

Radio sets for the forthcoming season exhibit many unusual features as compared to sets of previous seasons. However only a few of the more outstanding designs are described in this review. In some instances the circuits, in addition to the housings, are of interest.

The telcyision receiver

A Complete

Television Receiver

4 Tast, with the announcement of Aa television receiver shown at the left and right, the public is beginning to get a glimmering of the particular corner around which television has been hiding for the last few years.
The set is a product of the Hutton Television - Radio Corp. and bids fair to find an excellent market. It incorporates, aside from the television receiver, a broadcast receiver so that the reception of sound and image may be made simultaneously.
The set has two main features: First,
 the disc is stamped fom a single sheet of metal andic slotted radially, so that each section between two slots may be bent at different angles; second, the crater lamp is so placed with respect to the screen thit a long beani-length

Rear view of the combination
telcrision , whd bromlcast telcrision whi broulcast

FIND OF THE MONTH

Here's our find of the month: We were lucky to find a Model 10 AK Breadboard for $\$ 65$. With 5 good 01A tubes early this month.

Later in the month we were fortunate to finds l. Grebe MNI Synchrophase. 2. 3 tube (199s) Meteor 3. 100RCA speaker, all this for $\$ 20$.

So the good bargains are still around.

Lee \& Carolyn Bruton
Golden CO 80401

LETTERS
 EDTOR'S mallbag

Dear Jim:

Would like information on what we believe to be an Atwater Kent breadboard model ten receiver.

I just saw your ad in October Hermings.
Dale Motter
Box 166
Mt. Blanchard, Ohio
45867

Dear Sir:
Your new article "The Newcomer" was very interesting and I hope the beginning of a very new informative series.

> Yours truly,
> Ernest E. Mintel
> 303 E. Gibson St.
> Canandaigua, NY 14424

Dear Jim:
For several years now I have been enjoying your newspaper.

Enclosed is a copy of an editorial which I thought you might find of interest. It appeared in the December 8, 1877 issue of the American Rural Home (Rochester, N.Y.) newspaper, and Was apparently taken from New York Papers. Opinions were slready being formed on the future of this new invention.

It is interesting to note that the editorial appeared two weeks prior to Edison's filing on December 24, 1877 of his phonograph patent.

Regards,
Dick Ransley
17 Sheridan St.
Auburn N.Y. 13021
PHONOGRAPHIC POSSIBILITIES
If the phonograph, with all the possibilities its inventor clains for it, should be brought into general use, I fear it may become in the hands of a malicious or even a thoughtless person an instrument of exquisite torture. Suppose the wife of one's bosom should keep bottled up, as it were, for domestic use, the utterances of one's mother-in-law. Suppose she should exhibit
them as occasion might seem to her to require. When taken, I inagine, one would be well shaken. Suppose, when one is pouring out one's soul to one's adored and swearing to the truth of the present "first love," that some malicious person or rival should open the door of the phonograph and give one's many former tales of lote in one's om roice. Suppose some adroit lanyer should amuse the judge and jury of some breach of promise trial, with the exact tonss, imploring, adoring, sec.: of the unhappy defendant. Suppose as one is at on's boardinghouse table, expatiating upon one's wealth, sce, the Celtic and angry tones of one 's washerwoman should be heard demanding instant payment of wthat little bill." Suppose all the secrets of a Washington, Ilbany, or other lobby should be collected and reproduced to an astonishod community. Suppose all the petty meannesses of some godlike man or angelic woman should, through the agency of the phonograph, shock his or her admirers. Suppose some servant should slyly charge the infernal machine of which I am now writing with the Caudle and other lectures of a model husband and wife. Suppose what our friends say of us should be made known to us with all the claimed exactness of the phonograph. Do you suppose so delicate an instrument as the phonograph must of necessity be, can stand the wear and tear of a talking woman in "good form?" I have in wy mind's eye one who would test it to its utmost capacity.

There is good reason to believe that if the phonograph proves to be what its inventor claims that it is, both book making and reading will fall into disuse. Why should wo print a speech when it can be bottled, and why should we learn to read when if some skilled clocutionist merely repeats one of "George Eliot's" novels aloud in the presence of a phonograph, we can subsequently Iisten to it without taking the slightest trouble? We shall be able to buy Dickens and Thackeray by the single bottle, or by the dozen and rural families can lay in a hogshead of "Timothy Titcomb" every fall for consumption during the winter. Instead of libraries filled with combustible books, we shall have vast store-houses of bottled authors, and though atadents in college may be required to learn the use of books, just as they now learn the dead languages, they will not be expected to make any practical use of the study. Blessed will be the lot of the small boy of the future. re will never have to learn his letters, or to wrestle with the spelling-book, end if he does not revere the name of the inventor of the phonograph, he will be utterly destitute of all gratitude.

By O. H. McDonald
Continued from last month.
These three factors: volts, amps. and ohns have a proportional relationship with each other and this is covered in ohm's law which states "One volt of force wil cause one sap of current to flow when opposed by one ohe of reaistance."

standard	formula
amperesvolts/ohns	$I=T / R$
voltsmohns X ampe,	$\mathrm{E}=\mathrm{R} \mathbf{x}$
ohmswrolts/amps.	$R=E / I$
example	
2 8mpe - 10 7.75	ohes
10 volts = 2A X	ohns
5 ohms - $10 \mathrm{\nabla} / 2$	

Any time current passes through a wire or load (resistance) it has two effects. There is a megnetic fleld produced, which we will discuss later, and heat is produced. The heat produced or sometimes light given off is measured in watts. This wattage is the power absorbed or used and is directly proportional to the current and voltage. Wattage $=$ volt X ampa. Example: A 60 watt bulb burning on 120 volts uses $1 / 2$ smp. A 250 watt bulb will draw a little over 2 amps.

The orm and watt law is actually very simple but practice and thought on various circuits will increase your knowledge and application to these laws that are very essential in the electrical and radio field. Review this particular articlo and I'm sure you can find other help with the electron theory and ohn's law.

Thank you for your interest in this article and next month we will cover inductance to help us understand the performence of transformers in the oldies.

BACK ISSUES The Horn Spanker

All 20 back issues for 1973
and $197410 .00$
Any issue from January 1973
to now......................50фев.

Later, we should have complete volumes for 1972.

The liorin Spoaker

Box 12
Kleberg, Tezas.
75145

RADIO SETS FOR 1937-'38

(Continued from page 1)

An unusually large number of new features in radio sets for 1937-'38 are represented in the limited group of receivers described in this article. Among the more unusual features are the following: Special tone chamber for improved audio quality in mantle sets; button tuning combined with automatic frequency control; wall-mounting design, with integral power cord and antenna lead; end-table with improved sound-dispersion system.

12-in. auditorium dynamic speakers handle the large output.

Other features include 3 -band continuous tuning from 16.4 to 568 meters, delayed A.V.C., automatic bass compensation, high-fidelity switch for increasing the band width of the I.F. circuits, tone control, and a power transformer which operates on 95 to 130 V ., $50 / 60$ cycles A.C., without adjustments.
$50 / 60$ cycles A.C., without adjustments.
The mechanical adjustment on the Tele-Dial receiver is carried to within $21 / 2 \mathrm{kc}$. of a given station. A bi-metallic thermostatic condenser is said to be incorporated "to compensate for drift caused by temperate changes.'

G.E. I3-TUBE "TOUCH TUNING"

 SUPERHETERODYNELLUSTRATED in Fig. F is the G.E. model F-135 receiver housed in a large floor-type cabinet following the modern trend, particularly in the treatment of the grille bars and opening. Beneath the tuning dial of this set, there are 2 rows of buttons, 13 of which may be plainly marked with the letters of the more important stations in a particular locality. A mere touch of the button marked with the letters of the station desired and, automatically, the tuning indicator speeds across the dial to the one point where the program
selected is tuned to hair-line precision.

