FEBRUARY 20, 1959

electronics

Checking
 On Radar Health Hazards

Another NEW 10-Ampere
 Variac Type W1O

These new Fype Who ViRIACs complete the modemization of the entio V ARIAC line so that all unts are of the "W" "pre Improvements include wrought metallic parts. hetter heat transter between coil and base, and brush and radiator: improsed insulation, dise radiators and generally improsed mechanical design. AlI. VARIACS have exelusive 1) (RATRAK contact surfaces for longer life.

Type Wiomta

[^0]

A McGRAW-HILL PUBLICATION
Vol. 32 No. 8
H. W. MATEER, Publisher

JAMES GIRDWOOD, Associate Publisher \& Adverfising Sales Mgr. W. W. MacDONALD, Editor

John M. Carroll, Managing Edifor Feafure Editor, John Markus. Associate Editors: John M. Kinn, Jr., Frank Leary, Mishael F. To. maino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, William P. O'Brien. George Sideris, John F. Mason, William E. Bushor, Ronald K. Jurgen, Thomas Emma, Samuel Weber.

Pacific Coast Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New Eng. land Editor (Boston) Thomas Maguire.

Art Director, Harry Phillips, Roy Thompsen.

Production Editor, John C. Wright, Jr., Bernice Duffy, Jean L. Matin.

Markef Research, Edward De. Jongh, Marilyn Koren.

Editorial Assistants: Gloria J. Filippone, Arlene Schilp, Patricia Landers, Catherine McDermott, Eleanor Schaefer, Carol Weaver.
R. S, Quint, Assistant Adverfis. ing Sales Manager and Buyers Guide Manager. Fred Stewart, Promotion Manager. Frank H Ward, Business Manager. George E. Pomeroy, Classified Manager, Hugh J. Quinn, Circulation Manger.

New York: Donald H. Miller, eenry M. Shaw. William J, pyie Bosfon: Wm. S, Hodgkin Philadelphia: Warren H Sardner. Chicago: Bruce Winner, Harvey W Wernecke, Martin J. Gullay. Cleveland: P. T. Fegley. San francisco: T. H. Carmsdy. R. C. Alcorn. Los Angeles: Carl W Dysinger, D. A. McMillan. Denver: J. Paitten. Atlanta: M. Miller. Dallas: Gordon L. Jones, Robert T. Wrod. London: E. E. Schirmer. Frankfurt: Michael R, Zeynel.

Issue at a Glance

BUSINESS

Retailers Seek Input Devices. Hig stores encourage research 30
How SiC Communicates. This is a huge. expanding area for gear. 3.5
New Look for Small Companies. "coalition concept" gains favor. 41
A-Jower Gear Market Grows. Heres a complete roundup. 43
Shoptalk 1
Over The Counter !!"
Electronics Newsletter 11
Washington Outlook 1.1
Financial Roundup 2:;
Narket Research 26
Current Figures 26
Meetings Ahead 4
ENGINEERING

Checking On Radar Health Hazards. Sperry power-density meter measures field strength to dotormine area safe for people. See p 49.

Researching Dicrowave Heallh Hazards: High-powered ladars require understanding of blological effects of r-f energ. By. F. Leary
Telemetry Demodulator lising Modified AND Vate. Pulse-position system uses a new demodulator. . hy L. Weisman and E. Teltscher 31
Aluminum Finishes for lise in Electronics. Applications, process details and properties in tathular form.......... By W. E. Pocork is

Transistor Inverter Drives Induction Motor. Induction motors can replate dec motors in hazardous environments. . . . By W. H. Card 60

Tr Sound Detector lises Drift 'Transistor. Drifttransistor slope detector operates in an oscillating mode............By M. Meth fie

Coincidence biodes Gate Electronic Switch. Tramsistorized switch for radar indicators............................... . . . By. J. B. Beach fin
Haser Sensitivity Curves. Shaw sonsitivity against noise temperature of source.......... . By A. Hoodzinsky and A. (. Macpherson 70

DEPARTMENTS

Research and Development. Ifornder Finds Heart Fiaults............ it Components and Materials. L"ltralviolet Image Conserter Tube..... . is
 On the Market.................if

News of Reps.................11:
Literature of the Week. . . . 1 ilt
Comment 111
Index 10 Advertisers. 121

FREQUENCY STANDARDS

$\begin{gathered} * 31 / 8 " \text { high } \\ 400-1000 \mathrm{cy} . \end{gathered}$	PRECISION FORK UNIT TYPE 50 Size 1" dia. x. $3^{3 / 4}{ }^{\prime \prime} H^{*}$ W'ght., 4 oz. Frequencies: 240 to 1000 cycles Accuracies:- Tvpe $50\left(\pm .02 \%\right.$ at -655° to $\left.85^{\circ} \mathrm{C}\right)$ Type R50 ($\pm .002^{\prime} / \mathrm{h}$ at 15° to $35^{\circ} \mathrm{C}$) Double triode and 5 pigtail parts required Input, Tube heater voltage and B voltage Olitput, approx. 5 V into 200,000 ohms

| PRECISION FORK UNIT |
| :---: | :---: |
| TYPE 2003 |

FREQUENCY STANDARD
 TYPE 2007-6

 TRANSISTORIZED, Silicon Type

 Size $1^{1 / 2 \prime \prime}$ dia. $x 8^{1 / 1 / 2^{\prime \prime}} H$. Wght. 7 ozs. Frequencies: $400-500$ or 1000 cycles Accuracies:2007-6 ($\pm .02 \%$ at -50° to $+85^{\circ} \mathrm{C}$) R2007-6 ($\pm .002 \%$ at $+15^{\circ}$ to $+35^{\circ} \mathrm{C}$) W2007-6 ($\pm .005 \%$ at -65° to $+125^{\circ} \mathrm{C}$) Input: 10 to 30 Volts, D. C., at 6 ma . Output: Multitap, 75 to 100,000 ohms

FREQUENCY STANDARD
 TYPE 212IA
 Size
 $8^{3 / 4}$ " $\times 19^{\prime \prime}$ panel
 Weight, 2.5 lbs .
 Output: 115 J 60 cycles, 10 Watt
 Accuracy
 $\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
 Input, 115 V (50 to 400 cycles)

Frequencies: $50,60,75$ or 100 cycles Accuracies:
Type $50 \mathrm{~L},\left(\pm .02 \%\right.$ at -65° to $85^{\circ} \mathrm{C}$)
Type R50L ($\pm .002 \% / \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output, 3 V into 200,000 ohms
Input, 150 to $300 \mathrm{~V}, \mathrm{~B}$ (6 V at .6 amps .)

FREQUENCY STANDARD

Size, $\mathcal{s}^{\prime \prime} \times \mathcal{S}^{\prime \prime} \times \mathrm{r}^{1 / 4}{ }^{\prime \prime}$ High
licight, 14 llis.
Frequencies: 50 to 400 cycles
(Specify)

ACCESSORY UNITS

for TYPE 2001-2
L-For low frequencies multi-vibrator type, $40-200 \mathrm{cy}$.
D-For low frequencies counter type, $40-200 \mathrm{cy}$.
H -For high freqs, up to 20 KC .
\dot{M}-Power Amplifier, 2 W output.
\mathbf{P}-Power supply.

FREQUENCY STANDARD

TYPE 2111 C
Size, with cover
$10^{\prime \prime} \times 11^{\prime \prime} \times 9^{\prime \prime} \mathrm{H}$.
Panel model
$10^{\prime \prime} \times 19^{\prime \prime} \times 8^{3 / 4} \mathrm{H} H$.
 Weight, 25 lbs .

Frequencies: 50 to 1000 cycles
Accuracy: $\left(\pm .002 \%\right.$ at 15° to $\left.35^{\circ} \mathrm{C}\right)$
Output: $115 \mathrm{~V}, 75 \mathrm{~W}$. Input: $115 \mathrm{~V}, 50$ to 75 cycles.

> This organization makes frequency standards within a range of 30 to 30,000 cycles. They are used extensively by aviation, industry, govern. ment departments, armed forces-where maxi. mum accuracy and durability are required.

WHEN REQUESTING INFORMATION PLEASE SPECIFY TYPE NUMBER

American Time Products, Inc.

C TYPE MAGNETS in a wide range of sizes to meet your design needs in \star TRANSVERSE FIILD ISOLATORS \star DIFFERENTILL PHASE SHITTERS \star DUPLEXERS

Arnold C－type Alnico Magnets are available in a wide selection of gap densities ranging from 1,000 to over 7,500 gausses．There are six different basic configurations with a wide range of stock sizes in each group．
The over－all size and gap density requirements of many prototype designs can be met with stock sizes of Arnold C Magnets，or readily supplied in production quantities．
When used in transverse field isolators，Arnold C Mag． nets supply the magnetizing field to bias the ferrite into the region of resonance，thus preventing interaction between microwave networks and isolating the receiver from the transmitter．These magnets are also used in differential pha e shifters and duplexers，and Arnold is prepared to design and supply tubular magnets to provide axial fields in circular wave guides．

A feature of all Arnold C Magnets is the excellent field uniformity along the length of the magnet．Versatility in design may be realized by using multiple lengths of the same size magnet stacked to accomplish the needs of your magnetic strusture．
Let us work with you on any requirement for permanent magness，tape cores or powder cores．－For information on Arnold C Magnets，wite for Bulletin PM－115．Address The Arnold Engineering Company，Main Offices and Plant，Marengo，Illinosis．
wsw 7428

BRANCH OFFICES and DISTRIBUTORS in PRINCIPAL CITIES Find them FAST in the YELIOW PAGES

SHOPTALK . . .

Qlectronico

Feb. 20, 1959 Vol. 32, No. 8

Publinhed wotkls, with a BUY'F.RS' ClIDE and REfFRENGF isue in middune ho WeCraw-Hill Publishing Company. Ince, Jatnes II. Me(Graw (18f(1)-1918) Founder.

Executive. Editorial, Circulation and Advertising Offices: McGraw-Hill Building. 330 W. 42 St.. Now York 36. N. Y. Longacre 1.3000. Publication Office: 99.129 North Broadway, Albany I, N. Y

Sore pand below for directions regarding subseriptione or rhange of adderes. Donald C. MeCraw, Puewident: Joweh 1. Gerardi. Exewtive Sice Prewident: I.. Ke-ith Gondrich. Viare Promident and Treanurer: fohn J. Ganke. Socratirs: Xelson I.. Bund. Prasidont, Publicationn Division: Shathon Foisher. Senior Vier l'resident: Ralph B. Smith. Vian Presifent and Eaditurial Diractor: Josemh H. Allon, Viow Prewident and Dirator of Adertionyr Sales: S. R. Vompan. Vice Prosident and Cireulation Cimritinator.

Single ropim 7 ise in the 1 nimet Statere and punersions aml Camada: S1.51 for all nther fureign cobntriw. Buyrac Cuild. S3.00. Subseription ratu-I'nited States and possessinns.
 Mreat yatm. Canada, \$lonol a yara $\$ 16,00$ for two yeats: sellool for hire beare All other countrio. $\$ 20.00$ a war: $\$ 30100$ for two vars: SHom for threw yours. Sowond alase protage paid at tham, X. Y. Printed in

 remistered in I . S. Patent OHirar. BRANCH OFFICES: 520 North Mirhizan Avmber.
 4: McGraw-Hill Home. Landun E: C. t: 8.) Wiatmalrawe Frallakiurt Main: Vational Prose Bdyg., Washington 1, D. C.: Sis Pron Center Plaza. Philathphia 3: 1111
 Public Square. Cleveland 13: Rofo Pemolisout Bldig., Betruit eft: 3615 Olive St.. St. Lomis 8: 350 Park Squara Bldg. Bowton 16: 1301 Rhodes-Haverty Bldq.. Atlanta 3: 1125 Wist Sixth St.. Lam Angeles 17 ; 17.10 Broadway. Denver 2; 901 Vaughn Blde. Dallas 1 . ELECTRONICS is indexed regularly in The Engineering Index.

[^1]Postmatior: platise sind form 3579 in Flectronies, 330 W. 42 nt St. N N.w York 36, N. Y.

Member $A B P$ and $A B C$

GIAAS CAPACITORS. During a recent trip to Corning Glass Works' new romponents plant in Bradford. Pa., Associate Editor Sideris obtained the first detailed description of how capacitors are made from metal foil and a glass ribbon only 1 mil thick.

The whole mamufacturing story is in Sideris' department, "Production Pechnigues." this week.

Gathering material for his department, Sideris visited nearly 50 plants last vear. Roughly half of them were out of town. In addition, Electronics field editors in Boston. ("hicago and Los Angeles pitched in, reporting new manfacturing techniques in their territories.

Sideris joined Elfctroxics in 1956. Before that he had stadied engineering in a Naval officers' training program, then moved into journalism and covered industrial and commercial developments for a metropolitan-area daily newspaper. His other electronics interests include new materials for the industry, industrial control applications and atomic-energy instrumentation.

SMALI. BUSINESS. Of the 4,000 -odd companies in the electronics industry-assemblers, parts manufacturers and suppliers-bs far the majority fall into somebody's category of "small business".

Indeed, these small engineer-ran companies commrise one of the great strengths of our industry. The diversity of specialized products and serviecs they offer. in the agregate. could not economically be provided by larger business organizations.

An important problem to small electronics firms has been how to get a bigger share of the more profitable government business. Some small firms enter into government work through subeontracting from larger prime contractors. Others have formed teams with other companies. Now comes a new plan: A corporation jointly owned by several small manufacturers that can bring their collective abilities to bear on government contract work. In his story, "New Look for Small Companies," on p 40. Associate Editor Enıma goes into this and other news of interest to small businessmen.

Coming In Our February 27 Issue . . .

SOIIONS. A device which is assuming greater importance as research uncovers more applications for it is the solion, so-called because the mechanism of conduction it employs involves ions in solution.
R. N. Lane of Texas Research Associates and I). B. Cameron of National Carbon Company describe how these interesting new devices can be used as control elements to perform such functions as integration and amplification. A circuit using a solion as a noise dosimeter is included.

AMPIITUDE WINDOW. In statistical studies of signals and noise, probability amplitude density functions are the subject of intensive investigation. In such studies, a circuit is required which yields a rectangular output pulse with a width proportional to the time spent by the input between specified voltage levels.
T. A. Bickart of Johns Hopkins University describes a modified form of Schmitt trigger which obtains desired output without excessive circuitry.

ECONOMY TV SOLND. Ratio-detector systems contain expensive components and have low output, according to R. B. Dome of GE in Syracuse. In an effort to overcome these shortcomings, development of the delta sound system for ty receivers was undertaken. Features are a-m compression from 12 to 24 db , high a-f output and cancellation of the fundamental component of undesired a-m,

Your Design is better Your Product performs better

with this

full line of

AATHEON

Germanium GLASS DIODES

	TYPE	Wo king Voltage (max)	Forward Current at +1 volt	Re erse Current "A al v	Type	Working Voltage (max.)	Forward Current at + i volt	Reverse Current $\mu \mathrm{A}$ at v
	1N55B	150	5	503 at - 150	1N128	40	3	10 at -10
	1N66A	60	5	$5 \mathrm{yal}-10$	1 N191	90	5	25 at - 10
	1N67A	80	4	50 at -50	1N198	80	$5 \dagger$	$75 \dagger$ at - 10
	1 N68A	100	3	525 at -100	1N294A	60	5	10 at -10
	1 N95	60	10	800 at -50	1N297A	80	3.5	100 at -50
	1N126	60	5	50 at -10	1 N 298 A	70	30*	250 at -40
	1N127	100	3	25 at -10	$\cdot{ }^{\circ} \mathrm{at}+2 \mathrm{v} \quad$ lat $75^{\circ} \mathrm{C}$			

Germanium VIDEO DETECTOR Diodes

for TV video anc portable radio application; low capacity video detection; refficiency controlled at 50 Mc

Silicon DIFFUSED JUNGTION GLASS RECTIFIERS

1	TYPE	Peak Operating Vol:age	Ave RectifiedCurrent		Reverse Current (Max.) in μA at Specified Voltage		
		$\begin{gathered} -65^{\circ} \mathrm{C} t_{4}+150^{\circ} \mathrm{C} \\ \text { Vcts } \end{gathered}$	$\begin{aligned} & 25^{\circ} \mathrm{C} \\ & \mathrm{~mA} \end{aligned}$	$\begin{gathered} 155^{\circ} \mathrm{C} \\ \mathrm{~mA} \end{gathered}$	Voths	$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
0	1 N645	225	400	150	225	0.2	15
	1 N646	300	400	150	300	0.2	15
	1 N647	400	400	150	400	0.2	20
1	1 N648	500	400	150	500	0.2	20

Silicon DIFFUSED JUNGTION REGTIFIERS

WIRE IN TYPEs
GTUD TYPES

\%	TYPE	Peak Operating Voltage $-65^{\circ} \mathrm{C} 10+165^{\circ} \mathrm{C}$ Volts	Ave. Reftified Curient $25^{\circ} \mathrm{C} \quad 50^{\circ} \mathrm{C}$		Reverse ©urrent (Nax) at Specified FIV. $150^{\circ} \%$ mA		TYPE	$\begin{gathered} \text { Peak Oper 3ting } \\ \text { Vollige } \\ -65^{\circ} \mathrm{C} \text { to }+165^{\circ} \mathrm{C} \\ \text { Volts } \end{gathered}$		ectified ent $150^{\circ} \mathrm{C}$ Amps.	Reverse Current (Max.) at Specified PIV. $25^{\circ} \mathrm{C}$ ${ }_{11} A$
	1 N536	50	750	250	0.40		8ME3	95*	3.0	1.0*	10
	1N537	100	750	250	0.40		BM2E4	190*	1.5	0.4*	10
	1N538	200	750	250	0.30		1N2ter	380*	1.5	0.4*	10
	1 N 539	300	750	250	0.30		1M2EA	570*	0.95	0.2*	20
	1N340	400	750	250	0.30		CK846	100	3.5	1.0	2
	1N1095	500	750	250	0.30		CK847	200	3.5	1.0	2
	8NB47t	600	750	250	0.35		CK848	300	3.5	1.0	2
	\dagger Same as IN1096						CK849	400	3.5	1.0	2
						CK850	500	3.5	1.0	2	
						CK85 1	600	3.5	1.0	2	

All illustrations actual size:'
Ratings af $25^{\circ} \mathrm{C}$ unless otherwise indicated.
$*_{\text {to }}+135^{\circ} \mathrm{C}$
Types in red available to MIL Specifications.

SEMICONDUCTOR

RAYTHEON MANUFACTURINGCO.

SILICON AND GERMANIUM DIODES AND TRANSISTORS • SILICON RECTIFIERS
New York, PLaza 9-3900 * Boston, Mitherest 4-6700 - Baltimore, SOuthfield 1-1237 • Washington, O. C., REpublic "-6565
Chicago, NAtional 5-4000 - Cleveland, Vinton 1-7005 - Kansas City, Plaza 3.5330 - Los Angeles, NOrmandy 5-4221

unexcelled for switching, power handling, efficiency, relabbility TYPICAL Characteristics at $25^{\circ} \mathrm{C}$.

	2N1T00	2 N 109	2Nith	2N174	2N173	2N278	2N271	2 N 43	2N42	2 N 41
Maximum Collector Current	15	15	15	15	15	15	15	15	15	$\underset{\text { amp }}{15}$
Maximum Collector Voltage (Emitter Open)	100	80	80	80	60	50	40	60	50	40
Saturation Resistance	. 02	. 02	. 02	. 02	. 03	. 03	. 03	. 03	. 03	. 03
Thermal Gradient (Max.) (Junction to Mounting Base)	. 8	. 8	. 8	. 8	. 8	1.0	1.0	1.0	1.0	$\begin{gathered} 1.0 \\ { }^{\circ} \mathrm{C} / \mathrm{wotr} \end{gathered}$
Base Current $I_{B}\left(V_{E C}=2\right.$ volts, $I_{C}=5$ amps $)$	135	100	135	135	100	100	100	150	150	150 ma
Collector to Emitter Voltage (Min.) Shorted Base ($\mathrm{Ic}=.3 \mathrm{amps}$)	80	70	70	70	50	45	40	50	45	40
Collector to Emitter Voltage Open Base (Ic =. 3 amps)	70	60	60	60	50	45	40	55	45	40

Check your requirements against the new, improved characteristics of Delco High Power transistors. You will find improved collector-to-emitter voltage . . . higher maximum current ratings- 15 amperes, and extremely low saturation resistance. Also, note the new solid pin terminal design.
And of special importance to you is the fact that diode voltage ratings are at the maximum rated temperature ($95^{\circ} \mathrm{C}$.) and voltage.

Write today for engineering data on the new, improved characteristics of all Delco High Power transistors.

DELCO RADIO

Division of General Motors - Kokomo, Indiana BRAN('H OFFICES

[^2]Santa Monica, California
726 Santa Monica Boulevard Tel: Exbrook 3-1465

Now Available from $\mathbf{B}_{\&} \mathbf{A}^{\circ}$

 HIGH-PURITY LOW-MELTING GLASS For Coating Electronic DevicesHere's good news for every producer of electronic devices. Lowmelting glasses-a new research development reported before the Electrochemical Society by S. S. Flaschen and A. D. Pearson of Bell Telephone Laboratories* may represent a major breakthrough in low cost and highly efficient protective coating of semiconductors, capacitors, diodes and other types of electronic devices.

These new, high-purity, lowmelting glasses promise an ideal coating for protecting germanium and silicon transistors and diodes
from atmospheric oxidation, contamination and humidity. Coating may be accomplished by simply dipping the devices in a fluid bath ol the glass, withdrawing and cooling; by vapor deposition; or through the use of a pre-form (compressed powder).

Research quantities now available from B\&A!

We can now supply low-melting glasses to meet the needs of your development engineers. Write us today for further information or technical assistance.

Other B\&A "Electronic Grade" Chemicals Available!

Baker \& Adamson, the nation's foremost producer of laboratory and scientific chemicals, offers an extensive line of "Electronic Grade" chemicals - specially designed to meet the stringent quality $r \in q u i r e m e n t s$ of the electronic industry. 0:her special high purity chemicals are also available or can be custom made to meet your needs. For'more information, write for free foider, "Electronic Grade Chemic:als."

SEMICONDUCTOR PROGRESS . . .

THROUGH RESEARCH

An artist's conception entitled "Semiconductor Progress
through Research" depicts the flow of solid state devices from the raw state to products, to applications of the future. A reproduction of this painting, suitable for framing, is available on request.

Literature describing the progress of General Transistor's products, also developed through research, is available, in the form of technical engineering bulletins, on request

GERmanium HIGH SPEED
COMPUTER SWITCHING TRANSISTORS

germanium general purpose transistors

BULLETIN
G. 160 c.

Visit us at the IRE Show Booths 2205-2207

YEARS AHEAD IN RELIABILITY

$C: O R \quad P \quad R \quad A \quad P \quad \mathbf{R}$ 91:27.138TH.PLACE JAMAICA S. NEW YOKK

AMPLIFY MICROVOLTS WITH STABILITY... measure strain, temperature, other phenomena, to 0.1%
 with a KIN TEL DC amplifier

NEW...TRUE DIFFERENTIAL DC AMPLIFIERS ELIMINATE GROUND LOOP PROBLEMS...RESCUE MICROVOLT SIGNALS FROM VOLTS OF NOISE

160 db DC, 120 db 60 cycle common mode rejection with balanced or unbalanced input Input completely isolated from output - Input and output differential and floating ■ 5 microvolt stability for thousands of hours $\llbracket 0.05 \%$ linearity, 0.1% gain stability \llbracket Gain of 10 to 1000 in five steps $■$ >5 megohms input, <2 ohms output impedance $a 10$ volt at 10 ma output ■ 120 cycle bandwidth \square Integral power supply Ideal for thermocouple amplification, the Model 114A differential DC amplifier eliminates ground loops; allows the use of a common transducer power supply; drives grounded, ungrounded or balanced loads; permits longer cable runs; and can be used inverting or non-inverting. The 114A can be mounted in either single amplifier cabinets or six amplifier $19^{\prime \prime}$ rack adapter modules. Price: $114 \mathrm{~A}-\$ 775$; six amplifier module - $\$ 200$; single amplifier cabinet $-\$ 125$.

WIDEBAND, SINGLE ENDED DC AMPLIFIERS AMPLIFY DATA SIGNALS FROM DC TO 40 KC WITH 2 MICROVOLT STABILITY

± 2 microvolt stability <5 microvolt noise 40 kc bandwidth $=100 \mathrm{~K} \Omega$ input, $<1 \mathrm{ohm}$ output impedance $■$ Gain of 20 to 1000 in ten steps with continuous 1 to 2 times variation of each step $\pm \pm 5 \mathrm{~V}, \pm 40 \mathrm{ma}$ output $\pm 1.0 \%$ gain accuracy -0.1% gain stability and linearity ■ Integral power supply

Millions of cumulative hours of operation have proved kin Tel Model 111 series DC amplifiers to be the basic component for all data transmission, allowing simple, reliable measurement of strain, temperature and other phenomena. DC instrumentation systems - with their inherently greater accuracy, simplicity, and reliability than AC or carrier systems - are made entirely practical by the excellent dynamic performance, stability, and accuracy of Kin TEL DC amplifiers. Price: $111 \mathrm{BF}-\$ 575$; six amplifier module $-\$ 200$; single amplifier cabinet $-\$ 125$.

A Division of Cohu Electronics Inc.

ELECTRONICS NEWSLETTER

AUTOMATIC LANIING SYSTEM said to function in zero-zero visibility without need for pilot seeing runway has landed various commercial and military craft more than 2.000 times in development and evaluation tests. Bell Aircraft Corp., the developer, says system could eliminate accidents such as the Electra crash in New York's East River. All-weather system reportedly locates plane by radar, take: montrol from pilot 2 to 4 miles from end of runway and fien operates atotomatic pilot by radio to guide if to a landing. Bell says system was developed for carriers. expects both Navy and Air Force to buy it for operational use this rear.

AIR WEAIPONS CONTROL SYSTEM 21• L, which will combine base air defense and tactical air control. looks like a large and antinuing project. Intended t. solve air defense moblents for orerseas bases and areas in much the same way that SAGE operates in the U. S.. it consisis of three subswstems: radar. eommuniwations ind dataprocessing. GE, responsible for data-processing, has starter contract topping $\$ 12.7$ millon.

BALLOON-LOFTED RADAR GONDOTA is expected to extend knowledge of radar characteristics at stratospheric altiturdes theongh photographs of ppi displays. Photos were recently taken at 100,000 ft on first of three unmanned flights undertaken by Goodyear Airwait Co. and Winzen Research Corp.. under ARIDC contract. Pictures are correlated with regular aerial photographs taken by external camera synchronized with ppi camera.

High-speed weather chait transmission system is being desiuned for the Air Foree Cambridge Research Center by Philadelphia-Tele-Dypatmics Inc. Firm says its ter:hnique relies un codiag methods based on information theory.

AIRPORT RUNWAY AND TANIING CONTROLS

 will be installed this vear at the Atlantic City, N. J., experimental facility of FAA. RCA, as subcontractor, will supply 300 detector circuits and accessory gear for one $10,000-\mathrm{ft}$ runway and 20,000 feet of taxiways. General Railway Signal Co., the contractor, will provide controller's display panel and associated equipment. As plane passes over buried loops, a signal will be generated, received by detector, and then used to show position of craft on control panel. System requires no airborne gear and will accommodate landing speeds up to 175 mph , or taxiing speed up to $65 \mathrm{mph} ; 20$ planes may be traced at once. Future system might use computer to preschedule landing and taxi routes for incoming craft.HAWK PRODUCTION PLANS for 1959 and ' 60 are
firm for fixed and mobile combat requirements. So said Raytheon President C. F. Adams in denying report of a possible catback. He told Boston security analysts that ' 61 production schedale awaits Army de cision on fxed installation needs.

USE OF 1 COMPI TER in developing an advanced aiblays contol system starts this month in Atlantic rity. N. J. Unit is an RW-300 at the National Aviatix,n Farilities Fxperimental Cenfer NAFECs. The Thompson-Ramo-Wooldridge Products Co.. manufacturer, is also supplying sperial inpat and output equipment and technical aid. Feteral Aviation Agency's R\&D bureau will simulate conopx traffic control problems by means of mathematical models of proposed system - I:uit-in analox inpat-output permits communicating $\mathrm{f}_{\mathrm{c} \cdot \mathrm{r}}$ simuatior purposes with existine traffe controi devices.

Ten Fibstomss nesigneci by Ferranli of Britain wioi nou be made by Rapthoon. LK firm sold for \$250.000 *he likmonour for the low-noise tuhes used in Dorplar ratar sistems.

TERMINAL GILDANCE DETHODS for space rehicles will he sturlied at ITT Laboratories in Fort Wayne. Ind., under a contract awa-ded by Air Fiezearch and Development Command. Research problems include initial conditio: accuracius, adyerse physical phenomena, requirel rehicle performance ensironment. sensar characteristics and reliability. Program objective: to initiate stadies to define guidance systems, techniques and designs.

AUTOMATIC HIRILL for bearing jewels has been developed by Carl Zeiss, Oberkochen, West Germany. Electron beam is concentrated on jewel center in a vactum; released heat energy results in smelting and evaporation of the naterial. Tempering beam keeps jewel at high temperature for some time after drilling. New jewel is autcmatically fed to drilling position every 6 seconds.

Army Signal Corps has contracted for three mobile. transistorized Sulvania Mobidic computers, makina fou: so far orlered by the Army at a total funding of $\$ 6.5$ million.

MISSILE DEFENSE requires more data on reentry pheromena. Cerl F. J. Overhage, director of MIT's Lineoln Laboratory, declared recently that reentry observations at the far end of missile test range add up to a slow and expensive program To speed an active defense posture, he reported lab experiments are exploring means of anticipating possible enemy techniques such as decoys jamming and defense saturation by closely-spaced small warheads.

READY NOW FOR "2nd GENERATION" SPACE VEHICLES!

When "second generation" space vehicles beconte operational, the readout of their performance will be monitored by Brush militarized equipment already in existence.
For instance, the 10) (hanmel Operations Monitor that will record 100) channels of data simulaneously - on a chart $12^{\prime \prime}$ wide! Complex checkouts are simplified.
Or 2 - and (i-channel systems tincluding oscillograph and amplifier.... or the combination Analogr and Serguential Recorder.
All equipment complies with Mil. E-16400, Mil. E-4158. Mil, E-497() and other specifications as required.
For maximum reliability, equipment utilizes fast-response electric writing. proven on critical operational sites such as DEW Line, Jupiter and 'Thor checkouts.
It will pay to get familiar with this equipment now-before you are confronted with prototype design problems. Brush engineers are available to give you needed details, or write us direct.

What's New in ITV

Many exciting new uses for closed circuit television save time, life, health and money for industry, military, education and business.

- In the Antarctic, the Navy uses CCTV on a helicopter to picture ice conditions to an ice breaker following.
- A utility using ITV to observe water levels saved three salaries.
- In handling freight, ITV inspected cars and gondolas from a distance.
- Watching oil drilling or diving operations on the ocean floor from the surface.
- Checking factory operations for floors above from the main floor saved time and money.
- Guiding bulldozers run automatically in radioactivity areas from a safe distance.
- Stores and markets cut shoplifting and pilferage with ITV.
- Flame patterns in combustion chambers of engines and boilers may now be observed.
- Large organizations reach dealers through ITV in many cities for simultaneous meetings.
- Traffic flow through tunnels or toll bridges is checked and controlled.
- TV camera on factory roof scans large roofs for fires.

ITr makes a complete and versatile line of closed circuit TV for every military, industrial, business and educational requirement. For bulletins, engineering data and other information call our nearest office.

Industrial
 Products Division

International Telephone and Telegraph Corp.
15191 Bledsoe St., San Fernando, California
Closed Circuit TV - Custom Power Equipment Iníra Red Equipment - Large Screen Oscilloscopes Electronic Instruments - Autopilots for Aircraft CIRCLE 11 READERS SERVICE CARD

WASHINGTON OUTLOOK

SEARCH by Congress into almost every facet of the defense program already suggests some likely effects: (1) a beefed-up military appropriation, (2) some changes in defense procurement policy, and (3) the glare of pablicity on details of ballistic missile program management.

An atmosphere conducive to defense budget boosts is being whipped up by three major committee investigations of missile and space projects.

Committees are the Senate Military Preparedness and Space Commitae under Majority Leader Landon Johnson; the Homse Space Committee under Rep. Overton Brooks (I).. La.); and the House Aımed Services Committee under Rep. Carl Vinson (I)., Ga,).

The probes are being made against a backdrop of serious charges that (1) ISSR leads the U.S. in missile production and space exploration, and that ($\underline{(})$ the fiscal 1960 budget sent to Congress last month is inadequate to overcome the Soviet lead.

Sece, MeFlroy has stated that l. S. defonse is hased on the assumption that for some time to come the USSR will ont produce us in ICBM's. This plays into the hands of bemocratic critics. McFloy argues that the U. S. maintans "superiority" with a more "diversified" arsenal of nuclear striking power, and that this will deter Soriet aggression.

However, strong rebuttal has come in the form of: (1) Maj. Cien. Schriever's assertion that ICIBX production schedules should be hiked and that capacity is already avalable to handle beavier production rates: and (?) charges from both military and civilian space officials that budget restrictions will delay key projects.

Summing af: The current investigations provide a major soundingboard for critics of administration policies. They are likely to caluse new pressures to hike spending despite the administration's determination to hold the line on military expenditures.

- On the military procurement side, the House Armed Services investigating subrommittee under Rep. F. Edward Hebert (D., La, . will probe: (1) the trend toward weapon system management; and (2) the growing volume of negotiated contracts and the decline in formal open-bid procurement.

Also in an investigating mood are the Senate and House Small Business Committees. Both have plans for new inquiries into the often-raised question: Why don't smaller firms get more defense business:

The weapon system concept is also under fire from the House Military Operations subcommittee, headed by Rep. Chet Holifield (I)., Calif.).

He has begun to look into "organization and management concepts" of the ballistic missile program.

- Basic changes in government policies on patent and copyright law may come from Congress this vear. A Senate Judiciary subcommittee is now investigating patent practices and policies of 19 government agencies, including the military services. The committee is expected to recommend that Congress make patent policy uniform.

Subcommittee has already found, for example, that the National science Foundation allows its inventors to obtain patent titles, with the government given royalty-free, nonexclusive rights. Other government agencies, on the other hand, take title to patents but make them available to industry on a royalty-free basis.

No stoop, no squint, no painful nagging backache*

Buy this Testmobile and tilt your'scope so you can read it!

Obsoleting all previous concepts in one brilliant breakthrough, itp- engineers have achieved the ultimute devict-the revolutionary 115A Oscilloscope 'Testmobile. Employing the radical Supermarket Cart principle (first described 1906 by A. and P.) -hp-115A actually tilts an oscilloscope so you can read it. and lets you push it from place to place! Scope may be tilted up to 30° in $71 / 2^{\circ}$ increments; heavy chromed tabe steel construetion; big, locking, rubber-tired wheels; removable bettom basket; size $40^{\prime \prime}$ high $\times 23^{\prime \prime}$ wide x $29^{\prime \prime}$ deep, folds for shipment or storage; lightweight, only 28 lbs ., \$30.
with thonks to our friends of Philco and Anacin

Still further probing the Unkwown, -hp. engineers achieved the -hp-116A Storage Unit and 117A Storage Drawers. The 116 A is a sophisticated cube known as a "box." It holds up to 3 plug-in units for $-h p-150 \mathrm{~A} / \mathrm{AR}$ 'scopes ; prevenes dust and clbows in the circuitry. Yours for $\$ 22.50$. The 116 A also holds up to three 117 A drawers which in turn hold tools, solder, components and bubble gum. hp-117A, a modest $\$ 10$.

HEWLETT-PACKARD COMPANY

4959A Page Mill Rood - Palo Alto. Californio. U.S.A. Coble "HEWPACK' - DAvenport 5.4451

Field engineers in all principal creas

Besides Testmobiles, -hp-makes oscilloscopes, too!

-hp- 150A/AR - to 10 MC Automatic trigger, directreading; plug-ins providing dual trace or differential input; or high amplification. hp150AR (rack) \$1,200. hp150A (cabinets) \$1,100.

-hp- 130B/BK - to 300 KC 1 mv sensitivity, similar X / Y amplifiers, direct reading, automatic trigger, X5 magnifier, balanced on 6 most sensitive ranges. -hp- 130B (cabinet) or $130 B R$ (rack), $\$ 650$.

-hp-120A/AR - to 200 KC Sweeps $1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.5 \mathrm{sec} /$ cm ; X5 sweep magnifier, automatic trigger, high sensitivity calibrated vertical amplifiers, regulated power supplies. -hp- 120AR (rack mount, $7^{\prime \prime}$ high) or 1 20A (cabinet) $\$ 435$.

Data subject to change with. out notice. Prices f.o.b. factory

People like living in CIPStowns. No fighting the suburbia crowd for a seat on the commuter train. Home and al! the pleasures of really living are just a few minutes away from work.

If you want to locate your new plant away from the hubbub of crowded industrial centers . . . hut still in the heart of resources and markets, manpower and movement . . CIPStowns are the answer. Here is where plants and people have room to breathe, to grow and to prosper.

