electronics

A MCGRAW-HILL PUBLICATION VOL. 32, No. 21
Mumivivosilue cullegk.

PRICE SEVENTY-FIVE CENTS

UTC INTERSTAGE AND LINE FILTERS

This standardized group of filters covers most popular filter applications and frequencies. Units are in compact, drawn, magnetic shielding cases ... $1^{3 / 16} \times 1^{11 / 16}$ base, $1^{5 / 8}$ high for BMI, LMI, BML; others $2^{1 / 2}$ high. There are six basic types:

BMI band pass units are 10 K input, output to grid 2:1 gain. Attenuation is approximately 2 db at 3% from center frequency, then 40 db per octave.

HMI high pass units are 10 K in and out. Attenuation is less than 6 db at cut-off frequency and 35 db at 67 cut-off frequency.

LMI low pass units are 10 K in and out. Attenuation is less than 6 db at cut-off frequency and 35 db at 1.5 cut -off frequency.

HML high pass filters are same as HMI but 500/600 ohms in and out
LML low pass filters are same as LMI but $500 / 600$ ohms in and out.
BML band pass units are same as BMI but 500/600 ohms input, output to grid, 9:1 gain.

STOCK TYPES
(number in figure is cycles)

UTC TELEGRAPH TONE CHANNEL FILTERS

These band pass filters for multiplex transmitting and receiving provide maximum stability in miniature sizes. Both receiving and transmitting types are 600 ohms in and out, and employ 7 terminal header for sub-miniature 7 pin socket.

TGR receiving filters are within 3 db at ± 42.5 cycles from center frequency... down more than 30 db at ± 170 cycles. . . down more than 15 db at adjacent channel cross-over.

TGI transmitting filters are within 3 db at ± 42.5 cycles from center frequency... down more than 16 db at ± 170 cycles. . . down more than 7.5 db at adjacent channel cross-over.
stock types
(number in figure is cycles)

RECEIVING

electronics

Issue at a Glance

A McGRAW-HILL PUBLICATION Vol. 32 No. 21

JAMES GIRDWOOD, Publisher
W. W. MaeDONALD, Editor

JOHN M. CARROLL, Managing

 EditorAssociate Editors: Frank Leary, Michael F. Tomaino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogion, Roland J. Charest, William P. O'Brien, George Sideris, John F. Mason, William E. Bushor, Ronald K. Jurgen, Thomas Emma, Samuel Weber, Sy Vogel, Leslie Solomon, M. M. Perugini.

Pacific Coost Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New England Editor (Boston) Thomas Maguirs.

Art Director, Harry Phillips, Roy Thompsen.

Production Editor, John C. Wright, Jr., Bernice Duffy, Jean 1. Matin.
Markef Research, Edward DeJongh, Marilyn Koren.
Editorial Astistonts, Gloria J. Filippone, Arlene Schilp, Parricia Landers, Catherine McDermott, Eleanor Schaefer, Carol Weaver.

BRUCE A. WINNER, Advertising Soles Manager. R. S. Quint, Assistant Advertising Sales Manoger and Buyers' Guide Manager. Fred Stewart, Promotion Manager. Frank H. Word, Business Manager. George E. Pomeroy, Classified Manager. Hugh J. Quinn, Circula. tion Manager.

Now York: Donald H. Miller, Henry M. Shaw, William J. Boyle. Boston: Wm. S. Hodgkinson. Philadelphia: Warren H. Gardner. Chicogo: Harvey W. Wernecke, Martin J. Gallay. Cleveland: P. T. Fegley. San Francisco: T. H. Carmody, R, C. Alcorn. Los Angeles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten. Atlanta: M. Miller. Dallas: Gordon 1. Jones, Robert T. Wood. London: E. E. Schirmer. Fronkfurt: Michael R. Zeynel.
Business
Electric Cars: Parts Market? Today's look at tomorrow's sales 24
UK Presses Nav-Aid Fight. Verbal shots heard 'round the world 29
Test Gear Market to Double. What electronics people are saying 32
Plan Satellite Microwave Link. Details on U. S. program 37
Shoptalk 4
Over The Counter 15
Electronics Newsletter 11
Market Research 20
Washington Outlook. 12
Current Figures 20
Financial Roundup 15
Meetings Ahead 38
Engineering
Adjustment of log-period amplifier used when starting up nuclear reactor. See p 52 COVER
European Developments in Transistor Circuits. Interesting details on short-wave, broadcast and f-m sets By R. Shah 41
F-M Multiplexing for Studio-Transmitter Links. Single-program link is converted to carry three programs By D. Harkins 44
Digital-Counter Techniques Increase Doppler Uses. Counting target phase shift boosts accuracy....................... . . By B. E. Keiser 46
Micromodule Components. Characteristics of transistors, diodes, crystals and inductors. By G. Sideris 51
Transistor Amplifiers for Reactor Control. Design facts on many control circuits. By E. J. Wade and D. S. Davidson 52
Reducing Distortion in Class-B Amplifiers. Compensator linearizes grid-plate transfer characteristics By B. Sklar 54
Radioactive Sources. This table provides a list of materials forthickness gages.By W. Harrison Faulkner, Jr. 57
Correlation Devices Detect Weak Signals. Noise is a problem. Here's one high-powered solution......By H. R. Raemer and A. B. Reich 58
Finding Radar Blind Spots. Another useful reference sheet for the radar engineer. . By B. M. Compton and F. DuCharm 62
Departments
Research and Development. Double Integrator Finds Distance. 64
Components and Materials. Microwave Switch Uses Faraday Effect. . 7
Production Techniques. Glass Cloth, Resin Form Big Dish. 76
On the Market 80
Plants and People 106
Literature of the Week. 102
News of Reps 109
New Books 104
Comment 110
Index to Advertisers. 115

Edward L. Grayson: Sales Manager for the Daven Company - a leading designer and manufacturer of transistorized power supplies, precision wire wound resistors, rotary step-type switches, attenuators and test equipment.

Ed Gipayson talkes the

Mr. Grayson, what is the principal marketing and merchandising problem you face in selling goods in the electronics industry?
My principal sales problem involves getting the message of what we're selling to the greatest number of people who can buy our products - to people that may be in a back room or engaged in new project activities - to people who are inaccessible to our sales force or to our manufacturers' representatives.
How does electronics magazine help you to resolve your sales problem?

We feel that electronics is one of the primary means to reach these engineers whom our sales force cannot contact. electronics has long been recognized as one of the outstanding media for announcing and promoting new products. For years we have advertised - on the inside back cover to: (1) solidify our position with present customers, and; (2) seek out new prospects.
What "publication image" comes to mind when you think of electronics, the magazine?

Due to the fact that electronics is one of the earliest publications to serve the industry, its advertising pages have greater influence than some of the new publications that have sprung up in recent years.
electronics is the keystone of our advertising campaign because we know engineers and engineeringmanagement read electronics first. It carries more weight with our customers than any other publication. We spend more advertising dollars in electronics than any other medium.

If it's about electronics, read it in electronics.

electronics

Published WEEKLY plus the mid-year electronics BUYERS' GUIDE A McGraw-Hill Publication • 330 West 42 nd Street, New York 36, N.Y.

Although worlds apart in purpose, practitioners of the art of head shrinking and Burnell \& Co. miniaturization engineers are both expert in reducing to size. For example, Burnell's new microminiature MICROID filters are particularly valuable in transistorized circuitry and only a step away from micro. module use. Range of the new Type MTT band pass filter is 7.35 kc to 100 kc , band width 15% at 3 db and $+60 \%-40 \%$ at 40 db . Size is $1 / 2^{\prime \prime} \times 19 / 32^{\prime \prime} \times 15 / 16^{\prime \prime}$, weight 3 oz . Types $M \angle P$ and $M H P$ cover 5 kc to 100° kc with a standard impedance of 10 K ohms. These are microminiature counterparts of the popular Burnell TCL and TCH low pass and band pass filters. The band pass filter results when cascading a TCL with TCH filter. Size is $3 / 4^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1^{\prime \prime}$.
Type $M I F$ microminiature interstage filters are designed for a wide variety of applications. Input impedance is 10 K ohms, output to grid with a voltage gain of approximately $2: 1$. The 3 db band width is nominally 8%. Ranging from 7.5 kc to 100 kc , these interstage filters are provided in the same case as Type $M \leq P$.
Fully encapsulated, the new MICROID filters provide less weight, more reliability and exceed MIL specifications. We'll be glad to design and manufacture to your specifications in any quantity. Write for special filter bulletin to help solve your circuit problems.

SHOPTALK . . . editorial

electronics

May 22, 1959
Vol. 32, No. 21

Published weekly, with an additional annual BUYERS' GUIDE and REFERENCE Issue in mid-June, by McGraw-Hill Publish. ing Company, Inc., James H. McGraw (1860-1948) Founder.

Executive, Editorlal, Ciroulation and Advertising Omces: McGraw-Hill Bullding, 330 W. 42 8t., Nsw York 36, N. Y. Longacre 4.3000 . Publication Office: 99-129 North Broadway, Albany I, N. Y.

See panel below for directions regarding subscriptions or change of address. Donald C. McGraw, President; Joseph A. Gerardi, Executive Vice President; L. Keith Goodrich, Vice President and Treasurer; John J. Cooke, Secretary; Nelson L. Bond, President, Publications Division; Shelton Fisher, Senior Vice President; Ralph B. Smith, Vice President and Editorial Director; Joseph H. Allen, Vice President and Director of Advertising Sales; A. R. Venezian, Vice President and Circulation Coordinator.

Single copies in the United States, U. S. possessions \& Canada 754; $\$ 1.50$ for all other foreign countries. Buyers' Guide in the United States, U. S. possessions \& Canada $\$ 3.00$; all other foreign $\$ 10.00$. Subscription rates-United States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years; $\$ 12.00$ for three years. Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years; $\$ 20.00$ for three years. All other countries, $\$ 20.00$ a year; $\$ 30.00$ for two years; $\$ 40.00$ for three years. Second class postage paid at Albany, N. Y. Printed in U.S.A. Copyright 1959 by McGraw-Hill Pub. lishing Co., Inc.-All Rights Reserved. Title registered in U. S. Patent Office. BRANCH OFFICES: 520 North Michigan Avenue, Chicago 11; 68 Post Street, San Francisco 4; McGraw-Hill House, London E. C. 4; 85, Westendstrasse, Frankfurt/Main; National Press Bldg., Washington 4, D. C.; Six Penn Center Plaza, Philadelphia 3; 1111 Henry W. Oliver Bldg., Pittshurgh 22; 55 Public Square, Cleveland 13;856 Penobscot Bldg., Detroit 26; 3615 Olive St., St. Louis 8; 350 Park Square Bldg., Boston 16; 1301 Rhodes-Haverty Bldg., Atlanta 3; 1125 West Sixth St., Los Angeles 17; 1740 Broadway, Denver 2; 901 Vaughn Bldg., Dallas 1. ELECTRONICS is indexed regularly in The Engincering Index.

> Subscription: Address correspondence to: Fut. fllment Manager, Electronics, 330 W. 42 nd St.. New York 36 , N. Y. Allow one month for change of address, stating old as well as new address, including postal zone if any. Subscriptions arc solicited only from persons en. gaged in theory, research, design, production, management. maintenance and use of electronics and industrial control components, parts and products. POSITION and COM. PANY CONNECTION must be indicated on subscription orders.

Postmaster: please send form 3579 to Electronics, 330 W. 42nd St., New York 36, N. Y.

Member $A B P$ and $A B C$

ECHOES OF ICAO. Take a knotty technical problem and bind it up in tangled skeins of politics and business and it comes to life as a hydra-headed monster. Such a question won't be settled in one conference. It won't be killed. It just grows a new head and turns up somewhere else.

In Montreal, last winter, a technical meeting of delegates of 31 nations voted to adopt as a standard the very-high-frequency omnirange -Tacan (Vortac) short-range air-navigation system sponsored by U.S. and already widely used throughout the world as an air-navigation aid. Also discussed was Decca, a proprietary hyperbolic navigation system currently finding increasing use as an air-navigation system, largely in the British Isles, western Europe and Canada.

After the Montreal conclave angry rumblings were heard across the Atlantic. Soon the din resembled an old-time Madison Square Garden rhubarb. The Thames-side version of "We wuz robbed" includes charges that the U.S. had packed the Montreal convention with small-nation delegates, had flown in the face of considered engineering opinion and had prejudged the issue long before the technical facts were in.

To get to the bottom of this controversy, McGraw-Hill's London office took a careful sampling of British electronics industry opinion. Then Associate Editor Janis (with an assist from McGraw-Hill's correspondent in Montreal) found out what our Federal Aviation Agency, the International Civil Aviation Organization and other informed sources had to say. Electronics brings you both sides of this issue on p 29.

Coming In Our May 29 Issue . . .

DESIGNING FOR RELIABILITY. One of the greatest causes of concern in our industry is the increasing complexity of modern electronic systems, and the commensurate increase in importance of that often-elusive and always difficult-to-obtain factor of reliability. In military electronic equipment and critical industrial equipment, reliability is a function of sound engineering during development. It cannot be achieved by guesswork or by cut-and-try methods. It must be set as a goal at the beginning of the design procedure and must be constantly evaluated during development through realistic engineering tests.

Next week, Electronics brings you a comprehensive report on the vital question of designing for reliability. In it, Associate Editor Leary discusses three interlocking factors to be considered in establishing reliability in equipment design: choice of components based on stability and reproducibility, application of components within circuits, and design of circuits themselves. You'll learn how to choose and use components, how to evaluate reliability during development, how to design circuits and systems for optimum performance. You'll want to keep and refer to this valuable report often.

MUSICAL TIMBRE. A demonstration device for illustrating the elementary principles of Fourier synthesis of a complex musical tone is described by W. S. Pike and C. N. Hoyler of RCA Laboratories in Princeton, N. J. The device is a transistorized keyboard instrument with a compass of one octave, the fundamental frequency being 250 cps . Electrical output consists of the fundamental plus the second and third harmonics. Effects of changes in the three outputs can be demonstrated audibly and visually.

D|FILM gives new BLACK BEAUTY ${ }^{\circ}$ series of small, low-cost capacitors outstanding performance characteristics
 - withstand 105 C operation with no voltage derating
 - moderate capacitance change with temperature
 - excellent retrace under temperature cycling
 - superior long-term capacitance stability
 - very high insulation resistance

- New DIFILM Black Beauty Capacitors represent a basic advance in paper tubular capacitor design. DIFILM Capacitors combine the proven long life of paper capacitors with the effective moisture protection of plastic capacitors... by using a dual dielectric of both cellulose and polyester. film that's superior to all others for small, yet low cost, capacitors.
- Just check the characteristics listed above. This overall performance is fully protected by HCX ${ }^{\oplus}$, an
exclusive Sprague hydrocarbon material which im. pregnates the windings, filling all voids and pinholes before it polymerizes. The result is a solid rock-hard capacitor section, further protected by an outer molding of humidity-resistant phenolic. These capacitors are designed for operating temperatures ranging $u p$ to $105^{\circ} \mathrm{C}$ $\left(221^{\circ} \mathrm{F}\right)$. . . at bigh bumidity levels . . . uithout voltage derating!

For complete specifications on DIFILM Black Beauty Capacitors, urite for Bulletin 2025 to Technical Literature Section. Sprague Electric Company, 35 Marshall Street, North Adams, Massachusetts.

SPRAGUE COMPONENTS:

SPRAGUE*

THE MARK OF RELIABILTY

Temco

 AIRCRAFT

 AIRCRAFT DALLAS

NAVAL AVIATION MAKES HISTORY

NAVCAD Earland R. Clark of Strwudsburg. Pa., receiving congratulations from Rear Admiral Joseph M. Carson, Chief of Naval Air Basic Training.

with ALL-JET TRAINING

On March 13 at the Naval Air Basic Training Center, Saufley Field, Pensacola, Florida, the first student pilot in Naval Aviation history soloed a primary jet aircraft-without previous propellerdriven aircraft experience. The flight was made in a TT-1 "Pinto" - designed specifically by Temco for all-jet training.
The first primary jet trainer ever purchased by any of the U. S. military services, the Pinto is designed for today's jet age. It is built closely along the lines of high-performance jet fighter aircraft and gives the student pilot the "feel" of jet training from the very beginning.
With its high safety standards, fine handling characteristics, optimum maintenance provisions and overall reliability, the Pinto is an ideal primary jet trainer. From initial cost to operation and maintenance, it is designed to provide better pilots at less cost, in less time. All in all, it gives the Navy a decided edge in the ever-advancing pace of military jet aviation.

New 70 amp high-power silicon rectifier from Westinghouse

This latest Westinghouse rectifier has been designed specifically for those high-current applications where space and weight are critical. Total weight is only 3 oz ., maximum.
OUTSTANDING FEATURES INCLUDE...

- Low leakage current - Small package
- High fault current (just 1" across flats)
- Lightweight
- High current for
- Low forward drop its size and weight

ELECTRICAL CHARACTERISTICS

Maximum allowable peak inverse voltage: Operating or transient to 50 to 500 volts.
Maximum allowable dc blocking voltage: 80% of PIV.
Maximum reverse current: 30 milliamperes peak at rated peak inverse voltage.
Maximum one cycle half-wave peak rating: 1200 amps.
Operating temperature: Up to junction temperature of $190^{\circ} \mathrm{C}$.
Cell forward current: See curves.
Operating frequency: For frequencies beyond 1 kc , refer to Westinghouse.
Thermal drop: Junction to case, $0.4^{\circ} \mathrm{C} /$ watt.
Inquiries and sample orders are invited. For complete technical data contact your local Westinghouse representative.

YOU CAN BE SURE...IF IT'S Westinghouse

[^0]

Ubiquitous to the $\mathbf{N}^{\text {th }}$

EASTERN SEABOARD

Asbury Park, N. J., I. E. Robinson Company, 905 Main St., KE 1-3150. Baltimore 15, Md., Horman Associates, Inc., 3006 West Cold Springs Lane, M0 48345 . Boston Area, Burlington, Mass., Yewell Ássociates, Inc., Middlesex Turnpike, BR 2-9000. Bridgeport 8, Conn., Yewell Associates, Inc., 1101 East Main St., F0 6-3456. Camp Hill, Pa., I. E. Robinson Company, 2120 Market St., RE 7-6791. Englewood, N. J., R. M. C. Associates, 391 Grant Ave., L0 7-3933. New York 21, N. Y., R. M. C. Associates, 236 East 75th St., TR 9-2023. Philadelphia Area, Upper Darby, Pa., I. E. Robinson Company, 7404 West Chester Pike, SH 8-1294. Pittsburgh 27, Pa., S. Sterling Company, 4024 Clairton Blvd., TU 4-5515. Poughkeepsie, N. Y., Yewell Associates, Inc., 806 Main St., GR 1-3456. Rochester 10, N. Y., Edward A. Ossmann \& Associates, 830 Linden Ave., LU 6-4940. Syracuse 1, N. Y., Edward A. Ossmann \& Associates, 2363 James St., HE 7-8446. Vestal, N. Y., Edward A. Ossmann \& Associates, P. O. Box 392, EN 5-0296. Washington, D. C. Area, Rockville, Md., Horman Associates, Inc., 941 Rollins Ave., HA 7-7560.

SOUTHEASTERN STATES

Atlanta 5, Ga., Bivins \& Caldwell, Inc., 3133 Maple Drive, N.E., CE 3-7522. Fort Myers, Fla., Lynch-Stiles, Inc., 35 W . North Shore Ave., WY 5-2151. High Point, N. C.,Bivins \& Caldwell, Inc., 1923 North Main St., Tel. 2-6873. Huntsville, Ala., Bivins \& Caldwell, Inc., JE 2-5733 (Direct line to Atlanta).

CENTRAL, SOUTH CENTRAL STATES

Chicago 45, III.,Crossley Associates, Inc., 2711 West Howard St., SH 3-8500. Cleveland 24, S. Sterling Company, 5827 Mayfield Rd., HI 2-8080. Dayton 19, 0., Crossley Associates, Inc., 2801 Far Hills Ave., AX 9-3594. Detroit 35, Mich., S.

Sterling Company, 15310 West McNichols Rd., BR 3-2900. Indianapolis 20, Ind., Crossley Associates, Inc., 5420 North College Ave., CL 1-9255. Kansas City 30, Mo., Harris-Hanson Company, 7916 Paseo Blvd., HI 4-9494. St. Louis 17, Mo., Harris-Hanson Company, 2814 South Brentwood Blvd., MI 7-4350. St. Paul 14, Minn., Crossley Associates, Inc., 842 Raymond Ave., MI 6-7881. Dallas 9, Tex., Earl Lipscomb Associates, P. 0. Box 7084, FL 7-1881 and ED 2-6667. Houston 5, Tex., Earl Lipscomb Associates, P. 0. Box 6646, M0 7-4207.

WESTERN STATES

Alhuquerque, N. M., Neely Enterprises, 107 Washington St., S.E., AL 5-5586. Denver 10, Colo., Lahana \& Company, 1886 South Broadway, PE 3-3791. Las Cruces, N. M., Neely Enterprises, 126 South Water St., JA 6-2486. Los Angeles, Calif., Neely Enterprises, 3939 Lankershim Blvd., North Hollywood, ST 7-0721. Phoenix, Ariz., Neely Enterprises, 641 East Missouri, CR 4-5431. Portland 9, Ore., ARVA, 1238 Northwest Glisan, CA 2.7337. Sacramento 14, Calif., Neely Enterprises, 1317 15th St., Gl 2-8901. Salt Lake City, Utah, Lahana \& Co., ZE 123 (Direct line to Denver). San Diego 6, Neely Enterprises, 1055 Shafter St., AC 3-8106. San Francisco Area, San Carlos, Calif., Neely Enterprises, 501 Laurel St., LY 1-2626. Seattle 9, Wash., ARVA, 1320 Prospect St., MA 2-0177. Tucsan, Ariz., Neely Enterprises, 232 South Tucson Blvd., MA 3-2564.

CANADA

Toronto 10, Ont., Atlas Instrument Corporation, Ltd., 50 Wingold Ave., RU 16174. Vancouver 2, B. C., Atlas Instrument Corporation, Ltd., 106-525 Seymour St., MU 3-5848. Winnipeg, Mani., Atlas Instrument Corporation, Ltd., 72 Princess St., WH 3-8707.

OVERSEAS

Belgium, International Electronic Company, "INELCO S.A.", 20-24, rue de l'Hopital, Brussels, Tel.: 11-22-20 (5 Lines). Denmark, Tage Olsen A/S, Centrumgarden, Room 133, 6D, Vesterbrogade, Copenhagen V., Tel.: Palae 1369 and 1343. Finland, INTO 0/Y, 11 Meritullinkatu, Helsinki, Tel.: 621425 and 35 125. France, Radio Equipments, 65, rue de Richelieu, Paris 2éme, Tel.: RICelieu 49-88. Germany, Hewlett-Packard S.A. Verkaufsbüro, Frankfurt am Main, Holzhausenstrasse 69, Telefon 554727. Greece, K. Karayannis, Karitsi Square, Athens, Tel.: 23-213 (9 Lines). Israel, Electronic \& Engineering Ltd., 6 Feierberg Street, Tel-Aviv, Phone 4288. Italy, Dott. Ing. Mario Vianello, Via L. Anelli 13, Milano, Telef. 553-081. Netheriands, C. N. Rood N.V., 11-13 Cort Van Der Lindenstraat, Rijswijk (Z.H.), Tel.: The Hague-98-51-53 (6 Lines). Norway, Morgenstierne \& Co., Colletts Gate 10, Oslo, Tel.: 601790 . Portugal, Senatejo Industrial, Lda., Rua do Alecrim, 46-S/Loja, Lisbon, Tel.: 344 46-Expediente and 3686 43-Gerencia. Spain, ATAIO, Ingenieros, A. Aguilera, No. 8, Madrid, Tel.: 232742 and 578451 . Sweden, Erik Ferner, Björnsonsgatan 197, Bromma, Tel.: 8701 40. Switzerland,' Max Paul Frey, Hangweg 27, Köniz-Bern, Tel.: (031) 63, 3644 . United Kingdom, Livingston Laboratories, Retcar Street, London, N. 19, England, Tel.: Archway 6251. Yugoslavia, Belram Electronics, 43 Ch. de Charleroi, Brussels, Belgium, Tel.: 38. 12.40. Australia, Geo. H. Sample \& Son Pty. Ltd., 17-19 Anthony Street, Melbourne, C. 1, Tel.: FJ4138 (3 lines), 280 Castlereagh Street, Sydney, Tel.: MA 6281 (3 Lines). Taiwan (Formosa), FarEastern Company, No. 6 Nanyang Street, Taipei, Taiwan Tel.: 27876 and 31868. India, The Scientific Instrument Company, Ld., 6, Tej Bahadur Sapru Road, Allahabad 1; 240, Dr. Dadabhai Naoroji Road, Bombay 1; 11, Esplanade East, Calcutta 1; B-7, Ajmeri Gate Extn., New Delhi 1; 30 Mount Road, Madras 2. Japan, Seki \& Company, Ltd., Daini Taihei Building, No. 1 Kanda Higashi-Fukudacho, Chiyoda-Ku, Tokyo, Tokyo (866) 3136-8. New Zealand, Geo. H. Sample \& Son (N.Z.) Ltd., 431 Mount Albert Road, Mount Roskill S.1, Auckland, Tel.: 89-439. Union of South Africa, F. H. Flanter \& Co. (Pty.), Ltd., Rosella House, Buitencingle Street, Cape Town, Tel.: 3-3817. Argentina, Mauricio A. Suarez, Telecomunicaciones, Carlos Calvo 224, Buenos Aires, Tel.: 30-6312-34-9087.
Part of hp- representative field repair station

ELECTRONICS NEWSLETTER

1,000-FT DIAMETER ANTENNA for radio astronomy may be built in Puerto Rico by the Air Force. Dish would be flush with ground level, all apparatus below ground. With suitable transmitting gear added, it could be used as a radar telescope. USAF has not yet allocated funds nor decided whether reflector will be parabola or sphere. But electronic scanning will be necessary because reflector is stationary; scanning angle of 30 to 40 degrees is hoped for. According to one estimate, reflector can be built for $1 / 10$ the cost of a fully steerable system. Other reasons for interest in low silhouette antennas: vulnerability of huge conventional structures to weather and war damage.

Cryosar, a new low-temperature computer component, has been developed at Lincoln Laboratory, MIT. Operation of the fast-switch is based on impact ionization of impurities in yermanium; turn-on time is 10^{-8} seconds. Name comes from cryogenic switching by avalanche and recombination.

MAGNETIC FIELD-ULTRASONIC TECHNIQUE

 for probing the deep-down crystal structure of metals has yielded significant data on the movement of electrons between atoms only 100 -millionths of an inch apart. A new research tool used at the University of Chicago has produced "knowledge we never had before about bismuth," said physicist Merrel H. Cohen. He said that experiments with antimony are now underway. Previously, he explained, metal crystals have been studied by X-rays and neutron diffraction and by electro-magnetic surface probing. Magnetic sound method adds a new dimension to investigations, he said.ELECTRIC POWER can be generated by shooting electrons and ions through a strong magnetic field, with efficiencies as high as any known power generation method. That's what Joseph L. Neuringer of Republic Aviation told an American Physical Society meeting this month. According to his theoretical investigations, as much as 1 million watts could be generated by shooting a stream of plasma three times as fast as sound through a magnetic field three feet long and with poles 6 in. apart. He asserted that intensive R\&D could produce large-scale plasma generators in 5 to 10 years, cited Republic's work on a "magnetic pinch" engine for space propulsion. Such an engine would shoot plasma out the rear of a spaceship; some plasma might be siphoned off and used for generating electricity.

MASER POSSIBILITIES in early-warning radar and long-range telecommunications look good to researchers, Electronics learns. Military interest centers on systems in which receiver sensitivity is the main limitation. Combination of scatter
system and maser-aided receiver may fill a military need in very long-range communications. Some half dozen U.S. laboratories are exploring communications applications of maser. Researchers say that in two or three years the maser will no longer be a costly lab curiosity, but will be simpler and more rugged.

VEGA, first of NASA's more advanced boosters, will be ready for test flights by late 1960 , with eight vehicles produced by the end of 1961 under a $\$ 33.5$-million contract awarded to Convair division of General Dynamics. Two-stage version could put a two-ton man-carrying lab into $300-\mathrm{mi}$ orbit; three-stage Vega might send $1,000-\mathrm{lb}$ payload to moon's vicinity to soft-land instrument package weighing hundreds of pounds, or it could power a $750-\mathrm{lb}$ payload on a planetary mission. Guidance will consist of autopilot in the second stage and inertial in the third, with a jet system for flight correction. First-stage Atlas boosters are not included in the contract.

DELTA interim launching vehicle for use in 1960 and 1961 will be produced by Douglas Aircraft under a $\$ 24$-million prime contract from NASA. Delta is expected to put 250 lb in a $300-\mathrm{mi}$ orbit or send 100 lb on a deep space probe, using a modified Thor as first stage. NASA says threestage configuration will be similar to Thor-Able but Delta will have an improved radio inertial guidance system, and active control of longer coasting periods between second-stage burnout and third-stage ignition.
BETATRON is being used by a West German firm to test the welds on container walls up to 20 in . thick. The Phoenix-Rheinrohr AG unit, which uses two beams for scanning, is said to give better discontinuity definition than a conventional X-ray unit that operates on 4 -in-thick materials. Betatron is housed in a bunker 102 ft long, 29 ft wide and 38 ft high. Maximum size of containers that can be tested is 80 ft long, 16 ft diameter. Remotecontrolled crane trolley positions the betatron over the welds being inspected.

Parametric amplifier will probably replace a maser when MIT Lincoln Laboratory scientists again bounce signals off Venus in September. Researchers expect varactor diode-type paramp to perform as well without such maser problems as liquid helium environment and relatively narrow bandwidth.

ALEUTIAN DEW LINE SEGMENT has just gone into operation, says the Air Force. Six tropospheric scatter stations covering 1,000 mi tie in to the Alaskan White Alice network. Additional DEW Line sites are being constructed across Greenland. Main DEW Line runs from Point Barrow, Alaska, area to Baffin Island on Canada's northeast coast.

The Westinghouse hermetically sealed, Polyclad Hipermag core is the newest development in cores for magnetic amplifier applications. Applied over a new specially designed aluminum box housing the core, Polyclad insulation hermetically seals the core and allows encapsulating, casting or impregnating without altering magnetic properties. This special core:

- Stops magnetic amplifier rejects caused by changed magnetic values.
- Is suitable for all environmental conditions - high temperatures, humidity and high-voltage stress.
- Eliminates costly core taping.
- Is tested by Roberts constant-current, flux reset technique, or to your specification.
Available in production lots with normal delivery, these cores are supplied in special sizes or in standard AIEE sizes.
For more information about these or other Hipermag or Hipersil ${ }^{\circledR}$ cores, call your Westinghouse representative. . . or write Westinghouse Electric Corporation, P.O. Box 231, Greenville, Pennsylvania. J-70855

YOU CAN BE SURE...IF IT'S Westinghouse

[^1] CBS TV MONDAYS

WASHINGTON OUTLOOK

Defense Dept. is considering increasing production of the Atlas ICBM from 90 missiles for operational emplacement to 160 ; and speeding up research and development on the solid-propellant Minuteman ICBM.

The Pentagon has some $\$ 500$ million uncommitted on this year's books with which to step up the two ICBM programs. These are extra funds voted by Congress last year for military procurement which the Pentagon has yet to contract out.

Congress will surely tack on some $\$ 1$ billion to the fiscal 1960 appropriation this session. The bulk of this extra money is expected to go for ICBM projects.

The recommendations on Atlas call for increasing the number of operational missile squadrons from nine to 16 . The additional missiles would be equipped with American Bosch Arma's all-inertial guidance system originally designed for the Titan ICBM. Use of this system allows the Air Force to set up the Atlas missile in so-called hardened or underground installations. There is no longer a need for the exposed ratio antennas used with Atlas' earlier GE-Burroughs radio-inertial guidance system.

The Atlas recommendation was made by Air Force Secy. Douglas after much controversy within the service. Gen. Lemay, Vice Chief of Staff of the Air Force, would prefer using extra Air Force money for accelerated bomber production. Atlas has been pushed mainly by the Air Force's R\&D professionals.

The recommendation to speed up work on the Minuteman, on which North American Aviation's Autonetics div. holds the guidance prime contract, comes on the heels of Defense Secy. McElroy's recent report to Congress that the project is being pushed as fast as possible.

Privately, Minuteman project officials have been protesting this claim. They have argued that the project's budget must be substantially increased if Minuteman target dates are to be met.

The Pentagon's schedule calls for the first few Minuteman missiles to be in the hands of troops in 1963. The missile is not expected to be operational in quantity until 1965. First flight of a complete prototype is not likely before 1961.

Minuteman's fiscal 1959 budget amounts to roughly $\$ 200$ millionincluding a hike of some $\$ 114$ million put into effect under pressure from Congress. The budget for fiscal 1960 earmarks $\$ 260$ million for the program.

- Private approaches to members of the Federal Communications Commission urging transfer of a television channel from one city to another nearby are just as wrong as private approaches made during a competitive hearing for a channel permit.

That's the ruling by the U.S. Court of Appeals in Washington, D. C., overruling an FCC decision to transfer Channel 2 from Springfield, Ill., to St. Louis, Mo. The court says private appeals made by interested parties require a special FCC hearing to determine if any commissioners or parties should be disqualified from further participation.

Similar proceedings have been ordered by the courts in several cases involving alleged off-the-record approaches in competitive actions, where several applicants were competing for the same channel permit.

