

PROOF OF PERFORMANCE REPORT

RADIO STATION KLEG

1050 KC DA-D 250 WATTS

Licensee:

J. A. Robinson IV and Elmer J. Griffin, Sr.

d/b as Liberty Broadcasting Company

August 1959

Merl Saxon Consulting Radio Engineer Lufkin, Texas

COMPENDIUM

Frontispiece

Section II, FCC Form 302

- Figure 1 Engineering Statement
- Figure 2 Non-Directional Horizontal Plane Radiation Pattern
- Figure 3 Directional Horizontal Plane Radiation Pattern
- Figure 4 Location of Surveyed Points of Measurement
- Figure 5 Measurement Point Location Map
- Figure 6 Ground Wave Field Intensity vs Distance for 1050 Kc.
- Figure 7A Radial N 0^O E Plot
- Figure 7B Tabulation of Measurements for Radial N 0^o E
- Figure 8A Radial N 15⁰ E Plot
- Figure 8B Tabulation of Measurements for Radial N 15^o E
- Figure 9A Radial N 40^o E Plot
- Figure 9B Tabulation of Measurements for Radial N 40^o E
- Figure 10A Radial N 94⁰ E Plot
- Figure 10B Tabulation of Measurements for Radial N 94^o E
- Figure 11A Radial N 130^O E Plot
- Figure 11B Tabulation of Measurements for Radial N 130^o E
- Figure 12A Radial N 170⁰ E Plot
- Figure 12B Tabulation of Measurements for Radial N 170^o E
- Figure 13A Radial N 220^O E Plot
- Figure 13B Tabulation of Measurements for Radial N 220^O E

Figure 14A Radial N 310⁰ E Plot

- Figure 14B Tabulation of Measurements for Radial N 310^o E
- Figure 15A Radial N 330⁰ E Plot
- Figure 15B Tabulation of Measurements for Radial N 330^O E
- Figure 16 Measured Field Intensity Contours
- Figure 17 Unattenuated Fields Measured & Meter Indications
- Figure 18 Maximum Permissible Field Intensity Calculations
- Figure 19 Description of Three Official Monitor Points
- Figure 20 Monitor Point Location Map
- Figure 21 Schematic Wiring Diagram of Phasing Circuits
- Figure 22 Method Used to Measure Antenna Impedance
- Figure 23 Method Used to Measure Common Point Impedance
- Figure 24 Non-Directional Antenna Impedance Measurements
- Figure 25 Directional Common Point Impedance Measurements
- Figure 26 Data on Impedance Measuring Equipment
- Figure 27 Qualifications of Engineer Taking Measurements Jurats

Statement of Surveyor

Photographs of Technical Equipment

Photographs of Monitor Points

Broadcast Application	1		FEDE	RAL COMMUNIC	ATIONS COM	MISSION		s	ection II-	A		
LICENSE APPLICAT STANDARI	TION ENG	INEERIN CAST	J DATA	Name of applic Liberty	^{ant} Broadca	.sting	Comp	any				
Purpose of authors (Check one) XStation lice	zation ap	plied for:	Answ	ver Paragraphs 1 thru 13	7. Operating constants: (If directional system, give current at point of resistance measurement.) RF common point or antenna current without modulation							
X Direct mea	surement	of power	2,6	8,7,8,9,14	for night power in amperes for day power in amperes							
1. Facilities authorized in construction permit				·	2.36							
Call letters File No. of construction permit KLBG BP-9745				Actual measured antenna or common point resistance (in ohms) at operating frequency ohms) at operating frequency					y .			
Frequency Hou	rs of oper	ation	Power	in kilowatta	Night_	 D	ay 48.5	5 _{Ni}	ight	_ Day_	0	
1050 Kc. D	ay On	ly [Nor	ne 0.25	Current	s, and ph	ases for di	rectional	operation	n		
2. Station location						Phase f	eading	Anten	na base	Remote i	ndicati na cum	ion ent
State		City or	town Tibo			Night	Day	Night	Day	Night	Day	/
l'exas		· · · · · ·	Libe	rty	Tower				1/2			
State	ion	County			#1 SW		0		2.53		87	. 8
Texas			Libe	rty	#2 NE		16		2.22		75	. 0
City or Town		Street A HWY	ddress (#563	for other identi-								_
Near Liberty	7	of cit	y lin	nits of	-		<u> </u>				+	
4. Main studio location Liberty					Manufacture	er and typ	e of phase	monitor	used in te	aking abo	ve	
State County				readings:		anka	Turn	- 109	_ F			
Texas Liberty				Destites		arke	Typ	liestics of		CUITOD		
City or Town Street and number				(phase mon	itor or ot	her method)	ICEGON OI	antenna	Curren	~	
Liberty		61	6 Fai	nnin Stree	Doid	le rec	tifier	mete	ers in	phas	е	
5. Remote control po	int location	on City or (OWD.		monitor.							
None					8. Description of antenna system							
Street Address (or	other ide	nti/icatio	n)		(If directional antenna is used, the information requested below should be given for each element of the array. Use separate sheets if necessary. Height figures should not include obstruction lighting.)							
6. Transmitter Insta	led				Type radia	tor Ve	rtical,	, Heigh	t in feet o	of complet	te Istor.	
Make	Туре	No.	R	Rated Power	guyed,	, unif	orm	or abo	ove base i	f grounde	d.	
Gates	B	C-250	-GY	0.25 Kw	cross	-secti	ion	#1-	-200'	#2-3	200'	
Last radio stage	Total un	modula ted	р	late voltaze	Overall hei ground.	ght in fee	et above	If ant section	enna is ei onalized,	ther top l describe	loaded fully a	or s
	plate	current	-		#1-20	8' #	2-208	1 Exait		DN	A	
Night	-		_		Excitation			Series	» 🔀	Shunt.		
Day	335	Ma.	1	.23 Kv.	For directi	coordina onal ante	nna give co	ordinate	ona. os of cente	er of array	y.	
Operation of last rad	io fre-		1	CIT	North latitu	vertical i ide	adiator giv	West	longitude			-
quency amplifier sta	ge	в 🗌	1		3	0°00	04		94	° 45	32	
Manufacturor's recom	mended o	BC	fficiency	v	If not fully of any other an as Exhibit M	described : itennas mo	above, give ounted on to	further de wer and a	etails and o ssociated i	dimensions isolation o	s inclus	ling
for the last radio free	quency am	plifier su	ge in pe	rcent.	Datails and	dimension	a of ground	system:	(Attach s	ketch as F	Exhibit	
Is inverse feedback If "Yes", to what val power is transmitter	utilized? ue of feed adjusted (lback in db)	Yes [Auc	∟ № 🕅 dio only	No. if necessary for complete description) 120 equally spaced 234' buried copper							
Efficiency of the las	t radio fre	quency an	plifier		radials, except where property lines							
stage as now adjuste	d 7%	(use f	ormula	I ² R (100)%	termin	nate,	and 24	4' squ	uare o	coppe	r so	cre 2"
			0	-р _	about	eacii	rower.	or III	LET COL	meet	ing .	

copper strap between towers.

