

S O M M A I R E

PRATIQUE PRATIQUE

N° 199 JANVIER 1996 I.S.S.N . 0243 4911

UBLICATIONS GEORGES VENTILLARD

:A. au capital de 5 160000 F : à 12, rue Bellevue, 75019 PARIS :el. : 44,84.84.84 - Fax : 42,41.89.40 !élex : 220 409 F

rincipaux actionnaires : A. Jean-Pierre VENTILLARD Ame Paule VENTILLARD

résident-Directeur Général Directeur de la Publication : Jean-Pierre VENTILLARD Directeur honoraire : Henri FIGHIERA

édacteur en chef : Bernard FIGHIERA secrétaire de rédaction : Philippe BAJCIK Aaquette : Jacqueline BRUCE

Converture: Rachid Maraï wec la participation de H. Cadinot, P. Tissot, B. Courtay, C. Machut, R. Knoerr, P. Oguic, B. Rodriguez, G. Isabel, C. Gallès, P. Morin, Jongbloët, U. Bouteveille, A. Sorokine, Garrigou.

a Rédaction d'Electronique Pratique décline oute responsabilité quant aux opinions ormulées dans les articles, celles-ci n'engagent ue leurs auteurs.

narketing/Ventes: Jean-Louis PARBOT él.: 44.84.84.85 ispectión des Ventes: ioclété PROMEVENTE, M. Michel IATCA bis, rue Fournier, 92110 CLICHY él: 47.56.14.94 - Fax: 47.56.11.05

ublicité: **Société Auxiliaire de Publicité** 0, rue Compans, 75019 PARIS

v, neccompains, 3007976 del.: 44.84.84.85 - CCP Paris 3793-60 directeur général : Jean-Pierre REITER thef de publicité : Pascal DECLERCK ssisté de : Karine JEUFFRAULT

Nonnement: Annie DE BUJADOUX

Nolr nos tarifs (spécial abonnements, p. 20-21)

rédiser sur l'enveloppe « SERVICE ABONNEMENTS «
mportant : Ne pas mentionner notre numéro de
compte pour les paiements par chêque postal.

es réglements en espèces par courrier sont
trictement interdits. ATTENTION I SI vous êtes déjà
bonné, vous faciliterez notre tâche en joignant à
otre réglement soit l'une de vos demières bandesdresses , soit le relevé des indications qui y figurent:
Pour tout changement d'adresse, joindre 9,80 F et la
semière bande.

ucun réglement en timbre poste orfait 1 à 10 photocopies : 30 F.

Distribué par: TRANSPORTS PRESSE

Nonnements USA - Canada: Pour vous abonner à flectronique Pratique aux USA ou au Canada, iommuniquez avec Express Mag par téléphone au -800-363-1310 ou par (ax au (514) 374-4742. Le tatif l'abonnement annuel (11 numéros) pour les USA est tie 49 SUS et de 68 scnd pour le Canada. Electronique Pratique, ISSN number 0243 4911, is sublished 11 issues per year by Publications /entillard at 1320 Route 9, Champlain, N.V., 12919 for 19 SUS per year. Second-class postage paid at champlain, N.Y. POSTMASTER: Send address changes to Electronique Pratique, c/o Express (ag, P.O. Box 7, Rouses Point, N.V., 12979.

Ce numero a été tiré à 75 700 exemplaires »

REALISEZ VOUS-MEME

29 Boucle de courant RS 232

34 Fréquencemètre basses fréquences

53 Commutateur audio

60 Pédale de distorsion

66 Prises de courant radiocommandées

70 Alarme pour bébé

79 Commande proportionnelle de moteurs

83 Jeu de lumière programmable

89 Dé digital

96 Anti-oubli pour clignotants

98 Lampe à éclat sous 12 V

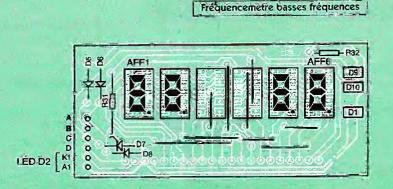
PRATIQUE ET INITIATION

25 Le circuit LM 3914 National

41 Mettez un microcontrôleur dans vos montages une centrale d'alarme à 80C32

75 Comprendre le fonctionnement des Basic Stamp

94 Le circuit CD 4522


102 L'oscilloscopie (6)

MESURES

92 L'oscilloscope SEFRAM ST-5702

DIVERS

108 et 110 Le courrier des lecteurs

LE LM3914 NATIONAL SEMICONDUCTOR; COMMANDE D'AFFICHAGE PAR POINT OU PAR BARRE

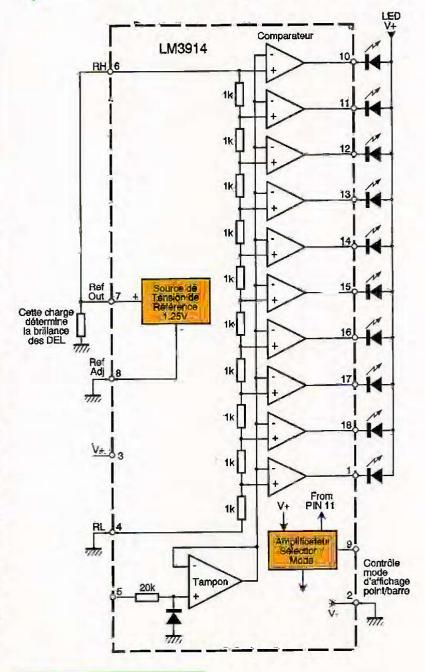
Le LM3914 est un circuit intégré monoîthique capable de commander un affichage de 10 DEL en fonction d'une tension d'entrée analogique. Son affichage est linéaire et une de ses broches permet de choisir le mode par point ou par barre.

Généralités

Le LM3914 est d'un emploi très souple. Le courant des différentes sorties est régulé et programmable, ce qui évite une traditionnelle résistance de limitation du courant dans la diode. Cette particularité permet, entre autres, d'alimenter ce circuit intégré sous une tension aussi faible que 3 V.

Le LM3914 dispose de sa propre source de tension de référence de 1,25 V permettant d'obtenir une tension de référence réglable de 1,2 V à 12 V et de calibrer le courant dans les diodes entre 2 et 30 mA.

La tension de référence disponible en broche 7 sera généralement appliquée au diviseur de tension de dixétages, polarisant l'entrée non-inverseuse des comparateurs de contrôle des sorties.

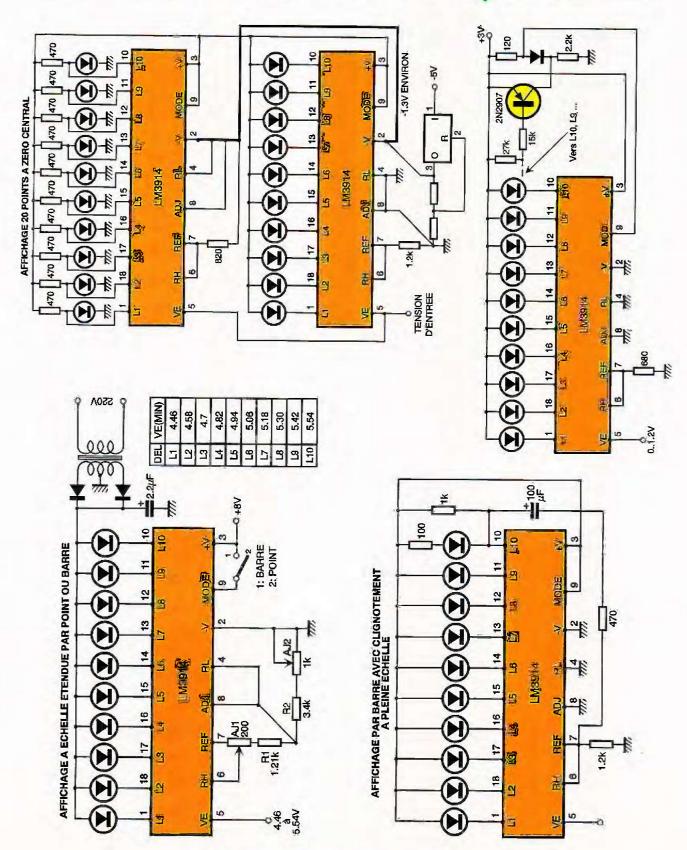

La tension d'entrée de commande est appliquée à l'entrée d'un tampon, protégée contre les surtensions et les inversions de tension par une résistance et une diode. L'entrée peut ainsi supporter une tension de ± 3,5 V, sans éléments de protection externe et sans risque de destruction ou de perturbation de l'affichage. Le tampon d'entrée, haute impédais-

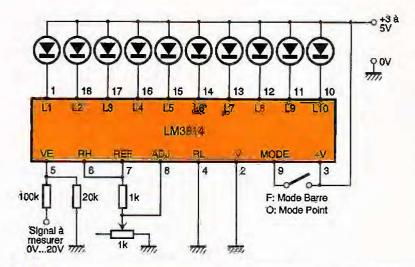
ce, est à faible courant de polarisation (100 nA max.) et il accepte des signaux proches de l'alimentation négative ou de la masse.

Les dix comparateurs internes sont commandés individuellement par le tampon, ce qui permet une linéarité de l'indication d'environ 0,5%, même dans une plage de température importante.

Plusieurs LM3914 peuvent être associés pour former des affichages de

20 à 100 segments, et comme les deux extrémités du diviseur de tension sont accessibles, un instrument de mesure à zéro central peut être obtenu avec deux circuits.


L'utilisation du LM3914 comme circuit de mesure analogique est très facile. Pour une mesure de 1,2V de pleine échelle, seulement une résistance et une alimentation unique de 3 à 15V sont nécessaires en plus des diodes électroluminescentes (DEL) de l'affichage. Par ailleurs, si la résistance est ajustable, elle contrôlera la brillance des DEL.


La **figure 1** montre le synoptique du LM3914 dans le contexte de cette application simplifiée. La structure interne du circuit intégré y est clairement définie.

Dans le mode d'affichage par point, un léger recouvrement de 1 mV

entre les segments évite un affichage erroné en garantissant qu'à aucun moment les DEL ne seront toutes éteintes. D'ailleurs, il n'existe aucun multiplexage ou interaction entre les sorties. L'indépendance du contrôle et de la régulation des sorties donne

LE SCHEMA RETENU POUR LA MISE EN CLUVRE.

à l'affichage une grande flexibilité, permettant des effets particuliers. La possibilité de moduler la luminosité des DEL en fonction du temps, ou proportionnellement à la tension d'entrée ou autres signaux, peut conduire à un affichage original et intéressant pour signaler des niveaux d'entrée particuliers comme des alarmes, des surtensions, etc.

Les sorties sont à collecteur ouvert et peuvent commander des DEL de couleurs différentes, des ampoules de faible courant incandescentes ou fluorescentes sous vide.

En complément de l'affichage (diodes ou ampoules), chaque sortie peut commander un transistor, ce qui permet d'envisager des applications de contrôle performant. De plus, la compatibilité avec les logiques TTL ou CMOS est assurée. Le LM3914 peut ainsi servir de programmateur ou de séquenceur. La figure 2 regroupe différentes applications types du LM3914.

Caractéristiques maximales

Un LM3914N (boîtier DIL 18) peut dissiper une puissance totale de 1365 mW, pour une température de jonction maximale de 100 °C. Pour des températures ambiantes élevées, la dissipation sera améliorée en tenant compte d'une résistance thermique Rthj-a de 55 °C/W.

La tension d'alimentation et la tension de sortie, maximales, sont de 25 V. Le courant d'entrée doit être limité à ± 3 mA. Pour élever la tension supportable par l'entrée du LM3914 à une valeur supérieure à ± 35 V, déjà obtenue par la protection interne, une résistance doit être placée en série avec l'entrée. Pour une valeur

de résistance de $100 \, k\Omega$, la tension d'entrée peut atteindre $\pm 100 \, V$, sans risque de destruction.

La tension entre les extrémités du pont diviseur doit rester comprise entre -0,1V et + Valim.

Le courant maximal fournit par la source de référence est de 10 mA. Le circuit fonctionnera entre 0 et 70 °C et pourra être stocké à une température de -55 °C à 150 °C.

Le fonctionnement

Le synoptique simplifié de la **figure 1** du LM3914 donne une idée générale du fonctionnement.

Le tampon d'entrée a une impédance élevée et un courant de polarisation faible. Il accepte des signaux de 0 à 12V et est protégé contre des tensions allant jusqu'à ± 35V.

En sortie du tampon, le signal attaque une série de dix comparateurs, chacun étant polarisé par un seuil différent, fixé par le pont de résistances interne.

Dans l'exemple de la **figure 1,** le diviseur de tension reçoit la tension de la source de référence interne de 1,25 V. Dans ce cas, pour chaque augmentation de 125 mV du signal d'entrée, un comparateur commutera.

Le pont, de résistances peut être connecté entre deux tensions quelconques, à partir du moment où elles sont inférieures de 1,5 V à la tension d'alimentation + Valim et au moins égale à – Valim du circuit intégré.

Si une augmenation de l'échelle de mesure est désirée (loupe), la tension aux bornes du pont de résistances peut être aussi petite que 200 mV, soit 20 mV par intervalle de mesure. Un tel affichage est plus précis, mais les éléments de l'affichage sont éclairés uniformément seulement si le mode barre est utilisé. Le mode point, pour une échelle éten-

due, est utilisable à partir de paliers d'au moins 50 mV.

Mise en œuvre

La tension de référence

La source de référence a été conçue pour fournir une tension de référence ajustable. Sa tension nominale est de 1,25 V entre les broches 7 (REFout) et 8 (REFadj.). La tension de référence se mesure entre la broche 7 et la masse.

Si la source de référence est appliquée aux bornes d'une résistance R₁, un courant constant traverse alors cette résistance puisqu'elle est soumise à une tension constante. Dès lors, si la broche 8 est portée à la masse par une résistance R₂, celle-ci est traversée par un courant et la tension de référence est donnée par la relation:

Vref = 1,25. $(1 + R_0/R_1) + R_0$. ladj. On vérifie aisément que si la broche 8 est connectée directement à la masse, la tension de référence est bien de 1,25 V, tension nominale de la source de référence.

Dans la relation précédente, puisque le terme R_2 . ladj est souvent négligeable devant le terme 1,25 . (1 + R_2/R_1), la tension de référence est proche de l'expression suivante: Vref = 1,25 . (1 + R_2/R_1).

La valeur de R2. ladj représente donc un terme d'erreur assez constant, puisque la source de référence a été conçue pour minimiser les fluctuations du courant ladj en fonction des différences de charge et des variations de la tension d'alimentation.

Le courant de sorfie

Le contrôle de la luminosité de l'affichage n'apparaît pas sur le synoptique du LM3914 de la **figure 1.** En effet, le courant dans les diodes est déterminé par le courant de sortie de la broche 7 du circuit intégré.

Le courant dans les diodes vaut approximativement dix fois le courant l_L, soit approximativement : 12,5/R₁ (R₁ en ohms). Il est relativement constant en cas de variation de la température ou de la tension d'alimentation.

Le courant I_L est la somme des courants sortant de la broche 7. C'est aussi bien le courant dû aux ponts de résistances R_1 et R_2 qu'à la charge engendrée par les dix résistances de $1 \, \mathrm{k}\Omega$ du diviseur de tension, soit une charge de $10 \, \mathrm{k}\Omega$. Pour rappel, le débit maximal de la source de référence est de $10 \, \mathrm{mA}$.

Bien que la régulation de courant soit indépendante pour chaque sortie,

une détection de la saturation d'un transistor de sortie à lieu et empêche les autres circuits de fournir un courant excessif et répétitif.

Le mode d'affichage

La broche 9 permet de choisir le mode d'affichage par point ou par barre, mais elle contrôle également la mise en cascade de plusieurs LM3914.

Les possibilités de base offertes par cette broche sont les suivantes :

- Affichage par barre : relier la broche 9 à l'alimentation du LM3914 (broche 3).
- Affichage par point: laisser en l'air la broche 9.
- Affichage avec 20 DEL ou plus: relier la broche 9 du premier LM3914 à la broche 1 du suivant. Il en va de même pour les LM3914 suivants, si l'affichage est de 30, 40 points ou plus. Pour le dernier circuit en cascade, sa broche 9 est reliée à sa broche 11.

A l'exception du dernier circuit, une résistance de $20\,\mathrm{k}\Omega$ doit être placée en parallèle avec la DEL n° 9 de chaque LM3914, soit entre la broche 11 et le commun des diodes.

La consommation

La consommation des circuits internes du LM3914 est relativement faible. Le courant de repos est en effet de 1,6 mA (2,5 mA max.). Cependant, ce courant de la broche 3 est multiplié par 4 si la source de référence est chargée par une charge quelconque. Par exemple, avec une résistance R_1 de 1,2 k Ω , le courant de référence est proche de 1 mA et le LM3914 consommera environ 10 mA, alors que le courant dans une DEL sera proche de 10 mA.

A pleine échelle, la consommation du LM3914 est inférieure à 10% du courant total dans les diodes.

Particularité de l'affichage

La commande de l'affichage a été conçue sans hystérésis, si bien que l'affichage ne passe pas instantanément d'une diode à sa suivante. Cette particularité permet, entre autres, d'éliminer le bruit de fréquence élevé que pourrait contenir le signal d'entrée ainsi que des clignotements de l'affichage souvent gênants.

Par ailleurs, un recouvrement de chaque intervalle de comparaison est prévu, afin qu'au moins une DEL soit allumée, si la tension du signal d'entrée correspond exactement au seuil d'un comparateur. Généralement, une DEL s'affaiblit pendant qu'une autre s'éclaire.

Pour des circuits en cascade, la com-

mutation peut être beaucoup plus rapide entre la diode n° 10 d'un premier circuit et la diode n° 1 d'un second circuit.

Quelques précautions

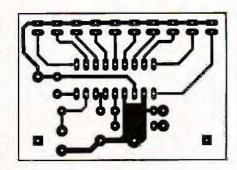
Tracé des masses

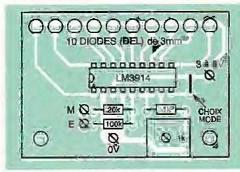
Quand le courant de l'affichage est important (courant dans les DEL), surtout en mode barre, des erreurs de mesure ou des oscillations peuvent apparaître. En effet, le courant total de l'étage de puissance ressort par la broche 2 du LM3914, entraînant une chute de tension dans la liaison de masse exteme. Il est donc sage de relier les différentes masses en un point unique, très près de la broche 2 (V-) du circuit intégré. Les liaisons concernées sont surtout les connexions à la masse relatives à la source de référence et au diviseur de tension

Câblage de l'alimentation de puissance

Un câblage trop long entre le commun des diodes (par exemple) et l'alimentation de l'étage de puissance peut causer des oscillations.

Afin de supprimer tout risque d'instabilité, il est impératif de prévoir un condensateur de découplage de 10 µF (2 µF pour un tantale) entre les anodes des DEL et la masse, broche 2 du circuit intégré.


Echelle étendue


Cette utilisation du LM3914 correspond à une tension faible sur le pont diviseur interne. Dans ce cas, la moindre dérive de la polarisation des comparateurs internes entraîne un affichage erroné. Pour améliorer la stabilité du pont diviseur, une résistance stable et de faible valeur doit être placée en parallèle sur ses extrémités (broches 4 et 6). Cette disposition évitera des dérives de tension dues aux variations des résistances du pont diviseur avec les changements de température.

Cas d'instabilité

Si, en mode barre, une DEL semble s'éteindre lentement ou si, en mode point, plusieurs DEL sont éclairées, une oscillation ou un bruit excessif est généralement le problème. Si les précautions précédentes ont été prises, une tension d'alimentation (broche 3) trop faible peut être la cause du phénomène.

Toutefois, avec une échelle étendue, si l'une ou les deux extrémités du diviseur de tension sont reliées à une impédance relativement élevée, alors la ou les hautes impédances.

devront être découplées par un condensateur de 100 nF.

La dissipation

La dissipation de puissance ne doit pas être oubliée, surtout dans le mode barre. Par exemple, avec une alimentation de 5V et un courant de diode de $20\,\text{mA}$, l'étage de puissance dissipera $600\,\text{mW}$. Dans ce cas, une résistance de $7,5\,\Omega$, en série avec l'alimentation commune des diodes, diminuera de moitié l'échauffement.

Application type

La **figure 3** donne le schéma d'un voltmètre à DEL dont l'échelle de mesure est de 1 V. La valeur d'un intervalle de mesure est alors de 0,1 V, ce qui donne une échelle assez précise. Le courant dans les diodes est de 12,5 mA, il est déterminé par la valeur de la résistance R₁, soit environ : I_{DEL} = 12,5/R₁.

La résistance ajustable de $1\,\mathrm{k}\Omega$ permet d'élever la tension de référence. à $2\,\mathrm{V}$, tension appliquée au pont diviseur.

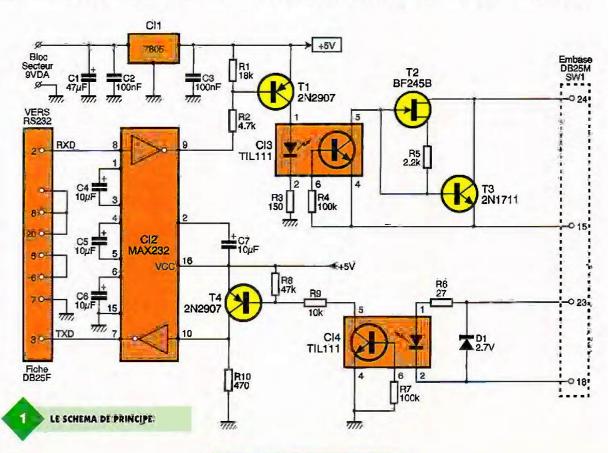
Un atténuateur en entrée permet la mesure de gamme de tension particulière. Par ailleurs, il augmente la protection de l'entrée contre les surtensions par une impédance complémentaire en série avec l'entrée. Pour $R_A=20\,k\Omega$ et $R_B=180\,k\Omega$, la plage de mesure devient : 0.. 20 V.

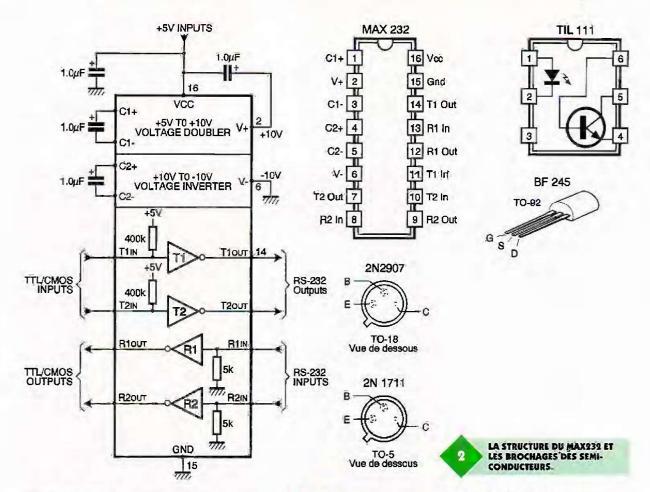
La figure 4 reproduit le tracé des pistes de cette application et la figure 5 en donne l'implantation.

Hervé CADINOT

BOUCLE DE COURANT POUR RS 232

Bien que de conception ancienne puisa qu'elle remonte à l'ère des liaisons mécaniques, la boucle de courant connaît un nouvel élan, en particulier grâce aux automates qui sont pour la plupart équipés d'une certaine interface TTY.


Introduction


Outre le domaine des automates, la boucle de courant est utilisée en milieu industriel pour relier des machines à commande numérique à un télétype (pour la lecture ou la sauvegarde de programme sur bande perforée). Cette liaison s'apparente au raccordement plus ancien d'un ordinateur avec une téléimprimante.

Pour ce type de liaison, la ligne fonctionnait à faible vitesse de transmission, 110 bits par seconde.

Le principe de la boucle de courant consiste à ce qu'une ligne soit parcourue par un courant de 20 mA. Anciennement, la solution la plus simple était retenue en appliquant tout simplement la loi d'Ohm: à partir de la tension d'alimentation, la

source de courant était obtenue en insérant dans la ligne une résistance. Pour une tension d'alimentation de $24 \, \text{V}$ et tenant compte des pertes en ligne et à la réception, une résistance de l'ordre de $1\,000\,\Omega$ est convenable. Il suffisait alors de maintenir ou de couper la ligne par l'intermédiaire d'un contacteur pour faire apparaître une série d'états logiques.

Avec l'avènement des optocoupleurs, la boucle de courant a évolué. L'émetteur et le récepteur peuvent désormais travailler sous des tensions largement différentes. Ainsi, l'isolation galvanique apportée par les optocoupleurs a permis de palier l'absence de normalisation des tensions.

Parmi les avantages de la boucle de courant, on relève la possibilité d'adresser un message simultanément à plusieurs appareils (automates, ordinateurs, machines...) et la bonne qualité de la liaison sur plusieurs centaines de mètres.

Le montage que nous vous proposons permet de doter votre PC ou un autre équipement muni d'une liaison RS 232 (un automate expérimental par exemple) d'une interface permettant sa connexion dans une boucle de courant. Le PC sera alors capable de recevoir sur sa RS232 des données séries, issues d'une boucle de courant, ou d'émettre des données sur cette boucle.

Le schéma

La **figure 1** présente le schéma de l'interface qui se compose de quatre sous-ensembles : l'alimentation, l'adaptation RS 232/TTL, l'émetteur et le récepteur 20 mA.

L'alimentation

Le montage peut être alimenté par l'intermédiaire d'un bloc secteur délivrant une tension d'au moins 8 V. Un filtrage complémentaire de la tension redressée délivrée par l'adaptateur secteur est opéré par le condensateur C₁, le découplage de l'entrée du régulateur de tension Cl₁ étant confié au condensateur C₂. En sortie de Cl₁, la tension est régulée à + 5 V et le condensateur C₃ favorise sa stabilité tout en découplant l'alimentation de Cl₂.

L'adaptation TTL

Du côté de la liaison série RS 232, les signaux TXD et RXD sont convertis au niveau TTL par l'intermédiaire de Cl_2 , un MAX232 désormais bien connu. Au niveau de ce circuit intégré, les condensateurs C_4 , C_5 , C_6 et C_7 participent à l'obtention des tensions \pm 12 V de l'étage RS 232 du MAX232. En fait, les variations typiques des sorties de Cl_2 sont de \pm 9 V et ses entrées RS 232 acceptent des tensions de \pm 30 V. La **figure 2** rappelle la structure et le brochage du MAX232.

La boucle de courant

• Le circuit émetteur

En attente de réception, la ligne RS 232, TxD, est à l'état haut logique RS 232. La tension de cette ligne est alors généralement comprise entre - 12 V et - 5 V. Cette tension appliquée à l'entrée 8 de Cl2 amène la sortie 9 de l'inverseur au niveau haut TTL. Etant donné la présence des résistances R₁ et R₂, ce niveau est de +5 V. Le transistor T₁ est alors bloqué et la diode de l'optocoupleur n'est pas émettrice. Le transistor de Cl₃ est alors bloqué et un courant de base entraîne l'état passant du transistor T₃, parcouru par le courant de 20 mA de la boucle.

Le courant de base du transistor T3 est fourni par un générateur de courant constant réalisé à l'aide d'un transistor à effet de champ. Ce dispositif se justifie par le fait que la tension V_{CE} du transistor T3 peut varier dans de larges proportjons. Lorsque T3 est passant, un V_{CE} d'environ 0,9 V de ce transistor suffit à l'obtention d'un courant de base par l'intermédiaire du transistor T2. Pour T3 bloqué, la tension V_{CE} est celle de la tension d'alimentation utilisée par le générateur du courant de boucle. Or, cette tension n'est pas normalisée.

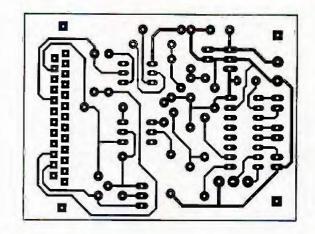
Lorsque la ligne TxD présente un état bas logique RS 232, une tension généralement comprise entre + 5 V et + 12 V est appliquée sur l'entrée 8 de IC₂. La sortie 9 passe alors à un état bas TTL et la base du transistor T₁ est alors polarisée par le pont de résistance R₁/R₂ entraînant la saturation de T₁. La diode de Cl₃ est alors traversée par un courant direct d'environ 25 mA et son transistor de sortie est saturé. Le courant de base de T₃ est alors dévié dans le circuit collecteurémetteur de Cl₃, entraînant le blocage du transistor T₃. La tension V_{CE} de ce transistor est alors celle de la source de courant. On comprend alors l'intérêt du transistor T₂ qui limite alors le courant de collecteur de Cl₃.

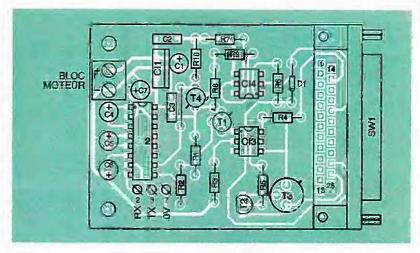
• Le circuit récepteur

Au repos, la boucle de courant est parcourue par le courant de 20 mA. Ce courant traverse la diode de l'optocoupleur Cl₄ et la résistance R₆. Cette demière est associée à la diode Zener D₁, afin de protéger Cl₄ contre un courant de boucle excessif et une inversion de polarité de la boucle.

Lorsque la diode de Cl_4 est parcourue par le courant de boucle, le transistor de l'optocoupleur est passant, entraînant la saturation du transistor T_4 . En effet, les résistances R_8 et R_9 polarisent alors la base de T_4 .

Lorsque le courant de boucle est interrompu, le transistor de Cl₄ est bloqué. La base du transistor T₄ est alors portée au + 5 V par la résistance R₈. Le transistor T₄ est alors bloqué.


Selon l'état de T₄ (saturé, bloqué), l'entrée 10 de Cl₂ est à + 5 V ou 0 V. Ces niveaux TTL sont convertis par Cl₂ en niveau RS 232, disponibles en sortie 7 du MAX232 et appliquée à l'entrée RxD de la ligne RS 232.


Au niveau des optocoupleurs, le temps de montée et le temps de descente du courant de sortie sont optimisés par la présence des résistances R₄ et R₇.

La réalisation

La figure 3 reproduit le tracé des pistes du circuit imprimé que vous pourrez reproduire par la méthode de votre choix. Sa reproduction ne pose en effet aucun problème. Une fois le circuit gravé et percé, vous procéderez à l'implantation des composants conformément à la figure 4, en commençant par les composants de plus faible épaisseur. Plusieurs phases de soudures interviendront alors par étapes successives. Avant de souder l'embase DB25, celle-ci sera fixée au circuit imprimé à l'aide de deux boulons de 2,5 mm.

Du côté RS 232, la fiche DB25 femelle est raccordée au circuit imprimé par l'intermédiaire d'un câble trois

conducteurs. Vous prendrez soin d'effectuer les shunts d'usage en connexion RS 232 directement au niveau de la fiche. Pour une DB25, les broches 4 et 5 doivent être shuntées, et, par ailleurs, les trois broches 6, 8 et 20 sont à relier ensemble.

Au niveau de la boucle de courant et dans le cadre d'une liaison émission/réception, un shunt est établi entre les broches 18 et 24 de la fiche raccordée à l'embase SW₁.

Pour les essais, vous connecterez le montage au port série d'un PC et vous établirez ce shunt. Ensuite, vous fermerez la boucle avec une alimentation de $12\,\mathrm{V}$ en limitation de courant à $20\,\mathrm{mA}$ ou en série avec une résistance de $470\,\Omega$.

Grâce à un logiciel d'émulation de terminal (du commerce, comme Procomm, ou que vous aurez pu concevoir), vous émettrez un caractère. Ce caractère sera retoumé systématiquement au PC par l'interface. Dans Procomm, par exemple, après avoir appuyé sur une touche, deux caractères identiques doivent apparaître à l'écran.

Vous pouvez également établir des coupures rapides de la boucle de courant, des caractères qu'el-conques doivent apparaître alors sur l'écran de votre ordinateur.

Hervé CADINOT

1/4 LE CIRCUIT IMPRIME ET SON IMPLANTATION.

LISTE DES COMPOSANTS

Résistances

R₁: 18 k Ω (marron, gffs, orange)
R₂: 4,7 k Ω (jaune, violet, rouge)
R₃: 150 Ω (marron, vert, marron)
R₄, R₇: 100 k Ω (marron, noir, jaune)
R₅: 2,2 k Ω (rouge, rouge, rouge)
R₄: 27 Ω (rouge, noir, noir)
R₅: 47 k Ω (jaune, violet, orange)
R₇: 10 k Ω (marron, noir, orange)

R10: 470 @ (jaune, Wiolet,

Condensateurs

marron)

C₁: 47 µF/25 V Č₂, C₃: 100 nF Č₄ à:C₇: 10 µF/16 V

Semiconducteurs

D₁ : Zener 2,7 V T₁, T₄ : 2N2907 ou 2906 T₂: BF245B ou 244A T₃: 2N1711 ou 2219A

CI: 7805

CI.: MAX232 ou ICL 232 CPE

Clar Clas TIL111

Divers

SW₁: embase DB25 mâle 1 bornier à souder pour CI 1 fiche DB25 ou DB9 femelle 1 capot pour fiche DB25 ou

DB9

1 corden blinde

3 conducteurs

2 boulons de 2,5 mm

Correspondance entre DB25 et DB9

DB9	Signal	DR25
	DCD	8
2	RD	3
3	TD OT	2
	DTR	
5		6
-6	DSR	6
7	RIS	(<u>)</u>
	ලව	5-3
9		22

Brochage du port série RS 232

Broche	Abrév	Désignation	Source
	8	Masse châssis	
2	TD	Emission donnée	DIE
3	RD	Réception données	DCE
4	-00	Demande d'émission	DIL
B;	CTS	Préparation émission	D43:
	, D E3	Données pretes	DCE
7		Muse signaux	in de
. 8	DCD	Détection porteuse	DCE
9		Réservé	
(Q.]		Réservé	
111	3	Libre	
19	SDCD	Seconde détection porteuse	DCE
13	SCTS	Seconde préparation émission	DCE
	STD	Seconde émission données	DTE
15	ic.	Emission horloge	
16	SRD	Seconde réception données	DE .
	RC	Réception horloge	DCE
10		Libre	
119	SRTS	Seconde demande émission	DTE
(0.2	DTR	Terminal prêt	DTE
21	SQ	Détection qualité signal	DTE
92	RI	Détection sonnerie	DCE
23	CH/CI	Sélection vitesse de transmission	DIE
24	XTC	Emission horloge	गृह
25		Libre	DCE

DTE signifie Data Terminal Equipement: c'est l'ordinateur, un terminal, une imprimante... DCE signifie Data Circuit Termination: il s'agit d'un modem, voire un périphérique.

Il n'y a pas 36 façons d'utiliser la puissance d'un scope 100 MHz au creux de votre main

Des performances inégalées. TekScope est le premier

oscilloscope/multimètre ultra-portable à offrir une bande passante de 100 MHz et une fréquence d'échantillonnage de 500 Méch/s sur chaque voie.

Une qualité imbattable.

La precision, la vitesse et la qualité d'un oscilloscope de table Tektronix - plus une interface utilisateur familière et un écran brillant, rétroéclairé.

Un prix incroyable, Seulement 14100 F. HT*

Pour connaître votre distributeur le plus proche, appelez le numéro vert ci-contre.

