A MCGRAW-HILL PUBLICATION
PRICE ONE DOLLAR
APRIL 25, 1958
 chgnocerin g edition

Ferrite Radiators
For Missiles ...p 49
Convention Technical
Highlights ...p 62

\section*{| Miniatur |
| :--- |
| UST |}

HERMETIC SUB-MINIATURE AUDIO UNITS

The smallest hermetic audios made (except our DO-T's, for transistor use) Dimensions . . $1 / 2 \times 11 / 16 \times 29 / 32 \ldots$ Weight, 8 oz.

TYPICAL ITEMS

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	Myp	Pri. Imp. Ohms	Sec. Imp. Ohms	$D C \text { in }$ Pri MA	Response $\pm 2 \mathrm{db}$ (Cyc.)	Max. level dhm
H. 31	Single plate to single grid, 3:1	TFIA15YY	10,000	90,000	0	300-10,000	+13
H-32	Single plate to line	TFIA13YY	10,000****	200	3	300-10,000	+13
H.33	Single plate to low impedance	TfIA13YY	30,000	50	1	300-10,000	+15
H-35	Reactor	TFIA2OYY	100 Henries-0 DC, 50 Henries-1 Ma. DC, 4,400 ohms.				
H.36	Iransistor Interstape	TFIALSYY	25.000	1.000	. 5	300.10.000	$+10$
H-37A	Transistor Output	TF1A15YY	$\begin{aligned} & 500 \mathrm{CT} \\ & \text { (DCR50) } \end{aligned}$	$\begin{gathered} 50 \\ (\mathrm{DCR} 5) \end{gathered}$	3.5	300-10,000	+15
H-40A	Transistor Output	TF4RX17YY	$\begin{aligned} & 500 \mathrm{CT} \\ & \text { (DCR26) } \\ & \hline \end{aligned}$	600 CT	10	300-10,000	+15

*Can be used for higher source impedance, with some reduction in frequency range

COMPACT HERMETIC AUDIO FILTERS

UTC standardized filters are for low pass, high pass and band pass application in both interstage and line impedance designs. Forty-five stock values, others to order. Case $1.3 / 16 \times 1.11 / 16 \times 15 / 8-21 / 2$ high Weight $6-9 \mathrm{oz}$.

OUNCER (WIDE RANGE)

AUDIO UNITS

Standard of the industry for 18 years, these units provide $30-20,000$ cycle response in a case $7 / 8$ dia. X $1-3 / 16$ high. Weight 1 oz.

TYPICAL ITEMS

cycles with vide high Q from $50 \cdot 1 \mathrm{l}, 000$ ductance exceptional stabi it- Wide incompact case $25 / 32 \times 1 \cdot 1 / 8 \times .-3 / 16 \ldots$.
 Weight 202.

TVPICAL ITEMS

TYPE No. Min. Wys. Moan Hys. Max. tys. OC Ma \begin{tabular}{lllll}
HVC-1 \& .002 \& .006 \& 22 \& 100

\hline HVC-3 \& 011 \& .040 \& 11 \& 40

HVC-3 \& .011 \& .040 \& 11 \& 40

\hline HVC-5 \& .07 \& .25 \& 1 \& 20

\hline VVC -6 \& 2 \& .0 \& 2 \& 15
\end{tabular}

Type	Application	Level	Pri. Imp.	MA D.C. in Pri.	Sec. Imp.	Pri. Res.	Sec. Res.
*SS0.1	Input	+ 4 VV .	$\begin{aligned} & 200 \\ & 50 \end{aligned}$	0	$\begin{aligned} & 250,000 \\ & 62,500 \end{aligned}$	13.5	3700
S50.2	Interstage /3:1	+ $4 \mathrm{~V} . \mathrm{U}$.	10,800	0-25	90,000	750	3250
*SSO-3	Plate to Line	$+20 \mathrm{~V} . \mathrm{U}$.	$\begin{aligned} & 10,000 \\ & 25,000 \end{aligned}$	$\begin{aligned} & 3 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 200 \\ & 500 \end{aligned}$	2600	35
S50.4	Output	$+20 \mathrm{~V} . \mathrm{U}$.	30,000	1.0	50	2875	4.6
SS0-5	Reactor 50 HY at 1 mil . D.C. 4400 ohms D.C. Res:						
SS0.6	Output	$+20 \mathrm{~V} . \mathrm{U}$.	100,000	. 5	60	4700	3.3
*550.7	Transistor Interstage	$+10 \mathrm{~V} . \mathrm{U}$.	$\begin{aligned} & 20,000 \\ & 30,000 \end{aligned}$	$\begin{aligned} & .5 \\ & .5 \end{aligned}$	$\begin{aligned} & 800 \\ & 1,200 \end{aligned}$	850	125

*Impedance ratio is fixed $1: 1250$ for $\$ \$ 0 \cdot 1,50: 1$ for $\$ \$ 0-3$.
Any impedance between the values shown may be employed

HERMETIC MINIATURE HIGH-Q TOROIDS

MQE units provide high Q, excellent stability and minimum hum pickup in a case only. $1 / 2 \times 1-1 / 16 \times 17 / 32 \ldots$ weight 1.5 oz. MIL type Tf4RX2OYY.

TYPICAL ITEMS

Type No.	Inductance	DC Max.
MaE-2	12 mhy.	100
MaE-4	30 mhy.	65
MQE-7	100 mhy .	35
MaE. 9	. 25 hy.	22
MQE. 11	.6 hy.	14
MaE-13	1.5 hy.	9
MQE. 15	2.3 hy.	7.2

Let us miniaturize your gear.

UNITED TRANSFORMER CORPORATION 130 Varick Streti, New York 13, N. Y.

electronics engineering edition

ISSUE AT A GLANCE

H. W. MAteER, Publisher
W. W. MacDONALD, Editor

Managing Editor, John M Carroll.

Feature Editor, John Markus. Associate Editors: John M. Kinn, Jr., Frank Leary, Michael F. Tomaino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, Donald C. Hoefler, William P. O'Brien, George Sideris, Edward DeJongh, John F. Mason, Barry Miller, E. A. Scutari, William E. Bushor, Ronald K. Jurgen, Thomas Enıma, Patrick J. Lahey, Samuel Weber.
Pacific Coast Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New England Editor (Boston) Thomas Maguire.

Art Director, Harry Phillips, Roy Thompsen.

Production Edifor, John C. Wright, Jr, Sernice Duffy, Jean L. Matin.

Editorial Assistants: Gloria J. Filippone, Arlene Schilp, Noreen Hennessy, Phylis A. Cronin, Barbara Habermann, Patricia Landers, Catherine McDermott.

JAMES GIRDWOOD, Advertising Sales Manager. R. S. Quint, Assistant Advertising Sales Manager and Buyer's Guide Manager. Fred Stewart, Promotion Manager. Frank H. Ward, Business Manager. George E. Pomeroy, Classified Manager. Jean Heiges, Research. New York: Donald H. Miller, Henry M. Shaw, Martin J. Gallay. Bosfon: Wm. S. Hodgkinson. Philadelphia: James T. Hauptli. Chicago: Bruce Winner. Cleveland: Warren H. Gardner. San Francisco: T. H. Carmody, R. C. Alcorn. Los Angeles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten Atlanta: M. Miller. Dallas: Gordon L. Jones. London: Herbert Lagler. Frankfurt: Michael R. Zeynel.

Solid-State Maser Amplifier. Laboratory setup for one of three experimental
supercooled amplifiers developed at MIT Lincoln Laboratory. See
p 66 . COVER

Business Briefs
p 7
Electronics Newsletter 7 Headlight Aimer 14
Figures of the Weck........... 7 New Air Fleets Get Radar Gear.. 14
Antiklystron Stirs Scientists...... 8 Dial Two Vavs In New Sustems. It
Outlines Future Military Needs... 8 Financial Roundup 16
Latest Monthly Fgures.......... 8 Data Unit Aims Radar At Moon. 16
Washington Outlook 12 Soviets Describc Huge Microscope 18
Japancse Make Giant Computer . 12 Satellite Eyc 18
Military Electronics It Community Ty Outside FCC.... 18
Mectings Ahead 18

Ferrite Radiators Shrink Missile Antenna Systems. Characteristics of mis sile ferrite radiators are discussed and method for predicting diffraction patterns of ferrite elements given .p 49 By H. C. Hanks, Jr.

Transistor Unit Detects Foctal Heart Sounds. Audio oscillator is frequencymodulated by amplified 2 to 3 -cps foctal heartbeat. A small speaker monitors the output p 52 By 'I. I. Humphrevs

Sound Signal Tunes Tv Automatically. Automatic fine tuming svstem controls beats between picture harmonics and the sound carrier to parallel subjective manual fine tuning.
.p 54
By C. W. Bangh, Jr. and L. J. Sienkiewicz

Ceramic I-F Filters Match Transistors. Barium titanate resonant filters used as i-f transformers provide size reduction with better skirt selectivity and lower insertion loss

P 59
By D. Elders and E. Gikow

DIGEST continued

The Solid-State Maser-A Supercooled Amplifier. Experimental amplifiers

in the S-band ($2,800 \mathrm{mc}$), L-band ($1,400 \mathrm{mc}$) and uhf (300 mc) regions exhibit extremely low self-generated noise.
p 66 By J. W. Meyer

Switch-Time Nomograph. Turn-on and turn-off times of transistor switcles are determined graphically.

By T. A. Prugh

Simplified Calculations For Transmission Lines. Characteristic impedance and propagation constant of lossless transmission line terminated in lossy load are graphically determined
 p 74 By H. F. Mathis

Electrons At Work
p 76
Radio Receives Satellite Signals...p 76 VU Recorder Monitors Audio...p 78 Masks Improve Picture Contrast. . $p 76$ By D. H. McRac By F. L. Burroughs and J. T. Jans
Electronics Records Recon Data. .p 80

Component Design p 84
Thermometer Measures Zero K. . $8+$ Subminature Power Module..... 87
Transistor Defies Testing........ 8t Spin Test Electronic Components. 88
Production Techuiques p 92
Lajout Guides Satellite Assembly. .p 92 Applicator for Ploto Layout Tape p 96By J. II. Perry
Plastic Gaging Charts p 97
Design Trends . 92 Oit Cleans Contacts 1) 97
New Products p 98
Literature of the Week p 122
Plants and People p 124
News of Reps p 128
New Books p 129
Comment p 132
Index to Advertisers p 139

electronics

April 25, 1958 Vol. 31, No. 17

Published weekly, with alternating engineering and business editions, and with a BUYERS GUIDE issue in mid June, hy McCraw-Hill Publishing Cons. pany. Inc., James H. McGraw ($186(1)$-79-18) Founder.

Executive, Ellitorial. Circulation and Advertisinq Offices: McGraw. Hill Building. 330 W. 42 St.. New Yurk 36. N. Y. Longacre 1.30011

Publication Office 99-129 North Broad way, Alhany 1, N. Y. See panel below for directions regarding suliseription or change of address. Dumald C. MeGras President: Joseph A. Gerardi, Exicutive Vice L'resident; L. Keith Goodrich. Vice Presislent and Treasurer; John J. Cooke Secretary; Vrlsun Bond, Execulive Vice President, P'ublications Division; Ralpth B. Smith, Vice President and Editorial Director: Joseph H. Allen, Vice Picsi dent and Director af Advertising Sales; 1. R. Venezian, Viue President and Cir culation Cuordinator.

Single copies $\$ 1.00$ for Funineerinir Edition and 50% for Business Edition in Uniled States and possessions, and Cimada; 8.00 and $\$ 2.00$ for all othel foreign countries. Buyers' Guide $\$ 3.00$. Subscription rates United States and powresions. $\$ 6.00$ a year; $\$ 9.00$ for two years; $\$ 12.00$ for three jears. Canada $\$ 10.00$ a year, $\$ 16$ for two years; 820.00 for three years. NII ohtier cumnties $\$ 20.00$ a ear, $\$ 30.00$ for two vears $\$ 40.00$ for three years. Second class mail privileges authorized at Albany, N. Y. Printed in U.S.A. Copyright 1958 by McGraw.Hill Publishing Co., Inc.All Rights Reservish. Title registered in U. S. Patemt Office. BRANCH OFFICES: 520 Sorilı Michigan Avenue, Chicago 11 ; (48 Post Street San Franceisca 4; McGraw Hill House L.omdon E. C. 4 ; I.M. Leonhards 12, Frankfurt Main; Nalionad Press Bldg. Washington 4. D. C. Six Penn Center Plazil, Philadelphiat 3; 1111 Herry W. Oliver Bldg. Piltshargh :2: 1510 Fanna Bldg., Cleve. land 15; 856 Penobscoı Bligg. Detroit 26 ; 3615 Olive St. St. Louis 8; 350 Park Square Bldg., Bosion 16; 132.1 Rhodes Haverty Blig., Atlanta 3; 112.5 West Sixth St., Los Angeles 17; 1740 Broad way, Denver 2. ELECTRONICS is in lo. red regulatrly in The Enginetringr Index

> Subscriptions: Aldiress correspondence to: ind St. New York. Electronics. 330 W month for changes of address. statinu old as well as new address. Subseriptions are solfcited only from persons engaged in $\begin{aligned} & \text { theory. reseach. design. production. man. } \\ & \text { agentent, maintenance and use of elec. }\end{aligned}$ tronics and influstrial control components. parts and products. Position and company connection must be indicated on subserip- tion orders.

Postmaster: please send form 3579 to Electronics, 330 W. 42nd St., New York 36, N. Y.

Member $A B P$ and $A B C$

This salid-electralyte Tantalex Capacitor (shown $11 / 2$ times aclual sixel is rated af $4.7 \mu \mathrm{~F}, 10$ volte $d-c$, and is only $1 / 6^{\prime \prime}$ in diametor by $1 / 4^{\prime \prime}$ long.

Now, circuit designers in computers and military electronics have an electrolytic capacitor that offers greater miniaturization than ever before . . . with no sacrifice in reliability. Sprague's recently announced solid-electrolyte Tantalex Capacitors find ideal application in the transistor circuits of these critical fields.

The tiny sintered tantalum anode of Type 150D Tantalex Capacitor is impregnated with a solid, non-corrosive, semi-conductor material which cannot leak under any circumstance. It combines true miniaturization with electrical stability previously unobtainable in an electrolytic capacitor of any type.

Thermal coefficient of these capacitors is sufficiently low and linear so that for the first time a circuit designer can think of an electrolytic in terms of parts per million capacitance change. Nominal value is $+500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The
capacitor may be used without derating over a range from $+85^{\circ} \mathrm{C}$ to as low as $-80^{\circ} \mathrm{C}$, a temperature at which no other electrolytic has proved useful.

Solid construction permits the Type 150 D to withstand the severe shock and vibration encountered in missile and ballistic applications. Hermetic sealing makes it completely immune to humid atmospheric conditions.

Complete performance data covering the wide range of sizes and ratings are in Engineering Bulletin 3520B, available on letterhead request to the Technical Literature Sec. tion, Sprague Electric Company, 35 Marshall Street, North Adams, Mass.

$$
\star \quad \star \quad \star
$$

Sprague, on request, will provide you with complete application engineering service in the use of Tantalex Capacitors.

design around Mallory Mercury Batteries

When designing new battery-powered products, add new values of miniature size, convenience and performance with Mallory Mercury Batteries. These unique miniature power sources, pioneered and perfected by Mallory, are a key component in modern electronic equipment . . . transistor radios, alarm systems, scientific instruments, portable tape recorders, radiation detection devices, and numerous other selfpowered products.
Design for user convenience. Mallory Mercury Batteries end nuisance of frequent battery replacement because they have a shelf and service life several times that of conventional batteries.
Design for Minialure Size. Mallory Mercury Batteries
pack a lot of energy into minimum volume. They make it practical to shrink the size of self-powered equipment to new, sales appealing compactness.
Design for Rugged Use. Mallory Mercury Batteries withstand extremes of temperature and humidity. They're ideal for military or severe commercial service.
Design for Performance. Constant discharge characteristic gives fade-free operation; exactly matches transistor requirements. Output voltage is amply accurate and stable for use as a reference in instrument and bias circuits.

Write today for helpful data and for engineering consultation on your specific applications.

MALLORY BATTERY COMPANY• CLEVELAND, OHIO a division of
Parts distributors in all major cities stock Mallory standard components for your convenience.

Serving Industry with These Products:
Electromechanical - Resistors - Switches - Tuning Devices - Vibrators Electroehemical - Capacitors - Mercury and Zinc-Carbon Batteries Metallurgical - Contacts - Special Metals - Welding Materials

For HIGH VOLTAGE DC Supplies-
 Call BETA... High Voltage HEADQUARTERS

200 Series, Portable
Light-weight, easily carried, air-insulated. Output from 0 to 30 KV continuously variable, 2 to 5 ma , with reversible polarity. Ripple. 1% per ma af 30 KV .

1000 Series, Rack-Mounted DC Supplies
0.1 to $0-60 \mathrm{KV}, 2.500 \mathrm{ma}$. Rugged construction, conservative design, with full self-protection. Selenium rectifiers in models below 10 ma rating. Ripple; below $2.5 \% \mathrm{rms}$ for max. current at max. voltage. Polarity reversible, with centertap provision if desired.

2000 Series

0.1 and $0.250 \mathrm{KV} ; 5$ to 3000 ma . Two-unit design, for remote operation and maximum safety for personnel and equipment. Conservative rating, simple operation. Polarity reversible.

voltage ratings to 150 KV and continuous currents up to 1000 MA

Whatever your need in High Voltage - whether it's a rugged, portable unit, or an elaborately instrumented supply for wide-range operations...
Beta is your best source.
Beta's many years of specialization in the design, production, and application of AC and DC high voltage equipment-in all kinds of applications, ranging from electrostatic smoking of meats to nuclear particle acceleration-assure a level of quality and performance in apparatus and instruments that is exceptional. Equally outstanding is the famed line of Beta overpotential testers capable of testing transcontinental cables to individual AC and DC circuits.

All the advantages of this distinctive leadership in the growing field of electrostatics and other high voltage operations are immediately available to you through your Beta representative.

Or you are cordially invited to call or write directly to Beta headquarters for full information - on the most complete line of DC high voltage equipment, some of which are illustrated.

Five models, from 0.5 KV and 5 ms up to 0.30 KV and 5 ma . Low ripple at all ratings. Selenjum rectifiers and airinsulated design. Can be mounted in any position.

BETA ELECTRIC COMPANY division of SORENSEN \& CO., INC.
Richards Avenue

NPN as well as PNP...only RAYTHEON offers both

NEW RAYTHEON NPN HIGH TEMPERATURE SILICON TRANSISTORS

Type	Reverse Current at -20 V		Beta	BaseResistanceOhms	Coilectos Resistance kilohms	Noise Figure db(max.)	Collecto Capacity $\mu \mu \mathrm{f}$	Alpha Freq. Cutoff KC
	Collector $\mu \mathrm{A}$	$\underset{\mu \mathrm{A}}{\text { Emitter }}$						
2N619	0.005	0.005	14	2000	500	30	35	200
2N620	0.005	0.005	25	2500	500	30	35	350
2N621	0.005	0.005	50	2700	500	30	35	500
2N622	0.005	0.005	20	2400	500	15	35	300

RAYTHEON PNP HIGH TEMPERATURE SILICON TRANSISTORS

Type	Reverse Current at -20V*		Beta	\square Resistance ohms	Collector Resistance kilohms	$\begin{gathered} \text { Noise } \\ \text { Figure } \\ \mathrm{db}(\text { max. }) \end{gathered}$	Collector Capacity $\mu \mu$	Alpha Freq. Cutoff KC
	Collector $\mu \mathrm{A}$	Emitter						
2N327A	0.005	0.005	14	1200	500	30	65	200
2N328A	0.005	0.005	25	1400	500	30	65	300
2N329A	0.005	0.005	50	1500	500	30	65	400
2N330A	0.005	0.005	18	1300	500	15	65	250

- made by the reliable Fusion-Alloy process
- suitable for complementary circuits

- low saturation voltage

- good emitter efficiency to high currents - tèmperature range: $-65^{\circ} \mathrm{C}$ to $+160^{\circ} \mathrm{C}$

Alf ratings are for $25^{\circ} \mathrm{C}$. For all types: Dissipation Coefficient in ais, $0.4^{\circ} \mathrm{C} / \mathrm{mW}$; infinite sink, $0.25^{\circ} \mathrm{C} / \mathrm{mW}$.

[^0]
BUSINESS BRIEFS

ELECTRONICS NEWSLETTER

ENGINEERING BACHELOR'S DEGREES ili

 1956-57 totaled 31,211 compared to 26,306 in the previous year, but fell short of the 34,000 advance estimate. September engincering freshmen numbered 78,757 , and total enrollment for first engincering degrees reached a high of 268 ,761. That's the word from the Scientific Manpower Commission and the Enginecring Manpower Commission of the Engineers Joint Council. They report M. S. engineering degrees in 1956-57 up to 5,093 from 4,705 the year before, ancl Ph.D.'s off 14 to 596 .ION ROCKET ENGINE using chemical propellant was described this month to an aeronautics meeting of the Society of Automotive Engineers. Vaporized propellant feeds into an electrically charged chamber, said R. H. Boden, project engineer at North American Aviation's Rocketclyne division. Then an electron is knocked off each molccule of vaporized propellant, the remaining molecule becoming a positive ion. Newly created ions are pulled out of the chamber by the attraction of an clectrostatic field, then jolted by $12,000-\mathrm{v}$ to effective velocities of $300,000-400,000 \mathrm{mph}$. Speeding ion current would be directed through a 9 -in. diameter cylindrical chamber 2 ft long. Propulsion results from vehicle's reaction to ion cscape. Leftover electrons similarly ejected would add slightly to thrust. Ion propulsion,
declared Boden, would supplement chemical and nuclear rocket engines. He explained that about one pound of thrust would be produced by a $400,000-\mathrm{mph}$ ion stream, enougl in space to accelerate a 5 -ton vehicle to thousands of mph . Development of a usable ion rocket cngine, he added, centers on thrust chamber investigations, propellant studies and development of high specific power generation systems

AIRLINES' REQUIREMEN'TS for new and improved instruments on turbinc-powered planes are being circulated by the International Air Transport Association. IATA states requircments for a two-position idle setting for jet engine controls; accurate ambient air temperature gauge; mass fuel flow meter; "co/no-co" indicator; and improved artificial horizon.

FERRITE-CORE MEMORY and improved inputoutput equipment have helped to make Burroughs' new Udec III digital computer 50-100 times faster than Udec II. Not for sale, Udec III is now devoting about 40 percent of its time to Burroughs' own research problems, and the remainder to contracting services-mostly for the Atlas ICBM. It assimilates computer logic for debugging the Atlas computer, and can simulate the program structure of that computer. Udec III is also used in evaluation of weapons system design procedure.

FIGURES OF THE WEEK
RECEIVER PRODUCTION

(Source: EIA)	Apr. 4, '58	Mar. 28, ${ }^{\text {'58 }}$	Apr. 5, 57
Television sets, total	70,309	78,057	102,300
Radio sets, total	148,040	195,005	283,754
Auto sets	41,698	61,701	97,644
STOCK PRICE AVERAGES			
(Source: Standard \& Poor's)	Apr. 9, '58	Apr. 2, ${ }^{\prime} 58$	Apr. 10, '57
Radio-tv \& electronics	44.89	45.01	49.87
Radio broadcasters	57.09	57.01	67.28

FIGURES OF THE YEAR
Totals for first two months

	1958	1957	Percent Change
Receiving tube sales	56,466,000	82,031,000	-31.2
Transistor production	6,061,955	3,221,000	$+88.2$
Cathode-ray tube sales	1,178,046	1,489,223	-2.1
Television set production	804,396	914,887	-12.1
Radio set production	1,903,418	2,350,294	-19.0
TV set sales	1,030,213	1,148,796	-10.3
Radio set sales (excl, auto)	954,705	1,088,392	-12.3

Conventional klystron (A) compared with antiklystron (B) shows duality of mechanical and electronic operation as . . .

Antiklystron Causes Stir

Electron resonance in plasmas, rather than cavity dimensions, is the operating key

Microwave amplification received a novel twist a week ago when Zarem Tchernov of the Institute of Radioelectricity and Electronics, Moscow, USSR, described a new device that combines some of the claracteristics of the traveling wave tube with the physical appearance of a klystron.
He called the device an antiklystron amplifier. Details were revealed in a paper presented at a 3 -day symposium on clectronic waveguides sponsored by the Polytechnic Institute of Brooklyn, the IRE and the Armed Forces.
One advantage of the device is its ability to generate reasonably high powers at submillimeter wavelengths (60 kmc on up) a feat now extremely difficult. Since the antiklystron does not require a magnetic field as a twt does, it is smaller and lighter than a comparable twt. Like a twt, it cam be clectronically tuned.

Commercial implications of the device were evidenced by the number of manufacturers of microwave tubcs who asked Tchernov for more information.

Centrifugal electrostatic focusing (cef) is used to cause electrons injected into a toroid by a ring cathode to orbit about the center conductor within the toroid. Thus a plasma is formed. The electronresonance frequency of the plasma is a function of the orbiting velocity and determines the operating frequency of the device.

Its name, antiklystron results from the duality that exists between frequency determining elements of a klystron (cavity dimensions) and those of the antiklystron (orbiting dimensions). By launcling r-f cncrgy down a helix that passes through the center of the toroid, amplification is obtained tlirough the interaction of the r-f waves and the electron-plasma within
the toroid surrounding the helix.
The device is tuned electronically by varying the d-c potential betwcen the center conductor and outer shell of the toroid, thereby varying the clectron orbits hence their resonance frequency. With the addition of external feedback circuits it can be made to oscillate.

The final pant of the progran was a panel discussion on the future outlook of solid state devices and elcctron tubes. The discussion was limited to noise, frequency, power and bandwidtll considerations. Some conclusions were that soliclstate devices such as the maser (see p 66) have already approached noisc temperatures near absolute zero.

Electron tubes will require work in the area of cathode temperature reduction to further decrease their noise.

Outlines Future Military Needs

Specific weapons problems the electronics industry will be called upon to solve in the near future were recently revealed by Rear Adm. J. P. Monroe, Commander, Naval Air Missile Test Center, Point Mugu, Calif, at the Western Space Age Conference in Los Angeles. They include:

- Lightwcight high resolution tv cameras with a long range, high signal-to-noise radio transmitter for use in unmanned satelites.
- Low current consumption tv tape recorders.
- Method or device for passive ranging on targets providing the same quict capability possessed by passive sonar equipment.
- Method of increasing radar

TRANSISTOR AND TUBE SALES, MONTHLY

(Source: EIA)	Feb. '58	Jan. '58	Feb. '5:7
Transistors, units	3,106,708	2,955,247	1,785,000
Transistors, value	\$6,806,562	\$6,704,383	\$5,172;000
Receiving tubes, units	29,661,000	26,805,000	44,460,000
Receiving tubes, value	\$25,650,000	\$23,264,000	\$36,631,000
Picture tubes, units	556,136	621,910	728,363
Picture tubes, value	\$11,210,527	\$12,341,927	\$13,134,778

EMPLOYMENT AND EARNINGS

| (Source: Bur. Labor Statistics) | Feb. '58 | Jan. '58 | Feb. '57 |
| :---: | ---: | ---: | ---: | ---: |
| Prod. workers, comm. equip. . . . | 349,800 | 362,000 | 394,600 |
| Av. wkly. earnings, comm. | $\$ 79.75$ | $\$ 79.15$ | $\$ 80.18$ |
| Av. wkly. earnings, radio | $\$ 78.98$ | $\$ 77.40$ | $\$ 76.80$ |
| Av. wkly. hours, comm. | 38.9 | 38.8 | 40.7 |
| Av. wkly. hours, radio | 39.1 | 38.7 | 40.0 |

 accurately and quickly with only one meter.

- Approval status : MIL-I-6181B, Class 1
MIL-I-6181C, Category A
- Direct substitution measurements by means of broad-band impulse calibrator, without charts, assure repeatability.
- Self-calibrating, for reliability and speed of operation.
- True peak indication by direct meter reading or aural slideback.
- Gour interchargeajle plug-in tuning units, for extreme flexibiity.
- Economical . . . avaids duplication.
- Safeguards personnel... ALL antennas can be remotely located from the instrument without affecting performance.
- Compact, built-in regulated A and B power supply, for stability.
- Minimum of maintenance required, proven by years of field experience.

Only the Model NF-105 is so simple to operate that one technician can take readings over the entire frequency range in less time than required by three engineers manning any other three separate instruments.

Send for our Catalog No. N-357

Long before flight becomes a reality, missiles and aircraft are exhaustively tested to determine the efficiency and reliability of their design. Equipment for circuit analysis, data processing and operational checking contain numerous inner and inter-connections whose functions require rapid, reliable and versatile re-arrangement. AMP's Patchcord Programming Systems provide this flexibility of circuit arrangement, with a wide variety of products having these desirable features:

- universal or shielded construction.
- contact arrangements with 111 to 4,896 holes.
- contact design to provide dual wiping action with each engagement.
- unique solderless taper pin technique for permanent wiring to contacts.

EMP products for the AVIATION

The network of electrical and electronic impulses that control, regulate and maintain airborne equipment at peak efficiency in flight depends, to a large degree, on the integrity and reliability of the wire terminations within its circuitry. Changes in equipment and requirements have extended the scope of the A-MP insulated terminal lines to include products which are abreast of the thermal, vibration and similar problems imposed by today's faster, higher flying aircraft.

Many of the answers to the problem of tomorrow's flight equipment are obtained from the experience of today's research in the barriers that the present prototypes, missiles and other supersonic experiments are investigating. AMP INCORPORATED has produced many of the pulse system devices used to assure the faithful functioning of the electrical and electronic equipment which guide and control these instruments in the worlds of tomorrow,
Ampli-FILM, the finest high-voltage dielectric, is used as the basic insulator in the products of our Chemical and Dielectric Division. These products include: wafer capacitors (standard and armored), pulse forming networks and systems, and high voltage power supplies.

AMP Incorporated

General Offices: 3329 Eisenhower Boulevard, Harrisburg, Pa.

and AVIONICS Industries

In flight...

reflectivity of small high speed expendable targets.

- Gyro for inertial systems that is not aritically sensitive to environmental changes.
- For missile testing, gear is needed to determine missile accelcration and velocity, precise miss distance and point of closest approach.
- For $\mathrm{R} \& \mathrm{D}$ firings, a tliree dimensional pictorial display of missile trajectory and target location is needed.
- Self contained airborne firc control system for Navy fighters. In the field of Mach 2 fighters an automatic system-possilly tied in with a shipbone computer-is necded which displays on the fighter radar scope the required course of action, or actually controls pilot through the preliminary plases of an attack. This woutd eliminate the shipboard fighter controller faced with a 3,000 knot closing speed.
- Missile launching equipment designed for housing in the space of a single van or at least in few enough vans to take the same road on the same day.

Japanese Make Giant Computer

Japanese commercial computer activity has now spread to largescale electronic computers. This month Nippon Telephonc and Tclegraph Corp. amnounced completion of a giant parametron computer (photo).
NTT's computer uses 5,000 tiny parametrons. This magnetic computer element is a ferroesonant circuit made up of a toroid with resistive and capacitive elements added to form tuned circuits.
Toroid uses a saturable core whose inductance varies with the applied signal current. System uses

WASHINGTON OUTLOOK

Newest major missile project-Air Force's Minute Man solid-propellant, long-range ballistic missile-is starting to shape up. The Air Research and Development Command is now reviewing bids from dozens of companies for contracts on the overall weapon system and on major subsystems. Selections will be made this summer.

The project will be run along the lines of Thor IRBM, and Atlas and Titan ICBM's. There will be no prime producer with the overall weapon system contract. A team of contractors will run the project under the technical direction of Ramo-Wooldridge and the control of ARDC's Ballistic Missile Div., Inglewood, Calif. Separate prime contracts will be awarded for airframe, propulsion, guidance and nose-cone systems. Among the companies believed to be in the running for Minute Man guidance work are: Arma, Bell Labs, General Electric and Burroughs.

There had been considerable talk that Ramo-Wooldridge was dissatisfied with its role as system engineering contractor on the ballistic missile projects; the contract bans R-W from getting into production work in competition with other project contractors.

Total value of the first Minute Man contracts will come close to $\$ 100$ million. While these will be the first R\&D awards directly tied to the new project, the Air Force already has several study projects going which are closely related to the program research on miniaturization of guidance apparatus and the like. Presumably, the most successful contractors on these projects will be given new contracts for more advanced work on the new missile.

Minute Man is expected to function as both a 1,500 -mile IRBM or a 5,000 -mile ICBM-depending on the numbers of rocket stages to be put together. The scope of the $\mathrm{R} \& \mathrm{D}$ and future production programs depends on an upcoming Air Force decision of how far to take on the Nary's solid-propellant IRBM as a lancl-based missile to succeed the liquid-fueled Thor and Jupiter.

One top-level Pentagon official hints that contractor selection will be based to some extent on company backlogs. Assaming equal technical competence and quality of the bids, companies with diminishing missile backlogs stand the best clance for getting in on Minute Man.

- The Post Office Dept. is going to buy a prototype of a new automatic high-speed mail sorting machine designed to handle 36,000 letters an hour. The Rabinow Enginecring Co., under contract with the National Bureau of Standards, developed the laboratory prototype. Sorting can be directed cither by built-in electronic control, by manual operations or by a combination. Basically, letters will be coded by workers, then run throngh conveyor and electromechanical equipment that drops letters into various pockets.

An electronic directory or translator looks up the destination of addresses of letters, and controls the dropping of the letter to its proper bin.
The prototype will have 1,000 pockets, and will be put to use in a Post Office for trial.

SPECIAL
 PACKAGING
 FOR DIODE
 ASSEMBLIES

At Hughes, the technique of multiple unit packaging has been perfected to an extent never before achieved. Now specific circuit configutations can be housed in any one of four Hughes pachages. Each has its own advanages but all offer one prime advantage - convenience
Many individual pasts are reduced to a single component-solving a spare parts problem for matched units by eliminating the chance they will become separated; circuit design and installation are simplified; and space problems are minimized by the unusual compactness of Hughes multiple unit packaging. With these features Hughes combines the ability to adjust to a wide range of individual requirements, while providing a completely satisfactory assembly,
encapsulated pair 468" x .312" x.2"

ENCAPSULATED QUAD
.75" $\times .5^{\prime \prime} \times .25^{\prime \prime}$
These two Hughes solder-th units cant house either marched or unmarched diodes in a variety of different ways.

METALLIC OCTAL SOCKET
ENCAPSULATED 9-PIN MINIATURE

Both are plug-ins intended primarily as direct hibe replacement, and looth can be adapted to contain special circuit contigurations.
Applications: Full wave rectifier-bridge rectifier-modulator-demodulator-phase detector-and many others.

For liferature, write: HUGHES PRODUCTS, Semiconductor Division, International Airport Station, Los Angeles 45, Calif.
tion is made by telephonc-type dial or numbered pushbuttons.

For mobile users, one manufacturer recently announced a system allowing units to dial one another as well as contact basc stations. Onc such dial system has already been installed in a 70 -minit network.

Pushbutton dialing saves money for mobile radio telephone users

Rural tclephonc subscribers in onc Virginia arca are using a nowly installed purshbutton svstem.

The rocky terrain and scattered population in this arca had up to now made it unfeasible to install telcphone service. The combination of radio and pushbutton dialing now allows full-scale operation.

A similar sustem is slated for pural subscriber stations along the Louisiana coast.

Another recent use of dial svstems in the mobile band is the service available to Columbus, Ohio telephone subscribers. A central operator wishing to contact a subscriber away from his office can now dial a four-digit code signal causing a pocket recciver to sound. The subseriber then calls operator for message.

Data Unit Aims Radar at Moon

As military and civilian protagonists square off before Congress in hearings to determine who will be kingpin in space explorations, dataprocessing preparations for a "moon-shot" appear to be already underway within the Defense Dept. The Army has an electronic system that can keep a highpowered radar pointed right at the

FINANCIAL ROUNDUP

- D. S. Kennedy antenna mantfacturer of Cohasset, Mass., became a publicly owned corporation about a week ago when 100,000 shares of its common stock were offered at $\$ 14.50$ a share by W. C. Langlev \& Co. of New York City. Net receipts to Kennedy were $\$ 1,320,000$ after declucting underwriting fee of $\$ 130,000$, about nine percent. (Other details, Electronics, April 18, p 6.)
- Edin Co., Worcester, Mass., manufacturer of medical and industrial instruments, announces it will merge soon with Epsco, Inc., Boston, Mass., manufacturer of digital equipment. Edin will become a division of Epsco, but will contimue operations at Worcester.
- Technology Instrument of Acton, Mass., registers 260,000 shares of its common stock with the Securities and Exchange Commission. Sonnc 204,775 shares are outstanding, comprising holdings of L. E. Packard, board chairman, R. W. Scarle, presidcnt and W. H. Long, former treasurer. Remaining 52,225 shares are to be issued by the company. All will be offered for public sale at $\$ 10$ per share. S. D. Fuller \& Co. of New York heads the underwriting group which will receive $\$ 1.50$ per share commission.

The Acton firm makes precision potentiometers and other precision electronic components and measuring instruments. Proceeds to company will be used to finance ex-
pected increased volume on present products and marketing of newly developed precision potentiometers.

- General Devices of Princeton, N. J., plans to issue 40,000 shares of common stock. The issuc will be offered to stockholders at rate of approximately 18.5 shares for each 100 shares held and at $\$ 3.50$ per share. Unsubscribed shares will be offered to public. Proceeds will be used for expansion of plant and equipment and also for working capital. No underwriting is involved.
- Waltham Precision Instrument, Waltham, Mass., purchases assets of Thermal Dynamic Products of New York City for an undisclosed sum. Purchased firm will be operated as a division of Waltham. It gives Waltham access to the growing market for high temperature research and for envirommental test equipment.
- New Haven Clock and Watch of Stanford, Comn., has been reorganized and placed under new management. The new group, headed by Mas A Geller, chairman of the board, and Seth T. Harrison, president, reccived 850,000 of New Haven's 1,500,000 outstanding slares for sum of $\$ 200$, 000 . Condenser Products Company, electronics division of the New Haven company, has resumed production. It makes high voltage power supplies and plastic capacitors.
moon over an extended period. Moon movement for the next six months has been calculated and put on punch cards for a digitalanalog data-processing and transmitting system.

Inference that military authorities are in the midst of planning for an instrumented "moon-shot" could be drawn from a technical paper at the IRE convention.

Paper was entitled "Digital Moon Radar Antenna Programmer With Analog Interpolator

Servo," and was presented by Olaf A. Guzmann, U. S. Army Signal Engineering Laboratories, Fort Mommouth, N. J. The paper dicl not actually relate the system described with a definite plan for sending a rocket to the moon.

However, Guzmann cleclared the system is now being used for azimuth and clevation positioning of moon radars, and that calculated moon positions for a half year ahead are prepared on punch cards. Celestial coorclinates are converted

WESTINGHOUSE, LEADER IN ELECTRONICS, BRINGS YOU

INDUSTRIAL POWER SUPPLIES GROUND AND AIRBORNE POWER SUPPLIES COMPUTERS ELECTROPLATING ARC WELDING

WESTINGHOUSE

"BEEF UP" DC POWER AT LOWER COST!

Now, greater power output at lower cost is obtainable for countless appli-cations-from smallest to heaviest industrial jobs (such as arc welding, electroplating, electro-chemical processing, etc.). Westinghouse silicon and germanium rectifiers give more efficient rectification, making possible important reductions in space, weight, and cost. Ruggedly designed to meet a wide range of operating conditions, they are hermetically sealed and are characterized by their long life, no detectable aging, excellent reliability and mechanical stability. For full information on Westinghouse Semiconductors, mail coupon on the page after next.

SEMCONDUCTORS BRIDGES

This is a 4-1-1 single-phase full-wave bridge using 303 cells on 5 " x $5^{\prime \prime}$ copper plates. At an ambient temperature of 30 C, it will deliver up to 27 amperes d.e. with convection cooling, or 5.3 amperes d.c. with forced air cooling at 1000 I.f.m. The primary applications are d.c. power supplies, vibrator and magnet coil supplies, motor control, ete.

This is a 6 -1-1 three-phase full-wave bridge using 3 30 (efls on $5^{\prime \prime} \mathrm{x} 5$ " copper plates. At an ambient temperature of 30 " (' it will deliver up to 132 amperes d.c. convection cooled, or 3330 amperes d.c. with forced air cooling at 1000 I.f.m. The primary applications are welding, electro-plating, chemical reduction, are furnaces, motor drive, battery chargers, etc:

This is a $6-1-6$ three-phase full-wave bridge using $32 \cdot$ (ells on $5^{\prime \prime} \times 5^{\prime \prime}$ copper plates. At an ambient temperature of 30° C, it will deliver up to 780 amperes d.e. with convertion cooling, or 1980 amperes d.c. with forced air cooling at 1000 l.f.m. The primary applications are electro-plating, battery forming, arc furnaces, chemical reduction, motor drive, etc.

