electronics- $=$ Checks for Moisture p 51

engineering edition

Ferrite Tuner Covers
Broadcast Band

TYPICAL DO.T PERFORMANCE CURVES Power curves based on setting output power at 1 KC , then maintaining same input level over frequency range.

*00.T units have been designed for transistor application only . . . rot for vacuum tube service. *PPats. Pending

Conventional miniaturized transistor transformers have inherently poor electrical characteristics, perform with insufficient reliability and are woefully inadequate for many applications. The radical design of the new UTC DO-T transistor transformers** provides unprecedented power handling capacity and reliability, coupled with extremely small size. Twenty-five stock types cover virtually every transistor application*. Special types can be made to order.

High Power Rating . . . up to 100 times greater.
Excellent Response . . . twice as good at low end.
Low Distortion... reduced 80\%.
High Efficiency ... up to 30% better.
Moisture Proof : . . hermetically sealed to MIL-T-27A.
Rugged... completely cased.
Anchored Leads . . . will withstand 10 pound pull test.
Printed Circuit Use... (solder melting) plastic insulated leads.

DO-T Dia. . . 5/16"
CASE Length . . $13 / 32^{\prime \prime}$ Weight . . $1 / 10^{\text {th }} 02$.

150 Varick Street, New York 13, N. Y.
PACIFIC MFG. DIVISION: 4000 W . JEFFERSON BIVO., 10 ANGELES 16. CALIF, EXPORI OIVISION, 13 EAST 4OTh STREET, NEW YORK 16. N. W. CABLES: "ARLAE"

electronics engineering edition

A McGRAW-HILL PUBLICATION • VOL. 31 - NO. 9 - FEBRUARY 28, 1958

ISSUE AT A GLANCE

H. W. MATEER, Publisher

W. W. MacDONALD, Edifor

Managing Editor, John M. Carroll.

Feature Editor, John Markus.
Associate Editors: John M. Kinn, Jr., Frank Leary, Michael F. Tomaino, Howard K..Janis, Sylvester P. Carter, Haig A. Manoogian, Roland J. Charest, Donald C. Hoefler, William P. O'Brien, George Sideris, Edward DeJongh, John F. Mason, Barry Miller, E. A. Scutari, William E. Bushor, Ronald K. Jurgen, Thamas Emma, Patrick J. Lahey,
Pacific Coast Editor (Los Angeles) Harold C. Hood; Midwestern Editor (Chicago) Harold Harris; New England Editor (Boston) Thomas Maguire.
Art Director, Harry Phillips, Roy Thompsen.
Production Editor, John C. Wright, Jr, Bernice Duffy, Jean L. Matin.
Ediforial Assistants: Gloria 1. Filippone, Arlene Schilp, Noreen Hennessy, Phylis A. Cronin, Barbora Habermann, Patricia Landers.

JAMES GIRDWOOD, Advertising Sales Manager. R. S. Quint, Assistant Advertising Sales Manager and Buyer's Guide Manager. Fred Stewart, Promotion Manager. Frank H. Ward, Business Manager. George E. Pomeroy, Classified Manager. Jean Heiges, Research.

New York: Donald 11. Miller, Henry M. Shaw, Martin J. Gallay, Boston: Wm. S. Hodgkinson. Philadelphia: James T. Hauptli. Chicago: Bruce Winner, Walter M. Luce. Cleveland: Warren H. Gardner. San Francisco: T. H. Carmody, 2. C. Alcorn. Los Angeles: Carl W. Dysinger, D. A. McMillan. Denver: J. Patten. Atlanta: M. Miller. Dallas: Gordon L. Jones. London: Herbert Lagler. Frankfurt: Michael R. Zeyne!.

Electronics for Earth Satellites. Assembly shown consists of individual equipment modules fabricated on mounting boards and encapsulated in a foam-in-plastic. Modules are mounted on two rods to form single package. Sce p 56
.COVER
Business Briefs .. 7
Electronics Newsletter 7 Military Electronics 14
Figures Of The Weck........... 7 French Reveal Ncw Amplifier.... 14
Improving I-G Systems........... 8 Fusion Buosts Electronics Role.... 14
New Infrared Is All Electronic... 8 Mohile Counters Track Radiation. . 16
Up And Awav. 8 Financial Roundup 16
Columbia Tells Upgrading Plan... 12 Radio Controls Seavay Traffic.... 18
Washington Outlook 12 Driving With No Hands......... . . 18
New Sterco Disk Uses F-M Carrier. 14 Meetings Ahead 18
Magnetic Resonance Determines Moisture. Equipment uses nucleus of hydrogen atom which absorbs r-f encrgy to measure the moisture content of hygroscopic solids. .p 51 By T. F. Conway and R. Suith

Pulse-Cross Modification of Tv Receivers. Phantastron circuits delay horizontal and vertical sync pulses when added to monitor or tv receiver to provide pulsc-cross display.
p 54 By Harold E. O'Kelley

Cyclops Cores Simplify Earth-Satellite Circuits. T'elemetry coding system, analog magnetic memory and micrometeorite collision counter for the Lyman-alpha scientific satellite are given complete circuit analysis. .is 56 By W. Matthews, R. W. Rochelle, C. B. House, R. L. Van Allen, D. H. Schaefer and J. C. Schaffert

D-C Transistor Amplifier for High-Impedance Input. Temperature compensated circuit incorporating double emitter follower and groundedemitter amplificr provides high-impedance input and stable high-gain output
.p 64 By Donald Schuster

Go No-Go Meter Speeds Resistance Check. Resistance is quickly checked with Wheatstonc bridge circuit adapted for go no-go operation...p 66 By D. S. Randall

Maguetic Amplifiers Regulate.D-C Supply. Magnctic amplifiers and saturating transformer regulate output to within 3 percent when supply jumps in 20-v steps. .p 68 By M. B. Meunier

DIGEST (continued)

Word Generator for Digital Testing. Beam-switching tube supplies arbitrayninc-bit word at pulse rates from a few eps to one mep 71
By Ralph R. Hartel
Miniature Ferrite Tuner Covers Broadcast Band. Two pairs of ferrite cupswith ground D-shaped center cores are ganged to produce linear fre-quency variation from 500 to $1,600 \mathrm{ke}$.p 72
By E. Abbot and M. Lafer
Electronics Clock Reads Time-of-Events. Instrument counts time whileindicating absolute time of occurrence of a particular event or seriesof events ...p 74By R. Winfield, D. H. Andrews and M. Tumtine, Jr.
Designing Transformers For Blocking Oscillators. Design curves for blocking oscillator transformers are obtained using common tube circuits p 78
By R. D. McCartney
Transistor Formulas Use h-Matrix Parameters. Charts list formulas for low-frequency small-signal transistor performance in all possible configura-tionsp 81
By Albert F. Haves, Jr.
Electrons at Work p 84
X-Ravs Control Strip Mill.......p it Short-Cut Methods Find Cable
Impedance By John H. Memue
Tube Nakes Tv of PP1.......... P 90
Component Design p 92

AIEE Scts Aagnctic Component Standards 92	High Heat Resistant Laminates For Xissilesp 95
Transparent Phosphors Improve CRT \qquad	Cooling Unit is Part Of Electronic Packige p 96
Comjonent Testing Witls Punched	Wool Ilax Better Capacitor
Cards p 94	Impregnantpp 97
	P-N Junction .s Capacitor P 97

Production Techniques p 98
Jet Sprav Automates Transistor Etching 98 By Mantred Doser p 98
Salvaging Color Masks p 100
Polvstyrene 101
Design Trendsp 98 By H. L. Loucks
New Products p 104
Literature of the Week p 120
Plants and People p 122
News of Reps p 131
New Books p 132
Ihmonmail Reviews p 133
Comment p 134
Index to Advertisers p 143

February 28, 1958 Vol. 31, No. 9

Published weekly, with alternating enginecring and business editions. and with a BUYERS' GUIDE issue in misl. June by MaGraw-Hill Puhlishing Com pany. Inc.. James H. VeGraw (1860) 1948) Founder

Executive. Enitorial. Circulation and Advertis. ing Offices: McGraw. Hill Building. 330 W. 42 St.. New York 36, N. Y.

Lunqacre 4.300\%. Publication Office 99.129 Aurth Braadway, Athany 1. A. Y. See panel below fon directions regarding suh. suription on change of address. Donald C. MeGran, I'ru-ident; Juseph A. Gerardi Excentive Vice Prrsidhat: L. Keilh Cromb rich, Vire President and Treasurer; John J. Cooke. Secretary; Nelson Bond. E. erutive Vice Preadent, Publicatinns Divi simin: Ralph B. Smith, Vice President and Edinarial Director; Jucph H. Allen, Vice President and Director of Adver tising Sales; A. R. Venezian. Vice Presi. dent and Circulation Coordinatur.

Single copies \$1.00 for Engincerin, Edition and 50 cor Bu-iness Edition in United States and mosserssions, and Camala; $\$ 2.00$ and $\$ 100$ for all wher foreign countries. Buyers Guile $\$ 3.00$ Subsuription rates-United States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years: $\$ 12 .(0)$ for three vears. Canala, $\$ 10.00$ a vear, $\$ 16$ for two years: $\$ 0.00$ fors three vears. All other countrin's $\$ 20.00$ a year, $\$ 30.00$ for two years; 810.01 for thee vears. Secomd class mail privileges anthorized at Alloany N. Y. Printed in U.S.A. Cupyright 1958 by MrGraw Hill Publishing Ca.. Inc. All Righi- Reserved. Title revistered in 1. S. Pament Office. BRANCH OFlICES: 520 Nurth Miehigan Aurnue. Chicagu 68 Pont Sireet. San Frameison 4; Mr-Gram Hill House, London E. C. 4; A.M Leonhards 12, Frankfurt Main; Natimal Press Bdy., Washington 4, D. C.: Michi tect-Bldg. 17th \& Sausom Sis.. Philat delphia 3; 1111 Henry W. Oliwer Blily. Pinsburgh 2?; 1510 Hama Bldg., Cleva fand 15; 856 Penobscot Bldg.. Detruit 26 : 3615 Olive St. St. Louis 8; 350 Path Square Bldg.. Boston 16; 1.321 Rhodin Haverty Bldg, Allanta 3; 1125 West Sixth St., La's Angeles 17: 17 th Broad way Denver 2. ElfCTRONICS is in dexed regularly in The Engimering Index

Postmaster: please send form 3579 to Electrunics, 330 W . 12 nd Si. New Voth $36, \mathrm{Y}$. Y.

IN VOLUME PRODUCTION

Now!

For general high frequency applications, and for high speed computer switching circuits, design around Sprague surface barrier transistors. They are available now in production quantities from a completely new, scrupulously clean plant, built from the ground up especially to make high quality semi-conductor products.

WRITE FOR COMPLETE ENGINEERING DATA SHEETS ON THE TYPES IN WHICH YOU ARE INTERESTED. ADDRESS REQUEST TO THE TECHNICAL LITERATURE SECTION, SPRAGUE ELECTRIC CO., 35 MARSHALL ST., NORTH ADAMS, MASS.

TRANSISTORS • RESISTORS • MAGNETIC COMPONENTS CAPACITORS• INTERFERENCE FILTERS • PULSE NETWORKS HIGH TEMPERATURE MAGNET WIRE • PRINTED CIRCUITS

The four transistor types shown are the most popular. Orders for these units are shipped promptly. What's more, surface barrier transistors are reasonably priced. High quality and excellent electrical characteristics make them an economical solution to many difficult circuit requirements.

Sprague surface barrier transistors are fully licensed under Philco patents. All Sprague and Philco transistors having the same type number are manufactured to the same specifications and are fully interchangeable. You have two sources of supply when you use surface barrier tmansistors!
 of Taylor Laminated Plastic. This unit will act as a safefy valve, localize the effects of destructive forces. Yet, under normal conditions, the gear will outwear metal ones.

Put a safety valve in your gear irain

A gear made of Taylor Laminated Plastic Silent Gear Stock will localize damage due to destructive stresses, yet outwear metal under normal operating conditions

What gives when gears jam-the power train, the equipment they are in, or a single easy-to-replace gear? It can be the single gear when you install one made of Taylor Laminated Plastic Silent Gear Stock as a safety valve. This gear will localize the destructive forces and can even disintegratebut the other gears in the train, and the equipment, will be fully protected. Yet it can outwear the metal ones.

Taylor Laminated Plastic Silent Gear Stock is made in several grades. Each has physical and mechanical properties that make it particularly adaptable to such application as gears, cams, pulleys, pinions, flat springs, and bearings.

Look into the advantages of Taylor Fibre Co. and its facilities for producing laminated plastics in mechanical, electrical and combination grades and parts fabricated from them. At your disposal will be engineering assistance and integrated operations at both plants-Norristown, Pa., and La Verne, Calif. Contact Taylor Fibre Co., Norristown 40, Pa., for complete information.

> TAYLOR Laminated Plastics Vulcanized Fibre

PHYSICAL PROPERTIES

Taylor grade	Water Absorption 24 hr . immersion (\% max.)		Specific Gravity	Cu. in. per lb.	Rockwell Hardness	Heat Resistance (max.)		
	1/8	$1 / 2 \mathrm{in}$.				$\text { use (}{ }^{(} \mathbf{F} \text {) }$	$\text { use (}{ }^{(} \mathbf{F} \text {) }$	
C	2.5	1.2		1.35	20.5	M-103	200-225	225-250
L	1.6	0.90	1.35	20.5	M-105	200-225	225-250	
LLL	1.6	0.90	1.32	21.0	M-105	200-225	225-250	

MECHANICAL PROPERTIES

Taylor grade	Flexural Strength Flatwise (psi min.)		Tensile Strength (psi min.)		Compres. sive Strength (psi min.)	Izod Impact Strength Edgewise (ft./in. notch min.)	
	Lengthwise	Crosswise	Lengthwise	Crosswise	Flatwise	Lengthwise	Crosswise
C	17,000	16,000	10,000	8,500	37,000	2.10	1.90
1	15,000	14,000	14,000	10,000	35,000	1.35	1.10
LLL	20,000	19,000	13,500	11,500	37,000	1.45	1.35

Typical Physical and Mechanical Properties of Taylor Laminated Plastics used in the fabrication of gears, cams, pinions, pulleys and bearings

Frequency Changer

for WIDE RANGE of FREQUENCIES...EXCELLENT REGULATION

This NEW FCR100-latest addition to the Sorensen line of Frequency Changers-supplies a frequency range from 45 to 2000 cycles with exceedingly good wave form, and matches the other Sorensen Frequency Changers in uniformly excellent perfonance.
The low output harmonic distortion, with consistently reliable regulation of frequency and ppltage, makes each of these Frequency Changers ideal for critical applications.
Let your Sorensen representative supply you with full details on these Frequency Changers-with or without filters.
Or write directly to headquarters for technical data.

FCR100

Input Freq.: 45.65 cps
Output Freq.: $45 \cdot 2000 \mathrm{cps}$
Out. Freq. Regulation: $\pm 1 \%$ or $\pm 0.01 \%$ with suitable external standard
Load Range: 0 to 100 VA
input Voltage: 105 to 125 VAC
Output Voltage: 115 nominal VAC
Harmonic Distortion: 1\% maximum \$530.- in cabinet.

FCR250

Input Freq.: 45.65 cps
Output Freq.: $320-1000 \mathrm{cps}$
Freq. Reg.: $\pm 1.0 \%$; or $\pm 0.01 \%$
with optional internal frequency standard
Load Range: 0 to 250 VA (500 VA
at 400 and 800 cps)
Voltage Input \& Output: 105 to 125 VAC
Voltage Reg.: $\pm 1 \%$
Harmonic Distortion: 5\% typically $\$ 990$ - in cabinet.
Note: This distortion value can be reduced to 3% from 350 to 450 cps ,
and to 2% for specific tuned
and to 2%, by inserting the NEW
FCF 250 Filter in the output line.

At your command for all military applications

Approved Miniatures and Subminiatures for guided missile, compuler, communication, radar, radiation measuring, instrument and other military applications requiring Reliability Plus.

$$
14
$$

*2.5g. 25 cps . fixed frequency $\dagger 15 \mathrm{~g}, 40 \mathrm{cps}$. fixed frequency
\ddagger Sections in parallel
(N) Navy Specification

* Peak to joe ak, 15g. 30 to 1000 cps

\qquad
\qquad

ELECTRONICS NEWSLETTER

AMERICAN IRBM's will be delivered to at least four bases along Britain's cast coast, it was reported at press time as the U.S. and Britan moved to complete negotiations for jointly controlled nuclear missile bases. Agrecment is expected to set the pattern for distribution of missiles up to $1,500-\mathrm{mi}$ range among other NATO allies.

Mcanwhile, West German sources said a ministerial level NATO meeting scheduled for March will take place instead in May. This should settle locations, types and numbers of missiles for all of NATO (Electronics, Jan. 10, p 34). It was reported that West Germany's defense ministry was going ahead with its own plan to set up three tactical missile units. Two would get Nike antiaircraft missiles and the third the Matador pilotless bombers, weapons already possessed by U.S. forces in West Germany.

TIME DELAY IN CONVERTING missile telcmetry data from field tape recordings into useful printed information has been reduced from weeks to hours. A new Epsco data reduction system built for CE, automatically prepares asynchronous telemetry data for analysis by large digital computers. GE's missile and ordnance people estimate initial cost of $\$ 700,000$, including spare parts, will be repaid when data from twelve "shoots" has been processed.

EXPERIMENTAL GUIDANCE SYSTEM for automobiles described this month by General Motors (see photo p 18) is another good sign for our industry, but don't expect such electronics for autos for some time. Automatic driving along the nation's highways is far in the future, says GM's rescarch v-p, Lawrence R. Hafstead. He visualizes first highway use in an "automatic lane" for cars equipped with the device that might be rented at a turnpike entrance. Unit price of mass produced device might be comparable to a conventional car radio.
Present GM system controls steering only. Most automakers are known to be working on automatic brake control. Right now, "radartype" devices are working too well. They have difficulty in distinguishing metal highoway sigus, parked cars or farm equipment from real obstructions, and they must be turned off to permit passing.

NATIONAL SCIENCE FOUNDATION has just announced results of its survey of all research and development manpower in the U.S. in 1954, which should be of interest to electronics executives. Only 25 percent of all engineers and to percent of all scientists surveyed-or 23,000-were in R\&D in the natural ssiences. This includes 68,000 . physical scientists, 139,000 engineers and 22,000 life scientists.

FIGURES OF THE WEEK RECEIVER PRODUCTION

| (Source: EIA) | Feb. 7,'58 | Jan. 31,'58 | Feb. 8,'57 |
| :--- | ---: | ---: | ---: | ---: |
| Television sets, total $\ldots \ldots \ldots$ | 103,730 | 119,748 | 116,134 |
| Radio sets, total $\ldots \ldots \ldots \ldots$ | 224,149 | 245,861 | 319,386 |
| Auto sets $\ldots \ldots . \ldots \ldots .$. | 76,794 | 79,890 | 135,055 |

STOCK PRICE AVERAGES

| (Source: Standard \& Poor's) | Feb. 12,'58 | Feb. 5,'58 | Feb. 13,'57 |
| :--- | :---: | :---: | :---: | :---: |
| Radio-tv \& electronics $\ldots \ldots$ | 45.55 | 46.90 | 62.10 |
| Radio broadcasters | 56.95 | 59.66 | 63.10 |

FIGURES OF THE YEAR
Totals for year

	1957	1956	Percent Change
Receiving tube sales	456,424,000	464,186,000	1.7
Transistor production	28,738,000	12,840,000	+123.8
Cathode-ray tube sales	9,721,008	10,987,021	- 11.5
Television set production	6,399,345	7,387,029	13.4
Radio set production	15,427,738	13,981,800	$+10.3$
TV set sales	6,560,220	6,804,756	-3.6
Radio set sales (excl, auto)	9,721,285	8,332,077	$+16.7$

Conventional gyro with rotatable outer race bearing (left) and accurate integrating accelerometers are just two of the components that are now . . .

Improving I-G Systems

Recently announced components for inertial-guidance systems promise to increase accuracy and reliability while decreasing cost and easing production bottlenceks. Two such components are the gyroscope and accurate integrating acceleromcter shown above

I-g systems are essential in ballistic missiles like the newly unreiled Sergeant (see below at right) and air-breatling missiles like the Matador Mace, which just completed a $650-\mathrm{mile}$ unmanned crosscountry flight. The systems are also inuportant in nuclear submarines, enabling them to travel submerged to a predetermined spot before releasing missilcs like the new Polaris.

Inexpensive and reliable i-g systems also would open a new field in robot-guided commercial aircraftperhaps offering a solution for critical air-safety problems of the jet age.

A new coaxial gimbal bearing for conventional gyros (ahove, lcft), is said to reduce random drift errors by a factor of twelve. The device is called Rotorace by its developer, Sperry Gyroscope division of Sperry Rand.

Witlo accuracy improved from 3 to 0.25 deg per hour, missilcs using the new unit will be able to hit targets 150 miles away with a probable error of only 23 vards. Per-
formance is on a par with floated gyros.

According to the manufacturer, the unit will be used in the compass system of the new Douglas DC-8 and Boeing 707 jet airliners. Pan American and KLM have installed it in their $\mathrm{C}-11$ compass systenus.

The new integrating acceleromcter, (above, right), also by Sperry, is destined for use on aircraft, airbreathing missiles and atomic subs.

The unit weighs $1 \frac{1}{2} 1 b$ and is accurate within hundredths of one percent. Threshold sensitivity is 0.00001 g . That is, it can detect the gravity g force produced by tilting the accelerometer axis only 2 seconds of arc.

Three small metal cylinders form the accelerometer. The smallest is the sensor. It floats in silicone fluid. The next larger cylinder is supported on bearings within the case.

A small 1,000 -rpm motor spins the middle cylinder and the fluid as well. Thus the sensor is supported only by the spimning fluid. Bypass tubes cushion fore-and-aft moventent so that it causes internal velocity exactly proportional to externally applicel acceleration.

Thermostatic controls in the outer shell hold temperature to plus or minus 1 deg despite 80 cleg ambient swings.

New Infrared Is All Electronic

JOHNSONVILLE, PA. - ProgReSS report on devclopment of an all-clectronic infrared system at the Naval Air Development Center here promises infrared hardware that will be cheaper, simpler and more versatile than equipment now being used.

Known as Project Moocher, the system was conceived, and the work is being headed up, by Lt. Cdr. H. R. Walker.

Finished project, Walker says, will be useful to all services. Applications include guiding missiles, searching and tracking aircraft and missilcs, and guiding troops through the dark. Cost per unit will be around $\$ 300$. Absence of moving parts, light weight and mobility are still other advantages to the gear.

Needed at the moment is a new sensitive surface. Westinghouse Research Lab is currently making evaluations of certain sensitive surfaces as a possible solution.

But cven if a conventional surface has to be used, Walker says, the project will still be a success. The real gimmick is how the surface is used. And that problem, though secret, is already solved.

Also working on a portion of Project Moocher is Evans Signal Lab at Fort Monmouth, N. J.

Up And Away

Blasting off at White Sands, New Mexico, is the Army's inertially guided Sergeant missile. This 30 -ft JPL.Sperry missile succecds the four-year-old radio-command-guided Corporal

Can You Call a Man a "Failure" at Thirty?

> Men who think that success is only a matter of " a few years" are failures . . . however young they are!

How often have you heard some young man in business say, "I'll admit the job I have now isn't much but, after all, I'm only in my twenties."

Or: "Just about every executive in the company I work for is between 45 and 65. I have plenty of time to get ahead."

This mistaken idea that success comes automatically with t me is easy to understand. Promotions do come regularly and effortlessly to young men of pomise. But the day arrives, often abruptly, when that promise must be fulfilled. Native abilit I and intelligence can carry. a man only to the mid-way point in business-beyond that he must prove his capacity to justify a position of executive responsibility. That calls for a practical, working knowledge of business fundamentals.

The time to build that knowledge-to lay a solid groundwork for your future progressis now . . now while time is still on your side. If you fail to recomize that fact, you'll know only struggling, skimping and regret when your earning power sh suld be at its height.

FAST, HAMMER-DRIVEN RIVET ECONOMICAL FOR BLIND AND OPEN APPLICATIONS

Fig. 4 Ideally suited for "blind" applications, Southco Rivets are worked by one man from one side only and require minimum space inside closed area. They eliminate costly bucking
arrangement or time-consuming finishing. Supplied as a unit, they require no job time for assembly or fitting.

 John Sprengeler, Project Engineer, discuss the use of a General Electric GL-6442 in a power amplifier assembly which is part of the

Disassembled power amplifier from AN/ARN-46. AN/ARN-46 receiver-transmitter unit shown in center foreground.

Collins Airborne TACAN Uses General Electric GL-6442 For Reliable Performance

EXCEPTIONAL performance characteristics of General Electric tube type GL-6442 are contributing significantly to the accurate and reliable performance of Collins TACAN equipment, which is capable of operation at altitudes over 70,000 feet.

TACAN provides the military or civil pilot with continuous, precise distance and bearing information for navigation at ranges up to about 200 miles.

The pressurized receiver-transmitter unit of the equipment employs five G-E GL-6442's-ceramic, discseal triodes of planar construction-in the frequency multiplier and power amplifier systems. Three of the tubes are used in the pulse-modulated final amplifier. These tubes are mounted in coaxial resonators, tunable over a $1025-1150 \mathrm{mc}$. range. More than 1 KW peak power output is obtained.

Designed primarily for use in grounded-grid cavity circuits as a plate pulsed oscillator or amplifier up to 4000 mcs., the tube is also useful as a continuous-wave RF power amplifier, oscillator, or frequency multiplier up to 2500 mes. Typical operation in plate-pulsed oscillator service at 3500 mcs. produces 2 KW peak power output with an average power input of 7.5 watts and a duty cycle of 0.001 .

Ratings for other classes of service available on request. For full information on Type GL-6442, call your regional G-E power tube representative. Power Tube Dept., General Electric Co., Schenectady 5, N. Y.

Progress /s Our Most Importient Product GENERAL (6) ELECTRIC

Columbia Tells Upgrading Plan

Upgrading of top-potential clectronics enginecrs in industry through a special university program was proposed this month by Columbia University. Columbia's new part-time day plan for New York area firms strengthens the trend, most apparent on the West Coast, towards more advanced training for engincers.

Wide industry support is sought, but emphasis on quality orer quantity is such that only one of three students are likely to cnter the program from each participating firm.

Progrann will start in September in the electrical engineering department of Columbia's School of Enginecring. It extends the school's regular graduate program for engineers in industry to include daytime courses. Students will be nominated by their companies, based on the employer's estimate of their potential.

During two 32 -weck academic years the new program will take top calibre students away from their enginecring jobs two clays a week. Studies will lead to master of science degree or doctorate.

Courses will corcr such areas as electronic circuitry, phesical electronics, computers, control systems, electromagnctic theory, microwave enginecring and energy conversion. Davtime studies mean that students will get the bencfit of more persomal contact with top professors and more seminars.

Program would cost companies $\$ 1.18+$ for 32 points at $\$ 37$ a point. Donation of an equal sum by the companics in recognition of the higher actual cost of educating an engincer is optional.

1) ean John R. Dunning told clectronics executies at a recent lunchcon that the new Columbia plan is part of a national movement in enginecring education towards more special graduate training. This is largely a matter of upgrading scientific and engincering talent, he said, in which "industry as well as education has a real stake."

Dumning urged that "people be

WASHINGTON OUTLOOK

Pentagon officials are pushing out more missile news than ever before. The Army's success with its Explorer satellite has tended to make release of information more on a normal (for the Pentagon) basis than in recent months.

Biggest administrative development is in surface-to-surface missiles of more than 200 mi range. Now, the Army's ceiling is based on weight and mobility of missile rather than range alone. If the missile can be carried and launched from a vehicle like a truck, the Army can have it.

The Pershing missile now under development at Redstone Arsenal will be the first solid-propellant vehicle in the 200 -mi-plus-range class; it will succeed the Redstone.

Here's a rundown on missile news, names and contractors.
Corporal-Cary Multiplier, San Gabriel, Calif., produces the gyro and controls for this tactical missile.

Nike-Zeus-Grand Central Rocket, Redlands, Calif., is developing the solid-propellant rocket for this Air Force anti-ICBM system.

Sergeant-Cal Tech's Jet Propulsion Laboratory, Pasadena, Calif., and Sperry Gyroscope, Salt Lake City, are primes; solid-fuel motor will be supplied by Thiokol Chemical.

Corvus-New Navy air-to-surface missile has Temco Aircraft, Dallas, as prime; principal subs are Reaction Motors for propulsion and Texas Instruments and W. L. Maxson on guidance.

Sidewinder-Contractors on this operational air-to-air missile include Philco; General Electric; Norris Thermodor, Los Angeles; Hunter Douglas, Riverside, Calif.; Eastman Kodak; Minneapolis-Honeywell; Elgin Watch; Baldwin Piano; Houdaille Industries; Bulova; IIamilton Watch; Beatrice Field Tank Co., Allied Federal Industries; Electronics Corp. of America; IR Industries, Bausch and Lomb; American Machine and Foundry.

Bull Goose-Fairchild Engine and Airplanc is the prime contractor for this Air Force electronic countermeasures missile-a decoy to be used in an attack on an enemy. Also involved: Ramo-Wooldridge, American Machine and Foundry; and Paul Omohundro Co.

Green Quail-McDonald Aircraft is prime contractor for this airlaunched diversionary missile. Also involved: Ramo-Wooldridge, American Machine and Foundry and General Electric.

Mace-Martin is prime contractor on this successor to the Martinbuilt pilotless-plane, Matador. Guidance is from GM's AC Sparkplug division.

Hound Dog-North American Aviation has development of this top secret air-to-surface missile to be launched from a B-52 bomber.

- The Air Force claims its new $\$ 1$-billion ballistic missile detection system will provide precise and sharp beams designed to give better than 99 percent probability of raid detection with a relatively low rate of false alarms.

The complex antenna system allows for discrimination between missiles, metcors and satellites. First contracts, valued at about $\$ 329$ million, are going to RCA, Western Electric, GE, Sylvania and several other electronics companies. RCA has the prime contract.

NOW! END READOUT CONFUSION..

with the new KIN TEL digital voltmeter

anOther first from kin teli Here is a digital voltmeter that shows numbers on a readable single plane! With kin tel's new design, there are no superimposed outlines of numbers in the picture...no confusion caused by dials and old style numerical readouts. This digital readout uses a simple projection system provides 7,000 to 8,000 hours of lamp life, compared with 100 to 200 hours for ordinary readouts.

FIRST OF A COMPLETE LINE OF DIGITAL instrumentsi Others include: Converters for measuring AC, ohms, ratios...multiple input scanners... serial converters to drive typewriters and punched tape units.
WIDE APPLICATION: KIN TEL digital instruments are ideal for automatic check-out systems for missiles and rockets; computer measurements; process control monitoring; production testing; test system calibration; strain gage, thermocouple and other transducer measurements, and calibration of laboratory and industrial electronic instruments.
Talk to your local Kin tel representative. Sales and service everywhere. Or write us direct for further information.

See the difference!

kin tel readout

CLEAR AND SHARP. ANY WAY YOU LOOK AT IT

- 100 Microvolt Sensitivity
- Automatic, Continuous Standard Cell Calibration
- High Reliability
- 0.0001 to 999.9V-Plus Automatic Decimal and Polarity Indication

SPECIFICATIONS
Display... Four (4) digit with automatic polarity indication and decimal placement. Total display area $2^{\prime \prime}$ high $\times 7.5^{\prime \prime}$ long, internally illuminated. Individual digits $1.25^{\prime \prime}$ high.
Automatic Ranges $\quad 0.0001$ to 999.9 volts covered in four ranges.
Accuracy... 0.01% or 1 digit, whichever is larger Counting Rate... 30 counts per second, providing average balance (reading) time of 1 second, maximum balance time of less than 2 seconds.
Reference Voltage... Chopper-stabilized supply, referenced to an unsaturated mercury-cadmium standard cell.
Input Impedance... 10 megohms, all ranges.
Output...Visual display, plus print control.
Automatic print impulse when meter assumes balance No accessories required to drive parallel input printers.
Input... 115 volt, 60 cycle, single phase, approximately 75VA.
Dimensions ...Control unit, $51 / 4^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 16^{\prime \prime}$ deep. Readout display, $31 / 2^{\prime \prime}$ high $\times 19^{\prime \prime}$ wide $\times 9^{\prime \prime}$ deep
Weight...Approximately 40 lb .
Price ... $\$ 2,100$
Over 10,000 KIN TEL instruments in use todayt

5725 Kearny Villa Road San Diego 11, California
upgraded to the maximum . . . so that best use can be made of their capabilitics." The cost is high to a university, he added. Almost 60 percent of the cost of educating a graduate enginecring student at Columbia is not covered by tuition and must be borne by the university.

New Stereo Disk Uses F-M Carrier

Another entry in sterco phonograph record sweepstakes is a proposed system which has directional information superimposed on supersonic f-m carrier, plus conventional lateral microgroove. Records may be reproduced cither monaurally or in sterco witl conventional monaural pickup, maker says.

News confirms an carlier report (Eiectronics, Jam. 10, p 31). Developer is Components Corp. of Denville, N. J. Aclvantages claimed include elimination of one preamplificr, less critical pickup achjustments for azimuth and tracking, reduced differential noise.

The two stereo channels from a conventional master tape are combined both in phase and out of phase in the rerecording process. The sum signal comprises the main groove modulation, while the difference signal modulates a $24-k c$ f -m carricr and is multiplexed into the disk cutter.

Upper limit of 5 kc for the difference sigual is prescntly restricted by a low-pass filter, but it is expected this can be raised to 8 or 10 kc . Overall system response required is 30 kc , which can be achicved with $0.5-\mathrm{mil}$ tip radius on reproducing stylus

For stereo reproduction, any conventional wide-range pickup is fed into a special preamplifier, which in addition to the RIAA equalization characteristic, also has a limiter and discriminator for the f-m difference channel. The sum signal is then split and fed to both speakers, simultancously and in phase, while the difference portion is fod in phase with the signal in one speaker, and out of phase with that in the other. Crosstalk is said to be down 30 db .

MILITARY ELECTRONICS

- Sperry is about ready to announce a multi-million-dollar weapons svstems manager contract with USAF for development of long range radar.
- Look for Sylvania to announce within the next few weeks three additional contracts in the field of missile defense including electronic comntermcasures.
- Branching radio frequency amplifiers will be used in Project Globecom, a communication system linking the U.S.'s farflung air bases throughout the world. Produced by Hallamore Electronics div. of Siegler, the amplifier allows connection of six communications receivers to a single antenna without objectionable inter-action or inferior performance in individual circuits.

The amplifier is made up of
four main subassemblies consisting of a preamplifier, output distribution amplifier, power supply and control panel. Hallamorc's contract for $139+$ sets comes to $\$ 787,250$.

- ARDC says the electronics industry would profit by taking more advantage of its Technical Program Planning Documents system through which USAF's future needs are stated and sent out to interested firms.

Specific areas TPPD's cover include: communications, electronic counter and counter countermeasure, air terminal control, electronic techniques, intelligence clata handling, reconnaissance data collection, and search, identification and tactical control.

Recpuests for TPPD's are made to Commander, ARDC, Andrews AFB, Washington $25, \mathrm{D} . \mathrm{C}$. , to the attention of RD \%DSP

Semiconductor amplifier operates up to 500 mc

French Reveal New Amplifier

France's National Center of Telccommunications Studies has announced a scmiconductor amplificr that operates at ficquencies up to 500 mc

The devies, called the Tecnetron, is a cylindrical rod of .germanium 2 mm long and 0.5 mm in diameter, containing a slot filled with indium. National Conter hopes by the end of the year to perfect a model that will reach a frequency of more than 1,000 me and a power of several watts.

French government owns rights to the device.

Fusion Boosts Electronics Role

As the possibility of a practical fusion reactor mores into the realm of probability, electronics will play a more vital role-in fact a key rolein nuclear engineering.

That was the comment made this week to an Electronics editor by Manson Benedict, head of the newly created Department of Nuclear Engineering at MIT

Benedict, a plysical chemist who got into mucleonics as a scientist for the Manhattan Project, pointed out that electronics now has an important, but auxiliary role in fission reaction. Electronic instrumentation and circuitry are used in the the process "from initial signal to actuation of controls."

But training in clectronics will be even more important for thermonuclear reaction, Benedict added, since high temperature plasma physics is "the heart of the subject."

The \$2,640,000 muclear reactor at MIT, which will be completed this Spring, will scrve as a laboratory for the new department, one

Hughes, many years a leader in the semiconductor industry, has added another series to its expanding line. These new units can withstand temperatures as high as $200^{\circ} \mathrm{C}$ while sustaining all the important features your circuits demand:

- high forward conductance
- high reverse voltage
- low dynamic forward resistance
- high back resistance at high temperatures and/or high voltages They are quality diodes, rugged and reliable like all Hughes diodes. And each is packaged in Hughes' famous glass envelope, designed for complete protection from contamination and moisture penetration. Maximum body dimensions: . 107 " x $.265^{\prime \prime}$.
Special types are available, too. Perhaps you have a design with unique requirements and can't find the right diode for the job. If so, ask for a call from one of our sales engineers or visit our booth at the IRE show this month. Either way, we would be pleased to discuss your requirements.

Type Number*	Max. Forward Current (a) +1 Volt	Max. Rate Forwars (a) $25^{\circ} \mathrm{C}$	d Average Currert (a) $150^{\circ} \mathrm{C}$	(a) $25^{\circ} \mathrm{C}$	nverse Cu (a) $150^{\circ} \mathrm{C}$	urrent Test Voltage	Max. Rated Inverse Operating Voltage
1 N482B	100 mA	200 mA .	50 ma	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	30 V	36 V
1 N 483 B	1300 mA	200 mA .	50 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	60 V	70 V
1N484B	100 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$.	$5 \mu \mathrm{~A}$	125 V	130 V
1N485B	100 mA	200 mA	50 mA	. $025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175 V	180 V
1 N 486 A	100 mA	200 mA	50 mA	. $050 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	225 V	225 V
1 N487A	100 mA	200 mA	50 mA	. $100 \mu \mathrm{~A}$	$25 \mu \mathrm{~A}$	300 V	300 V

Hughes has related types with higher farward currents. Here are three of the many which could be listed:

HD6764	200 mA	200 mA	50 mA	$.025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	60 V	70 V
HD6768	200 mA	200 mA	50 mA	$.025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	175 V	180 V
HD5773	200 mA	200 mA	50 mA	$.025 \mu \mathrm{~A}$	$5 \mu \mathrm{~A}$	300 V	300 V

For printed literature, please write: Semiconductor Division, HUGHES PRODUCTS, Internakional Airport Station, Los Angeles 45, California

Creating a new world with ELECTRONICS
hughes
of the first of its kind in the U.S.
First course in nuclear enginecring at MIT was offered in 1952. The new department will be a division of the School of Engineering. of which C. Richard Soclerberg is dean. Teaching will dovetail with a rescarch program, which will include studies of atomic energy for medical and industrial as well as scientific purposes. By 1960 industry expects to need 16,000 nuclear engineers, Soderberg said. A 1957 study showed about 9,000 were employed by industry in the atomic encrgy field.

In addition to classes in Cambridge, Mass., nuclear enginecring students may attend the Engincering Practice School conducted by MIT at Oak Ridge, Tenn.

Study in the new department will require a background in physics, mathematics and engineering. Classes will be open to undergraduates, but the department will give degrees only for graduate work. Establishment of the new department will be effective July 1.

This vear 94 students have been registered for graduate study in the peaceful application of atomic energy. Of these, 23 are from MIT and the others come from a total of 49 institutions, including Annapolis and West Point. They include $\mathbf{1 7}$ foreign students.

Mobile Counters Track Radiation

Safliy personnyi at AlC installations track down escaping raldiation like FC inspectors. Mobile atmosphere counters locate trouble spots by the employment of triangulation. Counter-equipped vehicles make fast ground surveys. Fixed, remote stations handle routinc area monitoring.

Upwards of 200 mobile air monitors are estimated to be in usc. Early models were custom built, but as the nuclear industry expanded, a commercial market developed.

Remote counting stations are also in commercial production. Multichannel installations are used to bring readings to central control

FINANCIAL ROUNDUP

- Taylor Instruments, Rochester, N. Y., drops plan to offer 99, 195 shares of additional common stock to its stocklolders. The offering, originally planned for last October, was postponed because of market conditions. Conditions are still not ripe for the issuc, comments Raymond E. Olsen, president of the firm. Prospectus data furnished to the Sccuritics and Exchange Commission last fall is now outdated and the company has witholrawn its SEC registration. Firm had planned to retire $\$ 2.5$ million of bank loans with proceeds of stock issuc. Instead, the loans have been continued.
- Electro Precision Corp., Arkal delphia, Ark., offers 60,000 shares of common stock at $\$ 4$ per share to bona fide residents of Arkansas. The new firm was organized to manufacture clectronic controls and instruments used in automatic manufacturing. Proceeds will go for new equipment, inventory and working capital. Nunn-Groves Co. of Little Rock, Ark., is handling the underwriting.
-Telecomputing Corp. of Los Angeles reports an enviable income tax position for the next few years. It las an operating loss carry-forward from 1954 and 1955 of approximately $\$ 790,000$ to apply against taxable income for the years

1958 and 1959. Approximately $\$ 483,000$ of this amount is available to 1960 . Firm's net income for the 10 montlis ended Oct. 31, 1957 was $\$ 728,850$. It makes computting gear, gvroscope, components, test units, control devices.

- Texas Instraments was onc of the star performers on the New York Stock Exchange last year. Price of TI stock increased 46.6 percent between close of 1956 and close of 1957, a gain exceeded only by seven NYSE listed firms. TI closed at 184 in 1956 and at 263 in 1957. Final 1957 quotations of three out of four firms were below their final 1956 quotations.
- Fairchild Camera \& Instrument Corp., Syosset, L. I., N. Y., forms new Defense Products Division through integration of its Electronics Division and Reconnaissance Systems Division. Move was made because future reconnaissance systems will require in tegration of our background in reconnaissance and electronics, says John Carter, Fairchild president.

DIVIDENDS: Raythcon declares 5 percent stock dividend, payable March 5 ... Siegler Corp., regular quarterly dividend of 20ϕ, March 3 . . Television Electronics Fund, S ϕ per share from investment income, Fcb. 28.

Mobile atmosphere radiation monitor finds radioactivity released from reactor stacks
points. They arc hming on piping in homogencous reactors to detect
leaks and start safcty circuits. Firms which handle large radiation sources employ them as door interlocks.

One firm estimates the potential market for these two classes of instruments is of the order of hundreds a year. The cost of its mobile air monitor is under $\$ 4,000$, and the remotes sell for $\$ 500$ a channel.

In addition, the firm has sold about 200 single chamel remote counters for civilian defense use. The counters are installed on top of a firchouse or other CD station. The indicator and alarm stays inside.

For precise

power measurements in all bands

Microline 630 Peak Power Meter. New direct-reading meter measures true peak power in radars and other pulse systems. Readings, indicated continuously, are independent of width, shape, and repetition rate of pulse.

Other Microline Barretter and Thermistor Mounts cover coaxial and waveguide lines for frequencies between 0.82 and 9.6 kmc . All Microline mounts are fixed-tuned for low VSWR over their bands.