For information on available plant sites. write, wire or call our Industrial Manager. He ll serve ats your confidential assistant.
central illinols public service company
GEMERAL OFFICES: ILLINDIS BLII.DIPG, SPRINGFIELD, ILLINOIS

Churches of all faiths have a wide variety of religious, eaucotional and culfural programs in CIPStowns.

Microwave components of TFE resins withstand severe operating conditions... provide low losses

TEFLON TFE-fluorocarbon resins provide extremely low dielectric losses and high dielectric strength. In addition, they offer almost umimited life under severe envarinmental conditions. Reccgnition of these eat eres has lec 10 the rapid adoption of TFE resins for microwave and other radio-frequency amplications. More than a decade of outdoor testing bas, proven the complete resistance of TFE resins to weathering-to sunlight, moisture, tropical heat and aretic cold. Applications demanding years of contac: with the roost violent corrosives have demonstrated the resistance of TFE resins to virtually all chemicals. The resins also hate excellent mechanical propertios -revilience, impact strength, flex life, low coefincient of
friction, anti-stich properties. Witi all these chatracteristics, it is clear why TFE resins are often considered ideal insulators especially for crucial RF applications. In rat dar, aviation. guided missiles. TFE resins have become indispensable. This issae of "Enginearing Facts" will describe some of the RF properties of TFE resins and theit applications.

DIELECTRIC CONSTANT

AND

DISSIPATION FACTOR

VS. FREQUENCY

$1-$

 $\begin{array}{llllllllll}10^{1} & 10^{2} & 10^{3} & 10^{4} & 10^{5} & 10^{6} & 10^{7} & 10^{8} & 10^{9} & 10^{10}\end{array}$ FREQUENCY, CPS

TFE resins provide exceptionally low attenuation... low dielectric constant

No solid exists which provides lower losses at high fre quencies than Teflon TFE-fluorocarbon resins. A uniqu feature is that these losses do not vary with frequencyor with temperature.

Better radio and microwave designs are made possible by the dependably low losses of TFE resins under al conditions. The low dielectric constant of TFE resin makes possible designs with low attenuation and low VSWR. Dielectric constant, too, does not vary with frequency or temperature, considerably simplifying de sign problems. In fact, the electrical characteristics o TFE resins are essentially invariant from low audio frequencies to the highest microwave frequencies, and from the lowest temperatures attained by liquefied gases to above $260^{\circ} \mathrm{C}$.

FREQUENCY, CPS

TFE resins have good high-frequency dielect strength . . . permit higher RF voltages

The dielectric strength of TFE resins drops off less wit increase in frequency than for any other material teste to date. Published data show that at 100 megacycles is 130 volts per mil. Ordinary glass has a dielectric strengt of only 20 volts per mil at 100 mc ; and polystyrene dror to below $5^{\prime \prime}$; of its 60 cps value. Low RF heating due low loss factor is thought to be the basis of the superic performance of TFE resins . . . all materials have col timums voltage stress ratings below their short-term a chectric-strength values to avoid the erosive action corona. High-voltage operation is practical with an low-loss material like TFF resins, provided volt-per-m stress is below corona initiation. The chemical-therma properties of TFE resins give them longer life at voltage of any frequency, in absence of corona, than othe materials. Their high-frequency dielectric strength sug gests TFE resins need not be derated as much as othe plastics at ingh frequencies.

TFE resins make possible miniaturization . . . space and weight savings

Because of the high dielectric strength and heat resistance of TFE resins, center conductors can operate at higher temperatures and carry much more power for the same cross section. For example, at room temperature the substitu:ion of a coaxial cable with a core of a TFE resin permits a $4-$ to-1 weight saving and an 8 -to-I space saving for equivalent power over a polyethylene core. The resins alsc solve the problem of getting more ampere turns into a winding. Finer wire can be used so that miniaturized coils are possible. Other electronic components benefit in the same way. Thus, a complete electronic chassis can be reduced in size and weight by the use of TFE resins.

IFE resins are rated for operation at extreme temperatures

TFE resins provide the best performance of ary plast ic It both very low and very high temperatures Impact itrength of the TFE resins even at liquefied gas tempera:ures is good. The resins are elastic and can be used at $.70^{\circ} \mathrm{C}$. in services where they undergo constan flexing. They are rated for continuous operation at $260^{\circ} \mathrm{C}$. The resistance of TFE resins to high temperatures makes them particularly suitable for use at high power levels. Heat aging, which results in the cracking and embrittlement of most other high-grade insulations, is completely eliminated at temperatures to at least $260^{\circ} \mathrm{C}$. TFE resins are among the few insulators that remain effective at microwave frequencies under severe conditions of climatic and mechanical shock. This is especially useful in designing airborne components.

TFE resins can be compounded with inorganic materials (glass wbers, quartz, miea, graphite, copper, aEuminum, etc.) to increase mechanical properties as follows:

INCREASE IM MECHANICAL PROPERTIES EY USE OF FILLERS

PRCPERTY	FACTOR OF INAPROVEMENT
Resistance to creep Resistance to initial deformation under load	2 to 6
Stiffness	1.25 to 4
Thermal conductivity	
Resistance to wear by rotating shafts	$2: 03$

TFE resins simplify assembly of components for high-frequency use

TFE resins can withstand continuous application of a soldering iron or dip soldering. This facilitates assembly especially in densely wired equipment or where shielded wiring or thin-walled insulation is required. In thicker sections, parts made of TFE resins are relaticely stiff. For KF applications where extreme rigidity is recuired, the use of special fillers such as quartz or a glass is possible with some loss in electrical properties. The clasticity of the resins is also useful in assembly; feed-through insulators can be srapped into place in slighth undersized drill holes. Complex microwave parts can be machined from basic shapes such as rods, sheets a ad tubes. A varicty of special processes is available for bonding THE resins (normally non-adhesive) to other materials. Une heat-bonding resin has electrical properties like those of TFE resin. Additional information is available on request.

DIELECTRIC CONSTANT

AND

3- DISSIPATION FAETOR
 \qquad -0001

TFE resins have practically unlimited -esistance to aging and weathering

TFE resins, unlike most other plastics, are completely unaffected by weather. After 12 years of Florida exposure, no deterioration in properties could be detected. Water does not wet a clean surface of TFE resin. Thus. standoff insulators do not short out. No waser is absorbed, so that volume and surface resistivities remain at their normal, extremely high level-well bevond the measurable range of ordinary instruments. Freezing cold, ultraviolet rays and salt spray are harmless to TFE resins. They are unaffected by microorganism, and soil chemicals of any nature. Heat aging at 250° (. showed no effect. Their resistance to aging makes TFE resins useful in applications such as environmental test chambers for component testing.

Phcto courtesy of Dressen-Barnes Corp.)
STANDOFF INSULATORS of TFE resins replace component noounting boards because they snap into metal chassis. Low leakage of the resins even in moist air and use of grounded metallic terminal board prevent cress ta!k and stop leakage cursents from reaching adjacent circlits. Espectally useful in low-level, high-impedance circuits, chassis design costs no mere, permits ease of fabriation.

(Phots Courtesy ef Ciamond Antenna \& Mier.owave Corp. 1
RADOME for K-band antenna matches impedance of feed horn to space and provides protection against weather. Wave-guide impedances at input and output of ferromagnetic rotator in the feed are matched with mininzum insertion loss by internal cones of TFE resirs. Since the resins do not absorb moisture. the low diclectric constant remains stabie.

:Photo cou-tesy of Thompson Ramo-Wooldridge, Inc.I
TV TRANSMITIER SWITCH used with $31 / \mathrm{g}^{\prime \prime}$ rigid coaxial line handles 55 KW in the UHF band with very low loss. Both high frequency rating and high temperature performance are made possible by use of TFE: resins. They end the problem of impact cracking of the dielectric and eliminate mantenance. Insulating layer is machined fron? a sheet of TFE resin.

WEIGHT SAVINGS AND ECONOMIES are possibie with TFE resins in industries such as the aircraft industry. For example, the dollar savings per foot of cable made possible by the higher power-to-weight ratio of TFE resins becomes vital in aircraft and missiles where every pound of load requires several pounds of air frame and engine to carry it. Another area of savings results from the ready soldering of cable to connector, since TFE resins will not melt, shrink back or je sliced through by heated conductors during soldering. Furthermore, in high-speed aircraft where skin temperatures sometimes exceed $200^{\circ} \mathrm{C}$. and ambient temperatures in electronic devices zun very high, the savings in refrigeration equipment can be subtantial. Components can be made much smaller and lighter with TFE resins with no sacrifice in performance.

SEND FORINFORMATION

Discover how Dia Pont TFE-fuorocarbon resins can telp you intprove your products both electrizally and structurally. For property, design and enc- Lese information, contact a precessor of fluorocarbon resins (isted in the Yellow Pages under "Plastics") or write to: E. I. du Pont de Nemours \& Co. (lnc.), Polychemicals Department, Room 2524, Nemours Building, Wilmington 98, Delaware.

[^3]Tefton is Du Pont's registered trudemark for its fluorocarbon resims. including the T1F (retraftuorocthylene) resins discussed herein. printelionu. a a

Dielec:rics that do the job sately and reliably are the least costly in the long run. TFE-fiuorocarbon resins are the most dependable organic insulating materials known. They simplify assembly operations and lessen their cost. They minimize rejections. They reduce or may entirely eliminate maintenance costs. TFE resins help engineers meet the most stringent MIL specifications.

Typical RF Uses of TEFLON TFE-flucrocarbon resins

Coax, FF connectors - Flusi antennas - Antenna horns, radomes - Microwave printed circuits - Rotary RF̄oints - RF switches - Duplexers and other waveguide components • Standoffs, feedthrough bushings, spacers

TEFLON

[^4]better things for better living... through chemistay

ADAPTABILITY... with Leesona No. 107

These attuchments enalle went at zind small O.I). or spuce-atominl corils - athomaticall! - with one aperetior assigned to wo or morr muchines.

Top sperds plus cflisient upration make the Leeroma Vo. 10: toulay's out-handeng coil winder for loner runs of paper-insulated coils. Ophimalal attaclmente like 性re adapt its ahiliters to your coil-winding problems:
Short Paper Illuchment
Gives you tight winding and greater coil density in round coils with minimum paroer insert longth of 13 ". Wiards compace coils on arhor diam-
chers as -mall as: $1 /$ b $^{\prime \prime}$ insuring compert paper wherlap.

P'aper Viss Jpterdor
Autumaticalls stops: Ha- mar hine in (a-r al pajer mises. on lwah standard and short paper wimling nperations lating uperatio free (1) run tha or more marlines
Sparer llimd Hicarhment for Iligh l'ohlage Coris

Automatically wints spacel turns for a wivern whdth on sperified lavers be andronic control. Aso auto. mathally face approximately two lurns at carh end of a laver lo insure
aryinse arosempers at the end of the traberse.

If bur business involves winding paper-imsulated coils. you neal thee high arcurats and low cost of the I.resonaid Vo. Iot Coil Winder. Send in the atterhed roupern mom.

Univorsal Winding Company
P.O. Box 1605, Providence 1

Rande Island. Dept. 122
Please send me:
$\square \frac{\text { Bulletin on tre Lecsona No. } 107}{\text { Coil Winders. }}$

Namr.Title.
Cimprany.................................
City............. Tone.... State......

105 db sain in 60 mo l-F strip

Write on your company fetterhead for 105 db gain eight stage, $60-\mathrm{mc}$ i- $-\frac{1}{}$ amplifier applications brochure.

...with TI 3N35 silicon transistors

Actual Sice

105 db I-F STRIP CHARACTERISTICS

Bandwidth: 20 mc at 3-db down

Center Frequency: 60 mc
No neutralization required
The high gain of TI 3 N35 transistors at high frequencies permits mismatch in the interstage coupling retworks to eliminate complicated neutralizing circuitry. You sare extra component costs, design with ease and gain added reliability . because the mismatch in this application sacrifices only 2.55 db gain per stage!

De-igned for your high frequency oscillators, i-f, r-ís, and video amplifier circuits, the TI 3N35 features . . 20 -db power gain at 70 mc . . . typical $15(1-\mathrm{mc}$ alphat cutoff . . operation to 150 C . These chatacteristics make transistorization feasible for radian. communications, missile, and other high reliability military applications.
In commerial production at TI for two years, the $3 N 35$ fas a product-proved record of high performance and high reliability. These units are in stork nou! For immediate delivery, contact your nearby TI distributor for 1-249 quantities at factory prices... or call on your nearest TI sales offie for productior quantities.

FNNANCIAL ROUNDUP

Firms Announce Mergers

MFRGFRE, ACOUISITION゙s and other amalganations are proceeding at a brisk pace during this rear"s first quarter. Latest check on amomered combinings includes the following:
> - Terms have been agreed to bs Ling Electronics. Ridhatedson, Tex. and Alter Companies. Inc. Anaheim, Calif., for the accuisition of Altec storks by Ling on a share-per-share exchange of common stock. On completion of the transaction, which is now pending before the Securities and Fixchange (ommission, Alter ('ompanies. Inc.. and its subsilliary, Alter Lansing, will both operate as subsidiaries of Ling. Altec Service (0 will function ats a division of Alted Companies, Inc.

- Stockholders of Cessina Aircraft Co. Wichita, Kan.. and Xircraft Radio Corp.. Boonton, N. J. have approved merger plans proriding for exchange of two shares of Cessna stock for three shares of ARC. Final signing of the agreement took place last week at Boonton. Company officials say the specialized facilities under which ARC produces navigation and communication gear for small aircraft make the firm a logical acquisition for Cessna.
- Combined operations between Varian Associates, Palo Alto. Calif.. and Bomac Laboratories Inc.. Peverly, Mass., will come about through an exchange of common stock. Yarian will arguire so percent interest in Bomac and have an option to acquire the balance of outstanding Bomate common stock. Negotiations. Which were eompleted late last month. are awaiting final settlement of legal and accounting matters.
- Announcement of merger has been made by officials of Easttern Air Devices Inc., Dower. N. H. and Norbute Corporation. industrial division of Crescent Petroleum Corp. New York. Consideration for which Norbute accuired EAI) wats not disclosed. It was re-
vealed that the exchange involved transfer of stock as well as cash.
- Siprague Electric Co.. Niorth Adanns. Mass., hats purchased the magnetic component and filter product lines of the Hycor Division of International Resistance ('o.. Philadelphia, according to a foint announcement of both firms. Sprague will take over the manufacture of Hyer lines which were formerly made be the HfC division at its. Sylmar. Calif., plant.

OVER THE COUNTER

New dual purpose single coil latching relay...

TOP RELIABILITY!
 2 amp. and 10 amp. Models

Designed for trouble.free operation the Series 48 rela;'s feature AEMCO's pat. ented latchiag rechanism-for greater dependability than ordinary cam or rachet relays. Construction is wuged-latch action is positive! Contocts lock open or closed mechanically with a momentary impulse to relay coi'. SPST up to DPDT-rated 10 amps. af 115 V . SPST ep to 4 PDT-rated at 2 omps, at 115 V
SPECIFICATIONS: CORE: Solid core, heavy copper shadirg rirg. COll: Vacuum varnish impregncted and baked-tested for 1000 V RMS breakdown, INSULATION: Standard NEMA Grade XXXP Phenolic. CONTACTS: $1 / 4^{\prime \prime}$ dice for 10 armp. rodels-fins silver or silver alloy. $1 / \mathrm{s}^{\prime \prime} \mathrm{da}$. for 2 amp . modelsfine silv-3r, gold allay, or palladium contacts. All metal parts except stainless steel, cadmium plated with cronak finish. Latching members availabie with ease-hardened parts if desired. For come'ete information or these Series 48 Relays, write for descriptive data sheet.

For 邑very Fuse Application．

there＇s a safe and dependable BLSS or FUSETROV Fise

The complete BUSS and FUSETRON fuse lime includes：

Single－e oment fuses for circuits where quick－blowing is nerded；－or single－ element fuses for normal circuit protec－ tion；－or dual－element，slow－blowing fuses for circuits where harmless current surges ocour；－or indicating fuses for circuits whore signals must be given when fuses open．Fuses range in sizces from 1500 amperes up－and theres a companion line of fuse clips，bocks and holters．

Each fuse electrically tested to assure you dependability
 tested in a sustive electronic devere that automatically rejects any fuse not correetly calibrated，properly construc－ ted ard right in all physic：al dimensions．

You det the safest．most modem pro－ tection possible when you specify lBUSis
 and trouble too by using this one source for all your fuse needs．

For merre information， urite ion bulletin sFlふ．

Tell us your requirements and we＇ll have a fuse to match，for example：

For fuses that abolish needless blows specify．．Fuseiron fuses
$1 / 4 \times 11 / 4$ inch．
Glass tube．

dual－element－slow blowing type Ihese fuses atoid needless blows from starting currents or surges．Yet protection is afforded against short－ circuits or continued overloads．
fest purifiations rarry llo＇i．open at $35^{\circ} ;$ wilhin 1 herur．

Voltage	Amperes
250 or less	up to 2
125 or less	up to 7

For Signal or Visual indicating fuses

specify
 Fusetron FNA fuses

$13 / 32 \times 11 / 2$ inch．

Fusetron fuse with indicating pin whieh extends when fuse is blown． （Can the used in $\$ 31$ sict fuseholders to give visuat signal or．if desired，pin ean be used to actante a light or audible signal by using fuses in IZUSS signal！fuse block．
（）to 21 』ampere sizes and 12 to 15 ampere sizes listed as approwed by Endarwritors lathoratories．

$$
\begin{array}{ll}
\text { Voltage } & \text { Amperes } \\
250 \text { or less } & 1 / 10 \text { to } 30 .
\end{array}
$$

For fast acting fuses for protection of instruments specify BUSS AGC fuses
$1 / 4 \times 11 / 4$ inch．
Glass tube．

In sizes up to 2 ampore，for direuits of 250 volts or less，they provide high speed action nowesary to protect sensitive instruments or delicate apparattos．
Thisted as：：gprowed by Inderwriters＇Lath－

For high interrupting capacity fuses specify ．．BUSS KTK fuses
$13 / 32 \times 11 / 2$ inch

Capable of safely interrupting 68,000 amperes at voltanes of 500 or less．A（｀or 1）（＇
 Voltage

Amperes 500 or less．

Two portables with

WIDE RANGE COVERAGE

Traditional Weston quality alone would keep these famous model 904 portable instruments 'way in the lead. But their exceptionally broad range coverage, plus other exclusive features which distinguish this comprehensive instrument line such as . . . unequalled scale visibility ... wrap-around windows . . . hand calibrated mirror scales and knife-edged pointers . . convenient terminal locations . . . efficient shielding . . . rated accuracy of 0.5%. . make them standouts for labora-
tory or shop portable needs. Other instruments in this broad line include D-C Voltmerers, Volt-Ammeters, Ammeters, Milliammeters; A-C Voltmeters, Ammeters. Milliammeters; and A-C and D-C single-phase Watmeters. For complete information see your local Weston representative or write for literature . . . WESTON INSTRUMENTS, Division of DAY. STROM, Inc., $61+$ Frelinghuysen Avenue, Newark 12, New Jersey.

Visit us at Booths 8102, 1901, Radio Engineering Show, N. Y. Coliseum, Mar. 23-26

Need Lint-Free Acid-Resistant Synthetic Uniforms?

п
 with hundreds of electronic parts manufacturers, "engineering" their lint or acid problem. Angelica, the world's largest manufacturer of washable uniforms, has sales representatives in all major cities, trained to discuss your problems, to assure you of getting uniforms that meet your specific needs.
Write or call the nearest Angelica Regional Sales Oflice today.

1427 Olive St., St. Louis 3, Mo. 107 W. 48 th St., New York 36, N. Y. 177 N. Michigan Ave., Chicago I, Ill. 1900 W. Pico Blvd., Los Angeles 6, Calif. CIRCLE 21 READERS SERVICE CARD

F-M Radio Set Output Rising

F-a Rablo set reports stow production is on the wale up.

Some 576,00 sets were produced last year, including : $: 76.000$ Amer-ican-made and 2on, 0 , on foreign imports. Figures include $\mathrm{f}-\mathrm{m}$ and $\mathrm{a}-\mathrm{m} /$ f-m radios and a-m/f-m radio-phonograph combinations inut exclude f-m tumers.

Indications: are that 1959 output will be still higher. Reasomably close forecasts are not araibable, but those familial with the market feel there is mosuestion that production will continue to increase.

Despite effects of recent recession. production :n 1958 is believed to have been somewhat nigher than 1957. It is dificult on measure precisely the grain wer 1957 because of changes in methods of reporting figures.

Major radio sot makers have in(reased prorluction to keep up with resurgent demand. National Association of Broadasters sars. One mamufacturer reports his sales of f-m table models have dowbled in the last five rears.

Upwad trend stamds wut in relation to 195 \& $f-\mathrm{m}$ set cutput, the recent low-point. In that sear production totaled a scant 189.000 units. Previous high in f-m cutput Was reached in 1918 when American factories thmed out more than one and a half million reerivers. Production in 19 aid remained high-

1,472,000 units. Dropoff became noticeable in 195 when domestic production totaled $45,6,000$ sets.

Foreign f-m manufacturers have recently exhibited vigomous activity. A leading exporter of $\mathrm{f}-\mathrm{m}$ sets is W'est Germans. Its output has been heave since 195%. Japan is now reported entering the market.

High fidelity has been one of the most significant factors in f-m gains. A healthy segment of radio listeners are interested in the quality reception which hi-fi can provide via f-m. Stereo, too, will have a salutary effect upon f-m production and saless says. NB. but it is still too early to determine the extent of stereo's influence.

figures Of the week

latest weekly production figures

(Sotree: LIA)	$\begin{gathered} \operatorname{san} .30 \\ 1059 \end{gathered}$	$\begin{gathered} \text { Jan. 2, } \\ 1959 \end{gathered}$	Change From One Year Ago
Te er sicn sees	120,7:5	6.007	. 8.3%
Fi.do se:s (ex. aniod)	205,036	302,562	- 20.0%
Fute sets	15, 323	70,228	19.3\%

STOCK PRICE AVERAGES

S.u-dard \& Pcor's)		$\frac{J_{1, n} \cdot 7_{1}}{7}$	Change From One Year Ags
Lection	7274	72.89	. 33.7%
F.ado 8	70 Cl	37.78	+ 68.5%
Leondassers	8105	7822	35.9\%

latest monthly sales totals

- Aded Cool	$\begin{gathered} \text { Cec. } \\ 16.58 \end{gathered}$	$\begin{aligned} & \text { 110\% } \\ & 1058 \end{aligned}$	Change From One Year Ago
7 305s stcrs wat..e	$\leqslant 1650.6$	$\leq 12 \div 2$	-. 150.7\%
T insistors, whits	5.628	5,441	${ }_{\cdot}{ }^{1} 102.9 \%$
Pl . t.ibes, bulue	≤ 25.23	\$20854	- 1.0%
fec. ir bas in is	2850.4	5040	. 2.8%
F. : Les . 11.8	$\leqslant: 20.4$	\$15,608	-2.5\%
Pc. ibes, 1.17 :5	6.9	789	$\therefore 0.8 \%$

the right capacitor for the application...

 your job....and Centeralab
in a wide range of values, voltage ratings.

 tolerances and physical sizesWherever you need a feed-thru capacitor, you can be sure that centralab can meet your needs. The table below shows the many varieties that make up the most complete line in the industry-and you get the added benefit of Centralab's uncqualled experience in the design and manufacture of ceramic capacitors. Whet her it's for high frequency, filtering, bypass, or coupling, you'll find the unit you need in this group.
centralab Figineering Bulletins (FT' Group) give you all the details. Write for your copies today

TYPE	ACTUAL SIZE ILLUSTRATION \dagger	CAP. RANGE mmf	Vocw	VDCT	APPLICATIONS
Bushing type DA-717	$G \text { frumw }$	10-4000	500	1000	High frequency filtering, bypass, etc. $\pm 5 \%$ tolerance in lower values
Bushing type DA. 720	$\square 4 a^{\text {mim }}$	10-5000	500-1500	1000-3000	
Step type $\text { DA. } 728$	ETM	10-1500	500	1000	Med. freq. use, bypass, TV tuners, etc. $\pm 10 \%$ tolerance below 200 mmf .
Step type DA. 729		10-1500	500	1000	
Ring type $\text { DA. } 740^{*}$	ETB	10-1000	500	900-1300	Symmetrical design. Inserts from either end . . . ideal for automatic insertion
Ring type DA-741*		10-1000	500	$900 \cdot 1300$	
Eyelet type DA-784	-1	25-1000	500	1000	For high frequency filtering and bypass, where size is important
Eyelet type DA. 785	$D-[]]$	25-1000	500	1000	
Eyelet type DA. 787	$\square \square$	$25 \cdot 1000$	500	1000	
Resistor. Capacitor type 732	(s)	470 gmv . 3 to 1.0 meg. only	1000	**	Resistor-Capacitor in paraliel. ** 1500 VAC test when immersed in Silicone oil cooled with dry ice.

Meet the Milli-Switch I ine

Sub-Miniature Snap-Action Switches with High Sensitivity

Every Milli-Switch is checked for pre-fravel and over-travel. Maximum allowable pre-travel is onethird of that in most other switches.

You get unequaled performance from more than 40 types: . $008^{\prime \prime}$ pre-travel, .0015' maximum movement differential.

If you need precision operation, high eleetrical aipacity, light weight and lonir life in a sub-miniature snap-ation switch, it will pay vou to meet the line of Milli-Switehes. More than 40 ypes are avalable to neet your requirements.
Milli-6witehes give vou premium performance without premium cost:

- guaranteed minimum life of 1.000 .000 mechanical cycles.
- all metal parts are gold plated at no extra cost - extremely important for long shelf life.
- extremely short pre-travel (.008") permitting dose tolerances and control.
- exceptionally small movement differential average . $0005^{\prime \prime}$). valuable if you are using pressure swite ches or bi-metal controls.
- spectally designed contact spring with flexing atetion. Big selection. No dead break oceurs when plunger is moved . 001 "per minute at 6 vols AC 150 milliamps. Write today for complete information in 'Technioal I)ata Bulletin.
- Flat frequency response
from 0 to 100 cps
- Cialvanometer ratural frequency 55 cps
- Hysteresis less than ± 0.1 div.
- True velocity damping for galvanometer at all times - limiting ahead of output stage
- C:urrent feedback power amplifiers Eliminate effect of galvanometer resistance changes due to temperature
- Linearity 0.2 div. over entire 50 div. chart width
- Gain stability better than 1%
- Base line drift less than 0.2 div. over $20^{\circ} \mathrm{C}$. changes
- Automatic stylus heat control

PERFORMANCE

- Inkless recording in true rectangular coordinates

is the best proof of SANBORN

System Quality

Only the Sanborn " 350 " oscillographic recording system offers both superior performance and operating versatility. You can interchange the plug-in preamplifiers - or use them separately with their own power supplies to drive a scope.
meter. or optical oscillograph. The compact recorder ($171 / 2$ inches tall), complete with transistorized power amplifiers and power supply, may also be used separately (sensitivity 0.1 volt/chart division). That's real versatility!
Recorder features include built-in paper footage indicator. paper take-up. $8^{\prime \prime}$ of visible record, simple paper loading from the front. Nine electrically controlled chart speeds are selected by pushbuttons, and have provision for remote control. Connections are also provided for output monitoring. All these features - plus well-known Sanhorn reliability - are yours in the Sanhorn " 350 " system. Ask your local Sanhorn Industrial Sales-Engineering Representative for complete facts - or write the Industrial Division in Waltham.

Specialized registers like this represent one approach to solution of a cifficult problem in retail selling

Retailers Seek Input Devices

Abstract

Electronics manufacturers and merchandise retailers are working closely to develop equipment that will speed up big-store operations by collecting and scanning sales information for computer processing

Strong indications have come to light this month that retailers are following the lead of bankers in pushing development of equipment that can "read" minted information to supp!s computer input data.

Unlike hankers, however, retailers are seeking systems that will use conventional ink as a basis, instead of magretic-ink techniques which have been used in processing checks.

Equipment de:elopment, from the retailers peint of view, is proceeding at two levels-equipment to collect data, and equipment to read the collected information.

Manufacturers are working at three levels to accomplish the first aim of data collection. One method being pondereal is the use of a modified cash register which will supply
information in punched-tape or dotcode form.

A second approath being considered is a reader that will be incorporated in a chassis separate from the (ash register, but still :e used at the point of sale. This approach might require initial invout information of a fairly sophisticated trpe.

Expanded Imprinter

The third approach relies on a mamally operated imprinter similar to the type now used to place credit card information on sales slips. The imprinter would be expanded to contain a specially prepared merchandise tag as well as a charge card.

In use, the sales cierk places both focaments in the imprinter asd ob-
tains a third form which is routed to the accounting department, the inventory control section, or other destination for reading by special scamners.

Retailers operating or a scale large enough to warrant use of character-recogrition equipment will require data collectors in great mombers. Therefose, a basie reqainement for data collectors is that they be inexpensive.

Another requirement will be ease of operation. Persomnel operating the data collectors are hasically interested in selling, not data collection. Any collector device will thus have to be no more complicated to operate than a cash register.

As to the actaal foum in which the collected information will appear, retailers will probably choose
among devices which supply punched tape, conventional ink characters, on dot-code patterns printed in conventional ink.

Retailers have been working closely with equipment mamofacturers for almost three rears to develop what the researeh director of the National Retail Merehants Asssociation calls "a common lamgaage," as well as collectors that will tramslate sales information into that common language, and scanners that will read the common language and convert it into computer input form.

Formms on these topics have been held by NRMA, and more are slated for later in the month. Almost a dozen equipment manufactures have participated in the talks.

Some Results

In Washington, I). ('. Woodward \& Iothrop have begun using a device called the Salestronic made by National (ash Register. Directions are flashed in sequence as the sales clerk operates it. Input information is collected on punched tape and delivered periodically during the das to the store's computer room.

A punched-tape collector soon slated for pilot operation is a modified cash register made by Sweda Cash Register Inc. of Chicago isee photo).

Also being readied for pilot use is a line of imprinters made by Addressograph-Multigraph Corp. These devices are said to meet the price requirement of data collectors, as well as the requirement of easy operation. Ther provide information in dot code and in Ryman alphabet and Arabic mameral characters simaltaneously. They are predicated on the use of embossed credit cards. The firm has also developed readers which mooess information obtained from data collectors and provide direct computer input, punched cards or tape. o° magnetic tape.

Working on data collectors and readers for retalers. NRMA sources say, are firms such as Bumonghs, IBM, (ieneral Electric and Pitney Powes, Intelligent, Machines Researeh Corp., Alexandria, Via, has a number of prototype readers and imprinters in pilot operation.

DC-DC CONVERTER
all Items Designed hir 13.6V. Except 8034 which is for 28y Input

TYPICAL DCDC CONVER ER CIRCUIT

PartNumber	To:al V.A. Output	0.C. Output			
				$\begin{aligned} & \text { C.T. F: } \\ & \text { Volis } \end{aligned}$	Mave
M8034	125	500	250	250	4215
M8035	125	500	250	250	$42 \cdot 4$
M8036	43	450	SO	225	155
M8037	22.5	250	90	125	155

TRANSISTOR OUTPUT

Frequency Response $200 \cdot 15,000 \sim$
See catalog for case sze

SILICON RECTIFIER
 Power Supply

Cicuitry Primary $1051151: 5$ Volts" Hermetic sealed to MIL-T-27A Hermetic sealed to MIL-T-27A
See Catalog for additional irit See Catalog for additional irformation

TRANSISTOR DRIVER

Designed specifically for
transistor, servo and audio Frequency response 70.20 K Size AF mill through AH Hernetically sealed to MIL-T 27A
EPOXY MO:DED See catalog for exact sizes and weights ON SPECLAL
ORDER ONLY

ORDER ONLY		Pri. Imp.	$\begin{aligned} & \text { Sec. } \\ & \text { Imp. } \end{aligned}$	Pri. O.C Unbal Ma	$\begin{aligned} & \text { Level } \\ & \text { Watt } \end{aligned}$
Part Number	Application				
M8002 ${ }^{\text { }}$	Coll to P.P. Emit.	560	400 C.T	T. 18	15
мзс03-	Coll. to P.P. Emit.	625	100 C.T	T. 20	15
M8004	Coll. to P.P. Emit	5,400	600 C.T	T. 15	075
M800S	Coll. to P.P. Emit.	7,000	320 C.T	T.	040
M8006	Coll. to P.P. Emit.	0.000	$6.500 \mathrm{C} . \mathrm{T}$	T. . 75	005

- Br-Filar weund to minmmue switching transients.

LOW LEVEL CHOPPER

Efficiently transfers 30 to 500 cps Tran ducer or Thermocouple signals to instror ment amplifiers. Signal level range fron $.5 \mu \mathrm{~V}$. to .5 volts. Resin impregnated to minimize mechanical vibration noise si: nal. Low hum pick up assured by 3 ma metal and 2 copper shields.

ULTRA MINIATURE TRANSISTOR

Wt. 0802 size $38 \times 3 / 8 \times 1 / 32$. coded leads, resin impregnated Encapsulated on special order

Part Number	Application	Primary Impedance (0.C.)	Secondary impedance
UM 21-F	'nput	100,000	1000
UM 22-F	Driver	20.000	1,1000
UM 23-F	Driver	20,000	$\therefore .00 \mathrm{CL}$.
UM 24-F	Output	1.000	50
UM 25-F	Output	400	50
UM 26.F	Output	400	11
UM 27-F	Output	400 C.I.	11
UM 28-F	Choke	10 Hyy (0 dc)	8 Hy C (mal 650

The new long look

Test Equipment designed and luilt by Hughes lil Sogundo is as sophisticoted as the Ihaghes Filectronic Armament Systems which it tests.
neers in Airlorne Electronics Systems, Space Vehic les, Plastics. Nurlear Electronics, Ghohat and Spanial C.nnr municalions. Ballistic Missiles and manv others.

Similar opportunities exist at Harhes l'roda'ts, where basi Hughes developments are tansiated into commercial products- =cmiconductors. specialiverl electron tulnes and industrial sstems and controls.

From lasic researeh through final applicalion, Hughes oflers a unifue eqportunity for personal and profesional wrowth.

Nimbly instituted pregrams at Imedos hare created immediate oproings for enginecrs coperionced in the following areas:

Digital Computer Engr.
Microwaves
Semiconductors
Field Engineering
Microwave \& Storage Tubes

Communications Radar Circuit Design Systems Analysis Reliability Engineering

U'rite in confidente, to Mr. Tom Stellerrl,
Hughes Generol Offices, Bldg.6-L)2. Culver City, California.

His lal) is the cockpit. Wherever Hughes syst ms and missiles are employed, Hughes Field Engineers are on hand to work directly with squadron personnel.

in sky scanning

Alranced liswarch and Development at luphes creates stimulatimg opportuntion for creative engi-
A totally mew idea in reonmaisance radar. stontstaer fat left) is a side-looking, microwave search antenma w ithin a (ompletely silf combained delachablide pod. Carried urder the Comsair B-58 Supersonic
 ware and hark lores built-in. It is roll stabilized when the airemalt ehanges tlixht attiturle, the antema maintams ils noemal axis.
sigutsibl was designed and develnped hy the Meronave Laboratory of Hughes. 'Inis Mierowane Labomant is preathy enourat in every fold of elertronics for a irborne, missile, communication. and ground and thip-lused radar ssiloms-with opera-

The "sstems wie"tation" reprembed by the new sIonte:FR refleds Hughes :hilo-phy of integration. Tle Eierowan Latoratores for exampe support
 Hughes Cround systems (iroup in Foulerton.

HUGHES

HUGHES AIRCFAAFT CCMPANY
Gulver City, El Sugualo,
Iullortou and Las Angelds, Culifornia
TuMsen, drizona

EIMAC KLYSTRONS performance proved in original Tropo-Scatter systems

Eimac klystrons are used in nearly every major military and commercial tropo-scatter system in the world. The list is impressive: Pole Vault, Texas Towers, Dew Line, White Alice, SAGE, NATO, Florida-Cuba TV, and numerous commercial networks. They have been selected for systems from Norway to North Africa, from the Arctic Circle to the Andes, from the United States to the Far East.
In most of these systems Eimac klystrons are used exclusively. The reason is simple: Eimac-pioneered external-cavity klystrons make it possible to generate high power at ultra-high frequencies simply, reliably and at low cost. With the Eimac externalcavity system, tuning cavities, couplers and magnetic circuitry are all external to and separate from the tube. This permits ex-
ceptionally wide tuning range and simplifies equipment design. Cost is lowered because this external circuitry is a permarent part of the transmitter and is not repurchased when tubes are replaced.
The reliability of these high-performance devices is exceptional. Some of the original Eimac klystrons installed in Project Pole Vault-t'ine first major tropo-scatter network ever estab. lished - are still going strong with more than 25,000 hours of air time logged to their credit.
Eimac manufactures a complete line of amplifier and pulse klystrons covering the most important areas of the UHF spectrum. Write our Application Engineering Department for soecific information.

