

Miar Mary Jane Mertis
Secretary
Feneral Comrnandcaticns Cemumiseion
Waghingtoa 25, D. C.
Dear Miss Morris:

We bereby amend our application for license for KEDY-TV in Blg Spring. Texas, by submitting the enclosed antema curvey par saant to instructions in Form 720.

It is bolieved that an explanation is in order in relation to this survey, since there is an over-all hoight difference above sea level than was originally preposed. Eniderthy, the groand level above mean mon level was taken from topegraphical mapp instead of acteal survey at the time of the propoanal of this atructure, the groand level being stated as 2460 feet above mean sea level. But as the actual survey ohows, the gromed lovel is 2468.13 feet above mean sea level. We enclose a copy of a telegram from the CAA which states there weuld be no objection to the structure 30 long as the height above ground level did not eaceed 500 iect. Actaally, the over-all height of this structure above ground is oomewhat below 500 feet, as is indicated in the survey.
mdx/dp Subseribed and sworn to enclosures

United States of America
Federal Communications Commission
APPLICATION FOR NEW BROADCAST STATION LICENSE

INstructions

A. This form is to be used in all cases when applying for a Broadcast Station License. It consists of this part, Section I, and the following sections:
Section II-A, License Application Engineering Data Standard Broadcast
Section II-B, License Application Engiygering Date FM Broadcast

Engineeriflogya Television
Section II-C, License Applicator Engineeritegya Television
Broadcasting B. Prepare and file throes qupies of thip,form and all exhibits
swear to one copy. File with Federal Comimpications Commission, Washington 25, D. C.
C. Number exhibits serially in the space provided in the body of the form and list each exhibit in the space provided on page 2 of this Section. Date each exhibit and each antenna pattern.
D. The name of the applicant must be stated dxectly as it appears on the construction permit which is being covered.
E. Information called for by this application which is already on Tile with the Commission need not be refiled in this application provided (1) the information is now on file in another applecation or FCC form filed by or on behalf of this applicant; (2) the information is identified fully by reference to the file number (if any), the FCC form number, and the filing date of the application or other form containing the information and the page or paragraph referred to, and (3) after making the reference, the applicant states; "No change since date of filing." Any such
 all infowitibn, conidentintor otherwise, contained in the applecation or other fompluy MTH A, rporated application or other form will thereafter, in its entirety, be open to the public.
F. This application must be axecyorhapplicant, if an individual; by a party pt ap 8 ar ;' $\%$ partnership; by an officer of applicant Hi, Leorporation or association; or by attorney of applicant only under conditions shown in Section 1.303, Rules
 event sati an $\|^{\prime}$ IT absence from the Continental United States and authority of attorney to act must be submitted with application.
G. BE SURE ALL NECESSARY INFORMATION IS FURNISHED and all paragraphs are fully answered. If any PORTIONS OF THE APPLICATION ARE NOT APPLICABLE, SPECIFICALLY SO STATE. DEFECTIVE OR INCOMPLETE APPLICATIONS MAY BE RETURNED WITHOUT CONSIDERATION.

1. Facilities authorized by construction permit

2. Construction permit covered by this application

Is the station now in satisfactory operating condition and ready for regular operation? If not, explain

PROGRAM DATA

3. Has applicant any contract, arrangement, or understanding, expressed or implied, with a network organization for the broadcasting of network programs?
Does applicant, in the event this application is Yes \square No \square granted, propose to broadcast network programs?
If network programs are to be broadcast, state as Ex imit N_{1}.
arrangements under which they are to be obtained and attach copies of any contractual arrangement which may have been made. If the arrangement is based on an oral understanding, a written statement of the arrangement should be submitted.