Now available from Sperry for immediate delivery is a complete line of Microline ${ }^{\text {® }}$ equipment for measuring power in all bands. Ready to meet the growing demand for instruments capable of a high order of accuracy, Microline equipment design is based on Sperry's wide experience in developing preci-

Microline Combination Test Sets. All are capable of measuring both peak and average power in radar systems. Also do the job of three or more standard test sets in measuring many other important system parameters. Special gating feature selects and identifies any pulse of a multi-pulse group for peak power measurement and spectrum observation. Available for $L p, S, C, X, K$, and V band systems.

Microline Directional Couplers. For sampling system power for measurement and test purposes. Available for coaxial and waveguide lines covering 0.96 to 40.0 kmc . Coupling ratios cover 10 to 50 db . Dual couplers are available for special comparative and ratio techniques, such as reflectometer measurements for fast production testing.
sion test and production equipment for major weapon and defense systems. Write our Microwave Electronics Division for latest data on "Microline Power Measuring Instruments."

Microline (8) 123B Wattmeter Bridge. Measures average power to accuracy of 3%. Self-balancing and direct reading, bridge operates with Microline barretter or thermistor mounts. Frequency coverage depends on mount used.

New Microline Barretter Mounts. For peak or average power measurements, these mounts are fixed-tuned and broad-banded to cover complete frequency range of their waveguide with high internal efficiency. Designed with low shunt capacity especially for peak power measurements with Microline 6.30 Meter. Barretters can be replaced by user. Three mounts cover all frequencies from 2.5 to 12.4 kmc

Microline Barretters and Thermistors. Precision elements for reliable power measurements as well as linear detection and probe uses. Seven types are available for special requirements of all types of power measurements, frequency bands, and bridge or meter circuits.

Radio Controls Seaway Traffic

A four-station radio network will be used to direct traffic through the St. Lawronce Seaway slated for complation carly in 1959.
Aim of the system will be to prevent congestion at the seven locks by giving vessels using the 2,400 mi seaway instructions as to speed, ctc.

Svstem's four transmitters will be at Cote-St. Catlocrine, Beauharnais, Eisenhower and Iroquois.
"Vessels using the scalway will not nced additional equipment," salys Sydney Hairsine, head of Canadian Scaway Authority's electrical and mechanical division.

The transmitters will broadcast on existing frequencies determined loy the longstanding Great Lakes Agrecment between U.S. and Canada. Output power will be about 75 watts to cover distances not cxceeding 25 miles.

Driving With No Hands

Electromagnetic anto guidance system enables driver to light a cigarettc as vehicle enters turnaround loop on check road at GM Technical Center. Wire embedded in pavement carries 40 w at $2,000 \mathrm{cps}$ a.c. Pair of tuned pick-up coils on front bumper straddle magnetic field about the wire, fceding voltage variations caused by lateral movement to a small analog computer installed in car's glove compartment. Computer drives a servo system to control steering. (See Newsletter, p 7)

MEETINGS AHEAD

Mar. 3-5: Fourth Annual Electronics Conf., American Management Assoc., concurrent with AMA Annual Exhibit of Electronic Data Processing Equip., Statler Hotel, N. Y.C.

Mar. 8: Americin Socicty for Quality Control, Toronto Sect. Formun: Basic Training in Statistical Quality Control, contact Treasurer, Box 7, Toronto 15 .

Mar. 17-21: 1958 Nuclear Congress, Engincers Joint Council, AICE, and Atomfair, Atomic Industrial Forum, International Amphithcatre, Chicago.

Mar. 24-27: IRE National Convention, All Prof. Groups, Waldorf-Astoria Hotel and N. Y. Coliseum, N. Y.C.

Mar. 31-Apr. 2: Instruments \& Regulators Conf., PGAC, ASME, AICHE, ISA, Univ. of Delaware, Newark, Del.

Mar. 31-Apr. 2: Southwest District Meeting of AIEE, Mayo Hotel, Tulsa, Oklahoma.

FEBRUARY						
S	M	T	W	T	F	S
2	3	4	5	6	7	8
9	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	

Apr. 2-4: Conf. on Antomatic Optimization, PGAC, ASME, AICHE, ISA. Univ. of Delaware, Newark, Dcl.

Apr. 8-10: Symposium on Electronic Wareguicles, Microwave Research Institute of Brooklyn Polytechnic Inst., held at Engineering Socictics Bldg. N. Y. C.

Apr. 10-12: Tenth Southwestern IRE Conference and Electronics Show, St. Anthony Hotel and Municipal Auditorium, San Antonio, Texas.

Apr. 14-16: Conf. on Antomatic Techniques, IRE, ASME, Statler Hotel, Detroit, Mich.

Apr. 15: Closing date for registration, Intensive course in Automatic Control scheduled for

June 16-25 at Univ. of Mich., Coll. of Engincering

Apr. 17-18: Second Annual Teck. Meeting. Institute of Environmental Engineers, Hotel New Yorker, N. Y.C.

Apr. 18-19: Twelfth Annual Spring Tech. Conference on Tclevision and Transistors, Engineering Socicty of Cincimnati Bldg., Cincimati, Ohio.

Apr. 20-24: Scientific Apparatus Makers, toth Annual Meeting, El Mirador Hotel, Palm Springs, California.

Apr. 22-24: 1958 Electronic Components Conf., IRE, AIEE, Ambassador Hotel, Los Angcles, Calif.

As you prefer-we can supply you with either ferrule or lead mounting.
Also available-voltage ratings of 100,200 and 300 volts peak inverse on both types.
Write for complete information.

RECTIFIER DIVISION Dept. D-1
415 N. COLLEGE AVE., BLOOMINGTON, INDIANA

In Canada: 700 Weston Rd., Toronto 9, Tel. Rogers 2-7535 - Export: Ad Auriema, Inc., New York City

MEWDUAL-BEAM OSCILLOSCOPE

Tekfronix Type 502

- tWO-GUN CATHODE-RAY TUBE.
- $200 \mu \mathrm{v} / \mathrm{cm}$ SENSITIVITY, BOTH BEAMS.
- dIFFERENTIAL INPUT, ALL SENSITIVITIES.
- 2, 5, 10, ańd 20 TIMES SWEEP MAGNIFICATION.
- CURVE TRACING with TWO BEAMS-(horizontal input sensitivity to $0.1 \mathrm{v} / \mathrm{cm}$).
- SINGLE-BEAM CURVE TRACING at $200 \mu \mathrm{v} / \mathrm{cm}$, BOTH AXES.
- EXTRA FEATURE-Both amplifiers have transistorregulated parallel heater supply.

Dual display on linear time base.

Dual display for X-Y curves.

Here are a few uses for the Type 502:

IN ELECTRONICS - Use the Type 502 as a general-purpose oscilloscope and also to show simultancously the waveforms at any two points in a circuit, e.g. input and output, opposite sides of a push-pull circuit, trigger and triggered waveform, etc.
IN MECHANICS-Display, compare, and measure outputs of two transducers on the same time base; plot one transducer output against another-pressure against volume or temperature for instance; measure phase angles, frequency differences, etc.
IN MEDICINE-Display, compare, and measure stimulus and reaction, or the outputs of two probes, on the same time base; use differential input to cancel out common-mode signals, or to eliminate the nced for a common terminal; use in routine investigations, etc.
IN ALL fields - The Type 502 can save you more than its cost in time-in as little as one application!

TYPE 502 CHARACTERISTICS

HIGH-GAIN AMPLIFIERS

200-microvolts/cm deflection factors, both de-coupled and ac-coupled. 16 calibrated steps from $200 \mu \mathrm{v} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$.
Passbonds-dc-to-100 kc at $200 \mu \mathrm{v} / \mathrm{cm}$, increasing to $\mathrm{dc}-\mathrm{ta} 350 \mathrm{kc}$ at $1 \mathrm{mv} / \mathrm{cm}$ and dc-to-500 kc at $50 \mathrm{mv} / \mathrm{cm}$ to $20 \mathrm{v} / \mathrm{cm}$.
Differential Input, Both Channels-Rejection rotios: $1000-\mathrm{to}-1$ at $1 \mathrm{mv} / \mathrm{cm}$ or less, $100-\mathrm{to}-1$ at $0.2 \mathrm{v} / \mathrm{cm}, 50-\mathrm{to}-1$ at 5 to $20 \mathrm{v} / \mathrm{cm}$.
Constant Input Impedonce (1 megohm, $47 \mu \mu \mathrm{f}$) Both Channels-from $1 \mathrm{mv} / \mathrm{cm}$ $1020 \mathrm{v} / \mathrm{cm}$, for use with Tektronix P510A Probes. (2-P510A Probes furnished).
WIDE-RANGE SWEEP CIRCUIT (Common to both beams)
Single-knob control for selecting any of 22 accurately-calibrated sweep rates from $1 \mu \mathrm{sec} / \mathrm{cm}$ to $5 \mathrm{sec} / \mathrm{cm}$.
Sweep Magnification-2,5,10, and 20 times, accurate within the maximum calibrated sweep rate.

Automatic Triggering-fully automatic, or preset with amplitude-level selection when desired. Sweep can also be operated free-running.

X-Y CURVE TRACING OPERATION

Horizontal-input amplifier permits curve-tracing with bath beams simultaneously at sensitivities to $0.1 \mathrm{v} / \mathrm{cm}$. For curve tracing at higher sensitivities (to $200 \mu \mathrm{v} / \mathrm{cm}$) with one beam, one of the vertical amplifiers can be switshed to the horizontal-deflection plates.

other features

Amplitude colibrotor, 1 mv to $100 \vee$ in decade steps-square wave, frequency about 1 ks .
$3-k y$ accelerating potential on new Tektronix $5^{\prime \prime}$ dual-beam crt. $8-\mathrm{cm}$ by $10 . \mathrm{cm}$ linear-disploy area, each beom.
Electronically-regulated power supplies.
Price
f.o.b. foctory

IF YOU ATTEND THE IRE SHOW, BE SURE TO SEE THE TYPE 502 AT TEKTRONIX BOOTH5 3027 TO 3030.

Tekfronix, Inc.

P. O. Box 831 - Portland 7, Oregon

Phone CYpress 2-2611 • IWX-PD 311 - Cable: TEKTRONIX

Regular shipments of the Type 502 are expected to begin during June, 1958. However, your Tektronix ield Engineer or Representative quite likely will be able to arrange a demonstration somewhat sooner. Please keep in touch with him for current details. If you don't know where to find him, a postcard to the factory will get you that information along with com. plete specifications on the Type 502.

AN AID FOR AIR TRAFFIC CONTROL

TIME: 2:00 A.M.

WEATHER: Heavy rain-ceiling 500'-visibility one mile.
SITUATION: Aircraft traffic in and out of International Airport Los Angeles is almost normal.

REASON: Positive identification and control of aircraft aided by use of the CHARACTRON Shaped Beam. Tube in modern Air Traffic Control Display Systems. Proved in the SAGE system, the CHARACTRON Shaped Beam Tube displays alphanumeric and symbolic information plus conventional radar.

RESULT:
A constructive step forward in air safety for the fast moving jet-age.

S.C STROMBERG-CARLSON GD

1895 HANCOCK STREET, SAN DIEGO 1, CALIFORNIA
\qquad

No. 1 solution to dielectric problems-

PRECISION STEATITE by GENERAL CERAMICS

G-C steatite solves all of these problems...economically

- Widely varying ambient temperature Severe mechanical or thermal shock - Permanence of dimensional accuracy - Intricate shapes to close tolerance

G-C electrical ceramics are news! Offering a far higher degree of dimensional accuracy than ever before possible, precision dielectrics provide a far greater design latitude in all types of electronic and electrical equipment. These new high accuracy ceramics are another example of

- Efficient compaction of physical size
- Low electrical loss at high frequency
- High dielectric and mechanical strength
- Extreme immunity to environmental conditions

General Ceramics progressive manufacture ... better products at lower cost through advanced research and improved methods of production. Why not ask for all the facts on precision electrical ceramics, now! Write General Ceramics Corporation, Kcasbey, New Jersey, Dept. E.

GENERAL GERAMIOS

Industrial Ceramics for Industrial Progress... Since 1906

East Coast Office: P. O. Box 391, Wilton, Conn. - Dayton, Ohio: 120 W. 2nd St. - Washington, D.C.: Suite 803, 1701 "K" St., N. W. Canadian Distributors: Computing Devices of Canada, Ottawa 4, Ontario - Export Division: Bendix International, 205 E. 42 nd St., New York 17

New! -hp- 340A NOISE FIGURE METER

Direct reading in db

Select components for minimum noise

Simple to operate; no periodic recalibration
Fast response, ideal for recorder operation

Receiver and component alignment jobs that once took skilled engineers a full hour are now done in 5 minutes by a semi-skilled worker. Receiver performance can often be improved up to 3 db over the best adjustment previously possible. Improvement in receiver performance frequently equals doubling transmitter output. Since accurate alignment is easy, equipment is better maintained and peak performance enjoyed regularly . . .these are time saving, cost saving advantages you enjoy immediately with the new -hp-noise figure measuring equipment.

SPECIFICATIONS -hp- 340A NOISE FIGURE METER

Frequency Range: Depends on noise source used.
Noise Figure Range: 3 to 30 db indication to ∞ with Waveguide Noise Source 0 to 15 db indication to ∞ with IF Noise Source.
Accuracy: $\pm 0.5 \mathrm{db}, 15$ to $25 \mathrm{db} ; \pm 1 \mathrm{db}, 3$ to 30 db with Waveguide Noise Source. $\pm 0.5 \mathrm{db}, 5$ to $15 \mathrm{db} ; \pm 1 \mathrm{db}, 0$ to 15 db with IF Noise Source.

Required Receiver or rf Amplifier Gain: Approximately 40 db .
Input Frequency: 30 or 60 MC , selected by switch.
Bandwidth: 1 MC minimum
Input Impedance: 50 ohms.
Power Inpul: 115/230 volts $\pm 10 \%, 50 / 60$ eps, 320 watts.
Power Outpul: Sufficient to operate thp 347A Waveguide Noise Source or hp345A IF Noise Source.

Weight: Cabinet Mount: Net 40 lbs ., Shipping 63 lbs.
Rack Mount: Net 35 lbs ., Shipping 74 lbs .
Dimensions: Cabinet Mount: 201/2" wide, $121 / 2^{\prime \prime}$ high, $141 / 4^{\prime \prime}$ deep
Rack Mount: $19^{\prime \prime}$ wide, $101 / 2^{\prime \prime}$ high, $1312^{\prime \prime}$ deep behind panel.
Price: (Cabinet Mount) $\$ 715.00$. (Rack Mount) $\$ 700.00$.
Data subject to change without notice. Prices f.o.b. factory.
(4ip) world leader in design and manufacture

minutes
 optimize receiver performance, measure noise figure directly!

Operating procedure

The new -hp-340A Noise Figure Meter operates over any frequency range for which there are suitable noise sources. It is automatic and requires no periodic recalibration. A provision for self-check calibration is built in.

In operation, a noise source such as a gas discharge tube is connected to the input of the receiver. The receiver IF amplifier output - either 30 or 60 MC is connected to the $3+0 \mathrm{~A}$. The 340 A pulses the gas discharge tube and when the tube is fired the noise level measured is that of the receiver plus the discharge tube. When the tube is not being fired, noise level is that of the receiver and its termination. The $-h p-3+0$ A automatically compares these two conditions and presents the noise figure of the receiver directly in db on a front panel meter. Rate of response is fast so changes in receiver noise figure are instantly reflected on the 340A meter. (See -hp-Journal, Vol. 9 , No. 5 for discussion of the importance of noise figure in measurement of performance.)

Many different uses

In addition to its remarkable time-saving convenience in optimizing receiver and amplifier performance, the $-h p-340 A$ is extremely helpful in designing circuit components such as IF amplifiers, crystal mixing circuits, etc. The 340 A may also be used in designing tubes, particularly wide band traveling wave tubes.

NEW -hp- NOISE SOURCES

NEW! -hp- 347 A Waveguide Noise SourceThese new devices, Argon gas discharge tubes
mounted across a section of waveguide, are available for all frequencies 2.6 to 18.0 KMC . The Sources provide a uniform noise level throughout their frequency range with a maximum SWR of 1.2 even when the noise source is cold. No temperature correction is required.

NEW! -hp- 345A IF Noise Source—Designed specifically for IF amplifier noise measurement, these temperature-limited diode sources operate at either 30 or 60 MC . They will match any impedance from 50 to 400 ohms . Noise level depends on cathode current, which is controlled and metered by -hp-340A Noise Figure Meter.

SPECIFICATIONS

Center Frequency: 30 or 60 MC , selected by switch.
Source Impedance: Depends on internal resistor installed. $50,100,200$ and 400 ohm resistors supplied with instrument.
Inpul Power: Supplied by hp- 340A.
Price: $\$ 75.00$.

HEWLETT-PACKARD COMPANY
4644A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.
CABLE HEWPACK • DAVENPORT 5-4451
Field Representatives in all Principal Areas
-hp-at IRE...top of escalators as you enter show

of electronic test instruments

APPROVAL DATA

STODDART \& MILITARY TYPE	FREQUENCY	MIL-I-16910 (Ships)	MIL-I-6181	S.A.E.	A.S.A.	C.I.S.P.R.	MIL-I-6181C (Proposed)
$\begin{gathered} \text { NM-40A } \\ \text { (AN/URM-41) } \end{gathered}$	30cps-15Kc	CLASS '1'	Not Req'd	Not Req'd	Not Req'd	Not Req'd	Recommendations S. A.E. (Society of Automotive Engineers)
NM-10A (AN/URM-6B)	14Kc-250Kc	CLASS '1'	Not Req'd	Not Req'd	$\begin{gathered} \text { C63.2 } \\ \text { (Proposed) } \end{gathered}$	Not Req'd	A.S.A. (American Standards Association)
NM-20B (AN/PRM-1A)	150Kc-25Mc	CLASS '1'	$\begin{gathered} \text { CLASS '1' } \\ \text { *CATEGORY 'A' } \end{gathered}$	Not Req'd	$\begin{gathered} \text { C63.2 } \\ \text { (Proposed) } \end{gathered}$	**	C.I.S.P.R. (Comite International Special des Perturbations
NM-30A (AN/URM-47)	20Mc-400Mc	CLASS '1'	$\begin{gathered} \text { CLASS '1' } \\ \text { *CATEGORY 'A' } \end{gathered}$	APPROVED	$\begin{gathered} \text { C63.3 } \\ \text { (Proposed) } \end{gathered}$	**	Radioelectriques) (International Special Committee on
NM-50A (AN/URM-17)	$375 \mathrm{Mc}-1000 \mathrm{Mc}$	CLASS '1'	CLASS '1'	Not Req'd	C63.3 (Proposed)	Not Req'd	(

STODDART'S 5 self-contained Radio Interference Measuring Equipments, each designed for its specific frequency range, provide:
5 instruments, which can be used by-
5 engineers, to measure over -
5 different frequency ranges, at -
5 different locations, at -
1 time.
FEATURES:

- Each equipment performs Quasi-Peak, Peak, and Average (Field Intensity) measurement functions.
- Approved for use by all Departments of the U.S. Department of Defense.
- Commercial and military equipments are identical.
- Precision laboratory equipment with rugged all-weather design for field use.
- Immediate delivery from stock.
- Serving 33 countries in radio interference control -

AIRCRAFT RADIOCO., INC.
6644 Santa Monica Blvd., Hollywood 38, California HOllywood 4-9294,

For every fuse application - there's a safe and dependable BUSS fuse . .

You'll save time and trouble by specifying only BUSS fuses!

You can select a fuse that meets your exact circuit protection requirement from the complete BUSS fuse line. There are fuses in all sizes and types for the protection of television, radio, instruments, controls, avionics and other electronic and electrical equipment. A companion line of fuse clips, blocks and holders is most complete.

Relying on BUSS as your one source for fuses saves you time, trouble and simplifies record keeping.

Specifying 8USS fuses helps sofeguard good name of your product

Faulty fuses can cause trouble by failing to protect - or by blowing
needlessly. Users of your product would then be faced with unnecessary repair bills or needless shutdowns. Such an experience could jolt the users confidence in your product.

By specifying BUSS fuses, you are sure of dependable electrical protection under all service conditions. Every BUSS fuse is tested in a sensitive electronic device that automatically rejects any fuse not correctly calibrated, properly constructed and right in all physical dimensions.

Should you have a special problem in Electrical protection . . . The BUSS fuse engineers are at your service - and in many cases can save you engineering
time by helping you choose the right fuse for the job. Whenever possible, the fuse selected will be available in local wholesalers' stocks so that your device can be serviced easily.

Before your final design is crystalized, be sure to get the latest information on BUSS and FUSETRON Small Dimension fuses and fuseholders . . . Write for bulletin SFB. Bussmann Mfg. Division McGraw-Edison Co., University at Jefferson, St. Louis 7, Mo.

thousands of "				
THESE 22 SERII OF STANDA WILL HAND ANY LOW \qquad	SWITCHES E ALMOST CURRENT ION \qquad			
	Low Cost: Up to 12 positions; straked screw construction. \qquad			
SIMPLE SWITCHING: Up to 5 positions combined with $A C$ switch. Series 52, 54			CONCENTRIC SHAFTS Dual and triple shafts with many wafer types.	FOR PRINTED CIRCUITS Special lug designs for direct insertions.
CUSTOM-MADE TO YOUR EXACT SPECIFICATIONS FROM STANDING TOOLS				
				EACH SWITCH IS PRETOOLED IN NUMEROUS VARIATIONS. DETAILS ON ANY SERIES ARE AVAlLABLE ON REQUEST

For Recommendations on Unusual Applications, send us a sketch and short description.

0
 MFG.
CO.

1260 Clybourn Ave., Dept. G, Chicago 10, Illinois Phone: MOhawk 4-2222

SWITCHES

rotary SOLENOIDS

CHOPPERS

VIBRATORS

SPECIAL ASSEMBLIES

Production Inspection is Faster and Easier with a J\&L Optical Comparator

... and its extreme versatility enables you to perform inspections that used to be "impossible"!

More and more electronics manufacturers throughout the country are using Jones \& Lamson Optical Comparators in their quality control operations. Small shops, as well as the giants, have learned that a J\&L Comparator pays for itself in very short order.

The Comparator's ability to measure and inspect, through shadow magnification, all sorts of parts and objects
with extreme precision and speed makes it ideally suited for checking electronics components, especially those which are tiny or intricately contoured.

Investigate how the J\& L Comparator can help you make your production operations more efficient . . . and more profitable. Write today for a free copy of our new illustrated catalog No. 5700.

For Instance - A customer writes: "One of our assemblies, containing 32 separate circuits, measures only $5 / 6^{\prime \prime}$ dia. by $1^{\prime \prime}$ long. The parts which go into this assembly must have perfect shape and tension, which are impossible to check by mechanical
means. Two such parts are these $.005^{\prime \prime}$ dia. gold wires, and precisely toothed brush spacers. Since using the J\& L Optical Comparator in our inspection, assembly failure due to malfunction of either of these two parts has virtually disappeared."

This precisely-threaded rod (used in calculating machines) is of $.047^{\prime \prime}$ dia. stock, 120 pitch, with continuous threading along its entire $12^{\prime \prime}$ length. Threading accuracy and critical dimensions are measured and checked speedily and efficiently with a J\&L Comparator.

You're precisely correct

when you use

When we say "precisely" we mean control within $.25 \%$ of range! Here's why - when temperature goes up, the resistance of the thermistor sensing element goes down - a unique property that makes very small temperature changes into large resistance changes. That means quick, extremely precise temperature control!

Small probes respond fast - can be installed nearly anywhere. Unbalanced bridge circuit design assures sensitivity and reliability. These are among reasons why one Thermistor Controller customer can report $0.08^{\circ} \mathrm{F}$ control. Why another reports over two years service with no drift or set point variation!
You can have remote control - as much as 200 feet without ambient or lead length compensation problems. You can control 1 or 100 points, with or without indication. Versatile Fenwal Thermistor Controllers are adaptable to all kinds of applications. No matter what your need, you get dependable precision with amazing stability.

You'll want to have complete details on the new advance in precision temperature control at your fingertips, and we'll get it in your hands soon if you'll write us at Fenwal Incorporated, 202 Pleasant Street, Ashland, Massachusetts.

Fenwal Thermistor Tëmperature Controllers

Here's a Thermistor Controller (Model 530) in a package forming machine. One Fenwal Thermistor probe in one corner plunger controls temperature at all four corners. A potentiometer on the control panel permits infinitely variable temperature range from 200 to 600 degrees. It eliminates a thermostat in each of the corner plungers, simplifies operation and maintenance - and assures uniformly high quality output. There are four standard temperature ranges for you to choose from: $-100^{\circ} \mathrm{F}$ to $50^{\circ} \mathrm{F} ; 0^{\circ} \mathrm{F}$ to $150^{\circ} \mathrm{F} ; 100^{\circ} \mathrm{F}$ to $300^{\circ} \mathrm{F}$; and $200^{\circ} \mathrm{F}$ to $600^{\circ} \mathrm{F}$. Special ranges can, of course, be supplied in most cases.

no other transmitting tube

 but the Amperex 6939
gives you

5.5 watts useful power in load (ICAS) up to 500 Mc at maximum ratings in a miniature envelope

unsurpassed for low-power UHF
transmitter applications...saves entire stages in original equipment design

AMPLIFIER, CLASS C, FM	Operating Conditions	
	C.C.S.	I.C.A.S.
Frequency	$500 \mathrm{Mc} / \mathrm{s}$	$500 \mathrm{Mc} / \mathrm{s}$
Plate Voltage	180 V	200 V
Screen Grid Voltage	180 V	200 V
Control Grid Bias	-20 V	-20 V
Plate Current	$2 \times 27.5 \mathrm{~mA}$	$2 \times 30 \mathrm{~mA}$
Screen Grid Current	11 mA	13 mA
Control Grid Current	$2 \times 1 \mathrm{~mA}$	$2 \times 1 \mathrm{~mA}$
Driving Power	1.0 W	1.0 W
Plate Input Power	$2 \times 5 \mathrm{~W}$	$2 \times 6 \mathrm{~W}$
Plate Dissipation	$2 \times 2.1 \mathrm{~W}$	$2 \times 2.25 \mathrm{~W}$
Screen Grid Dissipation	2 W	2.6 W
Output Power	5.8 W	7.5 W
Useful Power in Lond	4.5 W	5.5 W

The Amperex 'FRAME-GRID' CONSTRUCTION insures extreme accuracy of interelectrode spacing, the secret of the 6939's brilliant performance. The relatively massive metal frame acts as a heat-sink, sajely limiting control-grid temperature.

Write for detailed data sheets to Communications Tube Division, Amperex Electronic Corporation, 230 Duffy Avenue, Hicksville, L. I., New York.

Symbolof a Reputation

. . . a reputation for integrity, for quality and service . . . for advanced creative engineering achieved by New Departure in over half a century of precision ball bearing manufacture.
You'll find this emblem is also symbolic of our determination to continue, in the fullest measure, all those factors which have built that reputation. It is a visual pledge of this resolution to all our customers, present and future.

STAYS fiexible under heat

Heat won't faze this toy iron - the lead wires have been permanently heat-proofed with BH Ex-Flex fiber glass Sleeving . . . to provide the supplementary insulation required by Underwriters' Laboratories.
As supplementary protection and as a primary insulation for
low voltage circuits, BH Ex-Flex offers permanent flexibility, permanent roundness, permanent heat resistance.

Inadequate insulation can shorten the life of even the finest product. In the BH line, of tubing and sleeving, you will find the correct answer to many insulation problems. Send us a few facts on temperature, working conditions, etc., and we'll send you samples of the most efficient insulation for your application. Catalog on request.

Bentley, Harris Manufacturing Co.
200 Barclay Street
Conshohocken 4, Pa. Telephone: TAylor 8-0634

BENTLEY, HARRIS

SLEEVINGS
BH Non-Fraying glass fiber sleevings are made by exclusive Bentley, Harris process (U.S. Par. Nos.: 2393530; 2647296 and 2647299).

Model (simplified) illustrates basic structure of magnetic "Twistor" memory-magnetic and copper wires interwoven as in a window screen. Twisted condition of the magnetic wire shifts preferred direction of magnetization from a longitudinal to a helical path. One inch of twisted wire, thinner than a hair, can store as much information as ten ferrite rings. "Twistor" was invented at Bell Laboratories by Andrew Bobeck, M.S. in E.E. from Purdue University.

New twist in memory devices

An ingenious new kind of magnetic memory has been developed by Bell Laboratories scientists for the storage of digital information. Known as the "Twistor," it consists basically of copper wires interwoven with magnetic wires to form a grid.
"Twistor" gets its name from a characteristic of wire made of magnetic material. Torsion applied to such a wire shifts the preferred direction of magnetization from a longitudinal to a helical path. This helical magnetization has been applied to produce a magnetic storage device of unprecedented capacity for its size.

In a magnetic memory, information is stored by
magnetizing a storage element. In conventional memories the storage elements consist of rings of ferrite. In the "Twistor," they consist of tiny segments of hairthin magnetic wire. At each intersection of the grid, one such segment is capable of storing a binary digit.

The "Twistor" is simple and economical to fabricate, and its minute energy requirements are easily supplied by transistor circuits. Bell Laboratories engineers see important uses for it in future telephone systems which demand the compact storage of much information, as well as in digital computers for civilian and military applications.

BELL TELEPHONE LABORATORIES WORLD CENTER OF COMMUNICATIONS RESEARCH AND DEVELOPMENT

50 ohm Coax Terminations de to 4 KMC!

8 new instruments! 1 to 500 watts coverage!

New Sierra 160 series Coaxial Terminations are ideal for use with directional couplers, or in other applications requiring wide frequency range and low VSWR. They provide extremely high stability, and will dissipate full rated power continuously up to an ambient temperature of $40^{\circ} \mathrm{C}$. Derating permits operating at still greater ambient temperatures. Terminations are completely shielded, and may be used to adjust transmitters without radiation. They are also useful for converting Sierra Bi-Directional Power Monitors to a termination type wattmeter.

Up to $40^{\circ} \mathrm{C}$ ambient.

New LOW PASS FILTERS

Sierra 184 series Low Pass Filters have an insertion loss not more than 0.4 db in pass band, sharp cut-off, 1.5 VSWR or less, and rejection greater than 60 db from 1.25 to 10 times cut-off frequency. Five models: for cutoff frequencies of $44,76,135,230,400 \mathrm{MC}$. Power range 250 watts in pass band, 25 watts in rejection band.
W rite for Bulletin!

Sierra Electronic Corporation
A Subsidiary of Philco Corporation
3663A Bohannon Dr., DAvenport 6-2060, Menlo Park, Cal., U.S.A. Sales Representatives in major cities
CANADA: Atlas Radio Corp., Ltd., Toronto, Montreal, Voncouver, Winnipes
EXPORT: Frazor \& Hansen, Ltd., Son Francisco, New York, Los Angeles

See this equipment IRE SHOW Booths 3905-3907

WIDEBAND DIRECTIONAL COUPLERS

Versatile, accurate Sierra couplers are offered in 6 models for frequencies 10 kc to 2000 mc . Couplers provide transmission line measurements including reflection coefficient, VSWR, power. Also permit matching of loads to lines dynamically by indicating conditions providing minimization of reflected voltages. Request Bulletins 101, 104.

Coupling Factor: (in $\mathrm{db} \pm 1 \mathrm{db}$)

Model	10 kc	3 mc	10 mc	30 mc	100 mc	300 me	1000 mc	$\mathbf{2 0 0 0}$ mc
$137,137 \mathrm{~A}$				73	63	53	43	37
$138,138 \mathrm{~A}$				59	49	39	29	
145		52	42	32	22	12		
150				53	43	33	23	
139	50	50						

Directivity: $12 \mathrm{db} \pm 3 \mathrm{db}$ greater than coupling factor at each frequency.
Impedance: Models 137 and 138 are 51.5 ohms. Models 137A, 138A, 145 and 150 are 50.0 ohms. Model 139 may be motched to most impedances.
Power: Usable to 1000 watts throughout frequency range.

SIERRA 148 CRYSTAL DETECTOR
Insures sensitive readout for Sierra Directional Couplers. Low VSWR, high sensitivity to 1200 MC. 50 ohm input impedance, filtered out put. Type N input, BNC output connectors.

Data subject to change without notice

A MESSAGE TO AMERICAN INDUSTRY - ONE OF A SPECIAL SERIES

How Research Shapes Our Future Prosperity

If you are looking for an industry that is going to keep on booming in 1958 and every year for the next decade, here it is. It is the industry of technological innovation through research and development.

Last year this great new industry spent over $\$ 7$ billion to discover and develop new industrial products, processes and equipment. This year the preliminary McGraw-Hill survey indicates that total expenditures for industrial research and development will be even greater, perhaps as much as $\$ 8$ billion. Of the companies surveyed, 57% plan to spend as much as in 1957 and 38% plan to spend more.

The sustained expansion in research and development is the best guarantee we have that the current decline in business investment in new plants and equipment will be relatively short-lived. There can be no prolonged decline in investment in an economy where technology is changing rapidly.

This editorial is designed to show how the continued surge in research and development can be expected to lead first to new products, and eventually to renewed expansion of investment in new industrial plants and equipment. Such expansion is the essence of national economic growth.

A Slow Start

The impact of research on sales and investment is still very gradual. Research spending itself has more than doubled in the last four years. But only 32% of all manufacturing firms report significant capital outlays to make new products. We are not reaping the full dividends of industrial research as yet for several rea sons:

- Research expenditures were relatively small until the Korean War of 1950 brought substantial government contracts in aviation, electronic and related fields. Heavy research outlays for civilian and industrial products came even later.
- There is an average lag, according to research directors consulted by the McGraw-Hill Department of Economics, of roughly seven years from the start of research until the product is ready for large scale output - about five years of research and at least two years to solve production problems and develop markets.
- Complex products, such as new consumer durables and industrial machinery, have an even longer time lag.

However, new developments are certainly underway. Research began to increase in all lines of business when Korean War restrictions and
the excess profits tax came to an end in 1953. The tax revision of 1954 added a new incentive by making research outlays deductible as a current business expense. By 1955, the research boom was on.

When Is The Payoff?

With a lag of about seven years, it will be the early 1960s before these new developments become a dominant factor in capital investment. But once the flow of new products and new procasses starts, it will accelerate sharply - just as research spending has accelerated in the past few years.

By 1960, over $\$ 50$ billion in sales will be coming from products not on the market as recently as 1956. Sales of new products will increase year by year, but they will gain most in 1960-1962, or five years after the recent spurt in research expenditures.

Capital expenditures to manufacture new products will also rise, but with a slightly longer lag. Here the sharpest rise should come in 1962-1965, as the new products reach a volume that calls for a significant amount of new capacity. In most cases, initial output of new products will come from existing capacity.

This timing of a new wave in capital investment appears logical on other grounds. Population experts forecast an upsurge in marriages and births around 1965. So by 1962, industry will be starting to tool up for new mass markets.

The important point is this: As we apbroach the 1960 s more and more sales and investment will be in new products growing out of research. By 1960 well over 10% of manufacturing sales will be in new products not on the market in 1956.

Meanwhile - research will help stabilize capital spending by raising the level of modernization and replacement expenditures. Of course, research does not eliminate all the ups and downs in the demand for capital goods, for there remain variations in the amount spent to expand capacity. But a high level of modernzation, to cut costs and improve quality, does put a floor under any drop in investment.

What To Expect

During the next few years we can expect an increasing flow of new materials, new metallic alloys, new machinery - primarily those developments coming out of long-established research programs in the chemical and electrical industries. Industry will make wider use of specialized computers and automated equipment.

But the dramatic payoff on research comes even later. In the early 1960s the consumer goods industries will begin tooling up for their really new products - things so basically new they can change the way a family lives. Such items as plastic houses, paper apparel, turbine autos are under development right now. But it will take several years to get costs down and for population and incomes to grow to the point where mass markets are created.

When we reach that point in the mid-1960s, there will begin the greatest surge of capital investment in all history. And then - around 1965 - the new processes (full automation, atomic power, continuous steel casting) which are the slowest and most expensive part of the research chain to develop, will come into play.

The combined impact of new products and new processes, to meet an expanding market, will thus be felt in the mid -1960s - eight to ten years after the recent sharp increase in research spending. The full iopact is that far away because of the lags for applied research, pilot plant studies and market introduction. But to a large degree the prosverity of the 1960s has already been shaped by the research programs now underway.

This message is one of a series prepared by the McGraw-Hill Department of Economics to help increase public knowledge and understanding of important nation-wide developments. Permission is freely extended to newspapers, groups or individuals to quote or reprint all or parts of the text.

McGRAW-HILL PUBLISHING COMPANY, INC.

You Can
 Count On... to Pay Off!

It's the *Original Equipment idea . . . which simply means that, when you're figuring on electrical or mechanical counters in any new product, it pays to design them in, when you begin.

For then Veeder-Root quite likely can save you time and money by adapting or modifying a standard counter to your needs, instead of a special which you might specify on your own. This solves the counter problem . . . and saves you time in engineering, purchasing and assembly.
What's more, you give your product new sales-advantages: Direct-reading digits, instead of hard-to-read dials and verniers . . . instant remote indication if needed . . . up-to-the-minute performance records that serve as a basis for production-Countrol, and as proof of your performance guarantee. So don't let counters take a back seat in your new-product plans. Design them in, when you begin... it pays in many ways. Do you have the newest Veeder-Root Catalog? Write

(®)

Series 1205
Reset Magnetic Counter

Everyone
Can Counton

Hartford, Conn. - Greenville, S. C. - Chicago • New York Los Angeles - San Francisco * Montreal Offices and Agents in Principal Cities

Second in a series describing the advantages of ceramics in electron tubes,

Surviving Heat Extremes is an Eimac Ceramic Tube extra

In a high temperature furnace the difference between a ceramic tube and a glass tube is physically evident. But, long before the glass tube reached the state of complete collapse shown above, it had lost its usefulness as an electron tube.
Before the temperature reached the softening point of glass, the glass envelope began giving off gaseous products that contaminated the tube's vacuum. The ceramic tube remained internally clean far above the softening point of glass. The materials used in Eimac ceramic tubes are stable to more than $600^{\circ} \mathrm{C}$. - the temperature at which Eimac processes these tubes.
Far below $600^{\circ} \mathrm{C}$., the envelope of the glass tube
had softened enough to allow the anode to move slightly to one side, radically disturbing the electrode spacing. The electrodes of the ceramic tube were held rigidly in place by highly heat resistant ceramic spacer rings and brazing alloys.
The 4CX300A used in this test is just one of a complete line of Eimac developed and produced ceramic tubes. Their resistance to damage by heat, physical shock and vibration, plus small size with added power, make them ideal for airborne and missile applications, or wherever ruggedness and compactness are a must.

Write our Application Emgineeting Deportment fur a capy of the new explonatory bookiet "Advantages of Ceramics in Electron Tubas."
EITEL-MCCULLOUGH, INC. SANBRUNO.CALIFORNIA
Eimac First with seramic tubes that can take it

Products Designed and Manufactured by Eimac

Negative Grio Tubes
Reflex and Amplifier Klystrons
Ceramic Feceiving Tubes
Vacuum Tube Accessories
Vacuum Switches
Vacuum Pumps
Includes the most extensive line of ceramic electron tubes

Ucinite Magnetron Connectors

Ucinite manufactures a variety of special connectors for the heater and heatercathode terminals of magnetrons. Many of these have been adapted for special applications as to size and function to meet the sealing and mounting requirements of high temperature and high altitude operation and other special conditions.

Connectors are coaxial in construction and can be supplied with built-in capaci-
tors for added protection. Connecting leads of any length can be furnished to customer's specifications.

With an experienced staff of design engineers, plus complete facilities for volume production, Ucinite is capable of supplying practically any need for metal or metal-and-plastics assemblies. Call your nearest Ucinite or United-Carr representative for full information or write directly to us.

Evaluation of Sylvania transistors types 2N312, 2 N 356 , 2N357, 2N358, for 1,000 hours at $85^{\circ} \mathrm{C}$ shows the high Beta stability the units maintained throughout the test.

Four more Computer Transistors

Sylvania widens its product line of high stability types designed especially for computer applications

Design engineers are now provided with an expanded line of computer transistors from Sylvania, basic source for high Beta units. The new additions, types $2 \mathrm{~N} 312,2 \mathrm{~N} 356,2 \mathrm{~N} 357$ and 2N358, are NPN germanium alloy junction transistors. They exhibit the stable Beta characteristics and fast switching times that have made Sylvania types 2N377, 2N385 and 2N388 so popular. The new transistors are "base-off-the-can" types designed specifically for those applications where all transistor elements must be insulated from the metal case.

As with Sylvania original computer transistors, the types 2N312, 2N356, 2N357 and 2N358 meet EIA size group 30 dimensions. They also meet environmental tests typical of those required in military applications. Tests include temperature cycle, moisture resistance, centrifuge, and lead fatigue.

In addition to stable Betas at changing current levels, the four types have good leakage stability. Total dissipation for each unit is conservatively rated at 100 mw with ambient temperature at $25^{\circ} \mathrm{C}$.

Typical Characteristics ($25^{\circ} \mathrm{C}$):	2 N 312	2N356	2N357	2N358
Collector Cutoff Current, I'BO				
${ }^{V_{C B}}-20$, emitrer open	,	20	20	20 vo
${ }^{V_{C B}}-15$, emitter open	10 ua	-	-	-
$v_{C B}-5$, emitter open	,	3	3	30
${ }^{\text {CB }}$ - 1 , emitter open	2 va	-	-	-
Emitter Cutoff Current, $\mathrm{I}_{\text {EBO }}$				
$\mathrm{V}_{\text {EB }}-20$, collector open	n	20	20	20 va
$\mathrm{V}_{\text {EB }}-15$, collector open	en lova	-	-	-
$\mathrm{V}_{\text {EB }}-5$, collector open	n	3	3	3 ua
$V_{\text {EB }}-1$, collector open	en 2 ua	-	-	-
Emitter Punch Thru, I_{E}				
$V_{\text {EB }}=0$	-	20	20	20 va
		$\left(V_{C B}-20\right)\left(V_{C B}-18\right)\left(V_{C B}=15\right)$		
Collector Punch Thru, IC				
$\mathrm{I}_{\mathrm{B}}=-25$ va (reverse bias)		$\left(V_{C E}-20\right)\left(V_{C E}-18\right) \times\left(V_{C E}-15\right)$		
$\mathrm{R}_{\mathrm{BE}}=10 \mathrm{~K}$	$\begin{gathered} 400 \text { vo } \\ \left(V_{C E}-15\right) \end{gathered}$			
Current Gain, $\mathrm{h}_{\text {FE }}$				
$V_{\text {CE }}=0.25,1 \mathrm{lc}-100 \mathrm{ma}$	a -	30	-	-
$v_{C E}=0.25, \mathrm{I}_{\mathrm{C}}-200 \mathrm{ma}$	a	-	30	-
$\mathrm{V}_{\text {CE }}-0.25$, iC -300 ma	- -	\cdots	-	30
${ }^{\text {C }}$ CE $-1.0,{ }^{1} \mathrm{C}-10 \mathrm{ma}$	a 45	\cdots	-	-
Saturation Voltage, $\mathrm{V}_{\text {CE }}$ (max.)				
$\mathrm{I}^{\mathrm{C}} \mathrm{C}=100 \mathrm{ma} \mathrm{I}_{\mathrm{B}}-10 \mathrm{ma}$	a	0.2	-	-
$\mathrm{c} \mathrm{C}-200 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}-20 \mathrm{ma}$	a	-	0.2	-
$\mathrm{I}_{\mathrm{C}} \mathrm{C}-300 \mathrm{ma} \mathrm{I}_{\mathrm{B}}=30 \mathrm{ma}$	-	-	-	0.2
$\mathrm{I}^{\mathrm{C}} \mathrm{C}=10 \mathrm{ma}, \mathrm{I}_{\mathrm{B}}-1 \mathrm{ma}$	0.075	-	\cdots	-
$\mathrm{Input}^{\text {Voltage, }} \mathrm{V}_{\text {BE }}$ (max.)				
${ }^{\text {CE }}$ ($-0.25, \mathrm{I}_{\mathrm{C}}-100 \mathrm{ma}$	-	0.8	-	-
${ }^{\text {CFE }}=0.25, \mathrm{IC}=200 \mathrm{ma}$	a	-	0.8	-
$\mathrm{V}_{C E}-0.25,1 \mathrm{C}-300 \mathrm{ma}$	a	-	-	0.8
Rise Time	1.0	1.0	. 6	. 4
Storage Time	1.5	0.3	. 3	. 5
Fall Time	0.8	1.0	. 6	. 6

Sylvania Electric Products Inc.
1740 Broadway, New York 19, N.Y
In Canada: Sylvania Electric (Canada) Ltd. Shell Tower Bldg., Montreal.