				_
Broadcast Application	STANDARD BROA	DCAS	T ENGINEERING DATA	Section II-A, Page
9. Antenna resistance measurement		_		
Attach as Exhibit No. a. Qualifications of engineers taking	the following: measurements	See	Engineering Report d. Manufacturer's name of each	Attached calibrated instrument use
b. Schematic diagram showing clearly coupling circuits, point of resistan location of antenna ammeter, conne characteristics of all tower lightin, circuits detected and the second second second characteristics and second second second second second characteristics and second sec	all components of ce measurement, octions to and g isolation		e. Date, accuracy, and by whom calibrated.	n each instrument was las
etc., connected to or supported by cluding other antennas and a	er fixtures, lines, the antenna, in- associated		f. Table of complete data taken	ı.
c. Full description of method used to	make measurements.		g. The graph drawn of 10 to 12 kilocycles wide with the op-	readings in a band 50 to e erating frequency near the
10. Modulation monitor			12. Give method of varying power t	o compensate for variation
Make 1	Type No.		line voltage.	
Gates	MO-2639	,	** • • • •	
11. Frequency monitor	lumb No.		Variation of pla	te loading to
Gates			final RF amplif	ier and volt-
By what method and how often will som	ular checks of the	-	age regulation of	of this same
calibration of the frequency monitor be	repeated?		stage.	
Use facilities of e	xternal		13. In what respect, if any does the from that described in the applice	apparatus constructed di
frequency measur	ing ser-		or in the permit?	ter ter terne a serie berin
vice periodically.			None	9
Give the following data on the checks	of the frequency			
Date and time Name of	checking agency or			
1. 8/21/54 -12:20 mechod	1 4094			
2. V/ 22/57-12:17 AM		-		
4.8/23/59-12:22 Az			14. Give reason for the change in a resistance.	ntenna or common point
Frequency measured by such agency or method	Monitor reading high of	low		
1	- 21		Does no	ot apply
2	+ 1.14	_		
9	+2			
0.	+1.2	_		
4				
I certify that I am the Parknurst Horston application is submitted and that I have e knowledge and belief. (This signature m mation contained herein has been obtaine	Chief Engeneerie Co examined the foregoing ay be omitted provided d is attached hereto.)	nsulti: state the en	ng Engineer for the applicant of the ment of technical information and the agineer's original signed report of th	radio station for which thi it it is true to the best of e data from which the info
			Mari	- afen
August 19, 1959			Consulting R.	adio Engineer
			Lufkin	, Texas

ENGINEERING STATEMENT

CONCERNING DIRECTIONAL ANTENNA ADJUSTMENT

AND

PROOF OF PERFORMANCE MEASUREMENTS

FOR

RADIO STATION KLBG

LIBERTY, TEXAS

Liberty Broadcasting Company, permittee of Radio Station KLBG, holds a Construction Permit, File No. BP-9745, for operation of Station KLBG daytime only on 1050 kilocycles using 250 watts power into a directional antenna between the hours of local sunrise and local sunset.

The daytime directional array of KLBG consists of two towers of equal height each 200 feet above base insulator. The towers are spaced 525 feet (202°) on a line bearing 40 degrees east of True North. The southwest tower is designated Tower No. 1, and the northeast tower is Tower No. 2. Construction permit specifications call for the No. 2 tower base current ratio to be 0.9 when compared to the current at the base of No. 1 tower with the No. 2 tower current leading the No. 1 tower current in phase relationship by 18° .

Initial measurements on the two towers produced results from which the mutual impedance between the towers was $8.8/-149^{\circ}$. Inserting this value in the computations for the directional operating impedance of each tower, we

arrive at these values when using the tower current ratio that is specified in the Construction Permit:

$$Z_1 = 22.8 - j2$$

 $Z_2 = 18.5 + j2$

These values of base resistance should produce tower currents of 2.57 amperes for No. 1 and 2.31 amperes for No. 2 tower. The final antenna currents were only a slight bit less than these magnitudes which indicates that the computed antenna resistances were very close.

For daytime directional operation, the phasing circuits for both towers were adjusted in such manner that the terms of the KLBG construction permit would be met in regard to field intensity measurements. The final adjustment for directional operation produced conditions where the base current in Tower No. 1 was 2.53 amperes, and in No. 2 Tower the current was 2.22 amperes, which gives a current ratio of 1:0.878. The current in tower No. 2 leads the current in tower No. 1 by 16.5 degrees as indicated on the phase monitor. Impedance measurements at the common point of input to the phasing circuits were made for directional operation, and the results are tabulated elsewhere in this report. A meter is installed at this point to measure the common point current, which measures 2.36 amperes for 250 watts output. These antenna currents and indicated phase were maintained throughout the taking of field intensity measurements for directional conditions.

A requirement is specified in the KLBG construction permit that a full non-directional proof of performance be made. Therefore, with tower No. 2 isolated, the No. 1 tower was used as the non-directional radiator. Isolation was accomplished by connecting the No. 2 tower to ground through a large inductive reactance. This reactance was adjusted to give a minimum of deflection on the indicating instrument in a field intensity meter which was positioned about 20 feet from the tower being isolated while the other tower was fed some power. The loop antenna of the field meter was orientated so that it would pick up a minimum of radiation from the tower being fed power but with the plane of its loop passing through the tower being isolated. After isolation of the No. 2 tower was effected, the No. 1 tower base impedance was measured as 28 + j4 ohms, and a base current of 2.99 amperes was maintained for 250 watt non-directional measurements.

Before directional adjustments were made on the array, the sampling loop transmission lines were bridged out to determine if they were the same length. The measurements on the two lines were identical for both open and short circuit conditions. Then the antenna currents were established equal in magnitude and the phase set at the specified value of 18° with tower No. 2 leading tower No. 1. A cross-radial was run in the vicinity of monitor point No. 1, and from the results of this cross-radial the phase was adjusted to 16.5° in order that the minimum, or null, would be positioned in its proper place of 3.3 degrees east of True North. After that, the antenna current ratio was adjusted to fill the null to that point where the inverse fields in the specified directions of the construction permit were of the proper magnitude.

Radio frequency bridge measurements were made of the common point of

-3-

input to the power dividing network of the antenna system following final adjustment of the array. After all reactance at this point was eliminated, the common point resistance was measured as 48.5 ohms. Applying the 92.5% factor, this resistance becomes 44.8 ohms. The current flow necessary at this common point figures 2.36 amperes for 250 watts, and that is the value maintained during the taking of directional field measurements.

After proper adjustment of the antenna was made for daytime directional operation, sufficient measurements were made of the field intensity produced by the array along nine radials, spaced through 360 degrees. Intensity measurements were made with the field strength meter following the exact procedure outlined in the factory instruction book supplied with the meter. In every instance an attempt was made to locate the measurement point in a clear place well away from fences and overhead lines. Wherever possible, the meter was taken at least 100 feet through fences into clear pastures or fields to get away from the influence of power lines and fences. Several oil fields are located around Liberty with their associated buried and hidden pipe lines, and in some cases measurements were made in their vicinity.

Between 0.1 and 2.0 miles on each radial, measurement points were staked out by a licensed surveyor every tenth mile. Beyond 2 miles and out to approximately 20 miles, these radials were plotted on a Texas Highway Department Map, and points of measurement with distance were taken from this original map. In every case where accessible points were available, field intensity measurements were taken. A few of the surveyed points were omitted due to unaccessible and

-4-

flooded terrain. In the case of the 220 degree True radial from the 0.8 mile point on out to 7 miles there was a swamp of undeveloped land under several feet of flood water. This is the area of the Trinity River, and substituted for the missing survey points on this radial are nine points at the 7 mile distance that were located by the surveyor. Again there are several off-set points that help to fill in the long gap that sometimes existed on a radial.

All field intensity measurements, both directional and non-directional, were taken by Merl Saxon, or by Mr. Charles Lawrence under his direct supervision. Measurements were taken with a WX-2C Meter, manufactured by Clarke Instruments Company, Silver Spring, Maryland, and last calibrated by that company December 2, 1958.

One monitor point, on the 220 degree radial, was located at a distance of 7.05 miles instead of within the 4 mile limit specified by the rules because of the flooded Trinity River bottomlands in which there are no roads or trails. To insure the accuracy of this distant monitor point a number of measurements were clustered thereabouts on either side of the point.