[^0]FINANCIAL DATA (Continued)
5. (a) Attach a detailed belance sheot, as at the completion date of the authorized construction, showing applicant's financial josition as Exhibit No. (b) If the actual cost of construction materially exceeds the original estimated cost of construction, attach as Exhibit No. a detailed statement showing the plan used to finance such construction. (If applicant is licensee of a broadcast station having on file with the Commission an Annual Financial Report (FCC Form 324) showing its financial position within the past 12 months and the request in this application is for a change in existing facilities, these (8 eo

6. State chenges, if any, in capitalization, and report any contracts affecting ownership not shown in the application for construction permit. (If none, so state)

Nome

7. Apart from the apparatus constructed, have all the terms, conditions, and obligations set forth in the above-described application for construction permit been fully met? If "No", state exceptions.

8. Is a request for authority to conduct program tests a part of this application?

The applicant waives any claim to the use of any particular frequency or of the ether as against the regulatory power of the Unitad States because of the previous use of the same, whether by license or otherwise, and requests a station license in accordance with this application. (See Section 304 of the Communications Act of 1934)

The applicant represents that this application is not filed for the purpose of impeding, obstruction, or delaying determination on any other application with which it may be in conflict.
All the statements made in the application and attached exhibita are considered material representations, and all the exhibits are a material part hereof and are incorporated herein as if sot out in full in the application.

The applicant, or the undersigned on the applicant's behalf, states that he has endeavored to supply full and cortect information sa to all matters which are retevant to this application and that he has done so as to all matters within his own knowledge.

Dated bis 12th \qquad 1857.

$\frac{\text { Th: }-2-1}{\text { If either frequency monitor indicatos any carrier deviation in }}$
\qquad excess of the permissible tolerance, describe in Exhibit No. and state the corrective measures taken.

If the carrier frequencies have beon measurod by other means, describe in Exhibit No. II , giving the date, method used or frequency measuring service employed, the results obtained and the monitor readings (high or low) at the time.
9. Performance date. Visual transmituer
a. Attach as Exhibit No. III data showing the following:

1. Overall attenuation versus frequency of the visual transmitter;
2. Field strength or voltage of the lower sideband for a modulating frequency of 1.25 mc . or greater, and of the upper side-band for a modulating frequency of 4.75 mc . or greater;
3. A description of the equipment and technique used in making these mesesurements.
b. Attach us Exhibit No. IV data demonstrating that the waveform of the transmitted signal conforms to that specified by the standerds. Latil the form of these measureonents may be specified by the Commission, the character of this data is left to the discration of the applicant.
c. Attach as Exhibit No. V a photograph of a test pattern taken fram a receiver or monitor connected to the transmitter output. Atach as Exhibit No. VT data, diagrans, and appropriate graphs logether with description of measurement procedures and instruments with regard to the following: (All measurements shall be made with the equipment adjustod for normal program operation and shall include all circuits betwoen the main studio microphone terminals and the antenna output, including telephone lines, preemphasis circuits and any equalizers employed except for microphones, and without compression if a compression amplifier is installad.)
a. Audio frequency response from 50 to $\mathbf{1 5 , 0 0 0}$ cycles for approximately 25,50 and 100 percent modulation. Measuremerus shall be made on at least the following andio frequeacies: 50 , $100,400,1000,5000,10,000$ and 15,000 cycles. The frequency response measurements should normally be made without deemphasis; however, standard 75 microsecond deecuphasis may be employed in the measuring equipment or system provided the accurscy of the deemphasis circuit is sufficient to insure that the measured response is within the prescribed limits.
b. Audio froquency harmonic distortion for 25,50 and 100 percent modulation for the fundamental frequencies of $50,100,400,1000$ and 5000 cycles. Audio frequency harmonics for 100 percent modulation for fundamental frequencies of 10,000 and 15,000 cycles. Measurements shall normally include harmonics to 30,000 cycles. The distortion measurements shall be nade omploying 75 microsecond deemphasis in the measuring equipment or aystem.
c. Output noise level (frequency modulation) in the band of 50 to 15,000 cycles in decibels below the audio freguency level representing a frequency swing of 25 kilocycles. The noise measurements shall be made employing 75 microsecond deemphesis in the measuring equipment or system.
d. Output noise level (amplitade modulation) in the band of 50 to 15,000 cycles in decibels below the level representing 100 percent amplitude modulation. The noise measurements shall be made employing 75 microsecond deemphasis in the measuring eguipment or system.
ar. In what respect, if any, does the apparatus constructed differ from that described in the application for construction permit or in the permit?
4.

