electronics

Etched Amplifier for Color Tv p 135
IRE Program and Show Guide

Hunting Radar "Ângels" ...p 140

New simplicity,

counter accuracy!

-hp-540A Transfer Oscillator

Measure frequency to 12 KMC on pulsed, AM, FM, CW and noisy circuits Fast, convenient, simple set up

Just two -hp-instruments - Model 540A Transfer Oscillator and Model 524B Electronic Counter (with plug-ins) permit you to measure unknown frequency to 12 KMC with speed and accuracy.
Complex instrument arrangements and tedious trial-anderror work are eliminated. When approximate signal frequency is known, the 540 A oscillator is merely tuned until one of its harmonics zero beats with the unknown. The multiplying factor is noted, and the 540A frequency measured precisely on the 524 B Counter. The 524 B reading, times the multiplying factor, is the unknown.
When the signal frequency is totally unknown, a simple calculation employing two or more harmonics determines the proper multiplying factor; the measurement is then made as before.
On clean CW signals accuracy is about $1 / 1,000,000$; overall accuracy is better than 10 times that of the best microwave wavemeters.

For complete discussion and information, see your-lop- representative or write -hpfor Technical Data sheets and -bp. Journal, Volume 6, Number 12.

-hp-at IRE . . .

Many different uses

The unique $540 \mathrm{~A} / 524 \mathrm{~B}$ combination is particularly useful for swift CW and AM frequency determination, measuring center frequency or deviation range on FM signals, measuring frequency on high noise circuits and making high-accuracy measurements on pulsed signals.

Features - Model 540 A Transfer Oscillator

Oscillator Fundamental Frequency Range 100 to 220 MC . Harmonic Frequency Range to 12 KMC. Stability better than 0.002% change per minute after warmup. Output 2 v into 50 ohms. Attenuator range 20 to 80 db , into 50 ohms , low SWR. Amplifier 40 db variable gain, 1 v output. Selfcontained oscilloscope 100 cps to 200 KC , vertical deflection sensitivity $5 \mathrm{mv} \mathrm{rms} /$ inch at mixer output. Prices: -hp-540A Transfer Oscillator, \$615.00; -hp-524B Electronic Counter, $\$ 2,150.00$;-hp-525B Frequency Converter Unit, \$250.00.

Data subject to change uithout notice. Prices f.o.b. factory.
HEWLETT-PACKARD COMPANY
4192A PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A. CABLE "HEWPACK" • DAVENPORT 5-4451
field representatives in all principal areas Top of escalators as you enter show

electronics engineering edition

A McGRAW-HILL PUBLICATION • VOL. 31, NO. 11 • MAR. 14. 1958

ISSUE AT A GLANCE

H. W. MATEER, Publisher
W. W. MacDONALD, Editor

Managing Editor, Jotin M. Carroll.
Feature Editor, John Markus. Associate Editors: John M. Kinn, Jr., Frank Leary, Michael F. Tomaino, Howard K. Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, Donald C. Hoefler, William P. O'Brien, George Sideris, Edward DeJongh, John F. Mason, Barry Miller, E. A. Scutari, William E. Bushor, Ronald K. Jurgen, Thomas Emma, Patrick J . Lahey.
Pacific Coost Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New EngIand Editor (Bosion) Thomas Maguire.
Arf Director, Harry Phillips, Roy Thompsen.

Production Editor, John C. Wright, Jr, Bernice Duffy, Jean L. Matin.
Editorial Assistants: Gloria J. Filippone, Arlene Schilp, Noreen Hennessy, Phylis A. Cronin, Barbora Habermann, Patricia Landers.

JAMES GIRDWOOD, Adverfising Sales Manager. R. S. Quint, Assistant Advertising Sales Manager and Buyer's Guide Manager. Fred Stewart, Promotion Manager. Frank H. Ward, Business Manager. George E. Pomeroy, Classified Manager. Jean Heiges, Research. New York: Donald H. Miller, Henry M. Shaw, Martin J. Gallay, Boston: Wm. S. Hodgkinson. Phila. delphio: James T. Hauptli. Chicago: Bruce Winner, Walter M. Luce. Cleveland: Warren H. Gardner. San Francisco: T. H. Carmody, R. C. Alcorn. Los Angeles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten. Atlanta: M. Miller. Dallas: Gordon L. Jones. London: Herbert Lagler. Frankfurt: Michael R. Zeynel.

Etched I-F Amplifier Pares Color Tv_{v} Cost. Inductance coils and rejection traps for +1.7 -me color i-f are etched on the same board as the wiring and provide neat and coonomical design............................ p 135 By Linus Ruth

Roof-Top Target Tubes Pulse X-Rays. Pulse frequency and duty cycle can be varied widely in system using two X-ray tubes, each with target shaped like peaked roof and a special elcment called a diaphragm p 138 By. E. F. Weller

Atmospheric Angels Mimic Radar Echoes. Angel echoes have explanations more reasonable than the popular assumption of flying saucers.p 140 By Vernou G. Plank

High-speed Transistor Relay. Push-pull switcher handles 10 amperes with a rise time of $50 \mu \mathrm{sec}$.
p 145
By Dorrance L. Anderson

Direct Drive Amplifier for Two-Speed Servos. Direct drive servo amplifier for two-speed systems uses input switching circuit and three-stage feedback amplifier. p 146 By B. E. Orr

F-M Exciter For Sight or Scatter Systems. Excitcr produces output power of 15 w from 700 to $1,200 \mathrm{mc}$ and 8 w from 1,700 to $2,400 \mathrm{mc} \ldots$. . . p 148 By A. E. Anderson and H. D. Hern

DIGEST continued

Magnetometer Makes Continuons Measurements. Monitoring of magneticfields up to 300 gauss is possible with 0.1 -percent accuracy.p 152By Ferdinand Voelker
Stable Crystal Filter Is Parallel Resonant. High-Q, umbalanced crystal cir-cuit has properties similar to low $1 / \mathrm{C}$ ratio parallel-tuned circuit overappreciable frequency rangep 155
By J. Carl Seddon
Magnetic Inverter Uses Tubes or Transistors. Collector and emitter coil windings of transistor or plate and grid windings of tube are oppositely comected in multivibrator. p 158
By C. H. R. Campling
Simple Plotter Analyzes Radar Noise Rapidly. Analyzer with associated equipment plots amplitude-distribution density of signals within 1 to$10,000 \mathrm{cps}$ for analysis of radar noisep 162
By Daniel J. Zoll
Amplifier Design Curves. Charts aid determination of transistor or tubetypes, number of stages, and number of specifications of transformersfor double-tuned l -f amplifiersp 165
By Albert E. Hayes, Jr.
Electrous At Work p 170
Cards Control Steel Production. . p 170 Neon Triode Gives Slow Gatc. .p 170 By Reuald L. Ives Demonstrator Airplane Gcar....p 172
Discharge Path Forms Tree...p 174
Diodes Offset Heat Drif 1 176
By david H. Bryan 178
Electronics Saves Press Dies p 180 TV Controls Traffic............p182
Component Design p 184
Transistors After Ten Years....p $18+$ Connect Rectificrs for HV......p 188 Hip Mount Capacitors Save Space 190
Mctal Fibm Mica Attenuat
Component Doubles Radar Range 193
Preform Printed Wiring Con tacts 193
Production Techniques p 196
Dip-Brzing Reduces Machining. .p 196 By John Gombos
Vertical X-ravs Gihe Dimensions.p 196
lodels Simplify Cir
New Kit Modifies Potention- cters 202
New Products p 210
Literature of the Week p. 266
Plants and People p 270
New Books p 322
Thumbnail Reviews p 325
Comment p 326
Index to Advertisers 347

electronics

March 14, 1958 Vol. 31, No. 11

Published weekly with alternating engineering and business editions, and with a BUYERS' GUIDE issue in mid. June. by McGraw. Hill Publishing Company. Inc. Janes H. McGraw (1860 1948) Founder

Executive, Editorial. Circulation and Advertis. ing Offices: McGraw-Hill Building, 330 W. 42 St., New York 36, N. Y

Longacre 4.30\%0. Publication Oftice 99-129. North Broadway, Allany 1, N. Y. See panel helow for directions regarding sult scription on change of address. Donald C. McGraw. Prexident: Joseph A. Gerardi, Executive Vice I're-ident; L. Keith Guodrich, Vice President and Treasurer, Join J. Cooke, Secretarv; Nelson Bond, E ecutive Vice President, Publications Division; Ralph B. Smith, Vice President and Editorial Director: Joseph H. Allens Vice President and Director of Advertising Sales; A. R. Venezian, Vice Presi dent and Circulation Coordinalor

Single copies $\$ 1.00$ for Engineering Edtion and $50 ¢$ for Busines Edition in United States and possessions. and Canada: $\$ 2.00$ and $\$ 1.00$ for all other foreign countries. Buyers' Guide $\$ 3.00$. Subscription rates-United States and mossessions, $\$ 6.00$ a year: $\$ 9.00$ for two years; $\$ 12.00$ for three vears. Canada, $\$ 10.00$ a year $\$ 16$ for two years; $\$ 20.00$ for three years. All other countries $\$ 20.00$ a year, $\$ 30.00$ for two years; $\$ 40.00$ for three years. Second class mail privileges authorized at Alhany, N. Y. Printed in U.S.A. Copyright 1958 by McGraw. Hill Publishing Co, Inc.All Rights Reserved. Title registered in U. S. Patent Office. BRANCH OFFICES: 520 North Michigan Avenue, Chicago ll; 68 Post Street, San Francisco 4; McGratw. Hill House, London E. C. 4; A.M. Leonhards 12, Frankfurt Main; National Press Bldg., Washington 4, D. C.; Architects Bldg., 17th \& Sansom Sis., Philadelphia 3; 1111 Henry W. Oliver Bldg Pittshurgh 22; 1510 Hanna Bldg., Cleveland 15; $85 \overline{5} 6$ Penobscol Bldg., Detroit 26; 36,15 Olive St., St. Louis 8; 350 Park Square Bldg., Boston 16; 1321 Rhodes Haverty Bldg., Atlanta 3; 1125 West Sixth St., Los Angeles 17; 1740 Broadway, Denver 2. ELECTRONICS is indexed regularly in The Engineering Index.

```
Subscriptions: Address correspondence to
Subscription Manager, Electronics. 330 W.
42nd St., New York 36. N. Y. Allow one
month for changes of address. stating old
col
solicited only from, persons engaged in 
agement, maintenance, and use of elec-
tronics and industrial control components.
parts and products. Position and company
tion orders.
```

Postmaster: please send form 3579 to Electronics, 330 W .42 nd St., New York 36 , N. Y.

This instrument's wide frequency range, excellent shielding, sturdy construction, and low cost make it one of the most popular Standard-Signal Generators available. Simplicity of design has resulted in a very high performance-to-cost ratio. Stability and low drift are assured by high-quality components, low power consumption, and stabilized power supply. Internal modulation is provided over a range of 0 to 80%.
Carrier Frequency Range: 5-kc to $50-\mathrm{Mc}$ in eight directreading ranges.
Frequency Calibration: $\pm 1 \%$ accuracy; Iogarithmic variation gives constant precision of setting over most of range.
Incremental frequency Dial: Indicates frequency increments directly in percent.
Output Voltage: Attenuator Jack: $0.1 \mu \mathrm{v}$ to 200 mv open circuit, continuously adjustable.
Second Panel Jack: 2-VOLTS to at least 15 Mc.
Output Impedance: Attenuator Jack: 10Ω except for highest attenuator position where impedance is 50Ω; 50Ω when 40Ω Series Unit is used. 25Ω at end of Terminatem Cable.
2-VOLT Panel Jack: 300Ω.
Output Voltage Accuracy: Below $10 \mathrm{Mc}: \neq(6 \%+0.1 \mu \mathrm{v})$ with output dial near full scale.
Above $10 \mathrm{Mc}: \pm(10 \%+0.3 \mu \mathrm{~V})$ near full scale.
At 2-VOLTS Jack: $\pm 3 \%$ to 15 Mc .

Amplitude Modulation: Adjustable from zero to 80% - indicated on panel meter. Internal modulation is 400 cycles; external modulation from 20 cycles to 15 kc flat within $\pm 1 \mathrm{db}$.
Incidental Frequency Modulation: No more than 30 to 300 ppm over most of range at $80 \% \mathrm{a}-\mathrm{m}$; proportionately less at lower modulation percentages.

Carrier Noise Level: Corresponds to about $\mathbf{0 . 1 \%}$ modulation: Leakage: Stray fields at 1 Mc are less than $1 \mu \mathrm{~V}$ per meter, two feet from generator.
Servicing Feature: Oscillator section plugs into shielded compartment and is easily removed for operation outside the cabinet, making servicing particularly easy.

Accessories Supplied: Double-shielded coaxial cable with G-R 874 Connectors, 50Ω Termination Unit, 40Ω Series Unit, 874 Adaptor to banana plug, extra cable and panel connectors, spare fuses, and power cord.

Dimensions: $143 / 8^{\prime \prime} \times 201 / 4^{\prime \prime} \times 10 \% 16^{\prime \prime}$ Net Weight: 54 lbs .

GENERAL RADIO Company

CIRCLE 106 READERS SERVICE CARD

CAN YOUR PRODUCT TAKE IT? The environmental flight conditions facing avionics products today are extremely precarious. Only the toughest products are meeting the test... and only thorough objective testing will tell you how tough your product really is. The men at American Laboratories are testing experts. By inventive flight simulation in their lab, they tell you if your product can take it or help you in developing new products. Their laboratories have the latest in instrumentation and environmental test gear ...over 13,000 square feet specifically designed to accommodate development, qualification, quality control and reliability testing of electrical, electro-mechanical and electronic packages and components. Write for illustrated brochure 9000.1.

FAST RESPONSE-LOW DISTORTION

The Only AC REGULATOR with Distortion LESS than 0.35% and Response Time LESS Than 1 cycle - and Regulation Accuracy Held Within $\pm 0.25 \%$ for Line and Load Combined!

This new type of AC Regulator, the Sorensen FRLD 750, features the ability to reduce line distortion below 0.35%, with exceptionally fast response time. Transients caused by line or load changes are suppressed within less than one cycle.
Even when input distortion is above that of normal utility supply, output distortion is reduced
by a factor of at least $8: 1$. The magnitude of transients - line or load - is likewise reduced by the same $8: 1$ factor.
The new FRLD 750 Regulator provides two output ranges . . 0-750 and 0-1200 Volt Amps.

The instrument weighs only 100 pounds, and dimensions are: $19 \times 12^{3 / 4} \times 157 / 8$ inches.

The cost of this new, high-performing closeregulating Sorensen development is good news too - only $\$ 825$.
Get the complete story, or a demonstration of
its high-level performance, by calling your Sorensen representative. Or wire or write for full technical details.

CONTROLLED POWER FOR RESEARCH AND INDUSTRY

SORENSEN \& COMPANY, INC.
Richards Avenue, South Norwalk, Connecticut

Presents the

first complete line of

PNP GERMANIUM

TRANSISTORS

These new Raytheon Submin Transistors have one-fourteenth the volume of the JETEC-30 package.
in large quantity production - available from stock featuring PROVED PEREORMANCE Over one half million in service
Low leakage current ($I_{c o}$)
High frequency characteristics

${ }^{*} \mathrm{I}_{\mathrm{C}}-50 \mathrm{ma} ; \mathrm{I}_{\mathrm{B}_{1}}=5 \mathrm{ma} ; \mathrm{R}_{\mathrm{L}}=200 \Omega ; \mathrm{I}_{\mathrm{B}_{2}}=5 \mathrm{ma}$; Grounded Emitter Circuit

2	GENERAL PURPOSE AUDIO	$\begin{aligned} & \text { SUBMIN } \\ & \text { Type } \end{aligned}$	JETEC-30 Electrical Equivalent	$\begin{aligned} & V_{\mathrm{CE}} \\ & \max ^{\text {volts }} \end{aligned}$	$\begin{gathered} \text { Beta } \\ \text { ave. } \\ \text { small signal } \end{gathered}$	Power Gain Class A ave. db	Ico ave. $\mu \mathrm{a}$	Noise Factor ave. db
		CK22	2N422	-20	90	40	6	
	TRANSISTORS	CK64	2N464	-40	22	40	6	12
	Temperature Range	CK65	2N465	-30	45	42	6	12
	$-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CK66	2N466	-20	90	44	6	12
	-65 ${ }^{\circ}$ to +85	CK67	2N467	-15	180	45	6	12

筌	GENERAL PURPOSE RADIO FREQUENCY TRANSISTORS Température Range $-65^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{gathered} \text { SUBMIN } \\ \text { Type } \end{gathered}$	JETEC-30 Electrical Equivalent	$V_{c E}$ max. volts	$\begin{aligned} & f_{\alpha b} \\ & \text { ave. } \\ & \text { Mc } \end{aligned}$	Beta ave.	cub ave. $\mu \mu i$	$\begin{aligned} & \mathrm{rb}_{\mathrm{b}}{ }^{\prime \prime} \\ & \text { ave. } \\ & \text { ohmms } \end{aligned}$
		CK14	2N414	-18	6	40	12	80
		CK16	2N416	-12	10	60	12	90
		CK17	2N417	-10	20	80	12	100

Dissipation Coefficients for all submin types: in air, $0.75^{\circ} \mathrm{C} / \mathrm{mW}$; infinite sink, $0.35^{\circ} \mathrm{C} / \mathrm{mW}$

Newion, Mass.: \qquad 55 Chapel St., Blgelow 4-7500 New York: 589 Fifth Ave,, PLaza 9.3900 Chicago: 9501 Grand Ave., Franklin Park, NAtional 5.6130 Los Angeles: 5236 Santa Monica Blvd., NOrmandy 5.4221

ELECTRONICS NEWSLETTER

SUPPLEMENTARY DEFENSE APPROPRIATION to be requested by the Pentagon for the 1959 fiscal year may add up to more than $\$ 2$ billion. Assistants working on the new request say it may go higher than the $\$ 1.3$ to $\$ 1.7$ billion rarge estimated recently by Secretary McElroy before the Senate preparedness subcommittec. McElroy indicated the total military appropriation would amount to at least $\$ 40.9$ billion, and possibly to $\$+1 .+$ billion.

Generally, the additional money will go for ballistic missiles like the Polaris, space proiects and continuation of B-52 production into 1960 .
ELECTRON BEAM FURNACE for a new melting and metal casting process has been proved on a pilot scale by Stauffer Chemical Co., Mallory-Sharon Metals Corp. and Temescal Metallurgical Corp., the firms that developed it (Electronics, Jan. 10, p 22). Bom bardment by electrons in a high vacuum melts chemically active materials with high melting points. A dozen special metals have already been melted, purificd and cast in water-cooled crucibles without contamination.
Economics of electron bombardment melting look favorable at present, says Stauffer, because high voltage d-c electrons are relatively cheap, power efficiencies high. Purification of
columbian requires about 3.4 kwh per pound, tantalum about 6.8 kwh per pound. This com pares with 500 kwh per pound used in the solid state sintering of tantalum.

ELECTRICIANS' UNION PUSHES ELEC-

 TRONICS TRAINING for members. California State Association of Electrical Workers recommends that apprenticeship of an electrician be extended from four to five years to train him in installation of electronic equipment. Union savs clectronics work has jumped 20 percent in the last three years, and niore is expected in both commercial and residential construction. A check of one New York City local reveals that a "preliminary program to get members interested in electronics" has been underway for four months, and that optional cvening sessions are so popular the program may be expanded.NEW USAF SOLID FUEL BALLISTIC MISSILE of $500-5,500 \mathrm{mi}$ range has been approved for development in +-5 vears by Guided Missiles Director Holaday. Missile is part of Minute Man project which envisages underground launching facilitics. Improved ICBM nose cone may mean on-target delivery of large warleads will be possible at faster than present planning of $10-15,000 \mathrm{mph}$.

FIGURES OF THE WEEK

STOCK PRICE AVERAGES

$\begin{array}{ccccc}\text { (Source: Standard \& Poor's) } & \text { Feb. 26, '58 } & \text { Feb. 19, '58 } & \text { Feb. 27, '57 } \\ \text { Radio-tv \& electronics } & \ldots . & \text {... } & 45.34 & 46.49 \\ 46.25\end{array}$ $\begin{array}{lllll}\text { Radio-tv \& electronics } \ldots . . . & 45.34 & 46.49 & 46.25 \\ \text { Radio broadcasters } & 55.37 & 57.40 & 62.05\end{array}$

FIGURES OF THE YEAR

	1957	1956	Percent Change
Receiving tube sales	456,424,000	464,186,000	- 1.7
Transistor production	28,738,000	12,840,000	$+123.8$
Cathode-ray tube sales	9,721,008	10,987,021	- 11.5
Television set production	6,399,345	7,387,029	-13.4
Radio set production	15,427,738	13,981,800	+ 10.3
TV set sales	6,560,220	6,804,756	- 3.6
Radio set sales (excl. auto)	9,721,285	8,332,077	$+16.7$

In New York's Colisenm 20,000 items will be exhibited four days for electronics industry members as...

IRE Show Probes Future

More than 50,000 engineers due at New York City convention week from Monday. Three new sessions, industry optimism among highlights

A look into the future, thice new sessions, and electronics industry optimism despite recession talk will be highlights of the 1958 IRE National Convention and Radio Engineering Show starting a week from Monday in New York City.

Among the forward looking sessions will be those on thermonuclear power, electronics in space, automation systems and the inpact of electronics on industry.

The world's greatest assembly of technical ideas and products unfolds March 24-27 in the Coliscum. Three sessions will be held for the first time. Tliey will be on radio frequency interference, cducation, and engineering writing and speech, reflecting recent establishment of IRE groups in these fields.

Overall attendance is expected to be a few thousand over last year's record attendance. Some 850 firms will exhibit 20,000 items worth about $\$ 12$ million. Exhibitors will
represent about 80 percent of the electronics inclustry's total production capacity.
Eilectronics checked and found some exhibitors were rumning right to the wire on prototype production and testing of new products. Others were awaiting permission to show prestige-building military gear.

From coast to coast clectronic engincers and salespeople are now entering two of the year's busiest weeks.

Component, materials, sulsystem and production equipment firms are turning out en masse for the show, but there will be fewer big systems shown this year. The emphasis is on products that can be solk in the tradc.

Exhibitors report their commercial business has been pieking up nicely, the heat generated by the Sputniks has warmed up military business.

The theme of the show-"That Ncw Idea"-is being carried over from last ycar. The show management feels that it will be more effective as a promotion idea in its second ycar. New products will be identified by a sloow sticker and booth staffs will be wearing "New Idea" buttons.

The Radio Engincering Show will again occupy all four floors of the Coliseum: systems on the first floor; components, sccoud and third floors; instruments, third floor; and production gear, fourth.

The technical program, 275 papers in 55 sessions at the Coliseum and Waldorf-Astoria, is the same lengtl as last year. That's just about all that can be squcezed into four days. (See complete program, exhibitor list and booth mumbers on p 270).

Presentations were organized by representatives of the IRE's 27 professional groups. Emphasis is still on theory, circuits, systems and parts needed to build markets now developing.

In addition to brisk trading on the floor, manufacturers hope to influence engineers who will make buying decisions back home.

Von Braun Says '5 More Firings'

The Army Ballistic Missile Agency has been given the green light and "financial support for five firings involving satellites or other space projects," says Wernher von Braun, Army's chicf of development operations for missiles.

Von Braun would not reveal how much moncy was approved for the projects, nor woukl he give a date for the next satellite launching try.

He said the next satellite under
LATEST MONTHLY FIGURES EMPLOYMENT AND PAYROLLS

(Source: Bur. Labor Statistics)	Dec. '57	Nov. '57	Dec. '56
Prod, workers, comm. equip.	380,400	398,000	407,800
Av. wkly. earnings, comm.	$\$ 78.40$	$\$ 77.22$	$\$ 79.15$
Av. wkly. eearnings, radio	$\$ 76.64$	$\$ 75.08$	$\$ 75.95$
Av. wkly. hours, comm. ..	39.2	39.0	40.8
Av. wkly, hours, radio ...	39.1	38.9	40.4

TRANSISTOR AND TUBE SALES

(Source: EIA)	Dec. '57	Nov. ${ }^{\prime} 57$	Dec. '56
Unit sales	2,773,000	3,578,700	1,608,000
Value	\$6,619,000	\$6,989,000	\$4,691,000
Receiving tubes, units	27,736,000	39,950,000	34,340,000
Receiving tubes, value	\$24,881,000	\$33,166,000	\$29,111,000
Picture tubes, units	644,026	772,801	795,476
Picture tubes, value	\$12,971,487	\$15,138,438	\$13,423,157

LAMBDA GUARANTEES POWER SUPPLIES FOR FIVE YEARS

DEPENDABILITY IS VITAL

Lambda power supplies are components of IBM's SAGE computer, the world's largest electronic digital computer.

Lambda Com-Pak supplies, with front panel modifications, used by Western Electris to power United States cortinental air defense system tests.

Retroactive to all Lambda Power Supplies purchased since 1953

Now Lambda gives you the strongest proof of consistent trouble-free power supply performance ever offered.
The unprecedented five-year guarantee is based on the excellent experience owners of Lambda power supplies have had with their equipment under the most grueling, heavy-duty service.
You are covered not only on new Lambda supplies, but also on all Lambda equipment you have purchased since 1953.

See new Lambda Transistorized Power Supplies at I.R.E. Show

They will be on display in Booths 2436 and 2438. You'll also want a close-up view of Lambda's Com-Pak series, for all needs up to 1.5 amperes. The Com-Pak models are real space savers. They need only $5 \frac{1}{4}$ " to $83 / 4^{\prime \prime}$ of front panel height, depending on the model.

Send for latest catalog

Your request, on your company letterhead, brings you complete data on all Lambda power supplies - rack, bench and portable.

SUPERMENDUR tape wound cores ... A Real Breakthrough in Miniaturization

The successful development of tape wound cores of Supermendur represents a giant step in the field of circuit miniaturization and simplification. The unique characteristics of this new rectangular-loop core material in the range of induction from 16 to 22 kilogausses permit significant weight and size reduction of toroidal transformers and magnetic amplifiers.
Supermendur, an oriented cobalt-iron-vanadium alloy, combines the high saturation flux density of the cobalt-iron alloys with the desired hysteresis loop rectangularity of the oriented 50% nickel-irons.

Coercive forces substantially lower than those of previously available cobalt-iron alloys are obtained. The lower core losses and excitation properties of Supermendur show a decided improvement in high density characteristics compared with oriented silicon steel, as illustrated by the curves
partially shown above. Complete curves are available in a new Supermendur Bulletin TC-113, available on request.

Specificadvantages of Supermendur cores in toroidal transformers are: high operating induction, low core loss, low exciting current and high permeability at high induction. In magnetic amplifiers or saturable reactors, they include: rectangular hysteresis loop, high saturation induction and moderate excitation at high induction. Advantages in all uses are: thin tape, small size and low weight.

Supermendur is an ideal material for high temperature core components, because of its high Curie temperature.

- Supermendur is manufactured by Arnold under license arrangement with the Western Electric Company. We'll be glad to send you additional information or furnish you engineering assistance on any of your tape core applications if you'll just drop us a line.

W5w 7026

> Visit us at the IRE SHOW NEW YORK March 24 through 27 BOOTH 22O1-2205

The Arnold Engineering Company

Main Office \& Plant: Marengo, Illinois

Repath Pacific Division Plant: 641 East 6 1st Street, Los Angeles, Calif.

District Sales Offices:

Boston: 49 Walthàm St., Lexington Lós Angeles: 3450 Wilshire Blvd. New York: 350 fifth Ave. Washington, D.C.: 1001-1 5th St., N.W.

complete details on request... DUMONT
INSTRUMENT DIVISION
, Alen B. Du Mont Laboratories, Inc., Clifton, N. J., U.S.A.

The Du Mont 403 is the most sensitive oscilloscope commercially available. This outstanding sensitivity permits direct measurements from low output transducers such as strain gages, pressure pickups, accelerometers, heart monitoring equipment, and others that normally require pre-amplification.

The 403 , when used as a direct-reading voltmeter, of ers full scale amplitude measurements from 1 millivolt to 500 volts, continuously variable in 17 steps. At maximum sensitivity, the 403 allows resolution of signals in the region of 20 microvolts.

Stability, commensurate with this outstanding sens:tivity, is another feature of the 403.

The 403 is another in the Du Mont 400 Series Instruments. It is designed for fast, easy, and accurate measurements, along with complete accessibility and reliability.

$$
\text { One of the } 40 \text { Series }
$$

FEATURING

AMPLIFIERS: Direct coupled amplifiers. Single-ended or balanced Y-input. EXTREME SENSITIVITY: 1 millivolt to 500 volts full scale, continuously variable. FREQUENCY RANGE: DC to 300 KC . Y AMPLIFIER CALIBRATION: 5%.
SWEEPS: 19 calibrated linear sweeps, 0.5 $\mathrm{sec} / \mathrm{cm}$ to $0.5 \mu \mathrm{sec} / \mathrm{cm}$. Calibrating accuracy, 5%.

EXPANDED SWEEP: Any 10 cm portion of 50 cm sweep may be expanded 4 times and positioned on screen.
$\$ 580$
P.O.B. Clifton, N. J.

Be sure to visit Du Mont at the IRE Show in New York.
Booths 3201, 3202, 3203, 3301, 3303, 3305.
his control will be in the same bullet shape as Explorer I.

Von Braun said the program "docs not imply we'll hit the moon."

The next satellite, he said, will utilize a built-in miniaturized tape recorder and recciver with a "little electro-motor to wind up the spring for the tape.
"A signal from the ground will trigger the recorder when it is passing over our westem homispleere, and give us the recorded data gathered by instruments on the other side of the world," Von Braun said.

Space Age Needs Manned Aircraft

Washington--Producers of electronic equipment for manned aircraft will share, along with makers of missiles, in the stepped up U.S. spending for military hardware.

This was the belief of those attending the recent Air Force Association's Jet Age Conference here.

By far the most prodominant single issuc brought out was the continuing need for manned bombcrs, regardless of progress in ballistic missiles.

This recurring theme was stressed by all Air Force speakers. Lt. Gen. Francis H. Griswold, Vice Com-mander-in-Chief, Stratcgic Air Command: "For the foresceable future, missiles will supplement and complement rather than replace the manned bomber."

Maj. Gen. James Ferguson, Director of Requirements, Deputy Chief of Staff, USAF said: "Since there are signs that significant clements in the country would stampede us into outer space, leaving little else behind, I am happy to help put into proper perspective the continuing operational need for mamned aircraft."

Ferguson added: "The attribute of wide discretion is one we cannot build into a machine. It bccomes apparent, then, that we must prescreve and refine our manned svstems, if for no other reason, for this discretionary capability alone. With all their capability the destructive power of the missile is not equal to that of the manned bomber."

WASHINGTON OUTLOOK

Navy's super secret project ASROC, antisubmarinc rocket, reportedly is a large-scale version of its recently announced antisubmarine weapon RAT, a rocket-thrown weapons system. Minncapolis-Honcywell is the prime contractor, with Librascope handling the electronics end of the project.
Basically, the system searcles out submarines, then launches rockets for undersea kills. It is said to use electronic digital fire-control computers for the first time on surface ships.
Navy has touted its RAT project as the hottest thing yet in antisubmarine warfare. Presumably this is a small scale test of the coming ASROC project. Minneapolis-Honeywell doesn't admit the project exists, but it is known that the project is being handled from a West Coast plant. Librascope's subcontract amounts to $\$ 17$-million.

- A now cotry in the sweepstakes to develop new missiles is the Air Forec's Minute Man, a solid propellant ICBM. The Pentagon has authorized the Air Force to push ahcad on researech and development. None of the project contractors has been officially revealed. But it's believed that Aerojet-Gencral, Thoikol, Phillips Petroleum and Grand Central Rocket are competing for a production contract on the missile's engine.

Presumably, the propulsion subsystem is being pushed the most right now, with the belief that advanced models of the GE, Burroughs guidance system for the liquid-propellant Atlas ICBM or the Arma-Bell Lbs system for the liquid-propellant Titan ICBM could be incorporated at a later date in Minute Man.
The trend toward stronger military unification-and more centralized Pentagon control over weapon development and produc-tion-could be sidetracked by a bill introduced by Rep. Carl Vinson (D., Ga.), the powerful chairman of the House Armed Services Committee and Rep. Leslie C. Arends (R., Ill.), the committec's ranking Republican and House whip for his party.

The bill would cut the Secy. of Defense's office from 2,400 persons to 600, eliminate 14 of the Pentagon's roster of 29 under secretaries and assistant secretaries, substantially restrict the authority of the Defense Comptroller and elevate the civilian secretaries to membership in the National Security Council.

In effect, the bill seriously reduces the Defense Secy's central powers, creates greater authority for the individual services. This is in direct conflict with the proposals, now being considered by the administration, to reorganize the Defense Dept. with stress on unifying military organization and policy.

Some Pentagon sources consider the Vinson-Arends bill an effort to temper the Administration reorganization plans now being worked up for Congressional consideration. Both Vinson and Arends are conservatives on the organization issue, strongly oppose the creation of a single chicf of staff, greater authorities for Defense Secy., and all other trends toward greater unification.

- Government officials say reliability of electronic parts in rockets and missiles has reached the stage where the prime missile makers themselves-Convair for onc-are pumping as much as 75 percent of their development funds into searching for better electronic materials and components.

New! KIN TEL's true differential DC amplifier...

completely isolates input from output!

AMPLIFY MICROVOLT-LEVEL DATA SIGNALS New transistorized differential DC amplifiers provide extremely high common-mode rejection, very low drift, high output capability, and excellent stability and linearity... all unaffected by load or gain changes. Ideal for thermocouple amplification, they eliminate ground loop problems; allow the use of a common transducer power supply; permit longer cable runs; drive grounded, ungrounded or balanced loads, and can be used inverting or non-inverting The 114A is the perfect instrumentation amplifier.

BRIEF SPECIFICATIONS - 114A DIFFERENTIAL DC AMPLIFIER

- 120 db common-mode rejection from $D C$ to 60 cps .
- Gain of 10 to 1000 in 5 steps, continuous variation between steps. - Gain accuracy 1.0% DC $10 \mathrm{cps}, 3 \%$ to 30 cps , 3 db down at 120 cps .
- DC gain stability and linearity 0.1%.
= <5 $\mu \vee$ noise; $<5 \mu \vee$ drift at gain of 100 or above.
- Maximum output capability 10 V at 10 MA .
- 100 K ohm input, <1 ohm output Z (min, load res. 20 ohms, max. load cap. 1.0μ).

[^0]STANDARD WIDEBAND DC AMPLIFIERS can be used singleended or for floating input applications. An operational version permits the user to employ his own feedback net works to limit bandwidth, generate transfer functions, obtain specific gains and perform integrations. Specifica tions for the 111 series, Wideband DC Amplifiers include $<2 \mu \mathrm{v}$ drift; $<5 \mu \mathrm{v}$ noise. $\pm 35 \mathrm{~V}, \pm 40 \mathrm{MA}$ output. 100 K ohm input, 1 ohm output Z; $1.0 \mu \mathrm{f}$ allowable output cable capacity. 0 to 1000 gain in ten steps, with continuous 1 to 2 times variation of each step. Gain accuracy (freq. response) $\pm 1.0 \% \mathrm{DC}$ to $2 \mathrm{KC},<3 \mathrm{db}$ down at 40 KC .
ALL KIN TEL DC AMPLIFIERS feature integral power supplies, convenient plug-in mounting and KIN TEL's proven chopper feedback amplifier circuitry for unsurpassed stability, accuracy and reliability. They have accumulated over 500 years of operating time, and in one installation alone have logged over a million hours of troublefree operation. Records like this are the result of stringent quality controls, thorough testing and calibration, and years of experience in the design and manufacture of thousands of chopper stabilized DC amplifiers.
FOR GREATER ACCURACY, SIMPLICITY, RELIABILITY, and the elimination of carrier system balance problems, replace complex carrier systems with a KIN TEL packaged "plug. in" DC instrumentation system - complete from input transducer to output device.

$$
\text { Over } 10,000 \text { KIN TEL instruments in use today! }
$$

Representatives in all major cities. Write today for demonstration or literature. 5725 Kearny Villa Road, San Diego 11, California, Phone: BRowning 7.6700

A Division of Cohu Electronics inc.
and probably more than we cnvision now, man will fly the equip. mont. Man's judgment and skills will alwars be necded to achicre the greatest effectivencss."

George E. Vallcy, Jr., USAF's Chief Scientist: "Missiles are indeed new weapons, but they are adclitions to our ammment: their properties are complementary to those of the manned aireraft."
Gen. C. S. Irvine, Deputy Chief of Staff. Materiel: "Missiles and manned aircraft are getting more alike as to design. But missiles are going through a trial period. When judgment is required and whlen the reliability is assured, then man will be put into missiles."

Previouslv. Etectrovics (Feb). 7, p 13) quoted Major Alcxander de Severskv's statement before the Senate Preparedness Sulbcommittee: "For any predictable time. the hypersonic, manned vehiele will be the decisive weapon in any future war. In gencral, robots are too logical. Their reaction is predictable; they are casier to intercept."

Tv Multiplex Shows Progress

Present status of development in a tv multiplex system was recently demonstrated in Newark, N. J., to laders in government and industry. Originally announced last fall (Electronics. Oct. 10, '57). system which then was in drawingboard stage has since developed into the form of experimental hardware.

Developers of the Bi-Tran sustem assert that more refinement is necessary before it can be offered to the industry as a commercial possibility.
One problem is to get perfect phase cancellation between the two video signals. At present there is interlineation and video crosstalk in both channel A and B reproduction.

In addition to possibility of using B channel for subscription $\mathbf{t v}$, promoters also envision uses of existing networks and stations for hitchhike by military, eclucational, medical, civil defense and other emergency scrvices.

MILITARY ELECTRONICS

- Projects USAF and/or the Department of Defense are studying include: sencling a $3,000-\mathrm{lb}$ reconmassance satellite into orbit via an ICBM Atlas; accelcrating R\&D work on ICBM Titan; developing a solid-fueled ICBM not as "awkward" as liquid-fucled Atlas and Titan; extending production of the 13-52; and recxamining Armv's IRBM Jupiter in comparison with USAF's Thor.
- Airborne Bendix-Decca pictorial navigation equipment for helicopters is being evaluated in the New York area by the Airwavs Modernization Board. Objective: to what extent will a hyperbolic system expedite helicopter operations in a high-density terminal area?

Four organizations are associated in the program: Pacific dis. of Bendis will furnish, install and maintain the equipment; Bell Helicopter will modifv a helicopter, installing advanced types of instrumentation developed by Bell and Bendix; New York Airways will fly the units; and Airborne Instruments Labs will provide engincering aid to AMB during the program, and will measure the technical performance of the system.

- Airways Modernization Board has awarded a $\$ 4,272,48+$ contract
to General Precision Labs for design, development and fabrication of enroute portion of AMB experimental semiautomatic traffic control data processing system for civil and military air traffic control.

The AMB also started negotiations with GPL for the development of the high-density terminal portion of the automatic data processing and displav element.

- Combination data processing and closed circuit to to be used for testing Navy's IRBM Polaris wals developed by Sicgler's Hallamore Electronics div. under a \$1-million R\&D contract with the Naval Ornnance Test Station, Pasadena. The system's datal reduction equipment contains electronic devices for calibrating all cquipment prior to testing or firing the missile.
- Range and accuracy of infrared homing missiles will be increased due to the development of a hyperpure monocrystalline silicon disk lens with a 4 -in. plus diameter, according to developer Friedrich Schwarz, U. S. Semiconductor Products, Inc., located in Phocinis, Ariz.

Schvarz declares that the new lens makes it possible to detect and home in on an enemy missile from $1,000 \mathrm{mi}$.

New Weapon
MB-1 Genie, air-to-air rocket, is shown in front of its launcher, the McDonnell F-101B Voodoo. Hughes' electronic fire control system locates target and fires armament. Genie, built by Douglas, is part of CONAD's arsenal

Space Challenge To Electronics

CHICAGO-The problem of "instrument display and controls in a space ship offers considerable challenges to the present state of the electronic art," says Brig. Gen. Don Flickinger, director of Human Factors and surgeon at the Baltimore Headquarters of the U. S. Air Research and Development Command.

The pilot and medical scientist told Electronics that "in the nest four to five years I can sec the possibility of putting in spacc a man who is contributing something to the instrumentation system, and

booths 2801-05

SEE THE TUBES WITH DISPLAYS THAT STAY! All Hughes direct-display cathode-ray tubes have the ability to store information tor extended periods of time.

	the TONOTRON* trum of grey shades. The Hich LLGHT OUTPUT faciilites ing even in full daylight. ing even in fuli daylight.	tha TYPotron ${ }^{-1}$ Chberstire witive sionale bination of 63 characters or sym ly erased

For a period of years these Hughes cathode-ray tubes have been in commercial and military operation and have established an outstanding record of reliability. See these tubes actually perform in typical applications at the I.R.E. show in New York. Or, for further technical data write: Hughes Products, Electron Tubes, International Airport Station, Los Angeles 45, California.

Creating a new world with ELECTRONICS
HUGHES PRODUCTS

O 1958, HUGHES AIRCFAFT COMPAN:
recovering him after a five day period."

Gcn. Flickinger added: "Extremely small cnergy requirements will carry out nccessary communication functions between the space man and the ground staff. We do not have a space communication system now, but we do have components of a system we know will work in a vacuum chamber."

The Air Force scientist said some electrochemical techniques of dealing with gases and rcarrang. ing them for the space man's safety at relatively small watt cost and cuergy "slow promise."
"In the next couple of ycars we can come up with an clectroclemical process to extend the time base from five days to probably five weeks or two months.
"We are doing this now with special battery powered units opcrating at about $\frac{3}{7}$ of a kilowatt. It provides power for $2+$ hours. Thic total unit for one man oxygen day weighs 75 lbs."

The X-15 airplane will be tried out in 1959, he said. "Certain instruments in the vehicle will have to be displayed in a manner so a man can quickly make a decision and instigate action on this judgment."

Selling Seats By Wire Line

Braniff airline hostess queries equipment about seat availability on her flights by using key-set machine

Recently, Braniff International Airways unveiled its new electronic reservation system in Dallas, Texas.

The equipment, constructed by Teleregister, uses teleprinter equipment. Teleprinters feed reservation

FINANCIAL ROUNDUP

- Consolidated Electrodynamics, Pasadena, Calif., and Cenco Instruments of Chicago give up on plans to merge the two firms. The proposed merger reportedly bogged down because of difficulties of merging people of the two organizations. Employment contracts of key Cenco personnel did not conform with CEC policies.
- Sylvania Electric offers two long term debenture issues totaling $\$ 40$ million. The double issue comprises $\$ 20$ million of senior debentures due in 1980 and $\$ 20$ million of convertible subordinated debentures due in 1983. Receipts from the senior issuc are being used to pay off three year bank loans due in 1960. Convertible receipts are going for additional working capital required for expanded operations and new defense projects. Painc, Webber, Jackson \& Curtis and Halsey Stuart \& Co. head the underwriting group.
- Barry Controls, Watertown, Mass., pirchases physical assets and products of Vlicr Engineering of Los Angeles. Payment was in cash and five year notes, but amount was not disclosed. Vlier will operate as a Barry subsidiary. It makes tooling accessorics for clies, jigs and fixtures used in the metal working industry. Barry's principal business is the design and manufacture of mounting systems and components to protect electronic and other equipment from shock and vibration. Acquisition gives parent company additional diversi-
fication outside the military field.
- Digitronics Corp., Albertson, Long Island, N. Y., plans to issue 140,000 shares of class B capital stock at $\$ 1.50$ per share. Proceeds are to be uscd for corporate purposcs. Cortland Investing Corp. of N.Y.C. will underwrite the issue.
- Ling Electronics of Los Angeles and Ling Industries of Dallas, Texals, consummate merger plans as stockholders approve proposal. Ling Electronics, the surviving corporation, will maintain executive offices in Dallas. Principal product of Ling Electronics is vibration testing equipment used in the missile and jet-aircraft industry.
- Marchant Calculators, Oakland, Calif., reduces quarterly common divident to 15 cents per slare. It had previously paid $32 \frac{1}{2}$ cents. Step was to conserve cash nceded for corporate purposes and for move into new building.
- Sanders Associates, Nashuia, N. H., pays semiannual dividend of 4 cents per share on common today. It had paid quarterly dividends of 2 cents per share.
- General Precision Equipment declares a dividend of 60 cents on common shares payable tomorrow. Regular quarterly dividends, payable at thic same time, were also dcclared on $\$ 4.75$ cumulative preferred stock, the $\$ 1.60$ convertible preference stock and the $\$ 3$ cumulative convertible preference stock.
requests and scat information directly into the electronic equipment. Spacc can be sold or canceled in a few seconds.

With the new equipment, reservation clerks in remote cities can now query a central electronically controlled inventory of scats in a distant city directly by teleprinter. Agents in 140 branch offices of the airways are connected into the reservation system by 18,000 miles of land line.

F-M Triplecasts Seen Profitable

Reports of recent success in broadcasting three programs simultancously are gaining the attention of $\mathrm{f}-\mathrm{m}$ broadcasters and receiver manufacturers alike.

Trial triple broadcasts arc being made by WGHF ($\mathrm{f}-\mathrm{m}$), Brookficld, Conn. with FCC approval. Programming consists of stereo-

APPROVED FOR USE UNDER MIL-R-10509B

GARBON.F!!M RESISTORS PROVIDE THE STABILITY YOU WANT UNDER THE TOUGHEST LOAD AND HUMIDITY GONDITIONS

5) Thadmank rec.
phonic lii-fi music and commercial background services.

Financial prospects for this type of operation look good according to WGGHF's owner. A. J. Detzer. He says hi-fi sterco music will have considerable appeal in his Westchester and Fairfield County areas, while commercial background servicing will find ready customers.

If FCC approves, the station plans to have f-m stercocasts on regular schedule as soon as adapters for home receivers become gencratly available.

Scicral manufacturers are reportedly interested in this new potential market. Prices for the multiplex adapters are expected to run somewhat under S100.

Broadcasts are made by using the main channel and onc subchan. nol for hi-fi stereocasts, and the other channel for backgromed servicc. Reports say no interference problems arise from this multiplexing.

Meteorology Computers

Computer packiged in battlefield console automatically issues high-altitude weather reports. An antema tracks the balloon, other basic information is radioed from instruments on the balloon. System, developed by Army Signal Engineering Laboratories, provides vital pressure, humidity, temperature and wind readings

MEETINGS AHEAD

Mar. 17-21: 1958 Vuclear Congress. Engineers Joint Comacil, AICE and Atomfair, Atomic Industrial Forum, International Amphitheatre, Clicago.

Mar. 18-19: Conf. on Extrencly High Temperatures. Nir Force Cambridge Research Center, New England Mutual Hall, Boston, Mass.

Mar. 24-27: IRE National Convention, All Prof. Groups. Waldorf- Istoria Hotel and N. Y. Coliseum, N. Y. C.

Mar. 31-Apr. 2: Instruments \& Regulators Conf., PGAC ASME, , IICHE, IS Λ, Univ. of Delaware, Newark, Del.

Mar. 31-Apr. 2: Southwest District Meeting of AIEE, Mayo Hotel, Tulsa, Oklahoma.

Apr. 2-4: Conf. on Antomatic Optimization, PGAC, ASME, AICHE, ISA. Univ. of Delaware, Newark, Del.

Apr. 8-10: Sixtl National Conf. on Electromagnetic Rclays. Oklahoma State Univ., Stillwater, Okla.

Apr. 8-10: Symposilm on Electronic

Waveguides, Microwave Research Institutc of Brooklyn Polytechnic Inst., head at Eugincering Socicties Bldg., N. Y. C.

Apr. 10-12: Tentlı Southwestern IRE Conference and Electronics Show, St. Anthony Hotel and Municipal Auditorium, Sau Antonio, Texas.

Apr. 14-16: Conf. on Autonatic Techniques, IRE ASME, Statler Hotel, Detroit, Mich.

Apr. 15: Closing date for registration, Intensive course in Automatic Control scheduled for June $16-25$ at Univ, of Mich., Coil. of Engineering.

Apr. 17-18: Second Annual Tech. Meeting, Institute of Fnvitommental Engineers, IIotel New Yorker, N. Y. C.

Apr. 18.19: Tivelfth Annual Spring Tech. Conf. on Television and

Transistors, Enginecring Society of Cincinnati Bldg., Cincimmati.
Apr. 20-24: Scientific Apparatus Makers, 40 th Annual Mecting, El Mirador Hotel, Paln Springs, California.

Apr. 21-25: Socicty of Motion Picture and Television Engineers, 83rd Convention, Ambassador Hotel, Los Angeles.

Apr. 22-24: 1958 Electronic Components Conf., IRE, AIEE, Theme: "Reliable Application of Component Parts," Ambassador Hotel, Los Angeles.

May 6: Western Joint Computer Conf., First National Symposium on Modern Computer Design. Ambassador Hotel, Los Angeles.

May 19-21: Electronic Parts Distributors Show, Conrad Hilton Hotel, Chicago.

eppe has shipped over 23,000 size 8 synchros

Field Tests Prove their Built-In Reliability
and . . . made provision to deliver
much larger quantities
with their new Colorado
Springs synchro facility

Why not buy fully proven size 8 synchros? Clifton Precision size 8 units have been designed, developed, in production 2 years and are now being built into field equipment tested and accepted by end-use agencies.
Such acceptance made it necessary for us to establish another plant in Colorado Springs to produce size 8 synchros.
Accuracies not exceeding 7 minutes max of error are guaranteed
A full line of size 8 rotary components is available including $A C$ and $D C$ motors, linear transformers and motor generators.
For full information write or call Sales Department, SUnset 9.7521 (Suburban Philadelphia) or our repre. sentatives.
TYPICAL SYSTEM MEASUREMENTS

	$\begin{aligned} & \text { Ingut } \\ & \text { Vollage } \\ & \text { (Volts) } \end{aligned}$	Input Current imps.)	$\begin{aligned} & \text { Inout } \\ & \text { fower } \\ & \text { fowerss } \end{aligned}$	$\begin{array}{\|c} \text { Output } \\ \text { Yoltare } \\ \text { (Volts) } \end{array}$	Sensitivity (my / deq.)	Impeoance		$\begin{aligned} & \text { Phase } \\ & \text { Shlif } \\ & \text { (die. } \end{aligned}$	Rematks
						Input	Outpul		
Iransminter Liontrol transtarner	\%	.111	74	$n 5$	33	54+220	${ }^{268}+123$	19	
Transmitur \rightarrow Eanto Iranstomel	${ }^{6}$. 111	75	218	37	$58+28$		19	590 losed an CT
Tranantiter-ibiontrol Transiomei	\%	110	83	19.2	335	$64+1221$		17	54 layd an CT
Transmities-_uliterentiol-CT	2	131	1.78	13.5	310		$24+36$	0	
Electical Resaviver Elecincial Resover	11.8	115		1	120			i2	Input to stritor
Electrea Resilver-Eloctrical Resolvec	26			15	20			5	Inpot te mear

Clifton Precision Products Co., Inc.

VISIT OUR HOSPITALITY SUITE
I.R.E Convention, March 24-27, Studio K, Barbizon-Plaza Hotel, 106 Central Park So., N.Y.C.

SANDERS FLEXPRINT © CAbles and harnesses offer designers unlimited opportunities to take advantage of flat, flexible wiring in a wide variety of permanently bonded insulating plastics from low cost vinyls and polyethylenes to fluorocarbons.

Flexible Printed Wiring in all lengths for all layouts

Reliability-proved Sanders development sharply reduces weight, bulk, and cost of electronic and electrical assemblies.

Sanders Flexprint Wiring brings to commercial and military applications a combination of field-tested advantages unmatched by conventional wiring and ordinary printed circuits.
Check these features! Flat copper is etched to the conductor length, pattern and current carrying capacity that fits your application. The conductors are bonded between thin sheets of flexible insulating plastics that meet your environmental requirements. The bond is permanent . . insulation can't peel. The result: reliable, printed wiring that often weighs less than half as much as conventional wiring . . . can occupy less than $1 / 3$ the space.
Check these benefits! Flexprint Wiring conforms to any housing shape or layout . . . withstands effects of vibration
and flexing ... allows interconnected assemblies to move independently. Completely encapsulated conductors provide maximum environmental protection . increase equipment reliability. Flexprint Multi-Conductor Cable can be cut . . . stripped (with a simple stripping tool) ...connected to printed circuit connectors or boards or to itself. Accurately reproduced Flexprint Wiring Harnesses speed up assembly permit automatic production ... eliminate error. The result: better wiring at lower cost.
Check these options! Flexprint Wiring can be designed and produced in straight cables or complex harnesses in any length ... in single or multiple layers or bonded to rigid materials as a replacement for printed
board . . . with or without a cover coat . . with vinyls, polyethylenes, polyesters, silicones, Kel-F, Teflon, or other insulations.
Check all the facts! Write today for complete data about capabilities, prices and deliveries.
(T) tradimark - sanders associatis, inc.

EXPERIMENTERS AND DESIGNERS
Flexprint is available in the form of unetched copper-plastic laminate, without cover coat, together with complete instructions for etching your own circuits. Details on request.

NEW PHOTOTRANSISTOR

FOR
MILITARY AND INDUSTRIAL APPLICATIONS

G．T．EXCLUSIVE FEATURES

－Miniature Size
－End Viewing
－High Transistor Gain
－Low Leakage Current
－Improved Light Sensitivity
equipment designs with this new advance in phototransistor，

Many applications in military and

\cdotsindustrial electronic
equipment，
 using light rays for activation，will utilize the General Transistor PNP type 2N469

This miniature，optically sensitive 8 unit is extremely reliable and resistant to shock
 and vibration
 hermetically sealed in a metal case with glass headers the glass top of the case．Tinned flexible leads may be soldered directly into circuit \qquad or used with standard sockets．

Write today for illustrated folder， \square 4 Bulletin 2N469， containing complete information，
 diagrams and engineering specification －please mention your application．

GENERAL TRANSISTOR CORPORATION

[^1]
$N[L\|\|$ pushbutton switch

"THINSWITCH" Type 131

FEATURES

- Measures only $5 / 8^{\prime \prime}$ thick.
- 1 to 12 buttons, standard, with $5 / 8^{\prime \prime}$ spacing.
- Up to 14 contacts per button.
- "Floating" slider design for smooth, easy operation.
- Famous Oak double-wiping contacts.
- Highest grade phenolic punching stock.

requires $\mathbf{4 5 \%}$ less panel area!

This new Oak switch is particularly valuable as a spacesaver in keyboards handling complicated, low. current circuits. The Type 131 can be mounted side by side on ${ }^{11} / 66^{\prime \prime}$ centers, so that a bank of 10 switches, for example, requires only $6^{13 / 16 " \text {. }}$

Thus, in equipment such as computers, testers, automatic coin devices, and communications gear, the Type 131 offers extra flexibility in laying out panel areas, or actually permits a decrease in the size of the equipment.

Type 131 switches are built to your exact requirements with the same high quality materials and workmanship as other Oak switches. Call in your Oak representative, or write for full technical details.

SWITCHES

ROTARY

VIBRATORS SUBASSEMBLIES

1260 Clybourn Ave., Dept. G Chicago 10, Illinois Phone: MOhawk 4-2222

AT WORK ON THE MG-4 Fire Control System at the Autonetics Division of North American Aviation, Inc., at Downey, California, the General Electric Midget soldering irpn has a man-sized job to do. In delizate assemblies like this, the Midget makes soldering easier because of its maneuverable, light-weight design and excellent heat control. Interchangeable tips, let operator tailor soldering to suit each jot.

Now! 4 new microwave sweep oscillators

speed, simplify measurements 3.95 to 18.0 KMC

Covers full band, or any part Use with 'scope or recorder All electronic; no mechanical sweep Direct reading, independently adjustable sweep range and rate controls

1 Figure 1. Arrangement for high speed microwave measurement to provide rapid visual display with -hp-130A/B oscilloscope. Can be used for G, J, X and P bands.
-hp-at IRE . . . top of escalators as you enter show

(1p) Dependable, quality

Hewlett-Packard 684 series Sweep Oscillators are new measuring tools deliberately designed to give you simpler, faster microwave measurements. Four models are provided, covering the G band (3.95 to 5.85 KMC), J band (5.30 to 8.20 KMC), X band (8.20 to 12.40 KMC) and P band (12.40 to 18.00 KMC).

These new instruments make possible microwave investigations and evaluations with a convenience previously associated only with lower frequency measurements. The 684 series oscillators provide a wide range of sweep speeds so that measurements of reflection, attenuation, gain etc., can be displayed on an oscilloscope or recorded in permanent form on $\mathrm{X}-\mathrm{Y}$ or strip-chart recorders.

Electronic Sweeping

Specifically, the new oscillators provide either a CW or swept rf output throughout their individual bands. The instruments employ new backward wave oscillator tubes whose frequency is shifted by varying an applied potential. Thus, troublesome mechanical stops and tuning plungers are eliminated. Sweep range is continuously adjustable and independently variable; sweep rate is selected separately, and either can be changed without interrupting operation. The full band width can be covered in time segments ranging from 140 seconds (very slow for mechanical recorder operation) to 0.014 seconds (high speed for clear, non-flickering oscilloscope presentation).

Linear Frequency Change

The swept rf output from the $68+$ series oscillator is linear with time, and a linear sawtooth voltage is provided concurrent with each rf sweep to supply a linear time base for an oscilloscope or recorder. In addition, for convenience in recording and other operations, rf sweeps can be triggered electrically externally and single sweeps can be triggered by a front panel push button. The rf output can also be internally AM'd from 400 to $1,200 \mathrm{cps}$ and externally AM'd or FM'd over a wide range of frequencies.

Rapid Visual Presentation

The variety of sweep rates and band widths available from the new oscillators insures convenience and accuracy for reflection and transmission coefficient measurements and many other production line and laboratory tests. For maximum speed, an oscilloscope such as $-h p-130 \mathrm{~A} / \mathrm{B}$ may be used as indicated in the diagram on opposite page. For maximum information and a permanent record, an $X-Y$ or strip chart recorder may be used.

Complete details of a rapid visual method using an oscilloscope or a maximum-data, permanent record method using a recorder may be obtained from your - $h p$-field engineer. Detailed discussions of these methods are also contained in the $-h p$-Journal, Vol. 8, No. 6, and Vol. 9, No. 1-2, available on request.

TYPICAL SPECIFICATIONS

Below are specificalions for -hp- 686A Sweep Oscillator, 8.2 to 12.4 KMC. Specifications for thp- 684 A (G band), $685 A$ (J band), and 687A (P band) are similar except for frequency range.
Types of Outputs: Swepl Frequency, CW, FM, AM.
Single Frequency Operation
Frequency: Continuously adjustable 8.2 to 12.4 KMC.
Power Output: At least 10 milliwatts into matched waveguide load. Continuously adjustable to zero.

Swept Frequency Operation
Sweep: Recurrent; exiernally triggered; also manually triggered single sweep. Rf sweep linear with time.
Power Output: At least 10 MW into matched waveguide load. Output variations less than 3 db over any 250 MC range; less than 6 db over entire 8.2-12.4 KMC range.
Sweep Range: Adjustable in 7 steps 4.4 MC to 4.4 KMC.

Sweep Rate-of-Change: Decade steps from 32 $\mathrm{MC} / \mathrm{sec}$. to $320 \mathrm{KMC} / \mathrm{sec}$.
Sweep Time: Determined by sweep range and rate; from 0.014 to 140 seconds over full-band.
Sweep Output: +20 to +30 -volt-peak saw. tooth provided at a front-panel connector concurrent with each rf sweep.
Modulation
Internal Amplitude: Square wave modulation continuously adjustable from 400 to 1200 cps; peak rf output power equals cw level.
External Amplitude: Direct coupled to $300 \mathrm{KC}_{3}$ 20 volt swing reduces $r f$ output level from rated cw output to zero.
External Pulse: +10 volts or more, 5 millisec. ond maximum duration.
External Frequency: FM and external sweep voltages.
General
Input Connectors, Impedances: BNC; above 10,000 ohms.
Outpul Connector: Waveguide cover flange; SWR less than 2:1.
Power Requirements: $115 / 230$ volts $50 / 60 \mathrm{cps}$ ac; approximately 475 watts.

Price: -hp- 684A (3.95-5.85 KMC) \$2,265.00
$-h p-685 \mathrm{~A}(5.30-8.20 \mathrm{KMC}) \$ 2,265.00$
-hp- 686A (8.20-12.40 KMC) \$2,615.00
-hp- 687A ($12.40-18.00 \mathrm{KMC}$) \$3,115.00
(Prices above are f.o.b. factory for cabinet models. Rack mount instruments $\$ 15.00$ less.)
Data subject to change without notice.

HEWIETT-PACKARD COMPANY

4478A Page Mill Rd. Palo Alto, Californía, U.S.A. Field Representatives in All Principal Areas Cable "HEWPACK" DAvenport 5-4451

Immediate Delivery on STANDARD FERRITE CORES FOR DEVELOPMENT

HUNDREDS OF STANDARD PARTS
plus CUSTOM DESIGNING TO SPECIFICATIONS

STANDARD ANTENNA RODS

THREADED
TUNING CORES

STANDARD
EI CORES

TELEVISION

COMPONENTS

RECORDING HEADS

Performance proven magnetic ferrites available

Compuler and Automation Systems Designers!

Ferramic memories provide a new design concept in the area of computers and automation. Magnetic memories combine increased speed, accuracy and reliability with light weight, compact size. Write for bulletins on cores or completememory planes.

for every electronic application

General Ceramics ferrites for television, radio and instrumentation offer designers and engineers a wide range of economical standard components. All are application tested for highest efficiency electrically and mechanically. The fact that leading electronic manufacturers specify Ferramics is due to the program of continuing research and equipment modernization by which General Ceramics keeps pace with the industry's needs as to quality and costs! Bulletins are available; write to General Ccramics Corporation, Keasbcy, New Jersey, Dept. E.

GEJERAL GERAMIOS

Industrial Ceramics for Industrial Progress... Since 1906

Precision Drawn MIL-T-27A Specification Cases and Covers from AF 10 OA Inclusive Available from Stock

Depend on HUDSON for complete stocks of deep drawn closures to the most critical military and commercial specifications. Economical standardized HUDSON components, available with hundreds of modifications, meet all but the most unusual design requirements. Complete cover assemblies can be supplied to specification; custom cases can be produced quickly and at minimum cost. Call or write for catalog on standard closures or send drawings for quotations on special cases, metal stampings or sub-assemblies.

Quality Metal Stampings and Precision Drawn Closures

Available in Steel or Alloys Including Aluminum,

Brass, Copper, Mu Metal and Stainless Steel

HUDSON TOOL \& DIE CO - INC

PREGIOUS

 METAL GONTAOTS PROVIDE LONG OPERATING LIFE AND UNVABYING PenformancePiogressive reséarch development policies, coupled with vast experience in related fields, enable BAKER to apply its know-how in precious metals to meet the diverse problems accompanying the selection of precious metal contacts to suit individual requirements. The following BAKER precious metal materials serve to illustratee what BAKER's research departments make available in SILVER PLATINUM, PALLADIUM and GOLD, in pure or alloy form, for supply as wire, rod, sheet, and as fabricated forms, such as rivets, discs, solderbacks, welding types, overlay. edigelay, inlay and irregular shapes.

SILVER AND SILVER ALLOYS

One of the most widely used materials for electrical contacts, SILVER provides high resistance to atmospheric corrosion. Silver Alloys - which contain base metals to achieve specific properties - provide other modified characteristics, such as increased resistance to arc erosion, sticking and metal transfer.

PLATINUM AND PLATINUM ALLOYS

Offering a higher resistance to tarnish and corrosion than any other contact material, the contact resistance of platinum can be maintained at a low value throughout its operating life. Platinum alloys provide higher melting points and hardness, greater resistance to deformation, longer life and increased resistance to sticking and metal transfer.

Write for complete catalog material and details.

RESEARCH MAINTAINS BAKERSS LEADERSHIP IN PRECIOUS METALS

You'll appreciate this craftsman most when your production problems are worst

. . . because he and the other members of the precision production team at the Mechanical Division of General Mills have the talent and tools to take your most complex production assignments in stride.

These are the areas in which our manufacturing capabilities can serve you best:

- precision mechanical devices
- electro-mechanical sub-systems or assemblies
- electronic component assemblies
- fine-pitch, instrument-type gears and gear trains

We can start from any stage of your production assignment: from the mere statement of a problema to be solved to a completed design.

You'll receive the kind of engineering and manufacturing you'd be proud to call your own. (Many times in 17 years of ordnance and instrument work we've improved upon the original design of devices we've been assigned to produce.)

You"ll get on-time delivery-enabling you to meet your own target date.

We'll be happy to serve you today-or when your production problems become really tough.

There is a difference in

MINIATURE PRECISION POTENTIOMETERS \ldots... and CIRC 01 T makes the difference!

Economy without compromise of quality, precision and ruggedness . . . that's the real difference in CIRCUIT single turn potentiometers.

These miniature units give design engineers the precision they need for miniaturization programs, plus the ability to withstand rigorous environmental conditions of humidity, temperature cycling, vibration, etc. High
temperature versions available on request.
The reason is CIRCUIT INSTRUMENT'S approach to potentiometer design and production. CIRCUIT is large enough to pace the field in advanced designs and special features . . . but small enough to offer you unusual production flexibility and quick delivery and service. Let's discuss your needs soon.

[^2]

GRIP REEL and GRIP STRIP NO $\begin{aligned} & \text { packaging uses } \\ & \text { ADHESIVES }\end{aligned}$

This is an exclusive IRC advancement in packaging resistors for automatic assembly. It overcomes the production line jam-ups caused by "too sticky" or "not sticky enough" adhesive tape types. It provides for self-indexing, self-aligning automatic feed in either strip or reel form.
NOW FOR BT RESISTORS. Grip Strip packaging is available for IRC Type BT Resistors at no extra charge. There is a small charge for Grip Reel. Bulk packaging is still supplied for manual assembly.
EXACT POSITIONING. Resistors are equally spaced and held securely at right angles to the strip.
SPILL-PROOF. Resistors will not fall out when Grip Strip is held upside down, twisted or hung vertically. Leads can be cut in the strip.

Write for a demonstration of IRC Type BT Resistors in either Grip Strip or Grip Reel packaging.
ADVANCED METHOD OF PACKAGING FOR AUTOMATIDN AVAILABLE TO COMPONENTS MANUFACTURERS ON A MODERATE LICENSE BASIS

FOR COMMUNICATIONS

NEWS AEJUT SILICON DEVICES

SILICON RECTIFIER5 are finding increasing use at elevated temperatures in aircraft and missile applications by providing more power per pound.

Now...design improvements made possible with components of Du Pont Hyperpure Silicon

Today silicon reclifiers make possible a vast improvement in jet-age aircraft generators-the use of engine oil as a coolant instead of less-efficient ram air. Silicon rectifiors take the place of oilsensitive brushes, commutator and slip rings . . . are completely unaffected by $150^{\circ} \mathrm{C}$. cngine oil. Result: a brushless generator of less weight and size than ordinary generators.

Silicon devices can similarly help you minialurize-improve design and performance. Silicon rectifiers have excellent stability ... can operate continuously at -65 to $200^{\circ} \mathrm{C}$. They're up to 99% eflicient-reverse leakages are only a fraction of those of other semiconductors. Both transistors and rectifiers of silicon can pack more capacity into less of your equipment space.

Yon'll find our new. illustrated bonklet abmut Hyperpure Silicon helplul and interesting-it describes the inanulacture, properties and uses of Du Pont llyperpure Silicon. Just drop as a card for your copy. E. I. du Pont de Nemours \& Co. (Inc.), Silicon N-2496-E-3, Wilmington 98, Delaware.

Note to device manufacturers:

You can produce high-quality silicon transistors and rectifiers with Du Pont Hyperpure Silicon now available in three grades for maximum efficiency and ease of use... purity range of 3 to 11 atoms of horon per billion ... available in 3 forms, needles. densified. cut-rod. Technical information is available on crystal growing from D ${ }_{11}$ Punt . . . pioneer producer of semiconductor-grade silicon.

PIGMENTS DEPARTMENT

VT Variable Transformers

Continuously adjustable autotransformers. Unique Ohmite features for reliable service.

Relays

Compact relays in many types. For AC or DC. Powerhandling and multiple circuit varieties.

The main ultramodern Ohmite plant contains 170,000 square feet and is one of the largest completely air conditioned plants in the Midwest. Manufacturing areas, laboratories, warehousing, and offices are housed in one efficiently integrated design, thus keeping all phases of production under direct control for service and quality.

Tap Switches

Ceramic insulated selector switches in many sizes for AC use up to 100 amperes Single or tandem.

Resistors

Vitreous enameled power resistors in tremendous variety of types and sizes.

ETHTHTHTMUH1HHT

timer

VHF Transistors!

First From

PHILCO

New family of Miero Alloy

 Dififusedi-base Transistors (MADT)*Rise, Storage, Fall Time in Low m$\mu \mathrm{sec}$ Range
High Oscillator efficiency at 200 mcs
Amplifier gains of 10 dh at 200 mcs

Here is a major breakthrough in the frequency barrier ... a new family of fieldflow Micro Alloy Diffused-base Transistors, Philco MADT's exjend the range of high gain, high frequency amplifiers; high speec computers; high gain, wideband amplifiers and other critical high frequency circuitry.

MADT's are available to various volt. age and frequency specifications for desiga of high performance transistorized equipment through the entire VHF and part of the UHF spectrum. These transistor 3 range in $f_{\text {max }}$ from 250 mc to as high as 1000 mc . MADT gains are typically 1) db at 200 mc and greater than 16 db at 100 mc . A low cost general purpose unit is available which will deliver typically 18 db at 50 mc and 32 db at 10 mc .
Make Philco ycur prime source of informaticn for high frequency transistor applications.

Write to Lansdale Tebe Company, Division of Philco Corporation, Lansdale, Pa., Dept. E-358

PHILCO. CORPORATION

LANSEALE TUBE COMPANY DIVISION LANSDALE, PENNSYLVANIA

SIzE	VOLTAGE	FREO. c.p.s.	NO. PHASES (SUPPLY)	NO LOAD SPEED (RPM)	CAPACITOR (MFD)	RUNNING CURRENT AMPERES	RUNNING watis INPUT	OUTPUT	WEIGHT	GEAR RATIO	$\begin{aligned} & \text { TYPE } \\ & \text { NUMBER } \end{aligned}$
10	115	400	1	10,000	. 05	. 035	4.0	$0.112 \mathrm{oz} . \mathrm{in}$. al 6000 rpm	2.0 Oz.	.	10-A 8104-02
10	115	400	1	11,000	$\begin{gathered} \text { None } \\ \text { (Shaded Pole) } \end{gathered}$. 085	7.5	.096 or. in. at 7000 rpm	3.5 Oz.	...	$\begin{aligned} & 10-A \\ & 8101-01 \\ & \hline \end{aligned}$
11	115	400	1	$\begin{aligned} & 12,000 \\ & \text { Synch } \end{aligned}$	0.1	. 070	8.0	.08 oz in. at $12,000 \mathrm{rpm}$	4.0 Oz .	\ldots	$\begin{aligned} & 11-A \\ & 8110-01 \\ & \hline \end{aligned}$
11	115	300-1800	1	$\begin{gathered} 10,000 \\ (400 \text { CPS }) \end{gathered}$	$\begin{gathered} 0.5 \\ \text { (In Parallel) } \end{gathered}$	$\begin{gathered} .060 \\ (400 \mathrm{CPS}) \end{gathered}$	$\begin{gathered} 8.0 \\ \left(400^{\mathrm{CPS})}\right. \end{gathered}$	$\begin{aligned} & 0.10 \mathrm{oz} . \mathrm{in} . \\ & \text { i } 9000 \mathrm{rpm} \\ & (400 \mathrm{CPS}) \end{aligned}$	5.0 Oz	\ldots	$\begin{aligned} & 11-A \\ & 8223-01 \end{aligned}$
11	115	400	1	$\begin{gathered} 60 \\ \text { Synch } \end{gathered}$	0.1	. 070	8.0	$\begin{aligned} & 12 \mathrm{oz} . \mathrm{in} . \\ & \text { at } 60 \mathrm{rpm} \end{aligned}$	7.7501.	200:1	$\begin{aligned} & 11-R \\ & 9003-02 \\ & \hline \end{aligned}$
11	26	400	1	$\begin{gathered} 30 \\ \text { Synch } \end{gathered}$	2.0	0.35	8.0	$\begin{aligned} & 14.5 \mathrm{ox} . \mathrm{in} . \\ & \text { at } 30 \mathrm{rpm} \end{aligned}$	5.5 Oz.	195:1	$\begin{aligned} & 11-R \\ & 9052-01 \end{aligned}$
15	115	400	1	$\begin{aligned} & 6,000 \\ & \text { Synch } \end{aligned}$	0.3	0.138	15.6	$\begin{aligned} & 0.14 \text { oz. in. } \\ & \text { at } 6,000 \mathrm{rpm} \end{aligned}$	8 Oz	$\begin{aligned} & 15-A \\ & 8120-01 \\ & \hline \end{aligned}$
18	115	400	1	$\begin{aligned} & 12,000 \\ & \text { synnch } \end{aligned}$	0.35	0.148	14.7	0.41 oz . in. al $12,000 \mathrm{rpm}$	808.	.	$\begin{aligned} & 18-A \\ & 8125-01 \end{aligned}$
18	115	400	1	7800	0.6	0.45	4.5	$\begin{aligned} & \text { 2.45 ox. in. } \\ & \text { of } 6800 \mathrm{rpm} \end{aligned}$	24 Oz	\ldots	$\begin{aligned} & 18-A \\ & 812601 \\ & \hline \end{aligned}$
18	115	60	1	8.5	1.0	0.175	17.5	$\begin{aligned} & 30 \mathrm{oz.} \text { in. } \\ & \text { at } 8 \mathrm{rpm} \end{aligned}$	20 Oz .	405:1	$\begin{aligned} & 18-R \\ & 9302-01 \\ & \hline \end{aligned}$
18	115	60	1	6.0	1.0	0.177	17.8	$\begin{aligned} & 40 \text { or. in. } \\ & \text { of } 5.75 \mathrm{rpm} \end{aligned}$	20 Oz .	565:1	$\begin{aligned} & \text { 18-R } \\ & 9302-02 \end{aligned}$
21	115	400	1	22,000	1.0	0.75	80.0	$\begin{aligned} & 1 \text { or. in. } \\ & \text { al } 20,000 \mathrm{rpm} \end{aligned}$	18.5 Oz.	\ldots	$\begin{aligned} & 21-A \\ & 814201 \end{aligned}$
24	115	400	1	11,800	1.5	0.85	130.0	$\begin{aligned} & 6.17 \mathrm{oz} \text {. in. } \\ & \text { at } 10,800 \mathrm{rpm} \\ & \hline \end{aligned}$	29 Ox.	\cdots	$\begin{aligned} & 24-A \\ & 8161-01 \end{aligned}$
24	115	60	1	20,000	None Required	1.2	175	8.9 oz . in. al $7,500 \mathrm{rpm}$	28 Oz	.	$\begin{aligned} & \hline 24-U \\ & 8826 \quad 02 \\ & \hline \end{aligned}$
24	115	400	1	78	4.0	1.65	175	$\begin{aligned} & 1530 \mathrm{oz} . \mathrm{in} . \\ & \text { at } 72 \mathrm{rpm} \end{aligned}$	3 Lbs.	1528:1	$\begin{aligned} & \text { 24-R } \\ & 9452-02 \end{aligned}$
34	115	60	1	14,000	None Required	1.5	125	$\begin{aligned} & 15 \mathrm{oz.} \text { in. } \\ & \text { of } 4500 \mathrm{rpm} \end{aligned}$	3.3/4 Lbs.	\ldots	$\begin{aligned} & 34-U \\ & 8901-02 \end{aligned}$
34	115	60	1	1,780	3.75	0.45	50	$\begin{aligned} & 12 \text { oz. in. } \\ & \text { at } 1700 \mathrm{pmm} \\ & \hline \end{aligned}$	4-3/4 Lbs .	\ldots	$\begin{aligned} & 34-A \\ & 8044-01 \end{aligned}$

Other products include servos, synchros, motor-gear-trains, resolvers, DC motors, servo mechanism assemblies, servo torque units, motor tachs, reference and tachometer generators, actuators and motor driven blower and fan assemblies.

- All motors are continuous duty except Type 24-U-8826-02.
- $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range.
- All motors can be modified to meet your precise specification
- For faster service, detail requirements when requesting further information.

Interesting, varied work on designing transistor circuits and servo mechanisms. Contact Mr. Robert Burns, Personnel Manager, in confidence.

What goes on here?

EコSCO SYSTEM SPEEDS ANSWERS FOR

It took less than 10 months for Epsco to design, build, and install a zomflete Telemetry Data Reduction System that cuts processing tref for missile test data from months to hours at General Electric's rew mullimillion dollar Processing Center.

The dramatic specifications and rapid delivery of this system were mate possible by Epsco's "building block" design concept. It u ilize= freld-proven Epsco modules, such as voltage-digital converters, amplifiers, multiplexers, discriminators, and digital recorders. These same "building blocks" may be arranged to prov de cestom systems at stock prices for data logging computer processGg: quality control testing, laboratory analysis, and automatic

EF86 6267
Exceptionally low hum, low microphony and low noise tube. Specially designed for input stages of high sensitivity in high quàlity equipment.

ECC83 12AX7
Double triode with especially good microphony performance and high gain. Used in equipments where utmost versatility is required.

EL84 6BQ5
Economical, high sensitivity output pentode. Of miniature all-glass construction on the noval base. Two tubes in push-pull can provide ITW output for only 20 V drive (grid. to-grid).

EL34 6CA7
High sensitivity 25 W pentode. Two tubes in ultralinear push-pull provide up to 40 W output. For public address work, two tubes in push-pull can supply up to 54 W of audio power.

EZ81 6CA4
Compact full-wave rectifier of miniature all-glass construction on noval base. Provides up to about 350 V output at 150 mA with good regulation.

GZ34 5AR4

Modern full-wave rectifier supplying up to 600 V at 160 mA , or 450 V at 250 mA with good regulation. Recommended for the larger type of $\mathrm{Hi}-\mathrm{Fi}$ equipment.

6 sound investments

The Mullard range of audio tubes has won universal acclaim among high fidelity sound experts: and it is easy to understand why. Every single tube in this range has been specially developed to meet the exacting needs of sound reproduction.
Read the specifications left; see for yourself
what makes each tube such a sound investment.

Supplies available from:

in the U.S.A.
International Electronics Corporation,
Dept. E3, 81, Spring Street, N.Y. I2, New York; U.S.A.

in Canada

Rogers Majestic Electronics Limited, Dept. 1C, II-19 Brentcliffe Road,
Toronto 17,
Ontario, Canada

Mullard ELECTRONIC TUBES used throughout the world

MULLARD OVERSEAS LTD., MULLARD HOUSE, TORRINGTON PLACE, LONDON, ENGLAND.
Mullard is the Trade Mark of Mullard Limited and is registered in most of the principal countries of the world.

Andrew Corporation offers a wealth of engineering experience in the field of super power RF transmission devices. A broad line of standard equipment is offered and andrew facilities for the development and production of special equipment are without equal.

Available on a production basis is antenna equipment in all of the new, very large waveguide and transmission line sizes, including high power coaxial limes designed with specially shaped inner conductors and insulators to substantially increase voltage ratings.

Typical too, of this equipment are patch panels such as the $9^{\prime \prime}$ line model
shown above, used for occasional rearrangement of antenna and transmitter connections.

For high speed circuit switching, andrew has developed peak reli. ability, non-contacting waveguide switches such as the 21 " model above. Similar switches are also supplied with transitions for use with coaxial line.

Of definite advantage to you is the completeness of the andrew line which permits a systems approach with integrated equipment for best performance of the overall system.

Our newly expanded production facilities assure prompt deliveries.

We would welcome your inquiries for product information and engineering assistance on:
Antennas • Feed Horns • Switches • Patch Panels • Duplexers • Power Dividers • Filters • Coaxial Line • Waveguide • Transitions • Adaptors • Bends • Hangers • Dehydrators

WRITE FOR BULLETIN

363 EAST 75TH STREET - CHICAGO 19 New York - Boston - Los Angeles - Torento

HOW ONE CONCEPT IN POTENTIOMETER DESIGN SOLVES THREE BASIC PROBLEMS

SPACE-SAVING SIZE AND SHAPE

You can pack a lot of Bourns potentiometers into a small space - 12 in one square inch of panel area (or 17 TRIMPOT JR.* units!) Fit them into corners, between other components, flat against chassis or printed circuit boards. Mount them individually or in stacked assemblies.

ADJUSTMENT STABILITY

Bourns potentiometers are self-locking (no lock nuts required). Any adjustment remains stable. Shock, vibration or acceleration can't affect a setting. Bourns potentiometers are helping thousands of engineers make reliability a reality.

CIRCUIT BALANCING ACCURACY

Bourns potentiometers are 33 times as accurate as conventional single-turn rotary types - the screwactuated mechanism provides 9000° of rotation instead of only 270°. Circuit balancing, calibration adjustments of all types are easier, faster, more precise. And repeatability is assured.

BOURINS

Laboratories, Inc.
P. O. Box 2112 - Riverside, California

ORIGINATORS OF TRIMPOT ${ }^{(®)}$ TRIMIT ${ }^{(®)}$ and potentiometer instruments

HERE ARE ADJUSTMENT POTENTIOMETERS TO MEET ALL YOUR REQUIREMENTS

high performance military potentiometers and rheostats

General Purpose Type

The original wirewound TRIMPOT ${ }^{\circledR}$. Model 200 terminals L, S or P -see drawings below). $105^{\circ} \mathrm{C}$ operation. 0.25 watt. Also available as a rheostat, Model 201 TrimR(B) (terminal L only).

High-Resistance Wirewound
Hi-R®) TRIMPOT Model 207 (L). Resistances to $250 \mathrm{~K} .175^{\circ} \mathrm{C}$ operation. Two watts. Rheostat: Hi.R TrimR Model 208. (L).

Micro-Miniature Potentiometer
The TRIMPOT JR.* Model 222 is so small you can fit 17 units in one square inch of panel space. $175^{\circ} \mathrm{C}$ operation. One watt. Humidity proof. (Terminals L or W).

High-Resistance Deposited

 CarbonAn unusually significant achievement in military quality potentiometers -infinite resolution at $125^{\circ} \mathrm{C}$ operation. 0.25 watt. Uses the RESISTON* element, a product of 3 years of Bourns research. 20 K to 1 megohm range. TRIMPOT Model 215. (L, S or P).

Dual Potentiometer
TWINPOT ${ }^{(B)}$ Model 209 is two potentiometers in one. (L). $105^{\circ} \mathrm{C}$ operation. 0.25 watt.

High-Temperature Operation
$175^{\circ} \mathrm{C}$ operation. One watt. TRIMPOT Madel 260. (L, S or P). Available as a rheostat Model 261 (L)

Humidity Proof, $135^{\circ} \mathrm{C}$ Operation
TRIMPOT Model 236. (L, S or P). 0.8 watt. Also available as a rheostar, Model 231. (L).

low-cost commercial adjustment potentiometer

TRIMIT ${ }^{\text {® }}$ - an important new development for manufacturers of
 computers, industrial controls, communications equipment and high-quality test and measuring equipment. Provides 33 times the adjustment accuracy of single-turn rotaries, occupies only a fraction of the space, and has far greater stability of setting -at no addifional cost. Wirewound Models 271 (L), 273 (S), 275 (P).
Carbon Models 272 (L), 274 (S), 276 (P).
military and commercial units available in these terminal types:

Visit our booth $\# 3716.3718$ of the I. R. E. Show

Write for detailed technical informotion on Bourns Potentiometers. Please specify the model or type and mention your opplication.

BOURINS

Laboratories, Inc.
P.O. Box 2112 • Riverside, California

From Electro Instruments

comes the newest advance in

 precision digital instrumentation-

Transistorized, plug-in modules for measuring $D C$ to $0.01 \%, A C$ to 0.1%, ohms to $0.01 \%, D C$ ratios to 0.01%, and $A C$ ratios to 0.02%

Plus auxiliary modules for building complete automatic digital systems

Typical digital, missile electrical checkout system using the new $E-I$ modular design. All E-I modules are designed to fit standard $19^{\prime \prime} \gamma$ acks.

Now build precision digital voltmeters, digital ohmmeters, digital ratiometers, or complete digital, missile electrical checkout systems from standard, offthe-shelf modules.

DC DIGITAL VOLTMETERS

Specifications	Model DVA-400	Model DVA. 500
Dispplay	4 digits, polarity, decimal point	5 digits, polarity, decimal point
Range	. 0001 -999.9 volts	0.0001 .999 .99 volts
Accuracy	± 1 digit	$\pm(0.01 \%$ and 1 digit)
Automatic Features	Polarity, ranging	Polarity, ranging
Controls	Digits gain, manua\| and automatic ranging, power on-off-standby	Digits gain, manual and automatic ranging, power on-off-standby
Write for Bulle	s 180.1 and 180.2	

AC-DC DIGITAL VOLTTMETERS

$$
\begin{array}{lll}
\begin{array}{lll}
\begin{array}{l}
\text { Specifications Model DVA-410 } \\
\text { DC }
\end{array} & \text { Same as DVA-400 }
\end{array} & \begin{array}{l}
\text { Model DVA-510 } \\
\text { Same as DVA-500 }
\end{array} \\
\text { AC } & & \\
\text { Accuracy } & 0.1 \% \text { or } 2 \text { digits } & 0.1 \% \text { or } 2 \text { digits } \\
\text { Frequency } & 30-10,000 \text { cycles } & 30-10,000 \text { eycles } \\
\text { Response } & 0001-999.9 \text { volts } & 0.0001-999.99 \text { volts } \\
\text { Range } & \text {.0001-99.9 } \\
\text { Controls } & \text { Same as DVA-400, } & \begin{array}{l}
\text { Same as } \\
\text { AC-DC }
\end{array} \\
\text { Write for Bulietins } 180.1,180.2,180.4 ~
\end{array}
$$

Modules never become obsolete-As needs change simply regroup present modules or add new ones. Your system is always up-to-date at minimum cost and engineering. Internal construction is also modularized for maintenance ease. Fully transistorized circuitry-All transistor circuits on encapsulated plug-in cards

- gives increased reliability
- reduces power consumption
- lowers heat dissipation
- permits miniaturized packages
- eliminates radio noise and line transients

Many new advanced application features and specifica-tions-The result of thousands of applications and field experience from more than 2,500 digital instruments and systems.

- Now you can "read through" superimposed ripple on DC -and know its magnitude-by using the calibrated digits gain control located on the front panel. Steps by 1, 2, 3, $4,5,10,50$ and 100 digits.
- Controlled ranging by switch position-"automatic", "hold," "manual"-enables operator to manually control range position but still select automatic ranging in the same instrument.
- Power control for "on," "off", and "stand by" positions.
- Wider dynamic range covering all voltages from 100 microvolts to 1,000 volts, resistance range from 10 milliohms to 10 megohms - in single instruments.
- Input power frequencies from 50 to 400 cycles.
- New balance logic for faster down ranging.
- Automatic AC ranging from 30 to 10,000 cycles.
- Controlled stepping switch drive increases switch life by a factor of five-proved by actual tests.
- Meets many MIL specifications.

MAXIMUM FLEXIBILITY

1. Universal $31 / 2^{\prime \prime} \times 19^{\prime \prime} \times 12^{\prime \prime}$ chassis with mounting hardware for any rack.
2. Digital outputs may also drive storage matrices, go-no go com: parators, and other auxiliary modules.
3. All contacts readily accessible at rear panel on connectors.
4. With auxiliary plug-in modules, dig. itized data is provided in printed form, punched cards or tape with no modification to basic measuring instruments.

DIGITAL OHMMETERS

Specifications	Model DOA.400	Model DOA-500
Display	4 digits	5 diglts
Range	00.01 ohms to 10 megohms	000.01 ohms to 10 megohms
Aútomatic Features	Ranging	Ranging
Cointrols	Digits gain, manuai and automatic sanging, power on-off-standby	Digits gain, manual and automatic ranging power on-oft-standby
For accuracy specifications see Bulletin 180.9		
Write for Bulletins 180.1, 180.3		

Display Ratio Range Accuracy* Controls

AC RATIOMETERS

External Reference 1 volt rms External Reference 1 volt rms Choice of 3
"Calibration at 400 cycles; 60 cycle models also availa Write for Bulletin 180.9

Model DRA-490
5 digits
0.0000-1. 0999 ± 2 digits Digits gain, power on-off-standby, reference Write for Bulletins 180.1, 180.3

Complete specifications are available on all basic and auxiliary modules. Write for your set of catalog sheets today.

FOR THE FIRST TIME a new

Contact Metal

4 PDT relay to meet all requirements

of MIL-R-25018!

Don't compromise with the Class C, Type II, Grade 3 requirements of MS 24114-9, MIL-R25018. You don't have to any more. Now Union Switch \& Signal has a 4PDT, rotary-armature relay designed to meet these specifications completely. It is the first of its type to do so. In fact, it exceeds some of the rugged requirements.

Here is the kind of performance you can expect from this new relay:

High operating temperature. Even at an ambient temperature of $200^{\circ} \mathrm{C}$, this relay gives optimum performance. The use of ceramic material provides consistently high insulation resistance. As a result, you can install this relay closer to engines. You often can use it without temperature controlled boxes. Always, you will find it supremely rugged and reliable.

High shock resistance. This new UNION Relay withstands shock greater than 55 g for 11 milli-seconds-and continues to operate. In vibration
tests, it shows no contact chatter up to 2,000 cycles at an acceleration of 25 g .

New high in contact reliability. Contact reliability of this relay is six times that of comparable devices because of its new 2 -button, bifurcated contacts. Bifurcation also increases current carrying capacity (each button easily handles a full 2ampere load) . . . and makes gold alloy contacts practical for both low- and high-level loads.

Contact reliability is enhanced, too, by the ceramic insulation which contains no volatile material to contaminate contacts and by separate hermetic sealing of the magnet coil.

New torsion-type rotary-armature suspension improves resistance to thermal shock . . increases reliability over the entire temperature range and greatly extends the operating life of this new 4PDT relay. Call, or send the coupon, for complete information about this and other miniature relays manufactured by Union Switch \& Signal.

SEE OUR BOOTH NO. 2122-2124 AT IRE SHOW—NEW YORK CITY DU UNION SWITCH \& SIGNAL

division of westinghouse alr brake company PITTSBURGH 18, PENNSYLVANIA

Union Switch \& Signal, Dept. E-38
Div. of Westinghouse Air Brake Co.

Pittsburgh 18, Pennsylvania

I am interested in your products. Please send the following:Catalog of other miniature dc and ac relays which you manufacture to MIL-R-25018, MIL-R-6106C, and MIL-R-5757C requirements.

Description of your Digital and Alpha-Numerical Indicators for data display.

Complete description of your new 4PDT relay which meets every requirement of MIL-R-25018

[^3]

CENTRIFJGAL BLOWERS-LOOSE SCROLL $\mathrm{N}_{\mathrm{s}}=30,000-70,000$

PROPELLER FANS
$N_{S}=100,000-400,000$

CENTRIFUGAL BLOWERS - TIGHT SCROLL $N_{\mathrm{S}}=9,000-40,000$

Engineered to $\frac{\mathrm{N} \sqrt{Q_{0}}}{\Delta \mathrm{P}^{075}}=\mathrm{L}_{\text {s }}$

Our Fars and Your Emimment Become Smaler, Quieter and Cheaper

RADIAL WHEEL BLOWERS $N_{s}=4,000-20,000$

VANEAXIAL FANS
$\mathbf{N}_{\mathbf{S}}=50,000-125,000$

- 12,00

A major resistor development for major commercial and military equipment producers

Stackpole Coldite $70+$ Resistors substantially exceed MIL-R-11B and other critical requirements . . . at regular resistor prices. Exclusive Stackpole cold-mold processing assures truly outstanding performance in essential characteristics such as load life and moisture resistance. They're the easiest resistors to solder . . . and you can get them either in reels or Strip-packs for cost-saving automatic assembly. Prompt deliveries on small quantities from leading electronic distributors too!

Electronic Components Division
STACKPOLE CARBON COMPANY, St. Marys, Pa.

. . in all standard values and tolerances

AM/IP-lok

The new concept in

AMP-Iok eliminates the necessity for supplementary mounting devices in through panel multiple connector applications.

multiple connector design
 IT'S SELF-ANCHORING

AMP-lok obsoletes all it replaces because of the following design features:

- contacts are identical . . . self-cleaning . . . recessed for safety
- finger grip engagement and disengagement
- polarized to eliminate circuit error
- wide panel thickness accommodation - one simple mounting hole required
- color-coding available

AMP-lokcan be used as a safe, free-hanging multiple connector, also.

We will feature the AMP Auto. mated Shielded Wire Ferrule at the I.R.E. Show. Visit our Booth \#2427-29

Additional literature and samples available on request.

AMP INCORPORATED GENERAL OFFICES:
 3339 Eisenhower Blvd., Harrisburg, Pa.

Wholly Owned Subsidiaries: Aircraft-Marine Products of Canada, Ltd. , Toronto, Canada - Aircraft-Marine Products (Great Britain) Ltd., London, England © Societe AMP de France, Le Pre St. Gervais, Seine, France - AMP - Holland N. V.'s-Hertogenbosch, Holland

Distributor in Japan: Oriental Terminal Products Co., Ltd. Tokyo, Japan

Design Shortcut for Holding Magnets

Richard A. Scholten, Senior Design Engineer, The Indiana Steel Products Company, describes a fast design method that eliminates complex math. Magnet dimensions are obtained
$\left(\frac{\mathrm{pg}}{\mathrm{w}}\right)$ by a simple, three-step procedure using basic performance data.

In this unique method for designing holding magnets, all the hard work is done with graphs. It requires mathematics no more difficult than cubing a number, then taking its square root.

A comparison of configurations is the key to the method. In most cases any magnet design can be used to predict the performance of any other magnet of the same material and geometric shape-regardless of size.

Only three factors are needed for design: desired pull, air gap and geometric shape. If air gap and each magnet dimension are multiplied by the same factor K, the new system will be geometrically similar and the pull force will vary directly as the area of the magnet pole face.

Material to be used must be considered first. For a discussion of magnet material selection, see $A p$ plied Magnetics, October-December, 1957. Information on four of the 24 designs analyzed is shown here: Design 5, using an Indox I ceramic magnet; Design 10, using Indox V; and Designs 13 and 20, using cast Alnico V magnets. The four designs are illustrated in Fig. 1.

FIG. 1. Four of the basic designs for holding magnets. From these designs other holding magnets, geometrically similar but with any desired pull force, can be derived. Magnetic material is in black, steel in gray; all dimensions are in inches. Design numbers correspond to those on effectiveness curves and in Performance Table II.

Effectiveness curves, Fig. 2, are plotted in terms of pull effectiveness E vs reach factor G / \sqrt{P} (Table I). A magnet with high pull effectiveness has high pull for low magnetic material weight W.

Pull effectiveness E (=PG/W) remains constant between any two geometrically similar magnetic systems because P is proportional to the ratio factor K^{2} (face area), G is proportional to factor K (length of magnet) and PG is proportional to volume or weight. This is significant because P and G are known or specified for a new design, and a calculation of W can be made from PG/W.

Reach factor G / \sqrt{P} measures G for a specified pull. P is proportional to area; therefore, $\sqrt{\mathrm{P}}$, like G, is proportional to linear dimensions. Result is a constant reach-factor value for all geometrically similar magnets. Thus, the same curves - effectiveness vs reach factor - can be used for any magnets similar to the four design examples, regardless of size.

Zero-gap effectiveness E_{o} has a different value than for a magnet with an air gap, because in this case G is zero.

67

TABLE I - Nomenclature
G. Air gap, measured from closest point of magnet assembly to armature, in. P Pull, lb.
W Weight of magnetic material in basic design, lb.

fig. 2. EFFECTIVENESS CURVES
Indox I (non-oriented) - Design 5
Indox V (oriented) - Design 10
Alnico V (cast) - Designs 13 and 20

how to use the method

EXAMPLE: A hoiding mognet, air-gop type, is required to produce a $10-16$ pull of $0.05-\mathrm{in}$. gap. Reach factor G / \sqrt{P} is $0.05 / \sqrt{10}=0.0158$. In the effectiveness curves shown, Design 10 has the highest effectiveness at this reach factor, from the curve, $\mathbf{E}=2.7$. If this shape is adoptoble to the opplication, the weight of magnet material required is PG/2.7 $=10 \times 0.05 / 2.7=0.185 \mathrm{lb}$. Design 10 in Performance Table uses 0.27 lb of material, so each linear dimension of Design 10 is multiplied by $K=\sqrt[3]{0.185 / 0.27}=0.88$ to establish new magnet dimensions.

TABLE [II- Periormance of Four Basic Holding-Magnet Designs						
Magnetic Material			Indox	Indox		
Design Number			5	10	13	20
$\begin{aligned} & \text { é } \\ & 5 \\ & \frac{5}{6} \\ & 3 \end{aligned}$	Magnetic Material	Actual Wr.	0.27	0.27	0.27	0.27
		Practical Min.	0.01	0.15	0.01	0.002
	Magnet Assy. Wt.		0.55	0.53	-	0.72
Pull for Air Gaps Shown, lb.		0.00	77	20	19	60
		c. 002	46	-	-	-
		0.005	39	-	-	41
		0.010	25	\rightarrow	12.0	32
		0.02	12.0	17.6	9.7	22
		0.04	6.0	14.5	7.2	12.0
		0.08	2.0	11.0	5.2	6.0
		0.15	-	7.5	3.1	2.4
		0.3	-	3.2	1.3	0.8
		0.6	-	0.8	0.4	-

A complete reprint of "Short Cut for Holding-Magnet Design" appears in the October-December, 1957, Applied Magnetics. The article covers the 24 basic designs of holding magnets in all magnetic materials, and discusses material selection considerations in detail. Write for your free copy . . Dept. A-3.

THE INDIANA STEEL PRODUCTS COMPANY VALPARAISO, INDIANA

WORLD'S LARGEST MANUFACTURER OF PERMANENT MAGNETS

Qemiconducutora GERMANIUM O SILICON

A WIDE

SELECTION OF

Transistora

 COVERING ALL MARKETS INTHE ELECTRONIC INDUSTRY

BY GENERAL
$E L E O T R 1 O$ RANGE OF Rectifiers WITH BROAD APPLICATION POSSIBILITIES

Specify G-E TRANSISTORS

		INLINE LEAD PNP	TRIANGULAR LEAD $\boldsymbol{P N P}$	INLINE LEAD NPN	TRIANGULAR LEAD $\mathbf{N P N}$	POWER NPN
$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & -1 \\ & 0 \end{aligned}$	AMPLIFIER 2 COMPUTER				2N332	
					2N333	
					2N335	
	UNIJUNCTION				2N490*	
					2N.191*	
					2N 192*	
					2N $193 *$	
					2N49.4*	
					*A PN Device	
	POWER					2 N 151
						2 N 452
						2 V 453
						2N454
Σ 3 $=$ 2 4 5 12 II 0	AUDIO PNP	2N. 13				
		2N43A				
		2 N 44			9	
		$2 \mathrm{~N} 4 . \mathrm{A}$				
			2N525			
	COMPUTER PNP	2N123				
			2N39.1			
			2N395			
			2N396			
			2N397			
			2N450			-1
			2N518			
	COMPUTER NPN			2N78		
				2N167		
	HIGH FREO. AMPLIFIER NPN			2N78		
	TETRODE NPN				4JD3B1	
$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 4 \\ & 2 \\ & 12 \\ & 10 \end{aligned}$	If NPN			2 N 168 A		
				2 N 169		
				2N169A		
				2 N 292		
				2 N 293		
	AUDIO PNP	2 V 186				
		2N1864			-	
		2N187				
		2 N187A			-	
		2 N 188				
		2N1884				
		2N189				
		2 N 190				
		2N191				
		2N192				
		2N2小				
		2 N 21 A				
		2 N 26.5				
			2 N 319			
			2 N 320			
			2N32]			
			2N322			
			2 N 323			
			2 N 324	FOLD OUT PAGE FOR		G-E RECTIFIERS
			2N508			

The foregoing specifications and data are presented to give you a general and compact guide to General Electric's broad line of Semiconductor Products. You may obtain detailed information concerning any of the devices listed by contacting your nearest G-E Semiconductor district representalive, your local G-E Tube Distributor, or by writing to:

General Electric Company
Semiconductor Products Department
1224 West Genesee Street
Syracuse, New York

Many G-E Tube Distributors now have adequate inventories of G-E transistors and rectifiers to give you immediate delivery on your orders. Check for yourself and see if his service facilities and prices don't work out to your great advantage. For really fast delivery of transistors and rectifiers, see your G-E Tube Distributor first.

QUICK REFERENCE TRANSISTOR MANUAL

This famons pocket-size reference is now in its enlarged second edition. It gives you all the facts-

- Basic Semiconductor Theory
- Parameter Symbols
- Specifications of G-E Transistor Typies
- Tabulation of JETEC Registered Types
- Application and Design Information
- Circuit Diagrams
and other information frequently needed.
This 112 page manual is available at your local G-1: Tube Distributor, or enclose 50 cents (no stamps, please).

The man to know: your nearest G-E Semiconductor Products representative

Ileadquarters
General Electric Company 1224 W Et (u) Compan! Syracuse, New York Phone: GRanite 6-4411
General Electric Company 701 Washington Streel Newtomille 60, Mass. Phone: DEcatur 2-7120 F. J. Van Poppelen. Jr.
General Electric Company
2111 South Green Road Cleveland 21, Ohio Phone: EV Vrgreen 2-0680 A. C. Oeinch
Gentral Electric Company 11.31 Westwood Blyd. Los Angeles. California
Phones: BRadshaw 2-7322
GlRanite 8-8312
II. W. Gehhardt, Ir
13. W. Olsen

General Electric Company 200 Main A venue Clifton, New Jersey Phones: Glangory $3-6387$
New Yort-WIsconsin 7-4065
A. Woolaver
J. G. Walton
A. B. Dall
D. W. I. Ilichie

General Electric Company 4927 Oahtom Street Shohie, Hlinois Phones: ORchard 5-750. Chicaro-I 13 ving 8-8668
R. E. Berry
V. J. Munloon
L. A. Mooney
R. R. Fanllin

RECTIFIERS for your ev SILICON GERMANIUM
 GREATER POWER - HIGHER TEMPERATURE RATINGS the largest se

Abstract

|N1I.S Series: For direct chassis mid.. or oll fins permiting for ward eurrents up to 1.5 amps. temperature $1 \rho 1.00^{\circ} \mathrm{C}$ with de N2.53 Series offers specilications designed for abplacations requir ing forward curreat up to 1.0 amp. temperature ug to $150^{\circ} \mathrm{C}$. such

Wit Stacks: Combine hith temperatiar up to 18 apme d-c). Wudreds of stick conhinations to mecta variety ul circmit conditions. llizh elliciency phas excelleni regnhtion.

IATge puts as 62111 units.

IV536 Surim: A 100.506 : Desirned for maximum forward cobluelanere at high operating bamperatures
 Seriem providis less eaponsive units lor tower temberatnre regnirements. No buat sink reguired. Batings up to 160° C. ambient

Desingerd for indindmal cell aphinations in the 2 to 20 amp range. Gigh ombehan temperature rathos, evtremely low for ward voltare drop and thermal resistance. Bay be monntex dirmetly or medetrically imsmlated from heat sink with micawasher mobuting kit provided with eath mat

NHICON
 MEDUM
 OURRENT

Sounted int stinmard eigl and 4JA 420 Series) or rect livg commections (4 J 4221 a able in a latpere mumber of to six cells may he potted fodual cell specilientions de utilize 1 NOI-43 cells. 11.4

Stacks provide a hroad ranke o power applications with d-coutpulsup 10 100 amps. $5+0$, I N 100 . $2-96$ cells: (See 13

41A221 Serves (Germanu 4)A421 Senes (Silicon)
ravell standen: The industry's most widely ased semicomductor rectifier. Ilmustreds of of themsands in use Aoctity Le. Harfreds of of thomands ilt Use. Miry he arranged in
stanks up to 12 fitis to produce over 160 dif ferent eironit eonfigurations. Smald size. lisht weipht. excellent regulation.
 LOW OURPENT

SULEON
HABH: OUPDENT
ery need!
nductor Rectifiers are lling in the industry I

BASIGRATINGOHART
Choose the performance range required for your particular needs from one of the mosi comprehenaive line of rectifier in the induntry. Complete apecificatione are available through your dintributor of G-F
Semiconductor Products Dept. Dintrict Sales Ofice. Order by JITXC Semiconductor Products Dept. Diotrict Sales Ofice. Order by JBTXC or G-2 Type No.

RECTIFIER CELLS

RECTIFIER STACKS

SILICON ' GERMANIUM ADVANCEMENTS

MEAN GREATER STABILITY-FASTER SWITCHING-MOREPOWER

General Electric's new streamlined line of transistors offers you boulh standard reliable transistors that you have used suecessfully for years, and exciting new devices that are extending the range of applications suilable for transistorization.

For multivibrators, pulse generators, flip-flops, ete. the Unijunction Transistor emables you to simplify circuitry, and in many cases reduce the mumber of transistors used by as much as half.

Por servo amplifiers, switches, DC to DC (or AC.) converters, ete., G.E.'s Silicon Pomer Transistor's power handing ability allows you to design equipment never hefore practical.

For high frequency switching applications. the $2 \mathrm{~V} 394-$ 2 N39's extreme stahility of $h_{\text {Fe }}$ and $l_{\text {co- }} l_{\text {EO }}$ simplily your design prohlems and contribute to high equipment reliability

Whatever your application is, be sure to check your di-E Semicomductor Products District Sales Manager first.

MAXIMUM RATINGS
maximum MAXIMUM
COLLECTOR
DISSIPATION
@ $25^{\circ} \mathrm{C}$
(mw PC (a) $25^{\circ} \mathrm{C}$
(mw) PC

BREAKDOW
VOLTAGE
(VOLTS)

MAXIMUM
COLlECTOR COLLECTOR
CURRENT
(ma)
Ic

150	
150	
150	
	350
350	
350	
350	
350	
350	

a)	TEMP. (${ }^{\circ} \mathrm{C}$) Tstg
5	200
5	200
5	200
0	200
0	200
0	200
0	200
0	200
0	200

D.C
CURRENT
GAIN
hFE

ALPHA CUTOFF FREQ. (me) $f_{a b}$	POWER GAIN (db) Ge	SATURATION vOLTAGE (VOLTS) VCE (SAT)	COLLECTOR CAPACITY ($\mu \mu \mathrm{f}$) Cab
30.0	35	. 4	7
33.0	39	4	7

COLLECTOR
tO BASE current max Ico@VCb

4	30
4	30
4	30

SIZEAND WEIGHT

ACCURACY

RELIABILITY

\& PRECISION

 ह TRANSFORMER
PROBLEMS?

Because of advances in transformer design calculation methods and technique, Transformers, Incorporated can accurately establish the size and weight of the required transformer from your performance specifications, without the expensive and time consuming construction and testing of prototypes. These same advances in transformer design engineering have enabled Transformers, Incorporated to produce the smallest and lightest precision transformers available. This is particularly important in this era of miniaturization, peculiar space envelopes, and rigid weight requirements.

Transformers, Incorporated designs and manufactures transformers with a measured voltage ratio accuracy of u_{p} to five parts per million (0.0005%) at room temperatures and under no-load condition, with comparable accuracies at other temperatures and loads. These accuracies can be maintained in all production quantities from one to one thousand-or any other quantity that you may require. The ability of Transformers, Incorporated to maintain specified accuracies has been consistently proven by samples submitted to the U.S. Bureau of Standards Testing Laboratory.

Each and every transformer is individually inspected and electrically tested, and samples are subjected to the required environmental tests, to ensure the highest degree of reliability. These methods far exceed the usual sampling techniques of most quality control systems, and enable Transformers, Incorporated to guarantee that every precision transformer will meet or exceed customer specifications.

Relieve your engineering department of the arduous task of designing precision transformers. Phone ENDICOTT, NEW YORK 8-3311, collect. Ask for Tres Park. There's no obligation.
 Airplane Company - Curtins-Wright - Dayntrom Inntrumont - Dumomt Laburatories - Gienoral

 Gyroncope - Sylvaniat . . and others.

Smallest, Lightest MS "E" Connectors

STUBE connectors are the shortest, smallest, lightest MS "E" connectors available. Fully conforming to MIL-C-5015C environmental resistance requirements, STUBE'S are available in MS3100E, MS3101E, MS3102E and MS3106E shell types; 50 standard MS insert configurations will be available.

An outstanding feature of STUBE connectors, aside from the significant space-saving, weightsaving design, is the fully unitized rear sealing grommet assembly which provides easy-fast as. sembly. Solder pockets of the silver-plated contacts are pre-filled for instant, low cost soldering.

High Temperature MS "E"-type Connectors
Real " E " connectors-environmentally resistant MS " E "-type construction with an operating temperature range from $-103^{\circ} \mathrm{F}$. to $+400^{\circ} \mathrm{F}$. and limited operation to $+500^{\circ} \mathrm{F}$. Smaller even than amphenol Stub E connectors, REALE'S feature unique Poke Home contacts with braze- or crimp-type terminations that are wired outside the connector body and poked home for assembly. By the use of resilient silicone rubber inserts, full unitized rear grommet and cable clamp, face seals and shell peripheral seals, an optimum " E " construction is achieved.
Ideal for high altitude applications under temperature cycling, REALE connectors have exceptional current conductivity efficiency: 80% at $78^{\circ} \mathrm{F}$. and 64% at $500^{\circ} \mathrm{F}$.
REALE'S can be truthfully described as the finest MS-type connectors now available.

1/2 actual size
AMPHENOL Realy

First True Miniature "E"

MINNIE'S are the first miniature connectors to meet fully the " E " performance requirements of MIL-C-5015C. Available as 4 shell types in 4 constructions in 5 shell sizes, MINNIE'S have a test voltage rating of 1500 volts RMS when sealed with no derating at elevated altitudes. Operating temperature limits are $-67^{\circ} \mathrm{F}$. to $+257^{\circ} \mathrm{F}$.
MINNIE connectors have spring-loaded coupling rings to provide a positive locking action and a constant compensating force against the effects of any possible face seal compression "set." 5 stainless steel bayonet pins and slots are used. A unitized rear grommet and cable clamp individually seals and protects each wire lead. The face seal gasket has individual isolating contact barriers.

AMPHENOL

SUBMinax ${ }^{\circ}$

field serviceable

No Special Tools for Assembly!

Field serviceable Subminax connectors, for use with RG-196/U Tefion cable, represent a new concept in subminiature RF components. With all parts kept to an absolute minimum, these new connectors require no special assembly tools. By simple wrench-tightening, the improved cable clamp firmly grips the smooth Teflon cable, providing maximum cable retention strength. Two Tefion insulators hold the center contact securely in place, preventing possible axial float. Voltage rating is 500 volts peak.
50 ohm plugs, jacks, bulkhead jacks and right angle plugs are available in screw-on and push-on couplings; they mate with the 50 ohm types in the standard Subminax line.