750 MO
 ALPHA CUTOFF

Fo- naximum mecianicai strength and heal ilissipation, TI diffused-base "mesa cosstructien nionts na*er directly to heice. Extremely close product u7 orm ty also resu ts fron this newest gaseous-d tusion manufacturing tecinniqu

Guaranteed current gains of 12,10 and 8 db minimum at 100 mc with new TI 2N1141, 2N1142 and 2N1143 diffused-base germanium transistors! Alpha cutoff ratings up to 750 mc coupled with 750 mW power dissipation at $25^{\circ} \mathrm{C}$ case temperature make these newest TI transistors ideal for military high frequency power oscillators and amplifiers where assured reliability and performance are of primary importance. All units are 100% production stabilized at temperatures well above their $100^{\circ} \mathrm{C}$ rated junction operating point . . exceed MIL-T-19500A specifications . . . and are in stock now.
Contact your nearest TI sales office or nearby TI distributor today...for immediate delivery.

absolure maximum ratings @ $25^{\circ} \mathrm{C}$ ase femperature

typical characteristics @ $25^{\circ} \mathrm{C}$ case temperature

Frequency Cutoff (Common Base) 750	600	480 MC
Collector Reverse Current, $\mathrm{V}_{\mathrm{CB}}=-15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$. . . 1	1	$1{ }^{1}$
Saturation Voltage, $\mathrm{I}_{\mathrm{C}}=-70 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=17.5 \mathrm{~mA}$: . . ${ }^{\text {a }}$	2	${ }_{2}{ }^{\mu \mathrm{A}}$
Thermal Resistance Junction to Mounting Base . 0.1	0.1	$0.1{ }^{\circ} \mathrm{C} / \mathrm{mW}$
Small Signal Short Circuit Forward Current Transfer Ratio, $10 \mathrm{I}_{\mathrm{C}}$ $\mathbf{V}_{\mathrm{CB}}=-10 \mathrm{~V}, £=1000 \mathrm{cps} \ldots \ldots \ldots$	$50 \mathrm{I}_{\mathrm{D}}$	$100 \mathrm{I}_{\mathrm{c}} \mathrm{~mA}$

Small Appetite NOISE SOURCES

service-proved and available now

Until recently signal simulators for monitoring radar receivers or microwave relays were of two types. One was a big and heavy ampere eater with cumbersome auxiliary equipment; and the other was a sensitive though delicate instrument suitable only for the laboratory.

We call your attention now to the Litton 2000 series of miniature gas noise sources. The Litton 2000 for waveguide use is pictured above. It has a first cousin, the Litton 2007 designed for coaxial cable use. We call your attention because most tubes in this series are now in production and we suspect there are frustrated design engineers who will receive this announcement with keen interest.

Our gas noise sources may properly be called miniature. They require only inches of space, smaller, lighter auxiliary equipment, and small voltages and currents. Around 500 volts fires them; 100 milliamperes maintains them. These characteristics, plus others, have caused them to find numerous applications: for in-flight calibration and test of aircraft
microwave receivers; as alatomatic watchdogs on airborne radar systems; and in other systems which require various immunities to vibration, shock, humidity, and temperature cycling.

The Litton family of minature gas noise sources, like all Electron Tube Division products, was designed to solve specific end item functions. We have found that this philos. ophy contributes to consistent reliability: tubes do their jolss more cfficiently, for longer periods of time, and at lower overall cost to the buyer. Other advantages also cesult. For example, these noise sources require no ageing-in and the $L-2000$ is replaceable in the field without changing the mount.

Specific frequency ranges in L, S, C, X and K bands are covered. If you are concerned with radar transmission, or with microwave data links of any kind, we'll gladly send you more information. Write to Litton Industries Electron Tube Division, Office E14, 960 Indnstrial Road, San Carlos, Calif.

[^2]
High Sales Mark New Reports

SALES AND EARNINGS for electronics firms continue to climb steadily as the year approaches mid-point.

- Motorola Inc., Chicago, reports earnings of over $\$ 2,616,427$ or $\$ 1.35$ a share for the first quarter of 1959. This is nearly four times the total for the same quarter of 1958. Sales rose to $\$ 63,653,184$, a rise of 56 percent over the first 90 days of last year. The firm reports sharp improvement shaping up for the present quarter as well, due to increased consumer acceptance of Motorola products and successful cost-reduction programs.
- Texas Instruments, Inc., Dallas, Tex., announces sales and earnings for the first quarter this year are the highest in company history. Sales totaled $\$ 29,993,000$. Earnings after taxes came to $\$ 2,-$ 400,000 or 74 cents a share. Firstquarter sales for 1958 were, $\$ 20$,480,000 , and earnings were $\$ 1,109$,000 . The firm points out that 81 percent of this year's product sales will represent products placed in manufacture during the past three years.
- Controls Company of America, Chicago, expects sales to top $\$ 45$ million this year, as compared to $\$ 33$ million for 1958. Sales and earnings were up strongly in the first quarter. Total sales hit $\$ 12$, 753,655 as against $\$ 6,308,342$ for 1958's first quarter. The company's net earnings after taxes were $\$ 645,778$, or 91 cents a share. In the same period last year, earnings after taxes were $\$ 234,144$, or 33 cents a share.
- General Instrument Corp., Newark, N. J., reports a March sales peak exceeding $\$ 4,200,000$, about 70 percent above the March 1958 figure. The company notes that during March, semiconductor shipments rose 350 percent over last year, military components rose 250 percent and electronic entertainment components were up 25 percent.
- Standard Coil Products, Melrose Park, Ill., reveals sales increases of 31 percent for the first three months of this year, over last year. Total came to $\$ 16,591,-$ 852 compared with $\$ 12,701,848$ for 1958. Net earnings in the quarter were $\$ 390,397$, or 21 cents a share. In 1958's first quarter, the firm had a net loss of $\$ 266,508$. Company feeling, based on anticipated performance from new products and increasing orders, is that the rest of the year will see increases.

OVER THE COUNTER

Pulse Notes

Ferrite vs. oriented grain silicon steel cores

Which is better, i pulse transformer with a ferrite core or one with an oriented grain silicon steel core? The answer is determined by the application. There are many kinds of magnetic materials available to the designer. Ferrite and oriented grain are only two. At Pulse Engineering, we choose the material best suited to solve the problem.
A comparison of some of the basic magnetic properties of silicon steel and ferrite indicates the basis of choice. One and two mills are the preferred thicknesses of oriented grain silicon steel tape for use in pulse transformers. These steels can be operated at rates of change of flux u_{2} to 8 kilogauss $/ \mu \mathrm{sec}$ without excessive eddy current loss and to peak flux densities above 10,000 gauss. Under these conditions effective pulse permeabilities of 5000 are obtained in most "C" core configurations. For a given rate of change of flux, pulse losses in steel cores are directly related to tape thickness. The loss in 1 mill tape is about 25% of that in 2 mill tape.

Properties of Ferrites

Ferrites have much lower eddy current losses. They can be operated at much greater rates of change of flux. Twenty kilogauss per $\mu \mathrm{sec}$ is not uncommon Under these conditions, eddy current losses are about 8% of those for 2 mill steel. Permissible peak flux densities are much lower. Typically, 1800 gauss. Permeabilities of ferrite materials used in pulse transformers are relatively lower than silicon steels ranging from 1100 to 2000.
High permeability and flux density capabilities of silicon steels are admirably suited for long pulse, high power transformers. For pulses shorter than $.25 \mu \mathrm{sec}$, the lower losses of ferrite provide more efficient transformer designs.
For more information on pulse transformers, call your nearby Pulse Engineering representative or write to Department E-S

NEW PROGRAM

Raytheon enters new weapons systems program and offers advancement opportunities for both Junior and Senior electronics engineers with experience in the following fields:

- Microwave engineers-component and antenna design
- Communications systems
- Guidance systems
- Computer systems
- Radar systems
- Inertial reference systems
- Feed-back control
- Auto-pilot
- Ground support
- Electronic packaging engineers
- Radar systems engineers (project management)
- Electromechanical engineer for missile control and auto-pilot design (project management)
- Mechanical engineer experienced in ground handling of large missile systems (project management)

You and your family will enjoy the many advantages of living in the metropolitan Boston area. Relocation assistance and modern benefits.

TFE resins outperform all other organic insulations in resistance to high temperatures and heat aging

Tensile strength vs. temperature
TFE-fluorocarbon resins retain useful mechanical and electrical properties far beyond their continuous service rating of $260^{\circ} \mathrm{C}$. In fact, these resins maintain appreciable mechanical strength even past their $327^{\circ} \mathrm{C}$. $\left(621^{\circ} \mathrm{F}\right.$.) gel point, as the curve at left shows. For this reason, wire and cable insulated with TFE resins can withstand extremely high temperatures, both ambient and due to current overloads, where other resins melt, char, burn, embrittle or cut through. In production, rapid and efficient soldering is accomplished without damage to insulation. Designers can save weight and space by reducing conductor cross sections and insulation thickness, without sacrificing power ratings. Miniaturization of entire units of equipment is made possible by the excellent thermal stability and high-temperature cut-through resistance of TFE resins. The outstanding dielectric properties of TFE resins remain virtually unchanged over extremely broad ranges of temperature, frequency and time.

WIRE HARNESS for the navigation system of Convair's B-58 bomber is insulated with Du Pont TFE-fluorocarbon resins for maximum reliability in a high ambient emperature environment. Engineers of the Sperry Gyroscope Company, which developed and is producing the B-58 bomb-navigation system, have also found that
considerable cost savings are possible in the assembly of such intricate electronic equipment, because TEFLON TFE resins are unaffected by soldering temperatures. insulations of TFE-fluorocarbon resins do not melt, flow, embrittle or shrink back even after prolonged contact with a soldering iron or solder pot.

TFE-fluorocarbon resins have a built-in safety factor. No other wire and cable insulation offers the design engineer so great a latitude in overcoming temperature problems and accidental overloads. Wire and cable insulated with these resins are generally rated for continuous service at $260^{\circ} \mathrm{C}$. Yet recent tests have shown that in some cases the useful wire insulation life of TFE resins is greater than 1000 hours at $350^{\circ} \mathrm{C}$. $\left(662^{\circ} \mathrm{F}\right.$.) and 100 hours at $400^{\circ} \mathrm{C} .\left(752^{\circ} \mathrm{F}\right.$.). The heataging data below show that even after 6 months at $300^{\circ} \mathrm{C}$. $\left(572^{\circ} \mathrm{F}\right.$.) the excellent electrical properties of TFE resins are
unchanged, and mechanical toughness is retained
The reliability of TEFLON TFE-fluorocarbon resins extends through all areas of their use - in the assembly and production of equipment, in storage under any conceivable combination of environmental conditions, in actual service where their durability is often greater than the lifetime of the equipment. Wherever reliability and safety are imperative, wire and cable insulated with Du Pont TFE-fluorocarbon resins will do the job best. Often, use of this wire and cable is the least costly way to achieve a design objective.

EFFECT OF HEAT AGING
Results of oven aging at $300^{\circ} \mathrm{C}$. $\left(572^{\circ} \mathrm{F}\right.$.) ${ }^{*}$

Exposure time at $300^{\circ} \mathrm{C}$.	Dissipation Factor	Dielectric Constant	Dielectric Strength	$\begin{aligned} & \text { Yield Stress } \\ & \text { (psi) } \end{aligned}$		Yield Elongation (\%)		Tensile Strength (psi)		Ultimate Elongation (\%)	
			ASTM D-149	MD**	TD***	MD	TD	MD	TD	MD	T0
As received	0.0001	2.03	2930	4970	2100	74	3.8	6780	4790	190	640
1 month	0.0001	2.08	2830	3880	2290	71	2.8	5740	3670	320	910
3 months	0.0001	2.08	2890	3920	2420	75	3.0	5000	3340	300	955
6 months	0.0001	2.11	2950	3540	2320	82	2.5	4150	2430	296	982

*5-mil film samples of TFE-fluorocarbon resins **MD-Machine direction Tests performed at room temperature following heat aging

FOR MORE INFORMATION

 . .Consult your supplier of wire and cable insulated with TEFLON TFE resins for an engineering approach to your wiring reliability problems. You'll find him listed in the Yellow Pages under "Plastics - - Du Pont". Or, for detailed technical data on TFE resins, write to: E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Dept., Rm. 2524, Nemours Bldg., Wilmington 98, Dela ware.

TEFLON

TFE-FLUOROCARBON RESINS

While we're the first to admit that pallbearers have a definite place . . . we're last to agree that their place is in industry.
Certainly, when time is of the essence, old-fashioned repair and servicing techniques are about as efficient as horse-drawn carriages. Progressive manufacturers are dispensing with equipment-carrying pallbearers . . . turning instead to efficient Grant Slides.
If you've been plagued by down-time, or have been engaged in weight-lifting exercises . . . why not investigate Grant Slides? It's true, we're putting industrial pallbearers out of business . . . but we may help put your company back into business.
The nation's first and leading manufacturer of slides

HIGH POWER
 TRANSISTUR MAENETIE SERVD

For AC servo motor control 50 watts to 3000 watts

FEATURING

- Extreme reliability
- Wider ambient temperafure range
- Faster response
- Smaller size at higher power ratings
- Higher gains
- Improved core design
- Silicon rectifiers used exclusively
- Greater flexibility
- Ideally suited for operating with Diehl Servo Motors

Signal Input AC or DC Military Specifications Provisions for System Feedback - Completely Static - Output 115 V AC
Phase Reversible
For complete 60 cps and 400 cps specs request Bulletin S-961.
(14)

MAGNETIC AMPLIFIERS, INC.

 632 IIntoh avenue - new york 55, h. y. - CyPress 2.6610 West Coost Division136 WASHINGTON ST. - EL SEGUNDO, CAL. - OREGOH 8-2665 CIRCLE 20 READERS SERVICE CARD

MARKET RESEARCH

Component Sales On Rise

OUTLOOK FOR SALES of electronic components and parts in 1959 is bright. Total component sales this year should beat 1958 sales by 10 percent.

Behind the optimistic forecast is the pickup in general business activity, inventory reductions achieved last year and continued industry growth.

Estimate for 1959 component sales is $\$ 2.5$ billion. This compares with. 1958 sales of $\$ 2.26$ billion. Estimates include components sold both for installation in new equipment and for use as replacement parts.
Semiconductors stand out among the individual components in a comparison of 1958 sales with 1959 forecasts. Transistors are scheduled for sales of $\$ 160$ million in 1959 , a gain of more than 40 percent over sales of $\$ 113$ million in 1958 . Rectifier and diode sales are expected to jump from $\$ 116$ million in 1958 to $\$ 135$ million this year.

Electron tube sales are expected to move up from $\$ 705$ million in 1958 to $\$ 773$ million with individual increases for receiving tubes, picture tubes and transmitting and special-purpose types.

Prospects are good for sales of
capacitors, resistors, relays and switches. Capacitor sales forecast for 1959 is $\$ 236$ million, an increase of 12 percent over 1958. Resistor forecast is $\$ 184$ million, a gain of 14 percent over last year. Relays and switches are due for a 13 percent gain with 1959 sales reaching $\$ 202$ million.

Transformers are expected to account for sales of $\$ 105$ million in 1959, up from $\$ 101$ million last year. Sales total for the other components group was $\$ 675$ million in 1958 . It should rise to around $\$ 705$ million in 1959.

FIGURES OF THE WEEK

LATEST WEEKLY PRODUCTION FIGURES

	May 1,	Apr. 3,	Change From
(Source: E1A)	1959	1959	One Year Ago
Television sets	92,157	111,563	$+19.2 \%$
Radio sets (ex. auto)	255,218	263,316	$+70.6 \%$
Auto sets	117,422	104,090	$+195.4 \%$

sTOCK PRICE AVERAGES

	May 6,	Apr. 8,	Change From
(Standard \& Poor's)	1959	1959	One Year Ago
Electronics mfrs.	101.57	82.28	$+93.5 \%$
Reatio \& tr mfrs.	112.68	97.24	$+143.7 \%$
Broadcasters	104.32	92.10	$+70.4 \%$

LATEST MONTHLY SALES TOTALS

	Mar.	Feb.	Change From
(Add 000)	1959	1959	One Year Ago
Rec. tubes, value	$\$ 35,286$	$\$ 28,630$	$+37.2 \%$
Rec. tubes, units	39,841	33,155	$+39.6 \%$
Pic. tubes, value	$\$ 13,804$	$\$ 14,085$	$+9.2 \%$
Pic. tubes, units	717	738	$+13.0 \%$

The American Brass Co, Fabricated Metal Goods Di/. Waterbury 20-A, Connecticut
Please send me a copy of Publication BG-5
Name
Company
Street
City Zone State

ANAEOREA

Fabricated Metal Products

COPPEA

ERASS

WHEXf SILYER

1tion

51ER

STANLESS STEEL

Buminum

THE AMERICAN EFASS CON BANY FA3sICATED METAL GOODS DIVISION, watrbury zo, comm

COST-CUTTING IDEAS THAT PAID OFF

All the parts shown on the cover of the booklet were designed to serve a specific function-at a lower cost. Some of them are made from customer-owned tools, specially clesigned to make a better part at a saving in material cost and fabricating time. They illustrate only a few of the thousands of multiple-plunger and progressive-tool press products we supply to every branch of industry-from simple eyelets to precision electronic components.

We offer a complete design-engineering service based on long experience and specialized production equipment, and often are able to suggest ways and means of using
some of our many stock tools to cut your costs still further. Perhaps we can develop cost-cutting ideas for you, too The booklet describes and illustrates the range and types of parts we fabricate. A sample, drawing or description of a part you need to produce at a low cost will give our designers a chance to work on your cost problems-at no obligation to you.

5426ic

ANACONDA ${ }^{\circ}$

MULTIPLE-PLUNGER PRESS PRODUCTS

VARACTOR PROGRESS REPORT

. . . from 410,000 miles in space

> Parametric amplifier using Microwave Associates Varactor made possible signal reception from Pioneer IV

The spectacular performance recorded at General Electric is another in a series of new, immediate applications reported by our customers.

Other customers are exploring applications in voltage tuned microwave circuits, reactive limiters, harmonic generators, and high level modulators.

Modulators - A big field for Varactors

It's a difficult problem to impress VHF and UHF intelligence on a microwave carrier. The varactor accomplishes this exceptionally well with signal gain in the side bands as opposed to low efficiency techniques. Varactors are excellent high level modulators for double and single band transmitters. Signal power gain is obtained since transmitting modulators are up-convertors. Power capabilities are far superior to point-contact diodes. Further, the uniformity of varactors facilitates carrier suppression through the use of matched pairs in balanced modulators.

Silicon vs. Germanium

Silicon is used in the MA Varactor because it has excellent properties at elevated temperatures, a sharper break-down characteristic and, because its low saturation current allows voltage swings further into the positive region without conduction current and its associated noise and losses. Germanium of course, cannot duplicate all these characteristics. Varactors approach master performance without need for refrigeration.

Availability

Microwave Associates was first in the field and is in volume production of over a half dozen popular types. You can get immediate delivery.

Prices

Down sharply in some instances . . . in accordance with substantially improved production yields. Quantity prices on some types now.
Microwave Associates has recently published a brochure available to those who feel varactors have potential in their applications. If you have specific questions on applications of microwave semiconductors, our Research and Development Section will be pleased to help.

MICROWAVE ASSOCIATES, INC.

an
BURLINGTON, MASSACHUSETTS
TELEPHONE BROWNING 2.3000

WHERE ALSIMAG IS USED

AlSiMag ceramics are unexcelled in electronic and electrical applications because of their superior dielectric properties, especially at elevated temperatures. They have many mechanical and chemical applications.
You may choose compositions from this chart which have various combinations of these characteristics. Permanently rigid. Chemically inert. Withstand high temperatures. Hard (up to 9 on Mohs' scale) and abrasion resistant. Non-magnetic. Will not rust, oxidize or corrode. Do not deteriorate with time. Metal-ceramic combinations can be accomplished. Materials are available with expansion coefficients varying over a wide range. Precision tolerances can be maintained. The chart, sent on request, gives details, saves you valuable time.

Electric Cars: Parts Market?

Battery developments and costs may determine if automakers now researching the possibility of an electric economy car get green light

The electric car, long a dark horse of the American roads, is now a bright though distant hope of automakers and battery manufacturers.

It could mean a new mass market for batteries and rectifiers. Silicon rectifiers now seem promising for such an assignment.

European interest in the electric car has been great for some time. "The operating cost of an electric car today in France is in that of a conventional car of the same weight," says electrical engineer Henri Andre, who has been driving one in Paris since 1954. It runs on the rechargeable silver-zinc battery he developed.

Yardney International Corp., which licenses Yardney Electric Co. of New York to manufacture the battery, sponsors Andre's work on the electric car.

Nickel-Cadmium Battery

Last month American Motors Corp. and Sonotone Corp. announced a joint program to develop an electric car operating on a sintered-plate nickel-cadmium battery. Major goal is development of a power plant that would be constantly recharged during operation by a small gasoline motor-generator.

George Romney, president of AM, cautiously explained that the research program would seek answers to such questions as cost, operating economy, performance, size and weight.

Sonotone says its battery requires only a few drops of water a year and lasts from 10 to 20 years, holding its charge under extreme temperature changes. The nickelcadmium battery is said to have a relatively small size for its power output.

Many U.S. automakers are now showing interest in nickel-cadmium, silver-cadmium and silver-zinc batteries, if not actually engaged in research on electric automobiles.

Automakers are also investigating new lead-acid units.

Lead-Acid Batteries Used

Right now, refinement in fabrication of the conventional lead-acid battery is putting more special-purpose electric trucks on the road. Cleveland Vehicle Co. is in production with a $3,000-\mathrm{lb}$ truck which uses a 1,750-lb lead-acid battery made by Electric Storage Battery Co., Philadelphia. The truck manufacturer makes its own silicon rectifiers.

Walter Thomas, president of Cleveland Vehicle, reports the company has 42 orders so far, expects to start deliveries in about one week. He sees a short-haul fleet market opening up by the end of the year and predicts a market for $12,-$ 000 electric trucks in five years. Dairies, laundries and bakeries with short routes, but many stops, are interested in the trucks which have an 80 -mi range, using a 452 -amperehour capacity battery.

Thomas says the battery, mounted below the center of the
vehicle, permits a $3,000-1 b$ truck to carry a $3,000-\mathrm{Ib}$ payload. He told Electronics that the 48 -volt system uses a $10 \times 15 \times 18$-in. silicon rectifier and transformer unit. Four silicon diodes are mounted on aluminum heat sinks. Rectifier gives 53 to 63 volts automatically regulated to a maximum of $30 \mathrm{~d}-\mathrm{c}$ amp, with a power factor of 87 percent and efficiency of 95 percent on a 110 -volt line.

Electric Storage Battery is working closely with the Cleveland firm. Recent design developments, such as the use of polyethylene tubing instead of rubber, are said to increase efficiency of the battery substantially over that of older leadacid units.

A spokesman for ESB suggested that optimum use of an electric truck might encompass speed of about 25 mph and some 250 stops over a route of 30 to 50 mi . He claims operating cost of one to three cents a mile, low maintenance costs and the need for only a small maintenance crew.

Stinson Aircraft Tool \& Engineering Co. is reportedly using a 528-lb ESB lead-acid battery to power two three-horsepower motors in a three-passenger car called the Town-About. Public utilities are reportedly interested in 100 cars-

French electrical engineer Henri Andre shows 56-cell, 256-ampere-hour silver-zinc battery that runs his remodeled Dyna-Panhard car up to $\mathbf{4 8} \mathbf{m p h}$ and as far as $\mathbf{1 5 0} \mathbf{~ m i}$ on one charge
priced at $\$ 2,200$ per car-for testing purposes. Battery is about 60 in. wide, 10 in . deep and 9 in . high.

Silver-Zinc Battery

Yardney Electric believes that new silver-zinc or silver-cadmium batteries will make the electric car feasible for the mass market, claims these push range to about 150 mi .

Andre's three-seat car now runs on a rechargeable silver-zinc battery, goes 150 mi . on one charge. The 6-hp car, a remodeled DynaPanhard, has a maximum speed of 48 mph , weight of $1,900 \mathrm{lb}$. Battery's 56 cells put out 80 volts with a capacity of 256 ampere-hours. Life range claimed is $60,000 \mathrm{mi}$. Battery dimensions are 2 ft 9 in . long, 2 ft 4 in . wide and 88 in . high.

The car also uses an auxiliary battery of 12 volts and 20 amperehours for lights, horn and directional signals. Charger is carried in trunk, weighs 22 lb , including a silicon rectifier and transformer.

A Yardney spokesman says Andre is developing a new sports car that will operate on an improved silverzinc battery giving it a $240-\mathrm{mi}$ range on one charge. The new Andre car will seat two in tandem, is expected to reach 60 mph ; total weight is $1,600 \mathrm{lb}$ including battery weight of 352 lb . This car will be 11 ft long, $3 \frac{1}{2} \mathrm{ft}$ wide and $3 \frac{1}{2} \mathrm{ft}$ high.

Design eliminates gear box, clutch and differential and achieves speed control electrically. Two batteries, each about $6 \times 6 \mathrm{in}$. and weighing 176 lb , will fit under arm rests and put out 48 volts, with a capacity of 300 ampere-hours.

Silver-Cadmium Battery

Although Andre's new design is based on the silver-zinc battery, Yardney says that it is pushing development of a silver-cadmium battery. Firm wants to improve the power output of silver-cadmium, which is about 60 percent of that of silver-zinc, and take advantage of silver-cadmium's four- to five-year life, compared to one or two years for silver-zinc.

Yardney says that volume production for cars would make battery cost attractive, suggests that a car owner might rent one for $\$ 15$ to $\$ 25$ a month, and trade it in for another when the charge runs low.
customize efficiency \& accuracy with trio labs' BUILD-IN instruments

BEFORE . . 3 external instuments wers seed to necsure $A C$ erd $D C$ velt $\mathrm{gg}-\ldots$... Auttered, tedious, resteful, sibial oertor.

AFTER 3 tris labs' n niature VTVM in crall-built-in now are always on land to-measure ust the paramsters wu des cnate.

the industry's pioneer \& complete line of MINIATURIZED ELECTRONIC INSTRUMENTS

General Plate Clad Metals
 IMPROVE PERFORMANCE-CUT COSTS In Semiconductor Applications

SILICON TRANSISTOR
COOPEE CONED KOVAB
CORED KOVAB \qquad
g copper
ilicon caretal
alum

GERMANIUM POWER TRANSISTOR

\qquad

B For Silicon (Single or Double Clad \& Stripes) **Solder

1. Gold
2. 99.5% Gold -5% Antimony
3. 99% Gold- 1% Gallium
4. 95% Gold- 5% Indium
5. 99.9% Gold-. 1% Boron
6. 99% Gold- 1% Aluminum
7. 99% Gold- 1% Arsenic
8. Fine Silver
9. 99.5% Silver - 5% Antimony ${ }^{\prime}$
10. 95% Silver- 5% Indium
11. Aluminum
12. High Purity Aluminum

BASE METAL

1. Nickel
2. Alloy 20 (40% Nickel- 60% Iron)
3. Alloy 30 (42% Nickel- 58% Iron)
4. Kovar
5. Titanium
6. Tantalum
7. Molybdenum
8. Silver
9. Platinum
[^3]$\left.\begin{array}{l}\text { II LEAD WIRE MATERIAL } \\ \text { 1. Copper Cored Rodar (Soft Glass Seals) } \\ \text { 2. Copper Cored 52 Alloy (Compression Seals) } \\ \text { 3. Copper Cored 446 Stainless Steel } \\ \text { 4. Nickel Clad Copper Wire } \\ \text { 5. Copper Clad Nickel Wire }\end{array}\right]$

If you are seeking metals with useful characteristics that can't be found in a single metal or alloy, investigate clad metals. General Plate Clad Metals do what other metals can't. Made by metallurgically bonding single metals or alloys to other metals in the solid state by exclusive processes*, the composite metals give you the combined advantages of the selected metals and can yield new advantages such as lower cost, better fabricating qualities, improved parts performance, etc.

The General Plate Clad Metals for semiconductor applications described here comprise only a partial listing. To find out more about these or other combinations to meet your specific requirements, write directly to Industrial Metals Product Manager, or request our special catalog on clad and solid metals for electronics applications.
*Patented processes of Metals \& Controls Corporation.

Metals \& Controls

1305 FOREST STREET, ATTLEBORO, MASS.. U. S. A.

A DIVISION OF TEXAS INSTRUMENTS INCORPORATED

general plate products: Clad Metals - Electrical Contacts - Truflex (B) Thermostat Metal - Platínum Metals - Reactor Metals - Radio Tube \& Transistor Metals

WIDF TUNTNG RANGF • AIR COOLDD

The highly efficient VA-802 has been des:gned to meet the rigid demands of both fixed station installations and transportable service. Simple to install and operate, it provides rugged reliability at low operating cost - with power output of 1 Kw . tuning range of 1.7 to 2.4 kMc . Features of this 18 "Klystron with perma. nent magnet include: Trouble-free internal cavities, low noise and long life. Varian makes a wide variety of Klystrons and Wave Tubes for use in Radar Communications, Test and Instrumentation, and for Severe Environmentą Service Applications. Over 10,0' are described and pictured in our new catalog. Write for your copy - address, Tube Division.
(VA) VARIAN associates

KLYSTRONS, TRAYELING WAVE TUBES, BACKWARD WAVE DJCILLATORS, HIGH VAGUUM PUMPS, LINEAR ACCELERATORS, MICROWAVE SYSTEM COMPONENIS. R F. SEECTROMETERS, MMAGNETS, MAGNETOMETE, I SIS PIWER, AMPL FIERS, GRAPHIC RECORDERS, RESEARCH AMD DEVELOPMENT SERVICES

UK Presses Nav-Aid Fight

British denounce international technical meeting which approved U.S. short-range system. American officials reply to charges

Member nations of the International Civil Aviation Organization this month will probably receive a preliminary recommendation that Vortac (vhf omnirange-Tacan), the U.S. short-range air navigation system, be accepted as the international standard, as voted by a technical meeting last February.
U. S. observers believe the Vortac recommendation will eventually become final for practical, if not technical reasons. They say VOR (vhf omnirange) is doing a good job in the U.S. where traffic densities are much greater than in Europe, and that the worldwide investment in VOR is so great it cannot be scrapped. DMET (Tacan-compatible distance measuring equipment), these observers say, is a natural supplement to VOR and the experience of the U.S. justifies its use.

The vote in favor of VOR and DMET at the technical meeting in Montreal last February followed a bitter fight between American advocates of VOR-DMET and British proponents of the Decca hyperbolic system.

Awaiting Action

ICAO's Air Navigation Commission was expected this month to pass on the controversial recommendation to the 74 member states. After the commission hears from ICAO's members it will make its official recommendation to the ICAO Council, consisting of 21 countries, which will decide the standard.

The British Ministry of Transport and Civil Aviation is fully behind Decca, has stated that Decca answers all problems and that the "advantages of the system are unassailable." The government indicated in the House of Commons that it will continue pressing the Decca case.

A report on the meeting, published by the Decca Navigator Co., apparently with the tacit approval of the British government, suggested that the U.S. had packed the
meeting to railroad its plan through.
"The list of states represented contained some curious and unexpected delegations," the document says. "South Korea, Chile, Nicaragua, Ecuador and Bolivia-none of whom had attended the 6th Communications meeting - were amongst those present."

A U. S. official told Electronics that since the 1957 communications meeting (referred to in the British statement), at which the U. S. raised the question of DMET specs, this country had educated American and foreign technicians on U. S. air navigation studies and operating experience. He said that it was proper that small nations, for whom VOR represents a sizable investment in terms of their own economies, found it in their national interests to attend the meeting after the British, "late in the game," demonstrated the Decca system and proposed it as an alternative.

Pros and Cons

Decca Navigator insists that the Decca system would be proven to be a far more accurate navigational aid than the American system, if matched to a list of requirements. Decca says DMET has not been evaluated by anyone besides the U.S. and that it is inferior anyway

Electronics Helps

Using electronic office dictating machines made by T. A. Edison Industries, 10 Florida State U. stenographers transcribed 300 pages of teshnical material in record time
for use in high density traffic areas involving jets.

The U.S. position is that evaluation results have been given other countries and that a point-by-point technical comparison of the competing systems is not necessarily a practical method of evaluation.

The British have charged: "Present standards of safety in congested air space cannot be maintained with the use of VOR-DMET without seriously reducing the efficiency of air traffic control."

American observers have several answers to this: They cite compatible Doppler VOR gear (ElecTronics, p 29, May 1), for use at the relatively small number of VOR locations where natural or man-made obstructions cause siting difficulties.

An industry source asserts that in New York, for example, aircraft beacons will still be necessary for altitude segregation and perhaps surveillance radar too, regardless of the nav-aid used. The latter, using a polar coordinate system, he says, is more compatible with VOR than Decca.

The British claim some 200 to 300 civil aircraft have been fitted with the hyperbolic system, including BEA's Viscount fleet, BOAC's Comet fleet and other UK operators. Decca states that the number of military aircraft using the system is classified but that it "runs into thousands."

The U.S. has been getting firsthand experience with the Decca system by spending $\$ 520,000$ on helicopter tests in the New York City area. When one phase of an FAAsponsored study is completed in September, New York Airways will have logged 10,000 hours with the system. An FAA engineering helicopter has flown another 700 hours with the Decca system.

Much of the data from this experiment, says FAA, can be translated to fixed-wing aircraft-factors such as cockpit workload, reliability and stability of the system.

Sign of the

Southern California and Arizona from 143 miles up, photographed from a Navr Viking 12 rocket, fired from II hite Sands, N.M Dark patch at lower left is the Gulf of California.

times

Going up ... and out into space...this is one of the assignments of engineers in the laboratories at Hughes.

To meet the demands of the Space Age, a wide variety of new projects is being initiated. Here are just a few examples:
Space Ferry Systems - To provide the initial apparatus for space station assembly.
Communications Satellites - Unique packages for space satellite applications.
ALIRBM - Air launched intermediate range ballistic missiles.

Glohal Surveillance Satellite Systems - To keep the world under surveillance.
Satellite Interception Systems - To destroy hostile satellites.