The other 3 buttons are for turning the set off, scanning the dial and to permit man-
ual tuning. The mechanism is motordriven to insure reliable operation While the pointer moves across the dial the speaker is automatically silenced until the station selected is tuned-in. The automatic frequency control of the receiver then assures perfect tuning, even if the motor stops in only the approximate vicinity of the station desired.

Other attractive features are a tone monitor, which reproduces the highs and lows of sound in proper proporand lows of sound in proper proporsystem, assuring maximum sensitivity; system, assuring maximum sensitivity, visibility and the spreading of shortwave stations over a comparatively large surface; visual volume control indicator; visual tone control indicator; a 4-band range; automatic band indicator; high-low speed tuning; automatic tone compensation; automatic volume control; preselector and wave-trap circuits; and a 12-in. stabilized dynamic speaker.

The set is designed to operate from a 115 V., 50/60 cycle, A.C. line, and consumes approximately 160 W . The cabinet is of modernistic design.

Fig. 3. Schematic diagram of the Lafayette "Tele-Dial" 13 -tube superhet.

Fig. E. The Lafayette "Tele-Dis!", 13 -tube superheterodyne receiver.

Fig. F. G.E. model F-135 "Touch Tuning" receiver

NEW CROSLEY "TELETUNE" FIVER
THE LATEST Cronley creation, as illustrated quick method of tuning in the popularient and The "Teletune" permits one to swing quickly from one station to another with a single flip of the dial. Printed call letters are provided for quick insertion in the 10 openings provided in the escutcheon of the dial.
reception (540 to $1,720 \mathrm{kc}$.; 5,800 to $15,400 \mathrm{kc}$.) reception (540 to $1,720 \mathrm{kc}$. ; 5,800 to $15,400 \mathrm{kc}$.) illuminated, 3 -dimensional "mirro-dial" with graduations fused on the convex glass; pentode output tube; automatic volume control; power supply noise filter.
2 For a small set it has a healthy output of 2 W. The model illustrated is known as the gracefully rounded and the side panels are made of highly figured walnut veneer. Measures $81 / 8 \times$ $137 / 16 \times 613 / 16$ ins. deep. The circuit diagram of this receiver is illustrated in Fig. 2.

emerson "MIRACLE TONE CHAMBER"

6-TUBE A.C. SUPERHETERODYNE
ELIMINATING the old-fashioned "muffling" chamber" of this Emeaker, the "miracle ton seasoned, grooved-louvre wood deflectors, causes a uniform distribution of sound waves of all frequencies. "It smoothes out the drastic hars resonances and equalizes the flow of tone, states the manufacturer.
The set illustrated in Fig. H is the model Arete automatic interesting features include comtions: s matic tuning of desired "key" sta Police) ; $6^{1 / 12-i n}$ bands (American, Foreign and rince) ; ${ }^{61 / 2} / 2$ in. dynamic speaker; automatic volume control: and, tone control. The set utilizes a modern A.C. superheterodyne circuit
employing 6 tubes. The cabinet is of hand-rubbed employing 6 tubes. The cabinet is of hand-rubbed $81 / 2 \times 91 / 2 \mathrm{ins}$. deep.

1932 TEIEVISION

is secured in a very short space. These two points are illustrated in the drawing reproduced here. In each of the sections mentioned, a concave indentation is stamped and its surface polished. The crater lamp is so focused that the diverging heam of light from the lamp strikes the lisc and is reflected to the screen. Thus, all of the light is utilized and a picture 5×6 inches is secured in a calbinet whose clepth is only 11 inches.
The photograph at the right shows the $60-1$ line dise removed from its motor in order to illustrate
the respective loca-
from
RADIO CRAFT May 1932

Hallicrafters Introduce the 1936 Super SKYRIDER

$\begin{aligned} & \text { Duo-Micro } \mathrm{Band} \\ & \text { Spread. } \end{aligned}$	
- Crystal controlled.	
- All meal tubes.	
write or wire for literatue	
the hallicrafters 3001-U Southport Ave.	

tion of the crater lamp and its assosound is.
Sound is emitted from the loud speaker at the top of the grandfather type console illustrated.
Clyde Fitch is the inventor.

A NEW SARGENT SUPER-HET For the "Amateur" and "SWL"

4.

The HORN SPEAKER..... 9820 Silver Meadow Drive, Dallas, Texas 75217

EXCFRPTS FROM PRACTICAL WIRFIESS TELEGRAPHI, A TEXT BOOK FOR STUDENTS OF RADIO COIMUNICATION, BY ELMER BUCHER IN 1921.

141. Electrolytic Detector.-A detector widely used in the early stages of wireless telegraph development in the United States is the so-called "whisker point" electrolytic, which is particularly sensitive and uniformly stable in operation. Of late, however, the electrolytic cell has fallen into almost complete disuse for commercial working, even though its reliability is generally admitted. From a commercial standpoint this may be accounted for by the fact that the initial adjustment of the device is rather troublesome.

The essentials of the detector appear in Fig. 178, where a small glass receptacle R has sealed in the base a small piece of platinum P about $1 / 2$-inch square. About a half-dozen drops of a 20 per cent. solution of nitric acid or a supcrsaturated solution of caustic potash cover the lower electrode. The upper electrode $\mathrm{P}-1$ is an extremely fine platinum wire about .0001 inches in diameter. Tlie depth of immersion in the liquid is carefully regulated by a finely threaded screw adjustment. The platinum wire is generally coated with silver, which afterward is dissolved by dipping the point of the wire in a strong solution of nitric acid, leaving the small platinum tip exposed.
The silver need not necessarily be taken off the platinum wire by a strong acid solution; the point can be immersed in the usual detector solution of dilute nitric acid and an extra strong local current sent through the cell for a few moments until the silver is completely dissolved. Afterward the point is adjusted to just touch the solution.

Now, if this detector is substituted for the carborundum rectifier in the circuit of Fig. 153 a , and the positive pole of the local battery connected to the fine wire electrode, the device becomes a very sensitive detector of currents of radio frequency, provided the small electrode just touches the surface of the acid.
The fine wire electrode is frequently coated with glass, so that the extreme tip only is exposed to the action of the solution, hence the depth of immersion of the entire electrode exposed to the action of the solution, hence the depth of imm
is of little importance and the detector is less difficult to adjust.

Several theories have been advanced to account for the action of the electrolytic detector, one being that the response in the local head telephone is caused by change in resistance of the small platinum wire during the passage of radio-frequent currents.
Another investigator contends that the current of the local battery flowing through the electrolytic cell forms gas bubbles which polarize the fine wire electrode, and thereby partially reduce the flow of current from the local battery. Then when oscillations of radiofrequency pass through the cell, the gas bubbles are temporarily destroyed, which permits an increase of the strength of the local battery current at rates corresponding to the spark frequency of the transmitter.

The electrolytic detector is adjusted for maximum strength of signals, by carefully regulating the strength of the local battery current. If the current is too strong, a hissing sound lating the strength of the local battery current. If the current is too strong, a hissing sound
is obtained in the head telephone which will prevent the reception of signals. If, on the is obtained in the head telephone which will prevent the reception of signals. If, on the
other hand, the local current is too weak, the detector will barely respond. Some difference other hand, the local clrrent is too weak, the detector will barely respond. Some difference
of opinion exists regarding fne direction in which the local current must fow through the cell, but it is usual to connect the fine wire electrode to the positive pole of the cell.
H. Shoemaker has discovered that the large electrode may be of zinc, and if the small platinum point and zinc are immersed in a dilute sulphuric acid solution, the cell not only acts as a detector of oscillations, but supplies its own local E. M. F. as well. In this form the detector is termed a primary cell detector.
129. The Carborundum Detector and Tuning Circuits.-The most widely used of all detectors is the carborundum crystal rectifier, the tuning circuits for which are shown in Fig. 153a, b, c. These diagrams indicate as well the apparatus included in a modern receiving set. In addition two modified circuits showing the connection of the potentiometer in various modern tuners, are presented. Before proceeding with an explanation of the circuits of Fig. 153a, the functioni of the potentiometer will be explained.