93 SERIES

Rack \& Panel, Poke Home Contacts

Amphenol's complete line of 93 Series Rack \& Panel connectors is being supplied for use in a production missile. With 8 varieties of housing available for each of 3 insert arrangements, 93 Series connectors offer unusual application versatility-versatility which is increased by the removable Poke Home contacts. Wire termination is accomplished by crimping.
Voltage rating is 500 volts D.C. at sea level; contacts are size 20 and have a current rating of $71 / 2$ amps. Resilient fact seal gaskets are employed on both male and female inserts to prevent circuit interruption by moisture, dust, dirt or metallic particles when the connectors are mated. Operating temperature is $400^{\circ} \mathrm{F}$., meeting the performance requirement of MIL-C-8384,

Rack \& Panel, Poke Home Contacts
94 Series Rack \& Panel connectors with Poke Home contacts have polarized impact extruded aluminum shells. A complete line, the 94 Series includes 5 insert configurations in 3 shell sizes; captivated contact coaxial connectors for RG-58/U cable are in 2 inserts. amphenol's unique Poke Home contacts in sizes 16 and 20 assure ease of assembly and allow quick circuit changes.
Voltage rating is 600 volts RMS at sea level. Operating temperature is $+257^{\circ} \mathrm{F}$. Hooded socket contacts resist test prod damage per MIL-C-5015C; contact solder pockets are recessed in the diallyl phthalate dielectric to exclude the need of additional wire covering after contact assembly.

Contact Letters on Glass!

Amphenol production engineers have achieved a remarkable first. Hermetically sealed MS-type receptacles with contact identification on the glass insert are now available-and available only from amphenol. White lettering is provided on both the front and back of the brown glass insert-all letters are sharply cut and legible.
Amphenol's Identoseals thus combine the advantages of a single compression-sealed glass insert with quick and easy identification of each contact -they are labor-saving to use, both in initial assembly and in circuit checkouts.

AMPHENOL

CUSTOM ENGINEERING

Amphenol Custom Engineering adapts standard components or designs new components to special performance and application requirements. By working closely with customer engineering personnel, AMPHENOL can tailor electrical and mechanical characteristics of a new design to an exact application, with resulting tailor-made reliability,

The 1280 contact Programming Board illustrated is an impressive example of amphenol Custom Engineering. The performance requirements in resistance to both shock and vibration were so stringent that no conventional programming board could be used. Example: This Programming Board withstands a shock of 30 G's applied three times along three perpendicular axes. Its outstanding design is typical of the results to be expected from amphenol Custom Engineering.

The Visicorder has charted the orbit of Sputnik I
A Model 906 Honeywell Visicorder Oscillograph wrote this record of the signals from Sputnik I for the Department of Electrical Engineering at the University of Illinois at Urbana. The marginal notes are those of Edgar Hayden, the research associate who took the record.

Interferometer-type antenna systems (2 dipole elements $1 / 8$ wave length above ground spaced several wavelengths along a north-south baseline)
received the two signals for communicationstype radio receivers. The beat oscillators generated audio output signals, a semi-conductor bridge curcuit rectified them, and the d-c output. filtered by an R-C network with a time constant of about .003 seconds, was used to drive the Visicorder galvanometers directly.

The Visicorder, teamed with the interferometer antenna, quickly established a record of the orbit of Sputnik I.

is a record of Sputnik I

The Honeywell Visicorder is the first high frequency, high-sensitivity direct recording oscillograph. In laboratories and in the field everywhere, instantly-readable Visicorder records are pointing the way to new advances in product design, rocketry, computing, control, nucleonics ... in any field where high speed variables are under study.

To record high frequency variables-and monitor them as they are recorded-use the Visicorder Oscillograph. Call your nearest Minneapolis Honeywell Industrial Sales Office for a demonstration.
Reference Data: Write for Visicorder Bulletin Minneapolis Honeywell Regulator Co., Industrial Products Group, Heiland Division 5200 E. Evans Ave., Denver 22, Colo.

Honeywell

THIS IS A CHALLENGE . . . AC, today, is counted among the leaders in the electronics industry, working full speed to meet vital commitments for our armed forces . . . and for industry, too.

THIS IS A SOUND FUTURE . . . AC, like all General Motors, is soundly based and increasing in size each year. Here is security and an opportunity to grow with a growing organization.

THIS MAY BE FOR YOU . . . Read over the product list below. There are opportunities today with the engineering groups working on each ane of these items. $A C$ is now looking for experienced men who hold degrees in mechanical or electrical engineering. If you have from 3 to 10 years' technical experience in one of these fields, and the idea of working with AC's Milwaukee group appeals to you, write Mr. Cecil Sundeen, Supervisor of Technical Employment, Dept. A, in care of AC . . . the Electronics Division of General Motors, 1925 E. Kenilworth, Milwaukee 1, Wisconsin.

> :. THE ELECTRONICS DIVISION OF GENERAL

CAN YOU SPARE

THIS MUCH PANEL SPACE FOR YOUR OSCILLOSCOPE NEEDS?

Then you must see the
ratermar PANELSCOPE

AT THE IRE SHOW!
Booth \#1902-1904

Today's courier sits at a Kleinschmidt keyboard

The fightweight portable Kleinschmidt teletypewriter is a one-man communication center, transmitting and receiving printed communications at any location, under any conditions.

The mobility of our modern Army demands the receipt of vital information instantly and accurately. There can be no delays, no uncertainty. Kleinschmidt teletypewriters and related equipment, developed in cooperation with the U.S. Army Signal Corps, speed teleprinted communications between outpost and command control, provide both sender and recipient with
an identical original simultaneously. Looking ahead... planning ahead . . . setting the pace for almost 60 years has made the Kleinschmidt name synonymous with development and progress in the teleprinted communications field. Now the engineering skill and research facilities of Kleinschmidt Laboratories, Inc., are joined with those of Smith-Corona Inc, forecasting boundless new achievements in electronic communications for business and industry.

Pioneer in teleprinted communications equipment

KLEINSCHMIDT LABORATORIES, INC.

A subsidiary of Smith-Corona Inc • Deerfield, Illinois

MAJORSPECIFICATIONS

MODEL 450-1200 SERVO MONITOR PREAMPLIFIER
Sensitivity: 5 mv (im phase) produces 1 volt at output jack under moximum outpuf lood conditions
Input Impedance: Signal 100 k Reference 12.5 k for 15 volts, 55 k for 120 volts
Frequency Response: 3 db down at 20% of carrier frequency filter position
Carrier Frequency Filter: Selected by a switch (three positions)
Low 60 eycles
Med 400 eycles
Hi T000 eycles (5000 cyeles optional)
Reference Voltage: Internal selection occepts valtages from 15 to 120 volts Quadrature Rejection: Ratio better than 100:1

Maximm permissible quadrature before averload indicator lights is twice full scale (in phose)
Calibrate Voltage: 10 millivolts internal (set by meter on panel)
Drift: less thon 0.1% of full scole per hour
Preamplifier Output Jack: $=3$ volts available into 2.2 k minimum load resist.
once. Oulput appears ocross two cathades of approximately ground potential
Rear inputs and averlood irdicator lights are included
Output fmpedance: 1 k
Overall Linearity: $\pm 1 / 4 \%$
Power Requirements: 115 volts, 50.400 cycles, approximately 35 watts
See the new "450"s" and other Sanborn equipment at Booth 3601-3603 1.R. E. Show

MODEL 450.1300A DC COUPLING PREAMPLIFIER
Sensitivify: 50 my produces 1 volt of output iack under maximum output load conditions
Input Impedance: 5 megohms each input side to ground
Input: Single-ended or pushopull
Preamplifier Output Jack: ± 3 volts into $2.2 \mathbf{k}$ minimum load resistance. Output is bolonced and appears across 2 cothodes at opprox. ground potentiol

Output Impedance: 1k
Drift: Referred to input $2 \mathrm{mv} / \mathrm{hr}$. line valtoges change less thon 10%
Frequency Response: 0.20kc
Calibration: 100 millivalts internal
Linearity: $\pm 1 / 4 \%$
Rear inputs included

SANBORNCOMRANY

INDUSTRIAL DIVISION
175 WYMAN STREET, WALTHAM 54, MASS.

Abstract

The Westinghouse Electronics and Air Arm Divisions, Friendship Airport, Baltimore, Md. plants, have almost unbelievably high r-f interference ambient caused by radar transmitters, missiles, military planes, spot welders, motors, powerful transmitters, and other types of electric/electronic equipment. Testing critical electronic equipment under these adverse interference conditions is extremely difficult. The slightest outside interference would distort readings. Westinghouse takes no chances. The flight control fighter armament systems, missile guidance systems, radar, and ship-board transmitters under design and development at the plant are completely shielded from outside interference and from each other by 49 Ace shielded enclosures.

See us at the IRE Show-Booth 1728.

The Ace patented RFI* and Cell-Type Designs provide the high attenuation required for satisfactory results at all frequencies. All enclosures are designed and constructed to insure permanent r-f leak-proof performance. Size-flexibility is another feature. The modular construction of the panels and doors permits rapid alteration of the size of the enclosure. Small rooms can be joined to make larger units or large enclosures can be converted into smaller ones.

If you have a shielding problem-big or small-in your plant, you'll want to talk to an Ace Engineer about an effective yet economical solution. Be sure to write for free catalog on standard Ace enclosures.
*Lindsay Structure

12 POPULAR MODELS FROM OUR STOCK OF OVER A MILLION RELAYS
 delivery dates and payments. Save confusion and delay waiting for relays to be manufactured. We have over a million latest models in stock. Specify the contact arrangement and coil rating you need. No order is too small, nor too big. All relays are new, inspected and unconditionally guaranteed as represented.

FOR 24 HOUR DELIVERY CALL WEST CHICAGO 1100

For our new bulletins and latest catalog Phone or Write

RELAY SALES, inc.
P. O. Box 186 A Route 64 af E.J. \& E.R.R. West Chicago, ill

Sola tailors DC power supplies to fit your mechanical requirements

Shown above are three of the many Constant Voltage DC Power Supplies Sola has designed to special order. From chassis for standard relay rack mounting, to base plates of varying size and shape, Sola can provide you compact, regulated DC supplies in the "ampere" range designed to fit your mechanical requirements.
The unique combination of a Sola Constant Voltage Transformer, a semi-conductor rectifier and high capacitance filter provides substantial quantities of power in
a relatively compact space. Another important feature is the ability to handle large transient or "pulse" loads.

Sola DC supplies provide output regulation of $\pm 1 \%$ with line voltage variations as great as $\pm 15 \%$. These units have no moving parts, require no mechanical adjustments or maintenance. For further information on special DC power supplies designed to your electrical and mechanical specifications, write to Sola Electric Co., 4633 West 16th St., Chicago 50, Illinois.

See Sola Constant Volt age Power Supplies and Transtormers at the IRE Show in New York. Sola Booth, 2817-19.

[^4]

Sperry klystron tests OK after missile explosion and $1 \frac{1}{2}$-mile plunge into sea

Proves accurate to $\mathbf{0 . 0 1 \%}$ despite $\mathbf{1 0 0}-\mathrm{g}$ battering

Here is Exhibit A in the case for rugged construction of Sperry klystron oscillator tubes. This klystron was recovered from the ocean floor off Florida where it plunged after the deliberate destruction of a long-range missile in mid-air. (The precision tube is an essential component in the missile's electronic guidance system.)

Sperry engineers estimate the tube withstood an explosive force more than 100 times gravity when the missile was exploded $11 / 2$ miles in the air. Then the tube plummeted down to the ocean. It smashed into the surface at several hundred miles an hour. Hitting water at
this speed is like hitting solid concrète.
Yet the only effect of all this violent punishment was a slight deformation of the klystron's heavy cooling fins. Tested in the lab, the tube proved accurate within 0.01% of its design frequency!

This is undoubtedly the severest test of klystron ruggedness since Sperry developed the first klystrons years ago. But the precision tube proved more than equal to its job-solid evidence that you can count on superior performance from every Sperry klystron. When your design calls for tube ruggedness and dependability, the first step is to write our Electronic Tube Division.

Visit our booths 1416-1422 at 1958 Radio Engineering Show, March 24-27.

ELECTRONIC TUBE DIVISION
GYROSCOPE COMPANY
Great Neck, New York
DIVISION OF SPERRY RAND CORPORATION
brooklyn. CLEVELAND. NEW ORLEANS L LOS ANGELES. SANFRANCISCO. SEATTLE. IN GANADA: SPERRY GYROSCOPE COMPANY OF GANADA, LTD., MONTREAL, QUEEEC.

AEROCOM'S 1046 H.F. TRANSMITTER

POWER + STABLIITY

1000 WATTS

Rugged, versatile general purpose H.F. transmitter-Aerocom's 1046 packs 1000 watts of power and high $.003 \%$ stability under normal operating conditions (0° to $+50^{\circ} \mathrm{C}$.). Excellent for point-to-point or ground-toair communications.

Multi-channel operation on telegraph A1, or telephone A3 with GM-8A modulator... new Aerocom 1046 can be remotely controlled with TMC-R at control position and uses only one pair of telephone lines. In A3 operation, the local dial control panel is located in modulator cabinet.

Transmitter cabinet has $83 / 4$ inch panel space available for either local dial control panel or frequency shift keyer.

Model 1046 operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band $2.0-24 \mathrm{Mcs}$. Operates on one frequency at a time; channeling time 2 seconds. Operates into either balanced or unbalanced loads. Operates in ambient -35° to $+50^{\circ} \mathrm{C}$. Power supply: nominal 220 volts, $50-60$ cycles, single phase.

Complete technical data on request

Now! Complete-package, 192 channel, H. F., 75 pound airborne communications equipment by Aer-O-Com! Write us today for details!

.003\% STABILITY

MAKE RELIABLE CONNECTIONS FASTER, CHEAPER WITH keller (Oire-(O)rap tools air and electric tools for solderless wrapped connections

Solderless wrapped connections ... the process proved

Fast, economical, solderless, metal-to-metal connections that resist vibration failure and corrosion. That's the solderless wrapping method-proved superior by billions of connections without a reject.

With a lightweight, fast-acting Keller "Wire-Wrap' tool, you wrap up wiring jobs fast . . . and you get these profit-building benefits:

Greater production. You make permanent solderless connections in a hurry. Three seconds total time required per connection. Actual connecting time 110 second.

Lower production costs. Yol eliminate the expense of precise process control required by other methods.
Reduced labor costs. You make more connections per operator, with less fatigue. You eliminate soldering - no faulty connections that require expensive hand repair work.

Higher quality. Mechanically strong connections electrically stable-proved most reliable in industry.

Wire insertion and anchoring

Wrapping

Finished connection
keller (Oire-(Orap tools-adaptable to circuitry of every type

Television chassis wiring with Keller "Wire- Wrap" tools helps cut production costs and simplifies quality control processes. Only a periodic check of the connection produced is required to insure consistent quality.

Relay panels on oil burner stack controls are wired with vertically mounted Keller "Wire-Wrap" air tools faster and at less cost than with soldering methods. Maintenance cost of tools like this is less than that for soldering operations.

Switchboard panels of telephone dialing system are interconnected with electrical "Wire-Wrap" tool. In manufacture of panel subassemblies, connection of wires to relay terminals is made with air-powered tools.

superior by leaders in communications and electronics

Large, gas-tight contact areas. Just four turns of wire produce a contact area greater than the cross-sectional area of wire. Surface adhesion at contact areas prevents damage from severe temperature changes, humidity, corrosive atmospheres and vibration.

High-pressure, metal-tometal contact. After wrapping, cold flow of copper causes pressure in center of contact area to drop from $100,000 \mathrm{psi}$ to about 29.000 psi. The metal then stabilizes . . . pressure remains constant. Keller "Wire-Wrap" tools produce a clean metal-to-metal contact. As connection ages. it becomes mechanically stronger due to solid state diffusion.

Close terminal spacing. Today's trend toward compact electrical assemblies naturally demands close spacing of terminals. The small diameter of the Keller "WireWrap" tool tip permits close terminal spacing. In addition, a number of wires can be connected to the same terminal.

REQUEST FREE BULLETIN 14-1

Here are 16 pages packed with valuable data. The bullerin is completely illustrated with diagrams and pictures. It includes a comprehensive explanation of the solderless wrapping method, plus full details on terminal requirements, and specifications on Keller "W'ire-Wrap" tools.

SELECT FROM THESE STANDARD MODELS

for wire sizes 26-18 gauge

Model 14 MI
air-powered with straight handle.

Model 14L1
eir-powered with pistol-grip handle.

Model 1481

 electric-powered with pistol-grip handle.for wire sizes 16-14 gauge

Model 14A-2 air powered with pistol-grip handle.

MANUAL TOOLS FOR SERVIGEMEN

Unwrapping tool for removing connections. Either right- or left-hand rotation available

The Keller (Oirre-(O)rap Machine for automatic component assembly

The Keller 14E-1 two-spindle component "WireWrap" machine attaches axial lead components. Completely automatic, it places and wraps up to 2000 components an hour.

The machine handles leads from 24 through 20 gauge . . . terminal spacings from $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$. It can be adapted for hand loading of components or autematic feeding from reel packages or strip cartridges.

If you use resistors, diodes, capacitors, other similar axial lead components or wire-find out about this automatic technique. Write for Bulletin 14-71.

AT A CLASS "B" PRICE

I-S SPRINGS of beryllium copper can help you

IMPROVE YOUR PRODUCT'S QUALITY, REDUCE YOUR COST, INCREASE YOUR PRODUCTION

Instrument Specialties Company specializes in the design and custom manufacture of agehardened alloy springs. With our specially developed processes and machines, our engineers are able to
realize the fullest performance potential from the superior spring materials around which I-S serv. ice to designers and manufacturers has been developed.

STRIP SPRINGS

Fabricated from beryllium copper.
Easily handled, readily broken apart by hand or used in automatic or semi-automatic assembling devices and contact riveting machines.
Individual pieces may be broken off without trace of burr.
Eliminate sorting, untangling and handling of loose pieces.
Springs may be produced in strips to various shapes; formed angles may lie held within plus or minus one degree.
Heat treated in multiple fixtures to insure uniformity, close tolerances and elimination of variations, in spring-back.

COIL SPRINGS

Made from laboratory tested beryllium copper wire. Special coiling and heat treating equipment insures 100% uniformity
Guaranteed rigid tolerances held on diameter and load tests at specified deflection.
These factors combine to assure increased service life through higher endurance strength - make products perform more consistently by eliminating drift. set or fatigue. Furthermore, they eliminate expensive hand adjustment and reduce inspection costs of finished
product.

HIGH FREQUENCY SPECIALTIES

We are equipped to supply standard mating parts for use with $2 \mathrm{C}-39,2 \mathrm{C}-40,2 \mathrm{C}-43$ and $3 \mathrm{C}-37$ tubes, or custom made parts in related fields.
Grounding strips and contact fingers can be supplied in standard or special contours.
"Flea" contacts for co-planer type subminiature tubes and transistors.

SHORT-RUN SERVICE

For those who need quick delivery of parts in pilot quantities or require a low-cost proving ground for spring designs. I-S methods eliminate expensive tool. ing. Laboratory controlled, precision produced-yet at lower cost than is possible with permanent, highactivity tools.
We are equipped to handle conventional heryllium copper stampings and screw machine products in short runs or in high production.

INSTRUMENT SPECIALTIES CO., INC.

Telephone: CLifford 6-3500

A COMPLETE ENGINEERING AND SAMPLE SERVICE
When your product is in the design stage, let us show you how I.S springs of beryllium copper may be designed to fit your needs. Ample stock, flexible facilities, short set-up time speed production of sample lots and trial orders.

DESIGNED TO MEET MIL-E-1

MILIARY TYPE

Avromatie silicon recifiers

JAN

TYPES
1N253
1N254
1N255
1N256

EIMAC FIRST
 Oovering the spectrum with reliable oeramic iubes

2C398
2C39WA
3 3CP100A5

From audio into super high frequencies, Eimac covers the RF spectrum with modern ceramic tubes. This incomparable ceramic electron tube family - more than one-third of the Eimac line - includes reflex and amplifier klystrons, negative grid tubes, rectifiers, pulse modulators, and receiving tubes. The tubes illustrated are typical of more than 40 Eimac ceramic tube types that are being selected by leading equipment manufacturers for use in all types of applications - from tropo-scatter to industrial heating, from single sideband to pulse.

The cdvantages of reliable Eimac ceramic tubes include: resistance to damage by impact, vibration, and heat; smaller size; and better processing techniques.

Do it yourself - subject an operating Eimac ceramic tube to impact at our unique display, booths 2409-24i2, during the New York IRE Show, March 24-27.

EMTEL-MCCULLOUGM, BC.

Eimac $\mathcal{F i r s t}$ with ceramic tubes that can take it

$4 \mathrm{CX300A}$	6K50.00020
4 CX 250 B	$\times 1576$
4 Cx 250 K	$\times 597$
$40 \times 250 \mathrm{M}$	$\times 626$
4K50,0001.	86850
4KM50,00056	. $\times 693$
4KM170.0001A	

	1k125CA	1K20KA
11	11225CB	$\times 563$
	1K20XS	$\times 639$
U1I	$1 \mathrm{k} 20 \times \mathrm{K}$	$\times 686$
Ceramic Tubes	1K20xD	

Keeping Pace with Your Progress...

CHESTER

A complete line of quality wires and cables including -

AIRSAC TV LEAD-IN WIRE APPLIANCE WIRE ANNUNCIATOR WIRE anNunciator cable ANTENNA LOOP WIRE BRAIDED WIRE COAXIAL CABLE CUSTOM CABLE CONSTRUCTIONS fLAME RETARDANT HIGH VOLTAGE WIRE FLEXIBLE BELL CORDAGE HIGH FREQUENCY TEST LEAD

Expandea plant facilities assure fast service on famous-for-quality Chester wires and cables

The sew ultra-modern Chester Cable Corporation plant is now in full production on super-rugged extra-pliable Plasticote and Plasticord wires and cables. These longer-lasting Chester conductors, plus nylon coated and tefion wrapped wires are available in standard types to meet every wiring requirement. When specifications indicate the use of custom constructions, they can be produced to your special design. The Chester engineering staff, and research facilities, are available to help solve unusual wiring problems.

Pioneer Producers of Plastic Insulated Wires and Cables since 1940

CHESTER CABLE CORP.

from Sin_{2}... everything you need for complete, integrated

Amplifier...vibration exciter...specialized matched controls Engineered to satisfy existing test specifications
...with performance capability for the future
 vanced design affords simplified operation.

vibration test systems

Vibration testing grows more discriminating. First, sinusoidal testing; and now random and complex motions. Whatever your program, look to MB to keep you ahead. As the world's largest producer in its field, MB provides complete systems for advanced techniques.

Basically, what you're really buying is the motion at the shaker table. And nobody knows the requirements of the shaker better than its maker. MB builds equipment around the operational needs, thereby assuring optimum performance from system as whole, and from shaker specifically.

MANY AMPLIFIERS IN SERVICE

MB has built over 850 electronic amplifiers for vibration test systems since 1945. More than 275 are 3 KW and larger. In advancing the science of complex motion testing, MB builds the required electronic gear with similar advanced thinking . . . to make it easier to use, and fit for future needs.

SOME FEATURES

MB amplifiers feature automatic operation. Push a button to start. No need to fuss with filament and plate voltages. Amplifier can be remotely located to cut down noise and heat and save floor space at test location. Control console facilitates automatic or manual sine wave testing. The compensation console equips system for rapid setup and high fidelity complex motion work.
The largest field service organization of vibration specialists are on call nationwide to users of MB test systems. They provide technically qualified service on the whole system.

Be sure to visit the MB booth, spaces 17-23 and 17-25 af the IRE Show in the New York Coliseum

AMERAC'S PRECISION MICROWAVE PRODUCTS
 MICROWAVE CAVITIES
 CO-AXIAL LINE WAVEMETERS

Amerac, Incorporated manufactures a comprehensive line of co-axial line cavities, utilizing various standard tubes, for numerous microwave applications including aircraft, guided missile and beacon work.

FEATURES

These cavities have such features as - single control tuning, fixed feedback, rugged anti-backlash tuning mechanism, accurate Root counter (optional), adjustable type " N " or "BNC" 50 -ohm inductive loop coupling, convenient tube receptacle for quick replacement, long-duration R.F. output stability, operates on inexpensive power supply.

\#198-A MICROWAVE CAVITY

\#193
"BEACON" CAVITY

SPECIFICATIONS

Model	Frequency Range	Type	Cavity Mode	Tube Type
$192-\mathrm{A}$	$2400-4000 \mathrm{MC}$	Pulse	$3 / 4$	2 C 36
$192-\mathrm{AB}$	$750-2000 \mathrm{MC}$	Pulse	$1 / 4$	2 C 36
$192-\mathrm{B}$	$750-2000 \mathrm{MC}$	CW	$1 / 4$	2 C 36
$193-\mathrm{A}$	$2400-4000 \mathrm{MC}$	Pulse	$3 / 4$	2 C 36
194	$2300-3300 \mathrm{MC}$	CW	$3 / 4$	2 C 39 B
$194-\mathrm{A}$	$2300-3300 \mathrm{MC}$	Pulse	$3 / 4$	2 C 39 B
195	$2000-3100 \mathrm{MC}$	CW	$3 / 4$	6442
$195-\mathrm{A}$	$2000-3100 \mathrm{MC}$	Pulse	$3 / 4$	6442
$191-\mathrm{A}$	$2400-3400 \mathrm{MC}$	Pulse	$3 / 4$	Pencil Triode
$198-\mathrm{A}$	$800-2050 \mathrm{MC}$	CW	$1 / 4$	6 M 6
$198-\mathrm{A}$	$2050-4200 \mathrm{MC}$	CW	$3 / 4$	$6 B L 6$
$198-\mathrm{A}$	$800-2050 \mathrm{MC}$	Pulse	$1 / 4$	5837
$198-\mathrm{A}$	$2050-4200 \mathrm{MC}$	Pulse	$3 / 4$	5836

FOR EXTREME ENVIRONMENTAL CONDITIONS

Engineered to operate under extreme conditions of shock, vibration, temperature and humidity, these cavities have been designed to withstand 2000 cycles at 15 G .200 MC tuning range.

SPECIFICATIONS

Model	Frequency Range	Type	Cavity Mode	Tube Type
$\# 500$	$2000-3100 \mathrm{MC}$	CW	$3 / 4$	GL-6442
$\# 501$	$2000-3100 \mathrm{MC}$	Pulse	$3 / 4$	GL-6442
$\# 502$	$3100-3550 \mathrm{MC}$	CW	$3 / 4$	GL-6442
$\# 503$	$3100-3550 \mathrm{MC}$	Pulse	$3 / 4$	GL-6442
\#508	$3800-4500 \mathrm{MC}$	CW	$3 / 4$	Z-1910
$\# 509$	$3800-4500 \mathrm{MC}$	Pulse	$3 / 4$	GL-6442

\#229 "S" BAND WAVEMETER

FOR LABORATORY USE, Amerac, Incorporated manufactures a precision wavemeter that is handsomely finished with golden anodized aluminum panel and hand-rubbed walnut cabinet. The panel is sloped for easy observation.
These models feature high accuracy of measurement ($\pm .02 \%$), high frequency stability $\left(10^{\circ} \mathrm{C}\right.$ to $40^{\circ} \mathrm{C}$), extreme mechanical stability, ease of operation, rugged components and tri-plated surfaces.

GENERAL SPECIFICATIONS

Type "N" constant impedance input connector. BNC or UHF co-axial fitting for external video connection. Power handling capability: absorption - .5 mw to 1 watt; transmission - 1mw to 1 watt. Peak power: up to 25 watts (transmission).

INDIVIDUAL SPECIFICATIONS

Model Frequency Range Loaded Q Width Depth Height Net Weight

\#228"	$900-2400 \mathrm{MC}$	1000	$15^{\prime \prime}$	$93 / 4^{\prime \prime}$	$73 / 4^{\prime \prime}$	$131 / 2 \mathrm{lbs}$.
$\# 229$	$2300-4500 \mathrm{MC}$	1500	$8^{\prime \prime}$	$61 / 2^{\prime \prime}$	$5^{\prime \prime}$	$43 / 4 \mathrm{lbs}$.
$\# 230$	$3500-6000 \mathrm{MC}$	1500	$8^{\prime \prime}$	$61 / 2^{\prime \prime}$	$5^{\prime \prime}$	$43 / 4 \mathrm{lbs}$.

*Model 228 has a direct-reading frequency control dial.
FOR FIELD USE, Amerac, Incorporated manufactures two coaxial line wavemeters covering the " S " band, the Model 131 (Amerac's version of the popular military model TS-117) and the inexpensive, C\&D Wavemeter Model 232.

Both models feature a rugged metal case, finished in gray, baked enamel; highly sensitive indication of resonance; rugged components; precision cavity assembly and anti-backlash device, for high accuracy.

\#232 "C \& D" WAVEMETER

GENERAL SPECIFICATIONS

Input connections are two type " N " jacks. R.F. detector is a type 1 N 21 B silicon diode. They have a ruggedized 50 microampere indicating instrument for abusive field work and all silver-plated parts are Rhodium flashed to minimize corrosion.

INDIVIDUAL SPECIFICATIONS

Model Frequency Range Loaded Q Length Depth Width Nef Weight

$\# 131$	$2400-3400 \mathrm{MC}$	1000	$6^{\prime \prime}$	$31 / 4^{\prime \prime}$	$51 / 2^{\prime \prime}$	$31 / 2 \mathrm{lbs}$.
$\# 232$	$1800-3800 \mathrm{MC}$	1000	$8^{\prime \prime}$	$21 / 4^{\prime \prime}$	$73 / 4^{\prime \prime}$	$21 / 2 \mathrm{lbs}$.

Parts made from Dow Corning silicone molding compounds are light, strong, and heat-resistant. They have excellent dielectric properties and low heat conductivity.. will reduce transferred temperatures from 1500 F to lower than 500 F in less than one inch of wall thickness. Dow Corning silicone molding compounds withstand continuous operation at 600 F and even short exposure to 1500 F . They are readily molded on conventional equipment.

Typical Properties of a
Dow Corning Silicone Molding Compound*
Dielectric constant
*Cured 2 hours at 390 F . For operation at 1500 F , an additional afterbake at 800 F is recommended.

Send for new brochure, Address Dept. 483.

For better transistors at low cost . . .

TRY BENDIX HICH GAIN POWER TRANSISTORS

If you are in design, project, or research and development, Bendix Transistors can mean much to you and your job. The enthusiastic endorsements of other engineers show that Bendix Transistors help in these six ways: (1) High power and current gain; (2) Low leakage; (3) Life stability; (4) High breakdown voltage; (5) Low thermal resistance; (6) Linear temperature variation.

The extra quality at no extra cost stems from our transistor program. Here, the simplified design increases dependability and also cuts costs. The component parts and materials-all exceeding specification requirements by a sizeable margin-provide extra performance capability. Our close quality control uses Bendixdeveloped methods and instruments to assure uniformly dependable quality. And improved manufacturing techniques at high-volume level make for better transisiors at low cost.
Write us now for complete details or for help with your circuitry problems. Semiconductor products, bendix aliation corporation, long branch, new jersey.
$\left.\begin{array}{|llllllllll|}\hline & \text { LARGE SELECTION OF POWER TRANSISTORS FOR } & \text { MANY DIFFERENT APPLICATIONS }\end{array}\right]$

VOLUME PRODUCTION ASSURES IMMEDIATE DELIVERY

Red Bank Division

PHELPS DODGE SODEREZE® ENDS STRIPPING, CLEANINGCUTS SOLDERING COSTS!

Sodereze*-Phelps Dodge polyurethane magnet wire-provides:

1. Low temperature soldering-no damage to copper conductor.
2. A balance of physical, chemical and electrical properties permitting replacement of existing film wires.
3. Resistance to heat and solvent shock for safer wax or varnish treatment.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!
*Standard color, red.
VISIT OUR BOOTH, NO. 4516-4518, AT THE I.R.E. SHOW

> With a disappearing waste line and no bay window, this new API meter trims itself into your instrument

The beauty on the pillow is designed to complement your product; not hog it. Its bottom $1 / 3$ - the part you don't need to see-is tucked behind your panel. What's left is today's best looking meter, with a modern picture frame look.

The forte of this slim design is its obvious good looks, but other features are worth mentioning; like easy back-of-panel lighting through a translucent
rear window, and almost-nil magnetic panel effect.
For a good look at the Model 561, ask for Data Sheet 10; for a better look see us at the show; for the best, order a sample. We know youll want to look at one, so we made up a quantity. To whet your appetite, the sample price is $\$ 10.00$. A request on your company letterhead will bring a 200 microampere Model 561 to your door by air.

Booth 3815, IRE Show, Coliseum, N.Y.C. March 24-27

Waldes Truarc GRIP RINGS Replace Expensive Parts... Reduce Manufacturing Costs...Eliminate Rejects

WALDES TRUARC SERIES 5555 GRIP RING*

application: external for shafts range: . 077 in. -.755

The Waldes Truarc Grip Ring requires no groove, holds fast by friction forces, can be used again and again. It provides a positioning shoulder secure against moderate thrusts or vibration. The ring's unusually large radial width exerts considerable frictional hold against axial displacement.

Rings save $\$ 300$ per die, $\$.03$ unit

Ray Oil Burner Co. uses a Truarc series 5555 grip ring in fuel pump drive shaft to position seal and drive it to assure continuous rotation with shaft. Original design used complicated die-cast collar and driver which required special groove and shoulder. Savings: $\$ 300$ per die for each size manufactured, $\$.03$ per part.

Rings cut costs 33\%, eliminate rejects

B \& J Tool uses series 5555 grip ring to secure parts of damper control made for Vulcan Radiator. Shaft formerly was machined down to provide coil spring shoulder, often broke during bending operation. (Rejects ran as high as 80% !) New design eliminated rejects and field failures, cut production costs 33%.

Whatever you make, there's a Waldes Truarc Ring designed to save you material, machining and labor costs, and to improve the functioning of your product.
In Truarc, you get
Statistically Controlled Quality from engineering and raw materials to the finished product. Every step in manufacture watched and checked in Waldes' own modern plant.
Complete Selection: 36 functionally different types. As many as 97 standard sizes within a ring type. 5 metal specifications and 14 different finishes. All types available
quickly from leading OEM distributors in 90 stocking points throughout the U.S. and Canada.
Field Engineering Service: More than 30 engineeringminded factory representatives and 700 field men are at your call.
Design and Engineering Service not only helps you select the proper type of ring for your purpose, but also helps you use it most efficiently. Send us your blueprints today... let our Truarc engineers help you solve design, assembly and production problems . . . without obligation.

Consult the Yellow Pages of Your Telephone Directory for Name of Local Truarc Factory Representative and Authorized Distributor.

MICRO-MINIATURE RELAYS

by Iron Fireman

Take a good look

These test results mean what they say. Iron Fireman's micro-miniature relays conform to and exceed the requirements of MIL-R 5757 C ; and the data, shown in the illustration above, were obtained under the strict requirements set forth in the military specifications.

These brand new Iron Fireman dualcoil, balanced armature relays are designed for applications demanding
either voltage or current sensitive relays with high reliability and performance in small, hermetically sealed enclosures.

These latest additions to the line of dependable Iron Fireman relays are tooled for high production.

WRITE TODAY for Bulletins 600 and 680: Iron Fireman Electronics, 2810 S.E. Ninth Ave., Portland 2, Ore.

IRON FIREMAN CECTrowict DIVISION

Manufacturers of high speed relays, sensitive relays, micro-miniature relays, vertical gyros, slip rings and brushes.

NEW Wesemanam ancras 10 to 44,000 mc

 SAVE ENGINEERING MANHOURSA complete line of spectrum analyzers with full frequency coverage -up to Q Band

TO TEST:
MISSILES
RADARS
microwave components
TELEMETERING
multi-pulse transmissions

NEW APPLICATIONS

TCA-S COMBINATION SYNCHROSCOPE SPECTRUM ANALYZER

Pulsed signal as seen in syn chroscope operation.

Spectrum of same pulsed signal displayed in spectrum analyzer operation.

MEASUREMENT OF PULSE MODULATION IN FREQUENCY AND TIME
This single instrument (Model TSA-S) Synchroscope-Spectrum Analyzer provides a direct method of observing a pulsed signal and its frequency spectrum. As a sensitive synchroscope receiver, it displays a wide range of pulse widths and repetition rates. As a spectrum analyzer, it shows complete frequency spectrum. Selector switch determines function instantly

Time display of complex video signal

ANALYSIS OF COMPLEX

 SIGNALSDisplays the envelope of complex pulsed signals, such as used in radar systems and some telemetry applications.

Model TSA-S

Model TSA-W

TSA.W VERY WIDE DISPERSION SPECTRUM ANALYZER

0.1 microsecond pulse using 70 mc dispersion

NARROW PULSE

 ANALYSISModel TSA-W, by virtue of its wide frequency dispersion (up to 70 mc , will display the spectrum of very narrow pulses.

Additional applications for spectrum analyzers are available on request. Write for free handbook on spectrum analyzer techniques.

10 microsecond pulse using 1 mc dispersion.

WIDE PULSE ANALYSIS
By changing selector switch to a narrower bandwidth, spectra of wide pulses can be displayed accurately on the TSA.W because of its high resolution (7 kc narrow bandwidth, 50 kc wide bandwidth).

Interchangeable Plug-in Tuning Units

Tuning Unif	Frequency Range
STU-T	$10-1,000 \mathrm{mc}$
STU-2	$910-4,560 \mathrm{mc}$
STU-3	$4,370-22,000 \mathrm{mc}$
STU-4	$21,000-33,000 \mathrm{mc}$
STU-5	$33,000-44,000 \mathrm{mc}$

Two cw signals 60 mc apart using 70 mc dispersion.

SIGNAL COMPARISON

Two or more signals may be compared against a standard or each other as to frequency spacing. Wide dispersion provides simultaneous observation of signals separated by large frequency differences

POLARAD ELECTRONICS CORPORATION

43-20 34 Street, Lang Island City I, N. Y.
Representatives in principal cities. See your Yellow Pages.

FREE LIFETIME SERVICE
ON ALL POLARAD INSTRUMENTS

Engineers: Tear out for your notebook

MULTI-BAND MICROWAVE RECEIVER 400-46,700 mc

A sensitive microwave receiver is a basic tool in microwave testing operations. A few of the many and diverse applications of this versatile instrument are illustrated below, using a Polarad Model R Receiver, 400 to $46,700 \mathrm{mc}$. Operation is simplified by UNI-DIAL control and direct reading frequency dial.

SOME TYPICAL APPLICATIONS:

ANTENNA PATTERN MEASUREMENTS
Connect a synchronized antenño drive
Models $A D-1$ and $P R-1$ or equivalienti) int
 higtr poweted tsource rious and interferin permits estrblisishing nulls às much as 60 db down from energey in the direction of maximum direectuvity

MEASUREMENT of RELATIVE POWER of HARMONICS

With the receiver tuned to the harmonic in question, set an arbitrary gain level on the meter. Then, normalize the receiver gain with the receiver tuned to the fundamental and repeat the measurement. Subtract the db power level of the harmonic from the db level of the fundamental to determine the relative power level between the signals. Important receiver requirements for this measurement are broadband coverage and wide dynamic range as featured in Polarad Model R.

Frequency Range

Tuning Unit Model RR-T. $400-1,000 \mathrm{mc}$
Tuning Unit Model RL-T. 950 - $2,040 \mathrm{mc}$
Tuning Unit Model RS-T. 1,900 - 4,340 mc
Tuning Unit Model RM-T 4,200 - 7,740 mc
Tuning Unit Model RX-T. 7,300-11,260 mc
Tuning Unit Model RKS-T 9,500-15,600 mc
Tuning Unit Model RKU.T 14,700-22,000 mc
Tuning Unit Model RQ-T 20,300 - 46,700 mc

RECEPTION of MICROWAVE ENERGY

A multi-purpose broadband microwave receiver is indispensable for quantitative analysis of microwave signals and monitoring of all types of radio and radar communications. With a test antenna connected to the r-f input, power and frequency comparisons of virtually any type of signal encountered in microwave work (AM, FM, Cw and pulse) may be read directly on the front panel meter. Trigger output reproduces pulse width and repetition rate, at the same time eliminating noise that may be present.

LEAKAGE and INTERFERENCE MEASUREMENTS
 leakage. Any raf energy present "Is indicatedron the fiont panelnmeter

- Frequency meter
- Field intensity meter
- Pulse, pulse time or pulse position demodulator
- Sensitive microwave power meter
- General communications

Complefe specifications and prices on request R

With the component under test placed between the signal source and the receiver, set an arbitrary gain level on the receiver meter. Then remove the component and connect the source directly to the receiver. Increase the attenuation of the calibrated i-f attenuator on the front panel of the receiver until the same reference meter reading is reached. Attenuation of the component under test is then equal to the amount by which the i-f attenuator was increased.

POLARAD ELECTRONICS CORPORATION

free lifetime service ON ALL POLARAD INSTRUMENTS

Acetic Acid

 Acetone Aluminum Nitrate Aluminum Sulfate Ammonium Carbonate Ammonium Chloride Ammonium Hydroxide Ammonium Phosphate Antimony Trioxide Barium Acetate
Barium Carbonate

Barium Fluoride Barium Nitrate Benzene Boric Acid

Cadmium Chloride

Cadmium Nitrate Cadmium Sulfate
Calcium Carbonate Calcium Chloride
Calcium Fluoride Calcium Nitrate
Calcium Phosphate
Carbon Tetrachloride Cobalt Carbonate Ether, Anhydrous Ether, Petroleum Hydrochloric Acid Hydrofluoric Acid Hydrogen Peroxide Lithium Carbonate Lithium Chloride Lithium Nitrate Lithium Sulfate Magnesium Carbonate Magnesium Chloride Magnesium Oxide Manganese Dioxide
Manganous Carbonate Methanol
Nickelous Chloride
Nickelous Nitrate Nickelous Sulfate Nitric Acid
Potassium Dichromate
Potassium Hydroxide iso-Propyl Alcohol Radio Mixtures Silicic Acid Sodium Carbonate Sodium Chloride Sodium Hydroxide
Sodium Phosphate Dibasic Strontium Nitrate Sulfuric Acid Toluene Triple Carbonate Xylene
Zinc Chloride Zinc Nitrate Zinc Oxide

PURITY BY THE TON
- for production use

Baker ELECTRONIC CHEMICALS

For your electronic tubes and screens-

BARIUM ACETATE, C.P. for Electronics

One of many high purity Baker production chemicals for the electronic industry. For use in screen settling, it will pay you to investigate Baker Barium Acetate, C.P. for Electronics. You get double-protection-purity is assured by the high assay and by control of several impurities that are critical.

In the specifications shown below, note that the assay is 99% minimum. Heavy metals, chlorides and insolubles are particularly low. And thorough blending insures that purity is uniform within each lot.
With your need for quick solubility in mind, this material is produced as a fine crystalline powder. Close control of chemical and physical specifications help achieve uniform operating characteristics in your process.
Today, the increasing demands of the electronic industry for closer tolerances present ever-new challenges for higher chemical purity. Baker works closely with chemists and electronic engineers to aid in meeting these challenges. Look over the list of Baker electronic chemicals on this page - write for prices and samples of those which interest you.

J. T. Baker Chemical Co. виacemt fine - industrial Phillipsburg, New Jersey

Freq. Range KMC	B a n d	Waveguide Number	Bendix Type Number	RETMA Type No.	Mount Type	Recommended Mode of Operation (Note 2)	Anode Current Ma (Note 1)	Tube Drop Volts (Note 1)	Tube Excess Noise Ratio DB (Note 3)
1.12-1.70	L	RG-69/U	$\begin{aligned} & \text { RXB103085 } \\ & \text { TD-21 } \\ & \text { TD-29 } \\ & \text { TD-33 } \end{aligned}$	$\begin{aligned} & 6881 \\ & 7101 \end{aligned}$	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 90^{\circ} \mathrm{H} \\ & 90^{\circ} \mathrm{H} \\ & 90^{\circ} \mathrm{H} \end{aligned}$	D.C. D.C. A.C. and D.C. A.C. and D.C.	$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 130 \\ 65 \\ 130 \\ 75 \end{array}$	$\begin{aligned} & 15.2 \\ & 15.2 \\ & 18.0 \\ & 15.2 \end{aligned}$
2.6-3.95	S	RG-48/U	$\begin{aligned} & \text { TD-12 } \\ & \text { TD-22 } \\ & \text { TD-31 } \\ & \text { TD-32 } \\ & \text { TD. } 34 \\ & \text { TD.35 } \\ & \text { TD. } 38 \end{aligned}$	$\begin{aligned} & 6358 \\ & 6782 \end{aligned}$	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 90^{\circ} \mathrm{H} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 90^{\circ} \mathrm{H} \\ & 10^{\circ} \mathrm{E} \end{aligned}$	D.C. A.C and D.C. A.C and D.C. A.C. and D.C. D.C. A.C. and D.C. PULSE*	$\begin{gathered} 250 \\ 250 \\ 250 \\ 250 \\ 250 \\ 250 \\ (250) \end{gathered}$	$\begin{array}{r} 80 \\ 45 \\ 85 \\ 140 \\ 155 \\ 80 \\ (90) \end{array}$	$\begin{aligned} & 15.2 \\ & 15.2 \\ & 15.2 \\ & 18.0 \\ & 18.0 \\ & 18.0 \\ & 15.2 \end{aligned}$
3.30-4.90	S	WR-229	$\begin{aligned} & \text { TD. } 24 \\ & \text { TD. } 30 \end{aligned}$	6852	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \end{aligned}$	A.C. and D.C. A.C and D.C.	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\begin{array}{r} 65 \\ 110 \end{array}$	$\begin{aligned} & 15.2 \\ & 18.0 \end{aligned}$
3.95-5.85	C	RG-49/U	$\begin{aligned} & \text { TD-10 } \\ & \text { TD-39 } \\ & \text { RXB103422 } \end{aligned}$	6356	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { D.C. } \\ & \text { PULSE } \\ & \text { D.C. } \end{aligned}$	$\begin{gathered} 250 \\ (250) \\ 250 \end{gathered}$	$\begin{gathered} 70 \\ (80) \\ (110) \end{gathered}$	$\begin{aligned} & 15.2 \\ & 15.2 \\ & 18.0 \end{aligned}$
5.85-8.20	X	RG-50/U	$\begin{aligned} & \text { TD-10 } \\ & \text { TD-39 } \\ & \text { RXB103422 } \end{aligned}$	6356	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \end{aligned}$	$\begin{aligned} & \text { D.C. } \\ & \text { PULSE* } \\ & \text { D.C. } \end{aligned}$	$\begin{gathered} 250 \\ (250) \\ 250 \end{gathered}$	$\begin{gathered} 70 \\ (80) \\ (110) \end{gathered}$	$\begin{aligned} & 15.2 \\ & 15.2 \\ & 18.0 \end{aligned}$
8.20-12.40	X	RG-52/U	TD-11 TD-23 TD-40 RXB103093 RXB103394	$\begin{aligned} & 6357 \\ & 6882 \end{aligned}$	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 90^{\circ} \mathrm{H} \\ & 90^{\circ} \mathrm{H} \end{aligned}$	```D.C. D.C. PULSE* D.C. A.C. and D.C.```	$\begin{gathered} 200 \\ 200 \\ (200 \\ 200 \\ (100) \end{gathered}$	$\begin{gathered} 75 \\ 115 \\ (85) \\ (35) \\ (50) \end{gathered}$	15.2 18.0 15.2 15.2 15.2
12.4-18.00	K	RG-91/U	TD-18 RXB103399 RXB103409 TD-41 RXB103411 RXB103254	6684	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 90^{\circ} \mathrm{H} \\ & 90^{\circ} \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { D.C. } \\ & \text { D.C. } \\ & \text { A.C. and D.C. } \\ & \text { PULSE* } \\ & \text { A.C. and D.C. } \\ & \text { D.C. } \end{aligned}$	$\begin{array}{r} 200 \\ 200 \\ (100) \\ 200 \\ (100) \\ 200 \end{array}$	$\begin{gathered} 70 \\ (110) \\ (65) \\ (80) \\ (50) \\ (40) \end{gathered}$	$\begin{aligned} & 15.2 \\ & 18.0 \\ & 15.2 \\ & 15.2 \\ & 15.2 \\ & 15.2 \end{aligned}$
18.0-26.5	K	RG-53/U	$\begin{aligned} & \text { TD-13 } \\ & \text { RXB103423 } \\ & \text { TD-42 } \\ & \text { RXB103411 } \end{aligned}$	6359	$\begin{aligned} & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 10^{\circ} \mathrm{E} \\ & 90^{\circ} \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { D.C. } \\ & \text { D.C. } \\ & \text { PULSE* } \\ & \text { A.C. and D.C. } \end{aligned}$	$\begin{gathered} 200 \\ 200 \\ (200) \\ (100) \end{gathered}$	$\begin{array}{r} 65 \\ (100) \\ (75) \\ (50) \end{array}$	$\begin{aligned} & 15.2 \\ & 18.0 \\ & 15.2 \\ & 15.2 \end{aligned}$
26.5-40.0	K	RG-96/U	RXB103251		$10^{\circ} \mathrm{E}$	D.C.	(150)	(120)	15.2

NOTE 1: Anode current and tube drop are D.C. values. Values in parentheses are tentative NOTE 2: D.C. operation-Cathode at one end only.
A.C. and D.C. operation-Cathodes at both ends.

Pulse operation-Cathode at one end specially designed for pulse operation.
NOTE 3: The Excess Noise Ratio in DB is $10 \log \left(\frac{T \text { eff }}{29 \overline{0}}-1\right)$
*If the anode current during the "on time" of a square pulse (of greater than 100 micro sec duration) is nominally the same as the rated D.C. anode current. the tube drop during this period will be approximately the same as the rated D.C. tube drop.

NEW TYPES ADDED TO BENDIX NOISE SOURCE TUBE LINE!

Expanding its line from 9 types to 35 types, Bendix Red Bank now offers a great variety of noise source tubes.

But great variety is only one advantage. Noise source tubes that are free from ambient temperature corrections are the result of making tubes so that no correction in noise figures is necessary from $-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. What's more, long life and unusual stability result from precise quality control-far beyond the usually accepted tolerances for such proclucts.

Whatever your applications, whether for 10° or 90° angle mounting, check with our specialists for the most efficient solution. Write red bank division, bendin aviation corporation, eatonTOWN, NEW JERSEY.

Wes: Coast Sales \& Service: 117 E. Providencia Ave., Burbank, Calif. Export Sales \& Service: Bendix International Division

205 E. 42 nd Si., New York 17, N.Y.
Conadion Distributor: Computing Devices of Canada, Lid., P. O. Box 50B, Ottawa 4, Ontario

CHECK THESE FEATURES:

Rigidly controlled 4.79 Molybdenum Permal. loy Tape * Ceramic or Stainless Steel Bobbins * Hydrogen atmosphere annealing : Polyester Tape, Polyethlyene or Nylon Protective Jackets - 100\% Tested to Customer Performance Specifications Maximum Uniformity in Production Quantities © Reliable Reproduction of uniform cores to rigid performance specifications - on order after order - over long periods of time!

Drnacor Bobbin Cores using ultra-thin tape offer greater uniformity and reliability than ever before available. The new high performance standards will be interesting to designers using magnetic core logic for computer, counter and control circuits. Dymacor Bobbin Cores find ideal application in critical magnetic shift register, switching transformer and other logic circuits which require the utmost uniformity in switching time and signal to noise ratio. $\quad \star \quad \star \quad$| | \star |
| :---: | :---: |
| \star | \star |

COMPLETE PERFORMANCE DATA - SEND FOR BULLETINS

Write for Bulletin DN-1000 and Engineering Data Sheets DN-1001 and DN-1002 for complete performance data covering the wide range of Drnacor Bobbin Core sizes. Address your letter to Tech. nical Literature Section, Dynacor, Inc., 10431 Metropolitan Avenue, Kensington, Md.

DYNACOR, INC., 10431 METROPOLITAN AVENUE • KENSINGTON • MARYLAND

Wherever you require high power, consider

DELCO HIGH POWER TRANSISTORS

Thousands of Delco high power germanium transistors are produced daily as engineers find new applications for them. In switching, regulation, or power supplies-in almost any circuit that requires high power-Delco transistors are adding new meaning to compactness, long life and reliability.

All Delco transistors are 13 -ampere types and, as a family, they offer a collector voltage range from 40 to 100 volts. Each is characterized by uniformly low saturation resistance and
high gain at high current levels. Normalizing insures their fine performance and uniformity regardless of age. Also important-all Delco transistors are in volume production and readily available at moderate cost.

For complete data contact us at Kokomo, Indiana or at one of our conveniently located offices in Newark, New Jersey or Santa Monica, California. Engineering and application assistance is yours for the asking.

DELCO
 RADIO

HCH POWER－ ULTRA－STAELE TUNABLE
 MIGROWAVE
 OSGILLATORS

The first complete line of stabilized oscillators to cover the microwave spoctrum．

Series 814，with 23 models，has as main components a klystron oscillator and stabilizing feedback loop consist－ ing of a tunable reference dual－mode cavity and low－ noise $d-c$ amplifier．The direct reading dial and freedom from oscillator pulling makes measurements in all appli－ cations easy and accurate，even for semi－skilled per－ sonnel．

HIGH POWER ．．． 20 milliwatts to 1.5 watts output，dependent on klystron．ULTRA－STABLE ．．．short term frequency stability approximately five parts in 10ヶ，long term frequency stability one part in 10^{i} ．TUNABLE ．．．direct reading tuning dial accurate to 0.1 percent of reading．BUILT－IN STABILITY CIRCUIT ．．．klystron output locked to reference cavity frequency by built－in stability circuit， including automatic stability indicator－an exclusive feature．SPECTRUM COVERAGE ．．．com－ plete line covers microwave spectrum－ 2500 to 17,500 mc．DESIGN ．．．clean，rugged construction，rack or bench mounted for test or system installation．

Spormpections

FREQUENCY COVERAGE．．．
2500 \＄0 $17,500 \mathrm{mc} / \mathrm{s}$
DIAL CALI日RATION ．
1 ms per division on main dial，vernier dial included for tuning ease and interpolation
FREQUENCY STABILITY ．．．
5 parts in 10^{8} average short term stability， 1 part
in 10^{3} average long term stability，（under normal environmental conditions）
AMPLITUDE MODULATION ．．．
Up to 15% amplitude modulation by internal 1000 cps modulator．Front panel jack for connection to externol oudio oscillator
FREQUENCY MODULATION ．．．
Total deviation up to 0.01% of frequency
POWER ．．．
200 watts averoge， 117 volts， $50-60 \mathrm{cps}$
DIMENSIONS ．．．
Overall with dust＂cover： $21 / 16^{\prime \prime}$ wide， $14 \% / 16^{\prime \prime}$ high， $165 / 16^{\prime \prime}$ deep．May be rack mounted．Ponel only：
$19^{\prime \prime}$ by $10 \frac{1}{2}$
WEIGHT ．．．
100 lb
Every stable source is warranted by the only microwave stability tester on the market today－－the LFE 5004.

SPECIAL PRODUCTS DIVISION
LABORATORY FOR 蹎ECTMEEAOSIRAC．
75PITTS STREET BOSTON，MASS．

Radio Receptor silicon diodes

 CHARACTERISTICS

 CHARACTERISTICS}high speed high conductance high temperature high voltage • high back resistance
General Instrument semiconductor engineering has made possible these new silicon diodes with a range of characteristics never before available to the industry.
Particularly outstanding is the all-purpose type 1 N658 which offers uniform excellence in all parameters. The RRco. diodes shown here are just a small sampling of the line the complete list will be sent you upon request to Section EL-3

$\begin{aligned} & \text { Coue } \\ & \text { No. } \end{aligned}$	Max. Fwd. Voltage Drop @ Indicated DC Current	Max. Rev. oC Cur. @ Test V.		TestVoltage	$\begin{gathered} \text { Min. } \\ \text { Break. } \\ \text { down } \\ \text { doltage } \end{gathered}$	Reverse Recovery
		$25^{\circ} \mathrm{C}$.	$150^{\circ} \mathrm{C}$.			
1 N658	1 @ 100 mA	. $05 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	50 V	120 V	$80 \mathrm{~K} \Omega$ in $0.3 \mu \mathrm{sec} \dagger$
1N457	1 @ 20 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	60 V	70V	
1N458	1 @ 7 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125 V	150 V	
1N459	1 @ 3 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175 V	200 V	
DR668	1 @ 200 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	60 V	80 V	
DR669	1 @ 200 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	125 V	150 V	
DR670	1 @ 200 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175V	200 V	
			$100^{\circ} \mathrm{C}$.			
1N625	1.5 @ 4 mA	$1 \mu \mathrm{~A}$	-	10 V	30 V	$15 \mathrm{~K} \Omega$ in $0.15 \mu \mathrm{sec} \ddagger$
	-	$10 \mu \mathrm{~A}$	$50 \mu \mathrm{~A}$	20 V	-	
1 N 627	1.5 @ 4 mA	$20 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	75 V	100 V	$400 \mathrm{~K} \Omega$ in $1.0 \mu \mathrm{sec}{ }^{\dagger}$
1N629	1.5 @ 4 mA	$20 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	175 V	200 V	$400 \mathrm{~K} \Omega$ in $1.0 \mu \mathrm{sec}^{\dagger}$
DR677	1 @ 100 mA	$0.5 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	20 V	30 V	$15 \mathrm{~K} \Omega$ in $0.15 \mu \mathrm{sect}$
DR673	1 @ 100 mA	$0.5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	75V	100 V	$400 \mathrm{~K} \Omega$ in $1.0 \mu \mathrm{sect}$
DR675	$1 @ 100 \mathrm{~mA}$	$0.5 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	175 V	200 V	400 K ? in $1.0 \mu \mathrm{sect}$

[^5]
"See us af our booths \#2211-2213-2215-2217 at the I.R.E. Show"
semiconductor division
RADIO RECEPTOR COMPANY, INC.
Subsidiary of General Instrument Corporation 240 Wythe Avenue, Brooklyn II, N. Y. EVergreen 8-6000
Germanium \& Silicon Diodes - Dielectric Heating Generators and Presses Selenium Rectifiers. Communications, Rodor and Navigation Equipment

Concerned with microwave test equipment? Only NARDA offers you these

TURRET ATTENUATORS

Only Narda offers you a represents a considerable represents a considerable
savings in cost for applica. savings in cost for applications in this frequency range. the Designer or Development Engineer 12 steps of attenuation from d.c. to $1,500 \mathrm{mc}$ with a VSWR of 1.25. Designed for bench use or mounting into test equipment packages.

One unit can give a maxi-
mum of 30 db attenuation; two units can be used in series

Model 705-0, 3, 6, 9, 12, 15, 20, 25, 30 db
Model 706-0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20 db
Model 707-0, 3, 6, 9, 12, 15, 18, 21 INF db
ALL MODELS... $\$ 275$ each

COAXIAL DIRECTIONAL COUPLERS

10, 20 and 30 DB .. . 225 to $4,000 \mathrm{mc}$.
Only Narda offers coaxial directional couplers in 10 and 30 db values, as well as 20 db . In addition, all modets offer such advantages as these:

1. Flat Coupling-values with 1 db of nominal over a full octave frequency range, with calibration provided to $\pm 0.2 \mathrm{db}$ accuracy
2. Machined from solid blocks of aluminum hence, more rugged.
3. Directivity exceeding 20 db .
4. Frequency Ranges: 225-460, 460-950, 950.2000. $2000-4000 \mathrm{mc}$

Write for complete specifications.

exclusive features!

S to X BAND FREQUENCY METER

Narda offers the only single instrument covering this complete band of frequencies-2,350 to $10,500 \mathrm{mc}$. In addition, no combination of other meters can cover these frequencies at a comparable price!

An easy to read nomograph type calibration chart, mounted in the lid, converts digital counter readings to frequency in megacycles-to the rated accuracy of 0.2%. No calculations or interpolations are needed.

The unit is completely self contained, with built-in detector and indi. cating meter. A sensitivity control allows use with strong signals; for signals below 5 mw ., the external meter jack may be connected to an amplifier or oscilloscope.

Model 802B . . . \$785

UHF FREQUENCY METER DETECTORS . . . Direct Reading
The only direct reading frequency meter detectors available for the UHF range-and they're from Narda, of course! Absorption type meters, with 0.2 db insertion loss, each includes a resonant cavity, coaxial switch, crystal detector, current meter, sensitivity control and type N terminals.
 160 Herricks Road Mineola, N. Y.

160 HERRICKS ROAD, MINEOLA, N. Y. P PIONEER 6-4650
Dept. E-2.
NAME
COMPANY

microwave corporation

CLEVITE 'BRUSH’

WITH GAPS AS NARROW AS 20 MICROINCHES

Clevite "Brush" high resolution magnetic heads permit major improvements in tape recording systems:

Greater packing density and/or higher frequency recording at your present tape or drum velocity. Less volume of tape required.
Up to 10 to 1 reduction in tape or drum velocity at your present frequencies or pulse repetition rate. More recording time on the same length of tape.
Reduced playback pulse width, allowing extended pulse width modulation (pwm) recording; for example, 10 microsecond pulse width at 120 inches per second tape velocity. Special high resolution heads were developed by Clevite to meet specific customer applications. They are now commercially available in 2 to 32 channel form in a variety of mechanical configurations. These heads, slightly modified, may fit your present design requirements. One of our specialists will be pleased to discuss your application by detailed correspondence or personal visit. Write: Product Manager, Magnetic Heads, Clevite Electronic Components, 3311 Perkins Avenue, Cleveland 14, Ohio.

Typical Clevite narrow gap multi-channel head records more data on an equal length of tape.

VISIT BOOTH NO. 2622, IRE SHOW, N.Y.C., MARCH 24-27.

Oscilloscope photos of pulse recordings on Clevite high resolution head. Pulse duration, 1 microsecond; tape speed, 60 inches/sec.

WAVE LENGTH IN THOUSANDTHS (10-3)INCHES

DIVISION OF
CHEVITE
CORPOAAION

MAGNETIC HEADS
TRANSDUCERS
PIEZOELECTRIC CRYSTALS,
CERAMICS AND ELEMENTS

oooling avionic systems

During World Wa: II, Extern Industries pioneered cooling syrtems lor aircraft electronic systems. Now, tho 1 sunds of installations later, and as the leader in this challenging field, Eastern is still pionzering.
Experience has been a sfringboard to new developments . . . exmpactress, simplification, retrigeration cycles. Resecrch and development continue to play tieir vital parts in perfecting systems to overcane the new problems as expanded aircraft performence produces fantastic rises in temperatures.
If you have a challenging problem, come to the leader in the field for complete and creative engineering help.

PIONEER OF THETHERMAL FRONTIER

ELECTRONIC TUBE COOLING UNITS

Custom-made units, with or without refrigeration cycles, provide a method of maintaining sate operating temperature limits in electronic equipment. Standard sub-assemblies and components normally are used to create a custom-made design to fit your exact needs. Costs are minimized for these completely sell-contained units by combining heat exchangers, fans or blowers, liquid pumps. reservoirs, flow switch, thermostat, and other common components.
Write for Eastem AVIONICS BULMETIN 340

New General Electric Hydrogen Thyratrons

A RUGGED, CERAMIC HYDROGEN THYRATRON DESIGNED FOR USE IN GUIDED MISSILES

This new General Electric ceramic hydrogen thyratron is designed to withstand up to 21 G vibration, at 20 to 2,000 cycles per second. Among a number of construction features contributing to the unusual strength of this tube is a special cathode assembly newly developed by G-E engineers. This assembly is rigidly fastened to the tube's envelope in a single, continuous, vibration-free structure.

CHARACTERISTICS:

Peak Anode Voltage - 7 KV
Average Anode Current- 25 milliamperes Peak Anode Current-75 amperes
Anode Dissipation Factor- 0.5×109

A HYDROGEN THYRATRON ESPECIALLY DESIGNED FOR HIGH.POWER RADAR PULSE MODULATORS

Below are shown the approximate envelope sizes and power outputs of two thyratrons now in use in highpower radar, as compared to the new G-E developmental tube.

TYPE 1257 TYPE 5948 NEW G-E

$81 / 2^{\prime \prime} \times 20^{\prime \prime} \quad 5^{\prime \prime} \times 16^{\prime \prime} \quad 6^{\prime \prime} \times 11^{\prime \prime}$

Ayg. Power 33 KW Ayg Powar 125 kW Ayg Power 66 KW Peak Power 33 MW Peak Power 12.5 MW Peak Power 33 MW

CHARACTERISTICS:

Speed Design of Super-Power Radar

When tube designers and equipment manufacturers work together on advanced projects early in the planning stages, vital time is saved. Also, future availability of new tubes in desired quantities is assured.

The three developmental General Electric hydrogen thyratrons shown above are examples. New design and manufacturing techniques-and new applications of materials - were conceived by G-E designers to meet the specific needs of advanced super-power
radar equipments now being developed. The result, months saved in the development of both new tubes and the equipment in which they will be used.

Call any of the General Electric Power Tube offices listed at the bottom of this page now if you are planning or developing advanced electronic equipment and take advantage of General Electric's comprehensive facilities and experience. Power Tube Department, General Electric Company, Schenectady, New York.

EASTERN REGION

200 Main Avenue, Clifton, New Jersey Phones: (Clifton) GRegory 3-6387 (N.Y.C.) WIsconsin 7-4065, 6, 7, 8 CENTRAL REGION 3800 North Milwaukee Ave., Chicago 41, III. Phone: SPring 7-1600

Inspect these three new hydrogen thyratrons in the
 General Electric exhibit at the IRE Show.

Progress /s Our Most Important Product GENERAL (9) ELECTRIC

PROBLEM:

Reduction of repair and replacement time for vital message switching center

SOLUTION:

Grant stock slides appreciably decrease servicing time, increase overall efficiency

Western Union has developed a fully automatic switching center which assists in unifying and improving the efficiency of the United States Air Force's domestic and global communications system. With this system, a message typed only once is automatically flashed to a desired air base, in any part of the world, in seconds. It checks out human, equipment and line failure and even determines the priority of a message. After the initial typing of the message, the entire process is automatic. Units such as these, with their precise and sensitive components, must undergo inspections, adiustments and maintenance and moments lost in ismantling might mean the delay of a vital message. The important operating sections of this equipment are mounted on Grant No. 306 slides. These afford instantaneous accessibility, permitting faster, more convenient and most efficient maintenance.
Grant No. 306 Slides
(one of a great variety of stock slides) recommendec for loads up to 50 lbs . /pair
Courtesy The Western Union Telegraph Company, N.Y.C.
Write for complete data on
this slide and the wide range of heavy duty, 3 section slides.

GRANT
 INDUSTRIAL SLIDES
 If the question is Accessibility

Grant Pulley and Hardware Corporation
23 High Street, West Nyack, New York
See the amazing AL-THIN Slide, Booth Booth 480, Design Engineering Show

Transitron

Silicon RECTIFIERS

HIGH VOLTAGE • 600 volts HIGH CURRENT•400 ma

combined with subminiature size

Type	$\begin{gathered} \text { Peak } \\ \text { Recurrent } \\ \text { Inverse } \\ \text { Operating } \\ \text { Voltage } \\ \text { (volts) } \end{gathered}$	Maximum Average Current (@) $150^{\circ} \mathrm{C}$		
1N689(TG62)	600	150	400	. 2
1N686(TG52)	500	150	400	. 2
1N684(TG42)	400	150	400	. 2
1N682(TG32)	300	150	400	. 2
1N679(TG22)	200	150	400	. 2
1N677(TG 12)	100	150	400	. 2

High ratings of 600 volts and 400 ma (150 ma at $150^{\circ} \mathrm{C}$) are now yours in a tiny glass envelope only .1 inch by .3 inch in size. This versatile package is ideal for printed circuits, subminiature power supplies, D.C. blocking, high voltage series strings, and other applications where space is at a premium.
Rugged and reliable at temperatures to $175^{\circ} \mathrm{C}$, these hermetically sealed rectifiers have been thoroughly tested under the most severe operating conditions. They offer the same high degree of dependability that characterizes Transitron silicon diodes and stud type rectifiers.

Send for Bulletin TE-1351

VISIT US AT IRE SHOW - BOOTH 3912-14

Transitron
 electronic corporation

- wakefield, massachusetts

Transition

Silicon

Now...

The widest POWER RANGE industry!

HIGH POWER

- Ratings to 80 watts
- Operation to 5 amps
- Low Res, 1.5 ohms typical
- Voltage Ratings to 60 V

MEDIUM POWER

- Operation to 500 ma
- Ratings to 5 watts
- Low Res, 6 ohms typical
- Voltage Ratings to 100 V

SMALL SIGNAL

- Operation to $175^{\circ} \mathrm{C}$
- Low Iso at Rated Vc max.
- High Current Gain
- Three package sizes available

"We used to make our own etchant for solder plated circuit boards until we heard of HUNT S.C.E. Solution.
"To mix our own etchant we used to stock large quantities of chromic and sulphuric acid. It took time to make up the solutions which filled the air with noxious fumes and was always dangerous to handle. Besides the time it took to make up the solutions we ended up with variations from batch to batch. And in order to get the solution working right, we had to heat it up to $140^{\circ} \mathrm{F}$ and over.
"So we did the wise thing ...stopped making our own and started to use HUNT S.C.E. which works at room temperature. Now we have no more chemical dangers. We are really saving money - etching time is standardized
and we maintain a uniform production rate around the clock."

HUNT S.C.E. (Solder Circuit Etch) is superior to plant mixed etchants because it:

1. Etches rapidly at room temperature.
2. Is a ready, prepared product designed specifically for this one purpose.
3. Has a high capacity for copper.
4. Never attacks the solder plated circuit.
5. Has guaranteed uniformity and is the highest quality because of rigid laboratory control.
6. Gives fast, odorless etching of the copper.
7. Produces boards that pass all corrosion and stability tests.

PHILIP A. HUNT COMPANY

PHILLIPS

SERIES $34 \boldsymbol{\&} 36$ SUB-MINIATURE RELAYS

UNIQUE NON-RESONANT ARMATURE RETURN SPRING

In Series 34 and 36 sub-miniatures, the armature return spring is enclosed within the pole piece and is adjusted to extremely close limits. Because of its novel design, it is effectively dampened to prevent natural resonance. The movable springs are of a "safety pin" type. While providing adequate current capacity to carry the military requirement of four times rated load for overload test, they have very small mass and a high natural resonant frequency.

DC-34 \& DC-36 ASSEMBLY FEATURES

The entire structure of these sub-miniatures is designed to provide long life with a high degree of reliability.
All units are hermetically-sealed. Materials used in their construction are of high temperature types. All insulation materials are inorganic, assuring non-gassing to minimum temperatures of $400^{\circ} \mathrm{F}$.
These relays will not malfunction under extremes of vibration and shock, meeting military environmental requirements. Further, they conform exactly to military standards for dimensions and mountings, thus insuring interchangeability with contemporary types.
Standard coil and contact rating, listed on the reverse side, are conservative. Additional ratings are available for special requirements.
Adequate insulation is provided to insure an insulation resistance of 1000 megohms minimum when measured at 500 volts DC and a dielectric breakdown of 1000 volts rims betwern all terminals and case and between adjacent eontact sections.
Special contact materials are available for switching in the low level or "dry circuit" range. Excellent reliability can be obtained in this application.

DC-34 \& DC-36 DESIGN FEATURES

The motor assembly features a very tightly closed magnetic circuit, which results in low magnetic leakage and high magnetic efficiency since the entire field is concentrated in the useful area. Properly annealed armeo is used to provide high permeability and freedom from residual magnetism.
A special coil desiyn, with minimum amount of inorganic insulating material and no impregnating varnish, permits an unusually high number of ampere turns in the magnetic field.
A special modified solenoid type armature is extremely lightweight - the entire armature and artuator assembly weighs only 2.2 grams. This armature is capable of operating the heavy spring load and furnishes a favorable weight to spring ratio for better resistance to external forces.
Movable contact is a spherical bead permanently coined on the contact spring. Stationary contarts are fabricated from beryllium copper overlaid with silver. All contact assemblies are heavily gold-plated to prevent oxidation prior to hermetic sealing.
In adjustment of the contact groups, adequate pretravel and over-travel are provided to compensate for wear and crosion of contact surfaces, assuring high contact pressure throughout a long and useful life.

SERIES 34 \& 36 SUB-MINIATURE RELAY AND SUB-ASSEMBLIES

RELAY SWITCH AND MOTOR ASSEMBLY

COMPLETE RELAY

COMPLETE RELAY

a must for your files...

free data books from Allegheny

Abstract

SPECIAL STEELS FOR INDUSTRY . . . 16 pages, jam-packed with technical information on principal Allegheny Ludlum products: stainless, tool and electrical steels and Carmet carbide materials. Includes: a stainless steel Finder chart giving analyses, physical data, properties, etc.; data on stainless fabrication; stainless corrosion resistance to various media; charts on electrical materials and Carmet carbide materials; properties and treatment for principal A-L tool steels.

STAINLESS STEEL IN PRODUCT DESIGN . . . 40 pages of useful engineering and fabricating data including practical examples showing where, when, how stainless steel improves design, adds benefits, helps sales. Information includes: standard sizes and shapes; designing for lower costs in forming, joining, finishing, etc. with many pictures of actual products made and designed in stainless steel.

PUBLICATION LIST . . . 8-page folder that lists and describes all the current publications offered by Allegheny Ludlum: 9 general publications, 14 on stainless, 10 on stainless applications in specific industries, 16 technical data sheets on stainless, 40 on tool steels, 20 on Carmet carbide materials, 5 on forgings and castings, 12 on electrical steels. There is a handy order form to use in getting the data you need.

As the major producer of special alloy steels for industry, Allegheny Ludlum naturally offers much more than steel. Ten strategically located plants provide prompt mill deliveries and stock shipments are made from warehouses in all industrial centers. Staff specialists from the mills working with the sales engineers from the sales office provide assistance when requested. Whenever you have a problem involving stainless, high-temperature, electrical, magnetic or tool steels or sintered carbides, let us help. Allegheny Ludlum Steel Corporation, Oliver Building, Pittsburgh 22, Pennsylvania.

ALLEGHENY LUDLUM

Announcing

ULTRRAEPURE

Leading manufacturer of fine chemicals offers single-crystal and polycrystalline silicon.

Base boron content below one atom of boron per six billion silicon atoms.

The critical specification of silicon materials is their puritypurity that will not limit the performance of present and future semiconductor devices. Merck is now manufacturing the purest grade of silicon available.
Long-established and world-renowned for its manufacture of products that must be pure-products that demand the ultimate in quality control-Merck is eminently suited to launch its program of products for the electronics industry.

SINGLE-CRYSTAL FORM

Single crystals are currently available in the following form:

$$
\text { Resistivity Min. } \quad 1000 \text { ohm cm. p type }
$$

Lifetime Min. $\quad 200$ microseconds
In the near future, single crystals will be available also in a variety of resistivities from the highest purity $1000 \mathrm{ohm} \mathrm{cm} . \mathrm{p}$ or n type minority carrier to any intermediate resistivity up to $80 \mathrm{ohm} \mathrm{cm} . \pm 20 \%$ over entire crystal.
All single crystals are prepared from extremely pure Merck silicon. The crystals are grown without contact with quartz or any other crucible material. Thus, they possess extremely low oxygen concentration and should exhibit very little heat treating.

POLYCRYSTALLINE FORM

In addition to the single crystals described above, Merck silicon polycrystalline is available in the form of billets of high
density material. The billets are under one inch in diameter and are in suitable lengths so that two or three billets, without additional cutting or etching, will fit into the average crucible for crystal pulling. Other lengths will be available in the future for floating zone refining (vertical crystal growing). Merck polycrystalline billets have not previously been melted in quartz so that no contamination from this source is possible. Billets are shipped in double-walled polyethylene bags for protection.
At present, the polycrystalline material contains a small concentration of a Group V element which segregates rapidly in zone refining. No other elements, such as tantalum, gold, zinc, iron, manganese, molybdenum, potassium, sodium, bismuth, and cobalt, appear to be present even when tested by the most sensitive analytical technics such as activation analysis,

SPECIAL TECHNICAL SERVICE

A completely equipped and staffed laboratory is being maintained at the Electronic Chemicals Division to aid customers in the use and applications of Merck ultra-pure silicon.
For additional information on specific applications and processes, write Merck \& Co., Inc., Electronic Chemicals Division, Department ES-1, Rahway, New Jersey.

VISIT THE MERCK BOOTH NO. 2006 at the I.R.E. Convention.

Application engineers nation-ruvite. Write direct for detailed

Custom instrumentation systems of the highest performance, efficiency and dependability.

model 602 Direct Recording OSCILLOGRAPH

DIRECT READOUT . NO POWDERS • NO CHEMICALS

SPECIFICATIONS

MAXIMUM CHANNELS: 50 Channels
RECORD WIDTH: 12 inches
MAGAZINE CAPACITY: 200 feet
RECORD SPEED RANGE: . 0865 to 138.5 per second

WRITING SPEEO: Above $30,000^{\prime \prime}$ per second OPTICAL ARM: 11 inches

POWER REQUIREMENTS: 115 V 60 cps
TIMING LINES: 0.01 with 0.10 second (accentuated intervals)

SIZE: $111 / 16^{\prime \prime} \times 1613 / 6^{\prime \prime} \times 241 / 2^{\prime \prime}$
WEIGHT: 130 pounds

Swift readout of the completed records as they flow from the $602 \mathrm{D} / \mathrm{R}$ Direct Recorder, places this advanced instrument on the top priority list with test engineers and laboratory researchers who prefer INCREASED ACCURACY + TIME SAVED.
Outstanding features include: full width timing lines - record numbering and identification - wide range of recording speeds - use of standard MI Galvanometers, all exclusive to the MI model 602 Direct Recorder OSCILLOGRAPH.
Midwestern Instruments manufactures several models of oscillographs - a model for practically any application.

Designed for Application

Mu Metal Shields

The James Millen Mfg. Co. Inc. has for many years specialized in the production of magnetic metal cathode ray tube shields for the entire electronics industry, supplying magnetic metal shields to manufacturing companies, laboratories and research organizations. Stock shields are immediately available for all of the more popular sizes and types of cathode ray tubes as well as bezels for $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ size tubes.

Many production problems, however, make desirable special shields designed in conjunction with the specialized requirement of the basic apparatus. Herewith, are illustrated a number of such custom built shields. Our custom design and fabrication department is at the service of our customers for the development and manufacture of magnetic metal shields of either nicoloi or mumetal for such specialized applications.

an exciting new series of panel instruments

 Hew HIGH STYLE! Weston traditional QUALITY!

Weston presents a new look in panel instruments! You'll see the difference at first glance. The price will delight you . . . the performance will confirm that Weston's unequalled craftsmanship has scored again!
ULTRA-MODERN STYLING! Crown Instruments, with their handsome contours and sparkling prismatic cases, will enhance your most advanced panels and equipment. They're available in a variety of custom-colors, too.
EXTRA-LONG SCALES! Crown's 2.5 -inch, 100° scales are longer than those of most 3%-inch diameter panel instruments. Clear plastic top, front and sides provide exceptional natural scale illumination.
CORMAG® PROTECTION! Weston's famous Cormag mechanism permits close grouping of instruments on magnetic or non-magnetic panels. No special adjustments need be made. There's no danger of magnetic intereffects.
WESTON ACCURACY! Crown D-C Instruments are accurate within $\pm 2 \%$ of their full scale values; rectifier-type A-C models within $\pm 3 \%$.
INTERCHANGEABILITYI All Crown models can be mounted interchangeably with any 2.5 -inch JAN or MIL spec instruments.
For accuracy, appearance, readability and cost, your best buy is CROWN. Your local Weston representative will be glad to quote on your requirements and arrange prompt delivery of prototypes. Contact him for full information, or write to Weston Instruments, Division of Daystrom Inc., Newark 12, N. J. In Canada: Daystrom Ltd., 840 Calodonia Rd., Toronto 10, Ont. Export: Daystrom Int'l., 100 Empire St., Newark 12, N. J.

Truly Flexible High Frequency Attenuators at 50, 70, or 90 Ohm Impedances

- Fast Switching to Check Points $(1 / 2$ Power, etc.) at Any Pre-Set Reference Level
- 0.101 db in 1 db Steps from Single Unit
- Ruggedized High Frequency Switches - Solid Silver Contacts in Teflon for Low Insertion Loss
- 1\% Tolerance Carbon Film Resistors for Highest Accuracy and Stability

Kay Attemutors are a series of nine high-írequency attenuators in three groups. The first provides a fixed insertion loss of 10 db ; the two remaining offer a zero insertion loss. Each group offers a choice of $50 \mathrm{ohm}, 70 \mathrm{ohm}$, or 90 ohm input and output impedance.
The first and second groups provide $0-41 \mathrm{db}$ attenuation in 1 db steps; the third provides $0-101$ db attenuation in 1 db steps.

See Kay Attenuators and other Kay precision electronic instruments at the IRE Show - Booths 2608-09-10.

ALLIED'S CH RELAY Miniafure 10 Amp 4 PDT

Designed for Resisfance fo:

Shock - 100 gravity units

Vibration-5 to 55 cps at 0.5 inch double amplitude 55 to 2000 cps at 30 gravity units

Temperafure-from $-65^{\circ} \mathrm{C}$
10 $+125^{\circ} \mathrm{C}$

Ofher Specificafions:

Confact Rafing: 10 amperes resistive, 8 amperes inductive, at 29 volts d-c or 115 volts a-c 400 cps

Weight: 5.3 ounces
Dielectric: 1500 volts rms at sea level
Contact Resistance: 0.10 ohmmax. initial
Confact Arrangement: Four Pole
Double Throw

Now with Stabilized Construction*

 ACTUAL SIZE

*

Includes materials and processing necessary to minimize contact resistance variations and dielectric deterioration during life due to contact contamination, mechanical wear and shift of adjustments with temperature.

DIMENSIOMAL TOLEMANCES: ON FAACTIOMS $\pm \frac{1}{69}$ ON DECIMALS $\pm .010$

The Allied CH-12D Relay was developed to meet the more rigid requirements of vibration, shock, temperature, rupture and overload conditions of the latest MIL spec. This relay is constructed with the latest improved materials and processes available. This relay is available with other mounting arrangements, such as 4 mounting studs, 2 mounting studs or holes with Allied MHY-12D mounting dimensions. For additional information write for Bulletin CH .

WHATEVER YOU REQUIRE IN
 SILVER
 . . . HANDY \& HARMAN IS YOUR BEST SOURCE OF SUPPLY

You can go no further for available knowledge of, and experience in, the manufacture of silver and silver alloys. In the ninety years Handy \& Harman has been active in the research, manufacture and application of silver and silver alloys for all industry, it has gained the reputation of The Number One Source and Authority.

Among the many forms of silver and silver alloys manufactured by Handy \& Harman are:

- Fine silver (wire, strip and foil)
- Silver anodes and grain for plating
- Silver contact alloys - Silver powders - Silver flake, paints and paste - Silver brazing alloys - Silver electronic solders - Silver sintered metals - Solder-flushed silver alloys. Silver chloride and oxide - Coin silver (wire and strip) - Silver bi-metals

JOIN THE HANDY \& HARMAN FREE LIBRARY
We have four Technical Bulletins giving engineering data on the properties and forms of Handy \& Harman Silver Alloys. We would like you to have any or all of those that particularly interest you. Your request, by number, will receive prompt attention.

Fine Silver Bulletin A-1 Silver-Copper Alloys . . Bulletin A-2 Silver-Magnesium-Nickel Bulletin A-3 | Silver Conductive Coatings Bulletin A-4

Our Technical Service and field application experience are at your disposal... we welcome inquiries on products and product problems involving any form of silver.

PERFORMANCE PROVEN ...FOR OVER 25 YEARS

Gray Line Resistors

These dependable resis tors feature high temperature gray enamel coating and stronger core for extra dependability under the most extreme operating conditions. All wire connections on H-H Long Life Resistors feature all welded construction. The fixed, ferrule and adjust able types meet MIL-R-26 specifications.

Hardwick Hindle quality components offer circuit designers and engineers exclusive electrical and mechanical features. These design "plus" factors provide complete dependability where severe

See us
at the Show! Booth 3848 I.R.E. Convention New York Coliseum March 24th-27th operating environments are encountered in commercial or military service. Complete data on H-H Rheostats and Resistors is available on request. Call or write for illustrated resistor and rheostat catalogs today!

Standard stock items available for immediate delivery from authorized local electronic parts distributors.

Four more Computer Transistors

 perature at $25^{\circ} \mathrm{C}$.Sylvania widens its product line of high stability types designed especially for computer applications

Design engineers are now provided with an expanded line of computer transistors from Sylvania, basic source for high Beta units. The new additions, types 2N312, 2N356, 2N357 and 2N358, are NPN germanium alloy junction transistors. They exhibit the stable Beta characteristics and fast switching times that have made Sylvania types 2N377, 2N385 and 2N388 so popular. The new transistors are "base-off-the-can" types designed specifically for those applications where all transistor elements must be insulated from the metal case.

As with Sylvania original computer transistors, the types 2N312, 2N356, 2N357 and 2N358 meet EIA size group 30 dimensions. They also meet environmental tests typical of those required in military applications. Tests include temperature cycle, moisture resistance, centrifuge, and lead fatigue.

In addition to stable Betas at changing current levels, the four types have good leakage stability. Total dissipation for each unit is conservatively rated at 100 mw with ambient tem-

-from Sylvania

Typical Characteristics ($25^{\circ} \mathrm{C}$):	2N312	2N356	2N357	2N358
Collector Cutoff Current, ' CBO				
${ }^{\text {CB }}$ - 20, emitter open	\rightarrow	20	20	20 ua
$V_{C B}-15$, emitter open	10 va	-	-	-
$V_{C B}=5$, emitter open	-	3	3	3 va
$V_{C B}=1$, emitter open	2 va	-	-	-
Emitter Cutoff Current, IEBO				
$\nabla_{E B}=20$, collector open	-	20	20	20 va
$V_{E B}-15$, collector open	10 va	-	-	\cdots
$V_{E B}=5$, collector open	-	3	3	3 vo
$V_{E B}-1$, collector open	2 ua	-	-	-
Emitter Punch Thru, I_{E}				
$V_{E B}=0$		$\left(V_{C B}-20\right)\left(V_{C B}-18\right)\left(V_{C B}=15\right)$		
Collector Punch Thru, ${ }^{1} \mathrm{C}$				
$\mathrm{I}_{\mathrm{B}} \mathrm{m}-25$ va (reverse bias)	-		500	500 va
B ${ }^{\text {a }}$-2S (reverse bias)		$\left(V_{C E}-20\right)\left(V_{C E}-18\right) \times\left({ }^{\text {CE }}\right.$ - 15$)$		
$R_{B E}=10 \mathrm{~K}$	400 va	-	-	
$R_{B E}=10 \mathrm{~K}$	E-15]			
Current Gain, hfe				
$V_{C E}=0.25, I_{C}-100 \mathrm{ma}$	-	30	-	-
$V_{C E}=0.25, \mathrm{I}^{\prime} \mathrm{C}=200 \mathrm{mo}$	-	-	30	-
${ }^{V_{C E}}-0.25, I_{C}-300 \mathrm{ma}$	-	-	-	30
${ }^{V_{C E}}=1.0,{ }^{1} \mathrm{C}=10 \mathrm{mo}$	45	-	\cdots	-
Saturation Voltage, $V_{\text {CE }}$ (max.)				
$\mathrm{I}_{\mathrm{C}}=100 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=10 \mathrm{ma}$	\rightarrow	0.2	-	-
$\mathrm{I}_{C}=200 \mathrm{ma} \mathrm{I}_{\mathrm{B}}=20 \mathrm{ma}$	-	-	0.2	-
$\mathrm{l}_{\mathrm{C}} \mathrm{C}=300 \mathrm{ma}, \mathrm{I}_{B}=30 \mathrm{ma}$	-	-	-	0.2
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{ma}$	0.075	-	\cdots	-
Input Voltage, $V_{B E}$ (max.)				
${ }^{V_{C E}}=0.25, I_{C}=100 \mathrm{ma}$	-	0.8	-	\cdots
$V_{C E}=0.25, I_{C}=200 \mathrm{ma}$	\cdots	-	0.8	-
$V_{C E}=0.25, \mathrm{I}_{\mathrm{C}}=300 \mathrm{ma}$	T	1.0	-	0.8
Rise Time	1.0	1.0	. 6	. 4
Storage Time	1.5	0.3	. 3	. 5
fall Time	0.8	1.0	. 6	. 6

Sylvania Electric Products Inc.
1740 Broadway, New York 19, N.Y
In Canada: Sylvania Electric (Canada) Ltd.
Shell Tower Bldg., Montreal.

CLOSED ENTRY DESIGN... FOR 100% MORE RELIABILITY

A solid ring limits socket contact expansion to maximum tolerance of pin diameter. This prevents over-stress of the individual socket contact leaves and possibility of any contact distortion. Also, an oversized probe cannot enter the socket contact. Even "rocking" and "prying" actions will not distort the contact.
Constant and uniform insertion pressure is guaranteed while a consistently low millivolt drop is maintaincd. The new contact was developed for use in intercontinental ballistic missiles and other applications requiring high reliability. It is another example of Continental Connector's constant research into improved design.
Technical brochures on various Continental Connectors are available free on request. Specify your requirements to Electronic Sales Division, DeJur-Amsco Corporation, 45-01 Northern Boulevard, Long Island City 1, N. Y.

AVAILABLE IN ALL STANDARD CONTINENTAL CONNECTORS

Continental Connector and New Closed Entry Contacts Used with Printed Circuit Application for Classified Intercontinental Ballistic Missile.

VISIT US AT I.R.E. SHOW BOOTHS 3911-3913

Solid Construction-Cannot be Forced Out of Shape
\star Extremely High Reliability Maintenance

* Maintains Low Millivolt

Drop Under Constant and
Uniform Insertion Pressure

* Terminations Include Solder Cup, Turret, or Solderless Taper Pin (Solder Cups can be hot pre-filled, if de.
sired.)
 electronic componenis

Exclusive Sales Agent DeJUR-AMSCO CORPORATION 45-01 Northern Boulevard Long Island City 1, N. Y.

NEW
 NORTHERN RADIO REGENERATIVE REPEATER

Type 207 Model 1 the most advanced in the industry!

The new Northern Radio Regenerative Repeater is designed for use in telecommunication circuits to re-shape and re-time distorted signals for local use or retransmission. Special provision has also been made for use of this unit on half duplex circuits - where it will not only regenerate the ordinary teleprinter signals but also faithfully reproduce such special signals as "break" signals and "mark restoration" information.

Further provision has been made for use of this Regenerator with synchronous binary signals on either single channel circuits or multi-channel time division multiplex systems. Provision is made to synchronize this unit from an external source.

- Maximum Acceptable Signal Distortion: new circuitry accepts up to 47% mark or space distortion.
- "Floating" Input \& Output Circuits: completely electronic output, no relays.
- Greater Timing Circuit Stability: time base derived from highly stabilized L-C oscillator.
- Switch Selection of Speeds: 60, 75, 100 words per minute.
- Adaptable to Any Speed: low-pass filter \& frequency-determining elements are plug-in units.
- Completely Self-contained: includes power supply and line battery.

- OTHER OUTSTANDING FEATURES:

- faithfully reproduces "break" signals
— transmits "break". signal in case of line failure
- protected against "space lock-out"
- output can be open-circuited with no excessive rise in line voltage \& no harm to the Repeater
- 22 front panel test points for equipment function and 8 jacks for input \& output line, equipment, current and voltage measurements

Input Keying
Signal
Requirements:
quency
Stability of Time
Base Generator:

Sampling Time:

Output:

Output
Distartion:
(1) Neutral keying, positive or negative sense (a) on-off 60 ma pulses (b) on-aff valtage pulses $10-100 \mathrm{~V}$ into 100K ohms
(2) Polar keying
(3) Dry contact keying

Less than 1 point range loss for $\pm 10 \%$ line voltage variation or $\pm 20^{\circ} \mathrm{Cam}$ bient change from $25^{\circ} \mathrm{C}$
Approximately 50 micro. seconds
Electronic tube outputs:
(a) neutral 65 ma max into 2 K ohms
(b) polar 33 ma (max.) into 2 K ohms
(a) Signal bias distortion less thon 0.5\%
(b) Signal element random jitter less than 1%
(c) Signal history (duty cycle) distortion less than 0.5\%
(d) Total distortion less than 2\%
Power
Requirement:
Mounting:

125 watts opprox: $110 /$ $220 \mathrm{~V}, 50 / 60 \mathrm{cps}$
Standard $19^{\prime \prime}$ rack mounting, $5 \frac{1}{4^{\prime \prime}}$ ponel

Write for free 67 -page catalog. See us at Booth 1423 , IRE SHOW

GENERAL ELECTRIC
 TUBE DESIGN MEWS $=\frac{1}{\Gamma} \stackrel{\Gamma}{\Gamma \cdots}$

 General Electric Improves TV Reception Through

 General Electric Improves TV Reception Through New, Close Controls of Tube AGC Performance!

 New, Close Controls of Tube AGC Performance!}

How General Electric's close control of tube AGC characteristics stabilizes TV-set performance! R. E. Moe, Manager of Engineering, General Electric Receiving Tube Department, shows the relationship that exists
between tightly-controlled characteristics of an IF-amplifier type, and television-receiver performance that is held to quality levels at important points such as the high-signal and low-signal reception areas.

More and lighter controls than the industry has used before, are being applied by General Electric to critical IF-amplifier tubes for sockets with AGC. Television manufacturers and owners benefit in improved reception, whether in low, intermediate, or strong-signal areas.

In the past, the practice has heen to hold quality controls to the high and low ends of the AGC voltage range, which led to variations-often wide-in the shape of the actual tube performance curve. Now, by doubling the number of control points,

General Electric helps stabilize the performance of IF-amplifier types at all signal levels.

In addition: through median, or "lol-center" control methods, a heavy preponderance of General Electric tubes manufactured and shipped follow the center line of the optimum performance curve (see chart at left, above). The percentage of tuhes which approach the outside control limits is exceedingly small.
Because tubes for fringe-area TV must amplify extremely weak signals, high tube gain is fundamental-and,
from the standpoint of a receiver manufacturer, must be uniform and predictable in every lot of tuhes he installs. Strong-signal reception, on the other hand, calls for equally uniform and predictable grid cut-off characteristics.

By promoting consistent tube AGC performance at all voltages, General Electric's new, close control methods help make it possible for television builders to offer the public sets that are economical in circuitry and transform signals of any strength into pictures with superior quality.

WITH TV SWEEP TUBES, INADEQUATE GRID DRIVE CAN CAUSE ...

> Loss of sweep width—giving a narrowed and distorted picture.

...Reduction in the picture-tube voltage -less brightness and contrast.

RICHT: curve shows how sweep width and high voltage both are reduced by grid voltage that is insufficient. The shaded area indicates less-than-desired picture performance. Designers, by providing for ample grid drive in the sweep circuit, can contribute importantly to superiortV.

Low Grid Drive Will Fail to Hold Tubes at Cut-Off. Circuit Energy Suffers.

In the center curve at right, " A " indicates the undesirable plate-current flow that can occur when grid drive is insufficient to hold a horizontal-amplifier tube at cut-off. This flow acts as a shont on the stored energy of the circuit. The result is a loss of high voltage and sweep width of as high as 50%.

TV designers must guard against two contingencies. One is insufficient grid voltage provided for in the sweep circuit itself. After the circuit has been checked with this in mind, the desiguer should assure himself that the sweep tubes he selects will meet those standards of performance required for high picture-tube voltage and full sweep width at all times.

Here General Electric assists by carefully controlling. through high-voltage testing. the cut-off and other characteristics of ODO6-t's and other sweep tubes before they reach the set manufacturer"s hands. More dependable TV quality results.

PICTURE-TUBE HIGH VOLTAGE AND SWEEP WIDTH (VER. TICAL) VS. PEAK GRID DRIVING VOLTAGE (ACROSS)

For further information, phone nearest office of the G-E Receiving Tube Department below:

EASTERN REGION

200 Main Avenue, Clifton, New Jersey Phones: (Clifton) GRegory 3-6387
(N.Y.C.) WIsconsin 7-4065, 6, 7, 8

CENTRAL REGION
3800 North Milwaukee Avenue
Chicago 41, Illinois
Phone: SPring 7-1600

WESTERN REGION
11840 West Olympic Boulevard Los Angeles 64, California Phones: GRanite 9-7765; BRadshaw 2-8566

Progress /s Our Most Important Product

NEW! Sound Scrifrer' 24 '

Flil 24 -hour reels of DuPont MyLar taje are imprinted with time scae. save storage space.

Rugged, yef weighing only $261 / 2 \mathrm{lbs}$., machine is easily poriable in its own case.

Standard communications headsets or special featherweight model plug in easily, for monitoring.

Machines can be easily mounted in 19" communications racks, or fitted neatly into existing installations.

24-Hour Recording, unattended, on Single Reel of Du Pont Mylar Tape

Now, without a change of tape, you can record a full 24 hours-on a machine the size of an overnight case.

This amazingly compact new SoundScriber " 24 " is a full power performer in every sense. A single channel unit, it faithfully records and reproduces magnetically on space-saving, re-usable reels of DuPont Mylar ${ }^{\circledR}$ tape.

Pin-point location of recorded segments is quick and easy through an accurate time scale. printed on the tape. Sharp, clear playback is assured from a powerful, built-in speaker. Headsets plug in easily, for monitoring.

Precision engineered to incorporate the newest and finest electronic components, the " 24 " oper-

SoundScribrer

ates with clockwork precision on 115 Volt, 60 cycle AC current. Controls are simple and convenient. Accessory brackets are available for rack mounting.
Let us give you complete details, without obligation. Fill in coupon below, attach to your business letterhead and mail to: The SoundScriber Corporation, Box 1941, New Haven, Conn.

CUSTOM-DESIGNED AND MASS PRODUCED TO YOUR PARTICULAR REQUIREMENTS

Dot plug buttons were originally used in automobiles to fill spaces on standard models which, on de luxe models would be occupied by such extras as cigarette lighters, radio controls and so on. They are now also widely used as lenses for indicator lights and as identification buttons on instrument and control panels of all kinds.

Available inclearor colored plastics... brass or steel in all standard finishes ...embossed and enamelfilled or molded to show company insignia or other identification symbols . . . Dot plug buttons snap into place and stay where they're put even under conditions of extreme vibration. Yet they can be removed and replaced repeatedly without damage.

CARR FASTENER COMPANY

DIVISION OF UNITED.CARR FASTENER CORPORATION 31 Ames Street, Cambridge 42, Massachusetts

Ucinite Electrical Assemblies

RUGGED... RELIABLE...VERSATILE

6216 Pass Tube combines...
 LOW D-C RESISTANCE
 HIGH A-C RESISTANCE

The ideal pass tube would have zero d-c and infinite a-c resistance. Note how closely the 6216 's plate characteristic approaches this. Its low plate voltage knee is unique . . . results in minimized internal tube drop.
Another feature is the tube's resistance to cathode interface formation which keeps the rise time high on a steep wavefront in switching applications. The 6216 is suitable for many circuits: pass . . . switching . . . control . . . cathode follower . . . power amplifier (Class A, B, C) . . and filter reactor, for example.

This efficient 9 -pin miniature beam pentode is mounted in a compact T-6 $1 / 2$ bulb. Yet the CBS 6216 has maximum ratings of 10 watts plate dissipation, 110 ma . cathode current. Reliabilized and ruggedized $(650 \mathrm{~g})$, the tube is designed for use in airborne and vehicular equipment.
Can you use this versatile tube? Write for complete Bulletin E-199A - or order the CBS 6216 today.

Reliable tubes through Advanced-Engineering

CBS-HYTRON

Danvers, Mass.
A Division of
Columbia Broadcasting System, Inc.

Simplify complex checkouts . . .
 MONITOR 100 CHANNELS OF INFORMATION-SIMULTANEOUSLY

Unique and compact, the new Brush Event Recorder greatly minimizes the amount of time, space and equipment needed to perform complex checkouts on critical systems and processes.

On a moving chart only $12^{\prime \prime}$ wide with a length of 500 feet, as many as 100 channels of sequential or operational information may be recorded simultaneously-indicating any number of events pertaining to electrical or physical phenomena.

The make-break of a relay, for example, can show as a break in a continuous trace or as a new trace; and the event itself is shown in a time
relationship to all other events. Thus, you have an immediate picture of an entire situation at any time. Electric writing styli record in less than one millisecond after receiving a signal . . . handle up to 500 signal changes per second! Sixteen electrically controlled chart speeds may be selected from remote or on-the-spot locations.
Purposely designed to easily adapt to military specs, the new Brush Event Recorder is an ideal checkout instrument for use with industrial as well as defense equipment. Send for detailed literature, or ask for application assistance from your Erush factory branch or representative.

GREATER

PERMANENT

Designed for exacting electronic measurements, each of these products establishes a new quality standard in its field.

$1 / 4 \%$ DC VTVM
 $1 / 2 \%_{\text {gisis }}^{\text {Lisid }}$ VTVM
 DC

DC precision milli-VTVM, MV-57A
An unusual VTVM with better than $1 / 4 \%$ accuracy, designed especially for those who find an ordinary 2 or 3% VTVM not accurate enough. Permanent accuracy due to built-in standard cell and precision wirewound resistors.
Precision, high impedance RMS milli-voltmeter, MV-32A
This is not one of the "true" RMS voltmeters which use synthetic RMS circuitry. It is a real RMS voltmeter, incorporating a vacuum thermocouple. Accuracy $1 / 2 \%$.
DC differential milli-VTVM, MV-37A
This instrument meets the demands of many industrial and research engineers for a good differential DC-millivoltmeter. 1 mV - 1 KV F.S., 3%.
Video-power-post-amplifier, VS-102A
It puts a "punch" into weak signal generators and sweep generators. Max. output 28 V peak-to-peak, $20 \mathrm{cps}-10 \mathrm{MC}$.

We invite you to evaluate these and other new instruments at IRE - New York, Booths 3204-3206.

I NSTRUMENTS
Division of Cohu Electronics, Inc.
BOX 997 SCHENECTADY, N. Y.

Gryettal mftems

 new plant, the facilities. of jts crystal diyision for the production of arystal filters. 1
Like fine jewel's, crystal filfers are synonymoüs with stability, permicnence and reliability. With the development of advanced production techniques and circuitry by Burriell \& Co., fhey offer vast potential in electronic communications, telemetry, and remote confrol applications.
Deepending on band width and frequency, they may be compotsed entirely of crystals, or in camplex networks, combine quartz crystal elements with stabilized toroidal coits to produce the desired band width and shape factor. 'Frequenciy has been extended from low range to the megacycle spectrum so that Burnell Crystal Filter's now provide the solution to myriad problems formerly insoluble with even the be'sf of toroidal components.
Economical, standardized complex designs of lattice networks and their three terminal network derivatives preclude high developmental. costs. Packaging encompasses a wide range in standard, miniature and sub-miniature sizes with considerable latitude in permissive impedance ronge from required transistor usage to pentode operation. Whether your crystal filter is of standard design or calls for custom specifications, our facilities are at your disposal. Write for new. Burnell Crystal Fitter

Bulletin, XT-455.

COumelld O., Ore.

first in toroids, filters and related networks
SEE OUR DISPLAY IN BOOTH 2909
AT THE I.R.E. SHOW

EASTERN DIVISION DePI E_3 10 PELHAM PARKWAY PELHAM MANOR, N.Y. PELHAM $8-5000$ PACIFIC DIVISION 720 MISSION ST. SOUTH. PASADENA, CAL RYAN 1-2841

TYPICAL RESPONSE CURVES
indicating the various shape
factors available in standardizeo burnell crystal filters

NARROW BANO CRYSTAL FILTER

Where there must be no slipups there will be no slipups - if you depend on CAMBION ${ }^{\circledR}$

Looking for reliability?
CAMbion guarantees its components unconditionally - in any quantity from one to millions. Cambion quality control includes material certification, step-by-step inspection in production, and finally rigid insjeection of finished product. There is reliability for you.

For samples, specifications, and prices, write to Sales Engineering Department, Cambridge Thermionic

Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast stocks maintained by F. V. Roberts
\& Associates, 5068 West Washington Blvd., Los Angeles 16 and 1560 Laurel Street, San Carlos, Calif.

Makers of guaranteed electronic components, custom or standard See Cambion Guaranteed Components on Display at Booth 22 19, IRE Show, New York Coliseum, March 24-28

Ten families of Cambion quality components guaranteed unconditionally in any quantity

CAMBION QUALITY SHIELDED COIL FORMS
Miniaturized. Highly shock resistant. Mechanically enclosed, completely shielded for maximum reliability.

CAMBION QUALITY CAPACITORS

Miniaturized Variable Ceramic Capacitors that outperform much bigger capacitors. (Extreme right): Stand-Off Capacitors with ceramic dielectric. Rugged R-F by-pass capacitors for high quality equipment. Shock-, vibration-, humidity-resistant.

CAMBION QUALITY WOUND COILS IN STANDARD values

Precision-wound on slug-tuned ceramic coil forms, with silicone Fibreglas collars and mounting hardware. Available in bulk or in kit form (illustrated).

CAMBION QUALITY

 KITSDesign your electronic equipment around standard components, using four convenient cambion kits: Coil Form Kit, Coil Kit, Choke Kit, Solder Terminal Kit (illustrated).

CAMBION QUALITY DIODE CLIPS

Seven different types, including rivet and spring-loaded units primarily for holding fragile pigtail leads from $.005^{\prime \prime}$ to $.085^{\prime \prime}$ in diameter. Also, one-, three-, and five-cell battery clips and miniature plugs and jacks.

CAMBION QUALITY TERMINAL BOARDS

Custom-made, standard all-sets, standard ceramics. Variety of materials available paper, cloth, nylon, glass laminates phenolic, melamine, epoxy, silicone resins. Moisture- and fungus-proofed.

CAMBION QUALITY
PERMA-TORQ ${ }^{(1)}$
COIL FORMS
Constant-tensioning devices for tuning cores of standard Cambion ceramic coil forms. Keeps coils tuned as set despite shock, vibration.

CAMBION QUALITY KNOBS AND
PANEL HARDWARE
Selected materials, carefully processed and finished. Metal parts polished before plating. Hard-wearing surfaces, lasting lusters.

CAmbion quality insulated terminals
Wide variety of stand-off and feed-through models in Teflon and ceramic. Extremely resistant to shock, vibration, moisture and temperature. Solder terminals hold even after prolonged soldering operations.

CAMBION QUALITY PRINTED CIRCUIT

 COIL FORMSPhenolic and ceramic types. Can be soldered after mounting. Available as forms alone or wound as specified. Twoto six-terminal models.

You're precisely correct

when you use

When we say "precisely" we mean control within $.25 \%$ of range! Here's why - when temperature goes up, the resistance of the thermistor sensing element goes down - a unique property that makes very small temperature changes into large resistance changes. That means quick, extremely precise temperature control!

Small probes respond fast - can be installed nearly anywhere. Unbalanced bridge circuit design assures sensitivity and reliability. These are among reasons why one Thermistor Controller customer can report $0.08^{\circ} \mathrm{F}$ control. Why another reports over two years service with no drift or set point variation!

You can have remote control - as much as 200 feet without ambient or lead length compensation problems. You can control 1 or 100 points, with or without indication. Versatile Fenwal Thermistor Controllers are adaptable to all kinds of applications. No matter what your need, you get dependable precision with amazing stability.

You'll want to have complete details on the new advance in precision temperature control at your fingertips, and we'll get it in vour hands soon if you'll write us at Fenwal Incorporated 203 Pleasant Street, Ashland, Massachusetts.

Fenwal Thermistor Temperature Controllers
Here's a Thermistor Controller (Model 530) in a package forming machine. One Fenwal Thermistor probe in one corner plunger controls temperature at all four corners. A potentiometer on the control panel permits infinitely variable temperature range from 200 to 600 degrees. It eliminates a thermostat in each of the corner plungers, simplifies operation and maintenance - and assures uniformly high quality output. There are four standard temperature ranges for you to choose from: $-100^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{F} ; 0^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F} ; 100^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$; and $200^{\circ} \mathrm{F}$ to $600^{\circ} \mathrm{F}$. Special ranges can, of course, be supplied in most cases.

TENSILESTRENGTH-ROOM TEMP.
34,000 PSI Coors AD-99

20,000 PSI	to 40,000 PSI
25,000 P51	Normal 96-98\% $\mathrm{Al}_{2} \mathbf{0}$

10,000 PSI Strongest Steatites

SUPER DIELECTRIC - STRONG AS IRON 75\% OF TENSILE STRENGTH AT 2000° F

Coors new AD-99 ceramic is non. porous $99.0 \% \mathrm{Al}_{2} \mathrm{O}_{3}$ with the amazing tensile strength of $34,000 \mathrm{psi}$ - as strong as cast iron. It has 30% greater strength than the best commercial high aluminas of 96% to $98 \% \mathrm{Al}_{2} \mathrm{O}_{3}$. It is particularly superior to any ordinary metals in strength at high temperatures -retaining 75% of its tensile strength or $20,000 \mathrm{psi}$ at $2000^{\circ} \mathrm{F}\left(1100^{\circ} \mathrm{C}\right)$.

Coors AD- 99 is a superior dielectric material. At modern micro-wave frequencies, loss tangents are lower than
those of plastics and all but one or two special ceramic materials-as reported by the Laboratory for Insulation Research, Massachusetts Institute of Technology. At room temperature, the loss tangent is 0.00006 ± 0.00002 at 100 mc , less than 0.0001 at 300 mc , and 0.00052 at 50 Kmc .

These properties, combined with the excellent hardness and wear resistance of the alumina family, make this the most superior ceramic now available for commercial use. In addition, Coors

AD-99 has complete, unequaled homogeneity made possible only through the use of the Coors isostatic process.*

Originally developed in Coors own laboratory especially for radome work, Coors AD-99 is now available on a commercial production basis for critical electronic and mechanical appli. cations. We can make test parts for your developmental work at nominal costs. Production quantities can be supplied at prices only slightly higher than ordinary alumina ceramics.
*Coors Porcelain Company operates under license for this patented process from Champion Sparkplug Company, Toledo, Ohio.

[^6]

MICROWAVE FERRITE CIRCULATOR...

RAYTHEON MINIATURIZEO X-BAND ISOLATORS weigh as little as 2.2 oz. For somewhat different requirements in the lower frequency L-band, Raytheon recently introduced the first high-power L-band isolator commercially available.

Compact C-band unit replaces gas-fube duplexer; needs no external power.

System designers: This new circulator is lighter and more compact than the differential phase-shift type unit and readily replaces typical TR or ATR gas tubes in C-band microwave transmission systems.
The Raytheon Model CCM1 weighs less than 5 lbs . and is less than 6 inches long. Its permanent magnet design eliminates the need for external drive power. The CCM1 reduces requirements for filters and klystron isolation common to systems using T-junction duplexers.
With Raytheon's advanced microwave component designs like this new C-band circulator, systems designers now have more freedom than ever before to design compact lightweight packages. Other devices now available and in advanced stages of development include isolators, both high and low power, ranging from L-band to Ku-band; ferrite switches; modulators; and side-band generators.

FOR COMPLETE FACTS or assistance in solving your microwave ferrite component problems, simply write to the address below, outlining your requirements.