NEW SILICON DIODE, rated at 500 -ma output current and 330 -volt rms input voltage, is an example of the growing develorment in the design of components for use in TV-power supplies.

Now... more efficient power supplies for radio-TV made possible with Du Pont Hyperpure Silicon

Actual test results as reported by various manufacturers indicate important advantages of silicon diodes and rectifiers. One TV manufacturer, for example, operated samples of silicon rectifiers under load continuously for 5,000 hours-with no noticeable drop in output voltage. Another manufacturer reports no voltage change after 500 hours in 95% humidity.

Silicon-equipped sefs are relatively free of a decline in B+ voltage. Silicon diodes are up to 99% efficient in units operated at $60 \mathrm{cps}-$ reverse leakage is as low as a few microamperes. Both rectifiers and transistors of silicon have temperature ratings far higher than those of other semiconducting materials . . . can operate continuously at -65° to $200^{\circ} \mathrm{C}$.
(NEW BOOKLET ON DUPONT HYPERPURE SILICON You'll find our new, illustrated booklet about Hyperpure Silicon helpful and interesting-it describes the manufacture, properties and uses of Du Pont Hyperpure Silicons. For your copy write to: E. I. du Pont de Nemours \& Co. (Inc.), Silicon N-2496-E-2, Wilmington 98, Dela. (This offer is limited to U.S. and Canada.)

Note to device manufacturers: You can produce silicon transistors, rectifiers and diodes of the highest quality with Du Pont Hyperpure Silicon. It's now available in three grades for maximum efficiency and ease of use . . . having a purity range of 3 to 11 atoms of boron per billion. Technical information is available on crystal growing from Du Pont . . . pioneer producer of semiconductor-grade silicon.

PIGMENTS DEPARTMENT

better things for better living .THROUGH CHEMISTRY

The A-MP Component Tip provides these new advantages to manufacturers using printed circuit techniques:

- eliminates the need for eyelets or thru-plating on two-sided boards
- prevents cold solder problems by eliminating any movement of the component during dipping cycle
- permits bridging or offsetting of components-for air circulation and elimination of temperature influence
- design promotes solder-wicking and uniform solder deposit
- protects fine semi-conductor leads from heat and assembly damage

AMP-engineered, high-speed, automatic tipping machines provide an easy and economical method for applying A-MP Component Tips to leads of single-piece or belted components.

Additional Information is available on request.

AMPINCORPORATED

4 floors 4 MINUTES FROM TIMES SQUARE!

It takes the whole Coliseum to show you 800 new ideas in radio-electronics - here you find more than 80% of your industry's productive capacity represented. Attend the Convention. See the Show. If you are in radio-electronics, your year begins here!

MARCH 24-27

THE IRE NATIONAL CONVENTION

componem PARTS

Waldorf-Astoria Hotel and The Radio Engineering Show Coliseum New York City

REGISTRATION: IRE Members $\$ 1.00$
Non-members $\$ 3.00$

read the 」recti/תiteri at a glance:

RECTILINEAR GALVANOMETRIC RECORDERS

Old-fashioned curvilinear recordings are difficult to interpret-are highly subject to reading errors. The modern "recti/riters," both SINGLE and DUAL, are read at a glance with a simple ruler.

Furthermore, only the "recti/riter" systems provide these wide ranges for recording electrical parameters:

> 10 millivalts to 1000 volts 500 microamperes to 1000 amperes Monitor standard frequencies $-50,60,400 \mathrm{cps}$

You will also like the fast rise time, full scale accuracy, and high sensitivity inherent in this galvanometric system . . . the easy frontal access for all controls and routine operations . . . the fingertip control of 10 chart speeds ... dependable closed inking system . . AC, DC, spring, or external drives. TI's efficient "recti/riters" are being used extensively in government projects, production control, medical instrumentation, weather studies, and numerous other applications. Very likely, you can greatly facilitate your specific project with a versatile "recti/riter."

Write for complete detailed information
or a visit from the II representative.

cut final test time 80\%

WITH THE
LAVOIE
ROBOTESTER

FOR USE AS PRODUCTION TESTER, SYSTEMS COMPONENT, AND MAINTENANCE TOOL

The ever increasing demand by the military and industry for greater reliability of electronic circuits places the responsibility squarely on the shoulders of the suppliers. Up to now, you must spend more time testing your unit than assembling it.

The Lavoie Robotester will save you up to 80% of this time in reducing labor, space and equipment . . . and by minimizing the human factor, you get the optimum in accuracy. This unit is ruggedly constructed ... and incorporates the famous "Lavoie Unitized Subassembly" which assures fast, easy maintenance when required.

The Robotester has virtually unlimited application ... depending upon the bounds of your imagination! For example, the Robotester can be used as a systems component, providing your equipment with internal programmed testing and function facilities. And when combined with Lavoie Robotester Accessories . . . the Roboprinter . . . this unit will provide permanent records of errors, allowing a single operator to handle several Robotesters. Other accessories lend ample support to the unit's versatility.

To see the Robotester in full action, visit the Lavoie IRE Show Booth No. 3242-43-44. Meanwhile, write for complete details.

Cambion (8) coil forms with Perma-Torq*® Tensioning Device are designated PLST, PLS-6, PLS-5, PLS-7, PLS-8 and are factory assembled to mounting studs. The units are completely interchangeable with Cambion's LST, LS-5, LS-6, LS-7 and LS-8.

Reliability is their family resemblance

Here's a reliable family of coil forms ready to meet your specifications. These Perma-Torq Tensioning Devices on Cambion coil forms allow locking of tuning cores while still tunable - and you can depend upon them to do their job well.

This built-in dependability is a result of Cambion's unique design plus quality control - that meets or betters government specifications.
Perma-Torq is a compression spring of heat treated beryllium copper, that has a very high resistance to fatigue and keeps ${ }^{\ddagger}$ coils tuned as set - even under extreme vibration and shock. The device also allows for immediate readjustment - without removal or loosening of any mounting nut or locking spring.
Quality control and features like the above are just two of the reasons why Cambion can offer you guaranteed standard or custom electronic components - whose performance you can rely upon.

Cambion researchers and practical experts are always available to help you
solve your component problems. For all specifications and prices, write Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast slocks maintained by E. V. Roberts and Associates, Inc., 5068 West Washington Blvd, Los Angeles 16, and 1560 Laurel St., San Carlos, Calif.

Cambion's new printed circuit coil forms are ideal for high temperature work atd horizontal mounted panels. Equipped with Perma-Torq locking device at one end through a brass housing, thus eliminating internally threaded forms and cores and resulting in a more precise element with finer tuning. The coils, $2550,2540,2530$ and 2525 , are ceramic units with silicone fiberglas collars which have terminals for mounting on printed circuit boards.

PHILCO

Silicon Transistors

electronics engineering edition

FEBRUARY 28, 1958

Magnetic Resonance Determines Moisture

Abstract

The absorption of radio-frequency energy by the nucleus of a hydrogen atom placed in a constant magnetic field is the principle used to measure the moisture content in hygroscopic solids. Nondestructive analysis of raw materials and end products can be conducted by nontechnical personnel, is accurate within 0.2 percent and may take as little as 30 seconds to make

By THOMAS F. CONWAY and ROBERT J. SMITH Corn Products Refining Co., Chicago, ill.

RADIO-FREQUENCY SPECTROSCOPY, which covers the electromagnetic spectrum between the audiofrequency range and the infrared, is one of the physical methods now used by the chemist for qualitative and quantitative analysis of materials.

There are three well-defined branches of r-f spectroscopy: electron paramagnetic resonance, microwave, and nuclear magnetic resonance. The last method, based on the absorption of r-f energy by the nucleus of an atom placed in a constant magnetic field, is used to measure the moisture content of hygroscopic solids.

Application of this principle answers long-sought industrial need for a quick, accurate and nondestructive method of obtaining moisture-content control of raw materials and finished products.

Since nuclear magnetic resonance can be adjusted to detect atoms of some one hundred different isotopes many of which are used in various industries, it becomes apparent that its use as a method of moisture determination is only scratching
the surface of its potentialities.
The measurement of sorbed water by nuclear magnetic resonance is based on the absorption of

FIG. 1-Spinning nuclei of atoms wobble or precess in one of two positions: aligned with (A) and opposed to (B) the magnetic field. Nuclear magnetic resonance is based on nuclei behavior when exposed to an r-f field at right angles to the original magnetic field
r-f energy by the nucleus of the hydrogen atom (proton).

In their natural state, hydrogen nuclei can be considered to resemble rapidly spinning tops with permanent bar magnets embedded along their axes of rotation. In the absence of external magnetic forces, these axes are orientated at random. However, when a constant magnetic force is exerted, the nuclei tend to align themselves in one of two positions: with or parallel to the magnetic field as in Fig. 1A and opposed or antiparallel to the magnetic field as in Fig. 1B.

Instead of lining up exactly with or opposed to the field, however, the axes of the spinning hydrogen nuclei wobble, or precess tracing cones in space as shown in Fig. 1. The frequency of precession depends on the inertial and magnetic properties of the nuclei and is proportional to the force of the external constant magnetic field.

When the precessing nuclei are exposed to a r-f magnetic field at right angles to the original magnetic field and the radio frequency is identical with the precession fre-

Top view of the magnet unit with cover removed shows cavity for sample bottle between the sweep-coil field

Operator obtains chart recordings of samples of varying moisture content. Sample jars are placed in the magnet unit at the extreme right of console
quency, a portion of the nuclei change from the parallel to the antiparallel position. This change absorbs energy from the r-f field. The amount of energy absorbed is proportional to the number of hydrogen nuclei and can be used as a measure of sorbed water.

The absorption of radio-frequency energy occurs only over a narrow band of frequencies centered around that of the resonance frequency.

Resonance Frequency

Resonance can be determined by holding the magnetic field fixed and varying the radio frequency or by
holding the radio frequency steady and varying the strength of the magnetic field. The resonance analyzer uses the latter technique.

Precession frequency can be expressed as: $f=H_{0} 2 \mu / h$ where f is the frequency at which the nuclei, or protons, precess; H_{0} is the applied magnetic field strength; μ is the magnetic moment of the proton; and h is Planck's constant.

The analyzer, tuned to hydrogen resonance, detects hydrogen in any state of molecular combination. The precession frequency for the hydrogen nuclei is about 7.4 mc and H_{o} is 1,750 gauss.

The nuclear magnetic resonance

FIG. 2-Block diagram of the nuclear magnetic resonance analyzer. The bottle, containing a preweighed sample of the material to be analyzed for moisture content is placed within the highly homogeneous field of the permanent magnet. The magnetic field is varied by adjusting a small current through the sweep coils wound on the poles of the permanent magnets. Instrumentation records the absorption of r-f energy by the nuclei of the hydrogen atoms in the sample
analyzer consists of two units: the magnet unit, into which the sample is inserted, and the console, with the controls and recorder.

Figure 2 is a simplified block diagram of the analyzer. The permanent magnet assembly is the core of the equipment. The sample tube, a Kimble cold-test jar containing a preweighed sample of the material to be tested, is inserted into the highly-homogeneous field of the permanent magnet. The jar is surrounded by a coil to which a fixedfrequency current is applied by an r-f oscillator. The coil is part of a sharply tuned parallel-resonant circuit.

When the total magnetic field applied is varied by adjusting a small current through the sweep coils wound on the poles, there will be a particular field strength which satisfies the precession frequency equation given above and there will be absorption of the r-f energy by the nuclei in the sample, as they change from the parallel to the antiparallel position. This energy absorption is amplified, detected and recorded.

Absorption Line

If the absorption is plotted against the field H_{o}, an absorption line, the nuclear magnetic resonance spectrum, will appear as shown in Fig. 3A. The total area under the absorption line is proportional to the quantity of hydrogen present in the form of sorbed water (water line) and in the solid (solid line). The derivative of the absorption line, Fig. 3B, is recorded for a better interpretation of the spectra.

FIG. 3-Typical absorption line (A), and its derivative (B) for hydrogen-containing solids showing the total nuclear magnetic absorption as a result of the hydrogen nuclei in the solids (solid line) and in the form of absorbed water (water line). The analyzer records the derivative of the absorption curve

Disparity between the line widths of the hydrogen in a sorbed state and hydrogen in combination with the solid make it possible to obtain an accurate measure of the moisture content of hydrogen-containing solids.

The derivative curve is obtained by application of a square-wave current to the pair of modulating coils in the r-f unit. The magnetic field at the sample is modulated at a frequency of 33.1 cps .

Output of the r-f amplifier and detector consists of a d-c component which is the average value of the rectified r-f voltage across the r-f coil, plus an a-c component at the modulation frequency.

The a-c component is amplified
then demodulated in phase with the modulating voltage. The demodulation output is filtered and recorded as the nmr derivative curve.

Feedback circuits make the output totally independent of the amount of r-f energy applied to the r-f coil, over a certain range, and increase stability of the reading.

Adjustment of the r-f level, sweep span, sweep time, modulation amplitude, signal range and filtertime constant are provided by selector switches. The wide range of precisely repeatable parameters gives the operator complete control over data presentation.

Hydrogen Mobility

Despite the fact that the magnetic field strength at the center of the hydrogen-resonance line always has the same value for a given frequency, the shape of the line is influenced considerably by the chemical and physical state of the hydrogen in the sample.
Absorption line width is related to the hydrogen mobility in the sample and the homogeneity of the magnetic field over the volume of the sample.

An especially designed permanent magnet with $10-\mathrm{in}$. pole faces allows optimum sample volumes to be analyzed and diminishes inhomogeneity of the magnetic field.

Nuclear magnetic resonance depends on the total effective magnetic field strength at the individual nucleus and the total field is the sum of the applied magnetic field at that point plus fields contributed by proximate magnetic particles
such as spinning magnetic nuclei.
In a liquid, the molecules are in a violent state of thermal agitation and the fields contributed by hydrogen nuclei at any given point are averaged out rapidly compared with the period of precession. As a result, the nuclear magnetic resonance absorption line is narrow. In pure mobile liquids, such as water, the line width will be determined basically by the inhomogeneity of the applied magnetic field. In the analyzer, departure from the field homogeneity over the volume of the sample is only a few milligauss.

In a solid, the hydrogen, nuclei are fixed rigidly in place with respect to the adjacent and proximate nuclei and are capable of only restricted motion. Because of the fixed spatial orientation of the neighboring nuclei, a given nucleus will find itself in a total magnetic field significantly lower or higher than the applied field. Since the nuclei will pass through magnetic resonance at widely varied values of the applied magnetic field, the line width will be comparatively broad, of the order of several gauss.

The analyzer records the derivation of the absorptive line in the region of the narrow water absorption and the contribution due to the solid is negligible, see Fig. 3B.

By comparison of the peak-topeak height D of the derivative curve on a number of materials of varying moisture content, with moisture as determined by standard laboratory methods, highly satisfactory correlations can be established for any material, see Fig. 4.

FIG. 4-Nuclear magnetic resonance signal amplitude is plotted against moisture content for unmodified corn starch (A), corn syrup (B) and chicle (C). When testing the same type of material no machine adjustments are required

Pulse-Cross Modification

Abstract

Phantastron circuits delay horizontal and vertical sync pulses when added to monitor or tv receiver to provide pulse-cross display. System gives simple means of checking operation of station sync generator

By HAROLD E. O'KELLEY*
Associate Professor of Electrical Engineering, Alabama Polytechnic Institute, Auburn, Alabama

TElevision sync generators usually provide an output during the vertical blanking interval consisting of six equalizing, six vertical, then six more equalizing pulses. Since this group of pulses occurs only once every field and has a repetition rate of $31,000 \mathrm{pps}$, it is difficult to obtain an oscilloscope display which is readily seen. A convenient way of displaying these pulses is the pulse-cross method.

If the vertical synchronizing pulses are delayed for $1 / 120$ second, the vertical blanking signal will appear as a dark horizontal line vertically in the center of the picture. Delaying the horizontal synchronizing pulses $1 / 31,000 \mathrm{sec}-$ ond will cause a dark vertical bar, centered horizontally, to appear. With brightness and contrast controls adjusted properly, the blanking pulses appear as gray and

[^0]the synchronizing pulses as black A pulse-cross display is detailed in Fig. 1. Since the pulse repetition rate of the equalizing and vertical synchronizing pulses is twice that of the horizontal synchronizing pulses, two equalizing and vertical pulses appear in one horizontal scan. The simplest method for obtaining the necessary pulse time delay is to form a new pulse from a triggered or synchronized oscillator. For example, Fig. 2A shows a synchronizing voltage waveform obtained from a television receiver. This waveform can be used to trigger a monostable multivibrator so that, at one tube plate, the waveform shown at Figure 2B is obtained. The positive-going voltage is then used to synchronize the scanning oscillator in the television receiver and the resulting time delay is as indicated. Since different values of time delay are required

FIG. 1-Enlarged pulse-cross section on iv screen with dashed and solid lines indicating alternate fields. Two equalizing and vertical pulses appear in one horizontal scan
for vertical and horizontal scans, two separate delay circuits are used.

Cathode-coupled phantastrons are used as monostable relaxation oscillators in the pulse-cross device of Fig. 3. Pentodes V_{2} and V_{3} are cathode-coupled phantastrons. Tube V_{*} delays the horizontal sync pulse while V_{3} delays the vertical sync pulse.

Circuit Operation

In the stable state divider network, R_{s} and R_{5}, establishes the suppressor grid at a potential which prevents plate-current flow. Hence all cathode current is flowing to the screen and control grids. The control-grid potential is practically that of the cathode.

If a positive pulse is applied to the suppressor grid, plate current will flow. This results in a decrease in plate voltage which is coupled to the control grid through C_{3} reducing the cathode and screen-grid currents. After the initial voltage step down at the plate, the plate voltage runs down almost linearly because of the Miller integration action of C_{3}. At the end of rundown, provided the trigger voltage at the suppressor is removed, the tube returns to the stable state.

During the quasi-stable state the cathode and screen-grid currents are decreased. Consequently, a negative-going pulse is produced across the cathode resistor R_{8}, and a positive-going pulse is produced at the screen grid. The positivegoing trailing edge of the pulse at the cathode of V_{3} is used as the vertical sync pulse.

Diode D_{1} and potentiometer $R_{\text {a }}$ establish the plate voltage during

of Tv Receivers

FIG. 2-Trigger voltage from sync clipper in tv receiver (A) and output waveform at plate of monostable multivibrator (B)
the stable state. The lower the initial plate voltage, the less the rundown time or time delay provided.

Some care must be used in selecting resistances R_{5}, R_{5} and R_{18} R_{19} because these networks establish the bias voltages for the suppressors which should be slightly beyond cutoff so noise and spurious pulses do not initiate plate rundown.

Triode $V_{1 A}$ is used for pulse amplification and the input sync signal must be negative going. Network $C_{2} \quad R_{4} \quad R_{5}$, differentiates the pulses for application to the phantastron suppressor grid. An output pulse is taken from the screen grid and differentiated by R_{1}, C_{4} and R_{12}. Diode D_{2} clips the positivegoing pulse so that only a nega-tive-going pulse is applied to the grid of $V_{1 \beta}$, a paraphase amplifier.

Delayed sync pulses appear at the plate and cathode of $V_{1 \beta}$. At the plate, the pulses are positive going and at the cathode the pulses are negative going.
If a horizontal-frequency discriminator is used in the receiver,

Pulse-cross display obtained by phantastron delay circuits in tv monitor
the required balanced and delayed pulses are available at the plate and cathode of $V_{, B}$, If a singleended positive pulse is required, it is available at the plate of $V_{1 n}$.

Network $R_{10}, R_{1 ;}, C_{0}$ and $C_{\bar{z}}$ integrates the pulse train so that vertical trigger pulses for V_{3} are formed. The vertical delayed sync pulse is available at the cathode of V_{3}. Potentiometer R_{20} is the vertical time delay control.

With receivers which have keyed agc, this circuit must be disabled. This is necessary because
the keying signal is obtained from the horizontal output stage. When a pulse-cross display is given, instead of developing an age voltage dependent upon the magnitude of the sync signal, the age voltage is dependent upon the illumination of some point in the picture. To overcome this difficulty, the keyed age tube is removed and a negative voltage connected to the agc bus. This can be obtained by rectifying the output from two series 6.3 volt transformer windings providing an output voltage of 0 to -15 volts.

FIG. 3-Phantastron circuits delay sync pulses for horizontal and vertical sweeps

Requirements for the satellite electronics systems are much the same as for any equivalent aircraft or rocket system, but are greatly magnified in importance. Weight reduction is mandatory. Operating power must be held to an irreducible minimum. And, since many unknowns exist, equipment must be operable over a wide range of ambient conditions. This discussion of satellite electronics is not intended to be a complete discourse on the topic. It serves, rather, as an introduction to the so-called Lyman-alpha environmental satellite of Vanguard with emphasis on the telemeter encoder, memory and meteor counter.

Cyclops Cores Simplify

Part I
By WHITNEY MATTHEWS, Head, Applications Branch, Solid State Division, Naval Research Labo-
Part II
By R. W. ROCHELLE, Head, Magnetic Amplifier Section, Solid State Division, N.R.L., Wash., D. C.
Part III
By C. B. HOUSE, and R. L. VAN ALLEN*, Research Engineers, Applications Branch, Solid State Division, N.R.L. Waslı, D. C.
Part IV
By D. H. SCHAEFER, and J. C. SCHAFFERT, Research Engineers, Applications Branch, Solid Statc Division, N.R.L., Wash., D. C.

Part I-An Introduction to Scientific Satellites

Satellite structures will, in general, consist of hollow magnesium-alloy spheres 20 in . in diam with total weight limited to 21.5 lb . About 10 lb is devoted to the shell, internal structures and mechanism for separation of the satellite from the burned out thirdstage rocket.

All electronic equipment and associated batteries are installed in the centrally located, pressurized instrumentation compartment, except for instruments and antennas which must be attached to the outer shell. The front cover of this issue shows encapsulated circuitry being inserted in the $5.5-\mathrm{in}$. diam, $7-5-\mathrm{in}$. high instrumentation compartment.

Other Instrumented Satellites

Instrumented satellites will be of several types, each containing a
different combination of scientific experiments. In addition to the Lyman-alpha satellite discussed in the remaining sections of this article, additional types are being prepared.

A second satellite design will incorporate two experiments. In one, an airborne proton resonance magnetometer will study the earth's magnetic field at high altitudes. Signals will be transmitted only on interrogation.

In the other experiment, airdensity measurements will be made by determining the drag on an inflatable sphere. These measurements will be similar to those made by the satellite themselves but will be made faster because of the greatly enhanced drag-to-mass ratio.

A third satellite type will be directed toward a study of radiation balance in space. Four small
spheres will be located at the antenna tips. Spheres of differing absorptivities and emissivity will be used, with and without radiation shields. A study of their individual temperatures can reveal much valuable information. Signals will be recorded on tape and transmitted only on interrogation.

A fourth scientific satellite is devoted to a study of the earth's albedo for meteorological purposes. As the satellite spins, photosensitive devices will scan the earth's surface. Detail will not be great, but general distinction will be made between land masses, water and cloud cover for correlation with weather phenomena. Again, information will be recorded for playback only upon interrogation.

All telemetered scientific data will be transmitted by amplitude

[^1]Encoder portion of Lyman-alpha satellite. Memory and counter are similar in appearance. Each unit is encapsulated and is about $3 / 4$-in. high. Unit modules are assembled on two rods to form a single package

Earth-Satellite Circuits

modulation of the Minitrack radio tracking transmitter operating at 108 mc . Tracking data is obtained by phase measurements at 500 cps . Tracking accuracy demands that any modulation signal during the tracking interval contain no signal components in the range from 500 to $2,500 \mathrm{cps}$. Signals transmitted only on interrogation can use this band by waiting until tracking data has been obtained.

Spectrum Utilization

To reduce noise by narrowing the passband of the receiver, the signal should contain maximum information in the narrowest possible bandwidth. Maximum signal frequency components have been set at 15 kc for this reason.

Part II-Satellite Telemetry Coding System

SEVENTEEN TRANSDUCERS located on the shell and in the internal package of the Lyman-alpha earth satellite measure such parameters as temperature, collision with micrometeorites and solar Lymanalpha radiation. Signal inputs from each of these transducers must be encoded for modulation of the Minitrack transmitter. Figure 1 is a block diagram of the complete satellite.

By using transistors and magnetic cores in a system combining both f-m and time-sharing modulation, weight of the encoder was reduced to 3.8 oz and the batteries to 2.8 oz. Expected life was over a month of continuous operation. The

ABOUT LYMAN-ALPHA RADIATION

> Solar radiation always contains energy in the Lyman-alpha region. Since the earth's atmosphere is quite opaque in this radiation, high-altitude rocket or satellite techniques are mandatory to obtain data, Marked increases in radiation are anticipated during solar flares, Random and infrequent occurrence of the flares, short life of research rockets, and time required for rockets to be placed in position for these measurements, present formidable obstacles to the gathering of data pertaining to this radiation.
> A satellite under continuous observation would be an almost ideal vehicle for study of this phenomenon. Since continuous observation is impractical, compromises may be made which permit collection of valuable information. Background radiation from a quiescent sun may be studied by measurement of instantaneous values of this radiation as the satellite passes over the data collection stations. Correlation between visually observed solar flares and Lyman-alpha radiation may be obtained by storing and transmitting information regarding the maximum value attained during each orbit
resulting system has a capacity of 48 channels of telemetered information.

Outputs from the satellite transducers are in the form of variable resistances or, as in the case of the Lyman-alpha test, in the form of currents or voltages. The encoder takes these currents or voltages and makes the frequencies of tone bursts proportional to them. The on time of the burst and the time between bursts is proportional to the resistive values of the transducers. Three channels are represented by each tone burst.

The modulator output is a series of tone bursts in the frequency range from 5 to 15 kc .

Timing Multivibrator

Gates, which determine the lengths of the tone bursts, are generated by a timing multivibrator and a transistor matrix. In its simplest form, the timing multivibrator is as shown in Fig. 2. Two transistors, a square-hysteresisloop magnetic core, and two transducers (R_{1} and R_{2}) are used to produce a square-wave output.

Transistor Q_{1} drives the magnetic core towards positive saturation. Transistor Q_{2} takes it to negative saturation by regenerative action of the base winding.
Transducers R_{1} and R_{3}, which
might be thermistors or pressure gages, drop the battery voltage across the core. This action is accomplished by the magnetizing current flowing through R_{1} and R_{z} during each half cycle. Flux in the core at any time is the time integral of the voltage across the core. Reduced core voltage increases the time needed before saturation of the core is reached.

Variations in transducer R_{1} will cause the length of the positive half-cycles in the output to vary independently of the negative halfcycles. Similarly, variations in R_{z} will change the length of the negative half-cycles, independently. As actually applied, the half-cycle lengths can be varied over a dynamic range of 5 to 30 millisec for transducer resistance changes from 0 to 5,000 ohms. Only the positive half-cycle is used to gate on a higher frequency square-wave magneticcore multivibrator. This multivibrator is termed a tone-burst oscillator.

A system containing only a timing multivibrator which gates on one tone-burst oscillator would be capable of telemetering three channels. These channels would be for frequency of tone bursts, length of the tone burst and time duration between tone bursts.

Extension of the system to more than three channels is accomplished as shown in Fig. 2. As many as six or eight base windings may be added to the magnetic core of the

FIG. 1-Block diagram of the complete Lyman-alpha earth satellite
timing multivibrator. Each centertap to the base winding is brought out externally and biased so that none of the transistors are turned on. If a negative voltage or gate is applied to centertap A, transistors Q_{1} and Q_{e} will conduct alternately. Transducers R_{1} and R_{z} will determine length of the positive and negative half-cycles in the output, respectively. If centertap B is energized with a gate after removing the gate from A, R_{3} and R_{4} will control the lengths of the positive and negative half-cycles. Any of the pairs of transducers may be switched in alternately by applying a gate at the proper centertap.

Transistor Matrix

The transistor matrix in the en coder supplies the sequential gates. The matrix switch gates at the end of every full cycle of the timing multivibrator so that each transducer controls the length of a halfcycle in sequence.

A flip-flop follower, Fig. 3, and four tandem binary-counters count down the cycles of the timing multivibrator. The transistor matrix samples the states of the binary stages and produces a unique gate for each combination of binary states. There are 2^{s} states so that with four binary stages there are 16 unique states. Each gate turns on its own pair of transistors through the centertapped base winding.
The flip-flop follower removes any loading from the timing multivibrator: Output of the follower is used in an and circuit with the matrix gates to turn on the tone-burst oscillators or multivibrators during the positive half-cycles only. A wider bandwidth is needed for the instantaneous Lyman-alpha channel and the solar cell in the satellite because readings will be modulated by the satellite roll rate. By paralleling matrix output gates, a group of channels is repeated six times each frame to provide more telemetry time. This arrangement increases the channel bandwidth effectively. Normally, four binary stages with 16 base windings on the timing multivibrator core will produce 48 separate channels of information. By paralleling matrix

FIG. 2-Timing multivibrator for 49 -channel telemetry system

FIG. 3-Circuit diagram of the flip-flop follower used to count down
output and using only six base windings, Fig. 4, some channels are repeated several times during the 48 -channel frame.

Binary stages, Fig. 5, are unique in that a steering-circuit transistor replaces the two back-to-back diodes used normally. Current gain of this transistor is utilized in triggering. It drives the bases of the binary transistors through capacitive coupling and is decoupled from the low saturation impedance of the on transistor by the 3,900 ohm resistor.

Half the time, the steering transistor is used in the inverted-alpha condition, since the binary carries the emitter more negative than the collector. Many surface-barrier transistors have betas in the in-verted-alpha connection almost as large as in the regular connection. The four-transistor flip-flop or binary connection reduces total quiescent drain on the batteries.

The tone-burst oscillators, gated on by the matrix, may be of several different types. The instantaneous Lyman-alpha and solar aspect cell drive one type, which is a variable-frequency magnetically coupled multivibrator. Two magnetic cores, Fig. 6, are batterydriven by the two transistors. Base windings are regenerative. When one core is driven towards satura-

FIG. 4-Binary stages and transistor matrix. All transistor types are 2N146

FIG. 5-Schematic diagram of a binary stage. Four are used in system

FIG. 6-Variable-frequency magnetically coupled tone-burst oscillator
tion by its transistor, the second core is reset through a coupling winding. At saturation, the circuit switches and the second core begins resetting the first. Injection of a current or voltage in the coupling circuit causes a change in the reset. This change varies the multivibrator or tone-burst-oscillator frequency. Variation from 30 to 700 μ a can change the frequency from 5 to 15 kc . With a slight change in the coupling winding circuitry, 0.5 v from a solar cell will cause the same frequency shift.

Another type of tone-burst oscillator, termed a Cyclops will be described in Part III of this article, dealing with the analog magnetic memory of the satellite. There are three Cyclops oscillators in the
meteoritic collision module and two in the peak reader. One operates every other orbit while the other stores information. The Cyclops oscillators plus the variable-frequency magnetically coupled multivibrator make a total of six toneburst oscillators in the satellite. Each is turned on by the sum of the gates from the matrix and the follower.

Outputs of the tone-burst multivibrators are parallel-added to drive the modulation stage, Fig. 7. Multivibrator outputs are decoupled through diodes. Since only one multivibrator is gated on at a time, there is no interaction between multivibrators. Modulation transistors serve the dual purpose of amplifying and clipping. Clipping insures 100-percent modulation of the transmitter.

Synchronization

Because tone-burst lengths and spaces are functions of transducer values, the frame rate is variable. If the average resistance of the transducers is low, the frame rate will be fast. More information can be sent per unit time by this system than in conventional ones which allot a fixed time duration for each channel. Since the frame rate is not constant, the signal must be unique so that individual channels may be identified. By using a few fixed values of resistance in place of some transducers, a key is formed and calibration is provided.

Part III-Analog Magnetic Memory

 Storage and readout requirements encountered in certain Lymanalpha experiments demand special equipment. In this experiment, the Lyman-alpha line of hydrogen in the solar spectrum must be measured and correlated with optical observations of solar flares. One reason for the measurements-suspicion that variations in Lymanalpha, due to solar flares, may be a contributory cause of radio fadeouts.In the Lyman-alpha satellite, information transmission will be continuous. This operating method requires two storage elements. One stores peak intensity information during one orbit. The other trans-
mits information gathered during the previous orbit. Since the storage element must transmit continuously the information it received previously, nondestructive readout must be used. In addition, functions of the storage elements must be switched automatically once each orbit as the satellite passes from darkness into sunlight.

The developed system accepts information in the form of d-c values from a few μ a to one ma. It remembers the maximum current value that has been applied to it and retains this information until it is erased deliberately. This informa-

FIG. 7-Clipper and modulator stage
tion is presented directly in the form of alternating current with frequency a function of the stored information level.

Measurement is accomplished with a technique originated at the Naval Research Laboratory. Radiation impinges upon an ion chamber designed to respond only to the desired spectral line. The resulting minute current is amplified by an electrometer and fed to the memory unit. Information stored in the form of flux level in a square-hysteresis-loop magnetic material will remain until removed by external means. This method for storing the peak Lyman-alpha information is used.

The magnetic core must assume a certain flux level for a given value of current flow. The core must remain unaffected by any subsequent currents unless they are larger than any previous currents. In such a case, the core must assume a new flux level. In other words, the core must not integrate in the steady state.

Once the method of storing the information was established, the
next problem was to translate the information into a usable form. To make the system compatible with the requirements of the encoding system, generation of an alternating voltage waveform with frequency proportional to information was necessary. It was felt desirable to obtain the readout with a single magnetic core and appropriate circuits.

During this experimentation, a two-aperture memory core named the Cyclops, Fig. 8, was suggested. It could be fabricated by drilling a hole through one wall of a tapewound core. Outer convolutions of a tape-wound core shield the inner convolutions. As a result, the device is insensitive to stray fields.

When a signal is applied to the input windings, Fig. 8, a stored flux ϕ is established in the main core as a function of the applied signal. Flux ϕ divides at the hole along paths ϕ_{4} and ϕ_{n} linking the readout windings A and B. A cur-rent-limited magnetic multivbrator is connected to windings A and B. When the windings are excited alternately, there are flux changes in opposite directions around the small hole but in the same direction as ϕ in the main core.

Nondestructive Readout

Assume that flux ϕ has been set by a signal from the input winding. Assume, further, that flux ϕ saturates the iron on each side of the hole at ϕ_{A} and ϕ_{B} in the direction indicated in Fig. 8. The input signal is removed and the multivibrator is turned on. Because of the difference in B_{r} and $B_{\text {max }}$, a small clockwise flux change about the hole will be caused by current in winding A when the upper transistor gates. A similar small flux change in a counterclockwise direction will be produced in winding B when the lower transistor gates. Since, in this case, the amount of flux changed can only be small and the time each transistor is switched on is short, the multivibrator operates at a high frequency.

Next, assume that a reverse current is passed through the input windings on the main core so that flux level ϕ is reduced to zero and the main core is demagnetized. When the multivibrator is ener-
gized, there will be a large amount of flux reversed each half-cycle. This results in a low operating frequency for the multivibrator. For intermediate levels of ϕ, there will be corresponding intermediate frequences.

Memory-Core Circuitry

Use of two Cyclops memory cores to record peak current from the Lyman-alpha detector leads to other requirements. A means is needed for wiping out the memory and resetting one core. A commutative switch is necessary to connect the other core containing stored information to the telemetry encoder.

In Fig. 9, the left side of the curve is used to store current information from the electrometer tube. It is best suited to store currents in the required range of 20 to $700 \mu \mathrm{a}$. Reset must be provided to restore the core saturation each time the memory is erased. For precise measurement, it is unsatisfactory to simply reverse current in the winding. It is also poor practice to apply a single reverse voltage pulse and attempt to return to the exact frequency each time.

To maintain high accuracy, a resetting circuit was devised consisting of one negative and one positive pulse. First, the negative pulse drives the core to negative saturation in the same direction that negative control current would normally set the core. Next, the positive pulse restores the core to positive saturation or to the point of origin at a high frequency. By this technique, repeated resets with or without previous input currents restores the frequency to within one percent of its original value.
Figure 10 includes the transis-

FIG. 8-Basic Cyclops core and winding configurations
torized resetting circuit used with the peak memory cores. The circuit as shown is for two cores. One half is essentially a duplication of the other except for connections to the orbital switch and frequency range. One multivibrator has a frequency range from 4 to 8.5 kc ; the other, 8.5 to 14 kc . The two different ranges permit core identification.

A magnetic multivibrator is formed by windings L_{3} and L_{5} in the collector circuits of $p n p$ transistors Q_{1} and Q_{3} and windings L_{7} and L_{8} in the base circuits of these same transistors. This multivibrator would be free-running if transistor $Q_{\bar{n}}$ were short-circuited.

Basically, the multivibrator is a normally closed switch biased to conduction from the +1.3 -v bus. When a pulse is delivered from the orbital switch via terminal C^{\prime} and transistor Q_{i}, transistor Q_{1} is momentarily switched on and L_{3} is energized. A voltage induced in L_{7} clamps Q_{1} on until the core reaches negative saturation. Then, the inductive kick in L_{0} switches Q_{3} on. It is held on until the core reaches positive saturation. During this interval, the capacitor to the base of Q_{5} is charged negatively and cuts off Q_{0}, disabling the circuit from sustained oscillations.

The single negative and positive pulses obtained with the circuit are satisfactory to obtain accurate reset of the core in about one millisec. Switches at A and A^{\prime} are caused to lag C, C^{\prime} to prevent current flow in the memory winding during the one-millisec reset interval.

Temperature characteristics of the resetting circuit were improved by use of thermistors in the bias circuits of the main switching transistors Q_{1}, Q_{2}, Q_{3}, and Q_{4}. At elevated temperatures, where $I_{c o}$ normally increases, thermistor resistance is lowered. This action increases the bias current from the $+1.3-\mathrm{v}$ bus which passes through the diodes in series with the base windings. The bases of the switching transistors are thus kept at a constant positive bias voltage.

Core Input and Readout

Windings L_{1} and L_{2} are the input or set windings on the main section of the cyclops cores.

FlG. 9-Multivibrator frequency of a wound toroidal core as a function of current. Slope of the curve is influenced by the inner diam-outer diam ratio of the cores as well as the material

These windings carry the cathode current from the electrometer tube and are controlled by switches at A and A^{\prime}.

Windings L_{11} and L_{12} are the multivibrator windings in the holes of the cores. Switch terminals labeled B and B^{\prime}, Fig. 10, connect only one multivibrator for readout to the negative bus depending upon the state of the orbital switch. Connection to ground or the positive bus is made through a 2 N 128 transistor which is switched on and off at the command of the encoder.

When both positive and negative bus connections are made, the appropriate multivibrator is turned
on. Next, either output winding L_{13} or L_{11} delivers a tone burst to the modulator of the Minitrack transmitter. A full-wave diode bridge couples the output windings of each Cyclops multivibrator to the modulator. This bridge provides the maximum available driving voltage to the bases of the pushpull class- B modulator transistors. Even with a temperature-stable resetting pulse on the core, there is an output frequency decrease with an increase in temperature caused by thermal effects on the core alone. These thermal effects are compensated by an inverse thermal characteristic of the multivibrator transistors. With use of the thermistors mentioned previously, plus the self-compensating circuit components, the complete circuit maintains ± 5-percent accuracy over a temperature range from -50 to +70 C .

Orbital Commutation

Design of the commutator which interchanges the two memory cores once each orbit called for minimum power dissipation since the switch circuit would be in continuous operation. A rough approximation, taking into account the contemplated battery type, indicated 10 mv-amp drain would cost one oz of
weight for two to four weeks of operation.

One channel of information presented to the encoder is the instantaneous aspect or angle of the satellite axis with respect to the sun. This information is gathered by a silicon-junction photocell mounted on the equator of the sphere. A regular $1{ }_{8}^{3}$-in. diam round solar cell was secured and a ${ }^{3}$-in. diam hole cut in the center. Back of this, three $\frac{1}{2}$ by $\frac{9}{32}$-in. strips of the silicon junction material were mounted and connected electrically in series to give a higher voltage for the orbital switch.
The orbital switch is designed to trip on the first increase in incident light level occurring after any fiveminute absence of solar radiation. It then locks out against any recurrent variations which may occur at a rate of more than once per five-minute period. When the switch trips, it initiates a pulse. This pulse wipes out the memory of the element that has been transmitting information and connects it into the electrometer circuit prepared to read and store peak-intensity information. Simultaneously, the pulse connects the element which has been storing information into the readout circuit. A circuit for obtaining these ac-

FIG. 10-Resetting circuitry used with the low- and high-frequency Cyclops memory cores

FIG. 11-Orbital switch circuit. Shaper is essentially a monostable multivibrator
tions is shown in Fig. 11. The multivibrator stages employ socalled complimentary multivibrator circuitry. Ordinary multivibrator flip-flop connections are used but $n p n$ and $p n p$ transistors are connected in series and substituted for the load resistors. The common base voltage which turns one transistor off will turn the other on. Any load tied to the common collectors will be supplied through a low-impedance source when on but a high impedance is presented to the battery when off.

Shaper Circuit

Operation can be clarified by considering operation of the input shaper circuit. For the present, transistors Q_{1} and Q_{2} will be assumed open. Transistors Q_{3}, Q_{4}, Q_{5}, and Q_{n} constitute the basic monostable multivibrator. In the normal state (no signal), input transistor Q_{5} is off and Q_{3}, in series with Q_{5}, is saturated on. Corresponding transistors on the other side are in the opposite condition.

As the signal rises, increased current begins to flow through the series $n p n$ transistor Q_{3}. When this current becomes large enough so that Q_{3} is no longer operating in the saturated region, a voltage appears across the emitter-collector terminals of Q_{3}. This voltage is transmitted to the d-c coupled transistors on the opposite side. Eventually, the voltage changes produce a regenerative state and the multivibrator rapidly flips. The multivibrator will stay in this position until a decrease in input causes it to resume its normal position.

Increased leakage currents in switching transistors at high temperatures can tend to upset circuit operation. One of the usual compensations is a series emitter resistor. In these circuits, a diode in series with the emitters is used instead of the resistor. The diode gives higher biasing voltages at small leakage currents and less voltage drop at high load currents.

The circuits can be kept operating at high temperatures by using low resistance values from base to bias voltage source to keep the off transistor off. But high resistance values are required at low temperatures to turn the on transistor on.