The application of a weak battery current to the carborundum crystal and head telephone circuit has been found to have a marked effect on the intensity of the incoming signals, but the strength of the current must be carefully and closely regulated and must be passed through the crystal in a definite direction to secure the maximum response. Ignoring for the moment an explanation of the function of the local current in a radio receiver, the reader should note the diagram, Fig. 154, showing the connections of the potentiometer to a local battery.

A resistance coil A, D, is connected to the terminals of a 2 or 4 volt battery B-1. The crystal has the variable connection B which is generally a sliding contact. According to the law of divided circuits, the maximum E. M.F. is maintained across the crystal when Fig. 154-Connections of Potentiometer for Crystal B is shifted, to the end D, but in
 the direction opposite or towards' A, the E. M. F. gradually reduces to zero.

In the circuit originally adopted for the carborundum crystal, the potentiometer and detector were connected as in Fig. 153-a, but the modified circuits of Fig. 153-b and Fig. 153-c are also in use. In Fig. 153-b the telephone and potentiometer are shunted across the stopping condenser C-3 but in Fig. 153-c the potentiometer is connected in series with the crystal rectifier. Since the resistance of the crystal exceeds that of the potentiometer by several thousand ohms, the resistance of the latter has little effect on the strength of the incoming signal. Although practically equal results are obtained with either connection, the circuit of Fig. 153-b is pointed out by some investigators to be the one which gives the maximum response.

sile. 153a, b, c-Complete Circuit for the Carborundum Rectifier and Receiving Tuner.
134. Classification of the Receiving Detectors.-The receiving detectors of wireless telegraphy differ greatly both in point of mechanical construction and mode of operation, and, in addition, they possess widely varying degrees of sensitiveness. Certain types, for instance, are highly sensitive to electrical oscillations but are difficult to keep in permanent adjustment; others are less sensitive but possess marked degrees of stability. Still others are in the nature of a compromise and may occupy approximately a position midway between the two extremes.

Some receiving detectors rely upon the principal of rectification (as we have already shown) and will convert an alternating current of radio-frequency to a uni-directional current; others have the property of rectification combined with the ability to vary a local source of battery current in a manner much similar to the working of an ordinary telegraph relay. The operation of certain other detectors is based upon the infuence of electrical oscillations upon magnetized iron or upon the ability of these oscillations to cause certain granulated metals to cohere.

It should be kept in mind that the most sensitive receiving detector is not always the one most convenient or the most practical for commercial use. For instance, extremely sensitive amplifying detectors may require intricate apparatus, having so many points of adjustment that its manipulation may call for the services of a highly skilled engineer and further the circuits may be of such a type that the apparatus cannot be quickly changed from one wave length to another. In event of the latter, the tuner would be of little value for marine service which requires the receiver to be one capable of quick adjustment to land stations operating at various wave lengths. Furthermore, extremely sensitive detectors brige in a certain amount of interference from far distant stations which would not tectors bring in a certain amount on less sensitive detectors.

The most practical detector for commercial working is one that combines a fair degree of efficiency with ruggedness and stability of adjustment, and so far among the crystal detectors none has, in this respect, excelled the carborundum rectifier. The Marconi magnetic detector is universally recognized as being the most stable and "foolproof" of all receivers but it lacks sensitiveness on the shorter waves. The vacuum valve detectors, on the other hand, are considered to be the most sensitive among commercial receivers, but they possess the disadvantage of requiring complicated circuits for best results.

To impress upon the reader's mind the utility of the various types of receiving detectors, we may classify them under five general headings. Under the first heading we may name the detectors which require no local battery and under the second heading, those detectors in which the response in the telephone depends upon the application of a local battery current as well as upon the current of the incoming oscillations.* Certain detectors may be classified under both headings bscause they may function to some extent with or without a local battery.

In addition we may note under a third heading the detectors considered as rectifiers of radio-frequent currents and in a fourth and fifth headings, those suitable for response to either damped or undamped oscillations respectively. It is to be noted that a few types come under all headings.
Detectors Functioning Without Local Battery.

Detectors which depend upon the combined effects of received energy and local battery current.

Detectors having the Property of Rectification.

Detectors of Damped Oscillations.

Detectors of Undamped Oscillation.

Galena-Silicon-Zincite Bornite-Carborundum (satisfactory for short distance receiving)-Fleming Valve (filament battery only).
Carborundum-Zincite Bornite (sometimes used with local battery)-Fleming Valve (with local battery)Three Element Valve-Silicon.
Galena - Silicon - Carborindum - Cerusite-Zincite-Bornite-Fleming Valve-Three Element ValveElectrolytic.
Galena - Silicon - Zincite Bornite - Carborundum -Fleming Valve-Three Element Valve-Marconi Magnetic-(Tikker, Tone Wheel and Heterodyne system will give some response from spark transmitters, but are not satisfactory for such reception). Tikker-Tone Wheel-Heterodyne Receiver-Vacuum Valve Oscillator.

G-E TUNGAR BULBS, DATA, AND LIST PRICES

Cat. No.	*List Price	$\begin{aligned} & \text { Recomoninded } \\ & \text { MAymun } \\ & \text { outrut } \end{aligned}$		$\begin{aligned} & \text { Recom } \\ & \text { meaded } \\ & \text { Filament } \\ & \text { Voltage } \\ & =5 \% \end{aligned}$	Approz.AlimentCurruntAmpa.	$\begin{gathered} \text { D-c } \\ \text { PICKUP } \\ \text { voltage } \\ \text { Rot } \end{gathered}$		$\begin{gathered} \text { D-C } \\ \text { pockup } \\ \text { volitace } \\ \text { cold } \end{gathered}$		$\begin{gathered} \text { D-C } \\ \text { DABC } \\ \text { VOLTAGE } \\ \text { ROT } \end{gathered}$		$\begin{gathered} D-C \\ \text { ARC } \\ \text { voltias } \\ \text { COLD } \end{gathered}$		Max. Inv: Peak Plate Volt Wave	$\begin{aligned} & \text { Time } \\ & \text { Delay } \\ & \text { Seconds } \end{aligned}$	Max.BaseTemp.Deg.	Socket Cat. No.
		Ampa.	D-e. Volta			A 7.	Limits	Av.	Limits	Av.	Limit*	Av.	Limits				
99×44	\$5.00	6.0	25	2.2	17.5	3.5	2-6	6.0	2.5-11	6.0	14.5-9.5	7	5.5-10.5\|	105	NONE	160	217967
99×45	15.00	20.0	25	2.6	34	3.2	2.5-6	7.5	3-12	7.5	4.5-9.0	8.5	6-10	110	15	160	217967
289881	4.00	0.5	7.5	1.8	6	11	8-12	11	8-12	7	5.5-8.5	7	5.5-8.5	150	NONE		278788
12×825	4.00	2.0	75	2.0	13.5	12.0	9.5-15	12.0	9.5-15	7.5	5-9.5	7.5	5-9.5	275	NONE		278768
45X674	15.00	6.0	250	8.5	24	11.5	8.5-20	[13.0	8.5-20	9.0	7-15	11.5	7.5-18	1000	300	90	M5556072G 1
16×897	8.00	2.0	250	2.5	10	12.5	8-20	14	8-24	9.0	8-15	12.5	7.5-20	1000	300	90	M5556072G1
206501	4.00	2.0	75	2.0	13.5	12.0	9.5-15	12.0	9.5-15	7.5	5-9.5	7.5	5-9.5	275	NONE		Std. Edieon
109698	5.00	2/0.5	25/30	1.8	12	12.0	10-14	12.0	10-14	8.0	5.5-10	8.0	5.5-10	105/120	NONE		Std. Edison
20×672	5.00	5.0	20	2.0	12	4.5	2.5-8	9.5	8-11	6.0	4.5-7.6	7.5	6-9	90	NONE		K3778926
189048	5.00	6.0	60	2.2	17	12.0	10-15	12.0	10-15	7.0	5-10	7.0	5-10	300	NONE		217967
189049	5.00	6.0	90	2.2	17	12.0	10-16	12.0	10-16	7.5	6-11	7.5	6-11	375	NONE		217967
217283	10.00	16.0	60	2.5	25	12.0	8-16	12.0	8-16	7.5	5-9	7.5	5-9	225	15		217967
76×13	15.00	20.0	75	2.6	34	2.6	2-6	7.0	5-12	6.5	5-11	12.0	8-15	275	180	160	217967

All Date and Prices Subjoct to Change without Notice.