This is a $4-1-2$ single-phase full-wave bridge using 302 cells on $5^{\prime \prime} \times 5^{\prime \prime}$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 94 amperes d.c. with convection cooling, or 178 amperes d.c. with forced air cooling at 1000 l.f.m. The primary applications are d.e. power supplies, vibrator and magnet coil supplies, motor control, etc.

This is a $4-1-1$ single-phase full-wave bridge using 305 cells on $1^{1} 2^{\prime \prime} \times 1^{1} 2^{\prime \prime}$ copper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 3.2 amperes d.c. with convection cooling. The primary applications are power supplies, relays, solenoids, mag amps, etc.

This is a $6-1-1$ three-phase full-wave bridge using 302 cells on 3 " x 3" ropper plates. At an ambient temperature of $30^{\circ} \mathrm{C}$, it will deliver up to 61 amperes d.c. with convection cooling, or 132 amperes d.e. with forced air cooling at 1000 I.f.m. The primary applications are d.c. power supplies, vibrator and magnet coil supplies, motor control, etc.

WESTINGHOUSE GERMANIUM TRANSISTORS

WRITE FOR DETAILED SPECIFICATIONS!

Mail Coupon Now

Westinghouse Electric Corporation
P. O. Box 868
Pittsburgh 30 , Pennsylvania
Please send me full information on the following Semi-
conductors:
NAME
TITLE
COMPANY
ADDRESS

The question mark symbolizes man's inquiring spirit. And nowhere is this spirit cultivated with more enthusiasm than at Bell Telephone Laboratories where, through vigorous research and development, it constantly works to improve electrical communications and also to help national defense in essential military programs.

More than 3000 professional scientists and engineers at Bell Telephone Laboratories are exploring, inventing and developing in many fields: chemistry, mathematics and physics, metallurgy, mechanical engineering, electronics and others. You see the successful results achieved by this organization of inquisitive and highly trained minds in the nationwide telephone system that serves you.

Dr. Walter Brown, physics graduate of Duke and Harvard Universities, homblards crystalline solids with one-million-volt electrons to study the nature of simple defects in crystals. Objective: new knowledge which may help improve transistors and other solid state devices for new and better telephone and military systenns.

Peter Sandsnark, from Polytechnic Institute of Brooklyn, and his fellow electrical engineers develop a new microwave radio relay system able to transmit three times as much information as any existing system. Objective: more and better coast-to-coast transmission for telephone conversations and network television.

Bill Whidden, from Palytechnic Institute of Brooklyn, and George Porter. from Georgetown College, study new experimental telephone instruments designed to explore customer interest and demand. Ohjective: to make your future telephone ever more convenient and useful.
to terrestrial coordinates and stored on magnctic tape.

In time synchronism, taped signals are fed into a digital-toanalog converter at intervals of three minutes, integrated, monitored and applied to a servo control system which positions the radar antenna.

Soviets Describe Huge Microscope

Soviet scientisis have developed a "super electron microscope" producing cnlargements by several millions and making even barrium atoms visible. Microscope, says the newspaper Izvestia, is similar to electron beim tube of a tv set, with a flat-bottomed glass bulb scrving as an image screen.

In the neck of the bulb are two metal pieces to which a wire loop is attached. At the end of the loop is a metal necdle which points towards the screen, the needle "scrving as the nogative electrical polc. Several thousand volts produce a beam of clectrons from the needle, creating a magnified image of the needle point on the screen.

When gas is fed into the bulb
and the gas molecules settle inside, the molecule on the very point of the needle is reproduced on the screen as if it were an extention of the needle. Its image is magnified tens of millions of times.

With this instrument, says Izvestia, stuclies of metal surfaces are possible using a needle made of the same material as that under investigation. Molecules of oxygen, pythalocyanin, anthracene and others have been studied under the new microscope.

Satellite Eye

Ampex recorder at Stanford Rescarch Institute picks up radar traces for analysis and later reproduction. Built for atmospheric clutter studies, it has been observing the satellites as well

Community Tv Outside FCC

Community tv antcina sustems have won an important victory in a long-standing squabble with local to stations. In a recent decision, the FCC dismissed a complaint brought by a landful of radio and tv broadcast stations against 288 community autenna systems in 36 states. The commission held that it has no power to regulate cemmunity antennas because they are not common carricrs.

Most recent estimate shows about 650 systems extending to reception to upwards of 2 million people throughout the comintry. One industry source sces another 1,000 communitics as potontial markets.

And there is still plenty of room for expansion of channel facilities and number of subscribers within existing systems.
Today the average number of subscribers per system is about 1,000 , but the average potential per system is over 2,000 .

Estimated capital investment in the inclustry is in cxcess of $\$ 500$ million.

MEETINGS AHEAD

Apr. 24-26: National Academy of Sciences, U.S. National Comm., International Scientific Radio Union, Spring Mecting, Willard Hotel, Wash., D. C.

Apr. 27: Assoc. of Maximum Service Telecasters, Annual Meeting, Biltmore Hotel, Los Angeles.

Apr. 27-May 1: National Assoc. of Broadcasters, 36 th Ammal Convention, Biltmore and Statler Hotels, Bampuet in Hollywood Palladium, Los Angeles

Apr. 28-30: Middle Eastern District Mecting. AIEE, Sheraton Park Hotel, Washington, D. C.
Apr. 28-May 1: Sixth Annual Semiconductor Symposium of the Electrochemical Socicty, Statler Hotel, N. Y.C.

Apr. 29-30: Symposium on Electronic Scanning of Antennas, AFClR C and Rome Air Devel. Command, L. G. Hanscom Field, Bedford, Mass.
Apr. 30: Single Sileband Communica-
tions, report on, lRE, AIEE, 7 pm, Enginecring Socictics Building, N. Y. C.

Apr. 30-May 2: Seventh Regional Conf and Trade Show, IRE, State l'air Grounds, Sacramento, Calif.

May 4-7: Fourth National Flight 'Test linstrumentation Symposium, ISA, Park Sheraton Hotel, N. Y. C

May 5-7: Professional Group on Microwave Theory and Techmiques, PGMTT, Stanford Univ., Stanford, Calif.

May 6-8: Frecurcucy Control Syinposium, 12th Amnual, U.S. Ammy Signal Engincering Labs, BerkelcyCarteret Hotel, Asbury Park, N. J.

May 6-8: Western Joint Computer Conf., First National Symposium on Modern Computer Design, Ambassador Hotel, Los Angeles.
May 12-14: National Acro. \& Nav. Elec. Conf., PGANE, Biltmore Hotel, Dayton, Ohio.

May 12-15: Eighth Ammual Research Equip. Exhibit and Instrumentation Symposium, National Institute of Health, Bethesda, Md.
May 13-15: Radio Tech. Comm. for Marine Scrvices, Ben Franklin Hotel, Philadelphia.
May 19-21: Electronic Parts Distributors Show, Conrad Hilton Hotel, Chicago.
May 19-23: International Convention on Microwave Valves, Institute of Electrical Engineers, contact secretary, Savoy Place, London.
May 27-28: Second EfA Conf. on Aaintainability of Electronic Equip., Univ. of Pemin., Plila.
June 2-4: National Telemetering Confercnce, AlEE, ISA. ARS, Lord Baltimore Hotel, Baltimore, Maryland.

June 4-6: Armed Forces Commmications and Electronic Assoc., Exhibit, Hotcl Sheraton Park, Washington, D. C.

THERE'S NO SUBSTITUTE FOR EXPERIENCE.

Yesterday - today - TOMORROW JUST ONE QUALITY...THE FINEST!

KESTRSOULER

INDUSTRY-TESTED AND PROVED FOR OVER 50 YEARS...
You hear a lot about the remarkable showing of "Johnny-come-lately" solders from that second source of supply, based only upon test samples or short production runs. But there's no real substitute for regular on-the-job applications to prove the actual merits of a product like solder. That's why Kester Solder is the preferred choice of wise solder buyers and users everywhere; they know it has over half a century of genuine experience and unqualified production approval behind every spool. Write today for complete details.

YOUR COPY FREE! Kester's 78 -page manual
"SOLDER . . . ITS FUNDAMENTALS AND USAGE." Send today.

KESTER SOLDER COMPANY

 formance characteristics of electron tubes with Superior cathodes... made constantly better by research. For information on Superior cathodes, write for a copy of Catalog Section 51, Superior Tube Company, 2500 Germantown Ave., Norristown, Pa.

NORRISTOWN, PA.

[^1]

You can get what YOU WANT

IN

technical CERAMICS

At this one source you will find

Industry's widest selection: Aluminas, Aluminum Silicates, Cordierites, Forsterites, Lavas, Magnesium Silicates, Silicon Carbides, Steatites, Titanium Dioxides, Zircons, Zirconium Oxides. Characteristics carefully matched with applications. Special formulations for special needs.

Modern machinery in depth for volume production by the most efficient methods. Great latitude in shapes and sizes. Special equipment for holding precision tolerances. The latest inspection instruments. Kilns of many kinds. Hand-machined prototypes for testing your designs before tooling if desired.

AlSiMag production is a science . . . but also an art. Technical knowledge and skilled craftsmen are equally important. Here exclusive techniques have been developed over more than half a century of specialized experience. Our engineers can often offer redesign suggestions to improve performance and reduce costs.

Designs carefully studied before orders acccepted . . . but in almost 100% of the cases which are accepted, AlSiMag parts are produced to specification on promised schedule. Blueprint or sketch with details of operation will bring you complete information on Alsimag for your application.

CHATTANOOGA 5. TENN.
56TH YEAR OF CERAMIC LEADERSHIP

[^2]

APPROVAL DATA

STODDART \& MILITARY TYPE	FREQUENCY	$\begin{aligned} & \text { MIL-I-16910 } \\ & \text { (Ships) } \end{aligned}$	MIL-I.6181	S.A.E.	A.S.A.	C.I.S.P.R.	*MIL-1.6181C (Proposed) **Can be supplied to C.I.S.P.R. Recommendations S.A.E. (Society of Aufomotive Engineers) A.S.A. (American Standards Association)
NM-40A (AN/URM-41)	30cps-15Kc	CLASS '1'	Not Req'd	Not Req'd	Not Req'd	Not Req'd	
NM-10A (AN/URM-6B)	14Kc-250Kc	CLASS '1'	Not Req'd	Not Req'd	$\begin{gathered} \text { C63.2 } \\ \text { (Proposed) } \end{gathered}$	Not Req'd	
NM-20B (AN/PRM-1A)	150Kc-25Mc	CLASS '1'	$\begin{gathered} \text { CLASS '1' } \\ \text { *CATEGORY 'A' } \end{gathered}$	Not Req'd	$\begin{gathered} \text { C63.2 } \\ \text { (Proposed) } \end{gathered}$	**	
NM-30A (AN / URM-47)	$20 \mathrm{Mc}-400 \mathrm{Mc}$	CLASS '1'	$\begin{aligned} & \text { CLASS '1' } \\ & \text { *CATEGORY 'A' } \end{aligned}$	APPROVED	C63.3 (Proposed)	**	
NM-50A (AN/URM-17)	375 Mc -1000Mc	CLASS '1'	$\begin{aligned} & \text { CLASS ' } 1 \text { ' } \\ & \text { *CATEGORY 'A' } \end{aligned}$	Not Req'd	$\begin{gathered} \overline{\mathrm{C} 63.3} \\ \text { (Proposed) } \end{gathered}$	Not Req'd	

STODDART'S 5 self-contained Radio Interference Measuring Equipments, each designed for its specific frequency range, provide:
5 instruments, which can be used by -
5 engineers, to measure over -
5 different frequency ranges, at -
5 different locations, at -
1 time.

FEATURES:

- Each equipment performs Quasi-Peak, Peak, and Average (Field Intensity) measurement functions.
- Approved for use by all Departments of the U.S. Department of Defense.
- Commercial and military equipments are identical.
- Precision laboratory equipment with rugged all-weather design for field use.
- Immediate delivery from stock.
- Serving 33 countries in radio interference control -

STODDART
AIRCRAFT RADIOCO., INC. 6644 Santa Monica Blvd.. Hollywood 38, California HOllywood 4.9294

New trends and developments in designing electrical products...

"Work backward'"-a new design approach that's bringing the advantages of General Electric permanent magnets to fields traditionally reserved for electromagnets

A new approach to the design of motors, generators, relays, and similar products is making it possible to produce smaller, more efficient and economical units by using permanent magnets, instead of electromagnets.
The new approach is simply to "work backward." That is, design the most efficient magnet assembly first, and then the rest of the component.

In the past, where designers tried to replace electromagnets in these products, permanent magnets often proved uneconomical. Here's why:

The traditional approach was to work the permanent magnet into an existing design for a wire-wound field, to save the cost of new dies and other major manufacturing changes.

Under these conditions, permanent magnets will seldom show to best advantage, But, by using the "work backward" approach, many outstanding results can be obtained.

FIGURE I-G-E Alnico 5 magnet helps 2 -pole motor develop $1 / 150 \mathrm{hp}$ at 10,000 to $15,000 \mathrm{rpm}$.

For example, permanent magnets had been limited to fractional-hp applications, such as the $1 / 150-\mathrm{hp}$ toy-locomotive motor in Figure 1.
But today, through imaginative design and more efficient alloys, permanent magnets are now used for rotors and stators in much larger equipment.
The DC tachometer generator in Figure 2, for example, uses a 2 -lb. G-E Alnico 6 stator.
The permanent magnet provides greater reliability and accuracy than copper windings, over wide ambient temperatures. It eliminates an external power source and field regulating equipment. And, there is no replacement problem since the magnet - unlike wire - never burns out.
These are some of the advantages that can be realized from early con-

sideration of the permanent magnet in design.

Alone, these can more than justify the cost of redesigning equipment to eliminate wound fields. Yet, there are other advantages that result from the magnet's ability to supply a constant field without external excitation, including:

- Elimination of field interruptions due to power failure.
- Elimination of heat and need for costly cooling equipment and insulation - thus conserving valuable weight and space.
- Elimination of danger from faulty wiring or damaged insulation.
These are important advantages where equipment must be reliable despite severe environmental conditions. But equally important to the designer is the permanent magnet's superior volumetric efficiency. A G-E Alnico magnet can usually supply a given magnetic field in a fraction of the space needed by even the best designed electromagnet.

The TV-tube focusing magnets in Figure 3 gives some idea of the savings in space and weight a designer can effect.
The electromagnet weighs 2 lbs., and takes up 16.35 cubic inches. The G-E Alnico 5 permanent magnet weighs just 15 ounces, and requires only 1.30 cubic inches-a spacesaving of 87%.
In addition to the problem of economics, two other traditional objections to permanent magnets have also been largely eliminated:

First, early permanent magnets were relatively unstable. But modern permanent magnet materials from improved manufacturing techniques are really "permanent" ... even under temperature and humidity conditions ruinous to electromagnets.
Second, applications requiring "onoff" field action seemed outside the capabilities of permanent magnets. But modern design techniques have developed practical ways to handle this by shunting flux around the air gap.

With the new high-energy alloys and the development of more scientific design methods, the future for permanent magnets-and the opportunity for designers - is virtually unlimited.

For example, a recent use of the "work backward" approach has, for the first time, made it possible to use powerful Alnico magnets to supply uniform fields in equipment like traveling wave tubes.

General Electric Magnet Engineers have accumulated a wealth of information on the problems of redesigning for permanent magnets. They will share their knowledge with you at any stage of the magnet design project.
For more information, or the services of a G-E Magnet Engineer, write: Magnetic Materials Section of General Electric Company, 7806 N. Neff Street, Edmore, Michigan.

Progress /s Our Most Important Product general

Whichever -hp- oscilloscope these new, time-saving

dc tó 10 MC - $\$ 1,100.00$

-hp-150A/AR High Frequency Oscilloscope.

World's premier hf oscilloscope. 24 direct-reading sweep times; sweeps $0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $15 \mathrm{sec} / \mathrm{cm}$. Universal automatic triggering wherein one preset condition insures optimum triggering. Plug-in amplifiers for high gain or dual channel operation (see opposite page). Cabinet (150 A) $\$ 1,100.00$. Rack (150 AR) $\$ 1,200.00$.

dc to $\mathbf{3 0 0} \mathrm{KC} — \$ 650.00$

-hp- 130A/BR Low Frequency Oscilloscope.

Similar horiz. and vert. amplifiers; input circuits balanced on 6 most sensitive ranges. Single ended input de or ac coupled; direct reading, needs no pre-amplifier with many transducers. Brilliant, high resolution trace. Universal automatic trigger. -hp-130BR (rack) similar to 130A except includes x 5 magnifier for all ranges which expands fastest sweep to $0.2 \mu \mathrm{sec} /$ cm .130 A (cabinet) or 130BR (rack) $\$ 650.00$.

New amplifiers and accessories

-hp- 152B Dual Trace Differential Amplifier
New plug-in amplifier providing differential input and dual traces electronically switched between A and B channels at either 100 KC or on alternate sweeps. Sensitivity range $0.05 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$, input attenuator with 9 calibrated ranges in 1-2-5-10 sequence and vernier. $\$ 250.00$.

-hp- 153A Very High Gain Amplifier
New plug-in permitting - $h p$-150A to be used for many direct measurements from transducer without preamplification. Pass band dc to 500 KC , sensitivity 1 $\mathrm{mv} / \mathrm{cm}$ to $125 \mathrm{v} / \mathrm{cm}$, balanced input on the 6 most sensitive ranges. 15 calibrated ranges in 1-2-5-10 sequence, $1 \mathrm{mv} /$ cm to $50 \mathrm{v} / \mathrm{cm}$; plus vernier. $\$ 125.00$.

-hp- 151A High Gain

 AmplifierFor either 150 A or 150 AR , high gain unit with $5.0 \mathrm{mv} / \mathrm{cm}$ sensitivity, frequency response dc to 10 MC .12 calibrated ranges on 0.5, 1-2-5 sequence. 1 megohm input impedance with $27 \mu \mu \mathrm{f}$ shunt. Pass band rise time $0.035 \mu_{\mathrm{sec}}$. Has 2 BNC terminals. $\$ 200.00$.
provides 6 different oscilloscopes!

you choose, you get convenience features

do to 200 KC—\$435.00

-hp- 120A/AR Industrial Oscilloscope.
For lab or production line work, outstanding value and performance. Automatic trigger, 15 calibrated sweeps in $1-2-5$ sequence, sweep speed range $1 \mu \mathrm{sec} /$ cm to $0.5 \mathrm{sec} / \mathrm{cm}$, $\times 5$ sweep expansion all ranges, automatic synchronizing on all internal or external voltages, including line power. High sensitivity, calibrated vertical amplifiers, all power supplies regulated. 120AR rack mount instrument only $7^{\prime \prime}$ high. Utmost dependability ; extra rugged construction. 120A (cabinet) or 120AR (rack) $\$ 435.00$.

immediate delivery; see your -hp- rep now

direct reading, high accuracy
universal automatic triggering
color-coded controls, simplest to use
"no-pre-amp" operation from many transducers
highest performance, outstanding value

increase convenience of your 150A

-hp- AC-21C 50:1 Voltage Divider Probe
A 50:1 divider with high 10 megohm input impedance and low $2.5 \mu \mu \mathrm{f}$ input capacitance. Convenient "pen" size for maximum handling ease. Probe has durable, attractive nylon barrel, alligator clip contactor. \$25.00.

-hp-115A Oscilloscope Testmobile Most convenient mobile oscilloscope mounting. For 150A Oscilloscopes but usable with other instruments. Rolls easily on large $4^{\prime \prime}$ rubber-tired wheels. Extra-sturdy construction of $7 / 8^{\prime \prime}$ tube stock, gleaming chrome throughout. Oscilloscope shelf tilts 30° in four $7-1 / 2^{\circ}$ increments for better viewing. $\$ 80.00$.
Data subject to change without notice. Prices f.o.b. factory.
HEWLETT-PACKARD COMPANY
4649A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A. CABLE 'HEWPACK" - DAVENPORT 5-4451 fIELD ENGINEERS IN ALL PRINCIPAL AREAS

See your -hp- representative!

> Added Evidence that Everyone Can Count on

Single New Rectifier Outperforms

Industrial Type Selenium Rectifiers

Produced by the improved new vacuum process developed by Siemens of West Germany and now manufactured exclusively by Radio Receptor in the U.S.

Smaller cell sizes
Lower voltage drop
No artificial barrier
Negligible aging with an estimated life of 100,000 hours!

Because the exclusive Siemens vacuum process eliminates the need of an artificial barrier layer, it is possible for Radio Receptor to offer smaller cell sizes operating at high current density, yet with lower voltage drop. In actual dimensions this means that just one RRco. HCD rectifier measuring $8^{\prime \prime} \mathrm{x}$ $16^{\prime \prime} \times 25^{\prime \prime}$, rated at $26 \mathrm{~V} \mathrm{AC}, 4500 \mathrm{amps}$ DC, replaces twelve usual stacks $6^{\prime \prime} \times 71 / 4^{\prime \prime} \times 10^{\prime \prime}$.

RRco. Petti-Sel rectifiers do far more than save space. They reduce assembly time, require fewer connections and cost less per ampere. Their dependability has been proved for years in European circuits and the outstanding electrical characteristics are not even approached by other standard cells available today. For further information please write today to Section E-4R.

Semiconductor Division

RADIO RECEPTOR COMPANY, INC.

A Subsidiary of General Instrument Corporation
240 WYThe avenue, brooklyn 11, N. Y. - EVergreen 8.6000

MICROWAVE FERRITE CIRCULATOR...

RAYTHEON MINIATURIZED X-BAND ISOLATORS weigh as little as 2.2 oz . For somewhat different requirements in the lower frequency L-band, Raytheon recently introduced the first high-power L-band isolator commercially available.

Compact C-band unit replaces gas-fube duplexer; needs no external power.

System designers: This new circulator is lighter and more compact than the differential phase-shift type unit and readily replaces typical TR or ATR gas tubes in C-band microwave transmission systems.

The Raytheon Model CCM1 weighs less than 5 lbs . and is less than 6 inches long. Its permanent magnet design eliminates the need for external drive power. The CCM1 reduces requirements for filters and klystron isolation common to systems using T -junction duplexers.
With Raytheon's advanced microwave component designs like this new C-band circulator, systems designers now have more freedom than ever before to design compact lightweight packages. Other devices now available and in advanced stages of development include isolators, both high and low power, ranging from L-band to Ku-band; ferrite switches; modulators; and side-band generators.

FOR COMPLETE FACTS or assistance in solving your microwave ferrite component problems, simply write to the address below, outlining your requirements.

important news for AIR FORCE contractors...

HUTOMATIE silioon reatifiers designed to meet the NEW

 USAF specification MIL-E-1/1089
pIgtail types ${ }^{*}$
1N538 (USAF) 1N540 (USAF) 1N547 (USAF)

* Do not confuse these USAF types with commercial types having the same numbers.

AVAILABLE FOR IMMEDIATE DELIVERY

IN LARGE SCALE PRODUCTION QUANTITIES

General Instrument's semiconductor manufacturing skill assures contractors fast delivery of these special new pigtail type silicon rectifiers now covered by this Air Force specification. Automatic's outstanding group of USAF type silicon rectifiers meets and often exceeds the rigorous MIL-E-1/1089 (USAF) specification - And expanded facilities permit us to deliver them in quantity at prices that reflect volume production.

Automatic Manufacturing Division also offers the industry's most complete line of silicon rectifiers for an extensive range of applications including types for magnetic amplifiers, power supplies, D.C. blocking and germanium replacement, as well as types for general purpose use.

Would you like a set of our enginecring data sheets? Please write us today!

AUTOMATIC MANUFACTURING

DIVISION OF GENERAL INSTRUMENT CORPORATION 65 GOUVERNEUR ST., NEWARK 4. N.J.

Fabricated by CDF: Near the presses that produced the Dilecto laminates, these paper-base parts were machined to close tolerances by CDF specialists ... quickly, accurately, economically for the purchasers. This is " random selection from the five grades described in the table below.

CDF Dilecto ${ }^{\circledR}$

 paper-base laminates for the workhorse insulation jobsFor everyday mechanical-electrical parts that receive tough punishment and must have excellent physical and dielectric properties at low cost, the CDF phenolic paper-base line is outstanding.

Economy. CDF paper-base grades machine readily into intricate parts. Some are flame-retardant. Others are especially adaptable for punching. All are economical for the value delivered.

Fabrication Facilities. CDF has excellent and extensive plastics-fabrication facilities for turning out finished Dilecto parts to your specifications-better and more economically than you can do it yourself. Save the time and trouble of intricate fabrication by using CDF's specialized facilities.
See Sweet's, Electronics Buyers' Guide, and the other directories for the phone number of the CDF sales engineer nearest you. Or send us your print or problem direct, and we'll return a recommendation of the right Dilecto grade for your need.

[^3]| Typical Property Values-Dilecto Paper-Base Laminates in Sheet Form | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\stackrel{x-13}{\left(\text { NEMA }^{2}\right)}$ | $\begin{gathered} \mathrm{XP} \cdot 13 \\ (\mathrm{NEMA} \mathrm{P}) \end{gathered}$ | $\begin{gathered} \mathrm{xX-13} \\ \text { (NEMAXX) } \end{gathered}$ | $\begin{gathered} \text { XX-13 FR } \\ \text { (Fire-retardant) } \\ \text { (NEMA XX) } \end{gathered}$ | $\begin{gathered} \text { XXXP-28 } \\ \text { (NEMAXXXP) } \end{gathered}$ |
| ROCK WELL HARDNESS | 100 | 95 | 110 | 108 | 90 |
| TENSILE STRENGTH Iw (1000 psi.) | 20 | 12 | 16 | 17 | 12 |
| FLEXURAL STRENGTH Iw (1000 psi) | 27 | 16 | 17 | 20. | 18 |
| COMPRESSIVE STRENGTH (1000 psi.) | 40 | 25 | 35 | 41 | 22 |
| WATER ABSORPTION (\% in 24 hrs .) 1/16" thickness | 3.5 | 3.0 | 1.4 | 1:2 | 0.6 |
| MAXIMUM CONTINUOUS OPERATING TEMPERATURE (${ }^{\circ} \mathrm{C}$.) | 120 | 120 | 120 | 120 | 120 |
| DIELECTRIC STRENGTH perp. to Iam. (VPM) | 800 | 800 | 650 | 700 | 800 |
| DIELECTRIC STRENGTH parallel to lam. (Kv.) | 50 | 50 | 60 | 70 | 75 |
| DISSIPATION FACTOR at 1 mc , Cond. A | 0.042 | 0.038 | 0.034 | 0.038 | 0.027 |
| DIELECTRIC CONSTANT at 1 mc , Cond. A | 5.5 | 4.6 | 4.7 | 4.8 | 3.6 |
| ARC-RESISTANCE (seconds) | 8 | 4 | 4 | 10 | 10 |
| INSULATION RESISTANCE (megohms) ASTM D-257, Fig. 3 | 100 | 100 | 1,000 | 1.000 | 600,000 |
| AIEE insulation class | A | A | A | A | A |

at the bottom

Look around you. How many men do you see at about your job level and income? Know them pretty well, don't you? Are they smarter than you are? Do they work any harder? Do they possess some "something" that you don't have?
No, of course they don't. And yet, five years from now, some few of you are going to be lots closer to the top of your company. There's lots of room up there - management needs able-brains as never before. But, warning! There's still lots more room at the bottom!
Is there a shorter, surer route to that better job, that bigger paycheck, that pride of achievement? There is, but it's no Easy Street. You still have to supply the energy and effort. How? By digging in zealously with a more intensive, regular reading of the magazine you're holding in your hand right now. Look ahead, read ahead, get ahead.
McGraw-Hill editors write it exclusively for you. Nobody else. It's all about you and your job and your problems. Nothing else. News, fact, trends today's tasks and tomorrow's opportunities. As inspiring as it is informative. Reads lively. Keeps you on your toes. Makes important people notice you. What's more - you'll enjoy it . . for it's just about as personal as any publication could ever hope to be.

McGRAW-HILL SPECIALIZED PUBLICATIONS

The most interesting reading for the man
most interested in moving ahead

REVERE ROLLED COPPER

In the type of color television set turned out by RCA Victor there can be no margin for error. That is why RCA Victor Engineers when they turned to printed circuits for their color TV sets thoroughly tested the various materials available. Here are the reasons they use Revere Rolled Copper:

1. Even the finest lines are comparatively free from pits, pinholes and other imperfections.
2. Thickness is consistently uniform without sacrifice of conductivity, resulting in etching at better production rates.
3. There are no peaks or valleys in its smooth, hard surface of uniform density. This permits resist to clean off easily because there are no pores to hold resist and cause trouble when soldering.
4. Revere Rolled Copper is relatively free from oxidation as it comes from the mill and is without lead inclusions. Has longer shelf life without the need for a major cleaning operation prior to soldering.
5. Its clean surface permits fluxes to wet readily.
6. In the automatic soldering operation it makes possible a uniform solder coat, free of skips or bald spots.

And these are the very reasons why you should insist that Revere Rolled Copper be specified by you when ordering blanks from your laminator.

It is available in unlimited quantities in standard coils of 350 lbs. in widths up to $38^{\prime \prime}$ and in $.0014, .0028$ and .0042 gauges, weighing approximately 1 oz , and 2 oz , and 3 oz , per square foot or heavier if required. Many users have found that because of its unique characteristics 1 oz. Revere Rolled Copper can be used instead of the 2 oz . required when other kinds of copper are used, thus effecting still greater savings in material cost. Revere Rolled Copper exceeds requirements of standard specifications and meets Electrolytic Tough Pitch Copper ASTM B5 specification for purity with 99.9% minimum.

Consult your laminator regarding the use of Revere Rolled Copper for your printed circuits, or contact the Revere Representative nearest you through the yellow pages of your local telephone directory.
REVERE DOES NO LAMINATING OF PRINTED CIRCUIT
BOARDS, MAKING ONLY THE ROLLED COPPER.
REVERE ROLLED COPPER CAN ALSO BE FURNISHED ROLLED DOWN TO . 0006 FOR COIL WINDING APPLICATIONS.

REVERECOPPERANDBRASSINCORPORATED
 Founded by Paul Revere in 1801
 230 Park Avenue, New York 17, N. Y.

Mills: Rome, N. Y.; Baltimore, Md.; Clinton and Joliet, Ill.; Detroit, Mich.; Los Angeles and Riterside, Calif.; New Bedford, Mass.; Brooklyn, N. Y.; Neuport, Ark.; Ft. Calboun, Neh. Sales Offices in Principal Cities, Distributors Everywbere.

All business is specialized

... and nothing specializes on your business like your business paper

Here's a smart business man. He spends his time where every sitzmark parks a prospect at his feet. It's simple sense: He specializes . . . and it pays!

Your business is specialized, too... and so is your business paper. The time you spend with it pays... for its editors are experts in your specialty. They scout the field... report what's good that's new... find ideas that worked... suggest methods to keep you a leap ahead of competition.
The ad pages are as specialized as the editing. They, too, tend strictly to business... your business. They bring you data on new products, new materials... gather in one place a raft of ideas on where-to-buy-what, or how to make (or save) a dollar.

That's help you can't find concentrated into such quick reading time anywhere else! It's help that puts many a man out front in his field, as a specialist who knows what's what today . . . sees what's coming tomorrow. It's simple sense to read every page, every issue.

This business paper in your hand has a plus for you, because it's a member of the Associated Business Publications. It's a paid circulation paper that must earn its readership by its quality... And it's one of a leadership group of business papers that work together to add new values, new usefulness, new ways to make the time you give to your business paper still more profitable time.

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet." Room 2710.

McGRAW-HILL PUBLISHING COMPANY 330 West 42nd St., New York 36, N. Y.

Can lisis sxperiegree in niquie cooling applicalicins help solve aproblem Ior you?

Custom designed cooling is our business at Ellis and Watts. For example, we have recently engineered and built highly specialized equipment for the following applications:

- Liquid coolers for electronic components (bulletin 94)
- Cooling Klystrons with air to liquid heat exchangers (bulletin 95)
- Special units to cool airborne electronic gear (bulletin 99)
- Cooling equipment for huge complex electronic computers (bulletin 102)
- Electronic console and rack coolers (bulletin 105)
- Small portable field units to cool huts filled with electronic gear for missile ground support, battlefield television, communications and radar (bulletin 106)
- Conditioning systems for Radome shelters (bulletin 108)
- Mobile cooling units for trailer-mounted electronic systems for missile and aircraft ground support (bulletin 111)
- Units to cool automatic landing devices for carrier and land-based aircraft (bulletin 122)
- Cooling equipment for fixed or mobile flight training simulators (bulletin 124)
- Dewpoint control equipment for pressurized radar waveguides (bulletin 128)

These are but a few examples. On land (MIL-E-5272A), on the sea (MIL-E-16400B), in the air (MIL-E-5400B) - even in outer space (MIL-E-8189A) - E-W specialized cooling equipment guarantees the performance of your electronic systems, independent of environmental conditions, for military or commercial applications.

If your project involves cooling . . . it's a job for Ellis and Watts. We are staffed with specialists who will analyze your requirements, submit a proposal, design and build equipment promptly and to your complete satisfaction. Field installation and maintenance services available.

Cincinnati 36 , Ohio.
Designers and builders of MIL-AC Units

50 MIL O.D. Memory Cores for Transistorized High Speed Memories

These new 50 mil O.D. cores are now available in General Ceramics S-4, the material that has proven so successful in such vitally important systems as the SAGE computer. Switching time is less than one microsecond with 550 ma full drive. At recommended operating conditions, the "ONE" output voltage is greater than 60 millivolts; the "ZERO" output voltage is less than 6 millivolts. Cores are provided in two quality levels, to .015 AQL and to 6.5 AQL. Dimensions are . $050^{\prime \prime}$ O.D., . $030^{\prime \prime}$ I.D.
and $.015^{\prime \prime}$ in height, all with tolerances of $\pm .002^{\prime \prime}$. General Ceramics has designed and built special equipment for core testing to insure that each unit meets established electrical properties. 50 mil O.D. cores are supplied in production quantities in two quality levels. Parts are shipped according to MIL Specification 105A to 0.015 AQL or 6.50 AQL. For complete information on this core write General Ceramics Corporation, Keasbey, New Jersey, for Bulletin 326 ; address Dept. E.

GEUERAL GERAMIOS

Industrial Ceramics for Industrial Progress... Since 1986

FERRAMIC CORES
 TERMINALS

MODEL CRM-20-AA-3M

Designed to conform to MIL-T.27A, Grade 3, Class T.
Life Expectancy X. Capacitor to JAN-25A.
Input $100-130 \mathrm{~V}, 60 \mathrm{cps}$, output $115 \mathrm{~V} \pm 1 \%, 60 \mathrm{cps}$,
"constant RMS", at 2000VA.

MODEL CA/-5-AR-1M

Designed to conform to MIL.T-27A, Grade 1, Class T
Life Expectancy X. Capacitor to JAN.C-25A
Input 100.330 V . 50 cps , output $115 \mathrm{~V} \pm 1 \%, 60 \mathrm{cps}$,
"constant average" at 500VA.

THESE HIGH-PERFORMANCE 60-CPS LINE VOLTAGE REGULATORS ARE SPECIFICALLY DESIGNED TO MEET MILITARY SPECIFICATIONS!

INPUT VOLTAGE:

Standard ranges $100 \cdot 130 \mathrm{~V}$.
(180.240 V and $190.250 \mathrm{~V}, 60 \mathrm{cps}$ on spe. cial order.)

CUTPUT VOLTAGE:

Standard (nominal) values 115 V .
(208 and 230V, 60 cps on special order.)

JOTAL REGULATION:

Output voltage held within $\pm 1 \%$ for worst possible combination of rated input changes and 0.100% load variations.

TRANSIENT RESPONSE:

Recovery time to the $\pm 1 \%$ region (after 10% line "step" or 25% load "step') is less than 35 milliseconds.

POWER FACTOR:

(Wattmeter method) Approx. 85%, full load, nominal input.

EFFICIENCY:

Approx. 85%, full load, nominal input.
OUTPUT POWER:
Available in integral multiples of 500VA, up to 10KVA, single phase.

CONSTRUCTION:

Tubeless. No moving parts. Quiet operation. Advanced form of proven resonantsaturation principle.
WAVEFORMS:
Available in two modes of waveform be. havior: type CAV holds "constant average" for choke-input rectifier power supplies; type CRM holds ' constant RMS' for heater and lamp loads.
FREQUENCY:
Designed for constant-frequency use, but will operate reasonably well over 58 to 62 cps. Check factory for details.

345 CARNEGIE AVENUE, KENILWORTH, NEW JERSEY
Competent Engineering Representation Everywhere

Write For Engineering Manual LR-101
Full data, prices

Heavy resistance to torque is a big feature of Ucinite miniature banana pins. The springs are mechanically riveted over and the large area around the tip of the pin is bonded by solder.
Pins are available in a variety of types, for assembly by staking . . . with nuts and washers ... with soldered tails ... with multiple plug-in features. Springs are designed to fit . 093 sockets.

Built to withstand rough usage, Ucinite miniature banana pins are available in cadmium, silver or gold plate.

For further information, call your nearest United-Carr representative or write directly to us.

The
 UCINITE CD.
 Newtonville 60, Mass. Division of United-Carr Fassenc: Corp.

NEW FROM SPERRY

Ruggedized SRU-210 reflex klystron for very high altitude application

Sperry developed the new SRU-210 reflex oscillator specifically to operate reliably under the extremely severe conditions encountered by high-altitude aircraft and missiles. Its special features make it just as useful, however, for ground radar and missile test equipment.

The screw-type tuner, for example, is ruggedized to operate at high alti-
tude without pressurization, and it requires only 5 to 6 ounce-inches of torque. Another important feature of the SRU-210 is its insulated leads which prevent high-altitude arc-over. And, its cathode operates at lower temperatures which means the SRU210 requires less input power than similar-type tubes.

Write or phone the nearest Sperry
district office for application data on the new SRU-210 klystron.

DIVISION OF SPERRY RAND CORPORATION
brooklyh - clevelang - new orleams - tos angeles SAN FRANCISCO - SEATTLE. in CANADA: SPERRY GYROSCOPE COMPANY OF CANACA, LTD., MONTREAL, QUEEEC.

Vice President in charge of throwing money away

It's his job to get rid of the plant "waste." And very often in the most expensive way possible - by literally throwing it away.
We don't know just how much money in various forms of precious metal waste is lost annually by industry. Lost by dumping, by pumping or by being removed by a local salvage operator.
Here, at Handy \& Harman, we have actual case histories in which impressive amounts of money in waste form were lost for years. That's why we've included this check list of various kinds of valuable waste. If your plant disposes of any of these materials (or similar ones), it will pay you to investigate Handy \& Harman's refining service. Send a trial lot to the Handy \& Harman refinery nearest you for accurate evaluation. We offer unsurpassed facilities and experience for complete recovery. If you're not sure of the value of waste you are throwing away, let us check a sample for you. You may discover an entirely new source of income. Write or call our Refining Division today.

CHECK LIST FOR REFININGS

Plating Operations

Silver Plating Solutions
Gold Plating Solutions
Silver Precipitates, Sludges \& Sediments
Gold Precipitates, Sludges \& Sediments
Silver Coated Copper Wire \& Racks
Gold Coated Copper Wire \& Racks
Filter Pads
Silver Anode Ends
Silver Tank Scrapings

Production Operations

Silver Turnings, Chips, Shavings
Silver on Steel Bearings
Silver Steel Turnings
Silver Blanking Scrap, Stampings, Strip, Wire
Silver Grindings
Silver Copper Scrap
Silver Powder Mixtures
Silver Screen Scrap
Silver Solder Scrap
Silver Brazing Alloy Scrap
Silver Contact Scrap
Silver \& Gold Bi-Metal Scrap
Silver on Steel, Tungsten,
Moly Scrap
Rejected Precious Metal Parts
X-Ray Laboratory
Silver Hypo Solutions
X-Ray Film
Electrolytic Silver

Miscellaneous

Silver Paint Waste, Wipe Rags, Paper, Cans
Silver \& Gold on Plastics, Ceramics, Glass, Mica, Quartz, etc.
Silver \& Gold on Moly, Tungsten, Wire
Platinum-Bearing Material
Mirror Solutions - Silver Nitrate
Silver Chemicals

Refining Plants \&
Collecting Stations:
Bridgeport 1, Conn.
Chicago 22, III.-
1900 W. Kinzie Street
Los Angeles 63, Calif.-
3625 Medford Street
New York 38, N. Y.-82 Fulton St.
Providence 3, R.I.-
425 Richmond Street
Toronto 2B-141 John Street

Third in a series describing the advantages of ceramics in electron tubes. Previously discussed: impact and heat.

Surviving Vibration is an Eimac Ceramic Tube Extra

High reliability in severe environments is an important vacuum tube requirement in many aeronautical applications. An important aspect of this reliability is a tube's ability to operate under extreme vibration without envelope damage, introducing noise or developing interelectrode short circuits. Eimac ceramic design incorporates many advanced features that improve tube performance under these conditions.
In the illustration an Eimac ceramic $4 \mathrm{C} \times 300 \mathrm{~A}, 300$ watt tetrode, is being operated in a circuit while undergoing 20 G vibration at 20 to 2000 cycles per second. The exceptionally low noise level, produced under these conditions shown in the graph
above, remains less than 1% of normal signal over the entire test range.
Other advantages of Eimac ceramic tubes are: resistance to damage by shock or high temperature; compactness without sacrifice of power; ability to withstand rigorous processing techniques that lead to high tube reliability, uniformity and longevity.
In its new line of ceramic tubes, Eimac has the answer for the aeronautical engineer who needs a tube that will deliver full output under extreme environment.