Prix de vente recommandé (tarif Juin '95)
 Tektronix, Courtaboeuf 5 - BP 13 - LES ULIS 91941 Courtaboeuf
 Cedex Tél: (1) 69 86 81 81 Télécopie (1) 69 07 09 37

UTILISEZ TEKSCOPE"

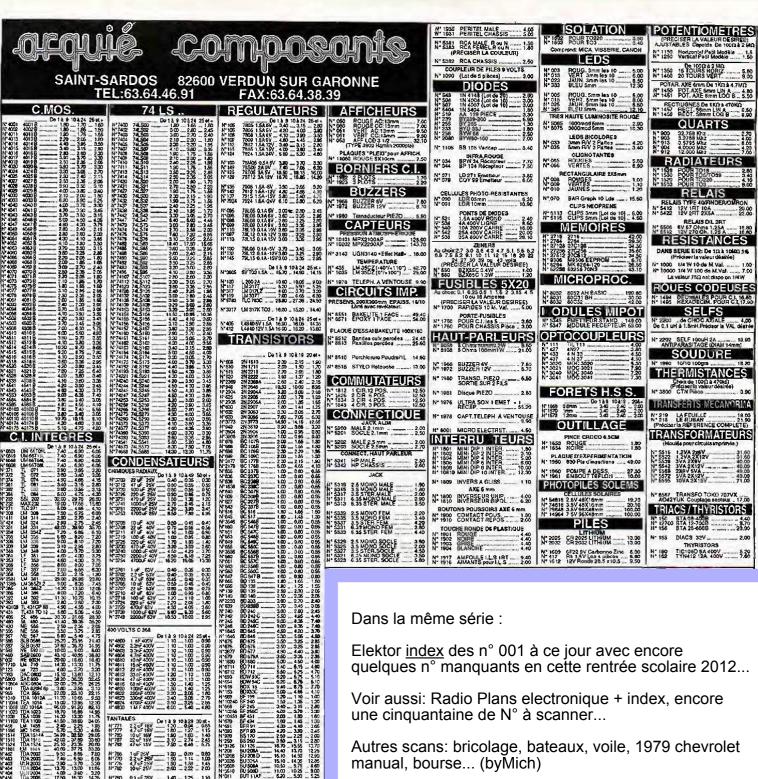
DOIGTS...

NGEZ

BÂNDE PASSANTE 100 MHZ/FRÉQUENCE D'ÉCHANTILLONNAGE 500 MÉCH/S SUR DEUX VOIES

RMS GAMME AUTOMATIQUE JUSQU'À 60 VOLTS

21 MESURES AUTOMATIQUES, 10 MEMOIRES


MESURES FLOTTANTES ISOLÉES TOUTE SÉCURITÉ

ECRAN BRILLANT, RÉTROÉCLAIRÉ

14100 F.HT*
05 38 22 55

Tektronix

une cinquantaine de N° à scanner...

Autres scans: bricolage, bateaux, voile, 1979 chevrolet manual, bourse... (byMich)

Bonne lecture,

Michel

CONDITIONS DE VENTE - ENVOIS EN RI - PAIEMENT A L + 40 F DE FRA PAR CARTEL - CONTRE REM - DETAXE A L'I - NOUS ACCES

TOUS NOS CO

TANTALES

LCC Jaunes

CONTACTS TULIPE

DARETTE SECABLE

De 18 4 - 68 9 19 st.
N°:002 32 PTS TULIPE 6:10 - 565 - 600

9.99.00 11.0

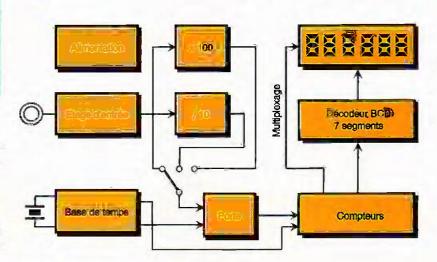
FREQUENCEMETRE 6 DIGITS

Nous vous proposons de réaliser un fréquencemètre de table destiné plus particulièrement à la mesure des basses et moyennes fréquences, soit de 0,1 Hz à 10 MHz Dans tous les cas, le temps de mesure sefa de 1 seconde et la précision relative meilleure que 2 ppm. De plus, ce montage ne fait appel qu'à des composants courants et reste très compact.

Caractéristiques

- Affichage 6 digits à DEL.
- Gammes 10 kHz, 1 MHz et 10 MHz.
- Entrée haute impédance $1\,M\Omega$, sensibilité $20\,mV$.

1 - Principe (fig. 1)


L'appareil que nous vous proposons a été élaboré autour d'un schéma

traditionnel de compteurs et de base de temps. En effet, l'utilisation de circuits spécialisés, qui permettent beaucoup plus de mesures de types différents, ont des coûts relativement élevés. La réalisation est basée sur des circuits CMOS dont le coût est beaucoup plus limité. Nous avons adjoint au schéma de base un étage d'entrée à FET, un multiplicateur par 100 pour les basses fréquences et un diviseur par 10 pour les fréquences plus élevées. Nous allons donc passer en revue les différents blocs constituant la figure de principe.

Le circuit de comptage utilisé pour l'affichage, le 4553, permet une forte réduction du nombre de composants. Deux boîtiers suffisent pour gérer six afficheurs, à condition toutefois de placer deux décodeurs BCD/7 segments pour la commande des afficheurs.

Pour cadencer et calibrer la mesure de façon précise, on réalise une base de temps à quartz à partir d'un quartz d'horloge. On obtient une fréquence de 0,5 Hz qui donne directement le temps d'ouverture de la porte de mesure de 1 seconde. Une logique à porte fournit, grâce à des prélèvements intermédiaires de fréquences plus élevées, tous les signaux utiles pour la mise en mémoire de l'affichage et le reset des

compteurs avant une nouvelle mesu-

Il se produit alors les opérations successives et cycliques suivantes :

- comptage;
- mémorisation du résultat;
- affichage maintenu de ce résultat;
- remise à zéro du comptage...
 et ainsi de suite.

Enfin, pour que tout ce petit monde s'anime tel qu'on l'a prévu, il ne faut pas oublier l'alimentation, qui est ici de + 12V pour les circuits logiques car les circuits CMOS nécessitent une tension élevée pour fonctionner correctement à 10 MHz.

2 - Fonctionnement (fig. 2 et 3)

Nous allons maintenant détailler chaque bloc vu dans le principe de fonctionnement.

Alimentation

L'alimentation est classique: un transformateur 220 V/12 V 5 VA, suivi d'un pont de diodes et d'un condensateur de filtrage C₁₂. On dispose ainsi d'une tension de 15 V environ que le régulateur intégré U₁₄ se charge de réguler à + 12 V. Les condensateurs C₁₃ et C₁₄ réalisent un filtrage en « haute fréquence » et évitent l'entrée en oscillation du régulateur.

Etage d'entrée et prédiviseur

Le signal d'entrée est couplé en alternatif par C_9 , avant d'être écrêté à $\pm\,0,6\,V$ par D_3 et D_4 , alors que R_{25} fixe l'impédance d'entrée. Il est ainsi possible de supporter une tension importante à l'entrée du montage. Le transistor FET se charge de la première amplification bas niveau alors que T_6 permet d'amener le signal sous faible impédance aux étages suivants (montage collecteur commun).

La porte C de U_{13} associée à R_{28} forme un amplificateur (effet de contreréaction de R_{20}), alors que les deux portes suivantes (B et A) associées à R_{29} et R_{30} forment un trigger de Schmitt (effet de réaction de R_{30}) afin de mettre le signal d'entrée sous forme rectangulaire. Enfin, la porte F de U_{13} bufferise afin de distribuer le signal au reste du montage. U_{12} (compteur décimal) se charge d'une division par 10 dans le cas de signaux compris entre 1 et 10 MHz.

Compteurs et affichage

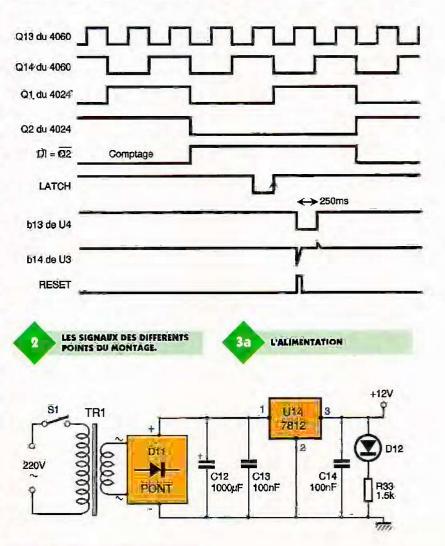
Peu de remarques à faire à ce sujet, car il s'agit de l'application typique du compteur 4553 donnée par Motorola. La sortie retenue (carry) du premier compteur attaque l'entrée horloge du second (comptage sur 6 digits), alors que le multiplexage des afficheurs est synchrone grâce à la liaison horloge interne et à l'utilisation d'une seule série de transistors drivers. Notons que le type d'afficheurs retenu est à anode commune bien que le décodeur BDC/7 segments utilisé (4543) puisse s'accommoder des deux types.

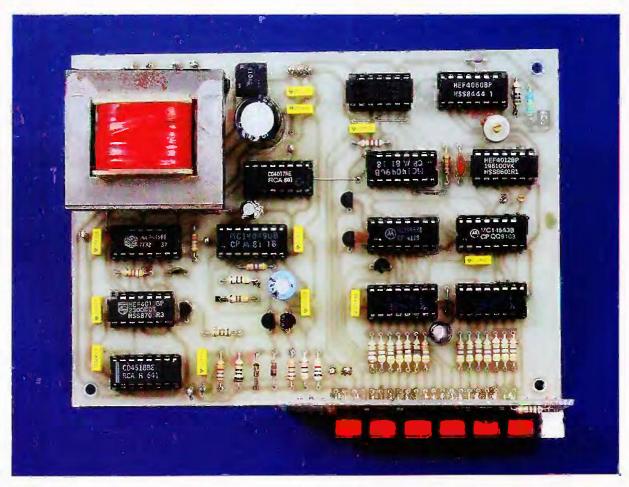
Base de temps

L'horloge est constituée d'un quartz à 32,768 kHz qui est mis en oscillation par le célèbre 4060. Un ajustage précis de la fréquence est obtenu par le condensateur ajustable qui permettra un étalonnage de la fréquence lue lors de la mise au point. La sortie de division la plus élevée, soit 214, fournit un signal de 2 Hz de rapport cyclique 1. Un second diviseur U₂ (4024) amène la fréquence de 0,5 Hz, fréquence qui foumit directement une demi-période de 1 seconde pour l'ouverture de la porte de comptage.

Ce signal d'ouverture, disponible sur la sortie Q₂ de U₂, est également utilisée pour commander la DEL de signalisation D₂ (porte) après bufferi-

sation par deux cellules C et D de U_3 (4049).


Logique de commande


Le comptage s'effectue pendant la phase où DI est à zéro, période pendant laquelle la DEL de signalisation est allumée. A la fin du comptage, il faut premièrement mémoriser le résultat puis remettre à zéro l'ensemble des compteurs.

Deux portes NAND à quatre entrées vont résoudre ces fonctions. La commande de mémorisation est en permanence à un. Elle passe à zéro lorsque ses quatre entrées seront à un, soit Q_{13} , Q_{14} de U_{1} à un, ainsi que Q_{1} et Q_{2} de U_{2} après inversion. L'impulsion de *latch enable* dure 250 ms mais la mémorisation se fait à l'instant du front montant de LE.

Pour le reset, une durée de 250 ms est trop longue dans la mesure où ce reset bloque également l'oscillateur de balayage des digits. L'application directe de cette impulsion se traduirait par une extinction complète de l'affichage de 250 ms toutes les secondes.

Pour éviter ce phénomène, le réseau R_3/C_3 différencie le front descendant de l'impulsion avec une constante

de temps de $10\,\mu s$, soit environ cinà fois plus que la durée minimale demandée par le 4553. Cette pulse différenciée est remise en forme par un inverseur de U_3 afin d'obtenir un reset correct.

Le diagramme des temps ci-après simplifie la compréhension de l'ensemble de décodage des impulsions de reset et de mémorisation.

Multiplicateur par 100

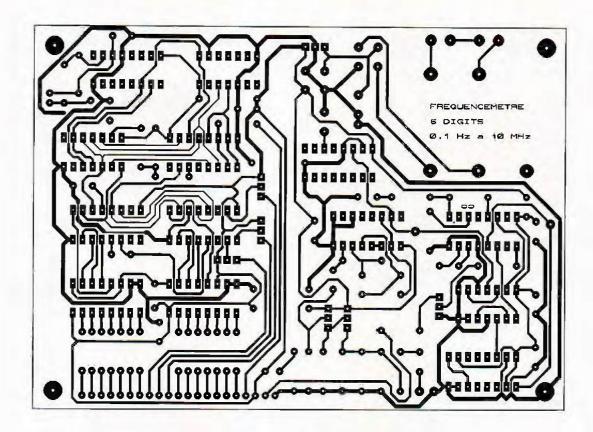
Il s'agit en fait d'un PLL verrouillé sur le signal d'entrée et possédant dans sa boucle de retour un diviseur par 100. Le V_{CO} fournit donc un signal asservi en fréquence sur l'entrée mais de fréquence cent fois plus grande. Cela permet de mesurer de façon plus précise les signaux à basse fréquence sans pour autant augmenter la durée de mesure.

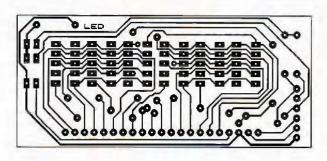
3 - Réalisation pratique

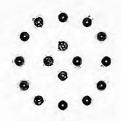
3.1 - Circuits imprimés (fig. 4)

Afin de donner au montage une certaine ergonomie et une facilité de câblage, celui-ci a été divisé en deux circuits imprimés. Le plus grand reçoit l'alimentation, les compteurs et la logique de commande. Le second, venant se monter à l'équerre, est équipé du panneau d'affichage. Cela permet d'avoir une face avant complètement fonctionnelle.

Il est possible d'élaborer les circuits imprimés en appliquant directement les éléments de transfert Mecanorma sur le cuivre préalablement bien dégraissé du verre époxy (travail fastidieux). Mais on peut également transiter par la réalisation d'un mylar transparent ou encore procéder par voie photographique en se servant du modèle publié comme référence. On se procurera tout de même les composants nécessaires avant de débuter la fonction du circuit imprimé. Cela permettra, le cas échéant, de modifier les connexions des composants qui diffèrent. Notons que les tracés ont été réalisés à l'aide du logiciel de CAO Cadpak puis imprimés sur film transparent à l'aide d'une imprimante laser. On obtient ainsi un mylar directement utilisable pour une insolation par procédé photographique ultraviolet. On pourra se procurer le fichier LYT auprès de la rédaction.


Après gravure dans un bain de perchlorure de fer suivie d'un abondant rinçage, toutes les pastilles seront percées à l'aide d'un foret de 0,8 mm de diamètre. Certains de ces trous seront à agrandir à 1 ou 1,2 mm pour les adapter au diamètre des connexions de composants plus volumineux tels que les picots ou le transformateur.


Vu la finesse de certaines pistes de ce montage, il est important de vérifier au testeur de continuité l'absence de microcoupures ainsi que celles de micro-courts-circuits toujours très difficiles à détecter à l'œil nu et qui, cependant, ont un effet catastrophique sur le fonctionnement du montage.

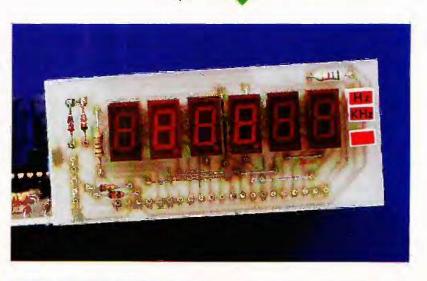

3.2 - Implantation des composants (fig. 5)

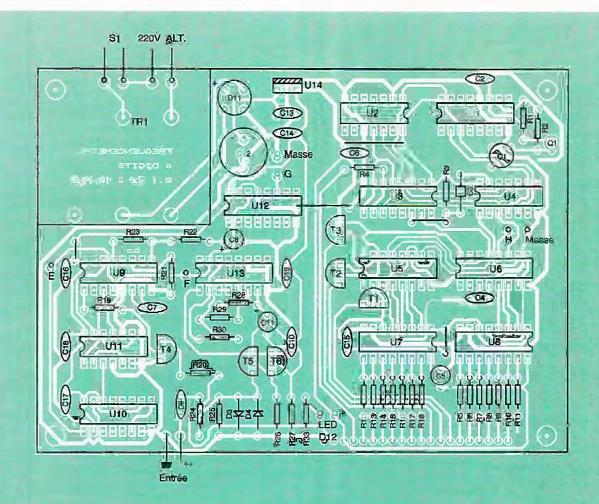
Après la mise en place des quelques straps de liaison (cinq pour le circuit principal et neuf pour le circuit d'affichage) qui ont permis d'éviter le problématique circuit double face, peu à la portée de l'amateur, on passera à l'implantation des résistances, des capacités et des diodes. Ensuite, ce sera le tour des transistors, des supports de circuit intégré et des picots de câblage. Implantez en dernier lieu le transformateur, les afficheurs et les DEL, en veillant à ce que ces composants soient à la même hauteur.

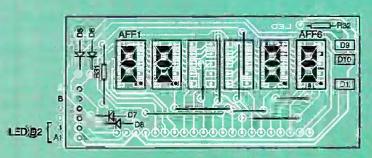
Enfin, les deux modules sont reliés à l'équerre par 21 straps réalisés à l'aide de fil rigide. Le transformateur, selon le modèle, sera relié par des fils ou à l'aide des pastilles prévues à cet effet (transfo moulé).

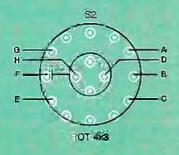
Toute erreur au niveau du câblage ne compromet pas seulement les chances d'un bon fonctionnement du montage mais peut aboutir dans certains cas à la destruction de composants, en particulier des éléments actifs.

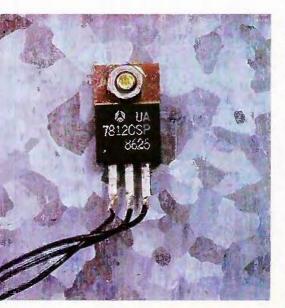
3.3 - Essais et utilisation


L'étape de mise au point, qui ne nécessite qu'un seul réglage, demande comme matériel spécifique soit un fréquencemètre étalon, soit une source de fréquence étalonnée.


En effet, le réglage de C₁ permettra d'obtenir la lecture exacte de la fréquence appliquée. Si vous n'avez pas le matériel nécessaire à son réglage, placez-le à mi-course. Sinon, injectez un signal de fréquence connu autour de 900 kHz sur le ca-libre 1 MHz et réglez C₁ pour que la fréquence affichée soit correcte, c'est tout!


Pour vérifier le fonctionnement du multiplicateur par 100, placez-vous sur le calibre 10 kHz, injectez à l'entrée du montage un signal basse fréquence connu (le 50 Hz par exemple) et attendez que la DEL de verrouillage du PLL soit allumée. Le fréquencemètre doit alors donner une mesure avec deux chiffres après


la virgule, soit le centième de hertz. Si un problème se présente, vérifiez votre câblage et/ou tentez de suivre à l'aide d'un oscilloscope le trajet du signal d'entrée en se référant aux ex-



plications données dans la partie, fonctionnement.

3.4 - Mise en boîtier

On utilisera pour le câblage de mesure un câble blindé de faible section et le plus court possible. La DEL d'indication de mise sous tension D_{12} est optionnelle, question de goût...

MINITEL E.P. 3615 CODE EPRAT

LESIMPLANTATIONS.

LISTE DES COMPOSANTS

Résistances :

R₁: 10 M Ω (marron, noir, bleu)
R₂: 330 k Ω (orange, orange, jaune)
R₃, R₂₂: 10 k Ω (marron, noir, orange) à 18 k Ω (marron, gris, orange)
R₄, R₃₂: 1,2 k Ω (marron, fouge, rouge)
R₅ à R₁₈, R₂₇, R₂, : 470 Ω (jaune, violet, marron)
R₁₇: 22 k Ω (rouge, rouge orange)

 R_{20} , R_{24} , R_{34} , R_{34} : 1 k Ω (marron, noir, rouge) R_{37} , R_{24} , R_{30} : 4,7 k Ω (jaune, violet, rouge) R_{23} : 100 k Ω (marron, noi jaune) R_{23} : $M\Omega$ (marron, noir, vert) R_{33} : 1,5 k Ω (marron, vert

Condensateurs:

rouge)

C₁: ajustable 3-30 pF (à défaut, 15 pF céramique)
C₂: 18 pF céramique
C₃, C₄: 1 nF céramique
C₅: 22 μF 16 V
C₆, C₇, C₁₀, C₁₃ à C₁, 2 100 nF plastique
C₇: 22 pF céramique
C₈: 10 μF 25 V radial
C₁₁: 100 μF 25 V radial

C12: 1 000 µF 25 V radial

Semi-conducteurs:

D₁, D₂, D₁₀: diodes DEL 5 mm rouge plate D₂: diode DEL 5 mm orange D₃ à D₂: 1N4148 D₁₁: pont de diodes 500 mA D₁₂: diode DEL 5 mm rouge AF₁ à AF₄: afficheurs anode commune FND 350 ou équivalent T₁ à T₃: 2N2907 (PNP) T₄: BC 547 (NPN) ou 2 N 2222

T₅: BF 256A (transistor FET)
T₄: BF 494 (NPN)
U₁: 4060
U₂: 4024;
U₃: 4049
U₄: 4012
U₅, U₆: 4553
U₇, U₈: 4543

U,: 4046 U10: 4518 U₁₁: 4013 12: 4017 U₁₃: 4049 U₁₄: 7812

Divers

Q1: quartz 32,768 kmz S1: rotacteur 4 circuits/ 3 positions ou 3 circuits/ 4 positions + bouton S: interrupteur unipolaire à levier TR: : transformateur 12 V 300 mA 3 supports Circuit intégré 14 broches 10 supports circuit intégré 16 broches 1 embase Cinch ou BNG (pour entrée) 1 câble secteur moulé 1 boîtier ESM EB16/05

ENCART THEORIQUE: BOUCLE A VERROUILLAGE DE PHASE (PLL)

La boucle à verrouillage de phase (PLL: *Phase Lock Loop*) a été créée pour être un élément utile dans de nombreux systèmes de communications. On l'utilise principalement à deux fins différentes:

- 1) comme démodulateur pour suivre une phase ou une fréquence (application typique en radiocommunication);
- 2) comme synchronisateur pour des signaux dont la fréquence peut varier dans le temps.

Le schéma-bloc d'un tel asservissement est donné ci-après.

Un système asservi est un système bouclé dont la grandeur de sortie est asservie à celle de l'entrée. Selon que la sortie retenue est celle du filtre passe-bas ou bien celle du V_{CO} , on réalise la fonction 1 ou bien la fonction 2 évoquées plus haut. L'étude des systèmes asservis s'effectue en trois parties :

 Détermination de la fonction de transfert de chaque élément du système puis celle du système complet

- Etude de la stabilité du système.
- Etude des performances, c'est-àdire précision en régime statique et dynamique.

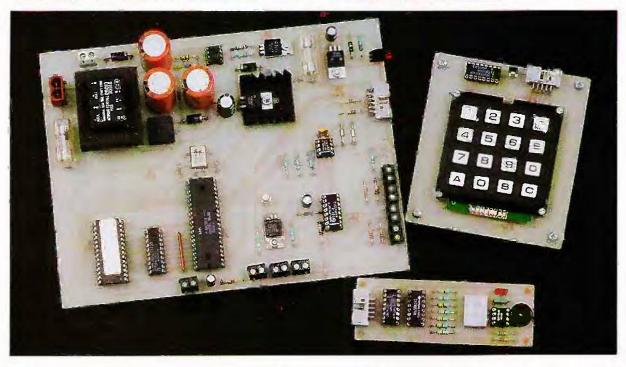
Nous ne rentrerons pas dans le détail de ces études, mais sachez que stabilité et précision sont indissociables et contradictoires. quence est suffisamment faible pour traverser le filtre passe-bas. La fréquence instantanée du V_{CO} varie donc, et, à un certain moment, si elle égale à celle du signal d'entrée, la boucle se verrouille.

Si la fréquence de Ei varie, le déphasage est modifié instantanément ainsi que le niveau continu de Ed. Ce décalage fait varier d'autant la fréquence du V_{CO} de façon à maintenir le verrouillage.

Pour mieux comprendre le fonctionnement de la boucle, considérons qu'initialement la boucle ne soit pas verrouillée mais que les fréquences des signaux Ei et Eo soient très proches. Dans ces conditions, Ed est un battement dont la fréquence est la différence des fréquences de Ei et Eo. Ce signal est appliqué à l'entrée du V_{CO} si sa fré-

Dans l'application qui est faite ici, on a introduit un diviseur par 100 dans la boucle de retour de Eo. Ainsi, ce sont les signaux Ei et Eo/100 qui sont verrouillés et on obtient donc un signal Eo qui est cent fois plus rapide que le signal d'entrée Ei.

LE POINTEUR PANORAMIQUE MC20-T


Le MC20-T assure la réception panoramique sur écran 14 cm des émissions avec indication du spectre en pleine bande ou en expansé, l'affichage de l'image du canal sélectionné entre 47 MHz et 870 MHz en 3 bandes (VHF + UHF); la plage de mesure s'étend de 30 à 80 dBµV avec un atténuateur d'entrée réglable de 0 à - 30 dB par bond de 10 dB. Il peut téléalimenter un préampli en 18 V-250 mA et consomme 1,1 A.

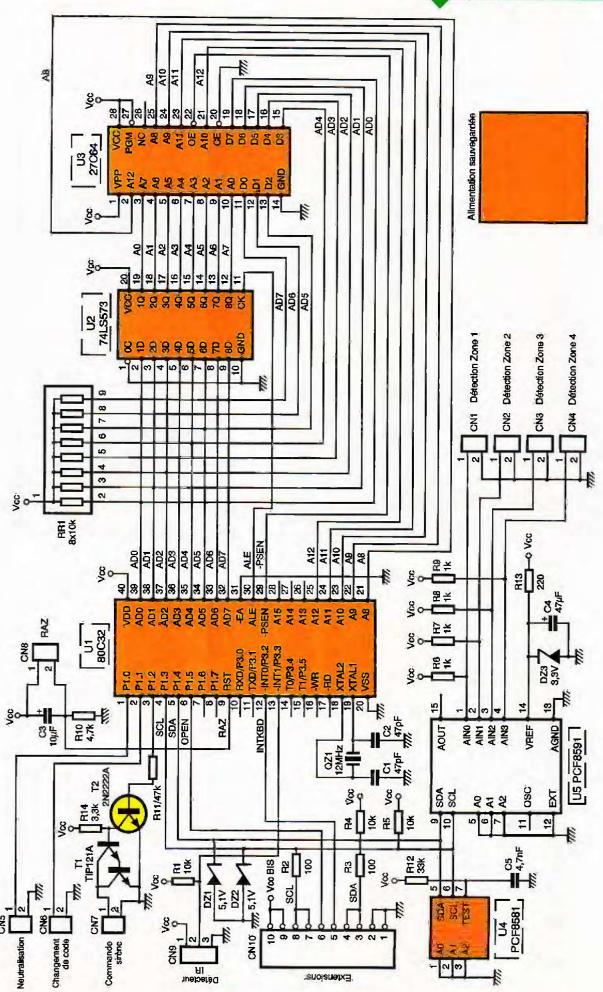
Felec SA 74330 La Balme-de-Sillingy Tél.: 50.68.80.17

METTEZ UN MICROCONTROLEUR DANS VOS MONTAGES: CENTRALE D'ALARME

Les systèmes d'alarme font (hélas!) désormais partie de notre vie. Même s'ils n'empêchent pas des individus décidés à passer à l'action, les systèmes d'alarme restent suffisamment dissuasifs pour freiner des cambrioleurs amateurs. Ce n'est pas le premier système d'alarme qui vous est proposé, mais nous nous devions de vous proposer un système articulé autour d'un microcontrôleum

L'intérêt de bâtir une centrale d'alarme autour d'un microcontrôleur réside dans la souplesse qui est procurée à l'utilisateur. Jugez-en vous-même. La centrale d'alarme que nous vous proposons ce moisci dispose de quatre zones temporisées protégées par contact plus une zone de détection à infrarouge. La centrale détecte bien entendu l'ouverture des contacts mais elle détecte aussi une tentative de « strapping » sur les fils du contact. En option, un module de visualisation (qui peut être déporté) permet à l'utilisateur de connaître l'état de fonctionnement de la centrale. En option également, la centrale dispose d'un clavier qui peut être déporté jusqu'à environ 4 mètres. Le clavier dispose d'un contact de détection d'ouverture. Par ailleurs, la centrale est protégée contre les courts-circuits qui pourraient survenir sur les fils de liaison du clavier.

Le nombre de sonneries de la sirène peut être limité, pour ne pas gêner le voisinage pendant des heures. La centrale dispose de deux codes dis-"tincts pour la mise en route et la neutralisation, dont le nombre de chiffres peut aller de 4 à 8. Toutes les temporisations peuvent être supprimées ou modifiées pour une valeur comprise entre 15 secondes et 4 minutes.


Schéma

Le schéma de la centrale d'alarme est visible en **figure 1**. Nous ne nous attarderons pas sur la partie associée au microcontrôleur U₁, car vous devez commencer à la connaître.

Les connecteurs CN_5 et CN_6 seront raccordés à des interrupteurs à clés soigneusement dissimulés. Le port P_1 du microcontrôleur étant pourvu de résistances de rappel à V_{CC} , les interrupteurs peuvent être raccordés directement au microcontrôleur.

La commande de la sirène est réalisée par la mise en conduction du transistor T₁. Pour ne pas surcharger l'alimentation de la centrale, la sirène devra être alimentée par une batterie externe (la même que pour le maintient de la centrale via CN₁₁, figu-

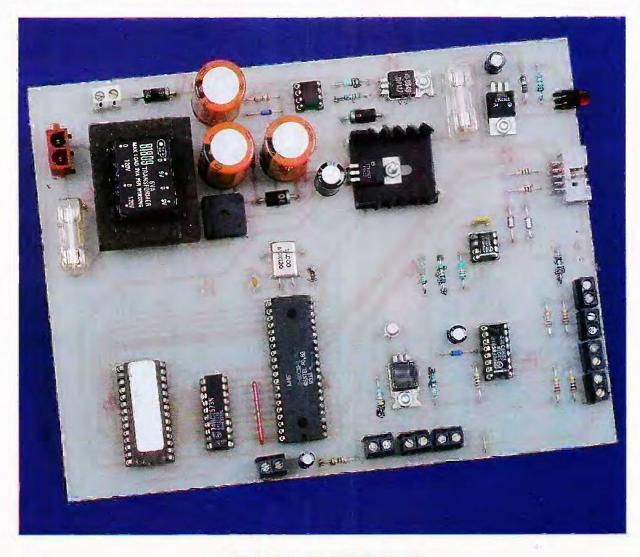
Le détecteur à infrarouge sera un mo-

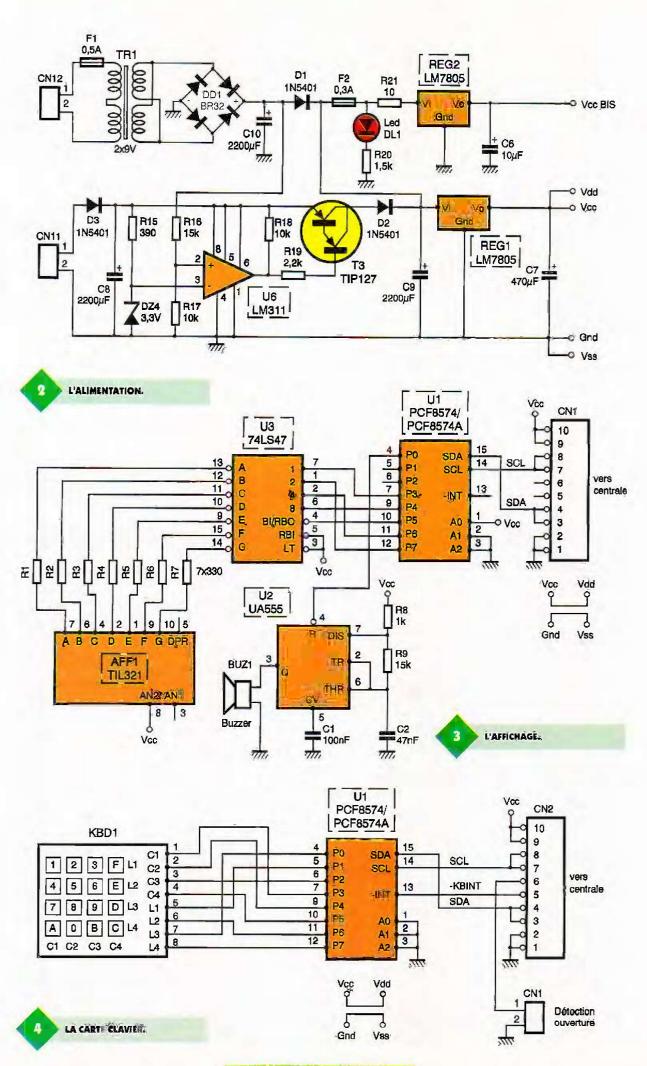
dule pyroélectrique autonome. L'utilisation du détecteur à infrarouge est en option. Il suffira de raccorder ou non le détecteur à CN₃. Vous pourrez faire l'acquisition du module plus tard, ce qui permet d'étoffer la centrale en fonction de votre budget.

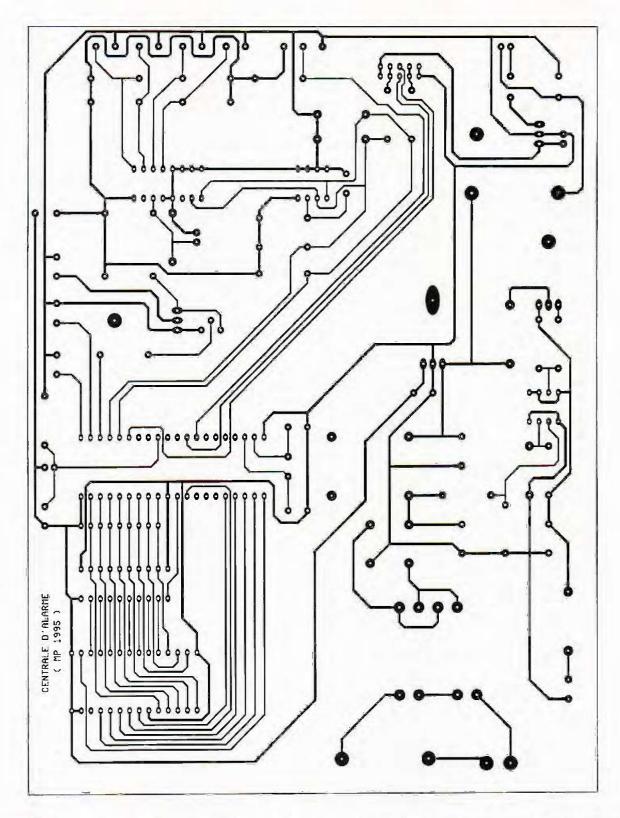
Les extensions seront connectées à CN₁₀. Ce connecteur véhicule les signaux d'un bus l⁹C piloté par U₁. L'alimentation des modules externes n'est pas la même que pour la centrale. En effet, il serait grave que la centrale puisse être mise hors service si les fils d'alimentation des modules externes étaient découverts puis mis en court-circuit.