Sヤ61 ‘oz soquanon
uopos ospowozny

The Classic Radia

SHORT WAVE CRAFT for NOVEMBER, 1935

The "ship-shape" commercial appearance of this ultra modern makes it ideal for amateur or short-wave "DXer." (No. 319)

New SILVER Receiver for "Hams" or "Fans"

By McMurdo Silver

- OF all the receivers available to the serious amateur or shortwave B. C. L., (broadcast listener) superheterodynes predominate today due to their high selectivity, especially with crysare, however, mostly all alike in that they use but one R.F. stage if any, and the usual and typical crystal filters in a conventional one or two stage I.F. amplifier. The past year has taught that more can be, and is, desired, as evidenced by the increasing ap-
preciation of the image selectivity and noise elimination benefits preciation of the image selectivity and noise elimination benefits
of not one, but of two R.F. stages, of a quiet low gain I.F. amof not one, but of two R.F. stages, of a quiet low gain I.F. am-
plifier and stable air-tuned and temperature-isolated circuits throughout.
The receiver illustrated herewith satisfies these latter day requirements and is described in this article-an amateur, not a revamped broadcast receiver, designed by amateurs for am?teurs and to fit amateur pocketbooks, and usually to fit an ama

Wiring diagram for the new "Silver" super-het for short and broadcast waves
parts. If it satisfes, as it does, serious ly an excellent short-wave broadcast receiver, which it also is.
For the engineer its performance is easily described by saying that its four low-C 200 mmf. tuning bands cover 1700 to 33,000 kc., which includes the $160,80,40,20$ and cast bands, its sensitivity is below a microvolt all over this range, its inherent noise never exceeds 10 milliwatts it maximum sensitivity, its selectivity is variable from 150 cycles 10,000 times down to 10 kc ., its fidelity is controllable from flat to 4 db . from C.W. reception, its undistorted power output 3.0 watts, rising to a maximum of about 4.0 watts.
While considering the really ideal performance described above, let's take a look at its other features as briefly as possible. tuned r.f. stages on all four bands 60p pressor grid injected 6D6 s.g. first detector, 76 electron coupled H.F. oscillator, one 6D6 i.f. stage, high gain 6C6 tetrode second detector, 6B7 amplified A.V.C., optimum inductively coupled variable-pitch 76 rectifier. Band band, picked up by dependable coils for each gang wave change switch just like you find in all good broadcast receivers. Frequency Stability: Individually shielded coils, all circuits Hammarlund air dielec-
tric, not compression mica, tuned and trimmed, plenty of ventilation, and temperature isolation make for the ability to stay "zero beat" on a good 20 meter signals for hours.
I.F. Amplifier: Set at 25 microvolts absolute sensitivity to place the limit of inantent noise circuit thermal agitation in the usual at the first detector so as to lose weak signals in set noise. Two Aladdin Polyiron 465 kc . I.F. transformers, air tuned, and variable as to selectivity. to suit your taste. Crystal 1.F. transformer dua
tuned.
Sensitivity: Variable so you can adjust it with two knobs from 50 cycles wide to two I.F. can holes lets you vary the I. F. transformer coupling and selectivity even
(Contimaed an page

Crystal Filter：Of course，but one that makes the usual garden variety look sick by comparison．As much，and usually more sock in series circuit as when cut out，and
in parallel，the ability to drop an unwanted in parallel，the ability to drop an unwanted heterodyne completely out without impair ing phone signal quality．
Band－Spread：One tuning dial，accur－ ately calbrated（yes，the builder can so with geared，no slip，band－spread pointer on 200 division， 360 degree inside scale which accurately，and positively relogs．Fast and slow tuning ratios， $23: 1$ and $130: 1$
spread， 1000 degrees on 160 meters， 700 de－ spread， 1000 degrees on 160 meters， 700 de－
grees on 80 meters， 400 on 40,120 on 20 and 200 degrees on 10 meters．Effective reet，not inches，of dial space on the ama－ teur and short wave broadcast bands，since 360 degrees of band spread equals about
one foot of dial space and five full turns of slow knob for 360 degree band spread pointer rotation．
A．V．C．（automatic volume control）of course，but amplified so it really does a job on weak signals，and speeded up so it does likewise on C．W．A switch cuts A．V．C． out for C．W．，and in for phone if so pre－ ferred．
Controls：Enough and no－more．Not
usual blind knobs，but every one labeled to what it does，and calibrated so pou a tell that QSO just how much better he comes in tonight than he did with the old rig last night．
R－Meter：A sensitivity meter that lets you actually measure signals as weak as 5.0 microvolts absolute－and that＇s not an R9 signal，its about R2－R3．
Construction：Finish is．polished chromi－ um，like the finest custom－built jobs． Alignment：The sensitivity meter is the temporary circuit using no extra parts ex－ cept that odd＇ 99 or 30 tube，its socket and a couple of flashlite batteries does the I．F． job，while signals do the whole R．F．job． a pleasure，not the usual uncertain and a pleasure，not the usua
God－knows－when headache．
In the photo，the knobs left to right are crystal phasing and parallel switch，beat
oscillator pitch－on－off switch，audio vol－ ume control，A．V．C．on－off switch，five posi－ tion（one dead for＂send＂）wave change switch，tone control and sensitivity or man－ ual volume control．The dial is shown 0 － $100-a c t u a l l y$ its outside carries four cali－
brated bands，and the inside $0-200$ division， brated bands，and the inside $0-200$ division
full circle band spread pointer scale． $12^{\prime \prime}$ speaker new Jensen C8X， $8^{\prime \prime}$（a matched 12 ＂speaker can be had if preferred）．

Typical wave change switch section and ＂D＂band（ 16 to 32 mc ．）inductance of the section 5D．The oscillator section is shown ding condensers，only needed for the full－ wave coils．

Here is the compiete parts list－all stand ard high quality parts of dependable mak－
ers．You can build this receiver，building ers．You can build this receiver，building
as you buy，building all at once，or you can buy it as a laboratory built and tested R．C．A．licensed complete receiver．Substi－ receiver specifications simply must not be played with，for even resistors，let alone
tubes and other parts，are critical，and othe equally good parts will usually vary enough to upset performance seriously．