After a study of the proof of performance measurements and report of same, it is believed that the KLBG directional antenna system is installed and adjusted in compliance with the specifications of the KLBG construction permit and the rules and regulations of the Federal Communications Commission.

Tabulation of all measurements is made in such way as to afford a convenient way to compare the two sets of measurements with themselves. An explanation of the headings of the tabulations is given here:

-5-

- <u>Point</u> Measurement points on all radials were marked as Number 1 for the 0.1 mile distant point and progressing out from the antenna with distance for the numbering system.
- Distance All distances are in miles from the center of the KLBG antenna system and were taken directly off the original point location map used in the proof.
- <u>Date</u> All measurements were made in the months of July and August, 1959, and no column is used for dates. Instead there are indicated the dates of measurements at the bottom of each tabulation.

Time - All times are indicated in 2400 type Central Standard Time.

e(mv/m) - Figures under this heading are the indications of the RCA

field intensity meter in millivolts per meter.

Remarks - A brief description of any surrounding objects that may influence the measurement accuracy is given in this column.

There is given here a full and complete description of the KLBG antenna array:

- a. Two identical elements are installed as the antenna system. For the non-directional operation, the No. 1 (Southwest) tower was fed with 250 watts power, while the No. 2 (Northeast) tower was isolated.
- b. The towers are slender and triangular in cross-section. Both elements are uniform cross-section, series fed and guyed at five elevations.

- c. Top loading is not used on either tower.
- d. The No. 1 (Southwest) tower extends 200 feet above the base insulator, and the No. (Northeast) tower extends 200 feet above its base insulator.
- e. Overall height of each element above ground is 208 feet.
- f. Overall height of each element above mean sea level is 230 feet.
- g. The directional array elements are located on a line bearing 40 degrees east of True North. No. 2 tower is spaced 525 feet, or 202 degrees, northeast of the No. 1 tower. The current in No. 2 tower leads the current of No. 1 tower in time phasing by 16.5 degrees as indicated by the Clarke Phase Monitor.
- h. Ground system consists of 120 234 foot equally spaced copper wire radials about each tower except where shortened by property lines. Also at base of each tower is a 24 foot square copper ground screen. The centers of the system are bonded together with 2 inch copper strap and the center of this strap extended into the transmitter.
- i. For directional operation the current fed to No. 1 tower was 2.53
 amperes, and the current fed to No. 2 tower was 2.22 amperes. In this operation the Common Point resistance was measured as 48.5
 ohms. 92.5 per cent of this value is 44.8 ohms. For 250 watt directional operation the common point current is 2.36 amperes.
- j. Schematic circuit diagram of the antenna and phasing equipment is shown in another figure in this report. RF ammeters are installed as indicators in the diagram to measure the base current of each

element as well as the current in the common point of input.

- k. Each tower has been painted exactly as specified on the KLBG construction permit. These specifications are identical for each tower. Each has four orange and three white sections, terminating with aviation surface orange bands at both top and bottom. The width of each band is approximately one-seventh of the height of the structure. There is installed at the top of each structure one 300 m/m electric code beacon with two 500 watt lamps (PS-40, Code Beacon Type), and both lamps burn simultaneously being equipped with a flashing mechanism that is controlled by a light sensitive device. At the midpoint of each tower are installed two 100 watt red lights that burn continuously.
- 1. Grounded sampling loops insulated from the tower have been installed on the towers about 22 feet above the base insulator. Each sampling loop feeds its individual three-eights inch RG-11U transmission line. Each transmission line to the phase monitor located in the transmitter building is the same length and is terminated in a load resistor equal to its characteristic impedance. The phase monitor samples the current in the terminating resistor and indicates that the sampling loop current in the Northeast (No. 2) tower leads the current in the sampling loop of the Southwest (No. 1) tower by 16.5 degrees. Also, the phase monitor samples the current flow in the sampling loops by means of a diode rectifier and

a DC meter calibrated to read from 0 to 150 per cent. The phase monitor remote meters were adjusted to read 87.8% for tower No. 1 and 75% for tower No. 2. This yields a ratio of 1:0.855. (KLBG has requested the manufacturer to supply a scale of 0-5 Amperes for each of the loop meters in order that these meters might be used as remote antenna ammeters. They will be adjusted to read the same as the antenna ammeter of the tower they are associated with.)

A statement from Mr. Marvin M. Henry, Consulting Engineer and Public Land Surveyor, is included at the back of this report. This statement corrects the original geographical coordinates for the KLBG antenna system from:

North Latitude	30 ⁰	00'	00"
West Longitude	94 ⁰	45'	21"

to:

North Latitude	30 ⁰	00'	04"
West Longitude	94 ⁰	45'	32"

and the modified coordinates are used in all the attached figures and exhibits to show the location of the KLBG antenna system.

RADIAL NO°E

	N	Non-DA DA		DA	
Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
0.1	0837	590	1759	690	Trees
0.2	0841	325	1755	155	Clear
0.3	0845	198	1747	7 9	Clear
0.4	0850	195	1743	88.5	Clear
0.5	0856	165	1739	32.8	Clear
0.6	0903	139	1735	21.4	Trees
0.7	0908	110	1731	16.8	Timber
0.8	0913	100	1726	13.7	Trees
0.9	0918	88			Trees
1.0	0924	84	1720	10.5	Trees
1.1	0928	70.5	1713	7.7	Trees
1.2	0932	65	1708	7.4	Trees
1.3	0937	60	1659	6.3	Trees
1.4	0942	56	1651	6.5	Trees
1.5	0947	51.5	1645	6.8	Timber
1.6	1001	44	1634	6.4	Swamp
1.7			1625	5.6	Swamp
1.8	1021	36.9	1615	4.9	Pipe line 50'
1.9	1026	33.8	1611	4.2	Trees
2.0	1031	32.3	1606	4.1	Trees
3.8	1655	14.2	1040	1.75	Clear
4.2	1704	12.7	1046	1.4	Trees
6.2	1730	5.6	1051	0.835	Clear
8.7	1740	3.6	1058	0.314	Clear
10.8	1750	2.3	1039	0.22	Clear
12.3	1801	1.8	1044	0.148	Clear
13.1	1810	1.6	1049	0.232	Clear
14.4	1818	1.16	1056	0.178	Clear
15.1	1824	1.02	1101	0.146	Fences 50'
16.9	1835	0.92	1111	0.119	Clear
19.0	1845	0.74	1126	0.094	Line & fence 50'
20.4	1855	0.56	1121	0.079	Trees
	$\begin{array}{c} \hline \text{Distance} \\ 0.1 \\ 0.2 \\ 0.3 \\ 0.4 \\ 0.5 \\ 0.6 \\ 0.7 \\ 0.8 \\ 0.9 \\ 1.0 \\ 1.1 \\ 1.2 \\ 1.3 \\ 1.4 \\ 1.5 \\ 1.6 \\ 1.7 \\ 1.8 \\ 1.9 \\ 2.0 \\ 3.8 \\ 4.2 \\ 6.2 \\ 8.7 \\ 10.8 \\ 12.3 \\ 13.1 \\ 14.4 \\ 15.1 \\ 16.9 \\ 19.0 \\ 20.4 \\ \end{array}$	$\begin{array}{c c} \mathbf{N} \\ \hline \mathbf{Distance} & \mathbf{Time} \\ \hline 0.1 & 0837 \\ 0.2 & 0841 \\ 0.3 & 0845 \\ 0.4 & 0850 \\ 0.5 & 0856 \\ 0.6 & 0903 \\ 0.5 & 0856 \\ 0.6 & 0903 \\ 0.7 & 0908 \\ 0.8 & 0913 \\ 0.9 & 0918 \\ 1.0 & 0924 \\ 1.1 & 0928 \\ 1.2 & 0932 \\ 1.3 & 0937 \\ 1.4 & 0942 \\ 1.5 & 0947 \\ 1.6 & 1001 \\ 1.7 \\ 1.8 & 1021 \\ 1.9 & 1026 \\ 2.0 & 1031 \\ 3.8 & 1655 \\ 4.2 & 1704 \\ 6.2 & 1730 \\ 8.7 & 1740 \\ 10.8 & 1750 \\ 12.3 & 1801 \\ 13.1 & 1810 \\ 14.4 & 1818 \\ 15.1 & 1824 \\ 16.9 & 1835 \\ 19.0 & 1845 \\ 20.4 & 1855 \\ \end{array}$	Non-DADistanceTime $e(mv/m)$ 0.108375900.208413250.308451980.408501950.508561650.609031390.709081100.809131000.90918881.00924841.1092870.51.20932651.30937601.40942561.5094751.51.61001441.71.810213.8165514.24.2170412.76.217305.68.717403.610.817502.312.318011.813.118101.614.418181.1615.118241.0216.918350.9219.018450.7420.418550.56	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Non-DADADADistanceTime $e(mv/m)$ Time $e(mv/m)$ 0.1083759017596900.2084132517551550.308451981747790.40850195174388.50.50856165173932.80.60903139173521.40.70908110173116.80.80913100172613.70.9091888100.551.1092484172010.551.209326517087.41.309376016596.31.409425616516.551.5094751.516456.81.610014416346.41.7102633.816114.22.0103132.316064.13.8165514.210401.754.2170412.710461.46.217305.610510.8358.717403.610580.31410.817502.310390.2212.318011.810440.14813.118101.610490.23214.418181.1610560.17815.118241.0211010.14616.91835<

