electronics $=$ p 63

engineering edifion

Checking Eleciron
Tubes in Groups

New design 50 ohm attenuator 0 to 132 db in 1 db stepsDC to 500 MC

-hp-355A/B Attenuators
$1 / 4 \mathrm{db}$ accuracy full range for low attenuation values. Maximum error at full attenuation 2 db . "One-knob" control. Super compact design-size approximately $21 / 2^{\prime \prime} \times 21 / 2^{\prime \prime} \times 6^{\prime \prime}$.
These are characteristics of the new, rugged, simple -hp-355A/B attenuators.
$-h p-355 \mathrm{~A}$ provides 0 to 12 db in 1 db steps. -hp355 B provides 0 to 120 db in decade steps. Together, 132 db of attenuation from DC to 500 MC is available, with simplest possible controls, pre-
mium accuracy, and no complex setup. A solidshield 50 ohm connector may be used to interconnect the two attenuators.

These new -hp-attenuators have balanced capacities and completely shielded sections. They are enclosed in a sturdy metal case, yet weigh only $11 / 2$ pounds.

Ask your - $h p$-representative to show you these practical, minimum-space attenuators this week.
-hp- at IRE, Top of Escalators As You Enter Show

SPECIFICATIONS

```
Attenuation: -hp- 355A, 12 db in 1 db steps. -hp- 355B, 120 db
    in 10 d'b steps
Frequency Range: \(D C\) to 500 MC
Overall Accuracy: hp \(355 \mathrm{~A}, \pm 0.25 \mathrm{db}, \mathrm{DC}\) to 500 MC . hp.
\(355 \mathrm{~B}, \pm 1 \mathrm{db}, \mathrm{DC}\) to \(250 \mathrm{MC}, \pm 2 \mathrm{db}, 250\) to 500 MC
Nominal Impedance: 50 ohms
Maximum SWR: 1.2 to \(250 \mathrm{MC}, 1.5\) to 500 MC
```

Max. Insertion Loss: 0 of $\mathrm{DC}, 0.4 \mathrm{db}$ at $60 \mathrm{MC}, 1 \mathrm{db}$ at 250 MC 1.5 db at 500 MC

Power Dissipation: 0.5 watt average; $350 \times$ peak
Connectors: BNC
Size: $2-3 / 16^{\prime \prime}$ wide, $2-5 / 8^{\prime \prime}$ high, $6^{\prime \prime}$ long. Net weight $1 / 2$ pounds

Price: -hp-355A, $\$ 125.00$. hp- 355B, $\$ 125.00$

HEWLETT-PACKARD COMPANY

electronics

W. W. MacDONALD, Editor

Managing Editor, John M. Carrall.

Feature Editor, John Markus
Associate Editors: John M. Kinn, Jr., Frank Leary, Michael F. Tomaino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, Williom P. O'Brien, George Sideris, Edward DeJongh, John F. Mason, Barry Miller, William E. Bushor, Ronald K. Jurgen, Thomas Emma, Patrick J. Lahey, Samuel Weber.

Pacific Coast Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New England Editor (Boston) Thomas Maguire.

Art Director, Harry Phillips, Roy Thompsen.

Production Editor, John C. Wright, Jr, Bernice Duffy, Jean L. Matin.

Ediforial Assistants: Gloria J. Filippone, Arlene Schilp, Noreen Hennessy, Phylis A. Cronin, Patricia Landers, Cotherine McDermott.

JAMES GIRDWOOD, Advertising Sales Manager. R. S. Quint, Assistant Advertising Sales Manager and Buyer's Guide Manager. Fred Stewart, Promotion Manager. Frank H. Ward, Business Manager. George E. Pomeroy, Classified Manager. Jean Heiges, Research.

New York: Donald H. Miller, Henry M. Shaw, Martin J. Gallay. Boston: Wm. S. Hodgkinson. Phila delphia: James T. Hauptli. Chicago: Bruce Winner, Cleveland: Warren H. Gardner. Son Francisco: T. H. Carmody, R. C. Alcorn. Los Angeles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten. Atlanta: M. Miller. Dallas: Gordon L. Janes, Landon: Herbert Lagler. Frankfurt: Michael R. Zeynel.

Issue at a Glance

Field Testing Industrial Engines. Oscilloscope, part of Sperry Rand cngine analyzer, monitors operation of industrial reciprocating enginc at a mat-ural-gas pipeline pumping station. Lingine shutdown is not recpuired. Sec p 68

COVER

Business Briefs

p 7

Electronics News!ett
ligures of the Whek
Usc Electromics to Sort
Polaris Teleneter
Transistor Output Up, I'rices Down
Satellite's Eise Needs Tv Retina.
Waslington Outlook
lant Control Bill \$1.9 Ali

Military Electronics It Lahbs Pushing lntermetallics...... It
Financial Roundup 16 Sound Cleans Surgical Tools 16 Aireraft A-Power Program Widens 16 Phototube Control Scts Printing. Guat Guros for Small Vissiles. Alectings Ahead 18

Radio Waves Power Transistor Circuits. Energy radiated from remote sources used to power low-drain transistor circuits. p 63 By L. R. Crump

Squelch Circuit Mutes Magnctic Tape Echoes. Print-through echoes are killed by qave circuit while local noise generator maintains constant hiss level
p 66 By Daniel Cronin

Scope Analyzes Reciprocating Engines. Special cro is used as field maintcnance tool to analyze ignition, vibration and pressure of reciprocating engines used in industrial and marine service.
p 68

By Edward Sammis

Saturable Reactors Fire Radar Magnetrons. Magnetic modulator uses saturable reactors to convert input sine wave into narrow, high peak-power output pulses
p 72 By H. E. Thomas

High-Speed Tester Checks Tubes in Groups. Tube checker uses neon lamps to detect shorts and opens, with a memory circuit to show up intermittents
p 76
By E. S. Gordon

DIGEST continued

Transistor Q Multiplier for Audio Frequencies. High-Q, selectivity andstability are combined in simple, economical transistorized version ofvacuum tube Q multiplier.p 79
By G. B. Miller
Plug-in Bridge Checks VHF Quartz Crystals. Equivalent parameters of overtone crystals can be cletermined more rapidly and with less external equipment through use of unique bridge circuit for crystal under test p 82
By Douglas W. Robertson
Phase-Snift Curves. Relationship of phasc-shift, frequency and gain are shown on curves for lead-lag networks so component values can be determined p 86
By Richard H. Engelmam
Transistor H-F Cutoff Nomograph. Conversion from one ligh-frequency transistor parameter to another is simplified p 88
By H. E. Schauwecker
Electrons At Work
CRT Inayes Persist for Days ...p 90 ances 90 Bu R. B. Tatge 90p 90
Feedback Stabilizes Flip-Fiop....p 92By Philip Checilik
P'hase Shifter Range EBy W. G. Shepard
Component Design102
Improved TV Picture \& Set Styl-
High-Speed Computer Diode...p 102Better Enginecring Symposinn. . p 104Smallest Molded Nica Capacitor.p 106Evelets for Printed Circuits.....p 108
Production Teclmiquesp 110
Merry-Co-Round Ups Tube Out putp 110
Instrmments Boxed on Foan Basc.p 110
Plates Conuect Ribbon Cable , 113
Acid Sharpens Files. p 115
New Products p 116
Litcrature of the Week p 148
Plants and People p 152
News of Reps p 157
New Books p 158
Comment p 162
Index to Advertisers p 175

electronics

May 9, 1958 Vol. 31, No. 19

Published weekly, with alternating engineering and business editions, and with a BUYERS' GUIDE issue in mid. June, by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860-19ı18) Founder.

Executive, Editorial, Circulation and Advertising Offices: McGraw. Hill Building. 330 W. 12 St.. New York 36, N Y. Longacre 4.3000

Publication Office 99.129 North Broad. way, Albany I, N. Y. See panel below for directions regarding sulfscription or change of address. Donald C. McGraw, President: Joseph A. Gerardi, Executive Vice President: L.. Keith Goodrich, Vice Prezident and Treasurer: John J, Cooke, Secretary; Nelson Bond. Executive Vice President, Publications Division; Ralph B. Smith, Vice President and Editorial Director: Joseph H. Allen. Vice President and Director of Advertising Sales; A. R. Venezian, Vice President and Circulation Coordinator.

Single copies $\$ 1.00$ for Engineering Edition and $50 \not \subset$ for Business Edition in United States and possessions, and Canala; $\$ 2.00$ and $\$ 1.00$ for all other foreign countries. Buyers' Guide $\$ 3.00$. Subscription rates-United States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years: $\$ 12.00$ for three years. Canada, $\$ 10,00$ a year. $\$ 16$ for two years; $\$ 20.00$ for three years. All other countries $\$ 20.00$ a year, $\$ 30.00$ for two years: $\$ 10.00$ for three vears. Second class mail privileges authorized at Albany, N. Y. Printed in U.S.A. Copyright 1958 by MeGraw-Hill Publishing Co., Inc.All Rights Reserved. Title registered in U. S. Patent Office. BRANCH OFFICES: 520 North Michigan Avenue, Chicago 11; 68 Post Street, San Francisco 4; MeGraw Hitl House, Lonton E. C. 4; A.M Leonhards 12, Frankfurt Main; National Press Bldg: Washington 4 D. C.; Six Pern Center Plaza, Philadelphia 3; 1111 Henry W. Oliver Blig., Pittsburgh 22; 1510 Hanna B/dg., Cleveland 15; 856 Penobscot Bldg., Detroit 26 ; 3615 Olive St., St. Louis 8; 350 Park Square Bldg., Boston 16; 1321 Rhodes Haverty Bldg., Atlanta 3; 1125 West Sixth St., Los Angeles 17; 1740 Broad. way, Denver 2. ELECTRONICS is indeved regnlarly in The Engineering Index.

Postmaster: please send form 3579 to Electronics, 330 W. 42nd St., New York 36, N. Y.

- Sine- and square-wave outputs
- Wide frequency range
- Readily swept with G-R Dial Drives
- Small size
- Fast responding AVC
- Calibrated output control
- Output constant with frequency
- High output
- Precision frequency control
- Compact and rugged
- Inexpensive

The NEW General Radio 1210-C Unit Oscillator is the only oscillator in its price range to offer three separate output systems. Square waves and high- or low-impedance sine waves are yours at a turn of a knob.

This oscillator is unmatched in its class for all-around versatility. In addition to its usefulness as a source of sine and square wàves for work at audio, ultrasonic, and low radio frequencies, the $1210-\mathrm{C}$ can be employed as a modulator for $\mathrm{r}-\mathrm{f}$ oscillators, and as a trigger for pulse generators.

Specifically designed for this instrument are two accessory Synchronous-Dial Drives that readily attach to the oscillator frequency control, allowing automatic plotting and display of amplitude frequency characteristics. Laborious point-by-point measurements are eliminated by this inexpensive sweep-driven oscillator system used with conventional recording equipment.

Frequency Range: $20-500,000$ cycles in 5 ranges.
Frequency Controls: Range selection switch and 4 -inch precision gear-driven dial. Dial has two scales, 2-20 and 50-500, and is geared to a slow-motion knob that covers each decade in about $41 / 2$ turns.
Frequency Accuracy: $\pm 3 \%$.
Output Control: Logarithmic, calibrated 0.50 db .

Power Requirements: 6.3 v a c or d c at 1 amp; $300 \vee$ dc at 50 ma ; Type 1203-B Unit Power Supply (\$40.) recommended for operation from 115 v, $50-60$ cycles.

Fastening Power Supply: The Type 1210-C Oscillator can be firmly and perma. nently attached to any G-R Unit Power Supply by using the two stainless-steel locking strips supplied with oscillator.

Low-Impedance (50Ω) Output for Loads of 500 Ohms and Hisher: No-load output is 0.7 v . constart to vithin ± 1 do up to 200 kc : notoad disturtion less than 1% from 200 c 10 10 Kc. less than 1.5% over entire frequency range; hum at least 60 db telo w output-voltage level.

High-Impedance 12.5 Ka) Output for Loads of 10 Kitohms and Higser: No-load output is 0.45 v . constant to withen $\pm 1 \mathrm{db}$ from 200 c to 150 kc ; no load distortion less than 5% from 200 c to 200 hc (cistortion reduced under lwadl; hum at least 50 db below maximum ouput level.

Square-Ware $(2,5002)$ Dutaut: $0-30 \mathrm{~V}$ peak to peak; rise sime appronimately $1 / 2 \mu \mathrm{sec}$: overshoot approximately $1 x_{i}$ hum at least 60 db below outpul-voltage level.

ACCESSORIES

Type 908-P1 Synchranous Dial Drive, sweeps through one frequency decade in 50 sec ; 308.P2 takes 623 ser per decade, $\$ 29.00$ for either.
Type 480-P4U3 Rielay-rack Panel for mounting both 1210.C Oscilfator and 1203.B Power Supply in one panes, $\$ 10.85$
Type 1210-P1 Detector and Discriminator pro. vides necessaiy voltages for convenient os. cillograph display, $\$ 80.01$

GENERAL RADIO Company

275 Massachusetts Avenue, Cambridge 39, Mass., U. S. A.

NEW YORK AREA: Tel. N. Y. WOrth $\mathbf{4 . 2 7 2 2 , ~ N . ~ J . ~ W h i t n e y ~} 3.3140$ ChICAGO: Tel. VIliage 8.9400 PHILADELPH|A: Tel. HAncock 4-7419 WASHINGTON, D. C.: Tel. JUniper 5-1088 SAN FRANCISCO: Tel. Whitecliff 8-8233 LOS ANGELES 38: Tel. HOllywood 9-6201 In CANADA, TORONTO: Tel. CHerry 6-2171

New low reflective absorbents makes free space tests more reliable

Ten times lower reflection is now available with all B. F. Goodrich Microwave Absorbents. This 0.1% material gives reliability to measurements previously unattainable for testing of guided missiles in a free space chamber.

You can now be sure, by selecting the proper B. F. Goodrich material, that you will get this 0.1% performance at any point on the microwave frequency spectrum.

In addition to this outstanding quality, the B. F. Goodrich absorbent is light-weight, fire-retardant, easy to install. It will not deteriorate in performance when walked upon and has excellent water and weather resistant

List of B. F. Goodrich Broadband Absorbents			
Designation	Lowest Frequency*	Thickness	Maximum seflection
12 CM	2500 mc	$11 / 2^{\prime \prime}$ - $2^{\prime \prime}$	2\%
$12 \mathrm{CM}-1 \%$	2500 mc	11/2"-2"	1\%
12 CM - 30db	2500 mc	$11 / 2^{\prime \prime} \cdot 2^{\prime \prime}$	0.1% at X-band. 2% elsewhere.
6 CM	5000 mc	$1^{\prime \prime}$	2\%
30 CM	1000 mc	31/2"-4"	2\%
30 CM - 1\%	1000 mc	$31 / 22^{\prime \prime} \cdot 4^{\prime \prime}$	1\%
60 CM	500 mc	7"-8"	2\%
60 CM - 1\%	500 mc	7"-8"	1\%
100 CM	300 mc	$10^{\prime \prime}-11^{\prime \prime}$	2\%
200 CM	150 mc	26"	2\%
600 CM	50 mc	69"	2\%
$8 \text { CM-glass } \begin{gathered} \substack{\text { fiber }} \end{gathered}$	3600 mc	$1^{\prime \prime}-11 / 2^{\prime \prime}$	2\%
$4 \text { CM-glass } \begin{gathered} \text { fiber } \\ \text { fic } \end{gathered}$	7500 mc	$3 / 47$	2\%

Most of the above absorbents can be furnished with 0.1% maximum reflection at selected points
in the frequency band.
*All perform up to $30,000 \mathrm{mc}$
properties. For darkroom use, a special white compound can be applied to the surface of the pads to increase light reflectance.

When you're investing thousands, start right - specify B. F. Goodrich the company with the longest experience and record for consistently high quality microwave material. For new booklet on these absorbents write The B. F. Goodrich Company, 486 Derby Place, Shelton, Connecticut.

B.F.Goodrich microwave absorbents

Model MA28-125
Output: 28 VDC nominal at 125 amps.
Regulation accuracy of $\pm 0.2 \%$.
Ripple: < 1\% RMS.
Response time: <0.1 second.
Choice of input voltage: 208, 230 , or 460 VAC, 3 -phase.
Weight: 225 pounds.
$\$ 1160$ in cabinet.
Model MR36-30
Output current, 0-30 amps, output voltage, 5 to 36 VDC continu. ously adjustable with regulation $\pm 0.25 \%$ against line or load change.
Response time of 0.2 second.
Input voltage: 105 to 125 VAC ,
single-phase.
Weight: 175 pounds.
$\$ 890$ in cabinet.
Also supplied, as Model MR36.15, with output current 0.15 amps , otherwise similar.
Weight: 100 pounds.
$\$ 495$ in cabinet.

Hast Response...High Amps...External Sensing

Two new high output power-packs--with response time ranging from 0.2 second down, and with transistorized power reference and magnetic amplifier power control circuits for trouble-free performance-that's just part of the story on these Sorensen DC power supplies.

One model supplies an output of 18 to 36 VDC at 125 amperes; the other provides 5 to 36 VDC at 0 to 30 amps .

Zener diode reference circuit assures sharper regulation, and the external sensing provision puts this precise
control at the load. Silicon power rectifiers and complete tubeless design increase durability with reduction
in weight-and greater saving in size.
Get the full story from your Sorensen representative.
Or write for technical data.

CONTROLLED POWER FOR RESEARCH AND INDUSTRY
SORENSEN \& COMPANY, INC.
Richards Avenue, South Norwalk, Connecticut

New

 RAYTHEOM
RELIABLE

 COMPUTER TRANSISTORS switch 1 ampere $H_{f E}$ controlled at high currents Temperature range $-65^{\circ} \mathrm{c}$ to $+85^{\circ} \mathrm{c}$| Type | Punch through Voltage max. | $f_{a b}$ ave. Mc | $H_{F E}$ ave. $\begin{aligned} \mathrm{I}_{\mathrm{B}} & =1 \mathrm{~mA} \\ \mathrm{~V}_{\mathrm{CE}} & =-0.25 \mathrm{v} \end{aligned}$ | $\begin{gathered} H_{\mathrm{FE}_{2}} \\ \text { ave. } \\ \mathbf{I}_{\mathbf{B}}=\mathbf{1 0} \mathbf{m A} \\ \mathbf{V}_{\mathrm{CE}}=-0.35 \mathrm{v} \end{gathered}$ | $\begin{gathered} \mathrm{I}_{\mathrm{co}} \\ \text { at }-12 \mathrm{v} \\ \mu \mathrm{~A} \end{gathered}$ | $\begin{gathered} \mathrm{rb}^{\prime} \\ \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA} \end{gathered}$
 ohms | $\begin{gathered} C_{o b} \\ V_{C B}=-6 v \\ \mu \mu f \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2N658 | -24 | 5 | 50 | 40 | 2.5 | 60 | 12 |
| 2N659 | -20 | 10 | 70 | 55 | 2.5 | 65 | 12 |
| 2N660 | -16 | 15 | 90 | 65 | 2.5 | 70 | 12 |
| 2N661 | -12 | 20 | 120 | 75 | 2.5 | 75 | 12 |
| 2N662 | -16 | 8 | 25 min . | 50 | 2.5 | 65 | 12 |

Typical values at $25^{\circ} \mathrm{C}$ unless otherwise indicated
Dissipation Coefficients: In air $0.35^{\circ} \mathrm{C} / \mathrm{mW}$: Infinite Sink $0.18^{\circ} \mathrm{C} / \mathrm{mW}$
These new PNP Germanium Computer Transistors made by Raytheon's reliable fusion-alloy process add to the already comprehensive line of Raytheon Reliable Computer Transistors which include several in the Submin ($0.160^{\prime \prime}$ high, $0.130^{\prime \prime}$ dia.) package. Write for Data Sheets.

ELECTRONICS NEWSLETTER

RUSSIA'S THIRD SPUTNIK, not yet launched at press time, reportedly weighs 5 to 6 tons. Its orbit around the carth may take it to the dark side of the moon. This was recently reported from Moscow by a Polish correspondent. He said the new Soviet sputnik will be put into orbit by a rocket much bigger and more powerful than those used in launching the first two. Its speed, he reported, will be great enough to put it in an orbit so far away that it will circle both carth and moon.

NATIONAL AERONAUTICS AND SPACE AGENCY recommended by President Eisenhower should have a three-part, comprehensive program, in the opinion of Hugh L. Dryden, director of the National Advisory Committee for Aeronautics. These would be: (1) an adcquate rescarch effort on space technology problems; (2) development and use of ummanned vehicles capable of carrying necessary scicntific data-gathering apparatus; (3) development and orderly use of man-carrying vchicles in the exploration of the solar system.

RELIABILITY must be engineered into weapons systems projects from the outset, Air Force Gen. C. S. Irvinc told the 1958 Electronic Components Conference in Los Angeles last month. He declared that (1) advanced findings of electronics research should be applied as quickly as possible and early test results fully
and carefully analyzed; (2) materials engineering should assure that metals, alloys, ceramics and plastics will withstand cnvironmental stresses; (3) mechanical engineering must not be a weak link in the chain. Irvine cited the need for automatic testing tools, checking equipment and more efficient instrumentation generally. In the case of the Atlas program, he said that only 30 percent of its cost went for missiles, with 70 percent for support gear. Firms that produce reliable, reasonably priecd components should get a fair share of the \$7 billion annual Air Foree outlay for hardware.

SOVIET SINGLE-STAGE ROCKET which rosc io 294-mil height Feb. 21 (Electronics, May 2, p 19), carried a barium titanate transducer to study micrometeor density. The Russians report that micrometcor movement was relj ably determined up to 186 mi , with 268 collisions registered between 78 and 186 mi .

NEV MATERIAL FOR HIGH TEMPERA-

 TURE opcration "could play a major role in the solution of scvere reentry problems." That's what engineers John H. Lux of Haveg Industrics and Norbert 11. Noland of Reinhold Engincering and Plastics told last month's Canada-United States Chemical Engineering Conference in Montreal. Nose cones are already being made of the new material, described as a new class of compounds neither metal, plastic nor ccramic.

FIGURES OF THE WEEK
RECEIVER PRODUCTION

(Source: EIA)	Apr. 18, 58	Apr. 11, '58	Apr. 19, 57
Television sets, total	76,118	76,954	78,269
Radio sets, total	158,588	183,461	266,707
Auto sets	42,605	61,024	94,406

STOCK PRICE AVERAGES

| (Source: Standard \& Poor's) | Apr. 23,'58 | Apr.16,'58 | Apr. 24,'57 |
| :---: | :---: | :---: | :---: | :---: |
| Radio-tv \& electronics | 45.49 | 44.76 | 51.27 |
| Radio broadcasters | 58.73 | 58.31 | 68.74 |

FIGURES OF THE YEAR Toats tor first wo months

	1958	1957	Percent Change
Receiving tube sales	56,466,000	82,031,000	-31.2
Transistor production	6,061,955	3,221,000	$+88.2$
Cathode-ray tube sales	1,178,046	1,489,223	-2.1
Television set production	804,396	914,887	-12.1
Radio set procuction	1,903,418	2,350,294	-19.0
Tr set sales	1,030,213	1,148,796	-10.3
Radio set sales (excl, auto)	954,705	1,088,392	-12.3

Electronic memory unit (left) activates paddle system (right) to unload conveyor belt as railroaders . . .

Use Electronics To Sort

New transistorized system employing digital techniques solves costliest mail problem

Transistorized systeni using digital techniques for sorting parcelpost mail has been installed at Pennsylvania Railroad's Philadelphia terminal.

Railroaders say the new sustem, installed by Stewart-Warner, solves the costliest, most time-consuming problem of railway mail handling.

Problem: To sort parecls too large for mail sacks, and route them to the proper train.

Solution: Unsorted packages, ranging in size from egg crates to hand luggage, are placed on a 220 ft convevor belt. As cach item passes a coding station, two opera-

Polaris Telemeter

First photo of Polaris hardware shows Polaris test missile's telemetering unit getting check out before being sent to Lockheed's test facility at Cape Canaveral for firing
tors signal memory svstem to indicate at what point each parcel should be muloaded. Svstem contains 39 removal points.

Code information is entercel into a buffer storage unit as binary coded bits. An electric eye beamed across the convevor belt senses passage of the pareel and transfers its coded unloading destination to a transistorized shift register.

As the pareel moves along the belt, coded information moves along the shift register. A decoder which is a large "and" gate synchronized witl the travel rate of the conveyor belt awaits the proper timing pulse.

When this occurs, a transfer mechanism in the form of a paddle is activated. The paddle pushes the parcel off the belt on to a right angle convevor. Waiting baggage trucks then pick up the parcels ancl move them to the proper train platform.

Manual sorting generally requires 15 ment. This svstem docs the job with five.

Previous practice allowed about 25 truckloads of mail to pile up before sorting. Crews worked at other tasks, rather than stop each time a truck arrived.

The new process allows sorting to complete itself once the main conveyor belt is loaded. Pennsy officials say arriving mail now makes the first train out.

It is reported several system pro-
posals are being studied by other railroads, warehouses, and mail order companies. It is expected the system will be used on sacked mail now processed manually.

Installations may appear in New York, Chicago and Washington. System is also under consideration in Los Angcles, Boston. and some large midwest cities.

Transistor Output Up, Prices Down

'Transistor's tentil anniversary next month prompts a look at its growing market and dropping price levels. The trend to increased output and lower unit production cost continues this year.

Sonuc 13 million units valued at $\$ 37$ million were sold in 1956. By 1957 sales of more than 28 million units were worth $\$ 70$ million. This ycar, as volume continues to rise, a mumber of price reductions have been announced.

At least tivo companies lave recoutly cut prices ranging up to 25 percent on entertainment type germanium transistors. One says reductions are the result of increased output and new cconomics in production on some germanium types. The firm believes price cuts will spur usc of germanium trausistors for home entertainment sets.

Another firm cut prices about eight percent on scien pup alloyjunction types used primarily for audio-frequency amplifier, inter-mediate-frequency amplifier, broad-cast-band converter and push-pull amplifier service.

Conservative estimate of Electronics researchers for 1965 is a market for 400 million transistors worth $\$ 200$ million.

Satellite's Eye Needs Tv Retina

Astronomers at the Princeton University Obscrvatory told Electronics in a recent interview that telescopic observation of the heavens from a satellite will require extensive to camera tube research. The problem, they say, is that light gathered from faint astral

C-800 Lambda Com.Pak Power Supplies used in the Eglin Air Force Base installation require only $7^{\prime \prime}$ front panei height.

Easy servicing. All wiring, tubes and ather components are readily accessible You can reach them easily, service them fast

COM-PAK ${ }^{\text {® }}$ SUPPLIES SAYE PANE SPACE

Models through 1.E amperes

Three voltage ranges: $\mathbf{0 - 2 0 C}, 125-325,325-525$ VDC
C-200 series- 200 MA- $51 / 4$ " panel height-from $\$ 159.50$ C-400 series- $400 \mathrm{MA}-51 / 4^{\prime \prime}$ panel height-from 244.50 C-800 series- $800 \mathrm{MA}-\mathbf{7 " ~}^{\prime \prime}$ panel height-from 315.00 C-1500 series-1500 MA-83/4" panel height-from 550.00

Digital Computer Intervention and Display System designed and fabricated by StrombergCarlson Company, a Division of General Dynamics Corporation, for the Air Proving Ground Center (ARDC) Armament Division, Eglin Air Force Base. The system is built around the CHARACTRON* Shaped Beam Tube, designed by Stromberg-Carlson for high-speed information display and micro-film recording.

Where power supply dependability is vital

Stromberg-Carlson specifies standard Lambda power supplies for Air Force Digital Computer Intervention \& Display System

Standard Lambda power supplies are components of the Digital Computer Intervention and Display System associated with the UNIVAC Scientific Computer at the Air Proving Ground Center (ARDC) Armament Division, Eglin Air Force Base, Florida.

Available for immediate delivery, Lambda power supplies from stock are being used in major rocket and missile programs, among other military projects. They are specified also for more industrial and research applications than the ten next-most-popular makes combined.
Send for the current Lambda catalog. It covers the complete new Com-Pak series, as well as other rack, bench and portable models, for all needs through 1.5 amperes.

LAMBDA Electronics Corp.
11.11 131 STREET • COLLEGE POINT 56, NEW YORK INDEPENDENCE 1-8500 Cable Address: Lambdatron, New York
bodies cannot be detected using available tubes. What is needed is an image-orthicon tube witl a highgain semiconductor target that can buikd up a charge over a period of an hour and a half before scanning without appreciable leakage from globule to globule in the mosaic, the astronomers say. If such a tube can be developed, it is planned to use tv techniques to aim the telescope, focus the image received, and photograph the image from a ground installation.

In the Navy's Stratoscope project (Electronics, Jan. 10, p 24) also under direction of Princeton University Observatory, the entire servo system, used to compensate for telescope motion and relative movement of the sun, and the camera are contained in a balloon gondola. Since space and weight are at a premium in a satellite, however, it is more fasible to use a telescope in conjunction with a tv camera and transmit the field of view to ground observers.

Telescope positional errors will be detected on ty monitors and corrected from the ground. Instead of using a satellite-borne camera whose film might be affected by spurious radiations, the monitor sercen will be photographed. According to plams, the mosaic in the te camera will be read at a rate of one scan per sec. This will permit use of conventional telemetering channels for data transmission.

Wide variey of transducers feed sigmals to this control board, making the . . .

A-Plant Control Bill \$1.9 Million

Instrumentation and controls for the new full-scale civilian power ractor at Shippingport, Pa ., cost $\$ 1.9$ million, according to Westinghouse Electric Corp.

The instrumentation has four main jobs: providing information

WASHINGTON OUTLOOK

Many military aircraft electronies contractors are complaining about Pentagon fiscal restrictions. 'There's talk about stretchouts in clelivery schedules, requests for delayed billings, postponed contract awards and payment delays.

Defense Dept. spokesmen deny that slow payment measures are in the works. They dismiss the charges as a campaign to force the Pentagon to boost progress payments back to last year's 100 percent rate on cost-reimbursement type contracts. Current rate is 80 percent.

The Navy's Bureau of Acronautics, however, is having serious fiscal problems. The agency is up against a tight budget cciling, is trying to slash cash outlavs betiveen now and June 30. It has put into effect a new policy holding back contract awards unless the contractor agrecs to forcgo progress payments at lcast until July 1.

- The Air Force denies talk of slow payments to contractors. "We are paying on timc," savs Asst. Air Force Secy. Lyle Garlock (Comptroller). "In fact, we're probably paying too promptly. In many instances we're paying the same day bills are tendered."

Nevertheless, there scems little doubt that the Pentagon has been forcing some aircraft electronics contractors to carry a heavy financial load ever since last year's budget-cutting drive. And despite the speedup in defense procluction scheduling and contracting, therc's no sign that the Defense Dept. will relax the restrictions on progress payments.

- No one denies that Defense Sccy. McElroy has set up expenditure targets for the military services. In effect, these are ceilings on spending; but Pentagon budgeteers stress their flexibility. The sum for fiscal 1958 , ending June 30 , is now $\$ 39.1$ billion-increased for the fourth time from the initial $\$ 38$-billion estimate.

Fiscal 1958 expenditures through March totaled $\$ 28.8$ billion, which leaves $\$ 10.3$ billion as the spending target for April-June. The \$10.3-billion figure is slightly more than April-June 1957 spending.

The target for fiscal 1959, starting July 1 , is now $\$ 40.4$ billion. This includes $\$ 7$ billion for aircraft, $\$ 3.4$ billion for missiles and $\$ 904$ million for communications and other electronics. The target, however, is almost certain to be raised again.

- The Air Force's Garlock has sounded a warning to contractors. He has asked companies to project long-range billing plans based on existing development and production projects. If projected expenditures forecasts are "out of line," the Air Force "would have to change" production schedules, he says. So far, this hasn't been done.
- Navy officials are touting the virtues of a new management control system. They give it part of the credit for the fact that the Polaris missile-and-submarine weapons system is two years ahead of schedulc.

Electronics contractors are among those in industry that are studying the management control system for their own use, Navy men say. Similarly, other military services and the Pentagon's new Advanced Rescarch Projects Agency are seeing whether they can use the system to keep control of their own rescarch and development projects.

NOW! END READOUT CONFUSION...

with the new KIN TEL digital voltmeter
anOther first from kin tel! Here is a digital voltmeter that shows numbers on a readable single plane! With KIN tel's new design, there are no superimposed outlines of numbers in the picture...no confusion caused by dials and old style numerical readouts. This digital readout uses a simple projection system provides 7,000 to 8,000 hours of lamp life, compared with 100 to 200 hours for ordinary readouts.
FIRST OF A COMPLETE LINE OF DIGITAL INSTRUMENTSI Others include: Converters for measuring AC, ohms, ratios...multiple input scanners... serial converters to drive typewriters and punched tape units.
WIDE APPLICATIONI KIN TEL digital instruments are ideal for automatic check-out systems for missiles and rockets; computer measurements; process control monitoring; production testing; test system calibration; strain gage, thermocouple and other transducer measurements, and calibration of laboratory and industrial electronic instruments.
Talk to your local KIN tel representative. Sales and service everywhere. Or write us direct for further information.

See the difference!

KIN TEL READOUT

CLEAR AND SHARP, ANY WAY YOU LOOK AT IT

- 100 Microvolt Sensitivity
- Automatic, Continuous Standard Cell Calibration
- High Reliability
- 0.0001 to 999.9V-Plus Automatic Decimal and Polarity Indication

SPECIFICATIONS

Display...Four (4) digit with automatic polarity indication and decimal placement. Total display area $2^{\prime \prime}$ high $\times 7.5^{\prime \prime}$ long, internally illuminated. Individual digits $1.25^{\prime \prime}$ high.
Automatic Ranges... 0.0001 to 999.9 volts covered in four ranges.
Accuracy... 0.01% or 1 digit, whichever is larger. Counting Rate... 30 counts per second, providing average balance (reading) time of 1 second, maximum balance time of less than 2 seconds.
Reference Voltage... Chopper-stabilized supply, referenced to an unsaturated mercury-cadmium standard cell.
Input Impedance... 10 megohms, all ranges. Output... Visual display, plus print control. Automatic print impulse when meter assumes balance. No accessories required to drive parallel input printers.
Input... 115 volt, 60 cycle, single phase, approximately 75 VA .
Dimensions... Control unit, $5 \frac{1}{/^{\prime \prime}}$ high $\times 19^{\prime \prime}$ wide $\times 16^{\prime \prime}$ deep. Readout display, $31 / 2^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep. Weight... Approximately 40 lb .
Price... $\$ 2,100$
Over 10,000 KIN TEL instruments in use today!

[^0]to the operators, running the safety circuits, providing reactor design information and protecting people in and around the plant from radiation lazards.

The muclear reactor itself has two instrumentation systems. One monitors the corc's neutron flux level with three independent channels, each provided with a proportional counter and a compensated ion chamber. These channels provide control data.

The other reactor system provides information on core conditions: temperature data from thermocouples, flow and differential pressure data, location of failed fuel clements and presence of fission products in the coolant.

A second group of instruments covers all the "consentional" measurements of the water sustem. Shippingport is a pressurized water rcactor. Signals for control and alarm circuits are also supplied by thermocouples, thermometers and pressure instruments.

Molten zone of a gallimm arsenide rod is examined at Bell Labs during crystal growing

Labs Pushing Intermetallics

Intermetallic compounds this year are showing new rescarch promisc for specialized device development. Indium antimony and gallium arsenide are among the compounds that may eventually find more widespread use in certain specific cliode and transistor applications, Electronics learns.

Onc recent research success, floating zone refining of intermetallics, was announced last month by Bell Telephone Laboratorics. Basic work was done on gallium arsenide, but scientists be-

MILITARY ELECTRONICS

- Why Atlas' radio-inertial guidance system is virtually jam proof (Electronics, Apr. 25, p 14) has been further illuminated exclusively for Eiectronics.

Solution, according to a Cencral Electric official, lies in the use of coded antijam filters which reject interference.
R. L. Shetler, manager of the company's Missile Guidance Section, said the highlv-selective filters of a space, time and frequency nature make cnemy jamming execedingly difficult since the antijam devices are unique for each ICBM.

He aclded that jamming is made cuen more difficult because radio signals controlling the Atlas guidance system are only transmitted daring the first few minutes of the Atlas' flight, while the missile is over friendly territory.

- Support equipment for ballistic missiles and interceptor aircraft provides bigger business than do the actual weapous.
"Aproximately two-thirds of the money being spent on the IRBM and ICBM programs will be spent on the equipment required to handle, transport. test, chock-out and repair the missiles.
"In air defense, an ever increasing proportion of the moncy is going into dadar, communications and control sustems as opposed to the actual interceptor weapons," Gen. Thomas D. White, Chicf of Staff, USAF, told the American Ordnance Association in St. Louis recently.

Construction of two ICBM sitcs -one in the Offutt AFB, Omalia, area and onc near Fairchild AFB, Washington-is schecluled to begin before Oct.

The cost of each is estimated at S25 million.

Technical design of the missile facilitics will be uncler control of the AF Ballistic Missilc Division, Inglewoorl, Calif. Other aspects of the design and all construction will be accomplished through the Army Corps of Engincers.

- ARDC's Hyfmder crash locator beacon, equipped with parachute, automatically ejects itself from a doomed plane before crash, scts itself up for operation on land or sca, transinits SOS and homing signals on whf and h-f transmitters, and flashes a stroboscopic light 30 times a min that is visible for 25 mi. Produced by Hycon Manufacuring, the instrument package measures 3 ft by 8 in . and weighs 56 lbs. The telescoped antema shoots up $12 \frac{1}{2} \mathrm{ft}$. A rubber raft inflates for landing in water and three hoavy metal legs extend for ground operation.
- SINS (Ship’s Incrtial Navigation System) for the first two Polaris submarines will be designed and built by Autonetics div. of North American. Sperry, which has responsibility for its SINS for the USS Compass Island and USS Observation Island, will, according to a high-ranking Navy spokesman, furnish several sizable items in the Autonetics svstem.
lieve the method should be applicable to a variety of componds that are thermally unstable at their molting points.

In the technique, a heat source such as an r-f induction coil is moved relative to a vertically supported rod, melting a liquid zonc as it moves. Surface tension supports the liquid zone. Usually, says Bell, a single crystal can be grown and purification achieved during
this zonc refining process.
Complicating factor in intermetallic crystal growing and purification is that composition of the liquid plase at the melting point is strongly dependent on the partial pressure of arscuic. In the zonerefining process, this is controlled by a scaled system containing cxcess arsenic and by regulating its minimum temperature.

Experimental crystals are com-

*

Tonotron picture of the Los Angeles Yacht Fiarbor

The Hughes TONOTRON tube presents a complete spectrum of grey shades. Result: high-fidelity picture reproduction. The illustration above, for example, is an unretouched photo of a typical radar display as viewed on the face of a TONOTRON E.I.A. Type 7033 Tube.

Additional outstanding characteristics of the TONOTRON tube are high brightness (in excess of 1500 foot lamberts with full half tone range) and controllable persistence. The family of TONOTRON tubes is ideally suited for ground mapping, weather radar displays, slow-scan TV, " B " scan radar, oscillography, armament control radar, optical projection systems, and miniature radar indicators.
Other Hughes cathode-ray storage tubes: The MEMOTRON ${ }^{\text {® }}$ tube displays successive transient writings until intentionally erased. The TYPOTRON ${ }^{\circledR}$ tube, an exceptionally high-speed character writing tube, displays any combination of 63 letters or symbols until intentionally erased.

For complete technical data please write Hughes Products, Electron Tube Division, International Airport Station, Los Angeles 45, California

HUGHES PRODUCTS

parable in size to germanium or silicon crystals. Right now, purity level is somewhat below that of silicon, at about one part of inpurity per million.
Tcchnique should be most uscful with binary compounds in which only one component element has a considerable vapor pressure at its melting point, scientists belicve. They add that tlie compound must have a high enough electrical conductivity to permit heating by r-f induction. Furthermore, surface tension aud density of the molter material must be able to support a molten zone during the refining process.

Sound Cleans Surgical Tools

Dried blood, bits of tissuc and other soils on surgical instruments arc removed by cavitation caused by ultrasonic sound waves (upper photo) generated in a new moclical washing machinc (lower photo) mannfactured by Acoustica Associates, Inc., of Mincola, N. Y.

The washer will clean 75 instruments in only 13 min. By hand scrubbing, 45 min are necessary to clean the same number.

The 25 -ke magnetostriction-gencrated ultrasonic signal unit differs from other ultrasonic units in that the output is pulsed; peak power is over 1,000 watts while average power is 400 watts.

FINANCIAL ROUNDUP

- Reduction in interest rate charged by commercial banks to prime borrowers from 4 to $3 \frac{1}{2}$ percent in last fortnight is of more than passing interest to electronics industry. Rate reduction should speed up tempo of banks' buving of electronic equipment (Electronics, May 2, p 15). Savings in operating costs possible through electronic automation will be more attractive than ever with future gross revenue headed for a drop under impact of lower interest rates. Actually only an exclusive circle of top credit risks quality to borrow money at prime bank interest rates. But the interest rates charged to other customers usually drop with the prime rate.
- Technitrol Enginecring, of Pliladelphia, and L \& O Research and Development, Wayne, Pa., plan to merge sometime this year. Tcchnitrol and $\mathrm{L} \& \mathrm{O}$ will exchange common shares. Further financial details were not diselosed. A. F. Carcy, L \& O president, has become vicc-president of Tcchnitrol, the acquiring company which makes data processing equipment and components. The to-beacquired firm is in the data recording and facsimile ficlds.
- Ampex Corp., Redvood City, Calif., plans to split common stock $2 \frac{1}{2}$ to 1 . Split, voted by boatd of directors, is subject to approval by
shareholders in August. Stock was recently quoted at $57 \frac{1}{2}$ bid over-the-counter. There are 734,265 sliares outstanding. Redwood firm manufactures magnetic tape recording equipment. It owns a 25 percent interest in Orradio Industries of Opelika, Ala., maguctic tape manufacturer.
- Itek Corp., of Boston, and Vectron Corp., Waltham, Mass., will submit merger plans for stockholder approval in next two weeks. Marged firms will operate under name of Itck Corp. and plan, within a year, to consolidate all activitics in Vectron's Waltham plant. Itek does enginecring research in graphic information processing. It recently acquired facilities and staff of Boston University's Physical Researcli Labs. Vectron manufactures electromechanical and clectronic equipment.
- I T \& T plans to issue $\$ 28.7$ million of 25 year convertible subordinated debentures. Terms of proposed financing call for stockholders to be offered right to subscribe to debentures at rate of $\$ 100$ principal amount for cach 25 shares of capital stock. Interest rate, common stock conversion prices and subscription price will be determined shortly before the offering is made. Kuln, Loeb \& Co. of New York City will head the underwriting group.

Aircraft A-Power Program Widens

AEC expects to make first tests late this year of nuclear reactor systems being developed for rocket propulsion. Flight tests of atompowered rockets would come after 1960.

Buildings to house the instru ments associated with the field testing are now being constructed in atomic weapons test areas.

Unofficial sonices predict the project will culminate in missiles able to circle the carth constantly,
except for maintenance landings. The salune sources say elcetronic guidance for such a seapons system is feasible.

The rocket program is part of the AEC's aircraft reactor propulsion program, which cost AEC $\$ 87$ million in rescarch and development in fiscal 1957.

National Advisory Committec for Acronautics is building a reactor for its stucly of nuclear aircraft problems. Rated at 60,000 kilowatts, it will be one of the most powerful research reactors ever built.

The $\$ 250,000$ control contract

-7hniktrois
 GARBON FILM RESISTORS PROVIDE THE STABILITY YOU WANT UNDER THE TOUGHEST LOAD AND HUMIDITY CONDITIONS

Atrademark rec.
has been avarded to Lecds \& Northrup. Among the instruments NACA will get are a therimal computer to measure the reactor's heat output and a powcr limiting sustem made with both transistors and magnetic amplifics.

Phototube Control Sets Printed Page

Hiding out in a print shop during World War II, two members of the French underground, with plenty of time to watch and observe printers and typesetters, came to the conclusion that something shoukd be done about applying modern technology to the print shop.

And they sct to work to update Gutenberg

These men, Louis Moyroud and Rene Higonnct, eventually came to America and contacted Vannevar Bush. He sent them to MIT. From that point, they began to perfect an automatic typesctting machinc.

A matrix disk contains the type fonts. Electronic gates fire the matrix for rough positioning, and a thyratron trigger from a phototube controls the type image,

Gnat Gyros for Small Missiles

Tiny gyros, used in guidance of Army Hawk and Navy Sparrow III missiles are in mass prodaction at Raytheon. Each gyro gets 100 assembly and test operations
which is recorded on film. The automatic typesetter sells for $\$ 50$, 000 and may cut composing-room costs in half.

Shown in New York, this automatic typesetter and composer is manufactured by Photon, Inc., of Cambridge, Mass. The company
already has a backlog of orders. The typist can set 16 fonts in twelve point sizes. Computers take care of complicated area composition, type justification and the vast numbers of hand operations formerly required to prepare type for the printed page.

MEETINGS AHEAD

May 12-14: Instrumental Methods of Analysis, ISA Annual Symposium, Shamrock-Hilton Hotel, Houston, Texas.

May 12-14: National Aero \& Nav. Elec. Conf., PGANE, Biltmore Hotel, Dayton, Ohio.

May 12-15: Eighth Annual Rescarch Equip. Exhibit and Instrumentation Symposium, PGVVE-IRE National Institute of Health, Bethesda, Md.

May 13-15: Comumnications Section of the Assoc. of American Railroads, 3 th Annual Meeting, Hotel Muehleback, Kansas Citv, Missouri.

May 13-15: Radio Tech. Comm. for Marine Services, Spring Assy, Ben Franklin Hotel, Philaclelphia.

May 13-15: East Central District Meeting, AIEE, Pritchard Hotel, Huntington, West Virginia.

May 19-21: Electronic Parts Distribu-
tors Show, Conrad Hilton Hotel, Clicago.

May 19-23: International Convention on Nicrowave Valves, Institute of Electrical Engineers, contact secretary, Savoy Place, London.

May 21-23: Euergy Instrumentation Comf., Automatic Controls Applied to Gas, Electric ancl Steam Systems, 1S \wedge, New York City

May 27-28: Second EIA Conf. on Maintainability of Electronic Equip., Univ, of Penn., Phila.

Iune 2.4: National Telemetering Conference, AIEE, ISA, ARS, Lord Baltimore Hotel, Baltimore, Md.

June 2-4: Automation and Computers, Short Course and Conf., Univ. of Texas, College of Enginecring, Austin, Texas.

June 4-6: Armed Forces Communica tions and Electronic Assoc., Exhibit,

Hotel Sheraton Park, Washington, D. C.

June 5-6: Second Natl. Conf. on Production Techniques, IRE, PGPT, Hotcl New Yorker, N.Y.C

June 9-13: Technical Vriters Iustitute, Sixth Annual Symposium, Rensselaer Polytcchnic Institute, Troy, N. Y.

June 9-13: Antomation Seminar, Fourth Annual, Penn. State Univ, Peun.

June 10-13: Sixth Annual Meeting, Human Engineering Institute, Stamford, Conn. Contact Roland C. Casperson.

June 16-18: Electrical Contact Seminar Div., Pemn State Univ., Penn

June 16-18: Military Electronics Second National Convention, Sheraton Park Hotel, Washington, D. C.

June 17-27: Two-week Special Summer Program in Sivitcling Cireuits, MIT, Cambridge, Mass.

Now, Tung-Sol offers designers a complete line of high reliability Germanium PNP Transistors!

Tung-Sol types and ratings are listed below with the types they replace. From these, spot your needs! Then, for long-life operation, specify Tung-Sol!

TYPE APPLICATION

MEDIUM POWER AUDIO TYPES (To.9 Outline)

2N381 Output Amplifier 2N382 Output Amplifier	
2N383	Output Amplifier
2N460	General Purpose Industrial
2N461	General Purpose Industrial

high frequency types (To. 9 Outline)

2N404	Computer	100	24	30	400	85	5	30		-	2N581
2N425	Computer	100	20	30	400	85	5	30	4	-	2N394, 2N578
2N426	Computer	100	18	25	400	85	5	40	-	-	2N269, 2N395, 2N579
2N427	Computer	100	15	20	400	85	5	55	11	-	2N123, 2N315, 2N396, 2N580
2N428	Computer	100	12	15	400	85	5	80	17	-	2N316, 2N397, 2N582
2N413	RF Amplifier	100	15	-	200	85	5	-	3	-	2N111, 2N135, 2N410
2N414	RF Amplifier	100	15	-	200	85	5	-	5	-	2N139, 2N112, 2N136, 2N218, 2N412
2N416	RF Amplifier	100	15	-	200	85	5	-	10	-	2 N 113
2N417	RF Amplifier	100	15	-	200	85	5	-	20	-	2N114
HIGH P	ER TYPES (To-3 Outline)	$\underset{\mathrm{wc}}{\mathrm{Pc}}$	Vse volts	$V_{c b}$ volts	lc Amps.	$\begin{aligned} & \mathrm{Ti} \\ & 0^{\circ} \mathrm{C} \end{aligned}$	MAX. Icbo ma		$\begin{aligned} & \mathrm{fab} \\ & \mathrm{mc} \end{aligned}$	$\begin{aligned} & \mathrm{Ge} \\ & \mathrm{db} \end{aligned}$	
2N242	Audio Amplifier	15	45	-	2	85	1.0	50	0.4	34	2N155, 2N176, 2N250, 2N257. 2N301/A, 2N350, 2N351, 2N554, 2N555
2N378	Power Switch	15	20	40	3	85	0.5	35	0.3	24	2N255
2N379	Power Switch	15	40	80	3	85	0.5	30	0.3	23	2N158/A, 2N251, 2N296, 2N297
2N380	Power Switch	15	30	60	3	85	0.5	60	0.4	29	2N156, 2N256, 2N387
2N459	Power Switch	15	60	105	3	85	0.5	40	0.3	24	2N375

NOTE: Similar type reterences are listed at time of printing and should be interpreted as approximate equivalents.
This reference does not necessarily imply exact electrical or mechonicol interchangeobility.

To fill your special transistor requirements or for full facts on any of these standard Tung-Sol types, write or phone: Semiconductor Division, Tung-Sol Electric Inc., Newark 4, New Jersey. Sales Offices: Atlanta, Ga., Columbus, Ohio, Culver City, Calif., Dallas, Tex., Denver, Colo., Detroit, Mich., Irvington, N. J., Melrose Park, Ill.; Newark, N. J., Seattle, Wash. . . . Canada: Toronto, Ont.

COMPACT, regulated DC power supply

Looking for a source of regulated dc power that fits into a little space? If so, then you'll find the Sola Constant Voltage DC Power Supply is just what you want.

You'll also like to know that this spacesaver is a top performer too. It's ideal for intermittent, variable or pulse loads. It delivers current in the "ampere range", regulates within $\pm 1 \%$ with up to 10% line voltage variation, has less than $1 \% \mathrm{rms}$ ripple, and even tolerates dead shorts. This dc power supply is 80% efficient and
has an output impedance which is very low.
How's it done? Well, the answer is a unique combination of three components. A special Sola Constant Voltage Transformer is teamed up with a semiconductor rectifier and a high-capacitance filter. The Sola transformer's electrical characteristics maximize most of the advantages of the rectifier and filter, while virtually eliminating all their disadvantages. The resultant regulated dc power supply is simple, highly reliable, compact and moderately priced.

Fixed output - six rat. ings available from stock

Adjustable output six ratings from stock

Custom-designed units produced to your specs

Write for Bulletin 7E-DC-235

Sola Electric Co., 4633 W. 16th St., Chicago 50, III., Blshop 2-1414•Offices in Principal cities • In Canada, Sola Electric (Canada) Ltd., 24 Canmotor Ave., Toronto 14, Ont.

INSTANT...ooucrono resmme of Coils, Capacitors, and Resistors!

SPECIFICATIONS

OSCILLATOR FREQUENCY RANGE: 200 Kc . 1070 Me . in 11 ranges, using 6 plug-in inductors.
INDICATING SYSTEM: Lorge $5^{\prime \prime}$ cothode ray tube, calibrated in \% 0 on the vertical axis and \% L-C on the horizontal axis.

TOLERANCE LIMITS: $\pm 25 \%$ Q, calibrated in increments of 5%; $\pm 5 \%$ and $\pm 20 \%$ L-C, calibroted in increments of $\pm 1 \%$ and $\pm 5 \%$ respectively

Q RANGE: 50 to 500
INDUCTANCE RANGE: 1 Microhenry to 10 Miltihenries.

CAPACITANCE RANGE: 2 MMF. to 1000 MMF. RESISTANCE RANGE: 1000 to 500,000 Ohms. POWER SUPPLY: 105-125 Volfs, 50-60 Cycles. PRICE: 5750.00 F.O.B. Boonton, N. J.

SAVES VALUABLE INSPECTION TIME

Gives you instantaneous readout

EXTREMELY SIMPLE TO USE

No operator training required

- NO TUNING OR ADJUSTMENT NECESSARY

Gives simultaneous indication of both Q and L-C

ELIMINATES OPERATOR MEASUREMENT ERROR

Single readout on large CRT screen
Write for complete information

TWO channels for ONE with NORTHERN RADIO...

This Twinplex communication system makes possible a 2 -channel radio circuit whereby 2 non-synchronous or synchronous telegraph transmissions modulate a single radio carrier wave by causing the carrier to assume one of four specific frequencies with 400 cps separations.
The transmilting equipment consists of the Twinplex Combiner Type 177 Model 1 and an RF Frequency Shift Keyer such as the Northern Radio Type 105 Model 4. The Combiner converts the four possible conditions of two telegraph signals (M1-M2, M1-S2, S1-M2, S1-S2) respectively into one of four voltages related in a 0-1-2-3 manner. The Combiner outpuf voltage modulates the FS Keyer.
The receiving equipment consists of the Twinplex Converter Type 178 Model 1 and a single or diversity receiver
such as the Northern Radio Type 110 Dual Diversity Receiving System. The Converter demodulates and separates the four audio tones from the radio receiver(s) into two chonnels each carrying the originally transmitted intelligence. The Twinplex Converter replaces the standard FS Converter for this purpose.
The two telegraph channels provide the same operational flexibility as that of two separate single channel FS systems. One can, for example, simultaneously use chornnel \#1 on 60 wpm teletype and channel \#2 on high-speed Marse or Time Division Multiplex. It further permits the reception of channel \#1 signals on all standard FS converters (funable to 400 cps shift) without need for a Twinplex Converter: this is valuable for "Forked Circuit Operction" where the intelligence of channel \#1 is intended for pick-up by other receiving stations which are not equipped for Twinplex Reception in addition to the main receiving stations which are so equipped. Reception of chennel \#2 (or of both channels) requires the receiving end to be equipped with a Twinplex Converter.

"BESTIRON WE'VE HAD in the plant," says William Fish, a production supervisor of General Radio, Cambridge, Mass. This company has switched to G-E Midget irons for soldering both
delicate and heavy joints in their Type 1862-B Megohmmeters -jobs which formerly required both a heavy and a light iron. G-E Midget iron's light weight also helps reduce fatigue.

50 G-E Midget irons do work of 100 former irons at General Radio Co., boost production 25\%

FASTER HEAT RECOVERY and lower maintenance of $G-E$, soldering irons have been proved by many manufacturess under their own production con-ditions-along with competitive soldering irons. If you would like to compare General Electric irons with the irons you are now using, call your G-E distributor.

DELIVERY TODAY is now possible on popular soldering irons and other General Electric heaters and devices from a local distributor near your plant. Your replacement inventory may be reduced. For the name of your nearest stocking distributor for G-E heaters and devices, call your General Electric Apparatus Sales Office.

SAVINGS ACHIEVED by several users and information about the construction features of General Electric soldering irons are included in a new bulletin, "Save While You Solder," GED-3553. For a copy, call your G-E distributor or write Section 724-3, General Electric Company, Schenectady 5, New York.

Direct, automatic

SPECIFICATIONS

Power Range: 5 ranges, front panel selector. Full scale readings of $.1, .3,1,3$ and 10 mw . Also continuous readings from -20 to +10 dbm . ($0 \mathrm{dbm}=.001$ watt). Power range may be extended with attenuators or directional couplers in microwave system.
External Bolometer: Frequency range depends on bolometer mount. Bolometers can operate at resistance levels of 100 or 200 ohms and can have positive or negative temperature coefficients. Any dc bias current up to 16 ma is available for biasing positive or negative temperature coefficient bolometers. Dc bias current is continuously adjustable and independent of bolometer resistance and power level range.
Suitable bolometers are:
Instrument fuses: - $b p$ - G-28A and G-28B $1 / 100 \mathrm{amp}$ fuse.
Barretters: Sperry 821, Narda N821B or N610B, PRD 610A, 614, 617 or 631C.
Thermistors: Western Electric D166382, Victory Engineering Co. 32A3, 32A5, Narda 333, 334.
Accuracy: $\pm 5 \%$ of full scale reading.
Power: $115 / 230$ v $\pm 10 \%, 50 / 1,000 \mathrm{cps}, 75$ watts.
Dimensions: Cabinet Mount: $73 / 8^{\prime \prime}$ wide, $111^{\prime \prime}$ high, $14^{\prime \prime}$ deep. Rack Mount. $19^{\prime \prime}$ wide, $7^{\prime \prime}$ high, $121 / 2^{\prime \prime}$ deep.
Weight: Net 14 lbs . Shipping 32 lbs . (cabinet mount).
Price: $\$ 250.00$.
Data subject to change without notice.

CW or pulsed power

Wide frequency range
No calculations
Assured accuracy
Operates with wide variety of bolometers

-hp- 430C

Microwave Power Meter
Here is the finest, most dependable source of instantaneous microwave power readings available today. The - $h p-430 \mathrm{C}$ gives you power readings direct in db or mw and completely eliminates tedious computations or troublesome adjustment during operation. The instrument measures either pulsed or CW power on either waveguide or coaxial systems. Operation is entirely automatic, stability is extremely high, and the meter may be used with a wide variety of bolometer mounts having either positive or negative temperature coefficients. The broad nominal measuring range car. be extended to higher powers by means of directional couplers and attenuators.
For measurements of CW or pulsed power, $-h p-430 \mathrm{C}$ uses either an instrument fuse, barretter or thermistor as a bolometer element. Operation may be at either 100 or 200 ohms. Power is read direct in milliwatts from 0.02 to 10 mw , or in dbm from -20 to +10 dbm .