Model 5D Silver Parts List
Alladin Radio Industries，Inc．
$2-465 \mathrm{k.c}$. Polyiron Core and Coil Assemblies Chicago Transformer Company砣 110 MA 325 V Crowe 286 D Filter Choke
Crowe Name Plate
$1-41 / 2^{\prime \prime}$ Two－Speed Band Spread Airplane Dial with＂Radio－Silver＂calibrated scale Dial 1－＂Radio－Silver＂Control Panel
Hammarlund Mir Trimmers－Type D， 25 mmp
5 －APC100 Air Trimmers－Type D， 100 mmp ${ }_{2}$－MICS1000 Trimmer 1000 mmf ．
${ }^{2-S M 15}$ Star Midgets－ 15 mmf ．
4－ 250 ohm ， $1 / 3$－watt Resistor
1－ 500 ohm,
1－ $6000 \mathrm{ohm}, 1-w a t t$
，Resistor
1 － 6000 ohm， 1 －watt Resistor
2 － 10.000 ohm ， $1 / 2$－watt Resistor
$1-3000 \mathrm{ohm}, 2-\mathrm{watt}$ Resistor
$1-30,000 \mathrm{ohm}, 1$－watt Resistor
$1-30,000 \mathrm{ohm}, 1$－watt Resistor
5 － $5000 \mathrm{ohm}, 1 / 2-w a t t$ Resistor
2 R $15,000 \mathrm{ohm}, 1 / 2$－watt Resisto
2二 $15,000 \mathrm{ohm}, 1 / 2$－watt Resistor
3 － 50000000 ohm ， $1 / 2$－watt Resistor
$1 / 2$－watt Resistor
$3-500,000$ ohm，
Ohmite Manufacturing Company
$1-7500$ ohm＂Brown Company
Readrite Meter Works 10 －watt Resistor
Readrite Meter Works
${ }^{6}-1114^{\text {down }}$ Black Bar Pointers
McMurdo Silver Corporation
 1 Kit of ${ }^{4}$ A－B－C Coils（2 R．F．．1st Det．and
Osc．）${ }^{4}$ D Coils，（ 2 R．F． 1 st Det．and Osc．） 1－17F R．O．Coil
1－17G Crystal Auto．Transformer and Shield $6-$ Shield Cans
2 － 10 mh ．R．F．Chokes
${ }_{8}^{8}$－Tube Shields
${ }_{1}^{1}$ 二A－A－G Binding Post Strip 12 Am．Phenolic High－Q Sockets with
Set 12 Am．Phenolic High－Q Sockets with
eight tube shield bases（4－6D6，1－6C6，
$42,1-6 B 7,1-5 Z 3,2-76,25-$ pin blank） 1 －AC Cord and Plug
1 －AVC 0 On－Off
Switeh
1－AVC On－Of Switc
Sprague Products Company
$1-475 \mathrm{~V} .16 \mathrm{mf}$ ．Wet Condenser
Condenser
$1-250$
Colectrolytic

7 －TC1．5
1 －TC 5
$1 / 2 \mathrm{mf}$ m． 600 －volt Condensers

 －Radio－Silver polished chromium Pierced Chassis，Gang Condenser Shield，${ }_{4}$ Partitions Yaxiey Division．Phield R．Mallory Company ${ }_{1}$－ N .1 t megohm Tone Control Control 1－G 10.000 ohm Sensitivity Control 1－704A Junior Jack（4 spring，single closed circuit and single filament circuit）
－SP07488 Locating Plate， 5 position， $9^{\prime \prime}$ fat 5 Shaft ${ }^{\text {SPOT4 }} 2$ Circuit， 5 position Plates 8－SP0 7488
1 －No．＂ 9 Switch
Spacers
Filtermatic Manufacturing Corporation
${ }_{5}^{3-50} \mathbf{~ m m f . ~ I s o l a n t i t e - M i c a ~ F i x e d ~ C o n d e n s e r s ~}$
 List of Accessories

1935 ad
1975 ad

PUETT ELECTRONICS

1975 AD
P．O．BOX 28572 DALLAS TEXAS 75228
SEND A SELF－ADDRESSED STA：TPED ENVELCPE FCR OUR NE＇H ACQUISITIONS LIST－O1A， 99 and other hard to get tubes．

ANNOUNCING THE
NEW CLASSIC
RADIO NENSLETTER
FOUR PAGES，SIX ISSUES PER YEAR， \＄5．00 PER YEAR． STARTS JAN． 1975.

SILVER GHOSTS

 BY JWF PUETTPHOTOGRAPHS－SCHEMATIC DIAGRAMS－STORIES of every mhown receiver manufactured by $\$ 10: 00$ THE EH SCOTT RADIO LABORATORIES

WE ARE SLOWLY BUT SURELY RECEIVING MCRE ORDERS FOR SILVER GHOSTS．WE HOPE TO GO TC PRESS WITHIN TOUR TO SIX WEEKS．THANK YOU FOR YOUR PATIENTS．

you＇ll have fun with this

Old Tíme Radio

OLDTIME

TRANSISTOR RADIO
Remémber the good old days ．．．when every－ one sat around the parlor listening to the radio？This is a miniature copy of that famous cathedral－style old－time radio and measures $31 / 2 \times 11 / 2^{\prime \prime}$ ．Our model has five transistors and two diodes and comes in handsome wood－ grain plastic case．A wonderful piece of nos－ talgia．Uses one 9 －Volt battery which is in－ cluded．Each comes gift－boxed．

WLTS EMPORTU

Club News

SAN FRANCISCO BAY AREA CHAPTER OF THE AMERICAN PHONOGRAPH SOCIETI
"A good time was had by all," was the comment. of those in attendance of a local chapter meeting. It was ladies night and AI Safl past presicent of the Society, showed the Edison movie "The Great Train Robbery."

Art Wilmoth and Ed Linolti each demonstrated a phonograph at the meeting.

The sbove news came from the Newsletter of The American Phonograph Society, Box 5046, Berkeley CA 94705.

THE SOUTHNEST VINTAGF RADIO AND PHONOGRAPH SOCIETY

This Society has achieved goals since its first meeting in 1974.

It has regalar meetings, operating capital, events, lectures on the restoration of the oldies, montrly newsletter and the companionship of others interested in the hobby.

The Society is planning an event in 1976 which will include a contest of radios and phonographs. Mel Zemak and John Rawlins on the progran committee are making plans for this event and the Society expects collectors and historians to come from all
areas of the southwest region (5th district). Others are also invited. John Alford at the last méeting demonstrated how to refinish plastic panels. He stressed the importance of using 0000 steel wool. And he doscribed the benefita of using rotten stone and pumice powder, all of which are aballable at most hardware stores. All rubbing is done in straight strokes to prevent swirling. He also showed how to fill engravinge on knobs and panels with an artist psinting knife. The Horn Speaker is planning a comprehensive article on panel restoring.

The Society can be contacted by writing to S.V.R.P.S., Box 19406, Dallas, Texas 75219.

Fig. A
A typical commercial mixer panel

SOUND RECORDING AT 33-1/3 R.P.M.

RADIO-CRAFT for AUGUST, 1932
By GEORGE J. SALIBA, S.B.

RECENTLY, a great deal of experimental work has been done in instantaneous recording on $33-1 / 3$ R.P.M. or slow speed records. These slow speed records have many practical applications, especially in the recording of radio programs, and a number of radio stations are now using this method.

In the past, the station had no comeback if the sponsor claimed that his program was not put over as agreed upon, but now, the station takes the recorded program from its files, plays it back and so settles the disagreement.

Comparative Playing Time

Commercial types of sound recording equipment now avail. able to the home recordist and designed for $33-1 / 3$ R.P.M. operation are illustrated in Figs. A, B and C.

One 16 -inch, $33-1 / 3$ R.P.M. disc plays for 15 minutes; it contains a half hour's program if both sides are used. This long playing time appeals to those artists who keep their own fles. Heretofore, it has been the custom to use 12 -inch, 78 R.P.M. records, but since these play for only four minutes, three of them are required for a fifteen minute program. Continuity them are required for a fifteen minute program. Continuity
is maintained by fading from one record to another, and often is maintained by fading from one record to another, and often
this fading is necessary at a vital part of the program much to the chagrin of the artist. The 16 -inch record overcomes this objection.
Recording at $33-1 / 3$ R.P.M. entails more problems than at 78 R.P.M. In Table I are given the tangential velocities of 78 R.P.M. and $33-1 / 3$ R.P.M. records.