ND - Points 1-20 taken July 26, 1959 and 21-32 taken July 20, 1959. DA - Points 1-20 taken July 30, 1959, 21-23 taken August 1, 1959, 24-25 taken August 4, 1959 and 26-32 taken August 1, 1959.

9

1

RADIAL N 15° E

		N	Non-DA D		<u>JA</u>		
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks	
1	0.1	1444	64 0	0731	920	Fence 10'	
2	0.2	1440	346	0735	182	Clear	
3	0.3	1433	239	0742	96.5	Fence 15'	
4	0.4	1426	207	0747	68	Fence 10'	
5	0.5	1420	168	0755	55	Trees	
6	0.6	1416	136	0800	46	Trees	
7	0.7	1406	118	0814	40	Trees	
8	0.8	1358	94	0821	31	Trees	
9	0.9	1353	93	0825	27.5	Trees	
10	1.0	1349	79	0830	24.8	Trees	
11	1.1	1344	69	0834	22.5	Trees	
12	1.2	1340	63	0838	22	Trees	
13	1.3	1334	58.5	0842	18.2	Trees	
14	1.4	1329	53	0845	18	Trees	
15	1.5	1324	46.2	0849	17	Trees	
16	1.6	1319	45.5	0852	15	Trees	
17	1.7	1315	37.7	0856	13	Clear	
18	1.8	1310	39.4	0859	13.2	Trees	
19	1.9	1306	29.5	0903	11	Clear	
20	2.0	1300	30.1	0907	11.1	Trees	
21	2.1	1546	30.9	1306	10	Clear	
22	2.4	1553	25	1313	8.6	Corn field	
23	3.8	1601	12.3	1321	5.25	Clear	
24	4.2	1607	11.3	1327	3.85	Trees	
25	8.0	1633	4.8	1353	1.21	Clear	
26	9.1	1646	4.2	1406	0.95	Clear	
27	10.7	1652	3.8	1412	. 1.0	Clear	
28	12.0	1711	1.83	1431	0.78	Clear	
29	14.3	1726	1.2	1446	0.42	Trees	
30	17.9	1735	1.05	1455	0.313	Clear	
31	18.4	1745	1.01	1505	0.3	P rees	
32	20.3	1805	0.96			Clear	

ND - Points 1-20 taken August 5, 1959 and 21-32 taken July 21, 1959. DA - Points 1-20 taken August 5, 1959 and 21-31 taken August 1, 1959.

RADIAL N 40° E

		N	Non-DA		DA	
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
1	0.1	1426	630	1541	1220	Clear
2	0.2	1422	310	1548	475	Line 50'
3	0.3	1419	271			Marsh
4	0.4	1338	210	1624	130	Heavy Timber
5	0.5	1333	158	1628	99	Heavy Timber
6	0.6	1328	126			Heavy Timber
7	0.7	1325	107	1633	64	Heavy Timber
8	0.8	1320	96	1643	57	Heavy Timber
9	0.9	1315	88	1650	45	Heavy Timber
10	1.0	1300	75	1659	40.5	Heavy Timber
11	1.1	1255	68	1710	36.5	Heavy Timber
12	1.2	1250	59	1716	31.5	Heavy Timber
13	1.3	1247	53.5	1722	28.8	Heavy Timber
14	1.4	1244	45	1729	25.5	Heavy Timber
15	1.5	1241	43	1734	23.8	Trees
16	1.6	1238	37.5	1738	21.5	Clear
17	1.7	1230	39	1742	22.8	Clear
18	1.8	1225	36	1746	21	Heavy Timber
19	1.9	1220	33.8	1750	20	Heavy Timber
20	2.0	1215	30.2	1755	17.5	Heavy Timber
21	2.1	1232	25	1155	14.3	Clear
22	3.0	1240	20.7	1106	10.9	Clear
23	4.3	1251	13.1	1113	8	Clear
24	5.7	1316	10.8	1123	6.1	Clear
25	6.3	1322	10	1126	5.4	Clear
26	10.1	1336	6.3	1520	3.43	Clear
27	10.7	1348	5.75	1539	2.84	Clear
28	16.8	1101	1.81	1548	0.91	Clear
2 9	20.5	1026	0.83	1600	0.38	Clear
30	21.0	1036	1.05	1612	0.36	Clear

ND - Points 1-20 taken July 19, 1959, 21-27 taken July 23, 1959 and 28-30 taken July 27, 1959.

DA - Points 1-25 taken July 31, 1959 and 26-30 taken August 1, 1959.

ΓŢ

· · · · ·

ł

RADIAL N 94⁰ E

		No	on-DA		DA	
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
1	0.1	1625	710	1318	870	Clear
2	0.2	1 62 0	359	1323	260	Clear
3	0.3	1616	250	1326	110	Lines 30'
4	0.4	1612	202	1332	122	Marsh
5	0.5	1608	166	1338	96	Marsh
6	0.6	1605	138	1343	77.5	Marsh
7	0.7	1602	120	1347	68	Timber
8	0.8	1559	105	1352	60	Heavy Timber
9	0.9	1555	90	1356	53	Heavy Timber
10	1.0	155,1	81	1401	47	Timber
11	1.1	1547	77	1406	48.5	Timber
12	1.2	1543	63	1411	37	Timber
13	1.3	1540	59	1414	35.5	Trees
14	1.4	1535	54.5	1418	31.5	Heavy Timber
15	1.5	153 2	51.5	1422	29.5	Heavy Timber
16	1.6	1528	50.5	1425	28.5	Timber
17	1.7	1524	5 2	1430	30	Timber
18	1.8	1521	43.2	1433	24.2	Trees
19	1.9	1515	37.5	1438	22.7	Clear
20	2.0	1510	35	1442	21.6	Clear
2 1	4.9	1417	12	0832	8.4	Clear
22	6.0	1430	10.2	0839	7.3	Clear
23	9.5	1450	7.1	1233	4.55	Clear
24	12.6	1512	4.5	1251	3.2	Clear
25	14.0	1525	3.4	1300	2.15	Clear
26	16.8	1 552	3.28	1315	2.3	Fences 30'
27	18.3	1615	3.2	0954	2.18	Clear
28	20 .9	1154	2.58	1006	1.63	Clear
2 9	23.2	1207	2.18	1014	1.43	Fences 30'
30	25.2	1220	2.0	1024	1.41	Fences 50'

ND - Points 1-20 taken August 14, 1959, 21-27 taken July 23, 1959 and 28-30 taken July 24, 1959.