None
11. Does the equipment meet the color performance requirements of the Comulssion's Rules? YES
12. If equipment has been modified for color transmission, submit in Exhibit No. 7 data which indicate compliance nith performance requirements of the rules relating to visual/aural carrier frequency tolerance, subcarrier frequency tolerance if locally generated, and transfer characteristic.
 application is submitted and that I have examined the foregoing statement of technical information and that it is true to the best of my knowledge and belief. (This signature may be omitted provided the engineer's original signed report of the data from which the information contained herein has been obtained is attached hereto.)

aU. S. GOVERNMENT PRINTING OFFICE: 1953 O- -57744

State of Texas
County of Lubbock)

1, Rudolph N. Starnes, of Lubbock, Lubbock County, Texas, having been duly sworn, do depose and say:

1. That I am Chief Engineer of Texas Telecasting, Inc.. licensees of stations KDUB-TV, Lubbock, Texas, KPAR-TV, Sweetwater, Texas, KEDY-TV, Big Spring, Texas, and KDUB-AM, Lubbock, Texas, and
2. That I have had eight years experience as Chief Engineer, Assistant Chief Engineer and Engineer in broadcasting stations, and
3. That I made, or caused to be made under my personal supervision, all of the measurements, tabulations, photographs and charts, excepting the Transmitter Harmonics Measurements, submitted herewith, and
4. That I have previously performed and submitted proof of performance for television broadcast properties.

Subscribed and sworn to before me,
 a Notary Public in and for Lubbock County, Texas, this the $1 \underline{2}$ day of Action 1957.

Method of Power Output Determination
An RCA Type M-1-19024 R.F. load and wattmeter are connected to the transmitter output. This load has a calibrated wattmeter reading directly in kilowatts average power. Power determination is performed with transmitter operating at black picture level with 25% sync. The reading from the wattmeter is multiplied by a factor of 1.68 to determine peak power output. The transmitter reflectometer is then set to correspond with the reading obtained by this method.

- EXHIBIT II

Frequency Measurements
This station employs a frequency monitoring service known as Commercial Radio Monitoring Company of Kansas City, Missouri. Our visual and aural frequencies are checked by this company on a semi-annual schedule. Attached are photocopies of our last frequency measurement reports showing date, measuring service employed, results obtained, and monitor readings.
 RIMARXS:

DEYIATION MAS 100 CPS LOM AND MONITOR PEAD 200 CPS LOW. momitor mas ralibrated for frequency deviation ant modulation g.

Mecasuremment trisd by H. H. CAMPBELL

COMMERCIAL RADIO MONITORING CO.

': HIRIT III IArkmon'35302
P. O. Box 7037

EANSAB CITY. MISSOOUH

t Overall actemation versus modulating frequency of demod

TELEVISION STATION K ELD Y \& frequencies mo ar BIG SPRING.
 Fhy ATTENTION: RUDY STARNES $9 A$ shons resul thunaniminum- 1000 CES In chis tast. The sechatque used $1-\frac{1}{}$ asurin ichancr mod. TV VItco. pate iated gugcell time andzone ponse fr measured freouencrter ig schedule
JUNE ?, 1957 allows. 1:30. AM CST $\quad\left(\begin{array}{l}1) \\ \text { 2) } 67,240.000 ~ K I L O C Y C L E S ~ S E V I-A N N U A L ~\end{array}\right.$
(BOTH CRYSTALS ADJUSTED TO ZERO DEVIATION.)
$=$

REMARKS: ACRARD MOD. 650-A
GENERATC.
DEVIATION WAS 200 CDS HIGH ANT MOMITOR READ 520 CPS HIGH.