Write our Application Engineering Department for a copy of the new explanatory booklet "Advantages of Ceramics in Electron Tubes"

Eimac 7 irst with Ceramic Tubes that can take it

PRODUCTS DESIGNED AND MANUFACTURED BY EIMAC

Negative Grid Tubes
Reflex and Amplifier Klystrons
Ceramic Receiving Tubes

Vacuum Tube Accessories
Vacuum Switches
Vacuum Pumps

THAB JOB IIF HOIDS

INEVFR $\boldsymbol{T K I S T H D ~ B E F O R E ~}$

It takes a wizard to test a wizard

Hughes Electronic Systems are so advanced that only equally advanced test equipment can insure their operational reliability.

To develop and build these test "wizards" calls for a new kind of electronic engineer.
He must act as a connecting link between theory and application. To do this, he gathers all pertinent information concerning the capabilitics designed into the system.
At the same time, he accumulates an intimate knowledge of the system's performance in the field.

In this way the Test Development Engincer can perfect complex equipment-like the test device at left-which insures "built-in reliability."

Basic materials research in the Semiconductor Division of Hughes Products opens wide new areas of applications. Other areas of this commercial clectronics activity include clectron tubes and industrial systems and controls.

This kind of close liaison between Research, Development, Manufacture and Field Evaluation is typical of all Hughes activitics. You'll find it in the development and manufacture of radar warning systems . . in guided missiles and commercial electronics products. The diversity of activity assures prospective employees the opportunity to build a rewarding carecr.

New conmercial and military contracts have created an inmediate need for engincers in the following areas:

Circuit Design	Systems Analysis
Reliability	Field Engineering
Communications	Semiconductor Applications
Microwaves	Semiconductor Sales

Write, briefly outlining your experience, to Mr. Phil N. Scheid, Hughes General Offices, Bldg. 17-V, Culver City, California.

Research \& Development of complex Hughes electronics armament systems is performed by the R\&D Laboratories in Culver City. Embracing cvery advanced phase of electronics, this activity is preeminent in establishing new electronics fronticrs.

Plainf facts about... eurroushs

BEAM
 CUSTOMERS

Over 750 manufacturers have purchased Beam Switching Tubes.

RELIABILITY

Shock
Temperature
Vibration
Speed
Life
Power

375 g
-60° to $+150^{\circ} \mathrm{C}$
to 20 g
to 20 mc
to 50,000 hours
min. input -useful output

COST

One Beam Switching Tube may replace as many as $4 \cdot 6-10 \cdot 20$ or more tubes, transistors, and their associated components.

VERSATILITY
Compatable with tubes, transistors, cores, thyratrons, relays, Nixie numerical indicator 6844, and other devices.

APPLICATIONS
Wherever there is electronic distribution or switching-i.e.: Counting, Telemetering, Frequency Dividing, Timing, Sampling,

Coding, Matrixing,
or Controlling

Tubes to
Mil - E - 1/1058
Available

Write for further information on all tube types.
A N O THERELECTRONIC
CONTRIBUTION
B Y
BRUTOMOS

"ADVERTISING~ \{ES THE GAP BETWEEN

PRODUCT DEVELOPMENT AND SALES'"

"Speed is the key to success in our industry," states Nelson Havill, General Sales Manager of Potter \& Brumfield, subsidiary of American Machine \& Foundry Company. "With demand for new and more complex relays expanding daily, we must constantly design new and superior structures. Equally important, we must keep more than 150,000 engineers, designers and buyers informed of our progress. To do this, we depend on business magazines. Undoubtedly, advertising in leading business publications reduces the time between product development and sales to a profitable minimum."

IF WHAT YOU MAKE OR SELL is bought by business, you can "mechanize" your selling by concentrating your advertising in the one or more McGraw-Hill publications serving your markets. Through "mechanized selling," you reach your most important prospects . . create interest and preference for your brand ... keep them sold. In addition, you will give your sales representatives more time to concentrate on making specific proposals and closing sales.

McGRAW-HILL PUBLICATIONS

McGraw-Hill Publishing Company, Incorporated 330 West 42 nd Street, New York 36, N. Y.

MORE ADVERTISING HERE MEANS

```
MORE SALES TIME HERE
```


Mr. Havill is shown holding one of P\&B's newest micro-miniature relays. The Princeton, Indiana, company manufactures nearly 60 different relay types.

SELECT CLOSURE HARDWARE TO IMPROVE UTILITY, APPEARANCE, AND TO LOWER COST

QUICKLY INSTALLED SOUTHCO CAPTIVE PANEL SCREWS END MISALIGNMENT PROBLEM

Simplicity of design contributes to clean, distinctive appearance and fast, low-cost installation. Stand-off is slipped into panel hole and secured by flaring. Screw is passed through standoff and made captive by vinyl o-ring.
"Floating" screw design eliminates costly close tolerance manufacture and permits easy engagement regardless of panel distortion encountered under adverse use conditions.

SPECIFICATIONS

Material: Screw is brass, chrome plated; can be supplied in stainless steel. O-ring is vinyl plastic.
Overall length of screw: $1^{3 / 1611}$
Depth of screw head: $1 / 4$ "
Sizes:

SCREW HEAD DIAMETER	IHREAD SIZE
$3 / 4^{\prime \prime}$	$1 / 4-20$
$9 / 15^{\prime \prime}$	$1 / 4-20,12-24$
$7 / 15^{\prime \prime}$	$10-24,10.32$

Length of thread: $3 / \mathrm{s}^{\prime \prime}$

Screw head is supplied plain, as shown, or slotted for screw driver.

PRE-ASSEMBLED PAWL ADJUSTS TO DESIRED THICKNESS AND PRESSURE

This neat, compact Southco panel and door fastener is supplied assembled, requires but two rivets or bolts for low cost installation. It is available in three mod els-large, intermediate and midget.

The unique feature of Southco Pawl Fasteners is the fact that, by merely turning the knob, the pawl is adjusted to a wide range of frame thicknesses. This assures a tight grip without precision setting regardless of variations in frame or door dimensions or changes that are produced by wear or warping of sheets.
Pressure exerted by the pawl on the frame is controlled in the same way, by merely turning the knob. Against gasketed frames, pressure can be easily applied to compress the gasket.

SPECIFICATIONS

Knob: Cadmium or chromium plated steel.
HeadStyles: Protruding ribbed or knurled knob; flush screw driver slotted for large size only

	LARGE	INTERMEDIATE	MIDGET
Knob diameter	$7 / 8^{\prime \prime}$	$9 / 16^{\prime \prime}$	$11 / 32^{\prime \prime}$
Total width	$21 / 2^{\prime \prime}$	$13 / 4^{\prime \prime}$	$11 / 8^{\prime \prime}$
Total height	$15 / 6^{\prime \prime}$	$7 / 8^{\prime \prime}$	$35 / 84^{\prime \prime}$
Back af panel	$123 / 32^{\prime \prime}$	$11 / 4^{\prime \prime}$	$7 / 8^{\prime \prime}$
depth	$1 / 8^{\prime \prime}$	$15 / 16^{\prime \prime}$	$9 / 22^{\prime \prime}$

FAST, HAMMER-
DRIVEN BLIND RIVETS CUT INSTALLATION TIME

You "hit-the-pin" and the rivet's in. No special tools to limit production or require maintenance, no bucking, no finishing. For blind or open applications, Southco Drive Rivets save time, reduce costs.

Automatic "pull-up" action assures uniform, tight grip.

Southco Rivets are made of aluminum or cadmium plated steel with cadmium plated or stainless steel pins. Diameters are from $1 / 8^{\prime \prime}$ to $1 / 4^{\prime \prime}$, grip range is from 1/16" to 5/8".

Increased widespread use is due to low installed cost and elimination of down time and maintenance associated with fasteners requiring special tools.

FREE!
Fastener
Handbook

Send for your free copy of Handbook No. 7, just released Gives complete data for de. signers on these and many other specialty fasteners. 52 pages, in two colors
Write on your letterhead to Southco Division, South Chester Corporation, 233 Industrial Highway, Lester, Pa.

The uniqueness of the new NaV -AC en noute navigatior and instrument landing system by Stromberg-Carlson is ir its combination of functioral modnles.

The NAVTAC equipment is an assembly designed to provide high-performance aiscrail w.th the TACAN navigational aid, plus marker beacon receiver, glide slope anc runway localizer for instrament larrding sifuations.
The entire system is packaged in a compact unit conly 5 high, $101 / 2^{\prime \prime}$ wide, $22^{\prime \prime}$ deef, ard we-ghing only 47.5 lbs . Individual modules can be separa?d ep to distances of several feet without any adverse effect or performance.

The equipment is designed to meet the rigorous environ-
ment of the high-performance aircraft of today and tomorrCW. Its aperating ambient temperature range is -60 to +125 deg-ees C. at altitudes up to 70,000 feet. Widespread use of semiconductors in the ILS receivers and TACAN circlitry means high reliability, small size and low power consčmption.

Ircluded in the design is the capability of performing ccomplete =reflight confidence tests with the use of a small auxiliary \because est set.

Complece technical details on the NAVTAC system are available on request

There is nothins finer taan a Stromberg-Carlson ${ }^{\circledR}$

STROMBERG-CARLSON A DIVISIOP OF GENERAL つVYAMICS CORPORATION 1464 N. GOODMAN STREET - ROCHESTER 3, N. Y. Electronic and communication produets for home, industry and defense

VHF Transistors!

First From

PHILCO

New family of Miero Alloy

 Diffused-bas̊e Transistors (MADT)*
Rise, Storage, Fall Time in Low mμ sec Range High Oscillator efficiency at 200 mcs Amplifier gains of 10 db at 200 mcs

Here is a major breakthrough in the frequency barrier . . . a new family of fieldflow Micro Alloy Diffused-base Transistors. Philco MADT's extend the range of high gain, high frequency amplifiers; high speed computers; high gain, wideband amplifiers and other critical high frequency circuitry.
MADT's are available to various voltage and frequency specifications for design of high performance transistorized equipment through the entire VHF and part of the UHF spectrum. These transistors range in $f_{\text {max }}$ from 250 mc to as high as 1000 mc . MAD'T gains are typically 10 db at 200 mc and greater than 16 db at 100 mc . A low cost general purpose unit is available which will deliver typically 18 db at 50 mc and 32 db at 10 mc .
Make Philco your prime source of information for high frequency transistor applications.

Write to Lansdale Tube Company, Division of Philco Corporation, Lansdale, Pa., Dept. E-458
-Trademark Philco Corporation for Micro Alloy Diffused-baso Transistor

PHILCO, CORPORATION

LANSDALE TUBE COMPANY DIVISION
LANSDALE, PENNSYLVANIA

electronics engineering edition

APRIL 25, 1958

Ferrite Radiators Shrink Missile Antenna Systems

Abstract

Procedure for predicting approximate radiation pattern for ferrite elements in a microwave antenna system uses random-balance technique. Results indicate that directivity property of ferrite elements permits ferrite arrays to provide half-power beam widths and side-lobe characteristics equal to those obtained with large conventional antenna systems. Gain of these ferrite arrays generally exceeds that of paraboloidal reflectors

By H. C. HANKS, JR.,

The Martin Company, Baltimore, Maryland

ANTENNAS used in propagating microwave energy generally have directive radiating character-istics-their patterns taking the form of either fan or pencil beams. The flared portion of a fan beam, representing a cosecant squared or similar type distribution, is normally generated using paraboloidal reflectors and slot arrays. Pencil

FIG. 1-Effective wavelengths plotted as function of ferrite rod diameter. Curve approaches the factor $\sqrt{\epsilon}$ asymptotically as diameter increases
beams, however, are generated using radiating elements in arrays.

Metallic elements were employed as radiators until 1956 when ferrite elements were introduced. ${ }^{1}$ This article discusses the characteristics of ferrite elements used as single and multiple pencil beam radiators.

Preliminary Considerations

In designing antenna arrays, both the array constant and the characteristics of each single element must be known. Since a ferrite rod can be considered as a dielectric antenna, the factors which determine the rod's radiating characteristics are its permeability and permittivity. Thus, if a ferrite rod has the same permeability-permittivity product as a dielectric rod and their diameters are equal, the radiation patterns will be identical. In this article, ferromagnetic

Two ten-element ferrite arrays mounted in ogive section of nose of a guided mis sile give idea of relative size

Ten-element ferrite array. This design was used to generate azimuth radiation pattern shown in Fig. 6

FIG. 2-Half-power beam width plotted as a function of the number of elements and spacing between elements. Elements were linear, phased uniformly and generated equal-amplitude patterns
properties of the ferrite material are not used to explain unusual radiation characteristics.

Until now, all theoretical analysis has failed to predict the complete pattern for a ferrite or dielectric rod. The main beam of a dielectric rod can be predicted with sufficient accuracy using Kiely's equation ${ }^{2}$:

$$
\begin{aligned}
& \frac{E_{p}}{E_{\text {rusx }}}=\left\{(K-1) \sin \frac{\pi L}{\lambda_{e}}(K-\cos \theta) /\right. \\
& \left.(K-\cos \theta) \sin \frac{\pi L}{\lambda_{0}}(K-1)\right\} \cos \left(\frac{\pi d}{\lambda_{0}} \sin \theta\right)(1)
\end{aligned}
$$

AZIMUTH WIDTH IN DEGREES

FIG. 3-Diffraction pattern of an iso tropic four-element array. Half-power beam width was 11 deg. Elements were phased uniformly and spaced $1.4 \lambda_{0}$ apart. and generated equal-amplitude patterns

FIG. 4-Diffraction pattern for single fer. rite and single slot element. Slot curve is shown for $76-\mathrm{deg}$ half-power beam width; ferrite rod is shown for 28 -deg half-power beam width
where d is the diameter of the rod, λ is the wavelength in the dielectric, λ_{0} is the free-space wavelength, and ϵ is the relative dielectric constant of the rod. This equation does not give an accurate representation of the amplitude or position of the side-lobe structure.

Equation 1 was developed by considering a ferrite rod as two diametrically opposed lines each of which is composed of arrays of point sources. Since each line of point sources becomes an end-fire array, the ferrite rod essentially consists of two end-fire arrays.

As the r-f energy travels along the ferrite rod, the magnitude of the energy decreases. If the rod is sufficiently long, there will be no energy at the end of the rod and no standing waves will be set up. This phenomenon causes the rod to radiate in a manner similar to that of a traveling-wave antenna.

The ferrite or dielectric rod acts as a leaky wave guide since the rod has a number of isotropic radi-

Table I-Comparison of Ferrite Arrays and Reflector-Type Antennas at 10 Kmc

Beam width in degrees	Ferrod array size	Reflector size
0.1	45.3 ft	64 ft
0.2	22.6 ft	32 ft
0.5	9 ft	12.8 ft
1	54.4 in.	$77 . \mathrm{in}$.
3	18.1 in.	$25.7 \mathrm{in}$.
5	$11 \mathrm{in}$.	15.4 in.

FIG. 5-Diffraction pattern for four-ele. ment linear array. Half-power beain width was 10 deg. Elements were phased uniformly and spaced $1.4 \lambda_{0}$ apart, and generated patterns of equal amplitude
ators along its surface. Such an array of isotropic radiators has a major lobe along its axis when the spacing and phasing are equal.

By having the phase difference greater than the spacing, a pattern of increased directivity results. However, if the phase difference becomes too great, the main lobe pattern will degenerate - that is, the magnitude of the side lobes will appreach that of the main lobe.

Factors Controlling Radiation

Desired radiating characteristics can be produced by varying the parameters of the ferrite rod. The radiating pattern of a single ferrite rod is primarily a function of the dielectric constant of the ferrite and the diameter, length and shape of the rod.

The diameter and length control the phase variation along the surface of the rod. The ratio of the wavelength of the ferrite rod to the wavelength in free space when taken as a function of rod diameter is shown in Fig. 1. To prevent degeneration of the radiation pattern, it is necessary that the diameter be kept small enough to maintain a relative wavelength greater than 90 percent.

Beam width of the ferrite rod radiation pattern varies inversely with the length of the rod. Since the energy in the rod decreases along its length, there is a practical limit to the length of a ferrite radiator.

Because the ferrite rod is basically a traveling-wave antenna, it

FIG. 6-Diffraction pattern for isotropic ten-element array. Half-power bean width was 3.6 deg. Elements were phased uniformly and spaced $\lambda_{\text {, }}$ apart, and generated patterns of equal amplitude
is desirable to eliminate standing waves. The abrupt discontinuity at the free end of the ferrite rod causes a mismatch in transferring energy into free space. The effect of this discontinuity can be overcome by tapering the rod along its length to a diameter which no longer permits retention of energy.

Tapering of the rod also offers the advantage of controlling the side-lobe level. Sufficient tapering can eliminate the side lobes altogether. When this occurs, however, the beam width of the main lobe increases. It is also possible to control the side lobes to a limited degree by changing the groundplane configuration.

Spacing and Phasing

When using a ferrite rod in an array, it is not necessary to eliminate the element side lobes if they are located at a suitable angle.

Four of the ground planes used to determine affect of ground plane configuration on radiation pattern. Shape of ground plane controlled side-lobe pattern

FIG. 7-Comparison of diffraction patterns of 10 -element arrays. Actua diffraction pattern of ferrite rod is siperimposed on theoretical diffraction patterns for a ferrite rod and slot

The first thing to consider is the pattern produced by an array of isotropic radiators having the same spacing and phasing as that desired for the ferrite elements. Standard array equations were selected and subsequently programmed for solution on an electronic computer.

Effect of varying the spacirg of isotropic elements in a linear array is shown in Fig. 2. Since mary of the linear arrays investigated \downarrow sed a spacing of $1.4 \lambda_{0}$, the diffraction for isotropic elements having this particular spacing are discussed here. Also, the effects of using ferrite and slot elements are considered.

The diffraction pattern fcr a four-element array is showr in Fig. 3. At approximately 45 d ig a major side lobe can be seen w ich is equal in amplitude to the rain lobe.

The pattern for a single ferrite element and a slot element are shown in Fig. 4. Near the zero deg point, the patterns have nearly the same amplitudes on a normalized basis. At 45 deg , however, the ferrite element is more than 40 db below the peak while the slo is less than 7 db down.

Diffraction Patterns

Multiplication of the single element pattern by the array pattern results in patterns which have approximately the same beam wilth. This is shown in Fig. 5. The s delobe level of the ferrite array is

FIG. 8-Comparison of diffraction pattern of 40 -element arrays. Rod pattern is superimposed on diffraction pattern of a slot. Only the envelope of maximum points is shown in the curve above
much less than that of the slot array.

To obtain the same side lobe level with a slot array, a Tchebyscheff distribution must be used. This approach results in either a wider beam width or a longer array when the beam width is kept constant. The importance of the single element pattern is demonstrated by the effect it has on the side-lobe level.

A ten-element isotropic array pattern is shown in Fig. 6. The first major side lobe occurs near the $45-\mathrm{deg}$ point and has an amplitude equal to the main lobe. Once again the theoretical patterns differ from the actual patterns primarily in side lobe structure.

An actual pattern superimposed on the theoretical pattern for a ferrite array having ten elements is shown in Fig. 7. If the ferrite array is lengthened to 40 elements and compared to a slot array, the resulting pattern, shown in Fig. 8, has the same side-lobe relationships as noted previously.

When the size of a ferrite array is compared with the size of a conventional parabolic antenna, as shown in Table I, it can be seen that ferrite array is the smaller. If gains are compared, the ferrite antenna generally excels because the gain in a single element is approximately 16 db .

References

(1) F. Reggia et al, Ferrod Radiator Systems. IRE Convention Record, 1956, p $913-224$
(2) D. G. Kiely, "Dielectric Aerials", John Wiley \& Sons

Maternity patient receives prenatal examination. Used with a recorder, instrument also analyzes adult heart action

Transistor Unit Detects

Abstract

Amplified 2-to 3-cps signal from foetal heart modulates transistor oscillator operating between 800 and 1,200 cps. Frequency modulation technique overcomes poor low freqency response of human ear and loudspeakers. Device has additional cardiograph applications when used with recorder

By T. I. HUMPHREYS,

Assistant Chief Development Engineer, Packard-Bell Electronics Corp., Los Angeles, California

DETECTING FOETAL HEART sounds and amplifying them so that they are readily usable has been the subject of experimental work since 1906. This article reports another approach to the electronic problems involved and describes the equipment which resulted from a recent project.

The foctal heart beats approximately 125 to 180 times per minute. Thus, the fundamental frequency of the sound from a given foetus is somewhere in the range of two to three cps. The source of this sound lies inside the maternal abdominal cavity. The sound gen-
erated by the foetal heart must be conducted through a portion of the foetus and surrounding media to the external abdominal wall. This path attenuates low and high frequencies by different amounts.

Normal Techniques

The vibration that does get to the outer wall is normally picked up by the obstetrician with his stethoscope. This sound is conducted by actuating a column of air which directly connects to the eardrum, so that any change in the pressure of this column gives an audible sensation. This closed col-
umn of air does not exist when the sound is picked up by a microphone, amplified and converted to an audible acoustic signal. The coupling of a speaker to the air at low frequencies is slight since the air displacement at frequencies of a few cps is negligible. The spreading of the signal in the air further reduces the signal intensity so that by the time it reaches the ear it has been greatly attenuated. In addition, most ears will not detect an acoustical signal below 16 cps , making it almost impossible to use the technique of direct amplification unless the higher frequency com-

FIG. 1-Block diagram of the intercarrier sound aft control system used in Westing house tv receiver

Abstract

Amplitude of $4.5-\mathrm{mc}$ intercarrier sound signal controls sound-to-picture ratio to provide fine tv receiver tuning automatically. Control of oscillator frequency to maintain a constant intercarrier sound signal provides effective action on the intercarrier sound level. Automatic control of beats between the picture harmonics and the sound carrier closely approximates subjective manual tuning. Tuning is automatically maintained in the presence of soundlevel changes in transmission or in reception

By C. W. BAUGH, JR. and L. J. SIENKIEWICZ

Television-Radio Division, Westinghouse Electric Corp., Metuchen, New Jersey

Sound Signal Tunes

AUTOMATIC FINe tuning, a desirable feature in television receivers, eliminates customer mistuning and oscillator drift. It also enhances remote control operation and provides the additional fine tuning precision required for effective reception of color tv signals.

FIG. 2-Basic aft circuit. By opening the loop connection between the amplitude detector and the reactance control terminals \bar{A} and B. discriminator and reactance curves can be measured. Both curves give necessary automatic fine tuning information

A block diagram of a tv receiver that contains an aft system appears in Fig. 1. The block diagram is similar to the conventional intercarrier to receiver except that an amplitude detector and a reactance control of the oscillator have been added.

The system uses the amplitude of the intercarrier sound signal and acts to maintain a constant $4.5-\mathrm{mc}$ signal level at the reactance device by varying the oscillator frequency. From the second detector the $4.5-\mathrm{mc}$ intercarrier signal is fed to the video amplifier and then a sound amplifier. The dotted interconnection between the second detector and the reactance control carries an auxiliary signal that increases the pull-in range of the system.

Frequency Correction

In a typical discriminator afc system the sound carrier at i-f is used as the signal applied to the discriminator, which in turn controls the reactance device. This type of system only corrects for frequency variations from the

FIG. 3-Circuif of Fig. 2 accomplishes control function illustrated above
reference frequency of the discriminator and does not recognize the need for tuning the receiver to control the sound-to-picture ratio.

A system that controls oscillator frequency to maintain a constant level of the intercarrier sound signal contains certain characteristics. The age system holds the picture level constant at the second detector. If the video and sound amplifier gains are constant, the $4.5-\mathrm{mc}$ sound level at the second detector remains constant. This results in indirect control of the beats be-

FIG. 1-Circuit schematic of foetal heartbeat detector. Amplifier low-frequency response is enhanced by large time constants in a-c coupled stages to insure that the low-frequency foetal heart signals are amplified

FIG. 2-Oscillograms of (A) 5-month foetus. (B) adult and (C) 4 year old boy

Foetal Heart Sounds

ponents alone are employed. These components occur at the same relative time as the foetal heartbeat, but may not coincide with the actual sound.

Circuit Description

The Foetoscope utilizes a carbon microphone, several transistor stages of amplification, an oscillator and a small speaker. The circuit diagram for the unit is shown in Fig. 1.

The transistorized amplifier uses direct-coupled stages wherever possible to pass the low-frequency signals. In those stages that are a-c coupled, large time constants are
used. A potentiometer in the base lead of Q_{i} provides gain adjustment. The output of this stage is fed through a battery and crystal diode to the center-tap of the oscillator coil T_{1}. The signal produces current changes in the coil and corresponding inductance changes in the secondary coil cause frequency modulation of the oscillator. By use of the frequency modulation technique, the low frequency component of the heartbeat can be heard in the form of an audible change in oscillator frequency which is set in the range of 800 to $1,200 \mathrm{cps}$. In this region the ear is quite sensitive and can readily de-

Interior view of chassis shows construction details. Printed circuit and automatic insertion techniques are evident in compact unit
tect small changes in frequency.
Figure 2A is a phonocardiograph of a five and a half month foetus, taken using this equipment. The sound from the foetal heart is indicated by the points marked X. This trace shows a repeating complex of signals, indicated by the brackets. The form of this particular complex indicates the possibility of the presence of more than one foetus.

Other Uses

The possibility of using the instrument for other than foetal heart sounds is suggested by recordings made using a young man and a small boy as subjects. Figure $2 B$ shows the recording of heart sounds of the young man. Here the positioning of the microphone was found to have a considerable effect on the waveforms obtained. Figure 2C shows the recording of the heart sounds of a four year old boy.

The sensitivity of the unit is great enough to provide for the distinguishing of the several heart sounds as various valve and muscle motions oceur.

FIG. 5-Circuit shown disables sound trap and accomplishes fringe tuning
sistor is applied to A and B through the amplitude detector.

The reactance control is the frequency control element of the tuner oscillator and has a reactance that is a function of voltage. It produces the oscillator control curve shown in Fig. 3.

A crystal diode is connected in series with two $5-\mu \mu \mathrm{f}$ capacitors across the oscillator tank circuit as shown. The frequency of the oscillator is varied as a function of loading on this crystal diode. In this circuit the load is not produced by a resistor but rather by an applied voltage that accomplishes the same purpose.

The lower the terminal voltage at points A and B, the heavier the loading and the lower the frequency. The crystal diode rectifies the oscillator voltage.

With an absence of signal input, the 4.5 -me intercarrier beat frequency will not be arailable at the

FIG. 6-Solid curve represents condition when a weak fringe signal is received. Dashed curve is plot of aft control voltage at reactance control terminals A and B shown in schematic of Fig. 5
amplitude detector. The second detector d-c voltage will be low or nonexistent. With a low bias, the $4.5-\mathrm{mc}$ amplifier will develop a large voltage across the 680 -ohm load. The polarity of this voltage is such as to back-bias the amplitude detector with the result that the reactance control terminals A and B will be unloaded and the oscillator frequency will be high as shown in Fig. 3.

Another condition to consider is when the signal has just been applied by switching to an active channel. Since the oscillator was high in frequency previous to the application of the signal, the frequency of the sound carrier will be on top of the i-f pass band. The $4.5-\mathrm{mc}$ beat amplitude will be low because the picture carrier is down in the adjacent sound trap with the result that the oscillator frequency will not pull down. But the second detector d-c level is high and will bias off the $4.5-\mathrm{mc}$ amplifier. The voltage across the 680 -ohm resistor drops and the resistor loads the reactance control through the amplitude detector. The loaded reactance control pulls the oscillator frequency down. The sound carrier moves down the slope of the i-f pass band and the $4.5-\mathrm{mc}$ beat amplitude increases until stabilization is achieved and correct lock-up results.

Fringe Tuning

With a weak fringe-area signal the receiver should be tuned so that the picture carrier is near the top of the i-f pass band for improved signal-to-noise ratio, considering resolution of secondary importance. The sound carrier of course will be lower in frequency. Also, under these conditions the d-c developed at the second detector is less and the $4.5-\mathrm{mc}$ intercarrier beat amplitude may be somewhat reduced.

All these conditions are in the direction of less control voltage available for operating the reactance control to lower the frequency. The pull-in range is actually restricted. Pull-in may not be possible due to the spurious intersection of the aft control curve as the second detector d-c effect vanishes.

The intercarrier sound ampli-
tude versus oscillator tuning is largely determined by the age system and the i-f characteristic. The trap-in curve shown in Fig. 4 is the aft i-f response curve. The $4.5-\mathrm{mc}$ amplitude curve is also shown for reference. This aft system may be considered as an automatic level control system for the sound carrier. An increase in sound carrier is accompanied by a shift in tuning, which tends to reestablish the same amplitude of the sound carrier.

The dashed i-f curve is similar to the i-f curve of intercarrier tv receivers except the trap is deeper

FIG. 7-Simplified circuit of automaticmanual operation with local-fringe switching omitted for clarity
and is toned slightly lower in frequency. Also the outer band popup on the sound side is less. The solid curve shows the effect of removing the sound trap. The purpose of the i-f pass band shaping is to provide a desirable curve of 4.5 -mc amplitude versus oscillator frequency. The $4.5-\mathrm{mc}$ amplitude is readily determined from the i-f characteristic. The exact details of the agc system used affects the $4.5-\mathrm{mc}$ amplitude curve, assumed to be a peak type operating on lowfrequency video. The $4.5-\mathrm{mc}$ amplitude can be determined for the two conditions of most interest: when the picture carrier is the strong signal at the second detector, and when the sound carrier is the strong signal at the second detector.

The first condition is for normal tuning and in this case the 4.5 me beat is proportional to the

Internal view of tv receiver (left) showing, at left and top, the plastic bead drive used in channel selection and turret tuner. Nylon slides on wheel below turret turner (right) can be set to obtain best fringe or normal reception and skip unused channels. Programming switch is located beneath and to the right of nylon slide wheel. Local-fringe switch is at rear

Tv Automatically

tween the high-frequency components of the video signal and the sound signal.

In general, this is the same way a viewer tunes a receiver manually. Oscillator frequency is raised to increase picture sharpness until the benefit of increased sharpness is offset by the appearance of too much sparkle in the picture. This control is effective over transmission, antenna and receiver passband tilts and operates dynamically for the case of airplane flutter.

The method of tuning also provides considerable control over the 920 -kc beat interference between the sound and chroma signal of color broadcasts.

AFT Measurement

To get a quantitative measure of aft systems it is necessary to analyze the discriminator (μ) and reactance (β) curves. These curves can be measured, if there is no interaction, by opening the loop connection between the amplitude detector and the reactance control. By measuring the discriminator voltage as the oscillator frequency
is changed the discriminator curve can be plotted, and by applying a voltage to the reactance device and measuring frequency the reactance curve is obtained.

By superimposing these two curves, the closed-loop frequency is

FlG. 4-Intercarrier sound amplitude against oscillator tuning is largely determined by receiver's agc system and characteristics of i-f system
determined. Crossover points are stable if the slopes are opposite in sign. Stability also results if the slopes are the same sign and the magnitude of μ is less than the magnitude of β. However, in the latter case the loop gain is less than unity.

Basic AFT Circuit

Figure 2 shows a simplified schematic diagram of the aft circuit that accomplishes the aft control function illustrated in Fig. 3. The circuit utilizes the $4.5-\mathrm{mc}$ signal amplitude and the second detector d-e effect to develop the composite discriminator curve. The aft control voltage curve, Fig. 3, is a plot of the open circuit voltage that exists at the reactance control terminals A and B in Fig. 2. The amplitude detector rectifies the output of the $4.5-\mathrm{mc}$ amplifier. This output is the $4.5-\mathrm{mc}$ portion of the aft control function at terminals A and B.

The $4.5-\mathrm{mc}$ amplifier also acts as a d-c amplifier for the second detector d-c level portion of the aft control function. The 680 -ohm re-
sound-carrier level at the second detector. The level of $4.5-\mathrm{mc}$ sound with the sound in the trap is taken as reference. The procedure of computing the sound level below picture level is straightforward. The exact peak of the curve is not particularly important. It has an effect on pull-in time and hold-in range but in practice the peak can be limited to advantage.

The second condition occurs when the picture carrier is in the region of the adjacent channel sound trap. This part of the curve is important because the level of the $4.5-\mathrm{mc}$ signal, when the oscillator is tuned to put the picture carrier in the adjacent sound trap, limits the pull-in range of the basic system.

Referring to the trap-out curve in Fig. 4, if the sound trap were disabled, the amplitude of the sound carrier would increase considerably but the aft system would lower the oscillator tuning to return the sound carrier to the same amplitude. This would cause the picture carrier to be tuned higher on the i-f pass band to the point of desired fringe tuning. The circuit that disables the trap and accomplishes this fringe tuning is shown in Fig. 5. This circuit is the same as the simplified aft circuit shown in Fig. 2 with some added components to enable switching for fringe operation.

A bifilar T trap is used in the grid of the first i-f stage as the sound trap. This type of trap provides the attenuation needed and the steep slope required for this aft system. With the local-Fringe switch in the local position the sound trap returns to ground through the shielded cable, the switch arm and $1,000 \mu \mu \mathrm{f}$ capacitor as shown. The r-f choke isolates the trap circuit.

With the switch in fringe position the sound trap is dampened by the $56-\mathrm{ohm}$ resistor without affecting the normal shape of the i-f pass band. The 1,800 -ohm resistor limits the amount of frequency pulling and its value determines the exact location of the picture i-f for fringe tuning.

In addition to removing the sound trap from the i-f pass band, the same switch contacts are used

FIG. 8-Complete aft system combines features of fringe switching and automaticmanual operation. Switching transients are reduced by $180-\mu \mu \mathrm{f}$ capacitor
to shift the d-c voltage applied to the reactance control by removing the voltage drop across the 680ohm resistor. This prevents spurious lock-up of the aft control curve as the second detector d-c effect vanishes.

The dashed curve shown in Fig. 6 is a plot of the open circuit aft control voltage at the reactance control terminals A and B when a weak fringe signal is received with the switch S_{1} in LOCAL. Little d-c change with tuning appears at the second detector when a fringe signal is received. As a result, it does not appear in the aft voltage curve. The oscillator control curve illustrates that a spurious lock-up could exist because of the intersection of the aft control curve at 42.75 mc .

With S_{1} in Fringe, the solid curve represents the condition when a weak fringe signal is received. The curve shows that the d-c level changes and the aft control curve

FIG. 9-Frequency control voltage at the reactance control terminals during pull-in
rises so that spurious lockup will not result. Fringe lock-up is almost one me lower than the normal lock up, moving the picture carrier near the top of the i-f pass band, as desired for fringe tuning.

The automatic fine tuning circuit described is adapted for use in deluxe television receivers having programmed power tuning. In such sets, the fringe switching arrangement may be used and is easily programmed with power tuning. Channels may be selected as desired and the type of tuning, fringe or local, for each channel may be predetermined.

Manual Operation

In addition to local-fringe switching, manual fine tuning is provided to enable the viewer to minimize intereference displayed in the picture

Figure 7 is a simplified circuit of the automatic-manual operation with local-fringe switching omitted. The manual fine tuning control is a variable resistor that loads the reactance control. A fixed series resistor limits loading as well as the fine tuning range. Switches $S_{\text {s }}$ and S_{3} are shown in automatic and are part of the manual fine tuning control, open circuited in the maximum counterclockwise position.

In manual operation S_{3} is open, increasing the plate-dropping re-
sistor to 10,000 ohms. Increased voltage drop will back-bias the amplitude detector. With reduced plate and screen voltage, the sound amplifier acts as a limiter to maintain good sound performance. In automatic, the aft system provides limiting since it maintains the sound level constant. Since a requirement is that second detector d-c should not vary the bias on the $4.5-\mathrm{mc}$ sound amplifier during manual fine tuning, S_{2} is provided to short the d-c from the second detector to ground.

Complete Circuit

Figure 8 illustrates the complete aft circuit, combining the features of fringe switching and automaticmanual operation. Switch S_{1} is shown in LOCAL and the 10,000 -ohm manual control is shown ganged to switches S_{*} and S_{3}, which are in automatic. The $4.5-\mathrm{me}$ amplifier is the pentode section of a 6 AU8. The triode section is diode-connected and used as the amplitude detector.

The 100 -ohm resistor, connected between S_{1} and the low $\mathrm{B}+$ supply terminal, carries all of the low $\mathrm{B}+$ current of the chassis except the plate circuit of the 6AU8 amplifier. When the second detector d-c voltage biases off the 6AU8 amplifier, during pull-in, the low $B+$ supply voltage increases. This is due to regulation characteristics of the low B+ supply. Cutoff is not really achieved and a residual current flows through the 680 -ohm plate load resistor, reducing the pull-in range. The voltage drop across the 100 -ohm resistor is used to cancel this residual 4.5 -me amplifier plate

FIG. 10-Circuit shows how aft loop is held open during interchannel switching until the tuner turret falls into the proper detent corresponding to desired channel
current and improve pull-in.
The $150-\mu$ f capacitor, connected to the top of the d-c plate load of the 6AU8 amplifier, is required because of transient problems encountered when switching from manual to automatic operation. During manual operation, the voltage across the $150-\mu \mathrm{f}$ capacitor is low to obtain limiter action in the $4.5-\mathrm{mc}$ amplifier. The action of the $150-\mu \mathrm{f}$ capacitor is to hold down gain and reduce pull-in time when switching from manual to automatic operation.

Frequency control voltage at the reactance control terminals during pull in is shown plotted in Fig. 9. The peak of the $4.5-\mathrm{mc}$ aft control voltage is indicated in the solid curve as the oscillator is pulled

FIG. 11 -Oscillator frequency change re. sulting from change in sound level
down with approximate stabilization at 0.15 sec . Depending on the signal being received, a spurious lock up can result with this peak voltage. The dashed curve illustrates that gain in the $4.5-\mathrm{mc}$ amplifier is reduced and stabilization occurs at approximate 0.3 sec .

Switching Effects

Because of variations in signal strength as well as channel-tochannel variations in the reactance control, the receiver conditions during the time interval between channels must be considered. In areas where a signal is available the aft system may possibly effect an erroneous lock up on almost every channel or may possibly pull down and lock on the next lower channel.

One cause of this trouble results from the wiping action of the contacts in the turret-type tuner. On initial contact, the oscillator frequency is considerably lower than when the turret is finally in the detent. When the lower adjacent
channel signal is present, the aft loop is closed and control information is available to cause the system to stabilize on the undesired lower channel. To correct this situation, the aft loop is held open during interchannel switching until the turret is in its proper detent.

Figure 10 shows how this is accomplished. To open the aft loop, the third i-f tube is biased off by putting the cathode at $B+$ voltage. The switch is part of the power tuning mechanism and opens only during the time interval of channel selecting. This prevents the normal brightness flashing and noise that occurs when switching through unused channels. Other features presented include picture and sound muting.

Also shown in Fig. 10 is the agc filter capacitor connected to the switch. The capacitor corrects a transient problem caused by the relatively slow age system stabilization when the aft loop is closed. Between channels, the agc filter capacitor is charged to $B+$ and has the polarity as shown. When the switch closes the capacitor discharges into the age system to prevent any sudden build up of signal until the age can stabilize.

Figure 11 shows the oscillator frequency change for a change of sound level. Essentially this is a measure of the comvined picture and sound i-f slopes. The data plotted assumes a high β gain and shows that a $10-\mathrm{db}$ sound tilt shitts the oscillator by $100-\mathrm{kc}$.

If the sound change is due to a transmission tilt the frequency change is in the direction to provide video compensation. The picture carrier moves down the i-f pass band to give high-frequency boost for downward tilts of sound and provides high-frequency attenuation for upward tilts.

On color broadcasts the beat between the sound and chroma signals at the receiver second detector influences receiver tuning. For this 920 -ke beat to be invisible at normal viewing distances, the combined sound and chroma attenuation below picture level must be 30 db or more at the second detector. Attenuation in excess of the 30 db reference level is referred to as beat reserve.

Filters, left to right, are three-disk four-terminal, single-disk four-terminal, and single-disk two-terminal types

Ceramic I-F Filters Match Transistors

Abstract

Barium titanate resonant filters used as i-f transformers provide reductions in size and cost with increased ruggedness, better skirt selectivity and lower insertion loss. Input and output impedances of units are compatible with those of transistors making them ideally suitable as interstage coupling devices

By DANIEL ELDERS and EMANUEL GIKOW

U. S. Army Signal Engineering Laboratories, Fort Monmouth, New Jersey

DIMENSIONAL CHANGES in piezoelectric materials become pronounced at the natural resonant frequency of the material. Since the effective Q of these mechanically resonant circuits compares favorably with those attainable by L-C components, it becomes possible to efficiently transmit electrical energy through a piezoelectric device over a band of frequencies.