DA - Points 1-20 taken August 14, 1959, 21-22 taken August 2, 1959, 23-26 taken August 4, 1959 and 27-30 taken August 2, 1959.

RADIAL N 130° E

		N	<u>Non-DA</u> <u>DA</u>		<u>DA</u>		
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks	
1	0.1	1300	760			Timber	
2	0.2	1304	410	1621	700	Clear	
3	0.3	1309	242	1624	430	House 50'	
4	0.4	1315	190	1631	325	Trees	
5	0.5	1323	161	1637	282	Corn Field	
6	0.6	1335	120	1642	211	Clear	
7	0.7	1340	110	1646	188	Clear	
8	0.8	1345	79	1649	142	Clear	
9	0.9	1350	80	1652	139	Clear	
10	1.0	1400	62.5	1703	115	Clear	
11	1.1	1407	60	1708	107	Fence 100'	
12	1.2	1415	55	1713	100	Fence 60'	
13	1.3	1420	49	1717	98	Clear	
14	1.4	1425	52	1725	90	Trees	
15	1.5	1430	46.5	1733	81	Timber	
16	1.6	1435	41	1737	75	Clear	
17	1.7	1455	39	1741	74	Clear	
18	1.8			1744	67	Clear	
19	1.9			1748	63	Clear	
20	2.0			1751	60	Clear	
21	5.5	1246	9.6	1236	17.2	Clear	
22	11.3	1315	2.15	1210	3.95	Fence 70'	
23	11.9	1324	1.78	1205	3.1	Trees	
24	12.8	1333	1.7	1158	3.14	Clear	
25	13.9	1340	1.65	1154	3.1	Clear	
26	14.7	1349	1.63	1149	3.0	Fence 70'	
27	16.8	1357	1.53	1142	3.0	Fences 50'	
28	20.2	1433	1.4	1122	2.58	Fences 60'	
2 9	22.0	1421	0.96	1113	2.18	Fences 60'	

ND - Points 1-17 taken July 20, 1959, 21-27 taken July 26, 1959 and 28-29 taken July 24, 1959.

DA - Points 1-20 taken August 4, 1959 and 21-29 taken August 2, 1959.

FIC ME 12A

.

RADIO STATION KLBG LIBERTY, TEXAS 0.25 Kw. 1050 Kc.

RADIAL N 170° E

		No	n-DA	-DA DA		
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
1	0.1	0759	1400	1141	1120	Trees
2	0.2	0803	521	1136	412	Trees
3	0.3	0807	290	1130	240	Clear
4	0.4	0811	213	1126	179	Clear
5	0.5	0819	162	1121	152	Marsh
6	0.6	0824	150	1116	135	Clear
7	0.7	0828	112	1112	104	Trees
8	0.8	0832	76	1107	78	Fences 60'
9	0.9	0836	88	1102	80	Lines 125'
10	1.0	0839	73.5	1057	67	Timber
11	1.1	0845	64	1050	60	Timber
12	1.2	0849	56	1045	52.5	Trees
13	1.3	0853	54	1038	51	Marsh
14	1.4	0858	46.5	1034	42	Fence 30'
15	1.5	0907	40.5	1028	37.6	Marsh
16	1.6	0913	41	1022	38.3	Fence 25'
17	1.7	0917	39	1018	34.9	Heavy Timber
18	1.8	0921	33	1014	31.8	Timber
19	1.9	0925	30.5	1009	28.6	Pipeline 125'
20	2.0					Flooded
21	2.9	1455	15	1252	13.2	Fences 50'
22	5.0	1512	6.6	1313	6.55	Clear
23	7.8	1528	2.75	1323	2.55	Clear
24	11.0	1542	2.36	1335	2.13	Clear
25	11.6	1552	2.21	1349	2.02	Clear
26	18.9	1615	1.38	1408	1.22	Clear
27	21.7	1623	1.2	1419	1.11	Clear
28	23.5	1628	1,12	1423	1.0	Clear

ND - Points 1-20 taken August 14, 1959 and 21-28 taken July 27, 1959. DA - Points 1-20 taken August 14, 1959 and 21-28 taken August 2, 1959.

RADIAL N 220° E

		Non-DA			DA	
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
1	0.1	1558	2000	1434	710	Clear
2	0.2	1601	580	1442	104	Timber
3	0.3	1605	320	1448	56	Timber
4	0.4	1610	218	1454	32	Timber
5	0.5	1618	180	1459	20.5	Clear
6	.0.6	1622	87	1503	17.9	Power line 40'
7	0.7	1645	109	1508	13.6	Marsh
8	0.8	1650	90	1515		Fence 50'

(Points 9 through 20 fell in a flooded river bottom and points 21 through 29 are substituted instead since they were surveyed also.)

21	6.9	1557	4.75	0935	0.57	Timber
22	7.0	1601	4.2	0930	0.52	Trees
23	7.1	1608	4.16	0944	0.5	Trees
24	7.2	1612	4.06	0947	0.49	Trees
25	7.3	1617	3.98	0950	0.49	Timber
26	7.4	1624	3.77	0955	0.44	Timber
27	7.5	1630	4.01	1000	0.46	Timber
28	7.6	1635	3.85	1005	0.46	Timber
29	7.7	1639	3.7	1010	0.44	Fence 20'
30	12.8	1603	1.3	1700	0.164	Clear
31	13.1	1558	1.32	1608	0.152	Oilfield
32	16.7	1547	1.05	1615	0.118	Highway 20
33	16.9	1528	1.12	1620	0.132	Clear
34	17.3	1531	1.1	1624	0.115	Clear
35	18.8	1520	1.0	1632	0.095	Clear
36	20.6	1453	0.93	1644	0.057	Clear

ND - Points 1-8 taken July 18, 1959, 21-29 taken August 5, 1959 and 30-36 taken July 26, 1959.

DA - Points 1-7 taken July 31, 1959, 21-29 taken July 31, 1959 and 30-36 taken August 2, 1959.

RADIAL N 310° E

		N	on-DA	I	DA	
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
1	0.1	1713	850	1457	1220	Trees
2	0.2	1716	405	1501	655	Clear
3	0.3	1720	300	1510	334	Swamp
4	0.4	1730	202	1514	330	Timber
5	0.5	1733	155	1519	258	Timber
6	0.6	1737	126	1522	201	Timber
7	0.7	1742	113	1526	180	Clear
8	0.8	1746	100	1531	170	Clear
9	0.9	1750	20	1535	61	Under line
10	1.0	1800	23.5	1539	27.5	Under line
11	1.1	1804	57	1544	91	Clear
12	1.2	1808	57.5	1548	98	Clear
13	1.3	1812	34.5	1552	66	Line & fence 20'
14	1.4	1815	53	1556	91	Trees
15	1.5	1818	50	1601	80	Clear
16	1.6	1823	46	1610	77	Trees
17						
18	(Points	17 throug	h 20 fell in	a submo	erged swan	np)
19						
2 0						
21	3.1	1005	20.9	0942	39.3	Oilfield
22	6.1	1015	7.5	1727	12	Clear
23	8.4	1106	3.6	1744	6.4	Clear
24	12.5	1121	1.52	1757	2.83	Clear
25	13.4	1128	1.`3	1805	2.4	Clear
26	14.0	1134	1.28	1811	2.3	Clear
27	19.0	1152	0.57	1613	1.04	Trees
28	22.6	1247	0.31	1644	0.51	Trees
2 9	24.2	1316	0.22	1707	0.38	Trees
3 0 ,	26.0	132 2	0.19	1713	0.35	Fence & line 100'

ND - Points 1-16 taken July 19, 1959 and 21-30 taken July 21, 1959.