Excellence

 in Electronics
Visual and Electronic

 error-free decate counters

$$
\begin{aligned}
& \text { DEAN } \\
& \text { switchina } \\
& \text { TUA }
\end{aligned}
$$

MADE POSSIBLE BY BEAM SWITCHING TUBES

NOTE THESE OUTSTANDING FEATURES

- NIXIE READOUT IN-LINE FIGURES VISIBLE 30-40 FT.
- RELIABILITY OF BEAM SWITCHING TUBE
- OPERATION WITH FULL TOLERANCE VARIATION OF ALL COMPONENTS
- SWALLEST PANEL HEIGHT ($33 / 6^{1 \prime}$)
- MINIMUM HEATER WATTAGE
- PLUG-IN DESIGN
- PROVISION FOR MECHANICAL OR ELECTRONIC ZERO-SET
- UNITS CASCADED DIRECTLY

MODEL	DC. 101	D. 102	DC-103	*DC. 105
Inout				Negative 110 Volts Less than $0.5 \mu \mathrm{sec}$ rise time
Output	Drive OC-10?	Cive 0 c. 101	Drive oc.	
$\begin{aligned} & \text { Resolution of } \\ & \text { Paired Pulses } \end{aligned}$Reset to Zero	Lessthan 10 ssec	Less than	Lesst tan 1μ	Lesstill
	Mande	Manual	Manual on Switch Closure or Electronic	Manus onveter
Construction				
		cole		
Maximum Counting Rate Count Indication	10 kc	100 kc	1 mc	1 mc
	Nixie "in-line" Numerical Readout -			
Power ReguirenentsTube Complenent				
		6844A Indicator Type 6201 Flip-Flop		

Write for new brochure $51-4$ that includes the Burroughs "Beamplexer" high speed 10 position electronic switch.
ANOTHER ELECTRO

C
C O N TRIB UTION
B Y
3

EDISON

PRECISION cear heads

- Sizes 8 through 18 available in any ratio within 1\%.
- Mount directly on all Edison
and Bureau of Ordnance
Motors without adapters.

- Adapters available to mount on any motor.

CHARACTERISTICS	STANDARD EDISON GEAR HEADS							
Size	8		10	11		15		18
Part Number								
Pinion Data: Number of Teeth Diamefral Pitch Pressure Angle Pitch Diameter	$\begin{gathered} 12 \\ 120 \\ 20^{\circ} \\ .1050^{\prime \prime} \\ +.0 \\ -.0005 \end{gathered}$		$\begin{gathered} 13 \\ 120 \\ 20^{\circ} \\ .1083^{\prime \prime} \\ +.0 \\ -.0005 \end{gathered}$			$\begin{gathered} 15 \\ 96 \\ 20^{\circ} \\ .1562^{\prime \prime} \\ +.0 \\ -.0005 \end{gathered}$		$\begin{gathered} 15 \\ 96 \\ 20^{\circ} \\ .1562^{\prime \prime} \\ +.0 \\ -.0005 \end{gathered}$
Gear Ratio to Length "L"	$\begin{array}{r} \text { Ratio } \\ 17 \\ 42 \\ 104 \\ 253 \\ 615 \\ 1494 \\ 3629 \end{array}$	$\begin{array}{r} \prime \prime L^{\prime \prime \prime} \\ 0.750 \\ 0.812 \\ 1.008 \\ 1.070 \\ 1.204 \\ 1.347 \\ 1.421 \\ \hline \end{array}$	$\begin{array}{r} \text { Ratio } \\ 31 \\ 93 \\ 280 \\ 840 \\ 2521 \\ 7565 \\ 22,696 \end{array}$	$\begin{aligned} & \text { " } L^{\prime \prime \prime} \\ & 0.781 \\ & 0.954 \\ & 1.054 \\ & 1.116 \\ & 1.266 \\ & 1.09 \\ & 1.500 \end{aligned}$	$\begin{array}{r} \hline \text { Ratio } \\ 36 \\ 108 \\ 324 \\ 972 \\ 2916 \\ 8748 \\ 26,244 \end{array}$	Ratio 40 140 490 1715 6000 21,000 73,500	$" L L^{\prime \prime}$ 0.812 1.000 1.100 1.162 1.328 1.487 1.600	$\begin{array}{r} \text { Ratio } \\ 60 \\ 240 \\ 960 \\ 3840 \\ 15,360 \\ 61,440 \\ 245,760 \end{array}$
Moment of Inertia GM CM ${ }^{2}$. 01		. 018			. 05		. 08
Maximum Running Torque in. oz.	15		15			25		25
Maximum Stall Torque in. oz.	35		35			50		50
Breakdown Torque in. oz.	. 01		. 01		12	. 015		. 018
Backlash maximum	30^{\prime}		30^{\prime}		0^{\prime}	30^{\prime}		30^{\prime}

Gear Tolerances: Precision Class 2 AGMA 236.02. Bearings: Stainless Steel ABEC Class 5 or better. Shaft Radial Play: . $002^{\prime \prime} /$ inch length max. with 4 ounce gage load. Shaft End Play: . $002^{\prime \prime}$ max. with 1 pound gage load. Friction Slip Clutch available on request. Designed to meet applicable paragraphs of MIL-E-5272.

DOW CORNING CORPORATION

ELECTRICAL AND ELECTRONIC NEWS No.l7

Rotary Switches More Reliable With Silicone-Glass Laminates

Combining unique dielectric and physical properties, silicone-glass laminates can be used to improve the performance of electrical and electronic devices involving extreme heat or moisture. An unusually good illustration is provided by Shallcross Manufacturing Company, Collingdale, Pennsylvania.
Shallcross' new line of 24 -position electrical rotary switches features decks stamped from glass cloth laminate bonded with a Dow Corning silicone resin. The heatstable silicone-glass decks keep terminals locked securely in place despite heat of soldering. More important, the siliconeglass construction of these $1500 \mathrm{~V}, 1$ to 6 deck rotary switches assures reliable operation in hot, cold or humid climates where other insulating materials would fail.

According to Shallcross, silicone-glass laminate was chosen because of these outstand. ing properties:

1. Low moisture absorption.
2. Thermal stability which not only permits service in varying climates, but prevents terminals loosening during soldering
3. Good surface resistivity
4. Low dielectric loss for increased RF efficiency.

The silicone-glass laminate used in these switches is "Phenolite G-7-830," produced and sold by National Vulcanized Fibre Company. National fabricates the plates maintaining a tolerance of $\pm .005$ inch in the punched holes.

No. 66

Pressure-sensitive silicone tapes - that stick to wet or dry surfaces; form good bonds; have high dielectric strength; repel moisture; are not affected by corrosive chemicals-are described in a new folder designed to help you choose the tape best suited to your application. No. 67

REPLACEMENT COSTS SLASHED

Increasing the reliability of magnetic brakes and couplings by insulating them with silicone dielectrics has paid handsome dividends to the Baylor Company, Houston. Result: greater customer satisfaction plus improved maintenancefree performance for their product.

LARGE SILICONE EXHIBIT A feature of 1958 IRE Show

For the latest news of silicone dielec. trics and to learn how you can profitably apply these new engineering material to your specific designs, be sure to visit the Dow Corning Exhibit, BOOTHS 4106-8, New York Coliseum, March 24 to 27.

See for yourself how silicone rubber stays flexible in extreme cold; how silicone insulated equipment operates at temperatures far above the limits of organic insulation, and how dozens of other electronic products are made better and more reliable with silicones.

And while there, be certain to pick up your copy of the most comprehensive guide to Dow Corning silicone insulating materials ever published for electronic design engineers. Titled "Silicones as Dielectrics", this 12-page booklet will help you select the silicone material offering the best combination of mechanical and dielectric properties for any application. You can also obtain a copy by circling . . No. 68

Unconditionally guaranteed for a full year, Baylor Elmagco brakes and couplings are used in oil drilling to dissipate the tremendous energy developed while lowering drill strings. Three years ago Baylor started insulating this equipment with Dow Corning silicone insulation.
The heat-stable silicone insulation so drastically reduced Baylor's replacement costs durmg the one year warranty period that savings far exceeded the higher initial cost of using silicone insulation. Coil replacements dropped from 30% of total output to a mere 0.55%, only one-fifticth of the previous rate.

While the brakes are designed to dissipate energy up to 5000 hp , actual rates are frequently much higher. The silicone insulated brakes operate efficiently despite temporary overloads that would quickly burn out any other type of insulation. No. 65

Send Coupon for More Information

DOW CORNING CORPORATION - Dept. 483 Midland, Michigan
$\begin{array}{lllll}\text { Please send me } & 65 & 66 & 67 & 68\end{array}$
NAME \qquad
TITLE
COMPANY
STREET
CITY \qquad ZONE STATE

ATLANTA • BOSTON • CHICAGO • CLEVELAND • DALLAS • DETROIT • LOS ANGELES • NEW YORK - WASHINGTON,D.C. Canada: Dow Corning Silicones Ltd., Toronto; Great Britain: Midland Silicones Lid., London; france: St. Gobain, Paris

NEW

Piezoelectric* Material

Surpasses barium titanate... performs remarkably independent of temperature ...Curie point above $572^{\circ} \mathrm{F}$...suggests new fields of application-maybe yours

A newly-developed polycrystalline ceramic, Clevite PZT-4, can greatly increase the reliability and operating range of missile devices, sonar transducers, ultrasonic cleaning equipment and other systems now using "grown" crystals or barium titanate elements.
PZT-4's resonant frequency and piezoelectric coefficients are virtually independent of temperature . . dielectric constant compatible with barium titanate-substitute PZT-4, extending your operating temperature range. PZT-4 substantially increases voltage output and power handling capacity of transducers.
Commercial quantities of PZT-4 are now available in electromechanical specifications to meet your needs. With skilled facilities, knowledge and experience in this highly specialized field, Clevite's Electronic Components Division is also prepared to manufacture complete assemblies - such as transducers - for your needs. Send for PZT-4 technical data, or discuss your application with one of our specialists.
*Piezoelectric-"pressure" electricity. Press or squeeze certain crystalline materials and they generate electricity. Conversely, charge them electrically and they change in width, in length, or in thickness.
VISIT BOOTH NO. 2622. IRE SHOW, N.Y.C.-MARCH 24-27.

DIVISION OF

allen-bradley presents...

 15
$1 / 4,1 / 2$, and 1-WATT PRECISION RESISTORS

Far exceed MIL Specs

for film and wire-wound resistors

Allen-Bradley's new, truly accurate, metal grid resistors are now available in $1 / 4,1 / 2$, and 1 -watt ratings, producing test results that are a substantial improvement over the MIL Spees for wirewound and film type precision resistors. They combine remarkable stability, under load and on the shelf, with an exceptionally low temperature coeflicient. Provided with gold plated learls for flawless soldering-these new metal grid resistors justly qualify under the Allen-Bradley trademarh of Quality.

See how ALLEN-BRADLEY'S AEH METAL GRID PRECISION RESISTORS exceed MIL Specs

for film and wire-wound resistors!

The specially designed metal alloy grid of these new resistors is noninductive, providing excellent high frequency characteristics. Due to the metal grid, the Type CAHI, 1/4-watt: Type EAH, $1 / 2$-watt; and Type GAII, I-watt resistors have an exceptionally low noise level . . . comparable to that of wire-wound units.
Each Allen-Bradlev precision resistor is individually calibrated and marked with the nominal resistance value, the
tolerance, and the temperature coefficient. Obviously, the price cannot he low, but there are many critical milit ary and industrial applications where the stability and reliability of these metal grid resistors will more than offset the initial cost.
It will pay you to investigate the use of these Qurlity. hermetically sealed resistors in your really "tough" military and industrial circuits.

COMPARATIVE SPECIFICATIONS

	Allen-Bradley Specification (Metal Grid)	$\begin{gathered} \text { Military } \\ \text { MIL-R-93A } \\ \text { (Wire-Wound) } \end{gathered}$	Milifary Propesed Charac. C MLL-R-10509C (Film)	$\begin{aligned} & \text { MIL-R-19074A } \\ & \text { (Ships) } \\ & \text { (Film) } \end{aligned}$
Rated Ambient	$100^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$
Maximum Derating	$165^{\circ} \mathrm{C}$	$105^{\circ} \mathrm{C}$	$165^{\circ} \mathrm{C}$	$150^{\circ} \mathrm{C}$
Tolerance	. 1 to 1.0%	. 1 to 1.0%	1.0\%	-
Temperature Characteristic	$\begin{aligned} & \pm 25 \mathrm{PPM} \\ & \pm 50 \mathrm{PPM} \end{aligned}$	$\pm 30 \mathrm{PPM}$	$\pm 30 \mathrm{PPM}$	$\begin{aligned} & \pm 25 \mathrm{PPM} \\ & \pm 50 \mathrm{PPM} \end{aligned}$
Low Temperature Storage	. 1% Max.	-	.2\%	. 5%
Temperaiure Cycling	. 1% Max.	. 2%	. 2%	. 2%
Moisture Resistance - ln Cabinet	. 2% Max.	1.0\%	. 5%	-
Short Time Overload	. 1% Max.	. 5%	. 5%	. 5%
Load Life-100 ${ }^{\circ} \mathrm{C}$ Ambient 1000 Hrs.	. 2% Max.	. 5%	. 5%	. 5%
Terminal Strength	No damage	-	No damage	No damage
Solder Test	. 1% Max.	-	. 1%	. 5%
Dielectric Strength	. 05%	. 05%	. 1%	. 05%
Insulation Resistance	1000 Meg .	-	1000 Meg .	1000 Meg .

ANTI-MISSILE

A Research Project of Dr. Harry Nyquist,
 Senior Scientist, Stavid Engineering, Inc.

Dr. Nycuist is a pioneer in advanced areas of electronics such as Information Theory and circut noise, and is credited with nearly 150 patents in the field of communications. Fe is now contributing his exceptional analytical ability to Stavid's work on a far reaching anti-missile system. Men like Dr. Nyquist are typical of Stavid's outstarding scientists and engineers who are working on advanced concepts years ahead of actual systems development.

In Stavid'z objective engineering atmosphere, scientific, development and manufacturing teams are producing a wide range of electronic systems for all branches of the military. Typical of such projects is the REGULUS missile command guidance system, designed, built and maintained in operational status by Stavid.

CURRENT STAVIO

 PROJECTS INCLUDE:- Airborne Search, Bombing and Terrain Clearance Radar
- Radar-Infrared Airborne Fire Control System
- Missile Beacon Telemetering System
- Missile Guidance Systems
- Anti-Aircraft Subminiature Fire Control System
- High Power Air Search Radar

NEW..ALL TRANSISTOR

the most versatile...most sensitive direct writing oscillograph ever available

combining all these features!

* stable d-c sensitivity of one microvolt per mm
\star true differential input
high input impedance
response to beyond 150 cps.
reluctance, differential transformer, strain gage with a-c or d-c excitation, thermocouples, efc., used with all amplifiers
* deflection time less than 2 milliseconds
\star fixed precision calibration
\star instant warm-up
* precision source for d-c and 400 cycle excifation, self-contained
* zero suppression, twenty times full scale, both directions

and all in only $33 \frac{1}{4}$ inches of rack space for eight channels!

Using Offner developed transistor circuits which have been time-tested in over two years of service, in hundreds of channels of Offner Dynograph medical equipment, the Offner Transistor Dynograph is now first made available to industrial users as a time and service proved instrument, which we believe superior in practically every important respect to any other direct-writing oscillograph.

The Type R incorporates the following units:
Type 482 Dual Channel Transistor Power Amplifier itself providing sensitivities from 10 MV to 50 volts per cm , with a stability impossible with conventional amplifiers. The high performance of the Type 482 is made possible only by the Offner-developed transistor circuits employed*. Zero suppression and internal self-calibration
are incorporated. The Type 482 may be employed without preamplifier when its sensitivity is sufficient, and differential input is not required.

Type 481 Preamplifier, incorporating the circuit principles of the Type 190 Data Amplifier*, provides zerodrift amplification of signals down to the microvolt level, and permits a sensitivity of up to ten microvolts per cm to be realized. The Type 481 provides true differential amplification with infinite rejection of d-c common signals. Gain stability and linearity are so nearly perfect that zero suppression may be employed after the preamplifier, permitting considerable simplification of operation in many applications. The Type 481 also serves as a phase sensitive demodulator for reluctance gage and other a-c bridge applications.

[^7]
DYNOGRAPH

 See if aftthe IRE show
Booth No. 305I

THE OFFNER TYPE R

 TRANSISTOR DYNOGRAPHType 9800 Series Input Couplers plug into the Type 481 Preamplifier units, and provide all necessary bridge balancing facilities, etc. A variety of standard panels are available for strain gage, reluctance gage, LVDT, and d-c input applications. Special couplers will be provided for applications not provided by standard couplers.

Type 504/506W Dynograph uses the time-proved rugged and accurate low-resistance, high torque Dynograph element. The uniformity of response of the Dynograph units permits a frequency response substantially flat to beyond 150 cps to be now obtained, using the Type 482 Power Amplifier as driver. The Type 504 Paper Drive
employs the exclusive Offner zero-weave drive principle*. Quick-change gear box provides eight speeds, one to 250 $\mathrm{mm} / \mathrm{sec}$; electrical speed change to $\mathrm{mm} /$ minute available as optional feature. Writing media available are curvilinear ink or electric; rectilinear heat or electric. Writing media may be interchanged in a few moments time.

Type 382 Power Supply provides all voltages for all amplifiers, and in addition a highly stable source for d-c excitation of strain gage bridges, and a stable source of 400 cps at 6 volts for operation of reluctance gages, LVDT's, and strain gage bridges when a-c excitation is desired.

The Year Advertising Helped

IN 1954 we had a business recession in the United States. Sales fell about 4\% during the year. If management had followed the historic pattern of business ups and downs, advertising volume would have fallen much further.

But in 1954 the volume of advertising did not fall. It inireased over 5%, and expenditures in all major advertising media rose. Every effort was made to stimulate sales when sales were needed to sustain prosperity.

This was something entirely new under the sun. It had a powerful influence in making the recession of 1953-54 one of the mildest on record. It helped greatly to speed business on to the record-breaking levels it attained in the years 1955-57.

There are several reasons why America's business management attacked this decline in sales with more advertising. One of them grew out of the greatly strengthened position of the American consuming market. Consumers' income after taxes has been rising an average of over $\$ 10$ billion a year since 1946 , and this rising income is more widely distributed than ever before. Furthermore, consumers had piled up reserves of about $\$ 200$ billion in cash or its equivalent. These reserves offered a new and powerful inducement to increased selling and advertising effort even in the face of a possible decline in consumer income. (At the end of 1957 , consumer reserves were $\$ 225$ billion.)

Taking the Longer View

However, the principal reason why a sales decline was attacked

This editorial message was first published by McGraw-Hill two years ago. It describes advertising's dramatic contribution to the American economy during 1954. The theme of the editorial-that advertising can help promote economic stability by stimulating sales at a crucial time-is even more pertinent today.

As our economy grows, it is constantly changing. The conditions business faces today are not the same in every respect as those it faced in 1954. But business again has the opportunity, through advertising and other selling efforts, to help sustain a high level of economic activity. At the same time, it will be building markets for the period of renewed expansion that is sure to follow.

This editorial is reprinted exactly as it appeared in 1956 except for minor editorial changes to bring it up to date. Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

PRESIDENT
McGraw-Hill Publishing Company, Inc.
with increased advertising is management's new-found convic. tion that gaod advertising is essentially an investment in the development of a market. Successful development requires sustained investment. The inclination of business man. agement to take this longer view is, of course, motivated

Kill a Business Recession

by the fact that the American market, with over 3 million consumers being added annually, is growing at a prodigious rate.

Ten years ago only a handful of companies had plans for investment in new producing facilities extending beyond the current year. Today almost all leading companies have investment programs running some years ahead. And keeping pace with these long-range investment plans has been the development of sales and advertising programs to reach tomorrow's greatly expanded markets.

Advertising's Key Role

This crucial role of advertising in providing driving power for our economy is gaining greater recognition every day. In his book, "People of Plenty," Professor David M. Potter of Yale University remarked: "Advertising is not badly needed in an economy of scarcity, because total demand is usually equal to or in excess of total supply, and every producer can normally sell as much as he produces. It is when potential supply outstrips demandthat is, when abundance prevails-that advertising begins to fulfill a really essential economic function."
Today abundance so completely prevails in the United States that it has been conservatively estimated that as much as a third of everything offered for sale falls in the realm of "optional consumption." That is, consumers can "take it or leave it" without any immediate personal inconvenience. But if they decide to "leave it," a terrific
economic depression will not be far behind. In such circumstances, advertising - in which, in all of its forms, we are now investing over $\$ 10$ billion annually-clearly is of crucial importance to our continued prosperity.

In performing its key role in past years, American advertising never realized its full potential. It successfully promoted sales. But it never was called upon to promote an overall economic stability as a direct outgrowth of increased sales.

By successfully promoting both sales and economic stability, as it did in 1954, advertising surely has added new strength to the American economy. It has also added a great new and constructive dimension to advertising itself.

One of the surest means of expanding your sales volume in today's industrial markets is through dominant advertising in the publications directly serving your major customers and prospects.

McGraw-Hill's business and technical publications can give you quick access to the men who initiate, specify and approve the purchases of industrial products and services. Because all are leaders in their respective fields, you are assured a maximum return on your advertising investment when you concentrate in the McGraw-Hill publications serving your most important markets.

INCORPORATED • 330 West 42nd St., New York 36, N. Y.

All business is specialized

... and nothing specializes on your business like your business paper

Here's a smart business man. He spends his time where every sitzmark parks a prospect at his feet. It's simple sense: He specializes ... and it pays!

Your business is specialized, too... and so is your business paper. The time you spend with it pays ... for its editors are experts in your specialty. They scout the field...report what's good that's new...find ideas that worked... suggest methods to keep you a leap ahead of competition.

The ad pages are as specialized as the editing. They, too, tend strictly to business... your business. They bring you data on new products, new materials... gather in one place a raft of ideas on where-to-buy-what, or how to make (or save) a dollar.

That's help you can't find concentrated into such quick reading time anywhere else! It's help that puts many a man out front in his field, as a specialist who knows what's what today . . sees what's coming tomorrow. It's simple sense to read every page, every issue.

This business paper in your hand has a plus for you, because it's a member of the Associated Business Publications. It's a paid circulation paper that must earn its readership by its quality.. And it's one of a leadership group of business papers that work together to add new values, new usefulness, new ways to make the time you give to your business paper still more profitable time.

A copy of this quick-reading, 8-page booklet is yours for the asking. It contains many facts on the benefits derived from your business paper and tips on how to read more profitably. Write for the "WHY and HOW booklet." Room 2710.

McGRAW-HILL PUBLISHING COMPANY

330 West 42nd St., New York 36, N. Y.

One of a series of advertisements prepared by THE ASSOCIATED BUSINESS PUBLICATIONS

How your truth dollars

help keep the Reds

in the red

- The truth dollars you give to Radio Free Europe help keep truth on the air behind the Iron Curtain.

And the truth is an enomous-
 ly disruptive force to the Reds. For it keeps their captive people thinking . . . wondering . . and less than completely dominated. The truth keeps needling the Reds. Breaks through their monopoly of lies. Keeps them unsure. Off balance. And thus the truth keeps up to forty fully amed Red divisions tied up policing Russia's satellite countries. Forty divisions, mind you, that might otherwise be put to more aggressive use elsewhere . . and who knows where?

Your truth dollars keep the 29 super-
powered transmitters of the Radio liree Europe network on the air . . . broadcasting the truth behind the Iron Curtain . . . every hour of every day.

Why your truth dollars?
Because Radio Free Europe is a private, non-profit organization supported by the voluntary contributions of American business and the American people. And your dollars are urgently needed to keep it on the air . . . to help operate its transmitters, pay for its equipment and supplies, and its scores of announcers and news analysts in 5 languages.

Help keep the Reds in the red. Send your truth dollars to Crusade for Freedom, care of your local postmaster.

FREEDOM IS NOT FREE!

Your Dollars Are Needed To Keep Radio Free Europe On The Air

SEIND YouR TRUTH DovIARS To

GRUSADE for FREEDOM

 from a broad line of fine qualify capacifors

METAL ENCLOSED Tubulars per MIL-C-25A

"CP" capacitors are the widely accepted standards of military equipment designers.

Quality of product and dependability of service bring a steady flow of new customers to Good-All Electric for "CP" requirements.
Good-All specializes in Types CP04, CP05, CP08, CPO9, CP10 and CP11. Approvals are listed by ASESA in the current issue of the QPL.

Good-All Type 663-UW SPACE-SAYING Sub-Miniatures with a SKIN-TIGHT Case

Type 663 UW is an ideal choice for miniaturized and transistorized products. The space-saving possibilities are amazing.

Dieleciric.
End Fill
Plastic Wrap Thermo-Setting Plastic IR ai $25^{\circ} \mathrm{C} \quad 100,000 \mathrm{Meg} \times \mathrm{Mif}$ Hermo-Sefting Plastic Humidity Resistance . . . Superior Available for delivery from Stock.

Mylar, DuPont's trademark for polyester flim.

Good-All EPOXY Coated Ceramic dISCS

Something really new! The tough, durable Epoxy coating provides excellent moisture resistance and high voltage breakdown strength. The lead entries are tightly sealed.

 Immediate Delivery on Standard Items.

Write or phone for consultation on specific design problems or to secure detailed specifications on our complete line of Tubular and Ceramic disc capacitors.

Soon in stock at your local distributor.

Production Inspection is Faster and Easier with a J\&L Optical Comparator

... and its extreme versatility enables you to perform
inspections that used to be "impossible"!

More and more electronics manufacturers throughout the country are using Jones \& Lamson Optical Comparators in their quality control operations. Small shops, as well as the giants, have learned that a J \& L Comparator pays for itself in very short order.

The Comparator's ability to measure and inspect, through shadow magnification, all sorts of parts and objects
with extreme precision and speed makes it ideally suited for checking electronics components, especially those which are tiny or intricately contoured.
Investigate how the J \& L Comparator can help you make your production operations more efficient . . . and more profitable. Write today for a free copy of our new illustrated catalog No. 5700.

For Instance - A customer writes: "One of our assemblies, containing 32 separate circuits, measures only ${ }^{5} / 6^{\prime \prime}$ dia. by $\mathrm{l}^{\prime \prime}$ long. The parts which go into this assembly must have perfect shape and tension, which are impossible to check by mechanical
means. Two such parts are these $.005^{\prime \prime}$ dia. gold wires, and precisely toothed brush spacers. Since using the J\&L Optical Comparator in our inspection, assembly failure due to malfunction of either of these two parts has virtually disappeared."

 the "best that can be made."

Neon glow and miniature incandescent lamps are two areas of Tung. Sol lamp leadership that dates from 1907 a nd development of the first successful electric automotive headligh.

 \section*{TUNG-SOL}
 \section*{TUNG-SOL}

AT THE IRE SHOW BOOTHS 2833, 2835, 2837, 2839

AVIATION

Tung-Sol's hydrogen thytatrons and power supplies meet the air. craft industry's exacting demand for precision performance boph in airborne and ground control,

TUNG-SOL ELECTRIC INC., NEWARK 4, NEW JERSEY

Varian Strip Chart Recorders

POTENTIOMEEEE PERFORMANCE* AT MODEERTE COST

Varian G-10 - Portable for laboratory or bench use where chart accessibility is of prime importance. Base price $\$ 340$.

Varian G-11A - For panel, rack or portable use; designed for OEM, lab or field for long-term monitoring. Base price $\$ 450$.
*
The servo-balance potentiometer method has long been used in expensive recorders to achieve superior stability, sensitivity, ruggedness and high input impedance. Use of servo balancing systems assures full realization of these inherent advantages by providing ample power independent of the source being measured. Now Varian offers you recorders of moderate cost using this time-proven principle.

VARIAN SPECIFICATIONS:

- Spans as low as 10 mv
- Limit of error 1%
- Maximum source resistance 50K ohms or higher
- Balancing times: 1 second or 2.5 seconds on G-10; 1 second on G-11

WRITE TODAY FOR COMPLETE SPECIFICATIONS

Varian recorders are sold and serviced
throughout the free world by representatives in principal cities.

Creative imagination took Einstein into a new widening concept of the nature. of the physical universe.
At the National Co. creative imagination is continuing to broaden our mastery of the physical universe through the realization of such means of communication as Ionospheric Scatter systems.
The implications of these new means of communication are manifold and the applications multitudinous.
You, who enjoy such creative challenges to scientific and technical development, should talk to National.
National Co. right now affords engineers and physicists the opportunity to grow and establish prestige in such advanced fields as atomic frequency standards, multipath transmission, noise reduction and correlation techmiques. Tropospheric scatter systems, Ionospheric scatter systems, molecula; beam techniques for signal processing, and long range microwave transmission.
At National Co. in the heart of New England electronics, you can associate with a company in which creativity is required, recognized and rewarded.
Write or phone
WhMed to Tomoneoll

This XTV capacitor (actual size) has the same mfd rafing os the foll-iype tantalum unit behind it . . . but look how much smaller it is... and you can gef XTV's from stock!

A NEW Mallory Tantalum

 High capacity • High temperature • Small size

 High capacity • High temperature • Small size}

Here is really big news about a little capacitor -especially interesting to missile and computer design engineers: you can now get up to 1000 mfd. in a case only $11 / 8^{\prime \prime} \times 11 / 8^{\prime \prime}$. It's the new Mallory XTV Tantalum Capacitor, especially suitable for those applications requiring several hundred microfarads of capacity at low voltage. A single, small capacitor will do the job which formerly required the parallel connection of many low-capacity capacitors.
Mallory XTV Tantalum Capacitors are hermetically sealed-are capable of operating at extremely high altitudes without danger. They are ideal for missile guidance systems, aircraft communications equipment, commercial computers, or any energy storage device where limited space and extreme environmental conditions are encountered.

Electrically, Mallory XTV Tantalum Capacitors have low impedance, low series resistance and low leakage current They will operate over an extreme temperature range $\left(-55^{\circ}\right.$ to $\left.175^{\circ} \mathrm{C}\right)$, have virtually unlimited shelf life, and greatly extended operating life.
Standard Ratings:

Mfd.	$V D C O$ $85^{\circ} \mathrm{C}$	$V D C @$ $125^{\circ} \mathrm{C}$	VDC @ $175^{\circ} \mathrm{C}$
1,000	40	35	26
750	60	50	38

For ratings not listed, and for additional data and application information, write Mallory.

Expect more... get more from

electronics
 engineering edition

MARCH 14, 1958

Etched I-F Amplifier Pares Color Tv Cost

Abstract

Vane-tuned inductances and rejection traps, etched on the same board as the wiring of a $41-\mathrm{mc}$ i-f strip for color tv, provide neat and economical design technique. Design requirements and performance data are covered completely for a typical i-f strip and construction details given

By LINUS RUTH* Laboraturies RCA Ltd. Zurich, Switzerland

ETCHING INDUCTANCE COILS and traps on the same board as the wiring can save considerable material and labor costs. This is especially true in a $41-\mathrm{mc}$ i-f strip for color to to be described where the number and complexity of inductances make is possible to fully realize the economies of printed
circuitry. The bill of material saving alone compared to conventional three tube color i-f strips is approximately 25 percent.

Requirements

In a wide-band color i-f amplifier there must be sufficient bandwidth at the chrominance detector

FIG. 1-Schematic diagram of the 41 -mc i-f amplifier. Traps are printed on the same board with the wiring and other coils and are vane tuned
to handle the $42.17-\mathrm{me}$ color subcarrier and both sidebands up to 500 kc from the color subcarrier (B-Y, R-Y demodulation).

The bandwidth at the luminance detector should produce resolution in line with good monochrome practice. There should be 26 to 30 db sound attenuation at the sound detector for proper intercarrier operation; approximately 50 db minimum adjacent picture attenuation; approximately 50 db minimum adjacent sound attenuation with no phase degradation in the vicinity of the picture carrier, and approximately 50 db minimum sound attenuation at the luminance detector for elimination of $920-\mathrm{kc}$ soundcolor beats. Also, the picture carrier at the chrominance detector should be of greater amplitude than the chroma subcarrier to prevent luminance modulation of the chroma subcarrier.

Design

The mixer to first grid is overcoupled with low side capacitance

[^8]

Photograph of i-f amplifier showing layout and spacing arrangement between the coils in the center of the strip. This arrangement greatly reduced d-c leakage

Fig. 2-Frequency and Q plotted against distance from the coil using aluminum vanes on steel screw (A) and powdered iron slug tuning (B)
coupling and two bifilar T traps; one sound and one adjacent sound. See Fig. 1. The next two stages are grid loaded and overcoupled, chosen in preference to a staggered pair because it was felt that the problem of holding the coupling would be alleviated with coils on the same board and provide addi-
tional stage gain.
Attennation of the two bifilal T traps in the grid of the first i-f is adjusted by a tap on the adjacent sound trap $L_{\text {a }}$ and the balancing resistor across the first half of the cross connected bifilar coil L_{1} to give maximum attenuation with minimum low frequency phase dis-
turbance. The sound trap tap is adjusted to give 28 db sound attenuation at the sound and chroma detector. With this adjustment, attenuation of adjacent sound varies from a minimum of 50 db to a maximum of over 70 db with $\mathrm{a} \pm 5$ percent variation of the resistor. The sound trap only varies from a minimum of 25 db to a maximum of 30 db .

One of the problems with printed bifilar coils used in a stagger-tuned circuit is that d-c leakage develops between the plate coil and the grid coil. The $B+$ potential is usually $130-150 \mathrm{v}$ and age potential is -3.0 v or so, at relatively high impedance. The seriousness of this leakage is greatly reduced by the relatively small area and increased spacing of the coupling capacitor between the coils in the center of the strip.

There are three bifilar coils on the strip, used in conjunction with the bifilar traps. Coil L_{1}, in the grid of the first i-f shown in Fig. 1 and $L_{\text {a }}$ in the detector circuit have no d-c potential between coils. The d-c potential across T_{1} could be avoided by returning the grounded end of the secondary to $B+$ with a $0.001-\mu \mathrm{f}$ bypass to ground at that point.

Detectors are overcoupled with a bifilar T sound trap in the luminance detector. A $6,800-\mathrm{ohm}$ delay line is used for the luminance detector load and negative mutual peaking is used in the video amplifier grid circuit.

The chrominance detector is aligned so that the picture carrier

Closeup of i-f amplifier shows the aluminum vanes, mounted on sfeel screws, used for tuning the coils

View of the bifilar trap with vane removed shows nylon-screw mounting hole. Screw and vane are at right

FIG. 3-Capacitance and Q plotted against vane distance from trip coil using aluminum vane (A), copper vane mounted on steel screw (B) and copper vane mounted on a nylon screw (C)

The i-f strip with the top shield removed (left). Shielding for the sound trap in the luminance detector circuit is taken care of by a small copper strip enclosing the trap on sides not adjacent to ground
is several db above the chroma subcarrier.

Coils are vane-tuned with aluminum vanes on steel screws. This tuning method is inexpensive and gives greater tuning range than slug tuning. However, when the vane gets close to the coil, the coil Q deteriorates seriously, as shown in Fig. 2A. Coil inductance is adjusted so that the vane never comes closer than 0.125 in. and the Q variation is kept within ± 10 percent of the nominal value.

Figure 3A shows that a total variation in circuit capacitance of $3.5 \mu \mu \mathrm{f}$ may be satisfactorily compensated. Since this is several times the expected capacitance variation, it is safe to exclude from the operating range the 0.125 in . closest to the board.

The traps are also printed on the same board with the wiring and other coils. The original tuning method used with the traps was a powdered iron disk. However, this method resulted in low Q and a restricted tuning range. Later a large threaded slug was used in conjunction with a threaded nylon tube to allow the slug to be withdrawn from the field of the coil. The Q is satisfactory but the tun-
ing range is still restricted, as shown in Fig. 2B.

Trap inductance was increased by extending the winding into the space formerly occupied by the slug, maintaining the same outside diameter and vane tuning with a copper vane mounted on a steel screw was tried. If the Q is maintained above 150 , the vane must be kept 0.15 inch from the board and a capacitance variation of ± 10 percent of $83.5 \mu \mu \mathrm{f}$ may be compensated, as shown in Fig. 3B.

With the same configuration and a nylon screw mount, the Q may be maintained above 160 for the same capacitance variation, as in Fig. 3C.

Shielding

Small shields installed across each tube extending to the edge of the strip provide decreased impedance in the ground paths and shield adjacent stages. Further shielding is provided by bottom and top covers. The grounding strip that extends up from the tube socket to ground the tube shield is not of sufficiently low impedance, therefore each tube shield is grounded to the top cover by three springs.

Shielding for the sound trap in the luminance detector circuit is
taken care of by a small copper strip enclosing the trap on sides not adjacent to ground. Details of the shielding are shown in the photographs.

Before dip soldering, an epoxy resist is screened over the coils and coupling capacitors so that their values will not be altered during the soldering process.

The entire chroma detector circuit, including the bifilar T $4.5-\mathrm{mc}$ sound trap $L_{\text {, }}$ with sound take-off coil, is included within a $\begin{aligned} & \bar{子} \\ & \text { by } \\ & \text { in } \\ & \text { in }\end{aligned}$ shield can except for the crystal diode.

Details of shielding for i-f amplifier show punched chassis containing spring surfaces for good shielding contact

A series tuner is used to check the performance characteristics. Sensitivity for 1 v d-c rise at the luminance detector load is $60 \mu v$ (i-f) for the mixer $\notin \mathrm{rid}, 12 \mu \mathrm{v}$ for channel 3 and 16μ vor channel 10.

Trap rejection of sound at the luminance detector is 63 db , adjacent sound is 58 db and adjacent picture is 40 db .

Adjacent picture attenuation could be increased to greater than 50 db by adding another trap. However, further shielding for this addition did not warrant the cost and the trap was left out as an economic compromise.

Roof-Top-Target Tubes

New pulsating X-ray tube designs and systems for their use are described. The most successful system uses two tubes. Each tube is controlled by applying a relatively low-voltage square wave to a special tube element called a diaphragm. Anode current is maintained constant by alternately switching from one tube to the other. Pulsating frequency can be controlled from 35 to $100,000 \mathrm{cps}$ with an adjustable duty cycle from 10 to 90 percent

By E. F. WELLER Physics-Instrumentation Dept., Research Starif, General Motors Corp., Detroit, Mich.

Systems for using special X-ray tubes, which can be pulsed over a wide range of frequencies and duty cycles, are described. The tubes are capable of delivering therapeutic dose levels.
Square pulses of X-ray energy can be produced at rapid repetition rates in five basic ways. These are: interruption of the beam with a mechanically controlled shutter; pulsing the anode voltage of the X-ray tube; use of a control tube in the cathode circuit to interrupt the X -ray tube current; deflection

Table I-Typical Characteristics of Pulsating X-Ray Tubes

	Experimental Type 1	Experimental Type 2
Anode voltage (kv)	$+80$	+80
Anode current (ma)	20	20
Deflection plate voltage (v)	$\begin{aligned} & +1,200 \\ & -(+50) \end{aligned}$	$\begin{aligned} & +1.250 \\ & -(+60) \end{aligned}$
Beam splitter and diaphragm voltage (v)	+1,250	0
Cathode hias (v)	-800	$-2,000$
Filament voltage (v)	8	8
Filament current (amp)	4	4
Oniput (r/min at 10 in.)	210	230
Tube dimensions		
203/4-in. long	1-in. diame	eter
Disrributed capacitance ($\mu \mu \mathrm{f}$)		
Beam splitter and diaphragm 1.15		
Deflection plate 0.95		
Anode not	measurable	

FIG. I-X-ray tube, type 1, has crossed targets. Type 2 has a roof-top target
of the electron beam, within the tube, to a second target which emits X -rays in a different direction; and interruption of the X-ray tube current by pulsing a control element within the tube. The first three systems limit duty cycle and/or repetition frequency. The remaining two do not.
To make possible electron-beam deflection and current-interruption systems, two basic tube types were developed and supplied by Westinghouse Electric Corp. Each tube type shown in Fig. 1, contains a special target shape, electrostatic deflection plates, and a diaphragm or grid. Output from both tubes, as well as operating voltages and currents, are shown in Table I.

Beam-Deflection System

The electron-beam deflection system, using the new tubes, presented one basic problem. The total num-

FIG. 2-Cutoff characteristics of the second X-ray tube described in this article
ber of electrons comprising the tube current could not be directed solely to the desired target. Under optimum conditions, a minimum of three percent of the X-rays was emitted from the dead target. This emission was probably caused by stray electrons striking the target.

Experimentation showed that it was possible to cut off the X-ray tube current completely by reduction of potential between diaphragm and cathode. Tests run with fixed deflection-plate voltage and a pulsed diaphragm voltage showed that this type of operation was feasible. Figure 2 shows cutoff characteristics of the second experimental tube type when operating under these conditions. Experience with the tubes indicated that the diaphragm voltage required to cut off the beam current could be reduced by a redesign of the location of the tube elements.

Pulse X-Rays

FIG. 3-Ultimate system uses two, type-2 tubes. Principal components are shown
FIG. 4-Diaphragm pulser circuit. Highvoltage pulses are generated in this unit

operated at 80 kv above ground.
The tubes are constructed without an outer protective cover or tube housing primarily so that the tube elements can be observed at all times. As a result, a cooling liquid could not be circulated over the surface of the tube. Cooling is accomplished by circulating water through a spray nozzle screwed into the anode stem behind the target.

The pulser must supply 3,600-v peak-to-peak pulses, swinging from 400 to $4,000 \mathrm{v}$. It derives its input signal from a square-wave generator modified to give an adjustable duty cycle of 10 to 90 percent from 35 to $100,000 \mathrm{cps}$.

Pulser Circuit

Circuit diagram for the pulser is shown in Fig. 4. Tube V_{1} is a voltage amplifier with the plate peaking inductance adjusted for optimum operation. Output of this stage drives a cathode follower, V_{2},
which provides sufficient power to drive one of the pulser tubes. A signal from V_{s} is also coupled to a phase inverter, V_{s}. The phase inverter feeds cathode follower $V_{\text {t }}$ which drives the other pulser.

Grids of V_{2} and V_{i} are diodeclamped to keep the baseline of the waveform at constant level. Output from stages V_{2} and V_{4} is fed to relay K_{r}. This relay permits switching grids of the 357 B pulser tubes from the output of the cathode followers to steady direct voltages. The voltages are set so that one tube has +22.5 v applied to its grid while the other has -200 v . Actuating relay K_{3} reverses this condition to permit either steady-up or steady-down X-ray beam operation.

Diaphragm drive tubes, V_{5} and $V_{\text {s, }}$, are inductively compensated in the plate circuit. The 357 B tubes were chosen because they develop high-voltage pulses and their interelectrode capacitances are small.

Spurious indications on a radar screen of an object in space when nothing is visible are commonly called angels. Observations of reflection phenomena have been noted since 1936 and up to recent flying saucer incidents. Known or theorized causes include insects, birds, tropospheric layers, water vapor, storms, convection bubbles, mineral and organic particles, clouds and the ever increasing number of radio signals present in space

By VERNON G. PLANK Project Scientist, Aír Force Cambridge Research Center, Bedford, Mass.

Atmospheric Angels

RADAR ECHOES that are received from or caused by a sensibly clear atmosphere are commonly called angels. Coincident with expanded use of ultra-high-power radars there has been a marked increase in the number of such echoes. Some of them are readily recognized as products of scattering from precipitation particles or of anomalous propagation, but many of the others tend to defy a simple explanation. They are mostly phenomena of mere casual interest, but they can cause operational problems
and are of growing meteorological significance.

Recent observations and accelerated research have contributed appreciably to our understanding of these elusive echoes. Controversy has by no means been eliminated, but certain features have been isolated and general patterns established.

Pre-Radar Observations

The first angel echoes were detected with vertically directed pulsed radio equipment. In 1936 in-

FRONT COVER-Radar weather station at Milton, Mass. has four radars operating from 0.86 to 3.2 cm . has observed many of the angel echo phenomena
vestigators in England, India and the United States independently reported detecting weak echoes at 3 to 300 meters under conditions that suggested low-level atmospheric sources.

Continuing pulsed radio work prior to the war supported the initial observations. Echoes were detected frequently at altitudes of 1,600 to $50,000 \mathrm{ft}$ during all seasons and at various hours of the day and night. They tended to be especially strong in summer, during the afternoon and near the tropopause below $8,000 \mathrm{ft}$. The altitude of the sources appeared to vary with air mass and at times echoes that were strong and persistent at 25 and 50 meters were weak and intermittent at 3 meters. Maximum power-reflection coefficients varied from 10^{-6} at long wavelengths to 10^{-10} at the shorter ones.

Considerable controversy existed concerning the source of these echoes. Pulsed radio antennas were at best only slightly directive, and many persons felt the echoes were merely side reflections from ground objects. Others considered the sources to be refractive layers or patches, primarily because of the many correlations between the occurrence and altitudes of the echoes and the meteorology.

Strong echoes, for example, were received from altitudes where radiosonde and aircraft measurements showed the presence of

Radar displays of several angel types. Lower left section of (A) is lightning echo. Circular echo under inverted-U mantel echo of (B) was rising at $250 \mathrm{ft} / \mathrm{min}$. Thin diagonal line in upper left region of (C) is echo from clear sky just ahead of squall line

Mimic Radar Echoes

weather fronts, air-clound boundaries and other strata having sharp and extensive lapse rates of relative humidity, the refractive index being highly dependent on humidity. Weak and more diffuse echo types were observed with turbulent zones and thunderstorms. Ion layers were suspected for a time, but measurements disproved this possibility.

Various attempts were made to resolve this controversy but general agreement never was reached. The observations are nevertheless most interesting when viewed in the light of subsequent radar observations of similar phenomena.

Layer Echoes on Radar

Echoes from suspected tropospheric layers or patches were first detected on vertical-pointing radars in 1947. Equipment operated at 10 cm and radiosonde data showed that the echoes derived from altitudes where atmospheric refractive layers existed. Other echoes were observed at 3 cm and 13-17 meters as well.

Subsequently at the Cavendish Laboratories, low-level echoes at 10 cm were detected over Cambridge, England, and a detailed meteorological study showed that they were from an atmospheric subsidence inversion. Evans Signal Corps Engineering Laboratory, using a $0.86-\mathrm{cm}$ vertical-pointing radar, received a semicontinuous echo for a

20-hr period from the clear sky near a sharp subsidence inversion. Air Force Cambridge Research Center detected well-defined signals from a sea-breeze front 800 feet above a $1.25-\mathrm{cm}$ radar and many echoes from invisible layers and thin stratified clouds were observed using S-and L-band equipment.

Although there is little doubt that atmospheric layers can give radar echo, rigorous proof of the point is beyond our present capabilities. The echoes are a product of the microrefractive structure of the stratified or turbulent layers. We can neither measure this structure to the resolution required nor can we obtain from present theory more than a qualitative idea of the scattering or partial reflection to be expected. Present instruments having a resolution capability of a few feet do show many regions and layers where refractive-index gradients are sharp and extensive.

Project Lincoln of Massachusetts Institute of Technology has made various airborne-refractometer measurements and found numerous stratified refracting layers. Some extend over many square miles and possess vertical gradients of as much as $3 N$ units per meter. Quantity N is $(n-1) \times 10^{n}$, where n is the true refractive index.

It has also been shown theoretically that such layers can cause significant partial reflection of meter and centimeter waves, a given layer
being more reflective at the longer wavelengths. AFCRC has measured 40 to 70 N unit changes in tens of feet at the top of a stratus cloud deck and flying through a warm front has revealed it to be a region of considerable index variation.

Some radar echoes may look like atmospheric layers but merely be side-lobe reflections. Site, antenna pattern, type of scan and set sensitivity and power are determining factors. High power radars can be especially subject to such reflections, for although the side lobes are 20 to 30 db below the primary they radiate substantial power.

Wind-Carried Sources

In 1943 a different type of radar echo phenomena was noted by Bell Telephone Laboratories. Invisible and apparently wind-carried sources in the lower troposphere were causing transistory and sharply localized echoes on sensitive X - and S-band equipment. On a plan-position scope the echoes take the form of dots or small areas moving over the face, sometimes in tremendous numbers.

On a range-height indicator or the azimuth-range scope of a fixedbeam radar operating anywhere between horizontal and vertical incidence, the echoes are from a fraction of a second to several seconds duration, and frequently a number of them occur simultaneously at different ranges. Gener-
ally the echoes are received from ranges of less than 20 mi and their character is coherent, quite different from the scattered signals from precipitation. Most sources are indicated to be smaller than the resolution capability of the radar.

Many such echoes have since been detected, especially at Q, K and X bands. They are observed in all seasons, both day and night, but they are more likely to occur in summer and at midday. Warm, moist, clear days seem especially favorable. Maximum volume reflectivities at K and X bands range from 10^{-10} to 10^{-12}, which is about 0.4 to 50 sq cm radar cross-section.

The primary source of most of these echoes is believed to be re-fractive-index inhomogeneities of various types. Convective bubbles, highly refractive portions of atmospheric layers and water-vapor or temperature-anomaly regions are typical examples.

The precise mechanism of energy return from a variable dielectric is not known. But it is suspected that echo is the summation product of partial reflection from all the fa-vorably-oriented refractive-index gradients or other microstructure within the radar pulse volume.

That which appears best to explain daytime activity is the convective bubble. Such invisible bubbles rise from the earth's surface during active solar heating and are important elements in cumuluscloud development. The sharp refractive gradients in the upper and side-boundary region of the bubble are believed responsible for echoes. Aircraft and other observations verify the bubble's existence and theory forecasts their sharp boundary structure. Decided correlations between convective and angel activity have been noted by various investigators.

Insects are also important contributors. Their ability to cause substantial scatter signal on sensitive high-resolution Q- K- and X -band radars has been proven by theory and observation. Radar crosssections range up to four times geometric size and, since the system compresses a large part of the atmosphere onto a small indicator, surprisingly few insects can cause appreciable scope clutter.

On a $0.86-\mathrm{cm}$ cloud-base-and-top indicator only one detectable-size insect in $10^{6} \mathrm{cu} \mathrm{ft}$ is required to fill the scope with echo. Normal concentrations of large insects are perhaps $\frac{1}{4}$ to $1 / 6$ of this, but during the spring and fall they may approach or even exceed it.

Occasionally large mineral or organic particles are carried into the air by winds or thunderstorms. When they are settling, these particles may also cause angel echoes.

Relative importance of the two primary sources depends on location, time of day and wavelength. Evidently inhomogeneities are more important in humid climates, during midday and at the longer wavelengths. Insects predominate in arid climates, toward evening and at the shorter wavelengths. Since insects cause echo by scattering, considerable radiated power is required for their detection. Most operational X-, S- and L-band radars should therefore be free of insect echoes.

Mantel Echoes

Another wind-carried echo source was isolated quite recently. Echoes that defined the general upper and side boundary regions of small cumulus clouds were received on S band at East Hill, England. The clouds were nearby and clearly visible, and a perfect correspondence was established between the echo and cloud positions. On the rhi scope these mantel or cap echoes look like inverted U's and

V's. Similar echoes have subsequentiy been observed on Cape Cod, also at S band. Both observations failed to detect the echoes at \mathbf{X} band.

It is believed that mantel echoes are caused by scattering or partial reflection from sharp and extensive refractive-index gradients that airborne refractometer measurements have shown to be in the boundary regions of cumuli. These echoes couldn't have resulted from scattering by water droplets as the clouds were too small.

The East Hill observations also revealed other angel echoes rising into the cumuli from the clear air region below, and sometimes columnar echoes were observed extending from the ground to the mantels. Implications are that the radar was seeing convective bubbles and thermals.

Non-Wind Echoes

There is also a class of localized angel activity similar in scope appearance to that apparently from wind-carried sources except that the echo movement may vary from the wind velocity and direction. Velocities are generally under 50 knots, movements are semiregular and the tracks are smooth curves. Some reports, however, indicate movements in the direction of the wind at twice its velocity. Radar cross-sections of the sources range as large as 700 sq cm at L band.

Such angels have been observed primarily on air-traffic-control ra-

Seasonal variation of angel activity (A), variation with temperature (B), with wind speed (C) and diurnal variation (D)

on two January days ai Engineering Research Institute of University of Michigan. Sightings occurred around 4 were observed on a $23-\mathrm{cm}$ FPS-3 radar
mid-latitudes. Echoes in varying number, depending upon day and location, have been observed out to ranges of $20-25 \mathrm{mi}$. Visual observations have agreed with indicated source positions and the velocities and motions were appropriate to birds. Furthermore the presence and patterns of activity conformed with many of birds' characteristic habits. Reports point out the excellence of bird sources because of their elevation above the surface, and emphasize that as few as eight birds in a sq mi can completely blank the ppi.

Although birds probably predominate as sources of non-windcorrelated angels, they cannot explain echoes with indicated radar cross-sections of several hundred sqcm . There must be other sources. One hypothesis is that they are elevated refractive inhomogeneities which play a different role from those described previously. Here they are visualized to be properlystructured and oriented blobs, or convective bubbles.

Or they may be portions of atmospheric layers which divert incident radar energy to the ground by refractive bending or forward scattering. The illuminated patch of ground, perhaps a particular terrain feature, then scatters energy back to the receiver through the reciprocal path. The situation is really anomalous propagation, but
only a few small atmospheric rolumes are involved.

There is appreciable evidence to support the hypothesis, and it is easier to explain echoes from inhomogeneities if we assume diversion to ground rather than direct back scatter. That anomalous propagation can result from convective blobs on a clear day is not commonly known, ret this was recently observed and verified on 3 cm at Salina, Kansas.

Other possible explanations for non-wind echoes are side-lobe and second-sweep, automobile reflections, interference between radars, and instrument-produced signals.

Rapid and Erratic Movements

A type of nonaircraft echo suddenly appears, moves for some minutes in a semi-straight line path at 600 to $1,500 \mathrm{mph}$ and then disappears. As yet this is unexplained, but there is speculation that the source might be shock waves, echo being the product of direct backscatter or diversion of energy to ground. Shock waves are thin, on the order of 10^{-3} in. and the refractive index differences across them can range as large as several hundred N units.

Then there are radar flying saucers. One popular explanation invokes extraterrestrial sources, but others can also be conjured. There is good reason to believe that
many such echoes are merely the product of scope misinterpretation. The observer assumes that the echo return presented on successive rotations of the antenna is derived from a single moving source when actually the returns are unrelated ones of types previously discussed. The classic saucer incidents over Washington, D. C. in July, 1952, for example, occurred when the atmosphere was exceedingly superrefractive and spotty anomalous propagation was definitely in order.

Another saucer mechanism that could explain rapid and erratic echo maneuvers at close range is nonisotropic secondary-scattering of energy from aircraft to ground or the inverse. Phantom echoes that overtake, fly parallel with or collide with valid aircraft echoes can be thus explained.

Other scope patterns reveal phenomena with rather obvious meteorological origins. In the summer of 1953 sea breeze fronts were detected at horizontal and vertical incidence as they moved onshore at Round Hill, Massachusetts. During 1955-56 ring angels were detected at Ann Arbor, Michigan. These appear on the ppi like concentric, expanding waves formed by dropping a stone in water.

The mechanism best explaining the facts is that radar energy was diverted to ground by elevated, point-source gravity waves. Lines or bands of angel echoes have frequently been observed at L and S bands lying in the clear air regions in advance of squall lines or parallel to the edges of shower echoes. Frontal circulations set up by storms or nascent zones of cumulus development are believed responsible. Finally there have been many observations at X, S and L bands of the ionized channels left in the atmosphere by lightning discharges.

Meteorological Angel Study

Our knowledge of the seasonal, diurnal and general meteorological dependence of most angel types is exceedingly sketchy. Certain associations with convection, non-conventional superrefraction and with clouds and fronts have been noted rather frequently. But the specific dependencies have not been estab-

Echo from secondary scattering. Line A is aircraft path, line B is echo from air. craft to point E to aircraft to receiver. Line C shows similar scattering involving point F. Line D shows scattering from E to aircraft to E to receiver
lished, nor the forecast rules ascertained. We know that small cumulus clouds don't invariably produce mantel echoes and that convection occurs frequently without angels. but we have as yet only identified a few of the peculiarities of the meteorology that are responsible for the differences.

The angel activity observed on a vertical-pointing radar operating at 1.25 cm , with 0.37 deg conical beam, $0.4-\mu$ sec pulse and 10.8 -kw output has been studied in some detail and may be typical of the activity of apparently wind-carried sources. Facsimile records of the a/r scope for a 15 -month period of daytime operation were analyzed to ascertain the nature of the angel activity and sources. Days both with and without echoes were compared with the meteorology. The radar site was Boston.

The investigations reveal that angels occur primarily on days with high temperature, high humidity and low wind speed. Activity is especially intense during the summer months, at midday and with clear skies. Activity also appears to be favored by opposing conditions of surface and atmospheric moisture. No angels have occurred when the ground is completely covered with snow, when low-level atmospheric temperature inversions exist below the minimum radar range of 500 ft , or when the atmosphere is extremely dry.

In most instances angels occur entirely within the convective mix-
ing region, sometimes showing an obvious intimate correlation with cumulus clouds. On clear days there is a pronounced diurnal trend, echoes beginning early in the morning, increasing to maximum at noon, then decreasing rather sharply during the afternoon. The echo altitude rises throughout the morning, is highest at the time of maximum surface temperature, and drops off thereafter.

Bunched or layer echoes occur in the vicinity of sharp moisture gradients, with or sometimes immediately after a summer rain, or under conditions of extremely high moisture, with greater than $10 \ldots$. of water vapor iis
Calculations indicat. sources range up to λ from 180 to 360 ft hise smaller sources more 2, 多

Available entomologis tion indicates insect al ${ }^{\circ}$ tivities to be similar i spects, and insects app important source of er few exceptions, howe do not fly at temperatur or above 95 F. Subst: activity is observed on of these limits. Furth dicated source sizes of st feet are not readily ex insects.

Meteorological condit ing atmospheric refr homogeneities and the refractive properties of ated air parcels rising turbulent environment established. The observe and temperature deper angels agrees with the conditions favoring refr homogeneities. Virtually served feature of the a explained if one assumes responsible inhomogenej convective bubbles of we air.
But the full potential techniques for studying f version, lightning activitie processes of convection beginning to be realized. probing at L and P band enable us to detect and their positions and thus of formation not presently : from weather radars that on particle scattering for

FIG. 1-Basic transistor relay circuit is controlled by Zener diode D_{1}

FIG. 2-Push-pull relay capable of handling 10 amperes has high-speed response

Fast Transistor Relay

Abstract

Push-pull switching unit capable of handling up to 10 amperes has a rise time of $50 \mu \mathrm{sec}$. Zener diode control triggering voltage level to eliminate need for step-waveform control voltage to provide equivalent to mechanical relay

By $\mathbb{D O R R A N C E}$ L. ANDERSON Development Engineer, Army Ballistic Missile Agence, Humtsville, Alabama

TRansistors prove to have almost ideal switching characteristics. However, to obtain the step function characteristics of a closing relay with transistors a step function is usually necessary at the input of the transistor.

In the circuit described here, a step input is not required ret switching is as rapid as with a relay.

A rising d-c voltage applied to the input produces no output until a predetermined level has been reached. Upon reaching the desired input level, the power-supply voltage is suddenly switched across the load. The circuit remains locked in as long as the input voltage equals or exceeds the level at which the trip action takes place.

The transistor relay circuit is shown in Fig. 1. Key to its operation is controlled positive feedback. The input voltage at which the cireuit trips is determined largely by the breakdown voltage of Zener diode D_{1}. Fall-out voltage is controlled mainly by the breakdown
voltage of the diode and the amount of positive feedback.

Circuit Operation

As the input voltage reaches the level where $D_{\text {, }}$ begins to break, current starts to flow in the input circuit of Q_{1}. Collector current of Q_{1} drives Q_{2} into conduction. The collector of $Q_{\text {. }}$ goes positive and this positive-going voltage is fed back through R_{5} to the base of Q_{1}. This feedback is regenerative and drives the circuit to saturation thereby switching the supply voltage across the load. This action takes place in a matter of microseconds, depending on the rise time of the transistors.

It is important that the Zener diode have a sharp break. Diodes that break at about seven volts are recommended for this application. Resistors R_{1} and $R_{\text {a }}$ form a voltage divider and isolating network for Q_{1}. Resistor R_{3} is a current limiting resistor for the protection of $Q_{.}$. Resistor R_{6} provides a relatively low impedance from base to $\mathrm{B}+$ of
Q_{U} for stabilizing purposes. Diode D_{2} offers high impedance from emitter to ground of Q_{e} when Q_{\triangle} is not conducting. This protects the transistor against thermal runavay at high ambient temperatures. Once the circuit trips, D_{2} becomes a low impedance and offers little inverse feedback.

The circuit shown in Fig. 2 performs as a push-pull relay capable of switching 4 amperes at 28 volts. A single 1 N 437 silicon Zener diode serves both sides of the circuit producing better balance than if separate diodes were used. The $\mathrm{H}-5$ transistors switch approximately 0.5 ampere to drive the XH- 25 transistors to 4 amperes output. The diodes across the output are used with inductive loads to protect the transistors from inductive spikes. The diode common to the emitters of the output transistors is for stabilizing purposes at high ambient temperatures. System rise time is about $50 \mu \mathrm{sec}$ compared to several millisec delay time for mechanical relays.

FIG. l-Silicon transistors and diodes ensure reliable operation in extreme temperatures. Maximum coarse and fine signal input is 26 volts rms at 400 cps . Voltage gain of coarse amplifier Q_{1} is about 25 and that of ieedback amplifier $Q_{2}, Q_{2}, Q_{\text {, and }} Q_{\overline{5}}$ is 460

Transistorized servo amplifier can be held in palm of hand. Amplifier contains five transistors and four Zener diodes

Direct Drive Amplifier

TWO-SPEED TRANSISTORIZED servo amplifiers are constantiy increasing in usage. The system described consists of an input switching circuit, which selects the proper signal with respect to the mechanical error, and a three-stage feedback amplifier capable of directly driving a standard size-11 motor.

Coarse and fine inputs are designed for maximum signals of 26 voits rms at 400 cps and both have an impedance of at least 10,000 ohms. Voltage gain from the fine input is adjustable from 0 to about 460 at 400 cps . The input switching circuits are designed for a gear ratio of 45 to 1 between the coarse and fine synchros. However, redesign for other ratios is possible. A complete servo amplifier circuit is shown in Fig. 1. Gain characteristics are as in Figs. 2 and 3.

Input Switching Amplifier

Figure 4 illustrates the relative phase of the coarse and fine inputs at the time of switching. The two voltages shown are the magnitudes of the $400-\mathrm{cps}$ outputs of two control transformers as the two-speed system approaches a null. Switching must occur to the left of point A to prevent a $180-\mathrm{deg}$ ambiguity in the null position.

Ideally, the gain from both coarse and fine inputs should be constant to maintain constant system gain. This is accomplished by inserting an amplifier between the coarse input and the main amplifier, since the fine input is geared up and thus has higher loop gain. Since the fine signal is attenuated to 0.57 of its original value by a resistance divider, gain needed in the coarse amplifier is roughly 0.57 times 45 .

Actual switching of signals is accomplished by Zener voltage reference diodes D_{i} and $D_{\text {, (}}$ (Fig. 1) connected back-to-back in series with the output of the coarse amplifier.

The inputs should switch when the coarse voltage is about 0.2 volts rms. This represents 5 volts rms at the amplifier output, so the 6 -volt

FIG. 2 -Two-speed servo amplifier voltage gain characteristics
diodes, TI 652C5, should perform satisfactorily.

After switching to the coarse input, the fine signal must have as little influence as possible. Since transistors operate with relatively low maximum collector voltages, their maximum rms output is severely limited. A TI 952 was chosen as coarse amplifier Q_{1} for operation with the +70 -v d-c supply to obtain optimum output. Limiting of the fine signal was necessary to reduce mixing effects at the main amplifier.

Two Zener diodes D_{1} and D_{2} are used as clippers at the fine input, and the limiting voltage is arranged so that the coarse input takes control before limiting of the fine signal begins. This preserves linearity at small error angles.

An unbypassed variable resistance in the Q_{1} emitter circuit provides gain adjustment.

Feedback Amplifier

Forward voltage gain of the three-stage amplifier is about 5,000 and feedback from the output to Q emitter reduces this to 460 : Large amount of feedback used makes the gain quite stable over a wide range of temperatures and with wide variations in transistor

Five-transistor servo amplifier directly drives standard size-11 motor, eliminating need for an output transformer. Used in two-speed systems, amplifier contains a switching circuit and three-stage feedback network. Switching between fine and coarse signals is accomplished by Zener diodes. Large amount of feedback stabilizes voltage gain over wide temperature range and broad transistor parameter variation

By B. E. ORR

Padar and Data Link Dept. Lockheed Aircraft Corporation, Missile Systems Division, Sunnyrale, California

For Two-Speed Servos

parameters. Figure 5 shows gain variation over the range of -20 to +100 C , with a nominal gain of 400 at room temperature. Electrolytic capacitors used in the prototype are designed for an upper limit of 85 C . Consequently, the portion of the gain curve above that temperature represents only what would happen if the amplifier were subjected to high temperatures accidentally.

Sufficient voltage derating of the capacitors allows the extreme temperature to exist for several hours

FIG. 3-Two-speed servo amplifier voltage gain-frequency characteristies.

FIG. 4-Phase error voltage relationship between coarse and fine signals in the two-speed servo system. Switching between two signals should occur to the left of point A
if necessary without impairing the voltage gain of the amplifier. Higher-temperature electrolytics now becoming available promise a substantial increase in the maximum temperature rating. Dissipation of all transistors in the circuit is sufficiently low to allow operation at up to 100 C .

The two voltage amplifier stages Q_{2} and $Q_{\text {a }}$ are conventional. Diode $D_{\bar{u}}$ at the base of Q_{2} is necessary to prevent the base voltage from reversing at high input signal levels. High-frequency oscillations are eliminated by capacitor C_{1} from collector to base of Q_{3}. Collector supply for Q_{2} and Q_{3} is obtained from a voltage-divider network that supplies about 25 v d-c.

Maximum rms voltage developed at the motor is limited by the $120-\mathrm{v}$ peak collector voltage rating of the 970 . For the push-pull amplifier, the peak-to-peak load voltage is 200 to 230 v , or 78 to 82 v rms . This value is exceeded somewhat in the actual amplifier because of mo-tor-load tuning. An actual rms voltage of 100 to 110 v is normally developed at the motor under noload conditions. Choice of collector supply voltage was also based on the 970 peak voltage rating since each collector swings above and be-

FIG. 5-Two-speed servo amplifier voltage gain-temperature characteristics. Gain at room temperature is about 400
low the supply voltage by an equal amount due to the balanced load.

A nominal supply of 70 vd -c prevents large excursions of the col-lector-to-base voltage into the Zener region where the dissipation per cycle would be high. Resistors R_{1} and R_{2} furnish a small positive bias of about 0.7 v d-c for the base circuit of the 970 . This bias prevents crossover distortion in the class-B amplifier and considerably increases voltage gain over the zero-bias condition. Type 970 transistors used should have beta values within ± 20 percent of each other, measured at 20 ma collector current, for proper circuit operation.

Bibliography

How to Design Speed Switching Circuits using Nonlinear Flements, Control Eng, i) 50, Nov. 1954, and p 34, Dec. 1954

A Diode's Zener Yoltage Suits it for Two-Speed Data Switching, Control Eng, p 42 , Jan. 1956.
W', R. Ahrendt. "Servomechanism Practice,: Ch 4, AoGraw-Hill Book Co., Inc. New York.

Servo Amplifier Uses Silicon Power Transistors, ELECTHoNics Jan. 1956.

F-M Exciter for Sight or Scatter Systems

Abstract

Capable of operation in either a tropospheric scatter system or standard uhf line-of-sight communication systems, exciter accepts multichannel output of the telephone terminal equipment as a modulating signal and produces an output power of 15 w from 700 to $1,200 \mathrm{mc}$ and 8 w from 1,700 to $2,400 \mathrm{mc}$. Unit handles 132 voice channels in addition to order-wire system

By A. E. ANDERSON and \mathbb{H}. D. HERN Research and Developinent, Collins Radio Co., Cedar Rapids, Iowa

INCREASING DEMAND for high quality, long distance communication systems has necessitated the development of reliable, high-performance radio equipment. From the standpoint of system simplicity, flexibility and economy, uhf radio equipment applicable to both line-of-sight and scatter systems is highly advantageous. Interchangeability has special significance in satisfying the ever increasing logistic demands of the military organizations.
The uhf exciter to be described is applicable in either line-of-sight
or scatter systems and has a minimum power output of 15 w from 700 to $1,200 \mathrm{mc}$ or 8 w from 1,700 to $2,400 \mathrm{mc}$. It can be used either to provide excitation for a scattersystem power amplifier, or as a line-of-sight transmitter.

Frequency stability, noise and distortion level, frequency response, channel capacity, frequency coverage and power outputare necessary considerations of the system in which the equipment is to be used. Since requirements vary from system to system, it is necessary to design for the most stringent an-
ticipated conditions. In addition, reliability and service life, stability of tuning adjustments, ease of maintenance and simplicity of operation are desired.

Exciter Description

A general block diagram of the exciter is shown in Fig. 1. Functionally, it consists of four main units in addition to power supplies, switch panels and other accessory items.

The modulating input signal is separated into order-wire and multiplex spectra. The multiplex spec-

FIG. 1-Exciter consists of tour blocks plus power supplies, switching panels and accessories

FIG. 2-Frequency-doubled carrier controls a linear time base in the modulator

FIG. 3-Modulator outputs feed r-4 units which cover $700-1,000-\mathrm{mc}$ band (A) and $850-1,200-\mathrm{mc}$ and $1,700-2,400-\mathrm{mc}$ bands (B)

Authors operate f－m exciter in laboratory test to determine just how it fulfills design expectations

Dust covers are removed from exciter and two chassis are hinged out to show cabling and air connections
trum，consisting of the combined multichannel output of the tele－ phone terminal equipment，starts as low as 4 kc and extends to an upper limit determined by the voice－chan－ nel capacity．The order wire con－ sists of a voice service channel ex－ tending from 250 cps to 4 kc ．

When the multiplex band starts at 12 kc or higher，the band from 4 kc to 12 kc is utilized in the order－wire circuit as a telemeter channel for special signaling，tele－ type or other desired service．

Modulator Unit

To obtain f －m characteristics a correcting network whose output is inversely proportional to frequency must precede the phase modulator． The voltage level as a function of frequency then decreases at the rate of $6 \mathrm{db} /$ octave at the modula－ tor terminals．Thus，the voltage difference between a 250 －cps signal and a 512 －ke signal is 66 db ．

Since a single－phase modulator capable of handling eleven octaves of corrected modulation signal with extremely low distortion compared to the highest frequency signal level is impractical，the modulating spectrum is separated and two
phase modulators are used in cas－ cade．Furthermore a simple order－ wire modulator can be used as the distortion requirement on the order－ wire circuit is generally much less than on the multiplex．

In most f－m systems some pre－ emphasis is used at the transmitter

FIG． 4 －Additional frequency－doubler cir－ cuit in uhf uinit handles $1,700-2,400-\mathrm{mc}$ band of the exciter
together with a companion deem－ phasis network in the receiver．This partially compensates the noise characteristics of an f－m receiver and permits a nearly equal signal－ to－noise ratio in each channel．Al－ though the preemphasis reduces the signal－level difference between the high and low modulating frequen－ cies，it is not sufficient to warrant use of a single modulator for high channel capacity systems．

A $1.5-\mathrm{mc}$ stable carrier is gen－ erated in the modulator of Fig． 2 and coupled to the conventional transconductance order－wire modu－ lator and a factor－of－5 frequency multiplier．The phase－modulated output doubles in frequency and controls a linear time－base circuit． A diode instantaneously compares the multiplex signal level to the linear time base．At the instants of equality，the comparator produces an abrupt change in both wave－ forms．

Two cascaded differentiators pro－ duce a narrow pulse whose position with time is proportional to the modulating waveform．The pulses control an amplifier whose output circuit selects a 1.2 －me band cen－ tered at 6 mc ．The bandwidth is

TABLE I－Typical Operating on 700－1．200 MC UHF Unit

Stage	Ampli－ fier	Trip－ ler	Doub－ ler
$\mathrm{R}-\mathrm{f}$ input power	0.2 w	$\because \mathrm{w}$	2.5 w
R－f output power	ごい	$2.5 w$	1.5 w
Plate current．	25 ma	30 ma	60 ma
Plate voltage	975 v	850 v	8.50 v
Bandwidth．．	2 mc	3 mc	6 mc

Closeup of uhf unit shows amplifier, tripler and doubler stages. Cavities are partially disassembled to show inner parts

Service channel portion of level panel with telephone handset indicates simplified modular construction
sufficient since the modulation index is low and the energy in sidebands beyond this range is negligible.
If the modulator fails in an installation having no standby, a section of the modulator unit can be bypassed, maintaining communications on the order-wire circuit.

R-F Units

A block diagram of the r-f units used to cover the $700-1,000,850-$ 1,200 and $1,700-2,400-\mathrm{mc}$ bands is shown in Fig. 3. In the low-frequency unit of Fig. 3A a $4.5-\mathrm{mc}$ signal is derived by using both outputs from the modulator unit and the $700-1,000-\mathrm{mc}$ band is covered without objectionable spurious signals at the sum mixer output. Crystal frequencies in the r-f units are selected to obtain the desired final carrier frequency, thereby allowing the modulator crystal oscillator to be continuously operated at 1.5 mc . Common modulator and frequencycontrol circuits are required for obtaining coherent signals at two high-power transmitters. This is accomplished by bridging the two exciters at the parallel operation jacks and removing the oscillator crystal from either of the r-f units.

UHF Units

An amplifier, tripler and first doubler shown in the block diagram of the uhf units of Fig. 4 are used in all frequency bands. A second frequency doubler provides the $1,700-2,400-\mathrm{mc}$ band output. The frequency multiplier stages consist of 2 C 39 B ceramic triodes in coaxial
resonators capable of continuously tuning to slightly less than a two to one frequency range.

Final carrier frequency is obtained in the uhf crystal-controlled $\mathrm{f}-\mathrm{m}$ exciter of Fig. 1 by first heterodyning and then multiplying to the final frequency. The main advantage of this method is that full bandwidth is needed only at the output of the last multiplier.

The first stage of the 700-1,200me uhf unit shown in Fig. 5 is a grounded-grid amplifier. The plate is tuned by a one-turn inductor in conjunction with a $3-18.7-\mu \mu \mathrm{f}$ variable capacitor. The second stage operates as a common-grid tripler and its plate is tuned with a coavial resonator operating in the $1 / 4$ wavelength mode. A lumped-constant π section matches the coaxial circuit to the cathode of the doubler stage. The plate circuit of the doubler is tuned by a coaxial structure
operating in the $1 / 4$-wavelength mode.

Since air cooling of the doubler and tripler stages is required, and the plate cooling fins extend from the cavity, the plates should be operated at d-c ground potential. The cathodes are at high negative potential.

Typical operating data of the unit is given in Table I.

The output power on all bands is continuously monitored by a re-sistive-loop directional coupler. A small portion of the output energy, 20 db below main-line power, is coupled out to obtain information for such functions as automatic switchover.

Level Panel

Figure 6 is a simplified block diagram of the level panel. The impedance matching network in the multiplex section provides connec-

FIG. 5-Common-grid voltage tripler and voltage doubler of uhf unit are tuned with coaxial resonaters. Input coil for r-f has five turns of number 20 wire with 0.25 -in. diameter
tion for $135 / 600$ ohms balanced or single ended. The vtvm monitors the multiplex or order-wire circuit over a range of levels from -40 dbm to +10 dbm .

A party line feature on the service channel allows voice exchange from a link station. A $3.2-\mathrm{kc}$ calling oscillator is used for service where external ringing is not desired. A 4 -kc crystal-controlled oscillator is included for system continuity testing.

Exciter Performance

Transmission quality of a multichannel voice-communication system is normally expressed as a sig-nal-to-interference ratio measured in each channel. The interference level consists of crosstalk products and noise introduced by the equipment and interfering sources. Such a performance measurement is generally made at a standard signal level and the interference level is expressed in dba units. Eighty-two dba is equal to one mw of noise measured with F1A weighting and referenced to a 0 db transmission level.

Since interference is generated in each portion of the radio equipment, all system components must be considered when designing a communication circuit. When evaluating a single system component, a figure for system quality can be expressed assuming all other components to be theoretically free from contributing to the channel interference level.

The interference level in the voice channel depends on the characteristic of the residual modulation present on the transmitted carrier. For the exciter described here the residual modulation introduces a 2 dba noise level at the -9 db transmission level.

In a single voice channel system a signal distortion level of some 10 percent or more can be tolerated before the intelligibility is greatly impaired. Unfortunately, such order of distortion is intolerable in multichannel systems because the high distortion produces objectionable crosstalk between channels. The crosstalk is at a maximum when the system is operating at
the fullest possible capacity.
When the signals of many active voice channels are combined, the composite or multiplexed signal resembles random noise. Thus, if a measurement of distortion is made using random noise as the test signal, then actual multichannel operation is simulated.

FIG. 6-Party-line feature on service channel in level panel permits voice exchange between link stations

FIG. 7-Measured modulating response in db plotted as a function of frequency

A test which simulates busy conditions consists of loading all but the first and last voice channels with uniform noise at a level which produces peak frequency deviation. Comparing the levels obtained in the first and last channels to any loaded-channel level results in a measure of distortion at the receiver demodulated output which can be expressed in terms of an interference level in the channel with normal voice loading. For the exciter described, this level is 1 dba at the -9 db transmission level for a capacity of $364-\mathrm{kc}$ voice channels. Therefore, the total interference level due to exciter noise and distortion is 4.6 dba at the $-9-\mathrm{db}$ transmission level.

The maximum channel capacity of the exciter is principally a func-
tion of the frequency response shown in Fig. 7. The measured curve indicates that the exciter is capable of handling at least 132 oice channels in addition to the order-wire facilities.

Reliability Considerations

Despite improvements in reliability and performance, tubes are still a primary cause of equipment failure. Since high operating temperature is a major cause of tube failure, any significant reduction in the ambient operating temperature of vacuum tubes appreciably improves equipment reliability. To accomplish this, forced air cooling is provided for all tubes in the exciter. The tubes in the uhf unit have mandatory cooling requirements and are cooled by a separate blower, interlocked for tube protection in case of blower failure. All remaining tubes are cooled by the rack blower and air duct.
Each unit has a plenum chamber that automatically couples to the air duct. Pressure in the plenum chamber then forces air through the special air-cooling tube sockets and out between the tube and tube shield, thereby eliminating the dead air pocket normally existing between tube and shield. In addition, corrugated shield and base liners conduct heat from the tube to the shield, and black shields increase heat radiation.

An indication of the effectiveness of the cooling system is the 145 deg. reduction in bulb hot spot when operating at maximum dissipation with the air socket, radiating shield and liner. To further increase tube reliability, all tubes are operated at less than 70 percent of rated cathode current.
Built-in test equipment facilitates maintenance and operational checks, and permits a complete tuneup on frequency by monitoring plate and grid current of all stages in the uhf unit, r-f power output, d-c power supplies and modulator signal levels. The units are hinged, permitting them to swing out for easy access to the rear of the chassis. An articulated hinge prevents interference with equipment mounted in an adjacent rack.

Front panel includes variable controls, meter and connections for optional devices (left) Sensing probes (right) include basic unmounted element (A). 10-gauss uncooled model (B), 100-gauss convection-cooled version (C) and 300 -gauss conduction-cooled unit (D)

Magnetometer Makes

Abstract

Developed for use in an electron cyclotron, instrument monitors magnetic field strength continuously with accuracy of 0.1 percent. Probe design varies with application, one type employing quadrupole construction for magnetic isolation and a heat sink for cooling. Lower field-strength models delete the heat sink while higher field-strength forms sacrifice the quadrupole configuration. Electronic system is closed-circuit servo loop, with internal r-f excitation to bring magnetic field to knee of B-H curve of probe

By FERDINAND VOELKER Fadiation Laboratory, University of Califormia, Berkeley, California

MANY MAGNETS are designed for a uniform field over as large an area of the pole pieces as possible. Measuring the magnetic field under these circumstances is relatively easy. Where the gap may be as small as 0.5 in , and where the field must agree both radially and circumferentially with mathematically determined values, as in an electron cyclotron, magnetic measurements can be tedious.

Continuous Measurement

The magnetometer described here is designed for continuous magnetic measurements in such a cyclotron and meets requirements of 0.1percent accuracy in fields of 10 to 100 gauss, continuous monitoring of the field to follow automatic plotting against the probe position, horizontal-position accuracy of
about 0.005 in. and quadrupole probe construction to minimize effects of nearby iron.

The instrument consists of the sensing probe to detect the magnetic field, and its associated electronic chassis. The probe is a small transformer comprising three windings with a high-permeability core, as shown in Fig. 1. The primary comprises two outer layers and four inner layers, while four intermediate layers serve as a secondary. The mean diameter of the inner layers is approximately $1 / \sqrt{2}$ of the mean diameter of the two outer layers. Thus the area of the inner winding is about the same as that between the outer and inner windings.

When the two windings are connected so that current in them flows in opposite directions, the primary
acts as a magnetic quadrupole, causing the field in the region around the probe to fall off much more rapidly than it would with a single coil. This helps isolate the

FIG. 1-Mechanical and electrical details of sensing probe construction. The primary acts as a magnetic quadrupole when current flows in opposite directions

Top chassis view shows standard component used in the construction of the magnetometer

Use of common chassis requires shielding between several ele ments to prevent interaction

Continuous Measurements

probe from nearby magnetic materials, but also reduces the total am-pere-turns acting on the core to 0.33 of its value if the windings were connected series-aiding.

Operation

In operation there is a small r-f current and a relatively large amount of $d-c$ flowing in the primary. Since the effective ampere turns of the primary determines the maximum range of the instrument, this figure should be as large as possible.

The relatively small size of the coil imposes an arbitrary limit of 300 ma, with the $I^{2} R$ loss conducted to a heat sink surrounding the coil. At this current the plastic core approaches softening tempera-

FIG. 2-Excitation level and magnetic characteristics of core cause secondary voltage to be rich in odd harmonics
ture and the maximum measurable field is about 100 gauss.

One form of probe has fins for convection cooling of the heat sink. Another, designed for measurement of the earth's magnetic field, has a maximum rating of 10 gauss or 30 ma and no heat sink is necessary. Still another version of the probe sacrifices the quadrupole construction to obtain a 300 -gauss maximum. This probe is used in a vacuum and has a conduction-cooled heat sink.

The magnetization curve of the core is approximately as shown in Fig. 2. The primary winding is excited with an r-f voltage just sufficient to bring the magnetic field to the knee of the curve. The voltage induced in the secondary is rich in harmonics, but because of the symmetry of the curve they are all odd if there is no d-c field. But a d-c field as small as 2 millioersteds generates appreciable amounts of even harmonics.

Probe Response

The even harmonics are used to servo d-c through the primary in a direction that minimizes even-harmonic production and cancels the external d-c field in the region around the core. The probe response is therefore quite linear, with d-c in the primary proportional to the external field. Because of the large length-to-cross-section

FIG. 3-Functions of magnetometer ele. ments
ratio of the core, the probe responds to the component of the magnetic field that is parallel to the core.

A functional diagram of the magnetometer is shown in Fig. 3. The number of components in the feedback loop make it a difficult one to close. The filter network and a-c amplifier are designed to have a phase shift of less than 90 deg from 225 to 425 kc . Since there are large amounts of odd harmonics and only a feeble second harmonic at the secondary of the sen'sing probe, the problem is to amplify only the second harmonic without excessive phase shaft. Bridged-T filters are used, as shown in Fig. 4, to accomplish this.

The amplifier shown in Fig. 5 is designed to amplify the secondharmonic signal while rejecting higher harmonics and low-fre-

FIG. 4-Multisection bridged-T filter is used to reduce sensing probe output to second harmonic alone without encountering excessive phase shift
quency noise. This is accomplished by a circuit tuned to the second harmonic, with the Q restricted to about ten to avoid excessive phase shift.

The fourth stage is used as a phase detector as well as a d-c amplifier. Its plate voltage consists of a sinusoidal signal at twice the oscillator frequency with 300 v peak amplitude. This voltage can be adjusted in or out of phase with the second-harmonic signal coming from the sensing probe.
The tube acts as a shunt rectifier and develops a negative d-c plate voltage which is dependent on the second-harmonic grid signal. The cathode bias is adjusted so that -35 v is developed at the plate with no grid signal. With the grid signal in phase the tube conducts more
heavily and the rectified plate voltage becomes less negative. Conversely, with an out-of-phase signal the plate voltage becomes more negative.

Regulator Tubes

The rectified plate voltage is applied to the grids of four 6L6 tubes in parallel, which serve as a series regulator to control bias current in the search coil. A bridged-T filter tuned to the second-harmonic is necessary at this point to attenuate the a-c signal applied to the amplifier plate. A shunt capacitor together with the source impedance of the rectifier serves both as filter and as the time constant on which the servo loop is closed. It provides a phase shift of 6 db /octave to 100 kc , under circumstances where
the loop gain is less than unity.
The total range of voltage on the 6 L 6 grids can vary from 0 to 100 v , which allows them to control bias current from 300 down to a few ma. As these tubes approach cutoff their transconductance becomes less and less.

Maintaining Gain

Normally the loop gain of the magnetometer would also become lower, until at some current the accuracy would be less than required. To avoid this the cathodes are biased to a negative supply so that 10 ma of current is diverted around the search coil at all times. Thus with no current in the bias winding, corresponding to zero field, the tubes still have considerable gain.

Three shunts are provided to monitor the current through the bias winding. One is for a 1-percent front-panel meter and the other two have 0.1-percent accuracy for use with an external pen-type recorder.
The magnetometer has proved quite reliable and, when carefully adjusted, is capable of giving accuracies within a few millioersteds throughout its range. Even when it is not carefully adjusted, the instrument measures accurately to 0.1 percent on the 100 -gauss range, which is satisfactory for many applications.

FIG. 5-Circuit details of the a-c amplifier, phase detector and d-c amplifier elements of the magnetometer system

FIG. 1-Equivalent circuits for piezoelectric crystal. E-R version formulas for (A) to (B) are given in article

FIG. 2-Basic crystal circuit (A). lower impedance version (B) and its use with tuned circuit

FIG. 3-Crystal circuit response when paralled by resistor (A) and with L_{1} or C_{1} misadjusted

Stable Crystal Filter Is Parallel Resonant

Abstract

High-Q, unbalanced crystal circuit has properties similar to low L/C-ratio parallel-tuned circuit over appreciable frequency range. Ease of circuit design and adjustment makes it readily adaptable for use in f-m oscillators, signal generators, i-f amplifiers and variable-bandwidth filters

By J. CARL SEDDON Rocket Sonde Branch, Atmosphere and Astrophysies Division,
U. S. Naval Research Laboratory, Washington, D. C.

ELECTRONIC Q-MULTIPLIER circuits for improving the Q of parallel-tuned circuits have been described in the literature ${ }^{1,2,3}$ for frequencies of 0.5 mc or less. Cascading of such circuits is impractical because Q-multiplication does not improve the frequency stability. Crystal circuits, which have both Q and stability, have the disadvantages that they are usually balanced, are tedious to design and are not readily adapted to variable bandwidth.

The crystal circuit described here is stable, unbalanced and easy to design and adjust. It was devised to improve the selectivity of radio receivers used in radio propagation studies using rockets.
Signals approaching the millivolt level would sometimes be present within 2 or 3 kc of the weak signal
received from the rocket. Although the permissible bandwidth of the system was only 0.5 kc , more than one stage of selectivity was required to eliminate such competition. In addition, as considerable testing was necessary before the rocket firing, it was desirable to have the bandwidth variable, as signal generators can drift out of a $0.5-\mathrm{kc}$ band when operating near 10 mc .

The circuit was incorporated into the receiver's local oscillator where a stable frequency, which could be varied over a narrow range of frequencies, was desired.

Crystal Circuit Theory

Figure 1A shows the conventional equivalent electrical circuit for a piezoelectric crystal.

Figure 1B shows another equivalent circuit which makes the be-
havior somewhat easier to visualize. Although it is not rigorously correct to do so, L_{*}, C_{*} and r_{2} can be assumed to be constants in practical design problems. The conversion formulas for Fig. 1B are

$$
\begin{gather*}
C_{s}=C_{1}+C_{2} \cong C_{1} \tag{1a}\\
L_{e}=L_{2}\left(\frac{C_{2}}{C_{1}+C_{2}}\right)^{2} \cong L_{2}\left(\frac{C_{2}}{C_{1}}\right)^{2} \tag{lb}\\
C_{t}=\frac{C_{1}\left(C_{1}+C_{2}\right)}{C_{2}} \cong \frac{C_{1}^{2}}{C_{2}} \tag{1c}\\
r_{e}=\left(\frac{C_{2}}{C_{1}+C_{2}}\right)^{2} \cong\left(\frac{C_{2}}{C_{1}}\right)^{2} r_{2} \tag{1d}
\end{gather*}
$$

Fig. 1B can be converted into a parallel-resonant circuit at one frequency by adding a coil L_{1} in series with the crystal, of such a magnitude that it will series resonate with C_{1}, the capacitance of the crystal in its holder and socket. This ca-
pacitance can be measured easily by using a Q meter or bridge at a frequency at which the crystal does not vibrate.

The parallel-resonant crystal circuit is shown in Fig. 2A. This circuit will be referred to hereafter as the crystal circuit. The impedance of the circuit may be reduced by adding an additional capacitor ΔC_{1} as shown in Fig. 2B.

At a frequency f near the par-allel-resonant frequency f_{p} the impedance is approximately
$Z=r_{1}+j 4 \pi f_{p} L_{1} \delta+\frac{L_{e} / C_{e}}{r_{e}+j 4 \pi f_{p} L_{e} \delta}$
where $\delta=f / f_{p}-1$ is the percentage of frequency deviation from resonance and r_{1} is the resistance of coil L_{1}.

For small values of δ, the first two terms of Eq. 2 are of small significance and the response is essentially that of a parallel-tuned circuit. For frequencies far from resonance, the response is that of a series-resonant circuit.

Minimum Z is obtained when the reactance is zero; this occurs at a value

$$
\begin{equation*}
\delta_{m} \cong \pm \frac{1}{2} \sqrt{C_{2} / C_{1}} \tag{3}
\end{equation*}
$$

Circuit Response

There is a minimum resistance of r_{1} at a frequency difference of $\delta_{m} f_{p}$ cycles each side of resonance. The response of the circuit follows the universal resonance curve closely until the impedance has decreased to a value comparable with r_{1}. This usually occurs at a value of not less than 90 percent of δ_{m}. For larger values of δ the impedance increases slowly.

Ratio C_{2} / C_{1} is important as it is nearly equal to the square of the coefficient of electromechanical coupling. For a wire-mounted plated AT-cut crystal, the best ratio that can be obtained is not larger than $1 / 180 .^{4}$ Where the capacitance of the holder and socket must be included, the ratio runs about $1 / 230$; thus $\delta_{m}= \pm 3.3$ percent as a maximum for AT-cut crystals, which compares favorably with values obtainable with magnetostriction resonators. The equivalent circuit is the same, except that inductors and capacitors are interchanged. For BT-cut crystals, δ_{m} is about ± 2 percent.

The basic circuit can be paralleled by a resistor R or a tuned L-C circuit, as shown in Fig. 2C, to give a lower resultant Q given by

$$
\begin{equation*}
Q_{R}=Q_{2} \frac{R}{\left(R+R_{p}\right)} \tag{4}
\end{equation*}
$$

where Q_{2} is the crystal Q and R_{ν} is the maximum resistance of the crystal circuit.

Paralleling a tuned L-C circuit with the crystal circuit improves the Q of the L-C circuit and reduces its temperature coefficient materially because the crystal's C_{n} is large and has an effective temperature coefficient of the order of only a few parts per million per deg C. The combination will have a low reactance at all frequencies not near f_{p} except for two symmetrical responses at $f_{p} \pm \delta_{r} f_{p}$.

The deviation of these side responses can be found from the relation

$$
\begin{align*}
\delta_{r} & = \pm \sqrt{\frac{L_{c}}{4 L_{1}}+\delta_{m}^{2}} \\
& = \pm \sqrt{\frac{C_{1}}{4 C_{c}}+\delta_{m}^{2}} \tag{5}
\end{align*}
$$

where L_{c} and C_{c} are the values used in the tuned circuit. These side responses are not particularly serious in general, as they can usually be removed by a following amplifier stage having only the usual L-C tuned circuit, tuned to f_{p}. Another method is to use different values for L_{c} in successive stages.

The resultant bandwidth $B W$ can be found by appropriate substitutions into Eq. 4 to obtain
$B W=1 /\left[2 \pi R C_{1}\left(\frac{C_{1}}{C_{2}}\right)\left(1-\frac{Q_{R}}{Q_{2}}\right)\right]$
As Q_{2} is 10^{5} or more, it is usually possible to ignore the ratio Q_{R} / Q_{S}. If a crystal is to be used whose ratio C_{1} / C_{2} is not known, it may be calculated from

$$
\begin{equation*}
C_{1} / C_{2}=f_{p} /\left[2\left(f_{p}-f_{s}\right)\right] \tag{7}
\end{equation*}
$$

if f_{p} and the series resonant frequency f_{s} are measured.

If a narrower bandwidth, $B W^{\prime}$, is desired, compute C_{0} from Eq. 7 and then from Eq. 6 obtain the total capacitance C_{1}^{\prime} required. Add enough capacitance in parallel with the crystal to give this required capacitance. If the resultant frequency f_{p}^{\prime} is not quite equal to the final center frequency desired, a parallel reactive component may be added across the crystal circuit to tune it to the correct frequency.
Table I shows the comparison of the measured values of Q_{R} compared with those calculated from Eq. 4 using various resistors, R, in parallel with a crystal circuit similar to that of Fig. 2A. The crystal used was an air-gap type transmitting crystal with a C_{1} / C_{2} ratio of 2,350 ($\delta_{m}= \pm 1$ percent). The crystal circuit parameters were $f_{p}=848.4$ $\mathrm{kc}, L_{\mathrm{s}}=1.86 \mathrm{mh}, L_{c}=0.79 \mu \mathrm{~h}$, $Q_{\mathrm{a}}=129,000, L_{2}=4.4 \mathrm{~h}, C_{0}=$ $44,600 \mu \mu \mathrm{f}, R_{p}=544,000$ ohms, $C_{1}=19 \mu \mu \mathrm{f}, r_{e}=0.00005 \mathrm{ohm}$.

Figure 3A shows the response of the above crystal circuit paralleled by a resistor; Fig. 3B shows the effect of a misadjustment of either L_{1} or C_{1}. At the expense of a poorer

FIG. 4-Variable bandwidth circuit and responses at 848.54 -kc center frequency
response on one side, the response can be made quite steep on the other side.

Use in I-F Amplifiers

The crystal circuit may be applied to i-f amplifiers already built, but which are not sufficiently selective, by connecting it in parallel with one or more of the L-C circuits in the amplifier. At least one L-C circuit should not be so paralleled, to remove the effects of the side responses.

It is possible to retain the cen-ter-frequency gain within a few percent if the plate circuit impedances are not too large. Standard 456 -kc i-f amplifiers have high plate impedances, so that it may be necessary to tap down on the inductances. However, to obtain the fullest benefit from this crystal circuit, the i-f amplifier should operate at a higher frequency to obtain good image rejection and to make the needed component values easier to obtain. Five me has been found to be a convenient frequency at which to operate.

If a flat-topped response characteristic is desired, stagger-tuning may be employed, but the overall gain is reduced. If the receiver has double-tuned transformers, one crystal circuit may be placed across the primary and one across the secondary.

If the impedance of the transformer at resonance is much smaller than that of the crystal circuit at resonance, the critical coupling coefficient and the center-frequency gain is not appreciably altered; the bandwidth is reduced with the shape of the response curve the same as before.

This method was tried on two amplifier stages with critically coupled transformers in an 845 -kc amplifier with a bandwidth of 12 kc . The shape of the response curve was the same, but the new bandwidth was 0.5 kc . The maximum gain was reduced a few percent.

Similar bandwidth reductions were obtained with a $5.1-\mathrm{mc}$ amplifier where the bandwidth was reduced from 50 kc to 5 kc .

Bandwidth may be decreased in steps by incorporating a switch that increases the capacitance in parallel with each crystal and at the same time reduces L_{1} correspondingly.

The coefficient of coupling of the transformers need not be altered. This method will cause a slight change in the center frequency.

Figure 4 shows an arrangement for securing a continuously variable bandwidth over a 4 to 1 range with no change in the shape of the response curve. It has the desirable features that the gain in the pass band is essentially unaltered and the center frequency of the pass band is constant.

The crystal circuit was placed in the input circuit of a cathode follower, so that the input impedance was $Z_{\text {}}=Z /(1-A)$ where Z is the crystal circuit impedance and A is the cathode follower gain. The input to the cathode follower was connected across the primary of an ordinary double-tuned transformer. Another similar circuit was placed across the secondary. Gains were kept approximately equal by the ganged potentiometers. The responses shown were obtained for $A=0$ and $A=0.75$ at a center frequency of 848.4 kc .

Use in Oscillators

The crystal circuit was connected across one tank circuit of a regenerative amplifier type of oscillator to provide a stable oscillator that could be easily set to a new frequency by a variable capacitor.
Figure 5 shows the frequency variation obtained with a $100-\mu \mu \mathrm{f}$ capacitor using a 3.87 -me crystal. The dotted lines show the variation obtained if the capacitor across the crystal (part of C_{1}) is either too large or too small, thus introducing asymmetry in the crystal circuit response. The total variation in C_{1} was $10 \mu \mu \mathrm{f}$. The voltage amplitude for the symmetrical case is also shown plotted in percent of maximum amplitude. An oscillator was

Table 1-Measured and Calculated Q for Various Values of Parallel Resistors

$\begin{gathered} R \\ \text { (Ohins) } \end{gathered}$	$\begin{gathered} \mathrm{Q} \\ \text { (Meas.) } \end{gathered}$	$\stackrel{O}{(\text { Cal. })}$	Percent (Difi.)
75,000	15, 100	15,700	2
27, 200	6,050	6, 110	1.5
14,500 7,300	3,265	3,360 1,710	$\stackrel{3}{1.7}$

constructed for field use at 7.75 mc which covered a frequency deviation range of 0.3 percent.

Paralleling the crystal circuit with a capacitor results in r_{1} reducing the Q and consequently the maximum impedance of the circuit. If $X_{c_{d}}$ is the reactance of the added

FIG. 5-Performance of variable-frequency crystal oscillator
parallel capacitor, the maximum impedance of the circuit is in general reduced by the same amount as though a resistor of approximately $X_{c a}{ }^{2} / r_{1}$ ohms were added in parallel with the circuit. Thus there is a limit to how far the circuit can be detuned without serious loss of Q . Also, the temperature coefficient increases as the frequency is tuned away from f_{p}.

The high selectivity obtained with this circuit is useful in spectrum analyzers. The circuit was also used in a standard type of frequency discriminator circuit. ${ }^{5}$

The author acknowledges helpful discussions with J. E. Jackson. G. H. Spaid supplied almost all of the data on the applications.

References

(1) H. E. Harris, Simplified Q-Multiplier. Electionics, p 130, May 1951 .
(2) J. W. Muehlner. Transfer Properties of Single and Coupled Circuits with and without Feedback, Proc KhE, p 945, Aug. 1951.
(3) O. G. Villard, Jr. and W. L. Rorden, Flexible Selectivity tor Communicadions Receivers, Electronics, p 138, Apr. 1952.
(4) D. F. Ciccolella and L. J. Labrie, High Frequency Crystal Units for Use in Selective Networks and Their Proposed Application in Filters Suitable for Mobile Radio Channel Selection, Trans IRE, PGVC-3, b 118, June 1953
(5) R. Adler, A Gated-Beam Discriminator, Electronics, p 82, Feb. 1950.

Waveforms of magnetic inverter are checked on oscilloscope and effects of bias variations determined

Magnetic Inverter Uses

Abstract

Collector and emitter-coil windings of the on transistor of multivibrator are differentially connected across input voltage so that turns in drive winding partially determine frequency of oscillation. Common-base resistor extends operating range by limiting base-to-emitter drive without waveform deterioration. Reliable operation is obtained without current bias. Alternate electrontube circuit description is also given along with characteristics

By C. H. R. CAMPLING

Associate Professor, Department of Electrical Engineering, Queen's University, Kingston, Canada

TRANSISTOR-MAGNETIC INVERTERS are finding increasing applications in signal and power conversion. For signal conversion, they give results similar to those given by electromechanical vibrator converters and for power conversion they produce high voltage from a low-voltage d-c power source. Frequency as well as output amplitude is directly proportional to the input voltage.

For power conversion, the magnetic inverter can substitute for the dynamotor type of rotating machine used in aircraft electrical systems and in military electronic equipment. Chief advantage of the magnetic inverter is that it is entirely a static device in which the switching action is accomplished by
transistors or electron tubes.
This article describes a differential multivibrator inverter circuit. ${ }^{1}$ Its basic operation is similar to the more common type of inverter.

Basic Theory

An improved version of the nondifferential multivibrator described by Royer ${ }^{2}$ is shown in Fig. 1. The circuit is analogous to its freerunning capacitor-coupled counterpart. In the latter, the time interval during which either switching element conducts or is cut off depends upon capacitor charge time. In the magnetic-coupled multivibrator the corresponding interval is determined by the time required for the flux in a magnetic core to change
its level. The core flux change extends from positive to negative saturation or vice versa, although in other circuit modifications one flux level can be preset and controlled. ${ }^{3}$
In Fig. 1 consider transistor Q_{1} to be conducting. Since the drop across the emitter to collector terminals is small, nearly the entire supply voltage V_{in} is applied across the collector winding of N_{2} turns. Polarity of other induced voltages is indicated by winding dots. The voltage developed by the base windings N_{1} keeps transistor Q_{1} conducting. The current-bias source (E_{B} and 68,000 -ohm combination) limits the base-drive current and prevents overheating. When transistor Q_{1} is conducting the voltage

Component layout indicates physical relationship and relative size for transistorized inverter (left) and tube inverter (right)

Tubes or Transistors

developed across the collector windings N_{3} tends to cause transistor Q_{2} to conduct. In fact, the collector-to-emitter voltage for transistor Q_{2} is twice the input voltage $V_{i n}$. But the voltage appearing across base windings N_{1} keeps Q_{2} cut off.

During this quasisteady state, the core flux is changing over the steep unsaturated portion of its magnetization characteristic and the core and windings can momentarily be regarded as an ideal transformer. The winding voltages are steady because the voltage sustaining the flux change in the core is $V_{1 \mathrm{in}}$.

Core Saturation

Transistor Q_{1} conducts until the core saturates. Time of saturation is a function of N_{0} and $V_{i n}$ in accordance with Faraday's law that $d \phi / d t=V_{\mathrm{in}} / N_{\text {e. }}$. When the core
saturates, the core and windings are no longer regarded as an ideal transformer. The winding voltages collapse and the bias source forces conduction of one transistor. Furthermore, the energy stored in the core can only be released by a decrease in the flux from its saturation level. Therefore, transistor Q_{2} conducts. The transistors exchange roles rapidly and during the next half cycle transistor Q_{1} is cutoff. Evidently, both the frequency and the amplitude of the output square wave depend directly upon V_{t}. The frequency is given by $f=V_{\text {to }} / 4 N_{z} \phi_{m}$ where $\phi_{\text {", }}$ is the saturation flux. The linear dependence of f upon $V_{\text {in }}$ makes the circuit applicable for telemetering. For loads of appreciable magnitude, there is efficient conversion of d-c source power to square-wave load power. Consequently, inverters can substitute
for rotating electromechanical con." verters.

Clipping Diodes

Diodes D_{1} and D_{2} in Fig. 1 clip leading-edge spikes of the square wave when a transistor switches from on to off. The output waveforms for the circuit with and without the diodes are shown in Fig. 2A and 2B. The spikes should not be eliminated by shorting the bias source as E_{n} ensures reliable circuit oscillations and limits the on transistor base current to a minimum heating value.

For the saturated on transistor, the product of base current and base-to-emitter voltage can exceed the product of collector current and collector-to-emitter voltage. ${ }^{\text {t }}$

The spikes in Fig. 2B occur because the bias source cannot function properly as a current source

FIG. 1-Inverter is analogous to freerunning cathode-coupled multivibrator

FIG. 2-Diodes of modified inverter clip spikes of output (A) while original inverter spikes appear (B). Scales are 1 v per amplitude division and 0.5 millisec per time division
unless one transistor is fully conducting. During the transition interval, the resistance of the bias path is momentarily too high. The use of the diodes is the most effective way to eliminate transients at all frequencies.

The multivibrator of Fig. 1 has one serious disadvantage. To increase the frequency $V_{\text {tn }}$ must be increased. and as $V_{\text {In }}$ increases all winding voltages including the base voltage of the on transistor increase. Excessive base drive causes the transistors to overheat.

Neither reducing the number of turns in the base windings nor adding resistance in series with these windings can effectively avert overheating. If the base-winding turns are reduced, the circuit is likely to cease oscillation at low input voltages. On the other hand, the addition of series resistance in the base circuit causes the flat portions of the output waveform to be replaced by decay transients.

Differential Multivibrator

Most of the disadvantages inherent in the simple transistor-magnetic inverter are eliminated in the differential circuit of Fig. 3. This circuit oscillates reliably without the use of current bias. Since any spikes appearing in the output waveform are less than $1 / 2 \mu \mathrm{sec}$ in duration, the clipping diodes are omitted. If the spikes are objectionable they can be eliminated by connecting small capacitors between collector and emitter of each transistor. Furthermore, the commonbase resistor R_{B} limits the base-toemitter drive without inpairing the circuit waveforms.

With the circuit in oscillation, one transistor is cut off and the other is fully conducting. If transistor Q_{1} is conducting, the voltage $V_{\text {in }}$ appears across N_{z} turns in

FIG. 3-Magnetic inverter with differen. tially connected windings oscillates without current bias

FIG. 4-Frequency characteristics of modified circuit (lowest curve) has components of Fig. 3. Remaining curves for differential inverter with N_{1} as parameter
series with N_{1} turns, neglecting the small collector-to-emitter drop. The series differential connection of collector and emitter windings provides an emitter-to-base drive of the correct polarity to sustain conduction. Similarly, the transformer voltage across the N_{1} emitter windings of Q_{2} is of the correct polarity to keep transistor Q_{\Perp} cut off despite its high collector voltage. Because of conduction in transistor Q_{1}, the rate of change of flux in the core is $d \phi / d t=V_{\mathrm{In}} /\left(N_{2}-N_{\mathrm{i}}\right)$. Core-flux excursion from negative to positive saturation occurs more quickly than in the inverter of Fig. 1. When the excursion is complete, the winding
voltages collapse. Transistor Q_{1} is then cut off, transistor Q_{2} conducts for the next half-cycle and the process is repeated.

While the turns in the emitter drive windings influence the oscillation frequency, it is possible to prevent transistor overheating caused by excessive drive. Even high turns ratio values, compared with those required for the circuit of Fig. 1, are offset by the insertion of resistor $R_{z t}$ which limits the base current of the on transistor. The limiting action does not interfere with the load components of current in the core windings. Resistor \boldsymbol{R}_{n} does not carry these currents. Furthermore, R_{n} does not cause deterioration of the clean rectangular output waveform. Finally, its limiting action is effective over a wide range of the input voltage $V_{\mathrm{i}} .$.

Oscillation Frequency

The circuit is called a differential multivibrator or inverter because of the differential action of the collector and emitter windings. Since the rate of change of core flux is affected by the differential connection, the frequency of oscillation is too. The frequency is given by $f=V_{\mathrm{t} .} /\left[4\left(N_{2}-N_{1}\right) \phi_{m}\right]$. The differential circuit produces, for the same set of components and the same input voltage, a higher output frequency than does the circuit arrangement of Fig. 1.

Comparative Characteristics

The family of characteristics shown in Fig. 4 indicates the effect of varying the number of turns N_{1} in the feedback or emitter windings of the circuit in Fig. 3. The lowest curve is obtained with the same components indicated in the circuit of Fig. 3, but with the circuit arrangement of Fig. 1. For this set of components, in which the com-

FIG. 5-Output waveform of differential inverter of Fig. 3 with $0.01 \mu f$ capacitor connecled between collector and emitter of each transistor to clip pip. Input valtage $V_{i n}=3 \mathrm{v}(A) .4 .5 \mathrm{v}$ (B) and 6 v (C). Each waveform amplitude is 2 v per large division and time scale is 50 sec per large division
mon base resistor R_{k} is optimized by trial, little further advantage occurs from the increase in slope obtained with an increase in N_{1} as ultimately the waveform deteriorates. However, the insertion of resistors of the same magnitude as R_{b} in series with the bases of the transistors in a circuit like that shown in Fig. 1 completely alters the output waveform at all frequencies. Thus, the differential circuit permits the use of this simple self-adjusting protective feature which operates effectively over a wide range of voltage, frequency and the parameter N_{t}.

Thermal instability at the 6 -v level on the lowest curve in Fig. 4 emphasizes the importance of the base resistor in extending the operating range. The upper curves, obtained using the differential circuit with the limiting resistor, represent stable operation at the $6-\mathrm{v}$ level without noticeable heating of the transistors.

Output waveforms for the differential circuit of Fig. 3 are shown in Fig. 5. The emitter windings consisted of 20 turns each. The three waveforms correspond to $V_{1 n}$

FIG. 6-Differential electron tube inverter gives best results when separate grid resistors are used

FIG. 7-Frequency characteristics for el эctron-tube inverter using separate hilf-tubes A and a single common cothode without grid resistors B

Table 1-Voltages of Differential and Nondifferential Circuit

Voltage	Nondifferential Inverter of Fig.	Differential Inverter of Fig. 3
Prak :i-c voltage across collector windings N_{2}	$V_{i n}$	$V_{\text {in }} \frac{N_{2}}{N_{2}-N_{1}}$
Peak a-c voltage across drive windings N_{1}	$V_{i n} \frac{N_{1}}{N_{2}}$	$V_{i n} \frac{N_{1}}{N_{2}-N_{1}}$
Peak collector-to-emitter voltage for off tran- sistor Peak a-c load voltage	$2 V_{i n}$	$2 V_{i n}$

equal to $3,4.5$ and 6 v respectively.
A comparison of several of the voltage levels in the differential circuit are given in Table I for both the circuit of Fig. 1 and the differential circuit of Fig. 3. While the differential connection increases the individual winding voltages, it does not increase the peak collector-to-emitter voltage for the off transistor.

Transistor-Tube Comparison

Electron tubes can also be used as the switching elements although they are less efficient than transistors in this application. The drop across an on tube and the relatively large current drawn by its grid are the main reason for lower efficiency. Nevertheless, tubes at present may be better in some applications because of availability with a suitable combination of voltage rating, current rating and capacity for switching at high speed.

Electron-Tube Circuit

A differential inverter using electron tubes as the switching elements is shown in Fig. 6. Best results are obtained with separate grid resistors. The extension of the permissible upper limit for V_{i} is noteworthy because the large grid currents associated with the nondifferential circuit limit its usefulness. Two separate tubes must be used because the common cathode of the double triode 6N7 precludes the use of its two halves as the two switching elements in the differential circuit. At low values of the input voltage, in the same order of magnitude as the voltage drop across the on tube, the output fre-
quency rises as the voltage is lowered. This behavior is associated with a flux excursion in the magnetic core over a minor but symmetrical hysteresis loop. The switching process occurs before the flux in the core reaches the saturation level. The low-voltage region is of limited utility for ordinary purposes because the output waveform deteriorates from its clean rectangular shape, and the frequency becomes dependent upon the load.

