \mathrm{~V}) \\
\mathrm{C} 2 & 21.2 \mathrm{MFD} & 12-5 / 5 \mathrm{MFD} 400 \mathrm{~V} \text { AND } 1-1 \mathrm{MFD} 200 \mathrm{~V} \\
\mathrm{LI} & 0.85 \mathrm{MH} & 160 \text { TURNS } \quad 16 \text { ENAMELED WIRE }
\end{array}
$$

Figure 6. Schematic of Home-

Constructed Network with Data. Single L-Section Filter Type, Series Connected.
network. High values of capacity are required, notably at low crossover frequencies, but at the usual voice coil impedances no high voltages are involved, so 25 working voltage capacitors are satisfactory. Figure 5 is an example of a network constructed with surplus capacitors and handwound coils of No. 16 enameled wire. It was designed for a woofer and tweeter

Figure 7. (A) Half Section Network for Two Way System, Parallel Connected.

ROBERT B. DUNHAM

Figure 7. (B) Half Section Network for Three Way System, Parallel Connected.

" QUICKER SERVICING"'

(Continued from page 31) uncommon offender in this respect. After the circuit has been checked for component failures and none are uncovered, certain modifications may be tried to reduce the multiple triggering tendency. First of all, a reduction in the size of capacitor C 7 from 270 mmf . to about 220 or 180 mmf . may help the situation by increasing the adjustment tolerances in the oscillator transformer. Another feasible move would be to increase slightly the size of resistor R9 from 150 K ohms to 220 K ohms or thereabouts.

It is recommended that the circuit alterations be kept to the very minimum needed to cure the "Christmas Tree" effect. A horizontal oscillator alignment should be performed on the receiver after every modification is made so that true tests for improvement in oper ation are ensured.
Knack for Knurled Knobs -
Here's a very handy way of manipulating those rear and recessed panel controls which are a part of many modern TV sets. These controls often have short shafts terminated with a $1 / 8$ to $1 / 4$ inch length of knurled surface. Sometimes they are not so easily managed with a thumb and forefinger, particularly where other chassis or cabinet parts are in the way.

The trick is to take an ordinary, full length lead pencil and remove the rubber eraser from its end. Then the metal band, which formerly held the er aser, will be found to slip snugly over the end of the control shaft so that the pencil in effect becomes a temporary shaft extension (See Figure 5). Turning the pencilwill rotate the control.

So if you have been vexed with hard-to-manage controls, maybe this

Figure 7. Diagram Showing Tube in Sylvania Tube Carton.
simply-made gadget will help you in the future.

Sylvania Tube Cartons -

Maintaining a neat, orderly tube shelf is a never-ending problem in a busy service shop. Its frequent use is the chief reason for this. Replacing tubes in their correct positions and keeping the tube cartons in good condition are two of the factors in this problem. The first of these is purely a matter of conscientiousness on the part of the individual. The second, however, may be helped along by the acquisition of a simple work habit.

Figure 6 shows a picture of two Sylvania tube cartons. The one on the left (A) has been opened and closed several times for the purpose of making tube substitutions in receivers and the top flap has torn so that it presents a decidedly shop worn appearance. Moreover, the identity of the tube in the carton goes unknown unless one reaches up and pulls down the open flap on which the tube number is stamped. Contrast this with the tube carton on the right (Fig ure 6B); this carton has also been opened and closed many times but it looks new. That is because the top flap, which is the one bearing the tube type number and in full view, is never opened. Instead, the flap on the bottom is the one that is opened and the tube is removed by grasping the base pins and pulling it out through the bottom of the carton. This procedure applies to all GT and metal type tubes which will not come out through the top of their cartons because their bases are blocked by the diagonal internal flap visible in Figure 7. Opening the top flap of these cartons, therefore, is totally unnecessary.

The miniature 7 -pin tubes will usually drop out of the open bottoms of their cartons with very little coaxing. In the case of the larger $9-$ pin miniatures such as the 12AT7 and 6T8, a little more difficulty may be experienced. It may be necessary, with one of these tubes, to open the flap top also and push the tube through the carton and out the opposite end.

In order to keep your Sylvania tube cartons like new, even while conducting numerous tube substitution tests, develop the habit of opening the bottom flap of a carton first. Such a habit will result in fewer torn flaps detracting from shelf neatness, tube type numbers being visible at a glance, and tubes coming out of their cartons quickly and without fumbling.

GLEN E.SLUTZ

Only 3\% Ripple at full load!
Completely variable output, makes it possible to test equipment under any voltage input condition. Provides filtered adjustable DC voltage for testing and servicing 12 volt and 6 volt auto radios from $A C$ lines. Operates electronic equipment used on trucks, tanks and other mobile units; low voltage devices. Utilizes Superior Powerstat Voltage Control (Model 10) for extremely fine voltage adjustments.

See Your Nearest Parts Jobber!

Write for FREE BULLETIN!

model bj
6 Volts, 1-12.5 Amps. 3% Ripple
model b
6 Volts, 1-20 Amps. 3\% Ripple
MODEL N 0-28 Volts, $1-15$ Amps. 8% Ripple
model nf
$0-28$ Volts, $1-15$ Amps. 1% Ripple

Electro Products Laboratories

4501-Fe No. Ravenswood Ave., Chicago 40, III.
CANADA: Atlas Radio Corp., Lid., Toronto, Ont.

THE IMPORTANT FIRSTS - COME FROW TACO FIRST.. . BAZOOKA-TUNED - ALL THE WAY!

The right antenna to install in areas where two or more high-band VHF channels are received. Provides top performance all the way (7-13). Ask your TACO distributor for the SILVER STREAK BAZOOKA
Cat. No. 1860 for that next installation!

Sinor Streak

1 Single forward lobe for
I. Perfect Mechanical Balance - ideal 3 TACO Click-Rig construction

TEGNNIGAL APPLANGE GORPORATION,
best signal-to-noise ratio.
for use with rotor.
elements positioned automatically.

SHERBNRNE, N. Y.

In Canada: He-kbusch Electronics Lld. Taronto 4 Ont

NON-INTERCARRIER RECEIVERS

The arrival of UHF television to the commercial broadcasting field has placedan additional requirement upon the design of television receivers. To fulfill this requirement, currently produced receivers are designed with an intercarrier sound system. Although advantages are attributed to both intercarrier and non-intercarrier receivers, it is found that drift problems are minimized in the intercarrier type.

It should not be construed that UHF reception is not feasible using non-intercarrier receivers. As a matter of fact, large numbers of such receivers will be used in conjunction with UHF tuning devices. It is important, however, to point out prior to a UHF installation, that if a nonintercarrier receiver is used, it may be necessary to retune more frequently. In this way, the customer is aware of the possibilities of such an eventuality and will be less prone to condemn either the receiving equipment or the serviceman.