ELECTRONIC TEST INSTRUMENTS
for

Use these precision -hp- instruments with -hp- 430C for greater coverage, convenience

-hp- 752 Multi-Hole Couplers-For measuring average power 1 watt to 1 kw (with attenuator) in waveguide systems. Models cover all frequencies 2.6 to 40 KMC . Coupling factors of 3,10 and 20 db available most bands. Directivity better than 40 db full range; accuracy within $\pm .7 \mathrm{db}$ full range. Primary guide SWR less than 1.10. \$375.00 to $\$ 75.00$.
-hp- 764-767D Dual Directional CouplersFor wide band coax reflectometer and power measurements. Four models cover frequencies 216 to 4000 MC .20 db attenuation, coupling accuracy 0.5 db , max. primary SWR 1.1 to 1.25 ; max. secondary SWR 1.2 to 1.5 . Minimum directivity (216 to 940 MC) $30 \mathrm{db} ; 26 \mathrm{db}$ at higher frequencies. 50 watts CW capacity, 10 kw peak. Low insertion loss. \$125.00 (any frequency).
-hp-382A Precision Attenuators-For measurements up to 5, 10 and 15 watts, this revolutionary new broad band instrument may be employed. $-b p-382 \mathrm{~A}$ attenuates from 0
to 50 db , full range, independent of frequency. Phase shift constant with attenuation. Accuracy within $\pm 2 \%$ of db reading. Models cover frequencies 3.95 to 40.0 KMC , maximum dissipation 5 to 15 watts. SWR less than 1.15. \$500.00 to \$250.00.
-hp- 370 Waveguide Attenuators - Waveguide sections providing fixed amounts of attenuation. Used to extend power range of -hp-430C. Models for frequencies 2.6 to 18.0 KMC, power dissipation 1.0 watts (1 kw peak), SWR $1.15 ; 3,6,10$ or 20 db attenuation. $\$ 75.00$ to $\$ 55.00$.
-hp- 487B Thermistor Mounts-_Simplify setups, save time and insure maximum accuracy in waveguide power measurements. Models cover frequencies 3.95 to 26.5 KMC with full range SWR of less than 1.5 (except K487B, 2.5). Permanently installed negative temperature coefficient thermistors. No tuning, large overload factor makes burnout virtually impossible. $\$ 95.00$ to $\$ 75.00$.

-hp-487B Thermistor Mounts
-hp- 477B Coaxial Mount - Thermistor mount providing full frequency coverage 10 MC to 10 KMC with SWR less than 1.5 . Requires no tuning, uses long time constant elements for accuracy even on low duty cycle pulses. For use with 430 C or other bolometer bridges providing negative temperature coefficient operation at 200 ohms. Requires 13 ma bias. Power range 0.02 to 10 mw . Uses Type N rf connector. \$75.00.
-hp- 485 Detector Mounts - Single tuning control accurately matches waveguide section to bolometer element; instrument also detects rf energy with crystal substituted for
bolometer element. Models for frequencies 2.6 to 18.0 KMC, SWR 1.25 to 1.5. All models employ crystal or barretter except P485 (thermistor only) and S485 (crystal only). $\$ 125.00$ to $\$ 75.00$.
-hp- 476A Bolometer Mount-Universal bolometer mount requiring no tuning, no adjustment. Frequencies 10 to $1,000 \mathrm{MC}$, instantaneous, automatic power readings 0.02 to 10 mw . SWR less than $1.15,20$ to 500 MC; less than $1.25,10$ to $1,000 \mathrm{MC}$. Uses four $1 / 100 \mathrm{amp}$ fuses. Uses Type N rf connectors. $\$ 85.00$.

Prices f.o.b. factory. Data subject to change without notice.
HEWLETT-PACKARD COMPANY
4651A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U. S. A.

-hp-382A Precision Attenuators

-hp-764/7D Dual Directional Couplers

NEW

KAY Vari-Sweep

MODEL 400

Wider Range, All-Electronic

 Sweeping Oscillator, or (with sweep off) Continuously WIDE Range- 15.470 mm oll or Fundamental Frequency CONSTANT Output-fast-acting Acc circuit
Tuned CW Signal Source

- New Wider Range- $15-470 \mathrm{mc}$ in 10 Bands
- Fundamental Frequency-Stable Narrow Band Sweeps

The new Vari-Sweep Model 400 is a highly versatile laboratory sweeping oscillator and signal generator. Its wide range of continuous frequency coverage from 15 to 470 mc is combined with a measure of accuracy and level of performance previously associated with limited, fixed-frequencyband oscillators only.

If provides frequency sweeps that are flat, wide, and linear. The RF output voltage is high enough for testing lossy networks without using additional amplifiers. Over the entire range, the RF output is a fundamental frequency held constant by a fast-acting AGC circuit to assure a high degree of frequency stability and the absence of spurious beat signals. The variable sweep rate goes down to 10 cps for checking high-Q circuits.

In addition, the Vari-Sweep Model 400 is a source of accurately calibrated CW signal with the same high-level output AGC'd to be constant over the frequency band. This eliminates the need for readjusting output voltage when changing frequency, and permits the rapid testing of diverse frequency circuit elements under CW conditions.

SPECIFICATIONS

Frequency Range (CW or Sweeping Operation): Fundamental frequency, $15-470-\mathrm{mc}$, continuously variable in 10 switched, overlapping bands with direct-reading frequency dial.
Sweep Width: 60% of center frequency to 50 mc ; at least 30 mc max from $50-400 \mathrm{mc}$; approx. 20 mc max above 400 mc .
Sweep Rate: Continuously variable, 10 to 40 cps ; locks to line frequency.
RF Output: 1.0 V rms (metered) into nom 70 ohms (50 ohms on request) to $220 \mathrm{mc} ; 0.5 \mathrm{~V}$ rms to 470 mc . Output held constant to within $\pm 0.5 \mathrm{db}$ over widest sweep and frequency range by $A G C$ circuit.
Attenuators: Switched 20, 20, 10, 6 and 3 db , plus continuously variable 6 db .
Sweep Output: Regular sawtooth, synchronized with sweeping oscillator. Amplitude 7.0 V approx.
Power Supply: Input approx. 100 watts, 117-V ($\pm 10 \%$), 50-60 cps ac. $\mathrm{B}+$ electronically regulated.
Dimensions: $91 / 8^{\prime \prime} \times 191 / 2^{\prime \prime} \times 13^{\prime \prime}$.
Weight: 34 lbs.
Price: $\$ 795.00$, f.o.b factory.

Frequency Range: 1-350 mc center. 10 switched bands with fixed center frequencies set to customer specifications.
Sweep Width: 70\% of center frequency rom 1 to 100 mc . From 100 to 350 mc , 60 to 70 mc
Sweep Rate: Variable around 60 cps . Locks to line frequency.
RF Output: $0.5 \vee \mathrm{~V}$ rms into nom 70 or 50 ohms, higher for lower frequency units. Output held constant to within $\pm 0.5 \mathrm{db}$ over widest sweep by AGC circuit.

Single Unit Sweeping Oscillator in 10 Switched Bands for Sweeping Radar IF's up to 350 mc Center.

SPECIFICATIONS

Zero Reference: A true zero-base line is produced on oscilloscope during retrace time.
Attenuators: Switched $20,20,10,6$ and 3 db plus continuously variable 6 db . Markers: Up to 30 crystal-controlled positivepulse markers at customer-specified frequencies. Accurate to $\pm 0.05 \%$. Up to three markers per band (more at lower frequencies) are available; no individual switches on markers.
Marker Amplitude: Continuously variable
zero to 10 V approx
Sweep Output: Regular sawtooth synchro nized with sweeping oscillator Power Supply: Input approx. 150 watts, 117 $\vee(\pm 10 \%) 50.60 \mathrm{cps} . \mathrm{ac} . \mathrm{B}+$ electronically regulated.
Dimensions: $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack panel, $13^{\prime \prime}$ deep. Supplied with cabinet; suitable for rack mount.
Weight: 34 lbs approx
Price: $\$ 795.00$, f.o.b. factory. Add $\$ 15.00$ per crystal marker ordered.

Digital indicator (left) can display a possible 16 characters and is about half the size of the Alpha-numerical indicator (right) which displays 64 characters.

UNION INDICATORS permit direct readout of binary data

UNION Digital and Alpha-numerical indicators are controlled by binary code signals employing a minimum number of control wires, and respond to simultaneous binary switching combinations.
These indicators are electro-mechanical, D.C.-operated, readout devices for displaying characters in accordance with a predetermined code. The character display may be made to suit user's requirements.

Indicators are designed for plug-in mounting in a row so that data or messages of any desired length can be stored, displayed or transmitted at will. The indicators can be applied to the output of digital computers, teletype receiving equipment in conjunction with a buffer storage unit, telemetering systems, or wherever data needs to be displayed.

Two important features of these indicators are their inherent storage and transmitting characteristics which provide for data entry and retransmission. The indicators can be used to accept data from a source, free the
source for other programs, and disseminate the data from one indicator to another as required. For each binary bit stored, an external relay can be eliminated.

UNION indicators have provided economic and reliable advantages in data display applications associated with Air Traffic Control, Navigation, Telemetering, Fire Control and similar Airborne and Surface Instrumentation displays.

Write for Bulletin No. 1015 for complete information.

FIT 12 OF THESE RECTANGULAR POTENTIOMETERS

 IN A PANEL AREA OF 1 SQUARE INCH!You can pack 12 Bourns TRIMPOT ${ }^{\left(B^{B}\right.}$ potentiometers in the
1 -square-inch area occupied by the average single-furn rotary.
Fit the TRIMPOT into corners-between components--flat against
a chassis or printed circuit board. Mount them individually or in stacked assemblies. Any way you use them-Bourns potentiometers save space!

You can adjust Bourns potentiometers more accurately, too.
The 25 -turn screw-actuated mechanism gives you 9000° of rotation instead of 270°. Circuit balancing and adjusting is easier, faster.

Repeatability is assured every time. Furthermore, adjustments are self-locking - shock, vibration and acceleration have no effect!

BOURIN:

Laboratories, Inc.

P. O. Box 2112-A • Riverside, California

If it's worth engineers' time...

....it's worth engineered cable

Magnet Wire - Lead and Fixture Wire - Power Supply Cords, Cord Sets and Portable Cord - Aircraft Wires Welding Cable - Electrical Household Cords - Electronic Wires - Automotive Wire and Cable

Fourth in a series describing the advantages of ceramics in

Smaller Size

 electron tubes. Previously discussed: Impant, Heat, Vibration.
... is an Eimac Ceramic Tube Extra

Eimac ceramic tubes provide reliable power in smal: packages. The stacked ceramic 4 CX1000 A shown above - conservatively rated at one-thousand watts plate dissipation - is less than 5 inches high and $31 / 2$ inches in diameter. Compare it with the conventional glass tetrode of the same plate dissipation shown beside it.
The exceptional chemical and mechanical stability of ceramic material at high temperofures makes this compact. powerful tube possible. The higher temperature ratings of Eimac ceramic tubes make heat transfer more efficient and reduce cooling air requirements.

High power in a small packoge is just one of the many advantages of Eimac's stacked-ceramic design which now encompasses $1 / 3$ of the Eimac produc line. Other advantages are: resistance to damage by impact, vibration, or high temperature. In oddition, the ability of ceramic tubes to withstand rigoraus high temperature processing techniques leeds to high fube reliability, uniformity and longevity. In this incomparable line of ceramic tubes Eimas has the answer for the design engineer who nieeds a compacl vacuum tube with high power handling capazilities.

Frite our Application Engineering Department for a copy of the new booklet "Advantages of Ceramics In Electron Tubes".

EITEL-MCCULLOUGH, INC. SANBRUNO.CALIFORNIA

 Eimac First with ceramic tubes that can take itEimac Designed and Manufactured Products

Some time ago, a man called your name, and you walked across a stage, and were handed a diploma. Were you proud! You were educated. The world was your oyster.

You promised yourself then that you would keep your education alive. That you'd go back and earn that graduate degree. Or brush up at night school, or some summer seminar. But then you met that pretty girl. A few years later - the stork, the new house on Cedar Road . . . everything seemed to happen at once.

Meanwhile, back on the job, you were busier and busier. Company expanding. New products. New problems. Nights when you got home, you were really beat. After dinner, you'd park yourself in your easy chair, find your mind wandering to the future - "Am I slipping? Is management passing me by?"
May we help you help yourself? May we suggest a method for moving ahead, a proved road to new opportunity? Do you know that you can
still get that advanced education you promised yourself - and for just a few dollars a year? Yes, you can get it right here in the pages of this publication. The currency of news and fact about your industry as only McGraw-Hill's editorial facilities and competence can bring it to you. The knowledge that is the power of authority. For here you learn the most efficient, adult way - by active participation. You share common problems, objectives, and job interests with men just like yourself.
If you are so fortunate as to have a personal subscription to this McGraw-Hill magazine, the few dollars it costs you will return you many thousands in greater distinction in your present work - richer dividends in promotion. If you happen to share your copy on a routing list . . . please consider the advantages of your own subscription. But no matter whose copy you read, really read it! Every extra minute you put into it is preferred stock in your own future.

McGRAW-HILL SPECIALIZED PUBLICATIONS

The most interesting reading for the man

Hectron dibe Nows - from SYLVANIA

1
 Announcing the Sylvania
 Framelok Grid

... Introducing a
New Receiving Tube Era

Sylvania's revolutionary Framelok construction marks the era of mass produced "Frame Grid" Tubes

Frame grid history is a Sylvania history

Beginning with its earliest handmade frame grid, Sylvania has concentrated engineering effort on frame grid design and development. From this experience, comes the Framelok Grid, a revolutionary design which makes it possible to mass produce frame grid tubes for the first time.

First tube to incorporate the Framelok Grid is the Sylvania Type 6FH6-a beam power pentode designed for Horizontal TV Deflection.

Framelok Grid is self-aligning

In the Framelok Type 6FH6, grid alignment is accomplished with unprecedented ease and precision. Sylvania's unique construction draws grid laterals taut; grid wires are arranged in a ladder sequence, normal to the axis of the grid. Precise frame construction and close mica tolerances make perfect alignment automatic.

Higher Plate-to-Screen Current Ratios

Framelok tubes are more efficient as a result of precise grid alignment. Plate-to-screen current ratios substantially greater than those of present types
can be achieved-requiring less screen power for optimum performance. Thus improved horizontal scan performance can be realized.

Higher Dissipation

Less required screen grid power for a given plate power automatically reduces the dissipation requirements of the Framelok Grid. And since the Framelok Grid has greater mass it is more capable of dissipating heat. These factors, contributing to inherently lower grid emission, make it possible to achieve higher peak plate currents before dissipation becomes a limiting factor.

Mount is more rugged

Unlike ordinary grids, strength of the Framelok Grid comes from its rigid frame and is independent of the grid wires. This rigidity is transferred to the mount assembly, reducing life failures resulting from grid warping or bowing.

More uniform transfer characteristics

More precise grid construction, more uniform element spacings, and more rugged mount assembly,

Here are a few highlights of the mechanical

A Straight line geometry of grid side-rods in present grids is considerably weaker than the double-box configuration formed by frame grids. Distortion due to mount "twist" is virtually nonexistent in the frame grid structure.

B Sylvania's new Framelok construction eliminates brazing and adapts the frame grid to automatic production. Grid halves are perfectly flat-free from thermal strains.

Many grids look like one! The inherent alignment capabilities of Sylvania's Framelok Grid are demonstrated by the ease with which the laterals of any number of separate grid

halves can be lined up. Perfect alignment means higher efficiency-greater flexibility in the selection of grid wire diameters for optimum performance.
add up to closer control over tube transfer characteristics. Narrower control of limits of course means less critical circuitry, and a more stable and reliable performance in the end product.

Application potentials are wide

To meet the heavy operational requirements of horizontal deflection tubes, the first Framelok tube to be announced is the Horizontal Deflection Type 6 FH 6 .

The adaptability of this grid is such that application of Framelok tubes should quickly extend to vertical TV deflection, video, audio, and a wide range of low and medium power uses in the frequency range below UHF.

Uniform transfer characteristics of the Framelok Grid tube result largely from greater control of both major and minor dimensions of the grid. Above is a graphic representation of variations in characteristics which result from distortion of the minor dimensions in wound grids. Since both major and minor are fixed in the rigid frame grid, these variations are virtually eliminated.

superiority of the Framelok Tube

C Self-alignment is accomplished in the Framelok Grid through precise control of the distance between the mica and the first grid lateral wire. These tolerances in the frame grid are held in the order of one tenth of one thousandth of an inch-considerably tighter than ordinary grid tolerances.

D Mica slots are designed with flat alignment surface and channel index to position grids with much greater precision. Closer element spacings are possible where extra Gm is required.

Sylvania's unique technique of frame grid construction makes it possible to duplicate grid after grid. More uniform spacings produce a more uniform electrostatic field in the tube.

The SYLVANIA

FRAMELOK

TYPE 6FH6

Highly efficient horizontal deflection tube

Proved in pilot and now being planned for mass production, the Framelok Type 6FH6 is the most efficient tube ever designed for horizontal deflection service.

It provides design engineers with a new flexibility in circuit design because of the high zero-bias plate-to-screen current ratio. This permits the tube to be driven harder at a lower screen dissipation.

The 6FH6 supplies increased power output because plate voltage can swing to a very low value without encountering unduly high screen grid currents. Higher screen voltages can be maintained at lower dissipation levels resulting in higher output peak
current and power.

Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y. In Canada: Sylvania Electric (Canada) Ltd., Shell Tower Bldg., Montreal

LIGHTING • TELEVISION • RADIO • ELECTRONICS PHOTOGRAPHY • ATOMIC ENERGY - CHEMISTRY-METALLURGY

\qquad
Title
Street \qquad
City \qquad
State
Framelok type 6FH6 plate-to-screen current ratios are compared to those of comparable existing tubes.

[^1]
IF YOURS IS A TOUGH RF INTERFERENCE PROBLEM-LET FILTRON SOLVE IT

FILTRON'S engineering department, cooperating with engineers of leading companies, has solved RF Interference Suppression problems throughout the country.

If your equipment must meet the RF Interference limits set by the military specifications, consult with FILTRON'S engineers in the earliest stages of design. FILTRON can furnish RF Interference Suppression Filters whose size, weight and overall configuration will fit into your equipment.

FILTRON has custom designed over 1000 different types of
8 circuit miniaturized filter for wide band RF Interferenco Suppression.

FILTRON can best solve your RF Interference problems because:

- FILTRON's engineering, research and design divisions are staffed by experienced RF Interference Suppression filter engineers.
- FILTRON'S modern shielded laboratories are equipped to measure RF Interference from 14 KC to 1000 MC in accordance with military specifications.
- FILTRON'S production facilities, comprising a capacilor manufacturing division, coil winding division, metal fabrication shop, metal stamping and tool and die shops, are exclusively producing the highest quality components for FILTRON's RF Interference Suppression Filters.
- FITRON'S extensive production facilities permit us to meet your delivery requirements. NOW!

15 omp. -28 VDC filter, size $2^{\prime \prime} \times 2^{\prime \prime} \times 11 / s^{\prime \prime}$. with pressurized AN connectors-high attenvation from 150 KC to 400 MC .

RF INTERFERENCE SUPPRESSION FILTERS FOR:

Motors	Dynamotors
Generators	Power Plants
Inverters	Actuators
Electronis	Gasoline
Controis	Engines

And other RF Interference producing equipment

JPL is proud to have the responsibility of designing and developing the U.S. Army's newest operational missile system-the Sergeant. This weapon is America's first truly "second generation" surface-to-surface tactical missile and, when placed in production will eventually succeed the Corporal which was also a JPL development.

The Sergeant, especially designed as an extremely mobile tactical weapon, utilizes a salid propellant rocket motor which provides better field handling and storage capabilities than those of many other weapon systems. It can deliver a nuclear blow deep into enemy territory
and its highly accurate guidance system is invulnerable to any known means of enemy countermeasure.

All elements of the Sergeant are particularly designed for active field use with emphasis on reliability, mobility and the use of standard U.S. Army vehicles wherever possible. The erector-launcher, for example, is capable of rapid movement over rough terrain. These characteristics place in the hands of the U.S. Army an important new tactical element of extended range.

The basic activity at JPL continues to be-research into all scientific fields related to the development of weapons systems and space research vehicles.

JET PROPULSION
 LABORATORY

A DIVISION OF
CAIIFORNIA INSTITUTE OF TECHNOLOGY PASADENA - CALIFORNIA

MODEL 372 SLIDING COAXIAL TERMINATIONS
This equipment, available only from Narda, provides the most convenient means for evaluating the residual VSWR of coaxial slotted lines. VSWR of the element is 1.05 or less; covers range from 2000 to $12,400 \mathrm{mc}$
N Connector, male or female $\mathbf{\$ 1 1 0}$ C Connector, male or female $\$ 116$

MODEL 371 FIXED COAXIAL TERMINATION
This Narda coaxial termination is the first and only to cover the entire frequency range from S to X band Same range and element VSWR as abové.

N Connector, male or female $\mathbf{\$ 5 5} \quad$ C Connector, mate or femala $\mathbf{\$ 5 8}$

HIGH DIRECTIVITY COUPLERS

The 40 db High Power Coupler is another exclusive Narda product. Similar to standard types, except that coupling irises are in the narrow wall, it may be used at full rated powe of the waveguide size. Nominal coupling value is 40 db directivity 40 db . Directivity for 3, 6, 10 and 20 db couplers s also 40 db . Standard cover flanges on primary line; low VSWR termination and standard cover flange on secondary. All bands covering frequencies from 2600 to $18,000 \mathrm{mc}$

STANDARD REFLECTIONS

Narda offers five values of reflections for each of six different waveguide sizes... the most complete choice we know of! Provides calibrated reflections or VSWR's for use standardizing reflectometers or calibrating slotted line impedance meters.

SPECIFICATIONS						
Reflection Coefficient	0.00	0.05	0.10	0.15	0.20	
Accuracy	0.002	0.0025	0.0035	0.0045	0.007	
VSWR Equivalent	1.00	1.105	1.222	1.353	1.50	

Models for 2.60 to 18.0 kmc , from $\$ 125$ to $\$ 300$

Microwave engineers Where can you use these exclusive features offered by narda?

Waveguide and Coaxial IMPEDANCE METERS

Exclusively in Narda Waveguide and Coaxial Impedance Meters, the carriage mounting and drive mechanism are integral with the precisely machined transmission line casting. This insures permanent accuracy and freedom from slope errors-no more tedious adjustment or possibility of misalignment.
Other features include angle-mounted scale and vernier for optimum visibility; readily removable supporting pedestal; and smooth carriage travel action. Waveguide models, accurate for VSWR's of 1.01, are available for complete coverage from 2600 to $18,000 \mathrm{mc}$; N or C Connector coaxial models, from 1500 to $12,400 \mathrm{mc}$.

Waveguide impedance meters
coaxial impedance meters

Frequency (kmc)	Narda Model	Resitual VSWR	Price
$2.6-3.95$	224	1.01	\$425
3.95-5.85	223		350
$5.3-8.2$	222		325
7.05-10.0	221		270
8.2-12.4	220		250
$12.4-18.0$	219		270

Frequency (kmc)	Connectors (One Male, One Female) $)$	Narda Model	Price
1.5 to 12.4	Series N	231	$\$ 360$
1.5 to 12.4	Series C	232	390

Complete Coaxial and Waveguide Instrumentation for Microwaves and UHF—including:

DIRECTIONAL COUPLERS terminations frequency meters HORNS

TUNERS
ECHO BOXES SLOTtED Lines BENDS

ATTENUATORS
STANDARD REFLECTIONS
bOLOMETERS
THERMISTORS

NAME

COMPANY

microwave corporation

160 HERRICKS ROAD, MINEOLA, N. Y. • PIONEER 6-4650

\qquad

CITY__Z_Z__________

Cambion@ coil forms with Perma-Torq*® Tensioning Device are designated PLST, PLS-6, PLS-5, PLS-7, PLS-8 and are factory assembled to mounting studs. The units are completely interchangeable with Cambion's LST, LS-5, LS-6, LS-7 and LS-8.

Reliability is their family resemblance

Here's a reliable family of coil forms ready to meet your specifications. These Perma-Torq Tensioning Devices on Cambion coil forms allow locking of tuning cores while still tunable - and you can depend upon them to do their job well.

This built-in dependability is a result of Cambion's unique design plus quality control - that meets or betters government specifications.

Perma-Torq is a compression spring of heat treated beryllium copper, that has a very high resistance to fatigue and keeps coils tuned as set - even under extreme vibration and shock. The device also allows for immediate readjustment - without removal or loosening of any mounting nut or locking spring.

Quality control and features like the above are just two of the reasons why Cambion can offer you guaranteed standard or custom electronic components - whose performance you can rely upon.

Cambion researchers and practical experts are always available to help you
solve your component problems. For all specifications and prices, write Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast stocks maintained by E. V. Roberts and Associates, Inc., 5068 West Washington Blvd., Los Angeles 16, and 1560 Laurel St., San Carlos, Calif.
Cambion's new printed circuit coil forms are ideal for high temperature work and horizontal mounted panels. Equipped with Perma-Torq locking device for set tuning, the tuning core is affixed to the form at one end through a brass housing, thus eliminating internally threaded forms and cores and resulting in a more precise element with finer tuning. units with silicone fiberglas collars which have terminals for mounting on printed circuit boards.

Makers of guaranteed electronic components, custom or standard

versatile

Multi-channel-telegraph A1 or telephone A3

High stability (.003\%) under normal operating conditions

Components conservatively rated. Completely tropicalized

Here's the ideal general-purpose high frequency transmitter! Model 446, suitable for point-to-point or ground-to-air communication. Can be remotely located from operating position. Coaxial fittings to accept frequency shift signals.

This transmitter operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.5-24.0 Mcs (1.6-2.5 Mcs available). Operates on one frequency at a time; channeling time 2 seconds. Carrier power 350 watts, A1 or A3. Stability $.003 \%$. Nominal 220 volt, $50 / 60$ cycle supply. Conservatively rated, sturdily constructed. Complete technical data on request.

Now! Complete-package, 192 channel, H.F., 75 lb. airborne communications equipment by Aer-O-Com! Write us today for details!

Pressure at inlet face

Inlet delay tine

this is a record of "BUZZ"'
Pressure at

Time \longrightarrow
Go cycle time trace

The Visicorder charts pressure fluctuations in a supersonic inlet
A Model 906 Honeywell Visicorder wrote this record of pressure fluctuations . . ."buzz". . . for the National Advisory Committee for Aeronautics at the Lewis Flight Propulsion Laboratory in Cleveland. Buzz is the term used to describe unsteady variation in pressure and airflow characteristics of a supersonic aircraft or missile inlet.

The purpose of these Visicorder studies is to define the buzz-free operating limits of the inlet, and to provide the designer with structural load information in case the inlet is inadvertently caused to operate on buzz during flight. This is particularly important because inlet buzz can result in fluctuating structural loads of the order of 1000 psf . Depending on the inlet design, this could cause structural failure of the inlet and loss of the airplane.

High response pressure transducers are used to measure these fluctuating pressures and the resulting electrical signal is fed into the Visicorder. Records such as this are also necessary in the determination of the inlet dynamics such as delay time. This informadion is then used to design inlet control systems.

The Honeywell Visicorder is the first highfrequency, high-sensitivity direct recording oscillograph. In laboratories and in the field everywhere, instantly-readable Visicorder records are pointing the way to new advances in product design, rocketry, computing, control, nucleonics ... in any field where high speed variables are under study.

To record high frequency variables-and monitor them as they are recorded-use the Visicorder Oscillograph. Call your nearest Mine-apolis-Honeywell Industrial Sales Office for a demonstration.

Honeywell
 H Heilaud Dinsion

ALLIED'S NEW ADDITIONS TO THE KH SUBMINIATURE LINE

Types KHJ and KHY GENERAL FEATURES:

Contact Data:

Contact Arrangement-DPDT
Contact Rating -
Low-level up to 2 amps at 29 volts d-c, 1 amp at 115 volts a-c 400 cps non-inductive or 0.5 amp inductive. Life $-100,000$ minimum at $125^{\circ} \mathrm{C}$
Also available 3 amps at 29 volts d-c, 2 amps at 115 volts a-c 400 cps non-inductive or 1 amp inductive.
Life $-100,000$ at 3 amps or 500,000 minimum at 2 amps at $125^{\circ} \mathrm{C}$.

Initial Contact

Resistance -0.05 ohms maximum
Contact Drop -1 millivalt maximum at low level rating, initial and during low level miss test

Operate Data:

D.C Coil Resistance-up to 10,000 ohms

Nominal Power- 1.2 watts
Pull-in Power - 240 milliwatts (standard)

$$
100 \text { milliwatts (special) }
$$

Operate Time -5 milliseconds max.
Release Time -3 milliseconds max.

Dielectric Strength:

1000 volts rms at sea level
500 volts rms at 70,000 feet
350 volts rms at 80,000 feet

Insulation Resisiance:

10,000 megohms minimum of $125^{\circ} \mathrm{C}$

ENVIRONMENTAL FEATURES

Vibration:

5 to 10 cps at 0.5 inch double amplitude 10 to 55 cps at 0.25 inch double amplitude
55 to 2000 eps at 20 g
Shock: 100 g 's operational - 200 g 's mechanical
Ambient Temperafure: $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

MECHANICAL FEATURES

Weight: 0.5 ounces

Terminals:

Hooked Solder - Plug-in - Printed Circuit

Mountings:

2 or 4 hole brackets at base or center of gravity
1 or 2 stud on top or side of housing

MILITARY SPECIFICATIONS

MIL-R-25018 - MIL-R-5757C

Allied's type KHJ and KHY subminiature relays were developed to meet the present "Automation" need for relays with incremental grid spaced terminals and with improved performance. These relays have a higher contact rating and are designed to meet the increased vibration and shock requirements of the latest MIL specs. They are available with mounting brackets that are interchangeable with Allied's present type KH subminiature relay.

BENDIX RUGGEDIZED REFLEX KLYSTRONS WITH THERMAL TUNING

The 6116/TE-39 Klystron tube combines ruggedized construction and thermal tuning. The combination provides a desirable tube for use in air-borne radar and similar applications. Ruggedization makes possible a frequency jitter of less than $\pm 1.3 \mathrm{MC} .$. at vibration levels up to 10 G at 50 cps. Thermal tuning provides a twofold advantage. It permits
tuning the tube over its entire operating frequency remotely without mechanical means-and the tube can be repeatedly cycled throughout its tuning range without damage or deterioration.
These Reflex Klystrons are but one example of how Bendix Red Bank technology can help you meet specialized tube needs. For
information on these tubes ... and on backward-wave oscillators and traveling-wave tubes . . write red bank division, bendix aviation corporation, eatontown, new jersey.

West Coost Sales \& Service:

117 E. Providencis Ave., Burbenk, Calif,
Expart Sales \& Service: Bendix International Division, 205 E. 42 nd St, New York 17, N,Y.
Canadian Distributor: Computing Dewices of Conada, Ltd., P.O. Box 508 , Ottawa 4, Ontario

ceramics

 HIGM PRECISION TOLFRANGES

S.HAFT

Diameter s. so e. s. .s. s. $\$=0.000015$
Taper as s. \&s to so cs c. 0.000010
Camber xo xo zo s. so s. 0.000010
Our̀-opriRoundness \& 0.000010

BUSUING
Diameter \& . ., s : 0.000050
Taper
0.000010

Camber \&o so s. \& 8 \$0.000010
Out-oftroûndness e 000000,10

BENDIX AVIATION CORPORATION SHAFT AND BUSHING ASSEMBLY

VERY CLOSE TOLERANCES AND CLEARANCES ON ASSEMBLY PROVIDE FRICTION FREE ACTION

Coors Alumina Ceramic is used in production quantities by the Bendix Aviation Corporation for a shaft and bushing assembly that has tolerances as close as ± 0.000015. From one bushing to another, Coors holds the diameter to ± 0.000050. Between one shaft and another, Coors holds the diameter to ± 0.000015. On both bushings and shafts, taper, camber and roundness of individual parts are held to 0.000010 total.

Extremely close, match-fit sets of this assembly are made by selective fit.
ting. Finishing within a few millionths is required to provide proper fits-exact clearance must be withheld.

These very close tolerances and clearances provide friction free action between the shaft and bushing. This, combined with the hardness and chemical inertness of the alumina ceramic, gives the assemblies long, trouble free service.

Guaranteed precision on a produc. tion basis permits the engineer to use Coors ceramics in applications where the physical properties of metals and
plastics are unacceptable. Tolerances and finishes which can be obtained by Coors are:
Diametrical....................within $0.000030^{\prime \prime}$ total. Taper................ $0.000010^{\prime \prime}$ per inch of length* Camber............. $0.000010^{\prime \prime}$ per inch of length * Out-of-roundness............................ $0.000010^{\prime \prime}$ Surface flatness - less than 1 light band. Equivalent surface finish -

3 to 4 r.m.s. microinch.
*(in lengths up to 3 inches)
For a complete description of physical properties of Coors High Alumina Ceramics, write for Bulletin 1055A.

COORS PORCEIAIN CO., 6169 th St., Golden, Colo.
Please send me detailed Bulletin 1055A on Coors High Strength Alumina Ceraínics and Coors manufacturing facilities.
Name.
Title
Company
Address..
Cify..
Sfate.
Please refer to our 12-page catalog in Sweet's Product Design Fil

CLEVITE 'BRUSH'

Flux-Responsive Magnetic Heads

REDUCED BUFFER STORAGE EQUIPMENT, FASTER DATA ACCESS, EARLIER RELEASE OF MAIN COMPUTER

Clevite "Brush" Flux-Responsive Heads respond to the magnitude of signal flux instead of the rate of flux change. Output of flux heads is independent of tape or drum speed and, therefore, independent of frequency or pulse repetition rate. The signal reproduced by the flux-responsive head is an accurate facsimile of the recorded flux pattern and of the original recorded information.
The output of a computer, recorded at high speed, can be played back later at much slower speeds with a flux-responsive head to exactly match the relatively slow processing rate of typewriters, card punching machines and other output devices. Clevite Flux-Responsive Heads can also operate in the conventional manner. This permits one head to search recorded data at high speed, locate it, and then be switched to flux-responsive operation for operating of output devices.
Special flux-responsive heads have been developed by Clevite to meet specific customer applications. They are now commercially available in 1 to 32 channel form in a variety of mechanical configurations. These designs, slightly modified, may fit your present requirements. One of our specialists will be pleased to discuss your application by detailed correspondence or personal visit. Write: Product Manager, Magnetic Heads, Clevite Electronic Components, 3311 Perkins Avenue, Cleveland 14, Ohio.

Typical Clevite multi-channel flux-responsive head, with . 032 in. track and .070 in . spacing.

Cievire 'Brush' Fius m tesponsive Heads for low speded or sumic reack out of digitall imformation reproduction of hlgh frequency analog mecomeng atiow equespeedt extended-period process corimol reproduction ollow Irequertey recording measuremenit oflow angum lar or low linear velocities and recorded iranslents posilfor comeol

> CLEVITE ELECTRONIC COMPONENTS

DIVISION OF

BLPVITE
 CORPORAIION

MAGNETIC HEADS
TRANSDUCERS
PIEZOELECTRIC CRYSTALS, CERAMICS AND ELEMENTS

DELCO

HIGH POWER

TRANSISTORS

are made from

In the center of the quartz housing, a germanium crystal is being grown. A "perfect crystal lattice," it will be cut into wafers $3 / 10$ ths of an inch square and less than $1 / 100 t h$ of an inch thick to become the heart of Delco High Power transistors.

DELCO RADIO

Division of General Motors, Kokomo, Indiana BRANCH OFFICES to retain their fine performance and uniformity regardless of age. Write for engineering data and/or application assistance.

Panel light indicates when radar's ring time exceeds predetermined standard. Other checks can be obtained with frequency indicator and relative power meter.

New portable radar tester makes fast "go, no-go" check

Tests all radars aboard aircraft, requires no training to operate

Here's the fastest means yet developed for testing aircraft radar on the flightline or in the field. It's the new Sperry Microline ${ }^{\circledR}$ Radar Performance Tester and anyone can use it-no special training is required.

Weighing only 24 pounds (30 for Cband), this tester is self-powered (standard batteries) and is easily carried about. It prevents costly delays by providing a quick, over-all check of all aircraft
radars in only minutes.
This is the only performance tester that checks the alignment between transmitter and receiver positively and accurately by flipping a single switch. Interchangeable plug-in echo box cavities permit checking either C or X -band radars. Transistorized circuits with builtin testing feature contribute to light weight and reliable performance.

If you'd like to know more about the
new Sperry Microline Radar Performance Tester, write our Microwave Electronics Division.

MICROWAVE ELECTRONICS DIVISION

DIVISION OF SPERRY RAND CORPORATION
brooklyn - cleveland - new orleans • los angeles SAN francisco - seattle. in canada: sperry gyroscope company of ganada, limited, montreal, quebec.

How to write 10,000 -cycle data on a pen recorder

A tape tie-in banishes frequency-response limitations and saves paper

We will cancel the laws of physics, throw out inertia, and behold here is a pen recorder writing out 10,000 cycles per second ready to read. Don't scoff. There is a way. Assuming visual data is really what you want, keep your eye on the oscillograph or pen recorder, and think of the tape recorder as an ingenious "frequency-response extender" or "data stretcher."

A SLOW-MOTION LOOK AT TRANSIENTS

When an aircraft manufacturer was having shock problems from the firing of an experimental plane's armament, nothing could be seen in real-time data. For a better look, shock waves were recorded on tape, slowed down, recopied and then written out in visual traces. A thousandth of a second was stretched out to a full second. The exact extent and nature of the shock pattern and its manner of transmittal through the plane's structure became clearly evident - and with it the design solution.

100-TO-1 DATA STRETCHOUT (and more)

Compared to any visual-trace recorder, an Ampex instrumentation tape recorder has virtually unlimited response. Frequency components as high as 10,000 cycles per second (and much more) are easily recorded. And tape has decided advantages too at 1000 or 2000 cycles. A tape speed of 60 inches per second captures any of these higher frequencies and has tremendous room for slowdown on playback. Reproducing the tape at $0.6 \mathrm{in} / \mathrm{sec}$. reduces $10,000 \mathrm{cps}$ to a mere 100. Connect a direct-writing recorder to the tape recorder and 100 cycles response is all that you need.

Actually Ampex has a wide range of tape speeds and tape slowdown ratios available. Tapes can be recopied once or even twice multiplying these ratios accordingly.

TYPICAL TAPE SLOWDOWN (OR SPEEDUP) RATIOS			
AMPEX MODEL	Basic speed ratlo	First recopy	Second recopy
FR-1100	8 to 1	64 to 1	512 to 1
FR-100	32 to 1	1024 to1	32,768 to 1
FR-1t00 multirange (many versions available)	100 to 1	10,000 to 1	$1,000,000$ to 1

24 TIMES AS MUCH RECORDING TIME

On 5000-cycle data, an ordinary $101^{\prime \prime} 2^{\prime \prime}$ reel of 1 -mil magnetic tape will record 24 minutes. On a visual-trace recorder writing 100 cycles per inch, a 250 -foot magazine of expensive paper would last just one minute! When you record data first on tape, you will seldom recopy the whole test onto paper. With an oscilloscope or other scanning device, you find the important parts of the tape and copy as little as a few seconds onto the visual medium. The tape can be stored for future reference, cut into loops for analysis or can be erased and reused. It saves hundreds of feet of paper.

Because magnetic-tape data is an "electrical analog", it can also be used for automatic frequency analysis, computer input, simulation of phenomena and scanning, counting and correlating techniques. We have told the whole magnetic-tape story in a well illustrated and diagrammed 16-page brochure. For your copy, write Dept. E13.

Teleprinted Communications...on the double!

> The Kleinschmidt teletypewriter set sends teleprinted messages from tape at speeds up to 100 words per minute. AT THE SAME TIME, on the same unit, the operator perforates and prints other messages for transmission.

Day after day, Kleinschmidt teletypewriters and related equipment at U. S. Army Communication Centers receive and transmit thousands of teleprinted messages. This tremendous communications traffic, accelerated by multiple-function Kleinschmidt equipment, developed in cooperation with the U. S. Army Signal Corps, flows smoothly and precisely. Both sender and recipient receive
a teleprinted original, identical in every respect. Since the century began, the Kleinschmidt name has been associated with every major development in teleprinted communications. Now a member of the Smith-Corona family, Kleinschmidt looks ahead to new attainments in broadening the field of electronic communications for business and industry.

Pioneer in teleprinted communications equipment - A subsidiary of Smith-Corona Inc

... and everywhere in between - we'll serve you well

We have the experience and resources to take an ideayours, ours or a combination of both-and to build that idea into a complete weapons, guidance and control, or inertial system. Bridging this gap effectively and within budget and time limitations is our business-has been for 18 years. Perhaps we have the very research, engineering and manufacturing talents you're looking
for. We'd like to tell you more about them-and about how the military and industry use them in projects which require creative thinking and painstaking accuracy.

WRITE: MECHANICAL DIVISION Of GENERAL MILLS Dept. EL-5, 1620 Central Ave. N. E.
Minneapalis 13, Minnesota

AC - new direction for gyro engineers

Now you can aim your career in a new direction ... with a long-range future. For AC offess experienced gyroscope engineers the opportunity to work in design and development of gyros for some of the most advanced and far-reach ng projects in America's defense and industry. At AC you can work on floated gyroscopes for inertial guidance systems . . . inertial navigation systems . . .
combination navigation and automatic pilot systems. You can grow with a company that's already a leader in the production of highest quality gyroscopes and other electromechanical devices.
This is worth thinking about: an AC future in which you can apply your talents to the fullest ... on longrange projects of great importance . . . in an atmosphere of personal
security and progress.
If you are a graduate engineer with three to six years' experience in floated gyroscope design and development . . . or in the field of precision instruments . . . you should talk with the people at AC-Milwaukee. Just write Mr. Cecil Sundeen, Supervisor of Technical Employment, Dept. A, 1925 E. Kenilworth Place, Milwaukee 1, Wisconsin.

SPARK PLUG $\&$ THE ELECTRONICS DIVISION OF GENERAL MOTORS

Producers of: AChiever Inertial Guidance Systems

- Afterburner Fuel Controls
- Bombing Navigational Computers Gun-Bomb-Rocket Sights - Gyro-Accelerometers - Gyroscopes - Speed Sensitive Switches - Speed Sensors - Torquemeters

NEW OHMMITE

High power handling capability for small size

Newest addition to the Ohmite line of vitreous-enameled rheostats is the new Model " E " miniature $121 / 2$-watt rheostat. This new unit is smaller than many one- or twowatt potentiometers. It provides time-tested Ohmite allceramic and metal design features for uses where as much as $121 / 2$-watt dissipation is required and space is extremely limited. Built to operate at a maximum hot spot temperature rise of $300^{\circ} \mathrm{C}$ at an ambient of $40^{\circ} \mathrm{C}$, Model " E^{\prime} " is also useful for operation at high military ambients, derated linearly to zero at $340^{\circ} \mathrm{C}$, attained. Rugged, lasting, power rheostat performance is thus available in such small size that new possibilities in miniaturization and dependability are afforded the apparatus designer.

Like the larger Ohmite rheostats, Model "E" has a ceramic base and ring-shaped ceramic core. Vitreous enamel holds the lurns of wire against shifting, and fastens the base and core together. Also, the Model " E " has a ceramic hub insulating the shaft; a metal-graphite contact; folded spring arm; independent compression spring; slip-ring; a stop directly connected to the shaft. The entire assembly is a miniaturized, dependable version of the time-proven Ohmite power rheostat design. Mounting is by a $1 / 4^{\prime \prime}$ - 32 threaded bushing. The shaft is $1 / 88^{\prime \prime}$ in diameter. Resistance range: up to 5,000 ohms with 23 stock values; higher values available with OHMICONE inorganic coating. Resistance tolerance: $\pm 10 \%$. Torque: 0.1 to 0.2 pound-inch. A small finger-grip knob, in keeping with the rheostat dimensions, is available.

Special length shafts and bushings, screwdriver shafts, locking type bushing, tandem mountings, enclosures, etc., similar to the variations available on the larger rheostat, can be provided upon specific request.

$12 \frac{1}{2}$ WATT
 MINIATURE RHEOSTAT

ACTUAL SIZE

Model "E"
Only $7 / 8^{\prime \prime}$ Diameter Weight: 0.52 Ounce

INDUSTRY'S MOST COMPLETE

Now 11 Sizes! - $121 / 2$ to 1000 Watts

All sizes available from stock in a wide range of resistance values, including the NEW Model "E." Ten sizes are available to meet MIL-R-22A requirements in each of the 26 type designations.

RHEOSTATS RESISTORS RELAYS

TAP SWITCHES TANTALUM CAPACITORS R. F. CHOKES VARIABIE TRANSFORMERS

How Magnets Help Solve Your Measurement Problems

This is a review of how magnets, magnetic devices and magnetic phenomena can be used to solve certain measurement problems, to improve production efficiency and to cut manufacturing costs.

Highly accurate and efficient measurement is an essential part of modern manufacturing. Today's mass production techniques require speedy analysis of conditions and dimensions of parts and materials. Literally hundreds of measurement problems are being solved effectively with instruments and devices that employ magnets.

ELECTRICAL MEASUREMENTS

Most common of the uses of magnets in measurement is in electricity-in such devices as ammeters, voltmeters, voltage protectors, KVA meters, power factor meters, arc-back indicators, limit and flow switches, frequency meters, galvanometers and oscillographs. In the ammeter there is either a stationary coil and a magnet that rotates when a current is passed through the coil, or a stationary magnet and a moving coil. The voltmeter is similar, with a high resistance in series with the coil.
Also similar is the galvanometer, but it is much more delicate and sensitive. An oscillograph is a special form of moving-coil galvanometer. Potentiometers, which measure small electromotive forces, consist of a circuit of resistances and a galvanometer. Frequency meters depend on the effect of the currents in two shunt circuits on a moving coil. One circuit contains in. ductance and the other capacitance.

Magnets in galvanometers and oscillographs combine with electromagnetic waves and electrons to provide integrated and recorded measurements, often remote from the locations of the measurements.

LINEAR MEASUREMENTS

Even the most simple linear measurements are assisted by magnets - by magnetic bases on height gauges, indicators, dials, roundness gauges, carpenter levels and magnetic plumb-bob. The thickness of a non-magnetic coating on iron can be determined by measuring the gap between the magnet in a tester and the iron object.

Radar sends out a high-frequency electromagnetic wave which is reflected back from the target to a receiving antenna. Speed of the wave is known, so that distance can be determined by measuring the time between emission and reception of the wave. The heart of this instrument is the magnetron vacuum tube, which depends on a high-intensity, uniform, permanent magnet field. Sonar is similar to radar except that its energy is in ultrasonic waves of 10 to 40 kilocycles.
Distance is also measured by proximity fuses and switches. The fuse depends on a permanent magnet generator for energy. It sends out a signal which is reflected by the target to actuate a firing mechanism; thus, a direct hit is not necessary. In the switch,
a magnet is attracted to any iron or steel that comes near, closing the switch.

Direction can be measured by the aircraft direction indicator, the compass and the remote-reading compass transmitter. All these devices depend on magnets.

AREA MEASUREMENTS

Applications of magnets in land measure are numerous. We have magnetic maps, charts and markers, and vast areas are surveyed and measured by radar and sonar.
In the future it is likely that televi. sion, which uses magnets for focusing, ion traps and loudspeakers, will be used to measure areas.

VOLUME MEASUREMENTS

Liquid-level indicators and float switches often transmit the motion of a float to the indicating mechanism by magnetic attraction. In flow meters, volume of liquids and gases may be measured through a seal by such devices as a permanent magnet rotor turning in a venturi, a rotor in a liquid cutting flux lines of a magnet, molten metal flowing through a pipe and cutting magnetic flux, a magnetic clutch between a float and a recording mech. anism.

TIME MEASUREMENTS

Permanent magnets are contributing much toward accuracy and ruggedness in actuators, clutches and brakes in clocks, timers, timing motors and traffic signals.

TEMPERATURE MEASUREMENTS

Magnets are used extensively in pyrom. eters, which are thermocouples connected to galvanometers calibrated in degrees. The optical thermometer employs a magnetic ammeter and in other thermometers magnets indicate the maximum or minimum temperature in a period. In many thermostats, magnets accelerate the contacts to increase accuracy and life.

SPEED MEASUREMENTS

Two of our best known modern instruments are the speedometer, based on
eddy currents generated by a rotating magnet, and the tachometer, which is simply a permanent magnet generator. Magnetic couplings are used to connect tachometers to such machines as highpressure turbines and other sealed equipment.

NEW MEASUREMENT INSTRUMENTS

There are possibilities for the development of new measuring instruments, based upon the following magnetic phenomena:
1 Magnetostriction effects, such as the change in length and volume of a rod when magnetized; the bending of a magnetized rod; the twist in a rod in a magnetic field; the change in magnetic induction of a rod under stress in a magnetic field.
2 The production of characteristic sounds and vibrations of bodies in a magnetic field; changes in period and frequency of vibrating bodies in a magnetic field.
3 Changes in apparent resistance of conductors introduced into a magnetic leld.
4 Changes in thermal conductivity of metals when exposed to a magnetic field; changes in permeability of magnetic materials; changes in boiling points and specific heats of some substances in a magnetic field.
5 The plane of polarization of light can be rotated by a magnetic field; double refraction of light has been observed in several mediums subjected to a magnetic field; similar effects occur with electromagnetic waves.
6 Transformations that occur in pure metals and alloys are affected by magnetic fields.

The foregoing discussion is condensed from an article which appears in "Applied Magnetics," Vol. 2, No. 4. Write for your free copy. If you would like to explore any of the possibilities discussed in the article, Indiana's engineering staff will be glad to offer rec ommendations and consultation.

NEW CATALOG AVAILABLE

Send for your free copy of the new "Cast and Sintered Alnico Magnet Catalog No. 19," which describes and lists typical sizes and shapes of these two most popular types of magnetic materials for experimental use. Also shown are permanent and electro-mag. netizers and demagnetizers. Address Dept. A-5.
the indiana steel products company
VALPARAISO, INDIANA
WORLD'S LARGEST MANUFACTURER OF PERMANENT MAGNETS

This is the Magnet Wire with the extras.....

 SS(B)

21 different basic insulation

84 different insulation constructions $100,000+$ different types and sizes
(in round, square and rectangular fabric and film coated magnet wires)

Add them up! EXTRA care in drawing and annealing-EXTRA care in insulating techniques! EXTRA rigorous "in-process" testing of wire from every machine each day plus 100% final inspection! EXTRA quick identification of size and type on easy-to-read, color coded labels... and EXTRA attention to packaging (spool, reel, and Magna-Pak ${ }^{\oplus}$) at each of the four plants.

MAGNET WIRE DIVISION, Essex Wire Corp., Fort Wayne 6, Indiana

 Manufacturing Plants: Birmingham, Alabama; Anaheim, California; Fort Wayne, Indiana; Hillsdale, Michigan

General Electric Low-Noise 7025 AF-Amplifier Tube Major Step Toward Improved Hi-Fi Reproduction!

Scope Trace at Right Shows Superiority of New 7025 Twin Triode
You can see by comparison the greatly reduced noise output of the new General Electric amplifier tube. A single, identical tap was applied externally 10 a $121 \lambda 7$ and 10 a 7025 , both representative tubes from current production. Vertical measurement is plate voltage . . . horizontal measurement is time. Conditions: $E_{b}: 250 \mathrm{v}, \mathrm{K}_{1}: 10 \mathrm{~K}, \mathrm{E}_{\mathrm{c}}:-2.5 \mathrm{v}$.

Military Equipment Builder Finds G-E 7077 Ceramic Triodes Have Mean Noise Figure Below 5 db!

Using a high-performance test circuit of advanced design, the research laboratory of a large manufacturer of military equipment has found that a sample lot of G-E 7077 RF-amplifier ceramic triodes show the mean noise figure of 4.6 db at 16 db gain. Tubes were operated at 500 megacycles.

The new 7077 is rated at 5.5 db noise at 14.5 db gain, 450 megacycles under power-matched conditions. Therefore, the test performance underscores the tube's suitability for military use, where low noise and high gain are vital.

Intended primarily for communi-
cations, radar, and navigation equipment, the new 7077 is a high-mu triode of planar construction. Altitude rating is 100,000 feet. It is economical in price, dependable, and rugged.

Ceramic construction gives the 7077 exceptional heat resistance. The tube is expected to be useful up to 300 C. It is designed for optimum mounting in grounded -grid UHF amplifier circuits. Size is extremely small -less than $1 / 2$ inch long and wide.

Orders are being accepted now for delivery this year. See page that forlows for average characteristics and rypical-operation data.

Modern sound-reproduction techniques put a premium on low background noise. The richness of today's high-fidelity tone calls for circuitry and tubes that reduce hum, microphonics, and other noise to a level approaching silence.

General Electric, long a pioneer in audio research-originator of the famous variable-reluctance cartridge and other basic aids to sound repro-duction-now assists circuit designers with an outstanding low-noise amplifier tube, the 7025 . This new twin triode promotes hum-free, noisefree reproduction of both disk and tape sound recordings.

In equipment now being designed or in production, the 7025 will directby replace Type 12 1X7.

New Snubber Mica Holds Cathode Tight. Special Low-Hum Heater Employed.

The new 7025 features a spring snubher mica applied to the top of the cathode, which exerts a damping effect on any movement of the cathode caused by shock or vibration. This cuts microphonics substantially.

Also, a new tube heater of special design reduces hum by virtually elimimating heater magnetic influences on plate current and consequent hum in the plate circuit.

High-precision General Electric manufacture has been called on to achieve extremely close fits of all tube parts-a third, important factor in low-noise performance.

For best audio, apply the new Genera Electric 7025 AF -amplifier tube! Complete information about this lownoise twin triode is available from any G-E Receiving Tube office listed on the following page.

Tear off and keep this sheet for reference. It contains useful tube-application data.

TYPICAL OPERATION GROUNDED-GRID AMPLIFIER-450 MEGACYCLES

Plate Supply Voltage \ddagger	250	Volts
Resistor in plate circuit (by-passed) \ddagger	18000	Ohms
Cathode-Bias Resistor	82	Ohms
Plate Current	6.4	Milliamperes
Bandwidth, approximate	7	Megacycles
Power Gain, approximate	14.5	Decibels
	5.5	Decibels

\ddagger Lower supply voltage and a lower value of resistor may be used in the plate circuit with some sacrifice in uniformity of performance.

TYPICAL GROUNDED-GRID AMPLIFIER CIRCUIT USING THE 7077

Disclosure of the foregoing examples of the tube applications does not convey to purchasers of tubes any patent license, nor is it to be construed as recommending the use of such tubes in the infringement of patent claims.

For further information, phone nearest office of the G-E Receiving Tube Department below:

EASTERN REGION

200 Main Avenue, Clifron, New Jersey Phones: (Clifton) GRegory 3-6387 (N.Y.C.) Wisconsin $7-4065,6,7,8$

CENTRAL REGION
3800 North Milwaukee Avenue
Chicago 41, Illinois
Phone: SPring 7-1600

WESTERN REGION
11840 West Olympic Boulevard
Los Angeles 64, California
Phones: GRanite 9-7765; BRadshaw 2-8566

Yes, you asked for it. Design engineers throughout the nation asked for it . . . a continuous ball bearing action slide to fit standard cabinets, without cabinet modification! THE MARK II THINSLIDE. Of extruded aluminum, only $1 / 2^{\prime \prime}$ in overall width.. whose inner and intermediate members pass smoothly through the space between sliding unit and standard rack. With stainless steel balls, accurately fitted to members, the Mark II is quietly, quickly extended fully from rack . . exposing all parts immediately and with almost no effort!
WRITE NOW FOR COMPLETE DATA ON THE MARK II THINSLIDE . . . the slide that you've been waiting for!

PULLEY \& HARDWARE CORPORATION
23 High Street, West Nyack, New York - 944 Long Beach Avenue, Los Angeles 21, California

The MARK II offers tilt and locking devices as well... your unit can be pivoted to plus 45 and 90 degree positions for greatest accessibility. And you'll be amazed at the moderate cost of the Mark II . . . how quicily it will pay for itself by allowing your equipment to be serviced and maintained in jig.time instead of down-time!

SEE THE MARK II, BOOTH 480 ,
DESIGN ENGINEERING SHOW

"WE USE BUSINESS MAGAZINES TO PIN-POINT
 INDUSTRIAL LIGHTING PROSPECTS"

Abstract

"Industrial lighting," states Garlan Morse, General Sales Manager of Sylvania's Lighting Division, "forms an important segment of our potential market. To insure reaching all the buying influences in this market, we choose business magazines that are read by purchasing agents, plant engineers, electrical contractors and plant management. At Sylvania, we recognize such business media for its support to our field sales activities."

IF WHAT YOU MAKE OR SELL is bought by business and industry, you can "mechanize" your selling by concentrating your advertising in one or more McGraw-Hill publications serving your markets. "Mechanized selling" will help create interest and preference for your products . . . give your salesmen more time to make specific proposals and close sales.

MCGMAMMHMLLPUBLPATHMS

McGraw-Hill Publishing Company, Incorporated 330 West 42 nd Street, New York 36, N. Y.

ELECTRONICS engineering edition-May 9, 1958

TIMERS...SPECIAL DELIVERY

Standard or specialIndustrial Timer makes rapid deliveries on all models

Sometimes you need a standard model timer . . . other times you need a special. Either way we can give you the extra rapid service you may need because of the efficient way we design, manufacture and stock timers for industrial applications.