DA - Points 1-16 taken August 4, 1959, 21 taken August 4, 1959,

22-26 taken August 2, 1959 and 27-30 taken August 3, 1959.

RADIAL N 330° E

		N	on-DA]	DA	
Point	Distance	Time	e(mv/m)	Time	e(mv/m)	Remarks
1	0 1	1828	730	1436	980	Trees
1 0	0.1	1825	404	1430	502	Clear
4	0.2	1020	221	1433	345	Clear
3	0.3	1041	919	1446	237	Line 15 ¹
11 E	0.1	1017	150	1451	171	Clear
D C	0.5	1808	133	1455	148	Brush
07	0.0 ·0.7	1804	100	1450	118	Timber
0	0.7	1904	100	1509	112	Trees
0	0.8	1757	84	1506	100	Marsh
9	0.9	1757	01 25	1500	100	Fence 100'
10	1.0	17/0	68	1515	82	Trees
11	1.1	1745	62	1519	75	Clear
12	1.2	1740	58	1521	70	Trees
13	1.3	1720	50	1524	64 5	Trees
14	1.4	1726	59 59	1524	58 5	Fence 251
10	1.5	1720	J2 49	1527	57	Trang
10	1.0	1790	46	1522	53 5	Clear
17.	1.1	1796	20 0 	1536	40	Trees
10	1.0	1799	39.9 26 6	1530	45	Trees
19	1,9	1710	34	1549	42	Trees
20 91	2.0	0012	5 1 97 1	1012	22 1	Clear
41	4.0	0913	12 9	1010	14 7	Lines 60!
44	4.0	0851	13.0 8 Q	0958	10.9	Lines 50'
40 94	J. I 9 1	1000	<i>J</i> 00	1149	4 65	Fences 100'
44 95	0.1 1 <i>4</i> °1	1900	1 1	1132	1 26	Clear
2J 26	10 9	1020	0.55	1814	0.67	Clear
40 97	19.4	1040	0.55	1800	0.68	Clear
41	19.0	1044	0.50	1802	0.00	Fences 30!
40 20	20.9	1010	0.02	1755	0.75	Clear
49 20	41.0 99 5	1009	0.02	1750	0.10	Clear
3U 21	44.J 99 Q	1801	0.55	1745	07	Lines 50 [†]
3J 91	24.0 9 1 7	1755	0.000	1797	0 65	Clear
34	47.1	TICO	0.00	7101	0.00	

- ND Points 1-20 taken August 13, 1959, 21-23 taken July 27, 1959 and 24-32 taken July 26, 1959
- DA Points 1-20 taken August 13, 1959, 21-23 taken August 5, 1959, 24-25 taken August 4, 1959 and 26-32 taken August 3, 1959.

081959-16

RADIO STATION KLBG LIBERTY, TEXAS 1050 KC DA-D 250 WATTS

TABULATION OF UNATTENUATED FIELDS IN THE DIRECTION OF EACH RADIAL

Radial & Azimuth	Measured Non- Directional mv/m	Measured Directional mv/m	Computed Directional mv/m
N 0 ⁰ E	91	11	13.07
N 15 ⁰ E	93	28	27.00
N 40 ⁰ E	91	49	53.92
N 94 ⁰ E	90	56	57.00
N 130 ⁰ E	88	160	153.95
N 170 ⁰ E	89	86	87.70
N 220 ⁰ E	86	10	10.08
N 310 ⁰ E	91	160	153.95
N 330 ⁰ E	89	114	113.13

METER INDICATIONS FOR AUTHORIZED OPERATION

				Normal Op	eration
Meter Position	Make	Type	Scale	DA	ND
	TT 7 41	D.Y. 05		1 00	1 00
Final Plate Voltage	w'nouse	RX-25	0-2.5 Kv.	1.23	1.23
Final Plate Current	W'house	RX-25	0-500 Ma.	335	322
Common Point	Weston	425	0-5 Amp.	2.36	
SW Tower No. 1	Weston	425	0-5 Amp.	2.53	2 .99
NE Tower No. 2	Weston	425	0-5 Amp.	2.22	
Sampling Loop No. 1	No Name		0-150%	87.8	
Sampling Loop No. 2	No Name		0-150%	75.0	
Common Point Tank	Weston	425	0-8 Amp.	3.15	
Phase Monitor	Nems-	108-E	0-360 ⁰	2 leads 1	
	Clarke			+16.5 ⁰	

MAXIMUM PERMISSIBLE FIELD INTENSITY CALCULATION FOR KLBG MONITOR POINTS IN ORDER THAT THE SPEC-IFIED UNATTENUATED FIELDS OF THE CONSTRUCTION PERMIT WILL NOT BE EXCEEDED DURING DIRECTIONAL ANTENNA OPERATION

	N 0 ⁰ E	$N 40^{\circ} E$	N 220 ⁰ E
MEASURED FIELD INTENSITY (MV/M)) 1.75)	10.9	0.51
UNATTENUATED FIELD DETERMINED FROM MEASUREMENTS ON EACH RADIAL)) 11.0)	49.0	10.0
SPECIFIED UNATTEN- UATED FIELD (MV/M))) 13.72	56.61	10.58
MAXIMUM FIELD INTEN- SITY PERMITTED AT MONITOR POINT BEFORE MEOV IS EXCEEDED (*))) 2.18)	12.6	0.54

/ 4 \	Max. field	_ Specified unattenuated field	(Monitor Point meas-)
(*)	permitted	Measured unattenuated field x	(ured field intensity)

DESCRIPTION OF THREE OFFICIAL MONITOR POINTS

RADIO STATION KLBG LIBERTY, TEXAS

RADIAL N 0° E

To reach this point proceed 0.25 mile East from transmitter building on a private road to Farm Road 563; thence to the left (North) 4.6 miles on Farm Road 563 to its intersection with U.S. Highway 90; thence right (East) on U.S. Highway 90 for 1.5 miles to the monitor point. The point is 150 feet south of a 2 x 4 inch stake of wood in the fence line on the south side of Highway 90 in an open field. When KLBG is operating with 250 watts into its directional antenna system, the field intensity measured at this point should not exceed 2.18 millivolts per meter in order that the radiation in this direction will not exceed the maximum expected operating value of 13.72 millivolts per meter inverse distance field intensity. Distance to the point is 3.8 miles.

RADIAL N 40° E

To reach this point proceed 0.25 mile East from transmitter building on a private road to Farm Road 563; thence to the left (North) 4.6 miles on Farm Road 563 to its intersection with U.S. Highway 90; thence right (East) on U.S. Highway 90 for 2.4 miles to Ames where Highway 90 intersects Farm Road 160; thence right (South) on Farm Road 160 for 2.5 miles to the monitor point. The point is 100 feet north of Farm Road 160 and a 2 x 4 inch wood stake in the fence line on the north side of the road. The wood stake is approximately 150 feet beyond (East) of a small concrete bridge over a creek that crosses Farm Road 160. When KLBG is operating with 250 watts into its directional antenna system, the field intensity measured at this point should not exceed 12.6 millivolts per meter in order that the radiation in this direction will not exceed the maximum expected operating value of 56.61 millivolts per meter inverse distance field intensity. Distance to the point is 3.0 miles.