There are definite reasons why a non-intercarrier receiver may be
subject to the effects of oscillator frequency drift which would show up either as weak or distorted sound. In the first place, UHF tuning units are designed with a maximum of stability consistent with all the factors involved. This degree of stability is satisfactory for use with most of the existing receivers and all the receivers incurrent production. The principle of intercarrier sound provides a sound carrier IF signal that is obtained by heterodyning the video carrier and sound carrier at the video detector. The bandpass of tuning systems are designed quite broad such that both sound and video carriers can be properly tuned. Slight oscillator drift does not impair intercarrier sound performance since both carriers remain in the passband of the receiver circuits.

Non-intercarrier receivers employ quite a different system. In most instances, the sound IF signal is taken off from the output of the tuner mixer stage. In effect the non intercarrier sound take-off is a bandpass filter arrangement ac-
cepting only a narrow range of frequencies. Thus, if the local oscillator frequency shifts, the resultant sound carrier will be displaced from the center frequency setting of the sound IF tuned circuits. The resultant therefore will either be distorted, weak, or no sound.

Although not presenting a problem in many cases, it should, however, be pointed out to the customer possessing a non-intercarrier receiver, that some tuning touch up may be required at various intervals.

To aid in identifying non-intercarrier receivers produced to date, the following table is given containing the Model or Chassis designation of the non-intercarrier receivers. The table is as complete as it is possible for us to make it with the information available to us. A quick look at this chart shouldaid in pointing out the particular Model numbers for which UHF units may not function with as high a degree of tuning ease as may be expected from intercarrier receivers.

ADMIRAL

Chassis 20A1, 20B1
Chassis 24DI, 24El, 24FI, $24 \mathrm{GI}, 24 \mathrm{HI}$
Chossis 30A1, 30BI 30CI Models $4 \mathrm{H} 15,4 \mathrm{Hl6}, 4 \mathrm{HI7}$,
$4 \mathrm{HI}, 4 \mathrm{H} 99$
Models $4 \mathrm{HIl5}, 4 \mathrm{Hl16}, 4 \mathrm{HIl} 7$ Model 4H126
Models 4HI45, 4H146, 4HI47 Models $4 \mathrm{H} 155,4 \mathrm{H} 156,4 \mathrm{H} 157$ Models $24 \mathrm{All}, 24 \mathrm{Al} 2$ Models 24A125, 24A126 $24 A 127$
models 24C15, 24C16, 24 Cl 7 Models 26R35, 26R36, 26 R37 Models $26 \times 35,26 \times 36,26 \times 37$ Models $26 \times 45,26 \times 46$
Models $26 \times 55,26 \times 56,26 \times 57$ Models $26 \times 65,26 \times 66,26 \times 67$ Models $26 \times 75,26 \times 76,29 \times 17$ Models $29 \times 25,29 \times 26,29 \times 27$ Models 30A12, 30A13,
30A14, 30A15, 30A16
Models 30B15, 30B16, 30B17 Madels $30 \mathrm{C} 15,30 \mathrm{C} 16,30 \mathrm{Cl}$ Models $36 \times 35,36 \times 36,36 \times 37$ Models $39 \times 16,39 \times 17$
Models 39X25, 39×26
AIR KING
A-1000, A-1001
Alo
05WG-3018A, B
05WG-3030A
$05 \mathrm{WG}-3030 \mathrm{C}$
05WG. 3031 B
05WG-3032B
05WG-3036A
05WG-3036C
05WG-3038A
n5WG-3039A, 8
5WWG-3045A.
4WG. 3006 A

94 WG-3009B

AIRLINE-CONT
94WG-3016A, B, C
94WG-3022A
94WG-3026A
94WG-3028A
94WG-3029A
ALTEC LANSING
ALC-205, ALC-206
AMBASSADOR
C1720, C2020, C2420,
CD2020
C 2050
C 2150
T1720, T2020

ANDREA

BT-VK12
BC-VLI7
BT-VL17
COVK15, COVK16
COVK-125
COVK-125
COVL-16
COVL-16
CO-V119
COVVL19
C-VK19
CVK-126
CVL-16
C-VLI7
T-VK12
TVK-127B
TVL-12
TVL-16
T.VL17
VJ.12, VJ.12-2
VJ-15,
VJ-15
$2 \mathrm{C} \cdot \mathrm{V} 17$
2C.VL17
2C.VL20
Ch. VK1516
Ch. VL16
Ch. Vllo
Ch. VLI7
Ch. VLI9
Ch. VL-20
ANSEEY
701
ARTONE
MST12, MST14
MST12, MST
14TR, $16 T R$
17 CD
17 CRR
17CRR
17 CRR
$17 R O G$
20CD
20TR
112 X
1020
203D

ARTONE-Cont.
819
$3163 C R$
B163CR, 8193 CM
ARVIN
Ch. TE-272.1, 2
Ch. TE-276
BELMONT
22A21, 22AX21, 22AX22
BENDIX
235B1, 235M1
BRUNSWICK
911
922B, M

CONRAC

10-M-36, 10-W-36
11-B-36
12.M-36, 12-W-36
13.B-36

14-M-36, 14-W-36
$15-\mathrm{P}-36$
$16 . \mathrm{B}-36$
$16-\mathrm{B}-36$
$17-\mathrm{P}-39$
13-M-37, 18-W-39
$\begin{array}{ll}\text { 13-M-37. } & 18-W-39 \\ 20-M-39, & 20-W .39\end{array}$
20-M-39
$21-\mathrm{B}-39$
$22-\mathrm{P} .39$
23-M-390
$24-M-36$
$25-W .36$
25-B. 36
26-B-36
27-M-40, 27-W-40
28-8-40
29-P-40
30-M-40, 30-W-40
$31-\mathrm{P}-40$
32-M-44, 32-W. 44
$33-$ B- 44
$34-P-44$
$34-\mathrm{P}-44$
Ch .36
Ch. 36
Ch. 39
Ch. 40
Ch. 44
CORONADO
05TV2-43-8950A
05TV2-43-9010A
05TV2-43-9010B
15TV2-43-9012A.
15 TV2-43-9013A
94TV2-43-8970A, 71A, 72A,
73A, 85A, 86A, 87A, 93A, 94A, 95A,

CORONADO-COnt.
8950A
8970A, 71A, 72A, 73A, 85A.
86A, 87A, 93A, 94A, 95A

9010 A

9010 B

CROSLEY

$9-403 \mathrm{M}, 9-403 \mathrm{M}-2$
9.404 M
$9.407,9.407 \mathrm{M}-1,9.407 \mathrm{M}-2$ $9.409 \mathrm{M3}$
$9.413 \mathrm{~B}, 9.413 \mathrm{~B}-2,9-414 \mathrm{~B}$
$9-419 \mathrm{Ml}, 9-419 \mathrm{Ml}$-LD,
$9.419 \mathrm{M} 2, \mathrm{M} 3, \mathrm{M} 3-\mathrm{LD}$
9.420 M
$9-422 \mathrm{M}, 9-422 \mathrm{MA}$
9.423 M
9.424 B