1. Overall attenuation versus modulating frequency of demodulated signal for modulating frequencies from zero to 4.5 mc . Figure 1 shows the equipment setup used for making this test. Attached graph No. 9A shows results obtained in this test. The technique used in measuring the demodulated overall video response from visual transmitter is as follows.

Fig. 1

Video modulating frequencies from zero to 4.5 mc . were generated by a Hewlett-Packard Model 650-A oscillator and fed to the transmitter video input. Constant input amplitude of the modulating frequencies was maintained by use of a vacuum tube voltmeter. A vacuum tube voltmeter was also used to read the output of the monitoring diode. The results obtained were then plotted on graph No. 9A.
2. Voltage of lower sideband for modulating frequencies of 200 kc . to $5: \mathrm{mc}$. and of the upper sideband for modulating frequencies of 200 kc . to 8 mc . Figure 2 shows the equipment
setup for making this test and graph No. 98 shows results obtained. The technique used for this test is as follows.

Fig. 2

The technique for measuring the attenuation characteristic was as follows. Modulating signals were applied to video input of transmitter. A 200 kc . signal was used as reference level. Modulating signals were generated by a HewlettPackard Model 650-A generator. Input level of modulating signals was maintained by use of a vacuum tube voltmeter. The input level was set to the equivalent of video modulation from 15% white level to 75% black level. A selective sideband receiver was then tuned to upper sideband and a reference output indication was obtained. Modulating frequencies from the generator were then varied upward from 200 kc . to 8 mc . as indicated by steps on graph in Figure 9B. The same measurements were repeated for the lower sideband. The sideband receiver used was calibrated against a Measurements Corporation Model 80 signal generator.

Since this receiver indicated directly in voltage the voltage ratios were converted to dbs and results plotted in graph No. 9B.
3. Attached are equipment setup and results obtained on harmonic measurements of visual transmitter. These measurements were conducted by an outside engineering firm.

Photograph of Test Pattern

Photograph 9-C1 shows picture of test pattern of this station as displayed on a monitor being fed by demodulation probe in transmission line.

Photographs of Waveforms of Transmitted Signals and Transfer

 Characteristics of Visual TransmitterPhotograph 9-Bl shows blanking level, reference white level, and reference black level. This video was supplied by a black and white window generator and photograph was taken from oscilloscope being fed from demodulator probe in transmission line. Photographs 9-B2 and 9-53 show transfer characteristics of visual transmitter, 9-B2 being the input to the visual transmitter and 9-B3 being the output of the visual transmitter. Photograph 9-54 shows oscilloscope pattern of horizontal sync pulse and blanking of transmitter waveform, the oscilloscope being fed by demodulating probe in transmission line. This photograph also shows width of horizontal sync pulse, back porch and front porch, by having microsecond markers imposed on waveform by oscilloscope. Photograph 9-B5 shows vertical sync pulse and blanking and

EXHIBIT VI

A. Frequency Response

Frequency response curves were plotted on graphs No. $6-\mathrm{A}, 6-\mathrm{B}$, and $6-\mathrm{C}$ for $100 \%, 50 \%$, and 25% modulation of aural transmitter. The equipment used and method of connection for these tests is shown in block diagram below.

The following procedure was used in determining audio frequency response of aural transmitter. The frequency of the audio signal generator was set as required and the output pad was adjusted to give the desired percentage of modulation. The meter and output pad of this signal generator read directly in dbs. Settings of this pad were recorded for various frequencies used. Frequencies used are indicated on graphs. B. Percentage Distortion

The same equipment and setup were used for this measurement. After the frequency response reading was made the voltmeter on the Hewlett-Packard Model 330-D analyzer was
set at a reference of 100%. Then the filter in the analyzer was tuned to the frequency being measured, thus removing the fundamental and leaving only the distortion reading. The voltage of this distortion was read in percentage of the reference setting. Distortion curves were plotted along with frequency response curves. C. EM Noise Level

This measurement was made with the same equipment and setup as previously described. A reference level at 400 cycles and 100% modulation as read on the modulation meter was used. Modulation was removed and the remaining noise read directly on the noise and distortion analyzer. This reading was 57 db below the audio level required for 25 kc . deviation or 100% modulation.
D. AM Noise Level

AM noise level tests were performed with equipment setup as shown below.