With transistors, the drop across the on switching element is small and as the input voltage decreases to tiny values the circuit ceases oscillation before a region of increasing frequency is reached.

Typical frequency characteristics for the circuit of Fig. 6 are shown in Fig. 7. Frequency characteristic B is that of a nondifferential circuit using the same components without protective resistors. In each case the maximum frequency shown is the highest obtained without rapid deterioration of the circuit operation due to overheating. Overheating is caused, particularly in the nondifferential circuit, by excessive grid current. The characteristics emphasize the extended range of operation which can be obtained with the differential circuit.

References

(1) C. H. R. Campling, Differential Magnetic Multivibrators, ATEE Cont, Paper No. 57-769
(2) G. H. Royer, A Switching Transistor D-C to A-C Converter Having An Output Frequency Proportional to the D-C Input Voltage, AIEF Trams. part I, p :322. Juls 1955 .
(3) R. L. VanAllen, A Variable Fre quency Magnetic-Coupled Multivibrator A/EE Truns. part I. \&u 6 , July $1: 155$. Used R. L. Bright, Junction Transistors p 111, Matr. 195 す.

Amplitude distribution asalyzer with associated equipment for determining distribution of various noise waveforms obtained from missile radar systems

Front view of analyzer. Knob is used to control bias placed on input wave

Simple Plotter Analyzes

T10 Evaluate noise and vibration, signal data on both power against frequency and amplitudedistribution density against amplitude must be available. Several versions of spectrum analyzers can provide the power-frequency characteristics automatically. However, the amplitude-distribution density has not been easily obtained.

The method most widely used to determine the amplitude-distribution function involves a slow and costly data reduction process. Recorded on either paper or film, the wave amplitude is measured and tabulated at regular intervals of time and the results are then reduced numerically to provide a histogram on the amplitude-distribution density of the signal.

Automatic Method

The amplitude-distribution analyzer, described in this article and developed for analyzing radar noise at the Naval Air Missile Test Center, provides a simple and rapid method for obtaining the ampli-tude-distribution density of noise signals in the audio frequency range. It produces an automatic plot of the amplitude-distribution density with an accuracy of about 5 percent with coarse resolution. Distribution density can be plotted almost as fast as the analyzer is operated.

Signals to be analyzed have a fre-

FIG. 1-System is based on the principle that the amplitude distribution density plot is the ratio of Σ, to T
quency range from 0 cps (d-c) to $1,000 \mathrm{cps}$. The present system performs well from 1 cps to 10,000 cps, but with redesign the lower limit can be extended down to essentially d-c. The plotter is similar to one developed by the Naval Research Laboratory ${ }^{1}$ but is much less complex.

Theory of Operation

A typical signal to be analyzed is shown in Fig. 1. The system is based on the following principle. As a function of time the ampli-tude-distribution density of an electrical signal is the relative probability that the signal amplitude lies within an interval of amplitude Δy, which is between the level Y and $Y+\Delta y$. The amplitudedistribution density plot is the ratio of Σt, the time the waveform spends between Y and $Y+\Delta y$, to T, the total time of measurement at level Y. This relationship can be expressed:

$$
\begin{equation*}
\int_{Y}^{Y} P\left(e_{t}\right) d e_{t}=\frac{\Sigma_{t}}{T} \tag{1}
\end{equation*}
$$

where $P\left(e_{1}\right)$ is the probability distribution of the waveform, $e_{1} ; t$ is the time that waveform $e_{\text {t }}$ lies between Y and $Y+\Delta y$; and T is the total time that the interval Δy is positioned at Y. This amplitudedistribution analyzer presents an output voltage E that is proportional to $\Sigma t / T$. Therefore, from Eq. 1

$$
E=K \Sigma_{t} / T=\kappa \int_{Y}^{Y+\Delta y}{ }_{P}\left(e_{t}\right) d e_{t}
$$

Circuit Description

Figure 2 contains the block diagram of the analyzer. The schematic is shown in Fig. 3. The waveform to be analyzed e_{1} is amplitude gated or sliced, that is, a small amplitude interval or slice

FIG. 2-Block diagram of amplitude. distribution analyzer. Analyzer effectively inspects only small amplitude inferval of input wave. Input wave to be analyzed is biased and then amplitude gated by two elipper limiters, one samples positive slice and the other samples negative. Output is average voltage E of gated portion

Device plots amplitude-distribution density required for complete analysis of noise and vibration signals within 1 to $10,000 \mathrm{cps}$ with an accuracy of 5 percent of maximum amplitude. Circuit illustrates principle that ampli-tude-distribution density of an electrical signal is a function of time wave spends between two adjacent amplitude levels

By DANIEL J. ZOLL U. S. Naval Air Missile Test Center, Point Mugu, California

Radar Noise Rapidly

of the signal is allowed to pass through the system for inspection. The voltage output from the slice is an average voltage E.

The input signal level is made to vary in d-c potential by adding a bias voltage to the input. As the bias is varied, different amplitude levels of the input waveform are sampled by the slice. If E is plotted as a function of the bias voltage, an approximation to the probability distribution of $e_{t},\left[P\left(e_{i}\right)\right]$, will be plotted. If the slice width approaches zero, or infinite resolution, the plot approaches $\mathrm{P}\left(e_{t}\right)$.

Basically, the device consists of two clipper limiters or slicers that maintain a narrow interval between the clipping and limiting levels. The two clipper limiters, sections A and B, are used to amplitude gate the signal and form E.

Section A samples the d-c biased input signal, $e_{i}+$ bias, between zero and $+\frac{1}{2}$ slice width. The output of section A is shown in Fig. 4. Because of a relatively narrow slice, the output of section A is essentially a negative square wave with amplitude equal to $-\frac{3}{2}$ slice width. The average value of this waveform is E_{A}.

Section B inspects the biased input signal between zero and $-\frac{1}{2}$ slice width. The output of section B is inverted and biased to $+\frac{1}{3}$ a slice width by a d-c amplifier so that essentially a positive square
wave is produced. The average value of this output waveform is E_{B}.

The output of sections A and B is summed through the output of the d-c amplifier. The average of the combined waveform E is now plotted by an $\mathrm{X}-\mathrm{Y}$ recorder to display the amplitude-distribution of the waveform. Thus, a plot of E against d-c bias is a first approximation to the amplitude-distribution function of the input waveform.

For audio signals, the $\mathrm{X}-\mathrm{Y}$ will average E, but for subaudio signals the filter R_{Σ}, C_{4} must be used.

The requirements for the d-c am-
plifier used in this analyzer are low d-c drift rate and a frequency response to $1,000 \mathrm{cps}$.

Operation

Operating controls for the distribution analyzer are two slice level potentiometers, the bias scan potentiometer, an X -axis scale factor control, and an on-off switch. The first step in operation of the analyzer is to balance the d-c amplifier and to adjust the two slice level potentiometers until both diode sections are producing the same magnitude. Proper scales are then selected on a two-axis plotting board, Y-Y recorder, and finally

FIG. 3-Schematic of amplitude-distribution analyzer. Clipper limiter A samples d-c biased input signal between zero and positive half of slice width. Clipper limiter B samples d-c biased input signal between zero and negative half of slice width. Output of B is inverted and biased to produce positive square wave by a d-c amplifier. Recorder plots average wave E of combined A and B output

FIG. 4-Circuit waveforms of the analyzer for an input triangular wave

FIG. 5-Theoretical amplitude-distribution of a sine wave for different ratios of slice width to peak-to-peak sine-wave amplitude as used in technique described
the bias scan potentiometer is used to slowly sweep the amplitude of the input signal producing the distribution density versus amplitude on the X-Y recorder.

Input signals for the present model must be less than 90 v peak-to-peak, the full swing of the d-c bias, so that a full amplitude sweep may be obtained. The peak-to-peak value of the signal should be as near as possible to 90 v to obtain maximum resolution.

The approximations made in this description have been that the wave has constant slopes inside the slice and that the action of the diodes is perfect.

Accuracy

Errors in the present system are caused by resolution limitations of the circuits and errors of circuit components. Resolution is the ability of the analyzer to define the structure of the true amplitudedistribution of the input waveform. Resolution is directly related to slice width, which must approach zero if E is to be exactly proportional to $P\left(e_{1}\right)$. Experimentally, the slice width is several percent of
the peak-to-peak input signal amplitude because of equipment limitations. Component errors are caused primarily by the silicon diodes and the d-c inverting amplifier. Silicon-diode error increases at high frequencies. At frequencies below $1,000 \mathrm{cps}$ the error is quite small.

Drift Error

Direct-coupled amplifier error is caused by amplifier drift. This drift causes an output error that is inversely proportional to the amplitude of the output signal. Therefore, the output signal must be made as large as possible to minimize this error.

The analyzer output signal E is proportional in magnitude to the slice width and should be larger than the expected drift of the d-c amplifier. Thus, the amplifier drift error must be balanced against resolution error.

Slice width to peak-to-peak signal amplitude ratio is defined as the resolution ratio. Resolution ratio is limited to $1: 20$ because of amplifier drift. However, if a stabilized d-c amplifier is used, the drift error is negligible and a resolution ratio of $1: 100$ is possible. In this case, the silicon diodes are the primary cause of system error.

FIG. 6-Theoretical and recorded distribution density for a sine wave. Slice width Δy to peak-to-peak input ratio at $1 / 20$

FIG. 7-Recorded amplitude distribution of the output of a random noise generator

Error in the equipment is defined as the percentage deviation of the analyzed distribution from the theoretical distribution with respect to the maximum value of the plotted distribution. This is similar to percent of full scale used for many meters. The present equipment will plot the distribution of noise inputs with an error of 5 percent or less.

If a stabilized amplifier and a resolution ratio of $1: 100$ are used, the analyzer error is reduced to less than 2 per cent for frequencies below $1,000 \mathrm{cps}$.

Sine Wave Inputs

For sine wave inputs, maximum error will exceed 5 percent because of the large error caused by resolution limitations. Figure 5 is a plot of a part of the amplitude-distribution of a sine wave. The effect of different resolution ratios is illustrated.

Figures 6 and 7 are plots of distribution densities for a sine wave and for random noise. Theoretical distribution for a sine wave is infinitely discontinuous at maximum signal amplitude. The analyzer cannot reproduce this part of the distribution accurately as is shown in Fig. 5.

Figure 7 shows the plotted and theoretical distribution density of a normal random noise signal. The analyzer results compare quite favorably. Good results can be expected for any distribution that is continuous.

Conclusions

From the results obtained from the use of this analyzer, it is evident that this device will produce an amplitude-distribution analysis with an error of not more than 5 percent of the maximum amplitude of the distribution for any noise signal between the frequencies, 1 cps to $10,000 \mathrm{cps}$. With improved design and components outlined in this article, the analyzer may have better resolution, 1:100 vs 1:20, an error of less than 2 percent, and a frequency range extending to zero.

Reference

(1) An Amplitude-Distribution Ana1yzer, Naval Revearch Laboratory, Washington, D. C. NRL Report 3890 , Dec. 29 1951 (Unclassified).

FIG. 2-Three-db bandwidth factor for transformers with two identical coupled circuits

FIG. 1-Shape factors for single and cascaded double-tuned transformers vs coupling factor. Curves are solutions of the equation shown which also applies to Fig. 2 and 3

H-F Amplifier Design

Any narrow-band h-f tuned amplifier can be designed from the accompanying curves and a minimum of additional information. The step-by-step method is directed to the bread-and-butter circuits of communications system design-narrow-band i-f amplifiers, r-f stages, and audio filter circuits. It relies only on provision of a set of design specifications

By ALBERT E. HAYES,
JR.* Mechanical Div., Engineering Research and Development, General Mills, Inc., Minneapolis, Minn.

TYPICAL DESIGN specifications for a narrow-band h-f tuned amplifier give the amount of gain required from a completed unit, the bandwidth at either the $3-\mathrm{db}$ or $6-\mathrm{db}$ points, and the $60-\mathrm{db}$ bandwidth. The problem is to determine the number of amplifier stages and transformers required; the transistor (or tube) types to be used; and the specifications for the i-f or r-f transformers to be used.

A simplifying assumption is made that $Q_{\mathrm{rr}}=Q_{\mathrm{sme}}$ in each
case. In narrow-band amplifiers it is seldom necessary to use transformers having unequal primary and secondary Q.

A quantity bandwidth factor (H) is introduced to normalize the design charts about any specified center frequency. This factor is defined as follows: $H_{3}=$ $3-\mathrm{db}$ bandwidth $\times Q / f_{\circ}$ and $H_{n}=$ 6 -db bandwidth $\times Q / f_{0}$, where H_{3} and H_{5} are the 3 - and $6-\mathrm{db}$ bandwidth factors, respectively; f_{0} is the center frequency of the pass band; and Q is the loaded un-
coupled Q of each transformer winding $\left(Q_{\mathrm{rr} 1}=Q_{\mathrm{sec}}\right)$.

The term coupling factor is applied to the quantity $K Q$, where K is the coupling coefficient and Q is as defined previously. This expression is identical with $K /$ K_{c}, K_{c} is critical coupling.

Use of the Tools

Assume that the following performance characteristics are specified for an amplifier: shape factor, overall gain, $3-\mathrm{db}$ band-

* Now with Ampex Corp
(continued on page 166)

Amplifier Design (continued from page 165)

FlG. 3-Six-db bandwidth factor for transformers with two identical coupled circuits

FIG. 4-Insertion loss of a single transformer at its midfrequency for varying values of the Q / Q_{0} ratio

(2) From Fig. 2, follow the $K Q$ $=0.84$ line to its intersection with the three-transformers line. The 3 -db bandwidth factor $\left(H_{3}\right)$ can then be read as 0.78 .
Since $B W=H_{0} f_{0} / Q$, the required loaded, uncoupled Q of each transformer winding may be computed:

$$
Q=H_{30} / B W=0.78 \times 45.5 / 8=44
$$

Thus far, a requirment for three i-f stages incorporating three transformers, each having primary and secondary loaded Q of 44 , with coupling factor adjusted to 0.84 , has been found.

To predict insertion loss of each transformer, estimate the ratio of loaded to unloaded \mathbf{Q} of the transformer windings. Previous experience shows that an unloaded Q of 175 is easily attainable at 455 kc with proper core and winding material. This magnitude gives a ratio of loaded to unloaded Q of about 0.25. Enter Fig. 4 with $R=0.25$ and $K Q=0.84$. Estimate insertion loss per transformer at 2.8 db for a total insertion loss (three (continued on page 168)

Now-guaranteed maximum and minimum performance limits for tape wound cores!

For the first time you can order tape wound cores with guaranteed performance to published limits.
All tape wound cores coming from the hydrogen atmosphere annealing furnaces at Magnetics, Inc. are tested by flux reset as proposed by the AIEE Working Group on Core Matching and Grading*. Thus, standard cores are given a standard test to give engineer-designers a standard component whose performance is guaranteed within fixed limits.
Magnetics, Inc. has established the limits to provide maximum, minimum and nominal $B_{m}, B_{r} / B_{m}, H_{1}$ and gain performance data. It is published for one, two, four and six mil tape thickness for Orthonol ${ }^{\text {® }}$ and Hy Mu 80.
Now it is possible for you to select and order cores specifically suited to your design (just as with any other standardized
component). You'll save many hours of experimenting, and because the reliability of the data is guaranteed, you'll be sure at every stage of design and production.
The published limits for Magnetics, Inc. tape wound core performance are ready now. Write for your copy: Dept. E-45, Magnetics, Inc., Butler, Pennsylvania.

MAGMETICS inc.

[^9]
Amplifier Designing (continued from page 166)

Table I-Max KQ for Max Permissible DoubleHumping

Permissible peak-to-valley ratio (db)	Number of transformers					
1	1	2	3	4	5	6
1	1.6	1.4	1.3	1.27	1.25	1.2
2	2	1.6	1.45	1.4	1.35	1.3
3	2.3	1.8	1.6	1.5	1.45	1.4

FIG. 5-Curve used for setting of coupling factor with a Q-meter as well as circuit of typical coupling transformer
transformers) of 3×2.8 or 8.4 db . To attain specified net gain of 60 db from the amplifier, $60+$ 8.4 or 68.4 db of gain must be provided by the three transistors used. Fortunately, many transistors are available with sufficient gain to do the job.

The minimum number of stages may depend either on overall gain requirements, a maximum shape factor specification, or both. If, in the previous example, a shape factor of 2.4 was called for instead of 4 , Fig. 1 reveals that four transformers at $K Q=1.35$, five transformers at $K Q=1.1$, or six transformers at $K Q=1.02$ could meet the requirements.

Slight overcoupling may often save the complication and expense of an additional stage. Table I shows how far overcoupling may be carried without exceeding a specified maximum peak-to-valley ratio.

Transformer Design

Double-tuned transformers may now be specified if the output impedance of each driving stage and the input impedance of each driven stage are known. The transformer supplier may not be able to deviate from classical winding-machine settings. In this event, the following procedure, using previously computed data, will produce a proper transformer.

The untapped primary and tapped secondary arrangement shown in Fig. 5 is generally sat-
isfactory for a coupling transformer. Primary and secondary coil inductance may be computed as follows:

$$
\begin{equation*}
L=\frac{r_{0}\left(Q_{u} / Q-1\right)}{2 f_{o} Q_{u}} \tag{1}
\end{equation*}
$$

where r_{0} is output resistance of driving stage; f_{0} is midband frequency; Q is loaded, uncoupled Q from step 4; and Q_{n} is unloaded, uncoupled Q of each winding. Trial windings will be necessary to determine the value of Q_{u}.

Capacitance C (Fig. 5) should be selected to resonate with L at the desired center frequency. Reactive components of the transistor input and output impedances my be taken care of by providing trimming controls on L, C, or both. Alternatively, reactance may be allowed for by modification of C.
Position of the secondary tap may be computed as follows:

$$
\begin{equation*}
N_{r} / N=\left(r_{i} / r_{o}\right)^{1 / 2} \tag{2}
\end{equation*}
$$ where N_{r} is the number of turns between tap and cold end of the secondary, N is the number of turns in each full winding, and r_{i} is the input resistance of driven stage.

With the aid of Fig. 5, coupling between the windings may be set on a Q meter to the desired value of $K Q$. First, terminate the windings with resistors to simulate the expected r_{o} and r_{i}. Then, adjust the coupling until the measured value of primary Q drops to the value $\left(Q_{Q} / Q\right)$ specified on the ordinate for the de-
sired coupling factor.
As an example, design a transformer using Raytheon 2N112 transistors and meet the following requirements and conditions: $r_{i}, 600$ ohms; $r_{o}, 25,000$ ohms; $K Q=0.84 ; f_{o}, 455 \mathrm{kc} ; Q, 44$; and $Q_{u}, 175$

Compute inductance with Eq. 1
$L=\frac{25 \times 10^{3}(175 / 44-1)}{2 \times 455 \times 10^{3} \times 175}=150{ }_{n} \mathrm{Hy}$
From a reactance/frequency table, C is $810 \mu \mu \mathrm{f}$.

Position of the secondary tap may be computed with Eq. 2.

$$
N_{T} / N=(600 / 25,000)^{1 / 2}=0.155
$$

or the secondary tap should be about 15 percent above the cold end of the secondary coil.

The coupling is adjusted to the required $K Q=0.84$ (Fig. 5) as follows: (1) Connect a $25,000-$ ohm resistor across the primary terminals. (2) Connect a 600ohm resistor between the secondary tap and the cold end of the secondary. (3) Connect the primary to a Q meter and resonate both primary and secondary with the slightest possible coupling. (4) Read primary Q. (5) Increase coupling until the measured Q drops to 58 percent of the value measured in step 4 . The coupling factor is now at the required value of 0.84 .

Since the 2N112 transistor has a published gain capability of better than 30 db per stage, 60 db in three stages is easily attainable.

Thanks are due B. D. Ramsey for the basis for Figs. 1 to 3.

Daystrom Instrument meets today's rigid requirements for Missile Control Equipment.

Our engineers and production specialists are qualified, ready and anxious to assist in your programs. Our new $350,000 \mathrm{sq}$; ft . plant is completely equipped with the most modern manufacturing and test facilities for the production of electronic and electro-mechanical products.

Be among our satisfied customers in the Armed Services and Industry. Contact us for complete information on how we can help you.

Remember-Reliability Is A Must At Daystrom Instrument.

DAYSTROM INSTRUMENT

Division of Daystrom, Inc. ARCHBALD, PENNA.

Punched Cards Control Steel Production

Digital and analog techniques are combined to control the operation of reverse roughing mill in new steel plant

Card-programmed system called Prodac will direct the operation of a 6,000 -horsepower universal reversing roughing mill. The system was designed by Westinghouse for the new $\$ 36$-million Aliquippa Works of the Jones and Laughlin Steel Corp.

With the system, the mill operator can press a single button to initiate the complete rolling sequence for a given slab. Information in punched-card form governs the setting of edger opening, edger speed, mill opening and mill speed.

When a stack of cards is inserted in an IBM card reader, the mill operator can begin to roll a sequence of schedules. To roll the first schedule, the operator presses a schedule advance button that causes the first punched card to be read by the card reader and its information to be stored.

A pass advance button causes information applying to the first pass to be used to set the separation and speeds of horizontal and vertical rolls. The slab then enters the edger and the mill.

When the slab has passed beyond
a slowdown hot-metal detector, the mill decelerates to limit slab travel after it clears the rolls. When the slab has passed beyond the rolls, the load detector initiates a signal that stops the mill.

Simultaneously, information for the next pass is used to reset the edger and main roll separations and to establish speeds and direction of rotation for the next pass. The mill is then automatically accelerated, and the slab reenters the mill. Similar operations are repeated for each pass.

If several slabs are to be processed identically, the operator needs only to press the pass advance button and fully automatic operation results. If the second schedule is to be different, pressing the schedule advance button will cause information from the second card in the reader to be extracted. The new schedule will be executed automatically when the pass advance button is pressed.

To illustrate the signal sequence incorporated in Prodac, the subsystem for automatically controlling separation between upper and lower
rolls will be described. Information applying to screwdown is transferred from punched card into storage by the IBM card reader. An analog signal representing actual roll separation is transmitted from the mill to an analog-to-digital converter for conversion into digital form.
When the operator presses the pass advance button to initiate rolling operations, digital reference information for the desired roll separation is extracted from storage and supplied to a digital difference detector. At the same time, the signal corresponding to actual roll separation is passed to the digital difference detector. The detector performs a subtraction that yields a resultant signal representing the difference between the actual and desired roll separation.

This signal applied through the digital-to-analog converter yields an analog signal for input to a magnetic amplifier. When output of the magnetic amplifier is supplied to a rotating regulator, an adjustable voltage drive adjusts the screws until roll separation is equal to that originally specified by the punched card.
Similar processes are used to control mill speed, edger speed and edger opening

Neon Triode Gives Low-Speed Gate

By RONALD L. IVES
Palo Alto, Calif.

Gating circuits a generation ago usually employed electromagnetic relays, which were seldom useful at speeds above 1,000 operations per second. They were most dependable at the lower operating speeds.

Since World War II, most gating circuits employ vacuum-tube multivibrators and their near relatives, which have useful operating speeds ranging from several operations per week up to quite a few million operations per second. These are

TRANSISTORIIED

the most complete line of POWER SUPPLIES

 V.R.P.S.- REGULATION (for line or load) 0.03\% or 0.003 Volts (whichever is greater)
- RIPPLE 1 mv . rms.
- RECOVERY TIME 50 microseconds
- STABILITY (for 8 hours) 0.03% or 0.003 Volts (whichever is greater)
- Tubeless.
- 0.005% resolution with 10 turn voltage control.
- Continuously variably output voltage without switching.
- External overload and short circuit protection included.
- Either positive or negative can be grounded.
- Units can be series connected.
- Suitable for square wave pulsed loading.
- Power requirements: $105-125$ volts, $50-65$ cycle. 400 cycle units available.
- Terminations on front and rear of unit.

High efficiency.
. Low heat dissipation.

- Compact, light weight.

Color: grey hammer tone.

- Suitable for bench or rack use.

Voltmeter and ammeter provided.

KEPCO

LABORATORIES, INC.
131.3 B SANFORD AVENUE FLUSHING55, N.Y. INDEPENDENCE $1-7000$

KEPCO OFFERS MORE THAN 120 STANDARD VOLTAGE REGULATED POWER SUPPLIES COVERING A WIDE RANGE OF MAGNETIC, TRANSISTOR AND TUBE TYPES, MOST MODELS AVAILABLE FROM STOCK. SEND FOR BROCHURE B. 581

Model
SC-32-0.5
SC-32-1
SC-32-1.5
SC-32-2.5

[^10]

FIG. 1-Gating circuit may use 6AV6. $1 / 212 A X 7$ or other triode types to produce low repetition rate pulses
gratifyingly dependable at all speeds below the few million operations per second. However, component requirements (particularly for capacitors) become inordinate at very slow operating speeds. The ratio of standby power to controlled power also becomes quite high at these slower speeds.

Experiments with neon tubes and triodes, to replace the dual triodes used in most multivibrator circuits, indicate that a number of slowspeed gating problems can be solved by such circuits. These circuits provide a great saving in standby power.

Two specific circuits will be de-
scribed with operating constants. A number of rather obvious alternate and derivative circuits are possible, and most of those tested work satisfactorily.

Upper limit of operating frequency of these circuits is in the vicinity of 5,000 operations per second, because of the slow deionization time of commercial neon tubes. Dependability of operation is enhanced if the neon tubes are constantly illuminated at almost any level above zero. Several spontaneous operations per month may be expected in exposed installations (probably caused by cosmic rays). However, the number of these operations is reduced to a very low figure (but probably not zero per year) by enclosure in a metal cabinet.

Off-On Gate

The circuit of an off-on gate is shown in Fig. 1. The supply voltage is set midway between the firing voltage (E_{t}) of the neon tube and its extinction voltage $\left(E_{c}\right)$. The neon tube does not conduct unless triggered by a momentary increase in voltage. Once conducting, it will continue until the supply voltage is momentarily lowered below the extinction voltage.

Demonstrator Airplane Sells Gear

Radio monitoring facilities are provided for two passengers in a Dove airplane equipped to demonstrate electronic instruments. The equipment, made by Smiths Aircraft Instruments, Ltd., England, includes automatic radio beacon coupling and automatic approach on the instrument landing system. Portions of the autopilot are also installed in the cabin

FIG. 2-If R_{z} is much greater than R_{1} and the reciprocal of time on is much less than pri, time on $=2.303 R_{1} \mathrm{C} \log _{10}$ $\left(E_{f}+E_{e}\right) / 2 E_{e}$ while dead time $=2.303$ $R_{0} C \log _{10}\left(E_{f}+E_{e}\right) / 2 E_{e}$

The neon tube is coupled to the triode by means of the triode grid resistor. The high value of this resistor biases the triode to low conduction. When the neon tube is conducting, the grid and cathode of the triode act as a diode, having negligible resistance. This action effectively short-circuits the triode grid resistor, so that the triode grid is very close to cathode potential when the neon tube is conducting. The triode therefore draws heavy plate current.

Triggering of this gate may be through a small capacitor in the anode circuit of the neon tube. With this arrangement, a small positive pulse momentarily increases the anode voltage of the neon tube, causing it to fire. This discharge, once started, continues as long as adequate supply voltage is present. A negative pulse applied through the same trigger input will momentarily lower the anode voltage of the neon tube below extinction level, and conduction will cease.

A similar triggering action can be made to take place through the cathode circuit of the neon tube. Here a negative pulse is required to start conduction. A positive shutoff pulse applied to the cathode of the neon tube will stop conduction. The triggering pulses are kept out of the triode grid-cathode circuit by means of a small r-f choke, indicated in Fig. 1.

Amplitude of the start pulse must always exceed the difference between the supply voltage and the firing voltage (E_{f}) of the neon tube. A small correction for contact po-

- Gomplete Linc of...
 XXP MICROWAVE POWER SUPPLIES

- Important Voltages Mayr Ee Preset
- Important Voltages and Currents Are Metered
- Adjustable Current Overload Protection for Microwave Tube

REPRESENTATIVES:

FLORIDA
 GEORGI
 al abama

J. NEAL CO

1941 S.W. 33rd AVE MIAMI, FLA.
Collector: 0-300 V, 100 ma max
Anode: 0-600 V, 60 ma max.
G-1: 0-300 V, 5 ma max.
G-2 or Reflector: 0 to $\pm 1200,1$ ma max.
G-3: 0 to $\pm 750,1$ ma max.
G-4: 0 to ± 500.1 ma max.
Regulation: 0.03\%
Ripple: 3 MV max.
Heater: 0 to 15 V D.C., Regulated
Internal G-1 or G-2 Modulation:
Square Wave, Pulse, Sawtooth, Sine Wave)

UNIVERSAL KLYSTRON POWER SUPPLY

Beam: $\mathbf{2 0 0} \mathbf{2 0 0 0}$ V, 125 ma max. $1800-3600 \mathrm{~V}, 100 \mathrm{ma}$ or 250 W max. Reflector: $0-1000 \mathrm{~V}$
Control Grid: -300 to 0 to +150 V ,
5 ma max.
Regulation: 0.03\%
Ripple: 3 MV max
Internal Reflector Modulation:
Square Wave, Pulse, Sawtooth, Sine Wave
KLYSTRON
POWER SUPPLY

Beam: $\mathbf{3 0 0} 1000$ V, 85 ma max.
Refiector: $0.900 \mathrm{~V}, 20$ ma max.
Control Grid: -300 to 0 to +150 V .
5 ma max.
Regulation: 1\%
Ripple: 7 MV max.
Internal Reflector Modulation:
Square Wave, Pulse, Sawtooth

SEE THEM AT The SHOW Booth No. 3715-3717

Precision Ollicrowave Equipment

 F-R MACHINE WORKS, Inc. WOODSIDE 77, N. Y. A jioria 8.2800

"THINK SMALL

 THINK MICRODOT"

Reliability and high performance with a minimum of size and weight. Proven by applications in military and commercial fields, one million combinations of Microdot micro-miniature coaxial cables and connectors are available from stock. Assemblies made by the exclusive Microdot technic to assure prompt delivery on standard and custom designs. Detailed 36 page catalog on request.

 microdot

For micro-miniaturization, "Think SmallThink Microdot." Our sales engineers are located in all major cities to readily assist you in special design and standard applications.
tential in the cathode circuit of the neon tube may be found desirable. The shutoff pulse amplitude must always exceed the difference between the supply voltage and the extinction voltage (E_{e}) of the neon tube. Optimum shape for the triggering pulses is like that of a ripsaw tooth, with a sharp rise and a gradual decline.

Constant Duration Gate

Circuit of a neon-triode gate that gives an output pulse of constant duration through a wide range of input pulse-repetition frequencies is shown in Fig. 2. A relatively large capacitor is tapped along the anode resistor of the neon tube. When the tube fires, the capacitor discharges through the neon tube and resistor R_{1} until the charge is dissipated. At that time, the neon tube goes out

If anode triggering with a positive pulse is used and the pulse shape is not ripsaw toothed, operation can be improved by addition of a high back resistance diode, as shown in Fig. 2.

When the neon tube is not conducting, the capacitor recharges

Discharge Path Forms Tree

Mullard in England made this tree-like pattern with one of their linear accelerators. Electronics from the accelerator penetrated the polished surface of the plastic block causing a charge to accumulate inside the block. The charge was released by inserting a sharp pin in the bottom, resulting in the tree effect which shows the discharge path

Flush antennas for supersonic aircraft use insulators of TEFLON ${ }^{\oplus}$ to beat shock...cold...heat

TFE-fluorocarbon resins are among the few insulators that remain effective at microwave frequencies under severe conditions of mechanical and climatic shock. This is proven by their use as insulators in flush antennas for supersonic and nearsonic aircraft such as the Boeing 707.

To keep weight down, the parts are used as both insulators and structural members. They are machined to tolerances of one mil. TFE resins have practically zero moisture absorption. Thus, their almost ideal electrical characteristics are not altered by humidity. Sensitivity of high-frequency equipment is maintained by their low attenuation factor. Dielectric constant and power factor of TFE-fluorocarbon resins are extremely low, and remain virtually unchanged through the high frequency and temperature ranges. In tests, flush antennas equipped with insulators of Teflon resins withstand continued immersion, minus $60^{\circ} \mathrm{F}$. to $250^{\circ} \mathrm{F}$. cycling, and 50 to 1000 cps vibration at 10 g acceleration.

Reliability is insured since the excellent electrical characteristics of TFE resins do not change with time, even at elevated temperatures. To find out how the properties of these resins can help you solve tough design problems, write to E. I. du Pont de Nemours \& Co. (Inc.), Polychemicals Dept., Rm. 17-3-4, Du Pont Bldg., Wilmington 98, Del.
In Canada: Du Pont Company of Canada (1956) Limited, P. O. Box 660, Montreal, Quebec.

VISIT THE DU PONT EXHIBIT BOOTH 4410-4412 at the 1958 I. R. E. SHOW The Coliseum New York City March 24 through 27

TEFLON

is a registered trademark . . .
TEFLON is Du Pont's registered trademark for its fluorocarbon resins, including the TFE (tetrafluoroethylene) resins discussed herein.

Removing lacquer or varnish from potentiometer windings to give the traveler a clean, unimpeded path of travel can be done in seconds with the Airbrasive Unit. The abrading action can be finely controlled so that only the varnish is removed. The windings, even when extremely fine wires are used, are unaffected. Use of a simple jig makes the process automatic and foolproof.

This is just one of the many delicate industrial cutting and abrading operations that can be performed with the Industrial Airbrasive Unit.

Other applications include calibrating precision glassware-removing surface deposits-cutting germanium and other crystalline substances-etching, drilling and light deburring of hard, brittle materials.

See what the Airbrasive process can do for you. Send sample parts or call one of our offices for a demonstration.

BULLETIN 5705 has full information. Send for a copy.

INDUSTRIAL DIVISION
Dept. EU 10 East 40th Street. New York 16, New York Western Office: 1839 West Pico Blvd., Los Angetes 6, Callf.
through R_{2} until its terminal voltage equals the supply voltage.

Best operation is secured with this circuit and its derivatives when resistance is kept high, capacitance low, and R_{z} is very much greater than $R_{\text {. }}$.

Applications

Both circuits were developed for use with meteorological instruments. The first works extremely well with an inductance connected from trigger input to ground. The initial turning on of the trigger circuit supplies the start pulse, and the flyback from the inductance when the circuit is opened provides the shutoff pulse. The second circuit functions excellently as a pulsestretcher. Within a wide range of trigger pulse repetition frequencies, the duration of the output pulse is always the same.

Diodes Offset Silicon Transistor Heat Drift

By David H. Bryan
Hawthorne, Calif.

FIG. 1-Germanium diode with 4,000 -ohm input resistor compensates drift in silicon transistor amplifier

In both germanium and silicon transistors, increased temperature decreases resistance of both the collector-to-base and emitter-to-base junctions. For germanium the change in the collector junction is sufficiently large to account for practically all heat drift effects. However, in silicon the change in

SERVING THE WEST FOR

YEARS

NEELY ENTERPRISES

representing the finest names
in electronic instrumentation

FIG. 2-If too much compensation results in this circuit, part of diade current can be bled to ground
collector-to-base junction resistance is practically negligible. The change in resistance of the emitter-to-base junction accounts for most of heatdrift effects. As a matter of fact the change in emitter-to-base resistance with changes in temperature is greater for silicon than for germanium because of the higher resistivity of silicon.

There are several methods of compensating heat drift in silicon transistor d-c amplifiers.

For an $n p n$ silicon emitter follower with 1-ma emitter current, output rises about $100-\mathrm{mv}$ as room temperature rises to 55 C . This drift can be offset by adding a $4,000 \mathrm{ohms}$ in series with the base and a back-biased germanium diode in parallel with the base. Over this temperature range diode current changes about 25 microamperes. This current through 4,000 ohms lowers voltage on the base 100 mv to provide compensation.

Using this network, the output variation with heat was found to be steady to within 10 mv . Since input impedance of the emitter follower is high, the 4,000 -ohm resistor has little effect. The shunt diode offers about one-megohm resistance, which is also not significant.

A similar arrangement of compensation can be used for an amplifier circuit using emitter-resistor degeneration. If too much compensation results it is better to bleed part of the diode current to ground than to reduce the drop across the diode. This is because diode behavior is inclined to change operat-
now... from

for transistorized memory circuits

THE NEW M3 LOW-DRIVE MEMORY CORE by FXC, made of Ferroxcube 6BI material, is designed for transistorized memory circuits and has unusually low driving current requirements. Its switching time is 2 microseconds with a current of 450 ma . at $40^{\circ} \mathrm{C}$. It can be furnished in complete arrays, such as the 10 by 10 memory array illustrated above, and it is delivered 100% tested to guaranteed specifications.

Requests for complete data on test conditions and guaranteed properties should be addressed to:
FERROXCUBE CORPORATION OF AMERICA
50 East Bridge Street, Saugerties, New York

Manufacturers of ferrite cares for recording heads, magnetic memories, TV flyback transformers, pulse transformers, filters, inductors, high frequency shields and power transformers.

MARCONI

TEST SETS FOR MOBILE RADIO TESTING

Designed for precision performance in

\author{

* Receiver alignment
 * Signal-to-noise measurement
 * Discriminator testirg
 * Checking rf and audio outputs
 * Deviation measurement
}
... All you need for fast field testing of fm transmitters and receivers is here in these two complementary instruments, tailored for mobile radio measurements.

The $1064 / 2$ provides highgrade fm outputs in the ranges 30 to 50,118 to 185 , and 450 to 470 mc ; crystalcontrolled i-f outputs at five spot frequencies; and alkc af output.

The 1065 has an rf power meter and $0-15 \mathrm{kc}$ deviation indicator for use up to 500 me: a dual-impedance af power meter; and a multirange volt/ammeter.

Each is lightweight, portable, and quality-engineered throughour. Tubes and crystals are all American types. Send for leaflet B117/B. Marconi
foi f.m.
test gear

[^11] CANADA : CANADIAN MARCONI CO • 6035 COTE DE LIESSE • MONTREAL 9 MARCONI INSTRUMENTS LTD • ST. ALBANS • HERTS • ENGLAND
ing point at low voltages but levels off at 20 volts or more. Hence more consistent behavior among diodes is obtained if the drop is maintained at twenty volts.

Applying this method to grounded-emitter transistor stages is not so effective unless several silicon diodes are used in series. In this type circuit the diode is in series with the collector and load resistor and is forward biased. The output can be thought of as the output of a two-input adding circuit comprising

FIG. 3-Silicon diode with transistor junction form adder circuit to offset temperature drift
two diodes that drift the same amount with heat changes. However, the effect of each diode is opposite in sign and hence they tend to cancel.

Where a back-biased diode is used, it should be regarded as supplying a compensating current. This diode must be germanium since the leakage of silicon is negligible for these applications. On the other hand, when a forward-biased diode is used, silicon is a little better because there is more variation with heat. This diode should be regarded as a voltage source that provides a compensating voltage.

Electronics Saves Punch Press Dies

Breakage of dies in punch presses is being reduced by electronics. Perhaps even more important than the cost of dies, less down time of

Type 252.
MIL-R-19A Style RA20 2 Watts Wirewound.
Type 25.
MIL-R-19A Style RA30 4 Watts Wirewound.
GENERAL SPECIFICATIONS

	MIL-R-19A		MIL-R-94B			
	RA20	RA30	Char.	RV2	RV4	RV5
Resistance Range (ohms)	3-15K	3-25K	$X \& Y$	100-2.5 megs	100-5 megs	250-2.5 megs
Rotational Life	5\% max, 25,000 cycles		$\begin{aligned} & \bar{X} \\ & Y \end{aligned}$	10% max, 15,000 cycles 10% max, 25,000 cycles		
Load Life	$3 \% \text { max }, 1,000 \text { hours, }$$\text { rated load, } 40^{\circ} \mathrm{C}$		$\begin{aligned} & X \\ & Y \end{aligned}$	12% max, 1,000 hours, rated load, $70^{\circ} \mathrm{C}$ 10% max, 1,000 hours, rated load, $70^{\circ} \mathrm{C}$		
Moisture Resistance	10% max. Method 106, MIL-STD-202, 3.5 megs min insulation resistance		X Y	10% average, 14% max, Method 106, MIL-STD-202, 50 megs min insulation resistance 6% average, 10% max, Method 106, MIL-STD-202, 100 megs min insulation resistance		
Low Temp. Storage	4\% max		X	$\begin{aligned} & 4 \% \max \\ & 2 \% \max \end{aligned}$		
Low Temp. Operation	4\% max		Y	4\% max 3\% max		
Thermal Cycling	4\% max		$\underset{Y}{X}$	$\begin{aligned} & 10 \% \max \\ & 6 \% \max \end{aligned}$		
Acceleration	3\% max		$X \& Y$	3\% max		
Shock	2\% max		$X \& Y$	2\% max		
High Freq. Vibration	2\% max		$X \& Y$	2\% max		
Temp. Range	$-63^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$		$X \& Y$	$-63^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		

Type 252.

Available also at CTS West Coast and Canadian subsidiaries' plants.
Contact your nearest CTS oflice or representative for complete details. Ask CTS specialists for help with all your current military or commercial variable resistor or precision fixed wirewound resistor problems.

GHIGAGO TELEPHONE SUPPLY Coyporation

ELKHART, INDIANA

KAMSAS CITY AREA (Kansas, lowe, Nebraaka, Missourl, So. III.) E. B. Schwerin Kaneaz City Misaouri Phone: WE 1-7564

SOUTH AMERICA Jose Luls Pontet
buenos Alres, Argentina Montevideo, Uruguay Rio de Janelro, Brazll Sao Paulo, Brazil

OTHER EXPORT Sylvan Ginsbury
8 West 40ih Streat Now Yort 18, New York Phone: Penn. $8-8239$

Superior and sustained quality contral, through frequent calibration of test instru. ments, can be achieved by semi-skilled personnel using these self-contained standards.

Portable Model 829 calibrates both AC and DC meters over ranges from 0.25 millivolt to 2000 volts and 2 microamperes to 20 amperes. Direct reading accuracy of 1% (0.5% using charts supplied). Output frequency from 50 to 400 cps depending on line frequency used. Net price $\$ 2,650$.

Console Model 261B calibrates all types of AC meters to direct reading accuracies of 0.5% (0.25% using calibration charts) over frequency range of 50 to 1600 cps . Current range from 1.5 milliamperes to 200 am peres; voltage range from 75 millivolts to 1500 volts. Output of electronic power oscillator has less than 5% total harmonic content at 60 cycles.

Net price $\$ \mathbf{\$, 2 5 0}$.

Model 262B Dual Potentiometer Standard calibrates DC electrical measuring instruments to direct reading accuracies of 0.1% (0.05% using calibration charts) through voltages ranging from 1 millivolt to 1500 volts and currents ranging from 1 microampere to 150 amperes. Employs Weston instruments and standard cells.

Net price $\$ 15,600$.
Prices are f.o.b. Boonton, N.J. \& subject to change without notice.
NE CAN
HL_P
HL_P
YOU
TOU
Technical and epplicafion data for zur six basic rodels fully described if a ew 24 page cataleg. Send for is todar.

Radio Frequency сиооатовит, мес:

 Boonton, New Jersey, U.S.A.
WAITING FOR YOU... EXCITING NEW IDEAS IN METALS!

See them at... Booth 4507-4509
IRE Natlonal Convention Mar. 24-27. N.Y., N.Y.
Wah Chang Corporation metals are opening new horizons for the expanding elestronics industry. .. new heights in high temperature performance, in absolute corrosion resistance, in space and weight reduction, in reliability!

And all of these vital metals will be on display for you to examine at the IRE . . . be sure to see quality WCC TUNGSTEN and MOLYBDENUM wire, rod and electrodes . . . plus WCC TANTALUM oxides and powders . . the proud products of over 41 years of metallurgical leadership!

Experienced personnel will be in attendance to discuss your metals problems. . to give you technical literature and specific information about prices and delivery dates!

Why not jol the WCC Booth Number down now (it's 4507-4509) so you're sure to remember it. You'll be glad you did!

See you at the show!

WAH CHANG CORPORATION

WOOLWORTH BUILDING, NEW YORK 7, N. Y.

Vibration... with frequencies up to 500 cycles per second and up to 15 G 's...might prove to be a shattering experience for some servo motors. But not for a G-M Servo!

operation of city's traffic light system, is expected to reduce accidents to fire equipment and to benefit motorists

The system consists of a threewatt $\mathrm{f}-\mathrm{m}$ transmitter that is installed on the fire vehicle and operated by the driver. It activates a red beacon and four yellow signal lights in a transistorized receiver located on poles near the intersection. Developed by the fire department radio division and built by Motorola, the system uses a dualtone decoded signal and carrier and is expected to operate on a frequency around 900 mc when final plans are adopted

The transmitter generates sinusoidal tones in audio band along with the carrier to ensure signal capture by two-reed decoders employed in the receiver. Upon signal decoding, relays are energized to activate either red beacon or yellow lights or both.

The two-reed decoders are necessary to handle two pairs of dualtone decoded signals, North-South and East-West, which are generated upon manual operation of two toggle switches on the transmitter panel. Operation of the N-S or E-W switch results in activation of the yellow lights facing in the selected direction. The succeeding switch operation causes deactivation

Tv Controls Traffic

Bobby controls traffic lights by watching monitor as closed-circuit tv cameras see vehicles around bends and over bridges in Durham. England
 Standards, Inc. that offer a dependability and accuracy ($\pm 0.01 \%$) unmarched in the field.
For here you will find the highly specialized engincering experience and the intricate tooling and production facilities needed to produce such sensitive microwave components as the two piarured on this page.

These two Tunable Band Pass Filters, both passive frequency selective devices, are capable of providing large amounts of selectivity in the stop band consistent with low dissipation losses in the pass band. Our standard line includes 2-, 3 - and 4 -section filters with a ganged tuning control feature, ofer a wide frequency range, assuring you of an accuracy of $\pm 0.01 \%$.

For details, contacr Frequency Standards, Inc., and we will furnish information on our standard products, ous custom products and our facilities for meeting all requirements, no matter how exacting, in the microwave components field.

Please address inquiries to Frequency Standards, Inc., Box 504 A, Asbury Park, N. J., Prospea 4-0500, of your nearest representative in all principal cities.

Transistors After Ten Years Of Development

Tenth anniversary of a little transistor which performs like a giant, invented by a little man who thinks giant thoughts. Left to right: Dr. G. P. Harnwell, President of the U. Of Pennsylvania: Dr. William Shockley, Noel Laureate, and Dr. J. H. Milligan, Jr., Chairman of the 1958 Transistor and Solid State Circuits Conference

In the ten years since Bell Labs announced its invention, the transistor has risen from an impractical 25 mw laboratory device to one of the most widely used components in electronics.

More than 28 million were sold last year at an average cost of $\$ 2.40$ each. This price was twenty percent lower than the previous year. Dr. William Shockley has said he thinks a reasonable estimate for average cost five years from now is about twenty-five cents.

Transistor theory of a decade ago offered no promise for high frequency operation. One kilomegacycle transistors are available today, and there is no reason to doubt that this will go up to ten kilo-megacycles in five years, and 100 kilo-megacycles in ten years. Limits set by the atomic structure have hardly been approached.

Can We Do It

As in all things, these advances will require a thorough analysis of the problems by imaginative
men confident of their abilities. The papers delivered at the 1958 Transistor and Solid State Conference in Philadelphia, and the ambitious attitude of men attending the conference dispel any doubts on this count.

Many new materials and techniques for building transistors which operate a 500 mc or higher, were discussed at the conference. General feeling was that a very rapid birth of ideas will continue for at least the next few years

In the final analysis, however, regardless of what secondary techniques are used, high frequency limit is determined by transistor geometry. Transistor dimensions determine the transit time which sets the theoretical high frequency limit for a particular material.

In a paper delivered at the conference, Dr. Shockley compared the advances made in transistor frequency response with changes in construction. Point contact transistors had the collector and the emitter mounted in the base in close proximity to each other. The
ability to physically place the collector and emitter in the base without having them touch was the limiting factor.

Junction transistors were a tremendous improvement over the point contact type. N and P materials in the junction transistor are joined in one crystalline structure, with continuity of the crystalline lattice maintained across the junction. Dimensional control possible with materials grown into one crystalline structure is obviously much better than would be possible by placing the two elements near each other
Increased knowledge in semiconductor physics, especially at the $\mathrm{P}-\mathrm{N}$ junctions, and the development of new materials have resulted in the constant improvement of junction transistors. Many of the techniques now under investigation to improve transistors will have a short life. Some will probably never reach the practical stage. Time and competition will determine which approaches are best.

Dr. Shockley feels that one of the final solutions will be to eliminate the base connection entirely, and supply the transistor with an external d. c. Commercially available transistors up to this time have all been three element devices requiring connections to each element. He feels that the junction size necessary to attach a lead to the base connection is too large for high-frequency development.

A transistor diode originally developed at Bell Laboratories is now in pilot production at the Shockley Semiconductor Laboratory of Beckman Instruments Inc. It has a negative resistance (i.e. will produce amplification) when the proper de bias is applied to it.

The negative resistance results when excess electrons or holes crossing a $\mathrm{P}-\mathrm{N}$ junction with a high reverse bias generates secondaries which form an avalanche multiplication. Matching the characteristics of the deathnium centers to the properties of silicon

Orders for DRIVER-HARRIS Nickel and Nickel Alloy Wire FILLED IN 24 HOURS

If we receive your order in the morning, it will be shipped out before evening . . . this is the new service policy of DriverHarris in the manufacture and distribution of 18 most frequently purchased Nickel and Nickel Alloys in wire form. In addition to this new warehouse stocking program, is the improved delivery schedule for Monel, Grade "A" Nickel, Inconel, R Monel and some Stainless Steels with lead time reduced to only 7 days in certain cases. The following list covers immediate availabilities. For complete detailed current listing showing all sizes and specifications, contact the nearest Driver-Harris branch - or call HUmboldt 3-4800 (New Jersey), REctor 2-9579, 80, 81, 82 (New York City).

IN STOCK READY FOR DELIVERY

MONEL
GRADE "A" NICKEL
GRADE "D" NICKEL INCONEL

25 wire sizes from .0021 to .091 12 wire sizes from .0025 to .091 9 wire sizes from .005 to .015
3 wire sizes from . 0253 to .050

STAINLESS STEEL
Type 304
24 wire sizes from .0016 to .164
Type 316
Type 330
NICHROME* NICHROME* V CHROMAX* KARMA* ADVANCE* MANGANIN LOHM* MIDOHM* 30 ALLOY

6 wire sizes from .007 to 0135 25 wire sizes from .0063 to .144 65 wire sizes from .0007 to .289 62 wire sizes from .00045 to .289 35 wire sizes from .0031 to 258 36 wire sizes from . 0005 to .036 49 wire sizes from .0008 to .258 37 wire sizes from .001 to .1285 29 wire sizes from .001 to .182 29 wire sizes from .001 to .182 28 wire sizes from .0015 to .182

LEAD TIME FOR MANUFACTURING WIRE \& RIBBON

As low as 10 days for
COLD DRAWN MONEL GRADE "A" NICKEL COLD DRAWN INCONEL R MONEL
wire sizes from 001 to 1875 wire sizes from . 001 to .1875 wire sizes from .001 to .1875 wire sizes from 0285 to .204

WHATEVER YOUR UHF ATTENUATION NEEDS...

A COAXIAL UNIT FROM
EMPIRE DEVICES
WILL meet
YOUR REQUIREMENTS
 are resistive coaxial networks for the frequency range from $D C$ to 4000 MC .

Accuracy is held to $\pm 1 / 2 \mathrm{DB}$, VSWR is better than 1.2 to $\mathbf{1}$. Any attenuais better than 1.2 to 1 . Any attenua-
tion values up to 60 DB are available. Deposited carbon elements are used for stability and operations at higher pulse levels. Standard impedance is 50 ohms, other valucs upon request. 50 ohms, other values upon request.
These units have excellent temperature characteristics and are vibration and shock resistant. Standard connectors are type " N ", attenuator pads are also available with type " C "

The attenuators may be obtained as individual pads (AT-50, AT-60), or as multi-position step attenuators AT-103 (six positions) and AT-104 (twelve positions). For even greater flexibility, several step attenuators may be series connected.

For complete technical information about aftenuators for your laboratory or production needs. laboratory or production needs.
write for free cotulog.

EMPIRE DEVICES
 PRODUCTS CORPORATION
 AMSTERDAM, NEW YORK
 Telephone: Victor 2-8400

manufacturers of
FIELD INTENSITY METERS - DISTORTION ANALYIERS - IMPULSE GENERATORS - COAXIAL ATIENUATORS - CRYSTAL MIXERS VISI7 OUR BOOTHS 3818-3820 AT THE I.R.E. SHOW
aids the increase in carrier injection when current in the $\mathrm{P}-\mathrm{N}$ junction is increased.

Only the dimension of the transistor diode which is in the direction of current flow must be small. All other dimensions can be large. Since it is not necessary to connect a lead to any of the larger junctions, the dimensions in the direction of current flow has no physieal limitations.

Stable high gain amplifiers can be made by combining transistor diodes and gyrators. Shockley claims that less expensive, higher performing digital computers made of only transistor diodes and ordinary diodes are possible.

New Companies Needed

Organization of a few companies with the sole function of manufacturing semiconductor crystal material would be a great boom to the transistor industry. Starting point for a good deal of development work, which must be done on semiconductor devices, is a thin slice of a semiconductor crystal. The equipment necessary to produce crystals without imperfections, and with accurately controlled impurity concentrations is very costly. Suppliers who would sell semiconductor crystals to companies not able to absorb the initial equipment cost are needed in the industry.

It is also possible that instead of growing massive crystals and slicing them-a process in which most of the crystal ends up as dustmachines could be developed to grow plates. The plates which would be the same thickness as present-day slices would be better suited to mass production techniques.

Practical Production

Dr. Shockley made a statement in his talk which summarizes very well the practical position of transistor development:
"If any area is weak, it seems to me to be along the border line between exploratory research, with knowledge as an adequate goal, and development for production, with the aim of finding a useful production process, whether or not understood. I believe the field

Now... a battery of Hydroforms at

- To reduce your development time and
cosis on every pre-production runl

Kaupp hydroformed prototypes and pre-production parts are accurately formed and drawn in less time, at lower cost. Hydroforming produces short run, and in some cases production pieces, quicker and more economically than tocl and die methods. New equipment installed by Kaupp assures faster service. For complete information on Kaupp metal forming facilities, call or write today!

```
FEWER DRAWING OPERATIONS
SIMPLER TOOLING
FASTER SET-UP
IMPROVED QUALITY
```

Expanded Kaupp facilities include deep Arawing by conventional methods for volume production runs and a completely equipped metal spinning department.

c. E. KAUPP \& SONS
 NEWARK WAY - MAPIEWOOD NEW JERSEY

12.INCH HYELOFORM Max. Blank - 12^{*} Diameter Max. Draw Depth - 7

new

D-B

low-reflection waveguide window seals

These rugged hermetic seals pass microwave energy with minimum reflection loss. Soldered directly to the waveguide flange, they seal out moisture, dust, oil, and salt spray-or maintain constant pressure or constant dielectric inside.

Thermally stable. D-B seals will not fracture in desert or arctic climates ... will withstand degassing by baking. Units are vacuum-tight...shock and vibration proof. Seven standard sizes cover the entire microwave and ultra-microwave range.

Write for complete data.

specifications

Type Windows: Metal-glass-mica, optically clear.
Size Range: 7 standard sizes cover from 8.2 to 90 KMc .
Temperature range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
VSWR: Averages 1.19 over entire range.
Pressure Differential: 30 psi.

DEMORNAY-BONARDI • 780 SOUTH ARROYO PARKWAY • PASADENA, CALIFORNIA
would advance faster if somewhat more fundamental understanding were sought for the processes likely to be useful in production."

Expandable Rectifier For High Voltage

Silicon diodes joined together to make a High Voltage Rectifier at low cost

SILICON RECTIFIERS which can be assembled into series chains make high-voltage rectification available at a mass production price. Inexpensive threaded bushings are used to screw the required number of individual units end-to-end.

The rectifiers produced by the Rectifier Division, Audio Devices, Inc., 620 East Byer Road, Santa Ana, California, can also be used singly for low and medium-voltage applications.
A rectifier with a peak inverse rating of $12,000 \mathrm{v}$ and a forward current rating of 500 ma can be made in about ten minutes by screwing together thirty A750 units, which have a peak inverse rating of 400 v .

High Power

Substantial amounts of power are available by using unit with higher current ratings. Thirty 40F1 units, which also have a peak inverse rating of $12,000 \mathrm{v}$, and a maximum forward current rating of $1 \frac{1}{2}$ amperes can provide 6 kw of rectified power in a single-phase half-wave circuit.

Maximum Ratings

Individual units now available for the expandable rectifier are sealed silicon diodes with peak inverse

THE ELECTRO MOTIVE MFG. CO., INC.
 Manufacturers of El-Menco Capacitors willmantic connecticut

- molded mica - mica trimmer - dipped paper - tubular paper - ceramic silvered mica films ceramic discs

Arco Electronics, Inc., 64 White St., New York 13, N. Y.
Exclusive Supplier To Jobbers and Distributors in the U.S. and Canada

Smaller toroids facilitate new designs open new channels to the coil winding industry

Think of the space . . . weight . . . design problems solved by this machine. Coils with IDs of just $1 / 16^{\prime \prime} \ldots$ maximum ODs of $3 / 4^{\prime \prime}$. . . heights to $1 / 2^{\prime \prime}$ wound automatically with wire sizes as fine as \#50! Winding speed is continuously variable from 0 to 800 turns per minute and machine equipment includes every accessory you'll need. Reversing mechanism, wire spacing and core rotation direction controls, wire tension device, automatic linear counter, for example, are just a few of the "custom extras" included as basic parts on Boesch SM. The flexibility offered by this revolutionary machine opens fresh new horizons to the coil winding industry. Get complete details on this Subminiature and all Boesch machinery now. Write today for Catalog 57A.

All Boesch Toroidal Winders . . . Fully-Automatic TW 200, Semi-Automatic TW 201 and Subminiature SM feature modern, adaptable design, easy operation, high speed and life-time parts lubrication.

Comparison is the best test of excellence.
See for yourself why Boesch manufactures the world's most superior winding machines.

See us at the
IRE SHOW
Booths 4301 \& 4302

BOESCH MANUFACTURING
COMPANY, INCORPORATED
DANBURY, CONNECTICUT
ratings ranging from 100 to 400 v and maximum forward current ratings ranging from 500 ma to ${ }_{12}^{\frac{1}{2} \mathrm{~A} \text {. }}$
Assemblies can be rated at the product of the number of units times individual peak inverse ratings, without derating. A negative temperature coefficient of resistance gives a self balancing effect which tends to keep the voltage evenly distributed over the units in the chain, to limits well within the unit ratings. Up to about $20,000 \mathrm{v}$ the assemblies offer simple, inexpensive rectification. At higher voltages, precautions have to be taken to control corona and ionization.

Hip Mount Capacitors Save Space

Designed to save space and reduce assembly costs, the feed thru capacitor is particularly useful when compactness is an essential part of equipment design. The units are ${ }_{3} \mathrm{in}$. long, and protrusion from the chassis plane is only $\frac{9}{64} \mathrm{in}$.

Hip keeps capacitor at uniform height and snug in hole

The CFT capacitors, designed by Cornell-Dubilier Electric Corp., South Plainfield, N. J. are self-positioning. The hip-ridge, holds insertion of the capacitor in the chassis hole to a fixed, always-uniform distance. No jigs are needed to maintain position for soldering the capacitor to the chassis.

The capacitor electrode is hotsolder coated. This feature permits the capacitor to be soldered to the

UNIVERSAL CERAMIC COIL FORMS FOR MILITARY AND COMMERCIAL APPLICATIONS

National Company, one of the nation's oldest suppliers of quality coils and coil forms, now introduces, for immediate delivery, a new line of ceramic coil forms, engineered to meet the most rigid military and commercial applications.

Available in 5 standard sizes, with or without terminal collars. Terminal collars accept up to four terminals per collar.

Internal, pre-set torque spring provides smooth, vibration-proof means of positioning and locking the adjusting cores. Keep coils tuned as set, even under severe vibration and shock.

Powdered iron cores available in choices of standard and long-core lengths. Color-coded to indicate optimum frequency ranges.

All material used are in accordance with applicable MIL-Specs.
Coil forms, collars, and terminals available at your National Parts Distributor. Coil forms supplied with spring washer, rubber gasket, coil base, external tooth. lock washer and brass nut. Cores may be ordered from National Company. Pre-assembled forms to your prints quoted by National Company upon request.

FOR SPECIFICATIONS, PRICES, DELIVERY - WRITE, PHONE, WIRE, since 1914 ค是

Syncramental

 motor provides precise

The Syncramental Motor accurately franslates pulses to incremental shaft position for conversion of digital information to analogous shaft displacements. Compact, long-life power can rotate potentiometers, counters, rotary switches, control mechanisms.
A special magnetic clutch mechanism, rather than ratchets, indexes the shaft. Clutch and detent mechanism are mounted between two LEDEX Rotary Solenoids whose armature plates face each other. Clutch rotates with one or the other of the energized armatures, to which it has been
 magnetically attracted, causing shaft rotation. Solenoid de-energizing returns the armature to original position, but clutch and shaft are held in displaced position by the detent.

PERFORMANCE:

. 35° (either diraction). Detent accuracy $-+1 / 2^{\circ}$ under no toad
Angular increment per puise- 36° (either direction. Detent accurycy- $\underline{t}_{0} 2 \mathrm{ib}$. in, starting conditions. Maximum stepping rate- 15 per second. Load capacity-un.
torque at $20^{\circ} \mathrm{C}$. Life expecta
ENVIRONMENTAL CONDITIONS: $120^{\circ} \mathrm{C}$. Altitude-up to $90,000 \mathrm{ft}$. Meets applicable require-Temperature-minus
ments of MIL-E-5272A.
SIIE, MOUNTINGS:
MOUNTINGS: $1.500^{\prime \prime}$ dia. $\times 2.525^{\prime \prime}$ long. Weight-13 oz. Mountings-standard Seryo.
White taday for complete data... MOTOR

Feed-thru capacitor saves space and low. ers assembly cost
metal chassis, eliminating use of eyelet fasteners.

Type CFT capacitors have a d-c working voltage of 600 v and are available in capacitance values from $4.7 \mu \mu \mathrm{f}$ to $1000 \mu \mu \mathrm{f}$. Diameters of the head and shank ends are ${ }_{8}^{7} 2 \mathrm{in}$. and 9.187 in. respectively. Operating temperature range is -55 C to +85 C .

Metal Film Mica Attenuators

Metal film mica can be easily cut into any desired shape

Highly stable microwave attenuators, made of a thin film of pure metal deposited on scratch-free mica a few thousands of an inch thick, reduce $R F$ leakage. Small size of a metallized mica high frequency variable attenuators permits a smaller slot width for guillotine design. This is desirable since RF leakage at the slot affects attenuation characteristics.

Electrical and environmental characteristics of the attenuator, developed by Filmohm Corporation, 48 W. 25th St., New York 10, N. Y., compare favorably with metallized glass elements. The metal film is

We can deliver!

FLEXIBLE WAVEGUIDE . . . for that difficult installation.

TELE-FLEX . . .standard moulded sections for use where vibration mounts are not practical.

TELE-TWIST. . . easily twisted for immediate field use on "E" and " H " plane bends.

TELE-FORM . . . pre-formed where extremely tight radii must be held.

HETERODYNE FREQUENCY METER . . . accurate to $.01 \%$ frequency measurement 100 $10,000 \mathrm{mc}$ (TFM-186).

For prompt price and delivery quotations on mixers, duplexers, phaseshifters, tube mounts, directional couplers, rotary-joints, wave-guide switches, hybridfilters and complete front-end assemblies, wire or phone TELERAD.

GUIDED MISSILE BEACONS
. . . high sensitivity, proven reliability available in S and L bands.

X-BAND POWER METER... frequency meter and calibrated signal generator, selfbrated signal generator, self-
contained, immediate delivery.
(TSG-147D)

NHIS:

ACCELERATION ACTIVATED SWITCHES FOR IN-FLIGHT MISSILE CONTROL

This miniature acceleration operated switch is designed for missile applications requiring positive switch functions at first motion, during, or after boost. Versatile locking arrangement permits cycling or recycling of switch during various phases of flight (requires 30 watt signal). It is conservatively rated and is designed for expendable one-time use.

The switch may be pre-set to activate at any firstmotion level between 5 and 20 G's longitudinal acceleration. Average transverse accelerations can be tolerated during operation. Design permits locking or unlocking at accelerations 10 G 's in excess of pre-set level. Switch functions within 50 milliseconds after reaching operational acceleration.

ADVANTAGES:

- Small size, uses standard BuOrd $=18$ synchro mount.
- Light weight, approximately 12 ounces (depending on model).
- Rugged. Meets military specifications for aircraft and missile use.
- Standard switch arrangements: 5 SPST make, break, or pulse. Custom arrangements available with minimum delay.
- Sealed construction permits use in explosive atmospheres.
- Standard temperature range $-65^{\circ} \mathrm{F}$ to $+250^{\circ} \mathrm{F}$. Extended range to $+500^{\circ} \mathrm{F}$ available with modified ratings.

HIGH-SENSITIVITY S-BAND BEACONS

New superheterodyne S-Band Beacons for guided missile and drone-control applications. These receivers feature light weight, small size, excellent reliability, ruggedized construction.

PERFORMANCE DATA

Receiver-Transmitter

- Over-all triggering sensitivity: -65 DBM
- Receiver frequency: $2700-2900 \mathrm{mc}$
- Receiver frequency stability: ± 2 megacycles per second
- Image rejection: 50 db minimum
- Peak transmitter power output: 100 watts minimum
- Transmitter pulse width: 0.75 microseconds
- Transmitter repetition rate: 200-1,000 pps
- Transmitter stability: ± 2 megacycles per second
- Transmitter frequency range: 2850 to 2950 mc
- Size: $9^{\prime \prime} \times 5 \frac{1}{\prime \prime} \times 5^{\prime \prime}$
- Weight: 8 lbs.

Power Supply

- Input Voltage: 115 volts at 400 cycles
- Input Power: 80 watts
- Size: $7^{\prime \prime} \times 5^{\prime \prime} \times 43$ " ${ }^{\prime \prime}$
- Weight: $51 / 2 \mathrm{lbs}$.

A 28 volt $D C$ supply is available on special arder.

MANUFACTURING CORPORATION

Designers and Manufacturers
1440 Broadway, New York 18, N. Y. - BRyant 9-0893

Los Angeles: Koessler Industrionics, 818 North Fairfax Avenue.
San Francisco: Koessler Industrionics, 2830 Geary Blvd.
Seattle: Associated Industries, 1752 Rainier Avenue.
Chicago: Lee Falkenburg, Airborne Sales, 1665 North Milwaukee Avenue.
Canada: Instronics, Ltd., P. O. Box 51, Stittsville, Ontario.
sealed with a micro thin protective coating of Quartz.

Another application of mica is in rotary attenuator design which uses 0.001 thick mica sections, electrically matched at either end.
Standard mica sheets are available from 0.001 to 0.005 in . thick, and in resistivities from 25 to 400 ohms per square. Elements can be hand cut to customer requirements and an instruction bulletin is available which details a method of hand cutting eccentric shapes.

New Components May Double Radar Range

Double the range and accuracy of antimissile radars is the goal of an all-out effort by Sperry Gyroscope. Practical application in specific U.S. missile systems of some of the newer microwave elements is the basis of the program.

The firm will organize an additional applied physics laboratory for new microwave solid-state devices for missiles. Thirty scientists from Sperry plants will start the study with a three-day seminar to examine current progress in the field.
E. J. Venaglia, manager of Sperry's microwave electronics division, points out that although essential theory and phenomena have been known for years, many of the devices that could improve radar have remained laboratory curiosities.

The application of semiconductor and ferromagnetic materials as concentrators, manipulators or generators of radar energy will be investigated. These devices include passive ferrite circuit elements, masers and parametric oscillators.

Preformed Contacts for Printed Wiring

Increased reliability has been attained in the fabrication of photoetched, copper-laminated, printed circuit boards by the use of preformed contact strips and a soldercoating. Developed jointly by Her-

3-D mске- पsson helps RAYTHEON develop new SPACISTOR amplifier

Spacistor shown next 10 ordinary pinhead.

The Spacistor, Raytheon's new semiconductor amplifier, opens new horizons in missile and communications equipment design. Still in development, the Spacistor promises to combine many advantages of transistors and vacuum tubes.

Viewed through a Bausch \& Lomb Stereomicroscope, contact points that are normally barely visible can be positioned with hairline accuracy. 3-D magnification shows all parts vividly, right side up. Long working distance permits free movement of hands and tools between eyepiece and stage. Dustproof, shockproof optical system, with sharp, flat images free from distortion, assures fatigue-free viewing throughout prolonged examination.

> SEE FOR YOURSELF! MAIL COUPON FOR FREE 15-DAY TRIAL

These plug-and-receptacle units are used for panel-rack or other sectionalized circuits where a number of connections must be made or broken. Any number of contacts can be provided (in multiples of twelve). Male and female contacts are full-floating for easy alignment and positive contact. Contacts are silver-plated brass and phosphor bronze with terminals tinned for easy soldering. Ceramic blocks are steatite, white glazed... non-carbonizing even under leakage flashover caused by contamination, moisture or humidity. Write for specifications of available units or engineering recommendations for your requirement. Lapp Insulator Co., Inc., Radio Specialties Division, 140 Sumner Street, LeRoy, New York.

U-shaped copper contact strips anchor printed circuit conductors at mating edge of board

Silicon-rubber squeegee is used after solder bath to provide smooth coating on conductors
bert Winsker and Horace L. Walters of the Norden Laboratories Division, Norden-Ketay Corp., White Plains, N. Y., these techniques have been applied to printed circuits for military applications.

U-shaped beryllium copper contact strips are positioned in milled slots along the board's mating edge and secured either by eyeleting or riveting through previously punched holes. The positioning slots are cut during the key-slot milling operation, avoiding an additional operation.

To provide a superior conductive and protective coating, the strips can be plated before assembly. Additional strips can be added conveniently at any time to accommodate new circuit requirements. The metal strips, while providing a more positive contact with the receptacle, will not loosen after long usage. Since eyelets can be used to secure the strips, the technique is especially suited to doublesided circuit board designs where eyeleting is a normal method of completing the circuits from one side of the board to the other.

The technique provides simpler etching in less time and money.
where precision counts-it's S.E.C.firstl

PLASTIC PRECISION CAPACITORS

S.EC FRODUCTS HAVE BEEN SPEGFIED TH SEVEPAL MISSHLE APPLGCAIDHS!

SOUTHERN ELECTRONICS

Coxpaxation
See us in Booth 2309 I.R.E. Show - New York
PIONEERS IN CUSTOM PRECISION CAPACITOR ENGINEERING

Dip-Brazing Eases Machining of Complex Parts

By JOHN GOMBOS John Gombos Co. Irvington, N. J.

Klystron tube mount in holding fixture is lifted from molten salt bath. Operator uses "fishpole" to avoid 1,100 F heat

Aluminum dip-brazing simplifies fabrication of complex components and permits fuller use of aluminum parts of varying thicknesses, shapes and alloys. The method opens up design possibilities prohibited by more difficult methods.

A klystron tube mount made by John Gombos Co., Irvington, N. J., is dip-brazed of 12 parts machined from wrought stock and 2 cast parts. It was formerly produced as a casting, which made finish machining very difficult.

Mount parts are now finish machined before assembly and carefully deburred. Burrs or imbedded grit will block the brazing material, which flows into joints by capillary action. Joint strength results from surface penetration.

Soil and oxides are removed by vapor degrease and chemical treatment. A dip in hot sodium hydroxide and rinse is followed by a dip in nitric-hydrochloric acid, cold and hot rinse.

Parts are assembled in a fixture, with brazing shims and formed wires in place at the joints. The proper amount of brazing material to produce a clean, well-filled fillet with no overflow is determined by trial.

Fixture accuracy is critical. Stainless steel or Inconel must be

Cast and machined parts in front of as. sembled mount
used to avoid contaminating the salt bath. Massive parts (of the fixture) are lightened by drilled holes to avoid heat distortion, maintain salt temperature, reduce salt dragout and hasten heating and cooling. Parts are not allowed to butt against a solid wall. Springloading the fixture holds parts rigidly in place to maintain tolerances of 0.002 inch.

After fixturing, the assembly is preheated in an oven to $1,000 \mathrm{~F}$. It is then immersed in the molten flux salt. The salt bath is held within 2 degrees of $1,100 \mathrm{~F}$. The maximum permissable temperature variation is 5 degrees.

Depending on massiveness of the parts, time in the bath may be 10 seconds to 3 minutes. Timing is determined by trial. The tube mount requires 30 seconds for brazing.

The brazed assembly is cooled at

Spring-loaded fixture holds mount together during brazing
room temperature to $200-300 \mathrm{~F}$. A boiling water dip removes most of the salt. Remaining salt is removed by dipping in nitric-hydrochloric acid, cold and hot water. All salt must be removed as its chlorides and fluorides would cause corrosion later.

Joints may be pressure-tested or inspected visually. Since just enough brazing alloy is used to produce a satisfactory joint, an excess visible at any point may indicate a void.

Only recommended alloys are used for dip-brazing. The salt is available from Alcoa and other companies. The salt bath must be periodically tested for contamination, moisture and proper chemical composition.

Vertical X-rays Give Internal Dimensions

X-ray method devised by Howard Harlan, Dalmo Victor Co., Belmont, Calif. enables accurate internal measurements of waveguides and other components to be made directly from film. Inside contours, iris positions after r-f tuning tests, blind holes and similar dimensions have been measured

This excellent insulation, added to the unicue properties of Hipersil ${ }^{\circledR}$ coreshighest permeability with lowest loss, 100% flux carrying activity, lowest volume and weight-means a better foundation for better uransformers . . . smaller, lighter, more efficient, and at a lower unit cost.

Positive protection against the effects of humidity and high-voltage stress, new Westinghouse Polyclad resin coating eliminates the need for taping the core or encasing it in a plastic or aluminum box-instelation costs are reduced 15%. The resin forms a smooth, continuous coating; rounded corners prevent shorting wire to core, allow winding directly on core Strains induced into the magnetic core are much less than with ordinary insulation-magnetic values stay constant.

For more information about Polyclad insulated Hipersil cores-and other Hipersil cores, as well as the complete line of Hipermag ${ }^{(8)}$ and Hiperthin ${ }^{(8)}$ cores-call your Westinghouse representative, or write Westinghouse Electric Corporation, P. O. Box 231, Greenville, Pennsylvania.

J-70820

P\&B PROGRISS /

NEW! INGENIOUS IMPULSE LATCHING RELAY

NOW! TWO-COIL PERFORMANCE

AT SINGLE COIL COST!

This new series, the PC, is an ingenious impulse latching relay which employs a single coil and armature to activate an insulated rocker arm. Switching is positive, fast (30 milliseconds).

It's low cost, dependability and versatility make it ideal for a wide range of uses. For example, two leading TV set manufacturers use the $P C$ in their remote control circuits as an "off-on" switch. It is also used by a maker of automatic garage doors. Conveying systems, automatic processing equipment, flow controls-the PC is right for these applications and many more.

Contact arrangements are available up to 4 Form C (4PDT), and the snap-action contacts are rated 5 amps . at 115 V . AC resistive. The relay may be ordered open, as shown, or in a metal dust cover.

Write ar wire today for complete information.
See What's New in P\&B Progress at Booth 3904-3906 IRE Show, New York City, March 24-27

GENERAL: Description: Single coil, impulse latching relay. Insulating Material: Laminated Phenolic.
Insulation Resistance: 1500 megs. min.
Breakdown Voltage: 500 V. RMS.
Ambient Temperature: $-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$.
Weight: 5 ozs. (open)
Pull-In: DC, $75 \%\}$
$A C, 78 \%\}$ for nominal voltage.
Operate: 30 MS.
Terminals: Pierced Solder Lugs
Coil: Two \#20 AWG Wires
Contacts: One \#20 AWG Wire
Enclosures: "A" Can.
CONTACTS: Arrangements: 4 Form C. max. (4PDT)
Material: $1 / 8^{\prime \prime}$ dia. Silver Cadmium oxide gold flashed.
Load: 5 amp @ 115 V . AC resistive.
Pressure: 20 grms. min.
COIL: Resistance: .016 to 34,500 max
Power: DC, 9 watts. \quad AC, 18.4 Volt Amps. $\}$ at nominal voltage.
Duty: Intermittant.
Insulation: Cellulose acetate wrap; varnish impregnated (open).
MOUNTINGS: Two $5 / 3 z^{\prime \prime}$ dia. holes on $25 / 8^{\prime \prime}$ center.
P\&B Standard relays are available at your local electronic, ELECTRICAL AND REFRIGERATION DISTRIBUTORS

Potter \& Brumfield, inc.

 PRINCETON, INDIANA

 PRINCETON, INDIANA}SUBSIDIARY OF AMERICAN MACHINE \& FOUNDRY COMPANY
Manufacturing Divisions also in Franklin, Ky. and Laconia, N.H.
Mail the coupon below for further engineering data on P\&B's new PC Series relays plus new compact catalog of standard type relays. If you need answers to a specific application problem, write in detail

Potter \& Brumfield, Inc., Princeton, Indiana
Attn: T. B. White, Brig. Gen. USMC (Ref.)
Special Projects Engineer
Please send me complete data on the new PC Series relays, plus the new compact catalog of $\mathrm{P} \& \mathrm{~B}$ standard relays.
\qquad
Company
Address
City_ Zone__State
See our catalog in Sweet's Product Design File

Wavequide is positioned on Vernier table under slot in lead sheet
for quality control and design purposes.
Any feature having a difference in thickness of 5 percent or more between two points may be measured. Accuracies of 0.0005 inch are obtained on parts $\frac{1}{}$ inch high and 0.001 inch accuracy on parts 1 inch high.
Enlarged or overlapping images are prevented by masking all x rays except those which can pass vertically through a slot in a lead sheet. The part to be measured is placed on film and swept under the defined beam. Dimensions are later measured from the film in an optical comparator.

The slotted ! inch lead sheet, backed by Plexiglas for strength, is mounted on the arm of a Vernier table. A 10 rpm motor is coupled to the table's longitudinal screw so that the table travels at 1 inch per minute.

The component is mounted in a fixture on the table so that the direction to be measured traverse: across the slot. If dimensions in other directions are desired, another picture must be taken as the slot filters only vertical x-rays perpendicular to the travel.

Components must be mounted eatactly square to the x-rays. Verti-

Film strips show difference between ordinary x-rays and new method (left)
cal sides must be exactly parallel to the line of a plumb-bob hung from the focal point of the x-ray tube to the slot.

The smaller the slot, the better. However, decreasing slot size requires increases in voltage and reduced travel speed. The 1 inch per

Table setup is shown here. Traversing moto: is on skids so it slides with table
minute travel speed is satisfactory for $\frac{3}{16}$ inch aluminum using a 0.020 inch slot with 125 kvp and 10 ma source placed 30 inches from Ansco A film. Greater thicknesses may be measured by several passes. For example, three passes distinguish a change from ${ }_{4}^{3}$ inch to $\frac{?}{?}$ inch.

Models Simplify Circuit Planning

By W. W. STALEY Arm Air Division, Westinghouse Electric Corp, Baltimore, Md

Components assembled on layout board give 3-D picture of completed unit

Three-dimensional models of components, arranged on a transparent layout board, permit rapid conversion of hand-wired plug-in units to printed wiring.

The method reduces time required for conventional layout methods, time spent in sketching and resketching, arranging templates and drafting side views. In the conversion pictured, the pack-

Board transparency makes taping the wiring pattern a simple procedure
aging engineers had so minimized waste space that components had to be stacked very closely in order to stay within given physical boundaries.

The layout board is made of inch Plexiglas with an overall size of 12 by 14 inches. Fixed grid spacing is accomplished by drilling 0.070 inch holes with a spacing of 0.4 inch, a total of 589 holes. Hole

ENGINEERS

. cross new
frontiers in system electronics at THE GARRETT CORPORATION

Increased activity in the design and production of system electronics has created openings for engineers in the following areas:

ELECTRONIC AND AIR DATA
SYSTEMS Required are men of project engineering capabilities. Also required are development and design engineers with specialized experience in servo-mechanisms, circuit and analog computer design utilizing vacuum tubes, transistors, and magnetic amplifiers.

SERVO-MECHANISMS

and electro-magnetics Complete working knowledge of electro-magnetic theory and familiarity with materials and methods employed in the design of magnetic amplifiers is required.

FLIGHT INSTRUMENTS AND

TRANSDUCER DEVELOPMENT
Requires engineers capable of analyzing performance during preliminary design and able to prepare proposals and reports.

FLIGHT INSTRUMENTS

DESIGN Requires engineers skilled with the drafting and design of light mechanisms for production in which low friction, freedom from vibration effects and compensation of thermo expansion are important.

HIGH FREQUENCY MOTORS,

generators, CONTROLS Requires electrical design engineers with BSEE or equivalent interested in high frequency motors, generators and associated controls.
Send resume of education and experience today to:

Mr. G. D. Bradley

9851 S. Sepulveda Blyd. Los Angeles 45, Calif. divisions:
AiResearch Manufacturing Los Angeles
AiResearch Manufacturing Phoenix
AiResearch Industrial Rex-Aero Engineering Airsupply - Air Cruisers AiResearch Aviation Service

COOLING
CAPACITY

Full 1.5 kw at $50,000 \mathrm{ft}$. ambient pressure altitude and inlet conditions as follows: TEMPERATURE: $10^{\circ} \mathrm{C}$.
AMBIENT AIR PRESSURE: 1.7 psia FLOW: $3.6 \mathrm{lb} / \mathrm{min}$

TEMPERATURE: $85^{\circ} \mathrm{C}$.
CONTAINER GAS PRESSURE: 20 psia FLOW: $9.8 \mathrm{lb} / \mathrm{min}$

The AiResearch unit shown above solves another critical electronic cooling problem in the following manner:

The larger fan, at top left of unit, draws cooling ambient air through the heat exchanger. Simultaneously, the smaller fan, at bottom center of unit, circulates dense, non-toxic sulfur hexafluoride (SF_{8}) through the heat exchanger and over the electronic equipment. The cooled gas maintains the sealed electronic equipment at the desired temperature.

The 20 by 24 inch honeycomb mounting base for the cooling components is designed by AiResearch to form an integral part of the pressurized electronic equipment container.

This cooling package, incorporating standard proved components, was developed by AiResearch in minimum time. It and other air or liquid-cooled units for similar purposes are based on almost 20 years of experience in the development of cooling systems for aircraft, missile and nuclear applications.
Send us details of your problems or contact the nearest Airsupply or Aero Engineering office for further information.

Los Angeles 45, California - Phoenix, Arizona

Systems, Packages and Components for: alrcraft, missile, electronic, nuclear and industrial applications

How
 SMALL do you want your Shift Registers?

Chances are Epsco's new line of "MINIBIT" miniaturized shift regis. ters can meet your specifications to a T. Operating rates up to 500 KC and above ... fully encapsulated... substantial savings in weight and space.
Whatever your requirements relating to buffer storage, pulse distribution or other pulse, digital and logic functions, we would like to talk to you about them. Epsco designs and manufactures a wide variety of tran. sistorized, transistor-driven and tubedriven shift registers and magnetic logic elements, featuring high reliability, low-power consumption and compactness.
Custom engineering-production of electronic components lshift registers, magnetic logic elements, delay lines, special pulse transformers, plugin logic elements, etc.) is our specialty. Write for Technical Bulletin \#58-1 Epsco Components, Dept.R-308,108 Cummington St., Boston 15, Mass.

START-TO-FINISH COOperation

an Epsco guarantee

Photograph of taped layout could serve as negative for printing the circuit

Circuit layout prepared from sketches lacks clarity of models
spacing tolerance of 0.005 inch permits using the board for final conductor layout.

Component models are cut from hardwood doweling. Many components fit standard dowel sizes and near sizes may be substituted for odd component sizes. Brass welding rod 0.064 inch in diameter, which is easily cut and shaped by hand, is inserted into drilled 0.070 inch holes to represent the component leads.

Successful building and testing of laboratory models justifies confidence in the layout method. Actual units built required no relayout. Cost is negligible compared with savings rendered.

Assembly drawings could be replaced by a photograph of the final breadboard layout. The negative used for printing the circuit could be made from the tape layout on the back of the layout board.

New Kit Modifies Wire Wound Pots

Potentiometers may be modified or made up from basic units with a new kit, supplied by Micro-Lectric Division, Micro Machine Works, Inc., Roosevelt, N. Y., for use on precision wire wound pots.

The kit enables pots to be prepared to specifications from basic units available without taps or buss bars, permitting quick field replacements. Pots may also be modified during experimental work or to satisfy engineering changes.
The kit contains 100 tap assemblies, 25 silver buss bar rings, buss bar cutting fixture, buss bar forming die, drill jig, electric drill and 20 other parts needed for precision drilling of tap holes and installation of taps and buss bars. A case is provided.

Potentiometer is first placed in nest of drill jig and locked in place. Tap drilling position is located by protractor in jig base. Taps may be spaced within 1.5 degrees. The tap hole is drilled through a bushing.

One-piece precious metal taps with color-coded leads are inserted in the holes. The taps are depressed with a plastic pick so that their spring pressure holds them against

Tap hole is drilled through bushing after pot is positioned in drill jig

Tap is inserted in drilled hole

IMPEDANCE COMPARATORS

FOR LABORATORY AND PRODUCTION IMPEDANCE TESTING

- TESTS RESISTORS, CONDENSERS, INDUCTORS PERCENTAGE DEVIATION FROM STANDARD READ ON LARGE METER - RAPID RESPONSE - NO BUTTONS TO PUSH - HIGH ACCURACY AND STABILITY - SElf CAlIbrating - requires no recalibra. tION WHEN CHANGING RANGES

SPECIFICATIONS

Bridge Supply Volts.
2 volts
Component Voltage At Balance............ 1 volt
Frequency.......Either 1,000 C.P.S., or 10,000 C.P.S.
Full Scale Ranges........... $\pm 5 \%, \pm 10 \%, \pm 20 \%$
Component Test Ranges:
Resistance................. 5 ohms - 5 megohms
Capacitance
Inductance.
Power Supply.
Dimensions. 50 mmf - 20 mfd
100 microhenry - 80 henries
105-125 volts, 60 C.P.S.
$9 \times 15 \times 8$ inches

MODEL 1010

$\$ 299.00$

POWER OSCILLATORS

a COMPACT PRECISION OSCILLATOR PROVIDING 3 WATTS OUTPUT MODEL 1040

- excellent accuracy and stability - trans. FORMER ISOLATED OUTPUT - 3 OUTPUT IMPED. ANCES - LOW INTERNAL IMPEDANCE - OUTPUT VARIABLE UP TO 120 VOLTS

> SPECIFICATIONS

Frequencies...... 400 or 1000 C.P.S. by selector switch (other frequencies on request)
Distortion..........Less than 1%
Hum Level.........Approximately $.05 \%$ of rated output Output Power... 3 watts into matched resistive load Power Supply.... 115 volts, 60 C.P.S., 40 watts Dimensions.......5-11/16 $99 \times 61 / 8$ inches

Manufacturers of:
PHASE METERS • NULL DETECTORS • IMPEDANCE COMPARATORS POWER OSCILLATORS - FREQUENCY STANDARDS - AUTOMATIC HI-POT Other Electronic Test Equipment

For further information contact your nearest representative or write for brochure

Method of springing tap into position against pot coil

Drill extension holds drills without solder so that drills may be changed with pair of pliers

Time taken to install five taps in this pot is reported as 30 minutes
the coil winding.
The miniature drill extension supplied is made by Ritmar Corp., Huntington, N. Y. Its concentricity is reportedly more accurate than soldered drills. Turning a threaded locking sleeve clamps the drill in an internal holding slot. Drills are changed by loosening the sleeve with pliers. The extension has a uniform outside diameter of $\frac{1}{8}$ inch, which fits bushings in drill jig.

If you have this problem, investigate

-an example of Phelps Dodge's realistic approach to Magnet Wire research

THE PROBLEM: To develop a solderable film-coated wire without fabric for winding universal lattice-wound coils without adhesive application.

THE SOLUTION: Phelps Dodge Grip-eze-a solderable film wire with controlled surface friction for lattice-wound coils that provides mechanical gripping between turns and keeps wire in place.

EXAMPLE: Coils wound with (a) conventional film wire; (b) Grip-eze. Note clean pattern of Grip-eze as compared to fall-down of conventional film wire.

Any time magnet wire is your problem, consult Phelps Dodge for the quickest, easiest answer!

VISIT OUR BOOTH, NO. 4516-4518, AT THE I.R.E. SHOW

Unveil New P-C Components

Feature Stable Mounting

Printed circuits are part and parcel of the ever growing trend toward subminiaturization. Components for these circuits must be made to meet requirements of size and mounting stability.
American-Monarch Corp., 81 N.E. Lowry Ave., Minneapolis, Minn., $(+00)$, almounces a tiny spdt relay elesigned specifically for direct application to p-c boards. Good mounting stability is maintained by wide spacing of the silver plated pins. Palladium inlay contacts assure positive contacting of dry circuit switching.
Now in production at Cambridge Thermionic Corp., $4+5$ Concord Ave., Cambriclge 38, Mass., (401), are ceramic coil forms available with four terminals for mounting on p-c boards. Suitable for high temperature conditions and missiles, they are also equipped with the Cambion Perma-Torq locking device for set tuning. Terminals are electro solder plated ready for dip soldering.
Hoffman Electronics Corp., 930 Pitner Ave., Evanston, I11., (402), introduces microminiature glass Zener diodes for circuits where mounting space is at a minimum. They are designed for elipping, limiting, regulating and similar applications.
Connectors with bellows action contacts have been developed by DeJur Amsco Corp., $45-01$ Northern Blvd., L.I.C. 1, N. Y., (403). It is possible for the comnector to accept p-c boards that can vary in thickness from $\frac{1}{16}$ in. to $\frac{1}{8} \mathrm{in}$. Self-alignment of the bellows contacts allows for any residual warpage of the p-c board.
Waters Mfg. Inc., Boston Post Road, Wayland, Mass., (404), has available a Dialpot subminiature potentiometer having a diameter of $\frac{1}{2}$ in. and an overall length of $\frac{1}{2}$ in. (including calibrated dial, excluding terminals). Terminals are located on a standard 0.1 in . grid as used in printed circuitry.

B-Power Supply compact unit

Sorevsen \& Co., Inc., Richards Are, South Norwalk, Comn. Model 300B wide-range B-power supply, a new 13 -Nobatron, utilizes printed circuits for lightness, compactuess and reduced cost. It features parallel or series operation, external sensing, excellent regulation and stability, and low ripple. It provicles a regulated $0-300 \mathrm{v}$ d-c output and unregulated 6.3 or 12.6 va ac filament outputs, and is available in single or dual units in a calbinet or for rack mounting.
The front panel of the $300-\mathrm{B}$ has a 4 -position power and meter

If you use, or are considering the use of character display read-out-investigate display by cathode-ray tubes

- WRITE FOR COMPLETE DETAILS ...

No longer is it necessary to put all your eggs in one basket when it comes to character read-out displays. Now you can do it better, and more economically, with Du Mont cathode-ray display tubes in one of several commonly-known systems. Such a system permits the replacement of the display unit alone, eliminating the very expensive replacement of integrated tube and generator, and at the same time, provides these outstanding PLUS FEATURES . . .

Bright, flickerless display - permits read-outs under high ambient light conditions. No annoying, low-frequency flicker.

- Space-saving - greatest screen diameter-tolength ratio. Du Mont display tubes are available in $5,12,15$, and 19 -inch screen diameters.
- Versatility-variable size characters, positioned anywhere on screen.
- Low replacement cost - the generator is completely divorced from the CRT. For replacement, only the cost of a moderately-priced tube.
Speed - electrostatically-formed and electro-magnetically-positioned characters for greatest speed and accuracy.

INDUSTRIAL TUBE SALES, ALLEN B. DU MONT LABORATORIES, INC., 2 MAIN AVE., PASSAIC, N. J. be SURE TO VISIT DU MONT AT THE IRE SHOW IN NEW YORK. BOOTHS 3705, $2 ; 07$
switch with ore, DC-ore, vor,ts and ma settings; a voltmeter-milliammeter; an output voltage control; d-c and a-c output terminals; and external sensing teminals. At the rear of the unit are a 3 -prong iuput line cord, a plug for parallel operation of two units, two fuscs, and another set of output terminals.

Elcetrical characteristics include positice or negative output voltage of 0.300 v d-c, $0-150$ mad output current, regulation accuracy of ± 0.15 percent or $\pm 0.3 \mathrm{v}$, whichever is greater, 5 mv-rms maximum ripple, 2.0 ohme internal impedance, $105-125 \mathrm{v}$ a-c $50 / 60$ or 400 cycle input range, and two $6.3-\mathrm{v}$ 5 -anperc filament voltage circuits
which may be comnected in serics or parallel.

A single $300-\mathrm{B}$ in a calbinet is $10 \frac{3}{2}$ in. widc by $9 \frac{1}{4} \mathrm{im}$. lighl by 12 婹 in. deep. A dual cabinct unit is 19 in . wide. The single or dual rack mounted types are $8 \frac{3}{7} \mathrm{in}$. ligh. Weight of a single calbinet unit is 29 lb . Circle 405 on Reader Service Card.

P-C Connector

in four small sizes

Elco Corp., M. St., below Fric Ave., Philadelphia 24, Pa. The 6003 series answers the need for a microminiature printed circuit connector with 0.078 in . spacing between printed circuit contact lines. It comes in four sizes with $14,21,31$ and 37 contacts, which are made of beryllium copper, silver plated or gold plated. The

connector is designed to receive a $\frac{1}{16}$ in. board with commercial tolcrances of $\pm 0.0075 \mathrm{in}$. Design
of the contact guarantces low contact resistance at all board thicknesses with no change after a thousand insertions and withdrawals. Castings are made of glass-filled diallyl plathallate. They have very close tolerances and are stable under wide ranges of temperature and lumidity. The contact tails have wire boles for soldering wires to it. A polarizing tab can be inserted at any contact location. Circle 406 on Reader Service Card.

Magnetic Amplifier

low-level unit

Arpax Pronucts Co., Middle River, Baltimore 20, Md. Preac amplifiers are a new line of high
sensitivity magnetic amplificrs. Specifically designed as preamplifiers for such clata sensing devices as thermocouples, strain gages, bolometers, and electrometers, these low-level units produce full output with inputs of fractions of microwatts. Three standard types provide power gains rated to be greater than $5+(\mathrm{lb}), 60 \mathrm{db}$, or 51 dlb. As little as $0.0026 \mu \mathrm{w}$ input
produces full output of $+v$ into a 5,000 -olim load. Null drift docs not excced 0.1μ a under this condition.

Preac amplifiers are rated for operation from $400 \pm 40 \mathrm{cps}$ power lines at 115 ± 11 rins volts. They draw less than $2 w$ of power, which, for lowest mull, should be frec of ceen harmonics. These amplificers accept (l-c polarity reversible iuput signals and deliver unfiltered el-c polarity reversible outputs. Circle 407 on Reader Service Card.

Paper Tape Reader

strip and reel feed

Digitronics Corp., Albertson Ave., Albertson, L. I., N. Y. The new compact Dykor paper tape realer provides all the advantages of strip and reel feed by combining both in one unit. Manual access time is reduced apprecialbly becaluse short programs require no splicing, no tape switch is required to locate a desired block, ancl program filing is simplified. It stops within one char-
acter at a reacling rate of 600 characters per sec and within two claaracters at 750 characters per sec because of a special braking system.

The tipe is set in motion when a solenoid operates a pressure roller to squecze the tape against a con-tinuously-rotating capstan in a wringer-like action. Two oppositelyrotating capstans allow the tape to be driven in cither direction, with

There is No Substitute for
 Reliability -

Magnetic Mootilatorors
 Especially Engineered for Printed Circuit Wafer

All Magnetic Modulators strictly conform to MIL T-27A. Some typical circuit applications for Magnetic Modulators are algebraic addition, subtraction, multiplying, raising to a power, controlling amplifier gains, mechanical chopper replacement in DC to fundamental frequency conversion, filtering and low signal level arr plification.

new mantaturived
 "MAG MOD"

 Designed Structures and Circuit Assemblies Featuring:- faster response time
- NEGLIGIBLE HYSTERESIS
- EXTREME STABILITY (Ambient Temp. Range from $-65^{\circ} \mathrm{C}$ to $+135^{\circ} \mathrm{C}$)
- COMPACT SIZE
- LIGHTWEIGHT
- INFINITE LIFE
- COMPLETE RELIABILITY

Miniaturization of the new Magnetic Modulator makes it possible to incorporate this component into wafer type structures and transistorized printed circuit assemblies without sacrificing ruggedness or reliability.

CONSULT GENERAL MAGNETICS on magnetic amplifier components for automatic flight, fire control, analog compiters, guided missiles, nuclear applications, antennas, gun turrets, commercial power amplifiers and complete control systems. Call or write for Cat alog B on miniature and standard components.

	Magnetic Input Modulator	Magnetic Input Modulator	$\begin{aligned} & \text { Magnetic } \\ & \text { Thermocouple } \\ & \text { Converter } \end{aligned}$
TYPE NUMBER	IMM.436-2	IMM - 436-3	MTC-435-2
Excitations Frequency-Carrier	400 cps	400 cps	400 cps
Signal Winding DC Resistance	1000 ohms $\pm 15 \%$ each signal winding	1000 ohms $\pm 15 \%$ each signal winding	10 ohms $\pm 15 \%$
AC Excitation Volts	5.5 V . @ 400 cps	2.5 V . @ 400 cps	6 V . RMS
Input DC Signal Range	0 to $\pm 100 \mu \mathrm{a}$.	0 to $\pm 80 \mu \mathrm{a}$.	0 to $\pm 10 \mathrm{mv}$.
AC Output Range	0 to 2.2 V . @ 400 cps (sine wave)	0 to 1.5 V . @ 400 cps (sine wave)	$\begin{aligned} & 0 \text { to } 2.7 \mathrm{~V} . @ 400 \mathrm{cps} \\ & \text { (sine wave) } \end{aligned}$
Overall Dimensions (Inches)	27/32x27/32×15/16	27/32×27/32×13/16	11/4×7/8×5/8
Null Amplitude (Noise Level)	20 mv . RMS	15 mv . RMS max.	25 mv . RMS max.
Output Impedance	7000 ohms	7000 ohms	10,000 ohms
Null Drift (In terms of input signal) $-65^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$	$\pm 0.5 \mu \mathrm{a}$. max.	$\pm 0.5 \mu \mathrm{a}$. max.	± 0.1 mv. max.
$\begin{aligned} & \text { Hysteresis } \rightarrow \text { of maximum } \\ & \text { input signal } \end{aligned}$	0.5\% maximum	0.5\% maximum	0.5\% maximum
Type of Mounting	Male Stud	Female Insert	Male Stud
Maximum \% Distortion in Output	25\%	15 \%	20\%
Weight Ounces	1.3 oz .	1.2 oz .	1.5 oz .

starting time less than 5 millisce. Thus by using the reverse feed control, programs requiring repeat feedings procced more rapidly. To stop tape motion, the driving solenoid is released, and the stop solenoids are actıated.

All standard 5, 6, 7 or 8 level tapes (plus sprocket hole) are handled and 41 in., $\frac{7}{8}$ in. or 1 in. wide tape can be used interchangeably. Safeguards provided are end-of-tape sensing and tape-break sensing, with an interlock preventing opera-
tion if the tape is improperly threaded. Photoclectric sensing makes fast reading possible.

Another feature is complete remote control including forward, reverse, stop and speed change. Circle 408 on Reader Service Card.

Recording Test Unit

uses semiconductors

Navigation Computer Corp., 1621 Snyder Ave., Philadelphia 45,

Pa. A complete read-write test system for magnetic tape or drum momorics, measuring 11 in . high, by 11 im . wide, by 9 in . cleep, is available. Individual units are entirely transistorized, and printed circuit techniques are utilized throughout, resulting in excellent relialbility, small size and low power requirements.

The modular units pictured are, from top to bottom, a 10 bit shift
register for parallel-to-serial conversion of incoming data or serial-toparallel conversion of outgoing data, a 10 channel NRZ writeamplificr, a 10 chamel NRZ readamplifier, and a regulated power supply.

These units are compatible with all other muits in the line of the company's transistorized pulse progranming equipment, and may be combined with over 40 functional units for digital data processing and data storage. Circle 409 on Reader Service Card.

Zener Diodes

sixty-four types available

International Rectifier Corp., 1521 E. Grand Avc., El Segundo, Calif., introduces a complete line of silicon Zener voltage regulator and reference diodes comprised of a series of types in each of seven styles. The listing of $6+$ types includes: miniature types rated at 500 mw , standard top-hat style with pigtail leads rated at 1 w , 3.5 and 10 w types featuring stud construction, double-anode types rated at $350 \mathrm{mw}, 5 \mathrm{w}$ multiple junction $1 \mathrm{l}-\mathrm{v}$ types and the $1 \mathrm{~N}+30$,

$1 N+30 \mathrm{~A}$ and $1 \mathrm{~N}+30 \mathrm{~B}$ refercnce element types.

All diodes in this group are de-
signed and manufactured to meet the most rigid military specifications. High temperature operation $(-65 \mathrm{C}$ to $+150 \mathrm{C})$ and high load current capacity result from a most advanced thermal design. Sharp reverse breakdown characteristics provide the mans for obtaining stalble voltage regulation over a wicle operating range. Mechanical features such as all-welded construction and hemetic scaling assure long term reliability.

As a technical service to the design engincer, an $x-y$ plot of the reverse breakdown characteristics is supplied with each diode. Circle 410 on Reader Service Card.

Voltage Regulator

all-purpose unit

Sorensen \& Co., Inc., Richards Ave., South Norvalk, Comn. Model APR1010 is a tubeless allpurpose a-c voltage regulator with wide flexibility of operation. It call be used to regulate avcrage and peak voltages as well as rms, independent of input waveform. By simply turining a switch, the regulator output call be matched
to the special requirements of the load.
It provides five different sensing arrangements: internal (normal a-c regulation), external a-c (amy a-c voltage), remote ($115 \mathrm{va-c}$ at al remote location) constant current, and d-c. Terminals are provided at the rear of the unit to enable the 0.1 percent a-c load regulation accuracy to be held at a remotely located load. This feature also enables load voltages other than

New high-directivity

 bi-directional couplers
For continuous VSWR measurements

GENERAL CHARACTERISTICS

	Nieroline 50 S 5.8 mad	Microlifat 605 C-Basd	Mierrlisen 000 2-雱and
Frequency liange (kme)	2.60-3.95	3.95-6.00	8.2-12.4
Waveguide Type (AN)	RG-48/U	RG-49/U	RG-52, U
Waveguide Size	$3^{\prime \prime} \times 11 / 2^{\prime \prime}$	$2^{\prime \prime} \times 1$ "	$1^{\prime \prime} \times 1 / 2^{\prime \prime}$
Waveguide Flanges	UG-214/U	UG.149A/U	UG-39/U
Weight	18 lbs	9.1 lbs	2 lbs
Dimensions	48\%" $\times 97 \% 2^{\prime \prime}$		$18 \% 0^{\prime \prime} \times 3$
	x 8\% ${ }^{\circ}$	$\times 51 / 2$	$\times 2$ 58

Featuring two opposing couplers in a single waveguide unit, Sperry's new Microline ${ }^{\text {® }}$ Bi-Directional Couplers provide complete coverage of waveguide frequency ranges. They are designed for VSWR measurements and continuous monitoring in combination with ratiometer, comparator, barretter mounts or other detectors.

Three models cover S, C and X bands, with uniform coupling ($10 \mathrm{db} \pm 0.5$) and high directivity (40 db) for accurate coupling calibration. If you'd like more information on the Sperry couplers shown here, write our Microwave Electronics Division for "latest data on directional couplers."

Visit our booths 1416-1422 at 1958 Radio Engineering Show, March 24-27.

MICROWAVE ELECTRONICS DIVISION

 GYROSGOPE COMPANY

Great Neck. New York
DIVISION OF SPERRY RAND CORPORATION
BROOKLYN • CLEVELAND • NEW ORLEANS • LOS ANGELES • SEATTLE SAN FRANCISCO. IN CANADA: SPERRYGYROSCOPE COMPANY OF CANADA, LIMITED, MONTREAL, QUEBEC

COAXIAL DIRECTIONAL COUPLERS
Used to monitor system power output and to provide local-oscillator or testsignal injection into receivers. Feature very low variation in coupling over 2-to-1 frequency range. Directivity is kept high by frequency-sensitive compensation.

BRANCH-GUIDE DIRECTIONAL COUPLERS
Serve as decoupling and isolating waveguide sections, with negligible effect on other system components. Offer high directivity and uniform coupling over full frequency range. Can be permanently installed in system transmission line.

See These Products At The 1958 I.R.E. Convention Booth 2705

- Ideal for Battery Substitution
- Computers
- Motor and Relay Control
- Life Testing Racks
- Television
- Transistor Biasing
- All High Current Laboratory or
- Industrial Applications

The high current transistorized power supplies first introduced by ERA has important features not available in later imitations:

- Continuously Variable Output
- Positive or Negative Outputs
- Fast Transient Response
- Low Output Ripple Ungrounded
- Positive, Negative, Zero
- Terminals on Front and Rear percent Regulafion Control
- Line Frequency Insensitive
- Hinged Panel for full Accessibility
- Remote Sensing
- High Efficiency
- Low Heat Dissipation
- Constant Current Overload
- Compact, Light weight Protection
- Instant Warm-up Time
- Moderately Priced

TYPICAL STOCK MODELS

Model Number	Voltage VDC	Current Amps.	Output DC IR (ohms)	Price FOB Factory
TR32-4	$6-32$	$0-4$	0.01^{*}	$\$ 375.00$
TR32-8	$6-32$	$0-8$	0.005^{*}	$\$ 410.00$
TR32-12	$6-32$	$0-12$	0.002^{*}	$\$ 495.00$
TR150.1	$20-150$	$0-1.0$	0.1	$\$ 425.00$
TR300-1	$170-300$	$0-1.0$	0.2	$\$ 605.00$

*Typical Values, alljustable to zero or negative.
Models listed are stock units. Other designs available to customer specifications. Write for quotation. \square Pioneers in Semi-Conductor and Transistorized Products.

First Transistorized Power Supplies. First Automatic Transistor Test Equipment.
First Dual Output Tubeless Supplies. First Packaged Transistor Circuits.

First Transistor Application Power Supplies.
First Constant Current Generators.
First Constant Current Generators.
First High Current Semi-Conductor Regulated Supplies.
First "E" Core Transistorized Converters/Inverters.
First High Power Semi-Conductor Frequency Changers.
Manufactured at ERA's New and Larger Facilities

110-120 v to be accurately regulated by means of an external matching transformer, without disturbing the regulator wiring.

Other terminals at the rear of the APR1010 allow it to be used as a d-c controller. Full-wave ca-pacitv-input d-c power supplies can be regulated to an accurack of 0.1 percent.

The APR1010 features 3 percent maximum harmonic distortion, 0.2 sec recovery with line changes and 0.1 sec recovery with load changes: ± 0.1 percent regulation accuracy with line or load changes; rapid starting; $0.0+$ percent drift in $2+$ lours and 0.1 percent drift in 1,000 hours. Circle 411 on Reader Service Card.

Waveguide RSWI small and compact

Polytecinic Research \& Development Co., Inc., 202 Tillary St., Brooklyn, N. Y. The new waveguide rotary standing wave indicator greatly simplifies the measurement of iswr, reflection coefficient angle, hence impedance, in the low frequency range.

Operating by means of a probe rotating in the plane of circular polarization of a waveguide, the waveguide RSTVI provides a nonambiguous read-out of the sign of reactive components. Small, compact and lightweight with an insertion length of only 10 in , it eliminates the need for bulky slotted sections or refectometers in the large walveguide sizes. It is available in a wide selection of waseguide sizes from WR-650 to WR- +200 . If ciesired, the rotating probe call be motor driven for remote operation and to provide an

Not in books nor tables nor scales nor what-you-will can the above equation be found. For it is an equation based on what the men of Elco can create-in-the-mind, translate-into-actuality and prove-inapplication. It is, in a word, the engineered answer to your specific problem; and can be found in such new and reliability-proven components as you have come to know and see pictured here.
The equation above represents Brain Power, plus Ingenuity times Experience to the Nth power, divided by infinity. And the result is the square root of many design problems and operating characteristics. Characteristically, too, you must certainly find the answer to yours among Elco's quality line. Come to know it well.

SEE US AT BOOTH 2234 IRE SHOW

Cable or chassis type connector for light duty. Designed for audio, tv, geophysical and related use. 2, 3, 4, 5, 6 or 8 contacts. Current rating up to 30 amps; voltage, 2000 volts RMS. Female member has latch lock for fast coupling and guaranteed locking. Fully interchangeable with comparable units. Write for details.

Our business is helping to solve design and production problems in the use of components for the highly specialized electronics industry. Borg's background provides the experience necessary to design and produce various types of components for you . . .

MICROPOT* POTENTIOMETERS

Borg Micropots offer a wide range of high-precision, single-turn, multiturn and trimming potentiometers.
*Registered trademark of The George W. Borg Corporation.

MICRODIALS

Direct Reading Microdials and Concentric Scale Microdials.

INSTRUMENT MOTORS

Rugged, dependable Borg-Motors are designed for quality instrument applications.

AIRCRAFT INSTRUMENTS

Instruments for commercial and military aircraft.

FREQUENCY STANDARDS

To meet your requirements in Frequency Standards for military or industrial applications.

TEST EQUIPMENT
 FOR AUTOMATION

Invaluable experience with automatic testing equipment is yours when you call on Borg.
Save time and money when faced with design or production problems of electronic components. Call on Borg. Let us send you the name of your nearest Borg "Tech-Rep" and a copy of catalog BED-A90 today.

OTHER BORG DIVISIONS

The George W. Borg Corporation is comprised of three divisions . . . the Borg Equipment Division at Janesville, Wisconsin, the Borg Fabrics Division at Delavan, Wisconsin which manufactures the fashionable "Borgana" fabric for coats and jackets and the Borg Products Division at Jefferson, Wisconsin, leading manufacturer of automotive clocks.

[^12]oscilloscopic presentation of vsivr.
Other features are low residual vswr-less than 1.03 ; high accuracy-$\pm 2 \mathrm{deg}$ maximum error in mas. urement of reflection cocfficient angle with pure reactice load; high sensitivity-detects as little as 5 mw in the main waseguide; highpower application-permitted by adjustable coupling to detector; full frequency range--each wateguide band can be fully covered; adaptability for remote operation -because of the simple rotary motion involved. Circle 412 on Reader Service Card.