DEWALD
BT-100, BT-101
BT-100, BT-101
CT-101,
CT-102, CT-103, CT-104
CT-102,
DT-160

DUMONT

RA. 101
RA. $102 \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3$
RA- 103
RA-103D
RA. 104A
RA. 105
RA-105B
RA. 106
RA-108A
RA- 109 A-FAS
RA-109-A1, A2, A3, A5, A6, A7
RA-110A
RA-111-A1, A2, A4, A5
RA-112-A1, A2, A3, A4, A5,
A6
RA.113-B1, $B 2, B 3, B 4, B 5$, B6, B7, B8
RA-117-A1, A3, A5, A6, A7
RA. 119 A
RA. 120
RA-130A
RA-147A
Andover Model RA-117-A6 Ardmore Model RA.112-A1 A4
Bradford

DUMONT-Cont.
Brookville Model RA-113-BI B2
urlingome Madel RA-113-B5
B6
Corlion Model RA-117-A3
Chotham
Chester
Club 20
Colony
Devonshir
Foirfield
Guilford Model RA-111-A2,
A5
Hompshire
Honover Model RA-109-A2,
Ab, FAS
Hastings
Manchu
Mansfield
Meadowbrook 11
Mt. Vernon Model
RA-112-A3, A6
Pork Lone Model RA-117-A7
Parklane
Plymouth
Putman Model RA-111-A1,
A4
Revere 11 Model RA-113, B3,
B4
Royol Sovereign
Rumson
Savoy
Sheffield
Sherbrooke Models
RA-109-A3, A7
Sherbrooke Model
RA-109A.FAS
Sherbrooke Model RA-I30A
Sherwood
Stratford
Strothmore Model RA-117-A5
Sumter Model RA-117-A1
Sussex
Tarrytown
Tarrytown Models RA-113-E7, B8
Wellington
Westerly Model RA-112.A2,
A5
Westbury
Westbury 11
Westminster
Westminster 11
Westwood

Planet Capacitors "Engineered for Quality"

1 year service guarantee

A HOT Litfle BOOSTER

for HOT Front Ends

VIDEON JR. won't oscillate with the hot front ends of new sets!

PERFORMANCEWISE—|t's tops PRICEWISE—lt's right . . . and as for customer satisfaction, you cut costly call backs when you install a VIDEON JR.

Write For Descriptive Folder And Name Of Your Distributor

Coming Soon -
The New Videon UHF Converter

ELECTRONIC MARDWARE IU HINGED COVER PLASTIC BOXES

BUY ALL YOUR RADIOTV HARDWARE - 240 dif. ferent items-in these sturdy, re-
usable Hinged Cover plastic boxes. Make your work bench neater, handier. Look for
ask for . . . insist upon G-C hardware in the Hinged Cover Line!

BUY WHERE YOU SEE THE G-C HARDWARE DISPLAY. IN HINGED COVER BOXES!

NOWtrouble-shooting time! TELEVISION TECHNOTES

112 Pages
55 Illustrations
gives the
causes and
cures for 607 troubles found in scores of TV sets-compiled from reports by service technicians and
manufacturers
ONLY $\$ 1.50$

TELEVISION TECHNOTES can add 50% to your TV servicing efficiency-and profits. It maps out short cuts which lead you right to the heart of those back breaking troubles-and cut down time wasting trouble shooting. Tells you in which sets specific troubles most frequently occur, what they look like, what they do and how to locate and correct them. The greatest practical low-priced handbook for the technician to come along yet! Buy a copy at your parts distributor today.

Published by the publishers of RADIO-ELECTRONICS Magazine GERNSBACK PUBLICATIONS, INC.

CHECK JSC

for COMPLETE

300 Ohm TV Lead-In

 Wire Needs!| 22 Gauge | 20 Gauge |
| ---: | ---: |
| Copper | Copper |
| 40 mil | 40 |
| 55 mil | |
| 70 mil | 55 mil |
| 80 mil | 70 mil |
| 100 mil | 100 mil |

4-Conductor Rotor Wire Perforated 300 Ohm Open Wire JSC has highest quality wire at lowest possible prices.
Lthographic spools of Orange and Blue in dividually packed 1000 feet to the metal spool.

See your nearest JSC distributor who proudly displays the Blue and Orange disc of quality.

NON-INTERCARRIER RECEIVERS-Continued

DUMONT-Cont
Whitehall
Whitehall
Winslow Model RA-109-A1, A5

EMERSON
545 (Ch. 120047)
571 (Ch. 120066)
571 (Ch. 120068 B)
585 (Ch. 120025 B)
585 (Ch. $120088 \mathrm{~B}, 90 \mathrm{~B}, 90 \mathrm{D}$) 606 (Ch. 120068)
606 (Ch. 120066 B
618 (Ch. 120025 B)
618 (Ch, $120090 \mathrm{~B}, \mathrm{D})$
Ch. 120025 B
Ch. 120047
Ch. 120068 B
Ch. 120088 B
Ch. 120090 B

FADA

G-925
R7C15, R7C25
R-1025
R-1050
S4C20
S4C40
S4T15
S4T30
TV30
799
899
925
930,940
965
FREED EISEMAN
54, 55, 56, 68
101, 102, 103, 104
Ch. 1620A, B
Ch. 1916.16 ,

GAROD

10TZ1, 10TZ2, 10TZ3, 10TZ4,
10TZ20, 10TZ21, loTZ22,
$10 \mathrm{TZ23}$
$2 \mathrm{TZ1}, 2,3,4,5,6 \mathrm{~A}, 7 \mathrm{~A}$
12 TZ20, 21,22
15 TZ6, 15 TZ7
15 TZ6, 15 TZ7
15 TZ24, $25,26,27$
900,1000 Series
1100 Series
1200 Series
3912 TVFMP, 3915 TVFMP
GENERAL ELECTRIC
20C150, 20C151
24C101
810
811
814
815
820
830
835
840
901
910

HALLICRAFTERS
605, 606
HOFFMAN
CT.800, 801, 900, 901
600, 601
610
612
612
613
630,631
632, 633, 634, 635
634A, 635A
636, 637
636,637
638,639
816,817
$820,821,822$
$820,821,822$
$826,827,828$
830, 831
830,8
832
836, 837
840
846
847
860, 861, 862
866, A, 867, A, 868, A
870, 871, 872
$870,871,872$
$876,877,878$
$876,877,878$
$876 A, 877 A, 878 A$
880, $881,882,883,884$, $885,886,887$
890, 891, 892
$893,894,895,896,897$
902
912,913
914,915
917,918

920
946
950
953
960
963
Ch
C
6, 947, 948
950, 951,952
$953,954,955$
$960,961,962$
$963,964,965$
Ch. 146
Ch. 147
Ch. 147
Ch. 150
Ch. 151
Ch .152
Ch .153
Ch. 154
Ch. 155
Ch. 156
Ch. 156
Ch. 157
$C h . ~$
Ch. 164,
Ch. 170,17
Ch. 172
Ch. 173
Ch .173
Ch .174
Ch. 176
KAYE-HALBERT
014 (Ch. 253)
044, 045, 046 (Ch. 253)
114 DX (Cُh. 253DX)
146 (Ch. 253)
146 (Ch. 2530 DX
424 (Ch. 253)
425, 426 (Ch. 253DX
428^{\prime} (Ch. 253)
428 (Ch. 253DX)
714,724 (Ch. 253)
744, 745,746 (Ch. 253)
$777^{\prime}(\mathrm{Ch}, 253)$
914 (Ch. 253)
Ch. 253
Ch. 253 D