The technique used and results obtained are as follows. A type 1932 detector unit was connected as shown in equipment setup above. A reading was obtained on the meter of the detector unit by adjustment of transmission line probe. The R.F. input to the unit was then removed and audio voltage of 400 cycles from the audio oscillator was applied to audio input of detector unit. The potentiometer of the detector unit was then adjusted for the same reading on the meter as with the R.F. input. Thus a reference level corresponding to 100% AM modulation was acquired. The audio voltage was then removed and the R.F. probe again connected to the detector unit. The output of the detector unit is now read as AM noise on the FM carrier by the noise and distortion analyzer. Standard 75 microsecond de-emphasis is used in the detector unit. The resultant reading obtained was 56 db below the level represented 100% amplitude modulation.
E. Attached are equipment setup and results obtained on harmonic measurements of aural transmitter. These measurements were conducted by an outside engineering firm.

EXHIBIT VII
Compliance with Performance Requirements for Color
Data showing visual/aural carrier frequency measurements have been given in Exhibit II. Please refer to Exhibit II. Transfer characteristics of visual transmitter have been shown by waveform photographs in Exhibit V. Please refer to Exhibit V.

This station does not originate color programs.

METHOD AND BESULTS

The level of all harmonio enibsions relative to the peak visual pomer at the aural and risual transmitter output while operating into a duma load, rere masured with the equipment operating with the authorised power. The visual transuitter was operated at black level and 25% sync. The attached drawing shows the equiprent setup and the method of measurement is as described in the General Radio Instruction Book which is furnished with the G. R. 874 Fitejection filtors. A tebulation of results plus correotion factors is atteched. Exeepting at harmonic frequencies, no other measurable spurious radiation was detected. All measurements were made personally by affiant.

Hy Comission expires October 1, 1960.

$$
\begin{aligned}
& \text { 長馿 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 㓬 }
\end{aligned}
$$

LDUIS JEANTHDMPGON
CDNSULTINGENGINEER
302 WEST TWELFTH STREET
BIG SPRING. TEXAS

TET: SXAET OF WTKAS
cothry op zowapd.

 by no daily suoni, on his oath, etates and oaye

I an a Begisternal Profecolonal Enotneer and a Regtstemed publto Sumpeyor, 1 foonsed uncior the lame of the $5 t a t e$ of 2 para, and hape been practiolng me profeasion for a number of yoare.

I hae located the Televisfon Antrana used by Rolepieton Station

 and that the geographte coordinates of acid struetrue are ce follebts

Latitude 38 $25^{\circ} 23.0^{\circ} 2$
Longituce $101^{\circ} 86^{\prime} 43.6^{\prime 9} 9$
 inclexitng obetraction manter above sea lepel le 2962.20 Ft . and the Eleoetion above MSL of a Bench Maje on the Sotitheast eommer of the conerete base of the foum ts 3470.20 ft .

The anregy and roferenec noints on when some ts baseng are as follows:

The Guegraphte Dotition we deterninet by Invangrilation fron
O.S. C. and G.5. Tritangulation Station WILCNATS.

Latttrate 32 $11^{\circ} 24.870^{\circ}$ N
Langitrod $101^{\circ} 28^{\circ} 44,620^{\circ}$
 Statton PARE.
$x=765,398.38 \mathrm{ft}$
$y=287,824.80$ ft.
 was determbned for the base of the Tomp (Ex on sig comer of Conerete
 ft.). The helght of the struetrie leas detersized by pertioal triangesation.