To meet all of the widely varying needs of our customers we manufacture a complete line of timers in the four broad classifications illustrated here:

1. TIME DELAY TIMERS
2. INTERVAL TIMERS
3. RE-CYCLING TIMERS
4. RUNNING TIME METERS

From these we have already developed 20 basic types which can be combined in endless number of ways . . . to date, our engineers have combined them into over 1000 different models. So what might seem to be a special timer requirement to you, will very often be a standard timer in our large stock, and that is the reason we have the ability to fill special orders so quickly. And as far as standard timers are concerned we can give overnight scrvice if necessary.

So, for the utmost in allround service depend on us for this outstanding combination: deliveries "Immediate on Standards . . . First on Specials".

Speed up your automatic control projects profit by our timing application experience

No need to let timing problems delay you in your automatic control projects when you can place them with us and get faster solutions. Even though no two automatic control jobs are ever exactly alike, and even though the timer requirements of each are very different we have established an excellent record in helping out in these situations.

20 years of experience in analyzing complex timer applications has provided us with the special knowledge required to give our customers the right answer in near-record time.

Our large stock of standard and combination timers enables us very often to fill orders for these requirements without any time loss because we have already developed so many new combinations specifically for automatic control functions.

Extra special automatic control timer - this calls for original designing. Our engineers will go right to work and get the job done. That's the way we grow and we like it.
Whatever your control problem, you have everything to gain by submitting it to our timer specialists. They'll come up with the answer - almost with the speed of automatic control itself. INDUSTRIAL TIMER CORPORATION

1409 McCARTER HIGHWAY, NEWARK 4, N. J.

A new link in America's communications for defense is the Pacific radio circuit under construction for the U. S. Army Signal Corps.

One type of propagation utilized for this important system will be tropo scatter. The choice was quite naturally REL radio equipment-driver exciters, klystron amplifiers, and diversity combiner receivers.

REL's acknowledged world leadership in tropo scatter reflects the unequalled performance and reliability of REL equipment. More kilowatt miles of tropo apparatus have been developed and manufactured by REL than by all other companies combined.

All your specialized commanications problems deserve the imagination and experience of REL.

Diode Manufacturer uses

Electro Instruments X-Y Recorders

to plot Zener diode

characteristics

INCLUDES PLOT WITH EACH DIODE

International Rectifier Corporation, manufacturers of Zener diodes, plots the reverse breakdown characteristics of each diode. These plots accompany the diode to the customer and provide an immediately useful graphic description of the individual unit's transfer characteristics. As shown below, the plots are made with an Electro Instruments Model 100 X-Y Recorder.

These proven recorders fulfill the most demanding operational and performance requirenents. They possess such advanced design features as transformer-isolated servo-controlled cable drives to eliminate backlash, an internal vacuum hold-down and carriage slewing mechanism for easy paper insertion, and a positive paper indexing provision for measurement repeatability. Operating controls are kept to a minimum and are logically grouped for maximum operator convenience.

the complete line of X-Y Recorders and Data Reduction Accessories

The Model 200 (Computer Output), the Model 215 (Potentiometric Input), Model 225 (General Purpose Plotter) are larger (11" $\times 17^{\prime \prime}$) machines. The basic precision recording capability of these machines is readily expanded to cover more complex input/output data reduction tasks. For this purpose E-I offers a series of auxil-iaryequipments-Integral Curve Follower, Model 275 Medium Speed Digital to Analog Converter, the Model 250-A Symbol Generator and the Model 260 Time Base Generator.

Model 100 Specifications Axes: Independent X and Y isolated axes. Accuracy: $\pm 0,2 \%$ full scale.
Scales: 16 ranges, both axes, from 0.5 mv/inch to 50 volts/inch, mv/inch: 0.5 , $1,2.5,10,25,50,100,250$ and 500 ;
volts /inch: $1,2.5,5,10,25$ and 50 .
Input Resistance: $0.5 \mathrm{mv} /$ inch, essentially infinite at balance with low resistance source: 1.0 mv thru $500 \mathrm{mv} / \mathrm{inch}, 200$ 2 megohms. 1.0 volt thru 50 volts $/$ /inch. 2 megohms.
Zero: Full scale zero control with one full. sale length zero offset provided by
turn pots.
Reference: Internal mer
Slewing Speed: Pen ${ }^{13}{ }^{w}$ sec. 19 sec.
Power Input: $115 \mathrm{v} \pm 10 \mathrm{v}, 60 \mathrm{cps} .60$ watts standby; 125 watts operating.
Dimensions: 10° (max.) high $\times 12.3 / 8^{\prime \prime}$ wide $\times 18^{7}$ deep.

For complete specificatlons, send for new 4 -page brochure

3540 Aero Court • San Dlego 11, California

These SEC Polystyrene Capacilors have an accuracy in the order of 0.1% or better and longlime stability in the order of 0.03%. Natvar Styroflex film is used as the dielectric.

Southern electronics corporation, Burbank, California, manufactures precision capacitors for applications where difficult specifications have to be met, such as computer integrators. test equipment, secondary standards and certain weapons programs.
Because polystyrene comes closest to meeting specifications for a perfect dielectric, various polystyrene films were tested. Natvar Styroflex film was selected because of its uniformly excellent pliability, freedom from faults, high shock resistance and excellent dielectric characteristics.
Natvar Styroflex film is available in standard thicknesses From . $0004^{\prime \prime}$ to $.006^{\prime \prime}$ in widths from $1 / 2^{\prime \prime}$ to approximately $10^{\prime \prime}$ or in special put-ups to meet manufacturing requirements.

- Varnished cambric-cloth and tape
- Varnished canvas and duck
- Varnished silk and special rayon
- Varnished-Silicone coated Fiberglas
- Varnished papers-rope and kraft
- Slot cell combinations, Aboglas ${ }^{\text {® }}$
- Isoglas sheet and tape
- Isolastane sheet, tape, tubing and sleeving
- Vinyl coated-varnished tubing and sleeving
- Extruded vinyl fubing and lape
- Styroflex ${ }^{\text {® }}$ fexible polystyrene tape
- Extruded identification markers

201 RANDOLPH AVENUE - WOODBRIDGE, NEW JERSEY

The ORGANIZATION and RETRIEVAL of INFORMATION

The organization and retrieval of large volumes of diverse types of information is rapidly becoming one of today's more serious problems. Major areas where the problem exists include business and industry, the military, the government, and the scientific and engineering community itself.
In its simpler forms, the problem may involve, for example, the automatic handling and analysis of business data such as payrolls, sales and manufacturing figures, insurance premiums, and other essentially statistical data. At the other extreme are certain complex military situations which require the concurrent interpretation, analysis, and integration on a very short time scale of data from a wide variety of sources, including field reports, photographs, news reports, estimates of industrial activity, and the like. In many of these situations, there is the additional requirement to translate the information from a foreign language into English. The development in recent years of electronic data handling equipment is now making possible the practical solution of many of these problems. Such equipment has the capability to perform arithmetic operations, make decisions among alternatives, store
and retrieve large quantities of information, and at high speed automatically perform long, complex sequences of operations.
At Ramo-Wooldridge, work is in progress on advanced information handling systems that are characterized by large volume and widely different forms of information, short time scales, and a variety of uses and users. The scope of the work includes the planning of systems and procedures, programming various types of data handling equipment, and formulation of requirements for new equipment. Research is also under way on the machine translation of foreign languages into English.
Engincers and scientists with experience in the following fields are invited to explore the wide range of openings now available:

Systems Engineering EDP Systems
Computer Programming
Console Design
Display Development
High Acuity Optics
Photo Interpretation

INTRODUCING

Fenwal's New Hermetically Sealed

 Miniature THERMOSWITCH ${ }^{\circ}$ UnitVERY SMALL

HIGHLY
SENSITIVE

EXTREMELY RUGGED

VERY SMALL

- three units are as small as a common sugar cube. Light, too - weighs less than $1 / 3 \mathrm{oz}$!

HIGHLY SENSITIVE

- it has an inherent sensitivity of less than $1^{\circ} \mathrm{F}$. And its thin wall case has low thermal mass - to give extremely fast response to temperature variations.

EXTREMELY RUGGED

- when vibrated per MIL-E-5272A, Procedure 1, there are no resonant frequencies between 5 and 500 cps . Even when tested at 500 cps with 10 G acceleration it maintains normal control characteristics!

TYPICAL APPLICATIONS

- Crystal and transistor ovens
- Missile batteries
- Computers
- Electronic instruments
- Small industrial machinery
- Medical and dental equipment
- Airborne instrumentation

HERE'S THE REST OF THE STORY -

Here are more features!

Hermetically sealed, yet field adjustable. Soft solder sealing of the adjusting screw permits field adjustments without destroying the hermetic seal.

Accurate, easy field adjustment, due to fine pitch adjusting screw. Corrosion Resistant - type 305 drawn stainless steel case.

Fast Response - thin wall case has low thermal mass and low time constant.

HERE'S HOW IT WORKS!

Differential expansion of metals - that's the operating principle of Fenwal's new Miniature thermoswitch unit. Temperature changes expand or contract the stainless steel outer case.

This activates the inner assembly, making or breaking the totally enclosed contacts. This means fast reaction time, since the heat sensing area is the outer case itself which always is in contact with the medium to be controlled.

HERE ARE THE PARTICULARS!

Fenwal Hermetically Sealed Rectangular THERMOSWITCH unit. Model 32400.

- Temperature Ranges - Continuous Operation

Exposure limits: $-65^{\circ} \mathrm{F}$. to $220^{\circ} \mathrm{F}$.
Adjusting range: $-20^{\circ} \mathrm{F}$. to $200^{\circ} \mathrm{F}$.
Setting tole rance: $\pm 5^{\circ} \mathrm{F}$.
(Note: $\pm 3^{\circ} \mathrm{F}$. tolerance available on
special order at extra charge)

- Current rating - 2.5A, $115 \mathrm{VAC} ; 2.0 \mathrm{~A}, 28 \mathrm{VDC}$. Resistive ratings.
- Contact action - close on temperature decrease.
- Dielectric strength - 1250 VAC, 1 minute, either terminal to ground.

- Insulation resistance - 20 megohm minimum, either terminal to ground.
- Material - type 305 drawn stainless steel case. Cadmium plated when temperature is factory set; copper plated case and cover when not factory set.
- Ordering instructions - when temperature setting specified, unit will be shipped with hermetic seal. If not specified, hermetic seal must be accomplished by customer in accord with instructions provided.

NOTE:

For certain short-life applications, specifications may be exceeded. Consult factory.

- Mounting - standard mounting configuration is illustrated. Screws provided. For special arrangements, consult factory.

OTHER MINIATURIZED CONTROLS

Fenwal offers round and cartridge style designs for particular applications. Write factory for full details.

TRANSFORMERS INCORPORATED has consistently designed and manufactured precision transformers ${ }^{\circ}$ that solved the transformer problems of its customers. How may we help YOU?

SIZEAND WEIGHT

ACCURACY

RELIABILITY

PRECISION

TRANSFORMER

PROBLEMS?

Because of advances in transformer design calculation methods and technique, Transformers, Incorporated can accurately establish the size and weight of the required transformer from your performance specifications, without the expensive and time consuming construction and testing of prototypes. These same advances in transformer design engineering have enabled Transformers, Incorporated to produce the smallest and lightest precision transformers available. This is particularly important in this era of miniaturization, peculiar space envelopes, and rigid weight requirements.

Transformers, Incorporated designs and manufactures transformers with a measured voltage ratio accuracy of up to five parts per million (0.0005%) at room temperatures and under no-load condition, with comparable accuracies at other temperatures and loads. These accuracies can be maintained in all production quantities from one to one thousand-or any other quantity that you may require. The ability of Transformers, Incorporated to maintain specified accuracies has been consistently proven by samples submitted to the U. S. Bureau of Standards Testing Laboratory.

Each and every transformer is individually inspected and electrically tested, and samples are subjected to the required environmental tests, to ensure the highest degree of reliability. These methods far exceed the usual sampling techniques of most quality control systems, and enable Transformers, Incorporated to guarantee that every precision transformer will meet or exceed customer specifications.

Relieve your engineering department of the arduous task of designing precision transformers. Phone ENDICOTT, NEW YORK 8-3311, collect. Ask for Tres Park. There's no obligation.

Partial List of SATISFIED CUSTDMEISS: Hallandine Laboratories - Bell Aircraft o Hoeing Mirplane Company - Curtiss-Wright - Daystrom Instrument - Dumont Laboratories © General Electric - Hughes Lircraft - IMM - Kollsman Instrument - Link Aciation - Leceds iE Northrup Massachnsetts Institute of Technology - Melpar, Inc. © Vordon-Ketay - Maytheon - sperryGyroscope - SyIcania. . . and others.

lit's easy to ohtain Precise Measurements with a D-E Standing Wave Detector

- easy because D-B units are built without the usual sources of error. You get perfect paralielism between slot and waveguide axis... between probe travel and waveguide axis. The waveguide is precision-formed in one piece to provide a uniform path for measured waves, thus minimiz. ing residual VSWR. You can use any D.B slotted line to measure adjacent frequency bands. Merely substitute different-size waveguide blocks and probes-the alignment accuracy is guaranteed to remain unimpaired.

Check the unique features below for further proof of D-B convenience and exceptional accuracy. Literature on request.

Super-flexible miniature coaxial probe cable eliminates 90% of noise due to conventional cable.

Each broadband probe contains a second harmonio trap which elimi. nates measurement errors.

Stainless steel ball bearings, pre cIsion ground and spring loaded for
ever control for continuously vari. able speed drive. Changes knob speeds from "vernier" to "fast," saving time during quick measure. ments. perfect alignment.

780 SOUTH ARROYO PARKWAY " PASADENA. CALIFORNIA
Large, convenient tuning knob is
stationary, leaving eyes free to watch indicatof.
Zero slope adjustment by means
of two adjusting screws.
How the man

Test proves new FLEXOLON high temperature wire highest in dielectric strength

Superiority of Tensolite's new Flexolon wire, manufactured to exceed the requirements of MIL-W-16878B, Types E and EE, gives designers greater safety factor than ever before

If you want to widen the safety margins in your product or merely maintain the present margins with smaller wire, Tensolite's new Flexolon high temperature hook-up wire can solve your problem. Rugged tests - In a series of extensive tests, Flexolon wire's dielectric strength was charted against the strength of extruded wire. Ten-foot samples, selected at random, were immersed in a water bath containing a suitable wetting agent for 4 hours. Each piece was then subjected to a high-potential test with voltage increasing from 0 at the rate of 3 kv per 10 -second interval until breakdown was observed.
Results conclusive - In the type E category, extruded wire fell 45 per cent below Flexolon wire's minimum dielectric strength. In the type EE category, the extruded samples were 88 per cent lower than the minimum dielectric strength of Fiexolon wire.
Extra advantages - Tensolite's unique process which permits application of $21 / 2$ times more layers of tape to Flexolon wire assures full insulation protection and far superior performance. The new manufacturing technique also gives Flexolon wire perfect concentricity which provides easier stripping, faster and cleaner cuts, and added protection against strand damage.
Complete information - Ask the man from Tensolite for full details on the many advantages of Flexolon high temperature hook-up wire. Or write to Tensolite for informative Flexolon wire bulletin.

88 per cent extra margin of safety - This high potential test proved that Type EE extruded wire fell 88 per cent below Flexolon wire's minimum dielectric strength.

For your Magnetic Shielding Problems... MUMETAL is the answer:

Write for your copy

 "MAGNETIC MATERIALS"This 32-page book contains valuable data on all Allegheny Ludlum magnetic materials, silicon steels and special electrical alloys. Illustrated in full color, includes essential information on properties, characteristics, applications, etc. Your copy gladly sent free on request.

ADDRESS DEPT. E-5

Mumetal shields will give instant relief to interference caused by extraneous magnetic fields. This material can cure many troublessolve many a problem for you.

Use it where high permeability is required at low flux densities, such as in input and microphone transformers, hearing aid diaphragms, instruments, wire and tape recorders, etc. For properly heat treating Mumetal, we can also offer commercial hydrogen annealing facilities.

A fund of technical data on shields
and other applications for Alle. gheny Ludlum Mumetal is available -let us help with your problems.
In addition to Mumetal and other high-permeability alloys, we offer a range of magnetic and electrical alloys and steels that is unmatched in its completeness. Our services also include the most modern facilities for lamination fabrication and heat treatment. - Let us supply your requirements. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pa.

STEELMAKERS to the Electrical Industry Allegheny Ludlum

Brush rectilinear

 recording systems.. WHEN RELIABILITY
IS OF VITAL CONCERN

ASK FOR NEW CATALOG
Describes 2, 4, 6 and 8 channel systems-rack and mobile-ink, electric and thermal writing.

The circuits, mechanisms, components and materials in this 8 channel recording system have already proved their reliability in Brush instrumentation now in use in the most critical applications-such as radar surveillance, computer readout, missile checkout on remote test ranges . . . in extremes of temperature, humidity and other abnormal conditions. At Brush, the high reliability factor is always a basic consideration in design.

In this particular system, trace presentation is rectilinear. Thermal writing provides clear, sharp traces, excellent for reproduction. Eight chart speeds, stepped from .4 to $100 \mathrm{~mm} / \mathrm{sec}$., operate by pushbutton controls. The system readily adapts to pertinent MIL specs.

With their wide measurement ranges, Brush Ultralinear Recording Systems may be used for development and checkout of industrial as well as military equipment. Factory branches, service and warehousing at Arlington, Va., Boston, Cleveland and Los Angeles; engineering representatives in all key locations.

GHASH INSTRUMENTS

3405 PERKINS AVENUE $\begin{gathered}\text { DIVISION OF } \\ \text { COEDVITERATION } \\ \text { COLEVELAND 14. OHIO }\end{gathered}$

MAlLLORY

Mercury Batteries . . .

Mallory pioneered and developed the mercury battery-now makes a complete line of single and multiple cell units for all major requirements. Electrically, the mercury battery is ideally suited to transistorized circuitry . . . mechanically, the mercury battery provides the smallest power unit for miniature and portable equipment of all types.

Zinc-Carbon Batteries . . .

Mallory makes a complete line of zinc-carbon batteries that serve most requirements of portable radios, instruments, flashlights, photoflash equipment, and special services. Available in "A", " B " and packs, these Mallory Batteries give dependable service wherever they're used.

Solidion ${ }^{\otimes}$ Batteries...

One of several more recent Mallory developments is the new solid-state "Solidion" battery. Having an indicated life of 15 years or more, this is a truly dry battery, with no liquid electrolyte whatever. A 50 -volt stack occupies less than 0.2 cubic inches-weighs less than 0.3 ounce. Voltage is stable even at extreme temperatures.

Long-Life Chargeable Cell . . .

Developed by Naval Ordnance Laboratory, and now available from Mallory in limited production quantities, is a new lead oxide silver cell with unique properties. It is manufactured as an inactive cell and charged when ready for use. It can be stored indefinitely in the inactive state at any temperature likely to be encountered. Service life is exceptionally long. Voltage discharge is constant over a wide range of temperatures and discharge rates.
Look to Mallory for all your battery requirements-and look to Mallory Batteries for most dependable service in any equipment. Write to us today for technical data and consultation on your specific applications.

In Canada, Mallory Battery Company of Canada, Limited, Toronto 4, Ontario

MALIORY BATTERY COMPANY - CLEVELAND, OHIO a division of

electronics engineering edition

Author tunes information circuit of radiation powered transistor receiver. Operating voltage for information and audio amplifier circuits is provided solely by a-l energy extracted by and stored in power circuit

Radio Waves Power Transistor Circuits

Energy storage system supplies all power requirements for specially designed transistor circuits. Operation consists of receiving and rectifying r-f radiation, storing resultant d-c energy and releasing the energy as required to associated circuits. Unique dipole rectifier provides efficient antenna-toreceiver coupling for frequencies above 50 mc . Energy sources can be special purpose transmitters or commercial broadcasting stations

By L. R. CRUMP, Diamond Ordnance Fuze Laboratories, Waslington, D. C.

RAPID ACCEPTANCE of transistors is largely the result of their low voltage and current re-quirements-a few microwatts being sufficient power for many applications. The system discussed here derives all power required to operate various types of transistor circuits from electromagnetic energy radiated by distant sources.

Although system details depend somewhat upon the intended application, certain design features are common to any application. These
are: one or more circuits for the reception and storage of electromagnetic energy, a circuit for the detection and amplification of an information signal and a load to use the stored energy.

Power Circuit

A transistorized receiver using a radiant energy power circuit is shown in Fig. 1. All input signals are applied to information coupling coil L_{1} and power coupling coil L_{2} simultaneously; however, each circuit can be tuned to the same or
different operating frequencies. After being detected by a parallel resonant circuit consisting of coil L_{3} and variable capacitor C_{1}, the incoming r-f signal is rectified by diode D_{1} and the resultant d-c voltage applied to storage capacitor C_{2}. When charged, capacitor C_{2} becomes the sole power supply for the receiver.

The storage capacitor should be of the high quality, low-leakage type. For maximum power absorption and use, the power circuit should be broadband tuned, tightly

FIG. 1-Broadcast receiver. Specially constructed tuning coils are used but can be replaced by standard coils. Antenna and power circuits are designed to operate at all communications frequencies
coupled to the antenna and impedance matched to the load. Additional storage circuits, tuned to the same or different signal sources, may be used to obtain increased power at a common output.

Antenna Considerations

For signals below 50 mc , a conventional antenna 50 to 150 feet long, elevated as high as possible and positioned perpendicular to transmitter-receiver line of sight is recommended. A radiant energy power circuit fed by a $100-\mathrm{ft}$ antenna which was 12 ft above the ground, in a suburban area and approximately $1 \frac{1}{2}$ miles from a 1 kw , $1,600 \mathrm{kc}$ transmitter delivered 0.9 mw to a 9,000 -ohm resistive load. The open circuit potential across the storage capacitor was five volts. A large loop antenna with one side facing the transmitter is also recommended.

For signal sources above 50 mc a resonant folded dipole rectifier system is used. Functionally, the antenna system operates like the center-tapped secondary winding of the transformer in a full wave rectifier circuit. This is done by connecting two output terminals of the dipole directly to the cathodes of individual diode rectifiers as shown in Fig. 1. The two anodes are tied together and coupled to the zero potential point at the back of the folded dipole through an r-f filter capacitor.

Since diodes D_{2} and D_{3} form a partially reactive load, the antenna
is designed to resonate at the desired frequency with the rectifier circuit in place. Because the r-f potential across capacitor C_{4} is essentially zero, unmatched lines may be used to draw d-c power without detuning the antenna. High rectification efficiency is necessary; therefore, the diodes should have a low capacitance, high back resistance and low forward resistance.
Several radiant energy power dipoles can be connected in series
or parallel to increase d-c voltage or current as required. When such a multiple system operates at the same r-f signal frequency, the antennas must be properly spaced for maximum system gain. An experimental arrangement using three dipoles is shown in Fig. 2.

An array of three series-connected, three-unit dipoles feeding the same load delivered a total of 3 mw and charged a two microfarad capacitor to 54 volts. Since a lower voltage was desired for transistor circuits, the units were connected in series and parallel across the capacitor to obtain an 8 -volt potential.

Information Circuit

Information receiving circuits shown in Fig. 1 can be tuned to the power signal frequency or to some other selected frequency. In either case the modulation of an incoming signal is detected by diode D_{4} and fed into transistor amplifier Q_{1}. Basic information circuit requirements are high selectivity, low power drain on the capacitor with zero input signal and efficient energy transference to the load.

High-Q circuit elements should be used to provide high selectivity.

Dual-circuit receiver shown here converts radiations from strong local stations into power necessary to amplify signals from weaker or more distant stations. When both the information and power circuits are tuned to the same station, the signal is amplified by the power derived from the station's r-f carrier

FIG. 2-Multiple dipole antenna. This combination delivered one milliwatt to $\alpha 2.500$-ohm resistive load when tuned to a $189 \mathrm{mc}, 50 \mathrm{kw}$ transmitter located approximately one mile away. A similar array was capable of producing a total of 3 mw of power and charging a $2-\mu \mathrm{f}$ capacitor to 54 v

FIG. 3-Emergency receiver and alarm device. By pretuning information circuit to Conelrad's 640 or 1,240 -kc emergency frequencies. civil defense broadcasts can be received regardless of availability of local power sources

FIG. 4-Transponder. Power received at some specific frequency is used to energize the transistor oscillator at a different frequency thereby making it useful as a device for detecting position of aircraft or any other object capable of housing such a device

When the same antenna is used for both power and information signal reception, all signals should have similar magnitude at the amplifier input. To avoid saturation and distortion of the signal in a high-gain amplifier, the signal having the greatest field strength at the receiver is attenuated by absorbing most of the signal strength in the energy collecting circuit. Selectivity can also be increased by trapping strong signals occurring near the desired information frequency being transmitted.

In switching circuit applications, transistor Q_{1} is biased for the lowest collector current which will operate the load device with a given signal input. A minimum leakage current is necessary for maximum efficiency of energy storage and use.

Large zero-bias collector current limits the capacitor charge and precludes use of low-current relays which are desirable in certain applications. To further conserve power, audio amplifier Q_{2} should be operated class A at the minimum collector current.

Load Considerations

An unmodulated carrier, transmitted at the resonant frequency of the power signal receiving circuit, will continuously charge the storage capacitor. Remote switching of power is accomplished by triggering the transistor amplifier with a modulated power signal or with a modulated signal trans-
mitted on a selected control frequency.
Amplifier output, in most applications, is connected to a current actuated device such as a relay, headphone or loudspeaker. When modulated transmission ceases, power output to the load also ceases.

Substitution of a transistor oscillator for the information signal circuit permits d-c to be converted into a-c of a selected frequency having high-voltage pulses. By applying the oscillator output to a step-up transformer, a higher voltage is developed which can be rectified and stored in a capacitor. A breakdown diode placed between the storage capacitor and the load could be used to dump the capacitor charge across the load when the required voltage level is reached.

Remote Switching

A large number of unpowered transistorized radio receivers, pretuned to selected frequencies for power and information, when distributed within range of a power radiating source could be simultaneously activated by turning on the transmitter. This arrangement could be useful in public address, alerting or civil defense alarm systems.

A circuit for an emergency receiver and alarm device is shown in Fig. 3. When a signal is received, the control switch applies power to an alarm. During the long
standby time, no power is drawn from the battery source.

Signals other than modulated r-f can be used to trigger the switching device. For example, the output of a magnetic-type microphone energized by a car horn can be used to operate garage door controls.

Transponder

Another application of the energy storage principle is in the transponder circuit shown in Fig. 4. This device can be used to identify and indicate the position of airplanes, harbor buoys, land markers and the like.

Addition of a microphone to modulate the output of the oscillator extends the applications to short range reception and transmission used in wireless intercommunications, public address and other systems. Also, the microphone could be energized at a remote location and used as a concealed listening device.

By using a small receiver fitted inside the ear in conjunction with a fixed-tuned vest pocket transmitter, the device could be used as a personal radio or hearing aid. Transmitter output could be modulated by a microphone for hearing aids and by a simple radio receiver for personal radios.

Many applications may occur to the reader within his own special field of interest. Further research, coupled with special-purpose component design will undoubtably extend present applications.

All functional controls appear on front panel except power switched in rack

Readily-available parts are used and wiring is conventional point-to-point

In-line mounting of plug-in components improves appearance, simplifies service

Squelch Circuit Mutes

By DANIEL CRONIN Chief Engineer, Bell Sound Studios, New York, N. Y.

MAGNETIC TAPES stored for some time often exhibit print-through, a magnetic signal induced onto layers adjacent to the original signal. The effect is a number of "echoes" before and after the true signal, usually around 50 db lower in level, but sometimes as little as 20 db down. The masking effect of any continuing sound such as orchestral music of ten makes the effect unnoticeable, but during soft passages it can be highly disconcerting.

Speech material is much more revealing of this defect, however, and poetry readings and languageinstruction courses which leave pauses for the student to repeat the instructor's phrases are especially vulnerable. Some runs of tape are more prone to print-through than others, and high-temperature storage can easily increase the transfer level 10 or 15 db even on the better oxide formulations.

Called a background-noise eraser, a device which suppresses this print-through with a semiconductor diode circuit that rejects all signals below a certain threshold level has been developed and is described in this article.

Basic Squelch Circuit

The basis of the circuit is shown in Fig. 1. Each diode is back-biased by about 0.1 v . If program peaks
are about 10 v the diodes will be non-conducting for all signals more than 40 db below this peak. When the input exceeds it the diodes will conduct, the upper diode on positive half cycles, and the lower one on negative swings.

The tiny slice of signal, near the zero axis, which is removed in this process leads to severe distortion, however. In Fig. 2 is shown the way around this problem. Signals higher than threshold are amplified, rectified and filtered, and used to keep the diodes in a conducting condition throughout each word. Time constants are chosen to make the dis-tortion-removing voltage have a rise time of about 1 millisec and decay more slowly.

Theoretically the first millisec or so of each word is still distorted, but this is not noticed in practice. The ear requires a little time to become conscious of distortion and a millisec is not nearly a long enough period of time.

Psychoacoustic effects also make the delay in recovery at the end of a word permissible. There is a carry-over of the masking effect for a fraction of a second after the end of each word, and background print-through will therefore not be heard even if it is present within a few millisec of the end of a word.

The antidistortion amplifier has one unusual requirement in that it
must produce a full output on a small input signal, and little increase of output with a $40-\mathrm{db}$ increase in input. More important, there must be no tendency for cutoff bias to accumulate on any of the grids. This is avoided by the series grid-isolation resistors shown in Fig. 3.

One final detail is necessary to

FIG. 1-Elements of biased-diode squelch

FIG. 2-Basic distortion-reduction circuit

Biased-diode type of quieting automatic-volume-control silences audio channel whenever signal drops to 40 db below peak. To reduce distortion and maintain diode conduction throughout modulation, a portion of the signal is rectified and applied to the diodes through a delay circuit. Constant level background noise is maintained by applying his signal to channel whenever quieting occurs.

Magnetic Tape Echoes

make the operation of the device smooth and unobtrusive. A background hiss must be inserted. Careful listening to the output without this added hiss gives the impression of a severe case of modulation noise. The pauses between words have an unreal-sounding silence to them, and each word brings with it room tone, tape hiss and tube noise.

The cure is shown in the schematic of Fig. 3. Shot-effect noise in a triode having only 4.5 v across its filament is amplified and fed into the output so that the overall signal-to-noise ratio is not degraded. The hiss voltage is applied in series with a large isolating resistor between the bottom of T_{1} and ground. When suppression takes place, there is no
significant input signal, the diodes are an open circuit and the hiss voltage is fed to the output terminals of the equipment.

In the presence of a signal the diodes become conducting, grounding the bottom of T_{1} and shorting the hiss voltage. Thus hiss is added only when needed, making the apparent background fairly constant.

Low-Frequency Noise

If the original program material should contain low-frequency noise such as low-level hum, rumble or air-conditioner noise, this will be suppressed also. Reinsertion of this type of noise is neither necessary nor desirable. Even though the noise comes through during each word, it is largely masked and the subjective effect is more pleasing if it is suppressed.

For operating convenience in adjusting the threshold gain a small neon-bulb indicator is provided. This lights when sufficient voltage is present to decrease the bias on the diodes sufficiently.

At the inception of this design, 5 db of print-through reduction was considered to be a worthwhile improvement. In practice at least 10 db is usually realized. Even though some trailing sibilants are somewhat shortened, tapes otherwise inacceptaby echo-laden are again usable.

FIG. 3-Circuit of print-through suppressor. In-out switch permits operation as straight amplifier and test switch shorts output of hiss generator for A-B test

Specially designed cathode-ray oscilloscope permits selected laboratory techniques to be applied in field maintenance of reciprocating engines used in industrial and marine service. Display on cro shows cyclic engine events in time sequence. Instrument monitors ignition, vibration and pressure of spark-ignited or diesel engines and presents data on five-in. screen. Ignition mistiming can be detected within one degree of crankshaft position. Scope connections are made without necessity of engine shutdowns

By EDWARD SAMMIS, Senior Engineer, Sperry Gyroscope Co., Div. of Sperry Rand Corp., Great Neck, N. Y.

Scope Analyzes

OSCILLOSCOPES have been used extensively in laboratories and in commercial aircraft for comprehensive engine studies. ${ }^{1}$ They have been adapted to analyze ignitions systems in automobiles, monitor engine operation in aircraft en-
gine test cells, study detonation characteristics and evaluate dynamic operation of valves.

Until recently, cro techniques were not practiced in field maintenance of industrial and marine natural gas, dual fuel and diesel en-

FIG. 1 -Block diagram of cro engine analyzer. A sweep is driven across the cri in time with the engine. Resulting trace line displayed is responsive, in the vertical direction, to signals from ignition, cylinder vibration and cylinder pressure. Connections are made to the Ilywheel, ignition primary circuit, and two to a power cylinder. Timing the analyzer to the engine is done by a fifth pickup located near a mark on the flywheel
gines. The engine analyzer described in this article is designed for special use as a maintenance tool to efficiently monitor these engines without requiring expensive shutdown. The 36 -pound, handportable unit visually displays information formerly obtained from as many as three electronic instruments and it enables maintenance personnel to check engine ignition, vibration and pressure for possible malfunctions with ease.

Design Requirements

In designing an analyzer for industrial engines the most difficult problem to solve is weighing the versatility factor with simplicity of operation. These requirements tend to be incompatible since an extremely wide variety of types and components of engines are in common use. Some of the following design requirements therefore become apparent: select for analysis important engine variables that are common to the largest number of engines, provide for simple connections that may be made without stopping the engine, minimize the number of operating controls and use detent positioned controls wherever possible and present the results in a direct form that can be read and interpreted easily.

View of cylinder pressure pattern with the reference line superimposed

Reciprocating Engines

The features of particular interest are the pickups used with the instrument, the integrating and linear amplifiers to accommodate pressure and certain commercial pickups, the provision for crankshaft timing signals superimposed directly on the oscilloscope pattern, and the method of comparing relative amplitudes of signals from the integrating or linear channels by superimposing a reference line on the pattern. By using the cathode ray tube as an indicator, accurate measurements are made directly from the sources generating the signals. This permits simpler and less costly design of the linear time base and vertical amplifier.

The choice of pickups to be used has a significant effect upon the design of an engine analyzer. When a transducer produces a voltage that is a function of a cyclic engine event, this event can be displayed on the engine analyzer in terms of measured crank-angle degrees. Cyclic operation can then be evaluated. Strain gage, magnetostrictive, variable reluctance, capacitive and piezoelectric pickups have been used in engine analyzer work to observe dynamic operation of stresses in bolts, power and compressor cylinder pressures, diesel injection pressures, injector
valve motion, intake and exhaust valve motion.

The choice of events for analysis depends on the needs of the operator, the expense of the pickup and the difficulty of installation. All the transducers mentioned have been used in the laboratory to obtain answers to specific design problems. One may have to improvise, however, to make certain installations, such as the strain gage instrumentation of an integral fuel pump and injection nozzle. Generally, in the field, simple, inexpensive pickups that give comprehensive information and are easy to apply should be used.

Display Technique

In the engine analyzer presented, cylinder pressure, sounds in the engine structure and ignition voltage are given in terms of crankangle degrees. This is done, as shown in Fig. 1, by feeding the pickup signals to the vertical deflection circuit of the crt while a linear time base sweep generator, synchronized to the engine-cycle frequency, generates a horizontal de-flection-signal that is directly proportional to crank-angle rotation.

The phase of the synchronizing signal can be shifted by a crankangle selector control to start the
horizontal sweep at any crankangle position. This position can be read from the selector dial. To provide even more accurate timing and to enable the operator to read crank-angle position directly from the oscilloscope pattern, timing marks generated directly from the flywheel of the engine are displayed as either vertical spikes or dots superimposed on the oscilloscope pattern.

Operation

Once the analyzer has been set up, the pickup signal and the corresponding vertical channel are selected by two switches. The sweep, full engine cycle or oneeighth of an engine cycle, is selected by a rotary switch. The crank-angle is selected by the phase shifter control and the timing marks, vertical spikes or intensified dots, are selected by a toggle switch. Pressures from respective cylinders are compared by an adjustable reference line superimposed directly on the scope pattern. Height of the reference line is read from the adjusting dial.

One integrated package contains the many components required to present the respective signals together with a time base of constant sweep length capable of operating
over the complete range of engine revolutions per minute.

Pickups

To simplify wiring and switching, self generating pickups are used. The crankshaft timing pulse pickup, illustrated in Fig. 2A, is a variable reluctance type comprising a magnet and coil. It responds to magnetic discontinuities in the flywheel and is polarized to produce timing marks from $\frac{1}{4}$-in. diam holes spot-faced in the flywheel. If vanes or punchmarks are used, the leads from the pickup must be reversed. If the pickup output is passed through the integrating channel, a picture of the magnetic contour of the flywheel is obtained so that features such as flywheel runout are shown clearly.

The pressure pickup is also a variable reluctance type and consists of a coil surrounding a magnet that is positioned close to a special steel diaphragm. This pickup configuration, shown in Fig. 2B, was made practical with the advent of new, high-strength alloy steels which produce sufficient deflection without exceeding the elastic limit.

The pickup is rated at $1,000 \mathrm{psi}$ and responds to rate of change of pressure. It is relatively inexpensive to build, being little more complicated than the electromagnetic pulse pickup. The pressure pickup will withstand rough use and operating temperatures as high as 350 to 400 F . An air-cooled adapter is furnished for high output engines.

Figure 2C is a cross-sectional diagram of the vibration pickup which is magnetostrictive and responds to rate of change of acceleration. It resembles a rugged microphone that listens to vibrations in metallic structures. This basic type of pickup is simply constructed and has been used commercially for many years to indicate the presence of combustion knock and metallic impacts within an engine. To improve s / n ratio, the pickup is used with a tuned amplifier.

Ignition-System Analysis

No pickup is required for ignition analysis because voltages developed across ignition system breaker points or impulse generator coils yield a great deal of in-

(A)

(8)

(c)

FIG. 2-Crankshaft timing pulse pickup (A) responds to magnetic discontinuities in the Ilywheel. Pressure pickup (B) responds to rate of change of pressure, while magnetostriction pickup (C) responds to rate of acceleration
formation about ignition system operation. Since industrial engines are large, ignition circuit constants are affected and it is often necessary to use individual coils for respective cylinders and sometimes even for individual sparkplugs. Switching of ignition circuits must then be provided. The same switching control is used to select multiple vibration pickups. Multiple pickups are used for permanent analyzer installations such as marine diesels.

Synchronization

Synchronization of the sweep to any crank-angle position throughout the engine cycle is accomplished by a three-phase, two-pole, permanent magnet generator driven so that the rpm corresponds with the number of engine cycles per minute. The phase shifter control referred to previously and indicated in the analyzer block diagram operates in conjunction with the synchronizing generator.

Synchronization of the sweep to any sparkplug firing event is accomplished through the capacitive pickup afforded by a simple battery clip attached to the high tension lead of a sparkplug. A pickup with special fittings is required for shielded ignition systems. This type of synchronization is sometimes used for a quick, qualitative evaluation of a particular engine event. A position control is pro-
vided on the analyzer to parade all the engine cycle events across the cathode ray tube screen when this type of synchronization is used.

Pressure-Time Diagrams

Field experience has indicated that cylinder pressure is the principal common denominator between piston engines. Pressure analysis can be performed on any engine equipped with cylinder cocks that provide access to the combustion chambers. Several limitations of previously available equipment were considered: a) mechanical pressure indicators respond too slowly to show the rapid pressure changes that occur in engines, b) mechanical indicators do not show clearly and continuously the effects of cycle-to-cycle variations, c) electrical pickups have required associated equipment that is too complex for use in general maintenance and d) electrical pickups have been costly and delicate.

The use of an electronic indicator removes limitations a) and b). The engine analyzer itself, being designed as a self contained unit especially for use with engines, removes limitation c). To overcome limitation d) the improved pickup described in the previous section of this article was designed.

To obtain the conventional pres-sure-time diagrams associated with piston engines, the pressure-
rate pickup output must be integrated and then amplified sufficiently to obtain adequate deflection. To integrate at low enginecycle frequencies, 4 to 5 cps , a time constant of 0.5 sec is required. Because of this time constant and the output characteristics of the pickup, a gain of 100 db is necessary to produce the desired deflection. The low-frequency and high-gain requirements make stability considerations in the initial amplifier stages important.

For the first stage, the most critical, a 4JD1A17 transistor, in common-emitter configuration is used. See Fig. 3. The transistor stage boosts the pickup output by a factor of 60 without introducing hum, microphonics or the low-frequency drift that ordinarily results from changes in cathode temperature when a vacuum tube is used. A transistor is well suited to this application because it facilitates direct coupling to the low-impedance pickup and because a high output impedance is desired for the integrating circuit that follows. The stage is stabilized by feedback and it operates over a temperature range of 32 to 160 F with a change in gain of less than 10 percent.

Amplifiers

The intermediate amplifier consists of two sections of a 12AY7, followed by a section of a 12AU7 that serves as a cathode follower and acts as an input for the chopped reference signal from the level comparator. The 12AY7 was selected because of its low noise characteristic.

Filament current for the tube is regulated by a ballast tube to minimize the effect of power line variations on cathode temperature. The first section of the 12 AY 7 has a $0.02-\mu \mathrm{f}$ capacitor connected between grid and plate when the integrating channel is selected and serves thus as a Miller integrator. The second section of the 12AY7 is capacitance coupled to the first and provides a gain of 20. The gain control was placed at the output of the first section of the 12AY7, rather than at the cathode follower to permit higher signal inputs before saturation occurs so that the linear channel can accept
signals from pickup preamplifiers.
Power for the transistor stage and for the plate supply of the intermediate amplifier is obtained from batteries to isolate these stages from line voltage variations. Since the current demand is only five to six milliamperes, battery life of 80 to 100 hours is to be expected.

The vertical deflection amplifier is a 12AT7 utilizing a cathodecoupled paraphase circuit stabilized

FIG. 3-Schematic of transistor preamplifier, the first stage in the analyzer pressure channel. This stage, stabilized by feedback. boosts the pressure pickup output by a factor of 60

FIG. 4-Schematic of reference level comparator, used to measure relative amplitudes on cri. The comparator potentiometer and dial permit reading of deflection in terms of linear scale divisions
by feedback. The ignition marker pulse and the crankshaft timing pulse are fed to the paraphase grid. As shown in Fig. 1, d-c bias is introduced automatically when the integrating and linear channels are selected. This depresses the vertical position 14 in . to display pressure patterns symmetrically. For observation of other types of patterns in these channels the vertical position control may be used to center the pattern.

The plate supply to the deflection amplifier is not regulated because the reference signal is mixed with the pressure signal ahead of the de-
flection amplifier. When slight deflection changes occur as a result of changes in power line voltage, both the pressure and reference line signals are moved by the same amount and are not displaced with respect to each other.

Pattern Amplitudes

The reference level comparator measures relative amplitudes of waveforms displayed on the crt in terms of graduations on a dial. A photograph of a cylinder pressure pattern with the reference line superimposed is shown. The reference level comparator circuit appears in Fig. 4. It consists of a battery source of d-c reference potential, a four pole on-off switch, two potentiometers to define the slope of the straight line relationship between voltage and deflection for the signals being displayed, a precision potentiometer and dial to permit reading the deflection in terms of linear scale divisions and a chopper.

The four-pole switch is shown in the off position. The chopper contacts are shown closed, which is the condition for both contacts when the chopper is inoperative. The chopper mixes the d-c reference level with the vertical signal 10 percent of the time 120 times a second. One pole of the on-off switch prevents shorting the vertical signal to ground when the make-beforebreak chopper contacts do not vibrate.

The remainder of the circuitry is generally similar to that described previously. ${ }^{\text { }}$ The arrangement of the circuitry in the new configuration is indicated in the block diagram. A principal objective of this circuit arrangement is to provide suitable switching so that the operator can perceive analysis in terms of engine functions.

The deflection amplifiers, the sweep generator and length control, the squaring amplifiers, the ignition synchronization amplifier and the vibration amplifier are contained in a printed circuit board assembly.

Reference

(1) V. C. Cetrone, Airborne Engine Analyzer, Electronics Mar. 1948.

Saturable Reactors

Abstract

Magnetic modulator uses saturable reactors to convert input sine wave into narrow, high peak-power output pulses. Basic action of current-pulse compression with magnetic modulators is explained. Polarizing and differentiating circuits, delay-line wave shaping, pulse permeability measurements, cancelation effects and related features leading to improved design are discussed

By H. E. THOMAS
Senior Project Engineer, Federal Telecommunication Laboratories, Division of I. T. \& T., Nutley, N. J.

HIGH-POWER, extremely narrow current pulses in magnetic modulators are generated from a sine wave input by using saturable reactors in resonant circuits.

In performing this operation the saturable reactor functions first as an inductive component, second as a switch and third as part of a resonant circuit. When used in this trimoded capacity it may be called a pulsactor.

FIG. 1 - Polarized two.stage magnetic modulator with current and voltage wave. forms for each reactor resonant stage

FIG. 2-Switching and ringing waveforms. Resonant input sine wave (1), flattened by polarization first switching (2), ringing which would occur due to first switch. ing (3), second switching (4), ringing which would occur due to second switching (5), and output pulse (6)

The input current waveform is compressed in a series of pulsactor resonant circuits into narrow, high power pulses of current. Pulses obtained from magnetic modulators using these reactors are sufficient to modulate high-power magnetrons. Recent advances in high permeability nickle-iron alloys have improved reactor switching action and lowered core losses.
In the transient operation of a modulator, a saturable reactor cyclically changes inductance or becomes a short circuit. A single physical coil winding can perform many separate functions. Unsaturated, it can act either by itself, as an auto transformer, as a variable circuit impedance or as part of a resonant circuit. As a saturated inductance it can act as a switch, as a part of a resonant circuit, or as a multisection winding acting at saturation as a delay line or pfn. Since the inductance of the saturable reactor may be part of a resonant circuit, each change in inductance may be considered to create an independent passive network with its own current and voltage waveform.

Charging and Switching

In its most basic form the magnetic modulator is a series of saturable reactors in resonant circuits. When the resonant frequency of a stage is reached, the reactor switches and shock excites the next stage at a higher frequency. By repeating the resonant charging

FIG. 3-Magnetization characteristies for high permeability iron
action and switching in several stages, successively resonant excited currents are produced which form a narrow, high-amplitude output current pulse. A series of increasingly higher frequency resonant circuits make up a current compression modulator. The operation is basically different from a conventional line pulser which develops its narrow output pulse in one off and on switching cycle of the thyratron which discharges a pulse forming delay-line network.
Input for a magnetic modulator may be either a sine wave or a triggered pulse at radar repetition frequencies. In the conventional a-c case, using sine-wave input, the magnetic circuits are polarized to allow switching only once for every sine-wave cycle. Charging action for each resonant circuit therefore occurs at the input frequency.

In the two-stage magnetic modulator shown in Fig. 1 the energy

Fire Radar Magnetrons

Components for a small magnetic modulator include: charging reactor (1), first saturable reactor (2), polarizing coke (3), second saturable reactor (4), charging capacitors (5), third saturable reactor (6) and pulse transformer (7)
transfer involves three different resonant frequencies which are determined by combinations of the various capacitors and the unsaturated and saturated inductances. A graph of the current and voltages waveforms at the particular frequencies involved in the three interrelated circuits is shown below the circuit diagram. The rapid switching of energy across the resonant circuits produces a narrow high-power output pulse. Energy transfer occurs at essentially equal voltages across the charging capacitors C_{1} and C_{2}. A timewise compression of the successive current waveforms results so that, for a constant transfer of power, they become increasingly narrow.

Design Considerations

The overall action may be divided into four steps: (1) self resonance of the modulator input components at the prf of the sine-wave source, (2) progressive switching in the cascaded circuits, (3) successive self resonance of the saturated reactors and their associated capacitors and (4) the transfer and wave shaping of pulsed energy from the last resonant circuit to the load. During the process all tuning capacitors that store the energy remain at a constant peak voltage.

Self resonance of the input circuit, which occurs at the sine wave
input frequency ω_{1} delivers a maximum voltage across C_{1} equal ideally to π times the input voltage multiplied by the input transformer ratio N_{1}. The unsaturated inductance $L_{1 u}$ may be neglected and capacitor current $i_{c 1}$ decreases to zero at maximum voltage at point B.

At the instant the voltage V_{B} across C_{1} reaches a maximum $L_{1 w}$ saturates becoming $L_{1,}$ and acts as a switch to transfer the charge of C_{1} to C_{2} through current flow $i_{C \text { e }}$. After switching the network consisting of $L_{1 s}, C_{1}$ and C_{2} becomes resonant to another frequency ω_{2} and the current $i_{C 2}$ through C_{2} rises rapidly causing the circuit to ring at its natural frequency. As current builds up in the resonant circuit, $L_{\text {, }}$, returns to its unsaturated

FlG. 4-Continuous plot of magnetizing force and flux density before magnetic conditions stabilize
state and the voltage at point B decays.
The voltage V_{c} across C_{8} reaches a maximum at the same instant L_{2} saturates, becoming $L_{2_{s}}$. The energy stored in C_{e} is then carried to the load by current i_{3}. During the output circuit discharge action L_{1} remains unsaturated and has no effect on the output circuit. With optimum energy transfer the current through the load is a transient, described by the equation: $V_{\nu}=$ $\left(0.73 \pi E_{\text {50 }} N_{1} \operatorname{Sin} \omega_{3} t\right) / 2$ where $\omega_{3}=\left(L_{z_{g}} \times C_{v}\right)^{-1 / 2}$ is the natural frequency. V_{D} is the voltage across the equivalent magnetron load reflected across the primary of T_{2}. It has a maximum amplitude equal to $0.73 V_{c}$.

Waveforms obtained in actual operation are more like those shown in Fig. 2. Resonant sine waves of each stage are drawn with dotted lines and the pulse, which is actually developed, with a solid line.

Basic Magnetic Considerations

Good saturable reactor action depends upon the use of high-permeability iron and the application of polarizing fields. High permeability iron works on a steep B-H curve and therefore gives rapid flux changes and high induced voltages. With sharp cornered hysteresis characteristics the switching action of the pulsactor produces good current pulse compression because of the high ratios of unsaturated to saturated inductances. Use of polarizing fields will increase the effective permeability beyond normal values.

These generalizations appear more vividly when the magnetic properties of some modern highpermeability irons are considered. For instance, the d-c hysteresis loop shown in Fig. 3 has a flat slope or flux change from point 4 to 5 . The flux change is only a few gauss under operating conditions compared to an extremely high flux change when going from point 3 to 4 . Since inductance depends on permeability, the flux changes give
a high ratio of unsaturated to saturated inductance. This high ratio is ideal for switching action. The reactor functioning as a switch has a low impedance and the shunting effect of the unsaturated coils upon the rest of the system is reduced. The resonant frequencies derived from the low saturated inductances of the switches are higher than in poorly saturated circuits and give greater current pulse compression. In practice it is possible to achieve saturated to unsaturated inductance ratios of as high as 2,000 to 1 and to use coils in successive stages with inductance ratios between $20: 1$ and 100:1.

Polarizing Fields

An important factor in the design of saturable reactor circuitry is the polarizing field, sometimes referred to as magnetic biasing. When applied to magnetic components carrying pulse voltages it enables adjustments to improve overall performance. Chief effect of the polarizing field is control of pulse permeability. The pulse permeability constant has different implications from the initial, average or maximum permeabilities common to conventional magnetic circuits.

To define permeability, suppose a narrow voltage pulse, 1 to $5 \mu \mathrm{sec}$, is applied to a coil with a magnetic core, as shown in Fig. 4. Examination of the magnetization curve before the associated circuits and the magnetic conditions stabilize themselves, shows that the first flux loop starts with unmagnetized iron at point A and, as the magnetizing

FIG. 5-Pulse permeability under the influence of a negative polarizing field
force increases, goes from A to B and back to C where it remains at the residual flux density until the next applied pulse arrives. The second flux loop, starts at C goes to D and returns to its residual magnetization at E. The third loop from E to F and so on. Forward tips of the flux loops ascend the basic magnetization curve.

Finally the flux arrives at a closed stabilized loop M, N with residual and maximum flux values such that the decrease in flux when pulse voltage is removed exactly equals the increase in flux due to applied voltage. Pulse permeability $\mu_{\text {II }}$ of the iron is defined as the slope of the axis of the last loop. It is $\Delta B / \Delta H$ or in terms of the magnetization curve in Fig. 4 it equals the ratio of distances $(n-y) /(m-x)$. A plot of the flux density and magnetizing force during the changes is shown in Fig. 4.

Pulse Permeability Figure

Permeability of the iron after operating conditions have stabilized is a constant which can be measured. It is used to calculate the inductance of unsaturated reactors. The pulse permeability figure is a complex quantity which depends on the value of the applied pulse voltage, on the ratio of the pulse width to the prf and on other circuit considerations such as Q or loading and distributed capacitance. It can be changed by magnetic biasing of the core.

The pulse permeability $\mu_{\text {II }}$ is not the permeability determined by the initial magnetization curve either at its points of initial, maximum or minimum slope. In the highest permeability irons, under unbiased conditions, pulse permeability runs around 2,000 as contrasted to the initial permeability of 600 and a maximum permeability of 250,000 .

Pulse permeability under the influence of a negative polarizing field, opposed to the field caused by the applied pulse voltages, is shown in Fig. 5. The flux loops start at A and with a polarizing field $H \rho$, which is slightly less than the saturation flux, the flux and magnetizing conditions immediately stabilize. The final loop is $A B C D E A$. It has a $B-H$ slope corresponding

FIG. 6-Amounf of polarization changes with operating level making modulator partially self-regulating

FIG. 7-Magnetic modulator with autotransformer primary resonance and cancellation feedback
to the axis $A C$. By adding a polarizing field so that the flux loops always start at a negative flux density equal to the saturation density, the slope in the final flux loop exceeds that of Fig. 4, and, in effect, the pulse permeability is increased.

In actual practice the optimum value is arrived at by adjusting the polarization field and the applied voltages to give stabilization at some flux value slightly less than the saturation value of the particular iron being used. In the case of high-grade iron with a proper polarizing field it is possible to use a total swing approaching 30,000 gauss.

Operational Circuits

Figure 6 shows a circuit using a combined autotransformer and saturable reactor in the first stage with self polarization. A portion of the input energy is rectified and the unidirectional current used to magnetically bias the core. The arrangement saves a transformer assembly, places the charging choke on the primary side reducing its size and produces an output which is partially self-regulating since the amount of polarization changes with the level at which the device operates. The autotransformer must operate over wide ranges of
permeability while still maintaining resonance at the driving prf.

Fig. 7 is a variation of the autotransformer using the charging capacitors in a slightly different manner. First, some of the resonant circuit is transformed from the secondary to the primary by connecting C_{c} in series with L_{0}. Any leakage between the primary and secondary of the autotransformer is cancelled out when C_{o} is tuned. It also allows C to be placed in series with L_{2} adding to pulse sharpening at this point because it reduces the second circuit total capacitance as well as acting as a differentiator for voltages developed in L_{1}.

Polarization of an intermediate stage shown in Fig. 7, serves two purposes. First it cuts off the positive pulse developed by the differentiating action of C and second it eliminates undesired feedback of output pulses to input circuits.

The polarizing windings are supplied through a tapped isolating choke which offers additional advantages. The choke isolates the polarizing supply from signal voltages.

By sending the polarizing current through a center tap to buck out the d-c fields it relieves d-c saturation and permits a smaller feed choke winding for a given inductance. Since signal voltages appear across the choke, it can be used simultaneously as a pulse transformer which can be a-c polarized so that the fields derived from the output pulses can be made to cancel the particular portion of themselves which would be normally reflected back into the input.

Delay Line Waveshaping

Economy of parts and additional waveshaping necessary to square up the triangular pulse normally generated in the last stage are provided by the delay line shown in Fig. 8. By tapping the reactor winding and adding capacitors to ground, the network becomes a delay line in addition to being a switch and a high inductance. The capacitors from the taps to ground offer negligible effect to unsaturated operation but at and during switching produce an improved output pulse waveform. The circuitry
provides better impedance matching and helps to compensate for effects produced by the output transformer. It also allows easy manual adjustment of the output pulse width by adjusting the polarizing current control resistor. Some effects of the polarizing field in the last reactor are still present, even at saturation.

Design Calculations

The basic design constants stem from the conditions stated in Fig. 1 and from the required peak power output, duty cycle and pulse

FIG. 8-Built-in delay line squares up triangular pulse normally generated in last stage of magnetic modulator
width. From the values of Fig. 6 and with relationships shown in Fig. 7 the value of the charging capacitor voltage V_{r} can be determined. Taking a set of typical constants existing in a small modulator used to fire a magnetron:

$$
\begin{aligned}
V_{c} & =\frac{1}{0.73} \times \frac{V_{o}}{2} \\
& =\frac{1}{0.73} \times \frac{5,600}{7}=1,100 v
\end{aligned}
$$

where V_{0}, is the magnetron firing voltage $(5,600 \mathrm{v})$ and N_{2} is the output transformer turns ratio (7:1). From the basic energy equation, $P T=1 / 2 C V^{*}$ the charging capacitor is

$$
\begin{aligned}
C & =\frac{2}{n} \times \frac{1}{V_{c}^{2}} \times P T \text { farads } \\
& =\frac{2}{9} \times \frac{1}{(1,100)^{2}} \times 9,000 \times 10-6 \\
& =0.016 \mu \mathrm{~J}
\end{aligned}
$$

where n is the output transformer efficiency (0.9), T is the modulation pulse duration ($10^{-9} \mathrm{sec}$), P is
the peak power $(9,000 w)$ and F is the pulse repetition rate $(2,000$ cps).