MAGNAVOX

Chassis CT-214
Chassis CT-219, CT-220
Chassis CT-221
Chass is CT-222
Chassis CT-232
Chossis CT-235
Chass is CT-236
Chassis CT-237, СT-238
Chassis CT-244, CT-245, CT. 246
Chassis CT-250, CT-251
Chassis CT-252, CT-253
Chassis CT-257, CT-258
Chass is
CT-262, CT-263 Chassis CT-262, CT
CT-264, CT-265
Chassis CT-266, CT-26
Chassis CT-283
Chassis CT-284, CT-285
Chassis CT-286,
Chassis CT-287, CT-28
Chassis CT-289
Chassis CT-291, CT-293
Chassis CT-294
Chassis CT-295, CT-296
Chassis CT-295,
Chassis MCT-228

MEISSNER

TV-I
MOTOROLA
VF102, A, C
VF103, VF103M
VKIO1, B, M
VK106, VK107
VIl01
VT105, VT105M
VT107, B, M
VII2T
loVK9
$12 \mathrm{VKI8B}, 12 \mathrm{VKI} 8 \mathrm{R}$
12 VT 16 , $12 \mathrm{VT} 16 \mathrm{~B}, 12 \mathrm{VTI} 16 \mathrm{R}$
Ch. TS- 3
Ch. TS-3
Ch. TS. 5
Ch. TS. 7
Ch. TS-8
Ch. TS-9, TS-9A, TS-9B,
TS.9C
Ch. TS-9E, TS9EI
Ch. TS-15C, TS-15C

NORELCO

588A
1200 A

OLYMPIC

DX-214, DX-215, DX-216
DX-619, DX-620, DX-621, DX-622

OLYMPIC-Cont.	RCA Victor-Cont.
DX-931, DX-932	8T241, 8T243, 8 T244
DX-950	8 8270
TV.104, TV-105	8TC270, 8TC271
TV-106, TV-107, TV-108	8TK29
TV. 922	8TK320
TV-922L	8TR29
TV.928	$9 \mathrm{PC} 41 \mathrm{~A}, \mathrm{~B}, \mathrm{C}$
TV-944, TV-945, TV-946	9757 ,
TV.947	9777
TV.948	9779
TV-949, TV-950	9789
17C, 17D	9 9 105
752, 752U, 753, 753U	9 T 126
754	9 Tl 28
755, 755 U	9 9 240 K
757	9 T 246
758	9 T 256
762	9 T 270
764, 764U	9 9TC240
765	9 9TC245
766	9 9TC247
767	9TC249
768	9 9TC272
769	9 9TC275
773	9 9W333
783	621 TS
785	6301 CS
791, 792	630 TS
967, 986, 970	648PTK
PACKARD-BELL	648PV
	721 TCS
2601 -TV	721 rs
2692-TV	730TV1
2991 -TV	730 V 2
3191, 3192	741 PCS
$3381{ }^{\circ}$	Ch. KCS-20A-1
4580	Ch. KCS-208-1
4691	Ch. KCS-20J-1
	Ch. KCS21-1
PHILCO	Ch. KCS24-1
48-700	Ch. KCS24A-1
48-1000, 48-1000-5	Ch. KCS24B-1
48-1001, 48-1001-5	Ch. KCS24C-1
48-1050, 48-1050-5	Ch. KCS24D
48-2500, 48-2500-5	Ch. KCS27
49-1002	Ch. KCS29, KCS29A
49-1040	Ch. KCS29C
49-1075 (Code 121, 122) 49-1076 (Code 122, 123)	$\begin{gathered} \text { Ch. KCS32, } K \operatorname{KCS} 32 \mathrm{C} \end{gathered}$
${ }_{49-1077}$ (Code 122, 123)	Ch. KCS33A.1
49-1150 (Code 122, 124)	Ch. KCS34, B, C
49-1175 (Code 122, 124)	Ch. KCS-38, C
49-1240	Ch. KCS40, A, B
49-1275 (Code 121)	Ch. KCS41-1
49-1278	Ch. KCS42A
49.1279	Ch. KCS43
49.1280	Ch. KCS45, A
49.1450	Ch. KCS47, A, AT, T
49-1475	Ch. KCS470
49.1480	Ch. KCS49, A, AT, T
50.1701	Ch, KCS498, ${ }^{\text {C }}$
50-T1104	Ch. KCS49BF
50-T1105, 50-T1106	Ch. KCS49CF
50-T1400, $50-\mathrm{Tl} 401$,	Ch. KCS60, ${ }^{\text {T }}$
50-T1402	Ch. KCS60A
50-T1403, 50-T1404	Ch. KCS61
50-T1406	Ch. KCS62
$50-\mathrm{Tl} 430$ $50-\mathrm{Tl} 432$	RADIO CRAFTSMEN
50-17443	RC100
$50 . \mathrm{T1476}$, 50-11477,	RC-100A
50-T1478, 50-T1479	RC101
50-T1481, 50. Tl 482	RC200
50-T1484	$\begin{aligned} & \text { RC201 } \\ & 202 \end{aligned}$
PHILMORE	REGAL
CP-731D	CD31
	CD36
RCA VICTOR	16 T 31
T100 T120, T121	16736 $174 \mathrm{HD} 31,17 \mathrm{HD} 36$
T120, 1121	17HD31,17HD36
T164	19C31, 19C36
TA128	19031, 19036
TA169	20C31, $20 \mathrm{C36}$
TCl $24, \mathrm{TC125}, \mathrm{TC127}$	20031, 20036
TC165, TC166, TC167.	
	1030.1031
2 T 51	1230
2 C 60	REMBRANDT
$4 \mathrm{Tl101}$	721, 1606, 1606.15, 1950
4 T 141	
6 T 53	SCOTT (E. H.)
6154	${ }_{400}^{6 T 1, ~ 6 T I I A ~}$
6T64, 6T65	400
6 6T71, 6 T75, 6 T76	SHERATON
6T84, 6175 , 6170	C26B, M
6T86, 6787	C26824
7T103, 7 T104	C26M24
7T103B, 7T1048	T-26M
7 T 112 ,	Ch. 260-C
$7 T 1128$ 711223	
	SILVERTONE 8130
$\begin{aligned} & 7 \mathrm{~T} 122 \mathrm{~B}, 7 \mathrm{~T} 123 \mathrm{~B}, 7 \mathrm{~T} 124 \mathrm{~B}, \\ & 7 \mathrm{~T} 125 \mathrm{~B} \end{aligned}$	$\begin{aligned} & 8130 \\ & 8132 \end{aligned}$
7132	8133
71143	9122
$8 P C S 41, ~ B, ~ C ~$	Ch. 101.854 Ch. 101.864