Le circuit U₄ est une EEPROM qui se raccordera au bus I²C interne. Le circuit U₄ est utilisé en option, pour mémoriser les paramètres de fonctionnement de la centrale indiqués à partir du clavier. Si vous ne souhaitez pas utiliser le clavier, le circuit U₄ ne doit pas être installé.

Le circuit U_5 est lui aussi connecté au bus l°C interne. Le circuit U_5 permet de mesurer la tension présente sur ses entrées AINO à AIN3. Les entrées seront portées au potentiel $V_{CC}/3$


grâce aux ponts diviseurs formés par les résistances Ro à Ro et les résistances en série avec les détecteurs d'ouverture (contacts à ILS). Les résistances mises en série devront être déportées jusqu'au détecteur à ILS. Elles seront soudées directement sur l'une des pattes du détecteur. Cette. solution est bien plus efficace que d'utiliser les contacts seuls. Dans le cas où le contact est ouvert, le résultat est le même. En revanche, si le cambrioleur repère les fils qui courent le long d'une fenêtre, il sera tenté de casser la vitre pour ensuite court-circuiter les fils. Dans ce cas, il court-circuitera aussi la résistance associée au contact. L'entrée de U5 sera alors mise à la masse et la centrale va le détecter. La centrale va scruter les entrées AINO à AIN3 pour vérifier que la tension reste dans des limites imposées. Le programme de la ceritrale tient compte de la dispersion des résistances employées, de sorte qu'il n'y a aucun réglage à prévoir. L'alimentation de la centrale est articulée autour du régulateur REG1, tandis que l'alimentation des options est articulée autour du régulateur REG₂ (voir la figure 2). Cela permet

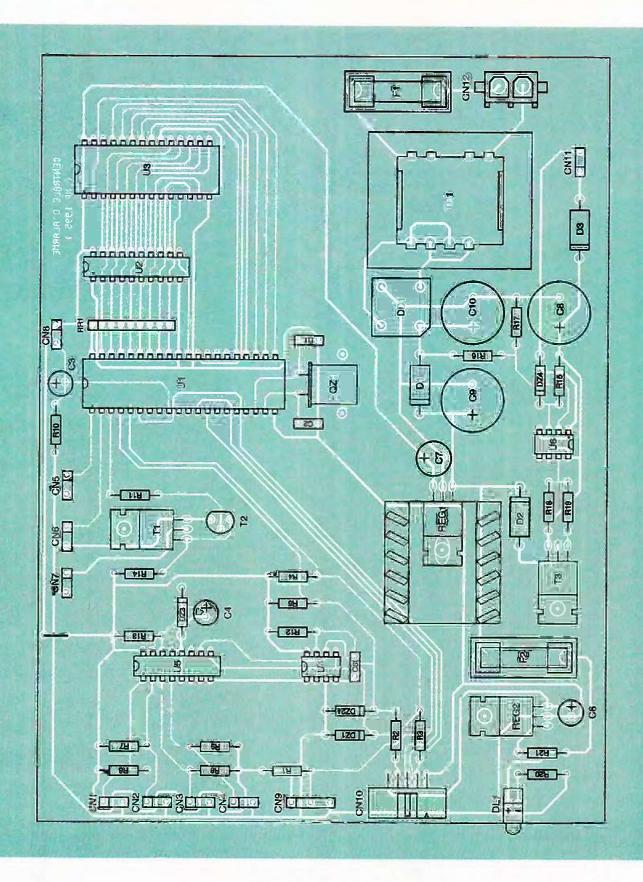

de garantir le fonctionnement de la centrale lorsque les fils du clavier sont court-circuités. Si l'alimentation du clavier est mise en court-circuit, le fusible F_2 sera détruit. La diode LED DL_1 permet de vérifier rapidement l'état du fusible F_2 .


L'énergie sera fournie soit par le transformateur TR₁, soit par la batterie connectée à CN₁₁. Le circuit U₆ commute le transistor T₃ pour que la batterie prenne le relais. Vous noterez que la batterie ne sera pas automatiquement rechargée par le montage. Vous pourrez prévoir un chargeur de batterie externe. Notez au passage que l'entrée de la tension de la batterie est protégée contre les inversions de polarité.

La **figure 3** dévoile le schéma du circuit de visualisation. Cette option est utile essentiellement avec le clavier. L'afficheur AFF₁ est piloté par le décodeur U₃. Le circuit U₃ est lui-même commandé par le circuit U₁. Le circuit PCF8574 est un port d'entrées/ sorties pour bus I²C, d'où la simplici-

té du schéma. La sortie PO commande l'oscillateur astable U_2 , lequel génère le signal audible produit par BUZ_1 .

Enfin, la **figure 4** dévoile le schéma du clavier. Là aussi, le schéma est simple, grâce à l'utilisation du circuit PCF8574. Les connexions du clavier semblent désordonnées sur le schéma. Cela permet de simplifier le cir-

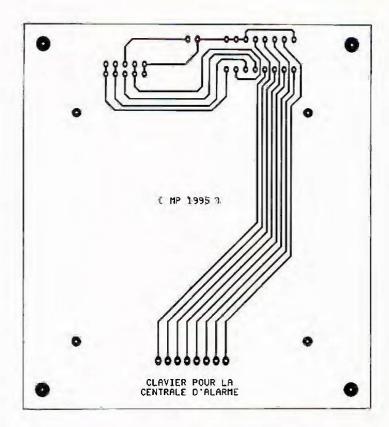

cuit imprimé. Le programme de la centrale tiendra compte du raccordement particulier. le connecteur CN₁ sera «strappé» par un interrupteur destiné à détecter l'ouverture du boîtier.

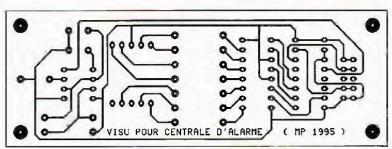
Réalisation

Le circuit imprimé de la centrale d'alarme est visible en figure 5. La vue d'implantation qui l'accompagne est la figure 6. Le circuit imprimé du clavier (optionnel) est re-

produit en figure 7, avec la vue d'implantation associée en figure 8. Enfin, le module de visualisation (en option aussi) est représenté en figure 9 avec la vue d'implantation n° 10.

Avant de réaliser le circuit imprimé de la centrale, il est préférable de vous procurer les composants pour vous assurer qu'ils s'implanteront correctement. Cette remarque concerne particulièrement le transformateur et les portes fusibles. Il n'y a pas de difficulté particulière pour

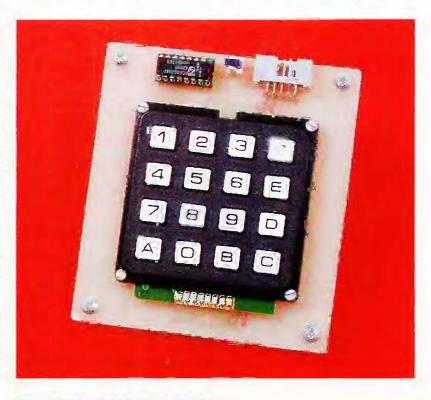

fimplantation. Soyez tout de même attentifs au sens des condensateurs et des circuits intégrés. N'oubliez pas l'unique strap sur le circuit principal (fig. 6).

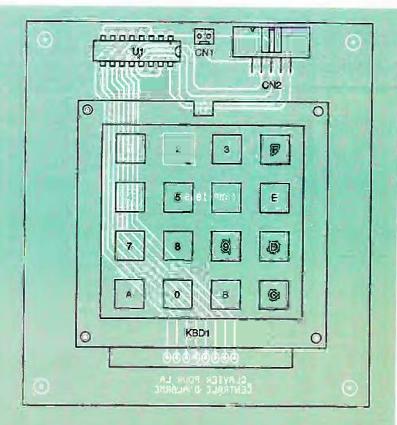

Le régulateur REG₁ sera impérative

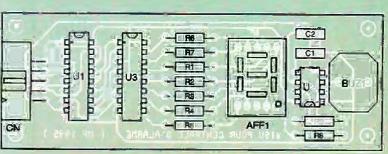
ment monté sur un dissipateur ayant une résistance thermique inférieure à 17 °C/W, pour éviter d'atteindre une températeur de jonction trop élevée. Quant au régulateur REG₂, un dissipateur thermique n'est pas indispensable. Néanmoins, lorsque l'afficheur du module de visualisation est allumé, le régulateur REG₂ chauffe un peu. Si vous décidez de

monter REG₂ sur un dissipateur thermique, vous devrez choisir un petit modèle qui puisse se loger à côté du porte-fusible (pour F₂). En raison de la proximité des deux éléments, il serait utile de préférer un support pour fusible équipé d'un capot isolant.

La figure 11 vous indique comment connecter les différents contacts et

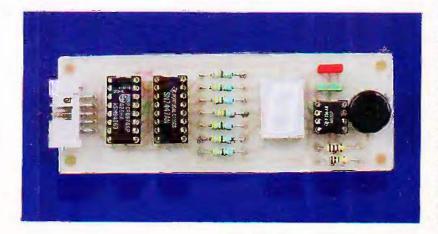



interrupteurs à la centrale. Si vous ne souhaitez pas utiliser l'entrée du détecteur à infrarouges, il suffit de ne rien brancher sur CNo. Si vous ne souhaitez pas utiliser le clavier, vous ne devrez pas implanter l'EEPROM U4 sur la centrale. Si le circuit U4 est détecté, la centrale utilisera le contenu de l'EEPROM pour déterminer les paramètres de fonctionnement (temporisations, codes, etc.). Lors de la première mise en service, il est nécessaire de mettre à jour le contenu de U4. Cela n'est possible qu'à partir d'une commande exécutée au clavier. En omettant le circuit U4, la centrale utilisera les paramètres par défaut que nous examinerons dans les paragraphes suivants.


Toujours si vous ne souhaitez pas utiliser le clavier, vous devrez neutraliser le contact de détection d'ouverture du clavier (broche 6 de CN₁₀/signal OPEN). Le signal doit être placé à la masse par un strap, sinon

la sirène se mettra en marche immédiatement.

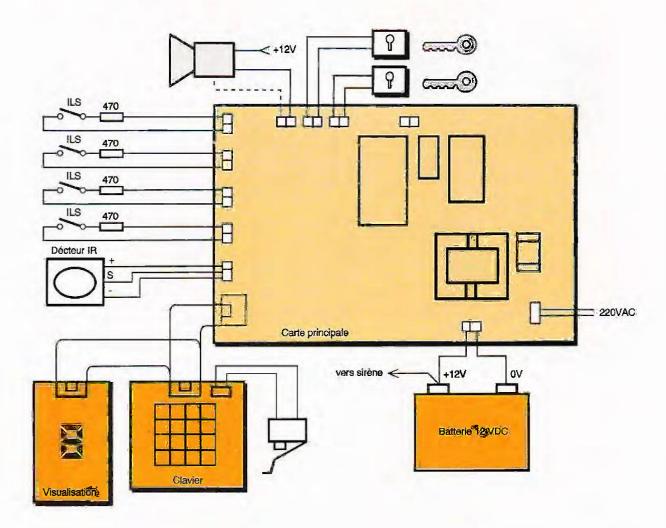
L'EPROM U₃ sera programmée selon le contenu d'un fichier que vous pourrez vous procurer par téléchargement sur le serveur Minitel. Vous trouverez les fichiers «U3.BIN» et «U3A.BIN» qui sont le reflet binaire du contenu de l'EPROM U3, selon la version du circuit U₁ que vous pourrez vous procurer, pour le clavier et le module de visualisation. Vous trouverez aussi les fichiers «U3.HEX» et «U3A.HEX» qui correspondent au même contenu mis au format Hexa Intel, ce qui peut vous être utile seion le modèle de programmateur d'EPROM dont vous disposez. Si vous n'avez pas la possibilité de télécharger les fichiers, vous pourrez adresser une demande à la rédaction en joignant une disquette formatée, accompagnée d'une enveloppe self-adressée convenablement affranchie (tenir compte du poids de la disquette). Si vous ne souhaitez pas équiper votre centrale d'alarme du clavier et du module de visualisation, vous pourrez choisir n'importe quel fichier pour programmer votre EPROM. Mais si vous utilisez un module d'extension, vous devrez prendre garde à choisir le bon fichier. Nous avons expliqué que les circuits PCF8574 et PCF8574A, bien qu'ils aient la même fonction, ne répondent pas à la même adresse. Le programme de la centrale d'alarme a donc été compilé pour les deux références de circuit possible. Si vous achetez un circuit PCF8574, vous de-



IMPLANTATION DES COMPOS SANTS.

vrez utiliser le fichier « U3.BIN » ou « U3.HEX ». Si vous achetez un circuit PCF8574A, vous devrez alors utiliser le fichier « U3A.BIN » ou « U3A.HEX ». Surtout, ne mélangez pas les références pour le circuit U_1 entre les deux platines d'extension.

Vous devrez vous procurer exactement les mêmes circuits si vous souhaitez utiliser les deux modules. Ce


sont les lignes d'adresses A0 à A2 qui feront la distinction entre les deux modules.

Utilisation de la centrale d'alarme

Le fonctionnement de la centrale est relativement complexe en raison des différentes options proposées. Commençons par le cas le plus simple, le cas où la centrale est utilisée sans clavier ni module de visualisation. Rappelons que, dans ce cas de figure, le circuit U4 ne doit pas être installé sur la platine principale. Dans ce cas de figure, la centrale sera neutralisée à partir de l'interrupteur à clé branché sur CNs. Aucun interrupteur ne doit être connecté à CN6. Lorsque l'interrupteur de neutralisation est fermé, la commande de la sirène est inhibée (T1 en collecteur ouvert). Dès que l'interrupteur connecté à CN₅ passe en position ouverte, la centrale passe en surveillance. Dans ce mode, la centrale scrute les différentes zones, tour à tour, et recherche les intrusions possibles. Rappelons que le contact de détection d'ouverture du boîtier du clavier doit être «strappé» comme nous l'avons expliqué dans les paragraphes précédents. En cas d'intrusion dans les zones 1 ou 2, l'alarme est déclenchée immédiatement. En ce qui concerne la zo-

ne 3, il est introduit une temporisation de 15 secondes avant de mettre en marche la sirène. Pour la zone 4 et le détecteur à infrarouges, le délai de temporisation passe à 30 secondes. Pour ne pas gêner outre mesure le voisinage, la commande de la sirène est active pendant 1 minute et un silence de 2 minutes s'ensuit. Puis le cycle recommence jusqu''à ce que la centrale soit neutralisée par la clé. Abordons maintenant les options. Vous pouvez utiliser le module de visualisation sans pour autant utiliser le clavier. Les messages affichés et leur signification sont indiqués en figure 12. Certains messages n'ont de sens qu'avec le clavier et le circuit U4 installé sur la platine principale. Le buzzer du module de visualisation retentira de façon saccadée pendant la temporisation associée aux différentes zones pour vous avertir du déclenchement imminent de la sirène. Avec le clavier, lorsque la centrale attend une action particulière, le buzzer continuera de retentir pour attirer votre attention.

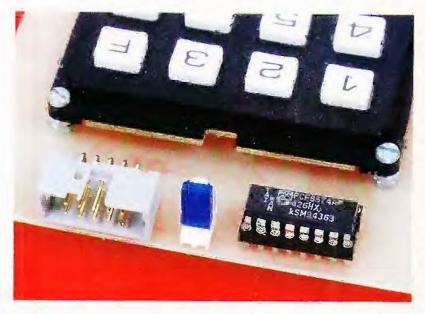
C'est avec le clavier que vous pourrez utiliser toutes les fonctions de la centrale. Dans ce cas de figure, toutes les options doivent être instal-

lées (U.4, module de visualisation et interrupteur de changement de code sur CN6).

A la première mise en route, il sera nécessaire de mettre à jour le contenu de l'EEPROM U₄ pour que la centrale y comprenne quelque chose. Pour cela, avant de mettre la centrale sous tension, placez l'interrupteur de neutralisation (CN₅) et l'interrupteur de changement de code en position fermée. Mettez alors la centrale sous tension. Le module de visualisation doit afficher une sorte de lettre «U» sur les segments du

haut. Ce message vous indique que la centrale attend la modification des paramètres. Pour placer les paramètres par défaut dans l'EEPROM U₄, appuyez successivement sur les touches «C», «D» et «E» du clavier. Le buzzer retentit alors une fraction de seconde et le message «t» apparaît un bref instant. Par la suite, vous pourrez de nouveau utiliser cette séquence pour remettre l'EE-PROM U₄ aux valeurs par défaut, si le besoin s'en fait sentir.

Les paramètres par défaut sont les suivants: les zones 1 et 2 ne sont pas temporisées. La zone 3 est temporisée à 15 secondes. La zone 4 et la détection infrarouge sont temporisées à 30 secondes. Après ouvertu-


re de la clé de neutralisation, aucundélai avant examen des zones n'est autorisé. Les codes pris en compte par le clavier comportent quatre chiffres et sont temporairement fixés au code «0000». Aucun code de mise en route n'est attendu au clavier.

Ensuite, vous pouvez modifier individuellement chaque paramètre. Avant de choisir le paramètre que vous voulez modifier, vérifiez que la lettre «U» est affichée. Si ce n'est pas le cas, appuyez sur la touche «F», plusieurs fois de suite si nécessaire. Ensuite, lorsque l'afficheur présente le caractère «U», la première touche appuyée au clavier détermine le paramètre que vous souhaitez modifier.

Pour modifier la valeur de la temporisation de la zone n° 1, appuyez sur la touche «1» du clavier. Appuyez sur la touche «2» pour la zone n° 2, etc. Appuyez sur la touche «5» pour le délai de la zone à détection infrarouge et sur la touche «6» pour le délai de mise en action de la centrale.

Le module de visualisation affiche alors la valeur courante. Appuyez sur les touches 0 à 5 selon le délai que vous souhaitez. La valeur 0 indique qu'aucun délai n'est nécessaire. La valeur 1 correspond à un délai de 15 secondes. La valeur 2 correspond à 30 secondes, etc., jusqu'à la valeur 5 qui correspond à 4 minutes. Si le paramètre choisi est correct, la centrale vous informe par un « bip » bref tandis que l'afficheur présente

bref, tandis que l'afficheur présente le caractère «t» avant de revenir au caractère «U». Si vous voulez abandonner la modification, appuyez sur la touche «F» (ou n'importe quelle touche différente des valeurs 0 à 5). Le paramètre n° 7 (touche « 7 » lorsque l'afficheur présente le caractère «U») détermine le nombre de cycles de la sirène lorsque l'alarme est déclenchée. Le paramètre peut prendre les valeurs 0 à 9. Si le paramètre nº 7 prend la valeur 0, alors le nombre de cycles de la sirène est infini. Dans le cas où le nombre de cycles est écoulé, la sirène est désactivée définitivement tandis que le module de visualisation indique que l'alarme a été déclen-

Le paramètre n° 8 vous permet de choisir la longueur des codes. Par défaut, les codes sont à 4 chiffres. Vous pouvez choisir des codes entre 4 et 8 chiffres. La modification du paramètre n° 8 ne modifie pas le contenu des codes (remplis avec des «0» par défaut).

Le paramètre n° 9 indique à la centrale si le code de mise en route à partir du clavier est nécessaire. Le code de mise en route est différent du code de neutralisation pour

tromper les regards indiscrets. Choisissez la valeur 0 si le code de mise en route n'est pas nécessaire. Dans ce cas, dès que la clé de neutralisation est retirée, la centrale se met en action après le délai précisé par le paramètre n° 6. Si vous souhaitez que le démarrage de la centrale soit assujetti au code de mise en route, choisissez la valeur 1 pour le paramètre nº 9. Dans ce cas, lorsque la clé de neutralisation est retirée, la centrale vous informe qu'elle attend le code de mise en route. Pendant ce temps, le buzzer du module de visualisation retentit de facon saccadée pour attirer votre attention. Dès que le code souhaité aura été saisi, la centrale se mettra en action, après un délai supplémentaire si le paramètre n° 6 le précise.

Le paramètre n° A permet de modifier le code de neutralisation de la centrale. Pendant la saisie du code de neutralisation, le module de visualisation affiche le caractère «[». Toutes les touches du clavier peuvent faire partie du code. Aussi il n'est pas possible d'interrompre la modification en cours. Si vous voulez abandonner la modification ou si vous avez fait une fausse manipulation, vous devrez finir la saisie en cours pour recommencer la saisie après. Le nombre de codes à saisir dépend de la valeur du paramètre n° 8. Enfin, le paramètre n° B permet de modifier le code de mise en route de la centrale. Pendant la saisie du code de mise en route, le module de visualisation affiche le caractère «]».

Lorsque vous aurez fini les modifications des paramètres, n'oubliez pas de replacer la clé associée à CN6 dans la position OFF. Sinon, la centrale ne pourra pas être mise en route. En revanche, rassurez-vous, cette clé ne peut pas inhiber la centrale lorsque cette dernière a été mise en action. Il n'est donc pas indispensable de cacher aussi bien l'accès à cette clé.

Les codes affichés par le module de visualisation sont regroupés dans le tableau de la **figure 12**.

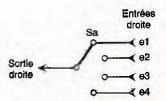
Vous voici maintenant en mesure de tirer pleinement parti de cette centrale d'alarme qui, nous le souhaitons, saura se montrer suffisamment dissuasive.

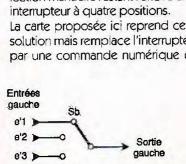
Pascal MORIN

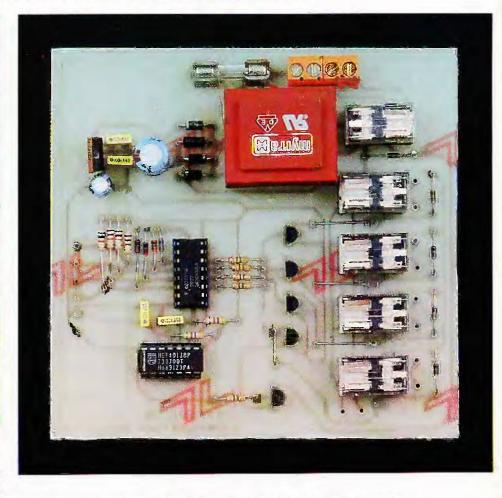
12

TABLEAU DES CODES

Code affiché	Signification)	
0	La centrale attend la saisie diffcode de mise en foure (pendant ce temp le ouzzer retentit de façon saccades)	
1	La centrale @Bigniot entrer dans le mode de surveillance (délai de mise en route). Pendant ce temps, le buzzer retentit de façon saccadée.	
2	La centrale est en mode de surveillance Attente du code de neutralisation (l'afficheurs éteint automatiquement au bout de 10 secondes	
3	(2) centrale a été neutralisée à partir du clayier. La centrale attend (2) confirmation par la clé (pendant ce temps, le buzzer retentit de façon saccadée).	
4	Dalarme vient de détecter une intrusion dans une zone temporisée. Pour éviter de déclencher la strène, utilisez soit le code ou la cle de neutralisation (pendangce temps) le buzzer retentit de facon saccadée).	
_5	L'alarme est déclenchée. Yous pouves interrompre l'alarme à l'aide du code ou de la cle de neutralisation (pendant ce temps, le buzzer retentit de façon saccadée).	
6	L'alarme est déclenchée, mais le nombre de sonneries de la sirène est dépassé. La sirène est arrêtée mais le buzzer continge de rétentir de façon saccadée. La centrale attend maintenant d'être meutralisée.	


COMMUTATEUR AUDIO

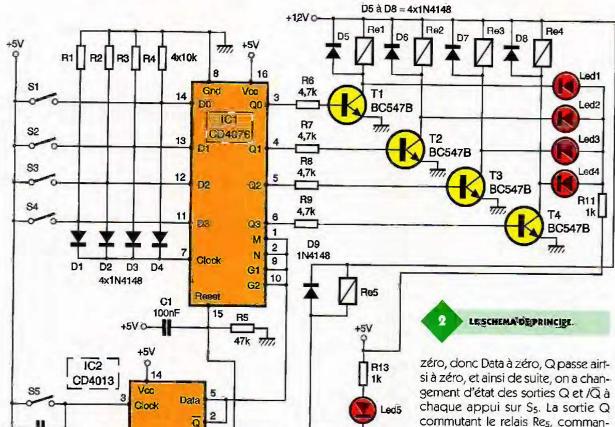

Lors de la mise au point d'un préampli, on néglige trop souvent la partie séleca tion des entrées ou sources. Surtout si ce préampli possède une commande numérique, car les commutateurs électroniques (imparfaits) constituent la solution technique la plus simple, alors qu'il suffit de peu de composants pour rendre cette commutation « parfaite » et d'utilisation conviviale.



Le montage décrit dans cet article a pour but de s'insérer au premier maillon d'un préamplificateur. Il permet la sélection de quatre sources en stéréo vers une seule sortie. En premier lieu, examinons les différentes techniques possibles employées, en se limitant aux systèmes à base d'interrupteurs mécaniques. Ce sont en effet les seuls qui permettent de se rapprocher du zéro défaut. Le système le plus simple consiste à utiliser un sélecteur rotatif comme illustré figure 1. Pour la sélection de quatre sources, un modèle à trois circuits et quatre positions permet également la visualisation de la source sélectionnée à l'aide d'une DEL par exemple. Quoique, si le bouchon du sélecteur possède un

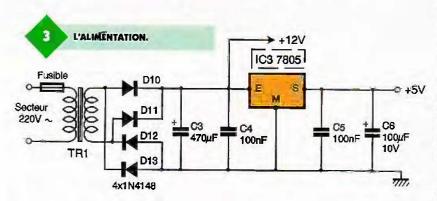
A SELECTION SIMPLE PAR

index, on se demande si l'allumage d'une DEL est véritablement utile. Un inconvénient de ce système : il ne permet pas de passer directement de la source 1 à la source 4 sans traverser les sources 2 et 3. De plus. dans le cas où l'on veuille un jour doter notre préampli d'une commande infrarouge, on voit mal la solution à adopter pour commander ce sélecteur, si ce n'est un moteur pas à pas couplé à l'axe du sélecteur et muni d'une interface «intelligente»!


Une solution pourtant: remplacer les contacteurs rotatifs par des relais pouvant être aisément mis en route par une interface numérique, la sélection manuelle restant l'affaire d'un

La carte proposée ici reprend cette solution mais remplace l'interrupteur par une commande numérique directe, la sélection d'une source s'effectuant par simple appui sur un bouton poussoir. Un cinquième bouton poussoir servant à la mise en/hors fonctionnement de l'ensemble préampli, ampli et sources gardant en mémoire la demière source écoutée.

Principe de fonctionnement


Examinons le schéma fonctionnel figure 2. IC1, un circuit CMOS type 4076, contient quatre bascules D dont les horloges et reset sont connectés ensemble. L'appui sur l'un des boutons poussoirs S₁ à S₄ fait naître un niveau logique 1 sur l'entrée de IC1 correspondante. Par l'intermédiaire des diodes D₁ à D₄, on présente un front montant sur l'horloge de toutes les bascules intemes du 4076. Cela a pour effet de charger dans ces bascules les données présentes sur les entrées de IC1. On obtient ainsi activation de la sortie correspondante et désactivation des autres, les entrées Do à D4 étant rappelées à la masse par les résis-

6'4 Þ

T5

BC547B

a

70

Gnd

Reset

R10

47k

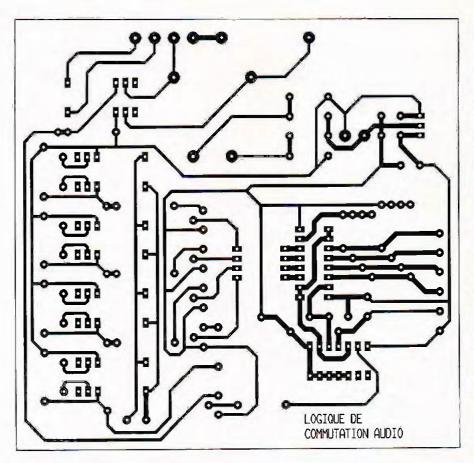
C2

100nF

R12

4.7k

tances R_1 à R_4 . Après relâchement du bouton poussoir, les sorties Q_1 à Q_4 restent au même état grâce aux mémoires que forment les bascules D. L'unique sortie active de IC_1 pilote le relais correspondant par l'un des transistors T_1 à T_4 , qui sont du type BC548B, mais tout autre type de transistor peut être utilisé, il suffit qu'il puisse commuter un courant minimal de $50\,\text{mA}$.


Les entrées M et N de IC₁ doivent impérativement présenter un niveau bas pour retrouver en sortie le contenu des bascules. De même, les entrées G₁ et G₂ devront être au niveau bas pour accepter le changement d'état des bascules par l'intermédiaire des entrées. La présence de 5V sur G₁ et G₂ rend donc inactifs les boutons poussoirs, tandis que 5V sur M et N fait passer les sorties à 0V.

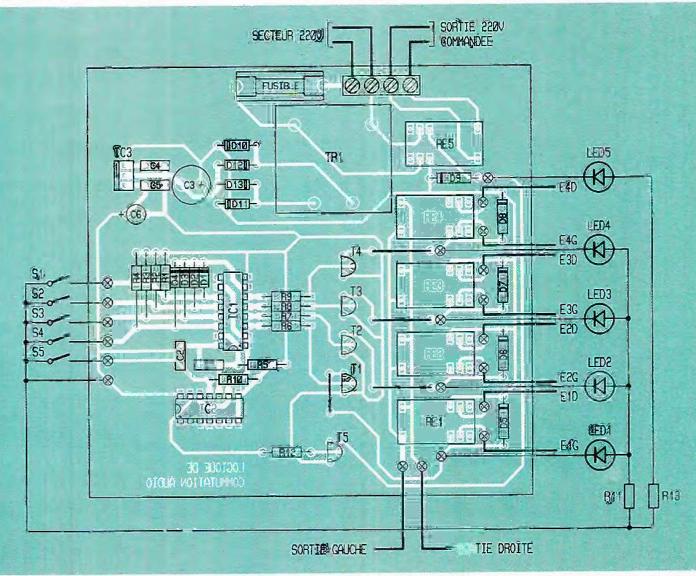
Ces entrées sont reliées ensemble et connectées à IC₂, un 4013 qui contient deux bascules Flip/Flop indépendantes dont une seule est utilisée. Le câblage de cette bascule lui présente à sa mise sous tension un front descendant sur l'entrée reset, cela suffit à faire passer la sortie Q à 0 et /Q à 1. /Q étant reliée à l'entrée Data, une simple impulsion sur l'entrée clock transmettra l'état de Data sur Q. Au premier appui sur S₅ après la mise sous tension, /Q étant à 1, on aura donc passage de Q à 1, donc /Q à 0. Au second appui, /Q est à

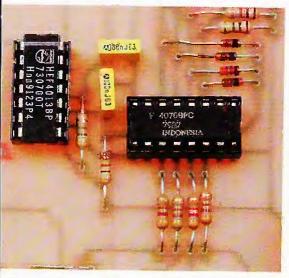
zéro, donc Data à zéro, Q passe airtsi à zéro, et ainsi de suite, on a changement d'état des sorties Q et \sqrt{Q} à chaque appui sur S_5 . La sortie Q commutant le relais Re_5 , commandant l'alimentation secteur de l'ampli, des sources et du reste du préampli, on obtient bien une mise en/hors fonctionnement de l'ensemble de la chaîne par simple appui sur S_5 .

Revenons maintenant sur les entrées M, N, G₁ et G₂ de IC₁ qui sont connectées à /Q de IC2. On aura activation des relais de sélection et autorisation de changement d'état des bascules de IC1 seulement si /Q est à 0, soit Q à 1, donc ensemble de la chaîne alimenté. La coupure d'alimentation par Res ne coupe pas celle de IC1, étant indépendante, au rallumage de l'ensemble, la source sélectionnée avant la coupure se retrouvera de nouveau active. Les DEL sont connectées en parallèle sur les relais par l'intermédiaire d'une seule résistance de polarisation; en effet, une seule source pouvant être sélectionnée à la fois, une seule DEL sera

Un éclaircissement s'impose quant au réseau constitué par C_2 , R_{10} et S_5 . Il s'agit d'un système anti-rebonds rudimentaire mais efficace et surtout essentiel, car si avec IC₁ deux appuis successifs sur S_1 à S_4 ont le même effet, pour IC₂, le rebond annule l'effet du premier appui et rend l'utilisation quasi impossible. En temps normal, S_5 au repos, C_2 est chargé et présente une tension de S_5 à ses bomes. L'appui sur S_5 décharge C_2 , après relâchement de S_5 , la tension aux bornes de C_2 remonte progressivement. Tant que cette tension ne remonte

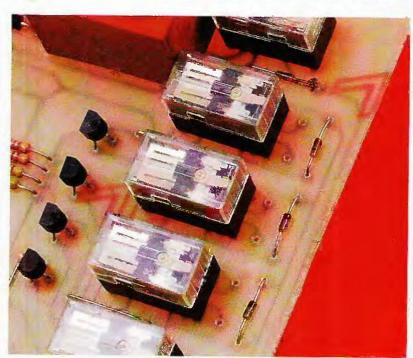
LECIRCUIT ÎMPRIME

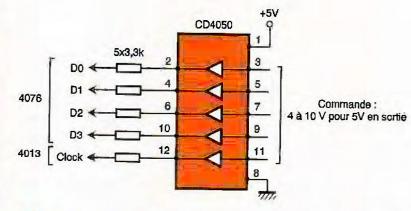

pas au-dessus de 3,5 \vee (5 \vee – seuil bas de détection IC₂ = 5 – 1,5 = 3,5 \vee), un nouvel appui n'aura aucun effet, car le 4013 ne verra pas apparaître de front montant supérieur à 1,5 \vee sur son entrée clock.


L'alimentation, présentée en figure 3, est très classique et ne demande aucun commentaire particulier étant donné son universalité.

Réalisation

Un circuit imprimé vous est proposé en figure 4, l'implantation des composants, figure 5, ne demande aucun commentaire, un soin particulier devra toutefois être pris pour le câblage entre la carte principale et la carte contenant boutons poussoirs et DEL, cette dernière a volontairement été séparée du reste de l'électronique afin de laisser libre cours à





votre imagination au niveau de l'aspect « design » à donner à votre préamplificateur. Cette carte pourra être réalisée à l'aide de la technique des transferts directs sur le cuivre brut puis gravure ou tout simplement sur une carte d'essai en bakélite pastillée et percée. L'utilisation d'un câble en nappe à onze conducteurs est conseillée pour la liaison entre les deux cartes. Les câbles véhiculant le signal audio seront de préférence blindés, le blindage n'étant pas relié à la carte de sélection mais seulement sur les entrées, les masses entrées et sorties étant reliées entre elles.

EXEMPLE D'INTERFAÇAGE

Mise en route et vérification

Le circuit terminé, retirez IC1 et IC0 pour vérifier les tensions disponibles sur les supports; cela étant fait, vous pouvez les remettre en place en ayant pris soin de débrancher l'appareil. A la mise en route, aucune DEL ne doit être allumée; en effet, Res n'est pas connecté, donc aucune sortie n'est active. L'appui sur S₅ doit provoquer commutation de Res et allumage de la DEL 5 seule. Aucune source n'est sélectionnée car la mise sous tension de la carte met à zéro les sorties de IC1. Chaque appui sur S₁ à S₄ doit alors commuter le relais et la DEL correspondante.

Extension possible

Ce circuit peut aisément être commandé par un récepteur infrarouge, par connexion directe sur les boutons poussoirs, par l'intermédiaire de résistances, afin de ne pas détériorer le décodeur infrarouge lors d'appuis sur les touches. Un exemple d'interface est présenté en figure 6, il utilise un circuit type 4050 qui permet en outre d'accepter une commande en 0-10 V, même alimenté en 5 V, grâce à une résistance interne.