A-F Attenuator
 substitution unit

Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Vd. Model CF-l a-f substitution attenuator is intended for moasuring r-f power ratios in systems emploving modulated r-f power sources and square-liw r-f detectors. In such systems the audio voltage output from the detector is proportional to the r-f power input. It is necessary, therefore, to sul)stitute audio attenuation equal to two times the change in r-f attennation, all attembation in clocibels. 'I'his precision audio attemuator reads. in clecibels, the change in r-f attentation.

The a-f attenuator lias a characteristic impedance of 2,000 olims and is adjustable over a range of $10+$ (il) audio attennation corresponding to 52 db r-f attenuation. A very linear cathode follower drives the attemator, providing a high input impedance to the unit. The attenuator is terminated internally and designed for use with a moderately ligh impedance output indicator. Circle 413 on ReaderService Card.

Ceramic Coil Forms
 5 standard sizes

National. Co.. Inc.. Malden 48 , Mass. Designed for both military and commercial applications, a new line of ceramic soil firms is comprised of 5 standard sizes. cach asailable with or without terminal collars: cach terminal collar accepting up to four terminals per collar. All materials used are in accorclance with MIL-specs. An internal pre-sct torque spring positions and locks the adjusting cores thus keeping coils tuned as set, even under severe vibration and shock. Circle 414 on Reader Service Card.

SSB Tube
 new ratings

Auperex Electronic Corp., 230 Duffy Are., Hicksville, L. I., N. Y., has available new, ssb ratings on the type 6076 tube for new clesigns, equipment conversion, and for increasing prescent power output of lincar amplifiers.

In the 2 to 5 kw envelopes power range, the 6076, a compact forced-

BORG MICROPOTS...

the Ultimate in Multi-Turn Precision Potentiometers

A precision MICROPOT that offers your products a price advantage in today's competitive markets. Lug or lead type terminals. Accurate . . . dependable... long lived.

Small in size, lightweight, rugged and dependable. Three types of terminals ... printed circuit, solder lugs or insulated wire leads.

Borg offers a complete line of high-precision, linear potentiometers called MICROPOTS. Precision is Borg's business . . . that's why MICROPOTS offer so many exclusive advantages. Superior design and production methods make Borg MICROPOTS available in any quantity. Write today for the name of your nearest Borg Jobber or "Tech-Rep."

Standard ten-turn and threeturn models to fit mostspecial design needs. Extremely accurate and dependable under adverse environmental conditions including severe vibration and shock.

205 Series MICROPOTS

A quality MICROPOT. Designed for both military and commercial applications. Proven in many different mobile and stationary types of elec. tronic circuitry.

WRITE FOR COMPLETE ENGINEERING DATA CATALOG BED-A9O

ELECTRONIC ENGINEERS

19.58 definitely promises to exceed the recordsetting volume of our Electronics and tvionics Division last year. And we are not overly optimistic at all in our plans to double these figures during the next few years.

Emerson Electric, a leading medium-size manufacturer of missiles and electronic equipment, has a firmly outlined, long-range expansion program. Our plans require broadening our organizational structure immediately. This has opened unusual carcer opportunities with complex challenges.

We emphasize research, design and development, and maintain a strong balance in production work. Current projects include the B-58 fire control system, mortar locators, radar components and assemblies, servomechanisms, missiles and rockets, ground support equipment, microwave antennas, F. 101 Voodoo subsystems, plus many other classified electronic devices for the supersonic cra.

These positions require an E.E. degree plus 4.6 years' experience in electronics. Experience must include electronic design work in any of the following: servomechat nisms, radar systems, analog or digital computers, fire control systems or ground support equipment. Missile guidance and/or infra-red experience will he helpful but is not essential.
Emerson Electric is a well-established dynamic organization with 900 engineers and 5000 employees. Salaries and benefits, including advanced education, are top level. Our subarban location is ideal in every way. All moving expenses are fully pail.

Be sure to send your complete resume NOW, including business experience, education and salary requirements, to A. L. Depke.

Your Future Is Our Business!

Electronics and Avionics Division
8100 W. Florissant - St. Louis 21, Mo.
air cooled tetrode with a 3 kw dissipation rating, provides a range of powers hitlierto only generated by paralleling a number of smaller tubes or under-rating larger ones.

Data are available on the use of the 6076 as a ssb amplifier that gives 38 db third and fifth order distortion products without r-f or envelope feedback in the 3 to 30 me range. Circle 415 on Reader Service Card.

Silicon Rectifiers

axial leads

Sarkes Tarzlan, Inc., 115 Collgge Ave., Bloomington, Incl. Type K silicon rectifiers feature 750 ma to 55 C (no heat sink). They provide axial lead mounting. Mass production results in very low prices to allow wide commercial application. The K series incorporates a positive environmental seal with special epoxy resin. Polarity is identified by color coded resin at each end. Voltage ratings are $100,200,300$ and 400 v peak inverse. Circle 416 on Reader Service Card.

Tantalum Capacitor solid electrolyte

Minitronics Corr., 328 Gland St., New York 2, N. Y' Type TQ subminiature tantalum electrolytic capacitor is a metal cased hermeti-

HIGH AND MEDIUM GAIN 60-VOLT POWER TRANSISTORS

GENERAL SPECIFICATIONS

Collector current (I_{C}),Amps
SAMPLE ORDER 2 EACH OF 2 TYPES - $\$ 25,00$ available from your local Motorola distributor or from the Phoenix factory
FOR COMPLETE TECHNICAL DATA
concerning these and other performance-prove. Motorola Semiconductors - write, wire or phone, Motorola, Inc., 5005 East McDowell Road, Phoenix, Arizona. BRidge 5-4411. Teletype PX 80.
for an extensive range of military \& industrial applications
Select the Beta-range best suited for your requirements. Both units are supplied to the same stringent specifications and are available, now, in quantities at sensible prices.
use wherever high-voltage
power transistors are required.

- Magnetic amplifiers
- DC converters and other switching service
- All audio amplifiers
- Motor controls
- Power supply regulators
- Line voltage regulators
- Servo amplifiers

MOTOROLA SEMICONDUCTORS

MOTOROLA, INC. 5005 E. MCDOWELL PHOENIX, ARIZONA PHOENIX, ARIZONA

Other Motorola Quality Products Include

What's under her hat?

It isn't an earring. It's an ACESET® . . a micro-miniature, precision, wire-wound potentiometer featuring small pot size with big pot performance! Only $1 / 2^{\prime \prime}$ in diameter and $5 / 16^{\prime \prime}$ in body length, the ACESET excels in a combination of all around top performance characteristics. Heat dissipation, for example, is 2 watts at $60^{\circ} \mathrm{C}$. Other specification information is listed below.
Improved performance at lower cost has been achieved in these micro-miniature units by mass producing to standard specifications. You can select from nine different resistance values between 100 and 25,000 Ohms. Shipments are guaranteed within 24 hours of receipt of order. Call, wire or teletype Dept. F at Ace Electronics Associates, Inc., 99 Dover Street, Somerville, Mass. SOmerset 6-5130. TWX SMVL 181

MECHANICAL SPECIFICATIONS

One piece precision-machined metal case
Passivated stainless steel shaft
Self-contained locking device
Panel anti-rotation pin
Mechanical rotation: 330° nominal
Size: $1 / 2 "$ diameter $\times 5 / 16^{\prime \prime}$ body length

ELECTRICAL SPECIFICATIONS

Heat Dissipation: 2 watts at $60^{\circ} \mathrm{C}$.
Voltage breakdown: 1,000 VDC
Electrical Angle: 325° nominal
Temp, coefficient of resistance wire: 20 ppm
Resistance tolerance: $\pm 10 \%$
Linearity: $\pm 5 \%$
cally sealed unit, containing solid materials exclusively. The capacitor camnot laak or corrode even if the seals are damaged or destroyed.

Type TQ capacitors operate over the temperature range of -80 C to +85 C with a capacitance variation of only ± 10 percent. The dissipation factor docs not exceed 0.05 at $1,000 \mathrm{cps}$ and 25 C . The leakage current at 25 deg is less than 0.05 $\mu \mathrm{a} / \mu \mathrm{f} / \mathrm{v}$ or $0.1 \quad \mu \mathrm{a}$. whichever is greater, measured after five minutes at rated el-c working voltage applied through a 1,000 ohint rcsistor to limit the charging current. The type TQ is a polarized capacitor to be used where no reversal of potential occurs. The case is the negative terminal. Circle 417 on Reader Service Card.

Portable Scope wide-band unit

Tiie Scopes Co. Inc., 20-(02 Raphael St., Fair Lawn, N. J., announces the Serviscope, an inexpensive wide-band portable precision oscilloscope weighing only 16 lb . It features balanced, di-c coupled amplifiers giving flat response to 6 me (-3 db) and hading a rise time of better than 0.06 μ sec for less than 2 percent overshoot. Both fully antomatic svnc and precision trigger level selection are provided as well as tv field and frame sync selectors.
Built-in voltage and time calibrating signals facilitate quantitative measurements and X-expansion, about the center, gives a 50 cm effective trace length. Eightcen preset calibrated sweep speeds and frequency-corrected attenuator per-

HIGH
 For HIGH Insulation Resistance and Low Power Factor 15idT1K Polystyrene Capacitors

signed for applications where stability and low dielectric absorption are essen-tial-wsuch as compuling devices, tuned circuits demanding highest Q standards. capacitance bridges, and laboratory standards. They are available in many case styles and in capacities from 0.001 mid to 25 . motd. and in voltage ratings from 100 VDC to 1600 VDC .

- Varnished cambric-cloth and lape
- Varnished canvas and duck
- Varnished silk and special rayon
- Varnished-Silicone coated fiberglas
- Varnished papers-rope and kraff
- Slot cell combinations, Aboglas ${ }^{\text {© }}$
- Isoglas ${ }^{\text {® }}$ sheet, tape, lubing and sleeving
- Vinyl coated and varnished fubing and sleeving
- Extruded vinyl tubigg and tape
- Styroflex ${ }^{(3)}$ flexible polystyrene tape
- Extruded identification markers

Ask for Catalog No. 23

EROVOX Corporation, with ten plants from coast to coast, have been manufacturing capacitors since 1922. As leaders in the field, they have been quick to take advantage of new and better materials, and to anticipate the demands of the fastest growing industryelectronics.

They use Natvar Styroflex because it has all of the outstanding properties of polystyrene, plus complete flexibility, toughness and uniformity.

Natvar Styroflex is available in standard thicknesses from $.0004^{\prime \prime}$ to $.006^{\prime \prime}$ in rolls from $1 / 2^{\prime \prime}$ to approximately $10^{\prime \prime}$ in width. Ask for data sheet St-1.

magnetic stepping motor-

$\mathbf{1 \%}$ moving part (touches onit ball bearings)
...8000 Steps PER MINUTE
...INSTANT START, NO SLIP, NO CLATTER

... It works

THE SIGMA CYCLONOME ${ }^{*}$ STEPPING MOTOR* behaves

 like a 10 -pole synchronous motor, but because of small inertia and high torque it comes to a dead stop between each balf cycle up to rated maximum of 130 cps . It continues to run synchronously at frequencies well above this maximum, but eventually fails to stop on command on a selected pole.

Since stopping and starting torques are roughly equal, it makes a good counter of cycles or pulses. It accepts sine waves or square pulses, but requires reversals. These reversals may be provided by straight AC signals, DC pulses supplied alternately to separate windings, or DC pulses to one winding with a reference or bias $D C$ in the other.

As proof that this dandy little motor works and can do some useful jobs, three "for instances" that we've built are shown. In (1), some rather elaborate switching is done by a commutating switch driven by the motor. At (2), it functions as a self-checking digital readout switch. In the third example (3), the motor is housed with and drives a 6 -digit Veeder-Root register at rates up to 8000 CPM (sold for some time as the Sigma Cyclonome Counter).
*pat. app. for

TYPE 120 CYCLONOME STEPPING MOTOR SPECS INCLUDE:

TORQUE OUTPUT: approximately $100 \mathrm{gram}-\mathrm{cm}$. for every 18° of rotation (optimum input signal)

INERTIA: 0.6 gram-cm².
INPUT POWER: $1 / 2$ to 12 watts depending on speed requirements
SIZE: $23 / 8^{\prime \prime} \times 2 \frac{178^{\prime \prime} \times 1 / 8^{\prime \prime}}{}$
: Why you would want to get sliaft : positions out of electrical cycles is, of - course, your business, but there is a - thinly disguised feeling around here that (maybe?) one of these gadgets might be just what you've been looking - for. If you can withstand the Tumult and get past the Lions, you can see a Cyclonome Motor stepping at BOOTH 2628-2630, at the athletic contest in March. If not; write for Bulletin.

SIGMA INSTRUMENTS, INC.

62 Pearl Street, So. Braintree 85, Massachusetts

mit time and voltage measurement over the ranges $0.1 \mu \mathrm{sec} / \mathrm{cm}$ to 0.5 $\mathrm{sec} / \mathrm{cm}$ and from 20 mv to 250 v , $\mathrm{a}-\mathrm{c}$ or d-c, respectively.

With dimensions of $6 \frac{1}{2}$ in by $8 \frac{1}{2}$ in. by $13 \frac{1}{2} \mathrm{in}$. overall the Scrviscope offers expensive facilities in a small low cost package and is available for immediate delivery. Circle 418 on Reader Service Card.

D-C Supplies transistorized

Sorensen \& Co., Inc., Richards Ave., South Norwalk, Conn. Six new all-transistor low-voltage, highcurrent d-c supplies are now available. Fiist of a new linc called Q Nobatrons, they offer performance on a par with that of the B-type high-voltage d-c supplies. Features include low ripple, fast response, transient-free performance, adjustable output, wide input frequency range, complete self-protection, cabinet or single or dual rack mounting, isolated output, small size and low cost.

They are said to be ideal for such applications as computer circuits and strain gage bridges. The units have a wide (2:1) range of output voltage. Exclusive circuit design prevents damage to transistors even if output is short circuited. Because no resonant regulators are used, Q-Nobatrons arc insensitive to inpout frequency changes. Either positive or negative output may be grounded, or the output may be floating.

Input voltage of these d-c supplics is $105-125 \mathrm{v}$ a-c single phase. Output voltages are $4.5-\mathrm{s} v$, and $18-36 \mathrm{v}$. Output current ranges from 0-0.5 ampere to 0-4 amperes. Output voltage regulation is

Lowest Prices in the Industry for Highest-Quality OVENS

AMINCO'S fomous forced-convection ovens solve the big problems in today's research and industrial laboratories; . . . they eliminate hot and cold pockets; they provide precise temperafure control; and minimize power consumption.

The many styles and sizes listed at right employ motor-driven blowers which produce movement of a large volume of heated air, horizontally across the work chamber. This, together with the circular arrangement of the heaters, results in uniform distribution throughout the entire work chamber:

All ovens listed are provided with positive locking latches, adjustable perforated shelves, and a removable control panel.
On special order, pyrex inner doors, explo-sion-proot fittings, and blow-out safety panels can be supplied.

Complefe information furnished upon request, in new bullefin 34-37-Z
Immediate delivery
from Stock!

4-3530 Oven, with Linco-flek ex
terior and stainless steel interior 115 volts; size: $19 \times 19 \times 19$ in

4-3542 Oven, with Linco.flek ex-
terior and stainless steel interior. 230 volts; size: $37 \times 25 \times 37$ in

4-3562 Oven, with stainless steel exterior and interior: 230 volts; size: $37 \times 25 \times 37 \mathrm{in}$.

Compare these prices with any other top-qualify ovens-the savings per cubic foot are substantial!

AMERICAN INSTRUMENT CO., INC.
 8030 GEORGIA AVENUE, SILVER SPRING, MARYLAND

The Couch Type 4A relay hearls a family of rugged relavs - relavs that can withstand the extremes of shock, vibration, and acceleration all because of a unique patented rotary armature design. The 4 A design will answer your dry circuit switching problems too. Our Bulletin 132 will tell you more. Write for it today.

IMPORTANT SPECIFICATIONS

Contacts: 4PDT (4 Form C)
Size \& weight:
$13 / 32^{\prime \prime} D \times 11 / 2^{\prime \prime}$ H, 3.2 oz.
Pull-in power: $1 / 2$ watt
Ambient temperature:
$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Vibration resistance:
20G, 5 to 2000 cps
Shock resistance:
75G operating
200G non-operating

-
tllustrated on the right are some of the many possible mounting variations available.

± 0.25 percent for line and load changes combined. Ripple is 0.01 percent for all but one unit, which has a 0.02 percent ripple. Typical recovery time is $50 \mu \mathrm{sec}$. Ambient temperature extends from $0-40 \mathrm{C}$. Typical output impedauce at l,000 cps ranges from about 0.003 to about 0.02 olim. Circle 419 on Reader Service Card.

Phone Plugs molded to cable

Switchcraft, Inc., 1328 N. Halsted St., Chicago 22, Ill., adds to its line of components phone plugs molded directly to 2 -conductor shielded cable. Thesc are assembled in standard cable assemblies of the type often used in audio equipment for intercomecting amplifiers, microphones and so on. They are available in straight or angle types, as illustrated.

These assemblies will be available in packaged units or for spccific requirements with plugs molded to special cables. Circle 420 on Reader Service Card.

Oscilloscope meets MIL-O-15525D

James S. Spivey Inc., 4908 Hampden Lane, Washington 14, D. C. Model 85-A oscilloscope is designed to fulfill the requirements of the automatic communications

SPECIFY

-TMDE

LINDE Sapphire is...

Hard - Moh 9
Transparent, single crystal, pure aluminum oxide
Nonporous -0% porosity
Easily sealed to metals and ceramics
Priced competitively with sintered materials

LINDE Sapphire has...
Strength at elevated temperatures
High melting point $-2040^{\circ} \mathrm{C}$.
Excellent IR transmission at high temperatures (above $500^{\circ} \mathrm{C}$.)

LINDE Sapphire is available as...

Windows
Domes
Rods and tubes
Special shapes - to order
For more information about Linde Sapphire . . W rite "Crystals Dept. BD-32," Linde Company, Division of Union Carbide Corporation, 30 East 42nd Street, New York 17, N. Y. In Canada: Linde

Company, Division of Union Carbide Canada Linited

ENGINEERS AND SCIENTISTS interested in working in Syntheric Crystal Sales \& Development, contact Mr. A. K. Seemann, Linde Company, 30 E. 42 nd St., New York 17, N.Y.

NEW RELIABILITY for a popular multi-contact relay type

The big story about this popular midget relay type is not that it is new . . . but that Struthers-Dunn now makes it. Material and design improvements scored by S-D engineering spell maximum dependability and long life-yet at no price increase.

As illustrated, 16 flexing contact springs can be supplied with 8 springs in each of two stacks. Standard relays withstand ambient temperatures to $85^{\circ} \mathrm{C}$. Special types for ambients of $125^{\circ} \mathrm{C}$. are available. Minimum power requirements are on the order of 100 milliwatts per pole.

A-C VERSIONS for continuous duty can be supplied.
FOR MILITARY APPLICATIONS, SD Type 180 Relays are widely used for ground and aircraft electronic and communications equipment.
FOR COMMERCIAL USES. Type 180 relays provide maximum dependability for the numerous contact arrangements required for computers, instruments, signalling and annunciator systems and similar low potver uses.

Data Bulletin No. 2180 request

NOW Stock deliveries from the fac-

 tory on many of the S-D 5,348 relay types.IMMEDIATE LOCAL DELIVERIES on many of the most popular types. Write for name of your nearest distributor.

STRUUTHERS-DUNN, Inc.

Pitman, N. J.

Makers of the world's largest selection of relay types
field and allied operational systems. Special emphasis has been placed on providing superior low frequency sweep linearization and balanced input d-c amplifiers of high gain.

Horizontal sweep range is 3 cps to 40 kc in 4 bands with a minimum of 5 percent frequency overlap on each end of each band. Linearity is ± 1 percent on all frequencies up to 5 kc ; ± 2 percent albove that.

Vertical and horizontal amplifiers have 1 ground and 2 balanced imputs through 5-way binding posts spaced $\frac{3}{4} \mathrm{in}$. on centers. Input sensitivity is $5 \mathrm{mv} / \mathrm{cm}$ to 500 v / cm.
Size is 19 in . wide by 7 in . high by 19 in. deep. Circle 421 on Reader Scrvice Card.

Pulse Transformers miniature type

Janes S. Spivey Inc., 4908 Hampden Lanc, Washington 14, D. C. Type 30A miniature pulse transformers are designed to produce exceptionally fast pulse rise and rccovery time. This is accomplished by using ferrite cores that have high effective permeability for abrupt changes in current and winding coils with very tight inductive coupling between windings on these cores.

The transformers are designed to mect MILL-T-27A specifications. They are cpoxy, resin encapsulated

NEW RG-100 RATE

 GYROTHE SMALLEST EVER MADE ${ }^{\dagger}$

This is truly the mightiest tiny Rate Gyro. It was designed primarily for missile and aircraft application as a control and stabilization element. The Fairchild RG-100 is so small ($15 / 16^{\prime \prime}$ dia. by $2^{\prime \prime}$ long) that it requires jewel bearings identical within 100 millionth's of an inch. An exclusive Fairchild feature is uniform damping, for any required percentage of critical within $\pm 15 \%$ through a range of -40° to $+200^{\circ} \mathrm{F}$. This is accomplished by varying the damping area, using the damping medium as a sensing device which varies with temperature changes.
twith fully controlled damping.

TAKES 100 G'S OF SHOCK AND 15 G'S AT 2000 CPS VIBRATION EVEN AT VERY LOW RATES

This high resistance is due in part to another Fairchild exclusive design feature which does not require the torsion bar to act as a supporting medium. The Fairchild tiny mite Rate Gyro only weighs 3 ounces, but contains a dynamically balanced hysteresis motor which reaches an operating speed of $24,000 \mathrm{rpm}$ in less than 20 seconds. It is available with a 2 or 3 phase winding, runs on $6.3 \mathrm{~V}, 9 \mathrm{~V}$ or 26 V A.C. and has a power rating of 3 watts.

OTHER FAIRCHILD FEATURES:
INPUT RANGES for the standard unit are from 20° to 800° per second. Customer requirements outside of this range can be accommodated. output is 6 volts at maximum rate, operating on 400 cps .
linearity is 0.1% to half scale and 3.5% to full scale. Total null varies from 15 to 40 mv depending upon maximum input rate and damping requirements of the customer.
gimbal balance is 0.1% of full scale per G.
TEMPERATURE RANGE is -65° to $+200^{\circ} \mathrm{F}$. LIfe - 1000 hours.

TA-200

FAIRCHILD'S

NEW ACCELEROMETERS
FEOR APPLICATION IN: Flight Control-Testing, Toss Bombing, Airborne Telemetering, Computers and other systems requiring the measuring of missile or aircraft maneuvering accelerations.

*Fairchild's Built-in SAFETY FACTORS Beyond the Specs for Reliability in Performance.

SPECIFICATIONS

Model	TA-200	TA-300
G Range	± 1 to $\pm 100 \mathrm{G}$	± 1 to $\pm 100 \mathrm{G}$
Natural Frequency	$7-35 \mathrm{cps}$	$20-100 \mathrm{cps}$
Damping Factor	$.7 @ 25^{\circ} \mathrm{C}$	$.7 @ 25^{\circ} \mathrm{C}$

OUTSTANDING FEATURES

1. TA-200, TA- $\mathbf{3 0 0}$ low cross talk units.
2. TA-200 uses a spring mass, linear motion sensing device with jewel bearings for extremely low friction.
3. TA-300 is also an extremely low friction design using a spring mass, linear motion sensing device.

Fairchild has three accelerometers for measuring accelerations in the medium G Range.

TA-100 - a low natural frequency unit (previously announced)
New TA-200 - a medium natural frequency unit
New TA-300 - a high natural frequency unit
These units use special alloys with a low temperature coefficient modulus. The use of these special alloys provide exceptionally low hysteresis and excellent calibration stability over a wide temperature range. All units use a potentiometer output (standard) ; can also be supplied with Fairchild's Nobl-ohm film resistance elements or AC type pickoffs.

HIGHEST ACCURACY RATING FOR ITS SIZE IN THE INDUSTRY

2" MULTI-TURN TYPE 932

.009\% LINEARITY

IN OPTIMUM RESISTANCE VALUES

1. Cam slider correction system for internal error compensation results in minimum errors. No need for "costly selection" to achieve minimum linearity error. A patent pending feature.
2. Long life - achieved through the use of a separate slider actuating groove precisely located between the coils of the winding. Wiper only contacts the coil and enables low noise values and retention of high accuracy to be achieved over long life.
3. Available with precious metal windings for severe environmental exposures and lowest noise characteristics.
4. Precious metal contact assembly.
5. Rugged, shock resistant, metal to metal stops.
6. Available in special high-temperature models to $150^{\circ} \mathrm{C}$ operation.
7. Precision Machined Aluminum Case.
8. All welded terminals and taps.

*Fairchild's Built-in SAFETY FACTORS Beyond the Specs for Reliability in Performance.

TWO NEW SINE-COSINE TYPE "POTS"

TYPE $7555^{\prime \prime}$ DIA.
A shaped card sine-cosine type that has unusually excellent application for computing devices. Resolution and functional conformity are almost constant regardless of angular position. Can be supplied in ganged assemblies, sine-cosine, linear and non-linear units if desired.

OUTSTANDING FEATURES

Low torque, gangable on single through shaft; high slewing speeds; uniform resolution; . 15% conformity

TYPE 758 1 $1 / 8^{\prime \prime}$ DIA.
A square card type using a machined contoured card (not a buckled card) is a a ailable in either two or four brushes. The two brush version is used as a phase shifter and the four brush as a resolver. Resolved angular accuracy $\pm 0.5^{\circ}$. Resolved amplitude accuracy $\pm 0.75 \%$.

OUTSTANDING FEATURES

Machined contoured card-holds wires tight, gives better life, higher accuracy and low noise. Fairchild has the most complete line of SineCosine type potentiometers. Fairchild can also meet your individual needs with the optimum designs for size and functional conformity.

NOW... for the first time in the industry a true PRECISION POTENTIOMETER FOR UNDER 15 DOLLARS

This SINGLE TURN unit has low noise level and high resolution and is particularly desirable for computor assemblies, calibration controls and servo-mechanisms. Pre-servo-mechanisms. Pre-
cision-built to close tol-
 TYPE $747 F$ erances, these economical, machined phenolic case units are guaranteed for long service life and sustained accuracy. The type 747 F is a $2^{\prime \prime}$ unit with a resistance range of 1 K to 250 K ohms. Std. Linearity to 0.25%, Gangable, Easy phasing. Low torque.

ALL FOR UNDER $\$ 15$

farchud's NEW PRESSURE TRANSDUCERS

FOR APPLICATION IN: Fuel control and gas pressures. Ground control test equipment. Hydraulic systems in missile firing towers.

TPH 175-13/4" Diameter

A Bourdon tube high pressure sensing device for measurement of absolute or gauge pressure from 100 to $10,000 \mathrm{psi}$. This dynamically balanced twin spring pressure transducer utilizes no linkage or pivots, resulting in low hysteresis, low friction, and excellent repeatability. It has a precision wire wound potentiometer (linear or nonlinear) output and can be supplied with NoblOhm film element pick-offs. Can be used for corrosive liquids or gases.

TPH 176-13/4" Diameter

This is another new Bourdon tube design and is the differential version of the TPH 175 featuring a heavy case for measuring differential pressures to 5000 psi . Has standard wire wound potentiometer pick-offs and can be supplied with NoblOhm film element pick-offs.
Fairchild offers a complete line of absolute, gauge and differential pressure transducers in both Bourdon tube and diaphragm designs for both low and high pressure applications.

TPH 175
for plug-in or printed-circuit and conventional-wiring applications.

Rise time is as low as 0.005 $\mu \mathrm{scc}$, depending on transformer type and circuit; pulse repetition rate, up to +mc ; operating temperature, -55 C to +125 C Circle 422 on Reader Service Card.

Silicon Rectifiers

tiny glass type
Raytifon Mfg. Co., 55 Chapel St., Newton 58, Mass, has available the $1 N 645$, $1 N 6+6$ and $1 N$ 648 tiny glass silicon rectifiers. These have peak inverse ratings from 225 to 500 v and are capable of handling 400 ma average forward current at 25 C or 150 ma at 150 C . Circle 423 on Reader Service Card.

Time Delay Relay

 thermal typeR.C.O. Electronics, 145 Valley St., Belleville. N. J., has in production a highly effective thermal time delay relay, model 「-99. Actuated by heater and hermetically sealed for maximum stability, it is unaffected be moisture, altitude or dust

GIANNINI AC OUTPUT ACCELEROMETER

Wide Dynamic Range Extremely Low Threshold Low Null

ACCURATE, CONSISTENTLY RELIABLE AC output, proportional to linear acceleration, is provided by this new Gian. nini accelerometer. Available in ranges from $\pm 1 \mathrm{~g}$ to $\pm 20 \mathrm{~g}$, the instrument has a full scale output of 6 volts which may be fed directly into a relatively low impedance with little or no phase shift.
NULL VOLTAGE IS 0.015 VOLTS, of which at least 90% is harmonic, assuring a wide dynamic range for the instrument. With a basic threshold sensi. tivity as low as $0.0001 \mathrm{~g} / \mathrm{g}$, input accelerations on the order of 0.0017 g's will provide a 10 millivolt change in output.
NO COULOMB FRICTION IS EXHIBITED in this design, bearings are eliminated by suspending the mass between
two disc springs. Acceleration inputs move the magnetically damped mass, causing a proportionate change in the output voltage of a differential transformer. Cross-talk effect is minimum $(0.003 \mathrm{~g} / \mathrm{g}$ at 10 g cross acceleration on a lg instrument) ; repeatability and hysteresis are below thresholds of measuring equipment.
IDEAL SECOND ORDER SYSTEM RESPONSE is achieved in the Model 24614 by mag. netic eddy-current damping.The her. metically sealed instrument is oilfilled for stability of output under vibration. Specially designed and constructed for use in critical airborne control, stabilization, and flight test applications, the instrument is readily adapted to telemetering.

New and expanded contracts of a long-term nature have created a number of challenging, high-level openings for electronics engineers in Bell Aircraft's Avionics. Aircraft and Special Weapons Divisions.

These openings embrace interesting design and develop. ment problems which will afford full scope to your creative ingenuity with unusual opportunities for rapid advancement and professional recognition.

If you have a B.S. or higher degree in Electrical Engineering with experience in the fields of servo-mechanisms, inertial guidance, gyros and advanced systems analysis, you'll find good listening in what the rapidly expanding divisions of Bell Aircraft have to tell you. Top salaries commensurate with your background, good living and liberal fringe benefits.

Please contact Bell representatives at the I. K. E. Show, booths 1328-30 or write: Supervisor of Engineering Employment, Dept.H-21,BELL AIRCRAFT CORPORATION, P.O. Box One, Buffalo 5, N.Y.
icleal for use in militarv, commercial and communications equipment.

The delay relay operates on a-c, d-c or pulsating curreuts . . . 2 seconds to 3 minute delay periods. Vibrations and shocks will not danage the mit. When subjected to ambient temperature ranges from -60 C to +85 C . the relay delay interval varies slightly from room temperature delav periods.

Whether operation is intermittent or continuous, all relavs are assured a useful longevity. Rapid installation is made possible by use of the standard intermediate shell S-pin octal base. Special licater voltages are arailable for special icquirements. Circle 424 on Reader Service Card.

Frequency Changer portable unit

Sorensen \& Co., Inc., Richards Ave., South Norwalk, Coum. Model FCR100 is a now low-impedince, portable frequency changer with a wide range of output frequency, excellent waveform, and low audio and radio noise. It is an ideal power supply for equipment draving up to 100 va and operating best at frequencies other than that of the arailable main power source. It is also recommended for use in testing equipment over a range of frequencies anywhere between +5 and 2,000 cps.

Because of its low output distortion, it is said to be an excellent servo supply. Wide output-frequener range allows it to be used not only in 60-cycle applications, but also with higher frequency aircraft and missile components. Versatility of the unit is further enhanced by an auxiliary input which

KINGS, the first name in connectors, introduces its new line of fittings for Foamflex, Styroflex and Spirafil cables. These are the finest connectors for the finest line of high frequency cables manufactured by Phelps Dodge Copper Products Corp. Adapters for RG-/U are available.

Low VSRW		Uniform Electrical Properties Over Wide Temperature Variations
Excellent Frequency Response		Unlimited Operating Life

WRITE FOR DETAILS
KINGS Electronics co..nc.
40 MARBLEDALE ROAD, IUCKAHOE 7, N. Y.
CIRCLE 180 READERS SERVICE CARD

FINEST LIṄE OF HIGH FREQUENCY CABLES IN THE COMMUNICATIONS FIELD!

- No radiation
- Low attenuation
- Excellent frequency response
- Uniform electrical properties over wide temperature variations
- Unlimited operating life
- Continuous 1000^{\prime} lengths

PHELPS DODGE COPPER PRODUCTS CORPORATION

300 PARK AVENUE, NEW YORK 22, N. Y.

Pyramid Tantalum slug capacitors are miniaturized to provide maximum space economy.

New Pyramid Tantalum slug capacitors have cylindrical cases and contain a non-corrosive electrolyte. Due to the special construction of materials used in the manufacture of Pyramid Tantalum slug capacitors, these units are both seep and vibration proof. In addition, this type of capacitor assures long service life and corrosion resistance - made to meet MIL-C-3965 Specifications.
Commercially available immediately, these new Pyramid Tantalum capacitor units have an operating range between $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ for most units without any de-rating at the higher temperature.
To obtain complete engineering data and prices for Pyramid Tantalum slug capacitors, write to: Pyramid Research and Development Dept., Pyramid Electric Company, 1445 Hüdson Boulevard, North Bergen, New Jersey.

```
CAPACITORS - RECTIFIERS FOR ORIGINAL EQUIPMENT FOR REPLAGEMENT
```

allows an external signal to be applied to its oscillator circuit. This permits the output frequency to be set with a high-precision frequency standard.
Other features include input voltage range of $105-125 \mathrm{v}$ at $+5-65$ cps; output voltage range of $0-130 \mathrm{v}$ with ± 1 percent regulation for line or load; output frequency regulation of ± 1 percent normally, ± 0.01 percent with a built-in frequency standard or any accuracy obtainable with an external frequency standard; frequency drift of less than 1 percent in 24 hours; power factor of unity to 0.7 lagging at 100 va , unity to 0.5 lagging at 50 va , and fully inductive at 25 va ; output distortion 1 percent maximum for $75-125$ v output; and $0-40 \mathrm{C}$ ambient temperature range. Circle 425 on Reader Service Card.

Power Supplies

transistor regulated

Elcor, Inc., P. O. Box 354, McLean, Va., announces a new serics of transistor regulated power supplies for strain-gage bridges and other applications requiring a lownoise ungrounded power supply. Available are nine different models for $117 \mathrm{v}, 60$ cycle input, with output voltages ranging from 10 v to 50 v in steps of 5 v . Output current ratings range from $150 \mathrm{ma} \mathrm{d}-\mathrm{c}$ at 10 v to 40 mad d at 50 v . Dimensions including the shield are 14 kin . by 218 in . by 518 in ., and weight is approximately 1 lb .

A novel feature is a special transformer construction that provides low shunt capacitance and very ligh leakage resistance from the output terminals to ground, permitting use of the supply as a floating source of $\mathrm{d}-\mathrm{c}$ power in

new

 AUMANKLatest in
DESIGN PERFORMANCE VERSATILITY
for high production and laboratory

All types of automatic and semi-automatic
COIL WINDING MACHINES TOROIDAL WINDING MACHINES for fine or heavy wires armature winding machines CONDENSER WINDING MACHINES WIRE RE-WINDING MACHINES take.up and winding frames with constant tension MACHINES to SPECIFICATIONS

MOUEI. WG 300

- Wire ranges AWG \#12 to AWG \#57
- Infinitely adjustable pitch and traverse
- Variable speeds up to maximum $15,000 \mathrm{rpm}$
- Single and multiple winding; wire guides can be added at convenience
- With or without bedplate and tailstock
- Infininely adiustable pirch and maverse

OPTIONAL:-Semi-automatic paper inter-leaving-Automatic stop after each first and second layer-Automatic stop after each first and sixth layer-Progressive shortening of layers (for trapezoidal winding)-Automatic speed reduction at end of layers-Driven tailstock--Intermediate support for multiple winding of coils that have to be clampedSet of two winding mandrels on turret; while one mandrel is engaged for winding, the other is emptied and newly prepared.
> terminal bLocks

theory * design * performance of electronic circuits

ELECTRONIC SEMICONDUCTORS

Just Published. A rigorous and systematic introduction to semiconductor physics, developing the subject logically from simple concepts and giving clear pictures of the conduction mechanism of electronic semiconductors within the framework of the bamd model. Among the book's outstanding features are the treatment of acceleration of electrons, the Zener effect, etc. Book is a translation of the 2nd German edition of Filelitronisrhe Hableiter by Eberhard Spenke. Translated by D. Jenny, H. Kroemer, E. G. Ramberg, and A. H. Sommer, RCA Laboratories, 430 pp., 163 illus., $\$ 11.00$

RANDOM SIGNALS AND NOISE

Just Published. An introduction to the statistical theory underlying the study of signals and noises in communications systems. Contains an introduction to probability theory and statistics, a discussion of the statistical properties of the Gaussian random process, a study of the results of passing random signals and noises through linea and nonlinear systems, and an introduction to the statistical theory of the detection of signals in presence of noise. By William B. Davenport, Jr., and William L. Root, Lincoln Laboratory, M.I.T. 393 pp., illus., $\$ 10.00$

ELECTRON TUBE CIRCUITS

New 2nd Edition Just Published. Discusses and evaluates the fundamental properties of electron tubes and their circuit operations-analyzes tuned and untuned ampliflers-and takes up in detail circuits essential to modern electronic systems such as voltage, video. and power ampliflers; waveform generators; oscillators; modulators. etc. Scores of practical examples show you best applications of theory. By Samuel Seely, Case Inst. of Technology. 2nd Ed. 695 pp., 739 illus., 510.50

BASIC FEEDBACK CONTROL SYSTEM DESIGN

Just Published. Bases the study of feedback control system design on complex frequency plane analysis-the root-locus. A wide range of servo transducers and components are covered. Recent advances covered include a section of gyroscopes and force-balance transducers, inertial navigation; analysis of nonlinear systems such as the describing function technique and phase plane analysis. Frequency methods, such as Nyquist and Bode, are included. By C. C. Savant, U. of Southern Cal. 418 pp., illus., $\$ 9.50$

NUMERICAL ANALYSIS

Just Published. Covers the topics most directly needed for a clear understanding of methods used in numerical solution of differential equations, both ordinary and partial. and in the solution of integral equations. Clearly explains the use of finite-difference methods in obtaining numerical solutions to problems-emphasizing procedures which can be most readily programmed for an electronic digital computer. Many helpful techniques such as the use of lozenge diagrams for numerical differentiation and integration are supplied. By Kaiser \mathbf{S} Kunz, Ridgefield Research Lab. 381 pp., 40 illus., $\$ 8.00$

SEE ANY BOOK 10 DAYS FREE

McGraw-Hill Book Co., Dept. FL-3-14 327 W. 41 st St. New York 36 Send me book(s) checked below for 10 days' examination on approval. In 10 days I will remit for book(s) I keep plus few (We pay delivery costs if you remit with this coupon-same return privilege.)

```
Spenke-Elect. Semiconductors, $11.00 Kunz-Numerical Analysis, $8.00
```

\square Spenke-Elect. Semiconductors, $\$ 11.00 \quad$ Kunz-Numerical Analysis, $\$ 8.00$
\square Savant-Feedback Cont. System Design, $\$ 9.50$

Position
Company
For price and terms outside U.S., write McGraw-Hill Int'I., N. Y. C.
FL-3. 14

microwave absorbers by

McMillan Industrial Corporation makes various materials for the absorption of microwave energy, for indoor or outdoor use and for ground or airborne applications. Listed below are the three most popular albsorbers, their typical applications, specifications and characteristics.

bridge circuits or in other applications in which a signal voltage appears between the output of the power supply and ground.

Other features include regulation of $0 .+$ percent; line regulation of 0.2 percent; output ripple of 0.01 percent; output voltage temperature coefficient of 0.02 percent por deg F; and noise and hum of less than $15 \mu \mathrm{v}$ per kilolın impedance to ground. Circle 426 on Reader Scrvice Card.

D-C Amplifier
 low noise level

Dinamics Instrumentation Co., 1118 Mission St., South Pasadena, Calif. Loss of data resulting from unexpected overscale input signals is aroided by the unique signal compression feature of the model $1250 \mathrm{~d}-\mathrm{c}$ amplifier. The low noise level of $3 \mu \mathrm{r}$ rims for 30 kc bandwidth is achiered by the special low-noise circuit.

Grouncl-loop and crosstalk problems are minimized by the very high degree of power line isolation. Specifications include voltage gain of $1,000,2 \mu \mathrm{~V}$ zero stability, and 100 K input impedance. Circle 427 on Reader Service Cird.

Ferrite Isolator operates in S-band

Airtron, Inc., 1096 West Elizabeth Ave., Linden, N. J., has available a special resonant absorption
ferrite isolator for operation in the S-brand region with female type N connectors to meet particular coar systems requirements.

Operating over a frequency range of 2,670 to $2,930 \mathrm{mcc}$, the unit is especially bencficial in applications involving power amplifier type of transmitters because of the ligh degree of unidirectional isolation of the signal source from reflected r-f energy.

The standard type N (50 ohm) conncetors are used on both the imput and output of the basic waveguide structure, facilitating the connection of coaxial line systems. Three mounting brackets are used to support the unit permitting the disconnection of calbles without removing the isolator and eliminating undue stress on thic coaxial lincs.

Electrical characteristics are: frequency range, 2,670 to 2,930 mc ; isolation, 20 db minimum: insertion loss, 0.8 db maximum; iuput vswr, 1.20 maximum; and power landling capacity, 10 w average with a $2: 1$ load vswr. Circle 428 on Reader Service Card.

Chain Amplifier r-f distribution

Wesibuury Electronics, Inc., 300 Shames Drive, Westloury, N. Y., amounces a new chain amplifier, model ABB-5 added to its present line of r-f clistribution amplifiers. It provides truly broad band amplification of to and $\mathrm{f}-\mathrm{m}$ signals in the 15 to 230 mc region with a gain of 20 db and a frecpuency response flat $\pm 1.5 \mathrm{db}$. No matching cables or networks are required for use with 75 ohm cable. It is designed for continuous service with a self-containcel power supply, manual gain control, and provisions for the addition of age.

A unique feature of this amplifier is that complete loss of emission of one or more vacuum tubes does

For Highest Reliability

 FAN TEFL Tantalum Capacitors

VISIT US AT
BOOTHS 4021
- 4022
I.R.E.SHOW

FANETEZ L°
FANSTEEL METALLURGICAL CORPORATIOTN
North Chicago, Illinois, U.S.A.
RELIABLE TANTALUM CAPACITORS SINCE 1.930
not interrupt the system but only reduces the gain by 1.5 db per tube. The unit is available in regular or rack mounting. Circle 429 on Reader Service Card.

Programming Plug has 240 pins

Coleman Engineering Co., Inc., $60+0$ W. Jefferson Blvd., Los Angeles 16, Calif., announces the model PR-240 programming plug set. The plug provicles 240 pins, readily accessible, tapered to accept taper-lug jumper wires which are applied by hand pressure to effect jumper connections.

Features of the design include guide pins to align and polarize plug with receptacle, provisions for panel mounting the receptacle, and the protective cover for the plug. The unit, the cover of which measures 6 in . wide, $3 \frac{1}{2} \mathrm{in}$. high and $2 \frac{1}{8} \mathrm{in}$. deep, originally intended for use in the company's digital readout systems, is now available as a scparate component. Circle 430 on Reader Service Card.

Choppers
 feature low noise

Airpax Products Co., Cambridge Division, Cambridge, Md., announces a new type chopper with noise levels below $10 \mu \mathrm{v}$ in lowimpedance circuits. These noise levels are for wide-band noise extending from a few cps up to 40
ke and are measured by a thermocouple voltmeter (true rms reading).
The contacts are rated for operation in dry and nearly dry circuits yet withstand surges as high as 2 ma at 100 v into resistive loads. Drive is rated at either 400 ± 20 cps (type 2300) or $60 \pm 6 \mathrm{cps}$ (type 2400) at $6.3 \pm 0.6 \mathrm{v}$ rms. Normal operating temperature range is -65 C to +100 C . Units for operation to higher temperatures can be supplied on special order. In usual applications threse choppers can be expected to remain within ratings for over 5,000 hours. Circle 431 on Reader Service Card.

Tape Handler transistorized

Potter Instrument Co., Inc., Sunnyside Blvcl., Plainview, L. I., N. Y. Model 906 completely transistorized digital magnetic tape handler features rugged dependability and remote control. Both ligh and low tape speeds are available in ranges of four specds forward and reverse up to 150 ips . Rewind or scarch tape speeds are 400 ips.

The machine is capable of continuous cycling at any frequency from 0 to 200 cps without flutter. Start time is 3 milliseconds and stop time has been recluced to 1.5 milliseconds.

A vacuum loop device is used in conjunction with the tensioning system to provide proper tape tension at all times. Other features
For Highest Dependability FANTTEEL RECTIFIERS

SILICON RECTIFIERS

Type 1 A-Rated at 500 mg without heat sink

SELENIUM INDUSTRIAL POWER RECTIFIERS

Ask for Bulletin 6.400
Get in touch with your nearest reptesentative ho can help yyou with your specific requirements.

VISIT US AT
VISIT US AT
BOOTHS 4021
BOOTHS 4021
-4022
-4022
I. R.E.SHOW
I. R.E.SHOW
FANCTEEL
fansteel metallurgical corporation North Chicego, Illinois, U.S.A:
E582A
DEPENDABLERECTIFIERSSINCE 1924

Visit Us at Booth $27+1$
I.R.E. Show, March 24-27

HOP-F'TITGTEI PERENOIRMIERES

This unique subminiature, 2-stage transistor amplifier includes an oven which provides temperature stability and warmup from $-80^{\circ} \mathrm{F}$ to $+193^{\circ} \mathrm{F}$ in only two minutes when operating on any voltage between 24 volts and 30 volts.
Designed, developed and produced in quantity by Cox for Hughes Aircraft Company, it forms an essential part of the fire-control system for the Falcon Air-to-Air Guided Missile.
Test Performance charts will be sent upon request.
Heaters and Temperature Control for all types of military equipment. Over 2,000 different successful designs in use.

COXX \& COMIPANTY, Tnc.

New York 10, N.Y.
include in-line threading, end of tape sensing, and tape break protection.

Close packing density, provicling up to 47 channels is obtained by use of a Potter high density record/playback haad. Circle 432 on Reader Service Card.

Servo Package combines four parts

Sterling Precision Corp., 3-17 Lavvrence St., Flushing 54, N. Y. Model T-950 is a compact servo package combining a servo motor, a gear reducer, a magnetic clutchbrake and a potentiometer. In this particular unit, the motor is driving the potentiometer arm at a speed corresponding to the rotation of radar scanning antcnma, (approximately 40 rpm). Upon a given sig. nal the motor is uncoupled and the potentioneter is braked within two milliseconds.

Using the same basic units, various combinations of operational requirements can be accomplished. Circle 433 on Reader Service Card.

R-F Amplifiers broadband type

Applied Research Inc., 76 South Bayles Asc., Port Washington, N. Y., has a new line of broadband r-f amplifiers ruggedly designed for consistently high performance and
low mantename cost. Model HFW octave r-f amplifiers are saicl to be a step forward in the application of advanced multipole network hicory. The new units provide broadband bandpass :mplififation covering an octave or greater of frequence in the +0 to 600 me spectrum with low noise, high gain and low power drain.

GE type GL-6299 co-planar triodes are combined with multipole networks to provide amplifiers with power gains of 5.5 db or greater per stage, with a 300 mc bandwidtlı. A number of these stages are cascaded to provide gain of 20 or 30 db . The frequener spectrum of to to 600 mo is covered by six basic octave r-f amplifiers, having the following frequencr responses in megacycles: 40 to $80 ; 80$ to 160: 100 to 200: 160 to $320 ; 225$ to 400 and 300 to 600 . Circle 434 on Reader Service Card.

Ferrule
 for shielded wire

AMP Inc., 2100 Paxton St., Harrisburg, Pa., amounces its new Automachine shielded wire ferrule for automated pigtailing.

Designed expressly for grounding the shield braid of coasial conductors, the new Automachine feeds and attaches Automachine shielded wire ferrules and pigtail simultancously to shiclded wire leads. The Automachine's dual applicator permits attaclument of ferrule and pigtail wire to a double ended shiclded wire jumper or to two slielded wire leads at the same time. with pigtail wires whose length can be adjusted in the applicator.

The firm reports that the new process will reduce the cost of pig-

.01\% Linearity in Production Potentiometers

LITTON'S MD20 CERAMIC CORE POTENTIOMETER SUSTAINED HIGH ACCURACY - PROVED

MD20 SPECIFICATIONS*

- Up to. 01% independent linearity - $1 K$ to 100 K standard resistances
- Up to $.00 .5 \%$ resolution depending upon resistance talue $\cdot 3600^{\circ}+1^{\circ}-0^{\circ}$ electrical angle - 5 watts power dissipation at $85^{\circ} \mathrm{C}$, derates to $125^{\circ} \mathrm{C}$
- Taps are welded and can be supplied in any location - 90° nominal overtravel
- I.0 oz. in. starting torque • 0.75 oz in. running torque
- 500 oz. in static stop torque
*For 10 turn: Also available in dual 10 turn; 3 turn, dual 3 turn; 20 turn

The Latrow MD20 meets or exceeds all critical military specifications for potenti-ometers-and, up to $.01 \%$ linearity is a hiftos production-standard specification in this $2^{\prime \prime}$ multiturn unit.

Here's how it's done.

- Ceramic core provides a dimensionally stable, chemically inert and non-hygo scopic foundation.
E Single-piece machined•aluminum hub furnishes a rugged support and accurate reference.
- Modified Slope Control delivers a highly accurate servocontrolled winding.

Result - $.01 \%$ linearity and $.005 \%$ reso. lution. as a production standard.

Where your prime requirement is sustained high accuracy, Litton cam help you. Please write to Litton Industries, Dept. I, 215 South Fulton Avenue, Mount Vernon, New York, or to Litton Industries, Dept. 1, 5873 Rodeo Road, Los Angeles 16, Cali. fornia.

Visit Our Booth at N. Y. I.R.E. Show.

\square LITTON INDUSTRIES Components Division

A DIVISION OF LITTON INDUSTRIES, INC.

LITTON PHECISION COMPONENTS: Potendiometers P Ferrite leolators - Rotary Joimts

GREATER
 - OUTPUT

- STABILITY - ACCURACY
- Multi-columr
- Smaller size
- Hermetically sealed

Cox and Stevens LOAD CELLS

For greater accuracy and stability in all types of weight and farce measurement, specify new Cox and Stevens hermetically sealed load cells. Sixteen strain gages in multi-column design provide up to 250% greater output, improved stability and better uniformity between cells. Capacities range from 500 to $200,000 \mathrm{lbs}$. All cells with 30 feet of special moistureand chemical-resistant cable in stainless steel jacket.
Cox and Stevens' fifteen years experience in designing and manufacturing load cells, plus dead weight testing facilities which make possible calibration to higher accuracies, assure maximum reliability. Write for technical bulletins.

TYPICAL SPECIFICATIONS

1. Recommended Input: . 20 volts	
2. Change in Output, No Load to Full Load: $1.750 \pm .1 \%$ millivolts/volt input	
3. No Load Output: $\pm .25 \%$ of full load output	
4. Output Linearity: 0 to $+.20 \%$ of full load output	
5. Temperature Effect on Cell Output (15 to $115^{\circ} \mathrm{F}$): $\pm .0008 \% /{ }^{\circ} \mathrm{F}$ of output at applied load	
6. Temperature Effect on No Load Output (15 to 115° F) \qquad	
7. Input Impedance at $75^{\circ} \mathrm{F}$:	$.450 \pm 1 \mathrm{hms}$
8. Allowable Load	225\% of rated capacity
Deflection Under Rated Loa	ss than 0.003"

REVERE CORPORATION OF AMERICA

Wallingford, Connecticut

A SUBSIDIARY OF NEPTUNE METER COMPANY
tailing by 75 percent by eliminating the tedious wire preparations formerly required. Circle 435 on Reader Service Card.

Voltage Adjuster
 and stepper

Ki:ico Laboratories, Inc., 131-38 Sanford Ave., Flushing 55, N. Y., announces release of a new line voltage adjuster and stepper designed to vary the input voltage for testing the performance of electrical and electronic equipment. Model 920 B provides for adjusting and stepping the line voltage from 95 to 135 va c for anv fixed input voltage in the 95 to 135 va c range.

Output capacity is 3.5 kra for input line voltage above 114 v . This output capacity decreases lincarly to 3 kra at an imput line voltage of 95 r . The output step voltage can be adjusted from 0 to 40 v . Circle 436 on Reader Service Card.

Sweep Generator covers $100 \mathrm{kc}-20 \mathrm{mc}$

Marconi Instruments, 111 Cedar Lane, Englewood, N. J., announces a sweep generator covering 100 kc to 20 mc with crystal markers throughout this range. Manufacturer claims that the in-
strument, model 1099, enables response measurements to be made with a discrimination of at least 0.01 dl).

Output level (3 v maximum) is stabilized and the instrmment is supplied with detector probes on both input and output. With thicse probes a greatly amplificel indication can be obtained of the deviation of an amplificr frequency response from level, and measurements arc largely independent of input level changes.

An instrument of this accuracy finds ready application in design and checking of filters and video circuits. Circle 437 on Reader Service Card.

Frequency Meter direct-reading unit

Polytechnic Researcii \& Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y. Type 590-A di-rect-reading frequency meter allows quick determination and casy reading of frequencics in waveguide sustems operating between 5,100 and $5,900 \mathrm{mc}$. It is available for general use as a separate unit, or it may be installed as a permanent part of another piecc of equipment.

The 590-A consists of a TE_{011} mode cavity resonator tuned by a non-contacting plunger whose position is variable along the axis of the cavity. The calibration spiralled around a drum dial indicates frequency clirectly in mo. The cavity is coupled to a section of waveguide fitted at both ends with cover flanges, enabling the units to be inscrted dircetly into any line of matching waveguide size.
A four-ft scale is attained through spiral calibration of the drum dial, with careful control of

A NEW CONCEPT IN VOLTAGE

 CONTROLLED OSCILLATORS
mcdule size $2^{\prime \prime} \times 73 / /^{\prime \prime} \ldots$ adjustable internal bias...all standard IRIG channels...The voltage controlled subcarrier oscillator, shown in this bu:lding block type FM instrumentation system, is the latest in a series of Juilding-block components developed by Hallamore Electronics Company for the instrumentation field. Engineered for stability and flexibility, the unit designated HEC-0161 is entirely compatible with existing systerns and offers unusual advantages in improved accuracy, operational simplicity, and the saving of space. A standard module case will accommcdate up to six oscillators and summing ampl fier, HEC-0166. A common supply, HEC-0144, integral to the module case, provides the power in this configuration, while an individual supply, HEC-0143, is avallable to provide complete isolation for each transducer input.
The basic Hallamrore voltage controlled subcartier oscillator unit, HEC=0161, can be instantly converted to any TRIG telemetering channel by plug-in channel selectors, HEC-0164, and output filters, HEC-0165. Plug-iñunits for non-standard channels and bandwidths can be supplied. For complete spécifications and operational data, wr.te Hallamore Electrenics Compariy, Dept. 88, 8352 Brookhurst Avenue, Anaheim, Calif.

Price Electric's new Style 6 micro-miniature relay is a lightweight, crystal can style relay designed to give superior performance in miniaturized assemblies. Weighing only 0.5 ounce, the Husky Style 6 is engineered for the utmost simplicity-a simplicity that allows for mass production of a high quality. reliable relay that is as versatile as it is dependable. Termination can be provided to meet most requirements. Style 6 meets the applicable requirements of military specifications and will perform continuously in ambients of -65C to +125 C . This tiny Husky Relay will give excellent performance in guided mis. siles, computers, control systems, and other critical applications.
For further details write for Bulletin Number 10.

line of specials, wound on highpermeability cores.

Sizes range from - in. to 3 in . 0 -d witly frequencies from 1,000 cps to 200 kc . Thes are avalable with incluctance and Q values to specification. The manufacturer claims a high degree of stability vs voltage and temperature, and they can be designed to compensate for extreme variations in temperature.

Tolerances are said to range from 5 percent to 1 percent for special requirements, and finishes mav be plain, waxed, potted encapsulated or hemeticall: sealed to meet MIL-T-27A. Circle 440 on Rcader Service Card.

Phase Angle Meter and monitor

Control Electronics Co.. Inc., Huntington Station, N. Y., has developed a plase angle meter and monitor that provides direct reading without ambiguitv, together with high accuracy over a wide fiequency and amplitude range.

The rugged equipment provides accurate ankl rapid measurement of phase difference, no matching of amplitudes or wave forms being requircd. It offers direct reading 0 to 360 deg with accuracy $\pm 1 \mathrm{deg}$, 20 to $20,000 \mathrm{cps}$, and makes possible continuous, unattended monitoring of phase angle by use of clart recorder.

Model 120 is offered for use in the testing and inspection of servo amplificrs, feedback amplifiers, audio and power transformers, resolvers. gonimeters, synchros and polyphase systems. It accepts sinusoidal or complex wave forms and an output is arailable which is suitable for use with recording equipment. Weighing 59 lb , its dimensions are $11 \frac{1}{2}$ by 20 by 18 in. deep and it can be mounted in a

Use the no-problem INSO Teflon ${ }^{\text {® }}$ Insulated wire and cable

PROBLEM:
 PINHOLES: SHORT LENGTHS:

SPACE: WEIGHT: DRESSING:

CONCENTRICITY:

ENCAPSULATION:

CODE IMPRINTING: Inso will take any cold or hot stamping process.
... And our precision-fusing process insures the constant quality of Inso Teflon insulated wire.
Electrical Testing Laboratories, Inc. Report 367495 certifies that Inso 4 mil wall wire passes all MIL spec. tests for conventional 8 to 12 mil wall Type " E " wire.

In production - Immediate delivery - All colors, solid and striped

- 8 mil wall Type "E" (MIL W-16878-B) . . . passes ALL spec. requirements. 600 volt RMS, 2.0 kV
- 6 mil wall Type "E" (MIL W-16878-B) . . . passes ALL spec. requirements (with a thinner wali), 600 volt RMS, 2.0 KV
- 4 mil wall Type "E" (MIL W-16878-B) . . . passes ALL spec. requirements (with the thinnest wall). 600 volt RMS, 2.0 KV
- Pinhole-free MAGNET WIRE - exceeds MIL A-19583 - 4, $6 \& 8$ mil wall.

Please whe, wire or call us todey for samples and technical data.

INSO products, LTd.

A Subsidiary of Adam Consolidated Industrics, Inc.
404 Fifth Avenue, New York 18, N.Y. WIsconsin 7-4700
Plant: Union, N.J. Cable Address: "INSULATION NEW YORK"
See Us at the IRE Show, Booth 4054

RESISTANCE NETWORKS Maintâin Precise Voltage/Current Ratios

In missiles, computers, instruments . . . in ac or dc circuits . . . wherever voltage or current must be adjusted within close limits . . . Shallcross Networks provide accuracy and dependability.

FROM A RELIABILITY STANDPOINT, use of sealed networks is recommended in preference to individual resistors to eliminate harmful preventive maintenance. In field servicing the technician is often not aware of the precise T.C. and reactance matching of otherwise seemingly ordinary MIL resistors. In addition to special winding techniques the individual resistors in critical networks are usually stabilized. Replacement of any resistor with a standard MIL type could cause equipment malfunction, and must be prevented.

FROM A DESIGN STANDPOINT Shallcross' skill and ability assure adherence to the most exacting temperature, stability, shock, size, and weight requirements. Shallcross precision engineered networks have proven effective both in groundbased and airborne equipment.
Two typical Shallcross resistance networks are described below. Many others with specialized electrical and mechanical characteristics are regularly manufactured.

GROUND-SUPPORT COMPUTERS employ a number of these hermetically-sealed, standard, octal, plug-in networks. Networks have up to 10 specially wound resistors which are critically localed and lead-dressed to meet specifications at 400 cycles. All units are production tested for voltage division accuracy and quadrature error using a precise 400 cycle bridge.

SHALLCROSS MANUFACTURING COMPANY • 522 Pusey Ave., Collingdale, Pa. SEE US AT THE I.R.E. SHOW-BOOTH 2634
standard 19 in. rack when the cover is removed. Circle 441 on Reader Service Card.

X-Y Recorder with time base

F. L. Moseley Co., 409 North Fair Oaks Are.. Pasadena, Calif., announces the model iS Autograf $\mathrm{X}-\mathrm{Y}$ recorder with built-in time base or sweep circuit on the $\mathrm{x}-\mathrm{y}$ axis. It will plot versus time any phesical or mechanical function which can be reduced to clectrical form. Available at finger-tip control are five calibrated time intervals of from 5 sec to 500 sec for full scale x-axis pen travel. When the time base is not used, regular two-variable plotting may be accomplished as desired. Circle 442 on Reader Service Card.

Panel Mount Meter measures phase angle

Ad-Yu Eiectronics Lab., Inc., 249 Terhtunc Asc., Passaic, N. J. Type +10 pancl mount phase meter has the following features: (1) No electron tube, battery or power supply. (2) No crror due to harmonic or noisc content. (3) No amplitude adjustment, no zeroing; dircet reading in degres. (4)

Get out your pencil and . . .

Help yourself to
 electronics' READER SERVICE it's free-it's easy-it's for your convenience

-NOW!

All Advertisements New Products, and New literature are numbered for your convenience.

Each Advertisement, New Product, and New Literature item is numbered. For more information simply . . .
(1) Circle number on postpaid card below that corresponds to number at the bottom of Advertisement, or New Product item. Follow the same procedure if you desire New Literature.
(2) Print your name, title, address, and firm name carefully. It is impose sible to process cards that are not readable.

Correct additional postage MUST be added to cards for all FOREIGN MAILING

Some Advertise-
ments which cannot be numbered for the

READER SERVICE

CARD due to lack of space, must be indicated by writing the Advertiser's name in the space provided at the bottom of the card rd . . . -

MAR $14 \cdot 58$
 - Card EXPIRES MAY - 14TH

- electronics - reader service card
enginering edition
Please Print Carefully
NAME POSITION

ADDRESS

CIRCLE THESE NUMBERS ONLY WHEN YOU ARE INTERESTED IN ALL ITEMS SHOWN OR DESCRIBED

YOU WME RECENE 53 ISSUES M 1950				
alternate	CHART OF PUBLISHING CYCLES			
enoimeerino			(olecroonis	(-tectronis $\begin{gathered}\text { cosiness } \\ \text { odition }\end{gathered}$
	crele	crcle	crace c	CYCLE
alla uUSInESS	JAN. 3	jan. 10	SAN. 17	ian. 24
	JAN. 31	feg. 7	fre: 14	${ }_{\text {feb }} \quad 21$
eititions	fre. 28	mar. 7	mar. 14	mar. 21
	mar. 28	APR. 4	Apr. 11	APr. 18
	Apr. 25	mar 2	mar 9	mar 16
TIUS	may 23	mar 30	june 6	June 13
	June 20	june 27	jutr 4	nutr 11
the	July 18	jutr 25	avg. 1	avg. 8
	Aug. 15	aug 22	aug. 29	${ }^{\text {SEPT. }} 5$
muvers' ouide	sepr. 12	SEPT. 19	sepr. 26	ост. 3
1ujors suine	ocr. nov.	$\begin{array}{ll}\text { Ocr. } & 17 \\ \text { nov, } 14\end{array}$	ocr. 24 Nov. 21	Ocr. 31
lectronics 186 ABP	dec. 5	ofe. 12	Oic. 19	dec. 26
A Meghaw miza	BUYERS' GUIDE ISSUE-JUNK 15			

BUSINESS REPLY CARD
no postae stawe necssery if malto in we wirto sants

In printed card receptacles

The best is even better!

New UPCR-D Series

double row printed card receptacle IMPROVED 4 WAYS!

It is part of U.S. COMPONENTS' research and development policy never to be satisf ed . . . always on the alert for new ideas, materials, methods . . . and you are the benefactor. The new improved UPCR-D Series receptacles is an excellent example of the company's cortinuous. progress in the field. Here is a foalproof precision connector series incorporating a nu nber of new features, the result of a close liaison between application engineers and U.S. COMPONENTS. The proof is in the performance . . . write for sample and details! These new features are incorporated in over 150 types now available, meeting environmental requirements.

JENNINGS PRESENTS

NEW RB VACUUM RELAYS

"Better performance in a smaller package"

An all new series of vacuum relays designed for use where space is critical and voltages high.

Jennings vacuum transfer relays have long been unsurpassed in difficult rf and $d c$ switching situations involving aircraft antennae, antennae funing coils, and radar pulse forming networks. The minimum space requirements of these new miniature relays make them even more effective than previous vacuum relays for airborne applications.

High voltage in a vacuum requires only $1 / 64$ inch contact separation. This fractional movement permits construction of very small, efficient actuating mechanisms. The compact design of these miniature relays has resulted in much higher shock and vibration characteristics. Voltage and current ratings are increased over previous vacuum relays through new design use of ceramics and improved processing techniques.

These new $R B$ relays employ unique self-aligning roller contacts to achieve positive, reliable operation. Available contact arrangements include SPDT, 2PDT or 4PDT relays.

Write for further information on this new series.

No drift, no warm-up period required; perfect stability. (5) Higl accuracy. ± 2.5 percent. (6) Small physical size, $4 \frac{1}{4}$ in. by $5 \frac{3}{4}$ in.; weight less than 3 lb . (7) No ambiguity; meter indicates E_{1} lead E_{2}.

The device is sery suitable for measuring plase angle between two periodic potentials of any shape. sinusoidal or nonsinusoidal, regardless of the relations between the peak values. Plase ranges are $0-36 \mathrm{deg}, 0-90$ deg. and $0-180 \mathrm{deg}$. Circle 443 on Reader Service Card.

Coil Checker shows shorted turns

Kartron. P. O. Boy 472, Huntington Beach. Calif. Model 101-G, for mincrominiature coils is the latest version of the shorted turn indicator. It checks unmounted electrical coils with inside dimensions down to less than in in square with sensiticity approaching that of the other models 101-J) and 101-E with larger mandrels, or probes. It will not check toroids. Manual ti contains a full description. Circle 444 on Reader Scrvice Card.

Photovoltaic Cells silicon devices

Hoffalan Electronics Corp Semiconductor Division, 930 Pitner Ave.. Evanston, Ill. A new series of silicon photovoltaic cells have a
response time of lass than $20 \mu \mathrm{sec}$, and a lifctine expectancy of over 10,000 years. They are particularly suitable for photoclectric devices requiring extromely fast response, dependability; maximum light sensitivity and low-cost.

The silicon cells, which are selfgenerating, recpuire no external power supply. Their compact size allows for a greater number of control circuits than preriously possible, where space is at a mimimum

The cells operate effectively through temperature variations from -65 C to +175 C and higher, with a spectral response range from 3,000 to orer 10,000 Angstroms. Applications include punched tape and card readouts: programming controls; pinhole detection; remote switching controls; infrared sensing: automatic counting; heat. flame and hot-metal detection. Circle 445 on Reáder Service Card.

Signal Generator

 standard frequencyAd-Yu Electronics Lab., Inc., $2+9$ Terhunc Are., Passaic, N. J. Type 209 standard frequence signal generator has an accuracy of \pm 0.005 percent. 'The instrument consists of a tuning fork oscillator, with negative feedback for amplitucle stabilization; a twin-T filter: with a cascode amplifier for elimi nation of hamonic distortion; an output cathode follower, a resistive attenuator with 2,500 ohms impedance; an output meter circuit to indicate the signal voltage at the output terminals; and a regulater power supply.

In conjunction with a power annplifier, such as the type 230, this instrument may become a valuable

VOLTAGE RANGE: 1 millivalt to 1000 volts rms. in 6 decade ranges. (.01, 1, 1, 10 , 100 and 1,000 volts full scale).
FREQUENCY RANGE: 10 to $250,000 \mathrm{cps}$.
ACCURACY: 2% throughout voltage and frequency ranges and af all points on the meter scale.
INPUT IMPEDANCc: 2 megohms shunted by $15 \mu \mu f$ except 25 上رf on lowest range. DECIBEL RANGE: -60 to +60 decibels referred to 1 volt.
STABILITY: Less than $1 / 2 \%$ change with power supply voltage variation from 105 to 125 volts.
SCALES: Logarithmic voltage scale reading from 1 to 10 with 10% overlap at both ends; auxiliary linear scale in decibels from 0 to 20.
AMPLIFIER CHARACTERISTICS: Maximum voltage gain of 60 DB ; maximum output 10 volfs; output impedance is 300 ohms. Frequency response flat within 1 DB from 10 to $250,000 \mathrm{cps}$.
POWER SUPPLY: $115 / 230$ volts, $50-420 \mathrm{cps}, 35$ watts approx.
Write for catalog for complete information.

Crystal protection guaranteed over 500 hour minimum tube life at full rated power in Microwave Associates new TR!

NEW, FIELD-TESTED DESIGN

Designed specifically to overcome the field deficiencies of conventional 6633 tubes, the MA 336/7166 offers substantially improved performance in all characteristics. See comparison chart below.

Several hundred of these tubes have been in the field for many months and are used in early warning systems operating 24 hours a day.
The first failure has yet to be reported either from the field or from monthly production life tests!
The MA 336 is a compact, rugged tube built for maximum reliability and completely guaranteed for performance. It is in full production and available now.

COMPARISON CHART

	MA $336 / 7166$	Conventional \#6633
Crystal protection	Guaranteed for 500 hrs. min. at full rated pow- er $: 2$ megawatt peak	Not guaranteed
Recovery time	Short . . less than 25μ seconds	Long 45μ seconds
Low level charac. teristics	VSWR 1.3 max. over full band. Insertion loss: 0.5 db (.7 db at end of life.)	VSWR 1.4 max. In- sertion loss: 0.7 db $(1.0 \mathrm{db}$ at end of life.)
Size	$7.25^{\prime \prime}$ long	$10.1^{\prime \prime}$ long

PROGRESS IN SWITCHING DEVICES
Microwave Associates' special switching devices group under the direction of Dr. Lawrence Gould is making steady advances in the art. Available right now are high performance tubes of advanced design: high power single and dual pre-TR tubes; low level receiver protector tubes and high power ATR tubes.
If you are interested in switching high powers and in guaranteed crystal protection at any frequency write or call for full information

MICROWAVE
ASSOCIATES
INC.
BURLINGTON, MASSACHUSETTS • Telephone BRowning 2.3000
precision frequency power source for testing servo components.

The standard frequency is 400 cps; other frequencies can be supplied on request. Output voltage range is 0 to 10 v continuously variable. An output meter is supplied for direct indication of a signal voltage at output terminal on panel meter in rms value, with an accuracy of ± 3 percent. Output impedance is 2,500 ohms. Distortion is less than 0.5 percent Circle 446 on Reader Scrvicc Card

Input Unit

for tape punch

Coleman Engineering Co., Inc., 6040 West Jefferson Blvcl., Los Angeles 16, Calif. A compact tape punch input unit recently developed by Coleman mounts directly on a motorized tape punch manufactured by Commercial Controls. The integral unit accepts digital input data, programs the desired format, and scans the digital information into the tape punch.

Designated model CCV-40, the new tape punch input unit features a patcling program plug to permit format changes to be made casily, capacity up to 40 information bits (digits, command symbols, etc.), and a diode matrix to provide any desired code up to 8 channels.
The unit is also available for rack panel mounting. Circle 447 on Reader Scrvice Card.

Solid Electrolytics

with new ratings
Sirague Electric Co., 35 Marshall St., North Aclams, Mass. Expansion of available ratings of
solid electrolyte Tantalex capacitors to include new raltings from $0.22 \mu \mathrm{f}$ to $4.7 \mu \mathrm{f}$ at $35 \mathrm{r} \mathrm{d-c}$ is announced. These new higher ratings are expected to find wide application on 28 y electronic cquipment used in aircraft and missiles, both of electron tube and transistor circuit design.

Sprague has also added 20 v solid-clectrolyte Tantalex electrolytic ratings from $0.22 \mu \mathrm{f}$ to $15 \mu \mathrm{f}$ to its standard line.

These new designs are of the sintered-anode type and complemont the lower capacitance wireanode types previously announced. Circle $4 \not 48$ on Reader Service Card.

Phase Shifter

with 0.1 deg accuracy
Ad-Yu Electronics Lab., Inc., 249 Terhume Asc., Passaic. N. J. Type 208 precision phase shifter consists of resistant-capacitance phase shifter networks, an electrontube phase inverter, and an output catliode follower.
The instrument is well adapted for precision measurement of plase angle between the output and input of an amplifice, filter, transformer, servo sustem, and anv other four-terminal networks. It is also suitable for accurate calibration of phase measuring instruments, such as phase meters, phase shifters and others.

Plase range is 0 to 360 deg. Maximum error is less than 0.1 at +00 cps. Maximum input signal is 25 v rus. Thic frequency range for direct phase reading is 400 cps . With correction curve supplied with the instrument, the frequency range can be extended bevond this range.

The impedance looking into the

53 TYPES including military 1N253, 1N254, 1N255 and 1N256

- 200 ma to 1 amp current capability.
- Voltage ratings from 50 to 1000 vd-c.
- Reliable operation at $150^{\circ} \mathrm{C}$.

MICFOWAVE ASSOCIATES INC.

Ourizle

...where to get the best bandpass filters?

Major Quiggle*, KC, AC, DC, MC, fixed his procurement manager with a withering stare. "So now our whole production line is held up," he barked, "while you try to find a good bandpass filter with a flat response between 17 and 20 kcs . And you also insist that it have sharp low and high frequency cut-off," he added.

The manager reeled with the outburst. Never had he seen the old man in such a fury over a simple question of where to get the best bandpass filters.

Quiggle continued, "Haven't you been reading the trade paper advertisements? Why don't you call Barker \& Williamson! They've been making filters of all types such as Band Elimination, High-Pass and Low-Pass for years . . . must be experts on the subject, they'll have the answer."

And B\&W did have the answer. The Model 360 torroidal bandpass filter was perfect. With a flat response between 17.2 and 20.2 kcs , Quiggle's engineers found many other favorable characteristics when they obtained a spec sheet on the unit by the simple expedient of calling B\&W.

[^13]output terminals is 300 ohms nominal shonting resistance, and $2 \mu \mathrm{f}$ serics capacitor for d-c blocking. Iuport impedance is about 100 K in serics with 2,000 $\mu \mu \mathrm{f}$ to ground. Circle 449 on Reader Service Card.

Molded Plugs

fit standard tube sockets
Methone Mfg. Corp., $7+47 \mathrm{IV}$. Wilson Ave, Cliicago 31, Ill. Seren and nine prong molded plugs which fit standard tube sockets now provide economical monas for casily congaged multilead connections. Offering considerable space sartings orer the eartier octal aud wafer type coustruction, plugs and mating sockets are arailable in both commercial materials and finislocs and to the applicable requirements of JANS-28A. The comnector pairs bencfit from the high reliability and low cost inherent in high production racum tube socket terminals. Circle 450 on Reader Service Card.

Transducer

measures temperature

Vacimico Pronucts, Inc., National City, Calif. The instrument illustrated is a precision resistance thermometer type of temperature transducer utilizing deposited platinum film techniques. It has exceptional speed of response, and is
said to be 50 to 100 times faster than any temperature measuring instrument heretofore available.

The new temperature transducer is extremely rugged and has the ability to withstand extremes of both vibration and pressure. It has a basc resistance up to 10,000 ohms, with ranges from - 370 deg to +500 F . Sensing element of the instrument is $\frac{1}{8} \mathrm{in}$. in cliameter and 0.030 in thickness.

This deposited film tupe unit is offered in a mumber of configural tions. Primarily developed for missile use, it is being used at present by a number of major companics working on missiles. A wide range of potential applications for automation and instrumentation are being projected. Circle 451 on Reader Service Card.

Reel-Pack Feed

 and clip-bendStrempel Instrument Corp., Lakc George, N. Y., amounces two now units: an automatic clip-bend machinc and an antomatic reclpack feed mechanism (shown mounted on the clip-bend). The clip-bend machine cuts leads of axial leakl parts and bends them at right angles for mounting in wiring boarks.

It is fully adjustable and will accommodate all commonly used parts. Operating rate is 4.000 picces per hr. Sct-lup time, changing all dimensions, is approximately 2 min. The automatic reel-pack feed mechanisun will feed reel-packed parts to any machine. This simple feced senses the coliptying of parts

FOR 115 VOLT, 400 CYCLE OPERATION

First to develop a truly miniature elapsed time indicator, HAYDON at Torrington now offers this varied line of miniature, hermetically sealed, timing devices ... all tested and proved in the field in missile guidance and jet aircraft applications.
Basis of all these miniature devices is the Haydon 400 cps Synchronous Timing Motor... the inherently accurate approach to instrumentation in military equipment. Sealed-in-steel case eliminates stray magnetic fields. Elapsed Time Indicators are available in the direct-reading type illustrated and also in dial type. Newest additions to the line are the miniature Time Delay Timer and the miniature Repeat Cycle Timer available with 1 to 4 switches. Weight is approx. 7 ounces.
OTHER HAYDON TIMERS FOR MILITARY APPLICATIONS . . . include: D-C Timing Motors for 6 to 32 volt operation, 60 Cycle A-C Motors in a very wide range of speeds, Heavy Duty 400 Cycle Timing Motors, and Elapsed Time Indicators for 60 cycle operation.

GET COMPLETE INFORMATION NOW . . .

Consult the Haydon Field Engineer in your area or, if you prefer, write to us direct, outlining your requirements. You'll find that Haydon has the experience, know-how and facilities to solve all your timing problems.

THIRTEEN BRISTOL HIGH-SPEED RELAYS IN THIS CONVERTER!

Twelve-and-a-half microvolt resolution at 20 readings per second! That's the outstanding feature of the analogue-todigital converter, developed by Non-Linear Systems, Inc., Del Mar, California, to "digitalize" the output of low-voltage transducers in either ground or airborne service.

It's significant that Non-Linear Systems engineers selected thirteen miniature Bristol Syncroverter* high-speed relays (inset, top) for use in the converter scanning circuits. This versatile, high-speed, polarized relay has earned an enviable reputation for reliability, long life and immunity to shock and vibration in just such critical low-level, dry-circuit applications.

Are dry circuits your problem?

If so, we believe we have the answer. Dry-circuit reliability and long life are outstanding features of the Syncroverter high-speed relay. It's unaffected during severe shock and vibration. It has fast pull-in and drop-out and negligible contact resistance, and it operates reliably over a wide temperature range.

More than 20 models available

You can specify Bristol Syncroverter high-speed relays in an extremely wide variety of operating characteristics and in various case and mounting arrangements. Ask us for complete details. Write: The Bristol Company, 152 Bristol Road, Waterbury 20, Conn.
${ }^{-}$T. M. Reg. U. S. Pat. off.
FINE PRECISION INSTRUMENTS FOR OVER 68 YEARS
from its discharge chute and refills, kceping up with any demand ratc to 10,000 parts per hour. It has a universal mounting suitable for use in any existing machinery. Circle 452 on Reader Scrvice Card.

UHF Loading Coil for antenna testing

Alto Scientific Co., 855 Commercial St., Palo Alto, Calif. Mode! O-21 self-contained uhf loading coil for antenna testing comprises two concentric drums wound with plated copper ribbon wire. Induc. tance is varied through a common, spring-loaded gear drive with a positive mechanical stop at high and low ends. Provision is made for application at an external mechanical tuning drive.

Designed for operation at frequencies from 24 to 52 mc , the new coil permits inductance to be varicel from 3 to $0.1 \mu \mathrm{~h}$. Q is greater than 50 at 52 mc and greater than 225 at $2+\mathrm{mc}$. Power handling calpability is 25 w. Circle 453 on Reader Service Card.

Eight Ceramics for capacitor reliability

Mucon Corp., 9 St. Francis St., Newark 5, N. J. Subminiature ccramic capacitors are now availa-
ble in cight different coramic materials to obtain the minimum size for the specific temperature chatacteristics required.

For ceample, a capacitor of 2.5 $\mu \mu \mathrm{f}$ measures $\frac{1}{8}$ in. Square when made with NPO ceramic which has a zero temperature cocfficient; at the other extreme, a $\frac{1}{8} \mathrm{in}$. Square capacitor made with Super-K ceramic measures $1,000 \mu \mu \mathrm{f}$ but is usable only over a limited temperature range.

Various other coramics give intermediate sizes and temperature characteristics.

Thinlinc capacitors with radial or axial leads, ribbon lead units or standoffs are also available with each ceramic. Circle 454 on Reader Service Card.

Magnetic Amplifier

d -c to d-c
Acromag, Inc., 22519 Telegraph Road, Detroit 41, Mich. Model 420 is a d-c to d-c magnetic amplifier especially designed for missiles, automatic pilots, hclicopter rotor specd controls, jet cugine fuel controls, and muclear measuring and control equipments. It often replaces chopper-stabilized amplifiers where extreme bandwidth is not reguired.

Model +20 has à transimpedance, Z_{m}, of 50,000 ohmes and delivers full linear el-c output from $10 \mu \mathrm{~W}$ of d-c control signal; frequency response extends from d-c to 25 cps , depending on circuits used. It contains a pushi-pull, fullwave, reversible-polarity magnetic amplifier and uscs negative feedback for stabilization and for improved lincarity. Special power supplies, bias supplies, and balance controls are not needed. Mordel +20 uses less than 3 w of power and operates from standard 115 v

VICTOREEN

 ULTRA-STABLE FILM TYPE RESISTORSWho ever heard of boiling water with resistors? Though they're obviously not designed for this purpose, Victoreen ultrastable film type resistors can do it. What's more they stand up under this abuse.

The "boiling water test" does
prove conclusively the high power . . . high humidity resistance . . . stable operation in high ambients-of Victoreen resistors. And you get all these desirable qualities in Victoreen precision resistors-Victoreen models RX-4 and RX-5.

Resistance
Tolerance
Size
Power

MODEL RX-4	MODEL RX-5
200 ohms to 50 megohms	200 ohms to 200 megohms
$1,2,5,10 \%$	$1,2,5,10 \%$
.413 dia. $\times 2^{\prime \prime}$ long	413 dia. $\times 31 / 16^{\prime \prime}$ long
5 W at $150^{\circ} \mathrm{C}$	10 W of $150^{\circ} \mathrm{C}$
3 W at $225^{\circ} \mathrm{C}$	5 W of $250^{\circ} \mathrm{C}$

Stability- $\pm 1 \%$ for 1000 hours guaranteed life at rated power

If you have an application requiring precision resistors for operation at high power with high stability in severe ambients, it will pay you to check with Victoreen first.

AA-7083

Victoreen's Ultra-Stable Film Type Resistors will be on display at the

 IRE SHOW BOOTH 2232
The Victoreen Instrument Company

Components Division

5806 Hough Avenue - Cleveland 3, Ohio

ATPRRITI PREFERRED

by design engineers-because they're MOST COMPACT • SIMPLEST • MOST ECONOMIGAL hermetically sealed

Also - Amperite Differential ReIays: Used for at tomatic overload, un-der-voliage or unjer-current protection.

Thermostafic DELAY RELAYS

2 to 180 Seconds

Actuated by a heater, they operate on A.C., D.C., or Pulsating Current.

Hermetically sealed. Not affected by altitude, moisture, or climate changes. SPST only-normally open or closed.

Compensated for ambient temperafure changes from -55° to $+70^{\circ}$ C. Heaters consume approximately 2 W . and may be operated continuously. The units are rugged, explosion-proof, longlived, and-inexpensive!
TYPES: Standard Radio Octal, and 9Pin Miniałure . . . List Price, $\$ 4.00$. Standard Delays
PROBLEM? Send for Bulletin No. TR-87

BALLAST REGULATORS

Amperite Regulators are designed to keep the current in a circuit automatically regulated at a definife value (lor example, 0.5 amp .) . . For currents of 60 na . to 5 amps . Operate on A.C., D.C., or Pulsating Current.

Hermetically sealed, thex, are not affected by changes in alfitude, ambient temperature (-55° to $+90^{\circ} \mathrm{C}$), or humidity . . Rugged, light, compart, most inexpensive List Price, \$3.00.
Write for 4-page Technical Bulletin No. AB-51
t00 cps power. It is completely self-contained.
Distorted supply wavefonms, 10 percent voltage and frequency variations, and temperatures from -55 C to +85 C do not impair performance. The unit is lermetically sealed and ruggedized in a steel case $1 \frac{1}{2}$ in. in diameter by $;$ in. in height. Weight is Icss than 9 oz. Circle 455 on Reader Service Card.

Casting Powder

 speeds encapsulationEpory Products, Inc., 137 Coit St., Irvington, N. J., has available the new Epoxy E-Form casting powder for the encapsulation of electronic components. It is a stable, dry blend of epoxy resin and hardener, in an easily handed, nontoxic powder form. Exhiliting all of the plysical and electrical properties inherent in epoxy, the new powder offers the further advantage of liquefying and then hardening when heated. The powder was initially developed for use in conjunction with Epoxy E-Case sleclls. Circle 456 on Reader Service Card.

D-C Power Supply is modularized

Dinamic Controls Co., 1955 Massaclrusetts Ave., Caubridge, Mass. Modular construction of regulated d-c supplies allows fast installation of a system. The supplies are sectionalized into three
basic panels for rack mounting: rectifier, regulator and scrics-tube. A single regulator controls any number of serics-tube sections operating in parallel. The series-tube panels are conservatively rated at onc ampere. The rectifiers come in three voltage ranges which in cooperation with the regulators give output voltages from 0 to 150,150 to 300 , and 300 to 500 ; current ratings are $1,3,6$ and 10 amperes.

Expansion can be provided by paralleling series-tube sections and installing a larger rectifier or a parallel rectifier. Interchangeability reduces obsolescence. Output voltage performance is better than 0.1 percent for load and line clanges, including transients. Circle 457 on Reader Service Card.

Impedance Bridge packaged system

Penvsilvania Testing Laboratory Inc., Doylestown, Pal. A completely packaged unit is offered as a stmdard system for measuring inductances with high-voltage a-c applied simultaneously witl large d-c currents.

Type 277 is complete and provides for incluctance measurements from 1μ h to 1000 henrics with superimposed d-c curvents as high as f amperes and a-c roltages up to 250 v from 20 cps to 20 kc . No auxiliary equipment is necessary. The bridge oscillator, power amplifier and d-c power supply are included as well as a sensitive null indicator which will indicate independently the real and quadrature components of the bridge balance points.

The bridge ratio arms will dissi-

MIOIDUIES with PRECISION FILM RESISTORS

EKCLEENT SoDRR DONTS

offse wede TPE TERMINALS WITh HEAFY COATING OF SOLDER
wax impregnated thermoseting PHENOLIC MOISTURE SEAL

LESS THAN 0.07\% AVERAGE CHANGE AFTER 1000 HOUR EXTREME HUMIDITY TEST

Through the employment of $1 / 2$ watt precision film resistors, ERIE has added to its line of "PAC" modules and greatly widened the field of effective "PAC" applications.
"PAC" Pre-Assembled Components have proven immensely popular with manufacturers of home and auto radios, TV sets, electronic organs, and other equipment.
The new "PAC" units incorporating deposited carbon resistors, are highly resistant to humidity, and offer high reliability for precision military and industrial applications. They have been thoroughly proven in severe humidity tests in which they withstood 1,000 hour exposure with an average change of less than 0.07% and maximum change of 0.19%.

Samples will be submitted for your own trial tests and applications.

Compact, highly efficient Universal Transistorized Static Converters outlast conventional non-transistorized vibrator power supplies and similar mechanical equipment by thousands of hours. They convert DC voltage to higher DC voltage more efficiently in minimum-sized, lightweight packages. These features are particulorly important where space is at a premium, as in two way radios and publie address amplifiers.
Universal DC-DC Converters are complete units, fully transistorized, rectified and filtered. They require lower maintenance because there are no moving parts, no wear, no tear, no arcing.
UNIVERRSAI,
ONE COMPLETE SOURCE FOR QUALITY POWER SUPPLIES:

- DC-AC Inverters • AC to DC - DC to DC
- High Voltage
- Low Voltage
- High Power
- Low Power
- Custom units operate over Wide Temperature Ranges
and Rugged Shock conditions.
*For leaders such as Bendix Radio, Dumont, General Electric, RCA, Sperry Products
and Western Electric, UAC power supplies' high transistor reliability (to 95% in
10,000 hrs. use). Low maintenance . . . minimum size and weight. . Iong life
Whatever your power engineering problem, Universal has dividends.
$\begin{aligned} & \text { Whatever your power engineering problem, Universal has the unit to outlast } \\ & \text { and outpower conventional supplies by far. }\end{aligned}$

UAC Electronics

Transistor Products Corp.

in canada - electronic enterprises regd. ssi oakwood ave, toronto io. ont.
pate 500 w a-c and/or $\mathrm{d}-\mathrm{c}$ and remain 0.1 percent accurate. Effective resistance within a billion to one range is also measurable as well as inductance. Circle 458 on Reader Scrvice Card.

Diode Clip

 for secure shock supportCambridge Thermionic Corp., 445 Concord Ave., Cambridge 38, Mass., has developed a new insulated diode clip. It is fastened to a teflon insulator for a press fit mounting and is designed to securely support ferrule contact diodes uncler conditions of sloock and vibration.

The clip (No. 2323), for mounting in hole diameter of 0.2055 in ., call be used in chassis and panels up to $\frac{1}{8} \mathrm{in}$. thick. The construction provides solder points above and below panel. Circle 459 on Reader Service Card.

Power Supply for transistor circuitry

Dressen-Barnes Corp., 250 North Vinedo Ave., Pasadena, Calif. Model $6-3 \mathrm{MB}$ is a closely regulated d-c power supply for powering
transistor circuits. Output is 0 to 60 v d-c, continuously variable, at 3 amperes maximum. No derating of output current, or of regulation and ripple specifications, is necessary from l to 60 vel c .

Regulation for $60 \mathrm{v} / 3$ ampere load is 20 mo change, no load to full load. For line voltage change of 105 to $125 \mathrm{va-c}$ (at $60 \mathrm{v} / 3 \mathrm{am}$ peres output), regulation is 20 mv change in output voltage. Ripple and internal noise are below 1.5 mv rms. Unit is designed for very low output impedance and fast recovery timc. Onc-percent meters are supplied.

The instrument is built to fit in a standard 19 in . relay rack. Circle 460 on Reader Service Card.

Comparator

 checks gage block sizeTue Shefrield Corp., Dayton l, Ohio. Onc-millionth of an inch accuracy is obtained with a new electronic gage block comparator. The extreme accuracy of the now Dualjet comparator is based ou the use of an opposed pair of transcluc-er-type pick-up tunits.

Measurement is amplified cither 100,000 or 10,000 times by an Accutron electronic amplifier. High magnification has a $0.00000+$-in. range and scale divisions of 0.000001 of an inch. A range switch permits instant change to low magnifications $(10,000$ to 1 with a 0.000 -in. range) without recalibration. The Accutron amplifier operates on $110-\mathrm{v}, 50 / 60$ cyclc a-c. Compensation is provided for line voltage changes ranging from 95 to 125 v .

A precision ground, 40-pitch leadscrew on a stecl column, rigidly mounted on the sturdy cast base, provides vertical coarse adjustment

NOWI PROVEN

REPLACES BULKY, INEFFICIENT OYNAMOTORS

UNIVHRSAI transistarized DC TRANSFORMERS

Designers of much of today's important new electronic equipment for mobile, aircraft and marine applications specify Universal Transistorized DC Transformers because they are efficient, compact, rugged improvements on dynamotors. They reduce operating and maintenance costs because there are no moving parts, no wear, no tear, and no brush interference.

- FULLY TRANSISTORIZED
- RECTIFIED
- FILTERED
- Protect against short circuits, input polarity reversal, line and load surges available.
I.R.E. SHOW BOOTH 3937

PERFORMANCE CHARACTERISTICS

EFFICIENCY: As high os 98%
SIzE: As small as $/ 4$ cu. in. per waft
WEIGHI: As light as Ys oz. per watt
INPUTS: G-110VDC
OUTPUTS: to 2000 watts
RECULATION: $10 \pm 0.1 \%$

UAC Electronics
A division of

Depf. E3 - 17 Brooklyn Ave., Westbury, L. I., N. Y. • EDgewood 3-3304 • Cable: Univatoms

in canaoa - electronic enterprises regd. s5i oakwood ave, toronto 10. ont.

1 ohm to 5 megohms, 500 mmfd to $2,000 \mathrm{mfd}$, 3 millihenrys to 10,000 henrys.

- Five meter ranges: $1 \%, 2.5 \%, 5 \% 10 \%$ and 25% difference readings at full scale.
- Accurate within 0.1% on 1% scale.
- Component differences of 1 part in 10,000 can be detected.
- Can be used with decade box for precise component measurements.
$\$ 185.00$

SOUTHWESTERNINDUSTRIAL ELECTRONICS COMPANY 2831 post oak road - P. O. box 13058 - houston, texas

of the top gaging head. Finc adjustment is made witl a cam and lever mechanism in the base with knobs that are completely isolated from gage head or anvil. The gage has interchangeable diamond points and a gage point lifting device to avoid scratching surfaces of work. Gaging pressure is 8 oz ; vertical capacity, + in. A ratchet-type device raises or lowers the gage head in increments of 0.0005 in . Circle 461 on Reader Service Card.

Power Supply for mobile systems

Aerophisics Development Corp., P. O. Box 689, Santa Barbara, Calif. A transistor power supply designed for use on vehicles subject to high shock and vibration enviromments has been dcveloped.

Designated TPS-5, the transistor operates in ambient temperatures from -40 F to +70 C , and converts 28 v d-c at 3 amperes to 225 $\vee \mathrm{d}-\mathrm{c}$ at 300 ma for operating mobile electronic systems or devices. Package dimensions are $2 \frac{1}{2}$ in. by $3 \frac{1}{2}$ in. by $+\frac{1}{2}$ in. including mounting flanges. The unit weighs 1.5 lb . Circle 462 on Reader Servise Card.

Hook-up Wire

permanently color coded General Cable Corp., 420 Lexington Ave., New York 17, N. Y. Spiracode is a new hook-up wire made by a modern, adranced technique of plastic extrusion which effects a permanent easy method of color coding hook-up wire that is actually colored plastic insulation solid to the conductor. This method of spiral plastic extrusion
permits a solid multi-colored plastic insulation spirally applied in barberpole fashion of any combination of colors up to three on solid or stranded conductor.
The spiral stripes of solid colors on Spiracode are nommigrating. nonfading, slarp, crisp, permanent brilliant colors that are readils identifialle and easils traced even in the most complicated wiring svstems and harnesses. Both vinul plastics and polyethylene insulat tions are arailable on this new hook-tip wire. Circle 463 on Reader Service Card.

Breadboard

for subminiature circuitry Stanley Aviation Corp., 2501 Dallas St., Denver 8, Colorado. The Mini-Lab illustrated provides a novel techmique in electronic breadboarding for the rapid development. assembly, study and testing of circuits and components. It offers many new features not previousl avalable to engincers: built-in multimeter: regulated power supplies: expendable plugs for component laads; short, direct connections; cight potentioncters; built-in resistance and capacitance selector boxcs; convenience, portability. reliability.

Designed specifically for subminiature, miniature and semiconductor circuitry, Mini-Labs contans a grid of tiny jacks arranged in the form of tic points, voltage busses. ground busses, coupling junctions, and input and output terminials.

Niniature and subminiature tubles. transistors and other semiconductors may be quickly plugged into the board. Components such as resistors. capacitors. transformers, chokes ancl the like are plugged in

ENGRAVED Deep.Kut IS ACID.PROOF
Acid etching inks, used for permanent stamping on metal and all non-porous surfaces will eat away at ordinary rubber. Deep-Kut resists this action-gives longer life by far!
ENGRAVED Deep.Kut STAMPING GIVES RAZOR-SHARP IMPRESSIONS EVERY TIME
Opaque inks will clog shallow rubber stamp faces rapidly. Our deep-molded engraved Deep-Kut
stamp faces have more than three

times the depth of ordinary rubber stamps.
Markings always remain super sharp
an important advantage since this mark is a permanent record of your inspector's approval.
engraved Deep.Kut has CUShionlike resilience
Our Deep-Kut molding process includes a timed curing that imparts to Deep-Kut all the elasticity of ordinary rubber. Resilient Deep-Kut resists abrasive action, conforms to irregular surfaces... and lasts much longer!
Engraved Deep-Kut stamp faces are adaptable to any marking device.
They can be used to stamp on every surface, metal, wood,
the krengel
fabric, paper, plastic, etc.

PROVEN PERFORMANCE

 FROM SEA LEVEL T070,000 FT
MAINTAINS
CONSTANT COOLING EFFICIENCY

Mounting: $21 / 2^{\prime \prime}$ across flafs

NEW
 IMPROVED HIGH SLIP MOTORS DRIVE COOLING FANS at Varying altitudes

New, improved, high-speed, highslip motor design changes speed with lower densities (higher altitudes) to maintain constant cooling efficiency. These high-slip motors are rated at a minimum of 1,000 hrs. @ $125^{\circ} \mathrm{C}$.; longer life expectancy at lower ambients. Choice of 400 cps or Variable at $1 \emptyset$. or 400 cps at $3 \emptyset$. Prototypes delivered in 2-6 weeks; Production deliveries 6-8 weeks. Circle card for data sheets and performance curves.

145 CFM at O"SP
at Sea Level
440 CFM at $O^{\prime \prime}$ SP at $70,000 \mathrm{ft}$.

See us at Booth 2315 IRE Show

air.marine mofors, inc.

by means of expendable plugs easily crimped directly onto the leads. Circle 464 on Reader Service Card.

Shielding Capsules

for miniaturized uses
Magnetic Shield Division Perfection Mica Co., 1322 No. Elston Ave., Chicago 2?, Ill., has developed a new line of subminiature Co-Netic magnetic shielding capsules designed for subminiature reactors and transformers used in transistorized and printed circuits and other miniaturized applications. Virtually eliminated are hum and noise caused br low level extraneous electromagnetic and electrostatic fields. Wuch closer grouping of components is now possible due to shielding effectiveness. When required, shields can be pretimned for soldering without affecting magnetic slicieling qualities. Shielding capsules may be produced in a wide varicty of shapes and dimensions using standard methocls or special hydroform techniques. Circle 465 on Reader Service Card.

Readouts
 digital and message

Milman Engineering Co., 1831 Pontius Are., Los Angeles 25, Calif. A line of newly deceloped digital and message readouts offers many possibilitics for more effective presentation of data and informa-
tion in bench, pancl, and console applications.
The digital readouts present lighted digits zero through nine and decimal point, or other information such as polarity signs or special symbols. Modular design allows side by side mounting of the units for in-line presentation of information.
Messayc radouts will display, separately in one panel area, up to three different color-coded printed messagcs. gicatly increasing the accuracy of risual observations. Message and color combinations are made to suit individual requirements. Superpositioning of messages in the readout reduces thic amount of panel area required to present a given amount of information and climinates pance art work and engraving.
The units are designed for operation on 6, 14, or 28 v . Circle 466 on Reader Service Card.

Digital Computer for military aircraft

The Ramo-Wooldridge Corp., 5500 WV. El Scgundo Blvcl., Los Angeles, 45, Calif. The RW-30 digital airbome computer is clesigned to provide a lightweight, compact computing-control center for high-performance military aircraft. A completely transistorized device, it emplovs specially designed digital computing techniques and will perform all computaltions for navigation, fire control, bombing and weapon control with the speed demanded by modern whapons systems.

The complete computer has a volume of 4.19 cu ft and weighs only 203 lb . It consists of four separately packaged units-magnetic drum storage unit, arithunctic

Now available as a wirewound or film type trimmer that is moisture proof, subminiature in size and withstands a temperature of $225^{\circ} \mathrm{C}$., in a higher resistance range.

FEATURES:

Type RTW (wirewound) Resistance Range 100 ohms to 100,000 ohms
Type RTF (film) Resistance Range 100 ohms to 25,000 ohms, providing infinite resolution
25 turn lead-screw adjustment
Unique stop-overide safety mechanism
Housing of High Temperature Molded Plastic
Variety of mountings: Printed Circuit Lugs Printed Circuit Wires Tinned Leads
Virtually hermetic sealed meets Mil std. 202 Procedure 106 Humidity Test with rated power applied
Precious metal take off and end tabs
Dual stainless steel contacts on winding and slip ring for extra reliability
Power rating of .83 watts at 80° C., 1 watt at $200^{\circ} \mathrm{C}$.
Engineered, quality controlled manufacture and environmental tested to meet the exacting demands of missile and other military applications, make these new low cost trimmers a long-sought contribution to design and production problems.

Write wire or call for full details and technical data.
TECHNOLOGY INSTRUMENT CORP. 569 Main St., Acton, Mass., COlonial 3-7711

North Hollywood, California
POplar 5-8620 STanley 7-0286

See us at Booths 2318-2320 IRE Show

ELIN POWER OSCILLATORS...
 to "System-mate" Your Equipment Requirements!

In applications concerning strain gauges, bridge-type transducers, time correlation, precision 400 cycle gyro testing, process control and preflight missile checkout, ELIN Precision Power Oscillators prove compatible and, in combination with other equipments, readily yield superior systems!

The desirable features of ultra-precise frequency and amplitude stability, low distortion and high output power capacities, make ELIN Precision Power Oscillators the ideal "System-mate" in these applications, and are derived from an exclusive High-Q LC tuned circuit and a special voltage-sensitive bridge combined in a circuit employing a large amount of negative feedback.

FREQUENCY (FIXED) - 250 cps . to $15,000 \mathrm{cps}$. VOLTAGE (OUTPUT) - $10,30 \& 100$ volts RMS, all with floating center-tapped output. DISTORTION -0.1% maximum harmonic content, 0.05% maximum AC hum, 0.01% maximum noise. CALIBRATION ACCURACY - $\pm 0.02 \%$ under usual lab ambient conditions*, checked against station WWV as a primary standard. FREQUENCY STABILITY $- \pm 0.5 \%$ maximum, under usual lab ambient conditions*, $\pm 0.02 \%$ maximum per ± 10 volts variation in line voltage, $\pm 0.05 \%$ maximum, zero to full load. AMPLITUDE STABILITY - $\pm 0.1 \%$ maximum under usual lab ambient conditions*, $\pm 0.02 \%$ maximum, per ± 10 volts variation in line voltage, $\pm 0.2 \%$ maximum, zero to full load.
Special models operating from other prime power sources, with higher power capacities and at other frequencies supplied to your
*Lab ambient, $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
Reg. U.S. Pol. Off.

ㄹ․․․․

ELECTRONICS INTERNATIONAL CO.

145 West Magnolia Boulevard, Burbank, California

Special Products Division of International Electronic Research Corporation, Burbank, California
and control unit, input-output unit, and clock generator and power supply unit. Subminiature packaging techniques and silicon semiconductor circuitry are used throughout.

The RW-30 can conduct 4,000 complete arithmetic operations per sec, including access time and requires only 400 w of power, permitting a significant saving in aircraft anxiliary power equipment. Circle 467 on Reader Service Card.

Tiny Thermostat

for -65 C to +150 C
Chatham Controls Corp., 33 River Road, Chatham, N. J. The new model WP thermostat features a $\frac{3}{16}$ in. diameter and 0.690 in. body length. It incorporates the same type of bimetal actuated contact, extreme simplicity, reliable performance, accurate temperature control, fast themal sensing and long contact life as the manu= facturer's other models. The device is rated at $\frac{1}{2}$ ampere for $6-28 \mathrm{va} \mathrm{a}-\mathrm{c}$ or $\mathrm{d}-\mathrm{c}$ and 115 va c circuits. It has an externally adjustable temperature range from -65 C to +150 C . Circle 468 on Reader Service Card.

Surge Limiter has varied uses

Atlantic Electronics Laborarories, P. O. Box 918, Asbury Park, N. J. The Surge-Volt Master
is designed to limit to reasonable valucs the surge current when cquipment such as radios, ty reccivers, amplificrs, low-power transmitters, expensive test equipment and the like are turned on. After a suitable pre-heating period, full line voltage is applied to the load in question. Then a built-in voltage regulator maintains the line voltage approximately at 110 v , thus prolonging the life of such components as tubes, resistors, capacitors and the like. Presently available are Surge-Volt Masters in the $50-, 100-, 150-, 200-, 250-300-$ and 375 -w ranges.

The Surge-Volt Master slould prove useful in teclinical schools and universitics, industrial production lines and labonatories. Cirele 469 on Reader Service Card.

UHF Blade Antenna

for $225-400 \mathrm{mc}$ band
Dorne \& Margolin, Inc., 30 Sylvester St., Westbury, L. I., N. Y. Type DM-C7 antenna is designed to operate in the $225-400 \mathrm{me}$ band for use with communication and data link equipment. This antenna is a highstrength swept-back aluminum blade, with a hight of $7 \frac{3}{9}$ in. from the aircraft skin. designed for use at speeds well into the supersonic region. Maximum thickness of the antenna is substantially less than 10 percent of the average chord length.

The antenna is designed to meet the ensirommental requirements of MIL-T-5+22C and paragraph 412 of MIL-E-5272A. It can withstand more than 8 lb per sq in . lateral

FOR: insulators of all types, sleeves or inserts, capacitor seals, feed through insulators, bushings, slot liners, coaxial spacers, layer insulation or any other parts or forms subject to high charge, extended frequency range, mechanical and thermal shock, extreme temperatures and climatic conditions.
You can order in any quantity and be sure of true Teflon performance, because "John Crane" gives you these plus factors: complete uniformity throughout, high density control, freedom from flaws and rigid adherence to your specifications.
"John Crane's" complete fabrication facilities assure you prompt delivery on exactly what you want. If you have an entirely new requirement, no standard design or proce-dure-"John Crane's" laboratory facilities, know how, research and engineering experience go to work on your particular need.
Now is a good time to put "John Crane" to test. Contact Crane Packing Company today.

Dieleatric Strength $=480 \mathrm{v} / \mathrm{mil}$.
Dieletric Cohstant (50 to 10^{8} cycles): 2.0 Power Factor (60 to 10^{8} cycles): <0.0005 Volume Resistivity: 10^{15} ohm.cm Surface Resistivity: 3.6×10^{6} megohms Surface Arc-Resistance: does not track Temperature Range: -450° to $+500^{\circ} \mathrm{F}$.
Chemical Resistance: completely inert
Moisture Absorption: zero

Crane Packing Co., 6402 Oakton St., Morton Grove, Ill. (Chicago Suburb).
In Canada: Crane Packing Co., Ltd., Hamilton, Ontario.

static load. Weight is approximately 20 oz and viwr is less than 2.5:1.0 over the $225-400 \mathrm{mc}$ band. Circle 470 on Reader Service Card.

Insulated Terminals split type

Camibridge Thermionic Corp., +45 Concord Ave., Cambridge 38, Mass. Split solder terminals can be ordered in a wide variety of sizes and mounting studs, either in silicone impregnated ceramic, grade 15 (per JAN-1-10) or with Teflon insulation. 'Terminals are silver plated brass.

Three specific mounting studs are available: threaded (a variety of threads and lengths), rivet (sereral different lengths), and internally threaled. Circle 471 on Reader Service Card.

Pulse Transformer for airborne radar

Specialties. Inc., Skimiks Miscry Road, Syossct. L. I., N. Y. A new series of high power pulse transformer assemblics designed to mateh the impedance of a pulse forming network to a magnetron oscillator in a line type modulator are now being produced. Thev feature compactness and a high degrec of resistance to temperature
variations, mechanical sloock and vibration.

A self-contained filament transformer, a radio noise filter and bypass capacitors are provided so that the magnetron can be properly driven from a pulsc forming network and a $115 \mathrm{v}, 400 \mathrm{cps}$ power source. Models are available for use with a 50 -ohm pulse forming network and a $2551 \mathrm{~A}, 4552$ or $65+3$ magnetron. Circle 472 on Reader Service Card.

Oscilloscopes

two general purpose types
Hewlett-Packard Co., 275 Page Mill Road, Palo Alto, Calif. The 130BR d-c to 300 kc high sensitivity oscilloscope, and the 150 AR $\mathrm{d}-\mathrm{c}$ to 10 mc h-f oscilloscope, designed especially for mounting in a standard 19 in. equipment rack, have been announced. Model 130 BR (illustrated) has clectrically similar rertical and horizontal amplifices which have less than 1 deg relative phase shift at 50 kc an a $1 \mathrm{mv} / \mathrm{cm}$ sensitivity. Balanced signals may be used on the most sensitive ranges, hence many transclucers may be connected directly to its terminals. Mounting is by front pancl or by accessory brackets which permit easy withdrawal of the oscilloscope from the rack.

Model 150 AR d-c to 10 mc oscilloscope is mounted on slides for accessibility and fcatures calibrated swecp magnifications of X5, X10, X50, and X100. Any portion of the magnified trace may be viewed. The 150 AR is used with plug-in vertical amplifiers; the 151 A which has $5 \mathrm{mv} / \mathrm{cm}$ sensitivity, and the 152 A dual trace amplifier, which has a $50 \mathrm{mv} / \mathrm{cm}$ sensitivity and presents two electrical

MECHANICAL PUMPS
Featuring ultimate pressures to 10 mi crons or lower, the new KDH-65 and KDH-80 KINNEY Mechanical High Vacuum Pumps provide free air displacements of 65 cfm and 80 cfm respectively. These new pumps cover an important range in the KINNEY Line, which embraces singlestage and two-stage mechanical pumps, two and four-stage mechanical booster pumps with displacements to 5000 cfm .

A completely new approach which eliminates the need for recalibration or matching tubes when replacement is required, yet provides instantaneous response ($1 / 2 \mathrm{~S}$. or less) and exceptional accuracy (+ or - 10%). The KINNEY Compensated Thermocouple Gauge gives you complete interchangeability of gauge tubes among a number of tubes in one circuit, as well as from circuit to circuit. Here's new simplicity of control and many other advantages.

NEW

PUMPING SYSTEM
The PW-400 Packaged Pumping System features new performance and versatility. The vacuum pumping system consists of a KINNEY cold trap, high-speed fractionating diffusion and two-stage gas ballasted mechanical vacuum pump. A unique manifold-valve arrangement. whereby the intake fitting can be rotated through 90° from horizontal to vertical, permits easy conversion to a high vacuum evaporator.

NEW Vacuum oven

The new KINNEY VO-3 Oven is an important development for drying and aging of transistors, diodes and other semiconductors. It features three separate chambers so manifolded that each chamber may be independently evacuated. Pyrex glass windows enable operator to observe work at all times. Forced draft heating provides temperatures to $400^{\circ} \mathrm{F}$ and the equipment may be used with inert gas atmosphere or high vacuum.

VISIT BOOTH 4508-4510 AT THE I. R. E. SHOW

Get this New Bulletin on the use of Vacuum in Crys. tal of Seai-and froduc

tion of Semi-Conductors.

ISMNMEMMFG. DIVISION
THE NEW YORK AIR BRAKE COMPANY (NOSTON 30 MASS MSTON STREET BOST
Please send me your Bulletin on the use of Vacuum in Crystal Growing and Semi-Conductor production.