SPARTON

1080
1081
4900TV
4916, 4917, 4918
4920, 4921, 4922
4935
4939 TV , $4940 \mathrm{TV}, 4941 \mathrm{TV}$
4942
4944, 4945
4951, 4952
4954
4960
4964, 4965
5002, 5003
5006, 5007
5006X
${ }_{5007} 50$
5052
5065
5068, 5069
Ch. ЗTV9, 3TV9C.
Ch. 918A
Ch. 23 TB10
Ch. 23TD10
Ch. 24 TM 10
Ch. 24 TR10
Ch. 24 TVQ, 24 TV9C
Ch. 25TKIOA

STARRET

Gotham Henry Hudson, Henry Parks
John Hancock
Robert E. Lee

STROMBERG-CARLSON

TS-15, TS-16, TS-125
TECH-MASTER
1930
TRAD
C-2020, C-2420, CD-2020
$\mathrm{T}-20$
$\mathrm{~T}-1720$
TRANSVISION
Ch. Madel A
Ch. A-3
Ch. A-4, Sub 1

TRUETONE

D1991, B, D1993, B, D1994
2D1088A
2D1089A
2D1089B
2D1093A, 2D1094A
VIDEODYNE
10FM, $10 \mathrm{TV}, 12 \mathrm{FM}, 12 \mathrm{TV}$
VIDEO PRODUCTS
630-DXC
$630-\mathrm{D} \times 24 \mathrm{C}$
$630-\mathrm{K3C}$
$630-\mathrm{K3C}$
$630-\mathrm{K} 24 \mathrm{C}$

WESTINGHOUSE

H-196
H-196A
H196A (DX
$\mathrm{H}-207 \mathrm{~A}$
$\mathrm{H}-207 \mathrm{~A}$ (DX)
$\mathrm{H}-207 \mathrm{~B}$
$\mathrm{H}-217 \mathrm{~B}$
$\mathrm{H}-225$ (DX)
H. 226

Ch. V-2130-1
Ch. V-2130-11DX,
V-2130-120X
Ch. V-2130-21DX
Ch. V-2130-31DX
Ch V 2140-320X
Ch. V-2146-11DX
Ch. V-2146-35DX
Ch. V-2146-

WIL COX-GAY

OL-446M, OD-446M
OF439-T-C
OD Series

zenith

287925 E, R
28T926E, 28T926R
28T960, 28T961, 28T962,
28 T 963
28T964R
37 T 996 RLP
371998
42T999RLP
Ch. 28 F 20
Ch .28 F 23
Ch .28 F 25
now get all TV stations UHF and VHF better

WITH THE PRECISION BUILT

VEFDX

HeSt IN DESIGN
in Performance

A PRODUCT OF CO ELECTRONICS inc.
ROCKVILLE, CONNECTICUT

PREDICTION THE VEE-D-X ROTATOR WILL SOON BE THE NATION'S BEST SELLER!

Seeing is Believing!

Study this cutaway view. See for yourself why it is truly the finest of all rotators.

THE MAGNIFICENT DECORATOR STYLED CONTROL CONSOLE

Here is the perfect companion to the finest of all rotators. The unique fingertip-action control operates with a convenient downward pressure that completely eliminates any need to hold console to prevent its sliding. It is engineered for instantaneous clockwise and counterclockwise action. Its easy-to-read dial gives both compass and numerical points. Available in two popular colors: Heather Green for light colored cabinets, Cordovan Mahogany for dark.

This forecast is not given lightly - nor do we expect it to be accepted lightly. It is backed by sound business reasoning and the awareness that VEE-D-X engineering, in collaboration with other world famous manufacturers, have jointly produced the finest of all rotators. It is so far in advance of anything on the market that a comparison with existing rotators will only serve to substantiate these (not lightly given) claims.
Many months of research, planning and testing were spent on the VEE-D-X Rotator. Its many exclusive and precision incorporated features assure pin-point accuracy and complete dependability under all weather conditions. The VEE-D-X Rotator is precision made for precision performance - designed to provide TV reception at its very best.

VEE-D-X OFFERS YOU RIGHT NOW ALL THE FEATURES YOU'VE DREAMED OF IN A FINE ROTATOR

PRECISION-BUILT-The VEE-D-X Antennia Rotator is built with the same precision with which it was engineered. Nothing has been spared in quality construction to provide the utmost in dependability and long trouble-free operation.
ADVANCED STYLING - Streamlined case design - better looking, less wind resistance.

FINEST GEARING OF ANY ROTATOR -

Unique. Compact. Efficient. The selfcontained, flanged spur gear train of the VEE-D-X Rotator puts it in a class by itself. Flanged reinforced gear teeth cannot be stripped. Designed and developed in cooperation with world famous small gear specialists. It provides most dependable performance under all conditions.

BALANCED MOUNTING - In-line (axial) mounting. Relieves strain on mast and guy wires. Equalized load distributionno cumbersome offset-improved rooftop appearance.

WEATHER-RESISTANT FINISH-Entire unit is completely finished with new weatherresistant Luster-On \#15 that meets rigid Army Signal Corps specifications. Stays bright-will not corrode.

FINEST MAST CLAMPS OF ANY ROTATOR The positive three jaw chuck-type mast clamp is a VEE-D-X feature that provides simplest installation and the largest clamping surface of any rotator.

POSITIVE MAST ALIGNMENT - Is assured with built-in, self-centering mast guides both top and bottom.

FAST, EASY LINE CONNECTIONS-Accommodate four wire line. Exclusive snap-in cover, slides into place - no screws to drop when installing.

FULL 365 DEgree traverse - Eliminates necessity of reversing rotation at critical points at end of normal 360 degree traverse.
POSITIVE ANTENNA BRAKE-No over travel, assures pin-point accuracy the moment control actuator is released.
EXTREMELY POWERFUL - Will support a load of over 200 pounds-thereby eliminating any need for the extra expense of an auxiliary thrust bearing.
GUYED AT TOP - Three guy ring lugs are cast as an integral part of the case for maximum strength. Spaced 120 degrees apart-permits three or four wire guying. DECORATOR STYLED CONTROL CONSOLE Smaller, more compact, more beautiful than any other. Unique control actuator. Dial gives both compass and numerical reference points. Plastic case in choice of beautiful decorator colors - Heather Green or Cordovan Mahogany.
ACCURATE COMPASS INDICATION AT ALL TIMES - No screw driver adjustment required to compensate for voltage fluctuation.
FACTORY TESTED AND GUARANTEED-Every Rotator and Control Console is thoroughly tested electrically and mechanically and fully guaranteed.

Write For Literature !

New, Improued DAVIS SUPER VISION television Antenna WIND-TESTED and WEATHERIZED

"The original antenna sold with A MONEY-BACK GUARANTEE" UNBEATABLE FOR FRINGE AREA OR DX

1. EXCELLENT FOR FRINGE AREA and DX RECEIVING-and broad band receiving with high gain on all channels-2 through 13.
2. CLEARER PICTURES UP TO 125 MILES OR MORE-from the station.
3. GHOST PROBLEMS REDUCED or eliminated due to excellent pattern.
4. PROVIDES 10 DB OR MORE GAIN ON HIGH CHANNELS where gain is needed most.
5. EXCELLENT FRONT TO BACK RATIO on all channels. No co-channel interference.
6. MINIMIZES INTERFERENCE: Airplane Flutter - Diathermy and Ignition - F. M. - Neon Signs - X-Ray - Industrial - Etc.
7. ELIMINATES dOUBLE STACKED ARRAYS, and out-performs 2 bay yagis on low band and 4 bay yagis on high channels.
8. ONLY ONE TRANSMISSION LINE NECESSARY.
9. NO WORRY OVER POSSIBLE CHANNEL CHANGES on either high or low channels.
10. CAN BE TIPPED WITHOUT TILTING MAST to take advantage of horizontal wave lengths.
11. Can be used with ANTENNA ROTOR.