LロUIS لEANTHロMPSロN
CロNSULTINGENGINEER
30
WEST
STREET
BIGSPRING，TEXAS

Plat of antemna stte and vartieal plan oneton of the antenne straetwie，pertraying pertinent iftatis la attaoher．
 requifegenta of chi in comneotion ofth licencing of etation KidT TH， at Big Spulage Fipane．

 A．D． 2957.

COPI
 COPI
 DA07
 D FWD576 NL PD=WUX Fort Worth Tex 14
 1955 Jun 14 PM 530
 Jack Wallace
 Radio Station KBST, Big Spring; Texas

This is to advise that Alrspace has recommended approval of your proposed towar at Lat 32-15-16 Long 101-26-44 not to exceed 500 ABG 2960 sea level."

Paul H. Boatman Civil Aeronautics Adman

COPY

COPI

I certify that I man the Technical Director, Chief Engineer, or Consulting Eugineer of tise rario station for which this mplication is submitted and that I have examined the foregoing statement of technical information and that it is true co the best of ry lonomedge and beltef. (This signature may be omitted provided the engineer's original signer revort of the ditû from which the information contained herein has been obtained is attached hereto.)

aprd1 171962.

AERIDAVIS

$\left.\begin{array}{l}\text { OITY of Washmaton } \\ \text { DISTRICT OF COLUMBIA }\end{array}\right\}$ ss

RECEIVED
 APf 251952
 F. C. C.
 OFFICE OF THE SECRETARY

JAHES R. GROY, being duly avorn; deposes and anye that he io an experienced and qualified electronic engineer.

That his guailfications as an ongineer are a mater of Fecorf with the Federal commanioacions comatom.

That te is authorized to practice as a Registered Profossional monineer in the pigtrict of oolumbia.

That the attached onginesriag exhibit has been prepared by hif or under tie aupervision and direation, and he believes it to be true and accurate.

Subdoribed and eworn to before we thin 19 day of April 1962.
$\frac{\text { Ambrose J. Cavegn (signed) }}{\text { Hobial Fibic }}$
My Cominesion Expires Oct. 11965.
gNGIRSERIN (ESPOAT

This engineering report is part of an appliestion by C.
 of x sity-ty from alg 8 prince Texas to new location approximatiy 22 miles southwest of the city. The herein proposed site is on Terse mate niway 137, 4 miles south of stanton texas. Studios w111 remain at 2500 Kentucky Hay in Big Spring.

This proposal requests authorization to install a 4 bay antenna atop an 1100 f . guyed tower The 35 K (transmitter W111 be operated at slightly reduced power to produce the maximum slowed radiation of 100 Es.

Included in this report are the following maps and graph showing the technical data and informsion required in FCC EOM 301.

Available local topographic maps of the ares.
Sectional topographic raps of the sea within 15 mile of the sita.

Profile graph e of the terrain within 10 wiles of the antenna location and graph of the terrain between the ate and Big spring.

Hap showing the predicted city grade, grade a and grader contours.

Photograph of the ate from an altitude of 8000 ft .
Vertical plan sketoh of the antenna and supporting structure including all pertinent elevation data.
sectional airways chert showing location of the site.
surveyed plat of site with coordinates and ground elevation.

-

ν
270° TRUE
PROPOSED TV STATION
KEDY
BIG SPRING, TEXAS
CHANNEL 4

,

						1					
				,		:					
			-			,					
			-			1					

\square

3IG SPRTNG, TEXAS
AFRIL 11, 1962
CERTIFICATE:
I, r. S. MeCULLAH, a REGISTEPED fUblic SURVEYCR Cf TEXAS, Do heaeby
 aND I; TRUE AND CORRECT.

[^0]: Construction us completed when applicant acquired station
 in February, 1957. Detailed information herein contemplated not give en by former owners.