D₂ COURTAY

LISTE DES COMPOSANTS

Résistances

 R_1 à R_4 : 10 k Ω (arron, noir, orange) R_5 , R_{10} : 47 k Ω (jaune, violet, orange) R_6 à R_9 , R_{12} : 4,7 k Ω (jaune, violet, rouge) R_{11} , R_{13} : 1 k Ω (marron) noic, rouge)

Condensateurs

C₁, C₂, C₄, C₅: 100 nF C₃: 470 µF 16 V C₆: 100 µF 16)V

Semi-conducteurs

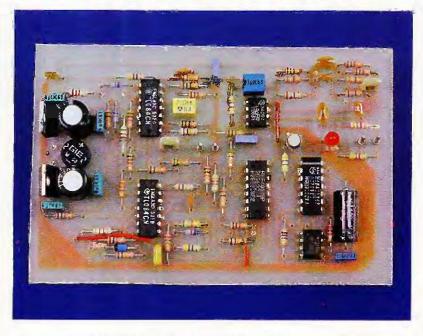
D₁ à D₂ : 1N4148 D₁₀ à D₁₃ : 1N4004 T₁ à T₅ : BC547B IC₁ : CD4076 IC₂ : CD4013 IC₃ : 7805

Divers

Re₁ à Re₃ Trelais 2RT, 12 V Transformateur 220 V/9 2 VA S₁ à S₅ Spoussoirs noir, orange) DEL₁ à DEL₅ : DEL 3 mm

PEDALE DE DISTORSION

Avec son noise-gate intégré et son régla= ge graves/body/algus, cette pédale peut rivaliser avec ce qui se fait de mieux en la matière, et pour un coût nettement inférieur... De plus, comme un tel dispositif est gourmand en courant, nous l'équiperons d'un petit transformateur, ce qui vous évitera de changer les piles toutes les semaines!


Présentation

Le cœur du montage est un multiplexeur analogique qui est commandé par deux signaux. Le premier est celui provenant du poussoir, qui passe par un dispositif de mémorisation éliminant les rebonds parasites de l'interrupteur. Le deuxième signal provient de l'étage Noise-Gate, qui compare le niveau du signal de sortie à un niveau de référence. Ce signal est prioritaire sur le précédent et sera actif dès que le niveau sonore n'est pas assez élevé.

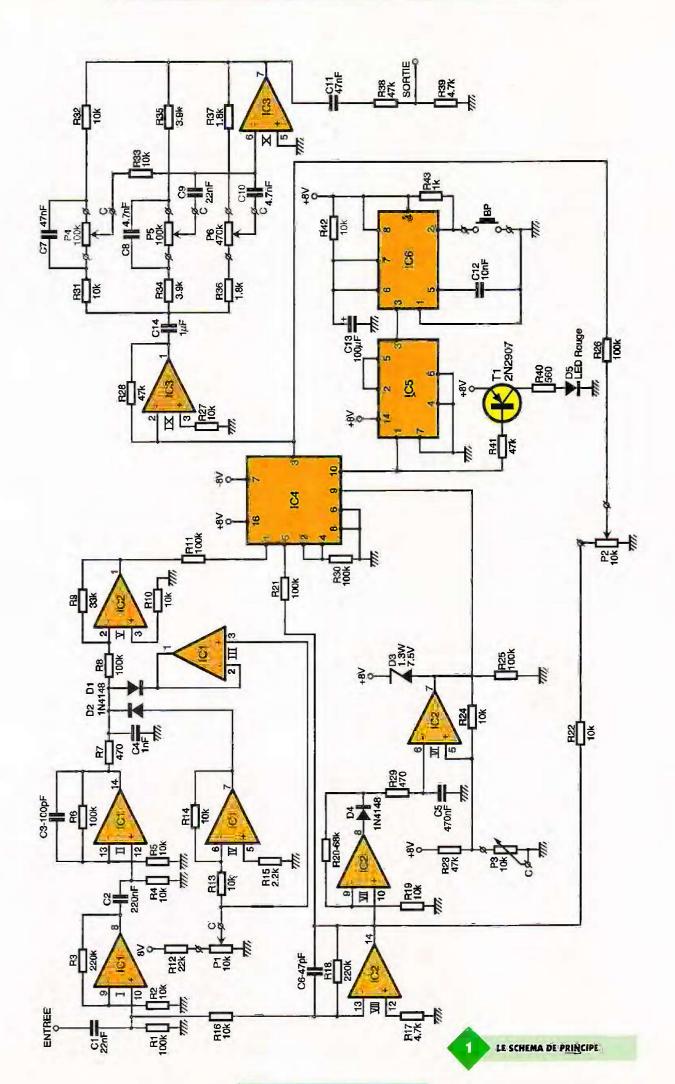
En fonction de la combinaison logique formée par les états de ces deux fils de commande, la sortie du multiplexeur est reliée à la masse, au son « sans distorsion » ou au son distordu. Le son «sans distorsion» est celui de la guitare que l'on a juste préamplifié, alors que le son distordu provient d'un étage écrêteur qui transforme le signal sinusoïdal en sianal rectangulaire. La sortie du multiplexeur attaque ensuite un mélangeur dont le but est de doser le niveau de distorsion du signal. Et, enfin, un étage correcteur permet de créer à peu près toutes les tonalités, en amplifiant ou atténuant les graves, médiums et aigus.

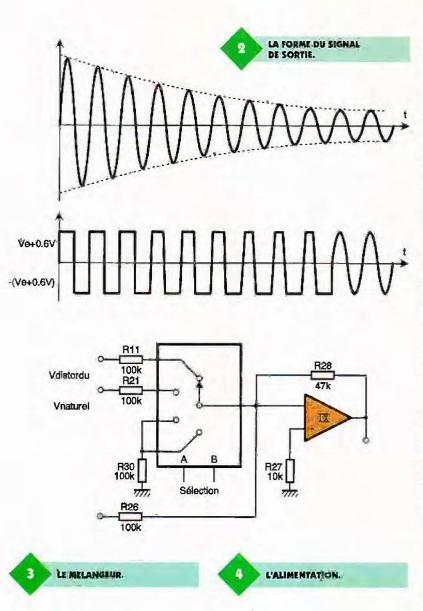
Le schéma (fig. 1)

Le diviseur de tension formé de R_{12} et P_1 permet d'obtenir une tension Ve

comprise entre 0 V et (Vcc x P1)/(R12 + P₁) = 2,5 V. L'amplificateur opérationnel III est câblé en suiveur, il impose donc Ve sur sa sortie. Quant à l'amplificateur IV, il est câblé en inverseur, on a donc - Ve sur sa sortie. Ainsi, si la sortie de l'amplificateur Il devient supérieure à Ve + 0,6V, D1 conduit et la tension sur son anode ne peut plus augmenter (même si l'intensité qui la traverse augmente). De même, si la sortie de l'amplificateur II devient inférieure à - (Ve + 0,6 V), D₂ conduit et la tension sur sa cathode ne diminue plus. Il y a dans ces deux cas écrêtage du signal à Ve + 0,6 V. Comme P₁ peut faire varier Ve de 0 à 2,5 V, le signal de sortie sera compris entre 0,6 V et 3,1 V. P1 est en fait le potentiomètre de gain.

Pour qu'il puisse y avoir écrêtage, il faut que l'on amplifie fortement le signal d'entrée qui, lui, évolue entre 10 mV et 200 mV. Cette tâche est remplie par les amplificateurs opérationnels I et II qui sont câblés en amplificateurs non-inverseurs de gains respectifs 23 et 11, ce qui nous donne un gain total de 253. Ainsi, pour une tension d'entrée de 10 mV, on obtient en sortie une tension de 2,53 V, ce qui est suffisant. La figure 2 montre le signal que l'on obtient si on a en entrée un signal sinusoïdal amorti (signal produit par une corde)


Une fois le signal écrêté, on diminue son amplitude de manière qu'il redevienne compatible avec des signaux audio classiques (~ 800 mV). Cette opération est réalisée par l'amplificateur V qui est câblé en amplificateur inverseur. Son gain vaut – R₉/R₈, soit – 0,33.


Le son issu de la guitare est aussi amplifié par l'amplificateur opérationnel VIII dont le gain vaut – 22. Le signal de sortie est redirigé vers plusieurs étages: le noise-gate, le multiplexeur analogique et l'étage de mixage.

Pour ce demier étage, un pont diviseur formé de R_{22} et P_{2} permet de ne réinjecter qu'une partie du signal.

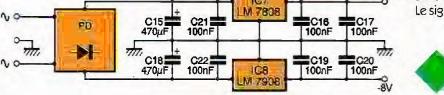
Pour réaliser l'étage noise-gate, on effectue un redressement mono-alternance du signal audio grâce à l'amplificateur VII couplé à la diode D₄. De plus, cet amplificateur permet d'ajouter un gain valant 1 + Roo/R19 = 7,8. Le condensateur C₅ se charge par R₂₂ à la valeur maximale du signal, ce qui nous donne une tension continue sur l'entrée inverseuse de l'amplificateur opérationnel VI. Cet amplificateur est câblé en comparateur de potentiel et la contre-réaction assurée par R₂₄ crée une hystérésis. Comme l'alimentation se fait en ± 8V. on a en sortie deux points de repos à + Vsat et - Vsat, ce qui correspond à peu près à + 7,5 V et - 7,5 V. Or, pour savoir commander le multiplexeur, il nous faut deux états logiques : l'état bas compris entre 0 et Vcc/3 et l'état haut compris entre 2 Vcc/3 et Vcc. Pour l'état haut, on voit immédiatement qu'il y a compatibilité, mais il faut ajouter la diode Zener D₃ pour que la tension ne devienne pas inférieure à 0 V.

Regardons comment fonctionne ce

raison passe de 4,15 V à 0,77 V. Il faudra donc que la tension V- devienne inférieure à 0,77 V pour que la sortie rebascule à + Vsat. Un tel dispositif est nécessaire car le signal sur l'entrée V- n'est pas parfaitement continu et sa composante variable pourrait induire des oscillations parasites en sortie.

L'autre entrée de commande du multiplexeur provient du bouton poussoir qui sert à faire la sélection «son distordu»/«son naturel». Comme le contact est fugitif, on mémorise la sélection grâce à une bascule D. Pour éliminer les rebonds parasites du bouton poussoir, qui risqueraient de déclencher plusieurs fois la bascule, on utilise un monostable constitué par un NE555. On obtient donc en sortie une impulsion de durée déterminée $T = 1,1 \times R_{42} \times C_{13}$, qui se prolonge si l'on maintient le bouton poussoir enfoncé. La DEL permet de visualiser la position du multiplexeur, elle est allumée lorsque l'on sélectionne la distorsion (niveau logique 0 en sortie de la bascule).

L'étage multiplexeur/mélangeur peut être schématisé par le circuit de la **figure 3.**

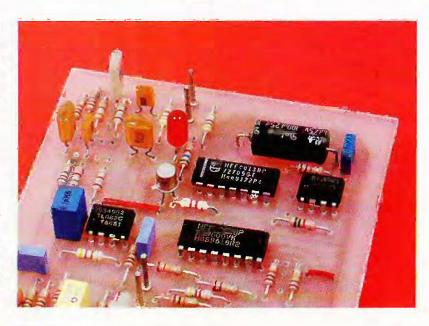

L'amplificateur IX est câblé en sommateur inverseur et la sortie Vs vaut :

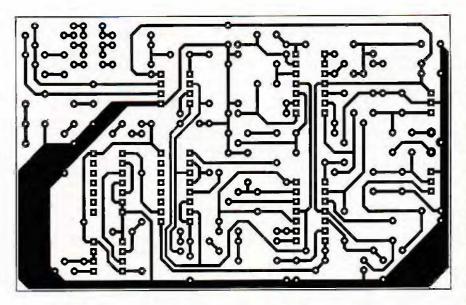
- Pour A = B = 0
- Vs = (Vdist + k. Vnat)/2
- Pour A = 1 et B = 0
- Vs = (Vnat + k . Vnat) / 2
 - = Vnat (1 + k) / 2
- Si B = 0

+8V

- $Vs = k \cdot Vnat / \tilde{2}$
- avec 0 < k < 0.5.

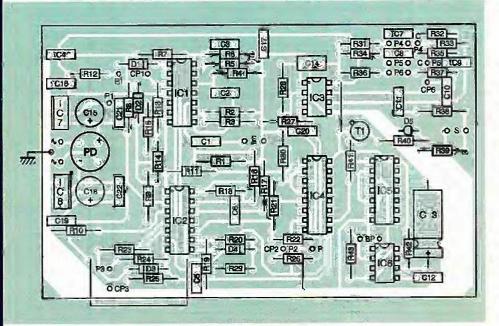
Le signal ainsi obtenu attaque un éta-


comparateur. S'il n'y a pas de signal en entrée, la tension sur l'entrée inverseuse est nulle. Comme la tension sur l'entrée non-inverseuse est positive, la sortie est à + 7 V. On peut donc calculer le potentiel sur l'entrée non-inverseuse qui vaut:


 $\sqrt[n]{V} = \frac{(V_{CC}/R_{23} + 0/P_3 + V_{Sat}/R_{24})}{(1/R_{23} + 1/P_3 + 1/R_{24})}$

On voit qu'en faisant varier P₃ on fait varier le seuil de détection, ce sera donc un réglage du niveau de déclenchement du noise-gate.

Pour $P_3 \sim 0 \Omega \Rightarrow V^* = 0 V$ et pour $P_3 = 10 \Omega \Rightarrow V^* = 4.15 V$.


Lorsque l'on a un signal audio et que la tension V- devient supérieure à la tension V+, la sortie passe à ~ 0 V au lieu de ~ Vsat (effet de la diode Zener) et le nouveau seuil de compa-

LE CIRCUITIMPRIME

L'IMPLANTATION DES COMPO-

ge correcteur qui va modifier les propriétés du signal en accentuant ou diminuant certaines fréquences. Ce correcteur est construit autour de l'amplificateur opérationnel X, et les composants externes fixent les fréquences chamières à 200 Hz, 1 kHz et 10 kHz. Le diviseur de tension formé par R₃₈ et R₃₉ permet de diminuer le niveau de tension de manière que notre signal redevienne compatible avec les entrées «guitare». Si l'on veut augmenter le niveau de sortie, on pourra remplacer R₃₈ et R₃₉ par des résistances valant respectivement $92 \text{ k}\Omega$ et $15 \text{ k}\Omega$.

La bande passante de notre pédale de distorsion est fixée grâce aux condensateurs C₁, C₂, C₃, C₆ et C₁₁. La fréquence basse vaut :

 $f = 1/(2 \times PI \times R_1 \times C_1)$ $= 1/(2 \times PI \times R_4 \times C_2)$ $= 1/[2 \times Pl \times (R_{38} + R_{39}) \times C11]$ ~ 70 Hz

La fréquence haute vaut : $f = 1/(2 \times PI \times R_6 \times C_3)$

 $= 1/(2 \times PI \times R_{18} \times C_6) \sim 15000 \text{ Hz}$ L'alimentation ± 8V, nécessaire au fonctionnement de notre montage, sera fournie par un transformateur 2 x 9V de faible puissance (5 VA). Comme le montre la figure 4, les tensions alternatives issues de ce transformateur sont ensuite redressées par le pont de diodes PD. Les condensateurs C₁₅, C₁₈, C₂₁ et C₂₂ effectuent un premier filtrage et se chargent à la valeur crête des tensions alternatives, soit $\pm 9 \times 1,414 = \pm 12,7 \text{ V. Les régu-}$ lateurs de tension IC7 et IC8 régulent les tensions obtenues à +8Vet-8V, et les condensateurs C₁₆, C₁₇, C₁₉ et C₂₀ effectuent un dernier filtrage de nos alimentations.

La réalisation (fig. 5 et 6)

Etant donné la densité des composants, le circuit imprimé devra être réalisé avec beaucoup de soin. La méthode photographique est la plus adaptée et on ne pourra utiliser la gravure directe qu'en modifiant la taille du circuit imprimé: tout dépend du boîtier que vous allez utiliser.

On soudera dans un premier temps les straps, les supports CI et les composants de petite taille, puis les potentiomètres et les composants plus volumineux. Il est conseillé de vernir le circuit imprimé, ce qui le protégera des oxydations.

On peut voir sur le schéma général comment les différents potentiomètres sont reliés à la carte. Etant donné la faible longueur des liaisons, elles pourront être réalisées avec du petit fil de câblage multibrins.

Mise en route

La mise en route ne doit pas poser de problèmes particuliers. Il vous faudra, dans un premier temps, vérifier l'implantation des régulateurs, des diodes et des condensateurs polarisés. Après avoir ôté les circuits intégrés de leurs supports, on peut mettre le montage sous tension. Vérifiez que vous obtenez bien + 8 V et -8 V aux bornes 4 et 11 de IC1 et IC2 aux bornes 8 et 4 de IC3, et aux bornes 16 et 7 de IC4 (les tensions sont mesurées par rapport à la masse). Si les mesures sont concluantes, vous pouvez remettre en place les circuits intégrés (après avoir éteint l'alimentation...). Lors du premier essai sur un amplificateur pour guitare, mettre le noise-gate au minimum et tous les autres potentiomètres au point milieu.

Il ne vous restera plus, ensuite, qu'à vous familiariser avec les différents. réglages qui, nous en sommes certains, combleront vos instincts de créativité. J.F. MACHUT

LISTE DES COMPOSANTS

Résistances

R1, R4, R4, R11, R21, R25, R26, R₃₀ : 100 k\2 (marron, noir, gaune) Ry, R4, R5, R10, R13, R14, R14, Ris, Res, Res, Rer, Rai, Ras, Ras, $R_{42}: 10 \text{ k}\Omega$ (marron, noir, orange) R3, R1: 220 kD (rouge, rouge, jaune)

R₇, R₂₉: 470 Ω (jaune, violet) marron) R,: 33 kΩ (orange, orange, orange) $R_{12}: 22 k\Omega$ (rauge, rouge, orange) R15: 2,2 kn (rouge#fouge, rouge) R17, R39 \$4,7 kΩ (jaune) violet, rouge) Rgo: 68 kΩ (bleu, gris, orange) R23, R28, R38, R41 : 47 kΩ (jaune, violet, orange) R₃₄, R₃₅: 3,9 kΩ (orange, blanc, rouge) R34, R37: 1,8 k@ (marron, gris, rouge) R40: 560 Ω (Veik, bleu, marron) R₄₃ : 1 kΩ (marron, nojr rouge)

Potentiomètres

P1, P2, P3 : 10 kΩ:A P4, P5 : 100 kΩ A P. 470 kΩ A

Condensateurs

C1, C, : 22 nF LC@ C2 : 220 nF LCC €3 : 100 pF céramigue C4: 1 nF LCC C3: 470 nF LCC C. : 47 pF à 100 pF C7, C11: 47 nf LCC Cs, C10: 4,7 nF LCC C19: 10 nF C13: 100 µF 10 V chimique C14 : 1 µF LCC C15, C18: 470 HF 16W chimique C16, C17, C19, C20, C21, C22 : 100 nF LCC

Semi-conducteurs T. : 2N2907 D1, D2, D4: 1N4148 D3 : Zener 1,3 W 7,5 V Ds : DEL rouge IC1, IC2: TL084 ou TL074 IC3: TL082 ou TL072 PD : pont de diodés moulé rond 0,5 A IC. : CD4052 TCs: CD4013 IC. : NE555 IC, : LM7808 IC: : LM7908

Transformateur 2 x 9 W/5 VA 3 straps horizontaux **Bouton poussoir contact** travail Circuit imprime 12 x 8 cm 2 socies Jack mono 6.35 mm

LES MULTIPLEXEURS ANALOGIQUES CD4051, CD4052 ET CD4053

Rappelons pour nos amis débutants en électronique le rôle d'un multiplexeur.

La fonction de multiplexage est une fonction permettant la sélection d'une voie parmi plusieurs disponibles. C'est en fait un sélecteur électronique commutant la sortie sur l'une de ses entrées.

On trouve différents types de multiplexeurs: 2, 4, 8 ou 16 entrées vers une sortie. A ce niveau, il existe les multiplexeurs numériques et analogiques. Les premiers sont constitués de portes logiques et ne peuvent donc transmettre que des signaux numériques. Les multiplexeurs analogiques sont constitués de transistors fonctionnant en régime linéaire et peuvent véhiculer des signaux dont l'amplitude est quelconque (avec un maximum et un minimum fixés par le constructeur). La caractéristique commune aux multiplexeurs numériques et analogiques est le mode de sélection du canal. Ce demier est déterminé en fonction de l'état logique d'une ou de plusieurs entrées de commande.

Le CD4051 est un multiplexeur 8 vers 1 et possède donc 3 entrées de sélection de canal (A, B, C). Le CD4052 possède deux multiplexeurs 4 vers 1, et on n'a plus que

2 entrées de sélection (A et B). Le CD4053 possède trois multiplexeurs 2 vers 1, et on retrouve. rence du CD4052, les entrées de sélection ne sont pas communes à tous les multiplexeurs du boîtier : chaque multiplexeur a son entrée de sélection.

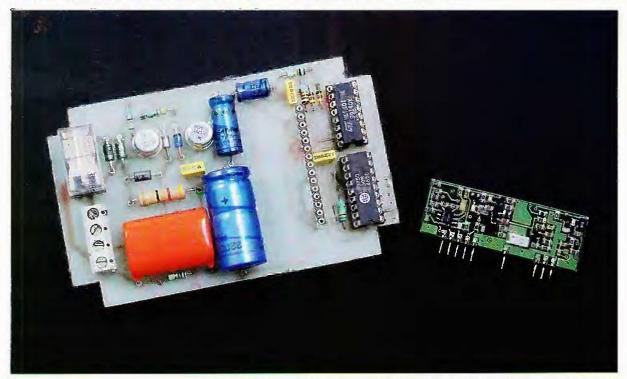
La table de vérité ci-après résume le fonctionnement des circuits.

L'entrée /E sert à valider le circuit, et si /E est à l'état logique 0, aucune liaison n'est établie. Ces circuits étant du type CMOS, la tension maximale entre deux broches d'alimentation ne peut dépasser 15 V. Vcc est l'alimentation positive. Vss la masse et Vee l'alimentation né-

Si les tensions transitant par les multiplexeurs sont unipolaires et positives par rapport à la masse, Vee peut être reliée à la masse et Vcc devra être supérieure à la tension véhiculée (avec Vcc < 15 V).

Si les tensions sont bipolaires, Vee doit être inférieure à la tension minimale du signal, Vcc doit être supérieure à la valeur maximale du signal et il faut que (Vcc - Vee) < 15 V.

Les signaux logiques de commande sont compris entre 0 et Vcc/3 pour un état bas, et 2 Vcc/3 et Vcc pour un état haut.


La liaison entre le commun et une entrée n'est pas parfaite, et on a une résistance comprise entre 250Ω (Vcc – Vee = 5 V) et 80Ω (Vcc - Vee = 15 V).

Les performances sont assez remarquables avec une faible distorsion (0.04% à 1 kHz et $R_1 = 1 k\Omega$). une bande passante d'au moins 20 MHz et une fréquence maximale de sélection des canaux de

CONTROLE				Liaisons établies entre X, Y ou Z, et respectivement									
E C* B A			A	CD4051	CD4	052	CD4053						
	0	0	0	xo	XO	YO	xo	YO	ZO				
	0	0	1	X1	X1	Y1	X1	A0	ZO				
	0	1	0	X2	X2	Y2	XO	Y1	ZO				
	0	1	1	Х3	X3	У3	X1	¥1°	ZO				
	1	0	0	X4			X0	Y0	Z1				
	1.	0	1	X5			X1	AO	Z0 Z1 Z1 Z1				
	1	1	0	X6			XO	Y1					
	1	1	1	X7			X1	Y1	Z1				
1 x x x				раs de liaisoл	pas de	pas de liaison							
	× × × × × × × × × × × × × × × × × × ×	16-115-14-113-112-111-10-19-	CD 4051	1 H 2 H 3 H 4 H 5 H 6 H 7 H 8 F X4 X6 X X7 X5 E VEE VSS VC X2 X1 X X0 X3 A B 1 K H 1 K H 1 A	CD 4052	1 2 3 4 5 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 6 7 8 7 8 7 8 7 8 7 7	CD 4063	M W ZI Z ZO E VEEVSS					

PRISE DE COURANT RADIOCOMMANDEE

Suite à l'article concernant la recherche sélective de personnes, nous avons eu l'idée de réaliser une radiocommande 6 canaux. Celle-ci utilise l'émetteur du n° 198 mais le récepteur fait l'objet de la présente description.

a) Alimentation

L'énergie est directement prélevée du secteur 220 V par l'intermédiaire d'un couplage capacitif. Pendant une demi-alternance, la capacité C₂ se charge à travers C₁, R₁ et D₁. La diode DZ₁ écrête le potentiel à une valeur de 12 V. Lors de la demi-alternance suivante, la diode D₂ shunte l'ensemble DZ₁/C₂ et permet la décharge de C₁, de manière à ce que cette dernière soit prête pour se recharger lors de la demi-alternance suivante, et ainsi de suite. Il en résulte un potentiel légèrement ondulé

de l'ordre de 12 V au niveau de l'armature positive de C_2 . Ce potentiel alimentera directement le bobinage du relais d'utilisation.

La diode Zener D Z_2 applique un potentiel de 8,2 V au niveau de la base du transistor T_1 . Celui-ci délivre sur son émetteur un potentiel de l'ordre de 7,5 V. La capacité C_3 réalise un complément de filtrage tandis que C_3 découple l'alimentation du restant du montage.

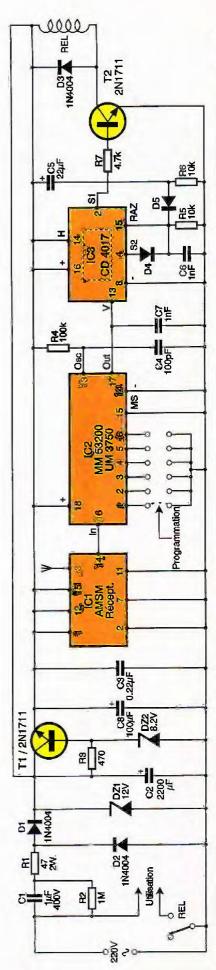
b) Réception et décodage

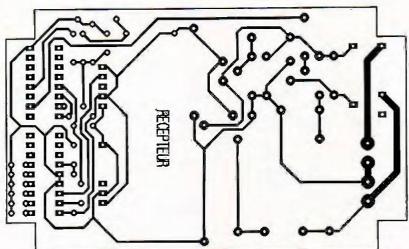
Le récepteur HF repéré IC_1 et le décodeur IC_2 fonctionnent suivant le même principe que dans l'application « Recherche sélective de personnes ». La reconnaissance correcte du canal concerné se traduit par l'apparition d'un état bas sur la sortie OUT de IC_2 .

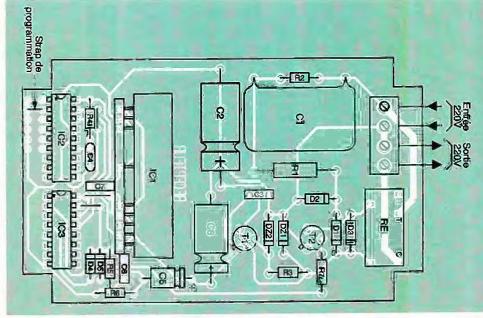
c) Bascule bistable

Le compteur CD 4017 référencé ICs fait office de bascule bistable. Etant donné que son entrée «clock» est reliée à un état haut, le compteur avance au rythme des fronts négatifs. Ainsi, pour chaque signal HF reconu conforme, le compteur avance d'un pas. Son entrée RAZ étant reliée à la sortie S2, il ne peut occuper que les positions S0 ou S1. En particulier, sur la sortie S1, on enregistre un

changement d'état pour chaque sollicitation du canal concerné. Après une coupure de courant ou encore au moment du branchement du montage sur le secteur, la capacité C_5 se charge rapidement à travers R_6 . Il en résulte une brève impulsion positive, acheminée $via\ D_5$, sur l'entrée RAZ. C'est l'initialisation automatique de la bascule bistable qui a pour conséquence la présentation d'un état bas sur la sortie d'utilisation S1.

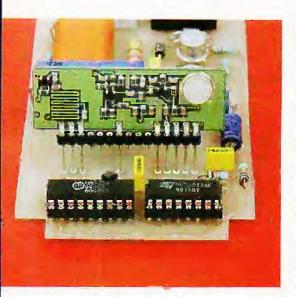

d) Commande du relais d'utilisation


Lorsque la sortie S1 présente un état haut, le transistor NPN T_2 se sature. Il comporte dans son circuit collecteur le bobinage du relais d'utilisation, directement alimenté par le potentie l de 12 V disponible sur l'armature positive de C_2 . En se fermant, la tension secteur de 220 V est disponible sur la sortie d'utilisation. La diode D_3 protège le transistor T_2 des effets liés à la surtension de self qui se produisent surtout lors des coupures:


Réalisation

Circuits imprimés (fig. 4)

Leur réalisation n'appelle aucune remarque particulière. Comme d'habitude, plusieurs méthodes de repro-


2/3 LE CÎRCUIT IMPRIME ET SON IMPLANTATION:

duction sont possibles. D'abord, l'application des transferts directement sur le cuivre dégraissé de l'époxy. S'ajoutant à cela, la méthode de la réalisation d'un typon ou encore la reproduction directe par la méthode photographique. Les modules seront gravés dans un bain de

LE SCHEMA DE PRINCIPE.

perchlorure de fer. Après un abondant rinçage à l'eau tiède, toutes les pastilles sont à percer à l'aide d'un forêt de 0,8 mm de diamètre. Certains trous seront à agrandir à 1 ou 1,3 mm suivant le diamètre des connexions des composants auxquels ils sont destinés.

Implantation des composants (fig. 5)

On débutera par la mise en place des straps de liaison. On n'oubliera surtout pas la programmation des ré-

cepteurs en affectant chacun à un canal. Ensuite, on implante en premier lieu les diodes, les résistances et les capacités. On terminera par les supports des circuits intégrés et les autres composants. Attention au respect de l'orientation correcte des composants polarisés. La pile d'alimentation de l'émetteur a directement été soudée sur le module par le moyen de straps, eux-mêmes soudés sur les pôles de polarité.

Pour l'application « Prises de courant radiocommandées », l'antenne n'est pas obligatoire au niveau des récepteurs étant donné que les distances entre émetteur et récepteur sont généralement plus faibles.

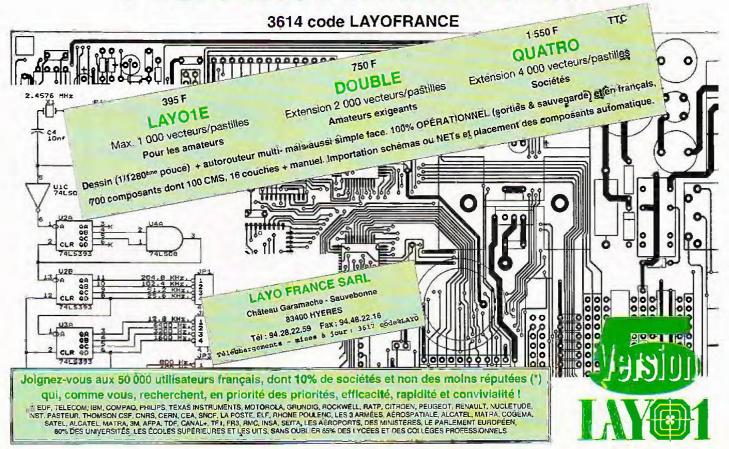
Robert KNOERR

LISTE DES COMPOSANTS

4 straps

marron)

R₁: 47 Ω /2 W (jaune, violet, noir) R₂: 1 M Ω (marron, noir, vert) R₃: 470 Ω (jaune, violet,


R4: 100 kΩ (marron, neir, jaune) Rs, Rs: 10 kΩ (marron, nois) orange) Ry: 4,7 km (jaune) violet rouge) D₁ à D₃: diodes1N4004 D4, D5: diodes-signal 1N4148 DZ₁: diode Zener 12 V/1,3 W DZ₂: diode Zener 8,2 V/1,3 W C1: 1 µF/400 V polyester C2: 2 200 µF/16 V électrolytique C3: 0,22 µF milfeuil C4: 100 pF céramique C3: 22 µF/10 V électrolytique C₆, C₇: 1 nF milfeuil Cs: 100 µF/10 V électrolytique T₁, T₂: transistors NPN 2N1711, 2N1613 IC1: module récepteur Mipot AMSH IC2: MM53200 ou UM3750 iC3: CD 4017 (compteurdécodeur décimal) Support barrette 15 broches Support 18 broches Support 16 broches Relais 12 V/1 RT (National)

Bornier soudable 4 plots

Boîtier Diptal (112 x 70 x 34)

information technique, autres logiciels et mises à jour a

Pour l'électronicien créatif.

TECHNIQUES RADIO TV HIFI, ELECTRONIQUE

Devenez un spécialiste!

ELECTRONIQUE - AUTOMATISMES

Des métiers

à la pointe

de la technique

■ INITIATION A L'ELECTRONIQUE : En quelques mois, apprenez les bases de l'électronique d'aujourd'hui.

■ ELECTRONICIEN: L'électronique vous passionne, c'est un secteur en plein développement. Choisissez ce métier d'avenir rapidement accessible.

■ TECHNICIEN ELECTRONICIEN : Choisissez cette spécialité qui offre de nombreuses possibilités aussi bien en laboratoire qu'en ateller.

■ TECHNICIEN DE MAINTENANCE EN MICRO-ELECTRONIQUE : Spécialiste des microprocesseurs ou «puces» et des systèmes d'automatisme, vous trouverez des débouchés Intéressants dans la maintenance.

■ BEP ELECTRONIQUE : Titulaire du BEP, vous bénéficierez de nombreux débouchés dans la construction de matériel électronique (TV, radios, ordinateurs...), le montage, le réglage, la maintenance...

■ BTS ELECTRONIQUE : Vous travaillerez en collaboration avec les ingénieurs à l'étude des applications industrielles de l'électronique. (Préparation à l'examen officiel).

■ TECHNICIEN EN AUTOMATISMES : Vous participez à la réalisation, à la fabrication, à l'installation et à la maintenance d'équipements automatiques.

■ BTS INFORMATIQUE INDUSTRIELLE : Vous êtes chargé de l'élaboration, de la conception, de la fabrication et de la maintenance d'un système automatique industriel. (Préparation à l'examen officiel).

■ BTS MAINTENANCE INDUSTRIELLE: formez les utilisateurs et soyez le responsable du planning d'intervention et d'approvisionnement des machines. (Préparation à l'examen officiel).

RADIO - TV - HI-FI

Des compétences recherchées

- MONTEUR DEPANNEUR RADIO TV HIFI: L'expansion de la vicéo, des chaînes de radio-télévision, des magnétoscopes, vous offre de nombreux emplois dans ce secteur en développement.
- TECHNICIEN EN SONORISATION: Vous mettez en place l'équipement sonore d'un lieu donné à l'occasion de diverses manifestations: foires, concerts, bals, conférences.
- TECHNICIEN RADIO TV HI-FI: Participez à la création, à la mise au point et au contrôle des appareits de télévision, vidéo, radio et Hi-Fi.
- TECHNICIEN DE MAINTENANCE DE L'AUDIOVISUEL ELECTRONIQUE : Vous effectuez les mesures nécessaires à la détection des pannes et déterminez le remplacement de tel ou tel composant à l'intérieur d'un système ou d'une carte microprocesseurs.
- DIPLOMES D'ETAT : En préparant un examen officiel, vous accéderez plus vite à un emploi qualifié : BEP installateur conseil en équipements du foyer, Bac professionnel maintenance de l'audiovisuel électronique (MAVELEC).