Major interest in these filters is in their potential as a low cost, rugged miniaturized replacements for tuned passive i-f transformers. Consequently, development has been
directed towards those midband frequencies which are normally used in the i-f portion of communication receivers.

Materials

Materials found suitable for filter applications are compositions based on barium titinate and solid-state solutions of lead-titinate and leadzirconate. For proper operation, the materials must be permanently polarized by an electric field. Such a field is applied between electrodes while the material is heated in an oil bath. Usually, the material is
heated above its Curie temperature. A typical procedure for the barium titinates is to apply a d-c electric field of 20 kv per cm with the unit heated above the Curie temperature of 120 C . This field is maintained until the unit cools to room temperature. Lead-titinate and leadzirconate compositions are heated to 100 C , well below their Curie temperature of approximately 350 C. The material is polarized by a d-c field of 40 kv per cm applied at this temperature of 100 C for four minutes. The Curie temperature establishes the upper operating

Composite resonator, center, compared with single-tuned transformer, left, and transistor enclosed in case at right gives idea of relative size of components
limit of these filters, since exposure to a higher temperature would destroy the effect of polarization with consequent loss of the piezoelectric properties.

Although the natural resonance of piezoelectric ceramics is dependent on the dimensions, geometry of the resonator can vary considerably for a given resonant frequency. Two and four terminal thin disks vibrating radially have been studied. In the former each face of the disk is electroded as shown in Fig. 1 A , while the latter has a small center electrode and a concentric ring electrode on each face as in Fig. 1B. In the polarizing process the field is applied between electrodes on opposite faces and results in an axial polarization.

Disk Thickness

Resonant frequency of a relatively thin disk is determined primarily by its diameter, which for a fundamental $455-\mathrm{kc}$ unit would be of the order of 0.2 in . However, the ideal case of a thin disk is only approached, in the practical cases, so that the resonant frequency is modified by the thickness to diameter ratio.

Work in this direction has shown that over a range of thickness to diameter ratios of 0.04 to 0.1 , the resonant frequency of the disks decreases as this ratio increases. It was also found that the resonant frequency increased as the electrode area decreased. These controls are incremental in their effect. Design control does not stop at this point,
for, by proper placement of electrodes and operating at the first overtone, the simple two-terminal resonator can be converted to a four-terminal device. These two types of resonators which were shown in Fig. 1 constitute, in effect, the building blocks of further more complex filters. From an analysis of the equivalent circuit and a knowledge of the characteristics of the individual resonators, considerable work was done in designing composite filters with specific characteristics. In fact, it is now possible to tailor a filter to a given application.

The two-terminal disks have been primarily employed as elements of electric-wave filters, in Pi T, and L sections and combinations thereof.

The four-electrode disks have bandpass characteristics and impedance transformations which ideally suit them as interstage coupling devices for transistors. Development models of several such filters are shown in the photograph.

D-C Return Path

A complicating factor in using these filters as interstage devices between transistors is the lack of a d-c path. For this reason ceramic filters cannot be used as a direct physical replacement for i-f transformers. A d-c return can be provided by a resistor, Although the additional cost of such a resistor is small, there is an attendant loss of sensitivity and power.

An alternative, providing more overall gain, is to use a choke. Some promising work is being done at the Clevite Research Center on circuit arrangements which will permit the optimum use of these filters without performance or cost sacrifices in providing for d-c returns. An i-f amplifier has recently been designed which uses a more recent filter development. The superior characteristics of these filters and, in particular, their low insertion loss, has resulted in a 455 kc i-f amplifier of only two stages with 55 db gain.

Test Results

Electrical performances of some typical piezoelectric ceramic filters

FIG. 1-Two constructions of a barium titanate filter used in tests. In the two-terminal (A) and four-terminal (B) cross sections the arrows indicate direction of polarization

FIG. 2-Welectivity curves for composite resonator compared to single-tuned transformer (A) and three-disk filter compared with double-tuned transformer (B)
are shown in Fig. 2. In Fig. 2A the band-pass characteristic of a composite resonator is compared with a single-tuned i-f transformer. The $6-\mathrm{db}$ bandwidth of both units is 12.5 kc , however, the skirt selectivity of the ceramic filter is superior, 2.7 compared to 5.7 for the transformer. The insertion loss is 1.5 db as compared to 2.5 db for the i-f transformer. Comparative sizes can be seen in the photograph showing a conventional single-tuned i-f transformer, the composite ceramic resonator, and a typical transistor.

Figure 2B compares a three-disk, four-terminal filter using first overtone disks with a conventional dou-ble-tuned i-f transformer. Here the $6-\mathrm{db}$ bandwidth is 14 kc for both units with a skirt selectivity of 2 for the ceramic filter compared to 2.5 for the i-f transformer. The insertion loss of both the ceramic and L-C type transformer is in the order of 3 db . Although the use of overtone disks increases the volume of the ceramic filter in these experimental structures, it is still only half that of the double-tuned i-f transformer whose size is $\frac{3}{4} \mathrm{in}$. by ${ }^{3} \mathrm{in}$. by 2 in .

Impedance Transforms

The impedance transformations achieved with the varied configurations investigated indicate that they are ideally suited to transistor applications where the filter input impedance must be in the order of 25,000 ohms and the output im-
pedance in the order of 500 ohms. Bandwidths of the designs built to date have been as high as 10 percent of center frequency, using materials having Q's ranging from 50 to 2,000 . The power insertion loss of these designs, which is dependent on both Q and bandwidth, ranges from 0.5 to 10 db and, in specific instances, can be made equal to or lower than conventional i-f transformers while having improved skirt selectivity and decreased size.

Limiting Factors

At 455 kc , development has now reached the stage where the temperature and aging properties of the ceramic materials are the limiting factors in their use for military applications. Figure 3 shows the

FIG. 3-Frequency selectivity of a twodisk ceramic filter at various temperatures
response curve of a two-disk filter at $-40 \mathrm{C},+25 \mathrm{C}$ and +85 C . The insertion loss varies about $\pm 0.5 \mathrm{db}$ while frequency shift is about 0.2 percent from +25 C to +85 C and 0.4 percent from +25 C to -40 C . As the work on temperature stability of materials progresses the upper temperature extreme can be increased to 150 C without modification of design criteria. For higher temperatures, say 200 to 250 C , further work may be necessary in high-temperature electrodes and solders.
To gain some idea of the aging properties of one of the better materials used to date, (a lead-zirconate, lead-titinate composition) tests show that after an initial 22 day aging, an additional 14 month aging produces a change of resonant frequency of +0.12 percent. The increase in resonant frequency has been found to be approximately linear with respect to the logarithm of time.

Most effort up to this time has been directed towards establishing design criteria, as a result the development models have been made up more for the convenience of the experimenter than with an eye towards the user. In light of the progress made, some work has been done recently on packaging. Since these filters are fixed tuned, they lend themselves to hermetic sealing. It is now planned to accelerate, somewhat, work on optimum form factor of 455 kc filters while further development is progressing towards the use of the filter at higher frequencies, up to approximately 12 megacycles.

The information presented herein is based, for the most part, on work performed at Clevite Research Center under U. S. Army Signal Engineering Laboratories' direction. In particular much of these results are possible due to the basic and original contribution made by 0 . Mattiat. Acknowledgment is also made of the more recent contributions of D. Curran and of the circuit design work by A. Longo.

This article is based on material divulged in a paper presented at the 1957 Electronic Components Symposium in Chicago on May 2, 1957.

MILITARY ELECTRONICS—S-band magnetron generates 5 megawatts during $5.5 \mu_{\mathrm{sec}}$ pulse interval. Countermeasures simulator tests system effectiveness on actual radars, simulates flight speeds of aircraft

> COMPONENTS-Electroluminescent-ferroelectric screen gives two-dimensional display. Annular-geometry electron gun furnishes inverted beamcontrol. Two-cavity ammonia-beam maser gives one-way amplification

Highlights of the

FIG. 1-Condition-IV jamming by white noise obliterates signals

HERE ARE typical developments revealed at technical sessions during last month's four-day IRE National Convention:

High-Power Magnetrons

A new magnetron is capable of generating five megawatts of r-f during a $5.5-\mu \mathrm{sec}$ pulse interval. ${ }^{1}$ Mean power output is 5 kw and operating frequency is in the S band. Construction features of the magnetron are an anode block one wavelength long and an output design that is axial. Over 6,000 operating hours have been achieved to date.

An L-band magnetron producing 3 megawatts peak at $6-\mu \mathrm{sec}$ pulse width and 4 -kw mean power output is in production and one capable of generating 5 -kw peak at a mean power output of 6 kw is nearing production.

A simulator that tests the ef-

FIG. 2-Condition-V jamming using simulated targets. All are false and moving
fectiveness of various countermeasures on actual radar systems by the simulation of flight speeds for propeller, jet, and rocket driven aircraft was described. ${ }^{2}$ Courses are programmable, yet open for minor changes due to weather or tactical situation. A-m, f-m and pulse modulated radiation systems in the 1,100 to 1,$400 ; 2,600$ to 3,400 and 8,500 to $10,000-\mathrm{mc}$ bands are available.

The simulator furnishes 30 - and $60-\mathrm{mc} a-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ sine-wave, square-wave, saw-tooth or superregenerative noise modulation. It provides simultaneously, two manually controlled single targets which are adjustable in azimuth width and six programmed targets which are capable not only of variation in azimuth width but can also be multiple in range. The unit can transcribe six different courses on the ppi simultaneously or permit
individual control. A flight of up to three targets, capable of being multiple in range and of being varied in size, are programmed as a unit or manually operated as such. Random targets which occur during an individual scan, whose average size, maximum range and target density can be adjusted, are also provided.

An operator is said to experience a condition of jamming when through either blank out or complete confusion his equipment and his analysis can not be of strategic or tactical value. During a condition I, a 1 to $90-\mathrm{deg}$ sector of the ppi presentation is jammed out; condition II, a 91 to 180 -deg sector; condition III, a 181 to $270-\mathrm{deg}$ sector; condition IV, a 271 to 359deg (Fig. 1) ; condition V, a 360 deg, or a sufficient number of random targets to cause equal effect (Fig. 2).

Elèctroluminescent Display

In one two-dimensional display device, electroluminescence is used as the light source and ferroelectrics provide control and storage of the output image. ${ }^{3}$

An electroluminescent phosphor layer is applied to a transparent conducting base. An array of metal electrodes is vacuum evaporated on the phosphor. Each of these electrodes defines an element of the display screen. Next a ferroelectric capacitor is associated with each of the electrodes and finally a set of bus bars carry power to each line of screen elements. See Fig. 3.

MEDICAL ELECTRONICS-Subminiature transducer measures pressures inside human heart. Analog circuits help record foetal heart rate during labor. Electronically corrected Nipkow disk scans biological specimens

COMPUTERS-Russian-English automatic translator stores 500,000 -word lexicon on photoscopic disk. Character recognition system proves useful in mail-sorting tests

IRE Convention

The a-c light-power voltage divides in accordance with the relative capacitances of the ferroelectric and electroluminescent components. The capacitance of the ferroelectric is a function of the applied d-c bias; therefore, the excitation to the electroluminescent capacitor, and hence the brightness of the element, depend on the amplitude of the control voltage of charge. Figure 4 gives the equivalent circuit.

Contrast ratios of 200 to 1 or more can be achieved with several hundred volts. Associated with the problems of control and storage in an electroluminescent display is the problem of distribution of the signal information. Figure 5 illustrates one possible approach.

Annular Geometry Gun

The cathode emitting area of the annular-geometry gun is the internal surface of an annular ring.' The physical layout is as in Fig. 6.

As the control grid voltage is raised above cutoff, the beam current at first rises slowly with in-

FIG. 4-Equivalent circuit of electro-luminescent-ferroelectric screen
creasing cathode current. A region of rapid beam current rise follows the slow build up. Suddenly the beam current peaks and then drops sharply to zero with increasing control grid voltage. See Fig. 7.

The inverted control characteristic extends over a region of about 7 volts. The peak beam current is reached with about -12 volts applied to the control electrodes and beam cutoff occurs at about -5 v .

If the gun is operated in the inverted region, white noise inversion may be achieved. Space charge in the beam appears to have little effect on either spot size or optimum focus condition. Resolution in excess of 750 lines has been attained with peak beam currents greater than $500 \mu \mathrm{a}$.

Two-Cavity Maser

Unilateral amplification can be obtained by a maser with two iso-
lated resonant cavities ${ }^{3}$. One experimental, ammonia-beam device is a $23.87-\mathrm{kmc}$ fixed-frequency amplifier with a bandwidth of 1,000 cps. (Solid-state masers offer tunable frequencies and broad bandwidths.)

As shown in Fig. 8, separate terminals are provided for input and output functions. In passing through the cavities, the ammonia beam has its normal populations disturbed. More molecules become available for emission rather than absorption resulting in amplification.

Of the two equivalent circuits shown in Fig. 9 the upper one is for the first cavity. Negative quantities represent the beam elements passing through the cavity; I_{Δ} is current resulting from stimulation of the beam by the applied field; and other elements represent the cavity itself.
The lower equivalent circuit is for transfer from the first cavity to the second. Parameter l_{1} is length of the first cavity; $l_{\text {: }}$, length

FIG. 6-Cross section of annular-geometry electron gun shows beam path

FIG. 7-Control grid voltage against beam current for annular-geometry crt
of the second. Negative quantities C_{d}, L_{d}, and R_{d}, represent values of the beam as it appears within the second cavity. Other parameters are for the second cavity itself.

For an improvement in gain, the first cavity should be lengthened with respect to the second. This change also results in noise-figure improvement.

For the experimental amplifier with matched cavities described gain was 20 db . Minimum indicated noise figure was $5.6+0.9 \mathrm{db}$; saturation power- $10^{-10} \mathrm{w}$.

Transducer Probes Human Heart

A new intracardiac pressure measuring system makes possible removal of blood samples from within a beating heart while extremely accurate measurements of in-heart blood pressure are recorded." The pressure transducer is thinner than a match stick and only a half inch long. A low-level d-c transistor preamplifier is used to raise the transducer output voltage of 3 microvolts per mm Hg pressure for 9 v bridge excitation to a level suitable for typical hospital recording equipment. Cardiac pressures can be measured in the range of -20 to +300 mm Hg .

Within the device a miniature bellows is activated by cardiac

FIG. 8-Cross section of dual-cavity maser shows operating method

FIG. 9-Equivalent circuit of first cavity (upper) and equivalent circuit for transfer from first cavity to second
pressure. The bellows presses against a coil of wire that encircles it. While the coil is stretched its resistance increases, causing a voltage change.

Recording Foetal Heart Rate

The recording system provides for digital and analog presentation of data, storage on magnetic tape and semiautomatic data reduction. By determining instantaneous foetal heart rate objectively, an evaluation of the relationship, if any, between foetal heart rate and possible foetal distress can be provided.

In the system, the foetal electrocardiogram is used as a trigger
source for a cardiotachometer and display systems. Since both maternal and foetal electrocardiograms are present as vectors, it is necessary to separate the foetal signal so that it is available for counting. This is done by picking up a maternal electrocardiogram alone, matching it in amplitude and configuration with the one from the abdominal wall and subtracting it electronically from the combined maternal-foetal electrocardiograms.

Disk Scanning System

A mechanical scanner, using a rotating Nipkow disk, has found application in microphotometric measurements of cells in cytological smears. The construction of a Nipkow disk presents an exacting design problem because inaccuracies in the angular position, transmission, and size of the holes in the disk result in measurement errors.

The disk errors are eliminated electronically by a circuit that uses a constant light level as a reference source to correct the timing and amplitude of the video signal.s This reference light level is a narrow slit introduced along the edge of the scan field by a separate optical train that is not affected by cells in the object plane of the microscope. The slit is positioned so that each hole in the scan disk crosses the slit just prior to scanning the image field of the microscope, and this produces a reference signal in photodetector (Fig. 10).

Automatic Translator

Translation starts by manually converting Russian text into punched codes in paper tape. Input

FIG. 10-Nipkow-disk scanning circuit for cytological measurements

CYRILLIC, ROMAN. ARABIC AND PUNCTUATION SYMBOLS

item is then compared with items contained in a 500,000 -word Rus-sian-English lexicon and the English translation of the matched item printed out." Figure 11 is the block diagrm.

A transliteration circuit is provided to spell out in Roman characters all Russian words not found in the dictionary and to print out the result in red.

Required memory capacity was obtained by development of a binary lexicon to serve as a dictionary and refinement of technique of photoscopic storage. Film-todisk unit reduces photographic image 60 times and transfers the linear pattern to circular tracks on the photoscopic disk.

Planned substitution of a sap-

FIG. 12-Automatic mail sorter scanner
phire disk for the glass disk will permit higher rotational speeds with corresponding reduction of search access time. Present read rate is 20 words per sec using 10 -character average per scientific word.

Asynchronous, $2-\mathrm{mc}$ computational circuits are used which permit simultaneous reading, searching, and comparing. Special symbols are used in search logic circuits to pick up at a likely starting point. The search system can determine position of word and converge on it within one disk revolution. Overall error is one bit in one billion.

Non-Russian inputs such as numerals or bibliographies in English are sent directly to the printer. Sentence format is retained throughout and punctuation inserted automatically. Structure of the dictionary and design of search logic permit translation of Russian semantic units larger than one word and of idiomatic word sequences.

Mail Sorter

Studies directed toward automatically sorting mail addressed by typewriters or printing devices are underway and have proved successful on small sample mail runs. ${ }^{10}$ One sorter is designed to sense or read words rather than discrete characters, as is done with other devices. This technique would permit rapid sorting of mail because city and
state names have distinct and predeterminable letter structures and are recurrent.

A high resolution mechanical scanner is used which is arranged physically as shown in Fig. 12. Documents fly by at 30 in . per sec while the scanner reads typed addresses at 360 words per second. Twenty-five scans per character, on the average, are made to get required resolutions.

Clipped and gated scan signals generated by the scanner are representative of black areas on the document. Sensed signals are fed into a special purpose computer called an integrator. This unit distinguishes character strokes and consists of a primer, an inverter and a measuring unit. The primer remembers preset criteria and stores it until reset, the inverter inverts the input signal, and the meas. ${ }^{*}$ unit determines length and 1 r of scanned stroke.

The scanner must register city-state line on an envelope w. a vertical intelligence zone of to $1 \frac{1}{2} \mathrm{in}$. A locator unit is used to obtain and hold proper registration.

Since too great a variation in stroke length cannot be tolerated, the height of the initial character in a word is used as a measure of the height of the remaining characters. A comparator circuit is used to introduce a proportional scale factor which normalizes the type faces. Individual sorting problem of post offices in different geographical areas would be solved by plugboard programming-W.E.B., J.M.C., R.K.J., J.M.K., E.A.S.

References

(1) II. N. C. Ellis-Robinson, Packaged Ilish-Power Raday' 'ransceiver's
(2) L. Sternlicht. A Radar Electronic Conntermeasures Simulator. (3) E. A. Sick, ELF, A New Electroluminescent Display:
(4) J. W. Schwartz, The Annular Geometry Electron Gum: A New Electron Device.
(5)N. Sher, A Two-Cavity Unilaferal Maser Amblitier.
(6) A. Warnick, E. H. Drake, A New Intracardiac Pressure Measuring systent for Infants ame Achults.
(i) E. H. Hon, The Electronic Evaluation of Fetal Disiress.
(8) II. S. Sawyer, R. C. Bostrom, A New Niphow-Disk Scanner for Accurnte Cytological Measurements.
(!) (i. A. Shiner, The USAF Atitomatic Language Transtator MarkI. (10) A. L. Persolf, Automatic Tupe Size Normalization in High-Speed Chatacter Sensins woumment.
All papers presented at IRE National Convention, March, 155 s .

Experimental setup shows maser cavity (center) surrounded by high-voltage field coils

FIG. 1-Energy level diagram for a twolevel maser of molecular type

FIG. 2-Energy level diagram for a threelevel maser of solid-state type

The Solid-State Maser -

Abstract

Every so often, a development in our field stands apart because of its basically different approach to a problem. Such is the case with the maser. History, system philosophy, and performance described here include discussions of the following: two-level molecular maser, three-level solid-state maser, current experiments, amplifier and oscillator characteristics, noise measurement, applications and future directions

By J. W. MEYER, Staff Member, Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Mass.

DEVELOPMENT of the solid-state maser represents a major breakthrough in the field of lownoise amplification at microwave frequencies. This super-cooled amplifier enables an engineer to construct a receiver with no more selfgenerated noise than that produced by the antenna and transmission line connected to it.

Masers (Microwave Amplification by Stimulated Emission of Radiation) are byproducts of basic solid-state research on microwave resonance absorption in paramagnetic materials at temperatures near absolute zero. Successful operation of a solid-state maser was first achieved at Bell Telephone Laboratories where it was made to
oscillate at X-band or $9,000 \mathrm{mc}$.
Experimental amplifiers operated by Lincoln Laboratory research teams in the S-band ($2,800 \mathrm{mc}$), L-band ($1,400 \mathrm{mc}$), and uhf (300 mc) regions have incredibly low self-generated noise. By actual measurement, noise figure of one of these amplifiers is just a fraction over one. Expressed in db, this value is near the ultimate of zero db. The implication of such a low noise figure to the fields of radio astronomy, radiometry, communications, and radar is evident.

Like all amplifiers, the maser depends upon control and conversion of energy. But unlike the vacuum tube, the maser converts the energy stored in a molecular or atomic sys-
tem by a microwave power supply into useful output. Emission of this stored energy is stimulated by the input signal.

Two-Level Molecular Maser

Earliest investigations of phenomena related to the molecular maser were made at the University of Michigan in the 1930's. Researchers were trying to extend spectographic measurements from the far infrared to what is now called the submillimeter range. Upon applying microwave energy to a bag of ammonia gas, they found that a strong absorption occurred at $24,000 \mathrm{mc}$.

In terms of quantum physics, a description of this effect is as fol-

A Supercooled Amplifier

lows: Among all possible modes of motion for the ammonia molecule there are two modes or energy levels separated by an amount $h f$ where h is Planck's constant and f is frequency of absorbed radiation. This can be represented in an energy level diagram as shown in Fig. 1. The horizontal lines represent energy levels with energy increasing in the vertical direction. Assume the number of ammonia molecules in lower energy level $W_{\text {, }}$ is n_{1} and the number of ammonia molecules in upper energy level W_{2} is n_{2}. Then, upon applying the appropriate quantum of radiation to this system, there occurs an absorption of energy. The effect is the transfer of the molecules from mode W_{1} to mode W_{2} at a frequency so that $h f=W_{z}-W_{1}$.

Structure of the ammonia molecule resembles a pyramid with the nitrogen atom located at its apex. It is possible for the nitrogen to occupy either the apex of the pyramid or its mirror image through the base formed by the hydrogen atoms. Splitting, or energy separation of modes W_{1} and W_{z}, is a result of the difficulty that the nitrogen atom has in tunneling through the base.

Boltzmann's law applies to distribution of molecules over these two energy levels. Ratio of the number in the upper energy state to that in the lower energy state is given by $e^{-n f / k T}$, where k is Boltzmann's constant and T is absolute temperature. At microwave frequencies and room temperature, magnitude of the exponent of e is about $1 / 200$. As a result, the difference between the population of the upper energy level and the lower energy level is extremely small. Yet it is different and, because it is different, there can be a net absorption of energy. To absorb energy in the system, it

FIG. 5-Dual-frequency maser cavity with magnetic tield distribution
is essential that the population in the lower level be greater.

Molecules are brought back to the lower level by a phenomenon known as scattering or relaxation. It characterizes the transfer of the increased molecular energy to the surroundings. In a solid-state device, it is usually an interaction between atomic magnets and vibrational energy of the crystal lattice.

Energy that has been put into the system, represented by an increased occupancy of the upper level, has to be transferred back to the surrounding medium. In doing so, it releases energy to this surrounding medium. Equilibrium is maintained by the relaxation mechanisms which bring molecules from the top level back to the lower one. To have a net stimulated emission there must be an excess population in the upper level. Because incident radiation of the correct frequency will stimulate both absorption and emission of radiation, there can be a net emission over absorption only when n_{3} exceeds n_{1}.

Another form of emission in a maser is known as spontaneous emission. It results from the ammonia molecule fluctuating from

FIG. 6-S-band low-temperature head used for maser amplifier
one state to the other in a random fashion. Spontaneous emission is the basic source of noise, akin to Johnson noise, and can be reduced by cooling.

In the first two-level maser operated at Columbia University, the molecules were separated by a strong inhomogeneous electric field. The focusing system used confined molecules in the upper level to the axis of symmetry of the electric field. Molecules in the lower level were forced away from the axis. Defocusing of molecules in the lower level effectively discarded them. Molecules in the upper level, however, were guided into a microwave cavity resonant to the ammonia absorption frequency. They saw an unoccupied lower level. The correct frequency in the thermal noise distribution in the cavity walls stimulated emission. Once started, oscillations built up and continued as long as ammonia molecules, properly oriented and separated, were fed into the cavity. Resulting output was somewhat feeble but oscillations were continuous at $24,000 \mathrm{mc}$.

Because ammonia absorption is strictly defined, the oscillator just described is stable and has a fixed frequency. It makes a good frequency standard or molecular clock. But two desirable features in an amplifier are missing-ease of tuning and broad-band coverage. One version of the amplifier had a measured $3.6-\mathrm{db}$ noise figure.

Three-Level Solid-State Maser

Ammonia masers just described use radiation from moleculer electric dipoles. The solid-state maser uses magnetic dipole radiation. In the solid-state device, the two energy levels result from the effect of a magnetic field on the spinning electron-in itself, a small magnet.

The magnetic field produces a degree of alignment or order of the electron spins in the direction of the field. This action opposes the disordering effect of the thermal vibrations in the solid. Alignment is never quite perfect except for infinite magnetic field strength on one hand or absolute zero in temperature on the other.

Degree of alignment can be expressed in terms of the projection of the electron-spin magnetic moment vector onto the direction of the applied magnetic field. Imperfect alignment implies that some of these projections lie opposite to the direction of the field. The lower energy level represents alignment with the field: the upper, against it. Again Boltzmann's law holds true. Separation of energy levels amounts to approximately 2.8 mc
for every oersted of magnetic field that is applied to the sample. This is the beginning of a tunable device.

Because two electrons are missing in part of its structure, the paramagnetic nickel ion has three rather than two energy levels. This feature of a paramagnetic material was incorporated by Prof. Bloembergen of Harvard University into his suggestion for a three-level solid-state maser. Appropriate separation of the energy levels can be achieved by adjusting the applied magnetic field's strength and direction. For fixed magnetic field strength and direction, the energylevel diagram would appear as shown in Fig. 2. The three levels W_{1}, W_{2}, and W_{3} are occupied by spins numbering n_{i}, n_{2}, and n_{3}, respectively. Because $n_{1}>n_{2}>n_{3}$, incident microwave radiation can cause transitions from W_{1} to W_{3}. Splitting of $W_{:}$and W_{2} is fixed at the frequency separation corresponding to the desired operating point. As an example, X-band can be used for the $W_{1} \rightarrow W_{3}$ transition and S-band for the $W_{3} \rightarrow W_{3}$ transition. Frequencies are 9,000 and $3,000 \mathrm{mc}$.

At equilibrium, occupation of the three levels follows Boltzmann's

FIG. 7-Experimental arrangement for maser amplifier measurements
law. In Fig. 3, the length of a bar is proportional to the occupation number as a function of energy. Again, the lowest energy state lies near the bottom. At equilibrium, there are more spins in $W_{:}$than in W_{2} than in W_{3}; i. e. for the higher levels, the occupation number is smaller. Application of sufficient

FIG. 8-Solid-state maser amplifier gainbandwidth characteristics
power at the X -band frequency to exceed the effect of the competing relaxation mechanism and to maintain equilibrium makes the population of W_{3} equal that of W_{1} at the expense of W 's population. This is illustrated by the dotted line. Using this saturation of the resonance absorption, an approximately equal population of the lower and upper energy levels results. Because population n_{3} now exceeds n_{2}, energy applied at the frequency of ($W_{3}-$ W_{2}) $/ h$ stimulates emission. This action is the basis of the working laboratory model.
The solid-state maser must be operated at extremely low temperatures. It is only at low temperatures that the relaxation mechanism is weak enough to permit saturation of the resonance absorption with reasonable amounts of X -band power. And only at low temperatures can adequate differences in the populations of relatively closely spaced energy levels be obtained and low noise achieved.

Experimental Design

A single paramagnetic salt, $\mathrm{K}_{3} \mathrm{Co}(\mathrm{CN})$ e containing 0.5 -percent Cr has been found satisfactory for all three masers. The salt is par-
ticularly suitable because of its unusually long spin-lattice relaxation time-time for transfer of energy acquired by resonance absorption from the spin system to the crystal lattice and low temperature bath. Power required to staurate the resonance, therefore, is low at the operating temperature of 1.25 K .

Only three of the four energy levels of the paramagnetic Cr^{++}ion were used. Energy level spacing was adjusted by the magnitude of the d-c magnetic field and its orientation with respect to the crystalline electric field of the material. Spin-state populations were inverted by saturating the resonance absorption at $9,000 \mathrm{mc}$ for the S and L-band masers and at $5,300 \mathrm{mc}$ for the uhf maser. While stimulated emission occurred between the upper two levels in the S-band maser, it occurred between the lower two levels in the other two masers. Figure 4 shows that if the middle level lies close to the lower level, rather than the upper, the negative-temperature condition will be created between the lower two levels.

The regenerative-type amplifier has much narrower bandwidth than one would expect at first. To achieve large bandwidths inherent in the width of the paramagnetic resonance line, at no sacrifice in gain, a low Q or slow-wave structure with a larger volume of the salt would have been necessary. In spite of the bandwidth limitation, these masers operate in reasonable agreement with theoretical predictions.

Microwave Apparatus

The maser requires resonant structures capable of supporting two modes-saturating frequency and operating frequency. The r-f magnetic fields at both frequencies must be concentrated in the paramagnetic salt itself. If any parts of the salt in the signal field are not at a negative temperature, they will cause signal loss rather than amplification.

The first S-band amplifier used a coaxial cavity which operated in the TEM mode at S-band and a higher order mode at X -band. This design was not optimum but gave results permitting measurement of gain,
bandwidth, and noise. Magnetic field distribution in the early S band design is shown in Fig. 5.

The L-band amplifier used a reentrant form of cavity. It behaved roughly as a coaxial cavity at Xband and a capacitance-loaded reentrant cavity at L-band. The capacitance loading created a greater concentration of microwave magnetic field in the sample located in the bottom of the cavity.

A single loop of wire plated with superconducting lead terminated in a small variable capacitor formed the resonant circuit for the uhf signal frequency. The saturating field was applied to the salt located in the wire loop by a surrounding microwave cavity operating in the TE_{12} mode.

Power is coupled in an out of the cavities by stainless-steel coaxial lines or waveguides. They are silver-plated to reduce microwave

FIG. 9-Power reflected from the cavity under various conditions. Detailed explanation appears in text
losses while maintaining the low heat losses characteristic of stainless steel. Distance from the cavity at 1.25 K to the Dewar flask cover plate at about 300 K is about two feet. This arrangement offers sufficient thermal insulation to permit several hours operation with one or two liters of liquid helium. An Sband low-temperature head is shown in Fig. 6.

Single crystals were grown from an aqueous solution of cobalt and chromium potassium cyanide. Crystals were prepared with chromium concentrations of from 0.1 to 2 percent. Standard crystal-growing techniques produced crystals of more than one sq cm in cross-section by three to five cm long.

Operation of the first S-band

FIG. 10-Maser oscillator characteristics
amplifier was investigated by applying the input power to the cavity through a directional coupler as shown in Fig. 7. This technique permitted gain-bandwidth measurements on the reflection-cavity type amplifier through its single coaxial coupling line without a circulator. Gain was determined by the amount of attenuation needed in the maser output line to maintain constant signal amplitude at the spectrum analyzer. This additional attenuation in the output line, together with the ferrite isolator, served also to keep any power reflected from the spectrum analyzer from reaching the maser and being reamplified.

Bandwidth was taken as the total frequency deviation required to reduce amplifier power output to onehalf its midband value. Bandwidths were measured on the spectrum analyzer after its frequency axis was calibrated with the modulating scheme shown in Fig. 7.

Results of the gain-bandwidth measurements are shown in Fig. 8. Parametric curves of both gain and bandwidth are plotted as a function of $9,400-\mathrm{mc}$ power for two different values of $2,800-\mathrm{mc}$ external Q. These values were obtained by adjusting the degree of coupling. With still higher external Q it was possible to achieve gains of 30 db or

FIG. 11-Circulator provides necessary input and output terminals for reflectioncavity maser described in text.
more with only one mw of saturating power. The maser then oscillated at the larger saturating powers. Stable gains of 37 db with 25 -kc bandwidth were also possible. In all cases, bandwidths were limited by the Q of the associated circuits and not by the intrinsic bandwidth of the paramagnetic resonance which was in the 30 - to $50-\mathrm{mc}$ region.

Observations of gain as a function of input $2,800-\mathrm{mc}$ power revealed the expected decreased gain as the difference in population was affected by the signal power. There was no change in gain when signal power was increased from 10^{-11} to 10^{-10} watt but thereafter the gain diminished and the bandwidth increased.

Oscillator Characteristics

Initial investigation of the maser as an oscillator was made using a frequency modulated probing signal applied to the coaxial coupling line. Frequency of the probing oscillator is swept by the time base of the oscilloscope. Power reflected from the cavity is displayed on the Y axis as a function of frequency.

Waveform A in Fig. 9 shows absorption resulting from the 2,800 mc microwave resonance centered in the klystron mode pattern. With the magnetic field adjusted for paramagnetic resonance, the power reflected from the undercoupled cavity increases as shown in Fig. 9B. Application of 9,400 -me power, Fig. 9 C , shows how the negative resistance produced by maser action improves the Q of the cavity. This, in turn, improves the coupling although no changes were made in the coupling-loop adjustments. Further increase of saturating power enhances this effect, Fig. 9D, and in Fig. 9E the maser is beginning to produce power at $2,800 \mathrm{mc}$. In Fig. 9 F , the beat signal between the output of the oscillating maser and the f-m probe signal is seen with the video detector system.

Output of the oscillating maser was observed also on a spectrum analyzer in the absence of an input, $2,800-\mathrm{mc}$ signal. Maser power out, as a function of saturating input power, is shown in Fig. 10. Efficiency (P_{o} at $2,800 \mathrm{mc} / P_{t}$ at 9,400 mc) is also given. Maximum effi-
ciency obtained as operated was -28.5 db or 0.14 . Because its stability is not exceptional and its output is low, this type of maser has little to offer as a microwave source. Its forte is low-noise amplification. This experimental amplifier is by no means an ultimate device. An improvement in gain-bandwidth product of a factor of ten should be achieved by careful microwave cavity design. This redesign is now being carried out.

Maser Amplifier System

Although extensive laboratory measurements can be made on the

FIG. 12-Maser amplifiers can be cas. caded by use of circulator

FIG. 13-System representation for a cir-culator-maser combination
maser using the directional coupler, the sacrifice in gain is not practical in an actual application. The circulator comes to the rescue here and provides the necessary input and output terminals for the reflection cavity maser.
The circulator, Fig. 11, is a four-terminal-pair device with a nonreciprocal property indicated by its symbol. Power in at arm 1 is sent out at arm 2 ; power in at 2 is sent out at 3 ; and so on around the circle.

Insertion loss of circulators is usually a fraction of a db while reverse isolation is in the order of tens of dbs. A circulator or equivalent device is an essential part of the reflection-cavity maser system. It also provides a convenient way of cascading maser amplifiers as shown in Fig. 12.
The circulator-maser combination provides an amplifier system with input and output ports. The system can be represented by a box, Fig. 13, considered to be a network with input and output terminal pairs. Noise produced by this net-
work in excess of the input noise is just $k T_{n} B$, where T_{n} is the noise temperature, B the bandwidth, and k is Boltzmann's constant.

System Noise Measurement

A crucial test of the system is experimental measurement of its noise figure to verify that it does live up to theoretical expectations. Noise measurements on a circu-lator-maser system shows that it has an effective input noise temperature of 25 K . In terms of system noise figure, this is 1.08 or about 0.3 db .

Because of its low noise temperature (compare with a $10-\mathrm{db}$ noise figure for which $T_{n} \approx 2,700 \mathrm{~K}$), the conventional noise-figure measurement is accomplished using unconventional noise sources. One is a 300 K source in the form of a matched load at room temperature; the other, a 77 K source obtained by refrigerating a matched load in liquid nitrogen. The experimental arrangement is shown in Fig. 14.

Noise figure is determined normally by measuring the ratio of noise outputs with a precision attenuator for the 300 K and 77 K noise inputs. By this means, noise temperature of the maser system operating with a $30-\mathrm{db}$ gain and 50 -kc bandwidth was found to be less than 25 K . Most of this noise is accounted for by losses in the circulator and the microwave plumbing components. For example, a microwave transmission line having $0.5-\mathrm{db}$ loss (≈ 10-percent power loss) has an effective noise temperature of about 30 K . Because most of the noise contributing to the 25 K noise temperature can be accounted for as described, the maser alone must be operating near its theoretical noise temperature of about 2 K .

A microwave amplifier with a noise temperature of tens of degrees rather than thousands, highlights problems heretofore unimportant. The noise temperature scale shown in Fig. 15 illustrates the importance of keeping trans-mission-line losses low to avoid producing noise greatly in excess of amplifier noise. Also, an antenna may provide comparable noise through side lobes in the direction of the sun. (A five-foot dish pointed at the sun will have a noise

FIG. 14-Experimental arrangement for noise-figure measurement
temperature of about 200 K at $3,000 \mathrm{mc}$). Even antenna side lobes and back lobes looking at the ground degrade its effective temperature by contributing noise. In light of this, a system noise of 25 K is quite compatible with what might be expected from associated microwave components.

The Future

Attractiveness of larger gainbandwidth products leads to travel-ing-wave masers where the bandwidth would be limited by the paramagnetic material. In the case of the paramagnetic materials used in the cavity masers, this limitation would be from 30 to 50 mc .

Because microwave magnetic fields are not concentrated in waveguides or slow-wave structures to the degree they are in high-Q cavities, gain per unit length in the traveling-wave maser is small. Consequently, long effective lengths of waveguide would be required to achieve reasonable gains. These problems are not new to vacuumtube engineers where gain-bandwidth products for various tubes are compared as figures of merit.

FIG. 15-Noise-temperature scale. Noise power $=k T_{n} B$

This same concept is equally applicable to masers. Expansion of maser bandwidth is receiving attention at a number of laboratories.

A question that always arises is whether it is a necessity to operate at such low temperatures. For the present, the answer is yes. Although it has been shown that the maser environment is likely to produce more noise than the maser itself does, present materials give a gain-bandwidth product inversely proportional to operating temperature. Even if an amplifier could be operated at 77 K (liquid nitrogen temperature), its gain-bandwidth product could be improved by a factor of 50 by operating at 1.5 K .

There is much work to be done both in basic and applied research. Basic research, both theoretical and experimental, in paramagnetic resonance and relaxation phenomena should provide needed data on new and different materials.

This article has described, in part, work carried out by S. H. Autler, R. H. Kingston, N. McAvoy, A. L. McWhorter, the author, and all of the staff of Lincoln Laboratory. The research reported was supported jointly by the Army, Navy and Air Force under contract with MIT.

Bibliography

J. P. Gordon, H. J. Zeiger and C. H. Townes, The Maser-New Type of Microwave Amplifier Frequency Standard, and spectrometer, Phys Rev, 95, p 282, 1954 and 99, 1. 1264, 1955.
N. IBloembergen. Proposal for a New Type Solid State Maser, Phys Rev, 104, p 324, 1956
H. E. D. Scovil, G. Feher, and H. Seidel, Operation of a Solid State Maser, Phys Rev, 105. p. 762, 1957.
A. L. McWhorter and J. W. Meyer, A Solid State Maser Amplifier, Phys Rev, 109. p. 312, Jan. 15, 1958.
R. H. Kingston, A UHF Solid State Maser, System Noise Measurement of a Solid state Maser, Proc IRE, (to be pubSished).
S. H. Autler and Nelson McAvoy, A 21 Centimeter Solid State Maser, (subnitted to the Phys Rev).
A. L. MeWhorter and F. R. Arams System Noise Measurement of a Solid State Maser, Proc Ire, (to be published)
M. W. P. Strandberg, Inherent Noise of Quantum-Mechanical Amplifiers, Phys Rev, 106. p 617, 1957.
R. V. Pound, Spontaneous Emission and the Noise Figure of Maser Amplifiers, Aun Phys. 1, p 24, 1957.

FIG. 1-Common-emitter switching circuit and waveform parameters

FIG. 2-Both rise and decay times are shown on nomograph scale at far right. Dashed lines show examples described

Switch-Time Nomograph

Abstract

When common-emitter transistors are used as electronic switches, rise and decay times at turn-on and turn-off can be readily determined through use of the nomograph. Formula for calculation of storage time is also presented

By T. A. PRUGH Diamond Ordnance Fuze Laboratories, Washington, D. C.