Connection of transistors Q_{1} and Q_{2} across the base and emitter terminals of the multivibrator transistors Q_{3} and Q, offsets these conflicting requirements.

Transistors Q_{1} and Q_{2} act as switches driven from the collectors of their respective multivibrator transistors. A low impedance connects the base and emitter of the multivibrator transistor when it is in the off position. When a multivibrator transistor is on, base-toemitter resistance is high (open switch) to prevent bypassing of the base current. This compensation is required on the $n p n$ transistors only since the type of $p n p$ transistor chosen is relatively insensitive to high temperatures.

Hold-off Capacitor

When the monostable multivibrator first trips on, it generates a fast-rising, flat-topped pulse. This pulse charges the hold-off tantalum capacitor, C_{1}, in Fig. 11. Any subsequent pulses due to highfrequency spin rate which appear before the end of the designed holdoff period, will not be able to pass enough current through C_{1} to affect Q_{7}. They will merely recharge C_{1}.

The discharge resistor in parallel with C_{1} may be chosen for the desired time constant. Hold-off times of several hours were available from the rectifier-capacitor combination used but five minutes was chosen as the most desirable compromise between spin rate and orbital requirements. Capacitor C_{1} remains charged throughout the sunlight period. During the dark period, no output appears from the shaper and C_{1} discharges gradually. The circuit is then armed for triggering on the first pulse generated at "dawn".

When the first charging pulse hits C_{1}, the steep wavefront passes through it and is amplified by $Q_{\text {. }}$. This amplified pulse is then fed through capacitors to the binary which trips to the opposite state. The binary is similar to the shaper except for the method of feed and d-c coupling to all bases to make it bistable.

Buffer transistors are connected in a stacked series configuration to minimize current drain from the binary. With this connection, the
binary need supply only the base currents to the first transistor of each stack. Base current for the last transistor in each stack is supplied by the load-circuit supply. This supply is on only a fraction of the time since it is commutated by the telemetry encoder.

Part IV-Micromefeorife Collision Counter

Small microphones mounted on the satellite skin will be activated by collision of the satellite with meteoritic particles of about 10^{-8} grams traveling at speeds of about $60 \mathrm{~km} / \mathrm{sec}$ with respect to the satellite. Counting rates will probably vary from one particle every ten minutes up to ten particles per second.

Signals transmitted by the satellite will consist of a number of tone bursts separated by blank spaces. Frequencies of three of these tone bursts will be indicative of the cumulated number of impacts detected by the microphones. Frequency of one burst will indicate the unit digit, another the tens digit and a third the hundreds digit of the cumulated count.

A block diagram of the equipment is shown in Fig. 12. The pulse former takes the transistor-amplifier output, a pulse of a few $\mu \mathrm{sec}$ duration, and forms it into a lowimpedance signal of constant v-sec value for the counter input. The counter accepts these pulses increasing the output oscillator frequency on receipt of each. The tenth count resets the frequency to a low value.

Amplifier Sections

The first four transistors of the amplifier perform linear amplification upon the microphone outputs. Voltage gain is about 60 db with $3-\mathrm{db}$ response points at approximately 40 and 200 kc . The second section of the amplifier uses a fifth transistor biased to operate as a detector. This section performs pulse-envelope detection, pulse stretching, and differentiation of the leading edge of the stretched pulse.

The third section of the amplifier has a transistor biased almost to cutoff. It amplifies the differentiated stretched pulse to an ampli-

FIG. 12-Block diagram of micrometeo. rite experiment
tude suitable for driving the pulse former of the counter. This output pulse corresponds in time to the leading edge of the ringing-pulse output from the microphones.

The pulse-former circuit is similar to the resetting circuit described previously in the section on the magnetic-memory readout. The pulse former converts the pulse from the amplifier into a square pulse of $200-\mu \mathrm{sec}$ length with an output impedance of a few ohms.

Counter Circuitry

Each decimal counter has as its most basic elements, two square-loop-type magnetic cores. These cores remember the last flux level to which they were set. One is a Cyclops core, as described in the previous section on the satellite memory.

One complete stage of counter circuitry is shown in Fig. 13. Core I is a standard square-loop core while core II is a Cyclops. All transistors are used only as switches. The transistors are either fully conducting or fully cut off at all times. The input circuitry forms nine small pulses followed by a tenth large one. At the end of ten counts, the reset circuitry resets the Cyclops, partially completely resets core I, and provides input valtages for the next stage.

Input Circuitry

A schematic diagram of the input circuitry is shown in Fig. 13. Voltages A and D are the square-wave inputs from the pulse former. In actuality, A and D are windings on the pulse-former core or the Cy clops of the preceding stage. Voltage C^{\prime} is a voltage from the preceding stage that is transformed through a saturable square-loop core (core I of Fig. 13). For counts one through nine, voltages A, D and C^{\prime} are all present and in the polarities shown. Voltage C^{\prime} has a
magnitude somewhat greater than A. Under these conditions, transistor Q_{3} conducts fully while Q_{2} is cut off. The $1.3-\mathrm{v}$ battery voltage is applied across the Cyclops after undergoing a drop across silicon rectifier D_{1} and resistor R_{2}.
Upon receipt of the tenth voltage input pulse, the core that has been transforming the voltage C^{\prime} is saturated. No transformer action takes place making C^{\prime} zero, while A and D are still present. Both transistors become fully conducting and the $1.3-\mathrm{v}$ battery appears across the winding with only negligible drop. This is the mechanism that allows nine small pulses followed by a large tenth one to appear across the Cyclops winding.

Reset Circuitry

Reset circuitry is shown in the center section of Fig. 13. A large negative voltage spike is developed across the core windings following the tenth input pulse. This negative spike is so large that the $1.3-$ v battery in the base circuit of Q_{1} is over-ridden. A negative voltage appears upon the base of Q_{t} and the collector-circuit 4 -v battery appears across the windings in the collector circuit. This voltage, in turn, is transformed to the base windings which puts Q_{4} even more fully into the conducting state and holds it there even after the initiating kickback voltage has disappeared.

The 4 -v battery voltage takes both cores back towards positive saturation-core II directly, core I

FIG. 13-Complete counter stage
by coupling through D_{2}. Core I is designed to have much less volt-sec capacity than core II. Core I goes into saturation when core II has only moved a small way up its hysteresis loop.

When core I goes into staturation, a short-circuit is thrown across both cores due to the coupling. Voltage on the base windings of Q_{4} falls below 1.3 v and Q_{4} cuts off. The circuit is now ready to receive more counts. During reset, a large negative voltage pulse is developed across the windings. This reset voltage pulse becomes the voltages A, B, C and D for the following stage from the output windings as shown in Fig. 13.

During the interval that a particular oscillator frequency is to appear in the transmitted signal, a gating signal is used to apply oscillator power. This signal turns the appropriate oscillator on for the proper interval. The output terminals go to a modulator that reshapes the somewhat triangular waves of the oscillator into square waves. The square waves then modulate the transmitter. The oscillators of the three stages are tied together in parallel at the points M_{1} and M_{2} in Fig. 13.

Units have been built that will consistently count to ten and reset over the range from 0 to +80 C . Changes in calibration with temperature do occur, but can be accounted for since the instrumentcompartment temperature will be a telemetered quantity. Gain of the amplifier is constant to within 20 percent from -20 to +70 C . Weight of a module which includes amplifier, pulse former, and three counter stages is 3.1 oz before potting; 5 oz after.

Power Requirements

The amplifier requires 1 ma current drain at 4 v . The counter itself has zero current drain when no counts are being received. Approximately 15 or 20 ma flow for each count. This flow lasts for only 200μ sec per pulse. A $1,000 \mathrm{ma}-\mathrm{hr}$ battery is able to keep the counter counting to over 10° counts.

Readout oscillators require about 3 ma of current at 2.6 v but are on only about one-sixth of the total time.

D-C Transistor Amplifier

Abstract

Amplifier circuit uses double emitter follower and grounded emitter voltage amplifier to obtain input impedance of 0.4 megohm. Adjustable temperature compensation in first stage gives good short term drift stability. Overall current gain is 1,000 and voltage gain is 40 . Application is in photocell circuits where signal voltages are not large and output impedance is high

By DONALD SCHUSTER Psychological Services, Inc., Los Angeles, Calif.

USE OF DOUBLE EMITTER followers or two cascaded groundedcollector stages to achieve an input impedance between one-half and one megohm in a-c transistor amplifiers is fairly well-known.' For d-c amplifiers, however, high input impedance is a problem since there is the added requirement of temperature drift compensation. The circuit discussed here maintains good short term temperature stability while maintaining high current gain.

Drift Compensation

Collector current variation with temperature is the major source of drift in a transistorized d-c amplifier. Another source of drift results from changes in current gain.

The effects of drift can be minimized, but not completely eliminated by appropriate bias stabilization or by negative voltage or current feedback. In practice, bias stabilization is difficult to maintain for $d-c$ signals and negative voltage feedback is conducive to decreasing the input impedance. Since negative current feedback is practically feasible and increases the input impedance, it is used to compensate for drift in the circuit described here.

When using a double emitter follower, minimization of the effects of drift with negative current feedback is insufficient. It is also necessary to compensate for or balance out drift resulting from the large
overall current gain in the stage. A practical solution to the problem is to make the compensation adjustable. This is accomplished with a circuit in which one transistor is used as a drift current generator to compensate another transistor of the same type and a potentiometer is used for fine adjustment of the compensation current in a twostage grounded-emitter amplifier. ${ }^{2}$ A variation of this compensation method is the one employed in this amplifier.

The amplifier shown in Fig. 1A consists of a double emitter follower plus a grounded-emitter voltage amplifier. Drift compensation is used only in the first stage. An identical transistor, or almost identical, is used to generate an adjustable out of phase drift current.

Collector cutoff currents $I_{c o 1}$ and $I_{c o z}$ flow from transistors Q_{1} and $Q_{\text {, }}$,
respectively. Compensation control R_{1} has no effect on the signal when its wiper arm is near the end connected to the emitter of Q_{1}. As the arm is moved towards the end connected to the base of Q_{1}, compensation current $I_{c o s}$ is multiplied by the current gain of Q_{1} which is expressed as $\beta+1$. In practice, Q_{2} is selected to give a compensation current $I_{c o z}$ which is somewhat less than $I_{\text {coo. }}$.

Readjustment of R_{1} is necessary each time the voltage developed across bias control R_{2} changes.

Any variation in the driving source impedance varies the bias current in Q_{1} thereby affecting the output d-c level. Zeroing control R_{*} is added to provide means for zeroing the output since continuous correction using R_{1} is impractical.

Battery E_{1} consists of a string of five series connected RMT-400R

FIG. 1-Complete high-impedance d-c transistor amplifier circuit (A) has battery coupled output stage. Alternate output circuit (B) eliminates battery through use of Zener diode

for High-Impedance Input

Applying signal from cadmium sulphide photocell to high-impedance d-c transistor amplifier. Output is used to operate timing circuit relay
mercury cells. When power switch S_{1} is open, the current flow through E_{1} is approximately three microamperes; when S_{1} is closed, the current reverses and battery E_{1} recharges while the amplifier is in use. If the amplifier is continuously inoperative, it takes several thousand hours to discharge E_{1} completely since an RM-400R has a rated capacity of 80 milliampere hours.

An alternate output arrangement that operates without battery E_{1} is shown in Fig. 1B. Additional signal losses occur in this circuit which result from the possible variable voltage drop across Zener diode D , the voltage divider action of zero control R_{4} and resistance of emitter resistor R_{5}. To increase gain, replace R_{5} with an appropriate Zener diode.

Adjustment

Since all controls interact to some extent, they should be adjusted after the preliminary zeroing procedure to establish correct current gain. Gain, zero, bias, and compensator controls are set in that order.

Zeroing of the amplifier is accomplished in two steps. First, the
input terminals are shorted with a $10,000-\mathrm{ohm}$ resistor and the output voltage adjusted to zero with the zero control. Second, the input short is removed and the output voltage readjusted to zero with the bias control. This zeroing procedure assures a zero output for a zero input at the desired operating characteristics.

Amplifier Characteristics

Amplifier sensitivity is sufficient to use a current change of 0.01 microampere as an input signal. Maximum usable output of approximately 1 milliampere is obtained at 0.1 microampere change.

Overall maximum current gain is 10,000 and the voltage gain is 40. Frequency response is nearly flat from d-c to 15 kc where it is down 3 db .

Direct measurement of input resistance is impractical since an ohmmeter overloads the voltage ampliying capabilities of the amplifier. Therefore, measurement is made by applying a known reference voltage across a variable resistor connected to the input terminals.

Initially the variable resistor is set at zero, and the reference volt-
age gain at the output terminals measured. Then the variable resistor is advanced until the reference voltage gain becomes half its former value. The amount of ohmic increase represented by the change in the variable resistor setting is equal to the amplifier input resistance.

Using this method, the a-c input impedance for the amplifier was found to be 0.4 megohm. A dynamic check using an R-C method gave essentially the same result.

Short term temperature stability of the amplifier was measured over a fifteen minute interval and found to be five percent. Better drift characteristics are obtainable if both the second and third stage are temperature compensated in a manner similar to that used in the first stage.

Applications

This amplifier is particularly useful whenever it is used with a driving source that develops moderate voltages at high output impedances. Two typical drivers are bioelectric phenomena and solidstate photocells.

Measurements of camera shutter speeds were made using the amplifier to increase the output signal from a cadmium sulphide photocell sufficiently to operate a timing relay circuit. Since the dark resistance of the photocell is approximately 1,000 megohms and the light resistance was between 0.1 and 1 megohm. The amplifier developed an output only when the shutter opened.

For some applications, higher input impedance can be obtained by adding a resistor in series with the input. If this is done, appreciable reduction of current and voltage gains result.

References

(1) A. Coblenz and H. L. Owens, "Transistors, Theory and Applications" McGraw-Hill Book Company, Inc., New York, 1955.
(2) J. W. Stanton, Transistorized DC Amplifiers, Trins IRE PGCT, CT-3, Mar. 1956.

Resistance is quickly checked with a Wheatstone Bridge circuit adapted for go, no-go operation

Go No-Go Meter Speeds

Abstract

Amplified error voltage from a Wheatstone bridge feeds $75-0-75$ microammeter to indicate whether resistance under test is higher or lower than desired value and also if it is within a preset tolerance. Instrument range is 9.999 ohms in one ohm steps

By DONN S. RANDALL, Technical Writer, Stevens-Arnold, Inc.

AGO, NO-GO RESISTANCE measuring instrument, which does not require dial adjustments, permits rapid testing by nontechnical personnel is described. Conventional Wheatstone bridge test circuits which require adjusting calibrated resistors until a detector indicates a null and then reading the dial settings to obtain the unknown resistance value are satisfactory for small quantity testing. However, when checking the resistance of a large number of components, a meter with a go no-go indication is desirable.

The instrument described requires no dial turning to determine whether the resistance under test is within or outside preset limits. A Wheatstone bridge is employed
but without the necessity of achieving a precise balance to take a reading. Instead, the developed d-c error voltage is modulated, amplified, and demodulated; the resulting amplified d-c deflects a 75-0-75 microammeter to indicate whether the resistance under test is higher or lower than the nominal value and whether it is within or outside the established limits.

Instrument Operation

Figure 1 is a simplified schematic showing how the instrument operates. A double-pole a-c/d-c chopper with make-before-break contacts uses one pole to compare the voltage drop across arm $A C$ of the bridge with that across arm $B C$, and the other pole as a half-
wave rectifier for the meter. Any difference between the voltages is fed to the grid of the first amplifier tube, Fig. 2, as a square wave. Phase of the square wave depends on whether voltage across $A C$ is greater or less than voltage $B C$. Voltage amplitude is determined by the magnitude of their difference. Since pole 2 of the chopper is always in step with pole 1, the polarity of alternate half waves reaching the meter is controlled by the phase of the amplifier input signal. The meter will therefore indicate whether the resistance under test is higher or lower than the standard.

Since the amplitude of the half waves governs how far the meter deflects, the instrument can be set

FIG. 1-Error voltage developed across $A B$ is amplified and fed to a 75.0.75 microammeter

FIG. 2-Direct-current error voltage is modulated, amplified and demodulated. The resulting d.c deflects microammeter to indicate whether resistance under test is within tolerance limits

Resistance Check

for different tolerance limits by simply adjusting the amplifier gain control. If desired, amplifier gain can be left constant and meter calibrated in percentage.

Calibration

The meter scale is divided into thirds with the middle third painted green for GO and the extreme thirds red for no-Go. The left red section is marked Lo and the right red section, HI.

Voltage control and gain control are set at minimum, and the line voltage turned on to allow the equipment to warm up for several minutes. Plate supply voltage is set at 210 v with the voltage control. A decade resistor is connected to the x terminals and both it and the built-in decade set to the same value, say 1,000 ohms. The meter shorting switch S_{2} is opened and the gain control advanced until the meter pointer moves a good distance off zero. The pointer is then returned to zero by careful positioning of the balance control.

When adjusting the meter it must be taken into account that a value of x a given percentage higher than the decade resistor will not produce
as great an error voltage as a value of x which is the same percentage lower (Fig 1). This percentage variation is a fundamental characteristic of the bridge. It is easily dodged by the proper technique.

With the built-in decade set at 1,000 ohms and the external calibrating decade set at 1,100 ohms, a mplifier gain is adjusted until the meter pointer reads at the go, no-go division on the hi side. Switching the external decade to 900 ohms, causes the pointer to read in the red lo region. The distance between the pointer and the lo go, no-go division is noted and amplifier gain reduced until this distance is halved; then, with the meter zero adjustment, the pointer is moved until it rests exactly on the lo go, no-go division. The external decade is then switched to 1,100 ohms to check the HI reading.

If necessary, the procedure is repeated until the meter indicates both limits correctly. With the external decade set at 1,000 ohms the pointer will rest slightly to the HI side of center. This slightly high zero reading will not affect the accuracy of the instrument since the purpose is to determine if the re-
sistance is between high and low limits. The instrument will check resistance within the range of its decade to a tolerance of ± 10 percent.

Accuracy is checked at several points in the operating range. When set for ± 5 percent limits, accuracy is maintained within pointer width over the entire range. With suitable external calibrating resistances any symmetrical tolerance limits can be obtained by adjusting amplifier gain to give the required meter deflection.

Test Fixture

The test fixture clamps the leads of the component to be tested and opens normally closed microswitch S_{2} to activate the meter all in one operation. In this way meter slamming is held to a minimum. Three brass blocks slide on Bakelite tracks and are held apart by small coil springs. Bakelite separators prevent the springs from shorting the blocks. The x leads are connected underneath to the two blocks nearest the switch. One side of the switch is connected to the grounded x lead and the other to the hot side of the meter.

FIG. 1-Transfer function of saturating transformer

Hinged-leaf packaging conserves space, affords access. Vibration mounting also used

Magnetic Amplifiers Regulate D-C Supply

Abstract

Magnetic amplifiers combined with saturating transformer maintain output regulation well within three percent when supply voltage varies in steps of as much as 20 v . Silicon rectifiers in bridge configuration convert a-c supply to d-c output at five levels from -50 to +500 v . A single magnetic amplifier can meet smaller requirements by regulating in the primary winding of the saturating transformer

By M. B. MEUNIER Design Engineer, Westinghouse Electric Corporation, Electronics Division, Baltimore, Md.

Magnetic regulation of a d-c power supply will permit meeting stringent transient requirements in addition to giving good steady-state regulation. One of the prime considerations in the design to be described is minimization of weight and volume.

Included among the specific requirements for this system are a supply voltage of $115 \mathrm{v} \pm 10$ percent at $60 \mathrm{cps} \pm 5$ percent. Ambient temperature must be in the range from 0 to 50 C .

The most difficult requirement to meet is the transient requirement for step changes in line voltage. A conventional magnetic amplifier regulates the normal variations in supply voltage and frequency within the limits imposed by the specifications, while a saturating transformer preceding the magnetic amplifier handles rapid transients.
The transfer function of the saturating transformer appears in Fig. 1. This curve may be approxi-
mated by two straight lines as shown. By operating on the portion of the curve between points B and C, and by driving the transformer into saturation on both the positive and negative half-cycles, the transformer will support a given number of volt-seconds during each cycle and maintain a constant average output voltage at a fixed frequency. As long as the input voltage doesn't exceed the range $B-C$ in Fig. 1, little transient effect appears in the output.

The overall circuit is shown in Fig. 2. Inductor L_{1} is the currentlimiting choke and T_{1} is the saturating transformer. The voltage waveform across the primary of the saturating transformer is shown in Fig. 3A. Area A in Fig. $3 B$ is cut from the input wave by the transformer when it saturates at points 1 and 4 in the cycle. At these points current in the transformer builds up rapidly as shown in Fig. 3C and is limited only by the input choke.

At point 2 in the cycle the line voltage reverses polarity and the saturating transformer attempts to absorb voltage. This is opposed by the input choke's attempt to maintain current flow. As a result the saturating transformer cannot begin absorbing voltage until the current reduces to zero at point 3 . At this point the transformer assumes the value of the line voltage and shaded area B is also cut from the input waveform.

The remaining voltage is now transformed to obtain the necessary voltage for each supply. This is done in the three low-voltage supplies by adding three secondary windings directly to the saturating transformer, thereby utilizing all the available space.

The two high-voltage supplies are fed from a separate transformer T_{2}. This transformed voltage is then rectified by bridges $C R_{1}$ through $C R_{7}$, and the magnetic amplifiers absorb part of this voltage to maintain the regulated outputs. In regulating the average value of the rectified voltage the magnetic amplifiers in the three low-voltage supplies absorb a portion of the wave as shown by the shaded area in Fig. 4A.

High Voltage

The two high-voltage supplies are each fed from two windings on transformer T_{2}. Those which feed rectifiers $C R_{5}$ and $C R_{7}$ supply about 75 percent of the voltage while the remaining 25 percent is supplied by the windings feeding $C R$, and $C R_{8}$. By dividing the voltage in this manner and connecting the magnetic amplifier in series with the lower-voltage winding, only a small portion of the total voltage is regulated and the peak voltage appear.

FIG. 2-Overall schematic of high-voltage magnetically-regulated power supply connecting bridges as shown allows voltages of the two windings to be added

FIG. 3-Waveform (A) across primary of saturating transiormer. Shaded area (B) is cut from input wave when saturation occurs at points 1 and 4. Under these conditions current in the transformer (C) builds up rapidly
ing across the magnetic amplifier is the peak of the smaller winding only. Thus the magnetic amplifier need not be insulated for the full voltage, which is $1,500 \mathrm{v}$ for the 500 -v supply due to the narrow pulse which must be used, and the size of the magnetic amplifiers for these two supplies is kept to a minimum. The voltages of the two windings are added by connecting the two bridges shown in Fig. 2.

In regulating the average value of the rectified voltage, the mag-
netic amplifiers in the two highvoltage supplies absorb a portion of the wave as shown by the shaded area in Fig. 4B. Since better regulation and lower peak ripple values are required on the $-25-\mathrm{v}$ and $+500-\mathrm{v}$ supplies, a higher gain is required of the magnetic amplifiers on these than on the other three and two-stage filtering is necessary for stability.

The reference voltage for all the magnetic amplifiers is supplied by a v-r tube in the $500-\mathrm{v}$ supply, reference windings N_{R} being connected in series as shown in Fig. 2.

Bleeders R_{1} through R_{4} protect the filter capacitors in the event that loading is removed from the supplies. This is not necessary on the 500 -v supply since the $\mathrm{v}-\mathrm{r}$ tube draws enough current for protection.

Output Compensation

The voltage level of each supply is set by the variable resistors in the control-winding (N_{o}) circuits. Since two-stage filtering is used on the $-25-\mathrm{v}$ and $+500-\mathrm{v}$ supplies and the control current taken from the output of the first filtering stage, load-compensating windings N_{F} are added to the magnetic amplifiers on these supplies. The load current flowing through these windings tends to compensate for the changes in IR drops in the

Table I — Coil-Winding Data for Power Supply Transformers and Inductors

Unit	Winding	Volts	Amperes	Turns	Wire Size	Resistance in Ohms	Size in Inches	$\begin{aligned} & \text { Weight } \\ & \text { in } \\ & \text { Pounds } \end{aligned}$
T_{1}	Pri	72	0.443	416	20	2.35		
	S_{1}	238	0.102	1,375 830	36 36	262 14	$33 / 4 \times 33 / 4$ $\times 3 \text { high }$	2
	S_{2}	143	0.109	830	36	14	$\times 3$ high	
	S_{3}	138	0.064	800	36			
T_{2}	Pri	72	1.15	360	21	3.84		
	S_{1}	273	0.089	1,340	32	102	$4 \times 45 / 8$	
	S_{2}	334	0.089	1,640	32	159	$\times 41 / 4 \mathrm{high}$	4.9
	S_{3}	251	0.036	1,230	${ }_{36} 36$	303		
	S_{4}	725	0.036	3,549	36	966		
	N_{L}	56	${ }_{0}^{0.05}$	2,430	34		$\begin{aligned} & 3 \text { diam } \\ & \times 3_{\frac{5}{16}} \mathrm{high} \end{aligned}$	2
L_{1}	$\mathrm{N}_{\text {cl }}$ $\mathbf{N}_{\text {c2 }}$		0.01 0.01	$\begin{array}{r}850 \\ 850 \\ \hline 8\end{array}$	36	${ }_{84}^{81.6}$		
L_{3}			${ }_{0}^{0.01}$	1,700 18	36 36	$\stackrel{175}{1.31}$		
	$\mathrm{N}_{\text {F }}$		0.1	18				
$\begin{gathered} \mathrm{L}_{4} \\ \mathrm{~L}_{6} \end{gathered}$	N_{L}	167	0.05	7,300	36	681	$\begin{aligned} & 3 \times 3 \frac{\text { diam }}{16} \text { high } \end{aligned}$	2.5
	$\mathrm{N}_{\text {cl }}$		0.01	3,500 3,500	36	377 475		
	$\mathrm{N}_{\text {c }}$ $\mathrm{N}_{\text {c3 }}$		0.01 0.01	3,500 7,000	36 36	475 997		
	$\stackrel{\mathrm{N}^{\prime}}{ }$		0.1	180	36	5.94		

second-stage filter chokes with changes in load.
Temperature compensation is also added to the magnetic amplifiers because of the series-connected reference windings, which make a large portion of the refer-ence-circuit resistance copper resistance. The reference and control circuits use low-temperature-coefficient resistors. Since the reference voltage is fixed, any change in the copper resistance of the reference windings due to temperature will affect the reference current and consequently the regulated output. To obtain perfect compensation the resistance of the control and reference circuits must vary together, so the ratio of copper-to-stable resistance in the controi circuit is equal to the ratio of cop-per-to-stable resistance in the reference circuit.

FIG. 4-In regulating average of the rectified voltage, magnetic amplifiers in low-voltage supplies absorb shaded parts of waves (A). In high-voltage supplies absorption occurs as in shaded portions of waves (B)

One simple method of establishing this ratio equality is to add stable resistors R_{5} through R_{9} in parallel with the control windings. This has the effect of increasing the copper resistance of the winding across which the resistor is connected.

Saturating transformer T_{1} is designed to support 76 v rms and is wound on a 2 -mil strip Hipernik V core 2 in . inner diam $\times 3 \mathrm{in}$. outer diam $\times 1 \mathrm{in}$. Winding data appears in Table I.

Saturable reactors L_{1} through L_{5} are wound on 2 -mil strip Hipernik V cores $1 \frac{1}{2}$ in. inner diam $\times 2 \mathrm{in}$. outer diam $\times \frac{1}{4} \mathrm{in}$.

Word Generator for Digital Testing

Beam-switching tube supplies arbitrary nine-bit words at pulse rates from a few cps to one me for testing and evaluating digital systems. Pulse shape can be varied from spike to square wave by changing plug-in capacitors

By RALPH R. HARTEL
Senior Research Engineer, Electronics Division, National Cash Register Co., Hawthorne, California

SIGNAL GENERATORS capable of supplying an arbitrary arrangement of square pulses are useful in testing and evaluating digital systems.

A versatile, binary word generator can be constructed by utilizing a beam-switching tube. Such a word generator provides binary
words containing any combination of ONES and zEROS up to a total of nine. Pulse repetition rate is variable from a few cycles to one mc.

Circuit

The circuit was designed to operate from a low-impedance squarewave source capable of supplying

[^2]

Input to word generator is 400 -kc square wave (upper trace). Output with two plugin capacitors removed is 110111011 (lower trace)
negative pulses of at least -30 v amplitude.

The first stage of the word generator as shown in the circuit diagram consists of a 5965 dual triode which is cathode driven to provide a low-impedance trigger input. The output of one section of this triode is coupled through a d-c blocking capacitor to one grid of the beamswitching tube. The other section is fed to a phase-inverter which inverts the pulse and applies it to the other grid of the beam-switching tube. The resulting push-pull signal on the grids of the beamswitching tube may then be balanced with the gain control in the phase inverter stage.

The output of each switch-tube target, except number zero, is fed through plug-in capacitors to a nonadditive diode mixing circuit. Output pulses may he shaped by changing the value of the plug-in capacitor. A smaller value will give a short differentiated pulse, while larger values give full-length square pulses.

Miniature Ferrite Tuner

Abstract

Rotary-axial tuner consists of two pairs of ferrite cups with ground D-shaped center cores ganged to produce linear frequency variation from 500 to 1,600 kc with mechanical motion. Operating frequencies can be extended to 15 mc . Tuning sensitivity is reduced as each band is covered in 270 -degree rotation rather than in the 180 degree of normal capacitor tuning

By E. A. ABBOT, Chief, Communications Department
Emerson Kadio and Phonograph Corporation, Jersey City, New Jersey
M. LAFER. Chief, Mechanical Design Department

GROWTH in transistor use has spurred the search for miniature electronic devices.

Miniaturization of an r-f tuner operating between 0.5 and 50 mc can be achieved with permeability rather than capacitance tuning. Further, permeability tuning is free from vibration and shock troubles. A linear, permeability type tuner is described for which a 3 to 1 frequency range, maximum \mathbf{Q} and minimum variation of Q with frequency are assumed to be desirable.

Gap Tuner

Present tuners may be classified as slug tuners, gap tuners, variometers and those that vary the number of turns on a core.

A permeability gap tuner is the best compromise between electrical and mechanical considerations. It uses the relative motion of two ferrite cups or a ferrite cup and cover plate or two C-shaped cores. Although the core material is always within the coil, the inductance is varied by changing the size of a gap in the magnetic-field path.

A gap tuner is shown in Fig. 1A. The tuning technique permits miniaturization since the cover movement does not exceed $\frac{1}{8} \mathrm{in}$. for a 3 to 1 frequency range.

Frequency variation with cover movement is nonlinear. A $250-\mathrm{kc}$ change occurs in the first 10 mils of travel, and at the upper end of the band, a 10 -mil change may cause a $25-\mathrm{kc}$ shift. A precise mechanical drive system is required to control the complete frequency
range in a $\frac{1}{8}$-in. travel.
Another gap tuner is shown in Fig. 1B. The center section of the cups has the shape of a D. Rotation of one cup with respect to the other changes the effective gap length. Frequency changes of 2 to 1 are feasible with this device. Furthermore, since the complete frequency range covers a long rotary path the mechanical drive system is not critical.

The rotary-axial gap tuner takes advantage of the slow frequency variation of the D-type tuner and the wide frequency variation of the cup and cover-type tuner. It consists of two pairs of ferrite cups with ground D-shaped center cores.

Tuner operation is described in the curves of Fig. 2. Curve 1 is the frequency response obtained upon rotating two ferrite-cup cores with D-shaped center cores without gap separation. Frequency initially varies slowly as the cups are rotated, increases to a maximum when the D figures are mirror images at 180 deg and then de-

FIG. 1-In gap tuner (A) inductance is varied by changing gap size in magneticfield path. Rolation of one cup of D-type tuner (B) with respect to the other changes length of the gap

FIG. 2-Curve 4 is the linear frequency response of the rotary-axial tune obtained by combining responses of curve 1 for D-shaped center cores without gap separation and curve 3 for a tapered coll within the core
creases slowly. The curve is bell shaped.

When separating two ferrite-cup cores without rotation, curve 2 is the frequency response obtained. The frequency varies rapidly and then reaches a point where increased gap separation has no effect.

When a tapered coil is used inside the core, the frequency response of curve 3 is obtained. Saturation frequency is 100 kc higher than in curve 2.

Composite curve 4 is obtained when both rotation curve 1 and axial-movement curve 3 are combined by a cam. Since the gap separation is small, rotation of the cup initially exerts the greater control over frequency. Therefore, the frequency varies comparatively slowly.

During the first $250-\mathrm{kc}$ change there is a long mechanical path of

Covers Broadcast Band

Rotary-axial tuner size is indicated by comparison with transistor

FIG. 3-Cutaway view of rotary-axial tuner shows parts
rotation rather than a short mechanical path of axial movement. As the cups are rotated 180 deg with respect to each other, the gap separation increases until the D shaped center-core separation no longer affects the frequency change. Thus, the right half of the bell-shaped curve has no effect on the frequency. Beyond 180 deg the frequency change results from gap separation, although the cups continue to rotate with respect to each other. The resulting curve 4 has a linear frequency variation from 500 kc to $1,600 \mathrm{kc}$.

By further tapering the coil the frequency range may be extended linearly to $1,700 \mathrm{kc}$. Maximum possible Q is 151 .

Mechanical Description

Axial motion of the cups is caused by the cam shown in the tuner drawing of Fig. 3.

A cam follower is in contact with the cam. After adjusting the cam

FIG. 4-Straight-line tracking is achieved with rotary-axial tuner
follower to provide initial positioning, it becomes a fixed element of the follower housing and provides linear movement of the axial cups in accordance with the cam form.

Linear motion of the axial cups without backlash is provided by a spring.

The portion of the shaft which is in the immediate area of both rotating and axial cups is made of a dielectric material.

Three-point tracking of the r-f coil is obtained by placing shunt and series coils, together with a new tuning capacitance, in parallel with the r-f coil. A 2 to 1 oscil-lator-frequency range results. The oscillator tuning follows the r-f tuning curve as shown in Fig. 4.

To show the application of the tuner to transistorized circuits, the tuner r-f coil is connected by a capacitance divider to the input of the transistorized mixer circuit shown in Fig. 5. Mixer output is fixed tuned with a coil resonant at 455 kc . The oscillator coil of the tuner is connected through two trimmer coils to the collector of transistor Q_{2} which acts as a Clapp oscillator. The oscillator signal is capacitance-coupled to the emitter of the mixer stage. After making adjustments for stray capacitance, the tuner operates with the linearity and tracking characteristics of Fig. 4.

Tuners covering the ranges 1.5 to 5 mc and 5 to 15 mc have the same frequency slope as the broad-cast-band tuner, and therefore can be used with the same cam. When

FIG. 5-Transistorized circuit checks r-f tuner whose linearity and tracking characteristics are shown in Fig. 4
the coils are successively tapped down after each rotation of the cam, a semicontinuous tuner can be constructed. A coil wound with several taps is placed in ferrite cups and tested in an r-f tuning jig. The bands from 0.5 mc to 1.5 mc and from 1.5 mc to 5 mc are easily covered by tapping down the coil. The highest band shows an upperfrequency limit of 7.3 mc . The total frequency ratio obtained is 14.6 to 1 with the same tuner.

The aid of Capt. C. Green and G. Tarrants in this work, done under contract No. AF 33 (600) -31464 is acknowledged.

Abstract

Continuous counting chain, recycling every 24 hours and driven by standard frequency input that establishes absolute time, uses eight beam-switching tubes. Absolute time readings are given upon arrival of readout voltage pulse. Actual time of occurrence of a particular event or series of events is displayed in hours, minutes. seconds and tenths of a second. Technique can be adapted for frequency measurements, preset counting and internal timing with input rates approaching 1 me

By R. WINFIELD, D. II. ANDREWS and M. TURNTINE, Jr.
U. S. Naval Material Laboratory, N. Y. Naval Shipyard, Brooklyn, N. Y.

Electronic Clock Reads

FIG. 1-Complete functional diagram for time-of-event indicator. Standard frequency input signals are used and man. ually selected depending on frequency division required. First divider converts standard input of 60 or 100 cps to 10 cps to correspond to the minimum unit of time displayed. Additional dividers are cascaded to provide the remaining units of seconds, minutes and hours

TIME-OF-EVENT INDICATORS are electronic counters that visually indicate progression of the count (time).

Counting is independent of the visual display system. Once the counter is on-time, any number of time readouts may be taken without disturbing the counter. Visual andication is effected by first duplicating and storing the particular count position corresponding to that in each of the counter stages at the time of readout, and then firing the corresponding numerals in the glow-discharge visual indicator tubes. This numerical reading as well as the stored count positions are retained until another time reading occurs. Then the new count positions are duplicated and stored and the new numerals fired, the previous ones being turned off in the process.

The equipment to be described was developed for use as a link in an overall computing system for the accurate measurement of geographic position. Celestial navigation methods employed required coordinated time readings of star sightings as well as other related events. Time readings presented are manually inserted into the computer system for further automatic processing.

Primary specifications call for an accurate visual time display, a fre-
quency standard, continuous counting without recalibration between successive time readings, and a time calibration source. Two instruments are needed, one to indicate solar time and one for celestial time.

Units of time are displayed in $0.1 \mathrm{sec}, 1 \mathrm{sec}, 10 \mathrm{sec}, 1 \mathrm{~min}, 10 \mathrm{~min}$, 1 hr and 10 hr with provision for automatic recycling of the counter every 24 hr .

To establish a standard time interval a GR type 1100 frequency standard is used. Crystal frequency adjustment is made by comparison with transmissions from WWV. Frequency dividers convert this basic crystal frequency to 100 cps and 60 cps , which are the standard is used. Crystal fredrive the solar time-of-event indicator.

Requirements

Any possible resetting or recalibration between successive time readings has to be eliminated. That is, upon the occurrence of a particular event, a time reading would appear on the numerical indicators. This reading would remain until a subsequent event produces a new time reading. No adjustment or resetting of the time-of-event indicator should be required before the next event occurs. This feature makes the indicator available for

Operator is shown adjusting controls of equipment that is part of overall computing system where time-ot-event indicator is used. Indicator (clock) is shown mounted at the right and provides time readings of star sightings and other related events

Time-of-event indicator is an electronic clock. Instrument displays actual time of occurrence of a particular event or series of events while internally counting progression of time. Absolute time of an event is displayed until next event occurs

Related Time-of-Events

any number of time readings within the long-time recalibration period specified in the program.

Recalibration is required only when the elapsed operating time of the frequency standard is great enough to allow the probable frequency standard's deviation to exceed the allowable time error. The frequency standard will allow several days operation without producing significant error in the 0.1 sec reading.

The standard time interval of one sec provided by WWV time signals is used to phase a $1-\mathrm{cps}$ camdriven contactor opening. The contactor is driven by a synchronous motor whose power frequency is derived from the frequency standard through frequency dividers. Periodic opening of the contactor can be phased manually to coincide with the commencement of the $1-\mathrm{sec}$ time interval signals from WWV. This can be done within about 5 millisec.

Block Diagram

Figure 1 shows the complete functional block diagram. Standard frequency input signals are fed to the first divider through a squarer amplifier. The first divider converts various input signals to a basic standard frequency of 10 cps to correspond to the minimum unit of time visually displayed. For the
celestial time-of-event indicator, an input of 15 cps is used, requiring a division by $3 / 2$ to yield 10 cps . The indicator uses 60 cps or 100 cps , manually selected, requiring division by 6 or 10 , respectively.

After the first divider, additional dividers are cascaded to provide the remaining units of $\mathrm{sec}, \mathrm{min}$ and hr . Since the indicator is to be used continuously, a $24-\mathrm{hr}$ recycle network is provided. Only the $1-\mathrm{hr}$ and $10-\mathrm{hr}$ dividers are affected since the previous stages are at zero in the normal count progression when recycling occurs.

Frequency Dividers

Figure 2 shows the switching tube in the circuit used for the first divider. When dividing by 6 , targets 2, 3, 6 and 7 are left with no return. Under this condition, the beam switching to these target positions is unstable since the target voltage drops below the knee of the target current characteristic as the stray capacitance is charged by target current. The net result is that the beam skips these positions and locks in on the first target with a normal return.

Positions 2 and 3 are skipped with the beam locking in on position 4 and positions 6 and 7 are skipped with the beam locking in on position 8 . Since 4 active positions have been eliminated, it now
requires only 6 input pulses to return the beam to the initial position. Since the flip-flop changes state once for each input trigger to the flip-flop, the advance of one position in the beam switching tube corresponds to the elapse of one period of the pulse train at the flipflop input.

As a frequency divider, therefore, the circuit of Fig. 2 divides by 6 when the manual selector switch is thrown to the divide-by6 position. For division by 10, all targets are returned to +200 v and the beam advances one position for each switching pulse.

On arrival of the first switching pulse, the beam position will be advanced only if the condition is satisfied that a negative pulse is delivered to an odd grid when the beam is in an odd position, or a negative pulse is delivered to an even grid when the beam is in an even position. If this condition is not satisfied, an extra pulse to the flip-flop is required before the polarity is correct and the beam will switch. Thus, a loss or miscount of one pulse can represent as much as a 10 -hr error if it occurs in the $10-\mathrm{hr}$ counter. The calibration procedure given here eliminates this possibility.

The celestial time-of-event indicator uses a $3 / 2$ division in the first divider as shown in Fig. 3. Two

FIG. 2-First divider circuit, divide by 6 or 10 , used in solar clock. When dividing by 6, for example, targets 2, 3, 6 and 7 of the tube are open and the net result is that the cathode beam skips these targets and locks in on the first targel with a normal return
major differences exist between this circuit and that of Fig. 2; the output pulse is taken from the target instead of the spade and the switching grids move the beam along at twice the rate with respect to the input frequency. The switching rate is doubled because the shaper's output reverses each half cycle of the input and therefore twice per period. This action produces frequency multiplication by 2 and the beam switching target circuit arrangement produces division by 3 for a net frequency division by $3 / 2$.

With targets 2, 3, 6 and 7 open as in Fig. 2 the beam skips four positions with a resultant division by 6 , with respect to switching grid pulse frequency, if the output is taken from one of the active spades. By taking the output from 2 targets tied together, an output pulse is delivered twice per complete beam rotation, instead of once, reducing net division from 6 to 3 .

Two spades cannot be tied together in a similar manner since the heam tends to lock-in on a leading spade and therefore the two tied positions do not behave independently as is the case when the targets are tied. Certain interspade connections may be used for division purposes using this leadingspade lock-in feature.

Automatic Recycling

Figure 4 illustrates the circuitry used to return the hr and $10-\mathrm{hr}$ stages to zero after 24 hours operation. The circuit is a simple cathode follower coincidence circuit driving a relay whose contacts are

FIG. 3-First divider circuit, divide by $3 / 2$, used in celestial clock. This circuit differs from solar first divider circuit. Output pulse is taken from target instead of spade and switching grids move the beam along at twice the rate with respect to the input frequency
arranged to clear each divider tube and reform the beam on zero of each tube. When the hr stage reaches four after the $10-\mathrm{hr}$ beamswitching tube has reached its two position, $24: 00: 000$, both grids of the coincidence circuit are near ground potential and the cathode current decreases to a value too low to keep relay K_{1} energized. Spade voltage is slightly negative when the beam forms on a spade-target combination.