Knowing the capacitor voltage and size in terms of output power and remembering that the first circuit is resonant at the pulse repetition frequency and since the first reactor inductance has a definite ratio to the charging choke, the unsaturated inductance of the first reactor may be calculated.
$L \mu_{1}=\frac{n_{c}}{2}(1+\sigma) \times\left(\frac{V_{c}}{2 \pi f}\right)^{2} \times \frac{1}{P T}$ where n_{c} is system efficiency (0.33) or σ is the ratio of the reactor inductance to the charging choke. If $n_{e} \times(1+\sigma)$ is combined into a constant K which equals one then

$$
\begin{aligned}
L \mu_{1}=\frac{1}{2} & \times\left(\frac{1,100}{6.28 \times 2,000}\right)^{2} \\
& \times\left(\frac{1}{9,000 \times 10-6}\right)=0.422 h
\end{aligned}
$$

With this inductance, core sizes and number of turns can be calculated provided the pulse permeabilities available in the iron core are known. The inductance of succeeding reactors may now be calculated with selection of suitable ratios from which is determined the current pulse compression when working with practical ratios of saturated to unsaturated inductances.

The transient voltage waveforms encountered after saturation, as shown in Fig. 2 probably may give some trouble. For instance when L_{1} starts to ring after saturation it is found that although by differentiating the pulse developed at this point and thus preventing lowfrequency prf input energy from passing on through the circuit, it is in addition necessary to polarize L_{u} to eliminate the positive excursions on the front corner of the output pulse waveform. In some cases, even with polarization, it is necessary to place a diode across the primary of the pulse transformer.

References

(1) W. S. Melville, The use of Saturable Reactors as Discharge Devices for Pulse Generators, Proc IRE, p 185, 53, 1951.
(2) K. J. Busch, A. D. Hasley and Carl Neitzert, Magnetic Pulse Modulators, $\operatorname{BSTJ}, 34, \mathrm{p} 943,1955$.
(3) R. A. Mathias and E. M. Williams, Economic Design of Saturating Reactor Maynetic Pulsers, AIEE Trans, Communication and Electronics, p 169, 1955.

High-Speed Tester

Abstract

Production tube tester gives rapid indication of opens and shorts with directreading localization by neon lamps. Memory circuit holds indication of intermittent tap shorts. Seven tube types are covered, but others may be accommodated with simple wiring changes. Most-used types are tested in groups of four at a time. Minor changes allow tests of special tubes

By E. S. GORDON
Associate Engineer, Armour Research Foundation, Chicago, Illinols

TUBE TESTERS are not usually convenient for rapidly locating shorts and discontinuities in large numbers of electron tubes. The short-testing function usually has a four or five-position switch and a single neon-lamp circuit. For shorted elements the switch positions at which a glow appears are noted and a table is referred to for pin-pointing the short. No per-
manent indication for tap shorts is provided. The g_{m} reading usually serves as the only continuity indication, but this is not always conclusive nor does it localize the discontinuity.

The short-continuity tester described here is a high-sensitvity device for rapid checking of up to four tubes of a given type at a time. It also contains a memory
feature for tap shorts. Although designed for seven particular tube types, the unit can accommodate others with minor wiring changes.

Short Testing

The short-test circuit gives permanent indication of an intermittent tap short. It also localizes precisely all sustained shorts, and those tap shorts in which the time

Three groups of four long-life tube sockets are used for most-required types. Octal adapter is used for aubminiature types. Cork hammer aggravates lap shorts

FIG. 1-Simplified short-testing circuit

FIG. 2-Simplified continuity lesting

Checks Tubes in Groups

is sufficient for the eye to sense an indication on the panel lamps. Localization is made by noting which neon lamp or lamps are extinguished out of six normally glowing. The memory indication is given by the glowing of a seventh normally - extinguished lamp.

The maximum short resistance for indication, hence the tester sensitivity between any two elements of the tube under test, is 220,000 ohms for the memory and approximately 400,000 ohms for the six-lamp localization display. A simplified schematic of the shorttesting circuit is given in Fig. 1. The elements of the tube under test are connected to the junction points of the lamps. The voltage drop across each of the neon lamps is approximately 50 v . The current is fixed at approximately 0.133 ma by the source voltage and dropping resistor.

If a resistance of approximately 400,000 ohms is placed between K_{2} and G_{1}, for example, all of the $V_{: s}$ current would be routed through the resistance and the lamp would extinguish. This value of resistance, which is the lamp voltage divided by the series current, is thus the basic localization sensitivity of the short tester. If the shorting elements are not adjacently connected, such as K_{3} and G_{2}, V_{3} and V_{4} would both extinguish and the sensitivity would be proportionately increased to 800,000 ohms. Since one side of the heater is grounded, a short between K_{1} and heater, for example, would cause V_{1} to extinguish.

The grid of the thyratron is connected to the top of V_{0} through the limiting resistor and is at a constant potential in the absence of shorts. The cathode is returned to a fixed voltage to bias the tube beyond the firing voltage. When a short of sufficient magnitude occurs between any two elements of the tube under test, the thyratron grid becomes less negative, causing the tube to fire and V_{7} to glow. This memory lamp continues to glow until the reset button is depressed, re-

FIG. 3-Complete circuit diagram and tube connections for short and continulty tester
gardless of the voltage at the grid. The time constant of the grid circuit including stray capacitance is such that a short of only $100 \mu \mathrm{sec}$ duration is sufficient at maximum sensitivity to fire the tube. Thus the circuit is fast enough for practically all tap-short defects encountered.
The change in grid voltage ΔE resulting from an adjacent-element short of the maximum design sensitivity of $220,000 \mathrm{ohms}$ can be computed from the equation

$$
\begin{aligned}
\Delta E= & \left(E_{L} R_{2} / R_{1}+6 E_{I}-E_{s}\right) / \\
& \left(1+R_{2} / R_{1}\right)
\end{aligned}
$$

where $E_{L}=$ lamp voltage (approx 50 v), $E_{B}=$ supply voltage (-540 v), $R_{1}=$ resistance of adjacentelement short (220,000 ohms) and $R_{z}=$ series-dropping resistor (1.8 megohms).
The value of ΔE with the given values is approximately 18 v . To this value must be added the negative critical grid voltage of the thyratron to obtain the grid-tocathode bias voltage necessary for this sensitivity. The critical grid voltage for the 5696 with suppressor grid tied to cathode and plate voltage of 300 v is -2.5 v . Thus the required bias is 20.5 v . Since the nominal NE-51 voltage drop is 50 v the quiescent voltage at the grid is close to (50×6) or -300 v. The cathode must therefore be returned to about -280 v .

The sensitivity of the instrument to tap shorts is calibrated by adjusting the cathode potential with a voltage divider. A 220,000 ohm resistor is switched across one of the series lamps and the cathode voltage is varied in a negative direction until the thyratron fires as observed by V_{i}. The actual negative grid bias, as set by calibration, measures close to the computed 20.5 v . A regulated high-voltage power supply is required, as a 1 percent change in cathode voltage gives roughly a 10 -percent change in memory sensitivity.

Continuity Testing

The continuity-testing circuit is quite simple. Cathode emission is utilized, all tube grids and plates being connected positive with respect to the cathodes. The same six neon lamps are used as with the short-testing circuit and all lamps

Table I-Fault Location Chart for Electon-Tube Type 12AU7

$\begin{aligned} & \text { Discontinuity } \\ & \text { Lecation } \end{aligned}$		Short Location	
Lamp	Element Open	Lamp	Elements
\bar{V}_{3}	Grid 1	V_{1}	Heater
$V^{\boldsymbol{V}}$	Grid 2 Plate	V_{2}	Cathode 1
	Plate 1	V_{3}	Cathode 2
V_{6}	Plate 2	V_{4}	Grid 1
V_{3}, V_{5}	Heater 1	V	Grid 2
V_{4}, V_{6}	or Cathode 1	V_{6}	Grid 2
	or Cathode 2	V_{6}	Plate 1
$\begin{aligned} & V_{3}, V_{4}, \\ & V_{5}, V_{6} \end{aligned}$	Heater center-tap		Plate 2

will glow with a nondefective tube under test.

A simplified schematic of the continuity-testing circuit is given in Fig. 2. The cathodes of the twin triode under test are grounded and each grid and plate is connected to +540 v through an individual neon lamp and series-dropping resistor. If continuity is not present to a given element, its lamp will be out. For simplicity of operation all neon lamps which are not used for the particular tube type under test are energized by connection directly to ground, as with V_{1} and V_{2} of Fig. 2. Because of the large dropping resistors the current through each element and lamp is fixed at approximately 0.13 ma and all lamps glow equally.

Complete Tester

This tester was designed for seven tube types as shown schematically in Fig. 3.

Four tubes of a given type are plugged into the board and while their heaters are being energized, the operator throws a selector switch from one to another for testing. The 5670, 5718, 5840, and 6112 types have only one socket each while groups A, B, C, and D are four-socket positions for each of the multiple-testing types 5654 , 6101, and 6189 (see photo). A cork mallet is the device used for tapping tubes.

A 2-position switch S_{1} throws the operation from short test to continuity test. Most of the poles of this switch are used to switch the six neon lamps from the series operation of the former to the parallel operation of the latter. A 6-position, 8-pole switch S_{v} is used as the tube-type selector, with one
position for each type except the 6189 and the 5670. These are both miniature twin-triodes and are combined in a single switch position. Most of the poles of this switch apply grounds to the lamps not used in continuity testing.

Because of the maximum voltage ratings of the various tube types the order of connections between the lamps and the tube elements must be different for some of the tube types. This requirement is relevant to the short test but as a result affects switching for the continuity test also. Charts are prepared listing the tube defect as a function of the neon lamp display for both short and continuity test. A typical fault location chart for the 12AU7 is shown in Table I.

Special Circuit Details

Tube type 5654 has two cathode connection pins. To test continuity to both pins the two are connected in series between V_{1} and V_{2} in the short-test mode of operation. A discontinuity between the two pins breaks the series circuit, causing all lamps to be extinguished. For tube types having a single cathode terminal the connection between V_{1} and V_{2} is made by the tube-type selector switch in the short-test operation.

The 5840 has three cathode pin connections. To test continuity between two of the three pins, the same technique as for the 5654 is used. Continuity of the third pin connection is tested in the con-tinuity-test operation. For this test the selector switch removes the ground from the first two cathode connections and the continuityshort switch grounds the third cathode lead R as shown in Fig. 3.

Tube type 5670 has an electrostatic shield between the triode sections which is brought out to a pin connection. Continuity to this shield is tested by connection S to V_{1}. A limited amount of electron flow from the cathodes to the shield occurs in a nondefective tube, so V_{1} has a partial glow. The shorting of the shield to any other element is detected by a full glow of V_{i} in the continuity-test operation.

This work was sponsored by the AMC, Wright Air Force Base, under technical direction of WADC.

Transistor Q-Multiplier for Audio Frequencies

Abstract

High selectivity and stability may be provided in audio-frequency equipment that must be portable, or in which power is at a premium, by use of transistorized Q-multiplier circuit. Series-resonant circuit is applied to var-iable-selectivity a-f amplifier and multichannel selective-calling unit

By G. B. MILLER The British Thomson-Houston Co., Ltd., Rugby, England

POSitive feedback to increase the selectivity of a tuned circuit has been put to use on a sound engineering basis only in recent years. The literature gives all the design data for tube-operated Q-multipliers. ${ }^{1}$ This article indicates what modifications must be made when transistors are used.

Theory

Figure 1 shows the basic Q-multiplier circuit for either a centertapped capacitor or coil. The selectivity of this stage is determined by

$$
\begin{equation*}
Q_{\mathrm{eff}} / Q_{o}=R_{f} /\left(R_{f}-\frac{1}{4} R_{d}\right) \tag{1}
\end{equation*}
$$

where $Q_{\text {erf }}$ is the effective Q of the coil circuit, Q_{0} is the Q of the coil at the resonant frequency ω_{s} and $R_{d}=\omega_{o} L Q_{o}$. The effective Q, and thus the selectivity of the circuit, increases as R_{f} approaches $\frac{1}{4} R_{d}$. When R, equals $\frac{1}{4} R_{d}$ the effective

Q becomes infinite and the amplifier is unstable; oscillations occur for all values of R_{f} less than $\frac{1}{\frac{1}{2}} R_{d}$.

Equation 1 is valid only on the assumptions that the input impedance of the tube is infinite, the output impedance is negligibly small and $g_{m} R_{k}$ is much greater than unity.

Figure 2A shows the form taken by the circuit when a transistor replaces the tube. Resistors R_{1} and R_{2} provide bias to the base of the transistor and C_{c} prevents the bias from being shorted out by the coil. Since the input impedance to the transistor will not be infinite, Eq. 1 cannot be used as it is.

The value of R_{t} as used in Eq. 1 is the dynamic impedance of the parallel-tuned circuit at resonance and is purely resistive. The input resistance at $X X$ in Fig. 2A, (with R_{f} and the tuned circuit discon-
nected is given by the following:

$$
\begin{equation*}
R_{\sigma}=1 /\left(1 / R_{1}+1 / R_{2}+1 / R_{t}\right) \tag{2}
\end{equation*}
$$ where $R_{t}=\beta R_{k}$, the input impedance of the grounded-collector transistor; β is the grounded-emitter current-amplification factor.

The circuit of Fig. 2A can then be replaced by that of Fig. 2B in which the transistor is considered ideal, with infinite input impedance, and L and C are pure reactances. Resistance R_{g} can be treated as a damping resistor which lowers the Q and reduces R_{d} to a lower value R^{\prime}, where

$$
\begin{equation*}
R_{d}^{\prime}=R_{g} R_{d} /\left(R_{a}+R_{d}\right) \tag{3}
\end{equation*}
$$

Using R_{d}^{\prime} in place of R_{d} in Eq. 1

$$
\begin{equation*}
\frac{Q_{\text {eff }}}{Q_{o}}=\frac{R_{f}}{R_{f}-\frac{1}{4} R_{d}^{\prime}} \tag{4}
\end{equation*}
$$

Derivation of Eq. 4 is not dependent upon the transistor having infinite input impedance. Since the grounded collector stage also has
negligibly small output impedance and $g_{m} R_{k} \gg 1$ is easily obtained, Eq. 4 can be used for the circuit of Fig. 2A. This equation may be used for circuits using either tubes or transistors.

Stability

The formulas derived with regard to the stability of tube-type Q multipliers all involve Q_{0}. The effect of the finite input impedance of the circuit using a transistor causes a reduction in the coil Q; this reduction must be taken into account in assessing the stability of the circuit.

The greater the Q multiplication required to achieve a specified selectivity, the lower the stability will be. For maximum stability the: value of Q_{0} should be as high as, possible; for a given coil this requires that R_{g} be large. Unfortunately, maintenance of the correct operating conditions with changes of temperature requires that R_{z} be as small as possible. The design must therefore be a compromise between these two conflicting requirements.

Temperature Effects

A change of temperature shifts the operating point of the transistor and causes a change in the current amplification factor β.

Normal methods of temperature stabilization cannot be used without seriously affecting the amount of stable \mathbf{Q} multiplication which can

Table 1-Condifions for Circuit Instability

$\begin{aligned} & \text { Freq. } \\ & \text { (cps) } \end{aligned}$	$\binom{L}{(\mathrm{~h})}$	$\left\lvert\, \begin{gathered} C \\ (\mu \mathrm{f}) \end{gathered}\right.$	$\underset{\text { (ohms) }}{R_{L}}$	$\begin{gathered} R_{1} \\ \text { (ohms) } \end{gathered}$	$\begin{gathered} R_{f}= \pm R^{\prime} d \\ \text { (ohms } x 1,000) \end{gathered}$	
					Calc	Meas
190	6.8	0.1	840	0	6.8	6.8
				82	6.6	6.6
				180	6.45	6.3
				235	6.3	6.23
				500	5.7	5.63
216.5	4.5	0.12	790	0	5.5	5.48
				82	5.23	5.15
				180	5	4.85
				235	4.58	4.57
				500	4.25	4.2
235	3.8	0.12	1,255	0	3.88	3.85
				82	3.73	3.68
				180	3.62	3.6
				235	3.48	3.47
				500	3.12	3.1

FIG. 2-Transistor equivalent of vacuum-tube version (A) and idealized circuit (B)

FIG. 3-Series-tuned circuits overcome shortcomings of parallel-tuned versions
be obtained. It has been found desirable to design the stage for the largest signal possible consistent with a minimum value of R_{g}. This minimum is easily derived from Eq. 3 and the stability requirement that $Q_{\text {off }} / Q_{0}<\frac{1}{2} g_{m} R_{k}$. Since $Q_{\text {eff }}$ is usually specified and $g_{m} R_{k}$ is known, Q, can be calculated.

Let the Q of the coil used in the tuned circuit be $Q_{o}=R_{n} / \omega_{o} L$. When R_{g} is shunted across the coil the \mathbf{Q} is reduced to Q^{\prime} 。 $=R^{\prime}{ }_{a} / \omega_{9} L$. Substituting for R_{d} and R_{d}^{\prime} in Eq. 3 gives

$$
\begin{equation*}
R_{g \min }=\omega_{o} L Q_{0} Q^{\prime}{ }_{o} /\left(Q_{o}-Q^{\prime}\right) \tag{5}
\end{equation*}
$$

If the transistor stage is designed for the largest signal possible consistent with the value of R_{g} given by Eq. 5 and then operated at a much lower signal level than it is designed for, a reasonable shift in operating point can take place without the transistor introducing distortion.

Referring to Eq. 2, R_{g} will be reasonably independent of R_{t} if R_{t} $\gg R_{1}$ and R_{9}; this is the case for most transistors if R_{k} is kept reasonably high. The value of β decreases with increasing temperature and thus R_{g} will also decrease with temperature.

A reduction of R_{g} causes a re-
duction in R_{d}^{\prime} and this reduces the ratio $Q_{\text {er }} / Q_{0}$. An increase in temperature will not therefore lead to instability but will reduce the Q multiplication obtained. If this reduction is unacceptable, it is necessary to allow R_{f} to decrease with temperature.

Parallel Operation

When two or more selective amplifiers tuned to independent frequencies are to be operated from the same signal source, as in fre-quency-selective calling equipment, the parallel-tuned configuration shown in Fig. 2 is not suitable. Each tuned circuit tends to inject signals into the adjoining circuits, reducing adjacent channel rejection.

This difficulty has been overcome by the configuration shown in Fig. 3. The input is series-resonant, as seen from the signal source, and parallel-resonant, as seen by the input to the transistor. In this arrangement, each tuned circuit at its resonant frequency effectively shunts the input to all the other tuned circuits greatly reducing the breakthrough of signals.

Resistance R, in Fig. 3 is the signal source resistance; it is ef-

FIG. 4-Varying $A_{\text {, }}$ of selective a.f amplifier (A) changes circuit Q-multiplication (B)
fectively in series with the coil and must be treated as part of the coil resistance when calculating the value of Q_{0}. Thus, $Q_{0}=\omega_{o} L /(R,+$ R_{L}) where R_{L} is the resistance of the coil at the resonant frequency.

Practical Circuits

Figure 4A shows an audio-frequency selective circuit suitable for use either as a c-w note filter or as one channel in a multichannel fre-quency-selective amplifier.

When $R_{f}=\frac{1}{4} R_{d}^{i}$, Eq. 4 shows that the circuit is unstable and will oscillate. The value of resistor R_{f} to give this condition were calculated for four different coils and for various values of generator resistance R_{s}. These calculated values were then compared with the actual measured values of R, in the circuit for each condition and coil. The results, in Table I, indicate a close correlation between calculated and measured values.

The coils in Table I were built up into a three-channel a-f selective amplifier and connected as shown in Fig. 5A; Fig. 5B shows the response of each filter. The unit was driven from a generator with an impedance of 500 ohms . In comparison with a similar paralleltuned unit, the adjacent channel rejection is much better.

With a minor modification, the circuit shown in Fig. 4A, can be used as a variable selective c-w filter; R_{t} should be replaced by a resistor and potentiometer in series. The resistor and potentiometer are each made equal to the minimum resistance needed for the maximum required selectivity.

This minimum value is calculated from Eq. 4, but if maximum possible selectivity is wanted, this
value should be made equal to $4 R_{d}^{\prime}+1$ percent. The 1 -percent margin is usually sufficient to ensure that the circuit does not oscillate, but the value may have to be adjusted. The potentiometer acts as a selectivity control, with maximum selectivity corresponding to minimum potentiometer resistance; Fig. 4B shows a typical set of selectivity curves for various

(A)

(B)

FIG. 5-Three channels of multichannel selective a-f amplifier (A) use coil and capacitor combinations in Table I Lor stag. gered resonant frequencies (B)
positions of the potentiometer.
The maximum Q-multiplication that can be achieved with the transistor Q-multipliers has not been fully determined. However, a Q of 1,000 at 200 cps was obtained without any difficulty using a coil with a Q of 10 .
Factor R, appearing in the expression for R_{r} covers a multitude of troubles, especially when the transistor circuit is to be used at frequencies approaching its cutoff frequency; for audio frequencies it is generally sufficient to treat R_{t} as being purely resistive, but at higher frequencies the complete expression must be used and account must be taken of the input capacitance.

Performance

An experimental parallel-tuned circuit set up for maximum selectivity at 200 kc gave an overall bandwidth of 300 cps ; although it was completely stable against normal temperature and voltage fluctuations, it was possible to shock excite it into oscillation after which it would continue to oscillate. Tests indicate that it is possible to do this at all frequencies with both tube and transistor Q-multipliers; it is believed that this is due simply to driving the tube or transistor into a region of nonlinearity.
When the Q-multiplication is restricted to less than $\frac{1}{2} g_{m} R_{k}$ the shock excitation instability does not occur. If this restriction on the amount of multiplication is observed and, in addition, the input level is kept small enough to ensure that the transistor is not overloaded, trouble from this form of instability should not be experienced.

A temperature run was made on the unit shown in Fig. 4A with the temperature cycled from 20 to 60 C and back. Between 20 and 47 C , no measurable change in effective Q was detected, but from 47 to 60 there was a reduction of Q multiplication to $\frac{2}{3}$ of its initial value.

The resonant frequency of the filter was not affected when the transistor temperature was raised from 20 to 60 C .

Reference

(1) H. E. Harris, Simplified Q Multiplier, Electionics, p 130, May 1951.

Typical test setup for checking crystals. Crystal under test and cable of electronic null-indicating meter plugged into bridge unit are next to right hand of operator. Counter-type frequency meter at left reads r-f output frequency of crystal impedance meter into which bridge is plugged. With exception of frequency measuring unit, no auxiliary equipment is required

Plug-in Bridge Checks

Equivalent parameters of overtone crystals in range of 75 to 200 mc are rapidly measured with technique that combines desirable characteristics of both active and passive measuring systems. Bridge plugs into crystal socket of standard crystal impedance meter and crystal plugs into bridge. Nullindicating meter and frequency meter are only other instruments needed

By douglas w. ROBERTSON*

Hesearch Engineer, Engineering Experiment Station, Georgia Institute of Technology, Atlanta, Georgia

The crystal parameter bridge described here combines the characteristics of passive and active measuring systems for piezoelectric vibrators, by utilizing an oscillatory circuit and a bridge measurement configuration in such a way that the crystal being measured controls the frequency stability of the oscillator.

The bridge circuit, including the crystal under test, is inserted as a series element in the low-impedance feedback path of a self-controlled oscillator suitable for exciting a resonant frequency of a quartz crystal operating in the series mode. When the oscillator is tuned near or at one of the crystal reso-
nant frequencies, it is stabilized by the increased portion of the feedback that passes through the crystal arm of the bridge. Therefore, the oscillator may be considered as supplying a crystal-stabilized signal for operation of the bridge near the resonant frequencies of the crystal.

Finding Equivalent Resistance

Operation of the crystal parameter bridge, shown schematically in Fig. 1, may be best understood when employed for the simple case of determining the equivalent resistance R_{r} of a crystal operating at resonant frequency f_{r}. Capacitors C_{v} and C_{i} are set equal near
minimum capacitance or removed entirely from the circuit and all stray reactances are balanced or compensated. Resistor R_{r} contains no reactive components and R_{a} and R_{b} are passive impedances of any type but are matched in the frequency range of interest for equivalence in both magnitude and phase angle.

Resistor R_{r} is initially set to its minimum-resistance position and the oscillator is tuned until crystal control is effected. This point is shown by a sudden dip in the balance indicator reading and is the result of the change in degree of

[^2]

Top and bottom views of plug-in bridge unit. Slotted clear plastic rods permit adjustment of variable resistor and capacitors in bridge. Crystal is at upper right, vhf resistor at upper left, C_{2} and C_{3} adjustments at botom center and C_{v} and C_{1} adjustments at lower left and right respectively in bottom view. Unit permits measurement of all equivalent circuit parameters of a quartz crystal

VHF Quartz Crystals

unbalance due to the lowered crystal impedance near resonance. Increasing R_{v} at this point decreases the minimum reading as the voltage drop across R_{v} approaches that across the crystal. Slight retuning of the oscillator will further decrease the minimum as the two voltages become more nearly equal. Repeating this process of alternately tuning the oscillator and R_{v} for a minimum reading will bring each successive dip closer to zero until the bridge is brought into balance and the vector voltage difference is zero. At this time, the crystal is operating at the minimum zero-reactance impedance which defines operation at the resonance frequency f_{r}. The resistance of R_{v} is equal to the equivalent resonance sistance R_{r} of the crystal and may be read directly if R_{r} is calibrated.

In a similar manner, the series arm resistance R_{1} and the series resonant frequency f_{s} may be determined. This is accomplished by initially balancing the holder capacitance C_{0} with an equal capacitance C_{v} across R_{r}. If C_{v} is calibrated, the value of C_{0} may be
determined directly from the dial. In the vhf range, the most severe requirement of a practical bridge system is that imposed on the variable resistor R_{r}. This resistance must have near zero reactance over the frequency range of interest. Resistances exhibiting a satisfactory phase angle have been developed. ${ }^{\text {a }}$ These resistors cover a frequency range of 75 to 300 mc and a resistance range of 20 to 200 ohms.

Determining Other Parameters

The following procedure for utilizing the bridge and companion oscillator of Fig. 1 can be used to determine the desired parameters. With R_{v} and the crystal removed from the bridge and with C_{i} set close to minimum, balance with C_{v} as the variable at a frequency near the series-arm resonant frequency $f_{s} ; C_{v}$ will then equal C_{i}. Place the crystal in the bridge at a frequency adjacent to f such that the admittance of the series arm is insignificant when compared with that of C_{0}. Rebalance the bridge with C_{v}. Then ΔC_{v} equals C_{o}.

With R_{r} placed in the circuit, rebalance with R_{v} and frequency as variables. This yields f_{s} and $R_{r}=$ R_{1}. Decrease C_{v} by ΔC_{v} and rebalance with R_{r} and frequency as variables. This gives f_{r} and $R_{v}=R_{r}$.

The measured parameters C_{o}, R_{1}, f_{s} and f_{r} are now substituted in the first equation for Q in Fig. 1, where the figure of merit M is equal to $1 / \omega C_{o} R_{1}$ and Δf is equal to $f_{r}-f_{n}$ Although this equation is doublevalued, the correct value is obtained by using the negative sign. With this, values of L_{f} and C_{t} are now readily obtained from the other two equations for Q in Fig. 1.

Construction Details

Several developmental models of the crystal parameter bridge have been made. These models, containing suitable detectors, are constructed as small self-contained units capable of being plugged into the crystal socket of a suitable crystal impedance meter oscillator. The pyramidal shape of the bridge resulted from an attempt to eliminate cross-coupling by arranging all of the components to be nearly per-
pendicular within the limits set by size, accessibility and lead length.

Capacitors C_{2} and C_{3} couple the unbalance output of the bridge to the germanium diode detector. Since these capacitors must be accurately balanced they are made variable. The required detector load and filter are provided by R_{2}, R_{3}, C_{4}, C_{5} and the null indicator input impedance.

The rectified output of the detector is fed by cable to a sensitive null indicator. The physical separation of the bridge and oscillator allows use of the bridge with different oscillators.

Crystal Impedance Meter

The possibility of using the tube transit time and detuning to obtain proper loop phase led to the construction of the developmental crystal impedance meter circuit of Fig. 2.

Used primarily for a substitution system in the very-high-frequency range, this unit covers a frequency range of 75 to 200 mc for equivalent crystal resistances up to 200 ohms. Two stages of amplification are used to increase the loop gain. Two difficulties associated with the practical realization of the circuit configuration are proper tracking of the tuned circuits and the additional 180 deg phase shift normally attributed to the addition of a second amplifier.

A novel method was utilized to eliminate the tunable interstage

FIG. l-Bridge circuit and equations used with test results to give desired parameters. Bridge plugs into crystal socket of impedance meter or oscillator
transformer required to compensate for the additional 180 -deg phase shift. Data on the magnitude of transit time phase shifts indicate that the 6AK5 exhibits a phase shift of approximately 0.3 deg per mc . At 150 mc the total transit time phase shift for both tubes will therefore be near 90 deg . It is then immaterial whether or not a phase reversal is provided by the interstage transformer, as equal detuning would be required in either case to give zero loop phase shift. This characteristic permitted a simple resonant coil to be substituted for the tunable interstage transformer.
The oscillator uses a three-gang Mallory spiral Inductuner for the variable inductances. The tuner was modified by removing the last
turn of the central spiral section. This modification provides the correct interstage inductance to track satisfactorily with the other two sections.

With the exception of the related power and control circuits, the circuitry and components are mounted on the modified tuner enclosure itself. To minimize ground-lead r-f currents, the center posts of the tube sockets are connected directly to the tuner ground plane and these two points are used as central ground points where possible.

The successful operation of the two-stage line-coupled oscillator with its high gain is dependent to a large extent upon the physical arrangement of the components. This arrangement permits extremely short leads and proper shielding or isolation by the various sections of the circuit. Small disk ceramic capacitors were connected directly from the tube-socket terminals to the center post ground point for bypass purposes. All power and control leads are bypassed at the tuner enclosure with ceramic feed-through capacitors, which serve as mounts for the various decoupling resistors and chokes.

The power supply converts the $115-\mathrm{v}$ a-c to the required d-c plate and screen voltages. These $d-c$ voltages are regulated by two voltage regulator tubes. An external control is provided for adjustment of the screen voltage as a method of controlling the drive or power

FIG. 2-Circuit of development crystal impedance meter, which may be used conventionally with test crystal in position shown, or in new method by inserting bridge in place of crystal. Rear view of instrument is shown alongside circuit
dissipated in the crystal. The frequency of the oscillator is varied by tuning through a suitable gear reduction to provide the necessary vernier adjustment. A sensitive d-c meter is provided, with a variable shunt, to indicate relative activity at high as well as at low drives. A coaxial jack provides a sample of the r-f energy for frequency-measuring purposes. The entire unit is encased in a steel cabinet for shielding and protective purposes.

Checking Accuracy

Because precise standards for measuring crystal parameters above 100 mc are presently unavailable, the probable accuracy of the bridge method was determined on a comparative basis. Measurements on a number of representative crystals covering a frequency range of 100 to 175 mc and a resistance range of 20 to 120 ohms were made independently with several different substitution methods. These crystals were then measured with the crystal parameter bridge and developmental oscillator. The crystal parameter bridge measurements were then compared to the substitution measurements which in each case displayed the greatest deviation from the bridge measurements. The parameters compared were the resonance resistance R_{r}, the resonance frequency f_{r}, the series resonance resistance R_{1} and the series resonance frequency $f_{\text {s. }}$.

Of a total of 26 frequency measurements, 20 were at or within 0.001 percent, 4 were between 0.001 percent and 0.002 percent and 2 were above 0.002 percent, the highest deviation being 0.0031 percent. Sixteen of these measurements were at frequencies above 150 mc .

Of a total of 26 resistance measurements, 21 were within 5 ohms or 10 percent, 4 were between 10 and 20 percent, and one displayed a difference of approximately 30 percent (175 mc at 100 ohms). Twelve of these were above 50 ohms.

Considering that the crystal drive or power could not be accurately determined or reproduced and that the comparisons were made to those having the largest discrepancy, the deviations experienced were not unexpected. However, the results did indicate that
the measurement accuracy of the bridge was comparable to that obtained by other active methods.

Crystal Aging Measurements

Although the crystal parameter bridge was developed primarily for use at frequencies above 75 mc , its effectiveness at lower frequencies was adequately demonstrated when used in connection with a crystal aging program being conducted at Georgia Institute of Technology. The aging drifts under study were obscured by the inaccuracies and randomness of the frequency measurements made with conventional susbtitution measurement procedures.

The crystal parameter bridge

FIG. 3-Comparison of results obtained with older substitution method and new crystal parameter bridge method, when checking aging of crystals. High accuracy of new method gives smoother curve more nearly representative of true behavior of crystal
measurements, consistently accurate to one part in 10^{7} at 16 mc , matched the quality of the resonators being produced and made possible studies of previously concealed factors in the aging of quartz crystal resonators. A typical aging curve obtained with the bridge system is compared in Fig. 3 with one obtained by the substitution method.

Because of the number of repeated measurements necessary on a large number of crystals, an additional advantage was realized in the rapidity and simplicity of bridge measurements. A reduction in measurement time from approximately 5 minutes to less than 2 min utes per crystal was obtained.

Although efforts were made to
develop a practical system using the bridge method that would measure crystals up to 200 mc at 200 ohms, the present models have definite limitations. Primarily, the crystal parameter bridge in its present state of development is a lumpedelement bridge and, as in conventional bridges, such construction is generally unsatisfactory above 150 me.

Another limitation that occurs above 150 mc is due to the crystal holder capacitance C_{0} and its associated bridge balancing capacitance C_{r}. As the frequency is increased the reactances of the feedback paths due to C_{0} and C_{r} become lower. This, in effect, decreases the proportional amount of crystal-controlled feedback and satisfactory stabilization of the oscillator is not obtained.

A third major limitation is that the commonly accepted equivalent circuit no longer adequately represents present vhf crystal units. The holder appears to cause the primary difficulty in that it contributes reactances and resistances at the higher frequencies that can no longer be neglected. The complexity of the equivalent circuit is, therefore, greatly increased.

Several methods of overcoming these practical limitations are presently being investigated. A hybrid coaxial bridge using balanced directional couplers is being developed to eliminate some of the difficulties of a lumped element arrangement. A method of counteracting the feedback due to C_{o} and C_{r} with a plan similar to that used in capacitance bridge oscillators is under study.

The development reported herein was supported by the SCEL under Contract No. DA-36-039-sc-56730. Reproduction in whole or in part is permitted for any purpose of the U. S. Government.

References

(1) E. A. Gerber, A Review of Methods for Measuring the Constants of Piezoelectric Vibrators, Proc IRE, p 1,103, Sept 1953
(2) Standards on Piezoelectric Vibrator, Proc IRR. p 353. Mar 1957.
(3) W. B. Wrigley and T. R. Scott. Jr., VHF Rheostat, Electronics, p 196 , Dec 1, 1957.
(4) IR. B. Felser, Study of the Fffects of Processing Techniques and Materials on Aging of Quartz Crystal Units, Quarterly Report No. 6, Project A-226, Georgia Institute of Technology, Signal Corps Contract DA-36-039-sc-64613.

Phase-Shift Curves

Curves permit quick determination of unknowns in phase, gain and frequency interrelationship in lead and lag networks for feedback amplifiers. Component values can then be selected by choosing one of three values

By RICHARD E. ENGELMANN
Associate Professor of Electrical Engineering, University of Cincinnati, Cincinnati, Ohto

LEAD AND LAG NETWORKS of the type shown in Fig. 1A and 1B are commonly used for compensation in feedback amplifiers. The attenuation characteristics of these networks are shown in Fig. 1C using straightline approximation for convenience.

The maximum phase shift obtainable from these networks is a function of gain (<1) of the lead network at low frequencies and of the lag network at high frequencies. The following method can be used for determining the amount of shift available for a given attenuation or vice versa and the frequency at which this shift occurs.

For the lead network in Fig. 1, the transfer function is:
$E_{o} / E_{i}=\alpha_{1}\left[\left(1+j\left(\omega / \omega_{c 1}\right)\right] /\left[1+j \alpha_{1}\left(\omega / \omega_{c 1}\right)\right]\right.$ where $\alpha_{1}=R_{2} /\left(R_{1}+R_{2}\right)$, which is the low-frequency gain; $\omega_{c 1}=$

FIG. 1-Lead and lag networks at (A) and (B) result in gains shown at bottom of C and phase angles shown at top of (C)
$1 / R_{1} C_{1}$, which is the lower corner frequency in radians per sec and $\omega_{c 1} / a_{1}$ is upper corner frequency in radians per sec.

The maximum phase shift is given by:

$$
\phi_{m 1}=\tan ^{-1}\left(1 / \sqrt{\alpha_{1}}\right)-\tan ^{-1} \sqrt{\alpha^{1}}
$$

and occurs at the geometric mean of the corner frequencies, so that $\omega / \omega_{c 1}=1 / \sqrt{a}$. Figure 2 shows $\phi_{m 1}$ and corresponding values of $\omega / \omega_{c_{1}}$ compared to a_{1}.

For the lag network shown in Fig. 1B, the transfer function is : $E_{o} / E_{i}=\left[1+j\left(\omega / \omega_{c 2}\right)\right] /\left[1+j\left(\omega / \alpha_{2} \omega_{c 2}\right)\right]$ where $\alpha_{2}=R_{z} /\left(R_{1}+R_{v}\right)$, which is the high frequency gain; $\omega_{c z}=1 / R_{r} C_{2}$, which is the upper corner frequency in radians per sec and $\alpha_{2} \omega_{c z}$ is the lower corner frequency in radians per sec.

The maximum phase shift, $\phi_{m 2}$, is given by $\phi_{m 2}=-\phi_{m 1}$ if a_{2} is substituted for a_{1}. Therefore the maximum phase shift curve in Fig. 2 is correct. $\phi_{m g}$ occurs again at the geometric mean of the corner frequencies, where $\omega=\omega_{c 2} \vee \alpha_{i z}$ or $\omega / \alpha_{2} \omega_{e 2}=$ $1 / \sqrt{\alpha_{2}}$. Since the ratio of the frequency for maximum phase shift to the lower corner frequency is $1 / \sqrt{a}$ for both networks, the second curve of Fig. 2 is correct also.

Examples

Assume that a network is required to produce a phase lead of 50 deg at 600 cps. How much gain will result and what components can be used?

At $\phi_{m}=50$ deg on the max-

FIG. 2-Relationship of phase shift to gain enables user to determine ω / ω_{c}
imum phase shift curve, $a_{1}=$ 0.135 . With $a_{1}=0.135$, on the second curve $\omega / \omega_{e 1}=2.7$. Substituting, $\omega_{c 1}=2 \pi 600 / 2.7$, which equals $1 / R_{1} C_{1}$, and $a_{1}=0.135=$ $R_{2} /\left(R_{1}+R_{z}\right)$ one variable can be selected and the others determined. If $C_{1}=1 \mu \mathrm{f}$, then $R_{1}=$ 716 ohms and $R_{2}=112$ ohms.

If a lag network is required to have a phase shift of 60 deg and gain of 0.1 or more at high frequencies, is a network of the type shown in Fig. 1B possible?

From the curves, a phase shift of 60 deg will produce a gain of 0.071 . Therefore the desired network is not possible. However, if two networks are used each with a phase shift of 30 deg and isolated by a buffer stage, the effective gain of the networks will be 0.109. A cathode follower could be used for the stage between the networks.

Now-guaranfeed practical inducfance limifs for regular and frequency-sfabilized permalloy powder cores

Call them frequency-stabilized or temperature stabilized, the important thing about these new molybdenum permalloy powder cores made by Magnetics, Inc., is our guarantee of core inductance within realistic limits. You can write-right now-for these guaranteed limits.
Filter circuit designers will take note that these guaranteed limits for permalloy powder cores are far tighter than those published before. Note also that they are guarantees on inductanse which is the parameter of chief concern to the core user rather than on permeability.
This can save you dollars on your production line-by cutting down on adjustment of number of windings on coils.

And you know, too, that temperature stabilization eliminates difficult compensation problems.
But did you know that we guarantee these new inductance limits for all of our permalloy cores, whether stabilized or not? For all the facts, write us at Magnetics, Inc., Dept. E-47, Butler, Pennsylvania.

mAEMETICS inc.

Transistor H-F Cutoff Nomograph

When either alpha cutoff frequency f_{α} or maximum oscillation frequency $f_{\text {max }}$ are specified, chart permits easy conversion from one to the other. With value of $f_{\text {max }}$ known, maximum power gain at any frequency can be found

By H. E. SCHAUWECKER Gilfilan Bros. Inc., Los Angeles, California

TRANSISTOR ALPHA CUTOFF frequency which results from the finite diffusion time of charge carriers through the base region is one of two characteristics that limit high-frequency performance. The frequency characteristic of alpha is represented approximately by

$$
\alpha=\alpha_{0} /\left(1+j \omega / \omega_{a}\right)
$$

Collector capacitance C_{c}, the capacitance across the collector to base junction, also limits the maximum frequency of operation.

For most transistors, alpha is approximately equal to unity and maximum oscillating frequency is approximated by

$$
f_{\max }=\left(f a / 25.1 R_{B} C_{c}\right)^{1 / 2}
$$

or in terms of f_{α}

$$
f_{\alpha}=25 R_{b} C_{c}\left(f_{\text {max }}\right)^{2}
$$

Since some manufacturers specify f_{a} and others $f_{\max }$, conversion from one to the other is desirable.

Practical Examples

When f_{x} is $20 \mathrm{mc}, R_{B}$ is 40 ohms and C_{c} is $10 \mu \mu f, f_{\text {max }}$ is desired. A straight line is drawn between the two points $f_{a}=20$ mc and $R_{B} C_{c}=400 \mu \mu \mathrm{sec}$, or 0.4 millimicroseconds. The value for $f_{\text {max }}$ is read from the left-hand scale as 44 mc .

A transistor with an $f_{\text {max }}$ of 10 mc and an $R_{k} C_{c}$ product of $2,000 \mu \mu \mathrm{sec}$ or $2 \mathrm{~m} \mu \mathrm{sec}$ is avail-

Nomograph for converting transistor high-frequency parameters
able. It is desired to determine the beta cutoff frequency for this transistor for which f_{α} is required. Referring to the nomo-
gram, a straight line is drawn through $f_{\text {max }}=10 \mathrm{mc}$ and $R_{B} C_{c}$ $=2 \mathrm{~m} \mu \mathrm{sec}$. The line intersects the center scale at $f_{\alpha}=5 \mathrm{mc}$.

announcing

new vinyl plastic tape for total adhesion

$I_{\text {N spite of technological advances in electricity }}$ and electronics that stagger the imagination, the past few decades have seen little progress in the science of insulating tape manufacture. The electrical tapes of today have been, until now, substantially the same as they were in $1920 \ldots$ and some of them are pretty good, no question about it.

In the 1940's, however, there was one break; spurred by the needs of modern electronics, plastic tapes - polyvinyl chloride sheetings, plasticized and adhesive coated - came into limited use. Since then, again, plastic tapes have improved but slowly.

Now, in 1958, Plymouth Rubber Company, Inc., manufacturer of quality rubber and plastic products since 1896, has at last broken the vinyl tape barrier. After years of laboratory research and months of testing in the field under the most extreme conditions, slipknot \#7 plastic electrical tape is ready for use.

Here at last is a vinyl tape you know you can depend on. ZF-90* inseparably fuses adhesive to vinyl base; they cannot come apart, and therefore will not dry out. This is total adhesion, making splicing easier, swifter, surer than ever before. New Slipknot $\overline{7} 7$ has a wider temperature working range, too, than other plastic tapes.

There has been a great need, also, for a method of cutting plastic tape easily, and eliminating the waste caused by stretching and thinning the next several inches on the roll.

*Plymouth's formula for total adhesion

Plymouth solves this problem handily with a new tape cutter (pat. pending) packed in every 66 -foot can* It rides the roll of tape, and fits snugly within the core when not in use.

All of slipknot \#7 plastic electrical tape's properties so far exceed previous specifications for vinyl electrical tape that it is truly felt to be revolutionary in the field. It is available from stock at your distributor's in $3 / 4$ " width, and can be had on special order in any width. It carries the UL label, of course. This new tape has successfully passed the most rugged laboratory and field tests ever devised. It will pass all of yours, too. Here are some of the specifications:

PHYSICAL PROPERTIES		ELECTRICAL PROPERTIES	
Thickness	.007" $\pm .001^{\prime \prime}$	Dielectric Strength ASTM Method	10,000 volts minimum
Tensile Strength	25 lbs./ inch width	Power Factor at 60 Cycles	07
Elongation At Break	$\begin{aligned} & 150 \% \\ & \text { minimum } \end{aligned}$	Power Factor at 106 Cycles	. 03
Adhesion to Highly Polished Surface	30 02./ inch width	Dielectric Constant at 60 Cycles	3.2
Adhesion to Backing	28 07./ inch width	Dielectric Constant at 106 Cycles	2.3
Transfer of Adhesive	None	Insulation Resistance	$\begin{aligned} & 500,000 \\ & \text { Megohms } \end{aligned}$
Moisture Vapor Transmission	$\begin{aligned} & 2.5 \mathrm{gms} . / \\ & 100 \mathrm{sq} . \text { in/ } \\ & 24 \text { hours } \end{aligned}$	Electrolytic Corrosion Factor	1.0

Data given represents averages and should not be taken as maximum or minimum for specification purposes.

- Limited time offer

You are invited to write for a generous trial roll of SLIPKNOT \#7, on your business letterhead, to

Crt Images Persist for Days

Cathode-ray oscilloscopes are characterized by the disadvantage of relatively short persistence. Evaluation of transient phenomena is difficult because of the short time that curves remain legible.
Toward the end of WW II, use was made of blue-writing oscilloscopes. But these fell into commercial insignificance in the post-war years. German engineers dug out old files and began production of a blue-writing crt. It is to be incorporated into the design of a bluewriting oscilloscope marketed by Wandel \& Goltermann, of Reutlingen, Germany.
The rectangular front screen of the tube is backed by a mica screen coated on its inner side with a layer of potassium chloride. The front surface of the mica is covered with a transparent current-conductive erase coating provided with terminals for connection to a source of power.

As the beam of electrons generated by the electron gun wanders
across the screen, it will leave a violet-blue trace because of the potassium chloride changing color under the influence of the electrons. The trace will remain legible on the screen for hours and days, it is claimed. It can be erased at will by passing current through the transparent layer deposited on the mica screen.

The recorder unit has a built-in deflection amplifier (frequency from zero to 10 kc) to give deflection factors up to $3.3 \times 10^{3} \mathrm{mv}$ per cm . Sweep time can be varied between 0.01 and 3 seconds. The useful recording speed is some 1,280 feet per second in ten lines spaced 5/16 inch apart.
The time required to erase the complete image screen is about 30 seconds; single lines can be individually erased one after the other so that continuous recordings can be made.
Image definition is said to be sharp enough to permit photographic records to be made.

Technique Finds Tube Resonances

By R. B. TATGE
Mechanical Engineering Lab.
General Electric Co.
Schenectady, N. Y.
VACUUM TUBES are often required to operate in environments having high vibration levels. This can lead to two types of malfunction, which may occur singly or together.

The first is generation of spurious signals (microphonics) because of relative motion between the vacuum tube electrodes. The support structures in the tube (particularly mica spacers) loosen more as the tube elements vibrate. Thus electrode movement increases with the same level of vibration as the tube ages.

The second type of malfunction is physical damage to the tube, such as cracking of the envelope or loss of oxide from the cathode. Such failures may occur with little or no warning.

These factors make it desirable to choose tubes whose electrodes have low mobility and whose reso-

FIG. 1-Accelerometer is used as a sensing device to maintain constant accelera. tion of shake table as it is swept in frequency
nances do not coincide with vibration frequencies in the tube's socket and mounting structure.

A direct measurement of the response of a vacuum tube electrode to a given forcing function applied to the completed tube would be difficult, perhaps involving x-ray microscopy. An indirect measurement technique has been developed using commercially available equipment. Relative response of an electrode
as a function of the applied frequency can be readily measured.

Using this technique, the tube is rigidly mounted on a shake table whose acceleration is held constant as frequency is swept. A feedback loop is used with an accelerometer on the table used as the sensor. The tube filament is heated by a battery to minimize hum pick-up.

A capacitance bridge, connected to two tube elements, is balanced with the shake table excitation off. At this time, the bridge sees a capacitance, C_{o}, which is the sum of the tube interelectrode capacitance and the cable capacitance (which is fixed). When the table is shaken, the tube elements vibrate, and the capacitance seen by the bridge may be expressed as

$$
C=C_{0}+\Delta C \sin \omega t
$$

where ΔC is the peak change in capacitance due to electrode displacement and ω is the angular frequency applied to the shake table. The bridge output is an a-c signal proportional to ΔC.
Since the object is to locate resonances in the tube structure, it is desirable that, in the absence of resonances, the bridge output be constant over the frequency range. Since shake table acceleration is

Small Scale

 Countermeasure

Unusual headgear is actually a horn antenna mounted on α helmet for picking up signals from aircraft navigation or bombing radars. It enables Ground Observer Corps personnel to detect aircraft more than 100 miles away. Output of eighttransistor amplifier is supplied to earplug

(TUBELESS) TRANSSTORITED
 SHORT CIRCUIT PROTECTED

| SLE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Patent Pending
A 0.01% SERIES IS AVAILABLE IN 13 NEW MODELS KEPCO OFFERS MORE THAN 120 STANDARD VOLTAGE REGULATED POWER SUPPLIES COVERING A WIDE RANGE OF MAGNETIC, TUBE AND TRANSISTOR TYPES. MOST MODELS AVAILABLE FROM STOCK. SEND FOR BROCHURE B. 585

LABORATORIES, INC.

131.38 SANFORD AVENUE • FLUSHING 55. N.Y INDEPENDENCE 1.7000

- REGULATION (for line or load) 0.1% or 0.003 Volts (whichever is greater)
- RIPPLE: $1 \mathrm{mv}, \mathrm{rms}$.
- RECOVERY TIME 50 microseconds
- STABILITY (for 8 hours) 0.1% or 0.003 Volts (whichever is greater)
- TEMPERATURE COEFFICIENT 0.05% per ${ }^{\circ} \mathrm{C}$. Ambient operating temperature $50^{\circ} \mathrm{C}$ maximum. Overtemperature protection included. Unit turns off when over-temperature occurs.
- SHORT CIRCUIT PROTECTION: NO FUSES CIRCUIT BREAKERS OR RELAYS! Designed to operate continuously into a short circuit. Returns instantly to operating voltage when overload is removed. Ideal for lighting lamps and charging capacitive loads.
- OVER CURRENT CONTROL can be set from 0 to 120\% of full load.
- REMOTE PROGRAMMING at 1000 ohms per volt.
- REMOTE ERROR SIGNAL SENSING to maintain stated regulation directly at load.
- Suitable for square wave pulsed loading.
- Continuously variable output voltage without switching.
- Either positive or negative can be grounded.
- Units can be series connected.
- Power requirements: $105-125$ volts, $50-65$ cycles. 400 cycle units available.
- 1 Terminations on front and rear of unit.

1 High efficiency. Low heat dissipation.

- Compact, light weight for bench or rack use.
- Color: grey hammertone.

ORDERING INFORMIATION:
Units without meters use model numbers indicated in table. To include meters add M to the Model No. (e.g. SC-18-1-M) and add $\$ 30.00$ to price.
*Rack adapter for mounting any two $81 / 8^{\prime \prime} \times 41 / 8^{\prime \prime}$ units is available. Model No. RA2 is $51 / 4^{\prime \prime} h \times 19^{\prime \prime} \mathrm{W}$, is $\$ 15.00$

FIG. 2-Comparison of recordings with capacitance bridge between cathode and plate (A) and between cathode and screen grid (B) indicate frequencies at which cathode vibrates
held constant, while the bridge senses displacement, this may be achieved by differentiating the bridge output twice to get a new signal proportional to the tube element acceleration. This signal is plotted on a high-speed level recorder which is synchronized with the sweep oscillator.

The process is repeated using one of the same tube elements and one other element. A comparison of the two plots discloses which of the resonances are common to both plots, and, therefore, caused by vibration of the tube element common to both tests.

A disadvantage of this technique is the difficulty in determining absolute response. In addition, output of the capacitance bridge is a function of mode shape as well as peak electrode displacement. For many applications, these considerations are secondary to the speed and ease of analysis offered.

Feedback Stabilizes Flip-Flop

By PHILIP CHEILIK

Federal Telecommunication Laboratories, International Telephone and Telegraph, Nutley, N. J.
Feedback enables a transistorized flip-flop to operate on pulses of 3 volts with 0.5 microsecond fall time. The flip-flop is very independent of changes in voltage and unbalance of transistors. The circuit was designed for use in a computer.

Operation

The common emitter resistor R 。 in Fig. 1 provides d-c degeneration. For good trigger sensitivity, it is
heavily bypassed in order to increase the gain around the regenerative loop. Resistor R, connected between the bases of the two transistors provides negative feedback.

Assume that Q_{1} is conducting and Q_{2} is cutoff. A negative pulse is applied at the base of Q_{1} cutting it off. Its collector rises to +11 v , and the rise is coupled to base B_{2} through the cross-coupling network. As B_{2} rises above B_{1}, a current flows in feedback resistor R_{f}. This current reduces the normal base current of Q_{2} and prevents B_{2} from rising too high. Base B_{2}, in turn, regulates the collector current drawn by transistor Q_{2}.

The flip-flop uses emitter followers in the cross-coupling network in order to match the high collector output impedance to the low base input impedance. These emitter followers also serve as low impedance output coupling to drive gating chains.

In the computer, the flip-flop is triggered with the differentiated trailing edge of a logic pulse to avoid the use of interstage delays for such circuits as shift registers. Capacitor coupling with a large

FIG. 1-Feedback resistor R_{f} in flip-flop makes it less sensitive to voltage variations and transistor unbalance
time constant is used in case the logic pulse has poor fall time.

Attenuation is small even for slow fall time. The partially differentiated pulse is amplified, and the output of the amplifier is differentiated. Since phase reversal is undesirable, a grounded-base $n p n$ transistor provides a negative pulse to bring the amplifier into conduction from its normally cutoff state.

Design

For values of β between 20 and 100 , transistors $2 \mathrm{~N} 124,125,126$ and 167 may be used. The voltage swing required is six volts from +5 to +11 . A self-biased multivibrator is used to improve d-c stability.

For a 2 N 125 at an ambient temperature of $55 \mathrm{C}, 28.5 \mathrm{mw}$ is maximum dissipation. With a collector current of about 1 ma for a transistor of minimum β, a 6,000 -ohm resistor is needed for R_{2} in order to get a 6 -volt swing. A 6,800 -ohm resistor, the nearest standard 10percent value, is used.
When R_{f} is considered disconnected, $50 \mu \mathrm{a}$ of base current is needed where $I_{c}=1 \mathrm{ma}$ and $\beta=20$. If the cross-coupling resistors are large compared to R_{1}, the equivalent Thevenin resistance $R=\left(R_{2}+\right.$ $\left.R_{3}\right) / R_{2} R_{3}$. When $R=50,000$ ohms, the base input resistance of a transistor is very low in comparison. The drop across the base-to-emitter junction can be ignored, and the total drop can be assumed to occur across R. For $I_{b}=50 \mu \mathrm{a}$, a positive voltage swing of 2.5 v across R is required. For a symmetrical peak-to-peak signal of 5 v at the base, the collector swing is 6 v so that $a=R_{3} /\left(R_{2}+R_{3}\right)=5 / 6$. Emitter follower gain is assumed to be one. Since R equals $50,000 \mathrm{ohms}, R_{2}$ and R_{3} will be 60,000 and 300,000 ohms, respectively.

To obtain a base current margin, somewhat smaller resistors in the same ratio are used. Convenient values are $R_{2}=47,000$ and $R_{8}=$ 220,000 olims.

When Q_{2} conducts, $V_{02}=5 \mathrm{v}$ and $V_{b_{1}}=5 / 6 \times 19-14=1.8 \mathrm{v} . R_{\text {。 }}$ must be large enough so that the voltage drop across it exceeds the 1.8 v necessary to cut Q_{1} off. When $\beta=20$, the base of Q_{2} is at $(11+$ 14) $\times 5 / 6-14=6.8 \mathrm{v}$.

Since $\left(V_{b 2}-\beta I_{b 2} R_{e}\right) / R=I_{b 3}$,

Now...

MASS-PRODUCED COMPUTER-TYPE H-F TRANSISTORS

For high-speed switching

 For high-frequency amplificationProduction of CBS high-frequency transistors has been stepped up for a growing variety of applications. The $2 \mathrm{~N} 438,2 \mathrm{~N} 439$ and 2 N 440 are now available in quantity for multivibrator and blocking oscillators . . gate and llip-flop circuits ... and r-f, i-f, and high-fidelity a-f amplifiers.
All three types are alloy-junction for greater uniformity, higher voltage and current, flatter gain and lower saturation resistance. 'They employ the standard JETEC TO-9 package welded to achieve reliability never belore approached with NPN transistors.
Note the many desirable features. Yon may be able to use these CBS transistors. Write for Bulletin E-268 giving complete data and helptul application notes.

CHECK THESE FEATURES

1. High frequency response

2N438	2.5 to 5 mc .
2N439	5 to 10 mc .
$2 N 440$	10 mc and up.
High operating voltage	up to 30 volts.
High switching speed	below $0.2 \mu \mathrm{sec}$.
High current amp. factor	up to 100.
High dissipation rating	up to 100 mw .
Low leakage current	$2 \mu \mathrm{momps}$ av.
Low collector capacitanc	$10 \mu \mu \mathrm{f}$.

Reliable products
through Advanced-Engineering

semiconductors

CBS-HYTRON

Semiconductor Operations, Lowell, Mass.
A Division of Columbia Broadcasting System, Inc.

FAST FASTER FASTEST

automatic toroidal winder in the industry

TW 200
a miracle of speed . . . fully automatic . . . no manual coil handling during winding .. constant dependability . . . perfect and uniform coils each time . . . all the time.

FEATURE

segmental and 360 degree winding

FEATURE

predetermined turns counting

FEATURE

interchangeable shuttle heads

FEATURE

variable wire-spacing control

SPECIFICATIONS

Coil sizes: $\quad 0.218^{\prime \prime}$ ID through $5^{\prime \prime}$ OD
Wire sizes: \#20 through \#42 AWG
Wire types: enamel, silk, cotton, Teflon, sleeve covered, filar
Winding speed:
fixed - 950 and 1150 RPM
variable - 0-1200 RPM

You get the BEST from BOESCH

BOESCH MANUFACTURING COMPANY, INCORPORATED DANBURY, CONNECTICUT
$I_{b 2}=89.5 \mu \mathrm{a}$ and $I_{c 2}=1.79 \mathrm{ma}$.
For $\beta=100$, the same procedure is used. However, since a clamp is present $\beta I_{0} R_{0}$ will represent the drop across R. only if it is less than 5.