TRANSISTORS in the commonemitter configuration are used in many circuits as switching elements. Switching times have been calculated in terms of basic transistor parameters and circuit conditions. ${ }^{1}$ The results are of the general form $T=A$ ($\ln B$), where A is a function of the transistor and B is a function of both circuit conditions and transistor parameters.

The circuit and switching waveforms are shown in Fig. 1. Turn-off time $T_{\text {nfr }}$ comprises the storage time $T_{\text {s }}$ and the decay time T_{d}. The turn-on time simplifies to:
$T_{o n}=\left\{1 /\left[\left(1-\alpha_{n}\right) \omega_{n}\right]\right\} \ln \left[k_{1} /\left(k_{1}-0.9\right)\right]$, where a_{n} is the common-base short circuit current gain in the normal direction, ω_{n} the angular cutoff frequency of α_{n} and k_{2} the ratio of base current $I_{b 1}$ used to
turn on a transistor in a particular application to that base current I_{a} / β_{n} just necessary to saturate the transistor. Quantity $I_{\text {。 }}$ is the limiting value of collector current $V_{c c} / R_{c}$, and β_{n} is the common-emitter short circuit current gain in the direction $a_{n} /$ $\left(1-a_{n}\right)$.

Decay time is:
$T_{d}=\left\{1 /\left[\left(1-\alpha_{n}\right) \omega_{n}\right]\right\} \ln \left[\left(k_{2}-1\right) /\right.$ ($\left.\left.k_{2}-0.1\right)\right]$, where $k_{2}=I_{b_{2}} /\left(I_{c} / \beta_{n}\right)$.
Parameter k_{z} is negative since the turn-off base current must be opposite to the collector current.
The nomograph of Fig. 2 provides the turn-on and decay times. As an example, assume a transistor and circuit with $f_{\alpha^{\prime}}=$ $16 \mathrm{mc}, \omega_{n}=2 \pi f_{a b}=100 \times 10^{6}$, $a_{n}=0.99,\left(1-a_{n}\right)=0.01, \beta_{n}=$ 99 and $I_{0}=1,000 \mu \mathrm{a}$. Also assume a turn-on base current $I_{b 1}$ of $100 \mu \mathrm{a}$ and a turn-off base cur-
rent $I_{b 2}$ of -200 microamperes.
Calculating $k_{1}=9.9$ and $k_{2}=$ -19.8 , on the nomograph draw a straight line through $f_{a \prime \prime}=16$ mc and $\beta_{n}=99$ to locate a point on the reference line. From this point draw another straight line through $k_{1}=9.9$ or $k_{2}=-19.8$ to obtain the corresponding switching time. In this case the turn-on time is $100 \mathrm{~m} \mu \mathrm{sec}$ and the decay time is $47 \mathrm{~m} \mu \mathrm{sec}$.

Storage time T_{s} is more involved and cannot be computed by a single nomograph. It is
$T_{s}=\left\{\left(\omega_{n}+\omega_{i}\right) /\left[\omega_{n} \omega_{i}\left(1-\alpha_{n} \alpha_{i}\right)\right]\right\} \times$ $\ln \left[\left(k_{1}-k_{2}\right) /\left(1-k_{2}\right)\right]$,
where the parameters with the i subscripts are measured with the emitter and collector connections interchanged.

Reference

(1) J. J. Ebers and J. L. Moll, LargeSignal Behaviour of Junction Tran sistors, Proc $1 R E$, p 17 म1, Dec. 1954.

BLUE RIBBON CONNECTORS by CINCH \mathcal{Z} VISUAL ALIGNMENT UNNECESSARY...RIBBON

24 CONTACT
 PLUG ANO SOCKET

IMPROVED TYPE

The above illustrates the improved design of plug and socket casting which eliminotes any possible breakage.
Commersial plating and contact material. Black Mico body Type MFE per Mil.-M-14E.
$36-4100-8 P(355)$
$36-4200-8 S(355)$
$36-4100-16 P(355)$
$36-4200-16 S(355)$
$36-4100-24 P(355)$
$36-4200-24 S(355)$
$36-4100-32 P(355)$
$36-4200-32 S(355)$

Military plating and contact material. Nylon filled Diallyl body Type MDG per Mil.-M-14E.
$36-4100-8 P(340)$
$36-4200-8 S(340)$
$36-4100-16 P(340)$
$36-4200-16 S(340)$
$36-4100-24 P(340)$
$36-4200-24 S(340)$
$36-4100-32 P(340)$
$364200-32 S(340)$

Commercial plating and contact material. Nylon filled Diallyl body Type MOG per Mil.-M-14E.
36. 4100-8P (365)

36-4200. 85 (365)
36-4100.16P (365)
36. 4200 - 16S (365)
$36 \cdot 4100 \cdot 24 \mathrm{P}$ (365)
36-4200-24S (365)
36-4100. 32P (365)
36 - 4200 - 325 (365)

For your connector requirements You can depend on CINCH

The Wedge principle with the strong spring action of the"contacts holds the connector in positive contact, and provides ease of insertion and withdrawal. The protective barriers between ribbon contacts insure uniform spacing. The entire length of the contacts are supported by quality dielectric. Multiple mounting makes it possible to make or break any number of circuits simultaneously. Molded-in mounting plates are of corrosion resistant passivated stainless steel.

REGULAR TYPE:

32 CONTACT PLUG AND SOCKET

Commercial plating and contact material. Nylon filled Diallyl body Type MDG per Mit.-M-14E.
36-4100-8p
36-4200-8S
36-4100-16p
36-4200-16S
36-4100-24P
36-4200-24S
36-4100-32P
36 - 4200 - 32S

24 CONTACT PLUG AND SOCKET

Military plating and contact material. Nyion filled Diallyl body Type MDG per Mil.-M-14E.
36-4100-8P(334)
36-4200 - 8S (335)
36-4100-16P (334)
36-4200-165 (335)
36-4100-24P (334)
36-4200-24S (335)
36-4100-32P (334)
36-4200-32S (335)

3The ribbon contact principle, with dieelectric guide and support eliminates the possibilities of damaged or bent contacts and prevents difficulties of plug-in. No dependence on contact arrangement or visual alignment is necessary.

FIG. l-Characteristic impedance is determined from diagram shown

FIG. 2-Propagation constant is found as a function of ϕ from circular chart

Simplified Calculations For Transmission Lines

Abstract

Characteristic impedance Z_{o} and propagation constant β of lossless transmission line terminated in lossy load are determined from Smith-type circular transmission-line chart using graphical techniques

By H. F. MATHIS Goodyear Aircraft Corporation, Akron, Ohio

IF A LOSSLESS TRANSMISSION LINE is terminated in a lossy load, the characteristic impedance and propagation constant of the line can be determined by the following method.

The input impedance Z_{1} is measured for any convenient length of the transmission line terminated in any convenient lossy load. A length d is removed from the line and the input impedance Z_{2} is measured using the same or an equivalent lossy termination.

Example

As an example, suppose $Z_{1}=$ $50+j 100, Z_{3}=25-j 25$ and d $=3 \mathrm{in}$. The normalized impedances $Z_{1}^{\prime}=Z_{1} / R_{0}$ and $Z_{2}^{\prime}=Z_{!}^{\prime} /$ R_{o}, where R_{o} is any convenient value, are plotted on a circular transmission-line chart as shown in Fig. 1. For the example, $R_{\Delta}=$
50. Point A is located on the zero reactance axis so that the distance from A to Z_{Δ}^{\prime} and from A to Z_{2}^{\prime} are equal. Point A is the intersection of the perpendicular bisector of the line $Z_{1}^{\prime} Z_{2}^{\prime}$ and the zero reactance axis. A circle whose origin is at A passes through the points Z_{1}^{\prime} and Z_{2}^{\prime}.

Points B and D are the intersections of the circle and the zero reactance axis. Lines $B E$ and $D F$ are drawn through B and D perpendicular to the zero reactance axis. Points E and F are the points of intersection of lines $B E$ and $D F$ with the zero resistance circle.

Point G is the intersection of the line $E F$ and the zero reactance axis. The impedance Z_{6} is read at point G. Finally, the characteristic impedance Z_{0} of the line is $Z_{o}=R_{0} Z_{g}^{\prime}$. For the example, $Z_{i j}=2, Z_{i}=100$.

Normalized impedance $Z_{1}^{\prime \prime}=$ Z_{3} / Z_{o} and $Z_{2}{ }^{\prime \prime}=Z_{z} / Z_{\text {o }}$ are plotted on a circular transmission-line chart in Fig. 2. These points are equally equal distant from the center C of the chart. The angle θ is measured. Finally, the propagation constant β is found by solving the equation $\theta=2 \beta d-$ $n 720$, where $n=0,1,2, \ldots$ If θ is measured in deg and d is measured in in., then β is the phase change in deg/in. For the example, $\theta=126.7, n=0$, and $\beta=42.2 \mathrm{deg} / \mathrm{in}$.

Determining Integers

The value of n must be determined by considering other available information. Often only one value of n gives a value of β which is reasonable. If this is not true, the procedure should be repeated using a smaller value of d. developments-12EZ6 and 12FA6provide a gain figure substantially above that of any other similar types. With these new tubes, the car-radio designer can simplify circuitry, thereby cutting out possible trouble spots. Bandwidth and frequency-drift problems are minimized. . . overall radio reliability rises.

Compare for yourself the advanced Tung-Sol types with the tubes they replace! Electrical data below!

New
12EZ6!
Up to
50% more gain than 12AF6 and 12BL6 it replaces!

New
12FA6!
Up 10
20\% more
gain than
12AD6
it replaces!

Improved Tung-Sol types increase gain... widen design flexibility

Tung-Sol helped pioneer the 12v hybrid auto radio . . . makes a high-performance tube for virtually every other entertainment circuit need-radio, TV, hi-fi! For full data on the new 12EZ6 and 12FA6 . . to fill any socket you have with a quality tube, write or phone us today! Commercial Engineering Dept., Tung-Sol Electric Inc., Newark 4, N. J.

Portable Receives Satellite Signals

Either 108 -mc microlock or $108.03-\mathrm{mc}$ minitrack signals from U. S. satellites can be received and supplied to a tape recorder with this recently announced portable receiver

Minitrack amplitude-modulated or microlock phase-modulated telemetering signals from U. S. satellites can be received on a portable receiver developed by Motorola. Output of the receiver can be recorded on portable recorders and analyzed later.

When the receiver is tuned within automatic lock-in range of a signal, it will automatically acquire and maintain phase-lock to the signal to a level of -145 dbm ,
although doppler shift may alter the input frequency over a 6.6 - kc range. A crystal-selector switch is used to set the receiver to receive either the $108.00-\mathrm{mc}$ microlock signals or the $108.03-\mathrm{mc}$ minitrack signals. A fine-frequency control is used for final adjustment.

Double conversion reduces the 108 -mc signals to $455-\mathrm{kc}$ for phase comparison. The resultant $455-\mathrm{kc}$ signal is fed through a 4-kc mechanical filter to a limiter stage.

The limiter drives the phase and lock detectors in phase. Reference signals for the detectors are obtained from a $455-\mathrm{kc}$ crystal oscillator. There is a 90 -degree phase difference between the two reference signals to obtain maximum positive lock-detector output when phase detector output is zero.

The phase-detector output is fed through a filter that reduces the effective r-f bandwidth to approximately 20 cps . The output of the filter controls the voltage-controlled crystal oscillator and maintains phase lock with the r-f signal. As a result, the receiver will maintain phase-lock to a carrier signal that is more than 20 db below the receiver noise level.

A meter is used for an in-lock indicator and a frequency indicator. When the meter is switched to Lock, it indicates when the receiver is phase-locked to an r-f signal and the relative strength of the signal. In the Frequency position, the meter indicates the relative signal frequency plus doppler shift.

An audio amplifier is used to monitor the beat note between the converted r-f signal and the reference oscillator during acquisition. It is also used to monitor the demodulated a-m tones.

Masks Improve Picture Contrast

By F. L. BURROUGHS and J. T. Jans Sylvania Electric Products, Seneca Falls, N. Y.

Most Tv sets have adequate highlight brightness. But a number of light sources, including external

FIG. 1-Contrast ratio plotted against scan indicates loss of contrast with larger raster
illumination, backlighting and the illumination produced by stray and reflected electrons, can reduce contrast by lighting the dark areas.

The effect of external illumination is reduced by a filter safety

FLG. 2-Screen area of typical tv picture tube shows overlap of $4: 3$ aspect ratio rectangle
glass, and aluminized picture tubes eliminate backlighting. However, reflected electrons often present a problem. They often result when the raster overscans the picturetube screen causing the beam to reflect off the sides and neck. Increasing overscan reduces contrast, as is shown in Fig. 1.
In all rectangular picture tubes, some overscan is necessary because the structure of the bulb prevents the screen from being the rectangular $4: 3$ aspect ratio that is transmitted. The screen area of a typical tube inside a $4: 3$ aspect ratio rectangle is shown in Fig. 2.

In addition to the overscan from the bulb shape, most receivers are adjusted at the factory to overscan

KEEP UP-TO-DATE ON MAGNETICS

Here are laminations for miniafurization

If you are making transformers for transistorized or other miniaturized equipment, information about our ultra-small size "performance-guaranteed" laminations can be important news to you. These nickel-iron laminations are produced in standard gauges, and are available in Hy Mu 80, 48 Alloy and, if required, Orthonol.

Dry-hydrogen annealed by our exclusive process, these laminations provide all-important uniform quality. This annealing at a dewpoint of $-60^{\circ} \mathrm{C}$. brings our PerformanceGuaranteed laminations to ultimate permeability from as little as 5% of that value in the unannealed state.
Like all laminations from Magnetics, Inc., the "miniatures" are packed in standard nine-inch boxes to facilitate handling in your plant, and are immediately available from stock. These features alone provide substantial savings.

Edges of these fine tolerance laminations are cut off squarely and cleanly to minimize air gap where mating parts are butted. Thus, high operating efficiency is insured.
There's no room here for the really detailed story, but for complete information on our "Performance-Guaranteed" magnetic laminations, send for our newest catalog-just published-ML-301. Write today. Magnetics, Inc., Dept. E-41, Butler, Pennsylvania.

FIG. 3-Two simple masks such as those shown at A improve contrast as shown in plot at B
enough at normal line voltage so they just fill the picture tube screen at low line voltage.

The picture information in the corners is not visible on the screen. This portion of the signal washes out the picture by supplying the reflected electrons that illuminate the dark areas.

If this corner portion of the picture were masked at the camera, the contrast would show a marked improvement. Since the area involved is off the screen, it would not be seen. Two mask shapes are shown in Fig. 3 and the relative contrast ratio improvement for each. The masking would not be visible on any type of picture tube now in use, provided the receiver were correctly adjusted.

A mask could be a very simple one such as A in Fig. 3. Application directly to the camera or flying-spot tube should take but a few minutes.

Contrast improvement is readily apparent on scenes where the background is light extending out to the corners. It may be difficult to standardize masking for broadcast television systems but there is no restriction on using masking in closed-circuit systems.

VU Recorder Has Standard Response

By D. H. McRAE

Transmission \& Dev. Dept. Transmission \& Dev. Dept.
Canadian Broadcasting Corp. Montreal, Quebec Cantra

Permanent records of audio program levels at various points in broadcast systems can be made with a recorder having standard VU response. The recorder can also be used for checking audio network circuits and for speech level measurements.

Because the VU meter is the standard instrument for program level measurement, the recorder should have a response such that it records the levels as indicated by a VU meter. Available level recorders were tested and were found to disagree with the observations of a VU meter.

Faithful VU recordings can be obtained graphically only if they are made by an instrument that has the same rise time, overshoot, frequency response and rectifier characteristics as a standard VU

FIG. 1-High-speed motion picture studies indicate response of standard VU meter
meter. Rather than alter the mechanical constants of a commercially available recorder it was decided that the input of a high-speed recorder should be shaped in an electrical network to secure the correct characteristics.

The most difficult properties to achieve are the dynamic characteristics of the VU meter. The VU meter movement is actually driven with pulsating direct current from a full wave rectifier. When a step voltage is applied to the meter movement, "the deflection should reach 99 percent of final deflection in 0.3 seconds and should then overswing by 1 to $1 \frac{1}{2}$ percent.",
The response of a VU meter has been determined by means of highspeed motion picture techniques and is shown in Fig. 1.

The pulsating d-c furnished by the rectifier to the VU meter movement can be considered equivalent to steady d-c for deflection calculations, because the a-c components merely tend to vibrate the pointer and do not contribute to the static deflection. Even vibration is not visible (except at low audio frequencies) due to the sluggishness of the meter movement.
This response has the characteristic shape of the transient response of an underdamped series R, L and C circuit as shown in Fig. 2.
The meter is a simple device mechanically. A very close electrical equivalent of the damping, moment of inertia and rotational compliance, which determine its ballistic response, can be obtained with only three electrical elements. By Hooke's Law, the tension of the spring is directly proportional to the pointer position. Therefore, in the electrical equivalent, the pointer position may be represented by the voltage across capacitor C.
In this circuit, the ratio of the voltage across the capacitor, V_{c}, to a step voltage, E, applied to the $R L C$ circuit, is at any time, t, equal to:
$V_{c} E=1-e^{a t}[(a / \omega \sin \omega t)+$ $\cos (\omega t)$ where $a=R / 2 L, \omega=$ $\left[1 / L C-a^{2}\right]^{1 / 2}$.

If $\alpha=11.0$ and $\omega=7.88$, and V. is expressed as a percentage of E, then $t=0.05,0.1,0.2,0.3$ and 0.375 sec while $V_{c}=15.8,43.4,84.6,99.02$ and 101.2 , percent, respectively.
These results plotted in Fig. 1 show good agreement with the standard VU response. If $L=300 \mathrm{~h}$, then $R=600$ ohms and $C=18.2$ uf.
The circuit used in the recorder

ERMCMT PATP OFPRPECISIONE

Every stage of a missile's flight from take-off to target is marked by the necessity for a degree of accuracy in its controlling parts far greater than required in any previous instrumentation.
That bright path of success written in the skies by missiles of various kinds is visible evidence of the extreme precision built into the New Departure ball bearings used in the gyroscopes, servos and other vital elements of the guidance systems.
New Departure takes great pride in its ability to meet the exacting specifications of the products for the Army, Navy and Air Force programs.

In many bearings, various dimensions and surface finishes must be held to within soterances of a few millionths of an inch.

Comparator measures dimensions to one-millionth of an inch. One of many pieces of ultro-precision equipreent in the New Departure bearing laboratories.

1968-1958
GM = WM
forwaro from fifty

NEVV

Fast delivery of 95% and 85% High Alumina, to your most critical specifications, is assured by Centralab's new 80 foot continuous kiln. First of its design in the United States, this new kiln is capable of producing 21 tons of exceptional quality High Alumina every month. Consistent reproduction of electrical and physical properties from batch to batch is guaranteed.

Superior Electrical Properties at Figh Frequencies

Extremely stable dielectric constant and a power factor of . 00045 at 9000 megacycles (see graphs of Bureau of Standards tests below) make Centralab Body 206 (95% alumina) your logical choice for all types of high reliability electrical and electronic applications.

For complete specifications and design data write Centralab or consult Sweet's Product Design File (folio $4 \mathrm{a} / \mathrm{ce}$).

A DIVISION OF GLOBE.UNION, INC. 914D E. KEEFE AYE. - MILWAUKEE I, WIS. In Canada: 804 Mi. Pleasant id. - Toronto, Ontario

[^4]

FIG. 2-Underdamped RLC circuit has transient response of standard VU meter
is shown in Fig. 3. It is designed so that one volt across the network capacitor corresponds to the zero graduation on the VU meter dial. Because the cathode followers are d-c amplifiers in this case, two are used in push-pull to minimize drift problems. They have an output resistance of about 1,700 ohms. The d-c resistance of the inductor is about 4,500 ohms. Resistor R is about 400 ohms to bring the total to 6,600 ohms looking back into them, a feature that assures similar charge and discharge characteristics for the network.
The four 1N54 diodes loaded with 50,000 ohms gives a rectification characteristic similar to several VU meter rectifiers tested.

The preamplifier that feeds the network has sufficient gain to give the recorder zero deflection with a

Electronics Records Recon Photo Data

Position, altitude and other pertinent data necessary to U.S. Air Force reconnaissance now can be recorded automatically on photos with a device developed by Federal Telecommunication Laboratories. Digital data recording device records all information in coded-dot form from small ert on photograph. During development, a groundbased reader decodes and prints the data beneath the picture

SILICON

TRANSISTORS

[ACTUAL SIZE]

45 WATTS at $100^{\circ} \mathrm{C}$

For your audio servo applications ... for your circuits that demand high power at high temperatures, specify TI 2N389 and 2N424 high power silicon transistors. Obtain optimum performance from $-65^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$.
Both units are derated from 85 watts at $25^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ and combine the additional advantages of low distortion . . stability . . . high reliability.

AVAILABLE TODAY IN $1-99$ QUANTITIES FROM YOUR NEAREST TI DISTRIBUTOR

TEXAS INSTRUMENTS SALES OFFICES dallas - NEW YORK - Chicago - LOS angeles Camden - dayton - denver
detroit - ottawa - Syracuse - san diego SAN FRANCISCO - WALTHAM • WASHINGTON D.C.

Texas Instruments
 Connectors thrive on a caloric diet . . operate at $250^{\circ} \mathrm{F}$. without damage. Among these torrid performers are Deutsch 9600 Series push-pull receptacles and 9700 Series push pull plugs, perfectly matched for use in ballistic missiles, rockets and supersonic aircraft. Despite vibration, altitude and shock, they make all the right connections . . . in crowded, remote, blind and ballistic installations.
From 3 to as many as 61 contacts, without lockwiring or twisting, without bayonet or coupling-nut.

Prototypes and modifications of these and other miniatures are available for quick delivery from the Deutsch Model Shop.
Deutsch miniatures are as easy to operate as striking a match. Simply push in for positive lock and seal; pull back for instant disconnect. They're durable for at least 500 cycles of engagement, are insulated to resist a minimum of 5,000 megohms, can withstand a deceleration force of 100 G's.
Hot and bothered for more facts on the construction and operational features of Deutsch miniatures?

Write for Data File 411.

The Deutsch Company

7000 Avalon Blud. - Los Angeles 3, Calif.

-20 dbm input. Frequency response is flat within 0.2 db from 10 to $50,000 \mathrm{cps}$.

A d-c amplifier bridges the capacitor with about five megohms and drives a stylus-bearing galvanometer in a graphic recorder. Because of the high input resistance of the d-c amplifier and the high speed of response of the recorder (10 msec rise time), the trace appearing on the moving paper chart is sensibly a plot of the instantaneous voltage across the capacitor as calculated. Thus, graphic recordings of instantaneous positions of a VU meter are made.

FIG. 3-Circuit used in standard VU recorder includes rectifier said to have characteristics similar to that used in standard VU meters

In order to expedite operating the VU recorder, the following facilities are provided: a bridging input for 600 -ohm lines, stabilized reference voltage for calibrating overall gain, a step attenuator calibrated in ru's, a paper chart graduated in vu's and a one-minute time marker.

The useable chart width is five cm . The speed is $\frac{1}{2} \mathrm{~mm}$ per sec . This speed was chosen as the best compromise between definition and economy. The definition is sufficiently good for most purposes and the chart costs only about 18 cents per hour of recording.

Personnel experienced in using a VU meter find that the complete VU recorder is simple to operate and the chart is easy to interpret.

1. H. A. Chinn, D. K. Gannett and R. M. Morris, A New Standard Volume Indicator and Reference Level, Proceedings of the I. R. E. Jan. 1940.

Two Beams

Four Traces

DC-to-25 MC

TYPE 551

(®)
When the job requires it, you can double up and display four different waveforms at once with this dual-beam oscilloscope. Type 53/54C Dual-Trace Plug-In Units in both channels make possible the four-trace display.

Less spectacular but more frequent uses of this versatile fast-rise oscilloscope include waveform comparison measurements on a dual-beam display in the dc-to- 25 mc range, and all the usual and unusual applications of a high-performance laboratory oscilloscope.

TYPE 551

SPECIAL FEATURES

WIDE-BAND VERTICAL AMPLIFIERS

Main-unit risetimes- $12 \mathrm{~m} \mu \mathrm{sec}$
Passbands and risetimes with Type 53/54K unitsdc -to- $25 \mathrm{mc}, 0.014 \mu \mathrm{sec}$.

SIGNAL-HANDLING VERSATILITY

All Type 53/54 Plug-In Units can be used in both channels.
$0.2 \mu \mathrm{sec}$ DELAY NETWORKS

WIDE SWEEP RANGE

$0.02 \mu \mathrm{sec} / \mathrm{cm}$ to $12 \mathrm{sec} / \mathrm{cm}$.

SINGLE SWEEPS

Lockout-reset circuitry
COMPLETE TRIGGERING
Fully-automatic or amplitude-level selection with preset or manual stability control.
IO-kv ACCELERATING POTENTIAL
Brighter display for fast sweeps and low repetition rates.
Please call your Tektronix field Engineer or Representative for complete specifications and, if desired, to arrange for a demonstration at your convenience.

Tektronix, Inc.

P. O. Box 831 - Portland 7, Oregon

Phone CYpress 2-2611 • TWX -PD 311 • Cable; TEKTRONIX

Temperature Measurements at Absolute Zero

"Germanium Bridge" thermometer is accurate to a few ten-thousandths of a degree in the absolute temperature range

A Germanium resistance thermometer with high sensitivity and stability in the absolute-zero temperature range has been developed by J. E. Kunzler, T. H. Geballe and G. W. Hull of Bell Telephone Laboratories. Temperature measurement accuracy is better than a few ten thousandths of a degree at the boiling point of helium (4.2 K) even
after repeated cycling from room temperature.

Continued low-temperature research has highlighted the need for a thermometer which would indicate low temperatures accurately and reliably, and yet not need continued recalibration. Engineers and scientists who must measure such quantities as the calories necessary to produce a particular reaction or temperatures in outer space should find this invention ideal.

Crystal Bridge

A very small "bridge" cut from a single crystal of arsenic-doped germanium, is the basic element of the thermometer. Actual size of this bridge is about 0.025 in $\times 0.020$ in x 0.210 in . It is strain-free supported in a platinum-glass enclosure containing a small amount of helium gas to aid in thermal conduction. Resistance is determined by measuring the potential drop when a 10 microampere current is passed through the bridge.

Germanium can be doped with arsenic to produce a high and fairly constant temperature coefficient of resistance of about one ohm at room temperature, 14 ohms at 10 deg K and 216 ohms at 2 deg
K. Both the temperature coefficient and the actual resistance vary widely with minute changes in the amount of doping. This makes it possible to fabricate a thermometer having any of a wide range of characteristics.

Temperature Cycle

Despite repeated cycling from 300 deg K to 1 deg K , the thermometer will retain its calibration accuracy.

To avoid excessive heating, resistance of the thermometer should be kept as large as possible. However, for simplicity in measurements, a low resistance is desirable. A minor dilemma results, but with the outstanding characteristics obtainable, resolving it is almost a pleasure. A compromise can be reached by controlling the doping of the germanium crystal.

The thermometers are not available from Bell Telephone Laboratories, but a number of them are being turned over to the Calorimetry Conference for testing. If this Conference finds that they have wide usefulness, Bell Labs will atempt to find a qualified manufacturer to produce them commercially.

Transistor Fabrication Defies Testing

A Shotgun test was resorted to by GE engineers after conventional means of testing the mechanical stability of a new transistor proved inadequate. Transistors, with the semiconductor bar mounted on a flat ceramic wafer-instead of suspending it between two upright posts-were shot from a 12 -guage shotgun into a telephone book. No estimate of the velocity or G-force was given, but a GE representative said the only failure was the telephone book.

The newly-developed technique mounts the germanium or silicon bar on a flat, circular ceramic wafer. The ceramic wafer in turn rests solidly on the "floor" of the transistor housing.

The semiconductor bar is mounted on the wafer and then the wafer is connected to the transistor leads

Fixed-bed mounting provides protection against the three major causes of transistor failure-Expansion and contraction of metal parts caused by hot and cold temperature; direct impact, and vibration which tends to separate transistor parts.

Military Test Specs

The structure far exceeds mechanical stability requirements for military transistors set by the Air Force, GE engineers say.

General Electric is now building unijunction transistors with the fixed-bed mounting and plans to extend its use to other industrial and military transistors in the near future. P.S. Since they claim that

SodALite means Solderability!

Here's a polyurethane base magnet wire insulation that's self-fluxing, outstandingly easy to solder!

Fine sizes of SodALite magnet wire can be soldered at $680^{\circ} \mathrm{F}$. in approximately 5 seconds. Heavy wire sizes can be soldered at $800^{\circ} \mathrm{F}$. in approximately 10 seconds.

Conventional dip, iron, torch or gun methods will produce excellent connections. There is no need for brushing or chemical stripping because SodALite vaporizes to produce a clean, solderable surface. Although SodALite is self-fluxing, some operations may require a non-corrosive flux for best results. Excessively high temperatures will delay soldering and may cause poor connections.
SodALite has higher dielectric strength values when compared with other standard films. Tests indicate only a small drop in dielectric strength after immersion in water at room temperature. High frequency characteristics and corona resistance, even in humid conditions, exceed nylon insulations. SodALite is compatible with a variety of phenolic alkyd, sili-
cone and polyester impregnating varnishes. Field reports show it equal to other popular wires in abrasion resistance and handling characteristics.

SodALite has excellent physical characteristics and electrical properties in addition to good resistance to solvents, moisture, acids, and bases. SodALite has unusual thermal properties and, when tested to method of AIEE $\# 57$, has $10-15^{\circ} \mathrm{C}$. higher thermal rating than other widely used Class A insulations.

SodALite is offered as a $105^{\circ} \mathrm{C}$. magnet wire, or better. Higher temperature usage should be considered only after testing to the specific applications, because polyurethanes such as SodALite cannot withstand excessive overload conditions. For moderate overload conditions SodALite may be considered for use up to $120^{\circ} \mathrm{C}$.

Availability: Single, heavy, triple and quadruple films in round AWG *8 through $* 40$.

> QUICK DELIVERY FROM THESE PLANTS AND WAREHOUSES

> Port Huron, Mich., Yukon 5-6131 Yonkers, New York, OXford 7-7440 Chicago, llinois, WEbster $9-3144$ Hazleton, Pa., GLadstone 5-4781

RBI

BHSM and BHSM HT TYPES

WITHSTANDS 109^{-} 500 CYCLE VIBRATION

?
"RUGGEDIZED \quad lOBAR
RUDE RELAY AND CONTACTS GRADED RELAY AND ASSEMBLY CONTACTS
ERA CK BENEFITS

 - CONTACTS -MAX. 4 PDT 3 AMP. AT 32 V. OR 115 V.A.C. (NONINDUCTIVE)
SP AC. - special (non- inductive) LOW LEVEL CONTACTS AVAILABLE FOR APPLICATIONS -3.250 O . or DRY cIRCuIT
apPLICATIONS GHT-3.2502

- APPROX

Consult your local RBM Product Application Engineer
or write for Bulletin BHSM-1.
the transistor will withstand the toughest "torture" test possible

General Electric is also building new test equipment.

Subminiature Power Module

A regulated, filtered d-c power supply weighing less than 3 ounces and measuring only $\bar{Z}_{8}^{2} \mathrm{in}$. $1_{\frac{1}{8} \mathrm{in} .} \mathrm{x}$ $2 \frac{1}{2}$ in. has been announced by Elcor, Inc., McLean, Va. The supply furnishes enough power for the collector circuit of a transistor or the bias for a vacuum tube. It has a shunt capacitance from output to ground of $20 \mu \mu \mathrm{f}$ making the supply useful as a means of direct
problems as wiring power plugs, de-coupling and by-passing d-c power leads, and trouble-shooting interaction between circuits.

Reliability and Cost

Use of subminiature power supplies in modular design is also economical. A common fallacy is the tendency to think that a huge saving of cost is always obtained by

Interior (left) of miniature isolated power supply. Transformer construction gives high degree of isolation. Modular d-c discriminator (right) with two subminiature power supplies operates entirely on a-c power. Discriminator converts input waveform into a rectangular wave or pulse
coupling in high-speed circuits, and in many bridge circuits in which a signal voltage appears between the power supply output and ground.

Modular Power

The subminiature supplies are also well suited as power supplies for individual modules or sub-assemblies of a composite system. An advantage in this type of modular construction is the unusual ease with which modules can be interconnected to synthesize a system. Since each module is complete with its own d-c power supply, there is no possibility of interaction between modules through a common d-c power supply. Untold hours of time are saved by avoiding such
use of one or two large power supplies in preference to many small ones. Although this is sometimes true, a close study of many typical situations reveals that there are factors that are often overlooked. One is that the cost of a power supply, especially a regulated power supply, increases substantially with the current that it must supply. Another factor is the relatively large cost that accrues in system development as a result of troubles arising from interaction of various circuits because of the use of a common power supply. A third factor is the additional cost resulting from the added complexity needed to make circuits operate from d-c power sources that are referenced to ground. If these fac-

They can be your design assisfants on other Essex Engineered Products.

COILEO CORDS-COROSETS
Prime saurce far plastic and rubber power supply cords. Terminotions of all types (molded plostic and rubber) with infinite design possibil including HPN.

Write for Coil Cords Literature
Cords Limited Division. DeKalb, III,

A low cost, space saving single pole or common multiple contact D.C. unit. Highly reliable. Con mental conditions.

- Extraordinary High Precision in $1 / 2$ inch size.
- High Temperature Operation to $+145^{\circ} \mathrm{C}$.
- Low-torque, Ball-bearing Construction.
- Linear or Non-Linear Functions.
- Independent Linearity of $\pm 0.3 \%$.

New, modular design provides extreme flexibility in adapting or customizing the unit to the particular requirements of application. Depth of cup, mounting, resistance, linear or non-linear function are all variable as needed. Up to 9 cups may be ganged to the front servo cup without external clamp rings. Each cup may be individually phased at the factory.
The new PVR-05 provides the greatest precision in the industry for its $1 / 2$ inch size. Gold alumilite finish, machined aluminum base and cover, precious metal contacts and slip rings, spring-loaded ballbearings assembled under quality controlled procedures provide optimum performance characteristics.
Reliability is insured under severe environmental conditions of missile and airborne applications.

Rulletin	Resistance Range: B of full Taps:	$50,100,200,500,1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}$,
details		
on	Temp. Coeff. of	Maximum of 3 taps to specification.
request.	Res. Wire:	$0.002 \% /{ }^{\circ} \mathrm{C}$ above 50 ohms.
	Terminals:	Gold plated, forked lug type std., other types available.
	Torque:	.1 in. oz. per cup.

1 in. oz. per cup.
Where space is at a premium and precision a must, PVR-05 is the answer.
tors are considered, circuits employing modular power supplies will compare favorably with conrentional circuitry in cost.

Reliability

In applications where consequences of equipment failure are so severe that design emphasis should be placed entirely on reliability and performance, initial cost plays an almost insignificant role compared with advantages of modular construction. The inherent simplicity and stability of subminiature power supply circuits, compared to conventional circuitry, means that a higher potential reliability exists.

Coupling Advantages

A special power supply inserted as a direct-coupling element between the plate of the tube and the load resistor has several advantages. It simplifies circuitry, improves circuit stability and reliability and facilitates interconnecting units which employ this method of direct-coupling. The miniature isolated power supplies, Models A105-15A and A150-10A Isoplys, were developed primarily for vacuum-tube circuits. They are generally too large and powerful for transistor circuits which require the very much smaller subminiature Isoplys.

Input-Output Power

Various models of the Zener diode regulated Isoplys are available with input for $60-400$ cycle a-c, and with d-c output voltages ranging from 4 v to 26 v and current ratings ranging from 9 ma at 4 v to $1 \frac{1}{2}$ ma at 26 v .

Spin Testing Electronic Components

A Centrifuge, designed to subject special-purpose electronic components to radial accelerations as high as $50,000 \mathrm{G}$'s, has been developed by the Alexandria Division of American Machine \& Foundry Company. It is a precision, environmental test apparatus.

A direct-reading G-force meter operates through a selector switch set to the specimen mounting radius. An electronic counter indi-

WORK IN RAYTHEON'S EXPANDING

 Missile Program

 Missile Program}

As one of the largest and fastest growing companies engaged in missile work, Raytheon offers unusual opportunities for challenging assignments to:

AERONAUTICAL, ELECTRONIC AND MECHANICAL ENGINEERS

Continued expansion of our development programs and advanced missile design projects offers outstanding opportunities at all levels to experienced engineers desiring assignment in these fields:

```
SYSTEMS
PACKAGING
MICROWAVE
RADAR
APPLICATIONS
CIRCUIT DESIGN
RELIABILITY
SPECIFICATIONS
```

AERODYNAMICS (Missile)

Stability and Control
Performance
Air loads

WIND TUNNEL TESTING AERODYNAMIC HEATING ROCKET ENGINEERING (Solid)

Consider these overall benefits at Raytheon:

- High starting salary.
- Excellent advancement opportunity.
- Modern facilities.
- Suburban New England living, 1/2 hour from Boston.
- Educational opportunities at M.I.T., Harvard, etc.

For interview at our suburban laboratory in Bedford, Mass., write, wire, or telephone collect to CRestview 4-7100. Ask for J. Clive Enos.

RAYTHEON MANUFACTURING COMPANY, Bediord, Mass.

Crystal protection guaranteed over 500 hour minimum tube life at full rated power in Microwave Associates new TR!

NEW, FIELD-TESTED DESIGN

Designed specifically to overcome the field deficiencies of conventional 6633 tubes, the MA $336 / 7166$ offers substantially improved performance in all characteristics. See comparison chart below.
Several hundred of these tubes have been in the field for many months and are used in early warning systems operating 24 hours a day.
The first failure has yet to be reported pither from the field or from monthly production life tests!
The MA 336 is a compact, rugged tube built for maximum reliability and completely guaranteed for performance. It is in full production and available now.

COMPARISON CHART

	MA $336 / 7166$	Conventional \#6633
Crystal protection	Guaranteed for 500 hrs . min. at full rated power: 2 megawatt peak	Not guaranteed
Recovery time	Short 25μ seconds less than	Long 45μ seconds
Low level charac. teristics	VSWR 1.3 max. over full band. Insertion loss: $0.5 \mathrm{db}(.7 \mathrm{db} \mathrm{at}$ end of life.)	VSWR 1.4 max. Insertion loss: 0.7 db (1.0 db at end of life.)
Size	7.25" long	10.1" long

PROGRESS IN SWITCHING DEVICES Microwave Associates' special switching devices group under the direction of Dr. Lawrence Gould is making steady advances in the art. Available right now are high performance tubes of advanced design: high power single and dual pre-TR tubes; low level receiver protector tubes and high power ATR tubes.
If you are interested in switching high powers and in guaranteed crystal protection at any frequency write or call for full information

MICROWAVE ASSOCIATES INC.

BURLINGTON, MASSACHUSETTS • Telephone BRowning 2.3000
cates the exact speed of rotation. Slipring assemblies, which make it possible to performance-test spinning components, can be added as optional equipment.

Safety Interlocks

Control and operating sequences are governed by a carefully engineered system of electrical interlocks which permit safe operation of the centrifuge in production testing with relatively unskilled labor.

Failure-prone components are weeded-out by centrifuge tests up. to $50,000 \mathrm{G}$'s

The centrifuge will test gravitational forces to meet government specifications for such items as transistors, small magnetrons, semiconductors, and electron tubes. Simple modification of the machine enables it to centrifugally encapsulate components in plastic.

Operation

For test, components are positioned in a plastic liner which fits inside an aluminum centrifuge bowl. In automatic runs, the ultimate speed (from 1,000 to 21,000 rpm) required to produce a specified force level and the duration of rotation at that speed are preset at a control console. A push button closes a sliding door in the armored test chamber and accelerates the bowl to the preset speed for a preset time.