Meteor Communications - Scattering electromagnetic

Newly instituted programs at Hughes have created immediate openings for engineers experienced in the following areas;	
Field Engineering	Systems Analysis
Communications	Components Engineering
Industrial Dynamics	Circuit Design
Digital Computers	Electron Tubes
Microwave Engineering	Industrial Systems
Semiconductors	Development Engineering

Write in confidence, to Mr. R. A. Martin,
Hughes General Offices, Bldg. 6-D5, Culver City, California.
energy off meteors to establish long-range communications.
Futuristic Instrumentation Displays-Instrumentation displays for satellites and hypersonic vehicles.

Other Hughes activities are also participating in advanced Research and Development. Engineers at Hughes in Fullerton are developing new types of radar antennas which scan by electronic rather than mechanical means. Hughes Engineers in El Segundo develop test equipment which is as advanced as the equipment being tested. At Hughes Products, the commercial activity of Hughes, new ways have been found to cast silicon into desired configurations...and storage tubes with $21^{\prime \prime}$ diameters have been developed.

Today Hughes offers Engineers and Physicists the chance to work on stimulating projects in a wide variety of fields. Never have the opportunities been more promising!

The West's leader in advanced ELECTRONICS

hUGHES AIRCRAFT COMPANY
Culver City, El Segundo,
Fullerton and Los Angeles, California
Tucson, Arizona

Advanced Falcon guided missiles are manufactured by the Hughes facility in Tucson...the largest electronics facility in all of Arizona!

Maintaining liaison with Air Force Personnel and airframe manufacturers, Hughes Field Engineers give instruction in the over-all systems operation of advanced Hughes equipment.

REGOHM
voltage regulation down to $\pm 0.05 \%$ EXTENDS TUBE LIFE

The sensitive yet rugged REGOHM controls input voltage to eliminate the power-source variations which cause premature tube failure. Automatic and precise, this plug-in unit assures constant voltage input.
More and more designers are including REGOHM in circuits, because of its:

- STEPLESS CONTINUOUS CONTROL
- WIDE FREQUENCY RANGE
- PERMANENT ADJUSTMENT
- FREEDOM FROM MAINTENANCE
- RUGGED DESIGN
- LIGHT WEIGHT
- LONG LIFE - LOW COST

Design data, performance specs and case histories of those applications you wish to explore will be sent on request.
electric regulator corporation
NORWALK CONNECTICUT CIRCLE 32 READERS SERVICE CARD

Test Gear Marke†

Abstract

Environmental test equipment sales are expected to hit $\$ 80$ million this year. Needs for space, sea operations and reliability spur sales

The market for environmental test equipment will double this year, according to reliable industry sources. Two big reasons account for the expansion:

The multitude of new conditions encountered in space-and under the sea-call continually for new test parameters. Also, there is increased emphasis on reliability testing, from predesign to sample testing of the finished product.

Environmental test equipment sales for 1959 are expected to hit $\$ 80$ million. Over 15 percent, or $\$ 12$ million, of this amount is for the electronic portions of the chambers. Instrumentation for some chambers, however, according to Tenney Engineering, may go up to 50 percent of the total cost.

Companies making consumer products will buy 10 percent of environmental test equipment sold this year (half are electronics firms) ; firms making defense products, 65 percent (70 percent of these are electronics companies) ; government labs will buy 20 percent (60 percent of which are for electronic work); and colleges and universities, 5 percent.

Apart from the test chambers, a
good $\$ 30$ million to $\$ 40$ million will be spent by test chamber buyers for auxiliary electronic devices to record, process and reprocess data obtained from tests.

Electronic devices bought by test chamber manufacturers and installed as part of the test gear before delivery to the customer includes complete instrumentation and control for each parameter the equipment simulates. One chamber may be capable of testing tolerance against temperature, humidity, altitude, rain and sunshine. The customer must be able to control each parameter to simulate, monitor and record the results.

Components used in electronic instrumentation include: amplifiers, sensing elements, recorders, transducers, servomechanisms, relays, timers, diodes, transistors, converters and transformers.

Extra electronic equipment the consumer will buy for handling data may run from a simple magnetic tape recorder to large-scale digital computer.

IBM Owego uses an estimated $\$ 1$ million worth of environmental test equipment. Associated test gear, says a plant official, amounts to

Environmental test chamber used by Army Chemical Corps simulates altitude, temperature and humidity conditions. Chamber was built by Tenney Engineering, control console (right) was manufactured by Bristol

to Double

another $\$ 1$ million- $\frac{3}{4}$ bought from the industry and $\frac{1}{}$ built locally for specific functions.

Besides data-reduction equipment, the plant uses oscilloscopes, accelerometers, visicorders, unit test equipment, relay miss testers, potentiometer linearity measurement gear, automatic read and record equipment for measuring electronic parameters, strain gage equipment and stroboscopic equipment for visual examination of vibration problems.

Buying New Gear

Hazeltine, with five major environmental test chambers and a number of small ones, has managed so far to do 95 percent of necessary reliability testing with companyowned chambers. Need for testing new parameters, however, will probably result in Hazeltine's buying eight more chambers this year.

Sperry recently installed an 18 $\mathrm{ft} \times 12 \mathrm{ft} \times 14 \mathrm{ft}$ chamber that simulates pressure and temperature. It can also accommodate an 18 -ton vibrator. Built by Tenney, the chamber cost $\$ t$ million. It is being used for Sperry's eem work. Sperry has a total of 78 test chambers operated by more than 100 engineers and technicians.

In today's space age, new conditions that must be simulated include: cosmic rays, solar radiation, ionized gases, solid particles, magnetic fields, space atmosphere and ionization conditions.

Environmental conditions already being simulated include: heat, cold, humidity, precipitation, wind, dust penetration and abrasion, salt spray and atmospheric pressure.

Other conditions are mechanical and acoustical vibration, shock, explosion, nuclear radiation, radio interference and high acceleration.

Improved electronic devices will increase the applicability of environmental test equipment and consequently boost electronics sales. Chamber makers are on the lookout for better instrumentation, more flexible programmers, better control devices for programmed cycles, thermistors to cover the field more adequately, and lower costs.

You write the specs...

Tensolite does the rest

Or, let our experienced wire engineers assist you. Chances are we've made it before. Your requirement may be for subminiature cable with 36 AWG single conductor wire, or for large cable where 6 AWG wire is used. Tensolite makes both, and all the sizes between. Naturally, we recommend individual conductors of our FLEXOLON wire for all demanding applications. Its highly flexible Teflon Insulation withstands a wide range of ambients (from -90 deg. C. to +250 deg. C.I and exceeds all requirements of MIL-W-16878 types E and EE.

Tensolite cables utilize the maximum number of conductors in a minimum of area-saving weight and space-available as ribbon cable or standard round configurations. Complete and thorough inspections before, during and after manufacture, part of the most rigid quality control program in the industry, assures reliability of the finished product.

Give your Tensolite representative a copy of the specs for your current cable requirements, or send them direct to us in Tarrytown. We will be glad to quote on your needs.

Tensolve
 INSULATEO

 WIRECO., INC.Hudson offers the widest selection of standard tooling, cover assemblies with innumerable modifications and special cases and covers for unusual applications. All finishes are available for components of mu metal, nickel-silver, aluminum, brass, copper, steel and stainless steel.

Hudson facilities range from batteries of standard and special presses to a fully equipped sheet metal department capable of handling your most rigid requirements.

If you need commercial or military closures, or help on a special design problem, call or write Hudson outlining your requirements.

HUDSON root a ie co. inc

18.38 Malvern St., Newark 5, N. J.

TELEPHONE: MARKET 4-1802 TELETYPE: NK 1066

[^4]

A five-foot bookshelf is a 10-minute task

for this AMPEX FR-300 digital tape handler

Yes, the Ampex FR-300 could easily "read" or "write" the digitalized equivalent of a five-foot bookshelf in less than ten minutes. Why is this important? Because today's big computers accept and present large quantities of data in a hurry. Their time may be worth as mach as $\$ 1000$ per hour. Keeping one waiting for data is expensive.
As the fastest available magnetie tape handler for "on-line" duty with these machines, the FR-300 maximizes utilization of high-speed digital computers. By placing two 6-bit alpha-numeric characters side by side on one-inch tape at 150 ips and 300 bits per inch, it achieves 90,000 character-per-second transfer rates.
Short, predictable start/stop times reduce buffer requirements and Ampex dependability further increases computer efficiency.

Ampex offers digital systems complete from head to tape (the sensational new Ampex Computer Tape, by the way) because a system designed as an integrated whole will out-perform those built from tape transports, magnetic heads, amplifiers and tape secured from a variety of different suppliers.

For lesser computers and "off-line" duty on such auxiliary digital equipment as converters, data plotters, printers, etc., the FR-400 and FR-200A tape handlers (not shown) provide a wide wide range of lower transfer rates. And in the background above are two fine analog recorders, the $\mathbb{F R}-100 \mathrm{~A}$ and $\mathrm{FR}-1100$, to remind you that only Ampex offers such a broad line of fixed and mobile recorders for instrumentation and control.

A folder on the FR-300 is available if you would like one.

Plan Satellite Microwave Link

Program seeks to supply U. S. with needed new capability in global military communications

Controllable satellite carrying microwave radio relay equipment can provide the required new capability in global military communications, according to information from the Advanced Research Projects Agency.

Initial type of military communications satellite will carry delayed repeaters, storing messages which do not require instantaneous transmission, George Brady of ARPA told the American Rocket Society meeting last menth at MIT.

Spaced Satellites

Real-time system for global coverage will consist of two series of active repeaters in high altitude orbits, one polar and the other equatorial. Three or four equallyspaced satellites in the 24 -hour orbit on the equator will provide broad band microwave communication by direct line of sight transmission to all parts of the globe except extreme
polar regions. A supplementary series in lower orbits will cover polar areas.

Other Uses

Radio relay stations in space will obviate many of the problems involved in land lines, h-f radio, submarine cables and scatter circuits using microwave, Brady said, pointing out the line-of-sight limitations of microwave, susceptibility of h-f radio to ionospheric disturbances, vulnerability of cables to sabotage.

Satellites will also be used to provide meteorological, early warning and reconnaissance support to military operations, Brady said. They can provide a precision navigation system that is truly all-weather. By use of Doppler radio techniques, exact location of a receiving station on a ship, for example, can be determined with reference to the point of nearest approach of the satellite.

Watching 15 Television Monitors

[^5]
for use with automatic marking equipment or to hand stamp on:

HARD AND SOFT PLASTIC ALUMINUM STEEL
NON-FERROUS METALS Polyethyiene LATEX
EPOXY RESIN POLYSTYRENE BAKELITE

```
PAINTED SURFACES
```

Black, White or any standard color. Two ounce sample bottles $\$ 1.25$ each. For complete information contact:

MFG. CO., NNC.
227 FULTON ST., New York 7, n.Y.
COrtlandt $7-5712$
CIRCLE 37 READERS SERVICE CARD

\title{

"Termaline"

\section*{50 ohm

50 ohm

 Coaxial Line

 Coaxial Line 5-WATT LOAD 5-WATT LOAD RESISTORS

 RESISTORS}

A Knoun Factor

In measurements of 50 -ohm coaxial systems, the Bird 5 -watt coaxial terminations provide a known factor.
As primary test equipment in field or laboratory, they are used as . . .

- 50 -ohm impedance standards;
- terminations for slotted lines;
- measurements of filter characteristics.
- terminations for insertion loss measurements, and;
- other measurements where an accurate and reliable 50 -ohm termination is required.
The low VSWR of the 5-watt "Termaline" resistors, their ability to withstand vibration, and their compactness in size makes their use applicable to a variety of electronic systems where a reliable 50 -ohm termination is required.

SPECIFICATIONS

POWER RATING: 5 Watts MaX.
NOMINAL IMPEDANCE: 50 ohms
USEFUL FREGUENCY RANGE: 0 to $11,000 \mathrm{mc}$
VSWR: 1.2 Max. to 4000 mc
1.1 Max. under 1000 mc

SPECIAL VSWR: Can be provided
OPERATING POSITION: Any
CASE: Brass FINISH: Silver Plated
LENGTH: 3-3/8" Max.
WIDTH: $11 / 16$ Hex.
WEIGHT: 4 ounces
OTHER BIRD PRODUCTS

Cooxial
RF Fillers

Cooxial RF Switches

"Termaline" RF Absorption
Wattmelers

MEETINGS AHEAD

May 21-27: Transistors and Assoc. Semiconductor Devices, International Convention, Institution of Electrical Engineers, Earls Court, London.

May 25-27: National Telemetering Conference, ARS, IAS, AIEE, ISA, Brown Palace \& Cosmopolitan Hotel, Denver.

Iune 1-3: Microwave Theory and Techniques, National Symposium, PGMTT of IRE, Paine Hall, Harvard Univ., Cambridge, Mass.
'tune 4-5: Production Techniques, National Conference, PGPT of IRE, Villa Hotel, San Mateo, Calif.

June 7-11: Microwave Tubes, International Congress, Verband Deutscher Electrotechniker, VDE, Brienner Strasse, Munich, Germany.

June 8-11: American Rocket Society, Semi-Annual Meeting, El Cortez Hotel, San Diego, Calif.

June 15-20: Information Processing, International Conf., UNESCO, PGEC of IRE, AIEE, ACM, UNESCO House \& Palais de Exhibition, Paris.

June 15-20: Electromagnetic Theory Symposium, USSI, PGAP and PGMTT of IRE, Univ. of Toronto, Ontario, Canada.

June 16-18: Circuit \& Information Theory, International Symposium, PGCT \& PGIT of IRE, Univ. of Calif., Los Angeles.

June 24-26: Nuclear Instrumentation Symposium, ISA, Idaho Falls, Ida.

June 24-27: Medical Electronics, International Conf., UNESCO, CIOMS, PGME of IRE, Rockefeller Inst., UNESCO House, Paris.

June 29-July 1: Military Electronics, National Convention, PGMIL of IRE, Sheraton-Park Hotel, Wash., D. C.

July 1-5: Television Convention, International, British Institution of Radio Engineers, Univ. of Cambridge, England.

Aug. 17: Ultrasonics, National Symposium, PGUE of IRE, Stanford Univ., Stanford, Calif.

There's more news in ON the MARKET, PLANTS and PEOPLE and other departments beginning on p 80.

advanced $\mathbb{R} \& D$ capability now available at CEC's Datalab

Research and development programs under contract to progressive firms are a specialty at Datalab... CEC's Advanced Electronic Data Laboratory. Recently completed at Datalab was a revolutionary new concept in airborne test instrumentation, developed for a leading airframe manufacturer. Now available are pulse code modulation telemetry systems, special magnetic tape transports, such as high-density digital recording, and transistorized data handling equipment...
emphasizing solid state and miniaturization techniques. Datalab engineers can undertake additional projects in the field of data handling and storage, including those concerned with the conversion, transmission, and enciphering of digital data. as well as system and design studies.

Dataiab specialists are available for informative discussions of general or specific data handling problems. Contact your nearest CEC office or write for Bulletin CEC 1314-X4.

CONSOLIDATED ELECTRODYNAMICS

300 N. Sierra Madre Villa, Pasadena, Calif. FOR EMPLOYMENT OPPORTUNITIES WITH THIS PROGRESSIVE COMPANY, WRITE DIRECTOR OF PERSONNEL

Datalab has openings for qualified engineers who wish to join the company's team of experienced R \& D specialists and participate in work of an advanced and interesting nature. Immediate needs exist for mechanical engineers and transistor circuit engineers, as well as technical writers.

Make Philco your prime source for all transistor information and prices. Write Dept. E-559

- High Dissipation: to 1 watt peak at $25^{\circ} \mathrm{C}$
- High Current: Max. $I_{C}=-400$ ma
- High Temperature: $100^{\circ} \mathrm{C}$ Max.
- High Voltage: Max. V_{CB} to -45 v
- High Frequencies: Min. $f_{\alpha b}$ to 12 mc

Philco's complete family of PNP germanium alloy junction transistors is available in both studded and unstudded cases (TO-31 and TO-9), permitting operation at power levels as high as 1 watt peak. They offer the designer complete flexibility, providing a choice within each form factor to meet circuit requirements for voltage, gain and frequency. These transistors feature a unique, patented, cold-welded copper housing and internal construction that result in lower junction temperatures at normal operating power levels. (K factor as low as $0.1^{\circ} \mathrm{C} / \mathrm{mw}$.) Their design insures improved life and reliability at temperatures as high as $100^{\circ} \mathrm{C}$.

The high beta of these transistors at high current makes them particularly applicable to medium speed flip-flops, logic gates, drum writers and core-driver circuits. The 30 v to 45 v collector rating provides the high level logic swings required in many data processing equipments. The entire family is available in production quantities ... and in quantities 1-99 from your local Philco Industrial Semiconductor Distributor.

electronics

MAY 22, 1959

FIG. 1-Input stages, oscillator-mixer (A) and corresponding i-f amplifier (B) of vhf receiver developed by relefunken, GmbH

European Developments In Transistor Circuits

Schematics of recently-released vhf receiver circuits, coming out of Europe, point up some interesting design details

By RAYMOND SHAH, Engineer, Swiss Electrotechaical Institution. Zurich

Commercial availability of vhf transistors has focused interest in Europe on transistorized vhf receiver circuits. Characteristics of four Europeanmade trensistors are given in Table I. These are drift transistors with a metallic screening can and a corresponding fourth connection to the can.
CIRCUITRY. Figure 1 A shows an input unit developed by Telefunken, using two OC 615 transistors. The oscillator plus mixer has a power amplification of 25 db . Voltage amplification is 16 db with an
antenna impedance of 60 ohms and a load resistance of 50 ohms at the output of L_{1}. Noise factor is 10 ; image suppression is 1 to 20 ; parasitic radiation of the fundamental is $3.5 \mu \mathrm{v}$ and of the first harmonic is $45 \mu \mathrm{v}$.

The corresponding i-f amplifier, Fig. 1B, uses a common-base configuration because the neutralization is simpler and variations of transistor parameters have less influence on circuit performance. Sensitivity of the complete vhf receiver is $0.85 \mu \mathrm{v}$ for an

FIG. 2-Short-wave and broadcast-band receiver circuit developed by Loewe, Opta, GmbH uses RCA drift transistors
output of 50 milliwatts and $2 \mu \mathrm{v}$ for 400 milliwatts. Eight transistors are used in all.
Some commercially available portables with shortwave and vhf bands use RCA drift-transistors 2 N371 for the shortwave and 2N247 for the vhf band. One receiver, developed by Loewe Opta, GmbH , has two bands-medium and shortwave. The shortwave input circuit for 5.8 to 18.6 mc is shown in Fig. 2. Intermediate frequency and audio stages are common for medium-wave and short-wave bands. In the mediumwave position of bandswitches S_{1} and S_{0}, the antenna signal is fed directly to transistor Q_{1} which operates as a self-oscillating mixer stage. The receiver uses a total of six transistors. The shortwave sensitivity is $20 \mu \mathrm{v}$ for 50 milliwatts output. Maximum output is 350 mw in a 7.5 by 4 inch oval speaker. Four 1.5-v cells are used. Total weight is 6 pounds.
VHF RECEIVER. Figure 3 shows the circuit dia-
gram of a transistorized vhf receiver by Graetz KG. The input stage, oscillator-mixer and the three i-f stages use RCA drift transistors 2N247. The receiver is designed for operation in the

Table 1-European-Made VHF Transistors

Hfr	Type No.	Cutoff (me)	Amp Factor	Collector- Emitter Capacitance

Telefunken	()C 614 ${ }^{\text {a }}$	60	0.990	$3.5 \mu \mu \mathrm{f}$ at 10.7 mc
	OC. $61.5^{\text {b }}$	90	($\alpha^{\prime}=100$)	$2.5 \mu \mu \mathrm{f}$ at 100 mc
Valvo.	OC. 170°	70	0.987	$1.6 \mu \mu \mathrm{f}$ at 10.7 mc
Mullard.	()C $171{ }^{\text {b }}$	90	($\alpha^{\prime}=80$)	

a-short-wave type, b-vhf type. Valves at $I_{c}=1 \mathrm{ma}, v_{c e}=6 \mathrm{v}$

FIG. 4-Typical European broadcast-band receiver, the Peggie portable of Akkord AG

FIG. 5-Combined broadcast and long-wave receiver, developed by Braun GmbH. Sliding contacts are used for switching bands
87.5 to 101 -mc band with an i-f of 6.75 mc . Input sensitivity of the circuit for a signal-to-noise ratio of 30 db is $8 \mu \mathrm{v}$, with an antenna input of 240

LOW FREQ AMPL

optimum amplification and effective a-m suppression
ohms and a signal having a frequency deviation of 22.5 kc . The receiver uses a 12 -v battery. Current drain with full output is 55 ma .

Almost all circuits for transistorized portables having only the medium-wave broadcast band use five stages: an oscillator-mixer, two i-f's, an audio preamplifier and a power amplifier. Five or six transistors are used depending upon whether a push-pull or a single-ended output stage is used. The transistors are usually OC 44 or OC 613 for the oscillator-mixer stage; OC 45 or OC 612 for the i-f stages; OC 71 or OC 604 for the audio preamplifier stage and OC 72 or OC 604-special for the output stage.

Figure 4 shows a typical broadcast band receiver circuit as used in the Peggie portable of Akkord AG. Of special interest is the circuit consisting of R_{1}, R_{2} and R_{3} which establishes a fixed bias in the forward direction on demodulator diode D_{1} for improving the detector efficiency at small signals.

One manufacturer, Braun GmbH has combined a broadcast and long-wave band receiver, Fig. 5.

Reference

(1) F. Mural, Dynamic Diode Limiter for F-M Demodulators, Electronics, p 14 f, Aug. 195 .

F-M Multiplexing for

Frequency-modulated transmitter in studio sends three programs on a 946 -mc carrier to a broadcast transmitter on top of a mountain. At the studio, each program moculates one of the three subcarriers which ride the stl carrier

When station KSL-FM decided to provide two additional programs, the problem arose of getting the two subcarriers carrying the programs to the station's transmitter, which is on a mountain 16 miles from the studio. The conventional approach for modifying an f-m transmitter to accommodate multiplex channels is to set up the two-channel generator near the transmitter and inject the subcarriers into an auxiliary phase modulator that is part of the trans-
mitter's exciter. If this approach were followed, the two subcarriers would either have to be programmed on the mountain, or sent to the transmitter through additional studio-transmitter links. Since programming on a mountain is impractical, and constructing new studio-transmitter links (stl) expensive, the existing stl was modified so that it might transmit three programs to the mountaintop transmitter.

Figure 1 shows the modified stl
transmitter. The main-channel audio, which formerly fed a react-ance-tube modulator coupled to the transmitter oscillator, modulates : 175-kc-subcarrier generator. Onc of the added audio channels modu lates a $65-\mathrm{kc}$ subcarrier and the other added audio channel modu lates a 26 -ke subcarrier. Each sub carrier is supplied by a two-chan nel generator.

The three modulated subcarriers are applied to the screen grid of a frequency-tripler stage. This mul-

Testing the 175-ks generator of stl transmitter. Engineer at left is looking into 175-kc generator

Studio-Transmitter Links

By DWIGHT HARKINS,

Harkins Radio, Inc.,
Phoenix, Arizona

FIG. I-Studio transmitter. Reactancefube modulator, formerly used to modulate stl transmitter, now controls oscillator frequency

FIG. 2-Mountain-top receiver and main, or broadcast, transmitter. Receiver picks up three programs sent from studio and main transmitter broadcasts them
large deviations of the carrier caused by main-audio modulation.
To generate a high-quality $175-\mathrm{ke}$ subcarrier, an f-m carrier of 24.0 mc is mixed with a crystal oscillator operating at 23.825 mc .

Performance

A deviation of the 175 -kc subcarrier of $\pm 17 \mathrm{kc}$ deviates the mountain-top transmitter 100 percent, or $\pm 75 \mathrm{kc}$. The $65-\mathrm{kc}$ channel is set up for a deviation of $\pm 10 \mathrm{kc}$ at the stl transmitter and the $26-\mathrm{kc}$ channel is set up for a deviation of $\pm 6 \mathrm{kc}$ at the stl transmitter.

Deviation of the $946-\mathrm{mc}$ carrier by the subcarriers amounts to less than 5 kc . Intermodulation between the three subcarriers is
so low that it is not measurable.
The reactance-tube modulator is used to control the center frequency of the 5.839 -mc crystal oscillator. It is also possible to use this modulator to send audio to the mountain without creating crosstalk in the three subcarriers if the modulation level is held down. Modulation that produces a signal-to-noise level of 40 db does not intermodulate the subcarriers and provides a good channel for standby signaling or studio-to-mountain communication.

Performance measurements of the overall sytem from studio to antenna fell within the prescribed limits of the standards of the Federal Communications Commission for $\mathrm{f}-\mathrm{m}$ broadcast stations.

Doppler radar techniques are widely used for precise determination of position and velocity of missiles and satellites. This automatic Doppler cycle counter suppresses noise and converts each 3.6 degrees of phase displacement into a digital pulse

By B. E. KEISER*, Missouri Research Laboratories, Inc., St. Louis, Mo.

Digital-Counter Techniques

USE OF DOPPLER radar techniques for determining the speed of a moving object is well known. In particular, methods for surveying high altitude trajectories have utilized the Doppler principle for the past ten years.' The three coordinates of an object with respect to an origin on the earth can be determined by a system of the type shown in Fig. 1.

Several earth-based Doppler radar stations view the object whose trajectory is to be established. The motion of the object results in a Doppler shift which each station reports to a data-gathering center. The data-gathering center records each of its inputs on a separate channel of a magnetic tape. In doing so, it compensates for the different time delays between the receiving stations and the recorder by delaying the returns from the closer stations by the appropriate time interval.

The multichannel magnetic tape which the data-gathering center produces contains a timing reference channel on which is recorded a precise 50 -kc sine wave. This reference signal prevents errors from tape expansion or contraction from entering the system.

Functions

The automatic Doppler cycle counter performs two functions: it

[^6]suppresses noise not at the frequency of the Doppler shift, thereby removing a significant source of error; and it converts each 3.6 deg of Doppler phase displacement into a digital pulse, thereby yielding a cycle-counting resolution of 0.01 cycle.

Output of the automatic Doppler cycle counter is a digital magnetic tape. To prevent duplication of equipment, the counter processes information from only one Doppler radar station at a time. The output magnetic tape is fed to a digital
computer which accumulates the processed speed information from each of the stations and then computes the complete trajectory.

Each radar set yields only a single scalar quantity: the speed of the object toward or away from it. Information from three such stations, located at different locations on the earth, is required to establish the position of the object with respect to some known reference point.

The Doppler shift which each of the stations observes is given by

Automatic Doppler cycle counter produces magnetic tape which is fed to digital computer for processing

FIG. 1-Coordinates of missile's location are determined by radar

FIG. 2-Block diagram of automatic Doppler cycle counter

Increase Doppler Uses

$f_{D}=89.4 V_{n} / \lambda$, where f_{D} is Doppler shift in cps, V_{R} is target speed in mph and λ is wavelength in cm . This formula is merely a statement of the fact that each half wavelength of target displacement toward or away from the radar antenna yields one Doppler cycle, or 360 deg of phase displacement.

System Operation

Figure 2 is a simplified block diagram of the automatic Doppler cycle counter. The input tape channel to be processed is fed to the automatic frequency tracking filter. This is a band-pass filter with a $200-\mathrm{cps}$ bandwidth. However, its center frequency varies over a wide range. Within one second after the application of a sinusoidal signal of sufficient amplitude and within specified frequency limits, the tracking filter's passband is adjusted automatically to allow this signal to pass.

Thus, the output of the automatic frequency tracking filter is a noisesuppressed version of the input. The filtered signal is applied to the cycle splitter, a device whose behavior within limits is independent of input amplitude, but which converts an input sine wave to its rotating vector representation and then registers each 3.6 deg of rotation. The output of the cycle splitter is a pulse for every 3.6 deg of an input cycle. Hence, each pulse out of the cycle splitter represents
0.005 wavelength of displacement of the object observed.

The output of the cycle splitter is counted continuously by the digital circuits, which record their count periodically on a digital magnetic tape in the 8-4-2-1 binary coded decimal system.

Automatic Tracking Filter

Doppler return signals generally contain a noise spectrum whose major components start at four or five times the frequency of the return. Such noise often results from multiple reflections from the object being observed. Noise lower in frequency than the Doppler shift also may occur. The amplitude of the interfering noise sometimes equals, but seldom exceeds, the amplitude of the Doppler sine wave. Thus the tracking filter must acquire and track the strongest signal presented to it.

Frequency shift rate is dependent not only upon vehicle accelerations and velocities, but also upon the frequency of Doppler radar operation and the relative positions of the earth-based stations.

The tracking filter accommodates itself to Doppler shifts as low as 30 cps and as high as 50 kc . Signal acquisition can occur at a maximum rate of $20,000 \mathrm{cps} / \mathrm{sec}$. Once the signal has been acquired, the tracking filter tuning rate is automatically limited to a maximum value of $2,000 \mathrm{cps} / \mathrm{sec}$ to prevent
possible tracking on noise, since all desired signals shift frequency at rates considerably less than 2,000 $\mathrm{cps} / \mathrm{sec}$ for the conditions established.

The automatic frequency tracking filter resembles a superheterodyne radio receiver. One major difference, however, is that the input and output are at the same frequency while the i-f is at a higher frequency. Figure 3 is a block diagram of the tracking filter.

All input signals are brought to an amplitude level between 0.8 and 1.2 v rms by the amplitude compressor, an agc amplifier with a small but constant delay time. The modulator, a phasing type of sin-gle-sideband generator ${ }^{2}$, is basically a frequency subtraction device in which the carrier frequency f_{c} is always approximately 150 kc above the signal frequency. The difference then is a nearly constant intermediate frequency f_{t} of 150 kc .

The discriminator is centered at frequency f_{r} and furnishes a d-c control voltage of one polarity for upward frequency deviations, and of the opposite polarity for downward frequency deviations.

Integrator

The integrator limits the rate at which the discriminator output changes, and thus limits the tracking rate of the device. In the event of a short-term departure of the i-f from the center frequency be-

FIG. 3-Automatic tracking filter accommodates wide range of Doppler shift frequencies
cause of noise, the integrator prevents the discriminator output from causing an oscillator frequency change.

With integration of the discriminator output, a temporary loss of signal, such as might be caused by tape drop-out, results in a slow return of tracking when the signal appears again. To allow the system to retrack quickly, the integrator time constant is reduced by a factor of 10 when the filter is off track, thus permitting rapid pull-in.

The reactance tube applies the integrated control voltage to the oscillator so that the carrier frequency is properly controlled. If the
carrier frequency is in error, this error appears as a shift in f, sufficient to bring the carrier frequency to the proper value. The discriminator, integrator, reactance tube, oscillator, and modulator form the tracking loop.

Since the total frequency span to be covered is 50 kc , and the crystal filter bandwidth (which also is the tracking filter bandwidth) is intentionally limited to 200 cps , the tracking loop must have a minimum frequency gain of 250 , where frequency gain is defined as oscillator deviation in cps/i-f deviation in cps. In practice, the frequency gain is in the vicinity of 5,000 .

This permits much tighter control of the i-f frequency and allows operation on a highly linear portion of the crystal filter's phasefrequency characteristic.

Oscillator Circuit

Of considerable importance in attaining the necessary flat amplitude response with frequency is the behavior of the oscillator's output amplitude. To maintain this amplitude constant, a special oscillator circuit, shown in Fig. 4, is used.

The smoothed signal from the integrator is applied to the suppressor grid of reactance tube V_{1}.

Since the gain of this tube is insufficient to provide the required frequency deviation of 10 kc per volt, its output is amplified by reactance amplifier V_{0} whose plate is connected directly to the tank of oscillator V_{3}. Cathode follower V_{1} isolates the oscillator tank from the amplitude control circuit and also from the output cathode follower which consists of V_{s} and V_{n}, anc provides an output impedance of approximately 5 ohms, suitable for driving the sonic delay line over a wide range of frequencies.

Amplitude control tube V : compares a rectified sample of the oscillator output with a reference voltage derived from the regulated

FIG. 4-Schematic of the amplitude-regulated wide-range controlled oscillator
power supply, and injects sufficient feedback signal into V_{3} to maintain the amplitude at a predetermined level.

To compensate for the time delay associated with the crystal filter, the carrier applied to the demodulator ${ }^{2}$ is delayed by a sonic delay line. The modulator then subtracts f_{r} from the delayed carrier frequency to yield the output frequency, which is a filtered version of the input frequency except for a small but constant time delay.

Cycle Splitter

Achievement of a 0.01-cycle resolution in Doppler cycle counting requires that each 3.6 deg of the input cycle be registered by the equipment. This registering must be done whether the input frequency is fixed or variable. To achieve this, the system shown in Fig. 5 is used.

First, the signal from the tracking filter is split into two components 90 deg apart in phase by two wide-band phase-difference networks ${ }^{3}$, designated a and β. Each of these networks is built as shown in Fig. 6A. Resistor and capacitor values are chosen such that the phase difference between the outputs of the two networks is maintained at approximately 90 deg throughout the frequency range of interest as shown in Fig. 6B.

Although the phasing networks appear quite simple, they are accurate to ± 1 deg over the entire frequency span of 30 cps to 50 kc , a much wider range than normally incorporated into such circuits. To maintain this accuracy, the impedance levels of the components are kept low enough to avoid the effects of stray capacitance. However, this necessitates the use of wideband drivers having exceptionally low output impedance with balanced output.

The low source impedance is obtained by the circuit shown in Fig. 7. Tubes V_{1} and V_{2} provide a single phase inversion with an open-loop voltage gain of 50 and an output impedance of 10 ohms because of the pentode gain in the cathode lead of the 6U8 triode section. Closure of the loop reduces the gain
to unity and the output impedance to less than 0.5 ohm over a passband greatly exceeding the $50-\mathrm{kc}$ requirement. These networks also are suitable for driving the 150 to $200-\mathrm{kc}$ phasing networks in the single sideband modulators used in the tracking filter.