If V_{0} is assumed to be less than 5 v , the formula indicates that $I_{b 2}=31 \mu \mathrm{a}$. Checking, $\beta I_{b} R_{\text {e }}=$ $180,000 \times 31 \mu \mathrm{a}=5.38 \mathrm{v}$. Therefore, the drop is not completely across R_{e}. Substituting 5 for βI_{o} $R_{e}, I_{02}=45 \mu \mathrm{a}$. Collector current $I_{c 2}$ is therefore 4.5 ma .

The dissipation, $V_{c 2} I_{o}=22.5 \mathrm{mw}$, is within the allowable rating at 55 C .

Checking for stability for $\beta=$ 100, $\alpha=0.99 . S=\left(R_{0}+R_{b}\right) /$ $\left[R_{\mathrm{s}}+R_{\mathrm{o}}(1-a)\right]$ or 19 .

The maximum $I_{c o}$ for any of the transistors previously mentioned is $2 \mu \mathrm{a}$. The stability against runaway is a function of S and of $I_{c o}$. The maximum allowable dissipation of 23 mw is not exceeded for any value of β previously indicated. Clamp diodes used at the emitters and the collectors to prevent the transistors from saturating, speed the operation. The collector diode also serves to fix the lower level of the voltage swing.

The large emitter capacitor acts somewhat like a bias battery in conjunction with the emitter resistor. The cross-coupling capacitors were chosen so that the cross-coupling time constant is larger than the expected rise time but smaller than the period.

Assuming the base input resistance is small, the time constant is given by $R_{1} C_{c}=6,800 \times 100 \mu \mu \mathrm{f}=$ $0.68 \mu \mathrm{~s}$.

The feedback resistor was picked experimentally. It is possible to analyze the circuit with the feedback resistor, to determine the operation with the chosen value of 27,000 ohms.
The effect of the feedback resistor R_{f} is that collector current varies by a smaller ratio, 2.08/1.08 or 1.93 as compared to $4.5 / 1.79$ or 2.52. Also, the total collector current is much smaller so operation is within the maximum dissipation rating.
V, never goes above 5 v so the diode at the emitter can be eliminated. Without the feedback resistor, it takes 2.5 to 4.5 volts to
have you checked this Remote Actuator for jobs under Shock and Vibration?

OAIK ROTARY SOLENOIDS

(Mfd. under license from G. H. LELAND, INC.)

MODEL 5E
SHOWN ACTUAL SIZE

OPERATES IN ANY POSITION

EXTREMELY ADAPTABLE

hermeitcally
SEALED

ROTATES IN BOTH DIRECTIONS BUILT INTO
COMPLETE SUBCHA COMPLETE SUBCHASSIS

WITH SEALED DUST CAP

stepping torques from 6.4 to 64 inch-ounces

If you've been searching for an actuator that meets such specs as MIL-S-4040A, and is remarkably small for the amount of work it can do, investigate Oak Rotary Solenoids. They operate on DC and are designed for intermittent service. Standard models give steps of 25°, $35^{\circ}, 45^{\circ}, 67.5^{\circ}$, or 95° in either a left or right-hand direction. Self-stepping or externally pulsed units are also built. Oak Rotary Solenoids find wide use in both commercial and military equipment. Why not evaluate their unusual capabilities for your next project. We will be glad to help you engineer the job. Just send us a short description and sketch.

1260 Clybourn Ave., Dept. G, Chicago 10, Illinois Phone: MOhawk 4-2222

[^3]

UNFIAMPERED...

by limitations to his creativeness and encouraged to continually increase his professional stature, the engineer of Vitro's Silver Spring Laboratory is able to make increasingly important contributions in the fields of guided missile and underwater weapon systems.

If you are creative and value professional recognition for your individual efforts, you will want to find out more about us. Our modern laboratory is located in a fine residential suburb of Washington, D. C

For detailed information about our present openings, address your inquiry to:

Manager, Professional Employment
Silver Spring Laboratory, Dept. 101
Vitro Laboratories, 14000 Georgia Avenue
Silver Spring, Maryland

trigger the flip-flop, while with feedback, the range of voltage necessary is from 1.5 to 2 volts.

Phase Shifter Range Exceeds 180°

By W. G. SHEPARD
Physical Research Staff, Boeing Airplane Co., Seattle, Washington

Phase-shifting circuits with ranges greater than 180 degrees are often useful.

The circuit shown in Fig. 1A is often used to shift phase. With perfect circuit components, with the resistance variable to infinity and

FIG. I-Constant output voltage is pro duced by simple phase-shifting circuit with a theoretical range of 180 degrees
with no load, a 180 -degree phaseshift range is theoretically possible.

A vector diagram, Fig. 1B, may be constructed for this circuit by noting that the voltages across $X_{\text {o }}$ and R are always 90 degrees out of phase and that the addition of these vectors always equals $E_{\text {ab }}$, the voltage across the transformer secondary. The locus of all intersections of $E_{X 0}$ and E_{R}, forms a half circle. The output voltage will be constant for any value of R.

A circuit giving similar results uses an inductor instead of a capacitor. Often the resistance is fixed and a saturable reactor used as the variable element. The saturable reactor may be controlled by a

MICROWAVE SIGNAL GENERATION

Complete Coverage 650 to $11,500 \mathrm{mc}$.

Each Polarad Microwave Signal Generator is equipped with the unusually simple UNI-DIAL control that tracks reflector voltages automatically while tuning continuously. Frequency. accurate to $\pm 1 \%$, is read directly on the single frequency dial. These rugged instruments include internal modulation, pulse and FM : internal square wave modulation; synchronization outputs. delayed and undelayed: provision for multi-pulse modulation input: provision for external modulation and synchron. ization: variable attenuator calibrated directly in dbm: engineered ventilation to insure specification performance over long operating periods.

Model MSG. 2 $2,150-4,600 \mathrm{mc}$

Model MSG-1 $950 \cdot 2,400 \mathrm{mc}$

Model MSG-34 $4,200 \cdot 11,000 \mathrm{mc}$

Model PMK
$10,000-15,500 \mathrm{mc}$
$15,000-21,000 \mathrm{mc}$

MICROWAVE

 SIGNAL
GENERATION

Complete Coverage

 12,400 to 50,000 mcEHF Microwave Signal Generators

- A completely integrated self-contained signal generator covers 12,400 to 17,500 .
- 7 plug-in r-f tuning units and a basic unit cover the frequency range from 18,000 to $39,700 \mathrm{mc}$.
- Direct-reading calibrated output attenuator, accuracy $\pm 2 \mathrm{db}$.
- Frequency calibration accomplished by a $\pm 0.1 \%$ direct-reading wavemeter.
- Internal 1000 cps square-wave modulation.
- Capable of external modulation, both pulse and FM
- Equipped with integral electronically-regulated power supplies.

Gives you the background you need for precision work . . .

1. NETWORK SYNTHESIS, Volume 1

By DAVID F. TUTTLE, Stanford University
A comprehensive, up-to-date, and highly readable treatment of the most important ideas used in the synthesis of networks. This first volume of a two-volume work covers the two-terminal (one-port) network or one-terminal pair. Features a three-step procedure to reach the final aim of synthesis or design of networks: -ohtaining a working knowledge of the properties of networks; investigating ways of approximating desired hehavior, and carrying out the actual synthesis of networks to achieve such attainable ends.
1958
1176 pages
Illus.
\$23.50

Helps solve your radio problems

3. SYNTHESIS OF PASSIVE NETWORKS

By ERNST A. GUILLEMIN, Massachusetts Institute of Technology
A practical, complete, and consistent approach to network linear synthesis. Covers both the approximation problem and the realization techniques - two essential parts of synthesis procedure. All fundamental theory and methods are included, with sufficient examples to make their presentation clear and meaningful

1957
741 pages
466 illus.
$\$ 15.00$

Provides melbods and rechniques

2. ANALYTICAL DESIGN OF LINEAR FEEDBACK CONTROLS bv george c. newton, jr., leonard a. GOULD, and JAMES F. KAISER, all of the Massachusetts institute of Technology

Shows you how to achieve analytical solutions of practical control problems, and demonstrates techniques through use of simplified models and constraints. Presents the results of the authors' extensive research on the analytical design
 method, showing how such factors as input noise, disturbances, non-minimum Whase fixed elements, and saturation tendencies in fixed elements, place definite bounds on the performance that can be achieved in lineat systems.
1957
419 pages
169 Illus.
\$13.50

4. PROGRESS IN SEMICONDUCTORS, Volume II

Edited by ALAN F. GIBSON, Radar Research Establishment, Malvern, U.K. ; P. AIGRAIN, Université de Paris; and R. E. BUR GESS, University of British Columbia
The latest information on important aspects of semiconductor research by 13 top authorities.
$1957 \quad 280$ pages Illus. $\$ 10.50$

5. TECHNCAL REPORT WRITING

By JAMES W. SOUTHER, University of Washington
A bricf, but thoroughly inclusive presentation of the basic essentials of technical
report writing, emphasizing the fanclional organization of material.
1957
82 pages
\$2.95

6. TELEVISION IN SCIENCE AND INDUSTRY

By V. K. ZWORYKIN, E. G. RAMBERG, and L. E. FLORY, all of the RCA Laboratories
Investigates the various possibilities of closed-circuit or industrial television as distinguished from the broadcast function, and describes the tools which have becn developed to realize it. Analyzes both equipment and applications. Dis
 cusses closed-circuit color television and improvements achieved by transistoriza tion; describes stereo television, specialized television methods in te search, television microscopy, etc.; and outlines the principal fields of application of television in industry, research, medicine, education, commerce, military affairs, home and farm.
1958
300 pages
Illus.
$\$ 10.00$

Techniques and their practical application

7. LOGICAL DESIGN OF DIGITAL COMPUTERS

By MONTGOMERY PHISTER, Jr., Thompson-Ramo-Wooldridge Products, Inc.

Describes and interprets various techniques. using synchronous circuit conis ponents almost entirely: and demon strates their practical application in the design of digital systems by the logicalequation method. Detailed discussion of:
 the Veitch Diagram method of simplifi-
cation of Boolean equations; the diffat cation of Boolean equations; the "diffo
ence-equation" approach to memory dements: the Huffman-Moore model of digital systems; the complete solutions to Alip-flop input equations; and the systematic method for complete computer design.
$1958 \quad 408$ pages Illus. $\$ 10.50$
\square
JOHN WILEY \& SONS, Inc.
E-58
440 Fourth Ave., New York 16, N. Y.
Please send me the took(s) circled below to read and examine ON APPROVAL. Within 10 days 1 will return the book(s) and owe nothing, or I will remit the full purchase price(s), plus postage.

1	2	3	1	5	6	7

This special filament transformer has 400 cycles with 4 secondaries, 10 volts, 100 Amperes. Each secondary can be mounted in parallel series or series parallel. The extremely close tolerance between secondary potentials under load is of extreme importance in this design.

The filament transformer, a new member of the well-known family of NWL custom-built Transformers, is made to fit the particular needs of the user. Each Nothelfer transformer is individually tested for core loss, polarity, voltage, corona, insulation breakdown and aging characteristics and must meet all customer's requirements before shipment. We shall be glad to receive your specifications and quote you accordingly.

NOThelfer winding laboratories, INC., P. O. Box 455, Dept. E.5, Trenton, N. J. (Specialists in custom-building)

FIG. 2-Phase of output voltage can be varied more than 180 degrees but output voltage is not constant
vacuum tube or transistor, allowing automatic control.

In the practical case, 180-degree range is not possible with the circuit shown in Fig. 1A.

One way to achieve 180 -degree or more phase shift is to have greater than 180 degrees between points A and B. Fig. 2A shows a circuit in which the phase at point A is made to lag by an R-C combination ($R_{2,}, C_{2}$). This circuit has about 190 degree phase range at one kc.

To satisfy the right-angle condition for $E_{x c}$ and E_{k}, the locus

FIG. 3-Output voltage for these circuits is more nearly constant

NEW LAB MEASURES ANTENNA PATTERNS; PROBES OUTER SPACE

A new laboratory at Sunnyvale, California today gives Lockheed scientists antenna patterns, scattering and propagation data, and promises exciting new discoveries in the problems of space communication. Laboratory studies include the effect of upper space on radar and radio signals, the radar pattern presented by space vehicles and missile shapes, and the design of antennas to survive the rigorous environment of the upper atmosphere and hypersonic speeds. Findings could pave the way for communication with manned space ships of the future or for the remote guidance of unmanned space ships.
Research and development studies by Division scientists contribute heavily to the projects that place Lockheed in the forefront of U.S. missile developers. These projects include the Polaris solid fuel ballistic missile, Earth Satellite, Q-5 target ramjet, and X-7 test vehicle. Positions created by expansion on these and still other programs we cannot discuss offer unusual opportunities for advancement with our growing young division. Besides Antenna and Propagation, openings are in Solid State Electronics, Telecommunications, Instrumentation, Radar and Data Link. Other openings include Information Processing, Reliability-Producibility, Ground Support, Flight Controls. Qualified engineers or scientists may write to Research and Development Staff, Palo Alto 27, California.

Mr. Emmanuel A. Blasi, right, Manager of Antenna and Propagation Department, discusses results of radiation performance after antenna pattern measurements with staff scientist Allen S. Dunbar. Column bearing missile in background is operated automatically from laboratory.
 full-scale ranges: $0-100,200,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}$ and $20 \mathrm{~K}+$ gausses, using a single probe. Two standard Alnico V reference magnets having $3 / 4 \%$ accuracy are supplied. Unit is housed in an aluminum case, weighs 12 lbs . and operates from 115 -volt, $50-400 \mathrm{cps}$ line. Price $\$ 420$.

Magnetreater ${ }^{\circ}$

Model 889A de-magnetizes saturated magnets to any desired level of flux. Provides a precisely controlled method for rapidly treating permanent magnets, including the new coretype instrument mechanisms. Used with Model 206A Booster Unit or Model 107A Magnet Charger. Over-all size is $8^{\prime \prime} \times 10^{\prime \prime} \times$ $7^{\prime \prime}$. Weight 24 lbs. Price $\$ 163$.

Standard Magnets

Laboratory standard fixed gap reference mag. nets having flux densities from 100 to as high as 20,000 gausses are now available. These units are fully stabilized magnetically, mechanically and thermally and are used to calibrate fluxmeters and gaussmeters for engineering or production testing. Certification supplied for each magnet.

Performance of all models is rigidly guaranteed. Prices are net f.o.b. Boonton, N.J. and subject to change without notice.

> Radio Jrequency LABORATORIES, INC. Boonton, New Iersey, U.S.A.

FIG. 4-Use of tube in place of transformer permits phase shifter to handle a wider band of frequencies

FIG. 5-More than 180 degrees of phase shift and very constant output voltage is provided by two-tube shifter
of the points for E_{o} does not fall on the circumference of the circle whose center is zero volts, E_{0} being less in the center of the phase range. A slightly more constant output voltage may be achieved by the circuits shown in Fig. 3.

The transformer may be eliminated by using the circuit shown in Fig. 4, which covers a wider frequency band if suitable values are used. Wide-band operation is achieved because transformer resonance effects are not present at higher frequencies. At lower frequencies the low inductive reactance of a transformer primary does not shunt input voltage source and cause loss of signal or high current flow resulting in core saturation. The values given are approximately correct for 500 to $2,000 \mathrm{cps}$.

If more than 180 -degree range is desired together with very constant output voltage, the circuit of Fig. 5 is recommended. In this circuit, two phase-shifting circuits similar to that in Fig. 1A are cascaded.
Test results at $1,000 \mathrm{cps}$ gave a phase range of 255 degrees and an output voltage constant within 1.5 percent.

Improved Tv Picture \& Set Styling

Twenty-one inch picture tube ready for attachment of contoured twin panel (left): twin panel sealed to tube forming integrated one-piece assembly (center); and (right) varied TV styling which is not restricted to a few different cabinets designed around a safety glass

Since TV picture tubes are capable of throwing quite a bit of glass around if they implode, a safety glass must be placed in front of the tube. The price for safety is-a dust gathering surface on the TV tube face and the back of the safety glass; two additional reflecting surfaces to cut down brightness and definition; and very restricted cabinet styling, since the safety glass is mounted in the cabinet.

Direct Connection

A twin panel safety glass which is attached directly to the tube and eliminates these three problems has been developed by Corning Glass Works, Corning, N. Y. It produces a tube that is clean-for-life, since dirt can never reach the picture tube.

The specially curved glass face panel is bonded to the panel skirt of a finished television tube. A
transparent liquid with an index of refraction the same as glass, is sealed between both panels. The liquid between panels is non-toxic, non-contaminating and can withstand sudden temperature fluctuations from -40 F to 160 F . It retains its clarity indefinitely. The twin-panel tube will withstand more than 30 G 's without failure.

Stylist Dream

With the safety glass and television tube sealed into one unit, a dust-proof assembly results, which allows new freedom in the design of smaller more compact sets. In fact the flexibility of cabinet design is probably its most outstanding feature. What the television industry needs most now is a way to sell more sets.

The panels can be easily attached by either the set or tube manufacturer.

Transformer Epoxy Conducts Heat

A TRANSFORMFR dip encapsulation which will withstand extreme dynamic stress, vibration, and thermal shock without cracking results in a more reliable transformer and a lower production cost.

Heat Barrier

The silicon rubber buffer mate-rial-required with many transformers because of the different coefficients of expansion of core material, copper wire and the epoxy resin encapsulation-is not needed. The heat barrier created by a silicon rubber buffer is therefore eliminated. And the good heat conduc-
tion of the epoxy used results in a size and weight reduction. The surface finish is smooth and slightly harder than most epoxies used without cases.

No Can or Case

The encapsulation process developed by DuMont Laboratories, Clifton, N. J. eliminates cans or special cases and meets all Class B MIL-T-27A specs. Low viscosity of the epoxy gives exceptionally good impregnation of the core material. It also provides better heat transfer and moisture protection. Because of the high dielectric
strength of the epoxy, smaller winding margins can be used. More turns per layer can therefore be wound on the transformer coil.

Thermal Shock

The smooth epoxy covering is able to withstand the stresses (which occur at right angles to each other) caused by different thermal coefficients for the core, copper wire, and epoxy resin at

Low viscosity of epoxy encapsulation material gives exceptionally good impregnation of transformer core. Better heat transfer and moisture protection result from the deep impregnation. Thermal shock from -55 to +85 C will not cause encapsulation to crack
thermal shocks from -55 to +85 C without cracking. Thickness of the dip encapsulation is from $1 / 16$ to $\frac{1}{8}$ inch.

Cost

Production costs are lower becaluse less time is needed in processing the transformers, and expensive dies and fabricating molds are unnecessary.

High Speed Computer Diode

A Reverse recovery time of 5 mil $\mu \mathrm{sec}$ compared with $25 \mathrm{mil} \mu \mathrm{sec}$ for conventional computer diodes has been obtained with special crystal growing and bonding. The diodes also have high forward conductance.

The computer diodes were developed by Qutronic Semi-Conductor Corp., 525 Broadway, N. Y. 12,

HICH VOLTAGE but no danger!

AC DIELECTRIC STRENGTH TESTER

- Conforms to ASTM D. 149 and Federal Specification LP-406 Method 4031.
- Plug-in interchange. able test jigs for all ASTM tests.
- Automatic or manual increase of voltage. - Completely interlocked for personnel safety.
- Self-contained test chamber.

MODEL	RANGE	PRICE
PA-5.152	$15,000 \mathrm{~V}$ rms. 2KVA	1600.00
PA-5.155	$15,000 \mathrm{~V}$ rms. 5KVA	1950.00
PA-5-252	$25,000 \mathrm{~V}$ rms. 2KVA	1650.00
PA-5-255	$25,000 \mathrm{~V}$ rms. 5KVA	2020.00
PA-5-502	$50,000 \mathrm{~V}$ rms. 2KVA	1675.00
PA-5.505	$50,000 \mathrm{~V}$ rms. 5KVA	2050.00
PA-50-1005	$100,000 \mathrm{~V}$ rms. 5KVA	4500.00

ARC RESISTANCE TEST SET

- Conforms to ASTM D. 495 and Federal Specification LP-406 Method 4011.2.
- Simplified opera. tion, includes auto. matic stepping and timing.
- Improved electrode holder for test jig.
- Operable by un. skilled personnel.
Price: Model ART-1 \$2475.00
Write FOR
COMPLETE ELECTRONIC TEST EQUIPMENT CATALOG. . .

[^4]CIRCLE 80 READERS SERVICE CARD
N. Y. Angle of the gold wire to the germanium surface, the time of alloying, and the surface of the germanium, are carefully controlled in bonding. Temperature control, purity of germanium, purity of doping material, and rate of growing and dislocation of the crystal are the factors contributing improvement in crystal growing.

Better Engineering Symposiums

Few things are as potentially worthwhile as a conference of electronic engineers, and yet even fewer things have as many irritating and unrewarding aspects. The Proceedings of the 1958 Electronic Components Conference held in Los Angeles on April 22, 23 and 24 suggests a practical solution to one part of this problem-the obtaining of information from conference papers.

Complete versions of twenty-five papers delivered at the conference were bound in a hard cover book

Know what you're going to hear-and know what you've heard
and distributed at the conference. The book provided attending engineers with the entire text of each speaker.

Selective Information

If after examining the text of a particular talk an engineer finds it afield of his interest he can skip the paper without fear of a hasty decision. If on the other hand he finds the paper particularly inter-

LIGHTWEIGHT air conditioning for

missile support

systems

The mobility problem in cooling electronic equipment in vans and for missile pre-launching has been answered by new AiResearch Freon air conditioning units. One-fourth the weight and one-third the size of conventional equipment, these lightweight, airtransportable units utilize highly efficient AiResearch Freon components (see diagram) originally developed for commercial aircraft applications.

Heat source for the circuit can be
either electrical, or exhaust gas from an AiResearch gas turbine. When the gas turbine assembly includes an alternator, it supplies 400 cycle power to run both the refrigeration unit and all electronic gear in the van.

Easily operated manually or automatically, this compact air conditioning unit provides from 5 to 12 tons cooling capacity and up to 85,000 bru's per hour heating capacity. It operates on 400 cycles, 208 volts. The unit shown stands $54^{\prime \prime}$ high, $52^{\prime \prime}$ wide

SPECIFICATIONS

SPECIFICATIONS	
Performance Data:	
Typicaloperation-cooling	
Refrigerant	Freon 12
Evaporator tonnage	7.5
Ambient temperature	100 F
Condenser air flow	5000 cfm
Condensing temperature	131 F
Evaporator air flow	1230 cfm
External distribution	
ducting pressure drop	2 in $\mathrm{H}_{2} \mathrm{O}$
Evaporating temperature	48 F
Electrical power	26 KVA

and $27^{\prime \prime}$ deep, with a charged weight of only 452 lbs.! Your inquiries are invited.

Los Angeles 45, California • Phoenix, Arizona

Systems, Packages and Components for: aircraft. missile. electronic. nuclear and industrial applications

Specifically for instruments and test consoles which must operate on $50-60 \mathrm{cps}$ in the lab and on aircraft 400 cps power supply. Continuous operation over a frequency range from $45-600$ sps without the use of switching components or duplicate power zonnectors. Long operational life. Meets both military and federal specifications.

Model ${ }^{\text {a }}$	Type	Series	apacitor ed 220 va	$\begin{gathered} \text { CFM } \\ 60 \mathrm{cps} / 400 \mathrm{cps} \end{gathered}$		Total Net Pound	Approximate Dimensions
DF	KRS-301	433A	0.25		41	1.1	$3^{\prime \prime} \times 3^{\prime \prime} \times 3^{\prime \prime}$
DFE	KRS-401	434A	0.5	82	102	1.7	$4^{\prime \prime} \times 4^{\prime \prime} \times 31 / 2^{\prime \prime}$
DFE	KRS-4501	435A	1.0	115	160	2.7	$41 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 5^{\prime \prime}$
DRPP	KRS-1504	433A	0.25	9	14	1.2	$3 " \times 3$ "x ${ }^{1 / 2} 2^{\prime \prime}$
DR	KRS. 202	434A	0.5	20	25	1.7	$4^{\prime \prime} \times 311 / 2^{\prime \prime} \times 4^{\prime \prime}$
DR	KRS-2501	435A	1.0	33	40	3.0	$5^{\prime \prime} \times 41 / 2^{\prime \prime} \times 5^{\prime \prime}$

Write today for detailed technical information to.

esting he can carefully prepare any questions he would like to ask during the Question and Answer period.

Making Notes

When a person reads the text of a talk he makes use of one sensesight. When he hears a talk delivered, many additional factors can influence his understanding of the paper. Inflection in the speaker's voice and his facial expression either add importance to a sentence or take away from its significance. Gestures of the speaker can make seemingly stupid text become very understandable. If the engineer in the audience has a bound copy of all conference papers he can write-in the necessary marginal notes to make the papers meaningful to him. After the conference, the book becomes a personal and worthwhile reference.

Ideal

The ideal situation is to have bound proceedings available two weeks before the conference. Attending engineers can then adequately prepare for papers which are particularly interesting to them. It seems almost a natural that conference sessions held under such conditions will be more exciting and interesting.

Copies of the Proceeding of the 1958 Electronic Components Conference can be obtained from the Engineering Publisheis, GPO Box 1151, N. Y. 1, N. Y.

Smallest Molded Mica Capacitor

Subminiature capacitor designed to help reduce missile size and weight

A Capacitor 73 per cent smaller and 69 per cent lighter than the

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet."

McGraw-Hill Publishing Company, Room 2710^{\prime}, 330 West 42 nd St., New York 36, N. Y.
 Please send a copy of the new IRR cotalog and free ring samples.

NAME \qquad title COMPANY

STREET \qquad
CITY
ZONE
STATE

CIRCLE 84 READERS SERVICE CARD

theory * design * performance of electronic circuits

ELECTRONIC SEMICONDUCTORS

Just Published. A rigorous and systematic introduction to semiconductor physics, developing the subject logically from simple concepts and giving clear pictures of the conduction mechanisn of electronic semiconductors within the framework of the band model. Among the book's outstanding features are the treatment of acceleration of electrons, the Zener effect, etc. Book is a translation of the 2nd German edition of Elehtronische Hatheiter by Eberhard Spenke. Translated by D. Jenny, H. Kroemer, E. G. Ramberg, and A. H. Sommer, RCA Laboratories, 430 pp., 163 illus., $\$ 11.00$

RANDOM SIGNALS AND NOISE

Just Published. An introduction to the statistical theory underlying the study of signals and nolses in communications systems. Contains an introduction to probability theory and statistics, a discussion of the statistical properties of the Gaussian random process, a study of the results of passing random signals and noises through linear and nonlinear systems, and an introduction to the statistical theory of the detection of signals in presence of noise. By William B. Davenport, Jr., and William L. Root, Lincoln Laboratory, M.I.T. 393 pp., illus., $\$ 10.00$

ELECTRON TUBE CIRCUITS

New 2nd Edition Just Published. Discusses and evaluates the fundamental properties of electron tubes and their circuit operations-analyzes tuned and untuned amplifiers and takes up in detail circuits essental to modern electronic systems such as voltage, video. and power amplifiers; waveform generators: oscillators; modulators, etc. Scores of pracfiers: waveform generators: oscillators; modulators, etc. Scores of prac-
tical examples show you best applications of theory. By Samuel Seely, Case Inst. of Technology. 2nd Ed. 695 pp., 739 illus., $\$ 10.50$

BASIC FEEDBACK CONTROL SYSTEM DESIGN

Just Published. Bases the study of feedback control system design on complex frequency plane analysis-the root-locus. A wide range of servo transducers and components are covered. Recent advances covered include a section of gyroscopes and force-balance transducers, inertial include a secilo of gondinear systems such as the describing puncnavigation; analysis of nomlinear systems such as the describing lunction technique and phase plane analysis. Frequency methods, such as Nyquist and Bode, are included. By C. C. Savant, U. of Southern Cal. 418 pp., illus., \$9.50

SEE ANY BOOK 10 DAYS fREE

McGraw-Hill Book Co., Dept. FL-5-9 327 W. 41 st St., New York 36 Senci me book(s) checked below for 10 days' examination on approval. In 10 days I will remit for book(s) I keep plus rew cents for delivery costs, and return unwanted book(s) postpaid. cents par delivery costs, and if you remit with this coupon-same
(We pay return privilege.)
Just Published. Covers the topics most directly needed for a clear understanding of methods used in numerical solution of differential equations, both ordinary and partial, and in the solution of integral equations. Clearly explains the use of finite-difference methods in obtaining numerical solutions to problems-emphasizing procedures which can be most readily progranmed for an electronic digital computer. Many helpful techniques such as the use of lozenge diagrams for numerical differentiation and integration are supplied. By Kaiser \mathbf{S}. Kunz, Ridgefield Research Lab. 381 pp., 40 illus., $\$ 8.00$

NUMERICAL ANALYSIS

Worli's Finest Gored Solder!

YOU GET A THIN. WIDE JOINING-NOT A BALL!
Remember that "dry" corroded joints, ted plactonlis, rejects cost you money!

CHANGE TO NAN MULTCORE 5-CORE SOLDER

it sthe only solder with non-corrosive, Ersin Flux. 5 cores to guarantee uninterrupled inux in of the wire

There's only'a skin-thin wall of flux and the is the yet with less total percentage of flux han in many

The Ersin Flux spreads from 5 areas instead solder is instantly fluid . . . runs faster and more evenly, though its actual meiting temperature, of course, the same as that of any

Pre-wetting, by 5 molten cores of flux, insures instant spreading and gripping, even on difficult metals. Yesit saves money. permits lower tin content alloys than you may be using in

[^5]nearest comparable unit has been produced by the Micmold Electronics Division of General Instrument Corporation. It appears to be a big stride in the search for a way to make high-reliability components smaller-especially in missiles which use from 200 to 30,000 capacitors of various types.

Characteristics

The capacitor weighs one-half gram and is .37 inches long, .19 inches wide and .11 inches thick. Capacitance range is from $5 \mu \mu \mathrm{f}$ through $240 \mu \mu \mathrm{f}$ with tolerances from ± 2 to ± 20 percent. It is available in C or D characteristics in capacitance ranges below $50 \mu \mu \mathrm{f}$ and in C, D or E characteristics in capacitance ranges from $51 \mu \mu \mathrm{f}$ through $240 \mu \mu \mathrm{f}$. Working voltage is 300 volts at 85 C and 200 volts at 125 C . Dielectric strength is 200 percent of rated voltage. The new component, called A "Missil-Mite," is available in production quantities.

Funnel Flange Eyelets for Printed Circuits

Mounting eyelets in printed-circuit board holes with a funnel flange, instead of the rolled head usually used to hold eyelets in place, has two major advantages. It permits faster and easier insertion of a component lead in the eyeleted hole whether done by hand or machine. And it provides a mechanically stronger eyelet since the underside of the funnel flange attracts a generous solder fillet when dip soldered.

Mounting

Circon Component Corporation. Goleta, Calif. calls their new eyelet a Funelet. Because the Funelet is mounted in the printed circuit board by merely spreading one end of the eyelet-instead of the "rollover, pressdown" operation required with conventional eyeletsrejected assemblies due to imperfect eyelets are practically nil.

Dependability

A quality test of over 300,000 . eyelets did not produce any imper-
fect eyelets. The cost savings from jammed equipment, down-time, and damaged work caused by an imperfect eyelet helps offset the slightly higher cost of Funelets.

Funnel Flange eyelet permits easier component lead insertion (B); and solder fillet (A) gives a more reliable structure than rolled-head (C).

Strangely enough even though it was developed as a precision part, Circon claims many of the largest volume users are manufacturers of commercial low cost, competitive printed circuits who willingly pay the added price because of the reliability obtained.

Gold Shot-Burnished

A 24 carat gold, shot-burnished, overlay inside and out is applied with a technique which eliminates "splatter" of plated metal when eyelets are machine set. Gold is first plated to thickness of eighty millionths of an inch. The shot-peining and burnishing process fuses the gold in the surface pore structure of the brass. The resultant surface layer of gold is fifty millionths of an inch thick, highly malleable and will not peel, scale, blister or delaminate when the eyelet is machine mounted.

Resistance

Contract resistance of the shotburnished surface is very low and retains its characteristics in corrosive environments. It is highly solderable even after adverse storage conditions.

Eyelets are available in standard increments of correct size to fit hole diameters varying from $\boldsymbol{o}^{3} \mathrm{in}$. to ${ }^{3} \mathrm{~B} \mathrm{in}$.

A New Complete Line

... COMPETITIVELY PRICED
...ONE OR THOUSANDS
...SINGLE OR GANGED

GIANNINI
Precision

POTENTIOMETERS

Ready for rapid delivery...meet rigid requirements

"Giannini Technical Notes" announces various instruments and controls which are available for 24 hour delivery.

ITEM:

Model 1437 (NAS. 710 , style RRI5) RESISTANCE: 100 to $160,000 \Omega$
LINEARITY: 0.5% to 0.1%
RESOLUTION: to 3900 wires

ITEM:

Model 1750 (NAS. 710 , Style RRI8) RESISTANCE: 100 to 300,000 s:
LINEARITY: 0.5 to 0.1%
RESOLUTION: to 5,000 wires

ITEM:

Other Models from $7 / 8^{\prime \prime}$ to $3^{\prime \prime}$ diameter. Ganged units are externally phaseable.

Merry-go-round Steps Up Klystron Tube Output

Wheel-like machine simplifies hand sealing operation. Tubes are heated at operator's left and cooled at right. Radioactive brush to clean mica windows is in foreground

Rotary window sealing machines speed kylstron tube output, furnish more positive control over production and require less operator skill. Varian Associates, Palo Alto, Calif., designed and built the machines for $\$ 1,100$ each.

Merry-go-round takes 16 klystron tubes. At each station, a tube nestles in block of metal which concentrates the heat. Heat is supplied by induction by paired coils of a Lepel heating unit as the tube approaches the operator.

The tube is covered with a small glass bell jar with a hole in its top to allow access by the operator. Nitrogen gas is piped in to provide an atmosphere which will keep the tubes clean and prevent oxidation. Sixteen flow meters in the center of the wheel supply the bell jars.

A built-in cooling system directs

Glass seal is applied while tube is between heating coils. Tube at right is being brought to sealing temperature
a blast of cool air on the operator's hands, since she works directly above intense heat.

Mica windows, which cover tube apertures, are cleaned by passing them between radioactive brushes made by Nuclear Products Co., El Monte, Calif. This removes static electricity, freeing lint. The window is placed in the tube's metal flange with tweezers.

The tube is placed under the bell jar and brought to correct temperature. Special glass is applied around the window seat, which is now hot enough to effect a seal. A weight is placed over the hole in the bell jar to maintain nitrogen pressure while the tube cools.

The wheel is turned to the right and the operations repeated on the next tube, which has been heating. As the sealed tubes make the cir-

Cards placed between nitrogen flow meters provide permanent production his. tory of each tube

Tubes are placed in metal heat concentrators after windows are positioned
cuit and cool, they are removed one by one and replaced at a rate of 50 to 60 a day.

The glass used for sealing is made by Corning Glass Co. The flange is Allegheny Ludlum Steel Co. Sealmet, an alloy developed for glass sealing. The two have equal coefficients of expansion.

Instruments Boxed On Foam-cushioned Base

Free floating suspension method of packing is employed by Ampex Corp., Redwood City, Calif., to ship tape recorders. The technique, the firm reports, has reduced customer damage claims to less than $\frac{1}{2}$ per cent.
Package, made by Crate-Rite Mfg. Co., Oakland, Calif., consists of a fir-plywood floating deck, ply-wood-covered base framed with lumber, and sides, ends and top of $亠$ inch plywood veneer overlaid with paper and glue-laminated to 200-pound corrugated board which forms corners and lap joints.

The base is framed around its perimeter with $2 x 4$'s with a 2 x 2 brace down the center. For forklift handling, $3 x 4$'s are spiked to the frame bottom. The $2 x 4$'s are covered with $\frac{1}{2}$ inch, 5 -ply fir plyyood.

The floating platform is made of $\frac{7}{8}$ inch plywood for 600-1,000

Sylvania RF-IF Transistors

Five new PNP Drift transistors, types 2N247, 2N370, 2N371, 2N372 and 2N544, for radio frequency amplifier service

Sylvania's new PNP Germanium Drift transistors feature high output resistance for increased gain at 1.5 mc to 20 mc , low feedback capacitance and high alpha cutoff frequency.
Designed for RF-IF circuits, they open the door to more transistorized electronic equipment operating from the broadcast band to the higher frequencies.
The new Sylvania drift transistors incorporate a diffused base on an intrinsic germanium layer for improved control over base thickness, more uniform base region, lower base resistance and reduced collector capacitance. The end result is superior performance at higher frequencies.

The new PNP drift transistors feature Sylvania welded hermetic seal construction for maximum protection in rugged environments. They are encased in a modified JETEC class 30 case with four flexible in-line leads. The additional cen-
ter lead is connected to the metal case providing a complete unit shield and interlead shield. Coupling to adjacent circuit components is reduced to a minimum.

Call your Sylvania Sales Representative or write direct for information on new Sylvania PNP drift transistors, types 2N $247,2 N 370,2 N 371,2 N 372$ and $2 N 544$.

For industrial automatic controls and ground military tracking equipment, Ferrac magnetic amplifiers provide exceptional stability. These hermetically sealed units require no bias or compensation; null balance is permanently built in.

They operate directly from 115-volt 60-CPS power line. Standard units are available from current production for general purpose, thermocouple amplifier, integrators, and high gain (5 volts out for 100 microamperes in).

Floating base goes on foam blocks. Bolts in base are capped with springs
pounds units, appropriate thicknesses for other weights and crate sizes. The box used for most shipments is $90 \times 40 \times 36$ inches and is shipped horizontal. It may contain several units of smaller size.

In packing, the instrument is first covered with a $\frac{1}{4}$ inch padding and a 4 -mil polyethylene bag left unsealed to prevent interior condensation.

The platform is secured to the base with 8 steel coil springs bolted through base and platform. The springs, to absorb shock, are wrapped to protect the cabinet finish. Separating the base from the floating deck are 2 inch pads of polyurethane foam held in place by the springs and distributed according to the weight of the shipment.

A pad is laid over the deck and the instrument is laid on this and strapped with 3 steel bands placed

Padded and bagged recorder is strapped to padded base. Springs have been padded also

Sides and top of box are taped and stapled in place
over double wrappings. The veneer sides and ends are stapled in place. End and side joints are taped and the top is stapled. Battens of 1×4 inch lumber brace the tops.

Advantages over previous packaging methods are reported as reductions in cost, packaging time and shipping weight, a clean surface for printing identification or advertising and standardization of package size.

Plates Connect Ribbon Cable to Terminals

Prepunched supporting plates suitable for connecting ribbon cables to printed circuit boards or mating female terminals are employed in a connector family made by Elco Corp., Philadelphia, Pa.

Ribbon cables with conductors embedded in plastic or with conductors printed on one or both sides of plastic are joined by similar methods. Any spacing or pattern can be handled.

First step with the embedded conductor type of cable is to remove the insulation from $\frac{1}{2}$ inch at the

Bare conductors fed through holes of con. tact plate

G-V thermal time delay relays...

protect cathodes in RCA's

TV microwave relay system

When the industry required a portable microwave repeater station that behaved like a permanently installed, unattended unit, RCA developed its Television Microwave Relay Station, Type TVM-1A. In it, to protect the unit's cathodes, RCA design engineers rely on G.V thermal time delay relays to delay the application of plate voltage.
In both industrial and military equipment, $G \cdot V$ thermal relays are providing long, dependable, proven service in time delay applications, voltage and current sensing functions and circuit protection.

Write for extensive application data and catalog material.

AEROVOX-ACME SGREEN ROOM FILTERS

ATTENUATION CHARACTERISTICS

\section*{1

3
3
3}

Choose from a wide range of attenuation patterns from $14 k c$ to $10,000 \mathrm{mc}$.

Aerovox offers a complete selection of high attenuation screen room filters in single, double and triple section units to comply with the rigid specifications of advanced type screen room designs. Each filter is hermetically sealed and terminals at both ends are shielded. Easy mounting arrangements plus high attenuation performance assures you of the finest equipment specifically designed for screen room use.

Write for technical details to . . .

AEROVOX CORPORATION

NEW BEDFORD M MASSACHUSETTS
end of the cable. Bared conductors are placed on top of a prepunched supporting plate to line up with contact leg holes in the plate. Loose ends of the conductors are pushed through the contact leg holes.

Contacts on plastic strips fit into holes in plate

After contacts are staked and excess conductor cut off, plate is ready for solder

The required number of lower tier contacts, supplied on plastic strips, are inserted through the corresponding holes of the supporting plate and staked to the board. A pad presses the cable against the supporting plate, fastening the cable to the board. The contact leg presses against the bare conductor at the hole of the supporting plate, bonding contact and cable conductor.

After removal of the plastic strip, the upper tier contacts are inserted and staked. Excess conductor material is cut off and the supporting plate is dip-soldered on the staked side.

The supporting plate has two slots through which the free end of the cable is fed. This secures it to the plate, preventing strain at connector joints.

Cables with printed conductors already have bare conductors at the points of connection with holes, corresponding to the contact leg

Other side of support plates, with taper tab and stand-off contacts
location. The cable is placed on top of the supporting plate so that the conductors line up with corresponding contact leg holes in the supporting plate. Contacts on plastic strips are inserted and staked as described previously.

In both, the staking creates a pressure connection between contact tail and conductor. Soldering gives a second independent connection, thus increasing the reliability of the joint.

Peephole Packing Case

Corrugated cardboard cartons used to ship portable television receivers made by Admiral Corp., Chicago, Ill., contain three knife cut sections. Two viewing slots 5 by 7 inches provide access to the picture controls and power cord. Another, 4 by $1 \frac{3}{?}$ inches, exposes a portion of the picture tube. A dealer can check out the packed receiver by merely pressing in the knife-cut sections, eliminating the necessity for opening and resealing the carton. A heavier than normal corrugated material is used to increase the strength of the carton for warehousing and shipping.

Acid Sharpens Files

Worn hand files and similar tools may be sharpened in an electrolytic sulphuric acid bath. Files are placed as anodes in a 56 percent solution of acid in a lead-lined tank. Cathodes are stainless steel. As a current of 100 amperes at 8 to 10 volts dc passes through the bath, the teeth of the files are eaten away so that a new cutting edge is formed on each tooth.

CORONA TYPE HIGH VOLTAGE REGULATORS WITH CURRENT CAPABILITIES AND SLOPES NEVER BEFORE OBTAINABLE

- Maximum currents to 4 ma
- Peak currents to 9 ma
- Regulation to 1.5% /ma
- Voltages from 400 to 3000
- 9 pin and octal base tubes
- In use by the military

Make Victoreen your headquarters for high voltage regulation. Send for Form 2022A and Form 2023A describing the GV6A and GV9A line of corona type voltage regulators.

The Victoreen Instrument Company Components Division

5806 Hough Avenue - Cleveland 3, Ohio

New Tape Equipment Arrives

Industry, Military Benefit

Bome entertainment and clata recording keep interest in magnetic tape and associated electronic and mechanical equipment high. Industrial and military applications are constantly increasing

Olympic Radio \& Television Co., $34-0138 t h$ Ave., L. I. C., N. Y., (300), announces model RX-118 magnetic tape recorder-reproducer. It is adaptable for use in airport tower work, Naval sonar recording, FCC broadcast monitoring and other applications. It records onc or two separate audio chamels simultanconsly on one reel of tape for $2+$ hours svithoui reloading.
Now available from Presto Recording Corp., P. O. Box 500, Paramus, N. J., (301), is the 800 series of professional tape recorders alesigned for radio stations and industrial users. They feature three motors, a $10 \frac{1}{2}$ reel capacity and solenoid-actuated brakes, whose new design eliminates frequent readjustment.
Telectro Industries Corp., 35-16 37th St., L. I. C., N. Y., (302), lias developed the TA-1085, a $1+$-channel magnetic tape transport that drives the tape with extemely low flutter. Modes of operation"record," "playlack," "fast forward," "stop" and "fast rewind"-may be remotely controlled.
Model 3270 miniature random access memory is offered by Potter Instrument Co., Inc., Sunnyside Blvd., Plainvicw, L. I., N. Y., (303). It consists of a tape transport mechanism with transistorized drive and programming circuitry. Each of the two recls on the transport contains approximately 35 ft of one-in. tape.
Librascope, Inc., to L. Verdugo Ave., Burbank, Calif., (30t), has in production a large type tape demagnetizer for broadcasting and data tapes. Reels up to $10 \frac{1}{2} \mathrm{in}$. in cliameter for tape widths up to 2 in . can be handled. Rapid degaussing is accomplished through the automatic turntable which eliminates the hand rotation method.

Electrostatic Source for lab experiments

Forest Products, Inc., 131 Portland St., Cambridge, Mass. A new electrostatic generator, designed for laboratory experiments requiring a continuous source of static elcetricity, stands $17 \frac{1}{2} \mathrm{in}$. high and creates a usable charge of 150,000 v at $5 \mu \mathrm{a}$.

Similar in design and operation to the multi-million volt electrostatic generators used for atomic research, the new generator is of a size that makes it ideal for industrial laboratories and other similar uses. Circle 305 on Reader Service Card.

Phase Shift Compensation Eliminated In New heLIPOT ${ }^{\text {P }}$ Precision Potentiometers

SPECIAL D-H ALLOYS MAKE

AIR-CORE WINDINGS PRACTICAL!

Helipot's purpose in designing its new, air-core wound series 7700 Potentiometers was to make possible operation at higher frequencies with 0° phase shift-thereby eliminating compensation circuitry,

In nearly all multi-turn potentiometers, resistance wire is wound on an insulated copper-wire mandrel. This type of mandrel is used because it has uniform diameter, good heat conductivity and high thermal capacity. However, a disadvantage of such construction is the relatively large distributed capacitance between the resistance winding and the mandrel. When such a potentiometer is used as an AC voltage divider, the output generally differs in phase and magnitude from the desired output. This interferes with the effective use of high accuracy potentiometers unless compensation is applied somewhere in the circuit.

Helipot engineers desired to eliminate these problems by eliminating the copper-wire mandrel. But the elimination of the mandrel also
eliminated the support for the winding. Needed, therefore, was a type of wire that would make a self-supporting air-core winding.

At Helipot's request, Driver-Harris went to work with these specifications: The wire must be of dependable uniform hardness so that in stretching it, equal spacing between turns is obtained, free of creep. This is essential to linearity. The wire also must be of unvarying diameter for uniform resistance. And its surface must be extremely clean-free of oxide coating to minimize contact "noise".

Driver-Harris produced the wire-a special hard-drawn form of Karma* and Nichrome* V. And Helipot produced its new 10-turn series 7700 potentiometers in a resistance range from 200 to 5000 ohms. With this radically new air-core winding, linearity approaches the resolution of the unit without resort to padding or shunting. And phase shift in AC circuitry is reduced to less than 0.1°.
Since 1899, Driver-Harris has produced 132 special-purpose alloys in just this fashion-in answer to a particular problem and extraordinary specifications. If your own engineering and product development plans currently hinge upon a special alloy-why not bring your problem to Driver-Harris. Your inquiry is invited.

Distributor: ANGUS-CAMPBELL, INC., Los Angeles, San Francisco - In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, ontaria MAKERS OF THE MOST COMPLETE LINE OF ALLOYS FOR THE ELECTRICAL, ELECTRONIC, AND HEAT-TREATING INDUSTRIES

Spectrum Analyzer precision unit

Lavoie Laboratories, Inc., Mata-wan-Frechold Road, Morganville, N.J., offers a no-klystron spectrum analyzer of laboratory precision, with rock-stable oscillators permitting observation of signals with minor instability characteristics.

A simplified band-switclı arrangement permits coverage of 10 mc to
$21,000 \mathrm{mc}$ range in seconds, and a single head construction precludes misplacing expensive tuning units. Triple sliclding allows operation in fields exceeding + megawatts without spurious responses.

The spectrum analyzer las a shock performance of 37 g 10 millisec cluration in trausit case, vibration of $10-55 \mathrm{cps}, 10 \mathrm{~g}$, and meets all envirommental specifications. Circle 306 on Reader Service Card.

Coaxial Capacitor

 meets MIL-C-10950BVitranion, Inc., Box 54t, Bridgcport l, Comn., offers coas capacitors made be its process of combining porcelain dielectrics and finc silver clectrodes in a monolithic block. A terminal at the center of

the squarc capacitor permits currents to flow radially through the electrodes and dielectrics to the
four terminals at the peripherv of the part. The geometry results in cancellation of magnetic fields of these radial currents and low effective inductance of the capacitor. Rugged design can take vibration up to $2,000 \mathrm{cps}$ with 20 g of acceleration applied. Circle 307 on Reader Service Card.

Pulsed Oscillator high power unit

Arenberg Ultrasonic Laboratory, Inc., 94 Grceı St., Jamaica Plain 30, Mass. Model PG-650 oscillator is a variable frequency pulse modulated r-f source for applications requiring high power output as well as extreme stability. Its principal use has been in meas-
uring the various parameters of ultrasonic delay lines whose high initial insertion loss as well as operation at low impedance levels have presented many difficulties in the past.

The r-f output may be clisplayed directly on the plates of a cro, and the output of a delay line (60 db into 50 olims) can also be shown at r-f using only the vertical ampli-

fier of the cro and no other. Circle 308 on Reader Service Card.

Adjustment Pot is humidity proof

Bourns Laboratories, Inc., Riverside, Calif., amnounces a new leadscrew-actuated adjustment potentiometer which is sealed against humidity and capable of 135 C

operation. Model 236 Trimpot meets military humidity specs. It has a 0.8 w power dissipation, and emplovs a new element termination termed Silverweld, and ceramic card, providing maximum stability and reliability. Circle 309 on Reader Service Card.

Frequency Meter precision device

Varo Mfg. Co., Inc., 2201 Valnut St., Garland, Texas. Moclel 6506 is designed to fill the need for a precision frequency measuring device for missile and aircraft +00 cps
power sources. The transistorized meter provides 0.05 percent accuracy at +00 cps by calibration of the discriminator with an internal tuning fork. Accuracy of 0.1 percent is achieved at full scale, 397 to 403 cpss . Circle 310 on Reader Service Card.

Tiny Resistor
 has wide range

Electra Mfg. Co., 4051 Broadway, Kansas City, Mo., has avail-

able a new $\frac{1}{8}$ iv deposited carbon resistor with standard coating (DCX $\frac{1}{8}$) that has a resistance range of 25 ohms to 1 meg .

This precision subminiature re-

CHECK THE OVERALL SIZE...

including switch, if needed. For practical space-saving ability, Stackpole miniature " F " Controls lead the way - only 0.637 " in diameter behind the panel for the entire length of both control and switch.

FEEL and HEAR THE SWITCH ACTION...

for the tease-proof, positive "feel" and audible "click" only a true snap-action switch provides. "B"Series switches used on " F " Controls have the same time-proven mechanism as larger Stackpole control switches. They're U.L. Inspected for 1 amp . @ 125v ac-dc; 4 amps @ 25v dc.

CHECK THE COMPLETENESS OF BOTH CONTROL and SWITCH LINES

Printed wiring, wire-wrap, or standard lug terminals as well as fold-tab or threaded bushing mountings are available on all Stackpole miniature "F" controls. Both SPST and DPST switches can be supplied.

[^6]FIXED A VARIABLE COMPOSITION RESISTORS - SLIDE \& SNAP SWITCHES - IRON CORES - CERAMIC MAGNETS

THIS STOCK PAIS DVIIDENDS

Helipot declares a 3 -in- 1 potentiometer dividend for you:
Quality \qquad blue chip! Price best buys! Delivery same day!

Every Helipot zepresentative carries these market-leaders on his shelf for over-the-ccunter sales:

Series A... 10 turns. 1-13/16" diameter. Total resistance: 15 standard values from 25 to 300,000 ohms. Linearity ± 0.5; or $\pm 0.1 \%$.

Series C... \& turns. 1-13/16" diameter. Total resistance: 10 standard values from 10 to 50,000 ohms Linearity $\pm 0.5 c$

Series RB Duedial* turns-counting dials... accuracy 0.01 turn. A perfect match for Se:ies A potentiometers.

Most reps also stock Series AJ, 10turn, $7 / 8^{\prime \prime}$ diameter miniatuzes.. HELIPOT ${ }^{\text {® }}$ sirgle-turns... Duodial series $903, R$ and $S R$.

All can provide modified helipot precision pofentiometers in 1: cays or less, at $n=$ extra cost!

As you can see, your Helipot representative is a man to see ... you'll find him listed ir. the adjoining c-lumn.

Helipot Co-soration Newport Beach, Ceiifornia a d.sision of Beckman Instrumests, Inc. Engineering Tepresentctives in 27 eities
sistor has a diameter of onlv $\frac{3 \pi}{32}$ int. a length of only $\frac{\text { in in }}{}$ in. The resistor is made to meet or exceed MIL-R10509B. Circle 311 on Reader Service Card.

Connecting Lead

spring action tip

Associated Engineering Corp., 65 Kent St., Brookline 46, Mass., has ammounced the new bi-axial Addaplug connecting lead for gencral purpose hookup and intercomection of equipment, instrumentation work, breadhoards. servo set-ups and the like. Addaplug reduces equipment setup time and insures safe, positive connections. Exclusive spring action tip is selfwiping and alwavs insures a good conncetion, with uniform, low contact resistance (less than 0.001 ohme). Addlaplug will withstand a tensile force of at least 20 lb and will resist failure due to flexing at junction of plug and wire. Circle 312 on Reader Service Card.

Tiny Capacitors

radial series

Vitramion, Inc., Box 544, Bridgeport l, Conn. Radial scries capacitors illustratcl offer a 300 v rating up to $100 \mu \mu \mathrm{f}$. They feature thin design-6 in. to $\frac{\sigma^{\frac{7}{4}}}{}$ in.-and can be mounted axially, radially, or on edge. Duc to the company's manufacturing process no case or hermetic seal is needed. They feature complete humidity immunity, \mathbf{Q} in
cxcess of 2,500 , dissipation factor less than 0.0003 , insulation resistance greater than 50,000 ohm farads, capacitance drift less than 0.05 percent. Circle 313 on Reader Service Card.

D-C Power Supply all-transistorized

Sila-Kon Engineering Co., P.O. Box 2S2, El Monte, Calif. Powered from 115 va ac, the model 550 variable d-c power supply utilizes transistor circuitry throughout to achiere a high degree of regulation. It incorporates overload protection that can be preset with a calibrated pancl control for protection of the load. Another feature provides for remote sensing of the voltage at the load. Circle 314 on Reader Service Card.

D-C Power Supply medium voltage

Opad Electric Co., 69 Murray St., New York 7, N. Y. Model RS40B is a medium voltage germanium rectifier power supply. It has a continuously adjustable output of from 0 to $110 \mathrm{vd-c}$ with a maximum load current rating of 20 ampercs. Ripple does not ex-

No Transmitter should be without one!

OUTLINE DRAWING MODEL 575N DOUBLE COUPLER
WHEN YOU BUILD MicroMatch Directional Couplers into your transmitters, you add an invaluable feature at extremely low cost - positive confirmation of transmitter performance. Your customers stay sold by the coupler's continuous RF Power indication. Its VSWR monitor, in addition, stands watch over your customer's transmission line and antenna.

Now incorporated in most modern Government and commercial transmitters, MicroMatch Directional Couplers produce an output essentially independent of frequency. Units are available for use within the range of 20 to 4000 megacycles. Couplers are adjusted to produce full scale meter deflection at power levels of 1.2 watts to 120 KW . Accuracy of power measurements is plus or minus 5% of full scale.

For complete details on the MicroMatch line of monitoring equipment, write for our 68-page catalog.

and rugged conditions which often exist in tropical climates, or aboard ships or in the field. It is a compact, rack-mounted recorder ($t \mathrm{im}$. recording width) for frequency response, sound, noise, and vibration measurements.

The unit features complete mois-ture-proof, anodyzed metal enclosure; Plexiglass hinged door on front pancl, protecting the entire recorling mechanism; clart take-up device; and lifetime cooling fan. Circle 317 on Reader Service Card.

Delay Lines
 millisec units

Ferranti Electric Inc., Electronics Division, 95 Madison Ave., Hempstead, N. Y. A new range of acoustic delay lines provide delavs up to 5 millisec and operating frequencies up to 1 mc , with temperature cocfficients of less than 5 parts per million per deg C. The lines are available in four packages, to any specified delay in the range 20 to $5,000 \mu \mathrm{sec}$, with a $\pm 4 \mu \mathrm{sec}$ adjustment available to the user. The packages can be supplied complete with transistor imput and output amplifiers. The shorter lines can be supplied with taps at specified positions. Circle 318 on Reader Service Card.

Stability Tester measures drift, f-m

Laboratory For Electronics, Inc., 75 Pitts St., Boston 1t, Mass. Model 5009 microwave stability

Ballantine SENSITIVE

 ELECTRONIC Battery OperatedBattery

VOLTAGE RANGE:

100 microvolts to 1000 volts rms of a sine wave in 7 decade ranges.

INPUT IMPEDANCE:

2 megohms shunted
by 10 mmfd on high ranges and 25 mmfd on low ranges.

FREQUENCY RANGE:

2 cps to $150,000 \mathrm{cps}$.
ACCURACY:
3% except 5% below 5 cps and above 100,000 eps and
for ony point on meter scale.

MODEL 302C-Price $\$ 245$.

- Available accessories increase the voltage range from $\mathbf{2 0}$ microvolts to 10,000 volts.
- Available precision shunt resistors permit the measurement of AC currents from 10 amperes down to one-tenth of a microampere.
- Features the well-known Ballantine logarithmic voltage and uniform DB scales.
- Battery life over 100 hours.
- Can also be used as a flat pre-amplifier with a maximum gain of 60 DB. Because of the complete absence of AC hum, the amplifier section will be found extremely useful for improving the sensitivity of oscilloscopes.