The machine automatically brakes to a stop and the access door opens for removal of test specimens. The entire automatic cycle, including loading and unloading, takes about five minutes.

theory * design * performance of electronic circuits

ELECTRONIC SEMICONDUCTORS

Just Published. A rigorous and systematic introduction to semiconductor physics, developing the subject logically from simple concepts and giving clear pictares of the conduction mechanism of electronic semiconductors within the framework of the band model. Among the book's outstanding features are the treatment of acceleration of electrons, the Zener effect, etc. Book is a translation of the 2nd German edition of Elelironische J/thleiter by Eberhard Spenke. Translated by D. Jenny, H. Kroemer, E. G. Ramberg, and A. H. Sommer, RCA Laboratories, 430 pp., 163 illus., $\$ 11.00$

RANDOM SIGNALS AND NOISE

Just Published. An introduction to the statistical theory underlying the study of signals and noises in communications systems. Contains an introduction to probability theory and statistics, a discussion of the statistical properties of the Gaussian random process, a study of the results of passing random signals and noises through linear and nonlinear systems, and an introduction to the statistical theory of the detection of signals in presence of noise. By William B. Davenport, Jr., and William L. Root, Lincoln Laboratory, M.I.T. 393 pp., illus., $\$ 10.00$

ELECTRON TUBE CIRCUITS

New 2nd Edition Just Published. Discusses and evaluates the fundamental properties of electron tubes and their carcuit operations-analyzes tuned and untuned amplifiers-and takes up in detail circuits essental to modern electronic systems such as voltage, video, and power amplifiers; wavelorm generators; oscillators; modulators. etc. Scores of practical examples show you best applications of theory. By Samuel Seely, Case Inst. of Technology. 2nd Ed. 695 pp., 739 illus., $\$ 10.50$

BASIC FEEDBACK CONTROL SYSTEM DESIGN

Just Published. Bases the study of feedback control system design on complex frequency plane analysis-the root-locus. A wide range of servo transducers and components are covered. Recent advances covered include a section of gyroscopes and force-balance transducers, inertial navigation; analysis of nonlinear systems such as the describing function technique and phase plane analysis. Frequency methods, such as Nyquist and Bode, are included. By C. C. Savant, U. of Southern Cal. 418 pp., illus., $\$ 9.50$

NUMERICAL ANALYSIS

Just Published. Covers the topics most directly needed for a clear understanding of methods used in numerical solution of differential equations. both ordinary and partial, and in the solution of integral equations. Clearly explains the use of finite-difference methods in obtaining numertal solutions to problems-emphasizing procedures which can be most readily programmed for an electronic digital computer. Many helpful techniques such as the use of lozenge diagrams for numerical differentiation and integration are supplied. By Kaiser \mathbf{S}. Kunz, Ridgefield Research Lab. 381 pp., 40 illus., $\$ 8.00$

Composite Circuit Layout Guides Satellite Assembly

By J. H. PERRY

Washington, D. C.
Several unusual and time-saving methods are employed to make the printed wiring cards used in the earth satellite developed at NRL (Electronics, Feb. 28). A composite layout is used as an assembly guide.

The cards-3 are used in the module discussed-are circular in shape, which simplifies layout. Inputs and outputs are separated by placing them on opposite sides of the terminals. The ground, minus and plus voltages, and bias voltages run around the outer edge of the cards making it easy to tap onto for the various circuits.

The masters are laid out on 0.003 inch transparent plastic sheets, each 4 times as large as the card. This sharpens detail upon photographic reduction.

Three layouts are made for each card. The first and second show the wiring on the top and bottom of the card, respectively, with black photographic tape, which can easily be rerouted. The tape is applied with a special tool, described below. These layouts are later processed in the usual manner to make the etched circuits.

Writing with photographic tape applicator is demonstrated in front of composite layout used as guide in assembling satellite instrumentation printed circuit cards

The third layout contains symbols for all components, values, names and notes for special attention, written on the plastic with a red wax pencil.

All three layouts are taped together at one side in book fashion
in the process used to make the assembly diagrams. Each sheet is laid in turn on single sheet of photosensitive paper. The paper is exposed for 5 to 10 minutes under a 275 watt sunlamp. A shaded overlay effect is obtained: the bottom

DESIGN TRENDS: Extruded Plastic Battery Cases

Battery cases facilitate correct replacement of small cells used in portable transistor radios and are expected to find similar applications in transistorized instruments and military equipment. Illustrated are some of types extruded from high impact polystyrene by Anchor Plastics Co., Long Island City, N. Y. Two open types used by Roland Radio Corp. (left) are either hinged to swing out from radio case or riveted to case flap. Closed double tube (center) which fits inside a Sylvania radio is designed to prevent possible short circuits. Tube is keyed on one side to assure correct polarity of contacts

PANEL INSTRUMENT VALUE...

ON A

LONG-SCALE

 READABILITYWESTON'S NEW, MAGNETICALLY-SHIELDED MODELS 1371 AND 1375 FEATURE 7.2-INCH SCALES

Here's a new series of panel instruments offering Weston's traditional craftsmanship with a bonus in readability . . and at low cost, too! Look at these features:

CORMAG MECHANISM: means you can mount these rectangulars on magnetic or nonmagnetic panels . . . in close proximity to other instruments . . . without special adjustments. They're immune to the effects of stray magnetic fields.

EXCEPTIONAL READABILITY: all-plastio fronts, with clear top and sides, provide excellent natural illumination of the oversize scales-without annoying shadows. Normally supplied with lance pointers, for distance reading, these instruments can be supplied with large pointer tips and heavy scale markings as illustrated . . or with mirror scales and knife-edge pointers for more precise readings.

HIGH ACCURACIES: available in most d-c ranges with accuracies from $1 / 2 \%$ to 2%... a-c rectifier types, 3%.

For more details, call your local Weston representative . . . or write to Weston Instruments, Division of Daystrom, Inc., Newark 12, N. J. In Canada: Daystrom Ltd., 840 Caledonia Rd., Toronto 10, Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N. J.

WESTON

UNEQUALLED NATURAL ILLUMINATION

 surprise you

THERE ARE 5 GOOD REASONS FOR THE POPULARITY OF HUDSOH'S SILVER PLATED WIRE!

Here's why the Electronic and Aviation industries prefer Hudson silver plate:

1. Hudson uses only selected copper rods from highest quality stocks for silver plating, and they are thoroughly inspected after drawing.
2. The wire is plated with the finest silver, on the most modern equipment, and tested throughout for thickness of plate.
3. The wire is redrawn, under technically controlled conditions, to finished size and annealed. It is again tested for thickness and continuity of plate and for elongation and resistance.
4. The wire is concentrically stranded and inspected for size, concentricity and resistance.
5. Hudson has 45 years of experience in silver plating wire. From rods to finished wire-it's Hudson made all-the-way. Call us today for spec quotes or technical help on problems.
Hudson is the largest supplier of Silver Plated wire cores to the Teflon* insulating wire industry. When you order Teflon* wire, be sure to specify Hudson's Silver Plate.

Hudson tests each spool for thickness of Silver Plate to meet exact specifications.

Member - National Security Industrial Association

[^5]circuit is dim, the top circuit is dark and the components show lightest of all.

The three printed circuit assemblies illustrated are each $5 \frac{1}{2}$ inches in diameter and 4 inch high. They are potted to form a module.

Peak reader, telemetering and counter ctrods before potting

A 48-channel telemetry encoder system card has 193 parts and 525 soldered connections. Included are 55 transistors and 5 toroidal magnetic cores. Two cores are stacked together for instantaneous Lymanalpha information, 2 for solar aspect information and another for telemeter timing. The card weighs 3.8 ounces unpotted.

A peak reader and solar switch card has 156 parts and 419 soldered connections. It has 31 transistors, 2 peak current memory cores and a solar switch and weighs 2.5 ounces.

A micrometeorite counter card has 132 parts and 456 connections. It has 32 transistors and a 6 -stage amplifier feeding collision signals to a 3 -digit decimal counter with 7

Peak reader and solar switch (top) and counter

Underside of telemetering card
cores. Weight is 3.1 ounces.
Magnetic cores are fastened to the cards with cones of nylon. Cone flanges are machined to 0.010 inch thickness. When wires cross under these pliable tlanges, the flanges will bend and not crush the wires in the core. The cones are anchored by aluminum rivets.
Transistors are hand-mounted by friction fit in drilled holes. Pigtail leads are bent short, cut off and soldered to the printed wiring, providing a firm mounting for testing and adding strength after potting.

Connections are hand-soldered be-

- Packed with helpful valuable data on
the complete line of Comar
relays, solenoids, coils and switches.

Send for your free copy now!

RELAYS - SOLENOIDS COILS • SWITCHES - HERMETIC SEALING

"Termaline" DIRECT READING RF LOADWATTMETERS
 SERIES 6100

These popular direct reading instruments measure and absorb power in 50 ohm coaxial line systems through the range of 30 to 500 mc .
They are portable and extremely useful for field or laboratory testing . . . checking installation of transmitters . . . trouble shooting . . . routine maintenance . . . production and acceptance tests. . . trans. mitter tune-ups measuring losses in transmission lines.. testing coaxial line insertion devices such as, connectors switches, relays filters, tuning stubs, patch cords and the like...accurately terminating 50 ohm coaxial lines, and monitoring modula tion by connecting phone, amplifier or phone, amplifier or
audio voltmeter to the DC meter circuit.

Power scales for Model 61 Special are made to meet your requirements.

WRITE FOR BULLETIN TW606

SPECIFICATIONS

RF INPUT IMPEDANCE: 50 ohm nominal.
VSWR: Standard specification 1.1 to 1 maximum over operating range.

ACCURACY: 5% of full scale. INTERNAL COOLANT: Oil

POWER RANGE: Model 611$0.15,0.60$ watts full scale. Model 612-0.20, 0.80 watts full scale.
INPUT CONNECTOR
Female "N".
EXTERNAL COOLING METHOD: Air Convection.

RADIATOR STRUCTURE: All Aluminum.

FINISH: Bird standard gray baked enamel.
WEIGHT: 7 pounds.
OPERATING POSITION: Horizontal.

OTHER BIRD PRODUCTS

"Thruline"
Directional
RF Wattmeters

'Termaline'
RF Load Resistor

Coaxial
RF Filters

Cooxiaí

Nylon cones which hold magnetic cores
cause dip-soldering would damage transistors mounted on the undersides of the boards. After the cards are fitted together, they are potted with a foam compound, using an aluminum mold.

Handy Applicator for Photo Layout Taping

Layout work for the earth satellite is speeded up by a photographic tape applicator devised at NRL. Used like a pencil, it unreels the $\frac{1}{15}$ inch tape in zig-zag or straight course. A blade cuts the tape at the end of each run.

Photographic tape applicator is as long as a wooden pencil

The applicator is threaded from an 18 -yard spool of black tape. The tape goes through a slot (not touching either side) to a series of rollers at the applicator's lower end.

The first small roller (see diagram) is the only place the sticky side of the tape touches. The cutting blade perforates the tape against the next roller. The last roller, made of rubber, presses the tape to the plastic sheet surface.

The straight edge guide also indicates when to cut or perforate the tape at the end of each line. When the end of this guide reaches the end of a line, the cutting blade is firmly pressed, perforating the tape. The blade is released, but when the
perforation reaches the end of the line, slight pressure on the cutting blade drags on the tape, breaking it at the perforation. Meanwhile, enough tape has run out to start the next line.

The applicator may be attached to the end of a beam compass to make a circle. Minimum drag on the tape allows turns to be made without the tape slipping.

Plastic Gaging Charts

Excess dye is washed from scribed chart
Optical comparator gaging charts can be made with ordinary layout or scribing tools on coated plastic plates supplied by Optical Gaging Products, Inc., New York City. Scribed lines are brushed with a dye-like fluid which impregnates plastic uncovered by scribing. Chart is ready for use after being washed and dried. Plastic plates 0.050 inch thick are said to be next to glass as a chart layout material.

Oil Cleans Contacts

Electrical contacts of any type may be cleaned without abrasive and kept bright with an oil supplied by Caig Laboratories, New Hyde Park, N. Y. The firm states the oil is a combination cleaner, anti-corrosive, preservative and lubricant. It is a neutral mineral oil containing an organic reagent and other additives. It softens metal oxides and sulfides on contact surfaces without affecting clean metal. The oxides are removed by wiping or working the contact. A film of oil will adhere to the cleaned surface. Electrical resistance of the oil is low enough for contact efficiency and high enough to prevent short circuits.

GIANNINI'S MODEL 3416 FREE GYROS MAN THE HELM IN THE NAVY'S TALOS. Mid-course guidance of the TALOS missile is achieved by riding a radar beam to the vicinity of the target. Immediately after launching, aerodynamaic considerations require the missile to fly a straight and narrow path, maintaining constant attitude. Giannini TwaAxis Free Gyros have been piped aboard the TALOS to hold it "steady as she goes!"

Remotely Energized Electrical Cage-Uncage System

Low Drift during High Vibration.
Unrestricted 360° Travel of Both Gimbals

Two Precision Potentiometer Pickoffs

Giannini measures \& controls:

ω	β	θ	ψ	τ	v	ϕ
\vdots	Ω_{n}	u_{i}	h	P	ΔP	T
T_{s}	P_{s}	Q_{c}	M	T_{0}	P_{T}	TiS

Gicmnini

G. M. GIANNINI \& CO., INC., 918 EAST GREEN STREET, PASADENA, CALIF.

Unveil New Servo Devices

Miniaturization Featured

Electromecmanical equipment plavs a big role in the electronics industry. Motors are filling the bill for compact-package requirements in such applications as driving cooling fans and servo systems.
Barber-Colman Co., Rockford, Ill., (300), offers a $1 \frac{1}{4}$ in. diameter p-m d-c motor designed to MIL-M-8609 specs. Capable of operating in ambient temperatures from -65 to +200 F , a typical FYLM motor, rated 15 millihorsepower at 9,700 rpm requires 0.6 ampere and weighs 0.33 lb .

Now in production at Air-Marine Motors, Inc., Amityville, N. Y., (301), is a line of 1 in. cliameter motors. They are intended for use in high temperature ambients. In onc application, as a centrifugal blower driving a $1 \frac{1}{2}$ in. wheel, it delivers 11.6 cfm at 0 in . $\mathrm{s}-\mathrm{p}$ and 0 cpm at $1.05 \mathrm{in} . \mathrm{s}-\mathrm{p}$.
John Oster Mfg. Co., 1 Main St., Racinc, Wisc., (302), has available a servo motor which develops 5 oz in . stall torque yet measures only $2 . t+$ in. long and weighs only 21 oz . The motor is designed to replace two standard size 18 units in applications where space and weight are factors.
A tiny 400 -cycle motor announced by Bendix Aviation Corp., Teterboro, N. J., (303), is designed for use in servo systems where instant response to input signals is mandatory. It measures $\frac{1}{2} \mathrm{in}$. in diameter by $1 \frac{13}{6} \mathrm{in}$. long. It consists of a squirrel cage rotor mounted on precision ballbearings, a tivo phase stator and a stainless steel housing.
Digitronics Corp., Albertson Avc., Albertson, L. I., N. Y., (304), manufactures the A-500 mechanical brake. It has a high braking action of $10 \mathrm{in} . \mathrm{lb}$, a low control force of 0.06 in .1 lb , and a response time of 0.001 sec . The unit features integral construction with built-in controls in a complete envelope with sealed ball bearings.

System Analyzer add-a-unit design

Technical Electronics Corp., t060 Ince Blvd., Culver City, Calif. Automation testing of continuity, leakage, resistance, capacitance, inductance and voltage for electronic circuitry and cables is performed by a new system analyzer. Add-i-imit concept makes it adaptable to a few up to several hundred pairs of circuits, and to simple or involved tests.
Capabilitics include: (1) single or combined comparison of resistance, capacitance and inductance;

It takes a lot of doing to produce the exact same thing over and over again hundreds of thousands of times-without slipping up on a thousandth of an inch, watt, or milligram. This insistence on uniformity has helped build our reputation as the world's most Consistently Dependable producer of capacitors. Continuously uniform production is a science -one that we've painstakingly pursued since 1910.

Typical of the "countless" C-D electrolytics used by major equipment manufacturers the world over are:
"EC" MINIATURIZED CERAMIC CASED TUBULARS For crampedspace applications in hearing aids, transistorized devices, and remote control assemblies. Less than $1 / 4^{\prime \prime}$ D., only $3 / 4{ }^{\prime \prime} \mathrm{L}$.
"NL" ULTRA-SMALL Hermetically sealed aluminum cased electrolytics, built for compactness, ruggedness, low leakage, long shelf and in-use life.

TANTALUM 3 tubular types, all with low power-factor, mois-ture-impervious hermetic seal, long service and especially long shelf life. "TX" with sintered anode; "TAN" miniature foil type; sub-miniature, low-voltage wire anode type "NT".

TYPE "UP" Made in the smallest tubular aluminum cans possible for any given capacity and voltage combination. In single, dual, triple and quadruple capacity combinations.

Write for catalog to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

9
SOUTH PLAINFIELD. N. A.; NEW EEDFORD. WORCESTEA A CAMBRIDGE, MASS.i PROVIDENCE a HOP VALLEY, R. I,: INDIANAPOLIS, IND.: SANFORD, FUQUAY GPRINGS Q VARINA, N. C.; VENIGE, CALIP.

(2) acljustable hi-pot and leakage testing-includes search feature for fault points; (3) indiscriminate
tcsting of voltage percentage regardless of voltage, frequency and polarity; (4) visual digital read-out
or tape print-out; (5) remote control; (6) plug-in construction. Circle 305 on Reader Service Card.

Low Pass Filters compact, rugged

Maury \& Associates, 10373 Mills Ave., Pomona, Calif., has developed two new lines of low pass filters for laboratory purposes. They can be obtained to meet any cutoff frequency between 65 and $1,000 \mathrm{mc}$, and can be made to mect extreme envirommental specifications. They are designated as series A with type BNC connectors, and series C, with type N comnectors. Six standard
models are available with cutoff frequencies of $125,250,500,750$, 875 and $1,000 \mathrm{mc}$. Specifications for both series A and C are: insertion loss, 1.5 to 2.5 db ripple in the

pass band; rejection slope, 40 db minimum at 1.25 times cutoff frequency; vswr, 2.5 maximum in pass band; second harmonic attenuation, 60 clb minimum; spurious responses, greater than 40 db above 2 times the cutoff frequency. Power handling for the series A is 15 w , and for the series C, 50 w. Scries A is ${ }_{18}{ }^{9}$ in. in cliameter, and series C , 1 | 10 |
| :--- | in. They range in length from 6 in . to a maximum of l in. (including connectors). Circle 306 on Reader Service Card.

Pulse Transformer subminiaturized

Pulse Engineering, 2657 Spring St., Redwood Citv, Calif. The ES 3 subminiature pulse transformer is particularly useful in transistor blocking oscillator circuits. Body
dimensions for the epoxy resin encapsulated pulse transformers are $\frac{7}{8}$ in. maximum. It is available in two and three winding styles with wire leads of No. 2+ Awg tinned copper. Coil inductances to $3 \mathrm{ml}_{1}$ are available.

Power rating of the units is 1
w average power and 50 w pcak pulse power. Circle 307 on Reader Service Card.

Connector

 shorter, lighterCannon Electric Co. 3208 Humboldt St., Los Angeles 31, Calif. To meet the demands for a shorter, lighter MS-E type connector, the company has introduced the MS-E (series CT) which meets all requirements of specification MIL-C-5015 and is approved for
use on military equipment
Fcaturing an improved end bell

design, the new series CT offers 5-15 percent reduction in weight and up to 25 percent reduction in length as compared with carlier MS-E designs.

Contacts and wires within the new connector are continuously supported by resilient insulators thus climinating voids in which moisture could accumulate. Circle 308 on Reader Scrvice Card.

Rectifier Stacks up to 21,000 piv

Syntron Co., $2+1$ Lexington Ave., Homer City, Pa., announces a new line of $\mathrm{h}-\mathrm{v}$ selenium rectifier cartridge stacks-up to 21,000 volts peak inversc. This ligh voltage is made possible by two iimprovements in selenium rectifiers. First
a high voltage cell, and second a completely new process permitting the use of extra thin base plates on which the selenium is deposited.

These new voltages are available in threc current ratings: 5,10 , and 17 ma (capacitor loads). The containers (either glass tube and ferrule, or phenolic tube) are hermetically sealed, adapting them to continuous operation in salt fog and other adverse atmospheric conditions. Circle 309 on Reader Scrvice Card.

Power Packs programmable

Electronic Measurements Co., Inc., Eatontown, N. J. Model 235 A regulated power pack has a
programmable output capable of furnishing 500 ma at any voltage between 0 and 600 . Moclel 236A (illustrated) is rated at 0 to 600 v $\mathrm{d}-\mathrm{c}$ at a maximum current of 200 ma. Model 236 A also has a $0-150$

- and offering designers in
 industry's most complete standard line!

E-I glass-to-metal seals are available in hundreds of economical types of standardized designs. The complete line ranges from single lead terminals to miniature closures and color coded terminals. Specify E-I super-rugged compression type seals for critical military and commercial appli-
cations. Save time and eliminate custom sealing costs by using application-proven, standardized seals that meet practically every hermetic sealing requirement. Complete engineering data on the E-I Standard Line is contained in one helpful handbook. Write for your copy now.

Select your seals from the complete E-I Standard Line...

ELECTRICAL INDUSTRIES

* manufactured under canadian patent 523.390. united kingdom patent 734.583 and licensed under u.s. patent 2561526

for Super-Fine Cutting of Hard, Brittle Materials... the dffluhite

Industrial Airbrasive Unit

This delicate cutting job was done with our Industrial Airbrasive Unit just to show you how its high-speed, gas-propelled stream of abrasive particles produces a fast . . . cool . . . shockless cutting action
New industrial uses for the S. S. White Industrial Airbrasive Unit are being discovered every day. Developed from the Airdent ${ }^{\text {® }}$ equipment made by S. S. White for the dental profession, the unit can be used in wire-stripping . . . calibrating . . . to remove surface deposits . . etch glass . . . cut germanium and other crystalline forms ... or to etch, drill or light-debur almost every hard, brittle material.

The Airbrasive Unit does these, and many other jobs that used to be difficult - or downright impossible - to accomplish by previously known methods. Think of your own product. Do you have a process that our unit can solve? Send us a sample and let us try out the unit for you. Or, for further information, just write to

First Name in Airbrasive Cutting

> S. S. White Industrial Division, Dept. EU 10 East 4Oth St., New York 16, N. Y.

Western Office: 1839 West Pico Blva, Los Angeles 6, Calip.
v d-c, 5 ma bias supply and a 6.3 v a-c CT, 10 ampere filament supply.

The lo- output in cach case may be programmed from a remote location by means of an ordinaty re sistor, pot or rheostat. For each 500 ohms shunted across the programming line the power pack furnishes one volt. Resistance mat be varied continuously or in steps. Circle 310 on Reader Service Card.

Ferrite Duplexer rotation type

Kearfoit Co., l4st+ Omard St, Van Nuys, Calif. Extremely compact, the model W163-1C-1 Faraday rotation duplexer weighs only 7 oz . yet it offers a frequency range of 9.2 to $9 .+\mathrm{kmoc}$ witl isolation at 20 (lb) minimum and insertion loss of 0.5 clb maximum. It incorporates a mincue coaxial termination to pernit both transmission and reception.

Other features include: vswr of 1.25 maximum; maximum power absorbed in load at 12 w and peak power at 10 kw . Size of the new muit is 23 inn. long by 3.037 in . high (inclucling termination) by 23 in. wide. Circle 311 on Reader Service Card.

R-F Attenuators single or multiple

Ortho Filtiz Corp., Paterson, N. J. The scries VA accurate variable r-f attenuators operate from
d-c to above 250 mc . Standing wave ratio at 100 me is less than 1.01.

Single rotating units are avallable at $0.1,1$ or 10 db per step. Multiple unit assemblies are available in various combinations and are supplied mounted on a standard $3 \frac{1}{2}$ in. by 19 in. panel with front or rear access connections. The maximum change in loss from 0 to 100 mc is 0.1 dl . Circle 312 on Reader Service Card.

Tape Programmer modular design

Industrial Tiamer Corp., $1+07$ McCarter Highway, Newark 4, N. J., has available a new punched tape programmer that will control as many as 85 individual circuits through an almost unlimited mumber of steps or functions. The tape reader uses a vinyl tape which makes available 85 individual load circuits. For each foot length of tape there are $6+$ possible steps.

Available with the unit are memory load relays. These are actuated by a pulse transmitted through the punched hole in the tape. This circuit remains energized until a second pulse is tramsmitted through a subsequent loole in the same channel in the tape. Circle 313 on Reader Service Card.

Transistors

three silicon types
Transifron Electronic Corp., Vakeficld, Mass., has available three new silicon transistors,

Air washed assembly

Varian Microwave Rubes must be particle-free if they are tc meet rizid Jerformance standaris. Varian Factory Engineers met this chellenge by developing air-washed croduction areas in which v-al tube compo ents are assembled in a continuous fow of clear filtered air.
Th s is typical $\mathrm{o}^{=}$the attention to cetail and production skill that have made Varyan Tubes the Standard for "0jt-aread" ricrowave equipment. Over 100 of these tubes are described and pictured in Jur latest catalog. Write for your capy today.

aystrons, traveling wave tubesi, bag-ward wave osciliat jfs, linearr acgelerators, MICROWAVE SYS JEM JOMPONENTS, R.E SPECTFOMETERS. MAENETS, MAGNETOMETERS, SIALOS, POWER A AFLIFIERS, GRAPHIC RELORDERS, RESEARCH AVD DEVELOPMENT SERFICES.

design

MEDALIST*

null indicators

READABLE . . . WIDE RANGE SENSITIVITY
Modern MEDALIST design provides far greater readability and modern styling in minimum space. Unique core and magne structure provides $1 / 2 \mathrm{ua} / \mathrm{mm}$ sensitivity at null point with sharp square،law attenuation to 100 ua at end of scale in Type A. Internal resistance is 2000 ohms. Other sensitivities available ASA/MIL $21 \mathrm{k}^{\prime \prime}$ mounting Standard available, ASA/MH $2 / 2$ mounting. Standard Marion Electrical Instrument Co., Manchester, N. H., U.S. A.
*T.M. Reg. U.S. Pat. Of. U.S. \& Forelgn Patents Copyright (©) 1958. Marion

How To Get Things Done Better And Faster

BOARDMASTER VISUAL CONTROL
Is Gives Graphic Picture - Saves Time, Saves Money, Prevents Errors
$\$$ Simple to operate - Type or Write on Cards, Snap in Grooves
Is Ideal for Production, Traffic, Inventory, Scheduling, Sales, Etc.
H Made of Metal Compact and Attractive. Over 250,000 in Use

Full price $\$ 4950$ with cards
FREE 24-PAGE BOOKLET No. C-20 Without Obligation
Write for Your Copy Today
GRAPHIC SYSTEMS
55 West 42nd Street - New York 36,N. Y. CIRCLE 72 READERS SERVICE CARD

2N47IA, 2 N 474 A and 2 N 479 A . They have been fully specified in MIL-T-19500A format for life, environmental and mechanical tests.

Manufactured by diffusion, these transistors have very low $I_{\text {co }}$ up to their maximum voltage (30 v) and temperature (175 C) ratings. They are hermetically scaled in the industry standard JETEC 30 package. These types are electrically interchangcable with the 2N117, 2 Nl 18 and 2 Nl 19 , and can replace these types wherever the JETEC 30 package is preferred. Circle 314 on Reader Service Card.

Servo Tester

 high speed unitIndustrial Control Co., 805 Albin Ave., Lindenhurst, N. Y. Model $105-\mathrm{AR}$ is a stable sine wave generator designed for the automatic frequency response measurements of servo systems and associated components. It fcatures remote control of data frequency, quadrature outputs, and is built to fit into a $19-\mathrm{in}$. rack with a panel height of $8 \frac{3}{4} \mathrm{in}$.

The instrument covers a data frequency range from 0.3 to 30 cps , with different ranges available on special order. Circle 315 on Reader Service Card.

Power Supply transistorized

Hyperion, Inc., 1447 Washington St., West Newton, Mass. Model HY Al-32-10 transistorized a-c to d-c power supply is designed for $4-32 \mathrm{v} \mathrm{d-c}$ and 10 ampere loads. Components are protected against

36 Experts help you in $=$

- Research - Development - and Design of FEEDBACK CONTROL SYSTEMS

Now-in a sinyle, deesktop reference design and development engineers have access to a wealth of information on components and design techniques for feedback control systems. Here you find practical emphasis on components, including electro-mechanical, mechanical, hycraulic, and pneumatic as well as electronic and magnetic components. Questions of component selection are answered readily Win this book that gives physical
ponents work, mathematical
descriptions of their use in typical control sys tems. Iimitations on operating characteristics and techniques for measwing these characteris tics.

CONTROL ENGINEERS' HANDBOOK

Servomechanisms, Regula-
 back Control Systems Prepared by a Staff of Specialists

Editor-in-Chief HOHN G. TRUXAL
Irofessar and Head, Dept. of Electrical Engineering, Polytechnic Institute of Brooklyn
1048 pages, 6×9, hundreds of illustrations, $\$ 18.50$

EASY TERMS: ${ }^{56.50}$ in 10 dars

until $\$ 18.50$ is paid
The greater portion of the book is devoted to a description of the basic characteristics of the components of automatic feedback control systems. It also shows how these components are assembled in the design
Covers these
topics:
-Transistors

- Magnetic Amplifiers - Thyratron Amplifiers - Contactors and Relays
- Power Supplies
- Power Supplies - Electromect
Actuators Actuators Mechanical Compo. nens
Clutches and
Brakes
Hydraulic Components
- Pneumatic Components
- Signal Transducers
- Process Control Systems
-Regulators
-System Design
Techniques
-Basic Theory

10 DAYS' FREE EXAMINATION

CIRCLE 73 READERS SERVICE CARD

overloads and short circuits. Output impedance is less than 0.01 ohm from d-c to 100 kc . Regulation is 0.5 percent from 0 to full load and 0.5 percent for $105-125 \mathrm{va-c}$ line variations. Ripple, inclucling noise and hum, is less than 3.0 mv . Circle 316 on Reader Service Card.

Indicator

shows temperature
Dinamic Development Co., 59 New York Ave., Westbury, N. Y., announces the TB102 low-cost direct-reading temperature indicator for gencral laboratory use. It is especially adaptable to temperature measurement at points in the interior of large clectronic equipment, for example, to discover thermal gradients and the effects of cooling. Ambient temperatures and temperatures at different points in enviromment test chambers are conveniently measured. Circle 317 on Reader Service Card.

Binary Counter uses plug-in core

Telechrome Mfg. Corp., 28 Ranick Drive, Amityville, N. Y. Model 301-D binary counter is designed for use with te synchronizing gencrators and other binary counter applications. The miniaturized counter is an ultrastable circuit, built as a subchassis which may be mounted in conjunction with additional circuitry. Measuring only $7 \frac{3}{4}$

FOR FURTHER INFORMATION, WRITE DEPT. E4

1 out of every 100 Production Units

Check These Additional Fairchild Reliability Features:

\checkmark FAIRCHILD tests a 1% Quality Control sampling from Production runs. These random sample units are fully tested under all environmental conditions to insure their reliability.
\checkmark fairchild has complete environmental test facilities and does not depend upon outside laboratories for these tests.
\checkmark falrchild Type tests as well as Quality Control tests are conducted under Air Force surveillance and with approved facilities.
\checkmark fairchild development units are tested to complete environmental exposure before they are released to the Production Department.
\checkmark fairchild makes use of pilot production runs to insure performance before full schedule production runs are made.
\checkmark fairchild has a complete inspection set up including incoming, winding, line and sub assembly inspection and 100% final inspection against customers drawings and specifications.
\checkmark falrchild Engineering sets up standards for materials and purchased parts in order to meet reliability requirements.
\checkmark fairchild has three modern air-conditioned plants.
Only Fairchild Linear and Non-Linear Pots incorporate all of the above Reliability features. These High Reliability units can be had in $3 / \mathbf{a}^{\prime \prime}$ to $5^{\prime \prime}$ diameters, single and multi-turn, in standard and high temp versions and with accuracies as high as $\mathbf{0} 09 \%$.

For more information write Dept. 14T.

* Built-in SAFETY FACTORS beyond the specs for reliability in Performance.
in. by $3 \frac{1}{4} \mathrm{in}$. by $3 \frac{7}{8} \mathrm{in}$., Telechrome has made available the newest portable synchronizing generator measuring only 19 in . by $12 \frac{1}{2} \mathrm{in}$, high including power supply. A special fcature of the model 301-D binary counter is the plug-in type magnetic cores which, although highly dependable, may be replaced easily in the field. Circle 318 on Reader Service Card.

Power Converter

for small missiles

Power Sources, Inc., Burlington. Mass. Models PS1008 and PS1009 transistorized telemetering power converters are designed specifically for installation in small missiles. Only 5.5 in . in diameter and $4 \frac{3}{4}$ in. long, these converters provide 270 v at 22 ma, 150 v at 10 ma, and 30 v at 15 ma , all with 75 mv or better ripple, from inputs of 16 v d-c for the PS1008 and 7 v dec for the PSl009. Weight is 2 lb 8 oz . Units are capable of operation at temperatures up to 85 C and are fully ruggedized to meet all missile shock and vibration specifications. Circle 319 on Reader Service Card.

Capacitors
 computer grade

General Eilectric Co., Schenectady, N. Y., offers a new line of d-c Alumalytic capacitors for extremely
high microfarad applications such as the bulk capacitance requirements of computer power supplies. Units are rated from $30,000 \mu \mathrm{f}$ at 10 v dec to $1,000 \mu \mathrm{f}$ at $+50 \mathrm{v} \mathrm{d-c}$ and will operate from -20 C to +65 C .

The capacitors are manufactured with diameters of 1 in., $1 \frac{3}{8} \mathrm{in}$., 2 in. and 3 in., and with al length of $+\frac{1}{8} \mathrm{in}$. The l in. and $\frac{13}{8} \mathrm{in}$. diameter units are available in case lengtlis of 2 in ., $2 \frac{1}{2} \mathrm{in}$., 3 in. and $3 \frac{1}{2} \mathrm{in}$. Cirele 320 on Reader Service Card.

Sealed Fuses

subminiaturized
McGraiv-Einson Co., Bussman Mfg . Div., University at Jefferson, St. Louis 7, Mo. Fuses of minute size are available for use with miniaturized circuits, controls, clectronic devices, and electrical equipment. Made of hermetically sealed glass tulbes with lead-ins, these fuses mect requirements for potting and encapsulating. The hermetic scal prevents potting material from seeping into the fuse calse and interfering with depenclable operation of the fuse. The fuses are designed to withstand heavy sloocks and vibrations. Circle 321 on Reader Service Card.

A-C Preamplifier variable gain

Burr-Brown Research Corp., Box 6+44, Tucson, Ariz. Model 110 amplifier is completely transistorized and self-powered from ordinary C size flashlight cells. It features an imput impedance of over 1 megohm continuously ad-

DUPONT
 REPORTS ON FREON (R) SOLVENTS

Without inhibitors, new solvents by Du Pont remain noncorrosive in repeated degreasing use

An outstanding characteristic of DuPont's new "Freon" solvents is their remarkable stability in the presence of water, oils or metals. Without inhibitors, "Freon" shows exceptionally low increase in acid-
ity under degreasing conditions. Chart shows results of one test which simulated degreasing conditions. Solvents pluschlorinated paraffinic cutting oil and sulfurized lard oil were refluxed for 24

SOLVENT	INCREASE IN ACIDITY, milliequivalents per liter
"Freon"-mF	1
"Freon"-tF	1
Inhibited Methyl Chloroform—Source A	\%M.
Stoddard Solvent	
Inhibited Methyl Chloroform-Source B	
Carbon Tetrachloride	

FREON* SOLVENTS MINIMIZE CLEANING HAZARDS

These new solvents by Du Pont offer exceptionalsafety for menandequipment. "Freon" solvents are much less toxic than ordinary solvents. "Freon" solvents will not burn orexplode; generally do not affect metal, synthetic rubber or plastics. "Freon" solvents are suitable for a wide range of uses where ordinary solvents create problems of toxicity, flammability or corrosion.
hours in the presence of powdered iron and aluminum turnings. The low rate of acid formation shown for "Freon" solvents makes them ideal for cleaning where corrosion could damage delicate parts. Since no inhibitors are required, "Freon" can be recovered and reused without problems of reinhibiting, and no residue is left on the part.

For your free copy of Du Pont's booklet describing the unique properties of "Freon" solvents, mail the coupon or write Du Pont at the address below.

"Freon" Products Division 524 Wilmington 98, Delaware

BETTER THINGS FOR BETTER LIVING . . through chemistry

justable gain to 50 db , responsc from 10 cps to $500,000 \mathrm{cps}, 0.5$ percent maximum distortion, and 750 hours battery life. The unit is housed in a deep-drawn aluminum case measuring 4 in. by 8 inl. by 4 in. The unit can be supplied with either continuous gain control or in stepped gain control. Circle 322 on Reader Scrvice Card.

Relay

balanced armature

Hi-G, Inc., Bradley Field, Windsor Locks, Conn., announces the new HG-4SL series relay whose size and mounting dimensions meet proposed MS drawings and MIL-R25018 relay specifications. Rated for dry circuit operation through 10 ampere contacts, it is available in 1, 2, 3 and 4 pole form A, B or C contact arrangements. It can be operated from voltage sources from 4 v through 250 v . It meets MIL-S-901B shock specifications and is available on a short delivery basis. The relay has the rugged, rotary, balanced armature design of other Hi-G types. Circle 323 on Reader Service Card.

Data Processor produces punched tape

Taller \& Cooper., 75 Fiont Strect, Brooklyn, N. Y. introduces a data processor that translates information into punched tape form for computer use. Steady state data is punched on a permanent file
card. Cards can be coded in more than 30,000 combinations with a conductor's punch. Variables are added by a typewriter-like keyboard. The sum of al steady state data and newly-added information is fed to a tape punching device, and the card is then returned to filc. The sustem is currently in use by a music company, for tabulating composer royalty payments. Circle 324 on Reader Service Card.

Precision Pots high reliability

Carter Mfg. Corp., 23 Washington St., Huclson, Mass. Combining ligh temperature operation with long load life, these high reliability precision potentioncters have been lab and field tested for nearly two years. All eight standard resistance values (100 to 25,000 ohms) are manufactured with 20 ppon resistance wirc and can dissipate more than $\frac{1}{2}$ w at 125 C for more than 2,000 hours. Circle 325 on Reader Service Card.

Counter-Timer
 in-line readout

Systron Corp., 2055 Concord Blvd., Concord, Calif. Model 1031 is a single package in-line mega-cycle-microsecond counter-timer. Providing flexibility and reliability for laboratory applications it measures: frequency to 1 mc , time and period in $1 \mu \mathrm{sec}$ increments, phase angles in 0.1 deg increments, cvents to 7 digits, ratio of ? frequencies and acts as a sccondary frequency standard.

Principal feature is the in-line

look what \$2450 buys

in test equipment!

HEATHKITS GIVE YOU
TWIGE AS MUCH equipment for every dollar invested
The famous model V-7A Vacuum-Tube-Voltmeter is a perfect example of the high-quality Instruments available from Heaih at $1 / 2$ the price you would expect to payl Complete,
only
$\$ 2460$

Get the most out of your test equipment budget by utilizing HEATHKIT instruments in your laboratory or on your production line. Get high quality equipment, without paying the usual premium price, by dealing directly with the manufacturer, and by letting engineers or technicians assemble Heathkits between rush periods. Comprehensive instructions insure minimum construction time. You'll get more equipment for the same investment, and be able to fill your needs by choosing from the more than 100 different electronic kits by Heath. These are the most popular "do-it-yourself' kits in the world, so why not investigate their possibilities in your particular area of activity! Write for the free Heathkit catalog now!

Contains detailed descriptions of Heathkit models available, including VTVM's, scopes, generators, testers, bridges, power supplies, etc.

Also describes Heathkit ham gear and hi-fi equipment in kit form. 100 interesting and profitable "do-it-yourseif" projects|

FREE catalog

Mall coupon below for
your copy-Now!

HEATH COMPANY
A SUBSIDIARY OF DAYSTROM, INC, BENTON HARBOR 14, MICHIGAN

Name
Address
Clity \& Zone

State

Vulcanized Fibre Is Versatile

The applications of Taylor Vulcanized Fibre are many in number. This is because of its many unusual characteristics. It is a hard, dense material with excellent physical, mechanical and electrical properties. It is tough and resilient; has high resistance to impact, abrasion, wear, organic solvents, oils and gasoline; it can be machined, stamped, punched and formed; it is attractive in appearance, light in weight.

Taylor Vulcanized Fibre is available in a number of different grades, in sheets, rolls and turned rods. Undoubtedly you have an application where the unique properties of vulcanized fibre can be put to work in your product. A Taylor application engineer will be glad to discuss requirements with you and recommend the best grade to fit then. Get the benefit of his advice by contacting Taylor Fibre Co., Norristown 40, Pa.
display of information. The well illuminated one-inch high numerals are clearly readable at distances up to 30 or 40 ft . Also featured is modular construction for all amplifiers and control circuitry. Circle 326 on Readcr Service Card.

Recorders

antenna pattern

Scientific-Atianta, Inc., 2162 Piedmont Road, N. E., Atlanta 9, Gcorgia, announces a new serics of rectangular antenna pattern recorders. Model 121B recorders offer greater accuracy, faster pen and chart response speeds, and the new plug-in balance potentiometers for selecting linear, logarithmic or square root pen responses

The companion series 122 B polar antenna pattern recorders incorporating all the improvements of the new series is also announced. Both recorders use the improved bolom-cter-crystal amplifier. Circle 327 on Reader Scrvice Card.

Receiving Tubes six new types

CBS-Hytron, a division of Columbia Broadcasting System, Inc., Danvers, Mass. Two hybrid auto radio tubes, two series-string tubes, a
whf tuncr tulbe and a color to h-v rectificr are amounced. Circle 328 on Reader Service Card.

Phase Meter
 high sensitivity

Tiee Industrial Tes: Equiparent Co., 55 E. 11 St., New York 3, N. Y. Phase meter model 200 AB features high sensitivity, and high input imperlinice for the reference input as well as for the signal input. As with the other Phazor instruments. model 200 AB measures phase angles by a micue multiply ing principle which permits measurements to be made accuratels in the presence of noise and hamonic voltages.