How SAC Communicates

Big push now is to complete a single-sideband network. One company alone has a $\$ 20$-million order for airborne radio gear

OFFUTT AFB, NEB-STRATEGIC AIr (0,mmand's 3,000 plames flying from 70 bases spread acmoss four continents are welded into at single striking arm be a gigantic complex of electronic commonications and data-professing systems.

Ceater of this network lies some 45 feet below ground here. In case of enemy attack. sid C’s immediate retaliation would be directed and controlled entirely from this post ("stac Prepares for Missiles." p 30, F(el), 1:3).

Facilities here include a communications center, whbal weather central (Hilectronics. p 26, Jan. 16), computer room and a control room 140 ft long. 39 ft high. Lining one wall, the length of the control room, giant panels are constantly updated to show all information needed to direct global war

For guick internal risual communications, two RCA TK-4 color to cameras, with remote control and focus capabilities, are installed in the operations room on a 100 -ft track opposite the map panels. Two more cameras, with electronic viewfindersare mounted on movable studio pedestals. A TK-45 ?-vidicon color ty camera is in the weather briefing room.

In addition to color tr: a monochrome RCA ITV-G camera monitors entrance to the map room and control area. Black-and-white tv also connects the control room with North American Air Defense Command in Colorado Springs. (oolo.

Future tr plans include commecting the control room with L'SAF headquarters in Washington. ITT has a developmont contract for such a system to be transmitted in code over low-frequency telephone wires. Later. ty will connect all SAC bases in the U.S.

Sixty telephone lines leased from AT\&T are available in the control room for alerting SAC bases individually or all at once. Receiving end has a loudspeaker, automatic tape recorder and individual telephone receivers.

A separate private telephone system is used for control of daty aircralt movemonts.

Teleprinter communication equipment is used to back up the telephome voice messages. The ssistem includes multiple lines pherated by COAF and Arms, and commeretal lines leased frem AT\&T. ('able servier to Emeland is batked up by RCA"s radiotelephome service.

Single-sideband radiotelephone backs up the tolephone sorvice and reathes all SAC planes flying anywhere in the world.

At prosent thore are $2: 3$ fixed ground-to-ground s.sh stations. broadeasting on 11 me .14 me and 20 me. The equipment used. atcording to SAC. includes collins KWT-6. KWS-1, ToA 1 and R('A's SSB-1, L’sing 500-watt pep (peak envelop powert, world-wide corerage is maintalimed under grood atmospheric conditions. Automatic radio relay switehes. however. can bypass poor conditions.

Air-to-ail and air-to-ground sish equipment. transmitting at from 4 mc to 25 mc . will be uperational in all SAC planes by mid1960. R('A has recently delivered \$3.5-million worth of aipborne equipment for $S A C$ and is under contract for $\$ 20$ million more.

Airborne receiver/transmitters Hsed include R(A's AN/AllC-65 (modified AliC-21゚s) and Collims' AN ARC-Ts. Both are automatically comtrolled. The AldC-(65) oprorates in mon-ercle steps. providing atotal of 14.000 crystal-controlled whanels. The units are msed for s.sh and at-m voice.

Some SAC planes carre Red's AllC-34 whf, remote-controlled. lineorf-sight. command communications sot. It can be presed to any 20 operating frequeney chanhels of 1. Tono avalable frequencies from 295 mc to 399.9 me . Succossor to the ARC-34 will be the ARC-62.

Fotir ground stations for the aim/ground network are now under construction. Active contractors for ground equipment, according to Air Materiel Command, include Westinghouse with a $\$ 1$-million contract. Collins for KWT-6 transmitters. receivers and controllers (84 million) and Fildien Electronices div, of ladio Engineering labs for 2 mc to 30 mc 100 -watt pep transmitters. receivers, control units and power supply ($\$ 525,000$).
(Part III of this series will describe how SAC's electronic dataprocessing equipment would direct a global offensive.)

[^5]
URES and the chamaeleon vulgaris
 \section*{COUNTERMEASURES and the chamaeleon vulgaris}

DECEPTION IS A FORM OF COUNTERMEASURE

and at this the chameleon must be considered an expert.

The approach to the problem of survival through countermeasures has been neathy solved by this handsome little fellow. By simply changing his color to match the surroundings the chameleon may take on the appearance of a brown twig, a green leaf or so completely blend into the immediate area that his enemy is hopelessly confused. This, in effect, is countermeasure in the truest, sense.

To confuse or mislead the enemy is often
the problem faced by the military. Not to be outdone by the chameleon, electronic countermeasures have been developed which effectively confuse the presentations as seen on radar scopes. Defensive action is thereby delayed until too late. In this field, as well as many other forms of countermeasures, Instruments for Industry car apply exacting know-how and skill. The high degree of success achieved by IFI is proof of ability.

Only one target is a true target. The big question... which one?

INSTRUMENTS FOR INDUSTRY, Inc. 101 New South Road, Hicksville, L. I., N.Y.

[^6]
VISUAL MICROWAYE ANALYSIS-10 to 44,000 mc COMPLEX SPECTRUM DECODING

Analyze complex spectrum visually using any of Polarad's wide band

MICROWAVE ANALYZERS

MULTI.PULSE SPECTRUM SELECTOR

Used with any Polarad analyzer, this Model S[-1 Spectram Selector permits comp!ete anālysis of any complex pulse modulated microwave signals. The unit decodes and isolates any segment of a complex pulse atrain and permits corresponding spectrum analys is of that segment.

Model SD-1 Spectrum Selector displays pulse growips up to 180 microseconds duration (Model SO 1X: 350 microseconds).

Applications:

Design and operation of radar, telumetry equipment, IFF systems and beacors.

Model TSA Spectrum Analyzer 25 kc 'eso'ution. 400 kc to 25 mc dispersion. 5 sensitive plug in tuning units.

Model TSA-S Combination SynchroscopeSpect um Analyzer Disolays
pulse waveform : ar frequency spec. trum. 5 kc to 5 mz adjus.able band. width 400 kc to 25 me dispersion. 5 semsitive plug. 7 turning, units.

Model TSA-W Wide Dispersion Spectrum Analyzer -100 kc to 70 mc dispersion. 7 kc and 50 kc resolution. Logarithmic amplitude display. 5 sensitive plug-in tuning units.

Model SA-84 Multiband Spectrum Analyzer - 10 to $40,880 \mathrm{mc}$ in a single unit. 25 kc resolution, 400 kc to 25 mc dispersion. Simple band switch, slide-rule dial. Military approved.

POLARAD ELECTRONICS CORPORATION:

Please send me information and specifications on:
Model SD-1 Multi-Pulse Spectrum Selector
Microwave Spectrum Analyzers
Model B Microwave Code Generator (see reverse side of this page)
My application is:
Name
Title Dept.
Company
Address
City
Zone \qquad State

COMPLETE FACLITIESCODED MICROWAVE SIINALS 950 to $10,750 \mathrm{mc}$

APPLICATIONS:
One integrated instrument
Provisel a complete system for simulating and testing missile and telemetry systems. IFF and radar. microwave beacons, direction finding and navigational equipment and microwave relay links

Perterm- general purpose signal generator and oscilloscope measurements, multı pulse testing and analysis

SET FREQUIENCY
Frequency range 950 to $10,750 \mathrm{mc}$ is covered by four interchangeable microwave osrillator units, all stored in the instrument. Each has UNI-DIAL control, precision power monitor circuit to maintain 1 milliwatt power output reference level, and non-contacling short type chokes to assure long life.

VISUALLY CHECK MULTI-PULSE CODE
Calibration of r-f pulse width, delay and group repetıtion rate is simplified by ability to view pulse train on a precision oscilloscone with a built-in winde band r-f detector

ADJUST MULTI PULSE CODE

Code modulation is achieved with five independently adjustable pulse channels providing: pulse repetition rate variable, $10-10,000 \mathrm{pps}$; width variable 0.2 to 2 microseconds: delay variable 0.300 microseconds. Pulse rise and decay, 0.1 micrasecond.

NO ADJUSTMENT NECESSARY on self contained power supplies Klystron power unit adjusts to proper voltage automatically for each interchangeable tuning unit. Built-in AC regulator. Equipped with an electronically regulated low-voltage $D C$ supply.

VISUAIIY CHECK MULTH-PULSE CODE

WALL THIS CARD
for Jetailed specifications ask your nearest Polarad representative fin the "ollaw pares for a cory © "Totes on Microwavo "easurements"

POLARAD
ELECTRONICS CORPORATION
43-20 34th Street, Long Island City 1, N. Y. Reprecentatives in princiral cities

Cambion terminal boards are arailable in standard all-set. miniature all-set, standard ceramic and custom-made types. Materials include paper, cloth, nylon or glass laminates, bonded with phenolic, epoxy, melamine or silicone resins. Boards are moisture-proofed and fungus-proofed. Standard or special components are assembled as required.

Our "private eyes" protect you from delinquents

You won't frnd a single weak spot in any Cambion" terminal boare. We've already made sure there are no cracks in board or terminals; no strain, chips or sunbursts; no insecurely mounted terminals. In fact, such defects are the rarest discoveries, even in our own thorough inspections. That's because the stock used in Cambion boards is certified top grade. . Cambion tooling is specially engincered to prevent product damage . . . and Cambion workmanship is true craftsmanship.

Quality conirol like this is standard in every step o. Cammon production -in any quantity. That's why you can count on the complete Cambion line terminal boards, solder terminals, insulated terminals, coils, coil forms, capacitors, swagers, hardware - for the trouble-free performance you expect and need. And every Cambion component is guarunteed.

Available locally through authorized Cambion distributors. Or write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38 , Massachusetts. On the West Coast: E: V, Roberts and Associates, Inco, 5068 West Washington PIvd., Los Angeles, California. In Canada: Cambridge Thermionic of Canada, Limited, Montreal, P^{\prime}. Q.

Cambion solder tormintals are made of sijver plated hrasa, realed witt water diplacquer. 'IEere are der different typre twallable in bult in tanlimited quantity or in inditidual parekages of 100. Momentig information as! ('ambion tools required are list ed on the iswertage

The guaranteed electronic components

NEW SPRAGUE MODEL 500

 INTERFERENCE LOCATOR ,

This improved instrument is a compact, rugged and highly sensitive interference locatorwith the widest frequency range of any standard available unit.
New improvements in Model 500 include: greatly increased sensitivity, meter indications proportional tocarrier strength, transistorized power supply. Enginecred and designed for practical, casy-tooperate field use, it is the ideal instrument for rapid pinpointing of interference sources by electric utility linemen and industrial trouble shooters. Model 500 tunes across the entire standard and FM broadcast, shortwave, and VHF-TV spectrums from 540 Kc to 216 Mc. For full details send for brochure IL-102.
sprague electric company 35 marshall st. - horth adams. mass.

New Look for Small

'Coalition concept' being proposed by investment firm aims to place small firms on equal footing with big ones in major contract bidding

A mesting held yesterday in Long Island, and an amouncement made by a New Yock investment banking firm earlier this month, maty have some far-reathing consequences for small electronics firms.

The Now lork amboncement Was made bỵ Hayden Stone \& Co, in the form of a proposal to orgamize a corporation made up of about 10 alectronics firms. They would bid for large contracts on the same batsis as big companies, under the name of Deco Electronics Corp.

Each of the member companies would own Decco, but would not be required to give up its identity and interest in "personal" work.

Financial Details

Initial eapitalization would be $\$ 250.000$. made up of 10 shares of common stock with a par value of $\$ 1$ per share, and 10 shatres of preferred stock to be priced according to market levels. Each member firm would hold equal shares, one common and one preferred.

The investment banking company has declined to name firms being considered for membership in Decor, since the group is not yet chartered.

A spokeman for Hayden Stone say:s his firm is "still looking." A hint on possible final composition of the gromp is that initial formation will probably be aimed at obtaining of military contracts.

How Plan Works

The "coalition concept," as one manufacturer has dubbed the newly announced system, has excited considerable interest in Long Island, where a number of small electronics firms have recently felt the pinch of reduction in areraft constraction activity in the area.

Nost of the Long Island firms are familiar with the two main ways
in which small companies share in major contracts-getting subcontracts and forming teams.

The team idea dithers from the coalition concept in duration ats well as structure. Team member firms do not remain united once the task at hand is completed, while Deccotype firms would remain incorporated the same way as presently incorporated latge firms.

One long loland group already in operation is Electrodyne. This name is applied to a pool of four companies headed by liepublic Electronic Industries Cour., Farmingdale, I. I. Three nom-electronic firms have joined with Elect odyne to add mechanical engineering skills to the combine. The pool has been in operation for almost a year.

One component manufacturer located not fal from Electrodyne looks at the pool concept with some reservations. "It might be poor judgment to bid in competition with customers of long standing, especially if a member of a pool firm is liable to be eligible for subcontract work, should the big company get the contract being bid on."

Met Yesterday

On the other hand, several firms indicate keen interest in the new plan and say that it may be "just what the doctor ordered" as a way of improving their business prospects.

The general problem of how to increase the volume of business of Long Island firms was the subject of discussions conducted yesterday under the auspices of the long Island Association.

On the panel were representatives of the electronics industry, members of the Long Island Electromic Manufacturers Council, an affiliate of LIA.

The group heard talks by regional representatives on state and

Companies

national levels. as well as bs゙ military procurement officials and industry procurement spokesmen.

Parpose of the meeting was to give 1 . I. firms the latest information on procurement methods. In panel discassions held in the afternoon, topices included talks on ways of ohtaining financial aid.

Radio Telescope Being Readied

Unilversity of Michigan's 85-ftwide steerable radio telescope is nearing completion this week.

The 10 -story antenna will be used to pick up radio signals from the sum and onter space.

By Spring. the receiver portion of the lookout station will be ready for operation.

Total cost of the facility, atop l'each Monntain 16 miles west of Ann Arbor, will amount to $\$ 300$. 000). Nost of the fands are being supplied by the Office of Naval Research. When completed, the dish will stand nearly 1,100 feet above sea level.

The new antenna was developed by the equipment division of the Blaw-Knox Steel Co., Pittsburgh.

Missile Detector?

New experimental high-power search radar, designed by MIT's Lincoln Laboratory, is operating in North Andover, Mass. Radar reportedly has frequency of 400 mc with peak power of 5 megawatts. Reflector: 120 ft wide, 30 ft high

5

Sprague miniature pulse transformers are ideally suited for application in low-power, high-speed computer ci-cuitry where pulse signals may range up from 20 millimicroseconds and wider in duration, at repetition rates as high as 10 megacycles, with pulse levels ranging from fractions of a volt to several hundred volts.

Typical circuits utilizing Sprague Pulse Transformers include pulse amplifiers (for current or voltage step-up, impedance matching, decoupling, pulse inversion and pushpull operation); pulse shaping dud differentiating: blocking maillatoms (in regenerative circuits of the triggered and self-triggered type); general tramsistor chacuits.

Choose from Sprague's wide variety of mounting styles, shapes and encasements, . . for conventional or printed wiring board assembly.

W'rite for the complete suries of engineering bulletins to Technical Literature Section, Sprague lilectric Company. 35 MarshallStrect, North Adams, Massachusetts.

Sprague offers
a wide variety of

MAGNETIC
 SHIFT REGISTERS

for aircraft, missiles,
computers, and controls

Just the right case styles... types of sealing . . . number of stages . . read and write provisions you need! Sprague magnetic Sinift Register Assemblies are matched to your specific application requirements to make them your best huy!
Standard designs are easily modified to meet most system requirements. All are 1000_{0} pulse performance-tested before they leave the plant.
For engineering assistance on your Shift Register problems, write to Special Products Division. Sprague Flectric Company, Union St., North Adams, Mass.

mageinus.a.

The Amperex Type 5924A is a rugged, forced-aircooled triode, specifically designed for an exceptionally hish power yield in the VHF range

The Amperex Type 6076 incorporates modern tube design for excellent power capabilities throughout the RF, VHF and UHF ranges. AND, it is uniquely suited to single sideband operation.

4 of the 5 principal manufacturers of

 AM, FM and TV transmitters, now specifically include
the Δ M Q ㅇ $\triangle \pi^{\circledR}$ Type 59244 Triode and the Amperex ${ }^{\text {® }}$ Type 6076* Tetrode

 in the design of their transmitting equipment
THE REASONS:

High Power Amplification Type 5924A, anode capable of dis sipating 6 kilowatts
Type 6076 , anode capable of dis sipating 3 kilowatts
Broad Frequency Range
Ratings for both tube types apply up to 220 me.
Long Tube Life
Average life in excess of 5000 hours of operation under normal load conditions
Compact Design
Dimensions closely controlled for cavity operation

Rapid Heat Dissipation Extra-heavy copper wall anodes with high overload capacity All brazed cooler-fin radiator assembly

Proven Materials

Thoriated tungsten filaments Platinum-clad molybdenum grids All external surfaces silver-plated Unique Design Features Low-inductance coaxial grid terminals permit improved isolation of input and output circuitry Short electrode structure for economical and compact transmitter design
*Designates the air-cooled version. The water-cooled version bears the designation, Type 6075.

tUBE
 TYPE
 6076

> CLASS AB ${ }_{2}$ GROUNDED GRID LINEAR R.F. AMPLIFIER SINGLE SIDEBAND SUPPRESED CARRIER OPERATINN Maximum Ratings, Absolute Values (Frequencies up to 110 Mc)

TYPICAL OPERATION
DC Plate Voltage

Two Tone Modulation

DC Grid No. 2 Voi:
DC Grid No. I Voltage
Zero Signal DC Plate Current
Zero Signal DC Grid No. 2 Current.
Effective RF Load Fesistance..
Average DC Plate Current.
Average DC Grid No. 2 Current
Average DC Grid Na. 1 Current
Max. Resultant Peak RF Cathode Voltage.
Average Plate Power Output.
Peak Envelope Plate Power Output....
Average Driver Feedthru Power
Peak Envelope Fegdthru Power
3rd Order Intermadulation Distortion.
CCs
5000 volts
.600 volts
. -50 volts
.35 ma
160.2 ma

1600 ahms
1600 ahms
1110 ma
.44 ma
$2675 . .275$ volts
$.2675+214$ watts
$.5350+428$ watts
.214 watts
.428 watts
.37 db

United States	Completed in 1958		Cont. in Operation		Under Construction No. Kw		Under Dev. or Planned		Total No.
	No.	Kw	No.	Kw			No.	Kw ${ }^{\prime \prime}$	
Power	1	200 E	7	79,700E	8	695,700E	9	446,500E	25
Power Experiments	1		2		2		1		6
Naval Reactors	5		4		41			- -	50
Materials Testing	2	50,000	2	215,000	6	231,000	3	80,000T	13
Research>50 KW	5	71.100T	18	45,650T	9	14,200T	9		41
Research < 50 KW	15		20		8	,	$3 i$		74
Critical Facilities	13		36		2		3	- --	54
Aircraft and Rocket	1		1	---	-	-	-	- --	2
SOLD ABROAD BY US FIRMS									
Power	-	---	-	-.-	1	11,500E	9	538,000E	10
Materials Testing		---	-	--	3	75,000T	-		3
Research>50 KW	2	8,000	-	- $=$	15	$36,100 \mathrm{~T}$			17
Research< 50 KW	5	-	3		3		1	- --	12
T thermal kilowatis E electrical kilowatts				E elec	trical	kilowatts			
- Dacluctes 1 merchant shin reactor bated at 73.000 tkw									
${ }^{3}$ Ekw rating for I power reactor and 5 large rentarcl reactors in unsurcified									

A-Power Gear Market Grows

Nuclear instrumentation sales area is now 180 reactors, including 51 for subs and ships

['NITE, STATES manllfacturers. institutions and goremment agoncios completed the construction of : it nuclear reatetors in this country and abroad during lask. according 10 the Atomic Industrial Formmes latest box score.

The number and size of reactors now under comstruction of being designed strengthen earlier predictioms of a steadily increasing reactor instrumentation matket. estimated at $\$ 15$ million for 1958

The eight big power plants under constraction will be ready in 19 oblo. Nine others are being designed on plammed. Another 19 aro under study.

Ship reactors atre well underway. Atomic engines were completed in 19.58 for the submarimes sumontish and sorgor. I prostotype for the radar picket sub Triforl and a dual reactor prototype for a latre surface ressel were also huilt.

Start i3 Sub Reactors

Comstruction began last year on 13 submatrine leactors and two destroyer engincs. The submarine reactors include five power plants for ballistic and guided missile subs. Comstruction was comtinued om 15 submarine reactors-including fomr guided missile sulos-eight engines for the carrior E bltherprise and two for the cruise! Lomal Fidell.

AlF previously has estimated total military reactor construction,
largely for the Narr. will go well oser 200, non eloctvical kilowatts in

 in 19.j8, an estimated $X 7.000$ kw

Work continued on the Vis Sarmu. wah melehant ship) beatetors and design studies hate begun on fro more merchant ship reactors. . it least one aircraft propulaion reactor prototrpe is in operation and one rocket reactor puototrpe is about ready for tests.

Of 1.4 reseatreh reatetors in aperation, under embstruction on planned, D8 aro for [V, S. exlucatinmal institutions and $1 \geq$ for formign $n-$ stitutions.

A bind in spate arailable for pro actor materials testing wats allowiated by completicn of two powelfal reatetors. Six others will be rotidy by the end of 1960 .

Accelerator Sales Lively

In the subsidiany field ut almetron patoticle atcelerators. manutiatoturers' sales were lively. One firm delivered : : 5 matchines vilued at s.j.7.5 million. Another delivered four worth s. F (0,000) and hats fiso others. worth $\$: \because .2$ millitun. under (onnstluction.

Universities and private inst tutions bought 17 acceleratomos. industry purchased nine and govormment agencies bought six. Foroign sales included eight accelerators for miversities and four fom gorermment agoncries

If takes many proven components to make a missile system operational. In the ground-to-air Nike Hercules, the importont Aikesearch auxiliary power unit drives yuba' Calmotor 3 -phase 400. cycle alternntor. Designed specifically or fhis air defense application, the alternofor powers the missile's electronic gudance ard contral system. The work of -his incoll. vital unit is such that it must meet ex'reme environmental conditions of heat, cold and shock.

Whether your need is transducers, psecision cybermotive devices, analog ccmputors. of a sofution to an unarswered problem, Yuba will design and build to your strict specitications - with minimum lead time.

Dalmotor Division

 Sonta Clara, Calif.yuba consolidated IMDUSTRIES, INC.

Plants and Sales Offices

CIFCLE 36 READERS SERVICE CARD

layout and
 template making time cut in half．．．

the new STRIPPIT

 FLEX－O－DRILL－drills，reams，scribes，center punches to $00.002^{\prime \prime}$ W＇THOLT IGasc line drawing or heightande layout
－EASY，ACCURATE POSITIONING－quicths set to any refertnce point and Lo mearest $0 . \|^{\prime \prime}$ ha adjustahle serel tapes reading in both direstions from zero．Nicrometric wames then hring settings to

－LASTING ACCURACY！＇lable is an deluai grommd surface plate Bridge aswombly is of heavy acrurately machined＂áatines．Jead serews are prodsion oround and enorged only during micronmetric gatuer settin⿱丷天心．t_{1} ）minamize wear，All fatts are corrosion－ resistant．Bearimes are proterted against dast and ehips by felt shiedets．Hrill motor is heaverhat！imalustrial type．
－ $1 / 4 "$ CAPACITY in mild sterl－stock up ler 2 $1^{\prime \prime}$ width．any lengh．
－also a PROVEN mONEY－SAVER on pilot rums．low unit produrtion．

Tomplate drilled isy Fla…（）－1）rill

Lutwht sertben？by Flic－（）－｜riil

Flot－（l）rill worl：piequ

wales STRIPPIT $_{\text {inc．}}$
 225 Buell Road，Akron，New York

HOUDAILLE
${ }^{2} 0_{c_{\text {sinit }}}=$

MEETINGS AHEAD

Feb．16－20：Western Audio Conven－ tion，Audio Eng．Soc．，Biltmore Hotel，Las Anmeles．

Mar．3－5：Western Joint Computer Conf．，ALEF，ACM，IRE，Fairmont Hoterl，San Francisco．

Mar．$\overline{-7}$ ：Wrestern Space Age Conf． and Exhibit．I．A．Chamber of Com－ mereer Great Western Exhibit Cen－ ter，los Angeles．

Mar．1．7－18：National Assoce of Broad－ easteres．Ammail Convention，Comrad－ llilton llotel．（＂hicagoo．

Mar．2：3－2：Frlight I＇esting Comf．，ARS， Daytona Boach，Fla．

Mar．2：3－2f：Institute of Radio Engi－ neers．IRE National Convention， （obliserm \＆Wallorf－Astoria Hotel， New York（＂ity．

Mar 2f－es：Institute of Printed Cir－ euits，Annual Meeting，New York City．

Mar．2h：Quality Control Clinic，ASQC， Unir．of Rochester，Rochester，N．Y．

Mar．31－．1pr．2：Nillimeter Waves Symposium，Polytechnic Inst．of Brooklyn．L＇SAF，ONR，！RF，I＇SA Sigmal Research，Fongineering Soci－ ctics Bldg．，New York City．

Apr．\quad－10：Nuclear Congress，spon－ sored by over er major engineering and seientifie societies，Public Audi－ torium，Cleveland．

Apr．6－7：Astronatutics Symposium， Air Foree office ot Scientific Re－ search，Sheratom－Jark Hotel，Wash－ ington，I）．©．

Apr．6－9：British Radio and Electronic Components Show，Great Mall，Gros－ venor House，Park Lane，london W．1．

Apr．13－1：：Protective Relay Conf．， Texas A \＆M（ollege，College Sta－ tiun．「＇ex．

Apr．11－1．：：Industrial Instrumenta－ tion and Control Conf．．P＇ilE of IRE，Armour Research Foundation， Illinois Inst．of Teeh．，Chic：aro．

Apr．16－18：Southwestem IRF Conf． and Fllectronics Show，SWIRECO， Dallas Memorial Aut，\＆Baker Hotel，Dallas．

[^7]
NLS 481 Simplifies and Accelerates Power Supply Testing

 make your oun life and performance tests without obligation. Phone or wire today and we will supply you with an NLS 481 for this purpose. Then you can see for yourself why the NLS 481 is finding ready acceptance in the areas of quality control, electronic design, field testing, and research.

NLS 781 DIGTAL OHMMETER

Providing the same basic operational features as the NLS 481, the NLS 781 Digital Ohmmeter sells for the same low price. With a range of 0.1 ohm to 10 Megohms, the NLS 781 is proving parricularly useful for rapid inspection of precision resistors.
The price below is for either the NLS 481 or NLS 781:

furnushed complete $\$ 1285$ - f.o.b. san diego

Originators of the Digital Voltmeter
non-linear systems,
inc. del mar (San Diego, california
1959 IRE SHOW - Booths 304T-2

NLS-The Digital Voltmeter That Works...And Works...And Works!

... WHERE THERE'S A GROWTH SITE FOR YOUR ELECTRONICS PLANT

 men and wemen swell tingimias potemtial wothine force rach
 helped mahe thi- taters ireord of lather-management hamoms five limes before than the hational a eraye
Thats gene reason whe the electronics industry is grewing far fa-ter in \backslash irginia than in the l. S. as a whole Som new plant, too, can find a profitahle and congenial thome in this land of

 site-linding help in lisqinia . . where youll engoy southern production ahantage an dose as you san wet them to the -reat morlhast and miderot mashets.

Virginia Dept. of Conservation and Economic Development

64 Zener Diode Types Offer Advantages to Every Voltage Regulator Circuit

As compared to other voltage reference elements, the silicon diode regulator has a longer life expectancy because of its mechanical ruggedness. It does not deteriorate under storage nor age during its operating life. Small size and light weight make its use in airborne or portable equipment especially' desirable from many standpoints.
International Rectifier Corporation now oflers an extensive line of zener types mumbering 64 in seven basic styles. From the miniature type rated at 750 milliwatts to the precision 1N430 reference element types, all are mannfactured to meet the most rigid military requirements. See hou these all-ucelded, hermetically sealed diodes can improve your circuit design
CIRCle reader service card no. 115

HZ Series Silicom Zener Volfage Regulators Replace Vacuum Tubes - Streamline Circuitry - Take Only Half The Space!

Semiconductor equicalents el:minate components and circuitry required by tuhe counterparts to overcome plasma oscillation and high fring potential.

Voltage regulation circuits an be simplified and the reliability inereased by using silicon zener voltage regulators in phace of conventional gas tube regulators surh as the OA2, 0i.3, 0B2, $0 \mathrm{C} 3,1 \mathrm{~B} \cdot 46$ and the 991.
The International Rectifier 1IZ. series, provides a substantially lower dsnamic resistance than do comparable tube types - and over a much broad re temperature range ($-65^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$). This feature and the umusually high zener reference voltage, stem from the unidue eonstruction of these units. Mechanical ruggedness of this mackage leads to longe r term reliability than can be expected from tules.

Other regnlators restrict the engineer to a few sperefife voltages within at very limited current range. Not so with the HZ series. Yon may solect the exact zener voltage your circuit regulires within a rance of from 24 to 160 volts - over a wide range of current values. This opportunity to select in disereet voltage steps obviates additional corrective circuitry . . . saves time!
If you are developing a voltage regulation circuit, write or call us tod wy. We

ZENIAC Provides a Shortcut to the Application of Silicon Zener Diodes

A fip of the Zeniac selector switch quickly tells you the exact diode required in complex breadboard circuitry. This tisique innotation - the first semiconductor sulbstitution box is history - has been designed specifically to aid system design groups by saming valuable lab trne in the application of zener diodes. The eleven component diodes of Zeniac are rated at 1 watt and range in coltage from 3.6 to 30 volts. Zeniac is available at your local International Rectifier Industrial Distributor. For details on this time saver. . CIRCIE READER SERVICE CARD 116

will be happy to provide whatewer
assistance you need to improve your
will be happy to provide whatewer
assistance you need to improve your circuit with silicon zencr regulators. circuit with silicon zencr scgulators.
For Bulletin SR-25.3 describing the MZ series in technical detait

CIrcle reader service card no. 117

Technical Service Provides XY Plot of Reverse Breakdown Characteristics of Each Diode in all Prototype Orders

To eliminate guesswork and tedtons testing on your part, every zener diende sent on prototype orders will be aceonpanied by a specially plotted XY recording of its exact breakdown voltuge point! This permanent record can come in mighty handy when it's time to match diodes or reorder to the same spees. This is just one of the many application engineering services we are prepared to extend to you at all times!

Write on your letterhead for Bulletin SR-250-A, a four page technical article describing the characteristics of zereer diodes, how to select them, and application data with circuit schematics.

"Gap-Mounted."*

Integral Biock Interlace.

Magnetic Heads for Digital Recording

Abstract

Get more capacity...reliability...faster accesswhether you're designing a new pulse system . . . or modernizing your present one.

Why settle for less than the best magnetic head -the "heart" of your digital recording system? Whether your digital recorder is in the design stage, on order or in use now, Clevite "Brush" magnetic head specialists can improve your system at low cost. Write for prompt quotations on replacement or "modernization" heads for any existing transport, or specials including flux-responsive or high resolution heads. Write for Clevite Digital Recording Bulletin for complete information.

CAPACITY - Five series of Clevite "Brush" multichannel heads give channel format variety for standard tape widths from ${ }^{\prime \prime} \mathbf{y}^{\prime \prime}$ to $2^{\prime \prime}$. A single block will handle up to 16 channels per inch of media width-an interlaced block up to 32 per inch. Clevite heads read pulse widths down to $1 \frac{1}{2}$ mils recorded to saturation on 0.3 mil coating instrumentation tape-approximately 600 pulses per inch with self-erasing saturation recording. More than 300 ppi packing is possible on 1 mil coated drums, operating 0.2 mils out of contact with a 3 mil pulse width on the drum.

ACCESS - Careful choice of material plus unique design and construction techniques enable Clevite "Brush" heads to provide uniform performance at very high processing rates. The heads themselves respond to wave lengths down to .15 mils (1.5 MC at 240 IPS) but standard instrumentation tapes and transports usually reduce the practical repetition rate of saturated recording to approximately 30 KC and 15 KC for RTZ and NRTZ respectively.
RELIABILITY - Clevite "Brush" tape and drum heads hold track width and location to ± 0.001-inch tolerance. Azimuth, contact angle and gap perpendicularity are true ± 0 deg., 5 min . and can be held even closer when required. "Gap-mounted" head (see photo) has lapped bracket and cartridge surfaces for fast replacement without critical adjustment. Redundant and interlaced (see photo) designs provide immediate checking of recorded data and higher output per channel respectively. All multichannel heads available in epoxy or full metal face (to reduce oxide pickup) at no extra charge.

* Patent Pending

Pulse width comparisonstandard and thin oxide tape.

electronics

FEBRUARY 20, 1959

Power levels in front of antennas like this AN/FPS-17 near Laredo, Tex., can be hazardous to healith. Research is now finding out what r-f energy does to animal tissue

Researching Microwave Health Hazards

High power levels in new radar, scatter gear, call for caution, understanding, and new measuring devices. Here is where we stand today

By FRANK LEARY, Inowiate Eititor

HhGH-P(awtered radar, radio and comatermeasu:"es transmitters now being designed. built and tested present an element of hazard to health.

New Air Force scatter ssistems will put ont 100 $k w$ of arerage power. The toras scamer for the ballistic missile carly-wathing sustem will beam 600 kw average. with peak power in the $10-\mathrm{m} \cdot \mathrm{c}_{\mathrm{ga}}$ watt region, Radars of the Millstome Hill typer, besed to tratck :md amalsze missile and satellite dedris. will alsw produce an areage of 600 kw .

The hatard resalting from focused concentratoons of such encrgy. like any hazard. can be remdered relatively harmless by anderstanding and peecathtion.

I'ntil five rears ago. understanding of the effects of r-f ehmory on living animal tisume was limited to a handful of experiments performed on rats and dogse and a small body of experience with michowave diathermy. Results from experiments on small fur-heatring amimals were not necessatrils applicable to haman beings: these animals hatve high eondietents of heat absonption. small body sulfaces and relatively poon heat-regulating sesfoms. The human bods. by comparison, has one of the best regulating sistems. Adequate phesiological function (an be maintained at 2.40 For meriods as
 has been expused to fun F for as much as a minute

FIG. 2-Dielectric dispersion of 10 -percent hemoglobin solution in water. Dashed curve indicates theoretically predicted behavior; points are empirically derived
without incurring injury to the tissue.
Within the last two years, a massive fesearch program has attempted to enlarge our understanding of the biological effects of microwave exposure. The program is sponsored by the Defeuse Department, and is coordinated at L'SAF's Occupational Health Research Laboratory at (ape (anaveral by Col. George M. Knaluf. xtaff surgeon of the Air Force Missile Test Center.

Some of the results emerging from this frogram point up criteria for safety throughout the electronies industry and indicate several paths for additional research.

R-F IN TISSUE—Animal tissue reacts to r-f unergy like the parallel resistive-sapacitive cirouit shown in Fig. 1 on the preceding page. At low fromencies. current tends to bypass the relatively high capacitance of the cell through the conductance of the electrolvte which surrounds it. As the capacitive reactance drops at higher frequencies, the current passes into the celt. At microwave frequencies. reactance drops to the point where animal tissue presents the electrical appearathe of a protein solu-tion-a suspension of individual proteins and protein lipill complexes in an medrolyte.

As frequencer rises, the diplectric constant of the cell materials drops due to dispersion. In muscle tissue, one drop centers at about 100 cps . A seeond and major drop, due to cell structure, ernters at about 100 ke . A third major drop falls in the microwave spectrum at 10,000 to $30,000 \mathrm{mc}$, and is catlsed in part hey the moperties of biological maromolecules and in part hy the water content of tissue. Water is known to display a dispersion near 20.0010 me .

The form and oriontation of the protein molecules in tissue introduces a complicating parameter, accorling to researcher Herman P. Schwan at the University of Pennsylyania. The protein constituents appear to leave "dielectric holes" in the electrical path formed by the electrolyte. Fig. 2 illustrates this phenomenon in a 10 -percent solution of hemorgohin in water.

The sharp fall-sff in diclectric constant on the 1-10 me range is part of a major dispersion discontinuits centered around 1 me. If the behasion of the material were completely described by the 1-me dispersion, the dielectric constant would assume the constant level indicated by the dotted line in Fig. 2. However, the dielectric constant is (bserved to follow a darly linear declinc as indicated be the measurement points surrounding the solid line.

Hydration of proterin molecules can explain this behavion. Figure :? shows the frequenes dependence of the dielectric constants of ice and free water. with the curve hypothetically adduced by. Schwan for the bound water that hydrates protein molecules. Ire and wator have been thoroughly investigated and are known to undergo dispersion at $1-10$ kc and 20,000 me respectively. A dispersion curve for bound water near 300 ma would explain the uht-dispersion phenomena observed in protein molecules.

LIVING; ORG.DNISMS - The seriousness of the possible effects of r-f energy on living animals depends on several factors. One is the size of the animal: for ans significant effect, the animal or animal part must be at least a tenth the wavelength in size. Kadio-frequency energy generally penetrates between a tenth and a hundredth of its wavelength into living tissue.