The relay's contact closes and shorts both zero spade returns to ground. This rapidly clears the beams of both beam switching tubes as no spade-target combination receives cathode current and,

Component layout of indicator. Panel is shown open at left

FIG. 4-Circuit used to return hours and 10-hours stages to 0 after 24 hours
therefore, number two and four spades of the $10-\mathrm{hr}$ and hr stages quickly jump to about $5 / 11$ of the spade supply voltage. The coinctdence circuit now sees both its grids at high positive potential and the relay reenergizes as coincidence cathode current increases.

Untying the zero spade return circuit from ground, allows the common spade bus for the one to nine spades to rise to the spade supply voltage. Because of the 6,800-4,700-ohm divider across the spade supply for the one to nine spades, formed when the return is grounded by the relay contact, the zero spade is less positive than all other spades at the moment the ground connections are broken.

In addition, a fractional part of the spade supply voltage set up across the 4,700 -ohm resistor is in series only with the zero spade circuit and further serves to keep the zero spade less positive than all other spades. The capacitance across the resistor retards rise of the zero spade to spade supply voltage.

These conditions satisfy the requirements for beam forming from an already formed position, two and four, with the net result that the beams in both the $10-\mathrm{hr}$ and hr beam-switching tubes are formed on the zero spade in stable equilibrium until the next switching grid pulses are received. This completes the automatic recycling.
Addition of the 1N55A to the spade return circuit is necessary to prevent the recycling transient from triggering the flip-flop and causing a one-count error.

Time Readout

Duplicating beam count positions in the various divider stages for visual indication, without interrupting their continuous counting is accomplished with the aid of additional beam-switching tubes. As shown in Fig. 1 these are called count-storage stages. The combined readout and count storage circuit is shown in Fig. 5.

Advantage is taken of pentodelike target characteristic for a free electrode output. At the time of arrival of a readout trigger, a 20 -microsecond readout gate cuts off the normal divider target cur-

FIG. 5-Combined circuit showing count storage, transfer and readout. Network duplicates and stores beam count positions in various divider stages without interrupting the continuous counting operation and fires numerals

FIG. 6-Calibration input circuit. Calibration consists of setting clock to an arbitrary advanced time setting, shorting standard frequency input pulses to the counting channel and then opening the input at exact time previously set to start continuous counting
rent return through transfer diode V_{1} and forces the target current to flow through V_{2} to the count storage spade return. This produces a negative pulse on this spade as well as along the entire spade bus because of the 12,000 -ohm common spade resistor.

For similar reasons, as outlined in the discussion on automatic recycling, the beam is cleared and reformed on the spade position to which the divider target current is delivered. Since the target current of the count storage stage is connected to the Nixie numerical indicator, the number corresponding to the divider count position at the time of the readout is turned on for a numerical indication of the time count. Note that the countstorage beam-switching tube is not switched, the switching grids being returned to positive potential for stable locked-in operation after beam clearing and forming.

Subsequent readouts clear the beam in the count-storage tube and turn on the new beam position corresponding to the new time count in each of the dividers. Nixie indicators extinguish and refire at the new readings. Readout pulse width may be as short as 1 $\mu \mathrm{sec}$ but was made about $20 \mu \mathrm{sec}$ for additional reliability resulting from the less stringent amplitude and shape requirements on the diode gate switching pulse.

Calibration

Calibration of the time-of-event indicator consists of setting it to an arbitrary advanced time setting, with the standard frequency input pulses to the counting channel shorted and then unshorting the input at exactly the time previously set on the indicator to start the continuous time counting. The calibration input circuit is shown in Fig. 6. Both the celestial and solar indicators are started by the contactor opening in the Synchronometer. Less than 10 millisec is required for the relay release time.

If the indicator is set for $09: 45$: 000 , the contactor must be manually unshorted between 09:44:590 and 09:45:000 or within one second. This will allow only a single contactor opening, normally shorted, corresponding exactly to the commencement of the first second beginning at 09:45:000, to unshort the standard frequency input. Further contactor openings have no effect on the circuit. By watching the second hand, the operator can easily unshort the contactor at the right moment.

Manual Setting

Figure 7 shows the circuits used for manually setting the beam positions in the dividers. After manually forming all the beams in the divider beam-switching tubes by

FIG. 7-Manual time advance circuit for manually setting the beam positions in the frequency dividers
shorting the " 0 " spade returns, the beam positions are manually advanced around in each divider by triggering the flip-flop drivers of a given stage until the arbitrary time setting selected for calibration is reached.

By advancing the beam at least one position before setting it on its calibration reading, the flip-flop is automatically in the proper state to advance the beam in the divider beam switching tube when the first pulse arrives after operation begins. As each position is manually advanced, a readout trigger is delivered to the readout circuits so that the Nixie numerical indicators show the changing beam positions.

The diode between the preceding input spade and the following flipflop prevents the manually generated pulse from the previous stage from upsetting the beam position which might otherwise advance or clear the switching tube.

Performance

The time-of-event indicator was operated during sea trials successfully for several days of continuous operation without a time error occurring.

The techniques described for the time-of-event indicator may be extended for high-speed operation. Electronic zero-setting within $\mu \mathrm{sec}$ is possible in place of relay zerosetting. Readout transfer time may also be reduced to several $\mu \mathrm{sec}$. Phasing of the standard frequency input as well as an increase in frequency can be used to further reduce time errors to microseconds.

The opinions or assertions contained in this article are the private ones of the authors and are not to be construed as official or reflecting the views of the Naval Service at large.

Material used in this article was derived from a paper, Electronic Time-of-Event Indicator, presented before the 13th Annual NEC.

References

1. J. Bethke, New Applications for Beam Switching Tubes, ELECTRONICs 29, p 122 , Apr. 1956.
2. S. Kuchinsky, The Magnetron Beam Switching Tube-a New Concept in Vacpum Devices, Burroughs Corporation paper, Plainfield, N. J., 1955.
3. J. Millman and H. Taub, "Pulse and Digital Circuits," p 339, McGraw-Hill Book Company, Inc., New York, N. Y., 1956.

FIG. 1-Four blocking oscillators include standard circuit (A) and three National Bureau of Standards preferred circuits (B), (C) and (D)

Designing Transformers

By R. I). McCARTNEY* Specialty Transformer Engineering, Westinghouse Electric Corp., Greenville, Pa.

CONTINUED MINIATURIZATION of electronic equipment has necessitated the redesign of many standard electronic components including transformers, essential elements in blocking oscillators.

Sufficient data on blocking-oscillator circuits, tubes and specifications have been accumulated to design new transformers with considerable reduction in size along with improved performance. Accurate prediction of output pulse shapes is also possible.

Test Procedure

Four test circuits shown in Fig. 1 provide data from which the pulse-
initiation and pulse-width curves needed to design the new transformers are constructed. Since most tubes in use in blocking oscillator circuits are receiving double-triode types, curves for common types 5687, 5965 and 5814 WA are presented. Trigger voltage is set at minimum width and amplitude for all circuits to avoid distortion of the output pulse.

Data is obtained in two steps. First, a set of single-coil, singlecore test transformers is constructed. The coil contains plate and grid windings with the turns ratio between the windings varying in steps from 3 to 1 to 1 to 3 . The load is connected directly across the
grid windings. Type L-1 cores are used with a constant number of plate winding turns for all units.

After inserting the transformers in the test circuit, the amplitude of the pulse appearing across the load resistor is recorded as the load is varied. The resulting pulse-initiation curves of Fig. 2 indicate a turns ratio for maximum power output of each load conductance. From Fig. 2 the designer can predict the output amplitude and select the optimum turns ratio for any value of load impedance.
Secondly, a set of transformers is constructed with various turn levels for each turns ratio at which pulse-width curves are desired.

* N゙ow with Motorola

FIG. 2-Pulse-initiation curves A are for tube-type 5687, B for 5965 and C for 5814 WA. All indicated ratios are grid turns/ piate turns on a single coil

FIG. 3-Pulse width versus grid turns (left ordinate) and L-1 core inductance (right ordinate) are for type 5687 with 500 -ohm load. Grid turns to plate turns ratios are $1.5 / 1$

Design data for blocking-oscillator transformers is obtained by using four common circuits with three tube types. Pulse-initiation curves indicate turns ratio for maximum power output of each load conductance. Pulse-width curves show turns level that gives desired pulse width. For other circuits. turns level can be selected where control capacitance value is designated. Transformers designed by this method, entirely upon L-1 core, achieve 1/6 size reduction

For Blocking Oscillators

From the pulse-initiation curves, turns ratios of 1.5 to 1,1 to 1 and 1 to 1.5 give maximum power output for most load conditions. All transformers have L-1 cores and three windings with the outer winding having the same number of turns as the one closest to the core. Rise time is improved with the middle winding in the plate circuit, the inner in the grid, and load across the outer.

The pulse-width data is obtained using a load of 500 ohms , the optimum turns ratio for the tube in use and the four circuits. When using the circuit of Fig. 1A the control capacitor C_{0} is adjusted for flat pulse response.

Pulse Width Curves

Width versus turns on an L-1 core is plotted for each tube and

Mechanical construction in shown in closeup of transformer
circuit and are shown in Fig. 3, 4 and 5 . With these curves, it is possible to select a level of turns that

Reduced size is indicated by comparison with one-cent piece
gives a desired pulse width for each of the three tubes in any of the four test circuits. For any other

FIG. 4-Pulse width versus grid turns (left ordinate) and L-1 core inductance (right ordinate) for tube-type 5814 WA with 500 -ohm load. Grid turns to plate turns ratios are 1/1.5

FIG. 5-Pulse width versus grid turns (left ordinate) and L-1 core inductance (right ordinate) for tube-type 5965 with 500 -ohm load. Grid turns to plate turns ratios are $1 / 1$
circuit, the turns level can be selected where the control capacitance value is designated.

The L-1 core of $0.002-\mathrm{in}$. Hipersil suffices over a pulse-width range from 0.5 to $5 \mu \mathrm{sec}$ under average conditions. Different widths are obtained for different turns levels of the coil. Beyond $5 \mu \mathrm{sec}$ a large core area is advisable. From 0.1 to 0.5 $\mu \mathrm{sec}$, the M-3, a $0.001-\mathrm{in}$. Hipersil core with the same physical dimensions as the L-1 core, should be used.

Materials

Class A materials are satisfactory for use up to 125 C . Coil tubes should be made of Kraft paper with a fish-paper liner. Kraft paper should also be used as layer insulation and wrap.
Enameled-wire of sizes 30 to 40 is satisfactory to 125 C . The usual basis for size selection is $25 \mathrm{w} / \mathrm{lb}$ although for small-size units 50 w/lb may prove usable. A low cost, simply designed and built

Blocking oscillator pulses for 200-pps (left) and $1,000-\mathrm{pps}$ (right) repetition rates
winding scheme is sufficient except in extreme cases, for coil design. Margins and layer insulation should be based on a maximum of $25 \mathrm{v} / \mathrm{mil}$ creep and $250 \mathrm{v} / \mathrm{mil}$ puncture when using Kraft paper. In a similar

Pulse shapes are showr: for control capacitance values of $0.005 \mu \mathrm{f}(\mathrm{A})$ and $0.32 \mu \mathrm{f}(\mathrm{B})$. Load resistance is 250 ohms and scale is $0.2 \mathrm{sec} /$ division and $50 \mathrm{v} /$ division amplitude

FIG. 6-Effective permeability is plotted as a function of pulse width
manner the impedance required determines the layer insulation thickness.

Impedance

The impedance $\sqrt{L_{0} / C_{0}}$ of a transformer where L_{0} is leakage inductance and C_{o} is the distributed capacitance should be made equal to the load impedance for the best pulse shape. This is usually done by adjustment of the thickness of layer insulation.

The pulse permeability curve of Fig. 6, used in conjunction with the formula

$$
L_{o}=\frac{3.19 N^{2} A N_{e f f} / 100}{L_{F E}}
$$

where $N_{\text {eff }}$ is effective pulse permeability, $L_{F B}$ is the mean length of magnetic path and A is core gross area, establishes the open circuit inductance for use in calculating the control capacitance value in circuits other than Fig. 1 B, C and D. The average value of effective pulse permeability should be used in all cases.

Pulse Shape

Width of the pulse is determined mainly by the transformer opencircuit inductance and size of the control capacitance. An increase in either one causes a proportional increase in width.

A flat pulse may be obtained from any unit by adjusting the control capacitance until $\left(L_{0} / C_{0}\right)^{1 / 9}$ $=230$ ohms. Since the $R_{\theta} C_{0}$ time constant must be much less than the spacing between pulses to allow the grid voltage to reach the bias point before arrival of the next trigger pulse, this is not always possible. Therefore, for the higher repetition rates some droop can be expected on the pulse top as seen in the wave shape photographs.

Pulse output voltage is directly proportional to the applied voltage or $E_{b b}$. Operation is usually at the tube manufacturer's recommended value.

The curves presented permit the design of transformers entirely on the L-1 core, thereby achieving a size reduction to approximately $1 / 6$ of previous units. Reasonably flat pulses can now be obtained in any circuit, and an accurate prediction of pulse width made.

Transistor Formulas Use h-Matrix Parameters

$\begin{aligned} & \text { VOLTAGE } \\ & \text { GAIN } \\ & \left(\frac{V_{\text {OUT }}}{V_{\text {IN }}}\right) \end{aligned}$	$\frac{-n_{f} R_{L}}{n_{i}+O R_{L}}$	$\frac{R_{L}\left(n_{0} R_{B}-n_{i}\right)}{n_{i}+D R_{L}+R_{B}\left(M+n_{0} R_{L}\right)}$	$\frac{R_{L}\left(h_{0} R_{B}-h_{f}\right)}{h_{i}+D R_{L}+R_{B}\left(M+h_{O} R_{L}+h_{0} R_{E}\right)+R_{E}\left(1+h_{0} R_{L}\right)}$
$\begin{aligned} & \text { CURRENT } \\ & \text { GAIN } \\ & \left(\frac{i_{\text {OUT }}}{i_{\text {IN }}}\right) \end{aligned}$	$\frac{-n_{1}}{n_{0} R_{L}+1}$	$\frac{n_{0} R_{B}-n_{f}}{1+n_{0}\left(R_{B}+R_{L}\right)^{\prime}}$	$\frac{n_{0} R_{B}-n_{1}}{1+n_{0}\left(R_{B}+R_{L}\right)}$
INPUT RESISTANCE $\left(R_{\mathbb{N}^{N}}\right)$	$\frac{n_{i}+D R_{L}}{1+n_{0} R_{L}}$	$\frac{n_{i}+D R_{L}+R_{B}\left(M+n_{O} R_{L}\right)}{1+n_{0}\left(R_{B}+R_{L}\right)}$	$R_{E}+\frac{n_{i}+D R_{L}+R_{B}\left(M+n_{0} R_{L}\right)}{1+n_{0}\left(R_{B}+R_{L}\right)}$
OUTPUT RESISTANCE $\left(R_{\text {OUT }}\right)$	$\frac{n_{i}+R_{G}}{D+n_{0} R_{G}}$	$\frac{n_{1}+R_{G}+R_{B}\left(M+n_{0} R_{G}\right)}{D+h_{0}\left(R_{B}+R_{G}\right)}$	$\frac{n_{i}+R_{G}+R_{E}+R_{B}\left[M+n_{0}\left(R_{G}+R_{E}\right)\right]}{D+n_{0}\left(R_{B}+R_{E}+R_{G}\right)}$
equivalent n MATRIX	$n_{21}=n_{1} \quad n_{22}=n_{0}$	$\begin{array}{ll} n_{11}=\frac{n_{1}+M R_{B}}{1+n_{0} R_{B}} & n_{12}=\frac{n_{1}+M R_{B}}{1+n_{0} R_{B}} \\ n_{21}=\frac{n_{1}-n_{0} R_{B}}{1+n_{0} R_{B}} & n_{22}=\frac{n_{0}}{1+n_{0} R_{B}} \end{array}$	$\begin{array}{ll} n_{11}=R_{E}+\frac{n_{1}+M R_{B}}{1+n_{0} R_{B}} & n_{12}=\frac{n_{p}+n_{0} R_{B}}{1+n_{0} R_{B}} \\ n_{21}=\frac{n_{1}-n_{0} R_{B}}{1+n_{0} R_{B}} & n_{22}=\frac{n_{0}}{1+n_{0} R_{B}} \end{array}$

Charts list formulas for small-signal performance of transistor with external resistances in series with one or more of its leads in grounded-base, groundedemitter and grounded-collector configurations. Formulas have been derived without approximations; simplifications may be made to fit specific situations

By ALBERT E. HAYES, JR. Project Manager, Mechanical Division, General Mills, Inc. Minneapolis, Minnesota

THE FORMULAS given here define the performance of a transistor, with external resistances in series with one or more of its leads, in terms of h-matrix parameters.
The equations are intended for use in the low-frequency region where the parameters are substantially independent of fre-
quency (≈ 1 per cent of f_{x+0}). Equations may be used at any frequency provided that the parameters are measured at the frequency of operation, the complex value of each parameter is measured and impedances and admittances are used in place of resistances and conductances.

Common-base small-signal,
short-circuit input resistance is designated by h_{i}, open-circuit re-verse-transfer voltage ratio by h_{r}, short-circuit forward-transfer current ratio by h, and opencircuit output conductance by $h_{\text {. }}$. Quantity D is the determinant of the h matrix ($D=h_{i} h_{0}-h_{i} h_{r}$), and $M=D+h_{r}-h_{r}+1$.
(Continued on page 82)

Transistor Formulas Use h-Matrix Parameters (continued from p 81)

COMMON-EMITTER ARRANGEMENTS			
VOLTAGE GAIN $\left(\frac{v_{\text {OUT }}}{v_{I N}}\right)$	$\frac{\left(0+h_{f}\right) R_{L}}{h_{i}+D R_{L}}$	$\frac{\left(D+h_{f}+h_{0} R_{E}\right) R_{L}}{h_{i}+D R_{L}+R_{E}\left(1+h_{0} R_{L}\right)}$	$\frac{\left(D+h_{1}+h_{0} R_{E}\right) R_{L}}{h_{1}+D R_{L}+R_{E}\left[1+h_{0}\left(R_{B}+R_{L}\right)\right]+R_{B}\left(M+h_{O} R_{L}\right)}$
$\begin{aligned} & \text { CURRENT } \\ & \text { GAIN } \\ & \left(\frac{i_{\text {OUT }}}{i_{\text {IN }}}\right) \end{aligned}$	$\frac{D+h_{1}}{h_{0} R_{L}+M}$	$\frac{D+h_{f}+h_{0} R_{E}}{h_{0}\left(R_{E}+R_{L}\right)+M}$	$\frac{D+h_{1}+h_{0} R_{E}}{h_{0}\left(R_{E}+R_{L}\right)+M}$
NPUT RESISTANCE $\left(R_{1 N}\right)$	$\frac{D R_{L}+h_{1}}{n_{0} R_{L}+M}$	$\frac{D R_{L}+h_{1}+R_{E}\left(1+h_{0} R_{L}\right)}{h_{0}\left(R_{E}+R_{L}\right)+M}$	$R_{B}+\frac{D R_{L}+h_{1}+R_{E}\left(1+h_{0} R_{L}\right)}{h_{0}\left(R_{E}+R_{L}\right)+M}$
output resistance $\left(R_{\mathrm{OUT}}\right)$	$\frac{n_{i}+M R_{G}}{D+n_{0} R_{G}}$	$\frac{h_{1}+M R_{G}+R_{E}\left(1+h_{0} R_{G}\right)}{D+n_{0}\left(R_{E}+R_{G}\right)}$	$\frac{n_{1}+M\left(R_{B}+R_{G}\right)+R_{E}\left[1+h_{0}\left(R_{B}+R_{G}\right)\right]}{D+h_{0}\left(R_{B}+R_{E}+R_{G}\right)}$
EQUIVALENT h MATRIX	$\begin{aligned} & h_{11}=\frac{h_{1}}{M} \quad h_{12}=\frac{D-h_{r}}{M} \\ & h_{21}=\frac{-\left(D+h_{1}\right)}{M} \quad h_{22}=\frac{h_{0}}{M} \end{aligned}$	$\begin{aligned} & h_{11}=\frac{h_{i}+R_{E}}{M+h_{0} R_{E}} \quad h_{12}=\frac{D-h_{r}+h_{0} R_{E}}{M+h_{0} R_{E}} \\ & h_{21}=\frac{-\left(D+h_{1}+h_{0} R_{E}\right)}{M+h_{0} R_{E}} \quad h_{22}=\frac{h_{0}}{M+h_{0} R_{E}} \end{aligned}$	$\begin{array}{lr} h_{11}=R_{B}+\frac{h_{1}+R_{E}}{M+h_{0} R_{E}} & h_{12}=\frac{D-h_{r}+h_{0} R_{E}}{M+h_{0} R_{E}} \\ h_{21}=\frac{-\left(D+h_{1}+h_{0} R_{E}\right)}{M+h_{0} R_{E}} & h_{22}=\frac{h_{0}}{M+h_{0} R_{E}} \end{array}$

COMMON-COLLECTOR ARRANGEMENTS

VOLTAGE GAIN $\left(\frac{v_{\text {OUT }}}{V_{\text {IN }}}\right)$	$\frac{\left(1-n_{P}\right) R_{L}}{n_{i}+R_{L}}$	$\frac{\left(1-n_{1}+n_{0} R_{C}\right) R_{L}}{h_{1}+R_{L}\left(1+n_{0} R_{C}\right)+D R_{C}}$	$\frac{\left(1-h_{r}+h_{0} R_{C}\right) R_{L}}{n_{i}+D R_{C}+R_{L}\left[1+n_{0}\left(R_{B}+R_{C}\right)\right]+R_{B}\left(M+h_{0} R_{C}\right)}$
$\begin{aligned} & \text { CURRENT } \\ & \left(\frac{i_{\text {OUT }}}{i_{\text {IN }}}\right) \end{aligned}$	$\frac{1-h_{r}}{h_{0} R_{L}+M}$	$\frac{1-n_{r}+n_{0} R_{C}}{n_{0}\left(R_{C}+R_{L}\right)+M}$	$\frac{1-h_{r}+h_{0} R_{c}}{h_{0}\left(R_{C}+R_{L}\right)+M}$
infut RESISTANCE $\left(R_{1 N}\right)$	$\frac{n_{i}+R_{L}}{n_{0} R_{L}+M}$	$\frac{h_{i}+R_{L}+R_{C}\left(D+h_{0} R_{L}\right)}{h_{0}\left(R_{C}+R_{L}\right)+M}$	$R_{B}+\frac{h_{1}+R_{L}+R_{C}\left(D+h_{0} R_{L}\right)}{h_{0}\left(R_{C}+R_{L}\right)+M}$
OUTPUT resistance $\left({ }^{R_{O U T}}\right)$	$\frac{n_{i}+M R_{G}}{1+n_{0} R_{G}}$	$\frac{h_{i}+M R_{G}+R_{C}\left(D+n_{0} R_{G}\right)}{1+h_{0}\left(R_{C}+R_{G}\right)}$	$\frac{n_{i}+\left(M+n_{0} R_{C}\right)\left(R_{B}+R_{G}\right)+D R_{C}}{1+n_{0}\left(R_{B}+R_{C}+R_{G}\right)}$
equivalent h MATRIX	$\begin{array}{ll} n_{11}=\frac{n_{i}}{M} & n_{12}=\frac{1+n_{f}}{M} \\ n_{21}=\frac{n_{r}-1}{M} & n_{22}=\frac{n_{0}}{M} \end{array}$	$\begin{array}{ll} n_{11}=\frac{n_{1}+D R_{C}}{M+n_{0} R_{C}} & n_{12}=\frac{1+n_{1}+n_{0} R_{C}}{M+n_{0} R_{C}} \\ n_{21}=\frac{n_{+}-1-n_{0} R_{C}}{M+h_{0} R_{C}} & n_{22}=\frac{h_{0}}{M+n_{0} R_{C}} \end{array}$	$\begin{array}{ll} n_{11}=R_{B}+\frac{n_{1}+D R_{C}}{M+n_{0} R_{C}} & n_{12}=\frac{1+n_{1}+n_{0} R_{C}}{M+n_{0} R_{C}} \\ n_{21}=\frac{n_{r}-1-n_{0} R_{C}}{M+n_{0} R_{C}} & n_{22}=\frac{n_{0}}{M+n_{0} R_{C}} \end{array}$

NEW CINCH-JAN

HEAT DISSIPATING SHIELD INSERT

FOR INCREASED COOLING EFFICIENCY

. . . . aids in maintaining lower operating tube temperatures . . . equipments have fewer failures, greater reliability, less maintenance and tube replacement costs.

Noval Tube Shield and Insert Assembly (Typo 2, See Chart)

X-Rays Control Strip Mill

Beta bombardment of a target produces x-rays to control metal thickness from a strip mill controlled by a three-zone servo system

X-Rays emitted from a target bombarded by beta rays are used to control the thickness of metal strips produced by a rolling mill. The system, developed by the Baldwin Instrument Co. Ltd., England, also uses a special antihunting servo system.

The thicknesses involved in this application exceed the measuring capacity of present nucleonic thickness gages. And x-ray tubes were eliminated because they require high voltages, are costly, fragile and bulky.

An assembly containing a strontium 90 radio active source, the metal target and shutter and a detector assembly are mounted on opposite sides of the strip. X-ray emission from the target is directed at the detector by the solenoidoperated shutter.

Radiation penetrating the strip strikes a sodium-iodide crystal that
scintillates causing visible light proportional to radiation intensity. A multiplier photo tube is used to generate an output proportional to light intensity and hence to plate thickness.

The system is self monitoring against a standard. A microswitch is mounted on the ingoing side of the mill and is tripped when the tail of a strip passes it. This causes the measuring hand to withdraw and the shutter to rotate a standard sample between the source and the detector.

A highly stable d-c amplifier circuit is used with a very large amount of negative feedback. If the amplifier gets a deviation signal, amplifier output voltage is fed to a servo motor through a relaydiscriminator circuit. This motor drives the potentiometer directly connected to the multiplier photo tube until a balance is achieved and
the amplifier output zeroes on the standard.

When producing strip of the correct thickness, the system is balanced and there is no output to the amplifier. When the strip is not the correct thickness, the amplifier receives a signal that is proportional to deviation. The amplifier output operates the screw down motors through relays.
The system recognizes three zones of deviation and responds with either an intermittent or continuous correcting action.
In a dead zone accepting a thickness deviation of plus or minus 0.0003 inch, it takes no action. When the deviation lies between plus or minus 0.0005 inch, the system sends 0.25 -second pulses at two second intervals to the screwdown motor via the relays. For deviations in excess of this thickness the motors are operated continuously.

This control action is claimed to have better antihunting characteristics than the normal systems in which correction is continuously proportional to deviation from the dead zone.

Direction Finding Gets Push

Radio direction finding will be studied at the University of Illinois by what is claimed to be the free world's largest direction finder. Primary object of the experiments is to determine more accurately the deflection of radio signals caused by the ionosphere.

The finder was designed jointly by the University of Illinois and Federal Telecommunications Laboratories under Navy Bureau of Ships sponsorship.

A circle of 120 poles each 65 feet high have been erected on a 40 -acre site. The poles support a screen of 1,200 vertical wires two feet apart and 65 feet high.

Outside the screen will be 120 vertical antennas, each 15 feet high and set on concrete pedestals in a 955 -foot circle. A coaxial cable

One-hundrea twenty 65 -foot poles will support a screen of 1.200 vertical wires as part of direction-finding antenna system
will connect each to a laboratory building.

Under and outside the screen, a ground mat of interlaced wires has

Here's how magnetic amplifier design will be affected by tape wound core standardization

If you design and manufacture magnetic amplifiers, you'll welcome news that standard sizes for tape wound cores have been proposed by the A.I.E.E.* You are going to benefit from a high in consistency of core performance, brought about by our being able to concentrate on your most important sizes. Here's how . . .
Magnetics, Inc. is now stocking all of the proposed standard core sizes in both aluminum and phenolic core boxes for immediate delivery. Consistency of core performance is increased because each size is made in large lots taken from the same alloy batch and dry hydrogen anneal. They all bear our exclusive Performance-Guarantee.

We shall be happy to send size, construction and magnetic material data upon request. Please write to Magnetics, Inc., Dept. E-44, Butler, Pa.

MAEMETIES inc.

- Paper 57-206, Proposed Size Standards for Toroidal Magnetic Tape Wound Cores. Report of the Magnetic Amplifiers Material Sub.Committee, at the 1957 Winter General Meeting, A.I.E.E.
been buried to a diameter of 1,300 feet.

The array is an enlargement of the Wullenweber radio direction finder developed by the Germans during World War II. Construction
is expected to be completed by spring.

The project is aimed at improving direction finding techniques, including equipment design and operation.

Fast Cable Impedance Tests

By JOHN H. MENNIE

Vice President
Boonton Electronics Corp. Boonton, N. J.

Characteristic impedance of either coaxial or balanced transmission line is important from the manufacturers point of view for quality control. It is also important to the user to know the variation from nominal for individual lengths of cable.

Reworking standard equations for the relationship between characteristic impedance, total capacitance and resonant frequency permits simplified measurement techniques for any low-loss transmission line. Conventional laboratory equipment can be used.

The ensuing description will be limted to low-loss polyethylene, teflon or air dielectric cable.

From standard relationships, it can be demonstrated that

$$
Z_{\mathrm{o}}=1 / F C
$$

where Z_{0} is characteristic impedance, F is frequency in cycles per second at which sample cable is one wavelength and C is total capacitance in farads.

For practical purposes, the equation can be rewritten in the form

$$
Z_{o}=10^{\circ} / f c
$$

where f is frequency in megacycles at which sample cable is one wavelength and c is total capacitance in micromicrofarads.

This equation, offers two prime advantages over the conventional method, as required in MIL-C-17C: It does not involve measuring cable length or percent velocity of propagation.

Measurement of Frequency

The frequency at which the test sample is one wavelength may be determined by either a signal-generator or grid-dip meter technique. The signal generator method ${ }^{1}$ re-

Center conductor is held about $1 / 4$ inch from coil terminal in grid-dip meter method of measuring characteristics im. pedance of cable

FIG. 1-Equivalent capacitance network for balanced transmission line
quires a variable frequency generator having a 50 -ohm internal source impedance and a 50 -ohm terminating impedance at the end of its output cable. An open-circuited cable sample in parallel with a sensitive broadband r-f millivoltmeter is connected across the 50 -ohm output termination. Minimum voltage points occur at frequencies representing odd multiples of the frequency at which the test sample is one quarter wavelength.

The exact number (N) of quarter wavelengths may be readily determined by dividing half the difference in megacycles between two
successive resonant points into the resonant frequency $\left(f_{r}\right)$ at which the characteristic impedance is to be measured. The effective full wave frequency (f) can then be computed as (4 fr)/N.

This technique is generally useful for testing lengths of cable from 5 to 100 ft at frequencies from one to 150 megacycles.

For testing 5 in. to 5 ft , lengths of cable the grid-dip meter technique has been found to be the most satisfactory for determining halfwave resonance points without introducing connection errors. In this case N becomes an even number ($2,4,6,8$). Resonance points must be detected by loose capacitive coupling between one side of the griddip meter coil and the center conductor of the cable under test, which is open at both ends. The center cable conductor is held about $\frac{1}{1}$-inch from coil terminal. Inductive coupling is not recommended for testing short lengths of coaxial cable as the coupling loop will introduce an error of a few percent in resonant frequency. For precision work it is advisable to calibrate the signal generator or grid-dip meter with a suitable frequency standard.

Slightly different techniques are necessary for measuring the full wavelength frequency (f) on balanced transmission lines of either the shielded or unshielded variety. Here again the grid-dip meter has been found ideal for detecting resonance modes without introducing connection errors.

Because it is not possible to couple to a balanced line by the capacitance technique, the inductive coulpling method is used. A straight shorting wire between center conductors will serve as a pick-up loop. Because inductance of a balanced line is much higher than that of a coaxial line of the same length, the resonance frequency error introduced by this short pick-up loop has been found to be negligible for balanced lines over 20 inches.

Measurement of Cable Capacitance

The capacitance of a coaxial cable sample should be measured on a precision capacitance bridge at some low frequency, usually from one to 100 kc . The frequency is unimportant as long as the length

ANOTHER

froun tens listuw inss

\tan TI-cap"

SOLID TANTALUM CAPACITORS

provide ratings up to

200 Mf at 6V

 25μ at 35 VYou simplify your printed circuit assembly with compact tan-TI-cap capacitors . . . and reduce costs. Leads are anchored within the case to permit sharp bends required in miniature circuitry.

You increase your product reliability with tan-TI-cap capacitors. Solid tantalum pellets are firmly imbedded to resist high and low frequency vibration and extreme shock. Solid tan-TI-cap capacitors contain no liquid - cannot leak. The electrolyte is semiconductor manganese dioxide. You get added dependability from the extremely long shelf and service life of tan-TI-cap capacitors.

Specify tan-TI-cap capacitors ... newest additions to the widest semiconductor line in the industry . . . for High reliability in a small package
Temperature stability from -80 to $+85^{\circ} \mathrm{C}$ Low dielectric losses
Standard tolerances: $\pm 20 \%$ at $25^{\circ} \mathrm{C}$

Select from 18 ratings -

6 -Volt	15 -Volt	25 -Volt	35 -Volt
$22 \mu \mathrm{f}$	$10 \mu \mathrm{f}$	$5 \mu \mathrm{f}$	$4 \mu \mathrm{f}$
33	15	10	8
47	22	15	25
60	33	35	
200	100	55	

AVALIABLE NOW! Ask Your nearest T/I office for Bulletin OL -C 859

* trademark of texas instruments incorporated

MARCONI

TEST SETS FOR MOBILE RADIO TESTING

Designed for precision performance in

\author{

* Receiver alignment
 * Signal-to-noise measurement
 * Discriminator testing
 * Checking rf and audio outputs * Deviation measurement
}
... All you need for fast field testing of fm transmitters and receivers is here in these two complementary instruments, tailored for mobile radio measurements.

The $1064 / 2$ provides highgrade fm outputs in the ranges 30 to 50,118 10 185 , and 450 to 470 mc ; crystalcontrolled i-f outputs at five spot frequencies; and al kc af output.

The 1065 has an rf power meter and $0-15 \mathrm{kc}$ deviation indicator for use up to 500 me; a dual-impedance af power meter; and a multirange voltammeter.

Each is lightweight, portable, and quality-enginecred
throughout. Tubes and crystals are all American types. Send for leaflet B117/A.
of cable under test is less than $1 / 40$ wavelength.

Extra precautions must be taken to avoid errors resulting from inproper technique when measuring small capacitance values. For example, if a Tee connector is used as a means for connecting the cable sample to the signal generator test set-up, the capacitance of one leg of the Tee should be added to the measured capacitance of the cable sample. This capacitance may be assumed to be one third of the total capacitance of the Tee connector.

The effective capacitance (c) of a sample length of balanced cable is slightly more difficult to measure than that of coaxial cable. Figure 1 shows the equivalent capacitance network for balanced cable where C is the direct capacitance between conductors, and C_{2} and C_{3} represent capacitance to ground or shield, as the case may be. Assuming that C_{ℓ} and C_{s} are approximately equal, the effective cable capacitance becomes $c=C_{2}+\left(C_{s}+C_{s}\right) / 4$.

The sum of C_{3} and C_{3} can be measured by connecting two center conductors together and measluring total capacitance to ground with a precision capacitance bridge.

The direct interconductor calpacitance $C_{\text {t }}$ can be measured in one operation by means of a threeterminal capacitance bridge.

Another method for measuring effective capacitance of balanced cable is outlined in MIL-C-17B, paragraph 4, 6, 10. This method involves three separate grounded capacitance measurements, each requiring a high degree of accuracy. Final capacitance determination may be of questionable accuracy however, as it is computed from the difference between measured values.

When measuring capacitance of unshielded twin-line or twisted-pair cable by any of these methods, it is essential to provide a good ground connection to the instrumint used for making the test.

Test Results and Conclusions

Test data was compiled using varions lengths of RG-58/U coaxial cable from the same reel. Measuremints were made at a number of frequencies from 2 to 1,000 megacycles. Close agreement was found between measurements made on a

[^3]

Di-Clad 2350. An economy paper-base phenolic grade having good tensile, flexural, compressive, and impact strength. Adequate for most non-critical printed-circuit applications. Can be cold punched and sheared up to 5/64 of an inch in thickness.

How CDF Di-Clad can solve your printed-circuit problems

The CDF line of copper-clad laminates in all grades is now known by a new name-Di-Clad. Di-Clad grades meet the varying needs of design, production, and operation of electronic equipment. Grades other than those described are also available.

Di-Clad 28E. For high mechanical strength, low moisture-absorption, and good insulation resistance, CDF Di-Clad laminates of epoxy resin laminated with glass fabric offer the designer a strong, reliable combination.

Di-Clad 112T. A Teflon* glass-fabric laminate offering the best dielectric properties over a wide temperature and frequency range.

Send us your requirements and let our engineers help you select the right grade for your application.
\dagger 'Trademark of Continental-Diamond Fibre Corporation
*Du Pont trademark for its tetrafluoroethylene resin.

TYPICAL Di-Clad PROPERTY VALUES					
	Di-Clad 2350	$\begin{gathered} \text { Di-Clad } 26 \\ (\mathrm{NEMAXX} \text {) } \end{gathered}$	$\begin{gathered} \text { Di-Clad } 28 \\ \text { (NEMAXXP) } \end{gathered}$	$\begin{aligned} & \text { Di-Clad 28E } \\ & \text { (NEMA G-10) } \end{aligned}$	$\begin{gathered} \text { Di-Clad } 112 \mathrm{~T} \\ \text { Teflon* } \end{gathered}$
BOND STRENGTH-0.0014" foil (lbs. reqd. to separate $1^{\prime \prime}$ width of foil from laminate)	6 to 10	6 to 10	6 to 10	8 to 12	4 to 8
MAXIMUM CONTINUOUS OPERATING TEMPERATURE (Deg. C.)	120	120	120	150	200
DIELECTRIC STRENGTH (Maximum voltage per mil for $1 / 16^{\prime \prime}$ thickness)	800	900	850	650	700
INSULATION RESISTANCE (Megohms) 96 hrs. at $35^{\circ} \mathrm{C}$. \& 90 R RH (ASTM D257, Fig. 3)	500	150,000	600,000	100,000	75,000
DIELECTRIC CONSTANT $10^{\circ} \mathrm{Cycles}$	4.5	4.0	3.6	4.9	2.6
DISSIPATION FACTOR 10° Cycles	0.040	0.026	0.027	0.019	0.0015
ARC-RESISTANCE (Scoonds)	5	10	10	130	180
TENSILE STRENGTH (psi.)	18,000	16,000	12,000	48.000	23.000
FLEXURAL STRENGTH (psi.)	27,000	21,000	L8,000	70,000	13,000
IZOD IMPACT STRENGTH edgewise (ft. Ibs. per inch of notch)	0.80	0.45	0.42	12.0	6.0
COMPRESSIVE STRENGTH flatwise (psi.)	32.000	28,000	25,000	62,000	20,000
BASE MATERIAL OF LAMINATE	Paper	Paper	Paper	Medium-weave, medium-weight glass cloth	Fine-weave, medium-weight glass cloth
COLOR OF UNCLAD LAMINATE	Natural	$\begin{aligned} & \text { Natural } \\ & \text { greenish } \end{aligned}$	Natural	Natural	Natural

All these standard grades are available with $0.0014^{\prime \prime}$ and $0.0028^{\prime \prime}$ or thicker electrolytic or rolled copper foil on one or both surfaces. Other metal foils and other resin-and-base combinations can be supplied on special order.

EAGLE Microflex Reset Timer

Accurate to 1 part in 1200

Time settings of pinpoint accuracy are a reality, thanks to the Microflex double dial. It takes one complete turn of the inner dial to advance the outer dial just one division. That's a 20 -to- 1 ratio, made possible by the patented Microflex threaded axle and pinion (see sketch). Examples of resultant accuracies are $\pm 1 / 60$ of a second on a 20 -second dial, and $\pm 1 / 10$ of a second on a 120 -second dial.
The Microflex Reset Timer is driven by a heavy-duty industrial synchronous motor. Contacts are tripped closed or open after a preset time interval. Starting and resetting are electrically controlled. Microflex offers over 150 timer operating combinations, plus a wide range of long or short time periods. It's ideal for applications like molding presses, dielectric heating, automatic mixing, die casting machines, machine tools and rubber curing.
Write for free Bulletin 110.

MAIL COUPON TODAY

shert length of cable at uhf frequencies by the grid-dip meter technique and measurements made using the signal-generator method on long lengths at frequencies from 50 to 150 megacycles.
These results suggest that except when it is necessary to know Z 。 at low frequencies, measurements of characteristic impedance on lowloss coaxial cable be made at frequencies above 300 megacycles using sample lengths from 2 to 5 feet. If it is required to measure longer lengths of cable, the signal generator-millivoltmeter technique is recommended using test frequencies below 100 megacycles.
To measure short lengths (less than 2 feet) of coaxial cable, the accuracy and technique of capacitance measurement become limiting factors. Characteristic impedance measurements on $300-\mathrm{ohm}$ twin line should be made on lines sufficiently long to permit good capacitance accuracy and short enough to facilitate suspension of the cable in midair during the test. Resonances may be detected at any convenient frequency (depending on length) from 2 to 1,000 megacycles by the grid-dip meter technique.

References

(1) Geveral Radio Experimenter. August, 1957.

Tube Makes Tv of PPI

A special tube is making it possible to broadcast a television picture of a radar PPI presentation covering an area 100 km radius around Brussels National Airport. The radial trace is converted by the image-transforming tube into a 625-line tv picture to be broadcast to control centers and even to aircraft.

 (aANTAS Avsiresus

For Jet Fleet

Qantas is the latest international airline to order Edo Loran. The new Edo long-range navigation equipment, already thoroughly tested by Qantas in a Super-G Constellation, will be installed as original equipment when the airline takes delivery of the Boeing 707 jet transports it has on order.

As a result of extensive operational appraisal across both the Pacific and Atlantic Oceans, Edo's pilot-operated Loran was recently selected by Pan American World Airways for its jet transports. Other international carriers are at present evaluating the equipment.

Airline pilots and technicians alike endorse Edo Loran for speed
 and ease of operation, accuracy, and reliability in service. Precise fixes are obtained by the pilot in a matter of seconds from the direct-reading cockpit display. Weight of entire unit is only 29 pounds. Design and performance of this new Edo Loran, plus the acknowledged reliability of the Loran System, make this the logical choice as basic long-range navigation equipment for modern airliners.

Installation of Edo Loran in Pan American Boeing Stratocruiser shows compact design and convenient mounting for pilot operation. $3 / 4$ ATR receiver unit is remotely installed.

Technical brochure \# 104 available on request.

EDO Corporation
College Point, Long IsJand, New York

AIEE Sets Magnetic Component Standards

Standard test methods of magnetic core characteristics proposed by the AIEE at it's Winter General Meeting have at last provided the industry with building blocks for a handbook or catalog. Practical application of magnetic components has been hampered because the design engineer has not had specifications available to apply to his particular problem. Now that standard core sizes and test methods are established the design engineer will be able to choose a tape wound core as he would a vacuum tube, resistor or any catalog component with published characteristics.

Design engineers working on a control system in the past used up precious time, designing a reactor that would do the job. In many cases the designer was forced into being concerned with what the reactor was to be, rather than with the reactor's function in the overall system. The situation is similar to an engineer determining dielectric specifications of a capacitor he wishes to use in a circuit.