Name
Company
Address.
City

CRYSTAL FILTERS

NOW YOU CAN REPLACE ALL OF THESE COMPONENTS

WITH A SINGLE HYCON EASTERN CRYSTAL FILTER

AND REDUCE WEIGHT, SAVE SPACE, IMPROVE PERFORMANCE AND RELIABILITY

It will pay you to investigate how this unique component can improve performance and reduce costs of your communications equipment. Hycon Crystal Filters make possible single conversions in AM and FM receivers while retaining the important advantages of double and triple conversions. These units permit excellent reception in the presence of strong jamming or interfering signals. Center frequencies are accurate to $.001 \%$. Insertion loss is $1 / 10$ of other filtering methods. Aircraft and guided missile environmental requirements are exceeded. Write for Crystal Filter Bulletin.

phenomena for simultaneous viewing. Both amplifiers pass d-c to 10 mc , and sensitivity is accurate within ± 5 percent.

Both oscilloscopes have a universal synchronizing circuit; a single preset switch position cstablishes optimum triggering for nearly all conditions. Model 130 BR is $\$ 650 ; 150 \mathrm{AR}, \$ 1,200 ; 151 \mathrm{~A}$, $\$ 200$; and $152 \mathrm{~A}, \$ 250$. Circle 473 on Reader Service Card.

Plug-In Enclosures

 transparent plasticLine Eiectric Co., 271 South Gtlı St., Newark 3, N. J., offers its new PE series of transparent plugin enclosures in clear and colored plastic. Thev protect electronic assemblies from the clangers of clust, dirt, sand and human tampering. They feature standard RETMA 8 and 11 pin bascs, high impact characteristics, excellent electrical properties; and are rated for 85 C ambient. Basc pins can carry 10 amperes continuously. Enclosures are available in clear, grect, blue, red, purple or amber plastic. Size is $1 \frac{3}{8}$ by $1 \frac{3}{8}$ by $2 \frac{1}{8}$ high. Weight is approximately $1 \frac{1}{4}$ oz. Circle 474 on Reader Service Card.

Single Coil Relay latching type

Potter \& Brumpield, Inc., Princeton, Ind.., has announced a new single coil latching relay that selects alternate circuits or altemate
circuit modes on successive impulses. Designated the PC, the relay emplovs an armature drien rocker type actuator to transfer one. two, tliree or four dpdt sinap switches.

Gold fashed silver cadmium oxide contacts are rated at 10 amperes, 115 va-c resistice. The relay can be operated from a-c or d-c sources and provides positive transfer on a single $30-\mathrm{millisec}$ impulse. The spring action of the contact arms effectively latches the relay in the transferred position when coil power is removed.

The PC was designed primarily for on-off and reversing featurcs. It is used for remote tv controls, garage door openers, flow control motors and other applications requiring a low cost means for a transferring between alternate circuits at undefincel periods. Circle 475 on Reader Service Card.

Powerful Solenoid

for $a-c$ or $d-c$ operation
Guardian Eiectric Mfg. Co., 1621 West Walnut St., Chicago 12, Ill. A new more powerful version of the standard No. + solenoid is now being offered for a-c or d-c operation in both intermittent and continuous duty types. The new unit, equipped with $\frac{1}{2}$ in. diameter tapered plug and plunger, is saicl to lift up to 9 lb . Plunger stroke is adjustable from $\frac{1}{3}$. up to $\frac{3}{4} \mathrm{in}$. Two $3^{3}=\mathrm{in}$. steel washers are welded to the front of the field piece to increase power efficiency of the solenoid. The plunger has slotted end with $\frac{1}{8}$ in. diameter holes for coupling.

This particular solenoid measures
 in. long, exclusive of plunger. The

Linde Rare Gases

Symbol of Highest Purity

... in cloud and bubble chambers
... in radiation detecting equipment
... in gas discharge devices and glow tubes ... as protective atmospheres for crystal growing
Rare gases produced by Linde are continuously analyzed hy mass spectrometer, gas chromatography, and chemical and physical methods. These analytical checks assure you of the purest rare gases obtainable.

Linde argon, neon, helium, xenon and krypton are available in one- and two-liter glass bulbs, or in steel cylinders under pressure. Mixtures of gases are also available to your specifications. Prompt delivery is assured.

For detailed data on the physical and electrical properties of Linde Rare Gases, write Dept. BD-32, Linde Company, Division of Union Carbide Corporation, 30 East 42nd Strect, New York 17, N. Y. Offices in other principal cities. In Canada: Linde Company, Division of Union Carbide Canada Limited.

The terms "Linde" and "Union Carlide" are registered trade-marks of Union Carbide Corporation.

Even over the hill and far far away, Beckman Expanded Scalc Voltmeters read

beckman expanded scale voltmeters read sharp and clear: day or night, dark or
light, near or far, up or down, fast or slow.
how's it possible? We've simply expanded the useful portion of a conventional scale, completely eliminated the mass of non-essential, impossible-to-read divisions.
which means? Accuracy to 0.3% of center-scale value. And resolution of the highest order: 0.1 volt.
applications? Whether aground or aloft, there's a Beckman

Expanded Scale AC or DC Voltmeter to meet your voltage measuring requirements. Eight basic models in 126 shapes, sizes and ranges for panel installations in ground systems, aircraft and test equipment.

MORE INFORMATION? Yours for the asking... write for data file 34A.
\qquad Newport Beach, California A division of
Beckman Instruments, Inc.
Engincering representatives
in principal cities
new solenoids are available from the manufacturer for any specific voltage from 6 to $230 \mathrm{v}, 60$ cycles $\mathrm{a}-\mathrm{c}$ or dl-c. All d-c units are also available for 400 -cycle operation. Circle 476 on Reader Scrvice Card.

Terminal Block compact device

Gemco Eiectric Co., 25685 W Eight Mile Road, Detroit 40, Mich A new compact terminal block is available for custom assembly or in factory assombled strips rated at $600 \mathrm{v} \mathrm{a-c}$ or $\mathrm{d}-\mathrm{c}, 15,25$, and 50 ampere ratings.

Features are: snap-in marking strip, and snap-on terminal block, both of which make modifications to a mounted terminal strip a fast operation.

No special mounting rods are required-standard $\frac{3}{16} \mathrm{in}$. round cold rolled steel fits each molded piece and permits rapid assembly of special requirements. All three current ratings can be asscmbled into one mounting strip.

Open-type terminals and pan head screws which have captive wire clamps makc wiring easy. Circle 477 on Reader Service Card.

Time-Mark Generator rack-mounting unit

Tektronin, Inc., P. O. Box 831, Portland 7, Oregon. Type RM181 generates five time markers-1,
$10,100,1,000$, and $10,000 \mu \mathrm{sec}$, and a 10 -me sine wave. Output amplitucle is about 2 v . All six outputs are available at a common coaxial connector through use of a selector switch, and the five time markers are also available at frontpancl binding posts. The markers and sine wave are derived from a l-me crvstal-controlled oscillator with a frequency tolerance of about 0.03 percent and a short time stability, after initial warmup, of about 0.005 percent per hour. Dimensions are $5 \frac{1}{\ddagger} \mathrm{in}$. high, 19 in . widc $9 \frac{1}{4}$ in. rack depth (approximately 3 in. additional required for power cord), 11 in. overall depth. Price is $\$ 250$.

The RM181 is also available with a temperature-stabilized crvstal oven installed. This is priced at $\$ 270$. Frequency stability is 2 ppm over a 24 -hour period. Circle 478 on Reader Service Card.

Core Tester displays on cro

Mack Electronics, 40 Leon St.. Boston 15, Mass., has available a tester which provides a display of magnetic toroid characteristics. Model 123 core tester provides a display of coercive force, saturation flux density, B_{r} : B_{m} ratio, differential permeability and shows the shape of the hysteresis loop. The display, made on a cro, permits a quick evaluation of the basic core characteristics in relation to a specific circuit application.

The core tester is based upon current reset. The reset current is variable up to 6 amperes. The test probe is a single wire solid rod which permits manual testing rates up to 400 cores per hour. Circle 479 on Reader Service Card.

for molybdenum furnaces
This transformer has a 10,000 Ampere secondary with a maximum of
5 volts. The primary taps are extended to reduce secondary to 0.75 volts. The secondary copper is $3 / 8^{\prime \prime}$ thick and $16^{\prime \prime}$ long, over which is connected and built-in a 5 Ampere current transformer.
This special transformer is made for air-blast cooling as the physical size had to be kept extremely small.
The heating transformer, a new member of the well-known family of NWL custom-built Transformers, is made to fit the particular needs of the user. Each Nothelfer transformer is individually tested for core loss polarity, voltage, corona, insulation breakdown and aging characteristics and must meet all customer's requirements before shipment. We shall be glad to receive your specifications and quote you accordingly.

NOTHELFER WINDING LABORATORIES, INC., P. O. Box 455, Dept. E3, Trenton, N. J. (Specialists in custom•building).

Features an insulated rocker arm activated by a single coil, instead of the usual two. Ideal for machine controls, appliances, positioning devices, remote TV controls and other applications where opposite switching is desired each time circuit is pulsed. Contact combinations up to 4 " C "; rated $7 \frac{1}{2}$ amperes @ 115 V . AC resistive.

NEW RELASS by
 $0 / 1 /$ O/I Electric company
 3349 ADDISON ST., CHICAGO I8, ILLINOIS

Suitable for use in a wide range of applications. For AC or DC operation. Compact size, lightweight. Shock and vibration resistant. Positive contact pressure. Contact combinations up to 3 " C ". Contact rating, 5 amp. resistive with $5 / 32^{\prime \prime}$ dia. (10 amp . with $3 / 16^{\prime \prime}$ dia.). Avaifáble open, or in plastic dust covers with plug-in feature, as illustrated.

Send For Details

Literature

MATERIALS

Insulating Material. Standard Insulation Co., 74 Paterson Ave., East Rutherford, N. J. Technical data shects, typical curing conditions and samples of Stanpreg APh heat resistant plenolic resin pre-impregnated glass clotl are now available. Circle 500 on Reader Service Card.

Magnetic Shiclding. Magnctic Shield Division, Perfection Mica Co., 1322 No. Elston Ave., Chicago 22, Ill. Data shect 134 illustrates and describes the new scamless, non-shock sensitive, non-retentive Netic magnetic shields. The shields discussed are designed for grater effectiveness in attenuating both ligh and low frecpucncics of substantially increased transformer radiation in transistorized power supplics. Circle 501 on Reader Scrvice Card.

Nickel Clad Copper Wirc. Sylvamia Electric Products Inc., $17+0$ Broadway, New York 19, N. Y. A technical information bulletin describes the chemical composition, mochanical properties, conductivity and resistivity of Kulgrid 28 nickel clad copper wire developed for high temperature applications. Circle 502 on Reader Service Card.

COMPONENTS

Digital Devices. Anatran Corp., 45 West Union St., Pasadena, Calif. "Digitometry, A Concept of Digital Control and Indication" is the title of a new four-page technical bullctin. It describes five new components for use as digital actuators and feedloack devices in servo and instrumentation system. Circle 503 on Reader Service Card.

Electromechanical Products. G. H. Leland, Inc., 123 Webster St., Dayton 2, Ohio. Bulletin No. 1157LS describes the company's line of Leclex rotary solenoids, selector switches, hermetically scaled selectors, and Synchramental

of the Week

stcpping motors. Circle 504 on Reader Service Card.

High Speed Commutator MViancko Engincering Co., 255 N . Halstead St., Pasadcua, Calif. Engincering data sheet 857-409 covers the series 25-1100 high speed commutator. The instrument discussed is a small, solid-state, electronic commutator designed to sample inputs from 10 to 100 pickups, at rates up to 30,000 samples per sec Circle 505 on Reader Service Card.

Mctal Film Resistor. IVeston Electrical Instrument Corp., A Subsidiary of Davstrom, Inc., New ark 12, N. J. A t-page folder describes the Vamistor, a metal film precision resistor in which the resistance clement, actually a ribbon of metal, is thermally fused to the insicle wall of a Steatite tube hav ing silver terminals fired to each end. Circle 506 on Reader Service Card.

Metallized - Paper Capacitors. Acrovor Corp., New Bedford, Mass., has relcased a new engineering bulletin on type P83Z microminiature Aerolite molded thermoplastic metallized-paper capacitors. It provides complete specifications, size and capacitance tables as well as insulation resistance tables on these small capacitors. Circle 507 on Reader Service Card.

Precision Potentiometer. Beckman/Ilclipot Corp., Newport Beach, Calif. Current details of the series 7600 precision pot are completely covered in data sheet 1273 (superseding 54-14). In acldition to dimensional drawings and descriptive text about the 10 -turn, $113 / 16 \mathrm{in}$. diameter pot, the fourpage data slacet now includes a table of coil characteristics for resistance values ranging from 350 to 450,000 ohms. Circle 508 on Reader Service Card.

Printed Circuit Conncctor. De-Jur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. An illustrated bulletin gives specifications, outline dimensions and

in the lah, or on the line...

Master Vonohmyst(3) WV-87B - incorporates all the esserti3 features of the Senior Volt Ohmyst fus $71 / 2^{\prime \prime}$ meter, current ranges en. abling CL Jeit measuements from 10 ma to 15 amperes, zero-center scale adjustment for discriminato alignment. $\$ 137,50^{*}$

Junior Voltohmyst (8) WV-77C - big value in vacuum-tube-volt-ohmmeters! Factory cali brated and tested to laboratory standards Measures dc from 100 millivolts to 1200 volts; ac from 100 millivolts to 1200 volts rms; resistance from 0.2 ohm to $1,000 \mathrm{meg}$. ohms. $\$ 59.50^{*}$

for Aceuracy, Dependability...

Senior Vilt)hmyst® WV-98A-ideal for TV, radar and ot 7er types of pulse work. Provides accuracy of $\pm 3 \%$ on both ac and dc measurements. Measures directly peak-to-peak values of complix wave forms and rms values of sine watis. Features $\pm 1 \%$ multiplier and shunt resistors, a $\%$ meter movement, 3% on AC and ing error Large ($61 / 2^{\prime \prime}$ w.) full-vision meter provides easy readings. \$79.50*

Ultra-Sensitive DC Microammeter WV-84Bpopular choice for industrial, chemical and general laboratory applications. Designed to measure currents from 0.0002 to 1000 micro amp. Can be used as ohmmeter to measure Self-contained batteries permit use for field applications. Low current drain tubes extend battery life; meter protected from accidental overloads. $\$ 110.00^{*}$ (less batteries)

and Economy...

High-Sensitivity AC VTVM WV-74A-ALL NEW AC VTVM equipped with large 7 -inch meter. Nine voltage ranges, from 0.01 to 100 volts. Features wide frequency response (within $1 / 2 \mathrm{db}$ from 20 cps to 500 KC). Input resistance and capacitance With "lo cap" probe- 10 megohms and 13 hut; with direct probe-1 megohm and 95 wut. Overall accuracy - 5% of scale. But-in amplifer with gain of appoximatel 38 db and output impedance of 400 ohms can be used as a pre

SPBCIMY RCA!

For fast delivery of these quality test instruments for lab, line or shop...CALL YOUR RCA DISTRIBUTOR!

RADIO CORPORATION OF AMERICA
Electron Tube Division
Harrison, N. J.

In stock for immediate deliveryfrom your distributor

Sub-Miniature Variable Resistors

Smaller than a dime, these units will meet MIL-R-94B resistance change requirements under twice their rated load.
These Model JP and JL controls have extremely high wattage dissipation due to Centralab's ICE (Interfused Composition Element). Their extreme electrical stability makes them ideal for applications involving high temperature and other severe operating conditions.

- Meet or exceed MIL-R-94B requirements for moisture resistance, insulation resistance, thermal cycling, etc.
- Completely enclosed cases can be sealed or potted.
- Resistance range of stock units; 1000 ohms to 2.5 megohms, linear taper, with plain shaft (Model JP) or slotted shaft with locking bushing (Model JL).
Ask your distributor for Catalog 30 listing these stock models. For complete technical information write to Centralab for Engineering Bulletin EP-63.

A DIVISION OF GIOBE-UNION, INC. 914 C E. KEEFE AVE. MILWAUKEE 1 , WIS. In Canada: 804 Mr. Pleasant Rd. - Toronto, Ontario
packaged electronic circuits - electronic switches - engineered ceramics - seml-conductor products
general information on the ncw series $600-93$ printed circuit connector which features bellows action contacts. Circle 509 on Reader Service Card.

R-F Filters. All-Tronics, Inc., 45 Bond St., Westlury, L. I., N. Y., has published a four-page catalog listing custom r-f filters as stock items ready for off-the-shelf delivery. Circle 510 on Reader Service Card.

EQUIPMENT

Instruments. General Radio Co., 275 Massachusetts Avc., Cambridge 39, Mass. Volume 32, Numbers 8 and 9, of the Experimenter deal with a $180-600$ me oscillator and capacitance bridges, respectively. Circle 511 on Reader Service Card.

Measuring Apparatus. Ad-Yı Electronics Lab, Inc., $2+9$ Terhunc Ave., Passaic, N. J. A single-page bulletin illustrates ancl describes the new type 202 highly accurate Vectorlvzer which makes possible a number of measurements-such as small phase angles, vector sum or vector difference of tivo voltages, ratio of two voltages, and others. Circle 512 on Reader Service Card.

Microwave Test Equipment. Weinschel Engineering, 10503 Metropolitan Ave., Kensington, Md. A 32 page 2-color catalog describes microwave test equipment in the following fields: coaxial attenuators, d-c to $10,000 \mathrm{mc}$; insertion loss test sets, 0 to 30 db ; modulated r-f sources, 50 to 2,000 mc; modulator, bolometer preamplifier; termination, dl-c to 10,000 mc . Circle 513 on Reader Service Card.

Production Machinery. Kalle Engincering Co., 1307 Seventlı St, North Bergen, N. J. Ten new cata-- log sheets cover machinery for the production of semiconductors and tubes. Thev include: an automatic whisker former and welder, a transistor button stem machine, an automatic final seal machine for glass bodied diodes, two manual type final seal machines for glass diodes, a crystal pulling machine,
a motor speed programmer used with erystal growers, a fusing furnace for alloy junction trausistors, and a specially adapted lead wire welder. An appendix sheet contains some useful tables. Circle 514 on Reader Service Card.

Remote Area Monitoring. The Victoreen Instrument Co., 5806 Hougl Ave., Cleveland 3, Ohio. Form $30+5 \mathrm{~A}$ is a four-page bulletin descriptive of the company's remote arca monitoring systems. It covers the basic units in the systems and gives specification data such as ranges, response, accuracy and stability. Model numbers, suggested uses, dimensions and weights are also included. Circle 515 on Reader Service Card.

Widc-Band Power Amplifier. Resdel Engincering Corp., 330 South Fair Oaks Ave., Pasadena 1, Calif., is issuing a tecluical folder on model 90173 X-band pulse, cow widc-band power amplifier used in simulation of janming signals, microwave filter testing, antenna testing and propagation studies; and attenuator testing. Circle 516 on Reader Service Card.

FACILITIES

Fabricating Facilities. D. E. Makepeace Co., Pine and Dunham Sts., Attlchoro, Mass. A 5-page bulletin describes the melting, fabricating, testing and quality-control facilities available in the company's now nuelear and specialty metals plant. Circle 517 on Reader Servise Card.

Pulse Techniques. Navigation Computer Corp., 1621 Suyder Ave., Philadelplia 45, Pa., has announced a newsletter, Pulse Techmiques, about new applications for transistorized digital circuits. The first issue describes basic slift registcr operation and covers several applications of shift registers as pulse pattern and pulse burst generators. Future topics will include magnetic core testing, binary and decimal counter logic, arithmetic operations and magnetic tape and drum recording systems. Circle 518 on Reader Service Card.

SPURS - HELICALS - WORM AND WORM GEARS - STRAIGHT BEVELS LEAD SCREWS - RATCHETS - CLUSTER GEARS - RACKS - INTERNALS - ODD SHAPES

CIRCLE 230 READERS SERVICE CARD

Top row (left to right), GEORGE W. BAILEY, Chairman General Committee; STUART L. BAILEY, Vice Chairman, Gencral Committec; DONALD G. FINK, Ex-Officio member, General Committec.

Bottom row (left), GEORGE HALLER, Chairman, Technical Program Committec; (right), ROBERT C. SPRAGUE, Guest Speaker, Amual Banquet.

IRE Ready For '58 Annual Convention

A comprehensive 55 -scssion prograin, involving some 280 papers ranging over 27 ficlds of radioelectronics, has been set for the 1958 IRE National Convention on March $24-27$ in New York City. Thirty-three sessions will be held at the Waldorf-Astoria Hotel and 22 at the New York Coliscum. (In listing the program, locations are referred to as WA and C, respectively). An attendance of 50,000 engineers and scientists from to countries is expected.

The Coliseum will also house the Radio Engincering Show, at which approximately 20,000 items of the most advanced electronic apparatus will be displaved by 850 exhibitors, much of it for the first time. The exhibitors represent 80 percent of the total production capacity of the electronics industry.
High point of the technical program will be two special sessions on Tuesday evening, March 25. Panels of the leading experts will cliscuss "Electronics in Space" and "Electronics Sustems in Industry."

The technical program was organized by representatives of 27 IRE professional groups under the chairmanship of George L. Haller, general manager of the Gencral Electric Co. Defense Electronics division. The program covers a wide range of currently important topics, including controlled thermonuclear power atomic clocks and Masers, automation sustem of postal operations, medical electronics.

Presented for the first time are sessions on education, engincering writing and speech, and r-f iuterference, due to the establishment of new IRE Professional Groups in these ficlds within the past year.

The full program follows:
SESSION 1
Monday, March 24 2:30-5:00 P.M. (IVA)

TUTORIAL SESSION ON
 DETECTION THEORY AND

 ITS APPLICATIONSDetection as a Statistical Decision Problem, be David Van Mcter, Melpar Research Dept.

Some Communications Applications of Detection Theory, by IV. B. Davenjort, Jr., Lincoln Lab., MITT.

Some Applications of Detection Theory to Radar, by VIII. McC Siebert, Electrical Engineering Dept., MIT

Human Factors in Detection and Speech Communications, by I. P. Egan, Psychology Dept., Incliana University.

SESSION 2

Monday, March 24 2:30-5:00 P.M. (VA)
VEHICULAR COMMUNICATIONS
Direct Despatch Scruice, by A. J. Dimnin, Bell Tel Co of Canada.

A Unique Radio Sistem Designed for Flood Forccasting, by W. C. IV ray, Motorola, Inc.

A New Approach to Broadband Velicular Antennas, by Helmut Brueckmann, U. S. Army Signal Enginecring Labs. Mobilization of Transistors, by R. J. Hansen, Gencral Electric Co.

Vehicular Voise Problenis in Modern Land Mobile Systems, by S. F. Aleyer, Allen B. DuMont Labs., Inc.

SESSION 3
Mondas, March 24
:30-5:00 P.A. (IVA)

TELEMETRY AND REMOTE

CONTROL

The RCA Flight Data System, by C. N. Batsel, Jr., R. E. Montijo. Jr. and E. J. Smuckler, Radio Corp. of America.

A Pulse Position Tclemetry System, by L. Weisman and E. S. Teltscher, Ford Instrument Co.
Sample and Hold Circuits for Time Correlation of Analog Voltage Information, by IV. T. Eddins, Radiation, Inc.

A Transistorized Six-Channel Airborne

From its beginnings this nation has been guided by great ideas.
The men who hammered out the Constitution and the Bill of Rights were thinkers-men of vision - the best educated men of their day. And every major advance in our civilization since that time has come from minds equipped by education to create great ideas and put them into action.
So, at the very core of our progress is the college classroom. It is there that the imagination of young men and women gains the intellectual discipline that turns it to useful thinking. It is there that the great ideas of the future will be born.
That is why the present tasks of our colleges and universities are of vital concern to every

American. These institutions are doing their utmost to raise their teaching standards, to meet the steadily rising pressure for enrollment, and provide the healthy educational climate in which great ideas may flourish.
They need the help of all who love freedom, all who hope for continued progress in science, in statesmanship, in the better things of life. And they need it now!

If you want to know what the college crisis means to you, write for a free booklet to: HIGHER EDUCATION, Box 36, Times Square Siation, New York 36, N. Y.

Sponsored as a public service, in cooperation with the Council for Financial Aid to Education

Digitizer, by S. H. McMillan and W. A Sutton, Strand Engincering Co Channel Selection for Multi-Carrier Te lemetry, by L. S. Taylor and G. F. Bigelow, Range Instrumentation Dev. Division, White Sands Proving Ground, N. Mex.
Telemetering Receiving Station Time Pulse Detector, by J. Star, Applied Physics Lab., The Johns Hopkins University

SESSION 4
Monday, March 24 2:30-5:00 P.M. (WA)

TECHNIQUES AND CRITERIA CONSIDERATIONS IN

 ELECTRONIC ENGINEERINGUse of Kros-Term Sistem for Quick Retrieval of the Technical Detail from Large Pools of Information, by A. P. Vigliotta, U. S. Navy Tng. Device Cen., and K. D. Swartzel, Engloman and Co.

Techniques for the Presentation of ThrecDimensional Information, by E. J. Kennedy and E. F. LaForge, Rome Air Development Conter, Griffiss Air Force Base.
Transistorized Airborne Military Television Techniques, by J. J. Kellv, NordenKetay Corp.

Design Criteria for Missile Automatic Test Equipment, by W. O. Camphell, The Martin Co.
Active Space-Frequency Correlation Svstems, by W. E. Kock and J. L. Stone, Bendix Aviation Corp.

SESSION 5
Monday, March 24 2:30-5:00 P.A. (WA)
PANEL: EDUCATIONAL NEEDS IN SYSTEMS ENGINEERING
Chairman: R. P. Johnson, Vice Pres., Re-
search and Development, The Ramo Wooldridge Corp.
Participants:
H. Chestrut, General Electric Co.
H. H. Goode, Dept. of E. E., University of Michigan.
S. Herwald, IVcstinghouse Elcctric Corp.
R. J. Kochenlburger, Dept. of E. E., University of Connecticut.
W. K. Linvill, Dept. of Defense.
J. Moore, North American Aviation, Incorporated.

SESSION 6
Monday, March 24
2:30-5:00 P.M. (C)
ENGINEERING WRITING AND

SPEECH

Roadblocks in Tcelnical Writing, by T. Griggs, Eclipse-Pioneer Div., Bendix Aviation Corp.
Writing for a Technical Journal, by E. T. Ebersol, Jr., Electronic Design.
Non-Teclnical Help for Engineer-Writcrs, by R. B. MacPherson, Daystrom, Inc. We Are Wlat We Say, by A. Henesian, Lockheed Missile Systems Division.

Automatic Creation of Literature Abstracts (Auto-Abstracts), by H. P. Luhn, IBM Corp.

SESSION 7

Monday, March 24
2:30-5:00 P.M. (C)

RADIO FREQUENCY

INTERFERENCE
Bandwidth Conservation in Pulse Modulated Radars, by R. A. Rosien and R. Shavlach, The University of Pennsylvania.

Measurcment of Spurious Radiation from Missilcborne Electronic Equipuents, by

Execs Dig In For IT\&T Lab

Clad in Arctic gear worm by International Telephonc and Telegraph Corp. engincers and technicians who man the DEW line in Canada and Alaska, two officials of that company are pictured breaking ground for a new building for IT\&T's research division, Federal Telecommunication Laboratories,
at Nutley, N. J. When the cere monial shovel failed to break the frozen ground for Henri Busignies, right, president of FTL, John E. Gingrich, president of Federal Tclephonc and Radio Co., another IT\&T division, dug in with a pick. In the background is FTL's 300 ft microwave radio rescarch tower.
A. L. Albin and C. B. Peariston, Filtron Co. Inc.
Small, Lightweight, RF Interference Suppressors Using Transistors, by Wailter P'ecota, Sperry Gyroscope Co.
Transmission Interference in Low Level Instrmuentation Systems, by J. C. Crosby, Consolidated Electrodynamics Corp.
Spurious Frequency Mcasurenent in Waveguide, by Miclacl Merelli, Rome Air Development Center, Griffiss Air Forco Basc.

SESSION 8

Monday, March 24
2:30-5:00 P.M. (C)

advances in production

ENGINEERING

Automatic Transistor Classificr, by F. J
Morcerf, and L. F. Roehm, General Electric Co.
Eircuit Packaging and Integration of Transistor Assemblies, by H. H. Hagens, U. S. Army Signal Engincering Labs

Automatic Soldering Machinc for Printed Circuit Assembly Boards, by W. L. Oates, Radio Corp. of America.
Wire Processing for Low-Volume Electronic Production, by R. D. Peters, General Electric Co.
"Case" History, by T. C. Combs, Zero Manufacturing Co.
Tension in Coil and Tape Winding, by E. J. Saxl, Tensitron, Inc.

SESSION 9

Tuesdav, March 25
10:00 A.M.-i2:30 P.M. (IVA) AUTOMATIC CONTROL-

GENERAL

A Servo Pressure Control System for the Iron Lung, by G. A. Biernson, Sylvania Electric Products Inc., and J. E. Ward, Servomechanisurs Lab, MIT

Gain-Phase Relations of Non-Lincar Circuits, by Emanuel Levinson, Sperry Gyroscope Co.
On the Design of Adaptive Systems, by H. L. Groginsky, Elcctronics Rescarch Lals., Colunbia University.
The Organization of Digital Computers for P'rocess Control, by Geoffrey Post and E. L. Braun, Litton Industries.

A Self-Adjusting System for Optimun Dynamic Performance by G. IV. Anderson, I. A. Aseltine, A. R. Mancini, C. W. Sarture, Acronntronic Systems, Inc

SESSION 10
Tuesday, Marcl 25
10:00 A.M.-12:30 P. 11 . (WA)
CONTROLLED THERMO-

NUCLEAR POWER

Controlled Thermonuclear Fusion and Its Meaning for the Radio Engineer, by E. W. Herold, C. Stellarator Associates.

Hydromagnetic Instabilitics-A Pictorial Approach, by Ira Bemstein, Project Matterhorn, Princeton University.
Microwave Mcasurements in Controlled Fusion Rescarch, by Mark Heald, Project Matterhorn, Princeton University

Veasurements of Neutron Production in a Dynamic Pincl, by Robert Pyle, University of California, Radiation Laboratorv.

Production of Intense Magnctic Fields and Their Relation to Fusion Reactors, by Morton Levinc, Cambridge Rescarch Center.

Plasmas for Propulsion, by Winston Bostick, Plysies Dept., Stevens Institute of Technolog.

SESSION 11
Tuesday, March 25
10:00 A.M.-12:30 P.M. (IVA)
BROADCAST TRANSMISSION
SYSTEMS
Vidco Modulation Limiter, by L. S. Sadler, Telcrision Station WMTV.
Color TV Recording on Magnetic Tape,

at HR.E. Booth 3515-3517

the pioneer is the leader

MODEL..
ADVANCED NEW
Panoramic MICROWAVE SPECTRUM ANALYZER
New in range, advanced in design, this Panoramic Mi-
 crowave Spectrum Analyzer will have its first showing March 24, 1958. Don't miss this newest addition to the long line of widely accepted Panoramic Spectrum Analyzers which embodies Panoramic's far-sighted development techniques and skilled design engineering.

steps into higher microwave frequencies

with an advanced new Panoramic Microwave Spectrum Analyzer

creates new application flexibility

with a single new Panoramic Broad Range Spectrum Analyzer

dynamically demonstrates Panoramic systems

... instrumentation groups facilitating accurate and rapid electronic measurements

MODEL SPA-3 200 CPS-15 MC new Panoramic BROAD RANGE SPECTRUM ANALYZER

Answers the demand for a basic multi-purpose instrument with maximum application flexibility. Bands up to 3 mc wide may be centered on the screen anywhere from 0 to 13.5 mc with a calibrated center frequency dial. 20 db lin, $40 \mathrm{db} \log$ and square law amplitude scales; continuously variable resolution and sweep rate; high sensitivity make the SPA-3 a versatile and economical measuring tool for - video analysis - pulse spectra - noise studies - ultrasonic and RF waveform analysis.

POWER DENSITY ANALYSIS OF RANDOM WAVEFORMS with Panoramic's PDA-1 - LP-1a - RC-3
Provides, at will, three modes of spectrum analysis of complex random data to suit a
 wide variety of applications - instantaneous power vs. frequency - average power vs. frequency - totalized power vs. frequency through use of a true integrator - data is reduced to a permanent $12^{\prime \prime} \times 5^{\prime \prime}$ ink-on-paper recording.

5SB (Single Side Band) TRANSMISSION ANALYSES with Panoramic's SB-12a • RC-3
60 db dynamic range - four cenvenient pre-set narrow scan ranges plus continuously variable sweepwidths up to $\pm 50 \mathrm{kc}$ - 10 cps resolution capability - excellent sweep stability - exceptional I.F. skirt selectivity give you an accurate inked chart of dynamic transmission band occupancy, nonlinearities, residual carrier and suppressed sideband levels, hum and other low frequency modulations, out of band radiations, etc.

AUTOMATIC CURVE TRACING OF ATTENUATION \& PHASE SHIFT vs. FREQUENCY with Panoramic's PA-1 LP-1a - TW-1 - SW-1 Automatically plots phase shiftand attenuation characteristics on a common frequency scale. Graphic presentation of phase
 shifts reads from 0.180° futl scale. Smaller angles can be magnified within and above this scale of detailed study. This unique system assures attenuation measurements free of effects of noise, hum and distortion products. TW-1 establishes optimum scan speed. SW-1 permits marker insertions or comparisons between networks.

LOW FREQUENCY RESPONSE TRACING $0.5-2250$ cps with Panoramic's LF-2 • G-5 Analyzes frequency response characteristics of - servo amplifiers - filters acoustic reproduc. ers - transformers - shaker tables, etc., in
 - shaker tables, etc., in the low (subsonic) frequency range from 0.5 to $2,250 \mathrm{cps}$. Plops single line response to fundamental frequency only - discriminates against noise and hum - has virtually unlimited dynamic range.

Here is graphic easy-to-use instrumentation .. . that makes possible fast, accurate, reliable and complete measurement analysis . . . for new testing areas ... for more critical analyses. See Panoramic's newly developed instruments. Learn how Panoramic instruments can help you. Panoramic Applications Engineers will be glad to work with you on your specific problems or write, wire, phone NOW for more information. Ask to be put on our regular mailing list for The PANORAMIC ANALYZER featuring application data, and send for our new CATALOG DIGEST.

3

PAMORAMIC,
 hadio phoducts. inc.

530 South Fulton Avenue,
Mount Vernon, N. Y.
Phone: OWens $9-4600$
Cables: Panoramic,
Mount Vernon, New York State

JITTER-FREE performance

- Eliminates cathode over-volting relays

Kuthe's new 1257 was especially designed for MTI modulators with jitter below 5 millimicroseconds.
This outstandingly superior tube minimizes reservoir programming. It starts instantly at 24 kilovolts. . . goes into action in 5 minutes instead of $15 \ldots$ saving up to 66% in warm-up time-and without cathode over-volting. This high-speed action is made possible by Kuthe's fast-warm-up reservoir.

Kuthe's 1257 type is the hydrogen thyratron now used in very-high-powered radar... providing quick, dependable performance where such performance is a must.
Kuthe's new-design 1257 is manufactured to the highest standards of the industry... by world leaders in meeting requirements of the most exacting special applications.
Whatever your needs for hydrogen thyratrons-call Kuthe!

PRINCIPAL DATA AND RATINGS

Peak pulse power. 33 Mw Average power level. \qquad 43 KW Heater. 6.3 volts, 30 A Reservoir 3.0-6.0 volts, 3.0-8.0 A Size.20" o.a.I. x 8.562" dia. max. Peak forward anode voltage 33.0 kVdc max. Peak anode current. ge.......... 1300 volts min. Peak trigger voltag
tad.
. $0.4 \mu \mathrm{~s}$. Typical operation. 17.5 KV DC 310 pps at $2.5 \mu \mathrm{sec}$.
$31,000 \mathrm{KW}$ peak power, 1.55 A average current.
A hydrogen reservior is incorporated for long life.
Kuthe
AN AssociAtE of
$\square\left[\begin{array}{ll}\text { g }\end{array}\right.$

Kuthe Laboratories. Inc.

 international telephone and telegraph corporation 730 South 13th Street - Newark, N. J. - Blgalow 2-6000by J. L. Grever, Radio Corp. of Alucrica. An Automatic TV Level Control Using Vcrtical Interval Test Signals, by J. R. Pop-kin-Clurman and Frank Davidof, Telc chrome Mfg . Corp.
Report oul Remote Control of a Directive Antenna System, by H. E. Rlica. 'Triangle Publications
A Norcl Systen for Feeding a Single Tower AVI, FM and TV Signals, by I. C Goodnow, Westinghouse Broadcasting Co.

SESSION 12
Tuesdal, March 25
10:00 A.M..12:30 P.NI. (WA)
STEREOPHONIC DISC

RECORDINGS

RIAA Engineering Committee Activities with Respect to Stereophonic Disc Records, by W. S. Bachinan, Columbia Records. Inc.
The Westrex Stereodisk Sistem, by C. C. Davis and J. G. Fravne, Westrex Corp.
Tracing Distortion in Stereophonic Disc Recording, by M. S. Corrington and T. Murakami, RC.A Victor Telcrision Div.
Compatibility Problems in Stercophonic Disc Reproduction, by B. B. Bauer and R. Snepvangers, CBS Labs.

Phonograph Pickups for Stereophonic Record Reproduction, by W. S. Bachman, Columbia Records, Inc., and B. B. Bancr, CBS Labs.

The Requirements of a Record Changer, Component Parts and Associated Equip ment for Stercophonic Record Reproduc tion, by W. Faulkier, V-M Corp.

SESSION 13
Tuesdav, March 25
10:00 A.M.-12:00 Noon (WA
PLANNING AGAINST TIME
Weapons Svstems Development, by Gen. Bernard A. Schriever. Air Force Ballistic Missile Div
Commercial Product Development, by Robert Thalner, Sylvania Radio and Television Set Div

Scientific Manpower, by Howard A Meyerhoff, Scientific Manpower Commission.

SESSION It
Tuestiay, March 25
10:00 A.11. $12: 30$ P.M. (C)
AERONAUTICAL AND
NAVIGATIONAL ELECTRONICS
A Vortac Traffic Control System, by P. E. Ricketts. Rome Air Development Center, Griffiss Air Force Base

Airhorne Vortac DME for Federal Airways System, by S. M. Dodington and B. B. Mahler, Federal Telccommunication Labs.
IDEA-Integrated Defense Early-Warning Air Traffic Control, by B. H. Baldridge, General Electric Co

The AN/APN-96 Doppler Radar Set, by M. W. McKay, Gencral Precision Lab. Inc.

Increasing the Traffic Capacity of Transponder Sistems, by H. Davis and M. Setrin, Rome Air Development Center, Griffiss Air Force Base

SESSION 15
Tuesday, March 25
10:00 A.MI. $12: 30$ P.A. (C)
MEDICAL ELECTRONICS
A New Nipkow-Disk Scanner for Accurate Cytological Measurcuents, by H. S. Sawyer and R. C. Bostronn, Airborne Instruments Lal., Inc.
Electrocardiograph Telcmetering (Radio). by J. C. Weblo, L. E. Campbell and J. C Hartsock, Agricultural Research Servicc, U. S. Dept. of Agriculturc.

Electronics in Biochemical Spectroscopy, by A. Rogoff. Federal Telecommunication

Labs., and T. Gallaghcr, Sloan Kettering lustitute.

Patient Data Systems for Hospitals, by G. Guy Knickerbocker and G. N. Weblb, Dept. of Medicine, Johns Hopkins Hospital. A New Intracardiac Pressure \easuring System for Infants and Adults, be A. Warnick, Scientific Labl., Ford Molor Co., and F. H. Drake, Dept. of Adult Cardiology, Henry Ford Hospital.
The Flectronic Evaluation of Fictal Distress, by E. H. Hon. Dept. of Obstetrics and Gyincology, Yale University School of Medicine.

SESSION 16
Tucsday, March 25
10:00 A.M.-12:30 P.M. (C)

GENERAL COMMUNICATIONS

SYSTEMS
Digital Communication Systems, by R. L. Plouffe. Federal Telcconmunication Labs.
Constant Amplitude Specech, by P. J. Ferrell, Rome Air Developnent Center, Griffiss Air Force Base.

Exploitation of Plyysical Phenomena for Commmications, by J. L. Ryerson, Rome Air Development Center, Griffss Air Force Base.

Reduction of Intermodulation in Microwave Systems by Using Ferrite Loadd Isolators, by N. P. Weinlionse, Collins Radio Co

The Effects of Pulse Shape and Firequency Separation on FSK Transmission Through Fading, by G. L. Jurin, Hughes Researclı \& Development Lals.
A +5 Channel PPM System, by S. M. Schreincr and B. Mc:Adanis, Federal Telecommunication Labs.

New Trends in Directional Communications, by R. C. Benoit, Jr. and Francis Coughlin, Jr., Rome Air Developunent Center, Griftiss Air Force Basc.

SESSION 17
Tuestay, Marcl 25
2:30-5:00 P.A1. (W.
Changing demands on the BREADTH OF ELECTRICAL ENGINEERING EDUCATION -A PANEL DISCUSSION
Chainuan: J. D. Ryder, Dean of Engincering, Micligan State University. Participants:
S. W. Hervald, Westinghouse Electric Corp.
H. Pollak. Bell Telephone Labs., Inc.
D. B. Sinclair, General Radio Co.
G. K. Teal, Texas Instruments, Inc.

SESSION 18
Tuestlay, March 25
2:30-5:00 1 11 . (WA)
ATOMIC CLOCKS AND MASERS
A Gas Cell "Atomic Clock" Using Opticall Pumping and Optical Detection, by 11. Arditi. Federal Telccommunication Labs., and T. R. Carver, Princeton University.

Thic Atomichron-An Atomic Freycrey Standard--Plysical Fonndations, by A.O. MoCoubrey, National Company, Inc.

The Atomichron-An Atomic Frequency Standard Sistenn Operation and Perforniance, by W. A. Mainberger, National Conpany, linc.

Analysis of the Emissive Plase of a Pulsed Maser, bv H. H. Theissing, F. A. Dicter, and P. J. Caplan, U. S. Aruy Signal Engineering Labs.
A Two-Cavity Unilateral Maser Amplifier, by Nisson Sler, Philco Corp.

SESSION 19
Tuesdis, Mlarch 25
2:30-5:00 P...1. (WA)
BROADCAST TRANSMISSION SYSTEMS AND COMMUNICA-

TW/TX-24-1936 STJ fused Teflon tape or extruded Teflon insulated stranded silver-plated copper conductor, braided silver-plated copper shield and fused Teflon tape jacket over-all.
TW/TX-24-1936 SGS fused Teflon tape or extruded Tefion insulated stranded silver-plated copper conductor, braided silver-plated copper shield, with braided fiber glass Silicone impregnated covering over-all.

TW/TX-24-1936 SGT fused Tefion tape or extruded Teflon insulated stranded silver-plated copper conductor, braided silver-plated copper shield, with Teflon saturated fiber glass braid over-all.

CLASS A
 SHIELDED \& JACKETED MINIATURE CABLES

MIL-W-16878

TW/TX-30-738 SV fused Teflon tape or extruded Teflon insulated stranded sil-ver-plated copper conductor, braided tincoated copper shield with extruded Vinyl jacket over-all.
TW/TX-30-738 SN fused Teflon tape or extruded Teflon insulated stranded sit-ver-plated copper conductor, braided tincoated copper shield with extruded Nylon jacket over-all.
TW/TX-30-738 SNN fused Teflon tape or extruded Teflon insulated stranded sit-ver-plated copper conductor, braided tincoated copper shield with Nylon fiber braid Nylon lacquered jacket over-all.

Electronic equipment in aircraft and missiles requires a wide range of specialized electrical conductors ... quality conductors, ranging from enameled magnet wire to complex, custom-designed, special purpose multi-conductor cables and cable assemblies.

Hitemp's Technical Service Department has helped designers solve many problems and save many dollars. Consult your local Sales Engineer or write the Main Office today.

HITEMP

1200 SHAMES DRIVE, WESTBURY, NEW YORK SEE teflon - Du Pont's Trade Name for Polytetrafluoroethylene SEE US AT THE IRE SHOW BOOTH \#4424

TIONS SYSTEMS

Remote Control of 50 KW Transmitter, by R. N. Harmon, Westinghouse Broadcasting Co.

Report on Multiplex Experimental Work at WCAU.FM, by E. J. Meehan, Station WCAU-FM.

Field Test of Compatible Single Sideband at WABC, by R. M. Morris, American Broadcasting Co.

Improved CSSB Equipment for the Standard Broadeast Service, by L. R. Kahn, Kalin Research Labs.

An Incrementally Tuned, Drift Cancelled Communications Receiver, by Saul Fast and R. Caulk, National Co., Inc.

Polyplase Telephone Carrier System, by J. R. Mensch, Rome Air Development Center, Griffiss Air Force Base.
Tele-Map, by Henry Hoffman, Jr., Rome Air Developinent Center, Griffiss Air Force Base.

SESSION 20
Tuesday, March 25
2:30-5:00 P.M. (WA)
AUDIO, AMPLIFIER AND RECEIVER DEVELOPMENTS
Distortion in Audio Phase Inverter and Driver Systems, by W. B. Bernard, Bureau of Ships, Navy Dept.
Latest Advances in Extra Fine Groove Recording, by P. Goldmark, CBS Labs.
Design of a Transistorized Record-Playback Amplifier for Dictation Machine Application, by R. Fleming, The Gray Manufacturing Co.

Single Tuned Transformers for Transistor Amplifiers, by S. H. Colodny, Philco Corp.
Design Considerations for Transistorized Automobile Receivers, by R. A. Santilli, Radio Corp. of America.

Voltage Sensitivity of Local Oscillators, by Wen Yuan Pan, Radio Corp. of America.

SESSION 21
Tuesday, March 25
2:30-5:00 P.M. (C)
BEAM AND DISPLAY TUBES
High Transconductance Wideband Television Gun, by E. Atti, Westinghouse Electric Corp.

The Ammular Geometry Electron Gun: A New Electron Device, by J. W. Schwartz. RCA Labs.

Recent Developments in Shaped Beam Display and Recording Technicues, by R. M. Peterson and R. C. Ritchart, Strom-berg-Carlson Co.
"EL.F", A New Electroluminescent Dis plav, by E. A. Sack, Westinghouse Electric Corp.

A Tube that Tells Time, by W. T. Eriksen and E. J. Handly, Raytheon Manufacturing Co.

SESSION 22
Tuesday, March 25
2:30-5:00 P.M. (C)
BIOLOGICAL TRANSDUCERS-
PANEL DISCUSSION
Chairman: Otto H. Schmitt, Dept. of Physics, University of Minnesota

SESSION 23
Tuesday, March 25
2:30-5:00 P.M. (C)

RELIABILITY THROUGH

 COMPONENTSReliability of Missile Guidance Systems, by A. R. Gray, The Martin Co.

Component Part Failure Rate Analysis for Prediction of Equipment Reliability; by R. L. Vander Hamm, Collins Radio Co. A Progress Report on the ARNA Inertial Guidance System Reliability Program, by E. F. Dertinger, American Bosch Arma Corp.

Als Impulse Test for Evaluating the Vi-
brational Characteristics of Recciving Tubes Over a Wide Frequency-Range, by S. A Jolly and W. U. Shipley, Gencral Electric Co.

Reliability of Power Amplifier Klystrons in Tropo-Scatter Communication Systems, by R. F. Lazzarini and H. A. Bailey, EitelMcCullough, Inc.

SESSION 24

Tuesday, March 25 8:00-10:30 P.M. (WA)

ELECTRONICS IN SPACE-

A PANEL DISCUSSION

Chairman: L. Dußridgc, President California Institute of Technology
Propulsion and Interplanetary Travel, by Wernher von Braun and Ernest Stuhlinger, U.S. Army Ballistic Missile Agency, and Krafft A. Ehricke, Convair Astronautics Division.

Navigation and Control, by C. Stark Draper, MIT.

Man in the Space Environment, by D. G Simons, USAF, Holloman Air Force Base

Communications and Telemetering, by J. B. Wiesner, MIT

Terminal Environment, by Fred L. Whipple, Smithsonian Astrophysical Ob servatory.
A Prelide to Space Travel-The round table pancl of eight scientists will discuss informally the major problems to be encountered, including the use of electronics for propulsion, navigation, communications, telemetcring and instrumentation.

SESSION 25
Tuesday, March 25
8:00-10:30 P.M. (C)
ELECTRONICS SYSTEMS IN INDUSTRY-A PANEL

SYMPOSIUM
Chairman: J. D. Rvier, Dean, College of
Engincering, Michigan State University Participants:
J. M. Briclges, Office of the Assistant Secretary of Defense (Research and Engincering.
C. C. Hurd, International Business Machincs Corp.
T. R. Jones, Davstrom, Inc.
I. D. Ryder, Michigan State University The great impact which electronics had on Anerican industry will be highlighted at this panel svmposium.
J. D. Ryder will act as Chairman and open the sumposium with a paper on "Vew Trends in Engineering Fiducation." The emphasis in Dean Rider's talk will be on strengthening the requirements in fundamental sciences, without which neither the demands of industry nor those of our defense establishments can be satisfied.
C. C. Hurd will discuss new ideas which found their entry in inclustry in comnection with fully automatic processes.
T. R. Joncs will speak about organization of complete electronic systems, utilizing the resources of several integrated organizations
J. M. Bridges will highlight the military aspects associated with electronic systens engincering and their relationship to the electronic engincering professional socicty.

SESSION 26

Wednesday, March 26
10:00 A.M.12:30 P.M. (WA)

AERONAUTICAL AND

NAVIGATIONAL ELECTRONICS
Airborne Dual Antenna System for Aerial Navigation, by W. M. Spanos and J. M. Ashbrook, Federal Telecommunication Labs.

Engineering Evaluation of an Automatic Ground Controlled Approach System (AN/

victoreen Announces

This reliable, rugged, micro-miniature tube has an extremely high input resistance before a critical voltage is reached, at which time the tube breaks down and becomes a very low resistance.

MODEL	TAA- 113
Nominal Firing Voltage	113 V
Leakage Resistance (95V)	$5 \times 10^{\circ 0}$ ohms
Acceleration	$20,000 \mathrm{G}$
Vibration	$10-55 \mathrm{cycles}$ at $.06 \mathrm{D} . \mathrm{A}$.
Operating Temperature	$-65^{\circ} \mathrm{to} 160^{\circ} \mathrm{F}$
Energy Transfer	3000 ergs

Victoreen's new cold cathode gas trigger diode is ideal for use where weight, space and high G considerations are involved. It can be used for isolation purposes, electronic switching, RC timing circuits, or relaxation
oscillators.
Victoreen micro-miniature diodes are available now and can be supplied with a variety of different characteristics. Full details are available on request.

AA-7880

See Victoreen's new micro-miniafure cold cathode gas frigger diode
on display for the first time at the IRE SHOW BOOTH 2232

The Victoreen Instrument Company
Components Division
5806 Hough Avenue - Cleveland 3, Ohio

We build our business on prompl deliveries af competitive prices.
SALES OFFICES:
NEW YORK - ATTIEBOBO, MASE. CHICACO - LOS ANGELE

Postal Operations, by M. Levy, Canada Post Office Dept.
Organization of the Electronic Computer for the Canadian Electronic Mail Sorting System, by A. Barszczewski, Canada Post Office Dept.
Coding and Error Checking in the Canadian System, by M. Levy and V. Czorny, Canada Post Office Dept.
The Canadian Automation System of Postal Operations, by H. Jensen and K. H. Ullyatt, Canada Post Office Dept.

SESSION 31
Wednesday, March 26
10:00 A.M.-12:30 P.M. (C)

Radar in military

ELECTRONICS

Automatic and Continuous Radar Performance Monitor, by W. C. Woods, Sperry Gyroscope Co.

Analysis and Theoretical Investigation of New Military Electronic Missile and Air-craft-Borne Equipment, by D. Ehrenpreis, New York, N. Y.
Packaged High Power Radar Transceivers, by H. N. C. Ellis-Robinson, Marconi's Wireless Telegraph Co., Ltd.
Limitations of the Output Pulse Shape of High Power Pulse Transformers, by R. G. deBuda and J. Vilcans, Canadian General Electric Co., Ltd.
A Radar Electronic Countermeasures Simulator, by L. Sternlicht, The Hallicrafters Co.

SESSION 32
Wednesday, March 26 10:00 A.M.-12:30 P.M. (C)
MICROWAVE MEASUREMENT
Power Limiting Using Ferrites, by R. F. Soohoo, Cascade Research Corp.
An Ultra-Precise Microwave Interferometer, by G. R. Blair, McMillan Laboratory, Inc.
Direct Reading Microwave Plase Meter, by H. A. Dropkin, Diamond Ordnance Fuze Labs.
A Microwave Spin Resonance Spectrometer, by R. R. Unterberger, California Research Corp.
A New Microwave Rotary Joint, by W. E. Fromm, E. G. Fubini, and H. S. Keen, Airborne Instruments Laboratory, Inc.

SESSION 33
Wednesday, Marcl 26 10:00 A.M.-12:30 P.M. (C)

SEMICONDUCTOR DEVICES

A New Passive Semiconductor Component, by R. M. Warner, Jr., Bell Telephone Labs., Inc.
Use of the RCA 2N384 Drift Transistor as a Linear Amplifier, by D. M. Griswold and V. J. Cadra, Radio Corporation of America.
High Current Switching Times for a PNP Drift Transistor. Numerical Analysis on the I. B. M. 704 Digital Computer, by A. Mitchell, International Business Machines Corp., and L. Lapidus, Princeton University.
A New High-Frequency Diffused Base Transistor, by J. Sardella and R. Wonson, Raytheon Manufacturing Co.

A New Five Watt, Class A, Power Amplifier, by G. Freedman, J. Williams, P. Flaherty, D. Root, D. Spittlehouse, W. Waring, P. Kaufmann, P. Whoriskey, Raytheon Manufacturing Co.

SESSION 34
Wednesday, March 26
2:30-5:00 P.M. (WA)
RELIABILITY THROUGH
SYSTEMS

Blocking-Oscillator Transformers

Set of Pulsite transformers gives pulse width from 0.1 to 10 microsec in NBS preferred circuit. Units meet MIL-T-27A, Grace 1, Class R. Design your pulse circuits quickiy, by simply plugging in unit with desired eharacteristic. Airpax kit of 8 oscillator units and 2 interstage. units in handy plastic box from slock, Trans-
former Division, Baltimore former Division, Baltimore 20, Maryland

LONG-LIFE

choppers

Noise levels, especially in low-impedance circuits, of these new choppers are below 10 microvolts. This is RMS wide-band noise extending from a few CPS up to 40 KC ; still lower noise levels can be achieved in particular application by filtering. In usual application, these low-noise Airpax choppers can be expected to remain within ratings for over 5,000 hours use. These choppers are manufactured at the Cambridge Division, Cambridge, Mary-

gOOTHS 3502 3504
 Fort Lauderdale, Florida.

Magnetic Power Amplifiers

Airpax magnetic power amplifiers control the current to both phases of split-phase motors. Standby power is thus greatly reduced and full torque is produced under load. Amplifiers are polarity sensitive. Airpax units for 6 or 10 watts per phase for 400 . CPS motors are in stock at the Seminole Division, Fort Lauderdale, Florida.

 City of Plantatien, Fort Lauderdale, Florida

Synchronous

Servo

Demodulators
Lise synchrenous or other AC data take-offs in your servos and stable DC magnetic operational amplifier. An Airpax synchronous demodulator sopplies the connecting link. It has a low and stable null Types either for 60 or for 400 -CPS systems are available from Seminole Division,

The MICRO-MATIC precision wafering machine-fully automatic model-WMA

SLICES

to extremely close tolerances

AUTOMATCC INEXXNG ON FULLY AUTOMATIC PRODUCTION MODELS

Write for descriptive liferature

On an Analytical Design Technique, by . B. Heyne, Hughes Aircraft Co.
Reliability or Life Pcrformance, by A. R Matthews, Wright Air Development Center, ARDC

Reliability Improvement Throngh Redundancy at Various Svstem Levels, by B. J. Flehinger, IBM Watson Lab.

Fundamental Techniques in Doppler Radar Navigation Svstem Reliability Measurements, by P. D. Stahl, General Precision Lab., Inc.
Reliability Prediction and Test Results on USAF Ground Electronic Equipuent, by E. Kizusiak and J. Naresky, Rome Air Development Center, ARDC, Griffiss Air Force Basc

SESSION 35

Wedncsdav, March 26 2:30.5:00 P.M. (WA INFORMATION THEORY CODING AND DETECTION
On Communication Processes Involving Learning and Random Duration, by R . Bellman and R. Kalaba, The Rand Corp.
The Application of "Comparison of Experiments" to Detection Problems, bv N . Abramson, Electronics Research Lab., Stanford Universits
Signals with Uniform Ambiguity 1 nckons, by R. M. Lerner, MIT, Lincoln . b.
Evaluation of Some Error Correct Methods Applicable to Digital Data Tral mission, by A. B. Brown and S. T. Meyers, Bell Telcphone Laths., Inc.

Algelraic Dccoding for the Binary Erasure Channel, by M. A. Epstein, Lincoln Lab., MIT.

SESSION 36

Wednesday, March 26 2:30-5:00 P.M. (WA) ELECTRONIC COMPONENT

PARTS

Effect of High Intensity Radiation on Electronic Parts and Materials, by C. P Lascaro and A. L. Long, U. S. Army Sig nal Corps Enginecring Labs.
Some Guideposts to the Use of Metal lized Ciapacitors, by W. C. Lamphier, Sprague Electric Co.

New Amplificrs for Automatic Control of Active D.C Loarls, by E. Levi, Microwave Rescarch Institute.

Magnetostriction Transelucers for Mc. chanical Filters, by R. L. Sharma and H. O. Lewis, Collins Radio Co.

Application of Piezoelectric Ceramic Resonators to Modern Band Pass Amplifiers, by A. Lungo and K. W. Henderson, Clevite Corp.

SESSION 37

Wednesdav, March 26
2:30-5:00 P.M. (WA)

COMPUTERS AND CONTROL

A Preventive Maintenance Program for Large General Purpose Electronic Analog Computers, by R. P. Sykes, The RamoWooldridge Corp.
Thic TRICE-A High Speed Incremental Computer, by S. Ruhman and J. M Mitchell. Packard-Bell Computer Corp.

Digital Moon Radar Antema: Programmer with Analog Interpolator Servo, by O. A. Guzmann, U. S. Army Signal Corps Engincering Labs

A Balanced Precision Reference Regulator for Computer Application, by D. A Noden. The Martin Co.

A Solid State Analog-to-Digital Conversion Device, by M. Palersky, Packard-Bell Computer Corp.

I-Axis Translation of Transfer Functions,
by J. L. Rycrson, Ronc Air Devclopment Center, Griffiss Air Force Base.

SESSION 38

Wcdnesday, March 26
2:30-5:00 P.M. (C)
INSTRUMENTATION SYSTEMS
An Earth Satellite Instrumentation for Cloud Mcasurcment, by R. Hanel and R. A. Stampfl, U. S. Army Signal Enginecring Labs.
A Precise Optical and Radar Tracking Range, by E. V. Kullman, Rome Air Development Center (RCEMI).
A Iligh Speed Radar Signal Measurement and Recording Sistem, by A. Nirenherg and R. Burfiend, Airborne Instruments Lab., Inc.; M. Baller, Cambridge Research Dev. Center, and A. Wight, Laboratory for Electronics, Inc.

A High Pcrformance Multi-Channel Instrumentation System, by W. G. Wolber, Bendix Aviation Corp.

Instrumentation Dyamically Analvzed for Optimum Relialility, Weight and Geometric Space Envelope Subjected to Severc Vibrations and Shock, by David Ehrenpreis, New York, N. Y

SESSION 39

TVechnesclay, March 26
2:30-5:00 P.M. (C)
MICROWAVE COMPONENTS
Yttrium Garnct UHF Isolator and Reciprocal Phase Shifter, by F. R. Morgenthaler, USAF and D. L. Fye, Air Force Cambridge Rescarch Center

High Power, Broadband, Microwave Gas Discharge Switch Tuloe, by S. J. Tetcmbaum and R. M. Hill, Sylvania Electric Products Inc.

High Power Microwave Filters, by J. H. Vogelman, Rome Air Development Center A Band Separation Filter for the 225-400 MCS Band, by A. I. Grayzel, Lincoln Laboratory, MIT.
Dircet-Coupled, Bancl-Pass Filters with $\lambda / 4$ Resonators, by G. L. Matthaci, The Ramo-Wooldridge Corp.

SESSION 40

Wednesday, March 26
2:30-5:00 P.M. (C)
PROPAGATION AND ANTENNAS I-GENERAL
Extreme Usefal Range of VHF Transmission by Scattering From the Lower Ionosphere, by R. C. Kirby, National Bureat of Standards.

Metcor Trail Propagation, by J. T. deBettencourt and Albert Ward, Pickard \& Burns; and Bemard Goldberg, U. S. Army Signal Engincering Labs.

The Duty Cucle Associated with For-ward-Scattered Echoes from Mctcor Trails, by H. J. Wirth and T. J. Kcary, U. S. Navy Electronics Lab.

A New Low Frequency Antenna, by E. W. Seeley and J. D. Burns, U. S. Naval Ordnance Lab.

Logarithmically Pcrioclic Antcma Designs, by R. H. DuHamel and F. R. Ore, Collins Radio Co.
Phase Center of I Ielical Beam Antennas, by Scymour Sander, RCA; and D. K. Cheng, Syracuse University.

SESSION +1
Thursday, March 27
10:00 A.M.-12:30 P.M. (VA)
MAGNETICS AND COMPUTERS
A High Speed n-pole, n-position Magnetic Core Matrix Switch, by A. L. Lane and A. Turczyn, Technitrol Enginecring C \oplus.

Apertured Plate Memory: Operation and Analysis, by W. J. Haneman and J. Lchmann, RCA Labs; and C. S. Warren, RCA, Defense Elcetronic Products.

Molccular Storage and Read-Out with

VARIABLE

 PULSER
MODEL 1010

Pulse repetition rate. 10 cps to 5 mc
Pulse duration. $0.1 \mu \mathrm{sec}$ to $5.0 \mu \mathrm{sec}$; in $0.1 \mu \mathrm{sec}$ steps Rise time. at 40 volts out, $0.04 \mu \mathrm{sec}$; at 20 volts out, $0.02 \mu \mathrm{sec}$ Fall time at 40 volts out, $0.05 \mu \mathrm{sec}$; at 20 volts out, $0.04 \mu \mathrm{sec}$ Output amplitude. 2 to 40 volts across 1000 ohms, continuously variable Output impedance. 100 ohms in series with 0.5 mfd Trigger output:
precedes output pulse by $0.1 \mu \mathrm{sec}$ from 1000 -ohm source, 10 volts, $0.15 \mu \mathrm{sec}$ Rack mounting. $5 \frac{1 / 4 " 1}{\prime \prime}$ high, $19^{\prime \prime}$ wide, $10^{\prime \prime}$ deep

VARIABLE

 FREQUENCY OSCILLATOR

MODEL 1011

Frequency range:
100 cps to $5 \mathrm{mc} / \mathrm{s}$ in 7 bands, continuously variable tuning across each band Waveform
Essentially square except above 1 mc . Above 1 mc , it becomes essentially sinusoidal Output voltage:

0 to 10 volts peak-to-peak across 1000 ohms (cathode follower output stage) Power requirements. 105-125 volts, 60 cycle AC, 25 watts Rack mounting. $31 / 2^{\prime \prime}$ high, $19^{\prime \prime}$ wide, $81 / 4^{\prime \prime}$ deep

Visit our IRE Booth \#3120

Flat from DC- 4.5 mc , usable to 10 mc . VERT. AMPL, : sens. $25 \mathrm{rms} \mathrm{mv} / \mathrm{in}$; input $\mathrm{Z} 3{ }^{3}$. K-follower coupling bet stages; 4 -step freqcompensated attenuator up to $1000: 1$. SWEEP: perfectly linear $10 \mathrm{cps}-100 \mathrm{Kc}$ (ext. eap. for range to 1 cps) : pre-set TV F N H positions auto, sync. ampi. \& lim. PLUS: drect or cap. coupling; bal. or unbal. inputs; edge-lit engraved lucite graph screen; dimmer; filer; bezel fits std, photo equipt. High
intensity trace CRT 0.06 usec rise time Pushpull hor. ampl., flat to 400 kc , sens. 0.6 rms mv/in. Buittin volt. calib. Z-axis mod. Sawtooth \& 60 cps outputs. Astig. control. Retrace blanking. Phasing control.

Entirely electronic sweep circuit (no mechanical devices) with accurately-blased increductor for excellent linearity. Extremely
Hut $R F$ output; new AGC circuit automatically adjusts osc. for max. output on each band with min. ampi. variations. Exceptional tunligg accuracy; edge-lit halrines eliminate parallax. Swept osc, Range $3-216 \mathrm{mc}$ in 5 fund- bunds. Variable Marker Range $2-75 \mathrm{mc}$ in 3 fund. band 4.5 me ${ }^{60-225}$ me on harmonic band. .6 me Ntal Marker Ose., Xtal supplled,
Ext. Marker provision. Sweop Width $0-3 \mathrm{mc}$ lowest max. deviation to $0-30 \mathrm{me}$ highest max. dev. 2-way blanking. Narrow range phasing. Attenuators: Marker Size, RF Fine, RF Coarse (4-step decade). Cables: output, 'scope horiz., scope vertical.

COMPLETE with steel cover and handle.
SPEED, ease, unexcelled accuracy \& thoroughness. Tests all recelving tubes (and picture tubes with adapter). Composite indlneous sel of any 1 of 4 combinations of 3 plate voltages, 3 screen voltages, 3 ranges or pantinuously variable grid voltage (with 5% accurate pot, New seriesstring voltages: for $600,450,300 \mathrm{ma}$ types. Sensitive 200 us meter. 5 ranges meter sensistivity (1% shunts e 5% pot.) 10 SIX-position lever switches: pres point connection of each tube pin. 10 ment in leakage test circuit \& speedy sel of Individual sections of multi-section tubes in merit tests. Direct-reading of inter-element leakage in olmms. New gear-driven rollchart. Checks $n-p-11$ of-n-p transistors: separate meter readings of collector lenkage current Adapter $\$ 4$ internal de power supply. CRA Adapter $\$ 4.50$

See the 50 EICO models IN STOCK at your neighbor. hood distributor. Write for FREE Catalog E-3

Prices 5\% higher on
West Coast YHEM 33-00 NORTHERN BLVD., LONG ISLAND CITY $1, N . Y$.

CIRCLE 245 READERS SERVICE CARD

Microwaves, by C. H. Becker, R. L, Pierce and J. R. Martin, Trionics Corp. P. O. Box 548, Madison 1. Wisc.
Calculation of Flux Pat'erns in Verrite Multipath Core Structures, by S. A. Ablias and D. L. Critchlow, IBMI
Logic by Ordered Flux Changes in Multipath Ferrite Cores, by N. F. Lockhart, IBM.
Fhux Responsive Magnetic Heads for Low Speed Read-Out of Data, by L. IV. Ferlocr, Clevite Corp.

SESSION 42

Thursday, March
10:00 A.M.-12:30 P.M. (VA)
CIRCUIT THEORY II-UNUSUAL ASPECTS OF FILTER DESIGN
Multichamel-Filter Synthesis in Terms of Dipole Potential Analog, by H. A. Wheeler, Wheeler Labs.
Minimum Insertion Loss Filters, by E. G. Fubini, Airborne Instruments Lab, luc., and E. A. Guillemin, MIT
A New Approach to the Design of High Frecpucncy Crystal Filters, by R. A. Sykes, Bell Telephone Labs., Inc.
Synthesis of Active RC Single-tumed Bandpass Filters, by J. J. Bongiorno, Microwave Research Inst.
A New Class of Filters, by A. Papoulis, Polytechnic Institute of Brooklyn

SESSION +3

Thursday, March 27
10:00 A.M.-12:30 P.M. (WA)
ULTRASONICS II-DELAY LINE MEASUREMENTS
Mcasurements of Delay in Ultrasonic Systems, by D. L. Arenlerg, Arenberg Ul-
Precise Measurenuent of Time Delay, by J. E. Vary, Jr., Bell Telephone Labs.. Inc.

The Measurement of Delay-Line Transducer Resistance, by J. J. G. Vache, Limcoln Lal), MIT, and I. A. Leavitt, Harvard University.
Ultrasonic-Delay-Linc Terminating Cir cuits and Passband Measurements, by M. Axellank. Lincoln Lah,, MIT.
Measurenent of Temperature aud Frequency Dependence of Insertion Loss in Delay Lincs. by A. H. Vecitzler, Bell Tclephone Laboratories, Inc.
The \easurencnt of the Total Spurions Responses of an Ultrasonic Delav Line, by M. S. Zimmerman, General Atronics Corp.

SESSION $4+$
Tluursclay, March 2
10:00 A. 11-12:30 P.M. (WA)
industrial electronic
Distributor Test Stand, by J. A. Lovell, Airborne Instruments Lalb. Inc.
A Digital Setting System for an X-Ray Thickness Gage, by V. A. Blumhagen, General Electric Co.
Application of Magnetic Core Logic to Industrial Controls, by H. Tellefsorn and S. Messio, Pancllit, Inc.
A Coordinated System of Automatic Controls, by R. R. Batcher, Douglaston,

SESSION 45

Thursday, March 27
10:00 A.M.-12:00 Noon (VA) ASPECTS OF RF INTERFERENCE IN MILITARY ELECTRONIC AND COMMUNICATIONS SYSTEMS
Treatment and Methools for the Reduction of Pulse alld Random Interfercace, hy P. M. Crentz, 'Packard-Bell Electronics Corp.
Reduction of Bandwidth Requirements for Radio Relay Systems, by D. L. Jacoly and R. H. Levinc, U. S. Arny Signal Eaginecring Labs., and Alfred Mack and Alan Mescrlof: Radio Coporation of America Analysis of the Spectral Slape of Alod-

Today's requirements call for miniaturization, but.

MiNaTURE?

Outomatic

Unit engineered to fit all available sub-miniature cables, AUTOMATIC'S Sub-Miniature Connectors are available in three types; BAYONET, PUSH-ON AND THREADED COUPLING.

Special receptacles available for printed circuit applications.

CHECK THESE FEATURES:

No special tools required for assembly. Foolproof clamping insures accurate alignment . . positive contact . . . extra strong grip. Exclusive internal-parts design allows outside dimensions of connectors to remain constant regardless of cable dimensions.

For BAYONET, PUSH-ON and THREADED SUB-MINIATURE and MICRO-MINIATURE COAXIAL CABLE CONNECTORS, always specify AUTOMATIC. Our engineers are always ready to discuss your special requirements.
Write, wire or phone for free technical information.

317 Berry St., B'klyn 11, N. Y. • EVergreen 8-0364 IRE SHOW - N. Y. COLISEUM - BOOTH 3940 CIRCLE 246 READERS SERVICE CARD
ulation Splatter, by R. Price, Lincoln Laboratory, MITT.
Near-Zone Power Transmission Formulas, by Ming-Kuei Hu, Syracuse University.

SESSION 46

Thursday, March 27
10:00 A.M.-12:30 P.M. (C)

DATA REDUCTION AND

RECORDING

Instrumentation for Recording and Analysis of Audio and Sub-Audio Noise, by D. D. Howard, Naval Research Lab.

A Xcrographic Cathode Ray-Tube Recorder, by H. H. Hunter, O. A. Ullrich and L. E. Walkup, Battelle Memorial Inst.

Theory of Magnetography, by S. J. Begun, Clevite Research Center.

Applications of Magnetograplyy to Graphic Recording, by I. B. Gehman, Clevite Rescarch Center.

A Shaft Position Digitizer System of High Precision, by L. G. del3cy, Ballistic Meas. Lab.. Aberdeen Proving Ground; and R. C. Webb, Colorado Rescarch Corp.
A High Precision Digital Shaft Position Indicator, by D. H. Raudenbush, Telecomputing Corp.

SESSION 47
Thursday, March 27 10:00 A.M.-12:30 P.M. (C)
ANTENNAS II-GENERAL
Early Warning Radar Antennas, by J. M. Fiaherty and Eugenc Kadak, Westinghouse Electric Corp.
Phase and Ariplitude Mcasurements in the Near Field of Microwave Lenses, by C. W. Morrow, P. E. Taylor, and H. T Ward, Melpar, Inc.
Annular Slot Direction Finding Antemna, by H. II. Hougardy and Nicholas Yaru, Hughes Aircratt Co

A Novel Autema for Mobile Radio Relay Operation in the UHF Rangc, by F. J. Triolo. U. S. Army Sigual Engineering Labs.
Lightweight, Highı Gain Antenna, by R. G. Malech, Airborne Instruments Lab., Inc.

Voltage Breakdown Characteristics of inlicrowave Antennas, by J. B. Chown, T Morita, and W. E. Scharfman, Stanford Research Institute.

$$
\text { SESSION } 48
$$

Thursday, March 27
10:00 A. M.-12:30 P.M. (C)

MICROWAVE TUBES

Noise Characteristics of a BackwardWave Oscillator, by J. B. Cicchetti and J. Munushian, Hughes Rescarch and Developınent Labs.

The Pulsed M-Type Backward Wave Oscillator and Its Modes of Operation, by Gerald Klein and A. L. Winters, U. S. Army Signal Enginecring I abs

The ESTIATRON-An Electrostatically Focused Meclium-Power Traveling-Wave Amplifier, by D. J. Blatucr and F. E. Vaccaro, Radio Corporation of America.

The Generation of Shaped Pulses Using Microwave Klystrons, by D. H. Preist, Eitel-McCullough. Inc.
Wide-Band UHF 10 KW Klustron Amplifier, by H. Goldman, L. F. Gray, L Pollack, Fecleral Telecommomication Labs

SESSION 49
Thursclay, March 27 2:30-5:00 P.N. (W.
GENERAL SYSTEMS
Combat Computers, by IV: F. Luebbert, U. S. Army Signal Corps Engineering Labs. The USAF Automatic Language Translator, Mark I, by G. A. Shincr, Ronc Air Developunent Center.

Non-Binary Switching Theory, by 0 . Lowenschuss, Sperry Gyroscope Co.

Automatic Type Size Normalization in

IN CANADA: Canadian Wilber B. Driver Co., Ltd., 85 King Street East, Toronto 1

MEDALIST*

null indicators

readable . . . Wide range sensitivity Modern MEDALIST design provides far greater readability and modern styling in minimum space. Unique core and magnet structure provides $1 / 2 \mathrm{ua} / \mathrm{mm}$ sensitivity at null point with sharp square law attenuation to 100 ua at end of scale in Type A. Internal resistance is 2000 ohms. Other sensitivities available. ASA/MIL $21 / 2^{\prime \prime}$ mounting. Standard and special colors. Bulletin on request. Marion Electrical Instrument Co., Manchester, N. H., U.S.A.
${ }^{\bullet}$ T.M. Reg. U.S. Pat. Or. U.S. \& Forelgn Patents Copsright (C) 1958. Marion

marion

 meters

CIRCLE 248 READERS SERVICE CARD
I'm Building a College Fund for My Kids with the EXTRA MONEY

Im earning in Mobile-Radio Maintenance!

1 couldn't set uside from my engineer's salary enough money to send the kids through college. So when learned of the boom, in mobile-radio I dexided to start my own part-time business. Now my income from mobile-tadio maintenance goes into a "college bank account.
This can be your story
or your free copy of "HOW TO. Send coupon IN MOUR free copy of HOW TO MAKE MONEY IN MOBILE.RADIO MAINTENANCE." Published by Lompkin laboratories. Inc., manufacturers of the 105-B Micrometer Frequency Meter and 205-A FM Modulation Meier

LAMPKIN LABORATORIES, INC. Instruments Div., Bradenton, Fla.

At no obligation to me please send "HOW TO MAKE MONEY IN MOBILE-RADIO MAIN. TENANCE

Name
Address
City
CIRCLE 249 READERS SERVICE CARD

High Speed Character Sensing Equipment, by A. I. Tcrsoff, Intelligent Machines Research Corp.
Minimum Time Programming on a Drum Computer, by B. Shiffman, The Ramo-Wooldridge Corp.

SESSION 50

Thursday, March 27
2:30-5:00 P.M. (WA)
CIRCUIT THEORY III-APPLICA TION OF TOPOLOGICAL AND GROUP CONCEPTS
Signal Flowgraph and Network Topologs
by Omar Wing, Columbia Universit
New Transpositions in Power Trans former Windings, by R. G. deBuda, Canadian General Electric Co., Ltd
Two-Terminal Pair Symmetry Relations, by R. C. Kiessling. Lenkurt Electric Co. Analysis of Nonreciprocal Networks by Digital Computer, by Wataru Maveda and M. E. Van Valkenburg, University of Illinois.

On Non-Series-Parallel Realization of Driving-Point Function, by Wan H. Kim, Columbia University.

SESSION 51
Thursday, March 27
2:30-5:00 P.M. (WA)
ULTRASONICS III-
MEASUREMENT OF RADIATED ACOUSTIC POWER
Power Handling Capability of Ferroelectric Ceramics, by G. W. Renner, R. A Plante and T. F. Hueter, Raytheon Manufacturing Co
Measurement of Acoustic Power Radiated from Underwater Sound Transducers, bv R. J. Bobber, Office of Naval Research.

An Instrument for Determining Intensity of Ultrasound, by I. F. Herrick, B. H. Anderson and M. Neher, Mayo Clinic and Mavo Foundation
Scasurements of Acoustic Power in Industrial Ultrasonic Equipment, by W. Welkowitz, Gulton Industrics, Inc.
Pancl Discussion-Problems in Power Measurement
Panel Members G. E. Henry, General Electric Eng. Lab; S. E. Jacke, Detrex Corp: Frank Massa, Massa Labs., Inc; Murray Strasberg, David Taylor Model Basin.

SESSION 52
Thursday, March 27 2:30-5:00 P.M. (WA) LONG DISTANCE COMMUNICATIONS
Single Chamel Radioteletype Communication, by H. B. Voclcker, Jr., U. S. Army Signal Engineering Labs.
A World-Wide High Frepuency SSB Radio Network, by Everett Bray, Collins Radio Co.

Comparison of Multi-Channcl Radioteletype Systems Over a 5,000 -\ile Ionospheric Path, by A. T. Brennan, Strom-berg-Carlson Co; Bernard Goldberg and Arthur Fekstein, U. S. Army Signal Engincering Labs.

Basic Analysis on Controlled Carier Operation of Tropospheric Scatter Communi cation Svstems, by L. P. Yeh, Westinghouse Electric Corp.

Transportable Tropospheric Scatter Communications Systems, by A. J. Svien, Collins Radio Co.; and J. C. Domingue, Signal Communications Dept.
Evaluation of IF and Bascloand Diversity Combining Reccivers, by R. T. Adams and B. M. Mindes, Federal Ticlccommunications Labs.
Transmission of Digital Data over MultiHop Tropospheric, by C. N. Lawrence and

WHITNEY-JENSEN No. 18 BENCH PUNCH

WILL PUNCH

 CLOSE TO WEB

13/16" HOLE THRU 12 GA

Write for BIG NEW CATALOG
WHITNEY METAL TOOL CO.
722 Forbes St., Rockford, III, Since 1910
CIRCLE 250 READERS SERVICE CARD

R. L. Marks, Rome Air Development Center.

SESSION 53

Thursday, March 27
2:30-5:00 P.M. (C)
HIGH ACCURACY

INSTRUWENTS, MEASUREMENT

 AND CALIBRATIONA Feedback Amplifier with Negative Output Resistance for Magnetic Measurements, by IV. P. Harris and I. L. Cooter, National Bureau of Standards.

Millimicrosecond, Wide-Aperture, Elec-tro-optical Shutter, by J. A. Hull, Avco Mfg. Corp.

A Quartz Seryo Oscillator, by Norman Lea, Marconi's Wireless TelegraphCo., L.td.

A New Method to Simplify Bridge Type Measurements on Quartz Crystal Units, by Erich Hafner, U. S. Army Signal Engineering Labs.

RF-Voltage Calibration Consoles, by M. C. Sclby, L. F. Behrent and F. X. Ries, National Bureau of Standards.

SESSION 54
Thurslay, March 27
2:30-5:00 P.M. (C)

ANTENNAS III-MICROWAVE

 ANTENNASA Compact Dual-Purpose S-Band Beacon and VHF Telemetry Antenua, by W. O. Puro, W. G. Scott and IV. A. Mcyer, Melpar, luc.

A Volumetric Electrically Scanned TwoDimensional Microwave Antenna Array, by J. L. Spradlev, Hughes Aircraft Co.

Closely Spaced Polyrod Arrays, by L. W. Mickey, G. G. Chadwick, Melpar, Inc.

Warc Guide Loaded Surface Wave Antenua, by R. F. Hymemen and R. W Hougardy, Hughes Aircraft Co.

Dielectric Image Line Surface Wave Antenna, by H. W. Cooper, Murray Hoffman and Sheldon Isazcson, Maryland Electronic Mifg. Corp.

A Dual Beam Planar Antenna for Janus Type Doppler Navigation Systems, by H. Saltzman and G. Stavis, Gencral Precision Lab., Inc.

SESSION 55

Thursdav, March 27
2:30-5:00 P.M. (C)

RADIO \& TELEVISION

Design Problems in Transformerless Single Rectifier TV Receivers, by D. Sillman, Vestinghouse Electric Corp.

Problems in Two Dimeusional Television Sistems, by R. M. Bowie, Sylvania Electric Products, Inc

A Vew High-Power Horizontal-Output Tube Deflection System for Color Television, by J. P. Wolff, and R. G. Rauth, Radio Corp. or America.

Improvements in Defection Amplifier Design, bỵ C. Droppa, Sỵvania Electric Products. İic.

AGC Design Considerations for TV Receivers, by R. H. Overdeer, Philco Corp.

Exhibitors at the show and their booth numbers are as follows:

A

ABC Sound Engineering Co.
145 West 47th St.
New York 36, N. Y
.3119
ACF Industries, Inc.
Avion Division
11 Park Place
Paramus, N. J.

Printed Circuit

Precision Resistors

To meet the requirements for printed circuitry, RPC has developed Type P Encapsulated Wire Wound Precision Resistors Miniature, single ended units designed for easy rapid mounting on printed circuit panels with no support other than the wire leads. Many newly developed techniques are employed in the manufacture of Type P Resistors. These units can be operated in ambient temperatures up to $125^{\circ} \mathrm{C}$. and will withstand all applicable tests of MIL-R-93A. Andt. 3. Available in 6 sizes, rated R-93A, Amdt. $1 / 10$ watt to .4 watt . $1 / 4^{\prime \prime}$ diameter by from $1 / 10 \mathrm{watt}$ to 4 watt. $1 / 4$ "diameter by
$5 / 6^{\prime \prime}$ long to $3 / \mathrm{s}^{\prime \prime}$ diameter by $3 / 4$ long. Resistance values to 3 megohms. Tolerances from 1% to 0.05%.

Encapsulated Precision Wire Wound Resistors

RPC Type L Encapsulated Resistors will withstand temperature and humidity cycling, sait water immersion and extremes of altitude, humidity, corrosion and shock without electrical or mechanical deterioration. Type L resistors are available in many sizes and styles ranging from sub-miniature to standard with lug terminals, axial or radial wire leads. Available for operation at $105^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$. ambient temperatures. These resistors will meet all applicable requirements of MIL-R.93A Amdt. 3. Type L can be furnished with all resistance alloys and resistance tolerances from 1% to . 02%.

High Frequency Resistors
Used where requirements call for very low inductance and skin effect in circuits involving pulses and steep wave fronts. Depending on usable at frequencies to over 400 mc . Resist. ance values range from 20 ohms to 100 meg . ohms with tolerance of 20% to 5%. 2 types available.
TYPE F resistors (shown) in 8 sizes from $9 / 16^{\prime \prime}$ long $\times 0.10^{\prime \prime}$ diameter to $61 / 2^{\prime \prime}$ long $\times 9 / 16^{\prime \prime}$ diameter, with lugs or wire leads. Power rotings $1 / 4$ to 10 watts.
TYPE G resistors (not shown), in 6 sizes up to $181 / 2^{\prime \prime}$ long. Power ratings 10 to 100 watts.

High Voltage Resistors

Type B Resistors are stable compact units for use up to 40 KV . These resistors are used for VT voltmeter multipliers, high resistance voltage dividers, bleders, high resistance standards and in radiation equipment. They can be furnished in resistance to 100,000 megohms. Availoble as tapped resistors and matched Avaloble as tapped resistors and matched pairs. Sizes range from a 1 watt resistor 1 inch
long $x 5 / 10$ inch diameter rated at 3500 volts, to a 10 watt resistor $61 / 2$ inches long $x 9 / 6$ inch diameter rated at 40 KV . Low temperature and voltage coefficients. Standard resistance tolerance 15%. Tolerances of $10 \%, 5 \%$ and 3% available. Tolerance of 2% avaitable in matched pairs.

RPC resistors are noted for quality, performance and delivery as per schedule. Of necessity, this requires high skills in engineering and modern production facilities. In addition, RPC's test equipment and standards for calibrating and checking are on a par with the nation's outstanding laboratories. As a result, RPC is a steady supplier to many industrial companies, government agencies and the armed forces.

For additional information concerning RPC resistors, write for free catalog.

ENGINEERS Electronic \& Mechanical Physicists:

Sometimes it pays to break tradition

Tradition is being broken every day at Melpar as we promote engineers to positions of responsibility regardless of their ages or the duration of their service. In a young, dynamically growing electronic $R \& D$ organization such as ours only one factor carries real weight. That factor is individual ability.

The fact that the average age of our 1000 . man professional staff is one of the youngest in the country is tangible evidence of our advancement policy's emphasis on skill and performance.

There's never a lack of higher level positions to which the engineer of ability may advance, because we've doubled in size every 18 months for the past 11 years and our growth continues at a rapid pace. We promote from within whenever and wherever possible. By means of our project team basis of organization, work of merit is readily recognized and rewarded without delay.

Our wide diversification - we are presently engaged in more than 100 different projectsgives you the opportunity to tackle challenging problems in a variety of fields.

Our main laboratory is situated on a 44-acre wooded tract in a desirable suburb of Washington, D. C. Lovely homes and apartments are available near the laboratory. Nearby Washington offers a wealth of cultural and recreational attractions, and splendid educational facilities.

- Financial assistance for advanced study - Relocation expenses paid - Qualified applicants will be invited to visit Melpar at company expense

DURING THE I.R.E. SHOW

You are invited to meet and discuss employment opportunities with several members of our top technical staff during the I.R.E. Show. Conlact our represontative at the convention hotel

(14)

For detailed information about openings . . . Write to: Technical Personnel Representative
MELPAR Incorporated
A Subsidiary of Westinghouse Air Brake Company
3012 Arlington Boulevard, Falls Church, Va.
10 miles from Washington, D. C.

AMP Incorporated
3822 Eisenhower Blvd.
Harrisburg, Penns. .. 3821, 2427-2429
A \& \mathbf{P} Metal Products Mfg. Corp.
111 Bloomingdale Road
Hicksville, L. I., N. Y. 4116
Ace Electronics Associates, Inc.
99 Dover St.
Somerville 44, Mass. 1807
Ace Engineering \& Machine Co., Inc.
Tomlinson Road
Huntingdon Valley, Pa............ 1728
Acoustica Associates Inc.
26 Windsor Ave.
Mineola, L. I., N. Y. 4523

Acme Electric Corp.
20 Water St.
Cuba, N. Y.
Acton Laboratories, Inc.
533 Main St.
Acton, Mass. 1424
Adcon Corp.
1117 Commonwealth Ave.
Boston 15, Mass. 1417

Ad-Yu Electronies Lab., Inc.
249-259 Terhune Ave.
Passaic, N. J. 3606
Aero Electronics Co.
1512 N. Wells St.
Chicago 10, 111. . M-10

Aeroprojects Inc.

310 E. Rosedale Ave.
West Chester, Pa.

Aerovox Corp.

740 Belleville Ave.
New Bedford, Mass. 2603-2607
Ainslie Corp.
312 Quincy Ave.
Quincy 69 , Mass. 1618
Airborne Instruments Lab.
160 Old Country Rd.
Mineola, L. I., N. Y. ..1301-1305, 1400
Aircom Incorporated
354 Main St.
Winthrop 52, Mass.
M-21
Airflyte Electronics Co.
535 Avenue A
Bayonne, N. J. 3829
Air-Marine Motors, Inc.
369 Bayview Ave.
Amityville, L. I., N. Y 2315
Air-Maze Corporation
25000 Miles Road
Cleveland 28, Ohio . M-22

Airpax Products Co.
6601 N. W. 19th St.
Ft. Lauderdale, Fla. 3502-3504

Airtron, Ine.

1107 W. Elizabeth Ave.
Linden, N. J.

Aladdin Electronics

Div. of Aladdin Industries, Inc.

703 Murfreesboro Road
Nashville 10, Tenn
The Albano Company, Inc.
Honeycomb Division
549-555 W. 54th St.
New York 19, N. Y.

Alden Elect. \& Impulse Recording Eq. Co.
P. O. Box 125-Washington St. Westboro, Mass. 1612
Alden Products Co.
117 N. Main St.
Brockton 64, Mass.
1614, 1616
Alfax Paper \& Engineering Co.
Box 125-Washington St.
Westboro, Mass. 1610
Alford Manlfacturing Co., Inc.
299 Atlantic Ave.
Boston 10, Mass.................... 1623
All Products Co.
Electronic Products Div.
P. O. Box 110
Mineral Wells, Texas $\mathbf{1 8 0 5}$

Allen-Bradley Co.
136 W. Greenfield Ave.
Milwaukee 4, Wisconsin. ...3706-3708

General Chemical Division

Allied Chemical \& Dye Corp.
40 Rector St.
New York 6, N. Y. 4120
Allied Control Co., Inc.
2 East End Ave.
New York 21, N. Y...........2905-2907
Alpha Metals, Inc.
56 Water St.
Jersey City 4, N. J. 4323
Alpha Wire Corp.
200 Varick St.
New York 14, N. Y. 4324
Amco Engincering Co.
7333 W. Ainslie St.
Chicago 31, Il1............. 1919 \& 1921
Amerac, Inc.
116 Topsfield Rd.
Wenham, Mass.
American Bosch Arma Corp.
320 Fulton Ave.
Hempsteed, N. Y $\ldots \ldots \ldots \ldots .1729 .1631-1633$
The American Brass Co.
414 Meadow St.
Waterbury 20, Conn.4043-4044
American Electrical Heater Co.
6110 Cass Ave.
Detroit 2, Michigan. 4033
American Machine \& Foundry Co. Defense Products Group
1101 N. Royal St.
Alexandria, Va.
1506-1510
American Metal Climax, Inc.
61 Broadway
New York 6, N. Y.
.4008
American Molded Products Co.
2727 W. Chicago Ave.
Chicago 22, Ill. 4110
American Plastics Corp.
342 Madison Ave.
New York 17, N. Y.................. 4115
American Silver Company, Inc.
36-07 Prince St.
Flushing 54, N. Y
. . 1922
American Super-Temperature Wires, Inc.
194 Nassau St.
Princeton. N. J.

MODEL LAB-80 REGULATED DC POWER SUPPLY

Continuously variable 0 to 90 KVV DC Fower Supply. Output current 1 ma. at 80 KV .2 mik. trom 40 KV down. Voltage resulations better than ! \% througtiont voltage rance, l'anel di mensions $19^{\prime \prime}$ wide $\times 26^{\prime \prime}$ high x 18" deep.

LAB-80 Complate with HV meter........... $\$ 900$ net Specify nolarity outpat-positive or MODEL RG-30-Continuously Variable

- 15-30 KV Regulated DC Power Supply

Inconporates a with regulated focus kV for use with 5u'P15, 5TP4 and flying spot tubes. $\begin{array}{ll}\text { liegulitions } & \text { better } \\ \text { than } 5 \% & \text { at }\end{array}$ than $.5 \%$
milliamere. at
In wide use ror color tube development
wow, transcrintion work, transeription
recorting sviems. Also arailable wish
stis and converfocus and conversence volage taps
or RCA Tri-Color or RCA Tri-Color'
mbes at slight ad-
litional cost. This nodel cos
misted for to kV - है
output at .5 milliampere for new 40 KV projection
$196^{\prime \prime}$ wide x $1214^{\prime \prime}$ high x $13^{\prime \prime}$ deep......... $\$ 295$ Net
With meter installed on front panel............ $\$ 395$ Net COMPLETE LINE OF HIGH VOLTAGE COILS-Send for complete catalog E

CIRCLE 309 READERS SERVICE CARD

American Television \& Radio Co.
300 E. Fourth St
St. Paul 1, Minn
Amperex Electronic Corp.
230 Duffy Ave.
Hicksville, L. I., N. Y. 2522-2524
Amphenol Electronics Corp.
1830 S. 54th Ave.
Chicago 50, Ill. .
Analogue Controls, Inc.
39 Roselle St
Mineola, N Y
Anchor Metal Co., Inc.
966 Meeker Ave.
Brooklyn 22, N. Y.
.4513
Andrew Corp.
363 E. 75th St.
Chicago 19. Ill
Arthur Ansley Manufacturing Co
New Hope, Pa.
4121
ANTLAB Inc.
6330 Proprietors Road
Worthington. Ohio
Apex Machine Company
14-13 118th St.
College Point 56, N. Y........... 4528
Appliance Manufacturer
201 North Wells St.
Chicago 6, Ill. .
4535
Arco Electronics, Inc.
64 White St
New York 13, N. Y.................. 2738
Arnold Engineering Co.
P. O. Box G

Marengo, Ill.
.2201-2215
Artos Engineering Co.
2737 S. 28th St
Milwaukee 46, Wisc............... . 4228
Assembly Products, Inc.
Wilson Mills Road
Chesterland, Ohio
Associated American Trading:
Division
750 St. Anns Ave
New York 56, N. Y
Associated Missile Products Corp.
Sub. of Amer. Mach. \& Foundry Co 2709 North Garey Ave.
Pomona, Calif.
Associated Testing Labs., Inc.
415 Clinton Road at Route 46
Caldwəll, N. J.
1818
Astron Corp
255 Grant Ave
East Newark, N. J 2430
Atlantex Corp.
625 McGrath Highway
Somerville. Mass.
Atlas E-E Corp.
47 Prospect St.
Woburn, Mass.
Audio Development Co.
2833 13th Ave. South
Minneapolis 7, Minn.
Audio Devices, Inc.
444 Madison Avenue
New York 22, N. Y..................2720

Augat Bros., Inc.
31 Perry Ave.
Attleboro, Mass
Automatic Electric Sales Corp.
Northlake, Ill.
1906-1908
Automatic Metal Products Corp.
315-323 Berry St.
Brooklyn 11, N. Y
AVCO Mfg. Corp.
Crosley Div.
1329 Arlington St.
Cincinnati 25 , Ohio.
$.1625-1627$
Axel Brothers, Inc.
Electronics Div.
134-20 Jamaica Ave.
Jamaica 18, N. Y.

B

B \& \mathbf{F} Instruments, Inc.
4732 N. Broad St.
Philadelphia 41, Pa.
The B.G. Corporation
321 Broad Ave.
Ridgefield, N. J. 3946

Baird-Atomic Inc.
33 University Rd.
Cambridge 38, Mass. .3221

Balco Research Laboratories, Inc.
49-53 Edison Place
Newark 2, N. J. .
Ballantine Laboratories, Inc.
102 Fanny Rd.
Boonton, N. J.
Barber-Colman Co.
Electrical Components Div.
1800 Rock St.
Rockford, Ill.
Barnes Engineering Co.
30 Commerce Rd.
Stamford, Conn. 3036
Barry Controls, Inc.
700 Pleasant St.
Watertown 72, Mass 2534

Baso Inc.

730 N. Jackson St.
Milwaukee 1, Wisc................ 2709
Beattie-Comeman, Inc.
1000 N . Olive St.
Anaheim, Calif.

Berkley Division of Beckman

Instruments, Inc.
2200 Wright Ave.
Richmond, Calif. 3416-3418
Beemer Engineering Co.
401 N. Broad St.
Philadelphia 8. Pa................ 4118
Behlman Engineering Co.
2911 Winona Ave.
Burbank, Calif.3926

Belden Manufacturing Co.
415 S. Kilpatrick Ave.
Chicago 44, Ill. 1630

Bell Aircraft Corp.
Avionics Division
P. O. Box 1

Buffalo 5, N. Y 1328-1330

TYPICAL INDUCTION HEATING APPLICATIONS IN THE MANUFACTURE OF TRANSISTORS

SOLDERING TRANSISTOR ASSEMBLIES
BY INDUCTION HEATING

Concentrator-type coil creates high intensity, restricted heating at joint of nickel shell and tinned glass, thus causing solder to flow for permanent seal.

SINGLE CRYSTAL PULLER

General arrangement for pulling single crystals. Induction heating coil is shown surrounding quartz tube containing crucible with molten germanium in suitable atmosphere.

MULTIPLE ZONE REFINING

Induction heating apparatus used in zone refining. The six coils shown provide simultaneous molten zones in the ingot as it passes through the fube containing the protective atmosphere.

```
Electronit Tube Generators from 1 kw to 100 kw ,
``` Spark Gap Canverters from 2 kw to 30 kw .

WRITE FOR THE NEW LEPEL CATALOG . . . 36 illustrated pages packed

All Lepel equipment is certified to comply with the requirements of the Federal Communications Commission.
LEPEL HIGH FREQUENCY LABORATORIES, INC.
55th STREET and 37th AVENUE, WOODSIDE 77, NEW YORK CITY, N. Y.

Tubular and Upright for Regular and Printed Circuits Availabie in wide temperature ranges \(-40^{\circ} \mathrm{C}\) to \(+65^{\circ} \mathrm{C}\) and \(-20^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)

A complete line with exclusive patented construction in a variety of miniaturized sizes. Features: hermetically-sealed; stabilized for high and low femperafure oparafion; excellent Ife characteristics; immersion-proof; resistant shock and vibration leakage currents extromaly low.

Write for fechnical information and illustrated literature.

\section*{ILLINOIS}

Telephones EVerglade 4-1300
CONDENSER COMPANY

Belling \& Lee Limited
Great Cambridge Rd.
Enfield, Middlesex, England. . . . 2214
Bendix Aviation Corp.
401 N. Bendix Dr.
South Bend 20, Indiana....2322-2425
Bergen Laboratories
247 Crooks Ave
Clifton, N. J.
3844
Beta Electric Corp.
333 E. 103rd St.
New York 29, N. Y 3107, 3109
James G, Biddle Co.
1316 Arch St.
Philadelphia 7, Pa............... . . 3943
Bird Electronic Corp.
1800 E. 38th St.
Cleveland 14, Ohio......... . 3215-3217
Birnbach Radio Co., Inc.
145 Hudson Street
New York 13, N. Y
Bliley Electric Company
Union Station Building
Erie, Pa.
2736
Blonder-Tongue Laboratories, Inc.
9-25 Alling St.
Newark 2, N. J
Bodner Industries, Inc.
238 Huguenot St.
New Rochelle, N. Y.
4051
Boesch Mfg. Co., Inc.
45 River St.
Danbury, Conn .4301-4303

Bogart Manufacturing Corp.
315 Seigel St.
Brooklyn 6, N. Y
Bogue Electric Mfg. Co.
52 Iowa Avenue
Paterson 3, N. J
2115-2117
W. H. Hudson Advertising

Re: Bogue Elec. Mfg. Co., Ulanet Co.
Essex Falls, N. J. 2119
Bomac Laboratories, Inc.
Salem Rd.
Beverly, Mass.
2829-2831
Bond Electronics Corp.
60 Springfield Ave.
Springfield, N. J.
2405
Boonton Electronics Corp.
738 Speedwell Ave.
Morris Plains, N. J.
Boonton Radio Corp.
Intervale Road
Boonton, N. J.
.3101-3102
The Borden Chemical Co.
Div. of The Borden Co.
P. O. Box 1589

Santa Barbara, Calif............. 4317
Borg Equipment Div.
George W. Borg Corp.
120 S. Main St.
Janesville, Wisc.
Boston Insulated Wire \& Cable Co.
65 Bay St.
Boston 25, Mass.
Bourns Laboratories
6135 Magnolia Ave.
Riverside, Calif.

\section*{Protect the life line of} your electrical products with Nylon HEYCO Strain Relief Bushings

\section*{Anchor \& Insulate} power supply cords

\section*{SAVETIME...}

SAVE MONEY

Send for samples to fit your wire, today!

\section*{HEYMAN}

MANUFACTURING COMPANY KENILWORTH 15, NEW JERSEY

Bowmar Instrument Corp. 8000 Bluffton Rd. (P. O. Box 2835) Fort Wayne, Ind.

Bradley Laboratories, Inc.
168 Columbus Ave
New Haven 11, Conn
2919
W. H. Brady Co.

727 W. Glendale Ave
Milwaukee 9, Wisc. 4103
Branson Corp.
P. O. Box 234

41 So. Jefferson Road
Whippany, N. J.
.2005
Branson Ultrasonic Corp.
37 Brown House Rd.
Stamford, Conn.
3045
H. Braun Tool \& Instrument Co., Inc. 140 Fifth Ave.
Hawthorne, N. J
4211
Brevel Products Corp.
601 West 26th Street
New York 1, N. Y. .
949
The Bristol Co.
Waterbury 20, Conn. 3932

British Radio Electronics Ltd.
1833 Jefferson Place, N. W.
Washington 6, D. C.
.2815
British Industries Corp.
80 Shore Road
Port Washington, L.I., N.Y. 2921-2922
Buchanan Electrical Prods. Corp.
225 U. S. Route 22
Hillside, N. J.
Buckbee Mears Co.
4th \& Rosabel Sts.
St. Paul 1, Minn
3809
Budd-Stanley Co., Inc.
43-01 22nd St.
Long Island City 1, N. Y...3121-3122
Bulova Watch Co., Inc.
Dept. of Government \& Industrial Sales
Bulova Park
Flushing 70, N. Y......... 1811 \& 1813
Burgess Battery Co.
Foot of Exchange St.
Freeport, Ill.
2711
Burlingame Associates, Ltd.
510 S . Fulton Ave.
Mount Vernon, N. Y........3610-3612
Burndy Corp.
Omaton Division
Norwalk, Conn. \(\qquad\)
Burnell \& Co. Inc.
10 Pelham Parkway
Pelham Manor, N. Y. 2909, 2910
Burr-Brown Research Corp.
Box 6444
Tucson, Ariz.
.3052
Burroughs Corp.
6071 Second Ave.
Detroit 32, Mich.
1720-1\%24
Bussman Mfg. Co.
University at Jefferson
St. Louis 7, Mo.

\section*{C}

CBS Hytron Div.
Columbia Broadcasting System, Inc.

NEED
SPEED
III
DELAY
LINE
DELIVERIES

\section*{CUSTOM MADE TO THE MOST DIFFICULT SPECIFICATIONS}

\section*{1to \(\mathbf{3}^{*}\)}

WEEKS
COMPLETION

* Within 1 week we will supply you with an electronically suitable model, to enable your engineering to continue, while waiting for completed deliveries (within 3 weeks), of delay lines made to your specific configurations.

\section*{SEE US AT THE I.R.E. SHOW} BOOTH 3054

Designers, manufacturers and
 mass-producers of Standard and custom made Lumped Constant, Distributed Constant, Variable, miniature Variable and Complete Delay Line Systems.

CONTROL ELECTRONICS CO., INC.
1925 New York Avenue
Huntington Stotion, New York
circle reader's card for catalog sheets CIRCLE 259 READERS SERVICE CARD

\section*{Component Development \\ Engineering at its BEST!}
- ADVANCED ELECTRICAL DESIGN PRECISION MECHANICAL DESIGN - ACCURATE PRODUCTION METHODS

C-astem Built to the most
Esacting Specifications by Cossor Engineers

In Mumetal Coros for Optimum Geornotry Forrite Coren for Speed and Sensitivity In Non-magnetic Cores for Perfection of Responae

Any of Cossor's Three Core Types can be made in single or double axis with single or push-pull windings, and encapsulated for fired or slip ring (rotating) use.

Normal sharacteristics of yokes for 1-1/2 in. neck tubes ate:
Positional accuracy - the spot position will con form to the yoke current co-ordinates within \(0.25 \%\) of tube diameter. For deflection angles less than \(\pm 25^{\circ}\) better accuracy can easily be achieved
Memory \(0.5 \%\) max. without overswing: \(0.1 \%\) or less with controlled overswing.

Complete encapsulation in epoxy (stycast) or silicone resins is standard for all Cossor deflection yokes, and is done with special moulding tools slip rings are added, solid silver rings are mounted in encapsulating resin. The finished slip ring yoke is precision turned to centre bore, and can include bearing mouming surfaces with dimensional tolerances approaching those associable with high quality metal parts.

Sottline Tirue (Micro atc.) -
\(120 \sqrt{\text { Inductance }}\) in Henries
Sonsituvity decroos/ milliamperen of \(0.095 \sqrt{\frac{\text { Induatance-millihenries }}{\text { Accelerator Voltage - kV }}}\)

\section*{OOSSOIR \\ CANADA LIMITED}

\footnotetext{
301 Windsor St., Halifax, N. S.
8230 Mayrand Ste, Montreal, Que.
648A Yonge St., Toronto, Ont.
Corporation Heuse, 160 Laurier West, Ottawa, Ont.
}

100 Endicott St.
Danvers, Mass.
CGS Laboratories, Inc.
391 Ludlow St
Stamford 1, Conn.
1310-1312
C K Components, Inc.
101 Morse St.
Newton 58, Mass.
3949-B
The Calidyne Co.
120 Cross St.
Winchester, Mass.
3222, 3224
California Technical Industries
Div. of 'Textron, Inc.

1421 Old Country Rd.
Belmont, Calif.
1111 \& 1112

\section*{CALMAG}
Div. of Calif. Magnetic Cont. Corp. 11922 Valerio St.
No. Hollywood, Calif.
2009
Cambridge Thermionic Corp.
445 Concord Avenue
Cambricge 38, Mass.
.2219
Camloc Fastener Corp.
22 Spring Valley Road
Paramus, N. J. 4306-4308

\section*{Cannon Electric Company}

3209 Humboldt Street
Los Angeles 31, Calif. 2733-2737
The Capitol Machine Co.
36 Balmforth Ave
Danbury, Conn.
.3843
The Carborundum Co.
Perth Amboy, N. J.
2930-2931
Capitol Radio Engineering Institute, Inc.
3224 16th St., N. W.
Washington \(10, D . C\)
3105
Spectrol Electronics Division
Carrier Corp.
1704 S: Del Mar Ave.
San Gabriel, Calif.
1726
Carter Parts Co.
3401 W. Madison St.
Skokie, Ill.
Cascade Div.
Monogram Precision Industries, Inc. 53 Victory Lane
Los Gatos, Calif \(\qquad\) 3608
Centronix Inc.
34 Oleander St.
P. O. Box 1306

Cocoa, Fla.
1600
Century Electronics \& Instruments, Inc.
1333 N. Utica St., Box 6216
Tulsa, Okla.
3211-3213
Ceramaseal, Inc.
Box 25
New Lebanon Center, N. Y..... . 4013
Chassis-Trak, Inc.
525 S. Webster Ave
Indianapolis 19, Ind.
4001
Chemo-Textiles, Inc.
Pulaski St.
P.O. Box 169

West Warwick, R. I. 4002
Chester Cable Corp.
P.O. Box 316

Chester, N. Y

Chicago Standard Transformer Corp.
3501 West Addison St.
Chicago 18, Ill.
Christie Electric Corp.
3410 W. 67th St.
Los Angeles 43, Calif............. . . 2810
Cinch Mfg. Corp.
1026 Homan Ave
Chicago 24. Ill.
.2535
C. P. Clare \& Co.

420 Lexington Ave
New York 17, N. Y
Cleveland Container Co.
6201 Barberton Ave.
Cleveland 2, Ohio2319

Clevite Research Center
Div. of Clevite Corp.

540 East 105 th St.
Cleveland 8, Ohio

\section*{Brush Instruments}
Div. of Clevite Corporation

3405 Perkins Ave.
Cleveland 14, Ohio.
Clipper Gear \& Machine Co.
15301 E. 12 Mile Road
Roseville, Mich
Cobehn, Inc.
Passaic Ave.
Caldwell, N. J

\section*{Sigmund Cohen Corp}

121 S. Columbus Ave.
Mount Vernon, N. Y.
Coil Winding Equipment Co.
19 Maxwell Ave
Oyster Bay, L. I., N. Y
Coleman Engineering Co., Inc.
6040 W. Jefferson Blvd.
Los Angeles 16, Calif.
Collins Radio Co.
855 35th St., N. E
Cedar Rapids, Iowa
1215-1221

Comar Electric Co.
3349 W. Addison St.
Chicago 18, Ill.
Combined Book Exhibit, Inc.
950 University Ave.
New York 52, N. Y. 4532 \& 4533

Comco Plastics, Inc.
97-24 Albert Rd
Ozone Park 17, N. Y
Communication Accessories Co.
Highway 71, By-Pass \& U. S. 50
Lee's Summit, Mo.3908-391
Computer Control Company, Inc.
92 Broad St.
Wellesley 57, Mass................. 1322
Computer-Measurements Corp
5528 Vineland Ave
North Hollywood, Calif.... 1620-1622
Condenser Products Co.
140 Hamilton St.
New Haven 4. Conn.............. 2004

Conrad, Inc.
141 Jefferson St.
Holland, Michigan
 Murray Berman:

\section*{mew hermes engraving machine corp. \({ }^{\text {13-19 }}\) University Place,}

\section*{CIRCLE 262 READERS SERVICE CARD}

\section*{SPOT GALVANOMETER}

\section*{Type GVM 22}

7 CURRENT RANGES:
5 to \(500 \mu \mathrm{~A}\) full scale
0.8 to 6 mV voltage drop

7 VOLTAGE RANGES:
1 to 100 mV full scale 200 ohms/mV

QUICK \&
APERIODIC RESPONSE

Represented in Canada by
BACH-SIMPSON
London/Ontario
Represented in the United States by WELWYN INT. INC.
3355 Edgecliff Terrace, Cleveland 11 Ohio
Line of 5 galvanometers supplied for different applications. - Light and handy instrument. - Power line or battery operation.

\section*{RADIOMETER}

72 Emdrupvej, Copenhagen NV, Denmark

CIRCLE 264 READERS SERVICE CARD

\section*{RIBBONS •STRIPS}

\section*{of}

\section*{PURE TUNGSTEN \\ MOLYBDENUM}
\(\star\) THORIATED TUNGSTEN * SPECIAL ALLOYS and OTHER METALS IN

to
TOLERANCES CLOSER THAN COMMERCIAL STANDARDS by

\section*{OUR SPECIAL ROLLING TECHNIOUE}

Note: for highly engineered applications-strips of TUNGSTEN and some other metals can be supplied

\section*{ROLLED DOWN TO . 0003 THICKNESS}
- Finish: Roll Finish-Black or Cleaned
- Ribbons may be supplied in Mg. weights if required

\section*{For HIGHLY ENGINEERED APPLICATIONS}

DEVELOPED AND MANUFACTURED BY

Consolidated Electrodynamics Corp.
300 N. Sierre Madre Villa
Pasadena 15, Calif.
The Consolidated Mining of Canada Ltd.
215 St. James St., West
Montreal, Canada
Consolidated Resistance Co. of
America, Inc.
44 Prospect St.
Yonkers, N. Y.
The Constanta Co. of Canada Ltd.
280 Regina Ave.
Montreal, P. Q., Canada. 3919
L. L. Constantin \& Co.

Franklin Ave. at New Jersey H'way.
Lodi, N. J.
3801, 3803
Continental Carbon
Division of Wirt Co.
5221 Greene St.
Philadelphia 44, Pa.
2209
Continental-Diamond Fibre Corp.
16 Chapel St.
Newark 48, Delaware...... 4223, 4224
Control Electronics Co., Inc.
1925 New York Ave.
Huntington Station, N. Y. 3054
Coors Porcelain Company
Golden, Colorado
4006
Cornell-Dubilier Electric Corp.
333 Hamilton Blvd.
South Plainfield, N. J.......2725-2727
Cossor (Canada) Limited
301-303 Windsor St.
Halifax, Nova Scotia
Canada
Cowan Publishing Corp.
300 W. 43rd St.
New York 36, N. Y.

Corning Glass Works
Corning N Y
2530, 2532
2635, 2637
Charles L. Rumrill \& Co., Inc.
Re: Corning Glass Works
339 East Ave.
Rochester 8, N. Y.......... 2530, 2532
2635, 2637
Cox \& Co., Inc.
115 East 23rd St.
New York 10, N. Y................ . 2741
Craig Systems, Inc.
90 Holten St.
Danvers, Mass.
Cramer Controls Corp.
Centerbrook, Conn.
2433
Crosby Laboratories, Inc.
Box 233, Robbins Lane
Hicksville, L. I., N. Y...
1415
Cubic Corp.
5575 Kearny Villa Rd.
San Diego 11, Calif.
1801
James Cunningham Son \& Co., Inc. P.O. Box 516

33 Litchfield St.
Rochester 8, N. Y.
.2813
Curtis Development \& Mfg. Co.
3266 North 33rd St.
Milwaukee 16, Wis.

The latest additions to the growing line of "Vitramon" Capacitors feature smaller mounting area, lower inductance, and more versatility of application - plus all the phenomenal electrical characteristics for which "Vitramon" Capacitors are noted - fine silver electrodes fused to pure porcelain enamel, perfectly bonded to provide stabil. ity, wide temperature range, bumidity im. munity, low loss, low noise.

\section*{NEW RADIAL SERIES}

An extension of the \(A / R\) Series, giving minimum size at 300 volt rating up to 100 mmf
- Thin design - 5/64" to \(7 / 64^{\prime \prime}\)
- Versatile mounting - can be used axially, radially, or on edge
- Ideal for minute circuit assemblies

\section*{NEW PARALLEL SERIES}

Features both leads from one smiall face for miniature printed board applications
- Tiny mounting area \(-11 / 64^{\prime \prime} x\) 9/32"
- Lead spacing \(0.2^{\prime}\)
- Capacitance through 1000 mmf . at 100 vdc
- Designed for automatic inser. tion
- Packed for cartridge feeding

\section*{NEW CO-AXIAL SERIES}

Offers feed-through and stand-off geometry, retaining raditional excellent electrical properties typical of "Vitramon" Capacitors. Provides terminal usable as stud, eyelet, or connecting wire
- Compatible with MIL-C.10950B requirements
- Very low inductance
- Flexible leads
- Maximum height from mounting surface \(1 / 4^{\prime \prime}\) for 1000 mm . unit
Standard Axial Series and Axial Radial Series

These two rugged, standard capactror series have capacities from 0.5 mmf to 6800 mmf . Stindard colerance is \(\pm 5 \%\) of nominal with a minimum of \(\pm 0.25 \mathrm{mmf}\). Closer rolerances also available.

See Us At The I.R.E. Show
Booth Nos. 2401 \& 2403

Curtis-Wright Corp
Electronics Div.
631 Central Ave.
Carlstadt, N. J. .
. \(.132 \%\)
Cutler-Hammer, Inc.
315 N. 12th St.
Milwaukee 1, Wisc.................. 393

\section*{D}

Daco Instrument Co.
Tillary \& Prince Streets
Brooklyn 1, New York.
Dage Electric Co., Inc.
67 N. 2nd St.
Beech Grove, Ind2633

Dale Products, Inc.
P.O. Box 136

Columbus, Nebraska
2742,2744
The Daven Company
530 W. Mt. Pleasant Ave.
Livingston, N. J.
.2717, 2719
Bryan Davis Publishing Co., Inc.
52 Vanderbilt Ave.
New York 17, N. Y.. 4416

Daystrom, Inc.
430 Mountain Ave.
Murray Hill, N. J 1802-1810 1901-1909

Dearborn Electronic Laboratories, Inc.
1421 N. Wells St.
Chicago 10, Ill.
.2104
Decade Instrument Co.
Box 153
Caldwell, N. J.
3110

\section*{DeJur-Amsco Corp.}

45-01 Northern Blvd
Long Island City 1, N. Y...3911-3913

\section*{Del Electronics Corp.}

521 Homestead Ave.
Mount Vernon, N. Y............. M-14
Deltime, Inc.
608 Fayette Ave.
Mamaroneck, N. Y.
DeMornay-Bonardi Corp.
780 S. Arroyo Parkway
Pasadena, Calif
.3216-3218
Derivation \& Tabulation Associates, Inc.
67 Lawrence Ave.
West Orange, N. J.
.3035
Design Tool Corp.
80 Washington St
New York 6, N. Y4125

The Deutsch Company
7000 Avalon Blvd.
Los Angeles 3, Calif 3921

The Deutsch Co.
211-05 75th Ave.
Bayside, L. I., N. Y. 3921

Tobe Deutschmann Corp.
921 Providence Highway
Norwood, Mass.
2341-2343
Dialight Corp.
60 Stewart Ave.
Brooklyn 37, N. Y
2730-2732

\section*{coating}

Insulates and Protects Aluminum
Martin Hard Coating is a tough abrasion resistant coating applied to aluminum and its alloys by an electrochemical process. Martin Hard Coated aluminum alloys can replace many brass, bronze and steel parts for sliding types of wear applications. As an insulator, it will withstand voltage breakdown from 500 to 3700 volts.
Typical applications include;

\section*{Transistors-}

Coating the wafer to act as an insulator and heat sink to withstand breakdown voltage of 600 volts minimum and temperatures to melting point of aluminum.

\section*{Tuning Mechanisms-}

Coating intricate and precision dial mechanisms offers remarkable resistance to industrial and salt atmospheric exposures.

\section*{Electronic Components-}

Coating moveable parts on controls, tuning devices, switches, relays, connectors and any aluminum part that may be subjected to wear, gas fumes, moisture or dust.

Request your copy of "Martin Hard Coating" by writing to-
 FINISHERS, Inc.

78 S. Franklintown Road Baltimore 23, Maryland CIRCLE 267 READERS SERVICE CARD

MODEL UHR-220

\section*{FEATURING}
-ULTRA-HIGH
REGULATION-0.001\% -HUN and NOISE LESS THAN 100 MICROVOLTS -IMPEDANCE
0.1 OHW A-C 10100 Kc WITH NO PEAKS

See us at the I.R.E. Show, Booth \#3314
CIRCLE 268 READERS SERVICE CARD

Diamond Antenna \& Microwave Corp.
7 N . Ave
Wakefield, Mass.
3237-3239
Diamonite Products Div.
United States Ceramic Tile Co
1232 Cleveland Ave. N. W.
Canton 3, Ohio. .4217

Diehl Mfg. Co.
1157 Finderne Ave.
Somerville, N. J.
2237
Digital Equipment Corporation
Maynard, Mass. 1511

Digitronics Corp.
Key Electric Division
Albertson Ave.
Albertson, N. Y. 1730

Dixon Corp.
Burnside st.
Bristol, R. I.
.4212
Donner Scientific Co.
888 Galindo St.
Concord, Calif. \(.3616-3618\)

Douglas Microwave Co., Inc.
252 E. Third St.
Mount Vernon, N. Y............... \(\mathbf{3 7 1 2}\)
Dow Corning Corp.
Midland, Mich.4106-4108
Drake Manufacturing Co.
1713 W. Hubbard st.
Chicago 22, Ill.
.2809
Wilbur B. Driver Co.
1875 McCarter Highway
Newark 4, N. J..
.4204-4206
Driver-Harris Co.
201 Middlesex St.
Harrison, N. J................4420-4422
Dumont-Airplane and Marine
Instru., Inc.
Clearfield, Pa. 3061
Allen B. DuMont Labs., Inc.
760 Bloomfield Ave.
Clifton, N. J..................3201-3203
\(3301-3305,3705-3707\)
E. I. du Pont de Nemours \& Co., Inc. 10 \& Market Sts.
Wilmington 98 , Del
4316-4318
E. I. du Pont de Nemours \& Co.

Nemours Bldg., Room 2521
Wilmington, Delaware .. 4412 \& 4414
Dura. Plastics of New York, Inc.
303 5th Ave.
New York 16, N. Y......... . 4026-4027
Dynac, Inc.
395 Page Mill Rd.
Palo Alto, Calif...............3017-3018
Dyna-Empire, Inc.
1075 Stewart Ave.
Garden City, L. I., N. Y......... . 1711
Dynapar Corp.
5150 Church St.
Skokie, Ill. 3118

ESC Corporation
534 Bergen Blvd.
Palisades Park, N. J. 2843

GUDEBROD
LACING
TAPES ARE
USED IN
COMMUNICATION, UTILITIES
\& MILITARY
AS WELL AS
RESEARCH
PROJECTS.
CAN WE

\author{
HELP YOU?
}

Gudebrod flat braided lacing tapes hold harness securelyno bite-through or slip, yet are easy on the hands. Some resist high temperature, some are color-coded . . . and they come wax-coated or wax-free . . . rubber-coated . . . or with special coating. Gudebrod makes many tapes for many purposes, including defense work. Send us your lacing problems or your specifications . . . we can supply the answer to both.

\section*{GUDELACE • GUDE-NYLACE GUDELACE H - TEFLACE}

GUDEBROD BROS. SILK CO., INC. ELECTRONICS DIVISION 225 W. 34th St., New York 1, N. Y. executive Offices
12 South 12th St., Philadelphia 7, Pa. CIRCLE 269 READERS SERVICE CARD

Eastern Industries, Inc
100 Skiff St
Hamden 14, Conn. 2132 \& 2133
Eastern Precision Resistor Corp.
675 Barbey St.
Brooklyn 7, N. Y

Edin Company, Inc.
207 Main St.
Worcester 8, Mass......... . . . 3064-3065
Eitel-McCullough, Inc.
798 San Mateo Ave.
San Bruno, Calif.
2409-2412

AGA Division
Elastic Stop Nut Corp. of America 1027 Newark Ave
Elizabeth 3, N. J. 2242
ELCO Corp.
"M" St. below Erie Ave.
Philadelphia 24, Pa............. . 2234

Eldico Electronics
Div. Radio Engineering Labs., Inc. 29-01 Borden Ave
Long Island City 1, N. Y........ 1710

\section*{Electralab Incorporated}

Industrial Center
Needham Heights 94, Mass. . . . 2001
Electra Mfg. Co.
4051 Broadway
Kansas City 11, Mo........3916-3918
Electric Regulator Corp.
Pearl St.
Norwalk, Conn.
Electrical Industries
Div. Philips Electronics Corp

691 Central Ave.
Murray Hill, N. J
2526-2528
The Electric Auto-Lite Co.
Champlain Street
Toledo 1, Ohio
Electrical \& Physical Instrument Corp.
42-19 27th St
Long Island City 1, N. Y,........ 3240
Electro Devices Co., Inc.
580 Main St
Wilmington, Mass.
Electro-Flex Heat, Inc.
83 Woodbine St
Hartford 6, Conn
Electro Impulse Laboratory, Inc.
208 River St.
Red Bank, N. J3316

Electro Instruments, Inc.
3794 Rosecrans St.
San Diego 10, Calif.
Electro-Measurements, Inc.
7524 S. W. Macadam Ave.
Portland 1, Ore..............3010-3011
Electro-Mechanical Instrument Co
8 th and Chestnut Sts.
Perkasie, Penn.
3225
Electro-Mec Laboratory, Inc.
47-51 33rd St.
Long Island City 1, N. Y........ . 2713
Electro-Pulse, Inc.
11861 Teale St.
Culver City, Calif...........3611-3613

\section*{EFCON... measure of performance in miniature capacitors}

There can be only one rule - one measure of EFCON
capacitor performance - CLOSE TOLERANCE PERFORMANCE. Consider EFCON'S proven advantages:
- low dialectric absorption
- negative temperature coefficient in the order of 100 PPM/C
- the lowest dissipation factor of any film capacitors
- tested DC voltage of at least \(200 \%\) of rated voltage at \(25^{\circ} \mathrm{C}\).

Efcon Polystyrene, Mylar and Teflon capacitors are available in tubes from .001 to 2 mfds . Hermetically sealed rectangular containers are available up to 10 mfds . in tolerances of closer than \(\pm 1 \%\).
Specify EFCON for precision applications, and you specify the standard for the electronics industry. Send for applications bulletin.

\section*{ELECTRONIC FABRICATORS, INC.}

682 BROADWAY, NEW YORK 12, N. Y.
TELEPHONE: SPring 7.4900

STYLE C

styile D

STYLE V

STYLE W

STYLE Y

STYLE Z

Visit our exhibit at Studio M, Barbizon Plaza, 106 Central Park South, after 5 P. M. during the IRE show CIRCLE 272 READERS SERVICE CARD

Computer-Controls - Components
Design-Development-Marufacturing
You can be assured of ideal working conditions at well located Librascope. Why? Because of the physical plant: air-conditioned, ultra-modern; the location: at the edge of the foothills; near Los Angeles, Hollywood and the pleasant residential family areas of Burbank, Glendale, Pasadena
A company with highest professional and technical standards. If you are an M.E. or E.E., mathematician or physicist, interested in Analog or Digital Computers. Logical Design Anstrumentation - Servo Mechanisms e Electro-mechanical - Systems - Trvited to investigate the opportunities at Librascope which Mary Equipment, you're Anniversary-a sound, stable organization growing with automation. Write Glen Seltzer, Employment Manager.

> LIBRASCOPE,
> I NCORPORATED 808 Western Ave.
> Giendale, Calif.

LIBRASCOPE uses the engineering proiect team

Electro-Snap Switch \& Mfg. Co.
4218-30 West Lake St.
Chicago 24, Ill.

\section*{Electro Tec Corp.}

10 Romanelli Ave
So. Hackensack, N. J.......1216-1220

\section*{Electro Voice, Inc. \\ Cecil \& Carroll Sts \\ Buchanan, Mich. \\ 1915-1917 \\ Electronic Advertiser \\ 1110 F. St., N. W. \\ Washington 4, D. C............... . 4056 \\ Electronic Applications \\ 194 Richmond Hill Ave. \\ Stamford, Conn. \\ 1900}

Electronic Associates, Inc.
Long Branch \& Naberal Aves.
Long Branch, N. J. 1202-1204
1206-1208
Electronic Industries Tele-Tech.
Chestnut \& 56th Sts.
Philadelphia 39, Pa.4201-4203
Electronic Instrument Co., Inc.
33-00 Northern Blvd.
Long Island City 1, N. Y......... 3407
Electronic Measurements Co., Inc.
Lewis St. \& Maple Ave. Eatontown.. N. J........... 3837 \& 3839

Electronic Mechanics, Inc.
101 Clifton Blvd.
Clifton, N. J.
Electronic Mechanisms, Inc.
Route 9
Haddam, Conn
.1615
Electronic Periodicals, Inc.
2775 So. Moreland Blvd.
Cleveland 20 . Ohio............. 4501
Electronic Research Assoc., Inc.
Industrial Village
Cedar Grove, N. J.
.2705
Electronic Tube Corp.
1200 E. Mermaid Lane
Chestnut Hill
Philadelphia 18, Pa.
3112-3113
Electronics Magazine
McGraw-Hill Publishing Co.
330 W .42 nd St.
New York 36, N. Y.
4401-4403
Elgin Metalformers Corp.
630 Congdon Ave.
Elgin, Ill.
1229-1231
Elgin National Watch Co.
107 National St.
Elgin, Ill.
2426
Emerson \& Cuming, Inc.
869 Washington St.
Canton Mass . 1822

Empire Devices Products Corp.
37 Prospect St.
Amsterdam, N. Y
3818-3820
Empire Precision Metal Parts Inc.
574 President St.
Brooklyn 15, N. Y .4040

Engelhard Industries, Inc.
Baker Platinum Div.
113 Astor St.
Newark 2, N. J
. 2112

*TRANSLATION: You Can't Beat The Bendix "Supermarket"

Our "supermarket" of rotating components offers a larger variety of high. precision, low-inertia servo motors, rate generators and servo motor generators than any other single source. Bendix units are available in frame sizes \(5,8,10,11\), 15,20 and 28 ; they meet or exceed practically any applicable specification and include both corrosion-resistant and high-temperature models. Volume-production prices. Immediate delivery in many cases. Why not find out about our "supermarket" scrvice!
FEATURING
CENTER-TAPPED CONTROL WINDINGS

for use in transistor circuits and for either parallel or series operation. Reduce size andf weight of transistorized packages by eliminating coupling transformers. Standard models, or will wind to meet your specific requirements.

\section*{Eclipse-Pioneer Bendif
Division \\ Teterboro, N. J.}

District Offices: Burbank and San Francisco, Calif.; Seattle, Wash.: Dayton, Ohio; and Washington, D. C. Export Sales \& Service: Bendix International

Division, 205 E. 42nd St., New York 17, N. Y.
CIRCLE 273 READERS SERVICE CARD

Engelhard Industires, Inc.
D. E. Makepeace Div.

Pine \& Dunham Sts.
Attleboro, Mass.
Engineered Electronics Co.
506 East 1st St.
Santa Ana, Calif.
3947
Environmental Equipment Co.
369 Linden 5 St.
Brooklyn 27, N. Y.
.1718
Epco Products, Inc.
2500 Atlantic Ave.
Brooklyn 7, N. Y...
.2243

\section*{Epsco, Inc.}

Components Division
108 Cummington St.
Bosto:1 15, Mass. .2120

Era Electric Corp.
67 East Centre St.
Nutley, N. J.
.4041
The Ericsson Corp.
100 Park Ave.
New York 17, N. Y.
.2431
Essex Wire Corp., R-B-M Div.
1601 Wall St.
Fort Wayne 6, Ind.
. 2525
Eugene Engineering Co., Inc.
1217 Hyde Park Ave.
Hyde Park, Mass.
.4525

\section*{F}

F-R Machine Works, Inc.
Electronics \& X-Ray Div.
26-12 Borough Place
Woodside 77, N. Y..........3715-3717
Fairchild Camera \& Instrument Corp.
Robbins Lane
Syosset, L. I., N. Y. \(\qquad\) \(.3505-3507\)
Fairchild Controls Corp.
Components Div.
225 Park Ave.
Hicksville, L. I., N. Y........2702-2704
Fairchild Publications, Inc.
7 E. 12th St.
New York 4, N. Y................... 4024
Falstrom Co.
Falstrom Court
Passaic, N. J.
1116
Fansteel Metallurgical Corp.
North Chicago, Ill....... \(4021 \& 4022\)
Farwell Metal Fabricating Div.
75 W. Fairfield Ave.
St. Paul 7, Minn.
.4236
Federal Shock Mount Corp.
1060 Washington Ave.
New York 56, N. Y.
2806
Federal Tool Engineering Co.
1384 Pompton Ave.
Cedar Grove, N. J.
Feedback Controls, Inc.
99 Main St.
Waitham, Mass.
G. Feisenthal \& Sons, Inc.

342 Madison Ave.
New York 17, N. Y.
Fenwal, Inc.
Framingham, Mass.
.3001

Interelectronics Interverter solid-state thyra-tron-like elements and mognetic components convert DC to any number of voltage regulated or controlled frequency AC or filtered DC oulputs from 1 to 1800 watts. light weight, compact, \(90 \%\) or better conversion efficiency.

Ulita-reliable in operafion, no moving ports, unhormed by shorting output or reversing input polority. Complies with MIL specs for shock, acceleration, vibration, temperature, RF noise.

Now in use in major missiles, powering telemetering transmitters, radar beacons, electronic equipment. Single and polyphase AC output units now power airborne and marine missile gyros, synchros, servos, magnetic amplifiers.

Interelectronics - firs and most experienced in the DC input solid-state power supply field, produces its own solid-state gating elements, all magnetic components, has the most complete facilities and know-how-has designed and delivered more working KVA than any other firm!

For complete engineering data write Interelectronics today, or call LUdiow 4-6200 in N. Y.

\section*{INTERELECTRONICS CORPDRATIDN}

2432 GR. CONCOURSE, N. Y. 58, N. Y. CIRCLE 274 READERS SERVICE CARD

\section*{CUT TOOLING COSTS!}

Over 3,000 high precision tools and dies available to reduce your initial tooling time and costs.
in your own plant.

A complete service in our plant
means prompl service to your plant.
Call on us for free consulfation and quotations.
ZELL PRODUCTS CORP.
279 Maín Street, Norwalk, Conn.
SEE US AT BOOTH \#4045 I. R. E. SHOW CIRCLE 275 READERS SERVICE CARD

\section*{TELEPHONE AND TELEGRAPH EQUIPMENT}

Radio Engineering Products is currently producing a number of types of equipment, electrically and mechanically interchangeable with standard Bell System apparatus.

\section*{CARRIER-TELEPHONE EQUIPMENT}

C5 Carrier-Telephone Terminal (J68756). A kit for adding a fourth toll-grade channel to existing C systems is available. - Cl Carrier-Telephone Repeater (J68757) • 121A C Carrier Line Filter - H Carrier Line Filter (X66217C).

\section*{CARRIER-TELEGRAPH EQUIPMENT}

40C1 Carrier-Telegraph Channel Terminal (J70047C) - 140 A 1 Carrier Supply (J70036A1, etc.) - 40ACl Carrier-Telegraph Terminal.

\section*{VOICE-FREQUENCY EQUIPMENT}

V1 Telephone Repeałer (J68368F) • Power Supply (J68638AI) • V1 Amplifiers (J68635E2 and J68635A2) • V3 Amplifier (J68649A) • V-F Ringers (J68602, etc.) • Four Wire Terminating Set (J68625G1) - 1C Volume Limiter (J68736C).

\section*{D-C TELEGRAPH EQUIPMENT}

16B1 Telegraph Repeater (J70037B) • 10E1 Telegraph Repeater (J70021A) • 128B2 Teletypewriter Subscriber Set (J70027A).

\section*{TEST EQUIPMENT}

2A Toll Test Unit (X63699A) - 12B, 13A, 30A (J64030A) and 32A (J64032A) Transmission Measuring Sets - 111A2 Relay Test Panel (J66118E) - 118C2 Telegraph Transmission Measuring Set (J70069K) - 163A2 Test Unit (J70045B) • 163Cl Test Unit (J70045D).

\section*{COMPONENTS AND ACCESSORIES}

255A and 209FG Polar Relays - Repeating and Retard Coils, several types - 184 185, 230A and 230B Jack Mountings.

\section*{RADIO ENGINEERING PRODUCTS 1080 UNIVERSITY ST., MONTREAL TELEPHONE \\ UNiversity 6-6887 \\ 3, CANADA CABLES \\ RADENPRO, MONTREAL}

Ferris Instrument Co.
110 Cornelia St.
Boonton, N. J.
Ferroxcube Corp. of America
235 E. Bridge St.
Saugerties, N. Y.
Filmohm Corp.
48 West 25 th St.
New York 10, N. Y

\section*{Filtors, Inc.}

30 Sagamore Hill Dr.
Port Washington, N. Y.......... 2812
Filtron Co., Inc.
131-15 Fowler Ave.
Flushing 55, L. I., N. Y..... 1502-1504
John Fluke Mig. Co., Inc.
1111 W. Nickerson St.
Seattle 99, Wash. 3413

Ford Instrument Co.
Div. of Sperry Rand Corp.

31-10 Thomson Ave.
Long Island City 1, N. Y......... 1101
1102, 1103
The Formica Corp.
4614 Spring Grove Ave.
Cincinnati 32 , Ohio...
.4404-4406
Foto-Video Laboratories, Inc.
36 Commerce Road
Cedar Grove, N. J.
Franklin Electronics Inc.
East Fourth St.
Bridgeport, Pa.
3053
Freed Transformer Co., Inc.
1718-36 Weirfield St.
Brooklyn 27, N. Y.
2721, 2723
Furane Plastics Inc.
4516 Brazil St.
Los Angeles 39, Calif. 4007

\section*{G}

G-M Laboratories, Inc.
4300 N. Knox Ave.
Chicago 41, Illinois.
G-L Electronics Co., Inc.
2921 Admiral Wilson Blvd.
Camden 5, N. J. .3948

GPS Instrument Co., Inc.
180 Needham St.
Newton Highlands 64, Mass...... 1413
GOE Engineering Co.
219 So. Mednik Ave., P.O. Box 22004
Los Angeles 22, Calif..
.3838
Gabriel Electronics Div.
The Gabriel Company
135 Crescent Rd.
Needham Heights 94, Mass. 2917-2918
The Gamewell Co.
Potentiometer Div.
1238 Chestnut St.
Newton Upper Falls. 64, Mass... 2339
Gardner-Denver Company
Quincy, 111 .
4128-4130
The Garrett Corp.
AiResearch Mfg. Divs.
9851-9951 Sepulveda Blvd.
Los Angeles 45, Calif............ M-4

Gates Radio Co.
123 Hampshire St
Quincy, Ill. 1306-1308

General Bronze Corp.
711 Stewart Ave
Garden City, N. Y................ 1109
General Cement Manufacturing Co. 400 S . Wyman St.
Rockford, Ill. 4238

General Ceramics Corp.
Crows Mill Rd.
Keasbey, N. J
General Communication Co.
681 Beacon St.
Boston 15, Mass
General Components, Inc.
225-229 E. 144th St.
New York 51, N. Y.4048

General Controls Co.
801 Allen Ave.
Glendale 1, Calif.3103

General Dynamics Corp.
Electric Boat Division
Groton, Conn.
General Electric Co.
Apparatus Sales Div.
1 River Rd., Bldg. No. 14 Schenectady 5 , N Y

General Electronic Labs., Inc.
18 Ames St.
Cambridge 42, Mass.......3003, 3004

\section*{Industrial Division}

General Findings \& Supply Co.
Leach \& Garner Bldg.
Attleboro, Mass.
General Instrument Corp.
Automatic Mfg. Div.
65 Gouverneur St.
Newark 4, N. J.

\section*{Micamold Division}

General Instrument Corp.
1087 Flushing Ave.
Brooklyn 37, N. Y..
Radio Receptor Subsid.
General Instrument Corp.
240 Wythe Ave.
Brooklyn 1, N. Y
.2211-2213
General Magnetic Corp.
10001 Erwin Ave.
Detroit 34, Mich.
Deco Radio Div.
General Motors Corp.
700 E. Firming St.
Kokomo Ind
General Precision Lab., Inc.
63 Bedford Rd.
Pleasantville, N. Y. 1505
General Radio Co.
275 Massachusetts Ave. Cambridge 39, Mass..

General Resistance, Inc.
577 E. 156th St
New York 55, N. Y. 3950
General Transistor Corp.
87-11 130th St.
Richmond Hill, N. Y. 3828
The Gerber Scientific Instrument Co.
162 State St.
Hartford 1, Conn.
 \(\star\) A stable finish that protects seals seginst corrosive MOST STRINGENT TRANSISTOR ETCH TESTS DEVISED. \# high He resistance to mechanical and thermal shock.
Meeting the ever-increasing standards of perfection established by the electronics industry is a chat. lenge admirably met by Rel's highly skilled engin. * Excellent electrical properties.
\(\star\) Easy weldability and solderability.

\section*{ALL FACILITIES UNDER ONE ROOF} neers. They ore able to exercise unusually rigid quality controls becouse all production operations ore corried out in Rel's own completely equipped, ultra modern plant.
SPECIALISTS IN STAMPING AND DRAWING KOVAR - RODAR - THERLO - FERNICO AND OTHER ALLOYS

\section*{- Complete tool room facilities.}
- 65 Power Presses (to 50 tons).
- Advanced plating facilities for Nickel, Gold, Tin, case. mum Copper, silver, etc.
- Complete glass facilities.
- Mass Spectrometer leak testing.

ELL engineers control every process every step of the way, assuring uniform quality and performance. REPRESENTATIVES: Your Inquiries invited! Seal Engineers: excellent position open, write:

\section*{GAL PRODUCTS CORP.} 279 Main Street, Norwalk, Conn. The completeness of our facilities assures the completeness of your satisfaction! CIRCLE 277 READERS SERVICE CARD SEE US AT BOOTH \#4045 I.R.E. SHOW

\section*{Now you can solder as easy zen \\ SUPER-PENCIL IRONS*}

as you write!HEXAGON INSTRUMENT SOLDERING IRONS
-for fast soldering and long life on constant duty
Because of new efficient design, these tiny tips out-perform irons with larger tips and higher wattages. HEXACON offers a new standard in soldering iron efficiency for every conceivable need in the soldering of miniature assemblies.

Send for new circular No. 127 giving more details and comparative competitive performante data.

No. 25 S 25w. \(1 / 8^{\prime \prime}\) tip \(\$ 6.00\) No. 26 S 30w. \(3 / 16^{\prime \prime}\) tip \(\$ 6.00\)

BANTAMWEIGHT HATCHET IRONS*

No. P-25A 25w. \(1 / 8^{\prime \prime}\) tip \(\$ 6.00\)
No. P-26 30w. 3/16" tip \(\$ 6.00\)
*Also available in higher wattages

HEXAGON ELECTRIC COMPANY
130 West Clay Ave., Rosella Park, New Jersey

\section*{HIGH POWER at TRANSISTOR VOLTAGES}

Model DV 60-2 Transistor POWER SUPPLY

Thorough and versatile! Efficiently powers all transisfor circuits. Unparallefed performance and price.
- AC OPERATED, delivers 0-60 volts DC at currents up to 1030 milliamperes.
- SUPERIOR to conventional DC power supplies specified for vacuum tube high voltage range and offering erratic reactions when used at low fransisfor voltages.
- CONTINUOUSLY VARIABLE, equivalent to obattery. High power. - RIPPLE SURPRESSION below .05\% at rated current, by two section choke input filter.
- COMPLETE CONTROLS, front panel switch-iype magnetie circuit breaker, neon pilot light, Powerstat output contrcl, multirange voltmeter and milliameter and outpuł binding posts. Meters accurate to \(2 \%\), readable at distance. Height \(103 /{ }^{\circ}\). Width 7'. Depth \(9^{1 / 4 ", 21 ~ l b s . ~}\)

> WRITE FOR CATALOG OF ENTIRE LUNE MODEL RECTIFIER

> CORPORATION 1065 Utica Ave Brooklyn, New York

CIRCLE 279 READERS SERVICE CARD

Gertsch Products; Inc.
3211 So. La Cienega Blvd
Los Angeles 16, Calif...... . 3701-3703
G. M. Giannini \& Co., Inc.

918 E. Green St
Pasadena 1, Calif
.3509-3511
Glasseal Products Co., Inc.
1111 E. Elizabeth Ave.
Linden, N. J
.3945
Glass-Tite Industries, Inc.
88 Spectacle St.
Cranston 10, R. I.
.4122
Globe Industries, Inc.
1784 Stanley Ave.
Dayton 4, Ohio.
2844

\section*{Goldsman Co.}

1325-27 No. Lawrence St.
Philadelphia 22, Pa.
John Gombos Co., Inc.
111 Montgomery Ave.
Irvington 11, N. J. .2435, 2437

Good-All Electric Mfg. Co.
112 West 1st St.
Ogallala, Neb.
2236
B. F. Goodrich Sponge Products Div. B. F. Goodrich Co.

469 Derby Place
Shelton, Conn.
3232
Gordos Corporation
250 Glenwood Ave.
Bloomfield, N. J.3951

Gorham Mfg. Co.
333 Adelaide Ave.
Providence 7, R. I. .3819

Gould-National Batteries, Nicad Div. Inc.
172 Pleasant St.
Easthampton, Mass.
1821
Grant Pully \& Hardware Corp.
High Street
West Nyack, N. Y................. 1118
Grayhill, Inc.
561 Hillgrove Ave.
La Grange. Ill. 2317

Great Eastern Metal Products Co.
Div, of GEMP Manufacturing Corp. 22 Woodworth Ave.
Yonkers 2, N. Y.
Green Instrument Co., Inc.
385 Putnam Ave.
Cambridge 39, Mass
The Greenleaf Mfg. Co.
7814 Maplewood Industrial Court
St. Louis 17, Mo............ 2338, 2340
Gremar Manufacturing Co., Inc.
7 North Ave.
Wakefield, Mass.
Gries Reproducer Corp.
125 Beechwood Ave.
New Rochelle, N. Y. \(\qquad\)
Grimson Color, Inc.
381 Fourth Ave.
New York 16, N. Y. 4242
Guardian Electric Mfg. Co.
1621 West Walnut St.
Chicago 12, Ill....................... 1911
2502, 2504
Gudebrod Bros. Silk Co., Inc.
225 W. 34th St.
New York 1, N. Y................... 4025

\section*{HIGH RELIABILITY}

\section*{DC/AC CHOPPERS}
- ADVANCED DESIGN
- HIGH STABILITY
- LONG-LIFE

New and advanced designs by Collins Electronics Manufacturing Corporation now make possible a series of precision miniature choppers unique in reliability, stability of operating characteristics and long service life.

This new series of choppers is manufactured in S.P.D.T. types in both break-before-make and make-before-break models. Make-before-break models are unique in that the force developed by the vibrating element is exerted to hold the working contacts closed rather than to hold the non-working contacts open as in conventional designs. This results in firm contact closure, high contact pressure and imperviousness to disturbances caused by shock and vibration.

Write today for detailed brochure listing all types available with applicable technical information.

SEE BOOTH 3836 IRE SHOW

\section*{Golutive}

ELECTRONICS MANUFACTURING CORP.
Stevensville, Maryland

The Gudeman Co.
340 W. Huron St.
Chicago 10. Ill.
Gulton Industries, Inc.
212 Durham Ave.
Metuchen, N. J.

\section*{H}

Halliburton, Inc., Manufacturing Div.

4724 So. Boyle Ave.
Los Angeles 58, Calif.4501-4503
Hardwick, Hindle, Inc.
40 Herman St.
Newark 5, N. J.
Harrison Laboratories. Inc.
45 Industrial Rd.
Berkeley Heights, N. J. 1910

Harvey-Wells Electronics, Inc.
5168 Washington St.
West Roxbury, Mass.
Hastings-Raydist, Inc.
Engineering \& Research Div.
Super H'way Pine Ave.
Hampton, Va.
Haveg Industries, Inc.
900 Greenbank Rd
Wilmington 8, Delaware....... 4216
Hayden Publishing Co.
830 3rd Ave
New York 22, N. Y. 4101-4102
A. W. Haydon Co.

232 Elm St.
Waterbury 20, Conn.......2701-2703
Haydon Switch, Inc.
536 So. Leonard St.
Waterbury 20, Conn.
Heinmann Electric Co.
610 Plum St
Trenton 2, N. J
3811,3813
Helipot Corp.
Div. of Beckman Instruments, Inc Newport Beach, Calif.2602-2606

Heminway \& Bartlett Mfg. Co.
500 Fifth Ave.
New York 36, N. Y................. 4105
Hermetic Seal Corp.
2937 South Sixth St.
Newark 7, N. J. 3936

Hetherington, Inc.
1420 Delmar Drive
Folecroft, Pa.
2337
Hewlett-Packard Co.
275 Page Mill Rd.
Palo Alto, Calif.
2509-2515
Hexacon Electric Co.
161 W. Clay Ave
Roselle Park, N. J.
Hickok Elec. Instrument Co.
10514 Dupont Ave.
Cleveland 8, Ohio
Hi-G Inc.
Bradley Field
Windsor Locks, Conn............. 2114
Hill Electronic Engr. \& Mfg. Co.
300 N . Chestnut St.
Mechanicsburg, Pa.

\section*{precision timers by... STANOARD}

Industry's preferred "instrument of a thousand uses". Accurate, rugged, versatile STANDARD Elapsed Time Indicators. Synchronous motor drive. Electric clutch controlled by manual or automatic switch or output of electronic tubes. Manual or electric zero reset. Units for flush panel mounting or portable use.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{l}
Model
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c}
Scale \\
Divisions
\end{tabular}} & Totalizes & \multicolumn{1}{c|}{ Accuracy } \\
\hline \(5-100\) & \(1 / 5 \mathrm{sec}\). & 6000 sec. & \(\pm .1 \mathrm{sec}\). \\
\hline \(\mathrm{S}-60\) & \(1 / 5 \mathrm{sec}\). & 60 min. & \(\pm .1 \mathrm{sec}\). \\
\hline\(S M-60\) & \(1 / 100 \mathrm{~min}\). & 60 min. & \(\pm .002 \mathrm{~min}\). \\
\hline \(\mathrm{S}-10\) & \(1 / 10 \mathrm{sec}\). & 1000 sec. & \(\pm .02 \mathrm{sec}\). \\
\hline \(\mathrm{S}-6\) & \(1 / 1000 \mathrm{~min}\). & 10 min. & \(\pm .0002 \mathrm{~min}\). \\
\hline \(\mathrm{S}-1\) & \(1 / 100 \mathrm{sec}\). & 60 sec. & \(\pm .01 \mathrm{sec}\). \\
\hline MST & \(1 / 1000 \mathrm{sec}\). & .360 sec. & \(\pm .001 \mathrm{sec}\). \\
\hline MST-500 & \(1 / 1000 \mathrm{sec}\). & 30 sec. & \(\pm .002 \mathrm{sec}\). \\
\hline
\end{tabular}

Request Bulletin No. 198.

\section*{THE STANDARD ELECTRIC TIME COMPANY} 89 LOGAN STREET - SPRINGFIELD, MASSACHUSETTS CIRCLE 281 READERS SERVICE CARD

\section*{POWER TRANS/STOR} GURVE TRACERS

\section*{FOR RESEARCH, CIRCUIT DEVELOPMENT AND QUALITY CONTROL OF} TRANSISTORS.
- High accuracy (\(\pm \mathbf{2 . 5 \%}\))
- Dynamic tracing of entire family of curves simultaneously, including-
- Internally generated calibration axes displayed at all times
- Retrace not blanked; anomalies clearly seen
- For all types of transistors and power transistors. Permits rapid determination of parameters. For selecting, matching and detecting anomalies and rejects.

Model 300A - POWER-Transistor Curve Tracer Bulletin S-667
Model 200A - Transistor Curve Tracer Bulletin 5-393

MODEL 300A MAGNETIC AMPLIFIERS INC.

632 IINTON AVENUE - NEW YORK 55, N. Y. - CYPRESS 2.6610 West Coost Division
136 WASHINGTON ST. • EL SEGUNDO, CAL. - OREGON 8.2665

CIRCLE 283 READERS SERVICE CARD

\section*{SOLID STATE PHYSICIST}
B.S., M.S. or Ph.D. in Physics. To do research into the properties and applications of vacuum evaporated conducting, insulating, semiconducting, and ferromagnetic films.

\section*{ELECTRONIC ENGINEER}
M.S. or Ph.D. in Mathematics or Electrical Network Theory. Actual experience in building and making prototype electronic apparatus work. Must understand the fundamentals of electrical network theory, mathematics of complex variables, transforms (La Place and/or Fourier), and the use of function theory.

\section*{APPLICATIONS ENGINEER}
B. S. in Electrical Engineering having theoretical and practical electronic background. A minimum of three years of industrial design and development experience, plus a background knowledge of transistor circuit design. Will design reliable circuits for oscillators, amplifiers, flip-flops, ect. Will act in the capacity of a consultant on customer device and circuit problems.

\section*{RESEARCH ENGINEER}
B.S. or M.S. in Electrical Enginecring or Physics. Experienced in UHF or VHF circuits and measurements, to initiate and conduct a progran involving design of high frequency transistor test equipment. Must also be familiar with methods of compiling and interpreting data.

\section*{ELECTRONIC ENGINEER}
B.S., M.S. in E.E. Three or more years experience with Microwave, Waveguide, Circuit, and Power Design.

\section*{TRANSISTOR DEVELOPMENT PHYSICIST}
B.S., M.S. or Ph.D. in Physics. Two or more years' experience in the field of transistor fabrication procedures. Will work on the development of improved processes for fabrication of fusion silicon transistors and evaluating these processes for improvement in electrical characteristics. This position requires a thorough knowledge of transistor device theory and some experience in actual fabrication techniques within the present state of the art

For all of the above assignments direct inquiries to \(W\). W. Coupon, International Airport Station, Los Angeles 45, California.

\section*{Creating a}
with

Hitemp Wires, Inc.
1200 Shames Drive
Westbury, L. I., N. Y
4424
Hoffman Semiconductor Div.
Hoffman Electronics Corp.
930 Pitner Ave.
Evanston, Ill
Houghton Laboratories, Inc.
322 Houghton Ave.
Olean, N. Y
Harvey Hubbell, Inc.
State St. \& Bostwick Ave.
Bridgeport 2, Conn.
.3832
Hudson Tool \& Die Co., Inc.
18 Malvern St.
Newark 5, N. J. 4408-4410
Huggins Laboratories, Inc.
711 Hamilton Ave.
Menlo Park, Calif.
3927-3929
Hughes Aircraft Co.
Florence \& Teale Sts.
Culver City, Calif.
2801-2805

Hull Corporation
Hatboro, Pa.
Hupp Electronics Co.
743 Circle Ave.
Forest Parks, Ill. 3935

Hycon Eastern, Inc.
75 Cambridge Parkway
Cambridge 42, Mass.
3038-3039

Illinois Condenser Co.
1616 N. Throop St.
Chicago 22, Ill.
Licon Switch \& Control Div.
Illinois Tool Works
2501 No. Keeler Ave
Chicago 39, Ill.
3842
Fastex Div.
Illinois Tool Works
195 Algonquin Rd.
Des Plaines, Ill.
4233

The Indiana Steel Products Co. Valparaiso, Ind.

2432-2434
Induction Motors Corp.
570 Main St.
Westbury, L. I., N. Y
2229
Industrial Hardware Mfg. Company, Inc.
109 Prince St.
New York 12, N. Y.
2715
Industrial Instruments, Inc.
89 Commerce Rd.
Cedar Grove, N
\(.3233-3235\)
Industrial Laboratories Pub. Co
141 E. 44 th St.
New York 17, N. Y.
4225
Industrial Products Co.
Div. of Amphenol Electronics
P. O. Box 148

Danbury, Conn.
2517-2519

\section*{Industrial Test Equipment Co.}

55 E. llth St.
New York 3, N. Y
Industrial Timer Corp.
1407 McCarter Highway
Newark 4, N. J.

\section*{HIGH RETSTANCE MEGOHMMETER}

* Up to \(50,000,000\) megohms!
* Test voltage variable \(100-600\) vdc!
* Uncrowded \(41 / 2^{\prime \prime}\) meter scale!
* Automatic capacitor discharge!
* Safe test terminals!
* Only \(\$ 365\) !

Here's the only high resistance megohmmeter selling at \(\$ 365\) with features not found on instruments selling for twice as much. Measuring range up to \(50,000,000\) megohms to meet the requirements of recent advances in insulating materials. The L-7 Megohmmeter is housed in a hardwood case with recessed vertical panel and convenient carrying handle.

Industrial Instruments has a wide selection of megohmmeters for both laboratory and high-speed production testing. Choose the model that best suits your needs from this table of specifications.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Model} & \multirow[t]{2}{*}{\begin{tabular}{l}
IEST \\
Voltage
\end{tabular}} & \multicolumn{2}{|r|}{RANGE} & \multirow[t]{2}{*}{POWER Consumption} & \multirow[b]{2}{*}{PRICE} \\
\hline & & Low & \(\mathrm{H} / \mathrm{gh}\) & & \\
\hline L.2A & 200 fixed & 1 meg . & 100,000 meg. & 40 watts & \$200 \\
\hline 1.4A & \[
\begin{aligned}
& 200 \text { and } \\
& 500 \text { fixed }
\end{aligned}
\] & \[
\begin{aligned}
& 1 \text { meg. } \\
& 2.5 \text { meg. }
\end{aligned}
\] & \[
\begin{aligned}
& 100.000 \mathrm{meg} . \\
& 250.000 \mathrm{meg} .
\end{aligned}
\] & 52 watts & \$230 \\
\hline 1.68 & \[
\begin{aligned}
& 100 \text { to } \\
& 600^{\circ}
\end{aligned}
\] & 1 meg & 100,000 meg & 82 watts & \$295 \\
\hline (-) & \[
\left.\right|_{100 \text { to }} ^{600^{\circ}}
\] & 1 meg & \(5 \times 10^{\prime \prime}\) ohms & 75 watts & \$365 \\
\hline
\end{tabular}
-Continuously variable, Duilt-in voltmeter for accurate setting.

Write today for complete catalog of Electrical Test Equipment manufactured by ...
 CIRCLE 284 READERS SERVICE CARD
ELECTRONICS engineering edition - March 14, 1958
Inso Products, Ltd.
404 5th Ave 67 Mechanic St
Attleboro, Mass

845 Ridge Ave
Pittsburgh 12, Pa.

244 Bergen Blvd.
Little Falls, N. J. Corp.
590 Madison Ave

801 Sixth Ave
New York 1, N. Y. Corp.

Burbank, Calif.
P.O. Box 2954

67 Wall St
New York 5, N.

1909 Park Ave. Works, Inc.
81 Dorsa Ave
Livingston, N. J

401 N. Broad St.
graph Co.
67 Broad St.

441 Chapel St

6101 16th Ave.

Operateyour...
- tape recorider
- P. A. system
- portable TV set - hand tools

FROM YOUR CAR, Boat or Plane!
with
New York 18, N. Y. 4054
Instrument Development Labs., Inc.

Instruments for Industry, Inc.
150 Glen Cove Road
Mineola, L. I., N. Y.
.2830
Instruments Publishing Co., Inc.

Instrument Specialties Co., Inc.

International Business Machines

New York 22, N. Y........ 1225 \& 1227
International Eastern Co.
.4430
International Electronic Research
145 W. Magnolia Blvd. .3704

International Instruments, Inc.
New Haven 15, Conn. 2814
International Nickel Co., Inc.
\(\qquad\) 2722-2728
International Physical Index, Inc.
New York 35, N. Y. , 4534

International Pump \& Machine

International Radiant Corp.
Div. of Rubel Corp.

111 New York Ave.
Westbury, L. I., N. Y.
1731
International Rectifier Corp.
1521 E. Grand Ave.
El Segundo, Calif..
.3915-391\%
International Resistance Co.
Philadelphia 8, Pa.
2821-2825
International Telephone \& Tele-

New York 4, N. Y.............2510-2625

J-B-T Instruments, Inc.
New Haven 8, Conn............... 2734
JFD Electronics Corp.
Brooklyn 4, N. Y..................... . 2333

FOR CHANGING YOUR STORAGE BATTERY CURRENT TO
A.C. HOUSEHOLD ELECTRICITY ANYWHERE ... in your own CAR, Boat or Plane

OPERATES
- tape recorders
- DICTATING

MACHINES
- PUBUIC ADDRESS
SYSTEMS
- EIECTRIC SHAVERS
directly from your car!

MAKE YOUR CAR, BOAT OR PLANE "A ROLLING OFFICE:"

\section*{AIR universal}

Especially designed to change 6 or 12 volt D.C. to 110 volt A.C. 60 cycles. for...
\begin{tabular}{ll}
- EXECUTIVES & - POLICEMEN \\
- SALESMEN & - REPORTERS \\
- OUTDOOR MEN & - FIREMEN
\end{tabular}
- OUTDOOR MEN - FIREMEN
- PUBLIC OFFICIALS

MODELS 6U.RHG \((6\) volts) 125 to 150 watts. Shipping weight 27 lbs, tist price. \(\$ 89.95\)

DEALER NET PRICE … \(\$ 59.97\) 12 U-RHG (12 volts) 150 to 175 walls. Shipping weight 27 lbs. List price. 89.95

DEALER NET PRICE \(\$ 59.97\) Write for liferature on other Sizes and Models of ATR INVERTERS, priced as low as \(\$ 9.95\) list.
SEE YOUR JOBBER OR WRIRE FACTORY
VNEW MODELS \(V\) NEW DESIGNS \(\sqrt{ }\) NEW LITERATURE - "A" Baltery Eliminators - DC-AC Inverters. Auto Radio Vibrators

\section*{American Thievision \& Radio Co.}

Zuality Praduets Since 1931
SAINT PAUL I, MINNESOTA, U. S. A.
CIRCLE 285 READERS SERVICE CARD

CIRCLE 286 READERS SERVICE CARD

Augat Brothers have developed a new line of clips for the retention of transistors, crystals, diodes, etc.

Now available in all standard sizes, they are the answer to the engineers' layout problems in regards to shock and vibration. Made of either 1065 spring steel or 25 alloy beryllium copper to retain shape, a minimum of clamping action is lost in use.
If your requirements are not listed in our catalog, write us for information on clips made to your specifications.

\section*{}

James Vibrapowr Co.
4050 North Rockwell St.
Chicago 18, Ill..
.2100
Jennings Machine Corp.
3452 Ludlow Street
Philadelphia, Pa.
Jennings Radio Mfg. Corp.
970 McLaughlin Ave.
San Jose, Calif. 3802-3804

Jerrold Electronics Corp.
23 rd \& Chestnut Sts.
Philadelphia 3, Penna.
.3056
Johns-Manville Sales Corp.
Dutch Brand Division
7800 Woodlawn Ave.
Chicago 19, Ill.
.M-20
Jones \(\boldsymbol{\&}\) Lamson Machine Co.
Springfield, Vt. 403
M. C. Jones Electronics Co., Inc.

185 N. Main St.
Bristol, Conn.
.3709
Julie Research Laboratories
556 W. 168th St.
New York 32, N. Y.
.3840

The Kanthal Corp.
Amelia Place
Stamford, Conn. 4402
Kama Instrument Corp.
134 Herricks Rd.
Mineola, L. I., N. Y. 3021
Kay Electric Co.
14 Maple Ave.
Pine Brook, N. J............. .2608-2610
Keithley Instruments, Inc.
12415 Euclid Ave.
Cleveland 6, Ohio.
Kemtron Electron Products, Inc.
14 Prince Place
Newburyport, Mass.
.2712
D. S. Kennedy \& Co

155 King St.
Cohasset Mass
Kenyon Transformer Co., Inc.
840 Barry St
New York 59, N. Y. 2632
Kepco Laboratories
131-38 Sanford Avenue
Flushing 55, L. I., N. Y......2636-2638
Kester Solder Co.
4201 Wrightwood Ave.
Chicago 39, Ill.
.4221
Keystone Products Co.
904-6 23rd St.
Union City, N. J.................. . 2929
Kings Electronics Co., Inc.
40 Marbledale Rd.
Tuckahoe 7, N. Y............2222-2224
Kingsley Stamping Machine Co.
Aircraft Division
850 Cahuenga Blvd.
Hollywood 38, Calif
KIN TEL, Division of
Cohu Electronics, Inc.
5725 Kearny Villa Rd
San Diego 12, Calif.........3401-3405

Knight Electronics
210 S. Des Plaines
Chicago, Ill.

\section*{S}

The James Knights Co
101 E. Church St.
Sandwich, Ill.
.2708
Krengel Manufacturing Co., Inc.
227 Fulton St.
New York 7, N. Y
Krohn-Hite Corp.
580 Massachusetts Ave.
Cambridge 39, Mass... 3314

Kulka Electric Mfg., Co., Inc.
633 S. Fulton Ave.
Mt. Vernon, N. Y.. .2901

Kupfrian Mfg. Corp.
395 State St.
Binghamton, N. Y. \(\qquad\)
Kurman Electric Co., Inc.
191 Newel St.
Brooklyn 22, N. Y \(\qquad\)
Kuss Industries, Inc.
Tacony \& Lewis Sts.
Philadelphia 24, Pa.
\(L\)
Laboratory for Electronics, Inc.
75 Pitts St.
Boston 14, Mass. 3207-3209

Lambda Electronics Corp.
11-11 131 St.
College Point 56, N. Y.....2436, 2438
LaPointe Industries, Inc.
155 W. Main St.
Rockville, Conn
Larson Instrument Co.
24 Orchard St.
Tarrytown, N. Y. 3023
Lavoie Laboratories, Inc.
Matawan-Freehold Rd.
Morganville, N. J...........3242-3244
Lectrocon Co.
410 W. Chelten Ave.
Philadelphia, Pa.

\section*{LEL, Incorporated}

380 Oak St
Copiague, N. Y.
G. H. Leland, Inc.

123 Webster St.
Dayton 2. Ohio..................... . . 2310
Lepel High Frequency Labs., Inc. 54-18 37th Avenue
Woodside 77, L. I., N. Y.......... 1819
Levinthal Electronic Prods. Inc.
Stanford Industrial Park
Palo Alto, Calif.
1205

\section*{Librascope, Inc.}

808 Western Ave.
Glendale, Calif.
1501-1509
LIECO, Inc.
3610 Oceanside Road
Oceanside, L. I., N. Y3227

Line Electric Co.; Inc.
271 S. 6th St.
Newark 3, N. J.
Erik A. Lindgren \& Associates
4515 N. Ravenswood Avenue
Chicago 40, Ill.

Engineers: -
 available measured to parts per million - Low noise level - MIL R-93A or MIL R-9444 requirements met - Temperature-compensating Resistors available with variable temperature coefficients

\section*{GENERAL RESISTANCE INC.}

577 EAST 156th STREET, NEW YORK 55, N. Y.
CY 2-1500
CIRCLE 288 READERS SERVICE CARD

\section*{NEW FAST SERVIICE TOROIDS and ELECTRONIC TRANSFORMERS \\ UP TO SIX \\ MADE TO YOUR SPECIFICATIONS SHIPPED WITHIN ONE WEEK}

Visit our Hospitality Suite at the Waldorf during I.R.E. Show

\section*{NEW ENGLAND TRANSFORMER COMPANY SOMERVILLE, MASS.}

Canadian Representative
SAMUEL C. HOOKER (Canada) Lrd.
2425 Grand Boulevard, Montreal, Queber HUnter 8-8321

ELECTRONIC CORP. yes!

\section*{and WHEELER}
more than ever is a
DESIGN ENGINEER'S
best source
for practical engineering help and exceptional production facilities in the fields of:

Transformers and Reactors
Coils-Toroids
Delay Lines
IF and RF Components
Electronic Chassis Assemblies Wiring Harnesses
Electro-Mechanical and
Electrical Sub-Assemblies
Sound Powered Electric Telephones
WHEELER ELECTRONIC CORP.
Subsidiary of Sperry Rand Corporation 1101 East Aurora St., Waterbury 20, Conn.

\section*{隹友 \\ Show risitors}

You are cordially invited to visit our HOSPITALITY SUITE
af the St. Moritz Hotel, Central Park South

Ling Electronics, Inc.
9937 Jefferson Blvd.
Culver City, Calif.
1517-1519
Little Falls Alloys, Inc.
189 Caldwell Avenue
Paterson 1, N. J. 4015

Littelfuse, Inc.
1865 Miner St.
Des Plaines, Ill. . 2923

Litton Industries, Inc.
336 North Foothill Road
Beverly Hills, Calif.
1333, 1427-33, 1521, 1523
Lord Manufacturing Co.
1635 W. 12th St.
Erie 6, Pa. .2925

\section*{M}

MB Manufacturing Co., Inc.
1060 State St., P.O. Box 1825
New Haven 11, Conn......1723-1725
Machlett Laboratories, Inc.
1063 Hope St.
Springdale, Conn
. .2218-2220
Mack Electronics Division
Mack Trucks, Inc.
1000 S. 2nd St.
Plainfield, N. J..................1815-1817
MacLeod \& Hanopol, Inc.
10 Roland St.
Charlestown 29, Mass............. 3409
Magnatran, Inc.
248 Schuyler Ave., P.O. Box 211
Kearney, N. J..
.2116
The Magnavox Co.
2131 S. Bueter Rd.
Fort Wayne 4, Ind. .1715

Magnecraft Electric Co.

3352 W. Grand Ave.

Chicago 51, 111.
 .2342

\section*{Magnetic Amplifiers, Inc. \\ Affiliate of General Ceramics \\ 632 Tinton Ave.}

Bronx 55, N. Y................ . 1518-1520
Magnetic Metals Co.
Hayes Avenue at 21st St.
Camden 1, N. J.
1721
Magnetic Research Corp.
3160 W. E. Segundo Blvd.
Hawthorne, Calif. 3710

Magnetics, Inc.
Box 391
Butler, Pa. 2533 \& 3014
Magnetics Research Co.
255 Grove St.
White Plains, N. Y. 3944
O. J. Maigne Co.

321 Pearl St.
New York 38, N Y................ . . 4429
P. R. Mallory \& Co., Inc.

3029 E. Washington St.
Indianapolis 6, Ind..........2301-2303
Manson Laboratories, Inc.
207 Greenwich Ave.
Stamford, Conn.
.3231

\section*{Marconi Instruments Ltd. \\ 111 Cedar Lane \\ Englewood, N. J. 3315-3317}

\title{
AN INVITATION TO JOIN ORO
}

\author{
Pioneer In Operations Research
}

Operations Research is a young science, earning recognition rapidly as a significant aid to decision-making. It employs the services of mathematicians, physicists, economists, engineers, political scientists, psychologists, and others working on teams to synthesize all phases of a problem.

At ORO, a civilian and nongovernmental organization, you will become one of a team assigned to vital military problems in the area of tactics, strategy, logistics, weapons systems analysis and communications.

No other Operations Research organization has the broad experience of ORO. Founded in 1948 by Dr. Ellis A. Johnson, pioneer of U. S. Opsearch, ORO's research findings have influenced decisionmaking on the highest military levels.
ORO's professional atmosphere encourages those with initiative and imagination to broaden their scientific capabilities. For example, staff members are taught to "program" their own material for the Univac computer so that they can use its services at any time they so desire.

ORO starting salaries are competitive with those of industry and other private research organizations. Promotions are based solely on merit. The "fringe" benefits olfered are ahead of those given by many companies.

The cultural and historical features which attract visitors to Washington, D. C. are but a short drive from the pleasant Bethesda suburb in which ORO is located. Attractive homes and apartments are within walking distance and readily available in all price ranges. Schools are excellent.

For further information write:
Professional Appointments

\section*{OPERATIONS RESEARCH OFFICE}

\section*{The Johns Hopkins University}

6935 ARLINGTON ROAD BETHESDA14, MARYLAND

Marion Electrical Inst. Co
Grenier Field
Manchester, N. H
Markem Machine Co.
150 Congress St.
Keene, N. H.
The Martin Co.
Baltimore 3, Md .1727

Maurey Instrument Corp.
7924 S. Exchange Ave.
Chicago 17, Ill.
The W. L. Maxon Corp.
475 Tenth Ave.
New York 18, N. Y
\(1812 \& 1814\)
McCoy Electronics Co.
Mt. Holly Springs, Pa.2311

McDowell Electronics Inc.
105 Forrest Street
Metuchen, N. J.
McGraw Edison
T. A. Edison Ind., Inst. Div.

51 Lakeside Ave.
West Orange, N. J...........2305-2307
McGraw-Hill Book Co.
330 W . 42nd St.
New York 36, N. Y
McGraw-Hill Publishing Co., Inc.
330 West 42nd St.
New York 36, N. Y. .4401-4403

McLean Engineering Labs.
P.O. Box 228

Princeton, N. J.
McMillan Industrial Corp.
Brownville Ave
Ipswich, Mass.
3909
Measurements Corp.
Intervale Rd.
Boonton, N. J. 3501, 3503
Mepco, Inc.
35-37 Abbett Ave
Morristown, N. J. 2802-2804
Merck \& Co., Inc.
Chemical Division
Rahway, New Jersey 2006
Metal Fabricators Corp.
73 Pond Street
Waltham 54, Mass. .1214

Metal Textile Corp.
647 E. First Ave.
Roselle, N. J.4411

Metals \& Controls Corp.
34 Forest St.
Attleboro, Mass. 1226
Meter-Mix Corporation
626 Dorchester Ave.
South Boston 27, Mass.M-7
Microdot, Inc.
220 Pasadena Ave.
S. Pasadena, Calif

2101-2103
Micromech Mfg Corp.
Div. of Sanford Mfg. Corp.

1020 Commerce Ave.
Union, N. J. 4035

Microphase Corporation
P. O. Box 1166

1 Seneca Place
Greenwich, Conn.
 an Ultra-Sensitive electronic control

COMPACTROL is a thyratron amplifier with power relay, associated circuitry and 115 V a.c. power supply. It is self-contained and compactly packaged in a plastic case of high impact styrene.

INPUT - \(1 / 4\) microwatt to operate OUTPUT -1 to 3 poles, each 5 amps. at 250 volts a.c.

\section*{APPLICATIONS}
- Super-sensitive relay
- Temperature control
- Automation
- Time delay relay
- Touch control
- Photo-electric device
- Intruder alarm
- Safety device
- Sales promotional display

For Over Fifty Years the Leading Maker of High-Quality, Heavy-Duty, Direct-Writing Pen and Ink
Recording Instruments
\begin{tabular}{cl}
AC, DC and & DC Milliammeters \\
AC-DC & Kva and Varmeters \\
Ammeters & Speed \\
Voltmeters & Pressure \\
Wattmeters & Vacuum \\
Frequency & Operation (20 Pen) \\
Power Factor & Contact-Making Instruments
\end{tabular}

Ask for Catalog No. 657
Product Representatives in Most Principal Cities
The ESTERLINE-ANGUS Company, Inc.
Pioneers in the Manufacture of Graphic Instruments
DEPT. EII, P.O. BOX 596, INDIANAPOLIS 6, INDIANA

Commercial or MIL, usual or unusual, consider NORTHEAST ELECTRONICS as a source for your equipment.

\section*{NORTHEAST ELECTRONICS} CORPORATION
BOX 425, CONCORD, NEW HAMPSHIRE - CApitol 5-6641

CIRCLE 293 READERS SERVICE CARD

Microtran Co., Inc.
145 E . Mineola Ave.
Valley Stream, L. I., N. Y 2312

Microwave Associates, Ine.
Northwest Industrial Park
Burlington, Mass.
3506-3508
Microwave Development Labs., Inc. 92 Broad St.
Babson Park, Mass
Mid-Century Instrumatic Corp.
611 Broadway
New York 12, N. Y.
Mid-Eastern Electronics Inc.
32 Commerce St.
Springfield, N. J.
Midwestern Instruments
41st \& Sheridan Rd.
P. O. Box 7166

Tulsa, Okla. Theater 3000
James Millen Mfg. Co., Inc.
150 Exchange St.
Malden 48, Mass.
2523
Millivac Instruments
Div. of Cohu Electronics, Inc.

2315 Second Ave., Carman,
P. O. Box 997

Schenectady 6, N. Y........3204-3206
Davies Laboratories Div.
Minneapolis-Honeywell Regulator Co.
10721 Hanna St.
Beltsville, Md.
Minneapolis-Honeywell Regulator Co.
2753 Fourth Ave. South
Minneapolis 8, Minn.2202-2210
Minnesota Mining \& Mfg. Co.
900 Bush Ave.
St. Paul, Minn 3901-3903
Mitchell-Rand Mfg. Corp.
Insulation Div.
51 Murray St.
New York 7, N. Y.
4031
Mitronics Inc.
1290 Central Ave.
Hillside, N. J. .
M-9
Moloney Electric Co.
5390 Bircher Blvd.
St. Louis 20, Missouri 1224

Monsanto Chemical Co.
Lindbergh \& Olive Street Rd.
St. Louis 4, Missouri.
F. L. Moseley Co.
P. O. Box 791

Pasadena 3, Calif
\(.3510-3512\)
Donald P. Mossman, Inc.
P. O. Box 265

Brewster, N. Y
Motorola Inc.
Semiconductor Products Div.
5005 East McDowell Rd.
Phoenix, Ariz.

\section*{Mucon Corp.}

9 St. Francis St.
Newark 5, N. J.
Muirhead Instruments, Inc.
677 Fifth Ave.
New York 22, N. Y.

FORMS

\section*{and \\ METAL \\ STAMPINGS}

We'll prove that our high speed production means lower unit costs for you!

You'll save two ways - (1) the initial low unit cost made possible by high speed machines; (2) precision and quality control guarantees accurate parts and performance.

STRAIGHTENING AND CUTTING Perfect straight lengths to 12 feet.
.0015 to .125 diameter.

\section*{WIRE FORMS}
.0015 to .125 diameter.
SMALL METAL STAMPINGS
0025 to .035 thickness.
.062 to 3 inches wide.
Specializing in production of parts for electronic, cathode ray tubes and transistors.
Write for illustrated folder.

\section*{ART WIRE AND STAMPING COMPANY}

18 Boyden Place - Newark 2, New Jersey
CIRCLE 295 READERS SERVICE CARD

Mycalex Corp. of America
125 Clifton Blvd.
Clifton, N. J.2221-2223

\section*{N}

NRC Equipment Corp.
160 Charlemont St.
Newton Highlands 61, Mass..... \(442 \%\)
N.R.K. Mfg. \& Engineering Co.

4601 W. Addison St.
Chicago 41, Ill.
3702
The Narda Microwave Corp.
118 Herricks Rd.
Mineola, L. I., N. Y. 3607-3609
The Narda Ultrasonics Corp. 122 Herricks Rd.
Mineola, L. I., N. Y. 4053
The National Cash Register Co.
Main \& K Streets
Dayton 9, Ohio.
.1212
National Co., Inc.
61 Sherman St.
Malden 48, Mass. 1401-1407
National Tel-Tronics Corp.
52 St. Casmir Ave.
Yonkers, N. Y.
4029
National Vulcanized Fibre Co.
P. O. Box 311

Wilmington 99, Delaware..4419-4421
Navigation Computer Corp.
1621 Snyder Ave
Philadelphia 45, Pa
1311
Nems-Clarke Co., Div.
Vitro Corp. of America
919 Jessup-Blair Drive
Silver Spring, Md. .
. .1522-1524
New Hermes Engraving Machine Corp.
13 University Place
New York 3, N. Y..
The New York Air Brake Co.
3529 Washington St.
Boston 30, Mass.......... 4508 \& 4510
The J. M. Ney Co.
Drawer 990
71 Elm St.
Hartford 1, Conn.
.2838
Non-Linear Systems, Inc.
Del Mar Airport Box 728
Del Mar, Calif 3041 \& 3042
Norrich Plastics Corp.
107 W. 18th St.
New York 11, N. Y................ 4046

\section*{Norrman Laboratories}

Williams Bay, Wisc. M- 24
North Electric Co.
553 S. Market St.
Galion, Ohio
.2125
Northeast Scientific Corp.
617 Concord Avenue
Cambridge 38, Mass
.1515
Northeastern Engineering, Inc.
25 So. Bedford St.
Manchester, N. H
1425
Northern Radio Co., Inc.
143-7 W. 22nd St.
New York 11, N. Y 1423

\section*{EXACTLY WHERE NEEDED}

\section*{PANEL MOUNTING BLOWHZS}

- MIL SPEC QUALITY

Meet radio interference requirements of MIL-I-16910A
- large cooling capacity 600-1200 CFM Output
- Compact size

Mount as standard 83/4" RETMA panel-15" front-to-back
- Cleanable filter
- alr discharge areas

TO SUIT NUMEROUS APPLICAIIONS:
Vertical Printed Circuit Cards, Horizontal-mount Chassis, Verti-cal-mount Chassis, etc.

ORchard 4-3510

\section*{Western Devices, Inc.}
\(S 00\) W. FLORENCE AVE., INGLEWOOD, CAL.
* For Inquiries on 'Chassis.Trak', East of Rockies Chassis-Trak Corp., 525 S. Webster Ave., Indianapolis CIRCLE 296 READERS SERVICE CARD

> * Has pioneered many new manufacluring techniques
> * is constantly improving the quality of its gun mounts
> * Offers uniform product performance and dependable service
> * Assures me of fair prices

GRegory 2-2500
210 PIAGET AVE, CLIFTON, N. J.
CIRCLE 297 READERS SERVICE CARD

Nucleonics Magazine
McGraw Hill Publishing Co.
330 W .42 nd St.
New York 36, N Y
Nutron Manufacturing Co., Inc.
67 Monroe Ave.
Staten Island 1, N. Y. 4020

Offner Electronics, Inc.
5320 N. Kedzie Ave.
Chicago 25, Illinois
Ohmite Manufacturing Co.
3601 Howard St.
Skokie, Ill.
Olympic Radio \& Television, Inc.
34-01 38th Avenue
Long Island City 1, L. I., N. Y... 1916
Optical Coating Laboratory, Inc.
1035 Sebastopol Rd.
Santa Rosa. Calif.

\section*{Optron Corp.}

3526 State St.
Santa Barbara, Calif.M-19
Ortho Filter Corp.
196 Albion Ave.
Paterson 2, N. J..................... 1626
Oryx Sales Co.
9015 Wilshire Blvd.
Beverly Hills, Calif
John Oster Mfg. Co.
1 Main St.
Racine, Wisc.
Ozalid
Div. of General Aniline \& Film Corp.
350 West 4th St.
New York 14, N. Y

Pacent Engineering Corp.
310 Northern Blvd
Great Neck, L. I., N, Y 1222
Pacific Automation Products, Inc.
1000 Air Way
Glendale 1, Calif
Pacific Semiconductors, Inc.
10451 W. Jefferson Blvd.
Culver City, Calif
Packard-Bell Electronics Corp.
Technical Prods. Div.
12333 W. Olympic Blvd.
Los Angeles 64, Calif .
Page Communications Eng. Inc.
Communications Bldg.
710 14th St., N. W.
Washington 5, D. C.
Panoramic Radio Products, Inc.
520 S. Fulton Ave.
Mt. Vernon, N. Y. \(\qquad\)

\section*{Par-Metal Products Corp.}

32-62 49th St
Long Island City 3, N. Y... 1918, 1920
Penngold Division of
The Brush Beryllium Co.
501 Crescent Ave.
Reading, Pa .
Penta Laboratories, Inc.
312 N. Nopal St.
Santa Barbara, Calif 2740
. 3051
.2840-2842 4052 4226 .4127

1313-1315 .1820 \(.3515-3517\)
.4005

\section*{"ALL-WEATHER"}

\section*{Molded Resistors Withstand Temperature and Humidity}

FIXED RESISTANCE VALUES RANGE FROM 1000 OHMS TO \(10,000,000\) MEGOHMS!
\(65 \times\) Molded Resistor - 1 watt
80X Molded Resistor - 3 watts
While bargain buys in resistors are wearing out and being replaced, durable S.S. White "All-Weather" Molded Resistors are still giving top performance in hundreds of commercial, industrial and scientific applications.

Our resistors are characterized by low noise level . . . precision . . stability . have negative temperature and voltage coefficients. Compact ...e excellent stability and mechanical strength . . . values do not deteriorate due to age.
We'll be glad to cooperate with you in applying these high-quality resistors to your product. For our Bulletin 5409, just drop a line to Dept. R.

\section*{INDUSTRIAL DIVISION}

10 East 40th Street
New York 16, New York
CIRCLE 298 READERS SERVICE CARD
March 14, 1958 - ELECTRONICS engineering edition

Perfection Mica Co.
Magnetic Shield Div
20 N. Wacker Dr
Chicago 6, Ill.
4506
The Perkin Elmer Corp.
Main Ave.
Norwalk, Conn. .2841

Perkin Engineering Corp
345 Kansas St.
El Segundo, Calif.
3711-3713
Permacel-Lepages Inc.
U. S. Highway No. 1

New Brunswick, N. J
Permonite Manufacturing Co.
444 N. Lake Shore Dr
Chicago 40, Ill M-18

Peschel Electronics, Inc.
RFD No. 1
Paterson Towners, N. Y
Phalo Plastics Corp.
25 Foster St
Worcester 6, Mass.
Phaostron Instrument \& Electronics Co.
151 Pasadena Ave
South Pasadena, Calif
Phelps Dodge Copper Products Corp. 300 Park Ave
New York 22, N. Y
Phelps Dodge Copper Products Corp Fort Wayne 1, Indiana....4516-4518

Philamon Labs., Inc.
90 Hopper St
Westbury, L. I., N. Y. 3111
Philco Corp.
4700 Wissahickon Ave.
Philadelphia 44, Pa. .
1410-1414
Phillips Control Corp.
59 W . Washington St.
Joliet, Ill. 2714

Philips Electronics, Inc.
750 S . Fulton Ave.
Mt. Vernon, N. Y.
Photocircuits Corp.
31 Sea Cliff Ave.
Glen Cove, L. I., N. Y 2302-2304
Pitometer Log Corp.
237 Lafayette St
New York 12, N. Y. 3025

\section*{PIC Design Corp.}

477 Atlantic Ave
E. Rockaway, L. I., N. Y.......... . 3062

Plastic Capacitors, Inc.
2620 N. Clybourn Ave.
Chicago 14, Ill
.2239

\section*{Plastoid Corporation}

42-61 24th St
Long Island City 1, N. Y. 4505
Polarad Electronics Corp.
43-20 34th St.
Long Island City 1, N. Y. . .3210-3214
Polyphase Instrument Co.
East Fourth St
Bridgeport, Pa
2235
Polytechnic Research \& Dev. Co., Ine.
202 Tillary St
Brooklyn 1, N. Y............3602-3604

See Coldite 70 + ad on Page 45
CIRCLE 299 READERS SERVICE CARD

\section*{IMMEDIATE DELIVERY}
(Small Quantity)

\section*{\(P_{\text {recision }} C_{\text {arbon }} D_{\text {eposited }} R_{\text {esistors }}\)}

Temperature coefficient charaotar-
istics for ALPT-1 watt reststor

Derating curve for ALPT-1 wstt resistor

STANDARD RESISTORS \(\pm 1 \%\) TOLERANCE IN 10\% RMA VALUES FROM 10 OHMS TO 2.7 MEGOHMS

APST- \(1 / 2\) WATT, APXT- \(1 / 2\) WATT AND APCT- 1 WATT SALES OFFICES AND DISTRIBUTORS

Factory Delivery, other than stock values: 1/10, \(1 / 5,1 / 4,1 / 2,1,2\) and 5 Watt

\section*{ALLIES' PRODUCTS CORPORATION}
P. O. Box 188, Kendall Branch, Miami, Florida brochure supplied upon request.

CIRCLE 301 READERS SERVICE CARD

\section*{© YOKES 7/8" \(\star 1^{\prime \prime} \star 1^{1 / 6^{\prime \prime}} \star 2^{\prime \prime} \star 21 / 2^{\prime \prime}\) CRT NECK DIA.}
for MILITARY and COMMERCIAL PRECISION DISPLAYS
 -fast recovery -HIGH SENSITIVITY - LOW LI \({ }^{2}\) -CONTROLLED MAGNETIC FFLLDS

Write for CELCO DEFLECTION YOKE Catalogue \& Design Sheets or for immediate engineering assistance Call your nearest CELCO Plant:

Mahwah, N. J. Miami, Fla. Cucamonga, Calif.
Davis 7-1123 Plaza 1-9083 Yukon 2-2688

Popper \& Sons, Inc.
300 Fourth Ave.
New York 10, N. Y.
4124
Potter \& Brumfield
Princeton, Ind.
3904-3906
The Potter Co.
1950 Sheridan Rd.
No. Chicago, Ill.
.M-11
Potter Instrument Co., Inc.
Sunnyside Blvd.
Plainview, L. I., N. Y 1912-1914
Power Designs Inc.
89-25 130 St.
Richmond Hill 18, N. Y.......... . 2118
Precise Development Corp.
2 Neil Court
Oceanside L. I., N. Y. 3123
Precision Apparatus Co., Inc.
70-31 84th St.
Glendale 27, L. I., N. Y. 2316
Precision Circuits, Inc.
705 So. Fulton Ave.
Mt. Vernon, N. Y.
4119
Precision Metals Products of Malden 41 Elm Street
Stoneham 80, Mass
Precision Scientific Co.
3737 W. Cortland St.
Chicago 47, Ill. .1717

Premier Metal Products Co.
337 Manida St.
New York 59, N. Y
Prentice-Hall, Inc.
Englewood Cliffs, N. J.
Press Industrial Equipment, Ltd.
Putt Corners Road N.
P. O. Box 319

New Paltz, N. Y
.4019
Presto Recording Corp.
P. O. Box 500

Paramus. N. J .1211

Price Electric Corp.
East Church \& 2nd Sts.
Frederick 1, Md
.2407
Probescope Co.
8 Sagamore Hill Dr.
Port Washington, L. I., N. Y.3007-3008
Production Research Corp.
Thornwood, N. Y.
Production Sales
8112 llth Ave
Bklyn, N. Y.
Progressive Tool \& Die Co.
25 Foster St.
Worcester 8, Mass.
Pyramid Electric Co.
1445 Hudson Blvd.
North Bergen, N. J
Pyrofilm Resistor Co.
U. S. Highway 46

Parisippany, N. J
.3938

Quan-Tech Laboratories
236 Kemble Ave
Morristown, N. J
3015

\section*{R}

REF Mfg. Corp.
393 Jericho Turnpike
Mineola, L. I., N. Y.. \(\qquad\)1624

\section*{R \& S Electronic Sales Corp.}
P. O. Box 217

Hempstead, New York............ 4126
RS Electronics Corp.
P. O. Box 368, Sta. A
Palo Alto, Calif
Radio Condenser Co.
Davis \& Copewood Sts
Camden, N. J.
2308
Radio Corp. of America
Advertising Dept.
415 S. 5th St.
Harrison, N. J
\(.1602,1707\)
Radio Frequency Laboratories, Inc.
Powerville Rd.
Boonton, N. J.............. 3115 \& 3117
Radio Materials Corp.
3325 N. California Ave.
Chicago 18, Ill.
2216
The Ramo-Wooldridge Corp.
5730 Arbor Vitae St.
Los Angeles 45, Calif. 1105-1106
Raytheon Mfg. Co.
103 River St.
Waltham 54, Mass. 2611-2614
George Rattray \& Co., Inc.
116-08 Myrtle Ave.
Richmond Hill 18, N. Y. 3846
Rawson Electrical Instr. Co.
110 Potter St.
Cambridge 42, Mass.............. 3311

\section*{Reeves-Hoffman}
Div. Standard Electronics Corp.

Cherry \& North Sts.
Carlisle, Pa
1809
Reeves Instrument Corp.
215 E. 91st St.
New York 28, N. Y. 1702-1708
Reeves Soundcraft Corp.
10 East 52nd St.
New York 22, N. Y 1326

The Rex Corp.
Hayward Rd.
W. Acton Mass. 4307-4309

Rheem Mfg. Co.
Electronics Division
7777 Inciustry Ave.
Rivera, Calif.
Richards Electrocraft, Inc.
4432 N. Kedzie Ave.
Chicago 25, Ill.
3806
The Richardson Company
27th Ave. \& Lake St.
Melrose Park, Ill.1628

Rixon Electronics, Inc.
2414 Reedie Dr.
Silver Springs, Md................. . 1317
Robertshaw-Fulton Controls Co.
Acro Division
2040 East Main
Columbus 16, Ohio 2716

Standard Precision Potentiometers available in miniature, subminiature and multi-gang types for every application requirement. For complete engineering data, call or write for new Rattray catalog.

\section*{GEORGE RATTRAY \& COMPANY}

A Division of Hardwick, Hindle - Inc.
116-08 MYRTLE AVENUE, RICHMOND HILL 18, N.Y. VISIT BOOTH 3846-
Radio Engineering Show, New York Coliseum, March 24th-27th

\section*{Control of} Rise Time and Overshoot in Pulse Transformers

A pulse transformer with a turns ratio greater than unity (\(n>1\)) can be approximated by the circuit below for the duration of the leading edge of the applied pulse.

Where \(R_{s}\) is the internal resistance of the pulse source, \(R_{L}\) load resistance, \(L_{1}\) and \(C_{d}\), leakage inductance and distributed capacitance, respectively. If the transformer is matched (\(R_{s}=N 2 R_{L}\)), this circuit is valid for step-up and step-down transformers.
Optimum step function response (minimum rise time and overshoot) occurs when \(\sqrt{\frac{L_{1}}{C_{d}}}=R_{L}\). Under these conditions overshoot is approximately \(4 \%\); rise time from \(10 \%\) to \(90 \%\) of pulse height approximately equal to \(1.52 \sqrt{L_{1} C_{d}}\). If \(\frac{\sqrt{L_{1}}}{C_{d}}\) is less than \(R_{L}\), overshoot and ringing occur. Making \(\sqrt{\frac{L_{1}}{C_{d}}}\) greater than \(\mathrm{RL}_{\mathrm{L}}\) rounds the leading edge and increases rise time. Circuit designers should note that any shunt capacity in the load is effectively added to \(C_{d}\) which causes \(\sqrt{L_{l}}{ }_{C_{d}}\) to be less and overshoot greater than indicated by transformer specifications.
Leakage inductance and distributed capacitance are furictions of winding geometry such as insulation pad thickness, wire spacing, and interleaving. These parameters must be accurately controlled during manufacture to meet rise time and overshoot specifications. In the Pulse Engineering Stat-Tran*, a rectangular coil form permits precise control of the winding configuration which contributes to uniform leading edge response.
A new catalog describing the Stat-Tran* and other pulse transformers is yours for the asking.

Robinson Aviation, Inc.
Teterboro Air Terminal Teterboro, N. J
. .2506, 2508
Roller-Smith Corp.
Instrument Div.
1825 W. Market St.
Bethlehem, Pa . .2743

Rosan, Inc.
2901 W. Coast Highway
Newport Beach, Calif. . 4431

Rotating Components, Inc.
267 Green St
Brooklyn 22, N. Y
3920
Rotron Mfg. Co.
7-9 Schoonmaker Lane
Woodstock, N. Y
.2334-2336
The Royal McBee Corp.
Westchester Ave.
Port Chester, N. Y.
.1825
Rust Industrial Co., Inc.
130 Silver Street
Manchester N. H
Rutherford Electronics Co.
8944 Lindblade St.
Culver City, Calif.
.1201

\section*{S}

Sage Laboratories, Inc.
159 Linden St.
Wellesley 81, Mass .3930

Sanborn Co.
175 Wyman St
Waltham 54, Mass..........3601-3603
Sanders Associates, Inc.
Nashua, N. H.
3933
San Fernando Electric Mfg. Co.
1509 First St.
San Fernando, Calif.
.2710
Sangamo Electric Co.
11 th and Converse Sts.
Springfield, Ill.
.1213
Sargent Electric Corp.
630 Merrick Road
Lynbrook, N. Y.
3026
Carl W. Schutter Corp.
80-90 E. Montauk Highway
Lindenhurst, L. I., N. Y...3059-3060
Smith Paper Division
Peter J. Schweitzer, Inc.
Lee, Mass.
1233
Peter J. Schweitzer, Inc.
261 Madison Ave.
New York 16, N. Y
1233
Scientific-Atlanta, Inc.
2162 Piedmont Rd., N. E.
Atlanta 9, Ga.
. 1428
Sealectro Corp.
610 Fayette Ave.
Mamaroneck, N. Y.
3714
Sccon Metals Corp.
7 Intervale St.
White Plains, N. Y.
4109
Sensitive Research Instrument Corp. 310-316 Main St.
New Rochelle, N.
\(3410 \& 3412\)
Servo Corp. of America
2020 Jericho Turnpike
New Hyde Park, L. I., N. Y. 3615-3617

New higher sensitivity GAUSSMETERS

Rawson-Lush patented Rotating Coil type, now available with a wide range of arge coil give 726 indicates the Earth's arge coil type 726 indicates the Earth's magnetic field.

FEATURES-Type 726
- Ranges 3-10 - 30 - 100 - 300 1000 gausses full scale, all in one instrument. Tip diameter \(11 / 4\)
- Guaranteed accuracy \(1 \%\) or better. Readings are obtained on a high-qual. ity laboratory type meter with a five inch scale length, knife edge pointer, mirror scale.
- Does not require field uniformity. Coil gives overage field over its volume, so a distorted field can be measured.
- Measures component of the field in a desired direction, as well as total intensity.
- Simple operating principles, simple to use and maintain.
- Compact and portable, just one meter and long probe unit.
Also available-type 504 , Fluxmeter, for measuring lines in magnetic circuits. Send for bulletins.

RAWSON ELECTRICAL INSTRUMENT COMPANY
fine instruments since 1918
111 Potier Street Cambridge, Mass.
CIRCLE 306 READERS SERVICE CARD

WECKESSER COMPANY
5701 Northwest Highway - Chicago 30, 1 II .
CIRCLE 307 READERS SERVICE CARD
March 14, 1958 - ELECTRONICS engineering edition

Servomechanisms, Inc.
625 Main St
Westbury, L. I., N. Y
Servonics, Inc.
822 N. Henry St
Alexandria, Va.
Shalleross Mfg. Co.
10 Jackson Ave.
Collingdale, Pa .
Shielding, Inc.
North Reed Ave., P. O. Box 59
Riverton, N. J. 1114-1115
Sightmaster Corp.
85 Beechwood Ave.
New Rochelle, N. Y. 3411
Sigma Instruments, Inc.
170 Pearl St
S. Braintree 85, Mass2628-2630

Simberkoff Sales Co.
68 Hudson St.
Hoboken, N. J.
Sierra Electronic Corp.
3885 Bohannon Dr.
Menlo Park, Calif . 3905-3907

Simpson Electric Co.
5200 W. Kinzie St.
Chicago 44, Ill. .2329-2331

Skydyne, Inc.
River Rd.
Port Jervis, N. Y 1632
Herman H. Smith, Inc.
2326 Nostrand Avenue
Brooklyn 10, N. Y.
Sola Electric Co.
4633 W. 16th St.
Chicago 50, Ill
Solartron Inc.
530 Cooper St
Camden 2, N. J \(\qquad\)
Sonotone Corp.
Elmsford, N. Y \(\qquad\)
Sorensen \& Co.,. Inc.
Richards Ave.
South Norwalk, Conn.......2627-2629
Southco Div.
South Chester Corp
3rd and No. Gov. Printz Blvd. Lester, Pa.

Southern Electronics Corp.
150 W. Cypress Ave.
Burbank, Calif.
Southwestern Industrial Electronics Co.
2831 Post Oak Rd
P. O. Box 13058

Houston 19, Texas......... . 3307-3309
Spaulding Fibre Co., Inc.
310 Wheeler St.
Tonawanda, N. Y. 4519-4521
Specific Products
21051 Constanso St
Box 425
Woodland Hills, Calif.
Sperry Gyroscope Co.
Division of Sperry Rand
Great Neck, L. I., N. Y. 1416-1422
Sprague Electric Co.
97 Marshall st.
North Adams, Mass.2416-2424

\section*{NEW FAST SERVIICE TOROIDS and ELECTRONIC TRANSFORMERS \\ UP TO SIX \\ MADE TO YOUR SPECIFICATIONS SHIPPED WITHIN ONE WEEK}

Visit our Hospitality Suite at the Waldorf during I.R.E. Show
LYNCHBURG TRANSFORMER CO., INC.
Edgewood Drive Extension
LYNCHBURG, VA.
Tel. 3-2666

CIRCLE 308 READERS SERVICE CARD

\section*{(m) WELWYN} Hermetically Sealed Deposited Carbon Resistors

High stability resistors bonded into glazed and vitrified ceramic shells for complete protection against ambient humidity changes.

Silicone oil filled - acts as efficient convective medium for improved heat dissipation. Also serves as infallible quality control for detecting seal leakage defects.

As part of quality control, each resistor is subjected to sustained pre-load test at \(11 / 2\) times rated wattage. Insures against catastrophic failures under normal operating conditions.

\section*{Designed to meet military specifications. \\ MIL-R-10509 (current issue)}
for complete data, write to:
WELWYN INTERNATIONAL, INC.
3355 Edgecliff Terrace, Cleveland 11, Ohio

CIRCLE 311 READERS SERVICE CARD

Standard Electrical Products Co.
2240 E. Third St
Dayton 3, Ohio.
.3805-3807
E. Stanwyck Coil Company

75 Carson Ave.
Newburgh, N. Y
4113
Star Expansion Products Co.
P. O. Box 108

Mountainville, N. Y. 4522
Stepper Motors Corp., N. Y.
11879 W. Florence Ave
P. O. Box 466

Culver City, Calif. .M-8

Sterling Precision Corp.
Instrument Division
17 Matinecock Ave.
Port Washington, N. Y.......... 1621
Sterling Transformer Corp.
297 N. 7th St.
Brooklyn 11, N. Y................... . 2121
Stevens Mfg. Co., Inc.
P. O. Box 1007

Mansfield, Ohio 2226

George Stevens Mfg. Co.
6022 N. Rogers Ave.
Chicago 30, Ill
4218, 4220
Stevens-Arnold, Inc.
7 Elkins St.
S. Boston 27, Mass. 2937

Stewart Stamping Co.
630 Central Park Ave.
Yonkers 4, N. Y.
4039
Herman H. Sticht Co., Inc.
27 Park Pl.
New York 7, N. Y.
3044
Edwin B. Stimpson Co., Inc.
70 Franklin Ave.
Brooklyn 5, N. Y
F. J. Stokes Corp.

5500 Tabor Rd.
Philadelphia 20, Pa
Supa Insulations Inc.
123 Easi Bassett St.
Rocky Mount, N. C.4131

The Superior Electric Co.
83 Laurel St.
Bristol. Conn
2415-2423
Surprenant Mfg. Co.
172 Sterling St
Clinton, Mass
2729-2731
Sutton Publishing Co., Inc.
172 S. Broadway
White Plains, N. Y. 4028
Swiss Jewel Co.
Lafayette Bldg.
5 th \& Chestnut Sts.
Philadelphia 6, Pa................. 4034
Switcheraft, Inc.
1328 N. Halstead St
Chicago 22, Ill..................... . 2228
Sylvania Electric Products, Inc.
1740 Broadway
New York 19, N. Y..........2402-2408 2501-2507

Synthane Corp.
12 River Rd.
Oaks, Pa
2902-2903
Syntronic Instruments, Inc
170 Industrial Road
Addison, Ill.
2707

\section*{You Get Things Done With Boardmaster Visual Control}

N Gives Graphic Picture of Your OperationsSpotlighted by Color
\& Facts at a glance - Saves Time, Saves Money, Prevents Errors
is Simple to operate - Type or Write on Cards, Snap in Grooves
Is Ideal for Production, Traffic, Inventory, Scheduling, Sales, Etc.
is Made of Metal. Compact and Attractive. Over 250,000 in Use
Complete price
\$4950
including cards
FREE
24-PAGE BOOKLET NO. C-10 Without Obligation
Write for Your Copy Today GRAPHIC SYSTEMS
55 West 42nd Street - New York 36, N. Y. CIRCLE 313 READERS SERVICE CARD

\section*{STANDARD SIGNAL GENERATOR 400 Mc to 1000 Mc}

\section*{FEATURES}
- Accurately calibrated mutual inductance type attenuator
- 0.1 microvolt to 0.5 volt output
- Negligible stray field and leakage
- Low residual AM and FM WRITE FOR BULLETIN

\section*{MEASUREMENTS A McGraw-Edison Division \\ BOONTON, NEW JERSEY}

Systron Corp.
2055 Concord Blvd.
Concord, Calif.

Tape Cable Corp.
790 Linden Ave.
Rochester 10. N. Y
4234
Taurus Corp.
8 Coryell St.
Lambertville, N. J.395

Tech Laboratories, Inc.
Bergen \& Edsall Blvds
Palisades Park, N. J.
3034
Technical Appliance Corp.
P. O. Box 38

Sherburne, N. Y
1104
Technical Information Corp.
41 Union Square
New York 3, N. Y
.4532 A
The Technical Materiel Corp.
700 Fenimore Rd.
Mamaroneck, N. Y
\(.1609-1613\)
Technical Products Co.
Instrument Div
6670 Lexington Ave
Los Angeles 38, Calif 3032

Technicraft Labs., Inc.
Thomaston-Waterbury Rd. Thomaston, Conn. 3810

Technitrol Engineering Co.
1952 E. Allegheny Ave. Philadelphia 34, Pa . 3120

Technology Instrument Corp.
531 Main St.
Acton Mass.
.2318-2320
Tektronix, Inc.
49 Pondfield Rd.
Bronxville 8, N. Y.......... 3027-3030
Telechrome Mfg., Inc.
28 Ranick Drive
Amityville, L. I., N. Y. 1207-1209
Telecomputing Corp.
915 N Citrus Ave.
Los Angeles 38, Calif. 2128
Telerad Mfg. Corp.
1440 Broadway
New York 18, N. Y.................. 3241
Teletronics Laboratory, Ine.
54 Kinkel Street
Westbury, L. I., N. Y. .3417

Telewave Laboratories, Inc.
43-20 34th St
Long Island City 1, N. Y......... 3208
Telex, Inc.
1633 Eustis St.
St. Paul 1, Minn. 3009
Tel-Instrument Electronics Corp.
728 Garden St.
Carlstadt, N. J
.3406, 3408
Teleonic Industries, Inc.
73 N. Second Ave
Beech Grove, Ind

\section*{Telrex Labs.}

26 Neptune Highway
Asbury Park, N. J.
Temperature Engineering Corp.
U. S. Highway No. 130

Riverton, N. J
4237

Trans Electronics, Inc. \(\leadsto \mathbf{N}\) DESIGNERS
power supplies - semiconductor test equipment

\section*{POWER SUPPLIES}

MODELS RS 217A
RS 317

substitution
Floating output \(\mathrm{F}_{\mathrm{K}}^{\mathrm{K}}\)
Carefully engineered For bench or rack use Barrier type terminal strip
For breadboard or original equipment

\begin{tabular}{|l|l|}
\hline \\
- Supplies with other ranges or \\
modifications of these units \\
also ovaitable.
\end{tabular}

CIRCLE 315 READERS SERVICE CARD

1336 N. HALSTED ST. CHICAGO 22, ILL.
Canadion Rep: Aflas Radio Corp., Ltd., 50 Wingold Ave., Toronto, Ontario. CIRCLE 318 READERS SERVICE CARD

\section*{Precision Regulator}

\section*{for control of \\ Audio Frequency VOLTAGES!}

\section*{AUDIO voltage STANDARD}
 D

Designed to fill the need for AC standard cell . . . rack mounted or operated in attractive laboratory bench cabinet. Model AVS-s20 (illustrated above) has these specifications:
Output voltages 1 - 10 - 100 - 300 RMS; frequency 30 cycles to 20 KC ; input voltage 1 volt RMS; output regulation \(\pm 0.1 \%\) (for period of 30 days); distortion less than \(0.025 \%\); regulation response less than 200 milli-sec; power source 105 to 125 V AC, 60 cycles, 150 watts. It is \(7^{\prime \prime}\) high, \(19^{\prime \prime}\) wide, \(13^{\prime \prime}\) deep-and weighs 30 lbs .

Want more details? Just ask for them now.
M. Ten Bosch, Inc.

80 Wheeler Ave.
Pleasantville, N. Y.
Tenney Engineering, Inc.
1090 Springfield Rd.
Union, N. J.
Tensolite Insulated Wire Co., Inc.
198 Main St.
Tarrytown, N. Y.
Texas Instruments, Inc.
6000 Lemmon Ave.
Dallas 9, Texas.

Thermal Dynamic Products, Inc.
Div. of Waltham Precision In-
strument
38 West 53 rd St
New York 19, N. Y.
Thomas Electronics, Inc.
118 Ninth St.
Passaic, N. J.
.2233
Thomas \& Skinner, Inc.
1120 E. 23rd St.
Indianapolis 7, Ind .2926

Thompson Products, Inc.
2196 Clarkwood Rd.
Cleveland 3, Ohio.
.2527-2531
Thor Ceramics, Inc.
225 Belleville Ave.
Bloomfield, N. J. 4305
Times Facsimile Corp.
540 W. 58th St.
New York 19, N. Y 1824
Tinnerman Products, Inc.
P. O. Box 6688

Cleveland 1, Ohio. 4205-4209
Tower Construction Co.
2700 Hawkeye Dr.
Sioux City, Lowa..................... 1223
Transformers Inc.
200 Stage Rd.
Vestal, N. Y. .2008

Transistor Applications Inc.
50 Broad Street
Boston 9, Mass.
.2002
Transitron Electronic Corp.
168 Albion St.
Wakefield, Mass.
3912-3914
Travco Associates
148-03 Hillside Ave.
Jamaica 35, N. Y. .
.1230-1232
Triad Transformer Corp.
4055 Redwood Ave.
Venice, Calif.
.2244
Trio Laboratories, Inc.
4025 Merrick Rd.
Seaford, L. I., N. Y.
3020
The Triplett Electrical Instrument Co.
286 Harmon Rd.
Bluffton, Ohio
Tri-Point Plastics, Inc.
175 I. U. Willets Rd.
Albertson, N. Y.
Tru-Ohm Products Div.
Model Engineering \& Mfg., Inc.
2800 N. Milwaukee Ave.
Chicago 18, Ill.
.2718

Tung-Sol Electric, Inc.
958 th Ave.
Newark 4, N. J .2833-2839

Turbo Jet Products Co., Inc.
424 South San Gabriel Blvd.
San Gabriel, Calif
.3924

George Ulanet Co.
413 Market St
Newark 5, N. J
Union Carbide Corp.
32-40 43rd Ave
Long Island City 1, N. Y...2822-2828
Union Switch \& Signal Div.
Westinghouse Air Brake Co.
Pittsburgh 18, Pa...........2122-2124

\section*{Unisco, Inc.}

1061 Linden Ave.
Ridgefield, N. J.
Unistrut Products Co.
74 Woolsey St.
Irvington, N. J
United Catalog Publishers, Inc.
60 Madison Ave.
Hempstead, \(\mathbf{N}\). \(\mathbf{Y}\)

\section*{United Electronics Co.}

42 Spring St.
Newark 4, N. J.
United Mineral \& Chemical Corp.
16 Hudson Street
New York 13, N. Y.1321-1323
United Transformer Corp.
150 Varick St.
New York 13, N. Y........ 2413, 2414
U. S. Components, Inc.

454-462 East 148th St.
New York 55, N. Y.
2706
U. S. Electronics Development Corp. 1323 Airway
Glendale 1, Calif.
.3934
Fluorocarbon Prods., Inc. Div.
U. S. Gasket Co.

932 Kaighns Ave
Canden, N. J
4036-4037
U. S. Stoneware Co.

Alite Div.
Orrville, Ohio
\(4515 \& 4517\)
United States Testing Co., Inc.
1415 Park Ave.
Hoboken, N. J.
2900
The U. S. Time Corp.
500 Fifth Ave.
New York 36, N. Y 2335
Unitek Corp.
Weldmatic Div
380 No. Halstead Ave.
Pasadena, Calif.
Universal Electronies Co.
1720 22nd St.
Santa Monica, Calif. .3238
Universal Mfg. Co., Ine.
410 Hillside Ave.
Hillside, N. J. .
Universal Transistor Products Corp. 143 E. 49 th St.
New York 17, N. Y \(.3937-3939\)

Universal Winding Co.
1655 Elmwood Ave.
Cranston 10 R. I.
4313-4315

You, too, can afford the space to keep track of time! From now on, these really small (\(11 / 4^{\prime \prime}\)) Elapsed Time Indicators will keep company with the best of Electronic Miracles.

The dial type units read up to 2,500 hours in one hour increments, while the digital type units read up to 9999.9 hours in one-tenth hour increments. Designed for military applications, these \(41 / 2\) ounce units can save valuable panel space in industrial and electronic applications.

CIRCLE 316 READERS SERVICE CARD

Vacuum-Electronic Engineering Co.
86 Denton Ave.
New Hyde Park, L. I., N. Y.3005-3006
Electronics Div.
Van Norman Industries, Inc.
186 Granite St.
Manchester, N. H
D. Van Nostrand Co., Inc.

120 Alexander St.
Princcton, N. J.
Varian Associates
Instiument Div.
611 Hansen Way
Palo Alto, Calif.
Varian Associates
Microwave Tube Div.
611 Hansen Way
Palo Alto, Calif. .
. .2911-2915
Vari-L Company, Inc.
432 Fiairfield Ave
Stamford, Conn. . . 2207
Vector Electronic Co.
1100 Flower St.
Glendale 1, Calif .4050
Vectron, Inc.
1605 Trapelo Rd.
Waltham 54, Mass. 3106-3108
Veeder-Root, Inc.
70 Sargeant St.
Hartford 2, Conn .1823
Victor Adding Machine Co.
3900 N. Rockwell St.
Chicago 18, Illinois. 1320

Victoreen Instrument Co.
5806 Hough Ave.
Cleveland 3, Ohio.
.2232
Victory Engineering Corp.
Springfield Rd.
Union, N. J.
.2230
Viking Industries, Inc.
21343 Roscoe Blvd.
Canoga Park, Calif.
Virginia Electronics Co., Inc.
River Road \& B \& O Railroad
Washington 16, D. C. M
Vitramon, Inc.
Box 544
Bridgeport 1, Conn. 2401-2403

\section*{W}

Wah Chang Corp.
233 Broadway
New York 7, N. Y. \(\qquad\)
Wales-Strippit Co.
Akron, N. Y.
.4010
The Walkirt Co.
141 W. Hazel St.
Inglewood 3, Calif.
.3923
P. Wall Mfg. Co.
P. O. Box 71

Grove City, Pa
.1329-1331
Wang Laboratories, Inc.
37 Hurley St
Cambridge 41, Mass.
.3228
Ward Leonard Electric Co.
115 MacQuesten Pkwy. So.
Mt. Vernon, N. Y

\section*{\(N_{E N}\) HICHGAIN 40 db \\ WIDE BAND}
\(200 \mathrm{cps}-50 \mathrm{mcs}\)

Model 600 Super Video
AMPLIFIER
SEE IT
Booth 2830
I.R.E. SHOW

\section*{APPLICATIONS}
- Frequency Counter

Pre-Amplifier
- Sig. Generator Output Booster
- Pulse Amplifier
- Delay Line Testing
- Noise Measurement Amplifier

\section*{SPECIFICATIONS}

\section*{Bandpass}

200 cps to 50 mes
Gain
\(40 \mathrm{db} \pm 11 / 2\) (into marched lood)
Input-Output Impedance
90 ohms
Max. Undistorted E out
2.0V RMS matched, open ckt. \(5.0 \vee\) RMS
(max. load capacity \(25 \mu \mu f\))

\section*{Max. Pulse Out}
3.0 V Peak, marched; 7.0 V . Peak, open ckf.

Pulse Rise Time
10 musecs.
Max. Pulse Duration (10\% droop)
\(60 \mu\) secs.
Pulse Delay Time
20 musecs.
Recovery Time (100 times overload)
500 musecs.
Noise Figure
9 db , approximate
Gain Control Range
20 db
Linear Range at Full Gain
60 db , approximate

\section*{INSTRUMENTS FOR INDUSTRY, INC. \\ 150 Glen Cove Rd., Mineola, N. Y. • Ploneer 2.5300}

P.S. Are you a qualified engi neer interested in doubling your possibilities in your chosen field? Don't think twice . .ask for Mr. Hicks of IFI. An informal, confidential interview will convince you to join IFJ.

\section*{NUTRON \\ Portable Regulated Power Supplies}

\section*{NEW! FOR TRANSISTOR WORK}

Model PR-IA
- Hi-Range: 0.120 V
- High Current: 1 Amp. DC
- Regulated DC or AC output
- Extremely low ripple
- Available in rack mounting

SPECIFICATIONS:
Input: \(95-130 \mathrm{~V}, 60\) Cycles
DC Output: \(0.120 \mathrm{~V}, 0-1 \mathrm{Amp}\).
AC Output: \(0.130 \mathrm{~V}, 0.1 \mathrm{Amp}\).
Regulation: \(\pm 1 \%\) for line \(95-130 \mathrm{~V}\)
Completely isolated output
Some other applications:
Versatile Production Test Supply
DC or AC motor control
Fine control of saturable reactors
Regulated DC or AC filament supply
Regulated, adiustable line source
A basic unit for any laboratory Write for Technical Bulletin EP-14.

\section*{FOR VACUUM TUBE APPLICATIONS}

Model PR-100
- Range 120.300 VDC
- 0.1 Ampere over entire range
- Fine Vernier Adiustment
- Ripple \& Noise below 5 mv . rms.
- Better than 0.1\% regulation NL to FL
- Isclated outpups
- Input 105-125 V, 50-60 Cycles

Other uses
Calibration of meters, potentiometers, etc Components test setups, inspection Computer development \& Servicing
Continuously adiustable reference supply Write for fechnical bulletin EP-314 SăE US AT BOOTH 4020, IRE SHOW

\section*{NUTRON}

Manufacturing Company lnc. 67 Monroe Ave. Staten Island 1, New York

Warren Wire Co.
Pownal, Vermont
4208
Waterman Products Co., Inc.
2445 Emerald St.
Philadelphia 25, Pa........ 1902-1904
Waters Manufacturing, Inc.
Boston Past Road
Wayland, Mass.
.3024
Waveforms, Inc.
333 Sixth Ave.
New York 14, N. 3220

Waveline, Inc.
Passaic Ave.
P. O. Box 718

Caldwell Township, N. J
Wayne Kerr Laboratories Ltd.
2920 North 4th St.
Philadelphia 33, Pa.
Weckesser Co
5701 Northwest Highway
Chicago 30, Ill.
4003-4004
W. M. Welch Manufacturing Co.

1515 Sedgwick St.
Chicago 10, Ill.
Westline Products Div. of Western Lithograph Co.
600 E. Second St
Los Angeles 54, Calif
Westinghouse Electric Corp.
3 Gateway Center
P. O. Box 2278

Pittsburgh 30, Pa
1402-1607
White Aircraft Corp.
Palmer, Mass.
Wheeler Labs., Inc.
122 Cutter Mill Rd.
Great Neck, N. Y. 1332

Roger White Electron Devices, Inc.
Fourth Ave.
Haskell, N. J
3605
John Wiley \& Sons, Inc.
440 Fourth Ave.
New York 16, N
Y....

Winchester Electronics, Inc.
Willard Rd.
Norwalk, Conn.
.2836
Wind Turbine Co.
248 E. Market St
West Chester, Pa.
1712-1714
Wright Metalcoaters, Inc.
255 West St.
South Hackensack, N. J......... . . 4047
\(Y\)
Yardney Electric Corp.
4046 Leonard St.
New York 13, N. Y
2127

\section*{Z}

The Zell Products Corp.
276-80 Main Street
Norwalk, Conn. 4045
Zero Mfg. Co.
1121 Chestnut St
Burbank, Calif.
4014
The Zippertubing Co.
752 South San Pedro St.
Los Angeles 14, Calif.

NESOR offers a complete range of fine wire in all Ferrous, NonFerrous, and Precious Metals. We are specialists in the fabrication of special wires for the stringent requirements of Semi-Conductors (Transistors, Diodes, etc).

Other specialties are: High purits aluminum-99.999\% for silicon reclifiers. Tinned and bare wire supplied; wire also cut to precision sizes for leads.

Metals and Alloys in Stock:
- Aluminum and Alloys
- Brass and Alloys
- Phosphor Bronze
- Copper: Bare, Tinned, Silver Plated
- Lead and Solder Alloys
- Monel, Monel-Nickel, Nickel
- Steels: Copper Coated, High and Low Carbon, Stainless

\section*{ELECTRO-PLATING SERVICE:}

Ultra-modern plating facilities for wire, ribbon, and component parts. Tin, opper, nickel. indium, and precious metals can be plated over base metals to your specifications.

\section*{The}

T1 1 4120 \(\xrightarrow[\text { MBODUCTS CO. }]{\text { Mry of Fine }}\) Braid and Strand 278 Halsey St., Newark 2, N. 4 Telephone: Mitchell 2-1682, Phone: Digby 4.989

CIRCLE 321 READERS SERVICE CARD

World's Foremost Producer of Small Die Castings
151 Beechwood Avenue, New Rochelle, N. Y.
CIRCLE 325 READERS SERVICE CARD

\section*{MODERN COIL EQUIPMENT Plus MODERN COIL HANDLING}

Insure perfection in all DANO COILS
- Encapsulated coils . . . in either polyester or epoxy resins.
- Coils for high temperature applications.
- Bobbins coils.
- Paper interleave coils.
- Cotton interweave coils.
- Form wound coils.

ALSO TRANSFORMERS MADE TO ORDER

I THE DANO ELECTRIC \(c o\). MAM 57.. WINSTED, CONM.

CIRCLE 326 READERS SERVICE CARD

\section*{NEW BOOKS}

\section*{Propagation des Ondes Electromagnetiques de Haute Frequence}

Societe Francaise De Documenta tion Electronique, Paris, 1957, \(320 \mathrm{p}, 3,100 \mathrm{fr}\).
This book is the second of a French scientific series entitled "Collcction des Annale de Radio electricite" edited by M. Ponte. It deals with the subject of high-fre quency clectromagnetic wave propagation.
The author has confined himself to thrce areals of current interests, each covered by a scparate chapter These three areas are wave propagation in anisotropic media, multiple terminal waveguides and wave propagation around the earth.
Two other chapters dcal primarily in basic background materials for thesc specialized topics. The first is a brief treatment in Maxwell's equations and energy relationship. The second clapter deals with mathenatics involved in propagating waves. Most of these introductory materials can of course be found in ordinary text books, but they are uscful for reference and guidance in the notations used by the author for subsequent development:
Major Areas-The high-frequency wave-propagation field consists of mainly two major areas, namels one in dealing with the wave guide components with which the energy is directed and transformed in the equipment and the other in dealing with the electromagnetic wave propagation in the space after radiated from the antenna. In these two arcas, two major new devclopments occurred in the last few years. In the component field, the introduction of anisotropic media such as ferrites not ouly offers challenging problems for theoreticians, but also offers a great deal of opportunity for engineers to make enticly new microwave devices such as circulators, isolators and other nonreciprocal devices. Since these are new devclopments, it is useful to have such a summary of the basic theories involving anisotropic medium which now appears only in scattered literatures. The
multiple terminal waveguide components that can be built with or without ferrites are discussed more in terms of physical principles rather than in detailed mathernatics.

In the space wave propagation fickel, the rapid development in the last few years has been the theoretical and experimental understinding scattering wave propagation which puts the beyond-the-iine-of-siglat propagation for microwaves on a systematic enginecring basis. The author has assemblecl a number of nomograms and charts which will help engincers in the design and selection of power requirements, antenna gain, ctc., for a given sig-nal-to-noise reception between different distances around the earth and with various terrain conditions.

This book sloould be a uscful reference for those wito are engaged in the stuclies of microwaves propagation and as an introductory to those who would like to learn more about the latest developments in this field.-C. C. Wang, Sperry Gyroscope Co., Division of Sperry Rand Corp., Great Neck, N. Y.

\section*{THUMBNAIL REVIEWS}

The Science of Enginecring Materials. Edited by J. E. Goldman, Joln Wilcy \& Sons, New York, 1957, 517 p, \(\$ 12.00\). An outgrowth of a series of studies and conferences on the introduction of solid-state physics and chemistry into engincering education, this book will be of interest to persons entering work in surfaces, dielectrics, strength of materials, magnetism, semiconductors and amorphous materials.