Power Brings Problems

The problem of microwave radiation hazards can be neatly summarized in the words of USAF Col. George M. Knauf, who has coordinated the government's research:
"We established arbitrarily a maximum safe exposure level of $0.01 \mathrm{w} / \mathrm{cm}^{2}$. . The most powerful radar set in operation today cannot produce this power level at 500 ft , even in the axis of the main beam
"The levels at which we are conducting our probing exposures are many times greater than the capability of present-day equipment . .
"In the new series of equipment on the drawingboard we can be certain that we will attain power levels equal to our safe exposure level over a much wider area. Such levels will not be restricted to the main beam. Because of the peculiar configuration of this equipment, it will be necessary for certain rechnical personnel to spend varying periods of time in areas where the ambient power level will exceed $0.01 \mathrm{w} / \mathrm{cm}^{2}$. The upward tilt of the beam will still offer protection to the casual passerby.
"The problem of accidental exposure to this higher power becomes a possibility. The need for protective clothing to cope with operating and maintenance problems appears inevitable, as does the need for more attention to shielding for buildings and passageways in the operational areas.
"Even here there does not appear to be any need for concern about any hazardous situation outside of the immediate vicinity of the equipment ..."

The amount of power absorbed by the body is allso frequency-dependent. At frequencies below 400 mc fond above 3.000 mc . the body absorbs about half the incident power or less. The rest passes through (lower freguencies) or is reflected at the skin's surface (higher frequencies). At frequencies below 1.5 me the human body ceases to be a significant fraction of wavelength.

Between 1.000 and 3.000 mc , the percentage of absorbed radiation can approach 100 percent. depending on thickness of skin and of subcutaneous layers of fat.

Below 1.000 mc , most radiant energy is tramslated into heat in the deep tissues at 300 mc . for exampie, much of the heat would tend to develop three or four inches inside the bodro. Above :3.000 me. the result is mostly surface heating. Intolerable temperature rises are therefore more likely bolow 1.000 me.

The interface effect is an important factor in the biological offect of r-f energy. Every time the energy pases from one material to another the discontinuity reorients the power. Power is reflected, and a standing wave results near the interface.

Early experiments with a $2.450-\mathrm{me}$ diathermy machine showed that a layer of red moat was heated to higher temperature when a layer of lard was blaced on top of it than when exposed alone. Furthermore, the lard melted at the interface, not on top.

HEAT EFFECTS-Since animal tissue converts into heat most of the electromagnetic energy it alosorbs, the thermal effects are the most serious recorded thus far. Thermal effects of microwave en-

ergy are directly related to average power levels.
The eve and the testis are the two organs most seriously affected by heat. The eye is easily damaged because it has an inefficient vascular (bloodtransfer) system for the exchange of heat to survouding tissue. Research also suggests that certain en\%rmes in the ere are characteristically sensitive to alteration due to temperature increases.

The seminiferous tubules of the testis are easily damaged by heat. Indeed. temporary partial storility can ven be induced by the wearing of tight andergarments. since the normal temperature of the body is too high for these tubules.

Irreversible damage to the eye is far more common than irreversible damage to the testis. Although temporary sterility and tubular damage have been induced in animals. the situation has ultimately corrected itself. One researcher has commented that irreversible damage to a human testis due to hyperthermia would probably be preceded by death of the subject.

The eye, however, develops opacities of the lens (cataracts) due to overheating, and these can be irreversible. The avascular condition of the eye complex makes the removal of dead tissue difficult. The alterations in engrmes in the eye lens may cause these entrmes to change or cease their functional activity. If cellular metabolism stops. the tissues die; if it decreases, dysunction may result.

Small opacities detected after one or a few exposures to r-f encrg. (in rabbits. whose eyes are closest in structure to human eves) have frequently been observed to develop into major lesions without adiditional exposure.

Time and power thresholds for lens opacities at 12.: (cm range from is minutes at $0.59 \mathrm{w} / \mathrm{cm}^{2}$ to 90 minutes at $0.29 \mathrm{w} / \mathrm{cm}^{*}$. Exposure to sustained ipradiation at $0.12 \mathrm{w} /(\mathrm{m}$ for 4.5 hours catused $n o$ discernible upacits, which suggests that this power level is a threshold of safe exposure. The 12.3 - -m spectrum (the region between 2.400 and 3.000 mc) has been found critical for the production of

FIG. 3-Dielectric dispersion in ice and water. Curve for bound water explains dispersion of effective dielectric constant of hemoglobin molecules

This $60-\mathrm{ft}$ reflector forms one end of ITT's Cuba-Florida scatter link. Antenna puts out 10 kw ; new scatter systems will be 10 times as powerful

Gataracts, perhaps because of the distance below the surface of the ere of the highly sensitive suture w' the lems, where most catarate fum.

WHOLE BODY- Exposure of the whole body is also sorions, since there is no organism with which the blood can interehange heat if the whole body is heated.

One of the principal causes of intermal damatge dile to fereer (natural or induced) is amoxiat or lack of oxygen. This condition causes almost instant damage to certain sensitive cell groups in the brain, central neroons system, and internal organs, notat hly the kidney. liver and adrenal glands.

For evory degree that the temperature of the body rises above normal, the rate of basal metabolism increases 5 to 14 percent. Which requires a $\therefore 0$ to 100 percent increase in the supply of oxygen on tissues. But the presence of fever brings about a net reduction in the oxygen supply.

Heat callises the hemoglobin to lose some of its capacity to combine with oxpgen. Increase in bloodflow rate reduces the time avalable in the lungs for oxygen transfer. Rapid breathing results. causing alkalosis the dizziness you maty experience from blowing up a balloon is caused by alkalosis:. which increases the chemical stability of hemoglobin and interferes with the release of oxygen to the tissues.

The combination of these factors produces severe amoxia. Additional effort by the body to supply oxygen in nerded quantities mas caluse hemorrhage, further compounding the damage.

Sedatives and tranquilizers reduce the body's ability to withstand heat. Sedation interferes with the cellular utilization of such oxygen as is aratilable, contributing further to the anoxic condition.

Safety Standards

Army training areas have certain characteristics in com mon with industry testing grounds. The army has estab lished these criteria for its training areas:

Hard stand areas (concrete, asphalt, etc.) are limited to immediate vicinity of the set.

Surfaces between are soft and absorbent, preferably grass.

Sets are separated by distances which reduce searchlighting exposures to less than $0.01 \mathrm{w} / \mathrm{cm}^{\prime \prime}$.

Training areas near acquisition-type radars are screened in the direction of the beam.

Rest areas are provided where power densities are $0.001 \mathrm{w} / \mathrm{cm}^{2}$ or less.

No other unassociated trairing is done in the vicinity of the radar training areas.

General Electric has been observing these safety standards since June 1, 1954:

Prevent exposure to direct beams, especially of the eyes.

Limit direct or reflected intensity in all areas to which people require access to $0.001 \mathrm{w} / \mathrm{cm}^{2}$.
GE feels it necessary to monitor at $0.001 \mathrm{w} / \mathrm{cm}^{*}$ to make allowance for harmonics and spurious waves

The functioning of the hypothalmus. the body's thermostat control, is impaired bey high temperatures; as a result, the nerous system cannot efficiently establish swating or adequate peripheral circulation. High body temperatures also caluse a reduction in the efficiency and number of thrombocres, the blood comstituents which cause coagulation. As a result, clotting time is increased.

DIMENSIONAL RESONANCE-Since the body and its parts are conductice, they resonate at critical frequencies and can build up standing waves. Some of the effects noted by researehers in the hollow cavities of the body and in bone marow appear to have been callsed be concentrations of thermal energy that may have been produced by resomance.

In more than one case internal lesions catused by microwate exposure were undoubtedly produced by reflections from fat-muscle or muscle-bone interfaces, which produced standing waves nearby.

A couple of experiments with small animals have shown partial or complete loss of control over motor functions under relativels mild exposure. with immediate recovery after removal of power. This effect could result from resonance in the cranial cavity or along the spinal column, which might create a strong enough field to beat against and cancel the normal signals in the motor network. The nerve transmission system could thus temporarily be rendered inoperative.

NONTHERMAL EFFECTS-Nonthermal effects have been demonstrated by some of the researchers. Nonthermal effects, however, are hard to trace in animal experiments, since no thermostatic device exists which can keep body temperatures constant and thus eliminate thermal effects. The variability of animal responses also makes it difficult to establish an exact relationship between dose and effect.

Molecular response characteristics of protein molecules and protein lipid complexes may be responsible for nonthermal effects. These responses result from the morement, orientation and polarization of the molecular constituents: side groups and main protein body. Bach of the side groups, as well as the main bods, may be electrically polar. High $r-f$ field strengths can orient the side groups and cause dielectric saturation. When all side groups are complotely orionted. the bonds between them and the main protein body may be snapped by a small increase in field strength.

Denaturation of living tissue in this manner, one possible nonthermal effect, is most likely to occur in the $100-300 \mathrm{ma}$ range. The likelihood decreases sharply above 1.000 me . The effect need mot hatre a significant thermal comerpart. since it can be brought about he high peak powers whose awerage value is not areat mough to produce heating.

Nonthermal components have been noted in the poduction of eataracts, and in variations in bloodclotting time. Researeh at Tufts University has produced cataracts at subcritical temperatures by axposure to high peak values of power. This may be
the result of molecular responses in the sensitive enzymes mentioned above. Increase in blood-clotting time may result from similar responses in the thrombocyte platelets.

A clearly nonthermal phenomenon noted by researchers is the formation of pearl chains in living fatty tissue, in solutions of erythrocytes, in solutions of milk and blood, and-most recently-in lymph. Upon exposure to microwave energy, the stispended solids form into chains of round aggregations. similar in appearance to tiny strings of pearls. oriented in the direction of the r-f beam.

If such a phenomenon occurs on the molecular level, the natural distribution of tissue components raty be disturbed, which could have profonnd biological significance.

INSTRUMENTS-The nature of the problem of biological effects is such that new instruments are needed.

Most areas in which the more serious possibilities ror damage arise are in the Fresnel zone iust forward of a microwave reflector, and in backlobes, and from spurious reflections. In the FresnelIraunhofer crossover and within the Fresnel zone itself, the point-to-point variations in power density are such as to require measurement rather than calculation. Similarly, reflections from buildings and terrain features require measurement, as do backlobes and transmission-line leaks.

Sperry Gyroscope has produced a series of light, portable, battery-operated radiometers (or power density meters). Each meter (see cover) covers one segment of the microwave spectrum. The block diagram of this simple instrument is given in Fig. 5.

A second needed piece of equipment is a dosimeter for personal use by people exposed to microwave exposure. The Richardson dosimeter (picture), developed by Alfred W. Richardson at St. Louis University's School of Medicine, is one such device.

The hand-held dosimeter contains a broadband tyansducing material-a small mass of gelatin, simulating an avascular body structure-which absorbs microwave energy and translates it into heat; and a thermistor to translate the heat into a meter reading. The instrument as presently designed is highly sensitive to ambient temperature: when moved from indoors to outdoors, from tabletop to

FIG. 4-Black diagram of Sperry Gyroscope microwave powerdensity meter. Meter reads directly in $m w / \mathrm{cm}^{2}$ and in $d b$ relative to $0.01 \mathrm{w} / \mathrm{cm}^{2}$

Richardson dosimeter measures heat analog of r-f energy, with blob of gelotin as transducer
hand, or from one pocket to another, it produces a larger change in reading than that caused by a biologically significant r-f field. For this reason it can be rendered ineffertual in field use.

The dosimeter has a "fast" component due to r-f pickup in the wiring, which is converted to heat in the thermistor; and a "slow" component resulting from the conversion of r-f energy to heat in the qelatin. In practice, these result in "rate" and "dose" readings, The thermal time constant of the gelatin is about 6 minutes, which is within the range of biological significance.

Protective clothing to absorb or reflect r-f energy is also needed. Design of such clothing is within the scope of present technology; technicians working on BMEW'S radars will wear such clothing.

Of especial importance is protective headgear that adeguately protects the eyes. Glasses may cause more trouble than they prevent, especially if they are prescription lenses. By reflecting and focusing r-f energy, they might cuuse the build-up of nodes and standing waves just where they can do the most harm.

An efficient head covering would have to block out all access to the rear aspect of prescriptiontipe spectacles, and would of necessity include a planar eyepiece of transparent material for users who do not wear spectacles.

Acknowledgment

Nuch of the materjal in this artiole concorning the efferets of r-f entrgy in tissire, and the ditat in Figs, 1-1, is bilsood on work

 fonghetring. loniversily of Pennsylania.

Telemetry Demodulator

Input circuit to pulse-position telemetry demodulator is a modified two-input semiconductor diode AND gate. A quasifeedback-type link between transmitting and receiving equipments compensates variation parameters

DEsIGN REQUREMENTS for pulseposition telemetry systems specify rugged, miniature and lightweight equipment which uses few components and is reliable over a wide range of operating conditions. A block diagram showing such a pum telemetry transmitter with its associated input signals is shown in Fig. 1. Also shown are ground units consisting of pulseshaping and s.rnchronizing circuits, ten demodulator channels and a quasifeedback-trpe link between the transmitter and receiver. The feedback compensates any variations of parameters in the transmitter other than d-c data inputs.

Transmission

A brief description of the transmitting part of the telemetry siss tem will be given. ${ }^{\text {b }}$

At point A in Fig. 2 negative pulses at the required prf are applied to the variable-width pulse generator, a monostable multivibrator, which then produces positise gate outputs, shown at point B. These gates are differentiated to prodace positive and negative spikes. The negative spike is used to cut off the first stage of the two stage amplifier, a normally saturated tube. This provides a positive gate output, whose leading edge is coincident in time with the trailing edge of the monostable multivibrator output. This leading edge triggers a pulse shaper to provide the negative output pulse.
shown at ('. This nagative pulse is similar in shape and amplitude to the input waveform at A hat separated from it in time by the width of the pulse generator outmut gate. Both the imput and output pulses of negative marity are then used in the receiver as iuput signals. The leading edge of the first pulse is also used to multiplex a single-pole ten-position electronic switch which operates ten clamping circuits and provides the system with ten independent chamels.

The input to each channel is a d-c voltage of from 0 and 5 s : which is superimposed on the fixed grid bias of the variable-width pulse generator tube. This tube is normally biased to cutoff bey the clamping circuits. Variation in grid bias changes the width of the multivibrator output waveform. The width is directly proportional to each multiplexed d-c input voltage of each of the ten telemetry chammels.

In the receiver, provision is made for inversion and shaping of the negative transmitted pulses. They are fed, properly synchronized with the transmitter synchronizing pulses. into the demodulator.

Demodulator

For a telemetry system to be useful. it must have a linearity of one percent or better. This linearits must be preserved in the demodulator. The circuits and components utilized in this unit were designed to meet or exceed this requirement.

A block diagram, schematic and waveforms of the demodulator are shown in Fig. 3.
lnput circuit to the demodulator is a modified two-input semiconductor diode AND gate. The two positive pulses. occorring at the prf rate, are applied to one leg of the circuit, shown at A, while a wide positive gate, occurring at one-tenth the prf rate and obtainable from a ten position electronic switch, is applied to the other input leg, B. The switch is similar to the one in the transmitter, and is located in the synchronizer portion of the ground equipment. Normalls, becallse of the finite forward re-

Using Modified AND Gate

Pulse-pasition demadulator (left) and decammutator (right) ore packaged in modular form to facilitate plug-in use

FIG. 2-Simplified block diagram of telemetry transmitting system
sistance of the cerstal diodes and impedance of the source generators, some small amount of input signal on either leg of an AND circuit will appear in the output in addition to the required output waveform. In the present application, howerer, since output of the AND circuit feeds; the bases of a tramsistorized bistable multivibrator, the waveform must be free of noise signals. As shown in Fig. 3, the d-c output voltage level of the ANO circuit is normally higher than the amplitude of any expected noise pulses so that diode D, will not conduct until the required signal pulses are applied to diode D_{1}.

Symmetrical Iriggering

The and circuit output pulses shown at C are applied to the bistable multivibrater which uses symmetrical triggering. This circuit employs two pmp 2 N 496 highspeed silicon switching transistors. Silicon is used for stable operation over the required temperature range and the high coltoff frequency is required for fast rise time and for good system linearity: The output stage, $Q_{\text {: }}$, of the multivibrator is normally saturated and the input stage, Q_{3}, is normally cut off. The voltage across D, is approximately zero, while I, is highly reverse biased because the collector of Q_{1} is at -6 v . When the first of the two positive pulses is applied to the
common triggering point of the multivibrator. II condacts almost immediately, cutting off Q and reverse biasing $I)$, while circuit action then causes Q, to become saturated. This stable state remains in effect until the second of the two positive pulses is applied. Since voltage across H, is now approximately zero, it conducts and cuts off Q_{1}, thus returning the circuit to its origimal stable state. The output gate from the multivibrator is negative and equal in width to the spacing between the two input pulses, as shown at point D.

The bistable multivibrator has been designed to minimize timing delays. if a transistor were :o be driven too fa! into saturation, there would be a time delay between the application of the input pulse and initiation of circuit action. The amount of such a delay is limited by system linearity reguirements and should ideally be nearly zem.

Modified Bootstrap

The multivibrator output gate is then applied to the switching stage of a highly linear modifed bootstrap sweep circuit. This linearity is accomplished by providiag a constant comrent source to charge up a capacitor for a period of time determined by the input sigmal. Advantage is taken of the constant current charging of the capacitor to provide a peak voltage directly
proportional to the duration of the input signal.

Switching stage Q_{3} is composed of an ST32 silicon $n p n$ transistor, which is normally saturated and drawing full collector current through R, from the supply voltage. Capacitor C_{n} is assumed to be discharged. Under these conditions, the collector of Q_{3} is several volts negative and keeps diode D; in its reverse biased and cutoff state. Thus a charge is prevented from accumulating on C_{b}.

When the negative gate from the multivibrator reduces $Q_{;}$to its cutoff state, its collector tends to rise towards the supply voltage.

However, when the voltage at the anode of diode D_{i} exceeds that at its cathode by some small amount, it is forward biased and allows capacitor C_{n} to charge from the supply voltage through R_{1}. Charging continues for the duration of the negative multivibrator output waveform. When this waveform ends, transistor Q again saturates and its collector voltage drops to some small negative value reverse biasing diode D. Thus C cannot discharge rapidly through the saturation resistance of transistor (Q. which happens in conventional sweep circuits.

When C_{n} begins to charge, the resultant waveform is amplified through Darlington emitter-follower stage $Q_{-}-Q_{\text {a }}$ and fed back by
bootstrap action to resistor R_{1} through blocking capacitor O. Since diode H is normally eonducting, the voltage at this point is equal to the supply voltage. However, when the charging voltage from the emitter of (? is superimposed on this d-c level, diode H. is reversed biased and linear charging of capacitor (C is accomplished through resistor $R_{\text {a }}$ and diode D. This resultant constant courent charges (s and peovides a lineat sweep voltage.

Composite Emitter Follower

The output of the demodulator. channels must be in the form of a d-c level equal. within the allowable system linearity requirements. to the d-e input signal level applied to the same chamel in the tramsmitting equipment.

To whtain a der level from the linear sweep woltage, the batk value of this waveform must be maintained for at least ten times the prid period. To establish an r-c discharge time constant equal to about ten times the period of the resultant wate an emitter followe must be wised whose input imperlance approaches tens of megohms, (omsposite emitter follower Q - 0) is used for this purpose, The input imperdance of this stage is given apposimately be:
$Z_{n} \quad R_{1} \mid r_{1}=R_{1}+r$ $\left.\left.-u_{1}\right)\right]$
where the sulseript 1 refers to the parameters of Q and the subseript 2 refers to those of O.
('al) acitor (': must be diseharged prion to its next charging period otherwise it would itcrativel. chatrge to some latrge value of voltage and no longer be able to respond linearly to the input waveform. A positive gate shown at point K, is applied to e just prion to the charging period of capateitor (${ }^{2}$, and effeetively discharges (' to permit it to start charging from its initial discharged condition at the start of each cerce. This procedure allows the linear swoog voltage to be directly proportional to the spacing of the two tramsmitted pulses. Thus a linearity for the entire telemetry system of better than 1 percent is achieved.

During the exceptionally long dis-

$$
\text { GATE II } \overrightarrow{\mathbb{N N}_{E}}
$$

FIG. 3-Block diagram, schematic and waveforms of the demodulator
chatge period of $(\cdot$ ans resistance in parallel with the high input impodance of the composite emitter follower will reduce the li-C diswhare time comstant. Since a crostall diode, 1 , and a tramsistor, $(2$, are both commected in this manner, both their reverse saturation currents will tend to reduce the $\mathrm{i}-\mathrm{C}$ discharge time comstant. To reduce this effect to a minimum, silicon is bsed for both units and each is selected for its low reverse saturaltion current. The diode is a IN 459 and the transistor an ST:32.

The resultant waveform, existing at F in Fig. :3, has an amplitude that is lincarly variable with the imput pulse spacing. This signal is then filtered by the three L-section filters and results in a d-e level eorresponding to the d-e input signal applied to the same channel in the transmitting equipment.

Becallse the linearity of the telemetry system must be held to better tham one percent, now rariations in parameters may be allowed whose total summation adds up to more than this figure Chamel mumber ten of the demodulator, the reference chammel, in conjunction with circuitry which includes an operational amplifier, is used to reduce any variations in parameters, other than the d-e data voltage imputs, to a value which is small compared with the allowable stystem deviation from linearity, As shown in the schematic diagram in Fig. 4, the input to the compensator (operational amplifier) is derived from the d-c output voltage from the reference chammel of the demodulator:

The reference chamel, which is similar in design to the nine other demodulator information chamels,
is initially set by adjustable resistors, so that the $152-\mu$ sec spacing of the reference pulses fed into this channel will correspond to a $20-\mathrm{v}$ d-c output voltage. This d-c voltage level is then fed to the operational amplifier whose overall gatil is approximately 25 . The plate voltage for this amplifier is plus 300 v , and the circuit parameters are chosen to give a $150-\mathrm{v}$ drop through the plate load resistor. The plus 150-r d-c level at the plate of the pentode is then applied through a cathode follower to the sweep charging circuit in each of the nine information channels of the demodulator. The cathode follower supplies the power to the charging $R-C$ circuits and the sweep woltages are developed across the individual capacitors.

Dulse Spacing

During operation of the transmitting equipment, variations in parameters such as battery terminal voltage variations, changes in resistance values with temperature and age, tube ageing, and variations in power supplies will normally occur. This means that the reference pulse spacing will change from the nominal value of $152 \mu \mathrm{sec}$. Similarly the information pulse spacing of the other information chamels will change and erroneous intelligence will be received by the ground equipment.
However, if the d-c level output voltage of the demodulator channels: can be compensated to revert to the levels which would have prevailed if the parameters had not changed in value, correct information will be contained in the demodulator output although incorrect information is being fed to the ground telemetry receiver system.
To explain the operation of the compensating circuits, let the d-c input signal to the operational amplifier decrease as a result of the pulse spacing decrease from the nominal 152μ sec. The plate current will also decrease. This will increase the plate voltage which in turn is used to charge the capacitors across which the sweep voltages are developed.

Therefore when the reference pulse spacing decreases from 152 $\mu \mathrm{sec}$, the decreased charging time

FIG. 4-Compensator for variation of parameters in the transmitfing equipment
is, ideally, compensated for exactly by having the capacitor charge from a higher source voltage. The system has been checked out and can maintain its 1 percent linearity over a range of 152μ sec plus or minus a $20-\mu$ sec variation into the demudulator reference channel.

In the demodulator chamels, the bootstrap sweep circuits theoretically operate as described above. In practice however, certain complications arise because the subsequent circuitry is required to produce an average $d-c$ waveform.

This situation means that charging capacitor. C_{n}. must not he allowed to discharge rapidly as in a normal bootstrap sweep circuit. A large resistor is added so the capacitor can discharge slowly and maintain its peak charging voltage for the duration of the period of the wave. That is, the R-C time constant is much greater than ten times the prif period.

Since (C is also included in the charging time constant of the circuit, the discharge resistance is the only simple means of determining the discharge time constant. However, as is shown in Fig. 5A. the input impedance of an emitter follower is directly in parallel with the
large value of the discharge resistor, R_{2}. Since the $r_{\text {, }}$ of the transistor is the maximum asymptotic value of the input impedance, and for a normal low-power transistor this value may be in the order of 100,000 ohms, the discharge resistance can have a maximum value of 100,000 ohms. A practical value, however, is above several megohms. Therefore a simple emitter follower stage is impractical in this circuit.

In Fig. 5 B , a Darlington composite emitter-follower circuit replaces the simple emitter-follower stage in the bootstrap circuit. The input impedance of this circuit, shown with no compensation of any kind and in its simplest form. can be at high as several megohms and even as high as several hundred megohms. ${ }^{3}$ This trpe circuit is satisfactory over a restricted temperature range.

A tube version. shown in Fig. 5 C , covers a larger temperature range. However, a large grid-leak resistor is used and an appreciable negative voltage drop could oceur across it as a result of grid-leak current.

The authors acknowledge the suggestions received from J. V. D'Onofrio, J. Sarzin, C. Valavanis, and I. Steinberg. This project was sponsored by the Signal Corps and the authors thank Mr. P. Maresca for his constant encouragement.

References

(1) . . W. Poliseor, 1 Radar Ibatoon Talo.

(2) Junction-Transistor ! Bootstmap Linnar-

(i) Pr. Anzalone. A High Input lmpedanne 'Transistar Circoit, Electronic Design, D. 3s, Junt 1, 145:.

FIG. 5-Emitfer follower used for bootstrap sweep circuit (A); composife emifter follower for high input impedance (3); and electron-tube version which covers larger

Aluminum Finishes

Finishes for aluminum will protect it against corrosion, alter its resistivity, improve its solderability or change its color

By WALTER E. POCOCK, Limwhment Enginer, Alinel herearch Productu, Inc., Laltimore, Md.

Finishes are given alaminum used in electronics applications to improve the metal's appearance. corrosion resistance, sulface conductivity, solderabil-

TABLE II-Specifications for Coatings in Table I

1 1151-1-302.2.

 3:0 (rhromiumi): M11-C-11430 ("gray" (hromimm)
 (hemate primer. air dry): WII--F:-9.58: (wrinkhe onamel):

TABLE III-D-C Resistance of Coated and Uncoated Aluminum

Alumimum Trastment	Wrrage Raxistance (microohm-in ${ }^{\text {a }}$)	
	Bufore 心all Sma! (Arrage of ©. 5 madines)	Afor 61 hrs Sialt spray Srrage of 60 ratalings:
(\%atn \lmminum	90	6.09×10^{6}
tellow (hromate Comorvion Coal	2.020	3.370

ity and wear resistance. Some of the finishes of iaterest to electronics engineers are identified and described in Tables I and 11.

ANODIZING - An ahrasion-resistant aluminum oxide coating of high electrical resistance is formed v : hen aluminum is the anode in an electroletic bath. laths oporateal below room temperature produce hard coatings. Dyed coatings are decorative as well : :s protective.
(CHROMITE—Chromate (chemical dip) conversion coatings also protect, but are electrically conductive as shown in Table III and Fig. 1. Indications are that the: perform better as pretreatments for wramic finishes than anodic oxides. Differing treatments can also be applied to zinc, cadmium and silver plated wer aluminum.
ELECDTROPLATING-Plating other metals on aluminum will increase solderabilits. abrasion resistance or improve appearance. Galvanic corrosion of aluminum in contact with cadmium or zinc-plated steel can be reduced. for example, by plating the : luminum with cadmium or zinc. A simpler procedure is to chromate coat the aluminum, cadmium plate the steel and chromate soat the cadmium. The aluminum-cadmium potential is low.
ORGANIC-Organic coatings are many and varied. Some of the more common types are listed in Table I. Cost and conditions of application. such as time and temperature for curing, are of interest as well as performance.

FIG. 1-R-f resistance of aluminum. Maximums and minimums before sali spray exposure are shown by black lines. Ranges after 64 -hour salt spray are shown by red shading

for use in Electronics

TABLE I-Production Methods and Application Data for Aluminum Finishes Used in Electronics

TYPE OF FINISH AND PROCESS DETPALA

I ANoDIZING:

(1) \apor degrease whern heary oils and mroase arre presemf
(2) Rinse
(3) Alkaline clean
(1) Hinse
(.) Acid dip optional depernd ing on allos
(6) Rinst
(5) Anodize 10-60 minutes in sulfuric. chromic, ovalie adid, "fle. clectrolytu

Refrigeration required in some casp:
(8) Rinse
(9) Nial, hot water or dichromate
(10) llinse
(l]) Iry

II CHROMATE CONVERSION TREATMENTS (Iridite Type)

Steps (1) to (6) under anodizing
(7) Chromate dip 10 seconds to 5 minutes immersion in acid chromate solution at room temperature
(8) Rinse
(9) Dry

Can be colored by dip in dye solutions following step (8)

III ELA:C'TROPLATING

Step: (10 (6) under anodizing
(6) Immerse $30-60$ sironds in zimate (alkaline zinc) solution
(8) Binse
(9) Electroplate in commonlional bath
(10) Binse
(11) Chromate conserxion dip (for cadmium, zinc and silur only)
(12) Rinse
(13) 1)ry

IN OIIGANIC FINISIIES

Cleaning by solvents or ly steps (1) to (4) under anodizing are usually the minimum pretreatment required

Anodizing or chromate conversion treatments are advisable as pretreatments, to give masimum corrosion resistance of the organic coutings

PROPERTIES, ADYINTAGES, DISADVANTMEES

Hard. abrasion-resistant., corrosion-resistant, resistant to orramio solvents. abids and alkalies

IUlectrically insulating. Breakdown voltages of 100 - 1.000 bolts hatio been reported. depending on coating thidknesses and proeress conditions.
(ienal best for organic coatings
Partial or maltierolor dereing procers adaptable for lettering. ate

Ileat-rexistant, but subjert to crazine at high temperatures

Brittle, susteptible to walvanc corrosion if coating lakes or is suratehed ofl

Extremely thin, about 0.01 mil
Resistant to corrosion, resistant to organic solvents, mild acids and alkalies

Electrically conductive. See Table 2 and Fig. I

Good base for bonding and organic eobtings: flexible, weldable: simple to process

Relatively low in abrasion resistance; heat resistant, but subject to loss of corrosion resistance when heated above 200 F : dyeable. but dyes have low light fast ness

Capper-silnor-mold: tarnish and corrovionresistant: retains high degree of soderabilits
(\quad opper-silume solderable. conduetive: with dmomatu comersion eobling (Iridito 18-I, Alliod Pesearoh Products). has reduced shasceptihility to tarnishing. retainss sodderabilits
 coating: cormson-resistant and comductive

Cadmion with elear fonsersion coating: medains solderability and condurtisity

Chromiom: ahasion-resistant, condoctise

Protection against corrosion: plectrically insulating: varying resistance to organic solvents, acids, alkalies and thermal decomposition

Clear lacquers: enhance corrosion resivtance and prive moderate abmasion resistance: useful for protecting lettering on panels, chassis, ete.

Whah primers and conventional ainc diromate primers: improve corrosion resistance and londing of toproats

TYIPICNL APPIMCATIONG IN EIGE:IRONIC:

For abrasion resistance and corrosion resistance when conductivit: is mot resquired: housings on small enthtrol motors

As a dielocitric on capacitor plates and foil

Pamels and ofher exposed parts, for appearance: black imed other eolors: dials and name plates

As pretreatment for organic tinishes

Parts requiring corrowion resistance and conductivity, chassis, wave guides

As pretreatments for organis finishes, particularly where exterior is to be painted and grounding is required an interior

Color-coding washers, connectors and other parts

To give additional galvanic corrosion protection to plated aluminum in contact with other metals

Copper-silser-mold and copper-silver: parts requiring high conductisits and solderabilits, chassis, Warertides. connertors

Codminm and zine: sere toxt
(apper-nichal-chromium: surfares requiring abrasion rosistanco and conductivity. telosopping antennas: for apmarame hardware
Copper-nickel: for appearance

For appearance and corrosion resistance where conductivity is not reguired: structural parts, panels, cabinets and hardware

Four Transistor Inverter

Abstract

Direct-current motors used in low-pressure or explosive environments can be replaced with induction motors by employing transistors as controlled switches to provide two-phase square-wave output from single d-c source. Inverter is also applicable to hysteresis-synchronous motors in situations where constant speed under load is required

By W. HOWARD CARD,

CNVFNTIONAL D-C MOTORS are mondesirable in some applications where only a dec sonree is arailable. In low-pressane emwironments, brushes wear rapidly, while brush sparking presents a fire hazad in explosive atmospheres. For such applications a two-phase indaction moter driven by the experimental tramsistor inverter to be described cam be used instead.

The two-phase inverter is commised of two almost identical sim-gle-phase square-wave-ontput inverters as show in loig. 1.' "The two-single phase circuits are phase locked to operate in symehronism and phase quadratare with each
inverter driving one motor phase. Sonrce voltage E determines the inverter freguency and motor phase voltages that control motor speed and torgate. Since frequency and voltage viery together, the motor uperates at nearly constant magnetic thas density regardless of source voltage.

Components

Feedback transformers T and T are toroidally wound on 1 -mil tape Deltamax cores, with the turns ratio chosem to switeh the tramsisistors either on ow off.

Cut 4 -mil tape-wound ('-cores are used in outpat transformers T_{0} and
Γ_{3}. Though matotranformer (onnections are shown, the motor phases may be comected to separate secondaries. To mateh the latings of the motor used. one motor phase is connected across half the turns of $T_{\text {. }}$

There must be close coupling befween N and $N^{\prime \prime}$ of T and T_{1} since energy stored in the transformer leakage reactance is mostly dissipated in the tramsistor when it is turned off. To improve coupling $N_{\text {, }}$ and $N^{\prime \prime}$, are womed simultaneously bey feeding wire off two spools.

Switching Effects

Inductive loads such as motors asilatly require diodes commected across the tramsistors as shown, to carry the inductive load current daring switehing. In this way, stored energy in the motor magnetic field is not dissipated in the thansistor, but instead, is returned to the somber. The motor phases camont be tumed with capacitors ats this prevents the transistors from switching rapidly and greatly in(Patses transistor areage-power dissipation.

Operation at the rated motor frequences of 400 (p) with a $23-\mathrm{y}$ source results in a 4 ti-v peak collec-tor-to-emitter voltage that is within the transistor ratings. Neglecting losses, the roltage across $N_{1} . N^{\prime \prime}$ is a $46-\mathrm{s}$ squate wase. which hats a timadamental (omponent of (.16) $(4 / \pi)(0.707)=41.5 \mathrm{r} \mathrm{rm}$.

Both motput woltage r_{n} and feed-back-transformer voltage e_{n} are square waves.

Drives Induction Motor

FIG. 2-Measured torque as a function of speed for driven inverter servo motor. Supply voltage E_{s} sets inverter frequency and determines motor speed and torque

Setup measures motor torque with spring scales and motor speed with Strobotac. Experimental two-phase transistor inverter is at right

The slare inverter is the same as the master inverter that sets the system frequency, except that a fraction of the master voltage is added into the slave feedbacktransformer circuit. Slave inverter output voltage $e_{\text {we }}$ is a square wave. but the slave feedback-transformer voltage hats the stepped waveform $P_{f z}$ as shown.

With the two inverters operating in synchronism and quadrature, the average voltage applied to the slave feedback transformer is the same as for the master. Since the two feedback transformers have identical cores and equal total turns, the conditions for synchronous and quadrature operation are fulfilled.

Phase-Locking Scheme

Operation in phase quadrature is self-stabilizing. If the slave inverter tends to run ahead, the phase angle between master and slave changes to bower the average voltage applied to the slave feedback transformer. Thus the slave slows down. Similarly, if the slave inverter runs slowly, its feedback voltage is boosted to speed it up.

To obtain good quadrature operation over a wide range of source voltage, the square-lwop-core feed-
back transformers should be closely balanced so that they have the same volt-second areas.

With the circuit valmes shown, the system will not uperate with a source voltage less than 5 y becanse the feedback is not sufficient to switch the transistors the:eby producing the output square wave.

Performance

Figure 2 shows the speed-tarque curves obtained when the inverter drives a small tworphase drag-cup servo motor. Both no-ioad speed and stall torque are nearly linear functions of the d-c source voltage, hence behavior somenhat resembles that of a separately exaited d-c motor.

Square-wave drive hats some disadvantages for driving an induction motor*. The fifth and ninth harmonics of the square ware help the fundamental produce forward torque. but the thirce, seventh, eleventh harmonics contribute reverse torque. The net result is at most a 11.5-percent decrease in output torque compared with that obtainable using the f:Indamental frequency alone.

Another detrimental factor is that the square-wave voltage har-
monics contribute to extra motor heating, amounting at most to 22 percent. Because of this reduced torque and increased heating, a motor must be derated by a given small amount when used with square-wave rather than sinusoidal drive.

Results

All the experimental results were obtained using a high rotorresistance induction motor (servo motor). The drive should also be useful for low-rotor-resistance induction motors and hysteresissynchronous motors when nearly constant speed under load is desired.

The author gratefully acknowledges the support for this researeh received from the National Research Council of Canada, The University of Toronto and Syracuse University.