RADIAL N 220° E

To reach this point proceed 0.25 mile East from transmitter building on a private road to Farm Road 563; thence to the left (North) 4.6 miles on Farm Road 563 to its intersection with U.S. Highway 90; thence left (West) on U.S. Highway 90 for 6.3 miles to Dayton where Highway 90 intersects Farm Road 1409; thence left (South) on Farm Road 1409 for 9.6 miles to a 2 x 4 wood stake on the fence line on the east side of the road. The point is in the center of the road approximately 150 feet north of a creek bridge. When KLBG is operating with 250 watts into its directional antenna system, the field intensity measured at this point should not exceed 0.54 millivolts per meter in order that the radiation in this direction will not exceed the maximum expected operating value of 10.58 millivolts per meter inverse distance field intensity. Distance to the point is 7.05 miles.

FULL DESCRIPTION OF METHOD USED TO MAKE MEASUREMENTS

OF KLBG NON-DIRECTIONAL ANTENNA BASE IMPEDANCE

For the non-directional proof of performance operation Radio Station KLBG used the Southwest No. 1 tower with the Northeast No. 2 tower isolated. This tower was isolated by use of an inductance coil connected from the base of the tower to ground. The coil reactance was adjusted to produce a minimum deflection on a field intensity meter placed about 20 feet from the tower being isolated and positioned so that it would pick up a minimum of radiation from the other tower being fed power but with the plane of the field meter loop including the tower being isolated. A check of this method was made by an observation of the loop current meter indication in the phase monitor for the isolated tower. Only a very small deflection of this meter was noted when the tower was isolated and when the other tower was fed power.

This No. 1 tower is approximately 0.214 wavelength in height and has a uniform cross-section measuring about 15 inches on a side. It is guyed at four points vertically and every 120 degrees horizontally. The antenna is fed by a concentric transmission line that terminates in a matching network located inside a weatherproof housing beside the tower base. Tower lighting equipment is connected through lighting radio frequency choke coils located inside this same weatherproof housing.

For antenna measurements the lead running directly from antenna ammeter to tower was removed from the meter terminal and connected to the radio frequency bridge with as short lead as possible. A signal generator producing each desired frequency was fed into the bridge, and measurements were made of the antenna every 5 kilocycles from 1020 to 1080 kilocycles inclusive. Null indication for the radio frequency bridge was taken from a Model BC-946-B Colonial Radio Corporation receiver. The bridge was operated exactly as prescribed in the manufacturer's instruction manual. The bridge indications of both resistance and reactance are recorded for each condition of balance. From these data the graph was constructed, and where the smooth curve of resistance intersects the operating frequency the "Antenna Resistance" is found. This value is shown on the graph.

The radio frequency bridge calibration was checked for accuracy prior to measurements of the antenna by the measuring of known standards of resistance. The radio frequency signal generator dial calibration was checked first by comparing its output frequency with that of neighboring broadcast stations and correction made by means of a corrector dial.

FULL DESCRIPTION OF METHOD USED TO MAKE MEASUREMENTS

OF KLBG DIRECTIONAL ANTENNA COMMON POINT IMPEDANCE

For directional operation Radio Station KLBG uses two towers each fed by a transmission line from a cabinet containing the phasing and dividing networks and located in the transmitter room. This phasing network is fed by a single transmission line from the transmitter. At the phasing network termination of this single transmission line is an RF ammeter measuring the line current. This meter is designated the "Common Point Meter" and is shown in the schematic diagram beside the "X" which is the point of measurement of the common point resistance.

Common Point measurements were made by removing the lead from the common point meter that runs to the phasing and dividing networks and connecting this lead to the radio frequency bridge with as short lead as was possible. A signal generator producing each desired frequency was fed into the bridge, and measurements were made of the Common Point every 5 kilocycles from 1020 to 1080 kilocycles inclusive. Null indications for the radio frequency bridge were taken from a Model BC-946-B Colonial Radio Corporation receiver. The bridge was operated exactly as prescribed in the manufacturer's instruction manual. The bridge indications of both resistance and reactance are recorded for each condition of balance. From these data the graph was constructed, and where the smooth curve of resistance intersects the operating frequency the "Common Point Resistance" is found. This value is shown on the graph.

The radio frequency bridge calibration was checked for accuracy prior to measurements of the common point by the measuring of known standards of resistance. The radio frequency signal generator dial calibration was checked first by comparing its output frequency with that of neighboring broadcast stations and correction made by means of a corrector dial.

NON-DIRECTIONAL ANTENNA IMPEDANCE MEASUREMENTS RADIO STATION KLBG LIBERTY, TEXAS

Frequency Kilocycles	Antenna Resistance	Antenna Reactance	
		Weactanee	
1020	25.0	-10	
1025	25.4	-8	
1030	25.8	-6	
1035	26.4	-3	
1040	26,9	0	
1045	27.4	1.5	
1050	28.0	4	
		_	
1055	28,6	7	
1060	29.1	10	
1065	29.9	11	
1070	30.4	13	
1075	31.1	16	
1080	31 9	19	
	9 P		
	Ež		
			35
	E B		
	OE / B -	28 Ohms	1 0
\	In A		
		R	118
			30
	P. 1 0-0		
			E E
			I B
	·····		A
R			25 0
			TTH