The output of V_{2} is connected to the $V_{3}-V_{4}$ combination which is identical to $\mathrm{V}_{1}-\mathrm{V}_{2}$ and provides an output in phase with the input to V_{1}. A trim adjustment is provided

At relatively low frequencies, the cathode-ray beam produces a clearly defined spot on the screen, since an extremely short persistence screen is used. The P16 phosphor has a decay time of approximately $0.5 \mu \mathrm{sec}$. At the maximum desired input frequency of 50 kc , the required cycle-splitter output is 5 mc . The amplitude of the cycle-splitter output at this frequency on a sinusoidal basis is only about 6 percent of its low frequency value. How-

FIG. 5-Cycle-splitter arrangement provides frequency multiplication and digital conversion

FIG. 6-Networks such as shown in (A) are designed to maintain outputs at close to 90 -deg phase difference over wide frequency range. Characteristics are shown in (B)
to keep the gain of the $V_{3}-V_{4}$ combination equal to that of $V_{1}-V_{2}$ thus compensating for minor variations in the exact values of the 100,000 ohm feedback resistors.

Light Pulses

Whatever the input frequency, the phasing network outputs produce a circular pattern on the screen of a cathode ray tube. One rotation of the electron beam is produced for every input cyole. By placing a mask with 100 radial lines on the face of the cathode-ray tube, an output light flux consisting of a light pulse for every 0.01 cycle of the input is produced. The light pulses are viewed by a multiplier photo-tube which converts them into electrical signals.
ever, by designing the phototube pick-up circuit with a high degree of clipping, a constant output pulse amplitude can be maintained up to 5 mc .

The information counting and converting circuits take the cyclesplitter output, which ranges from 3 kc to 5 mc , and present it to the output tape handler as binary-coded digital outputs in the 8-4-2-1 system.

Time Intervals

Basic timing intervals of 0.01 , 0.1 or 0.5 second can be selected by the operator. These timing intervals are obtained from a 50 -kc reference signal which is recorded on one of the channels of the input tape. The time mark generator

FIG. 7-Wideband driver has low output impedance with balanced output
counts reference cycles to produce the basic timing interval and also produces the same delays as those which the information-bearing signal encounters in passing through the tracking filter. These delays consist of two types: a fixed delay, equal to that of the crystal filter and produced by a sonic delay line, and a variable time delay, equal to that of the phasing networks and proportional to the period of the incoming frequency. The variable time delay is produced by delaying the time mark an amount equal to a predetermined number of cyclesplitter output pulses. Thus the timing accuracy of the system is maintained to a high degree of precision.

The timing interval counter determines the number of time marks which have occurred since the beginning of a run for reference purposes, and this number is recorded on the output tape with each block of information.

The information counting and converting circuits consist of two counter banks preceded by a reflexing switch. The reflexing switch is an electronic switch with a $15-\mathrm{mc}$ switching capability. It serves to channel the information pulses into one counter bank while the other counter bank is read out to the output tape. This is necessary since the information pulses come from the cycle splitter continuously at rates up to 5 mc . None of these
pulses may be lost or a cumulative error will occur. One counter bank alone is insufficient, since this requires completion of the entire read-out operation in less than $0.2 \mu \mathrm{sec}$.

Clock Oscillator

The delayed time mark is used to start a clock oscillator. This is a free-running multivibrator whose period is adjusted by the time interval selector so that it produces approximately fifteen periods per timing interval. The clock oscillator drives the sequencer, which is a scale-of-15 ring counter used for readout of the information counting circuits and the time interval counter.

The reflexing switch channels information pulses to one of the counter banks while it causes the other one to be read out. The delayed time mark causes the reflexing switch to change from one state to the other, which it does at the beginning of each new timing interval.

The output is in the $8-4-2-1$ binary-coded decimal system and since high speed counters generally do not operate in this system, converter circuits utilizing diode matrices are provided.

The digital output is recorded on tape on a non-return-to-zero basis. This requires an additional channel containing sprocket pulses which tell the tape reader when a new bit
of information occurs. The sprocket pulse generator is basically a coincidence circuit whose input is the clock oscillator pulse and which produces an output depending upon the presence or absence of the appropriate sequencer pulses and the card mark pulse.

The card mark generator produces an output pulse every sixth timing interval by means of a scale-of-6 counter. This informs the card punching mechanism in the digital computer that six time intervals have elapsed, and that a full card of cycle count information has thus been punched. Upon receipt of the card mark, a new card is inserted into the card puncher. The output tape contains six channels: one each for the 1's, 2's, 4's, and 8's, plus card mark and sprocket pulse channels. Thus the output tape reads out serially the number of Doppler cycles which a given Doppler radar station observed during a given time interval, within 0.01 cycle.

Computing Trajectory

The numbering of each timing interval permits the digital computer to compare the observed distance traveled, as recorded at each observation station, with the distance traveled during the same interval at every other observation station. From this information, the trajectory can be computed.

Error from the approximation in designing the all-pass phasing networks can be held arbitrarily low if network complexity is no barrier. The phasing network components have a 1-percent accuracy. This produces short-term cycle count errors of less than 0.005 cycle.

Total noise and distortion in the tracking filter components, such as modulators, demodulators, and amplifiers are kept well below 6 percent.

The work reported in this paper was done under Army Ordnance Contract No. DA-23-072-ORD-1170.

References

(1) D. Hoffleit, DOVAP, A Method for Surveying High-Altitude Trajectories, Sci Monthly, 68, No. 3, p 172 , Mar. 1944.
(2) D. E. Norgaard. The Phase-shift Method of Single-Sideband Signal Generation, Proc $T R E, 44, p 1718$, Dec. 1956.
(3) D. K. Weaver, Jr., Design of an RC Wide-Band 90 Degree Phase-Difference Network, Proc $I R E 42$, p 671, Apr. 1954.

Table 1-Characteristics of Micromodule Transistors and Diodes

 for AFC and electric tuning

Micromodule Components

Germanium transistors and silicon and germanium diodes, quartz crystals, ferrite core inductors are being made as microelements

Transistors, diodes, crystals and inductors of micromodules being made for USASRDL by RCA and subcontractors are outlined in Tables I, II and III. Some preliminary configurations are shown.

All base wafers are 310 mils square by 10 mils thick except those recessed to house tantalum capacitors, crystals, transistors and diodes. Each wafer has 3 notches on eath side for riser wires. Connections are made to risers via conductive paths from components to notch land areas. There are, for example, 64 possible resistor termination positions and 1,320 possible transistor termination positions. Jumpers are printed on slightly oversized end wafers.

Wafers are pressed and fired ceramics or etched glass-ceramic. Recesses are ultrasonically ground.

Table II-Quartz Crystals*

Civstal Type	Fres (me)	Resisiance ohm	CONTACT
Fundamental	7	<35	YSTAL
Fundamental	10	<35	
3rd Overtone	20	<20	
3 rl Overtone	45.1	<4.11	
5th Overtone	70	<411	4FERS

Additional ceramic capacitors are screened on. Resistive and conductive materials are screened on as pastes or vacuum deposited.-G.S.

Table III-Inductors* Ferrite Core

$\begin{gathered} \text { Oprer } \\ \text { Freq (me) } \end{gathered}$	Additional Dita	Uses
	Inductance range. 0.1 to	IR-f chokes, r-f
43	$1.300 \mu h$: maximum $1-c$	i-f and pulse
11.1	current. 100 ma. Coils are	transformers,
	wound on miniature ferrite toroids and fixed to wafers	

* Applicalile spec is M.IL-C-15305A

[^7]

[^8]FIG. 1-Preliminary diade and transistor designs

FIG. l-Log amplifier and period amplifier are completely transistorized. Log diodes, electrcmeters and catching diode are vacuum tubes. Func-

Transistor Amplifiers for

Logarithmic and period amplifiers used in nuclear reactor startup ranges are transistorized with exception of log diodes and electrometers. Great saving

 in size, weight and power consumption is madeLOGARITHMIC AND PERIOD amplifiers are indispensable to the operation of nuclear reactors because of their wide indicating range without switching.

The \log diode V_{1} shown in Fig. 1 is a nonlinear element whose characteristics are sensitive to changes in cathode temperature.

This effect can be compensated by using two diodes to balance out effects of temperature and power supply variations. When V_{1} and $V_{\underline{2}}$ are connected in series back to back, a constant current flows through balance diode V_{z} which is large compared with the maximum current to be measured. Input flows through both diodes but
the potential change across the balance diode is negligible and is included in calibration.

The log diode can be considered as a variable resistance that may vary greatly over the amplifier operating range.

Log Amplifier

As transistors with sufficiently high input impedance are not available, low-current electrometer tubes are used. Balanced electrometer tubes V_{3} and V_{1} drive a differential stage consisting of Q_{1} and Q_{2}. The silicon transistors have low $I_{c,}$ and minimum temperature effects. A stable operating level is obtained by connecting the electrometers as
tetrodes and supplying their screen grids from the common emitters of Q_{1} and $Q_{1 .}$. Changes in d-c level are highly degenerated without reduction in signal gain. The current output of the differential stage is amplified by two cascaded emitter followers Q_{s} and Q_{1}.

Calibration of the log amplifier is done in the conventional manner. For period calibration, log diode V_{1} is biased nonconducting by potentiometer R_{1} and the \log amplifier is connected as an integrating amplifier to generate a linear ramp voltage. To discharge the circuit capacitance quickly, switch S_{1} is placed in the reset position and resistor $R_{\because-}$ is connected around the

tion switch is used for different modes of operation

Reactor Control

By E. J. WADE and D. S. DAVIDSON*,

Knolls Atomic Power Laboratory, General Electric Co., Schenectady, N. Y.

log amplifier and R_{3} is connected around the period amplifier. These resistors discharge the ramp generator in 0.1 second and the differentiating capacitor C_{1} in 1 second.

Period Amplifier

This amplifier is a feedback-type differentiating circuit. The factors that determine the input current are the \log amplifier output per decade, the period to be measured and the value of capacitor C_{1}. The output voltage depends upon the capacitor C_{1} discharging resistance and the time constant of the amplifier gain.

[^9]When the amplifier is used to initiate the operation of protective circuits, it is desirable to provide a time delay before generating the trip signal. This delay is a function of the period and is met by choosing the correct time constant of the differentiating circuit. Calibration is made by applying a simulated period from the log amplifier.

To reduce noise, a nonlinear filter consisting of D_{1}, D_{2} and C_{2} is placed between the log amplifier output and the period amplifier input. The silicon diodes have high resistance at low voltage and are connected in parallel with reversed polarities. In conjunction with C_{2} the filter has long time constant at
low voltage decreasing until it is negligible above 0.5 v and has little effect on the tripping time.

Input resistor $R_{\text {, }}$ is in series with \log diode V_{1} preventing noise transients from being rectified by the diode. The filter consisting of R_{5} and C_{3} at the input electrometer grid further reduces the high-frequency gain.

Catching Circuif

When the log amplifier is operating at low current, diode V_{1} may either not be in its logarithmic range or cut off due to transient or grid current. When the input current increases under this condition the amplifier output is no longer logarithmic but is linear. This simulates a much shorter period until the log diode reaches its operating range and can cause tripping during reactor startup.

To prevent this tripping, negative feedback is applied from an auxiliary amplifier which operates only when the signal output is slightly reversed. This circuit has negligible effect during normal operation. If the output signal reverses, indicating a diode current less than $10^{-12} \mathrm{amp}$, the feedback maintains the log diode current at 10^{-12} amp thus preventing the log diode from operating outside its logarithmic range.

The period amplifier uses catching diode V_{s} in a low-impedance feedback loop to improve recovery time for input reversals due to switching transients or negative periods.

Trip Output

The trip output circuit consists of transistor $Q_{刃}$ biased by an adjustable potential applied to its base. When the emitter is driven more positive than the trip setting, the transistor conducts and the output goes positive generating a trip signal. Grounding or opening the trip circuit also causes tripping.

Bibliography

E. J. Wade, IRE Conv Record, 9, p 79, 1954. F. Wall and M. P. Young, NRL 5025 , Sept. 1957.
G. Epprecht (Bern), Tech Mitt P.T.T., p $161,1951$.
W. F. Goodvear, Logarithmic Counting Rate Meter, ELECTRONICs, 1208, July 1951 J. A. DeShong Jr., Logarithmic Amplifier with Fast Response, ELbctronics, p 190, March 1954.
E. J. Wade and D. S. Davidson, How Transistor Circuits Protect Atomic Reactors, Electronics, p 73, .July 1s, 1958.

Reducing Distortion

Grid-plate transfer characteristic of class-B amplifier is linearized to eliminate harsh odd-harmonic distortion. Linearization is accomplished by compensation networks having a nonlinear transfer function. Networks are determined graphically. Compensated amplifier distortion is 2.6 percent.

By BERNARD SKLAR,* Republic Aviation Corp., Farmingdale, N. Y.

REDUCED POWER consumption and miniaturization of components make the use of class-B amplifiers economically desirable in audio systems. However, true class-B operation results in such harsh odd harmonic distortion that it is useless for moderately good fidelity. The primary cause of the generation of odd harmonics in the class-B output is the nonlinearity of the gridplate transfer characteristic.

To design a linear class-B audio amplifier, where the output waveform is the exact replica of the audio input, it is necessary to linearize the curved transfer characteristic of the class-B stage.

It is possible to compromise between the low distortion of class A and the high efficiency of class B by operating in class $A B$. Or, improved linear operation can be insured by applying negative feedback to the amplifier. Also, a stage of tandem compensation or predistortion can be used to exactly counteract the original distortion.

The first two techniques produce linearization at the expense of output power. However, tandem compensation can linearize the class-B output with hardly any loss of power.

Compensating Network

Figure 1 shows a compensating network which is reasonably independent of tube parameters and can operate on a voltage without consuming appreciable power. Voltage E_{1} is the bias for the class-B stage,

[^10]E_{2} is more positive than the bias and E_{3} is more positive than E_{2}. Voltages E_{0} and E_{3} provide bias for diodes D_{1} and D_{2}. At low levels, where E_{2} and E_{3} prevent diode conduction, the input signal at terminals $A B$ sees a simple voltage divider consisting of R_{1} and R_{2}.

As the signal goes more positive, voltage e_{g} increases. When e_{g} equals E_{2}, diode D_{1} conducts. This changes the voltage divider from a simple R_{1} plus R_{2} configuration to R_{1} in series with the parallel combination of R_{2} and R_{3}. The grid-leak resistance part of the voltage divider has been decreased in value and the voltage across it is now a smaller ratio of the total signal. When the signal goes still more positive so that e_{y} is equal to E_{3}, both diodes conduct and the voltage at terminals $C D$ is an even smaller ratio of the total signal. The network requires a minimum of two diode branches for satisfactory performance.

To present a fairly constant impedance to the preceding stage, R_{1} should be a high value. As R_{1} is increased a smaller portion of the signal at P will appear at the grid of the final stage. Therefore, a compromise must be made when select-

FIG. 1-Basic network used in compensator. Two are needed in amplifier
ing the values of R_{1} and R_{2} to avoid too high a signal voltage at P. The compromise values of R_{1} and R_{2} are 300,000 and $1,000,000 \mathrm{ohms}$ respectively.

Graphic Solution

Figure 2 illustrates the graphical method for determining the remaining resistors. The grid-plate transfer characteristic of one half the push-pull 6L6 output is plotted. The origin corresponds to the grid biasing voltage. Although a bias of -45 v represents cutoff, -35 v is used as the quiescent grid voltage so that the compensation network is not required to linearize the severest portion of curvature in the transfer function. By using a small amount of transfer-characteristic overlapping, the output operates in the class- AB region rather than absolute class B. Loss in efficiency is small.

Then, the 6L6 transfer curve is approximated by three straight lines, taking care that the low level lines represent the curve as accurately as possible. A straight line is drawn from the origin to the point of maximum output (3) on the transfer function. Now, the technique is to change the abscissa scale so that the 6L6 function from the origin to 1 can be compressed into the portion of the straight line from the origin to 1^{\prime}. The first portion of the nonlinear transfer function, before either diode conducts, becomes the first segment of the linearized function.

Points 1 and 2 show where the function must change slope and

in Class-B Amplifiers

compensating infut at p in volts
FIG. 2-Graph used to find diode bias voltage and resistors in compensator

FIG. 3-Comparison of compensated and uncompensated push-pull 6 transfer characteristics
dictate the bias conditions for the diodes ($-17 \mathrm{v},-25 \mathrm{v}$). The graph is now used to calculate the resistance in series with each diode. The curve segment from 1 to 2 must be compressed and its slope changed so that it approximately matches the line segment from 1^{\prime} to 2^{\prime}. The curve from 2 to 3 must be compressed and its slope changed to match the line from 2^{\prime} to 3 .

In Fig. 1, when e_{y} equals -25 v , the voltage at A is found by $\left(A-e_{g}\right) / 300,000=\left(e_{g}+35\right) / 1$ megohm. When e_{g} is at $-25 \mathrm{v}, A$ is at -22 v . This means the input at
P is $13 \mathrm{v}(-22+35)$. On the abscissa scale of Fig. 2 the horizontal distance from the origin to 1^{\prime} must equal this input of 13 v . This information is used to complete the new input scale on the abscissa.

When e_{g} equals -17 v , point 2 is forced to lie on 2^{\prime}. From the new abscissa scale, point 2^{\prime} represents a voltage of 29.9 v at the input P of Fig. 1. Now, A is at -5.1 v (29.9 - 35) and

$$
\frac{A-e_{g}}{300,000}=\frac{e_{g}+35}{1 \mathrm{meg}}+\frac{e_{g}+25}{R_{3}}
$$

gives R_{n} equal to 369,000 ohms.
When e_{y} is equal to zero, P is at 85.7 v and A is at 50.7 v . Using

$$
\frac{A-e_{g}}{300,000}=\frac{e_{g}+35}{1 \mathrm{meg}}+\frac{e_{g}+2 \bar{J}}{369,000}+\frac{e_{g}+17}{R_{4}}
$$

gives R_{4} equal to 257,000 .
The dashed curve on Fig, 2 is the static characteristic experimentally obtained from a compensating network and a 6L6 in tandem. This is a fairly good approximation to the desired straight line. Two of these compensating networks are required in each amplifier.

Another way of viewing this compensation is illustrated in Fig. 3. Each half of the original push-pull transfer characteristic is broken up into three sections. Each section by itself is almost linear. As the signal increases and a new section
takes control, it takes control at a lower gain. The entire transfer function is stretched out and follows the same direction specified by the initial segment.

Clamping Effect

Looking at the compensating network in Fig. 1, an analogy can be made between it and a typical clamping circuit. When the input to the network at P goes positive, it first sees a long time constant through the capacitor and the high resistance. As the signal increases and the diodes conduct, the impedance from e_{y} to ground is lowered causing the time constant to decrease. The capacitor is charged quickly during this short time constant (high positive signal). When the polarity of the signal reverses, neither diode conducts, and the impedance from e_{g} to ground remains high. During this period the capacitor discharges slowly due to the long time constant. The result is somewhat of a clamping effect.

When the signal goes positive again the capacitor retains most of the charge and acts like a series battery. This effect clamps the output e_{e} more negatively than is realized from static calculations. Keeping each grid more negative reduces the output of each tube and permits the

FIG. 4-Compensated amplifier delivers 16 w with 2.6 percent total distortion at 47.6 -percent efficiency
tubes to go into cutoff prematurely, preventing the exact alignment of each half of the grid-plate transfer function.

To make the dynamic transfer function as linear as the static one, the sharp difference between the time constant for a high positive signal and that for a negative signal must be reduced. The reduction in clamping is accomplished with leakage across the diodes. Instead of a constant leakage path, a variable resistance is utilized to simulate ideal conditions. This variable resistance is achieved through the proper selection of diodes. Rather than choosing diodes with high back resistance, diodes with moderate reverse leakage characteristics are selected. The effect is that of a variable resistor shunted across the diode.

Diode Characteristics

The diodes used in the compensation network should have high conductance in the forward direction so that the resistance of the conducting diode can be neglected in the network design. In reverse direction the diode should be characterized by an initial high resistance and a resulting leakage current of about 1 microampere, until a back voltage of 18 v is reached. Any greater reverse voltage should cause breakdown and the diode should be able to operate in the breakdown region without being damaged. Eighteen volts is chosen because it is the largest reverse voltage across either diode during any positive signal excursion.

FIG. 5-Uncompensated amplifier output (A) and transfer characteristic (B)

Table I-Percent Harmonic Distortion at 1 Kc

Harmonic Distortion	Cncom- pensated Amplifier	Compen- sated Amplifier
Total	13.0	2.6
2nd	1.5	0.78
3rd	11.5	2.1
4th	0.3	0.22
5th	1.8	1.2
6th	0.23	0.29
7th	0.85	0.12
8th	0.05	0.13
9th	0.21	0.34
10th	0.05	0.05 .5
11th	0.04	0.14

Using such a diode in the compensation network of Fig. 1 will result in the linearization predicted by the static calculations. The leakage will not affect operation during any positive signal swing. Only when the signal goes negative and the reverse voltage across D_{2} is increased beyond 18 v will there be a leakage path capable of reducing the time constant to a value near the time constant for high positive signals. The loss of bias at e_{g} will be approximately 1 v (R_{2} times 1 microampere) which is small enough to be disregarded.

Compensated Amplifier

Figure 4 is schematic diagram of a compensated amplifier. The diodes have a leakage current in the order of 10 microamperes at a reverse voltage of 18 v . To compensate for the loss in grid bias caused by this leakage current, the bias voltage for the class- B stage is made 5 v

FIG. 6-Compensated amplifier output (A) and transfer characteristic (B)
more negative than its design value of -35 v .

The uncompensated amplifier, the compensated amplifier without the compensating networks and with -35 v bias at the grids of the output tubes, delivers 14 w at an efficiency of 48.7 percent when operated at peak performance. The output waveshape of the uncompensated amplifier is shown in Fig. 5A. Because the amplifier is not biased exactly at cutoff, the transfer characteristic for the uncompensated amplifier (Fig. 5B) has a less harshly distorted oútput than for true class-B operation.

When the compensated amplifier is operated at peak performance it delivers 16 w at an efficiency of 47.6 percent. The loss in power efficiency due to compensation, 48.7 percent to 47.6 percent, is negligible. The compensated amplifier output waveform is shown in Fig. 6A. Figure $6 B$ shows the linearization of the transfer characteristic accomplished by the tandem compensator.

As shown in Table I, the total distortion of the uncompensated wave in Fig. 5A is 13 percent, while the total distortion of the compensated wave in Fig. 6A has been reduced to 2.6 percent. Distortion reduction, with similar retention of power efficiency, can be achieved with any class-B amplifier by use of properly designed tandem compensation. In the case of class- B_{2} operation the compensation must precede the driver stage.

Applications

In applications such as commercial broadcast transmitters, portable radios and mobile communication systems, high efficiency is required and sacrifice of fidelity is undesirable. In these applications this linear type class-B audio amplifier proves useful. Even in home amplifiers and public-address systems, where power economy usually is not a prime consideration, the linear class- B output has advantages. The lives of the output tubes are lengthened due to the little current drawn at no signal level. Also, it is possible to design these amplifiers with the same power output as their class-A counterparts, using smaller transformers and smaller output stages.

Radioactive Sources

Table lists characteristics of materials used in noncontacting thickness gages employing the principles of nuclear radiation detection

By W. HARRISON FAULKNER, JR., Vice President, Engineering and Development, Tracerlab, Inc., Waltham, Mass.

Since introduction of the beta gage for thickness measurement, a wide variety of radiation source-detector combinations has been devised. As new isotopes have become commercially available at prices which allow their general use, a wider selection has been developed.

The radiation source selected must emit radiation of energy such that a measurable part is absorbed by the material being measured. Table I shows typical sources used. Emitters of beta radiation are
generally used for less dense materials.
Detectors used in thickness gages are generally absorption or backscatter type ionization chambers or scintiliation detectors. They must be built to withstand severe operating conditions as they may be used in hot, dusty and humid plants, frequently sprayed by corrosive or abrasive materials.

The formula for converting material thickness in mils into $\mathrm{mg} / \mathrm{cm}^{2}$ is: $\mathrm{mg} / \mathrm{cm}^{2}=$ spec grav of mat'l \times thickness in mils $\times 2.54$.

Table 1-Radioactive Sources for Thickness Gages

Source Material and Symbol	Type Radiation	Half Life	Form of Activity Quantity	Measured Material Thickness, $\mathrm{mg} / \mathrm{cm}^{2}$	
$\begin{aligned} & \text { Cartion } 14 \\ & \text { C }^{14} \end{aligned}$	Beta	5,500 yr	Various 1 millicurie	$0-5$	Gage Applications Early pliofilm gages
Promethium 147 Pmin ${ }^{147}$	Beta	2.6 yr	Powder 5-50 millicurie	0-15	Thin films and tissues
$\begin{aligned} & \text { Krypton } 85 \\ & \mathrm{Kr}^{85} \end{aligned}$	Beta	10.3 yr	Gas 350 millicurie	0-70	Light paper and thin plastics
$\begin{aligned} & \text { Thallium } 204 \\ & \mathrm{~T}^{204} \end{aligned}$	Beta	4 yr	Crystalline 100 millicurie	0-75	Same as $\mathbf{K r}^{\text {85 }}$
Cerium 144 Ce ${ }^{144}$	Beta	290 days	Crystalline 10-50 millicurie	0-200	Short half-life limits use
$\begin{aligned} & \text { Cesium } 137 \\ & \mathrm{Cs}^{137} \end{aligned}$	Beta	30 yr	Crystalline 10-50 millicurie	0-130	Papers and foils
$\underset{\mathrm{P}^{210}+\mathrm{b}^{2120}}{\text { Radium }} \mathrm{D}+\mathrm{E}$	Beta	22 yr	Powder 1-10 millicurie	0-250	Paper, plastics, light foils
Strontium 90 Sr^{90}	Beta	25 yr	Crystalline 20-200 millicurie	0-600	Heavy paper boxhoard, thin metal, rubber
$\begin{aligned} & \text { Thulium } 170 \\ & \text { Trn } \end{aligned}$	Gamma	127 days	Powder 1-100 millicurie	100-500	Metal foils and strip
Ruthenium 106 Ru ${ }^{106}$	Beta	1 yr	Crystalline 10 millicurie	200-1,300	Rubher, plastic laminates, heavy web mat'l
Strontiun 90 Sr^{30}	Bremsstrahlung	25 yr	Crystalline 0.25-1 curie	500-1,000	Heavy metals, steel, copper, aluminum
Iridium 192 Ir ${ }^{192}$	Gamma	74.4 days	Metal 50-500 millicurie	500-1,000	Limited by short half-life
Cosium 137 Cs^{137}	Gamma	30 yr	Crystalline 50-500 millicurie	1,000-20,000	Level and density gaging of liquids
Cobalt 60 Co^{60}	Gamma	5.27 yr	Wire or pellets $1 \mathrm{mc}-1$ curie	2,000-200,000	Dense mat'ls such as 1 -in. steel
$\begin{aligned} & \text { Radium } \\ & \mathrm{Ra} \mathbf{a}^{226} \end{aligned}$	Gamma	1,620 yr	Crystalline 1-50 millicurie	2,000-200,000	High-density mat'ls

Correlation Devices

Abstract

Electronic devices using correlation function can detect signals so immersed in noise that they are indistinguishable when ordinary equipment is used. Article describes operating principles of autocorrelators, crosscorrelators and associated devices known as radiometers

By HAROLD R. RAEMER, Staff Engineer and ALLEN B. REICH, Engineer,
Cook Research Lab. div., Cook Electric Co., Morton Grove, Inl.

DETECTION OF SIGNALS buried in noise becomes a problem of increasing importance as the requirements of communications and radar equipment become more stringent. A class of devices will be described that uses the mathematical concept of the correlation function to detect these relatively indiscernible signals.

A correlation function is the long time average of the product of two functions of time. For example, if
one voltage waveform is represented as a function of time by $V_{1}(t)$ and another represented by $V_{2}(t-\tau)$ (where τ is the delay time) are continuously multiplied and the product $V_{1}(t) V_{2}(t-\tau)$ fed into a lowpass filter, then the filter output closely approximates the true mathematical correlation function. When $V_{z}(t-\tau)$ is the function $V_{1}(t)$ delayed the amount τ, the device is called an autocorrelator. If $V_{1}(t)$ and $V_{2}(t-\tau)$ are totally different

FIG. I-Autocorrelator (A) is used in a superheterodyne. Crosscorrelator (B) is a synchronous detector using reference signal resembling expected signal. Two-receiver radiometer (C) detects aperiodic signals. Subtraction-lype radiometer (D) subtracts stored noise signal from expected signal plus noise
functions, the device is called a crosscorrelator. In both cases the output is a function of delay time τ.

Autocorrelators

The autocorrelation function of a sinusoidal voltage $V_{1}(t) \sim \sin$ ($2 \pi f t+\phi$) is proportional to \sin $(2 \pi f \tau+\psi)$. That is, the function is a sinusoid in τ with the same frequency as that of $V_{1}(t)$.

On the other hand, the autocorrelation function of random noise decreases rapidly with r and drops to negligible values when τ exceeds the value τ_{c} called the correlation time of the noise. The crosscorrelation function of signal and noise, which also enters the output, is negligible for all values of r.

For delay times τ far in excess of τ_{c}, the output of the low-pass filter of the autocorrelator will show a sinusoidal variation with τ of frequency f even though the sinusoidal signal is too weak relative to the noise to be perceived in the original waveform.

An autocorrelator for use by a conventional superheterodyne receiver is shown in Fig. 1A. The applicability of this device is limited to detection of essentially periodic signals, which can always be considered as sums of sinusoids, in any kind of noise that has a continuous spectrum over a broad band of frequencies such as thermal and shot

Detect Weak Signals

noises of a radio receiving system.
A limitation of the autocorrelator is the difficulty of using it at r-f or i-f. It is operated after detection where small signal suppression has already occurred, thus reducing the realizable gain in signal-to-noise ratio.

Crosscorrelators

The crosscorrelator or synchronous detector illustrated in Fig. 1B

FIG. 2-Dicke radiometer combines received signal with reference signal, then uses duplicate of reference signal to produce large oulput at filter
uses a reference signal $V_{2}(t-\tau)$ generated in the receiver that closely approximates the expected signal $V_{1}(t)$ which is accompanied by a random-noise waveform $n(t)$.

The filter output contains the crosscorrelation function of $V_{1}(t)$ and $V_{2}(t-\tau)$ and that of $V_{2}(t-\tau)$ and $n(t)$. Theory shows the latter to be negligible compared to the former, providing the delay time τ
is adjusted so that $V_{2}(t-\tau)$ is essentially the same as $V_{1}(t)$.

The essential requirement in the successful use of a crosscorrelator is sufficient prior knowledge of the expected received signal waveform to generate a reference waveform that nearly duplicates it. In pulsed radar this knowledge is available since the prf of the transmitted signal is known and a reference pulse of the same prf can be generated.

The delay time τ must be slowly varied until a large output appears at the filter indicating coincidence between target pulses and reference pulses. This is substantially a conventional radar range gate with low-pass filtering, as the delay time which will produce coincidence varies linearly with range to target.

The crosscorrelator is operated after the second detector where small-signal suppression has already degraded performance.

Two-Receiver Radiometer

In some applications it may be required to detect signals that are not even approximately periodic or whose period is too long to allow detection by an autocorrelator (such as in radioastronomy applications). If not enough is known about the signal to construct a reference waveform for a crosscorrelator, then no conventional correlation technique will extract the signal from the noisy background. A tworeceiver radiometer which is a vari-
ation of the autocorrelator may be used in this case. As shown in Fig. 1 C , this device uses two independent receiver channels whose outputs are multiplied together and the product fed to a low-pass filter.

The signal voltage is the same in both channels excepting a possible adjustment in delay time due to a difference in time of arrival. However, the product of the noise waveforms in the two channels, originating from two independent sources, will average to zero over a long time. The noise in each channel is independent of the signal itself and in the ideal case, the low-pass filter output is the square of the signal stripped of noise.

Regardless of the nature of the signal, the two-receiver radiometer operates on it as if it were periodic and the radiometer were an autocorrelator with delay time equal to a multiple of its fundamental period and much greater than the correlation time of the noise. The radiometer is operable at intermediate frequencies giving it a practical advantage over conventional correlators.

Dicke Radiometer

The Dicke radiometer is a variation of the crosscorrelator designed to detect a signal of unknown form. As shown in Fig. 2, its principal feature is a low-frequency reference signal that may be a sinusoid or square wave of a few cycles per

FIG. 3-Attainable signal-to-noise improvement is function of the ratio T / T.

FIG. 4-Experimental waveforms showing actual improvement in signal detectability obtained with crosscorrelator
second. The reference signal is introduced in the r-f circuit before the mixer where the largest contribution to receiver noise occurs. The reference waveform modulates the incoming signal. The modulated signal is amplified, square-law detected and filtered to pass the desired signal band about the reference frequency. The bandpass filter output is multiplied by a duplicate of the reference signal and the multiplier output is low-pass filtered.

This radiometer is essentially a crosscorrelator that puts a "tag" on the r-f signal so that it can be recognized at a later stage. Crosscorrelating the tagged signal with a duplicate of its tag produces a large output. Receiver noise is introduced at a stage following the tagging process and being untagged does not produce a significant output.

Subtraction Radiometer

The subtraction-type radiometer (Fig. 1D), which is not a correlator, is the simplest of all detection devices. Unfortunately its drift problem does not allow it to perform as well as other radiometers and correlators. It consists of a conventional square-law or linear second detector that delivers the video or audio signal plus noise to an adder, together with the stored pure-noise detector output, V_{b}. The pure noise is subtracted from the signal-plusnoise output and the difference is fed to a low-pass filter. The filter output will be significantly high only if a signal is present.

If the devices described computed correlation functions in the rigor-
ous mathematical sense, their possibilities would be unlimited. Realities severely limit the accuracy with which the correlator or radiometer can make this computation and therefore limit the theoretically attainable improvement in signal-tonoise ratio.