When at last the design parameters were set, the core manufacturer was requested to "make it". And here's where two serious problems cropped up; high nickel steel alloys vary from batch to batch and test methods vary almost to a point of frustration. Standardization established by the AIEE should release the systems engineers from these laborous problems.

Merit of standardization was proved in just one year at Magnetics, Inc. where it was anticipated that only 30 percent of tape wound core business would involve standard sizes . . . year-end figures show that 67 percent were standard sizes

High resolution of thin-screen transparent phosphor tube is shown on right. At left is the comparatively fuzzy test pattern of conventional phosphor 5 in . cathode ray tube

Transparent Phosphors Improve CRT

A TRANSPARENT PHOSPHOR developed by the General Electric Research Laboratory, Schenectady, N. Y. greatly improves practically all aspects of cathode ray tube display. Background illumination, from either ambient light or the electron spot itself, does not effect the display on a transparent screen. On a conventional CRT phosphor screen the desired display must be produced on top of the background light limiting contrast and resolution.

Resolution and Ambient Light

Because of the thin, non-scattering nature of the transparent phosphor screen, there is a theoretical resolution of about 10,000 lines per inch. Whereas a standard phosphor screen, with optimum design and operating conditions, permits resolution in the order of 500 lines per in. Since transparent phosphors are transparent by definition, displays can be made under conditions of extremely high ambient lighting. The normally diffuse reflecting sur-
face of a standard phosphor has been eliminated so incident light is not reflected. Instead, the incident light is trapped inside the transparent phosphor tube, resulting in excellent contrast.

Burn-Resistance

Conventional phosphors dissipate heat from the high voltage electron beam in each individual crystal. Excessive heat dissipation produces burning of the phosphor, the screen blackens and tube usefulness is destroyed. With transparent phosphors there is intimate contact with the glass face plate of the tube. This permits heat dissipation into the glass itself, giving more light output without screen degradation. Fifty to five-hundred times more beam current can be used safely without deteriorating the phosphors.

Multi-Color Display

By applying separate layers of transparent phosphors to a tube face blue and yellow color changes

A Subsidiary of
Minnesolá Mining and Manufacturing Company
 CORPORAT:ON

CHATTANOOGA 5. TENN.
Soth year of ceramic leadership

> CACTIFIERS

FANSTEEL METALLURGICAL CORPORATION North Chicago, Illinois, U.S.A. CSB1A

[^4]are produced. Changing the operating voltage of the cathode ray beam controls the penetration of electrons in the phosphor layers. Color is determined by the depth of penetration. A possible application for Penetron multi-color tubes might be in the control of flight patterns around an airport. A radar system could assign the color blue to landing planes and yellow to planes taking off. Military applications are

Transparent phosphor crystals are grown on the cathode-ray-tube face plate
classified, but the possibilities are obvious and highly significant.

The Industrial and Military Section of General Electric is prepared to quote on high resolution cathode ray tubes and is actively engaged in marketing such tubes. Cost and delivery date will depend on glass envelope requirements, complexity of cathode ray gun, and phosphor characteristics (color, persistence, brightness).

Component Testing With Punched Cards

Incoming inspection of transformers, relays, resistors, transistors, diodes, capacitors, and similar items is performed automatically by a Component Tester. The tester, which makes a complete series of tests according to values indicated by a punched card, can be instantly changed-over to the next type of component.

Programming the instrument, developed by California Technical Industries, 1445 Old County Road, Belmont, Calif. requires only a

Punch-card tester automatically inspects components and identifies the type of fault
business-machine type of card and an ordinary hand punch. A single hole punched in the "Transformer" section, for example, schedules tests for primary impedance, winding ratio, and winding polarity. Several more holes specify the values and tolerances for the particular transformer to be tested. Typical test series includes chokes-inductance at rated d-c current, and resistance; transistors-cut-off current, and gain with specified bias and input currents; relays-pull-in voltage, coil resistance, and contact operation and resistance.
Tests are made on a go/no-go basis with precision bridges used to make the measurements. For each component, the tester either indicates the type of fault that has been found or signifies "Complete" at the end of the test series. The Component Tester is supplied in a cabinet suitable for both rack mounting and bench use. Physical dimensions are $10 \frac{1}{2} \times 19 \mathrm{in}$. front panel, 21 inches deep.

High-Heat Resistant Laminates For Missiles

Plastic Laminates, specially designed for missile applications retain their mechanical strength after exposure to operating temperatures as high as $3,500 \mathrm{~F}$. The basic raw material used in the laminate developed by Continental-Diamond Fibre Corp., Newark, Delaware is felted asbestos made from extra-longstaple nonferrous asbestos fiber that has been impregnated with a heat-resistant phenolic resin or varnish. Molded tubes, rods, and parts use the same kind of heatresistant phenolic resin combined

To meet any of your specific requirements, there are over 400,000 different rectifier stack combinations available from standard Fansteel selenium cells. No matter what your specifications for size or output, Fansteel Selenium Rectifiers are obtainable in a wide range of sizes and ratings, from a few milliamperes to power loads of many kilowatts.

Wrife for Bulletin 6.400

OVER 100,000 TVPES OF

 HIGH TEMPERATURE SELENIUM RECTIFIERS

Operating at $100^{\circ} \mathrm{C}\left(212^{\circ} \mathrm{F}\right)$ Fansteel High Temperature Rectifiers deliver full rated power output, continuously, with no derating. At temperatures up to $150^{\circ} \mathrm{C}\left(302^{\circ} \mathrm{F}\right)$ only moderate derating is necessary.

Available in all standard cell sizes and circuit arrangements and with all standard protective finishes.

Write for Bulletin 6.401
CAPACITORS
FAN TEEL L°
FANSTEEL METALLURGICAL CORPORATION
North Chicago, Illinois, U.S.A.
ES81A
DEPENDABLE RECTIFIERS SINCE1924

These new switches are designed for application where costs must be kept to a minimum without compromising rigid electrical specifications. New laminated construction allows up to 22 separate switch points on a $17 / 16^{\prime \prime}$ diameter.

- Voltage breakdown, 1000 volts R.M.S. Back to back insulated clips, 500 volts R.M.S. Laminated phenolic sections type PBE per specifications MIL-P-3115.
- Current rating 2 amp . at 15 volts DC; 150 milliamps at 110 volts AC (resistive load).
- Minimum life, 10,000 cycles.
- Supplied as single section, double section, or single section with line switch. 2-12 positions per switch.
For detailed specifications, write for Bulletin EP-90 or contact your Centralab representative.
- AC line switches for single section units in SPST, DPST and SPDT switching arrangements.

Centrallabs

A DIVISION OF GLOBE-UNION, INC. 914 B East Keefe Avenue - Milwaukee 1, Wis. In Canoda: 804 Mt. Pleasant Rd. - Toronto, Ontario

VARIABLE RESISTORS - PACKAGED ELECTRONIC CIRCUITS - ELECTRONIC SWITCHES CERAMIC CAPACITORS - ENGINEERED CERAMICS - SEMI-CONDUCTOR PRODUCTS
with suitable types of asbestos adaptable to a molding operation.

Fabrication

The high-heat resistant materials can be fabricated by conventional methods, including drilling, milling, tapping, sawing, countersinking and counterboring, threading on automatic screw machines, and many other machine-tool operations. The laminates have been cold-punched up to $\frac{1}{16} \mathrm{in}$. Using conventional punching techniques. Electrical insulation properties compare with electrical grades of conventional high pressure laminates.

Their dry properties are retained after two hours immersion in boiling water, or 30 days immersion in water at room conditions.

For missile parts, these CDF asbestos-phenolic products show promise because they retain their high modulus of elasticity, and dimensional stability, after exposure to elevated temperatures for short periods.

Cooling Unit is Part Of Electronic Package

A COOLING UNIT with a net cooling capacity of 1.5 kw at 50,000 feet is packaged as an integral part of the airborne electronic equipment it cools. It is mounted on a lightweight, $20 \times 24 \mathrm{in}$. honeycomb base which is part of the container that holds electronic equipment sealed in a gaseous environment at a constant pressure of 20 psia. Two fans

Cooling unit circulates pressurized sulfur hexafluoride over electronic circuit
and a heat exchanger complete the cooling unit developed by The Garrett Corp., Los Angeles, Calif.

One fan circulates non-toxic sulfur hexafluoride (SK_{6}) through the
heat exchanger and over the electronic equipment within the pressurized container. The other fan draws cooling ambient air through the heat exchanger crosswise to the flow direction of the gas, lowering the gas temperature to desired limits.

The SF_{4} which pressurizes and cools the electronic equipment has dielectric strength of 390 v per mil for uniform fields of 60 cycles to 16 mc . Fans are five inches and two inches in diameter and powered by 400 cycle, 3 phase, AC motors running at $22,500 \mathrm{rpm}$.

Wool Wax Better Capacitor Impregnant

AUSTRALIAN RESEARCH work seems to indicate that wool wax is a better impregnant than petroleum jelly for paper capacitors. Refined wool wax has a dielectric constant of 3.2 compared with a value of only 2.1 for petroleum jelly. Wool wax impregnant gives 10 to 20 percent more capacitance than petroleum jelly, has good insulation resistance and dielectric breakdown strength and a fairly low dielectric loss.

The Australian research is conducted by the Division of Electrotechnology, Commonwealth Scientific and Industrial Research.

P-N Junction As Capacitor

Practical application of a longknown principle is making another new component available to the electronics industry. Called the Varicap, the device, developed by Pacific Semiconductor, is a voltagesensitive variable capacitor.

It has been known that the capacitance of a $p m$ junction changes when the voltage across it is varied. The new component uses this principle to get changes in capacitance with changes in bias voltage.

Capacitances range from 20 to 56 $\mu \mu \mathrm{f}$ for different types. Capacitance can be varied from less than $2 / 3$ to more than twice these values by varying bias.

FREEZE-UP of solenoid-controlled valve in airborne system at $-65^{\circ} \mathrm{F}$ can choke off vital air supply. Manufacturer faces tight contract delivery schedule.

SPECIAL HEATING unit custom-designed and delivered by G.E. in 5 days enables stock valve to function properly, saves customer time, money:

AIR VALVE OPERATING AT - 65° F SHOWS HOW ...

General Electric Specialty Heating Maintains Component Temperature

When components must be kept at operating temperature, G-E specialty heating equipment does the job! Thermal conditioning applications ranging from hydraulic and electronic components to tiny test instruments have all been solved by experienced G-E heating engineers.

LET US ANALYZE YOUR HEATING PROBLEM. Whether it's fast delivery on a prototype or quantity production, General Electric can provide specialty heating products engineered to your specific component needs.

FOR MORE INFORMATION contact your local General Electric Apparatus Sales Office or send coupon.

Progress /s Our Most Important Product GENERAL (\%) ELECTRIC

Jet Spray Automates Transistor Etching Cycle

By MANFRED DOSER Semiconductor Prolucts Dept. General Electric Co. Syracuse, N. Y.

AUTOMATING TRANSISTOR etching cycles has increased the number of transistors etched and rinsed by one operator from 2,000 per day to 720 per hour, helping meet demands for increased production and reduced costs.

A jet etch was chosen in preference to a dip etch. A jet continuously introduces new etching solution, removes the hydrogen bubbles formed during etching, reducing overvoltage and removes the etch solution from around the base region more readily.

The first scheme tried (Fig. 1) proved unsatisfactory. It wet the shorting bar. The bar carried the current, causing little etching of the pellet ($n p n$ triode transistor).

An air jet incorporated in the nozzle (Fig. 2) restricted the etch flow to the germanium bar. No wet back was encountered. The air flow is about 1 cubic foot per hour.

Preliminary runs were made with 10 per cent NaOH , but voltages of 20 to 25 v were too high. A 15 per cent solution at 5 v proved satisfactory.

Transistors move through etching station, three rinses and final air-dry before being lifted from holding fixtures by arm at right

The final design was incorporated on a turntable consisting of 1 etching station, 2 hot deionized water rinses, I alcohol rinse and 1 air jet. The water removes etching solution, the alcohol removes water to imsure rapid drying and the air jet
helps remove water and alcohol from the etched region around the base contact. This technique reduced $I_{c o}$ rejects by 10 percent.

This scheme was also tried with germanium cut bars, which have a rough surface after sawing. Sawed

DESIGN TRENDS: Transistorized Logical Circuits

Uniform size of miniature computer logical bailding blocks is achieved by transistor mounting method used by Avco Research and Advance Development Division, Lawrence, Mass. Transistors, mounted on leads bent parallel to printed circuit board, extend through pre-punched holes in front of anodized cluminum U-frame. Each of eight basic logical circuits measures 2.5 by 2 by $1 / 2$ inch, enabling 25 blocks to be placed in any order in a 19 -imeh mount-

ing rack. Boards are fabricated in normal manner and dip soldered after base connectors are attached. Insulating washercollars are placed on transistors and assembly is guided into frame bosses. Fingers at the open ends of the U-frame are bent into grooved ends of the connector, locking circuit in place. The blocks are in prototype production for use in desk-sized and general purpose combat computers.

New trends and developments in designing electrical products...

"Work backward"-a new design approach that's bringing the advantages of General Electric permanent magnets to fields traditionally reserved for electromagnets

A new approach to the design of motors, generators, relays, and similar products is making it possible to produce smaller, more efficient and economical units by using permanent magnets, instead of electromagnets.

The new approach is simply to "work backward." That is, design the most efficient magnet assembly first, and then the rest of the component.
In the past, where designers tried to replace electromagnets in these products, permanent magnets often proved uneconomical. Here's why:
The traditional approach was to work the permanent magnet into an existing design for a wire-wound field, to save the cost of new dies and other major manufacturing changes.

Under these conditions, permanent magnets will seldom show to best advantage. But, by using the "work backward" approach, many outstanding results. can be obtained.

For example, permanent magnets had been limited to fractional-hp applications, such as the $1 / 150-\mathrm{hp}$ toy-locomotive motor in Figure 1.
But today, through imaginative design and more efficient alloys, permanent magnets are now used for rotors and stators in much larger equipment.

The DC tachometer generator in Figure 2, for example, uses a $2-\mathrm{lb}$. G-E Alnico 6 stator.
The permanent magnet provides greater reliability and accuracy than copper windings, over wide ambient temperatures. It eliminates an external power source and field regulating equipment. And, there is no replacement problem since the magnet - unlike wire - never burns out.
These are some of the advantages that can be realized from early con-

sideration of the permanent magnet in design.

Alone, these can more than justify the cost of redesigning equipment to eliminate wound fields. Yet, there are other advantages that result from the magnet's ability to supply a constant field without external excitation, including:

- Elimination of field interruptions due to power failure.
- Elimination of heat and need for costly cooling equipment and insulation - thus conserving valuable weight and space.
- Elimination of danger from faulty wiring or damaged insulation.
These are important advantages where equipment must be reliable despite severe environmental conditions. But equally important to the designer is the permanent magnet's superior volumetric efficiency. A G-E Alnico magnet can usually supply a given magnetic field in a fraction of the space needed by even the best designed electromagnet.

The TV-tube focusing magnets in Figure 3 gives some idea of the savings in space and weight a designer can effect.

The electromagnet weighs 2 lbs , and takes up 16.35 cubic inches. The $\mathrm{G}-\mathrm{E}$ Alnico 5 permanent magnet weighs just 15 ounces, and requires only 1.30 cubic inches - a spacesaving of 87%.

In addition to the problem of economics, two other traditional objections to permanent magnets have also been largely eliminated:

First, early permanent magnets were relatively unstable. But modern permanent magnet materials from improved manufacturing techniques are really "permanent" . . . even under temperature and humidity conditions ruinous to electromagnets.
Second, applications requiring "onoff" field action seemed outside the capabilities of permanent magnets. But modern design techniques have developed practical ways to handle this by shunting flux around the air gap.

With the new high-energy alloys and the development of more scientific design methods, the future for permanent magnets-and the opportunity for designers - is virtually unlimited.

For example, a recent use of the "work backward" approach has, for the first time, made it possible to use powerful Alnico magnets to supply uniform fields in equipment like traveling wave tubes.

General Electric Magnet Engineers have accumulated a wealth of information on the problems of redesigning for permanent magnets. They will share their knowledge with you at any stage of the magnet design project.

For more information, or the services of a G-E Magnet Engineer, write: Magnetic Materials Section of General Electric Company, 7806 N. Neff Ave., Edmore, Michigan.

Progress /s Our Most Impontant Product general (3) electric

Tapping shadow mask with rubber ham. mer to remove dents, while shaped mandrel underneath provides support

Pa. plant by using techniques of auto body-and-fender mechanics. The dented mask is placed over a mask-shaped supporting form, then tapped with a rubber-faced hammer until correct curvature is restored. The idea brought a suggestion award of $\$ 1,792$ to assembly inspector Eva Weidman.

Strong, Light Radome Is Foam Polystyrene

By H. L. Loucks
Special Weapons Division Bell Aircraft Corp.
Buffalo, N. Y.
Pre-expandable polystyrene provides a strong, lightweight foam for molded structures. Discussed here is its use as a pressurized radome for waveguide feed assemblies, preventing electrical breakdown at high altitudes.

The foam radome, at density of 5 pounds a cubic foot, will withstand a pressure differential of 5.3 psi or, with Fiberglas reinforcement and production refinements, 30 psi.

Polystyrene beads, placed on corrugated cardboard, are partially pre-expanded for about 30 seconds at $180-230 \mathrm{~F}$ with 4250 -watt infra-

Full dress inspection

This Cpt cal Comparator with magnifications is to 50 times provides al extreme y accurate chëck on corm ponant par-s dimensions - particularly those of corr plex hole relationships. And onity trose that meet the mest rigid tolerarces find their way irto Verian Klystrons and Ware Tules.
This is typizal of the care involvec in the manufacture of Varien Tubes.:- and one of the reasons wly they consiseently give the finest perfermance. Over 100 of tiase fubes are described ard illustrated in our latest catalog. Write br your capy today.

KLYSTRCNE, TRAVELING NAVE TUBES BACKWARD WAVE OSCILLATJRS, INEAR ACCELERATORS, MICROWAVE SYSTEM C JMPONENTS, R.F. SPECTR円METERS, MAGVETS, MAGNETOMETERS, STALOS, ${ }^{\circ} C N E R$ AMPLIFIERS, GRAPH C RESORDERS, RESEARCH AVD [EVELOPMENT SERVICES.

"I'M CHECKING RELIABILITY!

Getting inside is one way son, but it's not practical. However, with increasingly complex circuitry, and with no electronic equipment better than its weakest component, it is important to know how that trans. former will perform.

How do you determine its reliability? Quality of materials, workmanship, design . . . all are hermetically sealed from view. You can test it, of course, but the good and the poor can test alike at first.

The answer is that in the beginning, it's impossible to know the dependability of this transformer except by the mark of its maker.

ADC is grateful for the extent to which the industries it serves have come to know and trust the mark of this maker.
red heat lamps placed 3 inches above the beads. When a mono-layer, lacelike network has formed and the beads have expanded 20-25 times original volume the layer is removed from heat, cooled and broken into individual beads.

Pre-expansion is rapid and critical. If beads are left under heat too long, they will no longer expand in the mold or will collapse. The amount placed in the mold depends on size and density desired. Both weight and volume of pre-expanded beads must be considered for consistent results.

A closed 2-cavity, 5-piece, 2024

Reinforced polystyrene foam radome withstands 30 psi

Heat of infra red lamps pre-expands polystyrene bead.
aluminum mold and dummy wave guide feed are used to form the radome. Top and base plate have a ${ }_{3}^{3}$ inch perforation for each 2 square inches of cavity area to allow dry steam to enter. The dummy feed has a 1 inch diameter sectionalized removable core.

A $\frac{1}{8}$ inch layer of beads is placed in the mold and the dummy positioned. The mold is filled with the remaining charge of pre-expanded beads. The assembled mold is placed

Two cavity mold with dummy wavequide feed positioned on layer of beads (left) and filed with beads (right)

Cutaway radomes show how they slip onto adhesives-coated waveguide feeds
in a vacuum impregnating tank preheated to 250 F . The polystyrene is steam-expended for 1.5 minutes at $55-60 \mathrm{psig}$ and 270 F .

After removal, the mold is cooled in water until the radome's temperature drops below 100 F . The radome is gently freed from metal mold parts and abraded with 60 grit sandpaper.

The wave guide feed is cleaned with cloth and methylene chloride. Water-based acrylic emulsion is applied and the radome slipped on. Emulsion is filleted on faying surfaces and air pockets resealed. After a 30 -minute air dry, a second coat of emulsion is applied. Top and bottom of the radome is sealed with two coats of emulsion and the whole is air dried 24 hours.

Modifications increase bursting strength to 30 psi . Height of the cavity is decreased to make walls 0.060 inch thicker. Fiberglas discs 0.0035 inch thick are cemented with the acrylic emulsion to top and bottom. A filled epoxy and Fiberglas strip fillet are used to bond the radome to the feed. Feed surface is improved by abrasion and cleaning with a phosphoric acid, alcohol cleaner.

This article was adapted from a paper presented by H. L. Loucks and H, J, Lauer at the Biennial Electronic Materials Symposium, Philadelphia. The author thanks H. G. DeBan, a co-worker; for cooperation in providing information.

look what \$2450 buys

in test equipment!

HEATHKITS GIVE YOU
TWIGE AS MUCH equipment for every dollar invested

The famous model V-7A Vacuum-Tube-Voltmeter is a perfect example of the high-quality Instruments available from Heath at $1 / 2$ the price you would expect to payl Complete

Get the most out of your test equipment budget by utilizing HEATHKIT instruments in your laboratory or on your production line. Get high quality equipment, without paying the usual premium price, by dealing directly with the manufacturer, and by letting engineers or technicians assemble Heathkits between rush periods. Comprehensive instructions insure minimum construction time. You'll get more equipment for the same investment, and be able to fill your needs by choosing from the more than 100 different electronic kits by Heath. These are the most popular "do-it-yourself" kits in the world, so why not investigate their possibilities in your particular area of activity! Write for the free Heathkit catalog now!

Contains detailed descriptions of Heathkit models available, including VTVM's, scopes, generators, testers, bridges, power supplies, etc.

Also describes Heathkit ham gear and hi-fi equipment in kit form. 100 interesting and profitable "do-it-yourself"' projectsl

FREE catalog
Mall coupon below for
your copy-Now!

HEATH COMPANY

A SUBSIDIARY OF DAYSTROM, INC,
BENTON HARBOR 14, MICHIGAN

Name
Address
Clity \& Zone
State

Step Up Relay Production

Emphasize Reliability

Achievement of superior performance and reliability in missile and airborne applications as well as for critical industrial uses is a prime consideration among relay manufacturers. This is reflected in the latest designs.

Electro-Mechanical Specialties Co., Inc., 1016 N. Highland Ave., Los Angeles 38, Calif., (275), has introduced the No. 410 LL relay designed to meet the requirements of MIL-R-5757 C and MIL-R6106 C . It combincs the functions of a dry circuit relay with those of a high current relay, from 1 ma at 5 mv to a 10 ampere resistive/ inductive load.

Subminiature hermetically sealed time delay relays announced by The A. W. Haydon Co., Waterbury, Conn., (276), are designed for aircraft, missile and rocket applications and will also be used by industry where space and weight are at a premium. Time delay settings from 1 sec to 1 hr can be supplicel on d-c units, and from 15 sec to 3 hr on 400 cps units.
E. V. Naybor Laboratories, Inc., 26 Manorhaven Blid., Port Washington, N. Y., (277), has available type R 310 which provides a compact power relay for switching high currents with the utmost reliability. Nominal coil resistance for 26.5 v d-c is 300 ohms. Coil resistance valucs are available to $10,000 \mathrm{ohms}$. Contact rating is 10 amperes at 125 or $250 \mathrm{va-c}$, or 10 amperes at $30 \mathrm{v} \mathrm{d-c}$ inductive.

Two small, compact d-c high voltage switching relays arc offered by Joseph Pollak Corp., 81 Freeport St., Boston 22, Mass., (278). They are suited for radar, sonar, missile and other severc environments. Featuring high dielectric strength, the lightweight units are designed to withstand severe shock, vibration, an ambient temperature range of -55 to +95 C and a minimum of 500,000 operations.

Interval Timer a precision unit

The A. W. Haydon Co., Waterbury, Comn,, has announced a new series of precision interval timers. These hermetically sealed units use the basic construction of a repeat cycle timer, but with a novel switching system which allows high accuracy over long range timing intervals.

Available with either chronometrically governed d-c motors or synchronous a-c motors, these units are supplied with accuracies of 1 percent or better.

Range of adjustment is cletermined by the application requirements in each instance, and overall ranges in excess of 30 to 1 can be supplied readily.

Besides establishing a precision-

When you specify Cornell-Dubilier capacitors, you can be sure that nothing is left to chance. Production procedures, test and inspection operations and quality control are in full compliance with Cornell-Dubilier high-quality standards and your specifications. Quality and Reliability are talents we have cultivated since 1910. That's why you can count on the consistently dependable facilities of C-D's 16 plants!

Typical C-D paper tubulars:

tiger Cub*: Cardboard-cased paper tubular with Polykane ${ }^{(1)}$ end-fill. Vikane-impregnated for excellent capacitance stability. High moisture resistance. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
TINY CHIEF*: Small, all-purpose paper tubular, molded in extra-hard thermosetting plastic for long-lasting all-around satisfaction. Available with high temperature wax impreg-
nant for operating temperature range $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ and Vikane or Polykane* impregnant for $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$ operation.
royal CUb*: Cardboard-cased paper tubular with Polykane ${ }^{*}$ end-fill. Tough, durable, withstands rough handling, vibration, shock, soldering iron heat. Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
budroc*: Steatite-cased paper tubular. Polykane* end-fill for extra protection against heat and humidity. High temperature wax impregnant for operating temp. range $-40^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$ and Vikane impregnant for $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
${ }^{(1)}$ Polykane: A development of the C-D laboratories. A solid thermosetting compound will not crack, soften or flow. Write for catalog to Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

CORNELI-DUBBLLIER CAPACITORS

timed interval which can be maintained in either the open or closed position at the duration of timing, this unit can also supply an auxiliary circuit closure for reference or power use at the conclusion of the timing program. Circle 279 on Reader Service Card.

Coax Double Tuner for 425 mc region

Continenral Eiectronics Mfg. Co., 4212 S. Buckner Blvd., Dallas 27. Texas, offers a new $6 \frac{1}{8}$ in., 50 ohin coaxial double tuner designed for use in the +25 me region, and for high power operation. The new tuner (type C6-T) has two shorted coaxial stubs, spaced $\frac{z}{8}$ wavelength apart at +25 mc . The rack and pinion short mechanisms maly be optionally equipped with serso drives or may be manually adjusted with calibrated control knobs. Circle 280 on Reader Service Card.

Accelerometer self-calibrating

Gifiton lndustries, lnc., 212 Durham Ave., Metuchen, N. J., has developed a self-calibrating accelerometer designed primarily for
control and guidance in aircraft and missiles. Other applications include fire control, servo guidance and pitche and yaw correction characteristics.

Model ADT-905 is equipped with a self-contained calibration system which can be used to check the operation of the accelcrometer while in use, or to calibrate the accelcrometer statically or dynamically. This transformer accelerometer is inherently stable over the range -65 F to +250 F becaluse of its balanced clectrical and mechanical construction.

Operating at a low natural frequency of approximately 30 cps , the accelerometer maintains stable frequency response characteristics over the temperature range as a result of magnetic damping. Circle 281 on Reader Service Card.

SSB System rugged design

Kahn Rèsearch Laboratories, Inc., 22 Pine St., Freeport. N. Y., announces the compatible singlesideband transmitter adapter. The new technique is offered to the radio broadcast and h-f communications inclustry as a major state-of-the-art improvement in the transmission of speech and music. The sustem is designed to convert any stand:ard high-level, low-level or Doluerty type a-m transmitter to a new and improved type of ssh operation. Transmitters can be alapted without engincering modifications and reception is completely compatible on all existing a-m receivers.

Rugged, conservative design in-
sures compliance with continuous operational requirements, including remote station operation. The adapter includes a unique multipurpose test unit, permitting simple and direct measurements of desired and undesired sidebands and associated equipment. Circle 282 on Reader Service Card.

Pressure Transducer for liquids or gases

Phillips \& IIss Co., Inc., 1145 N. McCadden Place, Hollwwood 38, Calif., announces a new flush diaphragm pressure transducer, a-c variable reluctance type. It is especially suited for use in corrosive environment as diaphragin and case are one picce machined from the solid of stainless steel. It features high output, approximatcly 1 v with 20 vexcitation; is available in tanges from $0-100$ to $0-3,000 \mathrm{psi}$; nonlincarity, ± 0.5 percent of full scale; 1-in. diancter diaphragin by $2 \frac{1}{4}$ in. overall length; weight, $7 \frac{1}{2}$ oz. Circle 283 on Reader Service Card.

Audio Mixer for recording systems

The Miami Instrument Co., Box 38t, Tamiami Station, Miami 44, lla., is now marketing a versatile audio mixer for use with recording

AVAILABLE IN ALL STANDARD CONTINENTAL CONNECTORS

ANTENNA INTRODUCES NEW SUPPRESSOR ELEMENT CONCEPT
This radically new Andrew antenna uses a single radiator, extending the full length of the antenna. Radiation occurs throughout the length, except at the suppressor elements. This new principle makes possible for the first time, high gain in a single feed point antenna. The simplicity of the design permits a sectionalized construction for easy handling and installation.
New sleeve elements suppress unwanted radiation, give new high efficiency in single feed-point design.

CHECK THESE FEATURES

- The feed system is reduced to the lowest possible degree of complexity.
- Proper radiation conditions secured with rugged low cost elements.
- One antenna covers the entire operating band.
- Freedom from serious detuning by snow and ice. - Reliable lightning and corona protection.
- Light weight-54 pounds.
- Sectionalized designlongest section measures only 12 feet.

Write today for Bulletin No. 8441 describing complete systems installation and performance.

363 EAST 75th STREET - CHICAGO 19
Now York - Boston - Los Angeles - Toronto CIRCLE 73 READERS SERVICE CARD
and p-a systems. It features plug-in transformers, preamplifiers and line amplifiers. The plug-in units may be arranged to provide up to seven inclividually controlled input channels. Outputs of +20 dbm into 50 , 250 or 600 ohms, or up to 30 v into high impedance may be obtained from the line amplifiers.

The imputs may be microphones, tape or disk plavers, tuncrs and so forth. Model 17 (rack mounting) is pictured. Sloping panel and custom models are also available. All models are approximately $3 \frac{1}{2} \mathrm{in}$. high. Circle 284 on Reader Service Card.

Tiny Connectors for small cables

Kings Electronics Co., Inc., 40 Marbledale Road, Tuckahoe, N. Y., announces a new series of sub-miniature connectors for calbles RG141A/U and smaller calbles. These connectors are interchangeable with other sub-subconnectors in the field. They are made in gold or silver plate. All contacts are gold for case of assembly. They are designed for missile and computer applications requiring highest precision and reliability.

The illustration shows the comparison in size between connector UG-58A/U and the new series. Circle 285 on Reider Service Card.

Power Supply low-voltage unit

Nelson Instrument Co., 607 Howard St., Evanston, Ill., announces its new low-voltage, me-dium-current power supply designed for such applications as production testing of semiconductor products. It operates on $115 \mathrm{v}, 60 \mathrm{cps}$ imput yielding continuously variable volt-
ages of 1.5 to 15 v . Output current is 0 to 1.0 ampere with 0.5 percent output ripple and regulation. Response time is better than 50 millisec with stabilization being achieved with a Zener reference diode. It is available in rack or cabinet models. Circle 286 on Reader Service Card.

Indicators show elapsed time

The A. IV. Haydon Co., Waterbury, Com. The new subminiature hermetically sealed elapsed time indicators are designed to meet military requirements and are now available with 400 cycle motors, for operation on 115 v . These 25200 series units are available with two dial styles and two mounting options.

Shown is the digital version with compact flange mounting. A fivedigit non-reset type counter totalizes to $9,999.9 \mathrm{hr}$. The last digit, * color coded red, reads tenths of hours, while the first four digits read whole hours. Circle 287 on Reader Service Card.

Screen Room Filters

extended range

Filtron Co., Inc., Flushing, N. Y. A new serics of r-f interference suppression screen room filters provide
attenuation characteristics of 100 db and above at frequencies from $1+\mathrm{kc}$ to $10,000 \mathrm{mc}$. The FSR- 1200 filters are designed for use in circuits carrving 25 to 200 aluperes, for voltages up to 250 vacc or 600 $v \mathrm{~d}-\mathrm{c}$, and power line frequencies of $0-400 \mathrm{cps}$. The increase in cffective range of 100 db attenuation was necessitated by the accelerated use of frequencies higher than $1,000 \mathrm{mc}$ in numerous military and conmercial projects; and to meet the requirements of the new Specification MIL-I-6181C.

All components are designed for continuous operation. Assembled filters are 100 percent tested for voltage breakdown, characteristic inscrtion loss, voltage drop, insulation resistance and hermetic seal, before shipment. Circle 288 on Reader Service Card.

Graphic Recorder for telemetry

Hogan Laroratories, Inc., 155 Perry St., New York 14, N. Y. Digital data reduction, telemetry output recording, spectrum analysis work and gencral off-on cvent displays are uses for the new 450 trace quick-look direct instrument recorder. Using low cost wide dvnamic range electrolytic Faxpaper, the multichamel $\mathrm{RX}-+8$ prodices +50 immediately visible, black on white 0.015 in . traccs across $1+$ inches of a 15 inch sheet, which advances at one of ten discrete speeds up to 12 ips . The multistyles event recorder has a $+00-\mathrm{ft}$ continuous roll chart capacity, which lasts about six minutes of operating time at maximum chart

DU PONT REPORTS ON SOLVENTS
 for precision-parts cleaning

FREE

 BOOKLET
ON DU PONT'S

NEW
 SPECIALPURPOSE
 SOLVENTS

It will pay you to investigate precision-parts cleaning with Du Pont's unique new Freon* solvents. "Freon" solvents offer selective solvency for greases and oils and exceptional safety for men and equipment. "Freon" solvents are much less toxic than ordinary solvents. They will not burn or explode. They have no adverse effect on most metals, elastomers or plastics and evaporate completely, leaving no residue. "Freon" solvents are adaptable to batch or continuous degreasing operations, and solvent vapors are readily recovered. Without inhibitors "Freon" solvents show a remarkably low rate of acid formation under degreasing conditions -they are ideal for cleaning applications in which harsh solvents could damage delicate parts.

Send for your free copy of Du Pont's booklet describing the unique properties of "Freon" solvents. Mail the coupon . . . there's no obligation.
*Freon is Du Pont's registered trademark for its fluorinated hydrocarbon solvents.

Better Things for Better Living . . . through Chemistry
"FREON" PRODUCTS DIVISION , WILMINGTON 9B, DELAWARE
E. I. du Pont de Nemours \& Co. (Inc.)
"Freon" Products Division 522, Wilmington 98, Delaware
Please send me your booklet describing the unique propertics of "Freon" solvents for precision-parts cleaning.
Name
Position
Company
Address
Cily
Siate

> FROM 9 TO 3 TIMES APPLIED PEAK VOLTAGE

ON 115-V CIRCUITS

Sudden interruption in inductive current causes surge overvoltage, arcing, and high-frequency oscillation. Oscillograms (above) show how effectively G-E Thyrite varistors can limit these effects.

Without a Thyrite varistor (Fig. 1) in the $115-\mathrm{V}$ circuit, surge voltage is 9 times applied peak voltage. With it (Fig. 2), surge voltage is limited to 3 times peak voltage.

With little current drain, they reduce surge voltage and arcing by offering low resistance at peak current . . . discharge circuit energy faster by offering higher resistances instantaneously as current decays.

G-E Thyrite varistors are available for components rated from 6 volts to 4000 volts.

For more information, or Thyrite varistor test kits, write: Magnetic Materials Section, General Electric Company, 7806 N. Neff Ave., Edmore, Michigan.

Kit No. 1: $1 / 2$ " dia. disks-2 each Kit No. 2: $1 / 4$ " dia. rods-2 each of of 6 ratings (6 V to $115 \mathrm{~V}-.1 \mathrm{w}$); 5 ratings (115 V to $4000 \mathrm{~V}-.25 \mathrm{w}$); color coded with connecting leads. ice: $\$ 5.00$ color coded with connecting leads.
Price: $\$ 5.00$.

Progress/s Our Most /mportant Product
GENERAL ELECTRIC
"Thyrite" is a trademark of General Electric Company CIRCLE 74 READERS SERVICE CARD
feed. Convenient record duplicates can be produced on standard drafting room copying machines. Circle 289 on Reader Service Card.

Plastic Foam Tape reduces vibration

United Mineral \& Chemical Corp., 16 Hudson St., New York 13 , N. Y., is marketing Tesamoll, a new polyurethane, plastic-foam, self-adhesive tipe. Radio and electronic equipment manufacturers find it useful for the mounting of speakers to improve fidelity and the quality of reproduction. Television manufacturers use it as a sealing material in the front assembly of the screen to prevent the entering of dust particles attracted by the high electrostatic charge of the to tube. Illustrated is its use as a base cushioning for the metal housing of an electric motor to climinate resonance. Circle 290 on Reader Service Card.

Transformers

for pulse circuits
Airpax Products Co., Middle River, Baltimore 20, Md. Design of blocking oscillators is greatly simplified by this kit of transform-
ers. The transformers are specifically designed for use in preferred blocking oscillator circuits. For example, in NBS preferred circuit No. 46, cathode output is 60 to 85 peak volts with pulse durations of 0.1 to $10 \mu \mathrm{sec}$, depending on transformer used. Kit consists of 8 oscillator units with turns ratios of $1: 1: 1$ and open-circuit primary inductances from 0.08 to 158 millihenries and 2 interstage units with turns ratios of 5:1:1. The 10 Pulsite transformers are packed in a convenient plastic box for laboratory use. All units plug into 7 -pin miniature tube socket for convenience in cletermining prototype requirements.

Transformers are butilt to meet MIL-T-27A, grade l, class R specs. They are hermetically sealed, insulated to withstand hipot of 500 v d-c between windings and from windings to case. They operate from -55 C to +105 C. Maximum average power rating is 2 w . Maximum duty cycle is 0.05 . Approximate dimensions are $\frac{3}{4}$ in. diameter and $\frac{7}{8}$ in. seated height. Circle 291 on Reader Scrvice Card.

Crystal Oven controlled unit

Manson Laboratories, Inc., P. O. Box 594, Stamford, Conn. Oven temperature variation is held to $1 / 1,000$ of the ambient temperature change in a new proportion-ally-controlled crystal oven. Called the RD-130, the complete unit consists of two compact assemblies -a thermo-oven, which accommoclates an HC-6/U crystal holder, and an oven control amplifierboth mounted on a $3 \frac{1}{2} \mathrm{in}$. high standard 19 in. relay-rack panel, but with subassembly packaging arrangements available as needed.
$B+$ and filament power of 250 $\mathrm{v} \mathrm{d}-\mathrm{c}$ at 70 ma and $6.3 \mathrm{v} \mathrm{a}-\mathrm{c}$ at 1.8
amperes are required for the control amplifier, which provides the temperature-controlling power to the oven. Only a single element, a temperature-sensitive resistance bridge, is used both for oven heating and for sensing change in temperature. The oven temperature is normally provided set at 75 C , but is also available preset at any tomperature from 10 C to 100 C above ambient. Vernier temperature adjustments are possible.

The oven is usable over the military envirommental temperature range. Circle 292 on Reader Scrvice Card.

Frequency Standard tuning fork type

Accurate Instrument Co., Inc., 2422 Branard St., Houston 6, Texas, announces a new frequency standard of the tuning fork type. It will stay within specified tolerance under all conditions within specifications. The standard is self contained and requires only 12 v (l-c or 30 vd -c to give the output signal. Total current drain at 12 v d -c is approximately 4 ma.

Tolerance of ± 50 parts per million from absolute frequency can be maintained under any combination of the following: temperature from 55 C to +100 C , power supply deviation ± 15 percent; operation in aluy position.

Frequency ranges are from 400

NEW mooura ossew PRECISION POTENTIOMETER

The newly developed TIC Type PVR-09 incorporates modular design for choice of cup depth, mounting, and number of taps. Modular design, a new concept in manufacturing, makes available all mounting types - servo, tapped hole, and threaded bushing ... and, in addition provides extreme flexibility in customizing the standard PVR-09 design to the individual application.

Ganging up to 15 cups, without external clamps, and each individually phased at the factory also provided by the modular design technique. Up to 9 taps are available in a standard unit - others on special order. Ball bearing construction provides low torque.

With our new plant facilities and unique modular design techniques you now can get customized design without delay. Complete spec's on request.

PERTINENT
CHARACTERISTICS:

- STANDARD RESISTANCES: 100 ohms to 150 K
- accuracy of total RESISTANCE: $\pm 5 \%$ on standard, to $\pm 1 \%$ on special linear functions
- INDEPENDENT LINEARITY: $\pm 0.5 \%$ of total R above 5 K standard, $\pm 0.25 \%$ on special
- POWER RATING:
1.25 watts at $85^{\circ} \mathrm{C}$
- RESISTANCE FUNCTIONS:

Can be provided with a variety of non-linear functions

- TAPS:

Up to 9 taps . . . with 10 deg

- TEMPERATURE RANGE:
-55 to +145 deg C
- MILITARY

SPECIFICATIONS:
Tested to MIL-E-5272A

IfGUNOLOGY WSSTRIMINT RORP.

Vital Component in Sage Air Defense Computers

The Sage System, vital to our nation's security, relies on IBM-built computers to display accurate pictures of hostile and friendly aerial action.
IBM uses printed circuit cards with plated-thru holes by PHOTOCIRCUITS to help do the job. IBM experience indicates that through-circuitry-using both sides of a printed card-saves space and costly assembly time.
Printed circuit cards by PHOTOCIRCUITS have plated-thru holes that help eliminate troublesome intermittents caused by vibration and temperature changes... increase solderability, too.
PHOTOCIRCUITS produces reliable printed circuit cards...builds them with strength to spare for all applications.
"Bonus" copper, on the right-size hole wall, is just one of the reasons you can depend on PHOTOCIRCUITS printed circuit cards. Proper design, precision production, and advanced quality control techniques are others. All add up to oùtstanding reliability... often at lower cost.
Check the advantages of printed circuit cards with plated-thru holes by PHOTOCIRCUITS...the largest and most experienced manufacturer in Printed Circuitry. For full information, write our Engineering Department PS-1 today.

PHONES

GLEN COVE 4-8000 FLUSHING 7.8100 CABLE PHOCIRCO

cps to 8 kc . Case size is $1 \frac{5}{8} \mathrm{in}$. by $1 \frac{5}{8} \mathrm{in}$. by $2 \frac{3}{8} \mathrm{in}$. Applications are: (1) controlling drive speed of motors in recording systems, servo systems, navigational systems and in other systems that require very constant speed motors. (2) Supplying time bases for various recording systems. (3) Synchronizing two or more remote systems with each other. (4) For use as primary standard for other frequency generators of less accuracy.

The unit is priced from $\$ 180$ to $\$ 255$ depending upon tolerance required. Circle 293 on Reader Service Card.

Surgistor

 cuts service callsWuerth Ture-Saver Corp., Detroit, Mich. The new 4000 series Surgistor offers a unique means of low-cost surge protection to eliminate destructive in-rush currents in all electronic devices.