DES COURS CHEZ VOUS. UN MÉTIER RAPIDEMENT. L'ENSEIGNEMENT À DISTANCE, C'EST BIEN!

Découvrez vite les 4 avantages exclusifs qu'Educatel vous garantit pour apprendre, chez vous, votre métier.

UN ENSEIGNEMENT ADAPTE A LA VIE D'AUJOURD'HUI

Vous étudiez chez vous, à votre rythme, sans vous déplacer. Vous pouvez parfaitement concilier formation et vie professionnelle.

DES COURS CONCUS PAR DES PROFESSIONNELS
Réalisés spécialement pour l'enseignement à distance,
vos cours seront clairs, précis, illustrés d'exemples
concrets pour vous permettre de progresser
rapidement. De plus, vous serez en relation
permanente avec les professeurs qui vous corrigeront,

DES MATERIELS EXCLUSIFS

vous conseilleront, vous guideront.

La plupart des matériels qui vous seront adressés pendant votre étude et qui resteront votre propriété, ont été conçus par notre Bureau d'Etudes Technologiques, certains ont même fait l'objet d'un Brevet auprès de l'Institut de la Propriété Industrielle.

Electrolab, Digilab, Microlab, ampli-stéréo, Multimètre, vous aurez à votre disposition un matériel performant pour réaliser toutes les expérimentations qui feront déboucher votre formation sur du concret.

DES STAGES DE PERFECTIONNEMENT
A l'issue de votre formation, vous pouvez si vous le
souhaitez, effectuer un stage pratique dans notre
Centre de stages à Paris, ou en entreprise.

Si vous êtes salarié(e), possibilité de suivre votre étude dans le cadre de la Formation Professionnelle Continue

Educatel

Informez-vous!

(16) **35.58.12.00** à Rouen

76025 ROUEN CEDEX

3615 EDUCATEL

Etablissement privé d'enseignement à distance soums au contrôle pédagogique de l'Education Nationale

BON pour une DOCUMENTATION GRATUITE

A retourner à EDUCATEL 76025 ROUEN CEDEX (Pour DDM-TOM et Afrique : documentation spéciale par avion)

OUI, je souhaite recevoir sans engagement une documentation complète sur la formation suivante :

NOM PRENOM

ADRESSE : N ______ RUE _

VILLE _____

CODE DOCTAL

TEL -

Pour nous aider à mieux vous orienter, merci de nous donner les renseignements suivants ::

Âge _____ { il faut avoir au moins 16 ans pour s'inscrire } Niveau d'études _

Si vous travaillez, quelle est votre profession?

Sinon, ētes-vous : ☐ Etudiant(e) ☐ A la recherche d'un emploi ☐ Autres

UNE SURVEILLANCE DE CHAMBRE D'ENFANT

Ce montage fait essentiellement appell à la technique des courants porteurs qui consiste à utiliser, en guise de liaison entre un émetteur et un récepteu, les fils de distribution du secteur 220 V d'un même appartement ou habitation.

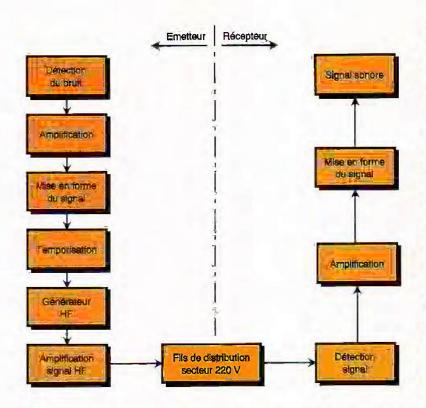
Dans l'application décrite, le détecteur-émetteur est branché sur une prise de courant de la chambre que l'on désire surveiller (enfant en bas âge, personne malade alitée). Le récepteur peut être branché sur n'importe quelle autre prise de courant de la même installation située en aval du compteur d'énergie.

1 - Le principe (fig. 1)

Le détecteur-émetteur comporte un micro miniature destiné à capter les sons et bruits divers. Après un traitement adapté des signaux correspondants, un générateur de fréquence élevée (environ 130 kHz) est activé. Cette fréquence, après amplification, se trouve injectée dans le secteur 920 V.

Au niveau du récepteur, les signaux de 130 kHz sont d'abord amplifiés puis traités. Un dispositif sonore émet alors un bip-bip caractéristique par l'intermédiaire d'un buzzer piézo-électrique.

2 - Le fonctionnement


A - Détecteur-émetteur (fig. 2) a) Alimentation

L'énergie est fournie par le secteur 220 V par l'intermédiaire d'un trans-

formateur dont l'enroulement secondaire délivre un potentiel alternatif de $12\,V$. Un pont de diodes redresse les deux demi-alternances, tandis que la capacité C_1 réalise un premier filtrage. Sur la sortie du régulateur 7809, on relève un potentiel continu et stabilisé à $9\,V$. La capacité C_2 effectue un complément de filtrage. Quant à C_5 , son rôle consiste à découpler le montage aval de l'alimentation proprement dite.

b) Détection du son et amplification

La détection du son ambiant est confiée à un micro miniature Electrett. Ce dernier, alimenté par l'intermédiaire de R₁, est doté d'un préamplificateur interne. Les signaux délivrés sont acheminés sur l'entrée inverseuse d'un «741 » par le biais de C₇ et de R₅. L'entrée directe de cet amplificateur opérationnel est soumise à une valeur de potentiel égale à la moitié du potentiel d'alimentation grâce au pont diviseur formé par les résistances R₂ et R₃. C'est d'ailleurs cette valeur que l'on re-

LE PRINCIPE GENERAL

lève sur la sortie de l'ampli-op à l'état de veille.

L'amplification réalisée par IC_1 est réglable grâce au curseur de l'ajustable A. Le gain est en effet déterminé par la valeur du rapport A/ R_5 .

Les signaux délivrés par IC₁ sont ensuite acheminés sur la base du transistor PNP T₁ par l'intermédiaire de C₈. Ce transistor se caractérise par une polarisation telle qu'en l'absence de bruit on rejève sur le collecteur un potentiel nul.

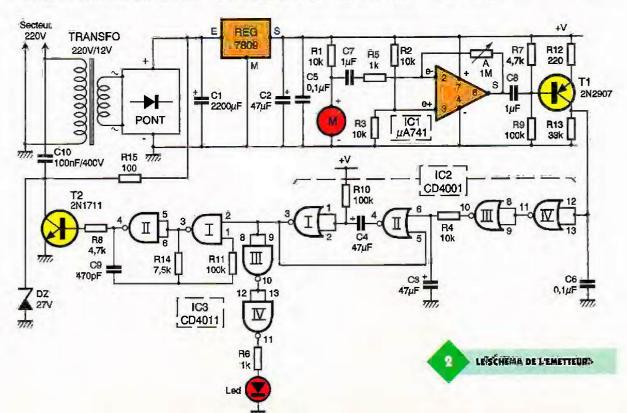
En revanche, aussitôt que le micro Electrett détecte un bruit, on enregistre sur le collecteur de T₁ une succession d'état hauts, suite à l'intégration effectuée par la capacité C₆.

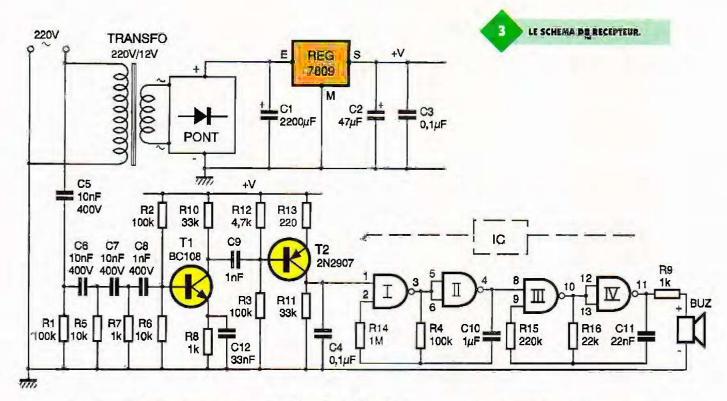
c) Mise en forme du signal

Les portes NOR III et IV de IC_2 forment un trigger de Schmitt dont le rôle consiste à bien mettre en évidence les états hauts en éliminant les niveaux de potentiel sur le collecteur de T_1 , inférieurs à la demi-tension d'alimentation.

d) Temporisation de retardement

Dès qu'un état haut est disponible


sur la sortie de la porte NOR III de IC2; la capacité C3 se charge à travers R4. Avant d'aboutir à un potentiel supérieur à la demi-tension d'alimentation, il s'écoule quelques dixièmes de seconde. Cette disposition élimine les bruits de courte durée tels que les claquements de porte ou les chutes d'objets.

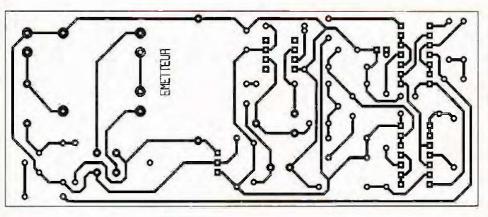

e) Temporisation du signal

Les portes NOR I et II de IC₂ forment une bascule monostable. Pour chaque état haut présenté sur l'entrée de la bascule, on observe sur la sortie l'apparition d'un état haut de durée fixe, entièrement déterminée par les valeurs de R₁₀ et de C₄. Dans le cas présent, cette durée est de l'ordre de 3 à 4 secondes. Pendant cette activation de la bascule, la DEL s'allume, ce qui signalise la détection.

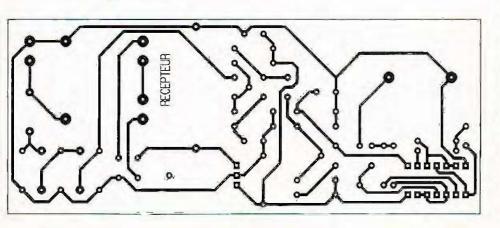
f) Génération du signal de 130 kHz

Les portes NAND I et II de IC3 sont montées pour constituer un multivibrateur astable de type commandé. Tant que l'entrée 2 de la porte NAND I est soumise à un état bas, le multivibrateur est bloqué; sur sa sortie, on relève un état bas permanent. En revanche, si l'entrée de commande est reliée à un état haut, le multivibrateur entre en oscillation. Il génère des créneaux de forme carrée d'une période de l'ordre de 7 à 8 microsecondes, ce qui correspond à une fréquence de près de 130 kHz. Ces créneaux sont amplifiés en courant par le transistor NPN To dont la résistance collecteur R₁₅ est directement reliee à l'armature positive de C₁, c'est-à-dire sous un potentiel de l'ordre de 15 V.

Les signaux ainsi amplifiés sont injectés dans le secteur de distribution par l'intermédiaire de C₁₀.

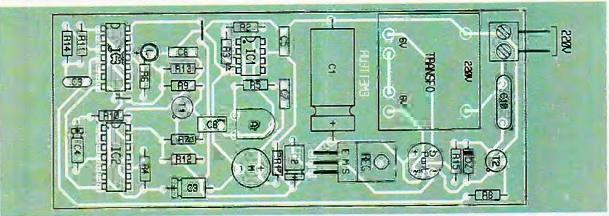

La diode Zener D_Z protège le transistor T_{Ω} de toute surtension éventuelle en provenance du secteur *via* la capacité de liaison C_{10} .

B - Récepteur (fig. 3)


a) Alimentation

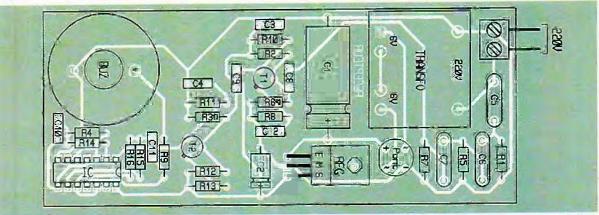
L'alimentation du récepteur est tout à fait identique à celle du détecteurémetteur.

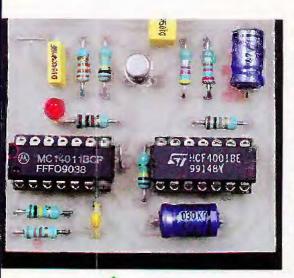
b) Réception des signaux de 130 kHz



Les signaux de 130 kHz cheminent le long des conducteurs du secteur de distribution. Its sont introduits dans le récepteur par la capacité C₅. Le groupement RC formé par C6, C7, R1, R₅ et R₇ forme un filtre passe-bande. Un premier étage amplificateur est constitué par le transistor T₁ monté en émetteur commun. La capacité C₁₂ augmente le gain de cet étage. Le transistor T2, qui constitue l'étage de sortie, a une polarisation telle que son collecteur présente un potentiel nul en cas d'absence de signaux. En revanche, dès que ces demiers se manifestent dans les conducteurs du secteur de distribution, on observe sur le collecteur de To un état quasi haut grâce à l'intégration réalisée par C4.

c) Signal sonore


Les portes NAND | et || forment un multivibrateur astable commandé qui entre en oscillation dès que l'entrée de commande 1 est soumise à un état haut. Il délivre alors sur sa sortie des créneaux de forme carrée à une fréquence de l'ordre de 3 à 4 Hz. Ces états hauts activent à leur tour un second multivibrateur commandé constitué par les portes NAND III et IV. Ce demier génère une suite de créneaux entrecoupés de repos de même durée. La fréquence de ces créneaux entre dans le domaine des signaux musicaux, c'est-àdire proche du kilohertz. Le buzzer piézo-électrique restitue en définitive des bips pendant toute la durée de l'émission des signaux de 130 kHz à partir du détecteur-émetteur.



3 - La réalisation

a) Circuits imprimés (fig. 4)

La configuration des pistes n'est pas très serrée, ce qui simplifie considérablement la reproduction des circuits imprimés. Ces demiers peuvent être réalisés par le recours aux méthodes habituelles: application directe ou sur typon d'éléments de transfert, ou encore méthode photographique en se servant des modèles publiés.

Après gravure des modules dans un bain de perchlorure de fer, ces derniers seront très soigneusement rincés. Par la suite, toutes les pastilles sont à percer à l'aide d'un foret de 0,8 mm de diamètre. Certains trous seront à agrandir par la suite à 1, voire à 1,3 mm, suivant les diamètres des connexions des composants auxquels ils sont destinés.

b) Implantation des composants (fig. 5)

Après la mise en place des straps de liaison, on soudera les diodes, les résistances et les supports des circuits intégrés. On poursuivra par la mise; en place des capacités, des transistors et des autres composants. Il va sans dire qu'il convient d'apporter un soin tout à fait particulier au niveau du respect de l'orientation des composants polarisés.

Le buzzer a été directement implanté sur le module, étant donné le modèle retenu. Il en est de même en ce qui concerne les transformateurs.

Le montage ne nécessite aucun réglage si ce n'est celui de la sensibilité de la détection microphonique. Cette sensibilité augmente si l'on tourne le curseur de l'ajustable A dans le sens horaire. Généralement, la position médiane convient.

A noter également le minimum de précautions nécessaires lorsque l'on manipule les modules sous tension. En effet, les pistes sont directement reliées à l'une des polarités du secteur de distribution.

Robert KNOERR

NOMENCLATURE

Emetteur ,2 straps (1 horizontal, 1 vertical) $R_1 \stackrel{.}{a} R_4 : 10 \text{ k}\Omega$ (marron, nois, orange) R₅₆ R₄ : 1 kΩ (marron, noir, rouge) R_7 , R_1 , 4.7 k Ω (jaune, violet, rouge) R, à R1: 100 k2 (marron, noir, jaune) R11 : 220 Ω (rouge, rouge, marron) R₁₃: 33 kΩ (orange, orange, orange) R14: 7,5kQ (violet, vett, rouge) $R_{15}: 100 \Omega$ (marron-noir, marron) A: ajustable 1 M Ω Pont de diodes 1,5 A REG srégulateur 9 V (7809) DZ: diode Zener 27 V/1,3 W L : DEL rouge Ø 3 M: micro Electrett (2 broches) C1 : 2 200 µF/25 V électrolytique C. à C. : 47 µF/10 Ŷ électrolytique C5, C6: 0,1 µF milfeuil.

IC₃ : CD4011 (4 portes NAND) 1 support 8 broches 2 supports 14 broches Transformateur 220 V/2 x 6 V/ 1 VA Bornier soudable 2 plots Boîtier Diptall (130 x 56 x 30)

Récepteur $R_1 \stackrel{.}{a} R_4 : 100 \text{ k}\Omega \text{ (marron,}$ noir, jaune) $\mathbf{R}_{\mathbf{s}}, \mathbf{R}_{\mathbf{s}} : 10 \text{ k}\Omega \text{ (marron, noi.)}$ orange) $R_7 \stackrel{.}{a} R_7 : 1 k\Omega_i(marron, noir,$ rouge) R10, R11: 33 kΩ (orange, orange, orange) $R_{12} \notin 4,7 \text{ k}\Omega$ (jaune, violet, rouge) R13: 220 (rouge, rouge, marron) $R_{14}: 1 M\Omega$ (marron noir) vert) R₁₅: 220 kΩ (Fouge, rouge, jaune) R₁₆ 522 kΩ (rouge) rouge, orange) Pont de diodes 1,5 A REG : régulateur 9 V (7809) BUZ : buzzer piézo électrique (sans oscillateur) C1: 2 200 µF/25 V électrolytique C2: 47 µF/10 V électrolytique C3, C4: 0,1 µF milfeuil Cs à C7: 10 nF/400 V polyester C., C. : 1 nf milfeuil C₁₀ : 1 µF milfeuil C11: 22 nF milfeuil C12: 33 nF milfeuil T: : transistor NPN BC108, EC109, 2N2222 Te : transistor PNP 2N2907 IC : CD4011 (4 portes NAND) 1 support 14 broches Transformateug 220 V/2 🗷 6 V/ 1 VA Bornier soudable 2 plots Boîtier Diptal 130 x 56 x 30

Minitel Electronique Pratique

Tapez 3615 code EPRAT

Boîtes aux lettres téléchargement tables des matières

IC₂: CD4001 (4 portes NOR)

C7, C2: 1 µF milfeuil

C, : 470 pl céramique

IC₁: μΑ74' (ampli-op)

Cio: 10 nF/400 V polyester

Te : transistor PNP 2N2907

Ts: transistor NPN 2N1711

LES MICROPROCESSEURS PIC, STAMP1 ET STAMP2

La société Parallax a commercialisé, depuis environ un an, un microprocesse nommé STAMP1, allpellation due aux dimensions restreintes du produit. Le STAMP, contrairement aux microprocesseurs communs nécessitant la connaissance du langage machine, se programme à l'aide du langage Basic, son EPROM interne contenant un interpreteur

Cette même société propose depuis peu un second produit plus performant, le STAMP2, basé sur le même principe mais permettant l'élaboration de programmes plus performants à l'aide d'un langage plus complet et disposant de lignes d'entrées-sorties supplémentaires. Lorsque l'amateur électronicien désire utiliser un microprocesseur afin de simplifier considérablement la conception d'un montage, il se heurte immédiatement, s'il n'a pas les connaissances nécessaires, à l'élaboration du programme obligatoirement écrit en langage machine. Même s'il sait programmer un type bien précis de microprocesseur, il ne saura pas obligatoirement le faire pour une autre famille. Dans ce cas, si le montage n'est pas trop complexe et ne nécessite pas une rapidité de fonctionnement élevée, il pourra utiliser avantageusement la (petite) série des STAMP. Nous allons maintenant voir en détail, dans les lignes qui suivent, les possibilités de tels circuits ainsi que les instructions Basic; disponibles.

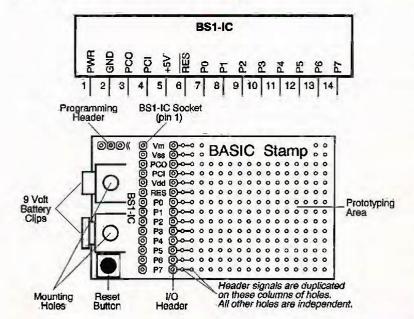
Le STAMP1 ou BS1-IC

Le STAMP1 se présente sous la forme d'un module sur circuit imprimé de très petites dimensions, dimensions restreintes obtenues par l'utilisation de composants CMS. Il est muni d'une rangée de 14 broches au pas de 2,54 mm (1/10") afin de pouvoir l'introduire dans une rangée de supports tulipes. Un circuit imprimé d'expérimentation (voir fig. 1) est également commercialisé qui comporte ce support ainsi qu'un connecteur de pile 9V, un bouton poussoir de Reset et les broches de connexion au port parallèle (imprimante) d'un compatible PC. Une surface pastillée en double face et trous métallisés est laissée libre afin que l'utilisateur puisse se livrer à des expérimentations. Cette surface pourra également être utilisée pour un montage définitif.

Le STAMP1 est programmable à l'aide d'un compatible PC auquel il est connecté par trois des lignes du port Centronic: DO, Busy et GND. Il est nécessaire de disposer du logiciel de communication et du cordon de liaison afin de pouvoir programmer le STAMP. Cet ensemble est également commercialisé à un prix raisonnable. Le microprocesseur utilisé est un PCI16C56 dont la ROM interne d'une capacité de 1 Ko contient l'interpréteur Basic. La mémoire de programme est une EEPROM série (ROM programmable et effaçable électriquement) de type 93LC56. Sa capacité est de 256 octets, ce qui explique que la taille du programme Basic ne pourra excéder une centaine d'instructions. Mais que l'on ne s'y trompe pas: un programme de quelques instructions permet déjà des applications élaborées. L'utilisation d'une EEPROM série se justifie par le peu de lignes d'entrées-sorties disponibles sur le microprocesseur. Là, seulement trois lignes sont nécessaires: la ligne CS/ de validation de la mémoire, la ligne de Clock et la ligne d'entrée-sortie des données (DI et

Le fonctionnement du PIC est cadencé à la vitesse de 4 MHz, oscillations produites par un résonateur céramique intégrant les deux capacités nécessaires. Cette fréquence permet l'exécution de 2000 instructions par seconde, soit 500 µs par instruction. Nous nous trouvons là bien loin de la rapidité d'exécution du langage machine, mais interprétation oblige! Et nous verrons que cela ne constitue pas un gros handicap dans bon nombre d'applications.

Le STAMP1 possède 16 octets de RAM interne (8 mots de 16 bits) réservés aux entrées-sorties et au stockage des variables. Une variable pouvant être stockée dans un mot (2 octets), sa valeur peut atteindre 65 535. Les deux premiers emplacements mémoire sont utilisés par les entrées-sorties, les six suivants par les variables et le dernier par l'instruction Gosub (pile).


Le jeu d'instructions du STAMP1

Bien que, comme nous l'avons mentionné plus haut, le jeu d'instructions du STAMP1 est limité (32 instructions), il permet néanmoins l'élaboration de programmes très performants car il possède des commandes qui lui sont propres et qui n'existent pas dans les autres langages Basic. Ces fonctions concernent essentiellement les entrées-sorties. Voyons ces commandes en détail.

1) Entrées-sorties digitales:

- OUTPUT: positionne l'une des huitlignes du PIC en sortie;
- INPUT: positionne l'une des huit lignes du PIC en entrée;
- LOW: positionne la ligne correspondante à l'état bas;
- HIGH: positionne la ligne correspondante à l'état haut;
- TOGGLE: positionne la ligne correspondante en sortie et inverse son état;
- PULSIN: mesure la durée d'une impulsion appliquée sur l'une des entrées par unité de 10 µs;
- PULSOUT: provoque la sortie d'une impulsion sur l'une des sorties par unité de 10 µs;
- REVERSE: inverse le positionnément d'une ligne; si la ligne est une

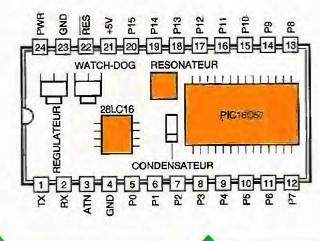
entrée, elle devient une sortie et inversement;

- BUTTON: permet la gestion de boutons poussoirs.

2) Entrées-sorties série :

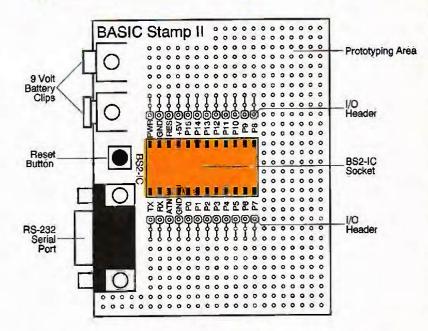
- SERIN: configure une ligne en entrée de réception de données série transmise par un PC ou tout autre système informatique, à condition que le format de transmission soit le suivant: 300, 600, 1 200 ou 2 400 bauds, par de parité, 8 bits de données et 1 bit de stop; des options peuvent être ajoutées à la commande SERIN telles que des variables, pour le stockage de données;
- SEROUT: configure une ligne en sortie de données séries avec le même format que pour l'instruction SE-RIN.

3) Entrées-sorties analogiques :


- PWM (Pulse With Modulation): permet l'obtention d'une tension continue à l'aide d'une résistance et d'un condensateur par application sur ce réseau RC d'impulsions réglables en largeur et en nombre;
- POT: permet la lecture d'une tension continue issue d'un potentiomètre (et donc sa valeur ohmique) connecté en résistance ajustable dont l'un des pôles est connecté à une ligne d'entrée et l'autre pôle à un condensateur relié à la masse.

4) Sons:

– SOUND: joue des notes de musifque; 0 correspond à un silence, 1 à 127 correspondent à des notes de tonalité ascendante et 128 à 255, à des bruits blancs.


5) Ecriture en EEPROM:

- EEPROM: stocke des données dans l'EEPROM avant le chargement du programme Basic;
- READ: lit des données dans l'EE-PROM et les stocke dans des variables:
- WRITE: écrit des octets dans l'EE₃ PROM.

2 LE STAMP2

TEINIT D'ETUDES BS2

6) Contrôle de consommation du PIC :

- NAP: le PIC se met en état d'attente sur de courtes périodes et la consommation est réduite;
- SLEEP: le PIC se met en état de sommeil pour des périodes puvant atteidnre 65 535 secondes; sa consommation est réduite à 20 μΑ;
- END: le PIC se trouve alors à l'état de repos jusqu'à ce que le PC entre en contact avec lui, par exemple.

7) Communication:

- DEBUG: instruction permettant d'envoyer des données au PC.
Comme on le voit, ces instructions relativement puissantes permettent la gestion de processus avec une bonne rapidité puisqu'une seule instruction est nécessaire pour le STAMP, là où le programme en Basic « normal » nécessiterait plusieurs lignes d'instructions, sans compter les composants nécessaires qu'il faudrait assembler afin d'obtenir les mêmes fonctions que PWM et POT.

Le STAMP2 ou BS2-IC

Le STAMP2 se présente sous la forme d'un circuit imprimé de même taille qu'un boîtier DIL à 24 broches. Son brochage est représenté en figure 2. Comme pour la première version, les composants sont de type CMS. Un circuit imprimé d'évaluation du produit est commercialisé (fig. 3). Ce circuit dispose d'un connecteur aux normes RS 232 qui permettra la liaison au PC afin de programmer le PIC. Un logiciel spécifique est nécessaire et est fourni dans un package qui comprend les manuels d'utilisation des BS1-IC et BS2-IC, ainsi que les cordons de liaison aux connecteurs parallèle et série du compatible PC. Le STAMP2 présente de nettes améliorations par rapport à la version 1, autant de point du vue matériel que logiciel. Le PIC utilisé est un 16C57.

- Il est cadencé par une horloge de 20 MHz.
- 16 lignes d'entrées-sorties sont disponibles.

- Communication avec le PC à l'aide de l'interface RS 232.
- La mémoire programme passe à 2Ko (EEPROM 93LC16), ce qui permet de stocker un programme comportant 600 instructions.

L'interpréteur est modifié et utilise le PBasic2, le PBasic1 étant réservé au STAMP1. Les instructions sont effectuées beaucoup plus rapidement. Par exemple, l'instruction PULSOUT du PBasic1 permet de générer une impulsion minimale de 10 µs, alors que celle du PBasic2 descend à 2 µs. Outre les instructions déjà décrites plus haut, dont certaines ont été améliorées, de nouvelles y ont été ajoutées:

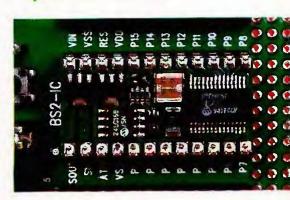
- SERIN et SEROUT: la vitesse dé communication passe à 9 600 bauds maximum et le format de transmission peut être modifié. On peut ajouté, si on le désire, un bit de parité et les données sont alors transmises sur 7 bits;

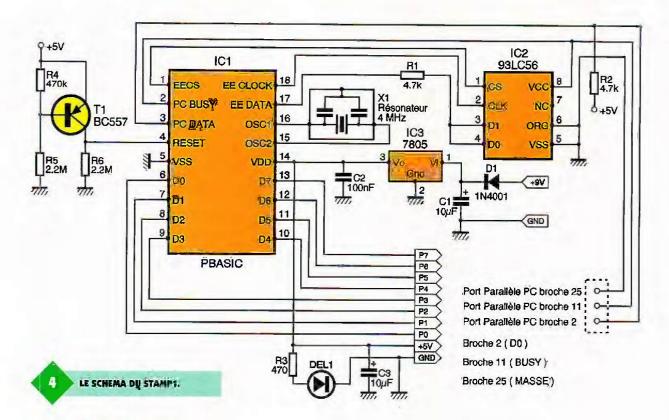
 SHIFTIN: permet la réception données séries émanant d'un registre à décalage parallèle-série;

- SHIFTOUT: permet l'envoi de données séries vers un registre à décalage série-parallèle; cette instruction permet l'augmentation de lignes de sorties du système;

 COUNT: permet de compter le nombre de périodes d'un signal appliqué sur l'une des lignes d'entrées; la fréquence maximale de ce signal atteint 125 kHz;

 XOUT: permet de générer les codes de contrôle de type X-10 (contrôle de modules domotiques);


 RCTIME: mesure le temps de charge et de décharge d'un réseau RC;


- FREQOUT: génère un ou deux signaux sinusoïdaux dont la fréquence est comprise entre 0 et 32 767 Hz;

 DTMFOUT : génère les tonalités de numérotation téléphonique.

A la lecture des caractéristiques de ces instructions, on aperçoit les nouvelles possibilités d'applications envisageables pour le STAMP2.

Les manuels d'utilisation

Malheureusement pour certains, les manuels sont rédigés en anglais, mais, à l'aide d'un bon dictionnaire technique, le lecteur peu familiarisé avec la langue de Shakespeare pourra malgré tout en comprendre l'essentiel. Une vingtaine d'applications sont décrites en détail et des montages électroniques à adjoindre aux STAMP peuvent être réalisés.

L'exemple que nous donnons cidessous illustre parfaitement le type d'application facilement réalisable : Programme SONAR.BAS

'Le STAMP commande un sonar (émetteur-récepteur) afin de mesurer des distances jusqu'à 4 mètres. Symbol: echo_time = W2

'la variable echo_time sera stockée. en W2

setup: let pins = 0 'toutes les lignes à 0 setup: output 0

'contrôle de l'émetteur du sonar: ligne 0 en sortie

setup: input 1

'entrée du retour signal: ligne 1 en entrée

impuls: pulsout 0,50

'envoi d'une impulsion de 0,5 ms impuls: pulsin 1,1,écho_time

'attente du signal de retour et stoc-

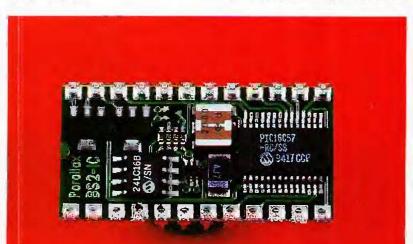
kage en W2

impuls: debug echo_time

'envoi du résultat au compatible PC

impuls: pause 500 'attente de 500 ms impuls: goto impuls 'nouvelle mesure

Que le lecteur perplexe essaie de faire aussi simple à l'aide d'un PC et du QBasic!

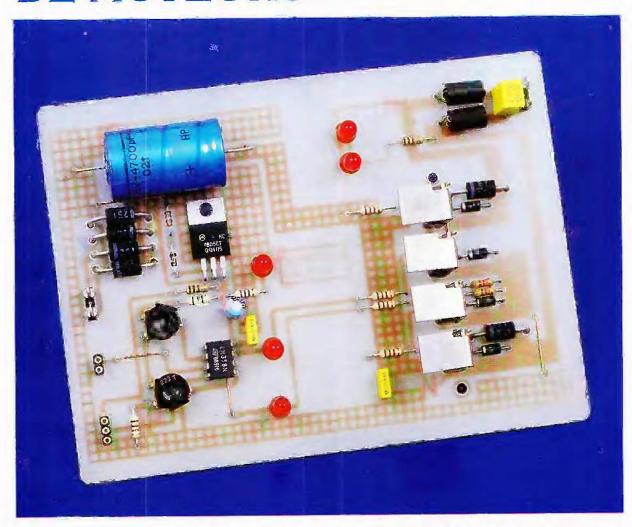

Une imitation de STAMP1

Le PBasic existe également en version DIL à 14 broches. Il s'agit simplement du PIC16C56 dont la ROM interne a été programmée. Il est nécessaire de lui adjoindre l'EEPROM 93LC56 ainsi que toute la circuiterie externe. Le schéma du circuit est donné en figure 4. Ce dernier est, à quelques différences près, identique à celui du STAMP.

En effet, le BS1-IC utilise des circuits watch-dog et régulateur différents. La platine ainsi obtenue sera évidemment de dimensions nettement plus importantes que celles du STAMP. Quant aux prix de revient des deux produits, ils sont pratiquement identiques.

Nous proposerons à nos lecteurs, dans de prochaines parutions, des réalisations qui utiliseront le PBasic. Même s'ils ne disposent pas du logiciel nécessaire à la programmation du STAMP, ils pourront néanmoins charger le programme dans le microprocesseur à l'aide d'un simple cordon relié à leur comptable PC et d'un utilitaire fourni dans le package et librement diffusable, contrairement au logiciel STAMP.EXE dont la propriété reste celle de Parallax Inc.

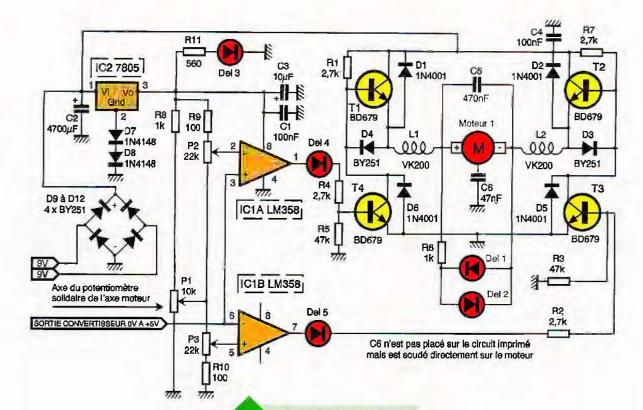
Patrice OGUIC



Distributeur des BS1-IC et BS2-IC: Selectronic, tél.: (33) 20.52.98.52

COMMANDE PROPORTIONNELLE DE MOTEURS

Si la mise en rotation d'un moteur à courant continu est chose fort aisée à effectuer, du point de vue électrique, il n'en est pas de même si l'on veut obtenir le positionnement de son axe en un point bien précis.