All correlator limitations are associated with the integration or low-pass filtering stage. To approximate the correlation function as accurately as possible, the longest R-C filter time constant T_{c}, and the longest possible itegration time T, should be used. The former is for a faithful computation of a true mathematical integral and the latter relates to the infinite integral called for in the actual correlation function. Figure 3 shows the theoretically attainable improvement to be an increasing function of the ratio T / T, and to be as large as possible for values equal to 3 or greater.

The two design objectives may therefore be mutually incompatible. Integration time T is always limited by the duration of the signal to be detected. As shown in Fig. 3, for a fixed value of T, increasing T_{c} to a value greater than $T / 3$ will reduce the fidelity of the integration process and will detract from performance. One third of the maximum time allowed for the computation at one value of delay time τ is the optimum value of time constant. If τ must be searched for over a wide range of values throughout the duration of the signal, the realizable improvement may hardly be worth the trouble.

To circumvent this limitation, a

FIG. 5-Simulated two-receiver radiometer used to test agreement with theoretical predictions
number of parallel correlator channels, each searching over small values of τ, will decrease the required search rate for a given and fixed available search time T. This method increases the attainable signal-to-noise improvement by a factor which may be as large as the number of channels.

For evample, suppose the range of τ to be searched is $2,000 \mu \mathrm{sec}$ and the total signal-to-noise ratio improvement attainable with a correlator is only 2 db . Incorporating 10 correlator channels with each assigned a range of τ values of 200 $\mu \mathrm{sec}$ could increase attainable improvements to as much as 12 db .

Figure 4 illustrates the actual improvement in radar signal detectability that was obtained with a crosscorrelator. Although the realizable gain in signal-to-noise ratio falls short of the idealized theoretical prediction, the increased signal visibility is of significant magnitude.

What Tests Show

Tests performed with the simulated two-receiver radiometer shown in Fig. 5 substantiated the essential correctness of the theoretical results regarding improvement in detectability of signals.

The tests showed that as the theory predicts, the degree of improvement in signal-to-noise ratio is not significantly affected by increasing the observation time as long as the original observation time is at least $2 \frac{1}{2}$ times as large as the low-pass filter time constant.

Tests also showed that the minimum detectable signal decreases with increasing low-pass filter time constant at a rate of -5 db per decade.

References

(1) J. Galejs, A. Reich and H. Raemer, Detection of Weak Wide Band Signals, Cook Trch Rev, 4, Dec. 1957.
(2) S. Goldstein, A Comparison of Two Padiometer Circuits, Proc $1 R E, 43, \mathrm{p} 1,663$, Nov. 195.
(3) W. Davenport, Correlator Errors Due to Finite Observation Intervals, Tech Report 191. Research Lab of Electronics, MIT, Mar. $9,1!51$.
(4) F. Splitt, An Investigation of the Weak-signal Detection Properties of the Two-Receiver Radiometer, Master's Thesis, Northwestern liniversity, Aug. 1957.

Report from IBM
Yorktown Research Center, New York

ULTRA-HIGH VACUUM AND THIN METALLIC FILMS

The superconducting properties of a metallic film are significantly affected by its purity. A group of scientists and engineers at the IBM Yorktown Research Center is studying problems involved in producing superconducting thin films by vacuum deposition techniques. The immediate objective is to produce thin films with superconducting characteristics equivalent to those of pure bulk material.

In conventional vacuum metalizing, a chamber is evacuated to a pressure of $10-6 \mathrm{~mm} . \mathrm{Hg}$, the metal is heated to vaporization temperature, and a thin metallic film is con-
densed on a substrate. During this process, gas molecules remaining in the chamber contaminate the film. For example, if the deposition rate were such that the thickness increased by 100 per second, the gas impurity in the resulting film could be as much as one atom for every 75 metal atoms.

One way to decrease this contamination is to work in a higher vacuum. Newly developed techniques, using an allmetal ultra-high vacuum system, permit the use of working pressures as low as $10^{-10} \mathrm{~mm} . \mathrm{Hg}_{\mathrm{g}}$, thus decreasing the amount of gas present in the film by a factor of 10,000 .

Finding Radar Blind Spots

Charts simplify solution of problems associated with moving target indicator radar systems when target moves in a passing course

By BUD M. COMPTON

Tech Rep division, Philco Corp.

and FRED DUCHARM,

U. S. Air Force, Hamilton Air Force Base, Calif.

WHEN A TARGET'S radial motion between transmitter pulses is zero or any multiple of a half wavelength, the return echo cannot be distinguished from that of a fixed target by an mti (moving target indication) radar receiver.

These blind speeds may be shown to be a form of Doppler effect. For common coherent mti radars, the blind speed interval is $V_{B}=\lambda \times p r f / 102$, where V_{B} is the blind speed interval in knots, λ is the wavelength in cm, and prf is the pulse repetition fre-
quency in pulses per second.
In practice, an mti receiver's velocity response depends upon whether the target is flying a radial or passing course. In the first case, the target's ground speed and radial speed are equal. Thus the ground speed may be used directly in determining mti response. Passing courses pose problems because the radial component of a target's velocity differs from the ground speed and is continuously changing.

A system of graphical aids has been devised for simplifying the

FIG. 1-Chart determines blind speeds and scans within range of expected traffic
solution of passing course problems. The charts are most useful when it is desired to site radars, analyze evaluation test flights and prescribe aircraft in-flight control criteria.

Typical Problem

Charts can be drawn to suit a particular situation. Figure 1 is intended to solve problems generated by a nearby airway. In this example, the traffic passes 30 nautical miles from the radar station. The dashed lines are solutions for N, the number of blind scans or missed points, from the relation $N=1.35 \times$ $10^{5} S\left[1 /\left(S^{2}-V_{B}{ }^{2}\right)^{3 / 2}\right]$, where S is the ground speed of the target. In this equation, the radar antenna is assumed to be rotating at 5 rpm . Solid lines are plots of D, the distance to the points at which the blind scans take place, from the relation $D=30$ $S /\left(S^{2}-V_{B}{ }^{2}\right)^{1 / 2}$.

A typical problem would be to find the range at which a $300-$ knot target will pass through the 246-knot blind speed of an L-band radar with a prf of 360 pps , and the number of blind scans that are expected as the target passes through this blind speed.

Find the intersection of the solid-line curve for $V_{k}=246$ in Fig. 1 with the 300 -knot target speed line. Read the range D at the right-hand margin to be approximately 52 nautical miles. Find the intersection of the dashed-line curve for $V_{k}=246$ with the 300 -knot target speed line and read the scale at the left margin. This shows 7 blind scans to be expected as the target passes through the blind speed at a range of 52 miles.

It's no trick today to obtain resistors that give everything you need in the way of conventional characteristics such as load life, resistance-temperature, temperature cycling, and so on.

But what a whale of a difference when it comes to "solderability"! Try the different makes for yourself and see. Whether you solder by hand or by automatic dipping, you'll find that Stackpole Coldite $70+$ resistors solder lots better, lots faster and lots more surely.

Just hit 'em with solder and they stay soldered-because they're the only resistors whose leads get an extra final solder dip in addition to the usual tinlead coating. You get faster production, fewer rejected assemblies. And there's less chance of trouble developing after your products reach the field.

COMPARE THESE "SPECS"! - Write for Stackpole Resistor Bulletin giving complete scorecard for Coldite $70+$ (cold-molded) resistors in relation to MIL as well as commercial specifications. And remember that they give you unmatched solderability in the bargain-at no extra cost! position capacitors *ectrical contacts Brushes for all rotating electrical equipment Hundred of related carbon, graphite, and metal powder products.

Double Integrator Finds Distance

By T. R. NISBET Solid State Electronics Dept., Lockheed Aircraft Corp., Palo Alto, Calif.

SUBMINIATURE pentode is used in double integrator circuit to measure distances up to 150 ft from information supplied by an accelerometer. A transistor operates as a voltage trip, providing a pulse when the measured distance reaches a preset value. Two other tubes may be used to provide velocity and distance information for recording.

Accuracies of ± 3 percent of distance are obtained over periods ranging to 3 sec in ambient temperatures between zero and 50 C .

Circuit Operation

Stability is reached in about 2 minutes after a switch is closed that applies filament and grid bias voltages. Referring to the block diagram in Fig. 1, the square-wave oscillator provides energizing voltage for the accelerometer a-c bridge and, when rectified, compensating voltages for the circuit.

The a-c signal from the accelerometer is rectified and fed to the first integrating network, whose output is fed to the grid of pentode V_{1}. Tube V_{1} is used as constantcurrent device to charge the second integrator to a voltage representing the second integral.

The voltage-trip is a unijunction

FIG. 1-Two subes can be added to double integrator to get velocity and distance information for recording
transistor that fires when the voltage on the second integrating capacitor reaches a predetermined level. A pulse is produced at a time that corresponds to distance.

In Fig. 2, R_{1} and C_{1} perform the first integration. Capacitor C is the second integrating capacitor.

Resistor R_{2} controls the trip point of Q_{1}, causing C_{2}, to be charged to a known voltage before measurement begins.

By using a local oscillator to energize the accelerometer and provide
the various d-c voltages, the circuit can remain indefinitely in a state of readiness, without being subject to d-c drift problems. The earth's gravitational pull has no effect on the circuit until measurement begins, and a simple control can be inserted in series with R_{3} to compensate any proposed angle of trajectory.

Use of a ballistic switch to start the oscillator makes the equipment automatic.

Adjustment

The accelerometer, which is of the slide-wire type, is energized in an a-c bridge that is adjusted to produce a null when the instrument experiences deceleration somewhat greater than the maximum deceleration expected. The bridge output voltage is proportional to (acceleration experienced $)-\mathrm{g} \sin \theta+$ (maximum deceleration allowed for), where θ is the angle of the trajectory with respect to horizontal. The last two terms are compensated by an equivalent d-c voltage (at R_{3}) in opposition to the rectified a-c signal from the accelerometer. The equipment can thus be adjusted for positive or negative accelerations or velocities, but only for posi-

FIG. 2-Unijunction transistor is triggered when accumulated charge $0.2 C_{2}$ reaches level analogous to preset distance

30 milli-micro-second rise time with 2 watts power dis. sipation at $25^{\circ} \mathrm{C}$. This speed and power is combined with silicon's superior high-temperature reliability. The switching performance that this affords has a place in every advanced-circuit evaluation program.
Double-diffused mesa-type construction provides mechanical ruggedness and excellent heat dissipation besides being optimum for high-frequency performance (typical gain-bandwidth product 80 Mc). This type is under intense development everywhere. Fairchild has it in production.
Quantity shipments now being made give conclusive proof of the capabilities of Fairchild's staff and facilities. We can fill your orders promptly. You can start immediately on evaluation and building of complete prototype equipment. Gearing to your future production needs, Fairchild will have expanded facilities to over 80,000 square feet by early ' 59 .

2N696 and 2N697 - NPN SILICON TRANSISTORS

Symbol	Specification	Rating	Characteristics	Test Conditions
${ }^{*}$ CE	Collector to Emitter voltage ($25^{\circ} \mathrm{C}$.)	40v		
P_{C}	Iotal dissipation at $25^{\circ} \mathrm{C}$. Case temp	2 watts		
${ }^{6} \mathrm{FE}$	D.C. current gain		2N696-20 to 60	${ }^{1} \mathrm{c}=150 \mathrm{ma}$
			2N697-40 to 120	$\mathrm{V}_{\mathrm{C}}^{\mathrm{C}}=10 \mathrm{v}$
${ }^{R} \mathrm{CS}$	Collector saturation resistance		3.5 n typical	$\mathrm{I}_{\mathrm{C}} \mathrm{C}=150 \mathrm{ma}$
	Small signal current		10 n max.	B $=15 \mathrm{ma}$
${ }^{7} \mathrm{fe}$	Small signal current gain at $f=20 \mathrm{Mc}$		5 typical	$\begin{aligned} & \mathrm{C}=50 \mathrm{ma} \\ & \mathrm{v}_{\mathrm{C}}=10 \mathrm{v} \end{aligned}$

For data sheets, write Depl. A-5-22

844 CHARLESTON RD. • PALO ALTO, CALIF. • DA 6-6695 SEE US AT BOOTH 96 NEC CONVENTION

Limitemp* is a new, medium-priced control device that is ideal for monitoring or controlling temperatures between $100^{\circ} \mathrm{F}$ and $400^{\circ} \mathrm{F}$, Controller may be used to indicate temperature and sound an alarm if temperature exceeds the preset point. A few applications include windings of large rotating machines, bearings, process temperatures and controlling temperatures in critical areas such as nuclear controls.

Limitemp employs magnetic and semiconductor elements of proven reliability; therefore, no vacuum tubes, no moving parts, no contacts . . . nothing to wear out.

LIMITEMP CHARACTERISTICS:

INPUT: 115 volts, 60 cycles OUTPUT: 24 volts d-c at 5 watts TEMPERATURE RANGE: $100^{\circ} \mathrm{F}$ to $400^{\circ} \mathrm{F}-40^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ INDICATION: Dual-scale calibrated meter and pilot light ACCURACY: Setting $\pm 1 \%$, indicating $\pm 2 \%$, bandwidth 2% ofrange COMPACT: 4 in . wide, $81 / 2 \mathrm{in}$. high, 6 in . deep
GET ALL THE FACTS ... write Westinghouse Electric Corporation, Director Systems Dept., 356 Collins Avenue, Pittsburgh 6, Pa. Complete information on the new Westinghouse Limitemp will be sent to you by return mail.

J-01008
*Trade-Mark
tive distances.
Before the object has begun to move, anode current of V_{1} is about $100 \mu \mathrm{a}$. To prevent this current from charging the second integrating capacitor, it is neutralized by an equal and opposite current.

Performance

Perfect linearity is not achieved, mainly because of variations in tube transconductance over the operating range of 100 to $600 \mu \mathrm{a}$. Repeatability, however, is within ± 3 percent of distance over the temperature range. Paper capacitors are used for C_{1} and C_{*}, with a ± 3 percent variation in capacitance over the temperature range. The first integrator is slightly overcompensated by a thermistor, and the second integrator is uncompensated.

C-W Doppler Radar for Airliners

SuCcessful flight tests of prototype Doppler radar navigation system for jet and turbo-prop aircraft were conducted by the Radio division of Bendix Aviation. Self-contained, long-range navigation system is expected to fulfill requirements of many airlines now phasing into operation of jet and turbo-prop aircraft.

System

The system uses an antenna that does not require gyro stabilization for pitch and roll of the aircraft or use of rotating machinery to steer the antenna.

The radar is an $\mathrm{f}-\mathrm{m} / \mathrm{c}$-w type op-

Frequency tracker (left) and transmitterreceiver of Bendix f-m/c-w Doppler navigation radar for jets and turbo-props
erating at $8,800 \mathrm{mc}$. Modulation technique is said to eliminate the problem of altitude holes normally associated with Doppler radar not of the pure c-w type.

Coherent demodulation techniques permit operation with onehalf watt of transmitted power.

The system meets requirements of ARINC specification 540 , which sets forth requirements of airlines for self-contained Doppler radar navigation systems.

The basic system provides the pilot with drift angle information up to 40 deg left or right within $\pm \frac{1}{2}$ deg. Ground speed from 100 to 1,000 knots is provided within 0.6 percent plus one knot. The equipment operates at altitudes to 50,000 feet.

System Components

The antenna is a flat, four-beam planar array, permitting installation in shallow recesses in the fuselage or wing. A sequential switching circuit senses Doppler frequency shift in each of the four beams. Switching is accomplished by ferrite rotators, which eliminate need for mechanically rotated switches.

The transmitter with its power supply and the receiver are contained in a single package, with the modulation and beam-switching circuitry. Except for the klystron, the unit is completely transistorized. The frequency tracker, which determines Doppler frequency shift in each beam, and the computer, which derives ground speed and drift angle, are contained in another package. The unit is completely transistorized and uses printed circuitry.

The indicator is a dial type display of drift angle and a three-drum digital display of ground speed. The control panel is designed in accordance with RTCA-SC-46 specifications for installation in an overhead panel in the cockpit.

Total weight of all system components is about 60 lb .

In addition, a separate computer will be available to provide distance-to-go and distance left or right of desired course. An additional indicator will be available with this computer to provide steering command information.

FOR

WATER-COOLED

SYSTEMS

For carrying cooling water which must undergo a change in potential, use of Lapp porcelain eliminates trouble arising from water contamination
 and conductivity, sludging and electrolytic attack of fittings. Permanent cleanness and high resistance of cooling water is assured with the completely vitrified, non-absorbent Lapp porcelain.

PORCELAIN WATER COILS

Twin hole or single hole models to provide flow of cooling water from 2 to 90 gallons per minute. Each assembly includes ceramic coil, aluminum mounting base, nickel plated brass attachment fittings... and is proof-tested to 100 lbs . per square inch water pressure.

PORCELAIN PIPE

Practically any piping layout can be made with these pieces ...swivel flanges provide automatic alignment. Straight pipe up to $60^{\prime \prime}$ lengths, 90° and 180° elbows, fittings for easy attachment to metal pipe; matching support insulators. Inside diameters $3 / 4^{\prime \prime}$ to $3^{\prime \prime}$.

Microwave Switch Uses Faraday Effect

Developed for a radio-relay system for transcontinental communication, a new rotation switch described in the April 1959 Bell Laboratories Record makes use of the Faraday effect. Purpose of the switch is to switch in a duplicate standby oscillator if either of two key local oscillators in the relay station malfunctions. Since the standby oscillators are in operation at all times, their output must be terminated and fully absorbed. The two local oscillators operate at 6049 and 6301 mc , respectively.

The switch developed incorporates a ferrite rod. Since ferrite interacts strongly with microwaves, it is possible to produce large rotation effects using small amounts of materials in practical waveguide structures.

The Faraday effect may be demonstrated by referring to Fig. 1. A linearly polarized wave is made to interact with a specimen of ferrite. The ferrite is magnetized in the direction of the axis along which the wave is traveling. As the wave passes through the ferrite, its direction of polarization is rotated as indicated in the left sketch in Fig. 1. Total angle of rotation is determined by what fraction of the wave penetrates the ferrite; by length of the interaction region and by magnetic state of the ferrite. If the ferrite is only partially magnetized, the amount of rotation is about proportional to the net component of magnetic strength of the material in the direction of propagation. This component can be changed by varying the strength of the d-c field.

Nonreciprocal Rotation

Sense of rotation in the drawing is clockwise as viewed in the direction of the d-c field. Direction of propagation of the wave does not affect the sense of rotation. Looking in the direction of the d-c magnetizing field, it can be seen that the polarization is in the clockwise sense no matter whether the wave is traveling toward or away from you. This characteristic is termed nonreciprocal.

FIG. 1-Direction of rotation for an advancing portion of the wave is clockwise, viewed in the direction of the d-c field irrespective of the direction of wave propagation

FIG. 2-Simplified Faraday rotation switch. Solenoid supplies d-c magnetic field to produce 90 deg. of rotation. Sheet of absorbing material suppresses the reflections

Basic structure of the switch is shown in Fig. 2. A section of circular waveguide containing a ferrite rod is connected between sections of a transmission line made up of rectangular waveguide. A longitudinal d-c magnetic field is supplied by an external solenoid. Current in the solenoid is adjusted to produce exactly 90 deg of Faraday rotation. The switch is in the on position when the d-c field is off and there is no rotation. But when the field is applied, the incident radiation is rotated and arrives at the output end oriented at 90 deg with respect to the polarization for which propagation can take place in the rectangular guide. In this polarization, the radiation interacts with the two broad faces of the guide whose spacing is only half that of
the narrow faces. Since this spacing is less than the cutoff half-wavelength, the radiation is reflected fully.

In the off state, the wave undergoes an additional $90-\mathrm{deg}$ rotation so that it arrives at the input end polarized so as to be transmitted freely into the input guide. It can be said that in the off state, the switch reflects. For some applications, presence of reflected radiation is undesirable. In such cases, this radiation can be suppressed by inserting a properly oriented sheet of absorbing material into the switch as shown in Fig. 2.

Disadvantages

Two serious limitations to practical use of the device illustrated in Fig. 2 are as follows: First, the angle of rotation is required to be extremely close to 90 deg for the off state. This means that the current supply to the solenoid must be controlled accurately. Second, the circular waveguide and ferrite assembly must be cylindrically symmetrical to within very close tolerances.

These disadvantages are taken care of by an effect resulting from the nonreciprocal rotation factor described previously. This additional effect is an interference phenomenon present whenever there is any

THE
 HIGHER
 THE STAKES

THE MORE YOU NEED

 Electra's New Molded Precision Metal Film Resistor
IF YOU WANT . . .

- Low controlled tempera. ture coefficient
- Low noise level
- Combination of high stability on load, in addition to low controlled temperature coefficient
- Close tracking of the resistance values of two or more resistors over a wide range of temperature
- High stability under severe humidity conditions
- Special resistor combinations to produce accurate ratios.

YOU WANT NEW ELECTRA MOLDED METAL FILM RESISTORS

 ments for the national crystal testing standardization program. They measure resonance and anti-resonance re-sis-ance of quartz crystals, including those covered by MIL-C-3098B, for determination of capacitance, inductance and performance index (PI).

MODEL 1207 (AN/TSM-15) covers range of $75-200 \mathrm{mc}$ for $10-125$ ohm crystals. Crystal voltage at series resonance is measured within 10%, effective resistance within $\pm 5 \mathrm{ohms}$, and the power calculated. $18 \mathrm{C}_{0}$ cancellation inductances and 6 variable resistors supplied; operates from $115 / 230 \mathrm{v}, 50-1000 \mathrm{cps}$ line. Price $\$ 1245$.
MODEL 531 (TS-683/TSM) Crystal Impedance Meter covers range of $10-140 \mathrm{mc}$. for $10-150$ ohm crystals. Twelve fixed calibrating resistors of $10,22,30,40,51,60,68,82,91,100,120$ and 150 ohms , plus a $100-\mathrm{ohm}$ var. resistor for determining crystal resistance. Anti-resonance adapter also provided. Operates from $115 / 230 \mathrm{v}$, $50-1000 \mathrm{cps}$ source. Price $\$ 590$.
MODEL 541 (TS-710/TSM) for $10-1100 \mathrm{kc}$ range crystals with resistances from 200 ohms to 0.5 megohms. An internal load capacitance is calibrated from 15 to 105 mmf with accuracy better than $\pm 0.5 \mathrm{mmf}$. Power dissipated in crystal measured by built-in VTVM and ohmmeter. For $115 / 230 \mathrm{v}$, $50-1000 \mathrm{cps}$ operation. Price $\$ 860$.
MODEL 459A (Improved TS-330/TSM) covers 800 kc to 15 mc range; employs new $\pm 0.1 \mu \mu \mathrm{f}$ load capacitors for testing 0.002% crystals; four resistance decades cover range of $0-9900$ ohms. Operates from $115 / 230 \mathrm{v}$, $500-1000 \mathrm{cps}$. Price $\$ 1125$.

Performance of all models is rigidly guaranteed. Prices are net f.a.b. Boonton, N.J. and subject to change without notice

MDDEL 541A

HODEL 459 A

Stabilizer Control of Capacitor Dielectrics

POLAROGRAPHIC METHOD for control of stabilizer concentration in capacitor dielectrics has been developed at Bell Labs for use in Western Electric manufacturing plants.

Technique is also research tool in study of aging of capacitors, Paul D. Garn and Mary C. Bott told American Chemical Society meeting in Boston.

Degradation of paper capacitors is retarded by adding stabilizer to wax or liquid with which paper is vacuum impregnated for greater capacitance, dielectric strength.

Anthraquinone is most widely used in Bell System for stabilizer, is added to mineral oils or chlorinated diphenyl or chlorinated naphthalene, among the common dielectric materials.

Solubility, gravimetric and spectrophotometric methods are currently used for quantitative determination of the anthraquinone in batches of dielectrics.

Polarographic method, researchers said, offers single method for routine control of stabilizer concen-
tration in all types of dielectrics. Solvent consisting of $3: 2$ mixture of chloroform and methanol with 4% hydrochloric acid yields well-defined wave for anthraquinone, will dissolve sufficient quantity of each of the dielectrics.

Diffusion current, compared with current from standard solution containing the impregnant, is proportional to the concentration. Hydrochloric acid shifts half-wave potential of anthraquinone to less negative value, hence away from interference from reducible components in dielectric material. Blank current is obtained by use of magnesium instead of hydrochloric acid.

Static Inverter Ups EL Panel Outputs

MAIN PORTION of a system developed by Magnetic Amplifiers, Inc., to increase level of illumination of electroluminescent displays by a factor of ten times is a static highfrequency power inverter.

The inverter, in addition to converting d-c to a-c, steps up current frequencies to levels ranging from 2,000 to 10,000 cycles. Stepped-up frequency is one of two methods commonly considered for increasing the brightness of EL panels. The second technique is to raise the voltage. This is sometimes desructive to the panel after a temporary rise in brightness is obtained.

Silver-Coated Lens

Plastic silver-coated lens developed by Sperry Gyroscope Co. for the Talos missile guidance radar is composed of 4100 cells. The lens is molded of plastic-impregnated fiber glass and coated with silver to make it electrically conductive. Aluminum cores forming the grid structure are molded into lens and then removed with a pneumatic ram

If you want top-quality pots when you need them, you could make your own! Of course, you'll need Swiss screw machinery to produce the cases necessary to complete the job. So plunge right in - sign up for those highly precision screw machines . . . and hang the cost!
But before you deplete the family exchequer with a grand flourish of the pen, come to Ace! We've already taken the plunge, and it's paid off. These machines automatically deliver, at high speed, cases with mechanical tolerances closer than .0002 . This also means the most flexible production operation in the industry. No subcontracted parts to wait for - we design our own cams to any special size and shape, and we run the cases ourselves, on a 24 -hour day basis! So for dependable delivery, see your ACErep!

Here's one of our automatic-production cases, on a servo mount A.I.A. size 1-1/16" ACEPOT®. In-plant production on cases up to $6^{\prime \prime}$.

Paraboloid face mold with plastic-topped female templates

Reflective surface is flame-sprayed on painted face mold

Resin is spread over each layer of glass to wet next layer

Perimeter fence is mounted on rear strucfure mold

Checking rear structure mold. Boresight locating pin is at left

Joints between sheets of glass cloth are carefully fitted

Glass Cloth, Resin Form Big Dish

By B. SOKOL, Senior Mfg. Researh-Engineer, Republic Aviation Cord., Farmingdale, N. Y.

REINFORCED PLASTIC radar reflectors are now in production for the Tartar shipboard missile. They are 8 feet in diameter, weigh 330 pounds and have a flame-sprayed metallic aluminum reflective face.

Because of accuracy and strength required, the reflector is considered as being a. large plastic tool. The load bearing rear structure is prefabricated and heat cured. The reflective face is separately made and the rear unit joined to it directly on the paraboloid face mold.

Raytheon Manufacturing Co. supplied the face mold and 3 checking templates. Balance of the tooling

Mounting nut plates and protective caps are fitted to rear structure
was designed and fabricated by Republic. Production of the initial unit followed the following procedure:

The face mold was mounted on a specially designed. base, leveled to the required water line, checked against lofting templates. Discrepancies were corrected. A perimeter fence was constructed and mounted on the water line.

The fence-mold joint was filleted with zinc chromate paste and parting agent was applied, followed by a coat of ice-phobic material-resistant paint. After the paint dried, metallic aluminum was flame-

Internal structure is shown here during assembly
sprayed on the mold surface to a thickness of 0.005 to 0.01 inch.

The sprayed aluminum was wetted with epoxy laminating resin (Trulite L-100, a proprietary formulation) and the laminate built up. The completed face structure was trimmed to the fence.

The rear structure mold was made and all its joints filleted with epoxy paste resin and cured. The borescope tube, previously laminated, was placed on its locating mandrel. The rear structure was laminated, cured, trimmed. and drilled with all necessary holes. The previously laminated center tube, aluminum fittings and stee? nut plates were bonded in place. All laminations were $150 / 164$ glass cloth and resin.

Lofting templates were used to lay out the ribs on molded flat laminate sandwich panels. Ribs were cut, sanded, dry fitted to the rear skin and bunded in place. Glass tape and resin reinforced the bond.

The completed rear structure was cured in an infrared oven. After cooling, 3 perimeter tooling

> Jennings Vacuum Relays and Variable Capacitors play an important role in the Air Force's "Project Sideband," aimed at constant radio contact on intercontinental missions.

The high standards of reliability and performance required by the Air Force were more than met by Collins Radio Company's new 1 KW SSB system for "Project Sideband." The airborne end of the system, designated ARC-58, includes an automatically tuned antenna coupler. Jennings vacuum relay, RB3, and vacuum variable capacitor, USLS 465, are
 used in the coupler to match the 52 ohm impedance of the equipment with the antenna.

Jennings vacuum components were chosen for their recognized ability to withstand high voltage in

TYPE RB3 vacuum transfer RELAY limited space applications. The Type RB3 vacuum

USL-S. 465
VACUUM
VARIABLE CAPACITOR transfer relay is designed to meet peak voltages of 15 kv and rf currents to 15 amps yet it is only $31 / 4$ inches long. The relay also has an auxiliary set of low voltage contacts for control purposes designed to operate after and release before the high voltage set. The Type USLS 465 is only 5 inches long and will withstand 10 kv at its minimum capacity of 5 mmfd and 5 kv at its maximum capacity of 465 mmfd . Both units will withstand 10 G vibration to 500 cycles, 30 G shock, and 50 hours salt spray.
Send for catalog literature on Jennings complete line of vacuum capacitors and relays.

JENNINGS RADIO MANUFACTURING CORPDRATION 970 McLAUGHLIN AVE., P. O. BOX 1278 SAN JOSE 8, CALIF

Switches anticorrosive

The Daven Co., Livingston, N. J., has developed switches with goldlaminated contacts and slip rings for use in extremely corrosive atmospheres. In tests on the type 11-CM-32 (a single-pole, 32-position, shorting type switch), the unit was suspended in a sulphur atmosphere at 45 C for 245 hours. Initial contact resistance reading before suspension was 0.001 ohm to 0.002 ohm . After completion of the tests, it was still only 0.0021 to 0.0025 ohm. Circle 205 on Reader Service Card.

Digital Voltmeter

covers $0-1,000$ v d-c
Franklin Electronics Inc., Bridgeport, Pa. Model 410 generalpurpose digital voltmeter covers a range of 0 to $1,000 \mathrm{v}$ d-c. It utilizes an all-electronic circuit and provides an accuracy better than 0.5 percent of full scale. A three-column, vertical readout is used. Price is $\$ 490$. Circle 206 on Reader Service Card.

Lacing Cords \& Tapes variety of finishes

Alpha Wire Corp., 200 Varick St., New York 14, N. Y., announces a complete line of 76 round lacing cords and flat braided lacing tapes made of nylon, dacron and fiberglass. Round types have diameters

They look great going out ...but how about 6 months from now?

One sure way to preclude early-hour field failures is to specify performanceproved RCA "VC" (very compact) 110° picture tubes for your TV desigr. But, you ask, how can one say that brand new "VC" Picture Tubes aee "perfcrm-ance-proved"?
Here's why...RCA "VC" 110° types employ the same heater-cathode assembly that has been used and proven for reliability over the past decade in RCA Ticture Tubes. Now commercially available in the shorter "VC" 110° designs are the RCA-17DKP4 and RCA-21EQP4, all-new premium types. They utilize conventional 110° components and circuitry. And, with only slight changes in cocusing-voltage control, they are unilaterally interchangeable with previous 110° types.
You get the performance you design for when you specify RCA "VC" Picture Tubes. Ask your RCA Field Representative for full information. For technical data, write RCA Commercial Engineering, Section E-19-DE4, Harrison, New

2 SHORTER THAN THER PROTOTIFES! New RCA "VC" 110 " Picturettibes o Eer high reliability in slim-style very conpact Sets.

FIELD OFFICES

EAST:
744 Broad Street, Newark 2, N. J. HUmbaldt 5-3900
MIDWEST:
Suite 1154, Merchandise Mart Plaza Chicago 54, III., WHitehall 4-2900 WEST:
6355 E. Washington Blyd.
Los Angeles 22, Calif.
RAymond 3-8361
± 0.026 inch. The unit was within 0.004 inch over the bulk of the reflective surface. A maximum of 0.018 inch variation was found in 2 local surface perimeter areas.

Completed reflector is shown here with the designer

The initial unit weighed 349 pounds. Design refinements have reduced weight by 20 pounds. Republic is currently producing the reflectors at the rate of 2 per month under a production order from Raytheon.

Tape Recorder Speeds Panel Wiring Tests

Recorder being used to check logic panel

Tape recorder simplifies the checking of complicated wiring at Bendix Aviation Corp., Computer division, Los Angeles, Calif. An operator is shown receiving logic panel continuity test instruction from a recorder. Tape calls out which terminals a wire is supposed to connect. The operator uses a foot pedal to advance the tape after each test. Previously, a second man would stand behind the inspector and read test directions from an instruction sheet. With the recorder, it is almost impossible to skip or duplicate a test, according to the firm.

(2) RH-250

TYPE RH POWER RESISTORS

 Wire Wound, Precision, Miniature, RuggedizedTYPICAL DERATING CURVE
The DALOHM line includes precision resistors (Wire wound and deposited carbon): trimmer potentiometers; resistor. networks; collet fitting knots and hysteresis motors designed specifically for advanced electronic circuitry.
If none of the DAL.OHM standard line meets your needs our engineering department is ready to help solse sour problem in the realm of development. engineering, design and production.
Just outline your specific situation.

Designed for the specific application of high power requirements, coupled with precision tolerance. Mounts on chassis for maximum heat dissipation. Operates under severe environmental conditions as outlined in specifications below.

- Rated at 10, 25, 50 and 250 watts.
- Resistance range from 0.1 ohm to 175 K ohms, depending on type.
- Tolerance $0.05 \%, 0.1 \%, 0.25 \%, 0.5 \%$, $1 \%, 3 \%$.
temperature coefficient: Within
± 0.00002 /degree C.
COMPLETE PROTECTION: 100% impervious to moisture and salt spray.

Welded construction: Complete

welded construction from terminal to terminal.
RUGGED HOUSING: Sealed in silicone,
inserted in radiator finned aluminum housing.