TABLE I

Location of

 Groove Inside Middle OutsideTang. Velocity-Ins. per Sec. (78 R.P.M.) (33-1/3 R.P.M.) 16.25
13.5
20.5 46.5 27.5

Since the needle speed is much lower on the slower speed records, the recording and reproducing problems are increased; consequently, as the speed of the needle is lower, the track vailable for recording will be shorter. It is difficult to make good recordings on the inside of the record because of decreased velocity. This is especially true in reproducing high frequency modulations; for the lower the frequency, the greater will be the amplitude-the frequency varying in inverse proportion to the amplitude. Therefore, high frequencies are recorded with ery little amplitude but this small amplitude represents coniderable energy and no difficulty is experienced in reproducing siderable energy, and no dificulty is exper
Whese modulations if the needle is sharp.
Wheedle is new, it does its best work, and for this reason the $33-1 / 3$ R.P.M. records are always started from the inside. The diameter of the inside or starting groove should not be less than $71 / 2$ inches; a smaller diameter would be detrimental to good quality.

Position of Pickup

The proper placing of the pickup is also very important to good reproduction. Heretofore in 78 R.P.M. recording, it has been the custom to place the pickup so that the needle hits the een the comparatively exact center of the turntable. Because of the comparatively short radius of the record, this is considered the col
tion, but for 16 -inch records, this rule does not hold.
tion, but for 16 -inch records, this rule does not hold.
In recording, the cutting-head is guided in a straight line across the face of the record. Obviously, the correct way to reproduce such a record is to have the reproducer travel straight across the face of the record. This would necessitate the use of a feed screw, which is not practicable for commercial purposes. In the placing of the 78 R.P.M. pickup so that the needle hits the center of the turntable, straight-line reproduc needle hits the center of the turntable, straight-line reproduc-
tion is approximated because the arc obtained is almost equal tion is approximated because the arc obtained is almost equal
to its chord. If we now take a 16 -inch record and place the to its chord. If we now take a 16 -inch record and place the
pickup in the same location, we note that from the start to pickup in the same location, we note that from the start to
the end, the arc described has a comparatively short radius and therefore is not equal to the chord, i.e., the plane of the (Continued on page 112)
armature is not perpendicular to the plane of the record, and as a result, fidelity of reproduction is not obtained. The pickup should be placed as shown in Fig. 1.
Surface Noise

In :33-1/3 recording, kurface noise is more pronounced than at the higher speed. The Prequency of this scratch is in the nelghborhood of :3.000 cycles and for this reason is more objectionable. In commercial recording, this surface nolse has been diminished considcrably by improving the record material, but in instantancous recording, no determined efof a scrateh filter is not recommended; if one wrre used, every frequency above 4,000 cycles would be eliminated, and the record would lose its brilliancy. In the use of aluminum, this noise becomes espectally objectionable near the periphery of the record
Scratch in recording is duc to two things. First, the hardness of material used, and second, the angle the diamond needle makes with the record. Aluminum should be of medium hardness and should be well lubricated or waxed. If the material is too hard, the needle
will rip and tear the record and terrific surwill rip and tear the record and terrific sur-
face noise will result; if it is too soft, the danger of destroying the record will be increased. It is a pood policy, after purchasing a ready-made 16 inch recording dise to go over it with a piece of waste that has been soaked n wax. The dise must be spotlessly clean, and when cleaning, soft checsecloth should be
used.
In Fig. $2 A$ is shown how a steel recording needle normally sets in the cuttinghead; note the sterp angle that it makes with the record If a diamond needle is used, the shank sbould be bent to the position sbown in Fig. 2B, so that the sides barely clear the record. Stee needies are made of hardened metal which canare made of soft metal, and bending is a simple matter. See that the polnt of the needle is not too sharp; otherwise, it will tend to cut the record instead of compressing it.
(iood 33-1/3 IR.P.M. records can be made it care and patience are exercised, and the re cordist should not be too casily discouraged

Home Talkies

As stated before, the ficlds for slow-speed instantancous records are developing rapidiy and the most interesting one is bome talkies n-dise method, and in the near future such a macbine will be marketed for use by the amateur. While no material is available for ublication on this apparatus, the mechanism is quite stmple.
rrom the turntable motor a flexible coupling mousing out whels connects to the camera n making the sound picture, the film is marked with a punch, and a corresponding mark is made on the record. The recording head is then placed on this mark and the section of film with the hole is placed in the aperture. The switch is then thrown and the action started after a cew seconds have elapsed the motor to reach operating speed. In showing the picture, the film is placed in the showing the picture, the fim is placed in the
projector with the . punched hole in the aper ture, the pickup is placed on the "start" mark, and then the motor is started.
When the film breaks, each frame, preparaald be replaced with a blank frame. This protects against the loss of synchronism.
The question of playback needles is another scrious problem in reproducing from ; $3: 3-1 /: 3$ R.P.M. aluminum records. The fibre or thorn needic, unless .treated, wears out before the
end of the record is reached. To prolong the life of these needles, some manufacturers have impregnated the needle with bakelite or shellac. and it is surprising how much longer these ncedles last. Where a fibre needle barely fin. ished one 12 -inch 78 R.I.íl. record in good condition, it is now possible to play four of means that the needle will now easily last through a qfteen minute, 33-1/3 R.P.M. record.

Notes On the WD-11 Tube

1924 ad

DRIOR to the introduction of the Westinghouse WD-11 tubes, there were a number of tubes of the six-volt " A " battery variety obtainable. These varied in their characteristics. Queer as it may seem, no doubt was manifested as to the use of particular circuits. Truly; there was no necessity for this, as the circuit constants were the only important factors. However, with the marketing of the WD-11 tubes, there appeared a universal question mark. Radio editors were swamped with queries as to the circuits adaptable to this tube. For some unknown reason, the radio public is still being bamboozled into believing the necessity of special circuits. "WD-11" hook-ups are still being published.
A few notes on this so-called "Peanut" tube should eradicate present standing illusions. Aside from the use of but $11 / 2$ volts for heating the filament, there is practically no difference in the characteristics of this tube and those of the six-volt type. It is a high vacuum receiving tube and was designed for use as a detector or audio frefor small outputs It is an excellent oscillator for small outputs such as are used for heterodyne or beat reception. The filament is oxide coated and is rated at 0.25 amperes emmission is obtained from Ample electronic his rating Hisher voltage is not at his rating. Higher voltage is not only undesirable but will prove harmful to the filament. Any standard detector circuit with grid leak and condenser is satisfactory. The values of the grid leak resistance and grid condenser capacity are not critical but a grid leak of two megohms and a condenser mal olate vita is recomended. The normal plate voltage when used as a detector is ble up. 40 a voltage above 20 is availbicreased up wolts may be used with slighitly an amplifier the characteristics operation as are such that charactistics of this tube are such that no negative grid potential is put be required as in the operation of a bud speaker, a negative grid potential may be pede, This should be pproximately be needed. This should be approximately negative three volts with 100 volts between the plate and filame 30 ve impedence of this 20,000 ohms, which is sufficiently low for satisfactory, which is sufficiently low for satisfactory amplification with standard
transformers. Any standard make of aptranstormers, Any standard make of ap-
paratus can be used. These tubes may be paratus can be used. These tubes may be without any changes in connections.
Since three tubes are used in this case it is required that three dry cells connected With this be employed as shown in Fig. wh this connecton, the same voltage obtained but the total amperage capacity is increased
One dry cell should be used for eaclr tube employed. Connect the cells in parallel, never in series. The center dry cell posts Fios 1 and they are shown reversed in igs. 1 and 2.
Where a greater amplification is desired using 100 volts on the plates of the Ampli fying tubes, a small three-volt flash-light battery should be connected with the negative
ferminals to the grid of each as in Fig. 2
For the benefit of beginners, we will
run a series of articles concerning layouts run a series of articles concerning layouts
of apparatus and their circuits with the WD-11 tube in evidence.