En effet, contrairement aux moteurs pas à pas qui n'effectuent qu'un pas lorsqu'ils sont alimentés, on ne peut pas connaître aussi simplement le nombre de degrés effectués par l'axe d'un moteur à courant continu après sa mise sous tension, même s'ils tournent très lentement.

Le montage que nous vous proposons de réaliser fait suite à l'article paru dans le n° 197 de notre revue qui proposait la réalisation d'une carte supportant deux convertisseurs DA pilotés par le port Centronic d'un compatible PC. Cette carte à convertisseurs permet de générer deux tensions continues variables entre -5 V et +5 V ou 0 V et +5 V par pas de 39 mV, et ce par l'envoi d'octets de valeurs comprises entre 0 et 255. C'est ce circuit que nous utiliserons pour la commande du montage que nous vous proposons de réaliser maintenant.

Les moteurs fonctionnant sous un courant continu peuvent être pilotés

de diverses façons. On peut en commander la mise en marche avant ou arrière en utilisant des relais et la vitesse de rotation à l'aide, par exemple, d'encodeurs optiques fournissant une tension proportionnelle au nombre de tours qu'ils exécutent en un temps donné. On peut également, et c'est ce qui nous intéresse ici, obtenir leur positionnement précis après qu'ils aient effectué deux ou trois rotations, ou moins, comme par exemple trois quart de tour. On comprend immédiatement l'intérêt d'une telle possibilité et les applications qui en découlent sont nombreuses:

- positionnement de panneaux solaires en fonction de la position du soleil;
- ouverture plus ou moins prononcée de fenêtre de toits (Velux);

- construction d'un bras articulé à plusieurs axes pour les passionnés de robotique;
- positionnement d'une anterine directive ou d'une parabole;
- commande proportionnelle de volets de ventilation...

L'avantage de ce procédé est que la commande est assurée par un programme tournant sur micro-ordinateur et que, dès lors, toutes les possibilités sont offertes. En effet, après action du moteur, des capteurs peuvent vérifier le bon déroulement de l'opération demandée, ce qui constitue une sécurité supplémentaire.

A l'inverse, la commande du moteur peut être obtenue après lecture de données externes qui nécessitent une action du mécanisme. Comme on le voit, le nombre des applications ne sera limité que par l'imagination de l'utilisateur.

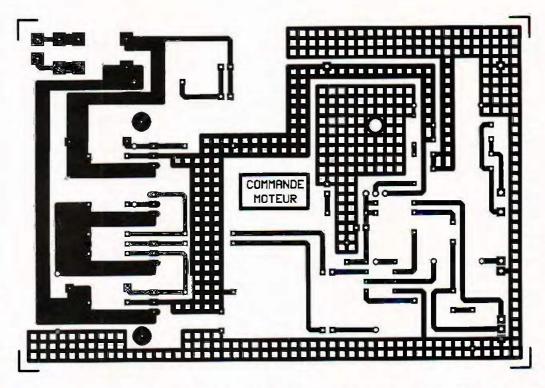
Le schéma de principe

Le principe de fonctionnement de la platine est simple et ne nécessite l'emploi que de peu de composants. Un circuit lit en permanence la position de l'axe du moteur par l'intermédiaire d'une tension issue du curseur d'un potentiomètre qui lui est solidaire et la compare à la tension de consigne imposée par la sortie du convertisseur.

Le schéma de principe est donné en figure 1. On peut le décomposer en deux parties distinctes : le comparateur et la commande du moteur.

Le comparateur

LE SCHEMA DE PRINCIPE.


Le circuit intégré IC1 (LM 358, double amplificateur opérationnel) est configuré en comparateur à fenêtre. Il fonctionne de la manière suivante : sur l'entrée inverseuse de IC1A est appliquée une tension issue du diviseur constitué par les résistances Rget R₁₀, et les résistances ajustables P₂ et P3. Cette tension sera appelée tension de référence haute ou VrefH. Sur l'entrée non-inverseuse de IC18 est également appliquée une tension issue du même diviseur, et que nous appellerons tension de référence basse ou VrefB. C'est la différence entre VrefH et VrefB que l'on nomme fenêtre. Tant que la valeur de la tension issue du convertisseur digital-analogique (nommée Vin) n'est ni supérieure ni inférieure aux limites de cette fenêtre, les sorties des deux. amplificateurs présentent un niveau de sortie nul. Par commande logicielle du convertisseur, nous pouvons faire varier sa tension de sortie et, dans ce cas, deux conséquences peuvent être observées:

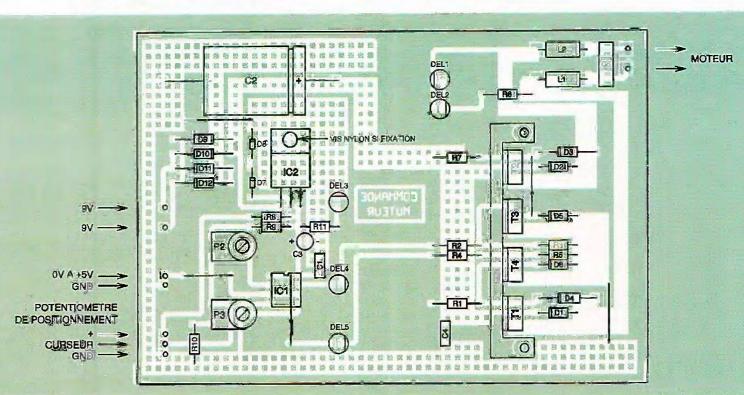
1° Si Vin (tension de sortie du convertisseur) devient supérieure à VrefH, alors la sortie de IC_{1A} présente une tension de sortie proche de 5 V. 2° Si Vin devient inférieure à VrefB, ce sera la sortie de IC_{1B} qui deviendra positive par rapport à la masse. Si dans ces deux cas le potentiomètre P₁ est manœuvré, dans un sens ou dans un autre, on s'aperçoit

qu'à une certaine position la tension de sortie de l'amplificateur concerné redevient nulle. En effet, l'ajustable P₁ permet la modification des tensions VrefH et VrefB et donc le déplacement des limites de la fenêtre du comparateur. Vin se retrouvant dans cette plage, les sorties des amplificateurs présentent à nouveau une tension de sortie nulle. On constate que la différence de potentiel existant entre les deux curseurs des potentiomètres de la fenêtre peut être rendue nulle (VrefH = VrefB) si les deux curseurs sont positionnés aux extrémités des ajustables et qu'alors la même tension est appliquée aux entrées des deux amplificateurs opérationnels. Dans ce cas particulier, l'équilibre (sortie nulle pour les deux comparateurs) est impossible à obtenir. On apercevra alors un basculement immédiat de l'une des sorties vers l'autre lorsque la tension Vin dépassera le seuil de la tension de référence, d'un côté ou de l'autre.

La commande du moteur

Plutôt que d'utiliser des relais électromécaniques coûteux et dont les contacts se détériorent rapidement lorsque des charges importantes sont commutées, nous avons jugé préférable d'employer un système de commutation par transistors. Ce choix complique quelque peu le schéma, mais les avantages d'un tel système sont évidents, pour peu

que l'on utilise les composants recommandés.


A l'état de repos, c'est-à-dire lorsque les sorties des comparateurs présentent une tension nulle, les transistors T₁ et T₂ sont rendus passants par l'application sur leur base d'un potentiel positif obtenu par les résistances R₁ et R₇ connectées à la ligne d'alimentation positive. Le moteur se trouve à l'arrêt et les DEL, DEL₁ et DEL₂ sont éteintes. Quand la sortie

de l'un des comparateurs passe à l'état haut, par suite du changement de la tension de sortie du convertisseur, une tension d'environ + 5 V est appliquée sur la base du transistor correspondant, T₃ ou T₄. Ce demier conduit et porte la base du transistor qui lui est associé (T₁ ou T₂) au potentiel de la masse, ce qui le bloque. Le pôle du moteur est ainsi également relié à la masse par l'intermédiaire de la diode BY251 et, alimenté, se met à tourner dans un sens. L'une des DEL s'illumine. L'axe du potentiomètre P₁ qui est solidaire de

l'axe du moteur est entraîné, et lorsque la position d'équilibre est atteinte, par modification des tensions VrefH et VrefB, le moteur stoppe.

On comprend maintenant pourquoi la fenêtre ne doit pas être trop étroite: à cause de l'inertie du moteur, la position d'équilibre atteinte pourrait être dépassée. Dans ce cas, l'alimentation du moteur est inversée et celui-ci se met à tourner en sens


contraire, à dépasser à nouveau la position d'équilibre et ainsi de suite sans parvenir à se stabiliser.

Chaque transistor de puissance est munie d'une diode le protégeant des tensions de rupture lors de la coupure de l'alimentation du moteur.

Les transistors utilisés sont de type darlington. Les références données sur le schéma de principe de la figure 1 permettent la commande. d'un moteur dont la consommation en courant ne doit pas dépasser 1 A. Sì l'on souhaitait alimenter un moteur plus puissant, il conviendrait de changer les BD679 (boîtier TO126) par des modèles pouvant foumir un courant plus important, par exemple des TIP121 en boîtier TO220. Dans ce cas, les broches correspondant à la base et à l'émetteur sont inversées; mais le collecteur se situant toujours sur la broche du centre, il suffira d'inverser le positionnement des transistors sur le circuit imprimé. Le montage est alimenté sous deux tensions issues de la même source : + 10 V pour la commande du moteur et + 6,2 V pour le comparateur à fenêtre. La tension du moteur peut par ailleurs être augmentée et portée à plus de 12 V si le besoin s'en fait sentir. Le courant maximal consommé par ce demier est fixé à 3 A par les diodes de redressement BY251. Il est nécessaire d'antiparasiter le moteur utilisé. Pour ce faire, il est alimenté au travers de deux selfs de chocs VK200. Un condensateur de 470 nF est également placé à ses bornes. Un second condensateur de 47 nF sera soudé entre la carcasse du moteur et la masse du montage. Les fils alimentant le moteur ne devront pas dépasser une vingtaine de centimètres.

Ce dernier devra être un modèle à démultiplication dont l'axe entraîne-

ra celui du potentiomètre à l'aide de pignons. Le rapport des engrenages devra être choisi selon l'angle de rotation que devra effectué l'axe du moteur. P₁ sera un modèle de bonne qualité, par exemple à piste moulée. La précision du positionnement dépendra en grande partie de cette caractéristique.

La réalisation pratique

Le dessin du circuit imprimé est donné en **figure 2**. On utilisera le schéma de l'implantation des composants donné en **figure 3** afin de câbler la platine.

Comme d'habitude, on implantera d'abord les straps, au demeurant fort peu nombreux. Il sera inutile de munir le régulateur de tension 7805 dissipateur thermique, celui-ci ne débitant que quelques milliampères. Quant aux transistors de puissance, ils en seront obligatoirement pourvus: si l'on utilise des BD679, le refroidisseur sera de plus grande taille que si l'on employait des TIP121 qui pourront être fixés sur de simples petits morceaux de métal, comme le montre la photographiee illustrant. l'article.

Les diodes DEL4 et DEL $_5$ ne sont pas obligatoires et pourront être remplacées par des straps. Elles facilitent cependant la mise au point si des problèmes survenaient lors des essais.

Les réglages et les essais

Après une minutieuse vérification, la platine sera mise sous tension. Il ne sera pas nécessaire, dans un premier temps, d'utiliser le moteur, mais le potentiomètre P₁ devra être connecté à l'endroit prévu sur la platine. On connectera une source de tension de + 2,5 V à l'entrée prévue pour la sortie du convertisseur.

On amènera les curseurs de Po et de P3 aux extrémités des pistes des potentiomètres vers le curseur de P₁ qui sera mis en position médiane. L'une des deux DEL (DEL1 ou DEL2, DEL4 ou DEL_s) devra s'allumer. Par action sur P₁, dans un sens ou dans l'autre, la DEL alimentée devra s'éteindre, suivie immédiatement par l'illumination de l'autre. En ajustant P2 et P3 très légèrement, chacun dans le sens opposé, on devra obtenir l'extinction de toutes les DEL. En tournant l'axe de P₁ vers la droite, l'une des diodes devra s'allumer puis s'éteindre en repositionnant P1 dans son état d'origine. On effectuera la même opération dans l'autre sens et constater l'allumage et l'extinction de l'autre diode. Bien que prévu pour fonctionner avec la platine à convertisseurs, ce montage pourra être utilisé en manuel. Il suffira pour cela de connecter à l'entrée prévue pour le convertisseur le curseur d'un potentiomètre dont les deux autres bornes seront branchées en parallèle sur le potentiomètre P₁.

On pourrait également imaginer, par exemple, un système fournissant une tension proportionnelle à l'éclairement d'une cellule photoélectrique. Ce dispositif pourrait être utilisé pour le positionnement de panneaux solaires en fonction de l'angle des rayons solaires.

Patrice OGUIC

NOMENCLATURE DES COMPOSANTS

Circuits intégrés

IC1: LM 358

IC₂: 7805 Semi-conducteurs

T, à T, BD679, (IP12# (veir

texte)

D1, D2, D5, D4: 1N4001

D₃, D₄, D₉, D₁₀, D₁₁, D₁₁

BY251

D7, Da: 1N4148

DEL, à DELs: diodes électro-

luminescentes rouges

Résistances

R1, R2, R4, R7: 2,7 KQ (rouge,

violet, rouge)

R₃, R₅: 47 kΩ (jaune, violet,

orange)

R₄, R₄: 1 kΩ (marron, noir,

rouge)

R., R. 100 Ω (marron, noir

marron)

R11: 560 Ω (vert, bles,

marron)

P: potentiomètre à piste

moulée 10 kΩ courbe

linéaire A

P₂, P₃: résistances ajustables

horizontales 22 $k\Omega$

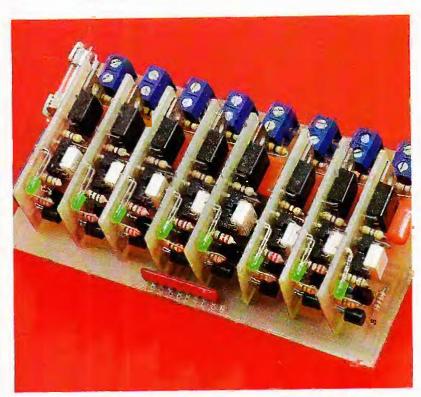
Condensateurs

C1, C4: 100 nF

C2: 4 700 µF 16 V ou 25 V

selon tension d'alimentation

C3: 10 µF 16 V


C₅: 470 nF

Divers

1 moteur avec demultiplicateur selon application 2 pignons module et rapport selon application refroidisseurs

Nous vous proposons dans cet article l'analyse et la réalia sation d'un jeu de lumière dont vous pourrez programmer à volonté les effets. Principalement basé sur l'utilisation d'une mémoire, ce chenillard est un appareil numérique. Il est, de ce fait, simple de réalisation et offre de nombreuses fonctions pour l'utilisateur exis geant,

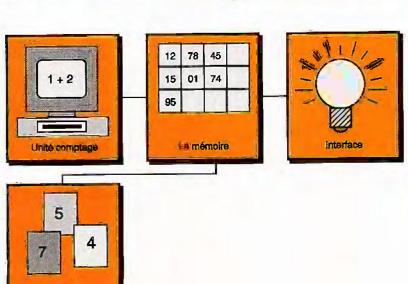
JEU DE LUMIERE PROGRAMMABLE

Les mémoires

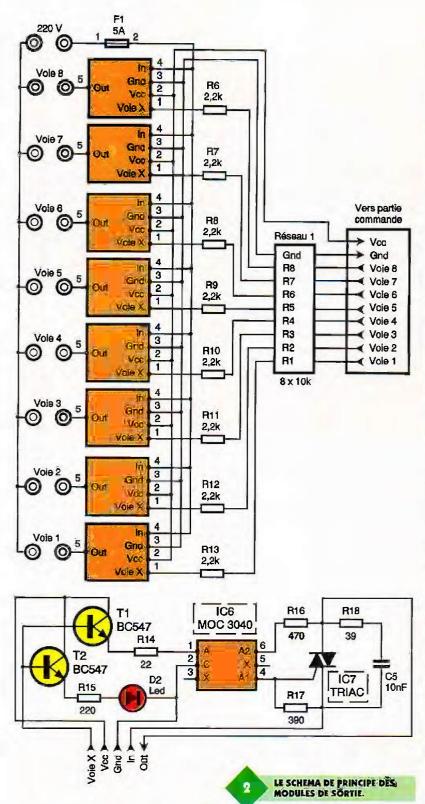
Elles servent à préserver des informations, généralement binaires, pouvant être lues ou modifiées. Elles sont le plus souvent utilisées dans des systèmes à microprocesseur, mais leur champ d'action ne se limite pas à cette unique application.

Il existe deux grandes catégories de mémoires: les mémoires à accès aléatoires (RAM, ROM) et les mémoires à accès séquentiels (registre séries ou bandes magnétiques). Ces demières n'étant plus au goût du jour, intéressons-nous aux mémoires de type aléatoire. On en distingue deux types différents: la RAM et la ROM.

La RAM (Random Acces Memory), appelée mémoire vive, préserve les données aussi longtemps qu'elle est alimentée. Elle admet deux modes de fonctionnement: le régime statique, où les données sont indéfiniment stockées, et le régime dynamique, où le temps de stockage n'est pas infini et où l'on recharge régulièrement la mémoire pour préserver son contenu. Cette opération s'appelle le rafraîchissement.


La ROM se différencie essentielle-

ment de la RAM par sa capacité à stocker les données hors alimentation. Elle est aussi appelée mémoire morte car son contenu est figé, et si l'on veut modifier une donnée, il faut recharger tout le contenu de la mémoire. Ces deux types de mémoires sont les plus couramment utilisés mais il en existe encore beaucoup d'autres.


Description du chenillard

Il se compose de deux parties: une qui gère en séquences logiques et une autre qui se charge de délivrer de la puissance. Il offre deux modes de fonctionnement: un mode manuel et un mode automatique où les programmes défilent les uns derrière les autres. Simple d'utilisation, il se connecte sur le réseau 220 V EDF classique et pilote des charges d'une centaine de watts.

Affichage

Analyse du schéma

Le principe de fonctionnement (fig. 1) nous donne les quatre fonctions de base mises en œuvre:

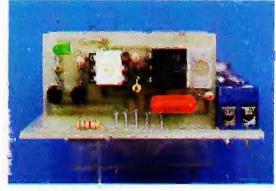
- l'unité de comptable;
- l'affichage du programme
- la mémoire;
- l'interface de puissance.

Nous allons donc étudier dans l'ordre ci-dessus ces quatre parties que l'on retrouve sur le schéma de fonctionnement (fig. 2 et 3).

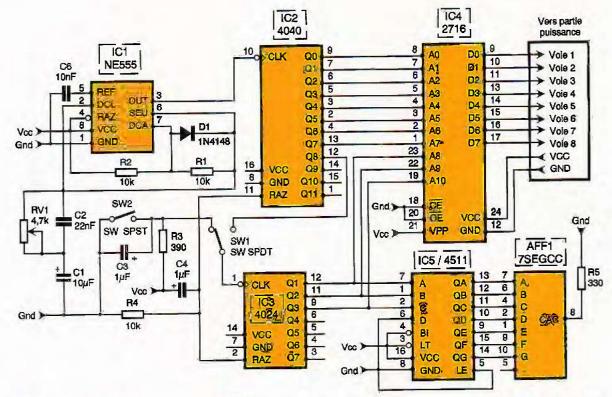
Unité de comptage

Commençons par l'analyse de l'horloge. La structure de celle-ci n'est pas totalement inconnue de nos lecteurs puisqu'une fois encore nous avons fait appel à un grand classique : un NE555 monté en astable. Il est bon de se rappeler la formule générale de charge et de décharge d'un condensateur. $U_c = U_t + (U_t - U_t) e^{-tt}$, avec U_c la tension de charge du condensateur lors d'une phase, U_t la tension qu'atteindrait le

condensateur si l'on n'interrompait pas la phase, U, la tension initiale que le condensateur portait au début d'une phase, T l'instant considéré et t la constante de temps du réseau. On s'intéresse à l'instant où le système bascule de Vcc à Gnd. Le condensateur se chargeant au travers de R2 et R1, sa tension augmente jusqu'à 9/3 Vcc, où aop1 met à zéro la bascule RS. Les valeurs précédemment décrites sont dans cette phase $U_i = 1/3 \text{ Vcc}$, $U_c = 2/3 \text{ Vcc}$, $U_t = \text{Vcc}$ et $t_1 = (R_{\Sigma} + R_{V1}) \times C_1$. L'origine des temps se situant à l'origine de la charge, on obtient, après résolution de l'équation, $t_c = t_1 \times ln2$. On procède de même pour la décharge et I'on trouve $t_d = t_2 \times \ln 2$, où $t_2 =$ $(R_1 + R_{v1}) \times C_1$. Une période T étant constituée d'un temps haut te et d'un temps bas t_d, on détermine ainsi l'expression de la fréquence f = 1/T

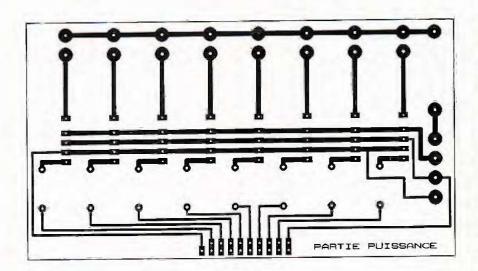

 $=\frac{1,44}{(R_1+R_2+R_{v1})\times C_1}$

On notera que si $R_1 = R_2$, alors $t_c = t_d$, cela étant dû à la présence de la diode D_1 . Comme vous l'aviez déjà compris, c'est grâce à la résistance variable R_{v1} que l'on pourra faire varier la fréquence de fonctionnement du jeu de lumière.

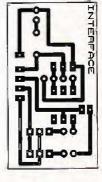

Le reste de l'unité de comptage repose sur l'utilisation de deux compteurs: l'un étant utilisé pour scruter les programmes et l'autre pour définir les adresses des programmes. Le premier est appelé compteur défilement et le second, compteur adresses. Le compteur défilement est directement piloté par le NE555. C'est le bit Q₈ du compteur défilement (mode automatique) où le bouton poussoir SW₂ (mode manuel) qui se charge de l'horloge du compteur d'adresses. Les composants R₃ et C₃ forment l'étage anti-rebonds du poussoir SW₂.

Affichage

C'est le circuit intégré IC₅ qui s'occupe de décoder l'adresse des pro-



UN MODULE DE PUISSANCE.



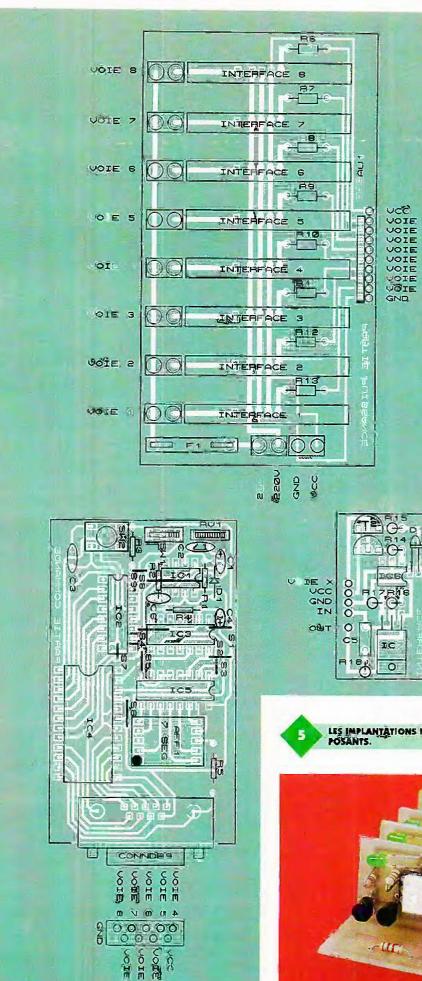
grammes. Il affichera le résultat sur un afficheur sept segments à cathode commune. Pour limiter le courant dans l'afficheur, nous avons prévu une résistance commune R₅ qui permet de gagner de la place sur le typon. Les broches 3 et 4 de IC₅ servent respectivement à ne pas afficher le zéro et à éteindre l'afficheur, ces entrées sont des entrées inversées.

La mémoire

Elle est du type EPROM (Erasable Programable Read Only Memory), c'est une 2716, c'est-à-dire qu'elle peut mémoriser 16384 bits ou 2048 octets. Le plan mémoire est utilisé en huit sous-parties qui sont les programmes. Chaque programme contient 256 octets accessibles grâce aux 8 bits d'adressage de poids faible. Les programmes seront, eux, sélectionnés grâce aux 3 bits d'adressage restant. Le compteur défilement s'occupe donc des 8 bits de poids faible et le compteur d'adresses se charge des 3 bits suivants. L'élaboration des programmes n'est en fait qu'un exercice de conversion dans différentes bases de calcul.

Exemples: si l'on veut allumer L_0 , L_2 , L_4 , L_6 à l'adresse 128, au programme 4.

Les 8 bits de poids faible définissent l'adresse de la donnée :


128 (DEC) = 1 000 000 (BIN).

Les 3 bits de poids fort définissent le programme:

4 (DEC) = 100 (BIN).

Les bits de données représentent les lampes allumées :

01010101 (BIN) = 55 (HEX)

CC

La donnée à programmer est 55 (HEX) à l'adresse 1001000000 (BIN) = 480 (HEX).

Interface puissance

Cette interface va nous permettre de commander des tensions de 220 V grâce aux données présentes sur le port de sortie de l'EPROM. Par sécurité, nous avons isolé la partie puissance du reste du montage. Pour ce faire, nous avons utilisé des optotriacs à passage par zéro. Ces phototriacs commandent les triacs à chaque fois que l'alternance du secteur s'annule, ce qui permet de réduire considérablement les harmoniques parasites. Le condensateur C₅ et la résistance R₁₈ forment un réseau anti-surtension qui protège ainsi le triac IC7. Les transistors T1 et T2 amplifient le signal de l'EPROM afin de pouvoir attaquer l'optotriac IC6 et la diode de visualisation Dg. Enfin, on notera la présence du réseau de résistances, jouant le rôle de résistance de tirage au cas où la partie puissance serait désolidarisée de sa partie commande.

Réalisation

Les typons et les implantations sont donnés figures 4 et 5. Lors de la réalisation, on portera une attention toute particulière afin de ne pas oublier un strap (c'est une panne difficile à trouver). Pour ce qui est de la partie puissance, on réalisera les huit petites interfaces que l'on soudera en dernier sur la partie puissance. Pour des raisons économiques, nous avons confié l'alimentation de ce montage à un petit bloc 5 V/50 mA. Cependant, nous lui avons ajouté un condensateur de 1000 µF pour améliorer ces performances. Nous vous

proposons **figure 6** le programme ayant servi à tester le chenillard, il conviendra parfaitement pour vos premières utilisations de l'appareil.

Conclusion

Cette application permet de bien montrer le fonctionnement séquentiel d'une mémoire. De plus, sa présentation sous forme de modules permet à l'utilisateur d'imaginer d'autres montages (ex.: utiliser la partie puissance pour faire un jeu de lumière commandé par ordinateur). Nous espérons que ce petit jeu de lumière vous a ouvert l'esprit vers le monde des mémoires et vous a donné envie d'en savoir plus.

David RODRIGUEZ

LISTE DES COMPOSANTS Résistances

 R_1 , R_2 , R_4 : 10 k Ω (marron noir, orange) R_3 , R_{17} : 390 Ω (orange,

blanc, marron) $R_s: 330 \Omega$ (orange, orange)

marron)

R. à R13: 2,2 kΩ (rouge,

rouge, rouge

 $R_{13}: 220 \Omega$ (rouge, rouge,

	0	1	2	3	4	5	6	7	8	9	A	В	C	D	E	F
0		1	12	20	2	2	4	4	4	<u>.</u> 8	8	8	10	¥10	1.0	20
1	20	20	40	40	40	80	80	80	1	1	2	2	4	4	8	8
2	10	10	20	20	40	40	80	80	1	24	4	8	10	20	40	80
3	1	2	4	8	10	20	40	80	1	1	2	2	4	4	8	8
4	10	10	20	20	40.	40	80	801	1	12	群国	2	2	2	4	4
5	4	8	8	8	10	10	10	20	20	20	40	40	40	80	80	80
6	1		11-	1919	2	2	2	_2	4	4	4	4.	8	8	8	8
7	10	10	10	10	20	20	20	20	40	40	40	40	80	80	80	80
8	图4 编		9	124	2	2	4.	#4	4	8	8	8	10	10	10	20
9	20	20	40	40	40	80	80	80	1	1	2	2	4	4	8_	8
A	10	10	20	20	40	40	80	80	製1型	2	4	8	10	20	40	80
B	1	2	4	8	10	20	40	80	1	1	2	2	4	4	8_	8
C	10	10	20	20	40	240	80	80	1	1	31	2	2	24		4
D	4	8	8	8	10	10	10	20	20	20	40	40	40	80	80	80
E	1	111		1	23	32	2	2		4	540	4.1	8	8	8	8
F	10	10	10	10	20	20	20	20	40	40	40	40	80	80	80	80

marron)

 $R_{14}: 22~\Omega$ (rouge, rouge,

noir)

 R_{14} : 470 Ω (jaune, violet, marron)

 R_{18} : 39 Ω (orange, blanc,

noir)

 R_{v_1} : 4,7 k Ω verticale Reseau : réseau 8 x 10 k Ω

Condensateurs

C₁: 10 µF/25 V tantale C₂: 22 nF céramique C₃, C₄: 1 µF/25 V tantalé C₅: 10 nF/400 V plastique

C. : 10 nF céramique

Semi-conducteurs

IC₁: NE555 IC₂: CD 4040 IC₃: CD 4024

IC4: CD 2716 IC5: CD 4511

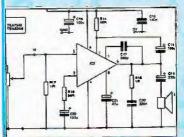
IC₄ : MOC 3040 IC₇ : triac 6 A/400 V

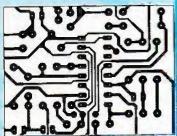
D₁: 1N4148 D₂: DEL T₁, T₂: BC547

For fusible 5 A + support

SW : inverseur C.I.

SW₂: poussoir type KSA


CAO


"CADPAK"

LA SAISIE DE SCHÉMAS AVEC DESSIN DE CIRCUITS-IMPRIMÉS sun PC AV et '386/'486

e s z pas un MINOSAU E

achetez "CADPAK"
Nowvelle version pour Windows!

Interface utilisateur graphique moderne (icônes et souris) - Ecrans couleurs avec ZOOMS - Export de fichiers vers PAO/TT - PCB en simple et double-face - Bibliothèques standards et CMS (extensibles par l'utilisateur) - Sorties sur matricielles, lasers, piotters, Gerber, perçage CN. NOTICE EN FRANÇAIS.

Version Démo contre chèque 60, F.TTC. (Précisez DOS ou WINDOWS)

Multipower

22. rue Emile BAUDOT 91120 - PALAISEAU - Tél: 16 (1) 69 30 13 79 - Fax: 16 (1) 69 20 60 41

LA QUALITE AU MEILLEUR PRIX

Stations de soudage pilotées par un microprocesseur à affichage numérique. Fers de 55W à 80W. Précision 2%. Panne longue durée. Cordon incombustible. Conforme aux normes Européennes.

LA QUALITE AU MEILLEUR PRIX

Station de dessoudage pilotée par un microprocesseur à affichage numérique. Fer de 80 W. Dépression: 600 mm Hg. Commande par bouton situé sur le manche. Buse longue durée à moins de 21 FTTC.

LA QUALITE AU MEILLEUR PRIX

Station à air chaud pilotée par un microprocesseur à affichage numérique pour le soudage et le dessoudage des C.M.S. Fer de 80W. Débit réglable de 0.5 à 12 l/mn.

EWIG: c'est aussi des fers 220V, des pompes à dessouder, de la tresse à dessouder, du fil de soudure, des pinces, des brucelles, des lampes loupes...

EN VENTE CHEZ VOTRE FOURNISSEUR DE COMPOSANTS ELECTRONIQUES

EWIG FRANCE 58, rue de Perseigna 65000 Tarbes - Tél.: 62 36 50 12 Fax: 62 36 49 70

DÉ DIGITAL A SUSPENSE

Le dé à six faces, ou dé à jouer, est utilisé dans de nombreux ieux de société. Il est possible, avec peu de composants, de réaliser une version électronique du petit cube blanc, avec affichage digital pour faire moderne et suspense à l'allumage pour faire plus vrai.

impartialité à notre dé électronique, incitant le joueur à tenter à nouveau

Une position particulière simulera même le « dé cassé » qu'il faudra relancer par une simple pression sur un poussoir.

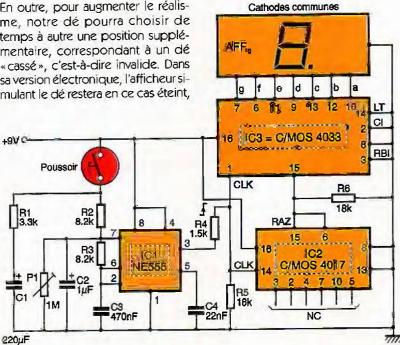
A - Un peu d'histoire

Le nom de «dé» nous provient du latin datum, qui signifie «ce qui est donné par le sort »! Belle définition pour ce petit cube d'os, d'ivoire, de bois... ou de matière plastique, portant des points incrustés ou peints sur chacune de ses six faces, de un à SIX.

Les dés à jouer étaient déjà connus en Egypte et en Orient, ou chez les chefs grecs lors de la guerre de Troie. Au Moyen Age, les dés furent l'objet d'une industrie considérable, étant fabriqués par des artisans spécialisés, les «déciers». Leur confection était étroitement surveillée, de façon à éviter les fraudes et tricheries.

Ne dit-on pas encore de nos jours: «Les dés sont jetés ou les dés sont pipés!» Cet accessoire se révèle indispensable dans bon nombre de jeux et roule souvent sur le tapis vert, au café, pour la partie de 421.

B - Principe du montage


De nombreux schémas simples de dés électroniques ont déjà été proposés; notre version digitale utile un pavé afficheur à 7 segments pour visualiser l'un des chiffres de 1 à 6, en n'affichant pas le zéro ni les chiffres 7, 8 et 9. Pour garantir une parfaite

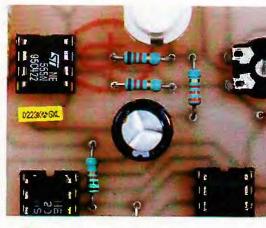
nous allons confier le choix du chiffre aux bons soins d'un circuit compteur à six, mis en œuvre par un poussoir actionné par le joueur. Ensuite, il faut faire «rouler» le dé pendant un certain temps, avant de le voir ralentir, hésiter et finalement se stabiliser en une position nette sur l'une des faces. Nous parviendrons à simuler cette attitude en faisant défiler d'abord très vite, puis de plus en plus lentement, les six chiffres du pavé afficheur, pour, en fin de compte, se bloquer sur l'un des six. Le suspense est garanti et parfaitement ren-

En outre, pour augmenter le réalisme, notre dé pourra choisir de temps à autre une position supplémentaire, correspondant à un dé «cassé», c'est-à-dire invalide. Dans sa version électronique, l'afficheur simulant le dé restera en ce cas éteint,

Nous pouvons vous assurer la parfaite honnêteté du module électronique, nullement pipé et présentant, statistiquement parlant, toutes les sorties un nombre égal de fois après de nombreux jets. On pourra tout de même modifier le schéma de base pour une application particulière

exigeant un nombre inférieur ou supérieur de chiffres.