ASK YOUR JOBBER -
"The Backbone Of Your Indusfry" FOR COMPLETE INFORMATION

DAVIS ELECTRONICS

AMERICA'S FASTEST GROWING ANTENNA MANUFACTURER
BOX 1247
BURBANK, CALIFORNIA

TV-TUBES (Cont' d. from page 41)

6CB6 has become much more popular. Another example can be cited in the use of the 6 BG6G and 6 BQ6GT type tubes. The left column indicates that each of these tubes has a rating of 15 for all receivers. In the right hand column, however, it can be seen that the rating of the 6BQ6GT has risen to 25 while the 6BG6G has fallen to 6. This again indicates that there is a definite trend toward a greater use of the 6BQ6GT as compared to the 6BG6G.

The numbers shown in this chart have been adjusted to the nearest wholeunit. As was previously pointed out, any tube having a rating of less than one does not appear on the chart. Because of these two facts the grand total of these two columns will not necessarily come to an even 1,000 units. Actually the left hand column is 977 and the right hand column totals 990. Remember, how -
ever, that the rating of each tube is based on 1,000 units.

In the event that it may serve some purpose, the following is a list of tube types which were not shown in the chart because of their extremely low rating.

6AK6	6SR7
6AL7	6U4
6AR5	6 X 4
6BF6	7 C 4
6BY5	7 C 5
6H6	12A4
6L6G	12AU6
6S8GT	$12 \mathrm{BZ7}$
6SJ7	25 AV5
6SK7	$25 Z 6$

The data contained in this listing is as accurate as we could possibly make it. We sincerely hope that it will be beneficial to you and if it is, we will show these listings with revised ratings, in each subsequent issue of the INDEX. We will also show new tube types as they are introduced in each period.

	46-53 Models	$52-53$ Models		46-53 Models	52-53 Models
1B3GT	39	43	6 C 4	11	11
1V2	1	--	$6 \mathrm{BZ7}$	1	3
1X2	6	2	6CB6	85	137
1X2A	4	7	6CD6G	7	9
5U4G	45	45	6CL6*	--	--
5V4G	8	-	6 J 5	3	3
5 Y 3 GT	3	1	6 J 5 GT	2	1
$6 \mathrm{AB4}$	3	3	6 J 6	35	31
6AC7	9	9	6 K 6 GT	17	9
6AF4\#	--	--	6S4	8	10
6AG5	41	11	6SH7		--
6AG7	3	4	6SL7GT	4	3
6 AH 4 GT	1	2	6SN7GT	81	91
6AH6	7	10	6SQ7	3	3
6AK5	5	5	6T8	15	15
6AL5	80	80	6 U 8	3	7
6AQ5	13	14	6 V 3	2	3
6AQ7GT	--	2	6V6GT	23	21
6AS5	2	2	6W4GT	33	35
6AT6	4	3	6W6GT	7	12
6 AU 5 GT	4	5	6 X 5 GT	2	2
6AU6	140	128	6X8	2	4
6AV5GT	2	4	6Y6G	4	1
6AV6	14	16	7N7	3	1
6AX5GT	2	3	12 AT 7	16	15
6 AX 4	2	--	12 AU6	1	--
6BA6	16	11	12 AU 7	44	25
6 BC 5	11	8	12 AV 7	4	5
6BE6	3	5	12AX4	2	4
6BF5	--	1	12AX7	4	5
6BG6G	15	6	12 AZ 7	--	5
6BH6	9	--	12 BH 7	7	11
6BJ6	2	--	12BY7	-	11
6BK5	-	1	12SN7GT	7	6
6 BK 7	3	6	25BQ6GT	3	5
6BL7GT	6	9	25L6GT	6	6
6BN6	2	2	25W4GT	2	2
6BQ6GT	15	25	25 Z 6	2	$-$
6BQ7	6	15	5642	2	3

[^7]
STATUS OR TV BRORDCAST OPERATIONS

The list which follows is comprised of all those TV stations which have been granted construction permits by the FCC in the period between the end of February and the middle of April. If this list is added to the stations which were enumerated in the MarchApril issue of the PF INDEX and Technical Digest, a complete roster of construction permits issued up to April 18, 1953, may be formulated.

In addition to the new construction permits, we have also listed the stations which have gone on the air since the publication of the last PF INDEX. The maps which were shown in the PF INDEX and Technical Digest for March-April may be brought up to date simply by penciling in the small triangles and squares which appear at the listed locations.