For further information on this and other Ballantine instruments write for our new catalog.
ballantine
LABORATORIES, INC.

TUNG-SOL G-127 Sensitive Overvoltage Relay
 OPERATES AT 6.9 VOLTS TO LIMITS OF ± 0.2 VOLTS

In addition, the C. 127 has a calibra:tion change of only .2 volts over a lemperature range of -40° to $+80^{\circ} \mathrm{C}$... resists damage from vibration in a range of 10 to 55 cycles and from shock of 50Gs . . . employs snap action contacts for consistent operation. The G-127 is characteristic of the precision-in-performance of the entire line of Tung-Sol thermal relays. Whatever your relay require. ment, contact Tung-Sol for complete, confidential engineering assistance.

NOMINAL CHARACTERISTICS

For additional data write: Electroswitch Division, Tung.Sol Elec. tric Inc., Newark 4, N. J. Sales Offices: Atlanta, Ga.; Columbus, Ohio; Culver City, Calif.; Dallas, Tex.; Denver, Colo.; Detroit, Mich.; Irvington, N. J.; Melrose Park, Ill.; Newark, N. J.;.Philadelphia, Pa.; Seattle, Wash._Canada: Montreal, P. Q.

Power Supply high current unit

Electronic Research Associates, Inc., 67 Factory Place, Cedar

Grove, N. J. Modcl TR32-2 transistorized power supply is intended for all types of higlı current laboratory and industrial applications. It features an all-semiconductor design and characteristics include fast transient response, small size and light weight, adjustalle regulation control, low ripple content, and independence from line frequency change. Circle 321 on Reader Scryice Card.

Precision Pots

high resolution
G. M. Giannini \& Co., Inc. 918 East Green St., Pasadena 1, Calif. Built to NAS standards in $l_{\text {Th }}^{\top}$ in. and $1 \frac{3}{4}$ in. sizes, a new line of precision pots can be supplied singly or as extermally plaseable ganged units.

Standard resolution for model $1+37$ (l_{17}^{7} in.) is provided as lighla as 3900 wires, with a resistance range from 100 to 160,000 ohms. Model 1750 ($1 \frac{3}{4} \mathrm{in}$.) is available with resolution to 5000 wires, and with a resistance ranging from 100 to 300,000 olums. Standard linearity range for botlo units is 0.5 percent to 0.1 percent. Circle 322 on Reader Service Card.

Vibration Pickups high sensitivity

Southwestern Industrial Electronics Co., 2831 Post Oak Road, Houston 19, Texas. Development of a unique magnetic circuit now enables SIE to offer the new TDScries vibration pickups which combine the temperature stability of

3obbin cores

Not only G-L but our customers, too, claim consistent' uniformity with every G-L Tape Wound Core and Bobbin Core. This consistent uniformity is the result of: an accuracy of control never before achieved in each and every step of the manufacturing process; the use of the highest quality raw materials and new and exclusive manufacturing technologies.

Prove our claims and the claims of our customers. Write, wire, call or teletype us about your requirements and for our technical bulletins.

G.L ELEEERRDGUES

2921 ADMIRAL WILSON BOULEVARD CAMDEN 5, NEW JERSEY

WOodlawn 6-2780 TWX 761 Camden, N.J.

STATIE /NVERTER SUPPLV

INPUT 28V D.C. $\pm 10 \%$
OUTPUT Nom. $115 \mathrm{~V} \pm 2 \% 400 \mathrm{CPS} \pm 0.01 \%$
1 . (2- or 3-phase output available)

RATINGS: 30VA 50VA I00VA
Higher ratings available.

APPLICATION:

For gyro wheel supplies and where precise 400 cycle voliages are required in aircraft, radar and missile computers.

FEATURES:

PRECISION OUTPUT FREQUENCY RUGGED
EXCELLENT WAVEFORM
SIMPLICITY OF CIRCUITRY
FAST STARTING TIME
GOOD VOLTAGE REGULATION
throughout an adjustable range ISOL ATED CASE DESIGN HIGH RELIABILITY VIBRATION ISOLATED COMPACT LIGHTWEIGHT
MILITARY SPECIFICATIONS

PERFORMANCE SPECIFICATIONS

MODEL NUMBERS	$\pm .01 \%$ CPS	SIS 40311	SIS 40511	SIS 410011
	$\pm .05 \%$ CPS	SIS 40315	SIS 40515	SIS 410015
INPUT VOLTAGE		$28 \mathrm{~V} D \mathrm{C} \pm 10 \%$		
MAX. OUTPUT POWER		30 Va	S0VA	100Va
OUTPUT VOLTAGE		115 V a ((Adjustable $\pm 10 \%$)		
OUTPUT FREQUENCY		$\begin{aligned} & 400 \text { CPS } \pm .01 \% \\ & 400 \text { CPS } \pm .05 \% \end{aligned}$		
VOLTAGE REGULATION				
FREQUENCY DISTORTION		3% Maximum At Full lood		
LOAD POWER FACTOR		± 0.5 to - 0.5 Maximum		
MILITARY SPECS.		MIL.E-5400A \& MIL-E-5272A		
AMBIENT TEMPERATURE		$-55^{\circ} \mathrm{C} 10+71^{\circ} \mathrm{C}$ when mounted to heat sink		
VIGRATION		20G 10102000 CPS		
UNIT DIMENSMONS		$\begin{array}{llll} 15^{\prime \prime} & 0 & 2 & 7 / 8^{\prime \prime \prime} \\ & H & 2 & 13 / 16^{\prime \prime} \end{array}$	$18^{\prime \prime}$ D	$\begin{array}{rllll} 110^{\prime \prime} & \text { D } & 4 & 1 / 2^{\prime \prime} \\ & \text { H } & 2 & 13 / 16^{\prime \prime} \end{array}$
WEIGHT (Approx.)		2 lbs .	3.5 lbs.	5 lbs .

MAGNETIC AMPLIFIERS INC.

632 IINTON AVENUE - NEW YORK 55, N. Y. - CYpress 2-6610 West Coast Division
136 WASHINGTON ST. - EL SEGUNDO, CAL. - OREGON 8.2665
magnetic clampirg with scasitivity previously available only in fluid damped units. Using completely new design features, TD pickups produce sensitivities of over 300 mv/in. $/ \mathrm{sec}$. Weighing only 9 oz , five compact models are available with natural frequencies ranging from 1.8 to 5.6 cps and response to 2,500 on undamped models and $1,500 \mathrm{cps}$ on damped units. Circle 323 on Reader Scrvice Card.

Rectifiers

silicon-cartridge
International Rectifier Corp., 1521 E. Grand Ave., El Scgundo, Calif., has available a complete serics of hermetically-sealed, high current silicon cartridge-type rectifiers featuring current ratings three to four times greater than those of standard h-v umits. Designed for forced-air or liquid cooling, these miniature rectifiers utilize metallized ccramic housings with ferruletype terminals for insertion into standard 30 ampere fuse clips. They are available in piv ratings of from 1,500 to $16,000 \mathrm{v}$ at rectified d-c output currents ranging from 210 to 360 mad. Circle 324 on Reader Service Card.

Connectors

small and light
Amphenol Electronics Corp., Chicago 50, I11. MIL-C-5015C "E"
construction MS connectors, trade named Stub) E, are now available. Clamed to be the smallest and lightest made, they fully conform to the envirommental-resistance icquirements of the cited specification.

Available in shell types 3100, 3101,3102 and 3106, the connectors incorporate standard MS insert configurations. Features inclucle a fully unitized rear grommet and cable clamp which can be quickly assembled and disasscmbled, prefilled contact solder pockets for instant, casy soldering, and the weight-saving, space-saving slicll design.

L-F Crystal Units in glass holders

Reeves-Horfaran Div., Dynamics Corp. of America, Carlisle, Pa. Precision low-frequency crystal units in glass holders, type RIIG-DP, are built to provide more accurate frequency control in the andio range of from 1 to 15 kc . They may be used in aircraft navigation equipment, telephone carrict systems, communication systems and test equipment. Components are hermetically scaled in glass bulbs (T $5 \frac{1}{2}$ with noval basc), assuring internal clcanliness and reliable cracuation. Circle 325 on Reader Scrvice Card.

Power Supply transistorized

Westron Semiconductors, Inc., 2312 So. Robertson Blvd., Los Angeles 34, Calif., has available a

Only Sealectro - originator, pioneer and leader in Teflon* terminals - has a wide selection of "Press-Fit" jacks, plugs and connectors. And in color, too, for coding purposes. The one-piece construction does away with screws, nuts, washers, lockwashers, to save labor and space alike. Just "Press-Fit" that's it!
So, for miniature and sub-miniature jacks, plugs and connectors, insist on genuine Sealectro "Press-Fit".
(1) Ideal jacks and mating plugs for patchcord boards. Jacks mount directly in metal, eliminating breakable plastic panels. As many as 14,400 "Press-Fit" jacks have been mounted on single metal plate, for computer assemblies!

2 Handy breakaway connectors. Mated male and female members. Mount directly in metal. Widely used for plug-in components and circuitry.
(3) Outstanding choice of miniature jacks. Stamped or machined beryllium-copper contact members. Bull-dog grip!
(4) And tiny! These subminiature testpoint jacks take standard test probes.

for that "KNOW-HOW"...

Be sure you have the "Press-Fit" catalog in your reference file. Then get "TERMINALOGY" - jam-full of practical data - right along by mail. Write on business stationery.

* Reg. Trademark of E. I. Du Pont de Nemours \& Co., Inc.

ACEPOT ${ }^{\circ}$

SUB-MINIATURE, PRECISION, WIRE-WOUND

LINEAR

 POTENTIOMETERS

Small pot size - Big pot performance

Only $1 / 2^{\prime \prime}$ in diameter, the ACEPOT excels in a combination of all around top performance characteristics comparable to larger units. For example, these precision units feature $\pm 2 \%$ resistance tolerance and $\pm 0.3 \%$ independent linearity. Every potentiometer is completely sealed against sand, dust and foreign matter to avoid abrasive action between moving parts. All materials and metals are treated for maximum resistance to salt spray, corrosion, humidity and conform to shock and vibration tests. ACEPOTS are designed and assembled MIL-A-8625A, QQ-M-1512, JAN-T-152, MIL-E-5272A, MIL-R19A, NAS-710 and MIL-R-19518 (ships).

ACEPOT LINEARITY TEST
Plot of voltage ratio error versus rotation illustrates linearity to better than $\pm 0.3 \%$.

ACEPOT RESOLUTION TEST
Section of oscillograph trace of electrical resolution shows voltage change for each turn of wire.

ACE offers a wide variety of linear and nonlinear precision, wirewound potentiometers in standard, special and AIA sizes. Custom designs to meet special requirements can be made available on short lead time. Call, write or teletype Dept. F, ACE ELECTRONICS ASSOCIATES, INC., 99 Dover Street, Somerville, Mass., SOmerset 6-5130, TWX SMVL-181.

ACEOHM ${ }^{\circledR}$
transistorized power supply for twoway communication gear. It comes in two models, one for 30 w r-f power, and another for 60 w r-f power. This unit replaces the vibrator in the present existing equipment and can be installed in minutes. The power supply makes possible transmission and reception at $\frac{1}{8}$ of the present initial cost of transistorized power supplies now available on the market, according to the companv. Circle 326 on Reader Service Card.

Quartz Crystals
 I-f devices

Monitor Products Co., 815 Fremont Ave., South Pasadena, Calif., announces new low frequency quartz crystals to meet high vibration requirements. The MC-13/U crystals are fully tested from 2 to $2,000 \mathrm{cps}$ vibration. Typical tolcrance is $\pm .012$ percent from -40 C to +70 C . Circle 327 on Reader Service Card.

Crystal Oven controls temperature

Bliley Electric Co., Union Station Building, Eric, Pa., has arailable a new crystal oven which maintains temperature within $\pm 0.1 \mathrm{C}$. The temperature control

Get out your pencil and ...

Help yourself to

 electronics' READER SERVICE it's free-it's easy-it's for your convenienceEach Advertisement and New Product item is numbered. For more information, simply
(1) Circle number on postpaid" card below that corresponds to number at the bottom of Advertisement, or New Product itemsu:
(2) Print your name, title, addréss, and firm name carefully. It is impossible to process cards that are not readable.

* FOR SPICIFIC ITEMS IN
: MILTI-PRODUCT ADVERTISEMENTS
\therefore Pled ase Indicate in box in postcard marked with asterisk (*) specific itom(s) in ad in which you are inierested. Please write ad circle number(s) and specific product(s) on which you want . mpre information.

Additional postage MUST be added to cards for all FOREIGN MAILINGS

An occasional Advertisement cannot be numbered for the READER SERVICE CARD due to lack of space and must be indicated by writing the Advertisers' name in the space at the bottom of the card...

An occasional Advertisement cannot be numbered for the READER SERVICE CARD due to lack of space and must be indicated by writing the Advertisers' name in the space at the bottom of the card...

MAY 9• 58 card ex:lipes JUL 9.58
(ROMPANY
CIRCLE THESE NUUNBERS ONLY WHEN YOU ARE INTERESTED
IN ALLITEMS SHOWN QR DESCRIBED

1	2	3	4	5	6	71	8	9	10	11	12	13	14	15	16	17	18	19

$\begin{array}{llllllllllllllllllll}20 & 21 & 22 & 23 & 24 & 25 & 26 & 27 & 28 & 29 & 30 & 31 & 32 & 33 & 34 & 35 & 36 & 37 & 38 \\ 39 & 40 & 41 & 42 & 43 & 44 & 15 & 45 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 & 58\end{array}$
$\begin{array}{llllllllllllllllllll}39 & 40 & 41 & 42 & 43 & 44 & 45 & 96 & 47 & 48 & 49 & 50 & 51 & 52 & 53 & 54 & 55 & 56 \\ 58 & 59 & 60 & 61 & 62 & 63 & 64 & 57 & 66 & 67 & 68 & 69 & 70 & 71 & 72 & 75 & 75 & 74 & 75 & 76\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllll}102 & 103 & 104 & 105 & 106 & 107 & 108 & 109 & 110 & 111 & 112 & 113 & 114 & 115 & 116 & 117 & 118 & 119 & 120 & 121 & 122 & 123 & 124 & 125 & 126\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllllll}202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 212 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 & 224 & 225 & 226\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251\end{array}$

 INSIDE FRONT COYER
electronics - enginering edition - reader service card (NAME) (POSITION) (ADDRESS)

INSIDE BACK COVER BACK COVER
\qquad

MAY 9-58 CARD EXPIRES JUL 9.58

 electronics - engineering edition - reader service card(POSITION)
(ADDRESS)
CIRCLE TÄESE NUUMBERS ONLY, WHEN YOU ARE INTERESTED IN ALL ITEMS SHOWN OR DESCRIBED

| 10 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- |

 $\begin{array}{lllllllllllllllllllllllllllllllllll}202 & 203 & 204 & 205 & 206 & 207 & 208 & 209 & 210 & 211 & 212 & 213 & 214 & 215 & 216 & 217 & 218 & 219 & 220 & 221 & 222 & 223 & 224 & 225 & 226\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllll}227 & 228 & 229 & 230 & 231 & 232 & 233 & 234 & 235 & 236 & 237 & 238 & 239 & 240 & 241 & 242 & 243 & 244 & 245 & 246 & 247 & 248 & 249 & 250 & 251\end{array}$

 INSIDE FRONT COVER

MEMO:

NEW PRODUETE RELEASE

TO: ALU MANUBACTURERS

FROM: olectronies

olectronios publishes all nev product ltems of interost to makers and users of electronic and allied -quipment.

The reverse side of chis card provides a service to subscribers by facilitating the flow of additional lnformation between manufacturers and our readers.

Take advanlage of Reader Service-and the readershlp of olectronics...keep the industry informed about your Now Products and Mow Literature via thoir meation in the editorial pages of electronics.

BUSINESS REPLY CARD

no postage stamp ntesssair if malte in the uniteo states
$4 \not \subset$ Postaga Will Be Paid By

ELECTRONICS

Reader Service Dept. 330 West 42nd Street
New York 36, N. Y.

4\& Postage Will Be Paid By

ELECTRONICS

Reader Service Dept. 330 West 42nd Stroet Now York 36, N. Y.
oven when used with a Bliley type BG 7 crystal at $1,000 \mathrm{kc}$ provides al frequency stability of + parts in 100 million per day under ambient conditions at $25 \mathrm{C} \pm 15 \mathrm{C}$. The oven heater rating is $115 \mathrm{va}-\mathrm{c}, 10 \mathrm{w}$. Bulletin 508 is available. Circle 328 on Reader Service Card.

Oscilloscopes

d-c to 200 kc
Hewlett-Packard Co., 275 Pagc Mill Road, Palo Alto, Calif. The 120 A (cabinet mount) and 120 AR (rack mount) are d-c to 200 kc oscilloscopes with automatic triggering and simplified controls. They have a sweep speed range of $1 \mu \mathrm{sec} / \mathrm{cm}$ to $0.5 \mathrm{sec} / \mathrm{cm}$. Included is a times-5 sweep expansion on all ranges, with vernier for contimuous control. Fifteen calibrated sweeps are provided, in l-2-5 sequence. Instantancous, automatic synchronizing is provided on any internal or external voltage; scopes may also be triggered by line voltage. Calibrated identical bandwielth vertical and horizontal amplifiers provide convenient phase measurement. Circle 329 on Reader Service Card.

\ln

Trimmer Pots minimalized

Carter Mfg. Corp., 23 Washing. ton St., Huclson, Mass., has available two new minimalized trimmer

SPURS - HELICALS - WORM AND WORM GEARS • STRAIGHT BEVELS LEAD SCREWS - RATCHETS - CLUSTER GEARS - RACKS • INTERNALS - ODD SHAPES

Electronics today is partly packaging

PROBLEM: Design a small (50 cubic in.) and light ($33 / 4 \mathrm{lbs}$.) unit that contains:

1. a positive d.c. pulse selector
2. a negative d.c. pulse selector
3. a high level 60 cps band pass filter
4. a 400 cps detector circuit
(all with tight tolerances, naturally).
Design it to operate within the usual military environmental conditions, including high vibration and shock.
SOLUTION: We assembled the components shishkabob style. Then mounted the
kabob in a metal case filled with an epoxy foam compound to hold the parts in a firm cushion.
TIME ELAPSED: From original assignment, through design to volume produc-tion-two months.

If such quick, dependable assistance in design and production can make your work more effective, we'll be glad to hear from you. We offer experience, good production facilities, and a recognized quality record.

CAIEDONIA

ELECTRONICS AND TRANSFORMER CORPORATION
Dept. E-5, Caledonia, N.Y. - In Canada: Hackbusch Electronics, Ltd., 23 Primrose Ave., Toronto 4, Ont. Centralab, ..oon 3 naciohm.
$1 / 4$ watt sub-miniature variable resistor

The Model 3 utilizes Centralab's ICE* (Interfused Composition Element) to provide exceptional heat dissipation and electrical stability under the most severe operating conditions. It is recommended for high temperature operation in both military and commercial equipment.

- Will meet MIL-R-94B resistance change requirements under twice its rated load.
- Meets or exceeds MIL-R-94B requirements for moisture resistance, insulation resistance, thermal cycling, etc.
- Completely enclosed case can be sealed or potted.
- Resistance range: 200 ohms to 2.5 megohms, linear taper and 5000 ohms to 2.5 megohms $10 \% \log$ audio taper.
Write for Technical Bulletin EP-63 containing detailed specifications or contact your Centralab repre-
Your local Centralab distributor carries a wide variety of these units in stock. Ask him for Model JP and JL controls-as listed in Catalog 30.
sentative.

Centalab,

A DIVISION OF GLOBE-UNION, INC. 914E E. KEEFE AYE. - MILWAUKEE I, WIS. In Conada: 804 Mt. Pleasant Rd. - Toronso, Ontario
potentiometers in 15 standard resistance values from +7 olums to 10,000 ohms. All valucs are mannfactured with 20 ppm resistance wire and can dissipate $\frac{1}{2}$ w to 100 C (derated to zero at 150 C) for a period of $1,000 \mathrm{hr}$.

Type 101 F may be mounted by its leads alonc, in a fuse clip or a 0.290 in. hole. Type 101 G is supplied with a nut for mounting in a 5/16 in. hole and a mut for locking the shaft against rotation. Circle 330 on Reader Scrvice Card.

Decade Amplifier

 transistorizedZacharias Eefctronics Corp., P.O. Box 172, Livingston, N. J. Model 40-A transistor decade amplifier lends itself to a wide variety of fixed or portable applications. The amplifier noise figure is made independent of thic magnitude of the driving impedance through the use of a vacum tube at the input stage. Thie input impediance, in excess of 10 megohms, minimizes loading of circuits under test. The constant 800 ohm output impedance is uscful for driving many passive networks. A gain of 10 or 100 is availalble over the 2 to 1,000 ,000 cps range throughout the 800 lir life of the batterics, with an accuracy of $\pm 0.2 \mathrm{db}$ from 10 cps to $300,000 \mathrm{cps}$ and $\pm 1 \mathrm{db}$ from 5 to $500,000 \mathrm{cps}$. Maximum out-
put is 3 v trus or 1 mv . Circle 331 on Reader Service Card.

Crest Voltmeter

switch controlled
Sensitive Researci Instrument Corp., 310 Main St., Nav Rocholle, N. Y., has available a new crest voltmeter for masasuring positive and negative peaks and rms. All three functions are measured by means of switching. Clooice of pulse response from 10 to 99 or 100 and above is also be switch.

Range of the basic instrument is 0.1 kr . External multipliers are available up to 100 kr . Accuracy is 1 percent of full scale for rims and for peaks of 100 per sec and faster On FAST position or, 10 to 99 per sce on slow position. Input impedance is as follows: rms-10,000 megohms and $25 \mu \mu$; positive and negative peaks- 10,000 megohms and $15 \mu \mu \mathrm{f}$. Circle 332 on Reader Scrvice Card.

Circuit Breaker
 subminiaturized

Heinemann Electric Co., 455 Plun St., Trenton 2, N. J. Mockc SM3 is a hermetically sealed subminiaturized circuit breaker. A serics-overload breaker, it is clesigned for operation at 110 v at

RECTANGULAR \& SQUARE

2 - and 4-Gun Tubes

Plug-in CALI-MARKER ${ }^{\text {(}}$
Calibrator \& Time-Mark Generafor
The first compact, plug-in unit of its kind. Combines a stable, square-wave calibrator and a crystal-cantrolled time-mark generator. Interchangeable with o second plug-in sweep generator.

(3)

Plug-in SWEEP GENERATORS

One or two identical plug-in sweeps may be used on each instrument for common or separate calibrated time bases as needed. Second sweep interchangeable with Cali-Marker.

Announcing

THE WORLD'S MOST VERSATILE OSCILLOSCOPES! with Plug-ins for All Needed Ranges . . .
All Needed Features . . . No Obsolescence.

2- and 4Channel Types

Models K-270 and K-470...

Display multiple, high-speed signals without switching. From DC to 5 megacycle bandwidths.

Here is true multi-channel oscillography with features, performance, and prices "tailored" to your exact needs. Versatile plug-in pre-amplifiers, sweeps, and marker-calibrator circuits need be purchased only as you need them . . . when you need them. No worries of having "too much" scope now . . . not enough scope flexibility a few years later.

From simple one-channel monitoring jobs to difficult medical, biophysical and lowlevel strain gauge recording involving two, three or four channels, you'll find no jobs too small or few too large for these versatile ETC instruments.

Write for detailed specifications and prices.

1200 E. MERMAID LANE
PHILADELPHIA 18, PA.
PIONEERS IN MULTI-GUN C.R TUBES AND MULTI-CHAN'NEL OSCILLOGRAPHY.
 in instrument design

SEALED
ELAPSED TIME
INDICATORS
schedule maintenance - study productivity
Glass.to metal sealed ELAPSED TIME indicators. Compact, low cost, tamper-proof. Standard ASA/MIL dimensions, $21 / 2^{\prime \prime}$ and $3^{1} \mathbf{6}^{\prime \prime}$ sizes. Easy to read standard size counter registers $1 / 10$ hour steps to 9999.9 or hour steps to 99999. Hermetically sealed. Shielded Starts, operates continuously from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. For $110-125$ or $220-250$ volts 60 cycle A.C. Bulletin on request. Marion Electrical Instrument Co., Manchester, N. H., U.S.A.

Cobytight (C) 1958, Marjon

marion meters

CIRCLE 107 READERS SERVICE CARD
Im Building a college Fund
for My Kids with the
CYTRA MONEY

I'm earning in Mobile-Radio Mambenane:

I couldin't set aside from my engineer's salory enough money to send the kids through college. So when I fearned of the boom, in mobile-radio I desided to start my own parttime business. Now my income from mobile-radio maintenance goes into a "college bank acsount
This can be your story, too. Send coupon for your free copy of "HOW TO MAKE MONEY IN MOBILE.RADIO MAINTENANCE." Published by Lompkin laboratories, Inc., manufacturers of the 105-B Micrometer, Frequency Meter ond 205*A FM Modulation Meter.

LAMPKIN LABORATORIES, INC.

 Instruments Div., Bradenton, Fla.At no obligation 10 me pleose send "HOW | TO MAKE MONEY IN MOBILE-RADIO MAIN.
TENANCE."
Nome
Address
City
CIRCLE 108 READERS SERVICE CARD 132
cither 60 or 400 cps , or for 50 v cl-c. It is available in ratings from 50 mal to 10 amperes. A choice of two time delav curres is offered, for fast or slow overload response, and the breaker is also available with instantancous-trip response.

Since the SNI3 combines magnetic actuation with hedratulic time delay, its current capacity and musttrip points are froc from ambient temperature effects. The breaker will maintain its 125 -percent musttrip point from -65 to +125 C . Circle 333 on Reader Scrvice Card.

Molding Compounds for cable breakouts

Coast Pro-Seal and Mrg. Co., 2235 Beverly Blicl, Los Angeles, Calif. Two non-thiokol permanently flexible cable molding compounds with virtually no cold flow at room temperature have been developed. Designated as I'ro-Sca! 787 and 788 , the compounds are designed for use on "Y" brackouts and "multiple finge"" breakouts.

The properties of the two compounds have been prepared to withstand prolonged exposure to 300 F and shorter periods of 325 F . They have excellent resistaluce to fucls, oils, water and other liguids encountered in missiles and aircraft. Circle 334 on Reader Service Card.

Synthetic Sapphire in large shapes

Linde Co., 30 E. 42 nd St., New York 17, N. Y., has available single crystal sapphire in large shapes,

5701 Northwest Highway - Chicago 30, III.
Circle 109 readers service card

CIRCLE 110 READERS SERVICE CARD May 9, 1958 - ELECTRONICS engineering edition
such as for windows, also in the form of rods, domes, balls, slugs and many special shapes. The material is transparent, has good dielectric characteristics, a high melting point, strengtlo at elevalted temperatures, extreme hardness and excellent infrared and ultraviolet transmission characteristics. Uses include output windows for high power klvstrons, magnetrons, traveling wave and TR tubes. Circle 335 on Reader Service Card.

Load Control Relay watt-sensitive

Maciinery Electrification, Inc., 56 Hudson St., Northboro, Mass. The MEK-213+ load control relay was designed for use with threcphase induction motors. Since any clange in motor loading requires a change in input power (watts) the MEK-213t serics controls offer advantages over devices which respond only to changes in current (amperes). Circle 336 on Reader Service Card.

Bobbin Cores

use ultrathin tape
Dynacor, Inc., $10+31$ Mctropolitan Ave., Kensington, Md. Bobbin cores using ultrathin tape offer

Dynamic Analysis of Frequency Response

A combined sweep generator and c.r.o. suitable for v.h.f., i.f., and v.f. response analysis

FEATURES

- Sweep width variable up to $10 \mathrm{Mc} / \mathrm{s}$ - Crystal controlled fixed frequency-marker pips - Calibrated continuously variable frequency marker - High output - Sensitive Y amplifier
- Calibrated output attenuator

APPLICATIONS:
Alignment and response measurement on television and f.m. v.h.f. receivers; v.s.w.r. of feeder lines; matching feeders to anternas; direct tests on i.f. and r.f. transformers: use as a general purpose oscilloscope.

ABRIDGED SPECIFICATION

Frequency Range: R.F. $50-75 \mathrm{Mc}, 75-115 \mathrm{Mc}, 150-$ 216 Mc ; I.F. $10-45 \mathrm{Mc}$; V.F. $5 \mathrm{kc}-10 \mathrm{Mc}$. Outpu Range: $100 \mu \mathrm{~V}-100 \mathrm{mV}$.
Sueep Il'idh: variable from 500 ke to 10 Mc .
Calibration: continuously variable marker oscillator provides pip corfesponding to known frequency, 3-frequency crystal oscillator generates pips at intervals of 5.0 . 1.0 and 0.5 Mc .
Tima Base: 12 to 50 cps for sweep, 12 cps to 10 kc for general purpose.
TUBES: 5Z4G. 12AT7. 12AU7, 12AX7,6C4,6AK5, 6 AK6

Seud /or leaflet $B 125 / D$

111 CEDAR LANE ENGLEWOOD NEW JERSEY

Tel : LOwell $7-0607$

GREATER
 - OUTPUT
 - STABILITY - ACCURACY

- Multi-columr
- Smaller size
- Hermetically sealed

Cox and Stevens

 LOAD CELLSFor greater accuracy and stability in all types of weight and force measurement, specify new Cox and Stevens hermetically sealed load cells. Sixteen strain gages in multi-column design provide up to 250% greater output, improved stability and better uniformity between cells. Capacities range from 500 to $200,000 \mathrm{lbs}$. All cells with 30 feet of special moistureand chemical-resistant cable in stainless steel jacket.

Cox and Stevens' fifteen years experience in designing and manufacturing load cells, plus dead weight testing facilities which make possible calibration to higher accuracies, assure maximum reliability. Write for technical bulletins.

TYPICAL SPECIFICATIONS

1. Recommended Input: . 20 volts
2. Change in Output, No Load to Full Load: $1.750 \pm .1 \%$ millivolts/volt input 3. No Load Output: . $\pm .25 \%$ of full load output
3. Output Linearity: . 0 to $+.20 \%$ of full load output
4. Temperature Effect on
Cell Output (15 to $115^{\circ} \mathrm{F}$): $.0008 \% /{ }^{\circ} \mathrm{F}$ of output at applied load
5. Temperature Effect on
No Load Output (15 to $115^{\circ} \mathrm{F}$): $\pm .0013 \% /{ }^{\circ} \mathrm{F}$ of full load output
\qquad
6. Allowable Load: . 225% of rated capacity
7. Deflection Under Rated Load: . Less than 0.003"

REVERE CORPORATION OF AMERICA

Wallingford, Connecticut
a subsidiary of neptune meter company
greater uniformity and reliability. They should interest designers using magnetic core logic for computer, counter and control circuits. The bobbin cores find ideal application in critical magnetic shift register, switching transformer and other logic circuits which require the utmost uniformity in switching time and signal-to-noise ratio. Circle 337 on Reader Service Card.

Capacitors microminiature

General Electric Co., Schencctady 5, N. Y., amounces al new line of slug-tvpe microminiáture Tintalytic capacitors. These polar units permit higher microfarad ratings than can be obtained by wire-type units with the same case size. The capacitors are nomally enclosed in a Mylar sleeve which affords cxcellent insulating qual. ities.

The new capacitors are designed for low voltage transistor applica-tions-such as hearing aids-where high microfarad values are required in extremely small spaces. Circle 338 on Reader Service Card.

Beam Power Tube

 high perveanceRadio Corp. of America, Harrison, N. J., has introduced the $709+$ high pervance beam power
tube with high power gain. In continuous-wave service it can be operated with 500 w input (intermittent commercial and amateur service) at frequencies up to 50 mc and with reduced input up to 175 me. It has a maximum plate dissipation of 125 w (ICAS) in modulator and $c-w$ service.

The new tube can be operated with relatively low plate voltage to give large power output with small driving power. Circle 339 on Reader Service Card.

Filter Trap
 in two models

Benco Television Associates Ltd., 27 Taber Road, Rexdale, Ontario, Canada, announces development of their new improved adjacent channel interference filter trap, known as the Filter Matic. The unit incorporates Hi-Q traps as well as band pass filters. It is available in single and dual models. Circle 340 on Reader Service Card.

Transformer
 miniature unit

Advince Industries, Inc., 670 Memorial Drive, Cambridge, Mass., has available a new miniature, asymmetric, laminar power toroid for use in either airborne or ground equipment.

This 25 -watt, 400 -cycle transformer is available in voltage rat-

The new Millivac MV-32A precision RMS VTVM is a "transfer" voltmeter in which the unknown voltage is carefully matched by a very accurate calibratior signal. Thus, all measuring errors created by the range attenuator, AC amplifier, rectifier and indicating instrument are completely eliminated.

This new precision meter should not be confused with the so-called "true" RMS volmeters which use biased diodes or other "synthetic" RMS-sensitive circuitry. This is a real EMS voltmeter, incorporating an electronicalt, protected ther-mo-couple as its RMS-responsive meter-rectifier.

MILLIVAC

INSTRUMENTS

Division of COHU Electrorics, Inc.
BOX 907, SCHENECTADY, N. Y.

Exposure . . . to the equivalent of a stiff sea spray. . . on a hot, humid day-one more test the G-M Servos take in stride.
Not just a promise-but a tested fact. G.M Servo Motors are built to deliver the ultimate in performance. The salt spray test shown above is just one of a battery of tortures de. signed to prove G-M Servos under all extremes of humidity, temperature, altitude, vilbation and salt spray.

At G.M "Designed to Meet Mil. Envirommental Specifications" is lacked by production testing that does just that!

[^7]ings up to $1,000 \mathrm{v}$. Extreme reliability with very small size and low heat rise are its principal design features. The unit is capable of mecting MIL-T-27 requircments. Circle 341 on Reader Service Card.

Rotary Converter changes d-c to a-c

Kato Engineering Co., $1+15$ First Ave., Mankato, Minn. This rotary converter can be mounted casily in a vertical position as a component of test equipment, on boats or ground mobile equipment which are suppliced only with d-c and must have a small source of a-c.

The unit is $11 \frac{1}{4} \mathrm{in}$. tall witl a diameter of $7 \mathrm{t}_{3}^{3} \mathrm{in}$. It weighs 65 lb .

Precise 60 cps output frequency is maintained within a fraction of a cycle as the attached specd governor holds the speed at $3,600 \mathrm{rpm}$. Another interesting feature is that the unit is both fungus proof and corrosion proof. Circle 342 on Reader Service Card.

Shielded Mount for 2K25 klystron

Narda Microwave Corp., Mincola, N. Y., announces a completely enclosed and shielded tube mount

WITHOUT CORE ADJUSTMENTS

On
 pre-adjusted filter cores

- guaranteed effective permeabilities within $\pm 3 \%, \pm 2 \%$ or $\pm 1 \%$ of specifications, instead of usual 10% to 50% spread
- measured, adjusted and grouped for mag. netic characteristics at the factory
- a complete line of pot-type ferrite cores from $5 / 8^{\prime \prime}$ to $13 / 4^{\prime \prime}$ diameter, with bobbins and hardware for each size
- available in quantity to manufacturers of communications, telemetering and computer equipment

There's Nothing
 Else Even Remotely Like These PreAdjusted Potcores by

Write for literature describing standard sizes available from stock, exact permeability values, and number of furns required for any given inductance.

FERROXCUBE CORPORATION OF AMERICA

50 East Bridge Street, Saugerties, New York CIRCLE 115 READERS SERVICE CARD
May 9, 1958 - ELECTRONICS engineering edition
for the $2 \mathrm{~K} 25 / 723 \mathrm{AB}$ klvstron in 1 by $\frac{1}{2}$ wave-guicle. Providing the correct impedance match for maximum power output, model 980B mount permints the klystron shell to be operated at potentials above ground, without danger of shock.

Internal wiring is readily accessible and leads are brought through Narda-iron, which is a clissipative plastic that will not chip or shatter duc to mechanical shock. Circle 343 on Reader Service Card.

Phase Shifter

0.1 deg accuracy

Dytronics Co., P.O. Box 3676, Columbus l4, Ohio. Model 440 phase shifter uses precision R-C elements in the basic plase determining networks. Features include unity gain independent of phase setting and the direct digital setting of phasc angle. Input impedance is 200 K and output impedance is 500 olins. Circle 344 on Reader Service Card.

Connectors

meet MIL specs
Cannon Flectric Co., 3208 Humboldt St., Los Angeles 31, Calif. The now EX line of connectors, resistant to heat and vibration and sealed for use at extreme altitudes, is announced.

EX connectors meet all requirc-

Wcrid's Foremost Producer of Small Die Castings
151 Beechwood Ave., New Rochelle, N. Y. NEw Rochelle 3-8600
CIRCLE 116 READERS SERVICE CARD

DISTORTION METER

Type BKF5
FUNDAMENTAL FREQUENCY RANGE:
20 cps to $20 \mathrm{kc} / \mathrm{s}$
DISTORTION FREQUENCY Range:
20 cps to $60 \mathrm{kc} / \mathrm{s}$
full scale deflections:
0.5% to 100% distortion
infut Impedance:
200 Kilohms

Total distortion, harmonics, and hum measured separately. Meter readings are all r.m.s. values. This instrument makes distortion measurements easy, fast and dependable.

- A D O M E E E
 72 Emdrupvei, Copenhagen NV, Denmark

Represented in Canada by

BACH-SIMPSON•London/Ontario
Represented in the United States by
WELWYN INT. INC. • 3355 Edgecliff Terrace, Cleveland 11, Ohio

NOW! GO-NO GO-COMPARATIVE MEASUREMENTS AT A GLANCE

For Quality Control and Production Tests From DC to $\mathbf{2 5 0}$ MC :

NEW

4
II明

CRYSTAL FILTER NETWORKS

AT STANDARD FREQUENCIES

$5 \mathrm{mc}-10.7 \mathrm{mc}-13 \mathrm{mc}$
bliley filter networks are now available in three STANDARD DESIGNS WITH CHARACTERISTICS SELECTED FOR GENERAL APPLICATION IN COMMUNICATIONS SYSTEMS. ESPECIALLY SUITABLE FOR USE IN SSB AND MINIATURIZED EQUIPMENT, AS WELL AS HIGH SHOCK AND VIBRATION MILITARY APPLICATIONS. FOR CUSTOM APPLICATION, BLILEY WILL DESIGN FILTER NETWORKS OVER THE RANGE 2 me TO 20 mc . REQUEST BULLETIN \#509.

BLILEY ELECTRIC COMPANY UNION STATION BUILDING • ERIE, PENNSYIVANIA
ments of MIL-C-5015 and MILL-E 5272. They may be operated contimuously at temperaturcs up to 325 F , and maintain the sealing characteristics necessary to prevent voltage flashover at high altitudes. Circle 345 on Reader Service Card.

Core Tubes

high temperature
Silicone Insulation, Inc. $138 ;$ Seabury Ave., Bronx 61, N. Y Rectangular and round high temperature corc tubes or coil forms without flanges in almost any size are available. Class H tubes are of laminated silicone glass cloth. They are designed to mect the requirements of military specifica tions MIL-E-917B for electrical power equipment and MIL-E$16+00 \mathrm{~A}$ for electronic equipment. Class B tubes are of laminated polvester glass cloth or laminated epoxy glass clotlı. Circle 346 on Reader Service Card.

Gas Noise Source for shf uses

Bendix Aviation Corp., Red Bank Division, Eatontown, N. J. Type T1D-22 gas noise source tube is designed for use in super high frecuuency measurements. It is

Protect the life line of your electrical products with Nylon HeYco Strain Relief Bushings

Anchor \& Insulate

 power supply cords
SAVETIME...

...SAVE MONEY

Send for samples to fit your wire, today!

HEYMAN

MANUFACTURING COMPANY KENILWORTH 15, NEW JERSEY

constructed for use witlı a 90 deg H-plane mount in $\mathrm{RG} / 48 \mathrm{U}$ vaveguide to provide noise in the 7.6 11.5 cm wa elband. When used in the suggested mount assembly it functions essentially as an untuned noise generator over the recommended transmission bandwidth of the mount.

Typical applications for the tube are: radio receiver calibration, radiometer, microwave radio relay, radio telescope reference and noise measurement standard. Circle 347 on Reader Servicc Card.

Digital Voltmeter
transistorized
Ransom Rrsearch, 323 W .7 th St., San Pedro, Calif. The DVM-1 digital voltmeter mav be set for full scale readings of plus 10,100 or $1,000 \mathrm{v}$ or minus 10,100 or $1,000 \mathrm{v}$ and moasures voltages to a full-scale accuracy of better than 0.5 parcent.

It operates from a $117-\mathrm{v}$ a-c source (20 w) and consists of transistorized computer elements including a precision digital-to-analog converter, comparator, logic and a reference power supply, which is held to an accuracy of better than 0.1 percent. Circle 348 on Reader Service Card.

Converters

voltage to digital
Adage, Inc., 292 Main St., Cambridge 42 , Mass, amounces Voldi-

Heavy Duty

MINIATURE

RELAYS

for Industrial Reliability

Special heavy duty contact arms and contacts switch 10 amperes (non-induc. tiye) reliably in
heavy duty service.
Contact combinations up to 4PDT for DC operation and DPDT for AC. Operating voltages to $230 \mathrm{~V}, \mathrm{DC}$ and $440 \mathrm{~V}, 60 \mathrm{C}$.
Resistance to shock, vibration and temperature change to meet military specifications.
Heavy duty contacts can also be furnished in combinations with normal or low level signal load contacts.

Available with plug-in mounting, also dust tight or hermetically sealed enclosure.

Magnecraft Plug-in Relays

- Simplify wiring - may be plugged in after equipment is installed.
- Easily removed or replaced - no special skill or equipment required.
- Permit inspection, testing or adjustment with negligible down time. Available for wide range of requirements. Tell us what you need or send for catalog.

MAGNECRAFT Electric Company

3350B W. Grand, Chicago 51, III.

Flat from DC-4.5 me, usable to 10 mc . Hegs: dirwi-ionvai sms misul thruout $\mathrm{K}-\mathrm{f}, \boldsymbol{l} / \mathrm{ower}$ compling het. stages: 4 -sten frett Compensated atenuator un to 10001 . SWEEP: le fectly linear 10 eps-10 10 ke (ext.
 direr or cap, coupliner: bal. in unbal inpuls: edge-lit pngraved ucite grath sereens; dim-
mor: filler: bezel tits stal. photo equipt. High intensity trace CR'T, 0.106 ustac rise ime. Tush pull hor :mmpl, tlat to tof kc, sens. 11.6 rms mw/in. 13uilt-in volt, calib Kaxis mod. Sawtouth $\& 61 \mathrm{cps}$ outputs. Astig. Control. Rerace blanking. Phasing control.

Entirely electronic sweep circuit (no mech--reductor int exellen accurately-hased inIlat RE output mew ACC circuit amomatic ally adjusts ost ior max. outhu whent hand ing alcuracy; edge-1i hainlines chminate fund. bands. Variabla vack
 Damet, 4.5 me Mtal Marker Ose., xtal supplied. monest max dowiation to (1-30 mar hishast max.
 (4-step) decade). Cables: umput scope buri\% scope revtical

COMPLETE with steel cover and handle.

See the 50 EICO models IN
STOCK at your neighborhood distributor. Write for

ITE 33-00 NORTHERN BLVD LONG ISLAND CITY

CIRCLE 122 READERS SERVICE CARD
con, an instrument designed to op crate either as a digital voltmeter or as an analog to digital converter. It is capable of 2,000 completely independent conversions per sec, and is completely transistorized to climinate noise and heat and to tedace maintenance to a minimum. One of the new features of Voldicon is printecl-circuit carcls which are designed to prevent crror Circle 349 on Reader Service Card.

Ground Power System for aircraft

Varo Mig. Co., 1nc., 2201 IV alnut St., Carland, Texas. Moclel 2615 is it 15 kia motor-clutch-gencrator sct having $400 \mathrm{c} p \mathrm{~s} \pm 0.1$ percent frepuency regulation. It is designed for automatic pre-launch checkout of missile sustems. A unique control allows tracking of aln extemal reference, automatic synchronization with and load transfer to the inissile airborne supply. Circle 350 on Reader Service Card.

Silicon Rectifier

nine cabinet styles
Cinristre Elfctric Corp., $3+10$ IV. 67 th St., Los Angeles +3, Calif. has developed a line of automatio

reliability

At Hughes the Systems Engineering approach is considered essential for optimum reliability.

The basic design of complex electronic systems is relatively more advanced than the Reliability Engineering which will ensure their successful operation.

Thus, the challenge of the reli ability barrier now requires the optimum application of creative engineering.

Several openings for both senior and junior engineers-preferably with radar systems, missiles, or communications backgroundsnow exist in these areas of reliability: Prediction, Design Review, Analysis, Promotion. Your inquiry is invited. Please write Mr. J.C. Bailey at the address below.
the IV'est's leader in advanced elecronics

HUGHES

Scientific and Engineering Staff
RESEARCH A DEVELOPMENT LABORATORIES
Culver City, Califomia
ally regulated silicon power rectifiers. Designed principally for missile testing and gencral use, the new line includes standard models from 30-1,500 ampercs in mine clifferent cabinct styles. Voltage tanges from $5 \frac{1}{2}$ to $135 \mathrm{v} \mathrm{d-c}$

Through a highly stable mag. netic amplifice control (using onlv static componcuts, the manufacturer clamins precise regulation \pm 0.5 percent, fast response 0.1 sec , and low ripple of 1 percent rins. Circle 351 on Reader Service Card.

Solid State Device

two configurations
Texas Instrumients Inc., P.O. Box 312 . Dallas, Texas. The Sensistor silicon resistor has a 0.7 percent per cleg C positive temperalture cocificient of resistance. It is expected to have wide application as a temperature compensating derice in miniaturized amplifiers, servos, computer switching circuits, magnetic amplifiers and power supplics. There are two configurations, both in standard resistance ratings rallging from 100 to 1.000 ohms at 25 C. Circle 352 on Reader Service Card.

Coax Components microminiaturized

Electro-Physics Laboratories, 2065 Huntington Drive, San Marino, Calif., announces two new rugged microminiature coaxial com-
 WRITE FOR DESCRIPTIVE FOLDER V-318

Victory 101 SINERINE CORPORATION

 101 SPRINGFIELD ROAD

THE STANDARD ELECTRIC TIME COMPANY
 89 LOGAN STREET - SPRINGFIELD, MASSACHUSETTS

CIRCLE 126 READERS SERVICE CARD

ponents-attenuators with a precision of $\pm 0.5 \mathrm{db}$, and impedance matching pads having a low loss. Dimensions of both are $\frac{3}{5} \mathrm{in}$. diamcter by 2 in . length. These units are designed for $\frac{1}{2} \mathrm{w}$ input power, and mate with EPL microminiature coaxial connectors. Both components are carried in stock for most impedance ratios and ralues. Circle 353 on Reader Service Card.

Power Amplifier
 for X-band use

Residel Engineering Corp., 330 So. Fair Oaks Ave., Pasadiena, Calif. No. 90173 X-l)and pulse / \mathbf{c}-w power amplifier consists of a widc-loand twt, power supply, and air cooling assemblies requiring a total of approximatcly 38 in . of 19 -in. relay rack space.

Specified minimum output is $+\mathrm{w}, 8,000-10,000 \mathrm{mc}$, hut up to It w is commonlv obtained at the upper end of the range. Hum and noise are 30 db below full output minimum. Leakage is -80 dbm maximum. Circle 354 on Reader Service Card.

D-V Storage Tube black background

Ailen B. DuMont Laboratorirs, Inc., 750 Bloomfickl Avc., Clifton, N. J. Images on radar screens, half-

GET THE EXACT
TERMINAL YOU NEDD
AT NEW LOW PRICES!

SINGIE TURRET

FROM THE LARGEST STANDARD and CUSTOM LINE AVAILABLE...

Over 100 varieties are furnished as standard. This includes a full range of types, sizes, body materials and plating combinations. Specials can be supplied to any specification. The Whitso line is complete to the fullest extent of every industrial, military and commercial requirement.
Standoff terminals include fork, single and double turret, post, standard, miniature and sub-miniature body types-male, female or rivet mountings - molded or metal base. Feed through terminals are furnished standard or to specification.
Whitso terminals are molded from melamine thermosetting materials to provide optimum electrical properties.
Body Materials: Standard as follows-melamine, electrical grade (Mil-P-14, Type MME); melamine impact grade (Mil-P-14, Type MMI); and phenolic, electrical grade (Mil-P-14, Type MFE).

Plating Combinations: Twelve terminal and mounting combinations, depending on electrical conditions, furnished as standard.
Specials: Body materials and plating combinations, also dimensions, can be supplied to any custom specifications.

PROMPT DELIVERY IN ECONOMICAL

9328 Byron Sireet, Schiller Park, lllinois (Chicago Suburb)
CIRCLE 128 READERS SERVICE CARD
tone or black and white, can now be retained for more than five minutes and viewed in virtually any ambient light environment, by use of the black background directview storage tulse. Applications are for fire-control ratar; airplanc-cockpit raclar display; airport surveillance; transient studies; and visual communications. Circle 355 on Reader Service Card.

Video Transformers

tiny, wideband
ESC Corp., $53+$ Bergen Blvd., Palisades Park, N. J., amounces a new line of wideband video Htansformers. These subminiature units with widc bandwidtlı (50 cps to 8.0 mc) are used to replace bulkier components, for creating greater coonomy and increasing equipment efficiency. Transformers are supplied with solder terminals. They meet all applicable Mil-Specs. Circle 356 on Reader Service Card.

Panel Meter

 miniaturizedInternational Instruments Inc., P.(). Box 2954, New Haven, Comn., announces a new $1 \frac{1}{2}-\mathrm{in} .300 \mathrm{deg}$ scale pancl meter. Model 173 has a 3.t-in. scalc length, which is comparable to that of $4 \frac{1}{2}-\mathrm{in}$. meters

SUPPRESS INITIAL SURGE CURRENTS.

PROTECT FILAMENTS

Application of voltage to tubes in receivers, transmitters, computers, and other electronic equipment subjects their filaments to initial current surges (top oscillogram).
These surges cause premature failure or unsatisfactory service life. Bottom oscillogram shows how a G-E thermistor can suppress the surge and protect the tube filaments.
The thermistor has a large negative temperature coefficient of resistance. The high resistance holds surge current to a low value during initial application of voltage. As the cold filament gradually heats up-raising its resistance to normal level - the thermistor's resistance lowers to a negligible value, permitting full current to flow after a brief period.
G-E thermistors can also be used to prevent surges from operating relays, or disturbing sensitive apparatus. They can provide time delay, control warning circuits, sequence switching
For more information, or thermistor test kits, write: Magnetic Materials Section, General Electric Company, 7806 N. Neff Blvd., Edmore, Michigan.

THERMISTOR TEST KITS
 $\$ 12.50$ each

Kit A : ${ }_{12}$ disks ($10-500$ онms).
IIt B: 12 DISKS ($1008-100,000$ OHMS). - sizes. 2 grades.

KIt C: 12 Washers and rods (sGal15 OHMS). 6 SIZES, 2 GRADES. KIt D: 10 disks (1000 Ohms). 5 SIZES, 2 GRADES.

Progress /s Our Most Important Product
electric

The			
		ency Range	Price
310.AB*	Band Pass	20 cps to 200 kc	\$295.00
330-A*	Band Pass	. 02 cps to 2 kc	\$47500
$330 \cdot \mathrm{M}^{*}$	Band Pass	0.2 cps to 20 kc	
340 -	Servo	01 cps to 100 cps	\$385.00
350-A*	Rejection	02 cps to 2 kc	\$475.00
360-A*	Rejection	20 cps to 200 kc	
-Available for rack mounting at $\$ 5.00$ additional.			
For further information on: - Filters - Power Supplies - Oscillators - Power Amplifiers te for our free catalog			

write for our free catalog D

Krohn-Hite CORPORATION

580 mASSACHUSETTS AVENUE
CAMBRIDEE 39, MASS., U. S. A.
CIRCLE 130 READERS SERVICE CARD
of conventional type. Accuracy is held to ± 3 percent of full scale deflection, and it is expected tlat this meter will find wide application in portablc, airborne and other equipment where weight or pancl space must be saved.

The meters, featuring a miniaturized D'Arsonval movement, are self-contained, individually calibrated for use on magnetic or nonmagnetic pancls, and supplied ready for usc. Circle 357 on Reader Service Card.

Indicator

phase sequence
Master Specialities Co., 956 E. 108th St., Los Angeles 59, Calif. announces a 6 -oz pocket-size phase scquence indicator. It detects and signals correct phase sequence of threc phase power supplies. No moving parts are used. A resistancccapacitance phase sequence sensing network drives a neon indicator lamp. The neon lamp will illuminate only if phase sequence is correct, and all leads energized. Circle 358 on Reader Service Card.

Angular Divider

 for synchros and potsTiieta Instrument Corp., t δ Pine St., E. Paterson, N. J. Shaft

CABINETS

Precision construction to exact specifications! Complete packaged aluminum cabinets basic structure, side panels, doors, front panels, interior chassis and frame structures for support of electronic equip ment.

ANTENNAS

Circular and rectangular parabolic antennas with reflector tolerances meet the most rigid specifications fabricated to order CONSULT OUR ENGINEERING STAFF in pre-designing or development stages of any project at No Obligation.

WASHINGTON ALUMINUM CO. INC. Dept. 255 Baltimore 29 Md . Circle 2.1000

CIRCLE 131 READERS SERVICE CARD

Howard B. Jones Division
CHICAGO 24. TLLINOIS
of rotating components are positioned to all accuracy of 20 sec of arc, and flexible couplings are avoided by a new technique of using the synchio slaft to locate the center of rotation of the synchro housing in the model D-3 precision angular divider

Unskilled operators can handle this mechanism since collecting is automatic and readings are direct Aclaptation to all housing and shaft sizes can be accomplished in approximately one minute at a cost of $\$ 100$ per adapter. Circle 359 on Reader Service Card.

Electronic Symbols

 pressure appliedTech-Tac, Inc., 727 W. Seventh St., Los Angeles 17, Calif. Pressure applied electronic symbols on clear acetate as a drafting aid are available. All stanclard svmbols to fit JAN. MIL. ASA requirements are inchuded. Complete svstem consists of 165 numbered paper backed acetate slieets on each of which are an average of 48 symbols, depending on size. Circle 360 on Reader Service Card.

Pulse Generator

 high poweredNavigation Computer Corp., 1621 Suyder Ave, Philadelphia 45, Pil. Model 1015A power pulse gen-

ESTERLINE-ANGUS

"The Meter With a Record" for Over 50 Years CAN CUT COSTS FOR YOU NOW

100
$\%$ Profit $\times \$$ Savings $=\$$ Sales

Reducing costs, eliminating waste, saving power-Any Reduction in Operation Cost-contributes directly to profit. In many plants, a cost reduction of $\$ 100$ a month has the same effect on profit as sales of $\$ 20,000$ a year.

Start now. Trim costs with Graphics.
Ask for Graphic 856-How to Make Plant Surveys

The ESTERLINE-ANGUS Company, Inc.

Pioneers in the Manufacture of Graphic Instruments Dept. E, P. O. Box 596, INDIANAPOLIS 6, INDIANA

CIRCLE 133 READERS SERVICE CARD

Continuous electroplating methods permit coating of many metals on to wire (or ribbon) in specified thicknesses of plate . . . This very flexible operation makes it possible to designate a desirable base or precious metal with a coating of another metal for its own particular characteristics. In our laboratory Tungsten wire as small as $.00015^{\prime \prime}$ has been electroplated with Gold. ... New combinations of plating on wire are being developed by our research

ARNOLD TOROIDAL COIL WINDER
sets up quickly. . . easy to operate... takes wide range of wire sizes

SPECIFICATIONS:

- Min. finished hole size: . 18 in.
- Max. finished toroid O.D.: 4.0 in .
- Winding speed: 1500 turns/min.
- Wire range: AWG 44 to AWG 26
- Dual, selt-checking furns counting system
- Loading (wire length) counter
- Core range : $1 / 4^{\prime \prime}$ I.D. to $4^{\prime \prime}$ O.D. $101 \frac{1 / 2^{\prime \prime}}{}$ high

LABORATORY USE

- Change wire and core size in 45 sec .

PRODUCTION USE

- 1500 turns per minute
- Insert core and load in 20 sec .
includes all rings, counters and accessories

IMMEDIATE DELIVERY. Literature on request
ARNOLD MAGNETICS CORP.
4615 W. Jefferson Blyd., Los Angeles 16, Calif.
REpublic 1-6344
CIRCLE 135 READERS SERVICE CARD

MINIATURIZED CARRIER TELEPHONE SYSTEMS FOR RADIO AND 4-WIRE CABLE

FOUR OR 24 CHANNELS

Two miniaturized voice-multiplex systems providing four or 24 voice channels over radio or 4 -wire cable are available. They have many advantages over earlier designs: high performance, small size, light weight, low cost, circuit simplicity, low power requirements, small number of tubes of a single type only, low operating cost, low maintenance and high reliability.

These systems provide a voice-channel flat within 1 db from 300 to 3500 cycles, for each 4 kc of bandwidth occupied. Each channel is equipped with hybrid, signalling, and dialling circuits for all the standard 2-wire and 4 -wire loop options.

The basic unit provides an order-wire and 4 carrierderived channels. These units can be stacked in groups of $2,3,4$ or 5 by means of a group modem to provide 9, 14, 19 or 24 channels. Full flexibility is provided for dropping and inserting channel groups at repeater and terminal points. Moderate lengths of 4 -wire cable or open-wire line may be inserted between the multiplex equipment and the radio terminals.

24-channel carrier-telephone terminal complete with hybrids, ringing and dialling circuits, and test facilities. Dimensions are $58^{\prime \prime}$ high, $16^{\prime \prime}$ wide and $8^{\prime \prime}$ deep. Power input 250 watts. Weight 326 lbs.