Reffire.ices

(1) C. H. Roser. A Switching Transis* or

 (2) J. 1. J (ensen, An Imptoved sathate-

(:8) W. H. Card. Transistor-Coscillator
 per -5v-さ!!s.

Tv Sound Detector

Drift-transistor slope detector operating in an oscillating mode gives superior performance compared with passive detector in a-m rejection, audio recovery and linearity at low signal levels. At larger signal levels, performance equivalent to a passive detector is obtained

FIG. 1-Experimental f-m detector intercarrier-sound circuits

DEsIGN of a transistorized tv receiver requires an efticient, low-cost sound strip. The circuitry described uses an efficient, highly sensitive oscillating linearslope detector, injection locked by a one-stage sound driver. The combination of sound driver and detector is capable of overdriving the output audio amplifier when driven from the first video amplifier.

By operating in an oscillating mode, detector threshold level is reduced, a-m rejection is uniformly high over the full detector bandwidth and audio output is maintained at a constant level independent of carrier strength.

Detector

A $2 N 247$ drift transistor functions as a slope detector in an oscillating mode. Oscillations are maintained by collector-to-emitter feedback through an overcoupled double-tuned circuit as shown in the right half of Fig. 1. The oscillator is injection locked to the sound signal which is applied to the base electrode by the driver
stage through an impedancematching network. Detected andio appears across the 10,000 -ohm collector resistor and is obtained at r-f ground of the primary winding. Required forward bias is obtained by bleeding current from the collector into the base through two series-comected resistors bypassed at their junction to prevent audio and r -f degeneration.

Collector characteristics of drift transistors differ from conventional bipolar transistors, as shown in Fig. 2. Note that for negative collector voltages, the zerobias characteristic of the drift transistor is similar to that of conventional units. For positive voltages applied to the collector of a $p m p$ transistor, the collector acts as an emitter and the emitter as a collector. The applied voltage is a reverse voltage for the emitter junction.

Symmetrical Breakdown

Grading of the base layer of drift transistors is in such a sense as to produce breakdown of the emitter junction for relatively low
voltages. Three to five volts is a typical value. Breakdown of the emitter junction is reflected in the collector as a large increase in carrent. The low breakdown voltage shown in the first quadrant of Fig. 2 will be referred to as symmetrical breakdown.

Positive peaks of the collector voltage are clamped at the symmetrical breaklown level. Time constant of the clamp, which is in the decompling network, corresponds to at least 20 r -f cycles. Collector current adjasts to maintain a sinusoidal voltage waveform at the collector electrode. Positive excursions of the collector waveform are held at the symmetrial breakdown level. Negative excursions are limited by the avalable collector voltage.

Driving Impedance

The arerage collector current and oscillator amplitude are a function of the collector-circuit impedance and the coupling coefficient of the transformer. The link is a consenient means for obtaining a sufficiently low driving impedance for efficient compling between the collector and the emitter.

The double-tuned coupling arrangement restricts oscillator operation to either the positive or negative slope of the impedance characteristics of the collector tank circuit. This action mevents excessive distortion which would arise from a slope reversal. Assume that the collector and emitter

[^8]
Uses Drift Transistor

FIG. 2-Zero-bias characteristics for a drift and conventional pnp iransistor
tank circuits are resonant at the same frequency f_{i} A signal of frequency i, would experience a 90 -deg phatse shift in passing through the coupling network. The direction of phase shift, either lead or lag, is dependent on the link polarity.

Injection Locking

The oscillator is injection locked to the sound signal which is applied to the base electrode. Natural frequency of the oscillator f. is set equal to the carrier frequencr. Deviations of the signal about the carrier frequency are followed by the oscillator.

The oscillator will assume the frequency of the injected signal if two conditions are met. First, the circuital phase requirement for self-

FIG. 3-Impedance of the collector tank where f_{l} and f_{2} are synchronizing range
oscillation at the injected frequency must be satisfied. Second, the injected power level must be greater than a minimum. The sunchronizing range is restricted to those frequencies for which the coupling network introduces less than 90 deg of additional phase shift relative to the shift at the natural oscillating frequency. The synchronizing range is restricted to either the positive or the negative slope.

Figure 3 shows the collector tank impedance for a circuit where the link polarity corresponds to sinnchronization on the positive slope. Frequencies $f_{\text {, }}$ and f_{z} are the limits: of the synchronizing range for a given injected power level.

Two restrictions are imposed on the collector voltage swing. Positive peaks are clamped at the sym-
metrical breakdown level. The average value is set by the effective collector voltage. The clamping time constant-approximately 10 $\mu s e c$-is made fast enough to follow the amplitude variations encountered in the application. As a result, the dynamic and static limiting characteristics can be considered similar.

Ability of the detector to reject amplitude variations is not dependent on the injected signall providing the injection is of suflicient level to lock the oscillator for full carrier deviation. If the injection is below this threshold, the a-m rejection will be maintained only over the synchronizing range. Berond this range, the output contains the beat between the injected and the oscillator signal. Also, for signals in excess of the threshold level, the aludio output is maintained constant independent of carrier level.

Driver Stage

Maximum power transfer between the sound takeoff and the detector stage is provided by the driver for signals below the limiting threshold. Signals that would otherwise overload the detector are limited symmetrically to maintain a constant injection into the detector. limiting action is rapid enough

FIG. 4-A-m rejection as a function of signal level to the driver

FIG. 5-Oscillator pull-in characteristics

FIG. 6-Performance oscillograms (top to bottom)-signal level to driver, 1.5 mv , 10 mv and 30 mv ; $\mathrm{f}-\mathrm{m}, 25 \mathrm{kc}$ at 50 cps , 50 ke at 50 cps and 50 kc at 50 eps ; a-m, 30 percent at 400 cps for all three
to respond to the video modulation of the sound carrier.

A double-tuned witically coupled cireuit matches the driver and detector stages. The primary is tapped to provide an impedance match for the neutralized driver stage. A signal of opposite phase to the collector signal is available at the second tap. It is lised for neutralization of the transition capacity in a conventional feedback arrangement.

Biasing

A nighly degenerative biasing scheme fix-biases the transistor at a high f^{\prime}, \ldots point. The emitter current is set predominantly by the em:tter resistor, by passed to ground for signal frequencies, and by the positive supply voltage. Collector voltage :s determined by the negative supply boltage and the decoupling resistor.

For large positive swings at the base of the driver, the transistor cuts off. For lavge negative swings. the tramsistor is driven into col-lector-voltage saturation. Quiescent conditions are proportioned for these effects to occmr for equal positive ard negative swings. This ar-
rangement provides the desired symmetrical clipping of the input waveform.

The transistor has an exponential transfer characteristic and produces a rectified component of emitter current, reducing the forward bias of the emitter junction. For large input signal amplitudes, highly modulated by the video information, the driver stage can be cut off during the sync interval. This condition will occur only if the emitter circuit camot respond rapidly to the required shift of the quiescent operating point. This effect may be reduced greatly by using a larger emitter resistance. As a result, rectification efficiency of the emitter junction is reduced.

Another technique is to limit the maximum emitter time constant to a value that permits bias adjustments at a horizontal line rate. A 4,700-ohm emitter resistor bypassed with a $0.022-\mu \mathrm{f}$ disk capacitor with leads cut and coiled for resonance at 4.3 mc is a satisfactory compromise. Incomplete emitter bypassing introduces 0.6 d , of negative feedback at 4.5 mc . The driver stage can follow deep modulation of the sound signal.

Circuit Details

The schematic diagram of the sound strip installed in a commercial chassis is shown in Fig. 1. This circuit shows high-side capacitance coupling. But mutual, or a combination of mutual and high-side coupling, may be substituted.

Detection linearity and a-m rejection, Fig. 4, are dependent on the coefficient of coupling in the doubletuned coupling arrangement of the oscillator loop. A coupling factor of 1.5 times critical coupling gives good a-m rejection and reasonably good linearity: Larger values of coupling distort the detection characteristic S curve; smaller values of coupling reduce the amplitudemodulation rejection.

Base and emitter networks are designed to suppress spurious oscillations arising from input-circuit feedback due to high input capacitance of the transistor. Drivingpoint impedances of these networks have been designed so that for all frequencies for which the base reactance is positive, the emitter re-
actance is also positive. Consequently, feedback from emitter to base is degenerative for all frequen(ies and stable operation results.

The detector operates in an oscillating mode over the full range of input signals provided by the driver. The holding, or lock-in, range is a function of signal level. Lower limit of the holding range, Fig. 5, corresponds to frequencies for which the tank impedance is too low to support oscillations. Theoretically, the oscillator can follow positive deviations up to the tank resonant frequency. Practically, these limits are dependent on the maximum power capability of the driver:

Performance Results

Overall performance is illustrated best with the oscillograms of Fig. 6. They were obtained by passing a carrier that is simultaneously am-plitude- and frequency-modulated through the sound strip and displaying the detected output with the $\mathrm{f}-\mathrm{m}$ as a time base. These oscillograms indicate that a-m rejection is not critical to center tuning. A-m rejection characteristics are given for 30 - and 100 -percent f -m where 100-percent modulation corresponds to $25-\mathrm{kc}$ deviation.

At low signal levels the a-m rejection is 20 db , which is the inherent $a-m$ rejection of the detector. This rejection increases as the driver limits. For input signals of less than two mr , a-m rejection is still high.

Audio recovery is 75 mr per kc of deviation, independent of carrier level. For 100 -percent modulation, the detector develops an open-circuit output of $1.8-1 \mathrm{rms}$. Maximum power transferred by the detector into an audio load is 10 dbm and is maintained over a wide range of loading centered about 4,000 ohms.

As loading varies from 500 to 25,000 ohms, output is maintained within three db of the maximum level.

For 25-kc deviation, the audio output contained from 2.5 to 3.5 percent of rms harmonic distortion depending on center tuning and on signal level. As the deviation was increased to $50 \mathrm{kc}, \mathrm{rms}$ harmonic distortion increased in the range of four to five percent.

Resistances of Dry Cells

Internal resistance of dry cells depends upon conditions of use. Tables give resistances of typical cells, as measured by new method

National Burfat of standaris has developed a rapid. nomdestructive technique for meatoring the true internal resistance of dry cerls. It determines how internal resistance changes as the cell is discharged under various conditions.
Test results. such as those given in the tables. show that increases in internal resistance depend on the trpe of discharge. cell size and variations. in manufacture. Test results are aboraged fon atch yroup of cells. Some groups did not survive the life tests.

1ROCEDURE -To test. a pulse qenerator, a resistor of known ralle and the lest cell ale connected in series. Leads of a cro atre commeded to the cell terminats. As a train of pulses is applied to the cell, the instantaneous internal resistance drop is recorded at the trailing edge of the pulse on the ascilliscope.

Next, the oscillosorne is commerted across the resistor, the internal resistance drop is mated and the eurrent through the resistor is calculated from Ohm's law. With the pulse current kiown. the cell's resistance is calculated by applying ohms law to the resistanee drop in the rell in the first measurement.

Intemal resistances obtamed bey this method do not include wher impedance components. Variathons in eurrent direction. chrrent. fregtenes and length of the pulse have no affect on the measured internal resistance.

Life tests show no general relation botween internal resistance at the begimning and and of ans particular test. Short circuit current increases as internal resistance derreases. Internal resistance increases on dischange. Internat resistance hats a shight tendeney 10 increase at the highes: momentary current drains.

IIFE-The Bureath is insestigating whother internal resistance measurements can bo used to determine dry coll life expectanes. Variations in cell resistances betwern mandatharers do not pernit a general formolat, according to the Burean. However, specific groups of colls naty be c:alibrated.

The test method was developed by R. J. Brodd, of the burean's electrochemistry laboratory. Test results are considered more accurate than those obtained through previously used methods. There is no NBS standard for intermal resistance of dry cells.-G.S.

TABLE I-Internal Resistance of Fresh, Undischarged D, C, AA and No. 6 Size Cells

$\begin{aligned} & \text { Cell } \\ & \text { (iroups } \end{aligned}$	Jnilial Resistamee (ohms)	(1)p!! Circuit Voltage (volls)	Short Circuit (iurrent (amp)
D 1	0.146	1.58	8.6
D 2	0.147	1.6	8.7
1) 3	0.1.52	1. .88	7
1) 1	0. 1.5:3	1.61	7.7
1) 3	0.158	1.89	6.9
1) 6	0.18	1. .87	6.7
1) -	0.186	1.61	6.8
1) 8	0.196	1. 61	6.1
C. I	0.196	1.39	6.3
C:	0.2.1	1.61	\%
C. 3	0.3.3.3	1.62	3.7
A 1	1). 16:	1.6.4	4.1
112	11.192	1.86	-) 2
118	11.232	1. .87	1.7
AA 4	0 3-9	1.58	3.2
6-1	10, 1046.	1.64	27.4
0-2	0. 11318	1.6.5	30. 3
$6-3$	(1.03889	1.59	32.9

TABLE II-Results of General Purpose Life Tests on Cells Described in Table I

(Cl -	2.2.-()hmerest		$\begin{gathered} \text { t-()hm } \\ \text { Intcrmititent } \end{gathered}$	
	'「іни• min)	Final Rewistathere (ohms)	'limis (min)	Final Resistance (ohms)
1) 1	581	0. :	80.5	0.5
1) 2	186	1	805	,
1) 3	120	1.6	618	-
I) 1	.18	-	85.3	-
D $\overline{5}$	6.31	1.5	101. 1	1
1) 6	323	11.8	\%\%	-
1) :	173	0 -	8088	0.9
1) 3	617	--	93.1	1.2
1: 1			.10:	1.2
$\because:$. 408	0.9
C 3			40.5	1
\A 1			1.16	0.5
1.19			12:	0.6
$11: 3$			117	0.8
111			136	0.6

TABLE III-EEffect of Momentary Current Drain on Internal Resistance (R_{i}) of D, C and AA Cells

1) Size (idls				A size (dalls	
Drain ma	$\begin{gathered} R_{i} \\ \text { (ohins) } \end{gathered}$	Drain (IIna)	$\begin{gathered} R_{i} \\ \text { (ohme) } \end{gathered}$	Drain (ma)	$\begin{gathered} R_{1} \\ \text { (ohms) } \end{gathered}$
0	0.18	0	0.22	0	0. 2.4
1. 24	0.18	1.82	0.20	1.42	0.2:3
1.5. 4	0.18	1.).1	0.22	14.1	0.25]
32.4	0.178	32	0.22	29.6	0.2\% 2
1.49	0.18	1.16	11.221	133	0. 2.6
508	0.18	480	0.295	426	0.282
1.1.80	0.186	1,141	0. 23		

Coincidence Diodes Gate

Transistorized electronic switch for radar indicators uses coincidence diode circuits to switch six channels in each coordinate axis of a scope presentation. Amplitude capability is 120 v with an accuracy of 0.3 percent. Device operates over wide range of pulse repetition frequencies

By JOHN B. BEACH, (onnell inmoutical Laboratury Inc., Buffalo, X. F.

FIG. 1-Waveforms of the three binary switching voltages required to switch 8 channels are periodic with frequencies $4 f, 2 f$ and f, respectively

FIG. 2-Schematic of one channel of coincidence circuit using diodes

Ax Electronic switch can be used to present markers for aircraft identification on a radar plan position indicator. The switch should have high accuracy, sufficient voltage swing for full scale deflection, and capability of operation over a wide range of radar pulse repetition frequencies. A switch having these characteristics has been constructed on printed circuit boards using transistors and diodes.

Coincidence of binary voltages supplies gating signals for the switch. This method of switching provides 2 " channels where $"$ is the number of gating voltages having a relationship f, $2 \mathrm{f} \ldots 2^{\prime \prime-1} f$ where f represents the lowest frequenc: square wave voltage. For certain applications the gating voltages need not be periodic and for generality will be referred to as binary voltages.

Diode Gate

Combinations of n binary voltages lead to $2 n$ possible conditions. The binary voltages can be applied to a four-diode gate through coincidence circuits. The result will be one chamnel of a switch which opelates for only one of $2^{\prime \prime}$ possible combinations of binary voltages. With $n=3$, binary voltages A, B and C (assumed periodic with frequencies $4 f, 2 f$ and f for convenience) appear as shown in Fig. 1.

One chamel of the switch has the circuit of Fig. 2. If all binary voltages applied to diodes $I_{\text {s }}, D_{\text {, }}$ and $D_{\text {B }}$ are positive, these diodes experience reverse polarity and do not conduct.

FIG. 3-Weveforms show how binary voltages gate switch for three input signals. When gates A, B and C are positive, channel 1 is closed. Channel 2 conducts when A reverses polarity. All possible logical combinations result in eight channels

Likewise, if negative polarity voltages are applied to D_{\ldots}, D_{n} and $D_{1,}$, these diodes do not conduct. Under these conditions, D_{1}, D_{2}, D_{2}, and D_{1} conduct and the switch presents a closed circuit.

If all binary voltages applied to diodes $D_{\text {, }}, D_{n}$ and D_{a} are not positive and all binary voltages applied to diodes I., $I_{\text {: }}$ and $I_{\text {I }}$ are not negative, one or more diodes in each group conduct and consequently diodes D_{1}, D_{2}, D_{3} and $D_{\text {, experience }}$ reverse polarity. In this case, the

Electronic Switch

Printed circuis swisch assembly shown mounted on ppi equipment
switch presents an open circuit.
Input roltages, binary voltages and the oatput are ploted as furctions of time in Fig. 3. Fight different combinations of voltages A, b and C are possible, each comdition corresponding to a conducting channel.

A block diagram showing the logical design of the switching circuit is shown in Fig. 4. Each binary gate generator supplies binary voltages to the coincidence diodes and

FIG. 4-Block diagram of eight-channel switch showing logic arrangement. Gate generafors are scale-of-iwo bistable circuits
also drives the following binary gate generator. The binary gate generators consist of salerof-two bistable circuits followed by amplifiers.

Voltage Swing

The voltage swing acialable from the binary gate generators must be greater than the highest voltage swing the switch is requised to pass. The radar indicator for which this switch was designed required
$+60 \mathrm{v} \mathrm{t} \mathbf{0}-60$ vor full scale detlection. Tou provide a gating voltage safety factor the amplifiers provide 1.f)-v peak-to-peak.

A circuit diagram of the ampli-fier-multivibrator chain which produces the gate pulses is shown in Fig. 5. Type 953 transistors were used in the amplifiers becanse of their high-voltage capability. Transistor Q_{1} operating in commonemitter connection is driven to saturation by the input signal from

FIG. 5-Schematic of one channel of the six-channel switch. Forced recycling of the switch through diodes D_{11}, D_{12} and D_{13} iriggers switch back to channel 1 after channel 6 is reached
the nultivibator. Q in turn drives tramsistor $Q_{:}$to saturation. Under this condition a small voltage drop exists across each transistor and -73 r is ohtained at the output. When the phase of the input sigmal reverses, both transistors Q_{1} and Q are cut off,

Tramsistor Q_{1} has 75 r between emitter and collector with the collector at approximately $-3 \quad v$. Transistor Q also has 75 r from emitter to collector with the collector at approximately +72 v . The result is a gating voltage of approximately 145 veak to peak. Half this voltage appears across each transistor. Naximum courent through both transistors is about 20 ma . Power dissipation is well within maximum rating.

Switching Channnels

The number of switching channels can be reduced from $2^{\prime \prime}$ by applying a recocling pulse to an appropriate bistable circuit at the

FIG. 6-Oscillograms of gating voltages for six channel switch are shown in (A), (B) and (C) while (D) shows switch output with input from marker generator

Appecrance of markers on ppi scope. Markers aleng edge indicate direction. Markers with dot and tail represent direction and position of aircraf!
begimning of the first channel to be eliminated.

For example, to reduce eight channels to seven channels, the combination of bifary voltages which corresponds to chammel 8 is selected. According to Fig. 4. this combination is $-A,-B$ and $-C$. These signals are applied to a coincidence circuit. The comisination of binary voltages necessary to gate channel 1 is A, B and C. ('omparison of these two combinations reveals that all binary voltages corresponding to chamei 8 must be reversed in polarity to produce the combination corresponding to channel 1. To acoomplish this, the output of the coincidence circuit is applied to binary generator 1 and the chain of binary generators is cycled to the combination corresponding to channel 1 when channel 8 is reached.

Coincidence Circuit

To produce a six-channel capacits, binary voltages $A,-B$ and $-C$ corresponding to the seventh channel are selected and applied to a coincidence circuit. From Fig. 4 note that the A binary voltage is the same polarity for channels 1 and 7 . The output of the coincidence circuit is therefore applied to binary gate generator 2 reversing the polarity of outputs of binary generators 2 and 3 when channel seven is reached.

Diodes I_{11}, D_{12} and D_{13} in Fig. 5 form a coincidence circuit which triggess the switch batck to the combination corresponding to channel 1 when the switch is stepped from
channel 6. If these three diodes are eliminated, the binary gating generators will supply gating signals for eight switching chamels,

Oscillograms of the gating voltages are shown in Fig. 6. Note that the B and C binary voltages are similar but shifted in phase. Forced recycling at the end of the sixth channel extends the B binaly signal 1 cycle and shortens the C binary signal (ercle. The results as shown are two nonsymmetrical voltages differing in phase. The recyeling tramsient appears as a spike on the B signal.

Markers

An oscillogram of the y-axis output of the switch with inputs obtained from a marker generator is shown in Fig. 6D. Fach marker occupies 300μ sec. One hundred μ sec are blanked to allow transients to die out in the display equipment. The indicator is intensified during the remaining 200μ sec. The second and third markers shown consist of sweep voltages which appear as short lines on the radar indicator. The second sweep voltage is delayed in order to produce a dot marking position at the head of the marker. Five markers in all are shown. Several normal radar sweep periods occur while the switch is on the sixth channel. This channel has its inputs grounded to prevent noise pickup during radar sweep cocles. Synchronizing circuitry operated $b y$ a pulse received from the coincidence circuit used for forced recycling insures that the sixth channel will oceur during radar sweeps.

Prototype switch accuracy was within ± 0.3 percent over the operating range. Diodes $D_{1}, D_{,}, I_{\text {and }}$ and D, of Fig. 2 were selected to have equal forward resistances. If nonselected diodes are used and high accuracy is desired, a 1.000 -ohm potentiometer should be connected between $D_{\text {a }}$ and D_{a} to balance their resistances with the input on the adjustable tap.

Accuracy of the switch is also dependent on the accuracy of voltages $+E$ and $-E($ Fig. 2$)$ and upon precision of resistors R_{1} and $R_{\text {r }}$. If the power supply for $+E$ and $-E$ is isolated from ground, it need not be well regulated and R_{1} and R_{z} can be replaced by a single resistor.

Crosley
 Communications for.... Today's Armed Forces

Years of experience in communications have made Crosley a name that is respected for both commereial and defense business. Crosley's latest contribution to communications is the VRC-12, designed for use in commonicating with practically every type rehicle used by the Armed Services, including tanks, jeeps, ducks, airplanes, helicopters and command cars.

The VRC-12 (iround Communications system provides narrow-band Fal communications over 920 chammels. The unit is transistorized and miniatmized in a package that is both rugged and light in weight.

Crosley enginering, working from initial concept to the final phase of manufacturing, has developed many new products such as the VRC-12.

CROSLEY'S COMPLETE CAPABILITIES

'Together with its associated Aveo Divisions, Crosley provides facilities and persomel for:

- Reseatch, development and engineering of: communications, air trolfic control systems, sonar, infra-red, radar, fire control systems, themetering, automatic test and support equipment, ground handling equipment and logistics.
- Production and mamufacturing for missiles and aircraft systems.
- IV eapons sysitem management from intial concepl to production.

If Crosley's capabilities fit your needs, write 10: Vier-l'resident, MarketingDefense Products, Crosley Division, Avco Manufacturing Corporation, Cincinnati, Ohio.

Avco
 Crosley

Maser Sensitivity Curves

Recent interest and development of masers and low-noise amplifiers make these useful receiver sensitivity and noise figure relationships revealing

By A. BRODZINSKY and A. C. MACPHERSON, Nitwal Researeh Vatbuaturins, Washingtom, D. C.

IN evaluating a communication or radar system, it is desirable to arrive at a convenient indication of the sensitivity of the receiving system to a narrow-band signal imbedded in white noise ats a function of the noise figure of the receiver and the noise temperature, T, of the signal source. The accompanying graph furnishes this information.

Noise figure, F describes the noise parameter of a linear receiver compared to a noiseless system for which $F=1$. Recent emphasis on the development and use of super low-noise amplifiers whose noise figures are close to unity, has made important the evaluation of such amplifiers under various operating conditions. The system designer is fundamentally more interested in overall system sensitivity, S, than in the receiser noise figure.

Curves shown in the acrompanying graph represent the formula $S=\mid(F-1)+(T \mid$ $\left.T_{.}\right)\left.\right|^{-1}$ explained on the chart.

However these curves do not apply to a radioastronomy system when the signal is itself of a white-moise-like character.

Application

In particular, the graph shows that any receiving system whose signal source is operating near or above room temperature, $T /$ $T . \geqslant 1$, has a limited potential gain in sensitivity.

For example, if a $3,000-$ nuc surface search radar system (T / T. $=1$) has a receiver noise figure of 4 , then a gain of 4 times. or

6 db , in sensitivity is the most that can be expected by going to a super-low noise preamplifier ($F=1.01$).

GENERAL ELECTRIC
 TUBE DESIGN MEMS
 Five－Star 6829＇s Help Guide Atlas ICBMs to Target 6，325 Miles Distant And into Earth－Circling Orbit！

Hi oh reliabilis of General Filectrice
 historic foll－range test tight of Com bar：－I ．t．Sir Forte that missile november 20：the now cone drop

（ironed radio－mommand guidance for the range shot used osi29＂，boil in rempuler sockets，ali for eremeral porpore triode functions such as rathorda－follower．coincidence．pulse－ generator or amplifier and wat in！．

Ion mise high gain．fareplionally －mall sink－these qualities of Cen－
 for Collins：Ration Company choice

New 5－Star 6688 Amplifier Pentode Features High $\mathbf{G}_{\boldsymbol{m}}$－to－Cap．Ratio！

Developed for ane in broad－mand IF amplifiers Geneal Flamers new hioh－retiabilits ode：has at transom－ ductances of lis mi s omber per miswharad of lube mate dance
 imately twice that of Ty me ．jo． 21
 product of the ．x．⿹勹巳 mas therefore le anticipated from liar new tube．

No the framerarid design of the
 G_{n}－Io－cathode－curtent ratio．This
 noise grideathote－1 velure Sore ne x pate for information ooh the pere
 ＂hen the tube is triombermmeredt

In the litas satellite－hoot．Type （6i，20）wat used for mann oromind． base sochere because of il－depend－ bilits．It and polar life lose of
 lute hours with no deferetises．

With high permeance mus．and transconductance．plus uniform．con－
 lulu hat in：wide worfulur－s．Ash ant Central Electric tube office on the nest pase for circuit applications：

Six 7077 Ceramic Triodes Used in RF Stage of Collins ARC－52 Military Communications System

of the lube For Rif amplifier and miner sockets in their men military airborne communications equipment．

Sow in production．Collins ard－ bated system mere the mends of the new ret．fastest plans because of it－
 and ability！to stand up in havel sem． ice．The lome melal－cramic ron s
 to the inc．oid rugedmes．

[^9]
New Parameters Help Pinpoint Tuub RF Noise Characteristics!

Designer's Choice of Correct Type Made Easier by Curves That Show $\mathrm{Req}_{\mathrm{eq}}$ and G_{n} as Functions of Tube Operating Frequency!

 beron chuern hir thio "xample.

 rmollulamere a lamiliar salues.

$$
N F_{\min }=1+2{\underset{f 0}{f x}}_{f_{0}}^{~} \sqrt{R_{\text {eq }} G_{n}} \quad R_{\text {opt }}=f_{f \times}^{f_{0}} \sqrt{\overline{R_{e q}}} \begin{aligned}
& \mathbf{G}_{n}
\end{aligned}
$$

where $f x$ is frequency af which noise figure and optimum source resistance are desired, and fo is frequency at which the value of G_{n} has been measured.

* Rothe, H., and Dahlke, W., "Theory of Noisy Fourpoles",

PROCEEDINGS OF THE I.R.E., Vol. 44 (June, 1956) pp 811.818.

MEASURED VALUES OF R_{eq} AND \mathbf{G}_{n}

| Tube type | $R_{\text {eq }}$ (ohms) |
| :--- | :--- | | G_{n} at 90 mc |
| :--- |
| (micromhos) |

Military and Industrial:

6201	600	320
6688	120	1160
7077	350	140
	Entertainment:	
6AM4	260	600
6AN4	250	550
6BC4	260	540
6BC8	600	320
6BK7-A	240	520
6BN4	420	390
6BQ7-A	435	290
6BZ7	490	350
6CE5	650	1200
2 CY 5	525	640
PC86	170	710

For further information, phone nearest office of the G-E Receiving Tube Department below:

EASTERN REGION

200 Main Avenue, Clifton, New Jersey
Phones: (Clifion) GRegory 3.6387
(N.Y.C.) WIsconsin 7-4065,6,7,8

CENTRAL REGION
3800 North Milwaukee Avenue
Chicago 41 , Illinois
Phone: SPring $7-1600$

WESTERN REGION

11840 West Olympic Boulevard
Los Angeles 64, California
Phones: GRanite 9.7765; BRadshaw 2.8566

Progress is Our Most /mporrant Product GENERAL (3) Electric

Silicone Sponge Rubber

remains flexible at extreme temperatures $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}$

COHRlastic R-10470 silicone sponge rubber has a dense, uniform, non-absorbing closed cell structure, highly suitable for soft gasketing, vibration dampening, fairing strips, seals, pads, bumpers, dynamic cushions and other applicalions where resiliency at extreme temperatures is required. It has superior compression set resistance, excellent dielectric properties, immunity to aging, ozone and weather hardening and good chemical resistance - non-sticking, odorless, non-corrosive.

COHRlastic R-10470 can be bonded to metals, plastics, fabrics or silicone rubber. Sheets $24^{\prime \prime} \times 24^{\prime \prime}$ and in thicknesses $1 / 16^{\prime \prime}$ through $1 / 2^{\prime \prime}$ are available from stock. Larger sizes up to $30^{\prime \prime} \times 30^{\prime \prime}$ and special molded and extruded shapes are made to order. CHR silicone sponge rubber is sold nationally through distributors.
EREE SAMPLES and folder - write, phone or use inquiry service.

CHR

COHRlastic R-10470 Silicone Sponge Rubber

SPECIFICATIONS:

COHRlastic $\mathrm{R}-10470$ meets many specifica. tions. Some are listed below:

AMS 3195
AMS 3196
MIL-R-6130A type 2
Boeing BMS 1-23
Martin MCl 4546
Martin MB 6130
Bendix ES 0709
Douglas DMS 1597
Lockheed LAC 1-924
PROPERTIES

Tensile
Elongention
(Immersion 24 hrs.@ $75^{\circ} \mathrm{F}$.)
Dersity, Ibs./cu. in. .020-.030
(firm)
$.013-.018 \quad .020 \mathrm{max}$.
(medium)
Low temperature brittleness
(5 hrs.@-100 ${ }^{\circ}$., No No
bend flat) cracking cracking
Compression deflection (compressed to 75% of original thickness)
Room temperature

Type firm
Type medium

12-18 psi 12 min .rangel 20 max. psi 8-14 psi 6 min.range 14 max. psi
$-65^{\circ} \mathrm{F}$. pct. difference

$$
-10 \% \text { to }+15 \% 1
$$

$212^{\circ} \mathrm{F}$. pct. difference

$$
+5 \% \text { to }+10 \% 1
$$

Compression set (compressed to 50% of original (hickness)

22 hrs . ($70^{\circ} \mathrm{F}$	0.	10\% max
	(firm) ${ }^{1}$	
	$5-30 \%$	40\% max.
22 hrs @ $-65^{\circ} \mathrm{F}$	$\begin{aligned} & 0-5 \% \\ & (\text { firm })^{1} \end{aligned}$	10\% max.
	$\begin{gathered} 5-30 \% \\ (\text { medium })^{1} \end{gathered}$	40\% max.
22 hrs @ ${ }^{\text {a }} 12^{\circ} \mathrm{F}$	$\begin{aligned} & 10-25 \% \\ & (\text { firm) } \end{aligned}$	30% max.
	$\begin{gathered} 20-50 \% \\ (\text { medium })^{1} \end{gathered}$	60\% max.

1 ASTMD 1056-56T

CHR products include:
COHRlastic Aircraft Products - Airframe and cngine seals, firewall seals, coated fabrics and ducts
COHRlastic Silicone Rubber Products Silicone rubber moldings and extrusions, silicone rubber sheets, silicone sponge rubber Temp-R-Tapes - Pressure sensitive, thermal curing Teflon and silicone tapes
Allied Products - COHRlastic sillcone centents and conductive gasketing

Leader In Fabrication of Silicone Rubber

Recorder Finds Heart Faults

Small operating theater at the National Heart Hospital, Tomdon. is equipped to examine a patient rapidly for a variety of heart defects. Key to the diagnosis is an industrial strip-chart recorder.

Success of the tests depends on tracing a fast-changing variable over a perind of a tew seconds. Emphasis in the measuring system is on wematy and speed of response without overshoot. The high-speed reconder. which operates on the comtinuous-balance potentiometer principle. is designed to register full-scale travel come millivolt) in one second. A special amplifier provides suficiently fast response, and overshoot is reduced by an adjustable damping circuit.

The system reconds continuomsly concentration of injected dye as it (ifculates through the bloodstream. As well as providing a meatilue of cardiat output in litres per minute. the curves on the recorder, supplied by Honewwell (ontools Latd. give specialist: vital information at a glance.
I)ye is injected in the patient's arm and carried around the bloodstrearm until it beormes so diluted
that the dre concentration reaches a uniform low level. During dilution, which lasts about 12 sec, dye concentration is continuously monitored. This is done by passing a beam of filtered light through the lobe of the patient's ear to a photoelectric cell. Variations in dye mesent in arterial blood catuse changen in cell coutput. This voltage is fed to the recorder.

When a quantitative amalysis is required. the same principle is used, but the earpiece is replaced by a chwette, which draws arterial blood from the upper arm through a tramspariont tube. Blond through the tube is monitored as before, and the eoll voltage recorded.

Normal Reaction

About seven seconds after the injection. a wave front of high dye concentration passes the measurins point. causing a sudden large rise in the recorder reading. The peak dies away rapidy and is followed by a second smaller peak when the wave front. now much diluted. passes through the ear a second time. The dye concentration then decreases slowly to a low constant

Shaker Tests Space Parts

[^10]

Circulatory defects in the heart are quickly diagnosed by monitoring and recording dye concentration injected in the patient's tloodsiream
value. This sequence of avents provides a characteristic and instantly rerognizatide normal curve.

Abnormal Reaction

If the patient hats a shumt 'a(b)momal flow of blood thromigh a hole in the septum separating the lelt and right auriclesi some blend eontinually cireulates to the langs and back to the heart without reacking the main circulation. When the dye is injected, only part of it is primped out into the abrta.

Consequently, the record shows a slightly bower initial peat. Then. as hood passing through the heart continues to pick up dye from the blood circulating to the lungs. the dye concentration at the measuring point fails to die away properly. The disappearance curve is markedly longer and shallower in slope than that for a normal patient.

A variety of other abommalities show equally characteristic curves.

Transistor Amplifier Design Method

By VICTOR R. LATORRE N|pllited lac-atroll
 ,
Simplafien procedure for design. ing handpass transistor amplifiera operating up to 50 m . wese an of-

Widen the scope of component design

... with ALUNDUM* high-purity fused alumina grain

Here is a super-refined, highly versatile ceramic grain that gives electronic component designers real creative latitude. With its superior electrical and mechanical properties to work with, even the most advanced design concepts can be translated into practical products efficiently and economically.

Electrochemically refined to extreme purity, the outstanding performance of this Norton alundum Grain in 500 and 900 mesh size, has long made it a favorite for coating the heaters of radio and television tubes. It's readily available for use throughout the electronics industry - not only in the above mesh sizes but also in a large range of coarser sizes - for virtually limitless applications.

For example, AluNdum grain combined with epoxy resins or silicone compounds makes possible superior potting, encapsulating, and sealing agents. Again, used as a basic ingredient in ceramic trpe mixes or in insulating powders, it readily lends itself to casting, molding or extruding of sleeves, shells, tubes, collars, etc. And in every case, it makes design easier ... processing more profitable.
Check the exceptional characteristics of allendey Fused Alumina Grain in the table below. Then get in touch with a Norton Engineer for specific details on your precise requirements. He'll be glad to describe the application of this and other types of Norton Refractory Grain to electronic component design. Write to Norton Compaivy, Refractories Division, 931 New Bond St., Worcester 6, Mass.

Alundum Fused Alumina Grain Gives You these Superior Properties . . . and many more!