SMALLEST IN SIZE: $7 / 16 \times 3 / 4$ to $3 \times 4-1 / 2$ inches.

MILITARY SPECIFICATIONS: Surpasses applicable paragraphs of MIL-R-18546B.

Write for Bulletin R-21

On The Market

Tape Recorder miniature unit

Precision Instrument Co., 1011 Commercial St., San Carlos, Calif., has available a miniature tape recorder with up to 7 channels of transistorized record/reproduce
electronics. Unit measures 12 in . wide, 6 in. deep, and 8 in . high, and weighs only 5 lb . Features include tape speed from 0.05 to $1^{\frac{7}{8}} \mathrm{ips}$; up to 60 hr recording; ability to withstand 10 g vibration and 30 g shock along each axis. Circle 200 on Reader Service Card.

Calorimeter Bridge direct reading

Electro Impulse Lab., 208 River St., Red Bank, N. J. Model CB-16 direct reading calorimeter bridge is completely self-contained with its own circulating system, cooling system and radio frequency
dummy load and requires only connection to the regular power line. The r-f power is read directly on a $4 \frac{1}{2}$ in. meter in watts. A single coax dummy load is available to cover the frequency range from $\mathrm{d}-\mathrm{c}$ to $10,000 \mathrm{mc}$ and for the power range from 1 to $1,000 \mathrm{w}$. Circle 201 on Reader Service Card.

Voltage Indicator programmable

Voltron Products, 1010 Mission St., S. Pasadena, Calif., announces a voltage indicator with an accuracy of 0.1 percent on d-c units, and 0.25 percent on a-c units. Instrument can be programmed either manually or

automatically by the addition of external resistors. The automatic programming can be digital. Sensitivity of the indicator is 1,000 ohms per v. Mirrimum center scale voltage is 1 v , and the maximum is in accordance with customer specifications. Circle 202 on Reader Service Card.

Time Delay Relay

 subminiatureAlto Scientific Co., Inc., 855 Commercial St., Palo Alto, Calif. Model N17 subminiature time delay relay uses all-silicon semiconductor devices for maximum reliability. The time delay is established by RC time constant circuitry, permitting an

Geared Servo Motors sizes 10 and 11

Western Gear Corp., 132 W. Colorado St., Pasadena, Calif., has available size 10 and 11 geared servo motors. The integral gearhead units can be supplied in a wide
range of ratios with reductions as required up to $8,000: 1$. They are available with windings for 26,55 or 115 v a-c 400 cps . They are designed to operate in ambient temperatures from -65 C to +125 C . Motors measure $2^{\frac{17}{6}} \mathrm{in}$. in length. Circle 203 on Reader Service Card.

overall standard accuracy of ± 5 percent. The instrument's time delay is 0.05 sec to 60 sec , preset at the factory. Ambient temperature (operating) range is from -55 C to 71 C . Input voltage is 24 to 32 v d-c, and current drain is 50 ma at 28 v. Circle 204 on Reader Service Card.
(Continued on p 82)

The unseen enemy

How Summers Gyroscope guards against the invisible anti-missile

Vacuum equipment at each of the 240 individual assembly benches helps insure product reliability.

There is an invisible enemy operating in many plants producing the missile components, flight instruments, gyroscopes and other hyper-sensitive devices on which much of America's power for peace depends. The strength of this unseen foe is potentially as great as that of any anti-missile missile.

Destroyer Of Standards

This reliability destroying, efficiency reducing enemy is clust, lint and other foreign matter. The slightest air borne contaminant coming to rest unseen on sensitive mechanisms during assembly can cause serious, even fatal deviations in performance. Production was often slowed until tests showed the system to be free of dust.

Dust Moved But Not Removed

To combat the dust dilemma at the Summers Gyroscope Co. plant in Santa Monica, California, personnel donned lint free jackets and hats - walked to their work benches in shoe bags. Temperature and humidity were controlled in an attempt to achieve an environment completely free of every possible contaminant ranging from stray hairs to perspiration. However, these precautions proved only partially successful when it was found that a manual dust gathering system in the final assembly "clean room" actually recirculated dust instead of removing it.

Double Duty Production Tool

For a solution to the dust menace, Summers called upon U.S.Hoffman Machinery Corp., pioneers in the use of air as a production tool. Hoffman engineers installed a permanent stationary vacuum cleaning system which provided for necessary cleaning operations at all of the 240 indiviclual work benches in the 12,000 square foot final assembly area. Standard attachments made this same system available for cleaning overhead and under foot, all over the plant.

Before And After

Prior to the installation of the Hoffman stationary system, relative cleanliness tests were conducted. A microscopic analysis of slides revealed lint, dust and other foreign matter in excess of quantities allowable to maintain Summers' high precision standards. A short time after the Hoffman equipment was placed in operation, the same tests showed a truly dust free "clean room".

How It Operates

Heart of the stationary cleaning system at the Summers plant is a 60 hp Hoffman centrifugal exhauster producing the vacuum. A centrally located clust separator outside the assembly rooms collects the material with large filtering area insuring thorough cleaning of the air. Hoses for cleaning are inserted into strategically located inlet
valves in the piping system conveniently located throughout the areas to be vacuumed.

Benefits And Advantages

Insuring spotlessly clean work in final assembly and calibration, the Hoffman stationary vacuum system already has paid for itself. It has helped Summers Gyroscope reduce rejects, maintain high reliabilty, increase production and improve employee morale. The Hoffman system enables Summers to meet and exceed specifications in supplying inertial guidance systems, flight instruments and gyroscopes to the U. S. Air Force, U. S. Navy, the Martin Co., McDonnell Aircraft, Douglas Aircraft and the Convair Div. of General Dynamics, among others.

If you have a special cleaning problem in your plant, ask for a free engineering survey to determine the most economical IIoffman system to prevent product contamination, salvage valuable materials, insure better housekeeping and encourage operating efficiency. Write for free booklet - How Stationary Vacuum Cleaning Systems Cut Costs, Increase Plant Efficiency.
U.S. Ioffman Machinery Corp.

Dept. E-2 Air Appliance Division 103 Fourth Ave., New York 3, N. Y.

Note how the Hoffman vacuum system handles both parts cleaning, (rear) and housekeeping chores.

A final assembly area is kept dust-free
by the Ioffman vacuum system.

AIRPAX Coaxial Chopper for Automatic Direction Finding Equipment

AIRPAX TYPE 199 Double-Pole Double-Throw

Designed for use in the 100 to 400 megacycle range, the chopper samples two incoming signal sources for a single load or distributes a low level signal to two loads in a periodic manner. Switching frequency is 100 cycles per second.
The voltage standing wave ratio (VSWR) is held below 1.2 by design of the cavity in which the switching contacts operate.
Type 199 has a phase angle of 30° and a dwell time of 160°. It operates effectively throughout a temperature range of -65 C to +125 C . Available from stock.

AIRPAX ELECTRONICS
I NCORPORATED

Selection of the Right Power Transistor made easy

FOR EXAMPLE:

Need a transistor for an airborne servo amplifier?
Here's how easy it is to select the transistor with optimized characteristics at minimized cost:
(1) You may need 5 watts output - 2.5 watts per transistor. At $70^{\circ} \mathrm{C}$ maximum base mounting temperature, this equals a 10 -watt rating at $25^{\circ} \mathrm{C}$ standard. Pick "'20-Watt Group."
2) Source voltage, 24 volts. With inductive load, peak-to-peak volts approximate 48. Choose "Minimum Breakdown Voltage" of 60 .
(3) Input signal current, 7 ma. Power output of 5 watts divided by .707 times 24 source volts gives $300-\mathrm{ma}$. collector current. "Current Gain" of 43 is required . . . use 60.
4) For a convenient, plug-in standard package, you may want the "Diamond" version.
(5) That is it .. you have picked the CBSHytron LT-5034.
Use these same convenient tables in selecting the exact PNP germanium power transistors you need from CBS-Hytron's most comprehensive line: 3 power groups . . . 6 packages... over 100 EIA, military and special types.
And for complete data on the types you choose, write for Bulletin E-288. Ask our Applications Engineering Department for any special assistance you may want.

Minimum Breakdown Voltaget
40-WATT GROUP
Types Available

	160	LT-5096	LT-5105	LT-5114	LT-5123	Diamond Male Female Diamond Male Female
		LT-5095	LT-5104	LT-5113	LT-5122	
		LT-5094	LT-5103	LT-5112	LT-5121	
	80	LT-5093	LT-5102	LT-5111	LT-5120	
		LT-5092	LT-5101	LT-5110	LT-5119	
		LT-5091	LT-5100	LT-5109	LT-5118	
	40	LT-5090	LT-5099	LT-5108	LT-5117	Diamond
		LT-5089	LT-5098	LT-5107	LT-5116	Male
		LT-5088	LT-5097	LT-5106	LT-5115	Female
		30V	60 V	80 V	100 V	

\ddagger Minimum large-signal current gain: 40 -watt base with emitter open.
group at 1.0 A, 30 -watt group at 0.75 A ,
20 -watt group at 0.50 A .
†Minimum breakdown voltage, collector to
\#Five packages: diamond female industrial with solder lugs or flying leads, and male industrial with solder lugs or flying leads.

More reliable products

through Advanced-Engineering

semiconductors

CBS-HYTRON, Semiconductor Operations, Lowell, Mass. A Division of Columbia Broadcasting System, Inc.
Sales Offices: Lowell, Mass., 900 Chelmsford Street, GLenview 4-0446 • Newark, N. I.. 32 Green Street, MArket 3-5832. Melrose Park, III., 1990 N. Mannheim Road, EStebrook 9-2100 Los Angeles, Calif., 2120 S. Garfield Avenue, RAymond 3-9081.

ADVANCE "NEOMITE"

- smallest relay in the world... in transistor-size can. Use it where there's no space left!

Compact circuitry needs the Neomite - a subminiature relay less than .05 cubic inch in size, and weighing only .09 ounce.

Reliable - recent tests have proven life of $1,000,000$ operations minimum at rated load and $25^{\circ} \mathrm{C}$.

Sensitive - the Neomite operates on only 100 milliwatts power . . . switches . 25 - ampere loads.

Rugged - relay withstands vibration of 10 G's to 500 cps . It's leak tested on RADIFLO equipment to insure long shelf life... produced to military standards under RIQAP program approval.

Versatile - it can be used in printed circuits, or to switch dry circuitry. Neomites are offered in 5 resistance values: 50 ohms... 200, 500, 1000, and 2000 ohms. Contact arrangement is SPDT. Several units can be used to provide a multiple-pole relay occupy. ing small space.

Our Applications Engineering Dept. will be pleased to work with you on your special application problems and on supplying built-up packages of Neomites and other components.

of 0.017 in . to 0.050 in . and tensile strength of 10 to 70 lb . Flat braided types have widths of $\frac{1}{16}$ in. to $\frac{1}{4} \mathrm{in}$., tensile strength of 30 to 250 lb . A variety of finishes for every need and meeting MIL-T-713A are available. Circle 207 on Reader Service Card.

Reference Packs

 highly stableInternational Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif. Complete, miniaturized voltage reference packs capable of maintaining voltage regulation to within ± 0.01 percent are available to replace standard cells or dry cell batteries in all equipment requiring stable voltage references. Units are designed around the highly stable 1N430 silicon reference element. The devices can withstand environmental and temperature extremes, and are operable to +125 C . Circle 208 on Reader Service Card.

Capacitors

Mylar-paper dipped
Electro Motive MFg. Co., Inc., Willimantic, Conn. Life tests show that MPD Mylar-paper dipped capacitors, tested at 100 C with rated voltage applied, have yielded a failure rate of only 1 per 716,800 unithours for $1 \mu \mathrm{f}$. Since the number of
$4400^{\circ} \mathrm{F}$ in Three Minutes

Production Tantalum Sintering Furnace

- Large 6" I.D. $\times 10^{\prime \prime}$ Heating Element
- Automatic Protective Devices
- Operates at $10^{.5} \mathrm{~mm} \mathrm{Hg}$ or with Inert Gas

Connect water, power, air and drains to the NRC Model 2915 and you're in business. That's just the first convenience you'll experience when you use this new refractory-free resistance furnace to produce tantalum capacitors.

Loading, unloading, and cleaning are quick and easy. With one finger you can raise the spring-loaded stainless steel cover and lift out the top heat shield assembly. For cleaning, the heating element and other shield assemblies can be removed in less than 30 minutes. Every square inch of the stainless furnace chamber is accessible. Graphic control panel simplifies operation.
The three-phase cylindrical heating element offers long, trouble-free life because of its rugged construction, three point support, and ample spacing from heat shields.

This furnace will help you make more money. Large capacity, rapid heating and cooling, and high speed evacuation increase productivity. Double glass sight port, interlocked, fail-safe pumping system and power supply protect work and heating element against excess pressure and temperature. Special circuit prevents airreleasing before work is sufficiently cool. Send for more information today!

EQUIPMENT CORPORATION

A Subsidiary of National Research Corp.-Dept. $36 E^{\text {E }}$ 160 Charlemont St., Newton 61, Massachusetts SALES OFFICES: Boston - Chicago - Cleveland - Detroit Houston - Los Angeles. New York. Palo Alto. Pittsburgh

Two-zone $5^{\prime \prime}$ diameter muffle vacuum hear treating furnace. For annealing semiconducters and electronic parts.

Low-cost standard furnace for growing single crystals of silicon, germanium, and intermeralie comgram crystol in about 3 hours.

Belliar and tank vacuum metallizers, dianeters $12^{\prime \prime}$ to $66^{\prime \prime}$, for depositing then fims to precisely controlled thicknusses of
severol sils.

HIGH Accuracy of Reading in the SMALLEST Panel Area

Expanded Scale Voltmeters

Panel
Area
5.5 Sq. In.

Eliminate unnecessary portions of scale for high readability and accurate monitoring over critical a-c or d-c ranges. Ideal for ground base missile control, process control, electromedical equipment, power supplies, computers and wherever voltage fluctuations can affect performance. Accuracy held to $\pm 2 \%$ of voltage spread. Models 1135 and 1145 have scale length and accuracy comparable to conventional $31 / 2^{\prime \prime}$ and $41 / 2^{\prime \prime}$ meters, respectively. Unusually low power drain. Ranges as low as 1.7-2.3 volts without external accessories.

Meters
MODEL 173
Scale Length 3.4"

With accuracy held to $\pm 3 \%$ of full scale deflection and a 300° scale, this meter packs the scale length, accuracy and readability of $41 / 2^{\prime \prime}$ round meters into a $11 / 2^{\prime \prime}$ barrel diameter. Ideal for stationary, marine, portable and air-borne equipment where space, weight and panel area are limited. Waterproof case is black plastic. Standard ranges: 0-100 dcua, 0-500 dcua, 0-1 dcma, 0-10 dcv, $0-30 \mathrm{dcv}$, and $0-500 \mathrm{dcv}$. Dielectric strength: 500 volts at 60 cps for 1 minute. Approximate weight: 6 ounces.

SEE YOUR DISTRIBUTOR... or write for engineering data sheets

HEADQUARTERS FOR MINIATURE COMPONENTS
unit-hours is inversely proportional to the capacitance, $0.1 \mu \mathrm{f}$ capacitors will yield only 1 failure in $7,168,000$ unit-hours. New line includes five case sizes in working voltages and ranges as follows: 200 wvdc, 0.018 to $5 \mu \mathrm{f} ; 400 \mathrm{wvdc}, 0.0082$ to $0.33 \mu \mathrm{f}$; $600 \mathrm{wvdc}, 0.0018$ to $0.25 \mu \mathrm{f} ; 1,000$ wvde, 0.001 to $0.1 \mu \mathrm{f}$; 1,600 wvde, 0.001 to 0.05μ f. Circle 209 on Reader Service Card.

Relays

aircraft type
The Hart Mfg. Co., 110 Bartholomew Ave., Hartford 1, Conn. Diamond H series R / S miniature, hermetically sealed aircraft type relays are now available with AN type connector mounting arrangements. Extremely sensitive, 4 pdt relays with excellent temperature (200 C or higher), shock (50 g or more) and vibration resistances, these relays are used in missiles, ground and airborne computers, jet engine controls, automation control systems, and similar applications requiring utmost reliability. Circle 210 on Reader Service Card.

Ceramic Capacitors ultraminiature

Centralab, a division of GlobeUnion Inc., 900 E. Keefe Ave., Milwaukee 1 , Wisc., has available a
new line of 10 v Ultra-Kap miniature ceramic capacitors. Four capacity values are available: $0.05 \mu \mathrm{f}$ (0.385 in . diameter), $0.1 \mu \mathrm{f}$ (0.385 in. diameter), $0.2 \mu \mathrm{f}$ (0.590 in . diamete:), $0.47 \mu \mathrm{f}$ (0.840 in . diameter) with a production tolerance range of $+80-20$ percent. The units have a minimum leakage resistance of 50 K ohms 10 v d-c. Circle 211 on Reader Service Card.

Stabilized Amplifier high reliability

Applied Technology Corp., 475 Fifth Ave., New York 17, N. Y., announces a modular stabilized amplifier, using no electrolytic capacitors or glow tubes, and with an average open-loop d-c gain of over 50 million, with a minimum of 10 million. Drift is well under $100 \mu \mathrm{v}$ for both long and short term. Output voltage up to $\pm 100 \mathrm{v}$, depending on external load. Circle 212 on Reader Service Card.

Ultrasonic Cleaners

 modular designGulton Industries, Inc., 212 Durham Ave., Metuchen, N. J., has developed a new line of Glennite ultrasonic cleaners featuring modular design and new high temperature ceramic transducers which are side mounted for consistent efficiency of operation. Units feature interchangeable components. Consisting of 13 different cleaners in all, five separate tank sizes and six preset

easy-to-position • never needs adjustment

USES MINIATURE SELENIUM DISC RECTIFIERS -mounted without soldering or wiring. SIMPLE CIRCUIT REARRANGEMENT

remove covers, reposition discs.

MOUNTED ON PHENOLIC GRID

-with 2 sets of vertical and horizontal conductors. HIGH MATRIX CAPACITY
10×30 or 300 miniature rectifier discs.
Ideal for systems requiring translation or various diode matrices, such as:

1. Automatic warehouses-to seek out or sort order parts.
2. Chemical processing plants-all controls made from a central point.
Another fine product for the growing electronics industry backed by Kellogg and International Telephone and Telegraph Corporation.
Write for full details and complete catalog of Kellogg systems and components.

Kellogg Switchboard and Supply Company, 6650 South Cicero Avenue, Chicago 38, III. Communications Division of International Telephone and Telegraph Corporation.
Manufacturers of Relays, Hermetically Sealed Relays,
Switches, Miscellaneous Telephone Type Components

His equipment is the best and he knows why!

Hickory Brand
 Community TV Antenna System Cables provide

\author{

- MINIMUM PICKUP OF EXTERNAL INTERFERENCE
 - maXIMUM attenuation OF RADIATED SIGNALS
}

Use Hickory Brand Community TV Antenna System Cables, specially designed to meet the requirements of community TV systems with maximum effectiveness.
An overall vinyl jacket minimizes cross cable interference and reduces radiation . . . electrical and physical characteristics are unexcelled.
All Hickory Brand Electronic Wires and Cables are quality-engineered and precision-manufactured to meet the most exacting requirements.

Write for complete information on the full line of

Manufactured by
superior cable corporation, Hickory, North Carolina
generators combine to offer industrial users distinct power categories for specific applications based upon the volume and number of pieces to be cleaned. Circle 213 on Reader Service Card.

Servo Indicator fast, accurate

Glumore Industries, Inc., 13015 Woodland Ave., Cleveland 20, Ohio. Model 143 digital servo indicator indicates quickly and accurately forces, fluid flow, weights or rpm's which can be converted into a-c or $\mathrm{d}-\mathrm{c}$ millivolts. Direct reading digital counter eliminates normal human errors due to parallax and interpolation of reading that can result with dials, pointers, and charts. Typical applications are the measurement of fuel flows and thrusts of jet engines on static test stands. Circle 214 on Reader Service Card.

A-C Voltmeter

 plug-in typeMetronix, Inc., Chesterland, Ohio, announces an a-c electronic voltmeter designed for plug-in use with a remote meter. Model SPD22 will measure from 10 mv to 300 v rms full scale sensitivity, depending on the input voltage deter-

RAWSON MULTIMETERS

The ORIGINAL and ONLY MULTIMETERS (registered Trade Mark)

- The convenience of many voltage and current ranges, combined with the ACCURACY of laboratory stdndards.
- Built with meticulous care by master craftsmen.
- Provided with a true MECHANICAL CLAMP which removes the weigh: from the pivots and jewels for transif and storage.
- If YOU want a meter you can rely on for a "standard", use one of our DC MULTIMETERS (501A series), AC THERMAL MULTIMETERS (502A series), or combined
TWIN MULTIMETERS (5012 series).
- A large number of new range combinations are now available.
- Write for NEW BULLETIN.

Rausan
ELECTRICAL INSTRUMENT CO.
fine instruments since 1918
111 Poffer Streef . Cambridge, Mass.
CIRCLE 158 READERS SERVICE CARD

SELECTED
 FORTHE THOR
 SYSTEM

MINIATURIZED COOLING UNITS

from American-Standard Industrial Division

Now part of eight missile systems, packaged American Blower Air - Moving Units help prevent breakdowns from self-generated heat in sensitive electronic equipment. Your choice of numerous sizes and designs. All can be modified to solve your particular problems. Or we can design and build units to fit the requirements of your electronic equipment. For inclividual specification sheets write, detailing your requirements, or send for Bulletin No. 5412. American - Standard* Industrial Division, Detroit 32, Mich. In Canada: American-Standard Products (Canada) Limited, Toronto, Ontario.

[^11] CIRCLE 155 READERS SERVICE CARD

PACKAGED x-band delay unes

SINGLE COILS UP TO 78 feet in length mULTIPLE INTERCONNECTED SYSTEMS ANY LENGTH
Turbo "packaged" delay lines are readily contained in standard test racks. Typical 1000 ft . assembly is 2 ft . dia. x $15^{\prime \prime}$ high. Complete test assemblies, and slotted waveguide antenna assemblies, built to specification. Bulletin on request.

TURBO
 DELAY LINES

Baird-Atomic uses DEKATRON glow transfer tubes in all instruments where counting and read-out are required. A typical application is the Atomic Instrument Line's Model 134 Scaler for ultra-high speed counting of beta and gamma radioactivity . . up to $1,000,000$ counts/minute! The input circuit incorporates a fast, constant-sensitivity Schmitt discriminator driving a beam switching decade with glow tube read-out... 6 DEKATRONS.

You too, can count on DEKATRON for reliable performance. For detailed information request Data Sheet IC 4001.

for MINIMUM SIZE

...the exceptionally reduced sizes and lightweight of Aerovox metallized-paper capacitors makes them ideal for those applications where space is at a premium.

for MAXIMUM

 PERFORMANCE. . . the unique properties of Aerovox metallizedpaper capacitors-ruggedness, reliability, and high safety factor assure you of longer equipment life.
for WIDEST OPERATING TEMPERATURES
... Aerovox metallized-paper capacitors are available in a wide variety of case styles for operation at temperatures ranging from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Complex electronic equipment such as guided missiles, computers, airborne receivers, transistorized radios and color TV have successfully applied Aerovox metallized-paper capacitors. You are invited to consult with our capacitor specialists for experienced assistance in selecting the right metallized-paper capacitor for your particular needs. Complete detailed information, quotations, delivery schedules, available on written request.

AVAILABLENOW...

50 VDC METALLIZED - PAPER

MINIATURECAPACITORS

AEROVOX GORPORATION NEW BEDFORD, MASSACHUSETTS

In Canada: AEROVOX CANADA ITD., Homilton, Ont.

Sample-Hold System high speed

Packard Bell Computer Corp., 1905 S. Armacost Ave., Los Angeles 25, Calif. A solid-state sample and hold system samples a small segment (less than $1 \mu \mathrm{sec}$) of an incoming voltage and holds the result for conversion to digital form or for other purposes. System is constructed upon a single etched board, is self-powered, completely transistorized, and has no moving parts; d-c stabilization is provided by a silicon transistor chopper. Circle 218 on Reader Service Card.

Digital Ohmmeter
 automatic print out

Electro Instruments, Inc., 3540 Aero Court, San Diego 11, Calif. Model DOA 502 digital ohmmeter features the use of transistors and modular construction. The system consists of a 5 -digit switch module, a universal power module, and an electric typewriter control module. Accuracy is 0.01 percent ± 2 digits through its range of 000.01 ohm to 10 megohms. Ranging is automatic. Readout time is 1.5 sec. Circle 219 on Reader Service Card.

Power Supplies transistorized

Electronic Measurements Co. of Red Bank, Eatontown, N. J. By

Solid line indicates the low beta fall-off of one of the new Bendix transistors os compared to that of an ordinary transistor.

NEW BENDIX HICH GAIN INDUSTRIAL POWER TRANSISTORS OFFER FLATTEST BETA CURVE

Now available-a new serics of power transistors with the flattest beta curve in the industry, made possible by an exclusive Bendix process. This new series has very high current gains-up to 200 at 3 Adc -and a 10 ampere peak current rating.

Featuring ten-amp performance at a five-amp price, the $2 \mathrm{~N} 1136, \mathrm{~A}, \mathrm{~B} ; 2 \mathrm{~N} 1137, \mathrm{~A}, \mathrm{~B}$; and $2 \mathrm{~N} 1138, \mathrm{~A}, \mathrm{~B}$ series provide:

$$
\begin{aligned}
& \text { LOW BETA FALL.OFF } \longrightarrow \text { LESS DRIVE AND LESS DISTORTION } \\
& \text { LOW SATURATION RESISTANCE } \longrightarrow \text { GREATER CIRCUIT EFFICIENCY } \\
& \text { VOLTAGE BREAKDOWN RATINGS } \longrightarrow \text { ELIMINATION OF BURN-OUT } \\
& \text { CURRENT GAIN MATCHING } \longrightarrow \text { OPTIMUM CIRCUIT PERFORMANCE }
\end{aligned}
$$

Ideally suited for use in static convertors and regulators, these powerful transistors also have numerous applications in relay replacements and drivers for relays, magnetic clutches, solenoids and other loads requiring high current. In addition, their extremely high current gain and excellent hFE linearity make them the most practical and efficient television vertical output amplifiers.

For complete information, contact Semiconductor products, bendix aviation Corporation, long branch, new jersey.

West Coast Sales Office: 117 E. Providencia Avenue, Burbank, California Midwest Sales Office: 4104 N . Harlem Avenue, Chicago 34, Illinois New England Sales Office: 4 Lloyd Road, Tewksbury, Massachusetts
Export Sales Office: Bendix International Division, 205 E. 42 nd Street, New York 17, New York Canadian Affiliate: Computing Devices of Canada, Ltd., P. O. Box 508, Ottawa 4, Ontario, Conada.

Laboratory employees may meet in full the requirements for the master's degree in the physical sciences, engineering, and mathematics through evening classes offered by the University of New Mexico's Los Alamos Graduate Center. For the B.S. and Ph.D. degrees, some campus residence is required, but credit is given for course work taken at Los Alamos.

Los Alamos Scientific Laboratory has openings for qualified persons in virtually all the scientific and engineering fields related to nuclear research. For employment information write to:/

Personnel Director
Division 58-13
P. O. Box 1663

Los Alamos, New Mexico
means of a few simple external connections, these voltage regulated power supplies may be used for constant current operation. Wide range models cover the following voltage ratings: $0-7,0-14,0-32,0-36$, and $0-60$. Narrow range models cover all popular battery voltages up to 60 . Most models are available in current ratings of $0-2.5,0-5,0-7.5,0-10$, and $0-15$ amperes. Circle 220 on Reader Service Card.

Panel Meters

$6-\mathrm{in}$. units
Assembly Products, Inc., Chesterland, Ohio. D-c linearity within 1 percent of full scale is standard in a new line of 6 -in. panel meters. Model 661 has a wide scale arc of $5 \frac{1}{2}$ in. It may be mounted in any kind of panel because its one-piece steel back shields it from magnetic fields. Sensitivities are the same as those of the smaller API panel meters, beginning with 0 to $5 \mu \mathrm{a}$ or 0 to 5 mv . Minimum practical response time is about 100 millisec. Circle 221 on Reader Service Card.

Latching Relay microminiature

Iron Fireman Electronics Division, 2838 S.E. 9th Ave., Portland 2, Ore., announces a new series of balanced armature dual coil microminiature latching relays. Model R650 relays exceed MIL-R-5757C specs with vibration immunities of $10-55 \mathrm{cps}$ at a total excursion of 0.200 in . and $55-2,000$

TRANSRADIO LTD. 138 a Cromwell Rd. London SW7 ENGLAND anatss: remssen, Lonoon
CIRCLE 157 READERS SERVICE CARD

This is not an offer of these Sectrities for sale. The offer is made only by the Prospectus.
NEW ISSUE
250,000 Shares
Loral Electronics Corporation
Common Stock
(\$1 Par Value)

Price \$12 per Share

Copies of the Prospectus may be obtained in any State in which this announcement is circulated from only such of the underworiters as may lawfully offer these securities in such State.

Kidder, Peabody \& Co.
W. E. Hutton \& Co.

Paine, Webber, Jackson \& Curtis
Clark, Dodge \& Co. Dominick \& Dominick Hemphill, Noyes \& Co.
Hirsch \& Co. Kohlmeyer \& Co. Newhard, Cook \& Co. Mitchum, Jones \& Templeton Schwabacher \& Co.

[^12]Regardless of size, weight, or shape,

A SYNONYM FOR QUALITY, STABILITY AND DEPENDABILITY IN CRYSTALS

a McCoy crystal will deliver the utmost in stability under extreme conditions of shock and vibration.

Frequency range of M-1, M-4 and M-5; 200 kc. to 200 mc : M-20, M-21 and M-23;
3.0 mc. to 200 mc.

ELECTRONICS CO.

MT. HOLLY SPRINGS, PA. Dept. E-5
Phone HUnter 6-3411
transistorized multiplexer, model 115. Maximum rate of multiplexing is 20,000 samples per sec. Ten separate channels can be sampled at a rate of 2,000 samples per sec per channel. Unit can be driven either externally or internally. The number of channels, the frame rate and sample rate, are crystal controlled, and can be selected by rotary switches located on the front panel of the multiplexer. Circle 224 on Reader Service Card.

D-C/A-C Chopper microminiature

Rawco Instruments, Inc., 3527 West Rosedale, Ft. Worth 7, Texas. Housed in a ${ }^{\frac{5}{16}}$ in. by $\frac{1}{2} \mathrm{in}$. by $\frac{5}{8}$ in. metal casement, this d-c/a-c chopper features an extremely low noise level; over $2,000 \mathrm{hr}$ life; -65 C to 125 C temperature range; a hermetic sealed contact closure, void of organic materials; and 150 electrical degrees minimum dwell time. The spdt units are available from stock for $6 \mathrm{v}-400 \mathrm{cps}$ excitation and on special order, in preselected frequencies from 0 to $1,800 \mathrm{cps}$. Circle 225 on Reader Service Card.

Attenuators

rotary switched
Kay Electric Co., 14 Maple Ave., Pine Brook, N. J., announces three new attenuators. Designated as model 40-0 at nominal 50 ohm input and output impedance, model 41-0 at 70 ohms, and model 42-0 at 90 ohms, they provide attenuation

TRANSISTORIZED

 TUNING FORK FREQUENCY STANDARDS
TYPE MAFC - Frequency Standard

- Frequency Range Available: 360 cps to 4 kc
- Tolerances $\% \pm: .0 .2,0.05,0.02,0.01,0.005 *$
- Temperature Ranges: - 20 to $+71^{\circ} \mathrm{C}$

$$
\begin{aligned}
& =55 \text { to }+100^{\circ} \mathrm{C} \\
& -55 \text { to }+125^{\circ} \mathrm{C}
\end{aligned}
$$

- Power Supply Voltage: 12 or $28 \mathrm{vdc} \pm 15 \%$
- Size: $15 / 8^{\prime \prime} \times 15 / 8^{\prime \prime} \times 21 / 4^{\prime \prime}$
- Weight: 8 oz .

TYPE AFC - Frequency Standard

- Frequency Range Available: 360 cps to 4 kc
- Tolerances $\% \pm: 0.2,0.05,0.02,0.01,0.005^{*}$
- Temperature Ranges: -20 to $+71^{\circ} \mathrm{C}$
-55 to $+100^{\circ} \mathrm{C}$
-55 to $+125^{\circ} \mathrm{C}$
- Power Supply Voltage: 12 or $28 \mathrm{vdc} \pm 15 \%$
- Size: $21 / 8^{\prime \prime} \times 21 / 8^{\prime \prime} \times 31 / 4^{\prime \prime}$
- Weight: 13 oz.

TYPE MAFCD - Frequency Standard

- Frequency: 60 cps
- Tolerances $\% \pm: 0.2,0.05,0.02,0.01,0.005 *$
- Temperature Range: - 55 to $+71^{\circ} \mathrm{C}$
- Wave Shape: Sine w/less than 1% harmonic distortion
- Power Supply Voltage: 10 to 14 vdc
- Size: 4 $466_{6}^{\prime x} \times 1 / 16^{\prime \prime} \times 41 / 16$
- Weight: 4 lbs .

TYPE MFB - Frequency Divider

- Ratios Available: 2:1, 4:1, 5:1,8:1, 10:1, 16:1
- Temperature Ranges: -20 to $+71^{\circ} \mathrm{C}$

$$
-55 \text { to }+100^{\circ} \mathrm{C}
$$

- Power Supply Voltage: 12 or $28 \mathrm{vdc} \pm 15 \%$
- Size: $15 / 8^{\prime \prime} \times 15 / 8^{\prime \prime} \times 2 \frac{1}{4}{ }^{\prime \prime}$
- Weight: 6 oz .

TYPE MFS - Frequency Standard for Laboratory or Field

Type MFS is a small, lightweight frequency standard that can replace units many times its size without sacrificing frequency stability. Internal batteries and provisions for external power supply make the unit ideal for either laboratory or field applications.