The instrmment can be used to measure in-phase and quadrature components of woltage, and by the use of simple circuit techniques may be used to measure phase angles in the order of 0.01 deg. Circle 329 on Reader Service Card.

Silicon Rectifiers high voltage type

Pacific Seaiconductors, Inc., 1045l West Jefferson Blucl., Culver Citv, Calif., amounces a new line of very high voltage cartridge silicon rectifiers. Voltage range is from

Bendix-Paciffe SUBCARRIER DSCRIMHLITOR

Model TDA-608
HIGHEST ACCURACY...STABILITY... RELIABILITY for Data Processing

Through the use of computer-type high speed switching circuitry, a highly stabilized current source, a low-temperature coefficient quartz delay line and precision resistors and output low-pass filters, this discriminator offers the finest equipment for telemetering receiving stations and data-processing systems.

Each discriminator can be operated on any one of the 23 IRIG bands by a front panel selector switch or from a remotely located band switch. An automatic, transistorized servo-actuated zero and full-scale calibration feature is optional in this equipment.

Associated equipment also is available to compensate for wow and flutter components from magnetic type recordings, and filters to separate the composite subcarrier signal prior to input to the discriminator.

Bendix-Pacific Model TDA- 102 Discriminator, a dual channel unit operating on any telemeter band with appropriate plug-in filter units, also is available.

NEW BENDIX-PACIFIC COMMUTATOR SWITCH
 for PDM Telemetering Systems

Madel: TSC - 200
Circuits: 2 independent sections of 90 contacts each
Speed: 20 RPS
Motor: 115 volt AC 400 CPS or 26.5 volt DC

Life: 500 hours (Total)
Temperature: $-35^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Vibration: 25 g to 2000 CPS
Acceleration: 75 g any axis
Size: $41 / 2^{\prime \prime} \times 33 / 8^{\prime \prime} \times 31 / 2^{\prime \prime}$
approximately
Weight: $21 / 2 \mathrm{lbs}$. approximately
Wiring: Internal interconnections per IRIG standards for PDM, or Internal inter connections to customer specifications.
Other circuits and speeds can be provided upon request.

East Coast: (Eastern Representative) P.O. Box 391, Wilton, Connecticut - Dayton Ohio: 120 West 2nd - Washington, D.C.: Suite 803, 1701 "K" Street, N.W. Canadian Distributors: - Computing Devices of Canada, Ottawa 4, Ontario Expart Division: - Bendix International, 205 East 42 nd Street, New York 17

First to develop a truly miniature elapsed time indicator, HAYDON at Torrington now offers this varied line of miniature, hermetically sealed, timing devices all tested and proved in the field in missile guidance and jet aircraft applications.
Basis of all these miniature devices is the Haydon 400 cps Synchronous Timing Motorthe inherently accurate approach to instrumentation in military equipment. Sealed-in-steel case eliminates stray magnetic fields. Elapsed Time Indicators are available in the direct-reading type illustrated and also in dial type. Newest additions to the line are the miniature Time Delay Timer and the miniature Repeat Cycle Timer available with 1 to 4 switches. Weight is approx. 7 ounces.
OTHER HAYDON TIMERS FOR MILITARY APPLICATIONS . . . include: D.C Timing Motors for 6 to 32 volt operation, 60 Cycle A-C Motors in a very wide range of speeds, Heavy Duty 400 Cycle Timing Motors, and Elapsed Time Indicators for 60 cycle operation.

GET COMPLETE INFORMATION NOW

Consult the Haydon Field Engineer in your area or, if you prefer, write to us direct, outlining your requirements. You'll find that Haydon has the experience, know-how and facilities to solve all your timing problems.
\qquad

HAYDON FEATTDOIT
 ATTORRINGTON

Division of General Time Corporation TIMING 2428 East Elm St., Torringion, Conn.

1,500 to $16,000 \mathrm{v}$, at temperatures to 150 C .

The eighteen types in the new line neet or exceed EIA specification in the IN 1133 to IN 1149 serics. 'The units are highly ruggedized witl all conncetions between component diodes firmly bonded within a high impact scaled sleeve. They can be mounted into a standard 30 ampere fuse clip. Body lengths range from $l^{\frac{13}{6}} \mathrm{in}$. to $6 \frac{1}{16}$ in. Circle 330 on Reader Service Card.

Load Isolator

for X-band radars
Litron Industries, 5873 Rodeo Road, Los Angeles 16, Calif. Model $\mathrm{Xl03} / \mathrm{Sl} 65$ ferrite load isolator is designed for use in X-band radars where insertion loss must be held to a minimum.

Operating at 100 kw power, it is guaranteed to give a minimum of 8 db isolation with a maximum of 0.3 dl) insertion loss between 8,500 and $9,600 \mathrm{mec}$. Units produced actually showed only 0.2 dl insertion loss over the bandwidth.

With choke flanges, length is 2.07 in . With cover flanges, lengt? is only 1.6 in . Weight is less than 1 lb . Circle 331 on Reader Service Card.

Frequency Meter

 and counterWestport Electric, 149 Lomita St., El Scgundo, Calif. Model WE-120 portable, light weight,

Get out your pencil and . . .

Help yourself to electronics' READER SERVICE it's free-it's easy-it's for your convenience

Each Advertisement and New Product item is numbered.

For more information, simply . . .
(1) Circle number on postpaid card below that corresponds to number at the bottom of Advertisement; or New Product item.
(2) Print your name, title, address, and firm name carefully. It is impossible to process cards that are not readable.

*FOR SPECIFIC ITEMS IN MULTI-PRODUCT ADVERTISEMENTS

Please indicate in box in postcard marked with asterisk (*) spexifle item(s) in ad in which you are interested. Please write ad circle number(s) and specific product(s) on which you want more information.

Additional postage MUST be added to cards for all FOREIGN MAILINGS

An occasional Advertisement cannot be numbered for the READER SERVICE CARD due to lack of space and must be indicated by writing the Advertisers' name in the space at the bottom of the card...

An occasional Advertisement cannot be numbered for the READER SERVICE CARD due to lack of space and must be indicated by writing the Advertisers' name in the space at the bottom of the card...

\section*{APR 25 . 58
 CARD EXPIPES JUN 25.58
 electronics - engineering edition - reader service card
 (NAME) ___ (POSITION)
 (COMPANY)
 \qquad (ADDRESS)
 CIRCLE THESE NUMEERS ONLY WHEN YOU ARE INTERESTED

APR $25 \cdot 58$

electronics - engineering edition - reader service card
CARD EXPIRES
JUN 25.58
(NAME) \qquad (POSITION) (COMPANY) \qquad (ADDRESS)

CIHCLE THESE NUMEERS ONLY WHEN YOU ARE INTERESTED CIRCLE THESE NUMEERS ONLY WHEN

MEMO:
 NHW PRODUETS RELIASES

TO: ALL MANUFACTURERS

FROMz electronics
olectronics publishes all now product items of interest to makers and users of electronic and allied equipment.

The reverse side of this card provides a service to subscribers by facilitating the flow of additional information between manufacturers and our readers.

Take advantage of Reader Service-mand the readership of electronics...keep the industry informed about your New Products and New Literature via their mention in the editorial pages of electronics.

BUSINESS REPLY CARD

no postage stamp necessary if mailed in the united stapms
4¢ Postage Will Be Paid By

ELECTRONICS

Reader Service Dept. 330 West 42nd Street New York 36, N. Y.
five-decade frequency or events per unit of time meter and electronic counter uses decade glow transfer tubes for both cligital presentation and digital division of the time base frequency. The simplified circuitry of the glow transfer tubes provides a high degree of reliability (counter tube expectancy in excess of 10,000 hours), and low power consumption.
lirequency range of 10 to 100 ,000 cps , and stability of 0.001 percent, ± 1 count, make the unit uscful as a laboratory instrument as well as for production testing. Circle 332 on Reader Service Card.

Thermostat

snap-action device
James Kniguts Co., Sandwich, Ill. A positive snap action bi-metal thermostat for highly reliable, long life operation is a principal feature of the new JKO9S scrics of ovens.

This newly-designed disk type thermostat, combined with the unique thermal-filtering design of the oven proper, retains close temperature control while climinating the fallibility of previouslyused creep-action thermostats.

Ideal for housing quartz crystals, diodes, resistors and capacitors, the new JKO9S series of ovens meets military environmental specifications. Circle 333 on Reader Service Card.

Radiation Counter rapid response

Stanley Aviation Corp., 2500 Dallas St., Denver 8, Colo., has developed a rapid response gamma radiation counter which has a response rate of the order of 10 milli -
capacitors... inductors... and ENGINEERING!

and for any unusual audio network, designed to your most exacting specifications, your best choice is Chicago Standard.

THE
 ELEMENT
 OF
 FREEDOM
 and the System-Oriented Engineer

Freedom is doing what you like. Some system-oriented engineers like best to match their wits and skills against difficult problems. This characteristic or (idiosyncrasy) of liking complicated technical problems is one of the chief qualifications of the engineer we need. He will be required to study the multitude of interactions possible among advanced aircraft, missiles, and electronic devices with each other and with human elements in the nation's most extensive man-machine-computer system.

To qualify, substantial experience with air-to-air or ground-to-air missiles systems is required together with demonstrated aptitude in the field of system planning. Write for more information or call collect. Address: R. W. Frost, System Development Corporation, 2408 Colorado Ave., Santa Monica, California, EXbrook 3-9411.
sec or better. Basicalliy the devicc consists of a scintillation type detector plus associated electronic circuitry which essentially integrates the number of counts over a specified time period to produce a periodic d-c signal whose amplitude is proportional to the radiation intensity.
The precision of the device is strictly a function of the statistical variation in gamma radiation and of the sampling interval. Conscquently the accuracy can be improved either by lengthening the sampling interval or by increasing the detcctor size, thus increasing the sensitivity of the instrument. Circle 334 on Reader Service Card.

Telephone Relay highly sensitive

Kurman Electric Co., Division of Norbute Corp., 191 Newel St., Brooklyn, N. Y., has available a new, highly sensitive telephone relay called serics AS. Features include two microswitches, resistances up to 75,000 ohms and d-c operation. A maximum of 100 milliseconds release delay is available. Circle 335 on Reader Service Card.

Analytical Balance for research uses

Wm. Ainswortif \& Sons, Inc., 2151 Lawrence, Denver 5, Colorado. An automatic, recording, analytical balance shows instantaneous weight and rate of weight change. Probable applications for the new lab tool are in thermogravimetric analysis, and in investigation of
evaporation, absorption, corrosion, oxidation, decomposition and other reactions in which weight-vs-tinte or weight-vs-temperature (or other factor) is significant. Samples can be placed on the balance pan or suspended in a controlled environ ment, above or below the balance.

This balance combines the range and accuracy of the analytical balance with a continuous record and automatic operation. Circle 336 on Reader Service Card.

Component Package for printed circuits

Polypiase Instrument Co., East l'ourtly St., Bridgeport, P'a. 'Гype B. $\$ pulse tiansformer is designed to inchude all features required for printed circuit applications keeping low cost in mind. Plug-in terminals are arranged on the 0.1 in. multiple grid printed circuit board spacing. The units are heved for casy insertion with automatic machiner: lour fect provide board elcarance and climinate condensation problems. Epony encapsulated PIC standard pulse t:msformers and toroids in the plastic BA case mcei applicable sections of MIL-T-27A and 21038 . Overall dimensions are $\frac{18}{18} \mathrm{in}$. square, $\frac{1}{2} \mathrm{in}$. high, $\frac{1}{4} \mathrm{in}$. pins. Circle 337 on Reader Service Card.

Precision Pot
 hermetically sealed

T'echnology Instrumenti Corp. 531 Main St., Acton, Mass. The rotary Metlfilm precision potentiometer is hernetically sealed and features super-tested reliability, infinite resolution, very high accuracy, operation at a temperature up to
 cool performers, they are inherently stable and insensitive to carrier frequency variations, thereby stabilizing the servo system.

For all the facts about Beckman Rotating Components, cut down for quick reading, write for data file 43A.

Helipot Corporation Neu'port Beach, California a division of Beckman Instruments, Inc. Engineering representatives in principal cities

all types conforming to SPECIFICATION MIL-W-16878B

Within the wide range of insulated electronic wires . . . conforming to Specification Mil-W-16878B . . .
Continental offers every type and size. Insulations in polyvinyl . . . Teflon . . . Silicone Rubber . . . and Nylon . . . assure a Continental wire to Mil-W-16878B
specifications for practically every electronic operation where moisture, high and low temperatures, and corrosion present their problems.

Whether from stock or to your special order, Continental insulated wire is quality engineered to precise specifications. For help with your insulated wire requirements, write today. Be sure to give details on amperage, voltage, diameter limitations, and operating temperatures.
Direct all inquiries to CONTINENTAL WIRE, Wallingford.

WALIINGFORD, CONN. YORK, PENNA.
$1+5 \mathrm{C}$, low torquic and long life exceeding $1,000,000$ cycles. The encitpsulated deposited metal on film resistance elcument with a compression contact permits hermetic sealing and the capacity to withstand extreme environmental conditions. Identified as type MFR the pot is dvailable in $1 \frac{5}{8} \mathrm{in}$. and 2 in . diameter housings. The MFR-1 offers a resistance range of 1 K to 25 K ohms; and the MFR-2, a range of 1 K to 50 K olims. Circle 338 on Reader Scrvice Card.

Desk Computer
 priced at \$15,000

Clary Corp., San Gabriel, Calif. Simplicity of operation while performing many of the functions of the giant computers is offered by this new electronic computation system (ECS). Built into a standard desk so that it takes no extra space. the completely transistorized FCS fills the void between the electronic brains and the mechanical calculators. It uscs electronic means to perform all basic types of computations.

Figures are entered into the system through the special keyboard the girl is shown working and the computations are performed by an electronic unit stored in the drawer section of the desk. Results are printed automatically on the adding machine-type print unit. Circle 339 on Reader Service Card.

Power Supply all-semiconductor

Deltron Inc., P.O. Box 192, Glehside, Pa . Model H3615 transistor power supply is now a a ailable. It supplies voltage from $0-36 \mathrm{v} \mathrm{d-c}$ at currents from $0-15$ ampercs at any voltage setting. The all-transistor circuit gives rapid transient
sponse with recorcry times less than $100 \mu \mathrm{sec}$. Combined Jine and loart regulation is less than $\frac{1}{2}$ percent for changes of load from 0-15 amperes and for line changes from 105 125 v . Output ripple is 3 mv over most of the range, making the unit an ideal replacement for storage batterics and other low ripple d-c sources.
The instrument is 8 腬 in. high loy 19 in. wide by 14 in. deep, and weighs approximately 50 lb . Circle 340 on Reader Service Card.

Connector

for high current
「he Deutsch Co., 7000 Avalon Blvd., Los Angeles 3, Calif. A 4-pin arrangement in a 19 -pin shell is a feature of the company's new DM $9700-194$ and DM 9601-194 miniature electrical comector. The four No. 12 size contacts are miniaturized, and each is capable of carrying 40 amperes, continuously with 50-anpere surge.
The connector was designed for use in high current circnits and has a D rating. Envelope drawiugs are available. Circle 341 on Reader Service Card.

Magnetic Shielding simplifies filtering

Magnetic Shield Div., Perfection Mica Co., 1322 No. Elston Ave.,

KLEIN PLIERS

 make wiring faster

There's a lot to like in Klein Pliers. There is a size and style for every job, even the toughest wiring assembly. All are made of finest alloy

PAT. APPLIED FOR
Yours for the askingfree copy of the new Klein Pocket Tool Guide.

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp., New York

ENGINEERS: Electronic \& Mechanical Physicists Research.Development.Pilot Production

$$
d s^{2}=d x^{2}+d y^{2}+d z^{2}-c^{2} d t^{2}
$$

Is today the same as yesterday?

Every now and then a man stops and takes stock of himself and his career. He sizes up what he has accomplished. Where he is heading.

If you are doing just that and find that you are ready for a long step forward-for increased responsibility and stature-it may pay you to consider Melpar.

These forces will be working for your advancement when you join our organization: diversified and stimulating programs with an opportunity to follow projects from inception to prototype completion or production; an atmosphere of professionalism and regard for your individual ideas and contributions; a promotion policy based solely on your ability; a steady program of expansion which continually creates new positions.

Our well equipped laboratories and manufacturing facilities are located near suburbs that promise gracious living for your family and easy commuting for you.

For details about career opportunities at Melpar, write: Technical Personnel Representative.

(1) MELPAR Incorporated $^{\text {MER }}$
A Subsidiary of Westinghouse Air Brake Company 3028 Arlington Boulevard, Falls Church, Virginia 10 miles from Washington, D. C.
Openings are also available at our laboratories in Boston and Watertown, Massachusetts

Chicago 22, Ill. A new Netic magnetic shield designed for greater effectivencss in isolating the substantially increased transformer radiation in transistorized power supplies has been announced. Such radiation is more severe in transistorized power supplics because of the considerably higher switching rate than can be accomplished by vibrators.

The shield simplifies filtering problems associated with this type of supply, is not retentive, not shock sensitive and docs not require periodic annealing.

Shields are available as fabricated cases with covers without tool charge in all sizes. Drawn cases are available with nominal tool charges. Circle 342 on Reader Service Card.

Power Relay Spdt contacts

Kurman Electric Co., Division of Norbute Corp., 191 Newel St., Brooklyn, N. Y. Scries 26 power relay is designed for 400 cycle opcration. Featurcs include 5 pelt contacts, 125 C operation, high voltage breakdown. The relays are available in both open and hermetically sealed versions. A complete catalog of all types of relays is available from the manufacturer. Circle $3+3$ on Reader Service Card.

Power Supply transistorized

Harrison Laboratories, Inc., 45 Industrial Road, Berkeley Heights, N. J., announces a new rack-
mounted, continuously variable power supply delivering from 0 to 60 v at 0 to 7.5 amperes. Model 810-A measures 19 in . wide by 7 in . high by $14 \frac{1}{2} \mathrm{in}$. deep, is fully transistorized, and provides the high regulation at any output voltage of less than 0.05 v output change from no load to the full 7.5 :muperes. A low d-c internal impedance of less than 0.007 ohm suits the new unit particularly to uses in today's complex circuit problems. It has a ripple of 7 mv rins. Overload and short circuit protection are provided by mag-netically-operated circuit breakers. Price of the unit is $\$ 895$. Circle 3tt ou Reader Scrvice Card.

Radiator for transistors

The Birtcher Corp., 4371 Vallcy Blvel., Los Angeles 32, Calif. A new radiator to fit the JETEC- 30 package has been put into production. Material of the finned jacket is black anodized aluminum alloy and is so designed as to press fit orer the transistor case without interfering witlı operation or servicing. Designated licat radiator 3. $1 \mathrm{~L}-635$, the radiator maintains a dissipation coefficient $0.28 \mathrm{C} / \mathrm{mw}$ Circle 345 on Reader Service Card.

Frequency Detectors compact package

Waugh Eingineering Co., 7842 Burnet Ave., Van Nuys, Calif. The Fl)-100 series frequency detectors provicle instantancous cut-off when the speed of rotating devices exceeds a preselected value. Input signal to the unit is obtained from all a-c tachometer generator or mag.

CRYSTAL FILTERS

NOW YOU CAN REPLACE ALL OF THESE COMPONENTS

Shown approx. $1 / 3$ size

WITH A SINGLE HYCON EASTERN CRYSTAL FILTER

Shown opprox. $1 / 3$ size

AND REDUCE WEIGHT, SAVE SPACE, IMPROVE PERFORMANCE AND RELIABILITY

It will pay you to investigate how this unique component can improve performance and reduce costs of your communications equipment. Hycon Crystal Filters make possible single conversions in AM and FM receivers while retaining the important advantages of double and triple conversions. These units permit excellent reception in the presence of strong jamming or interfering signals. Center frequencies are accurate to $.001 \%$. Insertion loss is $1 / 10$ of other filtering methods. Aircraft and guided missile environmental requirements are exceeded. Write for Crystal Filter Bulletin.
HYCON EASTERN, INC.

PHAOSTRON CUSTOM
 PANEL METERS
 METAL CASED FOR LASTING ACCURACY SHOCK MOUNT JEWELS

PHAOSTRON CUSTOM PANEL METERS are being selected by many famous manufacturers because of their superior precision construction, accuracy and price. Pivots are ground and polished with shock mounted jewels. Accuracy is permanent within 2% (3% on rectified types). Phaostron's metal case protects the D'Arsonval movement against stray magnetic fields... can be mounted on any panel material without recalibration. Scales are large, easy to read Die Cast Bezels. Expanded Scales are available. Zero adjustment is fully insulated. Available in a wide variety of colors and chrome.

PHAOSTRON Instrument \& Electronic Co.

MはMOTMU

151 Pasadena Avenue, South Pasadena, California
CIRCLE 87 READERS SERVICE CARD

ATTRACT AND HOLD TECHNICAL PERSONNEL

SERVE
FLORIDA'S
METROPOLITAN AREAS
FROM A DAYTONA BEACH

INDUSTRIAL SITE

Daytona Beach. the east-towest terminal on the north-to-south route of the projected Federal Limited Access Freeway System. gives industry a plus for the fucure.

Write for new 90 page industrial Brochure

INDUSTRIAL DEPARTMENT CHAMBER OF COMMERCE DAYTONA BEACH, FLORIDA
 Circle 88 readers service card

Now you can afford a real, full concert organ, just The those made by the foremost organ manufacassemble it yourself. And it's REALLY EASY: only 24 separale units, all with printed circuits, and detailed-to-the-smallest-step instructions. In addition. you purchase each of the 24 kits when you are ready for it - and can atford it.
You*ll get a real hich out of putting tle Schober Electronic Organ" together - - and then sitting down and pulling the stops for Strings, Trumpets, Clapinets, Diapasons, Flutes, etc. Electronic Percussion optional; chimes avalable

Compact CONSOLE

One of the many exclusive features of this excep tional organ is the handsome console. in a wide variety of finishes. It is equally at home in a tradi tional or modern setting. and takes litlle more space than a spinet piano.

Free Literature

Complete descriptive booklet and price list are available on request. And, if you wish to hear the glorious pipe organ tone of the Schober Electronic Organ, a $10^{\prime \prime}$ long playing demonstration recording is available for $\$ 2$. This is refundable when you order. Write today and see what a fine instrument you can get at such a great saving.

The SCHOBER ORCAN CORP.

2248M Broadway. New Vork 24, N. Y.

- Designed by Richard H Dorf

CIRCLE 89 READERS SERVICE CARD

CIrCLE

THIS DATA CAN SAVE YOU TIME AND MONEY

Directory of Technical Specifications

If you buy a little or a lot, whistever your needs in electronic test instiumentution, here is a Directory that can save you time and money. This new stand.rd, upto-date reference woik ollows you to comoare specifications and choose the best for your particular applica. tion. In minutes look up the manufacturers and their represent-tives and call for a demonstration-a free supplier resecrch service is clso included with your subscription. For Price and further information:

TECHNICAL

INFORMATION CORPORATION
41 Union Square, finom 1002 New York 3, New York WAtkins 4.2111
CIRCLE 90 READERS SERVICE CARD

ZPPeriviling

. a method of making custom electronic cables in seconds. at a fraction of the cost!

Now available in Vinyl, New Stretch Vinyl, Teflon, Nylon, Mylar, Neoprene. Major Advantages

1. Cables are made by you, on the spot, as needed, without machinery. Production delays eliminated.
2. New stretch compound provides tighter jacketing.
3. Highly abrasion-resistant. Temperature range, $-90^{\circ} \mathrm{F}$ to $450^{\circ} \mathrm{F}$.
4. Eliminates expensive lacing or tying of conductors.
5. Provides re-accessibility to conduc tors, or can be permanently sealed
6. New method permits cable termination with any type of connector
7. Sizes from $1 / 4^{\prime \prime} 10$-continuous lengths to 1000 ft .
8. New metal laminations for shielded or co-axial cable construction.
9. Perforated type or molded "Ys" and "Ts" simplify branchouts.

Important

If you design or work with electronic cables, it will pay you to try ZIPPER. TUBING. Field representatives are nearby - or send for free sample and technical literature.

Offices \& Warehouses in All Principal Cities

THE ZIPPERTUEING CO.

752 So. San Pedro St. - Los Angeles 14, Calif. TWX LA 840

CIRCLE 91 READERS SERVICE CARD

MOM we can meet the demand for

METERS!
 2" TO 7" sizes

Expanded plant . . . increased staff . . . New, improved automation techniques . . . to meet the demand of elec. tronic equipment manufacturers for custom produced panel meters, in production quantities.
PACE meters are manufactured under rigidly controlled elimatic conditions to meet critical specifications as to sensitivity, resistance, damping, response time, illumination ${ }_{a}$ scaleplate design, etc.

Send for latest illustrated catalog, available upon request.
Write, wire or phane for applications engineering, consultation and assistancel

a Division of Precision Apparatus Co., Ine.
70-31 84th Street, Glendale 27, L.I., N.Y. Export: Morhan Exporting Corp., 458 Broadway, N. Y. 13, N. Y.

CIRCLE 92 READERS SERVICE CARD

reduce CERMANIUM WASTE

Here's good news to all cristal cutters. germanium, quartz, silicon, barium titanate, etc.! Felker DI-MET metal bonded diamond blades are exceedingly thin, greatly reducing amome of expensive crustal lost in the cut! Special blades are supplied for either wafering or dicing insuring maximum efficiency and savings of material!
Fast cutting, smooth finishes, long blade life, utmost reliability... you get them all in Felker DI-MET...originators of the first commercial diamond abrasive cut-off blades!

Available from your Felker
Distributor ...or write direct.

felker manufacturing co.

Torrance, California

First in Diamond Cut-OAf Blades!

Literature of

MATERIALS

Plastics For Electronics. Emerson \& Cuming. Inc., 869 Washington St., Canton, Mass., has published a four-page short form catalog giving brief descriptions of many of the various materials available in their lines of Eccosorb microwave absorbers, Stycast casting resins, Eccofoam plastic foams, Fccostock plastic rods and sheets, Ecco reflectors and Ecco Luneberg lenses, Eccocoat plastic surface coatings, Fccobond adhesives, cements and sealants, Eccoseal impregnating resins, and Eccomold laminating resins. Circle $3+9$ on Reader Service Card.

COMPONENTS

Permanent Magnets. Thomas \& Skinner, Inc., 1122 East 23rd St., Inclianapolis 7, Ind. Bulletin No. 158, entitled "Permanent Magnet Design," covers such subjects as permanent magnet applications, fundamental properties, design problems, magnet testing, mag. netic attraction, mechanical considerations and stabilization and magnetization of finished magnets. The bulletin is illustrated both pictorially and with curves. Circle 350 on Reader Service Card.

Rotary Selector Switches. Micro Switch, a Division of Minneapolis Honeywell Regulator Co., Freeport, III. Covering the company's complete standard line of rotary selector switches, an expanded four-page data sheet now includes information on the new sealed subminiature assemblies and a V3 version which is available with as many as 20 basic switching units. Circle 351 on Reader Service Card.

Waveguide Components. Microwave Associates, Inc., Burlington, Mass. A new 48 -page catalog describes in detail more than 300 different types of microwave waveguide components, test equipment and pressure windows. Photograplis of each product type are

the Week

included. Circle 352 on Reader Service Card.

EQUIPMENT

Crest Voltmeter. Sensitive Research Instrument Corp., 310 Main St., New Rochelle, N.Y. A recent issue of Electrical Measurements shows "the why and how" of measurement of peak voltages. Specifications and price for the model CRV crest voltmeter are included. Circle 353 on Reader Service Card.
'Total Temperature Probe. Rosemount Engineering Co., 9424 Lyndale Ave. So., Minneapolis 20, Minn. A four-page brochure illus trates and describes the 103 total temperature probe which features high accuracy and small size, with capability to Mach 5 at extremely high altitudes. Circle 354 on Reader Service Card.

Tubeless Power Supplies. Sorensen \& Co., Inc., Richards Ave., South Norwalk, Conn. A new product data sheet describes three low-cost T-Nobatron tubeless power supplies, recommended for use in the clevelopment and testing of transistor circuits or for other applications within thcir voltage ranges, such as relay testing and computer circuitry development. Circle 355 on Reader Service Card.

FACILITIES

Mass Moment of Inertia. Technology Instrument Corp. of Califormia, 7229 Atoll Ave., N. Hollywood, Calif. Technical bulletin No. 20 provides: (1) a table to supply data pertaining to mass moment of inertia for the company's standard line of precision potentiometers, and (2) description of an experimental method to serve as a guide in the compilation of mass moment of inertia of other related components within a system. Circle 356 on Reader Service Card.

CIRCLE 95 READERS SERVICE CARD

New Tantalum Facility Opens

The new $\$ 6,500,000$ Fansteel Metallurgical Corp. tantalumcolumbimu plant near Muskogee, Okla, is now in operation.

The plant (picture) is situated on 113 acres on the west bank of the Arkansas River, comprises four building units with approximately $95,000 \mathrm{sq} \mathrm{ft}$ of floor space, and a group of outdoor tanks for storage of liquid reagent chemicals.

Cost of the plant and equipment was financed through the sale of $\$ 3,000,000$ in convertible subordinated debentures. Financing was entirely private.
"Since operations began at Muskogee," says Frank H. Driggs, president, "the delivery of tantalum has been improving almost daily. Tantalum in most mill forms will soon be available in stock."

Glen Ramsev, vice president and general maniger of the firm's recti-fier-capacitor div, says there is sufficient tantalum available for 11 times as many capacitors as were produced in the United States in 1957.

Tantalum and columbium ingots from the Muskogee plant are added to those produced at North Chicago and are processed into sheet, foil, rod, wire, tubing and a large variety of fabricated parts and products for industry. This includes acid proof tantalum process equipment for the chemical industry.

Columbium is being used in some types of nuclear reactors. Experimental work is being clone on
columbian allovs for resistance to corrosion and high temperature.

A feature of the new operation is the control center, where steps in the processes are operated and observed by push-button switches, indicator lamps, control and record ing instruments.

Although its melting point is approximately 5400 F , fantalum is malleable and ductile. All rolling, stamping, forming and deep drawing are done cold.

Kalbfell Named Cubic Consultant

Cubic Corp., San Diego, Calif, appoints David C. Kalbfell (picture) as staff consultant in connection with the company's expansion into airborne telemetry sys-
tems. De has been a consultant for Lockhecd Missilc Division, Convair Astronalutics Division, Ampes Corp., and several other companies.

Kalbfell is now president of Kalbfell Electronix and was the founder of Kalbfell Laboratorics, Inc. (now called Kin Tel).

Duncan Takes

New Post at GE

Appointment of M. R. Duncan (picture) as manager of product service and marketing administration in GE's technical products department at Syracuse, N. Y., is announced. He had been manager of service enginecring.

In his new position, Duncan will be responsible for market rescarch and administration, inventory control, product scheduling, commercial scrvice and headquarters and ficld service engincering.

Motorola Ups MacDonald

New director of enginecring at Motorola's Chicago Military Electronics Center and the company's Communications and Industrial Electronics Division is Angus MacDonald. The move is one to implement engincering liaison between the two groups.

MacDonald has been with Votorola since 1953, starting as an

Three hEADLINERS from a broad line of fine quality capacitors

GOOD-ALL Type 600-UE
 Mylar ${ }^{*}$ Dielectric... Molded In Epoxy

A general-purpose tubular of extraordinary performance. Priced in the same range as molded paper designs, but a stand-out in stability and resistance to humidity.

G00D-ALL Types 616-G and 617-G Sub-Miniafure Mefal Enclosed Mylar* Designs

Designed to provide EXTENDED LIFE at high temperatures. Rugged, military construction throughout. These lines include a 50 -volt series for transistor applications. SPECIFICATIONS.

* DuPont's trademark for polyester film.

Good-All EPOXY Confed Ceramic DISCS

Something really new! The tough, durable Epoxy coating provides excellent moisture resistance and high voltage break. down strength. The lead entries are tightly sealed.
types available
AC Line By-Pass Type D
Temperature Compensating Type A Highly StableTypes E \& EE
By-Pass. Dual Shielded....... Type C Transistor......... Type H

Immediate Delivery on Standard Items.

Return inquiry card in back of magazine, and detailed brochures on the above capacitor types will be mailed to you promptly.

Applications include:
Instrumentation, production control, automation, computing and business machines, aircraft \& missile readout.

Bi-directional \& unidirectional units available.

DIGITAC, INC.

420 Soutk Beverly Drive, Beverly Hills, Calif. an affliate of Bill Jack Scientific
Instrument Co. and Otto Nemetb
for detailed information, mail this coupon
\qquad
Company
Address
City \qquad State \qquad
enginecring staff assistant. He has also served as chicf enginecr for two-way and mobilc equipment. Before his association with Motorola, he was with the Westinghouse Electric Corp. as a section manager, conmercial communications.

IBM Executive Heads Up FIER

Cutubert C. Hurd (picturc), director of automation rescarch for 1BM Corp.. has been elected president of the board of trustecs of the Foundation for Instrumentation Education and Rcscarch. FIER is a non-profit organization for stimulating, guiding and supporting programs of education and fundamental rescarch in the field of instrmunentation and automatic control. Hurd is also chairman of the foundation's development and policy committec.

MM\&M Division

 MovesThe Inclustrial Controls Division of Maming, Maxwcll \& Moorc, Inc., nanufacturer of clectronic in-

HOW

precious

metal metallurgy

The J. M. Ney Company, with more than 146 years in the highly specialized precious metal business, has gathered a wide background of information for analyzing the properties and uses of precious metal alloys and developing alloys for specific applications.

With facilities for subjecting experimental and standard alloys to a full range of physical, electrical, and metallurgical tests as well as tests simulating actual and accelerated conditions, Ney offers a valuable service to the rapidly growing electronics industry.
Coupled with the development help that Ney offers are extensive manufacturing facilities for the production of materials and small precious metal parts in either standard shapes or to customer specifications. We are also prepared to give engineering advice on general design characteristics and suggest the proper alloy for your use. Our catalog describing our proprietary alloys, line of standard contacts, resistance wires, and engineering services is available on request.

P.O. Box 990, Dept. E, Hartford 1, Conn.
struments for measurement, transmission and control of proccss variables, has moved its offices and manufacturing facilitics from the company's Stratford, Conn., plant to a new plant (pictured on p 126) in Danbury, Conn

The new plant makes available over $50,000 \mathrm{sq} \mathrm{ft}$ of space on a 13-derc site. A onc-story design and arranged for straight-line production, the building permits for future expansion.

The company plans to use the space vacated in the Stratford plant by the Industrial Controls Division for its Nuclar Components Department which manufactures products for the nuclear cnergy ficld.

Erie Resistor Names Shioleno

In Eric, Pa., Lewis J. Shioleno (picture) is appointed general manager of the electronics division of Eric Resistor Corp. Prior to his appointment, Shioleno was superintendent of manufacturing for the electro-mechanical division. His new duties-encompass all responsibility for salcs, engincering and production for the electronics division.

Bayle Takes New Position

Appointment of Andiew C. Bayle as director of engineering of the Waltham Precision Instrument Co. (formerly the Waltham Watch Co.), Waltham, Mass., is announced. In his new position, he will be in complete clarge of engineering, and also head up the re-

Dynamic Analysis of Frequency Response

A combined sweep generator and c.r.o. suitable for v.h.f., i.f., and v.f. response analysis

FEATURES

- Sweep width variable up to $10 \mathrm{Mc} / \mathrm{s}$ - Crystal controlled fixed frequency-marker pips - Calibrated continuously variable frequency marker - High output - Sensitive Y amplifier
- Calibrated output attenuator

APPLIGATIONS:

Alignment and response measurement on television and f.m. v.h.f. receivers; v.s.w.r. of feeder ines; matching feeders to antennas; direct tests on if. and r.f. transformers use as a general purpose oscilloscope.

ABRIDGED SPEGIFICATION
Frequency Range: R.F. $50-75 \mathrm{Mc}, 75-115 \mathrm{Mc}, 150-$ 216 Mc; I.F. $10-45 \mathrm{Mc}$: V.F. $5 \mathrm{kc}-10 \mathrm{Mc}$. Output Range : $100 \mu \mathrm{~V}-100 \mathrm{mV}$.
Sweep Widhh: variable from 500 kc to 10 Mc .
Calibration: continuously variable marker oscillator provides pip corresponding to known frequency, 3-frequency crystal oscillator generates pips at intervals of $5.0,1.0$ and 0.5 Mc .
Time Base: 12 to 50 cps for sweep. 12 cps to 10 kc for general purpose.
TUBES: 5Z4G. 12AT7, 12AU7, 12AX7, 6C4, 6AK5, 6AK6.

MARCONI
 INSTRUMENTS

111 CEDAR LANE ENGLEWOOD NEW JERSEY

Tel : LOwell 7-0607

[^6]
SILVER PAINT AND SILVER PASTE

Take the "bugs" out of the application of conductive silver coatings. Use Drakenfeld silver paint and silver paste tailored to meet your needs. We formulate special compositions for glass and ceramic bodies and other materials. Let us know your specific requirements. Samples will be supplied to fit them. Your inquiry will receive prompt attention.

B. F. DRAKENFELD \& CO., INC.
 Box 519, Washington, Pennsylvania

YOUR PARTNER IN SOLVING CONDUCTIVE COATING PROBLEMS

CIRCLE 99 READERS SERVICE CARD

search and development activities of Waltham.

Prior to his present affiliation, Bayle was assistant to the president of Vectron, Inc., and on its board of directors. Earlier he was chief engineer of the Doelcam Corp. During the war, he served as a research engineer at MIT.

Executive Moves

H. J. Hannon, an executive of Sterling Precision Corp., Flushing, N. Y., for over two years, is appointed general sales and contract manager of Sterling Precision Instrument Division.

Walter E. Sutter, district microwave salcs manager, General Electric, Redwood City, Calif., is named national microwave sales manager for GE's communication products department, with headquarters in Syracuse, N. Y.

News of Reps

Mechatrol Division of Servomechanisms, Inc., Westbury, L. I., N. Y., will have its electromechanical components sales handled by W. A. Brown and Associates, Indian River City, Florida.

Hermetic Seal Corp., Newark, N. J., appoints Pacific Electro-Sales as rep for Hermetic-Pacific Corp., Rosemead, Calif., its west coast division. Fred Falk of Pacific Elec-tro-Sales will service the San Diego area.

Bendix Pacific Division's ElectroSpan digital supervisory control systems will be sold by The Ray Welch Co. in northern Illinois and Indiana; by J. A. Halpine \& Son, in the Oklahoma, Kansas and Missouri area.

Hunter \& Salsbury Inc. are appointed reps for Dial Products Co., Bayonne, N. J. They are covering the Metropolitan New York-New Jersey territory for Dial's line of magnetic clutches and brakes and also flexible couplers.

NEW BOOKS

Engineering Electronics

By J. D. Ryder
McGraw-Hill Book Co., Inc.
New York, 1957, 655 p, $\$ 9.50$
The field of applied electronics has engendered an impressive scries of ommibus books which have dealt with these applications as cach author viewed them. This latest member of the series, which is probably more highly concentrated than any of its predecessors, covers a somewhat special selection of topies reflecting the trends in modem practice. In more relaxed times, when books of this kind had a much smaller field to cover, it was feasible to treat the various topics to a reasonable depth. Consequently, they were written primarily as textbooks for required undergraduate courses in electrical enginecring.

As the tempo of our times has accelerated, books presenting applications of elcetronic circuits have, through necessity, had to deal more and more tersely with each separate area, and to rely less upon convineing amalytical developments and more on unsupported statemonts beginning familiarly, "It can be shown. . ." For these reasons a greater measure of responsibility rests upon the author in the selcetion of appropriate material, its sequential arrangement, and the presentation of his facts with impeccable trutl.
Source-Book-Although the jacket flap suggests that the book is writteu for a senior-level college course, it is difficult to visualize the kind of course that woukd develop around so highly-distilled and encyclopedic a digest. With celucators turning strongly toward the treatment of basic ideas in deptly to the neglect of particular applications, this kind of book seems destined to play the role of a reference work. As such it is a rich source-book of today's practice which should prove not only to be valuable, but interesting as well, to students and practicing engineers alike.

Topical. Coverage - The main theme of the book is electron-tube circuits; the emplasis is on the field of control, with applications to the communications field de-

Airpax choppers Types 2400 (60-CPS) and 2300 (400-CPS) are specifically designed for use in low-level modulators. In most cases it is below the instrument background noise.

Eatirely electronic sweep circuit no mech anical devices) with accurately-biased increductor for excellent lineirity. Fxiremely flat RF outpus: mew AGiC cireuit dutomatic ady adjusts ose. lor max. uuthly on each band img monaracy: edye-lit hatrlines eliminatie
 fund. bands. Variable Markior Kange $2-75 \mathrm{me}$ in 3 fund. bandis: bote2 25 me. on hatrmonic band. 1.5 me Xtal Marker O-6, xtal whplied, Ext. Marker provision. SWetr Wialth $0-3 \mathrm{mo}$ lowest max. deviation to $11-3 n$
der
g-way he highesi max.
ding. dev, 2-way hanking Kamow range bhasing. (4-step decade). Cables: output, scope horiz. scope vertical.