High Dielectric Strength
High Electrical Resistance
High Heat Conductivity
High Resistance to Thermal Shock
High Mechanical Strength
High Dimensional Stability
Extreme Hardness
Excellent Abrasion Resistance
Available in a wide range of grain sizes
-Trade.Mark Reg. U. S. Pat. Off. and Foreign Countries
NORTON
REFRACTORIES
Engineered... $\mathbf{R}_{\mathbf{\chi}} \ldots$ Prescribed

NEW IDEAS IN PACKAGED POWER

for lab, production test, test maintenance, or as a component or subsystem in your own products

Look how Sorensen equipment blankets the controlled power field:

A.c regulators

- Completely tubeless-transistorized and mag-amp to 5 kva
- Tubeless for peak. rms or average voltage
- Electronic - 10.15 kva
- Fast-response, low-distortion
- High-precision ($\pm 0.01 \%$ rms regulation)
- Hermetically sealed and MilSpec versions
- 400 -cycle regulators
- Three.phase
- A.c meter calibrators and voltage reference sources
- "Constant voltage transformers" for line and filament regulation

NOBATRON ${ }^{\text {® }}$ regulated d.c supplies

- B supplies
- Tubeless low.voltage, high-current-to 500 amps out
- Wide range-electronic, transistor or mag-amp controlled
- Electronically regulated d.c supplies
- Miniature transistor-regulated supplies
- And also unregulated d-c supplies

Model R5010 Tubeless AC Line Regulator (top) Model 610B Nobatron DC Supply (center) Model FCR 250 Frequency Changer (bottom)

Frequency changers, inverters, converters (no moving parts in these)

- Single-phase, 60 cps to single-phase 400 cps or any f in range $45 \cdot 2000 \mathrm{cps}$ adjustable f or $\pm 0.001 \%$ regulated; powers to 1000 va
- Single phase 60 cps to three phase 400 cps
- Miniature transistorized inverters -6 . 12 , or 28 vdc to $115 \mathrm{vac}, 60$ or 400 cps
- Miniature transistorized converters-6. 12. or 28 vdc to $\mathrm{d} \cdot \mathrm{c}$ voltages from 50 to 1000 vdc

Although Sorensen originally made its name as the foremost producer of electronic a.c line-voltage regulators, we've come a long way since then. Today, Sorensen standard units, as outlined above, fill a!most all the requirements of the controlled power field - and you can add to these Sorensen's high-voltage equipment (up to 600 kv). Today's Sorensen engineer is equally at home in designing with vacuum tubes, semiconductors, and the latest magnetic devices and materials to produce better, lighter, faster controlled power equipment than ever before. Sorensen engineers are always glad to discuss your special power requirements with you-whether for a new unit or for a complete power system. Write us or see your Sorensen representative.

IN EUROPE, contact Sorensen Ardag, Zurich, Switzerland. IN WESTERN CANADA, ARVA. IN EASTERN CANADA, Bayly Engineering, Ltd. IN MEXICO, Electro Labs, S. A., Mexico City.
fective equivalent circuit. Design is exactly that used for vactumtube amplifiers.

Common-emitter hybrid-parameter equivalent circuit of a janction transistor is shown in Fig. 1.

FIG. 1-Equivalent circuit of junction transistor

The hybrid parameters are: $i+$ a_{10} is input resistance with collecter shorted to emitter: a is matput admittance with base open; $a_{1 .}$ is voltage feedback factor with hase open: β is ratio of collector to base current with collector shorted to emitter; r, is bave-spreading resistance: (${ }^{\prime}$.n is input capacitance; and C_{0} is ompat capacitance.
$C_{0,}$ is equal to $C_{\ldots}+C_{1}+(1+$ A.,).

For an amplifier with singletuned output. an indactance is placed in parallel with the collector and emitter terminals. Since a. may be noglected for small signals. axpressions for gain and center frequency are obvious.

Multiple Stages

For more than one stage, accounting for the input dircuit of the following stage greatly complicates the above expressions. The pole-zero diagram of a onestage amplifier (Fig. 2) shows that design procedure would be greatly simplified if the real pole could be neglected. An effective equivalent circuit makes this possible.

All circuit impedances are as-

FIG. 2-Pole-zero diagram of one-stage amplifier using 2N384 iransistor
sumed to be in parallel. Since the real pole is no longer present, the circuit is analogous to that for vacuum tubes, Base-spreading resistance r is not being neglected in the equivalent cicruit in Fig. 3.

Parameters of the effective equivalent circuit were determined in the following mamer. The output circuit was broadbanded $(R$, very small), and a coil whose inductance and resistance are aceurately known whunt the transistor input circuit.

Hy varying signal frequence, maximum voltage across the inpui terminals is found. The maximum occurs at input circuit resomance. Bandwidth of the input circuit is found by varying frequency on either side of resonance.

Input capacitance is then given
 is calculated from $R=1 /\left(2 \pi B C_{1}\right)$, where $C_{t}=C_{\mathrm{n}}$ and $R=\left(R_{11} R_{n}\right)$ $\left(h_{n}+R_{n}\right) . R_{n}$ is the parallel resistance of the coil at $\omega .$.

This method was used and actual characteristics of the amplifiers were within 5 percent of theoretical values.

Analog Tester Speeds Missile, Aircraft Checks

Electronic device called ASCAT (Analog Sell-Checking Automatic Tester) made by Bell Aircraft tests electrical, hydraulic and preumatic systems of missiles and aircraft. Single technician can in two minutes make same checkouts formerly requiring an hour by 10 men. Tester supplies unit being checked with predetermined sequence of d.c signals. Returned signals are compared with preset standards

> NEW IDEAS IN PACKAGED POWER

Abstract

for lab, production test, test maintenance, or as a component or subsystem in your own products

New addition to Sorensen B-supply fam-

 ily features outstanding versatility. A voltage range of 0.300 vdc , at up to 150 ma , regulation within $\pm 0.15 \%$ or 0.3 volt, com. plete flexibility as to polarity or grounding, heater supplies of either 6.3 or 12.6 volts ac, and provisions for external sensing are big features of the new Sorensen Model $300 B$ (left). It's one of the most adaptable B supplies ever. Outputs of two Model 300B's may be connected in parallel for higher current or series for higher voltage without introducing instability or impairing regulation. Model 300 B may also be connected to supply constant current within a specified range. Sorensen has B Nobatrons to supply almost every need of electronic research lab or precision equipment builder. They come in output voltages up to 1000 . vdc: models have adjustable front-panel controls and hold their regulation over an astonishingly wide voltage range. Bench or rack-mounting models. Write for specs.New unregulated supplies offer economy, wide adjustment range. Unregulated, but highly adjustable, the new Sorensen RC. Nobatron Rangers, like the Model RC36-30 (left), are exceptionally simple and rugged $\mathrm{d}-\mathrm{c}$ supplies consisting basically of a variable autotransformer and rectifier-filter circuit. They come in models to supply 0.36 or 0.150 vdc and each model has an auxillary a.c output of 0.130 vac. Each voltage range comes in two power capacities (ap. proximate maxima): (1) 500 watts dc and (2) 1 kw dc. A transformer completely isolates $d \cdot c$ output from $a \cdot c$ input and output; entire circuit is completely isolated from chassis ground. D.C output voltmeter and ammeter supplied. Available for bench or 19 " rack. All models: $115 \mathrm{vac}, 60 \mathrm{cps}$. 845

See your nearest Sorensen Representative or write us for complete details on these new Sorensen d-c power supplies. And may we remind you that our engineers are always ready to consider your special power supply needs, whether this involves modification of an existing unit or the design of a complete power system to meet complex requirements.

SORENSEN \& COMPANY, INC.

\leftrightarrow Rhensem Richards Avenue, South Norwalk, Connecticut orensen

 WIDEST LINE OF CONTROLLED-POWEREQUIPMENT FOR RESEARCH AND INDUSTRY
IN EUROPE, contact Sorensen-Ardag, Zurich, Switzerland. IN WESTERN CANADA, ARVA, IN EASTERN CANADA, Bayly Engineering, Ltd. IN MEXICO, Electro Labs, S. A., Mexico City.

Ultraviolet Image-Converter Tube

lNomame ultraviolet images of specimens are converted into visible pictures by a new tube called the C"ltraseope. Developed by lic A, the new tube is intended to replate the regular exepiece of a microscope adapted for ultraviolet viewing. A fommercial model of an ultreviolet photo-microscope incorporating the new tube will be available shortly from Ballusch and Lomb Optical Company.

Accessory Viewer

The ultraviolet accessory viewer, Fig. 1. consists of two units- the Lltrascope and eyepiece and a compact power supply. Invisible rays from an ultraviolet lamp pass through the specimen under obserration and through an ultraviolet (a)jective lens. On the faceplate of the image-converter tube an invisible ultatwiolet image of the specimen is formed. The faceplate transmits ultraviolet rays. On the innel surface of the faceplate a photosensitive material converts the ultraviolet image into a corresponding pattern of electrons. The pattern is focused on the fluorescent viewing screen at the opposite end of the tube. The image of the specimen is observed on the riewing sicreen

Left photomicrograph shows unstained section of human brain as seen in visible white light. At right, the same specimen is shown as viewed in ultraviolet light with aid of new tube. |rregular black spots are nerve cells

FIG. 1-functional drawing af ultraviolet accessory viewer
through a lens of the desired magnification.

Applications

Microscone applications are expected to be found in the fields of pathologe and certologr: As a clinical instrument. it will be useful for tissue cell screening, bone marrow ohservation and determination of hemoglobin in liver.

It mas be possible in future extensions of the principle involved to derelop special glasses that would enable the viower to see in high ultraviolet light areas.

Stereo Pickup Uses Push-Pull Coils

FIG. 1-Basic configuration of stereo pickup design. Magnet is lacated behind plane af the drawing

IN PAST ISSUES (p 78, Fels. 13, 1959 and p 102 , Sept, 26,1958$)$. several stereo pickups have been lescribed. eath different in design from the other. Still another design is used in the Pickering unit described in a recent paper'.

Batsic functional configuration of the design is shown in Fig. 1. This is a front viow of the pickup along a line parallel to the record surface and shows the front end of the armature with the stylus attached. The armature is free to move in ans direction in the plante of the drawing. The magnet is behind the drawing plane and located centrally between the two
separate branches of the magnetic circuit. Extensions of the magnotic polepieces come down at 45 deg to the record surface as shown. The magneide eircuit is completed by the armature comnecting the lower fand of the magnet to the two cores inside the coils.

Motion of the stylus along the 45-deg line up to the left modulates the flux in the left-hand leg but not in the right-hand leg. And the reverse situation modulates the flux in the right but not the left leg. The two coils are soparate electrically and provide the two electrical sigmals.

In actualits. a push-pull ar-

CALL HEADQUARTERS. MPARAYOMM ecr your seals from the ustry's most complete line of dard hermetic terminations

E-I has the answers . . offers the important economies resulting from stancard tooling experienced design/engineering service on custom seals . . . complete service on the sealing of components of your manufacture and a team of qualified sales engineers nationwide to assure you of fast, competer t assistance on special sealing prcblems. Consult E-I on standard or custom seals, miniature and sub-miniature types, single lead ter-
minals and multiple headers, seals for all applications. Call or write for data on E-I stancard seals, mentioning terminal types in which you are interested. Send drawings for quotatiors on custom seals.

Patertel in Canada, No. 523,390; in United Kingdom, No. 234,583 ; licensed in U'.S. under No. 2501520°

hum-bucking against external magnetic fields.

The complete moving system is on an insert which the user can put in the pickup or remove easily. Two different inserts are available. One has a moving system with the maximum compliance usable on the best quality record changers. The other has the additional compliance which can be accommodated by a top quality manual arm.

Reffrence

1. WV. A. Stathtum, "Thke I
 mual Neotintg of lle Alman lingmetrimg

Switch Includes Thermal Tripper

Develorped by Allgemeine Filek-trizitats-Cesellschaft of West Germany, a new switch contains a built-in thermal tripping device. The switch consists of a curved pretensioned bimetal strip held by two knife-edge supports which carry the current passing through the switch. The bimetal strip is welded at one end to another strip carrying an interrupting contact.

Switch Operation

When current through the switch becomes excessive, the bimetal strip combination bends upward. because of the heat, and opens the contact. The combination remains in the off position even after the strip has cooled down until the switch is actuated again by a push-button causing the bimetal strip to be depressed into its normal position. But the circuit is comected again only when the main switch is once again actuated to its on position,

According to the manufacturer, the new combination has several adrantages compared to the conventional arrangement of separate main switch and thermal release. These include the fact that no damage can be done by clamping the excess-current (thermal) switch in the on position since the main switch is off. Also, no auxiliary push-button is required for switching on again after thermal tripping hats taken place.

Ribbons of glass and foil electrodes are interleaved automatically cn compact machine

Pallet loading racks and pallet heating oven are seen in rear, electrode pickup carriage and bar are in foreground

Machine Stacks Glass Capacitors

GLAEs RIBBON and metal fuil alde alternatcly starked to form the basic structare of glass coulucitors made at Coriaing (ilass Works' electronic compoments plant, Fbalforol, l'a. The stacking operation is handled in ingt. volume by matchines.

The machine shown prepares 10 t:) 30 (atpacitor stacks in a singlo strip, which is latel rat apart. The mathine is unattended except for observation and loading of the cowrinated feed ssstems which supbly pallefs, glatss ribbon and foil.

Pallets are loaded in racks. An air-operated arm transfers pallets in train fron: the bottom of the vertical larks. The pailets pass through an oven to a belt moving
fiom left to right. After each pallet is pushed onto the bert, a stud in the belt, behind the pallet, pashes it into the stacking bed.

Heating

Heating the pallet fiacilitates stacking and subsequent handling of the strips. The glase ribbon is coated with a pure orgranic adhesive which melts at a temperatare of 100 F. After stacking. the pallets arre cooled, solidifying the adhesive and making the stacks rigid. The adhesive is completely evapolated during subseguent mocessing.

Glass ribbon is fed from a reel to a gride above the left end of the stacking bed. After the pallet is in
position, a pickup arm glasps the ribbon end and palls it the length of the pallet. The ribbon is cut at the galde and released by the anm so that it lays flat in the pallen. The glats is about 1 mil thick and sufticiently limp for machine handling.

Foil is supplied as rolled sheet the width of the strip. It is fed at right angles to the pallet. As the sheet murolls, a roller die cats it into tape, 1 tape for each capacitor in the strip. The tapers pass inder. a guillotine to a pickup platform.

A bar picks ap the ends of the tape as the gaillotine cuts the tape ends into the rectangulan electrodes of the capacitor. The picklip is made by racuum, throngh holes in

Electrode pickup and foil slitting roller die

Pallet is ejected onto refrigerated table

Small electrodes are prepared in combs

When the prime contractor on the first sign also ofiers tight linearity tolerance, guidance stom for the Air Force Thor high temperature perlonanace, low naise missile required a potentiometer that levels and is waildble in resistance range; could take punishment Fairchild was between 1 K ohms and 2 megolman, and in called in. Fairchitd's salcs engineer work. diameters of $z_{s \prime \prime}^{\prime \prime}, 1^{\prime \prime}$ an l 1-13/13". ing with one of Fuirchild's Customer Engi neering Groups and the contractor's Standards Engincers, developed the rugged $1^{\prime \prime}$ diameter precision 10 -turn potent ometer on weur right.
This "pot" features a unique mechan ical wiper tab drive perfected by Fairchiod which is separate from the helical coil of resistance wire. This minimizes windirg resistance wire. This minimizes windirg Wite or call far the new condensec tending life and accuracy. Fairchild's da Coucg - Fairchild Centrols Corporation
*Fairchild': Built-in SAFETY FACTORS Beyond the Specs for Reliability in Performance.
The Fairehild pozentioneter line is ecm. plete. It is the result of careful researel, and design, of rigid mooming :materali:; inspertion, of sub-assembly and final in. spection plas performarice testing anc enviremmental testing to destaction o random samples.

THE PROBLEM: A small, muiti-turn potentiometer was required for the "black box" in the Thor missiie which had to withstand severe environmental conditions, and have char. acteristics of lo w noise with no discontinuity under vibration, shock and acceleration.
THE SOLUTION: A special high-reliability design of the Fairctild standard type 920, 10 -turn potentiometer, a design demanding the closest tolerances, selected materials, and special assembly techniques. The result - a "pot" which delivered a safoly factor beyond the specs that helps to

Envirconmental Tests	Contractors Specification	Fairchild Performance
Vibrations	$2-2000 \mathrm{cps}-15 \mathrm{G}$	$2-2000 \mathrm{cps}-30 \mathrm{G}$
Shock	100 G	125 G
Acceleration	Constant 17G	Constant 50G

In adsition, the units were vibrated at resonant peaks between $2-2000$ chs from 25G to 50 G for 15 minutes without electrical or mechanical degradation.

teflon magnet wire

tempereo teflon MAGNET WIRE

SILICONE MAGNET WIRE MICA MAGNET WIRE

ISONEL 175 MAGNET WIRE

- DuPont's TFE Resin

SUPER-TEMP can supply with unprecedented speed and volume, the finest quality Teflon* insulated magnet wire for continuous operation up to $+260^{\circ} \mathrm{C}$ and to considerably hidher ranges for shorter operating periods. Rigid inspection standards include a multitude of tests for physical, environmental and electrical characteristics.

NEED IT FAST? . . . SEE SUPER-TEMP FIRST!

Also Manufacturers of

lead wire - miniature cables - jumbo cables lacing cords - tubing - specialty wire - teflon tapes

Super:Teup

American Super-Temperature Wires, Inc.
8 West Canal Street, Winooski, Vermont - University 2-9635
Gentral Sales Office: 195 Nassau St. - Princeton, N. J. - Walrul 4-4450 Agents in principal electronic manufacturing areas
the underside of the hollow bar. The bar lifts, retracts and places the electrodes on the ribbon of glass. The vacuum is momentarily relieved as the electrodes drop in place.

Leads are spotwelded to capacitor strip

Stacking capacitor strip by hand

Assembler uses hand vacuum pickup to hold electrodes

Successive layers of glass and elect oodes are built up. The carriage of the electrode pickup bar is cyeled so that electrodes of one polarity project beyond 1 edge of the glass and electrodes of the opposite polarity project bevond the other edge.

The pallet is ejected on a refrigerated table, where the athesive is cooled, and the machine repeats the stacking sequence.

Strips of capacitors are also stacked by hand. The foil is precut from tapes bs machine and positioned on strips of paper. Electrodes for small capacitors are cut from foil tapes. but left joined at one edge so that the strip of elec-

Strip is placed in sawing fixture

Flip-tap hand stomp paints cade ders on sapacitors

FIG. 1-Crass section of unfused capacitar in exaggerated vertical scale
trodes look like a comb. The excess i- cut off after statring.

Alter strips are former , leads ate spotwedded to electroder. Molded strips of corer glass are fitted around the strips as shown in Fig. 1. The cover provides suppent and. when fused. seals the capacitor agatinst moisture and contamination. The cosered stips ate placed in a fixture and the glat-s is fused in a horizontal conseror onan. A roller in the oren applies pressure to the fixture.

Diamond gang saws cut the strips into individual capacitors. Strips are held in fixtures with sate slots during satwing to ensure dimensiomal accuracy. After terting. the capacitors are color-coded with epoxy-base paint, applifod with a hand stamp. The paint is cured and the leads are metimed.

New Speed ...Versatility ... Reliability...

TRANSISTORIZED DICITAL MAGNETCC TAPE HANDLER HODEL 906

- Check these new standards of reliability and performance
- Campletely tronsistarizec far naximum . Narmal speed up ta 100 i.p.s. - eliability
- Trauble free brushless ma:ars
- Over 50,000 passes af rape withast sig. nal degracation
- Linear servo system
- Life expectancy af pinchroll mexhanism: over $100,000,000$ operations
- Skew ± 3 ", sec. ${ }^{1} 2$ " tope cen er clack at 100 i.p.
- Yocuum losp buffer
- Cantinuous flutter fiee cycling ts to 200 cps
- Rewind ar search speed canstant of 30f i.p.s.
- Six seeds farward ar reverse up to 150 i.p.s.
- Better than 3 milfisecands start, i.j millisec. stop
- Fran- panel accessibility
- In line threading
- End of tope and tape break sensing
- All functians remately cantrallable
- Tape widths ta $11 / 4^{\prime \prime}$

The 906 is usually supplied with the Patter 921 transistarized Recard-Playback Amplifier; a unit that features

Pilse or level ou'puts
Output gating 1 i.p.s. to 50 i.f.s.

Mansal, relay, ar
electranic functian switching
Dual read-write aperation

Potter alsa manufactures o complete line of Perforated Tape Readers, High Speed Printers and Recard-Playbock Heads.
Cantact yaur Patter representative ar call
ar write sfirect far further infarmation.
POTIER INSTRUMENT COMPANY, INC.
Sunnyside Boulevard, Plainview, N. Y.
The mark of
Enginecring Quality

OVerbrcok 1.3200

Potter has career epportunitios for qualified ongincers who like o challonge, and the frocedom to meat it.

ON THE MARKET

Optical Transducer rugged, reliable

southwestern Industrial Electronics (ơ., 10201 Westheimer, Honston. Texats. has introdaced the TL-2 optical transchacer for use in conjunction with electronic tachometers such as the ET-serios units. The TL-? is a rugged. completely reliable transdacer which

can measare rotational speeds orer 1.000 .000 rpm. It contains a phototramsistor. a light sonnce and
a lens system. It detects. bú optical reflection. graduated lines platcerl on the moving surface of which the rotational or linear spered is to be measured. Mylar film with lines printed on it and with a pressume-sensitive adhesive backing is sapplied for application to shafts. couplings or surfates, eliminating shaft loading. Circle 200 on Reader Service ('ard.

Sealed Headers 7- and 9-pin

Amprican L.dya Corp., Mamufacturers Road, Chattanoogat 5 , Tenn. Tantalum pins with nickel braze allos. combined in a strong hermetic seal with an AlSillag alumina ce-
ramic base and envelope for vacumm tabe use, are amounced. These headers allow higher bake-ont temperatures during subseguent assembly to the envelope. The materials have been selected for their low rapor pressure characteristics. Circle 201 on Reader Service Card.

Power Supply large output

Master Spechalties (0.0. 956 E. $108 t \mathrm{~h}$ St., Los Angeles 59, (alif. The P N: 3×0 - 100 power supply was dexigned to supply three separate, closely regulated outpat voltages,

(+ 150 vat 630 ma - -150 vat 140 ma. and -300 vat 10 mal , for airbonne use. Output is very large for the si\%e and weight of the mit. Unit will operate at +85 C at full output rating, and is completely tramsistorized. Circle 20) on Reader Service card.

Frequency Calibrator harmonics to 25 kmc

 \therefore. Tripp Are., ('hicago 46. 111. Harmonices no to 25 kmc can le generated with a new microwatre fregrency calibrator model 101. The fion-me arstel controlled signal is
designed tor foed directly into a waveguide or coaxial crestal holder.
 vides a conveniont means of calibrating the instrument against WWV. Lomer intensity markers at 150 and a mo are present for wavemeter or receiser calibration. Circle 203 on Reader Service (ard.

Silicon Rectifiers diffused junction

benmi Aylation Corp., Red Bamk Division, Long Branch. N. J., hats asailable a series of new diffused junction silieon rectifiers. Ther
have piv ratings ranging from 30 to 600 x and can deliver $\overline{5}$ amperes of rectified current. Operating temperature extends from -65 (' to +175 C. The rectifier package is in conformance with the latest JETEC proposed standards. Units are

Guide to Oak Choppers

MINIATURE SERIES 600-MOST STABLE IN ITS CLASS

METICULOUS ENGINEERING combined with exhaustive resting provides a line of SPDT choppers which exhibit unusual stability and low noise. While the specifications shown hete are necessarity abbreviated, they will help you make a preliminary appraisal. For complete details on any unit, send us the type number and a description of your application with its circuitry.

SMALLEST, MOST RUGGED IN ITS CLASS

SERIES 60C-MIL C4856, Class B, Type 1. Capacity between switch terminals and ground, 15 uuf average. Contact symmetry, within 10°. Weight, less than 1 oz .
SERIES M-MIL C4856, Class B, Type 1, Grade 2. Capacity between switch terminals and ground, 3-5 uuf. Contact symmetry: 0.500 cps , within 10°; at 1000 cps , within 20°. Weight, leas than $3 / 4$ oz.

SERIES 600
SERIES M
For Shock and Vibration Conditions

	Types $\left\{\begin{array}{l}607 \\ \text { NC-600 } \\ 602 \\ 603\end{array}\right.$	Type 610	Type 604	Type 612	Type 605	$\text { Types }\left\{\begin{array}{l} 608 \\ 609 \\ \text { NC-600A } \end{array}\right.$
Nominal Drive Freq. and Voltage	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { of } 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ 0+6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 380-500 \\ \text { cps ap } \\ 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { of } 6.3 \end{gathered}$	$\begin{gathered} 400 \pm 20 \mathrm{cps} \\ \text { ot } 6.3 \mathrm{v} \end{gathered}$	$\begin{gathered} 60 \pm 5 \mathrm{cps} \\ \text { of } 6.3 \mathrm{v} \\ \text { Aperiodic from } \\ 10.100 \mathrm{cps} \end{gathered}$
Phose Lag af Nominal Drive Freq. and Voltage	$\begin{gathered} 65^{\circ} \pm 5^{\circ} \\ \text { at } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 65^{\circ} \pm 5^{\circ} \\ \text { of } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 75^{\circ} \pm 10^{\circ} \\ \text { of } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 90^{\circ} \pm 10^{\prime \prime} \\ \text { of } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 180^{\circ}+10^{\circ} \\ -0^{\circ} \\ \text { at } 400 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 20^{\circ} \pm 5^{\circ} \\ \text { at } 60 \mathrm{cps} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$
Contact Dwell Time at Nominal Drive Freq. and Voltage	$\begin{aligned} & 150^{\circ} \min \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 140^{\circ} \max \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{aligned} & 150^{\circ} \mathrm{min} \\ & \left(25^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} 150^{\circ} \mathrm{min} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 160^{\circ} \pm 10^{\circ} \\ \left(25^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{gathered} 165^{\circ} 10170^{\circ} \\ \text { at } 60 \mathrm{cps} \end{gathered}$
Contact Rating Into Resistive Lood (Maximum)	CONTINUOUS: 10 v of 2 ma INTERMITTENT: $15 \vee$ at 2 ma	CONTINUOUS: 50 v at 2 ma INTERMITTENT: 100 v at 2 ma	CONTINUOUS: 10 v af 2 mo INTERMITTENT: $15 \vee$ at 2 ma	CONTINUCUS: 10 v al 2 ma INTERMITTENT 15 v al 2 na	CONTINUOUS: $50 \vee$ al 2 ma INTERMITTENT: $100 \vee$ at 2 ma	CONTINUOUS: 15 v of 2 ma INTERMITTENT: 50 v at 2 ma
Life Expectancy (Optimum Conditions)	Up to 5000 hours	Up to 1000 hours	Up to 5000 hours	Up to 5000 hours	Up to 5000 hours	Up to 10,000 hours
Switching Speed With DC in Coil	Less than 1 Millisecond	Less than 1 Millisezond	Less than 1 Millisecond	Less than 1 Millisecond	Less thon 1 Millisecond	Less than 800 Mic roseconds

Types $\left\{\begin{array}{l}\text { MS-1 } \\ \text { M5-2 } \\ \text { MS-3 }\end{array}\right.$
4.8 Volts, 10.1000 eps. Aperiodic. Coil Current 60 ma at 400 cps Coil Res. 85 Ohms
$10 \mathrm{cps}: 10^{\circ} \pm 5^{\circ}$
60 cps: $15^{\circ} \pm 5^{\circ}$
$\left.400 \mathrm{cps}: 55^{\circ}\right\} \pm 10$
$\left.000 \mathrm{cps:}: 110^{\circ}\right\}=0$ $\left(25^{\circ} \mathrm{C}\right)$
160° to 170° $\left(25^{\circ} \mathrm{C}\right)$

CONTINUOUS:
10 vat 1 ma INTERMITTENT: 12 vat 2 ma

Up to
10,000 hours
Less than
200 Microseconds

SAUGER FAN 280 CFM

The Saucer Fan represents an entirely new design concept whereby: the driving motor is built within the propeller hub limiting its axial length :o the minimum measurement required by a highly efficient motor. Ideally suited for tightly packed electronic packages, where space is critical. the Saucer Fan will p-ovide cooling air to the amount of 280 cfm . Power requirement is 115 vac . $50-60 \mathrm{cps}, 1 \varnothing$.
The fan's pressure periormance is tailored to the requirements of a modern, washatle dustfilter. "Servo type 'mounting flanges at each end of the venturi ring permit simplicity of mounting without loss of space. Direction of airflow may be easily reversed by turning the fan erd for end. Electrical connections are made to a compact terminal block.

$15 / 8^{\prime \prime}$

For complete technical details write to...

In Canadas The Hoover Co., Ltd., Hamilton, Ont.
designated 1×1612 through $1 N 1616$. Circle 204 on Reader Service Card.

Gage Control

high vacuum type
Nre Equipment Corp., 160 Charlemont St.. Newton 61. Mass. A new high vacaum thermocouple ionization gage control. which covers the range from 1 to $1 \times 10^{-} \mathrm{mm}$. Hg., the model $710-1 \mathrm{l}$ offers the reliability and precision which make it suitable for most laboratory and production floor high raculum installations. A quick-acting protective relay. which operates when the pressure increases to 1 -2 times the scale to which the control is set. quarrds the ionization gage against burn-out due to pressure surges. (ircle 20\% on Reader service card.

Silicon Solar Module rugged, shockproof

materintional Rectifier ('orp., 1521 E. Graml Are. El Sequndo. ("alif., annotances high eftieiency silicon solar concerter mociules that will supply 100 w of power per $14: \begin{gathered}\text { ft of cell area. The }\end{gathered}$ building block modules are assemblies of series and parallel con-

Find the missing memory plane

The seven memory planes abope each solved some special memory problem. There is one plane missing. It's the one which will solve rour moblem. You'll find the plane at General Ceramies which ofers a complete memory plane service, backed by broad experience in the design, engineering and mass production of planes, frames and cores.

DESIGN SERVICE-An exprienced design eng:neering staff stands ready to analyze your memory plane requirement, recommend and develop the plane that will meet your application in the most efficient and least exponsive manner.

MANUFACTURE-Skillec factory personnel, utilizing the most advanced equipment and teciniques and continualty working in all phases of memery plane development and manufacture will produce the plane. General Ceramis has developed and
wired memore planes containing from 64 to 16,384 cores each. (Core sizes range from 50 mil 9 D to 80 mil OD.)

QUALITY CONTROL - An expanied testing department with fuliy automatic and semi-autonatic testing efuipment, developed at General Ceramics, assmes you complete quality control and the highest standards of manufacture.
Standard line - Perhaps some of General Cermics' line of standard memory frames will mett your requirements. Wrete for iteratere on General Ceramics standard planes. Address inquiries to Gereral Ceramics Corporation, Keasbey, N.J.-Drpt. E.

GEWERAL GERAMIGS

origimator of the sogare logi ferrite

and you'll find the Helipot Series T
all-metal single-turn precision
potertiometer can take it !
Name your linearity, to $\pm 0.20 \%$..your resistance, from 650 to 100,000
ohms...up to 5 ganged sections
and 9 taps per section... servc or
bushing mount, with bearings
front and rear for perfect alignment.
Put them all together, in the T's
new cup-type housing, and you'll
have the best-value miniature
you can design into your system!
For the full T-Pot Story, whistle for
data tile A-22

nected silicon solar cells with specially processed, ruggedized contact strips that assure optimum conversion efficiency. Each module contains fire series-comnected 1 cm by 2 cm solar cells embedded in an epoxy mold. (ircle 206 on Reader Service Card.

R-F Head direct-reading

Itr.k CORP., 1609 Trapelo Road. Waltham 54, Mass. Model 30XE r-f head is designed for use with the model SA:30 microwave spectrum analyzer to cover the 8.500 to $9,700 \mathrm{mc}$ range of the X hand. With direct reading freguencs dial. this unit is accurate to 0.05 percent or better. It features automaticall; tracked reflector voltage for constant display centering and a precision $80 \mathrm{db} r$-f input attenwator. Circle 207 on Reader Service Card.

Digital Voltmeter automatic reading

Hewlett-Packard Co., 275 Page Mill Road, Palo Alto, Calif. Model 405AI d-c digital voltmeter reads positive and negative roltages from 100 mv to 999 v with an automatic selection of range and polarity. Voltages are displayed in three significant figures and the decimal point is automatically

BIRD'S IR VIEW... of a Hot Stove Pipe

The wedding of optics to electronics may well be the marriage of the century ... a TI-fostered union producing infrared guidance systems capable of finding, evaluating, rejecting false targets, and directing its "bird" to point-of-impact. Texas Instruments - leading producer of silicon optics for infrared applications has achieved an intimate understanding of this and other unusual materials for specific portions of the spectrum.

In one of the nation's best equipped facilities, TI optics specialists design, grind, polish, and coat silicon lenses, prisms, windows, and other elements with the precision accuracy necessary for even the feeblest IR signals. Backed by a full-time engineering service with fast computers for design execution, the Texas Instruments optics team has the "know-how" to carry through your project from sketch pad ideas to custom-made systems. For detailed information on any phase of precision optics technology, contact SERVICE ENGINEERING DEPARTMENT:

Power Oscillator
 ultra-precise

Electronics International Co., 145 W. Magnolia Blid., Burbank, Calif., has produced an ultra-precise power oscillator for airborne

Portable Counter reads to $12,000 \mathrm{cpm}$

Performance Measurements Co., $15301 \mathrm{~W} . \mathrm{MeNichols} ,\mathrm{Detroit} \mathrm{35}$, Mich. Model 1000-B portable electronic counter is capable of counting speeds to 12.000 counts per minute. It combines a plug-in electronic decade with a five-digit mechanical register. Unit meets a variets of laboratory, production and process counting needs. It fills the gap between slower electromechanical counters and elaborate. high-speed multi-decade units. Counting pukes mas be from photoelectric cells, magnetic pickups or contact closures. lnput signals can be sinusoidal, rectangular or slow-rising. Circle 209 on Reader Service Card.

Fin-Lock leads provide an absolute lock into printed circuit boards and permit either automatic or hand assembly. Crimping of leads is eliminated and stand up position is assured. Designed for holes from 040 to .052, Fin-Lock leads are stopped in holes over .052 by the unique shoulder design. These new leads are available on all DISCAPS of standard voltage, rating and spacing at no increase in price.

Where application calls for ceramic capacitors with great stability over an extended temperature range, type JL DISCAI's should be specified. Between $-55^{\circ} \mathrm{C}$ and $+110^{\circ} \mathrm{C}$ JL DISCAPS show a capacity change of only $\pm 7.5 \%^{\circ}$ at $25^{\circ} \mathrm{C}$. Type JL DISCAPS are a quality replacement for paper or general purpose mica capacitors at a savings in cost.
Your inquiry is invited.

FOR MINIATURE AND SUB-MINIATURE COMPONENTS?

YOU CAN GET JUST

 WHAT YOU WANT
*TEFLON
DuPont trademark

Dielectric Strength: $480 \mathrm{v} / \mathrm{mil}$.
Dielectric Cohstant (60 to 10^{8} cycles): 2.0
Power Factor (60 to 10^{8} cycles) : <0.0005 Volume Resistivity: 10^{15} ohm-cm
Surface Resistivity: 3.6×10^{6} megohms Surface Arc-Resisiance: does not track Temperature Range: -450° to $+500^{\circ} \mathrm{F}$. Chemical Resistance: completely inert Moisture Absorption: zero

FOR: insulators of all types, sleeves or inserts, capacitor seals, feed through insulators, bushings, slot liners, coaxial spacers, layer insulation or any other parts or forms subject to high charge, extended frequency range, mechanical and thermal shock, extreme temperatures and climatic conditions.

You can order in any quantity and be sure of true Teflon performance, because "John Crane" gives you these plus factors: complete uniformity throughout, high density control, freedom from flaws and rigid adherence to your specifications.
"John Crane's" complete fabrication facilities assure you prompt delivery on exactly what you want. If you have an entirely new requirement, no standard design or proce-dure-"John Crane's" laboratory facilities, know how, research and engineering experience go to work on your particular need.

Now is a good time to put "John Crane" to test. Contact Crane Packing Company today.

applications. The DK1-102A is essentially a $2-w$ output power oscillator designed for shockmounted installation in aircraft and missiles for control equipment, grros. synchros and servos. It is also readily used in electronic ground support systems and is particularly adaptable due to the input source of from 50 to 800 cycles, 115 r a-c. The entire unit is designed to meet or exceed specifications under MIL-E-4158A. Circle 210 on Reader Service Card.

Phototube
 head-on type

Radio ('orp. of America, Harrison, N. J. The 7326 is a new 10 -stage, head-on type multiplier phototube having a new and improved photocathode. This photocathode is characterized by broad response range. high sensitivity, low thermionic dark current, and high conductivity even at low temperatures. The 7326 is well suited for use in applications such as flying-spot scanning and photometry which require low dark current as well as high sensitivity over the entire visible spectrum. It is also useful in scintillation counters. Circle 211 on Reader Service Card.