- Frequency Ranges Available: 50 cps to 4 kc
- Frequency Stability: 2 parts in $10^{6} /$ per month
- Temperature Range: -20 to $+71^{\circ} \mathrm{C}$
- Size: $37 / 8^{\prime \prime} \times 5 / 16^{\prime \prime} \times 55 / 6^{\prime \prime}$ - Weight: 2 lbs.

TYPE MLS - ${ }^{\text {LLaboratory }-~}$

Frequency Standard

Type MLS is an extremely high stability laboratory frequency standard. The clock on the panel facilitates easy checking of stability.

- Frequency Ranges Available: 50 cps to 4 kc (Multiple Taps Optional)
- Frequency Stability Available: 5 parts in 10^{7}
- Output: 10 watts at specified frequency
- Input: $115 \mathrm{v}, 50$ cycles to 400 cycles
- Size: $9^{\prime \prime} \times 10^{\prime \prime} \times 7^{\prime \prime} \quad$ - Weight: 15 lbs.

A wide variety of units are designed to comply with the most severe military specifications.

Manufactured by

ACCURATE INSTRUMENT CO.

FIELD ENGINEER'S TUBE TESTER

7-range Gmscale to 60,000 micromhos. Line voltage and grid bias voltages are metered separately. 4 signal voltage levels. New VR tube tests. Highly accurate shorts or leakage test, gas test and future tube life test. Meets Western Electric specifications.
$\$ 425$
MODEL 1575

MOST ACCURATE LABORATORY TYPE TUBE TESTER

All voltages and currents are variable, electronically regulated and metered -9 separate meters-to permit tube tests under handbook conditions. Accuracy to $11 / 2 \%$ available through use of small Null Indicator accessory-up to 60,000 micromhos in 11 ranges.
$\$ 1175$

CARDMATIC ${ }^{\circledR}$ AUTOMATIC TUBE TESTER

Laboratory accuracy-within 3% of best known standards.
Automatically provides trillions of switching combinations for accurate test conditions.
Automatic decade systems also permit special purpose tests.

- 1000 filament voltages - 250 Gm ranges - 1000 self-bias conditions - 500 current sensitivities - Instant shorts and leakage tests - Selfcalibrating.

$\$ 499$

from 1 db to 119 db in $1-\mathrm{db}$ steps. They operate from d-c to 500 mc , and are useful up to $1,000 \mathrm{mc}$. Attenuation is controlled by two concentrically placed rotary switches graduated in 1 db and 10 db steps. Circle 226 on Reader Service Card.

D-C Accelerometers need no amplifiers

Wiancko Engineering Co., 255 N. Halstead, Pasadena, Calif. Combined in these instruments are a solid-state carrier oscillator and ring demodulator with a variablereluctance pickup. This results in compact transducers utilizing d-c excitation and providing d-c output. Advantages include continuous resolution, $0-5 \mathrm{v} \mathrm{d}$-c output at constant impedance, low hysteresis, excellent linearity, and high natural frequency. Circle 227 on Reader Service Card.

Power Resistors
 for flight use

Electro-Flex Heat, Inc., 83 Woodbine St., Hartford 6, Conn. Light weight and small space requirements of new design of power resistor make possible substantial weight savings in aircraft and missile electronic apparatus. Units are designed to be mounted in direct contact with the inner surface of the chassis or case, thus 25 to 40 percent of the heat generated is directly emitted to the atmosphere. Power ratings range from 40 w to 200 w . Electrical insulation is sili-

CIRCLE 161 READERS SERVICE CARD

A LITTLE PUNCH WITH EMC IDEAS

WHITNEY-JENSEN
MAMD METAL PUNOH
(BENCH OR FLOOR MODEL)
BUILT LIKE A PUNCH PRESS

CAPACITY MILD STEEL
$2^{\prime \prime}$ THRU 14 GA.
$1 / 4^{\prime \prime}$ THRU $3 / 16^{\prime \prime}$

WILL TAKE MANY OF OUR SPECIAL
PUNCH AND DIE SETS

Wrife for

> Literature

WHITNEY METAL TOOL CO. 722 Forbes St., Rockford, III. Since 1910

500-2500 BAUD OPERATION OVER VOICE BANDWIDTH CIRCUITS

TESTED PERFORMANCE

Error Rate <1 in 10^{4} for:

- Signal to Gaussian Noise of 12 db
- Impulse Noise Peak to RMS Signal of 20 db

CONDENSED SPECIFICATIONS

SPEED 1500, 1667, 2500 baud with internal synchronization; 500 2500 baud with external syn-

chronization.
 DELAY Adjustable from 0.8

EQUALIZATION to 3.5 ms ; frequency of max. delay settable from 1 to 2 kc . TRANSMITTER +5 volts min., +50 INPUT LEVEL volts max., groundreferenced digital information at the bit rate.
TRANSMITTER
OUTPUT LEVEL
RECEIVER
INPUT LEVEL $\quad-40$ to +10 dbm (Au-
RECEIVER +25 volts $\pm 10 \%$,
RECEIVER ground-referenced in-
OUTPUT LEVEL formation at the bit

CIRCLE 164 READERS SERVICE CARD

BEST TIP MILEAGE!

 Outlasts Copper Tips 20 to 1 Doubles the Life of Clad Tips

TOP PERFORMANCE, TOO!

Multicoated for extra long wear by a new exclusive process. Solder adheres only to working surface at point of tip - prevents solder dropping on components or creeping into tip hole. Eliminates costly tip maintenance.

heXACON ELECTRIC CO.
130 WESt CLAY AVENUE ROSELIE PARK, NEW JERSEY

These circuit selectors or stepping relays, model BD2, perform dependable, remote switching jobs such as, stepping . . . counting . . . programming . . . circuit selecting . . . sequencing . . . and homing.
check these features: Small and light ... the four wafer selector switch is only $13 / 8^{\prime \prime}$ wide, $229 / 3 z^{\prime \prime}$ long and weighs only $31 / 2$ oz. . . . available with $1,2,3$, or 4 switch wafers . . . 12 positions with silver alloy contacts . . . 12 position floating ratchets . . . anti-overthrow latch . . . flange mounting a choice of ratings from 3 to 300 volts D.C. . . . available in hermetically sealed models . . . and designed to meet all applicable environmental tests of MIL-E-5272B.

*

immediate delivery from stock of standard model. part No. S-10019-004... 3 pole, 12 throw switching, 12 position, notch homing, self-interrupted, 28 volts D.C., flange mounting

Qheite taday. . . for engineering and stock model
information . . . Bulletins 55852 and $5585 T 2$

123 WEBSTER ST., DAYTON 2, OHIO

1 NC .
cone rubber which is operable continuously at 450 F. Circle 228 on Reader Service Card.

Sensitive Indicators
 expanded line

Engineered Electronics Co., 506
E. First St., Santa Ana, Calif. The Miniseg line of sensitive indicators, incorporating built-in high-sensitivity transistorized driver circuits to operate directly from low-level signals, has been expanded to include new filament-type, high-tem-perature-type, memory-type, and plug-in-type units, as well as miniature and subminiature designs. Circle 229 on Reader Service Card.

D-C Multimeter accurate unit

Millivac Instruments Division of Cohu Electronics, Inc., P.O. Box 997, Schenectady, N. Y. In one integrated instrument the model MV77 A d-c multimeter combines accurate, sensitive measurement of millivolts and microamperes with an accurate, linear-scale ohmmeter. Measuring accuracy is 1 percent of

Radar Challenges
 Modern Technological Warfare

Creative-Thinking Engineers Needed To Design and Develop Radar Systems

 Crosley's heavy surveillance radar program covers all aspects -from the original advanced concepts to the production of equipment.Crosley has interesting assignments in the fields of ECM, CCM, radar receivers, transmitters, indicators, micro-wave, plumbing, antennas, wave propagation, computers, primary power systems, and all aspects of radar equipment.

Mr. James T. Dale
Director, Scientific and Technical Personnel
Avco/Crosley

Technological advances brought radar forth as a miracle weapon during World War II - since then, other technological advances have threatened to limit this miraculous power. Countermeasures have been developed to decrease and nullify its effectiveness, aircraft speeds have increased, small air vehicles have been developed that require long-long range detection and tracking. Radar techniques must be developed to meet and counteract the technological advances.

AVCO/Crosley Radar Engineering is answering this challenge with new radars designed for longer range, greater accuracy, faster data handling, and greater operational capability in adverse environments.

An outstanding contribution of AVCO/Crosley radar engineering, the currently operational AN/MPS16 Height Finder Radar, is being followed by other Crosley equipments of greater stature, including the AN/FPS-26.

The challenges of tomorrow must be anticipated and coped with today -you can be sure that AVCO/Crosley engineering is working hard to get timely answers

Dr. Wright takes the

What is your present work in electronics, Dr. Wright? Vice President In-Charge-of-Operations-and-Engineering at Tung-Sol Electric Inc,, a leading manufacturer of electron tubes, semiconductors, tv lubes, lamps, power supplies, flashers, selenium and silicon rectifiers.

How many people are at Tung-Sol? Approximately 6,000.
Briefly, what is your background in electronics? Tu'enty-two years with Tung-Sol.
How many years have you been reading electronics? It goes back over twenty years..
Why have you continued to read it?
After all, this is a very technical and rapidly changing industry, I don't know which is more important, the editorial or advertising. They both help us to keep up with what's going on in the world of electronics.

It has been said that leading publications build a "personality" for themselves. This is a quality that cannot be measured with facts and statistics. How would you characterize the "personality" of electronics magazine?

It's not too highbrow, yet it's not a gossip sheet. It's an excellent middle-of-the-road job of reporting technical and business developments. electronics does a doun-to-earth reporting job.

If it's about electronics, read it in electronics.

electronics

Published WEEKLY plus the mid-year electronics BUYERS' GUIDE A McGraw-Hill Publication - 330 West 42 nd Street, New York 36, N. Y.
full scale on all voltage ranges, 1 percent of full scale on all ohm measuring ranges and 3 percent on all current ranges. The instrument has a total of 39 measuring ranges $0-1 \mathrm{mv}$ through $0-1,000 \mathrm{v}, 13$ current ranges $0-1 \mu \mathrm{a}$ through $0-1$ ampere, and 13 ohmmeter ranges $0-1$ ohm through 0-1 megohm. Circle 230 on Reader Service Card.

Weld-Timer

1-kva capacity

Federal Tool Engineering Co., Cedar Grove, N. J. The T3 transistorized synchronous weld-timer of 1-kva capacity is especially suited for precision welding where contact resistance varies greatly. Welding time is adjustable by a simple rotary switc' from $\frac{1}{2}$ cycle (approximately 8 millisec) to 10 cycles (approximately 160 millisec) of line frequency. Circle 231 on Reader Service Card.

Oscilloscopes rugged and compact

Sierra Electronics Corp., 3885 Bohannon Drive, Menlo Park, Calif. Model 218A oscilloscopes are especially designed for continuous function monitoring of as many as seven channels simu1taneously in one rack unit. Rugged and compact, the scopes provide a convenient means for viewing and evaluating complex voltages. Designed primarily for tape recording and data handling systems, they are well suited for measuring and analyzing mechanical quantities through a transducer. Circle 232 on Reader Service Card.

200-4000 MCS.

DESIGNED FOR USE whenever extremely accurate RF power terminations are required. This laboratory type Coaxial Tuner will tune out discontinuities of 2 to 1 in coaxial transmission line systems or adjust residual VSWR to 1.000 of loads, antennas, etc. May also be used to introduce a mismatch into an otherwise matched system.
M. C. Jones Coaxial Tuner is designed for extreme ease of operation, with no difficult laboratory techniques involved. Reduces tuning time to a matter of seconds. Graduations on carriage and probe permit resetting whenever reusing the same termination.

For more information on Tuners, Directional Couplers, R. F. Loads, etc., please write for 68-page Catalog No. 12 or see Electronics Buyers Guide or Electranic Engineers Master.

High Temperature MAGNET WIRE

WITH

TEFLON MAGNET WIRE TEMPERED TEFLON
MAGNET WIRE

SILICONE MAGNET WIRE mica magnet wire

ISONEL 175 MAGNET WIRE

* DuPont's TfE Resin

SUPER-TEMP can supply with unprecedented speed and volume, the finest quality Teflon* insulated magnet wire for continuous operation up to $+260^{\circ} \mathrm{C}$ and to considerably higher ranges for shorter operating periods. Rigid inspection standards include a multitude of tests for physical, environmental and electrical characteristics.

NEED IT FAST? . . . SEE SUPER-TEMP FIRST!

Also Manufacturers of

lead wire - miniature cables - jumbo Cables lacing cords - tubing - specialty wire - teflon tapes

Superteup

American Super-Temperature Wires, Inc.

8 West Canal Street, Winooski, Vermont - University 2-9636
General Sales Office: 195 Nassau St. * Princeton, N. J. - Walnut 4-4450
Agents in principal electronic manufacturing areas

Literature of

MATERIALS

Clad Metals. Metals \& Controls Corp., Attleboro, Mass. A new 8page technical data bulletin, IND19, describes 5-layer copper-cored Aliron for amplifier anodes and 3-layer copper-base Aliron for rectifier anodes. Circle 250 on Reader Service Card.

COMPONENTS

Wire-Wound Pot. Maurey Instrument Corp., 7924 S. Exchange Ave., Chicago 17, Ill., has available a complete catalog of single-turn wire-wound precision potentiometers from $\frac{1}{2}$ in. diameter to 3 in. diameter. Circle 251 on Reader Service Card.

Rotary Switch. Chicago Dynamic Industries, Inc., 1725 Diversey Blvd., Chicago 14, Ill. A new brochure covers a unique rotary switch with wafers which lift out instantly without unsoldering or disassembling for fast, easy cleaning or instant replacement. Circle 252 on Reader Service Card.

Electrical Connectors. The Deutsch Co., 7000 Avalon Blvd., Los Angeles 3, Calif. A recent Hot Sheet describes the DS series miniature connectors which feature insertable contacts, silicone inserts, and crimp-type terminations replacing the solder pots. Circle 253 on Reader Service Card.

EQUIPMENT

Oscillographic Recording System. Sanborn Co., 175 Wyman St., Waltham 54, Mass., has published literature describing model 350 direct-writing 6- or 8-channel oscillographic recording system. Circle 254 on Reader Service Card.

Noise Figure Meter. HewlettPackard Co., 275 Page Mill Road, Palo Alto, Calif. Volume 10 No. 6-7 of the Journal describes the new model 343A vhf noise source which provides an essentially constant output noise power over the

the Week

range from 10 to 600 mc for use in testing 50 -ohm systems. Circle 255 on Reader Service Card.

D-C Measurement. Kin Tel, 5725 Kearny Villa Road, San Diego 11, Calif. A single-page bulletin discusses instruments for measuring microvolts to kilovolts, micromicr:oamperes to amperes with stability, accuracy and simplicity. Circle 256 on Reader Service Card.

Instruments. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Included in Vol. 33 No. 3 of the Experimenter are descriptions of the new type 1650-A universal impedance bridge and the type $1205-\mathrm{B}$ adjustable regulated power supply. Circle 257 on Reader Service Card.

Magnetic Tape Recorders. BJ Electronics, Borg-Warner Corp. 3300 Newport Blvd., Santa Ana, Calif. Five new instrumentation bulletins technically describe a series of ruggedized, miniaturized magnetic tape recorders designed for use in rockets, missiles and other airborne applications. Circle 258 on Reader Service Card.

FACILITIES

Ultrasonics. Acoustica Associates, Inc., 26 Windsor Ave., Mineola, L. I., N. Y. Ultrasoundings is the name of a new quarterly magazine containing information of general interest in the ultrasonics field as well as about applications of ultrasonics by industry, service organizations, medical establishments and the military. Circle 259 on Reader Service Card.

Facilities Report. The Rex Corp., Hayward Rd., West Acton, Mass. A 25th anniversary facilities report details the growth of the organization from a single product to hundreds of highly-specialized wire, cable and plastic products used in the missile, aircraft, electronics and communication industries. Circle 260 on Reader Service Card.

CUT LaB EQUIPMENT COSTS IN HALF

Heathkits give you twice as much equipment

The Heainkit Model V-7A is the world's largest selling VTVM. Precision 1% resistors are used in he voltage divider circuit for high occard simplities assembly and uts construction time in hall. Price of this outstanding kit is only $\$ 25.95$.

The Heathkit Model PS-4 Variablo Voltage Regulated Power Supply Kit is another outstanding ex.
ample of Heath Company engi. neering ingenuity. Truly profes. siona, in performance as weil as appearance yet it costs only $\$ 54.95$.

Stretch your test equipment budget by using HEATHKIT instruments in your laboratory or on your pro. duction line. Get high quality equip. ment without paying the usual premium price by letting engineers or technicians assemble Heathkits between rush periods. Compre. hensive step-by-step instructions insure minimum construction time. You'll get more equipment for the same investment and be able to fill any requirement by choosing from more than 100 different electronic kits by Heath. These are the most popular "do-it-yourself"' kits in the world, so why not investigate their possibilities in your business. Send today for the free Heathkit catalog!

ALL PRICES F.O.b. BENTON harbor, mich. Prices and specifi. CATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

FREE CATALOG

Mail the coupon today for the latest catalog describing over 100 easy-to-build, high quality electronic kits.

HEATH COMPANY

[E) a subsidiary of Daystrom, Inc.
Benton Harbor 14, Michigan
Please send the latest Free Heathkit Catalog.

NAME

ADDRESS
CITY ZONE STATE

Designing reliability into electronic components and instrumentation is Borg Equipment Division's business. Borg's reliable engineering, research and production facilities are at your service for commercial or military projects. Bring your component reliability problems to Borg. You'll enjoy working with our cooperative, creative engineering staff. The result will be a sound, practical and reliable solution at a considerable saving of time and money. Here are just a few of the products manufactured by Borg . . .

FREQUENCY STANDARDS
AIRCRAFT INSTRUMENTS
POTENTIOMETERS
MULTI-TURN COUNTING DIALS
FRACTIONAL H.P. MOTORS
SPECIAL DESIGNS

WRITE FOR COMPLETE ENGINEERING DATA

BORG EQUIPMENT DIVISION
CIRCLE 165 READERS SERVICE CARD

Transform Method in Linear System Analysis

By John A. AsEltine
McGraw-Hill. Book Co., New York, 1958, 299 p, $\$ 8.50$.

THis welcome addition to the McGraw-Hill series in Electrical and Electronic Engineering describes an interesting excursion through the realm of linear analysis via the transform method. Written as a senior-graduate level test, it precludes that the reader is rather familiar with the classical solution of linear differential equations to fully appreciate the advantages that may accrue by utilizing transform techniques. Although concise and fleeting in spots, the volume is very well written and easy to read. It manages to get across many complicated concepts in a very clear manner.

In addition to properties and procedures involving the Laplace transform, inverse transform, Fourier series, Fourier transforms, Z transforms and Mellin transforms, useful knowledge is described relating to the analysis of electrical networks, mechanical systems and feedback systems. Special emphasis is made of the impulse function, the system function and random inputs. There are numerous illustrative examples throughout the text.

The book is well suited as a classroom and reference text as it covers a great number of topics and each chapter has many interesting problems. However, minor attempts are made to augment the abstract mathematical operations with visual interpretations. Also, references to other works are sparsely presented. Despite these few shortcomings, the book should prove to be of undoubted value to many readers.Anthony B. Giordano, Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

THUMBNAIL REVIEWS

A Compendium of Mathematics and Physics. By D. S. Meyler and O. G. Sutton, Van Nostrand Co., Inc., Princeton, N. J., 1958, 384 p, $\$ 5.00$. Basic facts of mathematics and physics are implemented with brief, but adequate, explanations of re-

NEW

PROGRAMS

have created

IMMEDIATE OPENINGS

for top quality engineers with experience in -

Preliminary Analysis
Aerodynamics
Flight Dynamics
Structural Dynamics
Aero-Thermodynamics
Flight Simulation
Space Communication
Space Instrumentation
Radar Systems \&
Techniques
Electronic
Countermeasures
Guidance
Instrumentation
Electronics Test
Design
Computing
Reliability
Human Factors

Well paid jobs for qualified people.
Relocating expenses paid. For information on these and other engineering positions, write:
B. J. Ralph, Dept. 45]-E Missile Division North American Aviation, Inc. 12214 Lakewood Blvd. Downey, California
MISSILE DIVISION $\frac{\text { 雷 }}{}$ north american aviation, inc.

High-Quality Sound Reproduction. By J. Moir, Macmillan Co., New York, 1958, 591 p, $\$ 14.00$. This excellent volume is one of the few, on the subject, written for the engineer. Reasons for choice of designs are covered along with the actual design information.

Man's World of Sound. By J. R. Pierce and E. E. Davicl, Jr., Doubleday \& Co., Inc., Garden City, N. Y., 1958, $287 \mathrm{p}, \$ 5.00$. "This book brings together from a wide variety of sources material concerning man's speech and hearing and their use in that code of communications which is language." Chapter headings include: The Power of Sound; Waves, Frequencies and Resonators; Giving Form to Sounds; The Acoustic Nature of Speech; What Do We Hear? ; Ears to Hear With; Nerves and the Brain; Defects of Speech and Hearing; Intelligibility; Quality and Fidelity; Automata and Talking Machines; Efficient Communication and Intelligent Machines. The authors have drawn freely on recent work done at the Bell Telephone Laboratories.

Basics of Digital Computers. By J. S. Murphy, John F. Rider Pub., Inc., New York, 1958, 416 p, $\$ 6.95$. This three-volume set, though written for technicians, should be of value to engineers wishing to familiarize themselves with basic computer theory. Volume one covers computer arithmetic, data representation, and/or circuitry and control; volume two discusses logical elements, circuits; volume three covers large system aspects of computers, including memories, reading, writing, timing, data processing, etc.

Research and Development of New Design Method for Power Transformers. Armour Research Foundation, 10 W 35 St., Chicago 16, Ill., 1956, 292 p, $\$ 10.00$. Sponsored jointly by the Signal Corps Engineering Labs and Wright Air Development Center, this report presents extensive design information for unbalanced magnetization, currentlimiting, vibrator-supply, low-capacitance filament and instrument transformers. Detailed examples are given for the design of each type.

Satellites and Space Flight. By E. Burgess, The Macmillan Co., New York, 1958, 159 p, $\$ 3.95$. Details of construction, instrumentation, launching, transmission of data and flight orbit of earth satellites are covered along with. logical and physiological problems concerned with manned rockets and establishment of manned stations in space. Expeditions to the moon and planets are also considered.
sults; proofs are omitted. Both cgs and rationalized mks units are employed.

TFEE NWET SIMPLEX

A 3/16" or Iarger O.D. Universal Joint featuring:

- Minimum Static Torque Rating of $\mathbf{2 5 0}$ inch-ounces
- Non-magnetic stainless steel forks and bronze ball
- New simple 3-part design
- Minimum back lash

Newest addition to the Curtis line is the Simplex, designed to fill the need for a small-size universal joint with a high Static Torque Rating. The Simplex is available in $3 / 16^{\prime \prime}$ and larger outside diameter. Made of non-magnetic material and incorporating a new design inherently strong in torque, the Simplex is particularly well adapted to electronic instrumentation.

simplex specifications

Catalog Number	S3	s3b	S7	578
Static Torque Rating	$\begin{gathered} 250 \\ \begin{array}{c} 250 \\ \text { Inch- } \\ \text { Ozs. } \end{array} \end{gathered}$	$\begin{array}{\|c\|} \hline 250 \\ \text { Inch- } \\ \text { Ozs. } \end{array}$	$\begin{aligned} & 200 \\ & \text { lnch- } \\ & \text { Libs. } \end{aligned}$	$\begin{aligned} & 200 \\ & \text { Inch- } \\ & \text { Lbs. } \end{aligned}$
O.D.	3/16"	3/16"	7/16"	7/16"
Bore	None	$\begin{aligned} & 3 / 32^{\prime \prime} \\ & \text { Dia. } \\ & 5 / 16^{\prime \prime} \\ & \text { Deep } \end{aligned}$	None	
Total Length	1"	1 "	$2^{\prime \prime}$	2"
Max. Angle of Operation	20°	20°	20°	20°

CURTIS ©

UNIVERSAL JOINT CO., INC.
19 Birnie Ave., Springfield, Mass. As near to you as your telophone

FROM BORG A New
LIGHTWEIGHT MICRODIAL!

You asked for it . . . here it is! The all-new, lightweight Borg Microdial. An anodized aluminum control knob makes this dial light, bright and more attractive. Three rows of knurled bands make setting quick, easy. Wear and corrosion resistant . . . meets fifty-hour salt spray requirements. Presently available in 3 -digit, 10 -turn models with or without finger-tip brake which locks settings in place. The aluminum control knob is mounted directly on the shaft to be controlled this prevents backlash. Inline digital presentation makes the easiest dial reading ever. See your Borg "Tech-Rep" or write direct for more information.

MICROPOTS - MICRODIALS - MOTORS

BORG EQUIPMENT DIVISION
AMPHENOL.BORG ELECTRONICS CORPORATION JANESVILLE, WISCONSIN CIRCLE 167 READERS SERVICE CARD

Hoffman Building New Plant

Construction of a $\$ 1.5$-million Los Angeles plant for Hoffman Electronics Corp. began recently on an 18 -acre site in suburban El Monte, Calif.

On completion, scheduled for Sept. 1, the 109,000 -sq-ft facility will serve as administrative headquarters for the semiconductor division, now in Evanston, Ill., and for producing solar energy conversion devices. The Evanston plant will continue its solar cell production, but also will be in position to expand production of diodes and rectifiers in response to a recent sharp upturn in demand, firm says.

Techniques for mass producing solar cells, which convert sunlight into electricity, were recently perfected by the company. The new plant, coupled with the Evanston output, will increase Hoffman's production of solar energy converters to 500,000 a month.

The West Coast facility, with a laboratory-type "white room" interior equipped with the latest air purification and temperature controls, also will provide for future diversification of the division's semiconductor product line.

nounces the appointment of David Novick to the post of project engineer. He will be responsible for the development of test equipment, new products, and research and development in the prototype laboratory.

Novick was previously senior engineer in the industrial products division, ITT. Prior to that, he was associated with the computer division of the Underwood Corp., CBSColumbia and the Square Root Mfg. Co.

ITT Announces Team Project

Novick Takes

Position at ESC

ESC Corp., Palisades Park, N. J., manufacturer of delay lines, pulse transformers, shift registers and associated pulse components, an-
support system (480-L).
This project will be managed by a four-company team consisting of ITT as senior member, with RCA as principal associate and Hoffman Electronics Corp. and Hughes Aircraft Co. as principal subcontractors.

The system will provide for improvement and modernization of present world-wide, long-range, point-to-point, air-to-ground and ground-to-air commınications systems known as the Air Force Communications Complex or AIRCOM.

ITT's new unit, which will have its headquarters at the Garden State Plaza, Paramus, N. J., will be headed by Ellery W. Stone, chairman of the board of American Cable and Radio Corp., an ITT associate.

North Hills
 Appoints Geffe

North Hills Electric Co., Inc., Mineola, N. Y., announces the appointment of Philip R. Geffe as chief filter engineer. He had been chief filter engineer at Triad Transformer Corp. and director of engineering at Hycor.

North Hills filter division specializes in advanced filter design, wideband transformers, and production of audio, telemetering and r-f filters.

Magnetico Names Division Manager
Edward J. DaParma has been appointed manager of the T. A. Division of Magnetico, Inc., East North-

USECO's expanded new facility in Van Nuys, California provides complete production capabilities for design, development and manufacture of printed circuit boards, plus component assembly - all under one roof.

If you require precision printed circuitry, you will find use for a copy of "Printed Circuits." This brochure de-
scribes USECO's processes, materials, tolerances and component assembly. USECO printed circuits can often effect for you economies of money and space - with improved reliability-under rigid in-plant Quality Control.

Design assistance is yours for the asking. Just let us know your requirements. Write to Box 2368, Van Nuys, Calif.

LITTON INDUSTRIES

U. S. ENGINEERING CO. DIV.

13536 Saticoy Street • Van Nuys, California

Acme Flectric CONSTANT VOLTAGE STABILIZERS

 Provide $\pm 1 \%$ Regulation,

 Provide $\pm 1 \%$ Regulation, Overload Protection

This new series of Acme Electric constant voltage stabilizers include all the features engineers requested in custom made units. Designed to stabilize a voltage which may vary over a range as much as 30%. Stabilization response is practically instantaneous; inductive surges or other causes of fluctuation are corrected within $1 / 30$ of a second. Under overload or short circuit condition, output voltage automatically drops to zero thus limiting the current and providing full protection.

MEDALIST*meters
Combine increased readability with attractive color styling. ASA/MIL $11 / 2^{\prime \prime}$, $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ mounting. Up to 50% longer scale in same space as conventional types. Standard and special colors. Bulletin on request. Marion Instrument Division, Minneapolis-Honeywell Regulator Company, Manchesfer, N. H., U. S. A.
T.M. Reg U.S. Pat. Off. U.S. \& Foreign Patent Copyright (C) 1958. Marton

marion

meters

CIRCLE 170 READERS SERVICE CARD

you save 50% on Top-Quality
Test Instruments Hi-Fi - Ham Gear KITS AND WIRED for professional and home use

TEST INSTRUMENTS battery eliminators battery testers bridges
decade boxes
electronic switch flyback tester oscilloscopes probes signal and sweep generatars tube testers transistor tester vacuum tube vacuum tube volt-ohmmilliammeters

HI-FI

stereo and monaural tuners
preamplifiers power amplifiers integrated amplifiers speaker systems

ham gear

cw transmitter modulator-driver grid dip meter

OVER $11 / 2$ MILLION EICO instruments in use throughout the world.

LIFETIME service and calabration guarantee. IN STOCK at your neighborhood EICO dealer. Send now for FREE catalog E. 5

SILVER PAINT AND SILVER PASTE

Take the "bugs" out of the application of conductive silver coatings. Use Drakenfeld silver paint and silver paste tailored to meet your needs. We formulate special compositions for glass and ceramic bodies and other materials. Let us know your specific requirements. Samples will be supplied to fit them. Your inquiry will receive prompt attention.

B. F. DRAKENFELD \& CO., INC.
Box 519, Washington, Pennsylvania

port, L. I., N. Y. He was formerly branch head of the amplifier section of the Norden Division of United Aircraft.

In his new position, DaParma will be in charge of magnetic amplifier design and construction, and will introduce into the company a new line of transistor amplifiers keyed toward miniaturization.

GPL Appoints Consultant

R. H. Carpenter recently joined the Avionics Division of General Precision Laboratory Inc., Pleasantville, N. Y., as special consultant on aircraft and aircraft operations. He will assist in the design of airborne and ground systems for air navigation and air traffic control programs underway at the company.

Plant Briefs

Construction is underway to add another $57,000 \mathrm{sq} \mathrm{ft}$ of manufacturing area to the new Electronic Associates, Inc., plant at West Long Branch, N. J.

Grand Sliding Mechanisms, Inc., a new manufacturer of precision drawer and chassis slides for the electronic industry, recently went into production in Chicago, Ill.

ACDC Electronics, Inc., is the new corporate name for NYT Electronics, Inc., Burbank, Calif. Company produces inductive components, regulated power supplies, and special electromechanical devices.

Datex Corp., Monrovia, Calif., is erecting a new building which will increase working area by 70 percent. New facility, with 10,000 sq ft of floor space, is expected to be ready for occupancy early in July.

New name of Industrial Television Inc., Clifton, N. J., is ITI Electronics, Inc.

Induction Motors Corp., Westbury, N. Y., has changed its name to IMC Magnetics Corp. Company has
also acquired a new divisionGray \& Kuhn, Inc., Roslyn Heights, L. I., N. Y.

PAM Associates, Inc., Baltimore, Md., was recently formed to design and build equipment to test effects of shock and vibration and for noise control.

In Pasadena, Calif., G. M. Giannini \& Co., Inc., has become Giannini Controls Corp.

News of Reps

Parrish Electronics of Denver, Col., has been appointed sales rep for Rex Corp., West Acton, Mass., manufacturers of electronic components and specialty wire and cable products for the missile, aircraft, electronic and communications industries.

Avion Division of ACF Industries, Inc., appoints Bauman and Bluzat of Chicago as sales rep for its commercial and military electronic components. Rep firm will cover Illinois, Wisconsin, Indiana and western Michigan.

Ferrotran Electronics Co., Inc., New York, N. Y., has appointed William M. Hummel of Port Credit, Ontario, to handle its line of transistor equipment and components in the Province of Ontario, Canada.

Panoramic Radio Products, Inc., Mt. Vernon, N. Y., names Arthur H. Lynch and Associates, Inc., as manufacturer's reps in Florida.

Harry D. Edmiston of Dallas, Texas, is named to represent the Electronics Division of Iron Fireman Mfg. Co., Portland, Ore., in the state of Texas.

Navigation Computer Corp., Philadelphia, Pa., announces the appointment of the James L. Highsmith Co. of Charlotte, N. C., to represent its complete line of transistorized digital system modules in Georgia, Alabama, Tennessee, North Carolina, South Carolina and Virginia, except Fairfax County.

DON'T LET "SITE-SEEKING" TIE UP YOUR BEST MEN!

the one central source of plant site information for nearly half of Pennsylvania and New Jersey

Save executive time and travel! Contact GPU Site-Service! This complete, centralized service has cconomic data on nine growth areas, all located in one of the nation's most desirable industrial regions. The detailed information it provides was compiled as the result of an independent engineering survey. It has full facts about sites of all sizes and available existing buildings. Wire, write or phone today. Your inquiry will receive prompt, confidential attention.

Att: Wm. J. Jamieson, Area Development Director, Dept. E-2 67 Broad St., New York 4, N. Y. WHitehall 3-5600

COMMENT

Symbols

In Electronics (p 159, Aug. 1 '58) a comment with reference to symbols was sent in by S. K. Ghandhi of the IRE Semiconductor Device Symbols Task Group. In this letter he made some statements to which I take exception.