The Surgistor combines the functions of a resistor and a relay. It limits the in-rush current until the tube heaters are warmed sufficiently to accept the full voltage without damage. In addition, B plus voltages are temporarily held down to prevent cathode stripping.

This product will provicle a new standard of reliability for all clectronic equipment using tubes, such as film projectors and electric organs. It can be installed by the manufacturer as original equipment. Circle 294 on Reader Service Card.

Epoxy Casting with nonsettling feature

Hougition Laboratories, Inc., Olcan, N. Y. Four new additions to the Hysol 6900 epoxy casting product series have been an-

Get out your pencil and . . .

Help yourself to electronics' READER SERVICE it's free-it's easy-it's for your convenience

NOW! All Advertisements New Products, and New literature are numbered for your convenience.

Each Advertisement, New Product, and New Literature item is numbered. For more information simply . . .
(1) Circle number on postpaid card below that corresponds to number at the bottom of Advertisement, or New Product item. Follow the same procedure if you desire New Liferafure.
(2) Print your name, title, address, and firm name carefully. It is impossible to process cards that are not readable.

Correct additional postage MUST be added to cards for all FOREIGN MAILING

Some Advertisements which cannot be numbered f or the

READER SERVICE CARD due to lack of space, must be indieated by writing the Advertiser's name in the space provided at the bottom of the card

- electronics
enginering edition
reader service cand
Moowe Print Corofully

NAME FOSITION
Compant

ADCRESS

CIRCLE THESE NUMBERS ONLY WHEN YOU ARE INTERESTED IN ALL ITEMS SHOWN OR DESCRIBED

USE THIS SPICE ONLY WHEN YOU ARE INTERESTED IN SPECFIC HEM(S) IN AD.
For Advertisements that have several products shown, please indicate below the circle number of ad and product(s) on which you require additional information.

Circle Ne.
Prodvet

YOU WILL RECEIVE 53 ISSUES IN 1958

BUSINESS REPLY CARD

 no postage stamp necessary if mailed in the united states> 4¢̆ Postage Will Be Paid By ELECTRONICS

> Reader Service Dept. 330 West 42nd Street

> New York 36, N. Y.
nounced. This scries, especially designed for the casting of transformers, coils, magnetic amplifiers and other similar equipment, incorporates longer pot life, low viscosity and the climination of settling. Thus a new ease of handing is attained, and these products are more suitable to contimuous production techniques. The nonsettling feature reduces the problems encountered in storage and preparation. Another advantage is flexibility which prevents cracking caused by temperature cycling and shock, often called for by MIL-T-27A. Circle 295 on Reader Service Card.

A-C Ratiometer extremely accurate

Transformers, Inc., 200 Stage Road, Vestal, N. Y. An a-c ratiometer capable of measuring a-c roltage ratios between 0.000001 and 1.111111 with extreme accuracy and at any load has been announced. With an accuracy of five parts per million at unity ratio, the instrmment is particularly well adapted for testing precision transformers, resistors, capacitors and inductors used in computers or other critical circuitry.

Two models are available providing an overall frequency range of from 40 cps to $2,000 \mathrm{cps}$. The instrument is normally furnished with plug-in units for operation at 60 cps (modicl 206) or 400 cps (model 204). Other plug-in units are available on order to cover any specified frequency.

The unit employs an a-c bridge circuit with a variable transformer in the balance arm of the circuit. Effects of quadrature and harmonics arc eliminated by quadrature voltage injection and filtering. A transistorized amplifier provides enough gain to feed the mull signal

POWER TRANSFORMERS -TF4SX03* (plate and filament) FILTER REACTORS-TF4SX03* FILAMENT TRANSFORMERS -TF4S $\times 01^{*}$

These transformers are designed and built in accordance with MIL-T-27A, Grade 4, Class S $\left(85^{\circ} \mathrm{C}\right.$. ambient, $45^{\circ} \mathrm{C}$. rise), operating temperature and life expectancy X (10,000 hours, minimum). Maximum operating altitude 70,000 feet. Schematics permanently silk-screened on one-piece drawn steel case.

For complete details on these new stock transformers write for the new Chicago Catalog CT3-57.

* (indicate letter designations that vary with case size.)

CHICAGO STANDARD TRANSFORMER CORPORATION

Export Sales: Roburn Agencies. Inc. 431 Greenwich St., New York 13, N. Y.

This new Speer Packaged Assembly Circuit offers you a wide variety of custom, preassembled units of high-quality components for use in conjunction with printed board applications.
P.A.C. permits the insertion, as a group, of a full range of capacitors and resistors in simple or complex circuitry. Each P.A.C. is based on components of uniform dimensions, $1 / 8^{\prime \prime}$ diameter and $5 / 8^{\prime \prime}$ long. Component availability includes Jeffers tubular ceramic capacitors and Speer fixed composition resistors, providing wide circuit flexibility in a single P.A.C. unit.

ADVANTAGES OF SPEER P.A.C,

- Simplifies chassis design and assembly
- Reduces printed circuit board area and insertion operations
- Permits easy and low-cost component change-over to accommodate circuit revisions
- Broad choice of characteristics-low capacitance temperature compensating units and high capacitance bypass capacitors mounted in same P.A.C. unit
- Isolation of individually mounted units provides low shunt capacitance across resistors
- Pretested components achieve unusually close tolerance assembly

Learn more about the new Speer P.A.C.
For information write to:
JEFFERS ELECTRONICS DIV.
Speer Carbon Co. Du Bois, Pennsylvania
directly to the deflection plates of an external oscilloscope which serves not only as a null indicator, hout also as a direct reading indication of quadrature voltage injection. Circle 296 on Reader Scrvice Card.

H-V Power Supplies compact design

Del Electronics Corp., i2l 2 Homestead Ave., Mt. Vernon, N.Y. Mondel 10-1-1 is one of a new series of power supplies. It will deliver $10 \mathrm{kv} \mathrm{d}-\mathrm{c}$ at 1.25 ma with an rms ripple of 0.25 percent at 60 cps or $0.0+$ percent at +00 cps . The dimensions are 3 by $3 \frac{1}{2}$ by $5 \frac{1}{2}$ high

These supplies feature reversibie polarity, shicided polvethylene output cables and selenium rectifiers. The entire unit is imbedded in an epoxy resin and hemetically sealed. Estronely compact design for mounting on chassis is one of its outstanding characteristics. Circle 297 on Reader Service Card.

Variable Resistor meets MIL-R-94B

Chicago Telephone Suppiy Corp., Elkhart, Ind. A new high tomperature 2-watt military vari-
able resistor with greater stability and certified to meet MIL-R-9+B Style RVt has been dereloped. Ambient operating temperature is -63 C to +150 C . Type 96 is available with spst switch, printed circuit terminals and a varicty of shafts and bushings. It caln also be furnished in 2 or 3 section concentric shaft and straight shaft tandem construction. All insulated parts are non-fungus mutrient high temperature silicon fibre glass construction. New design has closed openings under terminals. Circle 298 on Reader Service Card.

Transducer

high-resolution unit
Levinitial Fifectronic Products. Inc., 760 Stanford Inclustrial Park, Palo Alto. Calif. With the objective of maximizing pulsc height and resolution, the new scintillation transducer combines a high-clarity thallimu-activated so-dimm-iodide crystal integrally packaged with a standard 5 -in. photomultiplier tube

Available in any crystal lengtles up to + in.., the packaged detection units are supplicel housed in overall mu-metal magnetic shiclds and complete with preamplifiers. The cristals can additionally be provided with truncated conical ends. drilled wells, or other configurations as desired.

Integral mounting of the crystal and photomultiplier awoids an interface of glass otherwise necessary, and therefore provides optimum optical contact between the two. The combination also simplifics installation and application.

The thallimm-activated sodiumioclicle crystals are produced in a new facility with cmplasis on uniformity of thallimm distribution for uniform response to gamma ravs

WITH ALPHA UHP* Ultra High Purity DOT MATERIAL

ONLY THE BEST ARE CHOSEN

ULTRA HIGH PURITY METALS - continuous spectrographic analyses assure purity of elements to 99.999+.
METALLURGICAL RESEARCH - facilities, trained personnel, and skills available for your development problems.
EXTENSIVE SPECIALIZED EQUIPMENT \& FACILITIES -- for production of specific alloy requirements.
ALLOYING - atmospheric control, basic melts, and other techniques guarantee complete uniformity.
INSPECTION - precise control and measurement of physical dimensions and alloy compositions.
PACKAGING - scientifically cleaned, counted, and packaged.
BREAK THROUGH the quality barrier on Dot Material SPECIFY ALPHA UHP*

59 WATER ST., JERSEY CITY 4, N. J.- HEnderson 4-6778
midwest division ALPHA-LOY CORP.
2248 S. Lumber St., Chicago, Illinois - MOnroe 6-5280

AT IRE SHOW Booth 4323 . . CHEMISTS, METALLURGISTS, AND ENGINEERS PRESENT TO DISCUSS YOUR CURRENT PROBLEMS.

QUALITY

at the Indium Corporotion
of America meons purity of metols, and strict ad. herence to specifications.

SERVICE

meons prompt delivery to customers, and technical help in specific uses of Indium.

RESEARCH

means "forword looking" with respect to new products and new techniques.

Every time you listen to a transistor radio, you are enjoying the benefits of an application of the 49th element, Indium.
The use of Indium with a germanium plate aided electronic engineers to produce transistors commercially - but this is only one of many startling achievements made possible through use of Indium...the metal of unlimited possibilities.

Indium may have significant applications in your own product development.

WRITE TODAY to Dept.E-258 for new Indium bulletin: "INDALLOY" Intermediate Solders.

${ }_{\text {rw }}$ INDIUM

ORPORATIONOFAMERICA 1676 LINCOLN AVENUE UTICA, NEW YORK Since 1934 ... Pioneers in the Development and Applications of Indium for Industry.
stopped throughout the volume; and optimized clarity with minimum optical absorption particularly in the blue and ultraviolet for the attainment of maximum light to the photomultiplier. Circle 299 on Reader Service Card.

Power Supply general purpose

Nutron Mfg. Co., Inc., 67 Monroe Ave., Staten Island 1, N.Y., announces a new portable general purpose, low voltage, high current, tubeless power supply: Model PR1 A is the regulated type especially useful for testing and developing transistor devices, and for basic research. It has wide application wherever a smooth rariable source of regulated dlec or a-c is reguired.
Specifications are as follows: a-c iilput-95-130 v, 60 cps ; d-c output $-0-120$ v, 0-1 ampere; a-c output-$0-130 \mathrm{v}, 0-1.5$ amperes; regulation± 1 percent for line variation from $95-130$ v. Circle 300 on Reader Service Card.

Antenna Positioners rugged, weatherproof

Scientific-Atlanta, Inc., 2162 Piedmont Road, N. E., Atlanta, Ga. A series of rugged weatherproof remotely controlled antenna positioning tables, particularly used
for antenna pattern measurements are now available.

The series 411 antenna position ers are clesigned to support loads up to 800 lb with a maximum unbalance of $2,000 \mathrm{ft} 1 \mathrm{lb}$. The positioner is cliven in azimuth by a variable speed reversible motor. Synchro output signals are provided for driving remote indicators and antenna pattern recorders. Remote control and indicator units are also asailable. Other positioner models include azimuth over clevation rotation and eleration over azimuth.

Prices start at $\$ 1,550$ for a model $4 l l$ with a single synchro signal ratio and speed range. Dual speed range and synchro outputs are also available. Circle 301 on Reader Service Card.

Tape Recorder

"remembers" a picture
Ampex Corp., 93t Chartcr St., Redwood City, Calif. A new magnetic tape recorder, called the Faxtape machine, makes it possible to transform a photograph into mag. netic impulses that can be retransmitted, stored permanently on tape, or converted back to a picture at will. Upon playback the machine "remembers" the original picture with all of its original clarity and detail.

The picture fed into the Faxtape recorder is in the form of the out put signal from a standard facsimile transmitter. Once on tape, this signal may be sent to other Faxtape machines with a speed several times that of ordinary facsimile transmission.

The Faxtape recorder has a

All the right connections for

High-flying Deutsch Miniature Electrical Connectors are designed to thrive on the punishment of space travel. In ballistic missiles, rockets, supersonic aircraft - even space satellites.
For daring performance in the face of extreme temperature, vibration, altitude and shock, specify Deutsch 9600 Series push-pull receptacles and Deutsch 9700 Series push-pull plugs. These miniature teammates make all the right connections in crowded, remote, blind and ballistic installations. Ideal for breakaway units. They make from 3 to as many as 61 contacts . . . without lockwiring or twisting, without bayonet or coupling-nut.

Simply push in for positive lock and seal; pull back for instant disconnect.
Scientific manhandling in the Deutsch laboratory proves their performance. Durability: 500 cycles of engagement. Insulation resistance: minimum 5,000 megohms.

Physical shock: deceleration force of 100 G's. Temperature: operative from minus $67^{\circ} \mathrm{F}$. to plus $250^{\circ} \mathrm{F}$. And all Deutsch Miniature Electrical Connectors exceed MIL specs for rating, humidity, corrosion, vibration and air leakage.
Down-to-earth facts on the construction and operational features of Deutsch miniatures are available in Data File 211.

The Deutsch Company

7000 Avalon Blvd. • Los Angeles 3, Calif.

"Termaline" DIRECT READING RF LOADWATTMETERS SERIES 6100

WRITE FOR BULLETIN TW606

SPECIFICATIONS

RF INPUT IMPEDANCE: 50 ohm nominal.

VSWR: Standard specification 1.1 to 1 maximum over operating range.
ACCURACY: 5% of full seale internal coolant: Oil.

POWER RANGE: Model 611-$0-15,0-60$ watts full scale. Model $612-0.20,0.80$ wotts full scale.
INPUT CONNECTOR: Female " N "
EXTERNAL COOLING METHOD: Air Convection:

RADIATOR STRUCTURE: All Aluminum.

FINISH: 'Bird standard gray baked enamel.
WEIGHT: 7 pounds.
OPERATING POSITION: Horizontol.

OTHER BIRD PRODUCTS

"Thruline"
Directionol
RF Wattmeters

'Termaline" RF Load Resisfor

Coaxial RF Filters

Coaxial RF Switches

-

built-in time standard of extreme precision, providing playback with a timing accuracy better than tivo parts in a million. Complete greyscale fidelity is achieved. Circle 302 on Reader Scrvice Card.

These popular direct reading instruments measure and absorb power in 50 ohm coaxial line systems through the range of 30 to 500 mc .
They are portable and extremely useful for field or laboratory testing . . . checking installation of transmitters . . . trouble shooting . . . routine maintenance . . . production and acceptance tests... transmitter tune-ups measuring losses in transmission lines testing coaxial line insertion devices such as, connectors, switches, relays, filters, tuning stubs, patch cords and the like...accurately terminating 50 ohm coaxial lines. and. monitoring modulation by connecting phone, amplifier or audio voltmeter to the DC meter circuit.
Power scales for Model 61 Special are made to meet your requirements. requirements.
power in the laboratory, field or for production testing. The final stage bridge circuit contributes greatly to the unit's fine performance. Extremely low distortion components and a frequency range extending into the ultrasonic region are characteristics found even at maximum rated output.

Model 6006 consists of two seven inch standard rack units. the power supply and the amplifier. and all interconnecting cables. Rated output is 100 w , sine wase, continuous; frequency response. 20 to 50 ,$000 \mathrm{cps}, \pm 0.5 \mathrm{db}$. Total harmonic distortion is less than 0.3 percent at rated output. intermodulation distortion is less than 0.5 percent. Hum and noise 85 db below rated output. Terminating impedance taps provided are $+, 8,16 \mathrm{ohm}$ unballanced. 70 , umbalanced, 600 ohms balanced. Damping factor is 10 , input impedance is 250 K ; sensitivity is 1.25 v rins. Circle 304 on Reader Scrvice Card.

Synchro
 high accuracy unit

Kearfott Co.. Inc.: 1378 Main Are. Clifton. V. I.. hâs developed a size 25 ligh accuracy synchro component having a maximum error from electrical zero of only a half minute. A resolver type unit. this synchro can function as a t-wire control transmitter. control differential tramsmitter or control transformer which when used in a t-wire string to form a typical clata trinsmission system, holds overall sustem error to less than one minute from electrical zero. The unit may also be modified for operation at either +000 or 10,000 crcles.

A compensator winding is provided to mamintain the resolver's 30 -second accuracy despite variations in temperature and frequency. Circle 305 on Reader Service Card.

Here is the greatest advance in oblique cutters. This new Klein tool with shear blades is ideal for cutting hard wire such as tungsten filament or dead soft wire. Also recommended for cutting small bundles of wire. The shearing action assures easy, positive cutting at all times.

Regular cutters at the nose give added usefulness and convenience. The shear blade is easily replaceable. Plier never needs sharpening.

This plier is supplied with a coil spring to keep the handles in open position. Can also be had with Plastisol dipped handles if desired.

Write for full information

LONG NOSE SHEAR CUTTING PLIERS

208-6C long nose shear cutting plier. A $61 / 2$-inch long nose plier with shear blades. Point of nose 1/16-inch diameter. Coil spring keeps jaws open ready for use.

208-6NC. Similar in design lo 208-6C but reverse side designed to put a positive $3 / 16$-inch hook on the end of a resistor wire. Smooth one-motion operation saves production time on every television or radio sef.

ASK YOUR SUPPLIER

Foreign Distributor:
International Standard Electric Corp. New York

Maintenance "down time" and costs reduced for all electron tube-equipped guidance, radar, aircraft, mobile surface communication, radio.TV and other industrial and commercial types of electronic equipments!

You can get immediate, most effective results only with IERC Heat-dissipating Tube Shields - the exclusive, patented, time-proven design available in a wide selection to meet every electronic equipment requirement for new or retrofitting applications. IERC shields give you the only commercially-available heat-dissipating shield which will actually meet or exceed military specifications because they provide greatest reduction of electron tube bulb operating temperatures, maximum vibration and shock protection plus compatibility with all tube diameter tolerances.
Investigate this proven way to get increased tube life and equipment reliability by eliminating electron tube failures commonly caused by heat, vibration and shock!

We'll gladly send you our IERC Heatdissipating Tube Shield Guide showing over 1,400 tubes and tube shield combinations to select from for increased tube life and reliability. Write today!

145 West Magnolia Boulevard, Burbank, California 14

[^5]
Literature of

MATERIALS

Silicone Insulation. Union Carbide Corp., 30 E. 42 nd St., New York 17, N. Y. A four-page shcet describes the specifications and physical properties of L-45 silicone oil, clectrical grade, a clear dimethyl silicone polymer which is used as an insulating and cooling medium. Circle 351 on Reader Service Card.

COMPONENTS

Coax Power Dividers. Microlab, 71 Okner Parkwav Livingston, N. J. Memo No. 9 covers a line of broadband coaxial power dividers. Description, specifications and prices are given. Circle 352 on Reader Service Card.

Hermetic Terminals. Thermo Materials, Inc., $40+0$ Campbell Ave., Menlo Park, Calif. Technical data sheet EC-1225 describes a new line of metallized ceramic hermetic terminals. Types and sizes are listed. Circle 353 on Reader Servise Card.

Transformers. ESC Corp., 534 Bergen Blvd., Palisades Park, N. J., announces a catalog-folder covering a line of blocking oscillator pulse transformers, coupling transformers, pulse transformer sample kits and the like. It offers operational data, test circuit diagrams, case styles and other data. Circle 354 on Reader Scrvice Card.

Transistor Specification Chart. Industro Transistor Corp., 35-10 36th Ave., Long Island City, N. Y., has available a newly revised transistor specification clart which covers the company's pup germalnium alloy-junction transistors. The chart contains an interchangeability guide on transistors of all manufacturers for computer, cntertainment and industrial applications. Circle 355 on Reader Service Card.

Variable Transformers. Ohmite

the Week

Mfg., 3668 Howard St., Skokie, Ill. First model in the company's line of V.T. variable transformers is described in detail in bulletin 151. Pertinent performance data such as voltage regulation and derating curves are also presented. Circle 356 on Reader Service Card.

EQUIPMENT

Current Pulse Amplifiers. Rcse Enginecring, Inc., 731 Arch St., Philadelph ia 6, Pal. Bulletin 57-A describes models 1070 and 1070A ligh-amplitude current pulse amplificrs. Basic circuit groups are discussed. Application suggestions and detailed specifications are included. Circle 357 on Reader Service Card.

Modulated R-F Sources. Weinschel Engineering, 10503 Mctropolitan Ave., Kensington, Md. Bullctin No. 40 illustrates and describes three models of stable, modulated sources of r-f power for measurements in the frequency range of 50 to $2,000 \mathrm{mc}$. Prices are included. Circle 358 on Reader Service Card.

Soldering Irons. General Electric Co., Schenectady 5, N. Y. An 8-page bulletin, GED-3553, covers a complete line of the company's soldcring irons, which feature light weight, calorized and ironclad tips and tubular heater. Case historics of savings obtained by their use is included. Circle 359 on Reader Service Card.

FACILITIES

Instrument Construction System. Gap Instrument Corp., 33 S . Glove St., Freeport, L. I., N. Y., Bulletin ICS165 covers the company's instrument construction systcm. With the system described it is possible to reduce the elapsed time for producing servo computing units and gear trains from months to days with a sizable decrease in cost. Circle 360 on Reader Service Card.

Field test equipment with this chopper as synchronous modulator-demodulator (with either vacuum-tube or transistor amplifier) can be compact and sturdy.

Yet such equipment can have low ranges usually associated with laboratory equipment.

PLANTS AND PEOPLE

Atlas ICBM Gets New Home

Covvarr-Astronautics division of General Dynamics Corp. will begin moving personnel and equipment next montl into a new $\$ 40$ million Atlas intercontinental ballistic missile plant (picture) on the northeastern outskirts of San Diego, Calif.

The six-story office buildings in left foreground will house administrative and engineering personnel. The structures are connected by a one-story reception center. The one-story joined buildings arranged in a waffle pattern, at right, will accommodate laboratories, library, reproduction, photographic and other supporting services

The massive factory areal in background will be ready to receive equipment and personnel in April and May. This operating division of the company is responsible for development and pilot production of the Atlas.

Convair-Astronautics now occupies buildings + and 8 and part of building 5 at Convair-San Diego. Originally the transfer to the new plant site was to have been made as each of the new Astronautics buildings was completed. This plan was changed, however, to permit the entire division to move in as short a time span as possible to maintain divisional unity.

After Convair-San Dicgo buildings now occupied by Astronau-
tics' functions are cleared, personnel and offices in buildings 5 and 51 can be transferred to temporary quarters, and a $\$ 2 \frac{1}{2}$ million remodeling project can proceed. Rehabilitation of the interiors and exteriors of adjoining buildings 5 and 51 is expected to take about 15 months.

The renovation program will involve $400,000 \mathrm{sq} \mathrm{ft}$ of floor space in the two buildings. Improvements will provide more efficient and pleasant working conditions for 3,500 to 4,000 Convair-San Diego ellgincering personnel and will facilitate maintenance, according to B. F. Coggan, vice president and manager.

Among new facilities to be prorided is a $9,000 \mathrm{sq} \mathrm{ft}$ sloping-floor presentation thater accommodating up to 150 persons. It will be equipped for movic projection and will be used in group program conferences and for discussions among customers and engineering personnel.

Engineers Form New Company

A grour of senior engincers formerlv associated with the electronics and instrumentation division of the Baldwin-Lima-Hamilton Corp., have organized a new firm, Metrix

Corporation, in Newton, Mass. The new company will manufacture instrumentation for use with strain gages and strain gage devices, and will fabricate specially engincered systems based on these devices

Stanley Charren, former sales manager at BLH, will handle sales and finance, with Malcolm Green, former assistant chief engineer, and David J. First, former chief systems engineer, handling the manufacturing and engineering respectively.

The company's first product will be a test bridge to produce very accurate millivolt per volt signals to check out system instrumentation.

Magnavox Ups Hawkins

Recrenti.i promoted to the post of guided missiles advisory engineer for the Maguavox Co., Fort Wayuc, Incl., Walter G. Hawkins (picture) will head a newly formed department coordinating various laboratory and production facilities for the firm.

The Magnavox exccutive will help the company expand its facilities at the Ft. Wayne, Urbana, Ill. and Los Angeles laboratories in the areas of guidance, fuzing. test equipment and weapons system design for several types of missilcs and space velicles.

During the past seven years, Hawkins has been in charge of the development and design of various

When you're playing with a hot system and the stakes are high . . . raise!

Raise as high as $150^{\circ} \mathrm{C} \ldots$ and HELIPOT ${ }^{\circledR}$ sēries 5000 precision potentiometers will still operate continuously with 1 watt dissipation.

Although it's only $1 / 2$ inch in diameter and weighs but 0.3 ounce, on this pot you can bet the limit. You'll hold the winning hand with these five high cards off the top of the Helipot deck:

- stainless steel construction
- excellent linearity ($\pm 0.25 \%$ best practical, $\pm 0.5 \%$ standard)
- 500 to 100,000 ohms standard resistance range
- one-piece housing
- all-metal card for uniform heat dissipation

When the chips are down, these three standard models will strengthen your hand: the bushing-mount precision 5001, the servo-mount precision 5002, the trimming-type 5016 .

There's a house full of specs the series 5000 meets or beats: JAN-R-19(7), MIL-E-5272A, NAS-710, MIL-R-12934A, MIL-E-5400, MIL-R-19518, MIL Std 202.

The straight inside story on the new series 5000 is available in data file 22A.

phases of the guidance systems for the Falcon, Terrier, Talos, Sparrow II and Bomare missiles.

Allis-Chalmers Promotes Eagan

New chicf engincer of the control department of Allis-Chalmers Mfg. Co., Milwaukee, Wisc., is W. F Eagan. He joined A-C in 1947 and for the last six months had been engineer-in-charge of control enginecring. Prior to that he had been supervisory engineer of regulator engineering and circuit development in the department.

Mueller Takes New Post

Chicago Aerial Industries places Andrew A. Mueller (picture) in the newly created post of chicf of engineering laboratories. During the past seven years with CAI, he has been a rescarch engineer, supervised prototype development and handled engineering liaison on electrical and electronic development.

Mueller will be responsible for electrical, mechanical, environmental and optical labs, and also for engineering publications. Company facilities provide aerial reconnaissance systems and equipment, and will now expand into other aircraft electronic fields. CAI is supplving new equipment for several missile prograns and is vitally concerned with navigation and sensing equipment.

Bulova R \& D Names Two V-P's

Appontmient of two new vicepresidents at Bulova Rsearch and Development Laboratories, Inc., Woodside, N . Y., is announced.

Theodore K. Stecle (pictured above) is named vice president of rescarch and engineering. Formerly he was director of research and engineering for the Laboratories, where he supervised the enginecring development groups concerned with missile components, automation systems, and advanced weapon systems.

Oscar Brockmeyer, Jr. is ap pointed vice president of engineering sales for the Laboratories. He was formerly director of engineering sales and was head of the department developing fuze mechanisms and pyrotechnic devices with ordnance applications.

Advance Kinney At Zenith

By action of the board of directors, Eugenc M. Kinney is elected vice president of Zenith Radio Corp. of Canada, Ltd. The Canadian corporation, a subsidiary of Zenith Radio Corp., Chicago, Ill., is located in Windsor, Ontario.

In addition to his new dutics Kinney continucs as general manager, hearing aid division, of the parent company. He has been associated with Zenith since 1946, in
assignments that include cvery major phase of the company's home office operations.

Philco Advances Dougherty

New chicf engincer of Philco Corporation's Automotive Division is James W. Dougherty. With base of operation in Philadelphia, he will be responsible for design and production coordination of electronic products Philco manufactures for the automotive industry.

Having served Phileo in many technical capacities since 1942, Dougherty has for the past four years been assistant to Harris (). Wood, chief engineer of television.

Raytheon Ups Standing

A thirteen-year veteran with Raytheon, S. A. Standing (picture), is appointed an assistant to N. B. Krim, vice president and general manager of Raytheon Manufacturing Company's receiving tube and semiconductor operations. In his new position he will perform special assiguments on major problems in the engineering, manufacturing and quality control areas. He will also continue his present duties as manager of the cathode-ray tube division.

Standing joined Raytheon in 1932 and worked on electrical, metallurgical and process development engincering problems in re-

DoALL MICROTOM-ATIC* Slices your brittle materials

Where used?

In manufocture of electronic parts af: Bendix Aviation Corporation

Convair

Delco-Remy Division, General Motors Corp. Fairchild Semiconductor General Electric Company General Transistor Corp.
Hughes Aircraft Company
I.B.M. Corp.

Linde Products
Minneapolis-Honeywell Regulator Co. Pacific Semiconductor Phileo Corporation R.C.A.

Sylvania Electric Products, Inc. Westinghouse Electric Corp.

The quickest and most reliable answer to your precision slicing, dicing or parting operations is DoALL's Microtom-atic. It machines brittle, shock-sensitive materials to $\pm .0005^{\prime \prime}$ repeat index, providing uniform wafer thickness with excellent parallelism and micro-inch finish.
DoALL MICROTOM-ATICS are available with work areas ranging from $6 \frac{1}{2 \prime \prime} \times 19^{\prime \prime}$ to $10^{\prime \prime} \times 30^{\prime \prime}$, table travel from $20^{\prime \prime}$ to $32^{\prime \prime}$, wheel sizes from $3^{\prime \prime}$ to $14^{\prime \prime}$. Various spindle speeds are available for different wheel sizes.
So whatever material you're working with-germanium, silicon, quartz or ferrites; ceramics, tungsten carbide or hardened steel-the DoALL Microtom-atic will part it automatically faster, more accurately and more economically than any other method known.

This versatile machine is also ideal for precision stock removal. See the new DoALL Microtom-atic demonstrated on your own samples at the DoALL Technical Institute, Des Plaines, Illinois-or send in samples and requirements for complete report. Call your local DoALL Store, or write today for information and new literature.

Leakage. . Breakdown. .Shorts with HYPOT ${ }^{\text { }}$

Test to $150 \mathrm{KV}, \mathrm{DC}$ or AC . Measure leakage, detect shorts, and forecast insulation breakdown. Meet applicable MIL and ASPM requirements. Safely protects personnel and equipment, Mobility for laboratory, plant, and field usage. Write your requirements. Models with special facilities supplied promptly.

Automatic Accept-Reject Tests
 Leakage. .Breakdown. .Shorts

High porential $A C$ rests to $10,000 \mathrm{~V}$ with HYPOT Jr. Visual and audible indications of breakdown. Leakage indicator light now adjustable, .3 to 3 ma . Ties into automatic test fixtures.
 Laboratory accuracy in portable, selfpowered units. Write for bulletins.

Resistance to 50,000 Megohms

Measured at 500 V-DC with VIBROTEST

Insulation resistance under high potential, plus $A C$ and $D C$ voltage ranges. Selfpowered VIBROTEST eliminotes cranking, leveling, and needless weight. Write for application data and deseription of models.

Precision Ohmmeter

 - Direct ReadingFor example, measure 1.2 ohms to an accuracy of 6 mil liohms. Compensation for resistance of leads and clips,
 and for internal resistance of
ceiving tube manufacture. At the same time he did post-graduate work at MIT in vacuum tube design and metallurgy and in business administration at Harvard

In $19+1$ Standing was employed by North American Phillips Co. and served as manager of its electronic tube clivision in Dobbs Ferry, N. Y., which produced power tubes and crt's. Six years later he joined Tung-Sol Electric Inc. serving in managerial capacities in their receiving tube plants, and later as manager of that firm's cathode-ray tube division. He rejoined Raythcon in 1954 to manage its cathode-ray tube division in Quincy, Mass.

Fenwall Hires Chief Engineer

New chicf enginecr of Fenwall Electronics, Inc., Framingham, Mass., is A. E. Lawsoñ, Jr. (picture). In his new position Lawson will supervise the company's development work on thermistorstemperature sensitive semiconductors which have a large change in resistance for a small change in temperature. Among his activities will be work to extend the capabilitics of themistors bevond their prescnt limits, and development of specialized designs for specific customer applications.

Lawson was formerly chicf enginecr of the Gow-Mac Instrument Co., and general manager of Davis Instruments. In the course of this

McGRAW-HILL TECHNICAL WRITING SERVICE

TWS offers you a single INTEGRATED publishing service prepared to undertake a project from research and planning through finished manuscript and art, typesetting, mechanical preparation, printing and binding. Whatever the situation, whatever the type of literature you need, our editorial and art consultants can help you, bringing to your most specialized job the craft and skill of publishing experts.

WRITING EDITING ILLUSTRATING PRINTING

TO YOUR OWN OR GOVERNMENT SPECIFICATIONS

Whether you need an instruction book or service manual, to accompany your equipment, written to gov. ernment' specifications ...
. . . or product catalogues or training booklets . . . or annual reports . . . or company histories . . . our writing staff can do the job for you, our artists can create and execute the illustrations. And McGraw-Hill printing, binding, and paper resources are among the best in the country.

SAVE MONEY AND TIME LET OUR STAFF BE YOUR STAFF FOR TECHNICAL and BUSINESS PUBLICATIONS

ASK OUR REPRESENTATIVE TO CALL

Write • Phone
Technical Writing Service McGraw.Hill Book Co., Inc.

330 W. 42nd St., N. Y. 36, N. Y. LOngacre 4.3000

Now you can afford a real, full concert organ, just Jike those made by the foremost organ manufacturers. Because over $1 / 2$ the cost is saved when you assemble it yourself. And it's REALLY EASY: only 24 separate units, all with printed circuits, and detailed-to-the-smallest-step instructions. In addition, you purchase each of the 24 kits when you are eady for it - and can afford it.
You'll get a real kick out of putting the Schober Electronic Organ* together and then sitting down and pulling the stops for Strings. Trumpets, Clarinets, Diapasons. Flutes, etc. Electronic Percussion optional: chimes available

Compact CONSOLE

One of the many exclusive features of this excep ional organ is the handsome console in a wide variety of finishes. It is equally at home in a traditional or modern setting, and takes little more space than a spinet piano

Free Literature

Complete descriptive booklet and price list are valable on request. And, if you wish to hear the lorious pipe organ one of the Schober Electing is available for $\$ 2$. This is refundable when you order Write today and see what a fine instrument you can get at such a great saving.

The SCMOBER ORGAN CORP.
2248M Broadway, New York 24, N. Y. - Designed by Richard H. Dort
work he acquired considerable cxperience with thermistors and their applications.

Name Tudbury Chief Engineer

New Rochelle Tool Corp., New Rochelle, N. Y., appoints Chester A. Tudbury (picture) to the post of chicf engineer. The company manufactures le-f clectronic devices for industry.

Tudbury comes to his new assignment from 16 years with the Ohio Cranksliaft Co., where he was research enginecr for the Tocco Division, specializing in h-f equipment. Prior to that he was cngineering manager for the same companv.

He was with the Induction Heating Division of the Budd Co., and has also been a professor of engineering at \backslash Vavne University in Detroit and at Fenn College in Cleveland.

B-W Promotes Teichmann

Appointment of Otmar E. Tcichmann as associate dircctor for engincering at Borg-Warner Center in Des Planes. Ill., has been announced. He hals been manager of products rescarch in the engineering department of the Center since 1956. Previously he was mallager of the heat-power research depart-

$\begin{array}{lllll}7 & 0 & 1 & 3 & 8\end{array}$

HIGH SPEED ELECTRO MECHANICAL COUNTERS, SUMMATION
COUNTERS, COUNTER.TRANSMITTERS ...ADD, SUBTRACT, CONTROL AUXILIARY CIRCUITS..

INSTRUMENTATION, PRODUCTION CONTROL, AUTOMATION,
COMPUTING \& BUSINESS MACHINES,
AIRCRAFT \& MISSILE READ-OUT..
COUNTING RATES OF 40 PER
SECOND . . . LIFE - PRACTICALLY UNLIMITED.

DIGITAC, INC.
420 South Beverly Drive, Beverly Hills, Calif. an affiliate of Bill Jack Scientific

Instrument Co. and Otto Nemeth
for detailed information, mail this coupon. 252-58
\qquad
Company \qquad
\qquad
\qquad
CIRCLE 78 READERS SERVICE CARD
 Shop "Hydrogen Annealing, Machining and Polish. ing Operations - Glass-to-Metal Hermetic Sealing Production of completed parts ready for assembly in your own plant.

A complete service in our plant
means prompt service to your plant.
Call on us for free consultation and quotations.
 CIRCLE 79 READERS SERVICE CARD

PROTECT Delicate ELECTRONIC COMPONENTS While Handling in Production and Shipment with RONDO
RONDO, a cardboard device, holds and protects inserted objects by the spring-clip action of its fluted partitions. Easy to load and handle. Various sizes and styles have been developed for many parts, such as tubes, resistors, capacitors, diodes, fuses, etc., with diameters from 8 to 26 mm and up.
Maximum efficiency and economy are accomplished when the same RONDO device is used throughout production, storage, shipping and display. RONDO is a paper product, sold at paper prices.
Send for leaflet and suggestions regarding your specific packing need.

RECOGNIZED ALL OVER THE WORLD
AMERICAN RONDO CORP.,100A SANFORD ST., HAMDEN 14 , CONN.
mont and rescarch advisor to the office of the assistant director at the Armour Rescarch Foundation.

Austrian born Teichmann has had extensive experience in fluid mechanics, heat transfer, thermodynamics and electrical engineering. For several years he served on the teaching staff of the Illinois Institute of Technolog:

GE Sets Up DEPDO

A defense planning and development operation (DEPDO) has been established in the defense electronics division of General Electric Co., Syracuse, N. Y. It was created to improve the integration of operations which will assist the division's product departments in meeting the expanding requircments of their customers.

DEPDO will bring together uncler one operation the following company components: a defense evaluation operation located in Washington, D. C.; the technical military planning operation at Santa Barbara, Calif.; the electronics laboratory at Syracuse; and the flight test operation at Schencetady, N. Y. A financial operation has been added to complete the organization. This component will have its headquarters at Syracuse.

Haywood S. Hansell (picture) is appointed manager of DEPDO Hansell, who will maintain his office in Washington, D. C., was formerly manager, defense plan-
ning service, in the company's marketing services component. He held that position from May, 1955, when he joined GE, until his new appointment.

FTL Advances French

Federal Telccommunication Laboratorics, Nutley, N. J., research division of IT\&T, names Heyward A. French an executive engineer.

Formerly a senior project engineer, French has participated in the development of radio communication equipment and systems since joining the Labs in 19+3. Hc is co-inventor of the "parallel path" transmission technique used by both the Navy and commercial users to provide ultrareliable radio communication. Currently he is project manager in charge of the development of highly portable radio link equipment for use in combat atcas by the Army Signal Corps.

Elect Putnam To Top Post

New president of G. M. Ciannini \& Co., Inc., Pasadena, Calif., is Donald H. Putnam (picturc). He moves up from sales vice president to assume the position formerly held by Gabricl M. Giannini, board chairman.

Putnam joined the precision
 \star A stale finish that protects seals azainst corrosive most Staingent trans is Tor etch iesis oevise * High resistance to mechanical and thermal shock.

Meeting the ever-increasing standards of perfection established by the electronics industry is a chal. lenge admirably met by Zell's highly skilled engineers. They are able to exercise unusually rigid quality controls because all production operations are carried out in Zell's own completely equipped, ultra modern plant.
SPECIALISTS IN STAMPING AND DRAWING KOVAR

- RODAR - THERLO - FERNICO AND OTHER ALLOYS

Seal Engineers: excellent position open, write:

Excellent electrical properties.
Tight dimensional tolerances.
Easy weldability and solderability.

ALL FACILITIES UNDER ONE ROOF

- Complete tool room facilities.
- Ooubto stage anneatingefusing furnates.

Advanced plating facilities for Nickel, Gold, Tin, Cad - Complete tass facilities.

- Mass spectrometer leak testing.

ZELL engineers control every process every step of the way, assuring uniform quality and performance.
REPRESENTATIVES: Your Inquiries invited!

ZELL PRODUCTS CORP.

 279 Main Street, Norwalk, Conn.The completeness of our facilities assures the completeness of your satisfactiont CIRCLE 81 READERS SERVICE CARD

For the finest in RECEIVERS Specify NEMS • CLARKE

TYPE 1401-A RECEIVER-SPECIFICATIONS
Type of Reception...FM/FM and PWM/FM
frequency Range216-245 Megacycles determined by plug-in crystals.
Naise Figure Less than 7 db.
Wide band-500 KC bandwidth at 3 db points. Attenuation + 500 KC from center frequency greater than 60 db .
Attenuation $\pm 250 \mathrm{KC}$ from center frequency greater than 60 db . Sensitivity- 0.16 volts peak-to-peak per KC of deviation.
Frequency response within 3 db . AC coupled-10 CPS to 100 KC per second. Adjustable output control on front panel.
Vu Meter in Video Output Circuit

Spectrum Display
Output
Frequency Monitor Output \cdots.......

Frequency response, flat over frequency range of 400 cycles to 80,000 cycles. Provided with front panel adiustable reference level control.

Frequency Deviation
Provisions for connecting a 30 MC Spectrum Display Unit NEMS CLARKE, Inc., SDU-200

30 MC
Metereak reading over frequency range from 400 to $80,000 \mathrm{CPS}$
NEMS - CLARKE COMPANY
A DIVISION OF VITRO CORPORATION OF AMERICA 919 JESUP-BLAIR DRIVE SILVERSPRING, MARYLAND

DTll

Precision Quality FUSED QUARTZ

Fused Quartz provides high transparency, high transmission of ultra-violet and thermal properties particularly adaptable for special light sources in therapeutic and photochemical equipment. Resists scratching and weathering; has excellent mechanical strength.

Let Dell supply

 Fused Quartz for -- Absorption Cell Plates
- Windows - Electrical Insulators
- Plungers - Microscope Slides
- Cover Slips

Cell Spacers

- Phase Shifters
- Delay Lines

Complete Optical Service on Precision Glass Fabrication including -

- IR Domes - Filters - Prisms - Lenses - Optical Flats
- Mirrors - Commercial Flats
- Windows - Attenuator Blanks

Precision drilling a specialty tolerances held to specifications. Technical assistance is available to help solve your problems. Send for brochure.
control instrument firm, in 1951 as executive assistant to the president and has held a variety of sales, engineering and production posts with the company here and in New York in his rise to the presidency. He has been an officer since 1952 and a director since Mav 1956.

His previous experience was with Sherman Fairchild \& Associates, New York management and engineering consultants, and with the Applied Phusics Laboratory of Johns Hopkins University, Silver Springs, Md.

RCA Promotes De Mooy

In his journev up the ladder, Harold A. De Mooy (picture) is now appointed manager, receiving tube operations, RCA Electron Tube Division, Harrison, N. J. He was previously manager, manufacturing, receiving for RCA rccciving tube activities at Itarrison and Woodbridge, N. J., Inclianapolis, Incl., and Cincinnati, Ohio.

De Mooy joined the corporation in 1926 as an engineer and in 1932 was promoted to general foreman, quality control, at Harrison. From 1939 to $19+7$ he was successively manager, quality control; gencral foreman in the assembly of special purpose type tuloes; and assistant superintendent in the same section. He was made su-

Engineering Opportunity...

Research and Development Manager

for Potentiometer and Transducer Development

Here's a top opportunity in Link's expanding Research and Development program. The man to fill this challenging position will have a Bachelor of Science degree, at least five years' experience in virtually all types of potentiometers, and a general familiarity with transducers.
This is an unusual opportunity to direct activities from conception to completion-to advance both your abilities and your professional career.
Link is located in Binghamton near the heart of upstate New York's recreationland. Only 180 miles from New York City, Binghamton provides "hometown" comfort with big-city conveniences.