Construction Permits Granted During March - Through April 18, 1953				
ARIZONA	IDAHO	MARYLAND	EW JERSEY	HODE ISLAND
Yu	pa	alisbury	ick	Providence
KIVA Ch. 11	FXD-TV Ch. 6	WBOC-TV Ch. 16	Ch. 47	- - - Ch. 16
	Falls			
CALIFORNIA	KLIX-TV Ch. 11	MASSACHUSETTS	NEW MEXICO	SOUTH CAROLIN
hico		Bos	querque	Greenwood
KHSL-TV Ch. 12	ILLINOIS	Ch. 50	KGGM-TV Ch. 13	WCRS-TV Ch. 21
Fresno	Bloomington	Cambridge	Clovis	
Ch. 47	-- - Ch.	WTAO-TV Ch.	Ch. 12	TENNESSEE
San Diego	Chicago			Knoxville
KFSD-TV Ch. 10	WIND-TV Ch. 20	MICHIGAN	NEW YORK	- - Ch. 26
San Francisco	Harrisburg	Cadillac	Albany	
--- Ch. 20	\ldots Ch. 22		WROW-TV Ch. 41	TEXAS
San Luis Obispo		13	Rochester	Abilene
KVEC-TV Ch. 6	INDIANA	SOT	- - - Ch. 27	
Tulare		MMT Ch.	WVET-TV Ch. 10 WHEC-TV Ch. 10	Fort Worth
KCOK-TV Ch. 27	Indianapolis			
Yuba City	W JRE	Minneapolis	NORTH CAROLINA	Lufkin
KAGR-TV Ch. 52	Marion	WTCN-TV Ch. 11		KTRE-TV Ch. 9
	WMRI-TV Ch. 29	ul	reenville	San Antonio
COLORADO	Princeton WRAY-TV	COW-TV Ch. 17 MIN-TV Ch. 11	WNCT Ch. 9	
Grand Junction	WRAY-TV C	WMIN-TV Ch. 11	Hendersonville	Sherman
KFXJ-TV Ch. 5	Waterloo		WHKP-TV Ch. 27	--- Ch. 46
		Columb	VPAQ-TV	ictoria
DE LAWARE		WCBI-TV Ch. 28		KNAL-TV Ch. 19
Dover	IOWA		NORTH DAKOTA	
Ch. 40	Cedar Rapids	MISSOURI Cape Girardeau KGMO-TV Ch. 18	$\begin{aligned} & \text { Bismark } \\ & \text { KFYR-TV Ch. } 5 \end{aligned}$	
	WMT-TV Ch. 2			$\begin{array}{lr}\text { Salt Lake City } \\ \text { KUTV } & \\ \text { Ch. } 2\end{array}$
FLORIDA	Davenport		Ch. 12	
Fort Myers		$\text { KGMO-TV Ch. } 18$		VIRGINIA
WINK-TV C	Des Moines	MONTANA	OREGON	VIRGINIA Marion
Panama City	Ch.	reat Falls	KBES-TV Ch	WMEV-TV Ch. 50
WJDM Ch.	LO	KMON-TV Ch. 3	KBES-TV Ch.	Harrisonburg
GEORGIA	Alexandria	KGVO-TV Ch. 13	ENNSYLVANIA	WSVA-TV Ch. 3
olumbus	Ch. 62		Chambersburg	
WDAK-TV Ch.	WBOK-TV Ch. 32	NEVADA	WCHA-TV Ch. 46	W. VIRGINIA Charleston
Warner Robins		Las Vegas	Lewistown WMRF-TV Ch. 38	
WMAZ-TV Ch. 13	WMRY-TV Ch. 26	KLAS-TV Ch.		WKNA-TV Ch. 49
Stations now on the Air During March-Through April 18, 1953.				
ARKANSAS Little Rock KRTV	IOWA Sioux City KVTV	MICHIGAN Ann Arbor WPAG-TV Ch. 20 Saginaw WKNX-TV Ch. 57	$\begin{aligned} & \text { OHIO } \\ & \quad \text { Lima } \\ & \text { WLOK-TV Ch. } 73 \end{aligned}$	```TEXAS Amarillo KFDA-TV Ch. }1 KGNC-TV Ch. 4```
COLORADO			OAKLAHOMA Lawton KSWO-TV Ch. 7	Galveston KGUL-TV Ch. 11 Wichita Falls KFDX-TV Ch. 3
Pueblo	L	WKNX-TV Ch. 57		
KDZA-TV Ch. 3	Baton Rouge			
	WAFB-TV Ch. 28	MISSOURI Springfield KTTS-TV Ch. 10		
CONNECTICUT			PENNSYLVANIA Harrisburg WHP-TV Ch. 55	
Bridgeport				WISCONSIN Green Bay WBAY-TV Ch. 2
WICC-TV Ch. 43	MASSACHUSETTS Holyoke			
			New Castle	
FLORIDA	WHYN-TV Ch. 55 Springfield		WKST-TV Ch. 45	
Ft. Lauderdale		NORTH DAKOTA Minot	Reading	
WFTL-TV Ch. 23	Springfield WWLP Ch. 61	KCJB-TV Ch. 13	WEEU-TV Cḥ. 33	

Your Rasic 1

The protection of your investment in TV test equipment is an important point to consider before you buy. Eventually you will be called upon to service both VHF and UHF television receivers . . . so it is sensible to choose equipment that will serve for years as the basic foundation of your TV servicing set-up.

The RCA WR-39C Television Calibrator and the RCA WR-59C Television Sweep Generator incorporate the facilities you need
now, and in the future, for trouble shooting and alignment of VHF receivers and of if systems of UHF sets . . . single or double conversion. In addition, these instruments provide usable harmonics in the UHF region.

Before selecting TV test equipment for your special needs, be sure to get the full details on the WR-39C and WR-59C from your RCA Test Equipment Distributor . . . or write RCA, Commercial Engineering, Section 67 EX, Harrison, New Jersey.

" UHF-READING, PENN.' (Continued from page 43)
ers said that in cases where the best signal was a reflected one from the side of a hill, the picture viewed on the screen of the receiver would tend to be smeared. However, it was said that this signal in a number of cases was usable even though the smear effect was noticeable.

The most popular types of antennas being used for UHF are the bow-ties, either single or stacked, and the corner reflectors. Because of the difficulty in obtaining a good signal, the installation of a UFF antenna is usually on a different mast from the installation for VHF. According to reports from this area, it has not been a practice to attempt to receive the UHF signal with a VHF antenna.

The type of lead-in being used in most installations is the tubular. The Anaconda type of line is also used, but not to the degree that the tubular is being used. The probable reason is that of higher cost. One installer that we contacted uses the flat ribbon type lead-in but perforates it by his own design. He uses this line for both VHF and UHF and reports that the results are satisfactory.

Because of the loss of gain that is to be expected when lightning arrestors are used in UHF installations, the installers in the Reading area have not used lightning arrestors. Instead, in most cases, the mast is grounded for protection.

Matching units have been placed into use by some of the installers but they haven't been in use long enough for a report to be made as to the effects of the weather on these units.

In comparing the operation of UHF strips with the operation of converter units, most installers believe that the converter units give the more satisfactory results. They stated, however, that in areas where the signal is strong, the strips work very satisfactorily.

It seems that most of the UHF installations are with receivers that are purchased with built-in UHF. It was gathered from the interviews that not many external converters are in use.

Each installer said that the repair of converters has been nil. The only report against the performance of some of the converters was that a frequency drift occurs at times. However, after a few minutes of operation, the frequency drift usually ceases.

The ability of installers to receive Channel 61 in towns around Reading varies considerably. For instance, the installers in Lancaster, Pa. can usually receive a good signal without much probing. One installer said that he places his antennas at a height of twenty to thirty feet and the signal is usually very acceptable. Lancaster is farther away from the transmitter than Reading, but is situated on high terrain without being shielded by hills.

The condition varies in towns between Lancaster and Reading. Channel 61 has not been received in the community of Adamstown at all. This town is only a few miles southwest of Reading but is entirely shielded on the northwest by a hill in direct line with
the transmitter. Channel 61 is received quite well in the community of Reamstown, which is near Adamstown, because this town is located on high terrain.

As can be seen from the experiences of the installers in the Reading area, far different results are obtained in rough terrain than in flat terrain. Our tests in the South Bend, Indiana, area showed that the placement of the antenna was not critical. In many locations in Reading, however, just the opposite is the case. Many installers had installed antennas prior to the time the UHF station started operation only to find that no signal could be picked up at that particular spot after the station came on the air.

How the UHF situation will develop in the coming months in the Reading area is difficult to astimate. Right now, the number of UHF installations is increasing very slowly. Since the residents of Reading can receive three VHF stations from Philadelphia and one from Lancaster, the sale of UHF has been rather slow. This is particularly true since in many locations they aren't assured of receiving a desirable picture.