RADIO ENGINEERING PRODUCTS
 1080 UNIVERSITY ST., TELEPHONE
 UNiversity 6-6887
 MONTREAL
 CABLES
 RADENPRO, MONTREAL

erator contains three independent scctions which produce $0.1 \mu \mathrm{sec}$ pulses of 30 vamplitude, when triggered by external voltage transients. Output amplitucle is variable from 0 to 30 v , and in both positice and negative polarities. Input is a-c coupled and may be triggered by any negative transient of at least $1 \mu \mathrm{sec}$ per 1 v . Circle 361 on Reader Service Card.

Pulse Counter
 linear amplifier

Technical Measurearevt Corp. 140 State St., New Haven, Conn., has developed the model PA-3B differential integral pulse height sclector with linear amplifier. The analvzer section features three modes of operation: an integral mode for counting all pulses above the base linc; a $0-10 \mathrm{v}$ window mode; and an upper limit mode which makes the window control a 0 to 100 v upper limit, for counting pulses between lower and upper limits. Amplifier section has binary gains controls from 1 to $6+$; maximum gain is 8.000 , RC clipping is fixed. Circle 362 on Reader Service Card.

Sealed Relay ultrasmall, light

C. P. Clare \& Co., 4101 Pratt Blvd., Chicago +5, Ill. Type F hermetically sealed relay-no bigger

AN INVITATION TO JOIN ORO

Pioneer In Operations Research

Operations Research is a young science, earning recognition rapidly as a significant aid to decision-making. It employs the services of mathematicians, physicists, economists, engineers, political scientists, psychologists, and others working on teams to synthesize all phases of a problem.

At ORO, a civilian and nongovernmental oiganization, you will become one of a team assigned to vital military problems in the area of tactics, strategy, logistics, weapons systems analysis and communications

No other Operations Research organization has the broad experience of ORO. Founded in 1948 by Dr. Ellis A. Johnson, pioncer of U. S. Opsearch, ORO's research findings have influenced decisionmaking on the highest military levels.

ORO's professional atmosphere encourages those with initiative and imagination to broaden their scientific capabilities. For example, staff members are taught to "program" their own material for the Univac computer so that they can use its services at any time they so desire.

ORO starting salaries are competitive with those of industry and other private research organizations. Promotions are based solely on merit. The "fringe" benefits offered are ahead of those given by many companies.

The cultural and historical features which attract visitors to Washington, D. C. are but a short drive from the pleasant Bethesda suburb in which ORO is located. Attractive homes and apartments are within walking distance and readily available in all price ranges. Schools are excellent.

For further information write:
 Professional Appoinfments

OPERATIONS RESEARCH OFFICE

The Johns Hopkins University
6935 ARLINGTON ROAD BETHESDA 14, MARYLAND
than a postage stamp-is designed to fill the demand for a smaller, lighter relay stalwart enough to withstand extremes of temperature, heavy slock and extreme vibration, yet fast and more than moderately sensitive

Type F is rated for ambient temperatures from -65 C to +125 C . It is tested for shock of 50 g for 11 millisec. Vibration tests show from $5-75 \mathrm{cps}$ at maximum excursion of $\frac{1}{8} \mathrm{in}$. ($75-2,000 \mathrm{cps}$ at 20 g acceleration). Pickup time is 3.5 millisec nominal; drop-ont time, 1.5 millisec nominal. Circle 363 on Reader Service Card.

Electrocardiograph transistorized

Sanborv Co., 175 IVvman St. Waltham 5t. Mass. The direct writing model 300 Visctte ECC electrocardiograph is the size of a small overnight case and rveighs only 18 lb complete. Threc vacunm tubes and a dozen transistors and diodes are used in the circuit, which records fractional-millivolt action potentials of the heart as a permanent tracing on a strip chart, by means of a recording galvanometer. All amplifier circuitry is containcd on plug-in printed wiring pancls, to facilitate any scrvicing that mav be necessary. Circle 364 on Reader Service Card.

SYNONYMOUS

For the most complete line of Flutter Meters, there is only one source $-\mathrm{d} \& \mathrm{r}$ LTD. From the meters used in simple maintenance test equipment to the most complex standardization and analysis equipment for missile flight systems and telemetering systems - we make them all.

WIDEBAND FLUTTER METERS

MODEL FL-3D FLUTTER AND WOW METER

Features
A convenient instrument of moderate cost for use in field main. tenance of music-system tape recorders and reproducers, and phonograph turntables
Specifications
Specifications
Carrier frequency -3000 cps , stabilized oscillator
Bandwidth - within 3 db to 250 cps modulation
Bandwidth Selection - 0.5 to 6 cps . 6 to $250 \mathrm{cps}, 0.5$ to 250 cps Scale Ranges - 2% and 0.5% full scale rms
Price: $\$ 225.00$

MODEL FL-48 WIDEBAND FLUTTER METER

Features

A very sensitive broadband instrument for laboratory use in the precise measurement of small amounts of flutter with components up to 5000 cps . Most frequently used in telemetering and data reduction systems

Specifications

Carrier Frequncy -14.500 cps , crystal controlled Bandwidth - D-C to 5000 cps with in 6 db
Bandwidth Selection - Full range above, 0.5 to 30 cps 30 to $300 \mathrm{cps}, 300$ to 5000 cps
Scale Ranges $-0.2 \%, 0.6 \%$ and 2.0% rms full scale Orift Meter $- \pm 2.0 \%$ frequency change d.c. to 4 cos Display - 3 -inch flat-face oscilloscope for flutter analysis Price: $\$ 965.00$ rack mounted, $\$ 1000.00$ in cabinet

MODEL FL-5A LABORATORY STANDARD FLUTTER METER

Features
An extremely stable (temperature controlled discriminator) in strument with great sensitivity and extended bandwidth for laboratory work in connection with precision instrumentation data recorders. Galvanometer outputs provided

Specifications

Carrier Frequencies - 40 kc . and 70 kc ., crystal controlled
Bandwidth - D.c. to 10 kc . with 70 -kc. carrier
to 4 kc . with 40 kc . carrier
Indicating Instruments - Level Meter, and $\pm 2 \%$ Drift Meter Output Signals - Scope, two galvanometer outputs
Drift - On dec galvo. output, less than 10 parts per million in $1 / 2$ hour
Price: $\$ 3450.00$ rack mounted

MÓDEL FL-6A BRDADCAST FLUTTER METER

Features
An instrument designed for accurate measurement and analysis of flutter and wow in high-quality audio tape recorders. Specifications
Carrier Frequnecy - 8000 cps ., stabilized oscillator
Bandwidth - D.c. to 1200 cps .
Bandwidth Selection - Fulf range, 0.5 to 30 ,
30 to 300,300 to 1200 cps .
Scale Ranges $-0.2 \%, 0.6 \%$, and 2.0% Ims full scale Display - 3 -inch oscilloscope for waveform observation Price: $\$ 845.00$ rack mounted, $\$ 880.00$ in cabinet

WRITE FOR
COMPLETE INFORMATION AND PRICES

Panta Barbara, California	

CIRCLE 138 READERS SERVICE CARD

Newly Developed CTS Military Variable Resistors

Complete line composition and wirewound military variable resistors now in production. Dependable, exceptionally good delivery cycle. Tested and certified to meet latest specs of MIL-R-94B characteristics X and Y, and MIL-R-19A.
Composition controls Sityles RV2 (1 watt), RV4 (2 watts) and RV5 ($1 / 2$ watt miniaturized) meet latest MIL-R-94B specs. Wirewound controls Styles RA20 (2 watts) and RA30 (4 watts) meet latest MIL-R-19A specs. All are available in a variety of shafts, bushings and resistances. All except Type 65 are available in 2 or 3 section concentric shaft and straight shaft-tandem constructions.

RIBBONS -STRIPS of
 PURE TUNGSTEN
 MOLYBDENUM
 \star THORIATED TUNGSTEN
 \star SPECIAL ALLOYS
 and OTHER METALS
 IN ULTRA THIN SIZES
 to
 TOLERANCES CLOSER THAN COMMERCIAL STANDARDS by

OUR SPECIAL ROLLING TECHNIQUE

Note: for highly engineered applications-strips of TUNGSTEN and some other metals can be supplied

ROLLED DOWN TO . 0003 THICKNESS

- Finish: Roll Finish-Black or Cleaned
- Ribbons may be supplied in Mg . weights if required

For HIGHLY ENGINEERED APPLICATIONS DEVELOPED AND MANUFACTURED BY

Literature of

MATERIALS

Alumina Ceramic. Coors Porcelain Co., Golden, Colorado. Bulletin No. 358 is a t-page folder covering AD-99 alumina ceramic, a dense, nouporous, 99 percent aluminum oxide ceramic. The material described features high strength at high tempcratures, and ultra low dielectric loss characteristics at microwave frequencies. Circle 250 on Reader Service Card.

COMPONENTS

Electrical Connectors. Component Mfg. Service, Inc., Component Park. West Bridgewater, Mass. A t-page illustrated folder discusses the company's custom service for producing electrical comectors of Molded-On one-piece construction, With the techmigue mentioned, wire ends and soldered joints are embedded and isolated from each other in a solid body of high impact insulating material. Circle 251 on Reader Service Card.

Miniature Chopper. The Bristol Co., Waterbury 20, Comm. A single-page bulletin illustrates and describes a new syncroverter dpolt miniature chopper designed for high reliability and long life in dry circuit applications. Characteristics and dimensional drawing are given. Circle 252 on Reader Service Card.

Reflex Klystrons. Eitel-McCullough, Inc., San Brumo, Calif., has available an illustrated booklet which covers the adaptation of ceramics to a new line of Einuac reflex klystrons. Specifications are included. Circle 253 on Reader Service Card.

Relays. Iton Fireman Mfg. Co., 2838 S. E. 9th Ave., Portland 2, Ore. A new catalog describes miniature and subminiature relays manufactured by the company. A special section includes data and charts for computing the character-

the Week

istics of relays under varying condi tions of resistance, current, voltage, power and temperature. Circle 254 on Reader Service Card.

Silicon Rectifiers. Audio Devices, Inc., Rectifier Division, 620 E. Dyer Road. Santa Ana, Calif, has published a 6 -page silicon rectifier handbook which explains the technicalitics of these devices how they are made, where they are used, and how to use them in many applications. Price is \$1. Circle 255 on Reader Service Card.

Solderless Terminals. AMP Inc., Harrisburg 30, P'a. The Selectalog is a 20 -page, four-color booklet summarizing the information containced in AMP's catalog serics. In tonded as a reference indies for those concerned with moderin elec tric circuitry, the brochure also constitutes a digest of soldeiless termination techniques. By using it, the engincer can sclect the catalog which offers the information he seeks. Circle 256 on Reader Service Card.

Tantalum Capacitors. Prramid Electric Co., $14+5$ Hudson Blid. North Bergen, N. J. A t-page bulletin contains enginecring data and clectrical characteristics for a new slug-type tantalum capacitor line. Circle 257 on Reader Service Card.

Teflon Terminals. Scalectro Corp., 610 Favette Aice, Mamaroneck, N. Y. A condensed listing of the most popular Press-Fit types-stand-offs, feed-throughs, conncetors. test jacks, probes, plugs and taper-pin receptacles-is presented in a new catalog. Circle 258 on Reader Service Card.

Thermistor Probe Assemblies. I'enwal Electronics, Inc., Mellen St., Framingham, Mass. Ninc specially designed thermistor probe assemblies are described in detail in a now 4-page brochure. Each assembly is identified by its most common application, and has com-

data control
 starts

The quickest; surest way to achieve true data control in digital systems is to specify an Epsco Model B DATRAC voltage-digital converter
reliable - Epsco pioneered the field of high-speed data conversion techniques... is today considered its leader. Epsco DATRACS have been field-proven in hundreds of installations, coast-to-coast.
aCCURATE $- \pm 0.05 \% \pm 1 / 2$ least sig. nificant binary digit.

ECONOMICAL - High speed operation -up to 44,000 independent conversions per second - makes possible virtually any degree of economical system expansion.
avallable models
Model B-611-11-bit straight binary code, including sign
Model B-613-3 decimal digits plus sign, binary coded $8-4-2-1$ or 4-2-2-1
Model B-617-4 decimal digits
plus sign, binary coded 4-2-2-1

Epsco
Model B DATRAC.

voltage-digital converters

EPSCO SYSTEM BUILDING BLOCKS

- Iow-level differential amplifiers
- high-speed electronic multiplexers
- quick-look oscillograph recorders
- voltage-digital converters
- magnetic core buffer storage units
- transistorized logic circuits

Complete engineering data on request.

Epsco, Incorporated, 588 Commonwerith Ave., Boston 15, Mass. For service in the West Epsco Service Corp. of California, 1722 Westwood Blvd., Los Angeles 24, California

Cbiblobice

MOLDED RESISTORS

 retain their values!S. S. White Molded Resistors retain their origınal values and never deteriorate due to age!
S. S. White resistors serve dependably in hundreds of commercial . . . industrial . . and scientıfic applicatoons. They are characterized by low noise revel... precision. stability ... negative temperature and voltage coefficients. Non-hydroscopic base withstands temperature and humidity They are compact, have excellent stability and mechanical strength.
For full details, write for our Bulletin 5409. We'll be glad to help you apply these high-quality, "all-weather" resistors to your product. Just drop us a line.

FIXED RESISTANCE VALUES
RANGE FROM 1000 OHMS TO $10,000,000$ MEGOHMS!
65X Molded Resistor 1 watt 80X Molded Resistor 3 watts

S. S. WHITE INDUSTRIAL DIVISION 10 East 40th Street, New York 16, New York Western Office: Dept. R 1839 West Pico Blvd., Los Angeles 6, Calif. CIRCLE 142 READERS SERVICE CARD
plete dimensions and mounting arrangements. Circle 259 on Reader Service Card,

Transistor Physics. Texals Instruments Inc., P.O. Box 312, Dallas, Texas. An 8-page reprint of an illustrated article entitled "Transistor Phvsics" is available. It contains information on the element genmanium, discusses diode action and the diode cquation. The author then introduces the concept of transistor action developing the necessary associated equations. Circle 260 on Reader Service Card.

EQUIPMENT

Analog Computer. Donner Scientific Co., Concord, Calif. Eightpage clata file 310 describes the model 3100 high accuracy, medium size analog computer. In desigu, analvsis, or control problems, the computer discussed affords an accurate, time-saving model of an arbitrary plysical system. Circle 261 on Reader Service Card.

Cable Supporting Systems. T. J. Cope Division, Rome Cable Corp., Collegeville, Pa . A new 60 -page loosc-lcaf catalog contains the latest information on the company's complete line of cable supporting sustems, including cable trough, cable ladder, cable clamel, and Rak-it sistem supports and accessorics. Circle 262 on Reader Service Card.

Electrical Control Equipment. Zenith Electric Co., 152 W. Walton St., Chicago 10, Ill. A 6t-page brochure gives detailed information, technical data and prices on all types of antomatic electrical control equipment. Applications, construction details, engincering information and operating features are included, as well as gencral data and design specifications. It is indexed in four sections-automatic transfer switches, contactors, special controls and timing devices. Request copies on company letterlieald.

Instruments Data. Acton Laboratories, Inc., 533 Main St., Acton,

DANO式裡

Regardless of type or quantity, every coil is quality manufactured to your exact specifications.

- Encapsulated
- Paper Interleave
- Bobbin
-
- Form Wound
- Vacuum Impregnated
- High Temperature Application

Also, Transformers Made Io Order
NOW AVAILABLE! New 20-page Dano illustrated catalog including technical coil designing data.

THE DANO ELECTRIC CO.

MAIN ST., WINSTED, CONN.
CIRCLE 143 READERS SERVICE CARD

GOLD, SILVER, PLATINUM, RHODIUM, PALLADIUM...the precious metals generally cost the same, no matter where you buy them. But you do get more for your money when you buy precious metal plating from HarperLeader. You get the full benefits of the engineering, metallurgical, and other highly specialized services of Harper-Leader's technical staff.

Send for Bulletin E-58

HARPER-LEADER, INC.
Waterbury 20, Conn.
CIRCLE 144 READERS SERVICE CARD
May 9, 1958 - ELECTRONICS engineering edition

Mass. A file type brochure provides condensed catalog data on a complete line of instruments. These inclucle phase meters, phase standards, impedance incters, rtom's, amplifiers, oscillographic recorders, potentiometer test equipment, knobs, dials and dual speed drives. Circle 263 on Reader Service Card.

Microwave Frequency Meter. Polytechnic Research \& Develop ment Co., Inc., 202 Tillars St., Brooklyn 1, N.Y. A single-shect bulletin contains features and specifications of the type $587-1$ microwave frequency meter which has an extended range of 250 to $1,000 \mathrm{mc}$. Price of the unit described is $\$ 250$. Circle 264 on Reader Service Card.

Portable P-A Sustem. Polvtronies Inc., 7326 Westmore Rcl., Rockville, Mcl. A four-page folder illustrates and clescribes the PortaVox, a new portable self-powered p-a system. Applications and prices are included. Circle 265 on Reader Service Card.

FACILITIES

Printed Circuitry. Printed Electronics Corp., North St., Natick, Mass. A new brochure on printed circuitry, in file folder style, contains full descriptive data on materials, specifications, design tolerances, and application information. The patented Narcus Process for plating holes is described. PEC provides complete engineering services and manufacturing facilities for printed circuitry. Circle 266 on Reader Service Card.

Pulverizing Service. Liquid Nitrogen Processing Corp., 451 Booth St., Chester, Pal, has available literature announcing its servicc of pulverizing heat-sensitive materials with liquid nitrogen. The service discussed is indicated where (l) the materials might thermally degrade during pulverizing; (2) a reactive compound would be converted because of heat elcvation; and (3) where the materials will soften or melt at a low temperature. Circle 267 on Reader Service Card.
We are specially organized TO HANDLE DIRECT ORDERS OR ENQUIRIES FROM OVERSEAS SPOT DELIVERIES FOR U.S.
BILLED IN DOLLARS SETTLEMENT BY YOUR CHECK
CABLE OR AIRMAIL TODAY

\section*{capacitance \&attenuation
 | TYPE | NNF $/$ I | IMPED. Ω | O.D. |
| :--- | :---: | :---: | :---: |
| C 1 | 7.3 | 150 | $.36^{\prime}$ |
| C 11 | 6.3 | 173 | $.36^{\circ}$ |
| C 2 | 6.3 | 171 | $.44^{\prime}$ |
| C 22 | 5.5 | 184 | $.44^{\prime \prime}$ |
| C 3 | 5.4 | 197 | $.64^{\prime}$ |
| C 33 | 4.8 | 220 | $.64^{\prime \prime}$ |
| C 4 | 4.6 | 229 | 1.03° |
| C 44 | 4.1 | 252 | 1.03^{\prime} |}

NEW
 'MX and SM' SUBMINIATURE GONNEGTORS
 Gonstant $50 \Omega-63 \Omega-70 \Omega$ impedances

CIRCLE 145 READERS SERVICE CARD

Leach Opens New Facility

An electric current generated by tlic warmth of a human handshake literally turned on the power and put a new $\$ 1 \frac{1}{2}$ million manufacturing facility (picture) to work in Compton, Calif., recently.

Kenneth F. Julin, president of the Leach Corp., which produces controls and power for aircraft and missiles, held a small clectric current producing device called a thermistor as he receiverl a congratulatory open house handshake from Los Angeles Cliamber of Commerce president George B. Gose.

Warmth of the handslake gencrated enougl electricity in the thermistor to activate a system of sensitive Leaclı relays and sct up a circuit which, amplified, turned on the new plant's lights and started its machinery.

The new Leach facility in suburban Compton contains $101,000 \mathrm{sq}$ ft and liouses corporate offices and two divisions-the Inct, which produces aircraft, missiles and control system cquipment, and $S_{\text {pecial }}$ Products, which engages in new product development.

The original company, the Leach Rclay, which claims to account for one-tenth of all relays produced in the U.S. for military and commercial airplanes, missiles and industrial purposes, is housed in a plant nearer thic heart of Los Angeles.

Dedication of the new facility brought to a climax one third of a century of Leach history that began in San Francisco slortly after World War I with formation of a
company making an autonatic antenna switch and power relay. Founder was a former U.S. Navy radio operator, V. A. Leach.

Appoint Epstein Chief Engineer

Control Elfectronics Co., Inc., Huntington Station, N. Y., has appointed Markus M. Epstcin (picture) as chief enginecr.

Epstcin, formerly with Empire Devices, Inc., also was associated at one time with the Fairchild Pilotless Plane Division and his background includes, as well, work with the Bell Aircraft Corp., Lewyt Corp., and the U. S. Army Signal Corps. His developments have covered the broad field from d-c devices through microwave systems and components. He has
completed projects in radar, guided missiles controls, autopilots, microwave components and systems, noise and ficld intensity reccivers, and precision power supplics.

Name Lehne V-P

Appointment of Henfy Leline (picture) as vice president of Sylvania Electronic Systems, a division of Sylvania Electric Products Inc., is announced. He continucs as gencral manager of the division with headquarters in Waltham, Mass.

Leline joincd Sylvamia in 1953 after serving for 14 years in various enginecring and sales positions with Republic Aviation Corp.

Set Up New Firm In West

Six exccutives (one marketing cxpert, five cnginecrs) left a leading L. A. engincering firm at the end of January to organize tlicir own dcvelopment and manufacturing company, PARABAM, in El Scgundo, Calif. Headed by Thomas A. Feeney, president, they expect their experience, ranging from 13 to 20 ycars apiece and their proven ability for teammork to carry them through the current slump and up into the predicted third quarter defense spending upsurge. Applying stock speculation principles PARABAM decided to plunge in while the market is low.

Using their combined backgrounds in aircraft design, aircraft

new constant delay filters

\qquad
give minimum intelligence distortion and maxinum phase linearity in radar, telemetering and other missile applicatons

Now . . . Burnell \& Co.'s new Type 60051 Constant Delay Filter series provide delay constant to within 5% over the Pass Band - solve troublesome distortion caused by nonlinear systems.

It has become apparent that the phase characteristics of telemetering filters are of greater importance than amplitude characteristics in creating intelligence distortion and minimum transient response of frequency modulated signals.

Inasmuch as delay is constant where the derivative of the phase function is truly linear it is an important measure of phase linearity. To obtain constant delay, a complete circuit configuration revision based on a lattice structure is required.

For compactness, a standard type 60051 housing is avail. able. Upon special order JHU-APL housings for circuit replacements can be supplied.

For more detailed information on constant delay filters write for Bulletin CD-051.

\& Z

CASE SIZE-413 $\times 2 \times 312^{\prime \prime} \mathrm{H}(\mathrm{CS} .60051)$ NPUT IMPEDANCE $=500 \mathrm{ohms}$
 OUTPUT IMPEDANCE Equats $500,600 \mathrm{ohms}$
*optional impedance available on special order.
CONSTANT DELAY BAND PASS AND LOW PASS FILTERS
are available with attenuation slopes illustrated:

TECHNICAL DATA FOR BAND PASS FILTERS
FOR $\pm 71 / 2 \%$ PASS BAND
1 Flat within 3 db over pass band
221 db at $\pm 15 \%$ of center freq.
340 db at $\pm 22 \%$ of center freq.
4 Time delay over the pass band, constant to $\pm 5 \%$
FOR $\pm 15 \%$ PASS BAND
1 Flat to 3 db over pass band
2 Flat to 23 db at $\pm 30 \%$ of center freq.
3 Flat to 40 db at $\pm 44 \%$ of center freq.
4 Time delay over pass band constant to $\pm 7 \%$

Tell us about your application and production requirements. We'll supply your needs from our complete line-or adapt to your speci-fications-and show you how to cut costs and speed up production!

- Miniature Tubular Terminals, Wire Wrap Terminals and Contacts for Automated Printed Circuit Applications
- Solderless Crimp-on Terminals
- Line Cord Interlock Terminals
- Automatic terminal inserting, crimping and staking machines

Contact us today. Send blue print or specifications for specific information. Request bulletins for genaral information.

Malco TOOL and MANUFACTURING CO.

4023 W. LAKE ST. - CHICAGO 24, ILL. CIRCLE 147 READERS SERVICE CARD
systems and components, range instrumentation, and data handling systems, etc. PARABAM's princepals will produce such items in their $2,000 \mathrm{sq} \mathrm{ft}$ facilities subrented from Consolidated Aircraft Products Co. next door. By written agreement PARABAM has available the production facilities and capabilities of Consolidated on a specific job basis. PARABAM has its own labs and room for 25 cmplovecs; docs its own wiring and final assembly.

Philo Promotes Hockeimer

Nev e manager of the field cuginearing department of Philo Corporation's Government and Industrial Division is Henry E. Hockeimer (picture). He has been with Philo since $19+7$ and has served in various field and headquarters assignments. He joined the G and I Division in 1951 as a project engineer on Philo's carly microwave installations and has been assistant manager of field cugingering since 1955 .

Corning Glass
 To Expand

Corning Glass Works, Corning. N. Y., will build a new plant at Bradford, Pa., for the manufacture of electronic components. The onestory factory will have 142.560 sq ft of floor space. It will employ approximately 450 people, all of

MEGACYCLE METER

0.1 Mc to 940.0 Mc

Model 59.LF Oscillator $100 \mathrm{Kc}-4.5 \mathrm{Mc}$

Model 59 2.2 Me -420 Me

Model 59-UHF $0 \mathrm{Me}-940 \mathrm{Mc}$

Determines resonant ferequincy of tuned circuits, antennas, transmission lines, by-pass condensers, chokes, etc. Measuresinductanceand capacitance. Also used as a signal generator, wave meter, frequency meter, and in many other applications.
This compact, light. weight grid-dip meter is available in the frequency ranges indicated.

Write for Bulletin

MEASUREMENTS

A McGráw-Edison Division
BOONTON, NEW JERSEY
CIRCLE 148 READERS SERVICE CARD

Men on the Move

Now available
in a new edition...
with new figures.
This popular booklet points up the important sales problem of personnel turnover in industry. Out of every 1,000 key men (over a 12 -month perood) 343 new faces appear ... 65 change titles . . . 157 shift . . . and 435 stay put. These figures are based on average mailing address changes on a list of over a million paid subscribers to McGraw-Hill magazines.

Write us for a free copy
Company Promotion Department
McGraw-Hill Publishing Co., Inc.
330 West 42nd Street,
New York 36, New York
whon will be transferred from facilities now leased in Bradford.

Gromnd was broken recently and the plant is schectuled to be in opcration be the end of the vear. This will be the tenth new manufacturing unit to have been constructed by the company in the past ten years.

Appoint Miller

Chief Engineer

Ross F. Miller (picture) is named chicf enginecr of the electronic systems and equipment clement of Nortronics, Hawthornc, Calif. The appointment follows the establish. ment of Nortronics as an operating division of Northrop Aircraft, luc., and the formation of operat ing elements of the new organization.

Miller is knowin for his work in the field of military ciectronics. He plaved a prominent role in the devclopment of a successful intercontimental guidance sustem for the Northrop SM-6? Snark missile.

Navy Honors

Missile Men

For outstanding contributions to the national defense in the fields of scientific research and development and missile guidance technology, six men were recently honored by the U.S. Navy

Recipient of the Distinguished Public Service Award, the Nary's highest civilian award, was Rovalen

CIRCLE 149 READERS SERVICE CARD
 SALON INTERNATIONAL DE LA PIECE DÉTACHÉE ÉLECTRONIQUE

INTERNATIONAL EXHIBITION OF ELECTRONIC COMPONENTS

The largest technical display In the world
 in the field of electronics.

EXHIBITION PARK PORTE DE VERSAILLES PARIS - FRANCE

For all enquiries, apply to
"Commissariat Général du Salon de la Pièce Détachée"
23, rue de Lübeck, PARIS 16° - Téléphone : PASsy 01-16

ENGINEERS - GLIP THIS SCHEDULE
 GENERAL ELECTRIC HMEE INTERVIEWING PROGRAM FOR NEXT TWO WEEKS

INTERVIEWS	DATES
Minneapolis, Minn. May 12-13	
Boston, Mass.	May 12-13
St. Paul, Minn.	May 14-15
Washington, D. C. May 14-15	
Milwaukee, Wisc.	May 16-17
Philadelphia, Pa.	May 16-17
Akron, Ohio	May 19-20
Indianapolis, Ind.	May 19-20
Columbus, Ohio	May 21-22
Dayton, Ohio	May 23-24
Baltimore, Md.	May $26-27$

Assignments Open On

BALLISTIC MISSILE DEFENSE ENVIRONMENTS

For complete details on a wide diversity of positions, including $D \& D$ on long range surveillance radar, see our long ran page 164.
ake arrangements now for an interMake in your hometown by wiring collect to the address below. If out city is not listed write be scheduled when interviews in strict confidence. there. Replies heldinst

Mr. George B. Callender, Dis'. 2. Wept *Heavy Military Electronic Equipment Depl
general (fig electric
\qquad

ENGINEERS-GLP THIS SGHEDULE

Men on the Move

Now available
in a new edition... with new figures.

This popular booklet points up the important sales problem of personnel turnover in industry. Out of every 1,000 key men (over a 12 -month period) 343 new faces appear ... 65 change titles . . . 157 shift . . . and 435 stay put. These figures are based on average mailing address changes on a ist of over a million paid subscribers to McGraw-Hill magazines.

Write us for a free copy
Company Promotion Department
McGraw-Hill Publishing Co., Inc. 330 West 42 nd Street,
New York 36, New York
C. Sanders, Jr., president of Sanders Associates, Inc., Nashua, N. H. Navy Meritorious Public Scrvice Citations were presented to Martin R. Richmond, executive vice president of Sanders Associates; Willian R. Mercer, Director of Research, Sanclers Associates; T. C. Wisenbaker, assistant manager of the missile sustems division, Ravtheon Mlfg. Co.; Thomas L. Phillips, manager and chief engineer of Ravtheon's Bedford, Mass., laboratory; and Joseph II. Leiper, manager of Raythcon's Oxnard, Calif., laboratorv.

ERA Adds to Exec Staff

Expansion of the cxecutive staff brings Patrick B. Danicls (picture) to the position of assistant to the presiclent of Electronic Rescarch Associates, Inc., Cedar Grove, N. J. The firm manufactures semiconductor and transistorized products.

Danicls will be responsible for sales and production liaison, and also for buclgeting and financial control methods

Prior to his association with ERA, Danicls was with the Kay Elcetric Co. for six vears, and was responsible for accounting and financial procedures. He las also been associated with the Chase Resistor Co. and Pyro Film Resistor Co.

Nevada Firm Transfers R\&D

21 st Century Electronics, Inc. which was formed last year in Reno,

- Independent of load and load power factor
- Adds no distortion
- Full load losses only 55 watts
- Small and compact, weighs only 40 lbs.

Write today for catalog
Kenvon
Transformer Co., Inc. 840 Barry St., New York 59, N. Y.
CIRCLE 151 READERS SERVICE CARD

IARRIII-DEVVER

has opening for Communications Specialist to work in Guidance Department. Ph.D. in electrical engineering or physics to work in the field of space communications. Should be familiar with ionosphere and experience should include radar and beacon development. Six to ten years related experience. Tech nical supervisory experience desirable but not essential.

Write giving complete details of education, experience (including personal technical accomplishments) and salaries earned to:

DAVID POTTER F-8 MARTIN-DENVER

P. O. BOX 179

DENVER 1, COLORADO

Nevada, by a group of electronics cugincers and scientists for the purpose of unclertaking advanced clectronics and infrared rescarch and development, has transferred its main operation to Paln Springs, Calif. A new and modern plant with $12,000 \mathrm{sq} \mathrm{ft}$ of laboratory area is under construction, and when completed will handle R\&D contracts only, with the Reno facilities devoted entirely to production

The management consists of W. E. Osborne, president and director of engincering; Claude Allen, vice-president and gencral manager; and A. W. Herbert, chief engincer.

Plant Briefs

Nuclear-Electronics Corp. recently completed moring its enginecring and administrative departments to 2925 N. Broad St., Philadelphia, Pa,, where its production department has been located for some time.

Haller, Raymond and Brown, Inc., a division of The Singer Mfg. Co., las moved to its new $+2,000 \mathrm{sq} \mathrm{ft}$ permanent headquarters at Science Park in Statc Collcge, Pa.

News of Reps

B. B. Taylor Corp., manufacturer's reps for New York City and New Jersey, is named to carry the miniature pulse transformers of Pulse Engincering Inc., Redwood City, Calif.

Martin Mann Associates, manufacturers rep in southern Califomia and Arizona, has completed its move into new enlarged quarters at $1+751$ Keswick St., Van Nuys, Calif.

The American Rectificr Corp. of New York City, manufacturers of d-c power supplies, transformers, magnetic amplificrs and control cquipment, will be represented in the New York metropolitan area, New Jersey and eastern Pennsỵlvania by Wally Shulan \& Co.

$$
\text { CIRCLE } 153 \text { READERS SERVICE CARD }
$$

bluco-Gray SNAPSLIDE FASTENERS

PROVIDE VIBRATION-PROOF HOLDING AND QUICK, FOOL-PROOF RELEASE!

 follow your $-\quad$ conditions at LIBRASCOPE

Computer-Controls - Components
Design-Development-Manufacturing
You can be assured of ideal working conditions at well located Librascope. Why? Because of the physical plant: air-conditioned, ultra-modern; the location: at the edge of the foothills; near Los Angeles, Hollywood and the pleasant residential family areas of Burbank, Glendale, Pasadena.
A company with highest professional and technical standards. If you are an M.E. or E.E., mathematician or physicist, interested in Analog or Digital Computers - Logical Design • Instrumentation - Servo Mechanisms - Electro-mechanical . Systems - Transistor Applications - Controls for commercial and Military Equipment, you're invited to investigate the opportunities at Librascope which has just held its 20 th Anniversary-a sound, stable organization growing with automation. Write glen Seltzer, Employment Manager.

LIBRASCOPE, INCORPORATED 808 Western Ave Glendale, Calif.

LIBRASCOPE uses the engineering project team

Write today for this interesting booklet about Librascope.

Electrical Measurements and Their Applications

By Walter C. Michels.
D. Van Nostrand Co., Inc., New York, 1957. 322 p, $\$ 6.75$

This book is based on an carlier text entitled "Advanced Electrical Mcasurments" by Valter C Michaels, which initially appeared in 1932 and again subsequently in $19+1$.

The book is in two parts; the first part, comprising nine clapters, deals with funclamental measurement instrumentation, the clectrical theory underlying the basic design of the instriment and the parameters that these instrumentation can be used to measure. The text is categorized so that instruments to be treated and the parameters to be measured are discussed in order of ascending frequency

Part II deals with the application of the basic techmique of measurments to the determination of magnetic and nonelectrical parancters including temperature, pressure, force, radiation and sound level.

Actual Emphasis-The titje of the book, "Electrical Measurements and Their Applications" is somewhat misleading. A critical reading of the text indicates that methods and techniques of measurement are subordinated to a presentation of basic instrumentation used in electrical measurements. Thus, while most of the information contained in the tert is sound, because of the categorization by instrument (e.g., nulltype, deflection type, amplificrtype, many basic measurement methods are ignored; lience criticism because of omission or muisplaced cmphasis may thercfore be justificel.

To illustrate, less than three pages of text are devoted to the measurement of frequency throngliout the cutire spectrum while approximatcly 17 pages are devoted to the measurement of resistance at d-c, in one form or another. Less than one page of text is deroted to the measurement of resistivity and dielectric constant; the word conductivity is not even indexed.

Power measurements, per se, are similaily given only cursory treatment.

Categorization by instrumentation is discarded in Chapters 8 and 9 , and the author randomly describes components and instrumentation used at r-f and microwave frequencics. There results a fai from complete picture of incasureinents at these frequencics. It is not clear why the author chooses to devote four pages to a presentation of the impedance characteristics of coaxial cables, while at the same time chooses to ignore such fundamental devices as calorimeters, frequency standards ancl spectrum analyzers.

Commercial Instruments-In the preface, the author indicates that "no attempt was made to clescribe and cvaluate all of the commercial instruments now availalble for the laboratory." While this qualification is necessarily truc for most texts, the reader is apt to be misled by incomplete descriptions of the jnstruments that are described. Thus, for example, no mention is made of the attenuator derice described on pages 97 through 99 other than in connection with its matching propertics. Its usc as a level-set device or its application in power and attenuation measurements is not indicated.

Although the slotted-line is described in Chapter 9 in conncetion with the measurement of vsivi and inipedance, no mention is made of the use of the slotted line for frequency, attenuation or Q-factor measurements.

In the Oct. 1957 Procecdings of the IRE, G. B. Hoadley points out several mislcading statements appearing in the text. Others are as follows. On p 215 , the author defines a slotted line as ". . . a coaxial line .. .", thus inferring that all slotted lines are coaxial. On p 219, he infers by the sentence ". . . since the inner conductor of the line must be supported at its cucls by dielectric beads . . ." that all coaxial slotted lines must be supported by dielectric beads at both endis. This, of course, is not necessarily truc. The criterial for differentiating between tramsmissiontype and reaction-type wavemeters,

HERE'S REAL SEQUENCE VERSATILITY
... backed by absolutely positive operation
You can get a million operating sequences from this little relay . . including a lot of unusual ones that previously required much more complicated control systems. For instance, the optional feature of contact transfer on the de-energizing stroke of the armature has provided simple, lowcost schemes for alternating pump and compressor operations. In addition, of course, Struthers-Dunn 211 Relays find wide use in automatic process and machine tool control, traffic control, door and window openers and the like.

Heavy flexing contacts are DP, ST or DT, rated 5 amperes at 115 AC .

SEND FOR DATA BULLETIN 5211 for complete details.

HAVE YOU READ RELAY ENGINEERING?

Struthers-Dunn's famous, 640-page RELAY ENGINEERING HANDBOOK is a comprehensive guide to relay selection, circuits, auxiliary equipment and maintenance. Over 20,000 copies in use. Price $\$ 5.00$ per copy.

STRUTHERS-DUNN, Inc. Pitman, N. J.

5,348 Relay Types . . . WORLD'S MOST COMPLETE LINE

[^8]

IMMEDIATE DELIVERY

CIRCLE 157 READERS SERVICE CARD
described on p 227, are not those generally considered and are somewhat vague.

Undergraduate Textbook-Incomplete as the text is, augmented by good instruction, "Elcetrical Measurcments and Their Applications", should prove a useful one for a first undergraduate course in clectrical measurcments. Its treatment of such instrumentation as galvonometers, roltmeters and ammeters, is quite complete. An excellent feature of the lrok is that it is liberally supplemented bv a scrics of over 40 laboratory experiments, ereated around the text material presented. The experiments themselies are woll written and provide a mucleus for a good first clectrical measurement laboratory course.

Pant II of the text comprices an cxecllent portion of the book and is invaluable in giving the student reader an insight into electrical measurments with which he ordinarily is not familiar. This latter portion of the book is quite modern and includes relatively $n \mathrm{Cw}$ material, as evidenced by some of the more recent references.-Moe Wind, Chief Applications Engineer. Polvtechmic Rescatch es Do relopment Co., Inc., Brooklyn, N.Y

Elektronenrohren

(Electron Tubes)

By M. J. O. Strutt
Springer-Verlag, Berlin, 1957, 391 p, DM 58.50 .

Thus book represents a thoroughly scrised thiod edition of Dr. Strutt's carlier work "Modern Multi-Gricl Elcetron Tubes" whose seconcl eclition appeared in 1940. The present work covers a wide variety of tube types with the exception of microwave tubes, including, however, semiconductors and transistors.

Three major divisions cover elcetrophysical and technical fundamentals; clectron interaction with the electromagnetic field; data and characteristics of typical cramples of electron tubes.

The first section presents a brief but thorough review of the physical nature of the electron and the electronic nature of metals, insulators and scmiconductors. Electron emis-

New-.002,2750 v/m pressure-sensitive tape for $500^{\circ} \mathrm{F}$ operation

New TEMP-R-TAPE C, Teflon* film with pressure-sensitive, thermal curing silicone adhesive is only. $002^{\prime \prime}$ thick overall, has $2750 \mathrm{v} / \mathrm{m}$ dielectric strength, $-100^{\circ} \mathrm{F}$ to $500^{\circ} \mathrm{F}\left(-70^{\circ} \mathrm{C}\right.$ to $260^{\circ} \mathrm{C}$) temperature range. Easy-to-apply, it presses in place on any surface and can be cured to form permanent bond. Send for data on TEMP-R-TAPE C and CHR's other extreme temperature tapes.
 HARD RUBBER
407 East St., New Haven 9, Conn. SPruce 7-3631
CIRCLE 158 READERS SERVICE CARD

Write for BIG NEW CATAL' was
WHITNEY METAL TOOL ${ }^{n}$ in-
722 Forbes St., Rockford, III. Sin
CIRCLE 159 READERS SERVIr

—now WEERLY . . . added value at same price!
 - subscription provides both an ENGINEERING EDITION and a BUSINESS EDITION . . . alłernately each Friday

ELECTRONICS' new and unique WEEKLY publishing program is in pace with the dramatic speed of electronic technical and economic developments. Promptly and completely, the service meets the vital need of engineers and executives to be posted on what's new and important.
All subscribers get the ENGINEERING EDITION and the BUSINESS EDITION which are published in turn every Friday . . . providing added benefits in technical data and news . . . delivered faster than ever.
This new WEEKLY plan enables the subscriber to keep abreast of the latest advances in Design, Research, Engineering, Manufacturing . . . New Applications in Industrial, Scientific and Military Electronics . . . New Products, Components and Materials.
—and insures speedy profitable contact with all the fast-breaking NEWS . . . economic developments, markets, production figures, business conditions and trends, news of men companies and events. With authoritative analyses of the economic impact of new technical advances.

SAME RATES AS BEFORE—despite expense of augmented editorial staff and greatly increased production costs. GET UTMOST VALUE FROM THIS EXPANDED ELECTRONICS SERVICE-place your personal subscription by means of the card below.

No postage
needed on
this convenienf
order card . . .

PRESENT

 SUBSCRIBERS- please notel

This subscription card is for NEW subscribers. If is not in tended as a renewal notice. If you are already personally subscribing, we shall appreciate your passing the form to one of your associates. Thank you.

> NEW
> subscription ORDER FORM O.K. - put me down for a personal subscription to "electronics" . . . giving me benefit of your weekly editorial service ...

Send bill to home address

Send bill to company address

Payment Attached
Check here \square for I year \$6for 2 years, \$9 \square for 3 years, $\$ 12$

Name	Position	Dept
Company Name		1.
Street	City ___ Zone__State	
Products Mfrd. Or Service \qquad	Number of Employees	

Pleaso fill out card completely for best service

(2) CTMG E Established 1930 - Pioneer Publication in the Field

. . NOW ISSUED WEEKLY . . EVERY FRIDAY alternating

All subscribers get copies of both the alternately published editions

ENGINEERING EDITION BUSINESS EDITION

This new expanded service of ELECTRONICS provides the most comprehensive and fastest aid for the executive and engineer vitally concerned with every phase of the electronics industry . . .
New Ideas! . . . New Circuits! . . . New Engineering Techniques!
Improved Manufacturing Methods! . . . New Design! . . . Advances in Research!
Prompt word about New Electronic Equipment, Parts and Components!
Latest Word on New Industrial, Scientific and Military Applications!
Sales and Production Figures! . . . Economic Trends! . . . All the Vital News!

SUBSCRIBE PERSONALLY for top-value in NEWS and IDEAS

BUSINESS REPLY CARD
First Class Permit No. 64, Now York, N. Y.
McGRAW-HILL PUBLISHING CO., Inc.
electronics

> Use this handy order card...
> to profit by ELECTRONICS
> new expanded
> ediforial service
sion is reviewed including thermionic, photoelectric and secondary, and field emission. A summary of electromagnetic theory is presented including field plotting by relaxation methools and by electrolytic tank plots. The final chapter in this section collects a good deal of useful and very practical information on material and construction techniques including intcresting detail on grid construction and glassing techniques.

Tube Types-The second division contains a comprelicnsive analytical ticatment of the major tube types. These are diocles, with high-vacum and semiconductor types, triodes, including transistors and multigricl tubes. Cathoderay tubes are discussed after a section on electron optics. The final chapter in this section treats the noise generation in tubes and semiconductors.

The last division presents the characteristics of several typical tubes, triodes, pentodes, thyratrons, tramsistors, etc. Each of these is shown as an application of the analysis of the carlice sections. The interest is centered on the tube performance and the circuit applications are essentially ignored.

The format and typograploy are on the high level characteristic of the Springer-Verlag technical publications.

The tube enginecr will find this book a mine of uscful information and the circuit engincer, too, may find it interesting.-M. Eitenberg, Sperry Gyroscope Co. Dis. of Sperry Rand Corp., Great Neck, N. Y.

THUMBNAIL REVIEWS

1956 Supplement to the Bibliography and Abstracts on Electrical Contacts. Amcrican Society for Testing Materials, 1916 Race Street, Philadelphia, Pa.. 1957, 4t p. $\$ 1.75$ (paper). Latest supplement to 1952 edition.

Introduction to Operations Research. By C. W. Churchman, R. L. Ackoff and E. L. Arnoff, John Wilev \& Sous, Inc., New York, 1957, $48 \mathrm{p}, \$ 12.00$. Introduction to rations research based on lccpresented at Case Institute chnolog:

This picture of NOISE provides a simple rapid means of locating the most offensive spectral regions . . .

GET

THE ANSWERS TO YOUR NOISE
\& VIBRATION ANALYSIS

It is what you see on the screen of Panoramic's Sonic Spectrum Analyzer. Model LP.1a. Used in confunction Spectrum Analyzer. Model LP.la. Used in confunction
with a standard sound-level meter, it automatically dis. with a standard sound-evel meter, it automatically dis.
plays the frequency vs. amplitude distribution sensed by a microphone or other suitable translucer.
When modifications are tried, improvement ractors can readily be seen. By weighting (Fletcher-Munson curves) the overall decibel hoise level, the vertical deflections become a measure of loudness in the psychological sense, The LP-ıa analyzes the $20 \mathrm{eps}-22.500 \mathrm{cps}$ spectrum on highly resolved variable linear scans and 40 cos-20.000 cps on the broathand log sweed (shown). 40 db log and linear vertical scales are provided.

Write, wire, phone TODAY for Technical Bulletin giving full information

I NSTRUMENTS

offers SENIOR ENGINEERS
Interesting Engineering Positions in

Please send your resume to W. C. Walker or fill in the coupon and mail it today.

Pulse Notes

Advantages of

Air Gap vs. Toroidal
 Construction in Pulse Transformers

As pointed out in previous Pulse Notes, a pulse transformer wound on a core with an accurately controlled air gap performs more satisfactorily in some applications than one wound on a toroidal (gapless) core.

Consider for a moment the two B-H loops in Figure 1. The loop shown in solid lines is for a toroidal sample of a typical magnetic material used in pulse transformers. The dashed loop is for the same material with an air gap included in the magnetic circuit. In the case of the toroid, removing the pulse magnetizing force causes the core flux to return to the value $\mathrm{Br}_{1}{ }^{*}$. On the next pulse the total flux swing possible is $\triangle B_{1}$.

The gapped core, on the other hand, returns to Br_{2} which allows the much greater flux swing $\triangle B_{2}$. Consideration of the voltagetime integral, $E T=N A, j B$, indicates that a pulse transformer wound on the gapped core passes a pulse of greater area without core saturation than one wound on the gapless or toroidal core.
*This discussion is valid only for cases in which no reverse (resetting) current flows in any of the transformer windings

For further technical information including diagrams, specifications, and schematic applications of pulse transformers, write for your free copy of our new 12-page catalog.

Radar History

The article "Behind the Blair Patent" (Nor. 20, '57, p 21) tells of the recent granting of a patent on pulsc-echo radar to retired Colonel William R. Blair. A couple of remarks pertinent to the story may be in order.

Col. Blair's patent describes an carly type radar known as SCR-268. Pictures of it, and a description, can be found in Elfetronics, Sept. '45, as well as in Vol. I. pp 203-4 of the Radiation Laboratory Series. The SCR-268 emplors three antemate and its operation is based on the well-known lobe-switching and pip-matching techmiquc. Duc to the shortcomings of this technique, this radar was replaced by the microwave radars, the first and most widely used of which was SCR-58t. The work on this raclar began in MIT's Radiation Lab in January, 1941. It was describexl in detail in Eiectronics, Nov. '45, Dec. ' 45 and Fcb. '46.

The operation of SCR-58t consists, in the essence, in actuating the sweep of a scope at the moment corresponding to the leading edge of the rectangular cmelope of each transmitted puise, and in determining the time lag from the position of the leading edge of the rectangular cnvelope of the received rectificd pulse.

It would bc of interest to point out that the radar circuit which makes use of two rectangular pulses was first described in patent $2,404,527$, granted to G. Potapenko of Califomia Institute of Tcchnology. This patent, Electric Distance Meter, had bcen applied for on May 2, 1939; it was kept in the government files under secrecy order until the end of the war and issucd on July $23,19+6$.

The official statement of Armv Signal Engineering Lablalls Blair's patent basic for the pulse-echo method. It may be mentioned that the pulsc-echo method had been described in 1926 by G. Breit and M. Ture of the Carnegie Institution, Vashington, D. C., in Physical Review, Vol. 28, p 504.

I have no intention to mudermine the credit due to Col. Blair for his "pip-matching" SCR-268, but believe the record will be made
a bit morc clear when the facts mentionced are taken into consideration. I assume Prof. Potapenko's name is not unknown to reaklers. His picture appeared on the cover of Eiectronics, Nov. '33, in connection with his work on centimeter waves. He looks different now, hut this camot be helped.

F. A. Urechit

 Fuifivider, Mitingly \& Mustley Long Brach, Calif.Reader Utecht's analysis is most interesting, and Prof. Potapenko's patent, in the light of everything that's happened in the microwave field since 1939, provided us with a fascinating evening's reading.

Shotter Timer

In your article "Timer Shutter CRT for Single Frame Photos" (Apr. 11, p 83) yon mention timers using complicated cligital type countcrs for triggering the single frame picture "on" for the proper duration.

I wish to bring to vour attention to a similar device which was built several vears back for gating onc frame of a television receiver for photographic purposes. Although the particular to sustem used 40 frames per second, the gating probl cm was the same. It was solved by using a relatively simple analog counter operating off the vertical scanning frequency to constantly control the crt gating pulse width.

This device was described in Eif.ctronics. Mar. '50 in an article titled "Single-Franc TV Photography" by Maurice Distel and Allan Gross.

Maurice Distel

U. S. Army Signal Engi-
nefring I aboratorifs
Beimar, N. J.
And while we're on the subject of our Apr. 11 issuc: a couple of readers have asked if we supply inverting magnifiers for the picture of the pulse analyzer, product of Technical Measurement Corp., that appears on p 145 of that issuc. Secms the picture shows the analyzer standing on its head. We checked and discovered that our composing roon people were do ${ }^{\text {- }}$ headstands when that page made up. They have bee structed to desist from su seemly springtime revelry.

General Electric Announces Opportunities in Area of BALLISTIC MISSILE DEFENSE ENVIRONMENTS

Wide \mathcal{D} iversity of \mathcal{P} ositions Include $\mathcal{D} \& \mathcal{D}$ on \mathcal{L} ong-Range Surveillance $\mathcal{R a d a r}$

These openings are with the Heavy Military Electronic Equipment Department of G. E., designer and producer of what are believed to be the most powerful long-range radar detection systems in the world.

Current programs involve work on still more advanced systems -among them Ballistic Missile Early Warning Surveillance and other super radar systems to detect ICBMs as they rise over the horizon at distances up to several thousands of miles.

No technical area makes greater demands on the scientific skills and creative imagination of the engineer than Ballistic Missile Defense Environments.

Openings for engineers with 4-10, or more, years' experience in:
\section*{SYSTEMS}
DEVELOPMENT
Radar Systems
Development
Systems Analysis
Data Analysis
Electronic
Countermeasures
Systems
Computer Programmers
Openings for engineers with
degree and 2 or more years" experience in:
Antenna \& RF Components
UHF \& M/Wave Receiver Development
Video Display
Analog Techniques
Transistor Circuitry
Computer Applications
Data Processing
Digital Techniques
Logical Circuitry Design
Electronic Packaging

Qualified engineers will be invited to visit the Heavy Military Electronic Equipment Department and judge at first hand the unusual opportunities offered for professional growth-and the excellent living conditions in-and-around Syracuse, New York. Please write in confidence to: Mr. George B. Callender, Div. 27 Wr

HEAVY MILITARY ELECTRONIC EQUIPMENT DEPT.
GENERAL ELECTRIC
Court Street, Syracuse, New York:

. . . and there's big opportunity at BENDIX-prime contractor for the TALOS MISSILE

If you have the qualifications, you can build yourself an enviable engineering career with Bendix-and enjoy living in one of America's fine residential and recreational areas.

Bendix Missiles has opportunities now for engineers of exceptional ability. You'll be in the technical forefront of your profession at Bendix, working with men who have sparked some of the most important technological achievements of our
time. You'll have the use of facilities and equipment that are unmatched.

You'll enjoy a pleasant fourseason climate, have excellent educational facilities available to you and your family, and have easy access to Chicago. Most of all, you'll find satisfaction in doing important work alongside men who are professional engineers. Mail the coupon today for a copy of "Opportunities Abound at Bendix Missiles".

Bendix Products Division-Missiles
403S So. Beiger St., Mishawaka, Ind.
Gentlemen: I would like more information concerning opportunities in guided missiles. Please send me the booklet "Opportunities Abound at Bendix Mi:siles."

NAME
ADDRESS
city
STATE

P H 0 PHOENIX N I \mathbf{X}

At the cross roads of opportunity for men in Electronics

GOODYEAR AIRCRAFT CORPORATION

EIECTRONLC LABORATORY
Arizona Division
Litchfield Park, Arizona
A Subsidiary of the
GOODYEAR TIRE \& RUBBER CO

ENGINEERS IMMEDIATE OPENINGS ELECTRONIC PACKAGING RELIABILITY CIRCUITRY TEST EQUIPMENT ELECTRO-MECHANICAL COOLING SPECIALIST

Leisure Living At Its Best "In the Valley of the Sun"

Modern Inexpensive Housing

Send resume to: A. E. Manning
Engineering and Scientific Personnel

GOODYEAR AIRCRAFT

LITCHFIELD PARK PHOENIX, ARIZONA

Similar opportunities available in our
Akron, Ohio Laboratory

IF YOU

CAN OFFER ABILITY -

SYLVANIA WILL OFFER

OPPORTUNITY

We recognize
that an overly formalized organization with inflexible channels of protocol -can quench the professional enthusiasm of even the most able engineers and scientists.

A company must offer its men a suitable environment in which to exercise their innate talents.

Here at Sylvania we believe we offer this kind of opportunity. Added to this are assignments that provide incentive for your best thinking.

Our projects include R \& D on a diversity of electronic systems and equipment. Two major programs are PLATO-the anti-missile missile, for which Sylvania is Weapons Systems Manager - and a multi-million dollar subcontract for the development of a super-radar system to detect ICBMs.

Opportunities are now open to work in advanced areas with Sylvania. Your inquiries will be welcomed.

Research Engineers: New systems techniques \& applications in operations research, analysis \& applied physics.

Sr. Project Engineers: Evaluate project requirements; determine responsibility; schedules; budgets; technical negotiations with customer.
Sr. Computer Engineers: Transistorized digital design, magnetic core memory and input-output systems. Experience required in digital computation \& data processing, prototypedesign,systems \& evaluation testing.

Sr. Reliability Engineer: Act as consultant on reliability problems (components and equipment). Establish specifications. Set up procedures.
Missile System Analysis Group Leaders: Radar and antenna system preliminary design.
Missile System Development Group Leaders: Low noise receivers, pulse transmitters, broad band techniques, antenna arrays, phase measurement and other instrumentation.
Sr. Transistor Engineers: Circuitry, systems, and hardware.

Sr. Microwave Engineer: Development of crystal mixers, detectors, filters, transmission line couplers, harmonic generators and special transmission circuits.

Sr.Aerodynamicist:Perform theoretical studies in missile aerodynamics, boundary layer heat transfer, missile kinematics, aeroelasticity.

Sr. Mechanical Engineers: Design and packaging airborne and ground electronic and electromechanical equipment. 5-10 years pertinent exp. required.

Send your resume to Erling Mostue

Interview and relocation expensea paid by Sylvania. Inquirics will be answered within two weeks. Convenient Saturday interviews arranged.

SYLVANIA ELECTRIC PRODUCTS INC.
100 First Ave., Waltham, Mass.

Engineers and scientists...

 grow with Stromberg-Carlson Fast-growing division of General Dynamics

1461 N. GOODMAN STREET • ROCHESTER 3, N. Y

If you qualify, we can offer you challenging, important assignments in some of today's most fascinating areas of electronics.

Many openings are senior positions, including opportunities for group leaders and section heads. We're particularly in terested in men with substantial experience in solid state circuitry for applications in the most advanced state of the art.
Our business is well balanced between commercial and military products. To you this means stability as well as rapid growth with the company.
These are some of the areas where you may find your greatest challenge:

- Missile Electronics
- Air Traffic Control
- Telecommunications
- Automatic Test Equipment
- Countermeasures
- Nucleonics
- Electroacoustics

You would be located in Rochester, N. Y., a beautiful progressive city in the heart of the Upstate vacationland. Invigorating four-season climate; educational, recreational and cultural facilities unsurpassed anywhere in the U. S.
To arrange for a personal interview, send a complete résumé now to:
Fred E. Lee, Mgr. of Technical Personnel.

RECONNAISSANCE and DATA PROCESSING

 programs at
The Ramo-Wooldridge Corporation

have created the following new openings:
Display Development. EE, ME, or psychology background with experience in creative development of large-scale information displays.
Optical Design. Significant experience in high-acuity optics. Console Design. Creative experience in design of operating consoles utilizing electronic, mechanical, and optical techniques.
Wire Communications. Senior design experience in teletype, associated switchgear, message centers. Knowledge of inventory and terminal equipment desirable.