20 20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES

Measurements made July 15, 1959

081959-24

DIRECTIONAL COMMON POINT IMPEDANCE MEASUREMENTS RADIO STATION KLBG LIBERTY, TEXAS

Kilocycles Resistance Reactance 1020 39.2 -15 1025 44 -10 1030 49.6 -7 1035 53 -5 1040 53.8 -4 1045 52 -3 1050 48.5 0 1055 44 5 1060 39.5 10 1065 36 18 1070 32.9 25 1075 30.3 35 1080 28.4 44 109 1080 28.4 109 1090 1090 1090 1090 1090 1090 1090 1090 1090 1090 1090	Frequency	Common Point	Common Point
1020 39.2 -151025 44 -101030 49.6 -71035 53 -51040 53.8 -41045 52 -31050 48.5 01055 44 51060 39.5 101065 36 181070 32.9 251075 30.3 351080 28.4 44	Kilocycles	Resistance	Reactance
1025 44 -10 1030 49.6 -7 1035 53 53 -5 1040 53.8 -4 1045 52 -3 1045 52 -3 1050 48.5 0 1055 44 5 1060 39.5 10 1065 36 18 1070 32.9 25 1075 30.3 35 1080 28.4 44 44 44 44 44 44 44	1020	39.2	-15
1030 49.6 -7 1035 53 53 -5 1040 53.8 -4 1045 52 -3 1050 48.5 0 1055 44 5 1060 39.5 10 1065 36 18 1070 32.9 25 1080 28.4 44 44	1020	44	-10
$1035 53 -5 \\ 1040 53.8 -4 \\ 1045 52 -3 \\ 1050 48.5 0 \\ 1055 44 5 \\ 1060 39.5 10 \\ 1065 36 18 \\ 1070 32.9 25 \\ 1075 30.3 35 \\ 1080 28.4 44 \\ \hline \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1025	49.6	-7
$1030 53.8 -4 \\ 1045 52 -3 \\ 1050 48.5 0 \\ 1055 44 5 \\ 1060 39.5 10 \\ 1065 36 18 \\ 1070 32.9 25 \\ 1075 30.3 35 \\ 1080 28.4 44 \\ \hline \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	1030	53	-5
$1045 52 -3$ $1045 52 -3$ $1050 48.5 0$ $1055 44 5$ $1060 39.5 10$ $1065 36 18$ $1070 32.9 25$ $1075 30.3 35$ $1080 28.4 44$ 44 44 46 46 46 $R_{CP} = 48.5 0hms$ $R_{CP} = 48.5 $	1035	53 8	-4
1040 02 02 02 030 030 048.5 0 030 039.5 10 1065 36 18 1070 32.9 25 1075 30.3 35 1080 28.4 44 44 44 44 44 44 44	1040	59	-3
1050 48.5 0 $1055 44 5$ $1060 39.5 10$ $1065 36 18$ $1070 32.9 25$ $1075 30.3 35$ $1080 28.4 44$ $1000 1000 28.4 44$	1045	52	Ū
$1055 & 44 & 5 \\ 1060 & 39.5 & 10 \\ 1065 & 36 & 18 \\ 1070 & 32.9 & 25 \\ 1075 & 30.3 & 35 \\ 1080 & 28.4 & 44 \\ \hline $	1050	48.5	0
1060 39.5 10 1065 36 18 1070 32.9 25 1075 30.3 35 1080 28.4 44 $1080 28.4 44$	1055	44	5
$\begin{array}{c} 1065 & 36 & 18 \\ 1070 & 32.9 & 25 \\ 1075 & 30.3 & 35 \\ 1080 & 28.4 & 44 \\ \hline $	1060	39.5	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1065	36	18
1075 30.3 35 1080 28.4 44 40 40 40 8 1075 1080 28.4 44 40 1075 1080 28.4 44 40 1075 1080 1060 1070 1080 FREQUENCY - KILOCYCLES	1070	32.9	25
1080 28.4 44 $40 40 60 7 60 7 60 7 60 7 60 7 60 7 60 7$	1075	30.3	35
40 40 40 20 R _{CP} = 48.5 Ohms R _{CP} = 48.5 Ohms 40 20 R _{CP} = 48.5 Ohms 40 80 100 10	1080	28.4	44
40 40 80 80 80 80 80 80 80 80 80 8			
40 40 52 20 R _{CP} = 48.5 Ohms R C = 20 C = 48.5 Ohms R C = 48.5 Ohms C = 48.5 Oh			
40 40 50 20 R _{CP} = 48.5 Ohms 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 60 40 50 50 60 50 50 60 50 50 60 50 50 50 60 50 50 50 50 50 50 50 50 50 5			<u> </u>
SWHO 20 R _{CP} = 48.5 Ohms R CP = 48.5 Ohms CP = 48.5 Ohms R CP = 48.5 Ohms CP = 49.5 Ohms CP = 49.5 Ohms CP = 49.5 Ohms CP = 49.5 Ohms CP =	40	Ê C	80
SWHO 20 R _{CP} = 48.5 Ohms 60 100 R R 60 100 100 100 1020 1030 1040 1050 1060 1070 1080 FREQUENCY KILOCYCLES KILOCYCLES 1070 1080		비내 비원	• • • • • • • • • • • • • • • • • • •
R _{CP} = 48.5 Ohms R _{CP} = 48.5 Ohms R R R R R R R R R R R R R	<i>o</i>	····································	2 I I I I I I I I I I I I I I I I I I I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ž	· ┃ <u>┃ - ↓ + ↓ ↓ + + + ↓ ↓ + + + ↓ </u> + + + + ↓ + + + + ↓ + + + + ↓ + + + + ↓ + + + + ↓ 	
20 R R 60 1 M R 40 10 V V V 40 V V V 1060 V V V 1060 V V V V	8-1		×,•
H R H H H H H H H H H H H H H	20 RCF	5 = 48.5 Onms	60
Image: Note of the second se			
Image: Constraint of the state of			<u></u>
L H H H H H H H H H H H H H	ž ////		
U 0 40 % E R 40 % R R 20 20 20 20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY KILOCYCLES 1080 1080 1080 1080			
EL R R 20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES			40 5
R 20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES		•••-	
20 20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES			R
-20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES			
20 1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES	•		
1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES			20
1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES			
1020 1030 1040 1050 1060 1070 1080 FREQUENCY - KILOCYCLES			
FREQUENCY - KILOCYCLES	1020 1030	1040 1050 1060	1070 1080
		FREQUENCY - KILOCYCLI	ES

Measurements made August 4, 1959

DATA ON IMPEDANCE MEASURING EQUIPMENT

Manufacturer's name and rated accuracy of each calibrated instrument

Instrument	Manufacturer	Rated Accuracy
Radio Frequency Signal Generator, Model 846	Merl Saxon	0.01%
Radio Frequency Bridge Type 916-A, Serial 1211	General Radio Co.	1%
Radio Receiver	Colonial Radio Corp.	Null Indicator

Date, accuracy and by whom each instrument was last calibrated

Instrument	Date	Accuracy	By Whom
Radio Frequency Signal Generator, Model 846	7-15-59	0.01%	Merl Saxon
Radio Frequency Bridge Type 916-A, Serial 1211	7-15-59	1%	Merl Saxon

FIGURE 27

QUALIFICATIONS OF ENGINEER TAKING MEASUREMENTS

Merl Saxon is a consulting radio engineer with offices located at 622 Hoskins Street, Lufkin, Texas, and is engaged in the work of broadcast allocations and general radio engineering. His qualifications as an engineer are a matter of record with the Federal Communications Commission. He was employed for over six years by that Commission as a Radio Engineer in the Engineering Department at its Dallas office. In 1932 he graduated from Texas A & M College with the degree of Bachelor of Science in Electrical Engineering. Since then he has held positions on the staffs of several radio broadcast stations. He is associated with the Institute of Radio Engineers in the grade of Senior Member, and he is a registered professional engineer in the state of Texas. MERL SAXON, being first duly sworn upon his oath, deposes and says:

1. That he is a consulting radio engineer with offices located at 622 Hoskins Street, Lufkin, Texas;

2. That his qualifications as an engineer are a matter of record with the Federal Communications Commission having been employed for six years by that Commission as a Radio Engineer;

3. That he has been retained by the applicant, LIBERTY BROADCASTING COMPANY, to tune up and adjust the KLBG directional antenna system and make such field intensity measurements of Station KLBG as are required for a proof of performance report of which this statement is a part;

4. That in his belief, the KLBG directional antenna system, as installed and adjusted, fully complies with the KLBG Construction Permit;

5. That all statements and representations of fact contained in the engineering portion of this KLBG Application For License are true and correct of his own knowledge and belief.

2 wory Estes

Notary Public in and for Angelina County, Texas

Subscribed and sworn to before me this 20th day of <u>August</u>, 1959.

My commission expires June 1, 1961.

STATE OF TEXAS SS COUNTY OF ANGELINA

I, Charles Edward Lawrence, have been employed by Merl Saxon, consulting radio engineer, since September, 1956. Before taking any field intensity measurements I was thoroughly instructed in the principles and operation of the field intensity meter. I completely understand its calibration and operation.

I am enrolled in the Electrical Engineering Department of the Texas A & M College and have 60 hours toward a degree in this department.

I further attest and affirm that the field intensity measurements taken by me are true of my own knowledge and to the best of my knowledge and ability are certified as factual.

Charles Edward Lawrence

Subscribed and sworn to before me this 70 the day of August, 1959.

Notary Public in and for

Angelina County, Texas

My commission expires <u>June 1, 1961</u>.

August 17,1959

Mr. Merl Saxton, Consulting Radio Engineer, Lufkin, Texas.

Dear Mr. Saxton;

With reference to the application of the Liberty Broadcasting Company to the F.C.C.and the Engineering E.E. dated July 25, 1957 by John H. Mullaney, Consulting Radio Engineer, please be advised that the North Latitude should be 30 0' 04", and the West Longitude should be 94° 45' 32", instead of as shown on the above engineering exhibit.

These graphic co-ordinates were obtained from measurements in the file being superimposed on a map by the United States Department of Interior Geographic Survey, the Liberty Quadrangle, 15" Series (Topographic).

I feel sure it will be your desire to submit the correct geographiccorordinates with this report.

Yours very truly,

MARVIN M. HENRY

MMH/r

.