We wish to pass on our sincere thanks to the service technicians and installers, who were so kind in spending time with us to furnish the information for this report.
W. W. HENSLER and C. P. OLIPHANT

NO OTHER UHF ANTENNA

 COMBIIES ALL

Extra
 high gain

2 All
channel

GShap vertical
reception and horizantal ditrectivity

CORNE REFLECTOR

Model 4450
List \$14.50

Not 1...Not 2... but all 3 combined for amazing picture clarity
NOTHING . . . absolutely nothing compares with Walsco's Corner Reflector. It's the only UHF antenna that offers a 3 -way combination that produces sharper, clearer TV pictures. Truly a masterpiece in precision electronic engineering.

WALSCO
A Model to Fit Every Installation

Walter L. Schott Co.

3225 Exposition Place
Los Angeles 18, California

TV SUPPLEMENTARY SHEET NO. 3

This supplementary sheet is for use as an up-to-theminute addition to your Clarostat RTV Manual. Manuals are available through your distributor or directly from Clarostat. Price $\$ 1.00$.

AND TECHNICAL DIGEST

INDEX TO ADVERTISERS

May-June 1953 Issue

	Page No.
x Co	
rican Phenolic	
Arco Electronics, Inc.	04
Astron Corp	4-35
Burgess Battery	110
Bussmann Mfg. Co.	30
r Motor Co	8
alab (Div. Globe-Union, Inc.)	.)
hicago Transformer Co	. . 94
Clarostat Mfg. Co., Inc.	125
Cornell-Dubilier Electri	07
Davis Electronics	120
uMont Labs., Inc., Allen	10
lectro Products Lab	113
Electro-Voice, Inc. . . . Center Spread	
Electronic Instrument Co., Inc. (EICO)	
lectronic Measurements Corp	
Electrovox Company,	
Equipto.	
rie Resistor Cor	
Federal Telephone \&	, 90
General Cement Mfg.	
General Electric Co.	
alldorson Transformer Co.	
ckok Electrical Inst	
CBS-Hytron	
Insuline Corp. of America	
International Resistance Co. . 2nd Cover	
ackson Electrical Instrument Co.	
James Vibrapowr Co.	
Jensen Industries	112
Jersey Specialty Co.	
FD Manufacturing Co	
Krylon, Inc.	
LaPointe Electronics, Inc. . . . 118-119	
Littelfuse, Inc. 4th	th Cover
P. R. Mallory \& Co., Inc.	
Merit Transformer Corp.	
Ohmite Manufacturing Co	
Planet Manufacturing Corp	
Precision Apparatus Co., In	
Quam-Nichols Company	
Radiart Corporati	
Radio Corp. of Amer	16, 122
Radio Electronics	
Radio Receptor Company,	
Ram Electronics Sales Co	
Rauland Corporation, The	
Regency Division, I.D.E. A., Inc.	4, 72
Sams \& Co., Inc., Howard W.	52, 86
Walter L. Schott Co. (Walsco)	
Shure Bros., Inc.	
Simpson Electric Co.	
Sprague Products Company	
Standard Transformer Corp.	
Sylvania Electric Products, Inc. 3rd Cover	
Technical Appliance Corp.	
Telrex, Inc.	
Triplett Electrical Instrument Co.	
T-V Products Company	
Videon Electronic Corp.	
Ward Products Corp. 46, 62	

+ More or Less -

The innovation of television, and its rapid growth and expansion, has highlighted the necessity of good customer relations for the successful operation of an electronic service business.

Television, through installation work and repair service performed in the customer's home, has brought about an increase in personal contact between the technicians and the customers they serve.

The average radio presents no complex installation problem, preliminary set-up, or lengthy operating instructions to the customer. Repair service is generally performed at the bench in the shop. Table models, portables, etc., can normally be brought in and called for by the customer. Chassis, in even the console type models, lend themselves quite readily to pickup and delivery.

Television, on the other hand, normally requires some adjustment at the time of installation. The customer should receive some operating instructions, and in most cases some form of antenna installation is required.

There is also the possibility of additional installations and services, such as boosters, antenna rotators, and more recently UHF converters or conversion to UHF of an existing VHF receiver.

Surveys have also indicated that considerable servicing is performed in the customer's home. This is due to the fact that tube failures account for a high percentage of the troubles encountered and that the normal television receiver presents somewhat a problem in transporting to the shop for bench service. Providing the trouble can be found, repair and/or adjustments be accomplished readily and in a reasonable length of time, service should be rendered in the customer's home. Bench service is, of course, also necessary at times and it should be understood by the customer that better service can be provided by removal of the chassis or complete set.

This increase in personal contact between the technician and the customer has placed more of a responsibility for customer relations on the service technician. He's appearance, conduct and general handling of the customer will make either a good or bad impression.

To the customer, a service technician should appear neat, courteous and generally well-mannered.

As a professional man, the technician should be proud of his profession and the servicing industry he represents.

Since he is working at the customer's home, he should take precautions to prevent damage to the property and see that the work area is clean and neat before leaving.

The customer must feel that he can trust the technician and his shop to give him good service at a fair price. He should be "sold" on your organization.

Each installation or service call at the customer's home should be considered as an opportunity. An opportunity to better customer relations, an opportunity for additional sales and services.

The opportunities for better customer relations, for a successful and growing business are there; and the service technician like the well-known house-to-house salesman has his foot in the door.

- L. H. N.

This name spells Quality and Profits

Unbeatable quality is built into every Sylvania product. Even beyond that, Sylvania quality goes back to its essential metals, chemicals, and materials.

Sylvania quality is fundamental

Sylvania grinds and formulates its own phosphors, and applies them by improved methods which assure maximum uniformity and fine picture-tube performance. Sylvania draws its own high-quality tungsten filaments and winds and tests its own coils.
Naturally, this far-reaching quality control results in an enviable nation-wide reputation. Today 7 of the top 10 television set makers use Sylvania Picture Tubes and Receiving Tubes. Naturally, too, Sylvania quality pays off in fewer call-backs, more satisfied customers . . . and more profits for you.
You'll find your friendly Sylvania
Distributor a mighty high quality man to do business with, too. Call him today!

3e sure to install Sylvania Picture Tubes and Receiving Tubes in all the sets you service. Your customers know about Sylvania's fine quality and they'll appreciate your selection of Sylvania products for their sets.

Littlfuse 1953 TV Fuse Guide enlarged to include latest models

Both New-BothNeeded

Littelfuse new One Call Kit adaped to include fuses being used in latest models - 94 out of 100 times one call is all. Littelfuse Inc., Des Plaines, III.

[^0]: * * Please turn to page 108 * *

[^1]: In Canada: Federal Electric Manufacturing Company, Lid., Montreal, P.Q
 Export Distributors: International Standard Electric Corp., 67 Broad St., N. Y

[^2]: * * Please turn to page 120 * *

[^3]: * * Please turn to page 123 * *

[^4]: * * Please turn to page 83 * *

[^5]: FOR RADIO-ELECTRONIC 8 INDUSTRIAL APPLICATIONS AEROVOX CORPORATION NEW BEDFORD, MASS., U.S.A. IE Canada: AEROVOX CANADA LTD., Hamilton, Ont.
 Export: 41 E. 42nd St., New York 17. N. Y.

[^6]: "That reminds me...
 Order a new JENSEN NEEDLE for my record player."

[^7]: * New type employed in RCA receivers.