C - Analyse du schéma électronique

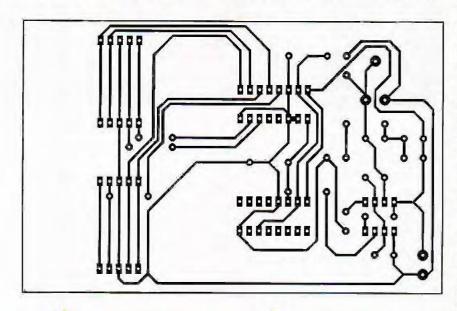

Il n'est guère compliqué et sera détaillé sur la figure 1. Pour animer les sept segments d'un afficheur classique, nous ferons appel au circuit intégré spécialisé CMOS, portant la référence 4033. Il cumule à la fois les fonctions de comptage et de décodage pour un bloc afficheur à cathodes communes seulement. Son entrée de comptage (Clock) se trouve sur la broche 1, qui ne réagira qu'aux fronts montants des créneaux présentés par le circuit oscillateur as-

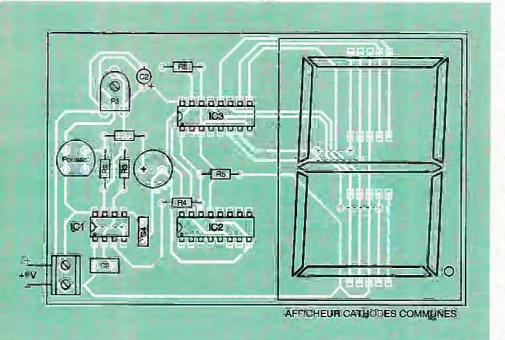
LE CIRCUIT IMPRIME.

table IC1, en l'occurrence un simple NE555. Les sept broches de sortie, repérées de A à G, du circuit IC3 délivrent une logique positive de décodage et seront reliées directement, donc sans résistances, aux segments des anodes de l'afficheur. Ce circuit assure lui-même la limitation de courant. L'entrée LT (lampe test) n'étant pas utilisée est reliée au niveau bas, tout comme la broche 2 (Clock Inhibit) validant l'entrée de comptage.

Pour éviter de faire apparaître le chiffre 0, réservé ici pour un autre usage, il nous suffira de relier à la masse la broche 3 RBI (Ripple Blancking In), réservée pour ne pas afficher les zéros non significatifs. Les impulsions

L'IMPLANTATION DES COMPO-




de comptage proviennent du circuit astable 555. Le circuit IC₁ délivre donc sur sa sortie 3 à travers R₄ un signal périodique dont la fréquence dépend pour une part des composants R₂, R₃ et C₃, mais aussi de la tension continue emmagasinée par le condensateur C₂ sur la broche 7.

A la mise sous tension du dé, le condensateur chimique C₁ se charge d'autant plus que la pression sur le poussoir Start est maintenue plus longtemps. Cela correspond à l'élan que l'on souhaite donner au dé! Il en résulte une fréquence rapide au début, puis décroissant plus ou moins vite selon la position de l'ajustable P₁. Finalement, les impulsions cessent totalement, pour ne plus commander les circuits placés en aval. Il reste pourtant un point à éclaircir : pour que le circuit IC3 ne soit pas tenté d'afficher les chiffres 7, 8 et 9, il faut provoquer la remise à zéro, ou initialisation, du circuit compteur lorsque la septième impulsion se présente. Nous faisons encore appel au circuit compteur décimal CMOS 4017. Son entrée de comptage (broche 14) reçoit les mêmes impulsions que le circuit IC3 et donnera un bref signal positif sur sa broche 6 lorsqu'il faudra initialiser le comptage de IC3 et celui de IC2 lui-même. On remarque encore que la résistance Ra force à la masSe les deux broches 15 de RAZ.

D - Réalisation pratique

La taille relativement importante du circuit imprimé est en partie due à l'encombrement de l'afficheur géant utilisé ici. La hauteur des chiffres atteint la taille respectable de 58 mm. Un tel composant pourra se voir de très loin et offre une lisibilité exceptionnelle avec, en contrepartie, un prix relativement élevé. Rassurezvous, on pourra trouver sur la pla-

quette imprimée les pastilles nécessaires à la mise en œuvre d'un afficheur de taille normale, toujours à cathodes communes. La figure 2º donne le tracé des pistes de cuivre à l'échelle 1. Nous vous recommandons l'utilisation de supports pour les trois circuits intégrés. Veillez à bien mettre en place les trois straps, tous cachés à la vue directe (sous IC1 et sous l'afficheur). Une source continue de 9V fera l'affaire, et déjà une petite pile de 9V pourra animer votre dé si son utilisation n'est qu'épisodique.

Le poussoir prévu sur le circuit imprimé pourra être déplacé à distance et relié par deux fils ou, mieux encore, remplacé par une petite ampoule de mercure que l'on inclinera pour faire rouler le dé.

A vous de jouer à présent!

Guy ISABEL

LISTE DES COMPOSANTS

Résistances

(toutes valeurs 1/4 W) $R_1: 3,3 \text{ k}\Omega$ (orange, orange, rouge) R_2 , R_3 : 8,2 k Ω (gris, rouge, rouge) $R_4: 1,5 \text{ k}\Omega$ (marron, vert, rouge) R_5 , R_6 : 18 k Ω (marron, gris, orange) Pi : ajustable horizontall 1 MO

Condensateurs

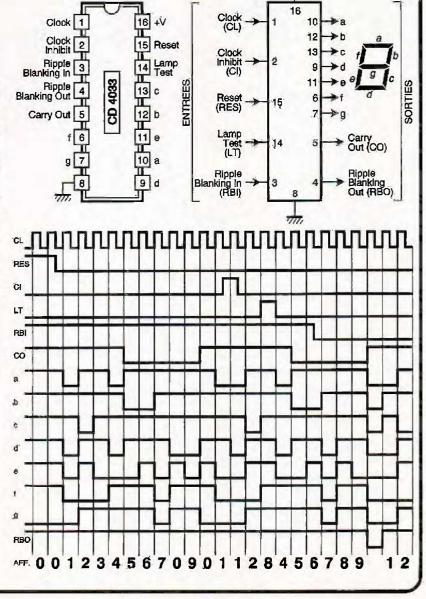
C1: chimique vertical 220 uFil 25 V C2: chimique tantale 1 µF/ 25 V

C3: plastique 470 nf

C. : plastique 22 nf

Semi-conducteurs

IC: : oscillateur astable **NE555, DIL 8** IC2 : compteur décimal CMOS 4017 IC3 : compteur-décodeu **CMOS 4033** Afficheur 7 segments à cathodes communes (chiffres 12,7 ou 58 mm de hauteur)


Divers

Support a souder 8 broches 2 supports à soude® 16 broches Poussoir sur Cl Bloc de 2 bornes vissesõudé

Pour en savoir plus : LE CIRCUIT COMPTEUR DECODEUR **CMOS 4033**

Ce circuit assure à la fois le comptage et le décodage pour une visualisation sur un pavé afficheur 7 segments à cathodes communes. Il s'alimente comme les autres circuits CMOS sous une tension de 3 à 18 V. Il est capable de fournir directement un courant de sortie par segment pouvant atteindre 20 mA sous une tension de 10 V. La fréquence maximale de comptage peut atteindre 6 MHz. Une caractéristique importante de ce composant consiste à pouvoir effacer les zéros non significatifs en exploitant les bornes RBI et RBO. Ce circuit est capable également de piloter un afficheur à cristaux

liquides en veillant à appliquer un signal BF symétrique sur le commun de l'afficheur.

OSCILLOSCOPE DOUBLE TRACE 20 MHz SEFRAM: LE MODELE SI-5702

Rares sont, de nos jours, les amateurs ne possédant pas un oscilloscope ou tout au moins ne désirant pas en acquérir un. Ce qui les arrête le plus souvent, c'est le prix élevé des appareils ou, à l'inverse, la mauvaise qualité du matériel proposé à des prix bas.

Les fabricants, pour la plupart conscients de ce fait, proposent un ou deux modèles correspondant à cette commande: le SI-5702 de SE-FRAM, commercialisé par la société Teral, fait partie de cette gamme plus particulièrement réservée à l'amateur exigeant ne voulant pas investir une part trop importante de son budget. Le 5702 est un oscilloscope double trace présentant une bande passante de 20 MHz, bande suffisamment élevée pour la plupart des mesures effectuées sur les maquettes conçues par l'amateur. L'appareil présente un aspect externe agréable et l'on remarque immédiatement le placement fonctionnel des commandes de la face avant. Rien n'a été omis, comme on peut en juger à la lecture des caractéristiques principales énumérées ci-dessous. Le tube cathodique est un modèle rectangulaire de 8 x 10 divisions, 1 division étant égale à 1 cm. Il dispose d'un graticule incorporé, ce auj diminue les risques d'erreurs de mesure dus à l'espace existant, comme on le rencontre sur certains appareils, entre la surface du tube et les graduations dessinées sur un second support. L'axe vertical dispose également de graduations, ce qui rend plus facile la mesure des temps de montée. La borne Calibration délivre une tension rectangulaire de 1 V crête à crête, de polarité positive et de

fréquence égale à deux fois celle du secteur. Ce signal sera utilisé pour le réglage de la compensation des sondes. Le réglage Intensity permettra le réglage de l'intensité des traces. Le réglage Focus ajuste la netteté afin d'obtenir des traces optimales. Le réglage Astig ne dispose pas de bouton sur la façade mais devra être réalisé à l'aide d'un petit tournevis. Cette fonction agit en concordance avec Focus et permet le réglage de la netteté. L'ajustage Trace Rota(tion) permet le réglage de l'inclinaison des traces par rapport à l'axe horizontale central. Cette inclinaison peut effectivement varier en fonction du champ magnétique terrestre. La borne de terre sera à utiliser lorsque l'on reliera une masse commune avec un autre appareil. Position verticale permet d'ajuster la position verticale des traces. En mode XY, cette commande sera utilisée pour régler la position verticale du spot. Les atténuateurs d'entrée volts/div possèdent une progression de 1-2-5, de 1 mV à 5 V. Le réglage fin variable, placé dans le centre des boutons de réglage des atténuateurs, permet un réglage continu de ces demiers entre 1 mV et 5 V, sans trous

Le commutateur AC-GND-DC sélectionne le mode de liaison des entrées

En mode AC, la fréquence de coupure basse – 3 dB sera alors de 10 Hz si l'on utilise une sonde 1:1 et 1 Hz si la sonde est un modèle 10:1 corrisée.

Les réglages BAL, situés à proximité des boutons de réglage des atténuateurs, permettent de régler l'équilibrage des voies 1 et 2. L'appareil est ajusté en usine, mais des variations de température peuvent provoquer des dérives. Il conviendra alors de procéder à ces réglages afin que les traces ne se déplacent pas de haut en bas lorsque les commandes volts/ div sont manipulées.

La commande Vertical Modes permet de sélectionner le mode de fonctionnement de la déviation verticale:

- CH1: le signal de la voie 1 est affiché à l'écran;
- ALT: permet l'affichage alterné des deux voies à chaque balayage;

YUE

VUE INTERNE DE L'APPAREIL

- CHOP: permet la commutation des deux voies à une fréquence de 250 kHz:
- ADD: effectue la somme algébrique des signaux des voies 1 et 2 et l'affiche sur l'écran;
- si la fonction CH2 INV est enclenchée, la trace obtenue sur l'écran sera la différence entre les signaux des voies 1 et 2;
- CH2 : le signal de Ja voie 2 est affiché sur l'écran ;
- Coupling: ce commutateur permet la sélection du signal de synchronisation;
- AC: le positionnement du commutateur sur cette fonction permet l'élimination de la composante continue du signal de synchronisation appliqué au circuit de déclenchement;
- TV-F: déclenchement de la base de temps par des signaux TV trames;
- TV-L: déclenchement de la base de temps par des signaux TV lignes;
- Source: ce commutateur permet de sélectionner la source du signal de synchronisation;
- VERT: la source du signal de synchronisation est sélectionnée par le mode VERT;
- CH1: le signal d'entrée de la voie 1 est la source du signal de synchronisation;
- CH2: dans ce cas, c'est le signal d'entrée de la voie 2 qui devient la source du signal de synchronisation;
 LINE: synchronisation sur la tension.
- LINE: synchronisation sur la tension secteur;
 EXT: c'est le signal appliqué sur
- l'entrée "EXT.TRIG." qui est alors le signal de synchro;
- SLOPE: permet la sélection du front de déclenchement du signal

- de synchronisation, soit sur un flanc montant, soit sur un front descendant
- TRIGGER LEVEL: réglage du seuil de synchronisation; cet ajustage permet de déterminer en quel point du signal la base de temps sera déclenchée;
- SWEEP TIME/DIV.: cette commande permet d'obtenir un réglage dans la progression 1-2-5 de la vitesse de balayage; la commande variable permet d'obtenir des vitesses intermédiaires:
- X10 MAG: cette commande permet l'expansion par 10 du balayage. Sur la face arrière de l'appareil sont disposés deux connecteurs BNC: l'un est la borne d'entrée de l'axe Z qui permet la modulation du faisceau d'électrons; une tension positive diminue l'intensité de la trace. La modulation du faisceau est compatible avec un signal TTL. L'autre connecteur est la borne de sortie de la voie 1. Ce dernier permet de connecter un fréquencemètre à l'oscilloscope afin de procéder à des mesures sur la source connectée à la voie 1. Ce signal devra malgré tout posséder un niveau suffisant afin d'être exploitable. Un signal d'amplitude insuffisante sera « noyé » dans le bruit et les indications données par le fréquencemètre ne pourront être d'une précision suffisante.

Les applications

Comme chacun sait, la fonction première d'un oscilloscope est de visualiser la forme des signaux appliqués sur ses entrées. On peut ainsi facilement mesurer la valeur d'une tension continue ou la fréquence d'un signal sinusoïdal ou carré, par exemple; on peut également déterminer la valeur de la distorsion apportée à un signal par un amplificateur quelconque. Le SEFRAM SI-5702 peut égalerment fonctionner comme un oscilloscope de type X-Y. Dans ce fonctionnement particulier, le signal appliqué sur l'entrée de la voie 1 provoque une élongation verticale et celui appliqué sur la voie 2 provoque une élongation horizontale. On obtient ainsi des figures de Lissajous qui permettent de déterminer le déphasage et le rapport de fréquence entre deux signaux. Pour une mesure de phase, par exemple, on procédera de la façon suivante:

1° un signal sinusoïdal de niveau correct est appliquéé au circuit à tester, l'amplitude correcte étant celle ne provoquant pas d'écrêtage en sortie du circuit:

2° la sonde du canal CH1 est connectée en sortie du montage à tester;

3° l'oscilloscope étant configuré en mode X-Y, la sonde du canal CH2 prélève le signal présent à l'entrée du circuit:

4° le gain des deux voies est réglé de manière à obtenir un diagramme de dimensions correctes.

On peut constater que les graphiques permettent de déterminer la déformation d'amplitude et la différence de phase existant entre le signal d'entrée et le signal de sortie. De la même manière, il est possible de déterminer facilement le rapport entre les fréquences de deux signaux appliqués sur les entrées CH1 et CH2 de l'oscilloscope toujours configuré en mode X-Y. Deux sondes sont livrées avec l'oscilloscope, ce qui est une bonne surprise. En effet, ces dernières sont de plus en plus rarement livrées avec l'appareil et doivent être achetées séparément, ce qui en augmente sensiblement le prix. Des fusibles de rechange sont également livrés avec l'oscilloscope. En conclusion, le SEFRAM SI-5702 est un bon appareil qui remplira ses fonctions très correctement. L'amateur sera charmé par son esthétique sobre et fonctionnelle et par la facilité d'utilisation de l'appareil. Son prix très abordable (2990 FTTC) en augmente l'attrait et nous sommes convaincus que cet oscilloscope comblera de bonheur l'amateur souhaitant équiper son laboratoire à peu de frais, en disposant des mêmes performances rencontrées sur des appareils bien plus onéreux.

P. OGUIC

CONNAITRE ET COMPRENDRE LES CIRCUITS INTEGRES FICHE TECHNIQUE N° 78 CD 4522/4526

Parmi les compteurs disponibles sur le marché, les CD 4522/4526 ont été concus spécialement pour assurer la fonction de « décomptage ». Grâce à leurs entrées de prépositionnement, ils sont également programmables. Il en résulte toute une série d'applications et notamment dans le domaine de la division des fréquences.

1 – Caractéristiques générales

Alimentation: 3 à 18 V.

Consommation très faible : quelques microampères.

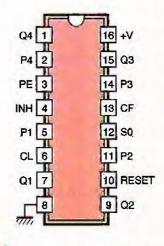
Débit limité sur les sorties à une dizaine de milliampères.

Possibilités de prépositionnement. Elargissement de la capacité par regroupement de plusieurs de ces

compteurs. Sortie So décodée et accessible. CD 4522: 4 bits, 10 positions, logique BCD (décimal codé binaire). CD 4526: 4 bits, 16 positions, binai-

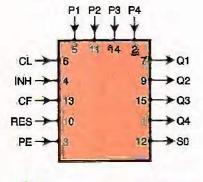
II - Brochage (fig. 1)

Le circuit comporte 16 broches disposées « dual in line » (deux rangées de 8). La broche 16 correspond au « plus.» tandis que la broche 8 est à relier au « moins » de l'alimentation.


Les signaux faisant avancer le compteur sont à introduire sur l'entrée « Clock » (broche 6). La broche 4 « Inhibit » permet la neutralisation du compteur. La broche 13 « Cascade Feedback » est une entrée destinée à être utilisée en cas de groupage avec un autre compteur. L'entrée « Reset » (broche 10) sert à la remise à zéro du compteur.

La fonction de prépositionnement est commandée par l'intermédiaire de la broche 3: « Preset Enable ».

III – Fonctionnement (fig. 2)


Lorsque les entrées «Inhibit», «Preset Enable» et «Reset» sont soumises simultanément à un état bas, le compteur décompte au rythme des fronts positifs des créneaux de comptage présentés sur l'entrée «Clock».

S'agissant du CD 4522, le compteur décompte de 9 à 0, puis se repositionne sur 9 et ainsi de suite. Quant au CD 4526, il décompte selon le même principe de la position $15 \, a$ 0. Les sorties Q_1 à Q_4 occupent pour

Le compteur comporte en outré quatre entrées de prépositionnement P_1 à P_4 correspondant respectivement aux broches 5, 11, 14 et 2. Quant aux sorties, on note les quatre sorties binaires correspondant aux 4 bits Q_1 à Q_4 accessibles par l'intermédiaire des broches 7, 9, 15 et 1. Enfin, une sortie S_0 correspond à la broche 12.

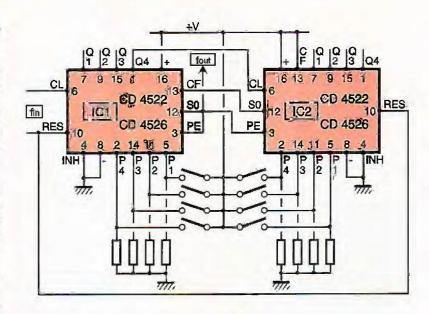
LE FONCTIONNEMENT

chaque position particulière des états logiques conformes aux règles du comptage binaire ou BCD.

La sortie S₀ ne présente un état haut que dans le cas particulier où le compteur occupe effectivement la position zéro et que l'entrée «Cascade Feedback» se trouve reliée à un état haut. Si l'une ou l'autre de ces deux conditions (ou les deux simul-

tanément) n'est pas réunie, la sortie. So présente un état bas.

Si l'on relie l'entrée «Inhibit» à un état haut, le comptage est neutralisé même si l'on présente sur l'entrée «Clock» des fronts montants.


Lorsqu'on soumet l'entrée « Clock » à un état haut permanent, le compteur décompte au rythme des fronts descendants présentés sur l'entrée « Inhibit ».

Dès que l'on relie l'entrée «Reset» à un état haut, même bref, le compteur se trouve remis à zéro, qu'els que soient les niveaux logiques auxquels sont soumises les autres entrées.

Enfin, toute soumission, même brève, de l'entrée « Preset Enable » à un état haut a pour effet immédiat le prépositionnement du compteur. Cela se concrétise par le fait que les sorties Q₁ à Q₄ épousent les mêmes niveaux logiques que les entrées de prépositionnement P₁ à P₄ respectives.

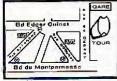
IV - Utilisation

La **figurez 3** indique un exemple de regroupement de deux CD 4522/4526 pour constituer un diviseur de fréquence.

En utilisant, par exemple, deux CD 4526, on obtient sur la sortie S₀ de IC₁ des impulsions positives dont la fréquence se trouve divisée par un nombre «N», par rapport à celle que l'on présente sur l'entrée «Clock» de IC₁.

Le nombre «N» peut être programmé à volonté par les huit interrupteurs de programmation déterminant les niveaux logiques appliqués aux entrées de prépositionnement. 3 UN DIVISEUR DE FREQUENCES.

Si « n_1 » est la division apportée par $|C_1(0 < n_1 \le 15)$ et « n_2 » celle qui est propre à $|C_2(0 < n_2 \le 15)$, le nombre « N» est le résultat de la relation :


N=16n2+n1

NOUVEAU !!! MINITEL A ACCES GRATUIT POUR CONSULTER NOTRE STOCK OU PASSER UNE COMMANDE.

MONTPARNASSE 16, rue d'Odessa 75014 PARIS Tél : 43 21 56 94

Tél : 43 21 56 94 Fax : 43 21 97 75 MINITEL AU 43 20 20 20 MONTPARNASSE

Métro Montparnasse Edgar Quinet ou Vavin

PROMOTION PAR QUANTITE SUR NOMBREUSES REFERENCES CIRCUITS INTEGRES

dans la limite des stocks
remise 20% sur les kits DIAMANTS
VOS CIRCUITS IMPRIMES D'APRES FILM POSITIF

gravure, perçage, étamage

simple face 65 F le dm² double face 100 F le dm²

Ouvert du mardi au samedi de 10 h à 13 h et de 14 h à 19 h

Service expédition rapide COLISSIMO Règlement à la commande : forfait de port 35 F. Contre-remboursement COLISSIMO : Forfait 80 F

Divert du mardi au samedi de 10 h à 13 h et de 14 h à 19 h

Service expédition rapide COLISSIMO Règlement à la commande : forfait de port 35 F. Contre-remboursement COLISSIMO : Forfait 80 F

Prix et caractéristiques donnés à titre indicatif pouvant être modifiés sans préavis. Les produits actifs ne sont ni repris ni échangés. Administrations et sociétés acceptées, veuillez vous renseigner pour les modalités.

LOGIQUE TTL CIRCUITS LINEAIRES CMOS SERIE 4000 MICRO ET PERIPHERIQUES

TRANSISTORS Thyristors Triacs Diodes COMPOSANTS MINIATURE DE SURFACE OPTO ET RELAIS

LES KITS ET MODULES KEMO - Kits DIAMANT - OK Kits : Kitplus - Kitchoc - Pratikit

Kits Velleman - Kits Sales - Modules Cebek

- 10 entrées analogiques
- 3 ports 8 bits entrée/sortie
- 3 commandes de moteurs pas à pas
- 4 circuits pour mesure relative R/C
- 1 commande PWM pour moteur continú - 2 interruptions IRQH et IRQL
- directement connectable a un circuit MODEM

type EF 7910 pour le commander par téléphone

EXCEPTIONNEL CARTE ADS 232 EN KIT

Cette carte branchée sur une liaison série et avec n'importe quel logiciel de communication série permet à votre ordinateur de communiquer avec l'extérieur et cela sans savoir programmer.

Avec cette carte vous pouvez transformer votre ordinateur en appareil de mesure et de commande universel, multimètre, ohmètre, fréquencemètre, système d'alarme, thermomètre, capacimètre ou commander une machine outil, l'utiliser en domotique, etc.

Livré avec schéma, disquette de démo et logiciel de communication sous DOS

EXCLUSIF 1390 F REVENDEURS NOUS CONSULTER

PROMOTION

LECTEUR DE DISQUETTE 3.5 POUCES

SIMPLE FACE

L'UNITE 60 F

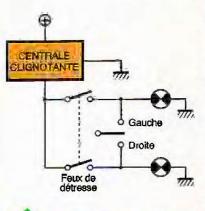
LES 10 PIECES

500 F

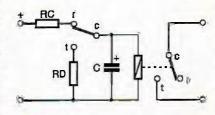
DISPONIBLE KIT CH 102 LECTEUR/COPIEUR DE 68705 P3 AUTONOME

permet de RELIRE le⁵
programme d'un 68705 P3 et
de programmer un 68705 P3
vierge. La sauvegarde du
programme est possible grâce
à sa liaison RS 232.
PRESSEZ-VOUS.
livré avec disquette
490 F

NOUVEAU!!! MINITEL A ACCES GRATUIT AU 43 20 20 20 A LA TARIFICATION TELEPHONIQUE NORMALE

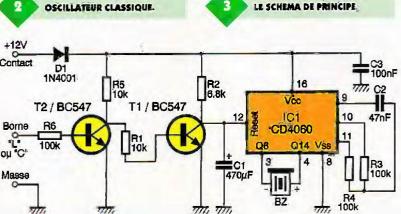

ANTI-OUBLI POUR CLIGNOTANT

Oublier son clignotant après avoir etfectué une manœuvre est arrivé au moins une fois à chacun d'entre nous. Les raisons en sont multiples, de l'oubli pur et simple au non-fonctionnement du dispositif de retour automatique faute d'un débattement suffisant du volant. Un cocktail de composants très classiques va nous permettre de réaliser un avertisseur antioubli inédit.


Imaginons une autoroute en plein mois d'août, il fait chaud, vous roulez les vitres grandes ouvertes. Vous circulez sur la file de droite et, quelques kilomètres plus tôt, vous avez dépassé un camion. Dans votre rétroviseur, un véhicule visiblement décidé à vous doubler vous fait des appels de phare avec insistance. Passé le cortège d'injures qui vous traverse l'esprit à son encontre! vous vous apercevez qu'effectivement ce conducteur est en droit de se poser des questions quant à vos intentions de conduite pour les kilomètres à venir. Cela fait au moins 10 minutes que votre clignotant gauche est allumé (depuis votre demier dépassement), et la chaleur, le bruit et la fatique aidant, vous n'avez ni vu ni entendu l'indicateur de votre tableau de bord vous rappeler déses pérément à l'ordre.

Les exemples de ce type sont nombreux et les causes également. La majorité des véhicules est équipée d'un dispositif de retour automatique des «indicateurs de change» ment de direction», nom savant de nos vulgaires clignotants!

Ce dispositif purement mécanique est constitué d'un doigt solidaire de la manette de commande et d'un disque à bossages entraîné par le vollant. Lorsque le volant a effectué une certaine fraction de sa rotation, il chasse, par l'intermédiaire du disque, la manette vers sa position de repos. Pour que tout cela fonctionne, il faut un débattement suffisant du volant après l'enclenche-



ment du clignotant, ce qui n'est pas le cas lors d'un dépassement. Certains véhicules sont purement et simplement privés de ce dispositif, d'autres souffrent d'une fragilité chronique de cette sécurité. Ce montage original nous mettra définitivement à l'abri de ce type de mésaventures auguel chacun d'entre nous a été confronté régulièrement comme victime ou comme « coupable ». Avant de décrire ce montage, nous allons auparavant étudier le fonctionnement électrique d'un clignotant de véhicule.

La figure 1 en représente le schéma classique et quasiment universel. Une centrale clignotante prend en charge l'ensemble des fonctions. Présentée sous l'aspect d'un simple relais automobile à trois bornes seulement, cette centrale intègre non seulement un oscillateur, mais également un détecteur de courant. Lorsque l'on actionne la manette dans un sens ou dans l'autre, on relie, à travers les ampoules de clignotants, la borne «L» ou «C» de la centrale à la masse. Cet appel de courant, détecté par un shunt, entraîne la mise en route de l'oscillateur. Autrefois, l'oscillateur était réalisé à l'aide d'un simple relais associé à un réseau RC. La figure 2 nous en

montre un exemple. La bobine d'un relais à deux contacts est reliée à un condensateur de forte valeur qui se charge à travers une résistance prise en série avec un contact repos du relais.

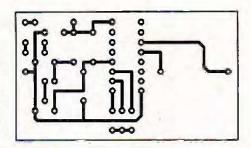
Lorsque la tension aux bornes du condensateur atteint la tension de collage de la bobine, le relais s'enclenche. Par l'intermédiaire de la résistance RD, en série avec le contact travail, le condensateur se décharge alors. Le relais retombe et le cycle reprend. Le second contact est utilisé pour commander les ampoules. Un choix judicieux des valeurs des deux résistances assure des temps de collage et de décollage identiques. Ce montage est désormais abandonné car il nécessite un câblagee électrique important et un condensateur de forte valeur forcément encombrant. Aujourd'hui, ce sont des circuits intégrés spécialisés qui équipent nos véhicules. La centrale clignotante comporte trois ou quatre bornes selon les modèles. Deux d'entre elles sont dédiées à l'alimentation 12 V prise après le contact généralement. Le commutateur des feux de détresse se charge d'alimenter la centrale dans ce cas particulier. Sur la borne marquée «L» ou «C», l'on trouve la tension pulsée commune aux deux séries d'ampoules et aux indicateurs lumineux du tableau de bord.

Principe

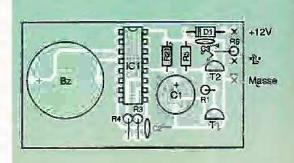
Le schéma de principe de ce montage est représenté en figure 3. Au repos, un oscillateur-compteur IC1 à 14 bits est bloqué par son entrée «reset». Ces sorties Q6 et Q14 sont donc à zéro et le buzzer ne peut fonctionner. Le transistor T₁ est, quant à lui, bloqué et le condensateur C₁ connecté à ses bornes est donc chargé à la tension d'alimentation. T2, relié à la sortie «L» ou «C», est saturé, assurant par là même le blocage de T₁. Nous avons vu plus haut que la centrale intègre un détecteur de courant. Cela explique que nous trouvions sur cette borne une tension médiane de 6 V au repos. Lorsque l'on actionne le clignotant gauche ou droit, cette tension passe alors alternativement de l'état haut à l'état bas. To inverse ces battementss et provoque la décharge rapide de C₁ qui, associé à R₂, constitue un monostable redéclenchable. Compte tenu de la fréquence de clignotement, C₁ n'a pas le temps de se recharger entre deux allumages d'ampoules. La valeur moyenne de la tension à ses bornes est donc nulle et l'entrée « reset » de IC1 est donc à l'état bas. Ce dernier oscille donc au rythme imposé par R3, R4 et C2. Q6 change donc régulièrement d'état (64 fois moins vite que l'horloge) mais le buzzer ne peut retentir tant que Q14 n'est pas à l'état haut. Au bout d'une minute environ, Q14 change d'état et Bz peut à son tour se manifester par un son pulsé au rythme de Q6. En stoppant le clignotant, C1 aura le temps de se charger totalement, bloquant de la sorte IC1. La diode D₁ protège le montage contre une inversion de la polarité, C3 filtre l'alimentation.

Si l'on souhaite réduire la durée de mise en route du buzzer, il est possible de diminuer la valeur de C₂ de façon à freiner l'oscillateur.

Réalisation


La figure 4 montre le circuit imprimé de cette réalisation et la figure 5 son implantation. Rien de particulier à signaler concernant le câblage et le montage. Le buzzer est un modèle à électronique intégrée. Le type de coffret importe peu et sa fixation sous le tableau de bord sera effectuée solidement. Une ouverture sera sans doute nécessaire pour ne pas étouffer le son produit par notre avertisseur.

Le raccordement sur la centrale clignotante pourra se faire en «repiquant» directement les trois câbles sur les cosses du support de relais. Ces cosses sont en général repérées +, – et L ou C. Une quatrième cosse existe parfois, elle ne nous servira pas.

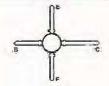

Ce montage simple et original sera d'une utilité certaine pour les étourdis et les autres!

Notons que la majorité des motos peut également être équipée de ce dispositif, même si la batterie est en 6 V. Lorsque l'on sait qu'une minorité d'entre elles est équipée d'un retour automatique, cette possibilité prend toute son importance!

Claude GALLES

L'IMPLANTATION DES COMPO-SANTS.

NOMENCLATURE DES COMPOSANTS


 R_{17} R_{5} : 10 $k\Omega$ (marron; noir, orange) R_{5} : 6,8 $k\Omega$ (vert, gris, rouge) R_{3} , R_{4} , R_{6} : 100 $k\Omega$ (marron, noir, jaune) C_{1} : 470 μ F/16 V C_{2} : 47 nF C_{3} : 100 nF D_{1} : 1N4001 T_{17} , T_{2} : BC547 IC_{1} : CD 4060 BZ : Sonitron SM4B Coffret

LE BFG 90A

Le BFG 90A est un transistor bipolaire NPN à quatre broches dont deux pour l'émetteur en boîtier SOT 103. Il a été prévu pour les applications en amplification large bande, MATV, CATV jusqu'à 5 GHz.

Caractéristiques principales

Courant collecteur max.: 25 mA. Puissance dissipée totale: 300 mW.

Gain en courant: 40 à 90 pour V_{CE} = 10 V et I_C = 14 mA. Fréquence de transition: 5 GHz pour I_C = 14 mA et V_{CE} = 10 V. Gain max.: 19 dB à 800 MHz. Figure de bruit: 2,4 dB à 800 MHz.

UN ECLAIRAGE 12 V AVEC UNE LAMPE A ECLAT

Grâce à la persistana ce rétinienne, un tube à éclat dont le déclenchement péfiodique se réalise à une fréquence **Convenable** peut procurer un éclairage tout à fait convenable. C'est sur ce principe que repose le présent montage qui peut par ailleurs être également utilisé comme balise de détresse. Il suffit pour cela de régler la fréquence de production des éclats à une valeur plus faible.

l – Le principe

La haute tension nécessaire à l'alimentation du tube à éclat est produite par un hacheur qui délivre des créneaux à une fréquence de 50 Hz. Après amplification, ces derniers attaquent les enroulements basse tension d'un transformateur élévateur de potentiel. Le potentiel ainsi obtenu est redressé et filtré; il se caractérise par une valeur de plus de 300 V. Des condensateurs de puissance se chargent progressivement à travers une résistance. Si le niveau suffisant de potentiel est atteint, un thyristor alimente la self de déclenchement qui est à la base de l'éclat dans le tube.

II – Le fonctionnement (fig. 1 et 2)

a) Alimentation

L'énergie peut être fournie par une batterie 12 V. La diode de puissance D₇ fait office de détrompeur, tandis que la capacité C₁ découple cette alimentation très simple du montage lui-même. La consommation est dé 1,8 à 2 A, ce qui correspond à une puissance de l'ordre de 20 W.