The Index of Technical Articles. Iota Services Ltd., 38 Fartington St., London, E.C. 4, England. Montlly index of articles appearing in scientific, industrial, technical and tradic jourmals published in Great Britain. Entries are in modified form of Universal Decimal Classification Systen and consist of title and author of article and name, volume, number and date of periodical. Prices are 6 months, 3 guineas; 1 year, 6 guincas and single copy \(10 / 6\).

CIRCLE 328 READERS SERVICE CARD

\section*{Electronics today is partly packaging}

PROBLEM: Design a small (50 cubic in.) and light (\(33 / 4 \mathrm{lbs}\).) unit that contains:
1. a positive d.c. pulse selector
2. a negative d.c. pulse selector
3. a high level 60 cps band pass filter
4. a 400 cps detector circuit
(all with tight tolerances, naturally)
Design it to operate within the usual military environmental conditions, including high vibration and shock.
SOLUTION: We assembled the components shishkabob style. Then mounted the
kabob in a metal case filled with an epoxy foam compound to hold the parts in a firm cushion.
TIME ELAPSED: From original assignment, through design to volume produc-tion-two months.

If such quick, dependable assistance in design and production can make your work more effective, we'll be glad to hear from you. We offer experience, good production facilities, and a recog. nized quality record.

Dept. E-3, Caledonia, N.Y. - In Canada: Hackbusch Electronics, Ltd., 23 Primrose Ave., Toronto 4, Ont.

\section*{How to design ELECTRONC creuis \\ Practical handbook gives you \\ - Clear explanations of basic theory \\ - Applications of theory to real design problems}

\section*{COMMENT}

\section*{Classroom Tv}

In omitting the name of General Precision Laboratory (GPL) from "Classroom Tv Makcs Grade" (Jan. 24, p. 19), you are giving less than a fair picture of those organizations contributing to the field. In view of your publication's high standards of accuracy in reporting on the clectronics field, we trust you will bring these facts to the attention of your readers.

General Precision Laboratory has been active in the cducational tv market for several vears. Its broadcast and closed-circuit to equipment is in use in 40 schools, colleges and other institutions throughout the comitry. Further, GPL is the outstanding developer of large-screen projection tv systems. In addition to their use for group communications and information display, these portable systems are currently aiding in instructing students in closed-circuit and off-the-air applications.

In the arca of video recording, 19 of the 32 educational to stations on or sclieduled to be on the air have GPL recorders and a number of others are expected to acquire these systems.

\section*{Stewart Pardee}

General Precision Laboratory Pleasantville. N. Y.

\section*{A List of -Istors}
("Fast Cryogenic Memories Bow," Oct. I '57, p 8) reports a new electronic component, the persistor. Present terminology of -istor components is continually growing into an intriguing list. To keep a finger on the pulse of all that is happening in electronics is an arduous task indeed. The rapid advancement of research, design and development is outpacing the ability of the individual design engineer to catch up with all that is new.
This list of -istor components may stir the curiosity of some who may not be familiar with all the names.
The transistor consists of a

American Blower suggests: PAGKAGED CURE FOR HEAT-GAUSED "BUES"

Countless "bugs" in delicate electronic equipment result from deterioration of components from their own heat. Cure: Dependable cooling, provided by an American Blower packaged airmoving unit. Numerous sizes and designs to choose from-many can be modified as needed. Or, if necessary, we can start from scratch and design a fan or blower to fit your exact needs. For individual specification bulletins, write, detailing your requirements. American-Standard,* American Blower Division, Detroit 32, Michigan. In Canada: Canadian Sirocco products, Windsor, Ont.

\section*{FOR COOLING ELECTRONIC EQUIPMENT IN AIRCRAFT}

Small aluminum axial-flow fan. Capacity: \(110 \mathrm{cfm} @ 0.6^{\prime \prime} \mathrm{sp}\) to 165 cfm , free delivery @ 7250 rpm . Write for Bulletin 3812.

FOR RADAR COOLING

Aluminum pressure blower. Capacity: 984 cfm @ 1" sp to 536 cfm @ \(7^{\prime \prime} \mathrm{sp}\) @ 3450 rpm . Write for Bulletin 4512.
* Americur - standard and standardo are trademarks of American Radiator \& Standard Sanitary Corporation.

GOLD, SILVER, PLATINUM, RHODIUM, PALLADIUM...the precious metals generally cost the same, no matter where you buy them. But you do get more for your money when you buy precious metal plating from HarperLeader. You get the full benefits of the engineering, metallurgical, and other highly specialized services of Harper-Leader's technical staff.

Send for Bulletin E-58

\section*{(1 HARPER-LEADER, INC.}

Waterbury 20, Conn. CIRCLE 332 READERS SERVICE CARD

\section*{HOW RELIABLE}

ARE

\section*{PRINTED CIRCUITS...}
with plated-thru holes? What are realistic specifications?
Find out af Booth \#2001 at the IRE Show or write to

\section*{ELECTRALAB INC.} INDUSTRIAL CENTER NEEDHAM HEIGHTS, MASS.
SUBSIDIARY OF FARRINGTON MFG. CO. CIRCLE 333 READERS SERVICE CARD

dISTINCTIVE FEATURES:
- SNAP ACTION to eliminate chatfer
- Single pole, double throw or either normally open or normally closed contacts
- Wide temperature range
\(\left(-65^{\circ}+125^{\circ} \mathrm{C}\right)\)
- Pre-set time delay periods from 3 seconds to 5 minutes
- Available in metal or glass envelope or dust light cover

\section*{TIME DELAY RELAYS}

For Every Requirement
(Industrial or Military)
Whether it's a standard Curtiss-Wright thermal relay ready for immediate delivery or one that requires special custom design for your application, our engineers can provide it. Our design and production experience is at your disposal to solve any problem in time delay relays.

Write Component Sales Department

\section*{ELECTRONICS DIVISION}

CUMiISs:MIIBHII
corporation - carlstadt, n. 1.

\section*{TOROIDS}

Built to individual specifications both military and commercial regardless of order size. Wire sizes 18 to 42 AWG. Plain. wrapped, waxed, varnished or encapsulated.
Extensive test and production facilities include modern toroidal winding machines, machine shop, tool room, impregnation and encapsulation equipment.
Send drawings or specifications for quotation. For quality, dependability, low cost-

Branch factory: Cassville, Wise

\section*{SPECIFICATIONS:}
- Min. finished hole size : . 18 in.
- Max. finished toroid O.D.: 4.0 in .
- Winding speed: 1500 turns \(/ \mathrm{min}\).
- Wire range : AWG 44 to AWG 26
- Dual, self-checking turns counting system
- Loading (wire length) counter
- Core range: \(1 / 4^{\prime \prime}\) I.D. \(104^{\prime \prime}\) O.D. \(1011 / 2^{\prime \prime}\) high

\section*{LABORATORY USE}
- Change wire and core size in 45 sec.

\section*{PRODUCTION USE}
- 1500 turns per minute
- Insert core and load in 20 sec

PRICE: \(\$ 1200\) includes all rings, counters and accessories

\section*{IMMEDIATE DELIVERY. Literature on request \\ ARNOLD MAGNETICSCORP. \\ 4815 W. Jefferson Blyd., Los Angeles 16, Calif.}

REpublic 1.6344
CIRCLE 336 READERS SERVICE CARD

\section*{POTTING COMPOUNDS YOU CAN DEPEND ON}

Send for brochure on complete line showing specifications

BIWAX
CORPORATION
audio, power and ballast transformers; capacitor and component assemblies; solenoid coils; stator windings; terminal exposures and many others.

Available in both thermoplastic and thermo-reactive types with or without heat conductivity properties. High and low temperature resistance.

3446 Howard St., Skokie, Illinois
Phone AMbassador 2-3339

CIRCLE 337 READERS SERVICE CARD

\title{
FOR PRINTING
} of ELECTRONIC COMPONENTS of almost any shape:

\section*{REJAFIX MARKING MACHINES}

Hand-operared, semi-automatic and fully automatic models
Why not send us samples of your products. They will be test-printed and returned to you for your examination!

Est. 1922
POPPER \& SONS, INC.
300 Fourth Ave. New York 10, N. Y.
specially processed semiconductor, cither germanium or silicon, which can amplify clectrical currents. At low frequency and low power, where vibration resistance is important, the transistor can surpass the vacuum tube, but it is a poor performer at high frequencics and ligh temperatures.

The spaccistor takes over at high frequencies where the trausistor fails duc to slow motion of the charge carricrs through the base region. A strong accelerating field in the base region accelerates the charge carriers to permit amplification at 10,000 mac. The upper temperature limit is 500 C against 200 C for the transistor.

The dymistor is a semiconductor diode with the unique characteristic of having two distinct conductivities in the reverse direction. It can switch from blocking to hyperconductive condition in less than a microsecond. It caln operate with continuous current as high as 11 amperes.

The magnistor is a small ferrite reactor with fast response. It can control pulses of one or two microseconds duration.

The nesistor was introduced by Robert G. Polll last August. It is a semiconductor with a wide range of negative resistance characteristics.

The thermistor is a well known versatile component with negative resistance-temperature characteristics.

The varistor is a voltage-sensitive nonlinear resistor made of thyrite compound.

The precistor is a boron-carbon resistor which maintains a high degree of accuracy under varying temperaturcs; it is used where resistance stability is cssential.

The persistor is a small bimetallic loop which operates at temperatures close to absolute zero. Its resistance is zero in the superconductive state and a current started by a pulse will continuc to flow unhindered in the motallic loop until reversed by another pulsc. A lialf million persistors can be assembled in a cubic foot of space.

\section*{John J. Rivera}

Pederal Telecomiunications
Labs
3fileville, N.J.

RAYTHEON HAS NEW ADVANCED PROJECTS in many areas ol electronies from missiles and doppler radar to microwave tubes and communications.

MIEROWAVE-Development of systems, antennas, tubes, ferrites, plumbing.

CIRCUIT DESIGN-Advanced military and commercial electronic equipment.

PRODUCT DESIGN-Electronic equipment microwave and electron tubes, gulled missiles.

SYSTEMS-Radar communications, missile, sonar, countermeasures, alrborne electronics.

\section*{THIS CAN BE YOUR BIG YEAR}

1958 will be a turning point in the lives of many engineers. Thoughtful, ambitious men with specialized experience have been carefully analyzing their abilities in the light of present responsibilities and the opportunities that exist in the organizations in which they work. To what extent are you using your experience and aptitudes? How can you accomplish more in 1958-where you are, or in a new situation?

Raytheon offers a wide choice of rewarding futures for the experienced engineer. Projects include guided missiles (Army Hawk and Navy Sparrow III), radar, communications, semiconductors, microwave tubes and electron tubes. We'd particularly like to talk to \(y o u\) if you have a background in microwave, circuit design, product design, systems engineering, production or manufacturing engineering, optics and infrared, heat transfer, engineering administration, patent engineering, engineering writing.

SEE US AT THE WALDORF DURING I.R.E. Members of our engineering staff will be available to talk with you at the Raytheon suite. Ask for Len Landall or Ed Herlin.

\title{
MANUFACTURERS' REPRESENTATIVES
}

\author{
IN THE ELECTRONIC INDUSTRY
}

As a service to readers, ELECTRONICS presents the advertisements for some of the leading manufacturers' representatives in the electronic industry. These firms are qualified to help the Manufacturer with his distribution problems; the Buyer with his product needs.

SERVING
DELAWARE, MARYLAND DISTRICT OF COLUMBIA AND
NORTHERN COUNTIES IN VIRGINIA AND WEST VIRGINIA TELETYPE NO. WA-559 REPRESENTING -

HEWETT-PACKARD CO.
SORENSON \& COMPANY INC.
VARIAN ASSOCIATES BETA ELECTRIC CORP. ELECTRO-MEASUREMENTS INC. GERTSCH PRODUCTS INC.

SENSITIVE RESEARCH INST. CORP.
SANBORN COMPANY
KINTEL (formerly KAY LAB)
JOHN FLUKE MANUFACTURING CO.
BUDD STANLEY COMPANY, INC. WEINSCHEL ENGINEERING CO. Complete Recalibration LaLoratory

\section*{Professional Services}

CROSBY LABORATORIES, INC.
Murray G. Crosby \& Staff Radio - Electronics
Research Development \& Manufacturing Communications. FM \& TV Robbins Lane, Hicksville, N. Y. WEHs 1-3191

DUNLAP ELECTRONICS, INC.
MANUFACTURING FACILITIES
ocializing in Pinued \& Whed circuit
Specializing in Printud \& Eiched Circuits
Transistors-I'ulse Teclmiyup-Enviromuental
Test Failities
Say Service on Printed Circuit Samples 764 Ninth Street AT 8-0801 Des Moines, Iowa

\section*{ELECTRONIC RESEARCH ASSOCIATES, INC.}
'TRAXSISTORIZE' YOUR PRODUCT: Complete Serpice in consulling, research, developproducts and instrumentation.
6: Factory Place
CFnter 9-3000
Cedar Groove, N. J

ERCO RADIO
LABORATORIES, INC.
Radio Communications Equipment Engineering - Design - Development - Production Our 27 th Fear in Air to Ground
Communicatlon and Radio Beacons Garden City - Long Island - New York

\section*{MEASUREMENTS CORPORATION}

Research \& Manufacturing Engineers
Harry W. Houck
Spechalist in the Design and
Development of Electronic Test Instruments Boonton, New Jersey

\section*{ALBERT PREISMAN}

\section*{Consulting Engineer}

Tellectsion, Pulse Techniques, Video
Amplifers, ratent technical consultation. 610 St. Andrews Lane, Sitver Spring, Maryland

\section*{YARDNEY LABORATORIES}

Research-Design-Development
Electro-Chemioal Generators of Energy
40-18 I,eonard Street
WOrth 6-3100
New York 13, N. Y.

\section*{CONSULT}

THESE SPECIALISTS:
Let them save your time by bringing their broad experience in their specialty to bear on your problems.

\section*{- CONTACTS}

Available in Standard and Custom Ranges
Any Size, with Special Scales
Any Quantity from Large Slock

\section*{QUALITY ELECTRIC CO. \\ 3700 S. broadway los angeles 7, calif. ADams 2:4201}

\section*{EMPLOYMENT OPPORTUNITIES}
(Continued on pages 331-33i)

\section*{WANTED \\ ELECTRICAL ENGINEER \\ or \\ PHYSICIST}
with at least bachelor's degree and 4-6 years experience in general electronics. Background in aircraft and infrared is desired.

Please send resume to:
Technical Personnel Representative
Engineering Research Instifute
The University of Michigan
Willow Run Airport
Ypsilanti, Michigan

\section*{ASSISTANT MANAGER and PROJECT ENGINEERS}

Design analog and digital computers, processing equipment involving circuits, components, semi. conductor elements in shift registers. etc. Knowl. equipment essential. Salary \(\$ 10.000\) to \(\$ 12.000\). equipment essential Salary electromechanical semblies using somi-conductor circuitry; familiarity. with synchros, resolvers, transistors desirable. Assistant \(\$ 1000\) to \(\$ 12,000\)
Assistant Laboratory Manager for Kinescope eporters, color T. V. : infrared experience for systems and circuitry for underwater, airborne, tac tical and training equipment. Salary up to \(\$ 15.000\). Age 28 to 38 preferred
Manapement pays all fees
THORNDIKE DELAND ASSOCIATES 1440 Broadway, N.Y.C. LOngacre 4.8100

ADDRESS BOY NO. REPLIES TO: BOA No.
Clawsifted Adr. Div of this publicntion.
Senf to ofire nearest you. nox 12
NE YORK 36: P. 0. nox
CHICAGO 11.530 X. Wichigan Ave.

\section*{POSITIONS WANTED}

Electronics Engineer, Graduate, 37, 13 years development UHF, Radar, Servo. computers, transistors. Desires position 12-18 months in France or West Germany. PW-7391, Elec. tronics.
Chief Engineer, 16 years experience-last 7 in management-desires to make change. clear controls, and commercial test equipment. Business \& professional environment of prime importance. Present location NNJ. PW-7445, Electronics.

\section*{ACCURACIES ON ORDER OF 1 PART IN 10 MILLION}
required for portions of G.E.'s ICBM ATLAS Guidance System

Delivering an ICBM over a \(>5000\) mile trajectory into the target area demands a guidance system of unprecedented accuracy and this is the calibre of the electronic system General Electric engineers are creating for ATLAS.

But achieving designated accuracies and reliabilities in the laboratory is not enough. These high standards must be maintained in actual operational environments, with virtually no interruption or degradation.

\section*{CAREERS IN STEP WITH THE FUTURE}

Engineers who join the Missile Guidance Product Section of G.E. are doing more than hastening development of one of the nation's most urgent programs - guidance for ATLAS. As Manager of the Section Richard L. Shetler states: "With this job behind us, there will remain no significant obstacle to the practical guidance and navigation of other space vehicles."

\section*{PROGRAM ACCELERATION OPENS UP WIDE RANGE OF POSITIONS IN:}

Systems analysis, evaluation \& integration Systems and component reliability Transistorized circuits, pulse circuitry, IF-Video circuits
RF and Microwave components \& plumbing Communications control devices Doppler radar design \& development
Digital data processing techniques, data transmission involving D \& D of ground-based \& airborne antennae, transmitters, receivers; application of transducers, transponders, etc.
Test operations, including planning, range instrumentation \& test execution; development \& application of automatic test equipment
If you feel that your special skills and interests fit you to work in any of the above areas, why not write us in detail? Qualified candidates will be invited to visit our facilities to meet with technical managers and gain first hand knowledge of the living advantages of our locations at Syracuse and Utica, N. Y.

Write in complete confidence to Mr. E. A. Smith, Room 3-E
MISSILE GUIDANCE PRODUCT SECTION

\section*{.. . but it may be the most significant book you've ever read}

There's a whole new way of life for you between the covers of "Opportunities Abound at Bendix Missiles" -and a three-cent stamp will bring it to you by return mail. If you have the qualifications, Bendix can offer you an enviable career in the guided missiles field, working with men who have been responsible for some of the most significant missile engineering advances of recent years.

At Bendix, you will be in a major missile program. Bendix as prime contractor has responsibility for the Talos guided missile, one of our most vital defense weapons. Using
the finest equipment, you'll learn fast and grow fast, both professionally and financially. There's opportunity here-opportunity to do important, stimulating work.

You'll like living in the Middle West. The climate is pleasant and Chicago, Lake Michigan and other fine recreational areas are easily accessible. There is also opportunity locally to pursue graduate engineering studies. Mail the coupon below. The book may not be a best seller, but it has been the instrument which started many a talented engineer on a fine carecr in engineering.

PRIME CONTRACTOR FOR THE TALOS MISSILE

\section*{Bendix Products Division-Missiles}

403R S. Beiger St., Mishawaka, ind.
Gentlemen: I would like more information concerning opportunities in guided missiles. Please send me the booklet "Opportunities Abound at Bendix Missiles."

NAME

ADDRESS

CITY

Something of unusual interest is happening in RCA COMMERCIAL ELECTRONICS

FOR ELECTRICAL ENGINEERS MECHANICAL ENGINEERS

RCA has immediate openings for research and development engineers who are challenged by the unique problems of commercial electronic systems. You will find diversified work in microwave and mobile communications, digital computers, broadcast studio equipments, transmitters, antenna design, closed circuit TV, and electronic packaging. Of particular interest are positions for senior engineers in advanced microwave and general circuitry.

Join the imaginative, creative men already probing deeply into this field with an electronics pioneer and leader!

To arrange confidential interview, call collect, or send resume to:

Mr. F. T. Fianagan, RCA, Dept. ZC-7C
Bidg. 10-1, Camden 2, N.J. WOodiawn 6-3300

RADIO CORPORATION OF AMERICA

INDUSTRIAL ELECTRONIC PRODUCTS

\section*{ELECTRONIC ENGINEERS}
needed at MARTIN

New long-term developments at Martin in the field of electronics have created exceptional opportunities for top electronic engineers. At least 5 years experience required. Salaries from \(\$ 9,000\) to \(\$ 12,000\).

\section*{Openings}
in these areas:
- Circuit Design
- Systems
- Inertial Guidance
- Countermeasures
- Digital Computers
- Test Equipment Design

\section*{WRITE TO:}

William Spangler, Manager Professional Employment The Martin Co. Baltimore 3, Md.

HERE ARE

\section*{NEW ENGINEERING POSITIONS AT RCA IN ADVANCED MILITARY ELECTRONICS PROJECTS}
at Mooresfown, N.J.
1. ELECTRONIC DESIGN MANAGER
2. RADAR PROJECT SUPERVISOR
3. TRANSMITTER DEVELOPMENT ENGINEER
at Princeton, N.J.
4. COMPUTER RESEARCH SPECIALISTS
at Camden, N.J.
5. INFRA-RED SYSTEMS LEADER
6. COMMUNICATIONS PROJECT LEADER

All of highest importance to national security.
Starting salaries: non-managerial to \(\$ 15,000 \ldots\) managerial open.
Seven locations... all with projects that will contribute to your professional advancement. Well-rounded, liberal RCA benefit program.
plus these other fields of engineering now open at rca
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Surface Radar & Missile Electronics & Aviation Electronics & Computers & Digital Data Handling Devices & Communications Acoustics & Advanced Weapons Systems \\
\hline \multicolumn{8}{|l|}{MANAGERS} \\
\hline Systems & M & & c & P & & CN & P \\
\hline Project Engineering & M & M & & & & & \\
\hline Design and Development & M & MW & c & & c & c & \\
\hline \multicolumn{8}{|l|}{ELECTRICAL ENGINEERS} \\
\hline Systems & M & CMW & CL & CMP & CMT & CNT & CF \\
\hline Project Engineering & M & mw & c & M & M & & \\
\hline Design and Development & canw & cw & CL & CMP & CM & CNT & CP \\
\hline \multicolumn{8}{|l|}{MECHANICAL ENGINEERS} \\
\hline Systems & M & M & \(c\) & mp & M & & CP \\
\hline Project Engineering & M & \(L\) & c & M & M & & \\
\hline Design and Development & CBA & CLM & c & CMP & CM & c & CP \\
\hline \multicolumn{8}{|l|}{PHYSICISTS} \\
\hline Systems & M & cain & CL & CMP & Cmt & CNT & CP \\
\hline Project Engineering & * & W & c & & M & & \\
\hline Design and Development & CMW & cw & CL & CMP & CM & CNT & CP \\
\hline MATHEMATICIANS & M & M & & M & M & & P \\
\hline
\end{tabular}

LOCATION C-Camden, N.J. L-West Los Angeles, Calif. M—Moorestown, N.J.
CODE: N-New York, N.Y. P-Princeton, N.J. T-Tucson, Ariz. W-White Sands, N.M.
FOR INTERVIEW WITH ENGINEERING MANAGEMENT
Cull collect or send resume:

\begin{tabular}{c|c}
For Camden, Princeton or Tucson Positions- & For New York Positions- \\
To: Mr. F. T. Flanagan, RCA, Dept. X.2 C & To: Mr. E. Baggett, RCA, Dept. X-2 C \\
Bldg. 10-1, Camden 2, N.J.-WOodlawn 6-3300 & 75 Varick St., N.Y. 13, N.Y.-CAnal 6-4080 \\
\hline For Moorestown or White Sands Positions- & For West Los Angeles Positions- \\
To: Mr. D. D. Brown, RCA, Dept. X-2 C & To: Mr. R. W. Stephens, RCA, Dept. X-2 C \\
Moorestown, N.J.-BElmont 5-5000 & 11819 W. Olympic Blvd., Los Angeles 64, Calif. \\
BRadshaw 2-8841
\end{tabular}

\title{
Sylvania Offers Exceptional Engineers NEW PROJECTS, PHYSICAL EXPANSION... PLUS 3 VITAL INGREDIENTS
}

\section*{2nd \\ - a chance to exercise individual abilities}
(Ask your friends who are already with Sylvania if it's only talk that a man gets ahead at Waltham just as far and as fast as his own abilities take him.)

\section*{3rd}
- a healthy corporate growth
(Sylvanla has never mushroomed uncontrollably - as a result we have never had to cut back drastically either. d \(\$ / \mathrm{dt}\) has steadily and healthily increased ever since 1909.)

If you're looking for hard work (we make no bones about this) and meaningful reward with a feet-on-the-ground, growing organization, contact Sylvania Waltham today.

\section*{SR TRANSISTOR ENGINEERS}

Circuitry, systems, hardware.
SR MECHANICAL ENGINEERS
Design \& packaging airlorne \& ground electronic \& electromechanical equipment. \(5-10\) years' pertinent experience required.

\section*{SR COMPUTER ENGINEERS}

Transistorized digital design, magnetic core memory \& input-output systems. Experience required in digital computation \& data processing, prototype design, systems evalnation \& testing.

\section*{SR MICROWAVE ENGINEER}

Development of crystal mixers, detectors, filters, transmission line couplers, harmonic generators \& special transmission circuits.

\section*{SR SYSTEMS ENGINEERS}

New systems techniques \& applications.
MISSILE SYSTEM DEVELOPMENT GROUP LEADERS
Low noise receivers, pulse transmitters, broad band techniques, antenna arrays, phase measurement \(\&\) other instrumentation.

MISSILE SYSTEM ANALYSIS GROUP LEADERS
Radar \& antenna system preliminary design.

Send your resume to
Graydon A. Thayer (your confidence will be respected)

Waltham Laboratories
ELECTRONIC SYSTEMS DIVISION
sylvania electric products inc.
100 First Avenue - Waltham, Massachusetrs

\section*{ANTENNA and ELECTRONIC ENGINEERS! ARE YOUR HANDS TIED? \\ \\ DO YOU WANT FREEDOM FROM A ROUTINE JOB?}

If so
MEMCO

\section*{offers you}
- FREEDOM from red tape
- FREEDOM from stagnation
- FREEDOM to use your creative engineering talents
- FREEDOM to work on all phases of your project

To cut the knot write, wire or call
Mr. J. E. Richardson, Personnel Director

\section*{MARYLAND ELECTRONIC}

Manufacturing Corporation
5009 Calvert Rd., College Park, Md. WArfield 7-9200
(A suburb of Washington, D.C.)

\section*{An Important New Title at General Electric's Heavy Military Electronic Equipment Department}

Gencral Electric right now offers technical writers an opportunity for increased professional status and growth potential. Newly designated positions...engineertechnical publications...require above average technical competence for the preparation of instruction books and technical manuals for HMEE's complex military electronic systems.
engineers technical publications prepare creative manuscript for operations, training and field maintenance handbooks. Subject material includes circuit theory, systems philosophy, operation and installation of heavy radar, sonar, air traffic control, ICBM guidance systems.
engineers technical publications
must have the academic and practical know-how to gather and document material through daily contact with design enginecrs, factory test, product service and manufacturing personnel, while interfering as little as possible with the normal daily work of these groups.

Requirements: - U.S. citizenship
- Ability to secure SECRET clearance - BSEE or BS Physics or equivalent technical competence. - Field experience (e.g. military electronic equipment maintenance) highly desirable. - High talent in assimilation, organization and presentation of technical material.

Expense-paid interviews for qualified applicants. Please send your resume to Mr. George B. Callender.

\section*{HEAVY MILITARY}

ELECTRONIC EQUIPMENT DEPT.
GENERAL ELECTRIC

\section*{Information manual} about APL and its

\section*{current programs}

\section*{now available}

The Applied Physics Laboratory (APL) of The Johns Hopkins University is unique in that we are neither an industrial nor an academic organization, but rather a composite, having drawn freely from the methodologies of each.

For thirteen years APL has pioneered in guided missiles. Today we are engaged in a broad program of \(R \& D\) for the Navy; in addition, we are responsible for technical direction of industrial and academic contractors in developing the Terrier, Talos and other major weapons and weapons systems. Our staff members enjoy not only the stimulus of association with their immediate colleagues at APL, but also with those in other organizations of considerable stature.

\section*{NEW 30-PAGE PUBLICATION}

A few positions for senior engineers and scientists are now open. Information on our accomplishments and goals is available in a new 30 -page publication, just off the press.
In it staff leaders representing each of the various disciplines and fields outline the nature of their programs. Information on our new laboratory in programs. Information on our new laboratory in
Howard County, Md. (equidistant between BaltiHoward County, Md. (equidistant between Balti-
more and Washington) is also included, together with facts on the outstanding communities in which our staff members live.

Quantity is somewhat limited. May we suggest you send now to: Professiona! Staff Appointments

\section*{The Johns Hopkins University Applied PhysicsLaboratory}
P
P
H
PHOENIX
\(\mathbf{N}\)
\(\mathbf{1}\)
\(\mathbf{X}\)

At the crossroads of opportunity for men with vision in Electronic Engineering

\section*{GOODYEAR AIRCRAFT CORPORATION}

\section*{ELECTRONIC LABORATORY}

\author{
Arizona Division
}

Litchfield Park, Arizona
A Subsidiary of the GOODYEAR TIRE \& RUBBER CO

\section*{WE HAVE OPENINGS IN OUR MODERN LABORATORIES FOR ADVANCED ENGINEERS IN ELECTRONIC RESEARCH}

Long range research and development projects

University of Arizona graduate studies available under company financed evening courses.

Leisure Living At Its Best "In the Valley of the Sun"

Modern Inexpensive Housing

Send resume to: A. E. Manning
Engineering and Scientific Personnel

\section*{GOODYEAR ARRCRAF} LITCHFIELD PARK PHOENIX, ARIZONA

Similar opportunities available in our
Akron, Ohio Laboratory

\section*{Excellent opportunities of IBM}

\section*{SOLID-STATE DEVELOPMENT}

Excellent opportunities for well-qualified men with solidstate experience are now open at IBM, a recognized leader in the rapidly expanding electronic computer field. Current openings at IBM's Product Development Laboratory at Endicott, N. Y., are in the following:
- Solid-state physics
- Semi-conductor device evaluation
- Circuit applications of magnetic devices
- Circuit applications of semiconductor devices
- Magnetic device evaluation
- Physical chemistry

Challenging assignments in developing solid-state circuits, using both magnetic and semi-conductor devices. Heavy interest in theoretical analysis and evaluation of pulse circuit operation and components.

\section*{Qualifications}

Degree in: electrical, mechanical or chemical engineering, physics, engineering physics, mathematics, metallurgy or chemistry, and
At least one year's experience in the design and development of solid-state devices or circuits.
FOR DETAILS, just write, outlining background and interests, to:

Mr. W. R. Yaple, Dept. 554-0
Product Development Laboratory
IBM Corporation
Endicott, N. Y.

\section*{ELECTRONIC ENGINEERS}

Transistor Techniques
Interesting positions are now available in Design of Transistor Equipment. The broad noture of the work and the variety of individual assignments creates exceptional opportunities for advancement.

Experience in one of the following areas is necessary:
1.--DESIGN OF RF AMPLIFIERS, OS. CILLATORS AND MIXERS.
2.-DESIGN TEST AND EVALUATE PULSE CIRCUITS, SUCH AS MULTIVIBRATORS, BLOCKING OSCILLATORS, GATING NETWORKS AND VIDEO AMPLIFIERS

These positions require a minimum of 3 years Design experience, preferably 5, at least 1 year of which has been specifically in the design of transistor pulse circuits.

Call collect or send resume po:
MR. JOHN R. BARR
Director Salaried Personnel

\section*{PHILCO}

Government \& Industrial Div. 4700 WISSAHICKON AVE.
Phila. 44, Pa. TE 9-4000, Ext. 601

\section*{FIELD ENGINEERS FOR LIBYA}

Senior Telecommunications Engineer
\% Full responsibility for all work necessary to the conspletion of the installation and comunissionmg of a motern tele-communtications sastem. Graduate E. E. or equivalent with minimumt 10 seats experience in similar type work. Thoothghy familat with field construction and installation techmules and Anerican, british and/or Lurovean commmications
apinr Trnnnsatter Fnoinepr
Senior Troposcatter Engineer
F Responsibie for the installation. commissioning and performance testing of 1 KW and 10 KW ropospheric scatter madolink Granhate E. F.. or equiralent with minimum of 5 years experiPence with radio-links systems is rexuired. Must Ghave somed theoretical background in radioKelay ant propospheric scatter rechnolory or shomb have had installation and operational experimice wath high power water-comed trans, fesiralide supervisory and traluing ability * desirable.

Interesting foreign assignments with the opportunity to display and utilize your abilities in engineering work of a non-routine nature.

Send complete resume ant salary requicments to D. A. Doule

HYCON-PAGE LARC
238 Main Street, Cambridge, Massachusetts

\section*{ELECTRONIC ENGINEERS}

Interested in creative design responsibilities in the field of
```

AIRCRAFT ELECTRONIC SYSTEMS

```


Bell Helicopter Corporation is looking for graduate engineers with experience in design and development of microwave ranging systems, aircraft automatic stabilization systems, analogue computor simulation systems, system analysis, or circuitry design.

Send resume to
Engineering Personnel Manager
BELL HELICOPTER CORPORATION
Fort Worth, Texas

\section*{ELECTRICAL DESIGN ENGINEER AND SYSTEMS ANALYST}

Continental Motors has need for an experienced Project Design Engineer for work in its research and development facilities in Detroit. The right man has an excellent opportunity to utilize his full capabilities in the design and development of such components as static voltage regulators and engine controls. The work will include:
- Fundamental Design
- Systems Design and Analysis
- Servo-Mechanism Design
- Analysis \& Design of General Characteristics
- Control Circuit Design
- Application of Electronic Components (Transistors, Magnetic Amplifiers, Selenium Rectifiers, etc.)
- Supervision of Draftsmen and Engineering Technicians

Applicants must have a degree in Electrical Engineering

\section*{Send resume or contact Mr. B. D. Johnson,}

CONTINENTAL MOTORS CORPORATION
8647 Lyndon Avenue
Detroit 38, Michigan

\section*{NEEDENGINEERS?}

An employment advertisement in this EMPLOYMENT OPPORTUNITIES section will help you find the engineers you need. its an inexpensive, time every enpineering iob in the electronice feld. The selective circulation of ELECTRONICS offers you an opportunity to choose the best qualified men available.

\section*{ENGINEERS}

If you have heen looking for an Employment Agency that is skilled in the STATE OF THE ART of Technical Recruitment and RELIABILITY OF IN. ORMATION concerning positions, why not combinnicate with us at once?
ADL POSTIONS FEE PADD

FIDELITY PERSONNEL SERVICE
1218 Chestnut St. Specialist in Aviation, Electronics and Nucleonics.

\section*{SEARCHLIGHT SECTION}
(Continued on following pages)

\section*{FACTORY FOR SALE}

Modern building ideal for electronics manufacturer. \(15,500 \mathrm{sq}\). ft. floor space. 34,000 sq. ft. land. Good Denver location. Immediate possession. Priced for quick sale.

Write H. Abramowity, Treas.
CARLON PRODUCTS, Cleveland 5, Ohio

\section*{LAMINATED PLASTICS}

\section*{at hig mavings! Any quantits, prade or thiokness} for your tooling or proxuction needs. \(100,000 \mathrm{lbs}\). Atso 50.000 flrs. cut-ofts in sheet, rod and tubing. at achlitional sasings! Products of leading manufacturers. Top Industrial Sales. Inc., 345 Canal St., N. Y. 13. N. Y. Olgby 9.3080.

\section*{BEARINGS -}

Miniatures: Precísion: Stainless Steel: Special Sizes, Tolerance \(\&\) Construction.

RAWAY BEARING CO.
4.8 Forsythe St. Walker \(5-8150\) N. Y. C. 2, N. Y.

> Prompt Delivery at Lowest Prices FOR ANY ELECTRONIC EQUIPMENT and PARTS COMMERCIAL AND MILITARY
> ELECTRONIC SURPLUS BROKERS
> 148 Chambers St., N.Y.C. 7 REctor 2-1591 We Idenfify Government Sfock Numbers

\section*{NEW YORK'S RADIO TUBE STBGE EXCHANGE NEW \& UNUSED SURPLUS}

RADAR \& MICROWAVE EQUIPMENT \& TEST EQUIPMENT STANDARD LABORATORY RECEIVERS
 AN/APR4 complete with five
tuning units \(\mathbf{3 8}\) to \(\mathbf{4 0 0 0}\) m.c.
AN/APR5A, \(3000-6000\) m.c.
AN/APR10, \(2000-4400\) m.c.

\section*{NEW}

TS-147 X TEST SET Hard-to-get X-Band SIGNAL GENERATOR Now Available Test Set TS 147 UP is a portable Microwave Sigulal Generator designed
for testing and adjusting beacon equin. ment and radar systems which operate within the freatency range of 8500 MC to 9600 MC

Field type X Band Spectrum Analyzer, Band 8430-9580 Megacycles.
\begin{tabular}{|c|c|c|c|c|}
\hline OTHER & TEST EQUIP & ENT USED & CHECKED & OUT SURPLUS \\
\hline TS3A/AP & T35/AP & TS110/AP & TS239C & APA10 \\
\hline RF4/AP & TS36/AP & TS111 & TS251 & APA 38 \\
\hline TS12/AP & 1 96A & TS117 & TS254 & APS3/APS4 \\
\hline TA13/AP & TS-45 & TS125/AP & TS258 & APT2-APT5 \\
\hline TS14/AP & TS46 & TS126/AP & TS259 & BC152C \\
\hline TS15 & TS47/APR & TS173 & TS270 & BC788C \\
\hline TS16 & TS61 & TS174/AP & TS299 & UPN1 \\
\hline TS27 & TS62 & TS175/AP & TS419 & UPN7 \\
\hline TS28 & TS69/AP & TS182 & TS497E & UPN30 \\
\hline TS33/AP & TS100 & TS186 & TS53S & UPN33 \\
\hline TS34/AP & TS102A/AP & TS204 & TS545 & URM64 \\
\hline TS34A/AP & TS108 & TS226 & TF890/1 & and many other \\
\hline
\end{tabular}

\section*{NEW \\ MICROWAVE TEST EQUIPMENT \\ TSI48/UP SPECTRUM ANALYZER}

\section*{Phone: ORegon 4-7070}

119 PRINCE 5 T.
NEW YORK 12, N. Y. Cable: TELESERUP

\section*{COMMUNICATIONS EQUIPMENT \& TEST EQUIPMENT \\ SEND US YOUR LIST OF REQUIREMENTS}

ALL THE BEST \& FINEST AT LOW PRICES
Also Maintenance Manual AN/ARC-27 1953 Revision
MAIL, WIRE OR TELEPHONE FOR QUOTE
MONTGOMERY EQUIPMENT CO.
14315 BESSEMER \(\$\) T.
TEL: STafe 6-4657 Telegraph YHV Van Nuys

7/8" RIGIO COAX. 50 ohm. standard fitings. 10 cm stub. supported. 12 ft. lengil
\(\$ 34.50\) each. 12 It. length.

CRYSTAL MOUNTS
 Flange Inpat. vSW: bet er than 1.0 Mfk. Aintion.

S band. Tispe N. sors T'unes for xtal mazch.
A vall. negative or positive outpit. Netv. \(\$ 15.00\) each.

\footnotetext{
COMPLETE RADAR PLUMBING FRONT END. c/o 2 K 25 local osc. mount, 2 Kk 25 beacon mount,
 anlete latioratory liench set up. Irrice incl. du-
\(\qquad\)
TOPWALL HYBRID JUNCTION. \(8500-9600 \mathrm{ml}\) 1.. 5 wg size. Broad bindel better than \(16 \%\). Alumi \(\underset{\text { with junction } \$ 5.00 \text { nevo }}{ }\)
BROAD BAND BAL MIXER using short slot hybrict Found trpe broad band dhal balanced ervstal holder BENDIX GYRO SERVO UNIT. Combined horizon gyro. Antosyn © filt correction motor. Maintains nt stamization of radar intemna, etc. Pionse
}

F-28/APN-19 FILTER CAVITY
 over hand Single tumed filter for trex channelling

\section*{SCR 584}

\section*{RADAR TRAILER}

IN STOCK AS NEW-COMPLETE FULLY EQUIPPED. 10 CM . SEARCH AND TRACK. PPI.
A RARE OPPORTUNITY. CALL US
VARIAN KLYSTRON VAG312/V57. 8.5-10knce 1 smber out.put.
slieet, \(\$ 125.00\)
RT39/APG-5 10 CM RADAR. Complete S band hr paclage. Lighthonse 2 C 41 xmitr. \(2 \mathrm{C} \downarrow 3\) vert TII, 82 2: pulser, minisuture 6 AK5 5 IF strip Press \(12^{\prime \prime \prime}\) dia. \(2 \pm^{\prime \prime}\)

\section*{RADIO RESEARCH IHSTRUMENT CO.}

\section*{550}

FIFTH AVE. NEW YORK JUDSON 6 -4691

\footnotetext{
If surplus electronics acan meet your needs, get it from our new location, 7035 Laurel Canyon, No. Hollywood Cal.-the largest, most extensively stocked electronics warehouse in the world! Ask for CATALOG 116. It is loaded with superlative buys!

> ARROW SALES, INC.

Box 3007-E
No. Hollywood, Cailf
}

\section*{ETUBES \\ INSPECTED \\ GUARANTEED！！}
\begin{tabular}{|c|c|}
\hline & \\
\hline & \begin{tabular}{l}
 ºini以気拥 มaw \\
 \\
 \\
 \\
 \\
 まuta Max \\
 \\
 \\

\end{tabular} \\
\hline & \\
\hline
\end{tabular}

\section*{COMMUNICATIONS EQUIPMENTCO.}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{APS-1S SPARE PARTS} \\
\hline \multicolumn{4}{|l|}{CU.73/APS-15A, SCS \(\because 2 Z 3265-73\) right angle bend E plane, \(61 / 2^{\prime \prime} \times 10^{\prime \prime}\), whith ditectional coupler on \(61 / 2^{\prime \prime}\) arm, type "s" talieall 20 th coupling. \$12.50 each} \\
\hline \multicolumn{4}{|l|}{Z-607 Dwg. Stmbol. Approx. 150 degree intid with 90} \\
\hline \multicolumn{4}{|l|}{ting} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{\(2+/\) APS Wave-selec tor: approx. \(16^{\prime \prime} I_{\text {, with }} 15\) deg. lenti at center (E. plane) 20 (bl couplind}} \\
\hline & & & \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{Philco \(348-1425,180\) deg. bend. with pressule fit-} \\
\hline \multicolumn{4}{|l|}{Z.609. Philco \(318-1629.131 / 2^{\prime \prime}\) rum, with bend \(\$ 90\) deg. fuist (on \(31 / 2^{\prime \prime}\) section). .} \\
\hline \multicolumn{4}{|l|}{2-606: \(8^{\prime \prime}\) fun with 30 deg. |enin (E-plane) one end} \\
\hline \multicolumn{4}{|l|}{Philca 348-1427 E plane lent l1" x \(61 /{ }^{\prime \prime}\) " \$4.50} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CGI/APS-3 lhilco 358-5212, S-curve i6" with round contact flanges.}} \\
\hline & & & \\
\hline \multicolumn{4}{|c|}{DYMAMOTORS} \\
\hline \multicolumn{4}{|c|}{INPUT OUTPUT} \\
\hline & & & Price \\
\hline (GE) & 5.636 & 645.155 & 59.47 \\
\hline BDAR83 & 14 & 375 . 1,50 & 6.50 \\
\hline PCSX-15 & \(14 \quad 2.8\) & 220.08 & 8.95 \\
\hline DM3?A & 28 & 540 . 250 & 3.95 \\
\hline B. 19 & 129.4 & 275 . 110 & 5.50 \\
\hline \multirow[t]{2}{*}{DA.3A*} & & 500 . 050 & \\
\hline & \(28 \quad 10\) & \begin{tabular}{ll}
300 \\
150 & .260 \\
\hline 1020
\end{tabular} & 3.95 \\
\hline \multirow[b]{2}{*}{\[
\text { PE } 73 \text { CM }
\]} & & 14.5 & \\
\hline & \(28 \quad 19\) & 1000 . 350 & 10.50 \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{\(\begin{array}{cccc}\text { BDAR 93 } & 28 \\ \text { 2 }\end{array}\)}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{PE 94, Brand New............................ 5.95} \\
\hline \multicolumn{4}{|c|}{INVERTERS} \\
\hline \multicolumn{4}{|l|}{800-IB Input 24 vdc, 62A. Output: \(115 \mathrm{~V}, 800 \mathrm{cy}, 7 \mathrm{~A}\). phase. Used excellent} \\
\hline \multicolumn{4}{|l|}{PE.218H: Input: \(25 / 38\) vic. 92 amp . Dutput \(115 \mathrm{~V} 300 /\)} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{PE206: Input: 28 vde, 36 amps . Output: \(80 \vee 800\) ey}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{EICOR-ML 3011-5. Input: 13.75 V ; 18.4A, Output:} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{vac/400 cycle/3 phase. 115 va. Slightly usect, ex. cond.} \\
\hline
\end{tabular}

\section*{SPECIAL VALUES!}

WAVEGUIDE FLANGES

"K-BAND" WAVEGUIDE
Right Angle Bend \(E\) or H Plane, specify combination
of couplings desired. \(\$ 12.00\) Mitred Ellings desired.
TR.ATR.Section Choke cover..
TR-ATR-Section Choke to cover.
Flexible Section 1" choke to clioke
"S" Curvecthot

\section*{PULSE NETWORKS}

TEST EQUIPMENT
TS-I2/AP, Slottert line test set. Made of RGf \(52 / \mathrm{TT}\)
phimbing, and supphied as 2 major units: Unit 1 is a high gain, dual channel amplitier with a bow impedance input. Thr output is a 3 -inch meter which
reads Silf directry, The amplifier operates from carrying 400 cycles. Unit 11 is a small fransportahle compments: (Tri52/t) lea sloted fine wasegulde
one MX one MX \(588 / \mathrm{I}^{\mathrm{r}}\) spare carriage and probe: two prole transition irom liai52 to RG51 two UG80/U TrGig/T. transition, wavegnide to type \(\mathbf{N}\) : one CGR8/T resistive termination: one CGigo/U exten-
sion. Also included in the waregulde set are wavesion. Also inclucled in the waregulde set are wave
cride stands, cahles, hardware, crstals. P4E Synchroscope: 4 mic banduitth \(\$ 95.00\) ing speeds \(0.04 / 0.16600 .5 / 2\) in ver ineo umplitler. Writ. ing speeds \(0.04 / 0.166 / 0.5 / 2\) in per microsec* \({ }^{*} \$ 75.00\)
S \(/ 28 /\) UPM Synchroscope. Uses 5 CPl tube and he lisen as a regular scope with repetitive sweeps.
Simalgain is 100 with a handiridth of 5 mc. Tripgered
sweeps lange from 1 to 6 micro-sec per inch* \(\$ 135.00\)

\section*{343 Canal St., HewYork 13,M.Y. Depte E.3 Chas.Rosen Phone:CAnal G-4882}

\section*{RADAR}
P.P.i. REMOTE REPEATERS

VD 7" Upright
VE-7" Table Type
VF-5" "B" Scone " 5 " P.P.I.
VG -24" Plotting Table
VJ-12" Upright
VK-I2" Upright
VL-I2" Upright R.H.I. IND. All indicators are llov 60 cye

RDO \& APR-4
SEARCH RECEIVERS
The RDO is a very elallorate radar searech receiver greatly im-
provell over the APR. 4 . The set proved over the APR. 4 T. The set
uses APR-4 tuning units, but is uses APR-4 tuning units, but is much nore versatile, having inout mot output meter. automatic noise limiter and D.B. \(\begin{aligned} & \text { selectivity and sensitivity. The RDO is reconmender } \\ & \text { when only the very best will do. Input } 10 / 60 \text { evs. }\end{aligned}\)

\section*{BC-342 BC-312}
 Cye. These Sets Incorporate a Crystal Filter B.F. 0.
Antenna Tuner Etc. We Can Supply These Receivers Antenna Tuner Ete. We Can Supply Theso Receivers
in Large Quantities.

SCR-536 HANDI-TALKIE
3.6 MC Hand Held Trans-Rec, with range of approx. I mile. This set is conno. selit container. Inc. Bat.
teries. We can supply these sets in teries. We can supply these sets in large quantities
tested.

\section*{SHORAN}

AN/APN-3-AN/CPN-2
The AN/APN-3 and AN-CPN-2 are Precision distance measuring installations. This ennipment operates on
225 mc . The range is 250 miles with an accuracy of \(225 \mathrm{mc}\). The range is 250 miles with an accuracy of companies for prospecting and nrapoing. Power input is 110 v 400 cye and 28 v C .

MAR POINT TO POINT RADIO SET
Portable \(225-398 \mathrm{mc}\) point to point 10 ehan. crystal controlled voico and new radio set. This is a very air communication. The transmitter output is 8 watts on 10 ore-set crystal controlled channels instantly selected by a band switch. The REC is also crys. con. trolletl on the trans. freq The set is inclosed. in is
water proot shock proof cabinets that may be set un in water proor shock proof cabinets that may be set up in
a few minutes on location. This equipment is ideal where a reliable radio link easily transported is needed. Power Input is either 24 VVC \(115 / 230 \mathrm{~V}\) AC
or DC. Complete sets avail. Write

\section*{AN/PRC-6}

47-55 MC HANDI-TALKIE
This is the Standard MIL. F.M. Handl-Talkie With a teries With an output of 25 W atts. the Sot is Self Contained With Its Own Antenna, Weight is Approx. Lis. The Set is Crystal Controlled and Will operate
with PRC, SCR 508,608 SCR. 300 Etc. Quantities Avail. SCh 508, G08 SCR. 300 Etc. Quantities

\section*{AN/TRC-1-3-4}

100 MC RADIO-RELAY EQUIPMENT
The AN/TRC series is a mobile portable set for duplex ion. This set will onerate with the point communica. systems to providle mufti channel operation. The TRC operates on 100 MC with an output of \(10-50\) watts.
The set is crystat controlled. Complete sets avail. ne set is erystat controlled. Complete sets avail.
nout 110 v
60
Mobile and fixed SCR-399-499
Mohie and fxerd station high power ratio sets; the
SCR- 399 is mounted in a \(H 0.17\) shetter. The SCR. 499 is transported in carrying cases to be set up tor neid operation. Freq. of the sets 1 Is \(2-18\) nic. pwr out.
put is 350 w . Plione and c. 2 commication receivers are provided. Input is 110 ve cys.

\section*{SYNCHROS TUBES \\ LAB TEST EQUIPMENT SERVO MOTORS}

\author{
2 KVA CONSTANT VOLTAGE
} TRANSFORMER

\author{
SOLA 30T10—PRI: 35-125/190-2505 50/60
} OUr SECice \(115 v .1 \%\) liegulation 2000 Va All Components First Quality and \(100 \%\)

\section*{LECTRONIC}

RESEARCH LABORATORIES
715-19 Arch St., Phila. 6, Pa. • MArket 7-6771 Cable Address: LECTRONIC, Philadelphia

\section*{ELECTRONIC TUBES}

Low Prices - High Quality uaranteed - Bulk or Boxed
TUBE CATALOG
more than \(1000 \times m\) \& \& sp . purpose Quotation requests invited
METRO ELECTRONICS 172 Washington St., New York 7, N. Y BEekman 3-4245

\section*{ELEOTRONIO \\ WAR TERMINATION INVENTORIES \\ WRITE OR WIRE FOR INFORMATION ON OUR COMPLETE LINE OF SURPLUS ELECTRONIC COMPONENTS. ALL PRICES NET F.O.B. PASADENA, CALIFORNIA \\ C\&H \\ SALES CO. \\ 2176.E East Colorado 51 RYan 1.7393}

SCHWEIN REMOTE CONTROL

DUAL GYRO
Type 45600 Free \& Rate Gyro. Contains two 28 VDC constant speed gyros ... vertical and horizontal. 8oth gyros exceed \(30,000 \mathrm{RPM}\). Size: \(8^{\prime \prime} \times 41 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}\). Complete with meta cover. \(\quad \$ 22.50 \mathrm{ea}\)

\section*{400 CYCLE GENERATOR}

Self-excited, AC/DC, mfgd. by Homelite, Model 18A120-D-28-1. Output 115 volts, 400 cycle. single phase, 39 amps and 28 volts D.C. at 17.9 amps at 4,000 r.p.m

Price \(\$ \mathbf{1 0 0 . 0 0}\) each

\section*{SELSYNSSYNCHROS \\ }

ICT cont. Trans \(90 / 55 \mathrm{~V} 60 \mathrm{cy}\).
37.50
37.50

ICT cont. Trans \(90 / 55 \mathrm{~V} 60 \mathrm{c}\) IF Syn. Mrr. \(115 / 90 \mathrm{~V} 60 \mathrm{cy}\).
IG Gen. 115 V 60 cy .
ISF Syn. Mir. \(115 / 90 \mathrm{~V} 400 \mathrm{cy}\). 2 JlFI Gen. \(115 / 57.5 \mathrm{~V} 400 \mathrm{cy}\). 2J1F3 Gen. 115/57.5V 400 cy . 2JIFAI Gen. \(115 / 57.5 \mathrm{~V} 400 \mathrm{cy}\)
\(2 \mathrm{JlGl} 57.5 / 57.5 \mathrm{~V} 400 \mathrm{cy}\). 2 JlHI Diff. Gen. 57.5 V 400 cy . \(2 J 501\) Cont. Trans. \(105 / 55 \mathrm{~V} 60 \mathrm{cy}\) 2 J 5 F 1 Cont. Trans. \(105 / 55 \mathrm{~V} 60 \mathrm{cy}\) \(2 J 5 \mathrm{HI}\) Gen. \(115 / 105 \mathrm{~V} 60 \mathrm{cy}\). 2 J 15 MI Gen. \(115 / 57.5 \mathrm{~V} 400 \mathrm{cy}\). 5 CT Cont. Trans. 90/55V 60 cy . 50 DG Diff Gen \(90 / 90 \mathrm{~V} 60 \mathrm{c}\) 50DG Diff. Gen. 90/90V 00 cy 5 Sy Syn. Mrr. 115 Syac 00 Cy 5 HCT Cont. Trans. \(90 / 55 \mathrm{~V} 80 \mathrm{cy}\). 5SCG Cont. Trans. \(90 / 50 \mathrm{Cl} 400 \mathrm{cy}\). 60 G Diff. Gen. \(90 / 90 \mathrm{~V} 60 \mathrm{cy}\). 6 G Syn. Gen. \(115 / 90 \mathrm{VAC} 60 \mathrm{c}\) 7 G Syn. Gen. \(115 / 90 \mathrm{VAC} 60 \mathrm{cy}\). R110-2A Kearfott Cont. Mir. R200-A Kearfot \(\dagger\) Cont. Trans. 26/11.8V 400 cy . R210-1-A Kearfott Trans \(26 / 118 \mathrm{~V} 400\)
R220-T-A Kearfott Receiver R235-1A Kearfoit Resolver
C56701 Type 11.4 Rep. 115 V 60 cy C69405-2 Type 1-1 Transm.
115 V 60 cy
C69406 Syn. Transm. 115 V 60 cy C69406-1 Type 11-2 Rep. 115 V 60 cy . \(C 76166\) Volt. Rec. 115 V 60 cy
C 78248 Syn. Transm. 115 V 60 C78248 Syn. Transm. 115 V 60 c C78249 Syn. Diff. 115 V 60 cy .
C78863 Repeater 115 V 60 Cy
C79331 Transm. Type \(7-4115 \mathrm{C} 60 \mathrm{c}\) C79331 Transm. Type ?-4 115 V 60 cy
851 Bendix Autosyn Mtr. 22 V 60 cy . 851 Bendix Autosyn Mtr. 22 V 60 cy .
403 Kollsman Autosyn. Mtr. 32 V 60 cy FPE-25-11 Diehi Servo Mfr \(75 / 115 \mathrm{~V} 60 \mathrm{cy}\).
FPE-43-1 Resolver 400 cy.
FJE-43-9 Resolver 115 V 400 cy
FJE-43-9 Resolver 115 V 400 cy .
13770410 Kollsman 26 V 400 cy.
15158.0410 Kollsman 26 V 400 cy .

10047-2A 8endix 26 V 400 cy .
2900 Transicoil 115 V 400 cy
15CX4a Synchro Transmitter MK
22 MOD 1
MINNEAPOLIS-HONEYWELL

POWER RHEOSTATS
Standard 8rands: 5 ohms; ohms. 100 watt. 10 amp 8 oxed, brand new with knob. \(\$ 25.00\) per doz.

Waterproof Snooperscope Carrying Case, extra. Shipping wt. 3 lbs. Price \(\$ 3.00\)
Dual purpose U.S.N. floodlight throws strong beam of invisible infra-red rays. With infra-red lens, spare sealed beam lamp, batteries. Shipping wt. 23 lbs. Price \(\$ 14.95\)

\section*{SIMPLE DIFFERENTIAL}

1 to 1 reverse ratio; 48 teeth on input and output gear, 1-1/32 inch diameter. Total outside diameter 1-25/32 inches. Shaft size is \(1 / 4\) inch. One shaft is \(9 / 16^{\prime \prime}\) long; other Stock No. 151 shaft is \(3 / 16^{\prime \prime}\) long. \(\$ 5.00\)

\section*{BALL DISC INTEGRATOR}

Forward \& Reverse \(21 / 4-0-21 / 4\). mput shaft, spline gear 12 \(\begin{array}{lll}\text { teeth } 9 / 32^{\prime \prime} & \text { dia. } 3 / 8^{\prime \prime} \text { long. } \\ \text { Ontput shaft } & 15 / 64^{\prime \prime} \text { dia. }\end{array}\) \(5 / 32^{\prime \prime}\) long. Control shaft 11/32" \(\times 3 / 8^{\prime \prime}\) long. Cast aluminum construction. Approx size \(3^{\prime \prime} \times 3^{\prime \prime} \times 2^{3 / 4^{\prime \prime}}\). Approx.
(All Shafts Ball Bearing Supported)
SMALL DC MOTORS

(approx. size overall \(33 /{ }^{\prime \prime} \times 11^{\prime \prime}\) " dia: :)
5067126 Delco PM, \(27 \mathrm{VDC}^{2} 125 \mathrm{RPM}\),
5067126 Delco \(\mathrm{PM}, 27 \mathrm{VDC}, 125 \mathrm{RPM}, \$ 15.00\) ea
5069600 Delco PM 27.5 VDC \(250 \mathrm{rpm} \quad 12.50\) 5069230 Delco PM 27.5 VDC \(145 \mathrm{rpm} \quad 15.00\) 5068750 Delco 27.5 VDC 160 rpm w. brake 6.50 5068571 Delco PM 27.5 VDC \(10,000 \mathrm{rpm}\) \(501 \times 2.00\) COM, 27 VOC, 100 RPM, 15.00 e. Governor Controlled \(110 \mathrm{rmm} \quad 15.00\) ea. 58A OA 137 GE 27 VDC 250 rpm reversible 10.00 \(58 A 10 A 152\) V7 VOC 145 rmm reversible 12.50 BATOAJ2 27 VOC VOC reversible 15.00 206-1001 PM Planetary Gear Reduced
Motor with Magnetic Brake. Mfgd. by
Air Equipment 26 volts 600 ma 145
58A10FJ33, G.E., 12 VDC, 56 rpm
806069 Oter series reversible \(1 / 50\) h.p.
\(10,000 \mathrm{rom} .27 .5 \mathrm{VDC} 15 / 8^{\prime \prime} \times 31 / 2^{\prime \prime}\)
-28P-1A 27 VDC \(1 / 100\) h.p. \(7.000 \mathrm{rpm} \quad 3.00\)
\(7100-8-\mathrm{PM}\) Hansen 24 VDC 160 ppm 7.50
SSFD-6-1 Diehl PM 27.5 VDC \(10,000 \mathrm{rpm} 4.00\)
6.volt PM motor mfgd. by Hansen \(5,000 \mathrm{rpm}\)
\(11 / 4^{\prime \prime}\) in dia., \(2^{\prime \prime}\) long overall 4.00

\section*{LARGEST STOCK OF RELAYS IN THE WORLD STEPPING SWITCHES \\ PRODUCTION QUANTITIES - MOST MAKKE IN STOCK}

Minor Switch 10 steps and off. Contacts: Nos. R960, 975, 976 Gold plated brass; Bridging wiper; Others-beryl-lium-copper, Nonbridging wiper; 2 coils, step and reset; Net \(W_{t}\) : 1 lb.
Step \& Reset
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|c|}{1 level} \\
\hline Volts-DC & Stk\# & Price* \\
\hline 6-12 & R960 & 9.50 \\
\hline 24-36 & R975 & 10.50 \\
\hline 48-60 & R976 & 11.50 \\
\hline 100-125 & R643 & 12.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline \[
\begin{aligned}
& \text { Stk } \\
& \text { R977 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Price } \begin{array}{c}
\\
1050
\end{array}
\end{aligned}
\] \\
\hline R978 & 11.50 \\
\hline R979 & 12.50 \\
\hline R64 & \\
\hline
\end{tabular}

> Stk\# 3 level Price* Price*
11.50
12.50

\(\left.\begin{array}{llllllllll}48-60 & \text { R976 } & \ldots \ldots & 11.50 & \text { R979 } & \ldots & 12.50 & \text { R6645 } & \ldots & .\end{array}\right)\)
 Mfd. by Western Electric; 22 step; 5 levels; Bridging wipers; Contacts: Gold plated brass. Interrupter Switch: 1 Break-Make; Net Weight: 2 lb 2 oz. "Homing" type; \(180^{\circ}\) wipers; Step in one direction. Single coil.

\[
\begin{array}{lrrrr}
\text { 二R926; } & 6 \text { to } & 12 & \text { VDC } \\
\text { \#R980; } & 24 \text { to } & 36 & \text { VDC } \\
\text { \#R981; } & 48 \text { to } & 60 & \text { VDC } \\
\text { \#R615; } & 100 \text { to } & 125 \text { VDC }
\end{array}
\]
ea. 13.75*

TR615; 100 to 125 VDC
ea. 15.75*
ea. 16.75*

Mfd. by Western Electric; 44 step; 2 circuits; Bridging Wipers; Contacts: Gold plated brass; Interrupter switch: 1 break-mate; Net weight: 1 lb 14 oz ; "Homing" type; \(360^{\circ}\) wipers; Single coil; Step in one direction.
 ea. 13.75* ea. 14.75*
ea. \(15.75^{*}\) ea. \(16.75^{*}\)

AUTOMATIC ELECTRIC TYPE 44: Single coil; step in one direction; 11 position; \(120^{\circ}\) wipers; 4 levels, 1 bridging, 3 non-bridging; \(1 C\) interrupter switch; 1A, 1C, off-normal springs:
\begin{tabular}{|c|c|c|c|c|c|}
\hline \#R1650 & 6-12VDC & 20.50 & \#R1652 & 48-60VDC & 22.00 \\
\hline \#R1651 & 24-36VDC & 21.25 & \(\# 16531\) & 100-110VDC & 22.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & \[
18
\] & \(\mathrm{A} U\) coil lb rem \\
\hline Volts DC & \multicolumn{2}{|c|}{2 level} \\
\hline 6-12 V & \#R1654 & 22.25 \\
\hline 24-36 V & \#R1655 & 23.00 \\
\hline 48. 60 V & \#R1656 & 23.75 \\
\hline 100-115 V & \#R1657 & 24.50 \\
\hline
\end{tabular}

ALL MERCHANDISE IS GUARAN. teed and may be returned FOR FULL CREDIT
Prices listed with asterisk (*) are subject to QUANIITY DISCOUNTS

AUTOMATIC ELECTRIC TYPE 13: Homing type; single coil, step in one direction; 25 position; \(180^{\circ}\) wipers; lb interrupter spring. All units have 1 bridging wiper, remaining non-bridging.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Volts DC & \multicolumn{2}{|c|}{2 level} & \multicolumn{2}{|c|}{3 level} & \multicolumn{2}{|c|}{4 level} & \multicolumn{2}{|c|}{6 level} \\
\hline 6-12 V & \#R1654 & 22.25 & \#R886 & 23.25 & \#R1659 & 24.25 & \#R888 & 25.25 \\
\hline 24-36 V & \#R1655 & 23.00 & \#R900 & 24.00 & \#R1660 & 25.00 & \#R889 & 26.00 \\
\hline 48. 60 V & \#R1656 & 23.75 & \#R887 & 24.75 & \#R1669 & 25.75 & \#R890 & 26.75 \\
\hline 100-115 V & \#R1657 & 24.50 & \#R1658 & 25.50 & \#R1662 & 26.50 & \#R1663 & 27.50 \\
\hline
\end{tabular}

\section*{SEND FOR LATEST CIRCULAR}

\section*{BRAND NEW - TOP QUALITY \\ - FULLY GUARANTEED CENTRIFUGAL BLOWERS \\ FOR VENTILATION, AIR SUPPLY, HEAT FLUSHING}

ROTOR DIA, ROTOR
ROTOR: \(3^{\prime \prime \prime} \times 2\)
HOUSING: Steel. \(4^{\prime \prime}\), dia. discharge flange. \(3^{\prime \prime}\) inlet, \(2^{\prime \prime}\) outlet.
MOTOR: AC, 60 cyc. 115 volt, 3000 rpm enclosed, continuous

ELECTRIC TRADING CO. Dept. E.20, 313 -315 Canal St., New York 13, N. Y.

\section*{GLASS TUBING}

PYREX - NONEX - URANIUM BULB \& CYLINDERS WRITE FOR FREEMONTHLY LIST HOUDE SUPPLY COMPANY PHONE KEYPORT 7-1286 M. R. \#1 Box 86X Keyport, N. J.

\footnotetext{
WESTERN ELECTRIC-L.E. SINGLE SIDE BAND RADIO.TELEPHONE TRANSMTTER AND RECEIVER Up to 10 Freq. Single Channel \& Order Wire
Teletype. 200 Whtts, P.E.P., 2.7 to 14 Meg. New Teletype. 200
Cont. P. O:R.
M. A. HOFFMAN ASSOC

8000 Sunset Blvd., L.A. 46, Calif
}

\section*{Buying}

\section*{Good USED Equipment}
is frequently the difference be tween having needed equipment or doing without it.

\section*{\(V_{2} H\) \\ AMERICA'S LARGEST SUPPLIERS OF Tubes and Electronics}

\section*{TEST EQUIPMENT}

\(\triangle P \mathrm{PQ}-3\)
APG-3
APS-4
\(\mathbf{A P S}-10\)
APS-15
APS-15
APS-19
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{BROADCAST TUBES} \\
\hline 2H21 & \$25.00 & 305A & \$2.50 \\
\hline 2 C 51 & 3.00 & WE305A. & 2.85 \\
\hline 2 E24 & 1.95 & WE306A & 1.75 \\
\hline 2 E 22 & 2.35 & WE311A & 5.00 \\
\hline 3 C 22 & 59.95 & WE311B & 5.75 \\
\hline 3 C 33 & 5.00 & WE313C & 2.10 \\
\hline 3 E 29 & 8.00 & WE314A & 80.00 \\
\hline \(3 \times 250043\). & 150.00 & 327 A & 3.40 \\
\hline \(4 \mathrm{C} \times 300 \mathrm{~A}\) & 30.00 & WE328A & 3.25 \\
\hline \(4 \times 150 \mathrm{~A}\) & 18.50 & WE331A & 7.50 \\
\hline \(4 \times 150 \mathrm{D}\) & 20.00 & WE337A & 5.50 \\
\hline \(4 \times 250 \mathrm{~B}\) & 38.00 & WE348A & 4.00 \\
\hline 4E27. & 7.00 & WE249A & 4.00 \\
\hline 4-250. & 28.50 & WE350A & 2.25 \\
\hline 4-125A & 18.50 & WE350B & 2.00 \\
\hline 4-400A & 38.50 & WE354A & 15.00 \\
\hline 4-1000A. & 125.00 & WE356B & 2.95 \\
\hline 5021 & 5.00 & WE359A & 1.45 \\
\hline 5D23/RK65 & 7.00 & WE368AS & . 75 \\
\hline 6 C 21 & 13.50 & WE371B & 2.00 \\
\hline 15 E & 1.20 & WE372A & 3.00 \\
\hline 24G & 3.00 & WE373A & 3.50 \\
\hline HK24 & 2.50 & WE374A & 1.75 \\
\hline 53 A & 5.00 & 381A & 5.00 \\
\hline HY65 & 1.00 & WE387A & 3.50 \\
\hline 1886 & 5.00 & WE388A & . 85 \\
\hline 100 TH & 6.00 & WE396A & 3.00 \\
\hline C100A & 10.00 & Meste1A & 3.95 \\
\hline 101D & 2.75 & V. 403 A & . 90 \\
\hline 101F & 2.75 & WE403B & 2.75 \\
\hline 104D & 2.75 & WE404A & 14.00 \\
\hline 121A & 1.50 & WE407A & 3.75 \\
\hline V.T-127 & 1.00 & WE408A & 2.25 \\
\hline VF-127A. & 2.50 & WE412A & 3.50 \\
\hline F-128A & 7.00 & WE415A & 3.00 \\
\hline VT-158 & 9.50 & WE416A & 25.00 \\
\hline HF200 & 13.00 & WE416B & 30.00 \\
\hline 204A & 22.50 & WE417A & 12.00 \\
\hline WE205F & 4.00 & WE418A & 17.50 \\
\hline 211 & . 40 & WE419A & 48.00 \\
\hline WE215A & 15.00 & WE421A & 6.75 \\
\hline 220B & 55.00 & WE422A & 7.00 \\
\hline 227 A & 3.75 & WE423A & 5.00 \\
\hline 2507 H & 23.00 & WE426A & 2.75 \\
\hline 2507 L & 12.00 & WE427A & 8.50 \\
\hline WE251A & 42.50 & WE429A & 12.50 \\
\hline WE252A & 9.50 & WE431A & 45.00 \\
\hline WE253A & 2.75 & WE436A & 10.00 \\
\hline WE254A & 2.25 & WE437A & 12.00 \\
\hline 261A & 7.00 & WE441A. & 7.00 \\
\hline WE262B & 5.00 & 450TH & 40.00 \\
\hline WE267B & 5.00 & 471 A & 4.00 \\
\hline WE272A & 6.50 & 508. & 190.00 \\
\hline WE274B & . 75 & HK654 & 15.00 \\
\hline WE275A & 2.75 & 750 TL & 30.00 \\
\hline WE276D & 7.00 & 813. & 8.50 \\
\hline WE282A & 2.00 & 815 & 1.25 \\
\hline WE282B & 17.50 & 8298 & 3.50 \\
\hline WE287A & 2.00 & 837. & 1.25 \\
\hline WE290A & 6.75 & 922. & 1.75 \\
\hline WE293A & 10.00 & 1625 & \\
\hline \(304 T H\). & 10.00 & ZB3200... & 60.00 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{MAGNETRONS} \\
\hline 21214 & \$4.75 & \(4 J 33 \ldots . .5125 .00\) \\
\hline \(2 J 22\) & 4.50 & \(4334{ }^{25.00}\) \\
\hline \(2 J 26\)
\(2 J 27\) & 4.50 & \(4542 \ldots . . .{ }^{250.00}\) \\
\hline 2 J 28 & 25.00 & 4J51 75.00 \\
\hline \(2 J 29\) & 25.00 & \(4552 \ldots . . .50 .00\) \\
\hline \(2 J 31\) & 12.25 & 4J58 125.00 \\
\hline \(2 J 32\) & 3.50 & 4J64 40.00 \\
\hline \(2 J 33\) & 28.50 & \(5 \mathrm{J23}75 .00\) \\
\hline \(2 J 34\) & 10.00 & QK60 . . . 19.50 \\
\hline \(2 J 37\). & 28.50 & QK62. . . . 19.59 \\
\hline 2 J 38 & 28.50 & QK284 ... 95.00 \\
\hline \(2 J 48\) & 24.00 & QK366 . . . 60.00 \\
\hline \(2 J 50\) & 32.50 & QK367 65.00 \\
\hline \(2 J 51\). & 130.00 & 706AY-GY. 9.50 \\
\hline 2J51A & 148.00 & 714AY \({ }^{\text {a }}\), 50.00 \\
\hline \(2 J 55\) & 45.00 & 720AY/CY. 32.00 \\
\hline 2J56 & 38.00 & 728AY/CY. 40.00 \\
\hline 2 J 61 & 9.95 & 725A . . . 2.50 \\
\hline \(2 J 62\) & 4.00 & \(5657100 .00\) \\
\hline 4.31 & 35.00 & 5780 150.00 \\
\hline \(4 J 26\) & 45.00 & \(617775 .00\) \\
\hline \(4 J 31\) & 125.00 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{KLYSTRONS} \\
\hline \(1 \mathrm{~K} 015 \times \mathrm{Ca}\) / 481 & 2K55. & . 514.00 & 707B & 51.75 \\
\hline B,C,D . . 540.00 & 3K30 & 90.00 & 723A/B & 6.50 \\
\hline SRX16 . . . 100.00 & 6BL6 & 24.00 & 726A WE & 4.75 \\
\hline \begin{tabular}{l}
\(2 K 25 \cdots . .\). \\
2 K 28.00 \\
\hline 10.00
\end{tabular} & 6BM6 & 27.50 & 726C.WAY & 18.00
11.50 \\
\hline \(2 \mathrm{2K45}\) … . . . 24.00 & 6BM6A & 28.50 & 5611. & 40.00 \\
\hline 2K48 45.00 & WL.417A & 2.00 & 5981/5650. & 45.00 \\
\hline 2K54..... 14.00 & QK405 & 48.00 & 6116 & 45.00 \\
\hline
\end{tabular}

THIS IS PARTIAL LIST: Write sor prices on thousands of other tubes now in stock.
PARTIAL LIST! Write \(\operatorname{tor}\) prices on thousands of other tubes now
SAME DAY SHIPMENT-ORDER NOW: Minimam order \(\$ 10.00\)
All ifems F.O.B. Los Angeles, subject to prior sale and change of price without notice. Write for unlisted items or call REpublic 5-0215. Cable: VHRADELECT. Bell Telephone: TWX LA 14

\section*{V \& H RADIO and ELECTRONICS \\ LOS ANGELES G, CALIF.}

\section*{SPECIAL PUTPDSE TURES}

all tubes are new, individually cartoned, fully guaranteed

Orders for less than \$10 camnot be
processed

\section*{BOOTH NUMBERS OF EXHIBITORS AT THE RADIO ENGINEERING SHOW WHO ARE ADVERTISERS IN THIS ISSUE}

\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Daystrom Instrument} & \\
\hline & \\
\hline \multicolumn{2}{|l|}{DeJur-Amsco Corporation} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Delco Radio Div. of General Motors 1619 DeMorney-Bonardi3216-3218}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Deutsch Co., The.............. 3921} \\
\hline \multicolumn{2}{|l|}{Dow Corning Corp........... 4106-4108} \\
\hline Driver-Harris Company & 4420-4422 \\
\hline \multicolumn{2}{|l|}{Driver,} \\
\hline \multicolumn{2}{|l|}{Dumont Lab} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pont de Nemours \& \({ }^{3301-3305}\), 3705-3707}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Polychemicals Dept. 4316.4318} \\
\hline \multicolumn{2}{|l|}{Pigments Dept. 4412.4414} \\
\hline & \\
\hline
\end{tabular}

Eastern Industries, Inc.3132-3133
Edison Industries, Thomas A...2305-2307
Eitel-McCullough, Inc.2409-2412
Electralab Inc
2001
Electralab Inc.
Electronic
Instrument
(EICO) Instrument Co., Inc.
Electronic Research Associates, Inc 2705
Electronics 4401.4403
Electronics Tube Div of Burroughs Corp.1722-1724 Empire Devices Products Corporation3818-320 Engelhard Industries, Inc. .2108-2llo-2112
Epsco Inc. 2120
F.R Machine Works, Inc......3715-3717 Fairchild Controls Corp, Compo
Fairchild Controls Corp., Compo-2704
Fansteel Metallurgical Corp....4021-4022
Fenwal, Inc.
Ferroxcube Corp. of America.......................... 2631
\begin{tabular}{|c|c|}
\hline & BOOTH \\
\hline EXHIBITOR & NUMBER \\
\hline Narda Corporation & 3607.3609 \\
\hline National Company & 1401-1407 \\
\hline Nems-Clarke, Inc. & 1522-1524 \\
\hline New Hermes Engraving & Machine 1234 \\
\hline Corp. & 1234 \\
\hline Northern Radio Co., Inc & 1423 \\
\hline Nutron Mfg., Co., Inc. & 4020 \\
\hline Offner Electronics, Inc & 3051 \\
\hline Ohmite Mfg. Co. & 2840-2842 \\
\hline Oster-Manufacturing Co., & n. . . 2129 \\
\hline
\end{tabular}

Panoramic Radio Products, Inc
Phelps-Dodge Copper Products Corp-3517 Phelps-Dodge Copper Products Corp.
Inca Mfg. Div..............1716, 4516.4518 Inca Mfg. Div........................1410-1414
Philco Corporation Philco Corporation \(\operatorname{Phillips}\) Control Corp.......................... 2714 Polarad Electronics Corporation

Premier Metal Products Co.
Pyramid Electric Co.

\section*{3015}

Quan-Tech Laboratories
1707
Radio Corporation of America..1602, 1707
Radio Frequency Laboratories, Inc. Radio Frequency Laboratories, \(\begin{aligned} & 3115-3117 \\ & 2211-2217\end{aligned}\)
Radio Receptor Co.i Inc........
Rattray, George \& Company...... 3311
Raytheon Mfg. Company..1300, 2611-2614
Rotron Manufacturing Co., Inc. .2334-2336

Sanborn Company3601-3603
Sanders Associates, Inc................ 3933
Shallcross Mfg. Co............... 2634
Sigma Instruments, inc.
2628-2630 Sola Electric Co.

2817-2819 Sola Electric Co...

2627-2629
Southern Electronic Corp.
Southwestern Industrial Electronics 2309
Co.307.3309
Sperry Gyroscope Company, Divi-
sion of Sperry Rand Corp...1416-1422 Sprague Products Co..........2416-2424 Sylvania Electric Products, inc.

2402-2408, \(2501-2507\)

\begin{tabular}{|c|c|c|}
\hline Varian & Associates & 2911-2915, 3514 \\
\hline Vector & Electronic Co. & 4050 \\
\hline Victoree & n Instrument & Co...... . . 2232 \\
\hline Victory & Engineering & Corp. . . . 2230 \\
\hline Vitramon & & 403 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Wah Chang Corp..............4507-4509 Waterman Products Co., Inc.... 1902-1904} \\
\hline \multicolumn{3}{|l|}{Wave Forms, Inc............. 3220} \\
\hline \multicolumn{3}{|l|}{Weckesser Co. 4003-4004} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Welch Scientific Co., W. M..... 4214}} \\
\hline & & \\
\hline Weston & On Electrical & Westinghouse Electric Corp....1402-1607 \\
\hline a & Subsidiary of & Daystrom, Inc. 1809 \\
\hline Zell & Products Co & 4045 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
PRECISION RESISIORS \\
1\% accuracy gtd \\
Shallerobs, W. E., Wilkor. IRC \\
 Choice-we shio tylles is stock
\end{tabular}}} \\
\hline & & & & & \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline & & & & & \\
\hline & & & 1 & & \\
\hline 2 & (880 & 8 & 14 & & \\
\hline & & 31001 & & & \\
\hline & & & \({ }^{16810}\) & & \\
\hline & \({ }_{64}^{640}\) & \({ }_{3970}^{395}\) & & & \\
\hline & & & & & \\
\hline & & \({ }^{313191}\) & & & \\
\hline & & 3560 & 18850 & & \\
\hline & & 37 & 195 & & \\
\hline & & 3900 & \(20 \%\) & & \\
\hline & 6931 & & \({ }_{21}^{2044}\) & & \\
\hline \({ }^{4}\) & & & & & \\
\hline & & & \({ }_{2}\) & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & 89, & & 24600 & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & 265 & & \\
\hline & 1030 & & & & \\
\hline & & & & \({ }^{98}\) & \\
\hline & & & 2830 & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & 69900 & & 29 & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & & & & \\
\hline & & ¢ & \({ }_{\substack{385 \\ 38500}}\) & & \\
\hline & 1670 & \({ }_{\text {87900 }}^{8800}\) & 405 & & \\
\hline & (1770 & 91000 & \(4{ }_{4}\) & 314 K
325 K & \\
\hline & 1818
1881 & 9,445 & 47500
48880
48 & & \\
\hline & & dad & & & \\
\hline & (1925 & \({ }^{99890}\) & & & \\
\hline 414.3 & & & 51700
52300 & 360 K & \\
\hline & 2088 & & & & \\
\hline & & & 5 & 3\%1盛 & \\
\hline & & 11.51 & & & \\
\hline & & & & & \\
\hline & 22930 & & \({ }^{60 \mathrm{~K}}\) & & \\
\hline & - \(\begin{aligned} & 2400 \\ & 2450\end{aligned}\) & 1:1500 & \({ }_{\substack{8+5 \\ 64900}}\) & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{5}{*}{\begin{tabular}{l}
\(\mathrm{K}=\) thousands \(\quad \mathrm{M}=\) mesthma \\
SPECIML. ALL YALUES onch 1 Re \\
 \\
Greut Nerints to Quamity Osers! \\
Mifre Write if list Tow Heeds.
\end{tabular}}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|c|}{\multirow[b]{2}{*}{\(\rightarrow\)}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} & \\
\hline \multicolumn{6}{|l|}{\multirow{3}{*}{}} \\
\hline & & & & & \\
\hline \multicolumn{5}{|l|}{} & \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & \\
\hline
\end{tabular}

\section*{\(\Rightarrow d=a c^{-2}\)}

 NEW GTD RADIO \& T.V. RECTIFIERS

PRECISION POTENTIOMETERS

\section*{}

 Buy 5125 This List*

Write for New Caralog \#458 New Isolation \& Control Transformers
Emeloved Prmerr Type Elec/Static-Shielded

-Lebs Cord, Plug \& Receptacto. \({ }_{8}^{8}\) \\ \section*{0
0
0
0
0} \\ \section*{0
0
0
0
0}

TECHNICAL APPARATUS BUILDERS Mfgrs. of Selenium \& Silicon Rectifiers TECHNICAL APPARATUS BUILDERS
Distributed by "TAB" New "TESKEL" \(B^{B}\) SELENIUM RECTIFIERS* to Your Specs Any Current Quick Deliveries! Write for Quantity Prices. Specials in 24 hours ! ! ! *FULL WAVE BRIDGE \& +C.T. - DATED \& ONE YEAR GTD.

NOW! NEW "SILTAB" LOW PRICED

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Molts } \\
\text { Volt }
\end{gathered}
\] & \[
\begin{aligned}
& \text { Firidge } \\
& \text { Bra }
\end{aligned}
\] & IN/C.T. & \[
\begin{gathered}
\mathbf{C e n t e r}_{\text {Tap }}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Up/ta \\
280 VAC
\end{tabular} & FB28C & \[
\mathrm{VAC}_{280 \mathrm{C} . \mathrm{T}}
\] & \[
\text { Sc } 28 \mathrm{C}
\] \\
\hline 540 VAC
500 VDC & \[
\underset{\$ 23}{\mathrm{FB} 54 \mathrm{C}}
\] & & \[
\mathrm{scsic}_{512}
\] \\
\hline 820 VAC
785 VDC & \[
\underset{533}{\mathrm{FB} 2 \mathrm{C}}
\] & \({ }_{780 \mathrm{VbO}}^{820 \mathrm{C}}\) & \[
\mathrm{scsic}_{\$ 17}
\] \\
\hline 1100 VAC
1052 VOC & FB11m & & \[
\mathrm{sc}_{523}^{\mathrm{c}} \mathrm{~m}
\] \\
\hline
\end{tabular}

Disebuts to Quantity logrs
Write for other sizus at Types!

NEW! LOW PRICED HIGH CURRENT BASIC INDUSTRIAL SUPPIIES

Ripple eess Than 1 Oninput 110 to 125 VAC
60 to 400 cy

\section*{INDEX TO ADVERTISERS}IC Electronion Division.56
AMI', lameorporatral 16. 17
Are Electrobias Assoriater 218
Ace Inkineering \& Machine Co. 60)
AD-IC Elertronies Lab., Ins. 35
Arron
Ine 64
Air-Marine Motors Inc. 256
sirpas Products Co. 279
NH!ghany Ludhunr Steel Corp 97
Allen-Ibradey Co 128.A. 12813
Mided Control Company, Inc. 105
Allien Products Corporatton 314
Amerac, lnc 74
Amerienn324
American lust, Co. luc 221
American Laboratories 4
American Television \& Kadío Ca305
Amperex Electronic Corp. 106. 107
Amprrite Co., Ine 250
Amphenol Electronies Cor 53
Andrew Corporation 37
Ansog, Div. of General Aniline \& Film
Applied science Corporation of Irinceton 70
Ariold Finginearing Co., The 10
Armeld Magnaties Cors \(3 \sim 8\)
Ari Wire \& Ntamping Co. 311
Insembly Irondurts. Ine. 78
Aligat 13ros., Ince. 306
Sutomatir Mifg., Divisiom of General 15
Automatic Metal I'roducts Corp 282
Inaker Chemical Co., J. T. 81
Baltla Metal Products Co. 315
IBallantina laboratories. Ince \(\cdot 43\)
Harker \& Williamson, Inc. 2.16
LBanch d Lemmb Optical Co 193
Beacer Geair vorks. Ine)69
Ibell Dircralt Corp. 226
Bendix Aviation (opp. Ealipse-Pioneer Div. lided Rank Div. - 299
IBiwax (Cormaration308
Boforlt Ifig. Co., Ine 190
Foorg Corporation. George W. 214,215
Bomras Laboratories. Inc \(.38,30\)
Bristol Co 38Hrush Instruments Div. of Clevite Corp... 115
Burnell \& Co., Inc. 119
CIS Hytron, A Div. of Columbia Isroad- Gakling system. The.116
Caledonia Electronics \& Transformer Corp
Cambridge Thermionic Corp 120, 121Ciarr Fantener Co. Div. United-Carr114

Celco-Constantine Enginmering Labora tories Co.

Centralab, I Divinion of Globe-Union Ine.
Chenter Cable Cord
Chicago Telephone Supply Corp.. 179)
Cimuit Instruments, Iue . 30
Clevite Electronic Components.......88, 128
Clifton Presimion Products Co., lne....... 19
Cohn, sigmund Mfg. Co., Inc............ 393
Conil Winding Equipment Co. 275
Collins Electronics Mifg., Co............ . . \(30^{*}\)
Comar Electrice Company \(2 t i f\)
Commanications Combany, Ine. 260
Control Electronics Co., Inc.............. . . 891
Coors Porcelain Co. 123
Cornish Wire Co.. Inc. 306
Cowsor (Canadia) Limited \(\quad 09 \%\)
Couch Ordnance, Inc. 222
Cor \(\boldsymbol{X}\) Comparty, Ine. 234
Crane Packing Co. 259
Crow Cour ll
ross Co. II
Curtiss-Wright Corp. 327

Datno Electric Co. 321
Dasstrom lantriment 169
De.Jur-Ansen Corporatlon 111
Delfo Radio Div, of Guneral Motors. 84
DeMornaty-lbomardi 188
Dentsch Co.. The . 231
Ibow Corning Corp.75. 127
Ibriwer-llarris Company 185
Uriver, Wilbur B. 283
Immont Iaboritories. Inc., Allen I\}, . 11. 207
InJont dr Nemours d Co. (Ine.) E.I.
Dolvehemicals Dept. 175
Ifigments Dept. \(32 A\)
Dynate, Inc. 100
Dymaeor . 83

Lastern Industries, Ine. 89
Edinot ludustries, Tlomas A.............. . . \(1: 6\)
Eitel-McCullough. Inc. 68 . 64
Elco Corparation . 213
Electralal, loc. 327
Electro Inatruments Inc. 10,41
Electro Motive Mfg. ('o., Inc. I89)
Electronic. Fabricators, lnc. 298
Elactronic Instrument Co.. Inc. (EICO) . . \(28:\)
Electronic Research Associates. Inc...... 212
Elfetronics Tuhe Div. of Iburroughs Corp.

125
Electronics International
3.58

Empirr Devices Products Corboration
\(18 ;\)
Emarmin Eleatrie
214
Engellmard Indust rie's, Ine.
35. 20:2,203

Epseo Inc.
Erif Elect ronies Iivision. Erie Kesistor
Corp.
Esterline-Angus Company. Inc.

ELECTRONICS engineering edifion - March 14, 1958

\section*{new... 1 rio low-Ievel BUILD-IN AC VTVM with BULIT-IN ISOLATION}

Designed especially for panel-mounting, new model 109-1 reads down to 20 microvolts on its 1 MV range with \(2 \%\) full-scale accuracy, 10 megs input impedance, response \(20-80,000 \mathrm{cps} .\). features signal \& power circuits and mounting panel all isolated from each other . . extreme stability - wide line variations do not affect accuracy . . calibration of gain and frequency response without removal from panel . . feedback and printed circuitry for exceptional reliability and simple maintenance... size \(5^{1 / 4^{\prime \prime}} \mathrm{h} \times 9^{1 / 2^{\prime \prime}}\) w \(\times 93 / 4^{\prime \prime} \mathrm{d}\) panel fits standard modular-type consoles. Price \(\$ 199.50\) Write for FREE "how-to" ENGINEERING GUIDE on Trio's complete
when ordinary instruments are too big or inadequate line to Dept. E-3, Trio Laboratories, Inc., Seaford, N. Y.

...the leader in panel-mounting electronic instruments
CIRCLE 340 READERS SERVICE CARD

\section*{VECO the BIG name in} THERMISTORS • VARISTORS

For reliability, stability, dependable delivery and experienced engineering know-how, consult VECO, the most progressive manufacturer of thermistors and varistors. Through constant research, development and precision control, VECO's products are guaranteed for peak performance and long

MANUFACTURERS OF

\section*{VECO}

Thermistors and varistors Compactrol (electronic controls) (Pat. Applied for) Tap-A-Therm (Multi-tapped thermistors) (Pat. Applied for) Gas Analysis and chromatography cells Combustion Analyzers Temperature Sensing Devices Constant Temperature Baths and Controls Descriptive literature cover-
ing each item available on ing each
 life. At all times, VECO strives to improve its product for the benefit of its customers.

NEW TECHNICAL CATALOG AVAILABLE
8th edition - containing pertinent data and condensed engineering specifications covering over 250 VECO stock items.

Send for the interesting, informative series entitled, "MEET THE VECO THERMISTOR"

\section*{Victory}

ENGINEERING CORPORATION
101 Springfield Road, Union, N. J. Telephone: MUrdock 8-7150

\section*{See us at the IRE Show}

BOOTH 2230
New York Coliseum March 24th thru 27th

F-IR Macline Works, Inc.
173
Faiphild Controls Corp., Components
IDivision2ぇ1.1.22413
Fansteel Metallursicial Corp,232, 233
Fenwal, lne. 182
Ferroxcube Corp. of Amerida \(17 \%\)
Frequency Stathdards 183

Hall Mig. Co. 327
Hiallamore Elertronies Co................ 237
Handy \(\boldsymbol{N}\) IIarmatn 108
Harilwhik Itimile Ithe. 109
Ititprer-Latider Inc, 328
Hivelon Co. Ine., A. W................... 321
Havdon Div, of General Time Corb. © 27

Helipot Corp., Div. of Isedkman
Instruments, Inc. 364
Hewlett-Packard Company. . 24. dis znd Cover
Mexileon Electric Co. 301
Heyman Manmfactaring Co. 291
Hitemp Wires Inc. 9 git
Holt Instrument laboratories. \(3 \geqslant 0\)
Iforman Axsope., Inc. 330
Hudnon Tool \(x\) Dip Combany. Inc. 27

Hughey \& Philliths, Inc.................... 324
Hunt Company, I'hillip A................ \(\boldsymbol{q} \boldsymbol{f}\)
Hycon Easterit, Inc. 26

\footnotetext{
HInois Condenser Co. 200
Indianai Steel Prodaceis Co. 48
Industrial Inst riments. Ine:. 305
Industrial Test Eifuipment Co. 204
Imelustrial Timer Corp. 32D
}
Ludustrial Winding Machinery Co. 220
Inso Prodiacts, Ital. 239
Instrument Specialties ('o., Inc. 66
Insi ruments for Industry, Inc. 323
Intarelactronion Corboration 299
Internationad [Resistance Co 31
Iron Fireman 80
dennings Radio Mindifiarturing Corb. \(\stackrel{72}{2}\)
Jones Div., Iloward IS. Cincl \(3: 3\)
Jones © Lamson lubhine Co 129
K:anpo N Sbns. C. 187
Kay Electric Co 104
Krpeo Lathoratorien 171
Kings Eluctronis. 297
Kinnry Mír. Div., New York Nir Brake 261
Kintel (Kay Lab) 13
Nleinsebmialt laboratorien. Inc. 58
Krengel Nanuficturing Co 255
Krobir-lifa Irstrument Co. 290
Kuthe laboratories. Ins. 274
Laboratory for vilectronies 85
ammola Klectronies corp. 8
Lapp Inaulator Co.. Inc 194
arh corporation 5
letamd Inc., ii. II. 278
\(19 \%\)
ibrurupe lie 289
lindt Comprany. Division af Union Carhisla Corporation 1223, 263
sittern Imehan ries 235
M 13 Manufiaturing Co, a Division of Textron, lic. 73
Magnetic Amplifiers, Inc. 303
Magheticer luc 167
Mallary and (ro., late., P. K. 134
Hanand Ceramics Co. 284
Marceni Instrimento. Ltal 78
Marion Naetrical Instrument Co. 284
Martin Complany 317
Mason Isox Compan 318
Ma(oy Electronios Compans \(34!\)
Mciraw-llill Boonk Col 2129, 3:6
Ma, Millan Lathoratory. Ine. 230
Iranurements Coril 319
Arlpar Incorporated 286
Nerek d Co. Inc. \(98 \quad 99\)
Matal Einishers Inc. 295
Miscrosiot Ine 174
Dieromech Manufacturing Co 280
alierownse Agsociates, lne. 244,245
Hialwestern Instrument 101
Hiften Mfg. C'u., Inc., Jimmes \(10 \cdot 2\)

\section*{TELREX LABORATORIES}

Designers and Manufacturers of
COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS

Telrex is equipped to design and supply to our specifications or yours, Broad. band or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.

Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces.
\(\qquad\)
Electrical specifications
B ratio,
Mechanical specifications
Shipping weight (appor)
Shipping container size (approx.).............. 33 los
Wind surface area............... 2.24 sq. ft. Transmission line......... 52 ohm coaxial feed 2 , aluminum boom; solid dural rod elements, cycola duty, heavily-plated steel mounting plate supplied. Telrex has many off-the-shelf models of hi-gain arrays or will build to order at moderate cost.

\(\square\)

\section*{ASBURY PARK 25}

NEW JERSEY, U.S.A.
Tel, PRospect 5-7252

VISIT BOOTH 1314, I.R.E. SHOW, N. Y. COULSEUM, MARCH 24th THRU 27th CIRCLE 343 READERS SERVICE CARD

Millivae Instrmment Corp 118
Mitchell Co., E. C. 3ッ3
Morlel Rertifier Corp 302
Motorola, Ine. 917
Mueller Elect ric Co. 327
Mullard Overseas, Ltd. 36
Narda Corporation 87
National Company 133,191
Natvar Corporation 213
Nems-Clarke, lnc. 325
Neely Enterprises 176A, 17613
Nesor Alloy Products Co. 323
New England Tranaformer Co. 307
New llemmes Fingraving Mathine Corp. 293
Northast Electronics Corb. 310
Northern Radio Co., Inc 11.2
Nothalter Winding Laboratories, Ine 265
Notron Mig., Co., \(\mathrm{F}_{\text {ne }}\) 322
Oak Mfy., Co. 22
Offiner Elactronits, Inc. 1:8D, 1:8E
Ohmite Mfr. Co. 3218, 32C
Operations Research Office. Johns Hepkins Cniversity, The 308
Oster Manufacturing Co.. Johil. 34
Pace Electronic Associates 313
Pathoramic Radio Prodacts, line. 273
Phelps-Dodge Con
Inca Ifg. Div. 27
1"hilco Corporation 96.1. 96B
Polarad Electronics Corporation 801. 8013
Popper \& Sons, Ine 328
Premier Metal Iroslucts Co. 288
Price Electric Corb 238
316
Pyramid Electric Co. 298
Quality Electric Co 330
Quan-Tach Lathoratories 292
Radic, Corporation of America . 267 th Cover
(kio Finginfering Pronucts 3010
Radio Frequemes Laboratories. Ine. 180
Radio Recpptor Co. Inc 80
kadiometor 294
Ratimay. Gieorge \(\&\) Company 315
Rawson Niectrical Inatrument Co. 316
Ratytheon Mfg. Company6, 124, 329Relay siles, Inc.61

Krliance Miea Co., Inc. 297
Kexintances I'modncts Co. \(\quad\). 85
Revere Corporation of Imerica 2 ist
Kotron Mannfaturing Co.. Inc........... 14

Sanborn Company .
Nambers Asmoinates, Inc. \(\boldsymbol{\otimes 0}\)
Schweber Elbetronics 345

Sigma lastruments. Inc. 204
Solı Electric Co. 6
Gorensen d Co.. Ine. .
Sonmalderiber Corp., The 113
Sonthern Electronic Corn. 195
Sontliwestern Indusirial Electronies Co... int
Spallman Tolevision ('o., Inc. 288

Spragme Products Co. 17
Stackpole C'irbon Co.45. 313
Standitrd Electric Tinme Co. 303
Navid Engimering. Inc. 1280

Superior Ehectronics Corp. 31 :
Swenson Co., Inc., V. H. 30
Switeheraft. Inc. 3:0
Sylvaniar Electric I'roducts. Ine........... 110

Teohnitrol Engincering Co. 28 Techmology Instrument Corp, \(25 \%\) Telerad Mfg. Corp. 19.2. 19213 Tolres Laboratories 351 Texisis Inalrimentis, Incorporated . . 3rd Cover Trans Electronies Inc. 319
Transformors, Incorporated \(4!\)
Transitron. Inc. \(93, \quad 95\)
am-ranio. Lift 321
Triol aboratorles Ine 348
Tunte-Sol Electric. Ine. 130. 13
Urinite Co 115
, S. Componmints, Ine. - 41

Union Switch \& Sirmal Div, of
Westinshouse Air l3rake Company. . 12, 43
Inlversal Transistor Products Corpa. \(55 \% .253\)

\footnotetext{
Wah Clung Corp
181.

Waldes Kohinoor, The....................
Waterman Prodncts Co.. Ine................. 5\%
}

\section*{LEACH}

\section*{balanced armature relays}

\section*{help you solve electronic} circuit problems

First proven in all types of advanced aircraft, Leach Balanced Armature relays are now solving the most exacting problems for systems designers. Exclusive balanced armature design eliminates fiuulty operation of contacts clue to vibration and shock forces. Bifurcated contacts assure high reliability in contact-making circuits. You'll find that these unique relays outperform all other types in resistance to shock, acceleration and vibuation

9220... Balanced Armature relay. Rectangular configuration... with a variety of mountings ancl terminals available. Hermetic sealing is \(100 \%\) tested by mass spectrometer

\section*{Typical Ratings}

Normal operating voltages-6-115 vele, 115 vac (40) crece), 4 PDT.

Contact ratings (a) 28 vde or 115 vac single-phase Resistive \(-3 \mathrm{amp} @ 120^{\circ} \mathrm{C}\)
\(-5 \mathrm{amp} @ 85^{\circ} \mathrm{C}\) (dc only)
Inductive-1.5 amp (a) \(85^{\circ}-120^{\circ} \mathrm{C}\)
Notor Load - 1.5 amp (\(685^{\circ}-120^{\circ} \mathrm{C}\)
Rated cluty - continuous
Minimum operating cycles - 100,000
Weight -0.25 to 0.30 lbs .
Shock - 50 G's
Vibration - 10 G's, 0-500 cps
Applicable specifications - MIL-R-610613, MLL-R-5757C
Also available in units to mect the minimum current requirements of MIL-R-6106C
We invite other special raquirments such as microamp switching, high vibration and special mountings

\section*{CORPORATION \\ Leach Relay Division}

5919 Avalon Boulevard Los Angeles 3, Catifornia
District Offices and Representatives in Principal Cities of U. S. and Canada

Type \(40-8 \mathrm{cps}\) to 100 kc .
Type \(405 \mathrm{H}-8 \mathrm{cps}\) to 500 kc .
Type \(405 \mathrm{~L}-1 \mathrm{cps}\) to 20 kc .
Accuracy: \(1 / 4^{\circ}\) relative, \(1^{\circ}\) absolute.
Type \(205 \& 205 \mathrm{~A}-100 \mathrm{kc}\) to 15 mc . Accuracy: \(0.1^{\circ}\) or \(1 \%\).
Type 202-15 cps to \(500 \mathrm{mc}, 1^{\circ}\) full scale deflection.
Accuracy: \(0.05^{\circ}\) or \(2 \%\).
VARIABLE TAPPED AND FIXED DELAYLINES

Tapped Delay Lines with delay from 0.1 us up to 100 us; impedance from 50 ohms to 2000 ohms.

Continuously Variable Delay Lines, 500 Series, with resolution time less than \(8 \times 10^{-11}\) second; total time delay 0.05 us to over 1000 us.

Special units designed and built to meet MIL speciffcations

Visit our I. R. E. Booth No. 3606
Wave Forms. Inc. 350
Wreckempr Co. 316
Wrleh scientitie Cr.. W. M 3110
Werwya Intarational Inc. 318
Western Invieres. Inc, 311
Westingloname Fitalrice Corl 65.7. 197
Weston Electrical Inatrument Corb., Subsidiary al Havatromber 103
Whealar Ninctronic Cormoration 308
White. S. S., Induatrial Divinio 176. 31:
Whitney Metal Tool Co. 284
Zell Products Corp. 300, 301
Electric Trading Co 342
Electronics Surplus Brokers 337
Fidelity Petsonnel Service 337
General Electric 331, 335
Goodyear Aircraft Corp 336
Hofiman, M. A. 342
Houde Supply Co 342
Hycon Page Lare 336
International Business Machines Corp. 336
Johns Hopkins University, -Applied Physics Lab. 335
Lectronic Rescarch Labs 340
Liberty Electronics Inc. 338 338
Maryland Electronic Mfg. Corp 334
Martin Co., The 333
McNeal Electric \& Equipt. Co. 344
Metro Electronics 340
Montgomery Equipment Co 338
M. R. Co., The 342
Philco Govt. \& Ind. Div. 336
CLASSIFIED ADVERTISINGEMPLOYMENT OPPORTUNITIES.330-337
BUSINESS OPPORTUNITIES 337
PROPERTY 337
QUIPMENT
(Used or Surplus New)
For Sale 337-344, 346
WANTED

Equipmen 344
ADVERTISERS INDEX
Alco Electronics 337
Arrow Sales 338
Calvert Electronics Inc. 337
Carbon Products 337
341
Contions Equipt. Co 340
Continental Motors Corp 337
Professional Services 330
Universal Relay Corp 342
Formerly Universal General Corp.)
University of Michigan 330
V \& H Radic \& Electronics 343
Western Engineers
344
344
Radalab, Inc. 340
Radio Corp. of America. 333
Radio Research Instrument Co 338
Raway Bearing Co 337
Rex Radio 337
Solo Electronics Co 344
Sylvania Electric Products Inc. 334
TAB 339. 346
Thorndike Deland Associates 330
Top Industries Sales 337
Barry Electronics Co 344
Bell Helicopter Corp 337
endix Aviation Corp 332

\section*{Get out your pencil and . . .}

\title{
Help yourself to electronics' READER SERVICE it's free-it's easy-it's for your convenience
}

\author{
NOW! \\ All Advertisements \\ New Products, and New literature are numbered for your convenience.
}

Each Advertisement, New Product, and New Literature item is numbered.
For more information simply . . .
(1) Circle number on postpaid card below that corresponds to number at the bottom of Advertisement, or New Product item. Follow the same procedure if you desire New Literature.
(2) Print your name, title, address, and firm name carefully. It is impossible to process cards that are not readable.

\section*{Correct additional postage MUST be added to cards for all FOREIGN MAILING}

Some Advertise-
ments which cannot be numbered for the

\section*{READER SERVICE}

CARD due to lack of space, must be indicated by writing the Advertiser's name in the space provided at the bottom of the card . . .

- electronics
engineering edition
READER SERVICE CARD
Please Print Carefully

\section*{NAME POSITION \\ COMPANY \\ ADORESS \\ CIRCLE THESE NUMBERS ONLY WHEN YOU ARE INTERESTED IN ALL ITEMS SHOWN OR DESCRIBED}

\section*{YOU WILL RECEIVE 53 ISSUES IN 1958}

\section*{alternate}

\section*{engineering}

\section*{and business}

\section*{editions} plus
the
buyers' guide
electronics \((\mathbb{B D P}\)
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|c|c|c|c|r|r|cr}
\substack{\text { ingimexing } \\
\text { didition }}
\end{array}
\] & \[
\begin{array}{|c|c|c|c|c|c|cr:|c|c}
\\
\text { bushoss } \\
\text { odition }
\end{array}
\] & \[
\begin{array}{|c|c|c|c|r|c|c|}
\substack{\text { anginown } \\
\text { eititinen }}
\end{array}
\] \\
\hline CYCLE & \[
\underset{B}{\text { CYCLE }}
\] & CYCLE
C \\
\hline Jan. 3 & jan. 10 & jan. 17 \\
\hline JAN. 31 & feb. 7 & \%f8. 14 \\
\hline res. 28 & mar. 7 & mar: 14 \\
\hline mar. 28 & APR. 4 & arb. 11 \\
\hline Afr. 25 & may 2 & may 9 \\
\hline may 23 & may 30 & june \\
\hline JunE 20 & June 27 & july 4 \\
\hline juty 18 & Jutr 25 & aug. 1 \\
\hline aug. 15 & aug. 22 & aug. 29 \\
\hline sepr. 12 & SEPT. 19 & SEFP. 26 \\
\hline oct. 10 & ocr. 17 & ocr. 24 \\
\hline nov. 7 & nov. 14 & nov. 21 \\
\hline dic. 5 & dec. 12 & dec. 19 \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline \(\square\) \\
\hline CYCLE D \\
\hline JAN. 24 \\
\hline fee. 21 \\
\hline MAR. 21 \\
\hline Apr. 18 \\
\hline may 16 \\
\hline June 13 \\
\hline Jutr 11 \\
\hline aug. 8 \\
\hline SEPT. 5 \\
\hline Ocr. 3 \\
\hline Ocr. 31 \\
\hline nov. 28 \\
\hline dec. 26 \\
\hline
\end{tabular}

BUYER' CUIDE ISSUE - JUNE 15

\section*{4¢ Postage Will Be Paid By \\ ELECTRONICS \\ Reader Service Dept. \\ 330 West 42nd Stree \\ New York 36, N. Y.}

\section*{ANOTHER}

\section*{VI G Semicanuletir pronuct frou texs instivumins}

\section*{tanTIcap}

\section*{SOLID TANTALUM CAPACITORS}

\section*{provide ratings up to}

You simplify your printed circuit assembly with compact tan-TI-cap capacitors... and reduce costs. Leads are anchored within the case to permit sharp bends required in miniature circuitry.

You increase your product reliability with \(\tan\)-TI-cap capacitors. Solid tantalum pellets are firmly imbedded to resist high and low frequency vibration and extreme shock. Solid tan-TI-cap capacitors contain no liquid - cannot leak. The electrolyte is semiconductor manganese dioxide. You get added dependability from the extremely long shelf and service life of tan-TI-cap capacitors.

Specify tan-TI-cap capacitors. . . newest additions to the widest semiconductor line in the industry ... for High reliability in a small package
Temperature stability from -80 to \(+85^{\circ} \mathrm{C}\)
Low dielectric losses
Standard tolerances: \(\pm 20 \%\) at \(25^{\circ} \mathrm{C}\)

\section*{\(200 \mu \mathrm{f}\) at 6V}

25 Mf at 35 V

Designed for superior performance in broadcast, industrial, and military TV applications, RCA-7038 opens new possibilities in compact camera design for live and film pickup-both in color and black-and-white.

Here is a new Vidicon that can deliver broadcast-quality pictures-with as little as 1 foot-candle of illumination on its faceplate. An improved photolayer is capable of providing uriform sensitivity-over the entire scanned area. All "front-end" parts are non-magnetic to facilitate registration in three-vidicon color TV cameras.

RCA-7038 utilizes a 750 -mesh screen. It has a resolution capability of 600 lines, and a spectral response covering the entire visible spectrum.

For a bulletin containing technical data and application information on the RCA-7038, write RCA Commercial Engineering, Section C-19-(1-2, Harrisor., N. J.

Designers of TV cameras are invited to discuss their Vidicon requirements with their RCA Field Representative - ot the mearest RCA Field Office:

Government Sales
415 South Fifth Street, Horrison, N. J HUmboldt 5-3900
224 N. Wilkinson Street, Dayton 2, Ohio BAldwin 6-2366
1625 "K" Street, N. W., Washington 6, D. C. District \(7 \cdot 1280\)

Equipment Sales
744 Broad Street. Newark 2, N. J.
HUmboldt 5.3900
Suite 1181, Merchandise Mart Plaza Chicago 54, Ill., Whitehall 4.2900 6355 E. Washington Blud os Angeles 22, Calif., RAymond 3.8361```

[^0]: Six KIN TEL amplifiers in compact $19^{\prime \prime}$ rack mountable module.

[^1]: 91－2713日THPLACE•JAMAICA 35• NEW YORK

[^2]: FOR ALL PRECISION POTENTIOMETER REQUIREMENTS: MINIATURE SUB-MINIATURE - MOISTURESEALED - HERMETICALLYGEALED - BALL BEARING - HIGH PRECISION - HIGH TEMPERATURE

[^3]: Name Position

 Firm

 Address

[^4]: CONSTANT VOLTAGE TRANSFORMERS LIGHTINGTRANSFORMERS CONSTANT VOLTAGE DC POWER SUPPLIES SOLA ELECTRIC CO., 4633 West 16th Street, Chicago 50, llinois, Blshop 2-1414 - BRANCH OFFICES: Boston, Mass.; Cleveland, Ohio; Kansas City Mo.; Los Angeles, Calif.; New York, N, Y.; Philadelphia, Pa.; San Francisco, Calif.; New. Haven, Conn. B Representafives in Other Principal Cities Sola Electric (Canada) Lid., Toronto 14, Ontario: 24 Canmotor Ave., CLifford $1-1147$

[^5]: Reverse voltage at which a reverse current of $100 \mu \mathrm{~A}$ flows.
 TWhen switching from 5 mA to -40 V
 \ddagger When switching from 5 mA to -20 V

[^6]: COORS PORCELAIN CO., 612 9th St., Golden, Colo.
 Please send me delailed bulletin on new Coors AD-99 Ceramic,
 Name.
 Title
 Company.
 Address..

[^7]: - Patents granted and l'ending

[^8]: * Formerly associated with Standard Coil Products, Los Angeles, Calif.

[^9]: *Paper No. 58.71, Winter General Meeting, AIEE, February, 1958. Flux Reset Test is one of two tests proposed for standardization.

[^10]: Visit Our Booths Nos. 2636-2638 I.R.E. Show, Mar. 24-27, N. Y. Coliseum

[^11]: III CEDAR LANE . ENGLEWOOD • NEW JERSEY • Tel: LOwell 7-0607

[^12]: BORG EQUIPMENT DIVISION the george w. borg corporation JANESVILLE, WISCONSIN

[^13]: *Now a confirmed customer and friend, name is withheld intentionally