Thermocouples subminiaturized

Pyro-Electric, Inc., 228 E. James St., Barrington, 111. Need for lighter, faster responding temperature sensing devices is met with new subminiature thermocouples. They are fully metal clad

J. B. Wassall. director of enginerring, 'with locriheed since 1937

A message of importance to career-minded engineers:
"Lcch heed aircraft continue to blaze nest trans for manned tlight. Than new Electra is America's tiest prop-jot airliner. A Navy version of the Electra will be the country's 'irst turbire-po ivered submarine hunter
"Already, our desich groups p"an the supersoric jet trarsports of 1965. Meanwhile, new speed and alth de recordo se: b: a Lockheed F-104 Starfighter move manned flight to the "ringes of cuter space.
"W thin and beyond le many p:oblems for our engineers: problems in aero and thermodynamic characteristios at supersbnic s.oeeds, in radar, in optics, in infrared, in data processing for airborne detection systems and in all phases of design. Additional long-rarge problems exist in military systems analysis, nuclear ard space craft systems, commercial air transport studies, anci industrial operations research.
"There are openinge no:v for thoroughly zualitied electrenics and aerotheimodynamics and design en zineers and oferations research specialists.

Lockheed

 "If you are interes:ed in a Loctreed carerr in California. write us today Address; E. W. Des Lauriers, N.1anager Plecemrent Staff, Dept. 103, 1703 En pire Avenus, Burbank.ENGINEERS: Write Mr. Des tauriers for your copy of a paper on "Airborne Early Warning in the "Missile Age" presented by Robert A. Bailey Chrer Engineer, California Division, Locktieed Airciaft Corporation at the 6th USAF Wcrld Wide We $\mathbf{6}$ Wons Meet.

REDUCE BREAKDOWN FAILURES

DEPOSITED CARBON RESISTORS

The use of a thermo-plastic insulation material has resulted in an economically priced molded carbon resistor of markedly improved endurance and long term stability.

Type N resistors subjected to several one-hour cycles of immersion in boiling water - while DC polarized - have revealed only negligible changes in resistance. Continuous operations at $150^{\circ} \mathrm{C}$ caused no damage to the component.

The new Type N resistor, a deposited carbon film fired onto a porcelain rod, is first tropicalized with multiple coatings of panclimatic lacquers to give it long term moisture resistance, and is then molded in a thermo-plastic material.

This molded insulation has an effective resistance in the order of 10^{13} ohms. Its inherent thermal conductivity is approximately ten times that of air, resulting in substantially improved load life under conditions involving excessive or high wattage dissipation. Similarly, Type N resistors may be soldered as close to the insulation as desired without fear of melting or deforming the cover.

One added advantage of the Type N is that the original markings on the resistor body remain visible and legible through the transparent molded material.

Welwyn Type N carbon resistors meet the requirements specified by MIL-R-10509 B, and are available in all values, ranging from 10 ohms through 1 megohm. For complete data and specifications write to Welwyn International, Inc., 3355 Edgecliff Terrace, Cleveland 11, Ohio.

SAMPLES AVAILABLE ON REQUEST.
and ceramic-insulated from the high-temperature sheath. Ther are rugged and resist corrosion, abrasion and erosion as readily as their larger counterparts, yet are readily formed. The wide range of subminiature diameters, from 0.020 in . o-d, 2 -wire to 0.040 in . o-d 2 -wire, complements a complete line of thermocouple and electrical condactors in metal sheaths ranging up to 0.500 in. o-d 6 -wire units. Circle 212 on Reader Service Card.

Current Integrator versatile unit

Elcor, lnc., 1225 West Broad St., Falls Chureh, Va. Primary application of the A309 current integrator relates to high-voltage particle accelerators, but the instrument is useful in many other applications as well. As a sensitive carrent indicating instrument, it also will measure the total charge collected in a given length of time. Notable for high accarace, the integrator contains an internal calibrating current source that enables the accuracs and performance to be conveniently chocked. The instrument's panel switch includes one which allows ready adaptation for measuring current of either polarity. Circle 213 on Reader Service Card.

Protective Coating for components

Columbia Trichnical Corp., 16-02 Thirty-First Ave., Woodside 77, \therefore. \therefore. A new, humiditr-proofing coating, specifically developed for fast air drying at room temperatures, is amounced. Known as HumiSeal trpe 1F12, it has infinite pot life and shelf life. Its excellent adhesion characteristics enable its wise on a great variety of materials inclading glass, ceramic, plastic and metal. The coating may be applied

PRESENT SUBSCRIBERS

 -Please Note!This subscription coupon is for NEW subseribers. It is not intended as a renewal notice. If you are already personally subscribing, we shall appreciate your passing the form to one of your associates. Thank you.

Mail Reply to: McGraw-Hill Pub. Co., Eleatronics, 330 W. 42nd St., N. Y. 36, N. Y.
\square Send bill to Commany address \square Payment
Check here \square for 1 year, $\$ 6 \square$ for 2 years, $\$ 9 \square$ for three years, $\$ 12$
O.K. - put me down for a personal subscription to "electronics" . . . giving me benefit of your weekly
editorial service. . editorial service. editorial service... Check here \square for year, $\$ 6 \square$ for 2 years, $\$ 9$
Name.
Position_Dept. Company Name

$$
\begin{aligned}
& \text { Please I One } \\
& \square \text { Send bill to home }
\end{aligned}
$$

Please \One
\square

- - - - - - - - - - - - - - - -

AWTHNIITETHERMOSTATIC DELAY RELAYS

Also-Amperite Differential Relays: Used fir automatic overload, in-der-veltage or undercurrent protection.

2 to 180 Seconds

Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.

Hermetically sealed. Not affected by altitude, moisture, or climate changes. SPSI only-normally open or closed. Compensated for ambient temperature changes from -55° to $+70^{\circ} \mathrm{C}$. Heaters consume approximately 2 W . and may be operated continuously. The units ore rugged, explosion-proof, longlived, and-inexpensive!
TYPES: Standard Radio Octal, and
9- Pin Miniature . . List Price, \$4.00. Standard Delays
PROBLEM? Send for Bulletin No. TR-81

AMPER/TE BALLAST REGULATORS

Anperitr Regulators are designed to keep the current in a circuit automatically regulated ot a de indite valve (for example, 0.5 amp .) ... For currents of 60 mo . 9 S amps. Operate on A.C., D.C., or Pulsating Current.

Hermetically seciled, they are not affected by changes in altitude, ambient temperature (-55° to $+90^{\circ} \mathrm{C}$), or humidity . . Rugged, light, compact, most inexpensive List Price, $\$ 3.00$.
Write for 4-page Technical Bulletin No. AB-5I

j61 Broadway, New York 12, N. Y. . . CAnal 6-1446 In Canada: Atlas Radio Corp., Ltd., 50 Wingold Ave., Toronto 10

TIME, because here is the simplest, quickest installation known today. MONEY, because here is the one-piece terminal that eliminates screws, nuts, washers, lockwashers. TROUBLE, because here is the stay-put terminal proved by millions in daily use. And here's the "Press-Fit" principle at a glance:
(1) Insertion tool in drill-press (power off) or hand arbor, holds terminal G and indexes it over countersunk hole A.
(2) Applying pressure, the "Press-Fit" terminal slides easily and smoothly into hole, because of resiliency and self-lubrication of Teflon body.
(3) "Memory" factor of Teflon causes body to regain diameter and shape within the confines of the hole, for a tight, sealed, permanent installation.

All due to critical specifications, tight tolerances, rigid quality control, and the unmatched "know-how" of the pioneer. All yours when you insist on genuine Sealectro "Press-Fit" terminals.

WRITE ON BUSINESS STATIONERY for copy of latest catalog and free subscription to TERMINALOGY that keeps you posted on terminal techniques.
*Reg. TM of E, I. Dupont de Nemours \& Co., inc.

U

EREEQUENNCY STANDARD

For your most precise laboratory measurements, the JK Sulzer Frequency Standard with output frequencies of 1 mc and 100 kc , with stability better than 1 part in 10^{9} per day. Frequency is variable over a range of 0.9 cycles or more at 1 mc , and capable of being reset to 5 parts in 1010. Write for complete data.

The JAMES KNIGHTS COMPANY Sandwich 1, Illinois

CIRCLE 90 READERS SERVICE CARD

ELECTROLYTIC
PAPER TUBULAR
CONDENSERS
"35 YEARS OF PROVEN DEPENDABILITY'
COSMIC CONDENSER CO.
853 Whittier street, bronx, N. y LUdlow 9.3360

New! Low Cost Extra Long Life

0 to 9 READOUT GLOW TUBE

FOR NEW OR REPLACEMENT

APPLICATIONS

This mew digital radout "Inditron" is ohlered at : cost far below previons mokels. A trew , whiturer3ne "pproach maken thin redaetion frowible without sacrificing the Nittional lowion traelitum for Highest quality ancl rused constructom. Yous wee buger lite divined presenfation and bomer voltage (1.80 V . DC) performance in this conamet design. Investigate the replacement possibilities of this new "Inditrom."
Write for information on the men Xtrlotr and National Cnion's extenive line of prometation and whow derieses.
Zet us help you with your visuat disphay prablems.

NATIONAL UNION ELECTRIC CORPORATION electronics division
 Developers and Manufacturers of Special Puppose Electron Tubes BLOOMINGTON, ILLINOIS

CIRCLE 92 READERS SERVICE CARD

You get more than 'hardware' when you buy from Bowmar

The big plis factor in all Bowmar designed components and assemblies is RELIABILITY. You can't hear it, touch it or see it . . . but it's there, your Bowmar insurance policy against performance mediocrity or failure.
When your project calls for precision counting or indicating devices . . precision gearheads. or speed reducers... precision electromechanical assemblies, Bowmar is the firm most experienced and best equipped to design and produce them for you.
Bowmar has the facilities and know how to manufacture these devices in quantities from single prototypes to thousands. all to your most demanding performance

PRECISION counting DEVICES

PRECISION gearheaos amo Speeo reducers
 requirements.

At Hallicrafters 22,000 hours a week of superior engineering talent are applied to the design of advanced military electronics

CIRCLE 68 READERS SERVICE CARD
receptacle. This signal can then be followed to the defective stage, from the top side. by using the absorption analyzer's electrostatic probe at the successive stages in the series string. Circle $\because 16$ on Reader Service Card.

Beacon Simulator portable unit

HofyMan Laboritories mivision, Joffman bilectronics Corp., 3740 S. Grand Ave., Los Angeles 7. ('alif. The HIA-119 simulates the operation of the TACAN ground beacon by generating a standaud TACAN signal on any two of the 126 TACAN chammels. It makes possible checks of range and bearing operation, coding and decoding and operating frequency, and enabies the user to measure peak power and recolver sensitivits of the airborne equipment. Conit ran function as an accurate signal source in a laboratory or as a go-no-go checkout device on the llight line. Circle 217 on Reader Service Card.

\rightarrow

Crystal Can Relay four pole

Branson Corp., 41 So. Jefferson Road, Whippany, N. J. Type AR four pole crystal can relay is now available. It withstands 125 C temperature and 2,000 cycles vi-

Now ..."telephone quality"

PRINTED CIRCUIT BOARDS

from Stromberg-Carlson

Expanded facilities now make it possible for you to get the some high quality printed cireuit boards we produce for cur own teleeommunication and electronic applications.

We print and etch one or two sides; we provide evelets or terminals and can provide gold plating where desired.
All hoards will he manufactured with the same rigid process control demanded by our electronic switchboard, automatic toll icketing. carrier and other precision equipment. In addition, you get these chicf advantages:

1. Quality: assured by rigid control over incoming materials as well as process.
2. Low Cost: low tooling cost on quality skort run precisior work imeans lower cost to you.
3. Volume: screen printing makes volume production economical. Delivery to meet your scheduling.
4. Excellent Solderability is assured without the need for costly solder plating.

Tell us about vour particular joh requirements. We will furnish price and delivery information immerliately.

STROMBERG-CARLSON

Telecommunication Inđorstrial Sa'es 114 Cailson Road, Rochester 3, N. Y.

For dependable electrical characteristics and all-around satisfaction . . . specify these BLUE CHIP products, true Partners in Performance to the fabulous Electronic Industry.

A Microphone Cable (Rubber or Plastic)
B TV Leadin Cable
C Interrommunication Cablo
D Shielded Interiomm. Cable
E Plastic Shielded Cable

CONSULTATION WITHOUT OBLIGATION CORNISH WIRE CO., Imc. SO Church Street New York 7, N. Y.
from Warehouse Stocks in
Atlanta Charlotte Chicago Cincinnati Dallas Detroit Kansas City Los Angeles Minneapolis Philadelphia Rochester St. Louis San francisco Seattle Williamstown
Additional Sales Offices Bosten Bridgeport Cleveland Denver Pittsburgh

Made by Engineers for Engineers'
CIRCLE 70 READERS SERVICE CARD ELECTRONICS - February 20, 1959
bration. With header leads arranged on a 0.1 in . grid and several case strles available, the type $A R$ is compatible with printed circuits, miniature packaging and micromodular construction. Dry circuit to 2 ampere contact rating plus nominal operating voltages up to 115 v d-e, make it a versatile space and weight saving device. Circle 218 on IReader Service Card.

Logic Circuits transistorized

The Erif Rrasistor Corp., Erie, Pa., hats developed a line of high speed transistorized plug-in modules for digital equipment and system comstruction based primarily upon the "NOR" logic. These units are designed to work at speeds in excess of '2 me under tapical loading conditions. The module is designed to fit a standad 7 pin-inline subminiature tube socket. L'p to 144 units mat be mounted on a standard ?3! in. bs 19 in. rack panel. Each module measures 0.750 in . high. 0.687 in. wide and 0.297 in. thick. Circle 219 on Reader Service Card.

Accelerometer

subminiaturized
Humphrey, INo., 280.5 ('anon St., San Diego, Calif. A new subminiature accelerometer with potentiometer pickoff is now in moduction. The LAこ9-0100 suries is only 1 in. in diameter and less than $1 \frac{1}{2}$. long. It is ideal for mecision inertial sensing in minimums space. The accelerometer emploss a unique integral weight and dry-gas damper combination. Simplified design with minimum

Put Hallicrafters'

25 years'
experience in electronics to work for you:

Servises

- research and development
- electronic equipment production
- reliability evaluation

Equipments

- communications
- countermeosures
- reconnaissance
- infra red devices
- radar
- heat exchangers
- pulse generators
- anternas

(h) hallicraiters

4401 W. Fifth Ave., Chicage 26, IIL.

CIRCLE 71 readers service card

a new ipP family!
 MM microminiature RF connectors

IPC introduces Series MM-a complete line of microminiature RF connectors available in screw-type and slide-on coupling, and in three impedances: 50,73 and 90 ohms. Interchangeable with existing subminiature RF's, Series MM connectors offer ten new reliability features which make them well worth interchanging!

10 New Features

1. Simplified, Positive Cable Clamp
2. Crimped with Standard T \& B Too
3. Tough Beryllium Copper Contacts
4. Captivated Coupling Nuts
5. Captivated Contacts
6. Corrosion-Resistant Plating
7. Teflon Dielectrics
8. Firm Cable Strain Relief
9. Exact Electrical Match to RG-IU Cables
10. Cable Assemblies, Including Potting

A Catalog is ready for your use-write

INDUSTRIAL PRODUCTS COMPANY
Danbury, Connecticut
a division of
AMPHENOL-BORG ELECTRONICS CORPORATION
number of parts reduces cost and improves reliability. It is arailable in a variety of acceleration ranges and potentiometer characteristics to fit various requirements. Circle 220 on lieader Service Card.

Aluminum Oxide high purity

Guiton Indestries, INC., 212 Durhanı Ave, Metuchen, N. J., is now marketing aluminum oxide as well as formed aluminum oxide shapes. It is being offered at a guaranteed purity of 99.96 percent with average particle size measuring 0.2 and 0.3 microm. Some of its applications include vacumm tube cases, radomes, antennas and high temperature electronic components. Circle 221 on Reader Service Card.

Crystal Oscillator
 has zero warm-up

Marconi Instrlimints, 111 Cedar Lane. Englewood, N. J. A new crystal oscillator has stability of ± 5 parts per million orer the range -20 (to +70 (with aging characteristic of less than ± 0.2 part per million. Any frequency in the range 4 mc to 16 mc can be supplied and multiple frequency units are also arailable. Rugged compact construction weighs only $90 z$ and is tested to withstand accelerations to 10 g . Circle 222 on Reader service Card.

Counters transistorized

Van Der Heem, Ltd., P.O.B. 1060 , The Hague, Holland, amounces a line of transistorized counters. By using semiconductor devices (tran-
sistors and diodes) and printed circuits the dimensions have been reduced to $12 \times 9 \times 6.5$ in. and the weight to about 12 lb . The instruments count up to 999,999 with a maximum comenting speed of 1,000 .000 per sec. Frequencies up to 1 million per sec cam be measured. Time intervals can be determined in units of 1μ sec to 10 sec. Circle 22:3 on Reader Service Card.

Video Monitor

17-in. screen
Miratel Inc., 1080 Diome St., St. Paul, Mirn., amounces a new low cost viden monitor designed for the educational. industrial and broadcast fields. Model L59B features a 90 -deg aluminized kine. Cnit gives better than 500 line resolution with stable vertical hold circuitry for use with industrial cameras. Video input is high impedance looping for signal levels of 0.5 to 1.5%. Price is $\$ 189$. Circle 294 on Reader Service Card.

Hook-Up Wire
 three types

American Super-Temperature Wirfs, Inc., 2 W. Canal St., Winooski, Vt., is producing types B, C, and I) extruded polringl chloride hook-up wire to conform to MHL-W16878B (Naw). Temperature rating is -55 (to +105 C contimuous operation. Type B wire, rated at 600 v is being produced in Awg sizes :32 throngh 16. Trpe C. rated at 1,000 r. is a wailable in Awg sizes 24 through 14. Type D, rated at 3,000 r, is produced in Awg sizes 24 through 6. Colors conform to MLASTI) 104 and spiral striped insulation may be had with one of two tracers on a batkgromad color. Circle 29: on Reader Service Card.

TRANSFORMERS

Stocked for Immediate Delivery

Through your electronic parts distributor

These Chicago transformers are designed and built in accordance with MIL-T.27A, Grade 1. Class R specifications, maximum operating altitude 50,000 feet, minimum life expectancy 10,000 hours. They are housed in Military Standard Case size AJ ($19 / 8^{\prime \prime} \mathrm{x}$ 1 (s/8 $\times 23 / 8^{\prime \prime}$), weighing only 0.6 pounds.
M. S. AUDIO TRANSFORMERS

Catalog No.	$\begin{gathered} \text { MIL-T-27A } \\ \text { Pari No. } \end{gathered}$	Application	Impedance	Operoting Level	Pri. DCMA
AMS-1	MS.90000	$\begin{aligned} & \text { P-P Plates to } \\ & \text { P.P Grids } \end{aligned}$	Pri: 10,000 ohms CT Ser: 90,000 ohms CT 22,500 ohms CT	15 dbm .	10
AMS. 2	MS.90001	line to Voice Coil	$\left\lvert\, \begin{aligned} & \text { Pri: } 600 \text { ohms } \mathrm{CT} \\ & 150 \text { ohms } \end{aligned}\right.$	2W	
AMS-3	MS-90002	line to P.P Grids	$\begin{aligned} & \text { Sec.: } 4 / 8 / 16 \text { ohms } \\ & \text { Pri: } 600 \text { ohms CT } \\ & 150 \text { ohms } \\ & \text { Ser: } 135,000 \text { ohms } C T \end{aligned}$	15 dbm .	-
AMS-4	MS.90003	line to line	Pri: 600 ohms CT 150 ohms Sec: 600 ohms CT 150 ohms	15 dbm .	\cdots
AMS-5	MS.90004	Single Plate to line	Prí: $7800 / 4800$ ohms Sec: 600 ohms CT / 150 ohms	2 W	40
AMS-6	MS.90005	Single Plate to Voice Coit	Prí $7600 / 4800$ ohms Sec: $4 / 8 / 16$ ohms	2 W	40
AMS-7	MS.90006	P-P Plates to line	$\begin{array}{\|l\|} \hline \text { Prie } \quad 15,000 \text { ohms CT } \\ \text { Sec: } 600 \text { ohns CT / } 150 \text { ohms } \end{array}$	2W	
AMS-8	MS.90007	P.P Plates to line	Pri: 24,000 ohms CT Sez: 600 ohms CT/ 150 ohms	IW	20
AMS-9	MS-90008	P.P Plates to line	Pri: 80,000 ohms CT Sec: 600 ohms CT/ 150 ohms	5W	20

An extensive line of transistor audio transformers, in MS cases are also available. For detailed information on these and many other Chicago Military Standard units, write for Catalog CT8-58

CHICAGO STANDARD
 Transformer Corporation 3502 West Addison Street - Chicago 18, Illinois Export Sales: Roburn Agencies, Inc., 431 Greenwich St., New York 13, N.Y.

$\mathrm{COUCH}^{\mathrm{m} . m}$ RUGGED ROTARY RELAYS

You can count on Couch relays to measure up whenever the ultimate in reliability is demanded under severe environmental conditions. A unique, patented, retary armature design, and exacting quality contro' procedures are but two of many reasons why the Couch fami.y of relays meets or exceeds the requirements of MIL-R-5757, MIL-R-6106, and MIL-R-25018.

Literature of the Week

MATERIALS

Silicones. Dow Corning Corp., Midland. Mich. The 1959 reference guide to the company's silicone products describes what silicones can best meet the needs of a variety of problems ranging from adhesives to release agents, resins to rubbers, dielectrics to water repellents. Circle 250 on Reader Service Card.

COMPONENTS

Niniature Transformers. Microtran Co., Inc., 145 E. Mineola Ave., Valles Stream, N. Y. A short form catalog lists complete specifications on the company's miniature, subminiature transistor, MIL-T27A and industrial transformers. Circle 251 on Reader Service Card.

Synchro Coupling. Theta Instrument Corp.. 48 Pine St.. East Paterson. N. J. Discussed in a new technical balletin are the special problems associated with coupling a syuchrounder test to a precision agular divider. Circle 252 on Reader Card.

LJDT's. Schaevitz Engineering, Route 130 \& Schatitz IIrd., Pennsauken. N. J.. has made available new literature on the applications of linear variable differential transformers. Circle 253 on Reader Service Card.

Magnetic Amplifiers. Vickers, Inc.. 1815 Locust St., St. Louis, Mo. Bulletin E PI) 1296-5 gives full specifications on the new 1290 series Super Power gapless core magnetic amplifiers. Circle 254 on Reader Service Card.

Pulse Transformers. PCA Electronics, Inc., 16799 Schoenhorn St. Sepulveda, Calif. A 24 -page catalog covers a brief history of low-level pulse transformers, their measurements. specifications. ap-

NOW

SPECIAL ISSUES FOR 1959

Electronics in Space
Designing for Reliability
Transisforizing Electronic Equipment
Electronic Instruments for Design and Production
Sophisticated Communications Methods

Materials for Environmental Exfremes
Electronics Statistics
I R E Show Issue
WESCON Show Issue

PRESÉNT SUBSCRIBERS

This subscription card is for NEW subscribers. It is not intended as a renewal notice. If you are already personally subscribing, we shall appreciate your passing the form to one of your associates. Thank you.

ELECTRONICS for ' 59 brings you
latest ENGINEERING and TECHNICAL data and what it means to the Electronics Industry - and to you!
Every Friday, your personal subscription to ELECTRONICS delivers to you an ALL-IN-ONE fact-packed manual - the easy, practical way to make sure you're among the best informed electronic engineers and managers.
Specifically, each issue wil cover Design, Research, Engineering, and Manufacturing . . . plus the Trends, Economic Developments, Markets, and Production Figures which interrelate with the Technical Breakthroughs and Economic Pressures.

YOUR PERSONAL SUBSCEI TION TO "ELECTRONICS" TOTALLY INFORM 亏 YOU
SAME RATES AS BEFORE-despite expense of auqmented pditorial stof and greatly increasef production costs. GET UTMOST VALUE FROM THIS EXPANDED ELECTRONICS SERVICE-place your personal subecription by means of the card below.

NEW subscription ORDER FORM
O.K. - put me down for a personal subscription to "electronics" . . . giving me benefit of your weekly editorial service

Send bill to home addreSend bill to company addre
\square Payment Attached $\$ 12$

Dept.

Check here \qquad \square for 2 years,
$\$ 9$
\square for 3 years

[^11]\square eard complete card complete

NOW

 electronics

 electronics

 ISSUED WEEKLY . . EVERY FRIDAY

 ISSUED WEEKLY . . EVERY FRIDAY ENGINEERING DATA TECHNICAL ENGINEERING DATA TECHNICAL EVERY ISSUE

 EVERY ISSUE} 1959

This expanded service of ELECTRONICS provides the mos comprehensive and fastest aid for the executive and engineer vitally concerned with every phase of the electronics industry...
Vew Ideas! . . . Nin (ircuils! . . . Vew Vngincerin! Techniques!
Improwed Manufacturing Methods! . . . New Design! . . . Adances in Research!
Prompl word ahout New Electronic Equipment, Parts and Components!
Latust Word on \ew Industrial. Scientific and Military Applications!
 ... All the Vital Views!

All subscribers get copies of the GIANT BUYER'S GUIDE
SUBSCRIBE PERSONALLY for top-value in IDEAS and NEWS electronics Established 1930 - Pioneer Publication in the Field

Use this handy order card..
to profit by
electronics
weekly
editorial service
plications, interchangeability, dielectric ratings, manufacturing, and other data. Circle 25\% on Reader Service Card.

Printed Wiring Design. Rowe Engravers. 260 F. 16th St., Paterson 4. N. J. Printed wiring design criteria are featured in an illustrated catalog. F-11. Standardized definitions and military design standards are presented. Catalog is arailable on letterhead request.

EQUIPMENT

Digital Shaft Angle Encoder. Dychro Corp. 12 Centre Ave. Newton is. Mass. A four-page folder describes the design, operation and applications of the Hochroverter digital shaft angle encoder. (ircle esf on Reader Service Cird.

Sweeping Oscillator. Kay Electric ro., Maple Are., Pine Brook, N. J.. A recent mailing piece describes the Magna-sweep, an all electronic 1.000 me sweeping oscillator. Circle 2.5 on Reader Service Ciard.

Tv Monitoring Equipment. Viswal Electronics (orp., :3t2 W. 10th St., New York 18, N. Y'. A new catalog contains information on a complete line of picture monitors, a Wareform monitor and a tro tuner. Circle $2 \overline{2} 8$ on Reader Serv. ice card.

Antenna Pattern Analyzer. Weinschel Engincering, 1050:3 MetPopolitan Are.. Kensington. Md. Bulletin 1.41 illustrates and deswibes the model RiA- - antenna pattern amalyzer. (iarcle $2 \boldsymbol{j} 9$ on Reader Service Card.

FACILITIES

Digita! Instrumentation. Franklin Electronies Inc.. Bridgepont. Pat. has published literature offering at complete digital instrumentafon engimerong sorvier for the electronic and missile industries. Circle 260 on Reader service (ard.

Control Electronics Co., Inc., is a leading designer and mass producer of electromagnetic Delay Lines. A representative group is shown here with the available ranges of delays, bandwidths and impedances. Further information is readily available from our Engineering Dept.
BUILT TO MIL SPECS: FAST PROTOTYPE SERVICE...DELIVERY 1 TO 3 WEEKS

Distributed Constant

CEC DISTRIBUTED CONSTANT DELAY LINE FEA-URES

- Lowest cost - reliable performance
- Maximum dolay to rise time ratios
- Maximum delay per cubic inch
- Delays to 30μ secs.
- Delays to 30μ secs. 10,000 !?
- Bandwidths to 20 mes
- Linear shase shift

Variable Delay Lines

Lumped Constant

Multi-tapped Lumped Constants available in many configurations

DELAYS TO 20,000 MICROSECONDS BANDWIDTHS to 500 MCS
20 FROM 50 to 10,000 OHMS

Over 275 standard Lumped Constant Delay Lines available

System Delay Lines

Comolete delay and pulse system: lesizned to your needs.

Specialists in Microtime

CONIROL EIECIRONICS CO., INC.
Ten Stepar Place, Huntington Station, New York

PLANT LOCATION QUIZ

Where have 3 major taxes on manufacturing industry been eliminated?

WESTern PENNsylvania. The State

 of Pennsylvania has exempted manu${ }_{F}$ facturers from the Capital Stock and Franchise Tax, eliminated the Machinery and Equipment Tax, and repealed the Stock Transfer Tax. Add to this the fact that there is no personal State Income Tax in Pennsylvania, and you have a most favorable tax climate for your new plant.

WEST PENN POWER, Area Development Department, Cabin Hill, Greensburg, Pennsylvania

Yes, I'm interested in WESTern PENNsylvania:
\square Please contact me in strict confidence. Phone
\square Please send booklet, "Plant Location Services."
Name
Title
Company
Street
City
Zone
State

Traveling-Wave Tubes
Part II, of Einfuhrung in die Mikrowellen-Elektronik

Hy W. KELLEN and K. IOSCHL
S. Hirzel Verla!, Stuttart. Germomy, 1958. $192 \mathrm{p}, \mathrm{M} 1 \mathrm{M} 28$.

TuE tube engineer who reads or can manage to anderstand technical (ierman will find himself rewarded by this solume on travelingwave tubes by Prof. Kleen and 1hr. Puschl.

The mathematiceal ancl physical batkgromed for microwate electronic: is developed in the first volume, which was not awailable to this reviewer; the second colume, however may be read independently, assuming a general familiarity with the theory of interaction between electron beams and electromagnetic fields.
TW'T small-Signal TheoryAfter a brief cualitative surver, the small-signal theory of the trateling-wave tube is developed. The development is in terms of field theory and the resalts are presented in momerols curves for varions values of the pertinent parameters. This treatment should be vers aseful to the designer of travelingwave tubes.
The third chapter deals with noise in traveling-wave tubes, the calculation of noises figure and the design of minimum moise figure tubes. Nonlinear behavior is the subject of the fourth chapter in which the work of Rowe and Tien and Cutler are reported and compared. The final chapter in this first half discusses measurements and applications of traveling wave tubes; specific examples of tubes are reported and some of the practical problems of matching and attenuation are discussed.

Special Types-The second half of the book is devoted to special types of traveling-wave tubes.

Chapter six deals with backwardwave oscillators in various geometries. Chapter seven discusses elec-tron-wave tubes and chapter eight treats the resistive-wall amplifier. The last chapter discusses special forms of traveling-wave tubes, the transverse field tube, the transverse
electron tube and a Cerenkov radialtion tube.

Two appendices deal with the helis as a periodic structure and beam focusing with axially symmetric magnetic fields. - Mormis Etifenberg. Irolytochuic Institute "f Brookly", Brooklyn, N. Y.

Transform Method in Linear System Analysis

By JOHN A. ASEITINE
Mc(raw-Hill liow Co., New York, $1958,299 \mathrm{p}, \$ 8.50$.
This welcome addition to the McGraw-Hill serjes in Electrical and Electronic Engineering describes an interesting excursion through the realm of linear analysis via the transfom method. Written as a senior-graduate level test, it precludes that the reader is rather familiar with the classical solution of linear differential equations to fully appreciate the adrantages that may accrue be utilizing transform techniques. Although concise and fleeting in spots, the volume is vers well written and easy to read. It manages to get across many complicated concepts in a very clear manner.

In addition to properties and procedures involving the Laplace transform, inverse transform, Fourjer series, Fourier transforms, Z transforms and Mellin transforms. useful knowledge is described relating to the analysis of electrical networks, mechanical sustems and feedhatck systems. Special emphasis is made of the impulse function, the sristem function and random inputs. There are numerous illustrative examples throughout the text.
The book is well suited as a classroom and reference text as it corers a great number of topies and each (hapter has many interesting prob)lems. However, minor attempts are made to augment the abstract mathematical operations with risual interpretations. Also, references to ot her works are sparsely presented. Despite these few shortcomings, the book should prove to be of undoubted value to many readers.Anthony B. Giordano, Polytechnic Imstitute of Browhl!m, Brookl!m, $N^{r} . Y$.

Ea\&G's ceramic-metal 'yydrogen thyratron tube -17 th the volume of the 5948 1754 - enables extremely compact modulator design. The 1802 weighs but 2.07 pounds, with neight of $53 / 4$ irches and diameter $33 / 8$ inches.

Tee EG\&G: 802 - des.grec to operate at high power levels, high repetition rates and high temperatures - can be mounted in any position.

It also features law ca-hode input power, low trigger drive requirements, fast warnup and low jitter. Rabid recovery allows operation at repetition rates; above 50,000 pulses per second.

The 5802 has withstooa 500 g sheck and 2000 cps vibration at 1 cg . Ceramic-metal constructicn permits envelope temperatures to 400 C , ambient temperatures to $125^{\circ} \mathrm{C}$.

MIL-ACCEPTANCE TESTING:

Peak Anode Voltage (epy)	25 KV
Peak Anode Current (ib)	1000 amps
Average Anode Current (Ib)	1.5 amps
RMS Current (Irms)	40 amps
Pb Factor (epy x ib x prr)	20×10^{9}

Individual ratings can be exceeded by derating other conditions. Thus the EG\&G 1802 has been operated at 30 KV anode voltage, or at 2000 amperes anode current, or at a Pb , factor of 50×10^{9}.

Maher Advances At Philco Plant

Willam F , Maiter wat recently appointed manager, military and industrial sales, for the Lamsdale Tube Co., division of Phileo Corp. Philadelphia, I'a.

He has been assuciated with Phileo since 1948. when he joined the company"s engineering department. In 195] he was transferred to l'hilco's (rovernment and Industrial sales with responsibility for Covernment contract administration and negotiation. He joined Lansdale Tube Co. in 1953, taking charge of military tube sales, and became manager of Government sales for tubes and semiconductors in 1955.

Elect Lewis

To Top Post

Rf.cently elected president of Sylvania Electric Products Inc. is Robert L. Lewis. He was previously a senior vice president of the company.

As president, Lewis succeeds Don (i. Mitchell. who will continue as chairman of the board.

RCA Names Bain Vice President

Elfaction of Walter (i. Bain as vice president, Washington Office, Defense Electronic Iroducts, RCA, is announced.

In his new position, he will have
metallurgical operations, which include Vitro Uranium, Vitro Rare Metals Co., Vitro Mfg. ('o., Berkshire Chemicals, Inc. and Heary Minerals Co. He will remain vicepresident of Vitro Minerals Corp.
elected executive vice-pmesident of Vitro Corp, of America, New York (ity. A Vitro vice-president for three years, he succeeds Albert (r. three years, he succeeds Albert (r.
Noble, who, as a vice president of the corporation, will devote his the corporation, will devote his
efforts to Vitros R\&I) in the field of mational defense, and the estathlishment of a weapon systems group of Vitro companies.

At the same time William I. Hall was made a vice-president of the corporation. He has been president of Vitro Uranium Co., and will now assume charge of the Vitro companies engaged in chemical and

Vitro Readjusts Management

FraNk 1B. Jewfit, JR., has been -

Behringer Joins General Time

The newly created position of manager of market development, General Time Laboratories, N. Y. ('., was recently occupied by Robert W. Behringer. In this post he will be responsible for General Time Corporation's Incremag program.

Behringer was formerly associated with Elasco Services Inc.

TANTALUM Started At Fansteel....

The tens of millions of tantalum capacitors put into service since 1949 pay tribute to the man who made tantalum possible.

The late Dr. Clarence W. Balke, Fansted's Director of Rescarch, produced in 1922 the first tantalum "ingot" ductile and malleable enough to be rolled into sheet or drawn into wire.

Dr. Balke, with his research group, then began to look closer at the unique properties of tantahm, to discover new uses. One of his experiments with current flow between tatalum plates immersed in an electrolyte resulted in the development of the tantalum-lead (Balkite) rectifier. In his laboratory log entry dated December 1, 1922, Dr. Balke wrote: "... In addition to functioning directly as a rectifier... apparatus built along similar principles may be used for electrolytic condensers . . ."
Thus emerged the first tantalum capacitors and Fansteel had them on the market by 1930-principally, in telephone service. One model used electrodes of crimped tantahm sheet in a cell about the size of a pint fruit jar, providing 800 mfd . at $2 t$ volts. Another used coiled electrodes welded to tantalum rods. The tantalum capacitor did a good job in those days, but it was unwieldy and expensive. Fansteel scientists later developed a way to eliminate expensive sheet metal and still retain large capacity characteristics, stability, and extremely long life of the tantalum capacitor.

Porous tantalum electrodes, made from powder, compacted around tantalum wires, resulted in an anode which exposed a great amount of surface to the electrolyte. This type capacitor first operated as a railway signal surge arrester. Single high-peak voltage surges, caused by lightning, momentarily break down the tantalum oxide film. but as soon as

DR. CLARENCE 'N. BALKE holds a replica of his first tantalum ingot. This was the basic discovery that mode tentalum capacitoss possible. For his pooneer work in tontalun he received many awords, omong them, the Perkin Medal.
the surge voltage disappears, the oxide film heals and re-forras immediately.

ENTER THE TRANSISTOR

Shortly after World War II the Bell Telephone Laboratories introduced the transistor which started the age of miniaturization in electronic componencs. In 1910 we were asked to produce a Tantahtm Capacitor of $4 \mathrm{mfl}, 60 \mathrm{w}$ wde to occupy a space of less than one-tenth cubic inch and with a life expectancy of 30 years. Commercial production began that same year.