[^7]liberately played down. After a short introductory clapter, six rather conventional clapters cover physical phenomena in electron tubes, vacuum-tubes as citcuit cloments, small-signal and low-pass vacuum-tube power amplificrs ancl finally, fcedback amplificis

The next two chapters are both interesting and timely. The first surveys modern direct-coupled amplifier practice, including such matters as chopper stabilization; with this background, the discussion goes on to various aspects of analog simulation and computation. Also included in this chapter is an unexpected section devoted to Lagrange's formulation. The second chapter of this group develops wave forming circuits and leads logically into digital computation idcas. Many finc photographs of oscilloscope traces appear throughout the book and are employed to cxcellent advantage in this particular clapter.

Industrial Applications-Thic remaining chapters reflect a greater cmphasis on industrial applications. A chapter on conventional racuum-tube power supplies and filters (a goocl part of which might have been omitted) is followed by a meaty chapter on r-f tuned amplifiers and oscillators and their application to higl-frequency heating. A sccond unexpected inclusion is the theoretical background of skin effect and its relation to inductionheating design, based apon Maxwell's elcetromagnetic field cquations.
Chapter 12, which is cntitled "Semiconductors; Transistors" starts out with an outline of scmiconductor plysics as preparation for the formulation of models of transistors. A sketch of the network formuluations of two-port networks introduces circuit models and their analysis. The chapter concludes with a varied selection of transistor circuits.
Chapters 13 through 18 are concerned principally with various aspects of control and control devices. The topics include photoclectric devices, power rectification, control and inversion, relays, timers, welding and motor controls and finally, servomechanisms.

General Comment-The book is

Using Thermistors

Edited by

FENWAL ELECTRONICS

Thermistors are "thermal resistors" with a high negative temperature coefficient of resistance - semi-conductors with amazing sensitivity

Thermistors discussed here - for liquid level measurement and as altimeters.

Liquid level measurement: When a thermistor is suspended in air in series with a light bulb and battery, the bulb lights, because the thermistor heats and resistance drops, permitting current to flow to the bulb. Reversing this process, a thermistor submerged in a liquid (Fig. 1) cools, extinguishing the light. This is a liquid level indicator. A liquid level control substitutes a relay for the light bulb.

Altimeter: A hypsometer, an extremely sensitive altimeter, is a thermistor placed at a liquid's surface (Fig. 2); thermistor resistance is a function of the liquid's boiling point, which depends on the altitude. A hypsometer of this type can measure altitude from sea level to over 125,000 feet with precision better than 1% of the measured pressure.

Designers: If you are considering thermistors, write for more information about their tremendous possibilities to Fenwal Electronics, Inc., 23 Mellen St., Framingham, Mass.

Design - Engineering — Production of Precision Thermistors
CIRCLE 103 READERS SERVICE CARD
well organized and is casy to read 'The material has been skillfully digested and for the most part, the relerant and important matters have been separated successfully from the chaff. Although there are sorne sections that appear to be rehaslics. the greater part of the work represents new writing that is crisp and reflects an up-to-datc vicupoint.

There are some weaknesses in subject matter and in presentation. Of the former, the most important is the heary emplasis on clectron tubes in an cra in which the transistor has alicady precmpted the field. The latter point is conspicuous in the important arca of feedback. An carly and undistinguished clapter presents the conventional material on feedback amplifiers.

In the final chapter on servomechanisms. there is a noticcable lack of correlation in the analyses of these closely-related systems. The material on control-system stability, which seems to wander somewhat amlessly might have been brought into sharp focus with the benefit of root-locus techmiques.

Despite these weaknesses, which are perhaps incritable in such an ambitious surver, the book creates a farorable impression of presenting. with a good dcal of realism, a cross-section of the role of electronics in the more progressive arcas of the present state of the art.—W. A. Lyncir, Prof. of Elec. Eng., Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

THUMBNAIL REVIEWS

Auto Radio Removal-1956. Howard IV. Sans \& Co., Inc., Indianapolis, Ind., 1957, 10+ p, \$2.95. Step-bystep instructions for the removal of radios, power supplies and speakers from 1956 automobiles.
Atomic Power-An Appraisal. Edited by Corbin Allardice. Pergamon Press, New York, 1957, 151 p, S3.30. Collection of remarks by panelists of Eleventh Annual Meeting of the Board of Governors of the luternational Bank for Reconstruction and Development.
Tape Recorder Manual, Vol. 1. Howard W. Sans \& Co., Inc., Indianapolis, Inc., $1958,148 \mathrm{p}, \$ 2.95$. Complete servicing information on seven basic tape recorder chassis and two tape players produced in 1956 and 1957.

TELREX LABORATORIES

Designers and Manufacturers of COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS

Telrex is equipped to design and supply to our specifications or yours, Broadband or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.

Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces.

CIRCLE 104 READERS SERVICE CARD

PROTECT Delicate ELECTRONIC CDMPONENTS
While Handling in Production and Shipment
with $\mathbf{R} \underset{\sim}{\mathbf{O}} \mathbf{N} \mathbf{D} \mathbf{O}$
RONDO, a cardboard device, holds and protects inserted objects by the spring-clip action of its fluted partitions. Easy to load and handle. Various sizes and styles have been developed for many parts, such as tubes, resistors, capacitors, diodes, fuses, etc., with diameters from 8 to 26 mm and up.
Maximum efficiency and economy are accomplished when the same RONDO device is used throughout production, storage, shipping and display. RONDO is a paper product, sold at paper prices.
Send for leaflet and suggestions regarding your specific packing need. rondo process and designs are covered by

AMERICAN RONDO CORP., I00A SANFORD ST., HAMDEN 14, CONN.
Representatives: C. S. Shotwell, 527 S. Alexandria Ave, Los Angeles, Cal. - Brown \& Scratch, 654 N. Michigan Ave., Chicago, III.

FSK single channel or dual diversity with the sensational

 RA. 176

High-speed, efficient and economical teletype reception, combining the advantages of FSK with the exceptional performance and stability of the RACAL RA.17C receiver, is now available with the RA. 62 receiving terminal-even in bad conditions of fading, interference and excessive noise.
Covering the range $0.5-30 \mathrm{Mc} / \mathrm{s}$, the RA. 62 will accept transmissions, both narrow and wide band, with a deviation of $10 \mathrm{c} / \mathrm{s}$ to 1000 c / s.
A dual diversity version, type RA.56A, is also available, incorporating two RA. 17 C receivers connected in dual diversity with type nSW. 3. Both equipmentsal telegraph terminal equipment the RA.17C in stability and re-setting accuracy, and easy band selection without switches or turrets. Write for full specification and performance figures. RACAL ENGINEERING LTD. BRACKNELL, BERKSHIRE, ENGLAND: Represented in U.S.A. by :
AVCO MANUFACTIRING CORPORATION. Represented in Canodo by:
AVCO MANUFACTURING CORPORATION.
Represented in Conodo by
Research $\&$ Advanced Development Division,
NICS LIMITED,
II Spruce Street, Stittsville, Ontario.

CIRCLE 106 READERS SERVICE CARD

.. Electrical Coil Windings

For 40 years . . . specializing in all rypes of coils to customers' specifications. Design or engineering assistance available on request.

COTO-COIL CO., INC.

65 Pavilion Avenue Providence 5, Rhode Island

CIRCLE 107 READERS SERVICE CARD

For Those Who Demand Service!

aibill
ELECTROLYTIC $\&$ PAPER TUBULAR
"35 YEARS OF PROVEN DEPENDABILITY"

Condensers

COSMIC CONDENSER CO
853 Whittier St., Bronx, N. Y. Ludiow 9-3360 .

PUSHHEXS now available with automatic interlock

In such precision operations as automation programming, you can now eliminate the risk of pushing more than a single button at a time.

This new interlock feature is based on a simple arrangement of sliding cams. Only one button at a time can be depressed. This feature is available in all multiple-pushbutton assemblies ($7,10,12$ and 20 button arrangements).

All "telephone-quality" advantages of Stromberg-Carlson keys continue as before. You may apply "make," "break," "break-make" and "make-before-break" combinations as required. You get standard spring combinations with Form A, C or D con-tacts-or you may order special strips of keys with intermixed contacts.

Buttons are available in white or colors-blank or with letter or number designations.

For complete technical data on StrombergCarlson Key Switches send for our illustrated Bulletin T-5002R.

STROMBERG-CARLSON
a division of general dynamics corporation Telecommunication Industrial Sales 114 CarIson Road, Rochester 3, N. Y.
Electronic and communication products for home, industry and defense
duced by the spinning particles. The Michelson-Morlcy light-vclocity experiment might have been mullificd by a planctary "cther-drag" effect. The dwality of light's nature may be due to the interaction of atomic structure particles and a subcorpuscular cther.
Such an ether and particle model may point to a better understanding of magnetism and gravity, and to a possible cscape from the mathomatical conjecturcs of the Einsteinian relativistic maze.

Ted Powell

Great Neck, N. Y.

Reader Powell's conjecturcs arc fascinating. However, Michelson and Morley made their experiment for the precise reason that they wished to determine whether or not the velocity of light underwent any change as a result of possible "cther drag" of the type mentioned in the letter above. Their results-with an admitted possibility of error due to imprecise instrumentation-said there was no such drag.

We understand that there will soon be an experiment to check the Michelson-Morley experiment. This one will be capable of measurements about an order of magnitude morc precise than M\&M's. Perhaps then we'll see.

Air Plan

The article ("Air Plan Means Morc Business," Jan. 17, p 8) describes a contract for data processing and display which the Airways Modernization Board plans to let to a team of contractors headed by General Precision Lalss. The fourth paragraph of this article concludes with the scntence "Subcontractors associated with GPL are Link Aviation and Librascope . . and Pasker Instrument." Thic correct name for our company is Tasker Instruments Corporation.
Our contpany will share with Gencral Precision Lab the responsibility of developing a lata processing and display system. GPL will work with the enroute portion of the problem while Tasker Iustruments will landle the terminal arca portion.

William Way
Tasker Instruments Corf. North Holiywood, Calif

SUPER-SENSITIVE WAVE-FORM ANALYZER with TUNED CIRCUITS

\checkmark Checks any equipment with periodic or recurrent wave-forms. Displays wave-form on CRT. Also provides audible monitoring.
V Electrostatic pick-up couples signal from equipment under test to analyzer without physical connection.
\checkmark Tuned circuits provide extreme sensitivity, allow viewing of RF waveforms without use of an external demodulator.
∇ Turret tuner with twelve positions provides quick tuning. Clips available in frequencies 3 to 240 mc .
\checkmark Minimum loading, electrostatic probe makes no physical connection, minimizes loading of circuit under test.
V Front panel jacks provided for the injection of external sync and horizontal sweep. Also jack for phones.
V Light and portable, weighs only about 18 lbs. equipped with carrying handle and plastic case with pocket for accessories.

ACCESSORY PROBES

- Direct probe.
- Detector Probe
for transistor radios.
Direct probe has built-in step attenuator, allows analyzer to be used as a conventional oscilloscope. Transistor Radio Probe has built-in detector for checking transistors in their circuits.
WRITE TODAY FOR BULLETIN 103-B
ANOTHER KINGSTON PRODUCT. . . the PROBE-MASTER

Built-in capacitive network,
two clips and neon bulb most versatile testing probe most versatile testing probe
on the market. Price $\$ 4.95$.
Incston
itegtronic coaporation MEDFIELD. MASSACHUSETIS, U. S.A
CIRCLE 110 READERS SERVICE CARD

you can help missiles 'think' better!

Experienced graduate engineers and physicists supervisory level preferred - are invited to help "educate" America's missiles. You will be applying latest techniques and newest semiconductor devices in Texas Instruments plants equipped to build components and complete systems without subcontracting... telemetering, infrared, radar, sonar, and many other systems from research through development to manufacturing.

You will push beyond existing limitations inta new concepts and new products. At TI, this pioneering approach has been so successful the company has grown 20 -fold in the last 10 years to a current rate of over $\$ 70$ million volume . . a growth accelerated by recognition of individual achievement... a growth you can share.
And you will work at a plant within the city but away from downtown traffic ... live within 15 min utes of your work or your play - year-around recreational, amusement and cultural activities.

*

This II-rransistorized telemetering system is more a "talker" than a "thinker." It provides four times the radiated power in a smaller package than comparable vacuum tube systems. Not "frozen" to old design standards, it is almost completely transistorized and is completely electronic with no moving parts ... a typical example of Texas Instruments policy of advanced systems engineering.

EIECTRONIC AND ELECTROMECHANICAL APPARATUS - Radar, sonar, infrared, navigation, magnetics, telemetering, communications, computers, transformers. Write R. E. Houston.

SEMICONDUCTORS AND OTHER COMPONENTS - Iransistors, transistor dircults, diodes, rectifiers, resistors, capacitors, test equipment, mechanization. Write W. E. Spaller.

RESEARCH - PhD lével for research: semiconductor materials and devises, neise, surface, ferromagnefics, infrared, microwaves, magnetics, radiation demage, high speed data reduction, etc. MANUFACIURING - Engineers for production, planning, purchasing, cost analysis, etc. Write A. E. Prescott,

ENGINEERS SCIENTISTS

Practically any professional interest an engineer and scientist may have will find a creative outlet at General Electric's Electronics Park, as you will see by the fields in the coupon below. But no mere listing can give you a complete picture of the scope of work at our operation here.
\because Electronics Park is a birthplace of new concepts and ideas in elec\because tronics. Engineers and scientists here are continually working on - new problems...creating new components, systerns, equipment ...from which whole new product lines are developed. And as new lines are created, new independent G-E departments are formed. The nucleus : of such new departments are often drawn from the development staff \therefore at Electronics Park... and the engineer or scientist may either follow - his "brain-child" or begin anew on the spark of another idea. send it to us at Electronics Park. A bachelor's or advanced degree in : Electrical or Mechanical Engineering or Physics, and/or experience in \therefore electronics is necessary to qualify for current openings here.

TO: GENERAL ELECTRIC

Electronics Park Dept. 27-WP Syracuse, N. Y.
Att: Technical Personnel Dept.

Advanced Development
Design
Field Service
Technical Writing
Research

POSITION WANTED

Young Studio Engineer with German broadcast station seeks position in similal capacity in USA. dxperienced in service. mainested emplovers please contact Heinrich Meyer. Hochstrasse - Nurnberr, Germany

ENGINEERING IDEAS

We are interested in any product itcas you may have which do not relate to vour present arcupation
ar responsibility. Ploase communicate, without ar 'esponsibility. Ploase communicate, without
obligating you or us. Your confidence wifl lie re. spected. Our staff knows of this advertisement. B0.7701, 187ectronics
520 N. Michigath Ive.. ('hicaro II, III.

Professional Services

AMERICAN GEOPHYSICAL \& INSTRUMENT CO.

Design \& Derelopment Of Electrical hastrmite nts
Repaiving All Tyies of Wlectrmice Efthimment 172. Markel Street el Gardena, Calif.

RECONNAISSANCE

and
DATA PROCESSING

programs at

The Ramo-Wooldridge Corporation

have created the following new openings.
Display Development. EE, ME, or psychology background with experience in creative development of large-scale information displays.
Optical Design. Significant experience in high-acuity optics.
Console Design. Creative experience in design of operating consoles utilizing electronic, mechanical, and optical techniques.
Wire Communications. Senior design experience in teletype, associated switchgear, message centers. Knowledge of inventory and terminal equipment desirable.

Please address inquiries to Mr. W. J. Coster at
The Ramo-Wooldridge Corporation
P. O. Box 45215, Airport Station • Los Angeles 45, California

TELECHROME MFG. CORP.
Electronic Design Specialists COLOR TELEVISION ERUIDMENT Flying Spot Scanners, Color Sinthesizers. Foyers. Telemetering for Guider Missiles. J, R. Popkin-Clurman. Pres, \& Dir. of End.
28 Manick Dr.

ENGINEERS
 Let's Trade Ideast SPERBY PHOLINX

wants your ideas on advanced fight control systems .

IF data sensors, gyroscopics and/or advanced electronics are your specialty, your ideas are needed by this new, important division of Sperry Rand Corporation.

And we know you and your family will like the idea of wholesome, sun-filled, fun-filled life in Phoenix! You'll like the year-around picnic weather ... clean, dry air . . spectacular scenery . . . remarkably low housing costs . . the wide, pleasant, uncrowded streets that carry you to work. You'll like Arizona's well-rated grade and high schools .. and the fact that nearby colleges offer you advanced courses.

You and your family will like the idea of living in friendly, easygoing Phoenix!

We're building a basic staff at Sperry Phoenix Company to spearhead research, development and applications. Starting salaries and opportunities for increases are right at the top. There's a great future for top-notch idea men . . . and their families . . . in Phoenix.

Here's another good idea: mail the coupon today!
If you believe you are qualified for advanced flight control systems and associated aircraft equipment engineering, return this coupon without delay (no need to send resume) while these rare basic staff positions are still open. By return mail you will receive an applica tion. Mail the coupon now . . . this is an unusual opportunity for you and your family!

SEARCHLIGHT SECTION

(Classified Advertising)
BUSINESS OPPORTUNITIES
EQUIPMENT - USED or RESALE
(Continued on page 138)

LARGEST STOCK OF
 BDMAYS IN THE WORLD
 SOLENOIDS •STEPPERS SENSITROLS

PRODUCTION QUANTITIES MOST MAKES IN STOCK

Send for Latest Catalog E Universal BELAY conp.

42WHITE ST., NEW YORK 13, N. Y. - WAlker 5.9257

SPECIAL SALE

Precision Radar Search Receiver Tuning Units

continuously tuneable over the range 300-1,000 MC
New. complete and perfect in original sealed pack ing, with shockmounted storage cases-ideal for us as mobile or base station converters (includes 30MC arecision frequency meter. Schematic and data supplied
Price $\$ 50.00$ (remittance must accompany order)
Also see our advertisement in Jan. 3ist issue
ENGINEERING ASSOCIATES

```
4 3 4 ~ P A T T E R S O N ~ R O A D ~ D a y t o n ~ 1 9 , ~ O h i o
```

```
4 3 4 ~ P A T T E R S O N ~ R O A D ~ D a y t o n ~ 1 9 , ~ O h i o
```

```
4 3 4 ~ P A T T E R S O N ~ R O A D ~ D a y t o n ~ 1 9 , ~ O h i o
```

Money saving prices on tubes. TV. Radio. Trans mitting, and Industrial Types. New, Ist quality guaranteed. Top name brands only. Government surplus and commercial test, lab. and communica tions equipment in stock. Sell us your excess tubes wanted. Send specific details in first letter. Write for "Green Sheet'" catalog $25 c$
BI2 BARRY ELECTRONICS CORP
512 Broadway WA 5.7000 New York 12, N. Y

Pulse Analyzers Type An/SPA.1 \$130. Type RDIl with elliptical Sweep $\$ 117$ TS $12 / A P$ Standing Wave Indicator $\$ 65$ Also AN/SPR-2 receivers, Ferris $18 \mathrm{C}, 18 \mathrm{~F}$ 22C, Measurements 79B etc. at low prices. Send for inst.

PAULSON ELECTRONICS
Box 14, Towaco, N. J

TRANSTAT 100 AMP OHIY \$195 $\begin{gathered}\text { F.o.в. } \\ \text { Chicaso }\end{gathered}$
11.5 KVA 0.120 V. AC outpu

CONTINENTAL X•RAY CORP.

ENGINEERS - SCIENTISTS

R \& D Opportunities in California with Syvania

Creative assignments are of fered by Sylvania's Mountain View Laboratories. If you qualify for any of the positions listed below, write us today.

ELECTRONIC ENGINEERS

Advanced R\&D in the fleld of electronic coumtermeasures and recon-
naissance systems; pertorming development and design of microwave components.

MECHANICAL ENGINEER

To work with project teams doing mechanical development in varied areas including servo and power gearing, heat engineering. electronic packaging, antenna desig!

SYSTEMS ENGINEERS

Perform advanced systems analysis and syntlesis applying background in EE, math or physics to miclovave techniques radio and

PHYSICIST

Application of electromagnetic theory to problems in radio wave propagation and microware antenmas and component development.

MICROWAVE TUBE SPECIALIST

To perform advanced $R \& D$ on special purpose tubes such as Klystrons. Travelling Wave Tubes and Backward Wave oscillators.

There are also opevings for
PRODUCT ENGINEERS
FIELD ENGINEERS
MATHEMATICIANS
STATISTICIANS

Suldania is only 5 miles from Stanford University... and our liberal pmplouee benefit progrom includes company as.
sistancf with tuition for adranced study. Salaries are commenswate uith training and experience.

MOUNTAIN VIEW LABORATORIES

Electronic Defense Laboratory Reconnaissance Systems Laboratory Microwave Physics Laboratory Microwave Tube Laboratory
l'ease send wow rexume to Mr. J. C. Richards
I. O. Box 1296

Monntain View, Califorina

Research-minded individuals with high qualifications and keen interest in communications theory are invited to review the scope of the studies described below with a representative of

SYLVANIA'S AMHERST LABORATORY (in beautiful suburban Buffalo)

PROBABILITY AND INFORMATION THEORY

ELECTROMAGNETIC PROPAGATION

Studies in broad field of probability theory and its application to information theory. Aimed at advancing the state of the art in communications.
Ph.D. in mathematics, theoretical statistics or information theory with strong mathematical background.

Experimental and theoretical research in electromagnetic propagation as related to new concepts and developments in the means and techniques of communications.
Ph.D. in physics or electrical engineering regarded as essential.

Candidates for these positions will work with a minimum of supervision

There are also a few positions open at Sylvania's Amherst Laboratory for SPECIALISTS IN COMMUNICATIONS SYSTEMS \& SPECIAL CIRCUITS.

While a Ph.D. is desirable, it is not essential.

The Amherst Laboratory is now working with other laboratories in Sylvania's Electronic Systems Division on "Plato"-an AMM system to counter IRBM's.

Please write E.F. Culverhouse
ELECTRONIC SYSTEMS DIVISION

Cayuga Road \& Wehrle Drive • Amherst, New York

ENGINEERS

 Engineering Opportunities For:
- SENIORS - PROJECT
 - DESIGN

with E.E. or M.E. degree and appropriate design and development experience in instrumentation and controls, servo-mechanisms, or intricate precision mechanisms, electrical or electronic devices. Stability and grouth opportunity with a leading avionics producer whose enviable achievement record for 28 years in the industry prompts expansion of our engineering staff in these areas of flight reference systems engineering:

- MINIATURE RATE GYROSCOPES
- GYRO STABILIZED PLATFORMS
- VERTICAL GYRO INDICATING INSTRUMENTS - GYRO COMPASSES \& SYSTEMS
These creative engineering positions in this advanced engineering field afford the "plus" advantage of family living in one of the midwest's most desirable residential cities with attractive housing, excellent schools, 2 university extension branches in the midst of Michigan's fine recreational areas.

$$
\begin{aligned}
& \text { EXPENSE-PAID INTERVIEWS } \\
& \text { WITH SELECTED APPLICANTS } \\
& \text { REASONABLE RELOCATION ALLOWANCE } \\
& \text { SALARIES COMMENSURATE WITH } \\
& \text { EXPERIENCE \& ABILITY }
\end{aligned}
$$

Send Resume To: Employment Manager

SEARCHLIGHT
SECTION

RDO \& APR-4

V.H.F.

 range $\operatorname{sing} 5$ tuning units. The RDO is a high quality
Navy search receiver and has innut and outrout signal strength DB meters., audio outtout metering. noise limiter, greater stabiilty for noise measuring etc. Priced at a fraction of what a similar set would cost if manu-
factured today
Power in in pulse analyzer, chart strip signai recorder avail. P.o. R

MAGNETOMETER AN/ASQ-1

 The ASQ-1 is a very sensitive gimbal type magnetomfletd this instrument will measure the earth's magnetic Esterline Angus. The sensitivity of the set is 2 gamma. be operail. airbourne or oll the pround Complete sets avail.
P.P.I. REPEATERS

 such as the VD. VE, VF, VG, VJ, ViK, VL, screen
sizes from $5^{\prime \prime}$ to $24^{\prime \prime}$. Video. Synch. signals from the radar and a Synchro. signal from the radar provides angular data for the sweep. Power inputs 110 V 60 CYC . State requirements as to sereen size. P.O.R.

RC-1 20-FX-1

PAGE PRINTING FACSIMILE TRANSCEIVERS The RC.1 20 will trans. \& rec. $7^{\prime \prime} \times 7^{\prime \prime}$ copy. The FX-1
will take $12^{\prime \prime} \times 17^{* \prime}$ copy. The material can be copied on either electrosensitive paper or photographic paper. Both sets may be used on a wire or radio circuit either AM Or
the $F X$
R
20 Mfg. by Times Facsmite. P.O.R.

AN / ARC-27-GRC-32B

200-400 MCTRANSCEIVERS
The ARC-27 is a 1.700 channel transceiver for air-
craft operation. This set is a current service equip-
ment. Power input is 28V DC. The GRC-32B is an
adaptation of the ARC. 27 to operate as a around sta.
tion from IIOV $60 C Y C$. Complete sets avail.

TECHNICAL SYSTEMS CORP.
1201 43rd Av., L. I. C. $1, N$. Y. RA 9-0652-3

RECEIVERS BC-312-342
We can supply large quantities of these $1.5-18 \mathrm{mo}$ oreci sion receivers. These sets are one of the most popula
receivers in inse throughout the world. The BC .312 operates from 12 v.d.c. The $B G$ - 342 from 110 V 60 cye We will quote on supplying these sets froll other power
sources such as 220 V and cycle ranges $40-60$ Cyc. Write

SCR-399/499 AN/GRC-26

The SOR-399/499 are high power stationary or mobite
 and BC.34. The AN/GRC-26 is a current version or
this equin. Write us on this set. Wa can sumply the above with or without the PE-95 power plant. We can supply SCR-399/499 with a teletype system installed P.O.R.

AN/GRC 3-8

20-54MC MOBILE RADIO SETS

 The GRC Series Sets are VHF. F.M. mobile and field This is a very tate sett and is standard in the ses.

AN/PRC-6

47-55 M C HANDI-TALKiE
The PRC-6 is a F.M. hand held ratio set: This equip provides voice communication up to 4 miles. The se
uses seif contained batteries. This is a very late set and will work into the various VHF radio sets. P.O.R.

IF YOU NEED ANYTHING
in communications-radar-test equipment-
etc. write us. We are nice to deal with.

SEARCHLIGHT SECTION

(Continued from page 136)

NEED METERS? STANDARD or SPECIALS
 any quantity-NEW-MILITARY

OR	-MILIT
	makes-models ranges-SIzes
	REPPARED RESCALED RECALIBRA

WRITE - PHONE - WIRE
A \& M INSTRUMENT SERVICE INC.

76-14 Woodside Ave. Elmhurst 73, N. Y.
CAA No. 4264 Ltd
HA 9-2925

ANIENNA ROIAIING PEDESTAL SIIIIIIII TRACCNIG radio radar optical

Size 32" High 48" Bottom Diam.
Rotating
Capacity to 2,000 lbs.

A Rotating weight up to 2,000 lbs. may be mounted on this pedestal, enabling very large antennas to 360° rotation. 3 selsyns are included in the data takeoff systern. Rotating motor is 250 v.d.c. reversichanged easily speed is 4 RPM. This may be are transmitted througher and 4 R.F. co-ax cables very large quantity of the slip ring. This allows a the rotor quantly of equip. to be mounted on system may be easily mounted. Brand new in cases wh. approx. 2,000 lbs. Price $\$ 2,500$ ea. F.O.B

THESE WILL GO FAST!
VERY FEW AVAIL.
MICROWAVE COMPONENTS
AVAIL. WRITE

INDEX TO ADVERTISERS

AMIP. Incorporated
Aircraft trmamerth
Airpax Prodncts Co. $1 \geqslant 1$

Americall Lata Corporation
American Rondo Corb.
Andrew Corporation
Atomatir Mfg.. Division of Gemeral lustrunient Corb.

Beldan Minmiarturing Co. 42
Beil Telrwhone Laboratorias 17
Bentix Aviation Corp.
Iracitic Diy.
111
13ird \& Co., Inc., Richard H. 140
Bird Electronif Corp. 96
Bunamanil Mig. Co. 20

Celen-Constantiae Earinearing Labora-
turias Co.
Centralab. A Division of Glober-Inion. Inc

Chiatgo Ntandard Tramsiormer Corb.
Cinch Mfer. Corp.

Contimental-Diamond Fibre liv, of the Budd Company. Inc.

Continental Wire Corp
Cornell-Inbiliar Rimic Corme

Coto-Coil Co., Ine. 132
Conch Compans, Inc. 108

Daven Company. 3rd Cover
Ibaytonat Brafh Chamber of Commerce 120
Dentsch Co
8:

Irakenfeld \& Co.. Inc., B. F. $1 \geqslant x$
lulont du Cemours \& Co. (luc.) E. I.
"Freon" IProdnets Div. 107
Bitel-McCullouzh. Ine. 39 Litectric luto-Lite Co. 85
Eifretrical Thalustries 101

EAEctronicm Tuhe bive of Burroughs Corp
Wllis N Watts I'roduteta, Ine. $3: 3$
Empire Devices Iroducts Corporation.
Fairehild Controls Corp. Components Division
Feawal Electronies, lnc. 130
Genprad Ceramien Corb. 34
Gemeral vertric Co
Mingnetic Materials suction.......... 23
Giannini d Co., Ime., G. M. 9才
(iood-all Electric Mfig. Co. 125
Griphic Systems. 104

Hamds: \& Harman 38
Hinvion Nfig. Co., Inc. 112
Hrath Company. 104

Hebipot Corp., Div. of Beckman listrumorit

Hawlett-lackard Company...........24, 25
Hadson Wire Co.
Hughes I'roctucts, it Dix. of llughes lireratit (co.40. 41
Hycon Lastern, Ine. 119

Kostar Solder Co. 19
Kingaton Flartronic Corp. 133
Kintel (Kity lab) 13
Klien \& Sors, Mathias.................. 117

Librascope, Inc. 110

Diagnetirs, luc. 7\%
Mitlory and Co.. Ine.. I'. IR. 4
Marcuni lustrumpats, Ltd. 127
Narion Elerrian lintriment Co. 104

Mceraw-llill l’ublishing Co., Inc. . . 44. 45
Vtifati Inc. 118
Mierowive Asmociates, Inc. 90

V J F Corp. 3is
Vems-C'larlir, Ine. 105
Cow Depirture Div. of (ien Motors..... \%!
Neg Comparay, J. M. 120

Pact Eldetrical lantruments. Co. İR
Ihanatron Instriment \& ALectronic Co. LDO
flhilar Corporation.................... ts

ERM Division lissex Wire Corp.......xf, $8:$
Kamal Eugimeribs Ltal. 132 Radin Corporation of Imeriea Ath Cover Radian kucerntor Co., Inc. 29 Kaytheon Mig. Company........6. 30, 8! Krvere Cupprr and brass Corp. ...3:313, $3: 2$

Selobier Oratil Co. 101
Sorenaror Co. 5
Southeo Div., Sousti Chester Corp. 40
Spery Giyrosope Company. Division of 37
sprigue vileqtric Co. 3
Stackpole Cithour Co. 128
Stevelis Armolif. Inc. 123
Sodilart Iirctatt Radio Co.. Inc. 2:
vtromberecharlaon Compatily......... I\%. 133
Euperior Tube ro. 20
Nyatem Derelobmont Corg. 114

T:slor Fibre Co. 110
Techanaal lnformation Corp. Ti2l
Perhmology Instmment Corp. 88
Tektronix, Inc. 8: 8
Trimex Labouratoriess. 131
Tesala lisimments lneorporated....... 81
Tralusitmon Ele..trollie Corp. 27
Tung-Sol Vhectric. Jnc. \%

Cinite Co. 36
lnited Transformar Co. end Cover

NEW POWER

For Radio Communications Zw ANDREW High Gain Antennas

Multiply the effective radiated power in your radio system by four or more times with an Andrew High Gain Antenna. This extra power benefits not only the base station transmitter but every mobile transmitter in your system as well. Models are available for $148-174 \mathrm{mc}, 450-47 \mathrm{mc}$.

Increase mobile
transmilter power more than 50% with the ANDREW
Mobile Gain Antenna
for 450.470 mc .
This new antenna effectively multiplies mobile transmitter power by 1.5 without adding to the cost of the mobile unit or increasing the battery drain. It's an inductivetuned 9/16 wave radiator with a 1.3 db measured gain; low loss cable saves another 0.5 db . Write for complete details.

Varian Assoclates. 103
Veeder-Root, linc.

Weatinghouse Electric
Corp.
,16A, 16B, 16C, 16 D Wenton Electrical Instrument Corp., a Subsidiary of Daystrom, lnc........... 93 White IUental Mfg. Co., S. S. 102

Zippertubing Company, The............. 121

Professional Services
135

CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.

EMPLOYMENT OPPORTUNITIES 134-138

BUSINESS OPPORTUNITIES 135

EQUIPMENT
(Used or Surplus New)
For Sale
$\ldots .136,138$

ADVERTISERS INDEX

A \& M Instrument Service Inc........... 138

Barry Electronics Co........................ 136

Continental X-Ray Corporation.......... 136

Engineering Associates 136

General Electric Co......................... 135

Lear, Incorporated 138

Paulson Electronics 136

Ramo-Wooldridge Corp.................... . . . 135

Sperry-Phoenix Co.......................... 136
Sylvania Electric Products Inc............ 137

Technical Systems Corp.................. 138
Telephone Eng. Co.......................... 138
Texas Instruments Inc..................... . . 134

Universal Relay Corp.,
(Formerly Universal General Corp).... 136
rhis index is published as a service. Every care is taken to make it aecurate. but ELECTRONICS assumes no responsibilities for errors or omissions

There's JEWEL BEARING to fit Your Need!

Bird can supply you with sapphire and borrosilicate glass precision jewel bearings in a wide range of standard types, sizes, and complete assemblies - or, custom-built to your specifications. Special mounting techniques provide exact tolerance jewel assemblies, mounted or set in bushings or screws, ready for assembling into your product without further inspection. Jewels mounted with resilient silicone rubber or spring cushions provide additional protection to shock and vibration.
Because of the exact tolerances, maintained through the most rigid quality-control methods, Bird jewels are used by the foremost manufacturers of electrical, aircraft, and timing instruments - and recorders.
Typical products include:
Aircraft Instruments
Weather Recorders
Ammeters
Voltmeters
Wattmeters
Compasses
Dial Gages
Timers
Test \& Recording Instruments Marine Instruments
*Illustrated - Concentricity check of mounted ring jewels - one of the inspection processes in Bird's quality control program.
Our engineering staff is at your service for all small bearing problems. A request on your letterhead for Bulletin 100-6 will receive our prompt attention.

Lichard/. Sisd\&co..inc.

I SPRUCE ST,. WALTHAM 54, MASS.
SAPPHIRE \& GLASS JEWELS
PRECISION GLASS GRINDING
JEWEL MOUNTING \& ASSEMBLY

DID YOU SAY
 small?

Occupying less than $11 / 2$ square inches of panel space, this Miniature Ceramic Switch nevertheless contains as many as 18 positions on a single wafer. And it's rugged! Solid silver alloy contacts, rotors, and slip rings provide low and uniform contact resistance. Ceramic parts are silicone impregnated to function under, extreme humidity. Sturdy solder terminals are supplied for wiring. This miniature switch meets and exceeds the electrical and environmental requirements of Mil-Spec S.3786. Flashover voltage at 60 cycles is 1000 volts peak . . . current carrying capacity is 2 amperes. For guided missiles, airborne radar equiprnent, portable and mobile ground equipment ... for any application that requires an extremely small and rugged switch, specify Daven's Series M Miniature Ceramic Switches. These units can be "ganged" with up to 8 decks with slight mechanical modifications. 2 or 3 poles per deck may also be obtained as standard. Prototypes can be delivered within 2 weeks.

Write for complete information.

526 West Mt. Pleasant Ave.
 Route 1C, Livingston, N. J.

These 3 New RCA Low-Cost Computer Transistors Can Open New Markets For You!

RCA now makes available low-cost high-quality transistors for reliable performance in electronic computer applications!

- Can low-priced, highly-reliable computer transistors help you expand into new markets?
- Can they enable you to profitably engage in the design of compact mass-produced computers?
- Are you looking for ways to revise your current designs to save costs?

If the highly desirable combination of reliable performance and low cost have been difficult for you to find, investigate these three new RCA units: RCA-2N581, RCA2N583, and RCA-2N585. They are specifically designed, produced and controlled for computer applications; life-tested for dependable service; electrically uniform; available in commercial quantities; and are unusually low in price. In addition to these three new types, RCA offers a comprehensive line of transistors for your most critical computer designs. For additional information on RCA Transistors, contact your local authorized RCA Distributor or your RCA Field Representative at the office nearest you.

For technical data on RCA Transistors, write RCA Commercial Engineering, Section D-19-NN-4, Somerville, New Jersey.

EAST: 744 Broad Street
Newark, N. J.
HUmboldt 5-3900
MIDWEST: Suite 1154
Merchandise Mart Plaza Chicago, Ill.
WHitehall 4-2900

WEST: 6355 E. Washington Blvd. Los Angeles, Calif. RAymond 3-8361
GOV'T: 224 N. Wilkinson Street
Dayton, Ohio
BAldwin 6-2366
1625 "K" Street, N.W.
Washington, D.C.
DIstrict 7-1260

RADIO CORPORATION OF AMERICA Semiconductor and Materials Division Somerville, New Jersey

[^0]: RAYTHEON SEMICONDUCTOR DIVISION
 Silicon and Germanium Diodes and Transistors - Silicon Rectifiers

 Newton, Mass............ . . 55 Chapel St., Blgelow 4-7500
 New York: 589 Fifth Ave., PLaza 9-3900
 Chicago: 9501 Grand Ave., Franklin Park, NAtional 5.6130
 Los Angeles: 5236 Santa Monica Blvd., NOrmandy 5-4221

[^1]: Johnson \& Hoffman Mfg. Corp., Mineola, N.Y. - an affiliated company making precision metal stampings and deep-drawn parts, such as those used in the electron guns that go with this new cathode.

[^2]: For service, contact American Lava nepresentatives in Offices of Minnosota Mining \& Manufacturing Co. in these cities (see your local telephone directory): Allanta, Ga. - Boston: Newton Center, Mass. - Buffalo, \mathbb{N}. Y. - Chicago: Bedford Park, Ill. Cincinnati, O. Cleveland, O. Dallas, Texas - Detroit, Mich. - High Point, N. C. - Los Angeles, Cal. - New York: Ridgefield, N. J. Philadelphia, Pa. • St. Louis, Mo. - St. Paul, Minn. So. San Francisco, Cal. - Seattle, Wash. Canada: Minnesota Mining \& Manufacturing of Canada, Ltd., P. O. Box 757 , London, Ontario. All other export: Minnesota Mining \& Manufacturiñ Co., International Division, 99 Park Ave., New York, N. Y.

[^3]: CDF makes Di-Clad printed-circuit laminates. Diamond Vulcanized Fibre, CDF products of Teflont, flexible insulating tapes, Dilecto lami nated plastics, Celoron ${ }^{8}$ molded products, Micabond ${ }^{*}$ mica products, Spiral Tubing, Vulcoid
 *Trademark of Continental-Diamond Fibre Corporation \dagger Du I'ont trademark for its TFE-fluorocarbon resin

[^4]: VARIABLERESISTORS - SWITCHES - PACKAGED ELECTRONIC CIRCUITS CERAMIC CAPACITORS - ENGINEERED CERAMICS - SEMI-CONDUCTOR PRODUCTS

[^5]: FIUDSOM WIRE OOMEAMT Makers of quality fine wire for over 55 years Ossining, New York • Tel. Wilson 1-8500 - TWX Ossining 964
 Magnet Wire Plants . Winsted, Conn. \& Cassopolis, Mich.

[^6]: CANADA: CANADIAN MARCONI CO - 6035 COTE DE LIESSE • MONTREAL 9
 MARCONI INSTRUMENTS LTD • ST. ALBANS • HERTS • ENGLAND

[^7]: SPEED, ease, unexcelled acouracy \& thoroughness. Tests all receiving tubes fand picture tubes with adapter). Composite indication of Gm, Op \& leak pmission. Simultalleous sel of any 1 of 4 combinations of 3 plate tinuously variable grid voltace (with of concurate pol). Sew series-atring vottigns: tor 600 , 50.300 mat ${ }^{3}$ ymes. sansitive 200 ua meter, 5 ranges metire senslativits (1% shums d 5% pot.) 10 SIX-position Hurr switrhes: riee point connertion of each lube pin. 10 mush-buttons rapid insert of any t the element in leakage test circuit \& speedy sel. ot morit tesis. Direct-ratimg of inter-element leakage in ohmis. New camr-driven rollahart. Clucks n-p-n dity-n transistors: semarate fuecer readings of colfector lakage current