Please address inquiries to Mr. W. J. Coster at
The Ramo-Wooldridge Corporation
P.O. Box 45215, Airport Station • Los Angeles 45, California

TECHNICAL WRITER

We need a skilled writer to manage all phases of technical writing in rapidly-growing electronics company. Must have solid engineering background and proven experience in advertising, promotion, technical reports, and instruction books. Patent disclosure experience helpful but not essential. Salary range: $\$ 10,000$ up. Please send complete resume to:

Elton T. Barrett, Pres.
CGS Laboratories, Inc.
Ridgefield, Connecticut

ELECTRONIC ENGINEERS

needed at

New long-term developments at Martin in the field of electronics have created exceptional opportunities for top electronic engineers. At least 5 years experience required. Salaries from $\$ 9,000$ to $\$ 12,000$.

Openings

in these areas:

- Circuit Design
- Systems
- Inertial Guidance
- Countermeasures
- Digital Computers
- Test Equipment Design

WRITE TO:

William Spangler, Manager Professional Employment The Martin Company Baltimore 3, Md.

Scientists and engineers have probed, and the mysterious world of electronics has steadily yielded rich rewards. But the massive door to electronic wonders is only slightly ajar. The greatest discoveries still lie ahead!
In the field of national defense, Project "X" takes many forms at RCA. It might be found in airborne electronics, surface communications, missile weapons systems, radar, ballistic missile detection systems. Or, it might be something entirely new in concept-something vital to the defense of the free worlc.

We are int rested in talking with all experienced engineers and engineering managers w ho can contribute to this important work.

Attractive salaries . . . Desirable locations . . . Liberal benefits

> TO ARRANGE INTERVIEW WITH ENGINEERING MANAGEMENT, SIMPLY CALL COLLECT OR SEND RESUME

AT CAMDEN, N.J.

-in Greater Philadelphia near many suburban communities

- aviation electronics
- communications and military tv
- SPECIAL DEVELOPMENT Studies

AT TUCSON, ARIZ.
-healthful, western climate

- communications systems APPLICATIONS

TO: MR. C. B. GORDON, RCA, DEPT. X-2E bldg. 10.1, CAMDEN 2, N.J. WOODLAWN 6-3300

at west los angeles, Calif.

-ideal West Coast location

- atrborne radar
- countermeasures
- missile guidance equipment
- SYSTEMS PLANNING

TO: MR. R. W. STEPHENS, RCA, DEPT. X-2E 11819 W. OLYMPIC BIVD., LOS ANGELES 64, CALIF.

AT NEW YORK, N.Y.
-center of cosmopolitan living

- communications systems engineering

TO: MR. E. BAGGETT, RCA, DEPT. X-2E 75 VARICK ST., N.Y. 13, N.Y.-CANAL 6-4080

AT MOORESTOWN, N.J.
-modern engineering facility close to Philadelphia

- icbm detection systems
- missile guidance systems
- surface radar systems
at White sands, N.M.
-key location in natiori's missile testing program
- systems analysis and evaluation
- Radar systems
- launching systems

TO: MR. W. J. HENRY, RCA, DEPT. X-2E MOORESTOWN, N.J.-BELMONT 5.5000

IBM AERONAUTICAL ENGINEERS

Aircraft Instrumentation Specialist, M.S. with experience or Ph.D. in Electrical or Aeronautical Engineering. Background in aircraft instrumentation, especially air-speed and altitude measurements. Flight test experience desirable. Thorough knowledge of servo-mechanisms and electronics necessary. Must have creative talent and interest in working on new methods of aircraft instrumentation.

Aeronautical Engineer, M. S. in Aero. nautical Engineering with math minor. Two years' experience in: evaluation of airborne systems, both digital and analog; navigation techniques, including inertial navigation; and aerodynamics. Experience in data reduction and photogrammetry desirable. To analyze flight test data, do systems analysis, and solve problems in spherical trigonometry and photogrammetry.

Advantages of IBM

A recognized leader in the electronic computer field . . . stable balance of military and commercial work... advancement on merit...company-paid relocation expenses . . . liberal company benefits . . . salary commensurate with ability and experience.

Immediate openings at Owego, N. Y.
WRITE, outlining qualifications and experience, to:
Mr. P. E. Strohm, Dept. 554Q
Military Products Division IBM Corp.
Owego, New York

ENGINEERS If rou have been looking for an Employment Agenc Thehnical Jecrultment and RELIABILITY OF IN FORMATION concerning positlons, why not com \qquad ALJ. IOSITIONS FEE PAID \qquad

ALIDRESS BOX NO. REPLIES TO: Box No. Classified Adr. Div of this publicalion.

Sevil to offre nearest you
NEW YORK 36: P. O. ROX 12 CHICAGO 11: 520 N. Michigan Ave SAN FRANCISCO : 68 Post St.

Position Vacont

Academic appointment is available as Research Collahorator or Assistant Professor to supervise designing, fabricating, and maintaining specialized electronic equipment fos research in chemistry, physics, and engineering. A properly qualified person will, if he desires, have the opportunity to participate in electronic research or teach. Salary in range of $\$ 7,000$. Annual appointment with one month vacation. Application or further inquiry should be made to Dean Virgil versity of Arkansas, Fayetteville, Arkator, Uni

Selling Opportunities Wanted

[^9]
ELECTRONIC ENGINEER PHD.

10 years business experience seeks supervisory position instrumentation industrial controls. systems engineering.

PW-7866, Electronics
520 N. Michigan Ave., Chicago 11, Ill

NEED ENGINEERS

Place an "Engineers Wanted" advertisement in this EMPLOYMENT OPPORTUNITIES section. It's an inexpensive, time saving method of selecting competent personnel for every engineering job in the Electronics industry. The selective circulation of ELECTRONICS offers you an opportunity to choose the best qualified men available throughout the industry.

How to design ELECTRONIC CIRCUITS
 Practical handbook gives you
 - Clear explanations of basic theory
 - Applications of theory to real design problems

- A wealth of needed design data

THIS handbook of fundamentals and data will help you in the design of all types of electronic equipment. A large number of the circuits used in many different applications is coveref, together with theoretical and technical discussions and explanations, design examples to show application of theory, and graphical and tabular data needed in day-to-day design work. The entire electronic field is covered, ranging from vacuum tube and transistor fundamentals, voltage and power amplifiers, to such topics as computer and servomechanism techniques, waveform and network analysis.

The aim throughout the book is to present detailed, practical design data in a clear and concise manner. The book covers many topics at great length, and the treatment of several subjects, such as receivers, is not only unusually complete, but 10-Day by far the clearest explanation of the essentials of the particular field available to the engineer or designer.

FREE
TRIAL
EASY TERMS

ELECTRONIC DESIGNERS' HANDBOOK

COVERS:

- transistor circuits - computer elements - servomechanisms and applications - low-noise r-f am plifiers
chopper-stabilized amplifiers
low-power trans formers
- antennas
- and many more, for a complete coverage of the

ROBERT W. LANDEE
General Manager and Cbief Electronic Engineer, Potter Pacific Corp. DONOVAN C. DAVIS
Assistant Director of Engineering ALBERT P. ALBRECHT

Assistant Director
Gf Engineering
Gilfillan Bros. Inc.
1016 pages, 6 x $\quad 9$,
982 illustrations, $\$ 16.50$ 982 illustrations, $\$ 16.50$ days, then $\$ 4.00$ monthly days, then $\$ 4.00$ monthly $\$ 16.50$ is paid
until

FREE EXAMINATION COUPON

Professional Services

```
AMERICAN GEOPHYSICAL &
    INSTRUMENT CO.
```

 Oliver W. Oslome
 Design \& Development Of Electrical
 Development
 Instruments
Repairing All Types of Electronic Efuipmemt
1723 Market Street
D-tris $3-738$ D 4 vis $4-48.58$
CROSBY LABORATORIES, INC.
Murray G. Crosby \& Staff
Kadio - Electronics
Research Develomment \& Manufacturing
Communications, FM \& TV
Communications, FM \& TV
Robbins Lane, Hicksville, N. Y.
winizin

ELECTRONIC RESEARCH ASSOCIATES, $\mathbb{N C}$.
"'TIRANSISTOHIZE'" YOUR PHODUCT! Complete Service in consulting, research, development, and production on
products and instrumentation. 67 Factory Place CEnter 9-3000

ERCO RADIO LABORATORIES, INC.
Radio Conmmunications Equipment
Engineering - Design - Development - Production Our 27 th Year in Air to Ground Communication and Radio Beacons Garden City - Long Island - New York

MEASUREMENTS CORPORATION Research \& Manufacturing Engineers Harry W. Houck
Specialist in the Design and Development of Electronic Test Instruments Boonton, New Jersey

ALBERT PREISMAN

Consulting Engineer
Television, Pulse Techniques, Video Amplifiers, Patent techniaal consultation. 616 St. Andrews Lane, Silver Spring. Maryland

YARDNEY LABORATORIES, Inc.

Research-Design-Development
Electro-Chemical Generators of Energy

CONSULT

THESE SPECIALISTS:
Let them save your time by bringing their broad experience in their specialty to bear on your problems.

\mathcal{T}_{0} the talented

engineer and scientist

APL OFFERS

GREATER FREEDOM

OF ACTIVITY

APL has responsibility for the technical direction of much of the guided missile program of the Navy Bureau of Ordnance. As a result staff members participate in assignments of challenging scope that range from basic research to prototype testing of weapons and weapons systems.

A high degree of freedom of action enables APL staff members to give free rein to their talents and ideas. Thus, professional advancement and opportunities to accept program responsibility come rapidly. Promotion is rapid, too, because of our policy of placing professional technical men at all levels of supervision.

APL's past accomplishments include: the first ramjet engine, the Aerobee high altitude rocket, the supersonic Terrier, Tartar, and Talos missiles. Presently the Laboratory is engaged in solving complex and advanced problems leading to future weapons and weapons systems vital to the national security. Interested engineers and physicists are invited to address inquiries to:

Professional Staff Appointments

The Johns Hopkins University Applied PhysicsLaboratory

8609 Georgia Avenue, Silver Spring, Maryland

MEDIUM POWER PULSER

COMMUNICATIONS EQUIPMENT CO. 343 Canal St. New York 13, N. Y. CHAS. ROSEN Phone: CAncl 6-4882

DIRECT ALL INQUIRIES TO DEPT. E-5

MICROWAVE ANTENNAS

 AT49/APR-Broadband Conical, $300-3300$ MC... 88.95 dish, operating from $2 \&$ ode motor. leam pattem:deg. in both Azimuth illad tievaion Sect over 160 deg, at 35 scans per minule. Elevallon Scan, over 2 rlet. Tilt (wel 24 deg.................... 35.00
 Discone Antenna. As 125 IT'R inmonem $\$ 22.50$

$$
30^{\prime}
$$

30

AN/APA:
ConA-12-sector suan adaum ros Als-2 jadar 85
10 CMA ANTENNA ASSY $\quad \$ 37.50$ coax. ANTENNA ASSY

PULSE NETWORKS

PULSE TRANSFORMERS

 TR1049 Ratio
 $28 \mathrm{KV}, 400$ ohins. 1 nulse length: $1.15 / 5 / 5$ vec
 $\mathbf{G E}=1 \mathrm{~K}-2+49 \mathrm{~A}$.

10 CM R.F. HEAD
Complete R. F. Heat and Modulator delivers 50 K W Peak R.F. at 3000 MC . Putser deliver's 12 kV pulse at
12 Amp. to magnetron of 5 , 1. or 2 microsec. (1uriation at duty cycle of .001 . Unit requires 115 V . $400-2400$ Cycles. I phase @ 8.5A. Also 24-28VDC © 2A. Explete with magnetron. magnet, plumbing aud all Consplete with magnetron. magnet, plumbing and all tubes.
Schematic diagram................
250

V. H. F.
 U. H. F.

1000 RDO RECEIVER
38 MC precision receiver covering complete
range using 3 turning units. The RDO is a range using 3 turning units. The RDO is a high quality Navy search receiver using the same turning units as the APR-4, but has additional features, such as inpu* and output
signal strength DB meters, audio output metering, noise limiter, greater stability, for noise measuring etc. Input 110 V 60 CYC . Panadaptor output avail. C Brand new, original boxes.
s159.50
gevt. acq. cost
$\$ 1500.00$

Write for flyer

R. W. ELECTRONICS

Dept. L.
2430 S. Michigan Ave. Chicago 16, III.

NEED METERS? STANDARD or SPECCILS any quantity-NEW-MILITARY

FORElectronic-mlitary AIRCRAFT-HAMS
ALL MAKES—MODELS ranges-SIzes
METERS $\begin{gathered}\text { REPaIRED } \\ \left.\begin{array}{c}\text { RESCLLLD } \\ \text { RCCalibe }\end{array}\right) .\end{gathered}$
WRIte - phone - WIRE
A \& M INSTRUMENT SERVICE INC.

76-14 Woodside Ave.
Elmhurst 73, N. Y.
CAA No. 4264 Ltd. HA 9-2925

Thats A Buy

130 Vac Factory Ratell $350 \mathrm{MA} / 100 \mathrm{VDC}$ GTo Prices! ${ }^{20}$ Platas 4 P. 5:
"TAB" "TAB" special sl.25@. 5 tol 55
"TAB"

BEARINGS -

Miniatures: Precision; Stainless Steel; Special Sizes, Tolerance \& Construction. raway bearing co.
4.8 Folsythe St. Walker 5.8150 N

500 COMMERCIAL
RCA MULTIPLIERS 931A
Quantities-100 up $\$ 3.50$ Each
HENLEY \& CO., INC.
44th 5 t.
202 Eas: 44th St. $\underset{\text { YUkon } 6.55 \mathrm{H}}{\mathrm{New}}$

HARRY KRANTZ CO.
the largest RESISTOR
stock in the Country
Tremendous Quantilies- $1 / 2,1 \& 2 \mathrm{~W}$. 40 to 70% off mig. prices
89 Chambers 5 t., N. Y. C. 13 W0 $2-5727$

New Advertisements
received by May 2 nd will appear in the May 23 rd issue subject to space limitations.

Classified Advertising Division
ELECTRONICS

New York 36, N. Y.

ELEOTRONIO

WAR TERMINATION INVENTORIES

WRITE OR WIRE FOR INFORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PRICES NET F.O,B. PASADENA, CALIFORNIA

C\&
 SALES CO.
 2176-E East Calorado Si. Posadena 8, Californi RYon 1.7393

GYRO (flux gate compass)

Mfgd. by Bendix Part \#12002-18 $\begin{array}{lll}\text { (AN5751-1). Gyro } \\ \text { motor } 115 & \text { volt }\end{array}$ 400 cycle, single 400 cycle, single
phase. Speed 20 . phase. Speed 20, accuracy better than $1 / 2^{\circ}$. ... $\$ 15.00$ each A for gyro system. adicator Part $\$ 15.00$ each D.A1, used with above system.... $\$ 15.00$ each

SELSYNS-

 SYNCHROS

ICT cont. Trans $90 / 55 \mathrm{~V} 60 \mathrm{cy}$ DG Diff. Gen. 90/90V 60 Cy F Syn. Mtr $115 / 90 \mathrm{~V} 60 \mathrm{cy}$ G Gen. Mis 60 cy IHDG
1 HCT
${ }^{1 \text { HGG }}$ 1SF Syn. Mtr. $115 / 90 \mathrm{~V} 400 \mathrm{cy}$
2 JIFI Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$. 2JIF Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$ 2)1FAl Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{CV}$ $2 \mathrm{JIG1} 57.5 / 57.5 \mathrm{~V} 400 \mathrm{cy}$. $2 \mathrm{JIH1}$ Diff. Gen. 57.5 V 400 cy . 2 J 5 D 1 Cont. Trans. $105 / 55 \mathrm{~V} 60 \mathrm{c}$ 2J5F1 Cont. Trans. $105 / 55 \mathrm{~V} 60 \mathrm{cy}$ 215 H 1 Gen. 115/105V 60 cy . $2115 \mathrm{M1}$ Gen. $115 / 57.5 \mathrm{~V} 400 \mathrm{cy}$ 5CT Cont. Trans. $90 / 55 \mathrm{~V} 60 \mathrm{cy}$. 50 Diff. Mir. $90 / 90 \mathrm{~V} 60 \mathrm{cy}$. 50 DG Diff. Gen. $90 / 90 \mathrm{~V} 60 \mathrm{cy}$. 5F Syn. Mtr. $115 / 90 \mathrm{VAC} 60 \mathrm{cy}$. 5 G Syn. Gen. $115 / 90 \mathrm{VAC} 60 \mathrm{Cy}$ 5 HCT Cont. Trans. $90 / 55 \mathrm{~V} 60 \mathrm{c}$ 5SDG Diff. Gen. 90/90V 400 c 60 G Diff. Gen. 90/90V 60 cy . $6 G$ Syn. Gen. $115 / 90 V A C 60 \mathrm{cy}$ 7 G Syn. Gen. $115 / 90 \mathrm{VAC} 60$ cy C56701 Type $11-4$ Rep. 115 V 60 cy . $69405-2$ Type $1-1$ Transm. 115 V 60 cy 69406 Syn. Iransm. IISV 60 cy C76166 Volt. Rec. 115 V 60 cy . C78248 Syn. Transm. 115 V 60 cy C78249 Syn. Diff. 115 V 60 cy 78863 Repeater 115 V 60 cy C79331 Transm. Type 1.4115 V 60 cy . 851 Bendix Autosyn Mtr. 22 V 60 cy 403 Kollsman Autosyn. Mtr. 32 V 60 cy PEE-25-11 Diehl Servo Mfr. $75 / 115 \mathrm{~V} 60 \mathrm{cy}$ FJE-43-9 Resolver 115 V 400

60 CYCLE AC SERVO

MOTOR

with gear reduction
Mfgd by Diehl. Type FPE-25-11. Low inertia; $75 / 115$ volts; 60 cycle, 2 phase, 4 watt output, 3200 rpm. Gear case: worm gear, spur gear and pinion, reduction
ratio 100:1.
$\$ 24.50$

TACHOMETER OR RATE GENERATORS J-36 E.A.D.; 2 volts per 100 rpm ; max. rpm 5000 PM-1 Elinco; 2 volts per 100 rpm ; max rpm 3000 PM-2 Elinco; 2 volts per 100 rpm max. rpm

B-35 Elinco; 2
per volts
00 rpm; max. (2) per 100 rpm ; max.
rpm 10,000
-68 Elinco; 1.2 V.A.C per 100 rpm ; mox rpm 10,000
$\$ 17.50$

HIGH-QUALITY
OPTICAL PARTS 5." Schmidt Ultra
Hi-Speed Objective lens System Eastman Kodak in
 a-red receiver
 ping wt. 9 lbs. Price $\$ 19.95$ Waterproof Carrying Case, extra, Shipping Dual purpose U.S.N. floodlight throws strong beam of invisible infra-red rays With infra-red lens, spare sealed beam iamp, batteries. Shipping wt. 23 Ibs

POWER PLANT MODEL EG-107 120/208 V AC, 400 CYCLE 208 volt A.C. Single and 3 phase ot 95% pf. Current Drain at rated load 21.7 amps per phase. Also has 28 volt D.C. at 750 watts.

This unit con cylinder water cooled gasoline engine directly connected anerator Gener ator Control panel Approximate weight 500 bs.

SIMPLE

 DIFFERENTIAL

1 to 1 reverse ratio: 4 I to 1 reverse ratio; 48 put gear, 1.1/32 inch diameter put gear, $1-1 / 32$ inch diameter.
Total outside diameter $1-25 / 32$ inches. Shaft size is $1 / 4$ inch. One shaft is $9 / 16^{\prime \prime}$ long; other
Stock No. 151 shaft is $3 / 16^{\prime \prime}$ long. $\$ 5.00$

VARIABLE SPEED BALL DISC INTEGRATORS
Forwa 5 Reverse 4-0-4. In put shaft $5 / 16^{\prime \prime}$ dia. $x \quad 3 / 4^{\prime \prime}$
long. Output shaft $15 / 64^{\prime \prime}$ long. Output shaft $15 / 64^{\prime \prime}$ shaft $11 / 64^{\prime \prime}$ dia. x control long. Cast aluminum construction. Approx. size $41 / 2^{\prime \prime}$

SMALL DC

 MOTORS

(All Shafts Ball Bearing Supported)

(approx. size overall $33 / 4^{\prime \prime} \times 11 / 4^{\prime \prime}$ dia.:
Governor Controlled $\$ 15.00$ ea. Governor confroled
5069600 Delco PM 27.5 VDC $250 \mathrm{rpm} \quad 12.50$ 5069230 Delco PM 27.5 VDC 145 rpm 15.00 5068750 Delco 275 VDC 160 rpm w brake 6.50 5068571 Delco PM 27.5 VDC $10,000 \mathrm{rpm} 5$ 5069790 Delco PM, 27 VDC, 100 RPM Governor Controlled 15.00 ea . 5BA10A118 GE 24 VDC $110 \mathrm{rpm} \quad 10.00$ 5BA10AJ37 GE 27 VDC 250 rpm reversible 10.00 5BA10AJ52 27 VDC 145 rpm reversible 12.50 58A10AJ50, G.E., 12 VDC, 140 rpm 206-1001 PM Planetary Gear Reduced

Motor with Magnetic Brake. Migd. by
Air Equipment 26 volts 600 ma 145 rpm 17.50 5BA1OFJ33, G.E., 12 VDC, 56 rpm reversible 15.00 806069 Oster series reversible 1/50 h.p.
C-28P 27 VDC 1100 b $7000 \mathrm{rpm} \quad 5.00$ C-28P-1A 27 VDC $1 / 100$ h.p. $7,000 \mathrm{rpm} 3.00$ SSFD-6-25 Diehl PM 27.5 VDC $10,000 \mathrm{rpm} 4.00$ 6 -volt PM motor mfgd. by Hansen $5,000 \mathrm{rpm}$

ONE OF THE WORLD'S LARGEST MICROWAVE, TEST EQUIPMENT AND TUBE ESTABLISHMENTS!!

NEW UNUSED SURPLUS STAND. ARD LABORATORY RECEIVERS
AN/APR4 complete with five tuning units 38 to 4000 m.c.
AN/APR-5, 3000-6000 m.c.
AN/APR10, 2000-4400 m.c.
NEW TS148/UP SPECTRUM ANALYZER

NEW TS-147 X BAND SIGNAL

GENERATOR Test Set TS 147 UP is a portable Microwave Signal Generator designed for resting and adjusting beacon equipment and radar systems which operate within the frequency range of 8500 MC to 9000 MC . We carry one of the largest tube inventories in the USA. Thousands of Magnetrons, Klystrons, Receiving and Transmitting tubes, Semiconductors, etc. Write, giving your requirements. If you have similar items for disposal, please offer us.

WHOLESALE and EXPORT ONLY
Minimum tube order $\$ 25$

Phone: ORegon 4-7070
LLBERTY ELEGTRONICS, INC
119 PRINCE ST
NEW YORK 12, N. Y
Cable: TELESERUP

- MGOLEMA

Headset HS-33 W/cushions and ex. tension cord w/plug
$\mathrm{B}-70$ Junction Box ready to connect
BD-71 Switchboards
BD-72 Switchboard
SCR 625 Mine Detector
TS-9 \& TS-13 Handsets
AN-130A Antennas
RA-43 \& RA-63 rectifier
ARC-1 Receiver-Transmitter Radio Set
8 -watt-10 channels-100-156 MC 24V
DC $\begin{gathered}\text { SCR } 510 \text { Radio Set } 20-27.9 \mathrm{mc}, \text { BC- } 620\end{gathered}$ Receiver-Transmitter, PE-120 Power supply, CS-79 Case w/tubes com plete
ARC-3 Receivers
$\begin{array}{ll}\text { BC-603 Receiver. } \\ \text { BC-604 } & \text { Transmitte }\end{array}$
BC-604 Transmitter
BC-583 Receiver
BC-684 Transmitter
BC-620 Rec-Trans
J6B/ARC-3-Certififatated
J68/ARC-3-Certificated
2 Motors for $J 68 /$ ARC -3
C87/ART-13-3
C87/ART-13-New
BC 788 AM-New
EE8 Field Phones-Used
RM 29 with GM 38 etc.-New
BC 611 Handie Talkies-New No Case
RC 184-New
IS $35 \mathrm{~A} / \mathrm{AP}$ with Cables
IS $45 \mathrm{~A} / \mathrm{AP}$
IS $146 / \mathrm{UP}$
TS 245/IRT
TS 270/UP
TS9-Handset New
CA355-Copacitors
MC 131 Ringer Coils
EE 65 Test Sets
F-1 Transmitter Capsules-Used
310 WE Plug-Used
BC 968-Trainer New $\quad .25$
SCR 206 Direction Finder Complete.
ARC-3 Receiver Certified
ARC-3 Control Box $J 68$ with 2 Motors
APN-1 Sets Complete-
APN-1 Sets Complete-New
R9B Receivers
R 89 ARN 5 Receivers
R 89 ARN 5 Rece
AS 27 A/ARN-5
AS 27 A/ARN-5 28 Tubes
BC 1000
HS 30-New
ARN 269 -Instruction Manual
SCR 284-Instruction Manual
TALLEN CO. INC.
159 Carlton Ave. TR 5-8241 Brooklyn 5, N. Y.

LARGEST STOCK OF
 BDMAYS
 IN THE WORLD
 SOLENOIDS •STEPPERS SENSITROLS
 PRODUCTION QUANTITIES most makes in stock
 Send for Latest Catalog E

42 WHITE ST., NEW YORK 13, N. Y. - WAlker 5.9257

Money saving prices on tubes. TV. Radio. Trans. guaranteed. Top name brands only. Government surplus and commercial test. lat, anil communications equipment in stock. Sell us your excess tubes wanted. Send soecific details in first letter. Write for "Green Sheet" catalog $25 c$.
512 BARRY ELECTRONICS CORP

CAPACITORS
MIL-C-25A
1600 vDC oil paper insulated
tubular $\pm 5 \%$ with solder lugs
5400 pcs . 12 mid
4600 pcs
3500 pcs. 14 mdd
madd
HARRIS TRANSDUCER CORP.
Woodbury, Conn.

5,000 SERIES \& UP					
5517	51.00	5718	S1.75	5963	51.25
5633 5635 56	4.00	5719	1.40	5967	9.50
5636	2.40	5751	${ }_{2.00}$	5992.	9.50 6.75
5637		5763	. 90	5993/TE-10	8.00
5639	5.75	5783	3.75	5995	9.75
5641	4.00	5784	4.00	${ }^{6000}$	2.00
5643	3.85	5784WA	6.00	NL710/6011	2.00
5644	5.00	5787	3.75	6012	4.00
5645	4.75	5787WA	4.75	6021	3.00
$\begin{array}{r}5646 \\ 5747 \\ \hline\end{array}$	3.75 3.75	${ }_{5814 \mathrm{~A}}^{5814}$.40 1.50	6073 6080	1.50 3.50
5651	1.25	5814 Wa	3.00	6111	3.75
5651 WA.	3.25	5829WA	3.50	${ }^{6112}$	4.00 4
5654/6A K5W		5840	3.00	6130	4.50
5654/6AK5W	1.25	${ }_{5841}^{5840 A}$	4.25 3.75	1201/ ${ }^{\text {12 }}$ WWA	
/6096....	2.75	5844 5854 85	1.40	${ }_{6263} 611 \ldots .$.	1.00
5663. 5670		5854 5886	1.30	6263	9.50
${ }_{5670} 56$	4.00	5886 5894	17.00	${ }_{6336}^{620 / 4168}$	35.00 11.50 1
${ }^{5691}$	4.75	5896	17.00	6524	${ }_{11.00}^{11.50}$
5692 5696	5. 70	5898 589	7.50 3.25	${ }^{8012}$	1.00
5702 WA		5902	4.20	8013A	4.50
${ }_{5}^{5703 W}$	3.85	5932	3.00	9002	. 45
5704.	1.20	5933	1.50	9003	. 90

RECTIFIERS \& REGULATORS					
0 B 2	5.50	3B28	54.00	371A	\$1.00
OB2WA	2.25	3 B 29	4.75	371 B	1.50
OB3	. 90	5R4GY	1.25	575A	10.00
$\mathrm{OCl}^{\text {c }}$. 50	5R4WGA	3.75	583	5.00
OC3W	2.25	5R4WGY	2.75	869 B	30.00
003	. 50	5Y3WGT	1.30	705A	. 65
OD3W	2.25	5×3	2.20	836	1.20
1 V	. 90	218	12.00	872 A	1.00
2 C 53	9.00	2498	2.50	876	. 75
RX-21	4.50	249C	2.50	878×18	.50 6.00
3B24W	4.25	2678	3.95	VXR2700	6.00 .32
3824 WA	7.00	313 C	2.25	5931/5U4we	4.00
3826	92.50	314A	80.00	8013.......	3.00

KLYSTRONS				
1K015XA $\times 481$	2K55	\$14.00	7078	\$1.75
B,C,D . . 540.00	3K30	90.00	723A/B	6.50
SRX16 . . . 100.00	6BL6	24.00	726A	4.75
$2 \mathrm{K25}$. . . . 10.00	6BM6	27.50	726C.WE	18.00
$2 \mathrm{K28}$. 24.00	6BM6A	28.50	726C.RAY	11.50
2K455 2K48	WLA17A	28.50	5611 $5981 / 5650$	40.00 45.00
$2 \mathrm{~K} 54 . . .{ }^{\text {a }}$ 14.00	QK405	48.00	6116......	45.00

IGNITRONS AND THYRATRONS				
c1K.	56.50	FG154.	\$9.00	NL1052/5552/
1 C	1.00	VT-158	9.00	FG235A . 582.00
2 D 21 W	. 80	FG-271	22.00	2050 1.00
3 C 45	5.00	3238	3.45	
4825	5.00	354A	8.00	5559/FG57. 8.00
C5B	1.00	393A	3.35	5560/FG-95 17.00
EL5B	5.00	394AWE	3.00	5796...... 7.00
5 C 22.	20.00	KU-627.	7.00 75.00	5948/1754 . 100.00
FG-32	4.00	NL1051FĠ-		5966/E36.,. 33.50
FG105.	11.00	271/5551.	50.00	6130....... 4.50

QUALITY TUBES!			
WRITE FOR QUANTITY PRICES			
100-1886	70-6BM6	200-313C	250-872A
100-2C46	1000-6J4	150-418A	4-889RA
700-2D29	1500-6SH7	700-359A	100-922
500-2E29	300-6SK7GTY	260-374A	3000-957
100-2G21	350-6SK7W	100-381A	2000-1625
300-3AP1	200-6SK7Y	250-387A	300-2050 W
50-3C22	600-6Y6G	500-407A	$30-5559$
200-3C45	300-7CP1	300-408A	300-5702WA
700-3FP7	800-12AT7 WA	250-417A	100-5703WA
500-NS4	1000-12C8	100-703A	2000-5718
500-NS5	100-12H6	400-CK-705	300-5719
100-4 ${ }^{10150 A}$	600-12SH7	20-714AY	$300-5763$
300-C5B	400-1437	400-715B	5000-5814
700-6AB7	400-HK-24	100-723A/B	500-5886
1000-6AC7	100-15E	1000-815	100-5993
100-6A T6	600-15R	200-726C	200-5915
300-6A U6WA	100-VT-158	$300-838 \mathrm{~W}$	2000-6045
${ }^{400-6 B A 6}$	4002678	16-853	200-6211
200-6B A7	200-272A	100-864	1000-9002

RADAR AND IFF EQUIPMENT

${ }_{\mathrm{APS}}^{\mathrm{APS}} \mathrm{A}^{-3}$

APS-4
$A P S-15$
$A P S-19$

MISCELLANEOUS TUBES			
2 H 21	\$25.00	305A	\$2.50
2 C 51	3.00	WE305A	2.85
2 E24	1.95	WE306A	1.75
2 E 22	2.35	WE311A	5.00
${ }_{3} \mathbf{C} 22$	59.95	WE3118	5.75
${ }_{3}{ }^{\text {c }} 33$	5.00	WE313C	2.10
3 C 29	8.00	WEE314A	80.00
$3 \times 2500 \mathrm{~A}$	0.00	327A	3.40
4 C 27	8.50	WE328A	3.25
$4 \mathrm{C} \times 300 \mathrm{~A}$	30.00	WEE31A	7.50
$4 \times 150 \mathrm{~A}$	18.50	WE337A	5.50
$4 \times 150 \mathrm{D}$	20.00	WE348A	4.00
${ }_{4 \times 2508}^{4 \times 27}$	38.00 7.00	WE249A	4.00 2.25
${ }_{4}^{4} 4.250$	78.50	WE350A	${ }_{2}^{2.00}$
4-125A	18.50	WE354A	15.00
4-400A	138.50	WE356B	2.95
${ }_{5}^{4-10004}$	125.00 5.00	WEE368A ${ }^{\text {W }}$	$\begin{array}{r}1.45 \\ \hline\end{array}$
	7.00	WEB3718.:	2.00
6 C 21	13.50	WE372A	3.00
15 E	1.20	WEE373A	3.50
${ }^{24 \mathrm{G}}$	3.00	We374A	1.75
$\mathrm{HK}_{53}{ }^{\text {2 }}$	2.50	381A	5.00 50
${ }^{534}{ }^{4} \mathbf{4}$ S	5.00	WE387A	3.50
HY65	${ }_{5}^{1.00}$	WE388A	85
${ }_{1005}^{1886}$	5.00	WE396A	3.00
${ }^{1005}$	6.00	WE401A	3.95
C100A	10.00	WE403	90
101 D	2.75	WE403B	2.75
1015	2.75	WE404A	14.00
${ }_{121} 104$	-	We407A	3.75
${ }_{\mathbf{V} \text { 121A }}$	1.	WE408A	2.25 3.50
$\checkmark \mathrm{VT}-127 \mathrm{~A}$	2.50	WE415A	3.00
F-128A	7.00	WE416A	25.00
\checkmark VT-158	9.50	WE1468	${ }^{30.00}$
HF200	13.00	WE417A	${ }^{12.00}$
201 C	13750	WE118A	17.50
204 A	22.50	WE49A	48.00
WE205F	4.00	WE421A	-6.75
211	${ }^{15} 5$	WE422A	7.50
W208.	[55.00	WEE426A	5.75
227A	3.75	WE427A.	8.50
250 TH	23.00	WE429A	
${ }^{2507}$	+12.50	WE431A	45.00 10.00 18.
WE252A	${ }^{4} .50$	WE436A	
WE253A	2.75	WE441A.	7.00
WE25	2.25	4501TH...	40.00
2614	7.00	${ }^{471 A}$	4.00
WE262B	5.00		
WE267B	5.00	HK654	15.00
WE272A	${ }^{6.50}$	${ }_{8} 750 \mathrm{TL}$	80.00
WE274B	. 75	818	8.50
We275A	2.75	${ }_{889}^{815}$	- 1.25
WE2760	${ }^{7.00}$	${ }_{837}^{829}$	3.503.50 1.25
WE282A.	2.00	${ }^{837}$	1.25
WE282B	17.50	919	2.00
WE287A	2.00	${ }_{935}^{922} \ldots \ldots$.	1.75 3.50
WE290A	6.75		3.40
WE293A	10.00		45
304TH.	10.00	ZB3200.	60.00

SCOPE TUBES		
2AP1	(52.00	
${ }_{3}{ }^{\text {3 }}$ CP1.	1.75	${ }^{\text {SFPP7A}}$
${ }^{3} \mathbf{3} \mathbf{8 P P 1 5 1} 2$	12.50 1.00	
${ }_{3}{ }^{\text {GPP1 }}$	2.00	$5^{5 N P 1}2{ }^{2.00}$
${ }^{3 W} 2{ }^{\text {P }} 1$	50.00	${ }^{78 P 1 A} . . .15 .00$
${ }^{3} \mathrm{EP} 1$	${ }^{1.25}$	${ }^{7} \mathbf{C P 1} 1{ }^{2.00}$
${ }_{58 \mathrm{SP1}}^{5}$	8.50	${ }_{12 \text { LP7 }}$
${ }_{5}^{58 P 4}$	$\begin{aligned} & 2.25 \\ & 1.75\end{aligned}$	
5CP1A.	7.00	902P1..... 2.25

MAGNETRONS		
2J21A	54.75	4333...... 545.00
2 J 22	4.50	$4334 \cdots25 .00$
2526	4.50	$4335 \ldots . .{ }^{7500}$
$2{ }^{2} 27$	4.50	$4342 \cdots \cdots{ }^{25.00}$
2J19	25.00	${ }_{4}^{45151} \ldots{ }^{\text {a }}$
$2 J 31$	12.25	$4152 \ldots . . .2$.
2 L 32	9.50	$4558 \ldots . . .125 .00$
$2 J 33$	28.50	${ }^{4} 564 \ldots . . .{ }^{40.00}$
$2 J 34$	10.00	${ }^{5} 123$...... 75.00
2337	28.50	OK60 ... 19.50
$2{ }^{2} 38$	28.50	
2J42	($\begin{array}{r}50.00 \\ 24.00\end{array}$	
2 S 50	32.50	OK367 ... 65.00
2 ± 51	130.00	706AY-GY. 9.50
2514	148.00	714 AY \% ${ }^{50} 5$
2155	45.00	$720 \mathrm{AY} / \mathrm{CY}$. 32.00
$2 J 56$	38.00	$728 \mathrm{AY} / \mathrm{CY} .40 .00$
2361	9.95	$7254 \cdots{ }^{2} .50$
$2{ }^{2} 62$	4.00	${ }^{5657}$....... 100.00
4521	35.00	$5780 \ldots . .150 .00$
$4{ }^{4} \mathbf{4} 26$	45.00 12500	6177 75.00

AIRCRAFT COMMUNICATION \& NAVIGATION EQUIPMENT

All items listed below are in and ready for immediate sh request.	stock, in quantity, hipment. Prices on
APN-9	ILS System
AR('-1 10/20/50 Channela	
AEC-3 $10 / 20 / 10$ Channmes	
ARC-19	MN-20
ARC-27	MN-26
Altik-15	M $\mathrm{N}-31 \mathrm{C}$
ARN-5	1N-36
ARN-6	M $\mathrm{N}-6.013$
\12N-7	MN-62A
ARY-12	11R-3915
HDO Receiver	30-1000 Me. . FOR
IRN-14	RTA-1H
A ${ }^{\prime} \mathrm{C}^{\prime}-13 \mathrm{~A}$ 10/20/40 Chanmels	
AT-256/ARC	S(1R-52.3
13C-318	SCR-578 (Gibsom Girl)
CR'T-3 Gibson Glrl	SCR-718ABC
	S1R3 OMNI Ker'

TEST EQUIPMENT

BOONTON NO. 202D Signal Generator TEKRONIX Scope 514D Certified GENERAL RADIO GR 1533A High Speed Motion Picture Strobe Light. With or without camera. POR

TS-3
$\$ 275.00$
130.00
125.00

TS-48 oscilator
TS-35
TS-45
TS-62
TS-8
TS-89.
TS -102.
TS-102 (XA118) APA- 9
TS-1 90
TS-110
TS-1
TS-137
TS-15.
TS
TS-173
TS-197
TS-258
TS-088
T太-3き3
TS-318
TS-352T
TS
TS-352TU
TS-382/B
750.00
75.00
136.00
89.50
80.00
95.00
309.00
1400.00
25.00
100.00
25.00
100.00
200.00
200.00

100 O
175.00
175.00
30.00
100.00
100.00
250.00

100 D
$\stackrel{10}{200.00}$
100 O
$\mathbf{1 7 5 . 0 0}$
185
175.00
75.00
75.00
350.00
150.00
350.00
150.00
135.00
130.00
133.00
310.00

HEWLETT-PACKARD EQUIPT.
 Note: All above test ecitip.
fied to mert original specs.
THIS IS PARTIAL LIST! Write for prices on thousands of other tubes now in stock
All items F.O.B. Los Angeles, subject to prior sale and change of price without notice.
Write for unlisted items or call REpublic 5-0215. Cable: VHRADELECT. Bell Telephone: TWX LA IA60

2029-2047 W. VENICE BLVD.
ELECTRONICS

Radraltalb wc
 87-17 124th St., Rishmond Hill 18, N. Y. Phone Vlrginia 9-8181-2-3 overseas customers call us directly by telex overseas teletype twx N.Y: 4-4361
 SATELLITE RECEIVER

This receiver is alesigned for single frequency reception of modulated ratio signals within the frequency range
of 30 to 200 mc . At the frequency of 108 mc the receiver has an aporox, sensitivity of t microvolts tor and of 30 to 200 mc . At the frequency of 108 me the receiver has an approx. sensitivity of + microvolts tor an output of 50 milliwatts. Input voltage is 11060 cycles. The nutput was clesigned for 500 ohnns, antenna
impedance 70 ohnis. This receiver makes a fine satellite monitor or lab type receiver. This receiver was manlufactured by Wilcox Electric alld is brand new, complete with tulies but less crystal. Price $\$ 169.50$ ea.

APA-17

This is a direction finder that is used with the APR-1 and APR-t receivers. This unit provides a
visual indication as to tle relative bearing of the radio or radar signal that is receivelt on the receiver
unit. Power invat 110 y 400 cycle any pus oc unit. Power invut 110 v 400 cycle any 24 v DC
AFA. 17 B units cover frequencies up to 10.000 mc. AF'A
PO

ANTENNA PEDESTALS

We have a large inventory of radar type antennas and associated pedestals. such as SCR-58. MPG-2, SCR-545. SA, SK. SC. SCR.982, APG. APS. APQ. and many others. Please send your refuirements. Other data on request.

RDO RECEIVER

This Receiver was originally designed as a RADAR Countermeas!ure unit. The frequency covered by this IF frequency is 30 mc . Provisions arf incorporated in this receiver for the operator the entire range. The Pulse Analyzet or both to view the incoming signal, also included are input and output signal strength meters. Input voltage 110 v 60 cycte. All tuning mits and receiver are tested before shipment as to operation
and calibration. Frequency calibration is aporox. 1% fron 38.1000 Mc and 2% from 1000.4000 Mc . POR

MILITARY TYPE TEST EQUIPMENT

	TSAR	TSP		
TS-3	TS-61	TS-125	TS-247	TS-382
TS-12	TS-62	TS-126	TS-250	TS-419
TS-13	TS-69	TS-146	TS-251	TS-488
TS-14	TS-89	TS-147	TS-258	TS-497
TS-15	TS-100	TS-148	TS-259	TS-545
TS-33	TS-102	TS-155	TS-268	TS-587
TS-34	TS-108	TS-173	TS-270	TS-667
TS-35	TS-111	TS-174	TS-311	BC-221
TS-36	TS-117	TS-175	TS-323	ALL URM
TS-4S	TS-120	TS-239	TS-352	ALL UPM

SCR 504 ANTENA PFIESTALS

Complete 360° azimuth \& full elevation sweep. Fully equipped with azi muth \& elevation motors, potentiome ters, selsyns, and amplidynes. The ideal antenna system for sky sweeping, tracking, telemetering.
In Excellent Condition. Delivery from Stock. An outstanding buy at our special price.

TS-403 SIGML Cenerator

Frequency: 1800-4000 MC. This unit is equivalent to Hewlett-Packard 616-A. Checked out and in
excellent condition. \$950.00 ea.
We have extensive inventory of military and commercial Test Equipment. Immediate action on all inquiries. Wrife today

J. J. CANDEE CO.

4002 W. Burbank Blvd., Burbank, Calif. Phone: VIctoria 9-2411

SEARCHLIGHT Equipment

Spotting Service

This service is aimed at helping you, the reader of "SEARCHLIGHT", to locate Surplus new and used electronic equipment and components not currently advertised. (This serv ice is for USER-BUYERS only). No sharge or obligation

How to use: Check the dealer ads to see if what you want is not currently advertised. If not, send us the specifications of the equipment and/or components wanted on the coupon below, or on your own company letterhead to

Searchlight Equipment Sporting Service

c/o ELECTRONICS,

P. O. Box 12 N. Y. 36, N. Y.

Your requirements will be brought promptly to the attention of the equipment dealers advertising in this section. You will receive replies directly from them.

Searchlight Equipmen \dagger
Spotting Service

c/o ELECTRONICS

P. O. Box 12 N. Y. 36, N, Y.

Please help us locate the following equipment components

NAME

TITLE

COMPANY
STREET

CITY
5/9/58

INDEX TO ADVERTISERS

IC Electronies Division 44
Ace Electrobire Insoriates 128
Aeronautical Commonications lafuipmentItre．33
Aerovox Corlo． 11.4
Airbas Prodicts Co 112
llewhens Ifullmin Nteel Corp G0Altied Control Company，Inc．mper Corporation35
Aroold Entinerring（o．．The
Arnold Magnetics Corp 10 146
IBallantinm Iaboratories．Ine． 193
Beattie－Colamaln．Int 75
Bearer Geill Works．Ime 1ヵ！
Belden Manufarturing Co． 30
bendix Iwiation Corp． ｜ 19
Hed Bitnk IDiv 36
Isliley Elnetric 138
Boferh litar．Co．．Inc 94Bonnton Radio Corl．Bobrus Labomatorian21
Brush Instraments IDivision of Clevite Corp．
Hurmall d Co．Hime 153
CBS Ifytron．A Div．of Colsmbia Broad calstiner Kystom．Inc． 93
Oabledonia Edretronies A：Transformer $13!$Corp．
Cambridge Thermionic Corl 2：H
Celco－Constantine Engineríng Daborit 142
Chicagn Telephoare Supply（orp． 148Clevite Electronic Components．Cohn，Nigmond Mtr．（＇o．，IneConnecticut Hard ISnbber CoCoors Porcelailu Co．Cornish Wire Co．，Inc．Cossor（Canada）LimitedCrons Co．，H．
Centradah．A Ibivision of Glohe－Luion，Iac． 1303811516037136148
I）de IR Itt． 147
Damo Eleatric Co 1310
Deleo Radia live of Gemerial Motorw 39
bellortav－lBomard 58
I）imeo－（iray Company 158
Driver－llarris Company 17
Easterin Industrirs．Inc． 47
Eitel－MrCulforgh．Int． 31
Flecatro Instruments Ine 54
Electro Motive Mtrg．Co．，Inc -7
Electronic Ismociates Inc 141
Electronic Instrimpint Co．，Ine．（EICO）Electronic Tuhe Corporation131
Epheo Inc 14！
Engabiard Iudustrim Ind 101
Wire Corlo． 4
145
Fenval，Inc． 54 A 5613
Filtuon Co．，Inc． ．
（i－L Electronies 185
G．N．Laboratories．Ine 13
（i－V Controls．Inc． 113
G：arett Corporation 104． 10
Ginueral Electric Co：3
pmaratus II
lagnotie s 4×1 I． 1813
General Mills，Dechatiocal Div． 43
（ieneral Rarlio Co． 3
（ifneral Transistor Corb． 10.
Giamuini © Co．．Inc．，G．M 109
（iondriclt．B．E． 1
（iries Reprodncer Corb 13%
Diarber－IAdader，Ine 150
Hayelon Co．，line．，A．W． 1.5
If，iland，A IDiv．of Mimmeabolis 3
Ilelipot Comp．，Dix．at Brokmal Inslrumerats．Ine． $1 \because 0,121$
Hewhett－İarliad 24．3r．2na Cove

ewlett－l’arlaild
$13!$Heyman Mannfacturing（＇o．．．．．．．．．．．
Hughes Problants．a Div．of HughesIfeyman Mabafacturing（＇o．．．．．．．．．．．
Hughas Prorlacts．a Div．of Hughes$1.5,140$
Illinois Condenser Co． 15
Indiana Sterel Produris Co． 46
Industrial Instruments．Ine． 1.10 .4
Ineluatrial Ketaning Rings 10%
Industrial Timer Corp 5：
Jeroold Electronics Corb． $13 \times$
Jet Eropulsion Laboratory 3 F
Jones Vilectronirs（＇o．，Inc．．H．（ 122
Joncs Div．，Howard IS．Cimelt $14+$
Kay Eleetric Co．．．．．．．．． $2 \boldsymbol{2}$
Kenson Transformer Co．．In 151
liepeo Laboratories 9.1
Kintel（Kay Labl） 13
fileinschmidt Jahoratorifs．Inc．\cdots
Krohm－lite Corl． 114
 1

[^10]
ELECTRONICS engineering edition－May 9， 1958

the multi－channel

 heart of any automation ystem． BEATTIE－COLEMAN＇S ざ LPR－6 PROGRAMER A墶
告
Lambela Electronics Corlo． ！
Lampkin Laboratories．It 132
Librascope，Ine $1: 8$
Loblineed Aircraft Corp 99
lackheed Iircraft Corb
Marneralt Electric Co $13!$
Marnertie Amplifiers，lue $1 \geqslant 6$
Maynetirs，Inc． N：
Malco Tool \＆Mitr．Co 1 โ4
Mallory and Cr．．Itre．． \mathbf{l}^{1} K （i）
Dansol Coramies Co． 132
Darconi Instroments．Ltal 133
Marion Elletrical Instmment Co． 132
Martin－Demer 151
MeGraw－litil Bools Co 108
 －
Meashremests Corp． 154
Millivac Instruments 135
Monitor I＇roduct Co． 155
Muticore Sabes Corp 108
 9
，

Programer．Immediate
 delivery．Let us show you how the LPR－6 can help solve
 your programming problems．

of the famous Betr
Coleman MPR－13 missile

BEATTIEー

1000 N．Olive St．，Anaheim，California CIRCLE 163 READERS SERVICE CARD

Two-Axis Fixod Yoke

Component Development Engineering at its BEST!

- advanced electrical design
- precision mechanical design
- ACCURATE PRODUCTION METHODS

Custom Built to the most Exacting Specifications by Cossor Engineers
In Mumetal Cores for Optimum Sometry
In Farrite Cores for Speed and Sensitivity
In Non-magnotic Cores for Purfection of Respone

Any of Cossor's Three Core Types can be made in single or double asiswith single or fixed or slip ring (rotating) use

Normal characteristics of yэkes for $1.1 / 2$ in neck tubes are

Ponitional accuracy e the spot position will con form to the yoke curren co-ordinates within 0.25% of tube diameter. For deflection angles less than easily be achieved.
0.5% max. without over. 0.1% or 0.1% or less with controlled overswing.

Complete encapsulation in epoxy (stycast) or silicone resins is standard for all Cossor defiection yokes, and is done with special moulding tools ensuring accurate allgnment of the yoke axis. When slip rings are added, solid silver rings are mounted in encapsulating resin. The finished slip ring yoke is precision turned to centre bort, and can include ances approaching those associable with high quality metal parts.

Sotting Time (Micro adc.)
120 V Inductance in Henries
Sensitivity dogrees $/$ milliampares $=$

0088018
CANADA LIMITED
301 Windsor St, Halifax, N. S.
8230 Mayrand St., Montreal, Que.
648A Yonge St., Toronto, Ont.
Corporation House, 160 Laurier West, Ottawe, Ont.

CIRCLE 164 READERS SERVICE CARD

Narda Corporation $32(4$
Natvar Corporation 55
Northern Kadio Co., Ine. 22
Nothelfer Winding Laboratories, lme... 98
Onk Mrg. Co. 95
Offner Electronis's, Inc. 11
Ohmite Mfg, Co. 45
Operations Kosearch Office. 14
Palloramic Radio Products. Inc....... 10
Plymouth Rubber Co., Inc................ 8!I'ulse Engineering 1 (i*
Radio Corporation of America.... 4th CoverRatio fingineering Laboratories, Inc.... $\quad \mathbf{5} 3$Kadio Lingineering Iroducts............. 140
Kadio Frecueney I aboratories, line. 1110
Kadiometer 132
Kamo-Vooldridge Corb., The 56
Raytheon Alfy. Compary
Rotron Mannfacturing (Co. Inc. 166;
Galon International DE LA I'ièce Détachêe Flectronique 155
sealertro (corr). 127
Solal Einectric Co 20
sorensell \& Con, Ine 5
Spury Groweop. Compans. Division of 40
sprague Electric Co. 17
Stackpole Carbon Co 119
Standard Elertric Time Co.. 14*
Struthers-Dumb, Ine $15!$
Synmia Electrie Products,
Ine...................... 3 32A. 3213, 32C, 32D. H1
Ternsolite Insmated Wire Co., Inc.)
Texat Instrmmants Incorporated . . Brd Cover
Trans Electronies Ine 160
Transformers litw 5%
Trannaradio, Lta. 15.1
Tinde-fol Electric, line. 19, 121
Union Switch \& Signal Div, of Westing- lintose lir Brake Company.28
Victory Engimerering Corp 141
Victoreen Instrument Co. 11,7
Itro Corb. of America 9
Wanhington Aluminum Co., Ine. 14
Weckesser Co. 13:
White Dental Mig. Co.. S. S. 150
Whitney Metal Tond Co. 160
Whitso. Ine. 143
Wiley d Sons, Ine., John. 11\%
Professional Services 169
CLASSIFIED ADVERTISINCF. J. Eberle, Business Mgr.
EQUIPMENT
(Used or Surplus New)
For Sale 170-174
ADVERTISERS INDEX
A \& M Instrument Service Inc 170
Barry Electronics Co. 172
Bendix Aviation Corp Bendix Products Div, Missil 164
Blan 174
C \& H Sales Co 171
CG S Laboratories Inc 166
Candee Co., J. J 174
Communications Equipment Co 170
Fidelity Personnel Service 168
General Electric Co. 163
Goodyear Aircraft Corp. 164
Harris Transducer Corp.. 172
Henley \& Co 170
International Business Machines Corp. 168
Johns Hopkins University-Applied Physics Laboratory 169
Krantz Co., Harry 170
Liberty Electronics 172
M. R. Co. 174
Martin Co.. The 167
Monmouth Radio Laboratories 172
R. W. Electronics 170
Radalab. Inc 174
Radio Corporation of America 167
Radio Research Instrument Co 174
Ramo-Wooldridge Corp.. The 166
Raway Rearing Co 170
Stromberg-Carlson Co. 166
Sylvania Electric Products Inc 165
TAB- 170
Tallen Co., Inc 172
Telephone Engineering Cor. 170
Universal Relay Corp. (Formerly Uni- versal General Corp). 172
V \& H Radio Electronics 173

This index is published as a service. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibilities for errors or omissions.

SILICON

I
(ACTUAL SIZE)

45 WATTS at $100^{\circ} \mathrm{C} .$. OPERATION TO $200^{\circ} \mathrm{C}$

For your audio servo applications... for your circuits that demand high power at high temperatures, specify TI 2 N 389 and 2N424 high power silicon transistors. Obtain optimum performance from $-6.5^{\circ} \mathrm{C}$ to $\quad 200^{\circ} \mathrm{C}$.
Both units are derated from 85 watts at $25^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ and combine the additional advantages of low distortion . . stability... high reliability.

AVAILABLE TODAY IN I-99 QUANTITIES FROM YOUR NEAREST TI DISTRIBUTOR
TEXAS INSTRUMENTS SALES OFFICES
dallas - new york - chicago - los angeles camden - dayton - denver

Denver
SAN FRANCISCO WALTHAM

SAN DIEGO

Texas Instruments

for every job in microwaves

Pacing the fast-moving advancements in tubes for microwaves, RCA offers designers a comprehensive line of low-noise and power traveling-wave tubes-for any application in the L, S, C, and X bands. These tubes feature a major improvement in traveling-wave tube manufacture: high uniformity of characteristics maintained through rigid $R C A$ quality control.
RCA power types incorporate integral periodic-permanent-magnetic focusing-a design advantage that eliminates the need for solenoid power and reduces package size and weight.

RCA low-noise receiving types provide increased receiver sensitivity across octave bandwidths. And they are "tailored" to meet the requirements both in new equipment designs and in modernization of existing microwave systems!

Reflecting RCA's traditional engineering knowhow, RCA travel-ing-wave tubes are designed for military environments. For prompt service on your needs for travelingwave tubes, get in touch with the RCA Sales Office nearest you.

GOVERNMENT SALES

- 415 South Fifth St., Horrison, N.J.

HUmboldt 5.3900

- 224 N. Wilkinson St., Dayton 2, Ohio BAldwin 6.2366
- $1625^{\prime \prime}$ "K" St.. N. W., Woshington 6, D.C.

District 7.1260
INDUSTRIAL PRODUCTS SALES

- 744 Broad St., Newark 2, N.J.

HUmboldt 5-3900

- Suite 1154, Merchandise Mart Plazo

Whiteholl 4.2900

- 6355 E. Washington Blrd., Los Angeles 22, Colif.

RAymond 3-8361

[^0]: A Division of Cohu Electronics Inc.

[^1]: \square

[^2]: * Now with Federal Telecommunication Laboratories, Atlanta, Georgia

[^3]: SWITCHES - ROTARY SOLENOIDS - CHOPPERS VIBRATORS - TUNERS SUBASSEMBLIES

[^4]: Industrial Instruments,ine.
 89 Commerce Road, Cedar Grove, Essex County, N. J.

[^5]: Adotress U.SA. armicmandian roosi ies to Defa nabe
 MU_TRORE SALES CORPOPATION, 80 Shcre Road, Port Washington, N. Y.
 moviries regardine eher eritories to:
 MUL- CORE SOLDERS. LTD., Maylands Ave., Hemel Hempstead, Herts, England

[^6]: STACKPOLE CARBON COMPANY, Sf, Marys, Pa.
 In Canada: Canadian Stackpole Ltd., 550 Evans Ave., Etobicoke, Toronto 14, Ont.

[^7]: CIRCLE 114 READERS SERVICE CARD

[^8]: Sales Engineering Offices in: Atlanta • Boston - Buffalo - Chicago - Cincinnati Cleveland • Dallas • Dayton • Detroit • Kansas City • Los Angeles • Montreal - New Orleans • New York • Pittsburgh - St. Louis - San Francisco - Seattle - Toronto

[^9]: British manufacturer with moulding and Radio \& Electrical technical staff, would be Radio \& Electrical technical staff, would be
 interested to discuss producing good sales Rnterested to discuss producing good sales
 lines for British market with progressive American manufacturer. RA-7886, Electronics.

 Experienced, Well Established Representa. tive, Licensed, Graduate Engineer. Now available to represent you to the aircraft, missile and nuclear industries in the Seattle
 Area. RA-7898, Electronics.

[^10]:

