electronics

 engineering editionCompatible Stereo Disk
. 65
Simulating
Radar Targets

optimize receiver performance, measure noise figure directly, record all measurements

Now the new -hp-340A Noise Meter, reading direct in db and reguiring no periodic rezalibration, does receiver and component alignment jobs in 5 minutes that previously required hours. ()peration is so simple unckilled workers can easily use the instrument. Receiver performance can often be improved up to 3 dt over the best adjustment previously possible. Improvement frequently ecuals doubling transmitter output. Accurate alignment is easy, equipment is better maintained and peak performance enjoyed regularly. Fast respo se is ideal for recorder operation.

External noise source

New $-h p-3+0$ A operates at any frequency for which there is a noise source, and uses cither a gas discharge tube or temperature limited diode source. (-hp-has recently marketed -hp-347A Wavequide Noise Source, an Argon gat discha-ge tube, and -hp-345A IF Noise Source, a 30 or 60 MC diode source. Details on request.)

In addizion to its convenience in optimizing receivers and components, $-h p-340 \mathrm{~A}$ is useful in designing circuit components such as IF amplifiers, crystal mixing circuits and tubes such as wide band traveiing wave tubes.

Complete details from your -hp-representative, or write direct
HEWLETT-PACKARD COMPANY
4820A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.
Field Engineers in all Principal Areas

SPECIFICATIONS -hp-340A NOISE FIGURE METER

Frequency Range: Depends on noise source used. Noise Figure Range: 3 to 30 db indication to 50 with Waveguide Noise Source.
0 to 15 db indication to ∞ with IF Noise Source
Accuracy: $\pm 0.5 \mathrm{db}, 10$ to 25 db ; $\pm 1 \mathrm{db}, 3$ to 30 db with Waveguide Noise Source.
$\pm 0.5 \mathrm{db}, 0$ to 15 db with IF Noise Source.
Required Receiver or rf Amplifier Gain: Approx. 40 db (Waveguide Noise Source), approx. 50 db (IF Noise Source)

Input Frequency: 30 or 60 MC , selected by switch
(Bandwidth: 1 MC minimum
Input Impedance: 50 ohms
Power Input: $115 / 230$ volts $\pm 10 \%, 50 / 60 \mathrm{cps}$, 320 watts

Power Output: Sufficient to operate -hp-347A Waveguide Noise Source or hp- 345A IF Noise Source
Weight: Cabinet Mount: Net 40 Ibs., Shipping 63 Ibs.
Rack Mount: Net 35 Ibs., Shipping 74 Ibs.
Dimensions: Cabinet Mount: $201 / 2^{\prime \prime}$ wide, $121 / 2^{\prime \prime}$ high, $14 \frac{1}{4}$ " deep.
Rack Mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $131 / 2^{\prime \prime}$ deep behind panel.

Price: (Cabinet Mount) \$715.00. (Rack Mount) $\$ 700.00$.

Data subject to change without nolice
Prices f.o.b. foctory
A. W. MATEER, Publisher
W. W. MacDONALD, Edifor

Managing Editor, John M. Carroll.

Feature Editor, John Markus.
Associate Edifors: John M. Kinn, Jr., Frank Leary, Michael F. Tomaino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, William P. O'Brien, George Sideris, Edward DeJongh, John F. Mason, Barry Miller, William E. Bushor, Ronald K. Jurgen, Thomas Emma, Patrick J. Lahey, Samuel Weber.

Pacific Coast Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New England Editor (Boston) Thomas Ma. guire

Art Director, Harry Phillips, Roy Thompsen.

Production Editor, John C. Wright, Jr., Bernice Duffy, Jean L. Matin.

Editorial Assistants: Gloria J. Filippone, Arlene Schilp, Noreen Hennessy, Patricia Landers, Catherine McDermott.

JAMES GIRDWOOD, Advertising Sales Manager. R. S. Quint, Assistant Advertising Sales Manager and Buyer's Guide Manager. Fred Stewart, Promotion Manager. Frank H. Ward, Business Manager. George E. Pomeroy, Classified Manager. Jean Heiges, Research.

New York: Donald H. Miller, Henry M. Shaw, Martin J. Gallay. Boston: Wm. S. Hodgkinson. Philadelphia: James T. Hauptli. Chicago: Bruce Winner. Cleveland: Warren H. Gardner. San Francisco: T. H. Carmody, R. C. Alcorn. Los Angeles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten. Atlanfa: M. Miller. Dallas: Gordon L. Jones. London: Herbert Lagler. Frankfurt: Michael R. Zeynel.

Issue at a Glance

Largest Radio Telescope. University of Manchester's 62.5 ft antenna uses $250-\mathrm{ft}$ dish reflector to study extraterrestrial signals at wavelengths from 10 cm to 20 meters. See p 70 .

COVER

Business Briefs ... ${ }^{7}$
Electronics Newsletter 7
Figures of the Week. 7
AEC Reveals Fusion Plans.
Electronic Desk 14
Discuss Color Tv World Standards 14
USSR Plans More Industrial Gear 14
Financial Roundup 16
Civil Defense Tests Alarmı. 16
Control Cuts Cochannel Noise... 18
Transistors Run Pipeline VVelos... 18
Mectings Ahead 18
Latest Monthly Figures........... 8
Washington Outlook 12
Thor Gets Moon Task 'In Months' 1
Militars Electronics $1+$

Compatible Stereo Disk Uses F-M Multiplexing. A 25 -kc carrier modulated by stereo information is superimposed on a monaural lateral recording. Disk can be played stereophonically or conventionally with standard pickup
p 65
By J. B. Minter and J. H. McConnell

Ultrasonic Tones Select Tv Channels. Tones picked up by barium titanate transducer actuate receiver tuning motor..........................p 68 By N. Frihart and J. Krakora

Radio Telescope Sees 2 Billion Light Years. Ultrasensitive, computer-controlled, servo-operated antenna system offers key to more extensive study of the universe.
p 70
By C. N. Kington
Heat Program Timer Controls Weld Energy. Switching circuit with five welding-control functions takes care of assembly line welding problems of a manufacturer of special-purpose tubes.
p 76 By A. V. Ranis

Ergmeter Measures Bursts of Energy. Instrument consisting of bolometer bridge, three-stage amplifier, peak holding voltmeter and calibrated energy source measures pulse encrgy
p 79 By Louis A. Rosenthal

DIGEST continued

Four Ways to Simulate Radar Targets. Radar targets are generated synthetically to train persomel in interpreting radar display information
p 82
By J. I. Leskinen

Abstract

D.C Amplifier Expands Input Voltage Range. Infinite impedance and zero grid current characteristics permit amplifier to detect and respond linearly to small voltage changes at high input levels. p 87 By V. Dale Schurr

Signal-Strength Chart. Nomograph converts the measured field intensity at a receiving antenna to the reccived signal strength p 90 By A. W. Emmons

Electrons At Work

Electrons At Work

Electrons At Work p 92 p 92 p 92
Microwave Component Tester....p 92
Microwave Component Tester....p 92
Microwave Component Tester....p 92 By A. F. Pomerov By A. F. Pomerov By A. F. Pomerov
...p $9 t$
...p $9 t$
...p $9 t$ Scrvo System Steers Car..........p $9 t$ Scrvo System Steers Car..........p $9 t$ Scrvo System Steers Car..........p $9 t$ Circunt Shifts Plase 360 Degrecs. .p 94 Circunt Shifts Plase 360 Degrecs. .p 94 Circunt Shifts Plase 360 Degrecs. .p 94 By W. Bacon By W. Bacon By W. Bacon
Componeat Design
Componeat Design
Componeat Design 102 102 102
Exact lnductance Toroid.
Exact lnductance Toroid.
Exact lnductance Toroid.
Exact lnductance Toroid. p 102 p 102 p 102 p 102 Panel Mounted VTVM Panel Mounted VTVM Panel Mounted VTVM Panel Mounted VTVM 102 102 102 102
Three Tube Rating Systems....p 104
Production Techniques
Production Techniques
Production Techniques
Production Techniques p 112 p 112 p 112
Grind.ng Ceranics Faster.pp 112 Vire Lists Simplify Asscmbling. .p 112 By J. D. Wingficld By J. D. Wingficld By J. D. Wingficld By J. D. Wingficld
Tension Meters Clip
Small Specdy Shear
Tension Meters Clip
Small Specdy Shear
Tension Meters Clip
Small Specdy Shear
Tension Meters Clip
Small Specdy Shear p 120 p 120 p 120
New Products 122
Literature of the Week 156
Plants and People p 160
News of Reps p 165
New Books p 166
Comment p 169
Index to Advertisers p 183

electronics

June 6, 1958 Vol. 31, No. 23

Published weekly, with alternating engineering and business editions, and with a BUYERS' GUIDE issue in mid. June, by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860.19.18) Founder

Executive, Editorial, Circulation and Advertis. ing Ofices: MeGraw. Hill Building, 330 W. 42 St., New York 36, N. Y. Longacre 4-3000.

Publication Office 99.129 North Broadway, Albany 1, N. Y. See panel below for directions regarding subscription or change of address. Donald C. McGraw, President; Joseph A. Gerardi, Executive Vice President; L. Keith Goodrich, Vice President and Treasurer; John J. Cooke, Secretary; Nelson Bond, Executive Vice President, Publications Division; Ralph B. Smith, Vice President and Editorial Director; Joseph H. Allen, Vice President and Director of Advertising Sales; A. R. Venezian, Vice President and Circulation Coordinator.
Single copies $\$ 1.00$ for Engineering Edition and $50 \notin$ for Business Edition in United States and possessions, and Canada; $\$ 2.00$ and $\$ 1.00$ for all other foreign countries. Buyers' Guide $\$ 3.00$. Subscription rates-United States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years; $\$ 12.00$ for three years. Canada, $\$ 10.00$ a year, $\$ 16$ for two years; $\$ 20.00$ for three years. All other countries $\$ 20.00$ a year, $\$ 30.00$ for two years; $\$ 40.00$ for three years. Second class mail privileges authorized at Albany, N. Y. Prinled in U.S.A. Copyright 1958 by McGraw-Hill Publishing Co., Inc.All Rights Reserved. Title registered in U. S. Patent Office. BRANCH OFFICES: 520 North Michigan Avenue, Clicago 11 ; 68 Post Street, San Francisco 4; McGrawHill House, London E. C. 4; A.M. Leonhards 12, Frankfurt Main; National Press Bldg., Washington 4, D. C.; Six Penn Center Plaza, Philadelphia 3; 1111 Henry W. Oliver Bldg., Pittsburgh 22; 1510 Hanna Bldg., Cleveland 15; 856 Penobscot Bldg., Detroit 26; 3615 Olive St., St. Louis 8; 350 Park Square Bldg., Boston 16; 1321 Rhodes Haverty Bldg., Atlanta 3; 1125 West Sixth St., Los Angeles 17; 1740 Broadway, Denver 2. ELECTRONICS is indexed regularly in The Engineering Index.

Postmaster: please send form 3579 to Electronics, 330 W. 42nd St., New York 36, N. Y.

Member $A B P$ and $A B C$

General Radio manufactures a variety of fixed and variable standard inductors in different price ranges. Fixed inductors are toroidally wound to minimize effects of external magnetic fields. Toroidal aircore inductors like the Type 1482 approach the ideal - they offer higher stability, lower tempe ature coefficient, and much smaller inductance variation with current changes than is produced by solenoid or iron-core inductor types.

Type 1482 Standard Inductor - a primary standard for precise measurements at audio frequencies. All units are thermally aged to equalize winding strains. Sixteen models from $100 \mu \mathrm{~h}$ to 10 h in $1-2.5$ sequence. May be used for 2 - or 3-terminal measurements. Temperature coefficient, 30 parts in 10^{6} per degree C. Adjustment accuracy for most units is $\pm 0.1 \%$. Calibration certificates furnished with each inductor give actual value to $\pm 0.03 \%$. Prices range from $\$ 105$ to $\$ 210$.

- two concentrically-mounted coils are used as rotor and stator, and may be connected in series or parallel. Calibra. tion accuracy is $\pm 1 \%$. Five models available with following series-connected values: $9.50 \mu \mathrm{~h}, 90.500 \mu \mathrm{~h}, 0.9-5 \mathrm{mh}, 9.50$ $\mathrm{mh}, 90-500 \mathrm{mh}$. When parallel connected, inductance is one-fourth of series-connected value. Prices range from $\$ 85$ to $\$ 95$.

Greater economy in coil colstruction is obtained by using "iron" cores. By proper design and use of materials such as powdered molybdenum permalloy, excellen secondary standards can be produced and sold at rilatively low cost.

Type 1481 Stanlard Inductor - has higher Q at low frequencies than does Typr 1482 Standard Inductor, although accuracy is not as high. "welve models are available, from 1 mh to 5 h in 1.2 .5 sequer ce (for 2 -terminal measurements only). Temperature coeffic ent of inductance is about 25 parts in 10^{6} per degree C, betwe $3 n 16^{\circ}$ and $32^{\circ} \mathrm{C}$. Accuracy is $\pm 0.25 \%$ for large values, $\pm 1 \%$ for smaller values. Prices from $\$ 32.50$ to $\$ 40.00$.

NEWType 940 Decade-Indu tor Unit - an assembly of four toroid: series con ected by a rotary switch to proauce eleven successive values 1 om 0 to 10 . These units are ideal elements for use in filters, e fualizers, and tuned circuits throughout the audio and low r-f ra ges.

Type	Inductance	Accuracy	Price
$940-\mathrm{E}$	$1 \mathrm{mh} / \mathrm{step}$	$\pm 2 \%$	$\$ 100$
$940-\mathrm{F}$	$10 \mathrm{mh} / \mathrm{step}$	$\pm 1 \%$	100
$940 \cdot \mathrm{G}$	$100 \mathrm{mh} / \mathrm{step}$	$\pm 0.5 \%$	100
$940-\mathrm{H}$	$1 \mathrm{~h} /$ step	$\pm 0.25 \%$	110

NEW
 Type 1490

 Decade Inductor - is an assembly of three or four Type 940 Decade. Inductor Units in a metal cabinet for 2. or 3.terminal measurements.

Type	Inductance	Price
$1490-\mathrm{C}$	1.11 h max. in 1 mh steps	$\$ 330$
$1490-\mathrm{D}$	11.11 h max. in 1 mh steps	440

GENERAL 3 ADIO Company

Knee high to a grasshopper

but Fenwal's New Miniature,

Here are acute temperature sensitivity, instant response, and the strength to withstand the most demanding conditions - all in one unit only knee high to a grasshopper!

It's hermetically sealed, yet field adjustable. Maintains control characteristics even with vibrations of 500 cps with 10 G acceleration - it's rugged!

You get wide range and sensitivity, too. The new THERMOSWITCH unit controls temperatures from -20° to $+\because 00^{\circ} \mathrm{F}$ within 1°. Thin wall corrosion-resistant, drawn stainless steel case insures instant response to temperature changes - you get precision control.

You'll want to find out more about this tiny, tough, sensitive control. For more information on the new miniature hermetically sealed THERMOSWITCH unit, and other Fenwal miniaturized controls, write for our catalog or a sales engineer Fenwal Incorporated, 206 Pleasant Street, Ashland, Massachusetts.

Hermetically Sealed thermoswitch ${ }^{\circ}$ Unit is Strong as an Ox

New Fenwal miniature thermoswitch unit being agitated in liquid bath while maintaining temperature of liquid at $140^{\circ} \mathrm{F} \pm 1^{\circ}$. Thermoswitch unit weighs less than $1 / 3 \mathrm{oz}$., can withstand 10 G acceleration at 500 cps vibration. Current capacity is $2.5 \mathrm{amps}, 115 \mathrm{VAC}, 2.0 \mathrm{amps}, 28 \mathrm{VDC}$.

Fenwal
CONTROLSTEMPERATURE...PRECISELY

๑ด[V/ Transistorized Power Supplies

Model Q28-1

Output: 18 to 36 (28 nominal) VDC, 0 to 1 amp .
Regulation: $\pm 0.25 \%$ for line and load
change combined
Ripple: 0.01% maximum
Response time: 50 microseconds
$\$ 195$ in cabinet
$\$ 400$ in dual rack mount
(illustrated)

Model Q6-2

Output: 4.5 to 8 (6 nominal) VDC,
0 to 2 amps.
Regulation: $\pm 0.25 \%$ for line and load
change combined
Ripple: 0.02% maximum
Response time: 50 microseconds
$\$ 165$ in cabinet

LOW-VOLTAGE HIGH-CURRENT DC POWER SUPPLIES

 with the PERFORM4NCE of ALL-TRANSISTOR CIRCUITRYDC sources of utmost reliability, minimum ripple, and very fast response
-with hominal voltages of $6,12,28$ volts at 0 to 4 amp output-all in
lighter, shaller packages. And these new, compact power packs are
fitted with the Zener diode reference circuit that assures the $\pm 0.25 \%$ regulation accuracy and high stability. The 2 to 1 output voltage range gives these supplies an application range that is unsurpassed.
The all-transistor design provides the excellent ripple and response properties that rule out line and load transients. An
exdusive protective circuit prevents short-circuit damage to the ransistors. All models are low in cost, coming in single of dual rack mount, or in cabinets.
Full information on this important advance in low voltage, high
durrent technology is now in print. Ask your Sorensen

SORENSEN \& COMPANY, Inc. Richards Avenue, South Norwalk, Connecticut

Your Design is better Your Product performs better

weith this
 full line of
 RATHIEOM
 DEPENDABLE DIODES
 REMABLE REGTIFIERS

Germanium GLASS DIODES

0	TYPE	Working Voltage (max.) v	Forward Current at +1 volt mA	Reverse Current $\mu \mathrm{A}$ at v	Type	Working Voltage (max.) v	Forward Current at +1 volt mA	Reverse Current $\mu \mathrm{A}$ at v
	1N558	150	5	500 at - 150	1N128	40	3	10 at - 10
	1 N66A	60	5	50 at -10	1N191	90	5	25 at - 10
	1N67A	80	4	50 at -50	1N198	80	$5 \dagger$	$75 \dagger$ at - 10
	1N68A	100	3	625 at -100	1N294A	60	5	10 at -10
	1 N95	60	10	800 at - 50	1N297A	80	3.5	100 at -50
	1N126	60	5	50 at -10	1N298A	70	30*	250 at -40
	1N127	100	3	25 at -10	*at +2 v	$75^{\circ} \mathrm{C}$		

Germanium VIDEO DETEGTOR Diodes

for TV video and portable radio application;
low capacity video detection; efficiency controlled at 50 Mc

Silicon DIFFUSED JUNOTION GLASS RECTIFIERS

	TYPE	$\begin{aligned} & \text { Peak Operating } \\ & \text { Voltage } \\ & -65^{\circ} \mathrm{Cof}+150^{\circ} \mathrm{C} \\ & \text { Volts } \end{aligned}$	Ave. Rectified Current		Reverse Current (Max.) in $\mu \mathrm{A}$ at Specified Voltage		
			mA	mA	Voits	$25^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
	1 N645	225	400	150	225	0.2	15
	1 N646	300	400	150	300	0.2	15
	1 N647	400	400	150	400	0.2	20
	1 N648	500	400	150	500	0.2	20

Silicon DIFFUSED JUNGTION RECTIFIERS
WIRE IN TYPES

stud types

TYPE	Peak Operating Voltage $-65^{\circ} \mathrm{C}$ to $+165^{\circ} \mathrm{C}$ Volts	Ave. Rectified Current $25^{\circ} \mathrm{C}$ Amps.		$150^{\circ} \mathrm{C}$
Amps.	Reverse Current (Max.) at Specified Piv, $25^{\circ} \mathrm{C}$ $\mu \mathrm{A}$			
1N253	95^{*}	3.0	1.0^{*}	10
1N254	190^{*}	1.5	0.4^{*}	10
1N255	380^{*}	1.5	0.4^{*}	10
1N256	570^{*}	0.95	0.2^{*}	20
CK846	100	3.5	1.0	2
CK847	200	3.5	1.0	2
CK848	300	3.5	1.0	2
CK849	400	3.5	1.0	2
CK850	500	3.5	1.0	2
CK851	600	3.5	1.0	2

Ratings at $25^{\circ} \mathrm{C}$ unless otherwise indicated. All illustrations actual size.

Silicon and Germanium Diodes and Transisfors - Silicon Rectifiers

[^0]
BUSINESS BRIEFS

ELECTRONICS NEWSLETTER

SOME DETAILS OF ELECTRONIC SPYING

on Russian activities are being heard in secret sessions of a London trial. Two Oxford University students are clarged with breaching Britain's Official Secrets Act. The two had charged in an undergraduate magazinc that frontier incidents had been deliberately provoked to gain information albout the Soviets, and that monitor stations were "avidly recording the least squeak from Russian transmitters" along the entire East-West frontier in Europe. Prosecutor saicl "some of the matter" in the article was true, and was "highly secret information" which the pair obtaincd during their service in the Royd Navy between 1953-55.

PHOTOMULTIPLIER TUBES now being developed for use in muclear rescarch should make it possible to measure time with an accuracy between one ten-billionth and one billionth of a second. Reason: nuclear research often requires measurement of low-energy gamma radiation emitted be radioactive nuclei, and also the time of arrival of the gamma quanta at the detector. MIT scientists L. E. Beghian, G. H. R. Kegel and R. P. Scharenberg have just reported the developinent of a detector with an accuracy within one-billionth of a second. Accuracy of time measurement is largely limited, they say, by the design of photomultiplier tubes now availalle. But, they add, new tubes promise to break through present linitations.

TV SETMAKERS will sell more sets this year than the 5.5 million predicted carly this year, say Sylvania executives. Scnior v-p Marion E. Pettegrev thinks sales will reach 6 million sets. And general marketing manager Robert L. Shav says consumers are buying fewer middleprice range sets, more high-priced ones. This, he says, indicates dollar volume will hold up fairly well clespite portable volume.

COMPLICATED ELECTRONIC GEAR in a large earth satellite is cheaper than providing for the survival needs of man in a space chamber, and has design advantages too. That's the conclusion of Jack Myers, University of Texas scientist, who recently reported on fundamental research with mice and oxygen-producing algac. He told a symposium on possible uses of earth satellites for life science experiments that a man in a spaceship would need 600 quarts of oxygen a day to survive; tremendous weight of oxygen tanks makes them impractical. Myers said his experiments for the Air Force indicated a photosynthetic gas-recycling system might be an alternative; man would breathe oxygen produced by algac which would grow on carbon dioxide extaled by man. However, "no use of this procedure is reasonably forcseen in the immediate future . . ."

RADIO FIRST? Bonn University has reccived a 105 me signal bounced off the moon from Ft. Monmouth as part of U.S. space research.

FIGURES OF THE WEEK

RECEIVER PRODUCTION

(Source: ElA)	May 16, 58
Television sets, total	67,949
Radio sets, total	149,659
Auto sets	45,582

STOCK PRICE AVERAGES

(Source: Standard \& PCor's)	May 21,'58	May 14,'58	May 22,'5;
Radio-tv \& electronics $\ldots \ldots$	46.22	45.70	52.28
Radio broadcasters	62.56	60.11	69.44

FIGURES OF THE YEAR Totals for first three months

	1958	1957	Percent Change
Receiving tube sales	84,990,000	125,041,000	-32.0
Transistor production	9,038,798	5,125,000	$+76.4$
Cathoderay tube sales	1,812,825	2,322,480	-21.9
Television set production	1,221,299	1,474,729	-17.2
Radio set production	2,834,759	3,959,367	-28.4
TV set sales	1,446,969	1,682;911	-14.0
Radio set sales (excl. auto)	1,493,668	1,818,976	-17.9

MORE FIGURES NEXT PAGE

Basic designs of experimental apparatus used in controlled thermonnelear power research are shown as ...

AEC Reveals Fusion Plans

Researchers are working on four ways of control hydrogen fusion magnetically

Principles of four alternative routes in the Atomic Energy Commission's quest for controlled atomic fusion power were outlined last month

Only one method, the magnetic pinch, has been revealed in detail publicity Electronics, Scptember 10, 1957; February 7, 1958; March 28, 1958)

All four methods attempt to obtain power from the radiation resulting from fusion reactions in hot, ionized hydrogen isotopes. The basic idea is to squeeze the gas magnetically until it raches an "ignition" temparature. At that temperature, muckar reactions are vigorous cnough to keep the gas at fusion temperature despite the encrgy loss resulting from the radiation of cuergy. There is general belief in U. S. laboratorics that the ignition temperature will be reached in a few ycars.

In addition to the pinch method
there are three alternatives. Hybrid methods also may be used if these fail.
(1) Mirror: Energetic ions are injected into a strong magnetic field provided by two coils. The ions at first spiral at right angles to the field. As coil current is increased, the hot gas is squeczed.
(2) Stellarators: A cold gas is confined in a magnetic ficld. Coil current is increased until the gas temperature reaches more than a million deg C , be which time the gas is highly conductive. Then, the gas is shaken by strong alternating magnetic fields to heat it further. The stellarator's pretzel shape counteracts the drift of the gas toward the walls of the surrounding tube.
(3) D-C X: Mirror coils are fecl with direct current. A confinement space is filled with super-hot ions, which heat cooler ions added after the hot plasma is formed. Molec-
ular ions are introduced, each bieaking up into a deuteron and an atom of deuterium. The atoms escape, but the hot ions are caught and circulated in the confining magnetic ficld.
Mcanwhile, a British fusion team discovered that neutrons produced by their Zeta torus were not thermonuclear, as originally believed. The probable source, transient clectrical conditions, however, may become a trigger mechanism.

Zcta is being modified to raise its temperature to 20 million C . Reportedly, a Zeta II will be built for $\$ 14$ million, to attain 100 mil lion C. Theoretically, deuterium that hot will yield net power.

Airlines to Test Infrared Warning

Aircraft anti-collision devices this month are getting renewed attention from airlines, government authorities and electronics enginecrs. Interest is heightened by the recent midair collision in Maryland of an Air National Guard jet and a Capital Airlines plane which killed 12 people.

The Air Transport Association indicates that the airlines right now lean towards an infrared proximity waming indicator for all passenger and cargo lines. They want a "sclfcontained system," one which will operate effectively as a warning device for an arliner regardless of equipment carried by other aircraft.

The ATA, an organization of 49 scheduled airlines, is kecping close watchfulness on development by electronics manufacturers of infrared anticollision devices. One such device, said to be getting close scrutiny by ATA, is Aerowarn, developed by Aerojet-General Corp., Azusa, Calif. Flight tests so far

TRANSISTOR AND TUBE SALES, MONTHLY

EMPLOYMENT AND EARNINGS, MONTHLY

(Source: Bur. Labor Statistics)	Mar. '58	Feb. '58	Mar. '57
Prod. workers, comm. equip. ...	343,500	350,800	393,300
Av. wkly. earnings, comm. . . .	$\$ 80.16$	$\$ 79.95$	$\$ 80.19$
Av. wkly. earnings, radio	579.39	$\$ 78.98$	$\$ 76.80$
Av. wkly. hours, comm.	39.1	39.0	40.5
Av. wkly. hours, radio	39.3	39.1	40.0

CONDENSED DATA*

Voltage Bands . . 0-8, 8-16, 16-24, 24-32 VDC	
Line Regulation	Better than 0.15 per cent or 20 millivolts (whichever is greater). For input variations from 105-125 VAC.
Load Regulatio	Better than 0.15 per cent or 20 millivolts (whichever is greater). For load variations from 0 to full load.
AC Input	105-125 VAC, 50-400 CPS

Electrical Over-
load Protection
Magnetic circuit breaker, front panel mounted. Unit cannot be injured by short circuit or overload.
Thermal Overload Protection

Thermostat, manual reset, rear of chassis Thermal overload indicator light, front panel.
Size $3^{1 / 1 / 2^{\prime \prime}} \mathrm{H} \times 19^{\prime \prime} \mathrm{W} \times 14^{3} /$ a $^{\prime \prime} \mathrm{D}$.

* Preliminary and tentative specifications

Send for complete LAMBDA L-T data.

ALAMBDA Electronics Corp.

11-11 131 STREET • COLLEGE POINT 56, NEW YORK
INDEPENDENCE 1-8500

For Alnico Magnets-Stock or Special Specify "ARNOLD"

Materials

Cast Alnico Magnets are most commonly made in Alnico V and VI. Sintered Alnico Magnets usually are made in Alnico II, V or VI. Special permanent magnet materials include Vicalloy, Cunife, and Arnox.

Engineering Data

Write for your copy of Bulletin GC106C, a general catalog of all Arnold products. It contains useful data on the physical and magnetic properties of Alnice Magnets. Lists stock items and standard tolerances for cast and sintered magnets-also stock sizes and pertinent data on tape cores, powder cores, C \& E cut cores, etc.

ADDRESS DEPT. E-86
$Y_{\text {a source of }}^{\text {our bet when looking for }}$ a source of Alnico magnets and assemblies is Arnold-producer of the most complete line of magnetic materials in the industry.

Arnold can supply your need for any size or shape of Alnico magnet. Weights range from a few ounces to 75 pounds or more. Die-cast or sand-cast aluminum jackets, Celastic covers, etc., can be supplied as required. Complete assemblies are available with Permendur, steel or
aluminum bases, inserts and keepers as specified-magnetized and stabilized according to the requirements of the application.

A wide range of the more popular shapes and sizes of cast and sintered magnets are carried in stock at Arnold. Unsurpassed plant facilities make possible quick delivery of all special orders. - Let us bandle your permanent magnet requirements, or any other magnetic material specification you may have.

The Arnold Engineering Company

Main Office \& Plant: Marengo, Illinois

Repath Pacific Divislon Plant: 641 East 61 st Street, Los Angeles, Calif.
District Soles Offices:
Boston: 49 Waltham Si., Lexington Los Angeles: 3450 Wilshire Blvd.
New York: 350 Fifth Ave. Washington, D.C.; 1001 -1 5th St., N.W.

Reliable products through
Advanced-Engineering

1. A SPECIALIST - There's a special reason why CBS VR tubes are more stable and dependable. CBS-Hytron specializes in VR tubes . . . has made over 20 millions of them.
2. advanced-engineering - Within their voltage and current ranges, the reliabilized CBS 6626 and 6627 , for example, provide an absolute minimum of discrete voltage shitts in voltage reference circuits.
3. RESEARCH AND DEVELOPMENT - CBS-Hytron has originated many VR types: OB2, USN-OA2WA, USN-OB2WA, 6830, 6831 as well as the 6626 and 6627 .
4. widest line - Commercial and military, miniature and GT, 105 -volt and 150 -volt . . CBS-Hytron offers the most complete line of VR tubes for voltage regulation and reference.
5. SPECIALIzED tYPES - CBS-Hytron solicits inquiries for production quantities of specialized VR types, like the flying-lead 6830 and 6831.

These five reasons explain why most leading manufacturers specify CBS VR tubes. You, too, can have the best simply by asking for CBS. And for complete technical data, write for free 8 -page CBS VR Tube Manual, Bulletin E-267.

CBS-HYTRON, Danvers, Massachusetts
A Division of Columbia Broadcasting System, inc.
have slown promise for the device, according to ATA.

Night radiation pattern tests are now being made from an Acrojet DC-3 over Catalina Island. Three airlines flying Convair 330 's and 440's, and Constellation DC-6's and $D C-7$'s are cooperating. When bugs in the first model are worked out, five airlines will get units to test on routine scheduled flights. In addition, one airline plans more extensive tests for all possible collision angles and amount of advance warning.
Right now, plans call for about 20 seconds warning for the average possible collision situation. One Aerojet official says that in a calse like the Grand Canyon disaster where the planes converged at an acute angle, Acrowarn could have given three-and-one-half minutes of warning.

Main technical problem now is increasing discrimination between objects. Some bright-cdged clouds and snow-capped peaks reflecting sun show up as possible collision hazards. Engineers are working to suppress background interference.

Unit weigls just under 30 pounds. Breadboard model tested so far uses a scanning device mounted on top of the plane's empennage which rotates at 30 rpm ; it scans al 15 degree sector- $7 \frac{1}{2}$ degrees above and $7 \frac{1}{2}$ degrees below the horizontal.

A "cooperative" radio warning system partly based on missile guidance principles has also been proposed. Such a system requires coding and transmitting equipment to be carried by cach of two planes that might collide.

Thor Gets Moon

Task 'In Months'

CHICAGO-"A modified Thor IRBM will be the first moon vehicle through which the U.S. can investigate and appraise many phenomena of space travel," Maj. Gen. Bemard A. Schriever, USAF missile head, told the Illinois wing of the Air Force Association here last week.
"Within a matter of monthe,"

WASHINGTON OUTLOOK

The Pentagon is pushing plans for standardization of electronic and other types of ground-support equipment for missile projects. A project is under way to compile a special catalog of standard military and commercial components and end-items already in the Defense Dept.'s inventory of missile ground support equipment.

The project is expected (1) to curb duplicate development of electronic and other kinds of missile ground-support gear common to two or more weapon systems; and (2) to achieve the widest possible use of ground-support apparatus now in service.

The catalog project is an outgrowth of a special conference recently held by the Air Materiel. Command in Dayton to discuss the Air Force's burgeoning costs for missile ground-support equipment. About 100 service and industry experts-including representatives of the Electronic Industries Assn.-attended.

Although the conference was called by the Air Force, the Pentagon is bringing the Army and Navy into the missile ground-support standardization picture.

- Increasing cost of missile ground-support gear was the keynote sounded by Brig. Gen. George E. Kceler, Jr., AMC's Deputy Director of Supply at the Dayton Confercuce. "We have now come to the crossroads where it is essential that industry and Air Force reach agreement on how to further preserve the national economy through the elimination of gold plating, elimination of duplicate development and assurance of maximum utilization of in-service inventory," he said.

Air Force expenditures for ground-support gear-with electronic equipment making up a big chunk-have ballooned from $\$ 962$ million in 1956 to $\$ 1.6$ billion this year. In more than two years, spending is expected to hit $\$ 2.8$ billion. At least 12,000 new items of ground-support gear are put into the Air Force's inventory each month.

The industry representatives have set up steering committees by commodity which will work with military officials on the catalog project. Design engineers will then be pressed to use cataloged equipment before spending funds for new missile support components or end-items.

- Behind all the fussing over mushrooming costs for missile groundsupport equipment, many Defense Dcpt. officials are having some second thoughts about the highly-touted "weapon system management" scheme. They believe that one big reason for the increased costs is the fact that weapon system primes are under too little control by the services, that they are being allowed to duplicate development in many instances. The outcome may be some new limits on the responsibilities of weapon system primes.

160 db DC, 120 db 60 cycle common mode rejection with balanced or unbalanced input $\begin{array}{r}\text { Input completely isolated from output I Input and }\end{array}$ output differential and floating $\quad 5$ microvolt stability for thousands of hours $\quad .05 \%$ linearity, 0.1% gain stability \square Gain of 10 to 1000 in five steps ■ >5 megohms input, <2 ohms output impedance 120 cycle bandwidth Integral power supply
These are just a few of the many outstanding features of the Model 114A differential DC amplifier... features that make this amplifier really work in instrumentation systems...features that will help solve your instrumentation problems today.
Ideal for thermocouple amplification, the 114 A eliminates ground loop problems; allows the use of a common transducer power supply; permits longer cable runs; drives grounded, ungrounded or balanced loads, and can be used inverting or non-inverting.
For additional information and technical literature on this exceptional instrument, write or call Kin TEL - the world's largest manufacturer of precision, chopper-stabilized DC instruments.

5725 Kearny Villa Road, San Diego 11, Calif. Phone: BRowning 7-6700 Representatives in all major cities

KIN TEL 114A
differential DC amplifiers ...convenient, interchangeable plug-in mounting in either 6-amplifier $19^{\prime \prime}$ rack mount modules or singleamplifier cabinets.

Schricver said, "the Air Force plans to explore the moon as a military basc." USAF will work with the Army and aunch three electronicsladen moon probe rockets (Eiectronics, p 26, Apr. 18).

USAF will be secking information on cosmic rav intensity, atmospheric pressures, gravitational, magnetic and electric ficlds. Space exploration of this type could possibly provide telescopic and to studies of planets and the sun unblurred by the atmosphere. Space spectrographs of the sum might provide evidence of heavy element thermomuclear reactions on its surface.
"With a modificd Thor as the first stage and Navy's Vanguard engine as the second, it would he possible to put several thousand pounds of satellite and electronic equipment in orbit or send several hundred pounds of working load to the moon," Schriever saicl. Information scut back to earth might be in pictorial form.

Only the first 500 mi of the $240,000 \mathrm{mi}$ trip would be under power. Then the rocket would coast for tivs davs, finally slowing down from a velocity of 15,000 mph to 500 mph . Increased speed would later lee needed to avoid contact with the moon and circle behind it.

Electronic Desk

Commmication equipment is featured in new desk being made by Odabashian \& Sons, San Francisco, for about $\$ 3.500$. Gear includes intercom, dictating and recording units. Radio and tv broadcast receivers in drawers use built-in amplifiers. Closed-circuit tv is optional

MILITARY ELECTRONICS

- Navy's ship-to-air guided missile, Talos, became operational last week when the USS Galveston, first of the light eruisers to be converted to Talos guided missile ships, was commissioned in Philadelphia. Next two light cruisers to be commissioned for Talos are the USS Little Rock and USS Okhahoma City. USS Long Beach, first nu-clear-powered cruiser, will also be cquipped with Talos,

Bendix Aviation is prime contractor and Bendix Radio supplics the control system. Sperry and Federal Telecommunications Labs produce the beam rider/passive homing guidance system, with Farnsworth Electric a principal subcontractor.

- The Electronic Material Sciences Laboratory, AF Cambridge Rescarch Center, has begun field tests of three distinct antijamming techniques. Special General Electric cquipment will be used in the field tests which will be compared and corrclated with bench tests of techniques made over the past vear. The now GE equipment will be used in comnection with the frequency diversity radar at Maynard.
- CAA plans procurement of new electronic communications, air traffic control and air navigation equipment amounting to $\$ 1.027$ billion over the next five fiscal ycars.

New edition of the plan calls for:

60 additional long range radar installations including those that will be used jointly with the military, making a total of 100 in the system; 76 new airport surveillance radar units to supplement the 62 already financed; 30 surface detection equipment units for radar control of aircraft on the ground.

Other requirements cited: 289 air traffic control radar beacons; 677 ommidirectional radio ranges (VOR), of which 634 are already financed; 573 complete new units of VORTAC; 337 more TACAN (Tactical Air Navigation) units to backfit a total of 636 existing VOR's to make VORTAC; 235° instrument landing systems (ILS), an increase of 40 over those now authorized; 225 units of the distance feature of TACAN with which to backfit 225 ILS's; and 20 ILS's in which TACAN is an integral part.

CAA will install computers in Washington and New York air route traffic control centers early this summer with funds already authorized. Also, the memory capacity of the computer at Indianapolis will be increased.

By late fiscal year 1959, other conters at Boston, Pittsburgh, Cleveland, Clicago and Detroit will be cquipped with computers. More centers, it is anticipated, will become computer equipped at the rate of six per year through fiscal 1963 with the cooperation of the Airways Modernization Board.

Discuss Color Tv World Standards

International standards for color tv broadcasting and testing are now the subject of a meeting of the International Radio Consultative Conmittec (CCIR) Stucly Group XI (color ty) in Moscow. The mecting ends June 10 .

The committec makes technical recommendations to the international Tclecommunications Union. J. R. Popkin-Cluman, president of Tclechrome Manufacturing Corp.
and a clelcgate to the meeting, savs that in 1959 the XI Plcnary Assembly of the CCIR will be held in the U.S.

USSR Plans More Industrial Gear

Soviet electronics production, which increased nearly 18 times from 1948 to 1957, will be kept at a high rate of output and clectronic inclustrial controls will be introcluced on a large scalc, under a pro-

PROBLEM: How to Capture Elusive Transients

A Hughes representative will gladly demonstrate the Memoscope in your company. Address requests to:
HUGHES PRODUCTS MEMO-SCOPE Oscilloscope International Airport Station, Los Angeles 45, California

Attempting to analyze clusive non-recurring transients has sent the best of enginecrs "to the showers." Conventional practices for monitoring or examining spurious signals or noise factors do not permit accurate investigations. The result is a wasteful expense of your tine, your nerves, and your company's money.
SOLUTION: The Hughes MEMO-SCOPE® oscilloscope freezes wave forms until intentionally crased. Selected transient information may be triggered externally or internally and retained for viewing. Successive wave forms may be written above, below or directly upon the original information.

HUGHES MEMO-SCOPE OSCILLOSCOPE

SWEEP SPEED FOR STORAGE
10 microseconds to 10 seconds per division ($0.33^{\prime \prime}$).
FREQUENCY RESPONSE: DC to 250 KC down 3 db .
SENSITIVITY:
10 millivalts to 50 volts per division or with optional high sensitivity preamplifier 1 millivolt to 50 volts per division.

APPLICATIONS:

Trouble shooting data reduction equipment...switch and relay contact study ... ballistics and explosives research ... ultrasonic flaw detection...physical testing-shock - stress-strain.
gram mapped out by the Communist Party.

Reports just in from Moscow reveal that on Radio Day (May 7) and the All-Union Conference on Mechanization and Automation (May 12) special emphasis was placed by Sovict leaders on radio and electronics progress.

Valer, Kalmykov, chairman of the state committee on radio-electronics, USSR Council of Ministers, made these points: (1) By 1965 the USSR will have more than 300 tv studios and sets for almost 100 million viewers. (2) Rescarch and design plans are underway to integrate telephone communications into a single automatic exchange system with major citics being linked by waveguides.

USSR Gosplan chairman Kuzmin, also deputy chairman of the Council of Ministers, made these points to industry and government ieaders:

Output of industrial control instruments and other means of automation must be 10 times greater in 1959 than in 1955; by 1965, outPui sould be five times mat of 1958. Design of many new instruments to regulate processes is planned.

By this year, 150 "machine tool lines" hat been produced for ma-chine-building works, plus about 200 "automatic lines" using existing machine tools. Many of these are quality control instruments, others are regulators such as those used in inetal processing. Just announced by the Physics Institute in Kiev: an infrared spectrometer that registers temperature changes of one-millioath of a degrec. It will be used, says Tass, to determine content of oil or paraffin in oil products.

Kuzmin also gave these examples of electronic control already achieved: (1) Testing of the first automaticelly controlled locomotive is nearing completion. (2) An automatic machine to determine optimum oil drilling spots has been developed (Electronics, p 49, Nov. 10, '57. (3) Machine based on use of isotopes and optical and acoustical principles is being used to regulate composition of materials in one manufacturing process.

FINANCIAL ROUNDUP

- Hagan Chemical \& Controls Corp. (formerly Hagan Corp.) of Pittsburgh, Pa., purchases Kybernetes Corp. of New York City, manufacturer of automatic data logging and temperature monitoring equipment, for an undisclosed cash sum. Hagan manufacturers automatic controls, instruments and chemicals for removing boiler scale. Hagan, orginally a manufacturer of hydraulic and pncumatic controls, has in recent years added electronic controls to its line.
- Shure Brothers of Evanston, Ill., announces it seeks to acquire an additional electronics firm engaged in making components for electronic industrial automation and hi-fi sound reproduction. Shure manufactures microphones, hi-fi tone arms and cartridges, home recorders and recording heads for industrial laboratory applications.
- Dynamic Electronics Corp., Forest Hills, N. Y., sells a substantial minority interest to Edward L. Elliott of Elliott \& Company, New York investment firm, for $\$ 200,000$. New investment plus increased bank credit will be used to finance development of several proprictary
items in the military clectronic and high fidelity stereo fields, areas in which Dynamic is presently active.
- Elsin Electronics, Brooklyn, N. Y., manufacturer of telemetcring equipment and microwave components, plans to issue 265,266 shares of common stock at $\$ 1.12 \frac{1}{2}$ cents per share through Lee \& Co. of New York City. New money will be used to repay bank loans, purchase new equipment and for working capital.
- Chesapeake Instrument Corp., ultrasonics manufacturers of Sunnyside, Maryland, plans to issuc $\$ 275,000$ of convertible subordinated five percent debentures due 1968, through Drexel \& Co. of Philadelphia. Proceeds will be used for general corporate purposes.
- Missiles-Jets \& Automation Fund files plan with SEC to issue 500,000 shares of capital stock at Sl0 per sharc. Investments will be concentrated in securities of firms engaged in missile, jet and automation ficlds. Ira Haupt \& Co. of New York City will manage the underwriting group which is expected to offer fund shares this month.

Wave analyzer is plugged into electric power line (left) carrying signals generated by transformers set up at power station as . . .

Civil Defense Tests Alarm

BATTLE CREEK, Mich.-An electronic device, intended to warn people in their homes when an enemy attack or natural disaster is imminent, is being field tested here over the power lines of Consumers Power Co.

National Emergency Alarni Rc-
peater system (NEAR) is being developed by Midwest Rescarch Institute, Kansas City, Mo., under contract with Federal Civil Dcfense Agency. FCDA headquarters are hacre.

NEAR picks up 1 -volt, 240 -cycle signals superimposed on normal

$110-\mathrm{s}, 60-\mathrm{cycle}$ louse current. It plugs into any outlet and is not much bigger than a night light. When it receives a signal, it sounds a buzzer, telling residents to turn on their radio for a civil defense amounccment.

The signals are provided by equipment installed at power distribution stations. Signal generator consists of three transformers which are comnected in a broken delta circuit with a direct current power supply.
In testing, the signal gencrator equipment is located at a substation and outlets arc on utility poles. Test equipment is moved from pole to pole in a station wagon. FCDA says that if field tests prove the system feasible, it will be developed for public home usc.

The lome recciver could consist of an inductance-capacitance or clectromechamical filter to pick up the signal, a relay, a gas tube or semiconductor switch and a noisemaker. A bricf delay would be required to prevent transients in the line power from causing false alarms. It has been learned that the receiver could be built into an clectric clock or other appliance.

Rack-mounted unit automatically adjusts power level as . . .

Control Cuts Cochannel Noise

A power-control device currently in field test promises to help relieve cochannel interference problems of mobile radio uscrs.

The control automatically adjusts tramsmitted power at the base station to match incoming power from a mobile unit in the ficld, making broadcast power inverscly proportional to the received signal.

Initial tests made by GE, clevelopers of the clevice, used a 250 -watt transmitter.

Before installation of the power
control unit, the station replied to all incoming messages with the same signal strength regardless of incoming signal power, or distance of mobile units from base station.

Transistors Run Pipeline Webs

Transistorized remote control system that will cuable a dispatcher to control flow of natural gas and petrolcum from as many as 100 widely scattered points will soon be offered to pipeline operators.
At a recent mecting of the Pctroleum Industrics Electrical Association, an RCA spokesman said ficld trials of the new system are due shortly.

Central dispatchers using the sustem will originate instruction signals on punched tape. Signals will be relayed by microwave to the remote point or points desired.

Transistorized receiver controls at the remote point will activate mechanical equipment to start pumps, open valves or perform any of scveral operations now handled by resident operators contacted verbally.

MEETINGS AHEAD

June 9-13: Automation Seminar, Fourth Anmual, Penn State Univ, Pa .

June 12-13: Annual Pacific Northwest Instrument Show, ISA, Portland Public Auditorium, Portland, Oregon.
June 16-18: Electrical Contact Seminar Div., Penn State Univ., Pa

Junc 16-18: Military Electronics Second National Convention, Sheraton Park Hotel, Washington, D. C.

June 17-27: Two-Week Special Summer Program in Sivitching Circuits, MIT, Cambriclge, Mass.
June 18-20: Radio Wave Propagation Statistical Methods, Univ. of Calif. Enginecring Extension, Los Angeles, California.

June 22-27: Air Transport Conf., and AIEE Summer General Meeting. Statler Hilton, Buffalo, New York.

Jome 23-27: Vacuum Metallurgy, Summer Seminar, New York Univ. Coll. of Enginecring, N. Y. C.
July 6-18: Underivater Missile Engineering, Graduate Course, P'enn State Univ., Pa.
July 8-17: International Electrontechnical Commission, ASA, Stockholn, Sweden.
July 16-18: Forestry, Conservation Communications Assoc. (FCCA), Ninth Annual Conf., Parker llouse, Boston, Mass

Aug. 6-8: Special Tech. Conf. on Nonlincar Magnetics and Magnetic Amplifiers, AIEE, Hotel Statler, Los Angeles
Aug. 13-15: Conf. on Electrouics Standards and Measurements, AIEE, IEE. NBC, National Bureau of Standards Labs., Boulder, Colorado.
Aug. 13-15: Seventh Amnual Conf. on

Industrial Applications of X-ray Analysis, Denver, Colo.

Ang. 19-22: Western Electronic Show and Convention, Los Angeles, Calif., WESCON, IRE, WCEMA, Pan Pacific Auditorium, Ambassador Hotel, L. A.

Aug. 26-Sept. 6: British National Radio Show, Radio Inclustry Council, Earls Court, London.

Sept. 1-9: Second International Days of Analog Calculation, Strasburg, France, contact, F. D. Raymond, 138 Boulevard de Verdon, Courbevoie (Scine) France.

Scpt. 3-5: Application of Elcctrical Insulation, First National Conf., AIEE NEMA, Cleveland, Olio.

Scpt. 15-19: Thirteenth Annual lustru-ment-Automation Conf. and Exhibit, ISA, Philadelphia Convention Hall, Pa .

High Performance Ceramic Capacitors

DISCAPS

TYPE C

Type C DISCAPS meet or exceed the specifications RS-198 of the E.I.A. Small size and lower self-inductance make them ideal for many applications. Rated at 1000 working volts, Type C DISCAPS have a higher safety factor than other standard ceramic or mica capacitors.

TYPE 8

These DISCAPS are designed for by-passing, coupling or filtering applications and meet all specifications of the E.I.A. for type Z5U capacitors. Rated at 1000 V.D.C.W., Type B DISCAPS are available in capacities from .00015 to .04 M.F.D.

TYPE JF

Type JF DISCAPS have a frequency stability characteristic superior to similar types. These capacitors extend the available capacity range of the E.I.A. Z5F type between $+10^{\circ}$ and $+85^{\circ} \mathrm{C}$ and meet Y5S specifications between -30° and $+85^{\circ} \mathrm{C}$.

TYPE JL

For exceptional stability over an extended temperature range, Type JF DISCAPS should be specified. They provide a minimum capacity change as temperature varies between -55° and $+110^{\circ} \mathrm{C}$. Standard working voltage is 1000 V.D.C.

Write for information on the complete DISCAP line.

The Westinghouse Electronics and Air Arm Divisions, Friendship Airport, Baltimore, Md. plants, have almost unbelievably high r-f interference ambient caused by radar transmitters, missiles, military planes, spot welders, motors, powerful transmitters, and other types of electric/electronic equipment. Testing critical electronic equipment under these adverse interference conditions is extremely difficult. The slightest outside interference would distort readings.
Westinghouse takes no chances. The flight control fighter armament systems, missile guidance systems, radar, and ship-board transmitters under design and development at the plant are completely shielded from outside interference and from each other by 49 Ace shielded enclosures.

The Ace patented RFI* and Cell-Type Designs provide the high attenuation required for satisfactory results at all frequencies. All enclosures are designed and constructed to insure permanent r-f leak-proof performance. Size-flexibility is another feature. The modular construction of the panels and doors permits rapid alteration of the size of the enclosure. Small rooms can be joined to make larger units or large enclosures can be converted into smaller ones.

If you have a shielding problem-big or small-in your plant, you'll want to talk to an Ace Engineer about an effective yet economical solution. Be sure to write for free catalog on standard Ace enclosures.
*Lindsay Structure First and Finesi in Shielded Enclosures ACE ENGINEERING AND MACHINE CO., INC.

A general-purpose, 5"
oscilloscope of superb design and construction, destined to become the new standard of the industry. This Du Mont scope offers a new high degree of reliability and performance, and incorporates the following features . . .

- X.Y plotting with identical, calibrated, high-gain amplifiers.
- Time function plotting on calibrated lirear time base.
- Continuous use of XorY'amplifier controls without disturbing calibration. Re-calibration from front panel.
- Diddle-free sync. Automatic or driven sweep selection on front panel.
- Exclusive: externally or internally triggered beam brightening during X-Y plots.
- High brightness provides excellent photographic writing rate.
- Sweep speeds available from $.25 \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{usec} / \mathrm{cm}$.
- Centimeter calibration.
- Choice of electronic power regulation or Sola voltage-regulating transformer.
- Hand-crafted wiring and high-reliability components for dependability and performance.

What would you expect to pay for this $\mathbf{\square}$ UMONT scope?

for complete details, write . . .

instrument division, allen b. DU MONT laboratories, inc., Clifton; N. J., U. S. A.

A Wide Range of Ratings ... Choice of Mounting High Efficiency . . . Low Cost. . . Prompt Delivery Farzian SILICON RECTIFIERS Offer These Advantages - and Many More!

SPECIFICATIONS
 D. C. Current
 Range .. 1.5A(J-1)-10A(J-2) Peak Inverse
 Voltage Range 100 V to 400 V Approx. Rectifier
 Voltage Drop 1.25V
 Approx. Weight
 (Ounces) 2 oz.

SPECIFICATIONS D. C. Current

Range 1.5A(L)-5A(LF) Peak inverse
Voltage Range 100 V to 400 V Approx. Rectifier

Voltage Drop Approx. Weight
(Ounces) 35 oz.

SPECIFICATIONS

D. C. Current

Range.
20A to 200A
Peak Inverse
Voltage Range 50 V to 400 V
Approx. Rectifier
Voltage Drop 1.25 V
Approx. Weight
(Ounces). . 1.3 oz to 7.0 oz .

SPECIFICATIONS
D. C. Current

Range . . .25A(HW) -.75A(FW)
Peak Inverse
Voltage Range 1600 V to 4500 V Approx. Rectifier

Voltage Drop..... 8V to 10 V
Approx. Weight
(Ounces) 4 oz, to 8 oz.

SPECIFICATIONS D. C. Current

Range15A(M)-.2A(K)
Peak Inverse
Voltage Range 360V
Approx. Rectifier
Voltage Drop 1.5V
Approx. Weight
(Ounces) 2 oz.

SPECIFICATIONS
D. C. Current Range
$.5 \mathrm{~A}(\mathrm{M})-.75 \mathrm{~A}(\mathrm{~K})$
Peak Inverse
Voltage Range 100 V to 600 V Approx. Rectifier

Voltage Drop 1.5V
Approx. Weight
(Ounces) 2 oz.

SPECIFICATIONS

 D. C. CurrentRange 5 A to 15A Peak Inverse

Voltage Range . . 50 V to 600 V
Approx. Rectifier
Voltage Drop
1.5 V

Approx. Weight

(Ounces). . . 15 oz . to 1.5 oz .

SPECIFICATIONS
D. C. Current

Range. .
.325A to .45A
Peak Inverse
Voltage Range 800 V to 2800 V
Approx. Rectifier
Voltage Drop 2 V to 15 V
Approx. Weight
(Ounces) 3 oz . to .9 oz .

Write, wire or phone for complete information

SARKES TARZIAN, INC., RECTIFIER DIV., Dept.D-2,415 N. College, Bloomington, Ind. In Eanada: 700 Weston Rd., Toronto 9, Tel. Rogers 2-7535 - Export: Ad Auriema, Inc., New York City

Look at this new, compact, \$145

150 ma output 0 to $30 \mathbf{~ v ~ d c , ~ c o n t i n u o u s l y ~ v a r i a b l e ~}$
 High regulation; less than $\mathbf{0 . 3} \%$ or $\mathbf{3 0} \mathbf{~ m v}$ change no-load to full-load
 Ripple less than $150 \mu \mathrm{v}$ rms
 Metered output and current limiter prevent damage to transistors under test
 Compact transistorized construction

New -hp- 721A Transistor Power Supply

Specifically designed to provide precision dc test voltages for transistor investigations, the new -hp-721A Power Supply produces 0 to 30 volts at 150 milliamperes-sufficient for almost every type of transistor in use today.
Model 721A has a convenient 3-terminal output so that
either positive or negative terminals may be gri inded. Or, the supply may be "stacked" on another volt: ;e for still greater usefulness. Need for additional meterii y and control equipment is eliminated since the 721A's ront panel meter monitors either output voltage or current

TRANSISTOR SUPPLY

that prevents overload damage to transistors

An outstanding feature is a special circuit limiting output current to a nominal value (selected on the front panel in 4 steps-25, 50, 100 and 225 ma .) This unique feature prevents accidental overloads which otherwise cause costly damage to transistors under test.

Convenience of the new 721 A is further increased by its compact size, low power consumption, simple controls and extreme dependability resulting from ultra-conservative circuit ratings. Model 721A, $\$ 145$.

Other -hp-regulated and klystron power supplies

Simple operation, widest usefulness, high regulation, broad voltage range, rugged dependability-these characteristics have made -hp- Power Supplies basic experimental, testing and production tools in America's laboratories and factories. The many jobs these precision instruments perform daily include powering low level amplifiers, constant frequency oscillators, pulse circuits with heavy instantaneous current demands, oscillators, small transmitters, klystrons and "bread board" arrangements from the most simple to the most complex. Brief data on $-h p$ - power supplies appear in the table at right. For complete details on -hp-supplies meeting your power needs, call your - $h p$ - representative for demonstration on your bench. Or, write direct.

Model	Characteristics	Regulation	Current	Voliage Range	Hum \& Noise Level	Price
7108	Generol purpose de/ac supply	$\begin{aligned} & \pm 1 \%, 0 \text { to } \\ & 75 \mathrm{mo} \end{aligned}$	100 mo	$\begin{aligned} & 100 \text { to } 360 \vee \mathrm{dc} ; \\ & 6.3 \mathrm{vac} \end{aligned}$	Less than $0.0005 \mathrm{v}$	\$110.00t
711A	Similar to 710 B wider voltage range	Less than $\pm 0.5 \%$ or 0.1 v , no load to full load	100 ma	$\begin{aligned} & 0 \text { to } 500 \mathrm{vdc} ; \\ & 6.3 \mathrm{vac} \end{aligned}$	Ripple less than 0.1 mv	$225.00 \dagger$
7128	Heavy duty, 4 outputs, 0-1 msec response	Less than 50 mv no load to full lood	200 ma (pos. dc)	0 to $500 \vee \mathrm{dc},-300$ v dc fixed bias; 0 to -150 vdc variable bias; 6.3 Vac	Ripple less thon 500 ur	$365.00 \dagger$
715A	Klystron supply; square wove, external modulation	Less than 1%, no load to full load	50 ma (at 400 v)	250 to $400 \times \mathrm{dc}$ beam; 0 to 900 V dc reflector; 6.3 \checkmark oc	Ripple less than 7 mv	300.00

t Rack mount available at slight additional charge.
Data subject to change without notice. Prices f. o. b. factory
HEWLETT-PACKARD COMPANY
4818A PAGE MILL ROAD. PALO ALTO, CALIFORNIA, U. S. A.
CABLE "HEWPACK" . DAVENPORT 5-4451 field representatives in all principal areas

Ask your -hp= rep for a demonstration

Magnetic tape recorders for instrumentation and control

You get the widest choice, most performance and assured compatibility

Over 95% of all missile prime and subcontractors who are using magnetic tape have chosen Ampex equipment. In today's most rapidly moving technological race, nothing short of the best will do. Missile development pushes at every frontier of engineering knowledge, hence it needs a broad

selection of highly adaptable recorders. Tapes must be interchanged among widely separated facilities. So compatibility is imperative. And of vital importance to every user: Ampex offers application engineering and nationwide field service that draw on unparalleled magnetic-tape-recorder experience.

AR-100-AERIAL "LISTENING"

A two-track airborne recorder for data acquisition in the audio-frequency range. Recorder meets the essential requirements of MIL-E5400 in respect to temperature, vibration, shock and high-altitude conditions. The AR-100 is an example of Ampex's special design work to fill particular military and industrial needs.
Brief physical specifications: $71 / 2$ ips tape speed; 7 -inch reels; remote and local control; record only, tapes reproduced on other Ampex recorders; 23 pourrds total weight including shock mountings. MR-100-MISSILE RECORDER
A recorder that rides in a missile, recording performance data and playing back in reverse upon reentering range of radio receivers. Playback is automatic or in response to command. The MR-100 withstands shocks up to 75 g . Complete two-piece unit oscupies less than $1 / 5$ th cubic foot. This recorder is applicable to other uses where its ruggedness, compactness and operational sequence are needed.
Brief physical specifications: 60 ips tape speed; preciston $51 / 4$ inch reels; $1 / 4$-inch tape; two tracks; 4 minutes recording time; tape transport and two-track efectronics in cable-connected housings.
UNQ-7-SHIPBOARD RECORDER
A two-track special-purpose recorder handling 7 -inch reels with two tracks on quarter-inch tape. It has two speeds, $33 / 4$ and $71 / 2$ inches per second. This recorder is shown as another example of Ampex's developments for military purposes.

FR-100A - MOST PRECISE AND VERSATILE
The best recorder for critical data acquisition and processing where low flutter, wide dynanic range and precise amplitudes are required Typical applications are data telemetry, dynamic tests on engines, components and vehicle structures, and continuous-path machinetool control. The Ampex FR-100A has superior performance in respect to flutter, low D-C drift, wide frequency response and precise time base accuracy (with Servo Speed Control). Construction is modula and interchangeable. Numerous standard accessories are available.
Brief physical speclfications: Six tape speeds $17 / 8$ to 60 ips (32 -to-1 overall ratio) ; $101 / 2$ or 14 -inch maximum reel size; $1 / 4,1 / 2$ or l-inch tape; 2 to 14 tracks; plug-in amplifiers for Direct, FMcarrier, PDM, and NRZ-digital record and reproduce; recorder fits one or more 19 -inch rack cabinets.
FR-1100-ADAPTABLE AND ECONOMICAL
A high-accuracy instrumentation recorder recommended for generalpurpose laboratory use, spectrum analysis, vibration testing and other comparable applications. The FR-1100's tape mechanism is of a simple open-loop design. Accessibility of components for replacement or service is extremely good. Modular construction makes it readily adaptable to new or special problems. Very wide speed ratios are available in a multirange version.
Brief physical specifications: Four speeds in 2 -to-1 steps; eightspeed multirange option provides speed ratios as high as 100 to 1 ; $101 / 2$-inch reels; $1 / 4$ or $1 / 2$-inch tape; 2 to 7 tracks; same plug-in amplifiers as FR-100A; fits 19 -inch rack cabinet.

FL-100 - CONTINUOUS LOOP

The FL-100 loop recorder provides three different capabilities: 1) cyclic repetition of short tape sections for analysis, 2) continuous time delay of a stream of information and 3) endless monitoring for calamity anticipation. Length of loop is continuously variable between minimum and maximum values, giving cyeling times ranging from 0.733 seconds to 8 minutes on various speed and loop-length options Brief physical specifications: Four speeds in 2-to-1 steps or eight-speed multirange drive with same options as FR-1100; loop lengths from $3^{\prime} 8^{\prime \prime}$ minimum to 25,50 or 75 -foot maximums; $1 / 4,1 / 2$ or l-inch tape; 2 to 14 tracks; same plug-in amplifiers.

BOOB - MOBILE AND AIRBORNE

Newly improved version of the world's most widely used mobile instrumentation tape recorder. The 800 B records flight-test data and information acquired in "aerial observation" and also does mobile service on the ground. In compact packaging, the Ampex 800B pro vides virtually the same recording capabilities as Ampex's larger laboratory-type recorders. In addition, it withstands shock, vibration, high and low ambient temperatures and high-altitude air pressures. Brief physical specifications: Record only; any of four speeds available; plug-in amplifiers for Direct, FM-carrier or PDM recording; $101 / 2$-inch reels; $1 / 4,1 / 2$ or 1 -inch tape; 2 to 14 tracks; compact cable-connected assemblies fit small available spaces.

the Ampex specialty

MODIFIED RECORDERS AND SPECIAL SYSTEMS Many regular Ampex models can be furnished with special tape speeds, larger reel sizes, front-access mountings, head switching systems, special performance, system buildups, etc. Ampex has a large modification engineering section thoroughly experienced in this work The jet-engine test dolly pictured is an example of an Ampex-developed system. It includes an FR-100 recorder, preamplifiers, monitoring scopes and calibration equipment mounted ruggedly for rolling or trucking anywhere in a widespread facility.

FR-300

FR-400

FR-300-HIGH-SPEED DIGITAL
For reading or writing of digital magnetic tapes, the FR-300 offers transfer rates as high as 90,000 alpha-numeric characters per second. It is the first digital tape handler to match the majority of big electronic computers both in speed and in reliability of bit reproduction. Start and stop times are less than 1.5 milliseconds greatly reducing buffer requirements. Ampex furnishes complete digital tape systems including tape handler, magnetic heads, amplifiers and special Ampex Computer Tape.
Brief physical specifications: 150 ips tape speed; $101 / 2$-inch reels; $1 / 2$ or 1 -inch tape; 7 to 16 tracks; control of all functions by computer command, also optional local control; read and write electronics will accept and read out digital information in any of a variety of forms; complete equipment fits one 19 -inch rack cabinet.
FR-400 and FR-200A - AUXILIARY DIGITAL
For lesser computers and such auxiliary digital equipment as converters, printers, etc., these Ampex digital tape handlers provide a wide range of transfer rates to match any particular need. The Ampex FR-400 uses many of the high-performance components developed for the sensational FR-300, hence is a very heavy-duty tape handler with tape speeds up to 75 inches per second.
Brief physical specifications: Tape speeds up to $75 \mathrm{ips} ; 101 / 2^{\prime \prime}$ reels; $1 / 2$ or 1 -inch tapes; 7 to 16 tracks; remote and local controls.

Ampex can send you comprehensive literature and specifications on the various models shown and also a 16-page brochure on principles and applications of mag-netic-tape instrumentation. For any of these items, write Dept. E-58BG.

AMPEXINSTRUMENTATION DIVISION BGO CHARTER STREET . REDWOOD CITY, CALIFORNIA Phone your Ampex data specialist for personal attention to your recording needs Offices serve U.S. A. and Canada. Engineering representatives cover the free world.

DELCO'S FAMILY OF HIGH POWER TRANSISTORS

Typical Characteristics at $\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Performance characteristics

 to meet your switching, regulation or power supply requirements[^1]These ten Delco Radio alloy junction germanium PNP power transistors are now in volume production. They are characterized by high output power, high gain, and low distortion. And all are normalized to retain superior performance characteristics regardless of age.
Check the data chart above-see how they fit your particular requirements in current switching, regulation or power supply. Write for detailed information and engineering data. Delco Radio maintains offices in Newark, N. J. and Santa Monica, Calif. for your convenience.

DELCO RADIO

Division of General Motors Kokomo, Indiana

The Monderful onemposs Bhay

A Logical Story

Have you heard of the wonderful one-hoss shay,
That was built in such a logical way
It ran a hundred years to a day ?
"For," said the Deacon, "It's mighty plain
That the weakest place must stand the strain;
And the way to build it is only jest
To make that place as strong as the rest."

The Deacon followed the two cardina! principles for reliability.

1. Know the stresses your component will be subject to (in other words know the environment).
2. Build faithfully to the specifications that cope with this environment.

At CPPC we feel one of our great assets is careful manufacture by a skilled and conscientious crew.

Reprints of the complete, original poemThe Deacon's Masterfiece or The Wonderful One-Hoss Shay by Oliver Wendeil Holmes sent upon request.

LOOK- TO GPRE FOL SYMGHLO

Prociags

CLIFTON PRECISION PRODUCTS COMPANY, INC. Clilton Heights

This 32-page book contains valuable data on all Allegheny Ludlum mag. neric materials, silicon steels and special electrical alloys. Illustrated in full color, includes essential information on properties, characteristics, applications, erc. Your copy gladly sent free.

ADDRESS DEPT. E-6

You can rely on core materials like the Allegheny 4750 components illustrated above, in your receivers, recording heads or microphone assemblies. In fact, whecher your equipment is small or large, the extra-broad line of A-L magnetic materials will solve your magnetic core problems. It includes all grades of silicon steel sheets or coil serip, as well as Allegheny Silectron (grain-oriented silicon steel), and a wide selection of high -permea-
bility alloys such as 4750, Mumetal, Permendur, etc.
Our service on these materials also includes complete facilities for the fabrication and heat treatment of laminations. (For users of electrical sheets and strip, our lamination know-how is a real bonus value!) Either way, we'll welcome the chance to serve you. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

The Ideal Approach to SSB... Eimac Ceramic Tetrodes from 325 to 11,000 watts

Generating a clean SSB signal is one thing . . . amplifying it to the desired power level with stability and no distortion is another. A modern Class $A B_{1}$ final amplifier designed around an Eimac ceramic-metal tetrode is the ideal answer to the problem. The Eimac ceramic linear amplifier tubes shown above - the 4 CX 250 B , the 4 CX 300 A , the $4 \mathrm{CX1} 000 \mathrm{~A}$ and the 4CX5000A - offer the high power gain, low distortion and high stability that is needed for Class $A B_{1}$ operation. Each has performance-proved reserve ability to handle the high peak powers encountered in SSB operation. Efficient integral-finned anode cooler
and Eimac Air System Sockets keep blower requirements at a minimum and allow compact equipment design. And, all four incorporate the many advantages of Eimac ce-ramic-metal design, which assures compact, rugged, high performance tubes.
The high performance and reliability of Eimac ceramic tetrodes make them the logical starting point in the design of compact, efficient single sideband equipment.

Write our Application Engineering Department for a copy of the technical bulletin "Single Sideband"

EITEL-MCCULLOUGH, INC. SAN B B R U N O . C A L I F O R N I A Eimac First with ceramic tubes that can take it

CLASS AB ${ }_{1}$ SSB OPERATION

	$4 C \times 250 \mathrm{~B}$	$4 \mathrm{C} \times 300 \mathrm{~A}$	$4 \mathrm{C} \times 1000 \mathrm{~A}$	$4 \mathrm{C} \times 5000 \mathrm{~A}$
Plate Voltage	2000 v	2500 v	3000 v	7500 v
Driving Power	0 w	0 w	0 w	0 w
Peak Envelope Power .	325 w	400 w	1680 w	$11,000 \mathrm{w}$

FIVE constant voltage transformer types answer most stabilizing needs

1Constant Voltage Filament Transformers* are widely used by manufacturers of electronic equipment who know that inrush current and fluctuating voltage to electron filaments are costly in shortened tube life ... in substandard performance and unnecessary failures. That's why Electro-Pulse, Inc., manufacturers of the Megacycle Pulse Code Generator (shown left), builds in a Sola Constant Voltage Filament Trans-
former as a component of the power supply (shown right).
The Sola's current-limiting characteristic protects filaments from cold inrush current upon starting. It regulates filament voltages to within $\pm 1 \%$ with line voltage variations as great as $\pm 15 \%$; response is within 1.5 cycles.
Stock units are available from 2.37 to 25 amp ratings. Custom designs can be manufactured in production quantities for specialized applications.

Standard*: Constant Voltage Transformers for electrical and electronic equipment ... regulation $\pm 1 \% \ldots$ response within 1.5 cycles ... no tubes, moving parts or manual adjustments . . . static-magnetic regulation...limits current on load faults.

Plate-Filament*: Regulation is $\pm 3 \%$ with line input between $100-130 \mathrm{v}$... plate and filament windings are combined on a single, compact core for chassis mounting ... good isolation of input and output circuits automatic, static-magnetic regulation.

Harmonic-Free*: Output voltage wave has less than 3% total rms harmonic content . .. other features identical with standard type ... automatic, continuous regulation . . . for rectifiers and other loads sensitive to harmonics . . . low external field.

*Stock or custom units

Adiustable, Harmonic-Free: Provides output adjustable from $0-130$ volts ac. also fixed 115 volts ac . . . regulates within $\pm 1 \%$ with less than 3% total rms harmonic content... portable for lab or shop bench use, or mounts on $19^{\prime \prime}$ relay rack.

Send for Circular 7F-CVF-269
Sola Electric Co., 4633 W. 16th St., Chicago 50, III., Blshop 2-1414 • Offices in Principal cities - In Canada, Sola Electric (Canada) Ltd., 24 Canmotor Ave., Toronto 14, Ont.

	CONSTANI VOLTAGE TRANSFORMERS	REGULIEO UC POWER SUPFUES	MERCURY LAMP TRANSFGRMERS	Fluorescent lamp ballast

ANALAC is a true production-line wire. This film-insulated solderable magnet wire does away
with pre-stripping before soldering, lends itself to gang soldering, to iron, gun and dip soldering.

Now, just one step! Analac lets you solder without pre-stripping!

Anaconda's Analac* magnet wire saves time and money on the production line. This film-insulated, solderable magnet wire can be used just as you use Formvar or Plain Enamel-with this plus advantage . . . it is solderable without pre-stripping the insulation.

Analac cuts down labor-time where many solderable connections are to be made. It's ideal, too, where removal of the insulation is a hazard to the wire. Soldering Analac by dipping, iron or gun produces a perfect joint.

It performs well in high-speed winding! Analac has the excellent abrasion-resistance and other mechanical advantages of the enamel wire you're now using.

Distinctive red color simplifies identification
visible, helping operators turn out higher quality work
Analac, $105^{\circ} \mathrm{C}$ (AlEE Class A) wire, is available in sizes from 15 Awg to 46 Awg.

The Man from Anaconda will be glad to give you more information. See "Anaconda" in your phone book-in most principal cities or write: Anaconda Wire \& Cable Company, 25 Broadway, New York 4, N. Y.
*Reg. U. S. Pat. oif. 58362

 for readr-to soloer analac mannet wire

VITROTEX $130^{\circ} \mathrm{C}$ (AIEE Closs B)
Epoxy $130^{\circ} \mathrm{C}$ (AIEE Class B) glass-insulayed, high heat resistance
 general compatibility

IMPORTANT FACTS FOR YOUR WORK...

about Analac $105^{\circ} \mathrm{C}$ (AIEE Class A) Magnet Wire

solderability. Anaconda's Analac can be used to overcome high cost of insulation stripping by adapting your present system to automatic soldering techniques. Your Anaconda sales representative can arrange for cooperation from Anaconda's Research Laboratories to help you take full advantage of Analac's costsaving possibilities.

Analac is versatile; lends itself to gang soldering, to iron, gun and dip soldering. Anaconda's Analac Booklet contains full information on soldering methods, fluxes, temperature control. Use the coupon below for your copy.
windability. Analac is abrasion-resistant . . . has excellent lubricity and surface characteristics which make it readily adaptable to automatic high-speed winding operations. Can be used on your present equipment-no retooling is necessary to adapt solderable Analac.
Compatibility. Analac is compatible with most insulation varnishes presently being used.

TECHNICAL PROPERTIES

MECHANICAL PROPERTIES

Analac has excellent mechanical properties. The film possesses superior abrasion-resistance and flexibility under a number of varied conditions-such as heat, cold and moisture. The wire shows no cracks when elongated rapidly to the breaking point. It will also withstand 3 times diameter wrap after 20 percent elongation.

MOISTURE-RESISTANCE

Analac's moisture-resistance is excellent, particularly in size range 25 and heavier. It offers moisture-resistance superior to most other film-type insulations.

New Analac Booklet-yours for the asking! Latest information. . . full technical data. Mall coupon for your copy.

ANACONDA WIRE \& CABLE COMPANY

 25 BROADWAY, NEW YORK 4, NEW YORKPlease send copy of your Analac Magnet Wire Booklet. I am interested in heavy or intermediate size (15 Aug to 30 Awg)-; tine sizes (31 Awg or finer)-.
name a title.
COMPANY.
address.
CITY, ZONE, STATE.

ELECTRICAL PROPERTIES

Analac has superior dielectric strength both in a dry condition and after exposure to high humidity. Meets NEMA twist test requirements. Analac has unusually low dielectric losses at high frequencies, which are only slightly affected by high humidity. Thus Analac is particularly suited for electronic uses.

ELECTRACII PROPEKTAS								
Dielectric streryth.	NEMA fwist test, room conditions. NEMA wist test, dry. NEMA twist test after 6 hours exposure at 100 F and $100^{\circ} \%$ relotive hum,gity. Layer tast-double layer wind on 1 -inch diameter mandrel, apply voltage between layers.	Number of Tests Averaged			Vol's per Mil at Breakdown			
		145			3500			
		30			4050			
		30			4000			
		30			2840			
		Frequancy			Dissipation FactorCotangent of Angle of lag			
		\cos	kc	mc	Temperature-Deg C			
					Roon	85	125	155
Dielectric loss.	Dissipation factor at room temperature.	$\begin{aligned} & 10 \\ & 1000 \end{aligned}$	$\begin{aligned} & 10 \\ & 100 \\ & 1000 \end{aligned}$	1040	1.00 0.92	-	-	-
					1.38	-	-	-
					1.90	-	-	-
					1.93	-	-	-
					2.79	-	-	-
	Dissiparior factor al elevated temperalure.	$\begin{aligned} & 100 \\ & 1000 \end{aligned}$			-	1.08	1.73	15.7
					-	1.32	1.48	11.9
			10 100		二	1.72 1.40	1.62 1.40	6.4 50
					Dielectric Constant k			
Dielectric constont.	As measured by bridge and Q meter at room temperature.	$\begin{aligned} & 100 \\ & 1000 \end{aligned}$	$\begin{aligned} & 10 \\ & 100 \\ & 1000 \end{aligned}$	1040	3.00	-	-	-
					2.96 2.93	-	-	-
					2.83 2.85	-	-	\square
					2.54	-	-	-
					2.52	-	-	-
	As measured by bridge and Q meter at elevated temperature.	$\begin{aligned} & 100 \\ & 1000 \end{aligned}$	10100		-	3.63	3.85	3.66
					-	3.57	3.80	2.93
					-	3.51	3.69	2.49
					-	3.40	3.63	2.33

CHEMICAL PROPERTIES

Analac has good resistance to the action of solvents, water, and dilute acids and bases. Analac will withstand 24 hours' immersion at room temperature in most varnish solvents including naphtha, toluol, xylol, and ethyl alcohol. Shows excellent resistance to 5% sulfuric acid and 5\% potassium hydroxide.

THERMAL PROPERTIES

Analac is offered as $105^{\circ} \mathrm{C}$ (AIEE Class A) magnet wire, although its thermal stability shows it is capable of performance at much higher temperatures. Analac's thermoplastic flow cut-through data, obtained on basis of MIL-W-583A methods, has been above $200^{\circ} \mathrm{C}$.

A.C.Ratiometer ... accurate to five parts per million!

The Transformers, Inc. Model 214 A. C. Ratiometer is a precision instrument to measure any voltage ratio from 0.000001 to 1.111111 . Transformer ratios can be accurately measured at "no load" or under any required load.

The Model 214 Ratiometer is designed for use between 25 cps and 2,500 cps. It is supplied with plug-in filter and quadrature units for 400 cps operation. Plug-in units for any other frequency are supplied to order.

ACCURACY

$$
\pm\left(0.0005 \%+\frac{0.0001 \%}{\text { ratio }}\right)
$$

FREQUENCY RANGE
25 cps to $2,500 \mathrm{cps}$

MAXIMUM VOLTAGE

Twice the frequency in cps, or 250 V , whichever is lower.

PRICE
Model 214 Ratiometer, com-
plete with 400 cps plug-in
$\$ 1235$
filter and quadrature units

The Ratiometer consists of two precision variable transformers, a calibrated quadrature injector, a filter, and a pre-amplifier Block diagram indicates connections of the various components within the instrument.

For additional information, ask for Bulletin \# 205
HRANSFORMERS, INCORPORATED
200 stage Road, Vestal, N.Y.

Convair F-106 all-weather jet interceptor incorporates Honeywell Three-Axis Turn Rate Transmitter in fight control damper system

Three-axis control at all speeds and altitudes

Gnat Rale Gyro shown $2 / 3$ size. Weight: 3.8 ounces.

The Honeywell Three-Axis Turn Rate Transmitter, featuring three Gnat miniaturized gyros, was selected for the new Convair F-106 "Delta Dart" all-weather jet interceptor. Built into the stability augmentation sub-system of the jet's flight control system, the Transmitter detects rate of turn about the yaw, pitch and roll axes and responds with an output signal whose voltage is proportional to these input rates of turn.

This system is designed to operate under the most severe environmental conditions to which a combat aircraft might be subjected. The Honeywell Gnat Rate Gyros are easily capable of withstanding the severe shock, vibration and temperature requirements of this application and as such are mounted directly upon the base casting without shock mounts to optimize dynamic characteristics of the system.
The electronic portion of the Turn Rate Transmitter amplifies and demodulates the Gyro output signals to provide polarity reversing d-c outputs proportional to the corresponding input rate to each Gyro.

Investigate Honeywell's ability to develop, engineer and produce fight control systems for today's most advanced aircraft and missiles. Write for Bulletin GN to MinneapolisHoneywell, Boston Division, Dept. 7, 40 Life Street, Boston 35, Mass.

Honeywell H Meltayy Producta Graup

400 mA 600 v silicon rectifiers

 in a subminiature package!
One of 35 PSI rectifiers representing the broadest range of miniature and subminiature silicon rectifiers in the industry.

Progress in silicon rectifier manufacture in the past six months has significantly outmoded recent design concepts. Notable advances have been made in miniaturization . . improved types have been introduced . . . the relationship between power, size and price has been drastically changed.

Pacific Semiconductors, Inc. has added numerous types ranging from 50 v to $600 \mathrm{v} \ldots 200$ to 500 mA . PSI is now delivering the highest voltage, highest current silicon rectifiers ever offered in a subminiature package.

If your problem involves further miniaturization, it will pay you to look at the new PSI line of silicon rectifiers. Compare these husky subminiatures with the bulkier types you have been specifying. It's quite possible you'll find substantial performance, size and cost advantages.

Production quantity delivery is being made on all PSI rectifier types. Detailed specifications available on request.

Pacific Semiconductors, Inc

10451 West Jefferson Boulevard, Culver City, California

AEROCOM'S 1046 H.F. TRANSMITTER

POWER + STABIIITY

1000 WATTS

Rugged, versatile general purpose H.F. transmitter-Aerocom's 1046 packs 1000 watts of power and high $.003 \%$ stability under normal operating conditions (0° to $+50^{\circ} \mathrm{C}$.). Excellent for point-to-point or ground-toair communications.

Multi-channel operation on telegraph AI, or telephone A3 with GM-8A modulator... new Aerocom 1046 can be remotely controlled with TMC-R at control position and uses only one pair of telephone lines. In A3 operation, the local dial control panel is located in modulator cabinet.

Transmitter cabinet has $83 / 4$ inch panel space available for either local dial control panel or frequency shift keyer.

Model 1046 operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.0-24 Mcs. Operates on one frequency at a time; channeling time 2 seconds. Operates into either balanced or unbalanced loads. Operates in ambient -35° to $+50^{\circ} \mathrm{C}$. Power supply: nominal 220 volts, $50-60$ cycles, single phase.

Complete technical data on request
Now! Complete-package, 192 channel, H. F., 75 pound airborne communications equipment by Aer-O-Com! Write us today for details!

WITH

.003\% STABILITY

Are You Preparing Now For The Next Boom?

America's leading companies are not sitting on their hands waiting for the recession to end. They are planning ahead now for higher sales and near-capacity rates of operation.

These facts stand out clearly from the eleventh annual survey of Business' Plans for New Plants and Equipment just completed by the McGraw-Hill Department of Economics:

- Manufacturing companies expect their sales to increase 20%, on the average, from 1958 to 1961. Growth industries, such as chemicals and electrical machinery, expect gains of 25% to 34%.
- If these sales gains are achieved, the average rate of operations in manufacturing will rise from $\mathbf{7 8} \%$ at the end of 1957 to almost 85% by 1961. This is the point at which pressure on costs begins to mount, as less efficient facilities are pressed into service.
- Industry is not waiting for this point to begin getting its plants and equipment in shape for the next boom. Despite record expansion in the past several years, many manufacturing companies plan to add new capacity
in each of the next four years. But, more important, they are going ahead with the vital job of modernization and cost-cutting.

In the years immediately ahead almost twothirds of capital investment will go for modemization and replacement of present plants and equipment. In this way manufacturing companies can avoid the higher costs and the squeeze on profits that occur when producing facilities are not in shape to handle an increase in sales volume.

These are the plans, as reported to McGrawHill, of a wide sample of manufacturing com-panies-for the most part, large firms and leaders in their respective industries. Altogether, these firms account for almost 40% of all employment in manufacturing industries.

Now Is The Time

How do your plans measure up? Are you planning ahead now for a 20% sales increase in the next three years? Is your company planning to modernize its buildings and equipment more rapidly than at any time in the recent past? If not, here are some of the inducements
that McGraw-Hill editors report from their continuous checking on the state of business.
(1) There are plenty of opportunities for increasing efficiency by the installation of new equipment and the improvement of layouts in plants, warehouses and offices. Despite the installation of tremendous volumes of metalworking equipment in recent years, according to American Machinist over half of the machine tools now in U. S. factories are over 10 years old. Replacement of worn-out and obsolete equipment will mean material savings in operating and maintenance costs. (2) Machinery, parts, materials and labor are much more readily available now than they are when the economy is running at full steam. You can be more particular about quality and about specification to meet your own requirements.
(3) With lower interest rates and less competition for loans, it is both easier and cheaper to borrow money to finance equipment and construction. To wait for another boom is to run the risk of having to pay higher interest rates and look harder for money.
(4) Although there is an adequate supply of most types of labor available now, the prospect is that the supply of factory labor over the years ahead will be tight. In 1965, there will actually be fewer men and women between the ages of 25 and 44 than there are now. Good factory workers will be either hard to get, or wage rates will rise sharply or-more likely-both. The best answer is to anticipate the rise in labor costs by installing more efficient equipment to increase labor productivity.
(5) Finally, the costs of investing in new buildings and improved equipment now are almost surely less than they will be later.

These are some of the reasons why many leading firms find now the best time in years to start on a program of plant modernization. There are other good reasons in the many new
products and processes coming from the boom in research and development. This year industry will spend over $\$ 8$ billion on $\mathrm{R} \& \mathrm{D}-\$ 1$ billion more than in 1957. And a heavy share of the new product development will consist of better machines and processes to be made available during the next few years. Already the pace of technical advance is so rapid as to call for modernization of plants built only a few years ago.

Years of Opportunity

It has been said that the years between now and 1961 are the "middle years" between two booms. This does not mean a long period of recession, but a period of slower growth-a transition from the postwar boom based on deferred demand, to a new boom in the 1960s based on dynamic population growth and a revolution in technology.

If so, these are the years of opportunity for business-opportunity to prepare for the growth that lies ahead with the most efficient equipment, the most modern plant and the best production organization that can be devised. This is the way to fight higher costs and avert a resumption of inflation. This is also the way to ensure that your company will be ready for its new markets in the 1960s.

Are you planning ahead now to be among the leaders?

This message is one of a series prepared by the McGraw-Hill Department of Economics to help increase public knowledge and understanding of important nation-wide developments. Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

Nouacd

McGRAW-HILL PUBLISHING COMPANY, INC.

NUCLEAR ENERGY BALLISTICS

 RADAR RESEARCHThe synchroscope 204 A , an apparatus of very high performance, is unique in making it possible to record ultra-rapid phenomena reaching several thousand kilometers-second. It offers the same characteristics of precision and safe operation that have secured the universal reputation of the Electronic Department of the Ribet-Desjardins Company.

MEASUKE सws comTrove UNITS

 1. OSCILLOSCOPES AND SYNCHROSCOPES| MODELS | CHANMELS | RANGE | AMPII V | | $\begin{gathered} \text { RESPDNSE } \\ \text { LAG } \\ \mu \mathrm{s} \\ \hline \end{gathered}$ | MAPKER | $\begin{aligned} & \text { CATHODE JUBE } \\ & \text { DIAMETER } \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Passing Bond cps - me | Sensitivity m / p to p / cm | | | |
| 2044 | 1 | 0.01ps/cm-4s/cm | 0-50 | 50 | 0.007 | $\begin{aligned} & \text { Colibroted } \\ & +\quad 100 \mu s \end{aligned}$ | 125 |
| 251 | 2 | 0.02他 10 sm | 0-30 | 50 | 0.02 | Calibrated | 125 |
| 252 11 | 1 | $0.1 \mathrm{ps} / \mathrm{cm}-4 \mathrm{~ms} / \mathrm{cm}$ | $0 \cdot 10$ $10 \cdot 10$ | $\begin{aligned} & 80 \\ & 50 \end{aligned}$ | 0.04 | $0.05{ }^{\prime 2}+1000_{\mu s}$ | 125 |
| 2544 | $\begin{aligned} & 2 \\ & 1 \end{aligned}$ | $0.4 \mathrm{~s} / \mathrm{cm}-1 \mathrm{~s} / \mathrm{cm}$ $0.12 \mathrm{~s} / \mathrm{cm}-1 \mathrm{~s} / \mathrm{cm}$ | $\begin{array}{ll} 0 & -4 \\ 0 & 10 \end{array}$ | $\begin{aligned} & 20 \\ & 50 \end{aligned}$ | $\begin{aligned} & 0.12 \\ & 0.045 \end{aligned}$ | Colibrated | 125 |
| 255 | 1 | 0.3 $\mu \mathrm{s} / \mathrm{mm}-0.01 \mathrm{tkm}$ | 0.4 | 150 | 0.12 | $0.4 \mathrm{ps}-4 \mathrm{~ms}$ | 70 |
| 256 | $\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1 \mu s / \mathrm{cm}-1 \mathrm{~s} / \mathrm{cm} \\ & 1 \mu \mathrm{~cm}-1 \mathrm{sm} \end{aligned}$ | $\begin{aligned} & 0 \cdot 1 \\ & 0 \cdot 0.8 \end{aligned}$ | $\begin{aligned} & 15 \\ & 50 \end{aligned}$ | - | Colibrated | 90 |
| 258 ${ }^{\text {a }}$ | 1 | $2 \mu \mathrm{~s} / \mathrm{cm}-20 \mathrm{~ms} / \mathrm{cm}$ | 50-1 | 50 | - | - | 70 |
| 264 B | 2 | $1 \mathrm{ss} \mathrm{cm} \cdot 0.05 \mathrm{~s} / \mathrm{cm}$ | 10-2 | 6 | - | - | 90 |
| 267 B | 1 | $1 \mu \mathrm{~s} / \mathrm{cm}-0.1 \mathrm{scm}$ | $0=1$ $20-0.8$ | $\begin{array}{r} 250 \\ 8 \end{array}$ | - | - | 90 |
| 268 A | 1 | $10 \mathrm{cps}-30 \mathrm{kc}$ | 50-1 | 45 | - | - | 70 |

MODELS	freouency range	SIGMAL	PRECISION	MODULATION	Voliage	PRECISION
4068	20 sps - 200 ks	∞	$+/-1.5 \%$	-	$\begin{gathered} 20 \text { or } \\ 2 \times 10^{\circ} \mathrm{V} \end{gathered}$	3%
409 A	10. 300 mcs	\square	70.1% min. quartz marker	FM	0.1 V	-
410 A	0-250 mes	∞	70.1% min. quartz marker	FM	0.1 V	-
4114	$0-320 \mathrm{mcs}$	0	$>0.1 \%$ min. quortz marker	FM	$\begin{aligned} & 0.2 \bar{Y} \text { and } \\ & 0.1 \mathrm{~V} \end{aligned}$	-
428 A	$100 \mathrm{kcs}-30 \mathrm{mc}$	$\xrightarrow{\infty}$	$>1 \%$ min.	AM	$\begin{gathered} 0.1 \mathrm{~V} \\ \text { constent level } \end{gathered}$	-
476 A	100 kss - 26 mc	-	$\begin{aligned} & 1 \% \text { min. and } \\ & >2 \% \text { min. } \end{aligned}$	fl	0.1 V	-
457 B	$\begin{aligned} & 5 \text { cps }-50 \mathrm{kc} \\ & \mathrm{k}=1 / 0: 2.20 \end{aligned}$	$5 \sqrt{1}$	2%	-	$\begin{aligned} & 10 V_{z} \text { int. } \\ & \text { loovz ext. } \end{aligned}$	+/-5\%
458 A	$\begin{gathered} 5 \text { cps - } 50 \mathrm{kc} \text { (repeat) } \\ 0.5 \mu \mathrm{~s} \cdot 10.000 \mu \mathrm{~s} \end{gathered}$	$\sqrt{0.05}$	5%	-	$\begin{gathered} 2 \times 50 V \\ 1 \text { int. } \\ \hline \end{gathered}$	+1-5\%
III - SUPPLY - MEGOHMMETERS - SUNDRY UNITS						
MODELS	DESCRIPIION AND GENERAL FEATURES					
1116	$100^{\prime \prime}-400^{\prime \prime}$: $200 \mathrm{~mA} 108^{\prime \prime}-15 \mathrm{~mA}$. Heoting $\mathrm{I}^{\prime \prime} .3$. 25 V up to 6 omps.					
114 A	$100^{\prime \prime}-250^{\circ}: 150 \mathrm{~mA} 150^{\prime}$ - 10 mA . Heating 6.3 V , 3 omps .					
674	5 Mohm - 100 kMohm in 4 meosuring ranges at 280 V . cont. controlled					
803 B	Pressure and vibration Detector for fluids and solids.					
804 B	Static and Dynamic Extensametric Units					
805 A	Mognatic defection of foults in composition and treatment in large components					
806 A	Mognetic detection of foults in composition and treatment in smoll parts					
713 A	Cothodic Oscilloscope with 5 or 6 curves for all industrial investigations					

Ribet-Desjardins are, among others, suppliers for :

The French Atomic Energy Authority, National French Center for Scientific Research,theMarcelDassault Aircraft Works, the Bretigny Flight Test Center, the French National Defence, SNCF(the French Railways), Oerlikon (Switzerland), Transmission Services for the Belgian and Netherlands Armies, the Universities of Liege and Brussels, Polish and Yugoslav Central Purchasing Authorities, Brandt Company, French Public Health (neuro-biologic services for hospitals).

In order to receive technical particulars on the equipment of interest to you please write to
DIBHINS

MEASURE - CONTROL
DEPARTMENT
13-17, Rue Périer, Montrouge (Seine), France Tel. ALE. 24-40-CODE WORD: PILACELECT, MONTROUGE

Sylvania RF=IF Transistors

Five new PNP Drift transistors, types 2N247, 2N370, 2N371, 2N372 and $2 N 544$, for radio frequency amplifier service

Sylvania's new PNP Germanium Drift transistors feature high output resistance for increased gain at 1.5 mc to 20 mc , low feedback capacitance and high alpha cutoff frequency.

Designed for RF-IF circuits, they open the door to more transistorized electronic equipment operating from the broadcast band to the higher frequencies.

The new Sylvania drift transistors incorporate a diffused base on an intrinsic germanium layer for improved control over base thickness, more uniform base region, lower base resistance and reduced collector capacitance. The end result is superior performance at higher frequencies.

The new PNP drift transistors feature Sylvania welded hermetic seal construction for maximum protection in rugged environments. They are encased in a modified JETEC class 30 case with four flexible in-line leads. The additional cen-
ter lead is connected to the metal case providing a complete unit shield and interlead shield. Coupling to adjacent circuit components is reduced to a minimum.

Call your Sylvania Sales Representative or write direct for information on new Sylvania PNP drift transistors, types 2N247, 2N370, 2N371, 2N372 and 2N544.

SYLVANIA'S
miniature flashbulbs give greatly increased picture-taking light.

General Plate ZIRCONIUM FOIL

Boosts Brilliance of

 Picture Lighting in SYLVANIA'SNew Miniature Flashbulbs

In developing its new M-25 and M-5 miniature flashbulbs bulbs that give picture-taking light equivalent to ordinary bulbs four times as large - Sylvania Electric Products Inc. chose General Plate as a dependable source for zirconium foil. And G.P. Zirconium foil plays an important part in the success of the new Sylvania bulbs, because it burns more efficiently than previously used materials, producing an ultra brilliant light burst with less internal pressure.
G.P. Zirconium foil is a vailable in widths up to 8 inches and thicknesses down to 0.00075 inch. G.P. Zirconium sheet, rolled down to 0.014 inch thickness, can be supplied sheared or slit in widths from 14 inches to 0.030 inch.
Sylvania is another of the many hundreds of progressive firms who use General Plate's specially rolled strip and mill products - today you can get flat stock, rod, wire and many profile rolled shapes at General Plate in clad and single metals, including reactive materials such as Zirconium Zircalloy, Hafnium, Tantalum, etc.

For details on G.P. Zirconium write for bulletin IND-16 - to get acquainted with the G.P. Metal product line, write for catalog G.P. 1 .

a Sendzire- Mill at Gerseral Plate rolls Zirconium foil to 0.00075 inch

METALS \& CONTROLS
General Plate Division

SILICON RECTIFIERS

designed and manufactured to meet sperianinus sperianinus For AXIAL LEAD TYPES

 For AXIAL LEAD TYPES}JAN

TAN
 (MIL-E-I / 1085A)

1 N 547
(MIL-E-1/1083A)

now from

Maximum Values for AUTOMATIC Military Type Silicon Rectifiers designed to meet the new JAN MIL-E-L Specification

GENERAL INSTRUMENT SEMICONDUCTORS

G-nera! Instrument Corporation
a so includes
F W. Sickles Division
Fadio Receptor Co.. Inc., anc
Nicamold Electronics Manufacturing Corporation (Subsidiaries)

Naturally, you can get these new axial lead JAN types direct from AUTOMATIC, and from authorized distributors throughout the country - and at prices that reflect General Instrument's years of volume production experience.
Together with the carlier JAN type stud mount group, AUTOMATIC now covers the entive medium power silicon rectifier field for the requirements of every military application.
More information? A complete set of data sheets is yours for the asking. Please write us today.

> At U. S. Air Force bases of operation, Kleinschmidt page printers and reperforator teletypewriters receive and transmit printed messages at speeds up to 100 words per minute.

Instant and precise communications between Air Force bases is a prime requisite in this era of supersonic speeds. To meet this essential need, Kleinschmidt teletypewriters and related equipment, developed in cooperation with the U.S. Army Signal Corps, provide fast transmission and receipt of printed communications. There is no time-lag for interpretation, no chance of misunderstanding, since both sender and recipient have identical printed originals ... instantly.

Research and development of equipment for transmitting and receiving printed communications has been a continuing project at Kleinschmidt for almost 60 years. This unparalleled store of experience, now joined with that of Smith-Corona Inc, holds promise of immeasurable new advances in electronic communications.

Model 150 Page Teleprinter Transmits and receives teleprinted messages at pre-set speeds of $60,66,75$ or 100 words per minute. Uses roll or fanfold paper. "Semi-rev" operation, whereby shafts rotate only a half-revolution, reduces maintenance, prolongs life of unit.

Model 120 Typing Reperfor-ator-Tape Transmitter This versatile unit receives and transmits messages in perforated tape form and permits reproduction, editing and preparation of tape, as well as manual keyboard transmission.

Pioneer in teleprinted communications equipment - A subsidiary of Smith-Corona Inc.

New 48-page Bulletin 3116-1 gives complete information on new Vickers Grain-Oriented selenium rectifiers. Includes construction details, charls, photographs, performance characteristics, dimensions, suggested applications and other helpful data. Please send your request on letterhead.

a new type of selenium for ...

Higher Current Ratings

without overlading

Lower Cost per Watt Output

These new rectifiers by Vickers represent a major "break-througl"" in selenium rectifier development. Using special equipment and quality control processes, Vickers engineers have developed a polycrystalline selenium layer with grains oriented, rather than the random pattern found in conventional selenium layers.
The result: more working crystals, greater uniformity and better rectifying performance per square inch of cell area.
This improved rectifier provides increase in current ratings without increase in cell size, gives more watts of output per dollar invested. You save both on initial cost and operating cost with the new Vickers Grain-Oriented selenium rectifiers- available in cell ratings of 18 to 36 volts.

VICKERS INCORPORATED

DIVISION OF SPERRY RAND CORPORATION

1801 LOCUSTSTREET•SAINTLOUIS 3, MISSOURI

Best long range investment for indoor antenna testing and free space chambers

Manufactured to Military Specifications B. F. Goodrich Microwave Absorbents provide the most accurate reflection-free rooms for the measurement of microwave antenna patterns. As a result of thorough quality control and factory testing, B. F. Goodrich Microwave Absorbents consistently duplicate free space conditions indoors better than any other product.

In addition to outstanding electrical qualities, our absorber is light-weight, fire-retardant, easp to install. It will not deteriorate in performance when walked upon and has excellent water and weather resistant properties.

The material is currently being produced in a number of thicknesses providing broadband operation as low as 50 megacycles. Material can be furnished

List of B. F. Goodrich Broadband Absorbers			
Designation	Lowest Frequency*	Thickness	Maximum Reflection
12 CM	2500 mc	11/2"-2"	2\%
$12 \mathrm{CM}-1 \%$	2500 mc	11/2"-2"	1\%
$12 \mathrm{CM}-30 \mathrm{db}$	2500 mc	11/2"-2"	0.1% at X-band. 2% elsewhere.
6 CM	5000 mc	1"	2\%
30 CM	1000 mc	$31 / 2^{\prime \prime} \cdot 4^{\prime \prime}$	2\%
$30 \mathrm{CM}-1 \%$	1000 mc	$31 / 2^{\prime \prime}-4^{\prime \prime}$	1\%
60 CM	500 mc	7".8"	2%
$60 \mathrm{CH}-1 \%$	500 mc	7"-8"	1\%
100 CM	300 mc	$10^{\prime \prime}-11^{\prime \prime}$	2\%
200 CH	150 mc	$26^{\prime \prime}$	2\%
600 Cu	50 mc	69**	2\%
$\begin{gathered} 8 \mathrm{CM} \text {-glass } \\ \text { fiber } \end{gathered}$	3600 mc	$1^{\prime \prime}-11 / 2^{\prime \prime}$	2\%
$\begin{gathered} 4 \text { CM-glass } \\ \text { fiber } \end{gathered}$	7500 mc	$3 / 4^{\prime \prime}$	2%

Most of the above absorbers can be furnished with 0.1% maximum reflection at selected points in the frequency band.
*All perform up to $30,000 \mathrm{mc}$
having less than 0.1% reflection at specific frequencies. For darkroom use, a special white compound can be applied to the surface of the pads to increase light reflectance.

When you're investing thousands, start right-specify B. F. Goodrich-the company with the longest experience and record for consistently high quality microwave material.

For new booklet on these absorbers write The B. F. Goodrich Company, 486 Derby Place, Shelton, Connecticut.

B.E.Goodrich microwave absorbents

20 times

as many relays

20
CLARE
Type F RELAYS

1
 RELAY OF EARLIER DESIGN $31 \% \mathrm{cu}$. in.

clare Type Felay

These twenty C are Type F Modular Relays, mounted on a p-inted-circuit board, take less than a third of the space occupied by a hermetically sealed relay of earlier designa relay in wide use a few short years ago.

Clare Type F Vodular Relays can be mounted in a closely restricted space-wherever the user desires-on a board punched at 2/10 inch intervals in a grid pattern.

This new her netically sealed relay-no bigger than a postage stamp-is fast and more than moderately sensitive, yet stalwart enough to withstand extremes of temperature, heavy shock, and severe vibration.

Send for Bulletin 124 today. Write: C. P. Clare \& Co., 3101 Pratt Blvd., Chicago 45, Illinois. In Cenada: C.P. Clare Canada Ltd., 2700 Jane Street, To onto 15. Cable Address: CLARELAY.

FIRST in the industrial field

This is the Magnet Wire with the extras.....

 ss
21 different basic insulation

84 different insulation constructions $100,000+$ different types and sizes

(in round, square and rectangular fabric and film coated magnet wires)

Add them up! EXTRA care in drawing and annealing-EXTRA care in insulating techniques! EXTRA rigorous "in-process" testing of wire from every machine each day plus 100% final inspection! EXTRA quick identification of size and type on easy-to-read, color coded labels... and EXTRA attention to packaging (spool, reel, and Magna-Pak ${ }^{\circ}$) at each of the four plants.

MAGNET WIRE DIVISION, Essex Wire Corp., Fort Wayne 6, Indiana Manufacturing Plants: Birmingham, Alabama; Anaheim, California; Fort Wayne, Indiana; Hills dale Michigan

NEW microwave analyzers 10 to 44,000 mc

 SAVE ENGINEERING MANHOURSA complete line of spectrum analyzers with full frequency coverage - up to Q Band

TO TEST:
MISSILES
RADARS
MICROWAVE COMPONENTS
telemetering
MULTI-PULSE TRANSMISSIONS

FEATURES:

- Direct reading, UNI.DIAL control
- High accuracy, resolution and sensitivity
- Stable and accurate frequency marker
- Five interchangeable plug-in units

NEW APPLICATIONS

TC COMBINATION SYNCHROSCOPE SPECTRUM ANALYZER

Pulsed signal as seen in synchroscope operation.

Spectrum of same pulsed signal displayed in spectrum analyzer operation.

MEASUREMENT OF PULSE MODULATION

 IN FREQUENCY AND TIMEThis single instrument (Model TSA-S) Synchroscope-Spectrum Analyzer provides a direct method of observing a pulsed signal and its frequency spectrum. As a sensitive synchroscope receiver, it displays a wide range of pulse widths and repetition rates. As a spectrum analyzer, it shows complete frequency spectrum. Selector switch determines function instantly.

TCA W VERY WIDE DISPERSION SPECTRUM ANALYZER

0.1 microsecond pulse using 70 mc dispersion

NARROW PULSE

 ANALYSISModel TSA-W, by virtue of its wide frequency dispersion (up to 70 mc), will display the spectrum of very narrow pulses.

Módel TJAW

10 microsecond pulse using 1 mc dispersion.

WIDE PULSE ANALYSIS
By changing selector switch to a narrower bandwidth, spectra of wide pulses can be displayed accurately on the TSA-W because of its high resolution (7 kc narrow bandwidth, 50 kc wide bandwidth).

Two cw signals 60 mc apar using 70 mc dispersion

SIGNAL COMPARISON

Two or more signals may be compared against a standard or each other as to frequency spacing. Wide dispersion provides simultaneous observation of signals separated by large frequency differences.

Additional applications for spectrum analyzers are available on request. Write for free handbook on spectrum analyzer techniques.

POLARAD ELECTRONICS CORPORATION

43-20 34 Street, Long Island City 1, N. Y Representatives in principal cities. See your Yellow Pages.

FREE LIFETIME SERVICE ON ALL POLARAD INSTRUMENTS

Interchangeable Plug-in Tuning Units

Tuning Unit	Frequency Range
STU-1	$10-1,000 \mathrm{mc}$
STU-2	$910-4,560 \mathrm{mc}$
STU-3	$4,370-22,000 \mathrm{mc}$
STU-4	$21,000-33,000 \mathrm{mc}$
STU-5	$33,000-44,000 \mathrm{mc}$

Engineers: Tear out for your notebook

MULTI-BAND MICROWAVE RECEIVER 400-46,700 mc

A sensitive microwave receiver is a basic tool in microwave testing operations. A few of the many and diverse applications of this versatile instrument are illustrated below, using a Polarad Model R Receiver, 400 to $46,700 \mathrm{mc}$. Operation is simplified by UNI-DIAL control and direct reading frequency dial.

SOME TYPICAL APPLICATIONS:

Frequency Range

Tuning Unit Model RR-T	$400-1,000 \mathrm{mc}$
Tuning Unit Model RL-T	$950-2,040 \mathrm{mc}$
Tuning Unit Model RS-T	1,900-4,340 mc
Tuning Unit Model RM-T	4,200-7,740 mc
Tuning Unit Model RX-T	7,300-11,260 mc
Tuning Unit Model RKS-T	9,500-15,600 mc
Tuning Unit Model RKU-T	14,700-22,000 mc
Tuning Unit Model RQ-T	20,300-46,700 mc

RECEPTION of MICROWAVE ENERGY

Model R

A multi-purpose broadband microwave receiver is indispensable for quantitative analysis of microwave signals and monitoring of all types of radio and radar communications. With a test antenna connected to the r-f input, power and frequency comparisons of virtually any type of signal encountered in microwave work (AM, FM, cw and pulse) may be read directly on the front panel meter. Trigger output reproduces pulse width and repetition rate, at the same time eliminating noise that may be present.

ANTENNA PATTERN
MEASUREMENTS

Corinect a synchronzzed antenna drive and patterì recorder (Polarad Mojiels AD-1 and PR-1 or equivalent) into microwave system as shown in blocke diagram As receiwer antenna is rotated, pattern variations may jpe observed, directly in db , or as a. proportional voltage function on the Teceiver meter. and afre recorded on the nioving chart of the trecorder Besides permitting complete- investigation of minor lobes the high sensitivity of the Model R receriver allows ample separation high powered source. Tuned, narrow bahd preselector eliminates spurous and interfering signals which. mıghf cause error. Dynämic range perthids establishing nulls as mucti as 60 db down from energy in the drectegh of maximum directivity

MEASUREMENT of RELATIVE POWER of HARMONICS

With the receiver tuned to the harmonic in question, set an arbitrary gain level on the meter. Then, normalize the receiver gain with the receiver tuned to the fundamental and repeat the measurement. Subtract the db power level of the harmonic from the db level of the fundamental to determine the relative power level between the signals. Important receiver requirements for this measurement are broadband coverage and wide dynamic range as featured in Polarad Model R.

LEAKAGE and INTERFERENCE MEASUREMENTS

Use a dipole or horri antenną, connected fo receives input. to search around connectors scresk joints or any other suspected souige of leakage. Any r-f energy. present is indicated on the front paniet meter By cattbrating the microwate receiver, absolute teakage level may be accurately determined, Bhel Polarad Model R receiver is ideally surted to leakage detestion because of its extremely high sensitivity, its broad frequency coverdgeand its use of a preselector bestow $11,000 \mathrm{mc}$

With the component under test placed between the signal source and the receiver, set an arbitrary gain level on the receiver meter. Then remove the component and connect the source directly to the receiver. Increase the attenuation of the calibrated i-f attenuator on the front panel of the receiver until the same reference meter reading is reached. Attenuation of the component under test is then equal to the amount by which the i-f attenuator was increased.

- Measurement of bandwidth of microwave cavities
- Frequency meter
- Field intensity meter
- Pulse, pulse time or pulse position demodulator
- Sensitive microwave power meter
- General communications

Complete specifications and prices on request.

POLARAD ELECTRONICS CORPORATION

What do these latest aircraft and missiles have in common?

All are equipped with Genisco flight control or instrumentation accelerometers.
What better proof of reliability?
With component reliability getting increased attention from missile and aircraft designers, it is significant to note the number of supersonic weapon systems equipped with Genisco atcelerometers.
A complete list reads like a roll call of tactical and strategic missiles and aircraft now in the nation's arsenal. Included are such weapons as the Atlas, Thor, Nike Ajax, Nike Hercules, Bomarc, LaCrosse, Bull Pup, Talos, Dart, Matador, Corporal and Terrior missiles; and the F100D Super Subre, F101 Voodoo, F106A, and Canada's CF105 aircraft. What better proof of the reliability of Genisco instruments than this acceptance by designers of these weapons?
Combining product reliability with guaranteed delivery schedules and competitive pricing has made Genisco the free world's largest producer of potentiometer-type flight and fire control accelerometers. More than 40,000 have been delivered to date.

Send for technical data sheeis on all Genisco Accelerometers.

2233 FEDERAL AVENUE • LOS ANGELES 64 - CALIFORNIA

7077 TRIODE TOPS ALL TUBES IN UHF-AMPLFIER ADVANTAEES!

High gain: 14.5 db
Low noise: 5.5 db
Low capacitance
Low inductance
Low power input
Light weight
- Small size
Ceramic ruggedness

This low-price tube is in regular production now. Compare the 7077 with other tubes A and B, which you can obtain for efficient high-gain, low-noise amplifier service at 450 megacycles! (See chart at right)

7077
Tube "A"
Tube "B"

	7077	Tube " A "	Tube " B "
PRICE	$\$ \$$	$\$ \$ \$ \$ \$$	$\$ \$ \$ \$ \$$
RELATIVE	E		
SIZE			

Nolike this existed. The industry asked for a UHF amplifier tube for new and critical military applications in radar, communication, and navigation systems. General Electric creative design took it from there. Working with a list of "musts"-such as small size, light weight, top performance, and initial and operating economy - General Electric tube engineers developed new materials and processes that made possible new design approaches.

Now the 7077 is ready-electrically, mechanically and life-tested-coming from a factory in volume production. It meets full design specifications for performance. The 7077 is built for rugged operation up to 100,000 feet altitude, and up to 300 C envelope temperature. No forced-air cooling is required.

Phone your nearest General Electric Receiving Tube Department office listed below for further information about this newest, smallest, best-performing UHF triode... including the low price.

EASTERN REGION

CENTRAL REGION
3800 N. Milwaukee Ave.
Chicago 41, Illinois
Phone: SPring 7-1600

WESTERN REGION 11840 W. Olympic Blvd. Los Angeles 64, Cal. Phones: GRanite 9.7765

BRadshaw 2.8566

Progress /s Our Most Imporrant Product GENERAL ELECTRIC

Wide range of 7077 performance, 30 to $1,000 \mathrm{mc}$, is shown by the noise figures above, under power-matched and noise-matched conditions, using an argon noise source. Noise contours are similar to those below with a diode noise source. Contours below plot noise figure and gain for 450 megacycles at various tube operating points.

INSTANT proouction testing of Coils, Capacitors, and Resistors!

SPECIFICATIONS

OSCILLATOR FREQUENCY RANGE: 200 Kc . 1070 Mc . in 11 ranges, using 6 plug-in inductors,
INDICATING SYSTEM: Large $5^{\prime \prime}$ cathode ray tube, calibrated in \% O on the vertical axis and \% L-C on the horizontal axis.

TOLERANCE LIMITS: $\pm \mathbf{2 5} \%$ Q, calibrated in increments of 5%; $\pm 5 \%$ and $\pm 20 \%$ L-C, calibrated in increments of $\pm 1 \%$ and $\pm 5 \%$ respectively.
Q RANGE: 50 to 500
INDUCTANCE RANGE: 1 Microhenry to 10 Millihenries.

CAPACITANCE RANGE: 2 MMF. to 1000 MMF. RESISTANCE RANGE: 1000 to 500,000 Ohms. POWER SUPPLY: 105-125 Volts, 50-60 Cycles. PRICE: $\$ 750.00$ F.O.B. Boonton, N. J.

SAVES VALUABLE INSPECTION TIME

Gives you instantaneous readout
EXTREMELY SIMPLE TO USE
No operator training required

NO TUNING OR ADJUSTMENT NECESSARY

Gives simultaneous indication of both Q and L.C

ELIMINATES OPERATOR MEASUREMENT ERROR

Single readout on large CRT screen
Write for complete information

only one direct writer

THHE NEW SANBORN

6- OR 8-CHANNEL OSCILLOGRAPHIC RECORDING SYSTEM

6- OR 8-CHANNEL SYSTEM IN ONE CABINET

Each module of four Preamplifiers fakes only $101 / 2^{\prime \prime}$ of panel space, complete Recorder-Power Amplifier package only $171 / 2^{\prime \prime}$. All controls are on front panel. Total panel space, including ventilating fan and master power panel, 49". Entire system normally installed in one cabinet $22^{\prime \prime} \times 22^{\prime \prime} \times 73^{3 / 4} 4^{\prime \prime}$, to place recorder and controls at convenient height.

frequency response To 120 CPS

Essentially flat from 0 to 100 cps at 10 -division amplitude peak-to-peak, 3 db down at 120 cycles. Built-in pre-emphasis circuit in Power Amplifier.

HEAVY CURRENT FEEDBACK,

 TRANSISTORIZED POWER AMPLIFIERSLong term drift less than 0.2 div. over $20^{\circ} \mathrm{C}$. changes, short ferm less than 0.1 div. for 24 volt line voltage changes. Response time 4 ms . In-phase rejection ratio 100:1. Gain stability better than 1% with $20^{\circ} \mathrm{C}$. and 20 volt changes.

LINEARITY: 0.2 DIVISION OVER ENTIRE 50 DIV. CHART WIDTH
T his is the new Sanborn " 350 " - today's most comprehensive answer to combined improved performance, versatility and reliability in an oscillographic recording system of compact size. First compare all the " 350 " design and performance improvements... then consider the many ways they can help you do more kinds of measurement and recording, with more accuracy, speed, convenience and reliability.

Experienced sales-engineering representatives in all principal cities. Call the qee near you for complete "350" facts.

gives you all these features

INTERCHANGEABLE PREAMPLIFIERS WITH INDIVIDUAL POWER SUPPLIES
Compact, plug-in units with $4^{3} / 16^{\prime \prime} \times 10 \frac{1}{2 \prime}$ panels. Present types include Carrier, Servo Monitor (demodulator), DC Coupling, True Differential DC. Can be used separately for driving aptical oscillo. graphs, 'scopes, lape recorders, etc.

LIMITER CIRCUIT AHEAD OF POWER AMPLIFIERS

 ASSURES DAMPING AT ALL TIMESLimiting at input prevents amplifier saturation or cut off; so that galvanometer damping is never lost.

RUGGED, RELIABLE, LOW VOLTAGE, LOW IMPEDANCE GALVANOMETERS

 Fewer turns of heavier wire and completely enclosed coil increase reliability. High lorque (250,000 dyne-cm.). Hysteresis level less than 0.1 division. Designed for easy replacement in field.
RECORDER-POWER AMPLIFIER PACKAGE IN ONLY $171 / 2^{\prime \prime}$ OF PANEL SPACE

Integral, tube-free package includes eight power amplifiers and power supply, which use power transistors and solid state rectifiers. Operates on 115 volts, 60 cycles. Simple paper loading from fronti Individual siylus heat controls, charl speed pushbuttons, motor switch, fimer-marker switch, fuses, paper footage indicator all on front panel. Connectors for input signals, output monitoring (± 1 volt with respect to ground from 2.5 ohm source) and complete remote control provided at rear.

VELOCITY FEEDBACK DAMPING

True damping by velocity signal from separate winding over galvanometer driving coil. Damping control accessible from front of Recorder for easy adjustment.
(all data subject to Change without notice)

GALVANOMETER

NATURAL FREQUENCY 55 CPS

Higher natural frequency provides higher over-all system frequency response.

INKLESS RECORDINGS IN TRUE
 RECTANGULAR COORDINATES

Heated stylus creates sharp, smudge-proof trace on plastic coated Permapaper. Chart channel width $1 \% 16^{\prime \prime}$ (approx. 4 cm), ruled In 50 div. of $1 / 32^{\prime \prime}$ each.

RECORDER-AMPLIFIER UNIT HAS 0.1 VOLT/CHART DIV. SENSITIVITY

Can be used alone, when preamplification is not needed. (Three complete 8-channel Recorder-amplifier-power supply units can be mounted in one cabinet.)

ELECTRICAL PUSHBUTTON CHART SPEED CONTROL, WITH

PROVISION FOR REMOTE CONTROL
Any of nine speeds ($0.25,0.5,1.0,2.5,5,10,25,50,100 \mathrm{~mm} / \mathrm{sec}$.) instantly selectable by pushbution. Plastic strip for channel identi. fication markings.

QUALITY COMPONENTS USED THROUGHOUT

JAN components used wherever practicable; for example, note in the photos hermetically sealed MIL-T-27 power transformers, MIL-approved electrolytic condensers in all power supplies, ruggedized premium-type fubes in Preamp power supplies, etc.

Eight - channel " 350 " from rear, showing (upper half) eight indi. vidual Preamp Power Supplies on four-unit module frames, and module frames, and Amplifiers and Power Amplifiers and Pow Supply

Multi-track

magnetic recording

reproducing heads...

Laboratory-designed, precision-built by Davies

Series	Track Data		Crosstalk (db)	Number of Tracks for Various Tape Widths							
	Width (Mils)	Spacing C to C (Mils)									
				1/4	1/2	3/4	1	11/4	$11 / 2$	13/4	2
700	50	140	-60^{*}	2	4	5	7	9	11	13	14
800	40	125	-60*	2	4	6	8	10	12	14	16
1000	40	100	-55*	3	5	8	10	13	15	18	20
1200	32	85	$-50 *$	3	6	9	12	15	18	21	24
1300	26	78	-40**	3	6	10	13	16	19	23	26
1400	40	72	-40**	3	7	10	14	17	21	24	28
S1400	32	70	-40**	3	7	10	14	17	21	24	28
1600	32	62	-35**	4	8	12	16	20	24	28	32
2000	20	50	-35**	5	10	15	20	25	30	35	40

*For Direct Recording, 1000cps
**For Digital Pulse Recording

MODEL 1206 DP

MODEL 814 A

Davies multi-track recording and reproducing heads for magnetic tape data recording are offered in a wide selection of designs for every practical tape service.
Davies single-stack heads are precisely aligned for those applications requiring coincidence of time and phase among tracks. Gap alignment is held to within ± 0.1 mil per inch of tape width.
For services requiring a large number of tracks, but where time and phase displacement can be tolerated, Davies 700,800 and 1000 Series Heads can be interleaved to provide 14,16 , or 20 tracks on $1^{\prime \prime}$ tape.
All-metal tape contact area on Models with the "P" designation (1206 DP above) essentially eliminate oxide build-up at high tape speeds.
In all types, plastic encapsulation protects and preserves the characteristics, even under adverse environmental conditions such as shock, vibration and extremes of temperature and humidity. Additional technical and application information may be obtained by writing Minneapolis-Honeywell, 10721 Hanna Street, Beltsville, Md.

Honeywell

for General Purpose Audio applications including amplifier and switching service

- welded to-9 package
meets or exceeds mechanical and environmenta requirements of MIL-T-19500A.

- LOWER DISTORTION

with maximum signal output.

WIDE VOLTAGE RANGE

OUTSTANDING CIRCUIT STABILITY

LOW IN COST
thanks to Motorola's "multiple-assembly"
mass production technique

FOR COMPLETE TECHNICAL INFORMATION concerning these and other Motorola Semiconductors write, wire or phone Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona. BRidge 5-4411. Teletype PX 80.

REGIONAL OFFICES :

RIDGEFIELD, N.J.
540 Bergen Boulevard WHitney 5-7500

DISTRIBUTORS:

NEW YORK
'afayette Radio
Milgray Electronics, Inc.

CHICAGO
Allied Radio, Inc.
Newark Electric Co

BOSTON
Cramer Electronics, Ine
lOS ANGELES
Kierulff Electronics, Inc.

2 BASIC PROBLEMS in testing electronic systems

Many complex electronic systems-missile guid. ance is a good example-may require testing that takes days by conventional methods. Yet the end function of such a system may last only a few min-utes-even seconds.
Other systems, though less complex, must be tested in such large numbers that adequate personnel are frequently unavailable to perform tests by conventional means.
The SCATE system of automatic test equipment can solve both problems. It provides self-checking automatic testing which is fast, flexible and foolproof.
The system evaluates all important parameters of equipment under test, including:

1. RF sensitivity, center frequency, band width, power output, noise figure.
2. Audio frequency gain, band width, power output.
3. Video pulse circuitry, including pulse decoding, logic, digital comparison, pulse delays.
4. Voltage levels, $D C$ and $A C$. 5. Servo response.
5. Mechanical response.

Stromberg-Carlson has standing designs for all the standard components which go into a SCATE system, and is fully experienced in designing custom components which may be required in any test system.

Complete details on the SCATE system and other Stromberg-Carlson automatic test equipment are available on request.
an be tested automatically by the SCATE system.
"There is nothing finer than a Stromberg-Carlson"

1464 N. Goodman Street - Rochester 3, N. Y.
Electronic and communication products for home, industry and defonse

New

Electro Instruments A-12 DC amplifier totally transistorized

equal to or better than the best
vacuum tube instruments!

The new Model A-12 DC Amplifier is the preferred systems link for amplification, normalization and impedence transformation. Use of solid state elements assures maximum reliability; power dissipation is only seven watts. Mil-type components are mounted on coated plug-in printed circuit boards for protection against vibration and corrosion.

versatility pius economy

Electro Instruments produces a series of plug-in mode selectors and attenuators for the A-12: single ended, differential and operational, fixed and variable gain.

Single Ended Input

Input Impedance:
Source Impedance:

Ambient Temperature:
Noise (Referred to input):

Frequency Response:
Output Capability:

Fixed gain set to any value from 10 to 1000 inciusive by front panen patog-in units. gains of $0,10,20,50,100,200,500$ and 1,000 . Adjustable upward 6db Irom setting with notentiometer.

100 megohms shunted by 0.001 mfd (typical) 5 K or less (to meet noise specification)

Less than 2 microvolts in 200 hours at constan ambient temperature Less than 0.4 microvoll per degree centigrade.
0° to $50^{\circ} \mathrm{C}$.
$0-3 \operatorname{cDS} 5$ microvelts peak to peak 0.750 cps 4 microvolts rms.
0.50 kc 8 microvolts rms.
$\pm 3 \mathrm{db}$ to 50 kc (typical); $\pm 1.0 \%$ to 2 kc
± 10 volts at $\pm 100 \mathrm{ma} \mathrm{DC}$ or peak $A C$ to 10 kc

Differential Input
Fixed gain set to any value from 10 to 1000 inclusive by front panel plug-in units. Gain switching plug. in attenuator available with gains of $0,10,20,50,100,200,500$ and 1,000 potentiometer. (Fixed gain plug-in units only.)

10,000 ohms. Less than 2 microvalts in 200 hours at constant per degree centigrade.
$0^{\circ} 1050^{\circ} \mathrm{C}$
$0.3 \cos 10$ microvolts peak to peak
0.750 cps 6 microvolts rms.
0.50 kc 11 microvolts rms.
$\pm 3 \mathrm{db}$ to 50 kc (typical); $\pm 1.0 \%$ to 2 kc
± 10 volts at $\pm 100 \mathrm{ma} D C$ or peak $A C$ to 10 kc

Write today for complete specifications on single-ended, differential and operational models.

Eight to a rack The A-12 is packaged for high density use; mounts eight across in $19^{\prime \prime}$ relay rack panels.

Insiruments, Inc.

3540 Aero Court
San Diego 11, California

plug it in . . . put it in writing . . . anywhere!

Recording with the new Brush Mark II is remarkably simple.
Operation is foolproof, with pushbutton chart speed selection . . . fast paper loading . . . self-cleaning, selfpriming pens...built-in, permanently calibrated amplifiers.
Recordings are accurate . . . easy to interpret . . . easy to reproduce. Mark II operates over a wide amplitude and frequency range (d.c. to 100 cps), provides high stability, extreme sensitivity with an input range of 10 millivolts to 400 volts.
See how Mark II can speed your work, help you obtain data - the Brush way.

brush
 INSTRUMENTS

3405 perkins avenue

NEW PUSH-PUSH SWITCH CONTROLS

. . . take the waiting out of warm-up time!

UII
SHAFT FOR VARIABLE RESISTANCE CONTROL

Here's real operating convenience and added sales appeal for TV and radio receivers, phonographs and instruments!

Three new Stackpole controls combine pushbutton switching with rotary control of volume, tone, contrast or similar functions. "Waiting for the warm-up" before making final adjustments is a thing of the past. Just one push and the circuit is "on" and adjusted to the last selected setting of the variable resistor.

NEW STACKPOLE TYPE "E" SWITCH used on these controls has a positive, SP-ST snap-action. It carries a UL rating of 3 amps. at 125 volts ac-dc or 1 amp . at 240 volts ac-dc.

BASIC SWITCH/CONTROL COMBINATIONS using the popular Stackpole L-type control are available as follows. Printed wiring and wire-wrap terminals obtainable on each:
Type LE: single-section, single-shaft. Push shaft for switch, turn same shaft for control.
Type L3E: single-section, dual-shaft. Push inner shaft for switch, turn outer shaft for control.
Type LXE: dual-section, dual-shaft. Push inner shaft for switch, turn inner shaft for rear control, turn outer shaft for front control.

Containing complete specifications and dimensions sent on request.

STACKPOLE

Coldite 70 土 $^{\text {® }}$ fixed composition resistors
Iron cores
Ceremagnet ${ }^{(1)}$ ceramic magnets Fixed composition capacitors Brushes for all rotating electrical equipment Electrical contacts Hundreds of related carbon, graphite and metal powder products.

WINDABILITY

SOLDERABILITY

VARNISHABILITY

RELIABILITY...

TTs PMHLDP

- BETTER WINDABILITY-"lays in" easier.
- LOW TEMPERATURE SOLDERABILITYno damage to copper conductor.
- IMPROVED VARNISHABILITY-safer in hot varnish solvents.
- FIELD-TESTED RELIABILITY-uniquely balanced properties provide better thermal life.

Phelps Dodge magnet wire is available in modern non-returnable spools, reels and "Pakeze" containers

Nyleze* is another example of the advanced magnet wires developed by Phelps Dodge through its Applied Research. It is a new combination of materials with highly desirable properties for use in such applications as series armatures and fields, stators, potted coils, random wound coils, toroids and other difficult winding designs. These properties suggest possibilities for cost economies and improved designs that result in better operating performance of your equipment. *Nyleze is red in color

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

11R54 15013 IASHITC oraniva?
-MROM MONE TO MARI:HMI

PHELPS DODGE COPPER PRODUCTS CORPORATION

IMCA MANUFACTURING DIVISION
service-engineered product

The red top tells you
it's a new FP capacitor this X-rar shows you the new, rugged construction.

the inside story of an Outstanding Capacitor Look for the Red Top

Serving Industry with These Products:

Electromechanical - Resistors - Switches - Tuning Devices • Vibrators Electrochemical - Capacitors - Mercury and Zinc-Carbon Batteries Metallurgical - Contacts - Special Metals - Welding Materials

Parts distributors in all major cities stock Mallory
standard components for your convenience.

MFP Capacitors have been accepted standards for many years... paoven in performance by every single application.
Now-a brand new 'plus' feature makes these capacitors better, more dependable than ever before. The secret is in the internal mounting of the capacitor within the can-by means o- a novel spring clip* that holds the unit snugly in place.

- The unit is lighter in weight-therefore less susceptible to vibration and shock.
- Lighter weight makes FP capacitors even better for printed circuit applications.
- Improved end seal prevents leakage and premature gas blowout ... means longer service life.

Specify improved Mallory FP Capacitors for every circuit design-look for the red plastic end seal. Complete specifications and application data available on request-write Mallory.

Potent Applied For

June 6, 1958 - ELECTRONICS engineering edition

electronics engineering edition

Compatible Stereo Disk Uses F-M Multiplexing

Abstract

A $25-\mathrm{kc}$ carrier, frequency-modulated by the differential output signal from two stereophonically placed microphones, is superimposed on a monaural signal derived from the sum of the outputs. The composite signal is recorded conventionally on a disk with a lateral cutter. For stereophonic playback, an auxiliary preamplifier limits and detects the difference signal and combines it with the sum to recover the original two channels

By JERRY B. MINTER, Components Corporation, Denville. N. J., and

JOHN H. McCONNELL, Electro-Sonic Laboratories Inc., Long Island City, N. y.

MODERN HIGH-FIDELITY recordings are the product of many man-hours of research, tempered by years of practical experience. It seems logical to the authors to util-

Author checks experimental setup of development model of stereo preamplfier and highquality monaural pickup arranged for stereo disk playback. Power amplfiers are not shown
ize the vast experience accumulated with lateral disk recordings in coping with the problems presented by stereo disk recording, and avoid recourse to any stereo

system requiring the development of complex cutting heads and playback pickups.

A basic objective is to make a stereo disk capable of being played monaurally on any monaural phonograph in good working order without sacrifice in performance or damage to the disk. The introduction of such a record would present no inconvenience to those not having stereo equipment, while permitting subsequent inexpensive conversion to a stereo system.

The system described here utilizes $f-m$ carrier multiplex above the audible spectrum to record the difference information which results when two stereophonic channels are subtracted vectorially. The vector addition of the two channels is recorded normally and simultaneously using the standard RIAA curve. The resulting groove resembles a normal lateral recording except that there is a super-

ABOUT STEREO DISK RECORDING

With the rapidly increasing popularity of stereo tapes, the record industry has been stimulated to great activity in the field of stereo disk recording. Some industry quarters are seeking a compatible system whereby stereophonic reproduction may be added to a monaural system simply and inexpensively. Disk recordings can be economically produced in quantity and are easily handled by the nontechnical music lover

One early area of stereo-disk development was the vertical/lateral technique, which achieves stereophonic effects by having one channel recorded laterally, and the other vertically in a single groove. The quality of most of these early stereo disks was poor. The system suffered from mechanical difficulties caused by the increased mass of the cutters and playback heads, and cross-coupling between the channels. Similar problems beset the early $45 / 45$ system, in which two channels were cut at a 45 -degree angle to the vertical on the walls of a single groove. Attempts to play back these disks monaurally resulted in severe distortion.

However, recent improvement in the techniques of 45/45 and vertical/lateral recording have overcome many of the technical difficulties presented by stereophonic reproduction as well as compatibility with monaural playback.
imposed 25 -kc carrier of moderate level ($4 \mathrm{~cm} / \mathrm{sec}$ velocity)

Since this carrier frequency is far above the limit of human hearing, it is not audible when the record is played on a standard monaural system. A special auxiliary preamplifier may be arranged to amplify the carrier and its associated sidebands sufficiently for limiting and detection of the audio vector difference signal. After detection, the difference signal must be combined with the vector sum or monaural signal to reproduce the original stereophonic channels.

Recording System

Reference to Fig. 1A indicates two microphones, A and B, which are placed for stereophonic recording. The outputs of the two microphones are added in phase by the lower mixer to produce a signal of greater amplitude than either signal alone. In general, the added signal or vector sum is the equivalent of a monaural signal which would result if the microphone were located midway between the microphones A and B.

The output from channel B is inverted in phase by passing it through a single stage of vacuumtube amplification; the inverted or $-B$ signal is then added to channel A to yield the vector difference signal, $A-B$. This signal contains the stereophonic information and it will be zero (neglecting room acoustics) if the source is concentrated equidistantly in front of the two microphones. The vector difference will increase as sources
move either side of center, thus yielding information as to position of the source.

The $A-B$ signal is fed into an $\mathrm{f}-\mathrm{m}$ modulator to shift the $25-\mathrm{kc}$ carrier between the limits of 20 and 30 kc . The carrier and sidebands are then combined with sum signal $A+B$ in a mixer and fed into the recording amplifier. The recording amplifier and associated lateral cutter are equalized for the RIAA curve up to 18 kc and flat from 20 to 30 kc , on a velocity basis.

After the master recording has been cut, it is processed in normal fashion and vinyl pressings are made in the conventional manner.

There are no special problems associated with this operation.

Playback Preamp

Figure 1B is a block diagram of the playback preamplifier. A highquality lateral pickup is connected through a low-pass R-C filter to a normal dual-triode preamplifier equalized for the RIAA curve. In addition, the output of the pickup is fed through a high-pass filter to the carrier amplifier which amplifies the band between 20 and 30 kc. The amplified carrier and sidebands are passed through a limiter, discriminator and filter to recover the difference modulation $A-B$ from the carrier. This difference signal is then combined with the $A+B$ signal in a mixer to yield the original A signal channel in the output, since the $-B$ cancels the $+B$. The difference signal and the inverted $A+B$ signal are then added to produce the B signal channel. Both channels are then fed to power amplifiers and speakers.

If only a normal monaural preamplifier and single channel are available, the output of the pickup can be amplified in ordinary fashion. The high-frequency RIAA roll-off characteristic will remove most of the f-m carrier and its sidebands, which are above the audible range of the ear anyhow.

Fig. l-Block diagram of (A) the recording system, and (B) the playback system. A monaral system could be converted to stereo by addition of (B) and a power amplifier

FIG. 2-Schematic diagram of auxiliary playback preamplifier. Limiting of the f - m carrier is performed by a Schmitt trigger circuit comprised of $V_{n n}$ and $V_{3, t}$. The detected stereo information is therefore in the form of pulse-sampled audio at the output of V_{3}

No detectable noise or distortion results from the presence of the carrier on the disk. The first-order intermodulation products are low and above the audible range of hearing with most types of music. It has not been necessary to lower the l-p recording levels appreciably below that considered good practice ($8 \mathrm{~cm} / \mathrm{sec}$). Overmodulation of the groove will cause tracking problems and gives rise to tracing distortion. If severe tracing distortion does appear, and the stylus loses momentary contact with the groove, a carrier dropout will occur. This can be reduced to a minimum by proper adjustment of the vertical stylus force. A force of 3 to 4 grams with a 1 -mil tip radius seems satisfactory for the several pickups used to date. Some sophisticated circuitry will undoubtedly permit more tolerance in carrier dropout. This problem bears a resemblance to horizontal tv synchronizing problems at the
time when phase-controlled oscillators were introduced.

Circuit Diagram

The schematic diagram of the playback system is shown in Fig. 2. The input from the pickup feeds through a low-pass filter which serves as the RIAA roll-off to V. which is a conventional preamp. The output of V_{1} is the $A+B$ signal and it is fed directly to channel 1 and, after phase inversion in amplifier V_{3}, to channel 2.

Another amplifier channel is provided for the f-m carrier through a transistor preamp Q_{1} and a highpass filter to $V_{1 A}$ which has a double-tuned plate circuit to remove extraneous signals from the $\mathrm{f}-\mathrm{m}$ carrier and its sidebands. This stage has a uniform response from 20 to 30 kc . Stages $V_{1 / s}$ and V_{24} provide further amplification of the f-m carrier and stages. $V_{2 R}$ and V_{34} form a Schmitt trigger which is used as a limiter. The limiter output
is differentiated and fed to countertype detector $V_{3!}$, which is a high g_{m} triode with fixed bias bled from the $B+$ bus. The plate current pulses of the counter stage contain the difference information sampled at the carrier rate. It is necessary to filter out the carrier ripples to reduce background noise in the difference channel. Initially, L-C filters were used. However, saturation of the iron-cored inductors and the high cost of these elements caused a shift to a simple R-C filter which has proved effective. This filter gives some roll-off which can be equalized by preemphasis in the difference modulator circuit.

The difference signal, $A-B$ is amplified by $V_{5, ~}$ and combined with the monaural channel through appropriate resistive networks to form the two stereo channels. The carrier level control is actually a spread control, in that it tends to spread the apparent speaker distance when level is increased.

FIG. 1-Nickel tubes surrounded by coils (left) are heart of magnetostriction unit. Pull-in of rotor on control motor (right) actuates receiver muting contacts

FIG. 2-Schematic of ultrasonic generator, comprising transducers and oscillator

By NEIL FRIHART Chief Engineer, and JAMES KRAKORA Senior Project Engineer, Advanced Ty Development, Motorola, Inc., Chicago, In.

Ultrasonic Tones

Abstract

Frequency shift of continuous ultrasonic tone activates tuning motor on tv receiver. Skip-tuning is possible, and both audio and video are killed during tuning. Output of ultrasonic transducer is transmitted through air path to microphone in receiver where tones are detected in balanced $120-\mathrm{kc}$ discriminator. Remote on-off control of power is also provided

REMOTE CONTROLS for tv receivers have become increasingly numerous in recent years. Control media for the several systems ${ }^{1,2}$ have included light, r-f and superaudible frequencies. The unit to be described here uses a continuous ultrasonic tone produced by a magnetostriction generator.

Magnetostriction ${ }^{3}$ is the change of dimension in certain materials when subjected to a magnetic field. The ultrasonic transducer' shown in Fig. 1 comprises a transistor oscillator whose frequency is controlled by either of two lengths of nickel tubing with aluminum diaphragms at their ends. The tubing in turn floats inside a coil form.

Wound on the forms are two coils, one at either side of the center of each piece of tubing. One coil acts as a driver, the other as a pickup to provide a feedback voltage to sustain oscillations.

When a-c is applied to the driving coil, the tubing is magnetized and the rod contracts. This causes strain waves to be propagated along the length of the rod, and they are reflected from the ends. When the driving frequency is such that those strain waves reinforce, resonance occurs. At this frequency the vari-
ation in length is at its greatest, which is only about 1 part in 1,000 .

This motion induces a voltage in the pickup coil which is fed back to control the oscillator frequency. Nickel tubing with a wall thickness of 0.015 in . is used to reduce eddy currents from those obtained with solid rod. Nickel contracts with

FIG. 3-Block diagram of complete control system. Box (A) comprises remote generator. while equipment in box (B) is included within the television receiver

FIG. 4-Complete schematic of control receiver. On-off switches in receiver and remote unit are spdt for independent operation

Select Tv Channels

either half-cycle of an alternating magnetic field. To avoid doublefrequency output the tube is biased magnetically so that the induced field never exceeds the bias field. For best operation the biasing flux density is about 60 percent of the saturation value. In this unit small sections of Cunife magnets are placed on the sides of each assembly.

The use of tubing permits construction of a stable oscillator, but the acoustical power radiated is quite low. By placing light aluminum diaphragms of an optimum size on the front ends of the tubing it is possible to increase the acoustical output many times. Maximum power is about 40μ bars at 1 ft .

The schematic diagram of the ultrasonic transducer is shown in

FIG. 5-Microphone characteristics with and without inductive tuning

Fig. 2. The current drain is limited to about 10 ma and the duty cycle is such that good battery life is obtained. Only 2.5 sec are required to bring the automatic tuning mechanism back to the starting position.

Complete System

The block diagram of the complete system is shown in Fig. 3. The receiver uses a barium titanate transducer as a microphone. As shown in Fig. 4, the microphone is tuned with a $20-\mathrm{mh}$ coil to broaden the frequency response. The electrical and mechanical response complement each other to provide peaks at the control frequencies of 38.5 and 41.5 kc , as shown in Fig.5. The sensitivity at these frequencies is influenced considerably by the Q of the microphone coil, which must be 40 or greater to obtain optium circuit operation.

The total beam angle of the microphorre is $50 \mathrm{deg}^{\prime}$ at the $6-\mathrm{db}$ points. It is connected to a R-C amplifier stage that is degenerative to raise the input impedance and reduce microphone damping. The stage following is tuned to reduce the noise bandwidth and to increase gain and selectivity. A conventional R-C stage follows which
is used to drive a limiter-tripler. Finally, a balanced discriminator detects the two ultrasonic tones. The two positive control voltages developed are fed through integration circuits to further reduce the possibility of noise causing false operation.

In the complete television receiver the sound and video output are muted during the tuning operation. The receiver can be used manually or remotely without requiring switching. A housing is provided for the ultrasonic transmitter which turns the power supply of the remote receiver off when the transmitter is placed in the housing. By the use of a continuous tone it is possible to skip-tune the receiver, or continuously control an additional function such as volume or contrast.

The authors appreciate the assistance on this project of J. Davis, G. Heisig, E. Salners, A. Heppner, M. Pettroff and F. Massa.

References

(t1) Robert Adler, Peter Desmares and John Spracklen, Ultrasonic Gong Controls TV Sets, Electronics, p 156, Mar 1, 1957.
(2) Henry O. Maxwell, Two New Tv Remote Controls, Radio Electronics, p 42, Feb. 1057.
(3) Inco Res. and Dev. Staff, "Magnetostriction" Int Nickel Co., Nov. 1957.
(4) E. M. Wise, "Design of Nickel Magnetostriction Transducers', Int. Nickel
Co., Oct. 195%.

FRONT COVER-Aerial view of radio telescope showing partially completed $250-\mathrm{ft}$ reflector, 62.5 ft antenna tower and remotely located control room (upper right). Azimuth positioning is accomplished by moving entire mechanism about on circular railroad tracks. Elevation positioning is accomplished by rotating reflector on trunnions at top of the support towers. Reflecing surface is suitably painted to prevent concentration of heat at the focus during solar observations and to provide a high degree of diffuse reflection to prevent overheating of membrane

Reflector membrane is built up of 7.000 sheets of $0.5-\mathrm{in}$. steel plate which are welded to one another and to the support structure. This arrangement gives a high-degree of electrical conductivity, provides adequate pickup of the important 21 -centimeter wavelength

Radio Telescope Sees

Free world's largest and most sensitive radiation detector locates, identifies and tracks astral bodies emitting low-energy radio waves and measures geometric properties of solar bodies. Altazimuth antenna assembly is automatically positioned by computer-controlled servo system accurate to within nine minutes of arc. Analog computer solves complex equations describing antenna attitude required to track radiating source.

By C. N. KINGTON Chief Mechanical and Electrical Engineer, Husband \& Co., Sheffeld, England.

RADIO ASTRONOMY is based on the fact that radio waves emitted from numerous sources in space impinge on the earth's surface and can be detected by suitable receiving apparatus. At present, the largest and the most sensitive radiation detector in the free world is the radio telescope discussed here. In operation since June, 1957 (see p 8, Sept. 1957), it is being used to help solve the prime cosmological problems relating to the origin
of the universe and to investigate properties of bodies within the solar system.

System Capabilifies

The detection system is a com-puter-controlled servo-operated antenna capable of picking up extremely low intensity radiations emitted at a wavelength of 21 centimeters by clouds of cold hydrogen and faintly luminous gases drifting in interstellar space.

Movements of bodies in the solar system can be measured using a radar-like tracking mode of operation. Various time relationships established by this technique have enabled astronomers to successfully determine orbital information for Russian and U.S. satellites.

It is expected that a detailed study of the ionosphere and of the changes that occur in it will be possible using this instrument. Valuable discoveries concerning re-

Antenna tower diameter diminishes greatly as its elevation above the reflector increases. This is done to avoid obsuring and scattering radiation from the primary feed. Special structural design is used to prevent the tower from bending when bowl is elevated

Steel laboratory hung immediately below the center of the reflector is mounted on trunnions to keep the floor level and is equipped with damping devices to prevent oscillations resulting from high winds. Two towers supporting reflector allow a full 360 -deg rotation plus some overlap. Steel construction withstands great stress changes created during rotation of reflector and provides sufficient weight to add stability and offset the overturning effects of the wind. System will automatically correct for parallex when tracking bodies in the solar system

2 Billion Light Years

flection and absorption of short wavelengths used in long-distance radio communications are anticipated.

Physical Description

Two integrally related but physically dissimilar installations make up the complete radio telescope system. These are: the reflector bowl and antenna with associated support and drive equipment,
shown in Fig. 1; and the control station which houses the computer, readout and recording devices.

At the geometric center of the 250 -foot paraboloidal reflector is a $62 \frac{1}{2}$-foot tower to which the antenna is mounted. The focus of the reflector is in the aperture plane and coincides accurately with the position of the antenna.

Infinitely variable movements of the telescope around its axis are

BACKGROUND OF RADIO ASTRONOMY

> Radio telescopes are similar in principle to optical telescopes except that they receive electromagnetic radiations having wavelengths a million times longer than those of light. Since long wavel 3 , asths are relatively unaffected by clouds, fog or daylight, radio observation.
> Also, radio waves, created in some unknown manner by galaxies in collision, penetrate much farther into space than do light waves. For this reason, radio telescopes can investigate space more deeply than optical telescopes.
> Major difficulty experienced with small radio telescopes is that sufficient resolution is hard to obtain at the long wavelengths used. Since the beam width, or angle of the receiving cone, depends on the ratio of wavelength to the diameter of the telescope's reflector, antenna masts thousands of miles long would be required to get adequate resolution. An alternaie approach-increasing the physical size of the reflector-has been used in designing modern systems such as the Jodrell Bonk Telescope.
produced by two Ward-Leonard motor-generator sets. These units are housed in a substation located immediately over the center pivot. The generators supply variable amounts of electrical energy to motors which position the telescope in azimuth and elevation.

Azimuth motors are mounted in carriages which drive the whole antenna structure about its vertical axis. Elevation motors are mounted in laboratories at the top of each support tower and rotate the reflector bowl about its horizontal axis.

An electromechanical computer system situated in a control station 200 yards away regulates the output of the generators. Banks of instruments surrounding the control desk give full information regarding the position of the antenna assembly. A large window looking towards the instrument enables the operator to see the reflector movements by day and, with the aid of floodlights, by night.

An underground tunnel extends

> View of radio telescope looking through control room window. Antenna assembly can be operated remotely by one person sitting at the desk-type console which houses all necessary controls. A wide range of telescope movements can be selected including: automatic sidereal motion at a given right ascension and declination; motion in galactic latitude and longitude; motion in azimuth and elevation; and various automatic scanning motions with a choice of rasters
from the basement of the control room to an annular chamber surrounding the center pivot of the antenna assembly. This tunnel is large enough for pedestrian use and has racks on which power, control and radio cables are laid.

When the telescope receives radiations from outer space, the amount of energy concentrated on the antenna at the focal point is extremely small. To amplify and analyze these radiations before they are dissipated or contaminated by local atmospheric disturbances or man-made radio waves, the radiofrequency preamplifiers and other parts of the receiving equipment are placed immediately adjacent to the antenna. The main amplifiers are located in a suspended laboratory below the reflector.
Two distinct types of radio equipment are required to detect radio-waves generated in remote parts of the universe and to meassure the properties of solar bodies. An extremely sensitive receiver operating on $90,168,408$ and 1,420 me picks up radio emissions from the local galactic system and also from various types of extragalactic nebulae. A transceiver operating on 120 megacycles tracks and re-
cords the motion of the planets, the moon, meteors and artificial earth satellites.

Operational Requirements

The telescope is of the altazimuth type. This means that the aiming and following movements of the antenna and reflector are obtained by a combination of motions in azimuth and elevation. In practice, the whole antenna assembly is rotated in a horizontal plane while the reflector is titlted about a horizontal axis.

To permit realization of the full capabilities of the telescope, three operational modes are used: track-ing-in which the telescope is locked onto the course of and moved with a radio energy source; scan-ning-in which the arc of the sky to be scanned is set into the telescope in either terrestial, galactic or celestial coordinates by raster scanning steps dependent on time or position; and traversing-in which the telescope makes rapid movements from one preset position to another.

To function properly in these operating modes, the control system must: provide infinitely variable rotational speeds in azimuth for the

FIG. 1-Physical arrangement of antenna assembly. Twelve four-wheeled carriages support the entire antenna structure. Four carriages are used under each tower to help distribute the load and to counteract toppling effect of wind. Two driving carriages are used to move each tower around on two circular sets of railroad tracks

FIG. 2-Servo loop diagram of radio telescope. Command position signals from the computer and control circuits are compared with actual position signals from the reflectors. Difference, or error, signals control the excitor field of motor-generator sets. Output of the motor-generator sets drive d-c motors which compensate for the error by positioning the reflector
whole 2,000-ton structure up to a maximum of $20 \mathrm{deg} / \mathrm{min}$; provide infinitely variable rotational speeds in elevation for the 750 -ton parabaloidal bowl and antenna up to a maximum of $24 \mathrm{deg} / \mathrm{min}$; aim the
bowl focus at any point above the horizon and continuously track the point; scan a chosen area of the sky; function by automatic controls installed in a remotely located building; and execute all aiming and following operations with the greatest possible accuracy.

The act of aiming accurately at any chosen object in the sky and of following that object as it moves across the sky involves ability to convert rapidly and continuously the coordinates defining the position of the chosen point into azimuth and elevation angular settings, and to adjust the position of the telescope correspondingly. This must be done under conditions of variable wind, snow or ice loads.

There must be negligible creep or overrun as the heavy reflector is decelerated to rest and then accelerated in the reverse direction. Also, the drive system must be inherently stable and tight throughout the whole speed range.

Contral System Operation

To meet the operational requirements, a closed loop positional servo control system is used. The control system is split into two parts: an electromechanical analog computer and a drive assembly. The computer solves 14 trigonometric equations derived from sideral time and astronomical coordinate inputs. Calculated azimuth and elevation command signals are then sent to the main drive system to physically position the reflector. A block diagram of the control system is shown in Fig. 2.

Functionally, the control desk, automatic control panels and com-
puter are more complex than the rest of the control system because any one of three different sets of positional coordinates can be used to define the position of a point above the horizon. Coordinates used are: galactic latitude and longitude; celestial right ascension and declination; and terrestrial azimuth and elevation.

Since antenna movement is obtained by a combination of movements in azimuth and elevation, the computer must convert galactic to celestial and celestial into terrestrial coordinates. Furthermore, correction must be made for the effect of the earth's rotation about its own axis. Allowance must also be made for the earth's orbital movement when aiming at the sun or planets and for parallax correction in altitude when observing the moon.

Celestial and terrestrial coordinates are related by spherical trigonometric equations. Since some of the equations are more suitable for various positional conditions than others, the control system is required to select automatically the best equations for any specific case.

Since all coordinate relationships involve sine and cosine terms, resolvers are used to solve the equations. Three pairs of resolver shafts deal with coordinates and one repeats back to the control equipment the actual angular position of the reflector.

Correction for the earth's rotation is made to right ascension by an oscillator-regulated synchronous motor. The oscillator is tied to a master sideral time clock by correc-
tion impulses. Resolvers dealing with hour angle are driven by both the right ascension synchro shaft and the clock motor. The resultant hour angle is used to convert right ascension and declination into azimuth and elevation angles. When observing the sun or planets, the necessary corrections to right ascension and declination coordinates are continuously introduced signals from the sidereal time system.

The coordinate pair to be used is selected manually; however, the signal to the telescope driving system is always taken from the azimuth and elevation shafts. Coarse and fine transmitter synchros on the shafts order the antenna to azimuth and elevation angular positions which correspond to the angular positions of their rotors. If a transmitter motor position is different from a receiving synchro rotor position established by the actual antenna position, an error voltage proportional to the angular difference is generated in a differential synchro. These error signals are sent to the motor generator room, amplified and used to vary the exciter fields of motor-generator sets which drive the vari-able-speed $50-\mathrm{hp}$ d-c motors mounted on the elevation axis and on the azimuth driving carriages.

Fine and coarse repeat-back synchros transmit the azimuth position of the reflector through coupling on the center pivot of the antenna assembly. Elevation position pickoff is taken from another set of double synchros mounted on the tower trunnions.

Scanning and autoset circuits

FIG. 3-Scanning and autoset circuit. Thls circuit controls scanning motions of the reflector. Arc in the sky to be scanned is set in using terrestial, galactic or celestial coordinates

FIG. 4-Twin-feedback resolver amplifier circuit, This amplifier compensates for inherent electrical errors in resolvers used to solve trigonmetric equations in the computer
are shown in Fig. 3. These circuits set up required driving coordinate positions of the controller and provide means for scanning the sky by various methods.

When switch S_{1} is in the norm position, a continuous drive is applied to the motor-generator of the driving coordinate controller. The positive or negative sense of the drive is controlled by switches S_{2} or S_{3}. When the autoset switch S_{1} is in the auto position, the coordinate can be set up automatically. In this case, tube V_{1} becomes a single-stage amplifier and, by way of phase-sensitive rectifier tube V_{2}, drives the coordinate until coincidence is obtained in the synchro circuit.

Driving coordinates can be arranged to scan about a predetermined center. The center is established by setting up a scan-center coincidence synchro which is coupled to a transmitter synchro on the coordinate shaft. Output of the scan-center coincidence transmitter is coupled to and compared with the preset amplitude bias applied to the tube V_{1}. The circuit determines the limit of the scan by energizing or deenergizing relay K_{1} when the synchro error signal exceeds that of the bias. Required driving voltage is applied by contact on relay K_{1} through switch S_{4} to coordinate controller motor-generator.

One coordinate can be stepped in either at predetermined time intervals or on reaching the limit of scan in another coordinate using step switch S_{5}. Stepping can take place at a controlled speed either forward or in reverse over any of five arcs preselected on a com-

Rack-mounted instruments (left) are arranged in circular pattern around control desk (right). Indicator dials are large enough to be read from the operator's chair. Telescope's actual position is expressed in degrees and minutes for each of the terrestial, galactic and celestial coordinates. Sidereal time is also presented
mutator located in a remote place.
Most resolver errors result from the high effective resistance of the windings and the presence of unwanted flux in the windings. These shortcomings are overcome with the twin high-gain two-stage R-C coupled amplifiers shown in Fig. 4. The circuit uses antioscillatory input circuits and also has provision for gain and phase adjustment. Outputs from the resolver amplifiers are passed through a resistive network and fed to the R-C coupled amplifier shown in Fig. 5. The amplifier is transformer-coupled to a phase-sensitive rectifier having a balance control.

Sidereal Time Oscillator

The hour angle resolvers are driven by a synchronous motor running at sidereal time. Amplified output from the R - C coupled, regen-
erative oscillator with amplitude control, shown in Fig. 6, drives the synchronous clock motor.

Motor speed is compared at 30 second intervals with a pendulum driven master clock and is arranged to drive a little faster than sidereal time. If at the time of checking the motor driven clock is in advance of the master clock, a check capacitor is closed across the input of tube V_{1}. The frequeny of oscillation and the speed of the motor are then reduced bringing the motor back into coincidence with the master.

Repeatback Circuit

The repeatback circuit detects the actual position of the reflector and displays it in degrees and minutes of elevation and azimuth on dials in the control room. To assure fast and accurate correspondence between actual and indicated position,

FIG. 5-Second resolver amplifier and phase-sensitive rectifier. This circuit amplifies the output from the circuit shown in Fig. 6 and converts it to control the main drive circuits

FIG. 6-Sidereal regenerative oscillator. This circuit keeps the output of a synchronous clock motor in coincidence with a master sidereal time clock. Motor output provides input to computer

FIG. 7-This circuit amplifies signal from repeatback synchros and converts it into a d-c signal which controls the coincidence transmitters of the repeatback dials

FIG. 8-Malfunction circuits. Six tube-operated relays protect telescope circuits against overload caused by component failure or against inaccuracies caused by system errors
the special amplifier-rectifier circuit shown in Fig. 7 is used.

Mounted on both the elevation and azimuth axis of the reflector are a fine and a coarse synchro. The coarse synchro is driven by the reflector while the fine synchro is geared to the coarse synchro at a ratio of $36: 1$. Outputs from these synchros are electrically coupled to relay-control tube V, and to the twostage R -C coupled amplifiers V_{2} and V_{3}. Signals generated in the repeatback circuit are applied to a coarse and fine coincidence transmitter used to position control room dials. Transmitter positioning signals are also fed back to grid of tube V_{1} in the repeatback circuit.

If the difference angle between the actual reflector position and that on the dials exceeds 3.5 deg , V_{t} triggers and relay K_{1} is energized. The input to V_{2} now becomes the signal from the coarse repeatback synchro and the repeatback dials are able to follow the reflector movements.

When the reflector slows down, the difference angle becomes less than 3.5 deg and the relay is deenergized. Input tube V_{1} now becomes the signal from the fine repeatback synchro and the repeatback dials follow the reflector movements with more accuracy.

Malfunction Circuits

Provisions are made to stop normal tracking of the telescope and set off alarms in the event of component breakdown or other faults causing computational or tracking
errors. The circuit used consists of six tube-operated relays arranged as shown in Fig. 8.

Four of the inputs to the alarm circuits are from the secondary resolver amplifiers; the remaining two are obtained from synchros whose error voltage is proportional to the difference between the computer position in azimuth and elevation, and the position taken by the reflector. In the event any of the signals increase beyond a predetermined level, the relays are operated, tracking ceases, and the source of the error is indicated.

Operating Data

To set the telescope to given bearings, the positon defining coordinates are selected by hand on dials in the control room. Pushbutton operation sets the coordinate shafts to the corresponding position. Error signals between transmitter and receiver synchros cause the telescope to move to the required position. The sidereal time correction is then automatically applied.

Normally, tracking speeds are in the range of $1 \mathrm{deg} / \mathrm{min}$ to $15 \mathrm{deg} /$ hr. At tracking speeds up to 4 degrees per minute, the position is maintained to an accuracy of one fifth of a degree for both azimuth and elevation motions. When the permissable limit of angular rotation is reached for either motion during automatic tracking, forward drive is cut off and reverse motion applied at full speed until the original bearing plus time correction is
reached. At this time, forward tracking recommences.

For scanning purposes, any one of the three pairs of coordinates can be selected manually and the corresponding second coordinate of the pair varied in manually selected steps. This selection is achieved by setting the center of the required scan as an angle on a synchro and the angular range of the scan as a setting on a calibrated potentiometer. The potentiometer output voltage is then compared with the error signal from a transmitter synchro on the scanning coordinate shaft. When they are equal, one relay reverses the direction of drive and a second produces the required angular step in the other coordinate.

The whole of the automatic control apparatus can be switched out and both motions controlled manually from cabinets in the WardLeonard room on the telescope structure. Emergency crash stop buttons are provided in the control room and at various strategic positions on the moving structure. An interlock system makes it impossible to rotate the bowl until personnel have left the elevated walkways and are in either the small suspended laboratory below the reflector or in one of the towers.

There is a warning and signal light display panel in the control room. This system indicates whether the brakes are on or off, if the suspended laboratory is occupied and if crash button has been operated in the event of an emergency stop.

Heat Program Timer

Abstract

Compact, bench-sized electronic switch, to control weld energy for produc-tion-line welding of small components, features five independent control functions that cover most of the welding problems encountered by a manufacturer of special-purpose electron tubes

By A. V. RANIS, Senior Engineer, Weldpower Group, Raytheon Manufacturing Co., Newton, Mass.

VARIETY of METALS, shapes and surface conditions of parts that must be welded in reliable vacuum tube assembly presents a problem that cannot be solved by conventional synchronous resistance welder controls.

An example is the welding of carbonized nickel anodes where application of sufficient heat to fuse the nickel causes expulsion of particles of molten metal (weld splash) because of the high resistance of the carbonized surfaces. These particles are a potential source of failure in the finished tube. Reducing heat to reduce splash results in a weak weld.

Abilty to vary the heat level during a weld interval permits the changing conditions of the work

Heat program timer chassis (left) and power head (right) in operation on the electron tube assembly line
pieces to be matched in a limted manner by the power supply, thereby eliminating weld splash and most other similar problems encountered in the tube assembly plant.

Electronic Switch

The timer is basically an electronic switch controlling the flow of current from a $230-\mathrm{v}, 60-\mathrm{cps}$ power line to the primary of a welding transformer.

Figure 1 is a block diagram of the unit, and the accompanying photo shows an actual bench setup.

Five independent control functions provided in the heat program timer are low heat, weld heat, upslope time, weld time and downslope time. Line power is applied

FIG. 1-Block diagram of weld timer
to the contactor thyratrons. The settings of the controls determine the shape of a d-c voltage developed in part of the circuitry and this voltage is impressed upon a pulse generating circuit whose output pulses are phase shifted with respect to line voltage in accordance to the impressed d-c voltage. The pulses are used to fire the thyratron contactor tubes and supply the desired variation in welding current.

Thyratrons

In Fig. 2, thyratron tubes V_{1} and V_{2} are connected in inverse parallel and placed in series with the power line and welding transformer. Grids of V_{1} and V_{2} are biased negatively by the transformer secondaries of T_{1}, capacitors C_{1} and C_{2}, and dry rectifiers D_{1} and D_{2}.

Indicator lamp I_{2}, capacitor C_{3}, and resistor R_{1} form a voltage indicator for adjusting the power factor to the welding transformer and load. Normally open contacts of K_{1} prevent application of line voltage to V_{1} and V_{2} until after a timed warmup period. Application of primary power to transformers T_{1} and T_{3} applies heater voltages to all tubes, energizes delay relay K_{3} and energizes all bias, control and power supply windings.

Thyratron V_{4} is nonconducting because it is shorted by a set of normally closed contacts of K_{2}. Thyratron V_{0} is nonconducting because its grid is at approximately -15 v derived from the divider network formed by R_{2} and R_{3}. Tube V_{T} becomes conducting and the

Controls Weld Energy

FIG. 2-Schematic of the heat program timer, showing the adjustable potentiometers that control the heat functions
resulting voltage drop across $R_{\text {t }}$ adds approximately $-150-\mathrm{v}$ d-c to grid bias of V_{0}. Tube V_{10} is nonconducting because of the normally open contact of K_{1} in its plate circuit. Tube V_{11} is conducting. Tube V_{12} is nonconducting because of the negative grid voltage derived from voltage divider string R_{5} and R_{8}. Tube V_{13} is conducting.

When delay relay K_{3} completes its cycle, it shorts out R_{7} and allows indicator light I_{1} to glow. Operation of weld switch S_{1} to the momentary on position energizes K,
which locks itself in through R_{8}. The normally open contacts of K_{1} close applying line voltage to thyratrons V_{5} and V_{2}. Normally open contacts of K_{1} close applying plate voltage to V_{10}. However, V_{10} remains nonconducting because of the negative voltage applied to its grid through V_{8} and K_{2}. The equipment is now ready for welding.

Closing the initiating circuit energizes relay K_{2}. The normally closed contacts open and the anode of V. rises to approximately $300-\mathrm{v}$ d-c. Tube V, remains nonconduct-
ing because of the large bias voltage developed across the cathode resistor R_{8}. A second set of normally closed contacts on K_{v} open allowing capacitor C_{4} to charge from -15 towards +300 through resistor R_{10}, potentiometer R_{11} and V_{b}. As the voltage across C_{4} rises, the grid of V_{0} approaches its cathode potential as determined by the voltage across $R_{\text {s. }}$. When this voltage is reached (approximately 150 v) V_{n} conducts.

The time required for the voltage across C_{4} to rise to positive
$150-\mathrm{v}$ d-c is the up slope cycle and is adjustable with R_{11} over the range of 2 to 10 cps .

Tubes V_{8} and $V_{\text {- }}$ form an inverter circuit. Conduction of V_{n} extinguishes V_{z} by commutating capacitor C_{n}. Tube $V_{\text {: }}$ is held nonconducting for a time determined by C_{R}, R_{12} and potentiometer R_{13}. Clamper V_{8} prevents the voltage across C_{4} from rising more than a few volts above 150 v d-c. After the time period, V, conducts, extinguishing V_{*}.

Start of conduction in V_{7} applies a voltage to T, primary producing a voltage pulse in T 。 secondary which makes thyratron V_{4} conduct. The anode of V_{4} now drops to approximately -120 v . Capacitor C_{4} starts discharging from +150 v towards -120 v through R_{11}, potentiometer R_{15}, and V_{5}. The time for C_{4} to discharge from +150 to 0 volts is designated as down slope cycle and is adjustable by R_{15} over a range of 2 to 10 cps .

A voltage develops which started at -15 v and rose to +150 v in an adjustable time period, was main-

(C)

FIG. 3-Pulse-generating circuits operate in effective portion (A), with shaded section representing voltage added by low heat adjust. Triggering in (B) occurs once each cycle. The instant of start of conduction is controlled by weld heat adjust
tained at 150 v level for another adjustable time period and then decreased through zero to a negative value in another adjustable time period. The voltage developed across potentiometer $R_{\text {in }}$ and resistor R_{17} is equal to the difference between +150 and the voltage across capacitor C_{4}. The slider on R_{18} allows developing a voltage which is the sum of the instantaneous voltage on C_{4} and a selectable portion of the voltage difference described above. The section of tube V_{n}, which supplies negative bias to V_{10}, acts as a switching device in the following manner. As long as C_{3} is negatively charged, V_{10} is biased negatively. When C_{4} approaches 0 volts or goes positive, this section of V_{g} ceases to conduct and bias is removed from the grid of V_{10} allowing this portion of the circuit to operate.

Pulse generating circuits function only when C_{4} is at zero volts or positively charged.

Waveform

Figure 3A shows the voltage developed from the slider of R_{10} to ground. The vertical dashed lines indicate the interval during which the pulse generating circuits are operative. The shaded portion represents the voltage added by R_{18} to that of C_{4}. Adjustment of R_{12}, designated as low heat, varies the initial and final heat level without influencing any of the timed periods or the $150-\mathrm{v}$ level.

The grid of V_{10}, in addition to the biasing circuit described, contains a phase-shifted full cycling voltage. This voltage is as shown in Fig. 3 B . When no negative bias is present on V_{10} its grid will be triggered once each cycle. Tubes V_{10} and V_{11} form an inverter circuit and V_{y} is normally conducting.

When V_{10} is made to conduct, V_{11} is extinguished and held nonconducting for a time period determined by C_{i}, potentiometer R_{10} and resistor R_{18}. This period is also influenced by the voltage across potentiometer R_{20} in the following manner. Before initiating conduction in $V_{1 u}$, capacitor C_{i} is charged to nearly 200 v . When V_{10} conducts, the resultant drop at the base of $C_{\bar{i}}$ puts a negative voltage on the grid of V_{11}.

If the time constant formed by C_{i}, R_{11} and R_{18} is kept constant, the period will now depend on the voltage drop at the instant of conduction of V_{10}. This is illustrated in Fig. 3C. This voltage drop is affected both by the position of the slider of R_{20} and the voltage developed across R_{30}. This voltage across R_{20} is determined by the voltage on the grid of cathode follower V_{8}. This voltage is the special waveshape described earlier and shown in Fig. 3A.

With a low voltage on the grid of V_{8}, little voltage is developed across R_{20}, the slider is effectively at the anode potential of V_{10} hence the timed period is the longest. With higher positive voltage on the grid of V_{8} the slider point does not drop in voltage (depending on the potentiometer setting) as far and the time interval is shorter.

Weld Heat

Potentiometer R_{20} is termed weld heat and sets the higher heat level. It does this by effectively varying the amplitude of the trapezoidal wave shown in Fig. 3A. This variation does not affect any of the other control functions except for low heat which will change in magnitude but remains fixed if calibrated in percent of weld heat. Potentiometer R_{21} performs a function similar to that of R_{20} and limits the maximum advanced position of pulses for matching load power factor.

When V_{11} conducts the output pulse is sufficient to overcome the negative bias on the grid of V_{12} and make it conduct. Tubes V_{12} and V_{13} from another inverter circuit where the time period is determined by C_{8} and $R_{9 \text { gr }}$. Potentiometer R_{23} is fixed so that V_{13} will conduct a half-cycle after initiation of V_{12}.

Transformer T_{2} primary in the plate circuit of V_{12} receives a voltage pulse each time V_{12} or V_{13} conducts. The secondaries of T_{2}, plus V_{1} and V_{2} control the welding transformer primary current.

The author acknowledges the contributions of E . Kolm who conducted the application evaluation phase of this development and J. R. Arsenault who was a co-designer of the equipment. This development was part of a program sponsored by the U.S. Navy.

Abstract

Bolometer bridge converts input signal to heat by integrating input power with respect to time. Heat upsets the bridge balance and produces output signal that is amplified and applied to peak holding voltmeter whose output corresponds directly to energy. Possible applications of instrument include study of switching losses, surge resistance of capacitors and thyratron efficiencies in pulsed operation in devices such as radar modulators

By LOUIS A. ROSENTHAL

Associate Professor of Electrical Engineering, Rutgers University, New Brunswick, N. J.

ENGINEERS AND PHYSICISTS frequently find it necessary to accurately measure the energy content of a pulse. Such measurements can now be greatly simplified.

Designed primarily for evaluating the energy delivered by a discharging capacitor' into an electric primer, the ergmeter described here can be used whenever a burst of energy is to be measured.

The portable ergmeter has a maximum sensitivity of about 100 ergs full scale, where 100 ergs cor-
respond to 10μ watts of power flowing for a time interval of one sec.
The energy-measuring techniques of the ergmeter improve sensitivity over a thermocouple or a thermoelectric converter-integrator by about 1,000 . In addition, the ergmeter contains an energy calibration source for measuring absolute energy levels.

The ergmeter consists primarily of a bolometer bridge, an amplifier, a peak holding voltmeter and a calibrated energy source.

The first three components indicate input energy. An adjustable energy source ${ }^{2}$, which is an independent circuit switched in for calibration purposes, delivers a known amount of energy into the bolometer bridge.

Bolometer Bridge

The bolometer bridge, the heart of the entire ergmeter, consists of resistive arms R_{1}, R_{3}, and R_{3} and bolometer R_{B} shown in Fig. 1A. The bolometer, a type KP85, is a 0.3 -

FIG. 2-Ergmeter consists of bolometer bridge, three-stage amplifier, peak-holding voltmeter and calibrated energy source
mil tungsten wire, 0.1-in. long, mounted in a short, 7-pin, miniature, evacuated glass envelope. Its nominal cold resistance is slightly under five ohms whereas the comparison arm R_{3} is exactly five ohms. If a constant current I is supplied to the bridge, a balance point is reached when the bolometer increases its resistance to five ohms from self heating. Ambient temperature changes or external power delivered to the bolometer produce deviations from the balance point. Output voltage E_{0} from the bridge is directly proportional to the consequent change in the bolometer resistance ΔR_{B} and the bridge voltage. Temperature variations are linearly reflected in the output as a proportional voltage Δe_{θ}. Equations describing the temperature increment θ, caused by energy burst into the bolometer, also describe the output voltage characteristic Δe_{0}. When the balancing current I and its heating effect place the bolometer at a quiescent temperature, the dynamic thermal equation for the bolometer is given by

$$
\begin{equation*}
C_{P} d \theta / d t+\gamma \theta=P(t) . \tag{1}
\end{equation*}
$$

Each term in the equation is a power term. The constant C_{P} is the heat capacity of the bolometer in watt-sec/deg C, γ is the linear heat loss factor assuming heat lost is directly proportional to θ, and P (t) is the input power as a func-
tion of time. If the thermal time constant of the bolometer C_{r} / γ is made large compared to the duration of the power pulse $P(t)$, then the second term of the bolometer equation can be ignored yielding

$$
\begin{equation*}
\theta \cong 1 / C_{P} \int_{0}^{t_{1}} P(t) d t \tag{2}
\end{equation*}
$$

Temperature rise is approximately directly proportional to the energy in the pulse and inversely proportional to heat capacity for the bolometer. The thermal time constant limits the accuracy of Eq. 2.

The output voltage Δe_{o} is directly proportional to the time integral of the input power pulse. Increments must be small for the linearity to be preserved, and second order effects, such as bolometer resistance variations and radiation heat-loss nonlinearities, are completely masked.

The temperature rise and the consequent bridge unbalance depends solely on the energy input. After the pulse expires, the bolometer starts to cool.

Figure 1B indicates the bridge output with time for a rectangular input pulse of duration T_{1}. At T_{1} the bolometer cools in accordance with

$$
\begin{equation*}
\theta=\theta_{m} \epsilon^{-\gamma / c_{p t}} \tag{3}
\end{equation*}
$$

Since the bolometer time constant is close to $25,000 \mu \mathrm{sec}$, there is sufficient time to measure the maximum temperature rise of the bolometer θ_{m} or an equivalent voltage.

The shape of the cooling curve is independent of the input signal, and the integration action of the bolometer is sufficiently accurate for input signals approaching 20 percent of the bolometer time constant.

Calibration

The peak value of the output signal Δe_{0} is linearly related to the energy contained in the input pulse providing bridge voltage, ambient temperature and operating resistance are constant. If the signal is amplified and applied to a peak holding voltmeter, the peak value can be read on an output meter. To calibrate the bolometer bridge and subsequent amplifier-indicator stages, an input pulse with known energy content is applied, and the output meter is calibrated for some convenient full scale sensitivity.
A periodic, half-sine wave, $100-$ $\mu \mathrm{sec}$ pulse, adjustable up to 250 milliamps in peak value, is generated by a half-sine wave pulser ${ }^{2}$. If the pulse is read on an rms thermocouple meter, the energy contained in a single pulse is found where the repetition rate and the resistance, into which the pulse is dissipated, are known ${ }^{3}$. The ergmeter input resistance is 10 ohms. Since 60 pps are generated for calibration purposes, the energy per pulse is $E=i_{\mathrm{rms}}{ }^{2} R T 10^{7}$ ergs or $E=$ $i_{\mathrm{rms}}{ }^{2} 10^{8} 1 / 60$ ergs where i_{rms} is the pulse current measured by using
a thermocouple type meter.
Thus, to calibrate the ergmeter, repetetive pulses are generated and measured. Then a single pulse, identical to the repetitive pulse, is applied to the ergmeter input.

The sensitivity of the instrument can be set and several points calibrated for a smooth curve. The resistance selected determines the attenuator design and the calibration accuracy.

Circuit Details

The bridge, amplifier, peak-holding voltmeter and 60 pps half-sine wave calibration circuits are shown in the schematic of Fig. 2.

Resistance R_{s} in series with the entire bridge brings the input resistance up to exactly 10 ohms. Three triode stages with a gain of about 20,000 amplify the bridge output signal up to a level of about 40 v for the peak-holding voltmeter. Feedback in the amplifier provides sufficient stability.

The amplifier is followed by a conventional peak-holding voltmeter. The storage capacitor C_{1} in the peak-holding voltmeter is charged through a resistor R_{1} so that spurious pulses do not confuse the integration. Resistor R_{1} delays the peak reading so that only the slow cooling curve is measured.

A bridge vtvm provides the output indication. Since potentiometer R_{2} is in series with the output meter the sensitivity can be set conveniently. The vtvm has a zeroset control and the indicator meter is a $0-100 \mu$ a movement. A low resistance $200 \mu \mathrm{a}$ meter can balance the bridge as a null detector, meas-

FIG. 3-Half-sine wave pulser injects energy bursts for calibration. Nonlinearity at low end of scale is caused by peakholding voltmeter diode
ure the bridge voltage at balance as a millivoltmeter and measure the pulser rms current when properly calibrated with the thermoelectric converter.

To change the range of the instrument, constant-impedance 10 ohm ladder attenuator sections can be installed at the input, as external plug-in units. The ten-ohm input resistance was a convenient value for ordnance primer studies.

After the internal source is calibrated, or the energy content of the pulse, for any rms-current level, is made available as some curve, the bridge is balanced by increasing the bridge current and obtaining a bridge null. The bridge voltmeter reading is recorded for future reference. The bridge is now set up and disconnected from all meters by throwing the bridge switch to input calibrate.

The voltmeter section of the ergmeter is set to zero by discharging the storage capacitor with S_{1} and balancing the bridge voltmeter with SET ZERO potentiometer R_{3}. The calibrator switch is now thrown to calibrate and the halfsine wave pulser operates in a repetitive mode indicating an rms output current level on the $200 \mu \mathrm{a}$ meter. The energy/burst for each pulse is found from the calibration curve. The adjustment for the energy/pulse level provides for an assortment of calibration points.

When the calibrating switch is thrown to single shot, then depression of the single shot operatION switch S_{2} discharges the pulse into the ergmeter proper, and an output reading is obtained. The sensitivity control sets the arbitrary output scale of $0-100$ for a convenient full scale sensitivity of 300 to 600 ergs. Basically, the sensitivity can be increased by about 100 ergs full scale with some sacrifice in stability. Other points can be calibrated in a similar manner.

A typical calibration curve for a convenient setting of 500 ergs full scale is shown in Fig. 3. Below 150 ergs the charging diode in the peak holding voltmeter causes some nonlinearity.

If, for example, the ergmeter range is to be extended to 5,000 ergs, a simple, resistive ladder attenuator is plugged in at the input
before the bridge. The attenuator is designed to attenuate all input voltages by $1 / \sqrt{10}$. The resistive pad across the input disturbs the bridge balance and the bridge current must be increased to restore bridge voltage to the previous value. At a constant impedance of 10 ohms, the basic scale can be extended by a factor of 10^{5} with no difficulty.

Applications and Results

The ergmeter was used primarily for the evaluation of capacitordischarge firing sets. A typical set consists of a precision capacitor, which can be charged up to a known voltage and then discharged through a mercury switch into the load. The theoretical energy stored and discharged in $5 C V^{2}$ ergs, where C is in microfarads and V is in volts.

For firing an electric primer, the capacitor is discharged directly into the primer. The ergmeter measures the energy available into a 10 -ohm resistor, which replaces the primer. Thus, an efficiency can be ascribed to the capacitor-discharge set.

As an example, the curve of Fig. 3 was obtained by discharging a $0.1-\mu \mathrm{f}$ capacitor into the ergmeter with the voltage varied between 18 and 30 v . The scale reading with reference to the basic calibration curve for the ergmeter can be interpreted as an energy. The efficiency can be computed for this discharge, and it is a function of the capacitor surge resistance and the mercury switch losses.

For these tests, discharge efficiency is about 80 to 90 percent for well designed circuits. A poor mercury switch and excessive cable length reduce it to 50 percent.

Thanks are due to Mr. I. Kabik and W. Schaal. This work was sponsored by the U. S. Naval Ordnance Laboratories, under contract NORD 15005.

References

(1) B. S. Melton, Measurement of the Internal Series Resistance of a Capacitor Under Surge Conditions, Proc IRE, p 690 , June 1949 .
(2) L. A. Rosenthal, Energy Source De livers Half-Sine Pulses, Electronics, 1 176, Sept. 1956.
(3) F . L. Hermach, Thermal Converters as AC-DC Transfer Standards for Current and Voltage Measurements at Audio Frequencies $\mathcal{N} B S$ Jow of $R e s, \mathrm{p}$ 121, Feb. 1952 .

Four Ways To Simulate

Abstract

Delayed pulses gated to simulate azimuth, elevation and range produce realistic target patterns on radar indicator. Course generator simulates target speeds up to 2,400 knots. Side effects, including sea and land clutter are also generated and add to realism of presentation used to train radar operators

By J. I. LESKINEN
Head. Flectronics Simulators Branch, U. S. Naval Training Device Center, Port Washington, New York

TRAINING PERSONNEL to correctly read and interpret radar display information is costly in both time and money if live aircraft or surface targets are used. Radar targets can be generated synthetically, however, which produce a realistic pattern on the indicator. A pulse, delayed in time with reference to a trigger pulse, will simulate target range. Azimuth and elevation can be simulated by gating the target pulse so that it appears only at a particular spot on the indicator. Four methods of radar simulation, varying in complexity and versatility, are described with detailed explanations of important circuitry.

The radar presentation most commonly used for display of targets is a plan position indicator. Target, size and proximity to the radar antenna, appear as an illuminated are on the face of the indicator. Polar position of the target is read from the indicator as range and bearing. A separate radar scans angles above or below a plane tangential to the earth to obtain elevation data. Azimuthal position data obtained from this range-height indicator is correlated with the plan position indicator sweep line or other reference.

Two Dimensions

Figure 1 shows a two dimensional radar-target simulator for use with a radar repeater scope. A course generator, described later in the article, turns the shafts of the X and Y potentiometers in accordance with the X and Y rates of target
motion. The potentiometers are energized with a balanced a-c voltage from a generator. The arms of the potentiometers deliver two identically phased a-c voltages to a quadrature addition circuit. Amplitude of the voltages is proportional respectively to the X and Y components of the target's position.

The X and Y voltages are combined in the quadrature circuit which adds them as if they differed in phase by 90 deg . The resultant voltage, called target a-c, has amplitude proportional to target range and phase which indicates target azimuth.

Target a-c is amplified, detected and filtered to obtain a target d-c pulse. The pulse is delayed with reference to a periodic trigger pulse to indicate range. A gating circuit limits appearance of the time delayed range pip to the correct azimuth. Target position and antenna position control the gating action.

An electromechanical phase shifter coupled to the antenna shaft relates instantaneous position of the antenna beam to target position. Input to the phase shifter is an a-c signal from the same signal generator that drives the X and Y potentiometers. Output of the phase

FIG. 1--Two dimensional radar target simulator supplies target pip to radar indicator

Radar Targets

Course generator settings on simulator front panel determine target motion

Radar target simulator produces realistic pattern on operational radar indicator without using expensive live aircraft or surface targets
shifter is a constant amplitude a-c wave with the same frequency as the target a-c, but traveling in phase as the antenna rotates. The azimuth coincidence circuit compares the phase of target a-c and antenna a-c.

Azimuth Coincidence and Gate

The two signals, one representing the angular position of the target and the other angular position of the radar antenna, are fed to the azimuth coincidence circuit shown in Fig. 1. When the signals coincide in time, indicating that the radar antenna is pointing toward the target, the delayed pulses representing a target are permitted to pass through the azimuth gating circuit to the radar plan position indicator.

Pentodes V_{1} and V_{2} have a common plate load resistor, R_{1} and are both normally conducting, with a resulting plate voltage of about 10 v. The negative gate representing the target position cuts off V_{1}. The positive gate representing the antenna position is inverted by triode V_{3} and used to cut off V_{2}. The $10-\mathrm{v}$ plate voltage of V_{1} and V_{2} rises to about 35 v when either tube is cut off, giving a pulse of about 25 v on the grid of V_{4}. This pulse has no effect on V_{1}, because it is biased $50-\mathrm{v}$ negative. When both V_{1} and V_{2} are cut off, their plate voltage rises to

FIG. 2-Simulator does not require any operational radar equípment. Antenna signal is obtained from phase shifter and sweep amplitude potentiometer

150 v producing a large positive pulse that is detected by V_{4} and filtered by the R-C combination C_{1}, C_{2}, R_{2}, and R_{3}.

Output voltage of V_{4}, which is grid bias for V_{5}, the azimuth gating triode, is changed from negative 100 v to about negative 25 v when the radar antenna is pointing at the target. The delayed target range pulses are fed through C_{3} to the grid of V_{5}. When the bias on V_{5} is negative 100 v , amplitude of the
target range pulses fed through C_{3} is not high enough to cause conduction. When the bias is reduced to 25 v , the target pulses pass through V_{s} and on to the indicator.

Changing the width of the antenna pulse varies the length of time the azimuth gate remains open. With the correct pulse duration, azimuth width can be made to agree with the antenna beam of any specific radar. Varying range pulse duration produces a realistic radar

FIG. 3-Three dimensional radar target simulator uses computer approach to convert from rectangular to polar coordinates to obtain both ppi and rhi information
target appearance on the indicator.
The azimuth gating circuit presents a signal to the radar indicator which causes a target to subtend a constant angle from maximum to minimum range. This unrealistic characteristic can be improved with circuit modifications.

Spiral Sweep Simulator

A less expensive type of simulator, which does not require radar operational equipment, is shown in Fig. 2. The target signal is generated in much the same manner as the simulator just described. The antenna signal is obtained from a phase shifter and sweep amplitude potentiometer which provide a spiral sweep for the target on an oscilloscope.

Range of the target is indicated by gating the target to the correct radius of the spiral sweep. Azimuth is indicated by another gate which limits target appearance to the correct angle on this spiral sweep.

A course generator turns the shafts of the X and Y potentiometers in accordance with the X and Y rates of target motion. A lowimpedance $350-\mathrm{cps}$ sine-wave generator feeds the potentiometers. Output from the potentiometers is fed to a quadrature amplifier V_{s} and detector network $V_{2 B}$.
The d-c voltage out of the filter L_{1}, C_{1}, and C_{2} is applied to the grid of cathode follower V_{14}. A one-cps saw-tooth waveform generated by the motor driven range potentiometer is applied to the plate of $V_{2 A}$. Output from the cathode of V_{24} supplies the grid of $V_{1 B}$. Since the range potentiometer is ganged to the sweep amplitude potentiometer, its instantaneous voltage represents sweep distance from the center of the cathode-ray tube.

A common cathode resistor R_{1} for both $V_{1 A}$ and $V_{1 月}$ makes the cathode potential of $V_{1 B}$ proportional to the range voltage from the X and Y potentiometers. Amplifier $V_{1 B}$ is cut off until its grid becomes positive enough to overcome the cathode bias developed by the range voltage. Plate voltage of amplifier $V_{1 n}$, which is normally high, quickly drops to a low value when the tube conducts. The cutoff action of $V_{1 B}$ provided by the range potentiometer gates the range voltage to the cor-

FIG. 4-Target position relative to moving own ship position can be obiained from this arctan computer circuit
rect radius of the spiral sweep.
Tube $V_{1 n}$ conducts for a period equal to one cycle of the a-c signal generator frequency. This period corresponds to 360 deg of sweep and permits the target to traverse the circle at nearly the same range.

The negative going pulse from $V_{1 /}$ is coupled through C_{3} to the range gate generator, a monostable multivibrator, which produces a $3,000-\mu \mathrm{sec}$ pulse. The pulse is taken from cathode resistor R_{3} and coupled through C_{1} to the suppressor grid of $V_{\text {, }}$, the gating tube. It is positive enough to overcome suppressor grid bias on V_{1}, and allow the tube to conduct when a signal is applied to the control grid.

The phase-shifted sum of the X and Y-potentiometer voltages is also coupled to the azimuth pip generator, comprised of amplifier $V_{\overline{3}}$, limiter V_{n} and monostable cathode coupled multivibrator V_{7}. Width of the multivibrator pulse, controlled by $R_{\text {}}$, corresponds to antenna beam width, and determines the length of the arc appearing on the indicator. Since the voltages for the X and Y potentiometers are added in quadrature, the pulse occurs at a time which represents target azimuth.

Although a pulse is generated for each of the 350 sine waves which make up one revolution of the spiral scope sweep, suppressor grid bias on V_{4} permits only one pulse to be displayed for each complete spiral sweep. The output of V, is coupled
through C_{s} to cathode follower V_{5} and then to the crt cathode.

The P7 phosphor of the indicator tube helps to minimize target flicker. Range scale is arbitrary and assigned on the basis of target speed. The sweep value for the simulator is selected to reduce or eliminate target flicker.

Three Dimensional Simulator

A three dimensional radar target generator, for use with ppi and rhi scopes is shown in Fig. 3. Zero time reference for the ppi and rhi scopes and circuits of the radar simulator is supplied by a trigger generator. The course generator provides voltages proportional to target coordinates X, Y, and Z . A transformation computer resolves the X, Y, and Z, coordinates into polar coordinates R, θ, and E. Range voltage from the computer is compared with a linear saw tooth to obtain a time delay proportional to the range of the target.

At the comparison time, a voltage pulse appears as the target and occurs once for each timing pulse. A gate displays the target when the radar antenna simulator is at the same azimuth as the target. This gate allows targets within an angle of 0.5 deg to 4 deg of the antenna to appear on the ppi scope. This represents antenna beam width of 1.5 deg to 8 deg . Pulses or targets which have been gated by the azimuth gate circuit are regated by the elevation gate circuit at the correct elevation angle for presentation on the rhi scope.

Elevation Scan Simulator

The elevation scan circuit provides selection of an $11-\mathrm{deg}$ or 22 deg nodding sector which can be adjusted to any portion of 0 to 90 deg of elevation angle. The simulator also provides a sine and cosine d-c voltage of its instantaneous elevation angle for driving the rhi scope.

The elevation scan simulator consists of a free running multivibrator V_{1}, with an adjustment R_{i} to control the vertical scan rate. The multivibrator output drives a sawtooth generator $V_{2 A}$. Capacitor C_{1}, charged through resistors R_{2} and R_{3}, produces a constant-height sawtooth at different frequencies of multivibrator V_{1}. Phase splitter $V_{2 B}$
produces both positive slope and negative slope saw-tooth waves. The nod position dual potentiometer is connected so that one part produces an increasing voltage for a clockwise rotation and the other a decreasing voltage. The saw-tooth is added to the increasing voltage and subtracted from the decreasing voltage. The increasing voltage is proportional to the instantaneous antenna angle and the decreasing voltage is proportional to the complement of the instantaneous antenna angle.

Two voltages are fed to cathode followers V_{4} and V_{5}. The linear output from the cathode followers feeds sine and cosine function generators made up of diode-resistor networks. Cathode follower V_{3} drives the elevation gate coincidence circuits of each height target. The output cathode followers V_{6} and V_{γ} are scaled to produce the proper voltage for the angle. The diodes in the function generators conduct when the input voltage exceeds the voltage of the divider connected to them. The input is loaded by the series resistor of each diode circuit. Six diodes produce a sine wave from a linear function that is within 0.5 percent of an actual sine wave.

Transformation Computer

The transformation computer shown in Fig. 4 resolves the target position identified by rectangular coordinates X, Y, and Z into polar or radar coordinates R, θ, and E. It makes the change by solving right triangles. Inputs to the transformation computer are voltages from readout potentiometers on the course generator. Target position relative to a moving own ship may be obtained by introducing the own ship components of position. A differential may be introduced at the junction between the speed component shaft output and the potentiometer, or a voltage summing circuit may be used at the input to the arc-tangent computer.

The complete three dimensional solution requires two computers. One solves for azimuth; the other for elevation. The elevation computer provides slant range output also in the form of a $400-\mathrm{cps}$ voltage. Booster amplifiers are the key to the solution. They have a high

FIG. 5-Three dimensional radar target simulator uses a resolver to supply X, Y and Z potentiometers. Signal for ppi is modulated at height scan rate
input impedance, low output impedance and a high loop gain.

Course Generator

An important component of a radar target simulator is a course generator to obtain target motion. Basically it is made up of an integrator which accepts an input rate and supplies an output equal to the time integral of the input plus the output it had before the rate was instigated, which is the constant of integration.

The electromechanical target course generator simulates target speeds up to 2,400 knots. It has a servo that operates at 400 cps and, through a gear reduction, drives a ten-turn potentiometer having a linearity of 0.1 percent for X and Y positions, and a single turn potentiometer having 0.5 percent linearity for height.

Mechanical scaling of the integration follows the best gear ratio to obtain a desired maximum rate on the output shaft so the motor will be running at a maximum speed of 60 percent synchronous. This gives the best linearity to the system. Rate input speed can be double its assigned value and more, before power requirements of the servo become an important factor. In this specific application, the climbdive rate has a gear ratio of over 20,000 to 1 , and the X and Y integrators have a gear ratio of 12,500 to 1. Stall torque of the motor is 0.25 in.-oz and regulation torque 0.1 in.-oz. For regulation alone, over 1,000 in.-oz of torque exist on the output shaft allowing for a relatively poor gear efficiency. Output torque available is more than
sufficient by several magnitudes. Thus, the speed characteristic of the course generator definitely is not limited by servo power.

Another method of obtaining a three-dimension radar target is shown in Fig. 5. The excitation voltages to the X and Y potentiom eters are obtained from a resolver. The Z potentiometer gets its voltage from the reference source which excites the resolver. The ground range voltage is added in quadrature with height voltage. This signal is peak detected as a slantrange voltage when compared with a range sweep voltage. The signal is amplified and peaked to form a video pulse.

Since the bearing null becomes sharper with increased X and Y voltage, width of the azimuth gate diminishes as target range increases. This effect is more realistic than that obtained by gating the target with a signal having a constant angle with range. Output of this simulator is fed to either a ppi or rhi scope. If fed as shown, the ppi video signal is modulated at the height scan rate. A complete three-dimensional system therefore requires two such units with ganged pots fed from a course and speed plus climb and dive generator.

Adding Realism

Radar target simulators described so far have had no side effects added to produce greater realism. Sea or land clutter is a random reflection of the radar wave bounced back to the antenna from ocean waves or from the uneven terrain of the earth. A thyratron noise generator followed by a video
amplifier will simulate this effect. Varying amplitude, range, and slope will simulate clutter for various operational conditions.

It should also be possible to insert a delay equivalent to aircraft height to display an altitude circle on the ppi indicator. The circle will change size with each range scale of the radar, appearing large on the short range setting.

A modulator inserted in the video lead of each target will simulate target fading. An aperiodic lowfrequency oscillator will provide random fading. As target range increases, an automatic attenuator to diminish the target amplitude will make detection more difficult.
Beacon radar replies simulate a landmark or shipborne reference point. A beacon enables a radarequipped plane to find its way back to its starting point or other location when landmarks are not available for radar pickup. Beacons are effective to maximum radar range.

A simulated radar target return is used as the beacon location. The pulse is gated to trigger a beacon reply. The reply appears as a single pulse or a train of pulses having a short delay with reference to the target pulse. Amplitude control and spacing of the pulse gives a high degree of realism. Azimuth width of the reply is usually the same as receiving antenna beam width and can be gated in the same manner as the simulated radar return.

Land mass adds further realism to a radar picture. A film transparency mounted on an east-west, north-south carriage is scanned by a flying spot scanner. For a fixed radar range, own ship motion is shown by varying the X and Y position of the film. Moving radar targets must also move relative to the own ship to create realistic effects which are shown in a plot.

Instead of using a film, a more realistic display is obtained by scanning a relief map under water with an ultrasonic transducer. Positioning the scanner can be in X and Y while Z gives the effect of radar shadow as a function of elevation. A signal beamed from the transducer is reflected back to it from the submerged map. The ultrasonic signal travels at $1 / 200$,000 the speed of radio waves.

Zero adjustment of differential voltmeter containing two infinite input d-c amplifiers is made from front panel. Calibration is not needed since amplifier gains are within 0.0005 percent of unity

Construction of the differential voltmeter is straightforward. Resistors can be the plain carbon type. Matching is not required because operation is negligibly affected by changes

D-C Amplifier Expands Input Voltage Range

Abstract

Infinite input impedance is obtained in a direct-coupled d-c amplifier by continuously and automatically feeding back a bucking voltage to the input which is equal to the signal voltage. Input voltage can vary over wide range and is dependent only on magnitude limitations of bucking voltage. Grid current is reduced to zero by balancing positive and negative currents. Because amplifier detects and responds linearly to small voltage changes at high input levels, it is ideal for analog computer and voltmeter applications

By V. DALE SCIIURR, Linfield, Pa.

SIGNal voltages are held to relatively low levels in conventional d-c amplifiers because of limited input voltage range. Where precision is paramount, the range is further restricted by the nonlinearity caused when output tube parameters depart from the quiescent operating point. Also, when large signals originating in a source of low-energy content are used, the signal level must be reduced to within the working range of the amplifier.

The amplifier described here is designed to hold the grid bias and current and the plate voltage and current of the input tube constant as the signal voltage varies throughout the design range. Since grid bias can not change with variations in signal, the input for any signal level is seen by the input tube as a zero voltage.

Advantages of Amplifier

Two characteristics of the ampli-fier-infinite input voltage range
and infinte input impedance-are especially desirable in certain analog computer applications where signal voltages represent considerable extremes of magnitude and originate in sources of low-energy content. By using input signals ten or more times those ordinarily used, the relative drift and effects of line-voltage fluctuations are reduced proportionately. In some cases, this property eliminates the need for drift compensating devices.

When used in vacuum-tube volt-

FIG. l-Evolution of infinite input impedance d.c amplifier. Cathode-to-plate voltage in slideback voltmeter (A) is held constant by physically adjusting potentiometer R_{1}. In the completely automatic vacuum-tube circuit (B), the cathode-to-plate voltage of tube V_{1} is continuously maintained at a constant level by feedback from tubes V_{2} and V_{3}
meter circuits or the like, input range dividers can be eliminated entirely and range resistors placed at the output. This technique gives higher input impedance. Another advantage is that relatively lowvalued resistors can be used resulting in an appreciable reduction of cost.

Conventional Limitations

In conventional plate or cathode loaded d-c amplifiers, a signal voltage variation causes a corresponding variation of grid bias which changes the plate voltage and current. With 100 -percent negativefeedback amplifiers, signal voltage variations result in corresponding variations of grid bias and changes in plate voltage of the input tube; however, the plate current remains constant.

In either of these amplifiers, signal voltage variation changes grid bias which varies the amount of grid current drawn. Grid current can, therefore, be different for any voltage in the input range. For certain applications, grid current becomes undesirably large. Special tubes can be used to alleviate this condition but grid current is not completely eliminated.

A change in any or all of the input tube parameters causes the quiescent operating point to move toward the region of plate bottoming, or, toward the low plate current region brought about by grid cut off. For this reason, both input voltage range and input impedance are finite. Precise operation of conventional amplifiers requires that the input voltage range be kept small.

A small negative grid current, generated by attraction of positive ions, and a comparatively large positive grid current, generated by impinging of electrons, coexist in all vacuum tubes. By biasing the grid to the point where the negative grid current becomes as great as the positive grid current, the effective grid current can be reduced to zero. ${ }^{1}$
Bias potential required is equivalent to the floating grid potential generated when the grid is not connected externally while the tube is in operation. If the bias can be adjusted sufficiently to keep the parameters of the grounded-grid tube equal to the parameters of the floating-grid tube, the grid current will be zero and the input impedance will be infinite for a zero input signal.
Grid bias and current and plate
voltage and current can be held constant over any range of input level by using the slideback voltmeter circuit shown in Fig. 1A. If the bucking voltage is adjusted to hold the plate voltage constant as $E_{\text {IN }}$ is increased, the plate current and grid bias and current will remain constant as long as $E_{1 \times}$ does not exceed the range of the bucking voltage. Within this range, the input tube sees an input voltage that appears to be zero. The voltmeter indicates E_{15} precisely without loading the input tube or the circuit to which $E_{\text {Is }}$ is connected.

Automatic Circuit

Since the slideback voltmeter circuit must be manually adjusted, it is impractical for computing or measuring devices. For the circuit to be usable in these applications, the bucking voltage must continuously and automatically be obtained as E_{IN} changes. This can be accomplished using the circuit shown in Fig. 1B.

Necessary bucking voltage is supplied by tube V_{3}. Any change in plate-to-cathode voltage of tube V_{1} is detected and amplified by tube V_{2}. The amplified error signal is applied to V_{3} where it is further amplified. The output signal appears across the voltmeter as a bucking voltage whose magnitude is always equal to the signal voltage on the grid of V_{1}.

To clarify the explanation of the circuit, it is assumed that infinite

FIG. 2-High-impedance differential vtvm with input range from - 150 to +150 v . Conventional input voltage dividers are eliminated; range resistors are in output circuit. A polarity switch is provided to eliminate nuisance of transposing leads. Any simple half or full-wave unregulated voltage supply is suitable for use with this circuit
gain is available from V_{2} and V_{3}. Actually, the gain is finite, the plate-to-cathode voltage of V, is not held precisely constant, and the tube parameters vary. Change in grid bias is given by the equation:

$$
\Delta E_{\theta 太}=\Delta E_{\mathrm{IV}}-\Delta E_{\mathrm{oLT}}
$$

where $E_{\text {ort }}=E_{\mathrm{I} \mathrm{K}}[G /(G+1)]$, $E_{g k}$ is grid bias, G is overall gain without feedback, and $E_{\text {Iv }}$ is input voltage.

A typical amplifier with an internal gain of 2,000 will have an $E_{\text {out }}$ of $0.9995 E_{\mathrm{IN}}$; that is, the grid bias change will be 0.0005 v for each 1-v change in E_{15}. Thus, a signal of 300 v causes only $0.15-\mathrm{v}$ change in grid bias and a corresponding change in the other parameters. Since the amplifier gain is considerably greater in practice, the operating point of an actual tube does not change as much.

Practical Application

A practical application of the amplifier is in the differential voltmeter circuit shown in Fig. 2. With either input grounded, the instrument can be used as a conventional vtvm; however, the absence of input voltage dividers and the input tube's constant operating point gives an input impedance far beyond that of other instruments.

The use of both inputs allows differential measurements of small signal voltages at mean levels between -150 and +300 v . For example, with the meter selector set on the $0.3-\mathrm{v}$ scale, simultaneous measurements of two voltages of 300 and 300.3 v , give a full-scale deflection of the meter. This differential feature is particularly useful for measuring grid-to-cathode potentials in high-impedance circuits or for balancing high-impedance push-pull circuits.

Grid-to-cathode potential of the series regulator tubes in regulated voltage supplies can be observed under varying load and output voltage conditions. Elimination of the input dividers permits the use of this device in applications where an electrometer is normally used.

The practical differential voltmeter shown in Fig. 2 incorporates two identical amplifiers. For high stability on low-voltage ranges, resistors $R_{1}, R_{3}, R_{\text {, }}$, and R_{0} and po-

FIG. 3-D-c amplifier for high input voitages. High-voltage series regulator tube $V_{\overline{3}}$ maintains plate voltage of V_{3} at virtually constant level
tentiometers R_{3} and R_{5} should be wire wound since any resistance change causes a slight zero shift. High-frequency oscillations can be eliminated by connecting a small capacitor from the grid of V_{3} to ground.

A type $6 J 7 \mathrm{GT}$ tube was chosen for V_{1} because of its top-cap construction which reduces leakage from the input grid to the other elements. Leakage across the glass envelope can be reduced by connecting the base shield to the cathode. Since operation is not dependent on tube type or characteristics, a high- or low-mu triode can be substituted for the 6J7GT without an appreciable change in operation. If a pentode is used for V_{2}, its screen can be supplied from $V_{\#}$ cathode or by tapping R_{1} or R_{4}.

For other than relatively lowvoltage measurements, the cathode-to-heater voltage ratings will be exceeded unless separate filament supplies are provided for the two amplifiers. Supply voltage changes have no effect on operation or calibration other than to change the input voltage range. To provide a $300-\mathrm{v}$ input range, the positive supply should be at least 450 v .

Either potentiometer R_{0} or $R_{\text {. }}$ can be mounted on the panel; the other should be mounted on the chassis. Moving the slider of R_{i} the chassis mounted potentiometer is used to change the operating point of V, while initially setting the floating grid bias. Thereafter, the panelmounted potentiometer is used for zero adjustment.

When setting the floating grid bias, small, well insulated 100 to $1,000 \mu \mu \mathrm{f}$ ceramic capacitors are connected across each input to ground. The input is temporarily
grounded and the capacitor across input 2 is discharged by momentarily touching it with a grounded lead. Rate and direction of drift of the voltmeter pointer is then noted and potentiometer R_{5} given a trial adjustment. The discharge and adjust procedure is repeated until the meter pointer remains stationary but not necessarily at zero. Input of amplifier two is then grounded and the procedure is repeated on amplifier one. The input tubes are now operating at their zero grid-current point.

During stand-by periods when the instrument is turned on but the inputs are not grounded or connected to an external source, the grids will be left floating. Without a conductive path to ground the grids are not constrained and are freely affected by stray currents and by random fluctuations within the tubes. These tube characteristics cause an annoying vibration and swinging of the meter pointer, especially when set on a low range. This difficulty can be eliminated by connecting a small capacitor between the input grid and ground. If a range of input voltages beyond the amplifier rating is required, the arrangement in Fig. 3 can be used.

Ultra-High Impedance Voltmeter

If full advantage is to be taken of the high input impedance feature of the voltmeter, conventional input jacks or binding posts and test leads cannot be used. These convenient accessories are impractical because the insulation resistance of jacks and leads is considerably lower than that of a clean, shielded 6J7GT input tube.

A simple method of reducing test lead leakage is to connect the lead directly to the series grid resistor of V_{1}, place a shield over the lead, and drive this shield by connecting it to the low impedance output. This procedure effectively increases the leakage resistance by a factor approximately equal to the internal gain of the amplifier; that is, if the internal gain is 2,000 , the resultant effective resistance will be 2,000 times the original resistance.

Reference

(1) G. E. Valley, Jr. and H. Wallman, "Vacuum Tube Amplifiers' Rid Lab Ser, York, 1948.

Signal-Strength Chart

Computations of signal strength input to a receiver can be solved graphically by using nomograph based on a formula that converts field intensity at the receiving antenna to receiver input voltage

By A. W. EMMONS
Ramo-Wooldridge Corp., Guided Missile Research Division, Patrick AFB, Fla.

IF FIELD INTENSITY ϵ, in μv per meter, of a given signal f, in mc , is known, the signal strength E_{r}, in $\mu \mathrm{v}$, is determined for an input impedance of 50 ohms ($E_{\text {r }}$ in $\mu \mathrm{v}$ for $R=50$) and may be adjusted for any value of input impedance between 30 and 5,000
ohms (E_{r} in $\mu \mathrm{v}$ for $30 \leq R \leq$ 5,000). An isotropic antenna, no-loss transmission line is assumed.

Signal strength for receiving antennas of gain $>1(0 \mathrm{db})$ are solved first by finding from the chart the voltage input for a
system with an isotropic antenna and then adjusting the answer using the relation: $G=20 \log$ ($E^{\prime}{ }_{r} / E_{r}$) where G is the gain of 'the antenna referred to isotropic; E^{\prime}, is the voltage input to be found; and E_{r} is the voltage input.

See the air-gap on this new lamination for miniaturization

Look at the air-gaps on this new performance-guaranteed lamination we have developed and are stocking. The F-187's fixed air-gap provides constant inductance or linear inductance, as needed, because it prevents d-c saturation of the stacked core.
The F-187 $3 / 10^{\prime \prime}$ wide center leg is designed for miniaturized filter circuits for communication applications. It is ideal for carrier equipment, and can be used most successfully for microwave, computer or other applications where frequency control is critical.
Being an " F " shape, the new standard stacks more easily than EI-187, and thus offers welcome savings on the production line. There can be advantages to you, too,
in being able to order any quantity, prototype or production, directly from stock.
There's more detailed information on this new member of Magnetics, Inc. family of "Performance-Guaranteed" laminations-and all of our other standard laminations. Just write-Magnetics, Inc., Dept. E-49, Butler, Pa.

> mAEMETICS inc.

Microwave Component Tester

By A. F. POMEROY Bell Telephone Labs, North Andover, Mass.

Simple operation and calibration are key features of setup for measuring losses in microwave devices

Many microwave devices have better characteristics at frequencies between their extreme operating frequencies. Such devices can be checked at their edge-band frequencies with the assurance that they will be satisfactory at frequencies in between.

A simple, fast method of measuring the insertion losses of a waveguide component at two frequencies simultaneously is described. Losses from 0.1 to 38 db have been measured using this method.

Many factors affect the accuracy of measurement, including reflected power at the flanges, interaction factor, stability of the test circuit and readibility and accuracy of calibration of the loss-indicating device.

A typical test setup is shown in the photograph. Losses from 0.1 to 1.5 db at 10,700 and $11,700 \mathrm{mc}$ can be measured to an estimated accuracy of 0.02 db .

The circuit is shown in Fig. 1. Two klystrons generate c-w at 10 ,700 and $11,700 \mathrm{mc}$. Directional couplers, frequency meters and detectors provide for checking these signals. The two frequencies are combined in a hybrid junction before being applied to junction $A-B$ under test.

The two frequencies are separated again by bandpass filters. The d-c out of one detector is proportional to one klystron output, and that out of the second detector to the other. The operating levels at the detectors are chosen so that a one-db change in input will cause

FIG. 1-Circuit measures losses in microwave components at two frequencies
a 25 -division change on each of the output meters.

Precision attenuator $A T_{1}$ must have the same change of loss at both frequencies as the dial is moved from one setting to another. This attenuator is calibrated at the $\frac{3}{2}-\mathrm{db}$ points between 2 and 3.5 db . This makes these points more accurate than the intermediate divisions. Experience has shown that errors of 0.05 db can occur by using the intermediate divisions on $A T_{1}$ and a reference reading on the meters to measure insertion loss.

Calibration is effected as follows: Precision attenuator $A T_{1}$ is set to a scale reading of 2 db . Attenuator $A T_{\underline{g}}$ is adjusted for full scale reading on M_{1}. Then $A T_{g}$ and resistor R_{1} are adjusted to values that yield 25 divisions on M_{1} for a change from 2 db to 3 db in the setting of $A T_{1}$. The $A T_{3}, R_{2}$ and M_{2} combination is calibrated similarly.

A typical calibration yields 13 divisions on the meter for the change on $A T_{1}$ from 2 to 2.5 db ; 12 divisions for the change from 2.5 to 3 db ; and 10 divisions for 3 to 3.5 db . The meter readings for each setting of $A T_{1}$ are recorded and plotted on a calibration chart.

To make a measurement, $A T_{1}$ is set at 2 db , and $A T_{2}$ and $A T_{3}$ are adjusted for full scale readings on M_{1} and M_{ϱ}. Insertion of the component under test between flanges A and B will cause M_{1} and M_{2} to read less. Entering the calibration chart yields the insertion losses.

Changes in insertion loss of 0.01 db can be observed using this test setup. Return losses attributable to differences between the impedances looking into isolator A_{1} and into the component under test can account for loss changes of this order. Slight rotation of one flange with respect to the abutting flange can also reflect power of this same order.

Stability is achieved by measuring in a temperature-controlled room and by regulating the filament and plate supply voltages for the klystrons.

The range of loss measurements can be extended to about 38 db by modulating the klystron oscillators with a $1,000-\mathrm{cps}$ square wave and

Hै VOLTAGE REGULATED POWER SUPPLIES								
MODEL	OUTPUT DC	OUTPUT AMPERES DC		PUT DANCE1KC. 100 KC	w	$\begin{aligned} & \text { SIZE } \\ & H \end{aligned}$	D	PRICE
SC-18-0.5	0-18	0-0.5	. 04	. 4	81/8"	41/8"	135/8"	\$195.00
SC-18-1	0.18	0.1	. 02	. 2	81/8"	41/8"	135/8"	250.00
SC-18-2	0-18	0-2	. 01	. 1	81/8"	41/8"	135/8"	295.00
SC-18-4	0-18	0.4	. 005	. 05	19"	$31 / 2^{\prime \prime}$	$13^{\prime \prime}$	395.00
SC-36-0.2	$0-36$	0-0.2	. 1	1.0	81/8"	41/8"	135/8"	275.00
SC-1836-0.5	18-36	0-0.5	. 08	. 8	81/8"	41/8"	135/8"	250.00
SC-1836-1	18-36	0-1	. 04	. 4	81/8"	41/8"	135/8"	295.00
SC-1836-2	18-36	0-2	. 02	. 2	$19^{\prime \prime}$	$31 / 2^{\prime \prime}$	$13^{\prime \prime}$	395.00
SC-3672-0.5	$36-72$	0-0.5	. 15	1.0	81/8"	41/8"	135/8"	295.00
SC-3672-1	36.72	0.1	. 08	. 8	19"	$31 / 2$ "	13"	395.00

Patent Pending

A 0.01% SERIES IS AVAILABLE IN 13 NEW MODELS

KEPCO OFFERS MORE THAN 120 STANDARD VOLTAGE REGULATED POWER SUPPLIES COVERING A WIDE RANGE OF MAGNETIC, TUBE AND TRANSISTOR TYPES. MOST MODELS AVAILABLE FROM STOCK. SEND FOR BROCHURE B-585

KEPCO

LABORATORIES, INC.
131.38 SANFORD AVENUE . FLUSHING 55, N.Y. INDEPENDENCE $1-7000$

E REGULATION (for line or load) 0.1% or 0.003 Volts (whichever is greater)

- RIPPLE: $1 \mathrm{mv} . \mathrm{rms}$.
- RECOVERY TIME 50 microseconds
- STABILITY (for 8 hours) 0.1% or 0.003 Volts (whichever is greater)
- TEMPERATURE COEFFICIENT 0.05% per ${ }^{\circ} \mathrm{C}$. Am. bient operating temperature $50^{\circ} \mathrm{C}$ maximum. Overtemperature protection included. Unit turns off when over-temperature occurs.
- SHORT CIRCUIT PROTECTION: NO FUSES CIRCUIT BREAKERS OR RELAYS! Designed to operate continuously into a short circuit. Returns instantly to operating voltage when overload is removed. Ideal for lighting lamps and charging capacitive loads.
- OVER CURRENT CONTROL can be set from 0 to 120\% of full load.
(i) REMOTE PROGRAMMING at 1000 ohms per volt.
- REMOTE ERROR SIGNAL SENSING to maintain stated regulation directly at load.
1 Suitable for square wave pulsed loading.
- Continuously variable output voltage without switching.
- Either positive or negative can be grounded.
- Units can be series connected.
- Power requirements: 105-125 volts, 50-65 cycles. 400 cycle units available.
- Terminations on front and rear of unit.
- High efficiency. Low heat dissipation.
- Compact, light weight for bench or rack use.
- Color: grey hammertone.

ORDERING INFORMATION:
Units without meters use model numbers indicated in table. To include meters add M to the Model No. (e.g. SC-18-1-M) and add $\$ 30.00$ to price.
*Rack adapter for mounting any two $81 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ units is available. Model No. RA2 is $51 / 4^{\prime \prime} \mathrm{h} \times 19^{\prime \prime} \mathrm{w}$, is $\$ 15.00$
by using standing-wave indicators as amplifier detectors. The stand-ing-wave indicator is set on an expanded scale so that 0.1 db spans about $\frac{1}{8}$ inch.

The detector and standing-wave indicator combination are used at fixed level input. Losses are read on $A T_{1}$. The stability is not as good as that of the unmodulated
circuit. The accuracy under these conditions is about 0.2 db .

Experience has shown that this type of circuit is very useful for quickly measuring the loss of a component at two frequencies, especially in those cases in which adjustments are made on the component in order to meet test requirements.

Infrared Analyzer for Missile Safety

Safety is a major problem in the launching of satellites and missiles. Elaborate precautions are taken including electronic gear such as closed-circuit tv and telemetering.

Three specially designed infrared gas and liquid analyzers developed by Mine Safety Appliances were used on the launching pad of Explorer III. The instruments monitor hydrocarbon content of the liquid air, nitrogen and helium streams with which the missiles are fueled and pressurized. Should the hydrocarbon content approach a critical explosive point, the detectors, by means of mercury switches, shut down the operation.

The infrared analyzer is described by MSA engineers as a nondispersive deflection type infrared absorption comparison instrument. Two similar Nichrome fila-
ments are the separate radiation sources for the test and reference beams. A motorized rotating interrupter alternately interrupts these in such a way that superimposing the two blinking beams would result in a single steady beam.

The stream sample flows through a gold-plated stainless steel cell in the optical path of the test beam; a comparison cell in the other beam is completely sealed.

After passing through the sample and comparison cell, the two beams unite in a pneumatic microphone capacitor. The result is an electrical signal of amplitude proportional to the difference in infrared absorption between test sample and reference. This signal drives a meter and recorder to read either directly or proportionately the calibrated range of the analyzer.

Servo System Steers Car

Servo system tied in with power steering on test car is checked by J. Bidwell, department head on GM's research staff. Car follows buried cable carrying low-frequency a-c

Circuit Shifts Phase 360 Degrees

By W. BACON

Runeberginkatu 67 B 31
Helsinki, Finland
Two voltages that are out of phase with each other by a known angle are often necessary. It is also desirable to be able to vary this angle over as wide a range as possible.

The circuit described below does this at a fixed frequency. It uses resistances and capacitances only, making it useable down to very low frequencies. It requires only one variable component and provides a phase difference between the two output voltages that can be varied from -180 degrees to +180 degrees without substantial change in magnitude. Theoretically magnitude can be made absolutely constant, the actual variation depending on the maximum impedance that can be tolerated in the output circuit.

FIG. l-Simple network at \bar{A} produces 90 -degree phase lag, while that at B produces 90-degree lead

The single-phase input is first split in two by means of two twoloop networks of the types shown in Fig. 1A and B. The network in Fig. 1A, by a suitable choice of components produces a phase lag of 90 degrees. The network in Fig.

Shores of Tripolis

A most advanced communication network engineered by Hycon-Page Libya is being manufactured for the ancient shores of Tripoli. Civil and military service for the United Kingdom of Libya will be provided by a national telecommииісаtions system.

For the tropo scatter spans, Hycon-Page Libya has chosen radiv equipuent by REL: driver exciters, I kw and to kw klystron amplifiers, diversity combiner receivers, and special test apparatus. The ultimate traffic capacity of these tropo links will be forty-eight teleplone chan
REL packaged systems have demonstrated in repented testing their ability to withstand the extremely high tenperitures (1100 to 115° daily in the shade) and dust storms which will be encountered in desert installation.
The reliability for which REL equipuent is world fanous is a product of both imagination and experience. More kilowatt miles of tropo scitter equipment by REL are in use and on order than those of all other companies combined.

FIG. 4-Adjustment varies phase between OX and OY nearly 180 degrees

FIG. 5-Circuit produces a total phase shift between output 1 and output 2 from less than 180 degrees lagging to more than 180 degrees leading
circuit at $2,500 \mathrm{cps}$ is shown in Fig. 5. It should be noted that the above explanation is completely true only if $R_{2}-C_{3}-C_{2}$ does not load the input sections. In practice behavior will be modified by the loading effect. The circuit was found to produce a change of phase from more than 180 degrees leading to more than 180 degrees lagging.

U.S. Magnetometer Used by USSR

Soviet Russia has placed an order with an East German instrument maker for an absolute magnetic theodolite. The company is working with the Geomagnetic Institute of Potsdam to improve and redesign the magnetometer submited to the American National Bureau of Standards by A. E. Johnson.

The Soviets hope to use the modified instrument during the present geophysical year to gain knowledge of the structure of the geomagnetic field.

Instruments incorporated into

GIANNINI AC OUTPUI ACCETHROMTIER

Wide Dynamic Range Bxtremely Low Threshold Low Null

accurate, consistently reliable ac output, proportional to linear acceleration, is provided by this new Giannini accelerometer. Available in ranges from $\pm 1 \mathrm{~g}$ to $\pm 20 \mathrm{~g}$, the instrument has a full scale output of 6 volts which may be fed directly into a relatively low impedance with little or no phase shift.
NULL VOLTAGE IS 0.015 VOLTS, of which at least 90% is harmonic, assuring a wide dynamic range for the instrument. With a basic threshold sensi. tivity as low as $0.0001 \mathrm{~g} / \mathrm{g}$, input accelerations on the order of 0.0017 g's will provide a 10 millivolt change in output.
NO COULOMB FRICTION IS EXHIBITED in this design, bearings are eliminated by suspending the mass between
two disc springs. Acceleration inputs move the magnetically damped mass, causing a proportionate change in the output voltage of a differential transformer. Cross-talk effect is minimum $0.003 \mathrm{~g} / \mathrm{g}$ at 10 g cross acceleration on a \lg instru ment) ; repeatability and hysteresis are below thresholds of measuring equipment.
IdEAL SECOND ORDER SYSTEM RESPONSE is achieved in the Model 24614 by mag. netic eddy-current damping.The hermetically sealed instrument is oilfilled for stability of output under vibration. Specially designed and constructed for use in critical airborne control, stabilization, and flight test applications, the instrument is readily adapted to telemetering.

A NEW Amperex FRAME GRID TUBE

It's the
 frame grid. construction

that makes the difference...

- Higher transconductance
- Tighter Gm tolerance
(all tubes $\left.-G_{m}=12,500 \pm 2500\right)$
- Low transit time
- Low capacitances
- Better grid and plate current division

ADDITIONAL FEATURES

- Passive cathode for long life
- Ruggedized construction
- New 'dimple' anode

TYPICAL OPERATION	
Plate Supply Voltage 100 volts	
Grid Supply Voltage	+9 volts
Cathode Bias Resistor	680 ohms
Plate Current	15 ma
Transconductance (min. $\begin{aligned} & 10,5 \\ & 12.5\end{aligned}$	$15.000)$
Amplification Factor	
Equivalent Noise Resistance	300 ohms
Grid Voltage (rms)	0.75 volts

In the Amperex 6922 Frame Grid, note the fine wires under tension with the tight tolerances of the grid-tocathode spacing determined by the carefully controlled aiameter of the centerless ground grid-support rods and the frame cross-braces between these rods.
In convcntional tubes, the grid dimeasions are obtained by stretching on a mandiel. The tolerance of grid-to-cathode spacing is therefore dependent upon this operation as well as the tolerances of the holes in the top and bottom mica rod supports.
ruggedized, low-noise, broad-band twin triode --.---- HERE'S WHAT THIS MEANS TO THE DESIGN ENGINEER...

- Reliable radar cascode stages
- Higher speed computer operation
- Lower noise, higher gain RF amplifiers
- Minimum guaranteed 10.000 hour life

ask Amperex

about "premium quality" frame grid tubes for communication, instrumentation and industrial applications.

Fine Tubing CUT and FORMED TO ENEN EERNING SPECHITCATIONS

We are equipped for precision production of parts cut, flared, flanged, and bulged from tubing.

Original wall thickness is maintained in the finished parts with square ends and they vary from no burr to a maximum burr of $.001^{\prime \prime}$ on the I.D. or O.D.
Improve your own production efficiency and reduce your assembly costs with uniform tubular components.

Eliminate secondary operations and tooling costs by specifying tubing.

FLATTENED, SLOTTED, OR PIERCED

BULGED TUBES

STRAIGHT CUT, FLARED, FLANGED

A	B	c	0	E
. 040		. 050	. 005	. 055
. 050	앙	. 060	. 007	. 070
. 060		. 075	. 010	080
. 075		. 090	010	100
. 090		. 115	. 010	. 115
. 125		. 160	. 010	170
. 156		. 185	. 010	. 200

OVER 500 MILLION KLEINER parts have been produced and accepted by electronic manufacturers. Consider tubular parts when designing for automation and miniaturization.

Exact Inductance With Variable Toroid

FIG. 1-Miniature variable inductor developed especially for printed circuits. Inductance is varied by rotating the top permanent magnet to change toroidal flux.

For optimum performance of tuned circuits, phase shift networks, and similar impedance devices, the reactance must be an exact quantity. Even if the required reactance is available in a fixed value capacitor or inductor, pickup from other circuit components may change the frequency response of the impedance network.

The variable inductor shown in Fig. 1 can be set to the exact value needed-after it is connected in the circuit. It is continuously variable over a ten percent range of the inductance. Toroidal coils from 50 mh to 125 h are available from stock, and special-order coils are available up to 1000 h . All coils have the high Q value common to toroids, and are hermetically sealed to meet government MIL specifications.

A cut-away photograph and a sketch of the variable inductor are also shown in Fig. 1. Inductance is

FIG. 2-Typical Q vs. Frequency characteristics for low frequency variable inductor
varied by bucking out flux lines in the toroidal core with a field from two permanent magnets. There is no physical contact between the adjusting screw and the toroid.

When the north pole of the rotating magnet is directly over the fixed magnet's south pole, flux lines

FIG. 3-Typical Q vs frequency characteristics for a 20 mh high frequency vari. able inductor
from the magnet are perpendicular to the core and have practically no effect on inductance. When like poles of the permanent magnets are in line, the magnetic lines of flux repel each other and pass through the core of the toroid. Inductance is reduced to the extent that lines of flux from the permanent magnet cancel out flux in the core itself.

Ten Percent Range

Nominal inductance value for a coil is the maximum value, and in-
ductance range is the nominal value minus approximately 10 percent. Range can be increased to as much as 20 percent on special orders. A typical Q vs. frequency curve is shown for low frequency in Fig. 2 and high frequency in Fig. 3.

The encapsulated variable toroid weighs approximately one-half ounce. It was developed especially for printed circuits and light weight requirements. It is being used in guided missiles and similar miniaturization fields.

Burnell and Co., Inc., 10 Pelham Parkway, Pelham Manor, N. Y.

Panel Mounted VTVM

Multi-range electronic voltmeters cause less circuit loading and are more versatile than standard panel meters

ONLY an ELECTRONIC voltmeter will provide accurate a-c voltage measurements over a wide frequency range. In rack-mounted circuitry which has a wide frequency range, a rack-mounted VTVM is therefore the most practical test instrument. High input impedance of an electron tube instrument is also very desirable for voltage measurements.
The meters designed by Metronix, Inc., require no more panel space

Precision gear trains, electro-mechanical and optical-mechanical equipment of every type, are but a lew of the made-to-order specialties Ansco offers to the prime contractor. During the last war, Ansco received the Army-Navy E for efficiency in the production of such intricate, precision devices as-aerial sextants, radar instruments, precision gear trains, computer units, and many others. Ansco's large plant, its wealth of talent, can serie you quickly, efliciently, economically. Ansco is equipped to work directly from your specifications, and to supply you with original electro and optical-mechanical designs and devices. Ansco, Binghamton, New York. A Division of General Aniline \& Film Corp.

Ansco

YOU may get the complete Ansco picture by writing for new, illustrated brochure: Ansco Contract Manufacturing Service.

Binghamton, New York. A Division of General Aniline Eु Film Corporation
MAIL

WHATEVER YOUR UHF ATTENUATION NEEDS...

A COAXIAL UNIT FROM
EMPIRE DEVICES
WIIL MeEt
YOUR REQUIREMENTS

Empire's UHF attenuators are resistive coaxial networks for the frequency range from DC to 4000 MC.

Accuracy is held to $\pm 1 / 2 \mathrm{DB}$, VSWR is better than 1.2 to 1 . Any attenuation values up to 60 DB are available. Deposited carbon elements are used for stability and operations at higher pulse levels. Standard impedance is 50 ohms, other values upon request. These units have excellent temperature characteristics and are vibration and shock resistant. Standard connectors are type " N ", attenuator pads are also available with type " C ".

The attenuators may be obtained as individual pads (AT-50, AT-60), or as multi-position step attenuators AT-103 (six positions) and AT-104 (twelve positions). For even greater flexibility, several step attenuators may be series connected.

For complete technical information about aftenuators for your laboratory or production needs, write for free catalog.

NEW YORK-MOUnt Vernon 4-7530 SSYRACUSE-GRanit 4-7409 PHMLA.

EMPIRE DEVICES

PRODUCTS CORPORATION AMSTERDAM, NEW YORK

Telephone: Victor 2-8400
manufacturers of
field intensity meters - distortion analyzers - impulse generators - coaxial attenuators - crystal mixers
than a standard six inch meter. Three of them will fit into a 19 inch rack.

The d-c meter has seven ranges from zero to 1000 v , and is accurate to plus or minus three percent. Input terminals and the calibration adjustment are located at the rear. The a-c meter has ten ranges in 10 db steps from 10 mv to 300 v . Frequency response of the a-c voltmeter is from 20 cy to 100 kc . Both d-c and a-c types may be isolated from ground, if desired.

In most cases panel-mounted electronic voltmeters cost less than

Rack-mounted electronic voltmeters are accurate over a wide range frequency range,
conventional bench-type rtvm's required for high impedance, wide frequency range measurements. They are naturally more expensive than standard panel-type voltmeters built for only one frequency.

The meters are completely self contained with built-in power supplies and all necessary operational controls. Metronix, Inc., Chesterland, Ohio.

The Three Tube Rating System

Three rating systems are now being used for electron tubes. Each system uses a different standard to analyse tube capabilities. Since the rating systems describe the permissible area of operation for a tube, a conscientious circuit designer is compelled to understand the systems and their merits and limitations.

At first glance it would appear that three systems are redundant. And the proponents of one rating system for all tubes believe this to be so. There are others however who find merit in this redundancy.

At the 1958 Electronic Compon-

High Speed "Synchro-Copying"

The Apeco Uni-Matic Auto-Stat is the world's fastest, easiest to operate, all-purpose copy-maker. The original to be copied is inserted into machine ... the copy feeds right out . . . original is instantly returned.

Look Alike Copying

The Apeco Uni-Matic Auto-Stat produces white copies that look exactly like the original. Whites are copied white, blacks are copied black-and middle tones in grays of equal intensity.

Send for new FREE BOOK
Tear off and mail this Air Mail Postage Paid reply card.

Copy in FIVE Colors . . . onything writen, prinede, ,yped,

 drawn or photographed, right in your own office. The brand new Apeco Uni-Matic Auto-Stat is the greatest advancement in office copying in the last ten years. It is the culmination of many years of research and engineering by America's leading manufacturer of office copying equipment.This revolutionary new machine makes copies in less than half the time of any other photocopy maker. It is so simple to operateanyone is an expert the first time he uses it. The Apeco Uni-Matic Auto-Stat copies from any original-any color-on opaque or transparent paper . . . printed on one or both sides. It is handsome, compact, and light weight. Offers hundreds of time and money saving uses for every business at a price within the budget of the smallest firm.

also available on low cost leasing plan

Individual \qquad Title
In Canada: Apeco of Canada, Ltd., 134 Park Lawn Rd., Toronto, Ont. In Mexico: Apeco de Mexico S. A., Ignacio Estva \#7 Esq. Jose Moran, Mexico 18 D. F., Mexico

With the amazing, entirely new

INSTANTLY COPIES ANYTHING AUTOMATICALLY

No matter what copy machine or method you now use you will be interested in knowing how the exciting new Apeco Uni-Matic Auto-Stat can save you time and money by cutting costly office paper work.
A LIBERAL TRADE-IN OFFER ON ANY COPYING EQUIPMENT IS AVAILABLE FOR A LIMITED TIME.

Instantly copies letters, invoices, receipts, charts, blueprints, photographs, quotations, drawings, catalog pages-anything.
AMERICAN PHOTOCOPY EQUIPMENT CO. 2100 W . Dempster Street, Evanston, Illinois

AMERICAN PHOTOCOPY EQUIPMENT CO.

Evanston, III.
have you READ THIS NEW BOOK Auto-Stat and how you can use this revolutionary copy-maker in your business?

LIGHTWEIGHT air conditioning for

missile support

systems

The mobility problem in cooling electronic equipment in vans and for missile pre-launching has been answered by new AiResearch Freon air conditioning units. One-fourth the weight and one-third the size of conventional equipment, these lightweight, airtransportable units utilize highly efficient AiResearch Freon components (see diagram) originally developed for commercial aircraft applications.
Heat source for the circuit can be
either electrical, or exhaust gas from an AiResearch gas turbine. When the gas turbine assembly includes an alternator, it supplies 400 cycle power to run both the refrigeration unit and all electronic gear in the van.

Easily operated manually or automatically, this compact air conditioning unit provides from 5 to 12 tons cooling capacity and up to 85,000 bru's per hour heating capacity. It operates on 400 cycles, 208 volts. The unit shown stands $54^{\prime \prime}$ high, $52^{\prime \prime}$ wide

SPECIFICATIONS
Performance Data:
Typical operation-cooling

SPECIFICATIONS	
Performance Data:	
Typical operation-cooling	
Refrigerant	Freon $12-5$
Evaporator tonnage	7.5
Ambient temperature	100 F
Condenser air flow	5000 cfm
Condensing temperature	131 F
Evaporator air flow	1230 cfm
External distribution	
ducting pressure drop	2 in $\mathrm{H}_{2} \mathrm{O}$
Evaporating temperature	48 F
Electrical power	26 KVA

and $27^{\prime \prime}$ deep, with a charged weight of only 452 lbs .! Your inquiries are invited.

Los Angeles 45, California - Phoenix, Arizona

Systems, Pachages and Components for: alrcraft. Missile. electronic. nuclear and industrial applications

The catch or latching arrangement on all these Sigma relays is a permanent magnet. While this fact is not fraught with serious or far-reaching consequences, magnetic latching does have advantages worth considering. Since there are no triggers, catches or springs to wear out, magnetic latching relays do not fear early commitment to an eleemosynary institution. They do not continuously nibble a little stand-by power, adding their own little body warmth to the already stuffy enviromment ${ }_{\text {; }}$ nor do power interruptions make them change position. What the armatures of these Sigma relays do do is stay where the last coil signal sent $\mathcal{F}=0$ them, moving to the other fixed position only when a resetting signal comes along.

An up-to-date inventory shows that there are now five Sigma magnetic latching relays available, with the following distinguishing traits. SERIES 6 will switch 2 or 5 ampere loads on inputs from 22 to 450 mw ., with contacts up to 4 PDT; useful in memory circuits, fast enough for follow-up systems, reliable latching contactor. SERIES 61 is a modification of the " 6 ", with DPDT contacts capable of switching 20 ampere loads on 225 or 450 mw . signals; small, considering its ratings. SERIES 32 is the newest and smallest of the group; DPDT, measures $0.800^{\prime \prime} \times 0.400^{\prime \prime} \times 0.900^{\prime \prime}$ high, max., has pins spaced equally on $0.200^{\prime \prime}$ centers; price is low. SERIES 72 is the most sensitive ($0.3-2.0 \mathrm{mw}$), and is designed for bounce-free, high speed switching. Sensitivity is adjustable, contacts replaceable. SERIES 73 is a small hermetically sealed SPDT type for use in miniature devices and guided missiles. Dimensions $3 / 4^{\prime \prime}$ dia. x $111 / 66^{\prime \prime}$ high. Contacts rated 1.5 ampere, sensitivity 6 mw . and 12 mw .

If any of these magnetic latching relays (Sigma Form " Z ") offer the characteristics you're looking for, write for more data. If they don't, write anyway and tell us what you expect. Maybe one of us could be talked into making a small modification, so that a Sigma relay will work.

SIGMA INSTRUMENTS, INC.,
62 Pearl Strect, So. Braintree 85, Mass.
ents Conference A. J. Heitner of Sylvania's Tube Division delivered a paper entitled, Maling Sense of The Three Tube Rating Systems. We would like to pass along some of his observations.

Seven factors are considered by the tube rating systems: (1) Physical Dimensions, (2) Element voltages (3) Element currents (4) Element power dissipation (5) Bulb or environmental temperature (6) Impact shock and (7) Altitude.
In order to know when a rating violation exists or when a circuit is compatible with the tube ratings, a design engineer must know the basic concepts of the rating systems.

Design-Center System

The most common system for receiving tubes is the Design-Center System. JETEC definition of this system is:
"Design-Center ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

The device manufacturer chooses these values . . . taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics.

The equipment manufacturer should design so that, initially, no design-center value for the intended service is exceeded . . ."

When the majority of receiving tube usage was for home radio this system worked fine. As tube applications became more complex two disadvantages became apparent: (1) Protection offered the tube is variable and depends on the circuit and environment. (2) The circuit designer has no assigned responsibility for maintaining circuit environmental conditions compatible with design-center ratings.

Even during the radio age transmitting tubes, power rectifiers, gas filled types, etc. did not lend themselves to the design-center system. The tube manufacturer found that

new - send tist signals during procramming

VERTICAL BLANKING INTERVAL TEST SIGNAL KEYER BLANK SIG INTERVAL

The Telechrome Model 1008.A Vertical Blanking Interval Keyer is a selfcontained portable unit that makes possible transmission of television test and control signals between frames of a TV picture. Any test sig. nal (multiburst, stairstep, color bar, etc.) may be added to the composite program signals. The keyer will operate anywhere in the TV system and operates from composite video, sync, or $\mathrm{H} \& \mathrm{~V}$ drive. The test signals are always present for checking transmission conditions without impairing picture quality. The home viewer is not aware of their presence.

These continuous reference signals may be used in connection with various Telechrome devices for automatic correction of video level, frequency response, envelope delay, differential gain and differential phase.

VERTICAL BLANKING INTERVAL TEST SIGNAL KEYER
Portable or standard rack mounting. Self-contained power supply.

Test signal is thin line between frames. All test signals can be transmitted during vertical blank. ing portion of program.

Video picture with multiburst test signal inserted, as seen on ordinary wave monitor.

IMPORTANT:

Checking after programming is costly and at best highly inefficient since conditions constantly vary. The Telechrome Vertical Interval Keyer minimizes post-program checking and overtime expenses. It provides instant indication of deteriorating video facilities so that corrective measures can be undertaken immediatelymanually or automatically during programming.

Now in use by CBS, NBC,
ABC, BEC ITA (Brit.)

1003-C VIDEO TRANSMISSION

 TEST SIGNAL GENERATORCompletely self-contained, portable. Produčes mulfi-frequency burst, stairstep, modulated stairslep, white window, composite synch, Variable duly cycle. Regulated pawer supply. $121 /{ }^{\prime \prime}$ " standard rack mounting of in carrying zase. Integrates with above model 1003 - A Test Signal Keyer.

Write for Specifications \& Details

The Nation's Leoding Supplier of Color IV Equipment 28 RANICK DRIVE AMITYVILLE, $\mathrm{N} . \mathrm{Y}$. LIncoln 1-3600
Cable Address: COLORTV

VERY LOW PRLQLEEMCY Voltage Measurements

BALLANTINE

 Model 316 L VOLTMETERPRICE: \$290

SPECIFICATIONS

FREQUENCY RANGE 0.05 cps \$3 30 KC down to 0.01 cps with corrections
VOLTAGE RANGE 0.02 to 2006 peak to peak lowes: reading ocrresponds 107.07 mv rms of a sine wave
ACCURACY 3% throughout ranges, and for any point an meter scale
IMPEDANCE 10 megohm by any average capacitance of 30 muf
OPERATION Unaffected by line vatiation 100 to $130 \mathrm{~V}, 60 \mathrm{gcle}, 45$ mott

FEATURES

- Pointer "flutter" is almost unnoticeable down to 0.05 cps , while at 0.01 cps the variation will be small compared to the sweep observed when employing the tedious technique of measuring infrasonic waves with a dc voltmeter.
- A reset switch is available for discharging "inemory" circuits in order to conduct a rapid series of measurements.
- The reading stabilizes in little more thar $\mathbb{1}$ period of the wave.
- Meter has a single logarithmic voltage scale and a linear decibel scale.
- Accessories are available for range extension up to 20,000 volts and down to 140 microvolts.

For further information on this and other Ballantine instruments write for our new catalog.
it was not possible to reflect into the ratings the known variations of all of the various usages.

Absolute-Maximum System

An absolute-maximum rating system was established which placed the responsibility of circuit design which is compatible with tube ratings directly on the circuit designer. JETEC definition of the abso-lute-maximum system is:
"Absolute-Maximum ratings are limiting values of operating and environmental conditions applicable to any electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.
The device manufacturer chooses these values to provide acceptable serviceability of the device, taking no responsibility equipment variations, environment variations, and the effects of changes in operating conditions due to variations in device characteristics.
The equipment manufacturer should design so that initially and throughout life no absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply-voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in device characteristics".
A careful look at both of these systems shows the disadvantages of each. With the design-center system the tube manufacturer effectively assumes responsibility for both variations in tube characteristics and circuit operation on tube performance. However, under the conditions imposed by the absolutemaximum system, the complete responsibility for variations in tube characteristics and operating conditions is assigned to the circuit designer.

The absolute-maximum system came into more wide spread use in the low power or receiving tube field with the advent of the JAN and MIL specifications. The system, however, is extremely demanding on the circuit designer.

In order to make the absolute-

MICROWAVE FERRITE CIRCULATOR...

RAYTHEON MINIATURIZED X-BAND ISOLATORS weigh as little as 2.2 oz. For somewhat different requirements in the lower frequency L-band, Raytheon recently introduced the first high-power L-band isolator commercially available.

Compact $\mathrm{C}-$ band unit replaces gas-iube duplexer; needs no external power.

System designers: This new circulator is lighter and more compact than the differential phase-shift type unit and readily replaces typical TR or ATR gas tubes in C-band microwave transmission systems.
The Raytheon Model CCM1 weighs less than 5 lbs. and is less than 6 inches long. Its permanent magnet design eliminates the need for external drive power. The CCM1 reduces requirements for filters and klystron isolation common to systems using T -junction duplexers.
With Raytheon's advanced microwave component designs like this new C-band circulator, systems designers now have more freedom than ever before to design compact lightweight packages. Other devices now available and in advanced stages of development include isolators, both high and low power, ranging from L-band to Ku-band; ferrite switches; modulators; and side-band generators.

FOR COMPLETE FACTS or assistance in solving your microwave ferrite component problems, simply write to the address below, outlining your requirements.

FIRST 920 Channel Single Conversion VHF Mobile Receiver Uses HYCON EASTERN CRYSTAL FILTER

VHF, 920 Channels, fully transistorized Radio Receiver by Avco Mig. Corp., Crosley Division

Hycon Eastern 11.5 Mc Crystal Filters Measure $2^{\prime \prime} \times 1 \frac{11}{2 \prime} \times 3 / 4^{\prime \prime}$

Bandwidth at 6 db attenuation: 33 Ke
Bandwidth at 60 db attenuation: 60 Kc Insertion Loss: 4 db

Ultimate attenuation: 80 db

Mobile communications for today's fast moving military operations require equipment which is rugged, compact, highly accurate and dependable. Filling this need is the Avco-Crosley, fully transistorized, 920 channel, mobile VHF-FM Radio Receiver incorporating a Hycon Eastern 11.5 Mc Crystal Filter and matching Discriminator.

The use of only one frequency conversion provides excellent image rejection in combination with high adjacent channel selectivity. By eliminating multiple conversions, cross modulation and receiver desensitization are reduced even in the the presence of strong interference from any of the other 920 channels.

High Frequency Crystal Filters for mobile applications offer the advantages of small size, freedom from microphonic behavior, and ability to maintain their characteristics throughout the entire temperature range of $-60^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Hermetically sealed, no realignment or readjustment is ever required.

There are Hycon Eastern Crystal Filters designed to solve selectivity problems in AM or FM receivers and SSB transmitters, whether fixed or mobile. Hycon Eastern engineers can assist you in choosing filter characteristics best suited to your needs. Write for Crystal Filter Bulletin.
maximum rating system as realistic as possible for some of the known applications, the tubs industry established multiple ratings on high power tubes.

The complex nature of both military and commercial electronics indicated the need for a . . .

Design-Maximum System

It was with this intent that the Design-Maximum system was developed. JETEC definition of the Design-Maximum System is:
"Design-Maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electron device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

The device manufacturer chooses these values to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in device characteristics.

The equipment manufacturer should design so that initially and throughout life no design-maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supplyvoltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, and environmental conditions."

In the TV industry the worst probable operating conditions for any circuit are usually easy to establish. The worst probable operating conditions for military equipment are more difficult to determine.

Mr. Heitner feels that a dual trend exists in the use of rating systems. Low power or receiving type tubes designed chiefly for the home entertainment market are being rated in accordance with the design-maximum system. Special purpose tubes, transmitting tubes and military tubes are continuing to use the absolute-maximum system. Since the function a rating system is to classify tubes so that they can be properly used, it appears that the dual system is best for present needs.

Improved Metal-To-Glass Alloy Holds Seals Tight Against Hy Jrogen at 250 Po ands Pressure

Development of Cla e* Mercury-Wetted Contact Relays aided by special ga -free Driver-Harris \#152 Alloy

For all kinds of high-speed switching machines and devices which demand accuracy and dependability of the highest order, this new Clare Type HG Relay offers a combination of high speed, high current-and-voltage capacity with remarkably uniform long-life performance. It has a conservative life expectancy of more than a billion operations when operated within its ratings and can be driven at speeds up to 100 operations per second.

In this cutaway view ($23 / 4 \mathrm{x}$) a magnetic switch, hermetically sealed in a high-pressure hydrogen filled glass capsule, and a coil, are enclosed in a steel vacuum tube type envelope. The switch forms the core of the coil which provides the magnetomotive force for operating it.

The glass enclosed switch is very compact and small ($5 / 16^{\prime \prime}$ diameter $\times 2^{\prime \prime}$ long) yet its handling capacities of 5 amperes and 500 volts maximum are truly remarkable.

These features of its construction make this possible. In the switch segment, the platinum contact surfaces are wetted and protected from electrical and mechanical erosion with mercury by means of a capillary connection to a mercury reservoir below the contacts. In addition, the high hydrogen pressure enables the contact gap to withstand a high voltage gradient without breakdown.

Keeping the gas from leaking posed a production problem. The specifications for the lead wires at the top of the switch and the tubular vacuum stem at the bottom were stiff. 1. Gas-tight seal against hydrogen at 250 PSI. This was difficult. 2. Perfect match to thermal expansion characteristics of the glass. 3. Good ferromagnetic properties. 4. Exceptional surface bonding properties since the permissible maximum 5 ampere 500 volt limits are dictated rather by factors relating to heating of the metal-to-glass seal than the current handling capacities of the contacts.

Driver-Harris was called upon to produce such an alloy and succeeded in developing a special gas-free nickel-iron alloy No. 152 which meets all these requirements to the complete satisfaction of Clare Engineers.

Do your engineering and product development plans hinge upon a special alloy - why not discuss it with DriverHarris. We have, since 1899 , produced 132 special purpose alloys in just this fashion - in answer to a particular problem and extraordinary specifications. We have a special bulletin on Sealing Alloys if you care to have one. Your inquiry is awaited.
tC. P. Clare \& Co., Chicago, III.
*T.M. Reg. U.S. Pat. Off.

DRIVER-HARRIS COMPANY

HARRISON, NEW JERSEY - BRANCHES: Chicago, Detroit, Cleveland, Louisville
Distributor: ANGUS.CAMPBELL, INC., LOS Angeles, San Franclsco - In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, ontario

Grinding Ceramics by Dual Method Is Faster

By R. B. McPHERSON Thermo Materials, Inc., Menlo Park, Calif.

Combining through-feed and infeed techniques of centerless grinding sharply reduces the time required to finish grind cylindrical high temperature ceramic components.
While the combined method is primarily used to grind alumina components, it is also applicable to metals. Its best use is when a relatively large amount of stock must be removed and the component is out-of-round or tapered.

Used to finish parts whose irregularity had posed severe problems, the method has cut handing time from 90 seconds to 15 seconds per part at the Thermo Materials plant.

In one case, several thousand hard-fired alumina components had to be finish ground to 1.115 inches outside diameter, round and straight. Before grinding the parts were $\frac{5}{8}$ inch long, with a $\frac{7}{8}$ inch hole and an outside diameter of 1.150 inches. They tapered to 1.135 inches $O D$ and were out of round by 0.020 to 0.030 inch. The grinding wheel is a D100 N100M 20-by2 -inch diamond.

In grinding, the operator places the workpiece in position on the blade inside the front edge of the wheel by sliding the workpiece along a lucite stick. Then the infeed lever is carefully operated until the workpiece contacts the grinding wheel. Next, the gap is closed rapidly, the grinding phase continuing until zero position of the in-feed lever is reached. The part moves laterally during grinding thus clearing the entering side of the wheel. The lever is retracted in preparation for the next piece.

Grinding time is approximately 15 seconds per part, with no breakage. The advantages of straightness and finish that result from thru-feed grinding add to the longevity of the diamond wheel. Traversing eliminates the risk of grooving the wheel and prevents excessive wear in any one place.

First trials on grinding ceramic cylinders made use of work feed chutes and the thru-feed method.

Operator positions workpiece by sliding it along lucite stick (left). As part traverses diamond wheel, grinding of another part may start

This resulted in excessive handling, breakage and other difficulties. Attempts were also made to use infeed grinding. The lightness of the workpiece and its rough out-oftrue face caused the piece to break on contact with the in-feed stop.

In the final successful attempt, the in-feed stop was removed and the pieces allowed to traverse the face of the wheel during the plunge cut. After the in-feed lever had been brought to zero position, the work cleared the wheel as in thrufeeding.
The slight set-over and a moderate control wheel speed gave the
operator time to in-feed (plunge) grind to size. Any taper or wheel marks were removed while the infeed was on zero position and the work traversed the remainder of the wheel.

There was no need to wait for a piece to clear before starting another. The second piece could be started shortly after the plunge was completed. The lever was retracted in readiness for loading the next piece. This stopped the traversing movement of the part being ground, but the part resumed traversing when the in-feed lever again reached the zero position.

Wire Lists Simplify Assembling

By J. D. WINGFIELD

Meipar, Inc., Arlington, Va.
Wiring lists prepared by methods technicians cope with the problem of quickly producing, with nontechnical personnel, small quantities or single units of assemblies during developmental manufacturing.

The methods technician first prepares a "master wire list" from the schematic. He identifies every connection. Each wire item is numbered and identified by color, gage, connections linked and route followed.

Wiring decisions are next re-

[^2]

SRU-95 LOW-VOLTAGE KLYSTRON FOR KuBAND MICROWAVE TESTING

Now in full-scale production is Sperry's new SRU-95 reflex oscillator klystron developed especially for use as a signal source in radar test equipment.

The SRU-95 covers the frequency range from 12.4 to 15.5 kmc with two reflector-voltage modes, one with broad bandwidth and the other with high power. It delivers a minimum r-f power output of 20 mw into a load with a VSWR of less than 1.1. Small but rugged, the SRU-95 has superior
mode characteristics for automatic frequency control operation.

Important features include waveguide output, integral cavity and tuner, single-screw tuning covering full frequency range in only 9 turns.

Electronic TUbe division
SPERRY RAND CORPORATION
Gainesville, Florida

ADDRESS ALL INQUIRIES: GAINESVILLE, FLORIDA, OR SPERRY GYROSCOPE OFFICES IN BROOKLYN, CLEVELAND, SEATTLE, SAN FRANCISCO, LOS ANGELES, NEW ORLEANS, BOSTON, BALTIMORE, PHILADELPHIA.

 phase-lock discriminators
by Hallamore

Ready, as a "building-block" for your system application...Hallamore Model 0162, phase-lock discriminator, a compact plug-in type unit, has been thoroughly proven in telemetering systems of major missile programs. Designed around a concept entirely new to telemetry, it eliminates signal suppression by noise...non-linearity as a result of filtering...thresholding, common at low signal-to-noise levels. For quick action, wire Hallamore Electronics Company, Dept. 24P, 8352 Brookhurst Avenue, Anaheim, California / TWX: AH-9079.

HALLAMORE ELECTRONICS COMPANY

Diagram shows how a portion of the cable board is laid out
corded on four working lists used by assemblers.

A "cable running list", used in conjunction with a cable board, guides cableforms in harnessing. The board requires the only drafting time. Prints made from the vellum are pasted on plywood. Common nails are used as guide pins and springs hold wire ends.

A "board wiring list" duplicates the appearance of the finished component board, to guide assemblers of component boards, jumpers and pigtailed wires. A "jumper list" locates jumpers. Jumpers are short wires, not precabled, which are first to be put into the chassis. After the cables and component boards are installed and ready for final hookup, a "hookup list" is followed by the assembler who connects and solders all harness and pigtailed wires.

Simple Code

An elementary code is used in the lists. "From", "to" and position columns refer to circuit symbol numbers on the chassis (required by most military specifications) and schematics. The dash numbers refer to component pin numbers or location.

Cable routes are lettered on the cable board. Routes are assigned only if a wire may be routed in different ways. Small, non-cabled jumpers are not given routes and no routing is required for preformed cable.

Additional work performed by the methods technician in recording his decisions and designing a harness board is offset by several advantages.

The procedure enables use of production workers with specialized

Air Force space and operational

programs offer you

unique professional challenge

and opportunity

as a civilian

Among the myriad current and projected programs of the U. S. Air Force lies a challenge and opportunity for civilian electronic and electrical engineers with varying degrees of specialty and experience. These areas include: the research, development and maintenance essential to sustaining qualitative superiority for the operational Air Force; research and development in IRBM and ICBM fields; the projection into outer space and return of manned, piloted vehicles. Stimulating assignments now exist for qualified men in these categories.
As an Air Force Civilian Electronic or Electrical Engineer you:
WORK... in a fine creative atmosphere . . . with foremost men in the field... with most modern equipment and facilities ... in more than one specific program... in geographic location of your choice.
RECEIVE... assured income ... low-cost life insurance... promotions from within. . excellent retirement and compensation plans... protection from arbitrary separation... liberal sick and vacation leave plans.
ENJOY...expanded scope of assignment... professional prestige and recognition... job satisfaction..., participation in opening new frontiers and conquering space.
For full details mail the coupon below.

> HAVE YOU CONSIDERED THE IMPORTANT ADVANTAGES OF FGELTEELON?

It has been definitely established that the value of Teflon can be considerably enhanced by the use of fillers in certain applications. Laboratory and field experience has demonstrated that the use of fillers permit Teflon to be more readily tailored to a wide variety of chemical, electrical and mechanical applications. Also, some mechanical properties can be improved. These include:

1) resistance to deformation under load
 2) resistance to wear
 3) thermal conductivity
 4) compressive strength
 5) hardness

By thus improving its properties, Teflon now offers even greater industrial potential. This is the reason filled Teflon has become an important item in the "John Crane" Chemlon ${ }^{\otimes}$ line of better Teflon products.
Chemlon is available with such fillers as glass fiber, carbon, graphite, copper and bronze, talc, calcium fluoride and other inorganic materials.
Tell us about your requirements. We'll tell you the advantages you can get from filled Chemlon. Request Bulletin T-104.
Crane Packing Company, 6402 Oakton Street, Morton Grove, Illinois, (Chicago Suburb). In Conado Crone Packing Co., tid. Homilton. Ont

Wire lists have columns for wire number, color and gage, route and, if needed, soldering directions. Exception is board wiring list, which looks like component board
skills. There is product consistency and the process may be repeated later without methods participation. The lists simplify wiring inspection in quality control.

Shops get all information in a standard form regardless of variances in customer specifications and engineering group standards. Production lead time is reduced because all engineering changes in the design prototype are incorporated in the process sheets. Prototypes are made almost as quickly as units in production runs.

Tension Meters Clip Onto Wire in Winding

Tension measurement and control are often important in the processing of filaments and tapes and in production of wire-wound components. Excessive tension may stretch wire, changing its resistance, damaging insulation or otherwise influencing component quality. Tension can also affect performance of recording tape, cables and other products.

A simple method of monitoring tension during winding is afforded by tension meters, according to

FREQUENCY STANDARIS

FREQUENCY STANDARD

TYPE 50L
Size $33 / 4 " x 41 / 2 " x 51 / 2{ }^{\prime \prime}$ High Weight, 2 lbs.

Frequencies: 50, 60, 75 or 100 cycles Accuracies:-
Type $50 \mathrm{~L}\left(\pm .02 \%\right.$ at -65° to $85^{\circ} \mathrm{C}$)
Type R50L ($\pm .002 \%$ at 15° to $35^{\circ} \mathrm{C}$)
Output, 3 V into 200,000 ohms
Input, 150 to $300 \mathrm{~V}, \mathrm{~B}$ (6 V at .6 amps)

FREQUENCY STANDARD

TYPE 2005
Size, $\delta^{\prime \prime} x 8^{\prime \prime} x 7^{1 / 4 \prime}{ }^{\prime \prime}$ High Weight, 14lus.
Frequencies: 50 to 400 cycles
(Specify)
Accuracy: $\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$

Output, 10 Watts at 115 Volts
Input, 115 V . (50 to 400 cycles)

FREQUENCY STANDARD

TYPE 2121A
Size
83/4" x 19" panel
Weight, 25 lbs.
Output: 115 V
60 cycles, 10 Watt

Accuracy:
$\pm .001 \%$ from 20° to $30^{\circ} \mathrm{C}$
Input, 115 V (50 to 400 cycles)

FREQUENCY

STANDARD
TYPE 2IIIC
Size, with cover $10^{\prime \prime} \times 17 " x 9^{\prime \prime} H$. Panel model $10^{\prime \prime} x 19^{\prime \prime} x 8^{3} /{ }^{\prime \prime} H$. Weight, 25 lbs.

Frequencies: 50 to 1000 cycles
Accuracy: $\left(\pm .002 \%\right.$ at 15° to $\left.35^{\circ} \mathrm{C}\right)$ Output: $115 \mathrm{~V}, 75 \mathrm{~W}$. Input: $115 \mathrm{~V}, 50$ to 75 cycles.

This organization makes frequency standards within a range of 30 to 30,000 cycles. They are used extensively by aviation, industry, government departments, armed forces-where maxi. mum accuracy and durability are required.

WHEN REQUESTING INFORMATION PLEASE SPECIFY TYPE NUMBER

American Time Products, Inc.

- R-F RECEIVER DESIGN -INERTIAL NAVIGATION

Two of many areas in Avionics in which Bell Aircraft has openings for qualified electronics engineers

Particularly good opportunities are now available for engineers with radio frequency experience in the 100 kilocycle to 35,000 megacycle range with emphasis on transistorizing of circuits... and for those with experience in inertial instrumentation design and evaluation,

Present openings include assignments in:

- Pulse and Digital Coding
- Identification Systems
- Electronic Counter Measures
- Landing Systems
- Digital Computers
- Precise Instrumentation Development

These assignments embrace a wide range of high level design and development problems which will afford full scope to your creative ingenuity with unusual opportunities for rapid advancement and professional recognition. Salaries commensurate with your background, good living and working conditions, and liberal benefits. Please write: Supervisor of Engineering Employment, Dept. H-28, bell aircraft Corporation, p. o. Box 1, Buffalo 5, N. Y.

Tension meter mounted to sum up tensions accumulated in coil winding wire

Tensitron, Inc., Harvard, Mass. In a coil-winding operation, for example, the meter may be bracketmounted to monitor the wire just before it reaches the coil. The arrangement will sum up the tensions built up in the wire during the winding process. Adjustments to bring the wire's tension within a safe limit may be made to the winding machine's mechanism while the wire is in motion. Or, servomechanisms may be constructed for automatic adjustments.

The meter may also be used to find an approximate safe operating tension for a particular wire. A sample length of wire is tied to a post and stretched by hand with the meter placed on the wire. As the wire is stretched further by hand, the tension reading will increase up to a certain level, beyond

Trigger-operated fension meter
which the tension reading fails to increase and the wire is elongated. One-fourth of the yield tension may be taken as a safe operating tension.

Two types of wire tension meters are illustrated. One type uses a trigger mechanism to engage running wires up to AWG 30 in size. A lever mechanism is used with heavier wires. Three rollers guide

Trangitron

SILICON RECTIFIERS

Big Performance 600 volts 450 ma

Higher voltage and current ratings are now yours in two compact packages. These hermetically sealed axial lead units are easily mounted in terminal or printed board assemblies, offering real design versatility. They are ideal for a wide range of limited-space applications.

Subminiature Glass Types

Transitron's Subminiature Glass Silicon Rectifiers now pack ratings to 600 volts and 400 ma (150 ma at $150^{\circ} \mathrm{C}$). Rugged and reliable at temperatures to $175^{\circ} \mathrm{C}$, these units are thoroughly tested under the most severe operating conditions. They give excellent service in subminiature power supplies, D.C. blocking, high voltage series strings and other applications where space is at a premium.

Miniature Types

Ratings of 600 volts and 450 ma (200 ma at $150^{\circ} \mathrm{C}$) are now available in the economical Miniature package - constructed without the wide flange that often interferes with compact mounting in printed circuits. These Miniature types serve well in blocking circuits, power supplies, and such critical applizations as magnetic amplifiers, where low inverse leakage is essential.

Type	$\begin{aligned} & \text { Peok } \\ & \text { Recurrent } \\ & \text { Inverse } \\ & \text { Operoting } \\ & \text { Voltage } \\ & \text { (volts) } \end{aligned}$	Maximum Average Forward Current @ $150^{\circ} \mathrm{C}$ (ma)	Moximum Average Forward Current (ma)	Maximum Inverse Current @ $150^{\circ} \mathrm{C}$ (mo)
TJ60A	600	200	450	. 5
TJ40A	400	200	450	. 5
TJ30A	300	200	450	. 5
TJ20A	200	200	450	. 5
TJIOA	100	200	450	. 5

SEND FOR BULLETIN TE-1351

FTC Neer Rack Panel Oscilloscope that opens new testing horizons

5" scope performance

WITH A NEW $31 / 2^{\prime \prime}$ SQUARE TUBE

HIGHLIGHT SPECIFICATIONS

- CRT type 41HAPI.
- 115 v. A.C., $60-400 \mathrm{cyc}$. $\pm 10 \%$.
- Sensitivity: 028 v./in. (vertical amplifier), $0.3 \mathrm{v} . / \mathrm{in}$. (horizontal) P/P.
- Frequency response flat to D.C.; vert. amplifier 3db @ 300 kc.; horiz. amplifier 10% @ 100 kc .
- Input impedance 2 megohms, $40 \mu \mu \mathrm{f}$.
- Linear sweep time base 2 cps . to 30 kc ., 0.5 sec . to $33 \mu \mathrm{sec}$.
- Amplitude 0.1 v.P/P. Square wave at power line frequency. Accuracy overall $\pm 1 \%$.
- $5.25^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide x 11.375" deep.
- Printed circuits.

WRITE FOR COMPLETE SPECIFICATIONS
. . GIVES SO MUCH, IN SUCH LITTLE SPACE . . . AT SO LOW A PRICE

Here, at last, is a full quality, truly professional 'scope priced within easy reach . . . and designed to a size that can be used in practically any rackmounting set-up, even where space is distinctly limited.

The "heart" of this miniaturized ETC Model $\mathrm{K}-10-\mathrm{R}$ assembly is its unique ETC Type 41HAP1 square-faced $31 / 2$ C-R tube. This provides a raster size equivalent to that of a conventional $5^{\prime \prime}$ round tube.

Operational features of the $\mathrm{K}-10-\mathrm{R}$ far exceed those of ordinary 'scopes of comparable size or price.

Headquarters for MULTI-BEAM OSCILLOGRAPHY and dependable C-R Tubes

Standard and special ETC oscilloscopes range from single-channel styles such as the K-10-R (above) to types recording from 2 to 8 channels on a single tube face. ETC Cathode Ray Tubes range from single-gun to 10 -gun types. Write for catalog.

Lever is used to engage heavy wire
the wire. Two rollers are fixed as reference positions and the third, acting as a dancer arm, is deflected in proportion to tension on the wire. A gear train amplifies the deflection so that it is read on a dial as pounds or grams of tension. Rollers adapted to tapes, films, foils and webs may be used with both types.
A full discussion of the causes and effects of tension is contained in a paper which Erwin J. Saxl, president of Tensitron, presented before the 1958 IRE Convention.

Small Speedy Shear Has Versatile Table

High production rate on shearing of small component parts is obtained at Hewlett-Packard Co., Palo Alto, Calif., through use of new Lodge and Shipley 24 inch shear. Photo shows operator feeding 10 -gage aluminum folding stock into shear at 400 per hour rate production of fan bracket plates for frequency counter.

Machine's blade operates at 120 strokes per minute. End-around work table is drilled with holes to accept varying guides and templates. Table can accommodate more than one set-up for sequenced operations on same workpiece.

THEE DECEDE OF THEE

 TREANSISTORIRE commemorates the tenth anniversary of a major breakthrough in solid state electronics by devoting the entire June issue of PROCEEDINGS OF THE IRE to an up-to-date summary of progress and advances in transistors. So small that many can be held in the palm of one hand, these tiny components have ended our 50 year dependence on vacuum tubes. Without transistors, our intricate guidance and communication systems for missiles would be incredibly big and heavy. With them, whole new technologies are being developed, not only for defense but for industry and commerce as well.

June Issue of Proceedings of the IRE is the Nexy Standard Reference MYork on Transistors

Only once before has PROCEEDINGS devoted an entire issue to transistors. That was in November, 1952. Despite a substantial overprinting, every copy was sold within 3 months. This classic issue, coming at a time when there were no books and few papers on the subject, is still considered one of the basic references on the subject...a suitable companion to the definitive Solid-State Electronic issue of December, 1955 and the Ferrites issue of October, 1956.

Now, to mark the tenth anniversary of the transistor, PROCEEDINGS presents the latest advances in theory and application in the June, 1958 issue. Here you will find introductory articles by its inventors-Shockley, Bardeen and Brattain-specially invited papers reviewing progress in all facets of the subject, contributed papers reporting the latest and more important advances in the field. Be sure to order your copy, today!

Partial Contents:

"The Technological Impact of Transistors," by J. A. Morton \& W. J. Pietenpol, Bell Labs.
"The Status of Transistor Research in Compound Semiconductors," by D. A. Jenny, RCA.
"Survey of Other Semiconductor Devices," by S. J. Angello, Westinghouse.
"Electrons, Holes and Traps," by W. Shockley, Shockley Semiconductor Lab.
"Recombination in Semiconductors," by G. Bemski, Bell Labs.
"Noise in Junction Transistors," by A. van der Ziel, University of Minnesota.
"Formation of Junction Structures by Solid State Diffusion," by F. M. Smits, Bell Labs.
"Germanium and Silicon Rectifiers," by H. Henkels, Westinghouse.
"The Potential of Semiconductor Diodes in High-Frequency Communications," by A. Uhlir, Bell Labs,
"Advances in the Understandings of the P-N Junction Triode," by R. L. Pritchard, Texas Instruments.
"Power Transistors," by M. A. Clark, Pacific Semiconductors.
"Application of Transistors in Computers," by R. A. Henle \& J. L. Walsh, IBM.
"Application of Transistors in Communication Equipment," by D. D. Holmes, RCA.
"Characteristics Data on Silicon and Germanium," by E. Conwell, Sylvania.

The Institute of Radio Engineers
1 East 79th St., New York 21, N. Y.
Enclosed is $\$ 3.00$ Enclosed is company purchase order for the June 1958 issue on Transistors.
Send this special issue of Proceedings of the IRE to:
NAME
COMPANY
ADDRESS
All IRE members will receive this June issue as usual.
Extra copies to members, \$1.25 each (only one to a member).
CITY \& STATE

Microwaves Spur New Parts

(1) Diamond Antema \& Microwave Corp., rotary joints. (2) Narda Microwave Corp., coaxial couplers. (3) Raytheon Mfg. Co., ferrite circulator. (4) Monogram Precision Industries, Inc., load isolator. (5) Thompson Products, Inc., waveguide switch. (6) PR\&D Co., sliding-load waveguide.

Microwave equipment business is ballooning into the multi-billion-dollar-a-year category. New equipment designs rely on availability of new and improved microwave components.

Serics No. 45 waveguide rotary joints offered by Diamond Antenna \& Microwave Corp., 7 North Ave., Wakefield, Mass., (300), are of the in-line type and feature broadband operation at high speeds. They employ novel transducers from rectangular to loaded circular waveguide.

Narda Microwave Corp., 118-160 Herricks Roadl, Mincola, N. Y., (301), amounces a new broadband series of coaxial couplers covering a $21 / 2$ to 1 frequency range with flat coupling and high directivity from 4,000 to $10,000 \mathrm{mc}$. Models are available for 10,20 and 30 cb coupling.

Now available from Raytheon Mfg. Co., Waltham 54, Mass., (302), is model CCMl microwave ferrite circulator for use in C-band transmission and reception svstems. It is only $57 / 8 \mathrm{in}$. long, $41 / 4 \mathrm{in}$. high, and $31 / 8 \mathrm{in}$. wide. It readily replaces conventional gas-tube duplexers.
Monogram Precision Industries, Inc., Los Gatos, Calif., (303) introduces model XLl 57 Uniline ferrite load isolator. Used to provide substantial isolation between a microwave source and its load with negligible loss in transmitted power, it removes the reactive loading effect caused by long transmission lines or frequency pulling of magnetron or klystron.

In production at Thompson Products, Inc., 2196 Clarkwood Rd., Cleveland 3, Ohio, (304), is a double ridged waveguide switch which provides broad frequency characteristics for DR19 or equivalent waveguide. The actuator is radio noise free and cquipped with interlock circuitry.

Polytechnic Research and Development Co., Inc., 202 Tillary St., Brooklvir 1, N. Y. (305), announces a new series of sliding waveguide terminations with frequency ranges from $2.6-3.95 \mathrm{kme}$ to $26.5-40 \mathrm{kme}$, and a maximum vswr of 1.01 .

D-C VTVM low cost unit

Millivac Instruments, Box 997, Schenectady, N. Y. Model MV-57A sensitive precision d-c vtvon is priced at $\$ 790$. Accuracy is $\frac{1}{4}$ percent absolute (not full scalc). Measuring range is $100 \mu \mathrm{v}$ to l kv . Input impedance is 6 megohms on low ranges, 60 meg from 1 v up. Precision measurements are made through automatic comparison of accurate calibration signals, taken from a standard cell-controlled 1 kv d-e supply, with the unknown voltage. Circle 306 on Reader Service Card.

BEST

TOOLS

PLUS

BEST

CRAFTSMEN

PRODUCE

THE BEST PRODUCT

Through the four necessary steps to produce transformers for Electronic applications, Moloney uses the best... in men... in facilities... in material. That basically is why Moloney is recognized as a producer of quality products. Yes, recognized for the quality of engineering, processing,

Write for Catalog SR 208 "HyperCores for Magnetic Components" and Catalog ST 3506 "Magnetic Components for Electronic Applications." assembly ... and testing. Experience and facilities thus combined assure purchasers of the best product for their needs.

 Plate and Filament Transformers - Chokes - Unif Rectifiers - Modulation Transformers and Reactors - Pulse Transformers and Charging Chokes - HyperCores for Magnetic Components Developmental Magnetic Components - Power and Distribution Transformers SALES OFFICES IN ALL PRINCIPAL CITIES - FACTORIES AT ST. LOUIS 20, MO. AND TORONTO, ONT., CANADA

ADCs

Complete

 TEST REPORTS SAVE MONEYExpensive testing hours are saved by the accurate and complete
test reports submitted with each. ADC sample.
The transformer illustrated above is typical. Specifications called for an output transformer for a high power, ultrasonic application. The sample was promptly submitted with complete test data and outline drawings.
As is its custom, ADC also included the test circuit so that the customer could see how the test data was obtained, and more easily verify test results.
From sample design through production, you'll like the way ADC fulfills your transformer and filter requirements.

AUDIO DEVELOPMENT COMPANY

Indicators

show temperature
Arthur C. Ruge Assochates, Inc., 733 Concord Ave., Cambridge, Mass., has developed two portable, easily operated temperature indicating instruments-one a single channel indicator and the other multichannel-to be uscd with their RdF resistance thermometers. Illustrated is the multichamel type with built-in calibration controls, casy readability and simplicity of operation, and a front panel selector switch permitting monitoring of up to 10 points. There is also a provision for recorder connection through a jack on the rear of the panel. Range is 0 to 500 F standarcl. Scale divisions are 10 F and 10 C ; readable to approximatcly 2.5 F. Circlc 307 on Reader Service Card.

V-R Power Supplies

transistorized
Vestern Gear Corp., P.O. Box 182, Lvnwood, Calif. Operating from a $115-\mathrm{v} 60 \mathrm{cps} \mathrm{a}-\mathrm{c}$ power source, the model 7PVR1+ transis-
torized voltage regulated power supply provides three clanuel out-puts- $\pm 2 \mathrm{v} \mathrm{cl}-\mathrm{c}$ at 2.5 amperes, ± 3 v d-c at 2.5 amperes, and $\pm 20 \mathrm{v}$ $\mathrm{d} e \mathrm{e}$ at 2.5 amperes. All channels are regulated to ± 0.5 percent. The regulatory circuits are referenced to temperature compensated Zener diodes. Vernier adjustments of output voltages are provided. Circle 308 on Reader Service Card.

D-C Amplifier
 low-level type

Beckman Systenis Division, 325 North Muller Ave., Anaheim, Calif. The FITGO (Floating lnput To Grounded Output) low-level (1-c amplifice uses solid state components throughout, resulting in greater reliability. The unit is used to amplify signals from thermocouples, strain gages, pressure transducers and other sensing elements of this type. Circle 309 on Reader Service Card.

Receiving Tube

tiny, low-noise
General Electric Co., Owensboro, Ky., has developed a lownoise military receiving tube $\frac{1}{2}$ in. long and $\frac{1}{2}$ in. wide for use as an r-f amplifier in equipment operating up to frequencies of $1,200 \mathrm{mc}$. Type 7077 is a high-mu triode of planar construction intended primarily for use in grounded grid cir-

PRINTED

 CIRCUIT AMPLIFIER USES AIRPAX CHOPPER
Universal Chopper-Stabilized Amplifier

0pen-loop gain of this operational amplifier drops at 6 db /octave over entire working range. This feature enables the user to shape the response from DC to well above 100 KC by means of feedback to meet nearly any application.

Grid current at the input is completely eliminated. Drift and noise are held under 100 microvolt referred to the input by a stabilized preamplifier stage using an Airpax Type 175 chopper.

The amplifier is manufactured by George A. Philbrick Researches, Inc., Boston 10, Massachusetts.
The chopper, naturally, is by Airpax.

CHARACTERISTICS OF TYPE 175 CHOPPER

Airpax 60-CPS chopper Type 175 is a miniature unit with permanently adjusted SPDT BBM contacts.

DRIVE

Frequency .. 60 ± 3 CPS
Voltage $\ldots 6.3 \pm 0.6$ RMS volts
CONTACTS
Dwell Time . 167 ± 10 electrical deg. Balance within 15 electrical deg. Phase Angle 20 ± 5 electrical deg. Voltage up to 100 DC volts Current up to 2 MA Noise 50 microvolts average
Hermetically sealed for trouble-free operation in any atmosphere; internal mechanism rigidly mounted to withstand shock and vibration encountered in portable equipment.

.. POWER SUPPLY... LIMIT BRIDGE
Precise, self-contained unit for laboratory and production use. For DC instrument calibration from 25 ua full scale to 10 ma full scale, and 0.100 VDC: sensitivity and resistance measurement; DC current-voltage source; limit or bridge measurements from 0.5000 ohms. Regulated power supply. Stepless vacuum tube voltage control. Ac. curacy exceeds $1 / 4 \%$ (current), $1 / 2$ ohm or curacy exceeds $1 / 4 \%$ (current), $1 / 2$ ohm or Complete - needs no accessories. Bulletin on request. Marion Electrical Instrument Co.. on request. Marion Electric
Manchester, N. H., U. S. A.

Copyright (c) 1958, Marlon
U. S. Patent 2,740.093

CIRCLE 93 READERS SERVICE CARD

ENGINEERS - CLIP THIS SCHEDULE

GENERAL ELECTRIC HMEE INTERVIEWING PROGRAM FOR NEXT 3 WEEKS

INTERVIEWS	DATES
New York, N. Y.	June 11
Washington, D. C.	June $9-10$
Boston, Mass.	June $16-17$
Dallas, Texas	June 23-24
San Francisco, Cal.	June 24-25
Ft. Worth, Texas	June 25-26
Los Angeles, Cal.	June 27-28
Seattle, Wash.	June 27-28
El Paso, Texas	June 28-29
Albuquerque, N. M. June 30-July 1	

Assignments Open On

BALLISTIC MISSILE

 DEFENSE ENVIRONMENTSFor complete details on a wide diversity of positions, including $D \& D$ on long range surveillance radar, sec our ad on page ${ }^{17 \%}$
Make arrangements now for an interMake arrangememetown by wiring view in to the address below. If youl city is not listed write us to find out city is not interviews will be scheduled there. Replies held in strict confidenc
DI. James 1'. Kinsella, Dir. 27 WV

Heavy Military Electronic Equipment Dept.
GENERAL (3) ELECTRIC
Court Street, Syracuse, N. Y.

[^3]cuitry in communcations, radar and narigation equipment. Amplification factor is S0, power gain $1+.5 \mathrm{db}$, and noise figure 5.5 db . Circle 310 on Reader Service Card.

Radar Simulator

basic research type
Federal Scientific Corp., 615 W. 131st St., New York 27, N. Y., offers a basic search radar simulator intended to meet a wide varicty of requirements. In reproducing the systematic and random portions of the radar process the instrument supplies radar video simulating that of a scarch type radar with complete fidelity. The effects of antema racliation pattern, target scintillation, and receiver thermal noise are simulated with mathematical validitv. Circle 311 on Rcader Service Card.

Crystal Case Relay weighs only 0.35 oz

Wheelock Signals, Inc., Long Branch. N. J. This new miniature crystal case relay can withstand
temperatures of -65 to 125 C and vibration of $2,000 \mathrm{cps}$ at 20 g . Dielectric strength is $1,000 \mathrm{r} \mathrm{rms}$, 750 v rms across contact gaps. The relay can withstand shock in excess of 100 g , all planes, has coil resistances up to 5,000 ohnus and minimum coil power stucl or bracket mounting with solder hooks or 3 in. leads. Circle 312 on Reader Service Card.

Voltage Divider small, ultralinear

Electro-Measurements Inc., $752+$ S. W. Macadam, Portland, Oregon, announces the Dekatran, a compact panel mounted a-c volt age divider having linearity rivaling claborate laboratory standard dividers. It cmplovs a special tapped toroidal transformer, coaxial switches and the exclusive Dekadial. Four coaxial dials give a simple straight line reading to five significant figures. Overall lincarits of the Dekatran is better than 0.002 percent. Circle 313 on Reader Service Card.

Pulse Transformers miniaturized

International Resistance Co., Computer Components Division, 401 N. Broad St., Philaclelphia 8, Par. Packaged in a special moisture

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet."

McGraw-Hill Publishing Company, Room 2710, 330 West 42 nd St., New York 36, N. Y.
a big step forward in broadband RF amplification

OCTAVE RF AMPLIFIERS 40 to 600 mos

- low noise figure • low power drain
- high gain - broadband operation
- Alat gain characteristic

Model HFW Octave RF Amplifiers feature low noise, high gain, low power drain plus dependability and easy maintenance. Four basic amplifiers are available, with the following frequency responses:
40 to 80 mcs - 80 to 160 mes 160 to $320 \mathrm{mcs} \quad 300$ to 600 mcs

Two additional units cover the $100-400 \mathrm{mcs}$ region as follows:
100 to 200 mcs - 200 to 400 mcs
Conservatively speaking, these equipments offer a practical and realistic answer to nearly all broadband amplification requirements.

TYPICAL PERFORMANCE CHARACTERISTICS Model HFW-303

Input frequency:	$300-600$ mes
Input, output impedance:	50 ohms
Input, output V.S.W.R.:	Less than 1.5 in bandpass region
Noise figure (average):	7 db
Gain	30 db
Primary power requirements:	$115 \mathrm{VAC}, 60 \mathrm{cps}$
Size (L.W.H.):	$19^{\prime \prime} \times 121 / 2^{\prime \prime} \times 7^{\prime \prime}$
Mounting dimensions:	Standard $19^{\prime \prime}$ relay rack

Write for further information.

76 South Bayles Avenue, Pori Washington, N. Y.

Neur Speed...Versatility ... Reliability...

Optimum performance

 in virtually all tape handling applicationsThe advanced design of the completely transistorized Potter Model 906 Tape Handler provides improved performance in virtually any tape handling application.

Replaceable Capstan Panel permits use as Perforated Tape Reader with a remarkable new brake capable of stopping on the stop character at speeds up to 1000 characters per second. Using a small vacuum loop buffer, Model 906 features:

- Complete front accessibility-single Capable of continuous cycling at any panel construction frequency from 0 to 200 eps with.
- Pinch rollers capable of 100 million start-stop operations out flutter
- Rewind or search at 400 ips
- In-line threading, end of lape sens. ing and tape break protection
- 3 millisecond starts

Spe 1.5 millisecond stops

- Speeds up to 150 ips
- As many as 4 speeds forward and reverse
- Tape widths to $1.1 / 4^{\prime \prime}$
- Up to 47 channels

The 906 may be supplied with a transistorized Record-Playback Amplifier featuring a separate module for each channel. Electronic switching from record to playback function is available as an optional feature.

Other Potter products include Transistorized Frequency Time Counters, Magnetic Tape Handlers, Perforated Tape Readers, High Speed Printers, Record-Playback Amplifiers and Record-Playback Heads.

POTTER INSTRUMENT COMPANY, Inc.
Sunnyside Boulevard, Plainview, New York
OVerbrook $1-3200$
resistant epoxy resin, a new series of miniaturized pulse transformers are designed with a 7 -pin miniature plug-in base or with leads for soldering to printed circuit boards. They are clesigned for use in blocking oscillators, impedance matching, phase inversion, interstage coupling, triggering and counting circuitCircle 314 on Reader Service Card.

Portable Analyzer tests galvanometers

North Atlantic Industries, Inc., 603 Main St., Westburv, N. Y. The GA-101 portalble galvanometer analyzer allows a completc check of all galvanometer parametcrs, including damping, frequency response, static balance and d-e sensitivity, replacing the complex test equipment formerly used in these measurements. Circle 315 on Reader Service Card.

Mounting

for transistors

The Delbert Blinn Co., P. O. Box 757, Pomona, Calif., announces a new transistor mounting
that provides a standardized mounting of all transistors regardless of size or shape. It offers shock resistance, good heat sinking and low moisture alsorption. Temperature range is from -60 C to +99 C with a hot continuous operating temperature of 85 C . It has low dissipation factor, conductivity and dielectric constant; ligh surface and volume resistivity. Circle 316 on Reader Service Card,

Power Supply
 two phase

Pacific Technical. Co., $20+7$ Salwtelle Blvd., Los Angeles 25, Calif. A new two phase power supply is designed to speed the development and testing of +00 cycle servo systems and motors for missiles and aircraft. Three continuously variable outputs-two at 0 deg and one at ± 90 deg-allow extreme flexibility in the use of this supply. Total output is in excess of 500 val. Circle 317 on Reader Scrvice Card.

Miniature Servo high torque output

Librascope, lnc., 808 Westem Ave., Glendale I, Calif. Designed primarily for servo repcater applications, model 100-1 miniature servo mects the needs for an isolation servo between synchro components, or a synchro controlled servo drive for resolvers, potentiometer, or shaft to digital comerters. It has a high sensitivity to suncluro input

IERC HEAT-DISSIPATING ELECTRON TUBE SHIELDS

 - AND EQUIPMENT "DOWN TIME" LOSSES CAUSED BY HEAT, SHOCK AND VIBRATION!

Investigate the extraordinary tube-saving, cost-saving potentials of IERC Heat-dissipating Tube Shields - the only complete, commercially-available line of effective heat-dissipating electron tube shields for miniature, subminiature and octal/power size tubes. IERC's expanded line of heat-dissipating tube shields for the larger size power tubes offer, for the first time, a practical method to retain these tubes in severe shock and vibration environments!
The most complete electron tube heat-dissipation inforrisuition is yours for the asking! Technical data comprised of IERC and independent laboratory test reports will be sent upon request on your company letterhead.

Cross-licensed with north american aviation, inc.
patented or pats pend.

electronic research corporation 145 West Magnolia Boulevard, Burbank, California

LATEST addition to IERC's product line is the IERC HEAT DISSIPATOR for POWER TRANSISTORS. Effective reduction of temperatures, elimination of heavy, large or finned surfaces plus adaptability for use in confined spaces are prime features. Technical Bulletin PF112 is included with general IERC information sent on request.

Heat-dissipating electren tube shields for miniature, subminiature octal and power tubes

... 1 micro-ohm to 10^{6} megohms
Among the many bridges manufactured by Shallcross, these six have become virtually "standards" for general-purpose resistance measurements. Each is easy to operate and ruggedly constructed to maintain accuracy and stability in every kind of field and laboratory service. Switch decks are inside the case for minimum maintenance.
Of special interest are the 617 Series Limit Bridges. These provide direct "GONO GO" production line resistor testing for any percent tolerance spread from $\pm 0.1 \%$ to $\pm 20 \%$.

NEW BULLETIN L-19B contains full specifications for each instrument. For your copy write to: SHALLCROSS MANUFACTURING COMPANY, Selma, North Carolina.

Model Number	Measurement Accuracy	Maximum Setting	Minimum Setting	Circuit	Special Features
6100	$\begin{aligned} & \pm 0.1 \%+0.01 \Omega \\ & (.1 \Omega \text { to } 1.011 \text { MegQ) } \end{aligned}$	1.011 Meg ?	0.001Ω	Fault LocationWheatstone	Fault Location by Murray, Varley, Hilborn \& Fisher Loop Tests.
6101	$\begin{aligned} & \pm 0.1 \%+0.01 \Omega \\ & (1 \Omega \text { to } 11.11 \mathrm{Meg} \Omega) \end{aligned}$	11.11 Meg?	0.001Ω	Wheatstone	Four dial rheostat usable as decade box.
6320	$\begin{aligned} & \pm 0.02 \%+0.01 \Omega \\ & (1 \Omega \text { to } 11.11 \text { Meg } \Omega) \end{aligned}$	111.11 Meg?	0.00001Ω	Wheatstone	Most accurate five dial Shallcross bridge for direct resistance measurement. Rapid "GO-NO GO" percent limit testing. Built-in adjustable comparison standard.
	$\left\lvert\, \begin{aligned} & \pm 0.05 \% \text { to } \tau 20 \% \text { on } \\ & \text { separate " }+ \text { and " } \\ & \text { percent selectors. } \\ & \text { (18 to } 10 \text { Meg } ? \text {) } \end{aligned}\right.$	11.111 Meg?	0.0001Ω	Percent Limit	
638-R	$\pm 0.75 \%$ or better (. 0018 to 12)	11.118	0.000001Ω	Kelvin	Overlapping Kelvin and Wheatstone ranges selected with single ratio dial.
	$\begin{aligned} & -0.2 \%+0.01 \Omega \\ & (1 \Omega \text { to } 11.11 \mathrm{Meg} \Omega) \end{aligned}$	11.11 Meg?	. 0018	Wheatstone	
6350	$\begin{aligned} & \pm 1 \%,(10 \Omega \text { to } 10 \mathrm{Meg} \Omega) \\ & \pm 2 \%,(10 \mathrm{Meg} \mathrm{~S} \text { to } \\ & 10, \mathrm{CoO} \mathrm{Meg} \Omega) \\ & \pm 5 \%, \text { (above } \\ & 10,000 \mathrm{Meg} \text {) } \end{aligned}$	$\begin{gathered} 1.111 \times 10^{0} \\ \text { Meg? } \end{gathered}$	0.012	Wheatstone with d-c Amplifier	Modular construction dual range power supply, null indi-cator-amplifier, for 115 V .60 cycle operation.
617 Series	$\pm 0.1 \%$ to $\pm 20 \%$ on separate " t $^{\prime \prime}$ and "-". selectors from a minimum resistance consistent with number of dials in use to the maximum settings.	$\begin{aligned} & 111,111 \Omega \\ & 1,111,110 \Omega \\ & 11,111,100 \Omega \end{aligned}$	$\begin{aligned} & 0.1 \Omega \\ & * 1 \Omega \\ & 10 \Omega \end{aligned}$	Percent Limit	For rapid "GO-NO GO" percent limit testing. Hand or foot operated for production testing. All models also usable for direct resistance measurements. Binding post for external d-c power supply.
	$\dagger \pm 0.2 \%+0.010$ from a minimum consistent with number of dials in use to the maximum setting.	$\begin{aligned} & 111,111 \Omega \\ & 1,111,110 \Omega \\ & 11,111,100 \Omega \end{aligned}$	0.18 $\$ 1 \Omega$ 108	Wheatstone	

producing an accurate high torque output. In a package 3 in . long and $1 \frac{3}{3} \mathrm{in}$. in diameter it includes: motor, control transformer, amplifier, gear train and related circuitry. Circle 318 on Reader Service Card.

Motor Pump portable, hydraulic

Tal Bending Equipment, Inc., Milwankee 2, Wisc., has developed a small, fast, powerful, portable hydraulic motor pump developing up to 10,000 psi pressure and weighing only 65 lb .

The company claims that specific uses of the motor pump in the electronic industry would be: conversion of hand or foot operated arbor and bench presses, shears, bending devices, jigs, fixtures, clamping devices, and anvwhere else that smooth positive power is necded to push or pull. Circle 319 on Reader Service Card.

Transistor Tester general purpose

Sonex, Inc., 73 South State Road, Upper Darby, Pa. A general purpose transistor tester measures small
signal beta, collector leakage current, and collector resistance on all npn, pup, surface barrice, grown or diffused junction transistors. Eleven operating points are provided with one convenicut selector switch. The tester is self-calibrating and transistor under test is operated in a temperature stabilized circuit insuring each unit is tested under identical biasing conditions. Circle 320 on Reader Scrvice Card.

VHF F-M System for split channel use

Afronautical Eiectronics, Inc., Box 6527, Raleigh, N. C. Model 600 series vhif f-m mobile radio equipment uses a high frequency crystal filter for superior receiver selectivity characteristics moler new split channel allocations of the FCC. It can operate on 6, 12 or 115 v without modification, extending its use thercby to smaller transmitter stations. Circle 321 on Reader Service Card.

Frequency Meter for vhf use

Lavoie Laboratories, Inc., Mata-wan-Freehold Road, Morganville, N. J. A new vhif frequency meter is accurate to one part per million (0.0001%) over a range of 20 mc to $3,000 \mathrm{mc}$. The instrument will measure frequencies as low as 10 kc and is capable of generating frequencies over the entire 10 kc $3,000 \mathrm{mc}$ range. No calibration

... low voltage and apparatus types

A design which uses air as major insulation, with leakage path lengthened by forming porcelain into a bowl, eliminates losses which occur in ordinary types of bushings at radio frequency.

Lapp moderate duty insulators, suitable for a variety of low or medium voltage applications, are the standard type bowls for carrying leads through shields, equipment cases, walls, etc., and practically any indoor use where duty is not too severe.

Outdoor units are designed with corrugated surfaces which provide extra leakage distance for use in contaminated atmosphere. Corrosion-resistant hardware.

A wide variety of types of these insulators is now available as catalog items... or where requirements necessitate, on special design-for which Lapp engineering and production facilities are excellently qualified. Write for complete descriptive data and specifications. Lapp Insulator Co., Inc., Radio Specialties Division, 142 Sumner Street, Le Roy, N. Y,

Official U.S. Navy Photograph

when all MANKIND...

is gazing at the heavens wondering if its bleak and silent spaces will be friend or foe, our Nation's security depends, more than ever before, on the Engineers' and Scientists' determination to make major scientific break-throughs rather than mere improvements in existing hardware. The professional staff of the Vitro Silver Spring Laboratory is dedicated to this goal.
Our present openings are few but extremely challenging. For detailed information, address your inquiry to:

Manager, Professional Employment
Silver Spring Laboratory, Dept. 102
Vitro Laboratories
14000 Georgia Avenue, Silver Spring, Maryland

hooks or temperature correction curves are required for the direct reading unit, making it particularly useful in the mobile and military field. Circle 322 on Reader Service Card.

Pulse Analyzer

256-channel unit
Radiation Counter Laboratories, Inc., Skokic, Ill. Model 20609 256-channel pulse height analyzer features: 27 lours pre-set time cluring which background may be comnted and automatically subtracted from original run data; logarithmic realout on flat-faced crt and strip chart recorder; dual-function hev supply; and interpolation lights to aid in setting zero point and instrument maintenance. All channels are printed out in less than onc minute. Circle 323 on Reader Service Card.

Silicon Rectifier
 diffused junction

Fansteel Metallurgical Corp., North Chicago, Ill. This small diffused junction silicon power rectifier is rated for contimuous service at 20 amperes d-c at maximum peak reverse potentials up to 400 v . Four of thesc rectifiers in a full wave bridge circuit will provide power for a 10 li-p 230-v d-c motor. It is specifically designed for d-e power supply and magnetic amplifier ap-
plications requiring relialle performance in ambient temperatures up to 150 C. Circle 324 on Reader Service Card.

Digital Voltmeter
 two module unit

Electro Instrunients, Inc., 3540 Aero Court, San Dicgo 11, Calif. The DVA-500 d-c digital voltmeter consists of a switch module and a power module. The power module is transistorized and features internall modular construction. Specifications of the new instruncat include a 5 digit display, automatic ranging and polarity, 0.0001-999.99 range and 0.01 percent accuracy, \pm one digit. Stability is letter than 0.01 perecut. Circle 325 on Reader Service Card.

Indicating Meters shatterproof-face

Hoyt Eiectrical Instrument Works, Inc., Burton-Rogers Co., +2 Carlcton St., Cambriclge 42 , Mass., has developed a new scries of indicating meters with a slatterproof, transparent plastic face for original equipment or replace applicaltions that require 5 percent accuracy. The scale extends practically the full width of these $2 \frac{3}{8}$ in. square meters to give a high

OUTLINE DRAWING MODEL 575N DOUBLE COUPLER

WHEN YOU BUILD MicroMatch Directional Couplers into your transmitters, you add an invaluable feature at extremely low cost - positive confirmation of transmitter performance. Your customers stay sold by the coupler's continuous RF Pover indication. Its VSWR monitor, in addition, stands watch over your customer's transmission line and antenna.

Now incorporated in most modern Govermment and commercial transmitters, MicroMatch Directional Couplers produce an output essentially independent of frequency. Units are available for use within the range of 20 to 4000 megacycles. Couplers are adjusted to produce full scale meter deflection at power levels of 1.2 watts to 120 KW . Accuracy of power measurements is plus or minus 5% of full scale,

For complete details on the MicroMatch line of monitoring equipment, write for our 68-page catalog.

WHEN MICROMATCH IS BUILTINYOU KNOW WHAT'S GOING OUT

Steering intelligence for tomorrow's missiles . . . with a built-in immunity to enemy jamming and interception that is the fantastic promise. Westing-house-Baltimore-pioneer in weapons systems basic research -has developed advanced equipment to play an important role in our offensive and defensive strategies for the future.

The Men on the Westinghouse Team are engineers with Exceptional Qualifications. These men carry on the traditions of pioneering leadership that have made the name Westinghouse synonymous with advanced developments in the electronics field.

There is always room at WestinghouseBaltimore for engineers of this caliber. If you have these qualifications, we urge you to send a resume of your education and experience to:

Dr. J. A. Medwin, Dept. 764, Westinghouse Electric Corporation, P. O. Box 746, Baltimore 3, Md.

Westinghouse

laso
clegrec of readability comparable to larger instruments. They are available in ranges of d-c sensitivities from 1 ma to 100 amperes, and 326 on Reader Service Card.

Silicon Rectifiers
 diffused junction

Bendix Aviation Corp., Red Bank Division, Long Branch, N. J. A series of new silicon rectifiers have peak inverse voltage ratings ranging from 50 to 600 v and can deliver 30 amperes of rectified current. Operating temperature extends from -65 C to +175 C . The rectifier package is in confommance with the latest JETEC proposed standards.

The units are of the diffused junction type for lower forward drop and lower reverse leakage current. EIA has reserved the JETEC designations $1 \mathrm{Nl} 43+-1 \mathrm{Nl} 438$ for this series of five rectifiers. Circle 327 on Reader Scrvice Card.

Relay Socket
 microminiature

Viking lndustries, Inc., $213+3$ Roscoe Blvd., Canoga Park 3, Calif., announces a microminiature 8 and 10 contact relay socket available in four styles of mountings to assure ease of installation in any
design. Contact rating is 5 am peres, wire size No. 20 Awg maximum. Insulator is mineral (asbestos) filled Melaminc-type mone; contacts are phosphor bronze; inserts cither brass or stecl. Circle 328 on Reader Service Card.

Transistor Inverter

for airborne uses
Varo Mfg. Co., Inc., 2201 Walnut St., Garland, T'cxas, has developed a 60 ra, 115 v a-c transistor inverter for airborne uses requiring precision 400 cps frequency. Use of al tuning fork reference obtains 0.01 percent accuracy in the single phase output from the $28 \mathrm{v} \mathrm{cl}-\mathrm{c} \pm 5$ percent input. Model +303 weighs only 2.5 lb and operates through a temperature range of -50 C to +71 C . Unit will withstand 5 g 's at 70 $1,000 \mathrm{cps}$ or 10 g constant acceleration. Circle 329 on Reader Scrvice Card.

Kerr Cell Shutter

$.01 \mu_{\text {sec exposure }}$

Avco Mfg. Corp., 20 S. Union St., Lawrence, Mass. Exposure time of $0.01 \mu \mathrm{sec}$ has been achieved with a Kerr cell elcetro-optical slutter and an improred pulse generator circuit. The 2 -in.-sq shutter has

Speed Pxoductron... Lowrex Assembly Costs with this New Symmetrical Feed-Thru Capacitor*

Centiralab's New DA-741 Hi-Kap,

 the feed-thru you can't put in wrong:. . . can be inserted from either end . . . a natural for machine insertion or other types of automation
. . . embodies a new metalizing technique that completely eliminates capacitance drop-off, silver migration, and silver burn-off during soldering operations
. . . will withstand soldering temperatures of $450^{\circ} \mathrm{F}$ for two minutes
. . . has a solder fillet around center ring eliminating need for solder preforms
... rugged 16 gauge tinned wire lead assures positive connections

SPECIFICATIONS:

Capacitance: Available in values up to $1,000 \mathrm{mmf}$. GMV
Power Factor: 3\% maximum, measured at 1 KC
Voltage: $\quad 500$ VDCW, 1300 VDCT; special units

TYPE DA 741
TYPE DA 741

Humidity: Meets EIA STD RS198, Class 2
DA-740, with same electrical characteristics but without solder fillet or leads, can also be supplied.
For details write for Centralab Engineering Bulletin No. EP-556. For the most complete line of ceramic capacitors in the industry see your Centralab distributor.

A DIVISION OF GLOBE-UNION, INC. $914 F$ E. KEEFE AYE. - MILWAUKEE I, WIS. In Canada: 804 Mt . Pleasant Rd. - Toronto, Ontario

VARIABLE RESISTORS - PACKAGED ELECTRONIC CIRCUITS - ELECTRONIC SWITCHES CERAMIC CAPACITORS - ENGINEERED CERAMICS • SEMI-CONDUCTOR PRODUCTS

AHICABD
 TRANSFORMERS

Designed and Built in accordance with MIL-T-27A

DELIVEREDFROM STOCKt

Your local electronic parts distributor can give you fast delivery on hundreds of types of transformers designed and built in accordance with MIL-T-27A specifications. They are in stock, backed up by the largest factory inventory of military transformers in the industry.

Ask your distributor for CHICAGO catalog CT3-57, listing detailed electrical and physical specifications on these units, or write to Chicago Standard Transformer Corporation.

\# Under Military Reduced Inspection Quality Assurance Plan (RIQAP)

CHICAGO STANDARD TRANSFORMER CORPORATION

3502 Addison Street, Chicago 18, Illinois
Export Soles: Roburn Agencies, Inc. - 431 Greenwich St. - New York 13, N.Y.
been applied to aerodynamic simulation studies of long-range missile re-entry problems. Exposure times in the range of 10^{-8} to 10^{-7} are required to prevent image blur in Avco's work with scaled-down projectiles fired at very high velocities in its ballistic range. Key to the new technique is the pulse generator, which consists of RG8/U coax cable and the spark gap. The Kerr cell is connected directly across the load resistor on the transmission line and does not require an impedance matching network or pulse transformer. Circle 330 on Reader Service Card.

Casting Resin

fire retardant
Emierson \& Cuming, Inc., 869 Washington St., Canton, Mass. Stycast 2980 is a one component. fire-retardant epoxide casting resin and impregnant. It is used clirectly as supplied; no addition of curing agent is required. It can be used from -70 F to +400 F . Insulation resistance is 10^{18} ohm-em at room temperature and remains above 10^{12} ohm-cm at 400 F. Circle 331 on Reader Service Card.

Scaler

7-decade capacity

Baird-Atomic, Inc., 33 Uuiversity Road, Cambridge 38, Mass. Model

Get out your pencil and . . .

Help yourself to electronics' READER SERVICE

 it's free-it's easy-it's for your convenienceEach Advertisement and New Product item is numbered.
For more information, simply ...
(1) Circle number on postpaid card below that corresponds to number at the bottom of Advertisement, or New Product item.
(2) Print your name, title, address, and firm name carefully. It is impossible to process cards that are not readable.

* FOR SPECIFIC ITEMS IN MULIT-PRODUCT ADVERTISEMENTS

Please indicate in box in postcard marked with asterisk (*) specific item(s) in ad in which you are interested. Please write ad circle number(s) and specific product(s) on which you want more information.

Additional postage MUST be added to cards for all FOREIGN MAILINGS

An occasional Advertisement cannot be numbered for the READER SERVICE CARD due to lack of space and must be indicated by writing the Advertisers' name in the space at the bottom of the card...

An occasional Adver-

 tisement cannot be numbered for the READER SERVICECARD due to lack of space and must be indicated by writing the Advertisers' name in the space at the bottom of the card...

JUN $6 \cdot 58$
 CARD EXPIRES AUG 6.58

electronics - enginering edition - reader service card
\qquad (COMPANY) \qquad (ADDRESS)

CIRCLE TMESE NUMEERS ONLY WHEN YOU ARE INTERESTED IN ALLITEMS SHOWN OR DESCRIRED

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	28	27	28	29	30	31	32	33	34	35	36	37	38

$\begin{array}{lllllllllllllllllll}20 & 21 & 22 & 23 & 24 & 25 & 28 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 \\ 39 & 40 & 41 & 42 & 43 & 44 & 45 & 46 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 57\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllll}127 & 128 & 129 & 130 & 131 & 132 & 133 & 134 & 135 & 135 & 137 & 138 & 139 & 140 & 148 & 142 & 143 & 144 & 145 & 146 & 147 & 148 & 149 & 150 & 151\end{array}$ $\begin{array}{lllllllllllllllllllllllll}152 & 153 & 154 & 155 & 156 & 157 & 158 & 159 & 160 & 161 & 162 & 163 & 164 & 165 & 166 & 167 & 168 & 169 & 170 & 171 & 172 & 173 & 174 & 175 & 176\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllll}177 & 178 & 179 & 180 & 181 & 182 & 183 & 184 & 185 & 186 & 187 & 188 & 189 & 190 & 192 & 192 & 193 & 194 & 195 & 196 & 197 & 198 & 199 & 200 & 201\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 & 224 & 225 & 226\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}227 & 228 & 228 & 230 & 231 & 232 & 233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}252 & 253 & 254 & 255 & 256 & 257 & 255 & 259 & 260 & 261 & 252 & 263 & 264 & 265 & 266 & 267 & 268 & 269 & 270 & 271 & 272 & 273 & 274 & 275 & 276\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}277 & 278 & 279 & 280 & 281 & 282 & 283 & 284 & 285 & 286 & 287 & 288 & 289 & 290 & 291 & 292 & 293 & 294 & 295 & 296 & 297 & 298 & 299 & 300 & 301\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}\mathbf{3 0 2} & 303 & 304 & 305 & 306 & 307 & 308 & 309 & 310 & 311 & 312 & 313 & 314 & 315 & 316 & 317 & 318 & 319 & 320 & 321 & 322 & 323 & 324 & 325 & 326\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}\mathbf{3 2 7} & 328 & 329 & 330 & 331 & 332 & 333 & 334 & 335 & 336 & 337 & 338 & 339 & 340 & 341 & 342 & 343 & 344 & 345 & 346 & 347 & 348 & 349 & 350 & 351\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}352 & 353 & 354 & 355 & 356 & 357 & 358 & 359 & 360 & 361 & 362 & 363 & 364 & 365 & 366 & 367 & 368 & 369 & 370 & 371 & 372 & 373 & 374 & 375 & 376\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}377 & 378 & 379 & 380 & 381 & 382 & 383 & 384 & 385 & 386 & 387 & 388 & 389 & 390 & 391 & 392 & 393 & 394 & 395 & 396 & 397 & 398 & 399 & 400 & 401\end{array}$ INSIDE FRONT COVER

JUN 6 . 58 CARD EXPIRES AUG 6.58

electronics - engineering edition - reader service card
(NAME) \qquad (POSITION) (COMPANY) \qquad (ADDRESS)

CIRCLE THESE NUMBERS ONLY WHEN YOU ARE INTERESTED N ALLITEMS SHOWN OR DESCRIRED

MEMO:

NEW PRODUCTS RELEASES

TO: ALI MANUFACTURERS
FROM: electronics
electronics publishes all new product items of interest to makers and users of electronic and allied equipment.

The reverse side of this card provides a service to subscribers by facilitating the flow of additional information between manufacturers and our readers.

Take advantage of Reader Service--and the readership of electronics...keep the industry informed about your New Products and New Literature via their mention in the editorial pages of electronics.

BUSINESS REPLY CARD
 no postage stamp necessary if mailed in the united states

4f Postage Will Be Paid By

ELECTRONICS

Reader Service Dept. 330 West 42nd Street New York 36, N. Y.

ELECTRONICS

Reader Service Dept.
330 West 42nd Street
New York 36, N. Y.

131A is a new and versatile cold cathode glow tube scaler for general purpose radioàctivity counting. It is designed for integral pulse height analysis in scintillation or proportional counting. Featuring a 7 -decade capacity and a built-in timer, it contains an ultra-linear, ultra stable expander amplifier type pulse height selcctor. Unit has a resolving time of less than $5 \mu \mathrm{sec}$ with an clectronic scale of 1,000 followed by a 4 -digit clectromechanical register. Circle 332 on Reader Service Card.

Transducer

9/16 in. voice coil
The Magnavox Co., 2131 Beuter Rd., Ft. Wayne, Ind., announces the new Hy-Que 3 transducer. Its applications range from single speaker instruments to multiple speaker units, including various tweeter uses in dual speaker design. The speaker uses standard EIA magnet sizes as well as several special, high-efficiency magnets in its $\frac{9}{16} \mathrm{in}$. voice coil. By various design modifications different response characteristics are possible. Circle 333 on Reader Service Card.

V-R Power Supply compact, tubeless

Kepco Laboratories, Inc., $131-38$ Sanford Ave., Flushing 55, N. Y., has developed the KM-251 mag. netic voltage regulated power supply. It delivers in two ranges: 2 to $8 \mathrm{v}, 0$ to 30 amperes, and 8 to $1+\mathrm{s}$, 0 to 15 amperes. Regulation for

From General Electric . . .

PLAIN TALK ON TANTALYTIC* CAPACITOR AVAILABILITY

It's time for plain talk on the facts of tantalum electrolytic capacitor availability. There is no "availability" problem as far as General Electric is concerned.
Here's why:

- No metal shortage-Stocks of capacitor-grade tantalum have doubled within the past year.
- No production capability shortage-General Electric's production facilities have tripled in the past year.
- No delivery bottlenecks-General Electric's improved manufacturing processes and techniques have virtually eliminated production rescheduling.
- Few military directive priorities-Since the supply of Tantalytic capacitors has met demand, the military requirements can be met without directive priorities.
This is why we say-now and in the future, General Electric will continue to provide Tantalytic capacitors in the types and ratings you want-when you want them.

For specific information on Tantalytic capacitor ratings, prices, deliveries, contact your nearest General Electric Apparatus Sales Office or write to General Electric Co., Section 449-4, Schenectady 5, N. Y.

Write for Bulletin DN-1000 and Engineering Data Sheets DN-1001 and DN-1002 for complete data. Address: Technical Literature Section, DYNACOR, INC., 10431 Metropolitan Ave., Kensington, Maryland.

DYNACOR, INC. • 10431 METROPOLITAN AVENUE • KENSINGTON, MARYLAND CIRCLE 131 READERS SERVICE CARD

line or load is less than ± 1 per cent. Ripple is less than 0.5 percent. Circle 334 on Reader Service Card.

D-C Power Supply small and light

Sorensen \& Co., Inc., Richards Ave., South Norwalk, Conn. Model MA28-125 d-c power supply features high current output over a wide voltage range. A single unit can fecd entire systems drawing up to 125 amperes at 18 to $36 \mathrm{v} \mathrm{d-c}$. In addition to the convenience and accuracy of single-source power, it provides clependable tubeless operation based on a magnetic amplifier control circuit with a transistorized power reference and a zener diode comparison circuit. Circle 335 on Reader Service Card.

Tiny Amplifier
transistorized
MF Electronics Co., 122 E, 25 th St., New York 10, N. Y. Model M-10 is a portable self-contained amplifier. Input impedance is greater than 150 kilohms. Maximum output is 150 mv rms into 350 ohms. Frequency response is
flat from 20 cps to 100 kc . It is valuable for general lab use, in ol taining null indications from an impeclance briclge. Checking audio systems directly by car in the field is another application. Circle 336 on Reader Service Card.

Mercury Switch nylon-enclosed

Mrcro Sivitch, a division of Min-neapolis-Honcrwell Regulator Co., Freeport, Ill. Thic 7MPl-2 nelonenclosed mercury switch consists of a high quality gas tube mocrury switcl embedded in a synthetic rubber and enclosed in a nylon can. The resilient cmbodment material lessens the effects of shock. The switch is resistant to oil and water. Contact arrangement is spst. Circle 337 on Reader Service Card.

A-C VTVM
 precision unit

Millivac Instruments. P.O. Box 997, Schencetady, N. Y. The MV32 A precision a-c vtom uses an clectronically protected wacum thermocouple as its rms-responsive meter-rectifier. Accurate measurements are made by comparing the unknown voltage with an accurately calibrated 1000 cps signal and adjusting the calibrator-attenuator until both the unknown voltage

Multi-Channel Link Test Equipment

The three groups of instruments featured below are representative equipments from the wide variety of Marconi measuring facilities for both baseband and rf circuits in multichannel links. These designs have been specifically evolved by Marconi engineers to meet the exacting test requirements in this specialized field of telecommunications.

WHITE NOISE TEST SET

OA 1249
Noise generator and receiver for the measurement of baseband intermodulation and noise by slot technique covering from 24- to 960 - channel bands (12 kc to 4028 kc).

U.H.F. TEST SET OA 1248

Signal generator, receiver and noise generator for general rf tests in the 1700 - to $2300-\mathrm{Mc}$ band.

Send for leaflet B130A

MARCONI INSTRUMENTS

DERIVATIVE TEST

SET OA 1259
Sweep generator and display unit for fast and accurate adjustment of linearity controls on modulator and demodulator stages. Sweep width: $\pm 20 \mathrm{Mc}$; center frequency, 65 to 75 Mc .

111 CEDARLANE ENGLEWOOD NEW JERSEY
Telephone: LOwell 7-0607

CANADA: CANADIAN MARCONI CO 6035 COTE DE LIESSE - MONTREAL 9
MARCONI INSTRUMENTS LTD • ST, ALBANS • HERTFORDSHIRE • ENGLAND

CIRCLE 133 READERS SERVICE CARD

and the calibrator signal produce exactly identical needle dcflections. Accuracy within the basic frequency range of the instrument ($50 \mathrm{cps}-5 \mathrm{kc}$) is better than $\frac{1}{2}$ percent, at other frequeucies 2 percent Calibrator accuracy is 0.1 percent Circle 338 on Reader Service Card.

Electrometer
 multipurpose

Keithley Instruments, Inc., $12+15$ Euclid Ave., Cleveland 6, Ohio. Model 610 electrometer is an all-purpose instrument for measuring d-c voltage, current and resistance over extremely broad ranges. Typical uses, in addition to numerous common tests, include measurements of voltages in piezoclectric crystals, static charges and vacuum tube electrodes; currents in ion chambers and semiconductors; and insulation leakage checks and inspection. Circle 339 on Reader Service Card.

Adjustment Pot
 for 175 C use

Bourns Laboratories, Inc., 6135 Magnolia Ave., Riverside, Calif. A now leadscrew-actuated adjustment
potentiometer, designed for 175 C operation and 1.0 w power dissipation, is announced. Model 260 Trimpot uses a new Silverweld termination and ceramic resistance card for high stability and reliability. Residual resistance at either end is only 0 to 0.1 percent. Stanclard resistance values are available from 10 olmms to 50,000 olims. Circle 340 on Realder Service Card.

Silicon Diodes miniaturized

International Rectifier Corp., 1521 E. Grand Ave., El Scgundo, Calif., has available miniaturized, hermetically scaled silicon power diodes. They provide d-c forward currents up to 45 amperes with a maximum piv to 500 v . The units are capable of operation at a junction temperature of 200 C . Ce-ramic-to-metal hermetic scaling provides added stabilite in environmental extremes. No soft solders or fluxes are used in thic sealing operation. Circle 341 on Reader Service Card.

Power Supplies

transistorized
Soutinwestern Industrial Elec tronics Co., 2831 Post Oak Rcl., Houston 19, Texas. TPC-8 power supplies are available with any specified outputs between 1 and 25 v d-c. Output current is rated at 350 ma with 1 percent regulation over the entire load and input volt-

NOW... - a major improvement in felemetry receiver sensitivify

Lowers receiver improvement threshold by af least 6 db .

the Radiation, Inc., Model 8-100 RECEIVER PHASE-LOCK DEMODULATOR

This unit provides an honest system gain that may be translated into

- longer range
- less transmitter power
- smaller antennas
- better reliability

Designed for simple plug-in connection in standard 1400 series receivers (other receivers may be accommodated by modified versions).

Write P.O. Box 37, Melbourne, Florida for Bulletin RAD B-110

Personnel Inquiries
EIECTRONICS • AVIONICS • INSTRUMENTATION MELBOURNE AND ORLANDO, FLORIDA

THIS FELLOW IS TRAINED in YOUR BUSINESS. His main duty is to travel the country - and world - penetrating the plants, laboratories and management councils... reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.

THE MAN WE MEAN IS A COMPOSITE of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents.

AND, THERE'S ANOTHER SIDE TO THIS "COMPOSITE MAN," another complete news service which complements the editorial section of this magazine - the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it" - "they" being all the industry's front line of innovators and improvers - and the advertising pages tell "with what." Each issue un. folds an industrial exposition before you -- giving a ready panorama of up-to-date tools, materials, equipment.

SUCH A "MAN" IS ON YOUR PAYROLL. Be sure to "listen" regularly and carefully to the practical business information he gathers.

McGRAW-HILL PUBLICATIONS
agc range. The 120 v a-c imput is reduced through a specially designed transformer, rectified in a bridge circuit and filtered. A portion of the output voltage is compared to a Zener diode reference voltage, amplified in a transistor circuit, and applied to the input to maintain a constant output voltage. Circle 342 on Reader Service Card.

Power Supplies miniaturized

Chicago Condenser Corp., 3255 W. Armitage Ave., Chicago 47, Ill., announces a new line of miniaturized hermetically sealed power supplies for d-c. The line is engineered for reliability and oil impregnated for stalbility. Ripple is 1 percent. Positive or negative terminal can be grounded to case; standoff h-v termiuals are designed for safe opcration. Circle 343 on Reader Service Card.

Megohmmeter and hi-pot tester

General Hermetic Sealing Corp., 99 E. Hawthome Avc., Valley Stream, N. Y. Variable voltage ranges to $10,000 \mathrm{v}$ are available in
the new Megpot combination mogohmmeter and high potential test set. Standard inclications for the nondestructive testing of component diclectric are $0-3,000 \vee \mathrm{a}-\mathrm{c}$ or $0-5,000 \mathrm{va}-\mathrm{c}$, with higher ranges as specified. Continuonsly variable tests for leakage are afforded by the unit, with settings from 20μ a to 3 ma. Circle 344 on Reader Service Card.

Spectrum Analyzer

two models
Kay Eiectrric Co., Maple Aic. Pine Brook, N. J. Models 30 and 100 Spectralyzers are designed for accurate and rapid spectrum analysis for such current applications as the study of satellite signals, telcmetering, transmission jamming, tube microphonics. transmission of coded frequencies and Doppler radar. Both instruments display the Fourier frequency components of somic and ultrasonic disturbances of short duration. Circle 345 on Reader Service Card.

Calorimeter

uses no controls
Fiectro Iappulse Laboratory. 208 River St., Red Bank. N. J.. anmounces a new calorimetric power meter for low r-f power measurements between d-c to 10 kmc . Full scale measurement range is 5 w . Resolution is 50 mow per division on $4 \frac{1}{2} \mathrm{in}$. metcr. The instrument is sclf-contained, self-cooled and requires only comection to the

POMER TRANSISTOR CURVE TRACERS

FOR RESEARCH, CIRCUIT DEVELOPMENT AND QUALITY CONTROL OF TRANSISTORS.

- High accuracy ($\pm \mathbf{2 . 5 \%}$)
- Dynamic fracing of entire family of curves simultaneously, including -
- Internally generafed calibration axes displayed at all times
- Retrace not blanked; anomalies clearly seen
- For all types of transistors and power transistors. Permits rapid determination of parameters. For selecting, matching and defecting anomalies and rejects. Tracer Bulletin S-667 Model 200A - Transistor Curve Tracer Bulletin 5-393

MODEL 300A MAGNETIC AMPLIFIERS INC.

632 IINTON AVENUE - NEW YORK 55, N. Y. - CYPRESS 2.6610 West Coast Division
136 WASHINGTON ST, • EL SEGUNDO, CAL. • OREGON 8.2665

NEW high vibration-resistant THERMAL TIME DELAY RELAY H series withstands 5-500 cps

- For aircraft, missiles, computers, electronic equipment
- Time delays -3 to 180 seconds
- Hermetically sealed
- Fast reset
- Miniature . . AC or DC

The H series is one of ten Curtiss-Wright Thermal Time Delay Relay series which includes:

S-Snapper-single-pole, double-throw snapaction contacts
IR-TR and STR - instant reset, voltage compensated
MR and CR-double-throw contacts, fast reset, no contact chatter
K-G and W-economical, low-cost
For our new catalog, write or phone Electronics Division, Components Dept., Caristadt, New Jersey, GEneva 8-4000.

ELECTRONICS DIVISION

CURTIISS-WRIICHTE

FAST DC AMPLIFIER: Model K 2 W is an efficient and foolproof high-gain operational unit for all feedback computations, fast and slow. A number of special varieties are also in quantity production.

SLOW DC AMPLIFIER:

Model K2-P offers long-term submillivolt stability, either by itself or in tandem with the K2-W. High-impedance chopper-moduiated inpul. Filtered output to drive balancing grid or follower. $\quad(\$ 60.00)$

SERRASSOID GENERATOR:
Model K2.G produces a fixed triangular wave of 100 V peak-peak, at 500 kcps . Use it for a quadratic rounding in diode networks, and for many other non-linear recreations. ($\$ 29.00$)

PHILBRICK wese these octal-

plug-in modules, and many others like them, in their standard computing instruments. They are tried and true, compact, convenient, and economical. rou 100 can find profit and happiness with their help.
All K2 Plug-ins run on plus and mimus 300 VDC and 6.3 V.AC. Socket wiring is simple and standardized. Write for freely given opinons on your applicalions.
GEORGE A.

PHILBRICK

RESEARCHES, INC. HUbbard 2-3225
235 Congress St., Boston 10, Mass.
THE ANALOG WAY IS THE MODEL WAY
CIRCLE 112 READERS SERVICE CARD
power line. It uses no controls. A sensitive thermopile and microammeter mcasure the power dissipated in the r-f load. Circle $3+6$ on Reader Service Card.

Coaxial Hybrid in two models

Sage Laboratories, Inc., 159 Linden St., Wellesley 81, Mass., has developed a new coaxial hybricd, the Sage Corbrid. It features all in-line design with output arms parallel and adjacent. Two models are arailable: one for the 3,500 to $4,200 \mathrm{mc}$ band in $\frac{t}{8}$ coax, and one for the 5,000 to $6,000 \mathrm{mc}$ band in type N coax. Isolation is in excess of 25 (lb) over most of the band. Output balance is within $\pm 0.25 \mathrm{db}$. Circle 347 on Reader Service Card.

Drop Test Machine simple to operate

The Aeroflex Corp., $34-06$ Skillman Ave., Long Island City 1, N. Y. A new drop test machine, model 30 K , provides shock forces in excess of 77 g's on specimens weighing up to 400 lb . It climi-

announcing

NEY MOLDED CONTACT ASSEMBLIES

Impressive cost savings and greater reliability are inherent in the use of the new Ney molded contact assemblies. For use with printed commutators, potentiometer windings, slip ring assemblies and printed rotary switches, these assemblies are available in a standard line now being manufactured by Ney, or can be designed to customer specifications.

Seven prime advantages are (1) a complete single or multiple brush assembly ready to use, (2) no welding or soldering, (3) reduction of adjustment during assembly into unit, (4) insured uniformity of desired gram pressure, (5) reduced inspection costs, (6) time tested Ney alloys for reliability, (7) will withstand extremes in operating environments

SEND FOR LITERATURE

The J. M. Ney Company

P.O. Box 990, Dept. E, Hartford 1, Conn. CIRCLE 113 READERS SERVICE CARD
nates the uncertainty of impact repeatability inherent in the conventional type sand bed machines, according to the company. The machine consists of a piston type platform on which the equipment to be tested is mounted. The platform is then subjected to a free fall into a cylinder of air pressure. Provisions arc made to mount an accelerometer to the platform which supplies acceleration data to a recording devices. Circle 348 on Reader Service Card.

Power Triode

high vacuum
International Telephone \& Telegraph Corp., 67 Broad St., New York 4, N. Y. Type F-7207 high vacuum power triode is designed for use as a power amplifier or modulator and particularly suitable for Class AB operation. The tube lends itself to ssb applications and shake table operations. It has an air cooled anode and is capable of 17 kw dissipation with an air flow of $1,000 \mathrm{cfm}$ at a static pressure of $3 \frac{1}{2}$ in. of water. Circle 349 on Reader Service Card.

Correlator

signal-noise
General Electronic Laboratories, Inc., 18 Ames St., Cambridge, Mass. Model 1-101 signalnoise correlator can be used to make clynamic signal-to-noise measure-

Here's information you'll want

THE STANDARD ELECTRIC TIME COMPANY

 89 LOGANSTREET - SPRINGFIELD, MASSACHUSETTSCIRCLE 115 READERS SERVICE CARD
Mokes
for MILITARY and COMMERCIAL PRECISION DISPLAYS

Write for CELCO DEFLECTION YOKE Catalogue \& Design Sheets or for immediate engineering assistance Call your nearest CELCO Plant:

> Mahwah, N. J. Miami, fla. Cucamonga, Calif.

Davis 7-1123 Plaza 1-9083 Yukon 2-2688
Celco Constantine Engineering Laboratories Co.

VERSATLE TOOLS for ELECTRONICS and RESEARCH

For use in-

Trouble Shooting Performance Tests Life Tests Electronic Gages Nuclear Studies

Tracer Eiement Studies Scintillometers Air Samplers Photronic Devices Audiometers

DC Milliammeters: having the simplicity and ruggedness found only in direct-writing recorders. No linkages. No servo-motors.

Range	Coil Resistance	Critical Damping Resistance	Swinging Time (Critically Damped $)$
$0-1 \mathrm{MA}$	1400 Ohms	50,000 Ohms	0.5 second
$0-5 \mathrm{MA}$	70 Ohms	4,000 Ohms	0.5 second

Ask for Catalog Section 42
"The Meter With a Record"' For Over 50 Years
The ESTERLINE-ANGUS Company, Inc. Pioneers in the Manufacture of Graphic Instruments Dept. E, P. O. Box 596, INDIANAPOLIS 6, INDIANA

CIRCLE 117 READERS SERVICE CARD

RIBBONS•STRIPS

of

PURE TUNGSTEN

* MOLYBDENUM
\star thoriated tungsten \star SPECIAL AlLOYS and OTHER METALS

IN
ULTRA THIN SIZES
to
TOLERANCES CLOSER THAN COMMERCIAL STANDARDS by

OUR SPECIAL ROLLING TECHNIQUE

Note: for highly engineered applications-strips of TUNGSTEN and some other metals can be supplied

ROLLED DOWN TO . 0003 THICKNESS

- Finish: Roll Finish-Black or Cleaned
- Ribbons may be supplied in Mg . weights if required

For HIGHLY ENGINEERED APPLICATIONS DEVELOPED AND MANUFACTURED BY

ments at the outputs of various types of communications cquipment such as reccivers, amplifiers, or magnetic tape systems. The signal-to-noise ratio can be measured without removing either the signal or the noise. Both may be present at the same time in the output of the equipment being tested. Circle 350 on Reader Service Card.

Rectifier Stacks

for 150 C operation
Trans-Sil Corp., 55 Honcek St., Englewood, N. J., announces a line of diffused silicon rectifier stacks. Illustrated is a single phase bridge assembly rated to deliver 10 am. peres with an rms input of 420 v , with convection cooling in an ambient of 150 C . Overall dimensions arce 3 in. by 3 in. by 3 in. Stacks are available in circuit configurations to deliver up to 75 amperes with convection cooling in ambients to 150 C withont derating. Circle 351 on Reader Service Card.

V-R Power Supply transistorized

Kepco Laboratories, Inc., $131-38$ Sanford Ave., Flushing 55, N. Y. Model SC-32-15 transistorized voltage regulated power supply delivers $0-32 \mathrm{v}, 0-15$ amperes. Regulation for line or load is less than 0.01%
\% STIL
operating

If you want reliable transformers

..don't overlook this old solution
Right now, you demand more from transformers than ever before. You must have high reliability, even at extreme altitudes, and you need smaller lighter units.

Used, and proved, for decades, oilencased transformers should not be forgotten in a search for new methods.

Everyone knows the advantages: effective convection of heat, excellent insulating properties, complete insurance against hidden leaks. Oilsealed types (with a nitrogen bubble) are good, light, high-altitude transformers. Gas-free oil-filled types (with a bellows to allow for heat expansion) withstand very high voltage stresses. Except in the smallest sizes, they save space, too.

You can place several high voltage units close together in a single oilfilled case, and save case weight. Those connections moved inside the case no longer need large insulators. Even the units themselves can be smaller. This all adds up-particularly in high altitude service-to interesting savings in space and weight.

We make all sorts of transformers and special assemblies for the communication industry: encapsulated, cast in epoxy or foam, and just potted in pitch. But oil transformers still have an important place.

Whatever type you need, we'll be glad to hear from you. Our facilities in design, production, and quality control are at your service. Our experience, too.

CATEDONIA ELECTRONICS AND TRANSFORMER CORPORATION

 Dept. E-6, Caledonia, N. Y.In Canada: Hackbusch Electronics, Ltd. 23 Primrose Ave., Toronto 4, Ontario CIRCLE 119 READERS SERVICE CARD
or 0.001 v , whichever is greater. Ripple is less than $500 \mu \mathrm{~V}$ ims. Recovery time is less than $50 \mu \mathrm{sec}$. Operating ambient temperature is 50 C maximum. Temperature coefficient is less than 0.01% per deg C. Output impedance is less than 0.001 olını. Circle 352 on Reader Service Card.

Frequency Monitor

for telemetering
Magnetic Resfarcil Corp., 3160 W. El Segundo Blyd., Hawthorne, Calif., has developed an new line of magnetic frequency discriminators for the purpose of collwerting frequency deviation into analog voltage variation. These converters are primarily intended for telcmetcring instrumentation.

The units produce a well filtered $0-5 \mathrm{v}$ dec output voltage in response to a frequency cleviation. Onc application is the measuring of the power frequency of aircraft and missile power sources and the frequency deviation from their normal value. Circle 353 on Reader Scryice Cird.

Test Chambers
 walk-in type

Development Engineering Co., 9 Cross St., Norwalk, Conn. Salt spray fog test chamber line now includes large walk-in rooms designed to operate according to spec-

CHECK WHAT VITREOSIL OFFERS:

\boldsymbol{V}	Absolute Chemical Purity
\boldsymbol{V}	Extreme Heat Resistance
\boldsymbol{V}	Thermal Shock Resistance
\boldsymbol{V}	Chemical Inertness
\boldsymbol{V}	Outstanding Electrical Properties
\boldsymbol{V}	Full-Range Radiant Energy
	Transmission

VITREOSIL fused quartz products can be supplied in an unusually large variety of types and sizes. Also fabricated to specification to meet semi-conductor requirements.

TRANSPARENT VITREOSIL

For ultra-violet applications, metallurgical investigations and processes, chemical research and analysis, photochemistry, spectroscopy and physical, optical and electrical research and production operations. Send specifications for your requirements. Please use coupon below.

```
See our ad in
```

Chemical Engineering Catalog

THERMAL AMERICAN FUSED QUARTZ CO., INC.
 18-20 Salem Street, Dover, New Jersey

Please send technical data on

NO MICROWAVE SPECIFICATION

 IS TOO CRITICAL FOR n-V -2
*CUSTOM BUILDERS AND DESIGNERS OF:

CAVITIES

MIXERS - DETECTOR MOUNTS DUPLEXERS • MULTIPLIERS ROTARY JOINTS • BENDS TWISTS • OTHER COMPLEX COMPONENTS \& ASSEMBLIES

Application-engineered microwave parts and complex assemblies are our specialized field. We'll manufacture components to your prints ...or we will design and integrate them into your application.

You can depend on J-V-M for close coordination, guaranteed electrical performance and "know how" that is attested by innumerable assemblies ranging from dc. to $40,000 \mathrm{mc}$. now in industrial and military use.

1. Variable vane directional coupler ... sliding vane type . . . high directivity-

2. Pre-selector-mixer...S band... 50 ohm input impedance . . . high \mathbf{Q} double. tuned ganged cavities...detector output. .. frequency stable from -55° to $+85^{\circ} \mathrm{C}$.

Get full information on J-V-M standard or custom-engineered microwave parts and components, also complex mechanical assemblies. Request catalog today.

2. $v=m$
 J.V.M MICROWAVE COMPANY

4631 LAWNDALE AVENUE, LYONS, ILLINOIS Phone: Lyons 3-7990-TWX: Lyons, III. 2796 CIRCLE 121 READERS SERVICE CARD
ification MIL-E-5272-A. They are available in various sizes large enougl to accommodate wheeled equipment and heavy assemblies. Heated by electric blankets, these units come up to operating temperature in one hour and show temperature variations of no more than $\pm \frac{1}{2} \mathrm{~F}$. Illustrated (on p 147) is one of the smaller walk-in chambers$6 \frac{1}{2}$ by $8 \frac{1}{2}$ by 8 ft high. Circle 354 on Reader Service Card.

Flip-Flop transistorized

Computer Control Co., Inc., 92 Broad St., Welleslev, Mass. Model SF 101 shift flip-flop is a transistorized digital plug-in package. The circuit is mounted on an etched copper-clad epoxy laminate. Overall package size is $2 \frac{1}{2} \mathrm{in}$. by 4 in. The 12-pin p-c connector with its polarizing guide pin is supplied with the plug-in package. Circle 355 on Reader Scrvice Card.

Thermocouple Gage battery-operated

Consolidated Electrodynamics Corp., 1775 Mt. Read Blvd., Rochester 3, N. Y., has arailable a new, singlc-station batterv-operated thermocouple vacuum gage, type GTC-110. Powered by a 1.5 v sizze D flashlight battery, contained in the gage housing, it covers the range from 0 to 1,000 microns Hg

by R. George Roesch

Automatic Wire Processing with Standard Equipment

When standard equipment can be incorporated into a system for automatically stripping, fluxing and tinning coil leads, the cost of such equipment is invariably much less than that of special equip. ment.

The benefits of mechanizing any operation are (1) uniform quality, (2) fewer rejects and (3) lower inspection costs.

For example, using a standard wire stripper such as illustrated, we have made automatic coil lead straightening, trimming and stripping equipment for Electric Auto-Lite, Ford Mator, General Electric, Westinghouse and others. (Note: Each system was designed and built to meet the individual requirements of the user.

A COMPLETE PROGRAM generally works out like this:

1. Your Products and Your Present Methods are studied by our engineers, without obligation to you.
2. When we are certain we completely understand your needs and wishes, a Program of Engineering and Experimental Work will be submitted. (NOTE: Nothing will be under taken until Proven Methods have been experimentally developed.)
3. This Program will tell you (a) How Much Time will be required and (b) The Maximum Cost of Engineering and Experimental Work.
4. If you accept this program, the results must meet your own specifications. Otherwise there will be no charge made by us.
5. Assuming the experiments made prove the job can be done, we will then submit Schematic Drawings and a Quotation for your consideration on all the equipment needed to perform the desired operations.
if you are making Coils in large numbers, we'd like to hear from you.

THE ERASER COMPANY, INC.

1068 S. Clinton St., Syracuse 4, N. Y.
If is said by Tin Research Instifute that soldering of silver-plated contacts can be facilitated if the surfaces are first immersed in a cold solution of thiourea in 5% hydrochloric acid

CIRCLE 122 READERS SERVICE CARD

- ELECTRONICS engineering edition
on one nonlinear scale, with 5 microns the smallest indicated marking. Circle 356 on Rcader Service Card.

Precision Pot

sealed unit
Waters Mfg., Inc., Wavland, Mass. Absolute panel sealing is permitted by the new APH $\frac{1}{2}$ hermetical seal precision potentioneter. Pre-timed, it can be easily soldered into the panel. Terminal lugs are installed with a glass to metal scal, and are positioned for casy wiring. Brass case is plated in conformance with military requircments. Circle 357 on Reader Service Card.

Connector

and test bench
Alden Products Co., 117 N. Main St., Brockton 6t, Mass., announces a sclf-contained industrial control connecting assortment. Any electrical control device can be connected in 5-10 minutes using the Uni-Plug. For onc-time jobs or prototype layouts new 3 -wire detachable cable junctions make pos-

NOW we can meet the demand for

METERS! 2" TO 7" SIZES

Expanded plant . . . increased staff . . . New, improved automation techniques . . . to meet the demand of elec. tronic equipment manufacturers for custom produced panel meters, in production quantities.
PACE meters are manufactured under rigidly controlled climatic conditions to meet critical specifications as to sensitivity, resistance, damping, response time, illumination, scaleplate design, etc.

Send for latest illustrated catalog, available upon request.
Write, wire or phone for applications engineering, consultation and assistancel

a Division of Precision Apparalus Ca., Ine. 70-31 84th Street, Glendale 27, L.I., N.Y. Expoft: Morhan Exporting Corp 458 Broadway, N. Y. 13, N, Y.

100 Industrial Road, Addison, III., Phone KIngswood 3-6444

CIRCLE 125 READERS SERVICE CARD

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet."

[^4]sible quick assembly of complete wiring harnesses in just the right length and conncetor layout. After prototype harnesses have been designed and proven out, any quantity runs can be unit molded as one-piece detachable cables, ready for quick interconnection of controls on production equipment. Price of the industrial control connecting assortment is \$295. Circle 358 on Rcader Service Card.

Mobile Console

tests power supplies
Western Design \& Mfg. Corp., Santa Barbara, Calif. A sclf-contained, mobile console for laboratory, assembly or flight line testing of $\mathrm{d}-\mathrm{c}$ to $\mathrm{d}-\mathrm{c}$ power supplies is offered aircraft and missile manufacturers. Designed for complete functional testing under any load condition, the console is readily modificel to custoner specifications for testing of the principal parameters of all types and makes of power supplies having any number of d-c outputs. Circle 359 on Reader Service Card.

Phase Meter precision device

Ad Yu Electronics Lab, Inc., 249 Terhunc Ave., Passaic, N. J. Type 405 series plase meter is a highly stable and convenient device for measuring a phase angle be-

CALL ON LINK'S EXPERIENCE FOR...

DESIGN and PRODUCTION of ELECTROMECHANICAL ASSEMBLIES... PRECISION SERVOS... GEAR HEADS...

Link Aviation can provide expert assistance in the design and manufacture of precision electromechanical assemblies, because:

- Link has years of experience designing computer assemblies
- Fabrication and assembly are performed under environmentally controlled conditions
- Stringent quality control includes 100% inspection of precision gears with graphical record
Call Link at Binghamton 3-63 1 1 today-or send your specifications or drawings directly to Industrial Sales, Department E.
Link's \#026 precision Gear Reduction Kit, with 16 interchangeable gear and pinion clusters for making 23 different ratio setups, is available for your experimental and development needs.

LINK

 a subsidiary of
LINK AVIATION, INC.

BINGHAMTON, NEW VORK
CIRCLE 127 READERS SERVICE CARD
tween two alternating voltages without either amplitude or frequency adjustment. It gives direct indication of phase angle in degrees from 500 kc down to 1 cps with an accuracy of $\frac{1}{4}$ deg relative. It is also capable of plotting plasefrequency curves on a recorder or oscilloscope. Circle 360 on Reader Service Card.

Coax Attenuators accurate, stable

Narda Microwave Corp.. Mincola, N. Y. A new serics of precision coax attennators carry permanently marked, accurate calibrations at four frequencies. Moclels are available for 1,000 to $11,000 \mathrm{mc}$, at 3 , 6 and 10 db attenuation; 20 db models are arailable for 2,000 to $11,000 \mathrm{mc}$. All have an impedance of 50 ohms. Calibration accuracy is $\pm 0.2 \mathrm{db}$ for 20 db models; ± 0.1 db for the rest. Circle 361 on Reader Service Card.

Decade Switch
 for automation use

The Digitran Co., +5 W. Unioil St., Pasadcna, Calif. Model 7110 Digiswitch is a 3 for 5 decade switch featuring single and double pole, as well as binary-coded switch configurations for cach decade. The desired switcl position is selected by rotating the knurled knob. The

PRECISION
DEFLECTION WITH COSSOR YOKES

Component Development
Engineering at its BEST!

- advanced electrical design
- PRECISION MECHANICAL DESIGN
- ACCURATE PRODUCTION METHODS

Custom. Built to the most
Exacting Specifications
by Cossor Engineers
In Mumetal Cores for Optimum Geometry
In Forrite Cores for Spoed and Sensitivity
In Nor-magnetic Cores for Perfection of Response

Any of Cossor"s Three Core Types can be made in single or double axis with single or push-pull windings. and encapsulated for fixed or slip ring (rotating) use.

Normal characteristics of yokes for $1-1 / 2$ in neck tubes are:
Positional accuracy - the spot position will conform to the yoke current co-ordinates within 0.25% of tube diameter. For de$+25^{\circ}$ better accuracy can easily be achieved. 0.5% max without over0.1% or less with controlled overswing.

Complete encapsulation in epoxy (stycast) or silicone resins is standard for all Cossor deflection yokes, and is done with special moulding tools slip rings are added, solid silver rings are mounted in encapsulating resin. The finished slip ring yoke is precision turned to centre bore, and can include bearing mounting surfaces with dimensional tole ances approaching those associable with high quality metal parts.

Soxtling Time (Micro uvc.) -
$120 \sqrt{\text { Inductance }}$ in Henries
Sonsitivity degrees / millimperes =

0088
 CANADA HMITED

301 Windsor St, HaHfax, N. S.

$\mathbf{8 2 3 0}$ Mayrand St., Montreal, Que.
648A Yonge St., Toronto, Ont.
Corporation House, 160 Laurier West, Otawa, Ont.

CIRCLE 128 READERS SERVICE CARD

EISLER VERTICAL SPOT WELDERS

MADE IN SIZES $1 / 2-1-2-3-5$ KVA
WITH OR WITHOUT TRANSFORMER OR TIMER Sent to Any Radio Tube Marufacturer in U.S.A. on a 30 Day Free Trial Basis.

TRANSISTOR
MAKING EQUIPMENT
DIODE MACHINERY AUTOMATIC CR SEMI-AUTOMATIE

Send for Caralog Dr. Chas. Eisler, M. E. Founder CHAS. EISLER, JR., PRES.
EISLER ENGINEERING CO., INC.
751 So. 13th St.
NEWARK 3, N. J.
in-line Digiswitch allows the operator to read only the numbers that are visible - replacing ordinary switches with arrow indicators or standard indicator dials. Switches are available with contact ratings of 200 v and 1 ampere. Measurements are 1.84 in . by 1.75 in . by 1.87 in . Circle 362 on Reader Service Card.

Transistor Tester rapid, accurate

Western Instrunients, P.O. Box 621, Ridgecrest, Calif. A new upn or pup transistor tester determines the small signal d-c gain for the grounded emitter configuration, the collector-to-base leakage current, and the collector-to-emitter leakage current. Accurate to within 3 percent and direct reading, it is applicable in acceptance and proof testing, or ally program requiring the quick evaluation of large numbers of transistors. Circle 363 on Reader Service Card.

Relay
 25-ampere unit

Eiectro-Mechanical Specialries Co., Inc., 1016 North Highland Ave., Los Angeles 38, Calif. 'The No. 325 ST is a lightweight

AN INVITATION TO JOIN ORO

Pioneer In Operations Research

Operations Research is a young science, earning recognition rapidly as a significant aid to decision-making. It employs the services of mathematicians, physicists, economists, engineers, political scientists, psychologists, and others working on teams to synthesize all phases of a problem.

At ORO, a civilian and nongovernmental organization, you will become one of a team assigned to vital military problems in the area of tactics, strategy, logistics, weapons systems analysis and communications.

No other Operations Research organization has the broad experience of ORO. Founded in 1948 by Dr. Ellis A. Johnson, pioneer of U. S. Opsearch, ORO's reseatch findings have influenced decisionmaking on the highest military levels.

ORO's professional atmosphere encourages those with initiative and imagination to broaden their scientific capabilities. For example, statf members are taught to "program" their own material for the Univac computer so that they can use its services at any time they so desire.

> ORO starting salaries are competitive with those of indusiry and other private research organizations. Promotions are based solely on merit. The "fringe" benefits offered are ahead of those given by many companies.

> The cultural and historical features which attract visitors to Washington, D. C. are but a short drive from the pleasant Bethesda suburb in which ORO is located. Altractive homes and apartments are within walking distance and readily available in all price ranges. Schools are excellent.

For further information wrife: Professional Appointments

OPERATIONS RESEARCH OFFICE

The Johns Hopkins University
6935 ARLINGTON ROAD BETHESDA 14, MARYLAND

—now WEEKLY ...added value at same price! - subscription provides both an ENGINEERING EDITION and a BUSINESS EDITION . . . alternately each Friday

ELECTRONICS' weekly publishing program helps you keep pace with the dramatic speed of electronic technical and economic developments. Promptly and completely, the service meets the vital need of engineers and executives to be posted on what's new and important.
All subscribers get the ENGINEERING EDITION and the BUSINESS EDITION, published in turn every Friday . . . providing added benefits in technical data and news . . . delivered faster than ever.
ELECTRONICS' publishing plan totally informs subscribers on latest advances in Design, Research, Engineering, Manufacturing . . . New Applications in Industrial, Scientific, and Military Electronics . . . New Products, Components, and Materials. . . .
—and insures speedy profitable contact with all the fast-breaking NEWS . . . economic developments, markets, production figures, business conditions, and trends, news of men, companies, and events . . . with authoritative analyses of the economic impact of new technical advances.

SAME RATES AS BEFORE-desplte expense of augmented editorial staff and greatly increased producfion costs. GET UTMOST VALUE FROM THIS EXPANDED ELECTRONICS SERVICE-place your personal subscription by means of the card below.

No postage needed on
 this convenient order card...

PRESENT

 SUESCRIBERS- please note!

This subseription card is for NEW subseribers. if is not fintended as menewal motice. If you are already personally subseribing, we shall appreciate your passing the form to one of your associates. Thank you.

NEW

subscription ORDER FORM
O.K. - put me down for a personal subscription to "electronics"... giving me benefit of your weekly editorial service ...

Send bill to home addressSend bill to company address

Payment Attached

Check here \square for 1 year $\$ 6 \square$ for 2 years, $\$ 9 \square$ for 3 years, $\$ 12$

Name	Position		
Company Name			
Street	City	Zone	State
Products Mfrd. Or Service		Numb Emplo	
	\square Check here if you want Publication sent to your home		
Street	City	Zone	State

L 6-6-se \quad Foreign Rates (1 year) Canada $\$ 10$, Other Foreign: $\$ 20$
\qquad

L.
M.

Pleace fill out card completely for bent sorvice

electronics

.. NOW ISSUED WEEKLY .. EVERY FRIDAY alternating

All subscribers get copies of both the alternately published editions

ENGINEERING EDITION BUSINESS EDITION

This new expanded service of ELECTRONICS provides the most comprehensive and fastest aid for the executive and engineer vitally concerned with every phase of the electronics industry ...
New Ideas! . . . New Circuits! . . . New Engineering Techniques!
Improved Manufacturing Methods! . . . New Design! . . . Advances in Research!
Prompt word about New Electronic Equipment, Parts and Components!
Latest Word on New Industrial, Scientific and Military Applications!
Sales and Production Figures! . . . Economic Trends! . . . All the Vital News!

SUBSCRIBE PERSONALLY for top-value in NEWS and IDEAS

BUSINESS REPLY CARD

First Class Permit No. 64, New York, N. Y.
McGRAW-HILL PUBLISHING CO., Inc.

Use this handy order card...
to profit by
ELECTRONICS
weekly
editorial service

3pst 25 ampere relay for 3 phase operation. It is designed to meet the stringent requirements of airborne and missile applications, per MIL-R-6106. Temperature range is -65 C to +125 C .

The relay is available with up to two additional double throw switches if required. It operates on as little as 1.5 watts. It measures $1 \frac{1}{2}$ by $1 \frac{3}{4}$ by $2 \frac{1}{2} \mathrm{in}$. Circle 364 on Reader Service Card.

Voltmeter-Amplifier

for $10 \mu \mathrm{v}-1,000 \mathrm{v}$
Boonton Electronics Corp., 738 Speedwell Ave., Morris Plains, N. J. Model 97-A precision d-c voltmeter-amplifier offers case of operation and direct rading in the range of $10 \mu \mathrm{v}$ to $1,000 \mathrm{v}$. The 14 voltage ranges calibrated in multiples of 1 and 3 are easily read on the large 6 in . mirrored scale meter.

As a d-c amplifice it has a maximum gain of 70 dl ancl is capable of providing $\pm 0.5 \mathrm{ma}$ into a 1500 olm load. An output bias control in the instrument allows the adjustment of output to any current between 0 and 0.6 ma, with zero dl-e input condition. Circle 365 on Reader Service Card.

Oldham Coupling for high torques
Sterling Precision Corp., $17 \mathrm{Ma}-$ tinecock Ave., Port Washington,
spectrum \& power density analysis of both discrete \& random data from $0.5 \mathrm{cps}-300 \mathrm{kc}$ with ONE rapid precise instrumentation system series

automatically provides a repeatable, permanent ink-on-paper record for

- vibration and environmental tests
- speech and noise analysis
- medical and geophysical waveforms
- Fourier analysis of periodic motions
- random waveform analysis, time stationary or otherwise

Send for our new CATALOG DIGEST and ask to be put on our regular

measurement of the spectra due to both discrete and non-discrete waveforms. Four modes of spectrum analysis are provided, selectable through front panel switching: Amplitude (Voltage) vs. Frequency-Fast, accurate method of analyzing repetitive signals or regular spectrum analysis of discrete waveforms. It also permits rapid preliminary analyses of random functions. Instantaneous Power (Squared Amplitude) vs. Frequency -Rapid response to time variations of random input information. Dominant spectral regions are pinpointed by emphasized peaks.
Average Power vs. Frequency-Smoothing filter modifies squaring amplifier output to attenuate peaks of short duration and give a continuous plot of the mean power vs. frequency of random signals. Averaging filter time constant is variable to adjust degree of smoothing, Time Integral of Power (Total Power) vs. Frequency - Integrator sums up instantaneous power contributions within narrow sampling filter bandwidth, discharges and commences build-up on the adjacent spectrum segment. The locus of the maximum deflection in each spectrum segment gives a quantitative plot of total power vs. frequency throughout the entire band under analysis. The integration interval may be synchronized with playback of a magnetic tape loop splice or may be set free running. This synchronized operation permits quantitative analysis of non-time stationary signals such as speech. Proper scan rate assures 100% intercept of data on recording. Blanking network precludes splice transients from causing spurious readings.
system series

Designotion	equency Ronge	$\begin{gathered} \text { Best } \\ \text { Resolution } \end{gathered}$	Companion Analyzer	Companion
52-A	0.5 -2,250 cps	0.1 cps	LF-1 or LF-2	Buill-in
52-B	20-22,500 cps	10.0 cps	LP-1a	${ }_{\text {RC-3 }}$
52-C	$1 \mathrm{kc}-300 \mathrm{kc}$	100.0 cps	SB-7aZ	

Other frequencies available on special order Write, wire, phone for detailed specification bulletin covering Panoramic's new PDA-I and complete $\mathbf{S 2}$ instrumentation system. Panoramic instruments are PROVED PERFORMERS in laboratories, plants and military installations all over the world. Specialized experience, rigid quality controls, continuous product improvement and far-sighted development techniques guarantee reliable equipment ... definitive analysis of measurement problems.
530 South Fulton Avenue, Mount Vernon, N. Y.
Phone: OWens 9-4600 • Cables: Panoramic, Mount Vernon, N. Y. Stat•

FM-AM STANDARDSIGNAL GENERATOR

 Type MS27$0.3-240 \mathrm{Mc} / \mathrm{s}$ in 5 ranges

Normal: $\pm 5, \pm 25$, and $\pm 75 \mathrm{kc} / \mathrm{s}$ ranges

High: $\pm 75, \pm 150, \pm 300$, and $\pm 600 \mathrm{kc} / \mathrm{s}$ depending on frequency range.

Represented in Canada by BACH-SIMPSON
London/Ontario
Represented in the United States by WELWYN INT. INC.

OUTPUT: $0.1 \mu \mathrm{~V}$ to 0.1 V across 50 or 75 ohms in 1 dB steps • Crystal calibration of dial. Direct reading $\pm 50 \mathrm{kc} / \mathrm{s}$ Incremental Frequency dial - Simultaneous FM and AM Rugged militarized construction (NATO K114 specs.).

RADIOMETER

72 Emdrupvej, Copenhagen NV-1, Denmark 3355 Edgecliff Terrace, Cleveland 11, Ohio

CIRCLE 162 READERS SERVICE CARD

Write on your business tetterhead for our 28 -page, fully illustrated catalog No. ZM-1
HCDE CRePMLRS ENGRAVING MACHINE CORP 13-19 University Place, New York 3, N.Y.
N. Y., has added a new Oldham type coupling to its line of breadboard equipment. The couplings are applicable in servo transmissions and similar drives where relatively high torques are involved. 'They consist of three basic clements-the two male hubs which are fastened to the slafts to be coupled, and a floating female center section. The design is such that the female connocting portion is permanently attached to one of the male sections thus simplifying assembly. Circle 366 on Reader Service Card.

Tape Strobe checks speeds

Scott Instrument Labs., 17 E. 48th St., New York 17, N. Y., has available a tape strobe for the ready checking of tape speeds of all tape recorders. It is a precision mounted wheel housed in a machined aluminum yoke so that the user may apply it clirectly to moving tape. Under 60 cycle light sources, reference marks on the wheel disk appear to stand still if the tape is moving past the capstan at correct speeds. If speed is slightly slow the marks appear to move slowly backward, and vice versa. Circle 367 on Reader Service Card.

Solenoid

aluminum foil type
Jobbins Electronics, 771 Hamilton Avc., Menlo Park, Calif. A new

in a nutshell

Statham model p222 flush diaphragm pressure transducers.
DIMENSIONS. OIMENSIONS: $25^{\prime \prime}$ dio ameter x. 47 " long proximately. grams, apRANGES: 0 - 10 to 0.200 psia, psig, or psid;
$=5$ to ± 25 psid -510 ± 25 psid.
NON-LINEARITY \& HYS TERESIS: Not more than $\pm 1 \%$ fs. TRANSDUGTION: Resis. tive, complete bridge; Statham unbonded strain gage.

STATHAM MODEL A52 linear accelerometer DIMENSIONS: . $32^{\prime \prime}$ wide $\times 35^{\prime \prime}$ high x $84^{\prime \prime}$ long. WEIGHT: 8 grams, approximately.
RANGES: ± 5 to $\pm 100 \mathrm{~g}$ NON-LINEARITY \& HYS ERESIS: Not more than $\pm 1 \%$ fs.
TRANSDUCTION: Resistive, complete, balanced bidge; Statham un bonded strain gage.

Statham's accurate, reliable line of pressure transducers and accelerometers are designed o meet the exacting requirements of today's missile and supersonic aircraft programs. Let us assist you with your
instrumentation problems.
*Model shown actual size.
Complete data are available upon request.

INSTRUMENTS. INC.
12401 W. Dlympic Blvd., Los Angeles 64, California CIRCLE 135 READERS SERVICE CARD
solenoid, by virtue of the use of an aluminum foil winding, has an extremely uniform field and is very light in weight. It finds its applicition in the focusing of traveling wave tubes and klvstrons. Circle 368 on Reader Servicc Card.

Power Supply for missile uses

The Daven Co., Livingston, N. J., has developed a new high-temperature, regulated transistor power supply, series 60 A , for missile and aircraft applications. Featuring the cxclusive use of silicon transistors and diodes, plus high temperature resistors, capacitors and transformers, these units permit continuous operation at full load in an ambient temperature of 85 C without heat sink. Input is $24 \mathrm{v} \mathrm{d-c}$ to 30 v dic . Output is 250 ma at $100 \mathrm{v} \mathrm{d}-\mathrm{c}$. Output voltage stalility: temperature, less than 1.0 v change for a variation in ambient temperature from -55 C to 85 C ; load variation, less than 0.125 v . change from full load to half load; imput variation, less than 0.125 v change for a variation of input voltage from 24 v to 30 v . Ripple is less than 10 mv rms. Circle 369 on Reader Service Card.

Wiring Harness prefabricated

Methode Mfg. Corp., 7447 W. Wilson Ave., Chicago 31, Ill. Multiconductor film insulated flat wiring is now available. Called Plyo-Duct, this new application of the firm's printed circuit products is available in both standard parallel line arrangements and special custom patterns as designed by the user. Circle 370 on Reader Service Card.

SYNONYMOUS
 FLUTTER METERS

For the most complete line of Flutter Meters, there is only one source - d \& r LTD. From the meters used in simple maintenance test equipment to the most complex standardization and analysis equipment for missile flight systems and telemetering systems - we make them all.

WIDEBAND FLUTTER METERS

MODEL FL-3D FLUTTER AND WOW METER

Features

convenient instrument of moderate cost for use in field main enance of music-system tape recorders and reproducers, and phonograph turntables.
Specifications
Carfier frequency - $\mathbf{3 0 0 0} \mathrm{cps}$. stabilized oscillator
Carfier frequency - 300 cps . stabilized oscillat
Bandwidth Selection -0.5 to 6 cps , 6 to $250 \mathrm{cps}, 0.5$ to 250 cp
Scale Ranges - 2% and 0.5% full scale rms
Price: $\$ 225.00$

MODEL FL-48 WIDEBAND FLUTTER METER

Features

A very sensitive broadband instrument for laboratory use in the precise measurement of small amounts of flutter with compo data reduction systems.
Specifications
Specifications
Carrier Frequncy $-14,500 \mathrm{cps}$, crystal contro
Bandwidth - D-c to 5000 cps within 6 db
Bandwidth Selection - Full range above, 0.5 to 30 cps ,
30 to $300 \mathrm{cps}, 300$ to 5000 cps .
Scale Ranges $-0.2 \%, 0.6 \%$ and 2.0% rms full scale Drift Meter - $\pm 2.0 \%$ frequency change d.c. to 4 cps Display - 3.inch flat-face oscilloscope for flutter analysis
Price: $\$ 965.00$ rack mounted, $\$ 1000.00$ in cabinet

mODEL FL-5A Laboratory standard flutier meter

Features

An extremely stable (temperature controlled discriminator) in. strument with great sensitivity and extended bandwidth for laborecorders. Galvanometer outputs provided.
Specifications
Specifications
Bandwidth - D.c. to 10 kc . with $70-\mathrm{kc}$. carrier
to 4 kc . with 40 kc . carrier
to 4 kc . With 40 kc . carrier
Indicating Instruments - Level Meter, and $\pm 2 \%$ Drift Meter Output Signals - Scope two galvanometer outputs
Sensitivity $-0.05 \%, 0.2 \%$ and 2.0% selectable
Orift - On d-c galvo. output, less than 10 parts per million in $1 / 2$ hour
Price: $\$ 3450.00$ rack mounted

MODEL FL-GA BROADCAST FLUTTER METER

Features

An instrument designed for accurate measurement and analysis of flutter and wow in high-quality audio tape recorders. Specifications
Carrier Frequnecy - 8000 cps ., stabilized oscillator
Bandwidth - D.c. to 1200 cps .
Bandwidth Selection - Full range, 0.5 to 30
30 to 300,300 to 1200 cps .
0% rms full scale
Display - 3 .nch oscilloscope for waveform observation
Price: $\$ 845.00$ rack mounted, $\$ 880.00$ in cabinet
WRITE FOR
COMPLETE INFORMATION AND PRICES

CIRCLE 136 READERS SERVICE CARD

MINIATURIZED CARRIER TELEPHONE SYSTEMS FOR RADIO AND 4-WIRE CABLE

FOUR OR 24 CHANNELS

Two miniaturized voice-multiplex systems providing four or 24 voice channels over radio or 4 -wire cable are available. They have many advantages over earlier designs: high performance, small size, light weight, low cost, circuit simplicity, low power requirements, small number of tubes of a single type only, low operating cost, low maintenance and high reliability.

These systems provide a voice-channel flat within 1 db from 300 to 3500 cycles, for each 4 kc of bandwidth occupied. Each channel is equipped with hybrid, signalling, and dialling circuits for all the standard 2 -wire and 4 -wire loop options.

The basic unit provides an order-wire and 4 carrierderived channels. These units can be stacked in groups of $2,3,4$ or 5 by means of a group modem to provide $9,14,19$ or 24 channels. Full flexibility is provided for dropping and inserting channel groups at repeater and terminal points. Moderate lengths of 4 -wire cable or open-wire line may be inserted between the multiplex equipment and the radio terminals.

24-channel carrier-telephone terminal complete with hybrids, ringing and dialling circuits, and test facilities. Dimensions are $58^{\prime \prime}$ high, $16^{\prime \prime}$ wide and $8^{\prime \prime}$ deep. Power input 250 watts. Weight 326 lbs.

RADIO ENGINEERING PRODUCTS 1080 UNIVERSITY ST.,

CIRCLE 137 READERS SERVICE CARD

C界CLE 138 READERS SERVICE CARD 156

ON ANY PART -

 TO ALL SPECSGOLD, SILVER, PLATINUM, RHODIUM, PALLADIUM...the precious metals generally cost the same, no matter where you buy them. But you do get more for your money when you buy precous metal plating from HarperLeader. You get the full benefits of the engineering, metallurgical, and other highly specialized services of Harper-Lcader's technical staff.

Send for Bulletin E-58

HARPER-LEADER, INC.
Waterbury 20, Conn.

Literature of

MATERIALS

Cadmium Strip and Foil. American Silver Co., Inc., 36-07 Prince St., Flushing 5+, N. Y. A new data shect that tabulates the physical and chemical characteristics of ultra-thin and high-precision tolerance cadmium strip and foil is availablc. Circle 75 on Reader Service Card.

Water-Repellent Coating. Beckman/Scientific Instruments Division, 2500 Fullerton Rd., Fullerton, Calif. Bulletin 262 discusses Desicote, a water-repellent coating of molecular thickness, which can be used on glass-to-metal seals (such as tube bases), thus lowering electricill leakage caused by water vapor. Circle 76 on Reader Service Card.

COMPONENTS

Circuit Breakers. I-T-E Circuit Brcaker Co., Philadelphia 30, Pa. Complete information for the use of the current-limiting Cordon circuit breaker for short circuit protection on low-voltage systems is given in a new bullctin. Circle 77 on Reader Service Card.

Electric Motors. Task Corp, 1009 E. Vermont Avc., Anaheim, Calif. A four-page illustrated brochure describes a series of high power density electric motors. Included are charts indicating horsepower figures in terms of weight and volume. Circle 78 on Reader Service Card.

Limped Constant Delay Lines. Control Electronics Co. Inc., Huutington Station, N. Y., has issued a t-page catalog describing their special and standard lumped constant delay lines. Circle 79 on Reader Service Card.

Precision Glass. Fischer \& Porter Co., 691 Jacksonville Rd., Ilatboro, Pa. Catalog $80-23$ contains a wellillustrated discussion of fabrication, materials, tolerances and applica-

the Week

tions of precision glass products. Circle 80 on Reader Service Card.

Relay Terms. Potter \& Brumficld, Inc., Princeton, Ind. A 16 page bookict contains almost 200 definitions of relas terms. It also includes 21 diagrams illustrating contact arrangements and voltage and current parameters. Circle 81 on Reader Service Card.

Scale Panel Meter. International Instruments Inc., P. O. Box 2954 , New Haven 15, Comn. An engineering data sheet completely describes model $1731 \frac{1}{2} \mathrm{in} .300 \mathrm{deg}$ saale pancel meter. In the instrument discussed accuracy is held to ± 3 percent of full scalc deflection. Circle 82 on Reader Service Card.

Selenium Rectifiers. Vickers, Inc., 1815 Locust St., St. Louis 3, Mo. Bullctin EPD 3116-1 is a 48 page booklet containing illustrated descriptions and complete technical data on the company's new line of Grain-Oriented selenium rectificrs. Circle 83 on Reader Service Card.

TWT Solenoids, Amplifiers. Menlo Park Engincering, 721 Hamilton Ave., Menlo Park, Calif, Bulletin MPE 2.58 covers solenoids for twet's and bwo's. Discussed are convection cooled, forced ail cooled, and liquid cooled types. TVT amplifiers are also described. Circle 84 on Reader Service Card.

EQUIPMENT

Analog Computer. Gcorgc A Philbrick Rescarches, Inc., 230 Congress St., Boston 10, Mass., has available a four-page brochure on the $\mathrm{K} 5-\mathrm{U}$ analog computer. It contains a general description of the computer specification and a brief comparison of the $\mathrm{K} 5-\mathrm{U}$ technique with other methods of analog formulation. Circle 85 on Reader Service Card.

Current Pulse Generator. Rese Engincering, Inc., 731 Arch St.,

14
LONG KNOWN FOR THEIR HIGH QUALITY DURABILITY ACCURACY AND ADVANCED DESIGN EFEDG for INDUSTRIAL TEST UNITS, COMMUNICATION EQUIPMENT.

Catalog on Request

23 clear plastic $4 \% \times 4 \%$

$: 3-3$ ELECTRICAL MSTRUMENT CO.INC.

CIRCLE 151 READERS SERVICE CARD

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and lips on how to read more profitably. Write for the "WHY and HOW booklet."

[^5]
ANTENNAS

Circular and rectangular parabolic antennas with reflector tolerances to meet the most rigid specifications fabricated to order

CABINETS

Precision construction to your exact specification of cabinets and consoles for electronic equipment.

WASHINGTON aluminum co., Inc.
Dept. 256, Baltimore 29, Md. Circle 2-1000

How To Get Things Done Better And Faster

BOARDMASTER VISUAL CONTROL
Is Gives Graphic Picture - Saves Time, Saves Money, Prevents Errors
Is Simple to operate - Type or Write on Cards, Snap in Groove
If Ideal for Production, Traffic, Inventory, Scheduling, Sales, Etc.
I Made of Metal Compact and Attractive Over 250,000 in Use

Full price $\$ 4950$ with cards
FREE 24-PAGE BOOKLET NO. C-30 Without Obligation

Write for Your Copy Today
GRAPHIC SYSTEMS
55 West 42nd Street - New York 36,N. Y. CIRCLE 142 READERS SERVICE CARD

Ave., Manhattan Bcacl, Calif. A four-page technical brochure suggests many applications of the RBI which can be calibrated to indicate directly in microinches of strain, psi, pounds, ctc., depending upon the type of strain gage transducer being used. Circle 92 on Reader Service Card.

Shock Mounting. Fecleral Shock Mount Corp., 1060 Washington Ave., New York 56, N. Y. Bulletin FlA describes engincered vibration and shock mounting systems for airborne electronic equipment and other applications. One section deals with a partial description of the test facilities available at Federal. Circle 93 on Reader Servise Card.

FACILITIES

Pot Winding. Dejur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. Two of the most difficult operations in the manufacture of precision pots are bonding the wire securely to the card or mandrel, and removing insulating material where the brosh makes contact. The company has developed a new method for achicving this. A free sample section of winding is available. Circle 94 on Reader Service Card,

Tiny Part Stamping. Bc Cu Mfg. Co., Inc., 40 Kent St., Newark, N. J. A new brochure illustrates many subminiature stamped and formed components and parts made from special metals and alloys. It describes bricfly methods used by the company and special cquipment and facilitics available for manufacturing, inspecting and testing the accuracy of the subminiature parts and components. Circle 95 on Reader Service Card.

Tube Construction Technique. Sylvania Electric Products, Jnc., 1740 Broadway, New York 19, N. Y. A new 12-page booklet "Framelok Grid", deseribes design and performance advantages of a unique elcetron tube construction technique. Circle 96 on Reader Service Card.

Produces Desired Atmospheres within a test chamber

and maintains these constancies

$\pm 4^{\circ} \mathrm{F}$. $\pm 1 / 2 \%$ relative humidity
AMINCO-AIRE

The AMINCO-AIRE embodies a principle that eliminates the main source of humidity and
temperature differentials encountered in other systems. A stream of air from the test chamber is first brought to a selected dew point temperature, then heated to a fixed dry-bulb temperature and returned to the test chamber. Thus the air is conditioned before it enters the test chamber.

OTHER SPECIAL FEATURES
Completely Self-Contained - Just commett to electrical power and water - Simple, Convenient Controls-All on one panel - Rapid Response -High sensitivity components Adequate Insulation--2" high-grade thermal insulation between inner and outer walls - Visiele Water Level. -With automatic float valve Integral Drains-Built-in drain-traps prevent entrance of sewer gas Readily Accessible Interior-For inspection or flushing - Stainless Steel Interior - And fender steel (lacquered) exterior - Quality Com-PONENTS-Protected by properly fused circuits and isolated from humidity and temperature.

EVERY UNIT THOROUGHLY TESTED BEFORE SHIPMENT

For complete information send for BULLETIN 2276- Z

AWERICAN TRSTRUWENT CO., Inc. 8030 GEORGIA AVENUE, SILVER SPRING, MARYLAND

Clerk Tracks 20,000 Items

Some 20,000 items of test and laboratory equipment are accounted for and automatically scheduled for recertification by a newv record system at ARMA Division of American Bosch Arma Corp., Garden City, N. Y. The division produces integrated navigational and defensive systems involving gyroscopics, optics, radar, computing pncumatics and lyydraulics.

Developed for ARMA by VISIrecord, Inc., the new system (picture) requires only one clerk. Within seconds she can tell where and by whom any instrument is being used and when the item is due back for recertification.

Records arc kept on custom-designed 6 by 8 in. carls arranged in banks in open-tub units so that the right-hand margin of cuery card is visible. To locate a given record the clerk scans the indexed banks, flicks open the proper bank, scans the visible card margins, and extracts the proper card. All thumbing is climinated-the only card touched is the one she wants.

About two-thirds of the work required by conventional record sys-tems-posting instrument clicekouts and check-ins onto file cardsis climinated, says the maker, by a special triplicate snap-out form filled out by instrument uscrs. The form is designed so two copies of it can be stood up in front of the instrument's record card in the file. The forms cover the card's visual
margin, providing immediate indication the instrument has been checked out. When the instrument is returned, this information is "posted" by simply removing forms in front of the carcl.

One of two form copics kept in the file is uscd as a recertification recall notice when necessary. The third copy, designed as a manila equipment tag, goes with the instrument to the head of the using department.

On the visible margin of the form is a vertical series of blocks, each representing one quarter of a month. All instruments have been schecluled so that an equal number come up for certification cluring each quarter. Once every eight days, the clerk scans the file and notes which instruments are due for recertification. Scanning all 20,000 records takes only about an hour.

AIEE Elevates Six Members

The American Institute of Electrical Engineers has raised six of its members to the grade of Fellow.

Members honored and their citations are:
Howard A. Chinn, chief engincer, CBS Television, New York, N. Y., "for his contributions to the development of measuring and
monitoring equipment in the audio and video broadcasting field."

Joseph B. Epperson, vice-president in charge of engineering for Scripps-Howard Radio, Inc., Cleveland, Ohio, "for achievements in the broadcasting field."

Arthur M. Harrison, manager, large rotating apparatus department, Westinghouse Electric Corp., East Pittsburgh, Pa., "for contributions in the field of large rotating machinery."

Chester L. Osenbaugh, director of the Electric Division, Memphis Light, Gas \& Water Division, City of Memphis, Tenn., "for design and administrative achievement in directing the engineering, construction and operation of an electric utility system."

Clement S. Schifreen, cable and insulation research engineer, Philadelphia, Pal., "for contributions toward extended life and load ratings of underground power cables."

Millard C. Westrate, staff consulting enginecr, Commonwealth Associates, Inc., Jackson, Mich., "for contributions to economic operations of power systems and to high frequency radio communication."

California Firm Gets New V-P

Former chief aerologist for the U. S. Navy, Howard T. Orville (picture) is now vice president at Beckman \& Whitley, Inc., San Carlos, Calif. In this newly created post, he will, through the president, assist the instrument and mis-

THOUSANDS SAY "THERE'S NO ROOM FOR COUBT!"

What a reaction to the Mark II Thinslide in action!

Never before so many features in one slide. Continuous ball bearing action...installation without cabinet modification (only $3 / 8 "$ side space required)... will easily support 100 lb . loads...extruded aluminum shapes with stainless steel balls ...locking and tilting mechanisms available...in lengths from $12^{\prime \prime}$ to $24^{\prime \prime} .$. and prices so modest as to make all of your
equipment more accessible for servicing and maintenance.
Grant is prepared to give you the facts on the Mark II Thin-slide-write for complete information on the newest, most exciting Grant Slide-the Mark II!
If the question is accessibility ... the answer is Grant.

AT LAST-THE IDEAL BARRIER TERMINAL STRIP

 JONES 500 SERIES LONGER-STURDIER

Wider and higher barriers for increased creepage distances. Closed bottoms for complete insulation. Material between barriers at the base adds to the strength and maintains the same creepage distance between contact to contact and contact to ground. Can be imprinted here. No insulating or marker strip required. Three series-540, 541 and 542 having the same terminal spacing as our 140, 141 and 142 series.

Complete listing in the new Jones No. 22 catalog. Write for your copy today.

CIRCLE 146 READERS SERVICE CARD
Im Building a College Fund for My Kids with the

EXTRA MONEY

Im earning in Mobile-Radio Maintenance !

I couldn' set uside from my engineer's selary enough money to send the kids through college, So when ! leamed of the boom, in mobile-radio I decided So start my own port-fime business. Now my Bncome from mobile-radio
This can be your story, too. Send coupon for your free copy of "HOW TO MAKE MONEY SN MOBILE-RADIO MAINTENANCE." Published by Lampkin Laboratories, Inc., manufacturers of the $105 . \mathrm{B}$ Micrometer Frequency Meter and 205. A FM Modulation Meter

LAMPKIN LABORATORIES, INC Instruments Div., Bradenton, Fia

CIRCLE 147 READERS SERVICE CARD
sile products divisions as well as the board of directors in long-range scientific and technical planning. Product lines with which he will be presently concerned include metcorological instruments, ligh-speed research cameras, and explosiveactuated devices.

AMF Acquires

 New DivisionIn a move to further integrate its guided missile operations, American Machine \& Foundry Co. has clanged the status of the Associated Missile Products Corp. of Pomona, Calif., from a subsidiary to a division.

Wendell B. Sell (picture) has been named gencral manager, supplementing his dutics as a divisional vice president of AMF. The Pomona firn will be known as the Associated Missile Products Co.

Westinghouse To Build Plant

A New building with $25,000 \mathrm{sq} \mathrm{ft}$ of floor space will be crected for the manufacturing and repair division of the Westinghouse Electric Corp. on a $2 \frac{1}{2}$ acre site near Utica, N. Y. Ground has been broken and the new structure is seheduled for completion in October

The new plant will replace the present Westinghouse facilitics in Utica. Thirty-six persons are pres-

Specialists in designing and manufacturing of allpurpose fasteners and wire forms. Tooled to produce over 1000 styles in any screw size, material, finish, quantity, to your specifications.

Serving Indusfry for Thirty-Five Years - OTHER PRODUCTS -

- TOOLS • DIES • STAMPINGS

Bulletins on complete line on request WENCO MANUFACTURING CO. 1133 W. Hubbard St., Chicago 22, ill., U.S. A. CIRCLE 148 READERS SERVICE CARD

cntly employed at the Utica shop, but Westinghouse officials expect that the working force will be cxpanded to 50 after the new plant is occupied.

Oregon Firm Changes Name

The Rescarch Instrument Corp., Portland, Orcgon, has announced their company name change to Rinco, Inc. This follows a recent change to the new trade name Rinco-Pot for their line of potentiometers. No change in location, ownership or management is involved.

Elect Mitchell Vice-President

Trans-Sonics, Inc., Burlington, Mass., has clected Louis O. Mitch ell (picture) as a vice-president of the corporation. Mitchell, who has been company production manager since 1948, is responsible for the introduction of new methods for automatic calibration aud adjustment of precision instruments.

Strich Becomes Chief Engineer

Appointment of Robert Strich as chicf engincer for the Los Angcles Division of Cannon Electric Co.,

DIRECT READING

- Voltage
- Phase Angle
- In-Phase
- Quadrature

FEATURES

- Direct reading $0-360^{\circ}$, no ambiguity.
- 1 mv to 300 v full scale.
- VTVM operation to 50 kc .
- 10 microvolt null sensitivity.
- 10 meg input impedance.
- Available in any frequency to 10 kc .
- Unaffected by harmonics with optional filters.
- Low noise.

REPRESENTATIVES:
N. Y., NEW ENGLAND: J. P. Brogan Assoc. - MET. N. Y.: B. B. Taylor Corp. MID ATLANTIC: Fred F. Bartlett Co. - MICH., OHIO, W. PENNA: Dayton-Anderson Elect. - KANSAS, MO., IOWA, S. ILL: Desco Sales • SOUTH EAST: Col-Ins-Co. West COASt: Gerald B. Miller - CANADA: Electrodesign

N○RTEATINATIC industries, inc. 603 main street, westbury, n.y. EDgenood 6-1182

CIRCLE 150 READERS SERVICE CARD

IF THIS IS YOUR PROBIEM

If you need effective, highly readable, smartly illustrated company literature (baoklets, pamphlets, manuals) to display your products, inform the public of your operations, attract key personnel to your plant, train employees, and perform any of the other communicative functions that are vital to your business . . .

THIS IS YOUR ANSWER

The McGraw-Hill TECHNICAL WRITING SERVICE has a staff of more than 150 highly-trained writers, editors, and illustration specialists whose job it is to create technical and general literature for industry. We write, illustrate, design, and print Equipment Manuals, Product Bulletins, Handbooks, Company Histories, Annual Reports, and other specialized material. Save money and time. Let our staff be your staff for Technical and Business publications.
This service is available through ad agencies.
Write - Phone
TECHNICAL WRITING SERVICE
McGraw-Hill Book Co., Inc. 330 W. 42nd St., N. Y. 36, N. Y.

LOngacre 4-3000

with GRC die cast tiny parts!

Range timer part made by Gries costs half as much as part die-cast by the customer

| Many manufacturers have learned that GRC specialized techniques and facilities have cut the cost of tiny components for their products 50% and more compared with production in their awn plants. Parts like the slotted gear shaft illustrated are die cast to precise speci-
Quick deliveries on quantities of 100,000 to

NO MINIMUM SIzE!
Max. weight: $1 / 2 \mathrm{oz}$. Max. length: $13 / 4^{\prime \prime}$ fications-trimmed, ready for use-in one automatic operation. Consult Gries about cost-cutting components for your products.

GRIES REPRODUCER CORP.
151 Beechwood Ave., New Rochelle, N. Y. - NEw Rochelle 3-8600 $\frac{(4)}{}$ CIRCLE 152 READERS SERVICE CARD

IT TAKES TWO

DISPLAY ADVERTISING

- Arouses Interest
- Creates Preference

DIRECT MAIL

- Gets Personal Attention
- Triggers Action

After your prospect has been convinced by DISPLAY ADVERTISING, he still must take one giant step. He must act. A personalized mailing piece direct to his desk, in conjunction with a display campaign, is a powerful action getter.
McGraw-Hill has a Direct Mail Division ready to serve you with over 150 specialized lists in the Industrial field.
To get your copy of our free INDUSTRIAL DIRECT MAIL CATALOGUE (1954) containing complete, detailed information about our services, fill in the coupon below and mail it to McGraw-Hill.
Do it nowl the best advertising programs are planned well in advance.

Direst Mall Division,

MeGraw-Hill Publishing Co., Inc.
330 West 42 nd St., N. Y. 36, N. Y.
Please forward my free copy of the McGraw-Hill "Industrial Direct Mail Catalogue.'

Name

Company

Address
City
is ammounced. Reporting directly to vice president Rowen, Strich will plan, direct and control the engineering of all proclucts assigned to the division. Prior to this appointment he lad been product engineering supervisor at Cannon for $2 \frac{1}{2}$ years.

Hagan Joins Microsonics

Charles E. Hagas is appointed to the enginecring staff of Mierosonics, Inc., Hingham, Mass. He will head a newly established delay line rescarch department. Hagan was formerly with Laboratory For Electronics, Inc.

Reorganize At CBS Labs

To strengtien the management of CBS Laboratories, New York, N. Y., Benjamin B. Baucr (picture) has been appointed viee president. He will be in charge of the acoustics and magnetics department of the Laboratories. Before joining CBS Labs, Bauer was chief engineer and vice president of Shure Bros. Inc., Chicago, Ill.

At the same time the organization of the Labs has taken on the following form. Threc major departments have been created, with v-p's in charge:
(1) Department of Reconnais-

- Encapsulated
- Bobbin

Form Wound

- Vacuum Impregnated
- High Temperature Application

Also, Transformers Made To Order
NOW AVAILABLE! New 20-page Dano illustrated catalog including technical coil designing data.

THE DANO ELECTRIC CO.
MAIN ST., WINSTEO, CONN

CIRCLE 154 READERS SERVICE CARD

sance and Electronic Systems headed by Joseph Bambara.
(2) Department of Acoustics and Magnetics licaded by Benjamin B. Baucr.
(3) Department of Physics headed by Joln W. Christensen.

All major activitics of the Laboratorics are carried out under the three departments listed.

News of Reps

IT\&T's components division appoints the John G. Twist Co. to handle its industrial accounts, including radio-tv manufacturers, in Illinois and southeastern Wisconsin.

Edward A. Ossmann \& Associates, manufacturer's reps for upstate N. Y., is mamed to carry the electronic instrument line of Belle-ville-Hexem Corp., Los Gatos, Calif.

Knoblock \& Maine, Inc. has been appointed to represent Ultronis, Inc., San Mateo, Calif., manufacturer of precision wire resistors Rep firm covers Illinois, Indiana and Wisconsin

Jack Geartner Co., sales rep organization in Mami Beaclı, Fla., has established a branclo office in Orlando, Fla.

General Transistor Corp., Jamaica, N. Y., appoints the following reps Weller-Rahe Co., in West Virginia and wastern Pennsylvania.

Harry W. Gebloard Co., in the Chicago and Wisconsin territory Glenn M. Hathaway Electronics, Inc., in the six New England states

Missiletronics, Inc. will represent New England Laminates Co., Inc., Stamford, Conn., in North and Soutl Carolina, and northeastern Tennessee

Appointment of the Fascal Co., as sales engineering reps in the greater San Diego area, is announced by Neal Fcav Co., Santa Barbara, Calif., makers of hardware items for the aircraft and electronics industries.

New McGRAW-HILL Baoks

NONLINEAR CONTROL SYSTEMS

Just I'ublished-Gives practical guidance and theory essential to analysis, testing, and design of modern control systems. Treats such subjects as describing function (effec tive gain), determining response, systems excited by random input signals, application of switching circuits, etc. BY R. L Congriff, The Ohio State U. 328 pir.. 205 rharts, tables and illus., $\$ 9.00$.

APPLIED MATHEMATICS for ENGINEERS and PHYSICISTS

Znd Edition Just Published-Provides you with the principal mathematical techniques needed to analyze mathematical problems that arise in practice and to uncerstand important current technical papers. Carefully revised to include essential, up-to-date California, L. A. 723 pp., illus., $\$ 8.75$.

TABLE for the SOLUTION of CUBIC EQUATIONS

Just I'ublished-Supersedes all other such tables in number of decimal places, range, interval. refuired labor in finding all three roots, and convenience in use. With this book you can obtain all three roots of any equation using noting more complicated than a desk calculator. By H. E. Salzer and C. H. Kichards, Convair Astronautics and I. Arsham, Diamond Ordnance Fuze Lahoratories. 176 pı., $\$ 7.50$.

ELECTRONIC SEMICONDUCTORS

Just I'nblished-A useful introduction to semiconductor physics as related to rectifier and transist or problems. Preciselv de crystal amplifiers, imperfection equilibria, and boundary layers in semiconductors. By E. Sprike. Translated by D. Jenns. II. Kroemer, \mathbf{K}. G. Ramberg, and A. H. som mer, RCA Labs, Princeton, N. J. 430 pp., 163 illus., $\$ 11.00$.

An Introduction to the Theory of RANDOM SIGNALS and NOISE

Just I'ubliwherl-Takes up step by step the theory of probability and statistics essential to random signals and noises. Discusses applications in such areas as shot noise gen erated in thermionic vacuum tubes, spaceradar, etc. By w. is. Davenport. Jr. and W. L. Koot, both of M.I.T. 393 pp., 69 clarts, graphs, and tables, $\$ 10.00$.

10 DAYS' FREE EXAMINATION

McGraw-Hill Book Co., Dept. L-6-6
327 W. 41 st St., New York 36, N. Y
Send me book(s) checked below for 10 days exam ination on approval. In 10 davs I will remit tor book(s) 1 kicep. plus fers cents for delivery costs, and return unuanterl book(s) postpaid. (We puy derivery costs in privilege.)
\square Cosgritt-Nonlinear Control Systems, \$9.00
\square Pipe. App. Math. for Eng. Sable for the Solu
Samer of Cubic Equations, si.50
\square Spenke-Electronic Semiconductors. $\$ 11.00$
\square Darenport \% Root-Random Signals \& Noise,
(PRINT)
Name
Aldiress
(ity .
Company
P'osition
For price and terms outside U.S.
write McGraw-Hill Int'I., N. C.
CIRCLE 156 READERS SERVICE CARD

global communications

To achieve two basic goals-longer range and greater reliability-the Hughes Communication Systems Laboratory has virtually every known propagation medium and technique under study. A complete spectrum of science and technology is being explored in an effort to extendliterally and figuratively - the horizons of communication. In the laboratory, "shooting for the moon" is an actual objective.
The immediate goal, however, is to surmount the natural barriers which have limited both the range and the dependability of radio communication. First is the line-of-sight characteristic of higher frequencies which once ṕrevented propagation beyond the horizon. The second great barrier has been the complex of sunspots, auroras, and an ionosphere that periodi: cally varies in altitude, all of which cause communication blackouts and signal fluctuations.
A less well-known obstacle is the multipath phenomenon-the tendency of radiations to reflect from different layers of the ionosphere into two or more signal paths. This condition, which under certain circumstances produces a confused sig. nal, is being overcome at Hughes through the use of digital techniques. Frequency is made a controllable variable. Then, with a digital computer to determine the best frequencies to use at given times, a communication system can automatically and continuously select its most favorable frequency.
Many openings now exist in this area. Your inquiry is invited. Please send resumé to Mr. J. C. Bailey at:
the W'est's leader in advanced electronics

HUGHES

Scientific and Enginecring Stuff
RESEARCH © DEVELOPMENT
Laboratories
Culver City, Califormia

Analytical Design of Linear Feedback Controls

By G. C. NEWTON, L. A. GOULD And J. F. KAISER.

John Wilcy \& Sons, Inc., New York, 1957, 419 p, \$12.00.

Two objectives motivated the allthors to write this book. The first was a desire on their part to make available the results of their research on the analytical design method, carried on at MIT, pointing out in the process the factors which limit the performance of linear sustems. The sccond was to make available to engincers and scicutists a consolidated and integrated treatment of the literature in this field. Both objectives have been skillfully and successfully realized.

Definition-Analytical design refers to "the designi of control systems by the methods of mathematical analysis to idealized mo!els which represent physical equipment." It is a design method which deliberately sets out to offsct the disadvantages associated with the trial-and-crror method of compensating feedback control systems. Users of the latter procedurc are avare of the inability of this method to recognize an inconsistent set of specifications. Moreover, the resulting design does not gencrally yield a minimum bandwidth control sustem. Both shortcomings are eliminated by the analytical design method, but not without sacrificing simplicity

In the theory of analytical design, the starting point is the specifications. These include a description of imput signal, desited responsc, disturbances, the performance index to be used, the fixed elements and the degrec of freedom allowed in the compensation. The objective is to minimize the performance index. In fact, it is the evaluation of the performance index which reveals whether the specifications imposed on the system call or cannot be met

Performance Indices-The book confines its attention to the allalytical design procedure for two types of performance indices. One
is the integral-square crior criterion which is used for those systems sub)jected to tramsient input signals. This subject matter is thorouglily dealt with in Clapter 2.

The second performance index is the mean-square crror which is more approximate for systems where the imput signal contains noise. In Clapter $;$ the mamer of handling such signals is treated in terms of autocorrclation and cross-correlation functions, while in Chapter + the analytical design theory is applied to a typical system with fixed configuration and a noisc-containing input signal. To make the answers practical, however, requires reevaluating the design in terms of realistically imposed constraints such as saturation. This too is clescribed in Chappter 4 and also in Chapter 7

In Chapter 5 the variational approach for minimizing the moansquare cror in a system having a frec configuration is discussed; this is extended to a system which is semifrec in configuration in Chapter 6.

Chapter 8 deals with the elesign of a minimum bandwidth control system using the minimum meansquare crror as a design criterion.

The design of a servomechanism to drive a large radio telcscope is fully explored in Chapter 9 to illustrate the use of the analytical design procedure in solving a practical problem and to point out how this method may be used to complement the trial-and-cror approach.

Level-The book is written at an advanced level, and presupposes a considerable amount of mathematical background. Use is made of such mathematical tools as the convolution integral, the Fourier transforms of autocorrelation and cross-correlation functions, the calculus of variations and Lagrangian multipliers to mention a few. However, this material is conciscly and clearly presented

A rather complete appendix is included and in addition to a review of Fouricr and Laplace transfrom theory, there appears a summary of the trial-and-crror method of design

The book makes a strong case
for the analytical design theory as a practical design tool, but it also recognizes its limitations. First of all, the method suffers from a restricted number (two) of performance indices which permit analytical solution of a design problem. Sccondly, the labor and time involved in arriving at a solution and the mathematical sophistication required is indeed much greater. Accordingly, the real contribution of the analytical design theory in practical problems lics in its ability to serve as a guide in carrying out the trial-and-error design pro-cedurc.-Vincent Delioro, Electrical Engineering Dept., The City Collcge of New York, N. Y., N. Y.

Industrial Electronics Handbook

By R. KRETZMANN
Philosophical Library, New York, 1957, 298 p, $\$ 12.00$.

Industrial Electronics Circuits

By R. KRETZMANN

Philosophical Library, New York, 1957, 195 p, $\$ 10.00$.

These two volumes should be considered a single work, the "Circuits" book being written as a supplement to the "Handbool". Togetlier, they comprise a concise, yet diversified collection of practical electronics circuits for industrial applications.

The books are aimed at industrial engineers involved in manufacturing problems, who desire to become acquainted with electronic controls and their applications. Although there are no detailed design methods presented here, an excellent picture of the general approach to production problems through electronics can be derived.

Handbook-The first part of the "Handbook", comprising almost a third of the book, is devoted to the fundamentals of industrial vacuum tubes and their basic circuits. Although necessarily superficial, it is well written and covers such specialpurpose tubes as thyratrons, senditrons, ignitrons and excitrons, photocells and c-r tubes. This

The new Bulova 1E1 Bandpass Filters give today's radar microscopic eyes. Shaving the broad frequency range of returning signals into tiny segments, they help reconstruct signals faithfully for maximum information, for accurate measurement of Doppler effect... all at greatly reduced noise levels.
With characteristic Bulova precision, bandwidths and insertion losses are closely controlled, so that many filters may be paralleled to cover an almost unlimited frequency spectrum.
Now in production for virtually all leading manufacturers in the radar field are filter packages of 200 cps bandwidth with crossovers at the $1 / 2 \mathrm{db}$. point, and with insertion losses equal to within 0.3 db . from filter to filter.

Write today for full information on Bulova's standard and custom design filters.

FAMED FOR PRECISIONSINCE1875
ELECTRONICS DIVISION • WOODSIDE 77 • NEW YORK

- Features DC Amplifiers!

Flat from DC. 4.5 mc , usable to 10 mc . VERT. AMPL.: sens. $25 \mathrm{rms} \mathrm{mv} / \mathrm{in}_{\text {; }}$ input 23 megs; direct-coupled \& push-puli thruout; k-follower coupling bet. stages; 4-step freq-compensated attenuator up to 1000:1. SWEEP: perfectly linear $10 \mathrm{cps}-100 \mathrm{kc}$ (ext. cap. for range to 1 cps); pre-set TV V \& H positions ($30 \& 7875 \mathrm{cps}$); auto. sync. ampl. \& lim. PLUS: direct or cap. coupling; bal. or unbal. inputs; edge-lit engraved lucite graph screen; dimmer; filter; bezel fits std photo equipt. High intensity trace CRT. 0.06 usec rise time. Push-pull hor. ampl., flat to 400 kc , sens. $0.6 \mathrm{rms} \mathrm{mv} / \mathrm{in}$. Built. in volt. calib. z-axis mod. Sawtooth \& 60 cps outputs. Astig. control. Retrace blanking. Phasing control.

Entirely electronic sweep circuit (no mechanical devices) with accurately-biased increductor for excellent linearity. Extremely flat RF output: new AGC circuit automatically adjusts osc. for max output on each band with min. ampl. variations.
Exceptional tuning accuracy: edge-lit hairlines, 6:1 vernier. Swept Osc. Range 3-216 mc in 5 fund, bands. Variable Marker Range $2-75 \mathrm{mc}$ in 3 fund. bands; $60-225 \mathrm{mc}$ on harmonic band. 4.5 mc Xtal Marker Osc. xtal supplied. Ext. Marker provision. Sweep Width $0-3 \mathrm{mc}$ lowest max. deviation to $0-30$ mc highest max. dev. 2-way blanking. Nar row range phasing. Attenuators: Marker Size, RF Fine, RF Coarse (4-step decade) Cables: output, 'scope horiz., 'scope vertical.

DWNAMIC CONDUCTANCE
Tule 8
Transistor
Tester
\#666
Factory $\$ 109^{95}$
wired
Kit $\$ 69^{95}$

COMPLETE with steel cover and handle.
SPEED, ease, unexcelled accuracy \& thoroughness. Tests all receiving tubes (\& Color \& Monochrome pic tubes with adapter). Composite indication of $\mathrm{Gm} . \mathrm{Gp} \&$ peak emission. Simultaneous sel of any 1 of 4 combinations of 3 plate voltages, 3 screen voltages, 3 ranges of continuously variabie grid voltage (with 5% accurate pot). New series-string voltages: for 600 , 450,300 ma types. Sensitive 200 ua meter. 5 ranges meter sensitivity (1% shunts \& 5% pot). 10 SIX-position lever switches: free-point connection of each tube pin, 10 pushbuttons: rapid insert of any tube element in leakage test circuit multi-section reading of inter-element leakage in ohms New gear-driven rollchart checks in ohms. p-n-p transistors: separate meter readings of collector leakage current \& Beta using internal dc power supply

CIRCLE 159 READERS SERVICE CARD
chapter should be valuable to the engineer with only fundamental training in electronics. The remainder of the volume and all of "Circuits" consist of practical and useful industrial circuits, accompanied by explanations of their operating principles. Such topics as counting circuits, timers, industrial rectifiers, lamp dimmers, speed and temperature control, welding control, motor control and inductive and capacitive heating are well represented. Examples of specialized control devices such as turbidity indicators, smoke detectors, tube-filling machines, metal detectors, paper-proccssing machine controls and the like are given.

Only the simpler circuit diagrams are accompanicd by component values, but the books are profusely illustrated with photographs of examples of construction of the equipment. There is also a bibliograplyy which is culled primarily from European sources.

These books are well put together, but unfortunately, the price tag will most likely restrict their popularity.
-S.W.

THUMBNAIL REVIEWS

Nuclear Engineering. Edited by Charles F. Bonilla, McGraw-Hill Book Co., Inc., New York, 1957, $850 \mathrm{p}, \$ 12.50$. Reference work on basic engineering principles involved in the design of nuclear core reactors and power plants. Includes many topics not treated in previous books.

Dry-Battery Receivers with Miniature valves. By E. Rodenhuis, Philips' Technical Library, Eindhoven, Holland, 1957, $240 \mathrm{p}, \$ 4.95$. General design theory and specific tube characteristics are covered along with design of eight typical receivers including $\mathrm{a}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ models and receivers with push-pull output. Magic-eye tuning indicators for battery-operated sets are described.

ASTM Standards on Electrical Iusulating Materials. American Society for Testing Materials, 1916 Race St., Philadelphia, Pa., 1957, 692 p. $\$ 6.00$ (paper). Compilation of ASTM test procedures ancl specifications for electrical insulation for use of manufacturers and those concerned with use and distribution of electrical power.

McGRAW-HILL TECHNICAL WRITING SERVICE

TWS offers you a single INTEGRATED publishing service prepared to undertake a project from research and planning through fin. ished manuscript and art, typesetting, mechanical preparation, printing and binding. Whatever the situation, whatever the type of literature you need, our editorial and art consultants can help you, bringing to your most specialized job the craft and skill of publishing experts.

WRITING EDITING ILLUSTRATING PRINTING

TO YOUR OWN OR GOVERNMENT SPECIFICATIONS

Whether you need an instruction book or service manual, to accompany your equipment, written to gov. ernment' specifications . . . or product catalogues or training booklets . . . or annual reports ... or com. pany histories ... our writ. ing staff can do the job for you, our artists can create and execute the illustra. tions. And McGraw-Hill printing, binding, and paper resources are among the best in the country.

COMMENT

Envirommental Testing
We consider this (Special Report on Environmental Testing, Mar. 28, p 59) to be an excellent summary with regarel to electronic components. Evidently this opinion is shared by others, as evirlenced by the bulletin from Ray H. Mattingley, cditor of Envirommental Quarterly

Paul R. Dennis Battelie Meniorial Institute Columbus, O

Colleague Mattingley's April 4 bulletin began "I recommend that you see and read the 16 -page report . . ." We are basking in the pleasant enviromment created by associate editor Tomaino's testing article. Other readers comment:

You are to be complimented on the detailed information and timeliness of your articlc. Your rcaders, I am sure, will look forward to future material on the same sul)ject
M. J. Curtis
U. S. Naval Ordnance Test Sta. China Lake, Calif.

This excellent series . . . vill be of great assistance to us in our work

Fred IVest
Continental Aviation \& Engi-
neering Corp.
Detroit, Micil.
excellent report
W. Gevarter

Lockieed Aircraft Corp.
Sunnydale, Calif.

Dot
Very peculiar circuit in Fig. I of "Radio Waves Power Transistor Circuits" (May 9, p 63). Transistor Q_{1} doesn't look as thougl it could work as it is.

Scems as if it should comnect to the emitter of Q_{2}. Should it?

> W. R. Miller

Cleveland, O.
It should. The dot diopped in the drawing, dash it. Same day

RAYTHEON MISSILE CONTRACTS now cover complete systems responsibility for both air-to-air and surface-to-air missiles.

These advanced missile projects call for exceptional creativity

The need for engineering resourcefulness and creativity grows continually as Raytheon missile activities expand into new areas.
As an experienced engineer with a keen interest in working on advanced missile projects, you can begin building a rewarding future at Raytheon today.
There may well be an opportunity in one of the following areas that is right for you:

SYSTEMS
 PACKAGING MICROWAVE RADAR

For interview at our suburban laboratory in Bedford, Mass., write, wire or telephone collect: CRestview 4-7100. Ask for R. W. McCarthy.

RAYTHEON MANUFACTURING COMPANY Bedford, Massachusetts

NEW
 'MX and SM' SUBMINIATURE GONNEGTORS Constant $50 \Omega-63 \Omega-70 \Omega$ impedances

NEM MOLDED CORONA BARRIER insures minimum and uniform loss

> BIWAX
> CORPORATION

Precision molding provides the proper thickness of deposit each and every time on the transformer winding. Resulting uniformity assures minimum and uniform corona loss. Ideal for high voltage flyback transformers.

Process is applicable to many other compounds for applications where uniformity is required for variable thickness of deposit. Can be set up in your plant or handled by Biwax. Write for details.

Send for Biwax brochure which shows complete line of compounds with specifications.

3446 Howard Street

- Skokie, Illinois
- Phone: AMbassador 2-3339

CIRCLE 165 READERS SERVICE CARD

reader Miller's note arrived, we got a call from author L. R. Crump to the same effect.

Bugs in Drawing
I would like to point out the following errors in the figures in my article entitled "Magnetic Inverter Uses Tubes or Transistors" (Mar. 14, p 158)

The polarity of the battery designated E_{B} in Fig. 1 is incorrect. The polarity of $V_{t,}$ in Fig. 6 is incorrect. And in the caption for Fig. 5, " 50 sec ." should read " $50 \mu \mathrm{sec}$."
C. H. R. Campling Quefns University
Kingston, Ontario

Microscope

The short article entitled "Soviets Describe Huge Microscope" (Apr. 25, p 18) implies that the Russians recently developed the fick-emission microscope.
I think that in fairness to scientists of other nationalities working in that field you should point out that the device is more than tiventy years old, and much of its development was non-Russian

Louis E. Fay, III
Bendix Aviation
Detroit, Mich.

Splitting Up NACA

Your Military Business column "Industry to Get Space Work" (May 16, p 36) suggests that the National Advisory Committec on Acronautics will become the basis of a National Aeronautics and Space Agency. The Space and Technology Act of 1958 (S. 3126, now before the Senate Committee on Government Operations) would make NACA part of an executive Department of Science and Technology. Which is the fact?
E. V. McIntyre New York, N. Y.
S. 3126 if passed will take priority over President Eisenhower's suggestion that NASA be formed with NACA as a nucleus. Actually, NASA may wind up a bureau in the Department of $\mathbf{S} \& \mathrm{~T}$ if that department is ever set up.

Professional Services

AMERICAN GEOPHYSICAL \& INSTRUMENT CO. 0liver W. Osborne
Design \& Development Of Electrical Instruments
Repairing All Types of Electronic Equipment 723 Market Street $\underset{\text { Gardena, Calif }}{\text { Gis }}$

CROSBY LABORATORIES, INC.

 Murray G. Crosby \& Staff Radio-ElectronicsResearch Development \& Manufacturing Communications, FAF \& Robbins Lane, Hicksvil

ELECTRONIC RESEARCH ASSOCIATES, INC.
"Thansis'TORIZE" your rroduct! Complete Service in consulting, research, development, and production on Transistor circuitry,
products and instrumentation. 67 Factory Place Center $9-3000$ Cedar Groove, N. J.

ERCO RADIO

LABORATORIES, INC.
Radio Communications Equipment Engineering - Design - Development - Iroduction Communication and Radio Beacon
Garden City - Long Island - New York

MEASUREMENTS CORPORATION
Research \& Manufacturing Engineers
Harry W. Houck
Specialist in the Design and
Development of Electronic Test Instruments Boonton, New Jersey

ALBERT PREISMAN

Consuling Engineer
Television, Pulse Techniques, Video
Amplifiers, Patent technical consultation.
616 St. Andrews Lane, Silver Spring. Maryland

YARDNEY LABORATORIES, Inc.

Research-Design-Development
Electro-Clienicical Generators of Energy
40-48 Lemard Sireet
WOrth 6-3100
New York 13, N. Y

CONSULT
 THESE SPECIALISTS:

Let them save your time by bringing their broad experience in their specialty to bear on your problems.

EMPLOYMENT OPPORTUNITIES

The Advertisements in this section include all employment opportunities-bxecutive, management, technical, selling, office. skilled, manual, etc. Positions Vacant Civil Service Opportunities Employment Agencies Positions Wanted Selling Opportunities Wanted Employment Services Part Time Work Selling Opportunities Offered Labor Bureaus

DISPLAYED

-——RATES———

$\$ 2.40$ per line, minimum 3 lines. To figure Box Numbers-counts as 1 line.
Discount of 10% if tull payment is made in adrance ror 4 consecutive insertions.
Nor subject to Agency Commission. column-: columms- 30 inches to a page.
Subject to Agency Commission.
Send NEW ADS or luquiries to Classified Adv. Div of ELECTRONICS P 0 Box 12

SYSTEMS:

Group Leaders and Senior Electronic Engineers required with minimum five years experience. Need men capable of establishing requirements for, and supervising the development of, major and sub electrical and electronic systems-including check out equipment-for missiles and airplanes. Flight Control Systems Communications Systems Radar Systems Infra-red Systems Guidance Systems Navigational Systems

CIRCUIT \& PRODUCT DESIGN:

Senior and Junior Electronic Engincers needed for assignments in the design and development of:
Antennas Beacons
Airborne Radar Electronic Packaging Airborne Digital Computers Auto-pilots
Missile \& Airplane Check Out Equipment
Supervisory positions available in many of the above fields
Associate yourself with a team of champions-developers of the world's fastest operational jet fighter, the F-IO1 Voodoo
is the time to join the expanding Electronic section of either our Airplane or Missile Engineering Divisions. Write today, sending complete resume of education and experience 10 :

Raymond F. Kaletta
Technical Placement Supervisor
P. O. Box $516, \mathrm{St}$. Louis 3 , Mo.
(located in susursan st. louls)

> ELECTRONIC SHOP DIRECTOR

The Physics Department at Princeton University has an opening for an Electronic Engineer with considerable experience in basic design and a knowledge of pulse circuitry, rise time, feed back systems, memory units filter, servo and analogue computer theory. Position offers challenge and opportunity to contribute to vital basic research.
Salary will be competitive with industry. Degree advisable, but not essential. Live and work in an academic atmosphere with university benefits.
Send resume to Samuel C. Howell
PRINCETON UNIVERSITY
124 Pyne Administration Bldg.
Princeton, New Jersey

EDUCATIONAL OPPORTUNITY

Research fellowships. Broad scientific training especially for engineers. $\$ 3000$ annual

APPLIED SCIENCE,
UNIVERSITY OF CINCINNATI,
CINCINNATI 21, OHIO.

ENGINEERS

If you bave been looking for an Employment Agency
that is skilled in the STATE OF THE ART of Technical Recruitment and RELIABILITY OF IN. FORMATION concerning positions, why not commmincate win us at once?

ALL POSITIONS FEE PAID
FIDELITY PERSONNEL SERVICE
218 Chestnut St. Phila. 7, Pa.

EMPLOYMENT OPPORTUNITIES

GENERAL ELECTRIC OFFERS EXCEPTIONAL OPPORTUNITY TO THE COMPUTER ENGINEER WHO CAN MEET THESE REQUIREMENTS:

....an engineer qualified by his versatility and experience to act as multi-project advisor in the Ordnance Section of General Electric's Missile \& Ordnance Systems Department. A specialist able to determine digital control requirements and specify basic digital systems design for digital computers.

This man will play a key role working with development groups to design computer subsystems for inertial guidance and control elements of TOP PRIORITY WEAPON SYSTEMS. To carry these responsibilities he must have at least 10 years' experience in electronics, plus demonstrated knowledge of military computer applications. Ability to ride herd on development until schematics are translated into functioning hardware is essential to this position.

Specific requirements: BS (EE or Physies) plus design \& development experience in pulse and digital circuits, computer logic and memory, transistor circuits, military computer applications, systems philosophy.
Ordnance Section is based in Pittsfield, Mass., heart of the Berkshire summer and winter recreation country.

Send resume in confidence to:
Mr. W. S. Fielding, Ordnance Section, Div. 27.WV
Missile \& Ordnance Systems Dept.

GENERAL

ELECTRIC
Pittsfield, Mass.

ANTI-MISSILE MISSILE SYSTEM
 -4 years ago considered the "impossible project"NOW IN PROGRESSIVE STATE OF DEVELOPMENT AT SYLVANIA

Since the initiation of the project in '53, Sylvania has been Weapons System Manager for PLATO.

To bring this pioneering AMM project to its present stage, completely new approaches in many advanced areas had to be conceived by Sylvania engineers and scientists. Already key components have been successfully tested. Work is now proceeding on an accelerated basis.

And PLATO is by no means the only major program engaging creative minds at Sylvania's Waltham Laboratories. The company is participating in more than 30 missile programs. Among them is a major subcontract for data processing development work on the new super radar system for detection of ICBM's - known as Ballistic Missile Early Warning System (BMEWS).

```
#...IF YOU CAN OFFER ABILITY
    SYLVANIA WILL, OFFER OPPORTUNITY
```


dATA PROCESSING LABORATORY

- SR. DEVELOPMENT ENGINEERS
- SR. SYSTEM ANALYSTS
- SR. PROGRAMMERS
- MATHEMATICAL ANALYSTS
- ENGINEERS WITH EXPERIENCE IN

DISPLAY OF RADAR DATA HANDLING
(Previous digital data processing experience is important for most assignments.)

MISSILE SYSTEMS LABORATORY

- ADVANCED DEVELOPMENT, VHF \& UHF SUBMONITORING COMPLEX RADAR SYSTEMS
- SYSTEMS ANALYSIS \& SYNTHESIS OF COMPLEX RADARS. THEIR DESIGN \& SIMULATION

APPLIED RESEARCH LABORATORY

- Research \& Systems Application in CounterCountermeasures, Operations Research \& Analysis \& Applied Physics.

Important positions at various levels of experience

AVIONICS LABORATORY

- Microwave components design including multi-channel filters incorporating fast-acting microwave switches
- Flush-mounted broad band airborne microwave antennas
- Transistor circuit design \& development

Please send resume to Erling Mostue
Interview and relocation expenses paid by Sylvania. Inquiries will be answered within 2 weeks. Convenient Saturday interviews arranged.

WALTHAM LABORATORIES ELECTRONIC SYSTEMS DIVISION - SYLVANIA ${ }^{-}$
sylvania electric products inc
100 FIRST AVENUE • WALTHAM, MASSACHUSETTS

CREATIVE ABILITY DISTINGUISHES THE RCA ENGINEER

Aware that engineering today's defense systems would require new and fresh approaches, RCA management has consistently placed a premium on creativity. Fertile minds have long been at work at RCA. Your individual thinking is welcomed. You, in turn, will be stimulated by RCA's creative atmosphere. Fields of interest:

ELECTRONIC \& MECHANICAL DEVELOPMENT \& DESIGN... PROJECT MANAGEMENT . . . SYSTEMS . . . AND ENGINEERING MANAGEMENT

New and Significant RCA Openings . . CAMDEN POSITIONS: Communications Systems, Infrared Detection and Optical Systems, Navigational Equipment, Fire Control Systems, Digital Data Handling Systems, Advanced Development Studies. MOORESTOWN POSITIONS: Missile Guidance, Ballistic Missile Early Warning System (BMEWS), High Power Transmitters, Servomechanisms, Pulse Circuitry, Digital and Analog Computers.

FOR INTERVIEW WITH ENGINEERING MANAGEMENT
Call collect or write, either:
Mr. W. J. Henry,
RCA, Dept. B-20F, Moorestown, N.J.
BElmont 5-5000
Or: Mr. C. B. Gordon, RCA, Dept. B-20F,
Building 10-1, Camden 2, N.J. WOodlawn 6-3300

RADIO CORPORATION OF AMERICA
DEFENSE ELECTRONIC PRODUCTS

Engineers

Your professional achievements with CBS are limited ONLY by your potential for truly creative engineering. Important responsibility comes your way quickly to give you every opportunity to advance as far and as fast as your abilities take you . . neers in an industry marked for tremendous expansion.

These career positions are now open
CIRCUIT DESIGN ENGINEER
For a team developing vacuum tube test equipment. A graduate engineer with 2 years experience in circuit design. Excellent prospects for the right man, at our new development facilities in Newburyport.

SEMI-CONDUCTOR ENGINEERS

For production and development at our modern Lowell plant. Graduate electrical, mechanical and chemical engineers and physics mciors. Semi-conducfor experience required.
ndoustral enciner
Will be engaged in one or more of the following activities: work measurement; methods improvement; work
simplification; plant layout. Work simplification; plant layout. Work
measurement background is desirable.

ELECTRONICS PRODUCT ENGINEER

An engineer with pulse type receiving tube or related experience for our spe-
cial tube section at our Newburyport plant.

SENIOR APPLICATIONS ENGINEER

Familiar with receiving tube or elec-
tronic circuit applications. A challeng-
ing opening for the mature engineer
in the applications field.

ELECTRON TUBES

Sond your resurne to Mr. C. D. Bond, Placement Director. If will be accorded absolute confidence and you will receive a prompt answer.

CBS-HYTRON

A Division of
Columbia Broadcasting System, Inc.
DANVERS PLANT
107 Endicott St. PH: SP 4-2360
DANVERS, MASS.
(A suburb of Boston)

ENGINEERS

General Electric

 Announces Opportunities in Area of BALLISTIC MISSILE DEFENSE ENVIRONMENTSWide $\mathcal{D i v e r s i t y ~ o f ~} \mathcal{P o s i t i o n s ~ I n c l u d e ~} \mathcal{D} \& \mathcal{D}$ on $\operatorname{Long}-\mathcal{R}$ ange Surveillance \mathcal{R} adar

These openings are with the Heavy Military Electronic Equipment Department of G. E., designer and producer of what are believed to be the most powerful long-range radar detection systems in the world.

Current programs involve work on still more advanced systems -among them Ballistic Missile Early Warning Surveillance and other super radar systems to detect ICBMs as they rise over the horizon at distances up to several thousands of miles.

No technical area makes greater demands on the scientific skills and creative imagination of the engineer than Ballistic Missile Defense Environments.

Openings for
engincers with 4-10, or more, years' experience in:

SYSTEMS DEVELOPMENT

Radar Systems Development
Systems Analysis Data Analysis

Electronic
Countermeasures
Systems
Computer Programmers

Openings for engineers with
degree and 2 or more years ${ }^{\text {' }}$
experierce in:
Antenna \& RF Components
UHF \& M/Wave Receiver Development
Video Display
Analog Techniques
Transistor Circuitry
Computer Applications
Data Processing
Digital Techniques
Logical Circuitry Design
Electronic Packaging

Qualified engineers will be invited to visit the Heavy Military Electronic Equipment Department and judge at first hand the unusual opportunities offered for professional growth-and the excellent living conditions in-and-around Syracuse, New York. Please write in confidence to: Mr. Jatmes P. Kinsella, Div. 27 WV

HEAVY MILITARY ELECTRONIC EQUIPMENT DEPT.

Court Street, Syracuse, New York

IBM

AERONAUTICAL ENGINEERS

Aircraft Instrumentation Specialist, M.S. with experience or Ph.D. in Electrical or Aeronautical Engineering. Background in aircraft instrumentation, especially air-speed and altitude measurements. Flight test experience desirable. Thorough knowledge of servo-mechanisms and electronics nec. essary. Must have creative talent and interest in working on new methods of aircraft instrumentation.

Aeronautical Engineer, M. S. in Aeronautical Engineering with math minor. Two years' experience in: evaluation of airborne systems, both digital and analog; navigation techniques, including inertial navigation; and aerodynamics. Experience in data reduction and photogrammetry desirable. To analyze flight test data, do systems analysis, and solve problems in spherical trigonometry and photogrammetry.

Advantages of IBM

A recognized leader in the electronic computer field . . . stable balance of military and commercial work...advancement on merit . . . company-paid relocation expenses . . . liberal company benefits . . . salary commensurate with ability and experience.

Immediate openings at Owego, N. Y.
WRITE, outlining qualifications and experience, to:
Mr. P. E. Strohm, Dept. $554 Q$
Military Products Division
IBM Corp.
Owego, New York
INTERNATIONAL buSiness machines CORPORATION

ENGINEERS Research \& Development

Career openings exist for SYSTEMS AND CIRCUIT ENGINEERS. All grades to SECTION HEADS and PROJECT ENGINEERS.

Requirements for creative engineers to assume major project responsibility for CIRCUITS and SYSTEMS from bread board stage to prototype, in the following fields.
antenna design
\& Development
Conduct tests \& evaluation of systems compatibility. Experience
on Microwave VHF \& UHF antennae 30 Mc to 3 KMc .

RADAR SYSTEMS
RF \& Microwave techniques and application of high power modu. lators \& transmitters (Pulse \& CW), reconnaissance, counter systems.

COMMUNICATIONS CIRCUITS
Transmitters both standard and single side band, receivers, frequency synthesizers, systems anal. ysis.

SERVO MECHANISMS ANALOG COMPUTERS Circuit \& systems engineering. optimization, error analysis.

DIGITAL SYSTEMS
Logical design applications of semiconductor dovices, magnetic core memory systems. Solitf state displays.

AIRBORNE \& GROUND STATION TELEMETRY

Sensing, indicating and display techniques, commutation, subcar. rier oscillators, miniaturization \& reliability studies.

Many opportunities exist for Engineers with advanced degrees or experience in semiconductors. Superior working conditions in well equipped laboratories and airconditioned offices. Employee benefits include reimbursement for academic studies.

offers the opportunity and the challenge of key assignments in... GUIDED MISSILE ELECTRONICS ELECTRONIC ENG. MECHANICAL ENG.

DESIGNERS - DRAFTSMEN

Here is your chance to prove your ability doing important work on missile fuzing, guidance, packaging and related test equipment. We have key openings that offer you the oppor* tunity to move ahead rapidly in your profession. At Bendix York, you benefit from the advantages of a small company atmosphere in a growing division of one of the nation's largest engineering and manufacturing corporations. Also, you'll enjoy the "good life" in our beautiful suburban community. Good salaries, all employee benefits.

Drop us a card, briefly stating
your education \& experience. We'll act immediately to get together with you and talk if over.

AVIATION CORPORATION
York Division

ELECTRONIC ENGINEERS

needed at MARTIN

New long-term developments at Martin in the field of electronics have created exceptional opportunities for top electronic engineers. At least 5 years experience required. Salaries from $\$ 9,000$ to $\$ 12,000$.

Openings

 in these areas:- Circuit Design
- Systems
- Inertial Guidance
- Countermeasures
- Digital Computers
- Test Equipment Design

WRITE TO:

William Spangler, Manager
Professional Employment
The Martin Company
Baltimore 3, Md.

Jo the talented

engineer and scientist

APL OFFERS
 GREATER FREEDOM OF ACTIVITY

APL has responsibility for the technical direction of much of the guided missile program of the Navy Bureau of Ordnance. As a result staff members participate in assignments of challenging scope that range from basic research to prototype testing of weapons and weapons systems.
A high degree of freedom of action enables APL staff members to give free rein to their talents and ideas. Thus, professional advancement and opportunities to accept program responsibility come rapidly. Promotion is rapid, too, because of our policy of placing professional technical men at all levels of supervision.
APL's past accomplishments include: the first ramjet engine, the Aerobee high altitude rocket, the supersonic Terrier, Tartar, and Talos missiles. Presently the Laboratory is engaged in solving complex and advanced problems leading to future weapons and weapons systems vital to the national security. Interested engineers and physicists are invited to address inquiries to:

Professional Staff Appointments

The Johns Hopkins University Applied PhysicsLaboratory

8609 Georgia Avenue, Silver Spring, Maryland

ENGINEERS

for development of
ADVANCED CELESTIAL NAVIGATION SYSTEMS

Project \& Staf Positions available to those interested and qualified for serious development work in:

Airborne Navigation Systems Related Electronics Analog \& Digital Computers Associated Test Equipment
Minimum 4 years experience in military navigation-type servos, computers, electronics, photo-electric tracking or other related equipment is desirable.

Interesting, long-range positions providing opportunity for future growth with Kollsman, designers of America's finest arrcraft instruments.

PRODUCT ENGINEERS

1. To supervise test equipment assembly groups.
2. For design of production test equipment for electro. mechanical systems.

Please send resumes to T. A. DeLuca. FIELD ENGINEERS
For Development \& Field Service Work
kollsman
instrument corporation

CHAIIINCNGG OPPORTUNIIIES IV RISEARCH AND DEVEIOPMENT

EIECTRONIC ENGINEERS

SYSTEMS Encineers

Design of electronic instrumentation for underwater ordnance. Analytical and experimental treatment of scientific research problems in the fields of hydrodynamics, acous tics, electronics, network theory, servo mechanisms, mechanics information theory and noise analysis including analogue and digi tal computations.

THE
PENNSYLVANIA STATE UNIVERSITY ORDNANCE RESEARCH LABORATORY University Park, Pennsylvania

- Opportunities for Graduate Study
- Faculty Appointments for Qualified Applicants
- Excellenł Working and Living Conditions
- Liberal Employee Benefit Programs

Send Resume To: ARNOLD ADDISON,
Personnel Director

REPRESENTATIVES WANTED

Large industrial plating and electrochemical firm located on the East Coast and specializing in the more difficult types of industrial plating desires Manufacturer's Representatives to solicit electroforming, precious metals plating, special plating to customers specifications, and research and development work for plating, in the Texas, Arizona and New Mexico areas on a commission basis In terested parties should have background in related fields, and be contacting electronic, aircraft and inissile plants.

Full particulars in first letter
RW-7999. Electronics
Class. Adv. Div., P.O. Box 12, N. Y. 36, N. Y.

A non-profit organization

S.E.E. GIVES

To ENGINEERS

Service in providing contacts for choice positions available now. Send resume Small Handling charge-No Placement Fee

To EMPLOYERS

Automatic access to a wide variety of desirable talent-now and regularly-from wide geographical locations.

SCIENTISTS, ENGINEERS

\& EXECUTIVES, INC.
1026 Seventeenth St., N.W.
Washington 6, D. C. - MEtropolitan 8-2749

ELECTRONIC ENGINEER PHD.

10 years business experience seeks supervisory position instrumentation in dustrial controls, systems engineering

1'W-7866. Electronics
520 N . Michigan Ave., Chicago 11, Ill.

SALES ENGINEERS WANTED

For Chicago and Houston.
Prefer men sith Electrical, Mechanical or Chemical Ensineering degrees. Successinl applic ants will receive three months intensive traiming ment to district ottice. I'reter men between 25 and who can start as trainees. Irrevious sales and Those interested in Chicago opening address reply
to S. E. Gewin, District Manager, The Bristol Company. 351 E. Ohio Street, Chicago II, Illinois. Those interested in Houston opening address reply to E. A. Merwin. District Manager. The Bristol Company, 3617 W. Alabama, Houston 6, Texas.

```
ADDIEESS BON NO. REPLIES TO: Box No.
    Clnmaified Adr Div of this mublicution
    send to office mearest you.
        SEU WORK 36:P O. BOX 12
        HIGACO 11: S20 N. Michigan Ave.
```

 SÉLLING OPPORTUNITY OFFERED
 Manufacture of Honeycomb Structure SubAssemblies seeks accredited selling agents with top level contacts with Prime and SubContractors of Airborne and Ground-Surface Electronic Equipment. Product widely accepted among design engineers which has high application potential. Open Territories Southwest. Mid-West, West Coast, and Parts of East Coast. Submit full details re sales coverage, personnel, and lines handled. RW8039. Electronics.

POSITIONS WANTED

Engineer, 18 years domestic $\&$ foreign experience, 5 languages, desires overseas contract, 18-36 months. PW-7974, Electronics.

Sales, Communications, industrial, control equipment. BSEE degree, 3 years sales, 3 t/ years design-development, plus extensive subprofessional background: broadcasting, audio, military radio etc. 33, married, no children. Know Northeast; area not important. Available June. PW-8016, Electronics.

ELECTRONIC ENGINEERS

Interested in creative
design responsibilities in
the field of
AIRCRAFT
ELECTRONIC SYSTEMS

Bell Helicopter Corporation is looking for graduate engineers with experience in design and development of microwave ranging systems, aircraft automatic stabilization systems, analogue computor simulation systems, system analysis, or transistor circuit design.

Send resume to

Engineering Personnel Manager
bELL HELCOPTER CORPORATION
Fort Worth, Texas

CLASSIFIED SEARCHLIGHT SECTION noverssme

BUSINESS OPPORTUNITIES

EQUIPMENT - USED or RESALE

DISPLAYED RATE
The advertising rate is $\$ 24.75$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request.
AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns-30 inches-to a page.
EQUIPMENT WANTED or FOR SALE ADVERTISEMENTS acceptable only in Displayed Style.

UNDISPLAYED RATE

$\$ 2.40$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line.
BOX NUMBERS count as one line additional in undisplayed ads. DISCOUNT of 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals.)

NEED METERS? STANDARD or SPECLALS
 any quantity-NEW—MILITARY

FORELECTRONIC-MILITARY AIRCRAFT-HaMS
ALL Makes-MODELS Ranges-SIIES
METERS REPAIRED
RESCALED
RECALIBRATED

WRITE - Phone - WIRE A \& M INSTRUMENT SERVICE INC.

76-14 Woodside Ave. Elmhurst 73, N. Y. CAA No. 4264 Ltd.

HA 9-2925

LEGRI S COMPANY

WANT TO BUY
ALLEN - BRADLEY

RESISTORS \& POTENTIOMETERS
all your excess at highest prices

SUBMIT your OFFERING directly to
LEGRI S. COMPANY
391 RIVERDALE AVE.
YONKERS 5, N. Y.

Phone: Yonkers 9.6000

ONE OF THE WORLD'S LARGEST MICROWAVE, TEST EQUIPMENT AND

TUBE ESTABLISHMENTS!! new unused surplus stand. ARD LABORATORY RECEIVERS AN/APR4 complete with five tuning units 38 to 4000 m.c. AN/APR-5, 3000-6000 m.c. AN/APR10, 2000-4400 m.c.
NEW TS148/UP X BAND SPECTRUM ANALYZER
NEW TS-147 X BAND SIGNAL OTHERTEST EQUipment used Checked out surplus Test GENERATOR
Test Set TS 147 UP is a portable Microwave Signal Generator designed
for testing and adiusting beacon for testing and adiusting beacon
equipment and radar systems which equipment and radar systems which
operate within the frequency range of 8500 MC to 9000 MC .

We carry one of the largest tube inventories in the USA. Thousands of Magnetrons, Klystrons, Semiconductors, etc. Write, giv, semiconductors, etc. Write, give have similar items for disposal, please offer us.

WHOLESALE and EXPORT ONLY
Minimum tube order $\$ 25$

Write for a copy of our industrial "GREEN SHEET" catalog, which lists exceptional values Write for a copy of our industrial "GREEN SHEET catalog, which lists exceptional values of quality test equipment, lab components, reactors, fransformers, relays, capacitors, racks,
tubes, transistars, diodes, meters and other components, test equipment and electronic tubes, trans
assemblies.

GLASS TUBING

PYREX - NONEX - URANIUM BULB \& CYLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY PHONE KEYPORT 7-1286
M. R. \#l Box 86X Keyport, N. J.

BEARINGS -

Miniatures: Precision; Stainless Steel; Special Sizes, Tolerance \& Construction. RAWAY BEARING CO
4.8 Forsythe St. Walker 5-8150 N. Y. C. 2, N. Y.

COMMUNICATIONS EQUIPMENT CO. 343 Canal St. New York 13, N. Y. CHAS. ROSEN

 DIRECT ALL INQUIRIES TO DEPT. E6
MEDIUM POWER PULSER

power radar monlulator lising an $\delta 29 \mathrm{H}$ in a regentera-
 duty ratio of 0.001 . Primaly power reguirements are:
115 vac. $400-1200$ cus/3. 5 A. Also 28 vde at 5 Amp. An
external trigger of at least 50 . peak is required. All externa1 trigger of at least $50 \quad$. peak is required. All
units are new, complete with all tules, pressurized housing, and schematic diagram.
(Refer to lad Lal) Series, Vol. 5, Sec. 5.1) $\$ \mathbf{\$ 7 . 5 0}$ OSCILLO-SYNCHROSCOPE SYNCHROSCOPE/TS 28/UPM. This inst mumt but usable for general laboratory work. The scope
equipped win a swerps zanging from 1 to 8 usec/inch. Free- Muming sawriggers having rep rates of anan/500/1.0n0/2.010 anf and 4,000 eps are supplied. Marker periods are $2 / 10$ and 25 usec accurate to 1%. The 2-scage video amp. has
a bandwidth of 5 me and a katin of 100 . Used. in
excel. cond.

MICROWAVE CAVITY
Tunes 2700 to 3400 mc with a loaded he used at gurarer wave $\mathbf{\$ 2 2 . 5 0}$

MICROWAVE ANTENNAS

ATt9/APR-1troadband Conical, $300-3300$ MC... $\$ 8.95$ Clish, operating from 24 vic notor. Beam pattern; deg. in both Azimuth and elevation. Sector Scan over 160 deg. at 35 scans per minute. Elevation scan.
over 22 deg. Tilt. orer 24 deg...................... With diclectric window. $\$ 22.50$ iscone Antenna. is ${ }^{2 .}$. Connector......sit.50 ASItA/AP, 10 CM piok up dipole assy, complete w/ 30^{\prime} Parabolic lieftector Spun Aluninum dish $101^{1 / x^{*}}$ AN/APA-12-sector Scan adaptor for APS-2 radar10 CM . ANTENNA ASSY, (Airborne), $30^{\prime \prime \prime}$ dish with zation. 350 deed. Focal lenkth is $101 / 2^{\prime \prime}$ Horiz polar

LARGEST STOCK OF
 BDMAYS
 IN THE WORLD
 SOLENOIDS•STEPPERS SENSITROLS
 PRODUCTION QUANTITIES most makes in stock
 Send for Latest Catalog E

42WHITE ST., NEW YORK 13, N. Y. WAlker 5.9257

IF THERE IS
 Anything you want

that other readers of this
paper can supply
OR-
Something you
don't want
that other readers can use, advertise it in the

SEARCHLIGHT SECTION

ELEOTRONIO

WAR TERMINATION INVENTORIES

WRITE OR WIRE FOR INFORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PRICES NET F.O.B.

PASADENA, CALIFORNIA

INVERTERS

0042-1-A Bendix DC Input 14 volts Output; 115 volts;
 400 cycles. 1-phas Output: $115 \mathrm{VAC} ; 400 \mathrm{cyc}$; single phase; .45 amp. Input:
Output: 6 volts; 400 cycles, 6 volt amperes, 1 phase. Input: 24 VDC ; 1 amp. $\$ 15.00$ 2121 Bendix Input: 24 volt D.C. 18 amp .12000 r.p.m. volt amp 7 pf volts, 400 cycle, 3 -phase. $\$ 49.50$ 2123 Bendix
Output: $115 \mathrm{~V} ; 3$ phase; 400 cycle; ${ }^{\text {amps. }}$. $\$ 49.50$
5. Input: 24 VDC; $^{2} 12$ amp. 12126-2-A Bendix
Output: 26 volts; 3 phase; 400 cycle; 10 VA; 6 PF. Input: 27.5 volts DC; 1.25 amps.
12142-1-A Bendix
Output: 115 volts, 3 phase, 400 cycle, 250 VA. Input: 27.5 VDC, 22 amps. Voltage and frequency
Output: $115 \mathrm{VAC}, 400$ cycles; single phase. Output:
Input: $24-30$ VDC; 8 amps. $\begin{aligned} & \text { Single } \\ & \$ 19.95 \text { each }\end{aligned}$ 0285 Leland
Output: 115 volts AC; 750 VA, 3 phase, 400 cycle, 90 pf and 26 volts. 50 VA single phase, 400 eycle, 40 pf. Input: 27.5 VDC , 60 amps. cont. duty, 6000 rpm . Voltage and frequency regulated.
0563 Leland
Output: 115 VAC; 400 cycle; 3-phase; 115 VA; 75 pf . Input: $28.5 \mathrm{VAC} ; 12 \mathrm{amps}$. $\$ 25.00$
Flo Jack \& Heintz
Output: 115 volts, 400 cycle, 1 or 3 phase,
250 VA pf 9 250 VA pf. 9. Input: 27.5 volts, 20 amp Electronic frequency and voltage regulated. $\$ 99.50$ each PEIOG Leland Output: $115 \mathrm{VAC}, 400$ cyc.; single phase, 1.53 amp.; 8000 rpm . Input: $13.5 \mathrm{VDC;} \begin{array}{r}29 \\ \$ 50 \\ 00\end{array}$ PE218. Leland
Output: $115 \mathrm{VAC}_{;}$single phase pf. 90 $380 / 500$ cycle; 1500 VA. Input: $25-28$ VDC BRAND NES ${ }^{2} 8000$ rpm.; ExC. Volts $\$ 30.00$ AN 3490 Eicor
Input: 27.5 volts at 9.2 amps. $A C$. Output 115 volts, 400 cycles; 3 phase, 100 voltamp continuous duty.

Price $\$ 39.50$ each

MG54D BENDIX INVERTER

Output: 200/115 volts; 400 cycle, single of 3 phase; $80 \mathrm{pf}, 250 \mathrm{VA}$. Input: 28 VDC, 22 amps.

MOTOR GENERATOR TRANSICOIL TYPE 7500 115 volts, 400 cycle. Output 4 $0-7000 \mathrm{rpm}$. Gear Train ratio

TS148/UP SPECTRUM ANALYZER

8430-9580 mc. For use
various
with
-band various X-band equipment. New, complete with accessories and carrying case. Limited
Price $\$ 895.00$

SELSYNSSYNCHROS

ICT cont. Trans $90 / 55 \mathrm{~V} 60 \mathrm{cy}$. 1DG Diff. Gen. $90 / 90 \mathrm{~V} 60 \mathrm{cy}$ IF Syn. Mtr. 115/90V 60 cy . IG Gen. 115 V 60 cy .
1 HDG
1 HCT
1 HG
1SF Syn. Mtr. 115/90V 400 cy .
2JIFI Gen. 115/57.5V 400 cy . 2JIF3 Gen. 115/57.5V 400 cy . $211 F A 1$ Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$
2 JIGl 57.5/57.5V 400 cy .
211 HI Diff. Gen. 57.5 V 400 cy . $2 \mathrm{2J5D}$ Cont. Trans. $105 / 55 \mathrm{~V}$ o 0 cy 2 J 5 FI Cont. Trans. 105/55V 60 cy $2 \mathrm{JSH1}$ Gen. $115 / 105 \mathrm{~V} 60 \mathrm{cy}$. 2115 MI Gen. 5 CT Cont Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$ 50D Diff Gen $90 / 90 \mathrm{~V} 60 \mathrm{cy}$ 500G Diff. Gen. $90 / 90 \mathrm{~V} 80 \mathrm{cy}$. 5 F Syn. Mtr. $115 / 90$ VAC 60 cy . ${ }_{5 G} 5 \mathrm{SYCT}$ Cont. Trans. $90 / 55 \mathrm{~V} 80 \mathrm{cy}$ cy. 5HCT Cont. Trans. $90 / 55 \mathrm{~V} 80 \mathrm{cy}$
5SDG Diff. Gen. $90 / 90 \mathrm{~V} 400 \mathrm{cy}$. $60 G$ Diff. Gen. $90 / 90 \mathrm{~V} 60 \mathrm{cy}$. 60 G Syn. Gen. $115 / 90 \mathrm{VAC} 60 \mathrm{cy}$ 7 G Syn. Gen. $115 / 90 \mathrm{VAC} 60 \mathrm{cy}$ 7G Syn. Gen. $115 / 90 \mathrm{VAC}$
C 56701 cy
Type
$11-4$ Rep. 115 V 60 cy C69405-2 Type 1-1 Transm. 115 V 60 cy C69406 Syn. Transm. 115 V 60 cy
C $69406-1$ Type $11-2$ Rep. 115 V 60 cy C69406-1 Type 11-2 Rep. 115 V 60 c C76166 Volt. Rec. 115 V
c 78248 Sy. Transm. 115 V 60 cy
c C78248 Syn. Transm. 115 V 60 cy
C 78249 Syn. Diff. 115 V 60 cy . C78249 Syn. Diff. 115 V 60
$\$ 34.50$ C 78863 Repeater 115 V 60 cy.
C79331 Transm. Type $1-4115 \mathrm{~V} 60 \mathrm{cy}$. 851 Bendix Autosyn Mtr. 22 V 60 cy . 851 Bendix Autosyn Mir.
403 Kollsman Autosyn. Mir. 32 V 60 cy FPE-25-11 Diehl Servo Mfr
$75 / 115 \mathrm{~V} 60 \mathrm{cy}$
34.50
34.50 34.50
37.50 37.50
37.50 37.50
37.50
37.50 37.50
37.50 37.50
12.50 12.50
7.50 10.00 7.50
5.00 5.00
7.50 750
17.50 17.50
17.50 17.50
17.50 17.50
17.50 17.50 34.50
3450 34.50 34.50
3450 34.50
34.50 37.50 12.50 25.00 34.50 42.50 20.00 20.00 20.00 20.00 10.00 12.50 5.00
7.50 7.50
20.00 20.00 7.50 7.50 19.50 19.50

FJE-43-9 Resolver 115 V 400 cy 15.00

60 CYCLE AC SERVO MOTOR
with gear reduction
Mfgd. by Diehl. Type FPE-25-11. Low inertia; $75 / 115$ volts; 60 cycle, 2 phase, 4 watt output, 3200 rpm . Gear case: worm gear, spur gear and pinion, reduction
$\$ 24.50$ ratio 100:1

GENERAL ELECTRIC AUTO PILOT DIREC. TIONAL GYRO IN. DICATOR and CON. TROL UNIT
Mod. 8K63AC. 115 volts, $400 \mathrm{cps}, 3$ phase, 40 watts. Has settable induction pick-off.

Price $\$ 10.00$

HIGH-QUALITY OPTICAL PARTS
5". Schmidt Ulira Hi-Speed Obi
Eastman Kodak in-fra-red receiver formerly known as B. $7^{\prime \prime}$ Nary with $5^{\prime \prime}$ SCHMIDT Bítra-high speed Objective Ultra-high speed 0.5). Elaborate optical system, many coated lenses. Uses 2 penlight batteries. Govt. cost opprox. $\$ 300$. Factory-new. Shipping wt. 9 lbs. Price $\$ 19.95$ Waterproof Carrying Case, extra. Shipping wt. 3 lbs. Price $\$ 3.00$ Dual purpose U.S.N. floodlight throws strong beam of invisible infra-red rays. With infro-red lens, spare sealed beam lamp, batteries. Shipping wt. 23 Ibs

POWER PLANT MODEL EG-107 120/208 V AC, 400 CYCLE Generator rated at $7.5 \mathrm{kw}, 400$ cycle, 120 / 208 volt A.C. Single and 3 phose at 95% pf. Current D-ain at rated load 21.7 amps per phose. Also has 28 volt D.C. ot 750 watts.

This unit con-
sists of $a \quad 4$ sists of a 4-
cylinder watercooled gasoline cooled gasoline engine directly
connected to on alternator generator Complete with control panel. Approximate weight 500 Ibs.
Price $\$ 495.00$

SIMPLE DIFFERENTIAL

 teeth on input and output gear, 1-1/32 inch diameter. Total outside diameter 1-25/32 inches. Shaft size is $1 / 4$ inch. One shaft is $9 / 16^{\prime \prime}$ long; other Stock No. 151 shaft is $3 / 16^{\prime \prime}$ long. $\$ 5.00$

VARIABLE SPEED BALL DISC INTEGRATORS
Forward \& Reverse 4-0.4. In put shaft $5 / 16^{\prime \prime}$ dia. $x \quad 3 / 4^{\prime \prime}$
long. Output shaft $15 / 64^{\prime \prime}$ dia. $\times 9 / 16^{\prime \prime}$ long. Control shaft $11 / 64^{\prime \prime}$ dia. x 11/16' long. Cast aluminum con$\times 4^{1 / 2} 2^{\prime \prime} \times 4^{\prime \prime}$ (All Shafts Ball Bearing Supported)

No. 146

SMALL DC

 MOTORS
(approx. size overall $33 / /^{\prime \prime} \times 114^{\prime \prime}$ dia.
5067126 Delco PM, $27 \mathrm{VDC}, 125 \mathrm{RPM}$, $\$ 15.00$ ea 5069600 Delco PM 27.5 VDC $250 \mathrm{rpm} \quad 12.50$ $\begin{array}{llll}5069600 & \text { Delco PM } 27.5 \\ 5069230 & \text { Delcc PM } 27.5 \text { VDC } 145 \mathrm{rpm} & 15.00\end{array}$ 5068750 Delco 27.5 VDC $160 \mathrm{rpm} w$. brake 6.50 5068571 Delca PM 27.5 VDC $10,000 \mathrm{rpm}$ $\left(1 \times 1 \times 2^{\prime \prime}\right)$
5069790 Delce PM, 27 VDC, 100 RPM, Governor Cantrolled
(15.00 ea. $\begin{array}{lll}\text { 5BA10A118 GE } 24 \text { VDC } 110 \mathrm{rpm} & 10.00 \\ 58 A 10 A 137 \text { GE } 27 \text { VDC } 250 \mathrm{rpm} \text { reversible } & 10.00\end{array}$ 5BA10AJ37 GE 27 VDC 250 rpm reversible 10.00
 5BA10AJ50, G.E., 12 VDC, 40 rpm
206-1001 PM Planetary Gear Reduced
Motor with Magnetic Brake. Migd. 145 rpm 17.50 5BAlOF 33 G. E., 12 VDC, 56 rpm reversible 15.00 806069 Oster series reversible 1/50 h.p
806069 Oster series reversible 1/50 h.p.
$10,000 \mathrm{rpm} .27 .5 \mathrm{VDC} 15 / \mathrm{g}^{\prime \prime} \times 31 / 2^{\prime \prime}$ C-28P-1A 27 Hocen 24 VDC 160 rpm lmm 3.00 SSFD-6-25 Diehl PM 27.5 VDC $10,000 \mathrm{rpm} 4.00$ 6 -volt PM motor mfgd. by Hansen $5,000 \mathrm{rpm}$

3" Round
 Elapsed Time Meter
 \$12 ${ }^{75}$

WESTON PHOTRONIC GELL
PHOTO ELECTRIC Switch - turns likht on at dusk off at dawn. Fools burglars who watch for signs of an empty house. $\ldots . . . \ldots$........ $\$ \mathbf{1 0 . 9 4}$

TESECHRON Motors

 Laboratory Snecial I of Each Motor \$25 D-E-L-A-Y-L-D A-C-T-I-O-N LIGHT SWITCH Shuts light off automatically almost a minute later.
Keeps porch or karage light on after you shut it ntt ($\$ 3.50$

DEALERS WRITE FOR PRICES
6 WATT MOST POWERFUL TELECHRON MOTOR

```
PRM \({ }^{110-\mathrm{V} .60 \mathrm{CY}}\)
RPM ..............56.50
```


HAYDON TIMING
MOTORS
 1 RPM 230 vours 60 ey .
1 RPM 110 v 60 cy
2 RPM
30
 150 RPM, yes 450 RPM
HANSEN Synchron 4 RPM CRAMER 4 RPM. Laboratory Special I of each Motor............... $\$ 15.00$ RELAY CONTACT BURNISHERS .59-2 for $\$ 1.00$

PM MOTORS
Made by $\$ 3.75$
Removed from equipment

V. H. F.
U. H. F.

RDO RECEIVER

$38 M C$ to 1000 MC precision Receiver covering complete rainge using 3 turning units. The RDO is a high quality Navy as the APR-4, but has cdditional features such as input and output signal strength DB meters, audio output metering, noise limiter, greater stability, for noise measuring ete greater stability, for noise measuring etc. Complete $W / 3$ turning units.
Brand new, original boxes.
$\$ 159.50$
Govt. acq. cost $\$ 1500.00$
3 CM ILadar Installation in Brand New original oxes. This is a complete self-contained radar tenna complete with 76 tuhes. Indicators and contiol boses. Tule complement consists ot

 2 ea.-3FP7 1 ea.-VR105
4 ea.-VR150 (govt. acquis. cost over $\$ 4.000 .00$). Ship. wt. 43 bs. W/operating instructions. Your special price
$\$ 69.50$ Write for flyer

R. W. ELECTRONICS Dept. L.

2430 S. Michigan Ave. Chicago 16, Ill.

These

"Searchlight" advertisements
are live opportunities in the Electronic field.
Each announcement represents a current Want or Offering of an organization or individual in the field. Some have money-saving possibilities, others are opportunities for more business; many are employment opportunities; still others offer equipment-used or surplus new.
"Searchlight" advertisements are constantly changing. New opportunities are constantly finding their way into this great Want medium, each issue. Regular reading of the "Searchlight" pages can be as important to you as reading the editorial sections; Editorial matter is news of the industry; Advertising is NEWS OF OPPORTUNITIES offered in the Industry.

for

EVEPY business WANT
"Think
SEARCHLLCHT first"
n

INDEX TO ADVERTISERS

Ace Engineering \& Machine Co.......... 20
Admiral Corp. 5

Aronantieal Communications Equipment Inc.
Airpax Products Co....................... 125
Allegheny Lidlhm Stepl Corp......... 30
American Instrument 159
American Photocopy Eifuipment Co. 104 B
American Time Products Ine
117
Amperex Electronic Corp.................. 99
Ampex Corporation26, 27
Anaconda Wire \& Cable Co..........32A. 32 \&
Insco. Div. of General Aniline \mathbb{S} Film Corp.

103
Iphlied Resenrah, Inc 127
Arnold Engincering Co., The 10
Indio Develobment Co.................... 124
Automatic Mfg. 43

C Broadeanting System, Inc. A. Columbin
Caledonia Electronics \& Transformer Corp.
Coleo-Constantine Engineering Labora tories Co.
Centralab. A Division of Globe-Union, Inc.
Chicago Stamiard Transformer Corp.... 136 Chicago Telephone Supply Corp........ 37
Clare \& Co.. C. P
Clifton I'recision I'roducts Co., Inc. 29
Coliñ, Mig., Co., Ine., Nigmund......... 150
Cosa Corporation 183
Cossor (Canada) Limited 151
Cranteracking Co. 116
Cross Co., H . 146
Curtiss Wright Corp. 143
D \& K Ltd. 155
Dano Electric Co. 165
Deleo Radio Div. of General Motors.... 28

De Mornay-Bonardi

Driver-Harris Company 111
Dumont Latooratories, Inc., Allen B. 21,. . 22
\qquad

Eisler Figincering Co., Inc.............. 152
Eitel-McCullouglı, Inc. 31
Electro Instrumente Inc. 59
ELectronic Instrument Co., Inc. (EICO) 168 Nhectronir Tube Corporation. 120
Limpire Devices Products Corporation. 104
Hratser Co., line . 148
Essex Magnet Wire Division of Essex Wire Corp.
Eisterline-Angus Company, Inc.......... 146

F-R Machine Works, Inc.................. 101
Fenwal, Ine. 4

Film Capacitors, Inc....................... 16 .
Freed Translormer Co., Inc.............. 184

Garrett Corporation, The................. 105
Generall Electric Co.
Ipparatus 137
Receiving Tube Dept.50, 5l
Gemoral Radio Co......................... . 3
Genisco, Inc.
Giammini \& Co. Inc., G. M............... 97
Goodrich, B. F., The 46
Grant Pulley \& llardware Corp. 161
Graphic Systems 158
Grayhill, Inc. 127
Gries Reproducer Corp. 16

Hallamore Electronics Co............... 114
Harper-Leader Ine. 156
Haydon Co., A.W. 138
Hewlett-Parkard Company 刃nd Cover

Hycon Eastern, Ine........................ 1111

Institute of Radio Engineers, The...... 121 International Electronie Resenreh Corp.. 129

J-V-M Engineering Co.	148
Jerrold Electronies Corp.	96
John Hopkins Iniversity, The	152
Jontes Electronies Co., Inc.. M.	133
Jones Div., Howard 13. Cinc	16%
Kepeo Laboratories	93
Kintel (Kay Litb)	13
Kleiner Metal Spercialties Inc	100
Kleinselimidt Laboratories Inc.	44

Lambdit Electronics Corp 9
Lampkin Laboratories, Inc. 162
Lapp Insulator Co., Inc. 131
Lepel High Frequency Laboratoriag. 1:4;
Link Aviation, Ine 151
Magnetic Amplifiers, Inc 143
Magnetics, Inc 91
Mallory and Co., Ine., I'. K 64
Jansol Ceramics Co 165
Marconi Instriments, Ltd. 139
Marion Electrical Instrument Co 126
McGraw-Hill Book Co. 165
w-Ifil Publishing Co., InMetals $\&$ Controls Corp., General PlateDiv.
34, 56

Toroidal
Coil Winders

- High Speeds
- Minimum Wire Breakage
- Large or Small Coils
- Continuous or Sector

Micafil RW-P. A high precision toroidal coil winding machine for potentiometers, the RW-P will wind perfect layers to a finished I.D. of $.25^{\prime \prime}$ to $4^{\prime \prime}$. It is the only toroidal coil winder capable of successfully winding \#45 AWG copper wire down to such a small finished I.D. Core rotation can be varied by a 600 step planetary gear box. Winding speeds-up to 100 r.p.m. Optional winding head for speeds up to 400 r.p.m. An automatic turns counter stops the machine automatically after a pre-set number. Core holder for continuous winding over 360°; sector holder for angles up to 330°.

Micafil RW-III. This machine winds large, heavy coils from a minimum I.D. of $13 / 4^{\prime \prime}$ to a maximum O.D. of $27^{\prime \prime}$. Maximum coil height is $41 / 2^{\prime \prime}$. A two-shuttle type, the RW-III will wind tightly without damaging insulation-with wire up to \#10 AWG. Maximum winding speed is 100 r .p.m. Sector holder for 330° winding. Special design for winding Variac Transformers.

Write For More Information

CIRCLE 167 READERS SERVICE CARD

FRHFD MACNETIC AMPLITIERS and
 SATURABLE TRANSFORMERS FOR
 IMMEDIATE DELIVERY

FAST RESPONSE MAGNETIC AMPLIFIERS 2n response					
Cat. No.	Supply freq. C.P.S.	Power Out. Watts	volt. Out. v. AC	AC or DC signal voltage req'd for full output.	
MAF-1	60	13	110	1.0	-
MAF-6	400	5	57.5	1.2	0.4
	400	10	57.5	1.6	0.6
MAF. 7	400	15	57.5	2.5	1.0

SINGLE ENDED
MAGNETIC AMPLIFIERS

Cat. NO.	Supply Freq. C.P.S.	Power Out. Watts	Sig. reg'd for fuli outp. MA.DC	Total res contr. wdg. K $!$	Load res. ohms
MAO.1	60	4.5	3.0	1.2	3800
MAO-2	60	20	1.8	1.3	700
MA O-4	60	400	9.0	10.0	25
MAO.5	60	575	6	10.0	25

PUSH-PULL
MAGNETIC AMPLIFIERS
Phase reversible

Cat. No.	Supply Freq. C.P.S.	Power Out. Watts	Volt. Out. V. AC	Sig, req'd for fuli outp. MA.DC	Total res. contr. wdg. K
MAP-1	60	5	115	1.2	1.2
MAP-2	60	15	115	1.6	2.4
MAP-3	60	50	115	2.0	0.5
MAP-3.A	60	50	115	7.0	2.9
MAP-4	60	175	115	8.0	6.0
MAP-7	400	15	115	0.6	2.8
MAP-8	400	50	110	1.75	0.6

SATURABLE TRANSFORMERS Phase reversible	Supply	Power	Volt.	Sig. req'd	Total res.
Freq. in	Out.	Out.	for full	contr. wdg.	

| No. | C.P.S. | Watts | V. AC | outD. MA-DC | K! |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAS-1 | 60 | 15 | 115 | 6.0 | 27 |

MAS-2	400	6	115	4.0	10
MAS-5	400	2.7	26	4.0	3.2
MAS-6	400	30	115	4.0	8.0
MAS-7	400	40	115	5.5	8.0

All units designed for 115 V -AC operation
Write for detailed listing, or special requirements, and copies of complete Transformer and Laboratory Test Instrument Catalogs.

FREED
 TRANSFORMER CO., INC.

1722 Weirfield Stree
Brooklyn (Ridgewood) 27. New York CIRCLE 168 READERS SERVICE CARD

Moloney Electric Co.......................... 123
Motorola, Inc.

New Hermes Engraving Machinc Corp . 154 Ney Company, J. M........................ 144

North Athantic Industries, Inc 163
Northern Plastic Corp..................... 140

Pace Elfotrical Instrument Co., Inc . . . 149 Pacific Semiconductors, lne.............. 35
Panoramic Kadio I'roducts, Ine.......... 153
Phelps-Dodge Copper I'roducts Corp., IPhilbrick Researches, Inc., George A... 144 Polarad Electronies Corporation,..48A,4813 Potter Instrument Co., Inc. 128

Radiation, Inc
Radio Corporation of Ameriat.... 4th Cover Radio Engineering Iabomatories. Inc... 9is Radio Enginaering Products. 156;

Radio Frequiney Laboratories, Inc. 98
Kadio Materials Corp
98

Radiometr
Raythron Mtg. Company 6, L.09, 169 Ribet Desjardins40

Sanberit Company

54, . 55
Sarkes Turzian Iuc.
Shalleross Mif. Co
23

Gixma lustrum
Sola Electrice Co
106

Sorensen $\&$ Co.. Inc
32

Sperry Electronie Tube, Division of Sparry Rand Corp...................... 113
Spragu* I'roducts Co.
Stackpole Carbon Co
Standard Edectric Time Co
Statham Instrument Inc.
Instrument Ing. 155
Steveis Arnolit. Inc................. 140
Stromberg-Carlson Company
Sylvania Electric Products, Ine
Syntronic Iustruments, Ine
58
41

Telechronte, Mfg. Co
107
Texas Instruments Incorporated....... 184
Thermal Ameriefnin Fused guartz Co 147
Transformers, Inc 33
Transitron Electronic Corp. 119
Transradio, Lta. 170
U. S. Air Force. . . .n. 115

Vickers Inc., Div. of Sperry Rand 45
Vitro Laboratoripe Division of the Vitro Corp. of America.............................

Washington Aluminum Company, Inc... 158
Wenco Manafacturing $C o$
162
Westinghonse Electric Corp............... 134

Texas Instruments P-N-P germanium $90 M G$ alpha NEW T/I diffused base transistors

Your orders for TI silicon and germanium tran. sistors are filled immediately, off-the-shelf at order from your most convenient source ..

WRITE OR CALL department e for catalog and
PRICE LIST. WE ARE AS Close as your telephone.
CIRCLE 175 READERS SERVICE CARD

CLASSIFIED ADVERTISING

 F. J. Eberle, Business MgrEMFLOYMENT OPPORTUNITIES.171-178 EQUIPMENT
(Used or Surplus New)
For Sale
179-182

ADVERTISERS INDEX

This index is published as a service. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibilities for errors or omissions.

Now for your television IF's, VHF oscillators and amplifiers plus high speed computer applications ... new round welded 2 N 623 diffused-base germanium transistors give you 200 mc typical maximum frequency of oscillation, 90 mc alpha cutoff, plus a $25 \mathrm{~m} \mu \mathrm{sec}$ typical total non-saturated switching time.
Check the specifications and application notes below - see how the TI 2N623 can help you with your next high gain/high frequency or ultra high speed switching application.
maximum ratings a\& $25^{\circ} \mathrm{C}$

collector to bose	-30V
collector to base	$-15 \mathrm{~V}$
collector to emitier	-1V
total dissipotion.	40 mW

typical design characteristics at $25^{\circ} \mathrm{C}$
(conditions)

collector reverse current	$\mathrm{I}_{\mathrm{E}}=0$	$\mathrm{~V}_{\mathrm{CB}}=-20 \mathrm{~V}$	$2 \mu \mathrm{~A}$
emitter reverse current	$\mathrm{I}_{\mathrm{C}}=0$	$\mathrm{~V}_{\mathrm{EB}}=-0.5 \mathrm{~V}$	$0.5 \mu \mathrm{~A}$
forward current transfer ratio	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CE}}=-6 \mathrm{~V}$	35
current tronsfer ratio cutoff frequency	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CB}}=-6 \mathrm{~V}$	90 mc
max. frequency of oscillation	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CB}}=-6 \mathrm{~V}$	200 mc
frequency where $h_{\text {fe }}$ is unity	$\mathrm{I}_{\mathrm{C}}=-2 \mathrm{~mA}$	$\mathrm{~V}_{\mathrm{CB}}=-6 \mathrm{~V}$	60 mc

Write today to your nearest T/I sales office for Bulletin DL-S 904

APPLICATION NOTES

IYPICAL VALUES - - AVAILABIE POWER OUTPUY 20 mW (PEAK) NOISE FIGURE O db - POWER GAIN 15 db EAND WIDIH, ONE STAGE 11 mc APPROX. IMPEDANCE LOOKING INTO PRIMARY 56Ω - LOAD ON SECONDARY 3000Ω

TYPICAL SWITCHING TIMES OBTAINED IN ABOVE CIRCU:T
Pon: $14 \mathrm{~m} /$ /secs \quad foff: $14 \mathrm{~m} \mu \mathrm{secs}$
(INCLUDES OSCHLOSCOPE RISE TIME)

TEXAS Instruments

INCORPORATED
SEMICONDUCTOR - COMPONENTS DIVISION
POST OFFICE BOX 312 OALLAS, TEXAS

RCA-6AW8-A -Preferred Tube TypeOffers You Extended Life, Improved Performance

The popular RCA-6AW8-A features highly improved performance and longer life in video-amplifier service -improvements resulting directly from RCA's Preferred Tube Types Program!
these improvements were made to the rca-gaws-a Precise control of heater coatings eliminates "thin spots"-assures durable heaters which minimize heater-cathode leakage and heater-cathode shorts. Spe-cial-alloy cathodes offer better cathode activation which reduces slump and assures stable operation. A new cathode design reduces the number of weldsminimizing handling and contamination.
Heat dissipation is improved by the use of heavier side rods on pentode grid \# 1. Pure nickel pins reduce pin-contact noise and facilitate insertion and re-

RADIO CORPORATION OF AMERICA

moval of the tube. From tip to stem, the glass is controlled for stress and strain to assure durability under wide variations in temperatures. Final test procedures include cycled operational life tests to simulate "on-off" usage in the home.

Result: the highly reliable RCA-6AW8-A for superior video amplifier performance. By designing your circuits "around" proved-in-service Preferred Tube Types, such as the 6AW8-A, you take advantage of the benefits of lower tube costs, more uniform tube quality and better tube availability.

[^0]: Newton, Mass \qquad 55 Chapel St., Bigelow 4.7500 New York: 589 Fifth Ave., PLaza 9-3900 Chicago: 9501 Grand Ave., Franklin Park, NAtional 5-6130 Los Angeles: 5236 Santa Monico Blyd., NOrmondy 5-4221

[^1]: Newark, New Jersey
 1180 Raymond Houlevard Tel: Mitchell 2-6165

 Santa Monica, California 726 Santa Monica Boulevard Tel; Exbrook 3-1465

[^2]: Inspector checks completed unit by following master wire list

[^3]: ENGINEERS - CLIP THIS SCHEDULE

[^4]: McGraw-Hill Publishing Company, Room 2710,330 West 42nd St., New York 36, N. Y.

[^5]: McGrow-Hill Publishing Company, Room 2710, 330 West 42nd St., New York 36, N. Y.