Atwater Kent RADIO EQUIPMENT

Atwater Kent Model 9 Receiving Set

A^{T}twater Kent Receiving Sets are a truly remarkable achievement. Their wide range of operation; the volume and clearness of tones obtained from distant points, together with the ease with which desired broadcasting stations can be tuned in are the outstanding features of their unusual performance.

The Atwater Kent Loud Speaker will give you a new conception of clear repro-duction:-the true gift of the broadcasting artist is brought undistorted into your home.

If you are now working with a one-tube set, the Atwater Kent 2-Stage Amplifier will give you the necessary volume to use a loud speaker.

Atwater Kent Radio Equipment includes complete sets and every instrument necessary for the assembling of complete sets from tuning unit to loud speaker.

[^0]Atwater Kent Manufacturing Company, Philadelphia, Pa. 4943 STENTON AVENUE

Transmitter Using Acorn Tube

Austrian $1 / 2$-Meter Transmitter - THE latest issue of Radio Welt, published in Vienna, contained the picture of a $1 / 2$-meter transmitter using the new "Acorn" tube made in the U.S. This transmitter, coupled to a suitable very practical unit for sending out these micro waves.
given in the circuit for this unit was not given in the article, the application of this American tube, in Europe, is of technical interest.

SHORT WAVE CRAFT for, NOVEMBER, 1935

This new SILVER Superhet-designed by McMurdo Silver, Frank Jones and fifteen leading manufactuvers-brings you

$$
\begin{aligned}
& \text { - Two tuned r. f. s.ages on all four bands. } \\
& \text { - Ten Raytheon tubes. } \\
& \text { - Four low.C tuning bands, } 1500 \text { to } 33,000 \\
& \text { kc. (9 to } 200 \text { neters). } \\
& \text { - Ample Crowe band apread tuning anywhere } \\
& \text { - Bliley Crystal sizgle } \\
& \text { doesn't cut voume. } \\
& \text { - All A. C. operatad-one unit-no hum } \\
& \text { - } 8 \text {-inch Jensen concert speaker-and phore } \\
& \text { - polished chromium welded chassis. } \\
& \text { - Air tuned Polyiron i. f. transformers. } \\
& \text { - Separate r. E. conis positively ewitched fo } \\
& \text { - Sengitivity } 1 \text { microvolt and better. } \\
& \text { - cycle to } 10 \mathrm{kc} \text {. } \\
& \text { - No inherent circuit volume contro } \\
& \text { copy signals cow lost in noises } \\
& \text { Wired with made-up color coded cable-ro }
\end{aligned}
$$

AND SAVE OVER 50%

$H E R E^{\prime} S$ the latest in bigh-frequency superhets-one that you can assemble, test and align in one evening at home. It's fun to build . . . you'll save money ... and boy, will you get a kick out of its amazing performance!
START FOR AS LITTLE AS $\$ 7.30$ BUY THE PARTS AS YOU BUILD! The 32-page "HOW TO BUILD IT" Book (sent for 10c, stamps or coin) tells the whole story of 1935's outstanding communication receiver. You can build and align it in a few hours ... or you can buy its standard parts from your local jobber as you build, if you haven't already got many of them. Now is the time to get ready for the new DX season.
SPONSORED BY
$\begin{aligned} & \text { Bliley Piezo Electric Co., Crowe Name } \\ & \text { Plate and Mfg. Co. Hammarlund Mq. }\end{aligned}$
Co., Chicago Transformer Corp., Yaxloy
Div. of P. R. Mallory Co., Jonsen Radio
$\begin{aligned} & \text { Mig. Co., Sprague Products Coo, Con- } \\ & \text { tinental Carbon Co, Ohmite Míg. Co., }\end{aligned}$
$\begin{aligned} & \text { Readrite Meter Works, Raytheon. Pzo, } \\ & \text { duction Corp, Alladin Radio Industias, }\end{aligned}$
$\begin{aligned} & \text { duction Corpo, Alladin Radio Industrias, } \\ & \text { Inc., Steel Box } \& \text { Display Co., Filter }\end{aligned}$
$\begin{aligned} & \text { Inc., Sten } \\ & \text { matic Mg. Co., McMurdo Silver Corp. }\end{aligned}$ SEND 10 OFOR 32-PAGE BOOK "HOW TO BUILD IT"
r-S MERCHANDISING COMMITTEE 1711 Roscos Street Chicago, ill., U. S. A.

MULTI-PURPOSE Bike Radio, consists of a solidstate AM radio, headlight and aignal horn. Fits on handleber of bicycle and comes with ? fleshlight batteries, bracket, screws and inatructions. Unique and useful for bike ridesperfect for beach, camping, picnicz, sporting events, etc. Easy locking device permits user to install or remove in seconds, yet makes theft difficulty. Shipping weight 8 pounds, shipping size $13 \times 9 \times 6$ inches. 8 pounds, shipping size $13 \times 9 \times 6$ inches.
comes post paid. Send $\$ 19.95$ to Coe Enterpriser, Dept. 1026, Box 259, Coe Drive, priser, Dept. 1026, Box

Encourage your boy in scientific listening to the messages of study. Let him install a wire- Government and commercial less station at home - a real stations and many amateur wireless, not a toy. With a No. stations all over the country. 4006 Gilbert Receiving Set he It's fascinating. It's instructive. can have his station completely It opens great possibilities to assembled in an hour and be any boy.

Gilbert Radio outfits are right up-to-date, designed by an expert, a wireless officer of the U.S. Army during the war. The Wireless Book in each outfit tells the location of the Government stations-when they send messages-how to receive them. It gives the wireless code. And the powerful Gilbert station at New Haven sends messages to boys every day.
Write today for our special Radio Catalog and name of the dealer who sells these outfits in your city

The A. C. Gilbert Company
119 Blatchley Avenue, New Haven, Conn. In Cunada: The A. C. Gilbert-Menzies Co., Limited, Toronto Ln Emshand: The A. C. Gilbert Co., 125 Hish Holborn, London, W.C. 1

After reading the first line of the copy in the Atwater Kent ad, I an curious to know
1927 ad
what he manufactured in 1900.

Atwater Kent IGNITION for Fords

The name assures its performance

Makers of

Gor twenty-seven years "Atwater R Kent" has stood for advanced electrical engineering and absolute precision of manufacture. These qualities, which have won leadership in Radio, explain the sensational performance of Atwater Kent Ignition for Fords. This remarkable scientific ignition system will literally make a new car of your Ford-smoother, snappier power, easierstarting, amazing hill climbing.

Installed in an hour. The low price of $\$ 10.80$ includes cables and fittings. Get facts from your service station or write to
ATWATER KENT MFG. COMPANY
4853 Wissahickon Ave. $\begin{gathered}\text { A. Atwater Kent, } \\ \text { President } \\ \text { Philadelphia, Pa. }\end{gathered}$

GREAT THINOS ARE HAPPENING IN THE

 SOUTHWEST VINTAGE RADIO AND PHONOGRAPH SOC IETYArkansas, Louisians, Oklehoma, Texas and New Mexico.

Write for application: S.V.R.P.S., P.O. Box 19406, Dallas TX 75219.

Classified ad rate: $6 \$$ per word. Photo ads: \% 2.00 extra.

MISC.

PHONOCRAPE COILECTORS, join the Anerican Phonograph Society. Receive the quarterly Journal and four Newsletters. Receive free reprints and atereoscopic phonograph cards. For more information send 10% stamp. For one year membership, send $\$ 6.50$. The Anerican Phonograph Society, P.O. Box 5046, Berkeley CA 94705.