He says The IRE does not generate symbols; rather, it reflects the majority opinion. This indicates a formal survey was made - of IRE members? JETEC members? Or users? Presumably only the standards committee members, since a personal poll of some semiconductor manufacturers and considerable users indicates that a few users have adopted the symbols simply because they feel bound to follow IRE standards, and that no known semiconductor manufacturer uses them. In fact, there is very good indication that two well known companies are deliberately taking exception to these standards in some cases.

He goes on to say Symbol structure must be a logical extension of a well accepted symbol. I could agree fully if the statement read "Symbol structure must be a logical extension of an acceptable symbol."

I agree with the statement that the symbol must be capable of extension to new devices as the state of the art progresses, providing that the symbol does not attempt to show the fabricating techniques.

A symbol is necessary for several reasons: to show the number of active terminations; to show polarity of potentials required at each termination; to indicate the category of the device, and to enable technicians and engineers to design, test and maintain equipment from the use of symbols on schematics.

My feeling is that the symbol should immediately tell a technician the general category of the device, as these symbols do for the transistor and diode

with either of these as possibilities for the Zener diode

- These blowers were made for radio or electronic cooling applications. Peerless engineers design and build blowers and fans to customer, government and association specifications every day. Custom-made installations are our specialty. We do the whole job . . . make the motor, the fan or blower . . . everything. Each unit is unconditionally guaranteed. Whatever your air flow requirements or application, it will pay you to contact Peerless Electric. Do it today.

the Peerless-Electric co.

FANS - BLOWERS - MOTORS 1446 W. MARKET ST. WARREN, OHIO
and this as a possibility for the double-anode Zener diode.

$\frac{1}{8}$

This brings us to Mr. Ghandhi's last statement: As you see, the very construction follows a logical course and causes very little burden on the memory. I contend that the IRE system is not logical to the majority of users, and therefore becomes difficult and a burden on the memory.

Although I am speaking as an individual user, the users have combined national groups, and I am sure that a poll of such groups would be beneficial to the IRE in the symbol and other standards efforts. All that is necessary is that the IRE or Mr. Ghandhi ask, and we will be glad to present and comment on any proposed standards . . .

Robert E. Roberts
Motorola Inc.
Phoenix, Ariz.
In fairness to Mr. Ghandhi, may we point out that his letter gives this as part of IRE's ground rules for standards: "A symbol should not be based on the theory of operation . . . (but) should indicate physical properties where possible . . ." He himself offers this rebuttal:

I have read with considerable interest Mr. Roberts' comments on my letter
No attempt is made in the present IRE standard (or in the proposed AIEE standard) to indicate device fabrication techniques. Thus one and only one symbol is used to indicate a pnp transistor whether it is grown, alloyed, rate-grown, diffused, meltback, drift or mesa.
A careful perusal of my original comments will show that I was referring to the construction of the graphical symbol, and the order in which its parts are located. In an electron tube, for example, we show the suppressor grid in its location between the screen and plate. If it is internally connected to a cathode, the symbol construction also shows this.
S. K. Ghandhi

IRE SEmiconductor Device
Symbols Task Group
Syracuse, N. Y.

for maximum economy maximum application
Combines the most desirable features of a whole series of equipments and MORE . . . in one compact fuctional unit:

- 3 mc wide sweepwidih continuously - adiustable down to 0
- Variable tuning control calibrated from

0 to 13.5 mc

- Variable resolution 200 eps to 30 kc
- Variable scan rate 1 cps to 60 cps
- Lin, log and square law amplitude
scales
- High sensitivity - 20μ full scale
- Calibrated 100 db aftenuator

See the SPA-3 and
SPA-3/25 (200 (PS to 25 MC)
as well as other panoramic instruments in action at

Booth No. 11A,
1959 National Telemetering Conference Exposition, Cosmopalitan Hotel, Denver, May 25-27.

Ask for Caralog Digest and the PANORAMIC ANALYZER

PANORAIIC
RADIO PRODUCTS, INC.

530 So. Fulton Ave., Mt. Vernon, N. Y. OWens 9.4600
Cables: Panoramic, M. Vernon, N.Y. State CIRCLE 176 READERS SERVICE CARD

ATMOTOROLA Min PMONEX... There's an uncommon opporisunity fo BE RECOGNIZED Im engincering circles

It's the nature of us humans to be stimulated... to do better work... when others in the same profession know about our accomplishments. At Motorola in Phoenix, the project approach assures the engineer that his sparks will not be smothered by anonymity. Every Motorola engineer is provided responsibility commensurate with his ability; his contributions as a member of a project team form the basis for his career advancement. Motorola, heavily engaged in diversified electronics research and production, encourages each engineer to carry his idea through to practical reality. If you are attracted by a creative atmosphere such as this - and by the sunny atmosphere of the nation's most enjoyable climate - write to Mr. Kel Rowan, Department A-6.

[^13]
EXPERIENCED COMPUTER SERVICE ENGINEERS \& TECHNICIANS

If you're an electronic engineer or technician with service or mainfenance experience on electronic digital computer systems, here's an opportunity for a stable, well paying position, with one of the nation's leading companies in digital computer system development.
You'll hold a responsible position in the maintenance of a large-scale business data processing system. Excellent opportunity to advance. Exceptional company stability, broad benefits.
Please submit resume immediately to:
K. W. ROSS, Department K NATIONAL CASH REGISTER CO. DAYTON 9, OHIO

SPECIALIZED PLACEMENT SERVICE

Engineering and Professional Personnel, Fee Paid Openings in:
Missile Guidance Systems. Circuitry Design, Technical Writing. Research and Development, Logical Design, Flight Con-
trol systems, Digital Computor Design, trol Systems, Digital Computor Design, aging and Instrumentation.
Forward resume for prompt and confidential. attention to:
STEWART K. FOGG
Personnel Consulfant
Narberth, Penno,
(Suburban Philadelphia)

SELIING OPPORTUNITY WANTED
Distributor/Rep., E E, wants to add production equip,, instruments, components. N.Y.C. office, showrooms, Confidential. Write Room 1311, 949 Bway. N.Y. 10 , N.Y.

Professional Services

MEASUREMENTS

Research \& Manufacturing Engineers Harry W. Houck
Specialist in the Design and Development of Electronic Test Instruments Boonton, New Jersey

TELECHROME MFG. CORP.

Electronic Design Specialists
COLOR TELEVIGION EQCIPMENT Flying Spot Scanners, Color Synthesizers. Keyers, Monitors, Oscilloscopes and Related Apparatus
Telemetering for Guided Aissiles.
J. R. Popkin-Clurman, Pres. \& Dir, of Eng.
28 Ranick Dr.
Amityville. L. I., N. Y.

YARDNEY LABORATORIES, Inc.

"Pioneers in compact Power", *
Electro-Chemical Generators of Energy
"from milliwatts to megnuratts" *
40-48 Leonard street WOrth 6-3100
New York 13, N. Y. * T.M.

at Electronics Park interests you most?

With the outlook for the electronics industry in 1959 brighter than ever, a significant fact for career-conscious engineers is the breadth of opportunities at Electronics Park. Here General Electric research, development, design and manufacturing groups are actively engaged in almost every area of electronics-whether in the industrial, military, or entertainment fields.

A cross fertilization of products and talents characteristic of Electronics Park will help you advance along with the major advances in the electronics art.

Some of the many areas of research, development, and production at Electronics Park are listed to the right. Check your particular interest and mail the coupon to us today. Requirements for our current openings include a Bachelor's or Advanced Degree in Electronics, Physics, Mathematics, or Mechanical Engineering, and/or experience in electronics. All communications will be held in strict confidence.

DESIGN ENGINEER
SALARY $\$ 14,000$ PER YEAR
To head AMCS Test Equipment Group, to consist of Computer Test Equipment Design and entire Fire Control Test Equipment Design. To supervise department of 12 other engineers. Company client
assumes all employment expenses. assumes all employment expenses.

ESQUIRE PERSONNEL
Chicago 4, Illinois

WINDING SUPERVISOR

Salary to $\$ 9,000$
Outitanding opportunity for suparvisor with Specialty Transormer, Magnetic Amplifier and Toroidal exprifince. Anst read prints. Hare complete depe, responsibility for $20-25$ men. ?rogressive Mifwestern co. pays all expenses including relocation. Reply in confidence to: John Allen, 6 N. 2-105.

MICROWAVE TUBE TECHNICIAN

 With Sales Ability. Knowledge of erossed fietd devices, particularly backward wave oscillatorsdesirable. Resnonsible position for experienced man in customers relations and tube testing ancen man in customers relations and tube testing. At-
tractive salary. Headquarters New York. Write outlining educational and professional background. AMERICAN RADIO COMPANY, INC. 445 Park Avenue, New York 22, N. Y.

ESSO RESEARCH LABORATORIES

BATON ROUGE, LA.

An Engineer Skilled In ELECTRONICS MATHEMATICS INSTRUMENTATION

SALARY COMMENSURATE WITH QUALIFICATIONS

For:

Challenging work in a promising field with an organization interested in process simulation and high speed plant measurements by electronic means. Large digital and analog computers available. This growth field offers a variety of opportunities for advancement.

Job Description:

- Application of special electronic equipment to pilot plant studies.
- Integration of process and instruments for more advanced control systems.
- Cooperative work with other engineers on more fundamental approach to process control.

Qualifications:

- Knowledge of Process Control Theory and Problems.
- Sound mathematics background for dealing with process simulation.
- Three to four years of industrial experience desirable.
- Interest centered in process applications of electronics.
- Personality suitable to cooperative work with others, and to training others in electronics.

SIECIAL IEIRTDSE TEHES

OA2	. 55	5326	75.00	300B	7.50	1603.	3.35	5932/6L6WGA. 2.50
OA3	80	5JP 1	4.00	304TH	27.50	1612	1.75	5933.......... 1.15
OB2	. 45	5LP 1.	7.50	304 TL .	27.50	1614.	2.25	5948/1754... 100.00
OB3.	. 70	5R4GY	1.00	310A	3.85	1620.	3.35	5949/1907.... 75.00
OC3.	. 40	5R4WGY	2.00	311A	3.00	1624.	1.15	5956. 25.00
OD3	. 35	5RPIA	15.00	313C	1.50	1846	47.50	5963......... . . 75
1827	6.00	5RPIIA	40.00	323A	6.50	2050	1.20	5964.... 1.00
1835A	3.50	5SP 1	40.00	328A	3.00	5545.	20.00	5965. 80
1B63A	15.00	5XP1	50.00	329A	7.00	5550.	37.50	5967 7.50
CIK	6.00	5Y 3WGT	1.50	332A	20.00	5636	2.25	5969.... 7.50
1 P 21.	27.50	6AC7W	. 50	333A	3.50	5639	3.50	5975. 2.00
$1 P 25$	10.00	6AK5W	1.15	336A	3.00	5642.	1.25	5977. 2.00
$1 P 28$	11.00	6AN5.	2.00	337 A	2.50	5643.	3.00	5979.... 5.00
122.	1.35	6AR6	1.15	339A	7.50	5647	2.50	5980. 3.50
2AP1A.	3.00	6AS6	. 75	347A	2.50	5651.	. 75	5981/5650 35.00
2BPI	6.00	6AS7G	2.75	348A	3.00	5654/6AK5W	1.35	5987.... 7.50
2 C 36	25.00	6C21	12.50	349A	2.50	5656.	3.00	5992 4.00
2 C 39	4.00	C6J	12.50	350A	2.00	5683.	. 85	5993. 5.00
2C39A	9.00	$6 \mathrm{J4}$.	1.00	350B	3.50	5667.	75.00	6004.... 75
2 C 40.	7.50	6J6W	. 60	352A	- 8.50	5670	1.25	6005/6AO5W. . 1.50
2 C 43.	7.50	6K4	1.85	354A	7.50	5672	1.45	6021.... 2.00
2C50.	5.00	605G	1.50	355A	7.50	5675.	8.00	6032 20.00
2C51.	2.00	6SJ7WGT.	1.75	383A	3.50	5676	. 65	6037. 25.00
2C52.	2.00	6SLTWGT.	1.25	393A	6.00	5678	1.25	6045.... 1.50
2D21	. 60	6SN7WGT	. 65	394A	3.00	5684/C3J/A	12.50	6062.... 1.35
2D21W.	. 90	6V6GTY.	. 60	4038	3.00	5686.	2.50	6072.... 2.50
2 E 22.	2.00	$6 \times 4 W$. 85	404A	10.00	5687	1.50	6073..... 1.50
2 E 24	2.25	6X5WGT	1.50	416A	30.00	5691	4.00	6074.... 2.50
2351.	50.00	7MP7	17.50	417A	10.00	5692	4.25	6080 3.75
2 K 25	9.00	7YP2	85.00	422A	8.50	5693.	3.25	6082......... 3.50
2K26	35.00	12AY7	1.00	450TH	40.00	5703.	1.00	6087/5Y3WGTB 3.50
2K29	25.00	EL, 16F.	15.00	450 TL .	45.00	5704	1.00	6097......... 1.50
2K 30	50.00	FG-17	4.50	575A	15.00	5718.	1.75	6098/6AR6WA. 5.00
2K33A.	85.00	HK-24	1.25	578	6.00	5719	1.25	6099......... 1.00
2K34	85.00	HK-24G	2.50	KU-627	5.00	5719A	1.50	6100/6C4WA. . 1.75
2K35	200.00	26Z5WI.	1.85	631-P1.	5.00	5725/6AS6W	1.25	6101/6J6WA... 1.25
2K41	75.00	BL-35.	100.00	673.	15.00	5726/6AL.5W	1.00	6106........ . 2.00
2 K 42	. 125.00	35T	4.75	676.	27.50	5727/2D21W.	1.35	6111.......... 3.25
2K44.	. 100.00	35TG	2.00	677	27.50	5734.	. 13.85	6112.......... 3.25
2K45.	35.00	UH-50	5.00	715 C	8.85	5744.	. 75	6115........ . 35.00
2K47	85.00	FP-54.	150.00	719A	7.85	5749/6BA6W	. 85	6130/3C45 . . 4.00
2K50.	50.00	KU-54	85.00	721B	5.00	$5750 / 6 \mathrm{BE} 6 \mathrm{~W}$.	1.65	6135......... 1.50
2×24	. 85	FG-57	5.00	723A/B	3.75	5751.	1.50	6136/6AU6WA. 2.00
3AP1.	1.25	RK-60.	1.00	725A.	5.00	5763.	1.35	6137/6SK7WA. 2.50
3824 W	3.35	RK-65	10.00	726B	5.00	5783.	2.25	6146......... . 3.90
$3 \mathrm{B25}$	3.50	FG-67	5.00	803.	1.50	5784	3.00	6151......... 3.50
3828.	3.50	HY-69	2.00	804.	12.50	5787	3.00	6152.... 4.50
3BP1A.	7.50	FG-81A	5.00	805	3.25	5794	5.00	6177..... . . . 65,00
3 C 22	35.00	FG-95	15.00	807	1.25	5800	4.00	6186/6AG5WA. 2.00
3 C 23	6.00	HF-100	10.00	807 W	. 90	5801	3.00	6187......... 2.00
3 C 24	2.50	100TH.	10,00	810.	12.50	5802	4.00	6189/12AUTWA 2.25
3 C 45	4.00	FG-104.	30.00	811.	3.00	5803.	3.00	6199..... 30.00
3 D 22	12.50	FG-105	20.00	813.	8.50	5814A	1.50	6201/12AT7WA 2.00
3 E29.	7.50	121A	1.00	814.	1.25	5819	40.00	6202/6X4WA. . 2.00
3GP1.	2.00	122A	1.25	815.	2.25	5822	. 50.00	6211.......... . 65
3 J 21.	35.00	FG-172	20.00	816	1.75	5824.	1.85	6247..... 6.00
3331.	35.00	HF-200	15.00	828.	9.00	5828.	4.00	6263.... 9.00
3 JP 1.	6.50	212E.	25.00	829B	7.50	5829	. 75	6264.... 9.00
3 K 21	. 150.00	242 C	10.00	832.	3.25	5829WA	1.50	6279/5C22... 17.50
3K22	. 150.00	244 A	7.50	836	1.15	5839..	4.25	6282. 65.00
3 K 27	. 175.00	245A	3.50	837.	. 95	5840.	2.00	6322 15.00
3K30.	85.00	249B.	5.00	845.	8.50	5841.	3.00	6352. 6.00
3KP1.	10.00	249C	5.00	866A	1.45	5844.	. 85	6438.... 4.75
4-65A.	13.50	252A	6.00	8698.	75.00	5852.	3.00	6463.... 1.50
4-125A	25.00	259A	3.50	872A	1.50	5854.	. 75	6482. 9.50
4-400A	40.00	262B	4.00	884.	1.00	5876.	7.00	6517.... . . . 500.00
4 C 33.	. 100.00	2714	12.50	913.	10.00	5879.	1.25	6626/OA2WA . 2.50
4 C 35	12.50	272A	3.50	918.	. 75	5881/6L.6WGB	2.50	6627/OB2WA. 2.50
4 E 27	8.50	274A	3.50	927	. 85	5886........	3.50	6754.... 15.00
4361	150.00	275A.	4.00	931A	2.25	5894.	. 15.00	8005... 6.50
4362.	150.00	283A.	3.50	959.	. 75	5896	. 85	8013 3.75
4XI50A	15.00	287A.	2.00	CK1006	2.00	5899A	4.00	8014A. 25.00
5BP1A	12.50	QK-288	150.00	R1130B.	10.00	5902.	3.00	8020.... 1.50
5 C 22	17.50	293A	7.50	HY1269	2.00	5903.	7.50	8025A 4.75
$5 C P 1 A$.	6.50	HF-300	25.00	1500T.	120.00	5930/2A3W.	3.75	9005.... 3.00

All tubes are new, individually cartoned, fully guaranteed

western engineers

Prices are $F O B$
shipping point

ELK GROVE, CALIFORNIA

SUPPLIERS OF TUBES SINCE 1932

Save over 55% on NEW
BALDWIN STRAIN GUAGES
In sealed packages of 10 -Price per package A-1 \$4.95 AX-5 \$11.95 50 packs $\begin{array}{lllll}A-6 & 5.95 & C-3 & 6.95 & 20 \% \text { dise }\end{array}$

Veeder-ROOT COUNTERS 28 V DC Electrically Operated- - Digits
manual Reset-For Panel or Flush Mtg. Reg. Price over $\$ 20$. NEW

CRAMER Running Time Meter 5Digit- $3^{\prime \prime}$ Rect. Panel Mounting
1 $10 / 220 \mathrm{~V}-60 \mathrm{cyc}$ 位-W ith capacito $110 / 220 \mathrm{~V}$ - 60 cycle-With capacitor
furnished-NE Save cver 60%.....
$\$ 6.95$

Philamon FREQUENCY GENERATOR

hnoutse8v DC at 0.18A
Beg. Price Approx. $\$ 80.00 \%$
$\$ 14.95$
WESTON DC Microammeter Mod. 622
${ }^{0}$ Reg. Price ${ }^{6 \prime \prime}$ Mirror Scale
Portable Case Lab. Standard
$\$ 99.50$
AMERICAN MOTORS Miniature FAN

Fan $3^{\prime \prime}$ D. Motor $1 / 1 / \mathrm{D} \times 21$
$80 \mathrm{C} . \mathrm{F} . \mathrm{M}$. Save Over 70%.

Orders for less than $\$ 10$ cannot the proressel
-

AVIONIC SUPPLY
5790 Washington Bled.
90 Washington Blva
WEbster 3-8523

SEARCHLIGHT SECTION
 (Classified Advertising)
 BUSiNESS OPPORTUNITIES
 EQUIPMENT - USED or RESALE

DISPLAYED RATE

The advertising rate is $\$ 24.75$ per inch for all advertising appealing on other than a contract basis. Contract rates duoted on request. AN ADVERTISINA 1 NCH is measured column, 3 columns- 30 inches-to a page EQUIPAENT WANTED or FOR SALE ADNERTLSEMENTS acceptable only in Displayed Style.

UNDISPLAYED RATE

$\$ 2.40$ a line minimum 3 lines. To figure advance payment count 5 average words as a line. PROPOSAIS, $\$ 2.40$ a line an insertion BOX NUMBERS count as one line additional in undisplayed ads.
made in advance for four consecutive insertions of undisplayed ads (not including proposals)

$A_{11} B_{\text {rand }}$ RESISTORS

Type J Potentiometers Single-Dualu-Triples Type G Miniature Potentiometers LEGRI S COMPANY
391 Riverdale Ave. Yonkers 5, N. Y.

P A D D A

Skysweep Antennaz Pedesther MPGIB. SCR 584. Automatly Tracking Radars. MPN-IB GCA. APS: 0, APS-31, APS. 33 Airborne. Over 1,000 Micro

RADIO RESEARCH
50 Fifth Avente

SEARCHLIGHT Equipment Locating Service

no cost or obligation

This nervice is aimed at belpring you, the reader of are plas new fand ustal electronic equipment and

How to use: Cherck the lealer ads to see if what you want is not currently advortised. If nort, send us the specifications of the rquip.
mont phanterl on the poupon below, or on your ming fanment on the roupon

Searchlight Equipment Locating Service

c/o ELECTRONICS

P. O. Box 12, N. Y. 36, N. Y

Yomeremirements will he 1mought promptly to the attention of the mbipument dealers atver: tinime in this Aertion. You will rameive rephase diredty from them

Searchlight Equipment Locating Service c/o ELECTRONICS
P. O. Box 12, N. Y. 36, N. Y.

Please help us locate the following equipment components.

NAME
title
COMPANY
StPEET
CITY

INDEX TO ADVERTISERS

- Accurate Instrument Co 95
- Ace Electronics Associates. Inc. 75
- Acme Electric Corporation 107
Advance Relays 84
Aerovox Corporation 90
- Airpax Electronics Inc. 88
American Brass Company 21
- American Lava Corporation 23
American-Standard Industrial iv 89
- American Super-Temperature Wires, Inc. 102
Ampex Corporation 36
- Amphenol-lborg Eimetronics Corpora- dion, Bors Equipment Division. . 104, 105
Aveo/Crosley 99
- Baird-Atomic, Inc. 89
- Bendix Aviation Corp., Red Bank Div. 91
- Bird Electronic Corp. 38
- Burnell d Co. Inc. 3
CBS-IIytron 83
- Clifton Prevision Products Co., Inc.. 27
Consolidated Fiectrodymamies Corp. 39
- Curtis Universal Joint Co. Inc. 105
- Dale Products Tire. 79
- Driven Co.. The ard Cover
Drakenfeld \& Co., line., B, F 108
DuPont Ib e Nemours \& Co. (Inc.) E. I.Polychemieals Dept. 17 , 18
Edo Corporation 97
- Eitel McCullough, Inc. 10
Electra Manufacturing Company 71.
Electric Regulator Corporation 32
Electronic Instrument Co. (EICO) 108
Fairchild Semiconductor Corp. 65
- Freed Transformer Co., Inc. 116
General Public Utilities Corporation., 10
- Grant Pulley \& Hardware Corporation 1

[^14]
MARCONI Carrier Deviation Meter

uses multi-crystal stability-lock

From 200 cps to 125 kc makes this latest model in the Marconi 791 series applicable to both communication and broadcast fm systems.
Crystal locking
at any point in its 4- to $1024-\mathrm{mc}$ carrier range brings new, exceptional stability and freedom from microphony in low-deviation measuremints. Use of an external indicator extends the deviation range down to 10 cps , allowing fm hum and noise on uhf close-channel transmitters to be measured with ease and certainty.
An in-built deviation standard, crystal governed, insures full rated accuracy at all times.
Send for leaflet B143

ABRIDGED SPECIFICATIONS

CARRIER DEVIATION METER 791D Carrier Frequency Range: 4 to 1024 mc Modulation Frequency Range: 50 cps 1035 kc . Measures Deviation: 200 cps to 125 kc in four ranges. Measures down to 10 cps using external readout.
Measurement Accuracy: $\pm 3 \%$ of full-scale for modulation frequencies up to 25 kc . Internal FM: Due to hum, noise and microphony, less than -55 db relative to 5 kc deviation.
Tubes: 6AK5, 6AS7, 6C4, 6CD6G, 5651,
5647, $5 \mathrm{Z4G}, \mathrm{OB} 2$.

Marconi
for fm test gear

III CEDAR LANE EAGLEWOOD NEW JERSEY

Tel : LOwell 7-0607
CANADA: CANADIAN MARCONI CO - MARCONI BUILDING • 2442 TRENTON AVE MONTREAL 16 MARCONI INSTRUMENTS LTD • ST. ALBANS • HERTS • ENGLAND

GIVE YOUR PRODUCTS MORE RELIABILITY AND better Performance with

MAGNETIC AMPLIFIERS

- Hermetically Sealed To MIL

Specifications

- No Tubes
- Direct Operation from Line Voltage
- Fast Response
- Long Life Trouble Free Operation
- Phase Reversible Output

Tronsistor Mag. Amp
Preomp. MAF-5
MAT-1 WI. 18 oz

Send for NEW TRANSFORMER AND INSTRUMENT CATALOGS
FREED TRANSFORMER CO., INC.
1722 Weirfield Street, Brooklyn IRidgewood) 27 , N.Y. CIRCLE 178 READERS SERVICE CARD

Warh Company 103

- Hewlett-Liakiard Company \&

Lexacon Electric ('o. 97
IIIかkok Elecotrical Inatrument Co..... 96

- IImghes Iiraraft (omplamy30, 31

Intromational IBusiness Marhines Corp. 61

- Intermational Inatromputa Inc. 86
- James Vibrapowr 110
- Jennings Kadio Mfg. Corp. 8:
- Jones Flectronifis C'o. Inc., N. ('..... 101

Kelloge Nwitchlogard amd Supply ('0... 87
Kiditer, I'eabody \& ('o. 93

- Kirengel Mfy.. Co., Inc. 37
- Lapp Insmbator co. Inc. 69

Letand. luc., (i. H. 98
Litton Induntries 14, 107
Los Alamos Neifentific Laboratory 9;

- Magnotir .Implifiers. Inc. 20
- Marconi Instrmments 11:

Darion Instrument. IDiv. of
Minneapolis-Honeywell
108

Netals © Controls Corporation 20

- Misrowave Anmoriates. Inc. 22
- NRC Eiquibment Corporation 85

North .Imerican IVhation, Inc. 104

Pamoramio Kadio l'roducts. Inc. 111
IPerrlens Lilectric ('o., Thi 111
phileo corporation 40
IPulae Engineering Inc. 15

Radio Corperation of
Amerla 81. 4th Cover

- Radio Frectuency Lahoratorien, inc. . . iv
- Rawnon Elertriral Instrument Co. . . 89
- Rnstheon Mfy.. Co. 16

Rixon Flectroniss. Inc. 97

Spragitr Electrir Co. 5
Ntackpolp Carbon Company 63
Superior cinble Corp. 88

Temeo Direraft Corp. 6

- Tenmolite Insmlated Wire Co., Inc..... 33
- Texas Instriments Incorporated

Transradio. Itd.

- Trio I aboratorien, Inc. ${ }_{2}$

Turbo Machine Co. 8!
U. S. Hoffiman Machinery Co. in

- United Transformer corp.......2nd covar
\qquad

Westinghonse Rlectric
Corporation $7,1 \geqslant, 34.60$
Whitney Metal Tool Co. $\boldsymbol{0}^{7}$

Zippertubing Co.

CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.

EMPLOYMENT
OPPORTUNITIES
112,113

EQUIPMENT

(Used or Surplus New)
For Sale

ADVERTISERS INDEX

- See advertisement in the June, 1958 Mid-Month ELECTRONICS BUYERS' GUIDE for complete line of products or services.

This index is published as a service. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibilities for errors or omissions.

how large is small?
 DAVEN'S NEW MINIATURE WIRE WOUND RESISTORS PROVIDE AS MUCH AS 400K RESISTANCE IN $1 / 4^{\prime \prime} \times 5 / 16^{\prime \prime}$ SPACE

DAVEN's fully encapsulated, miniature, precision wire wound resistors offer the design and development engineer the solution to critical space limitation problems. DAVEN's advanced techniques provide the needed resistance value in a minimum of space, without sacrificing reliability. Where space conservation is a prime factor in your design, specify DAVEN miniature wire wounds.
Types and Specifications

Type	Dia.	Length	Max. Ohms	Max. Watts
1274	$3 / 16$	$3 / 8$	100 K	0.25
1273	$1 / 4$	$5 / 16$	400 K	0.25
1283	$1 / 4$	$5 / 16$	400 K	0.25
1284	$1 / 4$	$27 / 64$.5 Meg.	0.25
1250	$1 / 4$	$1 / 2$	900 K	0.33
1170 A	$7 / 16$	$1 / 2$	1.2 Meg.	0.50
1170	$1 / 2$	$1 / 2$	1.8 Meg.	0.50

- Fully encapsulated - Meet and exceed all humidity, salt water immersion and cycling tests as specitied in MIL-R-93A, Amendment 3 - Operate at $125^{\circ} \mathrm{C}$ continuous power without de-rating - Can be obtained in tolerances as close as $\pm \mathbf{0 . 0 2 \%}$ - Standard temperature coefficient is $\pm 20 \mathrm{PPM} /{ }^{\circ} \mathrm{C}$.

$R C A$ provides the widest selection!

World leader in display-storage-tube development and manufacture, RCA offers industry an extensive line of display-storage-tube designs.
For example, RCA offers display-storage-tube types that can provide displays having high brilliance, high contrast, and very good half-tone shading. There's a choice of types with single writing or multiple writing guns, and with overall or selective erasure. And there's a choice of either magnetic or electrostatic deflection. Writing speed can be tailored to your specific application.

So regardless of your display-storage-tube application, remember this about RCA Display Storage Tubes: Commercial types are readily available; in addition, a variety of developmental types can be obtained on a sampling basis. If you are an equipment manufacturer, get in touch with your RCA Field Representative for complete details.

PARTIAL LIST OF RCA DISPLAY-STORAGE-TUBES						
$\begin{aligned} & \text { RCA } \\ & \text { IYPE } \end{aligned}$	$\begin{gathered} \text { BULE } \\ \text { OIAMETER } \\ \text { inches } \end{gathered}$	$\begin{aligned} & \text { DISPIAY } \\ & \text { DIAMETER } \\ & \text { inches } \end{aligned}$	$\underset{\substack{\text { DYPE }}}{\text { DELECTION }}$		TYpical characteristies	
					$\begin{array}{\|c} \hline \text { WRITING } \\ \text { SPEED } \\ \text { In. Sec } \\ \hline \end{array}$	BRIGHTNESS footlambers
7183	$5 \pm$	4.0	Magnetic	1 writing	50000	1500
7315	5	3.8	Electrostatic	1 writing	3000	2750
7448	5	3.8	Electrostatic	1 writing	300000	2750
C.73788 ${ }^{\circ}$	7	5.2	Electrostatic	1 writing	50000	750
c.73904	5	3.8	Electrostatic	2 writing	75000	2750
C. 73922°	7	5.2	Electrostatic	$\begin{aligned} & 1 \text { writing } \\ & 1 \text { erasing } \end{aligned}$	8000	750
c.73931 ${ }^{\circ}$	7	5.2	Electrostatic	2 writing	50000	750
C. $73938{ }^{\circ}$	5	3.8	Electrostatic	1 writing 1 erasing	12000	2750
C. 73964	5×1	3.8	Electrostatic	1 writing	300000	2750
-Developmental type. - Hos fying leads lor screen and backplate. - Has infegral extenal masnetic shield. Max. Tube diameler is 5.6 inches. Information on types similar to those listed above but with writing speed tailored to your requirements will be furnished on request. In types with 2 writing guns, the writing speed of one gun con be different from that of the other						

Your RCA Field Represente:ives are here to help you GOVERNMENT SALES

[^0]: Westinghouse Electric Corp., Semiconductor Department, Youngwood, Pa.

[^1]: Watch "westinghouse lucille ball-desi arnaz shows'*

[^2]: CAPABILITY THAT CAN CHANGE YOUR PLANNING

[^3]: **NOTE: These solders may be single or double clad on any of the base metals listed above. Solders in group B may be purchased unclad.

[^4]: Precision Metal Components for Electronics, Nucleonics,
 A vionics and General
 Industrial Applications

[^5]: A complex, 15-camera closed-circuit tv installation helps speed output at Steel Company of Wales, Port Talbot, Wales. Marconi's Wireless Telegraph Co. Ltd. placed cameros in a line on one of rolling mill's outside walls. Operator gets composite view
 of 700 ft of track, far end of which is $1,000 \mathrm{ft}$ away of 700 ft of track, far end of which is $1,000 \mathrm{ft}$ away

[^6]: *Now with RCA Laboratories, David Sarnoff Research Center, Princeton, N. J.

[^7]: * Applicable spec is MII.-C-3098B

[^8]: METALLIZED TRANSISTOR TERMINATIONS, TO CONDUCTING LANDS OF RECESSED WAFER

[^9]: * Now with Technical Measurements Corporation, New Haven, Conn.

[^10]: * Now with Hughes Aircraft Co.

[^11]: * American - Standard and Stardardo are trademarks of American Radiator \& Standard Sanitary Corp.

[^12]: May 7, 1959.

[^13]: Electronic Engineers, Mechanical Engineers, Physicists - SYSTEM ANALYSIS, DESIGN AND TEST-Radar - Missile Guidance - Navigation Combat Surveillance Communications - Field Engineering - Data Processing and Display-CIRCUIT DESIGN, DEVELOPMENT AND PACKAGING-Microwave Pulse and Video Antenna - Transistor - R-F and I-F - Servos - Digital and Analog TECHNICAL WRITERS AND ILLUSTRATORS, QUALITY CONTROL ENGINEERS, RELIABILITY ENGINEERS
 Motorola also offers opportunities at Riverside, California and Chicago, Illinois

[^14]: - See advertisement in the June, 1958 Mid-Month ELECTRONICS BUYERS' GUIDE for complete line of products or services.