Liberal fringe benefit program ...company-sponsored graduate program. For additional information, or to arrange an interview, submit resume to:

Kenneth T. Viall

Manager of
Engineering
Employment

LINK AVIATION, INC.

BINGHAMTON, NEW VORX
perintendent of the miniature tube factory in 1947 and continued in that position until 1950 when he became manager of the Cincinnati plant. In February 1956 he was appointed manager, manufacturing. for receiving tube operations.

News of Reps

Components Division of IT\&T Corp., Clifton, N. J., names Don H. Burcham Co., Portland, Ore., its northwestern sales rep for semiconductor products. The Burcham Co. will handle sales of selenium rectifiers throughout Oregon, Washington, northern Idalio, northern Montana, Alaska and Britislı Columbia.

Ling Flectronics, Inc., Culver City, Calif., appoints Ridgway Engincering. Inc., Chicago. Ill., as territorial sales reps for its full line of elec-tronically-driven vibration testing systems and high power electronic equipment. 'l'erritory covered includes Indiana, Illinois, Wisconsin, western Kentucky and eastern Iowa.

Artema and Radome Rescarch Associates, Westbury, N. Y., appoints H. L. Hoffman \& Co. as their reps in the northeastern states. Rep firm will present the complete line of ARRA microwave components. antennas and radomes for system and laboratory use.

The Electronics Division, Elgin National Watch Co., says the John G. Twist Co., Chicago, Ill., will handle Adrance and Elgin relay sales for the division in the Cliocago. northern Illinois, southern Wisconsin and Michigan territories. Sales of American Microphone proclucts, also manufactured by the division, will continue to be represcinted in these areas by the A. H. Bruning Co., Chicago, 111. Relay sales in the southern Illinois. Missouri. Kansas. Lowa and Nebraska areas will now be handled by the E. W. McGrade Co., Kansas City, Mo.

Ward Leonard Electric Co., Mt. Vernon, N. Y., names Martin-Rettger, Inc., Cleveland Heights, Ohio, as its sales rep for nortliern Ohio.

No. 653 Illustrated

for
 EVERY
 APPLICATION

NEW! 21/2, $31 / 2,4,41 / 2$ inch, anti-static treated, $A C$ or $D C$ meters with clear poly. sfyrene cases for modern installations. Feature standard or matched colors on lower frosted panel for appearance and functional identification.

Be sure of the highest accuracy, dependability, and readability PLUS economy with HOYT precision AC and DC instrumentsthe complete line of Panel Meters. Moving coil, rectifier, and repulsion types available in a wide variety of sizes, ranges, cases, and colors. Also, custom-designed to meet your most rigid specifications for a quality instrument.

Write for NEW, fully illustrated
literature containing descriptions, engineering data, and prices.

Write to Export Manager regarding world-wide availability for original equipment and replacement use.

ELECTRICAL INSTRUMENTS
Sales Div.: BURTON-ROGERS COMPANY
42 Carleton Street, Cambridge 42, Mass., U.S.A. CIRCLE 84 READERS SERVICE CARD

TELREX LABORATORIES

Designers and Manufacturers of COMMERCIAL SERVICE "BEAMED-POWER" ARRAYS

Telrex is equipped to design and supply to our specifications or yours, Broadband or single frequency, fixed or rotary arrays for communications, FM, TV, scatterpropagation, etc.

Consultants and suppliers to communication firms, universities, propagation laboratories and the Armed Forces.

Using Thermistors

Edited by
FENWAL ELECTRONICS

MATCHED THERMISTORS FOR GAS ANALYSIS

Now Fenwal Electronics offers resistance and voltage-current matched thermistor assemblies which are particułarly useful for gas chromatography and other gas analyses.

The matched thermistor assemblies above are used in a balanced bridge circuit. One assembly is in each arm of the bridge and equal current is applied to each. The thermistors, self-heated by the passage of current, will dissipate heat at equal rates if the medium surrounding each thermistor is identical. The meter will show an equilibrium reading.

If the thermal conductivity of the gas surrounding either one of the thermistors should change, the rate of heat dissipation will also change, altering the resistance of the thermistor and unbalancing the bridge, thus causing a reading on the meter. The meter can, therefore, be calibrated to give an accurate indication of the percentage of a foreign element in the gas being analyzed, as related to a known reference gas.
It's all based on the unique characteristic of thermistors - when temperature rises, resistance falls. This relationship occurs whether the thermistor is self-heated, as in the example above, or externally heated through a liquid, gas or solid.
Write Fenwal Electronics, Inc., 21 Mellen Street, Framingham, Mass., for complete information on matched thermistors (Bulletin EM-14), and for many other thermistor applications (Catalog EMC-1).

Design — Engineering — Production of Precision Thermistors CIRCLE 86 READERS SERVICE CARD

The Electronic Musical Instrument Manual-3rd Ed.

By Alan Douglas

Pitman Publishing Company, New York, 1957, 247 p, \$7.50.

The "Electronic Musical Instrument Manual" is a book aimed at describing, in some detail, the concepts involved in producing musical sounds via elcetrical and electronic means. The prescntation is made in a smootl factual manner. with sufficient information to permit fle designer or holbbicst to delve further into the subject as desired.
The clapter devoted to sound, music and noisc is conventional as related to the physics of the subicct. The rclation between the variout frequencies as a function of the fundamcutal, harmonics, transicnts and tempered scale is well outlined.

- Tone Generation-The production of tones via the use of electrical circuitry is complete in terms of electronic oscillators, electromechanical generators, reed and capacitor generators, photoclectronic synthesis and electrostatic generators. Mixing, filtering and keying is also well considered as a function of vacuum tube mixers and also as a mutual induction coupling process.

The section on anplifiers and loudspeakers is adequate and necessary for completeness of system coverage. Importance of the loudspeakers system is most critical to the proper rendering of tonal quality. The various types of distortion are described with suitable comments relative to ways and means for minimizing same.

Commercial electronic instruments are described beginning with the nondescript tone generator, the Therminc and going through the range of Trautonium, Solonox, Clavioline, Bode Melochord, Novachord, the German A. W. B. organ, the Minshall organ and the Electrochord. The Connsonata organ is described in some detail as relating to the application of more modern components. The Allen organ, the

SEVERAL UNUSUAL OPENINGS

Unfaltering progress, even during the past six months, in the Electronics and Avionics Division of Emerson Electric is directly attributable to the sound planning of our long-range expansion program. As a result, we must broaden our organizadional structure and immediately staff severd excellent, challenging career positions.

We emphasize research, design and de. velopment and maintain a sound ratio of production. Current projects include the 33.58 fire control system, mortar locators, radar components and assemblies, servomechanisms, missiles and rockets, ground support equipment microware aninnas support equipmen, microware antennas other classified electronic devices for tho supersonic era.
You must have an E.E. Iegree phus 1-6 years' experience in electronics. Your electronic design experience must the in either servomechanisms, radar systems, analog or ligital computers, fire control andog or ingtal computers, fire control. systems or ground support equipment.
Missile guidance and/or infra-red experi. ence is helpful hut not essential.

Emerson Electric is one of the leading missiles and military electronics firms \rightarrow well estahlished, medium size, aggressive. Salaries are top level, benefits are fully Salaries are top level, benefits are fully
comprehensive. Location is perfectly sub. urban. All moving expenses completely paid.

Your Future Is Our Business!

Please send your complete resume NOW, with business experience, education and salary requirements, to A. L. Depke.

Electronics and Avionics Division
8100 W. Florissant - St. Louis 21, Mo.

Baldwin and the Constant-Martin are also described.

The Hammond Organ, one of the most widely known electronic instruments, is well presented with circuits and illustrations. Relatively new in the Hammond line, is the Chord Organ. This system is outlined relative to the different playing techniques as well as the method for generating and switching the chords and solo effects. Since the adrent of the Chord Organ, there have been advances by Hammond in all spinet, home and church and concert models which are not discussed in the present edition. A percussion effect has been added which produces celesta-like tones with varying degrees of overtones and greater vibrato coupling has been developed.

The Baldwin, Wurlitzer, Welte and Compton Organs are also dcscribed.

A chapter is devoted to the prescntation of experimental methods of tone production and should seric as stimnlus to those interested in experimental rescarch and development of mique new sounds.-G. E. Hambtov, American Broadcasting Company, New York, New York.

THUMBNAIL REVIEWS

Control Engineering Manual. Edlited by Byron K. Ledgerwood, McGraw-Hill Book Co.. Inc., 1957, \$7.50. Serics of articles originally published in Control Engineering covering specifications, synthesis and evaluation of control sustems; generating control functions; design techniques, analog computers and nonlinearity of control systems. An extensive bibliography is included.

Nuclear Power Enginecring. By Genry C. Schwenk and Robert H. Shannon, McGraw-Hill Book Company, Inc., New York, 1957, 319 p, \$6.50. This introductory book on the design, construction and oneration of nuclear power plants also covers components of various svstems, effects of irradition on equipment and health, plant location, economics and nuclear power, and other factors.

CIRCLE 87 READERS SERVICE CARD

RACALENGINEERINGLTD•BRACKNELL•BERKS•ENGLAND

SILVER PAINT AND SILVER PASTE

Take the "bugs" out of the application of conductive silver coatings. Use Drakenfeld silver paint and silver paste tailored to meet your needs. We formulate special compositions for glass and ceramic bodies and other materials. Let us know your specific requirements. Samples will be supplied to fit them. Your inquiry will receive prompt attention.

B. F. DRAKENFELD \& CO., INC.

Box 519, Washington, Pennsylvania

YOUR PARTNER IN SOLVING CONDUCTIVE COATING PROBLEMS

CIRCLE 89 READERS SERVICE CARD

CIRCLE 90 READERS SERVICE CARD

COMMENT

Wireless Microphone
Please clarify the following factors related to ("Wireless Microphone Uses F-M Modulation," Jan. 3, p 54)

Is the voltage of the battery shown in Fig. $1,1.3$ volts?

How is the induction field established externally with the transmitter tank enclosed in the metal housing shown in the photograph?

Is the 5 -meter square loop laid in the horizontal plane?

How far away from this loop can a wireless-microphone equipped speaker stray before the receiver level drops below the rated 0.5 -volt output?

Michael Bozoian
Ann Arbor, Mich
The single mercury cell has a rated voltage of 1.35 volts. The metal shicld for the transmitter is not completc; one side of the housing is formed by the phenolic wall on which the microphone is mounted, and the top and bottom of the housing are also phenolic shect. Consequently there is no shorted turn surrounding the tank circuit, and the induction field is not interfered with by the housing.

The recciving loop is horizontal. It is installed under the moulding along the periphery of the lecture platform. Ordinarily, the speaker remains within the area of the loop, but the system continues to operate if the speaker moves no farther outside the loop than about two feet. At greater distances, the squeleh operates to silence the receiver.
G. Franklin Montgomery National Bureau of Standards Wasimington, D. C.

T-Pi Typos

Inl my paper "T and Pi Network Design" (Jan. 17, p 94) the following typographical errors appeared:

In line $5, \mathrm{col} .3, \mathrm{~B}_{\mathrm{n}}=-(\mathrm{AR}$. ctc., shoulcl be $B_{\pi}=-(A R \ldots$ ctc

In line 7 of the same colimm, the number appearing as 1,896 should be 1.896 .
H. F. Matilis

Goodyear Airport Corp.
Akron, O

DOPPLER NAVIGATION SPECIALISTS

Work on advanced doppler radar navigation and guidance projects at Raytheon.

Some of the most interesting and vital projects of the day are now in the works at Raytheon's Maynard Laboratory.
Challenging assignments are given to engineers with specialized radar experience in doppler navigation and guidance systems... and to others with backgrounds in radar interested in working with these new systems.

Are you a circuit design engineer, microwave design engineer, product design engineer, or systems engineer with radar experience?
please call collect. Ask for John J. Oliver at TWin Oaks 7-2945, Ext. 246, or write him for details. He'll be glad to arrange an appointment at your convenience.

Sometimes it pays to break tradition

Tradition is being broken every day at Melpar as we promote engineers to positions of responsibility regardless of their ages or the duration of their service. In a young, dynamically growing electronic R \& D organization such as ours only one factor carries real weight. That factor is individual ability.

The fact that the average age of our 1000man professional staff is one of the youngest in the country is tangible evidence of our advancement policy's emphasis on skill and performance.

There's never a lack of higher level positions to which the engineer of ability may advance, because we've doubled in size every 18 months for the past 11 years and our growth continues at a rapid pace. We promote from within whenever and wherever possible. By means of our project team basis of organization, work of merit is readily recognized and rewarded without delay.

Our wide diversification - we are presently engaged in more than 100 different projectsgives you the opportunity to tackle challenging problems in a variety of fields.

Our main laboratory is situated on a 44-acre wooded tract in a desirable suburb of Washington, D. C. Lovely homes and apartments are available near the laboratory. Nearby Washington offers a wealth of cultural and recreational attractions, and splendid educational facilities.

- Financial assistance for advanced study
- Relocation expenses paid
- Qualified applicants will be invited to visit Melpar at company expense

For detailed information about openings . . .
Write to:
Technical Personnel Representative

A Subsidiary of Westinghouse Air Brake Company
3449 Arlington Boulevard, Falls Church, Va.
10 miles from Washington, D. C.

AUTOMATIC CONTROL ENGINEERS/WRITERS

Earn Money at Home in Your Spare Time! Free Lance Writing Assignments.

Nationally known electronics school preparing course on Automatic Controls. Free lance assignments avail. able for writers with specific engineering or writing experience in industrial automatic controls and telemetering. Assignments handled by mail on contract basis, with payment per manuscript page. Write, giving specific details of education and non-military experience in these fields. Previous writing experience desirable, but not essential.

P-7n58, Electronics
Class. Adv. Div., P.O. Box 12, N.Y. 36, N.Y.

ADDRESS BOX No. REPDIES TO: BOX No. Chassifict Adv. Dit of this publivation.
sond to oflice netrom you.
CHCAGM 11: 20 N Mirhiman Ave. SAX FRASCINCO 4: 68 Pint it.

POSITION WANTED

Art Director for industry. Background graphic arts, physics, industrial design. Will relocate. PW-7282. Electronics

YOUR ORGANIZATION

Is it complete?
Are you expanding it?
Making Replacements?
Naturally, you are anxious to secure the most suitable man or men available. You want men with the special training that will make them an asset to your organization. You can contact such men through an advertisement in this Employment Opportunities Section of ELECTRONICS.

Classified Advertising Division

ELECTRONICS

P. O. BOX 12

New York 36, N. Y.
gRaduate eers: general electric discloses high priority program for atlas

GUIDANCE SYSTEM. MANY POSITIONS OPEN IN ELECTRONIC MISSILE TECHNIQUES=

ACCURACIES ON ORDER OF 1 PART IN 10 MILLION

required for portions of G.E.'s ICBM ATLAS Guidance System

Delivering an ICBM over a >5000 mile trajectory into the target area demands a guidance system of unprecedented accuracy and this is the calibre of the electronic system General Electric engineers are creating for ATLAS.

But achieving designated accuracies and reliabilities in the laboratory is not enough. These high standards must be maintained in actual operational environments, with virtually no interruption or degradation.

CAREERS IN STEP WITH THE FUTURE

Engineers who join the Missile Guidance Product Section of G.E. are doing more than hastening development of one of the nation's most urgent programs - guidance for ATLAS. As Manager of the Section Richard L. Shetler states: "With this job behind us, there will remain no significant obstacle to the practical guidance and navigation of other space vehicles."

PROGRAM ACCELERATION OPENS UP WIDE RANGE OF POSITIONS IN:
Systems analysis, evaluation \& integration
Systems and component reliability
Transistorized circuits, pulse circuitry, IF-Video circuits
RF and Microwave components \& plumbing
Communications control devices
Doppler radar design \& development
Digital data processing techniques, data transmission involving D \& D of ground-based \& airborne antennae, transmitters, receivers; application of transducers, transponders, etc. Test operations, including planning, range instrumentation \& test execution; development \& application of automatic test equipment

If you feel that your special skills and interests fit you to work in any of the above areas, why not write us in detail? Qualified candidates will be invited to visit our facilities to meet with technical managers and gain first hand knowledge of the living advantages of our locations at Syracuse and Utica, N. Y.

Write in complete confidence to Mr. E. A. Smith, Room 2-E
MISSILE GUIDANCE PRODUCT SECTION

ENGINEERS and SCIENTISTS
 These are our needs-can you qualify?

These positions are now open at Stromberg-Carlson, fastest-growing division of General Dynamics Corporation:

TITLE	DEGREE	MIN. YRS. EXPER.	EXPERIENCE IN
Section Head	M.S. or Ph.D. Physics	10	Antenna theoretical design \& propagation. Entire electromagnetic spectrum. Microwave, VHF, UHF, VLF. Working knowledge of propagation methods. High academic record.
Section Head	B.S. or M.S. in E.E.	10	Military electronics. Broad background in design, with specific project administration in a recognized electronics laboratory.
Sr. Physicist	Ph.D.	5	Solid state devices.
Physicist	B.S. in E.E. or Physics	2	Circuit design, emphasis on solid state.
Physicist	B.S. in E.E. or Physics	3	Solid state circuit design plus RF \& microwave technology.
Sr. Mathematician	M.S. Math	2	Applied math, emphasis on statistics \& probability work.
Sr. Engineer	B.S. in M.E.	3	Electronic packaging, heat transfer and mechanisms.
Sr. Engineer	B.S. in E.E., Math Minor	5	Network analysis. Familiar with LaPlace transforms.
Sr. Engineer	B.S. or M.S. in E.E.	3	Sonar--transducer design. Sr. Engineer
B.S. or M.S. in E.E.	5	Missile electronics. Guidance systems, checkout \& exercise equipment.	
Sr. Engineer	B.S. or M.S. in E.E. or Physics	5	Computers-circuit and/or logical design, primarily digital.
Sr. Engineer	B.S. or M.S. in E.E.	7	Communications equipment design. Transceivers, microwave, UHF, VHF, SSB.
Systems Engineer	B.S. in E.E.	2	Carrier or multiplex, telephone switching systems.
Design Engineer	B.S. in E.E.	2	Transistorized circuitry.
Communications	M.S. in E.E.	5	Communication systems design. Emphasis on modulation techniques.

These positions are in Rochester, N. Y., a beautiful, progressive city in the heart of the Upstate vacationland. Invigorating four-season climate; educational, recreational and cultural facilities unsurpassed anywhere in the U.S.

Send the following information: name, address, phone number, degree and number of years of experience- to Fred E. Lee, Manager of Technical Personnel 1443 N. GOODMAN STREET • ROCHESTER 3, N. Y. new problems...creating new components, systems, equipment...from which whole new product lines are developed. And as new lines are created, new independent G-E departments are formed. The nucleus of such new departments are often drawn from the development staff : at Electronics Park...and the engineer or scientist may either follow - his "brain-child" or begin anew on the spark of another idea.

Why not check your special professional interest on the coupon and send it to us at Electronics Park. A bachelor's or advanced degree in Electrical or Mechanical Engineering or Physics, and/or experience in electronics is necessary to qualify for current openings here.
 Milary Radio \& Rada Multiplex Microwave Mobile Communications Semiconductors Electronic Components Computers Missile Guidance Missile Guidance
Television Receivers Industrial Television Antennae \vdots $\stackrel{\vdots}{\vdots}$

SIMPSON, WESTINGHOUSE AND OTHER

- CONTACTS•

FOR THE FIELD OF ELECTRONICS

Professional

 ServicesTELECHROME MFG. CORP.
Electronic Design Specialists color television equipment Flying Spot Scanners, Color Synthesizers, Keyers. Monitors, Oscilloscopes and Related Apparatus 'Telenctering for Guided Missiles. J. R. Popkin-Clurman, Pres, \& Dir. of Eng.
28 Ranick Dr.
Amityville, L. I.,

Your Inquiries to

Advertisers Will
Have Special Value . . .
-for you-the alvertiserand the publisher, if you mention this publication. Advertisers value highly this evidence of the publication you read. Satisfied advertisers enable the publisher to secure more advertisers and -more advertisers mean more information on more products or better servicemore value-to YOU.

A WONDERFUL PLACE

to live and work

Ann Arbor, Michigan, is a friendly town, small enough to move around in easily, large enough to provide every advantage you could find in a big city-and many that you couldn't. It's a cultural town with its spring Music Festival and its Drama Season (featuring world-famous performers). It's an cxciting town on a crisp football Saturday in the fall. It's an ideal town in any season. Excellent schools, fine nearby recreational areas and the world-renowned University of Michigan and its Medical Center help make it a wonderful place to live and raise a family.
You'd like working for Bendix Systems Division in Ann Arbor, newest division of Bendix Aviation Corporation. Located adjacent to the University of Michigan and its fine engincering school, its function is to integrate Bendix skills and facilities for systems planning, development, and management.
Specifically, we need men with experience in:

> SURVEILLANCE \& RECON: radar, infrared, acoustics
> WEAPONS: missiles, aircraft subsystems, guidance and control DATA PROCESSING: analog and digital computers, displays NUCLEAR: reactors, propulsion, special weapons
> COMMUNICATIONS: radio, digital, data links
> NAVIGATION: radio, inertial, ground-controlled COUNTERMEASURES: ECM, electronic warlare OPERATIONS ANALYSIS

For an interview, write Dept. B228 or call NOrmandy 5-6111

Bendix Systems Division
ANN ARBOR, MICHIGAN

WHOLESALE • WHOLESALE • WHOLESALE

Headset HS-30
$\$ 1.10$
Headset HS-33 w/cushions and extension cord w/plug $\$ 5.50$ JB-70 Junction Box ready to connect w/BC-312, BC-610, PE-95
$\$ 35.00$
BC 221 Signal Generator $125-20000$ KC. . $\$ 60.00$
R5/ARN-7 complete ADF c/w control box, loop
LP-21, motor, cables-as removed from plane $\$ 200.00$
ARC-3 complete w/receiver-transmitter, control box, 2 motors as removed from plane. $\$ 250.00$ QCQ-2 Sonar echo ranging sets. $\$ 75.00$
BD-71 Switchboards
$\$ 12.50$
BD-72 Switchboard $\mathbf{\$ 2 0 . 0 0}$
SCR 625 Mine Detectors $\$ 25.00$
TS-9 \& TS-13 Handsets $\$ 3.50$
TU-62 Tuning Units for BC $610 \ldots .$. $\$ 1.50$
AN-130A Antennas $\$.50$
RA-43 \& RA-63 rectifiers $\$ 37.50$
R-430/ARN-5C Glide Path Receivers (ILS)
$\$ 37.50$
ARC-1 Receiver-Transmitters complete. $\$ \mathbf{1 9 5 . 0 0}$
BC 610 Relays 117v 2Z7590-48.
. $\$ 1.25$

ARN-6 Instruction manual $\$ 10.00$
TC-4 Central Office sets c/w BD-96 \& BD-97 etc. $\$ 275.00$ per set
RT 178/ARC-27 like new. $\$ 125.00$ SCR 508 Radio Sets 30 watts with 1 BC 603 Receiver, 1 BC 604 Transmitter, motors and tubes, 20 to 27.9 mc , brand new. $\$ 27.50$ SCR 628 radio set 27 to $38.9 \mathrm{mc}, 30$ watt with: Receiver BC-683, Transmitter BC-684, motors and tubes
. $\$ 37.50$
SCR 528 Radio Set $20.27 .9 \mathrm{mc}, \mathrm{BC}-603$ Receiver, BC-604 Transmitter, FT-237 Mount, with motors and tubes...................... $\$ 21.50$ SCR 510 Radio Set $20-27.9 \mathrm{mc}, \mathrm{BC}-620$ ReceiverTransmitter, PE-120 Power supply, CS-79 Case w/tubes complete............... $\$ 12.50$
BC-603 Receiver $\$ 10.00 \mid$ T-17 Mikes $\quad \$ 4.50$

BC-604 Transmitter
DM-34 motors $\quad \$ 2.75$
$\$ 4.50$
FT-237 Mount 1.50
BC-683 Receiver 15.00
BC-684 Transmitter
10.50

DM-35 motors $\quad \$ 8.50$
DM-36 motors $\quad \$ 2.75$
DM-37 motors $\quad \$ 3.50$
BC-620 Rec-Trans
$\$ 6.50$

TALLEN CO., Inc.

159 CARLTON AVENUE BROOKLYN 5, NEW YORK TRiangle 5-8241

 ENGINEERING DEGREES IN E.E. Option Electronics or Power. May be earned by HOME
STUDY or residence work STUDY or residence work.
(P.I.U. at present operating as
a College of Engineering only.) 5719-G Santa Monica Blvd. Hollywood 38, California

CASH PAID! Sell your surplus elec-

used, clean transmitting, special purpose receiving TV types, magnetrons, Klystrons, Broadcast, etc. Also want military \& commercial lab test and communications gear. We swap too, for tubes or choice equipment.
Send specifue details in first letter. For a fair deal write, wire or telephone: Walker 5 -7000 ${ }^{\text {a }}$
Barry, 512 Broadway, New York 12, N. Y.

$2{ }^{\circ}$ STEPPING MECHANISMS Mfg by Giannini \& Co SAVE 90\%

cost over sis5. ea. OUR PRICE \$15. ea. H. Z. ROSENBERG \& CO. 701 Seneca St

If there is anything you want

 that other readers can supplyOR . . . something you don't wantthat other readers can use-

Advertise it in the
SEARCHLIGHT SECTION

ALL mdse guaranteed. 24-hour telephones take your orders any time for prompt servicing. Material subject to prior sale.

136 Liberty Street
COrtlandt 7-4245
New York 6, N. Y.

SEARCHLIGHT SECTION

(Classified Advertising)

RATES DISPLAYED

The advertising rate is $\$ 24.75$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on request. AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns- 30 inches-to a page.
EQUIPMENT WANTED or FOR SALE ADVERTISEMENTS acceptable only in Displayed Style.

UNDISPLAYED

$\$ 2.40$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line.
PROPOSALS, $\$ 2.40$ a line an insertion. BOX NUMBERS count as one line additional in undisplayed ads.
DISCOUNT of 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals).

- PRE-SPRING INVENTORY CLEARANCE

(000 y primary, 120 v secondary fiO eycle afe, 500 watt

IMPORTED METERS	
1 5/8"	' Square with Bakelite case
5 Meter units)	
VU Meter-20 to +3 and 0 to 100% $\$ 5.00$ ea.	
AC Volts, 0 to 15 volts or 0 to 150 volts $\$ 3.75$ ea.	
DV Volts, 0-15, 0-30, 0-200, 0-500 volts $\$ 3.75$ ea.	
DC Milliamps, 0-1, 0-100, 0-200, 0-500 ma $\$ 3.75 \mathrm{ca}$.	
DC Micr	
TUBES	
10,000	2526GT $\$ 35$ per C
5,000 6	6J4GT 40 per C
10,000	6SD7GT 25 per C
2,000	6SG7GT 20 per C
2,000	IU4GT 15 per C
10,000	VR-150 25 per C
5,000	6BA6 35 per C
5,000	12AT7 55 per C
200 4x150A Eimac 15.00 each	
100	5J26 Raytheon. 130.00 each

RCA GEIGER COUNTERS "FRACTION OF COST"

\# 10A	\$29.95
\# 11A	34.95
\# 12A	37.93
\# 13A	99.95
\# 16A	149.50

METERS
Westinghause, $21 / 2^{\prime \prime}$ round, black foce 0-5 MA
Triplett, $21 / 2^{\prime \prime}$ round, 0-35 MA..... $\$ 2.00$ Hallierafters, $21 / 2^{\prime \prime}$ round, $0-150$ MA. $\$ 2.00$

RELAYS

Leach \#6104, 115 v ac, 30 amp contocts
con-
$\$ 3.00$
Advance, 2000, 3 pole st, 39 ohm 6 V
dc cased relay.............. $\$ 35$ per \mathbf{C}

SWITCHES

15,000 C. H., AN-3227-5, toggle switch 4 pole dt, 3 position, on-off \& momen- .60 tary bot handle . 60 1000 C. H., AN-3023-5, toggle switch dpdt, on-off \& momentary, bat handle. 40 5000 C. H., AN-3025-6, spst 40 1200 Square-D, \#9320-962, large spst knife switch, antenna type, Hi-amps $\$ 1.50$ 5000 Gibbs switch box, SA-3A/A, AF33(600)9373 Explosion switch, 11 $\$ 1.00$ ea. to 13 gravities.
$\$ 1.00$ ea.

RECTIFIER

5,000 Radio Receptor, 350 mo. . 60 each

RESISTORS 20,000 10 watt, ww, 50-200-5000 ohm . 05 ea 10,0005 watt, ww, 400 ohm....... 03 ea 10,0002 watt control, ww, 300 ohm shaft $\$ 10$ per C 10,0002 watt control, ww, 10,000 ohm, shaft $\$ 10$ per C 10,000 carbon pot., screwdriver shaft $\$ 50$ per M 5,000 2 wott, corbon locknut, 500 K $\$ 15$ per C

CIRCUIT BREAKERS

500 Heinemon AM105 10M6, 2 amp 5,000 Klixon, \#C-6363, 15 or 30 amp $\$ 1.00$ 5,000 Klixon, \#C-6363, 15 or 30 amp ea. .50 10,000 Klixon PDA20, spst, 60 cy ac 0 10,000 Klixon PDA30, spst, 60 cy ac .40

R. F. FILTERS

TRANSFORMER

10,000 ouncer type tronsformer
$7 / 8^{\prime \prime} \times 7 / 8^{\prime \prime} \times 11 / 2^{\prime \prime}$, cosed
mfg by Raytheon, Lionel
primary, 22 kct , to 5200
ohm ct +600 ohm ct $\ldots \$ 35$ per C

TECHNICAL SYSTEMS CORP.
12.0143 rd Av., L. I. C. 1, N. Y.

RAvenswood 9-0652-3
We solicit inquiries from overseas governments and electronic firms, universities, institutions having research contracts and countries parin military industrial \& experimental electronics, call on us for prompt and efficient service. We maintain a complete service, festing, and overhauling lab. If you require additional technical or other information, do not hesitate to call. We guarantee all equipment will be delivered in condition quoted.

$$
\begin{gathered}
\text { SCR-399/499 } \\
\text { AN/GRC-26 }
\end{gathered}
$$

The SCR-399/499 are high power stationary or mobile once and c.w. radio sets covering $2-18$ me. The trans.
is the famous BC-6IOE. The receivers are the BC. 312 and $8 \mathrm{CC}-342$. These sets have a reliable range of $500.1,000$ miles mobile. Much a reliable range of
fixed station. We used as a flxed station. We can supply this equip. with a compiete radio teletype setup installed. The AN/GRC-26 set. We can supply the above with or without the PE-95 gasoline power plant. PE-95 10kw plants also
avail. separately. P.O.R.

RECEIVERS

BC-31 2-342
We can supply large quantities of these $1.5-18 \mathrm{mc}$ prect sion receivers. These sets are one of the most popular ates from 12 v.d.c. The BC 342 from 110 V 60 cyc . We will quote out supplying these sets from other powel sources such as 220 V and cycle ranges $\mathbf{4 0 - 6 0}$ cyc. Write.
SCR-506 ALSO ANAIL. of all types

SCR-536	
SCR-508-608	
Radar Equip.	

WRITE FOR OUR CATALOG

ANEMM ROTAIING PHeffital SATILIIII tracking RADIO RADAR OPTICAL

Size 32" High
48" Bottom Diam.
Rotating Capacity to 2,000 lbs.

A Rotating weight up to $\mathbf{2 , 0 0 0}$ lbs. may be mounted on this pedestal, enabling very large antennas to 360° rotation. 3 selsyns are included in the data takeoff system. Rotating motor is 250 in the dafa ble. Rotating speed is 4 RPM. This may be changed easily. 44 power and 4 R.F. co-ax cables are transmitted through the slip ring. This allows a very large quantity of equip. to be mounted on the rotor. A pulse cable is also provided. A tilt system may be easily mounted. Brand new in cases wt. approx. 2,000 lbs. Price $\$ 2,500$ ea. F.O.B
THESE WILL GO FAST!
VERY FEW AVAIL.

MICROWAVE COMPONENTS

Waveguide test fixtures, C-Thru V-Band mixers, tees, aftenuators, fransitions, W-meters, efc Test sets. Let us know your exact wants and get our quote.
R.F. POWER SCOURCES ALSO AVAILABLE

McGRAW-HILL BOOKS FOR YOUR READY-REFERENCE
 RELIABILITY FACTORS FOR GROUND ELECTRONIC EQUIPMENT
 RANDOM PROCESSES IN AUTOMATIC CONTROL
 LIBRARY

Methods and working data to belp designers build greater reliability into military electronic equipment. Pinpoints causes of poor reliability. Discusses electrical and mechanical factors, luman engineering, and components. Gives results of falled-parts studies Edited by lieith Hemmes, 280 pp. 196 illus., 88.50

Presents theory and practical terdmigurs for analyzing linear control systems subjected to random inluts. Treats concepts of probability and random time functions in detail. Develops techniques for designing systems containing constant and time-varying components. provides computational methods for use on computers. By J. H. Latning, Jr., amd R. M. Bathin, Instrument Lab., Mass., Inst. of Tech., 4?9 pp., illus., $\$ 10.00$

PROFESSIONAL ENGINEER'S EXAMINATION QUESTIONS and ANSWERS

Over 500 questions and complete answers to helpengineers pass state license examination. Covers mechanical. electrical, civil, and chemical ensineering and includes engineering economics and land surveying. Latest questions-suitable for all states. Author has worliel on New Jersey examination preparadion for 18 years. By William S. Latonde, Jr. 462 pages. 23. illustrations. S6.5\%

Write for free list on telephones. ALL ship ments F.O.B. Simpson, Pa.
TELEPHONE ENGINEERING CO. DEPT. E-2B SIMPSON, PA

INDEX TO ADVERTISERS

Arpax leroducts Co.
Nexinder Hamitton Inatitnte
Alphar. Mefals, Ime
Ameriman lava Corporation
Smericin Rondo Corp.
Amprix R10ntrunir (orporation........ 8 .
Amperex lifertronic Corporation........ 33
MMPIncorporated 15
Audrev Corboration 108
Asnociateal Researeh, Inc. $1: 8$
Audio bavelopment Company 102

Ibell Telfphone Laboratories. 36
Bendlx Aviation Corp
Pacific Divisian
23
Bentiry Harris Mig. Co.
35
Bird Electronic Corp.
IBanomathe Mfg. Divixion Medratw-Edison

Cambridge Thermionic Corp. 49
Celeo-Constantinu Enginerering Labora-
Centralab A Div. nf Globe-Fninima.
Chiatagn wiamaral Tranatomaer Curp..... $11:$
(iuch lifg. Corp. 83
Continental-Diamond Fibra Subsidiary of the buld Company
Cornell-Dubilier Electric Corp............ . . . 100
Cosmic Condenser Co. 13
Coto-Coil Co., Inv.... 134

3rd Cover
DiJur-Amseo Corporation 107
Dell Opties Co., Idt.. 130
1)+utach Company. The. 117

Digitale. Inc. 127
IbNII Compatys. The 126
Drakenteld \& Co.. Ine.. B. F.
duldint de Nemomes Co. (Inc.) F. 1.

Hoyt Electrical Fintrumentm............. 131

Tuturnational Electronic Rsworrch Corb. 1?0

Weftere ELectronice Div. Speer Carbon Co. 114 Bonos A I amson Madhine Company...... 30

Kenter Noldar Compary. 27

Kintel (Kay Lab) 13
Kl.in Mithian \& Nons 119

Lavoie laboratories. Inc. 48
T.ink Aviatlon, lin'. 130

Vema-Clarke, Ine 129
New Itrbarthre Division of General 34 Motors 143

Oak Mfy. Co. $\quad 19$

Eitple Signal Corporation 90
EAlo Corboration 91
Fitel-MeCulhough Inc. 41
Etectroulce 38. 39

Emetron Elactria ... 13:
Fillsteq Metallorgical Corporatlon... 94. .
F-セいwal Electronices 13:

Promal, linc.
rrmu'al, Ine.
fincral ceramics corp
Ginmeral Elactric Co.
Apparatus Dept.
Trabe Depr. 11
Magnetic Materials Neretion......... $9!110$
Gellaral Tramaintor Corp. 31

NUTRON
 Portable Regulated Power Supplies

NEW! FOR TRANSISTOR WORK

Model
PR-1A

- Hi-Range: 0.120 V
- High Current: 1 Amp. DC
- Regulated DC or AC output
- Extremely low ripple
- Available in rack mounting

SPECIFICATIONS:
nput: $95-130 \mathrm{~V}, 60$ Cycles
DC Output: $0.120 \mathrm{~V}, 0.1$ Arap
AC Output: 0-130V, 0-1 Amp
Regulation: $\pm 1 \%$ for line $05-130 \mathrm{~V}$
Completely isolated output
Some other applications:
Versatile Productūon Test Supply
DC or AC motor control
ine confrol of saturable reactors
Regulated DC or $A C$ filamert supply
Regulaic unit for any laboratory
basic unit for any laboratory
Write for Technical Bulletin EP-IA.

FOR VACUUM TUBE APPLICATIONS

Model $P R=100$

- Range 120-300 VDC
- 0.1 Ampere over entire range
- Fine Vernier Adiustment
- Ripple \& Noise below 5 mv. rms.
- Better than 0.1\% regulation NL to FL
- Isolated Outputs

- Input 105-125 V, 50-60 Cycles

Other uses
Calibration of meters, potentiometers, efc. Components lest setups, inspection
Continuously adjustable reference supply
Write for technical bulletin EP-100.

NUTRON

Manufacturing Company Inc.
67 Monroe Street
Staten Island 1, New York

*CUSTOM BUILDERS AND DESIGNERS OF:

CAVITIES

MIXERS - DETECTOR MOUNTS DUPLEXERS - MULTIPLIERS ROTARY JOINTS • BENDS
TWISTS • OTHER COMPLEX
COMPONENTS \& ASSEMBLIES
Application-engineered microwave parts and complex assemblies are our specialized field. We'll manufacture components to your prints ... or we will design and integrate them into your application.
You can depend on J-V-M for close coordination, guaranteed electrical performance and "know how" that is attested by innumerable assemblies ranging from dc. to $40,000 \mathrm{mc}$. now in industrial and military use.

1. Variable vane directional coupler... sliding vane type . . . high directivity-

$$
\text { 2. Pre-selector-mixer... } S \text { band... } 50 \text { ohm }
$$ input impedance . . . high Q double. tuned ganged cavities...detector output . . . frequency stable from

\qquad -55° to $+85^{\circ} \mathrm{C}$.

Get full information on J-V-M standard or custom-engineared microwave parts and components, also complex mechanical assemblies. Request catalog today.

Gorensen \& Co. Inc. $\quad 5$
South Chester Corporation 10
South Chester Corporation
Sperry Gyroscope Company, Division of
Sperry Kand Corp.
Sprague Electric Co. $\quad 3$
Stevens Arnold, line. 133
At, vens Arnold, line. 133

Stoddart Sircraft Kadio Co.. Inc.........
Stromberg-Carlson Company
21

Taylor Fibre Co. 4 Techmolagy 1 nstrument Corp. 111 Telrex Labs . 131 Tpxas Instruments lncorporated 47, 87

Urinite Co 42
United Transformer Co. Cover

$$
\begin{aligned}
& \text { Varian Associates } 101 \\
& \text { Veeder-Lnot, Inc. } 40
\end{aligned}
$$

N-Acto, Inc. 127
Zell Products Corp. $.128,120$
Professional Services. 139
CLASSIFIED ADVERTISING
F. J. Eberle, Business Mgr.
EMPLOYMENT OPPORTUNITIES.136-139
EDUCATIONAL 140
EQUIPMENT
(Used or $.140-142$
WANTED
Red Arrow Electronics Sales Co 140
Barry Electronics 140
Bendix Aviation Corp. Bendix Systems Div. 139
Blan 141
Discophone Sales Co., Inc. 141
General Electric Co. 137. 138
Melpar Inc. 136
Pacific International University 140
Page Electronics. 140
Rosenberg \& Co., H. Z....................... 140 140
Stromberg-Carlson Co "138
Tallen Co.. Inc 140
Technical Systems Corp. 142
Telephone Engineering Co.. 142
Universal Relay Corp. 142
(Formerly Universal General Corp.)

This index is published as a service. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibilities for errors or omissions.

Dawen's new EGG CRATELC filters...

Center frequency: covers the range fom 1.4 $M C$ to 60.0 MC dependin! "pon specific requirements. Center frequency stability: $\pm 1.0 \mathrm{KC}$ per MC from $-55^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$. Shenpe fuctoc: $\overline{B W_{60}} / B W_{G}$ to 2.1. Shape factors ean be modifien for optimum time delay.

In addition to these outstanding specifications, Daven's new LC filters offer a unique type of construction which makes them the mostrugged filters ever built. Small cells are welded

Iogether to form the partitioned shield compartment... making this the first filter with truly continuous mechanical and elec. trical bond... providing a high degree of inter circuit shielding.

Daven's new LC filters are ideal for shaping the pass band of AM/FM or FM/FM data link receivers, double or single side band receivers and generators, direction finding receivers, wom munication and telemetering receivers, and spectrum analyz ers. So versatile, in fact, that applications are almost limit less. Write today for complete, newly published technical data

Display Brilliance

Half-Tone Display
Controllable Persistance
High Contrast
Fast Writing
Over-all Erase
Small-area Erase

That will depend, of course, on the specific requirements of your equipment design.
But whatever your need-whether the tube application is in airplane cockpit radar, analog computing, transient recording, fire-control radar, data transmission, or visual communication via narrow bandwidth transmissionlock to RCA for expert design knowledge and manufacturing know-how on display storage tubes.
RCA Display Storage Tubes are already being supplied in quantity for many commercial and military applications. In addition, many developmental
types of RCA Storage Tubes also are available to equipment manufacturers on a sampling basis. Ask your RCA Field Representative for complete details.

EQUIPMENT SALES
744 Broad Street Newark 2, N. J. HUmboldt 5-3900
Suite 1181
Merchandise Mart Plaza
Chicago 54, Illinois WHitehall 4-2900
6355 E. Wash. Blvd. Los Angeles 22, Calif. RAymond 3-8361

GOVERNMENT SALES
415 So. Fifth Street
Harrison, N. J
HUmboldt 5-3900
224 N . Wilkinson St.
Dayton 2, Ohio
BAldxin 6-2366
1625 "K" Street, N.W. Waskington, D.C DIstrict 7-1260

RADIO CORPORATION of AMERICA

[^0]: * Now with Radiation, Inc.

[^1]: * Now with Magnetics, Inc., Butler, Pa.

[^2]: Output irom each element of 6700 beam-switching tube is passed through $0.05-\mu \mathrm{f}$ plug-in capacitor. Removing a capacitor provides a zero output

[^3]: III CEDAR LANE • ENGLEWOOD • NEW JERSEY - Tel: LOwell $7-0607$ CANADA : CANADIAN MARCONI CO • 6035 COTE DE LIESSE • MONTREAL 9 MARCONI INSTRUMENTS LTD - ST. ALBANS • HERTS • ENGLAND

[^4]: RELIABLE TANTALUM CAPACITORS SINCE 1980

[^5]: Heat-dissipating electron tube shields for miniature, subminiature octal and power tubes