PROFESSIONAL CW operators, retired or active, commercial, military, Gov't, police, etc., invited to join Society of Wireless Ploneers, W7GAQ/6, Box 530, Santa Rosa CA 95402.

GET THE ORIGINAJ, look and sound from that old Radio or TV. Contact Fred Geer Reatoration Artist, 6042 Brookridge Rd., Jacksonville Fla. 32210. Phone: 904 771-7828.

FOR SALE OR TRADE

FOR SAIE: Riders Manuals (Radio) Volumes $4-13,15 \& 16 \$ 8$. sach and abridged volume 1-5 \$10. Good condition: Modern Radio Servicing, Ghirardi First Edition 1935 fair condition \$8: Elements of Radio Telephony, William C. Ballard, Jr, First edition 1922., good condition \$7. Postage extra on all prices; RCA 100 Speaker, speaker cloth not original, works \$15. plus postage. Lee \& Carolyn Bruton, 16500 W. 12th Dr., Golden CO 80401. Phone: 303 278-2646.

FOR SAlE: Brand new in original carton a pickup roproducer for an Edison Disc Phonograph, made by Jewel Phono Parts Co. of Chicago, \$25.00. Also UX-201A tubes, pear shaped at $\$ 6.50$ each. Dan Gaidosz, 342 West Riverroad, Orange, Conn. O6477.

MOR SAIE OR TRADE: Early QST's, CQ's, Redio call books, handbooks, tubular Audiotrons, Electron relays and early receivers \& parts. Erv Rasmussen, W6YPM, 164 Lowell St., Redwood City, California 94062.

FOR SALE: List of antique parts, sets and equipment. SASE please for list. Rita Hale, 101 Union Street, Norfolk, Mass. 02056.

FOR SALE OR TRADE

have sevisal radios for trades Grebe CR9, two Trio Radio Lab erystel sets, Sunnyvale Radio Shop three tube set type A and a DePorest tuner T200 1919. Also have some radios for salo and many parts, tube sockets and RF transformer tuning capacitors and radio related instruments for sale. A Send for my complete list. Jim V' Cirner, 13366 Pastel Lane, Mountain View, Callf. 94040, Phos 415 967-7672.

CLOTH COVERED POWER CORD. New 2-conductor cord as used on AC sets of the twanties, thirties, forties. From old stock, 11 mited quantity. In brown or gold $25 \$ /$ foot. Please add $50 \$$ for mailing. Warren Dewey, 5021 Ambrose Ave., Los Angeles, California 90027.

FOR SAIE: ${ }^{16 \prime \prime}$ transcription A.R.F. 10 for $\$ 20.00$, have about 200 . Also tubes, no box as is 20 for $\$ 1.00$ no special number take as come. Bumett A. Smith, 2706 Cub Hill Rd., Baltimore Md 21234.

WDIl Adaptors, use UX199, 120, VT24.
No wiring changes, Radiola III's battery hook-up included $\$ 5.25 \mathrm{pp}$. , 2 for \$9.25. Keith Parry, 17557 Horace St., Granada Hills CA 91344.

FOR SALE; Best offer only, Classic McMurdo Silver "Masterpiece 5," Speaker, power supply and console cabinet. Sorry, pick up only as whole set much too heavy and big to ship. Alley, 48 Judson Street, Raynham, Mass. 02767.

FOR SAIE: Radio Horns. Baldwin \$30, Kellogg \$35., Silvertone \$30., Radiola UZ-1325 \$35., works. Purchaser pays shipping. Arthur Harrison, 1021 Falcon Drive, Columbia MO 65201.

FOR SALE: Solid State power supplies for operating battery radios. G. B. Schneider, 6848 Commonwealth Blvd., Parma Hgts., Ohio 44130.

SEND $\$ 1.00$ for the newly published booklet MA Pocket Cuide to Antique Radio Collecting." Antique Radio Press, Box 42, Rossville, IM 46065.

FOR SALE: Original folder for Mohank one dial radios, 1926-1927. \$1.00 plus SASE: Alvin Heckard, FD 1, Box 88, Lewistown PA 1704.

FOR TRADE: 50 issues from July 1930 to June 1934 of Radio News. M. Johnston, 5317 Lawton, Oakland, Calif. 94618.

FOR SALE: Battery sets-miscellaneous. Large SASE for list. Rick Amon, Box 10h, Mt. Carmel, III. 62863.

Miscellomeous

DON'T DIE without a WILL!
Blank will form protects your fanily. Only $\$ 2.00$ 'guaranteed. Order today COE Enterprises, Box 259, 75 Coe Dr., Mesquite, Texas 75149.

WANTED: Radiola 100A Speaker, will buy or trade. Rick Wilkins, 704 St. Iakes Drive, Richardson TX 75080.
WANTED: 1936-1937 RCA 111 Wave Magic Brain radio table or console. Models: $15 \mathrm{~K}, 13 \mathrm{~K}, \mathrm{Cl3}-2, \mathrm{Cl5}-\mathrm{L}$, 10 K, 10T, 952 and 9T complete console or chassis only working condition or as is. Dave Freidinger, 1019 N. 29th., Omahe, Neb. 68131.
WANTED: RCA service notes for TPK-12, TRK-120 TV receivers; bound volumes 1923-1928, 1934-1946, 1949; complete yearly sets 1951-1964. Also RCA spec sheets, sales literature, customer instruction books for radios, phonos, TV's, any year up to present, esp. for TRK-12, TRR-120; 630-TS, CT-100. Also booklet MPractical Television by RCA." Also need original looseleal binders for service data or spec sheets. C. Sarver, 256 Weat 88 th Street, N.I. NI 10024.

WANTED: AR 20 compact without cabinet, speaker for Pooley cabinet, Crosley audio transformer for Model 52, base \& driver for Brandes \& Magnavox Horn Speaker, information on Tri-City Electric Supply Co., volue control rheostat and face plate that says volume control for Grebe MVI, information as to the design of cabinet for (1) Meteor 3 tube 199's made by The Radio Shop \& (2) Meteor 5 tube set (01A's). Lee \& Carolyn Bruton, 16500 W. 12th Drive, Golden CO 80LHO1. Phone: 303 278-2646.

WANTED: Service information for JACKSON tube tester model 115, Ser. " x05381. I will accept a Xerox or other type copy of the above. Will buy or trade. Scott Brissey, 4I4 Bloom, lst Floor, Highland Park, Ill. 60035.

WANTED: Microphones, pre-1940, also literature. Have old radios, tubes, parts and mics. to trade. Bob Pequette, 443 N., 31St. Milw. Wis. 53208.

WANTKD: Crystal sets, battery and electric radios and televisions Mfg. before 1935. Need all related items. Will buy one set or complete collect1on. Young; 11 Willow Court, Totow, N.J. 07512.

WANTED: Radio - all 1920, 1921, Oct. 1922. Many wireless age 1920, 1925, Q.S.T. Feb, Mareh 1920. Radio Craft Aug. 1929, Feb. 1931. Thompson, 2930 Delavina, Santa Barbara CA 93105.

RADIO itoms and toy trains wanted. Write Box 161, West Hurley, N.I. 12491.

WANTED: Radio parts and magazines 1920s. Trade 2 Saturday Evening Post 4-12: National Geographic 8-18, 4-23. WANT BAKBIITTE PANELS. WENE, 4178 Chasin Street, Oceanside CA 92054.
WANTED: Paragon DA-2 Amplifier parts. Pre-1923 wireless "ANYTHING!" Rick Ammon, Box 104, Mt. Carmel, ill. 62863.

[^0]: Literature describing the entire line of Atwater Kent Radio Sets and Parts sent on request