The result of this development was the Fansteel "Pp" Type Tantalum Capacitor now made in a wide range of sizes and ratings. As this is writen, more than twelve million capacitors of this type have been put into service.

Along with this major development, Fansted metallurgists created the first tantalum made especially for capacitor use-Fansteel Capacitor Cirade Tantalum.

Using Fansteel Capacitor Grade Tantalum in your capacitors is taking full advantage of Fanstec:'s experience It's your assurance of only the finest tantalum rade expressly for capacitors-a premium tantalum by the world's foremost producce. Fanstcel Metallurgical Corporation, RectilierCapacitor Division, North Chicago, Illinois.

NYLON $\&$ Phensic Mmenc

Economically mass produced on fully automatic patented machines, GRC nylon parts are available from stock in many sizes and types. GRC uses single cavity, techniques, molds in one automatic cycle, gets accurate, uniform parts, ready for immediate use.
These advantages, these economies, apply too, to liny made-fo-order parts to your specifications
in quantities of 25.000 to many millions. Write for hulletin descrihing GRC's unique method for injection molding small plastic parts or send prints for quotation. Ask about our tonc alloy die castings, too!
NO SIZE 100 SMALL
Maximum size $11 / 4^{\prime \prime}$ long. -.03 oz .

Be sure to see GRC at the I.R.E. Show
Booth 4108

NOW! NYLON NUTS AND SCREWS

Brand new nylon hex nuts in ten sizes $=2$ thru $56^{\prime \prime}$) edded to GRCs esmplate line of nylon screws. GRC s formity, accurasy, and economy to the outstanding picpormity, accurcisy, ancl economy to the outstanding piepTake advantige of nyton. high stength to wight citio, built in elestrical inculating properties, stabiity, ,esilifnce and elasticity. GRC molded rylon fantoners

 151 Beechwood Ave. New Rochelle, N. Y NEw Rochelle 3-8600 L (A) .raten CIRCLE 79 READERS SERVICE CARD

TELREX LABORATORIES

Designers and Manufacturers of

COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS AND TWO-WAY SYSTEMS

Model illustrates a wide spaced, 12 element circular polarized optimum-tuned skewed dipole "SPIRALRAY" antenna. Provides unusually high gain, even response, in all polarization planes, vertical, horizontal or oblique with unusually high signal-to-noise ratio.
NO OTHER CIRCULAR PO. LARIZED ARRAY known to the art today can provide the linear high gain and signal-to-noise ratio in all radiation planes.
The ideal antenna for missile tracking, telemetering and no-fade response to mobile (or moving) stations.

Models available to extend the practical range of 2-Way Communication Systems.

$\$ 265.00$ Model MSY-104-110 $\$ 390.00$
(f.o.b. Asbury Park, N. J.)

Electrical Specifications - Model No. SY-12-104-110: Polarization, circular, linear within $1 / 2 \mathrm{db}$. Gain $13 \mathrm{db} . \mathrm{F} / \mathrm{B}$: Ratio 30 db . V/S/W/R (50 ohm cable) 1.1/1. Beamwidth at half power points 33 degrees. Max. power input 300 w , with "Balun" suppiled. Mechanical Specifications: Boom diameter $2^{\prime \prime} 0 . D . \times 25 \mathrm{ft}$. All aluminum boom and elements. Weight ap. prox 25 lbs . Rated wind-load 90 mph . No ice load Available for 120 mph wind load. (Model No. MSY-104-110).

- Telrex is equipped to design and supply to our specifications or yours, Broadband or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.
- Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces.

Airpax Changes Company Name

The board of directors of The Airpas Products C'o. has amoomed that the new corporate mame of the company will be Airpax Electronics Ine. Firm is located in Cambridge, Md., and Ft. Laduderdale, Fla.

Stavid Appoints Engineering Mgr.

Robert E. Williams has been named manager of the airborne
electronics department at Stavid Engineering, Inc., Plainfield, N. J. He was formerly project manager in the same department.

From 1946 to 1954 Williams was a project engineer at the Naval Ordnance Plant, Indianapolis, where he received the Naval Civilian Meritorious Service Award for his work in the development and modification of various trpes of radar equipments. Later he was head of radar and fire control projects at the Magnavox Co., and joined Stavid in 1957 as project manager of a major bombing radar sustem.

News of Reps

Mid-Eastern Electronics. Inc. Springfield. N. J., has appointed Michael S. Coldwell, Inc., of Hartford, Conn., representative for its line of ultrahigh-resistance measuring instruments. power supplies and special test equipment in all of New England.

Continental Mfg.. Inc., Omaha. Nebraska. has appointed two new reps:

Bray \& Carter, Los Angeles, cover southern California and Arizona.

Robert C. Hammond of Hopkins, Minn.. will handle the territory of Minnesota. North and South Dakota, and western Wisconsin.

Lindly \& Co., Mineola. N. Y.. names . Irthur T. Hatton \& Co. of West Hartford, Comn., and Newtonville. Mass.. to handle its equipment in Maine. New Hampshire, Massachusetts. Connecticut, Vermont and Rhode Island.

Radiation Counter Laboratories. Inc.. Skokie. IIl., names M. J. Seary \& Suns, New York City, as reps for its complete line of radiation counters. instruments and analyers for New York. New Jersey, Delaware castern Pennsylvania. and Fairfield Counts. Conn.

Menlo Park Engineering. Menlo Park. Calif., manufacturer of microwave instrumentation, announces appointment of the . Iirep Engineering Co. of Dallas, Texas, as its sales reps in the Texas. Oklahoma. Arkansas and Louisiana area. MEGOHMMETER

This new Hundred Million Megohmmeter offers high stability, large easy to read scale and simplicity of operation.

Fast charge and
automatic discharge
networks permit fast and safe measurements on
capacitors.

Built-in leakage.
current guard.

USEFUL RANGE: 1 MEGOHM TO 100 MILLION MEGOHMS 5 TEST VOLTAGES: 50, 100, 200, 500, AND 1000 VOLTS d.c. Meter scale calibrated from 1 to 100 Megohms with 7 range multipliers: $\times 1, \times 10$, \qquad $\times 106$.
Accuracy at full scale deflection from 2%, to 5% depending on range.
Radiometer, a leading Scandinavian instrument manufacturer with a world wide service organisation, offers a line of 50 different instruments such as:

AF-OSCILLATORS

R-L-C BRIDGE.
STANDARD-SIGNAL GENERATORS
VACUUM-TUBE VOLTMETERS
WAVE ANALYZERS
ELECTROCHEMICAL INSTRUMENTS
Write for complete information.

RADIOMETER

72 EMDRUPVEJ COPENHAGENNV DENMARK Represented in the United States by

WELWYN INT. INC. 3355 Ecfecliff Terrace Cilaveland 11 Oho Represented in Canada by

BACH-SIMPSON Londoniontario

Microrlot mow offers you the most complete line of micro-miniature cables for design application and solution. More than 50 cables to choose from.
Immediate delivery from our two plant locations.

COAXIAL CABLES IMPEDANCE	IRIAXIAL IMPEDANCE	TWINAX ImPEDANCE
50 ohm	50 ohm	120 ohm
70 ohm	93 ohm	160 ohm
75 ohm	----	----
93 ohm	----	----
95 ohm	----	----

Certain cables constructed to MIL. STID, 17-B, "Mininoise" 50 ohm low noise coaxial cable trated to nearly eliminate self-qenerated cable noise.

microdot inc.

220 Pasadena avenue, so. pasadena, california

MICRODOT MICRO-MINIATURE CONNECTORS FIT ALL. MICRODOT CABLES
 send for free cable brochure

COMMENT

Design for Ham's Nirvana

A (ritieal study uf developments in the communications field shows: one parameter in the design of new explimment that is being neglected. Papers at recent llaE symposiums show no consideration of this moblem; recent R\&D contracts indicate non thought on the Pentagon's part. Yet this is a matter of vital concern to 11 s all.

I refer to the conversion of communications efuipment to ham use when it becomes surplus. Surely we have enomgh experience by now to make us realize this a major oversight on the part of design engineers.

I think it is mandatory that all receivers he immediately convertibe to ham-tand-only use. Conversion should be accomplished by the Hick of a switch. lueated preferably on the fromt pancl. Under no circomstances should it be necessary to remove the chassis from the case.

Transmitters. mobile or fixed, should also be readily convertible. I'se in all bands from 160 to 2 meters should require no more than the substitution of a dial. Two power outputs should be available: 7.4 and 999 watts. Automatic control should be provided to prevent California kilowatts.

With the advent of jet aircraft, there arises a pressing requirement for a prop-pitch motor for anse as an autema rotor. This problem is not wholly the electronic engineer's responsibility: the mamufacturer of jet engines must help figure out a way to put the equivalent of a proppitch motor somewhere in his enyrine. The idea that such a piece of equipment may not be necessary is not to be tolerated: design problems (an be overcome with suitable ingenuity.

These suggestions are offered to ensure that suitable surplus equipment will result from torlay's and tomorrow's designs.

Are the Russians to be first again?

Stephen W. gibson
Fabrix. Va.
May we add a suggestion? Designers of helical antennas should
consider incorporating the facility for quick conversion to a hula hoop. And just think how much labor and money might be saved if some of the big tropo reflectors could quickly and easily be converted to curved screens for drivein theaters. It's a whole new field: conversion engineering. Reason totters:

Flashing lights
We have read with great interest Sour recent article "Instruments: Kev to Missile Programs" (Jan. 16 . 1) 47). and would like to think that the "intense flashing lights" reforred to are omrs. ("Highly atcorate ballistic plate cameras record the image of an intense flashing light aboud the missile arainst the background of star pails," p 50.)

James V. Daniela
Kemlite Lamoratorif.s
(hicaco

Opaque Airfoil
B-mews this a while: what if the Russians come up with a radaropatue airfoil?
11. Kigan

New York
We feel that reader Kigan means a radar-transparent airfoil, since only such a foil would be nonreflective. And such things already exist: we have a missile and some other aircraft which are made of materials that do not reflect r-f energy. The thought, in fine, does not b-mews us at all.
satellites
My note may mot have been too clear see Comment "(xloh)al Girdles." p 130, Jan. 16). hat-Tesla:s proposed satellite was to be a colossal globe-encireling Saturnian ring. and Fermi's suggested glohal synchrotron was to use the earthes tremendous radias (not its radial velocity) to get particles up in Mach 1 speed. in spite of its weak magnetic field.

Ted Powell.
BLEN OAKs, N. Y.
We goofed. Sorry:

Where only the best is good enough . . . you'll see

electronic instruments

In basic electronic instruments for lab or test work, less than the best may be a dangerousy bad bargain. Unexpected limitations of reliability, range, precision - can throw out weeks of work on today's jobs, and can make tomorrow's tougher jobs untouchable. The best instrument of its type is probably a bit more expensive. but it's worth buying . . . because you can believe in it today, and will rely on it tomorrow. An example is the Kroinn-Hite Model 440-A wide range push-sutton oscillator illustrated here.
Exactly because K-H insıruments are good enough cven for tomorrow's most critical work, they are increasingly chosen today where true relizbility and precision are needed.
Oscillators - . 001 cps to 520 kc , dial or push-button tuning, less than 0.1% distortion. sine wave and square wave outputs.
Power Supplies - zero to 600 volts de, zero current to 1 ampere. regulation $.001 \%$, ripple less than $100 \mu \mathrm{v}$, internal impedance 0.1 ohm to 100 kc .

Power Amplifiers - 50 watts RC coupled from 20 cps to 20 kc with 0.005% distortion; 10 watts direct coupled from dc to 1 mc , with less than 0.1 ic drif: per hour.
Tunable Electronic Filters - variable from .01 cps to 200 kc , banc pass, band rejection and servo types.

White for your free copy of the new Krohn-Hite Cataloy

Cambridge 39, Mass.

Navigation Systems Communication Systems	CAREER OPPORTUNITES
	With a company making premium grade electronic equipment for aircraft for over 30 years. Located in the beautiful lake region of Northern New Jersey, less than 35 miles from New York Ciry.
	- Transistor Circuit Engineer
	- Tacan Engineers
	- Receiver Engineers
Servos	- Transmitter Engineers (VHF \& UHF Frequencies)
Transistors Transmitters	- Navigation Equipment Engineers
	- Antenna Design Engineer
Receivers	- Technical Writers
Antennas	- Test Lab Engineers
	Write or call collect: Personnel Manager ARCRAFI RADIO CORPPORAIION Boonton, N. J. DE 4-1800-Ext. 238

RESEARCH \& DEVELOPMENT Inmilionc M M M M M Hidin

Unusual Career Openings in RAPIDLY growing company for PROJECT ENGINEERS

SR. ENGINEERS \& ENGRS.

BS-EE or PHYSICS

Several yeors or more experience in circuitry and equipment design or opplicable background-to woik on UHF ond VHF sys. lems. Wide band knowledge desiroble for challenging assignments on electronic countermeasures systoms for military application and electronic instrumerits for commercial use. Excellent salary range at all levels. Close ossociation with acknowledged leaders who will cid your professional growth and de velop your engineer ng obilities.

Profit Sharing Retirement Plan. Many other Benefits.

INSTRUMENTS FOR INDUSTRY, INC.

circuit deveiopment - system planning engineers....

help nab hit-and-run divers

Missile-packing subs able to "torpedo" Indianapolis from either ocean pose a sinister threat... call for even higher levels of detection sensitivity as well as totally new sub-hunting methods. Apparatas division of Texas Instruments has thousards of airborne submarine detector systems in the fleets of the world, but now is expanding its efforts to outstrip the new capabilities of the new generation of submersibles. Other active projects in this division include missile and space electronics, early warning, reconnaissance, airways control, and attack control. Any program you choose will be amply supported by the latest facilities and implemented by TI's ability to create basic components or complete systems.
TI's brisk, steady growth (18 fold over the past decade to a current $\$ 91$-million volume) creates corresponding needs for all levels of talent. Engineers, physicists . . . choose your design ar production future -

PROCiRAMS: advanced military systems studies - airborme early warning - airways control - antisubmarine warfare - attark-bomh navigation systenıs - conntermeas-ures-engine imstrumentation-missile systems-portable ground equipment - reconnaissance - space electronics.
BUILIDING-BLOCK EQUIPMENTS: radar - infrared sonar - magnelic airborne detection gear - digital circuits - timers - telemetering - intercom - microwave optics - detector cells - engine instruments - transformers - time standards - and other precision devices.

come and grow with us...

Hitch your wegon to the Lone Star ... work at a plant within the city but away from downtown traffic... live within minutes of your work or your play - yeararound recreational, amusement and cultural activities. Please contact -

TEXAS Instruments

DISPLAYED RATE

The advertising rate is $\$ 24.75$ per inch for advertising appearing on other than a contract basic. Contract rates quoted on request. AN ADVERTISING INCH is measured 's inch vertically on one column, EQOIUMES - ${ }^{30}$ inches- to ch page.
EQUIPMENT in Displayed Style.

UNDISPLAYED RATE
$\$ 2.40$ a line, minimum 3 lines. To figure advance payment count 5 overage words' as a line. gOX NUMBERS count as one line additional in undisplayed ads. DISCOUNT of 10% if full payment is made in advance for faur con. securive insertions of undisplayed ads (not including proposals.)

Send NEW ADS or inquiries to Classified Adv. Div. of Electromics P. O. Box 12, N. Y. 36, N. Y.

badio research IMSTRUMENT CO.

550 FIFTH AVE. NEW YORK JUDSON 6.4691

AN/APS-10 RF HEAD
\#ems, 10ht
Bietome

 RTBIJAPG.5 IOCM RADAR.

X BAND KLYSTRON MOUNT

FOR SALE: IN STOCK-COMPLETE RADAR SYSTEMS
SCR-584

SCR 784 , whb to ton survi Si-tm,
AN/APS-10

SCR 584-SKYSWEEP ANTENNA PEDESTAL

F-28/APN-19 FILTER CAVITY

SPERRY POWER KLYSTRONS
SMX-32

SMC-11A

IPLETE RADAR SYSTEMS
AN/MPN-1A

WEATHER RADAR

Somelody-Somenlarre,
needs your idle equipment: Reach that buyer quickly and comminally thru the "SEARCHLIGHT SECTION" The meeting place of I'sed liduipment Bayers and Sellers

COLLINS 51J3 RECEIVERS

Like new, \$750.00.
GIZMOS \& SUCH
Still River, Mass.

SEARCHLIGHT Equipment Spotting Service

This service is aimed at helping you, the reader of "SEARCHLIGHT", to locate Surplus new and used electronic equipment and components not currently advertised. (This service is for USER-BUYERS only). No charge or obligation.
How to use: Check the dealer ads to see if what you want is currently advertised. If not, send us the specifications of the equipment and/or components wanted on the coupon below, or on your own company letterhead to:

SEARCHLIGHT EQUIPMENT SPOTTING SERVICE

c/o ELECTRONICS-Classified Advertising P.O. Box 12, New York 36, N. Y.
Your requirements will be brought promptly to the attention of the equipment dealers advertising in this section. You will receive replies directly from them.

NO CHARGE - NO OBLIGATION

SEARCHLIGHT EQUIPMENT SPOTTING SERVICE, c/o Electronics, 330 W. 42nd St., New York 36, N. Y.
flease help us ta locate the following used equipment

ELEGTRONIO

WAR TERMIMATION INVENDORIES
WRITE OR WIRE IFOR WPORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PIRICES NET F.O.B. PASADENA, CALIFORMIA

C\&
 SALESCO.

2176.E East Colarodo 51. Pasadeno 8, Califor RYon 1.7393

INVERTERS

DMF3506M Coutinen-
tal Electric 24-30
115 volts. 44 amps; cont. dupy. Output 115 volts; 44 amps 400 cyz ; 1 phase; pf
$\mathbf{\$ 3 9 . 5 0}$
$1.0 ; 50$ watts 12116-2-A Bendix
Output: $115 \mathrm{VAC} ; 4 \mathrm{CO}$ cyc; sirgle piase. 45 amp. Input: 2
12117 Bendix
Output: 24 volts; 40 cycle, 6 velt amperes, phase. input: 24 .joc 121218 endix
Input: 24 volt D.C. 18 amp. 12040 r.p.m. Output: 115 volts, 400 cycle, 3 -phase. 250 volt amp, 7 pf.
12123 Bendix
Output: $11 \mathrm{~s} V$, 3 ghase; $400 \mathrm{cyc}^{\prime} \mathrm{e}$; amps. 12126-2-A Bendix
Output: 26 volts; 3 phase; 400 tycle; 10 VA; 6 PF. Input: 27.5 volts $D C$: 1.25 amps.

12142-1-A Bendix
Output: 115 volts, : phast, 400 cycle, 250 VA. Input: 27.5 V'DC, 22 smps. Voltage
and frequency regulated,
12147.1 Pioneer

Output: $115 \mathrm{VAC}, 400$ cycle:; single phase. Input: $24-31$ VDC; 8 amps. $\$ 19.95$ each
10285 Leland
Output: 115 volts $\mathrm{AC} ; 750 \mathrm{VA}, 3$ prase, 400 cycle, 90 pf and 26 volis. 50% st single phase, 400 cycle, 40 pf. Input: 27.5 VDC , frequency ront duty 6000 rnm . Vo tage and
10563 Leland
Output: 115 VAC; 400 cycla; 3-phase; 115
VA; 75 pf. Input: 225 VDC: 12 amps. $\$ 25.00$ PEIO9 Leland
Output: $115 \mathrm{VAC}, 400$ cyc-: single phase; $\begin{array}{ll}1.53 \mathrm{amp} . ; 8000 \mathrm{rpm} \text {. Infar: } & 13.5 \mathrm{VDC;} 29\end{array}$ amp. $\$ 5000$
PE218 Leland
Output: 1.5 VAC; single phase pf. 90 ; $380 / 500$ cycle; 150́o VA. nput: $2:-28$ VDC; 92 amps.; 3000 rpm . 530.00
AN 3499 Eicor, Class "A"
input: 27.5 volts at 9.2 ammes. AC. Output: 115 volts, 100 cycles; 3 phase, 100 voltamp;
continuous duty.

MG54D Bendix Frequeacy \& Voltage Reg.
Output: 200115 velts; 4 cycle, single or 3 phase; . $80 \mathrm{pf}, 250 \mathrm{VA}$. input: 2 ts VOC, 22 amps.

SPERPY VERTICAL GYRO

Cycle, 8 watts, 20 0c:
CyPce, 3 watts, 20 , DiO 360°, pitch 35°. Synchro e ecitation 26 volts, Weight $31 / 2 \mathrm{lbs}$. Approx. Cim. $53 / 41$ W., $4^{1 / 22^{\prime \prime}} \mathrm{H}$.

Pr ce $\$ 35.00$

400 CYCLE, 3 PHASE GENERATOR BY MASTER 日EETRICType AG, frame 364Y,

ICT cent. Trans $99 / 55 \mathrm{~V} 60 \mathrm{cy}$. IF Syn. Gen. 9 Cl 90 V 60 cy .

IG Gen. 115 V 80 cy .

- HDG

1 HG
HF Syn. Mtr. 11E 90V 400 cy (R6 torque receiver, 115'90 VAC,
23 CTo control tratisformer, 90 IV per degree 60 'ycl?
23 CX control transmitter, 11590 VAC

50 Diff. Atr. 90 POV 60 cy .
50G Ciff Gen. 9G 90V 60 cy . 5 F Syr. Mitr. 115 90VAC 60 cy .
5 G Syn. Gen $115 / 90 \mathrm{VAC} 60 \mathrm{cy}$ 5G Syn. Gen. 115/90VAC 60 cy . 5HCT Eort. Trans 90 ' 55 V 80 cy
5SDG Dift. Ger. 9090 V 400 cy .
 6DG Diff. Gen. 90 90 V 60 cy
6G Syn.
Gen. 15 90VAC 60 cy 6 G Syn. Gen 11590 VAC 60 cy
7 G Sy). Gen. 15 90VAC 80 cy 7DG defferentièl generator, $90 / 90$ volts
C56703 Type li-4 Rep. 115 V 60 cy . 69405-2 Type 1-1 Transm. 115 V 60 cy 669406 syn. 1 rarsm. 115 V 60 cy.
 C7824B Syn. lramsm. 115 V 60 cy . c78249 Syn. Fiff. 115 V 60 cy . C 78410 Repeater 115 V 60 cy
C78863 Repea er lisv 60 cy
C78331 Repater Transm. Type $1-4115 \mathrm{~V} 60 \mathrm{cy}$
Cy
851 Bendix Anto yn Mir. 22 V 60 cy . 403 Kolleman Au osyn M+r. 32 V 60 Cy FPE 49-7 Diel:d s-rvo notor, 115 volts, 60 cycle, 1011 watts
FPE-43-1 Resc ve 400 cy
FJE-4S-9 Reso ver 115 V 400 cy
R110-zA Kear-oft Cont. Mfr.
R200-1-A Kear oft Cont. Trans
R235-1A Keariot Resolver

HONEYWELL VERTICAL GYRO
MODEL JG7003A.1

115 vo ts, 400 cycles, ingle phase, 5 watts
Pitch ind poll Poter tiometer Dick cffs 890 ohms, 10 volts
max. A. or $D C$. Speec 20,000 rpm,
mentum.
12500,000 $\mathrm{gm}-\mathrm{cm}{ }^{2}$ sec. Erec.
 Price $\$ 3500$ each

POWER UNIT PU-104/U permanent magnet type 400 eycle alternator Alternator is driven by Hercules model $Z X$, 4-cylinder -1-cycle " L " head diquid coo'ed ga, lirye engine. This unit is complete with a cot
trol panel.
Price $\$ 495.00$

400 CYCLE PM GENERATOR

 115200 volts A.C. 1 or 3 -phase, 200 watts. 4,000 r.p.m. Approx dimensions: $43{ }^{3} 1^{\prime \prime}$ did. $3^{\prime \prime}$ long: $1^{\prime \prime \prime}$ " shaft AN connector. $\$ 75.00$

400 CYCLE 1_{3} PHASE GENERATOR $115 \mathrm{VAC}$.3 KVA . Mfg. Bogue Elect. Mod. 3450 rpmi . 1 " shaft.
5200.00

GENERAL ELECTRIC AUTO PILOT DIREC. TIONAL GYRO IN. DICATOR and CON. TROL UNIT
Mod. 8K63AC. 115 volfs, $400 \mathrm{cps}, 3$ phase, 40 watts. Has setrable duction pick-off. $\$ 10.00$

VARIABLE SPEED BALL DISC INTEGRATORS

No. 145
Forward \& Reverse $21 / 4-0-21 / 4$. Input shaft spline gear 12 teeth $9^{\prime} 32^{\prime \prime}$ dia. ${ }^{3 / 夕^{\prime \prime}}$ long. Out-
 $\begin{array}{cc}\text { struction. Approx. size } & 3^{\prime \prime} \\ x\end{array}$

No. 146
Forward \& R
put shaft $5 / 16^{\prime \prime}$ dic 4 . 4 n . long. Output shaft $15 / 6^{3 / \prime \prime}$ dia. $\times 9 / 16^{\prime \prime}$ long. Control shaft $11 / 64^{\prime \prime}$ dia. $\times 11 / 16^{\prime \prime}$
long. Cast aluminum con. truction. Approxinum con. \$17.50 ea $\times 4 \frac{1 / 2^{\prime \prime}}{} \times 4^{\prime \prime}$. (All Shafts Ball Bearing Supported)

SMALL DC

 MOTORS
(approx. size overall $33 / 4^{\prime \prime} \times 1 / 4^{\prime \prime \prime}$ dia.:)
5067043 Delco 12 VDC PM ${ }^{\prime \prime} \times{ }^{\prime} \times 1$, 10,000 rpm. 5067120 Delco PM, 27 VDC 125 RPM, Governor Controlled
5069600 Delco PM 27.5 VDC 250 rpm 15.00 ea 5069230 Delco PM 27.5 VDC $145 \mathrm{rpm} \quad 15.50$ 5068750 Delco 27.5 VDC 160 rmm w. brake 6.50 5068571 Delco PM 27.5 VDC $10,000 \mathrm{rpm}$ 5069700 PM 27 VDC 100 RPM $\quad 5.00$ 5069790 Delco PM, 27 VDC, 100 RPM Governor Controlled $\quad 15.00$ ea 5072735 Delco 27 VDC 200 rpm governor controlled.
58 A10A118 GE 24 VDC $110 \mathrm{rpm} \quad 1000$ 58 A 10 A 37 GE 27 VDC 250 rpm reversible 10.00 5BA10AJ52 27 VDC 145 rpm reversible 12.50 58A10AJ50, G.E., 12 VDC, 140 rpm
SBAIOFJ401B, G.E. $28 \mathrm{VDC}, 215 \mathrm{pPm}$,
10 oz. in. 7 amp, contains brake $\quad 15.00$
$58 A 10 F J 421, G . E .26$ VDC, 4 rpm , reversible,

MUSIC MATES!

RCA-7199 and RCA-7027...Perfect Pair For High-Fidelity Amplifier Designs

Offer them a "top" note. Ser.d your "deepest" bass. Blast your "fullest" fortissimo at them. Never fear the outcome if your high-fidelity amplifier is designed around this "perfect pair"...RCA-7199, medium-mu triode sharp-cutoff pentode and RCA-7027, beam power tube.

Study the sensitivity of the high $g_{n \prime \prime}$ pentode unit of the RCA- $7199 \ldots$ wonderful for use in a low-noise low-hum amplifier; consider the medium-mu triode unit... ideally suited for use in a phase splitter. On the masculine side of the table is the other "mate", RCA-7027. developed specifically to reproduce the "big sounds". A pair of 7027 's in a push-pull class AB_{1} circuit utilizing feedback and driver by a 7199 with an inpit signal of $\mathbf{1}$ volt can deliver a power output of 50 watts with total harmonic distortion of less than 0.5% and hum and noise of 85 db below 50 watts.

Ask your RCA Field Representative for the details on the High-Fidelity "Music Mates"...RCA-7199 and RCA-7027. For technical bulletins, write RCA Commercial Engineering, Section B-19-DE-3, Harrison, N. J.

RCA. 7199 and RCA. 7027 ... music mates and quality mates...blend inta a system that provides music reproduction of its finest!

EAST: 744 Brood Street, Nework 2, N. J. HUmbaldt 5.3900
MIDWEST: Suite II54, Merchandise Mart Plaza Chicago 54, III. WHitehall 4.2900
WEST: 6355 E. Woshington Boulevord
Las Angeles 22, Calif. RAymand 3-8361

INDEX TO ADVERTISERS

(routralab-I Jiviaian of (ilobe liam
(rhtral lllimoi fablic Sember fo.

Instrumernt. Ime. II -wlett-I'ackard ('ompan. *Hurhe's Aireraft compaty.

[^12]*. Iir-Varing Votors. Ine. XI
 IIIf.

lactronis: (orp).
laduntrial !rondurts tive

-

Fanstem Metallurgial formaration 111

[^13][^14]ELECTRONICS - February 20, 1959

* Registered U.S. Patent Office. U.S. Patents Issued and Pending.

Vitramon
 CAPACITORS

will help you build LOW LOSS
. . . into your circuit systems
Losses, inherent in EVERY capacitor, are held to a minimum in VITRAMON capacitors... the capacitors of purity. Pure silver electrodes... pure porselain enamel... perfectly bonded.
Low LOSs? YES! plus...
RUGGED LOW NOISE STABLE
WIDE TEMPERATURE RANGE VAPORPROOF

MINIATURE

The biggest names in electronics use VIIRAMON capacitors in guided mis. siles, jet ignition, proximity fuses and in radar, servo, guidance, fire control, telemetering and carrier telephone systems.
If substitutes are not good enough... if you need the best... write today!

Two materials - a monolithic block of porcelain enamel and fine-silver electrodes - fused into one strong, stable, efficient and effectively homogenous RELAABLE unit.

WE EMPLOY THE HANOCCAPPED

W'EFIND

IT'S GOOD BUSINESS

A MAJOR
ELECTRONICS MANUFACTURER

Here's how you can MERCHANDISE YOUR

ADVERTISING

with these hemdy "" by 12" folders

Kerep your sales. manacement and distributwn people mformed onsome advertmang (imendaterne prints. reprints.sebedule and other materat when thene ioders. and make gour advertasme dollats work orer and ower for you.
Write for illustrated folder and price list
Promation Dept ...Room 2700 PícGran-Hill Pubiashanr. Co. Inc 330 West 42 nd Street, Nen York 36, N. Y.
I.ackheral . Diruraft (ourl.

Varltomalal Inc.. Nammal K................ Iti

* Mirerodot. Ino. III "
* Microlran (ombans. Inc.

Nalional linion Electric Corbarationt... ses

Xurlen \{ompall. in
*atik Mtr.. io. x_{i}

 Kithlinnterter I1:

Trobex Lahoratorios 11:

$\underset{j=3}{10,3}$

* Vitrimorr. Ine.
1%

Wialom strippit. Ince, it

D:avisl rom. Ine. \because

Manufacturers: Representatives.......... 116

CLASSIFIED ADVERTISING F. J. Eberle. Business Mgr.

EMPLOYMENT
OPPORTUNITIES
116. 117

EQUIPMENT
(Used or Surphus New)
For Sale
118. 119

ADVFRTISERS INDEX
Aireraft Radio Corporation................ 116
C \& II Sales Company 119
Esse Radio Co............ 118
Franklin Marufacturing Company 116
Gizmos \& Such 118
Incirnment for Induntiy Inc 116
ME 「Vanufacturiag Company 116
Munarah Persomalel 116
Radiu Feveatioh listolument Co........... 118
Toxas Instrlimemti Inc......... 117

- See advertisement in the iune, 1958 Mid-Month ELECTRONICS BUYERS' GUIDE Fer complete line of produets or servicess

[^15]
Get out your pencil and help yourselt to electronics READER SERVICE

it's free-it's easy-
 it's for your convenience

Use these handy READER SERVICE CARDS for more information on:

ADVERTISEMENTS-NEW PRODUCTSliterature of the week

1-Circle the number on the postpaid card below that corresponds to the number at the bottom of Advertisement, New Product item, or Literature of the Week selection.
2-Please print carefully, as it is impossible to process cards that are not readable.

FOR SPECIFIC ITEMS IN MULTI-PRODUCT ADVERTISEMENTS

For more information on specific items in multi-product advertisements, print care fully on the Reader Service Card below in Box " A " the circle number of the advertisement and the specific product(s) on which you desire more information.

Additional Postage MUST be added to cards for all FOREIGN MAILINGS

FEB 20. 59
 CARD EXPIRES
 APR 20.59

ele youz
NAME

ADDRESS
COMPAPY
circle these numbers when interested in all items shown in any advertisement
READER SERVICE CARD • Pleose Print Corefully position

-

$$
\begin{array}{lllll}
9 & 10 & 11 & 12 & 13
\end{array}
$$

FEB 20•59 electronics - READER SERVICE CARD • Pleaso Print Corefuly card exprass APR 20.59
 YOUR
 NAME
 POSITION
 COMPANY
 ADDRESS

FOR SUBSCRIPTIONS:
ICHECK ONF BOX:
DOMESTIC $\quad 71 \mathrm{yr} .-\$ 6.0$

CANADA \quad yr - $\$ 10 \mathrm{C}$
FDREIGN $\square 1$ yr. $-\$ 20 . C$
Product's) manufactured:

If you are not a subscriber and you desire to receive electronics regularly, fill in the section "OOR SUBSCRIPTIONS" on card below
Send no money, electronics will bill you at the codress indicated on the Reader Service Card.
cr Service(s) Performed:

A Circle
Nr. Product
\qquad

FOR SUBSGRIPTIONS:

 (CHECK O:NE BOX)

Circle

No.

12
$\begin{array}{lllllllllllllllllllllllllllllllllllll}31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 & 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30\end{array}$

 $\begin{array}{llllllllllllllllllllllll}162 & 163 & 264 & 165 & 266 & 167 & 168 & 169 & 170 & 271 & 172 & 173 & 174 & 175 & 176 & 177 & 178 & 179 & 180\end{array}$

 INSIDE FRONT COVER INSIDE BACK COVER WorldRadionistory

In every industry there's always ONE accepted Product and Data Buying Book...in electronics it's the BUYERS' GUIDE - fundamental in any sales program aimed at the electronics and allied industries. Its 52,000 paid subscrib. ers are important Design-

Research/Production/
Management Engineers, who, individually, or working in combination with one another, influence the purchase of products, materials and services... whatever is bought by the entire industry.

A McGRAW-HILL PUBLICATION 330 West 42nd Street - New York 36, N.Y.

6c Postage Will Be Paid By
ELECTRONICS
Reader Service Dept.
330 West 42nd Street
New York 36 , N. Y.

6¢ Postage Will Be Paid By
ELECTRONICS
Reader Service Dept.
330 West 42nd Street
New York 36, N. Y.

[^0]:

[^1]: Subscription: Address correspandence to: Fulfllment Manager. Electronics, 330 W . 42 nd St., New York 36, N. Y. Allow on month for change of address, stating old as well as new address. Subscriptions are solicited only from persons engaged in theory, research, design, production, management, maintenance and use of clectronics and industrial control com. ponents, parts and products. Position and company connection must be indicated on subscription orders.

[^2]: Newark. New Jersey
 1180 Raymond Boulevard Tel: Mitchell 2-6165

[^3]: In Canada: Du Pont of Canada Limited, P.O. Box t,60. Montreal, Queber:

[^4]: TFE-FLUOROCAREON RESINS

[^5]: Four communication systems, including single-sideband radiotelephone (above), weld the Strategic Air Command into a single striking force

[^6]: Graduate enfineers with two or more yearvof rircuit application in the field, of electronicv or physics are inviect to meet with Mr. John Hirk, in an informal interview or send complete resume io: Dir. Pernonnel, IFI, 10l New jouth Hoad, Hirksville, New York.

[^7]: There＇s more news in on the MARKET，PLANTS ：md DEO． I＇EE and other demartments be－ gimning on p si．

[^8]: * Now with Dopartment of blentrical bingi

[^9]:
 －ions only． $11^{\prime \prime}$ kong lis． 18 wide．

[^10]: U. S. Army Signal Research and Development Laboratory engineers study feasibilify of random vibration test system for evaluating components for future space vehicles. Du random vibration test system for evaluating components for future space vehicles. Du Mont dual-beam oscilloscope provides visual indication to pinpoint instant random noise frequencies begin to affect component's structure. Shaker at right is operated from taperecorded random noise

[^11]: L 2:20/59 (Foreign Rates (1 year) Canada $\$ 10$, Other Forelgn: $\$ 20$

[^12]: *Instruments For Indust ry. Inc.......... . 36
 *International Kectifler Corporation +
 *Internathonal Telephone Telegraph corp.

[^13]: *See advertisement in the June, 1958 Mid-Month ELECTRONICS BUYERS' GUIDE for complete line of producis or services.

[^14]:

[^15]: Thus index is muldishod a, a servire. Evely care is taken
 t) make it arcurate. hut ELECTRONICS asaumes no responsibiltion for errars or aminions