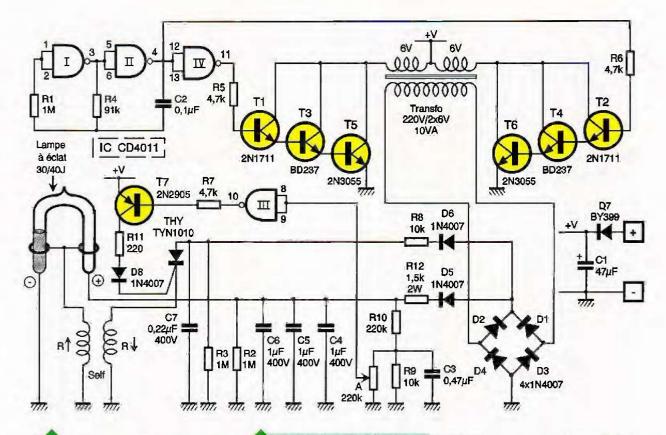
b) Base de temps

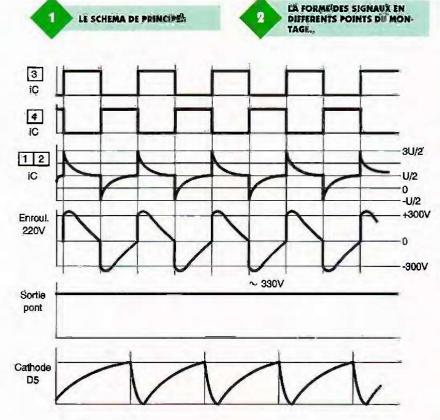
Les portes NAND I et II forment un multivibrateur astable. Il génère des créneaux de forme carrée dont la période dépend essentiellement des valeurs de R4 et de C9. Dans le cas présent, cette période est de 20 millisecondes, ce qui correspond à une fréquence de 50 Hz. La porte NAND IV inverse les créneaux produits par le multivibrateur. On observe ainsi une opposition de phase entre la sortie de la porte II et celle de la porte IV.

c) Génération de la haute tension

Les transistors T₁, T₃ et T₅ constituent un Darlington de puissance. Il en est de même en ce qui concerne les transistors T2, T4 et T6. Un tel type de montage réalise une très forte amplification du courant. Ainsi, lorsque la sortie de la porte NAND IV présente un état haut, un courant assez intense circule dans un sens donné dans l'un des enroulements basse tension du transformateur. Lors de la demialternance suivante, c'est la sortie de la porte NAND Il qui est à l'état haut. Il en résulte un courant dans l'autre enroulement basse tension; ce courant est en sens contraire par rapport au précédent.

Sur le primaire, on recueille alors un courant alternatif, pas très sinusoïdal il est vrai, mais dont l'amplitude est relativement forte: ± 300 à 350 V. Le pont de diodes D₁ à D₄ redresse les deux alternances. Sur la polarité positive de ce pont, on dispose alors d'un potentiel continu assez fortement ondulé, dont les maxima atteignent une valeur de plus de 300 V. Par l'intermédiaire de D₅ et de R₁₂, les capacités C4, C5 et C6 sont chargées. C'est cette réserve d'énergie qui alimente périodiquement le tube à éclat. De même, par D6 et R8, il se. produit également la charge périodique de C7 dont la réserve d'énergie servira à la commande des déclenchements du tube à éclat. Les résistances R₂ et R₃ déchargent les capacités précédemment évoquées. Cette précaution évite de


ressentir de désagréables secousses si l'on venait à toucher par inadvertance les armatures, une fois le montage débranché de son alimentation.


d) Commande des déclenchements

Les résistances Ro et R10 forment un pont diviseur de tension. Aux bomes de R9 et grâce au curseur de l'ajustable A, il est possible de prélever une fraction de 0 à 5 % du potentiel disponible sur les armatures positives des capacités C4, C5 et C6. Lorsque cette fraction atteint une valeur correspondant à la dernière tension d'alimentation, c'est-à-dire environ 6 V, la porte NAND III bascule. Sa sortie passe alors de l'état haut vers l'état bas. La fréquence de ces basculements augmente si le pourcentage du potentiel prélevé par le curseur de l'ajustable augmente. C'est d'ailleurs suivant ce principe que l'on réglera la périodicité des déclenchements à la valeur désirée.

e) Déclenchements

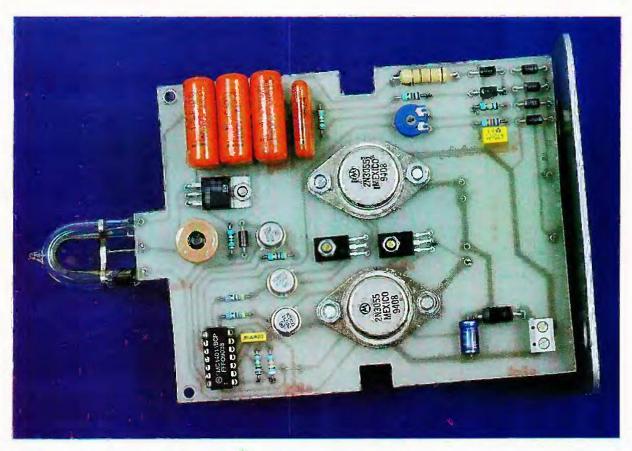
Dès que la sortie de la porte NAND III présente un état bas, le transistor PNP

T₇ se met à conduire. En particulier, et par l'intermédiaire de R₁₁ et de D₈, un courant circule à travers la jonction gâchette-cathode du thyristor de commande. Ce demier devient alors conducteur et la capacité C₇ se décharge brutalement dans l'un des enroulements de la self de déclenchement. Dès que la capacité C₇ est déchargée, c'est-à-dire en moins de quelques millisecondes, le thyristor

se bloque à nouveau, ce qui permet à C7 de se recharger afin d'être prête pour le déclenchement suivant.

L'enroulement de commande de la self de déclenchement se caractérise par un nombre de spires sensiblement plus faible que l'enroulement d'utilisation. La self réalise une très forte élévation du potentiel. En particulier, entre l'armature de déclenchement et le « moins » du tube à éclat, on enregistre ponctuellement un potentiel de l'ordre de plusieurs kilovolts qui est à la base de l'amorçage du tube. Les capacités C4, C5 et C6 restituent alors brusquement toute leur énergie et se rechargent après l'émission de l'éclat pour un nouveau cycle.

III - La réalisation


a) Circuit imprimé (fig. 3)

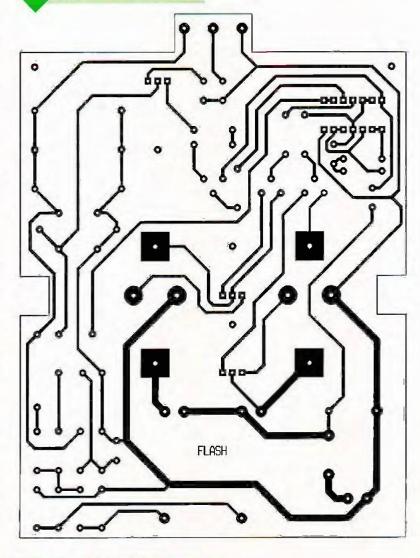
La réalisation du circuit imprimé appelle peu de remarques. A noter cependant la nécessité de prévoir une largeur suffisante des pistes acheminant le courant basse tension au Darlington et aux enroulements du transformateur.

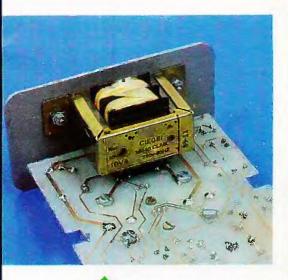
Après gravure du circuit dans un bain de perchlorure de fer, le module sera soigneusement rincé dans l'eau tiède. Par la suite, toutes les pastilles sont à percer à l'aide d'un foret de 0,8 mm de diamètre. Certains trous seront à agrandir par la suite afin de les adapter aux connexions des composants davantage volumineux.

b) Implantation des composants (fig. 4)

On débutera par la mise en place de l'unique strap de liaison. Ensuite, ce sera le tour des résistances, des diodes, de l'ajustable et du support du circuit intégré. On terminera par les composants les plus volumineux. Les transistors 2N3055 seront fixés à l'aide de vis de 4 mm de diamètre, assurant la liaison électrique avec le

LE CIRCUIT IMPRIME




module. On obtiendra un meilleur contact en étamant auparavant les pastilles carrées prévues à cet effet. Le transformateur sera soudé côté cuivre.

La self de déclenchement doit être orientée dans le bon sens; pour cela, il est nécessaire auparavant de bien repérer les enroulements basse et haute tension. Dans la pratique, il suffira de mesurer la résistance ohmique de ces enroulements. La résistance la plus faible correspond à l'enroulement comportant le nombre de spires le moins élevé. C'est cet enroulement qu'il convient de relier au thyristor de commande. Attention également à l'orientation correcte des autres composants polarisés tels que les diodes, la capacité C1 et le circuit intégré. Le montage ne nécessite aucune mise au point particulière si ce n'est le réglage de la fréquence des déclenchements. Cette demière augmente si l'on tourne le curseur de l'ajustable A dans le sens horaire.

L'ajustable peut éventuellement être remplacé par un potentiomètre accessible de la surface de la face avant du boîtier suivant l'utilisation envisagée du montage.

Robert KNOERR

LE TRANSFORMATEUR SE TROUVE DU CÔTE DES P STES

LE TRANSFORMATEUR DE DECLENCHEMENT.

0

DESCRIPTION

R1

- G JH

00

920

ුදු

T₅ ET T₆ FONT OFFICE DE TRAN-SISTORS DE PUISSANCE.

00

B

12

SELF

R11

D8

E C B T

ECB T4

TRANSFO.

2200 --

TRANSFO SOUDE COJE CUIVAE

6V

L'IMPLANTATION DES COMPOS

LAMPE A ECLATS

GAK

THY

0

5

6V

0

C6

C5

- B3

Œ

ē

NOMENCLATURE DES COMPOSANTS

 R_1 à R_2 : 1 M Ω (marron, nois, vert) R_4 : 91 k Ω (blanc, marron, orange) R_5 à R_7 : 4,7 k Ω (jaune, violet, rouge) R_4 , R_7 : 10 k Ω (marron, nois, orange) R_{10} : 220 k Ω (rouge, rouge, jaune) R_{11} : 220 k Ω (rouge, rouge,

marron) $R_{12}: 1,5 k\Omega/2 W \text{ (marron)} \\ vert, rouge) \\ A: ajustable 220 k\Omega \\ D_1 à D_6: diodes 1N4007 \\ D_7: diode BY399 \\ D_8: diode 1N4007 \\ C_1: 47 \mu F/16 V électrolytique \\ C_2: 0,1 \mu F milfeuil \\ C_3: 0,47 \mu F milfeuil \\ C_4 à C_6: 1 \mu F/400 V polyester \\ C_7: 0,22 \mu F/400 V polyester \\ C_7: 0,22 \mu F/400 V polyester \\ C_1, T_2: transistors NPN 2N1711, 2N1613 \\ C_3, T_4: transistors NPN BD237$

Ts, T4: transistors NPN
2N3055
T7: transistor PNP 2N2905
IC: CD 4011 (4 portes NAND)
1 strap
1 support # broches
Lampe à éclats 30/40 joules
Self de déclenchement 30/
40 joules
THY: thyristor TYN1010
Transformateur 220 V/
2 x 6 V/10 VA
Bornier soudable 2 plots
Boîtier MMP (140 x 115 x 45)

OSCILLOSCOPIE (SIXIEME PARTIE)

Le domaine que nous abordons dans cette sixième partie est entièrement consacré à l'étude de la réponse des circuits R-C et C-R lorsque ceux-ci sont attaqués par des signaux carrés. La connaissance de ces réponses typiques associée à un minis mum de raisonnement permettra de comprendre l'origine des déformations dont l'étage d'entrée de l'oscilloscope peut être responsable dans certaines situations. Cette connaissance est donc capitale si l'on veut éviter de mettre en doute la qualité du montage testé.

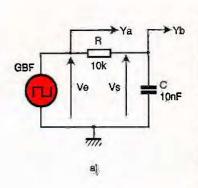
des réponses des circuits R-C

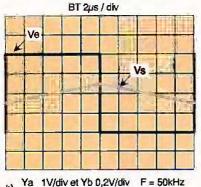
A) Montagé intégrateur

L'expérience que nous vous proposons de réaliser s'appuie sur le circuit R-C de la **figure 1a**, attaqué par un générateur de signaux carrés de fréquence successivement égale à $200\,\text{Hz}$ et $50\,\text{kHz}$. On pourra réaliser cette expérience en prenant $R=10\,\text{k}\Omega$, $C=10\,\text{n}F$.

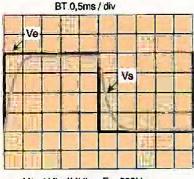
On constate sur les **figures 1b** et **1c** que la forme des signaux de sortie dépend fortement de la fréquence F. On démontre mathématiquement que cette forme dépend en fait du rapport entre la constante de temps τ =RC du circuit et la période T des signaux. La forme observée à la **figure 1b** (F = 50 KHz, τ = 5 T > T) correspond à une intégration mathématique puisque les paliers du carré se sont transformés en rampes. C'est pour cette raison que le montage est qualifié « d'intégrateur ».

En revanche, pour la fréquence $200\,\text{Hz}$ ($\tau = 0.02\,\text{T} < \text{T}$), on ne peut plus vraiment dire que le circuit réalise une intégration car les signaux sont fort peu déformés. Le circuit R-C étant un filtre passe-bas, seules les transitions franches du signal Ve (fronts montants et descendants) sont «rabotées». Ce phénomène s'explique en fait par la forte atté-

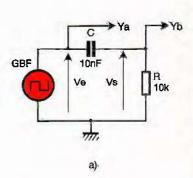

nuation que subissent les harmoniques de fréquence élevée contenus dans le signal carré. Cette affirmation pourrait être confirmée par une étude en régime sinusoïdal.

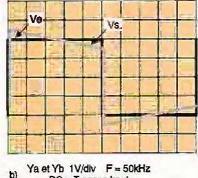

Compte tenu du fait qu'on passe progressivement d'un comportement à l'autre lorsque la fréquence des signaux évolue, et bien que cela ne soit pas tout à fait exact sans être tout à fait faux, on dit parfois que, pour les fréquences basses, le circuit R-C se comporte comme un « mauvais intégrateur ».

B) Montage dérivateur

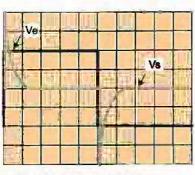

En intervertissant les éléments R et C (fig. 2a), on peut faire des remarques analogues toujours basées sur l'observation des oscillogrammes de la tension de sortie Vs dont la forme, présentée figures 26 et 2c, correspond aux mêmes fréquences que dans le cas précédent. Pour des fréquences basses $(\tau < T)$, la forme du signal Vs fait penser à la dérivation mathématique du signal Ve (la dérivée d'une constante est en effet nulle, et pour les transitions assimilables à des droites de pente infinie, on récupère un pulse qui semble tendre lui aussi vers l'infini), alors que pour les fréquences élevées $(\tau > T)$, le circuit C-R se laissant traverser par le signal Ve qu'il déforme à peine, celui-ci se comporte comme un filtre passe-haut.

Pour les mêmes raisons que le circuit





τ = RC > T montage intégrateur



Yaret Yb 1V/div F = 200Hz
T=RC < T passe bas

T = RC > T passe haut

Ya et Yb 1V/div F = 200Hz

T= RC < montage dérivateur

1/2 MONTAGES DE L'INTEGRATEUR ET DU DERIVATEUR.

R-C, pour les hautes fréquences, le circuit C-R est parfois qualifié de mauvais dérivateur.

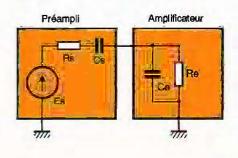
C) Remarque

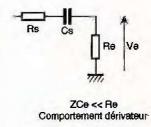
L'étude que nous venons de développer est très importante car il est très rare qu'un circuit électronique (un amplificateur par exemple) possède au niveau de son entrée (ou de sa sortie) un schéma équivalent ne comportant qu'une résistance pure Re. Le plus souvent, on trouve en plus de cette résistance une capacité «Ce» qui traduit le comportement en fréquence du transistor d'entrée ou qui existe physiquement pour assurer un découplage. Suivant le type de schéma équivalent avec lequel on travaille, ces éléments peuvent être disposés en série ou en parallèle. La figure 3 traduit ce constat et montre que l'étage qui attaque cet amplificateur se comporte, au niveau de sa sortie, comme l'association d'un générateur de tension en série avec une impédance série Rs-

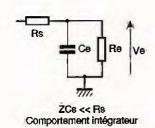
Suivant les valeurs relatives des condensateurs Ce et Cs et la fréquence de travail, l'association de ces deux montages pourra se comporter comme un circuit C-R (dérivateur) ou comme un circuit R-C (intégrateur).

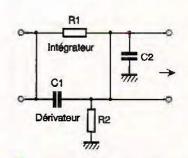
Tout électronicien, même amateur, doit savoir reconnaître ces comportements, que nous qualifierons de fondamentaux, afin de comprendre l'origine de certaines observations. Il est évident que l'étape suivante consistera, bien entendu, à corriger les défauts afin que les signaux de sortie de l'amplificateur ressemblent le plus possible à ceux de l'entrée. Cette connaissance permettra, par ailleurs, de comprendre l'origine des déformations observées à l'oscilloscope quand celui-ci est plus ou moins bien utilisé.

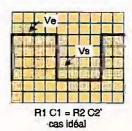
II - Un circuit sans défaut

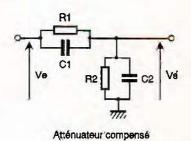

A) Questions


Nous venons de voir que les circuits R-C et C-R déformaient tous les deux les signaux carrés qui leur étaient appliqués. L'observation montre cependant que ces déformations sont de sens opposé. On est donc en droit de se demander s'il ne serait pas possible de combiner ces deux circuits imparfaits afin d'en obtenir un nouveau n'affectant aucunement la forme des signaux.

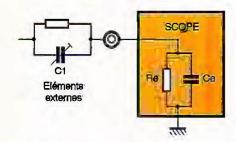

B) La solution


Cette question trouve sa réponse dans l'association des circuits intégrateur R₁C₂ et dérivateur C₁R₂ de la **figure 4a** qui, dans certaines condi-





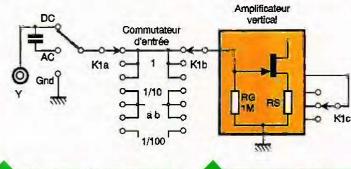
tions, se contente d'atténuer les signaux sans les déformer, comme le prouve l'oscillogramme de la **figure 4b.** Le montage ainsi réalisé constitue un atténuateur qualifié de compensé en ce sens qu'il ne modifie que l'amplitude et non la forme des signaux. Pour qu'il en soit ainsi, les deux constantes de temps $\tau_1 = R_1C_1$ et $\tau_2 = R_2C_2$ doivent être égales. Dans le cas contraire, si $\tau_2 > \tau_1$, le montage aura encore un caractère intégrateur et pour $\tau_2 < \tau_1$, un caractère dérivateur **(fig. 4c** et 1)


C) Application à l'oscilloscope

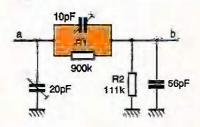
Pour qu'un oscilloscope possède:

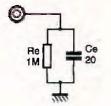
une grande bande passante et une dynamique élevée, de 5 mV/div à 20 V/div. l'étage d'entrée comporte obligatoirement un atténuateur et un amplificateur à transistors (des FET le plus souvent). Pour les fréquences élevées, ces transistors associés à leurs éléments de polarisation et de protection ont un schéma équivalent que l'on ne peut représenter simplement par résistance mais plutôt comme l'association en parallèle d'une résistance et d'un condensateur. Ces remarques et l'étude précédente expliquent l'origine des éléments des différentes cellules de l'atténuateur des figures 5a et b. Seul l'atténuateur 1/10° est représenté, les autres étant de conception sensiblement analogue. Les coefficients d'atténuation intermédiaires par 2 et 5 sont obtenus en modifiant l'amplification grâce à la troisième branche du commutateur.

Les différentes cellules de l'atténuateur sont conçues pour que l'impédance équivalente vue des bornes d'entrée de l'oscilloscope soit identique pour toutes les positions de l'atténuateur. Les valeurs que l'on trouve actuellement correspondent à l'association en parallèle d'une résistance « Re » de 1 M Ω et d'un condensateur « Ce » de 20 pF (fig. 5c).


Si l'on veut ajouter un calibre supplémentaire, destiné par exemple à la mesure des tensions de forte amplitude, on devra ajouter non pas une simple résistance en série avec l'entrée du scope mais un tandem parallèle « R_1 - C_1 » tel que celui de la **figure 6.** La résistance R_1 aura une valeur telle que le diviseur résistif ainsi constitué apporte l'atténuation souhaitée, le condensateur C_1 assurant pour sa part l'égalité des constantes de temps $ReCe = R_1 C_1$.

Pour passer, par exemple, du calibre 20 V/div à un calibre 50 V/div, on écrit $Re/(R_1+Re)=2/5$, ce qui donne $R_1=1,5$ Re=1,5 $M\Omega$ et $C_1=ReCe/R_1$, soit $C_1=2/3$ Ce=13,3 DF.


D) La sonde d'oscilloscope


Sa constitution (association parallèle Rs-Cs) est en tout point identique à celle d'un étage de l'atténuateur que nous venons de décrire. La seule différence vient de son coefficient d'atténuation qui est égal à 10, ce qui donne Rs = 9 Re et Cs = Ce/9. Le condensateur Cs est en fait un ajustable que l'on doit régler pour assurer l'égalité des constantes de temps RsCs et ReCe.

Chaque fabricant propose des

5a ATTERUATEUR D'ENTREE D'UN OSCILLOSCOPE.

ATTENUATEUR 1/104

sondes adaptées à ses appareils. Néanmoins, comme les impédances d'entrées des oscilloscopes sont généralement normalisées (1 $M\Omega$, 20 pF), il est souvent possible d'utiliser une sonde de marque X avec un scope de marque Y.

Avant d'utiliser cette sonde, et même si celle-ci est de la même marque que celle de l'oscilloscope, il faut procéder à son réglage. Cette opération s'appuie sur l'observation de signaux carrés transitant à travers la sonde. Les signaux appliqués à l'ensemble «sonde-scope» seront prélevés sur la sortie de calibrage disponible en face avant du scope. A défaut, on prendra ceux que délivre un générateur Bf réglé sur 1 kHz par exemple. A l'aide d'un petit tournevis, on ajustera la capacité réglable de la sonde de façon que les signaux visualisés soient bien carrés et ne présentent aucun des défauts des circuits R-C et C-R des figures 1 et 2 (b et c). Il est bien évident que le générateur servant à cet étalonnage doit lui-même délivrer des signaux parfaits, sinon cette procédure n'a aucun sens. Le contrôle de la qualité des signaux doit être fait sans la sonde

E) Remarque

L'intérêt d'une sonde ne réside pas uniquement dans son coefficient d'atténuation permettant de visualiser des tensions de forte amplitude mais aussi et surtout dans le fait que l'impédance que celle-ci présente aux montages est constituée de l'association en parallèle d'une résistance de $10M\Omega$ et d'un condensateur de 2 pF dont l'effet perturbateur est beaucoup moins important que celui de l'impédance propre du scope. Son utilisation est l'un des remèdes aux problèmes que l'on rencontre parfois lorsque des signaux n'ont pas la forme attendue et que l'origine des déformations provient de la présence de l'impédance

d'entrée du scope en parallèle sur le montage.

III - Influence de l'oscilloscope sur les signaux relevés.

A) Mauvaise utilisation du commutateur AC-DC d'entrée

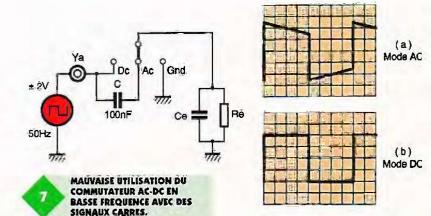
Lorsau'on utilise l'oscilloscope pour visualiser les signaux carrés délivrés par un générateur travaillant en basse fréquence (typiquement inférieure à une centaine de hertz), si l'on n'y prend pas garde et que l'on utilise le commutateur d'entrée en position AC. les beaux carrés auxquels on s'attendait se transforment en affreux trapèzes, comme le montre la figure 7a. La forme trapézoïdale est d'autant plus prononcée que la fréquence est plus basse. La cause de cette déformation, qui ne vient pas, comme le croit souvent le débutant du générateur lui-même, est la présence du condensateur «C» (de valeur typique 100 nF) introduit par le commutateur AC-DC. Destiné à empêcher le passage de la composante continue des signaux étudiés vers l'étage d'entrée, ce condensateur constitue avec la résistance d'entrée Re un dérivateur (CRe) dont l'effet s'estompe quand la fréquence augmente puisque, globalement, ce circuit est un filtre passe-haut. On ne tient pas compte de Ce car sa valeur est très inférieure à celle du condensateur de liaison C.

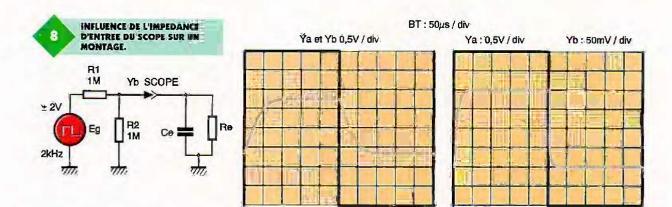
On supprime l'effet de trapèze observé en basculant le commutateur de couplage en position DC (fig. 7b).

B) Influence de l'impédance d'entrée Re-Ce sur les montages

Pour l'expérience de la **figure 8**a, le générateur de signaux carrés d'amplitude $\pm 2 \text{ V}$ et de fréquence 2 KHz est relié au diviseur résistif $R_1 =$

 $R_{\Sigma}=1$ M Ω . L'oscillogramme de la **figure 8b** montre que ce simple diviseur résistif présente un caractère intégrateur, et ce malgré l'absence de condensateurs (éléments physiques implantés).


La première idée qui vient à l'esprit du débutant consiste à mettre en cause la qualité du générateur utilisé, surtout si celui-ci est un montage qu'il vient de réaliser. La réalité est toute différente car le problème vient de l'oscilloscope dont la présence aux bornes de R₂ introduit en parallèle sur cette résistance sa propre résistance interne Re et sa capacité d'entrée Ce.


Les conséquences sont de deux ordres.

La première concerne l'amplitude des signaux observés qui, au lieu d'être de ± 1 V (Ve/2), ne vaut que $\pm 0,6$ V (Ve/3), car la mise en parallèle de Re = 1 M Ω sur R $_2$ donne une valeur R $_2$ = 500 k Ω qui modifie celle du coefficient d'atténuation qui passe de 0.5 à 0.33.

La seconde concerne la forme des signaux car le schéma équivalent de ce circuit peut se mettre sous la forme présentée à la figure 9 en utilisant le schéma équivalent du générateur de Thévenin qui alimente Ro. L'analogie avec le circuit de la figure 1a étant flagrante, on comprend l'origine des phénomènes observés. Pour réduire l'influence de l'impédance d'entrée du scope, il faut utiliser une sonde (atténuation 1/10°) dont l'impédance d'entrée ($10M\Omega$, 2pF) perturbe beaucoup moins le montage étudié que ne le faisait le scope seul, comme le prouve la figure 8c. Le résultat n'est pas parfait mais l'amélioration est sensible à la fois sur le coefficient d'atténuation du diviseur (quasiment égal à sa valeur idéale) et sur l'effet intégrateur qui, sans disparaître totalement, est fortement réduit.

Si l'on ne dispose pas d'une sonde, et bien que la solution préconisée modifie le montage que l'on étudie, on peut réduire l'effet intégrateur dû à l'impédance d'entrée du scope en créant artificiellement l'effet inverse. 'Il suffit pour cela de mettre en parallèle sur R1 un condensateur C de valeur telle que la constante de temps R_{1C} soit égale à celle du circuit (R₂ en parallèle sur Re et Ce). Expérimentalement, on disposera en parallèle sur R₁ des condensateurs de valeur croissante ou un ajustable d'une vingtaine de picofarads sur lequel on agira pour que la forme du signal VR₂ soit bien carrée. Une valeur proche de 10 pF devrait convenir mais si les essais sont réalisés sur plaque de

connexion, il est possible que l'on note quelques écarts dus à la capacité propre de ces plaques qui intervient à la fois au niveau de R_1 et de R_2 .

Cette seconde solution ne doit être utilisée qu'en dernier ressort pour vérifier que c'est bien le scope qui est la cause des déformations et non le générateur qui est déficient. Une fois la mesure terminée, on doit ôter le condensateur ajouté en parallèle sur R₁ sous peine de modifier la forme des signaux délivrés par le générateur même en l'absence du scope. Ces études et les quelques exemples que nous avons traités montrent que la forme des signaux obtenus en réponse à des générateurs délivrant des carrés permet de connaître la nature des montages étudiés, mais aussi qu'il faut faire très attention à la façon d'utiliser l'oscilloscope si l'on ne veut pas que celui-ci perturbe le fonctionnement du montage étudié.

F. JONGBLOËT

JUSTIFICATION DES PHENOMENES OBSERVES AVEC LES SCHEMAS EQUIVALENTS. YA YB YB YB YB YB YB YB YB SCOPE 1M Bg' | Y SCOPE 1M Bg' | Eg' = 0,33Eg Ce

METRIX: LE CATALOGUE 95/96 ET LE CD-ROM Oscilloscope OX 8020

Performances, fiabilité et sécurité sont les trois critères qui caractérisent l'ensemble de la production Metrix. Cette entreprise dynamique propose une gamme variée d'appareils de mesure répondant à la norme CEI1010, norme qui garantit un haut niveau de sécurité pour l'utilisateur. Outre ses réputés mul-

timètres, Metrix élargit maintenant sa gamme d'oscilloscopes mixtes avec les modèles OX802 et OX8022, modèles munis d'entrées différentielles et permettant, par exemple, l'observation de réseaux triphasés sans sonde atténuatrice, le réglage de la sensibilité d'entrée permettant une amplitude de 200 V par division. Décidément innovateur dans son domaine d'activité, Metrix n'a pas hésité à se lancer dans une politique multimédia très ambitieuse en créant son premier CD-ROM dédié aux oscilloscopes à mémoire. Le multimédia permet de concevoir un outil de travail attrayant, efficace et, surtout, doté d'une capacité de stockage redoutable: on peut ainsi y mémoriser un grand nombre de photos, de dessins, de vidéos et de textes, le tout agrémenté par une musique choisie. Mais la principale caractéristique du CD-ROM est la possibilité d'organiser son contenu d'une manière interactive, laissant ainsi

l'utilisateur consulter librement les différentes rubriques. Ce premier produit multimédia, qui concerne le Metrix OX8020, est avant tout un outil pédagogique. L'utilisateur pourra, d'une manière virtuelle, procéder à la mise en route et au réglage d'un oscilloscope numérique sans avoir à compulser un rébarbatif mode d'emploi dont 90 % du contenu sera oublié très rapidement. Le professeur disposera ainsi d'un support de cours qui lui permettra de retenir toute l'attention de ses élèves et de renforcer l'efficacité de son cours.

Les bases théoriques pourront être acquises par la consultation de plusieurs modules: les réglages élémentaires, les différentes possibilités de connexion ou les capacités spécifiques d'un oscilloscope à mémoire. Un glossaire est également accessible qui donne la définition des mots-clés. L'élève pourra ainsi s'y référer rapidement en cas de difficultés de compréhension.

LE COURRIER DES LECTEURS

Le service du Courrier des lecteurs d'Electronique Pratique est ouvert à tous et est entièrement gratuit. Les questions d'« intérêt commun » feront l'objet d'une réponse par l'intermédiaire de la revue. Il sera répondu aux autres questions par des réponses directes et personnelles dans les limites du temps qui nous est imparti.

M. JONCAS REAL QUEBEC

J'ai modifié l'alimentation pour CB afin de la rendre ajustable. Je vous transmets le schéma modifié

Le schéma que vous nous soumettez semble être juste. Plusieurs articles concernant la réalisation d'ampèremètres ont été proposés dans notre revue. L'ampèremètre devra être placé soit en série dans la ligne d'alimentation non régulée du collecteur du 2N3055, soit en sortie de l'alimentation. Mais, dans ce dernier cas, suivant le shunt utilisé $(0,1~\Omega~ou~1~\Omega)$, une chute de tension plus ou moins importante interviendra.

M. CHRISTOPHE BEMOINE

J'ai réalisé la table de mixage parue dans le numéro spécial de juillet-août. Je désire quelques informations supplémentaires.

On ne peut connecter des hautparleurs sur une table de mixage, cette dernière ne possédant pas d'amplificateurs de puissance. Le connecteur à trois points auquel vous faites allusion est utilisé à la connexion de la tension d'alimentation.

M. GREGORY COURATIER

Je possède un émetteur FM de

puissance 7W et, lorsque je le branche sur une prise secteur, on peut entendre une sorte de ronflement continu qui s'arrête lorsque je le branche sur piles.

Le problème que vous rencontrez (ronflement à 50 Hz) dans l'émetteur lors de son branchement sur une alimentation secteur provient de la mauvaise qualité de cette alimentation. Il faut savoir que toutes les alimentations ne peuvent alimenter des montages HF car elles ne comportent pas les protections nécessaires, comme par exemple les filtres obligatoires afin d'éviter des remontées de HF dans les circuits et une mise en oscillations de ceux-ci. L'alimentation que vous utilisez ne doit pas, de plus, posséder un filtrage correct de la tension alternative secondaire.

M. J. BRETON

Je cherche le schéma d'un convertisseur continu-alternatif de 220 V de sortie et de fréquence ajustable entre 50 Hz et 200 Hz. Cet appareil est destiné à alimenter un moteur équipant un télescope.

Nous n'avons malheureusement pas publié de réalisations se rapportant à ce que vous recherchez. Plusieurs convertisseurs ont été proposés dans nos colonnes, mais pour l'application à laquelle vous le destinez, aucun des modèles décrits ne pourra convenir, la fréquence de la tension alternative devant être parfaitement stable une fois réglée et présenter une tension de sortie de forme sinusoïdale. C'est seulement à cette condition que le télescope pourra rester centré sur l'objectif visé. Il conviendrait d'utiliser un convertisseur à fréquence de fonctionnement ultra-stable. Ce type de montage est très complexe.

M. AUGUSTIN HOUZELOT

Souhaite obtenir des renseignements divers.

La durée de vie d'un tube cathodique est fonction d'un certain nombre de paramètres dont les plus importants sont le nombre d'allumages et d'extinctions du téléviseur, la manière dont est réglée la luminosité du récepteur et sa qualité de fabrication. Pour une utilisation moyenne, la durée de vie du tube peut atteindre six à dix ans. Vous pourrez trouver l'ouvrage qui vous intéresse aux éditions Dunod, 15, rue Gossin à Montrouge.

En ce qui concerne l'amplificateur d'antenne, il conviendrait que vous nous envoyiez le schéma du montage.

M. THOMAS DUTARTRE

Je rencontre quelques difficultés dans le branchement d'un émetteur FM, avec une alimentation externe. On entend le ronflement du transformateur dans le récepteur radio.

Le problème que vous rencontrez provient effectivement de l'alimentation que vous utilisez pour cet émetteur. Il conviendrait d'utiliser une alimentation correctement filtrée et régulée et construite à l'aide d'un transformateur torique. Par ailleurs, cette dernière sera correctement blindée, avec le coffret mis à la terre. Vous pourriez également procéder à l'alimentation de votre émetteur à l'aide d'une batterie de capacité suffisante.

M. LUCIEN MARCHAL

A réalisé le déchargeur d'accumulateurs CdNi publié dans notre revue n° 189 de février 1995 et n'obtient pas un bon fonctionnement de sa maquette.

Le montage que vous avez construit fonctionne, mais une erreur au niveau de la valeur des résistances de puissance R_B à R_{13} s'est glissée dans la nomenclature des composants. Il convient d'utiliser pour ces résistances les valeurs que l'on distingue sur la photographie en début d'article, soit: 27, 39, 47, 68, 100 et 150 Ω .

E.T.S.F.
recherche auteurs
dans le domaine
de l'électronique
de loisirs

Ecrire ou téléphoner à B. FIGHIERA 2 à 12, rue de Bellevue 75019 PARIS Tél. : (1) 44.84.84.84